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ELECTRO MAGNETIC PROPERTIES 

OF FINITE PLAS MAS 

BY 

M. P. BACHYNSKI AND K. A. GRAF 

RCA Victor Company, Ltd.. 
Montreal, Canada 

Summary—The determination of plasma properties by the transmission 
or reflection of electromagnetic waves depends upon (1) the availability 
of a theory that adequately describes the physical situation and (2) experi-
mental measurements that are amenable to theoretical interpretation. The 
major limitations are the finite size of the plasma, the effect of the bound-
aries of the plasma and the material boundaries that contain the plasma, 
and the nonuniformity of the plasma in space and time. 

In this paper, expressions are derived and typical numerical values 
presented for the effect on transmission, reflection, and absorption of elec-
tromagnetic waves of plasma and dielectric boundaries, refractive defocus-
ing by plasmas of slab and cylindrical geometry for both plane and 
spherical incident waves, the effect of nonuniformity of the plasma both 
along the direction of propagation and normal to the direction of propa-
gation, and for diffraction introduced by the finite size of a circular slab 
of plasma. 

INTRODUCTION 

17- -9 HE ELECTRON DENSITIES found in many plasmas of in-
terest correspond to plasma frequencies in the meter and 

/   centimeter wavelength range. Since the electrical properties 
of a plasma vary measurably in this range of frequencies, probing by 
low-strength radio signals has become a much used technique for 
determining the characteristics of the plasma. The accurate determi-
nation of plasma properties by this free-space method depends upon 
two factors, namely the availability of a theory that adequately 

describes the physical situation and experimental measurements that 
are amenable to theoretical interpretation. 
In principal, the determination of the properties of a plasma from 

the phase change and attenuation that it introduces to an incident 
electromagnetic wave transmitted through or reflected from it is very 
simple. If the plasma is uniform and in the form of an infinite slab 

with sharp, well-defined boundaries, and if the incident field is a plane 
wave and the incident wave after interacting with the plasma can be 

accurately measured with a perfect system, then no discrepancy be-
tween theory and experiment should occur. This ideal situation is, 
however, impossible to realize. 

3 
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In practice the plasma is finite in extent; it may be contained by 
material walls, the boundaries of the plasma may not be well-defined, 

and the plasma may be nonuniform in both space and time. The result 
is refraction, reflection, absorption, and diffraction phenomena that 
are not easy to define and interpret but the understanding of which 

is essential before accurate quantitative determination of plasma 
properties is possible. 

Although a number of microwave free-space measurements of 
plasma have been reported' -6 and some of the above limitations have 

been mentioned, there does not appear to have been a systematic 
attempt to assess the predictions of various simple theoretical models 

of the plasma or to develop theories to account for the influence of the 
aforementioned effects.  In this paper, theoretical predictions are 
developed and typical numerical values presented for plasma effects 
such as plasma boundaries, refractive defocusing by the plasma, non-

uniformity of the plasma, and diffraction introduced by the finite size 
of the plasma. 

EFFECT OF BOUNDARIES ON TRANSMISSION, REFLECTION AND 
ABSORPTION OF ELECTROMAGNETIC WAVES BY A PLASMA 

Many calculations on the effect of a plasma on an incident plane 

electromagnetic wave are based on a theoretical model in which the 
influence of the boundaries of the plasma is completely ignored. The 

electromagnetic wave is considered to traverse a region of plasma 
equal in extent to a given physical dimension, but the effect of reflec-
tion from the interface between the plasma and free-space and multiple 
reflections within the plasma are neglected (see Figure la). This 

"unbounded plasma" model thus predicts the attenuation and phase 

1 R. J. Jahn, "Microwave Probing of Ionized-Gas Flows," Phys. Fluids, 
Vol. 5, p. 678, June 1962. 

2 P. W. Kuhns, "Microwave Measurements of Steady-State and Decay-
ing Plasmas," Trans. I.R.E. PGSET, Vol. 8, p. 173, June 1962. 

3 R. Buser and W. Buser, "Determination of Plasma Properties by 
Free-Space Microwave Techniques," Jour. App!. Phys., Vol. 33, p. 2275, 
July 1962. 

4 R. Warder, M. Brodwin, and A. B. Cambel, "Sources of Error in the 
Microwave Diagnostics of Plasmas," Jour. App!. Phys., Vol. 33, p. 2868, 
Sept. 1962. 

5 G. R. Nicoll and J. Baser, "Comparison of Microwave and Langmuir 
Probe Measurements on a Gaseous Plasma," Jour. Elect. Cont., Vol. XII, 
p. 23, June 1962. 

6 L. Talbot, J. E. Katz, and C. L. Brundin, "Comparison Between 
Langmuir Probe and Microwave Electron Density Measurements in an 
Arc-Heated Low-Density Wind Tunnel," Phys. Fluids, Vol. 6, p. 559, April 
1963. 
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Fig. 1—Theoretical models for determining the transmission and reflection 
of electromagnetic waves by a plasma: (a) unbounded plasma, (b) plasma 
slab bounded by free space, (c) plasma slab contained within dielectric 

plates in free space. 



G  RCA REVIEW  March 1964 

shift that the plasma would introduce to a plane homogeneous electro-

magnetic wave traversing a given distance in an infinite, uniform, 
isotropic plasma. 

A more-realistic model (Figure lb) considers a plane, homogeneous 
wave normally incident on a uniform, isotropic "plasma slab" bounded 

by free space. In this model both reflections from the interfaces and 

multiple reflections within the plasma are taken into account. 

In a laboratory plasma, the plasma is very often contained by 
material walls. A theoretical model to take into account the effect of 
the material container is a slab of plasma bounded by two flat dielec-
tric plates (as shown in Figure lc). 

Calculations of the attenuation and phase shifts introduced by a 
plasma on an incident electromagnetic wave based on these three 

models have been made and compared for various plasma parameters. 
The predictions of the different models give an indication of the range 

of validity of each model and the accuracy of measurement of plasma 

properties to be expected when free-space microwave techniques are 
used. 

Unbounded Plasma Model 

In uniform, neutral plasmas of electron density n and effective 
collision frequency y, the dielectric constant can be written for a 
harmonic time varying field (eicot) as7: 

2 

K= K,. — jKi=1 —(— L6) )    

W  1 +  (V/00 2 )  ) 2(  1 1/4 ) 
w  (  1 + (v/w) 2 

.= 1 

where: 

N  NS 

+ s2  + S2 

(1) 

is the plasma frequency, (ne2 /m 0 1/2, 

e,m are the electronic charge and mass, respectively, 

is the permittivity of free space, 

0, is the radian radio frequency, and 

N,S are normalized electron density and collision fre-
quency parameters given by N = (tt), /0)) 2 and S = V/W. 

7 M. P. Bachynski, T. W. Johnston, and I. P. Shkarofksy, "Electro-
magnetic Properties of High Temperature Air," Proc. I.R.E., Vol. 48, p. 
317, 1960. 
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For a plane homogeneous electromagnetic wave the propagation 

constant (7), attenuation constant (a) and phase constant (P) can 

be written 

where 

y=a-Fi/3,  (2a) 

( I K l —IC,. )1/2 
a= k   ,  (2b) 

2 

(  1K1 + Kr r /2 , 
ig = k  (2e) 

2  j 

I KI = (K,:2 + Ki2)1/21 

and k = 27r/À is the free-space wave number. 

For a wave propagating a distance d in the plasma, the transmis-

sion coefficient, T, and the reflection coefficient, R, are given by 

T =1 —  

R = O. 

(3a) 

(3b) 

The attenuation of the wave after propagating a distance d in the 
plasma is given by 

ad--= 27r ( a )( d .  (4a) 
k 

The phase shift that occurs when f3/k changes from unity (no plasma) 
to some value defined by the plasma is 

d 
= 27r U 11 — (4b) 

The attenuation and phase shift for a path length, d, of 1.84 free-space 
wavelengths as function of electron density and collision frequency 

for an unbounded plasma are shown in Figure 2. 

"Plasma Slab" Model 

Application of the theory for an "unbounded plasma" is very 
simple. It is usually considered quite accurate if the refractive index 
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of the plasma is close to unity, in which case reflections from the 
plasma-free-space interfaces will be insignificant. To check the va-
lidity of such assumptions, calculations were performed to determine 

the attenuation and phase-shift of a plasma slab sharply bounded by 

free space. Writing the boundary conditions at each interface and 

30 

N= 

UNBOUNDED 
PLASMA 
=184 X 

36 

30 

24 -  24 

o 
R 18 , 18 

-  12 

6 -} 5.0.03 

0° 
o 

BO*  180'  270'  360'  450°  540°  630* 662* 
PHASE SHIFT ( DEGREES) 

Fig. 2—Variation of attenuation and phase shift due to an unbounded 
plasma for various values of electron density and collision frequency. 

solving the electromagnetic equations gives the transmission coefficient 
for normal incidences," as 

Er 
T  —  = cosh (ad -I- jI3d) (Zr —  iZi) sinh (ad + 

E0 
(5a) 

The reflection coefficient (applied to the fieids) is similarly obtained 

and found to be 

•, G. G. Cloutier, M. P. Bachynski, and K. Graf, "Antenna Properties 
in the Presence of Ionized Media," AFCRL Report No. 62-191. 

9 I. P. French, G. G. Cloutier, and M. P. Bachynski, "The Absorptivity 
Spectrum of a Uniform Anisotropie Plasma Slab," Canadian Jour. Ph ye., 
Vol. 39, p. 1273, 1961. 
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where 

R=T 

ce 

"k  a k 
( 

jZ,. (- -)] sinh (a ± jf3)d,  (5b) 
a k)  P/k 

1 
Zr = — 

2 \ 

P  IKI +1\ , 

iKi 

1  (  V  IKI - 1 \ 

Z i 
2  k A  IKI  )• 
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PHASE  SHIFT (DEGREES) 

Fig. 3(a) —Variation of attenuation and phase shift due to a plasma slab 
bounded by free space for various values of electron density and collision 

frequency. 

The attenuation and phase shift of the transmitted wave (with the 

phase referred to the second surface of the plasma slab) are plotted 

in Figure 3a. 
Examination of Figure 3a shows that the effect of the slab bound-

aries is pronounced when the plasma is not very lossy and when the 

normalized electron density is greater than about 0.5. The effect of 
the boundaries is significant in modifying the amplitude and phase 
of the transmitted signal. If the normalized collision frequency (vba) 

is greater than 0.1, the effect of the boundaries is small. The reflected 
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energy and phase-shift of the reflected signal are shown in Figures 
3b and 3e, respectively. 

The incident energy that is not reflected or transmitted by the 
plasma slab is absorbed; the absorbed power, Aw, is given by 

o" 
w 360 o 
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.2 6  e  lb  1 2 1.4  1.6  I 8 
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Fig. 3(c) —Variation of phase of reflected wave with normalized electron 
density due to a plasma slab bounded by free space for various values of 

collision frequency (d = 1.84X) . 
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AO) = 1 —  RR* — TT*  (6) 

where the le, T* refer to the complex conjugates of R and T, respec-

tively. The variation of A0 for various plasma parameters is shown 

in Figure 3d. 
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I 0 - —4   

(N) • wow' 

Fig. 3(d) —Variation of absorbed power with normalized electron density 
due to a plasma slab bounded by free space for various values of collision 

frequency (d = 1.84X) . 

Plasma Slab Bounded by Dielectric Plates 

Laboratory measurements on plasmas are usually significantly 
affected by the container in which the plasma is confined. Even when 

the index of refraction of the plasma is close to unity, the combined 
effect of reflection from the container and the plasma may be signifi-
cant. To study the magnitude of this effect, calculations were made 

for a model consisting of a plasma slab bounded by two dielectric 

plates. The geometry was as shown in Figure le. 

At normal incidence, the waves in the plasma and the dielectric 
will be plane waves. Nine "composite" waves representing all possible 

reflections are of interest. One can write all the boundary conditions 
for the continuity of the electric field and the magnetic field across 
the various interfaces. Solving the resulting equations for the trans-

mission and reflection coefficient of the slab of plasma bounded by 
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dielectric plates in free-space gives:'" 

Z1 Z„  sinh 2y'd' 
T =  cosh2 y'd' + sinh2 y'd' + —  +    cosh yd 

Z„  Z1 2 

+ 1 1( Zi 
Z2  sinh 27'd' +  +  cosh2 y'd' 

2  Z2 Z1 Zo 

Z12 ZoZ,  —1 
  sinh2 y'd'  sinh yd 

ZuZ,  Z12 

R  T {( Z1 
Zo 

Zo 
— — )sinhy'd' coshy'd' coshyd 

1 [( Z,  Z0 \ 
+ — —  — — ) eosh2 y'd' + 
2  Zu Z2 

where 

( Z12 ZoZ„) 

zoz,  z12 

(7a) 

sinh2 y'd'] sinh yd  (7h) 

are the propagation constants of the plasma and the 
dielectric plates, respectively. 

d,d' are respectively the thickness of the plasma and a 
dielectric plate, 

Z„,ZI,Z, are the impedances of free space, dielectric, and 
plasma, respectively. 

If the dielectric plates are considered lossless, the propagation 
constant of the dielectric, y', will be a pure imaginary. 

27r 
Y= =  it( 

where tt is the index of refraction of the dielectric plates. 

The impedances of the dielectric and plasma can be written in 
terms of the free-space impedance as 

10 M. P. Bachynski, G. G. Cloutier, and K. A. Graf, "Microwave Meas-
urements of Finite Plasmas," AFCRL Report No. 63-161. 
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VT‘  a 4- jP) 

Zi,  jk 

where K1 is the dielectric coefficient of the dielectric. 
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Fig. 4(a) —Variation of attenuation and phase shift due to a plasma slab 
contained within dielectric plates in free space for various values of elec-

tron density and collision frequency. 

Calculations were performed for the same plasma slab dimensions 

and parameters as used in the plasma slab model. The refractive index 

of the dielectric plates was 1.58 (polystyrene) and the thickness 0.567 

free-space wavelengths. 
The optical path length of each dielectric plate was 0.9À, which 

results in relatively small reflections from the plates for a normally 
incident plane wave. Had the plates been (2n -I- 1) À/4 in optical path 

length, then very strong reflections would have occurred from the 
dielectric plates and would, therefore, have manifested themselves in 

the effect of the plasma-dielectric container on the transmitted and 

reflected electromagnetic fields (n is an integer). 
The results of a computer calculation for the transmitted signal 

are shown in Figure 4a. 
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The phase-shift calculations have been "adjusted" on the plot so 
that there is no phase shift when the electron density is zero—a per-

fectly matched system. Similarly, the attenuation was taken as zero 

when the electron density was zero. For the calculations involving 
the dielectric plates, the signal transmitted through a composite slab 

(dielectric—plasma—dielectric) can be greater than the initial (zero 

electron density) value. This simply implies that the container (the 

two dielectric plates) reflects more signal when the electron density 
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Fig. 4(b) —Variation of reflected power with normalized electron density 
due to a plasma slab contained within dielectric plates in free space for 

various values of collision frequency (d -= 1.84X, d' = 0.567X). 

is zero than for some other electron density. The varying refractive 

index of the plasma could "match" the two dielectric plates so that 
less signal is reflected. For the particular set of parameters it, d', and 

d that were chosen for the computer calculations, this did not occur. 

Had it occurred, the attenuation would initially have appeared nega-
tive, i.e., the plasma would be "matching" the container to the incident 
fields. 

It can be seen that the signal strength, even for small electron 

densities, is severely influenced by the dielectric plates. The phase of 
the transmitted signal is less severely affected. The magnitude and 

phase shift of the reflected signal are shown in Figures 4b and 4e. 

The amount of power absorbed by the plasma is shown in Figure 
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4d. Since the dielectric plates were considered lossless, they did not 
absorb any power although they can influence the amount of power 

that the plasma absorbs. 

C o mparison of the T hree M odels 

The plots of the attenuation and phase-shift dependence on electron 
density for the three models show that the phase-shift is perturbed 
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less by the interface conditions than the attenuation for low values 

of electron density. Since, very generally, phase shift is associated 

primarily with electron density and attenuation with the electron 

collision frequency, the effect of the interfaces makes the collision 
frequency more in doubt than the electron density. 

A polar plot of the amplitude and phase of a transmitted signal, 

calculated for the three models, is shown for comparison in Figure 5. 

1, 

Fig. 5 (a) —Comparison of attenuation and phase shift as predicted by the 
three theoretical models for the plasma for P/c = 0.03 (L = 1.58, d = 1.84X, 
and d' = 0.567X). The solid line is for the unbounded plasma, the long-
dash line for the bounded plasma, and the short-dash line for the plasma 

bounded by dielectric plates. 

The curve drawn in each case is for collision frequencies (v/w) of 

0.03 and 0.1. Because of interface effects, and the thickness of plasma 
and dielectric plates used in the calculations, the deviation for the 
three curves is more pronounced at some electron densities than at 

others. As an example of the effect of the boundaries, note that for 
a phase shift of 360°, the electron density (N) measured by the three 
methods is 0.8. 

The "unbounded" theory shows less than 3 db attenuation; when 
the dielectric plates and the interfaces are taken into account more 

than 6 db attenuation is obtained. This is a significant difference. 
Conversely, although it is not shown in Figure 5, it can be seen from 
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the earlier figures that an attenuation of 6 db would give a collision 

frequency of 0.03 by the "dielectric plate" calculations, and a collision 

frequency of about 0.06 by the "unbounded" theory. As the collision 

frequency increases, the differences between the various models become 

less and less significant. 

05 

Fig. 5 (b) —Comparison of attenuation and phase shift as predicted by the 
three theoretical models for the plasma for ;Ito .= 0.10. Outer curve is for 
the "unbounded plasma model," innermost curve is for the "plasma bounded 
by dielectric plates." The distinction between the models becomes less 
significant with increasing collision frequency. For v/w = 0.3 and 1.0 all 
models predict about the same result (p= 1.58, d' .= 0.567X, and d = 1.84X). 

It is also interesting to note that the difference between the un-
bounded theory and the plasma slab model are not significant for low 

electron densities (N < 0.41 ; however, the effects of the dielectric 
plates on the plasma slab at these low electron densities are important 

due to the "matching" effects on the incident field. 

REFRACTIVE DEFOCUSING BY UNIFORM PLASMA 

SLABS AND CYLINDERS 

Microwave systems used for the free-space measurement of plasma 

properties can be broadly classified as to the type of incident wave 

front. The arrangements most often employed are of the type that 
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result in either an incident plane wave (by the use of auxiliary lenses), 

a spherical incident wave (unfocused point source) or a highly focused 

beam (using lenses or other focusing devices) to give a high degree 
of spatial resolution. These systems are illustrated in Figure 6. 

Since the refractive index of the plasma (p. =10P2) will, in general, 
not be equal to the refractive index of free space  = 1), refraction 

Plane Wave 

(a)  Source 

(b)  Source  Spherical »ay. 

(e)  Source 

Lens  Lens 

Receiver 

Receiver 

Receiver 

Fig. 6—Types of microwave systems used for free-space measurement of 
plasma properties: (a) plane wave system, (b) point source system, and 

(c) focussed system. 

will occur at each boundary between plasma and free space. Using the 

concepts of geometric optics, the electromagnetic energy can be con-
sidered as traveling along ray paths or rays that are normal to the 

planes of constant phase of the wavefront. (We shall neglect in the 

sequel the situation which can arise" whereby the rays do not coincide 
with the direction of energy travel, i.e., the direction of the Poynting 
vector is not normal to the phase front, resulting in inhomogeneous 

11 K. A. Graf and M. P. Bachynski, "Transmission and Reflection of 
Electromagnetic Waves at a Plasma Boundary for Arbitrary Angles of 
Incidence," Canadian Jour. Phys., Vol. 39, p. 1544, 1962. 
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plane waves.) The net result of the refraction is that the incident 

beam of energy is spread out or defocused by the plasma. (This is 
due to the fact that for the plasma it < 1; for a dielectric with it > 1, 

a focusing of the beam results.) The plasma can thus be considered 

as a lens of refractive index less than unity. The net result of this 

refractive defocusing is that the energy density of the radiation in 

the region where it can be measured by a microwave receiving system 

has been decreased not only by the amount of energy absorbed by the 
plasma, but also be the amount by which it has been spread out. Con-

sequently, in order to obtain a measure of the energy absorbed by 

the plasma (and hence get a measure of collision frequency) some 
estimate of the refractive defocusing is essential. 

Subject to the limitations of geometric optics (dimensions large 
compared to wavelengths, losses in plasma small, etc.) it is possible 

to derive expressions for the refractive defocusing by uniform plasma 

slabs and plasma cylinders. These are discussed subsequently. 

Plane Wave Incident 

For a plane wave incident normally on a slab of plasma, no refrac-

tive defocusing occurs, as shown in Figure 7a. 

A plane wave incident on a uniform, cylindrical plasma will be 

refracted. With reference to Figure 7a let the extreme ray of an 

incident beam of radiation of radius a be intercepted by a plane of 

half-width A located a distance R from the center of the cylinder of 
plasma of radius r. The angles of incidence and refraction are 8, and 

0„, respectively, while the other parameters are defined in the dia-
gram. Using Snell's Law and geometric considerations, it is easy to 

show that in the small-angle limit 

a 

A 1 
r + 2 ( — — 1) R 

it 

When the refractive index of the plasma is unity (p. = 1), then a = a() 

or 

ao 
-  1. 
A 

For an extreme ray of radius A, the effective radius of the beam 

of incident radiation which is intercepted is a. The effect of the plasma 
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is to reduce the radius of the incident beam that is intercepted from 
ao to a. A measure of the refractive defocusing effect in one dimension 
is then 

a 1 

r + 2 - - 1 R 1 + 2 (1 —R 
ao ( 1  )  

PLASMA 

PLAS MA 

(a) 

(b) 

(c) 

r 

• (8) 

Fig. 7—Refractive defocusing introduced by a uniform plasma for (a) 
plane incident wave, (b) spherical incident wave, and (c) focused incident 

beam. 
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We shall call 71 the "refractive defocusing coefficient" or in most cases 

the "refractive defocusing." Note that if le > 1, then n > 1, i.e., 

focusing occurs. 

For a plane incident wave, the defocusing coefficient n is a measure 

of the beam of energy intercepted by a receiver of aperture dimen-
sion A, located at R in the presence of the cylinder of plasma relative 

to that intercepted when there is no plasma cylinder. Note that for 

a plane incident wave the spreading or defocusing of energy occurs 
only in the plane normal to the cylinder axis and no defocusing effect 

is present along the axis of the cylinder. 

Spherical Incident Wave (Point Source) 

A spherical wave incident upon a uniform slab or cylinder of plasma 

will result in refractive defocusing of the incident beam as shown in 

Figure 7b. 

To determine the refractive defocusing for a spherical wave inci-

dent upon a uniform slab of plasma we can proceed as before. The 

result is 

a 

A 

R0 — d/2 

R„+ R—d 
cossb 

Vit2 — sin2cb 

In the absence of plasma, a = a„,  = 1, so that 

Hence 

a 
= 
a„ 

ao R,, — d/2 
 • 

A  Ro+ R 

1 

d  (  cos4) 
1   1   

R  N/11.2 — sin20 

In the small-angle approximation, cos el) —> 1, sin el3 —> 0, and 

= 
1 

1  d 
1 +( - -1    

)  Ro 

• (9a) 

(9b) 
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For a spherical wave emanating from a point source, the total 

energy received depends on the cross-sectional area of the beam normal 

to the direction of propagation, i.e., it is proportional to a2. Hence 
the reduction in received power due to refractive defocusing is given 

by n2. A typical variation of n2 with electron density is shown in 
Figure 8. 

Fig. 8—Reduction in received power due to refractive defocusing by a 
uniform slab of plasma when a spherical wave is incident on the plasma. 

For a spherical wave incident on a uniform cylinder of plasma, 
following the procedure as before, (see Figure 7b) the relevant equa-
tions become 

a  r (R0 — r) 
.  . 

A 1 
r (R + R0) -F 2 ( - -1) RR0 

it 

In the absence of the cylinder of plasma, 

ao Ro — r 
,   

A   

the refractive coefficient is 
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a  1 

00 1  )  RR0 • 
1+ 2 ( - - 1   

r(R0 + R) 

(10) 

A result similar to Equation (10) was obtained previously by 

Heald".'3. Notice that this is the refractive defocusing (power) for a 
line source parallel to the axis of the cylinder of plasma, i.e., a cylin-

drical incident wave. For a point source, the reduction in power due 
to refractive defocusing is given by the product of Equations (9) and 

(10), since the defocusing will be two dimensional. 

Focused Beam 

A focused beam incident on a slab of plasma and focused at the 
center of the slab will be defocused as shown in Figure 7c. From 

Snell's Law and geometric considerations we arrive at 

ao 2  )--i 
(11) 

a  2 

The reduction in power for a focused beam incident on a slab of 

plasma will be proportional to 712, since n is the refractive defocusing 
along a radius of the incident beam and the total incident power is 
proportional to the area or (radius) 2 of the incident beam. 

An incident beam focused at the center of a uniform cylinder of 
plasma will not suffer refractive defocusing in the plane normal to the 

axis of the cylinder (see Figure 7c). There will, however, be refrac-

tive defocusing in the direction along the axis of the cylinder since 
in the axial direction the cylinder will present a plane rather than 
cylindrical surface. This refractive defocusing is given by Equation 

(11). 

EFFECTS OF NONUNIFORMITY OF PLASMA 

Consideration was given earlier to the phase change and attenua-

tion introduced by a slab of uniform plasma to the transmitted and 
reflected fields of an incident microwave signal. In this section we 

12  M. A. Heald, "The Application of Microwave Techniques to Stella-
rator Research," Princeton Univ. Project Matterhorn Report MATT-17, 
August 1959. 

13  C. B. Wharton, "International Summer Course in Plasma Physics," 
Danish Atomic Energy Comm. Report No. 18, p. 579, 1960. 
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shall consider the effect that a variation in electron density with posi-

tion in a plasma slab has on the phase change, attentuation, and re-
fractive defocusing. Variation of the plasma properties both in the 

direction of propagation and normal to the direction of propagation 
are considered. 

Plasma Properties Varying in Direction of Propagation 

No Boundaries 

Consider a plane wave incident normally on a slab of plasma of 
thickness el, as shown in Figure 9a. Let the electron density be a 

PL ASMA 

W
//
//
//
//
//
//
 
il. 

 s. 

d 

o 

Fig. 9(a) —Plane wave incident on plasma slab whose properties vary in 
direction of propagation (z-direction). 

function of position in the slab in the z-direction only (the direction 
of propagation). Since the plane wave is incident normally on the slab 
of plasma no refractive defocusing effects will occur even if the plasma 
properties vary in the direction of propagation. 

Initially, neglect the effect of the plasma boundaries so that the 
reflected wave and multiple internal reflections within the plasma can 

be ignored. (We shall return to these later.) This is a reasonable 
assumption for a dilute plasma or a very lossy plasma. 

Considering only the wave transmitted through the plasma then, 
the phase change AO and attenuation A« introduced by the plasma are 
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= k j . ( 13(z)  1)zfr  dz, 

o 

f  a(z) 
Aa= k   dz, 

o 

25 

(12a) 

(12b) 

where P(z), a(z) are the phase and attenuation coefficients, respec-

tively, and k = 27r/À is the wave number in free space. 

It is advantageous to normalize the phase change and attenuation 

with respect to the thickness of the slab. Setting s = z/d yields 

,64) = —  —  1 
f (P(s) 

kd  k 
o 

1 

Act f  a(S) 

A = —  =   ds. 
kd 

o 

ds,  (13a) 

(13b) 

The effect on a plane wave introduced by the plasma slab is then 

exp H kd (A — j .14)) ) 

When the losses in the plasma are small, K,. >> Ki (this is the 
only type of plasma for which present free-space microwave techniques 

are applicable), we can write 

where 

P (s) 
= N/1 — N (s). 

0) 2(s)  e2 n(s) 
N (s) =   

Eow2 

For a dilute lossless plasma N(s) « 1, so that 

P (s)  N(s) 
  1 =    

2 

(14) 
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and 

1 
f  N(s) da. 

2 
o 

(15) 

Thus for a dilute plasma the change in phase depends only on the total 

electron density along the path and not on the electron density dis-
tribution. In subsequent calculations we shall not make the dilute 

plasma approximation in considering the effect of the form of the 
electron distribution on the phase of the transmitted electromagnetic 
wave but will retain the restriction that K,. >> Ki. 

The effect of the electron density profile on the phase of an electro-

magnetic wave transmitted through a plasma has been considered by 
Wharton" and by Motley and Heald." We shall adopt the slightly 
more general results due to Johnston." 

Consider the electron density profile in the slab of plasma to be 
given by a "barn roof" type of distribution (as shown in Figure 9b) 
of the form 

A 
N =   

1—A 
< s <  (1—A), 

N = N„, [A +  (1 —A) (s A)) 1 
A 

(1 — A) <8 <1, 
where 

(16) 

N„, is the maximum normalized electron density, 

A( 1) is the height of the "shoulder" and is also the ratio of 
the average electron density to the maximum electron 

density, i.e., the average electron density in the slab is 
AN„,. 

The normalized phase change introduced by a slab of plasma of 
this form of electron distribution is then 

14  C.  B. Wharton and D. M. Sleger, 
Plasma Density Profiles," Jour. App!. Phys. 

15  R. Motley and M. A. Heald, "Use 
Electron Density Profile Measurements in 
Proc. Synip. on Millimetre Waves, p. 141, 
1960. 

16  M. P. Bachynski, I. P. Shkarofsky, and T. W. Johnston, Plasmas 
and the Electromagnetic Field, Chapter 13, Addison Wesley Publishing 
Company, Inc., Reading, Mass. (in press). 

"Microwave Determination of 
, Vol. 31, p. 428, 1960. 
of Multiple Polarizations for 
High Temperature Plasmas," 
Polytechnic Press, New York, 
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1-A 
A  172  

A(1)  f  [  1— N,„  1—A s da 

o 

[1  —  A + )1  A  (s — {1 — A)) 11  ds —1  N„, 
r  1—A  1/2  

1 (17) 

2  1 — A 
—    
3N„, t A 

( A  1—A\  A 
  (1  AN„,) 3/2   (1 — N.) 312  .-1. 

1 — A  A  1—A 

N 

1.0 

1 - A 
1.0 

Fig. 9(b) —Electron density distribution in the plasma slab as function of 
position. N., is the maximum or peak normalized electron density. A is 

the height of the shoulder of the "barn roof" type of distribution. 

For a uniform slab, A = 1, N = N „, and we go back to the original 

integral (Equation (13a)) to obtain 

(-14')  1=  — N,„) 1/2 - 1.  (18) 

A plot of Atl, versus N. for different density profiles (different values 

of A) is shown in Figure 10a. If we now normalize the results to 
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correspond to slabs of equal total electron content (equal values of 

AN„,) the result is shown in Figure 10( b). The striking feature to 

note is that the phase is quite insensitive to the electron density pro-

file, even for densities very near to the critical density, but depends 

almost exclusively on the total electron content. It is thus impossible 

with phase measurements performed at a fixed frequency to ascertain 

1.0 

A 1.0 

.2  .4  .6  .8  1.0 

Nm 

(a) 

1.0 

.8 

0  .2 

A 1.0 

.9 

.4  .6 

ANm 

(b) 

1.0 

Fig. 10—Variation of phase change introduced by a plasma (a) with nor-
malized electron density for different spatial distributions of electron 
density and (b) with average normalized electron density for different 

spatial distributions of electron density (after Johnston16). 

with any degree of accuracy the electron density profile. Only meas-

urements performed at a number of different radio frequencies on the 
same plasma can hope to give an indication of the electron density 
distribution. This corresponds to keeping A fixed (same plasma con-
ditions) and varying N„, (by changing the radio frequency). 

An indication of the dependence of the attenuation on the electron 

density profile is of value for analyzing experimental data. To a first 
approximation, the effective collision frequency is independent of the 

electron density and is considered as a constant throughout the slab 

in the ensuing discussion. In a plasma where K, >> K„ the attenua-
tion coefficient becomes 
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a(s)  Ki N (s) 

k  2K,.1 2 (1)  V 1 -  N(s) 

(19) 

For the "barn roof" distribution of electron densities given by Equa-

tion (16) the normalized attenuation coefficient is 

J  

(s) ds 
.1= — 

(0 o (1 — N(s)) 1/2 

I - I 

= f  1 

A 
 N„,s ds 
— A 

_ [ .  [ 1  A N s ] 1/2  

1—A 

1 N LA +   A  s — {1 — A}) ] 
1— A 

+f [ r 1 — A 
 A  s  (1 — A}) 

These are standard integrals which yield 

ds ].  (20) 

y 4 ri _A  (    1 +i — A  A  AN ,,,\/  )1/2 
.‘ =  II    1 — AN,,, 

(0 3N„, L A  A  1 — A  2 

A  f 1 N „,  1_  N  w )1 /21 
(211 

1—A \  2 A 

For a uniform slab (A = 1, N = N,,,) we go back to the initial ex-

pression (Equation (13b)) to obtain 
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bution is not apparent until N,„ > 0.8, i.e., the electron density must 

be at least 80 percent of the cutoff density before the attenuation 
becomes sensitive to the electron density profile. It is thus apparent 

that single-frequency measurements of either or both phase and at-

tenuation will give little information on the electron density distribu-

8 

6 

A \  , , 

6 

2 

.2 

.5 

A  1.0 

Fig. 11—Variation of normalized attenuation introduced by a plasma (a) 
with normalized electron density for different spatial distributions of elec-
tron density and (b) with average normalized electron density for different 

spatial distribution of electron density. 

tion throughout the plasma. Simultaneous probing at multiple fre-
quencies offers some hope in this direction. 

Effect of Boundaries 

When the effect of boundaries is taken into account for a plane 

wave incident normally on a slab of plasma, a part of the incident 
field is reflected and a part is transmitted. There are then four meas-
urable parameters—the phase and amplitude of the transmitted wave 

and the phase and amplitude of the reflected signal. 
The effect of the electron density varying in the direction of propa-

gation (z-direction) on the fields reflected and transmitted by a plasma 

slab have been considered by a number of people (see, for example, 
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Budden"."), with probably the best set of numerical results being 

recently obtained by Albini and Jahn." Albini and Jahn solve the 

nonlinear wave equation 

V 2E  k2K(z) E =0 

by machine computation for various distributions of the electron 
density. Of particular interest to this work is their numerical results 

N( Z) 

O  zo  (Zt — Zo) Zt 

Fig. 12 —Trapezoidal distribution of electron density in a plasma slab as 
used by Albini and J011119.2° in computing effect of spatial electron distri-

bution on transmission and reflection of electromagnetic waves. 

for a slab with "trapezoidal" electron distribution, i.e., a uniform 
slab of plasma bounded by symmetric liRear ramps of electron density. 
Such a trapezoidal electron distribution (in the notation of Albini 

and Jahn) is shown in Figure 12. Note that changing Z0/À is equiva-
lent to changing the electron density profile, whereas changing Zg/X 
simply changes the thickness of the slab. The total electron density 

over a cross section of the slab is N„,(Z, — Z0), while the average 

re  K. G. Sudden, Radio Waves in the Ionosphere, Cambridge Univ. 
Press, 1961. 

18  G. R. Nicoll and J. Basu, "Reflection and Transmission of an Electro-
magnetic Wave by a Gaseous Plasma," IEE (London) Monograph No. 498E 
January 1962. 

14 F. A. Albini and R. G. Jahn, "Reflection and Transmission of Elec-
tromagnetic Waves at Electron Density Gradients," Jour. Appt. Ph ye., 
Vol. 32, p. 75, Jan. 1961. 

28  F. A. Albini and R. G. Jahn, "Reflection and Transmission of Elec-
tromagnetic Waves at Electron Density Gradients," Tech. Note No. 3, 
Guggenheim Jet Propulsion Centre, Calif. Inst. of Technology, Pasadena, 
Oct. 1960. 
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electron density is N„,(1 — Z(/Z(). We use the numerical results of 
Albini and Jahn, but present them in a slightly different form. 

The value of the total electron content of a plasma as a universal 

normalizing parameter was illustrated earlier for the case of an un-
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Fig. 13—Normalization to average e ectron density of the computations 
due to Albini and Jahni9.2" showing the effect of the spatial distribution of 
electron density on (a) amplitude of transmitted wave for K .= 0.25 and 
(b) phase shift of reflected wave and transmitted wave for K =0.25. 

bounded plasma. Taking the numerical results of Albini and Jahn and 

plotting them against (Z, — Z„)/À for different values of the "ramp" 
distance Z„/A results in the curves shown in Figure 13. Note that 

(Z, — Zo)/À is the normalized width of a uniform plasma slab of 
electron density equal to the maximum density of the trapezoidal dis-

tribution and containing the same number of electrons as the slab of 
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width Zt and having a trapezoidal distribution of electrons along its 

width. 
Figure 13a shows the variation in amplitude of the reflected and 

transmitted signals with slab thickness for different "ramp" distances 

(Zo/X) for a lossless plasma of dielectric coefficient K = 0.25. As 
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Fig. 13 (cont.) —Effect of spatial distributions of electron density on (c) 
amplitude of transmitted wave for K = 0.24 — j0.10 and (d) phase shift 

of reflected wave and transmitted wave for K = 0.24 — j0.10. 

expected, the more gradual the ramp, the better is the "match" of the 
plasma; hence more of the signal is transmitted through the slab and 

less is reflected from the plasma. The important point to notice is 
that the positions of the maxima and minima of both the reflected and 
transmitted signals depend on the total electron density or the physical 
length of a uniform plasma slab, and not on the actual physical dimen-
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sions of the slab. This is the case until the ramp dimensions become 
quite significant (Z„/À  0.50). 

The effect of losses on the behavior of the amplitude of the trans-

mitted and reflected waves is shown in Figure 13e for a plasma of 

dielectric coefficient K= 0.24 —j0.10. In the presence of losses, the 

signals become less sensitive to the shape of the boundaries. In par-

ticular, the transmitted signal does not depend significantly on the 

shape of the electron density profile. As before, the minima and 
maxima, which have become drastically damped, occur at the same 

position for ramp distances up to 0.5À when the slab dimensions are 
normalized to those of a uniform slab. 

The phase of the transmitted and reflected waves" can also be put 

in a normalized form that shows their dependence on the total elec-
tron content and relative insensitivity to the shape of the electron 
density profile. Albini and Jahn plot the total phase shift of the 

transmitted wave 437. upon passing through a plasma slab of thickness 
Z, and include the free-space path as well. To put this result into the 

form of the phase change introduced by the plasma .14) it is necessary 
to subtract from 4,7 the phase change in a path length Z, in free-space. 
Thus, 

Z, 
AO, = 27r 

À 
- 

Figures 13b and 13d show plots of the phase shift of the trans-
mitted wave introduced by the plasma normalized to total electron 

density. The phase shift is very nearly the same as calculated for the 

unbounded plasma. The effect of boundaries is to make the phase 

undulate slightly about the no-boundary value. The influence of losses 

does not introduce any significant modifications. The density profile 

changes the phase very slightly —by an amount which, because of the 

present-day precision of plasma microwave measurements, cannot be 

used to give any reliable information on the density profile of the 
plasma. 

For the phase of the reflected signal, consider the reflections to 
occur from the slab as if the boundary were located at the midpoint 

between where the plasma starts and where the maximum electron 
density has been reached. This is again replacing the slab by an 

equivalent (in total electrons) uniform slab of the maximum density. 
We, therefore, take the phase of the reflected wave 4.,, as calculated 

by Albini and Jahn and add ( 2/r/A)Zo to their result (since the effec-
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tive boundary of the slab is considered to be at Z0/2 and the wave has 

to travel this distance twice). Thus 

27r 
AO, =  —  Zo. 

X 

Plots of AO,. versus (Z, —Z0)/A. (i.e., slab width) are shown in Fig-
ures 13b and 13d. Only at values of Z„/X > 0.5 does the character of 

the reflected phase depart notably from that of a uniform slab whose 
electron density is the same as the maximum of the trapezoidal elec-

tron distribution and which contains the same total number of electrons 

as the trapezoidal slab. 

Plasma Properties Varying Normal to Direction of Propagation 

Consider a plane wave normally incident upon a plasma slab as 

shown in Figure 14a. The properties of the slab are constant through-
out the thickness of the slab, but depend on the distance from the 

center of the plasma slab. That is, the electron density n(r) varies 
in the direction normal to the direction of propagation. At the incident 
boundary of the slab (z = 0), the phase front of the incident plane 
wave coincides with the front face of the slab. At the second boundary 

of the slab (z = d) the phase of the wave emanating at a height r 

above the center line of the slab is 

41=kd[1— V 1— N(r)I. 

The phase difference between the wave coming through the slab at 
height r and the wave coming out at the center of the slab (r = 0) is 

(r) —.4(0) = kd [— N/1 — N (r)  V1 — N 0],  (22) 

noe2 
where  No = 

nifow2 

no is the electron density along the width of 
the slab at position r 0, 

e2 

N(r) = n(r)   
Into(02 

Equation (22) is thus the equation of the phase front (surface of 
constant phase) of the wave emanating from the plasma; the front 
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has the form shown in Figure 14b (provided N0> N (r))  When 

N(r) > N0, the curvature is in the opposite direction. 

In physical space the important parameter is the optical path 

PLASMA 

d 

(a) 

R 

(e) 

o 

(b) 

î 
(d) 

Fig. 14 —Notation for discussing energy propagation in a plasma whose 
properties vary in direction normal to direction of propagation: (a) plane 
wave incident at distance r from center of plasma whose properties depend 
on distance from center, (b) surface of constant phase of wave emerging 
limn plasma, (e) approximate path of ray in plasma and emerging from 
plasma, and (d) accurate path of ray in plasma and emerging from plasma. 

length. The surface of constant path length is given by 

Act.(r) —.34(0) 
(13(r) =   d[—  —  (r) A- V1 — N0].  (23) 

This is the shape in free space of the planes of constant phase given 
in terms of physical dimensions. 
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Considering that the phase fronts are orthogonal to the direction 

of energy travel, the ray incident upon the slab of plasma at height r 
is refracted so that it emerges at some angle tp (r) as shown in Figure 

14e. The angle %P(r) is given by 

tan (r) = 
(r)  d dN (r) /dr 

dr  2 N/1 —N(r) 
(24) 

If the beam of incident radiation of radius a is intercepted by a plane 
of half-width A located at distance R from the second surface of the 
slab, then the refractive defocusing introduced by the nonuniform 

electron density variation of the slab, n, is given by 

a 
= -  • 

A 

(The true situation is shown in Figure 14d. The normally incident ray 
at height a undergoes continuous refraction as it traverses the slab 
and emerges at a height (a + Sal traveling in the direction 'Ka). 
Subsequently we shall assume Sa <K a and consider the incident ray 
to travel at the same height in the slab, but to emerge at angle tfr (a) .) 
In practice this is probably a good assumption since the presence of 
the dielectric plates of the plasma container will tend to counterbalance 
the refractive defocusing and in effect make Sa small. 

The effect of the nonuniform electron distribution in the plasma 
slab can be thought of as a plasma lens of constant electron density 
but shaped so as to give the same phase change to an incident plane 

wave as does the plasma slab. 

We can thus write 

or 

A — a  d (dN(r)/dr) ,,, 
tan tp (a) =   =  (25) 

2  N/1 — N (a) 

a  Rd dN (r) /dr 

A  2A N/1--N7) 
(26) 

A number of variations of the electron density with direction nor-

mal to the direction of propagation, and the corresponding refractive 
defocusing coefficient, are listed in Table I. A convenient distribution 
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for laboratory experimental purposes is the parabolic distribution, 
particularly since  represents the amount by which the electron 

density has decreased at the edge of the experimental plasma container 
relative to the electron density at the center. Despite the fact that the 

resulting equation for 9(a) is transcendental it can be very readily 
solved for fixed values of A. 

Table I 

dN(r) 
Electron Distribution  n (a) 
in Plasma Slab N(r)  dr 

N(r) =  (constant)  0  1 

N(r) = N.(1 — r(r/r0))  —  d R  rN. 
(linear)  1 

2r0 A V1 — N (a) 

N(r) = N.(1 — nr/ror)  — 21'N.,(r /re)  1 
(parabolic) 

1 + d 
r.." V1 — N (a) 

N (r) = N., exp {— r(r/ro) 2)  — 21'N (r) (r /re)  1 
(Gaussian) 

R  l'N (a) 
1 + d 

V1 —N(a) 

N(r)  
r 

N.  __  Pr/n0) 1 
d R rN.,.1i(rr/r.,) 

2r,, A V1 — N (a) 

rc, = radius of actual plasma (finite in experiment) 
r., =. radius of laboratory plasma bottle. 

Numerical results for a parabolic distribution of electron densities 
as determined from Equation (26) are shown in Figure 15. As can 

be seen, if the plasma is nonuniform then very strong attenuation 
effects can be obtained due to these refractive effects. 

The geometrical-optics type of refractive defocusing that has been 
considered cannot take into account the phase difference between the 

various rays (from different radii) as they reach the receiving an-

tenna. In order to do this, resort must be made to diffraction theory 
as shown in the next section. 



ELECTROMAGNETIC PROPERTIES  39 

1.0 

4  .5  6  .9  I 0 

Fig. 15(a) —Refractive defocusing effect due to plasma properties varying 
normal to direction of propagation as function of plasma nonuniformity for 
different electron densities at center of plasma. (Parabolic distribution of 
electron density in direction rormal to propagation and A = ro is assumed.) 
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Fig. 15(b) —Refractive defocusing effect due to plasma properties varying 
normal to direction of propagation as function of electron density at center 
of plasma for different geometrical arrangements and degrees of non-

uniformity. (A = r,, is assumed.) 
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ELECTROMAGNETIC WAVE PROPAGATION THROUGH LABORATORY PLASMAS 

AS A DIFFRACTION PROBLEM 

Most laboratory-scale plasmas are only a few wavelengths in ex-

tent, and hence when the properties of the plasma are to be measured 

using electromagnetic waves, diffraction will play a major role in deter-

DIELECTRIC PLATES 
INCLUDED 

Fig. 15(c) —Phase and attenuation of a plane incident wave transmitted 
through a slab of plasma including the effect of dielectric plates and of 
lateral defocusing in one dimension for a parabolic distribution of electron 

density in direction normal to direction of propagation. (A =7-..) 

mining the electromagnetic energy that emanates from the plasma, 

and its distribution in space. 

When considering diffraction phenomena, the Kirchhoff scalar dif-

fraction formula, although not rigorous in its formulation, has enjoyed 

considerable success when applied to actual physical problems. Using 
the scalar diffraction formula, the field u at point p may be written 

1 e—ikg De/  D  e  )1 

(27) 
47r  s  Dn  Dn  s  j 
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where  8 is the distance of the field point p to the surface of in-

tegration, 

1,1/ L; the value of incident field (amplitude and phase) at 

the element of integration, 

n is the normal derivative in the plane of integration, 

S is the surface of integration. 

Application to Point Source Illuminating Finite Plasma Slab 

To consider the diffraction phenomena introduced by a finite 
plasma, let a source of electromagnetic energy be situated at point S 
(see Figure 16a) a distance (R — d) from a uniform slab of plasma 

of thickness d. The exit pupil of the system is an aperture of radius r 
located at the exit position of the plasma slab. (In practice,' it is 
found that the exit pupil of a finite plasma container determines the 
major diffraction effects, so that the above model is a good approxima-
tion to a cylindrical slab of plasma of radius r and thickness d.) This 

exit pupil is taken as the surface of integration. The problem is then 
to determine the incident field over the exit pupil and perform the 

integration according to Equation (27) in order to evaluate the field 

at the point p. 

The field incident from the source must pass through the plasma 
slab before it reaches the point of integration p'(r,O) where r,ck are 
the polar co-ordinates in the exit pupil. With reference to Figure 16b, 
let LI be the path of the incident radiation in free space and L2 the 
path of the incident radiation in the plasma which reaches the point 
p'. Let the refractive index of the plasma be Ku2= (P/k) — ja/k. 

The phase of the incident field at p' is then 

isi=k (Li + 11 L2). I 

and the amplitude of the incident field is 

exp (— k(a/k)L2) 
U = U0(0) 

where U0 is the free-space radiation pattern of the source 
representing both the strength and directivity 

of the radiation, and 
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s 
R1 

(c) 

 i 

Fig. 16 —(a) Geometry for derivation of diffraction due to a plasma slab 
located in front of a circular aperture in a metal screen; (b) optical dis-
tance traveled by radiation from source to exit pupil of diffracting system; 
and (c) optical distance traveled by radiation through plasma and from 

exit pupil to field point p. 
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exp (— k (a/k) L2) represents the attenuation of the incident field 
in its passage through the plasma. 

(The effects due to the boundaries of the plasma have been neglected.) 

Again with reference to Figure 16b we can write 

13 
sind, = — sindn, 

a 
tancb    

R — d  R 

r — a 
tang. =   

d 

For most practical purposes we can set sinyb  tane, sint  tand„, 

which leads to 

a  1 
=_-  

d 
1 +   

(R — d) (P/k) 

8 = d 

We can write 

( (Pk  ) 1). 

a2 
[(R — d) 2 + a2P/2 R —d +   for a (R — d), 

2(R — d) 

(R — d) 

where 

2  1 

2 (R — d)  (  d 1 +   

(R — d) (P/k) 

1 

) 2 

= (R — d) + gr2, 

1 +  d 
(R — d) (P/k) ) 2 
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and 

(r — a) 2 

L, = [d2 + (r — a) 2]1/2—d+   for (r — a) « d, 
2d 

r2 1 
=d+ 

2d 
[ 1 4- ( — — 1) — 

p  2 

where  f = 

d 

1 

=d+ fr2, 

2d [i + —13 ( —R — 1)1 2 

k  d 

The incident field over the aperture is thus 

Uo (r) 
efr =   exp (— ad — jk (R + ((13/k) —1)d) 

— af r2 — jk (g + (f3/k) f)r2).  (28) 

The distance s from the field point p to the point of integration p' can 
be written 

s = [(Ro + x ) 2 p2 r2 - 2pr cos (tp — 4,)]1/2. 

Letting R' = [ (R0 + x) 2 + p2] 112, 

r2 — 2pr cos (ip — 4,) 112  7-2 2pr 
s -=R' [1 +   R'  — 

(R') 2 2R'  2R' 

For the far field, the diffraction integral can be written 

jk  e " —  

27r 
dS. 

cos (tP — 4))• 

(29) 

(30) 

We now make the normalization r = al, where a is the radius of the 

exit pupil and 0 t--É 1. Using Equations (29) and (30), the field at 
the point p can be written 
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u(p) =   27rRR' exp  — jk [ R  R' + d ( — —1 )1 — ad } 
13 jka2 

1  27r 

J" f you) exp { — afa212 — jk [g  f (—f-
o o 

1 pa 
+   a2/2 + jk [ —ilcos (ap — 0) }1d1 4.  (31) 
2R'  R' 

Equation (31) includes the usual far-field approximation. If a com-
puter is available or if greater accuracy is desired, then the exact 

values of for efr and s can be used. 

Let 

Then 

1 
P=k(g +  1+   a2, 

2I:' 

ka 
Q=  p, 

R' 

(P O=k (R+R'  -1- - -1  d . 

a2 
u(P) =  exp (— 50 — ad) 

ARR' 

1  27T 

f o u0(1) exp (—afa2/2— jP/2 + jQl cos (' —4,)) idido.  (32) 

The integration with respect to 0 is readily executed to give 

1 
(27ra2) 

u(p) = j  exp (-50 — ad) f 
XRR'  ó 

U0(1) exp {—afa2/2) J0(Q1)1d1,  (33) 

where Jo is the zero-order Bessel function of the first kind. For the 
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field along the principal axis of the system Q = 0 so that 

j (27ra2) 
u(p) =  exp (— j0 — ad) / 

o 
ARR' 

U0(1) exp (— afa212 — jP12) Idl.  (34) 

Consider then the field along the principal axis for a lossless plasma 

(a = 0) that is uniformly illuminated from a point source located at 
S (i.e., U0(/) = uo = constant). In this case 

1 
u(p)  (277u2) 
 = j  exp (— j0) f exp {— jPl2) idi 
u0  XRR' 

o 

(27re) 1 jP y- sin (P, 2) 
=j   exp  jo (35) 

ÁRR' 2  2  L P/2 

The intensity along the principal axis is thus 

1(p) = 
[ sin(P/2)  2. 

4(RR') 2 P/2  j 
(36) 

This is just the field along the principal axis of a circular aperture. 

To study the influence of the plasma we must consider the parameter 
P. After some algebra we can write 

P  = ka2 1 ±  1 

2  4  R' 1 
R  d( - ---1) 

/3/k 

ka2 (  1  1  d ( 1 
_ 

4  R'  R  R2 13/k 1)). 
The effect of the plasma is thus to decrease the value of (P/2) since 
the term (fl/k)/[d  (R —d)13/1c] decreases as 13/k decreases. The 

effect of the plasma is to shift the axial radiation pattern of the 
system. 
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incident radiation can be approximated in the form 

U0 (/) = u0 exp (—,80/2) 

then Equation (34) can be written 

u(p)  j(27ra2) 1 
exp  j0 

Ito  ÁRR'  2 

r LP — j(afa2 f3) 
sin    

—  (P —  Pria2 Pol) 
2 [ P — i(crfa2 po) 

2 

The intensity along the principal axis is then 

k2a4 exp (-130 — crfa2)  r 
i(p)=   

4(RR')2  p2  (po+ crfa2) 2 L 2 
4 

2  jj 

(cosh (Po ± afa2) 

47 

(37) 

(38) 

The effect of the losses in the plasma on the intensity is the same as 

the effect of using a directive antenna. 

Application to Plane Wave Illurninat . PInstnn II hose 

Properties Change in Radial Direction 

Consider a plane wave incident on a slab of plasma as shown in 

Figure 16c. The plasma is considered to be nonuniform with the 
electron density N(r) depending upon distance r from the center of 

the plasma. A ray incident upon the plasma at r emerges from the 
plasma at angle tp. Assume a perfect lens is located a distance R from 

the second surface of the slab. The energy at the focus of the lens is 

then readily determined if we know the field distribution incident 

upon the lens. We can thus write 

jk f  exp (— jkR0)  jk exp (—ikRo) f 
u(p)  —   dS  dS,  (39) 

27r  Ro 27r 
8 
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where  is the field incident on the lens. The incident field at the point 
p' is then 

e (p') = eo exp (— jdN/17— jkL2),  (40) 

where 'fro is the amplitude of the field incident on the plasma. Now 

L 2 =  [R2.1_  

2 

From Equation (25) 

tan (r) = 
d dN (r) /dr 

2 V1 — N(r) 

If we restrict ourselves to a parabolic electron variation (any of the 

other variations listed in Table I could be used as well) then 

Hence we can write 

tan2tfr 

where 

Thus 

dro 

d No r  r 
tan e (r) =   

N/1 — N(r) ro2 

2  r  2 
r No — 

ro 

1 — No ( 1— I' ( — 
rro )2) 

( d  2 
— r No)  + No + No2) 
ro 

( r )2 r )2 
  = 2S(—  (41) 
ro ro 

1 (d 2 

=  -  r No)  + No + No2). 
2  ro 

2 

L, = R + RS ( —) , 
ro 
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and 

1   (1 -I- jv/w) k  k  + v1/4 2  i1/2 
No (1 — r (r/r0) 2) 

4 1 — N 1 1-Fj -1-1+ n(1-1-j 111 
2 \  iL  4 \ 

+ —r (i+j - 111- -(i+j —)1( 
No'  No' 

2  to  2 ro 

=p+Q( —r , 
ro 

where  No'=N0/(1-1- v2/0,2), 

P, Q are complex. 

Thus we have 

2 

ty(p') = tfro exp  jk (R  Pd) — jk (RS + Qd) ( —)  .  (42) 
r, 

The field at the field point p can thus be written 

po 2/r 

u (p) = — —  exp (— jk (Ro R) — jkPd} f f 
jk  1 

Ro o o 

2 

exp {—jk (RS + Qd)( —)  pdpd4),  (43) 
ro 

where po is the radius of the lens. It has been established that 

=  77, 

where  is the coefficient of refractive defocusing. Hence 

1 
pdp  —  rdr. 

n2 
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Further make the substitution 

r = rol, 

where ro is the radius of the plasma, and 

Then 

n(poiro, 
jk ro2 

u(p) = - -exp (— jk(Ro R) — jkPd}  l exp (— jk (RS + Qd) 12} ldl 
92 R0 

o 

jk  1  [ sin W 
=  P02 —  exP  jk (R0 + R) — (Pkd  W)}    (44) 

2  Ro 

where 

W  (RS + Qd) 712 (P02/r02) • 

2 

Note that P and W are complex so that the expression is not as simple 

as it seems. When the plasma and the lens are the same size, Po = ro, 

and the values calculated for  in the preceding section are applicable. 

(Otherwise n is calculated from Equation (26) in which A is set equal 
to po). In the limiting case of 

(a) uniform plasma, 1' = 0, so that S = 0, Q = 0 and W = 0; 

jk  1 
u (p)  — po2 —  exp  jk [Ro + R] — jkd[l — 

2  R„ 

No' V 1 + No' \-1  No' ( 1 + N  led } 

\ 2 A  4 LI  w  2  2 ) 

(b) lens against plasma, R = O,n =1 and W = — Qd; 
2 

jk  1 
u (p) = —  po2 —  exp  — ikR0 — jk  P+ — I d  sin 

2 Ro I  L  2J J 

(45) 

r kd 
1 -2 Q t 

• kd 

2  J 
(46) 
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Numerical results for a parabolic distribution of electrons are 

shown in Figure 17, which illustrates the effect of the nonuniformity 

in electron density, the effect of the distance of the lens from the 

plasma, and the effect of collision frequency. One can, for example, 
perform measurements at different distances from the plasma in order 

to determine the degree of nonuniformity of the plasma. Note that 

ZIO 

Fig. 17(a) —Phase and intensity of an incident plane wave transmitted 
through a slab of plasma and diffracted by a circular metal screen forming 
the exit pupil of the microwave optics system showing the effect of non-
uniformity in electron density in the direction normal to the direction of 
propagation. (A parabolic distribution of electron density in the lateral 

direction and A = r„ = p., is assumed.) 

the nonuniformity in the electron density of the plasma and the geom-
etry of the arrangement (Rd '7.02) have a far greater influence on the 
electromagnetic wave passing through the plasma than does the colli-

sion frequency. 

CONCLUSION 

Analytic expressions and typical numerical results have been pre-

sented for the effect on transmission, reflection, and absorption of 
electromagnetic waves of plasma and dielectric boundaries, refractive 
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1:.0.5 

(d/X).1.9 

ale 

R.2 y624X 

I 22 
Rd 

(e) 
Fig. 17 (cont.) —Phase and intensity of an incident plane wave transmitted 
through a slab of plasma and diffracted by a circular metal screen forming 
the exit pupil of the microwave optics system showing (b) the effect of the 
distance of the receiving lens from the exit pupil and (c) the effect of 

various values of collision frequency. (A = ro= Po) 
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defocusing by slabs and cylinders of plasma for plane wave and 
spherical wave incidence, the effect of nonuniformity of the plasma 

both along the direction of propagation and normal to the direction 
of propagation, and for diffraction effects due to the finite size of a 

plasma. 
The influence of these effects is significant for any laboratory 

measurements of plasmas using free-space microwave techniques. In 

many instances they predominate over the effect of the parameters 
of the plasma that are being determined and limit the amount (accu-

racy and detail) of information regarding the plasma that can be 

obtained. It is, therefore, essential either to minimize these effects or 
to take them into account in any quantitative interpretation of experi-

mental measurements. 
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MICROW AVE TUNNEL-DIODE A MPLIFIERS 

WITH LARGE DYNA MIC RANGE 

BY 

R. STEINHOFF AND F. STERZER 

REA Electronic (*muniments and Devices. 
Princeton, N. J. 

Summary—The large-signal behavior of tunnel-diode amplifiers is ana-
lyzed, and curves for calculating the gain-saturation characteristics of 
gallium arsenide, germanium, and gallium antimanide tunnel-diode ampli-
fiers are presented. Agreement between theory and experiment is good. 
The design of microwave tunnel-diode amplifiers with dynamic ranges of 
about 90 decibels (for 1 inc noise bandwidth) is then discussed, and experi-
mental results obtained with such amplifiers are given. 

INTRODUCTION 

CONVENTIONAL microwave tunnel-diode amplifiers use ger-
manium or gallium antimonide tunnel diodes with peak cur-
rents of only a few milliamperes. Such amplifiers generally 

have noise figures in the 3- to 5-decibel range, power outputs of several 
microwatts, and dynamic ranges of less than 70 decibels* for power 
gains of about 15 decibels. This paper describes microwave amplifiers 

that use gallium arsenide tunnel diodes with peak currents of more 
than 20 milliamperes. Although these GaAs amplifiers have a higher 

noise figure ( NF  6 decibels) than amplifiers using Ge or GaSb 

diodes, they can deliver hundreds of microwatts of output power and 
have dynamic ranges that exceed 90 decibels. Cascaded amplifiers 

consisting of low-noise Ge or GaSb first stages followed by a GaAs 
second stage can combine 3- to 5-decibel noise figures with high power 
outputs and large dynamic ranges. 

In the first section of this paper, the large-signal behavior of 

tunnel-diode amplifiers is analyzed, and curves for calculating the 

gain-saturation characteristics of GaAs, Ge, and GaSb tunnel-diode 
amplifiers are presented. The next section discusses microwave am-

plifiers that use high-current GaAs diodes, and gives design procedures 
and experimental results. The final section discusses the use of cas-
caded amplifiers to obtain high power output with low noise figures. 

• In this paper dynamic range is defined on the basis of 1-mc noise 
bandwidth and 3-db gain compression. 

54 
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LARGE-SIGNAL ANALYSIS OF TUNNEL-DIODE AMPLIFIERS 

The power gain, G, of a circulator-coupled tunnel-diode amplifier 
of the type shown in Figure 1 is given by'.2 

(R0+ R) 2 ± X2 

G= (R0— R) 2 + X 2 

(1) 

where Ro is the characteristic impedance of the transmission line con-

CIRCULATOR 

LOAD 

TUNNEL-DIODE 
AMPLIFIER 

TRANSMISSION LINE 
WITH CHARACTER-

ISTIC IMPEDANCE Ro 

INPUT 

Fig. 1—Circulator-coupled tunnel-diode amplifier. 

necting the circulator to the tunnel-diode amplifier and 

Z= —R-EjX 

is the impedance of the tunnel-diode amplifier. It is assumed that the 
circulator is ideal and is matched to the transmission lines connected 

to its ports. 
At the resonance frequency of the amplifier, Equation (1) simpli-

fies to 

-(R 0+ R„)2 
G   (R0-14)2 

(2) 

1K. K. N. Chang, "Low-Noise Tunnel-Diode Amplifier," PrOC. I.R.E., 
Vol. 47, p. 1268, July 1959. 

2 M. E. Hines and W. W. Anderson, "Noise Performance Theory of 
Esaki (Tunnel) Diode Amplifiers," Proc. I.R.E., Vol. 48, p. 789, April 1960. 



56  RCA REVIEW  March 1964 

where RR is the value of Z at resonance. Equation (2) is plotted in 

Figure 2. 
An a-c equivalent circuit of the amplifier that is general enough 

for most practical applications is shown in Figure 3. Here the tunnel 

diode is shunted by a parallel circuit admittance G,± jB,. The equiva-

22 

20 

18 - 

16 

14 

12 

o- FOR R »Ft R 0 R 0 

FOR ReR0 

10 -

e 

o  
I 0 2.0  30 

LOAD RATIO e 

40 

Fig. 2—Gain versus load ratio at resonant frequency for a circulator-
coupled tunnel-diode amplifier. 

lent circuit of the diode itself consists of three elements connected in 
series —an inductance Ld, a resistance rd, and a voltage-dependent a-c 
junction resistance Rd shunted by a voltage-dependent junction capaci-
tance C,,*. In the limit of vanishingly small r-f signals, Rd is given by 

dVd 
(Rd),= , 

dl,, 
(3) 

• The effects of the variation of Ce with voltage are usually small, and 
are neglected in this analysis. 



MICROWAVE TUNNEL-DIODE AMPLIFIERS  57 

where Vd is the voltage across the diode junction and Id is the current 

through Rd.  For finite r-f signals, an effective negative resistance 

(Rd),, which is defined as the ratio of the fundamental components 
of the junction r-f voltage and current, is used." 

The power output of a tunnel-diode amplifier can be written 

Pout = in ± d  P 8—  Pc, (4) 

where Pin is the power input to the amplifier, Pd is the power generated 

by the negative resistance of the diode junction, Ps is the power lost 

TUNNEL DIODEi 
r-

TO CIRCULATOR z 
jec 

co 

Fig. 3—Equivalent circuit of a tunnel-diode amplifier. 

in the series resistance of the diode, and P,. is the power lost in the 

amplifier circuit. Now 

1702 
Pd =   

2(R,,) 5 

where V„ is the peak r-f voltage across the diode junction. Also 

17 02 

Ps=  rd [1 -F or2Cd2 (R0),2-] 
2 (Rd) e2 

(5) 

(6) 

**Because R,, is nonlinear, harmonics of the input frequency are 
generated for finite r-f signals and the output of the amplifier is in general 
nonsinusoidal. Throughout this paper, the power gain and the impedance 
cf the amplifier are, therefore, defined in terms of only the fundamental 
components of power, voltage, and current. 
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V 02 

fe•  2 (Rd) e2 [1.4 + (R 1 — r4)  f (R d e 2 , (7) 

where R I11111  is the minimum value of (Rd) c and fc is the resistive cutoff 
frequency of the diode and is given by 

Finally, 

Thus 

= 

V02 {1 

V  R1,„ 0 

rd 
fc=   

Pc= 

1 

27 rRmin Cd 

2Z 

Z  Ro 

2 

(R1d )c [rd ± (R I"'  rd)  

1 
2 (Rd), [1 — --1- 

G 

2Z 

Z  R„ 

(8) 

(9) 

f (R,),\ 211 

f, R„„„ 
  .  (10) 

To calculate the power output of a tunnel-diode amplifier from 
Equation (10), the dependence of (Rd), on Va must be known. This 

dependence was calculated for a typical GaAs tunnel diode by the use 

of the following tenth-degree power series approximation of its I—V 
characteristics: 

lo 
/d = E a,, V4 . 

n—o 

Equation (11) is plotted in Figure 4 together with the measured I—V 

characteristic of a GaAs tunnel diode (normalized to the diode peak 
current, I0). The figure shows that the power-series approximation 
is excellent. 

If the r-f component in Vd is assumed to be purely sinusoidal,* then 

Vd = V0 ± Vo cos cot,  (12) 

In general, l'4 contains harmonics of the input frequency. The effect 
of these harmonics is usually small and is neglected here. 
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and 

so that 

1.0 

o. 

nO.6 
t.) 

2 o 
u 04 
Z ' 

4 

o 
z 0 

10 

Id = E an ( VD + V 0 COS m O n 

= 

=  +  11 C OS Olt +  12 cos 2wt + • • • , 

vo 
(Rd)c =  • 

Il 

-  MEASURED 

- - - - POLYNOMIAL FIT 

1 

(13) 

(14) 

0.1  0.2  0.3  0.4  as 
JUNCTION VOLTAGE Vd -VOLTS 

0.6 0.7 

Fig. 4—Normalized /-V characteristic of GaAs tunnel diode. 

Figure 5 is a plot of calculated values of (R,,), R 11," as a function 

of Vo for a GaAs diode that has the I-V characteristics shown in 

Figure 4. Also shown in the figure are experimental points obtained 

from the measured gain-saturation curve of a microwave amplifier. 
Agreement between calculated and measured values is good. 

The I-V characteristics of typical Ge and GaSb tunnel diodes are 

shown in Figure 6; 

for the Ge diode, R mhi 

for the GaSb diode,  R„,1„ 

0.120 

0.060 

/, 

** Most practical tunnel-diode amplifiers are d-c biased at the minimum 
negative resistance point. For the GaAs diode of Figure 4, R.5  0.22/I,,. 
(MKS units are used throughout this paper.) 

(15) 
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Fig. 5—Normalized effective junction resistance versus amplitude of r-f 
voltage across the junction for a GaAs tunnel diode having the character-

istics shown in Figure 4. 

O 

JUNCTION VOLTAGE MI -VOLTS 
010  0. 

Fig. 6—Normalized I—V characteristics of GaSb and Ge tunnel diodes. 
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Plots of (Ra)e/Rodo  versus Vo are given for these diodes in Figure 7. 

These curves, like the experimental points of Figure 5, were calculated 

from measured gain-saturation characteristics. 

2.2 

1.8 

O 

z 
D E 

cr  1 6 — --

oo 

Ge 

0.010  0.020  0030 

AMPLITUDE OF rf  VOLTAGE ACROSS JUNCTION Vo - VOLTS 

Fig. 7—Normalized effective junction resistance versus amplitude of r-f 
voltage across the junction for GaSb and Ge tunnel diodes. 

DESIGN OF HIGH-POWER TUNNEL-DIODE AMPLIFIERS 

Choice of Diode Material 

In general, a tunnel diode cannot be prevented from oscillating and 

therefore cannot be used in a stable amplifier unless3 

La < 3 (Rd)82Cd• (16) 

In practice, stabilization of a tunnel diode is extremely difficult if 
Ld > Rmin 2Cd, and hence the maximum allowable value of Ld is usually 

( Ld) m ax =  R min2 C d • (17) 

The voltage-gain—bandwidth product (for g» 1) of a single-tuned 

3 L. I. Smilen and D. C. Youla, "Stability Criteria for Tunnel Diodes," 
Proc. I.R.E., Vol. 49, p. 1206, July 1961. 
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circulator-coupled tunnel-diode amplifier is given by 

GvB 
1 

rR,„i„Cd 

Substituting this relation into Equation (17) gives 

a 
(1p) max    

TrG,,RLd 

(18) 

(19) 

where a =l,R,Hin•  The relative values of a for GaAs, Ge, and GaSb 
diodes are 

(a) G.A. : (a) Ge  : (a) oftsb  1:0.5:0.27.  (20) 

Equations (19) and (20) show that for the same values of voltage-

gain—bandwidth product and inductance, the maximum usable peak 
current is considerably greater for GaAs diodes than for either Ge 
or GaSb diodes. 

The maximum power generated by the negative resistance of the 

diode is directly proportional to the maximum value of the diode peak 
current and the maximum value of the peak voltage across the diode 
junction; i.e., 

(pd). « (vo) . (21) 

where (V0)„,„x is determined by the maximum allowable large-signal 

gain depression of the amplifier, i.e., the maximum allowable value of 
(Rd), /R„d„. For example, from Figures 5 and 7, for ( (Rd),./R„,i,,)„,,,, 
= 1.5, 

(17 0)  G n A.  0.1495,  ( Vo) m ax G e =  0.0206, ( 7 0)11111X GE M) =  0.0115, (22) 

and from Equations (20), (21), and (22), 

( Pd)  ( P d )1111IX G e (P d) m ax Ga sh =  1 :0.069:0.021.  (23) 

Thus, the power output of amplifiers using GaAs tunnel diodes can 
be many times larger than the power output of amplifiers using Ge 
or GaSb diodes. 
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Diode Housing 

High-power tunnel-diode amplifiers must use diodes with high peak 

currents. Because (4) max  is proportional to 1 'La (see Equation (19)), 

it is important that the value of Ld be held to a minimum. For diodes 
housed in conventional ceramic "pill" packages, Ld ranges from about 

100 to 600 picohenries. In our experiments the diodes used were 

mounted in a recently developed stripline package (see Figure 8). The 

OHMIC TOP 
CONNECTION 

TIN ALLOY DOT 

GALLIUM ARSENIDE 

PELLET 

SOLDER  STRIP 
TRANSMISSION 
LINE 

I I 

BRASS BLOCK - 1  

Fig. 8—Low-inductance tunnel-diode package. 

inductance of these packages is estimated to be of the order of 50 
picohenries, and they can be mounted into strip transmission-line cir-
cuits with a minimum of discontinuity between package and circuit. 

Experimental A mplifiers 

We have built experimental L-band tunnel-diode amplifiers using 
GaAs diodes having peak currents of the order of 20 milliamperes 

and voltage-gain—bandwidth products of the order of 3.0 gigacycles 
(R„,1„2 Cd-  800 picohenries). The diodes were mounted in re-entrant 

strip transmission-line resonators of the type discussed in detail in 
Reference (4). Figure 9 shows typical curves of gain and power 
output of a GaAs tunnel-diode amplifier as a function of power input. 

The dynamic range of this amplifier is about 90 decibels. This range 
is more than two orders of magnitude greater than the range of con-

ventional 1-milliampere Ge diode amplifiers having the same gain. 

Power outputs of the magnitude illustrated in Figure 9 by no 

means represent the maximum values that can be achieved at micro-

• This development was carried out by RCA under U.S. Army Signal 
Corps sponsorship. 

4 F. Sterzer and D. E. Nelson, "Tunnel Diode Microwave Oscillators," 
Proc. I.R.E., Vol. 49, p. 744, April 1961. 
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wave frequencies. Methods to increase the power output include paral-

leling of amplifier circuits, use of more than two diodes in a single 

amplifier circuit, use of high-current tunnel diodes with distributed 

junctions mounted in very low inductance packages, and cascaded 
amplifiers. 

15 
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-30 

 - 35 
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Fig. 9—Gain and power output versus power input for a 22-milliampere 
GaAs tunnel-diode amplifier. 

CASCADING OF AMPLIFIERS 

For tunnel-diode amplifiers using similar diodes, it is generally 

true that the lower the gain of the amplifier, the higher the power 
output at which the amplifier starts saturating (see Equation (1) and 

Figures 5 and 7). Thus, if two similar amplifiers are cascaded, they 

will saturate at a higher power level than a single amplifier having 
the same gain as the cascaded amplifier. This fact is illustrated in 
Figure 10 where the power output of lossless single-stage and two-

stage cascaded amplifiers are compared. The figure shows that the 
cascaded amplifiers have significantly greater saturated power output 
and dynamic range. 

Cascading can also be used to improve the power-handling capa-
bilities of low-noise tunnel-diode amplifiers.  The minimum noise 

figures of tunnel-diode amplifiers (if negligible losses and high gain 
are assumed) are approximately as follows: 
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Diode Material  Minimum Noise Figure 
(decibels) 

GaAs  4.9 

Ge 3.8 

GaSb  2.8 

Thus, while GaAs diodes have the highest power-handling capability, 

they also have the highest noise figure. To combine the low-noise 

30 

25 

5 

10 

SINGLE-STAGE AMPLIFIER 
---- TWO-STAGE AMPLIFIER 

.,•• •••• •• -t 

-40  -30 -20  -10 

LOG NORMALIZED INPUT POWER 101oo Fj., Rim (mo s ohms) 

Fig. 10—Gain-saturation characteristics of lossless single-stage and two-
stage GaAs amplifiers. Each stage in the cascaded amplifiers has the same 

gain. 

properties of Ge and GaSb diodes with the high power capability of 

GaAs diodes, a low-noise Ge or GaSb amplifier can be cascaded with 
a GaAs power amplifier. The calculated saturation characteristics of 

single-stage Ge and GaAs and cascaded (first stage Ge, second stage 
GaAs) amplifiers are compared in Figure 11. The calculations assume 
that the Ge and GaAs diodes used in the cascaded amplifiers have the 

same minimum negative resistance (i.e., the peak current of the GaAs 
diodes is twice the peak current of the Ge diodes). The last assump-

tion was made (and the power input of Figure 11 normalized with 

respect to R„,1„) to make possible meaningful comparisons of the vari-

ous amplifiers, since the minimum value of R„,1„ is independent of 
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diode material and is only a function of the gain—bandwidth product 

and the series inductance of the diode (see Equations (15) and (16) ). 

Figure 11 shows that while the noise figure of the cascaded 

Ge—GaAs amplifiers is only slightly higher than the noise figure of a 
single-stage Ge amplifier, the cascaded amplifiers have significantly 

NF• 3 85 dt, 

3.8db 

25 

20 

f, 15 

10 

‘%****•‘. 

1 

SINGLE-STAGE GaAs AMPLIFIER 
SINGLE-STAGE Ge AMPLIFIER 

----- TWO-STAGE AMPLIFIER 

-40  -30 -20 

3 

4.90b 

49db 

LOG NORMALIZED INPUT POWER 10 Ioo  R,,,N(mw a ohms) 

o 

Fig. 11—Gain-saturation characteristics of lossless single-stage Ge and 
GaAs amplifiers, and two-stage Ge—GaAs amplifiers. Each stage in the 

cascaded amplifiers has the same gain. 

better saturation characteristics and a much greater dynamic range. 
For example, the dynamic range of the 20-decibel cascaded amplifier 

is 15 decibels greater than that of the single-stage 20-decibel Ge 
amplifier. 

Comparison between cascaded Ge—GaAs and single-stage GaAs 

amplifiers shows that the cascaded amplifiers have significantly lower 

noise figures. The cascaded 30-decibel amplifier has a higher saturated 
power output than the single-stage amplifier, while for the 20-decibel 

amplifier the situation is reversed, i.e., the saturated power output of 

the single-stage GaAs amplifier is greater than that of the cascaded 
amplifier. 
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TECHNIQUES FOR DIGITAL COM M UNICATION 

VIA SATELLITES 

BY 
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Summary—Synchronization techniques are treated for digital transmis-
sion over subsynchronous and synchronous satellite links which form parts 
of general communication networks interconnecting several nodes that 
perform multiplexing functions. The primary emphasis is on bit synchroni-
zation and identification on a link basis. A bit-transport equation is devel-
oped to relate numbers of transmitted and received pulses, taking into 
account variable path delays. When differences between clocks at the ands 
of a link are included, the result is useful in determining storage require-
ments for time buffering that must be inserted to maintain bit synchroniza-
tion. For subsynchronous satellites, handover techniques are discussed for 
the preservation of bit integrity during switching from one satellite to the 
next. 

INTRODUCTION 

T
ECHNIQUES are discussed for handling some of the syn-
chronization problems that arise in digital communication via 

  subsynchronous and synchronous satellite repeaters. The com-

plexity of these problems depends upon the kind of communication 
network in which the satellite links are employed. Synchronization 

considerations are usually simplest for networks of a single link and 
most difficult for networks of several links connecting a number of 

nodes. 
The general case to be treated is shown in Figure 1 with the solid 

lines radiating from the two nodes representing long-haul transmis-

sion paths and the dotted lines representing connections to local sub-
scribers. Each switching node is assumed to demultiplex incoming 
digital pulse streams from various links and switch some of the out-

going data to the satellite link in new multiplexed arrangements. 
Synchronization disturbances over the satellite link arise from two 
basic sources —first, instabilities and relative inaccuracies of terminal 

clocks used for data timing; and second, path-delay variations due to 
satellite motion. The need for handover (switching from satellite to 

satellite) imposes additional constraints in subsynchronous satellite 

data links. 
The satisfactory operation of a data link in the above general 

67 
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network involves both (1) bit synchronization (and identification) 
and (2) frame synchronization. The first refers to synchronism be-
tween pulses at the sending and receiving ends of a link, and the 

second refers to the detection of the transmitted framing pattern at 

the receiving end. Both are needed for proper demultiplex/multiplex 
functioning at a node that differs in local clock rates from other nodes 

LINK 

LOCAL 
SUBSCRIBER 

SATELLITE LINK 

Fig. 1—Portion of communication network. 

NODE  2 

and that has to remultiplex portions of incoming pulse streams arriv-
ing at varying rates. 

Bit synchronization can be achieved, for example, by slaving bit 

timing associated with an input pulse stream to a local clock through 
buffering techniques. Methods of obtaining bit timing may be found 

in References (1) and (2). An analysis of a particular buffering 
technique is discussed in the present paper. 

The recognition of the transmitted framing pattern at the receiver 
can be accomplished through a parallel search, a serial search, a com-

bination of the two, or a suitable examination of the spectrum of the 
incoming pulse stream. A framing pattern may, in particular cases, 

consist of periodically spaced marks (or alternate marks and spaces) 
for purposes of counting off multiplexed channel positions. Analyses 
useful in forming quantitative estimates of the times required to 

1E. M. Bradburd and F. Assadourian, "Digital Transmission in Media 
of Variable Time Delay," 7th MIL-E-CON Conference Proceedings, Sept. 
1963. 

2 O. E. DeLange, "The Timing of High-Speed Regenerative Repeaters,'' 
Bell Syst. Tech. Jour., p. 1455, Vol. 37, Nov. 1958. 
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identify framing patterns by one or more of the above methods can 

be found in References (1), (3), and (4). 

Handover problems and techniques are discussed in some detail, 

particularly the instantaneous type needed to preserve bit integrity 
during handover. Brief tables of useful numerical parameters for 

synchronous and subsynchronous satellite systems are provided at the 

end of this paper and applied to illustrative examples. 

Fig. 2—Satellite range geometry. 

GROUND 
STATION 

BIT-TRANSPORT EQUATION FOR SATELLITE LINK 

A bit-transport equation is developed for a satellite repeater link 

to serve as the basis of synchronization considerations with the aid 

of Figures 2 and 3. First let the sending end of the link transmit 

Nr(to, to t) pulses of constant width A during a time t at the rate 

of n7, = Ñ = 1/A pulses per second (pps), where the dot denotes time 
derivative. For a total path delay (up and down) of T = R/c, where 

R is the total path length and e is the velocity of light, the pulses will 
be received during the interval from t„+ T (to)  to to +  t ±  (t + to). 

If NR represents the number of received pulses, then 

3 J. Dutka and A. A. Meyerhoff, "Synchronization of Pulse Trains," 
RCA Review, p. 410, Vol. 22, Sept. 1961. 

4 M. Masonson, "Power Spectra in Digital Transmissions," Appendix 
5E, Progress Report, VII and VIII Quarters, Vol. II, Jan. 1 to June 30, 
1961, UNICOM, BTL. 
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Nu It + r(t0), to t + r(to + t)] =Nr(to, t0 + t).  (1) 

Since the moving satellite repeater produces time-varying path 

delays, the received pulses appear to be compressed or expanded into 
the interval of length t + T (t„ ±  —  (to). If this length is changed 

to t, then it can be shown with the aid of Figure 3 that the bit-
transport equation becomes approximately 

NR rto + r (to), to + r(to) + t]  N I t„, t„  tj 

Nr [to + t, to+ t + r(to) — r(to + t)].  (2) 

e 
3  4   

10+ t 

5 

to + t 4-r Ito) - rito+t) 

5 

I  I 
TRANSMITTED 

PULSES 

,I1N,eR(1)/C 

RECEIVED 

PULtcb 

to+1: I to)  to+ t 4,(t04- I)  to+t +T(t o ) 

Fig. 3—Bit transport representation. 

It is readily seen that 

NR(t) 

and 

t — T D 

A 
9  TD =  (to +  — r(to),  (3) 

1  1 
(4) 

A  A 

where the fractional doppler shift, n, arises from 

t= k(t)/c  ¡f = —u. 

Since Equation (4) assumes that the same frequency is used for 
both directions, the equation must be modified if such is not the case. 
According to Equation (3), the number of received pulses depends 

upon the difference in delay for the first and last pulses. Also, a stable 
transmitter clock and a slowly varying doppler shift have been as-
sumed. 
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Transmitter clock instability changes 1i 7, to 

1 
n(t)  —  er(0], (ET)  (5) rms  e, 

A 

where the average ir over the period of one day, for example, may be 

zero. The received pulse rate is now 

1 
nR(t) — — [1 + ET(t) + u]. 

A 
(6) 

No local-oscillator instabilities of the satellite repeater appear in Equa-

tion (6) because the repeater shifts the entire input r-f spectrum as 

a unit without producing differential effects among spectral com-

ponents. 

For a high percentage of time, nR is bounded by 

1  1 
— 11 —3£  < nu(t) < — 11 + 3E +  U  1 ul max •  (7) 

In a sample case, if E is 10 -7  and U is 10-5 , then the maximum change 

in n„ is around 2 x 10 -5 , which is insignificant in synchronization 

schemes that are required only to derive timing information from the 
received pulse stream, as in the case of a network of one link or a few 

cascaded links. 

BIT SYNCHRONIZATION 

In applications that demand a tight bit synchronism between send-
ing and receiving ends of a link ( such as in Figure 1 if the links are 
encrypted), a buffer can be inserted at the receiving end to absorb 

the effects of path-delay variations and differences between timing 

clocks at the link termnals. In this manner, pulses can be sent at one 
rate and read out correctly after reception at the slightly different 

rate provided by a local clock. The result is useful in multiplex opera-
tions in that all incoming pulse streams are read out at a node in the 

right sequence with a single local clock. Also, in the case of link 
encryption, the sequence of pulses generated at encryption can be 
decrypted after reception by maintaining the correct phasing between 

key generators. 

The time buffers, which are called stores here, may be shift regis-

ters, delay lines, magnetic tape loops, etc. Received pulses arriving 
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at rate nR are clocked into the store with timing information derived 

from these pulses. When the store of capacity C bits is, say, half-full, 

it is read out with timing obtained from a local clock. Read-in and 

read-out have an initial separation of C/2 bits which may change in 
time. If the separation either becomes zero or exceeds C bits, then 

timing errors are produced. For subsynchronous satellite links, mag-

netic-tape loops are particularly useful in conjunction with feedback 

loops to slave read-in to read-out rates. 

The buffer approach is now analyzed for a satellite link. First, for 
the incoming pulses, Equation (2) is rewritten 

ti-Ft 
f  1 + ET(t)  Tip 

NI; I to ± r (to) , to ± ( to) + t]   dt  • (8) 
A 

ti 

Since store read-out starts some time after read-in, the number of 
pulses read out (N„) during a time t at the rate of the local clock is 

ti+ t 

f  1 + 8 +Eh.(t) 
No(t,, t, + t) -   dt, 

à 
ti 

(9) 

where 8 is the normalized relative inaccuracy between the sending 
and local clocks, and E„ is the instability of the local clock. 

Assume now that E„ has the same average (over a day) and r-m-s 
values as ET.  Then, for a large storage capacity C, the accumulated 

difference over the interval t between the numbers of pulses read in 

and out of the store is bounded, for a high percentage of the time, by 

1,-1)1 
S= — = 1 No — Nftimn. = — (181 + 6E) + —.  (10) 

2 

Here S is the maximum slippage in bits between read-in and read-out. 

A few examples will illustrate the implications of Equation (10). 

With no buffering, C/2 is replaced by 1 2 for maximum slippage 

of 1/2 bit, and r,, = 0. Loss of bit synchronization can occur after a 
time t =  '12(181 + 6E)1 due to relative clock differences. For ex-
ample, if 181 = E and t is to be 24 hours, then 

18 1 =  E  0.8 x 
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where .1 is in seconds. For 1000 pps data, both clock stability and 

relative clock accuracy must be better than 10 —"; for 100,000 pps data, 

the value becomes 10 -11 . 

With a buffer store of 200 pulses, the clock requirements are re-

duced to 10 -7  for 1000 pps data and 10 " for 100,000 pps data. 

The maximum delay variation for a satellite at 6,000 miles altitude 
may be approximately 30 milliseconds in one hour. With no buffering 

and only time-delay variation, the maximum allowable data rate is 

only 16 pps for a maximum slippage of 1/2 bit. 

t.0 X  s X-r I X +2  X+3  X+4  X+S  X+6  X+7 IX +8 t 

X  xi-  X+2  X+3  X+4 

TRANSMITTED 

PULSES 

RECEIVER I   

FOR SATELLITE I 

X  X+ I X+2 I X+3 X+4 I RECEIVER 2 I   
FOR SATEL— 
LITE 2 

Fig. 4—Pulse representations for satellite handover. 

For clock differences less than about 10 -8 , these differences can 

be disregarded, and the previous delay variations dominate. To avoid 

store runout or overflow, C must be about 6 x 10 -2 /A. For 1000 pps 

data, C is 60 pulses, and for 100,000 pps data, C increases to 6000. It 
is evident that shift-register stores are impractical for these figures. 

However, magnetic-tape loops can be used. 

SATELLITE DIGITAL HANDOVER TECHNIQUES 

Digital transmission via subsynchronous satellites involves hand-

over of the communications link from satellite to satellite at various 

times. Available techniques depend upon the number of antennas per 

ground site, the tolerable complexity of handover circuitry, and bit-

integrity requirements. 

With two antennas (each complete with transmitter and receiver) 

per ground site, either fast or instantaneous handover becomes pos-
sible. While one antenna at each end of a link is tracking one satellite 
during communications, the remaining pair of antennas can acquire 
and track the next satellite. Then, for a period of time there will be 

2 received data streams, as shown in Figure 4. At handover, there 
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can be an abrupt discontinuity which, if uncorrected, takes the form 

of a sudden apparent gain or loss of pulses. For example, in a system 
of satellites at 6000 miles altitude, the maximum discontinuity between 

any 2 satellites in usable orbital positions is about 30 milliseconds. 

Instantaneous Handover 

With special circuitry, instantaneous handover can maintain con-

tinuity of information flow (i.e., bit integrity). Two techniques are 

CLOCKING 
DERIVED 

FROM DATA 
STREAM 

PULSE 
REGENERATION 

PULSE 
REGENERATION 

CLOCKING 
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FROM DATA 
STREAM 

VARIABLE 
DELAY 
BUFFER 

RECEIVED FROM SAIS I, 3,5 

SUPER - 
FRAME 

OR RANGE 
COMPARISON 

VARIABLE 
DELAY 
BUFFER 

TIME 
COMPARISON 
OF FRAMING 
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TRANSFER 
SWITCH 

RECEIVED FROM SATS. 2, 4,6 

Fig. 5—Instantaneous handover circuit with stores. 
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IN 

TIMING 
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CLOC K 

illustrated in Figure 5. Both can be applied in handover either at 
unequal or at equal satellite path lengths. Figure 6 illustrates these 

situations. The end store in Figure 5 is used when tight synchronism 

is needed between the sending and receiving ends of the satellite link. 
Although Figure 5 will be used illustratively to develop concepts, it 

may be replaced in actual practice by Figure 7, as will be explained 
later. 

In both techniques illustrated in Figure 5 it is assumed that the 

data stream received from each satellite is separately examined to 
locate the positions of framing pulses before the two data streams are 
aligned for handover from one to the next. Consequently, the time 
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Fig. 6—Satellite path delay curves. 

required for this step sets a minimum time after the beginning of the 

overlap in time of the two path delay curves and after which handover 

becomes possible. It is assumed that handover is performed between 

framing pulses. In typical cases, it can be shown that the time re-

quired to locate the framing pulse position in a data stream is at most 

a few seconds (see Reference (1)). 

Equal Path Lengths 

For handover at equal satellite path lengths, curves 1 and 2 of 

Figure 6 are applicable, and the variable-delay buffer sections of 

T  R/C 
r MAX. 

r MIN 

Figure 5 are not needed. The implication in Figure 4 is that the 
received data streams tend to slide past each other and achieve time 
coincidence of corresponding pulses during some interval. After this 

interval is recognized, instantaneous handover can be accomplished 

anywhere within it. 

Both techniques in Figure 5 use coarse and fine alignments of data 

streams. One approach achieves coarse alignment with the aid of 
periodic super-framing pulses inserted in a data stream as markers. 

These must be distinguishable from regular framing or other periodic 
pulses either in amplitude or coding and can occur anywhere. They 

should be locatable within a given data stream in a few seconds. 

Super-framing pulses should be spaced by more than twice the 

maximum delay difference in the two satellite paths. When the first 

time-comparison circuit in Figure 5 measures a spacing of less than 
the maximum delay difference between any 2 super-framing pulses, 

one taken from each data stream, then corresponding super-frames 
have been identified.  Next, when these super-framing pulses are 

within a frame length of each other, corresponding framing pulses 
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within the super-frames are identifiable, and the second time-com-

parison circuit of Figure 5 or other correlation type circuit can be 

actuated for fine alignment. Finally, when corresponding framing 
pulses overlap in this circuit, instantaneous handover may be per-
formed between framing pulses. 

An estimate is now made of the length of the time interval during 

which instantaneous-handover switching must be executed. The maxi-

mum rate at which the two received data streams slide past each other 
is given by 

In AX 
2U 
—  pps, U= 

MAX 
(11) 

If T 11. is the minimum time of overlap of the two data streams to 

within the fraction -±k of a pulse width, then 

kA  2k 
TMIN =  =   

U  MMAX 
(12) 

For example, if the maximum doppler shift is 10 -5 , the transmitted 
pulse width A is 25 microseconds and k = 0.2, then Tm1N  is 1/2 second. 

If the frame length is 65 pulses, then this interval contains around 
300 framing pulses in each data stream. Any coincident pair chosen 

from these can be used for switching between the data streams. 

In some applications the use of super-framing pulses for coarse 
alignment may be undesirable. Another approach, as shown in Figure 

5, is to make a range comparison of the two satellite paths to deter-
mine when corresponding frames in the two data streams become 

spaced by a half-frame or less. After this point, the procedure can 
follow the rest of the previous super-framing approach. 

An analysis of the range comparison approach is given. If there 
are F pulses per frame, then the frame rate is 1/FA, and a half-frame 

occupies FA/2 seconds. Corresponding framing pulses in the two data 

streams become spaced by less than a half frame when the path-length 
difference for the two satellites reduces to less than RD, with 

RD = 9.3 x 104FA miles.  (13) 

The path lengths are measured with known accuracy, and fine 
alignment should not be initiated until their measured difference 
reaches r,, as given by 
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2en < RI„ ri, — 2ER > 0.  (14) 

Here  is the accuracy of either path-length measurement. The set-

ting of r„ is needed to guarantee that the actual path difference is less 

than RI,. 

Path-length difference information need not be supplied until the 

two data streams are, say, one frame apart. Since the maximum pos-
sible closing rate of the two digital streams is approximately 2U 

seconds per second, the minimum time for closure by a half-frame is 

F-1/(4U) seconds. Path-length difference data supplied several times 
during this closure would seem to be adequate for determining when 

fine alignment should start. 

To illustrate the range-comparison approach, let  -= 25 micro-
seconds, F = 65 and U= 10 -5 . According to Equation (13), the two 

data streams are separated by a half frame of 0.812 millisecond when 

R„ =151 miles. If the range accuracy is 30 miles, then a range setting 
r,, of 91 miles implies, by Equation (14), a true range difference lying 

between 31 and 151 miles. The lower bound represents a minimum 
spacing between corresponding frames in the two data streams of 

about 166 microseconds, leaving adequate time for fine alignment. 
Furthermore, if range data is desired during closure of the data 
streams from one-frame to half-frame separation, which takes around 
40 seconds, then a range-difference reading every few seconds during 

this interval should suffice. 

In summary, the range-difference technique for coarse alignment 
does not require the insertion of special marker pulses as in the super-

framing approach, but has the disadvantages that it requires infor-

mation about complete satellite path lengths and imposes limits on 

data rates. 

In some applications it may be inconvenient to perform instanta-

neous handover at equal ranges because of satellite assignment diffi-

culties. In other cases, as illustrated in Figure 6 between curves 2 
and 3 and curves 3 and 4, the condition of equal ranges may never be 

reached (for example, in a system of satellites with randomly inclined 
orbits). The dashed horizontal lines represent path-delay (hence 
range) bounds fixed by zenith and horizon conditions. The curves 

terminate at points beyond which particular satellites are out of view 

of either end of the satellite link. 

Unequal Path Lengths 

Handover at unequal ranges can be accomplished by setting the 

variable delays in Figure 5 at appropriate positions. They are time 
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buffers and, as described previously, can be shift registers, delay lines, 

magnetic tape loops, etc. For example, if a shift register store is used, 

a desired delay can be inserted by reading bits into the store until it 

contains the right number of bits before starting read out. If a 

magnetic-tape loop arrangement is used to combine the variable delay 

and the end store and to slave the read-in rate to the read-out rate 
provided by a local clock with a feedback loop, Figure 5 may be 
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SATELLITE   

DATA FROM NEXT 
SATELLITE   

SERVO 
MOTOR 
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BRIDGE 

•  Al 
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BIT CLOCK 
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TRANSFER 
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a 

Fig. 7—Instantaneous handover with magnetic tape loops. 

OUTPUT TO 
FAST JITTER 
CLEANUP 

replaced by Figure 7. The fast-jitter cleanup at the end of the latter 

is essentially a small-capacity store to remove the effects of flutter, etc. 

The purpose of either variable delay in Figure 5 is to introduce a 
delay in the shorter satellite path to enable handover at a time when 

the two path lengths are unequal. This process can be applied to cases 

represented by any consecutive pair of curves in Figure 6, but is 
considered here only for the last 3 curves, which do not intersect. 
They are grouped into the extreme cases of Figures 8 and 9. 

Figure 8 shows a case in which the satellite in use before handover 
(the setting satellite) yields a shorter path than the rising satellite 

for a number of intervals of required service. To start the operation 

(see Figure 5) the undelayed data stream is read into the end store. 
Then variable delay 1 is set at AIr, withholding pulses from entry 

into the end store. This quantity must be calculated from the desired 
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R/C 
r MAX. 

RANDOVER POINTS 

T MIN 

Fig. 8—Satellite path delay curves. 

location and accuracy of the handover point for synchronization of 
the two data streams. At handover, read-in for the end store is derived 
from the pulse in data stream 2 which follows the last one used in 

stream 1, where both pulses are preferably framing pulses. The pulses 
in variable delay 1 are then dumped and the bias is removed. While 
the end store receives from stream 2, the gap between read in and 

read out resulting from the previous delay introduced in stream 1 
tends to be reduced until a new delay is added for stream 2. 

The capacity of the end store should be adequate to handle both 
the maximum difference, TmAx—rmis,  and differences in setting and 

r R/C 

HANDOVER POINTS 

e' 

2 

T MAX. 

A3T 

MIN 

Fig. 9—Satellite path delay curves. 
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stability of the local clocks at the ends of the satellite link. The reason 

for considering the indicated delay difference is that, in accordance 
with the discussion following Equation (10), excursions of the com-

posite arrowed curve in Figure 8 always remain within the prescribed 

bounds. The maximum required setting for either variable delay in 

Figure 5 can be selected as the above maximum delay difference, but 
will generally be considerably less. 

Figure 9 shows another extreme case. The operation in Figure 5 
again starts with the read-in of data stream 1 into the end store. 

Then, at some particular time, a bias delay of A.2T is injected in the 

path for stream 2. After handover, the end store receives stream 2, 

which tends to slow down and create a gap in the end store if no action 

is taken. After handover from stream 2 to a delayed stream 3, the 
bias delay and pulses stored in the variable delay can be removed for 

stream 2. However, the gap it produced in the end store remains. 
Furthermore, with enough consecutive satellite passes of the present 
type, the gap in the end store tends to increase until there is store 

runout unless it has a larger capacity than needed in the previous case 
of Figure 8. 

Since a large number of Figure 9 curves are not likely to occur 

consecutively in practice, the present problem has perhaps been exag-
gerated. Also, with enough satellites, it can be avoided by proper 

satellite assignments. If the problem proves to be sufficiently severe, 
however, there are at least two available courses of action. First, as 
indicated by the composite ai-rowed curve of Figure 9, the read-in of 
data stream 2 (and, later, stream 3) into the end store can be speeded 

up. The capacity of the end store and the maximum variable delay 
settings can then be given the same values as for Figure 8. 

Second, the problem can be eliminated by using the magnetic-tape-

loop approach of Figure 7. The present system can then function as 
shown in Figure 10. Super-framing (or other marker) and framing 
pulses are used to measure actual arrival times of marker points in 

each data stream. The maximum and minimum delay of possible paths 
is known from geometrical considerations of satellite heights and 
distances between terminals. Hence the system buffer can be designed 

so that a variable delay is added to the path delay to yield an approxi-
mately constant total system delay. This total system delay can be 

measured by comparing the arriving data markers after buffering 
with those generated in a highly accurate local clock. The buffer thus 

compensates as well for clock run-out between the two ground stations. 

As shown, the total system delay is designed to exceed the maxi-

mum path delay by some margin large enough to insure at least one 
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full day of operation without readjustment of the buffer stores due 

to clock run-out. The two tape buffers shown in Figure 7 thus equalize 

the system delay for each satellite path so that handover can be made 
at any convenient time in the overlap of the periods of mutual visi-

bility of the rising and setting satellites. 
As shown in Figure 8, this overlap interval must be of sufficient 

duration so that the rising satellite buffer circuits can lock on to bit, 
framing, and super-framing timing in the received bit stream. There 

must also be sufficient time to achieve proper servo tracking of the 

receiving buffer. 

LIMITS OF MUTUAL VISIBILITY 

h 
FIXED DELAY , SUM OF PATH a VARIABLE BUFFER DELAY 
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DELAY 

ja o 
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SATELLITE  I 

VARIABLE 
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DELAY 

HANDOVER 
IN THIS 
INTERVAL 

SATELLITE 2 

HANDOVER 
IN THIS 
INTERVAL 

SATELLITE  3 

TIME 

Fig. 10—Variable delay compensation and handover principle. 

The following estimates are based on Reference (1). Bit timing 

can be derived from the arriving stream in approximately 25 bit 
intervals. Framing can be derived in around 3 seconds for a mega-

cycle bit rate and 64 bits per frame. The servo tracking lock up should 
be possible in a comparable time. Super-framing can be derived as 

soon as it arrives if it is unique with respect to the data stream. The 

system will thus require at least six seconds of mutual visibility of 

rising and setting satellites before handover can be made. 

Notice that in this method of use of buffer stores, there is no 
restriction for the equality of path delay at time of transfer, or for 
the rising or setting paths to be consistently of shorter or longer 

relative delay. 
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NUMERICAL ILLUSTRATIONS 

Background Tables 

In Table I, the time interval, t, during which the maximum delay 
variation, I 7-D , occurs for a satellite path between two stations in 
close proximity has been estimated from the approximation 

a 
t 

R. 
COS a =   

R.+ H 

27r 
ws = — 

T 

Table I—Subsynchronous Satellites 

(15) 

H  T  7'4  t  U 
(statute miles)  ( hours)  (milliseconds)  (hours)  (parts in 10 -5 ) 

2000  2.6  24  0.35  2.8 
3000  3.3  30  0.52  2.2 
6000  5.6  31  1.04  1.3 

9000  8.5  34  1.69  0.89 
12000  11.3  35  2.41  0.31 

where  R. = earth radius, 

a= angle subtended at the earth center by the satellite 
positions at zenith and at the horizon with respect to 
the two ground stations, 

H = altitude of circular satellite orbit, and 

T = orbital period. 

The above approximation is best for inclined (close to polar) satellites 
and poorest for equatorial satellites, which require the insertion of 
the earth angular velocity. The formula must obviously be refined as 
needed in any detailed applications. 

The values for U for equal up and down frequencies and for the 
two ground stations with satellite tracking down to the horizon (0°) 
have been obtained from the approximation 

2 R 08 

(16) 

which is also most accurate for orbital inclinations close to 90°. 
In Table II the two ground sites are assumed to be at the equator 
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Table II—Synchronous Satellites 

Orbit Inclination, i, ITDI 
(degrees)  (milliseconds)  (hours) 

10  1.1  6 
20  3.2  6 
30  7.5  6 

under the crossover of the satellite figure eight pattern to obtain 

extreme values. 

In Table III a "stationary" satellite is assumed (0° inclination) 

with a daily periodic variation in altitude between H — AH and H ± 

H. Extreme values are shown for two ground sites in close proximity 

under the satellite. 

Bit Synchronization for Synchronous Satellites 

If a maximum slippage between transmission and reception of 1/2 

pulse is permitted in 24 hours, and if a receiver store with a capacity 
of C pulses is employed, then Equation (10) shows that the data rate 

is limited by 

1 
nT < 

2 8.64 x 104( I 8I + 6€) -I- I Ti) 

Two conclusions may be drawn. First, there is no point in making 
the first term of the denominator less than, say, a tenth or so of the 
second term, i.e., 181 + 6€ < 10 -6  I r,,I. In this case, Equation ( 17) 
reduces to C > 2nTI 7' D I.  Second, the choice of C is now made to depend 

entirely upon nr and TD. 

pps.  (17) 

Table Ill—Synchronous Satellites (With Periodic 
Variation in Altitude) 

4.1H 
= 

c  t 
(statute miles)  (milliseconds)  (hours) 

20  0.43  6 
50  1.07  6 
100  2.1  6 
200  4.3  6 
500  10.7  6 



84  RCA REVIEW  March 1964 

For example, if 1T„1 is selected from Tables II or III, it lies be-
tween 0.5 and 10 milliseconds. The first inequality becomes 181 + 6( 
< 0.5 x 10 -" to 10 -", which will be satisfied if both stability and 

relative clock inaccuracy figures are better than around 0.7 x 10 -1 " 
to 1.4 x 10 -". The second inequality yields C > 10 -"n„ to 2 x 10 2n. 

If the store capacity is chosen in observance of the above condi-

tions, then, since 181 and E have been made very small, there should 

be no loss of bit integrity due to store runout during periods of several 

days. On the other hand, if C is not sufficient to cope with I'D, then 
it is possible for bit synchronization to be lost during a six-hour 

interval. Although these results for synchronous satellites may seem 
surprising at first, it must be remembered that they depend upon the 

assumption of delay variations of 1/2 millisecond or more in a 6-hour 
interval, as compared to fractions of a microsecond for microwave or 
tropospheric scatter transmission. 

Rit Synchronization for Subsynchronotts Satellites 

With the same assumptions for bit synchronization as before, 
Equation (17) is applicable. Since Table I shows that r  D does not vary 

much over the selected range of satellite altitudes, a figure of 30 

milliseconds is assumed for illustrative purposes. One now obtains 
181 + 6 < 3 x 10 -8 , which will be satisfied if both 181 and c are less 
than around 5 x 10 -9 . The required store capacity becomes C> 6 

X 10 -2 %, which implies that C should vary from 60 to 3000 to accom-
modate data rates going from 1000 pps to 50,000 pps. If C is not large 
enough to handle re,, then bit synchronization may be lost during a 

time interval of duration determined by the satellite altitude (1/2 to 
21/., hours for altitudes between 2000 and 12,000 miles). 
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Summary—Ellipsometry is a technique that allows the determination 
of the optical properties of a surface, or the optical properties and thick-
ness of a thin film, by measuring the effect of reflection on the state of 
po!arization of polarized light. In this paper, the fundamental equation 
governing ellipsometry is developed starting from the problem of reflection 
and refraction of light at a, boundary between two homogeneous, isotropic 
media, and reflection from a film-covered surface. A pictorial representa-
tion and the classical mathematical specification of polarized light is given. 
Various solutions of the ellipsometry equation are discussed, the actual 
ellipsonieter is described, and experimental techniques are outlined. Areas 
of applications are summarized and the value of ellipsometry is examined 
in terma of possible errors and obtainable accuracy. Finally, some of the 
deviations in the optical properties of thin films from those of the bulk are 
briefly outlined. 

INTRODUCTION 

r
NTEREST IN THE physical properties of thin films has rapidly 
increased within the last two decades. Much of this increased 
interest was brought about by advances in high-vacuum tech-

n'ques. Initially, investigations were concentrated on evaporated thin 

films used mainly for various optical purposes. In the last few years, 
however, interest has also developed in insulating, semiconducting, 
and metallic thin films that are used in both active and passive elec-

tronic devices, especially in connection with integrated electronics. 
Various methods are available for the determination of the prop-

erties of thin films as for example weighing, electrical measurements, 

and electron microscopy. In addition, there are a large variety of 

optical methods that in many cases are preferable to nonoptical 
methods. Optical methods have the advantage that they permit the 

investigation of surfaces. 
For the study of surfaces and films on substrates, three basically 

different optical methods of investigation are available. 
(1)  In photometric measurements the amplitudes of incident 

(generally normal incidence) and reflected or transmitted rays are 

measured. The main areas of application are determination of optical 

85 
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constants and absorption peaks to obtain information concerning 
composition and structure of materials. 

(2)  In interference measurements, the phases of two rays re-
flected by surfaces differing in height are measured and, depending 

on the experimental arrangement, film thickness and/or surface struc-

ture are determined. Outstanding examples are single- and multiple-

beam interferometry, and phase-contrast and interference microscopy. 

(3)  In polarization measurements, the ellipticity of the reflected 

light is determined; thus the technique utilizing this principle is gen-
erally called ellipsometry. The main applications of ellipsometry are 
the determination of optical constants of reflecting surfaces and meas-

urement of index of refraction and thickness of films on substrates. 
The relative advantages among these optical methods depend on a 

number of factors including the objective of the measurements, pos-
sible restrictions on sample size and preparation, and the sensitivity 
and accuracy desired. It will subsequently be shown that ellipsometry 

is superior to the other methods for many applications. For example, 
sensitivity to the presence of very thin films is very high and the real 

part of the index of refraction of absorbing media can be determined 

with great accuracy. Furthermore, no elaborate sample preparation 
is required and the method is nondestructive. For these reasons ellip-

sometry can be a valuable tool in thin-film and surface research. 
In this paper we are exclusively concerned with ellipsometry; the 

purpose is to outline to the nonspecialist the theory, experimental 

technique, and applications of ellipsometry, and to save him the trouble 

of reading the numerous articles that are scattered throughout the 
literature and that are, in many cases, so specific that they tend to 
discourage rather than encourage the general use of ellipsometry. 

CLASSICAL THEORY OF FILM OPTICS 

Reflection and Refraction of Light at a Boundary between Two 
Isotropic Media—Fresnel Formulas 

In order to aid in understanding the optics of thin films,' 9 the 
problem of determining the light reflected and transmitted at a bound-
ary separating two media will first be reviewed. 

For a homogeneous isotropic material characterized by time-

independent dielectric permittivity e, magnetic permeability  and 
electrical conductivity o, containing no space charge, so that V • E -= 0, 

Maxwell's equations can be combined to result in the well-known vector 
wave equationN 

a 2A 
v 2A o, 

t2  3t 
(1) 
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where A = E or A = H. Equation (1) together with Maxwell's equa-

tions, determines the propagation of electromagnetic waves in this 

medium. 
The problem of reflection and refraction of light at a planar bound-

ary between two isotropic, homogeneous media is usually solved by 

applying the boundary conditions to the sinusoidal, electromagnetic 

plane wave solutions of Equation (1). In such an analysis it is ex-

pedient to treat the case of plane waves with electric vectors vibrating 

parallel (p) to the plane of incidence separately from those with vec-

tors vibrating normal (s) to the plane of incidence. Because of the 

linearity of the wave equation, superposition is allowed and other 

cases can then be conveniently analyzed by decomposition into p and s 
components, followed by superposition of the resulting solutions. 
Let us define a coordinate system in the conventional manner so 

that the z-axis is the direction of propagation of the light wave, and 
the y-axis lies in the plane of discontinuity. We define the plane of 

incidence as that plane which contains both the z-axis and the normal 

to the plane of discontinuity. The angle of incidence, 00, is the angle 

between the z-axis and the normal to the plane of discontinuity. 

Let us also specify the amplitude of the electric vector of a wave 
traveling in the positive direction in the nth  medium and polarized 
with the electric vector parallel to the plane of incidence by Enp +. We 

use E,78+ for the component of the electric vector perpendicular to the 

plane of incidence. A minus-sign superscript denotes a wave traveling 

in the negative direction. 
The analysis of this problem leads to the following results (see 

Figure 1) : 

(a)  Law of Reflection: 

iko =  (2) 

i.e., the angle of incidence equals the angle of reflection. 

(b)  Snell's Law of Refraction: 

no sin 00 =  sin 01 = 12,2 sin O., = • • •  (3) 

(c) Fresnel Reflection and Transmission Coefficients: 

E04 ,— 

Eow + 

no cos 01 — n1 cos 0, 
 = 
no cos cki + n1 cos 0, 

2no cos 00 
= tO1 (p) , 

no cos 4 + fi cos cbo 
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Ems ,— %cos 00— ni cos tki 
%tit),  (6) 

Ell(e41 4-

e1 1,41-1— 

E 0181 + 

no cos 00 + n1 cos 01 

2n„ cos 43„ 
  = to118)• 
no cos 00 ni cos tki 

(7) 

Here n„ and ni are the optical constants of the two media and 00 and 
01 are the angles of propagation in the two media. 

Fig. 1—Reflection and refraction of light at a plane boundary 
between two media. 

When both media are transparent the optical constants are their 
respective refractive indices. In this ease, they are real numbers and 
are given by 

V  ILE 
n = 

/loco 

where the zero subscript indicates free space. If we define 

E -M E,.E0 

and 

tto 

then, for the case of it, = 1, Equation (8) reduces to 

(8) 

(9) 

(10) 
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In this case of two dielectrics, all terms in Snell's Law as well as in 

the Fresnel equations are real. 
Equations (2) to (7) are also valid for the case of absorptive 

media provided that we use a "complex index of refraction" to char-

acterize these materials. In that case all the terms appearing in these 

equations may be complex, depending on the specific situation. The 

meaning of complex trigonometric functions is intimately related to 

the inhomogeneous nature of the waves in an absorbing medium where 

planes of constant amplitude do not necessarily coincide with planes of 

constant phase. A discussion of this problem is, however, beyond the 
scope of this paper. Complex Fresnel coefficients indicate, of course, 

that the reflected and refracted rays suffer a phase shift (at the inter-

face) which is neither zero nor 180°. 

The complex index of refraction is defined by 

n — ik,  (12) 

where n and k fulfill the following relationships: 

¡Le  
n2 k2 

and 
!Loco 

=  re r 

P-ro" 
nk =   

20,110E0 2i.oto 

For most cases of practical interest IL,. ---, 1.0 and hence 

and 

giving 

n2 --

k2 = 

n2— k2 = Er 

nk = —  
2weo 

er [ 1 + (1    
2  (02(2 

2 

0.2  1/2 

It should be kept in mind that o is the conductivity and E,  the 

permittivity at the optical frequency concerned, and they are not gen-

erally equal to their respective d-c or low-frequency values. 
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Reflection from a Film-Covered Surface 

The results of the previous section may conveniently be utilized 

for determining the reflection and transmission of plane waves at the 

boundary of two optically different media of semi-infinite extent sepa-

rated by a uniform film of a third medium. Let us restrict ourselves 
to those cases in which the first medium (the immersion medium) is 

transparent, isotropic and homogeneous, and the other two (substrate 

and film) may, in general, be absorbing, but are also isotropic and 
homogeneous. 

As seen in the previous section, a beam that strikes an interface 
between two optically different media is broken up into reflected and 

no 

n1 

ne 

IMMERSION MEDIUM 

THIN FILM 

etc. 

SUBSTRATE 

Fig. 2—Reflection and refraction of light at a planar thin 
film on a substrate. 

transmitted components. In the case considered in this section, this 

division occurs every time the beam reaches the immersion-medium— 
film and film—substrate interfaces (Figure 2). The total reflected and 

transmitted beams are then obtained by summing up these multiply 
reflected and multiply transmitted rays.' 

This summation is easily carried out for the case of a single film 

and the result is conveniently expressed in the form of generalized, 
complex Fresnel coefficients for the reflection and transmission of 

plane waves with electric vectors vibrating parallel and normal to the 
plane of incidence. The reflection coefficient is given by 

9.01(9  r12(vle -2i'S  

tifv)  (19) 
1+ ro,,r,...(„,e -2 ie 

• A more elegant way of solving not only this case but also multilayer 
problems is to employ the concept of optical or wave impedance3 and use 
the transmission-line analogy, or to use matrix methods.3•11.12 
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and the transmission coefficient by 

tOlfp1t1.(vle —es  

To,) =   (20) 
1 + roi (,, r10(,)e —243  

with v = p or v = s for parallel and normal electric vectors, respec-

tively, and the change in phase of the beam on traversing the film 

given by 

= 27rn i 
( d )  27rd ( 
  cos  = 
\ AO  Xo 

n12 — sin2 cpo (21) 

Here d is the film thickness and A„ the vacuum wavelength of the 

radiation. (It must be realized that if the film is absorbing, cos (fri is 

complex, making 8 also complex. The meaning of this is beyond the 

scope of this paper.) 

Since r01( ,) *r,,i(p)  and r12( „) r1.151 , it can be seen from Equation 

(19) that the components of the incident light that are perpendicular 
and parallel to the plane of incidence are unequally attenuated and 

unequally shifted in phase upon reflection. 

For a more general discussion of the optical behavior of a single 

film, including anisotropie films, as well as a treatment of multilayer 
problems the reader is referred to more specialized literature (e.g.. 

References (1)-(9) ). 

POLARIZED LIGHT 

Since ellipsometry requires the measurement of elliptically polar-

ized light it will be useful to review polarization in general as well 
as to examine carefully how such elliptically polarized light is char-

acterized. 

Plane Waves in a Nonconductive Medium 

For a proper understanding of polarization the meaning of plane 
electromagnetic waves must be elucidated, and this can best be done 

for a nonconducting medium. 

In a Cartesian coordinate system the vector wave equation is 

simply a set of three scalar equations, one for each of the rectangular 

components of the vector. (In other coordinate systems it is consid-
erably more complicated or even impossible to write the fields in terms 

of scalar functions.) 

For o = 0 the scalar wave equation is then given by 
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V2/7  !Le   
Dt2 

(22) 

where U may be any Cartesian component of E or H. If we assume 
a sinusoidal time dependence of the form 

U (x,y,z,t) = u (x,y,z) T (t) = u (x,y,z) eiwt,  ( 23) 

then the scalar wave equation reduces to the form 

V 2u  y2u = 0,  (24) 

where the wave number or propagation constant is 

Y = idViLE -- •= —  

and the phase velocity is given by 

In rectangular coordinates we may set 

(25) 

(26) 

u(x,Y,z) = X (x)17 (9) Z (z).  (27) 

Separation then results in 

with 

p2 X 

_  — 0, 
D.r2 

a2Y 
▪ yy2 = 0,  (28) 

D2Z 
▪  = 0, 

az2 

y , 2  y v 2  7 , 2  =  7 2 , 

2,2 

Equation (22) has the well-known plane-wave solutions 

(29) 
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U = c exp {i Got :+_- y • r) }  (30) 

which represent waves propagating along the (positive or negative) 

direction of y. In the general case e is complex because it includes a 

constant phase shift. One must also remember that it is only the real 

part of U that represents the actual field. 

If we restrict ourselves to propagation along the z-direction, then 

and we have 

= ry = 

Yz=Y 

U(z,t) = e exp (i(0), — yz)}. 

(31a) 

(31b) 

(30a) 

This indicates that such waves do not vary as a function of either x 

or y. However, we must still consider the vector nature of the electro-

magnetic fields (i.e., U can be any Cartesian component of E or H) 
and the requirement that they satisfy Maxwell's equations. By sub-

stituting Equation  31a) into Maxwell's equations it can easily be 
shown that E. and H. must both be zero. This means that electro-

magnetic plane waves in nonabsorbing dielectrics must be transverse, 
i.e., electric and magnetic field vectors lie in planes normal to the 

direction of propagation. In addition, Maxwell's equations also show 

that associated with each transverse component of E there is a mag-
netic field that is in (time) phase with it and at right angles to it. 

Pictorial Representation of Polarized Light 

If the direction of the transverse E vector is constant in time the 

wave is said to be linearly or plane polarized. Such a plane-polarized 

wave is the simplest component into which light can be decomposed. 

Because the wave equation is a linear equation, any complicated 
electromagnetic wave with given frequency, propagating in a certain 

direction, can advantageously be built up by a superposition of individ-

ual plane waves of the same frequency with different amplitudes, 
directions, and phases, but all propagating in the same direction. 

(1)  Plane or linearly polarized waves are waves for which the 
electric field vector always lies in a given direction. Such waves are 
obtained when all the superposed waves have the electric field in the 

same direction (with arbitrary phase) or if they are in different 
directions but are exactly in phase. Linear polarization is often char-
acterized by the expression "plane of polarization." This term is quite 
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ambiguous since in radio engineering one usually describes polariza-

tion by the plane of the electric vector, whereas in optics one uses the 

magnetic field to specify the polarization. In order to avoid ambiguity 
it is best to give a complete specification as, for example, "polarized 
with the electric field in the horizontal plane." 

(2)  Elliptically polarized light is the result of a combination of 

two uniform plane waves of the same frequency but of different 

phases, magnitudes, and orientations of the field vectors, and receives 
its name from the fact that the terminus of the electric field vector 

traces an elliptic path in the plane normal to the direction of propa-
gation. Elliptic polarization is the most general type of polarization 

and includes the other two types (linear and circular) as special cases. 

Each type of polarization is, in turn, characterized by polarization 

forms. Linear polarization includes an infinite number of polarization 

forms, differing as to azimuth, i.e., angle between plane of polarization 

and reference plane. Circular polarization includes two forms, differ-
ing as to direction in which E rotates when viewed by looking in the 
direction of propagation (i.e., right-handed or left-handed polariza-

tion). Elliptic polarization includes an infinite number of forms, 
differing as to azimuth, ellipticity (ratio of minor to major axis of 
ellipse), and direction of rotation. 

Mathematical Specification of Polarized Waves 

Several methods are available for describing polarized light.'3 The 
more sophisticated of these are the Poincaré sphere, the Stokes vector, 
and the Jones vector. These methods provide direct insight into cer-

tain difficult problems, and permit great simplification in many calcu-

lations involving the influence of polarizers and retarders upon a wave. 

The methods are quite useful but are too specialized to warrant de-
scription here; only the classical specification will be considered. 

In the coordinate system adopted, the plane of incidence is the x-z 
plane. The angle between the electric field vector at the interface 

between the two media (i.e., at z = 0) and the plane of incidence is 
the azimuth of the electric field and is denoted by a. The components 
of the vector E in the direction of the coordinate axes are then either 

parallel or perpendicular to the plane of incidence and are given by 

E, = E,„, = E cos a,  (32a) 

E „ = E(„)= E sin a.  (32b) 

Two arbitrary vibrations with the same frequency, and amplitudes 
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A and B, parallel to the two coordinate axes, can be represented as 

E, = A cos (wt  0,),  (33a) 

E, = B cos (0)t  0„).  (33b) 

If the two vibrations are in phase  0, — O,, = 0) or in opposite phase 

Ov= -±-7r) the ratio of the above equations is 

E, 

E,  A 
(34) 

which is simply the equation of a straight line in the x-y plane, and 

the light is said to be linearly polarized. 

In general, however, the components in a light wave have arbitrary 

phase. In that case the ratio of Equation (33a) and (33b) results, 

after proper manipulation, in the equation of an ellipse, namely, 

where 

( -) + ( EB )  2 ( EA )( BEY  ) 

cosA = sin2A,  (35) 

0, — Oy.  (36) 

The terminus of the light vector traces out an ellipse that is inscribed 

in a rectangle 2A, 2B (see Figure 3). From Equation (35) one can 

clearly see that the semiaxes of the ellipse do not coincide with the 

coordinate axes. 

We can, however, choose a coordinate system in which the semiaxes 
of the ellipse will be parallel to the coordinate axes, so that the term 
E,E, 'AB in Equation (35) will vanish ( Figure 3). Let us denote the 

new coordinate system  From the theory of linear transforma-
tions we know that the rotation of a coordinate system is given by 

E =E cos x+ Ei, sin x e 

En= — E, sin x  Ey cos x 

(37a) 

(37b) 

where x is the angle between the e-axis (i.e., the major semiaxis of 
the ellipse) and the x-axis. In the new coordinate system the ellipse 

is given by 
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Ee 
= a cos ((ut 00)  

-=- ± b sin (wt -F 00) 

March 1964 

(38a) 

(38b) 

where a and b are the semiaxes of the ellipse. We introduce the double 

sign in the equation for E, so that the two possible ellipticities (posi-

tive or negative) can be taken into consideration. Substituting Equa-

tion (33) into Equation (37), setting Equations (37) and (38) equal, 

Fig. 3—Characterization of a general inclined ellipse. 

A  A 

and expanding all the trigonometric functions we get the following 
relations: 

tan2x = tan2ecosA 

sin2y  ± sin 4sinA 

-±tan2y 
tan A = 

where 

and 

sin2x 

(39) 

(40) 

(41) 

lEri»1 
tang,  (42) 

A  IE(s) I 

tany  — . (43) 
a 
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We see now that the ellipse, which we first characterized from physical 

reasoning by ik and A (i.e., amplitude ratio and phase difference of 

the components of light parallel and perpendicular to the plane of 
incidence), can, from geometrical considerations, also be characterized 

by the inclination of its major axis with respect to the x-z plane of 

the original coordinate system (i.e., plane of incidence), x, and by the 
ellipticity, given by the ratio of minor to major semiaxis, tan y -= b/a. 

Since these two sets of two quantities each describe the same ellipse, 
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Fig. 4—Inclination of ellipse versus relative phase difference 
with amplitude ratio as a parameter. 

there must be a relation between them. These relations are given by 

Equations (39), (40), and (41); they are very important in the theory 
of ellipsometry, since it is x and y that are determined experimentally, 

whereas the thickness and the optical properties of the film are given 

as functions of 1,G and A. 
It can be seen from Equation (39) that the inclination of the 

ellipse, x, is a function of both the amplitude ratio B 'A and the phase 

difference A. Only in the case where A = B is the inclination at a 

constant angle (-±-7r 4), independent of A. 

7r  7r 
tan2x  (tan2arctan — )cosA = tan  2x — 1 cosA —› cc, X = — • 

1  4  4 

(44) 

For B A >1 the ellipse rotates clockwise for increasing A, starting 
at x =  = arctan (B A) for A = 0 to x = 0 for .1 =7r/2. For B/A < 1 

the ellipse rotates counterclockwise from x =  = arctan (B/A) for 
A = 0 to x = r 2 for A =7r/2, as shown in Figure 4. 
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ELLIPSOMETRY 

The Fundamental Equation of Ellipsometry 

The absolute changes in amplitude and phase, given by the Fresnel 
coefficients for parallel and normal electric vectors [Equation (19)1, 

can be investigated experimentally by intensity and interference 

methods, respectively. Relative changes of amplitude and phase can 

be conveniently studied by reflecting a polarized light beam from the 
surface under study, and examining the changes in the polarization 
of the beam. These relative changes can be expressed by the ratio of 

the generalized Fresnel reflection coefficients for the p-wave to that 

for the s-wave. This results in the fundamental equation of ellip-
sometry: 

E(p)  

EL?)  

)inr 

( Ent , 

Einr AP) 

( EE inr ) (g) 

,.,,, 

p(p)  tan ei„fi 
 exp  L e,II —  ei-1 tan tp,  (45) 

p(8)  tan 'pine  

where  tan ,p„,, o (I E( 
lE 1 ) refl 

and Arefi  (O  (p)  (8)) 

Analogous definitions hold for the incident wave. 
In general, the incident light is plane polarized, with the plane of 

vibration of the electric vector inclined at -±r 4 with respect to the 
plane of incidence. In that case, 

so that 

(I  Erp) I 
tan ei,„.  = 1;  = 0,  (46) 

E(,)   

(E(,) 
ei-1 tanti -s  = —  • 

E(„,)rsa 
(47) 

Since, in general, lE,i„  1E(  and 00„  0  we see that the re-
flected wave is elliptically polarized. The ellipsometer measures experi-

mental quantities that allow the determination of tp and A (as will be 
shown later). 
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Because of Snell's Law, the Fresnel coefficients in Equation (45) 

can all be expressed in terms of the optical constants of the media 

bounding the reflective interfaces and the angle of incidence in the 
ambient medium. If Equations (4), (6), and (21) are substituted 

into Equation (45), and the resulting equation separated into its 

real and imaginary parts, there results one equation for (// and one 

for à, each as functions of the angle of incidence in the immersion 

medium, the vacuum wavelength of the light, the index of refrac-

tion of the substrate, and the thickness and refractive index of the 

film. All of these quantities can be independently determined, or are 

fixed constants, except for the properties of the film. 

Solutions of the Ellipsometry Equation 

Since the above-mentioned equations for  and  are transcendental 

for film-covered surfaces, they can only be solved by either making 

appropriate simplifying assumptions, or by graphical or numerical 

methods. For film-free surfaces explicit solutions can be obtained. 

(a)  For the film-free case, i.e., d = 0, Equation (45) (in com-

bination with Equation (46)) can be solved for the optical constants 

of the substrate, resulting in 

tan2cp„ (cos2 21,t, — sin2 2IP sin21) 
n2 — k2 sin2 cp„ [1 +   , (48a) 

(1 + sin 2IP cos .S) 2 

sin2¢0 tan20„ sin 41P sin I 
2nk =   (48b) 

(1 + sin 2),1; cos 1) 2 

where the bars over ',it and .1 indicate a film-free surface. 
(b)  For very thin films (d « À) Drude expanded the exponential 

terms in Equation (45) in a power series of (d ,À ), discarding terms 

of higher order than the first to get 

(49a) 

(49b) 

where 

[  1 
a ( 4:0 )  cos ct,„ sin200 (cos2410 — a) ( - - 1 

ni2 

(cos2e0 —  a) 2 + a12 

(50a) 
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13= ( 27r )[ cos4, g 0 sin  sin2tfroai (1 — n12 cos24,o)  — 1) 
ni2 

Ao   , 
(cos244, — a) 2 al2 

(50b) 

no2 — k.,2 
a =   

(,2 + k22) 2 

2n.. k.2 
ai = 

(.22 + k22) 2 

(51a) 

(51b) 

..-1" and tr, as well as n and k for the film must be determined by inde-

pendent experiments. Drude's equation and variations of it are first-
order approximations and are valid for film thicknesses small com-

pared to one wavelength, i.e., d « À or d  50-100 A. By a binomial 

expansion one gets a second-order approximation to exact theory that 
is valid for absorbing films as thick as 1000 A. 

Approximate theories are advantageous in the sense that it is 
relatively easy to solve the equations to give film properties from 
experimental measurements. 

(c)  For thin films with a thickness not small compared with X, 

exact theory must be used. Winterbottom4 presents graphical solutions 
of the exact equations, showing the functional relationships between 
film properties and ellipsometer measurements. Vagiéek" gives tables 
to evaluate measurements of transparent films on glass. Archer" and 
McCrackin et al", among others, applied computer techniques to the 

solution of the transcendental equations. The result can be either a 
graphical representation of the dependence of ip and  on the proper-
ties of the film or specific numerical answers. 

The Ellipsometer 

The ellipsometer is an instrument that allows the determination 
of the optical constants and thickness of thin films by analyzing the 
elliptically polarized light reflected from a thin film on a reflecting 
substrate. 

As has been shown, the optical constants and the thickness of 
the thin film are determined by the amplitude ratio e, = arctan (B/A) 
and the phase difference 3. of the components of the reflected light 
parallel and perpendicular to the plane of incidence. For transparent 

films measurement at one angle of incidence is sufficient, but for 
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absorbing films two measurements at different angles of incidence 

are required. The quantities tp and A, in turn, are related to the 
inclination x and ellipticity tan y = b 'a by Equations (39) — (41). 

The ellipsometer, finally, enables the experimental determination of 

x and y. 
From the discussions of the mathematical specification of polarized 

waves, it can be seen that there are only two coordinate systems in 

which the rotating E vector can be resolved into two perpendicular 

components out of phase by 7r/2, namely those in which the coordinate 

axes are parallel to the major and minor semiaxes of the ellipse. 

SAMPLE 

FILTER 

MERCURY 
ARC 

POLARIZER 

COLLIMATOR 

MICROPHOTOMETE C7 

Fig. 5—Schematic representation of ellipsometer. 

Therefore, the only way elliptically polarized light can be transformed 
into plane-polarized light with the help of a quarter wave plate 
(QWP)  (which introduces a 7r/2 phase shift between vibrations 

parallel to its fast and slow axes, see Appendix), is by aligning the 
fast and slow axes of the QWP with the major and minor axes of the 

ellipse. The result is plane-polarized light at an angle of p x + y 
with respect to the plane of incidence. The angle that the QWP makes 

with respect to the plane of incidence is x. The angle fl can be deter-
mined with an analyzing Nicol prism. At extinction the analyzer 

azimuth is 7r/2 -I- )( -I- y. 
Once x and y are experimentally determined, Equations (40) and 

(41) are used to determine gy and A; from these the thickness and 

optical constants of the film can be determined. 
An ellipsometer, schematically represented in Figure 5, is a polariz-

ing spectrometer with collimator and telescope arms swinging in a 
plane with provisions for reading the angles of incidence and reflection 
on a large fixed circle. The polarizer is a Nicol prism (Glan-Thompson 
prism) mounted in a divided circle on the collimator, and the analyzer 

is a similar prism mounted on the telescope. The compensator is also 

mounted in a divided circle; it is approximately a quarter-wave plate 
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for the light used and is attached either to the telescope or the colli-

mator depending on the experimental technique to be used ( see below). 

The light source, mounted on the collimator can, for example, be a 

mercury arc with a filter for isolating the 5461 A line. Extinction 
settings are determined by using a photomultiplier microphotometer, 

mounted on the telescope, as a detector. 

Experimental Technique 

Alignment of the polarizer and analyzer prisms is the first step 
in setting up the ellipsometer for operation. Alignment of a prism 

simply means the determination of the scale reading for which the 
plane of vibration of the light transmitted by the prism is parallel 
with the plane of incidence. Correct alignment is critical for the 
accurate determination of optical constants of surfaces; it is not quite 
as critical for the measurement of the thickness and index of refrac-

tion of thin films.'s 

Alignment can be achieved by utilizing the fact that if randomly 

polarized light is incident upon a dielectric at the Brewster angle, the 
reflected ray is linearly polarized. In principle this is quite simple, 

but in practice great care must be taken and the method outlined by 
McCracken et al's is recommended. 

With the collimator and telescope aligned and analyzer and po-

larizer in crossed position, the QWP can be mounted in its divided 

circle and turned until an extinction setting is obtained. Two such 
settings can be observed; in one the fast axis is parallel to the polarizer 
and in the other perpendicular to it. This determines the direction 

of the two axes. A simple reflection experiment must be performed in 

order to differentiate between the two axes. The relative retardation 

of the plate is then determined by use of an auxiliary plate in a known 
azimuth, a method devised by A. B. Winterbottom.' The QWP is 

usually a thin doubly refractive crystal such as mica. Because of the 
thinness of the mica crystals required (0.035 mm) it is difficult to 

cleave them to produce retarders of exactly 7r/2. Even though the 

phase retardation of a particular plate is not exactly e/2 one can still 
use it to convert elliptically polarized light into plane-polarized light, 

but in the analysis of the results corrections must be applied to 
Equations (39) — (41). These corrections take different forms, de-
pending on the measurement method applied. 

It is clear that ei-1 tan tp can be determined either by finding the 

parameters of elliptically polarized light obtained by reflecting plane 

polarized light which was incident with the plane of vibration inclined 
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at 7r/4 with respect to the plane of incidence, or by finding the param-

eters of elliptically polarized light that gives plane polarized light upon 

reflection. 

Method #1: In this method, plane-polarized light with the plane 

of vibration of the electric field vector inclined 7r/4 with respect to the 

plane of incidence is reflected from the film. The reflected beam is 

elliptically polarized and the ellipticity and inclination of the reflected 

light are determined by the azimuths of the QWP (mounted on the 
telescope) and the analyzer. The QWP azimuth is x, whereas the 

analyzer azimuth is 7r/2 -I- X + y. 

Method #2: Here one attempts to find the parameters of ellipti-
cally polarized light that gives plane polarized light upon reflection. 

This method is, from an experimental point of view, very convenient 
since it allows one to mount the QWP on the stationary collimator 
instead of the movable telescope arm, and with it one can compensate 

any phase difference with a QWP fixed in ±-17 '4 azimuth. For any 

given surface there are several combinations of polarizer, analyzer, 
and compensator scale settings that result in extinction. An excellent 

discussion of this problem is given in Reference (16). In the follow-
ing, all azimuthal angles are considered to be positive in the counter-

clockwise direction from the plane of incidence when looking into the 
light beam, the QWP azimuth is ± 7r 4 and the analyzer azimuth is 

always in the fourth quadrant. The relative phase retardation, A, and 
the amplitude ratio, tan tfr, are then given by the following relations: 15 

7r 
tanA = sin /3 tan ( — — 2P0) , 

2 

cos2L  — cos fl cos2P,„ 

tang/ -= cot L tan (—A0), 

(52) 

(53) 

(54) 

where p is the actual relative retardation of the QWP, and P and A 
are the polarizer and analyzer azimuth angles, respectively. The zero 
subscript indicates extinction settings. 

The extinctions settings can be obtained by several methods that 
differ in accuracy and sensitivity. Approximate extinction settings 

can be obtained by alternately adjusting analyzer and polarizer until 

minimum light transmission occurs. If more accurate extinction set-
tings are required, graphical plots of the intensity of the transmitted 

beam versus polarizer and analyzer settings may be used. 
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Another, more accurate method, is as follows. First, approximate 

extinction settings are made by adjusting P and A for minimum light 
transmission. Then the exact extinction setting for the polarizer 

is determined by measuring P at equal intensities on each side of the 
minimum, and averaging these two values. The polarizer must then 

be set at P„ and the same method is reapplied to find the correct extinc-

tion setting for the analyzer, A„. This method is, in principle, based 

on the fact that the light intensity at the detector, I, is symmetric 
about P0 for any setting of A, and symmetric about A„ if P =P0; 
thus15 

/ cc sin2 (A —A0) -I- sin2A„sin2Asin2 (P — P„) .  (55) 

Since it is not assured that the initial extinction setting for A„ is 
correct, the above procedure must be successively repeated until the 

results are within the required tolerances or within the sensitivity of 
the instrument. 

For ultrasensitivity, a Faraday cell and appropriate electronics as 
well as a phase-sensitive detector can be added to the standard detec-
tion equipment'? 

APPLICATIONS 

The physics of thin films and surfaces is very extensive and offers 
numerous areas for the successful application of ellipsometry. The 

following discussion relates to areas that might be of interest to 
workers in solid-state physics, inorganic and physical chemistry, and 
physical electronics. 

Optical Constants of Film-Free Ilaierials 

Optical constants of dielectrics, semiconductors''.'"", and conduc-
tors".2' can be determined by ellipsometry. In order to achieve maxi-
mum sensitivity for these measurements a judicious choice of a proper 
angle of incidence must be made. This problem has been analyzed for 

absorbing media by Ditchburn.22 He finds that for metals the angle 
of incidence should be approximately the principal angle for the par-

ticular material under consideration, whereas for semiconductors there 
are certain limits to the angle of incidence within which it is prefer-
able to measure  or ip for two angles of incidence. He also shows 

which method is most sensitive when the constants are in certain 
ranges. Even though this method is very sensitive, it is prone to 
errors due to unintentional thin surface films. It is clearly necessary 
in many cases to take into account the effect of such surface films in 
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evaluating the optical constants from ellipsometry data by applying 

to the experimental measurements the corrections given by the Drude 

equations, namely Equation (49), or to produce and measure the 

surface in ultra high vacuum.23 The presence of such a film is easily 

established because for light reflected at the principal angle, -I = 7r/2 

and the value of x can be obtained from Figure 4. 

It should be realized, in connection with absorbing materials, that 

the optical constants determined are characteristic only of the material 

within a few skin depths from the surface. This is not necessarily a 

disadvantage because it allows the study of surface effects. 

Optical Constants and Thickness of Thin Films 

The application of ellipsometry for the determination of the prop-

erties of thin nonabsorbing films is straightforward. Depending upon 

the thickness of the film, one of the solutions of the ellipsometry 
equations outlined previously must be used. The angle of incidence is 

usually chosen to give maximum sensitivity for the determination of 

the film thickness. No general rule is available to make this choice, 

and the angle of incidence will depend upon the particular substrate, 
film, and ambient medium. Smith and Hacskaylo2* present curves and 

equations to illustrate the dependence of the sensitivity on the experi-

mental parameters. Mertens et al21 find that for organic films on 

metals the maximum sensitivity for thickness determination is achieved 

if the angle of incidence is close to the principal angle of the substrate. 
Studies have been performed on a number of materials, including 

silicon'5.25.".", titanium", copper*, aluminum*, iron*, stereate films on 

metals ", and dielectric films on glass."," 

For absorbing films this method is only meaningful when the atten-
uation is sufficiently low that the light emerging from the film—ambient 

interface after reflection from the film—substrate interface can still ba 
detected. The analysis of elliptically polarized light that results from 
the reflection of linearly polarized light does not furnish more than 

two parameters. For this reason one must perform two measurements 

at different angles of incidence; this will result in four equations for 
the three unknown parameters (n, k, d) that characterize an absorb-

ing film. 

Study of Physical and Chemical Processes on Surfaces 

Ellipsometry allows the investigation of a large variety of different 

physical and chemical processes," and its main advantage in such 

applications is the fact that measurements can be made in situ in both 
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gaseous and liquid ambients, are nondestructive, and are, in most 
cases, more sensitive than those of other methods. 

The processes amenable to ellipsometric study can be classified in 
various ways. From a physico-chemical point of view it seems most 

natural to make a distinction as to whether or not a new phase has 
been formed on the surface. 

Surface Layer with Optical Properties 
Different from Those of the Bulk 

It is well known that mechanical treatments change the structure 

of surface layers to varying depths depending on the material and the 
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Fig. 6—Light intensity at the detector versus analyzer setting for (111)-
oriented silicon wafers treated in various ways. For the particular experi-
mental arrangement used here }5 is obtained from A.,' by the relation it = 
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treatment. Such changes are revealed by deviations of the optical 

properties (among others) from those of the bulk. Archer» for ex-
ample, finds by very precise ellipsometer determinations of the optical 
constants of germanium that etched surfaces give results that corre-

spond to the bulk properties of very pure germanium, while mechani-
cally polished surfaces give results similar to those of highly doped 
germanium. The present authors find that the curve of light intensity 
at the detector versus analyzer angle for mechanically polished silicon 

is shifted with respect to the curve for chemically polished silicon 

(see Figure 6). The angle for the minimum of the curve representing 
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a mechanically polished sample is different from that for the chemi-

cally polished one, indicating that the two specimens have different 

optical properties. There is also a difference in the minimum light 
intensities and slopes of the curves, most probably due to variation in 

surface roughness. This problem has as yet not been analyzed in the 

literature. 
Diffusion of impurities into surface layers might, in certain cases, 

manifest itself also in a change in the optical properties of the surface 
layers. Such changes have been observed for boron diffusion into 

silicon by the authors and for silicon immersed into a molten mixture 

of LiNO„ and KNO„.2" 
Space-charge layers at the surface of semiconductors are present 

because of the existence of surface states; they can, under certain 

conditions, also be present in insulating layers, especially in oxide 

layers grown on metals or semiconductors. Due to the contact potential 

at the interface between two materials there might also be a space-
charge layer. Even though a space-charge layer does not constitute 

a different phase of the material, it still could have different optical 

properties. Mertens et al,'' for example, stipulate that the space-charge 

layer in an insulator on a metal substrate is the cause for a position-

dependent absorption in this dielectric. 

Adsorption and Desorption Studies 

Because of the many advantages outlined above, adsorption and 

desorption studies from liquids or gases in situ are conveniently car-

ried out by the use of ellipsometry. Thus, adsorption isotherms for 

water and various organic liquids on single-crystal silicon"" and the 
thickness and index of refraction of adsorbed polystyrene films on 

chromium"' have been determined, and optical measurements on thin 

films of condensed gases at low temperatures have been made."' 

Study of Deposition, Growth, and Dissolution of Films 

This category represents perhaps the largest area for application 

of ellipsometry and for this reason a major portion of the available 

literature in ellipsometry is concerned with problems falling into this 

classification. Deposition of films from the liquid or gas phase (evapo-

ration) can be investigated for various materials in order to establish 
the pertinent process parameters, and their influence on the deposited 

or grown material. 
In growth studies the main interest thus far has been in the inves-

tigation of oxidation kinetics, and typical examples are the oxidation 
of copper', aluminuml.", and iron', room-temperature oxidation of 
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germanium and silicon, oxidation of silicon at elevated temperatures 

in various ambients26.2', and oxidation of titanium's. Another interest-

ing experiment in this area is the in situ electrochemical study of film 
formation and growth on mirror electrodes immersed in an aqueous 
electrolyte37. 

Little has been reported on the study of dissolution processes by 
the use of ellipsometry. The authors have studied the dissolution of 
oxide films obtained by thermal oxidation of GaAs and found that the 

constitution of these films changed when the film—substrate interface 
was approached, and that there was an accumulation of As and/or 
As203 at the interface." 

Although the theory of ellipsometry is very old, it has not been 
applied to the extent that its usefulness would warrant. Only a small 

portion of the possible areas of application have been investigated; 
a great variety of new experiments can be envisioned. 

EVALUATION 

Errors and Accuracy 

Random and systematic (instrumental) errors occur, of course, in 

the use of the ellipsometer, and they are eventually carried over to 
the derived optical constants of substrates and film parameters. 

Multiple reflections in the optical system produce a number of 

beams of decreasing intensity and of different states of polarization 
that influence the settings of both polarizer and analyzer, and can, 
under certain circumstances, introduce errors of the order of one 

degree of azimuth. These errors cannot be eliminated by averaging 
several independent extinction settings, and it is impossible to compute 
corrections with certainty. The only possibility for reducing the 

influence of these effects is through the use of optical components 
having nonreflecting coatings.' 

There is also the possibility of errors due to birefringence in the 

optical components. Little is known concerning their magnitude, and 
in order to reduce their influence care must be taken to avoid any 
strain in the optical system. 

The sensitivity of the photometer is another important parameter 
that might limit the accuracy of the instrument, especially in applica-

tions where the cross section of the incident beam is reduced so that 
the specimen can be scanned. In extreme cases it might be necessary 

to cool the photomultiplier tube in order to reduce noise problems. 
Systematic errors may arise from errors in the initial alignment 

of polarizer, analyzer, and QWP, and from an error in the determina-
tion of the relative retardation of the QWP. 
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In order to fully appreciate the importance of these errors and the 

ones introduced during the measurement process, the procedure used 

to obtain the final results from the experimental data will be briefly 

outlined. The extinction settings for polarizer, analyzer, and QWP 

which, in addition to the above-mentioned alignment errors also con-

tain random errors, are used in Equations (52)-(54) (in connection 
with the relative retardation of the QWP, which also contains an 

alignment error) to obtain tp and A. From these, in turn, the values 

of n, k, and d are determined. Because of this complicated procedure, 

the propagation of errors is obscure. It is possible that by taking two 
or more of the 32 independent sets of the extinction settinge and 
performing suitable averaging, the errors due to misalignment could 

be reduced to such an extent that they could be neglected in comparison 

to others. The lack of a rigorous error analysis for both systematic 
and random errors is in part responsible for the large discrepancies 

in the accuracy of results reported by various workers. 

Limitations Introduced by the Properties of the Specimen 

Lateral inhomogeneities of the film or substrate and/or variations 

in film thickness within the area covered by the light beam cannot be 
determined by ellipsometry. They might simply cause a decrease in 

the accuracy, and the results obtained would represent the average or 

effective parameters for the area examined3". 
Optical properties of films having an inhomogeneity along the 

normal to the boundary have been treated by Abelès.3" The problem 
of anisotropy was discussed by Winterbottom,4 and experiments in 

this field were performed recently.40-41 

Differences between Optical Properties of Thin Films 
and Bulk Materials 

Whenever the thickness of a film is much smaller than the wave-

length of the light used, the measured properties generally begin to 
differ from those characteristic of the bulk material. The meaning of 
the thickness of such a film becomes ambiguous, first because, as is 

well known from the thermodynamics of interfaces, no sharp bound-
aries can exist between two phases, and second, because of the granular 

structure of many of these films (especially of those obtained by 

evaporation). 
The optical properties of metal films having such granular struc-

ture have been explained by two different theories. David42 interprets 
the variation of the optical constants with thickness of the film on 

the basis of ellipsoids of revolution having the same optical constants 
as the bulk material but being separated by voids. Fragstein and 
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Riimeri" assume that the optical constants of thin films are different 

from those of the bulk material. 

Dielectric thin films may be granular, but are not necessarily so. 

This is especially true for films obtained by oxidation, and even more 

so if the resulting film is amorphous. In such a case, however, the 

optical properties might still be different from those of the bulk 

material. This could be explained as follows. The phase velocity of 

the light wave in the film is not necessarily the same as in the bulk 
because the internal field in the film could obviously be quite different 
from that in the bulk as a result of dimensional effects alone, even 

if other typical surface phenomena were not considered. Thus, for 

instance, anisotropy can be expected even if the bulk material is 
isotropic. Macroscopic concepts, such as the relationship between the 
index of refraction, dielectric constant and polarizability, as given by 

the Clausius—Mosotti and Lorentz—Lorenz equations, are not valid a 
priori for thin films because the very assumptions involved in their 

derivation are not necessarily fulfilled. 

CONCLUSION 

Ellipsometry is a useful method for the study of surface phenomena 
because it allows the measurement of the properties of very thin films 

in a large variety of combinations of substrates, film, and immersion 

medium. These measurements are nondestructive, can be performed 
in situ (even in liquids), and one measurement generally allows the 
determination of two parameters. 

Even though the relations between the optical properties and the 

measured quantities are complicated, the desired information can 
readily be extracted through the use of computers. 

The ellipsometer, like all precision optical instruments, is a delicate 
piece of equipment and requires extreme care in its construction, 

maintenance, and operation. Because multiple reflections and bire-
fringence in the optical components introduce large instrumental 

errors, a proper choice for the parts employed must be made so as to 

minimize these effects. 

The sensitivity of the method is quite high and, by proper statis-

tical analysis of experimental results, a very high accuracy can be 
obtained —in many cases as high as five significant figures —if the 
instrumental errors are properly taken into account. 

APPENDIX —DESCRIPTION OF THE QUARTER- WAVE PLATE 

The function of a quarter-wave plate (QWP) is to produce a phase 
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shift of 7r/2 between two electric vectors perpendicular to each other. 

This can be achieved by the proper use of a birefringent crystal. 

In general, the optical behavior of birefringent crystals is quite 
complicated. It is the main subject of the optics of crystals and, quite 

obviously, cannot be treated here. For the understanding of retarda-

tion plates it will suffice to say that there are two characteristic direc-

tions, perpendicular to each other, and both lying in the face of the 
plate. Plane-polarized light that is normally incident upon the face 

of this plate, has different phase velocities, depending on which of 

the two characteristic directions the electric vector is parallel to. One 

usually distinguishes between the "fast" and "slow" directions of 

vibrations of a plate. The fast axis is, of course, in the direction of 

vibrations that have the greatest phase velocity and the lowest index 

of refraction (nf) ; the slow axis is in the direction of vibrations with 

the lowest velocity and the highest index of refraction (ns). For 

studying the effect of a retardation plate on normally incident light 

(generally elliptically polarized), it is expedient to decompose it into 
two plane-polarized beams with electric vectors parallel to fast and 

slow axes. These two beams have the same geometrical path length 

inside the plate, but their optical path lengths are dependent on the 
indices of refraction, so that the optical path difference is 

1 t(n, — nf),  (56) 

and the phase difference between the two beams upon emerging from 

the plate is 

/3  27r —  (n8 — ny), 
)to 

(57) 

where t is the thickness of the plate. 

A retarding plate with a thickness that produces a phase difference 
of 7r'2 is called a cuarter-wave plate. 

We see then that if two perpendicular E vectors, which are out of 

phase by -±-7r/2, are normally incident upon a QWP in such a way that 

they are parallel to the fast and slow axes of the QWP, they will 

emerge with a phase difference of 0 or 7r, and plane-polarized light 

will result. 
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INTRODUCTORY STATISTICS AND SA MPLING 

CONCEPTS APPLIED TO RADAR EVALUATION 

BY 

REMO J. D'ORTENZIO 

RCA Missile and Surface Radar Division 
Moorestown, N. J. 

Summary—The analysis of any type of digital data requires a working 
knowledge of statistics and sampling theory. This paper presents some 
fundamentals that are particularly useful in analyzing radar data. In-
cluded are definitions, least-mean-squares curve-fitting equations, sampling 
and bandwidth considerations, data smoothing, and basic power spectrum 
concepts. Portions of the contents are also applicable to many nonradar 
situations. 

INTRODUCTION -
r 7 HIS paper is intended to serve as a guide for specifying the 

contents of radar test data packages and the data analysis 

methods to be used in evaluating them. The material presented 
here is not intended to provide a rigorous theoretical background in 

statistics. Rather, it is meant to give a practical understanding of 

some of the items to be considered when collecting and analyzing 
digital data. Although the discussions and examples are primarily 

associated with radar, the ideas presented can be applied to a large 
variety of situations possessing similar or analogous properties. 

In most radars digital data is recorded at a fixed sampling fre-
quency. Some typical questions that arise concerning the processing 
and analysis of this data are: 

(a)  How much data should be called for? (length of test run) 
(b)  Should every data point be processed or should some be 

ignored to minimize data analysis and computer time? 
(c)  How valid will the results be? 

(d)  How are curve fits utilized to determine radar precision and 
accuracy? 

(e)  How does one specify the polynomial order of the curve fit? 
(f)  What are the statistical effects of averaging or smoothing 

data points that are not independent? 

(g)  What does digital sampling do to the spectrum of the param-
eter being measured? 

An attempt has been made in this paper to answer these questions 
and others without introducing excessive mathematical complexities. 

116 
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It Is hoped that the contents will serve as a foundation on which the 

reader can build by consulting more-elegant treatments of this subject 

in the literature. 

DEFIN ITIONS 

Consider a parameter measured n times; the values obtained are 

r1, r.„ r„ • • • r„. This set of data points (ri) defines a random variable 

R whose statistics are expressed as follows: 

Mean 

The mean, average value, or expected value of R is denoted by Te 

or E(R) and is given by 

1 
= E(R) = — E ri. 

n  .1 
(1) 

Standard Deviation 

The standard deviation of R is a measure of the "scatter" of R 

about its mean, i , and is denoted by an, where 

V 1 . ..„ = - E (I., — R) 2.  (2) 
11  I 

Variance 

The variance of R, called Var(R), is simply the square of the 

standard deviation au 

1 " 
Var(R) = crn2 — E - 2. 

n 
(3) 

Var(R) is actually the average value of the square of the deviation 
of each data point from its mean, and is sometimes represented as 

shown in Equation (4). 

Var(R) = E (R — V) 2 = (R — R) 2.  (4) 

By expanding (R — Te-)2 (see Appendix I), Var(R) can also be ex-

pressed as 

Var(R) =E(R2)— IE(R)] 2 =R2— (E) 2.  (5) 
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Equation (5) states that Var (R) can also be considered as the average 

value of the square of the data points minus the square of their 
average value. 

Root-Mean-Square Value 

The root-mean-square (r-m-s) value p of a set of data is strictly 
defined as 

P = (6) 

This particular parameter is very seldom directly used to charac-
terize a set of data. It gives a measure of "scatter" of the data points 

from a zero reference. The more widely used term is the root-mean-
square error described below. 

Root-Mean-Square Error 

The root-mean-square ( r-m-s) error ar is the measure of the "scat-
ter" of a set of data about some reference point P. For the completely 

general case, the r-m-s error of the data points about P is given by 

11 

E (ri—P) 2. 
n 

(7) 

Note that if P is the mean value of the data, then ap is identical 
to ak. Stated another way, the r-m-s error of a set of data about its 
mean is equal to the standard deviation of the data. 

If, on the other hand, P is set equal to zero, then a,. becomes iden-
tical to the data r-m-s value p. 

The more general case occurs when P is neither R nor zero. Such 

a case may arise for example when a set of radar data is taken to 
determine the ability of the radar to measure the range of a boresight 

tower whose exact range is known. If the true or surveyed range is 
RT and the set (ri) represents the radar measurements, the total r-m-s 

error al. of the radar is given by Equation (7) with P set equal to RT. 

A typical set of range data obtained in the presence of noise is shown 
in Figure 1. 

Note that the average of the data points, R, generally differs from 
the true range, RT. This gives rise to a bias error B defined by 

B =-T? — RT.  (8) 
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The r-in-s error of the measurements about RT is 

aur = 
n 
(r1- RT) 

and the r-in-s error about I{ (or the standard deviation) is 

RANGE (R) t 

= all = 

rî 

-- E (1.1— R)2. 
n  1 

r4 O 
o 

rn 

r3 o 

o 
ti  t2  13 TIME (1)  - 

Fig. 1—Typical range measurements of boresight tower. 

Combining Equations (1), (8), (9), and (10) shows that 

au7 ,2  0.1t2 ± B2. 

(9) 

(10) 

The complete derivation of Equation (11) is shown in Appendix II. 
The interesting point to observe in Equation (11) is that the total 

r-m-s error a1l. can be broken down into two components —the stand-
ard deviation o„ and the bias B. More is said about these in relation 

to the definitions of precision and accuracy that follow. 

Pre( i.*   and Accuracy 

The International Dictionary of Physics and Electronics defines 

the precision of a measuring device as the degree of reproducibility 
among a group of independent measurements of the same true value 
made under specified conditions. The accuracy is the quality of cor-

rectness or freedom from error. 
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Barton' applies these definitions such that the r-m-s radar range 
accuracy is the total r-m-s error of a set of data points frj with 

respect to the true range R. This includes both bias errors and noise 

errors and is mathematically equivalent to (yin, as defined in Equation 
9). 

Precision is used as a measure of noise error only, since noise inter-

feres with the ability of the radar to reproduce a range measurement. 

Thus r-m-s precision. is defined as the r-m-s error of the readings 
about their mean, R. This is equivalent to the value OR defined in 
Equation (10). 

Equation (11) shows that the r-m-s precision and accuracy differ 

because of the bias error B. This equation demonstrates two interest-
ing facts. First, the square of the r-m-s accuracy is the sum of the 

squares of the r-m-s precision and bias errors and secondly, under 
certain "low noise" conditions, a set of radar data can be very precise 
(low cr„) but highly inaccurate (large bias). 

LEAST-MEAN-SQUARES CURVE FITTING 

Basic Concepts 

The true value of a parameter frequently varies with time. For 

the case of radar range measurements, this situation would arise when 

making range measurements on a target moving with respect to the 
radar. On other occasions the true value might remain constant, but 

the readings of the measuring device may slowly drift with time. This 
drift might be caused by a bad component in the measuring equipment 
or it could conceivably be part of a low-frequency oscillation that looks 

like drift when examined over a relatively short period of time. 

For cases such as these, calculation of the precision and accuracy 
of the measuring device as described in the preceding section would 
lead to erroneous results. Suppose, for example, that a radar was 

making range measurements on a balloon moving slowly away from 
the radar. A typical set of such data is shown in Figure 2. 

The mean (R) of this data would not be too meaningful by itself. 
At best, it would be an estimate of the average range of the balloon 

between times t, and t„. In order to handle this type of data, some 
sort of curve fit is required. 

If the value of the true range is known to vary approximately 

linearly with time, a straight-line curve fit should be specified. The 

most common type of curve fit used is that from the method of least 
mean squares. 

The equation of the line representing the least-mean-squares curve 
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fit to Figure 2 can be expressed as 

R(t)  Ao+ Alt,  (12) 

where Ao and A, are chosen such that the residual variance 82 of the 

data points with respect to the derived curve is a minimum. The 

residual variance 82 is defined as 

RANGE (R) 

1 " 
82,_  

n 

y(t) 

R(t) 

(ie,t  o 

.2  t3 
tri 

TIME (t) 

Fig. 2--Range measurements during a balloon track. 

(13) 

where the quantity ri—R,(ti) is called a data point residual and is 

denoted by di. 

-=  — Re(ti).  (14) 

Stated another way, the straight line is derived so that the variance 
(or mean square) of the residuals is a minimum. The quantity 8 is 

the residual r-m-s error, but is usually referred to simply as the r-m-s 

error. 

When Ao and A, are properly calculated the average residual is 

zero. Thus, for a least-mean-squares curve fit (of any order poly-

nomial) 

1 "  1 " - E di, —  E  [ri-- Ri.(t1)-] = O. 
n  n 

(15) 
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The more general expression for a curve fit is given by the kth 
order polynomial; 

Re(t) = Ao+ Ait A.,t2 A„t3 • • • -I- A„tk.  (16) 

The order of the polynomial specified for curve fits must be based on 
some a priori knowledge of the data. For example, if a missile re-entry 

motion is known to contain radial acceleration and jerk components, 

at least a third-order polynomial would be required for range-data 
curve fitting. Specifying too high an order polynomial is undesirable 

because in the limit, the fitted curve will theoretically be connecting 
each data point, thereby reducing the residual variance toward zero 

and obscuring the radar range tracking errors. On the other hand, 
specifying a linear curve fit to range data obtained on a radially 

accelerating target would tend to exaggerate the range tracking 

errors. However, it would be quite acceptable to fit a linear curve 
over a small segment of data extracted from a large data record whose 

overall range versus time varied —for example in a quadratic or cubic 

fashion —provided that the segment being analyzed was approximately 
linear. Thus, the length of the data interval is another factor to 
consider when selecting the order of polynomial. 

In actual practice, when computer facilities are used, computational 
difficulties will set in long before the order of the polynomial ap-

proaches the number of data points. As the order of the polynomial 

is increased, one may actually find the residual variance reaches some 
minimum and thereafter begins to increase. This will occur when the 
computational errors become significantly larger than the errors in 
the data being analyzed. Most data reduction centers have pre-pro-
grammed routines for least-mean-square curve fits. They also have 

programs available for determining the appropriate order of the poly-
nomial to be used when there is no a priori knowledge of how the data 
behaves. Generally, it is not practical to fit polynomials above orders 
of seven or eight without special procedures. 

Calculation of the r-m-s error of a set of range measurements 
made on a boresight tower has been described. In this calculation a 

linear curve fit would provide useful information about the nature of 
the errors even though the target is known to be fixed in range. For 

example, if the calculated r-m-s error is large, it could be caused by 

excessive noise or by a drift that occurred during the test run. Fur-
thermore, as previously mentioned, the drift could actually be part of 

a low-frequency oscillation. In any case, a linear curve fit to the data 
points would provide much in the way of diagnostic information. If 
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the slope of the line is zero, then one can be sure there was no drift. 
On the other hand, if the slope is not zero, there is an indication that 

some drift did occur. One method commonly used to determine whether 

any drifts are cyclic is to take data on a known target over a relatively 
long time interval and run a power-spectrum analysis on the data 

points. This is discussed later. 
It should be noted that curve fitting is by no means restricted to 

the principal of least mean squares. The reasons for the widespread 

use of this method are its direct association with the concept of vari-
ance as a measure of data dispersion and its mathematical simplicity 

as compared to other methods. One could, for example, specify a curve 

fit that would minimize the maximum of the absolute values of the 

residuals, or the average of the absolute values of the residuals, or the 
average of the residuals raised to an even-integer power. Each of 

these methods, however, presents excessive mathematical complexities 

and they are generally avoided except for special situations. 
Figure 2 illustrates why one would not attempt to fit a curve to 

minimize the average of the residuals raised to the first power (or 

any odd-integer power). Consider the line y(t). By simple inspection 
one observes that it represents a poor fit to the data. However, it is 
very possible that y(t) possesses the properties of fitting the data with 

an average residual of zero. It is possible, in fact, to have an infinite 
number of lines of different slopes, each of which has a zero average 

residual. 

Linear Least-Mean-Squares Curve Fit Equations 

Given a set of data points {r1}, the following equation is to be 

derived: 

R(t) =A0 Alt,  (12) 

such that the residual variance, 

i n 82 = - E rri - (A0-1- Aiti)1 2,  (17) 
It J=1 

is minimized. The problem is thus reduced to finding the values of 

A„ and AI that minimize the residual variance 82. 

The necessary condition for 82 to be a minimum is that the partial 

derivatives of 82 with respect to A„ and AI be zero. 

a(82) (82) 
 =  =0. 
M o M 1 

(18) 
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Operating on Equation (17) as indicated in Equation (18) results 
in two linear equations with two unknowns. It appears at first glance 

that solving for A„ and Al could theoretically result in either a maxi-

mum or minimum for 82. However, each term in Equation (17) is 
non-negative; therefore 82 must have a non-negative minimum. Solv-

ing the two linear equations for A„ and A1 gives only one solution, and 

hence this must be the solution for minimizing 82. Therefore the 

criteria of Equation (18) represents both necessary and sufficient 
conditions for minimizing 82. The development of the equations for 

determining the values of A„ and A, follows: 

•a(82)  2 

M o 
(19) 

Equating the right-hand of Equation (19) to zero, dividing through 
by —(2/n), expanding, and rearranging yields 

Also, 

E r; = nAo +A, E ti. 

D(8) 2 2 
E [ri — (A0 + Alti)] E il 

M, 

2 
—  y  A„t; — Alt12]. 
n 

(20) 

(21) 

Equating the right-hand side of Equation (21) to zero, dividing 
through by 2 'n, expanding, and rearranging yields 

Ert1= Aft E t1+ A, E t12, (22) 

where all summations extend from i = 1 to i n. Solving Equations 

(20) and (22) simultaneously yields the desired values of Ao and A,. 
Note that if the data is made symmetrical in time about t 0, so that 

E ti =- 0, then the solution is given simply by 

1 
Ao E  ri, (23) 
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E 
Al=   

E 

rit, 

1,2 • 

(24) 

Second-Order Polynomial Least-Mean-Squares Curve-Fit Equations 

Given a set of data points (r,), the following equation is to be 

derived: 

R(t) =-- Ao+ Alt A2t2.  (25) 

The function to be minimized is given by 

n 

82 E [ri— (A0 + Alt + A2t2)]2.  (26) 
n 

The function 82 is minimized if 

3(8) 2  ( (8 3 2n  382) 
,  , ,O. 

M o M 1 M 2 

(27) 

Performing the partial differentiations indicated by Equation (27) 
and simplifying yields the three simultaneous equations which must 

be solved for A0, A1 and Ao; 

E rit,2= A° E 44+ A1 E 43+ A 2 E t2  (28) 

E r,t1 = A0 E ti3 -F A, E fi2 + A2 E t1,  (29) 

E r = A0 E ti2 + A, E ti + A2n,  (30) 

where all summations extend from i =1 to i = n. 
Note again that considerable simplification in solving the above 

can be achieved if the data is made symmetrical in t, so that E t, 
Et‘3.0. 

SAMPLING CONSIDERATIONS 

Suppose one wishes to estimate the mean, X, and standard devia-
tion, cr, of an infinite population by means of sampling. A sample of 

size n is drawn and its mean, U, and standard deviation, S, are calcu-
lated. These calculated sample values approach the actual values only 
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as the sample size n approaches infinity (provided of course that no 

bias exists in the measuring equipment). However, by choosing a 

finite sample size n, certain statistical inferences can be made about 

the relationship of the sample characteristics to those of the popu-
lation. 

When n is very small (of the order of 30 or less) the relationships 

between the sample values U and S, and the actual values X and o, are 

quite subtle and will not be considered here. Fortunately most radar 
data to be analyzed consists of numbers of independent data points 

much larger than 30. Furthermore the data is usually distributed in 
a normal or near normal form (especially when taken under conditions 
of large signal-to-noise ratios). These two factors afford a consider-

able simplification in relating the estimates to the actual and in deter-
mining the validity or the "confidence level" of the estimates. (The 

concept of a normal distribution is described in Appendix III.) 

Sample Size —Confidence Levels 

If it is assumed that the population is normally (or near normally) 

distributed and the sample size, n, is larger than 30, then the following 
results can be utilized with negligible error. 

For a sample of size n there is a certain probability, or confidence 

level, associated with how well the estimates U and S compare with 

the "true" values X and O.  In a radar situation the number of inde-
pendent data points required to estimate a particular parameter is 

usually a compromise between the confidence level desired and the 
practicality of processing a large set of data. 

In Figure 3 the per cent error, E, in estimating (7 versus the sample 
size n, is plotted with confidence level as a parameter. Table I relates 

the error in estimating X with the sample size n for various confidence 
levels. The remainder of this section is directed toward the interpre-

tation and use of the results shown in Figure 3 and Table I rather 
than the arguments used in obtaining them. The development of 
Figure 3 and Table I is described in Appendix IV and References (2) 
and (6). 

Figure 3 can best be interpreted by stating that if n samples are 
taken and their standard deviation, S, is used to estimate 0, there is 

a certain probability (or confidence level) that S will be within ±--Et; 
of cr. For example, with n = 100 there is a 90.0'; probability that 

the calculated value of S will be within -±-11.5C; of o. In equation form 

Probability  o(1 — 0.115)  S  cr(1 4- 0.115)  = 0.900, 
(32) 
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or 

S  S 
Probability  g 

! 1 + 0.115  1 — 0.115 F 
= 0.900.  (32a) 

Thus there is a 90.0', confidence that the true value of a lies between 

S/1.115 and S/0.885. 

Table I—Estimation of X 

Confidence Level  ) M a 41111fin Difference* between 2T and U 

99.7 

95.5 

90.0 

80.0 

68.3 

-±3.00 

±-1.65 

±-1.28 

±.1.00 

o 

V—n 

o 

V n 

a 

V -7 

a 

Vn 

a 

The expressions shown apply when the population standard deviation 
o is known. When a is not known, the sample standard deviation S can be 
used in place of o with negligible error provided the sample size n is large 
(greater than 30). 

Table I is used to determine how good a measure of X is obtained 
by using the sample mean, U, as an estimate. If the true a is known, 
the expressions in Table I are used to determine the confidence levels 

of the estimate. However, if the value of a is not known (as is usually 
the case) the sample standard deviation, S, must be calculated and used 

in its place. When the sample size n is greater than 30, the substitu-
tion of S for a in the expressions of Table I results in a negligible 

error. Suppose that n = 100 and a is not known; Table I shows that 

if the estimate of X is U and that of a is S, then 

3S  3S 
Probability  X    U  X    - 0.997, 

V100  
(33) 
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2% 

or 

50% 

Probability 
3S    3S 

U    X  U +   --- 0.997. 
N/ W)  N1T.F0-

(33a) 

C.L.. 99.7 % K.3 

C.L..90.0 %K.1.65 

C.L..80.0% K.1.28 
C.L..68.3 %K.1 

10  20  50  100 

SAMPLE SIZE n 

200 500 IC'DO 

Fig. 3—Maximum per cent error in estimating the cr of a normal population 
versus sample size for various confidence levels (C.L.).  (Equations of 

curves shown: E = 100 K/ 271; values of K shown.) 

Effects of Bandwidth and Sampling on B-M-S Error Calculations 

Marcum" states that if white Gaussian noise is passed through a 

narrow-band i-f filter whose overall 3-decibel bandwidth is af, it is 
probably a good approximation to assume that samples of the noise 
envelope taken 1 _If seconds apart are statistically independent. This 

of course serves only as an approximate quantity which changes for 
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different filter shapes. If the filtering is done at the video level instead 

of i-f and the low-pass 3-decibel video bandwidth is B, statistical 

independence is assumed every 1/2B seconds. 
Suppose a set of radar measurements is bandwidth limited by a 

10 cps i-f filter and the radar computer has a fixed sampling frequency 

of 100 pps. For this special case, data points spaced 0.1 second apart 
(every tenth data point) are assumed statistically independent. 

Using these assumptions, one can determine the length of data 

record required to obtain a certain confidence level with a certain per 
cent error. For example, if a 99.7 per cent probability is desired that 

a measured r-m-s error does not differ from its true value by more 
than 10 per cent, then Figure 3 shows that about 450 independent data 

points are required. Therefore, for a 10 cps bandwidth, 45 seconds 

of data would be required (10 independent samples per second). In 

order to minimize computer time in determining r-m-s error one 

should select every tenth point in the data. If all the data points are 
used instead of every tenth, there would be a predictable improvement 

in the confidence level of the measurement, but this improvement 
would generally be small. One significant factor to emphasize, how-
ever, is that using all the data points can only improve the estimate; 
it will never make the results less valid. The only disadvantage is 

that the additional processing time required may not be warranted. 

Data Smoothing 

Oftentimes it is desirable to average groups of adjacent data points 
to smooth out some of the effects of noise. Suppose a set of data points 
r1, r, r1 • • • r„ are known to be distributed in a Gaussian or near-

Gaussian form. Next assume that smoothing is accomplished by divid-
ing the data points into adjacent groups of ten, the first group being 

comprised of r, through ri,„ the second of rl, through r00, etc. If the 

averages of each group of ten are calculated to be X,, X., • • • 

these can be looked at as a new set of data points that are "smooth" 

with respect to the original points. 
If the points fr,} are independent, then the standard deviation of 

the set {X)) will be approximately 1 'N/n times the standard deviation 

of the original data. For the particular case chosen, n is ten and thus 

the standard deviation of the smoothed data is 1/V10 or about 0.3 

times that of the original data. 
If the points {r,) are not independent, the analysis required is 

elaborate. Appendix V shows how correlation techniques can be used 
to calculate (under specific conditions of filter shape, bandwidth, and 

sampling frequency) the standard deviation of a set of smoothed data 
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points that are dependent. Averaging groups of ten points from 100 

pps data obtained from a 5 cps bandwidth, single-tuned low-pass filter 

reduces the standard deviation to 0.67 of the value calculated for the 
"raw" data. 

The resulting reductions in standard deviations can be interpreted 

in terms of a filtering process. If the raw data is obtained from a 
low-pass filter of bandwidth B1 and has a standard deviation o, then 
the effective value B., of the filter bandwidth which would have given 

rise to the same standard deviation 0, obtained by smoothing is 

B 2 -=  

01 2 

(34) 

Averaging ten independent data points, for example, would give a ao 

of 1A/10 times U. The effective bandwidth B2  of this smoothing 

process is thus given by 

( 

B 2 =  - - -  -  B 1 =  

Cri ) 2 1  BI 

v10  g 12 10 
(35) 

It must be noted, however, that Equation (34) is valid only if the 
degree of smoothing is considerable. This situation simulates a white-

noise input to a narrow-band filter, from which Equation (34) is 
derived. 

All the discussions in this section are also directly applicable to 
the case where raw data points 7-1 through r1,, are averaged first, then 

points r., through r11, then points r3 through r1.„ etc. The resulting 

smoothed data will have the same standard deviation as did the aver-
ages of discrete groups of ten. In fact, for a given number of raw 

data points the confidence level of estimating r-m-s error or standard 

deviation with this type of smoothing would be greater than for the 
discrete case. The only disadvantage to this technique is the additional 

processing time required which may not be justified in terms of the 
increase in confidence level. 

POWER SPECTRUM 

Definitions and Basic Concepts 

The power content of any voltage waveform is defined as the power 

that the voltage would develop across a resistance of one ohm. If white 
noise having W watts per cycle per second or W watts per unit band-

width is applied to a filter of narrow bandwidth whose transfer func-
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tion is G(f), the power spectrum or spectral density P(f) of the 

waveform out of the filter is given by 

P(i) = MG M 12.  (36) 

P(f) is basically a measure of the power per unit bandwidth. A 

plot of P(f) versus f would show the relative contributions of different 

frequency bands to the total power. The area under the P(f) versus f 

curve represents the total average power that the waveform would 

develop across a one-ohm resistance. 

P„, = f P(f) df  WIG(f) 12 df.  (37) 

Note that Par is also the square of the r-m-s value of the waveform. 

Thus the area under the data power spectrum curve should be numeri-

cally equal to the square of the data r-m-s value. For example, if radar 
range measurements are taken during a balloon track, it may be desir-

able to curve fit the data and calculate residuals between the curve fit 
and data points. The r-m-s tracking error is then defined as the r-m-s 

value of the residuals. Suppose that this gives rise to some value o. 

A power spectrum of these same residuals would give a plot of their 
relative frequency distribution. The area under this power spectrum 

curve should theoretically be equal to ei2. However, power spectrum 
of sampled data cannot generally be calculated as accurately as r-m-s 

errors; thus there would be some discrepancies between the results in 
a practical case. One method for calculating the power spectrum of 

sampled data is described in Appendix VI. 
Equation (36) suggests that if a set of radar measurements is 

band limited by some filter G(f), the power spectrum of the data will 

in general tend to reproduce the absolute square of the filter response. 

The resulting plot of P(f) versus f can be analyzed to observe any 

deviations or sharp peaks that may indicate undesired oscillations. 

Spectrum of Sampled Data 

If some continuous data has a certain power spectrum character-

istic that is to be determined after sampling, the question arises of 

how the power spectrum of the sampled data is related to the con-
tinuous data. (The discussion is restricted to sampled data that is 
equispaced in time.) A general answer to the above question is that 
sampling introduces sideband frequencies into the spectrum which 
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cause the original power spectrum of the continuous data to be repro-

duced in shape, at frequencies centered about multiples of the sampling 
frequency. 

To understand this phenomenon, it is desirable to examine a situa-

tion where the continuous data is sampled for a finite time 7 at inter-

vals of T seconds by what is called the unit sampling function u(T,t) 
shown in Figure 4. 

UNITY 

t:0 

r 

21 

t 

31 

Fig. 4—The unit sampling function u(r,t). 

The Fourier series representation of this function is given by 

T  27 
u(r,t)  —  —  E 

T  T 

flirr 
sin 

nrr 

27r  rr 
cos n ( — t  (38) 

T/ 

where the quantity nirr 'T is the phase angle nO, of the nth harmonic 
and (2T/T) (sin nrT 1T) Ruin- 'T) is the amplitude of the n th  harmonic. 

If some continuous waveform x(t) is sampled by the unit sampling 
function u(T,t) as in Figure 5, the output y(t) is given by the product 
of u(T,t) and x(t) as shown in Equation (39). 

7 

Y(t) = U(7,t) X(t) = --- x(t) 

27 
—  E 
T 

err 
sin 

rT 
nr-r 

27r  7r7 
cos n  t  x(t) 
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In order to analyze the effects of sampling on the frequency spec-
trum, it is convenient to consider some x(t) waveform that contains 
only one frequency component f„. 

Let 

and 

(11) g(t) 

(b) utro)  

(c) 

o 

o 

rl 

x(t) = V cos (27rf11t + 00),  (40) 

f„ -= 1/T,  (41) 

7TT 

O zr _ .  (42) 

t 

Fig. 5—(a) A continuous waveform x(t), (b) the unit sampling function 
te (r,t), and (c) the sampled waveform y(t). 

Then Equation (39) becomes 

( = — V cos (27Tf„t + 0,,) 

27  sin nrfr 
+ — V E    

T  n I  nrf 
cos n (2718t — 08) cos(27rf11t -I- 0)1. 

Using the identity 

cos A cos B  1/2 [cos(A + B)  cos(A —B)l, 

Equation (43) becomes 

(43) 

(44) 
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sin nrfsr f cos  [27r  
(t)  — V cos (2/rfot -I- 00) + —V °É   

T  nrf„r 

(nf„A- f0)t —n0„-}-00]+ cos [27r (nis — fo)t — nO„ — 00] 1. (45) 

Equation (45) shows that the sampling process reproduces the original 

frequency f„ (attenuated by a factor r/T) and also introduces side-
band frequencies nf„ -±- f„ whose magnitudes have a (sin x)/x gross 
spectrum (see Figure 6). 

(ai SPECTRUM 
OF o (t) 

031  SPECTRUM 
OF y (t) 

I I 
fo 

fs fo I s.f o 
fo 

2fs - fo 21f:to +to j—••• 

Fig. 6—Spectrum (a) of x(t) = Vcos(erfot  9.) and (b) of y(t). 

When the original signal x(t) is a composite periodic wave con-
sisting of j frequency components ranging from zero to fo cps, the 

frequency spectrum of x(t) would contain j vertical lines. The height 
of these vertical lines would be equal to the magnitude of the corre-
sponding frequency component. Thus for this case the frequency 
spectrum of the sampled signal would contain the lines of the original 

spectrum plus sideband frequencies at nf„ ± f where f is the frequency 
of any single line in the original spectrum. 

Now, if the composite signal x(t) contains an infinite number of 
frequency components within its frequency band, then in the limit, 
x(t) becomes nonperiodic and its frequency spectrum approaches a 
continuous curve. The spectrum Igz(f) I of such a signal and the 

corresponding spectrum igy(f) I of the sampled signal are shown in 
Figure 7. 

Figure 7 clearly illustrates that the sampling frequency f„ must 
be at least twice the highest significant frequency component in the 

original spectrum. If f„ were less than 2f0 in Figure 7, the sideband 
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lobes of the sampled spectrum would distort the main lobe. One "rule 

of thumb" commonly used in practice is to choose f„ equal to or greater 

than 3f0. 

Sometimes, when a power density spectrum is calculated from a 

set of residuals derived from a least-mean-squares curve fit, excessive 
spectral components may appear in the region of zero frequency. One 
possible cause of this phenomenon is the use of a polynomial curve fit 

(a) 19, 

(b) Igy ("I 

ts —10 Ifs ts+ fon , 

Fig. 7—Frequency spectrum (a) of a nonperiodic signal of a low-pass 
frequency band and (b) of the sampled signal. 

whose order is too low. For example, if a parameter R actually varied 
quadratically with time, and a linear curve fit was specified, the resid-

uals would tend to exhibit a cyclic variation with a fundamental 

frequency of about 1/T cps, where T is the total time duration of the 
data record (in seconds). In general, T is relatively large, and thus 
the effects show up in the vicinity of zero frequency. 

APPENDIX I —DERIVATION OF VARIANCE EXPRESSION  (EQUATION (5)) 

Given a random variable X with mean value TC, the variance of X 
is defined by 

Var (X) = (X — X) 2.  (46) 

If the right-hand member is expanded, Equation (46) becomes 

Var (X) =X2-2 X + (X) 2.  (47) 
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The average value of a sum is equal to the sum of the averages; 
therefore 

Var (X) =  2XX + ( X) 2.  ( 48 ) 

The average value of a constant is the same constant, and the average 

value of a constant times a random variable is equal to the constant 

times the average value of the random variable. Therefore 

Var (X) = X2 — 25EX + (TO 2 = X 2 - 2 (X) 2 +  ( X) 2 = X 2 -  ( X) 2. 

(49) 

APPENDIX II -DERIVATION OF TOTAL MEAN-SQUARE-ERROR EXPRESSION 

(EQUATION (11)) 

Refer to Equations (1), (8), (9) and (10). Note that 

B2 =  ( k - BT) 2 (50) 

1 
anT2= — Eb.,_Rry2 

=_E ri2 — 2r,RT + RT2) 

1  2R,  1 
 2_,  + -  1 42 

1 
= — 
n 

1 
orr = — 

n 

1 
— 
n 

1  2fi  1 
—  ri2 — E(R-12 

(51) 

=_Eri2-2(R)2 (R) 2 

1 
= — E ri2 2.  (52) 
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Subtracting Equation (52) from (51) yields 

au 2  (R) 2  217 RT Rr2 

=  — RT) 2.  (53) 

Comparing Equations (50) and (53) shows that 

B2 = aRT 2 .72 

and Equation (11) is proved. 

APPENDIX III— THE NORMAL DISTRIBUTION 

(54) 

This section is intended to provide a simplified version of the 

concept of a normal (or Gaussian) distribution. The reader who is 

interested in a comprehensive treatment of the normal distribution, 

or probability distributions in general, can consult References (2), 

(6), and (7). 

When a population or set of data is said to be normally distributed, 
the probabilistic relationships describing the statistics of the data are 

defined by the equations and curves shown in Figure 8. 

Figure 8a, represented by p(X), is the non-cumulative form of the 

normal distribution usually referred to as the normal probability 
density function, while Figure 8b is the cumulative form represented 
by P(X) and called the normal probability distribution function. If 

one states that a population is normal with mean X and standard 
deviation o and a single random sample X is drawn, the probability 

that the random variable X will be less than or equal to some value 
X1, is given by the shaded area of Figure 8a. Expressed mathemati-

cally: 

it 

Probability  X  X1 = f P(X)dX 

- 00 

1_ ex  

cr\/27r 20'2 
dX. 

(55) 

Unfortunately, the integral of Equation (55) cannot be expressed in 
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closed form. A series expansion and term by term integration of 

p(X) is necessary to evaluate the integral. The definite integral from 

—oc to any value X1 can then be computed to any desired accuracy by 
choosing an appropriate number of terms. The results so obtained 

constitute the cumulative form of the normal distribution P(X), where 

x 

P(X) = f p(X)dX. 

—0 

(56) 

Fig. 8—Forms of the normal distribution; (a) noncumulative (probability 
density function), and (b) cumulative (probability distribution function). 

Extensive tables, such as those appearing in Burington and May' 

have been computed for evaluating P(X). The results are shown 
graphically in Figure 8b. Here the probability P(Xi) that a random 

selection will be less than or equal to X1 is read directly from the 
curve. It will be stated here, without proof, that P(co), given by the 

total area under p(X) is equal to unity. This is a necessary condition 

for p(X) to be called a density function and for P(X) to be termed 

a distribution function. 
Given the same normal population, suppose it is desired to find the 

probability that a point selected at random lies between X1 and X». 



STATISTICS AND SAMPLING CONCEPTS  139 

This is given graphically by the area under the curve of Figure 8a 

contained between X, and X2.  Expressed mathematically 

Probability .{X1 X  X2  =  f p(X)dx  (57) 

fp(X)dx — f  (58) 

Table II—Probability that a Rardom Sample X Drawn from a Normal 
Population Will Lie within 1-.Ka of the Mean 7É 

K  Probability j5i-- Ka  X Tc + Ka} 

1.60 

1.28 

1.65 

2.00 

3.00 

0.683 

0.800 

0.900 

0.955 

0.997 

Thus the desired probability can be determined by reading from 

the curve at Figure 8b the values P(X2) and P(X1) and computing 

the difference P ( X 2 ) -  P(X1). Thus, Equation (58) can be re-written 
as 

Probability  X1  X, =P(X) —P(X1 . (59) 

Oftentimes, it is desirable to know what the probability is that a 

point selected at random will lie within a certain number of standard 
deviation units from the mean A. This probability is 

TA-Ka 

fProbability -{T{- Ku  X -3-C- ± Ku = 
1 r oc__702 

exp    dx. 
a\ 72-;  2fr2 

(60) 

The results for various values of K can be found in the tables of Bur-

ington and May.2 A few representative values are given in Table II. 
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For example there is a 0.683 probability that a value selected at 

random from a normally distributed population with mean X and 
standard deviation o will lie within ±-.1.00o from 1. 

The importance of the normal distribution stems from the fact 
that a very large class of statistical data tends to be normal or near 

normal. Such is the case with radar data, where the presence of noise 
causes data to be scattered about its true value—usually in a normally 
distributed manner. 

APPENDIX IV— DEVELOPMENT OF CONFIDENCE LEVELS 

Suppose that a sample of size n is drawn from an infinite, normally 

distributed population whose mean is X and standard deviation is o. 
Next, the sample mean u, and standard deviation si are calculated. 

Taking a second sample, also of size n, would give rise to a sample 
mean and standard deviation u., and s... A third attempt would give 

ti3 and 83 etc. If this procedure were repeated in times (ni approaching 

infinity) the values u1,  u„• • • u„, and s,, s,, s„, • • • s„, would repre-
sent two sets of random variables U and S characterized by their own 

probability distributions. If the sample size n is large (>30) certain 
useful approximations can be made regarding the distributions of U 

and S and their relationship to the population mean and standard 
deviation X and a. Under the specified assumptions, the random vari-

ables U and S are each normally distributed as shown in Figures 9 
and 10. 

Confidence Levels in Estimating X 

Figure 9 shows that the mean of all the sample means ul, u, u„ 
• • • u„, is equal to the mean of the population X and the standard devi-

ation of the sample means is given by a/ \-9 (see References (6) or 

(7)). Thus, if one were interested in how well X could be estimated 
by drawing a sample of size n and calculating its mean U, the following 
reasoning would apply. 

The probability that U lies between X — q and X + q is given by 
the shaded area of Figure 9. This area for any given q could be 

determined by using tables of the normal distribution found in Refer-
ence (2). For example, the probability (or area) that results when 

q= 1.65 standard deviations, is found to be 0.900. Thus there is a 
90.0 per cent probability, or confidence level, that 

1.65a  1.65cr 
7(   u x +   
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p U 

cr 
STANDAND DEVIATION: 

nneOPULATION STANDARD 
DEVIATION 

i:POPULATION MEAN 
n:SAMPLE SIZE 

Fig. 9—The distribution of sample means 
(noncumulative form). 

U SAMPLE MEAN 

U  

lh, 112,  • • • 

If q is set equal to K standard deviations, a corresponding probability 

(or area) can be similarly determined for any specified K. Some rep-

resentative values of confidence levels for various K are shown in 

Table II. 
In the previous paragraph, it was assumed that the a of the popu-

lation was known. If a is not known (which is usually the case) the 

sample standard deviation S can be used in its place, provided that n 
is large (>30), with negligible error. When a is not known and n is 

small, the determination of confidence levels for estimating X is more 

complex and will not be considered here. 

Confidence Levels in Estimating a 

Figure 10 shows that the mean of all the sample standard devia-
tions sl, s„, s„, • • • s„, is approximately equal to the standard deviation 

of the population, u, and that the standard deviation of the sample 
standard deviations is approximately a/N/2n. (When n is small, these 
approximations do not hold. For this case, the relationships are quite 

subtle and will not be considered here.) 

o (S) 

Q. 
STANDAND DEVIATION: „A V 

Q: POPULATION STANDAND DEVIATION 

S SAMPLE STANDARD DEVIATION 

n : SAMPLE SIZE 

Fig. 10—The distribut'on of sample standard deviations si, s2, s3, • • • 8,,, 
(noncumulative form). 
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If S is used to estimate o, the probability that « — q S  q 

would be given by the shaded area under the curve of Figure 10. For 
example, the probability that results for q= 1.28 standard deviations 

(found from the tables in Reference (2)) is 0.800. Thus 

Probability 

or 

Probability 

1.28a  1.28a 
  S  o  = 0.800,  (61) 
V2n  \ 2n 

1.28  S —u  1.28 
t. 

Y Ft,  u  '21/ 
= 0.800.  (62) 

Equation (62) shows that there is an 80.0 per cent probability, or 

confidence level, that the per cent error in estimating a is less than 

128/\ 2n per cent. Figure 3 illustrates some relationships between 
the per cent error and sample size n for various confidence levels. The 
general relationship is given by 

100K 
E(%) =   

N/2n 

where the confidence level is related to K as shown in Figure 3. 

(63) 

APPENDIX V— DERIVATION OF THE STANDARD DEVIATION OF A SET 
OF SMOOTHED DATA USING CORRELATION METHODS 

The specific case to be considered is the calculation of the standard 

deviation of the average of 10 successive dependent data points 
(spaced 0.01 second apart) at the output of a single-tuned low-pass 
filter whose 3-decibel bandwidth is 5 cps. 

Suppose some radar parameter is sampled at 100 pps and the 

resultant samples are curve fitted with some least-mean-squares poly-
nomial. The resulting residuals have a zero average value and a 

residual r-m-s error o, whose magnitude is a measure of the "noise 
content" of the data. 

One question that sometimes arises is, "If u is the r-m-s value of 

the residuals, what would be the r-m-s value u , of the averages of ten 
successive data points; that is to say, if the data points are divided 

into discrete groups of ten each and the average of each group of ten 
was calculated, what would be the predicted value of their standard 
deviation ol in terms of the o of the raw data?" The relationship 

between ol and o can be analytically determined using correlation 
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techniques, but only if the filter characteristic that gives rise to the 

output data is accurately known. 
If the filter in question can be represented by an equivalent low-

pass single-tuned filter whose 3-decibel bandwidth is B, the autocorre-

lation function sb(r) of the output residuals for a wide band noise 

input is given by 

(r) =u2 exp (— 27r/37)  (64) 

where cr is the standard deviation or r-m-s value of the output resid-

uals about the polynomial curve fit. (By a previous definition 

called the residual variance.) 
This equation is derived by the autocorrelation relationship 

co  co 

0.2 is 

40(7) = f S(f) exP (j2717) df = f No IG(f)1 2 exp (j2711-) df 

where 

- 00  - 00 

S(f) is the data's spectral density = No 1G (f) T 2,  

1 

(65) 

G(f) is the filter transfer function =   
f — fo 

1 + j   
B/2 

No= noise power per unit bandwidth at the filter input. 

For the case in question, B is 5 cps and Equation (64) becomes 

Itr(r) = cr2 exp (— 31.47).  (66) 

The physical interpretation of an autocorrelation function is that 
the average product of all points spaced r seconds apart is given by 

In order to compute 0,2 by brute force, residual data points one 
through ten would be averaged and their square calculated. This would 
be repeated say r times for r successive groups of 10 data points. The 

average of the squares of the group averages would give the value 

of 0, 2. Expressed mathematically, 

H. U2= 1{[> ! + 
012 ...  7 

1 10 j  ti 10  ,f1; 10 j 
(67) 
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If the first bracketed term is expanded, the result is 

E —  E d.2 + 2 E did; +1  + 2 E  2• • • ± 2 E  (4(4 +9 } 
10  100 

(68) 

Repeating this for the other bracketed terms in Equation (67) 
gives similar results. If this is repeated r times the resulting expres-

sions show that there are a total of 

lOr di2 terms 

9r clicli+ , terms 

8r clicli+ ., terms 

7r didi+3  terms 

(10 per group times r groups) 

( 9 per group times r groups) 

( 8 per group times r groups) 

( 7 per group times r groups) 

r didi+9  terms  ( 1 per group times r groups) 

If r is large, meaning a large number of residual data points, then 

the sum of any one class of terms could be replaced by their average 
value times the number of terms. Expressed mathematically, 

E di2 =  10r di2 

2 E d id; +1 = 2 x 9r did; 

2 E ,/,d,+2= 2 x 8r dd1.2 

(69) 

2 Edd 9 = 2 x ir d1d „ 

where the bar denotes the average value. Note that d,2 is the average 

product of all points spaced 0 seconds apart, M i." is the average 
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product of all points spaced 0.01 second apart, etc. These terms there-

fore become 0(0), 0(0.01), 0(0.02), etc. Equation (67) then becomes 

01 = 
1 

100r 

107-0(0) 

+ 187-0(0.01) 

+ 16r0 (0.02) 

+ 14r0 (0.03) 

• 

+ 2r4(0.09) 

(70) 

Cancelling out the r's and substituting the appropriate values for 

0(0), 0(0.01), etc., (as computed from Equation (66)) gives 

1 
2 -  < - 

100 

Therefore 

10e 

+ 18 (0.731(72) 

+ 16 (0.553e) 

+ 14 (0.391e) 

+ 12 (0.274(72) 

+ 10 (0.208cr2) 

-I- 8 (0.153a2) 

• 6 (0.111(72) 

+ 4 (0.081(72) 

-I- 2 (0.059a2) 

> --= 0.45a2.  (71) 

cri 0.67«.  (72) 

APPENDIX VI— A TECHNIQUE FOR CALCULATING POWER SPECTRUM 
OF EQUI-SPACED DIGITAL DATA 

This appendix describes a method developed by Real and Cannadys 
for calculating the power density spectrum for data given at equal 

space intervals. The computation equations are based on the use of 

autocorrelation techniques as described by Blackman and Tukey.5 Only 
the mechanics of performing the calculations are presented here. 
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Restrictions 

(a)  The input data must be derived from a stationary process; 

that is, one whose statistics are time invariant. 

(1))  The maximum frequency computed for points spaced At sec-

onds apart is 

1 
imax==  cps. 

2àt 
(73) 

Note that 1/At is equal to the sampling frequency f„. It has 
been pointed out that f„ must be at least twice the most 

significant frequency component in the spectrum in order 

that no "folding over" of the sampled data spectrum takes 
place. 

(c)  For N points spaced At seconds apart, a minimum frequency 

increment Af„,h, is defined by 

2 
Aimin =  cps. 

NM 
(74) 

Computation Equations 

Suppose a set of data (r1) has been curve fitted by a curve Re(t) 
and the residuals di have been calculated; 

di = [ri — R, (ti)]. (75) 

Note that if Re(t) is a least-mean-squares curve fit, the average resid-

ual is zero. 

(a)  Calculate for all ni in the set 0 ni N — 1 the autocovari-

ance functions R„, given by 

1  - m 

R. =   E +„,.  (76) 
N — m  i-1 

(b)  Define a quantity E„, such that 

E. = 1,  0 <m< N -1, 

E„, = 1/2,  m =0, N -1. 
(77) 



STATISTICS AND SAMPLING CONCEPTS  147 

(c)  Calculate the values of Lk — the apparent line power at fre-

quency kAf/4 for all k in the set 0  k • N —1; 

X -1  k 111 r 
Lk = 4.1t E R„,E„, cos   

tfl _o  N -1 
(78) 

(d)  Calculate the smoothed power density Qk at frequency IcAf/4 

for all k in the set Cl-k-- N -1; 

Q„ = 1/2 [L, + L1], 

Qk= 1/4 [Lk_1 2Lk -F Lk +1 ], 

= 1/2 I_LN_2 LN _11• 

(79) 
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