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Our cover: Why not do it in software? We "rigged"
the design specs to make software the winner for
this system. But, in the real world, more systems
are being built to these design specs. As John
Tower of the Advanced Technology Laboratories
in Camden found out with our "cover" system,
the correct hardware/software tradeoff can mean
the difference between a competitive product
and starting over.
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Software-the future is now

This special issue on computers and software is both timely and important to each
individual engaged n engineering of electronic components, products, and
systems. Its message is simply stated-the knowledge and application of computer
technology is a necessary skill for every engineer, and now is the time for acquiring
this skill.

The use of computers for engineering in the past was limited to highly specialized
applications, in part because of the high cost of computer time. However, there has
been an inexorable trend toward ever lower cost per computer operation, paced by
the ubiquitous integrated circuit and more recently by software developments,
such that this powerful tool is now a very cost-effective technique.

Today we have computer hardware which ranges f -om pocket un 7s through micro
and mini to mainframe products with an almost unlimited problem -solving
capability. Software systems have evolved to the point where the computer user no
longer need be a full--.ime specialist in programming. However, the disturbing gap
between hardware and software specialists must be bridged by more than the
relatively few individuals who do so today if we are to grow as a cost-effective
company in our highly competitive industry.

Clearly we face a need for self -renewal somewhat akin to the conversion from
vacuum tube to transistor skills of the 1950s. Many of us fear the software area,
primarily out of igr prance. It is clear that this need rot be so, since the
programming art has evolved to an organized discipline that can be learned and
used as a skill much as we learned other engineering basics as students.

The message should be clearly understood. Harcware engineers no longer can
afford to ignore the software discipline. It is their future as individuals and it is RCA's
future as well. This issue should help show you the way to make software part of
your future.

William C. Hittinger
Executive Vice Presicent
Research and Engineering
New York, NY
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It's cost-effective, and that's how competitive products
must be designed. There are many other technical,
professional, and business reasons.

When and where?

Right now, and in just about every product imaginable.
Today software represents as much as 80% of total
system development costs.

- How?

48, 57, 62, 68, 74-

Learn software soon. Use one of the several formal and
informal paths available.

- What?

Vocabulary may pose an initial problem, but you'll still
use your basic engineering problem -solving approach.

coming up
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Each year. our anni ry Issue highlights the most important technological
events of the year at RCA The next one (Jun/Jul) will cover silicon -on -sapphire
semiconductors, very -large-scale integrated circuits, optical video disc memories,
digital television, and more.

Future issues will have space technology, manufacturing, and energy themes
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Why every engineer should be
interested in software

J. C. Volpe An engineer's basis job is to solve technical problems, and
software has become a necessary part of the bag of tricks.

Software has become an integral part of practically every
major system produced for the government and it is also
becoming an increasingly influential element of consumer,
commercial, and industrial applications. Just as traditional
hardware could not exist without wiring, few major
products or businesses can survive without an intimate
involvement in software and computers.

The software business
Computers and software are important to our customers and to us.

To begin with, our government customers recognize the
great degree of adaptability that comes from computers and
software. They are realizing that their systems will not
become obsolete as fast as they would have in the past.
Update and modification can be done without "cutting
metal." However, industry and government customers are
concerned that they may be paying an undue price for using
this relatively immature field to achieve the rewards of
adaptability.

The attitude is somewhat different for commercial
products. For years, product planners had looked at all
kinds of gadgetry that may have had attractive sales appeal
but also were too complex for assembly and maintenance.
The difference today and in the near future is that with the
microprocessor and its associated software, we have the
best of all possible worlds. We can obtain a great variety of
sophisticated control with low-cost standard components.
Therefore, the product can be sophisticated and yet very
practically implemented-with a real payoff to the designer,
the manufacturer, and the customer.

From the supplier's viewpoint, the theoretical non -recurring
costs in software form an attractive business baseline. Once
a program is completed it can be used in any quantity of
production versions of the same product without additional
cost. Thus, software costs appear theoretically non-
recurring compared with the replication costs of
hardware-theoretically because most programs are ac-
tually updated or improved in some way from time to time.

Reprint RE -23-6-2
Final manuscript received April 4, 1978

Developing a major software capability can affect a company's
entire organizational structure.

AnoTher important aspect of the software business is the
capi:alization and investment needed to support large
software programs. Beyond a minicomputer -sized software
job, E. substantial program generation center is needed,
whict- includes the equipment-the basic computer with an
impressive array of peripherals-and a highly trained staff
to operate it.

Also, with software come new forms of data storage and
retrieval, libraries, vaults for master tapes, etc. So, as our
industry becomes involved in computer programming,
buying a computer and developing programs are only the
first stages of involvement. Changes have to occur in plant
layout, air conditioning, special power requirements,
specially furnished computer rooms, skills of personnel; in
othe words, the whole organizational structure is affected.

The impact on engineers
One of the most significant of these changes-and the one
of most interest in this paper-is the new skills required with
the transition to software.

Hardware engineers and programmers alike will have to make the
transition to computer science engineers.

Change, transition, and discipline all depend on people-in
this case, engineers and programmers. I think we already
have several experiences here at Moorestown that illustrate
how engineers can make the transition. Some engineers
have made a concerted effort through training programs;
others took on-the-job training assignments and gradually
worked their way up in complexity to accomplishing a
journeyman -level effort in the software field; others were
more or less forced, by economic pressures, to learn
software. Of course, some engineers are exceptionally
gifted. They probably could change careers to biology or
chemistry if they so choose; such engineers have no
problem acquiring software skills.

In general, then, no matter how they are doing it, engineers
have been making the move toward software skills. They
have the mathematical and logical capabilities, can learn
the language, and thus begin to cope with the software
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Software engineering ranks are growing dramatically and steadily. RCA's largest engineer-
ing center, Missile and Surface Radar, has seen its percentage of software engineers grow
from 38°/o in 1974 to 58% in 1977.

world. After that, they have been applying time and effort to
fill in the background on how the computer will work for
them and what specific language levels are required.

Of course, a mass changeover of engineers from one field to
another is neither desirable nor practicable. The switch has
to be one of varying pace and degree. Software is no
panacea for all system problems. The skills and track record
we have developed over the years in hardware designs
ought to temper the transition. We have to make clean
tradeoffs and determine whether a system or a change in a
system can be done more effectively and economically in
hardware, software, or a particular combination of the two.
But this requires our technical staff to be as knowledgeable
in software as they are in hardware, and that's why
engineers, at al levels, must become more familiar with
software.

Preparation for the transition has to begin at all levels of
management. As much as time permits, every engineering
manager as well as every design, system, and test engineer
should go as far as possible in learning computers and
software. Very few engineers or engineering managers are
going to be isolated from the interface. And education is
probably the best way to cope.

Of course, people will be making adjustments from both
sides in this process. The success of software as a
technology will be realized when software is no longer
generated just by programmers, but rather by computer
science engineers. The distinction is that computer science
engineers should have a grasp of the total system re-
quirements. This represents yet another type of transition-
from the individual programmers of yesterday to the new
types of computer science engineers of tomorrow.

In a company like ours, the trend is toward larger numbers
of people working together on large projects. In a small
company, one man can usually do his programming his
way, but when 25 people at RCA are trying to fit all their
work together through one central processor, they have to
do it by the numbers, so to speak, using some common
rules.

Some problems in the past in large software efforts have
been caused Dy the reluctance of individuals to adjust to
that interface problem. I don't like to think that the
management solution is to break the spirits of some
individuals. Getting all types of individual contributors to
pull together as a team is a much more worthy objective of
management. Software and hardware engineers must learn

5



to merge their talents, practice some reasonable conformi-
ty, and achieve success for themselves and their company.

Making the switch
The transition is certainly not a binary function even though
most software is binary. At the conceptual level, software is
perhaps not much different than hardware; functional
requirements can be defined without knowing details of
implementation. The software implementation level, of
course, requires in-depth skills in programming, coding,
testing, and hardware/software integration.

However, for most engineers the transition can be made
rather painlessly in the conceptual part of a software
program at one end, or the testing part at the other end. A
good circuit designer or system designer can easily start
and quickly become effective in either of those parts of
software, especially if he adds a limited amount of formal or
self education. From the employer's side of it, some small

Joe Volpe, as Chief Engineer of Missile and Surface Radar, has
direct responsibility for the largest concentration of software skills
in RCA.

Contact him at:
Engineering
Missile and Surface Radar
Moorestown, NJ
Ext. 3952

dip in the individual's efficiency curve will take place. But
that will be followed by the greater eventual effectiveness of
that individual.

Of course, not everyone should attempt the full transition to
software, although most engineers should learn more about
it. If all barbers decided to become plumbers we would have
a problem getting our hair cut to our satisfaction, and the
same goes for every other craft. But there is a need for
software skills, and the percentage of engineers heading
into that field is growing.

Engineers at Moorestown are getting some help in making the
switch.

Once an experienced individual at Moorestown decides to
become software oriented, he can expect some help.
Specific individuals can qualify for special training to help
them through the transition. In our limited experience here
at Moorestown-three training programs-I have no com-
plaints about the results. I believe our business operations
manager has no complaint either when he looks at our
dollar return for our investment in these individuals. The
turnaround has been fairly rapid (a matter of a few months)
for the formal training period and followup.

Those who do not qualify for special training programs still
have a wealth of resources (e.g., local schools, in-house
courses, books, periodicals) available to help them learn
computer technology. [Ed. note: Such resources are
described by L. Shapiro and P. Anderson in this issue.]

The future of software...and engineers
The opportunities in the software field will continue to grow
for the foreseeable future. MSR, for example, has seen a
doubling of the number of software engineers over the past
two years, with a corresponding limited growth on the
hardware design side.

Software as a discipline is already showing signs of
maturity. It has moved appreciably from the programming
art of the 50s and 60s to an organized discipline containing a
discrete set of operations that can be learned and applied
effectively. We should see the payoffs of standardization as
hardware/software combinations become more miniatur-
ized and lower in cost. We will also see greater discipline
through the generation of modular software packages, just
like off -the -shelf chips at a sub -component level. Through
this maturing process, software will lose some of its
mystique and become an even more broadly applied
technology. It will not require the degree of specialization to
implement that it does today. This will represent the next
higher level of software design, and the non -computer
engineer will be able to cope with this "off -the -shelf"
software very satisfactorily if he obtains some basic educa-
tion in computer science.

In the past, some hardware engineers have resisted learning
the software discipline. Many have stopped with FORTRAN
or APL. That situation has to change. Ultimately, mastery of
computer science may become so fundamental to
engineering that it becomes a question of survival.
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Computer science: how you can get involved

P. G. Anderson Chances are that you're going to want to, or have to, work
with, or at least cope with, computers and software.

Why computer science?
First, let's establish why you should get involved with
computer science. The importance of this infant discipline
is illustrated by pointing out the successful applications of
supercomputers. But some more down-to-earth personal
experiences may bring it closer to home.

The pocket calculator that made our slice -rules obsolete
was first introduced to the public in 1971. The article I read
said,"However, it might be quite a while before they replace
the pencil and paper system, since present cost is abort
$395. It is hoped the cost will come down soon." (Popular
Electronics, May 1971.) Most of us waited until the price had
dropped by ha f, and today we are replacing those big old
clunkers with the latest model at $29.95. The original $400,
four -function model is now a Christmas stocking-stuffer
(soon to be found in cereal boxes and handed out by
insurance salesmen?).

Calculators are just one example of the enormous success
of electronics science, engineering, and technology at
mass production of tiny integrated circuits that take the
place of yesterday's monstrous corstructions. The
inflation -ignoring price drops are accounted for by an
economy -of -scale production process that, once the (ex-
pensive) kinks are ironed out, it's as easy (almost) to stamp
out a million circuits as a dozen. If a need or market can be
found for a million circuits, then the price -per -unit drops
almost to hancling and packaging costs.

The cost of a novel circuit, however, is so high that a special-
purpose, limited -edition device is prohibitively expensive.
The answer, therefore, is to invent and mass-produce a
general-purpose circuit that can be easily modified by the
user to fit special needs. These general-purpose circuits are
known as microprocessors or microcomputers; the user
modification is known as programming. Some computer
circuit chips are available for under $10; "evaluation kits" for
6100-$200; and full-fledged hobby computers with a video
monitor, keyboard, and storage tape for $600.

You don't need to become a computer
scientist to apply computer science any
more than you needed to be a mathematician
to apply calculus.

A retired electrical engineer I met told me that he had
personally witnessed the birth and death of both the
vacuum tube and the transistor. A computer scientist half
his age can (with a bit more exaggeration) claim to have
witnessed the birth and death of computers. Computers
used to be the beasts in air-conditioned rooms with false
floors and were too expensive for all but the most important
computations. Their grandchildren, the computers -on -a -
chip, not only stand alone but are components within other
systems: sewing machines, milking machines, teaching
machines, automobiles, smart thermostats, microwave
ovens, memory typewriters, tv sets, tv games, pinball
machines The list is limited only by the engineer's
inventiveness and familiarity with these new devices.

Super -computers are not disappearing, or even declining in
population, but affordable minicomputers and embedded
microcomputers are showing up everywhere. Actually, the
larger systems are a principal tool for developing smaller
systems. The relationship between the few giants and the
ubiquitous m cros is yet to be seen. But the all -

encompassing program libraries and data bases are likely
to reside in the large, central computers, which will deliver
the required p eces to the distributed small computers on
demand. Similarly, the small computers will reciprocate as
data -gatherers and remote editing stations. Hook-up
durations will be minimal-infinitesimal compared to
today's time-sharing costs.

Processes that traditionally have oeen controlled by analog
mechanisms (pressure -driven valves, centrifugal gover-
nors, thermostats, etc.) are now being digitally controlled
by these embedded computers. The cost of transforming
analog to digital signals is more -.Ian justified by the level of
sophisticated control that can now be done: combinations
of events can be monitored, their histories used to evaluate
present events, and their records kept. Most importantly,
since computers are general -pi.. -pose machines, they can
be re -programmed when the rules need updating.

Modern engineers, to maintain their competitive edge, have
an entirely new component to master. The technology to
implant computers into new products, systems, or
processes is probably close enojgh to existing practices to
make the transition possible (i -puts go here; outputs go
there; power supplies go here; -hind the timing pulses;...).
But these new devices process data or information; and
these quantities, their appropriate structuring, and methods
of their mastery comprise a new discipline, computer
science.

Computer science, the discipline which provides system
flexibility, deals with an invisible product,-the computer's
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Super -computers are not disappearing, or
even declining in popularity, but affordable
minicomputers and embedded microcom-
puters are showing up everywhere.

programs, or "software." The popular image is that the
computer builder, the hardware engineer, is responsible for
them. In fact, the lion's share-often 75°/o of the cost-of
large hardware/software (i.e., "embedded computer")
systems, etc., is attributable to the software. Some figures:
as far back as 1972, the Air Force spent between $1 and $1.5
billion on software and one third of that money on
hardware;* software costs now amount to 1% of the U.S.
gross national product.

To maintain currency, to stave off personal obsolescence,
you need to know computer science. It's now as important
to your discipline as calculus always has been. No, you
don't need to become a "computer scientist" to apply
computer science, any more than you needed to be a
"mathematician" to apply calculus. But the more you get the
better you are.

Some engineers do elect the "retread" career path and
become full-time programmers, but that is not necessary;
you can stay within your present field but increase your
effectiveness by learning how to create and use computer
software.

Other important reasons for getting on board are: there are
always those (how well intentioned?) experts waiting to
snow you, and the fun, fascination, and challenge of the
field.

What is computer science?
Now that you're convinced that you should learn about
computer science, let's find out exactly what it is. Computer
science is the study of information processing, the means of

'Proc of Symposium on The High Cost of Software. Naval Postgraduate School,
Monterey. Cal (Sep 17-19, 1973).

Fig. 1

Information flow. The cloud is a banking system. an airport. a
chemical factory

The difference between hardware and
software activities is that in the former,
design leads to production, and in the latter,
design leads to more detailed design.

representing and structuring data and the methods for
processing it. This is: data structures and algorithms.

We need to fit this bare -bones abstraction into a broader
context. A systems analyst (high -titled programmer) has
the problem of determining the information -flow needs of a
system (organization, device, ...) and designing the data
structures and processing functions to meet those needs
(to construct the "information system" shown in Fig. 1).
These detailed requirements are converted into a working,
tested, documented computer program by a coder (low -
titled programmer). In the cases of large, complex
information-processing systems, this development goes
through several iterations. An analyst assesses the needs
and designs the highest -level functions to meet them; then
each of these functions is analyzed into its data -structure
requirements and component subfunctions; and so forth,
dividing and conquering until the last, lowliest detail is
dispensed with. This reflects and formalizes what we have
known all along as "the problem -solving process," which is
what engineers all along have known as "design." The
difference between hardware and software activities is that
in the former, design leads to production, and in the latter,
design leads to more detailed design.

An algorithm is a computational recipe, a set of rules that
prescribe what calculations are to be made with what data,
in which order to perform them, and what to do with the
results. To be useful, an algorithm should specify a
computational sequence that stops in a reasonable length
of time (otherwise it is only of interest to academic or very
rich computer scientists). Computer scientists study
various properties of algorithms, such as the number of
steps involved in an execution (average, worst case, etc.),
the amount of computer memory needed to represent the
algorithm and to use for work space, and numerical
accuracy, and with the tradeoffs involved among these
issues. More recently, as with traditional hardware
engineering, software engineers (modern -titled
programmers) have become concerned with quality
engineering, which, in software, is the study of properties of
algorithms conducive to reliability and maintainability.

A study of data structures involves, at the simplest extreme,
efficient ways of representing and approximating numbers
(whole numbers, fractional numbers, tradeoff between
range and precision, etc.), characters (English text), and
simple relations. The plot thickens when we group these
simple objects into: complex numbers, vectors, matrices,
data tables, and mixed records (e.g., employee payroll
records). The most complex data structures involve
aggregates that reference or "point to" one another, like the
cross-references in encyclopedias and library card
catalogs. These data complexes have a much richer
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potential for structure than conventional paper filing
systems, which are generally organized only according tc a
single scheme An unlimited number of re ationships can be
simultaneously used as organizational principles for a data
complex. Computer data structures thus range from the
simplest (a single numerical variable representing an
individual's sex), to simple groupings (a list of employees'
names, addresses, and earnings organized by payroll
number), to unimaginably convoluted data complexes (a
database of information about a community organized by
all the relatiorships among the members)!

Saying that computer science is the study of algorithms and
data structures is just slightly more revealing than saying
mathematics is the study of numbers. To probe deeper, we
need to examine computer science's application areas, is
tools and techniques, and the machines that it controls

Computer applications are, briefly, everything. This makes
it quite difficult to structure a discussion. ;For an interesting
attempt at exhaustion, see the list of 2600 applications in
Computers and People, August 30, 1974.) Any simple
classification scheme must be unsatisfactory, although
there are a few large, relatively well-defined areas. Business
and commercial data processing is characterized by the
handling of large amounts of data with relatively little
arithmetic. This contrasts with scientific computing, which
performs extensive calculations but handles little data (this
is known as "number crunching"). A third major area is
systems programming, which deals with the computer
system itself to make it a more useful tool. The divisions are
far from clean-for example, management science
optimization problems for the business community require
heavy mathematical computing: whereas statistical
calculations by scientists and engineers require bulk data
processing.

The pressures exerted on computer science from the
application areas have resulted in the development of many
techniques and theories as extensive as those of the
traditional sciences. Numerical analysis has taken a new
direction and importance now that its techniques can be
automated with such astounding speed. Almost half of the
computer programs run in a commercial data-processing
operation involve searching and sorting large data files, so
this has become an extensively studied and developed area.
What is the best way to sort a hundred, a thousand, cr a
million records? The answers to such questions involve a
design of interesting algorithms and interesting data strJc-
tures. Process simulation is an area almcst unheard-of prior
to the computer age. Many experiments cannot be per-
formed on actual systems, so the systems are modeled and
computer programs written to simulate them. Examples
range from experiments at stock market and betting

Saying that computer science is the study of
algorithms and data structures is just slightly
more revealing than saying mathematics is
the study of numbers.

The more language systems you know, the
more you will be free of any particular
restricted ways of view:rig the world.

strategies to the structure of communication systems.
Simulation is one facet of "computer -aided design," which
also includes interactive graphics with its own special
techniques and theories.

In addition to 'he technical techniques of computer science,
we now have tie product design and development tech-
niques of software engineering that address the problems
associated with large software projects, their scheduling,
reliability, and maintainability.

All of these application areas and their associated
technologies require tools. Sir ce computer programs are
more like engineering designs or mathematical theorems
than like any other traditional products, we are not sur-
prised that the main tools are like the main tool of human
thought: symbolic languages. As soon as we have a new
computer and some rudimentary processes for getting
programs and data into the ma: -Mine and answers out, we
demand a symbolic system for designing and coding
programs. The simplest of these are assemblers, which
provide a one-to-one symbolic representation of the
machine's operation codes (which are represented by a
sequence of ones and zeros within the machine). Assembly
languages are, unfortunately, complex and tedious to use,
requiring a specialist coder, and are unique to each
computer model.

Thus we have higher -order programming languages, which
are standardized and are closer to the problem area and so
worth learnirg by engineers, accountants, and other users.
Even if one is not a proficient programmer, one can still read
a program ii such a language. The most widely used
languages are: COBOL for business data processing,
FORTRAN for engineering and science, PL/1, PASCAL,
and ALGOL for general application, and SNOBOL for text
processing. f one is fortunate enough to have a conver-
sational or irteractive computer system, then the introduc-
tory language BASIC is usually supplied, and occasionally
the powerful but cryptic APL is available for general-
purpose application.

These higher -order languages must be translated to
machine codes. This is done by a compiler, a large
computer program built by so'tware specialists known as
systems programmers. Compiler construction involves
some of the deepest results and finest theories in computer
science.

Another tool, also the product of systems programmers, is
the computer's operating system. This was hinted at above
with the rudimentary programs to do the basic input and
output. A co 'nputer operating system has the responsibility
for scheduling the computer's resources, bookkeeping,
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Programmable calculators for under $30 can
give you a realistic feel for algorithms.

servicing the input-output devices and their interface with
the user's programs, and keeping the computer operator
informed of the system's operation status. An operating
system extends and enriches a computer.

Computer science is not a branch of electrical or
mechanical engineering, but these disciplines provide the
wherewithall for running our programs, so computer
scientists are expected to understand the physical com-
ponents (at least functionally) so they can configure a
computer system to meet an organization's needs. This
means a knowledge of input-output devices (card equip-
ment, printers, paper -tape devices, magnetic tape and disc
drives, drums,...), memory devices (some fast and ex-
pensive; others slow and cheap), communications equip-
ment, graphics equipment, and, of course, computers
themselves.

Internally, all computers are not the same. Even though they
are all "general-purpose machines" and can simulate one
another's behavior, they have individual strengths and
weaknesses that make them more or less suitable for
specific applications. For example, some computers sup-
port floating-point (i.e., scientific notation) calculation
directly in hardware, and others support it in software; this
choice can affect the run-time of certain programs by a
factor of ten. Data -path width is another issue that affects
certain classes of application; a computer that handles
large words as a single unit is preferable for com-
munications processing to one which handles smaller units.

What YOU must do
Now that you know what it is you want to learn, how do you
go about learning it? As with most other fields, you can only
get so far by reading about computer science. You must pay
your dues by getting into programming. Fortunately, this is
now easily done. Programmable calculators for under $30
can give you a realistic feel for algorithms; home hobby
computers for under $1000 are fun toys that can provide you
an extensive training ground and be a useful servant and
tool as well; minicomputers for under $50,000 are easy to
find spare time on (at that price they don't need to be used
all three shifts), and those are real computers. Employers
are more and more easily convinced to allow their
employees use of their computer equipment for do-it-
yourself education.

When you have located a computer system for your
training, you will need some guides. Computer vendors
supply user manuals for their systems, but these are more
suited for reference use once you know what questions to
ask. In the old days (ten years ago), these manuals were all
that was available, but now there are hundreds of texts
available for beginners. A list of recommended ones to get

started using a programming language (your primary tool)
is given below. (Use your vendor -supplied manuals with the
text: standardization is still one of our fond wishes.)

The SNOBOL 4 Programming Language
R . E. Griswold, J.F. Bage, and I . P . Polonsky
Prentice Hall, 1971

An Introduction to Programming-A Structural Ap-
proach Using PL/1 and PL/C
Richard Conway, David Gries
Winthrop, 1973

Structured Programming in APL
Dennis P. Geller and Daniel P. Freedman
Winthrop, 1976

Fortran Programming-A Spiral Approach
Charles B. Kreitzberg and Ben Schneiderman
Harcourt, Brace, Jovanovich, 1975

BASIC
Samuel Marateck
Academic Press, 1974

Structured COBOL
A.S. Phillippakis and L .J. Kazmier
McGraw-Hill, 1977

You will have met the first solid milestone in your computer -
science education when you can use one of these
languages to solve problems along the lines of numerical
analysis (computational calculus), bookkeeping, and
sorting. Next-and please don't stop until you have met this
milestone-is the ability to specify, construct, and use a
software library; that is, a collection of reusable programs
and subroutines tailored for your applications. This
milestone marks the transition from amateur to pro. Your
software library converts the computer from a handy gizmo
to a business partner. (Libraries available from vendors and
user groups can widen the differences among computer
systems.)

Once you have this running start, please be modest and
don't believe you know it all. The alternative is to become a
"computer hack" (for a lucid discussion of them, see
"Computer Power and Human Reason" by Joseph Weisen-
baum, W.H. Freeman and Co.). To solder is not to be an
electrical engineer. To get a solid footing in computer
science, a good -bet short reading program is two books by
Niklaus Wirth, Systematic Programming-An Introduction
and Algorithms + Data Structure = Programs (Prentice -
Hall). With these under your belt, you will be able to map out
your own additional reading program. Donald E. Knuth has
written the first three volumes in his Art of Computer
Programming (Addison-Wesley); these are heavy on the

One trap to avoid: thinking that your only
programming language is the programming
language.
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mathematics but worth your effort in terms of un-
derstanding how to design and analyze programs.

If you succeed this far-master Wirth, get into Knuth-then
you need little more overt guidance; you are into computer
science. Courses and books and journal articles are
available, and you are the selector. As your advisor, all I can
say is: "these things helped me" or "look at that."

One trap to avoid: thinking that your only programming
language is the programming language. Yours may be the
best, but it cannot have an exclusive right to all good ideas,
and it will be a force fit to make it apply to many of your
applications. On the other hand, other languages may also
be inadequate. But the more language systems you know,
the more you will be free of any particular restricted ways of
viewing the world. Eventually you will be able to program in
your problem's ideal language (which exists only in your
mind), and then translate the program -design into the
program -code for whatever language you may be stuck
with-even assembly language.

There are two domestic professional societies directed at
computer science. They both support worthy periodicals,
regional chapters, and special -interest groups.

The IEEE, known to most engineers, has a Computer
Society which publishes magazines: Computer, Trans-
actions on Computers, and Transactions on Software
Engineering. The first is built to keep us educated, with
survey articles and invited papers. The second and third are
vehicles for research papers with areas of stress: computer -
system architectures (consider the roots of IEEE) and
software architecture and construction.

The ACM (Association for Computing Machinery)
publishes Communications of the ACM with articles of
general interest (specifically, for us, they have covered
recommended CS curricula, GRE exams, and self -
assessment procedures); Journal of the ACM for the
learned theoretical papers in computer science; Computing
Surveys, filled with gem -quality tutorial articles which keep
us all up to date and serve the students and their professors
with ready-made lectures; Computing Reviews, which
publishes critical reviews of the important books and
articles; and Transactions on Mathematical Software for
algorithm dissemination.

ACM has approximately thirty special -interest groups and
committees (SIGs and SICs) devoted more narrowly to
certain application areas, techniques, problem areas, etc.
The SIGs and SICs publish periodicals and sponsor
conferences.

There are many other periodicals: Computer World is a
weekly in newspaper format; Datamation and Computer
Decisions are "free -if -you -qualify" magazines; Byte,
Creative Computing, Dr. Dobbs Journal of Computer
Calisthentics and Orthodontia, and lots of others serve the
exploding computer hobby world. This is a tiny sample of
what is available. They are all worth looking at and-for
your technical library-subscribing to (like most things of
this kind, these periodicals are uneven in their quality).

Computer science demands an exactitude
that would astound a brain surgeon.

Many periodicals not strictly devoted to computer science
are also occasionally good sources for information-
especially of the broad survey type. Keep your eyes on
Scientific American, American Scientist, Science, and IEEE
Spectrum.

Computer science is growing at a fast rate, both in its
intellectual challenge and in its practical application. It
demands an exactitude that would astound a brain surgeon.
And its rewards are commensurate. Good luck!

Reprint RE -23-6-11
Final manuscript received March 15. 1978.

Pete Anderson, himself a "retread" to computer science, started out
in mathematics before learning computer science in RCA's Com-
puter Division from 1965 to 1971. At RCA he participated in the
software development efforts for the Spectra/70 family of com-
puters. Since 1971 he has been an Associate Professor of
Computer and Information Science at the New Jersey Institute of
Technology. He maintains a consulting relationship with RCA and
is now, in addition, president of his own software and consulting
company, Peter G. Anderson & Associates, Inc.
Contact him at:
Peter G. Anderson & Associates, in:.
30 Middleton Rd.
Moorestown, N.J.
609-235-5803



Resources available for learning computer science

L. Shapiro

The computer is revolutionizing our
society. With maturing LSI technology,
we can visualize computing capabil-
ities approaching those of the human
brain packaged in containers of com-
parable size. Even at this very early
stage, the computing power of such
small devices is phenomenal. In es-
sence, just as the automobile and air-
plane extended man's ability to run and
fly, the computer is extending man's
ability to calculate, remember, and
reason.'

This avoids the question "can computers think7" since the
term "thinking" can be defined to include the creation of
great works of art as well as aevelopment of great
philosophies and religions.

Louis Shapiro has been associated with the
RCA Engineering Education activity both as
staff member and consultant since 1966 and
has videotaped many of their courses.
Currently, he is working or. CEE's software
engineering curriculum.
Contact him at:
Engineering Education
Corporate Engineering
Cherry Hill, NJ
Ext. 5020

All the other papers in this issue have, in some way,
underscored the importance of applying computer science in
engineering work. This paper outlines some of the ways to
learn how.

In more practical terms, the infiltration
of inexpensive readily available com-
puting capabilities into various
products is proceeding with increasing
rapidity. We now see computers in
satellites, sewing machines,
automobiles, and microwave ovens. In
effect, every engineer needs an ex-
pertise in computers as an essential
tool in his work. This article explores
the resources available to RCA's
technical staff for study in this impor-
tant field.

For many engineers, hardware and software
meet at the microprocessor level.

A very large area of present activity is at
the so-called microprocessor level. For
many engineers, it is here that
hardware and software (prcgramming)
meet and join hands. The hardware
engineer needs to know programming
requirements to design computer
architecture: the programmer must
know the architecture. The engineer
working with a microprocessor must,
therefore, be conversant with both
hardware and software.

Programming is, in a sense, like playing
chess.

Computer expertise necessarily in-
cludes a high degree of pure skill and
experience in the structuring and
writing of programs. Here you face
many hours of program writing on
many reams of programming forms
before a significant degree of maturity
can be achieved. A useful analogy
would be the development of an ex-
pertise in playing chess at ap-
proximately the tournament evel. Even
with the most concentrated study of
past games between chess masters,
you had better have many hundreds of
games under your belt before sitting
down at a chess table to face a skillful,
experienced opponent-and in the

field of computers, the cold stare of
computer hardware backed by a poorly
written set of specifications can be a
formidable opponent indeed. It is with
the above thoughts in mind that the
following group of resources for the
study of computers is presented.'

Accredited schools
Most schools have a computer center
available for student use. Use such a
center as much as possible to obtain
the fullest benefit of "learning by do-
ing." In any case, whether study is
being pursued outside of RCA or by
means of an internal RCA program,
bear in mind that the "hands-on"
aspect of the learning experience is
essential if you want to achieve a
practical expertise.

If possible, an accredited school should be
your first choice.

For many individuals, study within the
structure of an accredited school is
highly effective. The regular class
meetings, homework assignments,
and examinations represent a com-
bination that is hard to beat. In addi-
tion, there is the added incentive of
possible course -work accreditation
toward a degree, with the accom-
panying increase in professional
stature. The appendix' lists schools
that offer evening or Saturday
courses in computer science for the
New Jersey -Philadelphia -New York
City area where there may be a con-
siderable choice in school selection.

 A grateful acknowledgement is made to Mmse Whitehead
and Mattice of the GCS Camden Library for their sustained
cooperation and endless patience with the author
throughout the preparation of this paper

' The data in the appendix were obtained by means of an
independent survey made by the Corporate Engineering
Education group, December t977 - January 1978 Actual
course offerings will. of course. depend upon student
demand and registration statistics
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However, as will be evident from the
appendix, this choice shrinks rapidly
as the student progresses toward the
more advanced aspects of com-
puters.
Course offerings change very rapidly
in the academic world. The informa-
tion in the appendix should therefore
be used as a guide only for contacting
convenient schools in your area for
coursework of interest. Courses given
by county or community colleges tend
to be introductory. However, they may
be quite valuable as a first introduc-
tion into a given area of computer
science.

The Association for Computing
Machinery (ACM), 1133 Avenue of the
Americas, New York, N.Y., 10036,
publishes the ACM Administrative
Directory which lists all colleges and
universities in the United States hav-
ing computer science departments or
computer centers, including the
names of key individuals to contact.
Also included is a complete list of
computer -related professional soci-
eties and other organizations. As of
this writing, the price of this directory
is $10.00 if a check is enclosed with the
order.

Individual study programs can often be
tailored to your background and interests.

In some instances, schools will offer
individually designed coursework,
either as independent study programs
or else in the form of correspondence
courses. One school having a well -
established correspondence -type
curriculum is the Pennsylvania State
University, Department of Indepen-
dent Study by Correspondence, 3
Shields Building, University Park, Pa.
16802. A complete guide to available
correspondence courses from some
seventy colleges, universities and
comparable educational agencies is
available through the National Un-
iversity Extension Association, Suite
360, One DuPont Circle, Washington
D.C. 20036 for $2.00 per single copy.'

Individual study programs, on the
other hand, are normally negotiated
directly with the school department
concerned. Probably an effective way
of investigating this avenue of study

Table I
Locally developed RCA courses. A number of RCA locations operate on -going in-house
training programs As of this writing, plans for coursework to be presented in 1978 have
generally not been finalized. However, the following information has been offered to the
writer with the understanding that it is only tentative. In some instances only plans for the
spring (of 1978) were available.

Burlington

Microcomputer fundamentals
Microprocessor -based systems design
Software (RCA video tape)
Software (Vendor video tape)

Camden

Software engineering
Microcomputer fundamentals
Minicomputer peripherals
Microprocessors for logic design

iightstown

Microcomputer fundamentals
Space technology update (emphasizes microcomputers)

Lancaster

APL language
Finite element analysis (computer -aided thermal and
structural analysis)

Moorestown

Microcomputing with bit -slicing microprocessoes
Advanced software design techniques
The HP 9830 desk -top computer
Microprocessor fundamentals for technicians

New York (Globc0m)

Fortran programming
Microcomputer fundamentals
Microprocessor -based systems design I

Princeton

Minicomputer peripherals
Modern logic design I

Somerville

Programming, interactive graphics for design engineers
Modern logic design II
Microprocessors for logic design

Table II
CEE courses In computers.Complete CEE course offerings are listed in the RCA
Engineering Education 1977-1978 catalog which was mailed with the June -July (1977) issue
of the RCA Engineer. Interested RCA employees should contact their training represen-
tative (or equivalent person responsible for the administration of in-house training courses)
to make their wishes known. A minimum number of applications is usually required before a
course is considered for presentation.

C2-FORTRAN programming. A good introduction to
FORTRAN.

C7-Interactive graphics for design engineers. Introduces
the use of the Applicon Graphic System/701 as a design
automation tool for design engineers.

C11-COBOL programming. Develops basic skills in the
use of COBOL.

C30. C31-Modem logic design I and II. Develops the
ability to apply modern logic design methods to typical
design problems

C35-COS/MOS Integrated circuits. Enables the digital
designer to incorporate COS/MOS integrated circuits into
nis designs.

C51-Microcomputer fundamentals. Develops an un-
derstanding of the basic concepts of small computer
systems. Consideration is presently being given *o expand
this eight session course to twelve sessions to increase the
problem -solving time available to the student. A laboratory
course. CL51, designed to accompany C51. is now
available

C52-Minicompuler peripherals. Explores the peripherals
commonly used in minicomputer systems.

C55-Microprocessors for logic design. Explores the
microprocessor in depth. This course is somewhat dated
and a revised version. C56. Microprocessor -Based
Systems Design I. is presently under development.

would be to select a school in your
area with a well -developed computer
science facility and request an ,n-
terview with the appropriate depart-
ment head. You may be able to
develop an independent study
program which may suit your needs
and also carry credit toward a degree

RCA in-house courses
A second major source of convenient
classroom -type instruction is the in-house
training program offered at many RCA
locations.

This publication is actually distributed by Peterson's
RCA -sponsored courses generally fallGuides. 228 Alexander Street, Princeton. N.J. 08540 (609-

924-5338). into two categories: those prepared by

the location itself, usually to meet
specific local needs: and those
prepared by the Corporate Engineer-
ing Education (CEE) group at Cherry
Hill, usually more general in nature.
These courses may be given, wholly or
in part, outside of working hours. The
locally prepared courses (see Table I)
are developed and presented by in-
structors recruited either from within
the company or from nearby colleges
or universities. CEE courses (Table II)
are prepared under the supervision of
RCA -oriented engineer -educators.

In either case, these courses have the
important advantage of being
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SOFTWARE ENGINEERING
CURRICULUM

MICROCOMPUTER FUNDAMENTALS
LECTURE IC511
12 SESSIONS

LAB IC1511
10 SESSIONS

4
MICROPROCESSOR -BASED SYSTEMS DESIGN I

LECTURE IC561
12 SESSIONS

4

LAB ICL56)
12 SESSIONS

MICROPROCESSOR -BASED SYSTEMS DESIGN II

LECTURE IC571
12 SESSIONS

LAB (CL571
12 SESSIONS

4
SOFTWARE ENGINEERING A. MANAGEMENT

LECTURE IC71)
12 SESSIONS

NUMERICAL ANALYSIS

LECTURE IC761
12 SESSIONS

4
PROGRAMMING TECHNIQUES

LECTURE (C701
12 SESSIONS

LAB ICL701
12 SESSIONS

REAL TIME SYSTEMS I

LECTURE IC731
12 SESSIONS

LAB (CL731
12 SESSIONS

4
REAL TIME SYSTEMS II

LECTURE IC741
12 SESSIONS

LAB ICL741
12 SESSIONS

Fig. 1

What's coming in software engineering? This figure shows the structure of the software
engineering curriculum presently under development by the Corporate Engineering
Education (CEE) activity

fashioned to meet company needs
directly and are free of the usual
college or university constraints and
traditions. Thus, as locally necessary,
the level and demands of the subject
material may be altered, the course
itself lengthened or shortened, and
additional material may be inserted to
meet immediate or unique classroom
objectives. Normally, no college credit
is available for such coursework,
although successful negotiations
between class members and colleges
for subsequent credit may take place.'

CEE is now working to develop a complete
software curriculum.
The continued rapid entrance of com-
puters into the RCA product and
service lines has particularly brought
into sharp focus the need for develop-
ment of sound software skills on the
part of the RCA technical staff. In

response to this need, the CEE activity
devised the curriculum outlined in Fig.
1. Note that most of the key courses
have both lecture and laboratory

' The December 21, 1977 issue of the National Report for
Training and Development of the American Society for
Training and Development (ASTD) reported that the New
York State Education Department found that 68% of 170
responding degree -granting institutions in the state

granted college credit for noncollegiate courses upon the
recommendations of the Program on Noncollegiate Spon-
sored Instruction (operated by the New York State Educa-
tion Department). This amounted to 89% of the nearly 1100
students requesting such credit. More information about
the related survey and the Program may be obtained from
Dr. John McGarraghy. Office on Noncollegiate Sponsored
Instruction, New York State Education Dept.. 99

Washington Ave.. Rm. 1845, Albany. N.Y., 12230.

sections so that ample practice will be
available.

Individual study
The so-called "short course" has become
increasingly popular.

The short course is based on one to five
consecutive days of full-time instruc-
tion, sometimes with evening
workshops. Such courses are given by
professional societies, colleges and
universities, private educational com-
panies and, in some instances, by
producers of computer equipments.
They do not carry college credit and
normally offer a certificate of comple-
tion or the equivalent. The author of
this article would place the
effectiveness of such short courses
below that of conventional coursework
where substantial homework
assignments between lessons play a
major role in the learning experience.

Short courses are expensive, usually
from $75.00 to $100.00 or more per day,
exclusive of motel and dinner expense
where the location is distant from the
student's home. A comprehensive list
of short courses and associated
events' is maintained by the Engineer's
Joint Council in their publication
Learning Resources, A Directory for

" In the category of associated events is included seminars.
conferences, workshops and similar meetings of

professional individuals for the purpose of enhancing their
professional abilities.

Engineers, Scientists and Managers.
This directory is published three times
yearly and may be available at the
larger public or university libraries.'

A fairly extended list of short courses is
also available in Computer (published
by the IEEE Computer Society). Most
of the popular journals also contain
partial listings of short courses and
associated events.

A number of accredited correspondence
courses are available.

The private correspondence schools
that flourished in the 30s and 40s are
now facing stiff competition from the
community colleges with their
aggressive student recruiting policies,
and the short courses with their in-
creased cost effectiveness (for their
producers). However, a number of
home study courses in computer
science have been accredited by the
Accrediting Commission of the
National Home Study Council' and
probably provide competent well -
designed instruction. Such courses do
not, however, usually offer credit
toward a college degree. The schools
to contact are listed in Table III.

Get some help in evaluating the level of
instruction to insure that you will not be
swamped with subject matter beyond
your comprehension, or find that you
have enrolled in a course more suited
to a lesser degree of professional in-
volvement. We do not know whether
any of these courses include training
kits. If they do, however, this would be a
positive feature. A certain amount of
packaged coursework is available in
which the entire course is purchased
over the counter, so to speak, and no
responsibility is thereafter assumed by
the originating agency or company.
Such courses sometimes come com-
plete with audio cassettes. Interested
parties should thumb through
magazines such as Byte, Kilobaud or
Popular Electronics for
advertisements. The CES Newsletter,

Available at the RCA Camden Library

The National Home Study Council, 1601 Eighteenth St..
N.W. Washington. DC 20009. was organized in 1926 as an
association of schools to establish educational standards
and ethical practices. Since 1952. it has been working with
the U.S. Office of Education and other accrediting organ-
izations. In 1959. it was listed by the US Office of Education
as a "nationally recognized accrediting agency "
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published by the American Society for
Engineering Education, also carries a
column of advertisements for such
courses. Contact Assoc. Editor
Thomas F. Talbot, Univ. of Alabama,
Birmingham, AL. 35294.

Kits offer another alternative.

One way to become initiated into the
world of computers would be to
purchase a microprocessor -based kit
from one of the major manufacturers-
wend your way through the in-
structions to get the equipment in
operation-and then try your hand at
various programs. RCA, for example,
produces a microtutor and a VIP kit,
both of which can be used as vehicles
for developing a programming ex-
pertise. The laboratory, CL51,
associated with the CEE course C51,
Microcomputer Fundamentals is based
on the RCA VIP.9

Sybex, 2020 Milvia St., Berkeley, Cal.
94704 (415-848-8233) offers a line of
microprocessor self -study courses
complete with audio cassettes and text.
The Heath Company, Benton Harbor,
Michigan 49022 (616-982-3411), offers
a microcomputer training course com-
plete with kit trainer based on the
Motorola 6800 microprocessor chip.10

A number of equipment manufacturers
also market kits of various types com-
plete with instruction books. However,
many seem to be little more than a
means for increasing equipment sales.
The investment involved can easily
exceed $1000. The beginner would be
well advised to avoid such a purchase.

A fair amount of tutorial material has been
published.

Tutorial material may roughly be
divided into three categories: major
publications, popular material, and
textbooks. These are listed in Table IV.

A number of periodicals treat almost any
area relating to computers.

The periodicals listed in Table V have

° The possibilities inherent in the RCA COSMAC VIP as a
learning device are explored in COSMAC VIP The RCA Fun
Machine. Joseph A Weisbecker, first published in BYTE,
August 1977, and subsequently reprinted in RCA
Microprocessor Technology, available in the RCA
Libraries See also Harry Kleinberg's article in this issue

Further information may be obtained from the
Philadelphia office of the Heath Co.. 215-CU8-0180

Table III
These correspondence schools offer courses in computer science.

Computer programming
Automation 8 Training Universal, Inc
425 Lincoln Street
Denver. Colorado 80203
Founded 1966 Courses in computer programming, data
processing. and drafting

Capitol Radio Engineering Institute (CREI)
3939 Wisconsin Avenue
N.W. Washington, D.C. 20018
A division of McGraw -4-1111 Continuing Education Center.
Founded 1927 Courses in computer programming,
engineering, and college level electronics sublects.

Herzing Institutes. Inc
174 West Wisconsin Avenue
Milwaukee, Wisconsin 53203 Founded 1965 Courses in
data processing. medical transcription and medical office
assisting

ICS -International Correspondence Schools
Scranton. Pa. 18515 Founded 1890 Courses in high school
and college level subjects, technology, engineering.
vocational trades, business and industrial sublects.

La Salle Extension University
417 South Dearborn St
Chicago. Illinois 60605
Founded 1908 Courses in high school subjects. business.
vocational, and college level subjects. stenotype and
interior decorating

Lincoln Extension Institute. Inc
1401 West 75th St
Cleveland. Ohio 44102
Founded 1922 Courses in industrial and supervisory
management development topics

Computer repair technician

McGraw-Hill Continuing Education Center
3939 Wisconsin Ave
N.W. Washington, D.C. 20016
Founded 1971 Courses in engineering, electronics, and
automotive technology. air conditioning and appliance
servicing.

National Radio Institute (NRI)
3939 Wisconsin Avenue
N. W. Washington, D C 20016
A division of McGraw-Hill Continuing Education Center.
Founded 1914 Courses in air conditioning. appliance
servicing. computers. radio -TV repair. and automotive
topics

National Technical Schools
4000 South Figueroa St
Los Angeles. Cal 90037
Founded 1905 Courses in electronics. appliance and
radio -TV servicing, air conditioning. and automotive sub-
lects

Table IV
Published tutorial material available for individual study

Major tutorial publications:

IEEE'
345 E 47th St.
New York, N.Y 10017

The IEEE offers a number of tutorial -type publications
which consist mostly of selected reprints It would be
advisable to review them (in the library) before investing,
since a minimum bac,:ground in computer technology is
usually assumed.

IEEE Computer Society
5855 Naples Plaza. Suite 301
Long Beach. Cal 90803

This society offers twelve tutorials as well as a fairly large
number of books on computers. computer applications,
and a digest of papers. The same precaution is advised
here, e g . look before you buy

Association for Computing
Machinery (ACM)
1133 Avenue of the Americas
New York. N.V. 10036

The ACM publishes much technical and tutorial material
including a survey and tutorial quarterly, Computing
Surveys. The above precautions are advised

Popular tutorial material:

A good deal of tutorial material has appeared in popular
magazines such as EDN (Engineering Design News)
Electronic Design, and Electronics. EDN has published
some of this material separately Despite attractive format
and illustrations. however, the writer has found most of this
material lacking in substance for design engineers Ap-
parently, space considerations limit the range of in-depth
treatment needed After one has already developed a

Orders for particular publications should be sent directly
to the IEEE Service Center. Dept PB. 445 Hoes Lane.
Piscataway. N.J. 08854

background in computers, however, such material may be
interesting to rnsiew for sidelights that may apply to
problems at hand

Textbooks:
For serious indiw.dual study, especially for the beginner.
there is hardly anything currently available that is really
more suitable than one of the better texts A possible
combination for the engineer would be one of the first two
texts listed below in combination with a kit or microtutor
The first (Peatman) might hold a slight edge Either,
however. would provide a good foundation in the subject of
microcomputers Ind, incidentally. in the field of computers
as a whole since microcomputers by their nature represent
much of mini- and main-frame computers in microcosm
The recommended text for technicians (Marcus/Lenk)
provides a goo.1 overview of the field of computers and
their peripherals The writer. in fact. would also recom-
mend it for engineers who are not familiar with computer
hardware and who might wish to get some notion as to how
things fit together

At the Engineering Level:

Microcomputer -Based Design, John B Peatman
(McGraw-Hill 19'7)

Microprocessor Systems Design, Edwin E Klingman
(Prentice -Hall 1977)

Microcomputer: Microprocessors. John L Hilburn. Paul
N Julich (Prentice -Hall 1976)

Digital Computer Circuits and Concepts, Bill R Deem.
Kenneth Muchaw, and Anthony Zeppa (2nd Edition.
Reston 1977)

Techniques of Program Structure and Design. Edward
Yourdon (Prentice -Hall 1975)

At the Technician Level:

Computers for Technicians, Abraham MarcLs. John D
Lenk (Prentice -Hall 1973)

Undoubtedly. many other fine texts are available in each of
the above categories However. the above have been
available to the author for examination and we feel that
they can serve a useful purpose in any self -study program

See. for example, "Microprocessors. New Direct ons for
Designers." edited be Edward A Torrero. Hayden Book
Company, Inc Rochelle Park, N.J. 07662 15



been separated into broad categories
which may of course, overlap.

Indexes and general references may point
the way to other literature.

The two indexes shown below list all
generally available literature dealing
with computers within a few months
after it is published. Most people con-
sider the second of these simpler to
use.

The Engineering Index
Engineering Index, Inc.
United Engineering Center
345 East 47th St.
New York, N.Y. 10017

Computer and Control Abstracts
INSPEC (Institution of Electrical Engineers
[British] in association with the IEEE)
Savoy Place
London WC2R OBL

The following book" lists reference sources
for scientific and technical fields including
computer science. Topics covered include
bibliographies, encyclopedias, dictionaries,
handbooks, almanacs, yearbooks, direc-
tories, etc.

Scientific
Sources: Ching-Chih
Press 1977)

and Technical Information
Chen (The

Additional RCA internal
services

MIT

The RCA Engineer reaches almost every
engineer within the company and often
includes articles dealing with ac-
complishments in the computing arena.

Occasional issues of this bimonthly
publication are devoted almost entirely
to specialized areas such as corn -

Available in the RCA Camden library.

puters. For example, the February -
March issue of 1977 dealt com-
prehensively with microprocessor
system design and applications; this
issue treats software. The Technical
Communication Programs group,
which publishes the RCA Engineer,
also publishes collections of articles
dealing with specific subjects. Thus, a
recent (1977) publication included
reprints of twenty-four articles review-
ing microprocessor technology-
hardware, software, and applications."
Engineers working in this field may,
therefore, find it valuable to maintain a
file of these publications as a reference
source.

This publication, RCA Microprocessor Technology, is
available in the RCA libraries, or you may obtain your own
copy by sending a check or money order for $2.00 payable
to RCA Technical Communication Programs to this activi-
ty at Bldg. 204-2, Cherry Hill, N.J. 08101.

Table V
These periodicals treat computers at various levels of expertise. Most are available through RCA's major libraries.

Electronics generally but tending to emphasize computers
and often containing tutorial computer articles:

Electronic Design News (EDN)
270 St. Paul Street
Denver, Col. 80206

Electronic Design
Hayden Publishing Co.. Inc.
50 Essex St.
Rochelle Park, N.J. 07662

Electronics
McGraw-Hill, Inc.
1221 Ave. of the Americas
New York, N.Y. 10020

Devoted to computers. Popular style-highly readable.

Computer
IEEE Computer Society
5855 Naples Plaza, Suite 301
Long Beach, Cal. 90803

Microprocessors
IPC Business Press Limited
205 East 42nd St.
New York. N.Y. 10017

Corriputerworld
797 Washington St.
Newton. Mass. 02160

Computer Horne Hobbyist. Two excellent highly readable
Journals

Byte
Byte Publications, Inc.
70 Main St.
Peterborough, N.H. 03458

Kilobaud
1001001. Inc.
Peterborough, N.H. 03458

And one Journal of out-of-the-way articles for people deep
into home computers

Computer Calisthenics and
Orthodontia
People's Computer Company
Box E. 1263 El Camino Real
Menlo Park, Cal. 94025

Highly Technical-tor the knowledgeable computer
engineer:

Journal of the Association for
Computing Machinery
Association for Computing Machirery
1133 Ave. of the Americas
New York, N.Y. 10036

Communications of the ACM
Association for Computing Machinery
1133 Ave. of the Americas
New York, N.Y. 10036

Computing Reviews
Association for Computing Machinery
1133 Ave. of the Americas
New York, N.Y. 10036

IEEE Transactions on Software
Engineering
and

IEEE Transactions on Computers
IEEE Computer Society
(contact IEEE Service Center)
445 Hoes Lane
Piscataway, N.J. 08854

The Computer Journal
The British Computer Society
29 Portland Place
London W1N 4HU

Software-Practice and Experience
John Wiley 8 Sons, Ltd.
Baffins Lane, Chichester
Sussex, England

Computing
Springer Verlag
175 Fifth Ave.
New York, N.Y. 10010

Specialized publications:

CAD-Computer-Aided Design
IPC Business Press Limited
205 East 42nd St.
New York, N.Y. 10017

Computer Decisions
Hayden Publishing Co.. Inc.
50 Essex St.
Rochelle Park, N.J. 07662

Computer Graphics and
Image Processing
Academic Press, Inc.
111 Fifth Ave.
New York, N.Y. 10003

Computer Review
GML Corporation
594 Marrett Rd.
Lexington. Mass. 02173

ACM Transactions on Mathematical
Software
Association for Computing
Machinery
1133 Ave of the Americas
New York, N.Y. 10036

Defamation
Technical Publishing Company
1301 South Grove Ave.
Barrington, III. 60010

Simulation
The Society for Computer
Simulation
1010 Pearl St.
La Jolla, Cal. 92037

Interface Age
McPheters, Wolfe and Jones
13913 Artesia Blvd
Cerritos. Cal 90701

Creative Computing
P.O. Box 789-M
Morristown. N.J. 07960
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RCA library services are available to most engineers.

Technical libraries are maintained at 18 RCA
locations within the continental United States.
Nine of these are staffed by at least one librarian
and publish bulletins periodically listing new
acquisitions such as texts, reports,
proceedings, etc. In addition to a limited cir-
culation, these bulletins are available for review
at the libraries themselves. Thus each RCA
employee has access, within local library con-
straints, to the 80,000 books and 600 periodicals
stocked in these libraries. In addition, RCA
librarians have access to catalogs listing the
location of desired material in other public and
private libraries. In some instances, interlibrary
loans are possible, or copies of desired articles
may be obtained.

Each of the nine RCA libraries staffed by at least
one professional librarian maintains either a
microfilm or microfiche facility for review or
study of data such as technical papers, military
specifications or military or commercial stan-
dards.

In addition to maintaining previously -
mentioned engineering and computer indexes,
the larger RCA libraries have access to an on-
line search service through Lockheed's
DIALOG and System Development Cor-
poration's ORBIT systems. Upon providing the
RCA librarian with either subject or author data,
the computer system will within a few minutes
provide a list of titles dealing with the desired
information; it can also quickly supply selected
abstracts.

RCA Technical Abstracts can lead the way to other
RCA documents.

RCA Technical Abstracts is a company -private
monthly bulletin listing abstracts of papers,
reports, books, theses and similar material
authored by RCA employees. The bulletin, in
addition, includes MIT reports available
through RCA's participation in the MIT In-
dustrial Liaison Program.

Copies of RCA Technical Abstracts are dis-
tributed to all RCA libraries and to RCA
management throughout the company. Copies
of documents listed in the bulletin may be
obtained through your local RCA librarian.

Conclusion
A number of paths are open to help you
learn more about computers. None of the
paths are easy; all require extra effort,
hours, and initiative. But the knowledge you
will gain, in many cases, will be as important
to you and to RCA as your basic engineer-
ing education.

Reprint RE -23-6-10
Final manuscript received January 15, 1978

Appendix A

SCHOOLS that offer evening or weekend courses in computer science.
(All courses are evening courses unless otherwise specified.)

Philadelphia -Camden area: The following ten schools show the indicated offerings in
their evening programs. Any one of the ten would represent a means for obtaining a
good introduction into the field of computers in accordance with the particular area of
interest of the prospective student. However, for individuals seeking to obtain
comprehensive, advanced engineering -oriented expertise in computers via evening
course work, the only suitable school is the University of Pennsylvania (see comment
accompanying this school below)

School Comments

Burlington County
College
Pemberton -Browns Mills
Rd.

Pemberton, N.J. 08068
609-894-9311

Camden County College
Little Gloucester Road
Blackwood, N.J. 08012
609-227-7200

Drexel University
32nd & Chestnut Streets
Philadelphia. Pa. 19104
215-895-2400

La Salle College
Olney Ave & 20th St.

Philadelphia. Pa 19141
215-848-8300

Rutgers University
(Camden)
311 North 5th Street
Camden, N.J 08102
609-757-6057

St. Joseph's College
City Avenue at 54th Street
FMiladelphia. Pa. 19131
215-879-7400

Temple University
Broad St., Montgomery
Ave
Philadelphia, Pa 19122
215-787-7201

Lniverslty of Pennsylvania
Philadelphia, Pa. 19104
215-243-7502

Offers data processing, computer concepts. computer
programming, FORTRAN. COBOL. RPG2. and
business systems analysis and design Some of these
courses are also oiven at the Willingboro and Cin-
naminson Campuses. However, all information may be
obtained from the main campus at Pemberton

Offers computer science. data processing, computer
programming (including advanced techniques).
principles of system analysis, and computer
mathematics (number systems. Boolean algebra. etc )

Computer -oriented courses are offered in three
departments as follows

Business management information systems
Electrical Engineering computer logic and computer
design
Special Studies: computing machines, data processing
for business applications. advanced computer
programming
The Evening College offers a six -year program leading
to the BS in Computer Science

Computer -oriented courses are offered in two
departments as fo lows

Computer and Information Science: computing.
algorithm and data structures. file and data manage-
ment systems, information systems design and
programming languages
Electronic Physics. introduction to microprocessors.
pulse. and digital electronics The course on
microprocessors is also given on Saturday mornings

The following courses are offered at an elementary
level. introduction to computing, introduction to
programming languages, and commerc al data
processing A Saturday course is offered in computer
programming for ousiness and social science

The Business Department offers a basic course in
computer science .emphasizing programming)

The Computer Science Department offers a very
substantial evening program leading to the masters
degree in either Arts. Science, or Business Administra-
tion The thesis requirement has been replaced by a
protect which may also be completed by evening work.
A PhD with a Computer Science major is available in
Bus.ness Administration. The Ambler campus in
Ambler. Pa . offers a limited group of undergraduate
and graduate computer courses

The College of Engineering and Applied Science offers
only graduate courses in its Computer and Information
Science Program These courses, however. begin at the
introductory level so that individuals with an engineer-
ing background can safely enroll. Available courses
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Villanova University
Villanova, Pa. 19085
215-527-2100

Widener College
14th and Chestnut Sts.
Chester. Pa. 19013
215-876-5551

cover a very wide range of computer -oriented subjects
and it is possible to complete course requirements for
the MSE and PhD degrees via evening work alone. An
additional thesis is required for the master's degree and
a dissertation for the doctor's degree. A time limit of 7
years is allowed for completion of the MSE re-
quirements and an additional 5 years is then allowed for
completion of doctoral requirements. The latter in-
cludes a thesis defense, It should be noted that
matriculation for either of these degrees requires a
bachelor's degree in an appropriate discipline.

The Wharton evening school offers courses in in-
troduction to computer programming, and manage-
ment information systems.

The Computer Science Department offers courses in
algorithms and data structures, computer programm-
ing and advanced computer programming. The Elec-
trical Engineering Department offers introduction to
computers and programming. The Engineering
Department offers introduction to computers in
engineering. The Business Administration Department
offers introduction to computers.

The Engineering Department offers introduction to
computer use in science and engineering. The
Management Department offers data processing and
information systems, and advanced computer science.

Princeton-Hightstown area: As noted by the comments below. advanced work via
evening courses is available only at Rutgers University-and then only in the
Mathematics Department. Individuals desiring advanced engineering -oriented study
should consider travel either to Pennsylvania University (Philadelphia) or to schools
such as The N J Institute of Technology (Newark). or the Stevens Institute of
Technology (Hoboken)

Mercer County College
1200 Old Trenton Road
West Windsor, N.J.
08561
609-586-4800

Rider College
P.O. Box 6400
Lawrenceville, N.J. 08648
609-896-0800

Rutgers University
New Brunswick, N.J.
08903
201-932-7386

Mercer offers the following evening courses basic
computer software, computer operations. RPG
programming, computer operations management.
cooperative management.

The School of Business Administration offers in-
troduction to computer programming and information
science. computer systems-FORTRAN, computer
problems-COBOL

The Mathematics Department offers introduction to
computers, introduction to computer languages. com-
puter programming. elementary communications data
processing. information processing methods, non -
numerical problems and computer programming. The
Electrical Engineering Department offers computer
system design.

The North Jersey area: A number of fine schools are available. Engineering -oriented
computer study at the advanced level is available at schools such as The New Jersey
Institute of Technology, The Stevens Institute of Technology, and the Teaneck Campus
of Fairleigh Dickenson.

Trenton State College
Pennington Road
Trenton, N. J 08625
609-771-2111

Fairleigh Dickenson
Madison Campus
Madison. N.J 07940
201-377-4700

The Mathematical Sciences Department offers
Undergraduate-elements of computing. introduction
to computer science. Graduate advanced computer
programming

Undergraduate The Mathematics Department offers
three semesters of computer programming The
Management and Computer Systems Department
offers a course in fundamentals of computer usage

Graduate The Management and Computer Systems
Department offers a course in management informa-
tion systems

Fairleigh Dickenson
Rutherford Campus
Rutherford, N.J. 07070
201-933-5000

Fairleigh Dickenson
Teaneck Campus
Teaneck. N J. 07666
201-836-6300

Kean College of New
Jersey
Morris Avenue
Union. N.J 07083
201-527-2000

Middlesex County
College
Woodbridge Ave.
Edison. N.J. 08817
201-548-6000

Monmouth College
Cedar Ave
West Long Branch. N.J
07764
201-222-6600

New Jersey Institute of
Technology
323 High Street
Newark. N.J 07102
201-645-5140

The Management and Computer Systems Department
offers an undergraduate course, fundamentals of com-
puter usage; and a graduate course, management of
information systems.

Offers a substantial evening program as follows:
Undergraduate: Electrical Engineering Department:
digital computer calculations, introduction to
minicomputers, computer switching circuits, logic
design with microprocessors; Mathematics and Com-
puter Science Department: Introduction to computer
programming (lect/lab), data structures, theory of
computation, non -numeric computation, current
topics; Engineering Technology Department; com-
puter analysis lab. Accounting and Quantitative
Analysis Department: fundamentals of computer
usage.

Graduate: Electrical Engineering Department: logical
design with integrated circuits, microprocessors and
microcomputers. Mathematics and Computer Science
Department: introduction to computer programming,
COBOL, computer architecture, assembly language.
software design. commercial systems and applications,
modelling and simulation of discrete systems, real time
computer systems, operating systems.

The Computer Science Department offers computer
arithmetic, electronic data processing, business -
oriented programming, computer programming, com-
puter operating systems, large scale information
programming. and advanced assembly language.

The Computer Science Department, which is part of
engineering and engineering technologies offers a very
substantial program in computer science and com-
puter programming at the associate degree level.
Evening and Saturday courses include: data process-
ing, introduction to computers, introduction to FOR-
TRAN, introduction to computer science, data struc-
tures. computer programming for engineers, com-
puters in society, introduction to COBAL, assembly
language (2 semesters), operating systems, systems
analysis, advanced ANS COBOL, advanced
programming techniques, microprocessor
applications and programming, advanced
microprocessor applications, RPG programming, and
business information systems. The Business
Department offers introduction to data processing both
evenings and Saturday.

Offers a sizable program as follows:
Undergraduate: Computer programming and lab, fun-
damentals of data processing, ANSI -COBOL and lab,
assembly language programming and lab, compiler
analysis and lab, database, also, independent study.

Graduate: discrete mathematics, minicomputers.

The Computer and Information Science Department
offers a comprehensive program at both un-
dergraduate and graduate levels as follows:
Undergraduate: computer programming and problem
solving, computer programming and business
problems, introduction to computer science, machine
and assembly language programming, principles of
operating systems, numerical calculus. Graduate:
computer programming (Saturday morning), data
management system design, computer system design,
formal languages, microcomputers and applications,
model analysis and simulation, design of interactive
systems. Course requirements for the MS in Computer
Science may be completed by means of evening or
Saturdy coursework. Doctor of Engineering Science
degrees are available in Electrical and Mechanical
Engineering. These degrees, however, require a

minimum of one academic year in full-time residence. A
proposal is in process for a joint program with Rutgers
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Rutgers University
(Newark)
101 Warren Street
Newark, N.J 07102

Somerset County College
Rte 28 & Lamington Rd
North Branch, N.J 08876
201-526-1200

Seton Hall University
South Orange Ave
South Orange. N J 07079
201-762-9000

Union County College
Springfield Ave
Cranford, N.J 07016
201-276-2600

Union County Technical
Institute
1776 Raritan Road
Scotch Plains, N.,, 07076
201-889-2000

Stevens Institute of
Technology
Castle Point Station
Hoboken, N J 07030

University leading to a doctoral degree in computer and
information science The following two courses are
given at Drew University, Madison. N.J.: data system
design, graph theory. The Graduate School offers an
MS in Computer Science (Thesis required) and a PhD
in Electrical Engineering with a major in Computer
Science (dissertation required). A year in residence is
required for the PhD. Otherwise. all coursework can be
completed in the evening.

The Computer Science Department offers a substantial
number of evening undergraduate courses, the
Graduate School offers desigr and development of
information systems (two semesters). introduction to
computer technology, and seminar in information and
decision

The Data Processing Department offers a sizable
evening and Saturday curriculum as follows introduc-
tion to data processing. computer augmented accoun-
ting (2 semesters). business data processing. introduc-
tion to data processing systems, computer operations
(3 semesters), COBOL (2 semesters) BAL (2
semesters). RPG. BASIC, PL/1, scientific program-
ming.

The Center for Computer and Information Sciences
offers introduction to the use of the digital computer
numerical applications, and computer programming.

The Business Department offers a course in computer
programming

Offers coursework in data processing, programming.
assembly language and business applications leading
to the associate degree in applied science. This degree
can be earned in four years of evening coursework

Offers a substantial number of evening courses in
computer subjects in the Electrical Engineering Dept.
and in the Pure and Applied Mathematics Dept. The
Management Science Dept. offers a course in manage-
ment uses of the computer. A masters degree in either
Computer Science or Engineering (Electrical-
Computer Science) is possible with evening work Six
years is allowed for completion, thesis is optional The
PhD requires one yea in residence.

New York City area: The New York City area contains a number of very fine schools
which offer computer science courses at both undergraduate and graduate levels.
Among the more prestigious are the Polytechnic Institute of New York (formerly the
Polytechnic Institute of Brooklyn) and Columbia University. However, considerations
of available course offerings and transportation convenience should also oe taken into
consideration

Adelphi University
Garden City. L I .

New York 11530
516-294-8700

City University of
New York
The City College
Convent Ave at 138th St.
New York. N Y 10031

A business -oriented school. Offers an evening un-
dergraduate course in computer programming.

The Computer Science Department in the Engineering
School offers a few undergraduate courses and a full
curriculum of graduate courses in computer science in
the evening. Thesis is optional for the MS in Computer
Science. the PhD in Computer Science requires a
dissertation and one year in residence.

City University of
New York
Queens College
65-30 Kissena Boulevard
Flushing. N.Y.11367
212-520-7471

Columbia University
School of Engineering
and Applied Science
116th St & Broadway
New York, N.Y.10027
212-280-2931

Fordham University
Bronx. N Y. 10458
212-933-2233

Hofstra University
100 Fulton Avenue
Hempstead. N.Y. '1550
516-560-3491

New York Institute
of Technology
268 Wheatley Road
Old Westbury, N.Y 11568
516-686-7520

New York University
Washington Square
New York, N.Y. 10003
212-598-3591

Pace University
Pace Plaza
New Yor4, N.Y.10038
212-285-3323

Polytechnic Institute
of New York
(Formed/ Polytechnic
Institute of Brooklyn)
333 Jay Street
Brooklyn. N Y 11201
212-643-5000

Pratt InsItute
215 Ryerson St
Brooklyn, N Y 11205
212-636-3600

St. John's University
Grand Central & Utopia
Parkways
Jamaica. N.Y 11439
212-969-8000

A liberal arts four year college offering a BA with major
in Computer Science. Present evening offerings are the
fol owing: introduction to computers. computers and
programming. introduction to discrete structures.
numerical calculus, data structures. programming
computers. computer organization. and systems
programming Additional ndependent study is
available in computer languages

Offers a substantial evening graduate program in
computer science. The MS degree may be earned by
evening work alone Course work required for the
doctorate may also be completed by evening work. The
doctorate dissertation, however, may require a period
of full-time study.

Offers evening courses it computer/information
systems, introduction to COBOL programming, and
advanced COBOL programming

The Computer Science Department offers 9 un-
dergraduate and 5 graduate courses in the evening.

The undergraduate courses may be credited toward a
BA or BS in Computer Science There is no graduate
degree in computer science.

The combined Electrical Engineering-Computer
Scrence Department offers a comprehensive evening
program leading to the degrees of BS in Computer
Science and MS in Computer Science All necessary
course work can be completed in the evening.

The Data Processing and Systems Analysis Institute of
the School of Continuing Education offers evening
courses leading variously to certificates or diplomas.
The Computer Science Dept offers a few evening
undergraduate courses credited toward the BS in
ccmputer science and also a very substantial computer
Science

A non -engineering school. Offers evening, Saturday
and Sunday courses in Computer Science including
introduction to computing, COBOL programming,
systems programming, information processing, infor-
mation concepts, information processing-systems
designs, and programming languages.

The Computer Science Div. of the Electrical Engineer-
ing Dept. offers a very substantial group of evening
courses which allows all. or almost all, of the course
work required for the MS or PhD in Computer Science
to be completed in the evening. A smaller but still
substantial number of evening courses are offered at
the Farmingdale (Long Island) and the Westchester
campuses.

The Computer Science Dept. offers a comprehensive
evening program with the following degrees available
BS in Computer Science. BS in Data Systems Manage-
ment, and MS in Computer Science Requirements for
all programs can be completed in the evening There is
a Saturday course in computer auditing The Electrical
Engineering (undergraduate) Department offers no
evening courses

The Mathematics Department offers graduate courses
in the evening which may be credited toward an MS in
Mathematics with a specialization in computer science.
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What is software?

S. A. Steele

Software has become big business in a
relatively brief span of 25 years. From
the straightforward clerical programs
driving early computing machines,
software has expanded into
sophisticated, interconnected
program packages and computer sub-
systems solving complex engineering
and scientific problems. Progress in
computer hardware-micro-, mini-,
and compact large-scale computers
(many of them "embedded" in systems
or subsystems as part of end -product
equipment)-has accelerated the
growth of software development, both
in scope and complexity. Today
software is a major, integral part of
such diverse engineering systems as
communications, process control, and
command and control systems.

With this growth pattern an established
fact, software development-both the
software technology itself and its
relationship to equipment
technology-has become an essential
part of the system development
process. As an example, computer
control of a modern phased -array
radar system requires a software
system design an order of magnitude
more complex than the ones used in
the computer centers found at many
companies. Software has become not
only the driving cost element in many
system developments, but also an ex-
treme risk area. The trend in activity is
illustrated in Fig. 1,1 which shows the
projected use of software over the next
10 years as being so extensive that it
can not be supported adequately by
current technology.

Reprint RE -23-6-4
Final manuscript received April 28, 1978.

Changing from haraware engineer to hardware/software
engineer? You'll use your basic engineering discipline, but
you'll have to learn a new methodology, pick up a new
vocabulary, and get used to dealing with an invisible product.
Start here.

"Let's see, software engineers are the people who use computer
science as part of their software effort to produce computer
programs that are part of the software that is part of the computer
system that ..."
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11 software grows as projected, costs will be far too high unless new
support technology reduces software development costs to a
reasonable level.

Fig. 2 shows the trend in the hardware -software mix for
implementing command and control systems. Further, on a
per -unit cost basis, decreasing hardware costs have been
more than offset by growing software costs. Barna' states,
"Every study in existence indicates that at least 90% of the
cost of data processing in 1985 will be people costs instead
of hardware costs, making data processing the most labor-
intensive industry."

Demystifying software
Despite the impressive accomplishment record of the
computer sciences, software remains a mystery to many
engineers, one complicated by an entirely new vocabulary.
Moreover, because one cannot see, touch, or hear software,
working with 1 is especially frustrating to engineers ac-
customed to working with hardware.

But it needn't be so, and it must not be. All engineers and
managers need a basic understanding of software; software
development is everyone's task. The key to full utilization of
computer power lies in developing the technology to
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Fig. 2
Hardware/software mix has shiftec strongly to software in the past
twenty years in the example of command and control sys:ems
shown here. Decreasing hardware costs have been more than
offset by increasing software costs.

minimize today's requirement 'or large numbers of highly
trained personnel to develop ard maintain software. For the
present, however, software remains the critical path in
dealing with data processing in the next decade. The
abstract nature of software anzl its level of quality (lumber
of errors) have created the need for special emphasis on
improved software management and development. This
article attempts to eliminate some of the mystery that
hardware engineers see in software. It should provide that
basic understanding, already alluded to, that all engireers
and managers will need as software becomes more and
more a part of their lives. To do this, the article starts with
some basic definitions, explairs software architecture and
the software development process, and then presents the
problems that software engireers face today, along with
some potential solutions.

Basic software elemer:s
and definitions
Be prepared to learn a whole new vocabulary.

Software or computer software, as used here, includes the
computer program and computer data that direct the
computer hardware in its computational or control
functions; a so included is thE associated documentation
related to the product. Software effort is the effort required

21



Media

Cards

Disk

Tape

Source
Program

Object
Program

Compiler/
Translator

Program

Genration
Computer

Listing

Program
Generation.
Computer

Object Program

Object Load Module
(Capable of Running on
Production Computer)

Fig. 3
What happens after the engineer's program is written? The familiar programs that most hardware engineers have written for
problem -solving applications are source programs, usually written in a high-level language such as FORTRAN. The hardware
engineer stops his effort here and waits for the computer to run the program and produce an answer, but the software engineer
must look deeper into the process. The compiler translates the source program into an object program, one which is capable of
being executed by the particular computer being used. Next, linkage control software makes software changes and picks the
proper versions of all the software available, and the object load module runs on the computer. Systems may have these
"preliminary" actions take place on a separate program -generation computer, with the actual program running on the
production computer.

to generate the computer program, data, and associated
documentation. Computer science is the theory and
development of information processing, and computer
programming is the conversion of the problem or tasks into
the basic steps that the computer can carry out. Software
engineering (an emerging discipline) is the total process of
definition, design, building, testing, and documentation
required to develop a computer -program product. The term
software engineer' has come into wide use and indicates
one who can specify, design, and test software from a total -
system point of view.

The term computer, as used here, indicates electronic
machinery which, by means of stored instructions and data,
performs rapid, often complex calculations, or compiles,
correlates, and selects data. Computer systems may require
more than one computer-in some cases external com-
puters are needed to prepare programs for use on the
production computer. which produces the output. A
computer program is a series of instructions or statements
in a form acceptable to the computer equipment that is
designed to execute the operations. These programs may
be either machine -dependent or machine -independent,
and may be general-purpose or specialized in nature.
Computer data is the representation of facts or instructions
in a form suitable for acceptable interpretation and/or
processing by the computer. A computer system is the
aggregate of computer equipment, computer programs,
and computer data.

A real-time system may be defined as one that controls an
environment by receiving data, processing the data, and
taking action or returning results quickly enough to affect
the functioning of the environment at that time. In a typical
real-time system, external devices are connected into the
computer so that data can be processed from the devices,
computed and analyzed, and then used to generate com-
mands to be sent back to the devices. Response time, or the
act of carrying this out in a very fast and responsive way, is a
key fewure of real-time systems.

Software (or program) architecture is a structural descrip-
tion of a total software system, designed to define the
system's programs, their content, and their associated
components, both in terms of data flow and program
hierarchy. In effect, the software architecture is analogous
to the better-known hardware block diagram, providing
visibility into both content and function of the system's
constiluent parts.

Within the computer are three types of software: operating system
software application software, and support software.

The operating system (or executive, or monitor) software is
responsible for scheduling the resources of the computer
complex and controlling such functions as the flow of data
between the sensors and the computer complex.
Application software is responsible for solving unique
computational and data -manipulation tasks associated
with the specific problem.



Fig. 4
Basic computer architecture consists of
four parts-input and output interfaces,
memory, and central processing unit. The
memory section stores the computer -
program statements and data, and the
central processing unit (CPU) does the
actual computations and manipulations.
The data in the memory section changes
as it is acted uoon by the CPU, but read-
only memory is essentially permanent.
Because it can be changed by changing
chips, it is classified as "firmware"-more
difficult to alter than software, but less
difficult than altering hardware. The CPU
is divided into two sections-control and
arithmetic. The control section takes in-
structions and data from memory and
sends them to the arithmetic section,
which executes the programs in hardware.
The control section was also formerly all
hardware, but "micro -programming" now
makes it possible to replace this hardware
with software.
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Memory
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Read Only
Memory

When a computer complex is used only as a tool to solve a
problem in analysis, the application software is of major
importance. In modern engineering systems, however, the
designer is confronted with an overall system design
problem stressing hardware and software issues and in
some areas developing or modifying an operating system.

The third category, support software, covers items such as
assemblers, compilers, debuggers, ed,tors, configuration
and control aids, and other software tocls used both during
program preparation and real-time execution.

It is important to understand the basic mechanics of how a
computer program is generated so that the final product can
operate.

Fig. 3 represents the program -generation process by which
a software engineer may enter a program and have it
processed so that it will be loaded and executed in the
computer. The source program (initial definition or input
program), written in assembler or various types of high-
level languages (FORTRAN, PL/1, ALGOL, etc.),' is placed
on tape, disk, or cards. The process that converts this input
program to an object program (one capable of being
executed) is called compiling,* or sometimes translating.
This compilation step may be performed either within the
production (system) computer or in an external computer
for execution later on the production computer. Supoort
software is also required for linking and controlling various
changes and versions of the software. This total process of
generating software for execution on a production com-
puter can be called process construction and is often
complex enough that it can not be carried out on the
production system. The planning and acquiring of modern

'l1 written in assembly language. this is called assembling producing an object program
where the ratio of source to object is frequently one to one. This allows programming
many of the machine's basic activities

1
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program-ger eration facilities tc support software engineer-
ing development is a major task with today's systems.

The fundamental ingredients of a minimal computer -
program pa okage are the source program, the object
program, and the associated source program listing needed
to read one understand the program Since customer
maintenance of the product will be at the source level,
complete correlation is required between source and
object, and the program -generation process must support
this correlation. It should t e noted that this minimal
computer -program package is inadequate documentation
for changes.; design and as- ouilt documentation is also
required, including flowcharts.

Computer architecture can be divided into input/output, process-
ing, and memory.

Fig. 4 is a basic computer -architecture block diagram
showing the central processing unit (CPU), the input and
output interface units, and the memory associated with the
central processing unit. Fundamentally, the CPU is made
up of a control section and an arithmetic section capable of
the basic mathematical manipulations. Generally, the
memory contains the computer -program statements and
associated data. Under CPU ccntrol, each instruction of the
computer p-ogram is taken from its storage in memory,
decoded in the control unit, and then executed by the
hardware.

Writing programs making USE of the computer hardware
instruction set is a normal programming activity. Modern
computers, however, often have a micro -programming
feature.' Micro -programming is a technique that substitutes
micro-instri.ctions (software) for the logic gates (hardware)
that are normally used as the decoding mechanism in the
control unit of the CPU. If this level e)csts on a particular
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computer, then the conventional programming level for the
computing complex can be called macro -programming.
This issue is important to an understanding of current
trends. Essentially, by means of micro -programming, it is
possible to make a particular computer with its hardware
instruction set look like another computer. This is ac-
complished not by rewiring the computer's control
mechanism, but by changing its control mechanism's
micro -instructions via micro -programming. This process,
which allows software that will run on one machine to run
on another, is called emulation.

Another term creeping into the vocabulary these days is
firmware. Firmware is essentially a program resident in a
computer (often read-only memory) that is effectively hard-
wired. This program can be fetched from memory and
executed as any stored program, but it cannot be changed
easily and for many practical purposes is essentially a
hardware box. The method of developing this computer
program is identical to that for any computer program.
However, since it cannot be changed easily after it has been
"burned" into memory, its use and associated configuration
control are different. The use of microprocessors (process-
ing on a chip) and advanced hardware architectures forces
the software engineer to fully understand hardware con-
straints.

This summary list is by no means complete. Nonetheless,
the terms included here cover most of the basic software
items and provide a means of understanding the develop-
ment process and some of its inherent problems and
peculiarities.

The software development process
In one respect, at least, software is like hardware-successful
design and development require an orderly, logical approach.

A general software development approach, applicable to
both large and small efforts,' includes the following:

A top -down approach to problem definition and
resolution.

Organization of the system into logical development
phases.

Definition of required inputs and outputs from each
phase.

Established organizational responsibilities and
interfaces.

Incorporation of scheduled reviews and approvals.

Implementation of management controls.

Development of documentation as an integral part of
the system.

The detailed phasing of the software -development process
used to address these broad requirements is discussed in a
future RCA Engineer by Howery and in an earlier RCA
Engineer article on the subject.' The major phases are
system requirements definition, computer -program system
performance requirements, computer -program system

design, computer -program implementation, computer -
program integration and validation, equipment and com-
puter program integration, system testing and acceptance,
and system operation and maintenance.

While analogies exist between hardware and software
development, the software -development process must be
understood on its own merits to insure successful develop-
ment w'th its own set of standards.' Some of the similarities
and di4ferences in hardware/software development are
discussed below.

System definition- What takes the place of the hardware block
diagram?

In hardware design, the block diagram is a standard tool for
giving definition, design layout, and visibility of the equip-
ment content and development process. The software
analog :o the block diagram must provide similar definition,
description, and visibility, but in terms of control between
program packages or modules and the data to be
processed, rather than hardware subassemblies. The term
"software architecture" then becomes roughly equivalent to
the hardware block diagram in concept, but takes on
different forms to show the complete control and data
issues involved. Two examples of architecture information
are:

data flow, which indicates the path of data throughout the
various program packages and storage areas; and the
program hierarchy, which structures the programs, sub-
programs, modules, and routines in a hierarchical tree
showing their capabilities for interaction. Examples of
these are shown in Fig. 5.

Configuration management and control-Hardware units are
generally built and delivered to the customers individually, but
software packages, on the other hand, are copies of one master
program.

With many copies in existence, all subject to user alteration
and modification to meet the peculiar requirements of
individual systems, the number of configurations of the
various -masters" can easily become confusing. Moreover,
software packages are often developed as versions in-
dicating different levels of capability. This is another
dimension in the control issue and proliferates more
"masters." Both source and object programs must be
controlled along with the specific computer loads, in-
cluding data unique to any one system. Coupling this
problem with the "invisible" nature of these programs
makes the configuration management and control process
particularly complex.

Production- When does the software go into production, if ever?

Or, in a slightly different analogy, when is the software
turned over to the "factory" for building? Today, the
concept of building software using a factory philosophy is
in its infancy, and qualified software engineers are involved
throughout the actual building process. Moreover, in a
literal sense, software never goes into production, because
copies are always available. However, the word "produc-
tion" is often used in software after a final product has been
generated and standard and preselected modifications can
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Software architecture is the rough analog of
the hardware block diagram. Architecture
information can be arranged in different
forms to show the control hierarchy and data -
flow operations needed for the program tc
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Software data -flow diagram must show all the possible
paths that data can take through the program.

be put in for different customers. The term is also used at
times for the process of building the coding.

Development tools-In supporting the development process,
software tools are perhaps even more important than the basic test
tools used by the equipment engineer.

Software tools range from the ones used in program
debugging during the process of code writing to those
needed during test and integration. Developing tools for
real-time debugging is especially complex, since software
"test probes" will simply corrupt software operation and
distort results. Effective monitoring of software requires a
combination of hardware monitoring (e.g., on the
backplane of the system) and software data -collection
"hooks" placed in the system.

The time -sequential nature of software adds a major
complexity to the debugging process since it is impossible
to "see" all of the software at one time. Without extensive
tools, software debugging is more difficult than equipment
debugging. Because software tools can easily take up 10-
20% of the software development budget, this area
demands early and continuous evaluation.

Maintenance and reliability-How can you apply these terms to
"invisible" products?

In software terms, maintenance includes detecting latent
defects after the software has been delivered, and adding
enhancements to the basic program. This definition is not
consistent with the normal concept of equipment
maintenance, but is used in a generic sense as maintenance
of the software product after it has been delivered. The level
of maintenance and how the customer operates the system
must be defined early in the development.
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Fig. 5b
Program hierarchy arranges
the software in a tree struc-
ture to show which pals of
the program can call on or
interact with other parts of
the program.

The term software reliability is normally used in a generic
sense to describe the process of assessing operational
software performance. Software is considered reliable if its
use does not produce more than a tolerable frequency of
system failures or unexpected performance. The software
reliability process addresses such areas as data collection
and analysis on software errors, mathematical approaches
to software reliability, software management practices,
definition and enforcement of good programming practice,
and techniques to increase the thoroughness and cost-
effectiveness of testing.

Product patentability-How do you protect your software
developments?

Although exceptions exist, at the present time it is not
possible to patent software, even if it replaces an equivalent
(patentable) hardware technique. Copyright mechanics,
however, do exist. Also, software products are usually
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delivered in object -program form so that users cannot make
modifications easily. Licensing of software products to limit
their general use is also common.

To be successful in software development, three major
skills must be identified. First, the application of the
proposed software must be fully understood. Second, the
computer hardware characteristics and the overall software
architecture must be well understood and laid out. Third,
the building process of the software code and associated
testing must be clearly defined and made visible to manage-
ment.

Problems and approaches
The problems. .

Since the early 1970s, the complexity and cost of software
development have attracted increasing attention, and both
software developers and users are attacking the associated
problems from diverse directions and with a wide variety of
techniques. Developers-particularly those involved in ma-
jor real-time sensor control systems-have been working

Stu Steele is Manager, Software Design and Development-MSR,
responsible for the largest software skill center in RCA. He has
been involved for 20 years in real-time control and applications of
engineering systems, including metrological data processing,
spacecraft control and radar control. He has taught extensively in
the computer control, software engineering and digital systems
area.

Contact him at:
Software Design and Development
Missile and Surface Radar
Moorestown, N.J.
Ext. 2021

closely with Department of Defense user agencies to
achieve a broad -based mutual understanding of the
principal problems and formulate both general and specific
approaches to their resolution. These cooperative efforts
have isolated seven major areas of concern to both
developer and user:9

1) Basic misunderstanding of the software system
engineering function. The roles of system engineering
and software engineering must be defined and
recognized as principal elements in a highly complex
development discipline.

2) Incomplete and/or inadequate specifications. The
volume and scope of software specifications tend to lead
to omissions, distortions, and misunderstandings.

3) Incorrect partitioning of hardware and software
functions, occuring when an interface is designed either
first from the hardware side or the software side and not
as an integrated interface.

4) Ineffective software test planning, leading to ex-
cessive testing in some areas and inadequate checks in
others.

5) Lack of visibility and understanding of the software
development discipline, resulting in inadequate control
of creative software development.

6) Inherent growth in system core and time
requirements-a tendency that occurs even in highly
successful projects.

7) Inadequate involvement of the system user during
development, frequently resulting in an end product that
does not satisfy his needs.

These are by no means the only problems in software
development, but they are representative of the most
pressing immediate and long-term needs.

attacking the problems

To assist industry and government in resolving these broad
problems, the Director of Defense Research and Engineer-
ing has issued a generalized software -technology objective
listlu covering four broad areas and setting specific goals
within them:

1) Project management-planning, estimating, and con-
trol of development; configuration control; requirements
validation; risk analysis; software quality; technology
transfer.

2) System architecture-new computer system architec-
tures; impact on software cost, timeliness, and quality;
hardware -software -firmware tradeoffs; information -
system security; flexibility in data -retrieval systems.

3) Programming environment-languages to provide for
effective control of software development; automation of
clerical aspects; tools for test and validation;
maintainability -enhancement techniques.

4) Reusable software and tool availability-specification
of standard software; adaptable standard software for
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other applications and hardware; nationwide language -
control facilities; repositories and distribution systems
for reusable software; high -order language conso,ida-
tion.

These and other objectives are compatible with general
industry goals that recognize the inadequacy of present
state-of-the-art software development techniques to sup-
port future requirements. As an example, if the cost of
software development using present technology is pro-
jected into the 1980s, it will be far too high (Fig. 1)-it must
be reduced by 80% if we are to effectively use the projected
hardware growth and professional personnel availability.

Structured programming is a necessity, and some automation
seems possible.

Presently, the industry is using formalized techniques in
development, such as structured design and structured
programming. Structured design is associated with the
allocation of requirements to partitioned and modular
program packages or modules with tne interfaces clearly
defined. Structured programming is associated with using
basic and limited language constructs that result in very
readable computer -program listings. With special tools to
aid the software designer in their use, these techniques can
be very effective in attacking the overall problem. More
complete definitions of modern programming practices can
be found in Myers."

Approaches to these problems are myriad, but a few areas
of advance hold special promise. One is the automation of
system- and module -specification languages. This is ac-
complished by means of a general-purpose module
generator to accept functional specifications as input for
the production of a high -level -language program. These
systems can be problem -oriented and would require a
variety of generators. The concept is for a specification to
be fed directly to the automatic system to produce the
programs, thereby eliminating the need for large program -
development teams.

Implementation languages will also be getting better, with
improved control structures, language facilities to help
validate program correctness, and extensions to existing
compilers (via pre-processors) for standardizing new
features. Design languages will emerge to aid in structured
design, and computer -assisted tools will be available for
data -base design. Design and implementation languages
will be integrated.

Another major area being addressed is requirements defini-
tion and validation. This is the key technology area in large-
scale systems, where successful software system develop-
ment depends so completely on firm, accurate re-
quirements. Efforts are currently underway3 to develop
requirements languages and techniques for comparing
requirements with specifications.

Software development often "reinvents the wheel."

A perennially expensive area where standardization is
desirable is utility/support software-editors, debuggers,
input/output handles, standard subroutines (e.g., sine and

cosine subroutines), etc.-that it is clearly wasteful to
redesign on every new job. Some of these packages are now
being considered for implementation in chip form as
firmware. From an engineering -design standpoint, the
software for these chips must be correct, since it is not
economically feasible to recap thousands of chips in order
to repair the program bug. This is an example of the type of
tradeoff involved for a firmware or straight software ap-
proach.

In new engineering systems, distributed computing is the
major trend. This normally occurs using micro- and mini-
computers, distributed and partitioned to solve specific
functions. From a software point of view, this aids in
dividing and conquering the "large-scale" software system
problem. However, more emphasis must be placed on the
control software among machines.'2

Conclusion
Software is an integral part of modern engineering systems,
involving the total spectrum of development, from cefinition
through test. Development of a system employing software
requires a total system discipline that uses existing ex-
perience in both equipment design and computer
science/software. At the conceptual level, product develop-
ment is similar in hardware and software, but there are many
differences at the detailed level. For successful system
development, the design engineer must become familiar
with these differences.

One key feature in modern system development is the
hardware/software tradeoffs that will guarantee a cost-
effective system design. And within the software design
itself, extensive tradeoffs are required in areas of software
architecture and implementation. Fortunately, texts on the
techniques of software design are now becoming more
common, so that today it is practical for a designer to
function more comfortably and effectively in the software
world.

As an industry, we are wrestling with an environment that
has requirements outpacing technology; a design engineer
contemplating a way to use the technology must recognize
this. The challenge is there, the future is exciting, and with
added complexity comes an opportunity for successful
system development using all the technology available.

References
1. Prywes. N.; "Preparing for future needs." Computer (Jun 1975).
2. Barna. B.: "The DP industry: the next five years," Computer Decisions, (Jan 1978).
3. Christiansen, 0.; "Computers; consolidabng gains," IEEE Spectrum, (Jan 1978).
4. Schein. F.; Introduction to Computer Science, Schaum's outline series, McGraw Hill.
5. Torrero, E.A.; Microprocessors: New Directions for Designers. Hayde' Book Com-

pany, (1977).

6. Transworthe, R.C.: Standard Development of Computer Software. Prentice Hall, Inc..
Englewood Cliffs, N.J. (1977).

7. Steele. S.A.; Dupe. R.A.; Fleishman. A.; and Hatcher, E. T.: "Manag ng computer
program development." RCA Engineer, Vol. 19, No. 5 (Feb/Mar 1974).

8. W9771b)ridge S ; Systems and Programming Standards, Petrocelli/Charter. New York.
(1

9. Steele, S.A.; 'Characteristics of Managing Real -Time Software Development for
Military System." AIAA Computers in Aerospace Conference. Los Angeles (Nov 1977).

10. "FY 79-83 Research and Development Technology Plan," Office of the Director of
Defense Research and Engineering (Seo 1977).

11. Myers, W.; "The need for software engineering," IEEE Computer (Feb 1978).
12. Stone, M.A.; "Computer systems: what the future holds," Computer Science and

Scientific Computing. Academic Press, New York (1976) Edited by J.M. Ortega.

27



Programming in CHIP -8
H. Kleinberg Learning programming on RCA's VIP is relatively easy and

painless, and CHIP -8 is one of the major reasons.

This paper introduces one of the most powerful parts of the
COSMAC VIP-the CHIP -8 interpreter. The paper is written
primarily for those who have not been exposed to a
programming language in any depth, but who are familiar
with numbering systems and with such basic computer
concepts as memory and instructions.

If you don't have that background, you should still be able to
get a good idea of what kind of functions are available to the
CHIP -8 user. This paper by itself, however, will probably not
prepare you to write a program without a bit more coaching.
[Try the "Good Guide Special" described in this paper's
final section, "Taking the next step."-Eds.]

Descriptive information about the VIP and its accessories is
readily available and most of the information appearing in
the instruction manual will not be repeated here. But it is
worthwhile to review briefly how the system's data structure
is organized. The COSMAC VIP handles data in "bytes,"
each consisting of 8 bits. A byte can, therefore, take on any
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Author Kleinberg with his computer system: the VIP (right), tv
display, and cassette recorder (left).

one of 28 = 256 configurations. For example, 01101101 is
equivalent to decimal 109. For ease of handling, this
awkward (to people) entity is treated as though it were
broker up into 2 subgroups of 4 bits each, although no such
fracture occurs in reality. Each subgroup can now assume
24 = 16 configurations, hence the name "hexadecimal,"
shortened to "hex." These 16 binary configurations, when
expressed in hex, are labeled from 0 through 9 (borrowed
from our decimal system) and A through F (equivalent to
decimal 10 through 15). Our earlier example of decimal 109
now becomes 0110 1101, or 6D in hex, and the byte has now
been expressed as two hex digits.

Using the hex system is an acquired skill, and cumbersome
in the early learning stages, but it is far easier to cope with
than the pure binary which it masks. In all that follows, hex
digits are used, so your counting and arithmetic must be
based on that system, a fact of which you will be reminded
periodically.

been relieved with
long binary strings, but you have not been taken out of the
level of machine instructions, where you must concern
yourself with the many specific details of the computer's
structure. To alleviate that chore, a program called CHIP -8
has been written as part of the VIP system package. CHIP -8
is a special type of program called an interpreter.

Why use an interpreter?
An interpreter provides you with a simplified language that is
tailored to a specific application.

In the spectrum of software, interpreters lie between
assembly -level programs on the one hand, and the more
elaborate and generalized compilers such as Fortran on the
other.

The designer of an interpreter starts by picking a set of
functions that would be useful in his specific application.
For each function he writes a machine -language program,
which is later activated when the user calls out the
appropriate code in his "higher -level" program. Some of the
functions can be quite complex when worked out in
machine code.

As with any other product design, an interpreter is a result of
certain compromises. There are conflicts between the
range of application (flexibility) of the language, the speed
of execution, the amount of memory required to store it, the
complexity as seen by the user, and so on. In the case of
CHIP -8, all these questions were settled in favor of simplici-
ty and economy.
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It is important to keep in mind the distinction between the
interpreter and the computer on which it is run. By its
nature, an interpreter language is designed for a specific
application, sacrificing features that would be useful in
other, different applications. For example, CHIP -8 is
specifically designed for controlling the video display and
hex keyboard of the VIP, but is a very poor language for
numerical computation. The VIP's 1802 microprocessor,
however, does not have that restriction. Using the same
1802, we could write another interpreter that wouIC be
excellent for vector calculations and very poor for video
games. The interpreter reflects conscious restrictive
choices that in no way alter the generality of the computer
on which the interpreter is run.

The basics of CHIP -8
CHIP -8 instructions have a simple, consistent format.

Each instruction is 2 bytes (4 hex digits) long, and each
performs a distinct, well defined function. The ger eral
format is ABBB, where A is always part of the instruction
code, and B is either part of the code cr data that you must
supply. Fig. 1 lists the instructions in numerical order.
(Remember that A,B....F are numbers, not letters.)

In order to understand the instructions, you must first become
familiar with a vocabulary of 1 word and 7 symbols.

VX and VY, or X and Y, stand for the program variables. A
key feature of CHIP -8 is the use of 16 variables, which are
actually memory locations containing numbers over which
you have complete control. They can signify whatever you
want them to signify. You can set them to any value you
choose, you can compare them, you can increment them.
Each variable is identified by one of the hex digits, 0 through
F, but in Fig. 1 and in the descriptive material where the
general form of the instructions is usec, they are referred to
as VX, VY, or simply X or Y, where X and Y, of course, range
from 0 to F. Thus, you will be performing such operations as
"check if variable 7 (V7) is equal to zero" or "add 1C to the
present value of variable B (VB)." Each variable represents
one byte of data and its value is, like all other data,
expressed in a program as a pair of hex digits.

Only a few other symbols are used in describing the CHIP -8
instructions:

I, called a pointer in the manual, is a memory address. In
general, it identifies the beginning of a string of data to be
read from or written into the memory. The pointer is your
major tool for storing and retrieving data, and it is
important to note which instructions use it or modify it.

MI refers to the data stored at the location(s) addressed
by I. In a sense, I is the post -office box, MI is the letter
stuffed in that box.

MMM indicates memory addresses, other than I, that are
to be supplied by the programmer. Since CHIP -8 was
designed to run with a small memory, the most signif cant
hex digit in the address will always be 0, i.e. OMMM.

KK represents a 1 -byte value or number that yot. will
supply in your program.

Instruction Operation
*00E0 Erase display (all 0's)
*00EE Return from subroutine
OMMM Do machine -language subroutine at OMMM (subroutine

must end with D4 byte)
*1MMM Go to OMMM
*2MMM Do subroutine at OMMM (must end with OGEE)
*3XKK Skip next instruction if VX = KK
*4XKK Skip next instruction if VX t KK
*5XY0 Skip next instruction if VX = VY
*6XKK Let VX = KK
*7XKK Let VX = VX + KK
*8XY0 Let VX = VY

8XY1 Let VX = VX OR VY (VF changed)
8XY2 Let VX = VX AND VY (VF changed)
8XY4 Let VX = VX + VY (VF = 00 if VX + VY5 FF, VF = 01 if

VX + VY >FF)
8XY5 Let VX = VX - VY ( VF 00 if VX<. VY, VF = 01 if VX-NY)

*9XY0 Skip next instruction if VX VY
*AMMM Let I = OMMM
BMMM Go to OMMM VO

*CXKK Let VX = random byte (KK = mask)
*DXYN Show n -byte MI pattern at VX, VY coordinates.

I unchanged. MI pa:tern is combined with existing
display via EXCLUSIVE -OR function.
VF=01 if a 1 in MI pattern matches 1 in existing aisplay.

EX9E Skip next instruction if VX = hex key (LSD)
EXA1 Skip next instruction if VX # hex key (LSD)

*FX07 Let VX = current timer value
*FXOA Let VX = hex key digit (waits for any key pressed)
*FX15 Set timer = VX (01 = 1/60 second)
*FX18 Set tone duration = VX (01 = 1/60 second)
FX1E Let I = I VX

*FX29 Let I = 5 -byte display pattern for LSD of VX
*FX33 Let MI = 3 -decimal digit equivalent of VX (I unchanged)
FX55 Let MI = VO:VX (I = I + X + 1)
FX65 Let VO: VX = MI (I = I + X + 1)

Fig. 1

CHIP -8 vocabulary includes 31 :ristructions. Ones with asterisks
are used more commonly than o:iers and so are explained in text.
Parts of instructions in bold type identify the instruction; the rest of
the instruction message tells w'at variables, memory locations,
etc., are to be acted upon. Prcgrams like CHIP -8 are dynamic
systems, with new features being continually introduced. If it is
important that your information is current, make sure you have the
latest copy of the Manual.

N refers to the number of bytes to be used in setting up a
pattern to be displayed.

How to read a CHIP -8 program
A sample working program shows how CHIP -8 works.

Fig. 2 lists a sample program, called "Jumping X and 0."
Here is what the program is written to do. First, a solid 6x6-
spot block appears in the L. oper right quadrant of the tv
display. A 5x5 "X" pattern appears in the center and jumps
randomly to a new location every 1/5 second. Wnen the X
overlaps the 6x6 block, the X disappears, an "C" pattern
appears in the center of the sc"een, and repeats the process,
being replaced by the X when an overlap with :he block
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Address
Instruction

code Comments
0200 A24C Set Ito block pattern
0202 6530 V5 = 30
0204 6604

Coordinates of block
V6 = 04

0206 D566 Show block at V5, V6
0208 A240 Set I to X pattern
020A 2212 Do subroutine at 0212
020C A246 Set I to 0 pattern
020E 2212 Do subroutine at 0212
0210 1208 Go to 0208 (return to X pattern)
0212 611E

0214 620D
Set V1, V2 to center coordinates

0216 D125 Show the pattern
0218 630C Set V3 to OC (= 1/5 second)
021A F315 Set timer from V3
021C F407 Timer V4

021E 3400 Skip if V4 (timer) = 0
0220 121C Return to 021C if V4 # 0
0222 4F01 Skip if VF = 01 (checking for overlap)
0224 122E Go to 022E if VF 01 (overlap, switch patterns)
0226 D125 If no overlap, show old pattern to erase
0228 C13F Random number (6 -bit) to V1

new coordinates
022A C21F Random number (5 -bit) to V2
022C 1216 Go back to 0216 to show pattern in new location
022E D125 Show old pattern to erase
0230 00EE Return from subroutine (will switch patterns)
0232 0000 Space for future changes
0234

0236
0238
023A
023C

023E 0000 Space for future changes
0240 8850

0242 2050 X pattern
0244 8800

0246 F888

0248 8888 0 pattern
024A F800

024C FCFC
024E FCFC Block pattern
0250 FCFC
0252

0254

Fig. 2
"Jumping X and 0" program was designed to explain a number of
CHIP -8 instructions and entertain RCA Engineer editors. Instruc-
tion explanations in text use specific lines of the program listing as
examples. See Fig. 3 for the program in action.

occurs. The program continues until the machine is
stopped; Fig. 3 shows the program in action.

This sample program will be used to illustrate the VIP
instruction set, but before proceeding to those details, it
would be worthwhile to look at the format of the sample to
note some of the conventions that are used.

The first column in the program contains the memory
addresses in which the instructions are stored. All instruc-
tions occupy two adjacent byte locations, so it is standard
practice to write them as complete 4 -digit words, using only
even -numbered memory locations to identify them. It is
understood that the adjacent odd -numbered locations are
used for the second byte of each word.

The memory column does not, of course, get entered into
the computer-it tells "where," not "what." But still you
must keep track of these addresses and list them for each
instruction. As you will see, all references made in the
program to other parts of the program use these addresses
to find the right place. And in using these addresses,
remember hex.

Note that the first instruction of the sample program is
stored in location 0200. This is a mandatory requirement,
since CHIP -8 was designed with the assumption that the
program starts there. Don't try to surprise the interpreter on
this point-it will always have the last laugh.

The next column in Fig. 2 contains the actual 2 -byte
instructions (described in the next sections). These two
bytes are the only part of the program that actually goes into
the machine.

The last column contains your comments on each
instruction-a memo to yourself and to whoever else
studies your program. Each comment should be a brief
description, either in mathematical or English form, of what
the instruction does. The comment is of no value to the
computer and plays no part in executing the program, so
you can easily leave it out if you are willing to accept that at
some later date you will not be able to understand what your
own program is all about. The value of good comments
cannot be overstated. Every nontrivial program, without
exceptio'i, will eventually be revised by the writer or by
someone else and, while using good comments will not
guarantee easy revision, their lack will guarantee that a
simple change becomes a titanic struggle. You will even-
tually develop your own natural shorthand for comments,
but in the beginning, be generous with them.

la
30

Fig. 3
Program starts with an X in the center of the The X jumps to a new (random) location
display and a block at the upper right corner. every 1/5 second.

When the X and the block overlap,



What the instructions mean Group 2-transfer of control

CHIP -8 has 31 instructions, but you can write most programs using
only 20.

We will concern ourselves with the 20 instructions in Fig. 1
that are marked with asterisks. The remaining 11 are no less
legitimate, but tend to be more valuable to the advanced VIP
user. Of the 20 sample programs in the VIP manual, all but
one or two use only the group of instructions we will
examine, so there is no doubt that many interesting
programs can be written using them.

Note that the instructions, except the first two, have one,
two, or three numbers for you to provide-these are the X, Y,
I, K, and M discussed in the "vocabulary" section. It is
important to write all the remaining digits-identified by
bold face type in the following explanation-exactly as they
appear in the general form, since the irterpreter uses them
to identify the operation.

For the sake of cohesiveness, the instructions that we will
look at have been arbitrarily divided irto six groups:

Group 1 - manipulating the variables

6XKK makes KK become the new value of variable X. As it is
the first instruction considered, a brief look at its structure is
in order. The "6" is the code that the interpreter will use to
translate this operation into the proper set of basic machine
instructions. "X" is the identifying number of the variable
that you have selected, and "KK" is the hex value to which
you want to set variable X. Thus, 6530 (line 0202 in Fig. 2)
changes the value of variable 5 to the value 30.

7XKK has the same structure, but the "7" translates to an
addition. The instruction adds KK (remember hex) to the
present value of VX. For example, 7A1B increases the
current value of variable A by 1B.*

8XY0 Note that in this case the first and last digits are both
part of the instruction code. By using this instruction, the
value of variable Y also becomes the value of variable X. For
example, 8320 copies the value of variable 2 into variable 3.

This same instruction can be used for decrementing VX by taking advantage of the fact
that the variable is a 2 -digit number with no carry into a third digit. In such a system (to use
a decimal example) you can subtract 1 by adding 99, since n  99 = n  100-1 and when you
throw away the 100 (the 3rd digit) you have n -1. It is analagous to a 2 -digit odometer in an
automobile, if you advance it 99 places it brings you back to 1 short of your starting point.
In the hex system you add FF (the biggest number) in place of 99 to subtract 1, but the
principle remains the same and can be extended to subtract any number you wish.

The computer normally steps through a program in se-
quence. It sets up an instruction from memory, executes it,
and then proceeds to the instruction in the next memory
location. But the ability to depart from this sequence is one
of the essential features of any computer, and CHIP -8
provides a flexible system for doing so.

Breaking out of sequence may be done in two ways-
unconditionally (the jump is made whenever the instruction
is encountered) or conditionally (the sequence is or is not
broken, depending upon whether some condition has been
satisfied). This group of instructions deals with the uncon-
ditional transfers, often called "go to," or "jump."

1MMM has the computer perform, not the next instruction
in memory, but the one stored at location OMMM. As an
example, see Fig. 2, line 0210. Normally, the next instruction
to be done would be 02'2 but nstead, the 1208 instruction
makes the computer go back to do the one at memory
location 0208. Jumps may be either forward or backward in
the program, and there is no restriction on how many places
may be skipped.

An unusual use of this instruction is for stopping the
machine. When a program comes to a point demanding
some kind of reset or fresh start, a 1MMM instruction
referring to its own memory location will put the VIP into an
endless cycle until the operator takes the appropriate
action.

2MMM has the computer do 'he subroutine at OMMM, and
00EE has it return from the subroutine.

These two instructions must be considered together. While
the 2MMM instruction also transfers unconditionally, it is
not the same as the previous case. The difference lies in the
nature of a subroutine, which is a package of instructions
performing some function that will be used at more than one
point during the course of a program. (For example,
computing sin x or the roots of a quadratic equation might
be subroutines in a scientific orog ram.) When a subroutine
is finished, you want the program to return to the point from
which the jump was made and pick up its normal sequence.
Since the subroutine may be entered (called) from any
place in the program, the obvious question is "How do I
know which place is the right returning point?"

In Fig. 2, lines 020A and 020E present a typical case, in that
they both have the program jump to the same point, 0212,
the beginning of a subroutine that makes the X or 0 jump

a

the X disappears and an 0 appears in the The 0 then starts jumping to random
center of the display. locations

until it overlaps the block, and
the whole process begins over again. 31



every 1/5 second. Clearly, before this program transfer is
made, the computer must store the location of the
"jumping-off" point so that at the end of the subroutine (line
0230) it can correctly return to 020C or 0210 as appropriate.
The 00EE-return from subroutine-instruction makes the
proper transfer back by retrieving the stored "jumping-off"
address.

CHIP -8 provides enough storage to "nest" up to 12
subroutines. This means that, in the course of executing
one subroutine, another may be called and executed, and
so on. The situation is analogous to the use of nested
parentheses in an algebraic statement, and the same care
must be taken so that each unit is begun and terminated
properly with the 2MMM and 00EE instructions.

Group 3-conditional skips

This group of instructions alters the sequence of events in a
program depending on whether or not some stated condi-
tion has been met. They give the computer its most powerful
function, the ability to follow one course of action or
another, depending on the value of data in the machine.

In these CHIP -8 instructions, if the stated condition is met,
then the computer skips the next instruction in line and
executes the following one. If the stated condition is not
met, then the computer continues in its normal sequence,
i.e., it does not skip. In a program, it looks like this:

Line n states the condition to be met.
Line n+1 is executed if the condition is not met.
Line n+2 is executed if the condition is met.

In Fig. 2, lines 021E through 0226 show examples. Note that
when the condition is not met, there is only space for one
instruction (line n+1). In most cases that instruction will
have to be an unconditional jump to the place where the
relevant code has been stored.

The instructions in this group are:

3XKK
4XKK
5XY0
9XY0

Skip next instruction if VX=KK
Skip next instruction if VK # KK
Skip next instruction if VX = VY
Skip next instruction if VX VY

Group 4-memory control

AMMM sets the pointer, I, to the memory address OMMM. All
following instructions that use memory will go to this
address until you do something that changes I. See Fig. 2,
lines 0200 and 0208, for an example.

FX29 sets up the pointer for displaying hex digits. Part of the
VIP is an "operating system," which takes care of loading
memory from the keyboard, reading to and from the tape
cassette, etc. The bit patterns for displaying any of the hex
digits are already stored in memory as part of this operating
system. The FX29 instruction provides access to those
patterns, so that you do not have to work them out for
yourself. It sets Ito the correct address of the 5 -byte pattern
for the hex digit in the least -significant digit of VX.

FX33 translates the value of VX into its 3 -digit decimal
equivalent and stores the result in the memory starting at I.

This instruction is very useful for presenting video -game
scores in decimal form.

Group 5-miscellaneous control

The VIP has a timer and an audible tone generator. The
timer, which automatically counts down to zero when it is
set by the programmer, is useful for such things as making a
display flash, timing a permissible period for some
keyboard action to take place, etc. The audible tone, whose
duration you can set, can be used to celebrate collisions,
end of program, etc.

FX15 sets the timer to the value of VX. The smallest value,
(01 in VX) is equivalent to 1/60 second, so the maximum
time (FF in VX) is 255x1/60 = 4.3 seconds.

FX07 transfers the current timer value into VX. This
instruction lets a program monitor the progress of a
countdown. Fig. 2, lines 021A through 0220, demonstrates a
typical timing loop. V3, which stores the hex number
equivalent to 1/5 second, is transferred to the timer (line
021A), and from there to V4 (line 021C), where it is tested
(lines 021E, 0220) until it is found to equal zero.

FX18 turns on the audible tone for the length of time
specified by the value of VX. Again, the smallest increment
is 1/60 second.

Caution-In the above three instructions, since 1/60 is a
decimal number, you will be going back and forth
between the hex and decimal systems. Watch your
arithmetic.

CXKK sets a random byte into VX. KK acts as "mask"-
where KK has a 0 bit, no entry is made into VX. The mask is a
way of controlling the range of the random number; for
example, C703 would set into V7 a 2 -bit random number
(since 03 has two bits) with equal probability of any 22=4
values. In Fig. 2, lines 0228 and 022A provide further
examples.

Group 6-input and output

FXOA sets the least -significant digit of VX to the value of the
next key pressed. The program will pause here until some
key is pressed.

00E0 erases the entire display.

DXYN displays a pattern on the screen. Most of your
attention in programming the VIP will center around the
display. For full information, you should refer to the VIP
Instruction Manual, since we can concern ourselves here
only with those characteristics that reflect into this CHIP -8
instruction.

In this instruction, N defines how many bytes make up the
patterns you want to display, X and Y describe whereon the
screen you want it to appear and, while I does not appear in
the code, its current value determines where the computer
will find the first byte to be shown. Therefore, before this
instruction can be used you must have taken care of the
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following functions: 1) the bit pattern to be displayed must
have been set up in the memory; 2) I must have been set (be
pointing) to the address of the first byte in the pattern; and
3) the two variables defining the pattern's screen location
must have been set to the proper values, X for horizontal
(increasing left to right), Y for vertical (increasing top to
bottom).

For example, in Fig. 2, line 0206, D566 means "show a 6 -byte
pattern taken from the memory starting with I." The upper
left-hand corner of this pattern will be at coordinates
specified by V5 and V6. Note that the three preceding
instructions have set the values of the coordinates (lines
0202 and 0204) and have set I to 024C (line 0200). At
location 024C, the beginning of the pattern has been stored,
so everything is all set to go.

In the VIP, the pattern that is being displayed is superim-
posed over any existing pattern on the display, with the
feature that where a new spot overlays an existing spot, the
screen is erased. When this happens, the computer puts 01
into variable F, making possible the programmed detection
of overlaps or collisions between the old and new patterns.
Line 0222, in Fig. 2 for example, senses VF to see whether
the jumping pattern has overlapped the fixed block. If it
hasn't (VF=0), line 0226 starts the procedure to move the X
or 0 randomly again. If there has been an overlap (VF=1),
line 0224 causes the program to switch from X to 0, or vice
versa, and start over. You can also use the "blankout on
overlap" feature in selectively erasing all or part of a pattern
by rewriting it in the same place.

Writing a program
Familiarity with the CHIP -8 instructions does not, by itself, make
you a programmer, any more than learning the alphabet made you
literate.

Learning the instructions is a necessary first step which,
with the exercise of some practice and patience, can lead to
whatever level of proficiency you may want to achieve in
writing programs. In fact, one of the most important uses of
the VIP is in providing a fun way of acquiring exactly that
skill.

While the actual design of a program is something you must
do for yourself, a few paperwork tools and helpful hints can
make the job easier and more organized. Here are some
suggestions to help you get started.

Many people find it useful to make a flowchart of their
programs before they start coding. It's a good way of
organizing your thoughts, and it lets you test the program
on paper before you have invested a lot of time in coding. It
is also very helpful in identifying those parts of the program
that could be done as subroutines, and so reducing the
amount of coding you have to do. But with or without a
flowchart, think about what you want to do before you
plunge ahead; a half hour of planning will more than pay for
itself in easier coding.

Keep a list of the 16 variables and what meanings you have
assigned to them, i.e., what they represent in your program.
Note that VO and VF are occasionally set aside for special

use. Make sure they're clear and available when the
instruction will be using them

Be sure to keep track of the memory addresses in which
your program is stored. For the first rough drafts you might
want to leave spaces every so often in the program to allow
for changes. These spaces can later be bridged by uncon-
ditional jumps. If you decide to close up the gaps later, or if
you find you have to squeeze in another line of code, make
sure that you have properly modified all the "jump to"
addresses that have been affected. Another trick is to label
"jump" points with arbitrary designations (e.g., Greek
letters) until you are satisfied that you have progressed to
the point of specifying accurate addresses.

Make a chart of the display to help you plan the program,
work out the bit patterns, and establish the coordinates. It
should also carry the memory addresses in which the data
to be displayed is stored.

If you have occasion to put data, such as display patterns, in
the memory keep a list of where you have put them. You
may never find them again otherwise.

Don't forget that CHIP -8 expects to find your program
starting in location 0200. If for some reason you want to
violate that rule, then 0200 must have an unconditional jump
to whatever starting point you have selected.

Be generous with your comments. It's surprising how
difficult it becomes, even after a short coffee break, to
remember or reconstruct the brilliant trick you thcught up
while you were deeply engrossed in your creative approach
to the problem.

Don't forget to return properly from a subroutine, have fun,
and remember hex.

Taking the next step
If you are interested in knowing more about CHIP -8, send
for the additional information that is available. The package
includes a step-by-step description of how the sample
program was developed, and would be a good guide if you
are starting out on your first adventures in programming. It
also includes copies of the following charts and forms
which you can reproduce for your own use: a display layout
chart, a variables assignment sheet, and a program coding
sheet. Write or call the Editor, RCA Engineer, and ask for the
"Good Guide Special." The address is Building 204-2,
Cherry Hill, N.J.; telephone ext. 4254.
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Software: microcomputer vs. minicomputer

K. Schroeder

Designing and implementing software for
the microcomputer and the minicomputer
are significantly different activities. Un-
derlying the obvious similarities in the
primary function of the software are im-
portant differences. Specifically, these two
kinds of software are required to run on
appreciably different hardware (Table I).
They are required to perform applications
of considerably different character. Also,
they are written, edited, and debugged
using different methodologies. The impor-
tance of these differences is not necessarily
obvious to the uninitiated and the effects
can become more or less significant,
depending upon the specific hardware
systems and applications under considera-
tion. However, it is useful to generalize
about these differences to understand what
one may face when attempting to program
a microcomputer for the first time after
having had experience in programming
minicomputer (or midi -computer) systems.

How hardware
differences affect software
Microcomputers have traded computing
power for economic and size advantages.

Microcomputers are generally less ex-
pensive and smaller hardware systems than
minis, and therein lies their utility. Micros
can bring intelligent control to applications
that either do not need, or cannot justify, a
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Changing from mini to micro?
Programming and debugging are significantly different.
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Increasing task complexity

Fig. 1
As tasks become more complex, the most cost-effective means of performing them changes
from hardwired logic to microcontrollers to microprocessors to minicomputers.

larger, more expensive minicomputer (Fig.
1 ). However, this economic and size advan-
tage is gained at the expense of computing
power and hardware facility. This sacrifice
is reflected in the microcomputer's soft-
ware. A microcomputer programmer must
often compensate for hardware limitations
in software. Often the most significant
hardware limitation is execution speed.
However, even in applications requiring

only modest computational speed, many
other missing hardware resources must be
compensated for in software, thereby
lengthening and complicating the
programming task.

Micros predominantly have shorter data
words than minis do.

A computer's data -word size is its fun-
damental data representation. It specifies

Table I
Differences In hardware between mini and micro are a major reason behind the differences in software.

Feature

Data -word size (bits)
Execution speed

(cycle time)

Micro 0101100111 010100 Mini 01011001

12, 16, 18, 32
Medium -fast
(200 ns-I As)

110 10100

4, 8, 16
Slow
(500 ns-I0 µs)

Addressable memory
Instruction repertoire size
Assembly -language programming

Small -medium (512-64k bytes)
Smaller (30-150 typical)
Tedious, slower

Medium -large (4k -128k words)
Larger (70-300 typical)
More efficient, faster

Interrupt capability Single -level static priority Multi -level dynamic priority
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the number of bits that can be stored into
or retrieved from its main memory during a
single memory cycle. (Even "bit" manipu-
lations are usually word -addressed.)
Generally, the larger the data word, the
greater the efficiency and power sof a
processor's internal operations.

The majority of microcomputers have
either 4-, 8-, or 16 -bit data -word lengths.
The 8 -bit version presently dominates both
the marketplace in dollar sales volume and
current microprocessor -based design. This
is partially because a byte (8 bits) is a
convenient data representation for many
micro applications. More significantly,
however, the 4 -bit versions have very
limited data -handling capabilities and the
16 -bit versions are considerably more ex-
pensive. Sixteen -bit micros are primarily
selected to provide software compatibility
with minicomputers for which software has
already been written or for applications in
which software compatibility with a mini is
of paramount importance. However, as
microcomputer prices continue to decline,
the I6 -bit machines will become more
competitive and will become more widely
used.

The minicomputer is commonly available
in 12-, 16-, 18-, and 32 -bit versions. The 16-
bit -version mini dominates the market
because it conveniently allows a larger data
representation than the 8 -bit micro, yet
allows efficient byte handling when re-
quired by packing two bytes per data word.
Many minis also facilitate byte addressing
of memory to enhance their byte -handling
capabilities.

Micros characteristically have smaller in-
struction sets.

Normally, a machine's instruction size is a
small multiple (1, 2, or 3) of its data -word
size. The instruction size is a direct indica-
tion of the computational power and size of
a machine's instruction set. (This is the set
of instructions directly executed by the
hardware.)

The microcomputer, usually having a
smaller data word, thus also has a smaller
instruction size, limiting the power of its
instruction set. The micro usually has fewer
instructions, less powerful instructions,
fewer memory addressing modes, and
fewer data types that can be handled
directly by the hardware. Thus, the micro-
computer program requires more
assembly -language instructions than the
equivalent program implemented on a

mini. This makes assembly -language
programming a more tedious, less efficient,
and more error -prone task for the micro
than for the mini.

Memory addressing can be inefficient with
micros.

One memory -addressing limitation
problem encountered with micros and not
with minis is "out -of -page" reference
errors. A microcomputer often has
"paged" memory, i.e., memory is divided
up, for addressing, into blocks or "pages"
and some of the micro instruction formats
can only reference memory locations
within the same page as the instruction.
This technique of addressing is used to
limit the number of bits required to specify
an operand's address. However, when an
attempt is made to reference, within one of
these short instructions, a location outside
the current page of memory, an "out -of-

page" reference error occurs. This restric-
tion can be avoided by using indirect
addressing or using full -address in-
structions. These techniques, however,
create inefficiences in execution speed or
memory space and may not be desirable to
use throughout a program. Anticipating
and compensating for this addressing
restriction complicates the writing of micro
software.

Because micros have fewer general-
purpose registers, intermediate results must
often be swapped back and forth to memory.

Another feature of microprocessors that
limits their computational power in com-
parison to the mini is their limited internal
register sets. Normally, the micro has fewer
hardware registers for use as accumulators
or index registers. This can necessitate
frequent saving and re -storing register
contents into main memory to save in-
termediate data results or address pointers.
This required swapping of information not
only slows down execution speed, but
forces the programmer to keep track of
where such information is being stored and
determine what allocation of those
registers will minimize that program
overhead.

Since micros have less computational
hardware, more operations must be done in
software.

The micro usually lacks other com-
putational hardware features that many
minis use to speed execution of complex
numerical calculations. Such hardware in-
cludes hardware multiply and divide
(single and double precision) and multiple

position shift facilities. Also missing are
floating-point hardware facilities. Such
operations must be done in software and
become the responsibility of the
programmer, thereby complicating his
task. This added code can also con-
siderably lengthen the program.

The stack facility available on many micros
is limited, in contrast to the ones on stan-
dard minicomputers.

The micro's stack often requires the ex-
plicit handling of both the stacking data
and the stack pointer register. A few micros
implement a stack in a separate small
memory space within an organization that
effectively has an open bottom. Once the
stack is filled, any attempt to push
additional data onto the stack will destroy
the first entry on the stack without any
warning or hardware protection. In this
organization, the size of the stack memory
absolutely limits the depth of the stack.
This stack limitation may restrict sub-
routine call nesting or the permitted level of
context switching that the computer can

Ken Schroeder has eight years of software
experience in both minicomputer and
microcomputer systems. Now working on
microcomputer -based consumer products,
he has also worked with software for
medical instrumentation, laboratory
automation, and navigation satellites.
Contact him at:
TV Microsystems Research
RCA Laboratories
Princeton, N.J.
Ext. 3325
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handle, since these actions normally re-
quire entries on the stack.

In contrast, minis normally implement
their stacks in main memory, which gives
virtually unlimited stack depth. On many
minis, when an attempt is made to overflow
the permitted stack area, a hardware in-
dication is generated. This permits
software to detect such an occurence and
take appropriate action. Many minis have
implicit stack -handling and will adjust
stack pointers automatically. Some minis
have facilities that automatically stack the
program state upon interrupt or other
context switching. Thus, using a stack
facility on a micro generally requires more
code and is more complex to program than
on a mini.

Microcomputers generally have relatively
primitive interrupt -handling structures.

Micros commonly only have a single level
of hardware priority and often lack a
vector -generation capability. In contrast,
minis commonly have multi -level dynamic
priority -arbitration schemes and also fre-
quently have vector -driven response
systems. When implementing an applica-
tion requiring significant interrupt -
response capability the
programmer must make up for this lack of
hardware facilities in software, thereby
complicating his programming task.

Low

CA
nO.

System replication volume

High

Fig. 2
The choice of language level used in a
software system depends on replication
volume of system. Assembly language
generates more efficient code than high-
level languages, and so requires less
memory. Assembly language, however, re-
quires more programming effort.

Microcomputer systems usually need exter-
nal equipment for debugging.

Certain computer hardware features are
often helpful when debugging software and
diagnosing software failures. One of these
is a hardware "trap"-vectoring the
program to a specific address in memory
upon the occurence of a predefined
machine state. The attempt to execute an
illegal instruction or address nonexistent
memory are examples of "trap" -generating
occurences. These "trap" features are stan-
dard on minis but are lacking on micros.
The microcomputer programmer cannot,
however, really compensate for them in
software, so this function in the debug
phase of software usually must be replaced
by the use of a logic "analyzer" or other
external debug hardware. The micro-
computer programmer should become
familiar with the use of such devices.

How application
differences affect software
Attempts to save memory costs often lead to
complicated unstructured programs.

Microcomputers are customarily applied
in very cost -sensitive applications. Typical-
ly, these are applications with moderate- to
high -volume system -replication require-
ments, where small individual economies
reap large total savings. Minicomputers, in

8

Cost of system's memory

Fixed cost of programming

System replication volume

Fig. 3
Cost to deliver a system depends on both
programming and memory costs. (Slope of
memory costs may vary with price breaks for
volume purchases.) Since saving a few
bytes can potentially reduce the number of
chips required, "bit -bumming" becomes a
necessary evil for microcomputer
programmers.

contrast, are more typically used in low- to
medium -replication -volume applications,
which are not typically as cost -sensitive.

Approximately 60% of the cost of the
average microcomputer system, in final
application configuration, is memory cost.
Since assembly -language programming
can generate code that is more memory -
efficient than compiler -generated code, it
tends to dominate micro programming
(Fig. 2). A determined effort is usually
made to squeeze the required software into
the minimum amount of memory. This
activity is commonly called "bit -

humming." However, recent efforts to
bring modern engineering techniques to
the "art" of writing software has led to the
foundation of a new branch of study called
"software engineering." This new discipline
has shown that "bit -bumming" and other
software techniques that sacrifice code
clarity and structure to minimize program
space have serious side effects in programs
of any significant size. Specifically, such
efforts lead to the production of unstruc-
tured programs, which are difficult to
debug, difficult to document and, most
important, difficult to understand. Such
programs can create very expensive sup-
port problems and can only be cost-

replication volumes and applications that
will remain very stable and will not be
modified or extended after initial comple-

0

System replication volume

Fig. 4
Hardware/software Interface for microcom-
puters often has the possibility of tradeoffs.
In this example, a serial input-output port to
a terminal device can be done in software
(high initial cost) or a USART chip (in-
creasing cost with volume).
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tion. Since this is the environment in which
many microcomputers are used, "bit -
bumming" is a skill often required by
microcomputer programmers. This is es-
pecially true since saving a few bytes can
potentially reduce the number of memory
chips required (Fig. 3).

Memory efficiency is not as crucial in
typical mini applications. Additionally,
memory for minis normally is only
available in 4-k word quantities, so unless
this increment boundary is avoided, no
cost savings are realized by reducing
memory requirements.

Because microcomputers usually work in a
dedicated task environment, the
programmer must write software normally
handled by the mini's supervisory software.

Microcomputers are primarily used in
dedicated single -task programming
applications. Normally, software in such
an environment controls the base -machine
hardware and is not integrated into an
existing operating system or standardized
software monitor. The microcomputer
programmer directly programs all software
functions normally handled in a mini by
such supervisory software. For example,
the maintenance of the system clock and
the control of all peripheral devices are the
programmer's responsibility. Normally, a
microcomputer system has fewer computer
peripherals to handle than a typical mini
system; however, the nature of these
peripherals is appreciably different.
Typical minicomputer interfaces make
peripherals appear logical and time -
independent, i.e., all the software
operations required are clearly logically
related to obvious functions of the device.
Typical micro devices have simple con-
trollers, which require more detailed
software control and can impose serious
timing constraints upon the program in
controlling the hardware-constraints
which, if violated, can cause serious and
difficult -to -isolate intermittent problems.

Suitable "off-the-shelrapplication program
packages are not often used with micros.

Applications involving minis often use
various mathematical and application
software packages available from the
hardware manufacturer to facilitate system
implementation. Also, many mini
programmers write general-purpose
software packages for a particular applica-
tion area and use them repeatedly in
subsequent applications to improve
software -development efficiency. In the

micro world, such generalized packages are
rarely used in final product configurations.
More characteristically, concise and
efficient code is written for each applica-
tion and is customized for maximum
efficiency for the individual case, thus
making programming less efficient and
driving up software development costs.

Programmers have to make sure that the
relatively slow micro systems are not too
slow for the task at hand.

Micros are generally put to work in
applications for the monitoring, analysis,
and control of time -dependent (real-time)
processes. Since micros have slow execu-
tion rates, it is often necessary to write very
efficient programs to meet performance
requirements. Programming in high-level
languages has been shown to be much more
efficient than programming in assembly
language and so is rapidly dominating mini
software. Assembly language, however,
still dominates microcomputer program-
ming in order to meet execution -speed
requirements, since compilers do not yet
generate very efficient code. The attempt to
save execution time has an equivalent
activity to "bit-bumming"-using similar
unstructured programming techniques
that minimize the execution time of
programs but at the expense of clarity. This
approach has the same inherent program -
debugging and product life -cycle support
problems as "bit -bumming" and thus
should only be a last-ditch attempt to save
an effort about to fail to meet required
speed specifications. Intelligent system
design dictates that a projected 50% of
capacity throughput surplus be included to
both facilitate unexpected system growth
and anticipate throughput -requirement
and load -fluctuation estimation errors.
This philosophy should preclude the need
for such unstructured code optimization.
Compromises in these design guidelines
may be necessary in applications with large
replication volumes and correspondingly
high cost sensitivities.

How differences in system
implementation affect
software
Microcomputer programmers have to be
more careful with addressing memory,
which is allocated in disjointed segments.

To gain reliability and cost efficiency, a
microcomputer's (final -product) program
is held in primary memory and is not kept
in mass -storage peripherals. Primary
memory is normally segmented into a

nonvolatile read-only memory (ROM)
program -storage area and volatile
(read/ write) random-access memory
(RAM) scratchpad area. This partitioning
of memory space imposes another con-
straint on the programmer-the program
must be partitioned into disjointed ROM
and RAM sections. Programming must
not attempt to write into ROM space nor
execute code in RAM space inadvertently.
Additionally, the stack area must be main-
tained in RAM. Observing the boundaries
of these memory areas is the programmer's
responsibility. This is in contrast to
minicomputer systems, where typically the
program is loaded from some mass -storage
peripheral device into memory composed
uniformly of nonvolatile core memory, in
which no such partitions exist.

The hardware -software interface is much
closer for the microcomputer.

Because microcomputer hardware systems
are custom-made for specific applications,
in contrast to the general nature of mini-
computer system hardware, the two
systems have major differences in the
integration of hardware and software. In
microcomputer systems, the hardware/
software interface is closely coupled, i.e.,
one is often directly traded off for the
other. In contrast, the fundamental
hardware is much more standardized with
the miniccmputer, so software is written to
run on that hardware without substantial
change.

In the micro's case, for example, a serial
input-output port to a terminal device
customarily may either be implemented in
software or done in hardware external to
the CPU (Central Processing Unit) by a
Universal Synchronous -Asynchronous
Receiver Transmitter (USART) chip. In a
mini system, such an interface is almost
always performed by a standardized serial
interface board. The engineer who im-
plements a microcomputer system must
understand such hardware/ software trade-
offs (Fig. 4). Thus, a microcomputer
programmer must be more familiar with
hardware than his minicomputer counter-
part.

Software development is harder in micro
systems because of the lack of peripherals
so useful in debugging and simulation.

Custom microcomputer systems are very
well suited for efficiently performing well-
defined relatively -fixed tasks. Unlike
minicomputers, they are not well suited for
general-purpose computation or software
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Table II
Software development tools are considerably more primitive for the micro. Of the applicable
tools listed here that are used extensively with minis, many are nonexistent or less powerful
with micros.

Text editor

Assembler

Macro assembler

For composing and modifying program source.

Translates assembly -language programs into machine code.

An assembler that permits the representation of commonly
appearing sequences of instructions with shorthand "macro"
names.

Cross -assembler An assembler that executes on one (host) computer, but
generates machine code for another (target) computer.

Compiler Translates a high -level -language program into a language
suitable for a particular computer.

Cross -compiler A compiler that executes on one (host) computer, but
generates code for another (target) computer.

Loader

Linking -loader

For loading an executable module from some peripheral
device into memory.

A loader that combines many relocatable object modules into
an executable module. It makes appropriate modifications to each
module for resolving changes in references between the modules.

Cross-reference An assembler output that lists all references made to
listing each label or other symbol in the program.

Debugger Permits the testing and verification of a program's operation
by observing intermediate results at various stages of execution.

Debugger -simulator A debugger that uses simulation to run on one machine
and facilitate the debugging of a program written to
run on another machine.

development. They generally lack three
important system development tools: 1) the
large secondary storage (disks, tape drives,
etc.) required to hold utility programs; 2)
language translators (assemblers and com-
pilers); and 3) high-speed hard -copy
devices (line printers, etc.), which are
desirable during program development,
but are rarely required in a micro-
processor's final configuration. These
facilities are required in any significant
software development effort. Thus,
microcomputer software is often
developed, simulated, and initially
debugged on alternate computer systems-
timeshared systems, minicomputer
systems, and specially -configured (typical-
ly more expensive) microcomputer -based
development systems.

In these development systems not based on
the micro, the language -translation
programs used to convert programs into
micro machine code are called "cross -
assemblers" and "cross -compilers." These

programs run on one machine, the larger
"host" development computer, and
produce code for the microcomputer or
"target" machine. Additionally, these
"host" machines often also have
"simulator -debuggers," programs that
simulate the running of the "target"
processor and help debug the machine code
by using the significant resources of the
"host" system. In contrast, most mini
software is developed on the mini itself.

The software tools (Table II) available to
help develop software for micros are con-
siderably more primitive than those
available for minicomputer software
development. The text -editing systems
available for micros are considerably less
powerful. Many micros lack the availabili-
ty of macro -assemblers and linking loader
facilities. Also, few high -level -language
processors generate code for micros. In
fact, many micros have no compiled high-
level languages at all (but this is rapidly

changing). Many manufacturers only
provide cross -compilers which must be run
on "host" development computer systems
and have no resident versions that run on
the micro itself. Resident software is,
however, becoming more common as
language processors and text editors can be
stored on a single chip. The most popular
high-level language in the micro world at
present is BASIC, an interpretive
language: -This is a reflection of the efficient
use of memory characteristic of inter-
pretive language implementations. Inter-
preters are, however, often not acceptable
in real-time applications because they ex-
ecute programs slowly, so assembly
language still dominates the programming
of micros.

Conclusions
A large number of contributing factors
makes programming microcomputers
different from programming minicom-
puters. The relatively limited hardware
facilities of the micro requires software to
perform functions normally available in
hardware on the mini. The lack of efficient
high-level languages for the micro makes
assembly -language programming
dominate micro applications, whereas
high-level languages dominate mini
applications. The limited instruction set of
the micro relative to the mini makes
assembly -language programming more
tedious and complex on the micro. The
typical area of application of micros gives
these systems higher cost sensitivity than
typical mini applications. This leads to
extensive custom hardware in micros and
also to an increased degree of interaction
between hardware and software design not
found in typical mini systems. The software
tools available for developing software for
the micro are appreciably different and less
powerful, requiring the programmer to
develop different implementation
methodologies. Thus, aside from the
obvious similarities of the primary func-
tion of the software, developing software
for the micro and the mini can be ap-
preciably different activities.
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FLECS: a structured programming language
for minicomputers

T. M. Stiller

This article is not intended as a tutorial on
the subject of structured programming, as
several adequate texts on that subject
already exist (for example, see Ref. 1). Our
discussion will be limited to a few general
concepts of structured design, a specific
language facility to support them, and
some examples of the "structured ap-
proach" to software development.

We have chosen FLECS (FORTRAN
Language with Extended Control
Structures) as the illustrative vehicle
because it is in the public domain, has
already been adapted to several computers
in use within RCA, and can be readily
adapted to almost any computer for which
a FORTRAN compiler is available. While
FORTRAN is not the most desirable
language in which to develop software, it is
relatively powerful, reasonably efficient,
and almost universally available for mini -
and larger computing systems.

What is FLECS?
FLECS is a programming language that
was developed by Terry Beyer at the
University of Oregon; it consists of all the
statement types supported by any
particular FORTRAN compiler plus a
dozen additional control statements. The
added statement types produce an
organizational facility that complements
the program development process, rather
than increases the number of details requir-
ing attention; they do not, however, restrict

STRUCTURED STATEMENT

CONTROL PHRASE

KEYWORD SPECIFICATION

IF (X.GE.Y)

The FLECS language-FORTRAN plus some added
features-makes programs easier to read, write, and modify.

the programmer from using any special
features of the base language. Used proper-
ly, these control statements produce a
program with a logical structure that can
be readily distinguished from the details of
its implementation. Programs written in
this composite language are passed
through a FLECS preprocessor, which
produces: I) an intermediate file in which
the control structures have been converted
to acceptable FORTRAN equivalents; and
2) an indented source listing for documen-
tation purposes. The intermediate file is
then compiled in the normal manner to
produce an executable program.
Additional details of this process may be
found in the FLECS User's Manual.'

What is a structured
statement?
A structured statement is a compound
statement that consists of two parts: a
control phrase and its scope. The scope of a
structured statement consists of one or
more statements which change the state of
the program's working storage, com-
municate with peripheral devices, perform
function or subroutine calls, etc., and in
that context, may be considered the "active
element" of the statement. The control
phrase of a structured statement defines the
conditions under which its scope is to be
executed. The control phrase is also com-
posed of two elements: a keyword, which
specifies the nature of the control, and a
specification, which identifies the control

SCOPE

Z = SORT (X -Y)

Fig. la
Logical IF is always written as one line; specification is within
parentheses. Compare with DO statement in Fig. lb.

parameters. These terms are illustrated in
Fig. 1, where we analyze the two structured
statements native to FORTRAN: the
logical IF and the DO.

FORTRAN's structured statements have a
number of inconsistencies.

Although the examples of Figs. la and I b
are both structured statements in the sense
we have defined them, there are several
annoying inconsistencies between them.
First, the scope of the logical IF is limited
to exactly one simple statement, but the
scope of the DO may contain more than
one statement. Second, the specification of
the logical IF is enclosed in parentheses,
but the DO specification is not. Finally, the
specification of the DO statement requires
an ancillary clerical detail, that of inventing
a statement number to signal the end of its
scope. This last point is more bothersome
than the others, since it introduces a chore
that has nothing whatever to do with the
programming task at hand.

In contrast to this, FLECS provides a uni-
form format for all structured statements.

First, the scope of a FLECS structured
statement may consist of a single simple
statement or any number of statements,
simple or structured, terminated by a FIN
statement. Second, the specification of a
control phrase is always enclosed in
parentheses. Third, and most important,
the need for statement numbers as

KEYWORD SPECIFICATION

DO 100 J = I.N

AMA) = A(L,K) + BIL,J1'C(J,K)

BIL,J) = 0.

100 CONTINUE

) CONTROL PHRASE

SCOPE

Fig. lb
DO statement takes many lines; specification is not written within
parentheses; programmer mast invent statement number to
signal end of statements scope.

Structured statements In FORTRAN have a number of inconsistencies.
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destinations for GO TO statements or
terminations for DO loops can be com-
pletely replaced by the use of the ap-
propriate structured statements. Finally, as
a matter of convenience to the program-
mer, a structured statement whose scope
consists of a single simple statement may be
combined with its control phrase on a
single line. All of the examples shown in
Fig. 2 are valid FLECS structured
statements.

Why are structured
statements important?
Structured statements are important in
software development because they com-
plement a technique commonly used when
transforming the statement of a physical
problem into a computer program. Even

IF (X.GT.Y)

Z = SORT (X -Y)

Y= Y2
iFIN

Fig. 2a
IF statement with multi -line scope. (If con-
trol phrase is a single statement, entire
structured statement can be written on one
line.)

DO (I = 1,N) A(J,K) = I3(.1,1)*C11,K)

Fig. 2b
DO statement with a single -line scope. Note
that statement number for termination of
loop is not needed.

DO (I = 1,N)

A(J,K) = 61.1,11C(1,K)

IF (J. EQ. I)

LfD(I) = E31.1,11

IN

F I N

Fig. 2c
Nested multi -line structured statement.
Note indented structure. FIN statements,
rather than "invented" statement numbers,
terminate loops.

FLECS has a uniform format for all struc-
tured statements: they may consist of either
a single statement (Fig. 2b) or a number of
statements (Figs. 2a and 2c) ending with a
FIN statement; specifications are always
within parentheses; and statement numbers
are not needed for termination of DO loops.

WHEN (2) S

ELSE S2

Carry-OutAction

To Carry -Out -Action S

( DO (/) S

NOTE:
Place a RETURN, STOP, or
CALL EXIT statement ahead of
of the first TO statement.

NOTE:
OTHERWISE can be used as
a catchall condition or expres-
sion in CONDITIONAL and
SELECT statements.

LEGEND:
L'=
S=

=

Logical expression
StatementIsi
Expression
DO specification

the most complex piece of computer
software consists of little more than se-
quences of statements to perform some
specific actions and the decision -making
logic to determine the conditions under
which those actions should be performed.
The structured statement, with its concept
of control phrase and scope, provides a
natural methodology for decomposing a
physical problem into a series of
programming steps. On the other hand, the
rather limited structured statements
available in FORTRAN do very little to
support this methodology.

IF s

CONDITIONAL
(21) St
(12) S2

it S
n

FALSE

*Will
FALSE

REPEAT UNTIL (C) S

I

What types of structured
statements are available?
The types of structured statements sup-
ported by FLECS divide rather naturally
into two categories: decision structures and
looping structures. Decision structures
may be further subdivided into skip -action,
alternative -action, and select -action types.
The looping structures are subdivided on
the basis of the number of times the loop is
executed: a fixed number of times, a
variable number of times (including none),
or a variable number of times (but at least

UNLESS (.t) S

SELECT (r I

lei) Si
(c2) S2

. .

(5) S5
FIN

FALSE

4111111 I
FALSE

REPEAT WHILE It)S UNTIL S

Fig. 3
All the structured statements used in FLECS, in programming and flowchart form. IF,
UNLESS, WHEN/ELSE, CONDITIONAL, SELECT, REPEAT UNTIL, REPEAT WHILE,
UNTIL, and WHILE can cover all programming possibilities.
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once). Fig. 3, which has been reproduced
from the FLECS User's Manual, sum-
marizes the control structure forms and
illustrates both the programming format
and the flowchart equivalent for each form.

While the structural statement forms of
Fig. 3 seem to be rather complete, we
frequently encounter a deficiency in the
looping structures-the inability to escape
from a loop at a point other than its
beginning or end. In general, this situation
can be resolved by employing a combina-
tion of looping and skip -action statements;
however, the requirement for such a struc-
ture arose frequently enough that a more
direct approach was indicated and we
added the LOOP/ EXIT structure of Fig. 4
to the FLECS language. Note that this
structure is not inconsistent with struc-
tured programming philosphy, since the
next statement to be executed upon exit
from the loop is the statement that follows
the loop structure.

What other features
does FLECS provide?

Besides clarifying and enhancing the con-
cepts of structured statements, FLECS also
provides the programmer with a powerful
procedural capability.

A procedure is nothing more than a group
of statements, simple or structured, which
the programmer wishes to have executed as
a unit. A procedure is similar to a sub-
routine or function in that it may be
invoked at more than one point in the
program. However, it is unlike a sub-
routine or function subprogram in that a
procedure is defined as part of the calling
program. As a result, a procedure neither

LOOP

EXITIF (C1)

 EXITUNLESS K2)

S3

 FIN

Fig. 4
To escape from a loop at a point other than
its beginning or end, use this LOOP EXIT
structured statement. This statement is not
absolutely necessary, but avoids indirect
solutions when an escape is needed.

What do FLECS users say?

Said one engineer, "Not only can I write and debug programs faster in
FLECS, but six or eight months later I can still understand how they work."

A programmer said that he "had written special -purpose -language com-
pilers in FLECS that he would never have attempted in FORTRAN." Since
there was no other high-level language on the minicomputer he was using,
he pointed out that what once had been a hybrid system requiring support
from a large mainframe was new completely self-contained, with attendant
reductions in turn -around time and training time for users of the system.

Another programmer said, ". . . I think FLECS is hard to beat. . . . The
benefits include . . . programming ease, both initial programming and
modifications, top -down structure ability, much more readable programs,
English -language use for routine names and looping, and elimination of
contorted branching." She has used FLECS in data analysis, scheduling,
and moving data to and from different computer systems and databases.

requires nor allows communicaticn via
passed parameter lists, but rather must test
and modify program variables directly.

FLECS works well in the "top -down"
programming approach.

With respect to structured programming,
the FLECS procedural capability has a real
advantage because a procedure may be
invoked at a point in the program prior to
its definition and the procedure's name
may be as long as sixty-three characters. To
attach proper significance to these points,
observe first that the liberal naming con-
vention permits the programmer to choose
a name that is somewhat descriptive of the
task which the procedure is to perform, and
second that the decision to perform a task
can be made without immediate regard for
the details of how the task is to be carried
out. This facility leads one rather naturally
to the so-called top -down approach to
software development, in which one
attempts to decompose a problem into a
small number of relatively independent
steps. The process is then repeated for each
of the initial steps until the complete details
of the solution have been specified. While it
is rare that a single attempt at this process
yields a workable solution, it is generally
far more successful than the so-called
bottom -up approach, in which one
attempts to specify the handling of the
bottom -level details first and then collect
those processes into successively larger
units until the program is complete.

Tom Stiller, a Fellow of RCA Laboratories,
has worked with the non -numeric aspects of
computing for the last 14 years-work rang-
ing from the development of function -
evaluation subroutines and general -service
programs up to multiprogramming
ope,ating systems and simulation of new
computers prior to their manufacture.
Cortact him at:
Systems Research Laboratory
RCA Laboratories
Princeton, N.J.
Ext. 3181
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481-- Fig. 5
In the game of LIFE, each cell's "life" and
"death" depend on its surrounding
neighbors. A cell with the company of at
least two but no more than three cells will
survive; otherwise it will die of loneliness or
overcrowding. An unoccupied cell can
become populated only if it has exactly
three neighbors. The progression of LIFE
shown here was produced by the initial
conditions given in the FLECS program
listed in Fig. 6.

How about some examples
of this structured technique?
To give some substance to the concepts we
have been discussing, let us examine a
program to play John Horton Conway's
game of LIFE.' The "playing surface"
consists of a rectangular array of cells.
Each cell, with the exception of those on
the border, has eight neighboring cells, as
shown in Fig. 5. The game begins by
specifying a configuration of "populated"
cells. Each generation is formed from the
previous one according to the following
rules:

I) If a cell is occupied, its occupant will
survive if it has the company of at least
two but no more than three neighbors;
otherwise it dies of loneliness or over-
crowding.
2) If a cell is unoccupied, it will become
populated if it has exactly three
neighbors; otherwise it remains unoc-
cupied.

If we augment these rules with some
conventions regarding board size, and a
method of specifying initial population and
duration of game, we have enough infor-
mation to specify a program to play the
game. To be explicit, let us make the
following assumptions:

1) The game is played on a 24 x 24 -cell
board.
2) The duration of the game is specified
by typing the number of generations to
be traced.
3) The program terminates when the
end of the input dataset is sensed.
4) The initial population is specified by
typing the row numbers and column
numbers of the occupied cells.
5) The initial population list is

terminated by entering row and column
coordinates of zero.

6) A row or column number outside
the range 1-24 (other than 0,0) results in
an error message.

Fig. 6 is a reproduction of the FLECS
indented source listing of an implementa-
tion of the above specifications. This
particular implementation is a result of one
pass through the top -down structured ap-
proach outlined above. While the program
is neither particularly efficient in its use of
working storage nor elegant in execution
detail, it was designed and written, es-
sentially as shown, from the top down; it
did execute as expected the first time; the
structure of the program is clearly visible;
and the impact of a proposed change, say
to the COUNT -NEIGHBORS procedure,
can be readily predicted.

What does all this
mean to me?

In the two years that FLECS has been in
use within RCA Laboratories, we have
seen both programmers and engineers
produce more reliable software in less time
than had been required with standard
FORTRAN programming techniques.
(See the box on the previous page.) In
addition, as those programmers and
engineers became more familiar with struc-
tured programming techniques, their
programs began to exhibit a clear-cut
distinction between logic design and im-
plementation detail. This is certainly an
advantage for the engineer who must
modify an existing program, the engineer
who must get a new application running
correctly as quickly as possible, and for
RCA, as the productivity of its engineers is
increased.
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Fig. 6 -IN.
Indented source listing of FLECS "LIFE"
program shows some of the advantages of
using FLECS. The lack of programmer -
supplied statement numbers and "continue"
statements is immediately obvious. Note the
English -language names for loops, the easi-
ly discernible overall structure (at top) that
comes from top -down programming, in-
dented structure showing nested loops, and
cross-reference table.
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00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
oorn
00032
00033

00034
00035
00036
00037
00038
00039
00040
00041
00042

C
C
C

C
C
C

C
C
C

INTEGER ROW,COLUMN,MOVE.MOVES.DISPLY(24),X,BLANK
1, BORN,DIED,POP
LOGICALA1 BOARD(24.24),BIRTH(24.24).DEATH(24,24).E0F,ERROR
DATA X /'X'/, BLANK /' '1

ARI'HMETIC STATEMENT FUNCTION TO SIMPLIFY ROW/COLUMN TEST

LOGICAL VALID
VALTD(I)=I.GT.O.AND.I

MAIN _PROGRAM-__

OOP
. SET -UP -BOARD
. GET -GAME -REQUEST
...EXITIF(E0F)
. PLAY -GAME
...FIN
CALL EXIT

FOR rentki;

progtaro
sttucture.LT.25

at a gance

1000 FORMAT(T10.'LOCATION NOT ON BOARD',2I5)
1010 FORMAT(T30,' INCOMPLETE GAME DEFINITION.')
1020 FORIAT(T30,'
1030 FORMAT(T30.'
1040 FORMAT(T30. I.23A2,A1, I )

1050 FORMAT(.(',///T40,'INITIAL POPULATION:',I4,///////)
1060 FORMAT('1',///T45,'GENERATION

1, T45,'BIRTHS '.I4,/
2, T45,'DEATHS '.I4,/
3, T45,'POPULATION '.14,////)

1070 FORMAT('( ALL DIED OUT IN GENERATION:'I3)

00043
00044
07045
00046 C
00047 C
00048 C
00049 C
C0050
cum
00052
00053
000i4 C
00055 C
00056 C
00057 C
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068 10
00069
00070

00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084

00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097

TO SET -UP -BOARD
DO(COLUMN=1,24)
. DO(ROW=1,24)

. BOARD(ROW.COLUMN)=.FALSE.

. BIRTH(ROW,COLUMN)=.FALSE.

. DEATH(ROW,COLUMN)=.FALSE.
 .FIN

FIN

metsi tegj statertlellt
needed

TO GET -GAME -REQUEST
. ERROR=.FALSE.
. EOF=.TRUE.

AN END -OF -FILE CONDITION WILL
LEAVE VARIABLE "EOF" SET .TRUE.

READ(5,K,END=10) MOVES
POP=0
LOOP

ERROR=.TRUE.

. AN END -OF -FILE CONDITION WILL
. . LEAVE VARIABLE "ERROR" SET .TRUE.

. READ(5,K,END=10) ROW.COLUMN

. ERROR=.FALSE.

...EXITIF(ROW.E0.0.AND.COLUMN.EQ.0)

. WHEN(VALID(ROW).AND.VALID(COLUMN))

. . BOARD(ROW.COLUMN)=.TRUE.

. . POP=P0P+1
..FIN

. ELSE WRITE(6.1000) ROW.COLUMN
..FIN

. EOF=.FALSE.
CONTINUE

%
...FIN OenVag
. IF(ERROR) WRITE(6.1010)

. -AAUF.0 - tOTO
PLAY-GAMEt 1C:4°
DISPLAY -BOARD
WHILE(MOVE.LT.MOVES)

MOVE=MOVE+1
COMPUTE -NEXT -GENERATION
POPULATE -NEXT -GENERATION
WHEN(POP.GT.0) DISPLAY -BOARD
ELSE
. WRITE(6,1070) MOVE
. MOVE=MOVES
...FIN

FIN

names

TO CBORNOMPUTE-NEXT-GENERATION
°

odetItS led 13°9
.

. DIED=0 0V4
neS

DZICOLUMN=1.24) ____......---"------- S.h

:

"""=" OARDEIGHBORS

C.

. . . W EN(BOARD(ROW.COLUMN))
. . . I DEATH(ROW,COLUMN)=NBORS.LT.2.0R.NBORS.GT.3

FIN
. . . ;ISE BIRTH(ROW,COLUMN)=NBORS.EQ.3

;.-...j....i.ig

IN

...FIN

00098 TO POPULATE -NEXT -GENERATION
00099 . DO(COLUMN=1,24)
00100 . . DO(ROW=1.24)
00101 . . . WHEN(BOARD(ROW,COLUMN))

00102 IF(DEATH(ROW.COLUMN))
00103 DEATH(ROW.COLUMN)=.FOLSE.
00104 DIED=DIED+1
00105 POP=POP-1
0010. BOARD(ROW,COLUMN)=.FALSE.
0010i .FIN
00108 ...FIN
00109 ELSE
00110 . IF(BIRTH(ROW,COLUMN))
00111 BIRTH(ROW.COLUMN)=.FALSE.
00112 BORN=BORN+1
00113 POP=P0P+1
00114 BOARD(ROW.COLUMN)=.TRUE.
00115 .FIN
00116 .FIN
00117 .FIN
00118 .FIN

tl00119 ..I

00120
00121 C
00122 C
00123 C
.0124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00115
001.4
00137
00138 C
00139 C
00140 C
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155 C
00156 C
00157 C
00158
00159
00160
00161
00162
00163
00164
00165

TO COUNT -NEIGHBORS

TEST FOR TOP

SELECT (ROW)
. (1)

. . IS=1

. . IE=2
...FIN
(24)

IS=23
. IE=24
-FEN

(OTHERWISE)
. IS=ROW-1
. IE=IS+2
...FIN

OR BOTTOM ROW

TEST FOR COLUMN ON LEFT OR RIGHT EDGE

SELECT (COLUMN)
. (1)

. JS=1

. jE=2
FIN

(24)
. JS=23
. JE=24
...FIN
(OTHERWISE)

. . JS=COLUMN-1

. . JE=JS.I.2
FIN

FIN

DO NOT COUNT OCCUPANT AS NEIGHBOR

WHEN(BOARD(ROW.COLUMN)) NBORS=-1
ELSE NBORS=0
DO(J=JS,JE)
. DO(I=15,1E)
. . IF(BOARD(I,J)) NBORS=NBORS.1.1

FIN
.FIN

.PIN

00166 TO DISPLAY -BOARD
00167 WHEN(MOVE.E0.0) WRITE(6,1050) POP

00169
ELSE WRITE(6.1060) MOVE.BORN.DIED.POP
WRITE(6.1020)

00170 DO(ROW:1,24)
00171 . DO(COLUMN=1.24)
00172 . WMEN(BOARD(ROW.COLUMN)) DISPLY(COLUMN)=X
00173 . ELSE DISPLY(COLUMN)=BLANK

FIN.00174
00175
00176

WHEN(MOD(ROW.5).EQ.0) WRITE(6,1030) DISPLY

00177
ELSE WRITE(6,1040) DISPLY

...FIN VenCe

00180 END

WRITE(6.1020) teie00179 .FIN COSS-.
10,1e

PROCEDURE CROSS-REFERENCE TABLE

00085 COMPUTE -NEXT -GENERATION
00076

00120 COUNT -NEIGHBORS
00090

00166 DISPLAY -BOARD
00073 00078

00043 GET -GAME -REQUEST
00015

00071 PLAY -GAME
00017

00098 POPULATE -'TEXT -GENERATION
00077

00034 SET -UP -BOARD
00014

(FLECS VERSION 22.44)
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-th@ p©{1,Voff the job

Type -by -mouth system aids handicapped student
P. B. Pierson

Ed. Note: The hobby article feature in the RCA Engineer reports on
ways that members of RCA's technical community apply their
professional talents and training to off -the -job pursuits. The
articles published thus far have explored projects which hobbyists
have undertaken mainly for the pleasure involved in developing an
idea or gadget.

In this issue, we look at a project developed fora different reason-
a need to help a courageous quadriplegic tackle the rigors of a
college curriculum. Preparing the required assignments at a
university is enough of a task for most people, but consider the
added burden of not being able to translate your thoughts through
the physical act of writing. The author, Paul Pierson, through
personal dedication and the skills of his profession, plus the
generosity of others, answered that need and in the process gained
new insight into the relationship of technology and human
communications.

-F.J.S.

Andrew (Drew) Batavia, my wife's cousin, was left paralyzed
from the neck down in 1973 as a result of an auto accident
while a counselor at summer camp. He completed high
school through the use of a special motorized wheelchair,.
which he controlled by puffing and sucking on a tube. He
typed his homework assignments with a mouth -stick
clenched between his teeth. This required that the
typewriter be positioned directly in front of him, leaving no
room for a book stand. He could not read and write at the
same time, presenting a serious impediment to academic
pursuits.

An idea for a solution
I hoped to help him with this problem by building a type -by -
mouth device-a computer printer interface which could
interpret a puff -suck code and convert that information into
ASCII code for printing. The air tube could be located near
his mouth, allowing him to both type and turn pages on a
bookstand with a mouth stick. This capability to read and
write simultaneously would be necessary in college, which

Reprint RE -23-6-24
Final manuscript received April 21, 1978

Hew do you simultaneously read and write
when you've lost the use of your limbs?
This type -by -mouth device using modern
tecnnology was developed to aid a
ha-.dicapped person in just such a
predicament.

he hac the courage to face within just two years of the
accident.

Help n funding the project
Devices which performed such an interface were very
expen 3 ve at the time, as were electrically driven printers. I

planned to provide my design, fabrication, test, and integra-
tion time but lacked the personal resources to buy a suitable
printer or the materials for the interface.

After requests to many companies for a donation of a
printing terminal, I got a positive response. General Electric
at Wayiesboro, Va., agreed to donate a Term Net 300
printer, plus the use of its time-share computer system for
Drew to store and retrieve his college notes. The printer
came with a cassette tape unit and was worth $5,500. I was
impressed with the generosity and helpfulness of all those
at General Electric. That helpfulness continued long after
presentation of the gift. Material costs for my interface unit
were paid by my wife's parents. All I had to provide was time,
knowhow, and dedication.

The first design
The fuictional specification for my interface unit (which I
called PJFF-A-TYPE) went through two revisions to resolve
Drew's operational difficulties and incorporate his
recommendations.

I set up an alphabet matrix as shown in Fig. 1 and identified
each character with a light emitting diode (LED). Only one
LED would be lit at any time and a sequence of puffs and
sucks Nould select the character to be typed and finally
activate the printer. The Puff -Suck Sequence worked as
follows:

First Puff: Light moves right, by internal clock, for
durat on of Puff.

First S Jck: Light moves up, by internal clock, for duration
of Suck.

Second Puff: If spot at shift position, shift (and hold) and
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Fig. 1
Layout of the first model of the PUFF -A -TYPE interface unit.
Air tube coniector is at the bottom center of the panel.
Puff/suck threshold adjustment controls are located to the
left of the HI/L0 switch to permit a change in spot speed.
Spot movement depended on duration of puff or suck action,
requiring strenuous respiratory effort.

Fig. 2 'V
Internal view of the PUFF -A -TYPE unit. At left is the logic
circuitry for decoding puff/suck commands. At right is the
front panel with its string of LEDs.

Fig. 3 -0 -
Logic -circuit elements of the basic PUFF -A -TYPE design.
Horizontal and vertical counters determine spot position and
present ASCII code to the UART for transmission to the
printer. These counters are controlled by decoding puff or
suck sequences detected by the pressure transducer. The
second design replaced the puff/suck detectors and
counters with up, down, right, and left switches and added an
80 -character memory with 32 -character display between the
horizontal/vertical counters and the UART. Detected puff
and suck commands loaded the selected characters of the
desired case into memory. Special codes were provided for
editing and finally for transfer from memory to printer. In the
third design, code -converting programmable read-only
memories were added between the position counters and the
display memory, providing a more efficient panel layout.

LED COLUMN SELECT

116

DISPLAY CLOCK

COLUMN
DECODER

TO

HORIZONTAL

COUNT (DATA)

PJFF
LED

SEND PULSE

4

1.1-

1S I
ENABLE UART

RS232
DRIVER

r
PUFF PUFF SHIFT

DETECTOR COMER 2M2 CONTRO
UC /LC

2
(6ATA/-t171-

PRESSURE
iR DELAY DATA

SUCK

DETECTOR

SUCK

COUNTER

RESET

UART

TRANSDUCER
2ND

OPERATOR MOUTH
1ST CLOCK

PRESSURE 'SUCK
LED

VERTICAL
COUNTDISPLAY

1ST PUFF - MOVE RIGHT CLOCK 2

1ST SUCK  MOVE UP ROW
DISPLAY DECODER

2ND PUFF - PRINT (OR SHIFT)

2ND SUCK - HOME

8 HOME
CLOCK GENERATOR

CLOCK

UART
CLOCK

I4
LED ROW
SELECT

then Home Spot (to lower left). Otherwise print character
of spot position, then Home Spot. Reset Puff/Suck count.

Second Suck: Home Spot, Reset Puff/Suck count.

Fig. 2 shows the innards of the first design and Fig. 3 is block
diagram of the designed hardware.

The first test

After working Saturdays and several evenings per week for
approximately six months, the unit was ready for Drew. The
printer had been presented by General Electric two months
before this big event, and the whole family gathered with
hopeful anticipation. He tried the unit, complimented me,
and finally told me his real feelings: "I can't use it!" Several
significant problems had to be resolved for the system to be
of any value.

First, the line of text being typed by the printer is not v,sible
to a seated operator. Drew would have to rely entirely on
memory for words and letters already typed as he com-
posed his text: an extremely difficult task! Second, it was
difficult to successfully "land" on the desired character with
the moving spot, and it was frustrating and time consuming
to have to reset all the way to the home position after an

error. Third, the air pressure required to activate the
puff/suck detector was exhausting to his weak respiratory
system.

The second design
To solve the first problem, we considered the use of mirrors,
placing the unit directly below Drew, or the electronic
display of characters printed. The latter offered the
potential of soft -copy editing, prior to final hard -copy
printing. The problem of cost then recurred. Alphanumeric
displays which were multi -character and readable at a
distance were very expensive.

After my success with General Electric, I decided again to
request equipment donations.

Burroughs Corporation, Plainfield, N.J., agreed to donate a
32 -character SELF -SCAN® display panel with upper and
lower case alphabetics, full ASCII compatible character set,
and memory. Similarly Endicott Coil Co., Inc., Binghamton,
N.Y., provided the high -voltage power supply required to
drive the SELF -SCAN panel My project was destined for
success through the generosity of a concerned electronics
industry!
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My second problem, simplifying the character selection
process, was solved by redesigning the spot -positioning
circuits to provide up, down, right, left, and diagonal spot -
position control. The cumbersome "Puff -suck" code was
replaced by a mouth -operated joystick, provided by my car-
pooling co-worker, James Tyson. Jim's hobby is metal-
work (he is an electrical engineer), and he has a respectable
machine shop, complete with milling machine, lathe, drill -
press, etc., in his garage. He designed and built an effective
mouth switch which detected up, down, right, left, and all
diagonals, as well as puff and suck commands.

A standard pipe mouthpiece was fitted to the mechanism,
providing a safe device which could be gripped easily in the
mouth. Spot positioning was achieved by deflecting the
joystick in the direction of the desired character.

Once located, a puff entered the upper-case character, and
a suck entered the lower-case character. The spot would
then be moved to the next desired character. Characters
entered were displayed on the SELF -SCAN panel before
transmission to the printer. I added an 80 -character
memory which could be stepped forward or backward to
permit editing of a full line before printing. Characters
entered in error were, therefore, not catastrophic to an
already handicapped typing effort.

Paul Pierson is responsible for the development of video tape
recorders and laser beam recorders which generate high -quality
images on film using laser beams. The images are derived from
outputs of sensors on aircraft and satellites, such as the RF-4

reconnaissance aircraft and the Landsat satellite. His experience in
data processing, electro-mechanical systems, and man/machine
interfacing equipped him well for undertaking the unusual project
described in this article.
Contact him at:
Recording Systems
Government Communications Systems
Camden, N.J.
Ext. 2830

Fig. 4

The second design of the PUFF -A -TYPE unit incorporated a 32 -
character display panel to provide an editing capability. Mouth -
operated joystick gave a greater degree of flexibility in operation.

The third problem, respiratory exhaustion, was also solved
by the switch design. Pressure sensing was performed
through a sensitive diaphragm which interrupted LED light
beams.

Fig. 4 shows the second generation system and Fig. 5 is a
closeup view of the mouth -operated joystick. These im-
provements seemed to work well and, at first, pleased Drew.
But after a few months, the equipment fell into disuse. He
hesitated several months before telling me of his new
frustrations, for fear of offending me. Even though the
device permitted simultaneous reading and writing, he
found typing was actually slower than by pecking with the
mouth -stick. So for nearly eight months, the system sat
unused.

Jim Tyson, a co-worker of the author, designed and built the
mouth -operated switch for the PUFF -A -TYPE in his home machine
shop.
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Fig. 5
Mouth -operated joystick detects motion in all directions as well as
puff/suck commands. Three basic components make up the snit:
pipe mouthpiece, puff/detector (circular component at right inside
the unit), and an up, down, left, right, diagonal switch matrix (at left
of detector).

The third design

To speed up the typing process, Drew and I discussed how
the display character matrix could be rearranged. For
greater efficiency, the Home position should be in the
center of the matrix. Character positions should be
determined by their probability of occurrence in English
text (this information is available in some dictionaries).
Characters and operations most likely to occur (e.g., T, E,
and space) should be clustered near the center of the panel,
surrounded by characters of decreasingly lower probability
of occurence. After entry of each character, the spot should
return to the home position at the center of the panel.

The character layout selected is shown in Fig. 6. Home
position is space (SP) or erase (NUL). The only changes
required were the display panel artwork and the addition of
code -converting programmable read only memories. This
layout offers several advantages. First, spot motion time is
minimized. Second, the same physical motions are
repeated identically every time a given character is

repeated. This aids in memorization, and reduces thought
time required to begin moving toward the next character.
Drew enjoys the improvement and presently types with
relative ease, at about 13 words per minute.

Reflections
One frustrating aspect of a home electrical engineering
development project is that technology moves faster than a
project can be completed. During the course of my design,
microcomputer technology grew from interesting concept
to wide -spread application. My entire system of three circuit
boards could now be replaced by a small microcomputer
card, and the capabilities of such a card would far outrun my

SON SIX
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Fig. 6
Character layout arrived at for the third design. The letters having a
higher probability of occurrence are located around the Home
position (NUL/SP). Lower row of LEDs indicates the area of
operational control where the operator controls spot speed, print
command editing, etc., by puffs and sucks. The unit has the
capability of computer interface through complete ASCII character
subset (note extra characters at upper left and right).

design. I was often tempted to introduce new circuit
technologies, but gave in to the least -time -to -implement
approach of using standard MSI circuits for modifications.

Another interesting problem I found was the hesitancy of
my end user (Drew) to discuss problems he found with the
unit. He was not familiar with the iterative process most
development projects require. This problem was increased
somewhat, I guess, by the fact that I was not receiving any
monetary compensation for my efforts. Criticism was
considered by the family to be equivalent to complaints
about a purchased gift. They did not, at first, understand
that I wanted to hear Drew's complaints and his suggestions
for improvements. After removal of this block to com-
munications, progress became much easier.

Future plans
Before designing an improved system using present
technology capabilities, I am waiting for several develop-
ment thresholds in word processing and voice recognition
technologies. I would like to build a hands-off, voice -
activated typing system with full document editing capabili-
ty and multiple document storage. Various candidate
components exist today, but I would like to see more
sophisticated software packages, and higher -capacity,
lower -cost storage media before I begin this advanced
system project.

Despite communication problems, long completion
schedules, and losing ground to advancing tecnnology, I
found this project one of the most rewarding endeavors of
my personal and professional career.
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EUMPATE1111The computer today
is as basic
to our way of life
as automobiles,
televisions,
banking,
or medicine.
In fact,
these basic products
and services
are better today
because of
the computer.

P. M. RussolC. C. Wang

Since ENIAC, the first electronic digital computer in 1946,
computer technology has evolved at a phenomenal rate.
ENIAC was a roomfull of vacuum tubes and cost hundreds
of thousands of dollars. It could only operate for a few hours
a day, at millisecond speed, with hardwired programming.
Today, only three decades later, an LSI (large scale
integration) microcomputer on a square of semiconductor
material, a fraction of an inch on each side, costs only a few
dollars and can operate continuously from a battery at
microsecond speed. Additionally, this same semiconductor
chip may contain several kilobytes of stored -program
memory.

Since von Neumann introduced the concept of a modern
stored -program computer in 1945,' computer technology
has evolved through three generations; see Fig. 1. First
generation machines were based on vacuum -tube logic
while the emerging memory technologies-mercury delay
lines, Williams tubes, magnetic drums, and magnetic
cores-were under development. For second generation
systems, magnetic core finally began to dominate the
storage -medium market whereas the transistor displaced
the vacuum tube in the central processing unit. It was
during this period that magnetic tapes and disks were
introduced as competing technologies for secondary
storage. Eventually, rapidly advancing disk technology
provided the technical base to spur the development of
third -generation systems. In these systems, integrated
circuits were used as cost-effective substitutes for the
discrete transistor in the implementation of control logic.

FIRST GENERATION

VACUUM TUBE LOGIC,
WILLIAMS TUBE,

DE_AY LINE,
MAGNETIC DRUM,
MAGNETIC CORE.

SECOND GENERATION

TRANSISTOR LOGIC,

MAGNETIC CORE
MEMORY.

THIRD GENERATION

INTEGRATED CIRCUIT
LOGIC, CORE MEMORY.

LSI LOGIC,
SEMICONDUCTOR

MEMORY.

I

NHL VON NEUMANN
-1945-REPORT

-1946 - ENIAC

-1948- BIPOLAR TRANSISTOR

-1950- MICROPROGRAMMING

-1951 -MAGNETIC CORE

ALL TRANSISTOR
-1955- COMPUTER

FORTRAN-I956 -DISK MEMORY

-1960- INTEGRATED CIRCUIT

PDP5

OPERATING -1963- (MINICOMPUTER)
SYSTEM --1964 - IBM 360
OS/360

MITMULTICS_1968
TIME SHARING

-1969- SEMICONDUCTOR
MEMORY

-1971 - INTEL 4004
MICROPROCESSOR

IEEE
TRANSACTIONS -1975
ON SOFTWARE

ENGINEERING

-1978 -64 k RAM
256 k CCD
256k BUBBLES
30k TRANSISTOR LOGIC

Fig. 1
Evolution of computer technology. Three generations of
phenomenal growth starting with vonNeumann's concept of stored
program control and presently pushing the state of the art in large
scale integration (LSI) and semiconductor memories.
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While third generation mainframes were reaching the
marketplace, the cost -reduced minicomputer emerged as
an effective alternative for some purposes. The subsequent
introduction of semiconductor memory (1969), which has
rapidly displaced core memory, and the explosive growth in
LSI techno,ogy (Fig. 2) have provided the impetus for this
next generation of minicomputer and microcomputer
systems. The ongoing microprocessor revolution
represents just one aspect of this new era in computer
technology.

The concept of a stored program, and hence software, is
fundamental to the evolution of computer technology.
Software technology, itself, has undergone several
evolutionary stages of development. In the first stage,
assembler and high level language compilers, for

a.
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languages such as FORTRAN and COBOL, were developed
to facilitate the preparation of software programs. As
computers became both mcre complex and more costly,
operating system software was developed to manage and
improve the use of system resources. Time sharing systems
grew out of these developments to provide computing
power to any location having telephone service, further
extending the commercial and industrial utilization of
computers.

The phenomenal growth in computer applications has
stimulated the evolution of software technology. Complex
data base management systems are becoming more and
more important in centralizing and organizing the
voluminous data generated oy the workings of a modern
society. As software programs become more complex, the
developmeit and management of these software systems
can no lorger be viewed as routine. For these complex
systems, the development costs associated with software
have already overshadowed the cost of the hardware (Fig.
3). Structured programming and software engineering are
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Software costs presently represert close to 80% of the total system
development costs. This trend is expected to continue, with
software development costs approaching 90%. 49



new emerging disciplines that are providing the necessary
tools to address these problems.

With the continuing evolution of both hardware and
software technologies, the development of new computer
applications will undoubtedly become evermore
widespread. The total spectrum of computer applications
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can never be covered exhaustively. The following sections
present overviews of mainframe computer, minicomputer,
and microp-ocessor applications. These three natural
applications groupings will, hopefully, bring into focus both
the pervasiveness of computers in modern society, and the
fundamental importance of software to these applications.

Mainframe computers

Large mainframe computers characterized by the IBM 370
and the CDC 7000 series remain ubiquitous. Over 50,000
IBM 370s have already been shipped. Over the two decades,
from 1958 to 1978, the performance of large mainframe
computers has improved by a factor of 250, Fig. 4; whereas
the improvement in the performance/price ratio has im-
proved by a factor of 200. The change in the total system
price has been minimal. With system costs staying at the
millions of dollars level, the applications of costly main-
frame computers are still restricted to the traditional high
performance or high throughput categories. Examples of
these categories are overviewed below.

Scientific computations
Mainframe computers have been used extensively in the
scientific community for computationally complex
applications. In the physical sciences, computer
simulations have proved to be powerful tools and have
provided invaluable insight into many hitherto unexplained
phenomena. In mathematics, computers are now es-
tablished as effective alternatives to the classical approach
to theorem proving; the proof that any map can be colored
with a minimum of four colors is a good example. In other
areas, meteorologists have been using the most powerful
computers available to model, simulate, and predict the
changes in our atmospheric environment. Economists have
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More "bang/buck." Mainframe computer performance has im-
proved by a factor of 250, while performance/price has improved by
200.

modeled the various elements in our economic system and
employed d gital computers to predict their interactions.

Computer -aided design
A natural application of mainframe computers is as an aid to
engineering design. The most vivid example of this use is in
the design of integrated circuits. On a tiny silicon chip,
hundreds of thousands of elements have to be inter-
connected perfectly before the design can be produced.
The conventional breadboard method is neither economic
nor adequate to prototype the design. Computer simulation
has been established as the most dependable tool for
integrated circuit designers.2.3.8

Computers are indispensable in generating both complex
artwork 4 7 and voluminous test patterns' in the manufac-
turing and testing of these devices. Besides integrated
circuits, computer -aided design has also been used ex-
tensively in color television receiver design,' picture tube
design, hybrid circuit designm and printed circuit board
design.1"2 This list is by no means complete.

Electrical Engineers are not the only beneficiaries of
computer aided design. Other disciplines of engineering
have also used computers extensively. The digital -
computer -based finite -element method represents a

powerful ceneral-purpose tool for structural design.
Numerous computer programs are available for analyzing
heat transfer and fluid mechanics systems. Buildings,
automobiles, ships, aircraft and highways, just to mention a
few, are all being designed with the help of computers.

Data processing
The invention of modern digital computers was motivated
by the basic need for computation. However, during their
evolutioi, computers have become instrumental in the
processing of voluminous data generated by the business
activities of modern society. Most businesses now have
payroll, accounting, record -keeping, warehousing, billing
and warranty of products routinely handled by com-
puters. 13 14 Banks, insurance companies, and various
government agencies have to depend on computers to keep
track of the bank accounts, insurance policies, income tax,
and social security accounts. Airlines have to depend on
computers for flight information and reservations. Even the
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U.S. Congress is in the process cf computerizing the
voluminous documents associated with legislative
activities.

Besides routine business operations, computers have also
proved to be valuable in marketing studies and business
planning where they generate the management information
needed for business decisions.15-'8

Time-sharing systems
In recent years, time sharing has matured as an effective
technology for distributing centralized computing power to
a host of remote locations. A termina connected through
the telephone line to the central computer provides the user
with the capability to interact with the system directly and
instantly. People can access computing power, the cen-

01011001 11010100

Minicomputers

The introduction of minicomputers by Digital Equipment
Corporation in 1963* signified a change in the evolution of
computer development. Instead of stressing higher perfor-
mance, minicomputers featured an crder of magnitude
reduction in system cost. This drastic cost reduction made
computing power readily available for many new
applications and spurred the distributed -processing
revolution. Several broad categories of minicomputer
applications are overviewed below.

Real-time control of manufacturing
and testing
With minicomputers, real-time control of manufacturng
and testing becomes economically feasible. Minicomputers
are penetrating the industrial market at phenomenal rates.
Automatic testing is commonplace.2° Factory automation
has become a reality.21 Cigarettes, automobiles, color films,
color television receivers, color picture tubes,'9 electronic
assembly,7° jet engine accessories,20 aircraft parts,2°
semiconductor devices, 22'23 and endless varieties of other
products have all been manufactured and tested under the
control of digital computers.

Telecommunications
Telecommunications is becoming an increasingly large
market for minicomputer systems. Expensive hardwired
controllers are being replaced by less costly but more
flexible mini -based systems to perform switching and
multiplexing functions.24-26 One such example is the RCA
Telex system.24 Minicomputers are becoming the essential
elements in the implementation of complex data com-
munication networks.

'PDP-5 with 1k of 12 -bit words at $27,000 The popular PDP-8 with 4k or 12 -bit words was
introduced in 1965 at $18,000.

tralized data base, and commonly used program libraries
from their offices or their homes, or anywhere a terminal
and telephone are available Improvements in the ready
accessibility of computing power undoubtedly have made
possible many new applications which were unrealizable
before.

...no erd in sight

Several years ago, the demise of large centralized com-
puters was predicted, based on the ever -improving price -
to -performance ratio of minizomputer systems. The large
and increasing base of installed mainframes contradicts
these predictions. in fact, the success of major new market
entries, such as Ahmdahl and Itel, is predicated on con-
tinued growth in the use of large central computers.

Data acquisition and analysis
Minicomputers are fundamental to laboratory automation
applications where they collect and analyze laboratory
experimental data (e.g., microwave measurements"). They
are also used extensively in medical instrumentation. The
amazing CAT (computer -assisted tomography) body
scanner is one of the many maginative applications of
minicomputers in this area.28

Scientific computations and data processing
Cost advantages o' minicomputer systems are attracting
some traditional mainframe users, whose tasks can be
partitioned, and who do not require large centralized data
bases. The less demanding scientific and data processing
applications can be satisfied easily with a minicomputer.
The growth in these application areas has prompted the
introduction of time sharing, high-level languages, and
data -base management systems to the minicomputer
world.

Besides their direct use in t -e manufacturing process,
minicomputers are now used in the manufacturing plant to
gather data for procuction scheduling, material inventory,
and quality control:9 Minis are also used in supermarkets
and retail stores to collect transaction data to provide up-to-
date business information.

Multiprocessor systems
A recent trend in the development of minicomputer systems
has been to structure many dedicated minis into powerful
distributed systems. In these st-uctures, a mini is no longer
viewed as a single stand-alore system, but rather as a
building block in a complex system. This approach will
certainly be used in many applications which have
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previously been limited by the performance of minicom-
puters. The NBC switching central29 and the building -
management systems implemented both at the Disney
World Complex and at the Wells Fargo Bank3°.31 are just a
few such examples.

0101100111 010100 Microcomputers

The applications of microprocessors break down into three
broad categories-industrial, commercial, and consumer.

By industrial applications, we mean those that employ
microprocessors in the manufacturing process of the
industry under consideration. These include process
control, testing, data acquisition, numerical control,
instrumentation, and robotics.

By commercial applications, we mean those used in
providing new or improved services and/or ways of doing
business. These include communications (data and
telephony), point -of -sale systems, intelligent cash
registers, gasoline pumps and weighing scales, and
business uses (word processing, accounting, etc.).

By consumer applications we mean those that either add
features or improve the cost/performance of existing
consumer products (ignition control in automobiles.
timing control in microwave ovens, etc.), or those that
give rise to entirely new classes of consumer products
(personal computers, programmable video games, etc.).

In the following three sections, we will briefly overview
industrial, commercial, and consumer applications of
microprocessors, and provide references to permit the
interested reader to pursue the subjects in depth. One
measure of the extent of the ongoing microprocessor
application revolution is the February 1978 issue of the IEEE
Proceedings, which was dedicated to that very subject.

Industrial applications
Microprocessors are having a major impact on industrial
applications, including the areas of testing, control,
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Typical microprocessor -based test systems include most of the
functions shown here.

More units, lower cost

With annual worldwide shipments of minicomputers ap-
proaching 100,000 units and with ever more cost effective
systems being introduced in an increasingly competitive
market, the uses and applications of minicomputers are
assured of continued and rapid growth.

instrumentation, data acquisition, numerical machine con-
trol, and even robotics. In all these areas, equipments
offering expanded functions, better human interfaces,
improved reliability, and lower cost are emerging.

Automatic test systems which can be used to automatically
identify failures of components or subsystems are becom-
ing increasingly important from both reliability and ease of
maintenance points of view. Fig. 5 shows a typical test
system where isolation has been provided between the
subsystem under test and the signal sources and measure-
ment devices. Note that this system is rather complete;
however not every test system will contain all the indicated
subsystems.

Automatic test systems have historically been used in large
military applications and in the automatic testing of com-
plex parts, where expensive test fixtures could be
economically justified. The advent of microprocessors has
opened many avenues for low cost dedicated testers which
can now economically justify the automated and more
complete testing of low cost/complexity subsystems, down
to the component level.

Current economic factors are tending to accelerate the
trend towards more fully automated testers.32-35 Ever-
increasing labor costs, corresponding decreases in the
market price of hardware, demands for constantly improved
product reliability and safety all dictate increased automa-
tion. Additionally, it is becoming increasingly desirable to
catch failures early in the assembly process, since the value
added (cost to troubleshoot and repair) goes up ex -
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Real-time computer -based control systems, in general, sample
critical system or process outputs as a basis for developing system
control inputs.
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ponentially with the number of components in the sub-
system under test.

The process control and data acquisit on areas differ 'rom
testing in that they must operate in real time.36-43 This
implies that the microcomputer must have time responses
rapid enough to accommodate the process control or data
acquisition system under consideration. Whether we are
talking about controlling an automotive ignition system or a
complex chemical plant, the system must sample critical
system outputs and generate suitable system inputs often
enough to achieve the desired level of control. Fig. 6
presents a block diagram of general computer -based
process control system.

A typical data acquisition system is shown in Fig. 7. Such a
system can be stand-alone, can gather data for later
analysis, or it may operate in real-time, in which case it is
simply a subsystem of the general system described it Fig.
6. In any case, a microprocessor can De dedicated to data
acquisition alone. A dedicated microprocessor can perform
statistical analysis on the fly, format data for more efficient
off-line processing, and perform periodic self -checking and
auto -calibration. However, its main advantage may, in fact,
be the flexibility resulting from distributed software control.
Simple software changes can alter the sampling rate,
specify new data formats, or alter the self -checking
algorithms. This results in better human engineered out-
puts, modularity in hardware (improved maintenance) and
slower system obsolescence.

The impact microprocessors are having on instrumentation
is just beginning to be felt.44.45,46 From simply adding new
features to instruments (digital read outs, averaging, etc.) to
auto -calibration, instruments will never be the same again.

A major factor in the increasing sophistication and flexibili-
ty of instruments has been the development of the IEEE
Standard 488 Instrumentation Bus pioneered by Hewlett-
Packard. This standard interface permits the simple inter-
connection of complex instruments under the supervision
of single or multiple masters.

Computerized instrumentation, interconnection of equip-
ment manufactured by different vendors, standardized
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Microprocessor -based data acquisition systems offer several ad-
vantages, including real-time analysis, data formatting, auto
calibration, and off-line processing. Probabiy the major advantage
is distributed software control.

control/data exchange protocols, all are now made simpler
via this now accepted structure. Reference 47 is an
excellent aricle detailing the IEEE Standard 488 Instrumen-
tation Bus and its uses.

Other more specialized industrial applications of
microprocessors abound. Frcm energy subsystem control,
to motor speed control, to nJmerical machine control, to
robotics, all are increasingly applying microprocessors to
obtain new levels of performance at economically viable
cost levels. References 48 through 50, along with the
Proceedings of the IECI '77 and '78, contain a wealth of
information on these subjects.

Commercial applicaticns
Commercial applications of microprocessors include their
uses in communications (telephony and data), in medical
applications, and in business applications (from word
processing to intelligent supermarket weighing devices).

The most significant emerging trend in communications is
the switch from predominantly analog (voice) traffic to a
more balarced mix betwee- voice and data. By 1985,
communications traffic will be evenly divided between
voice and data. This will most certainly spur the develop-
ment of all -digital terrestrial channels. This, in turn, will
greatly accelerate the use of distributed intelligence within
the network. Intelligent multiplexers, concentrators,
PBAXs, modems, etc., incorporating the ubiquitous micro-
processor, will emerge. More and more, computers will take
over the traditional role of operators. As all -digital networks
emerge, there will be an increasing need for efficient
techniques for transmitting voice in digital form.

A simple example can it ustrate the power of the
microprocessor in a data -communications subsystem, and
the literature abounds with many more examples. Fig. 8
outlines a simple microprocessor -based multiplexer. Since
all the low speed channels are asynchronous, it would be
very difficult to implement the multiplexer without the aid of
a microprocessor. By using microprocessor control,
software can sample the com-mnications channels rapidly
enough to synchronize the random low speed inputs into a
well-defined high speed outp...t data stream. References 51
through 53 give additional information on data communica-
tion applications; references 54 through 56 discuss
telephony, system monitorin: and other communications
applications of microprocessors.
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Fig. 8
The microprocessor -based multiplexer is a good example of the
power of the microprocessor in data communications applications.
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Microprocessors are being increasingly used in medical
applications. Because of the technical and legal complex-
ities of using new technologies in diagnosing, monitoring or
treating humans, microprocessors today are being widely
used on an experimental basis; their routine application is
definitely only at the embryonic stage of development,
however. Applications span the areas of cardiology,
monitoring, clinical analysis, and prosthetics. Reference 57
describes a microprocessor -based blood gas analyzer;
reference 58 covers a microprocessor -based monitor for
EKG and blood pressure; reference 59 overviews the entire
subject and contains a bibliography of 129 papers.
Reference 60 provides additional insight into
microprocessor uses in the biological laboratory.

A lot of R & D effort is being expended in the general area
called "word processing" which spans applications ranging
from intelligent typewriters, low -end distributed processing
systems, through supermarket checkout terminals, and
intelligent CRTs.

One interesting example is the new intelligent typewriter
from the Oyx Division of Exxon Enterprises, Inc. It contains
three microprocessors, a Z80 for word processing and
master control, and a pair of F8s for drive motor control of
the carriage and the rotary print head. It offers ultra -high
print head positioning to permit automatic erase
backspace. In addition, it incorporates intelligent features
such as the ability to store and recall stock phrases, to
center a line of type, and to automatically line up decimal
points in columns of numbers. And all this for $1390.

Other examples abound-NCR, Financial Data Science
Inc., and MSI Data Corporation have all developed teller
terminals sporting microprocessors. Most of these also
have telephone interfaces for interaction with centralized
data bases. Yet another example is the IBM 5100 desk top
computer." References 61 through 63 overview other
commercial applications including the intelligent CRT.

Other commercial applications of microprocessors include
their use in security systems, environmental control
systems, and intelligent weighing devices. In the latter, for
example, the store clerk need only type in "price per pound"
or "price per quarter -pound," and the price will be com-
puted automatically and displayed. In addition, a receipt
may be printed if desired. Other examples include taxi
meters, automated gasoline dispensing pumps, and traffic -
light controllers. In the latter, microprocessors combined
with sensors, can adaptively vary light sequences to
maximize traffic throughput, while minimizing waiting time
for individual drivers.

Consumer applications

Microprocessors and associated LSI technology are having
a major impact on consumer products65.66 From simply
adding new features to standard products to making
possible entirely new product categories, the consumer
computer revolution is just beginning.

Low-cost microcomputers are already changing a host of
consumer products. From exercise and coffee machines to
electric ranges, from sewing machines to microwave ovens,
a whole new generation of intelligent consumer products is
emerging. Most home appliances typically need only
relatively simple controls. For that reason 4 -bit devices, with
their low costs, are being shipped by the millions. Various
RAM and ROM combinations and varipus technologies are
usually available so that a specific control function can be
implemented at minimal cost. In the TI TMS 1000 series, for
example, p -channel MOS (pMOS), n -channel MOS
(nMOS), and complementary MOS (CMOS) parts are
available with 256 or 512 bits of RAM and 8k or 16k bits of
ROM. Since ROM sizes always come in blocks, sufficient
capacity is often available to allow for a fair degree of self -
testing and diagnostic capability.

The products discussed above were predominantly ex-
amples where electronics have replaced mechanical con-
trols in consumer applications. More interesting, however,
are the host of new consumer products spawned by the
ongoing revolution in LSI, many of which will be discussed
below.

Nonvideo microcomputer -based games are just beginning
to appear, but already most of the major toy manufacturers
are getting heavily involved.67.68 Judging from action
games-such as Parker Brothers "Code Name: Sector", a
one player submarine chase game, and Milton Bradley's
"Battleship", a missile -firing two -player naval warfare
game, and more cerebral games such as Mattel Inc.'s
"Football"-toys will never be the same again. A more
complex example is the Chess Challenger from Fidelity
Electronics.

The video game revolution began in the early 1970s on two
fronts. Atari pioneered the development of video arcade
games with the 1972 introduction of "Pong." That same
year, Magnavox introduced "Odyssey," a consumer ball -
and -paddle game based on circuitry patented by Sanders
Associates.

More recently, the consumer market has begun to evolve
away from dedicated games and towards microprocessor -
based programmable games.69 Examples of such products
include the Fairchild VES, the Atari VCS, and RCA Studio II.

Automotive applications of microprocessors will have a
major impact on the car of the future.7° From "under -the -
hood" functions such as engine control (spark timing,n fuel
metering, etc.) and braking72 to "dashboard" functions (e.g.,
digital display of MPG), new levels of performance,
economy, and information display will be achieved."

Other consumer applications of microprocessors are under
development. From simple systems which permit central
control of up to 256 ac outlets (COBY 1, $400), to intelligent
thermostats and personal computers (Radio Shack TRS-80,
Commodore PET, Umtech Videobrain, etc.),7475 these
products are emerging although it is not yet clear which
categories will truly become volume products.
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Conclusions

From the single-minded drive to enhance our com-
putational capability, computers have evolved into an
integral pal o' our society. Their penetration is so deep and
wide that we can no longer divorce ourselves from it. In
1977, computer hardware represented almost 30% of the
$67 billion U.S. electronics market and the percentage is
continually growing (projected to be 50% by 1981). It has
become one of the major driving forces of electronic
technology and an indispensible contributor to the
economy.

Future developments in computer technology will evclve in
two different directions: both device technology and system
architecture will be pushed to new frontiers by emphasis on
ever -higher performance. Josephson junctions, LSI, and
III -V compound integrated circuits, which promise sub-
nanosecord cycle times and multiprocessor systems which
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increase tf-roughput through parallel processing, are just a
few examples of current efforts. These advancener ts will
undoubtedly help computers reach many applications that
are not feasible today.

Major deelopments in computer technology are also
occurring in the other direction-lower cost. Each year, the
complexity of LSI circuits doubles and cost per -function is
reduced by 25%. Mass-procuced computers costing a few
dollars or less will be used i many applications that were
not economically feasible before. The dramatic imoact of
microprocessors on the consumer market is just one such
example. Others abound. Microcomputer shipments are
already exceeding ten million per year, and this volume is
growing Exponentially. The computer will becorre ever
more deeply rooted in our scciety, and its pervasiveness will
become a symbol of modem life.
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Interpreter control program
simplifies automatic testing

Interpreter software makes this printed -circuit tester easy to
use and modify.

The COSMAC Automatic Inspection
System (CAIS), shown in Fig. I, was
developed for the production -line
automated testing of a populated printed -
circuit (PC) board. It is a go/ no-go tester
that can be operated by a relatively un-
skilled person. CAIS uses easy -to -service
modular electronics and application -
oriented software to check a PC board
consisting of passive components. Several
of these systems have been on line at our tv
manufacturing plant for over a year. They
have proven to be reliable as well as
extremely effective in reducing the reject
escape rate for the assembly tested.

Simple, low-cost tester
The inspection system had to provide a
simple method for specifying the PC board
tests.

This requirement led to the use of an
interpreter and relatively simple test
directives, Fig. 2. Interpreters can make
one computer appear to be an entirely
different computer to the user by accepting
user -problem -oriented instructions and

Fig. 1
Hardware for the CAIS (COSMAC
Automatic Inspection System) consists of
the COSMAC Development System (top),
contact assembly and printed -circuit board
under test (bottom left), and printer. Several
systems have been in operation for over a
year.
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Fig. 2
Test directives for each test fit into sixteen bytes of memory. Test engineers find them
powerful and easy to use. Meanings of individual directives are explained in text.

converting them to the necessary machine -
level instructions. Thus, the simplicity re-
quirement was met by using an interpreter
program which executes the PC board
tests, or test directives, directly.

Total system hardware costs had to be low
(about $5K) and test instructions had to be
easy to modify.

A microprocessor (ALP) was chosen for the
controller function because it fulfilled the
cost requirements and still offered the
advantages of flexibility. Computations
required during testing are well within the
capabilities of most available µFs so a
more powerful CPU was not justified. In
particular, the total board handling time is
about nine seconds. Of that nine seconds,
only one second is controller execution
time; and of that second about 250 ms is
lost to relay contact bounce settling (2
ms test), and about 250 ms is given up to
capacitor charging prior to dc measure-
ments (anywhere between I 2 ms and 8
ms test). Therefore, only about I / 2 second
out of 9 seconds, or 5.6% of the total board
handling time, could be improved by a
faster CPU. Or, stating it differently, even
if CPU execution time were zero, it would
still take 8.5 seconds to check the board.

RCA's COSMAC 1802µP' was picked for
its strong I/O architecture and familiarity
among members of the project. Since the
projected number of testers was low, the
COSMAC Development System (CDS)
was selected as the fundamental building

block. The CDS was used as a base for an
earlier developmental system, so many of
the interface designs could be applied
directly to this tester application. Fig. 3 is a
system block diagram.

CAIS consists of the COSMAC Develop-
ment System, a set of custom interfaces, a
control panel, a printer, and an air -
actuated contact assembly, mounted in a
standard rack. Custom interfaces include a
12 -bit A D converter, relay matrix, signal
multiplexer, 20 -column printer interface,
2k erasable programmable read-only
memory (EPROM), control panel, and
signal package containing a stable dc
source, a pulse generator and detector, and
an ac generator and phase -measurement
circuit. Details on measurement techniques
and testing capacity are given in the
Appendix. More specifics on the hardware
system may be found in Ref. 4.

Automatic "power -on -start" was another
requirement.

The "power -on -start" circuit alleviates any
need for the system operator to disturb the
main control panel by issuing a system
reset pulse followed by a run program
signal, immediately after rack power is
applied.

The memory requirements are relatively
small.

Fig. 4 depicts the major software sections.
The interpreter control program occupies
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Fig. 3
Test system consists of COSMAC development system, signal circuitry, relay matrix, and
contact assembly (shown contacting printed -circuit board under test).

less than I .5k bytes of a 2k -byte EPROM
memory card. Test directives completely
occupy a 2k -byte EPROM memory card.
This corresponds to 128 separate tests at 16
bytes/ test. Thus, the interpreter program
and the test instructions are completely
distinct, both in address space (separate
memory pages) and physical space

(separate EPROM cards). The system re-
quires about thirty bytes of RAM for
buffer and stack use.

How the system works

The control program has five different
operating modes that are selected from the
control panel (Fig. 5). In normal
production -line use, the tester operates in
the automatic mode, running through the
test sequence and printing output only
after failed tests. The other modes-
manual step, manual repeat, single -test
step, and single -test repeat-are used for
system testing and diagnosis, and are
activated by switches on the control panel.

To use the tester, the operator first verifies
that the mode switches are set to automatic
and applies rack power. The power -on -
start circuit then causes the control
program to come up running. A PC board
is placed on the contact assembly, the
assembly closed, and the "start test" button
depressed.

The control program jumps to the
automatic -mode routine and executes the
first test directive by calling the test sub-
routine. This subroutine uses a register
pointer to step through the current test
directive: to close relays corresponding to
the desired test points, energize the
stimulus required, hold the stimulus for the
number of delay units specified, and
measure the response. This reading is

compared to the high and low response
limits and a PASS/ FAIL signal is returned
to the calling program. If a FAIL signal is
returned, the FAIL lamp is turned on, a
specified message is printed, and the con-
tact assembly opened. The test operator
places the printed reject information with
the PC board and directs it to a repair
person. If a PASS signal is returned, the
control program simply moves to the next
test directive. The control -program inter-
preter continues this basic two-step process
of fetching a test directive and executing it
until all the PC board tests are performed.
At the conclusion of the automatic test
sequence, if no tests have failed, the PASS
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Operation modes and
test subroutines

Test directives

Buffer and stack

Fig. 4
Memory map shows the software needed for the tester system. At top, most of a 2k EPROM is
used to contain the interpreter control program. In it, separate 256 -byte "micropages" hold
the entrance routine; automatic mode routine; manual/single modes; test subroutine (2
micropages); and the hex/ASCII, relay -select, time -delay, and print subroutines. Second 2k
EPROM is used up completely by 128 test directives. System also uses 30 bytes of " k RAM
for print buffer and working stack.

COSMAC--- RC/1

r%  
RCA 1800

Fig. 5
Control panel has toggle switches (center) for selecting tes: mode, thumbwheel switches
(top right) for entering test numbers in non -automatic modes and status indicators (bottom
right).

lamp is turned on and the contact assembly
is opened.

How the interpreter
simplifies testing
The control -program interpreter written for
CA IS lets the user work with a simplified set
of instructions specifically oriented to the
tester.

The test engineer specifying the tests does
not have to know or understand COS MAC

machine -level instructions. As far as the
test engineers are concerned, they are
programming a machine that executes test
directives, which are sixteen -byte in-
structions that enable one to have complete
control over the selection of test
parameters.

The interpretive approach has proven to be
extremely effective in implementing the
control program for CATS. This effect-
iveness has been demonstrated by vie ease
with which test engineers using the system

How do users like CAIS?
The new CAIS Project has met all of
the goals that were outlined for this
important production improvement
projec' These goals were to develop
an improved test/inspection system
to allow fewer faulty subassemblies to
reach the final production stage, to
minimize operator subjective judge-
ment, to reduce production costs,
and to mprove the technical skills of
the support engineers by introducing
new technology into the factory.

The results are that the first system
was developed in time to evaluate the
preproduction subassemblies and
that three additional systems were
constructed with no hardware design
changes to meet the manufacturing
production schedule. This new
system using the COSMAC micro-
processor, will detect approximately
96% of all of the subassembly
problems. The escape factor for tests
that have been programmed into the
compLier PROM is approximately
0.1%. The production operator ex-
ercises minimum operational judge-
ment, but handles the production
flow into and out of the inspection
fixture.

The four computer -aided production
systems have saved over $100,000,
compared to the normal production
cost before their introduction. A se-
cond engineer has been assigned the
task of modifying the software test
directives, and the original project
engineer has assumed a larger
compLter-assisted ATE assignment.
Therefore, this project has success-
fully assisted in increasing the
technical skills available to our local
engineering function from the
Princeton Advanced Development
Groups assistance in this joint pro-
ject.

John Keith
Mgr., Test Engineering

Consumer Electronics Division
Bloomington, Ind.
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F Why use an interpreter?
Interpreters make programming easier for the system user. An interpreter is
a program that performs operations specified by a machine -like pseudo -
code by using a subroutine to translate the pseudo -code into machine
instructions and to execute them in turn for each pseudo -code instruction.
The interpreter performs in software the same function that the CPU
performs in hardware by simulating the fetch -execute hardware sequence.
This allows a programmer to work with a simplified set of instructions that
can be oriented toward his problem. Some of the advantages and
disadvantages of interpreter -program implementations compared to
machine -language programs are listed below.

Advantages:

Interpreter programs are more compact, because of the increased
functional power of each statement.

Time between program design and implementation is shorter, since
programming is done in a higher -level language.

Debugging is easier, because the interpreted machine can be reviewed at
any time by examining the memory contents of the operating machine.

Disadvantages:

More memory capacity is required, since the interpreter software must
remain in the machine during execution.

Functions implemented with an interpreter generally run slower than
those implemented in machine language, because the interpreter sub-
routines must be called and a fetch -execute cycle simulated for each
pseudo -code statement.

The interpreter itself must be designed, implemented, and debugged.

Interpreter programs have been designed to fulfill a variety of functions.
COSMAC microprocessor -based implementations include an interpreter
aimed at video games,5 and the control program described here. The
COSMAC 1802 microprocessor architecture is particularly well suited to
implementing interpretive languages. It facilitates various addressing
modes and subroutine calling schemes, and provides sixteen general-
purpose registers.

are able to generate the test profile, and
their complete confidence in and accep-
tance of the system.

Each test directive is completely specified
by 16 bytes of information residing in
EPROM memory.

Fig. 2 has indicated the variable names
associated with each byte. The test
directives enable the program to control
the selection of test points, type and
polarity of stimulus, high/ low response
limits, designation of a system self -test, and
the time delay between the application of
stimulus and the response measurement.
This method of specifying tests fulfills three
basic requirements. First, it is easy to

master. No special skill is required to write
the test directives other than a knowledge
of the unit being tested. Second, it is simple
to modify the test profile. Since the test
directives reside in a separate EPROM
memory, all that's required is the modifica-
tion and replacement of the directive
EPROM. Third, complete accurate
documentation on exactly which tests are
currently in the profile may be obtained
easily by using the system monitor to list
the EPROM.

What are the functions of the individual test -
directive fields?

This is how the variables shown in Fig. 2
are identified.

The specifier qualifies the test directive
according to bits set as follows:

Bit 0-Last test in sequence.
Bit I -First test after open/ continuity.
Bit 2-Skip this test directive.
Bit 3-System self -test.

(No bits set indicates that none of the above
apply.)

The stimulus parameter assigns a stimulus
corresponding to the byte indicated.

00-4.5 V through 50 fl
01-4.5 V through 100 fl
02-4.5 V through 1000 n
03-4.5 V through 10,000 n
04-4.5 V through 100,000 fl
05-4.5 V through 500,000 fl
16 -5.0 -kHz sine wave
27-Pulse

The test points receive the stimuli indicated
by the stimulus parameter. The first test -
point numbered receives the high -potential
connection, the second, the low potential.

The number of delay units sets the amount
of time that will expire between the
application of the stimulus and the
response measurement. Each unit equals
1/ 2 ms (128 ms max.).

The test number identifies a particular test
directive (01-FF).

The required response limits define the
region into which the A/ D reading must
fall for the test to pass. The high limit is the
maximum pass response, the low limit is
the minimum pass response.

The message consists of ASCII characters
that are to be printed when an out -of -limit
result takes place during automatic -mode
testing.

The high -limit fail character is the ASCII
character printed to indicate high -limit
failure, and the low -limit fail character is

the ASCII character printed to indicate
low -limit failure.

How do the test directives
work in a specific example?
Fig. 6 is a sample test directive that
demonstrates the implementation of a
specific PC board test. In it:

The specifier byte of '00' indicates that
test directive is normal, since none of the
qualifier bits are set.

60



Stimulus
parameter No of

I
Test points delay Response
et 42 un is high limit Printout message (ASCII code(

I I 1 T I

0 0 0 0 C 2 0 4 4 2 6 2 2 0 0 3 2 3 5 2 0 2 0 0 a 0 C

IYI
Specifier
byte

High
potential

Low
potential

Test Response
number low limit

I

High -limit -1 Low -limit
failure failure
(ASCII code) (ASCII code)

Fig. 6
Sample test directive with hexadecimal interpreter entries. Full explanation of codes is in
text, but basically, for this particular dc check, test system puts 4.5 V through 100 ohms into
a diode and measures voltage across diode. Reading must be between 3.14 and 3.49 V;
otherwise 'L' or 'H' (for "low" and "high" results) will be printed on output.

The stimulus parameter of '0 1' selects 4.5
V through 100 ft.

The test point #1 value of 'OC'16 places
the more positive side of the stimulus on
test point #1210 of the printed -circuit
board.

The test point #2 value of '28'16 places the
more negative side of the stimulus on test
point #4010 of the printed -circuit board.

The delay -unit value of '04' puts a 2 -ms
delay between stimulus application and
response measurement.

The test number of 4216 tells that the test
is number 6610 in sequence.

The required response high limit of 'C6*
gives 3.49 V dc as the highest pass
reading allowable. Voltages are
represented in hex code by converting
the analog voltage range of 0-4.5 V dc to
0-255 binary counts (00-FF16) in the
analog -to -digital converter. For exam-
ple, C616 = (C616/ FF16)4.5 =
(198 / 255)4.5 = 3.49 V.

The required response low limit of 'B2'
makes 3.14 V dc the lowest pass reading
allowable. Note that response measured
must fall between high limit (3.49 V dc)
and low limit (3.14 V dc) in order to pass.

The message code of '200312352020'
prints as "space CR 5 space space" if the
test fails.

The high -limit fail character of '08' prints
the character if the measured
response is above the high limit.

The low -limit fail character of 'OC' prints
the character 'L' if measured response is
below the low limit.

Conclusions
An interpreter control program has been
implemented for a COSMAC AP -based
printed -circuit -board tester. It allows tests
to be specified with instructions that are
oriented toward the problem. Test
directives, the instructions acted on by the
control program interpreter, are easily
written and their implementation is as
simple as programming an EPROM. In
addition, complete test documentation
may be obtained by listing the contents of
the test -directive EPROM.
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Appendix-
Measurement techniques
and system capacity
Resistance measurements are made using a
stable dc source by calculating the voltage
drop across a precision resistor ir series
with the unknown resistor. The magnitude

and polarity of the potential across diodes
is checked by applying a low -amplitude dc
current and measuring the response with
an A, D converter. Reactive components
are tested by either a fast pulse technique or
by calculating the amount of phase shift the
componert effects on a 5.0 -kHz sine wave.
All measurements are referenced to the
corresponding readings obtained from
known va,id PC boards. Variations of
these readings determine the limits stored
in the directive EPROM. A system self -
check is performed once each complete test
cycle to establish the integrity of each
stimulus source (dc, 5.0 -kHz sine wave,
and pulse). Capacity of the system is 128
tests/ 2k EPROM and 32 test points relay -
card pair. In our system, 128 tests and 64
test points were defined, requiring 2 relay -
card pairs.
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Why not do it in software?
L.A. SolomonID. Block

The advantages of choosing a micro-
processor -based system over designing
with standard ICs are, by now, well known.
One of the principal reasons is the reduc-
tion in parts count that can be realized in a
microprocessor system. All but the very
simplest systems consist of several ICs-
RAM, ROM, and I/O devices. A major
design consideration involves tradeoffs
between hardware and software, which
reflects itself in the ROM to I/O mixture.
The economics indicate that the more
functions handled in software, the less
expensive and more flexible the system will
be. Thus the best departure point for a
design is to try to do everything in software.
Then functions are relegated to hardware
as the speed/processing capability of the
CPU becomes taxed. The following ex-
amples illustrate the approaches for handl-
ing typical I/O functions by means of
software.

A classical system
Consider the simple system diagrammed in
Fig. 1-a simple input device, micro -

DISPLAY
a

MICRO
COMPUTER

0000
0000
0000
0000

KEYBOARD

Fig. 1
Starting point. This classical
system can be implemented
in varying combinations of
hardware and software.

SOFT WARE
CYCLE TIME
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One reason designers choose microprocessor -based
systems is the lower parts count. But by using the
microprocessor's software ability to advantage, parts count
can be lowered even further.

processor, and output device. The specific
functions have been purposely omitted. A
classical software control flowchart for
such a system is shown in Fig. 2. We see the
standard initialization procedure followed
by an input, processing and output
procedures, and a final loop back to repeat
the action again. Without knowing the
details of the hardware or software design
nor the specific application in mind, certain
predictions can be made about this system.

The software cycle time will affect the type
of input and output devices chosen.

First, let's consider the software cycle time,
the time to go completely through one loop
of the procedure. The cycle time is the sum
of the time spent in each portion of the
software, including input, processing, and
output. Since the program apparently
waits for an input, the time spent in the
input block is indeterminate. Thus the
system cycle time is indeterminate. This has
immediate impact on the selection of both
input and output devices used in the
system. The output device, for instance,
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AGAIN

PROVIDE OUTPUT TO
UPDATE

Fig. 2
Software cycle for our generalized system can be
divided into three parts-input, processing, and output.

must be capable of operating for prolonged
periods without processor attention.
Therefore, it must be a device that is self -
refreshing or contains a latch. It certainly
cannot be dynamic, since the simple
software structure shown thus far has no
provision for refreshing. As dynamically
refreshed displays have the potential for
lower cost, we should consider the static
requirement as a serious drawback to the
straightforward, simplistic approach.

Next, consider the input device. Perhaps it
presents data to the processor at an uneven
rate, which is most certainly true if the
entry device is human -operated. If a
keyboard is being serviced, for example,
the time between keystrokes can vary from
a few milliseconds to several seconds or
minutes. Yet, the processor must be fast
enough to respond to the fastest keystroke
rate. If each keystroke results in some
serious analysis on the part of the micro-
processor, the minimum time between
keystrokes might have to be lengthened. If
the microprocessor must additionally
activate some hard -copy device such as a
drum printer, several hundred milliseconds
might have to be dedicated to the output
processing block as well. In that case, we
might be designing the system such that the
operator would have to be "tuned " to the
system rather than the reverse. To compen-
sate for lack of time between keystrokes,
you could choose a microprocessor that
can "handle the job", i.e., one that goes
faster (but costs more). Another solution to
the time problem could be to design in an
"intelligent" keyboard controller or some
sort of buffering device to smooth out the
input rate. However, resorting to this
additional hardware may not be necessary.

There is a third case in which the simple
structured system doesn't work at all. If,
for instance, the input to the system was a
requirement for some lengthy output
report, then while the system was busily
processing the request, no new input could
be presented. Any input during that time
would be lost.
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System performance can be limited by
either hardware or software.

We now see that the system "specified" in
Fig. 2 is a "simple" one, but one with severe
limitations and pitfalls. The system will
inherently go from an I / 0 -bound block to
a processing -bound block and back to
being I/ 0 -bound. Also, since it makes no
attempt to level peak loads, this system will
waste the microprocessor's power. We will
next examine how to minimize wasted
processing time and level loads to a

manageable degree.

Hardware -software tradeoffs
The microprocessor system has to have
ROM, RAM, and CPU. By using them to a
greater capacity, other hardware can be
eliminated.

Let's take a closer look at the proposed
system and see what is involved in the
hardware. Fig. 3 has broken down the
initial diagram into smaller blocks. The
display now has some controlling circuitry,
as does the keyboard. These are shown
along with the indispensable elements of
any microprocessor system-ROM,
RAM, and CPU. The system must have
these, but must it have the controllers? Can
we perform the controller function by
marginally increasing the cost of some
other portion of the system? Perhaps!

The software approach distributes the
workload.

By doing these functions in software, we
may eliminate the controllers at the cost of
enlarging the system ROM. But, here's an
interesting fact in IC economics. Since
ROMs come in fixed increments, it is often
no more expensive to have a program that
is 1024 bytes long than one that is 527
bytes, even though one is almost twice as
long as the other. To take the software
approach, we will restructure the simple-
minded solution originally suggested and,
through workload distribution and con-
tinuous processing, obtain minimum
system hardware.

We will change our approach so that
instead of waiting for an input to take
place, we will simply look at the input
periodically. If no input is present at that
time, we will skip the input operation and
go on to see if something else remains to be
done. Refreshing a dynamic display, for
instance, always needs to be done, and so a
dynamic display meshes neatly with our
revised concept. After refresh, we will
again look for an input. If one should now

DISPLAY

CONTROLLER

ROM RAM CPU

CONTROLLER

KEYBOARD

NECESSARY

Fig. 3
System defined in smaller blocks leads
to the question "How much of this
hardware is necessary?" ROM, RAM,
and CPU are essential, but controllers
might be replaced by software.
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" L ATER'
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PROCESSING DATA
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1
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"QUICK"
COMPUTATION

OR DEFER
FOR "LATER"

1/N
COMPUTATION

1/N
COMPUTATION

Fig. 4
Balancing the load with software. System
decides whether to accept input, do computa-
tion, or refres display.

be pending, it will be accepted. Now we
must make a decision. If the input can be
readily handled, we will do so immediately.
If not, the input will be saved for later when
we have the time to handle it. Alternately,
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the processing associated with the
may be broken up into smaller
putational blocks interspersed

input
com-
with

refreshes of the display. These approaches
are flowcharted in Fig. 4.
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Fig. 5
Typical multiplexed display system.
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Fig. 7
Display information handled by hardware using MSI devices.

Handling a dynamic display
How do you divide the processor's time
between refreshing the display and doing
the rest of its processing load?

Fig. 5 shows a typical multiplexed display
system and Fig. 6 gives the details on the
display refresh rate. The minimum refresh
rate for any digit should be 100 Hz. This is
fast enough to prevent flicker under most
stationary display conditions. The actual
ON time of any digit is a compromise
between the intensity of the display and the
time remaining within the refresh period
( TR) for the processor to do some other
work. It is desirable to minimize the display
time ( To) so that a maximum of processing
time (Tr) is left for the rest of the processing
load.

It is customary to overdrive multiplexed
LED displays to increase their apparent
brightness. The extent to which you can do
this is a function of the duty cycle, To/ TR,
of the display. This technique is not
without its risks, however, for if the

DATA
BUS

CA30131

OUTPUT
PORT

DRIVERS

DIGIT I -17
DIGIT 2

DIGIT 3

DIGIT N

DISPLAY REFRESH,.
PERIOD TR

 DISPLAY FRESH RATE >100 Hz

 MINIMIZING N  TD WILL MAXIMIZE Tp
 T IS THE AVAILABLE PROCESSING TIME

Fig. 6
Display refresh rate affects both software and hardware. Refresh
rate must be fast enough to prevent flicker, but still allow time for
processor to do other work.

SPARE

OUTPUT
PORT 7 7 -SEGMENT BCD OR HEXADECIMAL

DIGIT DIGIT DIGIT DIGIT

SPARE

Fig. 8
Same display as Fig. 7, but handled by an output port and a
software look -up table.

program crashes or hangs up someplace
(because of a program bug, noise injected
into the system, component failure, etc.) it
is quite probable that a digit driver will be
incinerated. You should be aware of this
and take appropriate precautions,
particularly when debugging your system.

The segment information for a 7 -segment
display can be handled in either of two
ways. If the data is in BCD, a device such as
the CD4511, which contains a latch, BCD -
to -7 -segment decoder, and drivers, can be
used as shown in Fig. 7. A device such as
the 7541 provides a similar function for
hexadecimal displays.

Or, instead of doing the code conversion in
hardware, do it in software with a simple
look -up table.

With this software method, a less ex-
pensive, simple output port can be used
(Fig. 8) instead of the MSI devices above.
But, since I/O ports generally do not have
enough drive to handle LEDs directly, an

intermediate stage of buffering is

necessary, defeating the apparent cost-
effectiveness of this approach. No clear-cut
distinction appears here, since factors such
as the volume of the devices, cost of the I / 0
devices required by your processor, and
type of display chosen all enter the picture.

So far we have minimized output hardware
and smoothed out the processing flow by
multiplexing the input and display. Next,
let's take a closer look at the input block
and see what we find there.

Handling single -signal inputs
Software can even debounce switch inputs.

First, consider a basic switch circuit shown
in Fig. 9. We shall assume a CDP 1 802
microprocessor having a flag input; the
mechanical switch is shown attached
directly to that input. It could just as well
be a software -testable bit of an input
port-the principles to be discussed would
be the same. To signal the processor, a
change on the flag line from a logic 1 to

64



EFI

FINGER
PRESSURE

DESIRED SIGNAL
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Fig. 9
Switch inputs present a problem because of
switch bounce, which can be solved via
hardware or software techniques.

logic 0 level will be used. However, the
mechanical switches tend to bounce,
preventing a simplistic solution. The actual
signal presented to the microprocessor will
consist of three parts-an initial bounce, a
stable ON period, and a release bounce. A
program looking only for a simple 1 to 0 to
1 transition may sense many switch
closures because of the bounce noise.
While there are hardware solutions to this
problem, software techniques may prove
more cost-effective.

Fig. 10 is a flowchart of a subroutine to
debounce a mechanical switch. A test is
made on the input signal to test for a switch
closure. If none is found, a "switch down"
software flag is reset. This flag may be some
convenient bit in a CPU register or a bit in a
RAM status word. If the switch is down,
then the software will loop, waiting for the
button to be released. The wait is per-
formed to insure that the switch is not
"seen" again for the initial bounce period
Tao. Once the switch is released, the switch
is again interrogated until it reaches a
stable OFF condition. The software flag
indicating a "switch down" condition is set,
and the program returns to the caller.
While this program is easy to understand, it
is, like the earlier simple solutions, not
without its problems. For instance, the
processor again wastes valuable time. The
execution time for this subroutine is at least
TBD TBR and does, in fact, last as long as
the button is depressed. Thus it is obviously
not suitable for systems having dynamical-
ly refreshed displays. A further drawback,
from the human -engineering standpoint, is
that a response is made on the release of the
switch rather than on its depression, the
opposite of what one would normally
expect.

DEBOUNCE
DEPRESSION

HOLD UNTIL RELEASE
DEBOUNCE RELEASE

FLAG DENOTES BUTTON
WAS PUSHED

Fig. 10
Software debouncing subroutine tests to
see if switch has been depressed and then
later released. Method has drawbacks,
though: it gives "switch down" input only
upon release cf switch, also wastes valuable
time waiting.

Fig. 11 shows a flowchart for an improved
method that overcomes both of these
drawbacks. Here, the subroutine that looks
at the input signal remembers what that
signal was the last time it looked; it then
saves this information in a software flag we
will call the "down flag." The routine
operates as follows. If the button is now
down and was also down during the last
look, then the subroutine assumes that it is
seeing the same button depression seen
earlier. The subroutine then returns to the
caller and indicates no new activity. If the
button is not now down, but was during the
last look, the subroutine assumes that the
switch has been released, so it resets the
"down flag" and returns to the caller, again
indicating no new activity. (We are assum-
ing the processor is only interested in
switch depressions and not their duration.)
But, if the switch is down now and was not
down during the last look, this must be a
new depression. The switch must be
debounced, the "down flag" set, and a
message returned to the caller. Notice in
the flowchart that a second test was made
after the delay generated in the "busy
work" block. This is a debouncing tech-
nique that assures the switch has been in
the same state for two successive samples
before deciding on the true state of the
switch.

NO NEW
ACTIVITY
RETURN

ONLY IF S W CYCLE
TIME <Teo TBR

NOT SE TV DISPLAY
REFRESH

"BUSY
WORK"

NO LONGER PUSHED

(NEW BUTTON
CEPRESSION

RETURN

REQUISITE
BUSY WORK > Teo, TBR

S W CYCLE TIME < TON
OR
PROCESSOR ACKNOWLEDGES RECEIPT

Fig. 11
Improved debouncing subroutine checks to
see if switch is in same position as during
previous look.

( ENTRY

DOWN NOT
FLAG SET

SET

RESET
"DOWN FLAG"

( NO NEW
ACTIVITY
RETURN RETURN

REQUISITE
Teo< SW CYCLE TIME < ON OR
Teo <SW CYCLE TIME IF PROCESSOR

ACKNOWLEDGES BUTTON

SET FLAG

(NEW BUTTON)
',DEPRESSION

Fig. 12
Further Improved debouncing subroutine
has no tinewasting loops. For method to
work, cycle time must be greater than switch
bounce time, but less than switch "on" time.

Additional constraints can lead to a better
debouncing program.

This program is waiting (and therefore
wasting time) during the debounce period.
If some additional constraints are placed
on the software cycle time, however, the
program can be further optimized. If the
cycle time is greater than the bounce time
(Tan) but less than the switch ON time
( TON), then the flowchart can be simplified
to Fig. 12. Here, there are no time -wasting
loops, since switch bounce will effectively
not be seen within the given timing
restraints.
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Hardware for multiple -Input scanning
system. Fig. 14 gives software.
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(RETURN)

Fig. 14
Scanning subroutine looks for new switch
closures and reports them to the main
program by pushing the switch number onto
a stack and incrementing a counter. Main
program looks at counter to see if any new
switch closures have occurred; if so, it gets
switch number from stack and decrements
counter.

MARKIT

INC SOFTWARE DEC
STACK BYTE

COUNTER

MEMORY
BIT MAP
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STACK
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SW

POP (MAIN PROG.)

COL 0 CO, I COL 2 COL 3
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PROGRAM

Fig. 15
Auxiliary portions of scanning subroutine.
"Markit" portion of subroutine increments
stack counter; main program decrements it.
In example here, switches 1,4, and 2 have
been depressed and so are read into
memory as column inputs.

Scanning multiple inputs
A subroutine to handle four inputs by a
scanning technique can be realized with the
hardware of Fig. 13 and the flowchart of
Fig. 14. The software looks for new switch
closures and reports any to the main
program by pushing the switch number
onto a stack and incrementing a counter.
The main program will pop switch
numbers off the stack and decrement the
counter whenever the count is greater than
zero.

Let's take a close look at the flowchart and
the auxiliary functions for the subroutine
that is shown in Fig. 15. We will assume
that the timing constraints of Fig. 12 are
met by this subroutine also, so that Fig. 14
is an extension of the basic flowchart
previously developed. Upon entry into the
subroutine, the first switch column is
selected by outputting a 1 in bit position 0
of the data bus and examining the switch
associated with that position. If a new
depression is detected, the "down flag" is
set for that switch (in the memory bit map),
the column number is pushed onto the
stack, and the counter incremented. Next,
the column is shifted and, if more columns
remain to be scanned, the process is

repeated. No switch closure or no new
switch closure simply results in a column
shift and continuation. When all columns
have been scanned, the subroutine returns
to the main program, which detects if any
new switch closures have occurred by
seeing if the counter has a value greater
than zero. If so, the main program will
successively get a switch number from the
stack and decrement the counter until it
reaches zero.

A section of the flowchart has been
partitioned off and labeled "MARKIT," a
common routine that can be used for an
expanded keyboard scan routine discussed
in the next section. Before we leave this
section, notice that the approach taken
above lends itself well to a multi -processor
system in which one processor handles the
keyboard scanning and puts key numbers
in a stack accessible to other processors as
well.

Keyboard scanning
technique
The multiple -input techniques already
described can be expanded into keyboard -
reading software.

Consider the arrangement shown in Fig. 16
for scanning a I6 -key matrix. It is a simple

extension of the arrangement just dis-
cussed. For a microprocessor having 4
input flag lines, such as the CDP1802, the
horizontal lines can go directly to the flag
inputs as shown. For other micro-
processors with a more limited I/O struc-
ture, those lines could be brought in
through an input port, but the principle of
operation remains the same.

Fig. 17 is a flowchart of the keyboard -
scanning software where "MARKIT' is
now responsible for handling row as well as
column information. The basic interface
between the main program and keyboard
scan subroutine remains the same; the
subroutine places new key depressions on
the stack, from whence they are passed to
the main program. Notice that a key
number's position on the stack does not
necessarily represent when a given key was
depressed with respect to the other keys on
the stack, but merely reflects the order in
which the keys were scanned. Since the
stack is emptied on each cycle by the main
program and only new key depressions are
entered, two key numbers on the stack tells
you only that both keys were down when
the scan took place. To discriminate in time
between rapid key depressions, a short
software cycle time is necessary. But,
remember that this time must be kept
between the constraints of TBR, Ten, and
TON. This technique has a limitation-the
software does not tell the main program
when a key has been released. Thus it
cannot be used in a system requiring
lockout of other keys when any one key is
down.

Combined display
and keyboard

Our original "classical" system has now
been minimized to the point that it needs
only two 8 -bit output ports as additional
hardware.

The whole system of Fig. 1 is shown with its
component blocks filled in on Fig. 18. Our
original objective to minimize hardware
has been realized in that only two 8 -bit
output ports are required in this design,
besides digit drivers (not shown).

A further improvement can be made in the
system by combining the keyboard scan
and display multiplexing signals, as shown
in Fig. 19. Here a single -byte output is
used, with the upper 4 bits being BCD -
coded data for the display and the lower -
order 4 bits used to simultaneously select a
display digit and keyboard column. This
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arrangement does not reduce the parts
count, but does give smaller packages if
space is a consideration, and cuts down on
the number of output operations and
output bytes stored. A ready expansion of
the system (Fig. 20) still uses only two ICs,
but can scan two I6 -key keyboards and an
8 -digit display.

Conclusion

We have shown that the hardware needed
in a microprocessor -based system can be
minimized by using software to perform
functions tha: are usually done in
hardware. The lower parts count should
then produce a lower system cost. Of

Fig. 16
Expanded scanning system for 16 -key matrix.
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Fig. 18
Our original system with the component blocks filled. Using
software has minimized the amount of hardware needed.
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Fig. 19
Combining keyboard -scan and display -refresh signals
produces smaller packages and cuts down on the number of
output operations.
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course, software isn't free-it takes time
and money to develop and debug it.
However, in volume applications, the
spread -out cost of software development
should be less than the replaced hardware,
and the high -software system should also
be more reliable.
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Fig. 17
Software for 16 -key matrix scanning uses "Markit" subroutine
for handling row as well as column information.
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Fig. 20
Expanded system still uses only two ICs, but can scan two 16 -
key keyboards and an 8 -digit display.
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A unified approach to test -data analysis
M. A. Gianfagna

Cost-effective performance evaluation or
engineering feedback from circuit -test
results often require complex analyses of
large volumes of non-standard data. Using
a large-scale data -management system and
a modular design philosophy, the Solid
State Technology Center has developed a
system to cope with these requirements.
TDAS (Test Data Analysis System) has
provided timely and economic solutions to
test -data analysis problems which might
have been unmanageable by other means.
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Faced with the analysis of a million nonstandard test data
points per month, the Solid State Technology Center
developed a highly flexible and efficient data -analysis
system.

Need for a
workable data -base system
The development and manufacture of elec-
tronic circuits usually requires device
testing for performance evaluation or
engineering feedback.

Testing operations are often automated
using a variety of computer -controlled test
systems capable of performing hundreds of
measurements in a matter of seconds.
These high-speed systems generate circuit
test data faster than it can be analyzed
using conventional "pencil and paper"
methods. Furthermore, extracting mean-
ingful results from these measurements
often requires difficult manipulations of
large volumes of data, accumulated over
long periods of time. The electronic testing
field is also rapidly expanding, giving rise
to larger and more demanding appli-
cations. Clearly, if circuit test data is to
provide timely information, a computer
must be used to organize the data and
perform the required analyses in a cost-
effective manner. Communicating this data
to a computer is difficult, however, since
the various test systems have virtually no
standard data -log medium or format.
Therefore, the problems of test -data
analysis for electronic devices stem from
the requirements that complex analyses be
performed on large volumes of non-
standard test data.

Dealing with these problems requires a
highly flexible data analysis tool that is both
test -system and data independent.

Flexibility accommodates a wide variety of
applications both quickly and inexpensive-
ly. Test -system independence allows users
of the various (non-standard) test systems
to communicate their data to a common,
well supported data -analysis system. Data
independence implies that the internal
structure used to store the test data is
decoupled from the rest of the data -
analysis system. This feature allows data -
storage requirements to grow with the
expanding needs of the user community

without causing the rest of the system to
become obsolete. Beyond these re-
quirements, the system must be well
documented and simple to operate, since
the majority of its users will not be
computer -oriented people.

What is TDAS?
TDAS (Test Data Analysis System) is a
unified collection of over 100 programs and
cataloged procedures that copes with the
problems of test -data analysis.

By adhering to the principles of flexibility,
test -system and data independence, and
ease of operation, TDAS has been used
successfully in a number of applications
within RCA. TDAS is largely responsible
for producing the test -data documentation
required to certify RCA as the first
manufacturer of hi -ref COS/ MOS in-
tegrated circuits for aerospace and military
applications.

TDAS has been used successfully in very
large, long-term analyses.

To produce devices for these high -
reliability applications, RCA had to
demonstrate, through an extensive
program of testing and documentation,
conformance of its product line to the
highest level of reliability standards. To
attain hi -ref qualification for a single device
type, TDAS was used to validate, analyze,
and produce government -format reports
on over 300,000 test results. These efforts
have helped to make RCA the leading
supplier of COS/ MOS Hi -Ref circuits in
the industry, with 27 device types currently
certified for production under this very
strict standard.'

Other applications of TDAS in the high -
reliability area include meeting the strict
requirements of documentation and
quality -control analysis for integrated cir-
cuits manufactured for the Trident missile

 Military standard MIL -M-38510, Class A.
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program. The power and flexibility of
TDAS have aided in the continued growth
of RCA's participation in this project.
Here, TDAS is used to analyze and main-
tain both process -related test data from
integrated -circuit wafers and data gener-
ated by Reliability Verification Testing
( R VT) performed on finished devices on a
per shift basis.

The process -related data analysis for Tri-
dent requires measurements taken on IC
wafers to be gathered on a continuing
basis. In a two-week period, up to 300,000
measurements are collected and analyzed
to produce over 2000 TDAS histogram
reports for process evaluation purposes.
(The TDAS histogram report is discussed
later.) With the aid of these reports,
numerous processing refinements have

been accomplished. To perform RVT
analysis, data is entered into TDAS 6 times
per day to produce 10 tabulations, each
containing approximately 18,000 test

results. RVT data is accumulated in the
system for one month, resulting in up to
one million test results being available for
individual analysis at any given time.

In addition to the routine, on -going
applications, TDAS has been successfully
applied to a large number of one-time.
custom test -data analysis projects.

While these smaller applications do not
produce the impressive high -usage

statistics of the long-term projects, they
represent perhaps the most important
milestones of all. The majority of short-
term engineering projects requiring test -
data analysis can allocate only a small
percentage of the available time and money
to actually validating and analyzing the
data; it is obviously not cost-effective to
undertake a test -data analysis project
which is larger and more complex than the
original project that generated the test
data. By taking advantage of the power and
flexibility of TDAS, the data -analysis re-
quirements of these projects may be kept
well within budget constraints.

Applications of this nature include the
engineering evaluation performed by the
Solid State Divisions Bipolar Integrated
Circuits Engineering group, which often
receives small engineering samples of new
or experimental devices for initial testing
and analysis. Many devices are tested only
once. The flexibility of TDAS allows these
one-time analyses to be performed without
spending a disproportionate amount of
resources on them.

Using TDAS in a high -reliability environment

The High Speed Bipolar Integrated Circuits (HSBIC) manufacturing line
has routinely used TDAS since September 1976. Two major activities have
been under control-product reliability and process monitoring. TDAS has
been effective in supplying the software structure :o perform these tasks, as
well as the flexibility to meet the very specialized contractual requirements
for product reliability.

For the product -reliability portion of the work, each month over one million
test results are stored and analyzed. More than one hundred reports are
generated. In addition to these reports, the database structure permits many
special reports to be produced This has helped 10 solve specific engineer-
ing problems.

TDAS assists process monitoring by automatically displaying histograms of
key electrical parameters measured on wafers during processing. Data
variables can be grouped by product type, processing lot, or individual
wafer using TDAS procedures. This allows either a broad or specific look at
the product.

The timeliness of reports is extremely critical in this application, since TDAS
analysis results are used to mcve product through the processing line on a
3 -shift basis. Because of the extremely large vclumes of data which are
routinely processed in our application, spacial attention by the computer
center has been required on occasion to ensure that our deadlines are met.
This situation occurs when data -storage space or processing time is in short
supply. However, in retrospect it is obvious that the production re-
quirements of HSBIC could not have been easily met without the use of a
large-scale data -management system, such as TDAS. For this reason,
HSBIC will continue to use TDAS for its data -analysis needs in the future.

Other one-time applications include test -
data analysis for feasibility studies done
under contract. One such study, performed
by the Solid State Technology Center,
required RCA to investigate the reliability
and failure mechanisms of a logic circuit
manufactured using 2 different technol-
ogies (bulk CMOS and CMOS SOS). The
preparation of the final results of this study
made heavy use of the various TDAS
analysis programs.' Other feasibility
studies using TDAS include a number of
contracts executed by the Solid State
Division's COS MOS Hi-Rel group on
such subjects as the feasibility of producing
radiation -hardened CMOS devices and the
validity of h.gh-temperature accelerated
life testing.

An enhanced version of TDAS is currently
being prepared for use in a high -volume,
commercial product -line environment. In
this application, TDAS will provide RCA
engineers with daily reports of product

Robert DeMair
Test Engineering

High Speed Bipolar I .0 .
Solid State Division

performance and aid in process
refinements through the correlation of test
data and process information. This type of
analysis should produce a substantial in-
crease in yield for this product line.

The system design
The central test -data storage for TDAS is
implemented using the RAMIS® data -base
management system. Ramis is a software
system that provides an easy -to -use

language for describing a data -storage
structure (or data base). Using this
language, a data base was developed which
efficiently stores the information generated
during the device testing cycle. RAMIS
also embodies a powerful, high-level
programming -type language for extracting
and operating on specific subsets of data
from the data base. While this system is
intended primarily for financial reporting

R IS is a registered service mark of Mathematica. Inc.
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TDAS outputs can be in the form of data analysis reports or inputs to other data bases or
archives. System normally operates on IBM 370 computer, but uses PDP-11/20 minicom-
puter for nonstandard data conversion.

applications,' the use of a large-scale,
programmable data -base management
system such as RAM IS is instrumental in
giving TDAS the power and flexibility
needed to cope with diverse test -data
analysis tasks. TDAS can best be described
as a network of extremely modular
operations; each operation being per-
formed by an independent group of
routines written in a variety of program-
ming languages. This modular design
philosophy has allowed TDAS to be
enhanced and expanded without the (often
disastrous) effects of a total system -level
rewrite.

Fig. I illustrates the flow of data through
the TDAS network. The interface between
the sources of test data and TDAS is

accomplished by the data-cor.version and
validation routines (1). [Figures within
parentheses locate the subsystems on Fig.
I.] These routines verify that the incoming
data contains no format or context errors
and translate the information into a stan-
dard (readable) format for further process-
ing. While the greater part of TDAS runs
on the IBM 370, conversion routines,
which run on an off-line PDP- I I/ 20
minicomputer, are necessary to capture
data logged on media incompatible with
the IBM 370 (such as cartridge or paper
tape). Note that all the operations in the
lower shaded area are completely test -
system independent. Therefore, interfacing
a new test system to TDAS requires only
the relatively simple task of writing a new
data -conversion routine.

Once data -conversion and validation are
accomplished, the user has the option of
either entering the data directly into the
TDAS data base (3), using the data -base
population routines (2), or creating an
intermediate dataset. The latter is useful
when manual editing of the data is re-
quired. This situation can arise when data
keyed in by an operator at testing time (e.g.,
date, unit number being tested, etc.) is
incorrectly specified. This type of problem
is easier to correct before the data is entered
into the data base.

The TDAS data base is a hierarchical (or
tree -like) structure which contains storage
for all possible data items produced by the
test systems it currently supports.

The data base is the only portion of TDAS
built solely from the RA MIS software. Fig.
2 illustrates a typical storage configuration
for test results in the TDAS data base. Note
that with the hierarchical structure, fre-
quently occurring data items need not be
re -specified each time they appear in the
input data. Instead, these items "point" to
all other data items to which they apply
(e.g., lot L501 "points" to the two wafers
which comprise L501; each wafer in turn
points to the chips on that wafer, etc.). This
type of structure decreases the space re-
quired to store the data and increases the
efficiency with which it is accessed.

Interfacing directly to the data base are the
data -management routines (4) and the
report -command processing routines (6).
Both of these sets of routines are d 'vied
with enough flexibility (or dat in-
dependence) to allow the data -base struc-
ture to be altered without making a major
portion of those routines obsolete. This
feature allows the data -base structure to be
fine-tuned for optimum performance
without affecting overall system operation.
The data -management routines consist of
such functions as data -base archiving and
making statistical summaries of parameter
test data for storage in a modified TDAS
(Summary) data base.

The report -command processor accepts
analysis requests issued by the user and,
using the services of RA MIS, extracts the
required subset of data from the data base.
The data -analysis routines (7) accept the
selected data along with auxiliary informa-
tion not contained in the data base (5) (such
as descriptive names for certain data items
and display limits used by certain TDAS
plotting routines). It is here that the actual
reports are generated. Since the report -
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 2
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Test NS
Result: 90V

  Test  6
Result: 160V

Fig. 2
Hierarchical setup of TDAS data base decreases memory space required to store data and
increases efficiency of access. Each level "points" to the one below. Here, for example,
wafer 1 refers to chips 501 and 502; similar storage configurations are possible with other
test -data items.

task is so localized, it is possible
to add new analysis features to TDAS
without affecting any other part of the
system. The final step in the report genera-
tion cycle is the output routines (8). TDAS
currently produces reports on line printers,
terminals, or microfiche.

The modular design of TDAS allows a wide
variety of rather specific requirements to be
easily accommodated within the framework
of a generalized system.

For example, transistor beta measure-
ments at 5 levels of collector current for 300
devices are logged on magnetic tape in a
special binary test -system format. The data
analysis requires histograms of the beta
distributions at each level of collector
current; the mean value of beta at each level
of current must also be stored for future
use. To accomplish these tasks, the data
tape is first loaded onto the IBM 370 and
converted to TDAS standard format using
the data -conversion and validation
routines. Next, the data is loaded into a
TDAS data base that has been created for
this particular run. Once the measurements
have been loaded into the data base, two
requests can be issued in parallel: one, sent
to the report command processor,
generates the required histograms; the
other, sent to the data management

routines, makes a statistical summary of
the data and stores the results in another
data base, which will be archived on
magnetic tape for future use. This archive
tape may be reloaded into an active data
base for continued analysis at any time.

Features of TDAS
The following is a brief description of the
major features of TDAS. For a more in-
depth discussion of these and other
features, refer to the "TDAS User Guide."'

The following test -system formats are
currently supported by TDAS: Teradyne,
Datatron, C -CAT, ADULT, and hand -
taken data in arbitrary format on
keypunched cards. The provision to input
arbitrary format data has greatly aided in
accommodating the non -computer -
oriented testing environment, such as
gathering hand -taken measurements done
on the bench. This type of data is entered
into the system by providing the user with a
data -description language capable of defin-
ing the particular format of the keypunch-
ed data.

The data -management facilities of TDAS
include such features as: data -base loading
and unloading from magnetic tape to
facilitate long-term data storage; the ability

to create and access multiple data bases;
the ability to merge the contents of several
data bases; the ability to change the size of
a data base; and the ability to reduce
parameter test data to a compact set of
statistical quantities. This last feature uses
the TDAS Summary data base to store
statistical information calculated from the
original test data. It is extremely useful in
lowering storage requirements when only
the essential statistics of the data need to be
maintained on-line.

The various TDAS reports allow a high
degree of flexibility in the way the data is
presented. The format, data content, and
options used to generate the reports are all
defined by a consistent, user -oriented
report -command language. Thus, to
drastically change the format of a par-
ticular report, one need only change the
options specified in the report command.
For convenience, TDAS lists the options
used to ger.erate each report in the heading.
Reports currently produced are:
Histogram, TABLE, Wafer Map, Bin
Map, and TREND diagram reports. See
Figs. 3-7 for examples of these outputs.

In addition to the above capabilities, the
user may define a mathematical function
which will be applied to all the data values
selected before they are included in any of
the reports mentioned above. By this
means measurements can, for example, be
converted to a decibel scale and then be
analyzed in this format.

The majority of features mentioned in this
section may be performed either in the
interactive (time-sharing) or batch mode.

The applications
TDAS has been used in a wide variety of
situations. Here are some details about a
few of the more ambitious and unique
applications:

CMOS Hi-Rel-The work by CMOS Hi-
Rel to qualify parts for high -reliability
applications has already been mentioned.
The effort to attain hi-rel qualification
status for new CMOS device types is an on-
going project. Initial work to qualify the
first RCA CMOS IC (a quad AND -OR
select gate) began in 1972. At that time, the
Design Automation group began ex-
perimenting with test -data analysis on its
PDP- 1 1 minicomputer. While these efforts
ultimately produced valuable results,' they
found that the PDP-I I was insufficient for
managing the tremendous volumes of data

71



HISTOGRAM FOR LOT =8975I OR B975R1 OR B975R2 OR 8975R3
TEST =105

TEST = LOW CUR BETA
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 4.
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Fig. 3
The Histogram report provides a bar -chart representation of the data by listing test
values along the horizontal axis, and accumulating the number of devices tested that
possess a certain test value along the vertical axis. Using this technique, the
distribution of values for a particular parameter may be determined. This example
illustrates the distribution of low -current transistor beta for a sample of 258 devices. If
the nominal value of beta for this device is 94, we can use this report to determine that 70
devices in the sample possessed the nominal value. Shifts in device performance are
easily spotted using histograms with constant display limits. TDAS can plot the data
within a user -specified range of values, or it can analyze the existing range to produce a
histogram that optimally displays the information. It is also possible to selectively focus
on a small portion of the data.
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Fig. 5
For IC applications, the Wafer
Map report lists device perfor-
mance as a function of position
on the wafer. This type of infor-
mation is useful to determine
the ways a representative IC
fabrication process affects
yield for certain areas of the
wafer. A common use of the
Wafer Map is to tabulate device
performance grade (or bin)
numbers, which are logged by
many test systems as a func-
tion of position on the wafer.
These bin numbers usually
reflect the degree to which a
particular device is functioning
as designed. In this example,
the x coordinates are listed
vertically above the Wafer Map
and they coordinates are listed
horizontally and to the left of
the Map. If a bin number of 9
indicates a correctly func-
tioning device, we can see,
using the information in this
report, that only the chip at
coordinates x=500, y=506 was
functioning properly for wafer
number 2.

LOT =89751 OR B975R1
CHIP =FROM 1 TO 20
TEST =110
STATS=COUNT OR MEAN OR SIGMA
DELTA OPTION

ROW=CHIP
COL=LOT
Q

TEST

CHIP

=TVAL

=

AND RANGE AND UNITS

ZENER VOLTAGE

FIRST SECOND

DELTA column

SECOND
-FIRST

1 5.960E+00 V 5.960E+00 V 0.0 V
2 5.980E+00 V 5.960E+00 V -2.000E-02 V
3 5.970E+00 V 5.970E+00 V 0.0 V
4 6.010E+00 V 6.020E+00 V 1.000E-02 V

5 6.030E+00 V 6.030E+00 V 0.0 V
6 5.990E+00 V 5.990E+00 V 0.0 V
7 5.950E+00 V 5.950E+00 V 0.0 V

8 5.960E+00 V
9 6.020E+00 V 5.970E+00 V -5.000E-02 V
10 6.030E+00 V 6.030E+00 V 0.0 V
11 6.020E+00 V 6.020E+00 V 0.0 V
12 5.990E+00 V 5.990E+00 V 0.0 V
13 5.960E+00 V 5.960E+00 V 0.0 V
14 5.960E+00 V 5.960E+00 V 0.0 V
15 5.980E+00 V
16 5.980E+00 V 6.000E+00 V 2.000E-02 V
17 5.990E+00 V 5.990E+00 V 0.0 V

18 5.970E+00 V 5.980E+00 V 1.000E-02 V
19 6.000E+00 V 6.000E+00 V 0.0 V
20 5.990E+00 V 5.990E+00 V 0.0 V

COUNT 1.800E+01 2.000E+01 1.800E+01
MEAN 5.990E+00 V 5.990E+00 V -1.670E-03 V

SIGMA 2.520E-02 V 2.500E-02 V 1.420E-02 V

Fig. 4
The TABLE report produces a tabular representation of the
data by listing any group of data items against any other 2
cata items, which act to form the row and column headings
of the table. In this example, Zener voltage is listed for chips
(o devices) numbered between 1 and 20 contained in lots
FIRST and SECOND. Here, chip numbers form the row
headings and lot names form the column headings. A set of
statistical information for each column of the report is also
listed. The DELTA option of the TABLE report has been
specified for this example, producing an additional column
listing the arithmetic difference between the Zener voltages
fo- devices in the two lots. This type of information is useful if
a shift in device performance is of interest (e.g., performance
before and after thermal shock). Either statistical summaries
or raw parameter measurements may be listed using TABLE.
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0000009
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4444
99999
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.11..
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.11 1

Fig. 6
The Bin Map report lists the
accumulated number of oc-
currences of a particular per-
formance grade (or bin)
number over a group of wafers
as a function of position. This
type of information greatly aids
in spotting trends in yield for
particular areas of the wafer.
These trends may be caused
by mask defects or processing
variations. For example, this
Bin Map tabulates the number
of chips with a bin number of 9
as a function of position over a
group of wafers. If we know
that a bin number of 9 indicates
a properly functioning device,
we can use the information in
this Bin Map to determine that
coordinates x=500, y=507
produced the highest yield,
with 5 wafers containing a

good device in that location.



being produced to demonstrate confor-
mance.

Data -analysis efforts were then moved to
the large-scale IBM equipment, where
development of the first TDAS capabilities
began. These efforts paid off late in 1975,
when RCA became the first semiconductor
manufacturer to qualify a CMOS in-
tegrated circuit to the highest applicable
military standard. To demonstrate confor-
mance to this standard, the TABLE report
of TDAS was used to produce over 2000
pages of test -data listings of device perfor-
mance under a wide variety of stresses.
Once the initial bugs were out of the
system, remarkable progress was made;
over the 13 -month period following initial
qualification, RCA certified 23 device
types for production under the government
standard. Devices conforming to this stan-
dard often sell for over 50 times the price of
their commercial equivalents.

High -Speed Bipolar /C-TDAS is used by
the High Speed Bipolar group of RCA's
Solid State Division primarily in conjunc-
tion with manufacturing done under con-
tract to Lockheed for the Trident missile
program. What is unique about this
application is that the user has taken
advantage of the modular design of TDAS
to add a number of new features to the
system to accommodate special contrac-
tual requirements. The result of this
relatively small programming effort is a
system that is performing special, custom
data -analysis functions which would nor-
mally have taken months, and possibly
years, to implement "from scratch."

This modified version of TDAS produces
engineering reports automatically by
generating its own report commands based
on the content of the input data. A
summary listing of each new lot of in-
coming data is also automatically produc-
ed for verification purposes. A procedure
has been developed to automatically tag
and remove from on-line storage all data
which has already been reported upon.
This has resulted in a substantial reduction
in storage costs. In addition, a new analysis
program has been implemented to gate the
flow of product through the processing
line.

TDAS was also used by this group to
demonstrate the immunity to radiation
damage of devices manufactured by the
Trident production line. To accomplish
this, the DELTA option of the TABLE
report was used to list the shift in device
performance before and after exposure to

radiation. The work in this area resulted in
a contract to supply radiation -hardened
devices to General Electric for military
applications.

Personnel Department-This application
falls into the class of a one-time analysis
requirement dealing with a very different
kind of test data. RCA's Somerville per-
sonnel department was confronted with the
task of analyzing the responses to an RCA
personnel questionnaire. What would nor-
mally have been a very lengthy and tedious
job was submitted to the computer center
for keypunching. The hand -taken data
input path of TDAS was then used to
populate a TDAS data base from some
2000 keypunched cards containing the
data. TDAS's Histogram report was used
to produce the required statistical and
distribution analyses.

Conclusions
To deal effectively with the problems of
gathering and analyzing large volumes of
nonstandard circuit test data requires a
system that is flexible, test -system and data
independent, and easy to use. Flexibility is
necessary to allow the system to adapt
quickly and inexpensively to the varied
requirements of the user community. Test -
system and data independence insure that
the system will survive an expanding and

changing environment. Ease of use insures
that the labor costs of doing test -data
analysis are reasonable.

Through the use of a large-scale data base
management system and a modular design
philosophy, a user -oriented system which
possesses the above properties has been
developed. This system is being used as an
effective tool to provide timely and
economic analyses in a variety of
applications within the Solid State Divi-
sion and Laboratories of RCA.
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Fig. 7
The TREND report provides a point plot of a set of summarystatistics. Statistical values that
cannot be plotted on a common axis (because of their unit of measurement and/or
magnitude) are automatically tabulated below the plot. This example plots the average value
and one -sigma points for low -current beta associated with four lots. The sample size
(number of devices in the lot), minimum beta, and maximum beta for each lot are also shown
below the plot. Using the information in this report, we can see that the average low -current
beta steadily decreased from 130 to 70 for the four lots shown. This information might be
useful in isolating a processing problem, such as an incorrect base diffusion time for some
of the lots shown.
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Microcomputers in picture -tube manufacturing

T.F. SimpsonIJ.P. Wittke

Microcomputers are beginning to find
extensive application in the production of
picture tubes. The introduction of these
software -controlled LSI chip computers as
a replacement for dedicated, hardwired
control and testing circuits not only brings
about flexibility, permitting rapid changes
in operations, but also eliminates operator -
induced variability in the product, and can
significantly increase the speed of
operations. Moreover, with such systems,
automatic record keeping for inventory
and quality control is easily implemented.

Automatic testing system
The Accutrak picture tube emission tester,
developed at the Picture Tube Division in
Lancaster, is a good example of such a
system. During the early '70s, the Color
Applications group there was developing
an automatic tester with several goals in
mind:

It should be versatile enough to perform
several different tests.

It should operate automatically.

It should print a record of test results.

The existing hardware -based system was
adequate, but lacked flexibility.

The design was originally implemented in
TTL, with one MOS arithmetic chip for
calculations. As test requirements grew,
including a gun -to -gun tracking test that
gave the instrument its name, the unit
became more and more complex. Although
programmable (using TTL PROMS), the
complexity of the unit (over 200 ICs) and
the constantly changing nature of the test
requirements led to dissatisfaction with
both the hardware and the difficulty of
programming the "homegrown" design.
Subtle architectural deficiencies, such as
not being able to use test data as part of test
conditions, became serious problems.

For these reasons, alternatives were con-
sidered. For example, minicomputers were

Microprocessors, replacing complex hardwired systems,
provide a flexible, accurate, and low-cost way to control
production and testing operations.

a possibility, but at the time were bulky and
costly. At about this time Intel announced
their 8080 microprocessor and the Intellec
8 system based on it. In short order, it
became the obvious answer to the problem.
The microprocessor could replace large
chunks of the TTL controller, do all the
calculations itself, program the power
supplies, and even operate a strip printer.

The microprocessor -based tester can per-
form a number of electrical tests in se-
quence.

A block diagram of the unit is shown in
Fig. I . Basically, it must set up several test
voltage conditions for the picture tube,
such as heater voltage, grid l bias, and the
voltages on grids 2 and 3, and measure the
resulting effects on some parameter such as
cathode current. The tester must often vary
one or more potentials in search of a
condition which sets up a predefined condi-
tion, such as "cutoff." This is complicated

DATA
ACQUISITION

MODULE

BOBO- BASED
MICROCOMPUTER

SYSTEM
CONSOLE

(TELETYPE)

by the nonlinear relationships between the
voltages and currents. Typical test se-
quences determine and set cutoff, measure
maximum cathode current by shorting the
grid I to the cathode, and record both
values for each of the three electron guns in
a color picture tube.

The hardware changes were relatively easy.

In switching over to the microcomputer
approach, the hardware design consisted of
interfacing the microcomputer to the
already existing relays, analog -to -digital
converters (ADCs), and digital -to -analog
converters ( DACs) that control the
programmable power supplies. The con-
trol was via input and output ports of 8 bits
each on commercial I/O cards that simply
plugged in to the mother board. By using
such assembled, pretested cards, much
engineering time and grief was saved. In
fact, the only hardware surprise in the
whole transition was a very late realization
that Intel ports invert!

G3
SUPPLY

G2
SUPPLY *

SWITCHING
RELAYS

GI
SUPPLY*

TUBE
UNDER
TEST

HEATER
SUPPLY *

MEASURED DATA

*SUPLY HAS PROGRAMMER (D/A CONVERTER)

Fig. 1
Accutrak tester can change test -voltage inputs to two of the tube's three grids, as well as
change heater voltage, to obtain test results on output parameters such as "cutoff" and
maximum cathode current. System tests each of the three electron guns in color tubes.
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The tester software
The sotmare, however, held many
surprises-some pleasant, some not so
pleasant. For example, early in the debug-
ging stages, sensible data could not be
obtained from the test of the maximum
cathode current. Everything seemed to be
operating correctly, but the computer
didn't "see" the data. The problem, it
turned out, was in not programming a
delay between the relay closure and the
data measurement-the microcomputer
was so fast it was trying to read data before
the relay had closed!

The main effort in getting the system
operating satisfactorily was in developing
appropriate software.

For this application, where changes in the
tests to be run can be frequent, it was
important to use a system with software as
"obvious" and self -documenting as possi-
ble. Thus, the choice of software language
was very important; the closer the
programming language was to the task at
hand, the easier the programming. The
initial choice was PL/ M,'" a high-level
language developed by Intel. It is a

procedure -oriented, block -structured
language that is a subset of the more
powerful PL/ I. It allows you to use long,
descriptive variable names, like "GRID
ONE" or "RED CATHODE," a real aid in
documentation. Its statements are
formula -like, and it has built-in 16 -bit

multiplication and division routines.

Cross -compiler vs. interpreter.

A PL/ M cross -compiler was installed on
the Univac VS/ 9 computer in Cherry Hill,
and arranged to punch object code tapes on
a Teletype terminal in Lancaster for
loading into the microcomputer. This got
the system "on the air," but had its draw-
backs. We soon found that the microcom-
puter, in combination with a data acquisi-
tion module, can be a valuable "window"
into the system that can be a real help in
exploring and debugging the system. But to
be of maximum value, one needs the
capability of modifying and rerunning the
program right from the system console.
This was not possible with the cross -
compiler.

The solution was to write an interpreter for
a simplified subset of BASIC. This inter-
preter can reside in the microcomputer's
memory. It can both edit and run programs
written in the easily learned BASIC -like
language. This new system really speeded

up system development: devices under
computer control were programmed
through their paces and checked out com-
pletely from the Teletype terminal with a
short test program, with no separate
translation step needed. Yet programs
could still be written with the simplicity and
power of a high-level language that keeps
the busy-work to a minimum.

As the system (and our thinking) developed,
a few hidden benefits in the microcomputer -
based system were discovered.

Since the Teletype was needed for system
programming anyway, the numerical strip
printer that had been used for data logging
was no longer required. And with the
Teletype's alphanumeric printing cap-
abilities, data can be labeled, annotated,
and made self-explanatory and self-
documenting-a real time-saver when
looking at six -month -old data. Now, an
operator who knows nothing about the
nature of the test need only enter the tube
serial number and a test -type number, and
the machine takes over test selection and
performance. Since the machine complete-
ly takes over, the operator can, in effect, do
two jobs at once, a great productivity
improvement. With a high-level language
available to program and run the system
interactively, it is possible to respond
rapidly to new test requirements and to
make modifications to old tests. And since
the language is simple and has built-in
mnemonics, technicians can learn to
program the machine in a reasonable
length of time.

The resulting instrument has fulfilled the
initial goals satisfactorily. Three of these
units are in daily use testing engineering

Fig. 2
Three such picture -tube testers are in daily
use at Picture Tube Division plants, testing
engineering and manufacturing samples.

and manufacturing samples. (See Fig. 2.) A
"menu" of five different tests is available
for selection by the operator at any time. By
using properly titled and annotated test
results with carbon paper in the Teletype,
complete test results can be both delivered
to the test engineer and filed for reference at
a later time. In addition, the unit measures
and prints most critical test parameter
voltages as part of the report, serving as a
self -check on the validity of the test.

As a final software step, a source -code -
compatible compiler generates compact,
fast -executing object code for the more
permanent tests. This code is stored in
ROM for permanence during power out-
ages, while freeing up more RAM for
experimental programs.

Laser welding system
The emission tester, as mentioned, is in
routine use. We now discuss a micro-
computer -controlled system that is still in
the developmental stage: an automated
laser welder for picture tube gun parts. The
nearly one hundred welds found in modern
picture tube mounts are presently made
with conventional resistive welding tech-
niques. However, high -power laser welding
can offer important advantages for many
of these welds, in higher, more uniform
weld quality and in greater welding rates
and lower costs. In such a high-speed,
automated laser welder, a microcomputer
provides the required rapid control signals
in a versatile, flexible way. In this system
under development, it is used to control the
flow of parts under the laser beam as well as
the laser firing times and durations.

The laser is a large carbon dioxide one,
capable of either continuous or pulsed
operation. A numerically -controlled x -y
table moves the parts to be welded under
the focused laser beam. The laser optics
provide a small region where the optical
power is high enough to melt even refrac-
tory materials such as tungsten, and can
vaporize a wide variety of materials-
metals, ceramics, glass, etc. There are
several advantages in using laser process-
ing. The energy is deposited on the target
without mechanical contact that can
deform the parts, and it can be focused
onto hard -to -reach areas. The heat is

delivered rapidly to a very localized area,
and thus adjacent regions are not thermally
stressed. Laser welding is therefore useful
for joining parts of picture tube guns, such
as tungsten heater wires to stainless steel
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Tungsten wire

Stainless
mounting tab

Fig. 3
Laser weld (360x cross section) of a tungsten heater wire to a stainless -steel mcunting tab.

TV monitor and camera

x -y controller --

Microcomputer --

Laser firing
controls

Laser beam
axis

Focusing
lens

Fig. 4
Laser welding facility uses microcomputer to control time and duration of each laser pulse.
Closed-circuit tv system monitors the welding operation through the laser optics.

contact tabs, grids to grid supports, and
feedthrough wires to other tube elements.
Fig. 3 is a microphotograph of a section
through a typical laser weld, and Fig. 4
shows our welding system.

The welding system operates with very little
information feedback to the microcom-
puter.

The computer sends a 4 -byte output signal
to the x -y table controller, specifying the

desired location of the work table. (This
controller, which is supplied by the vendor
of the x -y table, uses CMOS logic.)

Positions can be specified in either an
absolute or incremental mode. Other con-
trol words, requiring additional microcom-
puter output ports, set the direction of the
table motion, its speed, and the signal for
table motion to begin. The only signal that
the microprocessor requires from the

system is a flag indicating when the table
has reached its desired position. The laser
can then be fired, forming the weld.

At present, only the time and duration of
the laser firing are under microcomputer
control; the laser power level is set by a
potentiometer on the laser control panel.
However, this function should be soon
under computer control as well.

The system uses RCA's COSMAC 1802
microprocessor, and is based on the
COSMAC Evaluation Kit.

In many ways, this is an excellent choice of
microcomputer. However, factory -built
I/O cards are not available for the
COS MAC system, so all the necessary
interface circuits had to be custom designed
and built. This may be a good way to learn
about microcomputer hardware, but it has
not proved to be a quick way to get a system
going!

The welder software

As mentioned, only one flag line is used as
input, to indicate that the x -y table is in its
desired position. However, the number of
necessary output lines can not readily be
accommodated by the seven COS MAC
output commands. Therefore, a simple
two -level output command sequence is
used to transfer position data to the table
controller, specify absolute or incremental
positions, control speed, and open and
close the laser shutter. Other commands
are implemented via the basic (one -level)
output commands. For convenience, the
COSMAC Q -line is used to turn the laser
on and off. The laser firing, and some table
motions, entail timing loops. These can be
implemented either in hardware or in
software. At present, all timing is done with
programmed delay loops in software.

The system had some surprises in store for
us when it was turned on, of the usual,
unpleasant variety. Despite apparently
proper interfaces and what seemed to be an
error -free microprocessor program, the
table wouldn't behave properly. It would
either just sit there (or perhaps oscillate)
when told to move, or would dash off in
some unexpected direction unrelated to its
programmed path. Interestingly enough,
the cause was finally traced to the same
source as that of the emission -tester
problem mentioned earlier; the micro-
processor was too fast. It was telling the
table to move, and then, before the con-
troller and drive motors could actually get
the table going, was asking the table if it
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had reached its desired target point. Since
the flag from the previous move was often
still set at this time, the one bit of feedback
information being requested of the system
was often wrong! As before, judicious
insertion of programmed delays eliminated
the problem.

The software requirements for the laser
welding facility are rather different than for
the emission tester.

With the tester, frequent program changes,
associated with changes in the desired
testing schedule, were the rule. With the
laser welder, only a relatively few programs
are needed to provide all the versatility
required. One program, for example,
moves the parts to be welded successively
into position at the laser focus, and makes
the welds as each part stops in the proper
place. However, to speed things up, where
welding parameters are not too critical, the
parts can be placed in a line and scanned
past the focus position while the laser fires
"on the fly." This "skeet -shooting" mode of
operation gives, of course, target motion
during the welding laser pulse, and can
result in an egg -shaped weld region. But
since the table is not stopped and started up
again for each weld, the time needed for a
given number of welds can be significantly
reduced. Indeed, for some seam welds, one
may want to have a continuous burst of
laser power during the whole time the part
is under the focal point. A second

microcomputer program provides for this
mode of operation.

A third program lets cutting (or welding)
operations be carried out along arbitrary
contours on the work piece. Now the
computer is programmed to move the
table, at constant speed, along a specified
curve, while controlling the laser firing in
an appropriate way. In addition to these
modes of operation, the work may consist
of a pattern of (perhaps different) welds to
be performed on one workpiece, with the
same pattern to be repeated on an array of
similar pieces. Such a "step -and -repeat"
mode of operation has also been
programmed into the system.

Assembly language was adequate for the
relatively small program set.

Because this handful of programs seems
likely to provide all the flexibility needed
for foreseeable jobs, the need for a high-
level programming language was not as
great as with the emission tester, the
assembly language available with
COSMAC was adequate. The programs,
written in this assembly language, can be
fast and efficient. They are stored in

cassettes on magnetic tape, and are read
into the microcomputer before running.
PROMs would provide an alternative non-
volatile storage medium. Of course, as
welds are made on different gun parts, the
array of components on the work table will
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change and the data table of desired weld
locations must be changed, even though the
same control program may be used.

Although the system hardware is still being
completed, preliminary tests have been run
using a COSMAC Development System
with partial interfacing. It has welded a
series of grids to their supports, the
assemblies being mounted on a line on a jig
plate. Two passes of the parts under the
laser beam. one in each direction, were
required.

Conclusions
We have seen that microprocessors can
provide a very flexible way to control
production and testing operations. They
can replace complex hardwired systems
that can only be altered with difficulty, and
do the job with a speed and accuracy far
beyond that attainable with direct human
control. Use of large, pre -tested blocks of
hardware where possible can greatly
shorten system development time.
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Using PRICE S to estimate software costs

F. R. Freiman

The PRICE Software Model (PRICE S) is
designed to estimate the development cost
of a wide variety of computer software
projects and applications. With minimal
information, PRICE S can determine the
software costs for business, communica-
tion, telemetry, fire control, and many
other types of systems. PRICE S eliminates
the problem of differences between
programming languages. Moreover, the
model's universality provides ways for
tailoring its methods and regressions to fit
the varying skills, experiences, and costs of
specific projects and organizations.
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This computer model uses an organization's past experience
to estimate software development costs rapidly.

PRICE S is an interactive computer model
which is accessed on a time-shared com-
puter via standard telephone lines from
local terminals. Within a few minutes after
the input of several principal project
descriptors, the model will output the
computed costs for each of three overlap-
ping development phases: engineering
design, implementation, and test and in-
tegration. Fig. 1 is an example of this
output.

Typical schedules are computed for the
size, type, and difficulty of the project
described. The user may, if he wishes,
specify alternative schedules. Input
schedules are examined internally, and
costs are adjusted to account for apparent
accelerations, stretch -outs and phase -

transition inefficiencies.

Three modes of operation are available:
normal, ECIRP, and design -to -cost. Nor-
mal operation computes cost directly from
user inputs. The ECIRP (PRICE
backwards) mode enables PRICE S to be
run "in reverse" to calculate PRICE S
empirical factors from known project
costs-a feature extremely useful for
model calibration. The design -to -cost
mode uses specified costs to compute
typical program sizes and project
schedules. This mode permits PRICE S to
investigate feasibilities and set scope -of -
work goals for design -to -cost efforts.

Effective use of PRICE S requires
professional instruction-authorized users
are required to attend a four -day training
program. In addition to covering operation
and control of the time-shared computer
using a local terminal, the program ex-
plains the organization and computative
procedures of the PRICES model so users
can understand how costs, schedules and
inefficiency penalties are calculated. The
preparation and structuring of PRICE S
inputs, methods of examining the
reasonableness of the scope of work
descriptors, and procedures for completing

input data sets when all necessary informa-
tion may not be known or available, are
covered, as are calibration techniques for
customizing the model to reflect an
organization's methods, experiences,
skills, costs, and other appropriate factors.
Students learn the sensitivity techniques to
rapidly and economically examine ranges
of uncertain input information and work
on several life -like software cost problems
designed to test their proficiencies.

How does PRICE S work?

The underlying principle of PRICE S is
that all estimates involve comparative
evaluation of new requirements in light of
analogous histories. PRICE methodology
provides a convenient way of reducing
empirical data to a few parameters of
principal variables, each of which can be
simply adjusted to account for technolog-
ical and economic differences between
individual projects and organizations.

What are the input variables?

Because the interactive procedure of
PRICE S permits immediate sensitivity
analysis, more than forty alternative con-
ditions or uncertainties of various input
data can be quickly assessed. The principal
PRICE S inputs fall into the following
seven categories:

Project magnitude (How big?)

Program application (What character?)

Level of new design (What exists now?)

Resources (Who will do the work?)

Project difficulty (What time is needed?)

Project specifications and reliability
(Where and how used?)

Utilization (What hardware con-
straints?)
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SAMPLE CASE

FILENAME: SAMPLE

DESCRIPTORS

INPUT DATA

MOBILE RADAR

DATED: 07/22/77

INSTRUCTIONS 36000 APPLICATION 0.0 RESOURCE 3.500
FUNCTIONS 0 STRUCTURE 0.0 LEVEL 2.600

INTEGRATION 0.500

APPLICATION CATEGORIES
MIX

NEW DEVELOPMENT
DESIGN CODE

SYSTEM CONFIGURATION
TYPES QUANTITY

DATA S/R .0 1.00 1.00 0 0

ONLINE COMM .08 1.00 1.00 1 1

REAL TIME C&C .08 1.00 1.00 2 2
INTERACTIVE .23 1.00 1.00 1 2
MATHEMATICAL .28 0.50 0.70 mm* looks

STRING MANIP .26 1.00 1.00 *xx **m
OPR SYSTEMS .07 1.00 1.00 **m *xx

SCHEDULE
COMPLEXITY 1.250
DESIGN START OCT 77 IMPL START JUL 78 TiI START DEC 78
DESIGN END DEC 78 IMPL END AUG 79 T.1,I END JUL 80

SUPPLEMENTAL INFORMATION
YEAR 1977 ESCALATION 0.0 TECH IMP 1.00
MULTIPLIER 1.000 PLATFORM 1.4 UTILIZATION 0.80

PROGRAM COSTS

COST ELEMENTS DESIGN IMPL T i I TOTAL
SYSTEMS ENGINEERING 392. 16. 290. 698.
PROGRAMMING 51. 76. 119. 246.
CONFIGURATION CONTROL 90. 23. 179. 292.
DOCUMENTATION 66. 7. 72. 145.
PROGRAM MANAGEMENT 37. 7. 36. 80.

TOTAL 636. 129. 695. 1461.

ADDITIONAL DATA
DESCRIPTORS

INSTRUCTIONS 36100 APPLICATION 5.299 RESOURCE 3.500
FUNCTIONS 400 STRUCTURE 4.961 LEVEL 2.600

SCHEDULE
COMPLEXITY 1.250
DESIGN START OCT 77 IMPL START JUL 78 TiI START DEC 78
DESIGN END DEC 78 IMPL END AUG 79 TiI END JUL 80

SCHEDULE GRAPH
OCT 77 JUL 80
mxxxmmmm*Kmm DESIGN XXXX****10134101

*XXX*10EM** IMPLEMENT ****N14)(1***
oms*x*mxx**x* TEST i INTEGRATE **M***X*MIOMMOEM

Fig. 1
Typical PRICE S output lists the inputs (number and type of instructions, application, resources
available, amount of new design, etc.), along with the proposed schedule at top. Bottom half of output
gives the program cost and graphs the program schedule for the three development phases -design,
implementation, and test and integration.

The universal concept of PRICE S was
attained by the careful structuring of these
required inputs. Its inputs were designed to
permit their rapid calibration and orienta-
tion. Most organizations having computer
software development experience will find
familiar terms and descriptors. The values
or parameters associated with the variables
are relatively simple to determine. PRICE
S input data is less extensive than the
information usually needed to estimate
software costs by other methods.
Moreover, PRICE S has the capability of
testing the credibility and consistency of
input data to minimize problems of faulty
information.

The following is a more detailed descrip-
tion of the principal input groups.

How big is the project?

The size or amount of work to be done is
described by the number of executable
machine instructions or assembly -level
code. Using the number of assembly -level
code or machine -oriented language in-
structions in lieu of source code or higher -
order language statements avoids the
problem of language differences. Of the
many higher -order languages available,
FORTRAN, COBOL, BASIC, and APL
are among the most popular types. PRICE
S is a universal model, capable of accom-
modating all programming methods. Fac-
tors are provided to convert language
statements to executable code. The conver-
sion factors will vary from organization to
organization because of differing
programming and compiler efficiencies.

In situations when the number of in-
structions is not known, PRICE S can
compute the amount from other informa-
tion, such as a functional f.owchart.
PRICE S has built-in cross-checks that
measure the reasonableness of the input
instruction amount. Instruction informa-
tion which may be faulty results in warning
messages that are printed prior to process-
ing.

What's the end application?

This defines the type of project, such as
MIS, command and control, telemetry,
communication, etc. The almost infinite
variety of software programs ranges from
business systems through vastly complex
space communications projects. The
organization, associated peripheral equip -
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ment, and real-time aspects of these
programs vary. The variations have signifi-
cant software -development cost effects
because they require different resources,
skills, and project schedule times.
Therefore, the description of the program
type is a significant parametric input.

PRICE S gives a numerical "application"
value to all types of software programs. It
was determined that every software project
type can be identified by its mix of in-
structions. There are basically seven
different types of instructions; these range
from mathematical to operating systems
and interactive code. PRICE S computes
an application value from an indicated mix
of instruction types. Application values
can range from I to 11-MIS projects
normally have application values of about
2 to 3, whereas real-time telemetry projects
have values of about 6 to 7. Whenever
PRICE S calculates an application value
from an instruction -mix input, the model
cross-checks the credibility of the data.

How much of the design will be new?

Software projects may not require a totally
new design effort. Some of the required
subroutines, algorithms, procedures,
peripheral -device control instructions,
may be available and so lower development
costs. PRICE S addresses this requirement
by allowing the user to specify the amount
of new design.

New design levels may be assigned to a
total project or to specific instruction
types. In some cases, existing designs may
not mean that the application code is

available. PRICE S procedures provide a
separate indication for the level of code
inventory.

PRICE S considers the effort necessary to
integrate the available design with the new
design. For example, the final test and
integration of the software program will
involve the total system, whether or not
some design or code may have existed
before the work was started.

Who will do the work?

One of the most significant cost -estimating
considerations concerns the effect of the
capability, experience, and talents of the
activity that will be doing the work. In
addition, such skills have associated labor
and overhead costs. The "resource"
variable of PRICE S was designed to
reflect, compositely, all such factors.

Resource values may range from 2.5 to 5.0,
with an average of 3.5. Higher values
indicate more costly activities.

Resource values are determined empirical-
ly. A PRICE S calibration procedure lets
the user describe an experienced software
effort and so produces a calculated
resource value that can be used to apply the
same (or essentially the same) performing
organization to the project being measured
or costed. This mode is called ECIRP,
which is the ability to run PRICE
backwards for calibration against actual
costs and schedules of completed projects.
PRICE S procedures provide adjustments
to the resource value to reflect changing
technologies and variations in labor and
overhead rates or efficiencies.

What about complexity and time?

This factor establishes the scheduled time,
in calendar months, required to complete
the job with respect to the organization
resources, program application, and pro-
ject size. The PRICES variable "complexi-
ty" establishes the relative degree of
engineering difficulty. A value of 1.0 is
average. Values less than 1.0 indicate more
simple and routine efforts. They also may
mean that there has been some prior
experience in doing the same or com-
parable software design. Parameters
greater than 1.0 imply that the effort is
more demanding and perhaps new to the
organization doing the work. As complexi-
ty values approach 2.0, the efforts are
pushing the state of the art.

Complexity values are directly relatable to
schedule time; they are vital because pro-
ject costs are very sensitive to performance
schedules. Greater complexity values mean
more calendar time. Whenever one of the
two values-complexity or schedule-is
entered into PRICE S, the correlated value
of the other is computed. To permit the
user to indicate an accelerated or protract-
ed project to PRICE S, both the directed
schedule and appropriate complexity value
would be input. PRICE S generates a
schedule based on the complexity factor,
and compares the computed schedule with
the input schedule to ascertain appropriate
cost penalties. PRICE S can print out the
schedule -variation penalties upon com-
mand.

Where and how will the software be used?

Software programs have many and varied
uses. Some are used for business -

management purposes, others are involved
in highly complex real-time applications
such as fire control, communications, and
telemetry. They may be also used aboard a
manned spacecraft or in weapons systems
aboard aircraft. In some cases, software
programs are connected with life-support
systems. The program's usage can
significantly affect the software develop-
ment cost. As conditions become more
demanding or sophisticated, they will re-
quire more reliability testing, configura-
tion control, documentation, and more
time to complete the job.

The variable called "platform" in PRICE S
indicates the varied usage requirements in
terms of specifications and reliability. It
plays a major role in the computation of
costs, indirect cost ratios, and performance
schedules.

The platform variable is also used to
consider the transportability requirements
of a software project. There may be in-
stances when it is necessary to develop and
test a project on one computer system,
knowing that the program will be installed
on other processors. Because of operating -
system differences and other possible
variations, the basic program may have to
be organized and documented to permit
less troublesome tailoring.

What are the hardware constraints?

The effect of load conditions of the
processor relative to its speed (operations
per second) and memory (for example, is
overlaying necessary?) determine the
"utilization" value. Compiler inefficiencies
may be a problem.

The effort necessary to "fit" a software
program into a computer processor that is
somewhat limited can be significant.
Programs may require severe timing con-
trol in terms of operations per second. Core
memory may necessitate effective manage-
ment to assure adequacy for the time
requirements. Virtual memories may have
timing problems. Inefficient compilers may
load excessive machine code that may
affect the program's timing and capacity.
Because of these problems, the develop-
ment of a software effort can become very
costly.

Utilization values usually vary with
program end usages. For example, ship -
borne or mobile applications systems nor-
mally have utilization values of about 0.7,
airborne applications about 0.8, and space
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systems about 0.9. Utilization values less
than 0.5 have no effect. However, a value of
0.95 (suggesting 95% utilization) can in-
crease costs several hundred percent.

What about economic factors?

PRICE S necessarily considers the impact
of economic conditions by using two
economic factors within the model. One
factor establishes the fundamental or
baseline cost based on the year that was
input to the model. The second factor
applies to the escalation rate appropriate to
the time during which the work is to be
done. For example, the user input of 1970
has the PRICE S model establish its base
cost (as a function of the resource variable)
as of January I, 1970. (Note: All resource
values are normalized January 1, 1976

rates.)

To de-escalate or escalate the resource rate,
PRICE S uses a built-in economic table of
yearly economic change rates covering the
years 1946 to 2001. Adjustments based on
these rates are automatically processed to
reflect the input year. Users may replace
any or all of the escalation rates built into
the model with values of their own choos-
ing. For example, one set of rates may be
used for government projects and a
different set for commercial programs.

Does the model account for technological
changes?

The skill and science associated with the
development of software projects are con-
tinuously being improved through ex-
perience, as are programming methods and
compilers. As a result, development
productivity is increasing. Ignoring
economic factors, the average cost per
instruction is improving. The model
automatically sets its technology base to
the reference year defined by the user.

The improvement trend varies as a func-
tion of time, resources, and project type.
PRICE S accounts for the character of the
productivity change as a result of such
factors. The control variable used to
modify the relative rate of productivity
change subsequent to the reference year is
called "technology improvement."

What about the time for system integration
and testing?

Many large software -development
situations involve the merging of two or
more related software projects into a single
unified operational system. The individual

SENSITIVITY DATA

1.150

COST 1442.
3.400 :

MONTHS 33.0
!

R

E

S
0 COST 1497. ::

U 3.500
R MONTHS 33.0 ::

COST 1552. :

3.600
: MONTHS 33.0 :

COMPLEXITY

1.250 1.350

COST 1403. COST 1397.

MONTHS 33.0 MONTHS 33.0

COST 1461. : COST 1953.

MONTHS 33.0 :: MONTHS 33.0

COST 1515. COST 1509.

MONTHS 33.0 MONTHS 33.0

Fig. 2
Sensitivity matrix saves extra runs by automatically varyinc resource and complexity values
about their initial inputs.

projects often have widely varying
characteristics, and they may even be
performed by different development
organizations or companies. They may
also be installed on separate computers.
Examples include report generators,
operating systems, system simulators,
preprocessors, and peripheral devices
designed to support the baseline software.

Resources and time are required to ac-
complish total system integration. PRICE
S develops cost and schedule estimates for
this activity, just as it does for the in-
dividual subsystems. It does this by relating
the level of integration required for each
individual subsystem to the effective
amount of engineering and programming
effort needed to bring the subsystems
together into a total unified operation.

The technical and management problems
associated with verification and validation
are in many ways analogous to those of
system integration. Experience has shown
that very credible cost and schedule es-
timates can be obtained with PRICE S by
treating validification and verification as if
it were a moderately difficult system in-
tegration. If additional software, such as a
system simulator, is required to support the
validification and verification, it may be
accounted for directly as another sub-
system to be developed and incorporated in
the equivalent system integration effort.

Multiple test beds are needed when
software is to be installed into several
different computer systems that may have
varying operating systems and con-
figurations. Since these conditions can

have significant cost implications, PRICE
S provides procedures to take them into
account also.

PRICE S outputs

Fig. I shows a typical basic PRICE S
output. It has four sections arranged as
follows:

The input data section lists all the
parameters associated with the
descriptive variables. It sets forth the
total scope of work, resources,
schedules, and other significant factors.

The program costs, by work element, for
each of the three development phases
(design, implementation, and test and
integration) are shown in thousands of
dollars.

The additional data section provides
information to be used as reference
values for the purpose of measuring the
credibility and consistency of the input
data. Proper use of such data minimizes
the probability of using costs resulting
from faulty inputs. For example, if
schedules are not specified, the
calculated schedules are shown in this
section. Any such inputs entered as zero
will be calculated and printed out in this
section.

The schedule graph depicts the workload
phasing among the three development
activities.

In addition to the basic PRICE S output,
three optional output sections are shown in
Figs. 2, 3, and 4.
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The sensitivity matrix (Fig. 2) is a table
of costs and schedules resulting from
varying the engineering difficulty and
resource inputs about their initial input
values. Its use precludes the need to
reprocess PRICE S to examine the cost

and schedule sensitivity of these two
significant factors.

The schedule effect summary (Fig. 3)
consists of two tables. The first table
compares the typical schedule calculated

ACTIVITY LENGTH IN MONTHS

COMPLEXITY = 1.250 : DESIGN

SPECIFIED SCHEDULE
(OVERLAP)

TYPICAL SCHEDULE
(OVERLAP)

IMPL T & I TOTAL

14.0 13.0 19.0
( 5.0) ( 8.0)

9.6 10.0 13.9
( 5.7) ( 5.9)

DEVELOPMENT COSTS

COMPLEXITY = 1.250 : DESIGN

SPECIFIED SCHEDULE

TYPICAL SCHEDULE

ESTIMATED PENALTY

33.0

21.9

IMPL T & I TOTAL

636.

500.

136.

129.

110.

19.

695.

611.

84.

1461.

1222.

239.

Fig. 3

Schedule effect summary compares user -specified schedule and schedule generated by
PRICE S (top), also lists cost penalties associated with user -specified schedule (bottom).

SAMPLE CASE

% COMPLETED

MCBILE RADAR

$ EXPENDED % EXPENDED

MONTH : DESIGN IMPL T & I THIS MONTH TOTAL : THIS MONTH TOTAL

OCT 77 : 1.0 .0 .o 6.2 6.2 : 0.4 0.4
NOV 77 : 7.7 .0 .0 43.0 49.2 : 2.9 3.4
DEC 77 : 18.8 .0 0 70.1 119.4 : 4.8 8.2
JAN 78 : 32.0 .0 .0 83.9 203.3 : 5.7 13.9
FEB 78 : 45.7 .0 .0 87.5 290.8 : 6.0 19.9
MAR 78 : 58.8 .0 .0 83.4 374.1 : 5.7 25.6
APR 78 : 70.5 .0 .0 74.1 448.3 : 5.1 30.7
MAY 78 : 80.2 .0 .0 61.8 510.1 : 4.2 34.9
JUN 78 : 87.8 .0 .0 48.2 558.4 : 3.3 38.2
JUL 78 : 93.3 .1 .0 34.9 593.2 : 2.4 40.6
.'JG 78 : 96.9 .3 .0 24.3 617.5 : 1.7 42.3
EP 78 : 98.9 .2 .0 17.9 635.4 : 1.2 43.5

OCT 78 : 99.8 1 .5 .0 15.1 650.5 : 1.0 44.5
NOV 78 : 100.0 2 .9 .0 15.0 665.5 : 1.0 45.6
OEC 78 : 100.0 3 .8 .0 16.8 682.2 : 1.1 46.7
JAN 79 : 100.0 5 .0 .1 19.0 701.3 : 1.3 48.0
FEB 79 : 100.0 6 .2 .4 20.8 722.1 : 1.4 49.4
MAR 79 : 100.0 7 .1 .2 22.2 744.3 : 1.5 51.0
APR 79 : 100.0 8 .5 .7 23.4 767.7 : 1.6 52.6
MAY 79 : 100.0 9 .8 .9 24.9 792.7 : 1.7 54.3
JUN 79 : 100.0 9 .7 .1 27.3 820.0 : 1.9 56.1
JUL 79 : 100.0 9 .9 .4 31.3 851.2 : 2.1 58.3
AUG 79 : 100.0 10 .0 1 .8 37.8 889.0 : 2.6 60.9
SEP 79 : 100.0 10 .0 2 .4 45.8 934.8 : 3.1 64.0
OCT 79 : 100.0 10 .0 3 .1 53.7 988.5 : 3.7 67.7
NOV 79 : 100.0 10 .0 4 .8 60.7 1049.2 : 4.2 71.8
DEC 79 : 100.0 10 .0 5 .4 66.3 1115.5 : 4.5 76.4
JAN 80 100.0 10 .0 6 .4 69.8 1185.3 : 4.8 81.2
FEB 80 100.0 10 .0 7 .5 70.5 1255.8 : 4.8 86.0
MAR 80 100.0 10 .0 8 .2 67.4 1323.2 : 4.6 90.6
APR 80 100.0 10 .0 8 .9 59.8 1383.1 : 4.1 94.7
MAY 80 100.0 10 .0 9 .6 46.7 1429.8 : 3.2 97.9
JUN 80 : 100.0 10 .0 9 .5 27.0 1456.8 : 1.9 99.7
JUL 80 : 100.0 10 .0 10 .0 3.8 1460.6 : 0.3 100.0

I ALPHA = 0.82 0.0 0.0 FOR PROFILE GRAPHS
II BETA 0.18 1.00 0.18 RESPOND OK = 7

I PEAK/AV 1.93 1.88 1.93 st

Fig. 4
Cost distribution shows when and where money will be spent throughout the duration of the
software project.

by PRICE S to the one specified by the
user, which was 33 months overall in this
example. The typical schedule results if
the user only inputs the schedule start
date instead of a specific schedule and
lets the model calculate the schedule.
Here, PRICE S selects a 22 -month
schedule and overall program costs are
lowered by $240K or 16.4%. The second
table shows the estimated cost penalties
associated with inefficiencies induced by
the directed schedule.

The cost distribution table (Fig. 4) shows
the distribution of the work and
associated costs throughout the duration
of the development project. The dis-
tributions are based on the user -specified
resource allocation profile assigned to
each phase.

The PRICE S example shown in Fig. I

illustrates a mobile -radar software
program requiring 36,000 machine -level
instructions. This number was obtained by
taking the program's approximately 8000
high -order -language (source) statements
and converting them to the number of
machine -level instructions by using
empirically derived factors. As listed in the
figure, approximately three-quarters of the
machine code involves mathematical, in-
teractive, and string -manipulation types of
instructions. The software project is

relatively new and will require, because of
circumstances, thirty-three months to com-
plete. The organization that will be doing
the work and its costs (labor and overhead)
are represented by an empirically derived
resource value of 3.5. The computer utiliza-
tion is 80%.

Conclusion
PRICE S has been under development for
several years. From May through August
1977, a number of major software develop-
ment organizations, including RCA,
participated in field-testing the model.
Their studies covered a variety of projects,
ranging in size from a few thousand to
several million instructions and in
applications from payroll to space
programs. Positive results and feedback
from the field-testing encouraged the com-
mercial sale of the model in September
1977, when the first formal PRICE S
training class was held. By the spring of
1978, all the organizations participating in
the field test had contracted for use of the
model.
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Dates and Deadlines

Upcoming meetings

Ed. Note: Meetings are listed chronological-
ly. Listed after the meeting title (in bold type)
are the sponsor(s), the location, and the
person to contact for more information.

JUN 21-23, 1978 -Machine Processing of
Remotely Sensed Data (IEEE) West
Lafayette, IN Prog Info: D. Morrison, Purdue
Univ. LARS, 1220 Potter Drive, West
Lafayette, IN 47906

JUN 26-28, 1978 -Device Research Conf.
(IEEE) Univ. of Calif., Santa Barbara, CA
Prog Info: Dr. James McGroddy, IBM, T.J.
Watson Research Ctr., Yorktown Heights,
NY 10598

JUN 26-29, 1978-Conf. on Precision Elec-
tromagnetic Measure (IEEE, NBS,
URSI/USNC) Conf. Ctr., Ottawa, Ont. Prog
Info: Dr. Andrew F. Dunn, Natl. Research
Council, Montreal Road, Ottawa, Ont.

JUN 27-29, 1978 -Intl. Microwave Symp.
(IEEE, et al) Chateau Laurier, Ottawa, Ont.
Prog Info: A.L. VanKoughnett, Com-
munications Research Ctr., POB 11490,
Station H, Ottawa, Ont. K2H 8S2

JUL 10-13, 1978-Intersoc. Environmental
Systems (ASME et al) Town & Country, San
Diego, CA Prog Info: Tech. Affairs Dept.,
ASME, 345 E. 47th St., New York, NY 10017

JUL 16-20, 1978 -Fourth American Conf. on
Crystal Growth (NBS, Amer. Assn. for
Crystal Growth) Natl. Bureau of Standards
Gaithersburg, MD Prog Info: Dr. Robert L.
Parker, Materials Building, Rm. B164, Natl.
Bureau of Standards, Washington, DC
20234

JUL 18-21, 1978 -Nuclear & Space Radia-
tion Effects (IEEE) Univ. of New Mexico,
Albuquerque, NM Prog Info: B.L. Gregory,
Sandia Labs., Dept. 2140, Albuquerque, NM
87115

AUG 20-25, 1978-Intersoclety Energy
Conversion Engr. Conf. (IEEE) Town &
Country, San Diego, CA Prog Info: George
P. Townsend, Hamilton Standard Div., U-
nited Technologies Corp., Windsor Locks,
CT 06096

AUG 22-25, 1978 -Intl. Conf. on Parallel
Processing (IEEE) Shanty Creek Lodge,
Bellaire, MI Prog Info: Prof. T.Y. Feng, Dept.
of Elect. & Comp. Engr., Wayne State U.,
Detroit, MI 48202

AUG 28-31, 1978 -Laser Applications and
Optical Communication (Soc. of Photo -
Optical Instrumentation Engineers) Town
and Country, San Diego, CA Prog Info:
SPIE, PO Box 10, Bellingham, WA 98225

SEP 5-8, 1978-COMPCON FALL (IEEE)
Washington, DC Prog Info: COMPCON
FALL, P.O. Box 639, Silver Spring, MD 20901

SEP 5-7, 1978 -Intl. Optical Computing
Conf. (IEEE) Imperial College, London,
Eng. Prog Info: S. Horvitz, Box 274, Water-
ford, CT 06385

SEP 6-8, 1978-Fiberoptic Communication
Conf. & Exhibit (Info. Gatekeepers Inc.)
Hyatt Regency O'Hare, Chicago, IL Prog
Info: Information Gatekeepers, 167 Corey
Rd., Suite 212, Brookline, MA 02146

SEP 6-8, 1978 -OCEANS '78 (IEEE, OEC,
MTS) Sheraton Park, Washington, DC Prog
Info: Myra Binns, Marine Tech. Society,
1730 "M" Street NW, Washington, DC 20036

SEP 12-14, 1978 -Western Electronic Show
& Conv.-WESCON (IEEE) Los Angeles
Convention Ctr., Los Angeles, CA Prog Info:
W.C. Weber, Jr., 999 N. Sepulveda Blvd., El
Segundo, CA 90245

SEP 12-14, 1978 -Automatic Support
Systems for Advanced Maintainability
(AUTOTESTCON) (IEEE) San Diego. CA
Prog Info: Bob Aquais, General Dynamics
Electronic Div., Mail Stop 7-98, PO Box
81127, San Diego, CA 92138

SEP 17-20, 1978-JoInt Fall Mtg. American
Ceramic Soc. and IEEE Subcommittee on
Ferroelectricity (Am. Cer. Soc., IEEE) Dallas
Hilton Inn, Dallas, TX Prog Info: Relva C.
Buchanan, Dept. of Ceramic Engrg., 208
Ceramics Bldg., U. of Illinois, Urbana, IL
61801

SEP 21-23, 1978 -Interactive Techniques in
Computer Aided Design (IEEE) Palazzo dei
Congressi, Fiera di Bologna, Italy Prog Info:
Dr. Bertram Herzog, Computer Ctr., U. of
Colorado, Boulder, CO 80303

SEP 24-27, 1978 -Electronic and Aerospace
Systems Cony. (EASCON) (IEEE) Sheraton
Intl., Arlington, VA Prog Info: Bette English,
At -Your Service. Inc., 821 15th Street NW,
Washington, DC 20005

SEP 25-27, 1978 -Ultrasonics Symp. (IEEE)
Cherry Hill Hyatt House, Cherry Hill, NJ
Prog Info: F.S. Welsh, Bell Telephone Labs,
555 Union Blvd., Allentown, PA 18103

OCT 1-5, 1978 -Industry Application Socie-
ty Annual Meeting (IEEE) Royal York Hotel,
Toronto, Ont. Prog Info: W. Harry Prevey,
4141 Yonge Street, Willowdale, Ont., MSP
1N6

OCT 16-17. 1978 -Joint Engineering
Management Conf. (IEEE) Regency,
Denver, CO Prog Info: Henry Bachman,
Hazeltine Corp., Greenlawn, NY 11740

OCT 18-20, 1978 -Joint Automatic Control
Conf., (IEEE) Civic Center, Philadelphia, PA
Prog Info: Dr. Harlan J. Perlis, New Jersey
Institute of Tech., 323 High Street, Newark,
NJ 07102

OCT 18-20, 1978 -Canadian Communica-
tions and Power Conf. (IEEE) Queen
Elizabeth Hotel, Montreal, P.Q. Prog Info:
Jean Jacques Archambault, CP/PO 757,
Montreal, Quebec H2L 4L6

OCT 21-25, 1978 -Engineering in Medicine
and Biology (IEEE) Marriott Hotel, Atlanta,
GA Prog Info: Walter L. Bloom, M.D.,
Georgia Institute of Tech., Atlanta, GA
30302

OCT 23-25, 1978 -Digital Satellite Com-
munications (IEEE) Hotel Reine Elizabeth,
Montreal, Quebec Prog Info: Marce Perras,
Teleglobe Canada, 680 Sherbrooke Street
W., Montreal Que. H3A 2S4

OCT 24-26, 1978 -Biennial Display
Research Conf. (IEEE,SID) Cherry Hill Inn,
Cherry Hill, NJ Prog Info: Lawrence Good-
man, RCA Laboratories, Princeton, NJ
08540

OCT 25-27, 1978-Intelec (Intl. Telephone
Energy Conf.) Sheraton Park, Washington,
DC Prog Info: J.J. Suizzi, Bell Laboratories,
Room 5D-178, Whippany, NJ 07981

Calls for papers

Ed. Note: Calls are listed chronologically by
meeting date. Listed after the meeting (in
bold type) are the sponsor(s), the location,
and deadline information for submittals.

OCT 9-11. 1978 -Semiconductor Laser
Conf. (6th (IEEE) Hyatt Regency, San
Francisco, CA Deadline Info: 6/15/78 to T.L.
Paoli, Bell Laboratories, 600 Mountain Ave.,
Murray Hill, NJ 07974

SEP 23-26, 1979 -3rd World Telecommuni-
cation Forum (ITU) Geneva, Switzerland
Deadline Info: 9/30/78 100-200 word abs. to
A.E. Joel, Bell Telephone Laboratories,
Room 2C-632, Holmdel, NJ 07733
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Patents

Advanced Technology
Laboratories

S.E. Ozga
Microprocessor architecture -4079455
(assigned to U.S. government)

Astro Electronics
D.S. Binge
Component rotation means -4076191

L. Muhlfelder
Roll/yaw body steering for momentum
biased spacecraft -4084772

G.E. SchmidtIL. Muhlfelder
Magnetic control of spacecraft roll distur-
bance torques -4084773

Avionics Systems
F.C. Easter
Video digital display device with
input -4086579

analog

Broadcast Systems
R.N. HurstIF.W. Huffman
Discontinuous motion special effects
generator for television -4080626

Consumer Electronics
J. Avins
Automatic control of free wheeling -
4084672

A.L. Baker
Video disc player mechanism control
system -4086617

J.C. Peer
Circuit for correcting setup error in a color
television receiver -4084115

J.J. Serafini
Automatic transient beam current limiter -
4079424

T.D. Smith
Switch mechanism for a calculator type
keyboard -4084071

S.A. Steckler
Low distortion signal amplifier arrange-
ment -4081758

Government
Communications Systems

R.H. Brader
Scrambler and unscrambler for serial data -
4087626 (assigned to U.S. government)

L.N. ReedIJ.R. Khalifeh
Overcurrent protection circuit -4084070

Laboratories
C.H. Anderson
Flat display device with beam guide -
4076994

F. AschwandenIT.E. Bart
SECAM subcarrler generator -4084177

V.S. BanIS.L. Gilbert
Method for chemical vapor deposition -
4082865

A. BloomID.L. Ross
R.A. BartolinilL.K. Hung
Organic volume phase holographic
recording media using sucrose benzoate -
4084970

R.S. CrandallIB.W. Faughnan
Method of storing optical information -
4075610

W. Denhollander
Power supply arrangement with minimum
interaction between plural loads -4079295

A.R. Dholakia
Video disc player employing a spring loaded
stylus apparatus -4077050

A.G. Dingwall
Method of making a substrate contact for an
Integrated circuit -4081896

J.G. Endriz
System for modulating a flat panel Image
display device -4077054

R.S. EngelbrechtIK. Knop
Diffractive phase filter having near field
wavelength dependent focusing proper-
ties -4079411

I. Gorogl B.F. Williams
Optical filter -4084188

P.E. Haferl
Switched mode vertical amplifier with
elimination of feedback ringing -4079293

P.E. Haferl
Conduction overlap control circuit for
switched output stages -4081721

P.E. Haferl
Signal processor for switched vertical
deflection system -4081722

W.E. Ham
Apparatus and method for cleaning and
drying semiconductors -4079522

J.M. Hammer
On line electro-optic modulator -4076381
(assigned to U.S. government)

J.N. HewittIV. Christiano
Method of forming a metal pattern on an
insulating substrate -4083710

W. Hinn
Video amplifier including an ac -coupled
voltage follower output -4082996

H. Kawamotol E.J. Denlinger
Pickup circuitry for a video disc player with
printed circuit -4080625

J.B. KlatskinIA. Rosen
Method of manufacturing semiconductor
devices having a copper heat capacitor
and/or copper heat sink -4080722
(assigned to U.S. government)

K. Knop
Fabrication of rectangular relief profiles in
photoresist-4082453

K. Knop
Zero -order diffractive subtractive filter
projector -4082438

M.A. Leedom
Video disc package -4084691

F.J. Marlowe
Line scan converter for an Image display
device -4080630

A. Miller
Optical coupler -4082425

D.D. MawhinneylZ. Turski
Microwave frequency discrimination -
4079325 (assigned to U.S. government)

J.R. ObermanIR.G. Stewart
Write enhancement circuit -4075690

R.M. Rast
Dual mode frequency systhesizer for a
television tuning apparatus -4078212

R.M. RastIJ. Tufts
Phase locked loop tuning system with sta-
tion scanning provisions -4077008

J.M. Shawl K.H. Zaininger
Method of making planar silicon -on -
sapphire composite -4076573 (assigned to
U.S. government)
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R.G. Stewart
Level shift circuit -4080539

M. TodalS. Osaka
Method of producing optical image on
chromium or aluminum film with high-
energy light beam -4087281

J. Tults
Digital frequency deviation detector useful
in a television receiving system -4084127

Z. TurskilA. Rosen
Microwave frequency discriminator com-
prising a one port active device -4085377
(assigned to U.S. government)

L.C. Upadhyayula
Planar transferred electron logic device with
improved biasing means -4086501
(assigned to U.S. government)

J.L. Vossen, Jr.
Video disc with a conductive layer having an
oxygen content gradient -4077051

J.L. Vossen, Jr.
Video disc capacitive recording means with
a conductive bilayer-4077052

S. Weisbrod
Apparatus for measuring the current -
voltage characteristics of a TRAPATT
diode -4080571

Missile and
Surface Radar

J.A. LunsfordIL.W. Martinson
Output buffer synchronizing circuit having
selectively variable delay means -4079456
(assigned to U.S. government)

J.C. WilliamsIW.B. Sisco
Method and detection of phase and frequen-
cy modulation -4085367 (assigned to U.S.
government)

O.M. Woodward
Circularly -polarized antenna system using
tilted dipoles -4083051

Picture Tube Division
J. Evans, Jr.
Plural gun cathode ray tube having paralle,
plates adjacent grid apertures -4086513

H.A. GrossIR.F. Walters
H.R. FreyIJ.D. Messner
Method for inspecting cathode -ray -tube
window for objectionable cord -4076426

J.M. Ratay
Slurry process for coating particles upon
the viewing -window surface of a cathode-
ray tube -4078095

M.H. Wardell, Jr.IB.G. Marks
High voltage electron tube base with
separate dielectric fill -hole -4076366

RCA Ltd., England
B. Crowle
Differential amplifier -4078206

SelectaVision Project
M.L. McNeelyIH. Rees
Method for producing injection molded and
centrally apertured disc records -4085178

C.F. Pulse
Video disc package having a center post -
4084690

Solid State Division
G.W. Albrecht
Inverter circuit control circuit for precluding
simultaneous conducting of thyristors-
4078247

A.A. Ahmed
Self-starting amplifier circuit -4085359

R.D. Faulkner1R.E. McHose
Phototube having apertured electrode
recessed in cup -shaped electrode -
4079282

A.J. Leidich
Push-pull transistor amplifier with driver
circuitry providing over -current protect-
ion -4078207

J.T. Mark
Vacuum tube grid structures of phosmic
bronze having copper and copper alloy
conical supports -4076992

H. Popp
Grid having reduced secondary emission
characteristics and electron discharge
device including same -4079286

R.J. Robe
Input stage for fast-slewing amplifier -
4075575 (assigned to U.S. government)

O.H. Schade, Jr.
Ground fault detector -4080641

L.W. Varettoni
Voltage limiter circuit -4085432

H.A. Wittlinger
Voltage monitoring circuit -4084156
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Pen and Podium
Recent RCA technical papers and presentations

To obtain copies of papers, check your library or contact the author or his divisional Technical Publications Administrator
(listed on back cover) for a reprint. For additional assistance in locating RCA technical literature, cored RCA Technical
Communications, Bldg. 204-2, Cherry Hill, N.J., extension 4256.

Advanced Technology
Laboratories
M. Corrington
Two-dimensional image processing-IEEE
CAS/ASSP Joint Meeting, U. of Penn.,
Philadelphia, PA (3/28/78)
A. FellerIT. Lombardi
A VLSI test chip, interpretation of Its data
and on -chip diagnostic techniques-IEEE
Solid State Circuit Conf., San Francisco, CA
(2/15-17/78)

R. Kenville
The optical video disc for digital mass
memory applications-COM PCON Spring
'78, San Francisco, CA (2/28-3/3/78)
J. SaultzIA. Feller
Approaches to developing and utilizing LSI
in military equipment-IEEE SOS Talk,
Wayland, MA (1/16/78)

Americom
J. Lewin
Ground control system for Satcom
satellites-Seventh AIAA Communications
Satellite Systems Conf., San Diego, CA
(4/24/78)

Automated Systems
G.T. Burton
Laser beam recording of tactical imagery-
SPIE Airborne Reconnaissance III Seminar,
Washington, DC (3/29/78)

H.L. FischerIT.E. Fitzpatrick
Simplified automatic test equipment-
Industry/Joint Services ATE Workshop, San
Diego, CA (4/3/78)

T.E. Kupfrian
Reliability test results of a commercial
integrated circuit -based system - IEEE
Spring Reliability Seminar, Boston, MA
(4/27/78)

N.L. Laschever
Some considerations of the missile
altimeter-Proc., Strategic Penetration
Technology Study 1977 (3/2/78)

J.N. Ostis
A transportable VFR terminal-J. of Air
Traffic Control (3/78)

P.M. Toscano
Cost estimating relationships for ATE Test
Program Set (TPS) development -
Industry/Joint Services ATE Workshop, San
Diego, CA (4/3/78)

Broadcast Systems
L.J. Bazin
Adapting a small camera for production
applications-NAB, Las Vegas, NV
(3/28/78)

R.N. Clark
The fan-vee circularly polarized tv
antenna-IEEE Trans. on Broadcasting,
Vol. BC -24, No. 1 (3/78)

M.S. Siukola
Evaluation of circularly polarized tv antenna
systems-IEEE Trans. on Broadcasting,
Vol. BC -24, No. 1 (3/78)
M.S. Siukola
RCA circularly polarized antennas-NAB
Convention Workshop, Las Vegas, NV
(4/10/78)

Consumer Electronics
B. BeyersI H. BlatterIJ. George
J. HendersonIR. RastIJ. Tults
Frequency synthesis tuning systems with
automatic offset tuning-IEEE Chicago
Spring Conf. (6/5/78)
H. BlatterIR. RastIJ. Tults
Frequency synthesis custom LSI: the inside
story-IEEE Chicago Spring Conf. (6/5/78)

Government
Communications Systems
A. Birnbauml R. Howel P. Patterson
A parametric cost analysis model for
EMSS-Proc., 9th Annual Pittsburgh Conf.
on Modeling and Simulation, Pittsburgh, PA
(4/27-28/78)

R.M. Gould
Provisioning by reliability and maintainabili-
ty factors -9th Annual Reliability Clinic,
Holiday Inn, Philadelphia, PA (4/27/78)

M. Paskman
Evolution of an EMSS from model to
operation-Proc., 9th Annual Pittsburgh
Conf. on Modeling and Simulation,
Pittsburgh, PA (4/27-28/78)

P. Patterson
Electronic message service system defini-
tion & evaluation-the role of modeling-
Proc., 9th Annual Pittsburgh Conf. on
Modeling and Simulation, Pittsburgh, PA
(4/27-28/78)

P. Scott
An economic analysis of system growth-
Proc., 9th Annual Pittsburgh Conf. on
Modeling and Simulation, Pittsburgh, PA
(4/27-28/78)

G. Spector
Formulation of EMSS error objectives and
error budgets-Proc., 9th Annual Pittsburgh
Conf. on Modeling and Simulation,
Pittsburgh, PA (4/27-28/78)

R. Turner
EMSS network design and costing model-
Proc., 9th Annual Pittsburgh Conf. on
Modeling and Simulation, Pittsburgh, PA
(4/27-28/78)

BaileyIV.C. Chewey
Ground mobile forces tactical satellite SHF
ground terminals -7th AIAA Com-
munications Satellite Systems Conf., San
Diego, CA (4/23-27/78)

Government Systems
Division Staff
J. Hilibrand
Recent advances In custom CMOS LSI-
AFCEA Symp., Moorestown, NJ (4/13/78)

Laboratories
M.S. Bae
Defect free shallow P+/N junction and
associated photovoltaic effect -13th IEEE
Photovoltaic Specialists Conf., Washington,
DC (6/5-8/78)
M.S. Bae
Schottky effect and photovoltaic devices on
the texturized surfaces -13th IEEE
Photovoltaic Specialists Conf., Washington,
DC (6/5-8/78)

J. Blanc
Defects at the SI/S10 2 Interface: fact, fiction
and fancy-Electrochemical Soc. Mtg.,
Seattle, WA (5/23/78)
C.A. CataneseIJ.G. Endriz
The physical mechanism of feedback elec-
tron sources -1978 Chicago Spring Conf.
on Consumer Electronics (6/5-6/78)
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L.S. CosentinolV. ChristianolJ.G. Endriz
J. DresnerIG.F. StockdalejJ.L. Cooper
J.N. HewittIJ.B. Harrison, Jr.
Feedback multiplier flat panel
technologies -1978 Chicago Spring Conf.
on Consumer Electronics (6/5-6/78)

J.K. Clemens
Capacitive pickup and the buried subcarrier
encoding system for the RCA VideoDisc-
RCA Review, Vol. 39, No. 1 (3/78)

L.P. Fox
The conductive VideoDisc-RCA Review,
Vol. 39, No. 1 (3/78)
R.A. Geshner
Microlithography overview-IGC Symp. on
Photolithography, Amsterdam, Netherlands
(4/27/78)

W.C. Hittinger
New directions for 1983-NEWCOM '78, Las
Vegas, NV (5/2-4/78)

E.O. Keizer
VideoDisc mastering-RCA Review, Vol. 39,
No. 1 (3/78)

E.O. Keizerl D.S. McCoy
The evolution of the RCA "SelectaVision"
VideoDisc system-a historical
perspective-RCA Review, Vol. 39, No. 1
(3/78)

S.A. KenemanIJ.G. Endriz
C.A. Catanesel L.B. Johnston
Flat tv display using feedback multipliers -
1978 Chicago Spring Conf. on Consumer
Electronics (6/5-6/78)
S.A. Keneman
Evolution of a flat television display using
feedback multipliers-Colloquium, U. of
Penna., Philadelphia (4/27/78)

H.W. Lehmann
Pattern transfer in the micron range by
reactive sputter etching-IBM Research
Laboratory, San Jose, CA (5/26/78)

A. Levine
Determination of water content of molded
plastics -36th Annual Mtg. of SPE,
Washington, DC (4/25/78)

D.S. McCoy
The RCA "SelectaVision" VideoDisc
System-RCA Review, Vol. 39, No. 1 (3/78)

C.J. Nuese
Advances in heterojunction lasers for fiber
optics applications-Soc. of Photo -Optical
Instrumentation Engineers, Washington,
DC (3/28-31/78)

D. Redfield
Cost criterion for low efficiency solar cells
system power cost competitive with that of
high efficiency cells-Proc., 13th
Photovoltaic Spec. Conf., Washington, DC
(6/5-8/78)

D. Redfield
Reinterpretation of heavy -doping limita-
tions on solar cell performance-Proc.,
Photovoltaic Spec. Conf., Washington, DC
(6/5-8/78)
R.N. Rhodes
The VideoDisc player-RCA Review, Vol.
39, No. 1 (3/78)
D.L. Ross
Coatings for VideoDisc-RCA Review, Vol.
39, No. 1 (3/78)

L.D. Ryan
Trends in programmable video game
design-SID, Pnila. Chapter (5/15/78)
N.D. Winarsky
Optimal numerical differentiation-SIAM
Conf., Madison, WI (5/78)

Missile and
Surface Radar
J.A. Bauer
Application of CMOS to hybrid design-
ISHM, Hybrid Design Symposium, NY
Chapter, (4/78)
M.W. Buckley
Project management-Instr., Cont. Engrg.
Educ. Prog. (George Washington U.),
Brussels, Belgium (4/78); Lecl.-EBI
Seminar, London, England (4/78)

W.T. Patton
Very low sidelobe electronic scanning
reflector antenna-IEEE Cony., Boston, MA
(4/78)

H. Urkowitz
A personal yew of mathematics in the
electronics industry-Rutgers University,
Camden, NJ (4/78)

SelectaVision Project
W.J. Gordon
VideoDisc testing philosophy and
techniques-RCA Review, Vol. 39, No. 1

(3/78)

R.J. Ryan
Materials and process development for
VideoDisc replication-RCA Review, Vol.
39. No. 1 (3/78)
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Engineering News and Highlights
New engineering management in CCSD

Arch C. Luther was appointed Chief
Engineer, Commercial Communications
Systems Division by Neil Vander Dussen,
Division Vice President and General
Manager. In his new position Mr. Luther will
be responsible engineering activities at
Broadcast Systems, Mobile Communication
Systems, Avionics Systems, and Cablevi-
sion Systems. He was Chief Engineer of
Broadcast Systems since 1973. During his
28 years with RCA, Mr. Luther has worked
on color-tv studio equipment, many video
tape recorders (including the Emmy-
winning TCR-100 video cartridge recorder)
and other studio and transmitting equip-
ment for radio and television. In 1975, he
received the David Sarnoff Award "for his
many outstanding technical contributions
enhancing RCA's reputation as a leading
supplier of television systems."

Anthony H. Lind was appointed Chief
Engineer, Engineering, fo- Broadcast
Systems by J. Edgar Hill, Division Vice
President and General Manager, Broadcast
Systems. Mr. Lind has been with Broadcast
Systems since 1946, and an Engineering
Manager since 1951. His engineering
organizations have designed and developed
numerous broadcast products-cameras, tv
tape recorders, projectors, switches, and
terminal equipment. He has participated in
many industry technical committees and is
presently on the Board of Governors of the
SMPTE. Last year he was elected a Fellow of
the IEEE in recognition of his "technical
leadership in the design a -id product
development of video tape recorders and
color television cameras."

Richard L. Rocamora was recently ap-
pointed Manager, Meadow Lands Broadcast
Engineering, for RCA Broadcast Systems.
He is responsible for the engineering design
and development of the company's line of
a.m. and fm radio and tv broadcast
transmitters and audio products. Previous-
ly, Mr. Rocamora was Manager, Antenna
Engineering, at the antenna development
and test center in Gibbsboro. Mr. Rocamora
joined RCA in 1952 as an electrical engineer
and served in design engineering and
managerial positions in the fields of
microwave equipment, digital terminals,
computers, and communications systems,
as well as radio and tv broadcast equipment.

Degrees granted

RCA Laboratories
Ronald E. Daniel,-MS, Industrial
Engineering/Operations Research; Rutgers
University.

Nils 0. Ny,-BS, Computer Science, Mon-
mouth College.

Still more Fellows, PEs
Two issues ago, we published two lists-one
of RCA engineers who had attained the
grade of Fellow of the IEEE, the other of the
Licensed Professional Engineers at RCA.
Last issue, we published additions to both
lists; the updating continues here.

IEEE Fellows
K.A. Chittick 1953

Licensed engineers
When you receive a professional license,
send your name, PE number (and state in
which registered), RCA division, location,
and telephone number to RCA Engineer,
Bldg. 204-2, RCA, Cherry Hill, N.J. New
listings (and corrections or changes to
previous listings) will be publisned in each
issue.

Consumer Electronics
E.J. Bynum, Prescott, Ont., ONT-

L.M. Krugman, Bloomington, , IN -9460,
NJ -7700

RCA Service Co.
Denton, K.K., AUTEC, AL -103-28, FL -16851

Harvey, L.R., AUTEC; FL -16787

Jackson, C.L., AUTEC; TX -16531

Klein, E.L., AUTEC, DC -3563

Schmidt, A.J., AUTEC PA -11152E

Scott, R.E., AUTEC; MI -8075, FL -15118

Missile and Surface Radar
Kisko, R.P., Moorestown, N.J., NJ -21840

Landry, R.J. Moorestown, N.J.; CT -9634

Government
Communications Systems
Cochrane, S.A., Camden, N.J.;CA-02139

Picture Tube Division
Stanton, G.W., Scranton, Pa., PA -023735E

Promotions

Missile and Surface Radar
H. Anderson from Unit Manager, Design and
Development to Manager, TRADEX Site
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Bruno F. Melchionni was recently appointed
Manager, Antenna Engineering, for Broad-
cast Systems. He is headquartered at the
Gibbsboro, N.J. facility where broadcast
antennas for radio and television are
designed and built. Previously, Mr.
Melchionni was Manager, Systems
Engineering and Custom, Repair and
Engineering Shop, a position he had held for
four years. Originally joining RCA in 1941,
he has served in various engineering
management capacities, including
positions in video tape engineering, tv film
systems, and drafting and engineering stan-
dards. Mr. Melchionni is a member of the
Society of Motion Picture and Television
Engineers.

Burris Heads Corporate Staff Announcements
Engineering Education

Frank E. Burris was recently appcinted
Manager. Engineering Education, reporting
to Dr. William J. Underwood. Director,
Engineering Professional Programs. Dr.
Burris will guide and direct the Corporate
Engineering Education (CEE) unit located
at Cherry Hill, N.J. The CEE unit is
responsible for addressing the technical
education needs of RCA's technical staff as
one means of enhancing RCA's technical
viability. The unit is perhaps best known for
its video tape education courses.

Dr. Burris was previously located at Bradley
University, Peoria, Ill., as Ass stant
Professor of Electrical Engineering and
Electrical Engineering Technology. He
received his urdergraduate and graduate
education in electrical engineering from the
Univ. of Cincir nati. Dr. Burris has been
extremely active in engineering
professional education and is currently Vice
President-Geographic Councils and a
Member of the Executive Committee of the
American Society for Engineering Educa-
tion.

G. Boose from Senior Member, Engineering
Staff to Unit Manager, Design and Develop-
ment Engineers.

G. Brady Senior Member, Engineering Staff
to Unit Manager, Engineering Systems Pro-
ject.

Peter Fletcher from Senior Member,
Engineering Staff to Unit Manager,
Engineering Systems Project.

Barry Gelman from Principal Member,
Engineering Staff to Unit Manager,
Engineering Systems Project.

J. Gross from Senior Member, Engineering
Staff to Unit Manager, Engineering Systems
Project.

R. Kingsley from Senior Member, Engineer-
ing Staff to Unit Manager, Engineering
Systems Project.

Robert Main from Senior Member,
Engineering Staff to Unit Manager, D&D
Engineers.

Stephen McCammon from Principal

Member, Engineering Staff to Unit Marager,
Engineering Systems Project.

G. Mondie from Senior Member, Engineer-
ing Staff to Unit Manager, Engineering
Systems Project.

A. Whitley from Unit Manager, ESP to
Manager, Engireering.

Solid State Division
Michael J. Meehan from Leader, Technical
Staff, to Manager, Wafer Fabrication Module
II, Findlay.

Consumer Electronics
Jack S. Fuhrar from Senior Member,
Engineering Staff to Manager, Signal Cir-
cuits.

M.W. Garlotte from Senior Member,
Engineer Staff to Manager, Instrument
Mechanical Engineering.

Solid State Division
Carl R. Turner, Division Vice President.
Integrated Circuits, announced the
organization as follows: Marvin B. Alex-
ander, Manager, Operations Control-IC,
Donald R. Carley, Manager, Automotive
Programs; Larry J. Gallace, Project
Manager, Quality and Re lability
Programs-IC. Harry B. Gould, Manager,
International IC Manufacturing; Ronald J.
Costlow, Manager, Solid State-RCA
Taiwan Ltd.; Stanley Rosenberg, Director,
Government and Hi Reliability IC Products.
Richard L. Sanquini, Director, IC Products:
John E. Schaefer, Manager, Domestic IC
Manufacturing. John E. Schaefer, Acting.
Palm Beach Gardens Operations, Joseph H.
Scott, Director. Integrated Circuit
Technology; Norman C. Turner, Manager,
Operations Planning-IC; and Robert A.
Donnelly, Administrator, Operations
Planning-IC.

Mr. Gould, while continuing his present
responsibili:y as Managing Director, RCA
Sendenan Berhad (Malaysia), is appointed
Manager, International IC Manufacturing.
Messrs. Gould and Costlow will report
administratNely to the appropriate sub-
sidiary management Vice President, In-
tegrated Ci suits, and the Manager, Inter-
national IC Manufacturing, respectively.

Mr. Scott, while continuing his present
responsibilit es under Gerald B. Herzog,
Staff Vice President, Technology Centers,
will report to the Division Vice President,
Integrated Circuits. for the Silicon on
Sapphire project.

Richard L. Sanquini, Director, IC Products,
announced the organization as follows:
Gerald K. Beckmann, Manager, MOS IC
Product Marketing; Michael S. Fisher,
Manager, IC Applications Engineering and
Test; Heshmat Khajezadeh, Manager, IC
Engineerino Seymour Reich, Manager,
Bipolar IC Marketing; and John R. Steiner,
Administrator, IC Products.

Michael S. Fisher, Manager, IC
Applications, Engineering and Test, an-
nounced the organization as follows: Wayne
M. Austin Leader, Technical Staff-
Consumer Bipolar IC's; Richard E. Funk,
Leader. Technical Staff-MOS Logic; Al A.
Key, Leader, Technical Staff-Memories,
Microprocessors and Software; George I.
Morton, Leader, Technical Staff-MOS
Custom and Timekeeping; Bruno J.
Walmsley, Manager, Test Technology:
Charles Engelberg, Leader, Technical
Staff-Test Technology-MOS; and Harold
Wittlinger, Leader, Technical Staff-
Industrial Bipolar IC's.

Heshmat hajezadeh, Manager, IC
Engineering announced the organization
as follows: Orest Harasymowych,
Administrator, Design Engineering;
Raymond A. McFarlane, Manager, Equip-
ment Techrology: Henry S. Miller, Manager,
IC Techno ogy Support, Arnold S. Rose,
Project Manager, Advanced Processing;
Alfredo S. Sheng, Manager, Bipolar IC
Design Engineering; and Alexander W.
Young, Marager, MOS Design Engineering.
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Raymond A. McFarlane, Manager, Equip-
ment Technology, announced the organiza-
tion as follows: Alva B. Horn, Leader,
Technical Staff-Assembly; Dieter G.
Krawitz, Manager, Equipment Technology
Shop; and Robert C. Shambelan, Leader,
Technical Staff, Wafer Processing.

Henry S. Miller, Manager, IC Technology
Support, announced the organization as
follows: Martin A. Blumenfeld, Leader,
Technical Staff-Palm Beach Gardens
Reliability, Robert E. Kleppinger, Leader,
Technical Staff-Findlay Reliability;
Kenneth J. Orlowsky, Leader. Technical
Staff-IC Model Shop; Murray A. Polinsky,
Leader, Technical Staff-BIC Wafer
Processing: and Maurice 1. Rosenfield,
Leader, Technical Staff-IC Packaging and
Assembly.

Alfredo S. Sheng, Manager, Bipolar In-
tegrated Circuits, Design Engineering, an-
nounced the organization as follows:
Thomas H. Campbell, Leader, Technical
Staff-Product Development-Industrial
BIC; Merle V. Hoover, Leader. Technical
Staff-Circuit Design; Lewis A. Jacobus,
Manager, BIC Reliability; Stephen C.
Ahrens, Leader, Technical Staff-Reliability
Programs Coordination; Max Malchow,
Leader, Technical Staff-Circuit Design-
Communications; and Sterling H. Middings,
Leader, Technical Staff-Product Develop-
ment, Consumer BIC.

Alexander W. Young, Manager, MOS Design
Engineering, announced the organization
as follows: Richard P. Fillmore, Leader,
Technical Staff-Memory Projects; Edwin
M. Fulcher, Leader, Technical Staff-
Support Systems Design; Mark D. Holbrook,
Leader. Technical Staff -1800 Design; Joel
R. Oberman, Leader. Technical Staff -8085
Design: George J. Waas, Manager, CMOS
Design Engineering and Support: and
Nicholas Kucharewski, Leader, Technical
Staff-CMOS Circuit Design.

John E. Schaefer, Manager, Domestic In-
tegrated Circuit Manufacturing, announced
the organization as follows: Philip C.
Baumann, Manager, Plant Engineering-
Findlay, Alco D. Brown, Manager. Wafer
Fabrication-IC's; George W. Barclay,
Manager. Wafer Fabrication-LD., Michael
J. Meehan, Manager, Wafer Fabrication-
MOS; Raymond C. Reutter, Manager, Wafer
Fabrication-Bipolar; Richard E. Davey,
Manager, IC Operations Support and Stem
Manufacturing; John E. Schaefer, Acting,
Palm Beach Gardens Operations: John C.
LaBerge, Manager, Assembly/Test and
Warehouse-IC's; John G. Nussear,
Manager, Engineering and Test-MOS;
David D. Pfeiffer, Manager, Industrial
Relations-Findlay: John A. Schramm,
Manager, Quality and Reliability Assurance;
and John H. Sundburg, Manager, Engineer-
ing and Test-Bipolar.

RCA Records Division
Robert D. Summer, President, RCA Records
Division, announced the organization as
follows: Herb S. Heiman, Division Vice
President, Public Affairs; David A.
Heneberry, Division Vice President. Music
Service; Melvin Ilberman, Division Vice

Forty-seven RCA engineers and scientists honored
for 1977 research achievements
Dr. William M. Webster, Vice President, RCA
Laboratories, Princeton, announced that
forty-seven scientists have been given RCA
Laboratories Outstanding Achievement
Awards for contributions to electronics
research and engineering during 1977.
Recipients of individual awards are:

Liston Abbott, for development of tech-
niques that double the television transmis-
sion capacity of satellites.

Vladimir S. Ban, for fundamenta, studies
and novel concepts leading to the aesign of
improved chemical -vapor -deposition reac-
tors,

John C. Hartmann, for improved tech-
niques in the fabrication of aperture masks.

Ronald L. Hess, for leadership and
technical contributions resulting in signifi-
cant improvements in television chassis
design.

Richard J. Hollingsworth, for the design
and development of advanced CMOS/SOS
memories.

Alfred C. Ipri, for continuing innovative
contributions to the development of silicon -
on -sapphire devices, circuits and process
technology,

Ramon U. Martinelli, for important con-
tributions to the design of fast, high power
switching transistors.

Samuel H. McFarlane, III, for developing a
comprehensive system of automatic control
and data acquisition of materials
characterization.

Joseph C. Toner, for resourceful and
innovative application of financial tech-
niques to analysis and control of semicon-
ductor processing.

Recipients of team awards are:

Abe Abramovich, Thomas F. Lenihan,
Angelo R. Marcantonio, Paul M. Russo, and
Chih C. Wang, for contributions leading to
imaginative applications of micro-

processors to automated manufacturing
systems.

Richard A. Auerback, Frederick E. Brehn,
Donald F. Fraipont, Evelyn Jetter, and
Richard A. Sunshine, for contributions
leading to applications of semiconductor
processing, monitoring and control
systems.

Phyllis B. Branin, Simon Larach, and
Gerald S. Lozier, for contributions to the
development of cost-effective techniques
for the fabrication of color kinescope
screens of low reflectivity.

Jon K. Clemens, John H. Reisner, and
Howard G. Scheible, for contributions
leading to a two-hour RCA VideoDisc,

Seymour H. Cohen, Joseph J. Fabula,
Charles D. Mulford. Stephen G. Policastro,
and Dae Shik Woo, for contributions to
long-term studies and implementation of
radiation -hardened technologies for com-
plementary MOS arrays.

Michael A. Colacello, Ralph DeStephanis,
and Harvey 0. Hook, for contributions to the
development of a unique welding system for
kinescope guns.

Pabitra Datta, Leonard 0. Fox, and Hiro-
Hisa Kawamoto, for contributions to the
development and implementation of a novel
capacitive VideoDisc that eliminates the
need for coatings.

John W. Gaylord, Burnett H. Sams, James
A. Goodman, Arthur Kaiman. and Thomas
M. Stiller, for contributions to the develop-
ment of a real-time computer system for
semiconductor process monitoring and
control

Steven J. Hallermeier, William J. Maddox,
Raymond T. Marsland, and Hemmige V.
Rangachar, for contributions to the
development of a new automatic shadow -
mask -production process control system.

Hans P. Kleinknecht and Heinrich Meier,
for contributions to the novel application of
optical technologies to the processing of
semiconductors.

President, Business Affairs and Associated
Labels; Arthur C. Martinez, Division Vice
President, Finance and International;
William M. O'Grady, Division Vice President,
Industrial Relations; Ernest P. Ruggieri,
Division Vice President. Manufacturing; and
Robert D. Summer, Acting, RCA Records-

RCA Laboratories
Richard E. Quinn, Staff Vice President,
Administration, announced the formation of
the Thin Film Technology activity. John L.
Vossen, Jr. is appointed Manager, Thin Film
Technology.

Peter Friederich, Staff Vice President, In-
dustrial Relations, announced the appoint-
ment of Henry J. Liszewski as Manager,
Organization Development and Training.

Robert H. Dawson has been appointed
Manager, New Technology Applications
Research, Television Research Laboratory.

Distributor and
Special Products Division
J.J. Badaracco announced the appointment
of Paul R. Slaninka, Division Vice President,
Marketing and Consumer Products
Management.
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Twelve at Burlington get TE award

The electro-optic multiplexer is a small, militarized tv camera
designed to convert the output of a FLIR (Forward -Looking Infra -
Red) sensor to the serial format required forty display. Designed by
engineers at Automated Systems, it brought them a TE award and
an additional $1M contract for Burlington. Pictured are (from left)
H.J. Woll, Div. VP and General Manager; team members R.C.
DeMeo, D.J. Morand, R.E. Rooney, J.J. Klein, A.P. Arntsen, R.A.
Dalrymple. L. Arlan; F.F. Martin, acting Chief Engineer: R.G.
Spiecker, J.C. Tranfaglia, B.T. Joyce, and R.P. Sharland.

Automated Systems cited for contributions
to the National Military Information Center
The Defense Intelligence Agency recently presented an award to
RCA Automated Systems for its performance in support of the
National Military Information Center (NMIC).

Automated Systems has been working on two successive programs
to modernize the NMIC since October of 1974. Specifically,
Automated Systems developed a real-time computer -based
system, called DIPOLES, that is used to process time -sensitive
intelligence data; then they applied techniques developed on the
DIPOLES project to configuration management, system testing,
and baseline documentation for the rest of the NMIC support
system.

In a ceremony at the Burlington plant, several NMIC team members
presented their award to H.J. Woll, Division Vice President and
General Manager. Team members present for the ceremony were
M. Coyne, W. Cleveland, F. Chaples (Program Manager, holding
award plaque), R. Coulter. R. Lindley, and R. BItteker. Team
members J. Kryzanowsky, C. McKusick, and R. Monat were not a:
the presentation.

Hurst gets writing award

Wins writing awerd-Robert N. Hurst (center), Administrator,
Broadcast Technical Training, for Broadcast Systems, Camden, is
congratulated upon winning a 1973 Neal Editorial Achievenne-it
Award for a series of articles on digital television that appeared in a
leading trade magazine. The Neal awards, given by American
Business Press, Inc., are the highest in the business publication
journalism field. Offering congratulations are (left) J.E. Hill,
Division Vice President and General Manager, and John W.
Wentworth, Manager, Broadcast Technical Training, Broadcast
Systems.

ATL recogn zes authors/inventors
Advanced Technology Laboratories, Camden held its annual
authors/inventors reception in April. Members of ATL who
published a paper, gave a presentation, or got a paten: during 197'
were honored at irte event.
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Scranton Engineer wins
cost reduction award

William A. Parker, a member of the
Technical Staff of the Process/Production
Engineering department of Picture Tube
Division's Scranton plant, was named CRS
(Cost Reduction Savings) Man of the Year
by that plant's CRS committee. A

spokesman for the committee said Parker
was "responsible for major savings in his
immediate work area," and that "his involve-
ment in expediting the operation of
sophisticated test equipment resulted in
increased capabilities and improved tube
quality." Parker's prize was a trip to Hawaii.

Professional activities
Rittenhouse a chairman
for Electronics Industries Association

John D. Rittenhouse, Division Vice Presi-
dent and General Manager, has been
elected Chairman, Government Com-
munications Council, for the Electronics
Industries Association. The Electronics In-
dustries Association is a national industrial
organization of US electronics manufac-
turers. As Chairman, Mr. Rittenhouse is
responsible for leading discussions among
senior industry and government leaders on
defense industry needs.

Abramovich receives
Best Paper Award

Abe Abramovich, Systems Research, RCA
Laboratories, Princeton, recently received a
Best Paper Award at the IEEE's Industrial
Electronics and Control Instrumentation
Society annual conference in Philadelphia.
Written with Tom Crawford, an MIT -co-op
student, the paper is entitled "An Inter-
polating Algorithm for Control Applications
on Microprocessors."

Society of Women Engineers
Ed. note: Two engineers from RCA Laboratories, Princeton, have been elected officers for
the New Jersey Section of the Society of Women Engineers. Daryl A. Doane, Member,
Technical Staff, Integrated Circuit Technology will be President and Karen A. Pitts,
Member, Technical Staff, Systems Analysis Research, will be Secretary.

Yvonne C. Brill, recently appointed Manager of NOVA Propulsion for Astro Electronics,
Princeton, will be stepping down as President of the New Jersey Section. We askedher to

tell us more about the Society.

The Society of Women Engineers (SWE)
was founded in 1949-50 when small groups
of women engineers started meeting in New
York, Boston, Philadelphia, and
Washington, D.C. SWE was incorporated in
1952 as a professional, non-profit,
educational service organization of
graduate women engineers and women with
equivalent engineering experience.

In 1961, the Society established its head-
quarters office in the United Engineering
Center in New York City. There SWE joined
many of the engineering societies
representing specific engineering dis-
ciplines, as well as the Engineers' Joint
Council and the Engineers' Council for
Professional Development. SWE en-
courages each member to belong to and
actively support the society representing
her particular field of engineering.

The specific objectives of the Society are:

 To inform young women, their parents,
counselors, and the general public of the
qualifications and achievements of
women engineers and the opportunities
open to them.

 To assist women engineers in readying
themselves for a return to active work after
temporary retirement.

 To serve as a center of information on
women in engineering.

 To encourage women engineers to attain
high levels of education and professional
achievement.

SWE presently has an international
membership of 5200 women. There are SWE
sections in 24 areas of the United States and
Student sections have been chartered in 114
colleges, universities, and engineering in-
stitutes.

The New Jersey Section of SWE has ap-
proximately 100 members, including three
chartered student sections at Princeton,
Rutgers, and Stevens Institute. In keeping
with SWE objectives, the section provides
speakers to assist high school career days
and sponsors open houses with local in-
dustries for area high school students. Sec-
tion members representing all engineering
disciplines are available on a one-to-one
basis for counseling young women in-
terested in pursuing engineering as a

More staff announcements

Patent Operations
John V. Regan, Vice President, Patent
Operations, Princeton, announced the ap-
pointment of Birgit E. Morris, Senior Manag-
ing Patent Attorney: Paul J. Rasmussen,
Senior Managing Patent Attorney: Joseph
S. Tripoli, Managing Patent Attorney: and
Robert A. Hays as Resident Patent Counsel,
Cherry Hill.

Government
Communications Systems
Joe Terry Swaim has been appointed
Manager of the TENLEY/SEELEY
programs.

Advanced Technology
Laboratories
James A. Colligan has been appointed
Manager of Marketing.

Engineering Professional
Programs
William J. Underwood, Director, Engineer-
ing Professional Programs, announced the
organization as follows: Frank E. Burris,
Manager, Engineering Education. Hans K.
Jenny, Manager, Technical Information
Programs, and Mary Ann Keating,

Administrator, Engineering Professional
Programs.

Astro-Electronics
P.J. Martin, Director, Marketing and Ad-
vanced Planning, announced the appoint-
ment of Frank C. Weaver as Manager,
Marketing Administration.

Service Company
Donald M. Cook, Division Vice President,
Government Services, Marketing, an-
nounced the appointment of Joseph Kingan
as Manager of Planning and Development
for Navy Contracts.
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Obituaries
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Albert C. Grimm, a retired engineer who
held several key responsibilities during his
34 years with the Industrial Tube Division of
Electronic Components, Lancaster, Pa.,
died April 28.

Mr. Grimm joined the RCA Tube Division in
1940 and was assigned to the development
of receiving and small power tubes. In this
assignment from 1940 to 1951, he advanced
to engineering leader. From 1951 to 1953,
Mr. Grimm directed the advanced develop-
ment effort on the RCA color kinescope. He
was promoted to Product Manager for the
Color Kinescope Product Group in 1954. In
1955, he was named Manager of Advanced
Development in the Power Tube Group. In
this capacity he was responsible, among
other programs, for the development of the
RCA 8568 klystron used to power the Stan-
ford two-mile linear accelerator. From 1960
to 1967, he was manager of engineering and
operations manager for RCA super power
tubes, and then was appointed
Administrator of Industrial Tube Market
Development. He had six patents on elec-
tron tubes and associated devices, and he
published several papers on the
developmental aspects of vacuum tubes. He
was a member of Tau Beta Pi and Eta Kappa
Nu, and was a senior member of the IEEE.
He was a registered professional engineer in
the State of Pennsylvania.

Retirements

Dr. Otis D. Black retires at the end of June,
after 36 years with RCA. Since he started
with RCA in 1942, he has worked in the
Central Engineering Materials Laboratory,
Government Communications Systems,
and predecessor organizations. "Doc"
Black is a recognized solder expert in RCA.
In the early days of printed wiring he made
contributions in the areas of laminates,
photoresists, and etchants, as well as on
fluxes, solder, and cleaning solvents. This
variety of involvement continued with the
advent of multilayer boards, until his retire -

Bertram A. Trevor, a well-known and
-espected RCA engineer for 43 years, died
on January 11, 1978.

-le first worked at the original RCA
Laboratory at Riverhead, N.Y., in research,
design and development for the worldwide
short-wave system and also pioneered ir the
application of UHF waves and early wide -
band TV relay systems. During World War II
Mr. Trevor headed a project resulting in a
pulse position modulated, eight channel
microwave radio relay system for the U.S.
Signal Corps. In 1951, he transferred to the
RCA Laboratories at Princeton, where he
was Project Manager of the COSMOS Pro-
ject, a study for naval communications ir the
70s. For his work on this project he received
the "RCA Inventive" Award. In 1958 he went
to RCA Surfcomm at Vail, Arizona as staff
consulting engineer and IR&D coordinator.
In 1965 he became Senior Member,
Technical Staff, for projects at Camden and
Moorestown. He worked on the MALLARD
study and received an award for Excellence
in Performance on that assignment. In 1969
Mr. Trevor joined the Astro-Electronics Divi-
sion as a senior scientist and engineer in the
Systems Engineering area. One of his last
efforts before retiring in 1971 was the
system study and design for the remove
control of the Apolla Camera left on the
moon by the last LEM flight. He was a Fellow
of the IEEE and a member of Sigma Xi and
the IEEE Professional Group on Com-
munications Technology.

ment. "Doc" Black has patents in the printed
wiring field, and has contributed to or
authored various technical publications. He
has been a member of solderability com-
mittees of the Institute of Printed Circuits
and the American National Standards In-
stitute, Sigma Xi, Phi Beta Kappa, and Phi
Lambda Upsilon. He is listed in American
Men of Science.

Ken Weaber will retire at the end of July after
37 years with RCA. For the past seventeen
years he has been with the Central
Engineering Parts Application activity,
Government Communications Systems.
Prior to that he had been with the (then)

Arthur W. Vance, former head of the RCA
Princeton Systems Laboratory, and the first
Chief Engineer of Astro Electronics
Products Division, died on March 20, 1978.

While at RCA, Vance's achievement and
behavior were legendary. It was out of his
Systems Lab that the pioneer designs and
subsystems configurations came, which
demonstrated the usefulness and feasibility
of the communications for SAMOS-type
reconnaissance satellites. His group also
was the wellspring for the first RCA
operational satellites. In the early 1950s, for
the "Black Cat" project, he and his Systems
group, together with MIT's Stark -Draper
Instrumentat.on Laboratory, developed the
complete subsystem configuration that is
the essence for the weapons system whose
implementation is currently in national
debate today. Under Dr. V.K. Zworykin,
Vance made vital contributions in the
development of the electron microscope
and to the engineering success of present-
day television. Vance's wartime activities
were in the development of analog com-
puters for gun detectors, the first of which
was hurriedly sent to the ETO for usage
against the Buzz Bombs and V -2s. Es-
tablished were design principles found in
most of the subsequent fire control systems.
His group designed and built what is
believed to be the longest precision analog
computer ever made in this country: the
Typhoon GL}ded Missile Flight Simulator.

Home Instruments Division and the Ad-
vanced Development Section. Since mid -
1965, he has had primary responsibility for
developing specifications, conducting
qualification tests, and screening integrated
circuits for High -Reliability programs. At the
Home Instruments Division Ken was in-
volved in the evaluation and qualification of
a wide range of magnetic, inductive, and
capacitive components. He did basic work
in developing a widely used line of
chemically activated fuses. In Advanced
Development, he was an optical engineer,
having primary responsibility for the
developmen: of a white room facility and for
the production of lenses and mirrors.
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Cmdn.) RE -23-4-7

NBC ENGINEERING-a fifty-year history-
W.A. Howard (NBC, NY) RE -23-1-6

NBC ENGINEERING-a fifty-year history
(Part II)-W.A. Howard (NBC, NY) RE -23-
2-15

VIDEO TAPE EDITING systems using
microprocessors-K.J. Hamalainen (Broad-
cast, Cmdn.) RE -23-4-5

Communications
ANIK B, the new Canadian domestic
satellite-R.W. Hoedemaker (AE, Pr.),
D.G. Thorpe (Telesat Canada) RE -23-1-16

COMMUNICATION MULTIPLEXING-H.E.
White (Labs, Pr.) RE -23-3-3

COMMUNICATION TECHNOLOGY: an
overview-K.H. Powers (Labs., Pr.) RE -23-
3-2

DIGITAL PROCESSING OF MUSIC for
satellite communication-R.J. Klenschl E.S.
Rogers (Labs, Pr.) RE -23-3-10

LINEAR PREDICTIVE CODING to reduce
speech bandwidth-J.R. RichardsIW.F.
Meeker (ATL, Cmdn.) RE -23-4-9

LONG -LINE COMMUNICATION IN
ALASKA-then and now-J.L. Rivard
(Alascom, Anch.) RE -23-4-8

MILITARY COMMUNICAT ONS-review
and survey-J.L. SantorolJ.3. Howe (GCS,
Cmdn.) RE -23-3-6

RCA GLOBCOM'S COMMUNICATION
NETWORK, managing through
automation-A. Acampora (Globcom, NY)
RE -23-3-1

RCA GLOBCOM'S ROLE as a carrier-J.C.
Hepburn (Globcom, NY) RE -23-3-8

RECEIVER VOTING extends two -way -radio
range-D.D. Harbert' R.G. Ferrie (Mobile,
Mdw. Lands) RE -23-3-5

SATELLITE SERVICE, diversified, cost-
effective for the 80s-J.E Keigler (AE,
Pr.)ID.S. Bond (ret.) RE -23-3-9

STATISTICAL CODING METHODS speed
up image transmission-M.E. Logiadis
(Globcom, NY) RE -23-4-4

VOICE/DATA SWITCHING SYSTEM,
computer-controlled-D. Segrue (Glob -
corn, NY) RE -23-1-22

WHITHER TELECOMMUNICATIONS?-H.
Staras (Labs, Pr.) RE -23-3-11

Economics
ECONOMIC MODELING: how Solid State
Division predicts business trends-L.O.
Brown (SSD, Som.) RE -23-2-1

PRICE applied-F.R. Freiman (GSD,
Ch.HI.) RE -23-2-3

Energy
CONTROLLED THERMONUCLEAR FU-
SION, the tokamak approach lo-H. Hendel
(Pr. Uni.) RE -23-2-6

Electronic Systems
and Instruments
HIGH-PERFORMANCE SWITCHING
REGULATOR for advanced spacecraft
power systems-C.A. Berard (AE, Pr.) RE -
23 -4-11

SENSURROUND-building your own
earthquake-E.G. Holub (SvCo, Ch.HI.) RE -
23 -2-8

UNIVERSAL SECOND -BREAKDOWN
TESTER: electronic cage for the power
dragon-H.R. Ronan (SSD, Mtp.) RE -23-4-
10

Engineering as
a profession
ENGINEERING INFORMATION SURVEY
results-H.K.JennyjW.J. Underwood (R&E,
Ch.HI.) RE -23-3-20

ENGINEERING INFORMATION SURVEY
results-Part 2-H.K. JennyIW.J. Un-
derwood (R&E, Ch.HI.) RE -23-4-13

ENGINEERING INFORMATION SURVEY
results: Part 3-D.E. HutchisonIJ.C.
PhillipsIF.J. Strobl (R&E, Ch.HI.) RE -23-5-
17

MIT -RCA RESEARCH REVIEW CON-
FERENCE, the 1977-H. Jenny (R&E,
Ch.HI.) RE -23-2-16

ZEN, EXISTENTIALISM, AND ENGINEER-
ING-H. Kleinberg (R&E, Ch.HI.) RE -23-2-4

Hobby Articles
ELECTRONIC SPEED CONTROL for model
railroad realism-W.S. Pike (Labs, Pr.) RE -
23 -5-18

MODEL AIRCRAFT-a total hobby-R.
Lieber (MSR, Mrstn.) RE -23-1-22

TYPE -BY -MOUTH SYSTEM aids
handicapped student-P.B. Pierson (GCS,
Cmdn.) RE -23-6-24

Industrial Engineering/
Operations Research
COMPUTERIZED INVENTORY MANAGE-
MENT at RCA Records,-D. MishralA.
Devarajan (Records, 'pls.) RE -23-3-18

SPARES ALLOCATION for cost-effective
availability-H.R. Barton (GCS, Cmdn.) RE -
23 -4-1

94



Microcomputers
ATMAC MICROPROCESSOR, the-A.D
FeigenbaumIW.A. Helbig1S.E. Ozga (ATL.
Cmdn.) RE -23-1-18

BINARY -TO -DECIMAL CONVERSION
program for a programmable calculator-
A.R. Campbell (MSR, Mrstn.) RE -23-2-18

CVM-A MICROPROCESSOR -BASED in-
telligent Instrument-C.T. Wu (Labs, Som.)
RE -23-1-5

MICROCOMPUTER CONTROL for the car
of the future-E.F. Belohoubek1J.M.
CusackIJ.J. RiskolJ. Rosen (Labs, Pr.) RE -
23 -1-10

SINGLE -WIRE ALARM SYSTEM using the
COSMAC Microtutor-T.F. Lenihan (Labs
Pr.) RE -23-3-19

Patents
AMERICAN PATENT SYSTEM, develop-
ment of the-B.E. Morris (Pat. Ops., Pr.) RE -
23 -1-19

Radar
ADVANCED ANTENNA DESIGN reduces
electronic countermeasures threat-R.M.
Scudder (MSR, Mrstn.) RE -23-5-12

AIRBORNE WEATHER RADAR, color dis-
plays for-R.H. AireslG.A. Lucchi (Av., Van
Nuys) RE -23-5-13

DIGITAL COMPUTER SIMULATION of
radar systems-J. Liston1G.M. Sparks
(MSR, Mrstn.) RE -23-5-15

EARLY DAYS OF RADAR, the-T.G.
Greene (GSD, Ch.HI.) RE -23-5-1

ENHANCING ANTENNA PERFORMANCE
through multimode feeds and distribution
networks-C.E. Profera (MSR, Mrstn.) RE -
23 -5-11

MICROCOMPUTERS FOR RADAR
SYSTEMS-B.D. BuchIS.L. ClapperIR J.
Smith (MSR, Mrstn.) RE -23-5-7

MICROWAVE POWER AMPLIFIERS,
pulsed GaAs FET, for phased -array radars-
R.L. Camisa1J. GoelIH.J. WolksteinIR L.
Ernst (Labs, Pr.) RE -23-5-9

PROGRAMMABLE PROCESSORS and
radar signal processing-an applications
overview-M.G. Herold' M.G. Timken (MSR,
Mrstn.) RE -23-5-8

RADAR CONCEPTS, an introduction to-B.
Fell (MSR, Mrstn.) RE -23-5-10

RADAR PROCESSING ARCHITECT-
URES-W.W. Weinstock (MSR, Mrstn.) RE -
23 -5-5

RADAR WEAPON SYSTEM SENSORS-a
system/technology perspective-A.S.
Robinson (MSR, Mrstn.) RE -23-5-3

RADIO VISION-the early days of radar at
RCA-I. Wolff (ret.) RE -23-5-2

RANGE INSTRUMENTATION, economical
approaches to updating-R.G. Higbee
(MSR, Mrstn.) RE -23-1-13

SHORT-RANGE RADAR for measuring
blast -furnace burden height-H.C. Johnson
(Labs, Pr.)IR.W. Paglione (Labs, Pr.)IJ.P.
Hoffman (Beth. Steel) RE -23-5-14

SUPER -POWER RADARS, solid state for-
D.L. Pruitt (MSR, Mrstn.) RE -23-5-10

Software
COMPUTER SCIENCE, starting yourself
out in-P. Anderson (cons.) RE -23-6-11

FLECS-A structured programming
language for minicomputers-T. Stiller
(Labs, Pr.) RE -23-6-17

INTERPRETER CONTROL PROGRAM
simplifies automatic testing-A. Marcar-
tonio (Labs, Pr.) RE -23-6-20

MICROCOMPUTERS in picture tube
manufacturing -T.F. Simpson (PTD,
Lanc.)IJ.P. Wittke (Labs, Pr.) RE -23-6-1

MINI VS MICROPROCESSOR
SOFTWARE-K. Schroeder (Labs. Pr.) RE -
23 -6-22

PERVASIVE COMPUTER, the-P.M.
RussolC.C. Wang (Labs, Pr.) RE -23-6-5

PROGRAMMING in CHIP -8-H. Kleinberg
(R&E, Ch.Hr.) RE -23-6-12

RESOURCES AVAILABLE for learning
computer science-L. Shapiro (R&E,
Ch.HI.) RE -23-6-10

SOFTWARE COSTS, using PRICE S to
estimate-F. Freiman (GSD, Ch.HI.) RE -23-
6-23

SOFTWARE, what is?-S.A. Steele (MSR,
Mrstn.) RE -23-6-4

SOFTWARE, why every engineer should be
interested in-J.C. Volpe (MSR, Mrstn.) RE -
23 -6-2

SOFTWARE, why not do it with-L.A.
SolomonID Block (SSD, Som.) RE -23-6-6

TEST DATA ANALYSIS, a unified approach
to-M. Gianfagna (Labs, Som.) RE -23-6-46

Solid State
Circuits and Devices
BI-MOS TECHNOLOGY produces a univer-
sal op amp-H. Khajezadehl B.J. Walmsley
(SSD, Som) RE -23-3-12

CMOS RELIABILITY-L.J. Gallace (SSD,
Som)IH._. Pujol (SSD, Som.)IE.M. Reiss
(SSD, Son)IG.L. Schnable (Labs, Pr.)IM.N.
Vincoff (SSD, Som.) RE -23-2-18

CMOS/SIS-a planar process that may im-
prove or SOS-C.E. Weitzel (Labs, Pr.) RE -
23 -2-9

FUTURE SHOCK in electronics-D. Shore
(GSD, Mrstn.) RE -23-1-1

HYBRID TECHNOLOGY-best supporting
actor-J.G. Bouchard (AS, Burl.) RE -23-2-
12

HYBRID TECHNOLOGY, a circuit designer
meets-B.T. Joyce (AS, Burl.) RE -23-2-10

HYBRICS-a look at the total cost-B.T.
Joyce (AS, Burl.) RE -23-2-11

HYBRIDS IN MODERN ELECTRONICS
SYSTEMS, the changing role of-J.A. Bauer
(MSR, Mrstn.) RE -23-2-14

LASER DIODES, current modulation of,
gives direct fiber-optic baseband tv-D.R.
Patterson (Labs, Pr.) RE -23-2-2

LSI TECHNOLOGY choices-J. Hilibrand
(GSD, Mrstn.) RE -23-1-15

MESFET LINEAR AMPLIFIER, 4-GHz,
computer optimization produces a high-
efficiency-F.N. SechilH.C. Huang (Labs,
Pr.) RE -23-3-7

SEMICONDUCTORS 1971-1981-ten-year
perspective-B.A. Jacoby (SSD, Som.) RE -
23 -1-3

SUPPLYING MICROCIRCUITS for govern-
ment end -use: risks and benefits-J.
Handen (SSD, Som.) RE -23-1-2

Television Receiver
ELECTRONIC DISPLAYS-E.O. Johnson
(Labs, Tokyo) RE -23-1-11

U.S. COLOR TELEVISION FUNDAMENT-
ALS-a review-D.H. Pritchard (Labs, Pr.)
RE -23-1-21

XL -100 XTENDEDLIFE CHASSIS, the-P.C.
Wilmarth (CE, !pls.) RE -23-1-17

95



Author Index

Alascom

(Authors may have more than one article per category.)

Rivard, J.L. communications

Advanced Technology
Laboratories
Feigenbaum, A.D. microcomputers
Helbig, W.A. microcomputers
Meeker, W.G. communications
Ozga, S.E. microcomputers
Richards, J.R. communications

Astro-Electronics
Berard, C.A. electronic systems
Bond, D.S. (ret.) communications
Hoedemaker, R.W. communications
Keigler, J.E. communications

Automated Systems
Bouchard, J.G. solid state circuits
Joyce, B.T. solid state circuits

Avionics Systems
Aires, R.H. radar
Lucchi, G.A. radar

Broadcast Systems
Bendell, S.L. broadcasting
Hamalainen, K.J. broadcasting
Luther, A.C. broadcasting
Oursler, L.L. broadcasting
Sauer, D.A. broadcasting
Siukola, M.S. broadcasting
Zborowski, R.W. broadcasting

Consumer Electronics
Wilmarth, P.C. television receiver

Globcom
Acampora, A. communications
Hepburn, J.C. communications
Logiadis, M.E. communications
Segrue, D. communications

Government
Communications Systems
Barton, H.R. industrial engrg.
Howe, J.B. communications
Pierson, P.B. hobby
Santoro, J.L. communications

Government Systems
Division Staff
Freiman, F. software/economics
Greene, T.G. radar
Hilibrand, J. solid state circuits & devices
Shore, D. solid state circuits and devices

Laboratories

Belohoubek, E.F. microcomputers
Camisa, R.L. radar
Cusack, J.M. microcomputers
Ernst, R.L. radar
Gianfagna, M. software
Goel, J. radar
Huang, H.C. solid state circuits & devices
Johnson, E.O. television recever
Johnson, H.C. radar
Klensch, R.J. communications
Lenihan, T.F. microcomputers
Marcantonio, A. software
Paglione, R.W. radar
Patterson, D.R. solid state circuits & devices
Pike, W.S. hobby
Powers, K.H. communications
Pritchard, D.H. television receiver
Risko, J.J. microcomputers
Rogers, E.S. communications
Rosen, J. microcomputers
Russo, P.M. software
Schroeder, K. software
Sechi, F.N. solid state circuits & devices
Staras, H. communications
Stiller, T. software
Wang, C.C. software
Weitzel, C.E. solid state circuits & devices
White, H.E. communications
Wittke, J.P. software
Wolkstein, H.J. radar
Wu, C.T. microcomputers

Missile and Surface Radar
Bauer, J.A. solid state circuits & devices
Buch, B.D. radar
Campbell, A.R. microcomputers
Clapper, S.L. radar
Fell, B. radar
Higbee, R.G. radar
Herold, M.G. radar
Lieber, R. hobby
Liston, J. radar
Protera, C.E. radar
Pruitt, D.L. radar
Robinson, A.S. radar
Scudder, R.M. radar
Smith, R.J. radar
Sparks, G.M. radar
Steele, S.A. software
Timken, M.C. radar
Volpe, J.C. software
Weinstock, W.W. radar

Mobile Communications
Ferrie, R.G. communications
Harbert, D.D. communications

NBC

Howard, W.A. broadcasting

Patent Operations
Morris, B.E. patents

Picture Tube Division
Simpson, T.F. software

Records
Devarajan, A. industrial engrg.
Mishra, D. industrial engrg.

Research & Engineering
Hutchison, D.E. engrg. as a profession
Jenny, H.K. engrg. as a profession
Kleinberg, H. engrg. profession/software
Phillips, J.C. engrg. as a profession
Shapiro, L. engrg. as a profession/software
Strobl, F.J. engrg. as a profession
Underwood, W.J. engrg. as a profession

Service Company
Holub, E.G. electronic systems

Solid State Division
Block, D. software
Brown, L.O. economics
Gallace, L.J. solid state circuits & devices
Handen, J. solid state circuits & devices
Jacoby, B.A. solid state circuits & devices
Khajezadeh, H. solid state circuits & devices
Pujol, H.L. solid state circuits & devices
Reiss, E.M. solid state circuits & devices
Ronan, H.R. electronic systems
Schnable, G.L. solid state circuits & devices
Solomon, L.A. software
Vincoff, M.N. solid state circuits & devices
Walmsley, B.J. solid state circuits & devices

Others
Anderson, P. (cons.) software
Hendel, H. (Pr. Uni.) energy
Hoffman, J.P. (Beth. Steel) radar
Thorpe, D.G. (Telesat Canada) commun.
Wolff, I. (ret.) radar

yb



Editorial Representatives
Contact your Editorial Representative, at the extensions listed here, to schedule
technical papers and announce your professional activities.

Commercial Communications
Systems Division
Broadcast Systems
BILL SEPICH' Camden, N.J. Ext. 2156
KRISHNA PRABA Gibbsboro, N.J. Ext. 3605
ANDREW BILLIE Meadow Lands, Pa. Ext. 6231

Mobile Communications Systems
FRED BARTON' Meadow Lands, Pa. Ext. 6428

Avionics Systems
STEWART METCHETTE Van Nuys, Cal. Ext. 3806
JOHN McDONOUGH Van Nuys, Cal. Ext. 3353

Cablevision Systems
JOHN OVNICK* N. Hollywood, Cal. Ext. 241

Government Systems Division
Astro-Electronics
ED GOLDBERG' Hightstown, N.J. Ext. 2544

Automated Systems
KEN PALM' Burlington, Mass. Ext. 3797
AL SKAVICUS Burlington, Mass. Ext. 2582
LARRY SMITH Burlington, Mass. Ext. 2010

Government Communications Systems
DAN TANNENBAUM* Camden, N.J. Ext. 3081
HARRY KETCHAM Camden, N.J. Ext. 3913

Government Engineering
MERLE PIETZ* Camden, N.J. Ext. 2161

Missile and Surface Radar
DON HIGGS' Moorestown, N.J. Ext. 2836
JACK FRIEDMAN Moorestown, N.J. Ext. 2112

Solid State Division
JOHN SCHOEN* Somerville, N.J. Ext. 6467

Power Devices
HAROLD RONAN Mountaintop, Pa. Ext. 633-827
SY SILVERSTEIN Somerville, N.J. Ext. 6168

Integrated Circuits
FRED FOERSTER Somerville, N.J. Ext. 7452
JOHN YOUNG Findlay, Ohio Ext. 307

Electra -Optics and Devices
RALPH ENGSTROM Lancaster, Pa. Ext. 2503

Consumer Electronics
CLYDE HOYT'Indianapolis, Intl. Ext. 5208
FRANCIS HOLT Indianapolis, Ind. Ext. 5217
PAUL CROOKSHANKS Indianapolis, Ind. Ext. 5080
DON WILLIS Indianapolis, Ind. Ext. 5883

SelectaVision Project
ROBERT MOORE Indianapolis, Ind. Ext. 3313

RCA Service Company
JOE STEOGER* Cherry Hill, N.J. Ext. 5547
RAY MacWILLIAMS Cherry Hill, N.J. Ext. 5986
DICK DOMBROSKY Cherry Hill, N.J. Ext. 4414

Distributor and
Special Products Division
CHARLES REARICK* Deptford, N.J. Ext. 2513

Picture Tube Division
ED MADENFORD* Lancaster, Pa. Ext. 3657
NICK MEENA Circleville. Ohio Ext. 228
JACK NUBANI Scranton, Pa. Ext. 499
J.R. REECE Marion, Ind. Ext. 566

Alascom
PETE WEST* Anchorage. Alaska Ext. 7657

Annericom

MURRAY ROSENTHAL* Kingsbridge Campus, N.J. Ext. 4363

Globcom
WALT LEIS' New York, N.Y. Ext. 3655

RCA Records
JOSEPH WELLS* Indianapolis, Ind. Ext. 6146

NBC

BILL HOWARD* New York, N.Y. Ext. 4385

Patent Operations
JOSEPH TRIPOLI Princeton, N.J. Ext. 2992

Research and Engineering
Corporate Engineering
HANS JENNY* Cherry Hill, N.J. Ext. 4251

Laboratories
MAUCIE MILLER Princeton, N.J. Ext. 2321
LESLIE ADAMS Somerwille, N.J. Ext. 7357

*Technical Publications Administrator, responsible for
review and approval of capers and presentations.



RCA Engineer
A technical journal published by Corporate Technical CommJnications
"by and for the RCA engineer"

Printed in USA Form No RE -23-6


