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Software—the future is now

This special issue on computers and software is both timely and important to each
individual engaged in engineering of electronic components, products, and
systems. Its message is simply stated—the knowledge and application of computer
technology is a necessary skill for every engineer, and now is the time for acquiring
this skill.

The use of computers for engineering in the past was limited to highly specialized
applications, in part because of the high cost of computer time. However, there has
been an inexorable trend toward ever lower cost per computer operation, paced by
the ubiquitous integrated circuit and more recently by software developments,
such that this powerful tool is now a very cost-effective technique.

Today we have computer hardware which ranges from pocket units through micro
and mini to mainframe products with an almost unlimited problem-solving
capability. Software systems have evolved to the point where the computer user no
longer need be a full-time specialist in programming. However, the disturbing gap
between hardware and software specialists must be bridged by more than the
relatively few individuals who do so today if we are to grow as a cost-effective
company in our highly competitive industry.

Clearly we face a need for self-renewal somewhat akin to the conversion from
vacuum tube to transistor skills of the 1950s. Many of us fear the software area,
primarily out of ignorance. It is clear that this need not be so, since the
programming art has evolved to an organized discipline that can be learned and
used as a skill much as we learned other engineering basics as students.

The message should be clearly understood. Hardware engineers no longer can
afford toignore the software discipline. Itis their future as individuals and it is RCA'’s
future as well. This issue should help show you the way to make software part of
your future.

William C. Hittinger
Executive Vice President
Research and Engineering
New York, NY




Do it in software
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— Why?

It's cost-effective, and that's how competitive products
must be designed. There are many other technical,
professional, and business reasons.

1,4 —

— When and where?

Right now, and in just about every product imaginable.
Today software represents as much as 80% of total
system development costs.

48, 57, 62, 68, 74 —

— How?

Learn software soon. Use one of the several formal and
informal paths available.

7, 12—

— What?

Vocabulary may pose an initial problem, but you’ll still
use your basic engineering problem-solving approach.

20, 28, 34, 39—

coming up

Each year, our anniversary issue highlights the most important technological
events of the year at RCA. The next one (Jun/Jul) will cover silicon-on-sapphire
semiconductors, very-large-scale integrated circuits, optical video disc memories,
digital television, and more.

Future 1ssues will have space technology, manufacturing, and energy themes.
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Why every engineer should be

interested in software

J. C. Volpe

An engineer’s basic job is to solve technical problems, and

software has become a necessary part of the bag of tricks.

Software has become an integral part of practically every
major system produced for the government and it is also
becoming an increasingly influential element of consumer,
commercial, and industrial applications. Just as traditional
hardware could not exist without wiring, few major
products or businesses can survive without an intimate
involvement in software and computers.

The software business
Computers and software are important to our customers and to us.

To begin with, our government customers recognize the
great degree of adaptability that comes from computers and
software. They are realizing that their systems will not
become obsolete as fast as they would have in the past.
Update and modification can be done without “cutting
metal.” However, industry and government customers are
concerned that they may be paying an undue price for using
this relatively immature field to achieve the rewards of
adaptability.

The attitude is somewhat different for commercial
products. For years, product planners had looked at all
kinds of gadgetry that may have had attractive sales appeal
but also were too complex for assembly and maintenance.
The difference today and in the near future is that with the
microprocessor and its associated software, we have the
best of all possible worlds. We can obtain a great variety of
sophisticated control with low-cost standard components.
Therefore, the product can be sophisticated and yet very
practically implemented—with areal payoff to the designer,
the manufacturer, and the customer.

From the supplier's viewpoint, the theoretical non-recurring
costs in software form an attractive business baseline. Once
a program is completed it can be used in any quantity of
production versions of the same product without additional
cost. Thus, software costs appear theoretically non-
recurring compared with the replication costs of
hardware—theoretically because most programs are ac-
tually updated or improved in some way from time to time.

Reprint RE-23-6-2
Final manuscript received April 4, 1978.

Developing a major software capability can affect a company's
entire organizational structure.

Another important aspect of the software business is the
capitalization and investment needed to support large
software programs. Beyond a minicomputer-sized software
job, a substantial program generation center is needed,
which includes the equipment—the basic computer with an
impressive array of peripherals—and a highly trained staff
to operate it.

Also, with software come new forms of data storage and
retrieval, libraries, vaults for master tapes, etc. So, as our
industry becomes involved in computer programming,
buying a computer and developing programs are only the
first stages of involvement. Changes have to occur in plant
layout, air conditioning, special power requirements,
specially furnished computer rooms, skills of personnel; in
other words, the whole organizational structure is affected.

The impact on engineers

One of the most significant of these changes—and the one
of maost interest in this paper—is the new skills required with
the transition to software.

Haraware engineers and programmers alike will have to make the
transition to computer science engineers.

Change, transition, and discipline all depend on people—in
this case, engineers and programmers. | think we already
have several experiences here at Moorestown thatillustrate
how engineers can make the transition. Some engineers
have made a concerted effort through training programs;
others took on-the-job training assignments and gradually
worked their way up in complexity to accomplishing a
journgyman-level effort in the software field; others were
more or less forced, by economic pressures, to learn
software. Of course, some engineers are exceptionally
gifted. They probably could change careers to biology or
chemistry if they so choose; such engineers have no
problem acquiring software skills.

In general, then, no matter how they are doing it, engineers
have been making the move toward software skills. They
have the mathematical and logical capabilities, can learn
the language, and thus begin to cope with the software
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Software engineering ranks are growing dramatically and steadily. RCA's largest engineer-
ing center, Missile and Surface Radar, has seen its percentage of software engineers grow

from 38% in 1974 to 58% in 1977.

world. After that, they have been applying time and etfortto
fill in the background on how the computer will work for
them and what specific language levels are required.

Of course, a mass changeover of engineers from one field to
another is neither desirable nor practicable. The switch has
to be one of varying pace and degree. Software is no
panacea for all system problems. The skills and track record
we have developed over the years in hardware designs
ought to temper the transition. We have to make clean
tradeoffs and determine whether a system orachangeina
system can be done more effectively and economically in
hardware, software, or a particular combination of the two.
But this requires our technical staff to be as knowledgeable
in software as they are in hardware, and that's why
engineers, at all levels, must become more familiar with
software.

Preparation for the transition has to begin at all levels of
management. As much as time permits, every engineering
manager as well as every design, system, and test engineer
should go as far as possible in learning computers and
software. Very few engineers or engineering managers are
going to be isolated from the interface. And education is
probably the best way to cope.

Of course, people will be making adjustments from both
sides in this process. The success of software as a
technology will be realized when software is no longer
generated just by programmers, but rather by computer
science engineers. The distinction is that computer science
engineers should have a grasp of the total system re-
quirements. This represents yet another type of transition—
from the individual programmers of yesterday to the new
types of computer science engineers of tomorrow.

In a company like ours, the trend is toward larger numbers
of people working together on large projects. In a small
company, one man can usually do his programming his
way, but when 25 people at RCA are trying to fit all their
work together through one central processor, they have to
do it by the numbers, so to speak, using some common
rules.

Some problems in the past in large software efforts have
been caused dy the reluctance of individuals to adjust to
that interface problem. | don't like to think that the
management solution is to break the spirits of some
individuals. Getting all types of individual contributors to
pull together as a team is a much more worthy objective of
management. Software and hardware engineers must learn




to merge their talents, practice some reasonable conformi-
ty, and achieve success for themselves and their company.

Making the switch

The transition is certainly not a binary function even though
most software is binary. At the conceptual level, software is
perhaps not much different than hardware; functional
requirements can be defined without knowing details of
implementation. The software implementation level, of
course, requires in-depth skills in programming, coding,
testing, and hardware/software integration.

However, for most engineers the transition can be made
rather painlessly in the conceptual part of a software
program at one end, or the testing part at the other end. A
good circuit designer or system designer can easily start
and quickly become effective in either of those parts of
software, especially if he adds a limited amount of formal or
self education. From the employer's side of it, some small

Joe Volpe, as Chief Engineer of Missile and Surface Radar, has
direct responsibility for the largest concentration of software skills
in RCA.

Contact him at:
Engineering

Missile and Surface Radar
Moorestown, NJ

Ext. 3952

dip in the individual's efficiency curve will take place. But
that will be followed by the greater eventual etfectiveness of
that individual.

Of course, not everyone should attempt the full transition to
software, although most engineers should learn more about
it. If all barbers decided to become plumbers we would have
a problem getting our hair cut to our satisfaction, and the
same goes for every other craft. But there is a need for
software skills, and the percentage of engineers heading
into that field is growing.

Engineers at Moorestown are getting some help in making the
switch.

Once an experienced individual at Moorestown decides to
become software oriented, he can expect some help.
Specific individuals can qualify for special training to help
them through the transition. In our limited experience here
at Moorestown—three training programs—I| have no com-
plaints about the results. | believe our business operations
manager has no complaint either when he looks at our
dollar return for our investment in these individuals. The
turnaround has been fairly rapid (a matter of a few months)
for the formal training period and followup.

Those who do not qualify for special training programs still
have a wealth of resources (e.g., local schools, in-house
courses, books, periodicals) available to help them learn
computer technology. [Ed. note: Such resources are
described by L. Shapiro and P. Anderson in this issue.]

The future of software...and engineers

The opportunities in the software field will continue to grow
for the foreseeable future. MSR, for example, has seen a
doubling of the number of software engineers over the past
two years, with a corresponding limited growth on the
hardware design side.

Software as a discipline is already showing signs of
maturity. It has moved appreciably from the programming
artofthe 50s and 60s to an organized discipline containing a
discrete set of operations that can be learned and applied
effectively. We should see the payoffs of standardization as
hardware/software combinations become more miniatur-
ized and lower in cost. We will also see greater discipline
through the generation of modular software packages, just
like off-the-shelf chips at a sub-component level. Through
this maturing process, software will lose some of its
mystique and become an even more broadly applied
technology. It will not require the degree of specialization to
implement that it does today. This will represent the next
higher level of software design, and the non-computer
engineer will be able to cope with this “off-the-shelf”
software very satisfactorily if he obtains some basic educa-
tion in computer science.

Inthe past, some hardware engineers have resisted learning
the software discipline. Many have stopped with FORTRAN
or APL. That situation has to change. Ultimately, mastery of
computer science may become so fundamental to
engineering that it becomes a question of survival.




Computer science: how you can get involved

P. G. Anderson

Chances are that you're going to want to, or have to, work

with, or at least cope with, computers and software.

Why computer science?

First, let's establish why you should get involved with
computer science. The importance of this infant discipline
is illustrated by pointing out the successful applications of
supercomputers. But some more down-to-earth personal
experiences may bring it closer to home.

The pocket calculator that made our slide-rules obsolete
was first introduced to the public in 1971. The article | read
said,“However, it might be quite a while before they replace
the pencil and paper system, since present cost is about
$395. It is hoped the cost will come down soon.” (Popular
Electronics, May 1971.) Most of us waited until the price had
dropped by half, and today we are replacing those big old
clunkers with the latest model at $29.95. The original $400,
four-function model is now a Christmas stocking-stuffer
(soon to be found in cereal boxes and handed out by
insurance salesmen?).

Calculators are just one example of the enormous success
of electronics science, engineering, and technology at
mass production of tiny integrated circuits that take the
ptace of vyesterday's monstrous constructions. The
inflation-ignoring price drops are accounted for by an
economy-of-scale production process that, once the (ex-
pensive) kinks are ironed out, it's as easy (almost) to stamp
out a million circuits as a dozen. If a need or market can be
found for a million circuits, then the price-per-unit drops
almost to handling and packaging costs.

The cost of a novel circuit, however, is so high that a special-
purpose, limited-edition device is prohibitively expensive.
The answer, therefore, is to invent and mass-produce a
general-purpose circuit that can be easily modified by the
user to fit special needs. These general-purpose circuits are
known as microprocessors or microcomputers; the user
modification is known as programming. Some computer
circuitchips are available for under $10; “evaluation kits" for
$100-$200; and full-fledged hobby computers with a video
monitor, keyboard, and storage tape for $600.

You don't need to become a computer
scientist to apply computer science any
more than you needed to be a mathematician
to apply calculus.

A retired electrical engineer | met told me that he had
personally witnessed the birth and death of both the
vacuum tube and the transistor. A computer scientist half
his age can (with a bit more exaggeration) claim to have
witnessed the birth and death of computers. Computers
used to be the beasts in air-conditioned rooms with false
floors and were too expensive for all but the mostimportant
computations. Their grandchildren, the computers-on-a-
chip, not only stand alone but are components within other
systems: sewing machines, milking machines, teaching
machines, automobiles, smart thermostats, microwave
ovens, memory typewriters, tv sets, tv games, pinball
machines..... The list is limited only by the engineer's
inventiveness and familiarity with these new devices.

Super-computers are not disappearing, or even decliningin
population, but affordable minicomputers and embedded
microcomputers are showing up everywhere. Actually, the
larger systems are a principal tool for developing smaller
systems. The relationship between the few giants and the
ubiquitous micros is yet to be seen. But the all-
encompassing program libraries and data bases are likely
to reside in the large, central computers, which will deliver
the required pieces to the distributed small computers on
demand. Similarly, the small computers will reciprocate as
data-gatherers and remote editing stations. Hook-up
durations will be minimal—infinitesimal compared to
today's time-sharing costs.

Processes that traditionally have been controlled by analog
mechanisms (pressure-driven valves, centrifugal gover-
nors, thermostats, etc.) are now being digitally controlled
by these embedded computers. The cost of transforming
analog to digital signals is more than justified by the level of
sophisticated control that can now be done: combinations
of events can be monitored, their histories used to evaluate
present events, and their records kept. Most importantly,
since computers are general-purpose machines, they can
be re-programmed when the rules need updating.

Modern engineers, to maintain their competitive edge, have
an entirely new component to master. The technology to
implant computers into new products, systems, or
processes is probably close enough to existing practices to
make the transition possible (inputs go here; outputs go
there; power supplies go here; mind the timing pulses;...).
But these new devices process data or information; and
these quantities, their appropriate structuring, and methods
of their mastery comprise a new discipline, computer
science.

Computer science, the discipline which provides system
flexibility, deals with an invisible product,—the computer’s




Super-computers are not disappearing, or
even declining in popularity, but affordable
minicomputers and embedded microcom-
puters are showing up everywhere.

The difference between hardware and
software activities is that in the former,
design leads to production, and in the latter,
design leads to more detailed design.

programs, or “software.” The popular image is that the
computer builder, the hardware engineer, is responsible for
them. in fact, the lion’s share—often 75% of the cost—of
large hardware/software (i.e., “embedded computer”)
systems, etc., is attributable to the software. Some figures:
as far back as 1972, the Air Force spent between $1and $1.5
billion on software and one third of that money on
hardware;* software costs now amount to 1% of the U.S.
gross national product.

To maintain currency, to stave off personal obsolescence,
you need to know computer science. It's now as important
to your discipline as calculus always has been. No, you
don't need to become a “computer scientist” to apply
computer science, any more than you needed to be a
“mathematician” to apply calculus. But the more you get the
better you are.

Some engineers do elect the “retread” career path and
become full-time programmers, but that is not necessary;
you can stay within your present field but increase your
effectiveness by learning how to create and use computer
software.

Other important reasons for getting on board are: there are
always those (how well intentioned?) experts waiting to
snow you, and the fun, fascination, and challenge of the
field.

What is computer science?

Now that you're convinced that you should learn about
computer science, let's find out exactly whatitis. Computer
science is the study of information processing, the means of

*Proc. of Symposium on The High Cost of Software, Naval Postgraduate School,
Monterey, Cal. (Sep 17-19, 1973).
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Fig. 1

Information flow. The cloud is a banking system, an airport, a
chemical factory,....

representing and structuring data and the methods for
processing it. This is: data structures and algorithms.

We need to fit this bare-bones abstraction into a broader
context. A systems analyst (high-titied programmer) has
the problem of determining the information-flow needs of a
system (organization, device, ...) and designing the data
structures and processing functions to meet those needs
(to construct the “information system” shown in Fig. 1).
These detailed requirements are converted into a working,
tested, documented computer program by a coder (low-
titled programmer). In the cases of large, complex
information-processing systems, this development goes
through several iterations. An analyst assesses the needs
and designs the highest-level functions to meet them; then
each of these functions is analyzed into its data-structure
requirements and component subfunctions; and so forth,
dividing and conquering until the last, lowliest detail is
dispensed with. This reflects and formalizes what we have
known all along as “the problem-solving process,” which is
what engineers all along have known as “design.” The
difference between hardware and software activities is that
in the former, design leads to production, and in the latter,
design leads to more detailed design.

An algorithm is a computational recipe, a set of rules that
prescribe what calculations are to be made with what data,
in which order to perform them, and what to do with the
results. To be useful, an algorithm should specity a
computational sequence that stops in a reasonable length
of time (otherwise it is only of interest to academic or very
rich computer scientists). Computer scientists study
various properties of algorithms, such as the number of
steps involved in an execution (average, worst case, etc.),
the amount of computer memory needed to represent the
algorithm and to use for work space, and numerical
accuracy, and with the tradeoffs involved among these
issues. More recently, as with traditional hardware
engineering, software engineers (modern-titled
programmers) have become concerned with quality
engineering, which, in software, is the study of properties of
algorithms conducive to reliability and maintainability.

A study of data structures involves, at the simplest extreme,
efficient ways of representing and approximating numbers
(whole numbers, fractional numbers, tradeoff between
range and precision, etc.), characters (English text), and
simple relations. The plot thickens when we group these
simple objects into: complex numbers, vectors, matrices,
data tables, and mixed records (e.g., employee payroll
records). The most complex data structures involve
aggregates that reference or “point to” one another, like the
cross-references in encyclopedias and library card
catalogs. These data complexes have a much richer




potential for structure than conventional paper filing
systems, which are generally organized only accordingto a
single scheme. An unlimited number of relationships can be
simultaneously used as organizational principles for a data
complex. Computer data structures thus range from the
simplest (a single numerical variable representing an
individual's sex), to simple groupings (a list of employees’
names, addresses, and earnings organized by payroll
number), to unimaginably convoiuted data complexes (a
database of information about a community organized by
all the relationships among the members)!

Saying that computer science is the study of algorithms and
data structures is just slightly more revealing than saying
mathematics is the study of numbers. To probe deeper, we
need to examine computer science's application areas, its
tools and techniques, and the machines that it controls.

Computer applications are, briefly, everything. This makes
it quite difficult to structure a discussion. (For an interesting
attempt at exhaustion, see the list of 2600 applications in
Computers and People, August 30, 1974.) Any simple
classification scheme must be unsatisfactory, although
there are a few large, relatively well-defined areas. Business
and commercial data processing is characterized by the
handling of large amounts of data with relatively little
arithmetic. This contrasts with scientific computing, which
performs extensive calculations but handles little data (this
is known as “number crunching”). A third major area is
systems programming, which deals with the computer
system itself to make it a more useful tool. The divisions are
far from clean—for example, management science
optimization problems for the business community require
heavy mathematical computing; whereas statistical
calculations by scientists and engineers require bulk data
processing.

The pressures exerted on computer science from the
application areas have resulted in the development of many
techniques and theories as extensive as those of the
traditional sciences. Numerical analysis has taken a new
direction and importance now that its techniques can be
automated with such astounding speed. Almost half of the
computer programs run in a commercial data-processing
operation involve searching and sorting large data files, so
this has become an extensively studied and developed area.
What is the best way to sort a hundred, a thousand, or a
million records? The answers to such questions involve a
design of interesting algorithms and interesting data struc-
tures. Process simulation is an area almost unheard-of prior
to the computer age. Many experiments cannot be per-
formed on actual systems, so the systems are modeled and
computer programs written to simulate them. Examples
range from experiments at stock market and betting

Saying that computer science is the study of
algorithms and data structures is just slightly
more revealing than saying mathematics is
the study of numbers.

The more language systems you know, the
more you will be free of any particular
restricted ways of viewing the world.

strategies to the structure of communication systems.
Simulation is one facet of “computer-aided design,” which
also includes interactive graphics with its own special
techniques and theories.

In addition to the technical techniques of computer science,
we now have the product design and development tech-
niques of software engineering that address the problems
associated with large software projects, their scheduling,
reliability, and maintainability.

All of these application areas and their associated
technologies require tools. Since computer programs are
more like engineering designs or mathematical theorems
than like any other traditional products, we are not sur-
prised that the main tools are like the main tool of human
thought: symbolic languages. As soon as we have a new
computer and some rudimentary processes for getting
programs and data into the machine and answers out, we
demand a symbolic system for designing and coding
programs. The simplest of these are assemblers, which
provide a one-to-one symbolic representation of the
machine’s operation codes (which are represented by a
sequence of ones and zeros within the machine). Assembly
languages are, unfortunately, complex and tedious to use,
requiring a specialist coder, and are unique to each
computer model.

Thus we have higher-order programming languages, which
are standardized and are closer to the problem area and so
worth learning by engineers, accountants, and other users.
Even if one is not a proficient programmer, one can still read
a program in such a language. The most widely used
languages are: COBOL for business data processing,
FORTRAN for engineering and science, PL/1, PASCAL,
and ALGOL for general application, and SNOBOL for text
processing. If one is fortunate enough to have a conver-
sational or interactive computer system, then the introduc-
tory language BASIC is usually supplied, and occasionally
the powerful but cryptic APL is available for general-
purpose application.

These higher-order languages must be translated to
machine codes. This is done by a compiler, a large
computer program built by software specialists known as
systems programmers. Compiler construction involves
some of the deepest results and finest theories in computer
science.

Another tool, also the product of systems programmers, is
the computer’s operating systam. This was hinted at above
with the rudimentary programs to do the basic input and
output. A computer operating system has the responsibility
for scheduling the computer's resources, bookkeeping,
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Programmable calculators for under $30 can
give you a realistic feel for algorithms.

servicing the input-output devices and their interface with
the user's programs, and keeping the computer operator
informed of the system’s operation status. An operating
system extends and enriches a computer.

Computer science is not a branch of electrical or
mechanical engineering, but these disciplines provide the
wherewithall for running our programs, so computer
scientists are expected to understand the physical com-
ponents (at least functionally) so they can configure a
computer system to meet an organization’s needs. This
means a knowledge of input-output devices {card equip-
ment, printers, paper-tape devices, magnetic tape and disc
drives, drums,...), memory devices (some fast and ex-
pensive; others slow and cheap), communications equip-
ment, graphics equipment, and, of course, computers
themselves.

Internally, all computers are not the same. Even though they
are all “general-purpose machines” and can simulate one
another’s behavior, they have individual strengths and
weaknesses that make them more or less suitable for
specific applications. For example, some computers sup-
port floating-point (i.e., scientific notation) calculation
directly in hardware, and others support it in software; this
choice can affect the run-time of certain programs by a
factor of ten. Data-path width is another issue that affects
certain classes of application; a computer that handles
large words as a single unit is preferable for com-
munications processing to one which handles smaller units.

What YOU must do

Now that you know what it is you want to learn, how do you
go about learning it? As with most other fields, you can only
get so far by reading about computer science. You must pay
your dues by getting into programming. Fortunately, this is
now easily done. Programmable calculators for under $30
can give you a realistic feel for algorithms; home hobby
computers for under $1000 are fun toys that can provide you
an extensive training ground and be a useful servant and
tool as well; minicomputers for under $50,000 are easy to
find spare time on (at that price they don’t need to be used
all three shifts), and those are real computers. Employers
are more and more easily convinced to allow their
employees use of their computer equipment for do-it-
yourself education.

When you have located a computer system for your
training, you will need some guides. Computer vendors
supply user manuals for their systems, but these are more
suited for reference use once you know what questions to
ask. In the old days (ten years ago), these manuals were all
that was available, but now there are hundreds of texts
available for beginners. A list of recommended ones to get

started using a programming language (your primary tool)
is given below. (Use your vendor-supplied manuals with the
text; standardization is still one of our fond wishes.)

The SNOBOL 4 Programming Language
R.E. Griswold, J.F. Bage, and |.P. Polonsky
Prentice Hall, 1971

An Introduction to Programming—A Structural Ap-
proach Using PL/1 and PL/C

Richard Conway, David Gries

Winthrop, 1973

Structured Programming in APL
Dennis P. Geller and Daniel P. Freedman
Winthrop, 1976

Fortran Programming—A Spiral Approach
Charles B. Kreitzberg and Ben Schneiderman
Harcourt, Brace, Jovanovich, 1975

BASIC
Samuel Marateck
Academic Press, 1974

Structured COBOL
A.S. Phillippakis and L.J. Kazmier
McGraw-Hill, 1977

You will have met the first solid milestone in your computer-
science education when you can use one of these
languages to solve problems along the lines of numerical
analysis (computational calculus), bookkeeping, and
sorting. Next—and please don't stop until you have met this
milestone—is the ability to specify, construct, and use a
software library; that is, a collection of reusable programs
and subroutines tailored for your applications. This
milestone marks the transition from amateur to pro. Your
software library converts the computer from a handy gizmo
to a business partner. (Libraries available from vendors and
user groups can widen the differences among computer
systems.)

Once you have this running start, please be modest and
don't believe you know it all. The alternative is to become a
“computer hack” (for a lucid discussion of them, see
“Computer Power and Human Reason” by Joseph Weisen-
baum, W.H. Freeman and Co.). To solder is not to be an
electrical engineer. To get a solid footing in computer
science, a good-bet short reading program is two books by
Niklaus Wirth, Systematic Programming—An Introduction
and Algorithms + Data Structure = Programs (Prentice-
Hall). With these under your belt, you will be able to map out
your own additional reading program. Donald E. Knuth has
written the first three volumes in his Art of Computer
Programming (Addison-Wesley); these are heavy on the

One trap to avoid: thinking that your only
programming language is the programming
language.

-




mathematics but worth your effort in terms of un-
derstanding how to design and analyze programs.

If you succeed this far—master Wirth, get into Knuth—then
you need little more overt guidance; you are into computer
science. Courses and books and journal articles are
available, and you are the selector. As your advisor, all | can
say is: “these things helped me” or “look at that.”

One trap to avoid: thinking that your only programming
language is the programming language. Yours may be the
best, but it cannot have an exclusive right to all good ideas,
and it will be a force fit to make it apply to many of your
applications. On the other hand, other languages may also
be inadequate. But the more language systems you know,
the more you will be free of any particular restricted ways of
viewing the world. Eventually you will be able to programin
your problem'’s ideal language (which exists only in your
mind), and then translate the program-design into the
program-code for whatever language-you may be stuck
with—even assembly language.

There are two domestic professional societies directed at
computer science. They both support worthy periodicals,
regional chapters, and special-interest groups.

The IEEE, known to most engineers, has a Computer
Society which publishes magazines: Computer, Trans-
actions on Computers, and Transactions on Software
Engineering. The first is built to keep us educated, with
survey articles and invited papers. The second and third are
vehicles for research papers with areas of stress: computer-
system architectures (consider the roots of IEEE) and
software architecture and construction.

The ACM (Association for Computing Machinery)
publishes Communications of the ACM with articles of
general interest (specifically, for us, they have covered
recommended CS curricula, GRE exams, and self-
assessment procedures); Journal of the ACM for the
learned theoretical papers in computer science; Computing
Surveys, filled with gem-quality tutorial articles which keep
us all up to date and serve the students and their professors
with ready-made lectures; Computing Reviews, which
publishes critical reviews of the important books and
articles; and Transactions on Mathematical Software for
algorithm dissemination.

ACM has approximately thirty special-interest groups and
committees (SIGs and SICs) devoted more narrowly to
certain application areas, techniques, problem areas, etc.
The SIGs and SICs publish periodicals and sponsor
conferences.

There are many other periodicals: ComputerWorld is a
weekly in newspaper format; Datamation and Computer
Decisions are “free-if-you-qualify” magazines; Byts,
Creative Computing, Dr. Dobbs Journal of Computer
Calisthentics and Orthodontia, and lots of others serve the
exploding computer hobby world. This is a tiny sample of
what is available. They are all worth looking at and—for
your technical library—subscribing to {like most things of
this kind, these periodicals are uneven in their quality).

Computer science demands an exactitude
that would astound a brain surgeon.

Many periodicals not strictly devoted to computer science
are also occasionally good sources for information—
especially of the broad survey type. Keep your eyes on
Scientitic American, American Scientist, Science, and IEEE
Spectrum.

Computer science is growing at a fast rate, both in its
intellectual challenge and in its practical application. It
demands an exactitude that would astound a brain surgeon.
And its rewards are commensurate. Good luck!
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Final manuscript received March 15, 1978.

Pete Anderson, himself a “retread"” to computer science, started out
in mathematics before learning computer science in RCA's Com-
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Resources available for learning computer science

L. Shapiro

The computer is revolutionizing our
society. With maturing LS| technology,
we can visualize computing capabil-
ities approaching those of the human
brain packaged in containers of com-
parable size. Even at this very early
stage, the computing power of such
small devices is phenomenal. In es-
sence, just as the automobile and air-
plane extended man’s ability to run and
fly, the computer is extending man'’s
ability to calculate, remember, and
reason.’

' This avoids the question “can computers think?" since the
term “thinking" can be defined to include the creation of
great works of art as well as development of great
philosophies and religions.

Louis Shapiro has been associated with the
RCA Engineering Education activity both as
staff member and consultant since 1966 and
has videotaped many of their courses.
Currently, he is working on CEE's software
engineering curriculum.

Contact him at:
Engineering Education
Corporate Engineering
Cherry Hill, NJ

Ext. 5020

All the other papers in this issue have, in some way,
underscored the importance of applying computer science in
engineering work. This paper outlines some of the ways to

learn how.

In more practical terms, the infiltration
of inexpensive readily available com-
puting capabilities into various
products is proceeding with increasing
rapidity. We now see computers in
satellites, sewing machines,
automobiles, and microwave ovens. in
effect, every engineer needs an ex-
pertise in computers as an essential
tool in his work. This article explores
the resources available to RCA’s
technical staff for study in this impor-
tant field.

For many engineers, hardware and software
meet at the microprocessor level.

A very large area of present activity is at
the so-called microprocessor level. For
many engineers, it is here that
hardware and software (programming)
meet and join hands. The hardware
engineer needs to know programming
requirements to design computer
architecture; the programmer must
know the architecture. The engineer
working with a microprocessor must,
therefore, be conversant with both
hardware and software.

Programming is, in a sense, like playing
chess.

Computer expertise necessarily in-
cludes a high degree of pure skill and
experience in the structuring and
writing of programs. Here you face
many hours of program writing on
many reams of programming forms
before a significant degree of maturity
can be achieved. A useful analogy
would be the development of an ex-
pertise in playing chess at ap-
proximately the tournament level. Even
with the most concentrated study of
past games between chess masters,
you had better have many hundreds of
games under your belt before sitting
down at a chess table to face a skillful,
experienced opponent—and in the

field of computers, the cold stare of
computer hardware backed by a poorly
written set of specifications can be a
formidable opponent indeed. It is with
the above thoughts in mind that the
following group of resources for the
study of computers is presented.?

Accredited schools

Most schools have a computer center
available for student use. Use such a
center as much as possible to obtain
the fullest benefit of “learning by do-
ing.” In any case, whether study is
being pursued outside of RCA or by
means of an internal RCA program,
bear in mind that the “hands-on”
aspect of the learning experience is
essential if you want to achieve a
practical expertise.

If possible, an accredited school should be
your first choice.

For many individuals, study within the
structure of an accredited school is
highly effective. The regular class
meetings, homework assignments,
and examinations represent a com-
bination that is hard to beat. In addi-
tion, there is the added incentive of
possible course-work accreditation
toward a degree, with the accom-
panying increase in professional
stature. The appendix? lists schools
that offer evening or Saturday
courses in computer science for the
New Jersey-Philadelphia-New York
City area where there may be a con-
siderable choice in school selection.

2 A grateful acknowledgement is made to Mmse. Whitehead
and Mattice of the GCS Camden Library for their sustained
cooperation and endless patience with the author
throughout the preparation of this paper.

3 The data in the appendix were obtained by means of an
independent survey made by the Corporate Engineering
Education group, December 1977 - January 1978. Actual
course offerings will, of course, depend upon student
demand and registration statistics.




However, as will be evident from the
appendix, this choice shrinks rapidly
as the student progresses toward the
more advanced aspects of com-
puters.

Course offerings change very rapidly
in the academic world. The informa-
tion in the appendix should therefore
be used as a guide only for contacting
convenient schools in your area for
coursework of interest. Courses given
by county or community colleges tend
to be introductory. However, they may
be quite valuable as a first introduc-
tion into a given area of computer
science.

The Association for Computing
Machinery (ACM), 1133 Avenue of the
Americas, New York, N.Y. 10036,
publishes the ACM Administrative
Directory which lists all colleges and
universities in the United States hav-
ing computer science departments or
computer centers, including the
names of key individuals to contact.
Also included is a complete list of
computer-related professional soci-
eties and other organizations. As of
this writing, the price of this directory
is $10.00if a check is enclosed with the
order.

Individual study programs can often be
tailored to your background and interests.

In some instances, schools will offer
individually designed coursework,
either as independent study programs
or else in the form of correspondence
courses. One school having a well-
established correspondence-type
curriculum is the Pennsylvania State
University, Department of Indepen-
dent Study by Correspondence, 3
Shields Building, University Park, Pa.
16802. A complete guide to available
correspondence courses from some
seventy colleges, universities and
comparable educational agencies is
available through the National Un-
iversity Extension Association, Suite
360, One DuPont Circle, Washington
D.C. 20036 for $2.00 per single copy.*

Individual study programs, on the
other hand, are normally negotiated
directly with the school department
concerned. Probably an effective way
of investigating this avenue of study

¢ This publication is actually distributed by Peterson’s
Guides, 228 Alexander Street, Princeton, N.J. 08540 (609-
924-5338).

Table |

Locally developed RCA courses. A number of RCA locations operate on-going in-house
training programs. As of this writing, plans for coursework to be presented in 1978 have
generally not been finalized. However, the following information has been offered to the
writer with the understanding that it is only tentative. In some instances only plans for the

spring (of 1978) were available.

Burlington

Microcomputer fundamentals
Microprocessor-based systems design
Software (RCA video tape)}

Software (Vendor video tape)

Camden

Software engineering
Microcomputer fundamentals
Minicomputer peripherals
Microprocessors for logic design

ightstown

Microcomputer fundamentals

Space technology update (emphasizes microcomputers)
Lancaster

APL language
Finite element analysis (computer-aided thermal and
structural analysis)

Moorestown

Microcomputing with bit-slicing microprocessors
Advanced software design techniques

The HP 9830 desk-top computer

Microprocessor fundamentals for technicians

New York (Globcam)

Fortran programming
Microcomputer fundamentals
Microprocessor-tbased systems design |

Princeton

Minicomputer peripherals
Modern logic design |
Somervilie

Programming, interactive graphics for design engineers
Modern logic design |
Microprocessors for logic design

Table Il

CEE courses in computers.Complete CEE course offerings are listed in the RCA
Engineering Education 1977-1978 catalog which was mailed with the June-July (1977) issue
of the RCA Engineer. Interested RCA employees should contact their training represen-
tative (or equivalent person responsible for the administration of in-house training courses)
to make their wishes known. A minimumnumber of applications is usually required before a

course is considered for presentation.

C2—FORTRAN programming. A good introduction to
FORTRAN.

C7—Interactive grap for desig gii introduces
the use of the Applicon Graphic System/701 as a design
automation tool for design engineers.

C11—COBOL programming. Develops basic skills in the
use of COBOL.

C30, C31—Modern iogic design | and Il. Develops the
ability to apply modern logic design methods to typical
design problems

C35—COS/MOS Integrated circuits. Enables the digital
designer to incorporate COS/MOS integrated circuits into
nis designs.

CS51—Mi P fund Is. Develops an un-
derstanding of the basic concepts of small computer
systems. Consideration is presently being given to expand
this eight session course to twelve sessions to increase the
problem-solving time available to the student. A laboratory
course, CL51, cesigned to accompany C51, is now
avaliable.

CS2—Minicomputer peripherais. Explores the peripherals
commonly used in minicomputer systems.

CS5—Microprocessors for logic design. Expiores the
microprocessor in depth. This course is somewhat dated
and a revised version, C56. Microprocessor-Based
Systems Design |, is presently under development.

would be to select a school in your
area with a well-developed computer
science facility and request an in-
terview with the appropriate depart-
ment head. You may be able to
develop an independent study
program which may suit your needs
and also carry credit toward a degree.

RCA in-house courses

A second major source of convenient
classroom-type instruction is the in-house
training program offered at many RCA
locations.

RCA-sponsored courses generally fall
into two categories: those prepared by

the location itself, usually to meet
specific local needs; and those
prepared by the Corporate Engineer-
ing Education (CEE) group at Cherry
Hill, usually more general in nature.
These courses may be given, wholly or
in part, outside of working hours. The
locally prepared courses (see Table |)
are developed and presented by in-
structors recruited either from within
the company or from nearby colieges
or universities. CEE courses (Table Il)
are prepared under the supervision of
RCA-oriented engineer-educators.

In either case, these courses have the
important advantage of being




SOFTWARE ENGINEERING
CURRICULUM

1 LECTURE {C51)

MICROCOMPUTER FUNDAMENTALS
LAB (CL51)
10 SESSIONS

12 SESSIONS
==

MICROPROCESSOR-BASED SYSTEMS DESIGN |
LECTURE {C56} LAB (CL56)
12 SESSIONS 12 SESSIONS

MICROPROCESSOR-BASED SYSTEMS DESIGN 1[I
LECTURE (C57) LAB (CL57)
12 SESSIONS 12 SESSIONS

1

SOFTWARE ENGINEERING & MANAGEMENT

PROGRAMMING TECHNIQUES

LECTURE (C71)
12 SESSIONS

LECTURE (C70) LAB (CL70)
12 SESSIONS 12 SESSIONS

NUMERICAL ANALYSIS

REAL TIME SYSTEMS |

LECTURE (C73) LAB (CL73)
12 SESSIONS 12 SESSIONS

LECTURE (C76)
12 SESSIONS

Fig. 1

REAL TIME SYSTEMS [i
LECTURE (C74) LAB (CL74)
12 SESSIONS 12 SESSIONS

What's coming In software engineering? This figure shows the structure of the software
engineering curriculum presently under development by the Corporate Engineering

Education (CEE) activity.

tashioned to meet company needs
directly and are free of the usual
college or university constraints and
traditions. Thus, as locally necessary,
the level and demands of the subject
material may be altered, the course
itself lengthened or shortened, and
additional material may be inserted to
meet immediate or unique classroom
objectives. Normally, no college credit
is available for such coursework,
although  successful negotiations
between class members and colleges
for subsequent credit may take place.s

CEE is now working to develop a complete
software curriculum.

The continued rapid entrance of com-
puters into the RCA product and
service lines has particularly brought
into sharp focus the need for develop-
ment of sound software skills on the
part of the RCA technical staff. In
response to this need, the CEE activity
devised the curriculum outlined in Fig.
1. Note that most of the key courses
have both lecture and laboratory

¢ The December 21, 1977 issue of the National Report for
Training and Development of the American Society for
Training and Development (ASTD) reported that the New
York State Education Department found that 68% of 170
responding degree-granting institutions in the state
granted college credit for noncollegiate courses upon the
recommendations of the Program on Noncollegiate Spon-
sored Instruction (operated by the New York State Educa-
tion Department). This amounted to 89% of the nearly 1100
students requesting such credit. More information about
the related survey and the Program may be obtained from
Dr. John McGarraghy, Office on Noncollegiate Sponsored
Instruction, New York State Education Dept., 99
Washington Ave., Rm. 1845, Albany, N.Y., 12230.

sections so that ample practice will be
available.

Individual study
The so-called “short course” has become
increasingly popular.

The short course is based ononeto five
consecutive days of full-time instruc-
tion, sometimes with evening
workshops. Such courses are given by
professional societies, colleges and
universities, private educational com-
panies and, in some instances, by
producers of computer equipments.
They do not carry college credit and
normally offer a certificate of compie-
tion or the equivalent. The author of
this article would place the
effectiveness of such short courses
below that of conventional coursework
where substantial homework
assignments between lessons play a
major role in the learning experience.

Short courses are expensive, usually
from $75.00 to $100.00 or more per day,
exclusive of motel and dinner expense
where the location is distant from the
student’'s home. A comprehensive list
of short courses and associated
events® is maintained by the Engineer's
Joint Council in their publication
Learning Resources, A Directory for

¢ in the category of associated events is included seminars,
conferences, workshops and similar meetings of
professional individuals for the purpose of enhancing their
professional abilities.

Engineers, Scientists and Managers.
This directory is published three times
yearly and may be available at the
larger public or university libraries.”

A fairly extended list of short courses is
also available in Computer (published
by the IEEE Computer Society). Most
of the popular journals also contain
partial listings of short courses and
associated events.

A number of accredited correspondence
courses are available.

The private correspondence schools
that flourished in the 30s and 40s are
now facing stiff competition from the
community colleges with their
aggressive student recruiting policies,
and the short courses with their in-
creased cost effectiveness (for their
producers). However, a number of
home study courses in computer
science have been accredited by the
Accrediting Commission of the
National Home Study Council® and
probably provide competent well-
designed instruction. Such courses do
not, however, usually offer credit
toward a college degree. The schools
to contact are listed in Table IlI.

Get some help in evaluating the level of
instruction to insure that you will not be
swamped with subject matter beyond
your comprehension, or find that you
have enrolled in a course more suited
to a lesser degree of professional in-
volvement. We do not know whether
any of these courses include training
kits. If they do, however, this would be a
positive feature. A certain amount of
packaged coursework is available in
which the entire course is purchased
over the counter, so to speak, and no
responsibility is thereafter assumed by
the originating agency or company.
Such courses sometimes come com-
plete with audio cassettes. Interested
parties should thumb through
magazines such as Byte, Kilobaud or
Popular Electronics for
advertisements. The CES Newsletter,

7 Available at the RCA Camden Library.

* The National Home Study Council, 1601 Eighteenth St.,
N.W. Washington, DC 20009, was organized in 1926 as an
association of schools to establish educational standards
and ethical practices. Since 1952, it has been working with
the U.S. Office of Education and other accrediting organ-
izations. (n 1959, it was listed by the US Office of Education
as a "nationally recognized accrediting agency.”




published by the American Society for
Engineering Education, also carries a
column of advertisements for such
courses. Contact Assoc. Editor
Thomas F. Talbot, Univ. of Alabama,
Birmingham, AL. 35294.

Kits offer another alternative.

One way to become initiated into the
world of computers would be to
purchase a microprocessor-based kit
from one of the major manufacturers—
wend your way through the in-
structions to get the equipment in
operation—and then try your hand at
various programs. RCA, for example,
produces a microtutor and a VIP kit,
both of which can be used as vehicles
for developing a programming ex-
pertise. The laboratory, CL51,
associated with the CEE course C51,
Microcomputer Fundamentals is based
on the RCA VIP.?

Sybex, 2020 Milvia St., Berkeley, Cal.
94704 (415-848-8233) offers a line of
microprocessor self-study courses
complete with audio cassettes and text.
The Heath Company, Benton Harbor,
Michigan 49022 (616-982-3411), offers
a microcomputer training course com-
plete with kit trainer based on the
Motorola 6800 microprocessor chip.'

A number of equipment manufacturers
also market kits of various types com-
plete with instruction books. However,
many seem to be little more than a
means for increasing equipment sales.
The investment involved can easily
exceed $1000. The beginner would be
well advised to avoid such a purchase.

A fair amount of tutorial material has been
published.

Tutorial material may roughly be
divided into three categories: major
publications, popular material, and
textbooks. These are listed in Table IV.

A number of periodicals treat almost any
area relating to computers.

The periodicals listed in Table V have

* The possibilities inherent in the RCA COSMAC VIP as a
learning device are explored in COSMAC VIP The ACA Fun
Machine, Joseph A. Welisbecker; first published in BYTE,
August 1977, and subsequently reprinted in RCA
Microprocessor Technology, available in the RCA
Libraries. See also Harry Kleinberg's article in this issue.

' Further information may be obtained from the
Phitadeiphia office of the Heath Co., 215-CU8-0180.

Table Il

These correspondence schools offer courses in computer science,

Computer programming

Automation & Training Universal, Inc.

425 Lincoln Street

Denver, Colorado 80203

Founded 1966.Courses in computer programming, data
processing, and drafting.

Capitol Radio Engineering Institute (CREI)

3939 Wisconsin Avenue

N.W. Washington, D.C. 20018

A division of McGraw-Hill Continuing Education Center.
Founded 1927. Courses in computer programming,
engineering, and college level electronics subjects.

Herzing institutes, Inc.

174 West Wisconsin Avenue

Milwaukee, Wisconsin 53203 Founded 1965. Courses in
data processing, medical transcription and medical office
assisting.

1CS-international Correspondence Schools

Scranton, Pa. 18515 Founded 1890. Courses in high school
and college level subjects, technology, engineering,
vocational trades, business and industrial subjects.

La Salle Extension University

417 South Dearborn St.

Chicago, Nlinois 60605

Founded 1908. Courses in high school subjects, business,
vocational, and college level subjects; stenotype and
interlor decorating.

Lincoln Extension institute, Inc.

1401 West 75th St.

Cleveland, Ohio 44102

Founded 1922. Courses in industrial and supervisory
management development topics.

Computer repair technician

McGraw-Hill Continuing Education Center

3939 Wisconsin Ave.

N.W. Washington, D.C. 20016

Founded 1971. Courses in engineering, electronics, and
automative technology, air conditioning and appliance
servicing.

National Radio tnstitute (NRI)

3939 Wisconsin Avenue

N.W. Washington, D.C. 20016

A division of McGraw-Hill Continuing Education Center.
Founded 1914. Courses in air conditioning, appliance
servicing, computers, radio-TV repair, and automotive
topics.

National Technical Schools

4000 South Figueroa St.

Los Angeles, Cal 90037

Founded 1905. Courses in electronics, appliance and
radio-TV servicing, air conditioning, and automotive sub-
jects.

Table IV

Published tutorial material available for individual study

Major tutorial publications:

IEEE"
345 E. 47th St.
New York, N.Y. 10017

The IEEE offers a number of tutorial-type publications
which consist mostly of selected reprints. It would be
advisable to review them (in the library) before investing,
since a minimum background in computer technology is
usually assumed.

IEEE Computer Society
5855 Naples Plaza, Suite 301
Long Beach, Cai. 90803

This society offers twelve tutorials as well as a fairly large
number of books on computers, computer applications,
and a digest of papers. The same precaution is advised
here, e.9., look before you buy.

Association for Computing
Machinery (ACM)

1133 Avenue of the Americas
New York, N.Y. 10036

The ACM publishes much technical and tutorial material
including a survey and tutorial quarterly, Computing
Surveys. The above precautions are advised.

Popular tutorial materiai:

A good deal of tutorial material has appeared in popular
magazines such as EON (Engineering Design News)
Elsctronic Design, and Electronics. EDN has published
some of this material separately.'? Despite attractive format
and illustrations, however, the writer has found most of this
material lacking in substance for design engineers. Ap-
parently, space considerations limit the range of in-depth
treatment needed. After one has already developed a

' Orders for particular publications should be sent directly
to the IEEE Service Center, Dept. PB, 445 Hoes Lane,
Piscataway, N.J. 08854,

'2 See, for example, "Microprocessors, New Directions for
Designers,” edited by Edward A. Torrero, Hayden Book
Company, Inc., Rochelle Park, N.J. 07662.

background in camputers, however, such material may be
interesting to review for sidelights that may apply to
problems at hand.

Textbooks:

For serious indiv.dual study, especially for the beginner,
there is hardly anything currently available that is really
more suitable than one of the better texts. A possible
combination for the engineer would be one of the first two
texts listed below in combination with a kit or microtutor.
The first (Peatman) might hold a slight edge. Either,
however, would provide a good foundation in the subject of
microcomputers and, incidentally, in the field of computers
as a whole since microcomputers by their nature represent
much of mini- and main-frame computers in microcosm.
The recommended text for technicians (Marcus/Lenk)
provides a good overview of the field of computers and
their peripherals. The writer, in fact, would also recom-
mend it for engineers who are not familiar with computer
hardware and who might wish to get some notion as to how
things fit together.

At the Engineering Level:

Microcomputer-Based Design; John B. Peatman

{McGraw-Hill 1977)

Microprocessor Systems Design; Edwin E. Klingman
{Prentice-Hall 1977)

Microcomputers/Microprocessors; John L. Hilburn, Paul
N. Julich (Prentice-Hall 1976)

Digital Computer Circuits and Concepts, Bill R. Deem,
Kenneth Muchow, and Anthony Zeppa (2nd Edition,
Reston 1977)

Techniques of Program Structure and Design; Edward
Yourdon (Prentice-Hall 1975)

At the Techniclian Level:

Computers for Technicians; Abraham Marcus, John D.
Lenk (Prentice-Hall 1973)

Undoubtedly, many other fine texts are available in each of
the above categories. However, the above have been
available to the author for examination and we feel that
they can serve a useful purpose in any self-study program.
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been separated into broad categories
which may of course, overlap.

Indexes and general references may point
the way to other literature.

The two indexes shown below list all
generally available literature dealing
with computers within a few months
after it is published. Most people con-
sider the second of these simpler to
use.

The Engineering Index
Engineering Index, Inc.
United Engineering Center
345 East 47th St.

New York, N.Y. 10017

Computer and Control Abstracts

INSPEC (Institution of Electrical Engineers
[British] in association with the IEEE)
Savoy Place

London WC2R OBL

The following book™ lists reference sources
for scientific and technical fiedds including
computer science. Topics covered include
bibliographies, encyclopedias, dictionaries,
handbooks, almanacs, yearbooks, direc-
tories, etc.

Scientitic and Technical Information
Sources: Ching-Chih Chen (The MIT
Press 1977)

Additional RCA internal
services

The RCA Engineer reaches almost every
engineer within the comparny and often
includes articles dealing with ac-
complishments in the computing arena.

Occasional issues of this bimonthly
publication are devoted almost entirely
to specialized areas such as com-

3 Available in the RCA Camden library.

puters. For example, the February-
March issue of 1977 dealt com-
prehensively with microprocessor
system design and applications; this
issue treats software. The Technical
Communication Programs group,
which publishes the RCA Engineer,
also publishes collections of articles
dealing with specific subjects. Thus, a
recent (1977) publication included
reprints of twenty-four articles review-
ing microprocessor technology—
hardware, software, and applications.*
Engineers working in this field may,
therefore, find it valuable to maintain a
file of these publications as a reference
source.

4 This publication, RCA Microprocessor Technology, is
available in the RCA libraries, or you may obtain your own
copy by sending a check or money order for $2.00 payable
to RCA Technical Communication Programs to this activi-
ty at Bldg. 204-2, Cherry Hill, N.J. 08101.

Table V

These periodicals treat computers at various levels of expertise. Most are available through RCA’s major libraries.

Electronics generally but tending to emphasize computers
and often containing tutorial computer articles:

Electronic Design News (EDN)
270 St. Paul Street
Denver, Col. 80206

Electronic Design

Hayden Publishing Co., Inc.
50 Essex St.

Rochelle Park, N.J. 07662

Electronics

McGraw-Hill, Inc.

1221 Ave. of the Americas
New York, N.Y. 10020

Devoted to computers. Popular style—highly readable.

Computer

|IEEE Computer Society
5855 Naples Plaza, Suite 301
Long Beach, Cal. 90803

Microprocessors

IPC Business Press Limited
205 East 42nd St.

New York, N.Y. 10017

Computerworid
797 Washington St.
Newton, Mass. 02160

Computer Home Hobbyist. Two excelient highly readable
journais:

Byte

Byte Publications, Inc.

70 Main St.
Peterborough, N.H. 03458

Kilobaud
1001001, Inc.
Peterborough, N.H. 03458

And one journal of out-of-the-way articies for peopie deep
into home computers:

Computer Calisthenics and
Orthodontia

People's Computer Company
Box E, 1263 EI Camino Real
Menio Park, Cal. 94025

Highly Tech I—for the dgeab
engineer:

0 le computer

Journai of the Association for
Computing Machinery

Association for Computing Machinery
1133 Ave. of the Americas

New York, N.Y. 10036

Communications of the ACM
Association for Computing Machinery
1133 Ave. of the Americas

New York, N.Y. 10036

Computing Reviews

Association for Computing Machinery
1133 Ave. of the Americas

New York, N.Y, 10036

IEEE Transactions on Software
Engineering
and

IEEE Transactions on Computers
IEEE Computer Society

(contact |IEEE Service Center)
445 Hoes Lane

Piscataway, N.J. 08854

The Computer Journal

The British Computer Society
29 Portland Place

London W1N 4HU

Software—Practice and Experience
John Wiley & Sons, Ltd.

Baffins Lane, Chichester

Sussex, England

Computing

Springer Verlag

175 Fifth Ave.

New York, N.Y. 10010

Specialized publications:

CAD—Computer-Aided Design
IPC Business Press Limited
205 East 42nd St.

New York, N.Y. 10017

Computer Decisions
Hayden Publishing Co.. Inc.
50 Essex St.

Rochelle Park, N.J. 07662

Computer Graphics and
Image Processing
Academic Press, Inc.
111 Fifth Ave.

New York, N.Y. 10003

Computer Review

GML Corporation

594 Marrett Rd.
Lexington, Mass. 02173

ACM Transactions on Mathematical
Software

Association for Computing
Machinery

1133 Ave. of the Americas

New York, N.Y. 10036

Datamation

Technical Publishing Company
1301 South Grove Ave.
Barrington, lil. 60010

Simulation

The Society for Computer
Simuiation

1010 Pearl St.

La Jolla, Cal. 92037

interface Age

McPheters, Wolfe and Jones
13913 Artesia Bivd.

Cerritos, Cal. 80701

Creative Computing
P.O. Box 789-M
Morristown, N.J. 07960




RCA library services are available to most engineers.

Technical libraries are maintained at 18 RCA
locations within the continental United States.
Nine of these are staffed by at least one librarian
and publish bulletins periodically listing new
acquisitions such as texts, reports,
proceedings, etc. In addition to a limited cir-
culation, these bulletins are available for review
at the libraries themselves. Thus each RCA
employee has access, within local library con-
straints, to the 80,000 books and 600 periodicals
stocked in these libraries. In addition, RCA
librarians have access to catalogs listing the
location of desired material in other public and
private libraries. In some instances, interlibrary
loans are possible, or copies of desired articles
may be obtained.

Each of the nine RCA libraries staffed by at least
one professional librarian maintains either a
microfilm or microfiche facility for review or
study of data such as technical papers, military
specifications or military or commercial stan-
dards.

In addition to maintaining previously-
mentioned engineering and computer indexes,
the larger RCA libraries have access to an on-
line search service through Lockheed’s
DIALOG and System Development Cor-
poration’s ORBIT systems. Upon providing the
RCA librarian with either subject or author data,
the computer system will within a few minutes
provide a list of titles dealing with the desired
information; it can also quickly supply selected
abstracts.

RCA Technical Abstracts can lead the way to other
RCA documents.

RCA Technical Abstracts is a company-private
monthly bulletin listing abstracts of papers,
reports, books, theses and similar material
authored by RCA employees. The bulletin, in
addition, includes MIT reports available
through RCA's participation in the MIT In-
dustrial Liaison Program.

Copies of RCA Technical Abstracts are dis-
tributed to all RCA libraries and to RCA
management throughout the company. Copies
of documents listed in the bulletin may be
obtained through your local RCA librarian.

Conclusion

A number of paths are open to help you
learn more about computers. None of the
paths are easy; all require extra effort,
hours, and initiative. But the knowledge you
willgain, in many cases, will be as important
to you and to RCA as your basic engineer-
ing education.

Reprint RE-23-6-10
Final manuscript received January 15, 1978.

Appendix A

SCHOOLS that offer evening or weekend courses in computer science.
(All courses are evening courses unless otherwise specified.)

Philadelphia-Camden area: The following ten schools show the indicated offerings in
their evening programs. Any one of the ten would represent a means for obtaining a
good introduction into the field of computers in accordance with the particular area of
interest of the prospective student. However. for individuals seeking to obtain
comprehensive, advanced engineering-oriented expertise in computers via evening
course work, the only suitable school is the University of Pennsylvania (see comment
accompanying this school below).

School

Comments

Burlington County
Coliege
Pemberton-Browns Mills
Rd.

Pemberton, N.J. 08068
609-894-9311

Camden County College
Little Gloucester Road
Blackwood, N.J. 08012
609-227-7200

Orexel University

32nd & Chestnut Streets
Philadeiphia, Pa. 19104
215-895-2400

La Salle Coliege
Oiney Ave. & 20th St.
Philadelphia, Pa. 19141
215-848-8300

Rutgers University
(Camden)

311 North 5th Street
Camden, N.J. 08102
609-757-6057

St. Joseph's College
City Avenue at 541h Street
Pniladeiphia, Pa. 19131
215-879-7400

Temple University

Broad St., Montgomery
Ave.

Philadelphia, Pa. 19122
215-787-7201

University of Pennsylvania
Philadelphia, Pa. 19104
215-243-7502

Offers data processing, computer concepts, computer
programming, FORTRAN, COBOL., RPG2, and
business systems analysis and design. Some of these
courses are also given at the Willingboro and Cin-
naminson Campuses. However, all information may be
obtained from the main campus at Pemberton

Ofters computer science, data processing, computer
programming (including advanced techniques),
principles of system analysis, and computer
mathematics (number systems, Boolean algebra, etc.)

Computer-oriented courses are offered in three
departments as follows:

Business: management information systems
Electrical Engineering: computer logic and computer
design.

Special Studies: computing machines, data processing
for business applications, advanced computer
programming

The Evening College offers a six-year program leading
to the BS in Computer Science.

Computer-oniented courses are offered In two
departments as follows.

Computer and Information Science: computing,
algorthm and data structures, file and data manage-
ment systems, information systems design and
programming languages.

Electronic Physics. introduction to mICroprocessors,
pulse, and digital electronics. The course on
MICroprocessors is also given on Saturday mornings.

The foltowing courses are offered at an elementary
level: introduction 1o computing, introduction 1o
programming languages, and commercial data
processing. A Saturday course 1s offered in computer
programming for ousiness and social science.

The Business Department offers a basic course in
computer science (emphasizing programming).

The Computer Science Department offers a very
substantial evening program leading to the masters
degree in either Arts, Science, or Business Administra-
tion. The thesis requirement has been replaced by a
project which may also be completed by evening work.
A PhD with a Computer Science major 1s available in
Business Administration. The Ambler campus in
Ambler, Pa., offers a limited group of undergraduate
and graduate computer courses.

The College of Engneering and Apphed Science offers
only graduate courses in its Computer and Information
Science Program. These courses, however, beginatthe
introductory level so that individuals with an engineer-
ing background can safely enroll. Available courses




Villanova University
Villanova, Pa. 19085
215-527-2100

Widener College

14th and Chestnut Sts.
Chester, Pa. 19013
215-876-5551

cover a very wide range of computer-oriented subjects
and it is possible to complete course requirements for
the MSE and PhD degrees via evening work alone, An
additional thesis is required for the master’s degree and
a dissertation for the doctor's degree. A time limit of 7
years is allowed for completion of the MSE re-
quirements and an additional 5 years is then allowed for
completion of doctoral requirements, The latter in-
cludes a thesis defense. It should be noted that
matriculation for either of these degrees requires a
bachelor's degree in an appropriate discipline.

The Wharton evening school offers courses in in-
troduction to computer programming, and manage-
ment information systems.

The Computer Science Department offers courses in
algorithms and data structures, computer programm-
ing and advanced computer programming. The Elec-
trical Engineering Department offers introduction to
computers and programming. The Engineering
Department ofters introduction to computers in
engineering. The Business Administration Department
offers introduction to computers.

The Engineering Department offers introduction to
computer use in science and engineering. The
Management Department offers data processing and
information systems, and advanced computer science.

Princeton-Hightstown area: As noted by the comments below, advanced work via
evening courses is available only at Rutgers University—and then only in the
Mathematics Department. Individuals desiring advanced engineering-oriented study
should consider travel either to Pennsylvania University (Philadelphia) or to schools
such as The N.J. Institute of Technology (Newark), or the Stevens Institute of

Technology (Hoboken).

Mercer County College
1200 Oid Trenton Road
West Windsor, N.J.
08561

609-586-4800

Rider College

P.O. Box 6400
Lawrenceville, N.J. 08648
609-896-0800

Rutgers University
New Brunswick, N.J.
08903

201-932-7386

Mercer offers the following evening courses: basic
computer software, computer operations, RPG
programming, computer operations management,
cooperative management.

The School of Business Administration offers: in-
troduction to computer programming and information
science, computer systems—FORTRAN, computer
problems—COBOL.

The Mathematics Department offers introduction to
computers, introduction to computer languages, com-
puter programming, elementary communications data
processing, information processing methods, non-
numerical problems and computer programming. The
Electrical Engineering Department offers computer
system design.

The North Jersey area: A number of fine schools are available. Engineering-oriented
computer study at the advanced level is available at schools such as The New Jersey
Institute of Technology, The Stevens Institute of Technology. and the Teaneck Campus

of Fairleigh Dickenson.

Trenton State College
Pennington Road
Trenton, N. J. 08625
609-771-2111

Fairleigh Dickenson
Madison Campus
Madison, N.J. 07940
201-377-4700

The Mathematical Sciences Department offers:
Undergraduate—elements of computing, introduction
to computer science: Graduate: advanced computer
programming.

Undergraduate: The Mathematics Department offers
three semesters of computer programming. The
Management and Computer Systems Department
offers a course in fundamentals of computer usage.

Graduate: The Management and Computer Systems
Department offers a course in management informa-
tion systems.

Fairleigh Dickenson
Rutherford Campus
Rutherford, N.J. 07070
201-933-5000

Fairleigh Dickenson
Teaneck Campus
Teaneck, N J. 07666
201-836-6300

Kean College of New
Jersey

Morris Averue
Union, N.J. 37083
201-527-2000

Middiesex County
College
Woodbridge Ave.
Edison, N.J. 08817
201-548-600D

Monmouth College
Cedar Ave.

West Long Branch, N.J
07764

201-222-6600

New Jersey Institute of
Technology

323 High Street
Newark, N.J. 07102
201-645-5140

The Management and Computer Systems Department
offers an undergraduate course, fundamentals of com-
puter usage; and a graduate course, management of
information systems.

Ofters a substantial evening program as follows:
Undergraduate: Electrical Engineering Department:
digital computer calculations, introduction to
minicomputers, computer switching circuits, logic
design with microprocessors; Mathematics and Com-
puter Science Department: Introduction to computer
programming (lect/lab), data structures, theory of
computation, non-numeric computation, current
topics; Engineering Technology Department; com-
puter analysis lab. Accounting and Quantitative
Analysis Department: fundamentals of computer
usage.

Graduate: Electrical Engineering Department: logical
design with integrated circuits, microprocessors and
microcomputers. Mathematics and Computer Science
Department: introduction to computer programming,
COBOL, computer architecture, assembly language,
software design, commercial systems and applications,
modelling and simulation of discrete systems, realtime
computer systems, operating systems.

The Computer Science Department offers computer
arithmetic, electronic data processing, business-
oriented programming, computer programming, com-
puter operating systems, large scale information
programming, and advanced assembly language.

The Computer Science Department, which is part of
engineering and engineering technologies ofters avery
substantial program in computer science and com-
puter programming at the associate degree level.
Evening and Saturday courses include: data process-
ing, introduction to computers, introduction to FOR-
TRAN, introduction to computer science, data struc-
tures, computer programming for engineers, com-
puters in society, introduction to COBAL, assembly
language (2 semesters), operating systems, systems

analysis, advanced ANS COBOL, advanced
programming techniques, microprocessor
applications and programming, advanced

microprocessor applications, RPG programming, and
business information systems. The Business
Department offers introduction to data processing both
evenings and Saturday.

Offers a sizable program as follows:

Undergraduate: Computer programming and lab, fun-
damentals of data processing, ANSI-COBOL and lab,
assembly language programming and lab, compiler
analysis and lab, database, also, independent study.

Graduate: discrete mathematics, minicomputers.

The Computer and information Science Department
offers a comprehensive program at both un-
dergraduate and graduate levels as follows:
Undergraduate: computer programming and problem
solving, computer programming and business
problems, introduction to computer science, machine
and assembly language programming, principles of
operating systems, numerical calculus. Graduate:
computer programming (Saturday morning), data
management system design, computer system design,
tormal languages, microcomputers and applications,
model analysis and simulation, design of interactive
systems. Course requirements for the MS in Computer
Science may be completed by means of evening or
Saturdy coursework. Doctor of Engineering Science

degrees are available in Electrical and Mechanical
Engineering. These degrees, however, require a
minimum of one academic year in full-time residence. A
proposal is in process for a joint program with Rutgers




Rutgers University
(Newark)

101 Warren Street

Newark, N.J. 07102

Somerset County College
Rte 28 & Lamington Rd
North Branch, N.J. 08876
201-526-1200

Seton Hall University
South Orange Ave.
South Orange, N.J. 07079
201-762-9000

Union County Coliege
Springfield Ave.
Cranford, N.J. 07016
201-276-2600

Union County Technical
Institute

1776 Raritan Road
Scotch Plains, N.J. 07076
201-889-2000

Stevens Institute of
Technology

Castle Point Station
Hoboken, N.J. 07030

University leading to a doctoral degree in computer and
information science. The following two courses are
given at Drew University, Madison, N.J.: data system
design, graph theory. The Graduate Schoal otfers an
MS in Computer Science (Thesis required) and a PhD
in Electrical Engineering with a major in Computer
Science (dissertation required). A year in residence is
required for the PhD. Otherwise, all coursework can be
completed in the evening.

The Computer Science Department offers a substantial
number of evening undergraduate courses; the
Graduate School offers desigr and development of
information systems (two semesters), introduction to
computer technology, and seminar in information and
decision.

The Data Processing Department offers a sizable
evening and Saturday curriculum as follows: introduc-
tion to data processing, computer augmented accoun-
ting (2 semesters), business data processing, introduc-
tion to data processing systems, computer operations
(3 semesters), COBOL (2 semesters) BAL (2
semesters), RPG. BASIC, PL/1, scientific program-
ming.

The Center for Computer and Information Sciences
offers introduction to the use of the digital computer,
numerical applications, and computer programming.

The Business Department offers a course »n computer
programming.

Offers coursework in data processing, programming,
assembly language ard business applications leading
to the associate degree in applied science. This degree
can be earned in four years of evening coursework.

Offers a substantial number of evening courses in
computer subjects in the Electrical Engineering Dept.
and in the Pure and Applied Mathematics Dept. The
Management Science Dept. ofters a course in manage-
ment uses of the computer. A masters degree in either
Computer Science or Engineering (Electrical—
Computer Science) is possible with evening work. Six
years is allowed for completion, thesis is optional. The
PhD requires one year in residence.

New York City area: The New York City area contains a number of very fine schoois
which offer computer science courses at both undergraduate and graduate levels.
Among the more prestigious are the Polytechnic Institute of New York (formerly the
Polytechnic Institute of Brooklyn) and Columbia University. However, considerations
of available course offerings and transportation convenience should also be taken into

consideration.

Adelphi University
Garden City. L.1.,
New York 11530
516-294-8700

City University of

New York

The City College
Convent Ave. at 138th St.
New York, N.Y 10031

A business-oriented school. Offers an evening un-
dergraduate course in computer programming.

The Computer Science Department in the Engineering
School offers a few undergraduate courses and a full
curriculum of graduate courses in computer science in
the evening. Thesis is optional for the MS in Computer
Science; the PhD in Computer Science requires a
dissertation and one year in residence.

City University of

New York

Queens College

65-30 Kissena Boulevard
Flushing, N.Y. 11367
212-520-7471

Columbia University
School of Engineering
and Applied Science
116th St. & Broadway
New York, N.Y. 10027
212-280-2931

Fordham University
Bronx, N.Y. 10458
212-933-2233

Hofstra University

100 Fultan Avenue
Hempstead, N.Y. 11550
516-560-3491

New York Institute

of Technology

268 Wheatiey Road

Old Westbury, N.Y. 11568
516-686-7520

New York University
Washington Square
New York, N.Y. 10003
212-598-3591

Pace University

Pace Plaza

New York, N.Y. 10038
212-285-3323

Polytechnic Institute
of New York
(Formerly Polytechnic
Institute of Brookiyn)
333 Jay Street
Brooklyri, N.Y. 11201
212-643-5000

Pratt InsStute

215 Ryerson St.
Brooklyn, N.Y. 11205
212-636-3600

St. John's University
Grand Central & Utopia
Parkways

Jamaica, N.Y. 11439
212-969-8000

A liberal arts four year college offering a BA with major
in Computer Science. Presentevening offerings are the
following: introduction to computers, computers and
programming, introduction to discrete structures,
numencal calculus, data structures, programming
computers, computer organization, and systems
programming. Additional ndependent study s
available in computer languages.

Offers a substantial evening graduate program in
computer science. The MS degree may be earned by
evening work alone. Course work required for the
doctorate may also be completed by evening work. The
doctorate dissertation, however, may require a penod
of full-ime study.

Ofters evening courses Ir computer/information
systems, introduction to COBOL programming, and
advanced COBOL programming.

The Computer Science Department offers 9 un-
dergraduate and 5 graduate courses in the evening.
The undergraduate courses may be credited toward a
BA or BS in Computer Science. There is no graduate
degree in computer science.

The combined Electrical Engineering— Computer
Scrence Department offers a comprehensive evening
program leading to the degrees of BS in Computer
Science and MS in Computer Science. All necessary
course work can be completed in the evening.

Tre Data Processing and Systems Analysis Institute of
the School of Continuing Education offers evening
courses teading variously to certificates or diplomas.
The Computer Science Dept. offers a few evening
undergraduate courses credited toward the BS in
ccmputer science and also a very substantial computer
Science.

A non-engineering school. Offers evening, Saturday
and Sunday courses in Computer Science including
introduction to computing, COBOL programming,
systems programming, information processing, infor-
mation concepts, information processing—systems
designs, and programming languages.

The Computer Science Div. of the Electrical Engineer-
ing Dept. offers a very substantial group of evening
courses which allows ail, or aimost all, of the course
work required for the MS or PhD in Computer Science
to be completed in the evening. A smailer but still
substantial number of evening courses are offered at
the Farmingdale (Long Island) and the Westchester
campuses.

The Computer Science Dept. offers a comprehensive
evening program with the following degrees available:
BS in Computer Science, BS in Data Systems Manage-
ment, and MS 1n Computer Science. Requirements for
all programs can be completed 1n the evening. There 1S
a Saturday course in computer auditing. The Electrical
Engineering (undergraduate) Department offers no
evening courses.

The Mathematics Department offers graduate courses
in the evening which may be credited toward an MS.in
Mathematics with a specialization in computer science.
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What is software?

S. A. Steele

Software has become big businessina
relatively brief span of 25 years. From
the straightforward clerical programs
driving early computing machines,
software has expanded into
sophisticated, interconnected
program packages and computer sub-
systems solving complex engineering
and scientific problems. Progress in
computer hardware—micro-, mini-,
and compact large-scale computers
(many of them “embedded” in systems
or subsystems as part of end-product
equipment)—has accelerated the
growth of software development, both
in scope and complexity. Today
software is a major, integral part of
such diverse engineering systems as
communications, process control, and
command and control systems.

With this growth pattern an established
fact, software development—both the
software technology itself and its
relationship to equipment
technology—has become an essential
part of the system development
process. As an example, computer
control of a modern phased-array
radar system requires a software
system design an order of magnitude
more complex than the ones used in
the computer centers found at many
companies. Software has become not
only the driving cost element in many
system developments, but also an ex-
treme risk area. The trend in activity is
illustrated in Fig. 1," which shows the
projected use of software over the next
10 years as being so extensive that it
can not be supported adequately by
current technology.

Reprint RE-23-6-4
Final manuscript received April 28, 1978.

Changing from haraware engineer to hardware/software
engineer? You'll use your basic engineering discipline, but
you'll have to learn a new methodology, pick up a new

vocabulary, and get used to dealing with an invisible product.

Start here.

“Let's see, software engineers are the people who use computer
science as part of their software effort to produce computer
programs that are part of the software that is part of the computer
system that...”
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If software grows as projected, costs will be far too high unless new
support technology reduces software development costs to a
reasonable level.

Fig. 2 shows the trend in the hardware-software mix for
implementing command and control systems. Further, ona
per-unit cost basis, decreasing hardware costs have been
more than offset by growing software costs. Barna? states,
“Every study in existence indicates that at least 90% of the
cost of data processing in 1985 will be people costs instead
of hardware costs, making data processing the most labor-
intensive industry.”

Demystifying software

Despite the impressive accomplishment record of the
computer sciences, software remains a mystery to many
engineers, one complicated by an entirely new vocabulary.
Moreover, because one cannot see, touch, or hear software,
working with it is especially frustrating to engineers ac-
customed to working with hardware.

But it needn’t be so, and it must not be. All engineers and
managers need a basic understanding of software; software
development is everyone's task. The key to full utilization of
computer power lies in developing the technology to

Percent of Total Costs

(1

‘1955 1970 1975 1980 1985

Yaar

Fig. 2

Hardware/software mix has shiftec strongly to software in the past
twenty years in the example of command and control systems
shown here. Decreasing hardware costs have been more than
offset by increasing software costs.

minimize today's requirement for large numbers of highly
trained personnel to develop and maintain software. Forthe
present, however, software remains the critical path in
dealing with data processing in the next decade. The
abstract nature of software and its level of quality (number
of errors) have created the need for special emphasis on
improved software management and development. This
article attempts to eliminate some of the mystery that
hardware engineers see in software. It should provide that
basic understanding, already alluded to, that all engineers
and managers will need as software becomes more and
more a part of their lives. To do this, the article starts with
some basic definitions, explains software architecture and
the software development process, and then presents the
problems that software engineers face today, along with
some potential solutions.

Basic software elements
and definitions

Be prepared to learn a whole new vocabulary.

Software or computer software, as used here, includes the
computer program and computer data that direct the
computer hardware in its computational or control
functions; also included is the associated documentation
related to the product. Software effort is the effort required
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What happens after the engineer's program is written? The familiar programs that most hardware engineers have written for
problem-solving applications are source programs, usually written in a high-level language such as FORTRAN. The hardware
engineer stops his effort here and waits for the computer to run the program and produce an answer, but the software engineer
must look deeper into the process. The compiler translates the source program into an object program, one which is capable of
being executed by the particular computer being used. Next, linkage control software makes software changes and picks the
proper versions of all the software available, and the object load module runs on the computer. Systems may have these
“preliminary” actions take place on a separate program-generation computer, with the actual program running on the

production computer.

to generate the computer program, data, and associated
documentation. Computer science is the theory and
development of information processing, and computer
programming is the conversion of the problem or tasks into
the basic steps that the computer can carry out. Software
engineering (an emerging discipline) is the total process of
definition, design, building, testing, and documentation
required to develop a computer-program product. The term
software engineer® has come into wide use and indicates
one who can specify, design, and test software from a total-
system point of view.

The term computer, as used here, indicates electronic
machinery which, by means of stored instructions and data,
performs rapid, often complex calculations, or compiles,
correlates, and selects data. Computer systems may require
more than one computer—in some cases external com-
puters are needed to prepare programs for use on the
production computer, which produces the output. A
computer program is a series of instructions or statements
in a form acceptable to the computer equipment that is
designed to execute the operations. These programs may
be either machine-dependent or machine-independent,
and may be general-purpose or specialized in nature.
Computer data is the representation of facts orinstructions
in a form suitable for acceptable interpretation and/or
processing by the computer. A computer system is the
aggregate of computer equipment, computer programs,
and computer data.

A real-time system may be defined as one that controls an
environment by receiving data, processing the data, and
taking action or returning results quickly enough to affect
the functioning of the environment at that time. In a typical
real-time system, external devices are connected into the
computer so that data can be processed from the devices,
computed and analyzed, and then used to generate com-
mands to be sent back to the devices. Responsetime, orthe
act of carrying this outin a very fast and responsive way, isa
key feature of real-time systems.

Software (or program) architecture is a structural descrip-
tion of a total software system, designed to define the
system’s programs, their content, and their associated
components, both in terms of data flow and program
hierarchy. In effect, the software architecture is analogous
to the better-known hardware block diagram, providing
visibility into both content and function of the system’s
constituent parts.

Within the computer are three types of software: operating system
software, application software, and support software.

The operating system (or executive, or monitor) softwareis
responsible for scheduling the resources of the computer
complex and controlling such functions as the flow of data
between the sensors and the computer complex.
Application software is responsible for solving unique
computational and data-manipulation tasks associated
with the specific problem.




Fig. 4

Basic computer architecture consists of
four parts—input and output interfaces,
memory, and central processing unit. The
memory section stores the computer-
program statements and data, and the
central processing unit (CPU) does the
actual computations and manipulations.
The data in the memory section changes
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chips, it is classified as “firmware”—more
difficult to alter than software, but less
difficult than altering hardware. The CPU
is divided into two sections—control and
arithmetic. The control section takes in-
structions and data from memory and
sends them to the arithmetic section,
which executes the programs in hardware.
The control section was also formerly all
hardware, but “micro-programming” now
makes it possible to replace this hardware
with software.

When a computer complex is used only as a tool to solve a
problem in analysis, the application software is of major
importance. In modern engineering systems, however, the
designer is confronted with an overall system design
problem stressing hardware and software issues and in
some areas developing or modifying an operating system.

The third category, support software, covers items such as
assemblers, compilers, debuggers, editors, configuration
and control aids, and other software tools used both during
program preparation and real-time execution.

It is important to understand the basic mechanics of how a
computer program is generated so that the final product can
operate.

Fig. 3 represents the program-generation process by which
a software engineer may enter a program and have it
processed so that it will be loaded and executed in the
computer. The source program (initial definition or input
program), written in assembler or various types of high-
level languages (FORTRAN, PL/1, ALGOL, etc.),*is placed
on tape, disk, or cards. The process that converts this input
program to an object program (one capable of being
executed) is called compiling,* or sometimes translating.
This compilation step may be performed either within the
production (system) computer or in an external computer
for execution later on the production computer. Support
software is also required for linking and controlling various
changes and versions of the software. This total process of
generating software for execution on a production com-
puter can be called process construction and is often
complex enough that it can not be carried out on the
production system. The planning and acquiring of modern

*It written in assembly language, this is called assembling, producing an object program
where the ratio of source to object is frequently one to one. This allows programming
many of the machine’s basic activities.

Control Arithmetic
Section Section

T

Micro Instruction
Implementation
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program-generation facilities tc support software engineer-
ing development is a major task with today’s systems.

The fundamental ingredients of a minimal computer-
program package are the source program, the object
program, and the associated source program listing needed
to read and understand the program. Since customer
maintenance of the product will be at the source level,
complete correlation is required between source and
object, and the program-generation process must support
this correlation. It should be noted that this minimal
computer-program package is inadequate documentation
for changes; design and as-built documentation is also
required, including flowcharts.

Computer architecture can be divided into input/output, process-
ing, and memory.

Fig. 4 is a basic computer-architecture block diagram
showing the central processing unit (CPU), the input and
output interface units, and the memory associated with the
central processing unit. Fundamentally, the CPU is made
up of a control section and an arithmetic section capable of
the basic mathematical manipuiations. Generally, the
memory contains the computer-program statements and
associated data. Under CPU control, each instruction of the
computer program is taken from its storage in memory,
decoded in the control unit, and then executed by the
hardware.

Writing programs making use of the computer hardware
instruction set is a normal programming activity. Modern
computers, however, often have a micro-programming
feature.* Micro-programming is a technique that substitutes
micro-instructions (software) for the logic gates (hardware)
that are normally used as the decoding mechanism in the
control unit of the CPU. If this level exists on a particular
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computer, then the conventional programming level for the
computing complex can be called macro-programming.
This issue is important to an understanding of current
trends. Essentially, by means of micro-programming, it is
possible to make a particular computer with its hardware
instruction set look like another computer. This is ac-
complished not by rewiring the computer's control
mechanism, but by changing its control mechanism's
micro-instructions via micro-programming. This process,
which allows software that will run on one machine to run
on another, is called emulation.

Another term creeping into the vocabulary these days is
tirmware. Firmware is essentially a program resident in a
computer (often read-only memory) that is effectively hard-
wired. This program can be fetched from memory and
executed as any stored program, but it cannot be changed
easily and for many practical purposes is essentially a
hardware box. The method of developing this computer
program is identical to that for any computer program.
However, since it cannot be changed easily after it has been
“burned” into memory, its use and associated configuration
control are different. The use of microprocessors (process-
ing on a chip) and advanced hardware architectures forces
the software engineer to fully understand hardware con-
straints.

This summary list is by no means complete. Nonetheless,
the terms included here cover most of the basic software
items and provide a means of understanding the develop-
ment process and some of its inherent problems and
peculiarities.

The software development process

In one respect, at least, software is like hardware—successful
design and development require an orderly, logical approach.

A general software development approach, applicable to
both large and smali efforts,® includes the following:

A top-down approach to problem definition and
resolution.

Organization of the system into logical development
phases.

Definition of required inputs and outputs from each
phase.

Established organizational responsibilities and
interfaces.

Incorporation of scheduled reviews and approvals.
Implementation of management controls.

Development of documentation as an integral part of
the system.

The detailed phasing of the software-development process
used to address these broad requirements is discussed in a
future RCA Engineer by Howery and in an earlier RCA
Engineer article on the subject.” The major phases are
system requirements definition, computer-program system
performance requirements, computer-program system

design, computer-program implementation, computer-
program integration and validation, equipment and com-
puter program integration, system testing and acceptance,
and system operation and maintenance.

While analogies exist between hardware and software
development, the software-development process must be
understood on its own merits to insure successful develop-
ment with its own set of standards.® Some of the similarities
and differences in hardware/software development are
discussed below.

System definition—What takes the place of the hardware block
diagram?

In hardware design, the block diagram is a standard tool for
giving definition, design layout, and visibility of the equip-
ment content and development process. The software
analog to the block diagram must provide similar definition,
description, and visibility, but in terms of control between
program packages or modules and the data to be
processed, rather than hardware subassemblies. The term
“software architecture” then becomes roughly equivalentto
the hardware block diagram in concept, but takes on
different forms to show the complete control and data
issues involved. Two examples of architecture information
are:

data flow, which indicates the path of data throughout the
various program packages and storage areas; and the
program hierarchy, which structures the programs, sub-
programs, modules, and routines in a hierarchical tree
showing their capabilities for interaction. Examples of
these are shown in Fig. 5.

Configuration management and control—Hardware units are
generally built and delivered to the customers individually, but
software packages, on the other hand, are copies of one master
program.

With many copies in existence, all subject to user alteration
and modification to meet the peculiar requirements of
individual systems, the number of configurations of the
various “masters” can easily become confusing. Moreover,
software packages are often developed as versions in-
dicating different levels of capability. This is another
dimension in the control issue and proliferates more
“masters.” Both source and object programs must be
controlled along with the specific computer loads, in-
cluding data unique to any one system. Coupling this
problem with the "invisible” nature of these programs
makes the configuration management and control process
particularly complex.

Production—When does the software go into production, if ever?

Or, in a slightly different analogy, when is the software
turned over to the “factory" for building? Today, the
concept of building software using a factory philosophy is
in its infancy, and qualified software engineers areinvolved
throughout the actual building process. Moreover, in a
literal sense, software never goes into production, because
copies are always available. However, the word “produc-
tion” is often used in software after a final product has been
generated and standard and preselected modifications can
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“test probes” will simply corrupt software operation and
distort results. Effective monitoring of software requires a
combination of hardware monitoring (e.g., on the
backplane of the system) and software data-collection
“hooks” placed in the system.

The time-sequential nature of software adds a major
complexity to the debugging process since it is impossible
to “see” all of the software at one time. Without extensive
tools, software debugging is more difficult than equipment
debugging. Because software tools can easily take up 10-
20% of the software development budget, this area
demands early and continuous evaluation.

Maintenance and reliabllity—How can you apply these terms to
“invisible” products?

In software terms, maintenance includes detecting latent
defects after the software has been delivered, and adding
enhancements to the basic program. This definition is not
consistent with the normal concept of equipment
maintenance, but is used in a generic sense as maintenance
of the software product after it has been delivered. The level
of maintenance and how the customer operates the system
must be defined early in the development.

< 50 Lines ture to show which parts of

Saurce the program can call on or

S interact with other parts of
the program.

The term software reliability is normally used in a generic
sense to describe the process of assessing operational
software performance. Software is considered reliable if its
use does not produce more than a tolerable frequency of
system failures or unexpected performance. The software
reliability process addresses such areas as data collection
and analysis on software errors, mathematical approaches
to software reliability, software management practices,
definition and enforcement of good programming practice,
and techniques to increase the thoroughness and cost-
effectiveness of testing.

Product patentability—How do you protect your software
developments?

Although exceptions exist, at the present time it is not
possible to patent software, even if it replaces an equivalent
(patentable) hardware technique. Copyright mechanics,
however, do exist. Also, software products are usually
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delivered in object-program form so that users cannot make
modifications easily. Licensing of software products to limit
their general use is also common.

To be successful in software development, three major
skills must be identified. First, the application of the
proposed software must be fully understood. Second, the
computer hardware characteristics and the overall software
architecture must be well understood and laid out. Third,
the building process of the software code and associated
testing must be clearly defined and made visible to manage-
ment.

Problems and approaches

The problems. . .

Since the early 1970s, the complexity and cost of software
development have attracted increasing attention, and both
software developers and users are attacking the associated
problems from diverse directions and with a wide variety of
techniques. Developers—particularly those involved in ma-
jor real-time sensor control systems—have been working
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closely with Department of Defense user agencies to
achieve a broad-based mutual understanding of the
principal problems and formulate both general and specific
approaches to their resolution. These cooperative efforts
have isolated seven major areas of concern to both
developer and user:®

1) Basic misunderstanding of the software system
engineering function. The roles of system engineering
and software engineering must be defined and
recognized as principal elements in a highly complex
development discipline.

2) Incomplete and/or inadequate specifications. The
volume and scope of software specifications tend to lead
to omissions, distortions, and misunderstandings.

3) Incorrect partitioning of hardware and software
functions, occuring when an interface is designed either
first from the hardware side or the software side and not
as an integrated interface.

4) Ineffective software test planning, leading to ex-
cessive testing in some areas and inadequate checks in
others.

5) Lack of visibility and understanding of the software
development discipline, resulting in inadequate control
of creative software development.

6) Inherent growth in system core and time
requirements—a tendency that occurs even in highly
successful projects.

7) Inadequate involvement of the system user during
development, frequently resulting in an end product that
does not satisfy his needs.

These are by no means the only problems in software
development, but they are representative of the most
pressing immediate and long-term needs.

. attacking the problems

To assist industry and government in resolving these broad
problems, the Director of Defense Research and Engineer-
ing has issued a generalized software-technology objective
list' covering four broad areas and setting specific goals
within them:

1) Project management—planning, estimating, and con-
trol of development; configuration control; requirements
validation; risk analysis; software quality; technology
transfer.

2) System architecture—new computer system architec-
tures; impact on software cost, timeliness, and quality;
hardware-software-firmware tradeoffs; information-
system security; flexibility in data-retrieval systems.

3) Programming environment—languages to provide for
effective control of software development; automation of
clerical aspects; tools for test and validation;
maintainability-enhancement techniques.

4) Reusable software and tool availability—specification
of standard software; adaptable standard software for




other applications and hardware; nationwide language-
control facilities; repositories and distribution systems
for reusable software; high-order language consolida-
tion.

These and other objectives are compatible with general
industry goals that recognize the inadequacy of present
state-of-the-art software development techniques to sup-
port future requirements. As an example, if the cost of
software development using present technology is pro-
jected into the 1980s, it will be far too high (Fig. 1)—it must
be reduced by 80% if we are to effectively use the projected
hardware growth and professional personnel availability.

Structured programming is a necessity, and some automation
seems possible.

Presently, the industry is using formalized techniques in
development, such as structured design and structured
programming. Structured design is associated with the
allocation of requirements to partitioned and modular
program packages or modules with the interfaces clearly
defined. Structured programming is associated with using
basic and limited language constructs that result in very
readable computer-program listings. With special tools to
aid the software designer in their use, these techniques can
be very effective in attacking the overall problem. More
complete definitions of modern programming practices can
be found in Myers."

Approaches to these problems are myriad, but a few areas
of advance hold special promise. One is the automation of
system- and module-specification languages. This is ac-
complished by means of a general-purpose module
generator to accept functional specifications as input for
the production of a high-level-language program. These
systems can be problem-oriented and would require a
variety of generators. The concept is for a specification to
be fed directly to the automatic system to produce the
programs, thereby eliminating the need for large program-
development teams.

Implementation languages will also be getting better, with
improved control structures, language facilities to help
validate program correctness, and extensions to existing
compilers (via pre-processors) for standardizing new
features. Design languages will emerge to aid in structured
design, and computer-assisted tools will be available for
data-base design. Design and implementation languages
will be integrated.

Another major area being addressed is requirements defini-
tion and validation. This is the key technology area in large-
scale systems, where successful software system develop-
ment depends so completely on firm, accurate re-
quirements. Efforts are currently underway® to develop
requirements languages and techniques for comparing
requirements with specifications.

Software development often “reinvents the wheel.”

A perennially expensive area where standardization is
desirable is utility/support software—editors, debuggers,
input/output handles, standard subroutines (e.g., sine and

cosine subroutines), etc.—that it is clearly wasteful to
redesign on every new job. Some of these packages are now
being considered for implementation in chip form as
firmware. From an engineering-design standpoint, the
software for these chips must be correct, since it is not
economically feasible to recali thousands of chips in order
to repair the program bug. This is an example of the type of
tradeoft involved for a firmware or straight software ap-
proach.

In new engineering systems, distributed computing is the
major trend. This normally occurs using micro- and mini-
computers, distributed and partitioned to solve specific
functions. From a software point of view, this aids in
dividing and conquering the “large-scale” software system
problem. However, more emphasis must be placed on the
control software among machines.?

Conclusion

Software is an integral part of modern engineering systems,
involving the total spectrum ot development, from definition
through test. Development of a system employing software
requires a total system discipline that uses existing ex-
perience in both equipment design and computer
science/software. At the conceptual level, product develop-
mentis similar in hardware and software, butthere are many
differences at the detailed level. For successful system
development, the design engineer must become familiar
with these differences.

One key feature in modern system development is the
hardware/software tradeoffs that will guarantee a cost-
effective system design. And within the software design
itself, extensive tradeoffs are required in areas of software
architecture and implementation. Fortunately, texts on the
techniques of software design are now becoming more
common, so that today it is practical for a designer to
function more comfortably and effectively in the software
world.

As an industry, we are wrestling with an environment that
has requirements outpacing technology; a design engineer
contemplating a way to use the technology must recognize
this. The challenge is there, the future is exciting, and with
added complexity comes an opportunity for successful
system development using all the technology available.
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Programming in CHIP-8

H. Kleinberg

Learning programming on RCA’s VIP is relatively easy and

painless, and CHIP-8 is one of the major reasons.

This paper introduces one of the most powerful parts of the
COSMAC VIP—the CHIP-8 interpreter. The paper is written
primarily for those who have not been exposed to a
programming language in any depth, but who are familiar
with numbering systems and with such basic computer
concepts as memory and instructions.

If you don’t have that background, you should still be able to
get a good idea of what kind of functions are available to the
CHIP-8 user. This paper by itself, however, will probably not
prepare you to write a program without a bit more coaching.
[Try the "Good Guide Special” described in this paper's
final section, “Taking the next step.”—Eds.]

Descriptive information about the VIP and its accessoriesis
readily available and most of the information appearing in
the instruction manual will not be repeated here. But it is
worthwhile to review briefly how the system’s data structure
is organized. The COSMAC VIP handles data in “bytes,”
each consisting of 8 bits. A byte can, therefore, take on any
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Author Kleinberg with his computer system: the VIP (right), tv
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one of 28 = 256 configurations. For example, 01101101 is
equivalent to decimal 109. For ease of handling, this
awkward (to people) entity is treated as though it were
broken up into 2 subgroups of 4 bits each, although no such
fracture occurs in reality. Each subgroup can now assume
2¢ = 16 configurations, hence the name “hexadecimal,”
shortened to “hex.” These 16 binary configurations, when
expressed in hex, are labeled from 0 through 9 (borrowed
from our decimal system) and A through F (equivalent to
decimal 10 through 15). Our earlier example of decimal 109
now becomes 0110 1101, or 6D in hex, and the byte has now
been expressed as two hex digits.

Using the hex system is an acquired skill, and cumbersome
in the early learning stages, but it is far easier to cope with
than the pure binary which it masks. In all that follows, hex
digits are used, so your counting and arithmetic must be
based on that system, a fact of which you will be reminded
periodically.

You have now been relieved of the burden of coping with
long binary strings, but you have not been taken out of the
level of machine instructions, where you must concern
yourself with the many specific details of the computer’s
structure. To alleviate that chore, a program called CHIP-8
has been written as part of the VIP system package. CHIP-8
is a special type of program called an interpreter.

Why use an interpreter?

An interpreter provides you with a simplified language that is
tailored to a specific application.

In the spectrum of software, interpreters lie between
assembly-level programs on the one hand, and the more
elaborate and generalized compilers such as Fortran on the
other.

The designer of an interpreter starts by picking a set of
functions that would be useful in his specific application.
For each function he writes a machine-language program,
which is later activated when the user calls out the
appropriate code in his “higher-level” program. Some of the
functions can be quite complex when worked out in
machine code.

As with any other product design, an interpreter is a result of
certain compromises. There are conflicts between the
range of application (flexibility) of the language, the speed
of execution, the amount of memory required to storeit, the
complexity as seen by the user, and so on. In the case of
CHIP-8, all these questions were settled in favor of simplici-
ty and economy.



It is important to keep in mind the distinction between the
interpreter and the computer on which it is run. By its
nature, an interpreter language is designed for a specific
application, sacrificing features that wouid be useful in
other, different applications. For example, CHIP-8 is
specifically designed for controlling the video display and
hex keyboard of the VIP, but is a very poor language for
numerical computation. The VIP's 1802 microprocessor,
however, does not have that restriction. Using the same
1802, we could write another interpreter that would be
excellent for vector calculations and very poor for video
games. The interpreter reflects conscious restrictive
choices that in no way alter the generality of the computer
on which the interpreter is run.

The basics of CHIP-8
CHIP-8 instructions have a simple, consistent format.

Each instruction is 2 bytes (4 hex digits) long, and each
performs a distinct, well defined function. The general
format is ABBB, where A is always part of the instruction
code, and B is either part of the code or data that you must
supply. Fig. 1 lists the instructions in numerical order.
(Remember that A,B....F are numbers, not letters.)

In order to understand the instructions, you must first become
familiar with a vocabulary of 1 word and 7 symbols.

VX and VY, or X and Y, stand for the program variables. A
key feature of CHIP-8 is the use of 16 variables, which are
actually memory locations containing numbers over which
you have complete control. They can signify whatever you
want them to signify. You can set them to any value you
choose, you can compare them, you can increment them.
Each variable is identified by one of the hex digits, 0 through
F, but in Fig. 1 and in the descriptive material where the
general form of the instructions is useq, they are referred to
as VX, VY, or simply X or Y, where X and Y, of course, range
from 0 to F. Thus, you will be performing such operations as
“check if variable 7 (V7) is equal to zero” or “add 1C to the
present value of variable B (VB).” Each variable represents
one byte of data and its value is, like all other data,
expressed in a program as a pair of hex digits.

Only a few other symbols are used in describing the CHIP-8
instructions:

|, called a pointer in the manual, is a memory address. In
general, it identifies the beginning of a string of datato be
read from or written into the memory. The pointer is your
major tool for storing and retrieving data, and it is
important to note which instructions use it or modify it.

MI refers to the data stored at the location(s) addressed
by I. In a sense, | is the post-office box, Ml is the letter
stuffed in that box.

MMM indicates memory addresses, other than I, that are
to be supplied by the programmer. Since CHIP-8 was
designed to run with a small memory, the most significant
hex digit in the address will always be 0, i.e. OMMM.

KK represents a 1-byte value or number that you will
supply in your program.

Instruction QOperation

*00EO Erase display (all 0's)
*00EE Return from subroutine
OMMM Do machine-language subroutine at OMMM (subroutine

must end with D4 byte)

*IMMM Go to OMMM
*2MMM Do subroutine at OMMM (must end with 00EE)
*3IXKK Skip next instruction if VX = KK
*4XKK Skip next instruction if VX # KK
*5XYO0 Skip next instruction if VX = VY
*6XKK Let VX = KK
*TXKK Let VX = VX + KK
*8XY0 Let VX = VY
8XY1 Let VX = VX OR VY (VF changed)
8XY2 Let VX = VX AND VY (VF changed)
8XY4 Let VX = VX + VY (VF = 00 if VX + VY FF, VF = 01 if
VX + VY >FF)
8XYSs Let VX=VX-VY (VF =00if VXXVY, VF = 01if VX=VY)
*9XYO0 Skip next instruction if VX # VY
*AMMM Let | = OMMM
BMMM Go to OMMM + VO
*CXKK Let VX = random byte (KK = mask)
*DXYN Show n-byte MI pattern at VX, VY coordinates.
| unchanged. MI pattern is combined with existing
display via EXCLUSIVE-OR function.
VF=01ifa1inMI pattern matches 1in existing display.
EXSE Skip next instruction if VX = hex key (LSD)
EXA1 Skip next instruction if VX # hex key (LSD)
*FX07 Let VX = current timer value
*FX0A Let VX = hex key digit (waits for any key pressed)
*FX15 Set timer = VX (01 = 1/60 second)
*FX18 Set tone duration = VX (01 = 1/60 second)
FX1E Letl=1+VX
*FX29 Let | = 5-byte display pattern for LSD of VX
*FX33 Let MI = 3-decimal digit equivalent of VX (I unchanged)
FX55 Let MI = VOIVX (1=1+ X+ 1)
FX65 Let VO: VX =MI (I =1+ X + 1)
Fig. 1

CHIP-8 vocabulary includes 31 instructions. Ones with asterisks
are used more commonly than others and so are explained in text.
Parts of instructions in bold type identify the instruction; the rest of
the instruction message tells what variables, memory locations,
etc., are to be acted upon. Programs like CHIP-8 are dynamic
systems, with new features being continually introduced. If it is
important that your information is current, make sure you have the
latest copy of the Manual.

N refers to the number of bytes to be used in settingup a
pattern to be displayed.

How to read a CHIP-8 program

A sample working program shows how CHIP-8 works.

Fig. 2 lists a sample program, called “Jumping X and O.”
Here is what the program is written to do. First, a solid 6x6-
spot block appears in the upper right quadrant of the tv
display. A 5x5 “X" pattern appears in the center and jumps
randomly to a new location every 1/5 second. When the X
overlaps the 6x6 block, the X disappears, an “O” pattern
appears in the center of the screen, and repeats the process,
being replaced by the X when an overlap with the block

29
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Instruction
Address code Comments
0200 A24C Set | to block pattern
0202 6530 V5=30 .
0204 6604 V6 = 04 Coordinates of block

0206 D566 Show block at V5, V6

0208 A240 Set | to X pattern

020A 2212 Do subroutine at 0212

020C A246 Set | to O pattern

020E 2212 Do subroutine at 0212

0210 1208 Go to 0208 (return to X pattern)

0212 S1E } Set V1, V2 to center coordinates

0214 620D ’

0216 D125 Show the pattern

0218 630C Set V3 to OC (= 1/5 second)

021A F315  Set timer from V3

021C F407 Timer —V4

021E 3400 Skip if V4 (timer) =0

0220 121C  Return to 021C if V4 #0

0222 4F01  Skip if VF = 01 (checking for overlap)

0224 122E Go to 022E if VF # 01 (overlap, switch patterns)
0226 D125 |f no overlap, show old pattern to erase

0228 C13F Random number (6-bit) to V1 § S
022A C21F Random number (5-bit) to V2

022C 1216 Go back to 0216 to show pattern in new location
022E D125 Show old pattern to erase

0230 00EE Return from subroutine (will switch patterns)
0232 0000 Space for future changes

0234

0236

0238

023A

023C

023E 0000 Space for future changes

0240 8850

0242 2050 } X pattern

0244 8800

0246 F88s8

0248 8888 } O pattern

024A  F800

024C FCFC

024E FCFC } Block pattern

0250 FCFC

0252

0254

Fig. 2

“Jumping X and O" program was designed to explain a number of
CHIP-8 instructions and entertain RCA Engineer editors. Instruc-
tion explanations in text use specific lines of the program listing as
examples. See Fig. 3 for the program in action.

occurs. The program continues until the machine is
stopped; Fig. 3 shows the program in action.

This sample program will be used to illustrate the VIP
instruction set, but before proceeding to those details, it
would be worthwhile to look at the format of the sample to
note some of the conventions that are used.

The first column in the program contains the memory
addresses in which the instructions are stored. All instruc-
tions occupy two adjacent byte locations, so it is standard
practice to write them as complete 4-digit words, using only
even-numbered memory locations to identify them. It is
understood that the adjacent odd-numbered locations are
used for the second byte of each word.

The memory column does not, of course, get entered into
the computer—it tells “where,” not “what.” But still you
must keep track of these addresses and list them for each
instruction. As you will see, all references made in the
program to other parts of the program use these addresses
to find the right place. And in using these addresses,
remember hex.

Note that the first instruction of the sample program is
stored in location 0200. This is a mandatory requirement,
since CHIP-8 was designed with the assumption that the
program starts there. Don't try to surprise the interpreter on
this point—it will always have the last laugh.

The next column in Fig. 2 contains the actual 2-byte
instructions (described in the next sections). These two
bytes are the only part of the program that actually goes into
the machine.

The last column contains your comments on each
instruction—a memo to yourself and to whoever else
studies your program. Each comment should be a brief
description, either in mathematical or English form, of what
the instruction does. The comment is of no value to the
computer and plays no part in executing the program, so
you can easily leave it out if you are willing to accept that at
some later date you will not be able to understand what your
own program is all about. The value of good comments
cannot be overstated. Every nontrivial program, without
exception, will eventually be revised by the writer or by
someone else and, while using good comments will not
guarantee easy revision, their lack will guarantee that a
simple change becomes a titanic struggle. You will even-
tually develop your own natural shorthand for comments,
but in the beginning, be generous with them.

Fig. 3
Program starts with an X in the center of the
display and a block at the upper right corner.

The X jumps to a new (random) location
every 1/5 second.

When the X and the block overlap,



What the instructions mean

CHIP-8 has 31 instructions, but you can write most programs using
only 20.

We will concern ourselves with the 20 instructions in Fig. 1
that are marked with asterisks. The remaining 11 are no less
legitimate, but tend to be more valuable to the advanced VIP
user. Of the 20 sample programs in the VIP manual, all but
one or two use only the group of instructions we will
examine, so there is no doubt that many interesting
programs can be written using them.

Note that the instructions, except the first two, have one,
two, or three numbers for you to provide—these arethe X, Y,
I, K, and M discussed in the “vocabulary” section. It is
important to write all the remaining digits—identified by
bold face type in the following explanation—exactly as they
appear in the general form, since the interpreter uses them
to identify the operation.

For the sake of cohesiveness, the instructions that we will
look at have been arbitrarily divided into six groups:

Group 1 — manipulating the variables

6XKK makes KK become the new value of variable X. As itis
the firstinstruction considered, a brief look at its structure is
in order. The “6” is the code that the interpreter will use to
translate this operation into the proper set of basic machine
instructions. “X” is the identifying number of the variable
that you have selected, and “KK" is the hex value to which
you want to set variable X. Thus, 6530 (line 0202 in Fig. 2)
changes the value of variable 5 to the value 30.

7XKK has the same structure, but the “7” translates to an
addition. The instruction adds KK (remember hex) to the
present value of VX. For example, 7A1B increases the
current value of variable A by 1B.*

8XY0 Note that in this case the first and tast digits are both
part of the instruction code. By using this instruction, the
value of variable Y also becomes the value of variable X. For
example, 8320 copies the value of variable 2 into variable 3.

“This same instruction can be used for decrementing VX by taking advantage of the fact
that the variable is a 2-digit number with no carry into a third digit. In such a system (to use
a decimal example) you can subtract 1 by adding 99, sincen + 89=n + 100- 1 and when you
throw away the 100 (the 3rd digit) you have n- 1. Itis analagous to a 2-digit odometerin an
automobile; if you advance it 99 places it brings you back to 1 short of your starting point.
In the hex system you add FF (the biggest number) in piace of 99 to subtract 1, but the
principle remains the same and can be extended to subtract any number you wish.

the X disappears and an O appears in the

center of the display. locations

The O then starts jumping to random

Group 2—transfer of control

The computer normally steps through a program in se-
quence. It sets up an instruction from memory, executes it,
and then proceeds to the instruction in the next memory
location. But the ability to depart from this sequence is one
of the essential features of any computer, and CHIP-8
provides a flexible system for doing so.

Breaking out of sequence may be done in two ways—
unconditionally (the jump is made whenever the instruction
is encountered) or conditionally (the sequence is or is not
broken, depending upon whether some condition has been
satisfied). This group of instructions deals with the uncon-
ditional transfers, often called “go to,” or “jump.”

1MMM has the computer perform, not the next instruction
in memory, but the one stored at location OMMM. As an
example, see Fig. 2, line 0210. Normally, the next instruction
to be done would be 0212 but instead, the 1208 instruction
makes the computer go back to do the one at memory
location 0208. Jumps may be either forward or backward in
the program, and there is no restriction on how many places
may be skipped.

An unusual use of this instruction is for stopping the
machine. When a program comes to a point demanding
some kind of reset or fresh start, a 1MMM instruction
referring to its own memory location will put the VIP into an
endless cycle until the operator takes the appropriate
action.

2MMM has the computer do the subroutine at OMMM, and
00EE has it return from the subroutine.

These two instructions must be considered together. While
the 2MMM instruction also transfers unconditionally, it is
not the same as the previous case. The difference lies in the
nature of a subroutine, which is a package of instructions
performing some function that will be used at more than one
point during the course of a program. (For example,
computing sin x or the roots of a quadratic equation might
be subroutines in a scientific program.) When a subroutine
is finished, you want the program to return to the point from
which the jump was made and pick up its normal sequence.
Since the subroutine may be entered (called) from any
place in the program, the obvious question is “How do |
know which place is the right returning point?”

In Fig. 2, lines 020A and 020E present a typical case, in that
they both have the program jump to the same point, 0212,
the beginning of a subroutine that makes the X or O jump

until it overlaps the block, and
the whole process begins over again.
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every 1/5 second. Clearly, before this program transfer is
made; the computer must store the location of the
“jumping-off” point so that at the end of the subroutine (line
0230) it can correctly return to 020C or 0210 as appropriate.
The 00EE—return from subroutine—instruction makes the
proper transfer back by retrieving the stored “jumping-off”
address.

CHIP-8 provides enough storage to “nest” up to 12
subroutines. This means that, in the course of executing
one subroutine, another may be called and executed, and
so on. The situation is analogous to the use of nested
parentheses in an algebraic statement, and the same care
must be taken so that each unit is begun and terminated
properly with the 2MMM and 00EE instructions.

Group 3—conditional skips

This group of instructions alters the sequence of eventsina
program depending on whether or not some stated condi-
tion has been met. They give the computer its most powerful
function, the ability to follow one course of action or
another, depending on the value of data in the machine.

In these CHIP-8 instructions, if the stated condition is met,
then the computer skips the next instruction in line and
executes the following one. If the stated condition is not
met, then the computer continues in its normal sequence,
i.e., it does not skip. In a program, it looks like this:

Line n states the condition to be met.
Line n+1 is executed if the condition is not met.
Line n+2 is executed if the condition is met.

In Fig. 2, lines 021E through 0226 show examples. Note that
when the condition is not met, there is only space for one
instruction (line n+1). In most cases that instruction will
have to be an unconditional jump to the place where the
relevant code has been stored.

The instructions in this group are:

3XKK Skip next instruction if VX=KK

4XKK Skip next instruction if VK # KK
5XY0 Skip next instruction if VX = VY
9xY0 Skip next instruction if VX = VY

Group 4—memory control

AMMM sets the pointer, |, to the memory address OMMM. All
following instructions that use memory will go to this
address until you do something that changes |. See Fig. 2,
lines 0200 and 0208, for an example.

FX29 sets up the pointer for displaying hex digits. Partof the
VIP is an “operating system,” which takes care of loading
memory from the keyboard, reading to and from the tape
cassette, etc. The bit patterns for displaying any of the hex
digits are already stored in memory as part of this operating
system. The FX29 instruction provides access to those
patterns, so that you do not have to work them out for
yourself. It sets | to the correct address of the 5-byte pattern
for the hex digit in the least-significant digit of VX.

FX33 translates the value of VX into its 3-digit decimal
equivalent and stores the result in the memory starting at |.

This instruction is very useful for presenting video-game
scores in decimal form.

Group 5—miscellaneous control

The VIP has a timer and an audible tone generator. The
timer, which automatically counts down to zero when it is
set by the programmer, is useful for such things as making a
display flash, timing a permissible period for some
keyboard action to take place, etc. The audible tone, whose
duration you can set, can be used to celebrate collisions,
end of program, etc.

FX15 sets the timer to the value of VX. The smallest value,
(01 in VX) is equivalent to 1/60 second, so the maximum
time (FF in VX) is 255x1/60 = 4.3 seconds.

FX07 transfers the current timer value into VX. This
instruction lets a program monitor the progress of a
countdown. Fig. 2, lines 021A through 0220, demonstrates a
typical timing loop. V3, which stores the hex number
equivalent to 1/5 second, is transferred to the timer (line
021A), and from there to V4 (line 021C), where it is tested
(lines 021E, 0220) until it is found to equal zero.

FX18 turns on the audible tone for the length of time
specified by the value of VX. Again, the smallest increment
is 1/60 second.

Caution—In the above three instructions, since 1/60 is a
decimal number, you will be going back and forth
between the hex and decimal systems. Watch your
arithmetic.

CXKK sets a random byte into VX. KK acts as “mask”—
where KK has a 0 bit, no entry is made into VX. The mask is a
way of controlling the range of the random number; for
example, C703 would set into V7 a 2-bit random number
(since 03 has two bits) with equal probability of any 22=4
values. In Fig. 2, lines 0228 and 022A provide further
examples.

Group 6—input and output

FXOA sets the least-significant digit of VX to the value ofthe
next key pressed. The program will pause here until some
key is pressed.

00EQ erases the entire display.

DXYN displays a pattern on the screen. Most of your
attention in programming the VIP will center around the
display. For full information, you should refer to the VIP
Instruction Manual, since we can concern ourselves here
only with those characteristics that reflect into this CHIP-8
instruction.

In this instruction, N defines how many bytes make up the
patterns you want to display, X and Y describe where on the
screen you want it to appear and, while | does not appearin
the code, its current value determines where the computer
will find the first byte to be shown. Therefore, before this
instruction can be used you must have taken care of the




following functions: 1) the bit pattern to be displayed must
have been set up in the memory; 2) | must have been set {be
pointing) to the address of the first byte in the pattern; and
3) the two variables defining the pattern’s screen location
must have been set to the proper values, X for horizontal
(increasing left to right), Y for vertical (increasing top to
bottom).

For example, in Fig. 2, line 0206, D566 means “show a6-byte
pattern taken from the memory starting with 1. The upper
left-hand corner of this pattern will be at coordinates
specified by V5 and V6. Note that the three preceding
instructions have set the values of the coordinates (lines
0202 and 0204) and have set | to 024C (line 0200). At
location 024C, the beginning of the pattern has been stored,
so everything is all set to go.

In the VIP, the pattern that is being displayed is superim-
posed over any existing pattern on the display, with the
feature that where a new spot overlays an existing spot, the
screen is erased. When this happens, the computer puts 01
into variable F, making possible the programmed detection
of overlaps or collisions between the old and new patterns.
Line 0222, in Fig. 2 for example, senses VF to see whether
the jumping pattern has overlapped the fixed block. If it
hasn’t (VF=0), line 0226 starts the procedure to move the X
or O randomly again. If there has been an overlap (VF=1),
line 0224 causes the program to switch from X to O, or vice
versa, and start over. You can also use the “blankout on
overlap” feature in selectively erasing all or part of a pattern
by rewriting it in the same place.

Writing a program

Familiarity with the CHIP-8 instructions does not, by itself, make
you a programmer, any more than learning the alphabet made you
literate.

Learning the instructions is a necessary first step which,
with the exercise of some practice and patience, can lead to
whatever level of proficiency you may want to achieve in
writing programs. In fact, one of the most important uses of
the VIP is in providing a fun way of acquiring exactly that
skill.

While the actual design of a program is something you must
do for yourself, a few paperwork tools and helpful hints can
make the job easier and more organized. Here are some
suggestions to help you get started.

Many people find it useful to make a flowchart of their
programs before they start coding. It's a good way of
organizing your thoughts, and it lets you test the program
on paper before you have invested a Iot of time in coding. It
is also very helpful in identifying those parts of the program
that could be done as subroutines, and so reducing the
amount of coding you have to do. But with or without a
flowchart, think about what you want to do before you
plunge ahead; a half hour of planning will more than pay for
itself in easier coding.

Keep a list of the 16 variables and what meanings you have
assigned to them, i.e., what they representin your program.
Note that VO and VF are occasionally set aside for special

use. Make sure they're clear and available when the
instruction will be using them.

Be sure to keep track of the memory addresses in which
your program is stored. For the first rough drafts you might
want to leave spaces every so often in the program to allow
for changes. These spaces can later be bridged by uncon-
ditional jumps. If you decide to close up the gaps later, or if
you find you have to squeeze in another line of code, make
sure that you have properly modified all the “jump to”
addresses that have been affected. Another trick is to label
“jump” points with arbitrary designations (e.g., Greek
letters) until you are satisfied that you have progressed to
the point of specifying accurate addresses.

Make a chart of the display to help you plan the program,
work out the bit patterns, and establish the coordinates. It
should also carry the memory addresses in which the data
to be displayed is stored.

If you have occasion to put data, such as display patterns, in
the memory, keep a list of where you have put them. You
may never find them again otherwise.

Don't forgel that CHIP-8 expects to find your program
starting in location 0200. If for some reason you want to
violate that rule, then 0200 must have an unconditional jump
to whatever starting point you have selected.

Be generous with your comments. It's surprising how
difficult it becomes, even after a short coffee break, to
remember or reconstruct the brilliant trick you thought up
while you were deeply engrossed in your creative approach
to the problem.

Don't forget to return properly from a subroutine, have fun,
and remember hex.

Taking the next step

If you are interested in knowing more about CHIP-8, send
for the additional information that is available. The package
includes a step-by-step description of how the sample
program was developed, and would be a good guide if you
are starting out on your first adventures in programming. It
also includes copies of the following charts and forms
which you can reproduce for your own use: a display layout
chart, a variables assignment sheet, and a program coding
sheet. Write or call the Editor, RCA Engineer, and ask for the
“Good Guide Special.” The address is Building 204-2,
Cherry Hill, N.J.; telephone ext. 4254.
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Software: microcomputer vs. minicomputer

K. Schroeder

Designing and implementing software for
the microcomputer and the minicomputer
are significantly different activities. Un-
derlying the obvious similarities in the
primary function of the software are im-
portant differences. Specifically, these two
kinds of software are required to run on
appreciably different hardware (Table I).
They are required to perform applications
of considerably different character. Also,
they are written, edited, and debugged
using different method ologies. The impor-
tance of these differences is not necessarily
obvious to the uninitiated and the effects
can become more or less significant,
depending upon the specific hardware
systems and applications under considera-
tion. However, it is useful to generalize
about these differences to understand what
one may face when attempting to program
a microcomputer for the first time after
having had experience in programming
minicomputer (or midi-computer) systems.

How hardware
differences affect software

Microcomputers have traded computing
power for economic and size advantages.

Microcomputers are generally less ex-
pensive and smaller hardware systems than
minis, and therein lies their utility. Micros
can bring intelligent control to applications
that either do not need, or cannot justify, a
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Changing from mini to micro?
Programming and debugging are significantly different.
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Fig. 1

As tasks become more complex, the most cost-effective means of performing them changes
from hardwired logic to microcontrollers to microprocessors to minicomputers.

larger, more expensive minicomputer (Fig.
1). However, this economic and size advan-
tage is gained at the expense of computing
power and hardware facility. This sacrifice
is reflected in the microcomputer’s soft-
ware. A microcomputer programmer must
often compensate for hardware limitations
in software. Often the most significant
hardware limitation is execution speed.
However, even in applications requiring

only modest computational speed, many
other missing hardware resources must be
compensated for in software, thereby
lengthening and complicating the
programming task.

Micros predominantly have shorter data
words than minis do.

A computer’s data-word size is its fun-
damental data representation. It specifies

Differences in hardware between mini and micro are a major reason behind the differences in software.

Feature

Data-word size (bits)
Execution speed

(cycle time)
Addressable memory
Instruction repertoire size

Assembly-language programming

Interrupt capability

Micro 0101100111 Mini 01011001 REealex[e]e

12, 16, 18, 32
Medium-fast
(200 ns—1 us)
Medium-large (4k-128k words)
Larger (70-300 typical)

More efficient, faster
Multi-level dynamic priority

4,8, 16

Slow

(500 ns—10 us)
Small-medium (512-64k bytes)
Smaller (30-150 typicaly
Tedious, slower

Single-level static priority




the number of bits that can be stored into
or retrieved from its main memory duringa
single memory cycle. (Even *“bit” manipu-
lations are usually word-addressed.)
Generally, the larger the data word, the
greater the efficiency and power .of a
processor’s internal operations.

The majority of microcomputers have
either 4-, 8-, or 16-bit data-word lengths.
The 8-bit version presently dominates both
the marketplace in dollar sales volume and
current microprocessor-based design. This
is partially because a byte (8 bits) is a
convenient data representation for many
micro applications. More significantly,
however, the 4-bit versions have very
limited data-handling capabilities and the
16-bit versions are considerably more ex-
pensive. Sixteen-bit micros are primarily
selected to provide software compatibility
with minicomputers for which software has
already been written or for applications in
which software compatibility with a mini is
of paramount importance. However, as
microcomputer prices continue to decline,
the 16-bit machines will become more
competitive and will become more widely
used.

The minicomputer is commonly available
in 12-, 16-, 18-, and 32-bit versions. The 16-
bit-version mini dominates the market
because it conveniently allows a larger data
representation than the 8-bit micro, yet
allows efficient byte handling when re-
quired by packing two bytes per data word.
Many minis also facilitate byte addressing
of memory to enhance their byte-handling
capabilities.

Micros characteristically have smaller in-
struction sets.

Normally, a machine’s instruction size is a
small multiple (1, 2, or 3) of its data-word
size. The instruction size is a direct indica-
tion of the computational power and size of
a machine’s instruction set. (This is the set
of instructions directly executed by the
hardware.)

The microcomputer, usually having a
smaller data word, thus also has a smaller
instruction size, limiting the power of its
instruction set. The micro usually has fewer
instructions, less powerful instructions,
fewer memory addressing modes, and
fewer data types that can be handled
directly by the hardware. Thus, the micro-
computer program requires more
assembly-language instructions than the
equivalent program implemented on a

mini. This makes assembly-language
programming a more tedious, less efficient,
and more error-prone task for the micro
than for the mini.

Memory addressing can be inellicient with
micros.

One memory-addressing limitation
problem encountered with micros and not
with minis is “out-of-page” reference
errors. A microcomputer often has
“paged” memory, i.e., memory is divided
up, for addressing, into blocks or “pages”
and some of the micro instruction formats
can only reference memory locations
within the same page as the instruction.
This technique of addressing is used to
limit the number of bits required to specify
an operand’s address. However, when an
attempt is made to reference, within one of
these short instructions, a location outside
the current page of memory, an “out-of-
page” reference error occurs. This restric-
tion can be avoided by using indirect
addressing or using full-address in-
structions. These techniques, however,
create inefficiences in execution speed or
memory space and may not be desirable to
use throughout a program. Anticipating
and compensating for this addressing
restriction complicates the writing of micro
software.

Because micros have fewer general-
purpose registers, intermediate results must
often be swapped back and forth to memory.

Another feature of microprocessors that
limits their computational power in com-
parison to the mini is their limited internal
register sets. Normally, the micro hasfewer
hardware registers for use as accumulators
or index registers. This can necessitate
frequent saving and re-storing register
contents into main memory to save in-
termediate data results or address pointers.
This required swapping of information not
only slows down execution speed, but
forces the programmer to keep track of
where such information is being stored and
determine what allocation of those
registers will minimize that program
overhead.

Since micros have less computational
hardware, more operations must be done in
software.

The micro usually lacks other com-
putational hardware features that many
minis use to speed execution of complex
numerical calculations. Such hardware in-
cludes hardware multiply and divide
(single and double precision) and multiple

position shift facilities. Also missing are
floating-point hardware facilities. Such
operations must be done in software and
become the responsibility of the
programmer, thereby complicating his
task. This added code can also con-
siderably lengthen the program.

The stack facility available on many micros
is limited, in contrast to the ones on stan-
dard minicomputers.

The micro’s stack often requires the ex-
plicit handling of both the stacking data
and the stack pointer register. A few micros
implement a stack in a separate small
memory space within an organization that
effectively has an open bottom. Once the
stack is filled, any attempt to push
additional data onto the stack will destroy
the first entry on the stack without any
warning or hardware protection. In this
organization, the size of the stack memory
absolutely limits the depth of the stack.
This stack limitation may restrict sub-
routine call nesting or the permitted level of
context switching that the computer can

Ken Schroeder has eight years of software
experience in both minicomputer and
microcomputer systems. Now working on
microcomputer-based consumer products,
he has also worked with software for
medical instrumentation, laboratory
automation, and navigation satellites.

Contact him at:

TV Microsystems Research
RCA Laboratories
Princeton, N.J.

Ext. 3325
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handle, since these actions normally re-
quire entries on the stack.

In contrast, minis normally implement
their stacks in main memory, which gives
virtually unlimited stack depth. On many
minis, when an attempt is made to overflow
the permitted stack area, a hardware in-
dication is generated. This permits
software to detect such an occurence and
take appropriate action. Many minis have
implicit stack-handling and will adjust
stack pointers automatically. Some minis
have facilities that automatically stack the
program state upon interrupt or other
context switching. Thus, using a stack
facility on a micro generally requires more
code and is more complex to program than
on a mini.

Microcomputers generally have relatively
primitive interrupt-handling structures.

Micros commonly only have a single level
of hardware priority and often lack a
vector-generation capability. In contrast,
minis commonly have multi-level dynamic
priority-arbitration schemes and also fre-
quently have vector-driven response
systems. When implementing an applica-
tion requiring significant interrupt-
response capability using a micro, the
programmer must make up for this lack of
hardware facilities in software, thereby
complicating his programming task.

Development and product cost

System replication volume

Fig. 2

The choice of language level used in a
software system depends on replication
volume of system. Assembly language
generates more efficient code than high-
level languages, and so requires less
memory. Assembly language, however, re-
quires more programming effort.

Microcomputer systems usually need exter-
nal equipment for debugging.

Certain computer hardware features are
often helpful when debugging software and
diagnosing software failures. One of these
is a hardware “trap”—vectoring the
program to a specific address in memory
upon the occurence of a predefined
machine state. The attempt to execute an
illegal instruction or address nonexistent
memory are examples of “trap”-generating
occurences. These “trap” features are stan-
dard on minis but are lacking on micros.
The microcomputer programmer cannot,
however, really compensate for them in
software, so this function in the debug
phase of software usually must be replaced
by the use of a logic “analyzer” or other
external debug hardware. The micro-
computer programmer should become
familiar with the use of such devices.

How application
differences affect software

Attempts to save memory costs often lead to
complicated unstructured programs.

Microcomputers are customarily applied
in very cost-sensitive applications. Typical-
ly, these are applications with moderate- to
high-volume system-replication require-
ments, where small individual economies
reap large total savings. Minicomputers, in

contrast, are more typically used in low- to
medium-replication-volume applications,
which are not typically as cost-sensitive.

Approximately 60% of the cost of the
average microcomputer system, in final
application configuration, is memory cost.
Since assembly-language programming
can generate code that is more memory-
efficient than compiler-generated code, it
tends to dominate micro programming
(Fig. 2). A determined effort is usually
made to squeeze the required software into
the minimum amount of memory. This
activity is commonly called “bit-
bumming.” However, recent efforts to
bring modern engineering techniques to
the “art™ of writing software has led to the
foundation of a new branch of study called
“software engineering.” This new discipline
has shown that “bit-bumming” and other
software techniques that sacrifice code
clarity and structure to minimize program
space have serious side effects in programs
of any significant size. Specifically, such
efforts lead to the production of unstruc-
tured programs, which are difficult to
debug, difficult to document and, most
important, difficult to understand. Such
programs can create very expensive sup-
port problems and can only be cost-
effective in applications with very large
replication volumes and applications that
will remain very stable and will not be
modified or extended after initial comple-

T 4
|
|
H |
8
. i :!
H 3 =
o a >
? : |
2 1 5|
s Cost of system's memory é g
“]
3 |
Fixed cost of programming l
— | L=
System replication volume System replication volume
Fig. 3
Cost to deliver a system depends on both
programming and memory costs. (Slope of  Fig. 4

memory costs may vary with price breaks for
volume purchases.) Since saving a few
bytes can potentially reduce the number of
chips required, “bit-bumming” becomes a
necessary evil for microcomputer
programmers.

Hardware/software interface for microcom-
puters often has the possibility of tradeoffs.
In this example, a serial input-output port to
a terminal device can be done in software
(high initial cost) or a USART chip (in-
creasing cost with volume).




tion. Since this is the environment in which
many microcomputers are used, “bit-
bumming” is a skill often required by
microcomputer programmers. This is es-
pecially true since saving a few bytes can
potentially reduce the number of memory
chips required (Fig. 3).

Memory efficiency is not as crucial in
typical mini applications. Additionally,
memory for minis normally is only
available in 4-k word quantities, so unless
this increment boundary is avoided, no
cost savings are realized by reducing
memory requirements.

Because microcomputers usually work in a
dedicated task environment, the
programmaer must write software normally
handled by the mini's supervisory software.

Microcomputers are primarily used in
dedicated  single-task  programming
applications. Normally, software in such
an environment controls the base-machine
hardware and is not integrated into an
existing operating system or standardized
software monitor. The microcomputer
programmer directly programs all software
functions normally handled in a mini by
such supervisory software. For example,
the maintenance of the system clock and
the control of all peripheral devices are the
programmer’s responsibility. Normally, a
microcomputer system has fewer computer
peripherals to handle than a typical mini
system; however, the nature of these
peripherals is appreciably different.
Typical minicomputer interfaces make
peripherals appear logical and time-
independent, ie., all the software
operations required are clearly logically
related to obvious functions of the device.
Typical micro devices have simple con-
trollers, which require more detailed
software control and can impose serious
timing constraints upon the program in
controlling the hardware—constraints
which, if violated, can cause serious and
difficult-to-isolate intermittent problems.

Suitable “off-the-shelf” application program
packages are not often used with micros.

Applications involving minis often use
various mathematical and application
software packages available from the
hardware manufacturer to facilitate system
implementation.  Also, many mini
programmers  write  general-purpose
software packages for a particular applica-
tion area and use them repeatedly in
subsequent applications to improve
software-development efficiency. In the

micro world, such generalized packages are
rarely used in final product configurations.
More characteristically, concise and
efficient code is written for each applica-
tion and is customized for maximum
efficiency for the individual case, thus
making programming less efficient and
driving up software development costs.

Programmers have to make sure that the
relatively slow micro systems are nct too
slow for the task at hand.

Micros are generally put to work in
applications for the monitoring, analysis,
and control of time-dependent (real-time)
processes. Since micros have slow execu-
tion rates, it is often necessary to write very
efficient programs to meet performance
requirements. Programming in high-level
languages has been shown to be much more
efficient than programming in assembly
language and so is rapidly dominating mini
software. Assembly language, however,
still dominates microcomputer program-
ming in order to meet execution-speed
requirements, since compilers do not yet
generate very efficient code. The attempt to
save execution time has an equivalent
activity to “bit-bumming”—using similar
unstructured programming techniques
that minimize the execution time of
programs but at the expense of clarity. This
approach has the same inherent program-
debugging and product life-cycle support
problems as “bit-bumming” and thus
should only be a last-ditch attempt to save
an effort about to fail to meet required
speed specifications. Intelligent system
design dictates that a projected 50% of
capacity throughput surplus be included to
both facilitate unexpected system growth
and anticipate throughput-requirement
and load-fluctuation estimation errors.
This philosophy should preclude the need
for such unstructured code optimization.
Compromises in these design guidelines
may be necessary in applications with large
replication volumes and correspondingly
high cost sensitivities.

How differences in system
implementation affect
software

Microcomputer programmers have to be
more careful with addressing memory,
which is allocated in disjointed segments.

To gain reliability and cost efficiency, a
microcomputer’s (final-product) program
is held in primary memory and is not kept
in mass-storage peripherals. Primary
memory is normally segmented into a

nonvolatile read-only memory (ROM)
program-storage area and volatile
(read/write) random-access memory
(RAM) scratchpad area. This partitioning
of memory space imposes another con-
straint on the programmer—the program
must be partitioned into disjointed ROM
and RAM sections. Programming must
not attempt to write into ROM space nor
execute code in RAM space inadvertently.
Additionally, the stack area must be main-
tained in RAM. Observing the boundaries
of these memory areas is the programmer’s
responsibility. This is in contrast to
minicomputer systems, where typically the
program is loaded from some mass-storage
peripheral device into memory composed
uniformly of nonvolatile core memory, in
which no such partitions exist.

The hardware-software interface is much
closer for the microcomputer.

Because microcomputer hardware systems
are custom-made for specific applications,
in contrast to the general nature of mini-
computer system hardware, the two
systems have major differences in the
integration of hardware and software. In
microcomputer systems, the hardware/
software interface is closely coupled, i.e.,
one is often directly traded off for the
other. In contrast, the fundamental
hardware is much more standardized with
the minicecmputer, so software is written to
run on that hardware without substantial
change.

In the micro’s case, for example, a serial
input-output port to a terminal device
customarily may either be implemented in
software or done in hardware external to
the CPU (Central Processing Unit) by a
Universal  Synchronous-Asynchronous
Receiver Transmitter (USART) chip. Ina
mini system, such an interface is almost
always performed by a standardized serial
interface board. The engineer who im-
plements a microcomputer system must
understand such hardware/software trade-
offs (Fig. 4). Thus, a microcomputer
programmer must be more familiar with
hardware than his minicomputer counter-
part.

Software development is harder in micro
systems because of the lack of peripherals
so useful in debugging and simulation.

Custom microcomputer systems are very
well suited for efficiently performing well-
defined relatively-fixed tasks. Unlike
minicomputers, they are not well suited for
general-purpose computation or software

37




38

Table Il

Software development tools are considerably more primitive for the micro. Of the applicable
tools listed here that are used extensively with minis, many are nonexistent or less powerful

with micros.

Text editor

Assembler

Macro assembler

For composing and modifying program source.
Translates assembly-language programs into machine code.

An assembler that permits the representation of commonly

appearing sequences of instructions with shorthand “macro”

Translates a high-level-language program into a language

names.

Cross-assembler An assembler that executes on one (host) computer, but
generates machine code for another (target) computer.

Compiler
suitable for a particular computer.

Cross-compiler A compiler that executes on one (host) computer, but
generates code for another (target) computer.

Loader

device into memory.

Linking-loader

For loading an executable module from some peripheral

A loader that combines many relocatable object modules into

an executable module. It makes appropriate modifications to each
module for resolving changes in references between the modules.

Cross-reference
listing

Debugger

An assembler output that lists all references made to
each label or other symbol in the program.

Permits the testing and verification of a program’s operation

by observing intermediate results at various stages of execution.

Debugger-simulator

A debugger that uses simulation to run on one machine

and facilitate the debugging of a program written to

run on another machine.

development. They generally lack three
important system development tools: 1) the
large secondary storage (disks, tape drives,
etc.) required to hold utility programs; 2)
language translators (assemblers and com-
pilers); and 3) high-speed hard-copy
devices (line printers, etc.), which are
desirable during program development,
but are rarely required in a micro-
processor’s final configuration. These
facilities are required in any significant

software development effort. Thus,
microcomputer software is often
developed, simulated, and initially

debugged on alternate computer systems—
timeshared systems, minicomputer
systems, and specially-configured (typical-
ly more expensive) microcomputer-based
development systems.

In these development systems not based on
the micro, the language-translation
programs used to convert programs into
micro machine code are called “cross-
assemblers” and “cross-compilers.” These

programs run on one machine, the larger
“host” development computer, and
produce code for the microcomputer or
“target” machine. Additionally, these
“host” machines often also have
“simulator-debuggers,” programs that
simulate the running of the “target”
processor and help debug the machine code
by using the significant resources of the
“host” system. In contrast, most mini
software is developed on the mini itself.

The software tools (Table 1I) available to
help develop software for micros are con-
siderably more primitive than those
available for minicomputer software
development. The text-editing systems
available for micros are considerably less
powerful. Many micros lack the availabili-
ty of macro-assemblers and linking loader
facilities. Also, few high-level-language
processors generate code for micros. In
fact, many micros have no compiled high-
level languages at all (but this is rapidly

changing). Many manufacturers only
provide cross-compilers which must be run
on “host” development computer systems
and have no resident versions that run on
the micro itself. Resident software is,
however, becoming more common as
language processors and text editors can be
stored on a single chip. The most popular
high-level language in the micro world at
present is BASIC, an interpretive
language=~This is a reflection of the efficient
use of memory characteristic of inter-
pretive language implementations. Inter-
preters are, however, often not acceptable
in real-time applications because they ex-
ecute programs slowly, so assembly
language still dominates the programming
of micros.

Conclusions

A large number of contributing factors
makes programming microcomputers
different from programming minicom-
puters. The relatively limited hardware
facilities of the micro requires software to
perform functions normally available in
hardware on the mini. The lack of efficient
high-level languages for the micro makes
assembly-language programming
dominate micro applications, whereas
high-level languages dominate mini
applications. The limited instruction set of
the micro relative to the mini makes
assembly-language programming more
tedious and complex on the micro. The
typical area of application of micros gives
these systems higher cost sensitivity than
typical mini applications. This leads to
extensive custom hardware in micros and
also to an increased degree of interaction
between hardware and software design not
found in typical mini systems. The software
tools available for developing software for
the micro are appreciably different and less
powerful, requiring the programmer to
develop different implementation
methodologies. Thus, aside from the
obvious similarities of the primary func-
tion of the software, developing software
for the micro and the mini can be ap-
preciably different activities.
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FLECS: a structured programming language
for minicomputers

The FLECS language—FORTRAN plus some added
features—makes programs easier to read, write, and modify.

T. M. Stiller

This article is not intended as a tutorial on
the subject of structured programming, as
several adequate texts on that subject
already exist (for example, see Ref. 1). Our
discussion will be limited to a few general
concepts of structured design, a specific
language facility to support them, and
some examples of the “structured ap-
proach” to software development.

We have chosen FLECS (FORTRAN
Language with Extended Control
Structures) as the illustrative vehicle
because it is in the public domain, has
already been adapted to several computers
in use within RCA, and can be readily
adapted to almost any computer for which
a FORTRAN compiler is available. While
FORTRAN is not the most desirable
language in which to develop software, it is
relatively powerful, reasonably efficient,
and almost universally available for mini-
and larger computing systems.

What is FLECS?

FLECS is a programming language that
was developed by Terry Beyer at the
University of Oregon,; it consists of all the
statement types supported by any
particular FORTRAN compiler plus a
dozen additional control statements. The
added statement types produce an
organizational facility that complements
the program development process, rather
than increases the number of details requir-
ing attention; they do not, however, restrict

the programmer from using any special
features of the base language. Used proper-
ly, these control statements produce a
program with a logical structure that can
be readily distinguished from the details of
its implementation. Programs written in
this composite language are passed
through a FLECS preprocessor, which
produces: 1) an intermediate file in which
the control structures have been converted
to acceptable FORTRAN equivalents; and
2) an indented source listing for documen-
tation purposes. The intermediate file is
then compiled in the normal manner to
produce an executable program.
Additional details of this process may be
found in the FLECS User's Manual.’

What is a structured
statement?

A structured statement is a compound
statement that consists of two parts: a
control phrase and its scope. The scope ofa
structured statement consists of cne or
more statements which change the state of
the program’s working storage, com-
municate with peripheral devices, perform
function or subroutine calls, etc., and in
that context, may be considered the “active
element” of the statement. The control
phrase of a structured statement defines the
conditions under which its scope is to be
executed. The control phrase is also com-
posed of two elements: a keyword, which
specifies the nature of the control, and a
specification, which identifies the control

STRUCTURED STATEMENT KEYWORD
00
CONTROL PHRASE SCOPE
BILJ) = 0.
KEYWORD SPECIFICATION
If {X.GE.Y) Z = SQRT (X-Y) 100 CONTINUE

Fig. 1a

Logical IF is always written as one line; specification is within
parentheses. Compare with DO statement in Fig. 1b.

Fig. 1b

A(L,K) = A(L,K) + B{L J)*C{J,K)

parameters. These terms are illustrated in
Fig. |, where we analyze the two structured
statements native to FORTRAN: the
logical IF and the DO.

FORTRAN's structured statements have a
number of inconsistencies.

Although the examples of Figs. 1a and 1b
are both structured statements in the sense
we have defined them, there are several
annoying inconsistencies between them.
First, the scope of the logical IF is limited
to exactly one simple statement, but the
scope of the DO may contain more than
one statement. Second, the specification of
the logical IF is enclosed in parentheses,
but the DO specification is not. Finally, the
specification of the DO statement requires
anancillary clerical detail, that of inventing
a statement number to signal the end of its
scope. This last point is more bothersome
than the others, since it introduces a chore
that has nothing whatever to do with the
programming task at hand.

In econtrast to this, FLECS provides a uni-
form format for all structured statements.

First, the scope of a FLECS structured
statement may consist of a single simple
statement or any number of statements,
simple or structured, terminated by a FIN
statement. Second, the specification of a
control phrase is always enclosed in
parentheses. Third, and most important,
the need for statement numbers as

SPECIFICATION

180 5= AN > CONTROL PHRASE

\ SCOPE
/

DO statement takes many lines; specification is not written within
parentheses; programmer must invent statement number to

signal end of statement’s scope.

Structured statements in FORTRAN have a number of inconsistencies.
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destinations for GO TO statements or
terminations for DO loops can be com-
pletely replaced by the use of the ap-
propriate structured statements. Finally, as
a matter of convenience to the program-
mer, a structured statement whose scope
consists of a single simple statement may be
combined with its control phrase on a
single line. All of the examples shown in
Fig. 2 are valid FLECS structured
statements.

Why are structured
statements important?

Structured statements are important in
software development because they com-
plement a technique commonly used when
transforming the statement of a physical
problem into a computer program. Even

IF (X.GT.Y)

Z = SQRT (X-Y)
Y = yee2
IN

Fig. 2a

IF statement with multi-line scope. (If con-
trol phrase is a single statement, entire
structured statement can be written on one
line.)

DO (1 = 1,N) A(JK) = B{J,1)*C(I K)

Fig. 2b

DO statement with a single-line scope. Note
that statement number for termination of
loop is not needed.

DO (1 =1,N)
A(J,K) = B(J,1)*C(1,K)
IF (J.EQ.1)

D(1) = B{J,1)

o FIN

Fig. 2c

Nested multi-line structured statement.
Note indented structure. FIN statements,
rather than “invented" statement numbers,
terminate loops.

FLECS has a uniform format for all struc-
tured statements: they may consist of either
a single statement (Fig. 2b) or a number of
statements (Figs. 2a and 2c) ending with a

the most complex piece of computer
software consists of little more than se-
quences of statements to perform some
specific actions and the decision-making
logic to determine the conditions under
which those actions should be performed.
The structured statement, with its concept
of control phrase and scope, provides a
natural methodology for decomposing a
physical problem into a series of
programming steps. On the other hand, the
rather limited structured statements
available in FORTRAN do very little to
support this methodology.

What types of structured
statements are available?

The types of structured statements sup-
ported by FLECS divide rather naturally
into two categories: decision structures and
looping structures. Decision structures
may be further subdivided into skip-action,
alternative-action, and select-action types.
The looping structures are subdivided on
the basis of the number of times the loop is
executed: a fixed number of times, a
variable number of times (including none),
or a variable number of times (but at least

) ) (( WHEN (£) s, )
( IF (£) S [ uniess ) s A
TRUE FALSE
S | S TRUE
$
FALSE TRUE
FALSE
_J Y, s,
(" CONDITIONAL N SELECT (e) )
* ‘£|) S‘ ° (61) S|
i£2) S, {e)) Sy !
. . . . \ )
. (F‘fﬁ) S . (FGI'I‘\: Sn Carry-Out-Action
TRUE To Carry-Out-Action S
1 S, -
FALSE DO (/) S
TRUE
£, S, |—» > NOTE:
Place s RETURN, STOP, or
CALL EXIT statement ahead of
FALSE B . . ! of the first TO statement.
. : : NOTE:
OTHERWISE can be used o5
a catchall condition or expres-
TRUE[ JRUET sion in CONDITIONAL and
b S —ﬂ | Sp —o SELECT statements.
LEGEND:
FALSE FALSE £ = Logical expression
r r $ = Statement(s)
€ = Expression
\ _J \_ _ I = DO specification
GEPEAT UNTIL(E)? (REPEAT WHILE(E)? [ UNTIL (£} S ) WHILE () S )
TRUE FALSE
S S L L
FALSE TRUE
FALSE TRUE
S S
TRUE FALS ‘
\_ J \ J L J\ y

Fig. 3

FIN statement; specifications are always
within parentheses; and statement numbers
are not needed for termination of DO loops.

All the structured statements used in FLECS, in programming and flowchart form. |F,
UNLESS, WHEN/ELSE, CONDITIONAL, SELECT, REPEAT UNTIL, REPEAT WHILE,
UNTIL, and WHILE can cover all programming possibilities.




once). Fig. 3, which has been reproduced
from the FLECS User’s Manual, sum-
marizes the control structure forms and
illustrates both the programming format
and the flowchart equivalent for each form.

While the structural statement forms of
Fig. 3 seem to be rather complete, we
frequently encounter a deficiency in the
looping structures—the inability to escape
from a loop at a point other than its
beginning or end. In general, this situation
can be resolved by employing a combina-
tion of looping and skip-action statements;
however, the requirement for such a struc-
ture arose frequently enough that a more
direct approach was indicated and we
added the LOOP/EXIT structure of Fig. 4
to the FLECS language. Note that this
structure is not inconsistent with struc-
tured programming philosphy, since the
next statement to be executed upon exit
from the loop is the statement that follows
the loop structure.

What other features
does FLECS provide?

Besides clarifying and enhancing the con-
cepts of structured statements, FLECS also
provides the programmer with a powerful
procedural capability.

A procedure is nothing more than a group
of statements, simple or structured, which
the programmer wishes to have executed as
a unit. A procedure is similar to a sub-
routine or function in that it may be
invoked at more than one point in the
program. However, it is unlike a sub-
routine or function subprogram in that a
procedure is defined as part of the calling
program. As a result, a procedure neither

LooP
. S1

- EXITIF (L)
. sz
-+ - EXITUNLESS (£,)

. 83
* FIN

Fig. 4

To escape from a loop at a point other than
its beginning or end, use this LOOP EXIT
structured statement. This statement is not
absolutely necessary, but avoids indirect
solutions when an escape is needed.

What do FLECS users say?

Said one engineer, “Not only can | write and debug programs faster in
FLECS, but six or eight months later | can still understand how they work."”

A programmer said that he “had written special-purpose-language com-
pilers in FLECS that he would never have attempted in FORTRAN." Since
there was no other high-level language on the minicomputer he was using,
he pointed out that what once had been a hybrid system requiring support
from a large mainframe was ncw completely self-contained, with attendant
reductions in turn-around time and training time for users of the system.

Another programmer said, “. . . | think FLECS is hard to beat. . . . The
benefits include . . . programming ease, both initial programming and
modifications, top-down structure ability, much more readable programs,
English-language use for routine names and looping, and elimination of
contorted branching.” She has used FLECS in data analysis, scheduling,
and moving data to and from different computer systems and databases.

requires nor allows communicaticn via
passed parameter lists, but rather must test
and modify program variables directly.

FLECS works well in the “top-down"
programming approach.

With respect to structured programming,
the FLECS procedural capability has a real
advantage because a procedure may be
invoked at a point in the program prior to
its definition and the procedure’s name
may be as long as sixty-three characters. To
attach proper significance to these points,
observe first that the liberal naming con-
vention permits the programmer to choose
a name that is somewhat descriptive of the
task which the procedure is to perform, and
second that the decision to perform a task
can be made without immediate regard for
the details of how the task is to be carried
out. This facility leads one rather naturally
to the so-called rop-down approach to
software development, in which one
attempts to decompose a problem into a
small number of relatively independent
steps. The process is then repeated for each
of the initial steps until the complete details
of the solution have been specified. While it
is rare that a single attempt at this process
yields a workable solution, it is generally
far more successful than the so-called
bottom-up approach, in which one
attempts to specify the handling of the
bottom-level details first and then collect
those processes into successively larger
units until the program is complete.

Tom Stiller, a Fellow of RCA Laboratories,
has worked with the non-numeric aspects ot
computing for the last 14 years—work rang-
ing from the development of function-
evaluation subroutines and general-service
programs up to multiprogramming
operating systems and simulation of new
computers prior to their manufacture.

Contact him at:

Systems Research Laboratory
RCA Laboratories

Princeton, N.J.

Ext. 3181
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In the game of LIFE, each cell's “life” and
“death” depend on its surrounding
neighbors. A cell with the company of at
least two but no more than three cells will
survive; otherwise it will die of loneliness or
overcrowding. An unoccupied cell can
become pop