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ELECTROMAGNETIC PROPERTIES
OF FINITE PLASMAS

By
M. P. BACHYNSKI AND K. A. GRAF

RCA Victor Company, Ltd.,
Montreal, Canada

Summary—The determination of plasma properties by the transmission
or reflection of electromagnetic waves depends upon (1) the availability
of a theory that adequately describes the physical situation and (2) experi-
mental measurements that are amenable to theoretical interpretation. The
major limitations are the finite size of the plasma, the effect of the bound-
aries of the plasma and the material boundaries that contain the plasma,
and the nonuniformity of the plasma in space and time.

In this paper, expressions are derived and typical numerical values
presented for the effect on transmission, reflection, and absorption of elec-
tromagnetic waves of plasma and dielectric boundaries, refractive defocus-
ing by plasmas of slab and eylindrical geometry for both plane and
spherical incident waves, the effect of nonuniformity of the plasma both
along the direction of propagation and normal to the direction of propa-
gation, and for diffraction introduced by the finite size of a circular slab
of plasma.

INTRODUCTION

71NN HE ELECTRON DENSITIES found in many plasmas of in-
J terest correspond to plasma frequencies in the meter and
centimeter wavelength range. Since the electrical properties
of a plasma vary measurably in this range of frequencies, probing by
low-strength radio signals has become a much used technique for
determining the characteristics of the plasma. The accurate determi-
nation of plasma properties by this free-space method depends upon
two factors, namely the availability of a theory that adequately
describes the physical situation and experimental measurements that
are amenable to theoretical interpretation.

In principal, the determination of the properties of a plasma from
the phase change and attenuation that it introduces to an incident
electromagnetic wave transmitted through or reflected from it is very
simple. If the plasma is uniform and in the form of an infinite slab
with sharp, well-defined boundaries, and if the incident field is a plane
wave and the incident wave after interacting with the plasma can be
accurately measured with a perfect system, then no discrepancy be-
tween theory and experiment should occur. This ideal situation is,
however, impossible to realize.
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In practice the plasma is finite in extent; it may be contained by
material walls, the boundaries of the plasma may not be well-defined,
and the plasma may be nonuniform in both space and time. The result
is refraction, reflection, absorption, and diffraction phenomena that
are not easy to define and interpret but the understanding of which
is essential before accurate quantitative determination of plasma
properties is possible.

Although a number of microwave free-space measurements of
plasma have been reported'® and some of the above limitations have
been mentioned, there does not appear to have been a systematic
attempt to assess the predictions of various simple theoretical models
of the plasma or to develop theories to account for the influence of the
aforementioned effects. In this paper, theoretical predictions are
developed and typical numerical values presented for plasma effects
such as plasma boundaries, refractive defocusing by the plasma, non-
uniformity of the plasma, and diffraction introduced by the finite size
of the plasma.

EFFECT OF BOUNDARIES ON TRANSMISSION, REFLECTION AND
ABSORPTION OF ELECTROMAGNETIC WAVES BY A PLASMA

Many calculations on the effect of a plasma on an incident plane
electromagnetic wave are based on a theoretical model in which the
influence of the boundaries of the plasma is completely ignored. The
electromagnetic wave is considered to traverse a region of plasma
equal in extent to a given physical dimension, but the effect of reflec-
tion from the interface between the plasma and free-space and multiple
reflections within the plasma are neglected (see Figure 1a). This
“unbounded plasma” model thus predicts the attenuation and phase

'R. J. Jahn, “Microwave Probing of Ionized-Gas Flows,” Phys. Fluids,
Vol. 5, p. 678, June 1962.

> P. W. Kuhns, “Microwave Measurements of Steady-State and Decay-
ing Plasmas,” Trans. LR.E. PGSET, Vol. 8, p. 173, June 1962,

*R. Buser and W. Buser, “Determination of Plasma Properties by
Free-Space Microwave Techniques,” Jour. Appl. Phys., Vol. 33, p. 2275,
July 1962.

*R. Warder, M. Brodwin, and A. B. Cambel, “Sources of Error in the
Microwave Diagnostics of Plasmas,” Jour. Appl. Phys., Vol. 33, p. 2868,
Sept. 1962.

?G. R. Nicoll and J. Baser, “Comparison of Microwave and Langmuir
Probe Measurements on a Gaseous Plasma,” Jour. Elect. Cont., Vol. XII,
p. 23, June 1962.

% L. Talbot, J. E. Katz, and C. L. Brundin, “Comparison Between
Langmuir Probe and Microwave Electron Density Measurements in an
Arc-Heated Low-Density Wind Tunnel,” Phys. Fluids, Vol. 6, p. 559, April
1963.
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Fig. 1—Theoretical models for determining the transmission and reflection

of electromagnetic waves by a plasma: (a) unbounded plasma, (b) plasma

slab bounded by free space, (¢) plasma slab contained within dielectric
plates in free space.
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shift that the plasma would introduce to a plane homogeneous electro-
magnetic wave traversing a given distance in an infinite, uniform,
isotropic plasma.

A more-realistic model (Figure 1b) considers a plane, homogeneous
wave normally incident on a uniform, isotropic “plasma slab” bounded
by free space. In this model both reflections from the interfaces and
multiple reflections within the plasma are taken into account.

In a laboratory plasma, the plasma is very often contained by
material walls. A theoretical model to take into account the effect of
the material container is a slab of plasma bounded by two flat dielec-
tric plates (as shown in Figure 1c¢).

Calculations of the attenuation and phase shifts introduced by a
plasma on an incident electromagnetic wave based on these three
models have been made and compared for various plasma parameters.
The predictions of the different models give an indication of the range
of validity of each model and the accuracy of measurement of plasma
properties to be expected when free-space microwave techniques are
used.

Unbounded Plasma Model

In uniform, neutral plasmas of electron density n and effective
collision frequency v, the dielectric constant can be written for a
harmonic time varying field (e/«t) as’:

o, 2 1 o, 2 v/o
K=K, —jK,=1—| — —_— ) —7J =
® 1+ (v/w)?2 ® 14+ (v/w)?

(1)

N NS
=1-— —

1+8 148

where:
o, is the plasma frequency, (ne2/me,)! 2

e;m are the electronic charge and mass, respectively,
€ is the permittivity of free space,
o is the radian radio frequency, and

N,S are normalized electron density and collision fre-
quency parameters given by N = (0,/0)? and S = v/a.

"M. P. Bachynski, T. W. Johnston, and I. P. Shkarofksy, “Electro-
magnetic Properties of High Temperature Air,” Proc. IL.R.E., Vol. 48, p.
317, 1960.
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For a plane homogeneous electromagnetic wave the propagation
constant (y), attenuation constant (a) and phase constant (B) can
be written

y=ea+jB, (2a)
|K| — K, \/?
a=k T , (2b)
|K| + K, \'/2
B=k | —1} , (2¢)
2

where
|K| = (K,2+ K;?)1/2,

and &k = 2z/A is the free-space wave number.
For a wave propagating a distance d in the plasma, the transmis-
sion coefficient, 7', and the reflection coefficient, R, are given by

I'=1—e—"4, (3a)
R =0. (3b)

The attenuation of the wave after propagating a distance d in the

plasma is given by
a d
ad=27| — )| — ). (4a)
k A

The phase shift that occurs when B/k changes from unity (no plasma)
to some value defined by the plasma is

e L —

The attenuation and phase shift for a path length, d, of 1.84 free-space
wavelengths as function of electron density and collision frequency
for an unbounded plasma are shown in Figure 2.

“Plasma Slab™ Model

Application of the theory for an “unbounded plasma” is very
simple. It is usually considered quite accurate if the refractive index
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of the plasma is close to unity, in which case reflections from the
plasma-free-space interfaces will be insignificant. To check the va-
lidity of such assumptions, calculations were performed to determine
the attenuation and phase-shift of a plasma slab sharply bounded by
free space. Writing the boundary conditions at each interface and

36 _— N=lI fss
N=LI
UNBOUNDED L
N=1.0 PLASMA
30+ d=1.84) 30
N=09
$=0.3
244 R
_ N=0.8 £
0
e L
= N=07 -
28
£ 184 L8
S N=06
2 L
=4 S=0.l
= N=
< 12 4 12
{ s L
0.3
6+ $:003 -6
02
| fo1
[o] “ — T —T f ) - . 0
o 90° 180° 270° 360° 450° 540° 630° 662°

PHASE SHIFT (DEGREES)

Fig. 2—Variation of attenuation and phase shift due to an unbounded
plasma for various values of electron density and collision frequency.

solving the electromagnetic equations gives the transmission coeflicient
for normal incidence®* as

E'I'

yif— [cosh(ad + jBd) + (Z,— jZ,) sinh(ad + jBd) ] 1. (ba)

E,

The reflection coefficient (applied to the fieids) is similarly obtained
and found to be

*G. G. Cloutier, M. P. Bachynski, and K. Graf, “Antenna Properties
in the Presence of Ionized Media,” AFCRL Report No. 62-191.

*I. P. French, G. G. Cloutier, and M. P. Bachynski, “The Absorptivity
Spectrum of a Uniform Anisotropic Plasma Slab,” Canadian Jour. Phys.,
Vol. 39, p. 1273, 1961.
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/3 k a 'k
R=T| Z (— -1 #4zZ I — ) sinh(a + jB)d, (5b)
a'k B k

where

k

304
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Fig. 3(a)—Variation of attenuation and phase shift due to a plasma slab
bounded by free space for various values of electron density and collision
frequency.

The attenuation and phase shift of the transmitted wave (with the
phase referred to the second surface of the plasma slab) are plotted
in Figure 3a.

Examination of Figure 3a shows that the effect of the slab bound-
aries is pronounced when the plasma is not very lossy and when the
normalized electron density is greater than about 0.5. The effect of
the boundaries is significant in modifying the amplitude and phase
of the transmitted signal. If the normalized collision frequency (v/w)
is greater than 0.1, the effect of the boundaries is small. The reflected
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Fig. 3(b)—Variation of reflected power with normalized electron density
due to a plasma slab bounded by free space for various values of collision
frequency (d = 1.84\).

energy and phase-shift of the reflected signal are shown in Figures
3b and 3c, respectively.

The incident energy that is not reflected or transmitted by the
plasma slab is absorbed; the absorbed power, Aw, is given by

360

270

180

©o
o

PHASE OF REFLECTED SIGNAL (DEGREES)

o

B (K]
M= (wpy/w)?

r
o
Fy
(]

Fig. 3(c)—Variation of phase of reflected wave with normalized electron
density due to a plasma slab bounded by free space for various values of
collision frequency (d — 1.84)\).
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Am: 1 —RR*—TT’ (6)

where the R*, T* refer to the complex conjugates of R and T, respec-
tively. The variation of Aw for various plasma parameters is shown
in Figure 3d.

ABSORBED POWER A, (db)

0 2 4 6 8 1.0 1.2 1.4 16 1.8
N) = (wp/w)?

Fig. 3(d)—Variation of absorbed power with normalized electron density
due to a plasma slab bounded by free space for various values of collision
frequency (d = 1.84\).

Plasma Slab Bounded by Dielectric Plates

Laboratory measurements on plasmas are usually significantly
affected by the container in which the plasma is confined. Even when
the index of refraction of the plasma is close to unity, the combined
effect of reflection from the container and the plasma may be signifi-
cant. To study the magnitude of this effect, calculations were made
for a model consisting of a plasma slab bounded by two dielectric
plates. The geometry was as shown in Figure lec.

At normal incidence, the waves in the plasma and the dielectric
will be plane waves. Nine “composite” waves representing all possible
reflections are of interest. One can write all the boundary conditions
for the continuity of the electric field and the magnetic field across
the various interfaces. Solving the resuiting equations for the trans-
mission and reflection coefficient of the slab of plasma bounded by
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dielectric plates in free-space gives:!

Z, Zy \ sinh2y’ad’
T= cosh® y’d” + sinh? y’d’ + +—— ) ——— | cosh yd
Z, Z, 2

1 Z, Z, Z, Z,
S — + —— | sinh 2y/d’ + + cosh*® y’d’
2 Z, Z, Z, A

)

4 Ll -
+| -+ -——) sinh?yd” » sinhyd (Ta)
ZoZ, Z,®

Z, Zy
=T — sinhy’d” coshy’d” coshyd
Z, Z,

(
1 Z, Zy
+ — —_— cosh® y'd” +
2 Z, Z,
ZI: Z',Z-_-
— ——— | sinh® y’d" | sinh yd (Th)
ZyZ, Z,*

v,Y" are the propagation constants of the plasma and the
dielectric plates, respectively.

where

d,d’ are respectively the thickness of the plasma and a
dielectric plate,

ZywZy,Zy are the impedances of free space, dielectric, and

plasma, respectively.

If the dielectric plates are considered lossless, the propagation
constant of the dielectric, y’, will be a pure imaginary.

B’ 2
V=if=ik|—)=ipn—,
v A

where ;o is the index of refraction of the dielectric plates.

The impedances of the dielectric and plasma can be written in
terms of the free-space impedance as

1 M. P. Bachynski, G. G. Cloutier, and K. A. Graf, “Microwave Meas-
urements of Finite Plasmas,” AFCRL Report No. 63-161.
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Zn ’I‘
Z,=——=12,——],
\ K a+ B

where K, is the dielectric coefficient of the dielectric.

364

304

PLASMA BOUNDED
BY DIELECTRIC

n
H
1

ATTENUATION (db)
®
1

y o . 0
0° 90° 180° 270° 360° 450° 540° 630° 662°

PHASE SHIFT (DEGREES)

Fig. 4(a)—Variation of attenuation and phase shift due to a plasma slab
contained within dielectric plates in free space for various values of elec-
tron density and collision frequency.

Calculations were performed for the same plasma slab dimensions
and parameters as used in the plasma slab model. The refractive index
of the dielectric plates was 1.58 (polystyrene) and the thickness 0.567
free-space wavelengths.

The optical path length of each dielectric plate was 0.94, which
results in relatively small reflections from the plates for a normally
incident plane wave. Had the plates been (2n 4 1)A/4 in optical path
length, then very strong reflections would have occurred from the
dielectric plates and would, therefore, have manifested themselves in
the effect of the plasma-dielectric container on the transmitted and
reflected electromagnetic fields (n is an integer).

The results of a computer calculation for the transmitted signal
are shown in Figure 4a.
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The phase-shift calculations have been “adjusted” on the plot so
that there is no phase shift when the electron density is zero—a per-
fectly matched system. Similarly, the attenuation was taken as zero
when the electron density was zero. For the calculations involving
the dielectric plates, the signal transmitted through a composite slab
(dielectric—plasma—dielectric) can be greater than the initial (zero
electron density) value. This simply implies that the container (the
two dielectric plates) reflects more signal when the electron density

REFLECTED POWER (db)

o] 2 4 6 8 1.0 1.2 1.4 16 18
(N) = (wp/w)?

Fig. 4(b)—Variation of reflected power with normalized electron density
due to a plasma slab contained within dielectric plates in free space for
various values of collision frequency (d=1.84\, d’ = 0.567\).

is zero than for some other electron density. The varying refractive
index of the plasma could “match” the two dielectric plates so that
less signal is reflected. For the particular set of parameters p, d’, and
d that were chosen for the computer calculations, this did not occur.
Had it occurred, the attenuation would initially have appeared nega-
tive, i.e., the plasma would be “matching” the container to the incident
fields.

It can be seen that the signal strength, even for small electron
densities, is severely influenced by the dielectric plates. The phase of
the transmitted signal is less severely affected. The magnitude and
phase shift of the reflected signal are shown in Figures 4b and 4c.

The amount of power absorbed by the plasma is shown in Figure
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PHASE OF REFLECTED WAVE (DEGREES)

Fig. 4(c)—Variation of phase of reflected wave with normalized electron
density due to a plasma slab contained within dielectric plates in free space
for various values of collision frequency (d = 1.84\, d’' = 0.567\).

4d. Since the dielectric plates were considered lossless, they did not
absorb any power although they can influence the amount of power
that the plasma absorbs.

Comparison of the Three Models

The plots of the attenuation and phase-shift dependence on electron
density for the three models show that the phase-shift is perturbed

J
»n
o

ok
o

ABSORBED POWER Aw(db)
'
N

-4}

(N)= (wp/w)?

Fig. 4(d)—Variation of absorbed power with normalized electron density
due to a plasma slab contained within dielectric plates in free space for
various values of collision frequency (d = 1.84A, d' = 0.567\).
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less by the interface conditions than the attenuation for low values
of electron density. Since, very generally, phase shift is associated
primarily with electron density and attenuation with the electron
collision frequency, the effect of the interfaces makes the collision
frequency more in doubt than the electron density.

A polar plot of the amplitude and phase of a transmitted signal,
calculated for the three models, is shown for comparison in Figure 5.

Fig. 5(a)—Comparison of attenuation and phase shift as predicted by the

three theoretical models for the plasma for /o — 0.03 (x — 1.58, d = 1.84),

and d’ = 0.567\). The solid line is for the unbounded plasma, the long-

dash line for the bounded plasma, and the short-dash line for the plasma
bounded by dielectric plates.

The curve drawn in each case is for collision frequencies (v/w) of
0.03 and 0.1. Because of interface effects, and the thickness of plasma
and dielectric plates used in the calculations, the deviation for the
three curves is more pronounced at some electron densities than at
others. As an example of the effect of the boundaries, note that for
a phase shift of 3607, the electron density (V) measured by the three
methods is 0.8.

The “unbounded” theory shows less than 3 db attenuation; when
the dielectric plates and the interfaces are taken into account more
than 6 db attenuation is obtained. This is a significant difference.
Conversely, although it is not shown in Figure 5, it can be seen from
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the earlier figures that an attenuation of 6 db would give a collision
frequency of 0.03 by the “dielectric plate’ calculations, and a collision
frequency of about 0.06 by the “unbounded” theory. As the collision
frequency increases, the differences between the various models become
less and less significant.

Fig. 5(b)—Comparison of attenuation and phase shift as predicted by the
three theoretical models for the plasma for »/e0 — 0.10. Outer curve is for
the “unbounded plasma model,” innermost curve is for the “plasma bounded
by dielectric plates.” The distinction between the models becomes less
significant with increasing collision frequency. For r/w—0.3 and 1.0 all
models predict about the same result (# = 1.58, d’ = 0.567\, and d — 1.84\).

It is also interesting to note that the difference between the un-
bounded theory and the plasma slab model are not significant for low
electron densities (N < 0.4); however, the effects of the dielectric
plates on the plasma slab at these low electron densities are important
due to the “matching” effects on the incident field.

REFRACTIVE DEFOCUSING BY UNIFORM PLASMA
SLABS AND CYLINDERS

Microwave systems used for the free-space measurement of plasma
properties can be broadly classified as to the type of incident wave
front. The arrangements most often employed are of the type that
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result in either an incident plane wave (by the use of auxiliary lenses),
a spherical incident wave (unfocused point source) or a highly focused
beam (using lenses or other focusing devices) to give a high degree
of spatial resolution. These systems are illustrated in Figure 6.
Since the refractive index of the plasma (= K'/2) will, in general,
not be equal to the refractive index of free space (. =1), refraction

Plane Wave

(a) Source = = Receiver

Lens Lens

Soherical Vave Receiver

(b)  Source

(c) Source Focused Receiver

QTR oy

Fig. 6—Types of microwave systems used for free-space measurement of
plasma properties: (a) plane wave system, (b) point source system, and
(c¢) focussed system.

will occur at each boundary between plasma and free space. Using the
concepts of geometric optics, the electromagnetic energy can be con-
sidered as traveling along ray paths or rays that are normal to the
planes of constant phase of the wavefront. (We shall neglect in the
sequel the situation which can arise'’ whereby the rays do not coincide
with the direction of energy travel, i.e., the direction of the Poynting
vector is not normal to the phase front, resulting in inhomogeneous

K. A. Graf and M. P. Bachynski, “Transmission and Reflection of
Electromagnetic Waves at a Plasma Boundary for Arbitrary Angles of
Incidence,” Canadian Jour. Phys., Vol. 39, p. 1544, 1962.
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plane waves.) The net result of the refraction is that the incident
beam of energy is spread out or defocused by the plasma. (This is
due to the fact that for the plasma ;. < 1; for a dielectric with p > 1,
a focusing of the beam results.) The plasma can thus be considered
as a lens of refractive index less than unity. The net result of this
refractive defocusing is that the energy density of the radiation in
the region where it can be measured by a microwave receiving system
has been decreased not only by the amount of energy absorbed by the
plasma, but also be the amount by which it has been spread out. Con-
sequently, in order to obtain a measure of the energy absorbed by
the plasma (and hence get a measure of collision frequency) some
estimate of the refractive defocusing is essential.

Subject to the limitations of geometric optics (dimensions large
compared to wavelengths, losses in plasma small, etc.) it is possible
to derive expressions for the refractive defocusing by uniform plasma
slabs and plasma cylinders. These are discussed subsequently.

Plane Wave Incident

For a plane wave incident normally on a slab of plasma, no refrac-
tive defocusing occurs, as shown in Figure Ta.

A plane wave incident on a uniform, cylindrical plasma will be
refracted. With reference to Figure 7a let the extreme ray of an
incident beam of radiation of radius e be intercepted by a plane of
half-width A located a distance R from the center of the cylinder of
plasma of radius ». The angles of incidence and refraction are ¢, and
6, respectively, while the other parameters are defined in the dia-
gram. Using Snell’s Law and geometric considerations, it is easy to
show that in the small-angle limit

a r

A 1 '
r+2|——1) R
I

When the refractive index of the plasma is unity (. = 1), then a = a,
or

—=1.
A

For an extreme ray of radius A, the effective radius of the beam
of incident radiation which is intercepted is a. The effect of the plasma
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is to reduce the radius of the incident beam that is intercepted from
a, to a. A measure of the refractive defocusing effect in one dimension
is then

a r

nN=—= =

a, 1
r+2(——1)] R
I

PLASMA PLASMA

(a)

&) lp—g
=
-

PLASMA PLASMA

(b)

fe— ¢ —f
N Nine . ,
S

'\:
PLASMA

(c)

PLASMa

Fig. 7—Refractive defocusing introduced by a uniform plasma for (a)
plane incident wave, (b) spherical incident wave, and (¢) focused incident
beam.
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We shall call 5 the “refractive defocusing coefficient” or in most cases
the “refractive defocusing.” Note that if . > 1, then 5 > 1, i.e,
focusing occurs.

For a plane incident wave, the defocusing coefficient 7 is a measure
of the beam of energy intercepted by a receiver of aperture dimen-
sion A, located at R in the presence of the cylinder of plasma relative
to that intercepted when there is no plasma cylinder. Note that for
a plane incident wave the spreading or defocusing of energy occurs
only in the plane normal to the cylinder axis and no defocusing effect
is present along the axis of the cylinder.

Spherical Incident Wave (Point Source)

A spherical wave incident upon a uniform slab or cylinder of plasma
will result in refractive defocusing of the incident beam as shown in
Figure Tb.

To determine the refractive defocusing for a spherical wave inci-
dent upon a uniform slab of plasma we can proceed as before. The
result is

a Ry,—d/2

oS¢ 1
Ryb+R—d<41———

\p® — sin¢ J

In the absence of plasma, @ — @, p = 1, so that

a, R,—d/2
A Ry+R
Hence

a 1
p=—= 5 (9a)

a, d Ccosh '
1——f1——-
R + 1\", \ '(/t'-' — .\‘il]"‘d)

In the small-angle approximation, cos¢ — 1, sing — 0, and

n= . (9b)
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For a spherical wave emanating from a point source, the total
energy received depends on the cross-sectional area of the beam normal
to the direction of propagation, i.e., it is proportional to a2. Hence
the reduction in received power due to refractive defocusing is given
by 5% A typical variation of 4* with electron density is shown in
Figure 8.

0 2 4 6 .8 1.0
N=(wp/w)2

Fig. 8—Reduction in received power due to refractive defocusing by a
uniform slab of plasma when a spherical wave is incident on the plasma.

For a spherical wave incident on a uniform cylinder of plasma,
following the procedure as before, (see Figure 7b) the relevant equa-
tions become

a r(Ry—1)

1
r(R+Ry) +2 <——1>RRn
n

In the absence of the cylinder of plasma,

a, R,—r

A R+R,

the refractive coefficient is
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a |
n=—= . (10)

a, 1 RR,
142( ———1)——
I r(R,+ R)

A result similar to Equation (10) was obtained previously by
Heald!>'¥, Notice that this is the refractive defocusing (power) for a
line source parallel to the axis of the cylinder of plasma, i.e., a cylin-
drical incident wave. For a point source, the reduction in power due
to refractive defocusing is given by the product of Equations (9) and
(10), since the defocusing will be two dimensional.

Focused Beam

A focused beam incident on a slab of plasma and focused at the
center of the slab will be defocused as shown in Figure Te. From
Snell’s Law and geometric considerations we arrive at

@, 2 -1 14
n=—=| —cosf;—1 ~ . (11)
a I 2—np

The reduction in power for a focused beam incident on a slab of
plasma will be proportional to 2, since 7 is the refractive defocusing
along a radius of the incident beam and the total incident power is
proportional to the area or (radius)? of the incident beam.

An incident beam focused at the center of a uniform cylinder of
plasma will not suffer refractive defocusing in the plane normal to the
axis of the cylinder (see Figure 7c). There will, however, be refrac-
tive defocusing in the direction along the axis of the cylinder since
in the axial direction the cylinder will present a plane rather than
cylindrical surface. This refractive defocusing is given by Equation
(11).

EFFECTS OF NONUNIFORMITY OF PLASMA

Consideration was given earlier to the phase change and attenua-
tion introduced by a slab of uniform plasma to the transmitted and
reflected fields of an incident microwave signal. In this section we

12 M. A. Heald, “The Application of Microwave Techniques to Stella-
rator Research,” Princeton Univ. Project Matterhorn Report MATT-17,
August 1959.

13 C, B. Wharton, “International Summer Course in Plasma Physics,”
Danish Atomic Energy Comm. Report No. 18, p. 579, 1960.
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shall consider the effect that a variation in electron density with posi-
tion in a plasma slab has on the phase change, attentuation, and re-
fractive defocusing. Variation of the plasma properties both in the
direction of propagation and normal to the direction of propagation
are considered.

Plasma Properties Varying in Direction of Propagation

No Boundaries

Consider a plane wave incident normally on a slab of plasma of
thickness d, as shown in Figure 9a. Let the electron density be a

PLASMA

TIIIIII77777777777
UL

o]

Fig. 9(a)—Plane wave incident on plasma slab whose properties vary in
direction of propagation (z-direction).

function of position in the slab in the z-direction only (the direction
of propagation). Since the plane wave is incident normally on the slab
of plasma no refractive defocusing effects will occur even if the plasma
properties vary in the direction of propagation.

Initially, neglect the effect of the plasma boundaries so that the
reflected wave and multiple internal reflections within the plasma can
be ignored. (We shall return to these later.) This is a reasonable
assumption for a dilute plasma or a very lossy plasma.

Considering only the wave transmitted through the plasma then,
the phase change A¢ and attenuation A, introduced by the plasma are
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a
/ B(z)
Ap =1k /<»———1 dz, (12a)
« k
a(2)
A, =Fk dz, (12b)
I

where f(z), a(z) are the phase and attenuation coeflicients, respec-
tively, and k = 27/ is the wave number in free space.

It is advantageous to normalize the phase change and attenuation
with respect to the thickness of the slab. Setting s = 2z/d yields

1

Ad B(s)

AP = — = —1 ) ds, (13a)
Ied k

0
1
A, T oals)
A= — / ds. (13b)

ed I

0
The effect on a plane wave introduced by the plasma slab is then
exp {—kd (A — jA®D) }.
When the losses in the plasma are small, K, > K, (this is the

only type of plasma for which present free-space microwave techniques
are applicable), we can write

B(s)
=Ki=\V1—N(s), (14)
k
where
0, (8) e2n(s)
x\" ( S) = —
»? m (0(1)2

For a dilute lossless plasma N(s) <« 1, so that

B(s) N(s)

k 2
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and

1

1
Aq):——/l\'(s) ds. (15)
2

0

Thus for a dilute plasma the change in phase depends only on the total
electron density along the path and not on the electron density dis-
tribution. In subsequent calculations we shall 7ot make the dilute
plasma approximation in considering the effect of the form of the
electron distribution on the phase of the transmitted electromagnetic
wave but will retain the restriction that K, > K.

The effect of the electron density profile on the phase of an electro-
magnetic wave transmitted through a plasma has been considered by
Wharton' and by Motley and Heald.!s We shall adopt the slightly
more general results due to Johnston.!®

Consider the electron density profile in the slab of plasma to be
given by a “barn roof” type of distribution (as shown in Figure 9b)
of the form

A

N=—m7 0 N, 0<s< (1—A4),
1—A

(1—A4)
N=N,| A+—— (s—{1—4))
A

(1—-4)<s<1,

(16)

where
N,, is the maximum normalized electron density,

A(<1) is the height of the “shoulder” and is also the ratio of
the average electron density to the maximum electron

density, i.e., the average electron density in the slab is
AN,,.

The normalized phase change introduced by a slab of plasma of
this form of electron distribution is then

' C. B. Wharton and D. M. Sleger, “Microwave Determination of
Plasma Density Profiles,” Jour. Appl. Phys., Vol. 31, p. 428, 1960.

1"R. Motley and M. A. Heald, “Use of Multiple Polarizations for
Electron Density Profile Measurements in High Temperature Plasmas,”
Proc. Symp. on Millimetre Waves, p. 141, Polytechnic Press, New York,
1960.

1 M. P. Bachynski, I. P. Shkarofsky, and T. W. Johnston, Plasmas
and the Electromagnetic Ficld, Chapter 13, Addison Wesley Publishing
Company, Inc., Reading, Mass. (in press).
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r A 1/2
AD = f 1—N,, s :| ds
L 1—A
B ( 1—4 12
& 1—N, J A+ (s—(1—A)) ] ds—1
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Fig. 9(b)—Electron density distribution in the plasma slab as function of
position. N, is the maximum or peak normalized electron density. A is
the height of the shoulder of the “barn roof” type of distribution.

For a uniform slab, A = 1, N = N,, and we go back to the original
integral (Equation (13a)) to obtain

(A®), ;= (1—N,)V2—1. (18)

A plot of A® versus N, for different density profiles (different values
of A) is shown in Figure 10a. If we now normalize the results to
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correspond to slabs of equal total electron content (equal values of
AN, the result is shown in Figure 10(b). The striking feature to
note is that the phase is quite insensitive to the electron density pro-
file, even for densities very near to the critical density, but depends
almost exclusively on the total electron content. It is thus impossible
with phase measurements performed at a fired frequency to ascertain

1.0 1.0 F
[
A=10 A=10
9
8
6
AD \D <
.4 41
oD
o2 b
o2 .3
51
0 0 T T T T l
0 2 .4 N .8 1.0
AN,
(a) (b)

Fig. 10—Variation of phase change introduced by a plasma (a) with nor-
malized electron density for different spatial distributions of electron
density and (b) with average normalized electron density for different
spatial distributions of electron density (after Johnston!®).
with any degree of accuracy the electron density profile. Only meas-
urements performed at a number of different radio frequencies on the
same plasma can hope to give an indication of the electron density
distribution. This corresponds to keeping A fixed (same plasma con-
ditions) and varying N, (by changing the radio frequency).

An indication of the dependence of the attenuation on the electron
density profile is of value for analyzing experimental data. To a first
approximation, the effective collision frequency is independent of the
electron density and is considered as a constant throughout the slab
in the ensuing discussion. In a plasma where K, > K,, the attenua-
tion coefficient becomes
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N (s)
= =— : (19)
k 21\’,.‘ & o \/ 1— N( 8)

For the “barn roof” distribution of electron densities given by Equa-
tion (16) the normalized attenuation coefficient is

Ni(s) ds
/ -\l\))"-'

A

N, s ds

v 1— A
. A 172
) 1— N,s
A

These are standard integrals which yield

v 4 [1—A i—4 A AN,, 172
A=——o < - 1+ ——)(1 — AN,
o 3N, L A A Y=g 2
A Ny L
- <H_~ (lax,,,> en
ol 2

For a uniform slab (4 = 1, N = N,) we go back to the initial ex-

"

pression (Equation (13b)) to obtain
v A\’NI
o (1—N,)?
A plot of A/ (v/w) versus N, for different density profiles is shown in

Figure 1la. Again normalizing the results to total electron content
of the slab, (Figure 11b) reveals that the effect of the density distri-
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bution is not apparent until N,, > 0.8, i.e., the electron density must
be at least 80 percent of the cutoff density before the attenuation
becomes sensitive to the electron density profile. It is thus apparent
that single-frequency measurements of either or both phase and at-
tenuation will give little information on the electron density distribu-

AN w/e)

(a) (b)

Fig. 11—Variation of normalized attenuation introduced by a plasma (a)

with normalized electron density for different spatial distributions of elec-

tron density and (b) with average normalized electron density for different
spatial distribution of electron density.

tion throughout the plasma. Simultaneous probing at multiple fre-
quencies offers some hope in this direction.

Effect of Boundaries

When the effect of boundaries is taken into account for a plane
wave incident normally on a slab of plasma, a part of the incident
field is reflected and a part is transmitted. There are then four meas-
urable parameters—the phase and amplitude of the transmitted wave
and the phase and amplitude of the reflected signal.

The effect of the electron density varying in the direction of propa-
gation (z-direction) on the fields reflected and transmitted by a plasma
slab have been considered by a number of people (see, for example,
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Budden!™1%), with probably the best set of numerical results being
recently obtained by Albini and Jahn.!" Albini and Jahn solve the
nonlinear wave equation

V2E 4+ kK(2) E=0

by machine computation for various distributions of the electron
density. Of particular interest to this work is their numerical results

N(Z)

|
|
|
[
|
|
|
|
|

|
|
|
|
|
|
|
|
0 J
0 z, (Z,-2) %
Fig. 12—Trapezoidal distribution of electron density in a plasma slab as
used by Albini and Jahn!’' in computing effect of spatial electron distri-
bution on transmission and reflection of electromagnetic waves.

for a slab with “trapezoidal” electron distribution, i.e., a uniform
slab of plasma bounded by symmetric linear ramps of electron density.
Such a trapezoidal electron distribution (in the notation of Albini
and Jahn) is shown in Figure 12. Note that changing Z, A is equiva-
lent to changing the electron density profile, whereas changing Z,/A
simply changes the thickness of the slab. The total electron density
over a cross section of the slab is N, (Z, — Z,), while the average

17 K. G. Budden, Radio Waves in the Ionosphere, Cambridge Univ.
Press, 1961.

15 G. R. Nicoll and J. Basu, “Reflection and Transmission of an Electro-
magnetic Wave by a Gaseous Plasma,” IEE (London) Monograph No. L98E
January 1962.

19 F. A. Albini and R. G. Jahn, “Reflection and Transmission of Elec-
tromagnetic Waves at Electron Density Gradients,” Jour. Appl. Phys.,
Vol. 32, p. 75, Jan. 1961.

20 F. A. Albini and R. G. Jahn, “Reflection and Transmission of Elec-
tromagnetic Waves at Electron Density Gradients,” Tech. Note No. 3,
Guggenheim Jet Propulsion Centre, Calif. Inst. of Technology, Pasadena,
Oct. 1960.
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electron density is N,, (1 — Z,/Z,). We use the numerical results of
Albini and Jahn, but present them in a slightly different form.

The value of the total electron content of a plasma as a universal
normalizing parameter was illustrated earlier for the case of an un-
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Fig. 13-—Normalization to average electron density of the computations
due to Albini and Jahn'"*" showing the effect of the spatial distribution of
electron density on (a) amplitude of transmitted wave for K — 0.25 and

(b) phase shift of reflected wave and transmitted wave for K — 0.25.

o0

bounded plasma. Taking the numerical results of Albini and Jahn and
plotting them against (Z, — Z,) /A for different values of the “ramp”
distance Z,/A results in the curves shown in Figure 13. Note that
(Z, — Z,) /A is the normalized width of a uniform plasma slab of
electron density equal to the maximum density of the trapezoidal dis-
tribution and containing the same number of electrons as the slab of
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width Z, and having a trapezoidal distribution of electrons along its
width.

Figure 13a shows the variation in amplitude of the reflected and
transmitted signals with slab thickness for different “ramp” distances
(Zy/\) for a lossless plasma of dielectric coefficient K = 0.25. As
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. | 05

: el
‘ ~ | o028
‘ . |

A X
LN
= a2 '\\ | 20 |

(C) § Y o - ' - S\ 701’ *"\ o

L E S D
AL DN enece

W
H
4 ,

H ! |
_slo _i 04 1 Jos | p24 18 h,

Fig. 13 (cont.)—Effect of spatial distributions of electron density on (c)
amplitude of transmitted wave for K = 0.24 — j0.10 and (d) phase shift
of reflected wave and transmitted wave for K — 0.24 — 50.10.

expected, the more gradual the ramp, the better is the “match” of the
plasma; hence more of the signal is transmitted through the slab and
less is reflected from the plasma. The important point to notice is
that the positions of the maxima and minima of both the reflected and
transmitted signals depend on the total electron density or the physical
length of a uniform plasma slab, and not on the actual physical dimen-
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sions of the slab. This is the case until the ramp dimensions become
quite significant (Z, '\ = 0.50).

The effect of losses on the behavior of the amplitude of the trans-
mitted and reflected waves is shown in Figure 13¢ for a plasma of
dielectric coefficient K — 0.24 — j0.10. In the presence of losses, the
signals become less sensitive to the shape of the boundaries. In par-
ticular, the transmitted signal does not depend significantly on the
shape of the electron density profile. As before, the minima and
maxima, which have become drastically damped, occur at the same
position for ramp distances up to 0.5\ when the slab dimensions are
normalized to those of a uniform slab.

The phase of the transmitted and reflected waves® can also be put
in a normalized form that shows their dependence on the total elec-
tron content and relative insensitivity to the shape of the electron
density profile. Albini and Jahn plot the total phase shift of the
transmitted wave ¢, upon passing through a plasma slab of thickness
Z, and include the free-space path as well. To put this result into the
form of the phase change introduced by the plasma Ad it is necessary
to subtract from @&, the phase change in a path length Z, in free-space.
Thus,

Zy
A¢, =27

— |®r].

/

Figures 13b and 13d show plots of the phase shift of the trans-
mitted wave introduced by the plasma normalized to total electron
density. The phase shift is very nearly the same as calculated for the
unbounded plasma. The effect of boundaries is to make the phase
undulate slightly about the no-boundary value. The influence of losses
does not introduce any significant modifications. The density profile
changes the phase very slightly—by an amount which, because of the
present-day precision of plasma microwave measurements, cannot be
used to give any reliable information on the density profile of the
plasma.

For the phase of the reflected signal, consider the reflections to
occur from the slab as if the boundary were located at the midpoint
between where the plasma starts and where the maximum electron
density has been reached. This is again replacing the slab by an
equivalent (in total electrons) uniform slab of the maximum density.
We, therefore, take the phase of the reflected wave ®, as calculated
by Albini and Jahn and add (2z/\)Z, to their result (since the effec-
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tive boundary of the slab is considered to be at Z,/2 and the wave has
to travel this distance twice). Thus

27

Ap, = By + — Zo.

Plots of A¢, versus (Z, —Z,) /A (i.e., slab width) are shown in Fig-
ures 13b and 13d. Only at values of Z,/\ > 0.5 does the character of
the reflected phase depart notably from that of a uniform slab whose
electron density is the same as the maximum of the trapezoidal elec-
tron distribution and which contains the same total number of electrons
as the trapezoidal slab.

Plasma Properties Varying Normal to Direction of Propagation

Consider a plane wave normally incident upon a plasma slab as
shown in Figure 14a. The properties of the slab are constant through-
out the thickness of the slab, but depend on the distance from the
center of the plasma slab. That is, the electron density n(r) varies
in the direction normal to the direction of propagation. At the incident
boundary of the slab (z=0), the phase front of the incident plane
wave coincides with the front face of the slab. At the second boundary
of the slab (z=d) the phase of the wave emanating at a height »
above the center line of the slab is

Ap=kd [1—VI=Nm1.

The phase difference between the wave coming through the slab at
height » and the wave coming out at the center of the slab (r=0) is

Ap(r) —AP(0) =kd [—/1—N(r) +/1—N,l, (22)

nye
where Ny= R
Mmego*

n, is the electron density along the width of
the slab at position » =0,

2

€2
N(@) =n(r)

Megn?

Equation (22) is thus the equation of the phase front (surface of
constant phase) of the wave emanating from the plasma; the front
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aas the form shown in Figure 14b (provided N, > N(7)). When
N(r) > N, the curvature is in the opposite direction.
In physical space the important parameter is the optical path
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Fig. 14—Notation for discussing energy propagation in a plasma whose
properties vary in direction normal to direction of propagation: (a) plane
wave incident at distance » from center of plasma whose properties depend
on distance from center, (b) surface of constant phase of wave emerging
from plasma, (¢) approximate path of ray in plasma and emerging from
plasma, and (d) accurate path of ray in plasma and emerging from plasma.

length. The surface of constant path length is given by

Ad(r) — A (0)
®(r) = = =d[—VI—N@) +VI=N,]. (28)

This is the shape in free space of the planes of constant phase given
in terms of physical dimensions.




ELECTROMAGNETIC PROPERTIES 37

Considering that the phase fronts are orthogonal to the direction
of energy travel, the ray incident upon the slab of plasma at height »
is refracted so that it emerges at some angle ¢ () as shown in Figure
14c. The angle ¢ (7) is given by

dd (1) d dN(r)/dr
B ooty (24)
dr 2 VI=N

tan #/(’)') — —

If the beam of incident radiation of radius @ is intercepted by a plane
of half-width A located at distance R from the second surface of the
slab, then the refractive defocusing introduced by the nonuniform
electron density variation of the slab, 7, is given by

g
A

(The true situation is shown in Figure 14d. The normally incident ray
at height @ undergoes continuous refraction as it traverses the slab
and emerges at a height (¢ + 8a) traveling in the direction ¢ (a).
Subsequently we shall assume da << @ and consider the incident ray
to travel at the same height in the slab, but to emerge at angle ¢ (a).)
In practice this is probably a good assumption since the presence of
the dielectric plates of the plasma container will tend to counterbalance
the refractive defocusing and in effect make da small.

The effect of the nonuniform electron distribution in the plasma
slab can be thought of as a plasma lens of constant electron density
but shaped so as to give the same phase change to an incident plane
wave as does the plasma slab.

We can thus write

A—a d (dN(r)/dr), ,
tan ¢ (a) = = —— 5 (25)

R 2 V1—N(a)

or
a Rd dN (r)/dr
n=—=14——-—"-—". (26)
A 2A \/1—N(a)

A number of variations of the electron density with direction nor-
mal to the direction of propagation, and the corresponding refractive
defocusing coefficient, are listed in Table I. A convenient distribution
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for laboratory experimental purposes is the parabolic distribution,
particularly since I' represents the amount by which the electron
density has decreased at the edge of the experimental plasma container
relative to the electron density at the center. Despite the fact that the
resulting equation for 5(a) is transcendental it can be very readily
solved for fixed values of A.

Table 1
dN ()
Electron Distribution n(a)
in Plasma Slab N (») dr
N(r) = N, (constant) 0 1
N(r) = No(1 =T (r/7r0)) — I'No/ro d R I'N,
(linear) 1— _—
2« A V1 —N(a)
N () = No(1 —T'(r/70)?) — 2N (r/rs®) 1
(parabolic)
R I'N,
1+d _
re V1—N(a)
N (r) = Naoexp {— T'(»/70)?} — 2UN () (»/7?) 1
(Gaussian)
R I'N (a)
14d—m M —
r® V1—N(a)
3 T d R TN, (Tr/r)
N (») = NoJo ( == ) — No — J1(Tr/70) 1l
ro 7o 2re A VI—N{(a)

ro = radius of actual plasma (finite in experiment)
r, = radius of laboratory plasma bottle.

Numerical results for a parabolic distribution of electron densities
as determined from Equation (26) are shown in Figure 15. As can
be seen, if the plasma is nonuniform then very strong attenuation
effects can be obtained due to these refractive effects.

The geometrical-optics type of refractive defocusing that has been
considered cannot take into account the phase difference between the
various rays (from different radii) as they reach the receiving an-
tenna. In order to do this, resort must be made to diffraction theory
as shown in the next section.
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Fig. 15(a)—Refractive defocusing effect due to plasma properties varying
normal to direction of propagation as function of plasma nonuniformity for
different electron densities at center of plasma. (Parabolic distribution of
electron density in direction rormal to propagation and A = », is assumed.)
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Fig. 15 (b)—Refractive defocusing effect due to plasma properties varying

normal to direction of propagation as function of electron density at center

of plasma for different geometrical arrangements and degrees of non-
uniformity. (A = r, is assumed.)
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ELECTROMAGNETIC WAVE PROPAGATION THROUGH LABORATORY PLASMAS
AS A DIFFRACTION PROBLEM

Most laboratory-scale plasmas are only a few wavelengths in ex-
tent, and hence when the properties of the plasma are to be measured
using electromagnetic waves, diffraction will play a major role in deter-

v DIELECTRIC PLATES
o =olo INCLUDED

w

Fig. 15(c)—Phase and attenuation of a plane incident wave transmitted

through a slab of plasma including the effect of dielectric plates and of

lateral defocusing in one dimension for a parabolic distribution of electron
density in direction normal to direction of propagation. (A — )

mining the electromagnetic energy that emanates from the plasma,
and its distribution in space.

When considering diffraction phenomena, the Kirchhoff scalar dif-
fraction formula, although not rigorous in its formulation, has enjoyed
considerable success when applied to actual physical problems. Using
the scalar diffraction formula, the field «# at point p may be written

i | e—Jks 9y ? [ e—iks ]
w(p) :--/ —-~——¢/—< L ds, (27)
4= g s on on s /)
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where s is the distance of the field point p to the surface of in-
tegration,

¢ is the value of incident field (amplitude and phase) at
the element of integration,

7 is the normal derivative in the plane of integration,
S is the surface of integration.

Application to Point Source Illuminating Finite Plasma Slab

To consider the diffraction phenomena introduced by a finite
plasma, let a source of electromagnetic energy be situated at point S
(see Figure 16a) a distance (R — d) from a uniform slab of plasma
of thickness d. The exit pupil of the system is an aperture of radius »
located at the exit position of the plasma slab. (In practice,® it is
found that the exit pupil of a finite plasma container determines the
major diffraction effects, so that the above model is a good approxima-
tion to a cylindrical slab of plasma of radius » and thickness d.) This
exit pupil is taken as the surface of integration. The problem is then
to determine the incident field over the exit pupil and perform the
integration according to Equation (27) in order to evaluate the field
at the point p.

The field incident from the source must pass through the plasma
slab before it reaches the point of integration p’(r,$¢) where r,¢ are
the polar co-ordinates in the exit pupil. With reference to Figure 16b,
let L, be the path of the incident radiation in free space and L, the
path of the incident radiation in the plasma which reaches the point
p’. Let the refractive index of the plasma be K12 = (B/k) — ja/k.
The phase of the incident field at p” is then

B
¢‘=k(L1+7L2>,|

and the amplitude of the incident field is

exp {(— k(a/k) L.}
U:UO((i)) R )

where U, is the free-space radiation pattern of the source
representing both the strength and directivity
of the radiation, and
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Fig. 16—(a) Geometry for derivation of diffraction due to a plasma slab

located in front of a circular aperture in a metal screen; (b) optical dis-

tance traveled by radiation from source to exit pupil of diffracting system;

and (c) optical distance traveled by radiation through plasma and from
exit pupil to field point p.
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exp {— k (a/k) L.} represents the attenuation of the incident field
in its passage through the plasma.

(The effects due to the boundaries of the plasma have been neglected.)
Again with reference to Figure 16b we can write

sing — — sind,,
a r
tang = = ;
R—d R+3
r—a
tant, =
d

For most practical purposes we can set sing ~ tang, sinf, ~ tand,,
which leads to

r d
14—
(R—d) (B/k)

1
§=d —1 ).
(B k)

We can write

a2
Li=[(R—d)?*+a*]"*~R—d+—— fora < (R—d),
2(R—d)
e 1
=(R—d) + = (R—d) + gr-,
2(R—d) ( d )2
1+ —
(R—a) (B/k)

where

g:
2(R—d) d 2
1y
(R—d) (B/k)
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and
(r—a)2
L-_.:[d:'i‘ (r—a)“]‘/"-'~d+*— for (r—a) < d,
2d
r2 1
:d+__ :d+fr21
2d R B ]2
1+<——1 —
d k N
1
where f=

The incident field over the aperture is thus

Uy(r)

exp {(—ad — jk(R + ((B/k) —1)d)
—afr®—jk(g + (B/k) f)r2). (28)

-

The distance s from the field point p to the point of integration p” can
be written

s=[(Ry+x)2+ p>+ 72— 2pr cos (¢ — $)]1/2,

Letting R’ = [ (R, + x)2 + p2]1/2,

r? —2prcos (¢ —¢) 1/2 rs 2pr
s=R'| 1+ ~R 4+ —— cos (¢ —d¢).
(R)*

For the far field, the diffraction integral can be written

ik e—Jke
u(p) =— /] / ds. (30)
27 s s

We now make the normalization » = al, where a is the radius of the
exit pupil and 0 =1=1. Using Equations (29) and (30), the field at
the point p can be written
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ika?
u(p) = exp —]A[R+R’+d<———~l>]—-—ad
27RR’
f B
Uy,(l) exp 4 —eafa?l2—jk| g+f| —
L ke
0 0
1 pa
+ ]a:l:-{*-j]\'[
2R’/

:llcos (y—¢) } ldld$. (31)
RI

Equation (31) includes the usual far-field approximation. If a com-
puter is available or if greater accuracy is desired, then the exact
values of for ¢ and s can be used.

Let
B 1
P=k g+—f+——)a’~’,
k 2R’
ka
Q:—P’
RI
B
0=k|{ R+R 4| ——1|d ).
I
Then

u(p) =7

1 27
a2
exp {— 70 — ad}
RR’ .
o 0

U, (1) exp {— afa®l> — jPI* + jQlcos (y — ¢) } ldldp.  (32)
The integration with respect to ¢ is readily executed to give

1

(27a?)
u(p) =7 exp {— j0 — ad}
RR’

/

0
U, (1) exp {— afa2l?} J,(Q)Idl, (33)

where J, is the zero-order Bessel function of the first kind. For the
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field along the principal axis of the system Q — 0 so that
1

7 (27a?)
u(p) =————exp {— j# — ad)
ARR’

0
Uy (1) exp {— afa?lz — jPI2} ldl. (34)

Consider then the field along the principal axis for a lossless plasma
(@ =0) that is uniformly illuminated from a point source located at
S (i.e., Uy(l) = u, = constant). In this case

1

wip) (27a®)
=7 exp {— j#) exp {— jPI?} ldl
i ARR’

0

(27a®) 1 P sin(P,/2)
=j —exp § —ji — — |. (85)
ARR" 2 2 P/2

The intensity along the principal axis is thus

k2at sin(P/2) 72
I(p) = . (36)

4(RR")* P/2

This is just the field along the principal axis of a circular aperture.
To study the influence of the plasma we must consider the parameter
P. After some algebra we can write

<I’ ka? 1 |
2 4 R’ 1
R+d<*‘1>
Bk

ka*/ 1 1 d [/ 1
~——+— —1)).
4\ R R R\B/

The effect of the plasma is thus to decrease the value of (P/2) since
the term (B/k)/[d + (R—d)B/k] decreases as B/k decreases. The
effect of the plasma is to shift the axial radiation pattern of the
system.

When the plasma is lossy (a+0), and if the directivity of the
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incident radiation can be approximated in the form
Uy(l) = uyexp {— Bol*}

then Equation (34) can be written

u(p) j(2ma2) 1
= —exp < —jb
(1 I\RR, 2

([ P—ilafa®+ o)
Sin
2

7
— — (P —7j [afa* + By]) 1 —| (37)

2 J I: P —j(afa® + By)

2 J

The intensity along the principal axis is then

k*a* exp {— By — afa?}
I(p) = — {co'~h (B + afa®)

4(RR’)* <1>'+ (By + afa?)? >
4

— COoS P}:I (38)

The effect of the losses in the plasma on the intensity is the same as
the effect of using a directive antenna.

Application to Plane Wave Hlumination of Plasma Whose
Properties Change in Radial Direction

Consider a plane wave incident on a slab of plasma as shown in
Figure 16¢c. The plasma is considered to be nonuniform with the
electron density N (r) depending upon distance » from the center of
the plasma. A ray incident upon the plasma at » emerges from the
plasma at angle ¢. Assume a perfect lens is located a distance R from
the second surface of the slab. The energy at the focus of the lens is
then readily determined if we know the field distribution incident
upon the lens. We can thus write

e‘m {(— 7kR,} ik exp {— ikR,)
u,,)_:__ dS=————— [ ydS, (39)
2w R,

8
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where y is the field incident on the lens. The incident field at the point
p’ is then

¥ (') =y exp {— jdVK — jkL,}, (40)

where ¢, is the amplitude of the field incident on the plasma. Now

R
Ly=[R*+ (p—7)2]"/2=R [1 + tan? y]1/2 ~ B + — tan? .
2

From Equation (25)

d dN(r)/dr
tany(r) =———8+—
2 VI—=N@)

If we restrict ourselves to a parabolic electron variation (any of the
other variations listed in Table I could be used as well) then

dN,T r
tany(r) =——mm — —— |

V1I—=N(r) ry?

Hence we can write

where

1/ d 2
S=—(—TN, ) A +Ny+N2).

To

Thus
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_ B L@ No(1—T(r/19)?) 1/4
VK=——j—=| 1— (1 + jv/w)
k ke 1+ v2/0?

[ N0,< v NO’ v
[ )]
2 o 4 o
No' < v>[ Nn'< v >:| T 2
+—T (14— )| 1+— 1+ — ( )
2 [0} 2 0] To
r \2
(i)
To

where N/ =N/ (1 + v2/o?),

P, Q are complex.

Thus we have
r 2
v (p’) = yoexp < — jk(R + Pd) — jk (RS + Qd) (—) } (42)
To
The field at the field point p can thus be written

Po 27

ik 1
u(p) = ——exp {— jk (R, + R) — jkPd}
27 R, P

0

r 2
exp {— ik (RS + Qd)<——> } pdpdd, (43)
To

where p, is the radius of the lens. It has been established that

r
—=n,

P

where 7 is the coefficient of refractive defocusing. Hence

1
pdp = —rdr.
72
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Further make the substitution
r=rgl,

where 7, is the radius of the plasma, and

0=1=1.
Then
7(py/1Ty)
ik ry®
w(p) =— exp {— ik (R, + R) — jkPd) exp {— jk (RS + Qd) 12} ldl
¢ Ry
0
ik 1 sin B
= po> ——exp {—jk(Ry+ R) — j(Pkd + W)} - | (44)
2 0 w
where

k
W= ;‘ (RS + Qd) 9> (py2/1¢2).

Note that P and W are complex so that the expression is not as simple
as it seems. When the plasma and the lens are the same size, p, = r,,
and the values calculated for 7 in the preceding section are applicable.
(Otherwise 7 is calculated from Equation (26) in which A is set equal
to py). In the limiting case of

(a) uniform plasma, I'=0, so that S = 0, Q =0 and W =0;

Jk 1
u(p) =— py® —— exp {— ik [Ry + R] — ,ikdl: 1—
2 Rn

‘\.”, ‘\v"r " Av"/ ‘\v"/ 1
P8 —— [ 1+— |kd } (45)
2 4 o 2 2 J

k
(b) lens against plasma, R=0, =1 and W = — Qd;

ik 1L j kd
u(p) =—— pg2—exp< —jkRy— jk| P + — | d sin —Q
2 R,
{ 2

5
)

(46)
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Numerical results for a parabolic distribution of electrons are
shown in Figure 17, which illustrates the effect of the nonuniformity
in electron density, the effect of the distance of the lens from the
plasma, and the effect of collision frequency. One can, for example,
perform measurements at different distances from the plasma in order
to determine the degree of nonuniformity of the plasma. Note that

R=2r,26.24 A
V/w =05
d/h=19

Fig. 17(a)—Phase and intensity of an incident plane wave transmitted

through a slab of plasma and diffracted by a circular metal screen forming

the exit pupil of the microwave optics system showing the effect of non-

uniformity in electron density in the direction normal to the direction of

propagation. (A parabolic distribution of electron density in the lateral
direction and A — ». — p. is assumed.)

the nonuniformity in the electron density of the plasma and the geom-
etry of the arrangement (Rd r,*) have a far greater influence on the
electromagnetic wave passing through the plasma than does the colli-
sion frequency.

CONCLUSION

Analytic expressions and typical numerical results have been pre-
sented for the effect on transmission, reflection, and absorption of
electromagnetic waves of plasma and dielectric boundaries, refractive
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(c)
Fig. 17 (cont.)—Phase and intensity of an incident plane wave transmitted
through a slab of plasma and diffracted by a circular metal screen forming

the exit pupil of the microwave optics system showing (b) the effect of the
distance of the receiving lens from the exit pupil and (c) the effect of

various values of collision frequency. (A = r,=p,)
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defocusing by slabs and cylinders of plasma for plane wave and
spherical wave incidence, the effect of nonuniformity of the plasma
both along the direction of propagation and normal to the direction
of propagation, and for diffraction effects due to the finite size of a
plasma.

The influence of these effects is significant for any laboratory
measurements of plasmas using free-space microwave techniques. In
many instances they predominate over the effect of the parameters
of the plasma that are being determined and limit the amount (accu-
racy and detail) of information regarding the plasma that can be
obtained. It is, therefore, essential either to minimize these effects or
to take them into account in any quantitative interpretation of experi-
mental measurements.
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MICROWAVE TUNNEL-DIODE AMPLIFIERS
WITH LARGE DYNAMIC RANGE

By

R. STEINHOFF AND F. STERZER

RCA Electronic Components and Devices,
Princeton, N. J.

Summary—The large-signal behavior of tunnel-diode amplifiers is ana-
lyzed, and curves for calculating the gain-saturation characteristics of
gallivm arsenide, germanium, and gallium antimonide tunnel-diode ampli-
fiers are presented. Agreement between theory and experiment is good.
The design of microwave tunnel-diode amplifiers with dynamie ranges of
about 90 decibels (for 1 me noise bandwidth) is then discussed, and experi-
mental results obtained with such amplifiers are given.

INTRODUCTION

ONVENTIONAL microwave tunnel-diode amplifiers use ger-

manium or gallium antimonide tunnel diodes with peak cur-

rents of only a few milliamperes. Such amplifiers generally
have noise figures in the 3- to 5-decibel range, power outputs of several
microwatts, and dynamic ranges of less than 70 decibels® for power
gains of about 15 decibels. This paper describes microwave amplifiers
that use gallium arsenide tunnel diodes with peak currents of more
than 20 milliamperes. Although these GaAs amplifiers have a higher
noise figure (NF - 6 decibels) than amplifiers using Ge or GaSh
diodes, they can deliver hundreds of microwatts of output power and
have dynamic ranges that exceed 90 decibels. Cascaded amplifiers
consisting of low-noise Ge or GaSb first stages followed by a GaAs
second stage can combine 3- to 5-decibel noise figures with high power
outputs and large dynamic ranges.

In the first section of this paper, the large-signal behavior of
tunnel-diode amplifiers is analyzed, and curves for calculating the
gain-saturation characteristics of GaAs, Ge, and GaSb tunnel-diode
amplifiers are presented. The next section discusses microwave am-
plifiers that use high-current GaAs diodes, and gives design procedures
and experimental results. The final section discusses the use of cas-
caded amplifiers to obtain high power output with low noise figures.

*In this paper dynamic range is defined on the basis of 1-me noise
bandwidth and 3-db gain compression.

54
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LARGE-SIGNAL ANALYSIS OF TUNNEL-DIODE A MPLIFIERS

The power gain, G, of a circulator-coupled tunnel-diode amplifier
of the type shown in Figure 1 is given by'*

(Ry+ R)* + X*

) (1)
(Rl)—R)2+ X2

where R, is the characteristic impedance of the transmission line con-

TUNNEL-DIODE
AMPLIFIER

CIRCULATOR TRANSMISSION LINE

WITH CHARACTER-
ISTIC IMPEDANCE Rg

LOAD

Fig. 1—Circulator-coupled tunnel-diode amplifier.

necting the circulator to the tunnel-diode amplifier and
Z=—R+jX

is the impedance of the tunnel-diode amplifier. It is assumed that the
circulator is ideal and is matched to the transmission lines connected
to its ports.

At the resonance frequency of the amplifier, Equation (1) simpli-

fies to
R, \?2
14+ —
(Ry+ Rp)* R,

= = ; (2)

(RO_RR): Rln' :
j [
R,

1 K. K. N. Chang, “Low-Noise Tunnel-Diode Amplifier,” Proc. I1.R.E.,
Vol. 47, p. 1268, July 1959.

2M. E. Hines and W. W. Anderson, “Noise Performance Theory of
Esaki (Tunnel) Diode Amplifiers,” Proc. I.R.E., Vol. 48, p. 789, April 1960.
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where R, is the value of Z at resonance. Equation (2) is plotted in
Figure 2.

An a-c equivalent circuit of the amplifier that is general enough
for most practical applications is shown in Figure 3. Here the tunnel
diode is shunted by a parallel circuit admittance G, + jB,. The equiva-

R

o= & FORRRRy
-Ro

| % R FORRG<R,

GAIN - db

(¢}
1.0 20 3.0 4.0
LOAD RATIO o

Fig. 2—Gain versus load ratio at resonant frequency for a circulator-
coupled tunnel-diode amplifier.

lent circuit of the diode itself consists of three elements connected in
series—an inductance L, a resistance 7, and a voltage-dependent a-c
junction resistance R, shunted by a voltage-dependent junction capaci-
tance C,*. In the limit of vanishingly small r-f signals, R, is given by

av,
(Rd) s = ’ (3)

14

* The effects of the variation of Cs with voltage are usually small, and
are neglected in this analysis.
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where V,; is the voltage across the diode junction and I, is the current
through R, For finite r-f signals, an effective negative resistance
(R,),, which is defined as the ratio of the fundamental components
of the junction r-f voltage and current, is used.””

The power output of a tunnel-diode amplifier can be written

P(lllt:Pin+Pll—P3—P(" (4)

where P,, is the power input to the amplifier, P, is the power generated
by the negative resistance of the diode junction, P is the power lost

TUNNEL DIODEZ

Lq

d
+] [+
~+——TO CIRCULATOR Z—

Ro

LI

Fig. 3—Equivalent circuit of a tunnel-diode amplifier.

in the series resistance of the diode, and P, is the power lost in the
amplifier circuit. Now

V(i:
a— , (5)
2(Ry) .
where V, is the peak r-f voltage across the diode junction. Also
Vo2
P,=——7, [1+ 0*C,2(R) ] (6)
2(R,).*

** Because R, is nonlinear, harmonics of the input frequency are
generated for finite r-f signals and the output of the amplifier is in general
nonsinusoidal. Throughout this paper, the power gain and the impedance
of the amplifier are, therefore, defined in terms of only the fundamental
components of power, voltage, and current.
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Vy® f (Ry,\* ;
e —— Ta T+ (Rmin =) | — s (N
Z(Rd)c2 fr Rmin

where R, ;, is the minimum value of (R,), and f, is the resistive cutoff
frequency of the diode and is given by

len
— 1
raq
fo= . (8)
27TR"I|HCII
Finally,
27 |2
Pl? - I)iuRUGr' (9)
Z + Rn
Thus
1 f (R, \?* 1
Vﬂ: 1l— rq + (Rmin o 7'/I) e r
(er) ¢ fr Rmin J
Po= : (10)

1 2Z |2 R,G,
2(R), | 1——+ —| -
G |Z+R,| @

To calculate the power output of a tunnel-diode amplifier from
Equation (10), the dependence of (R;), on V, must be known. This
dependence was calculated for a typical GaAs tunnel diode by the use
of the following tenth-degree power series approximation of its I-V
characteristics:

10

Itl = Z a, V‘tt”' (11 )

n=0

Equation (11) is plotted in Figure 4 together with the measured /-V
characteristic of a GaAs tunnel diode (normalized to the diode peak
current, 7,). The figure shows that the power-series approximation
is excellent.

If the r-f component in V, is assumed to be purely sinusoidal,” then
Vi=Vy+ V,cos ot, (12)

*In general, V, contains harmonics of the input frequency. The effect
of these harmonics is usually small and is neglected here.
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and
10
Irl‘: Z (l”(V“-i- VUCOS ot)" (13)
=1, + I, cos ot + I, cos 2ot + - - -,
so that
‘,I)
(Ry),=—. (14)
1
Qo=

—— MEASURED
---- POLYNOMIAL FIT

1d
o/Ip
)

o
o

o]
b

NORMALIZED JUNCTION CURRENT

o\ I | =1 1 — - 1 o J

o] 0.2 0.3 0.4 05 0.6 07
JUNCTION VOLTAGE Vg -VOLTS

Fig. 4—Normalized -V characteristic of GaAs tunnel diode.

Figure 5 is a plot of calculated values of (R,), R, " as a function
of V, for a GaAs diode that has the I-V characteristics shown in
Figure 4. Also shown in the figure are experimental points obtained
from the measured gain-saturation curve of a microwave amplifier.
Agreement between calculated and measured values is good.

The -V characteristics of typical Ge and GaSb tunnel diodes are
shown in Figure 6;

0.120
for the Ge diode, R ™ =—
! (15)
0.060
for the GaSb diode, R,in
 §

** Most practical tunnel-diode amplifiers are d-c¢ biased at the minimum
negative resistance point. For the GaAs diode of Figure 4, Ruin~ 0.22/1,.
(MKS units are used throughout this paper.)
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1.8 .
© EXPERIMENTAL POINTS FROM 10db
AMPLIFIER (I,=2.8 ma)
— CALCULATED FROM POLYNOMIAL
1.6 - FIT OF FIG.4 r T 1 1

min

NORMALIZED EFFECTIVE (ROL /R
JUNCTION RESISTANCE

0.04 oos8 0.12 016 0.20
AMPLITUDE OF rf VOLTAGE ACROSS JUNCTION V,-VOLTS

Fig. 5—Normalized effective junction resistance versus amplitude of r-f
voltage across the junction for a GaAs tunnel diode having the character-
istics shown in Figure 4.

Y,

o
@

JUNCTION T,

02

% 510 020 030 530
JUNCTION VOLTAGE \4-VOLTS

Fig. 6—Normalized I-V characteristics of GaSb and Ge tunnel diodes.
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Plots of (R,),/R,;, versus V, are given for these diodes in Figure 7.
These curves, like the experimental points of Figure 5, were calculated
from measured gain-saturation characteristics.

22
w
S 20
g
2]
@
w
x
18
z
o
=
g <
S E
Qx 1.6
¢
ce
e
R
w
o
w
N
2 12
>
S
z
1.0l ! 1 | 1
0 0010 0020 0030

AMPLITUDE OF rf VOLTAGE ACROSS JUNCTION Vqo-VOLTS

Fig. 7—Normalized effective junction resistance versus amplitude of r-f
voltage across the junction for GaSb and Ge tunnel diodes.

DESIGN OF HIGH-POWER TUNNEL-DIODE AMPLIFIERS

Choice of Diode Material

In general, a tunnel diode cannot be prevented from oscillating and
therefore cannot be used in a stable amplifier unless?®

L; <3(R,) &#Cy. (16)

In practice, stabilization of a tunnel diode is extremely difficult if
L, > R,:,°C,, and hence the maximum allowable value of L, is usually

(Ld) max — len‘-,cd' (17)

The voltage-gain-bandwidth product (for G > 1) of a single-tuned

3 L. I. Smilen and D. C. Youla, “Stability Criteria for Tunnel Diodes,”
Proe. I.R.E., Vol. 49, p. 1206, July 1961.
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circulator-coupled tunnel-diode amplifier is given by

1
GB~ ————. (18)
'—‘Rlllill('d

Substituting this relation into Equation (17) gives

«
(Igz)mnx~'—' (19)
WGUBL(I

where a« = I ,R,;,. The relative values of a for GaAs, Ge, and GaSh
diodes are

(a)ﬁu‘\s . ((Y)(:(- : (a)(:nsl. =i ] :0-5:0.27. (20)

Equations (19) and (20) show that for the same values of voltage-
gain-bandwidth product and inductance, the maximum usable peak
current is considerably greater for GaAs diodes than for either Ge
or GaSb diodes.

The maximum power generated by the negative resistance of the
diode is directly proportional to the maximum value of the diode peak
current and the maximum value of the peak voltage across the diode
junction; i.e.,

(P(I)m:lx o (Ip)nmx (VU)nmx (21)

where (V). is determined by the maximum allowable large-signal
gain depression of the amplifier, i.e., the maximum allowable value of
(R;),/R,;,. For example, from Figures 5 and 7, for ((R,),/R,) max
=15,

(Vo) max gaas = 0.1495, (V) nax ge = 0.0206, (Vo) maxcasy = 0.0115, (22)
and from Equations (20), (21), and (22),

(Pg) max cans * (P2) miaxce ° (Pa)max gaspy =1:0.069:0.021. (28)
Thus, the power output of amplifiers using GaAs tunnel diodes can

be many times larger than the power output of amplifiers using Ge
or GaSb diodes.



MICROWAVE TUNNEL-DIODE AMPLIFIERS 63

Diode Housing

High-power tunnel-diode amplifiers must use diodes with high peak
currents. Because (1), is proportional to 1/L, (see Equation (19)),
it is important that the value of L, be held to a minimum. For diodes
housed in conventional ceramic “pill” packages, L, ranges from about
100 to 600 picohenries. In our experiments the diodes used were
mounted in a recently developed stripline package (see Figure 8). The

TIN ALLOY DOT

OHMIC TOP GALLIUM ARSENIDE
CONNECTION PELLET
STRIP
\ [ SOCOER TRANSMISSION
LINE

c ] 7 =
LN

BRASS BLOCK —

Fig. 8—Low-inductance tunnel-diode package.

inductance of these packages is estimated to be of the order of 50
picohenries, and they can be mounted into strip transmission-line cir-
cuits with a minimum of discontinuity between package and circuit.

Experimental Amplifiers

We have built experimental L-band tunnel-diode amplifiers using
GaAs diodes having peak currents of the order of 20 milliamperes
and voltage-gain-bandwidth products of the order of 3.0 gigacycles
(R,,,2C,~ 800 picohenries). The diodes were mounted in re-entrant
strip transmission-line resonators of the type discussed in detail in
Reference (4). Figure 9 shows typical curves of gain and power
output of a GaAs tunnel-diode amplifier as a function of power input.
The dynamic range of this amplifier is about 90 decibels. This range
is more than two orders of magnitude greater than the range of con-
ventional 1-milliampere Ge diode amplifiers having the same gain.

Power outputs of the magnitude illustrated in Figure 9 by no
means represent the maximum values that can be achieved at micro-

* This development was carried out by RCA under U.S. Army Signal
Corps sponsorship.

tF. Sterzer and D. E. Nelson, “Tunnel Diode Microwave Oscillators,”
Proe. I.LR.E., Vol. 49, p. 744, April 1961.
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wave frequencies. Methods to increase the power output include paral-
leling of amplifier circuits, use of more than two diodes in a single
amplifier circuit, use of high-current tunnel diodes with distributed
junctions mounted in very low inductance packages, and cascaded
amplifiers.
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5 15 E
p
s o
1 )
z O —"20 x
3 E
£ o
a
I -
= 25 2
=
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- ——{30

‘ - 35

-50 -45 -40 -35 -30 -25 -20 -15 -10 =5

INPUT POWER - Ry (dbm)

Fig. 9—Gain and power output versus power input for a 22-milliampere
GaAs tunnel-diode amplifier.

CASCADING OF AMPLIFIERS

For tunnel-diode amplifiers using similar diodes, it is generally
true that the lower the gain of the amplifier, the higher the power
output at which the amplifier starts saturating (see Equation (1) and
Figures 5 and 7). Thus, if two similar amplifiers are cascaded, they
will saturate at a higher power level than a single amplifier having
the same gain as the cascaded amplifier. This fact is illustrated in
Figure 10 where the power output of lossless single-stage and two-
stage cascaded amplifiers are compared. The figure shows that the
cascaded amplifiers have significantly greater saturated power output
and dynamic range.

Cascading can also be used to improve the power-handling capa-
bilities of low-noise tunnel-diode amplifiers. The minimum noise
figures of tunnel-diode amplifiers (if negligible losses and high gain
are assumed) are approximately as follows:
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Diode Material Minimum Noise Figure
(decibels)
GaAs 4.9
Ge 3.8
GaSh 2.8

Thus. while GaAs diodes have the highest power-handling capability,
they also have the highest noise ficure. To combine the low-noise
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Fig. 10—Gain-saturation characteristics of lossless single-stage and two-
stage GaAs amplifiers. Each stage in the cascaded amplifiers has the same
gain.

properties of Ge and GaSb diodes with the high power capability of
GaAs diodes, a low-noise Ge or GaSb amplifier can be cascaded with
a GaAs power amplifier. The calculated saturation characteristics of
single-stage Ge and GaAs and cascaded (first stage Ge, second stage
GaAs) amplifiers are compared in Figure 11. The calculations assume
that the Ge and GaAs diodes used in the cascaded amplifiers have the
same minimum negative resistance (i.e., the peak current of the GaAs
diodes is twice the peak current of the Ge diodes). The last assump-
tion was made (and the power input of Figure 11 normalized with
respect to R,,;,,) to make possible meaningful comparisons of the vari-
ous amplifiers, since the minimum value of R, is independent of
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diode material and is only a function of the gain-bandwidth product
and the series inductance of the diode (see Equations (15) and (16)).

Figure 11 shows that while the noise figure of the cascaded
Ge-GaAs amplifiers is only slightly higher than the noise figure of a
single-stage Ge amplifier, the cascaded amplifiers have significantly
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Fig. 11—Gain-saturation characteristics of lossless single-stage Ge and
GaAs amplifiers, and two-stage Ge-GaAs amplifiers. Each stage in the
cascaded amplifiers has the same gain.
better saturation characteristics and a much greater dynamic range.
For example, the dynamic range of the 20-decibel cascaded amplifier
is 15 decibels greater than that of the single-stage 20-decibel Ge

amplifier.

Comparison between cascaded Ge-GaAs and single-stage GaAs
amplifiers shows that the cascaded amplifiers have significantly lower
noise figures. The cascaded 30-decibel amplifier has a higher saturated
power output than the single-stage amplifier, while for the 20-decibel
amplifier the situation is reversed, i.e., the saturated power output of
the single-stage GaAs amplifier is greater than that of the cascaded
amplifier.
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TECHNIQUES FOR DIGITAL COMMUNICATION
VIA SATELLITES

By
F. ASSADOURIAN AND E. M. BRADBURD
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Summary—Synchronization techniques are treated for digital transmis-
sion over subsynchronous and synchronous satellite links which form parts
of general communication metworks interconnecting several nodes that
perform multiplexing funetions. The primary emphasis is on bit synchroni-
zation and identification on a link basis. A bit-transport equation is devel-
oped to relate mumbers of transmitted and received pulses, taking into
account variable path delays. When differences between clocks at the ends
of a link are included, the result is useful in determining storage require-
ments for time buffering that must be inserted to maintain bit synchroniza-
tion. For subsynchronous satellites, handover techniques are discussed for
the preservation of bit integrity during switching from one satellite to the
next.,

INTRODUCTION

ECHNIQUES are discussed for handling some of the syn-

chronization problems that arise in digital communication via

subsynchroncus and synchronous satellite repeaters. The com-
plexity of these problems depends upon the kind of communication
network in which the satellite links are employed. Synchronization
considerations are usually simplest for networks of a single link and
most difficult for networks of several links connecting a number of
nodes.

The general case to be treated is shown in Figure 1 with the solid
lines radiating from the two nodes representing long-haul transmis-
sion paths and the dotted lines representing connections to local sub-
seribers. Each switching node is assumed to demultiplex incoming
digital pulse streams from various links and switch some of the out-
going data to the satellite link in new multiplexed arrangements.
Synchronization disturbances over the satellite link arise from two
basic sources—first, instabilities and relative inaccuracies of terminal
clocks used for data timing; and second, path-delay variations due to
satellite motion. The need for handover (switching from satellite to
satellite) imposes additional constraints in subsynchronous satellite
data links.

The satisfactory operation of a data link in the above general
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network involves both (1) bit synchronization (and identification)
and (2) frame synchronization. The first refers to synchronism be-
tween pulses at the sending and receiving ends of a link, and the
second refers to the detection of the transmitted framing pattern at
the receiving end. Both are needed for proper demultiplex /multiplex
functioning at a node that differs in local clock rates from other nodes

LINK

LOCAL
SUBSCRIBER
/

/
/
/

SATELLITE LINK

' l
! |
| |
]

Fig. 1—Portion of communication network.

and that has to remultiplex portions of incoming pulse streams arriv-
ing at varying rates.

Bit synchronization can be achieved, for example, by slaving bit
timing associated with an input pulse stream to a local clock through
buffering techniques. Methods of obtaining bit timing may be found
in References (1) and (2). An analysis of a particular buffering
technique is discussed in the present paper.

The recognition of the transmitted framing pattern at the receiver
can be accomplished through a parallel search, a serial search, a com-
bination of the two, or a suitable examination of the spectrum of the
incoming pulse stream. A framing pattern may, in particular cases,
consist of periodically spaced marks (or alternate marks and spaces)
for purposes of counting off multiplexed channel positions. Analyses
useful in forming quantitative estimates of the times required to

LE. M. Bradburd and F. Assadourian, “Digital Transmission in Media
of Variable Time Delay,” ?th MIL-E-CON Conference Proceedings, Sept.
1963.

* 0. E. DeLange, “The Timing of High-Speed Regenerative Repeaters,’
Bell Syst. Tech. Jour., p. 1455, Vol. 37, Nov. 1958.
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identify framing patterns by one or more of the above methods can
be found in References (1), (3), and (4).

Handover problems and techniques are discussed in some detail,
particularly the instantaneous type needed to preserve bit integrity
during handover. Brief tables of useful numerical parameters for
synchronous and subsynchronous satellite systems are provided at the
end of this paper and applied to illustrative examples.

R, (1)

R(N=R (1) + R, (t)

GROUND GROUND
STATION STATION

Fig. 2—Satellite range geometry.

JIT-TRANSPORT EQUATION FOR SATELLITE LINK

A bit-transport equation is developed for a satellite repeater link
to serve as the basis of synchronization considerations with the aid
of Figures 2 and 3. First let the sending end of the link transmit
N (to, to+ t) pulses of constant width A during a time # at the rate
of ny = N=1/A pulses per second (pps), where the dot denotes time
derivative. For a total path delay (up and down) of r— R/c, where
R is the total path length and ¢ is the velocity of light, the pulses will
be received during the interval from t,+ 7(t,) to t, -+t +7(t+ ty).
If N, represents the number of received pulses, then

)

3 J. Dutka and A. A. Meyerhoff, “Synchronization of Pulse Trains,’
RCA Review, p. 410, Vol. 22, Sept. 1961.

4+ M. Masonson, “Power Spectra in Digital Transmissions,” Appendix
5E, Progress Report, VII and VIII Quarters, Vol. II, Jan. 1 to June 30,
1961, UNICOM, BTL.
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Nplto+7(ty), to+t+7(tg+1)] =Nyp(ty to +1). (1)
Since the moving satellite repeater produces time-varying path
delays, the received pulses appear to be compressed or expanded into
the interval of length ¢ + 7 (t,+t) — z(t,). If this length is changed
to t, then it can be shown with the aid of Figure 3 that the bit-
transport equation becomes approximately
}VI.' “0 + T(f.,), ty + T”ti) + t] -\"l' “m ’u =5 ’J -+

Nplto+t, to+t+7(ty) —7(t,+1t)]. (2)

i TRANSMITTED
PULSES

r(H=RR(1)/C

N RECCIVED
.\ PULScS
to+t(to) o+ t+rltg+1) tght +rltg)

Fig. 3

Bit transport representation.

It is readily seen that

t—7p
Np(t) ~——, 7,=7(ty+1) — (%), (3)
A
and
. 1 1
Np(t) =Np(t) ~— (1—%) =— (14w, (4)
A A

where the fractional doppler shift, », arises from
i‘:k(f)/(‘ —(Af)/f =—u.

Since Equation (4) assumes that the same frequency is used for
both directions, the equation must be modified if such is not the case.
According to Equation (3), the number of received pulses depends
upon the difference in delay for the first and last pulses. Also, a stable
transmitter clock and a slowly varying doppler shift have been as-
sumed.
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Transmitter clock instability changes n, to

1
)I'l-(f,; '_"|1+f'l'(t)J, (61'),-"":(, (5)
A

where the average &, over the period of one day, for example, may be
zero. The received pulse rate is now

1
np(t) = — [1+ ep(t) + ul. (6)
A

No local-oscillator instabilities of the satellite repeater appear in Equa-
tion (6) because the repeater shifts the entire input r-f spectrum as
a unit without producing differential effects among spectral com-
ponents.

For a high percentage of time, #, is bounded by

1 1
— [1—=3e—U] <np(t) <— 143+ Ul, U= |u]|nax (7
A A

In a sample case, if ¢ is 107 and U is 10-7, then the maximum change
in n, is around 2 % 10~ which is insignificant in synchronization
schemes that are required only to derive timing information from the
received pulse stream, as in the case of a network of one link or a few
cascaded links.

3T SYNCHRONIZATION

In applications that demand a tight bit synchronism between send-
ing and receiving ends of a link (such as in Figure 1 if the links are
encrypted), a buffer can be inserted at the receiving end to absorb
the effects of path-delay variations and differences between timing
clocks at the link terminals. In this manner, pulses can be sent at one
rate and read out correctly after reception at the slightly different
rate provided by a local clock. The result is useful in multiplex opera-
tions in that all incoming pulse streams are read out at a node in the
right sequence with a single local clock. Also, in the case of link
encryption, the sequence of pulses generated at encryption can be
decrypted after reception by maintaining the correct phasing between
key generators.

The time buffers, which are called stores here, may be shift regis-
ters, delay lines, magnetic tape loops, etc. Received pulses arriving
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at rate n, are clocked into the store with timing information derived
from these pulses. When the store of capacity € bits is, say, half-full,
it is read out with timing obtained from a local clock. Read-in and
read-out have an initial separation of C 2 bits which may change in
time. If the separation either becomes zero or exceeds C bits, then
timing errors are produced. For subsynchronous satellite links, mag-
netic-tape loops are particularly useful in conjunction with feedback
loops to slave read-in to read-out rates.

The buffer approach is now analyzed for a satellite link. First, for
the incoming pulses, Equation (2) is rewritten

t,+t

1+(7-lfP ™
‘\'/: l’o + T(Iil)v ty + 7 (ty) +’| = ——, (8)
A A

4

Since store read-out starts some time after read-in, the number of
pulses read out (N,) during a time f at the rate of the local clock is

t,+1

1+ 8 + ep(t)
Nl bty 4-1) —_— dt, (9)
A

f
where § is the normalized relative inaccuracy between the sending
and local clocks, and e, is the instability of the local clock.

Assume now that ¢, has the same average (over a day) and r-m-s
values as ¢;. Then, for a large storage capacity C, the accumulated
difference over the interval ¢ between the numbers of pulses read in
and out of the store is bounded, for a high percentage of the time, by

i t l7nl
S=—= l‘\vu o ‘\'/.'l max — ( ISI + 6¢) + # (10)
2 A A

Here S is the maximum slippage in bits between read-in and read-out.
A few examples will illustrate the implications of Equation (10).
With no buffering, C/2 is replaced by 1 2 for maximum slippage

of 1/2 bit, and 7, — 0. Loss of bit synchronization can occur after a

time £ = A/[2(|8| + 6¢) | due to relative clock differences. For ex-

ample, if |§| — e and t is to be 24 hours, then

[8] =¢ 0.8 x 1054,
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where A is in seconds. For 1000 pps data, both clock stability and
relative clock accuracy must be better than 10-; for 100,000 pps data,
the value becomes 1011,

With a buffer store of 200 pulses, the clock requirements are re-
duced to 10-7 for 1000 pps data and 10 * for 100,000 pps data.

The maximum delay variation for a satellite at 6,000 miles altitude
may be approximately 30 milliseconds in one hour. With no buffering
and only time-delay variation, the maximum allowable data rate is
only 16 pps for a maximum slippage of 1,/2 bit.

20 % x4l X+2  X+3  X+4  X+5  X+6  X+7  X48 TRANSMITTED
) ) ' ' : . ' ! L J PULSES
T 0y  x#1 | X+2 | X+3 | X+4 RECEIVER |
) ) * X ! y FOR SATELLITE |

[0}
ol lA X X+

T T

| X+2 X+3 X+4 RECEIVER 2
’ ¥ . "FOR SATEL -
LITE 2

Fig. 4—Pulse representations for satellite handover.

For clock differences less than about 105, these differences can
be disregarded, and the previous delay variations dominate. To avoid
store runout or overflow, C must be about 6 x 10 -2/A. For 1000 pps
data, C is 60 pulses, and for 100,000 pps data, C' increases to 6000. It
is evident that shift-register stores are impractical for these figures.
However, magnetic-tape loops can be used.

SATELLITE DIGITAL HANDOVER TECHNIQUES

Digital transmission via subsynchronous satellites involves hand-
over of the communications link from satellite to satellite at various
times. Available techniques depend upon the number of antennas per
ground site, the tolerable complexity of handover circuitry, and bit-
integrity requirements.

With two antennas (each complete with transmitter and receiver)
per ground site, either fast or instantaneous handover becomes pos-
sible. While one antenna at each end of a link is tracking one satellite
during communications, the remaining pair of antennas can acquire
and track the next satellite. Then, for a period of time there will be
9 received data streams, as shown in Figure 4. At handover, there
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can be an abrupt discontinuity which, if uncorrected, takes the form
of a sudden apparent gain or loss of pulses. For example, in a system
of satellites at 6000 miles altitude, the maximum discontinuity between
any 2 satellites in usable orbital positions is about 30 milliseconds.

Instantaneous Handover

With special circuitry, instantaneous handover can maintain con-
tinuity of information flow (i.e., bit integrity). Two techniques are
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FROM DATA
STREAM
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LOCAL
CLOCK
CLOCKING
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Fig. 5—Instantaneous handover circuit with stores.

illustrated in Figure 5. Both can be applied in handover either at
unequal or at equal satellite path lengths. Figure 6 illustrates these
situations. The end store in Figure 5 is used when tight synchronism
is needed between the sending and receiving ends of the satellite link.
Although Figure 5 will be used illustratively to develop concepts, it
may be replaced in actual practice by Figure 7, as will be explained
later.

In both techniques illustrated in Figure 5 it is assumed that the
data stream received from each satellite is separately examined to
locate the positions of framing pulses before the two data streams are
aligned for handover from one to the next. Consequently, the time
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required for this step sets a minimum time after the beginning of the
overlap in time of the two path delay curves and after which handover
becomes possible. It is assumed that handover is performed between
framing pulses. In typical cases, it can be shown that the time re-
quired to locate the framing pulse position in a data stream is at most
a few seconds (see Reference (1)).

Equal Path Lengths

For handover at equal satellite path lengths, curves 1 and 2 of
Figure 6 are applicable, and the variable-delay buffer sections of

A= R/C
R N . .. S
l 2 3 a
T MIN
._}________ e e —— ———— — — ——
>
Fig. 6—Satellite path delay curves.

Figure 5 are not needed. The implication in Figure 4 is that the
received data streams tend to slide past each other and achieve time
coincidence of corresponding pulses during some interval. After this
interval is recognized, instantaneous handover can be accomplished
anywhere within it.

Both techniques in Figure 5 use coarse and fine alignments of data
streams. One approach achieves coarse alignment with the aid of
periodic super-framing pulses inserted in a data stream as markers.
These must be distinguishable from regular framing or other periodic
pulses either in amplitude or coding and can occur anywhere. They
should be locatable within a given data stream in a few seconds.

Super-framing pulses should be spaced by more than twice the
maximum delay difference in the two satellite paths. When the first
time-comparison circuit in Figure 5 measures a spacing of less than
the maximum delay difference between any 2 super-framing pulses,
one taken from each data stream, then corresponding super-frames
have been identified. Next, when these super-framing pulses are
within a frame length of each other, corresponding framing pulses
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within the super-frames are identifiable, and the second time-com-
parison circuit of Figure 5 or other correlation type circuit can be
actuated for fine alignment. Finally, when corresponding framing
pulses overlap in this circuit, instantaneous handover may be per-
formed between framing pulses.

An estimate is now made of the length of the time interval during
which instantaneous-handover switching must be executed. The maxi-
mum rate at which the two received data streams slide past each other
is given by

2U Af |
Myax ~ ——pps, U= |— : (11)
- f f‘\u.\'

If Ty, is the minimum time of overlap of the two data streams to
within the fraction =k of a pulse width, then

kA 2k

Tyin=—=

(12)

U Myax
For example, if the maximum doppler shift is 107, the transmitted
pulse width A is 25 microseconds and k = 0.2, then Tyix is 1/2 second.
If the frame length is 65 pulses, then this interval contains around
300 framing pulses in each data stream. Any coincident pair chosen
from these can be used for switching between the data streams.

In some applications the use of super-framing pulses for coarse
alignment may be undesirable. Another approach, as shown in Figure
5, is to make a range comparison of the two satellite paths to deter-
mine when corresponding frames in the two data streams become
spaced by a half-frame or less. After this point, the procedure can
follow the rest of the previous super-framing approach.

An analysis of the range comparison approach is given. If there
are F pulses per frame, then the frame rate is 1/FA, and a half-frame
occupies F'A/2 seconds. Corresponding framing pulses in the two data
streams become spaced by less than a half frame when the path-length
difference for the two satellites reduces to less than R, with

R;, = 9.3 X 10*FA miles. (13)
The path lengths are measured with known accuracy, and fine

alignment should not be initiated until their measured difference
reaches r,, as given by
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rp + 2 < Rp, Tp—2€¢ > 0. (14)

Here +¢, is the accuracy of either path-length measurement. The set-
ting of r,, is needed to guarantee that the actual path difference is less
than R,,.

Path-length difference information need not be supplied until the
two data streams are, say, one frame apart. Since the maximum pos-
sible closing rate of the two digital streams is approximately 2U
seconds per second, the minimum time for closure by a half-frame is
FA/(4U) seconds. Path-length difference data supplied several times
during this closure would seem to be adequate for determining when
fine alignment should start.

To illustrate the range-comparison approach, let A — 25 micro-
seconds, F' =65 and U — 10 7. According to Equation (13), the two
data streams are separated by a half frame of 0.812 millisecond when
R, — 151 miles. If the range accuracy is 30 miles, then a range setting
r;, of 91 miles implies, by Equation (14), a true range difference lying
batween 31 and 151 miles. The lower bound represents a minimum
spacing between corresponding frames in the two data streams of
about 166 microseconds, leaving adequate time for fine alignment.
Furthermore, if range data is desired during closure of the data
streams from one-frame to half-frame separation, which takes around
10 seconds. then a range-difference reading every few seconds during
this interval should suffice.

In summary, the range-difference technique for coarse alignment
does not require the insertion of special marker pulses as in the super-
framirg approach, but has the disadvantages that it requires infor-
mation about complete satellite path lengths and imposes limits on
data rates.

In some applications it may be inconvenient to perform instanta-
neous handover at equal ranges because of satellite assignment diffi-
culties. In other cases, as illustrated in Figure 6 between curves 2
and 3 and curves 3 and 4, the condition of equal ranges may never be
reached (for example, in a system of satellites with randomly inclined
orbits). The dashed horizontal lines represent path-delay (hence
range) bounds fixed by zenith and horizon conditions. The curves
terminate at points beyond which particular satellites are out of view
of either end of the satellite link.

Unequal Path Lengths

Handover at unequal ranges can be accomplished by setting the
variable delays in Figure 5 at appropriate positions. They are time
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buffers and, as described previously, can be shift registers, delay lines,
magnetic tape loops, ete. For example, if a shift register store is used,
a desired delay can be inserted by reading bits into the store until it
contains the right number of bits before starting read out. If a
magnetic-tape loop arrangement is used to combine the variable delay
and the end store and to slave the read-in rate to the read-out rate
provided by a local clock with a feedback loop, Figure 5 may be

PHASE
SERVO BRIDGE
MOTOR
LPF 8 AMP
DATA FROM ONE
SATELLITE L SUPER-FRAME
e »{SHAPER|—{ DELAY CKT OR RANGE
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BIT CLOCK CORRELATOR SWITCH > R ULIER

DATA FROM NEXT
SATELLITE

= ][]
O—<k

Fig. 7—Instantaneous handover with magnetic tape loops.

replaced by Figure 7. The fast-jitter cleanup at the end of the latter
is essentially a small-capacity store to remove the effects of flutter, etc.

The purpose of either variable delay in Figure 5 is to introduce a
delay in the shorter satellite path to enable handover at a time when
the two path lengths are unequal. This process can be applied to cases
represented by any consecutive pair of curves in Figure 6, but is
considered here only for the last 3 curves, which do not intersect.
They are grouped into the extreme cases of Figures 8 and 9.

Figure 8 shows a case in which the satellite in use before handover
(the setting satellite) yields a shorter path than the rising satellite
for a number of intervals of required service. To start the operation
(see Figure 5) the undelayed data stream is read into the end store.
Then variable delay 1 is set at A7, withholding pulses from entry
into the end store. This quantity must be calculated from the desired
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J;r:R/C

Fig. 8—Satellite path delay curves.

location and accuracy of the handover point for synchronization of
the two data streams. At handover, read-in for the end store is derived
from the pulse in data stream 2 which follows the last one used in
stream 1, where both pulses are preferably framing pulses. The pulses
in variable delay 1 are then dumped and the bias is removed. While
the end store receives from stream 2, the gap between read in and
read out resulting from the previous delay introduced in stream 1
tends to be reduced until a new delay is added for stream 2.

The capacity of the end store should be adequate to handle both
the maximum difference, 7y x—7aiy, and differences in setting and

Fig. 9—Satellite path delay curves.
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stability of the local clocks at the ends of the satellite link. The reason
for considering the indicated delay difference is that, in accordance
with the discussion following Equation (10), excursions of the com-
posite arrowed curve in Figure 8 always remain within the prescribed
bounds. The maximum required setting for either variable delay in
Figure 5 can be selected as the above maximum delay difference, but
will generally be considerably less.

Figure 9 shows another extreme case. The operation in Figure 5
again starts with the read-in of data stream 1 into the end store.
Then, at some particular time, a bias delay of A.7r is injected in the
path for stream 2. After handover, the end store receives stream 2.
which tends to slow down and create a gap in the end store if no action
is taken. After handover from stream 2 to a delayed stream 3, the
bias delay and pulses stored in the variable delay can be removed for
stream 2. However, the gap it produced in the end store remains.
Furthermore, with enough consecutive satellite passes of the present
tyvpe, the gap in the end store tends to increase until there is store
runout unless it has a larger capacity than needed in the previous case
of Figure 8.

Since a large number of Figure 9 curves are not likely to occur
consecutively in practice, the present problem has perhaps been exag-
gerated. Also, with enough satellites, it can be avoided by proper
satellite assignments. If the problem proves to be sufficiently severe,
however, there are at least two available courses of action. First, as
indicated by the composite arrowed curve of Figure 9, the read-in of
data stream 2 (and, later, stream 3) into the end store can be speeded
up. The capacity of the end store and the maximum variable delay
settings can then be given the same values as for Figure R.

Second, the problem can be eliminated by using the magnetic-tape-
loop approach of Figure 7. The present system can then function as
shown in Figure 10. Super-framing (or other marker) and framing
pulses are used to measure actual arrival times of marker points in
each data stream. The maximum and minimum delay of possible paths
is known from geometrical considerations of satellite heights and
distances between terminals. Hence the system buffer can be designed
so that a variable delay is added to the path delay to yield an approxi-
mately constant total system delay. This total system delay can be
measured by comparing the arriving data markers after buffering
with those generated in a highly accurate local clock. The buffer thus
compensates as well for clock run-out between the two ground stations.

As shown, the total system delay is designed to exceed the maxi-
mum path delay by some margin large enough to insure at least one
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full day of operation without readjustment of the buffer stores due
to clock run-out. The two tape buffers shown in Figure 7 thus equalize
the system delay for each satellite path so that handover can be made
at any convenient time in the overlap of the periods of mutual visi-
bility of the rising and setting satellites.

As shown in Figure 8, this overlap interval must be of sufficient
duration so that the rising satellite buffer circuits can lock on to bit,
framing, and super-framing timing in the received bit stream. There
must also be sufficient time to achieve proper servo tracking of the
receiving buffer.

LIMITS OF MUTUAL VISIBILITY

A

Y

FIXED DELAY:=SUM OF PATH 8 VARIABLE BUFFER DELAY
MAX
ppAH—~~ —— M - | ——— -
DELAY
VARIABLE VARIABLE
BUFFER BUFFER —
DELAY DELAY /
HANDOVER HM#DOSVER
+—IN_THIS V — IN_THI
: r INTERVAL r INTERVAL
2
SATELLITE | N SATELLITE 3
[/ SATELLITE 2
e e L
MIN
PATH
DELAY TIME

Fig. 10— Variable delay compensation and handover principle.

The following estimates are based on Reference (1). Bit timing
can be derived from the arriving stream in approximately 25 bit
intervals. Framing can be derived in around 3 seconds for a mega-
cycle bit rate and 64 bits per frame. The servo tracking lock up should
be possible in a comparable time. Super-framing can be derived as
soon as it arrives if it is unique with respect to the data stream. The
system will thus require at least six seconds of mutual visibility of
rising and setting satellites before handover can be made.

Notice that in this method of use of buffer stores, there is no
restriction for the equality of path delay at time of transfer, or for
the rising or setting paths to be consistently of shorter or longer
relative delay.
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NUMERICAL ILLUSTRATIONS

Background Tables

In Table I, the time interval, ¢, during which the maximum delay
variation, |r;,|, occurs for a satellite path between two stations in
close proximity has been estimated from the approximation

a R, 27
t~——, cosa= y g =—— (15)

"y R,+H T

Table I—Subsynchronous Satellites

T Tn t J
(statute miles) (hours) (milllisecl'onds) (hours) (parts in 10—-5)
2000 2.6 24 0.35 2.8
3000 3.3 30 0.52 2.2
6000 5.6 31 1.04 1.3
9000 8.5 34 1.69 0.89
12000 11.3 35 241 0.31

where R, = earth radius,

a = angle subtended at the earth center by the satellite
positions at zenith and at the horizon with respect to
the two ground stations,

H = altitude of circular satellite orbit, and

T = orbital period.

The above approximation is best for inclined (close to polar) satellites
and poorest for equatorial satellites, which require the insertion of
the earth angular velocity. The formula must obviously be refined as
needed in any detailed applications.

The values for U for equal up and down frequencies and for the
two ground stations with satellite tracking down to the horizon (0°)
have been obtained from the approximation

2R 05

~

, (16)
¢

which is also most accurate for orbital inclinations close to 90°.
In Table IT the two ground sites are assumed to be at the equator
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Table 1I—Synchronous Satellites

Orbit Inclination, 7, [ 75| t
(degrees) (milliseconds) (hours)

10 14 6

20 3.2 6

30 7.5 6

under the crossover of the satellite figure eight pattern to obtain
extreme values.

In Table IIT a “stationary” satellite is assumed (0° inclination)
with a daily periodic variation in altitude between H — AH and H +
AH. Extreme values are shown for two ground sites in close proximity
under the satellite.

Bit Synchronization for Synchronous Satellites

If a maximum slippage between transmission and reception of 1/2
pulse is permitted in 24 hours, and if a receiver store with a capacity
of C pulses is employed, then Equation (10) shows that the data rate
is limited by

C 1

nyp < — pps. (17)
2 8.64 X 104(|8| + 6¢) + |7p]

Two conclusions may be drawn. First, there is no point in making
the first term of the denominator less than, say, a tenth or so of the
second term, i.e., |8| + 6e¢<10-%|7,|. In this case, Equation (17)
reduces to C > 2n;|7;,|. Second, the choice of € is now made to depend
entirely upon 7, and 7.

Table 111

Synchrenous Satellites (With Periodic
Variation in Altitude)

4AH
|70] =——
AH ¢ t
(statute miles) (milliseconds) (hours)
20 0.43 6
50 1.07 6
100 2.1 6
200 4.3 6
500 10.7 6
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For example, if |7,| is selected from Tables I1 or III, it lies be-
tween 0.5 and 10 milliseconds. The first inequality becomes |§| + 6e
< 0.5x10-" to 10 %, which will be satisfied if both stability and
relative clock inaccuracy figures are better than around 0.7 x 1010
to 1.4 > 10 ", The second inequality yields C > 1051, to 2 ¥ 10— *n,.

If the store capacity is chosen in observance of the above condi-
tions, then, since [§| and ¢ have been made very small, there should
be no loss of bit integrity due to store runout during periods of several
days. On the other hand, if C is not sufficient to cope with 7, then
it is possible for bit synchronization to be lost during a six-hour
interval. Although these results for synchronous satellites may seem
surprising at first, it must be remembered that they depend upon the
assumption of delay variations of 1/2 millisecond or more in a 6-hour
interval, as compared to fractions of a microsecond for microwave or
tropospheric scatter transmission.

Bit Synchronization for Subsynchronous Satellites

With the same assumptions for bit synchronization as before,
Equation (17) is applicable. Since Table I shows that 7p does not vary
much over the selected range of satellite altitudes, a ficure of 30
milliseconds is assumed for illustrative purposes. One now obtains
[8] 4 6e < 3 > 105, which will be satisfied if both |§| and e are less
than around 5 x 10-*. The required store capacity becomes C > 6
> 10721y, which implies that ' should vary from 60 to 3000 to accom-
modate data rates going from 1000 pps to 50,000 pps. If C is not large
enough to handle 7, then bit synchronization may be lost during a
time interval of duration determined by the satellite altitude (1% to
25 hours for altitudes between 2000 and 12,000 miles).




ELLIPSOMETRY—A VALUABLE TOOL
IN SURFACE RESEARCH
By
K. H. ZAININGER AND A. G. REVESZ
RCA Laboratories

Princeton, N. J

Summary—Ellipsometry is a technique that allows the determination
of the optical properties of « surface, or the optical properties and thick-
ness of a thin film, by measuring the effect of reflection on the state of
polarization of polarized light. In this paper, the fundamental equation
governing ellipsometry is developed starting from the problem of reflection
and refraction of light at a boundary between two homogencous, isotropic
media, and reflection from a film-covered surface. A pictorial representa-
tion and the classical mathematical specification of polarized light is given.
Various solutions of the ellipsometry equation are discussed, the actual
ellipsometer is deseribed, and experimental techniques are outlined. Areas
of applications are summarized and the value of ellipsometry is examined
in terms of possible errors and obtainable accuracy. Finally, some of the
deviations in the optical properties of thin films from those of the bulk are
briefly outlined.

INTRODUCTION

NTEREST IN THE physical properties of thin films has rapidly

increased within the last two decades. Much of this increased

interest was brought about by advances in high-vacuum tech-
niques. Initially, investigations were concentrated on evaporated thin
films used mainly for various optical purposes. In the last few years,
however, interest has also developed in insulating, semiconducting,
and metallic thin films that are used in both active and passive elec-
tronic devices, especially in connection with integrated electronics.

Various methods are available for the determination of the prop-
erties of thin films as for example weighing, electrical measurements,
and electron microscopy. In addition, there are a large variety of
optical methods that in many cases are preferable to nonoptical
methods. Optical methods have the advantage that they permit the
investigation of surfaces.

For the study of surfaces and films on substrates, three basically
different optical methods of investigation are available.

(1) In photometric measurements the amplitudes of incident
(generally normal incidence) and reflected or transmitted rays are
measured. The main areas of application are determination of optical

85
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constants and absorption peaks to obtain information concerning
composition and structure of materials.

(2) In interference measurements, the phases of two rayvs re-
flected by surfaces differing in height are measured and, depending
on the experimental arrangement, film thickness and/or surface struc-
ture are determined. Outstanding examples are single- and multiple-
beam interferometry, and phase-contrast and interference microscopy.

(3) In polarization measurements, the ellipticity of the reflected
light is determined; thus the technique utilizing this principle is gen-
erally called ellipsometry. The main applications of ellipsometry are
the determination of optical constants of reflecting surfaces and meas-
urement of index of refraction and thickness of films on substrates.

The relative advantages among these optical methods depend on a
number of factors including the objective of the measurements, pos-
sible restrictions on sample size and preparation, and the sensitivity
and accuracy desired. It will subsequently be shown that ellipsometry
is superior to the other methods for many applications. For example,
sensitivity to the presence of very thin films is very high and the real
part of the index of refraction of absorbing media can be determined
with great accuracy. Furthermore, no elaborate sample preparation
is required and the method is nondestructive. For these reasons ellip-
sometry can be a valuable tool in thin-film and surface research.

In this paper we are exclusively concerned with ellipsometry; the
purpose is to outline to the nonspecialist the theory, experimental
technique, and applications of ellipsometry, and to save him the trouble
of reading the numerous articles that are scattered throughout the
literature and that are, in many cases, so specific that they tend to
discourage rather than encourage the general use of ellipsometry.

CLASSICAL THEORY oF FILM OPTICS

Reflection and Refraction of Licht at a Boundary between Two
Isotropic Media—Fresnel Formulas

In order to aid in understanding the optics of thin films,'? the
problem of determining the light reflected and transmitted at a bound-
ary separating two media will first be reviewed.

For a homogeneous isotropic material characterized by time-
independent dielectric permittivity ¢, magnetic permeability 1, and
electrical conductivity o, containing no space charge, so that v « E — 0,
Maxwell’s equations can be combined to result in the well-known vector
wave equation!®

c2A %A

— po — =0, (1)
ot2 ot

V2A — pe
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where A — E or A — H. Equation (1) together with Maxwell’s equa-
tions, determines the propagation of electromagnetic waves in this
medium.

The problem of reflection and refraction of light at a planar bound-
ary between two isotropic, homogeneous media is usually solved by
applying the boundary conditions to the sinusoidal, electromagnetic
plane wave solutions of Equation (1). In such an analysis it is ex-
pedient to treat the case of plane waves with electric vectors vibrating
parallel (p) to the plane of incidence separately from those with vec-
tors vibrating normal (s) to the plane of incidence. Because of the
linearity of the wave equation, superposition is allowed and other
cases can then be conveniently analyzed by decomposition into p and s
components, followed by superposition of the resulting solutions.

Let us define a coordinate system in the conventional manner so
that the z-axis is the direction of propagation of the light wave, and
the y-axis lies in the plane of discontinuity. We define the plane of
incidence as that plane which contains both the z-axis and the normal
to the plane of discontinuity. The angle of incidence, ¢, is the angle
between the z-axis and the normal to the plane of discontinuity.

Let us also specify the amplitude of the electric vector of a wave
traveling in the positive direction in the n* medium and polarized
with the electric vector parallel to the plane of incidence by E,,+. We
use E,,+ for the component of the electric vector perpendicular to the
plane of incidence. A minus-sign superscript denotes a wave traveling
in the negative direction.

The analysis of this problem leads to the following results (see
Figure 1):

(a) Law of Reflection:

4’0 - ¢(i,v (2)

i.e., the angle of incidence equals the angle of reflection.
(b) Snell's Law of Refraction:

Ny SiN ¢ = My SiN Py = Ny SIN Py =+ - (3)
0 1 1 2 2

(¢) Fresnel Reflection and Transmission Coefficients:

Eo, ~ MOS8 ¢y — 1y COS by

= = rllltpn (4)
Eypt Ny COS Py + My COS Py,
Eipt 21, COS ¢y

= = Lo1(p)» (5)

Eoipyt N, COS ¢y + My COS g
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Eos - N, COS by — 11y COS ¢, '
— "= Tor0s)s (6)
Eoan™ Ny COS ¢y + Ny COS ¢y
Eint 2n,, cos ¢,
= = o1 (4 7
Eyst Ny, COS ¢y + Ny COS ¢y

Here n, and 7, are the optical constants of the two media and ¢, and
¢, are the angles of propagation in the two media.

/ //
/ //,/ ///

Fig. 1—Reflection and refraction of light at a plane boundary
between two media.

When both media are transparent the optical constants are their
respective refractive indices. In this case, they are real numbers and
are given by

n= ‘/ —“i, (8)

o€y
where the zero subscript indicates free space. If we define
€= €€ 9)
and
"= g (10)

then, for the case of ,, — 1, Equation (8) reduces to

n =\, (11)
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In this case of two dielectrics, all terms in Snell’s Law as well as in
the Fresnel equations are real.

Equations (2) to (7) are also valid for the case of absorptive
media provided that we use a “complex index of refraction” to char-
acterize these materials. In that case all the terms appearing in these
equations may be complex, depending on the specific situation. The
meaning of complex trigonometric functions is intimately related to
the inhomogeneous nature of the waves in an absorbing medium where
planes of constant amplitude do not necessarily coincide with planes of
constant phase. A discussion of this problem is, however, beyond the
scope of this paper. Complex Fresnel coefficients indicate, of course,
that the reflected and refracted rays suffer a phase shift (at the inter-
face) which is neither zero nor 180°.

The complex index of refraction is defined by

i =n—1ik, (12)

where » and & fulfill the following relationships:

e
ne —k2=——= e, (13)
Ho€o
and
Lo 1,0
nk = — =— (14)
2m)L0€ 2we,
For most cases of practical interest p, — 1.0 and hence
n?—k?=c¢ (15)
and
o
nk = —— (16)
20¢,
giving

€ o 1/2

n? = 14+(1+4 ) . (17)
2 ’.)2(‘.‘
€, “‘.‘ 1/2

k2 = lv<l -4 —~> i (18)
2 w2e”

It should be kept in mind that ¢ is the conductivity and ¢ the
permittivity at the optical frequency concerned, and they are not gen-
erally equal to their respective d-¢ or low-frequency values.
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Reflection from a Film-Covered Surface

The results of the previous section may conveniently be utilized
for determining the reflection and transmission of plane waves at the
boundary of two optically different media of semi-infinite extent sepa-
rated by a uniform film of a third medium. Let us restrict ourselves
to those cases in which the first medium (the immersion medium) is
transparent, isotropic and homogeneous, and the other two (substrate
and film) may, in general, be absorbing, but are also isotropic and
homogeneous.

As seen in the previous section, a beam that strikes an interface
between two optically different media is broken up into reflected and

%o
. IMMERSION MEDIUM
0

Ll THIN FILM
£ etc

N2 \ SUBSTRATE
b,

Fig. 2—Reflection and refraction of light at a planar thin
film on a substrate.

transmitted components. In the case considered in this section, this
division occurs every time the beam reaches the immersion-medium—
film and film-substrate interfaces (Figure 2). The total reflected and
transmitted beams are then obtained by summing up these multiply
reflected and multiply transmitted rays.”

This summation is easily carried out for the case of a single film
and the result is conveniently expressed in the form of generalized,
complex Fresnel coefficients for the reflection and transmission of
plane waves with electric vectors vibrating parallel and normal to the
plane of incidence. The reflection coefficient is given by

To1(v) o ,.“”"(,~'_'i.u

(19)

Piy) —*= )
1+ To1(m T 12(p) € 20

"A more elegant way of solving not only this case but also multilayer
problems is to employ the concept of optical or wave impedance® and use
the transmission-line analogy, or to use matrix methods.311.12
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and the transmission coeflicient by

tormtizime®
T = (20)
1+ 7010mT120m 0 =4

with v=7p or v—s for parallel and normal electric vectors, respec-
tively, and the change in phase of the beam on traversing the film
given by

d 27d L/2
8§ =2mn,| —— |cos ¢, = 1,% — sin® ¢, : (21)
’\n ’\ﬂ

Here d is the film thickness and A, the vacuum wavelength of the
radiation. (It must be realized that if the film is absorbing, cos ¢, 18
complex, making 8 also complex. The meaning of this is beyond the
scope of this paper.)

Since 7oy (o) 7 Tor(p) and o) # T2y, it can be seen from Equation
(19) that the components of the incident light that are perpendicular
and parallel to the plane of incidence are unequally attenuated and
unequally shifted in phase upon reflection.

For a more general discussion of the optical behavior of a single
film, including anisotropic films, as well as a treatment of multilayer
problems the reader is referred to more specialized literature (e.g.,
References (1)-(9)).

POLARIZED LIGHT

Since ellipsometry requires the measurement of elliptically polar-
ized light it will be useful to review polarization in general as well
as to examine carefully how such elliptically polarized light is char-
acterized.

Plane Waves in a Nonconductive Medium

For a proper understanding of polarization the meaning of plane
electromagnetic waves must be elucidated, and this can best be done
for a nonconducting medium.

In a Cartesian coordinate system the vector wave equation is
simply a set of three scalar equations, one for each of the rectangular
components of the vector. (In other coordinate systems it is consid-
erably more complicated or even impossible to write the fields in terms
of scalar functions.)

For o — 0 the scalar wave equation is then given by
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oy
VAU — e — =0, (22)
ot?

where U may be any Cartesian component of E or H. If we assume
a sinusoidal time dependence of the form

Ulay,z,t) =u(zyz)T(t) =ula,y,z)et, (23)
then the scalar wave equation reduces to the form
V2u + y2u =0, (24)

where the wave number or propagation constant is

P o
Y= oV pe = ’ (25)
v
and the phase velocity is given by
1
P = (26)
Ve
In rectangular coordinates we may set
uleyz) =X@)Y(y)Z(z). 27
Separation then results in
02X
—— +7,2=0,
oa*
oY
+v,2=0, (28)
oy*
027
+7v.*=0,
oz?
with
(l)"’
Y ri=yt= (29)

Equation (22) has the well-known plane-wave solutions
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U=cexp li(ot =y°r)} (30)

which represent waves propagating along the (positive or negative)
direction of y. In the general case ¢ is complex because it includes :
constant phase shift. One must also remember that it is only the real
part of U that represents the actual field.

If we restrict ourselves to propagation along the z-direction, then

7‘1':711201 (31a)
Ya=Y (31b)
and we have Uz, t) =cexp {i(ot —y2)}. (30a)

This indicates that such waves do not vary as a function of either x
or y. However, we must still consider the vector nature of the electro-
magnetic fields (i.e., U can be any Cartesian component of E or H)
and the requirement that they satisfy Maxwell’s equations. By sub-
stituting Equation (31a) into Maxwell’s equations it can easily be
shown that E. and H. must both be zero. This means that electro-
magnetic plane waves in nonabsorbing dielectrics must be transverse,
i.e., electric and magnetic field vectors lie in planes normal to the
direction of propagation. In addition, Maxwell's equations also show
that associated with each transverse component of E there is a mag-
netic field that is in (time) phase with it and at right angles to it.

Pictorial Representation of Polarized Light

If the direction of the transverse E vector is constant in time the
wave is said to be linearly or plane polarized. Such a plane-polarized
wave is the simplest component into which light can be decomposed.

Because the wave equation is a linear equation, any complicated
electromagnetic wave with given frequency, propagating in a certain
direction, can advantageously be built up by a superposition of individ-
ual plane waves of the same frequency with different amplitudes,
directions, and phases, but all propagating in the same direction.

(1) Plane or linearly polarized waves are waves for which the
electric field vector always lies in a given direction. Such waves are
obtained when all the superposed waves have the electric field in the
same direction (with arbitrary phase) or if they are in different
directions but are exactly in phase. Linear polarization is often char-

acterized by the expression “plane of polarization.” This term is quite
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ambiguous since in radio engineering one usually describes polariza-
tion by the plane of the electric vector, whereas in optics one uses the
magnetic field to specify the polarization. In order to avoid ambiguity
it is best to give a complete specification as, for example, “polarized
with the electric field in the horizontal plane.”

(2) Elliptically polarized light is the result of a combination of
two uniform plane waves of the same frequency but of different
phases, magnitudes, and orientations of the field vectors, and receives
its name from the fact that the terminus of the electric field vector
traces an elliptic path in the plane normal to the direction of propa-
gation. Elliptic polarization is the most general type of polarization
and includes the other two types (linear and circular) as special cases.

Each type of polarization is, in turn, characterized by polarization
forms. Linear polarization includes an infinite number of polarization
forms, differing as to azimuth, i.e., angle between plane of polarization
and reference plane. Circular polarization includes two forms, differ-
ing as to direction in which E rotates when viewed by looking in the
direction of propagation (i.e., right-handed or left-handed polariza-
tion). Elliptic polarization includes an infinite number of forms,
differing as to azimuth, ellipticity (ratio of minor to major axis of
ellipse), and direction of rotation.

Mathematical Specification of Polarized Waves

Several methods are available for describing polarized light.™® The
more sophisticated of these are the Poincaré sphere, the Stokes vector,
and the Jones vector. These methods provide direct insight into cer-
tain difficult problems, and permit great simplification in many calcu-
lations involving the influence of polarizers and retarders upon a wave.
The methods are quite useful but are too specialized to warrant de-
scription here; only the classical specification will be considered.

In the coordinate system adopted, the plane of incidence is the -z
plane. The angle between the electric field vector at the interface
between the two media (i.e., at z— 0) and the plane of incidence is
the azimuth of the electric field and is denoted by a. The components
of the vector E in the direction of the coordinate axes are then either
parallel or perpendicular to the plane of incidence and are given by

E.,=E,, =Fcosa, (32a)
E,=FE,,=FEsina. (32b)

Two arbitrary vibrations with the same frequency, and amplitudes
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A and B, parallel to the two coordinate axes, can be represented as
E,=Acos (ot +0,), (33a)
E,=Bcos (ot +0,). (33b)

If the two vibrations are in phase (#, —#,=0) or in opposite phase
(#,—0,==*=) the ratio of the above equations is

E B

v

—_—

E, A

which is simply the equation of a straight line in the x-y plane, and
the light is said to be linearly polarized.

In general, however, the components in a light wave have arbitrary
phase. In that case the ratio of Equation (33a) and (33b) results,
after proper manipulation, in the equation of an ellipse, namely,

EJ' = P“!/ ¢ E: i“u
— + — 2| —— )| —— ) cosA = sin24j, (35)
A B A B

A=0,—0, (36)

where

The terminus of the light vector traces out an ellipse that is inscribed
in a rectangle 24, 2B (see Figurs 3). From Equation (35) one can
clearly see that the semiaxes of the ellipse do not coincide with the
coordinate axes.

We can, however, choose a coordinate system in which the semiaxes
of the ellipse will be parallel to the coordinate axes, so that the term
E.E, AB in Equation (35) will vanish (Figure 3). Let us denote the
new coordinate system (&7). From the theory of linear transforma-
tions we know that the rotation of a coordinate system is given by

Eé =FE_cos x + E, sin x (37a)

E,=—FE, sin xy + F, cos x (37b)

where y is the angle between the &-axis (i.e, the major semiaxis of
the ellipse) and the wz-axis. In the new coordinate system the ellipse

is given by
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E$ =0 cos (wt + 6,) (38a)
E, == bsin (ot + 6,) (38b)

where @ and b are the semiaxes of the ellipse. We introduce the double
sign in the equation for £, so that the two possible ellipticities (posi-
tive or negative) can be taken into consideration. Substituting Equa-
tion (33) into Equation (37), setting Equations (37) and (38) equal,

\ e //\/(
L% S y ®
= Y \
Lt
| L
B \ ” e
| T
\ //)41 !
4 - ' o
="\ i
8 S \
l—k e \
j\ '
e — A - — ——t————— A

Fig. 3—Characterization of a general inclined ellipse.

and expanding all the trigonometric functions we get the following

relations:
tan2y — tan2ycosA (39)
sin2y = = sin2¢sind (40)
*tan2y
tan A = - (41)
sin2y
B lk‘(lnl
where tany = — = ; (42)
A |Eq]
b
and tany = — (43)
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We see now that the ellipse, which we first characterized from physical
reasoning by ¢ and A (i.e., amplitude ratio and phase difference of
the components of light parallel and perpendicular to the plane of
incidence), can, from geometrical considerations, also be characterized
by the inclination of its major axis with respect to the x-z plane of
the original coordinate system (i.e., plane of incidence), x, and by the
ellipticity, given by the ratio of minor to major semiaxis, tan y = b/a.
Since these two sets of two quantities each describe the same ellipse,

Zz: 05w T T T T

2 B/A=6 T
= -3

® oamp B/A* 1 8
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d |
© |
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3 oimf 4 A
: |
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Fig. 4—Inclination of ellipse versus relative phase difference
with amplitude ratio as a parameter.

there must be a relation between them. These relations are given by
Equations (39), (40), and (41) ; they are very important in the theory
of ellipsometry, since it is x and y that are determined experimentally,
whereas the thickness and the optical properties of the film are given
as functions of ¢ and A.

It can be seen from Equation (39) that the inclination of the
ellipse, x, is a function of both the amplitude ratio B/A and the phase
difference A. Only in the case where A — B is the inclination at a
constant angle (#+= 4), independent of A.

1 ™ T
tan2y = <tun‘2urctan —) cosA = tan [ 2X —:l COSA —> 0, X =—.
1 4 4

(44)

For B A > 1 the ellipse rotates clockwise for increasing A, starting
at xy =y = arctan (B/A) for A=0to x = 0 for A —==/2. For B/A <1
the ellipse rotates counterclockwise from y = ¢ = arctan (B/A) for
A=0to y—== 2 for A ==/2, as shown in Figure 4.



98 RCA REVIEW March 196

ELLIPSOMETRY
The Fundamental Equation of Ellipsometry

The absolute changes in amplitude and phase, given by the Fresnel
coefficients for parallel and normal electric vectors [ Equation (19) ],
can be investigated experimentally by intensity and interference
methods, respectively. Relative changes of amplitude and phase can
be conveniently studied by reflecting a polarized light beam from the
surface under study, and examining the changes in the polarization
of the beam. These relative changes can be expressed by the ratio of
the generalized Fresnel reflection coefficients for the p-wave to that
for the s-wave. This results in the fundamental equation of ellip-
sometry :

< E., ) E,. >

K ey /Jrent <_1‘J,-,,,. (»)

Go). ()
I'Jls) ine I“‘inv (s)
Pp) tan ¢,

——=——0exp {i(4,,,— A;,.) } = eid tan y, (45)
p(s) tan S’Dinr‘

LE

where tany, , = < > and A,.; = (0p) — 0s)) ropie
refi

|E .|

Analogous definitions hold for the incident wave.

In general, the incident light is plane polarized, with the plane of
vibration of the electric vector inclined at += 4 with respect to the
plane of incidence. In that case,

|E(IH I .
tany,,,. - =1; Au=0, (46)
Ib‘u;l ine
so that
| Elp)
edtany = — : (47)
Elw refl

Since, in general,

E., |~ |E.| and 6, + 0., we see that the re-
flected wave is elliptically polarized. The ellipsometer measures experi-
mental quantities that allow the determination of ¢ and A (as will be
shown later).
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Because of Snell's Law, the Fresnel coefficients in Equation (45)
can all be expressed in terms of the optical constants of the media
bounding the reflective interfaces and the angle of incidence in the
ambient medium. If Equations (4), (6), and (21) are substituted
into Equation (45), and the resulting equation separated into its
real and imaginary parts, there results one equation for ¢ and one
for A, each as functions of the angle of incidence in the immersion
medium, the vacuum wavelength of the light, the index of refrac-
tion of the substrate, and the thickness and refractive index of the
film. All of these quantities can be independently determined, or are
fixed constants, except for the properties of the film.

Solutions of the Ellipsometry Equation

Since the above-mentioned equations for ¢ and A are transcendental
for film-covered surfaces, they can only be solved by either making
appropriate simplifying assumptions, or by graphical or numerical
methods. For film-free surfaces explicit solutions can be obtained.

(a) For the film-free case, i.e., d =0, Equation (45) (in com-
bination with Equation (46)) can be solved for the optical constants
of the substrate, resulting in

tanzg, (cos? 2¢ — sin? 2§ sin2X)
— . (48a)

n® —k*=sinz¢,| 1+ -
(1 + sin 2 cos A)*

sinZe, tanZg, sin 4¢ sin A
2 =——m—— (48b)

(1 + sin 2§ cos A)*

where the bars over ¢ and A indicate a film-free surface.

(b)  For very thin films (d << \) Drude expanded the exponential
terms in Equation (45) in a power series of (d ), discarding terms
of higher order than the first to get

A=A—ad, (49a)
¢y =9 +Bd, (49b)
where
1
47 cos ¢, Sin“¢,, (cos*p, — a) —1
a=| — 7, , (H0a)
Ay - — —t e

(cosZp, —a)? + a;*
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1
27 cose, sin2y sinZ¢pa, (1 —n,? cos¢,) <— - 1>
Bi=

n,2
1\0 o ’

(cos*py,—a)> + a,?

(50b)
Na2 — ko2
¢@=— (51a)
(na2 + ky2)2
2n, k.
@ =—- (51b)

B (n,2 + ky2) 2

X and ¢ as well as % and k for the film must be determined by inde-
pendent experiments. Druvde’s equation and variations of it are first-
order approximations and are valid for film thicknesses small com-
pared to one wavelength, i.e,, d << A, or d = 50-100 A. By a binomial
expansion one gets a second-order approximation to exact theory that
is valid for absorbing films as thick as 1000 A.

Approximate theories are advantageous in the sense that it is
relatively easy to solve the equations to give film properties from
experimental measurements.

(¢)  For thin films with a thickness not small compared with X,
exact theory must be used. Winterbottom' presents graphical solutions
of the exact equations, showing the functional relationships between
film properties and ellipsometer measurements. Vasicek! gives tables
to evaluate measurements of transparent films on glass. Archer!® and
McCrackin et al'®, among others, applied computer techniques to the
solution of the transcendental equations. The result can be either a
graphical representation of the dependence of ¢ and A on the proper-
ties of the film or specific numerical answers.

The Ellipsometer

The ellipsometer is an instrument that allows the determination
of the optical constants and thickness of thin films by analyzing the
elliptically polarized light reflected from a thin film on a reflecting
substrate.

As has been shown, the optical constants and the thickness of
the thin film are determined by the amplitude ratio ¢ — arctan (B/A)
and the phase difference A of the components of the reflected light
parallel and perpendicular to the plane of incidence. For transparent
films measurement at one angle of incidence is sufficient, but for




ELLIPSOMETRY 101

absorbing films two measurements at different angles of incidence
are required. The quantities ¢ and A, in turn, are related to the
inclination y and ellipticity tan y = b a by Equations (39) — (41).
The ellipsometer, finally, enables the experimental determination of
x and y.

From the discussions of the mathematical specification of polarized
waves, it can be seen that there are only two coordinate systems in
which the rotating E vector can be resolved into two perpendicular
components out of phase by =/2, namely those in which the coordinate
axes are parallel to the major and minor semiaxes of the ellipse.

SAMPLE

// ANALYZER
POLARIZER
FILTER O \ TELESCOPE
. Y “CoLLimaTor

MERCURY
ARC

MICROPHOTOMETER

Fig. 5—Schematic representation of ellipsometer.

Therefore, the only way elliptically polarized light can be transformed
into plane-polarized light with the help of a quarter wave plate
(QWP) (which introduces a = 2 phase shift between vibrations
parallel to its fast and slow axes, see Appendix), is by aligning the
fast and slow axes of the QWP with the major and minor axes of the
ellipse. The result is plane-polarized light at an angle of B —=x+ 7y
with respect to the plane of incidence. The angle that the QWP makes
with respect to the plane of incidence is x. The angle 8 can be deter-
mined with an analyzing Nicol prism. At extinction the analyzer
azimuth is =/2 + x + 7.

Once y and y are experimentally determined, Equations (40) and
(41) are used to determine ¢ and A; from these the thickness and
optical constants of the film can be determined.

An ellipsometer, schematically represented in Figure 5, is a polariz-
ing spectrometer with collimator and telescope arms swinging in a
plane with provisions for reading the angles of incidence and reflection
on a large fixed circle. The polarizer is a Nicol prism (Glan-Thompson
prism) mounted in a divided circle on the collimator, and the analyzer
is a similar prism mounted on the telescope. The compensator is also
mounted in a divided circle; it is approximately a quarter-wave plate
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for the light used and is attached either to the telescope or the colli-
mator depending on the experimental technique to be used (see below).
The light source, mounted on the collimator can, for example, be a
mercury arc with a filter for isolating the 5461 A line. Extinction
settings are determined by using a photomultiplier microphotometer,
mounted on the telescope, as a detector.

Experimental Technique

Alignment of the polarizer and analyzer prisms is the first step
in setting up the ellipsometer for operation. Alignment of a prism
simply means the determination of the scale readineg for which the
plane of vibration of the light transmitted by the prism is parallel
with the plane of incidence. Correct alignment is critical for the
accurate determination of optical constants of surfaces; it is not quite
as critical for the measurement of the thickness and index of refrac-
tion of thin films.'"

Alignment can be achieved by utilizing the fact that if randomly
polarized light is incident upon a dielectric at the Brewster angle, the
reflected ray is linearly polarized. In principle this is quite simple,
but in practice great care must be taken and the method outlined by
McCracken et al'® is recommended.

With the collimator and telescope aligned and analyzer and po-
larizer in crossed position, the QWP can be mounted in its divided
circle and turned until an extinction setting is obtained. Two such
settings can be observed; in one the fast axis is parallel to the polarizer
and in the other perpendicular to it. This determines the direction
of the two axes. A simple reflection experiment must be performed in
order to differentiate between the two axes. The relative retardation
of the plate is then determined by use of an auxiliary plate in a known
azimuth, a method devised by A. B. Winterbottom.! The QWP is
usually a thin doubly refractive crystal such as mica. Because of the
thinness of the mica crystals required (0.035 mm) it is difficult to
cleave them to produce retarders of exactly = /2. Even though the
phase retardation of a particular plate is not exactly = 2 one can still
use it to convert elliptically polarized light into plane-polarized light,
but in the analysis of the results corrections must be applied to
Equations (39) — (41). These corrections take different forms, de-
pending on the measurement method applied.

It is clear that ¢ tan ¢ can be determined either by finding the
parameters of elliptically polarized light obtained by reflecting plane
polarized light which was incident with the plane of vibration inclined
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at =/4 with respect to the plane of incidence, or by finding the param-
eters of elliptically polarized light that gives plane polarized light upon
reflection.

Method #1: In this method, plane-polarized light with the plane
of vibration of the electric field vector inclined =/4 with respect to the
plane of incidence is reflected from the film. The reflected beam is
elliptically polarized and the ellipticity and inclination of the reflected
licht are determined by the azimuths of the QWP (mounted on the
telescope) and the analyzer. The QWP azimuth is y, whereas the
analyzer azimuth is =/2 + x + v.

Method #2: Here one attempts to find the parameters of ellipti-
cally polarized light that gives plane polarized light upon reflection.
This method is, from an experimental point of view, very convenient
since it allows one to mount the QWP on the stationary collimator
instead of the movable telescope arm, and with it one can compensate
any phase difference with a QWP fixed in == 4 azimuth. For any
given surface there are several combinations of polarizer, analyzer,
and compensator scale settings that result in extinction. An excellent
discussion of this problem is given in Reference (16). In the follow-
ing, all azimuthal angles are considered to be positive in the counter-
clockwise direction from the plane of incidence when looking into the
licht beam, the QWP azimuth is += 4 and the analyzer azimuth is
always in the fourth quadrant. The relative phase retardation, A, and
the amplitude ratio, tan ¢, are then given by the following relations:"

™
tanA — sin 3 tan <— — 21’..) . (52)
2
cos2L = — cos B cos2P,,, (53)
tany = cot L tan (—A,), (54)

where f is the actual relative retardation of the QWP, and P and A
are the polarizer and analyzer azimuth angles, respectively. The zero
subscript indicates extinction settings.

The extinctions settings can be obtained by several methods that
differ in accuracy and sensitivity. Approximate extinction settings
can be obtained by alternately adjusting analyzer and polarizer until
minimum light transmission occurs. If more accurate extinction set-
tings are required, graphical plots of the intensity of the transmitted
beam versus polarizer and analyzer settings may be used.
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Another, more accurate method, is as follows. First, approximate
extinction settings are made by adjusting P and A for minimum light
transmission. Then the exact extinction setting for the polarizer P,
is determined by measuring P at equal intensities on each side of the
minimum, and averaging these two values. The polarizer must then
be set at P, and the same method is reapplied to find the correct extine-
tion setting for the analyzer, A,. This methed is, in principle, based
on the fact that the light intensity at the detector, 7, is symmetric
about P, for any setting of A, and symmetric about A, if P —=P,;
thus'

I o sin*(A — A,) + sin24 sin24sin2(P — P,). (55)

Since it is not assured that the initial extinction setting for A, is
correct, the above procedure must be successively repeated until the
results are within the required tolerances or within the sensitivity of
the instrument.

For ultrasensitivity, a Faraday cell and appropriate electronics as
well as a phase-sensitive detector can be added to the standard detec-
tion equipment.'”

APPLICATIONS

The physics of thin films and surfaces is very extensive and offers
numerous areas for the successful application of ellipsometry. The
following discussion relates to areas that might be of interest to
workers in solid-state physics, inorganic and physical chemistry, and
physical electronics.

Optical Constants of Film-Free Materials

Optical constants of dielectrics, semiconductors'™1, and conduc-
tors*! can be determined by ellipsometry. In order to achieve maxi-
mum sensitivity for these measurements a judicious choice of a proper
angle of incidence must be made. This problem has been analyzed for
absorbing media by Ditchburn.”> He finds that for metals the angle
of incidence should be approximately the principal angle for the par-
ticular material under consideration, whereas for semiconductors there
are certain limits to the angle of incidence within which it is prefer-
able to measure A or ¢ for two angles of incidence. He also shows
which method is most sensitive when the constants are in certain
ranges. Even though this method is very sensitive, it is prone to
errors due to unintentional thin surface films. It is clearly necessary
in many cases to take into account the effect of such surface films in
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evaluating the optical constants from ellipsometry data by applying
to the experimental measurements the corrections given by the Drude
equations, namely Equation (49), or to produce and measure the
surface in ultra high vacuum.”® The presence of such a film is easily
established because for light reflected at the principal angle, A = =/2
and the value of x can be obtained from Figure 4.

It should be realized, in connection with absorbing materials, that
the optical constants determined are characteristic only of the material
within a few skin depths from the surface. This is not necessarily a
disadvantage because it allows the study of surface effects.

Optical Constants and Thickness of Thin Films

The application of ellipsometry for the determination of the prop-
erties of thin nonabsorbing films is straightforward. Depending upon
the thickness of the film, one of the solutions of the ellipsometry
equations outlined previously must be used. The angle of incidence is
usually chosen to give maximum sensitivity for the determination of
the film thickness. No general rule is available to make this choice,
and the angle of incidence will depend upon the particular substrate,
film, and ambient medium. Smith and Hacskaylo* present curves and
equations to illustrate the dependence of the sensitivity on the experi-
mental parameters. Mertens et al?! find that for organic films on
metals the maximum sensitivity for thickness determination is achieved
if the angle of incidence is close to the principal angle of the substrate.
Studies have been performed on a number of materials, including
silicon525:26.27  titanium?, copper?, aluminum?, iron‘, stereate films on
metals? 2 and dielectric films on glass,®0:%!

For absorbing films this method is only meaningful when the atten-
uation is sufficiently low that the light emerging from the film-ambient
interface after reflection from the film—substrate interface can still be
detected. The analysis of elliptically polarized light that results from
the reflection of linearly polarized light does not furnish more than
two parameters. For this reason one must perform two measurements
at different angles of incidence; this will result in four equations for
the three unknown parameters (n, k, d) that characterize an absorb-
ing film.

Study of Physical and Chemical Processes on Surfaces

Ellipsometry allows the investigation of a large variety of different
physical and chemical processes,” and its main advantage in such
applications is the fact that measurements can be made in situ in both
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gaseous and liquid ambients, are nondestructive, and are, in most
cases, more sensitive than those of other methods.

The processes amenable to ellipsometric study can be classified in
various ways. From a physico-chemical point of view it seems most
natural to make a distinction as to whether or not a new phase has
been formed on the surface.

Surface Layer with Optical Properties
Different from Those of the Bulk

It is well known that mechanical treatments change the structure
of surface layers to varying depths depending on the material and the

8

N
o
T

151

MECHANICALLY POLISHED

LIGHT INTENSITY I - ARBITRARY UNITS
n
o
T

ok AND ETCHED; Ao=78.60°
| 4 CHEMICALLY POLISHED,
} AL =7875°
| X MECHANICALLY POLISHED
S5 BUT NOT ETCHED: AL=7870
Ql_\FL 1 1 1 1
70 75 80 85 90

ANALYZER READING A'-DEGREES

Fig. 6—Light intensity at the detector versus analyzer setting for (111)-

oriented silicon wafers treated in various ways. For the particular experi-

mental arrangement used here ¢ is obtained from A. by the relation Y=
91.43° — A/

treatment. Such changes are revealed by deviations of the optical
properties (among others) from those of the bulk. Archer,” for ex-
ample, finds by very precise ellipsometer determinations of the optical
constants of germanium that etched surfaces give results that corre-
spond to the bulk properties of very pure germanium, while mechani-
cally polished surfaces give results similar to those of highly doped
germanium. The present authors find that the curve of light intensity
at the detector versus analyzer angle for mechanically polished silicon
is shifted with respect to the curve for chemically polished silicon
(see Figure 6). The angle for the minimum of the curve representing
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a mechanically polished sample is different from that for the chemi-
cally polished one, indicating that the two specimens have different
optical properties. There is also a difference in the minimum light
intensities and slopes of the curves, most probably due to variation in
surface roughness. This problem has as yet not been analyzed in the
literature.

Diffusion of impurities into surface layers might, in certain cases,
manifest itself also in a change in the optical properties of the surface
layers. Such changes have been observed for boron diffusion into
silicon by the authors and for silicon immersed into a molten mixture
of LiNO, and KNO,.*

Space-charge layers at the surface of semiconductors are present
because of the existence of surface states; they can, under certain
conditions, also be present in insulating layers, especially in oxide
layers grown on metals or semiconductors. Due to the contact potential
at the interface between two materials there might also be a space-
charge layver. Even though a space-charge layer does not constitute
a different phase of the material, it still could have different optical
properties. Mertens et al,”! for example, stipulate that the space-charge
layver in an insulator on a metal substrate is the cause for a position-
dependent absorption in this dielectric.

Adsorption and Desorption Studies

Because of the many advantages outlined above, adsorption and
desorption studies from liquids or gases in situ are conveniently car-
ried out by the use of ellipsometry. Thus, adsorption isotherms for
water and various organic liquids on single-crystal silicon™ and the
thickness and index of refraction of adsorbed polystyrene films on
chromium?® have been determined, and optical measurements on thin
films of condensed gases at low temperatures have been made.””

Study of Deposition, Growth, and Dissolution of Films

This category represents perhaps the largest area for application
of ellipsometry and for this reason a major portion of the available
literature in ellipsometry is concerned with problems falling into this
classification. Deposition of films from the liquid or gas phase (evapo-
ation) can be investigated for various materials in order to establish
the pertinent process parameters, and their influence on the deposited
or grown material.

In growth studies the main interest thus far has been in the inves-
tigation of oxidation kinetics, and typical examples are the oxidation
of copper!, aluminum'*’, and iron!, room-temperature oxidation of
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germanium and silicon®, oxidation of silicon at elevated temperatures
in various ambients® ", and oxidation of titanium®. Another interest-
ing experiment in this area is the in situ electrochemical study of film
formation and growth on mirror electrodes immersed in an aqueous
electrolyte®.

Little has been reported on the study of dissolution processes by
the use of ellipsometry. The authors have studied the dissolution of
oxide films obtained by thermal oxidation of GaAs and found that the
constitution of these films changed when the film—substrate interface
was approached, and that there was an accumulation of As and/or
As,0; at the interface.!”

Although the theory of ellipsometry is very old, it has not been
applied to the extent that its usefulness would warrant. Only a small
portion of the possible areas of application have been investigated;
a great variety of new experiments can be envisioned.

EVALUATION

Errors and Accuracy

Random and systematic (instrumental) errors occur, of course, in
the use of the ellipsometer, and they are eventually carried over to
the derived optical constants of substrates and film parameters.

Multiple reflections in the optical system produce a number of
beams of decreasing intensity and of different states of polarization
that influence the settings of both polarizer and analyzer, and can,
under certain circumstances, introduce errors of the order of one
degree of azimuth. These errors cannot be eliminated by averaging
several independent extinction settings, and it is impossible to compute
corrections with certainty. The only possibility for reducing the
influence of these effects is through the use of optical components
having nonreflecting coatings.!

There is also the possibility of errors due to birefringence in the
optical components. Little is known concerning their magnitude, and
in order to reduce their influence care must be taken to avoid any
strain in the optical system.

The sensitivity of the photometer is another important parameter
that might limit the accuracy of the instrument, especially in applica-
tions where the cross section of the incident beam is reduced so that
the specimen can be scanned. In extreme cases it might be necessary
to cool the photomultiplier tube in order to reduce noise problems.

Systematic errors may arise from errors in the initial alignment
of polarizer, analyzer, and QWP, and from an error in the determina-
tion of the relative retardation of the QWP.
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In order to fully appreciate the importance of these errors and the
ones introduced during the measurement process, the procedure used
to obtain the final results from the experimental data will be briefly
outlined. The extinction settings for polarizer, analyzer, and QWP
which, in addition to the above-mentioned alignment errors also con-
tain random errors, are used in Equations (52)-(54) (in connection
with the relative retardation of the QWP, which also contains an
alignment error) to obtain ¢ and A. From these, in turn, the values
of u, k, and d are determined. Because of this complicated procedure,
the propagation of errors is obscure. It is possible that by taking two
or more of the 32 independent sets of the extinction settings! and
performing suitable averaging, the errors due to misalignment could
be reduced to such an extent that they could be neglected in comparison
to others. The lack of a rigorous error analysis for both systematic
and random errors is in part responsible for the large discrepancies
in the accuracy of results reported by various workers.

Limitations Introduced by the Properties of the Specimen

Lateral inhomogeneities of the film or substrate and/or variations
in film thickness within the area covered by the light beam cannot be
determined by ellipsometry. They might simply cause a decrease in
the accuracy, and the results obtained would represent the average or
effective parameters for the area examined™.

Optical properties of films having an inhomogeneity along the
normal to the boundary have been treated by Abeles.” The problem
of anisotropy was discussed by Winterbottom, and experiments in
this field were performed recently.' !

Differences between Optical Properties of Thin Films
and Bulk Materials

Whenever the thickness of a film is much smaller than the wave-
length of the light used, the measured properties generally begin to
differ from those characteristic of the bulk material. The meaning of
the thickness of such a film becomes ambiguous, first because, as is
well known from the thermodynamics of interfaces, no sharp bound-
aries can exist between two phases, and second, because of the granular
structure of many of these films (especially of those obtained by
evaporation).

The optical properties of metal films having such granular struc-
ture have been explained by two different theories. David* interprets
the variation of the optical constants with thickness of the film on
the basis of ellipsoids of revolution having the same optical constants
as the bulk material but being separated by voids. Fragstein and
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Romer" assume that the optical constants of thin films are different
from those of the bulk material.

Dielectric thin films may be granular, but are not necessarily so.
This is especially true for films obtained by oxidation, and even more
so if the resulting film is amorphous. In such a case, however, the
optical properties might still be different from those of the bulk
material. This could be explained as follows. The phase velocity of
the light wave in the film is not necessarily the same as in the bulk
because the internal field in the film could obviously be quite different
from that in the bulk as a result of dimensional effects alone, even
if other typical surface phenomena were not considered. Thus, for
instance, anisotropy can be expected even if the bulk material is
isotropic. Macroscopic concepts, such as the relationship between the
index of refraction, dielectric constant and polarizability, as given by
the Clausius—Mosotti and Lorentz-Lorenz equations, are not valid a
priori for thin films because the very assumptions involved in their
derivation are not necessarily fulfilled.

CONCLUSION

Ellipsometry is a useful method for the study of surface phenomena
because it allows the measurement of the properties of very thin films
in a large variety of combinations of substrates, film, and immersion
medium. These measurements are nondestructive, can be performed
in situ (even in liquids), and one measurement generally allows the
determination of two parameters.

Even though the relations between the optical properties and the
measured quantities are complicated, the desired information can
readily be extracted through the use of computers.

The ellipsometer, like all precision optical instruments, is a delicate
piece of equipment and requires extreme care in its construction,
maintenance, and operation. Because multiple reflections and bire-
fringence in the optical components introduce large instrumental
errors, a proper choice for the parts employed must be made so as to
minimize these effects.

The sensitivity of the method is quite high and, by proper statis-
tical analysis of experimental results, a very high accuracy can be
obtained—in many cases as high as five significant figures—if the
instrumental errors are properly taken into account.

APPENDIX—DESCRIPTION OF THE QUARTER-WAVE PLATE

The function of a quarter-wave plate (QWP) is to produce a phase
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shift of /2 between two electric vectors perpendicular to each other.
This can be achieved by the proper use of a birefringent crystal.

In general, the optical behavior of birefringent crystals is quite
complicated. It is the main subject of the optics of erystals and, quite
obviously, cannot be treated here. For the understanding of retarda-
tion plates it will suffice to say that there are two characteristic direc-
tions, perpendicular to each other, and both lying in the face of the
plate. Plane-polarized light that is normally incident upon the face
of this plate, has different phase velocities, depending on which of
the two characteristic directions the electric vector is parallel to. One
usually distinguishes between the “fast” and “slow” directions of
vibrations of a plate. The fast axis is, of course, in the direction of
vibrations that have the greatest phase velocity and the lowest index
of refraction (n,); the slow axis is in the direction of vibrations with
the lowest velocity and the highest index of refraction (n,). For
studying the effect of a retardation plate on normally incident light
(generally elliptically polarized), it is expedient to decompose it into
two plane-polarized beams with electric vectors parallel to fast and
slow axes. These two beams have the same geometrical path length
inside the plate, but their optical path lengths are dependent on the
indices of refraction, so that the optical path difference is

l=t(n,—mn,), (56)

and the phase difference between the two beams upon emerging from
the plate is

t
[3:97—(7[3—72/), (57)

0
where t is the thickness of the plate.
A retarding plate with a thickness that produces a phase difference
of =2 is called a cuarter-wave plate.
We see then that if two perpendicular E vectors, which are out of
phase by == /2, are normally incident upon a QWP in such a way that
they are parallel to the fast and slow axes of the QWP, they will

emerge with a phase difference of 0 or =, and plane-polarized light
will result.
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INTRODUCTORY STATISTICS AND SAMPLING
CONCEPTS APPLIED TO RADAR EVALUATION

By

REMO J. D’ORTENZIO

RCA Missile and Surface Radar Division
Moorestown, N. J.

Summary—The analysis of any type of digital data requires a working
knowledge of statistics and sampling theory. This paper presents some
fundamentals that are particularly useful in analyzing radar data. In-
cluded are definitions, least-mean-squares curve-fitting equations, sampling
and bandwidth considerations, data smoothing, and basic power spectrum
concepts. Portions of the contents are also applicable to many nonradar
situations.

INTRODUCTION

7 HIS paper is intended to serve as a guide for specifying the
contents of radar test data packages and the data analysis
methods to be used in evaluating them. The material presented

here is not intended to provide a rigorous theoretical background in
statistics. Rather, it is meant to give a practical understanding of
some of the items to be considered when collecting and analyzing
digital data. Although the discussions and examples are primarily
associated with radar, the ideas presented can be applied to a large
variety of situations possessing similar or analogous properties.

In most radars digital data is recorded at a fixed sampling fre-
quency. Some typical questions that arise concerning the processing
and analysis of this data are:

(a) How much data should be called for? (length of test run)

(b) Should every data point be processed or should some be

ignored to minimize data analysis and computer time?

(¢) How valid will the results be?

(d) How are curve fits utilized to determine radar precision and

accuracy ?

(e)  How does one specify the polynomial order of the curve fit?

(f)  What are the statistical effects of averaging or smoothing

data points that are not independent ?

(g) What does digital sampling do to the spectrum of the param-

eter being measured?

An attempt has been made in this paper to answer these questions
and others without introducing excessive mathematical complexities.
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It is hoped that the contents will serve as a foundation on which the
reader can build by consulting more-elegant treatments of this subject
in the literature.

DEFINITIONS

Consider a parameter measured » times; the values obtained are
¥y, ¥, 74+ 1,. This set of data points {r;} defines a random variable

R whose statistics are expressed as follows:

Mean

The mean, average value, or expected value of R is denoted by R
or F(R) and is given by

- 1y
R=ER) =— ) . (1)
n i=1

Standard Deviation

The standard deviation of R is a measure of the “scatter” of R
about its mean, R, and is denoted by o, where

1 n o
u,:_‘/— > (n—R)2 (2)
n 1

The variance of R, called Var(R), is simply the square of the
standard deviation o

Variance

1 " o
Var(R) =o,2=— Y (rn—R)~ (3)
n 1

Var(R) is actually the average value of the square of the deviation

of each data point from its mean, and is sometimes represented as
shown in Equation (4).

Var(R) =E(R—R)2= (R—R)=. (4)

By expanding (R—R)? (see Appendix I), Var(R) can also be ex-
pressed as

Var(R) =E(R?) — [E(R)]12=RZ— (R)*. (5)
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Cquation (5) states that Var(R) can also be considered as the average
value of the square of the data points minus the square of their
average value.

Root-Mean-Square Value

The root-mean-square (r-m-s) value p of a set of data is strictly
defined as

1 " o
p=7/ — Dré=4/ R (6)
n 1

This particular parameter is very seldom directly used to charac-
terize a set of data. It gives a measure of “scatter” of the data points
from a zero reference. The more widely used term is the root-mean-
square error described below.

Root-Mean-Square Error

The root-mean-square (r-m-s) error a, is the measure of the “scat-
ter” of a set of data about some reference point P. For the completely
general case, the r-m-s error of the data points about P is given by

l n
ap = ‘/~Z (r;,— P)2 (7)
: no

Note that if P is the mean value of the data, then ap is identical
to o, Stated another way, the r-m-s error of a set of data about its
mean is equal to the standard deviation of the data.

If, on the other hand, P is set equal to zero, then «, becomes iden-
tical to the data r-m-s value p.

The more general case occurs when P is neither R nor zero. Such
a case may arise for example when a set of radar data is taken to
determine the ability of the radar to measure the range of a boresight
tower whose exact range is known. If the true or surveyed range is
R, and the set {7} represents the radar measurements, the total r-m-s
error a, of the radar is given by Equation (7) with P set equal to R,.
A typical set of range data obtained in the presence of noise is shown
in Figure 1.

Note that the average of the data points, R, generally differs from
the true range, R,. This gives rise to a bias error B defined by

B =R — Ry. (8)
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The r-m-s error of the measurements about R, is

/T2

app = /‘// — Z (r;— Ryp)?3, (9)

w1

and the r-m-s error about K (or the standard deviation) is

) [
ag=o0p= —> (r,—R)* (10)
n 1
RANGE (R) t
)
8 % ° o1 ®
R
RT
i L 1 l l L B l L l l
0 T T T T T T T T T T T
t t t '"
I 2 3 TIME (1) —*

Fig. 1—Typical range measurements of boresight tower.

Combining Equations (1), (8), (9), and (10) shows that
app? = og® + B=. (11)

The complete derivation of Equation (11) is shown in Appendix II.

The interesting point to observe in Equation (11) is that the total
y-m-s error a,, can be broken down into two components—the stand-
ard deviation o, and the bias B. More is said about these in relation
to the definitions of precision and accuracy that follow.

Precision and Accuracy

The International Dictionary of Physics and Electronics defines
the precision of a measuring device as the degree of reproducibility
among a group of independent measurements of the same true value
made under specified conditions. The accuracy is the quality of cor-
rectness or freedom from error.
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Barton' applies these definitions such that the 7-m-s radar range
accuracy is the total r-m-s error of a set of data points {r;} with
respect to the true range R,. This includes both bias errors and noise
errors and is mathematically equivalent to a,, as defined in Equation
9).

Precision is used as a measure of noise error only, since noise inter-
feres with the ability of the radar to reproduce a range measurement.
Thus r-m-s precision is defined as the r-mi-s error of the readings
about their mean, R. This is equivalent to the value a, defined in
Equation (10).

Equation (11) shows that the r-m-s precision and accuracy differ
because of the bias error B. This equation demonstrates two interest-
ing facts. First, the square of the r-m-s accuracy is the sum of the
squares of the r-m-s precision and bias errors and secondly, under
certain “low noise” conditions, a set of radar data can be very precise
(low o) but highly inaccurate (large bias),

LEAST-MEAN-SQUARES CURVE FITTING

Basic Concepts

The true value of a parameter frequently varies with time. For
the case of radar range measurements, this situation would arise when
making range measurements on a target moving with respect to the
radar. On other occasions the true value might remain constant, but
the readings of the measuring device may slowly drift with time. This
drift might be caused by a bad component in the measuring equipment
or it could conceivably be part of a low-frequency oscillation that looks
like drift when examined over a relatively short period of time.

For cases such as these, calculation of the precision and accuracy
of the measuring device as described in the preceding section would
lead to erroneous results. Suppose, for example, that a radar was
making range measurements on a balloon moving slowly away from
the radar. A typical set of such data is shown in Figure 2.

The mean (R) of this data would not be too meaningful by itself.
At best, it would be an estimate of the average range of the balloon
between times #, and ,. In order to handle this type of data, some
sort of curve fit is required.

If the value of the true range is known to vary approximately
linearly with time, a straight-line curve fit should be specified. The
most common type of curve fit used is that from the method of least
mean squares.

The equation of the line representing the least-mean-squares curve
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fit to Figure 2 can be expressed as
R, (t) = Ay + Ay, (12)
where A, and A, are chosen such that the residual variance 5= of the

data points with respect to the derived curve is a minimum. The
residual variance 8% is defined as

1 n
o __ - \ 190
82 =— 2 [r,— R.(t) 13, (13)
N =1
yl(t)
RANGE (R) e
g -7 Re(t)
(R,t) Ph
2 o &
- _-=="""o
g ,’0’,-0")-— o 'n
R ryza ui
[ . ;/
3 2=
n ‘,°—"o G
’o_—‘o_ ’,’
T 2 "
Ao ",—’
j—- + t + + t t
t t
'I 72 13 t n

TIME (1) —»

Fig. 2—Range measurements during a balloon track.

where the quantity », — R,(t,) is called a data point residual and is
denoted by d,.

d=r,—R;(1). (14)

Stated another way, the straight line is derived so that the variance
(or mean square) of the residuals is a minimum. The quantity § is
the residual r-m-s error, but is usually referred to simply as the r-m-s
error.

When A, and A, are properly calculated the average residual is
zero. Thus, for a least-mean-squares curve fit (of any order poly-
nomial)

n n

1
— Y di=— ) [ri—R.(t)] =0. (15)
n

1
1 n 1
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The more general expression for a curve fit is given by the ktn
order polynomial;

R.(t) = Ag+ Ayt + Aut? + Agtt - - - + A t*, (16)

The order of the polynomial specified for curve fits must be based on
some a priori knowledge of the data. For example, if a missile re-entry
motion is known to contain radial acceleration and jerk components,
at least a third-order polynomial would be required for ‘ange-data
curve fitting. Specifying too high an order polynomial is undesirable
because in the limit, the fitted curve will theoretically be connecting
each data point, thereby reducing the residual variance toward zero
and obscuring the radar range tracking errors. On the other hand,
specifying a linear curve fit to range data obtained on a radially
accelerating target would tend to exaggerate the range tracking
errors. However, it would be quite acceptable to fit a linear curve
over a small segment of data extracted from a large data record whose
overall range versus time varied—for example in a quadratic or cubic
fashion—provided that the segment being analyzed was approximately
linear. Thus, the length of the data interval is another factor to
consider when selecting the order of polynomial.

In actual practice, when computer facilities are used, computational
difficulties will set in long before the order of the polynomial ap-
proaches the number of data points. As the order of the polynomial
is increased, one may actually find the residual variance reaches some
minimum and thereafter begins to increase. This will occur when the
computational errors become significantly larger than the errors in
the data being analyzed. Most data reduction centers have pre-pro-
grammed routines for least-mean-square curve fits. They also have
programs available for determining the appropriate order of the poly-
nomial to be used when there is no a priori knowledge of how the data
behaves. Generally, it is not practical to fit polynomials above orders
of seven or eight without special procedures.

Calculation of the r-m-s error of a set of range measurements
made on a boresight tower has been described. In this calculation a
linear curve fit would provide useful information about the nature of
the errors even though the target is known to be fixed in range. For
example, if the calculated r-m-s error is large, it could be caused by
excessive noise or by a drift that occurred during the test run. Fur-
thermore, as previously mentioned, the drift could actually be part of
a low-frequency oscillation. In any case, a linear curve fit to the data
points would provide much in the way of diagnostic information. If
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the slope of the line is zero, then one can be sure there was no drift.
On the other hand, if the slope is not zero, there is an indication that
some drift did occur. One method commonly used to determine whether
any drifts are cyclic is to take data on a known target over a relatively
long time interval and run a power-spectrum analysis on the data
points. This is discussed later.

It should be noted that curve fitting is by no means restricted to
the principal of least mean squares. The reasons for the widespread
use of this method are its direct association with the concept of vari-
ance as a measure of data dispersion and its mathematical simplicity
as compared to other methods. One could, for example, specify a curve
fit that would minimize the maximum of the absolute values of the
residuals, or the average of the absolute values of the residuals, or the
average of the residuals raised to an even-integer power. Fach of
these methods, however, presents excessive mathematical complexities
and they are generally avoided except for special situations.

Figure 2 illustrates why one would not attempt to fit a curve to
minimize the average of the residuals raised to the first power (or
any odd-integer power). Consider the line (). By simple inspection
one observes that it represents a poor fit to the data. However, it is
very possible that » () possesses the properties of fitting the data with
an average residual of zero. It is possible, in fact, to have an infinite
number of lines of different slopes, each of which has a zero average
residual.

Linear Least-Mean-Squares Curve Fit Equations

Given a set of data points [}, the following equation is to be
derived:

R.(t) = A, + Ay, (12)
such that the residual variance,

] n
82 = — [r;— (A, + At 13, (17)
n f=1
is minimized. The problem is thus reduced to finding the values of
A, and A, that minimize the residual variance 8.

The necessary condition for 8% to be a minimum is that the partial
derivatives of 82 with respect to A, and A, be zero.

2(8%) 0(82)
==, (18)
24, 24,
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Operating on Equation (17) as indicated in Equation (18) results
in two linear equations with two unknowns. It appears at first elance
that solving for A, and A, could theoretically result in either a maxi-
mum or minimum for §2 However, each term in Equation (17) is
non-negative; therefore 5% must have a non-negative minimum. Solv-
ing the two linear equations for 4, and A, gives only one solution, and
hence this must be the solution for minimizing §2. Therefore the
criteria of Equation (18) represents both necessary and sufficient
conditions for minimizing 6% The development of the equations for
determining the values of A, and A, follows:

2(82) 2
=—— D [r— (A, + At)], (19)
n

aAo

Equating the right-hand of Equation (19) to zero, dividing through
by —(2/n), expanding, and rearranging yields

dom=nd+ 4, ) b (20)

Also,

2(8)= 2
— Z [)‘i—(Atv+Alti)] [_[,I
n

A,
(21)

2 :
= — Z [7it;— Aot; — A, t2].
n

Equating the right-hand side of Equation (21) to zero, dividing
through by 2 n, expanding, and rearranging yields

Z rit; = A, Z t,+ A, Z t32, (22)

where all summations extend from i =1 to i — n. Solving Equations
(20) and (22) simultaneously yields the desired values of A, and A,.
Note that if the data is made symmetrical in time about t — 0, so that

Z t; =0, then the solution is given simply by

1
Ag=— Z Ty (23)
n
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Z rit;
¥

Second-Order Polynomial Least-Mean-Squares Curve-Fit Equations

A

Given a set of data points {r,}, the following equation is to be
derived:

R, (t) = Ay + At + Aot (25)
The function to be minimized is given by

1 n
82=— > [ri— (Ag+ Ast + Aut?) ]2 (26)
n i=1

The function 8% is minimized if

2(8)2 2(8%) 2(8%)
= = — 0. (27)
24, 0A, 24,

Performing the partial differentiations indicated by Equation (27)
and simplifying yields the three simultaneous equations which must
be solved for A,, A, and A.;

Z rit® =4, Z tt+ A, z t3+ A, Z t, (28)
Z rit, = A, Z t3+ A, Z t2+ A, Z ti, (29)
Z r, =A, Z t2+ A, Z £ 4 Agm, (30)

where all summations extend from i —1 to i — n.
Note again that considerable simplification in solving the above

can be achieved if the data is made symmetrical in #; so thatz =
S i =0
SAMPLING CONSIDERATIONS

Suppose one wishes to estimate the mean, X, and standard devia-
tion, o, of an infinite population by means of sampling. A sample of
size n is drawn and its mean, U, and standard deviation, S, are calcu-
lated. These calculated sample values approach the actual values only
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as the sample size n approaches infinity (provided of course that no
bias exists in the measuring equipment). However, by choosing a
finite sample size n, certain statistical inferences can be made about
the relationship of the sample characteristics to those of the popu-
lation.

When #n is very small (of the order of 30 or less) the relationships
between the sample values U and S, and the actual values X and o, are
quite subtle and will not be considered here. Fortunately most radar
data to be analyzed consists of numbers of independent data points
much larger than 30. Furthermore the data is usually distributed in
a normal or near normal form (especially when taken under conditions
of large signal-to-noise ratios). These two factors afford a consider-
able simplification in relating the estimates to the actual and in deter-
mining the validity or the “confidence level” of the estimates. (The
concept of a normal distribution is described in Appendix II1.)

Sample Size—Confidence Levels

If it is assumed that the population is normally (or near normally)
distributed and the sample size, n, is larger than 30, then the following
results can be utilized with negligible error.

For a sample of size n there is a certain probability, or confidence
level, associated with how well the estimates U and S compare with
the “true” values X and o. In a radar situation the number of inde-
pendent data points required to estimate a particular parameter is
usually a compromise between the confidence level desired and the
practicality of processing a large set of data.

In Figure 3 the per cent error, E, in estimating o versus the sample
size u, is plotted with confidence level as a parameter. Table I relates
the error in estimating X with the sample size n for various confidence
levels. The remainder of this section is directed toward the interpre-
tation and use of the results shown in Figure 3 and Table I rather
than the arguments used in obtaining them. The development of
Figure 3 and Table I is described in Appendix IV and References (2)
and (6).

Figure 3 can best be interpreted by stating that if n samples are
taken and their standard deviation, S, is used to estimate o, there is
a certain probability (or confidence level) that S will be within +E¢;
of ¢. For example, with # — 100 there is a 90.07; probability that
the calculated value of S will be within =11.5¢ of ¢. In equation form

Probability 4 o(1—0.115) =S = o(1 4 0.115) L = 0.900,
i (32)
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or
S S ‘
Probability { —————— =o¢=———} = 0.900. (32a)
i 1+ 0.115 1—0.115

Thus there is a 90.0¢; confidence that the true value of ¢ lies between
S/1.115 and S/ 0.8R85.

Table I—Estimation of X

Confidence Level (¢)  Maximum Difference® between X and U

o
99.7 +3.00
Vau
o
95.5 +2.00
27
o
90.0 +1.65
Vau
o
80.0 +1.28
Vn
o
68.3 +1.00
Vo

* The expressions shown apply when the population standard deviation
o is known. When o is not known, the sample standard deviation S can be
used in place of ¢ with negligible error provided the sample size » is large
(greater than 30).

Table 1 is used to determine how good a measure of X is obtained
by using the sample mean, U, as an estimate. If the true o is known,
the expressions in Table T are used to determine the confidence levels
of the estimate. However, if the value of ¢ is not known (as is usually
the case) the sample standard deviation, S, must be calculated and used
in its place. When the sample size » is greater than 30. the substitu-
tion of S for o in the expressions of Table I results in a negligible
error. Suppose that n — 100 and ¢ is not known; Table I shows that
if the estimate of X is U and that of o is S, then

[ 38 38
Probability { X ———— = U=X+
|

(33)



128 RCA REVIEW March 196

or
38 38
Probability + U — -=X=U+ 0.997.
V100 \/100
(33a)
50%
C.L.z99.7% K=3
C.L.295.5% K2 N
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Fig. 3—Maximum per cent error in estimating the o of a normal population
versus sample size for various confidence levels (C.L.). (Equations of
curves shown: K — 100 K/V 2n; values of K shown.)

Effects of Bandwidth and Sampling on R-M-S Error Calculations
Marcum® states that if white Gaussian noise is passed through a
narrow-band i-f filter whose overall 3-decibel bandwidth is Af, it is
probably a good approximation to assume that samples of the noise
envelope taken 1 Af seconds apart are statistically independent. This
of course serves only as an approximate quantity which changes for
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different filter shapes. If the filtering is done at the video level instead
of i-f and the low-pass 3-decibel video bandwidth is B, statistical
independence is assumed every 1/2B seconds.

Suppose a set of radar measurements is bandwidth limited by a
10 cps i-f filter and the radar computer has a fixed sampling frequency
of 100 pps. For this special case, data points spaced 0.1 second apart
(every tenth data point) are assumed statistically independent.

Using these assumptions, one can determine the length of data
record required to obtain a certain confidence level with a certain per
cent error. For example, if a 99.7 per cent probability is desired that
a measured r-m-s error does not differ from its true value by more
than 10 per cent, then Figure 3 shows that about 450 independent data
points are required. Therefore, for a 10 cps bandwidth, 45 seconds
of data would be required (10 independent samples per second). In
order to minimize computer time in determining r-m-s error one
should select every tenth point in the data. If all the data points are
used instead of every tenth, there would be a predictable improvement
in the confidence level of the measurement, but this improvement
would generally be small. One significant factor to emphasize, how-
ever, is that using all the data points can only improve the estimate;
it will never make the results less valid. The only disadvantage is
that the additional processing time required may not be warranted.

Data Smoothing

Oftentimes it is desirable to average groups of adjacent data points
to smooth out some of the effects of noise. Suppose a set of data points
Py, Tay Ty---7, are known to be distributed in a Gaussian or near-
Gaussian form. Next assume that smoothing is accomplished by divid-
ing the data points into adjacent groups of ten, the first group being
comprised of »r, through r,,, the second of r,; through r,, etc. If the
averages of each group of ten are calculated to be X1, T’._.-'-T,, 10
these can be looked at as a new set of data points that are “smooth”
with respect to the original points.

If the points {r,}) are independent, then the standard deviation of
the set {X,} will be approximately 1 7 times the standard deviation
of the original data. For the particular case chosen, n is ten and thus
the standard deviation of the smoothed data is 1/\/10 or about 0.3
times that of the original data.

If the points {r;} are not independent, the analysis required is
elaborate. Appendix V shows how correlation techniques can be used
to calculate (under specific conditions of filter shape, bandwidth, and
sampling frequency) the standard deviation of a set of smoothed data
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points that are dependent. Averaging groups of ten points from 100
pps data obtained from a 5 c¢ps bandwidth, single-tuned low-pass filter
reduces the standard deviation to 0.67 of the value calculated for the
“raw” data.

The resulting reductions in standard deviations can be interpreted
in terms of a filtering process. If the raw data is obtained from a
low-pass filter of bandwidth B, and has a standard deviation o,, then
the effective value B, of the filter bandwidth which would have given
rise to the same standard deviation ¢, obtained by smoothing is

o
oo~

B, =—B,. (34,

9
o=

Averaging ten independent data points, for example, would give a o,
of 1/\/10 times o,. The effective bandwidth B, of this smoothing
process is thus given by

Ty 2 1 B,
B.,= — —B,=—. (35)
V10 /) gy 10

It must be noted, however, that Equation (34) is valid only if the
degree of smoothing is considerable. This situation simulates a white-
noise input to a narrow-band filter, from which Equation (34) is
derived.

All the discussions in this section are also directly applicable to
the case where raw data points 7, through r,, are averaged first, then
points », through r,;, then points », through r,., etc. The resulting
smoothed data will have the same standard deviation as did the aver-
ages of discrete groups of ten. In fact, for a given number of raw
data points the confidence level of estimating r-m-s error or standard
deviation with this type of smoothing would be greater than for the
discrete case. The only disadvantage to this technique is the additional
processing time required which may not be justified in terms of the
increase in confidence level.

POWER SPECTRUM
Definitions and Basic Concepts
The power content of any voltage waveform is defined as the power
that the voltage would develop across a resistance of one ohm. If white
noise having W watts per cycle per second or W watts per unit band-
width is applied to a filter of narrow bandwidth whose transfer func-
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tion is G (f), the power spectrum or spectral density P(f) of the
waveform out of the filter is given by

P(f) =WI|G() |2 (36)

P(f) is basically a measure of the power per unit bandwidth. A
plot of P(f) versus f would show the relative contributions of different
frequency bands to the total power. The area under the P(f) versus f
curve represents the total average power that the waveform would
develop across a one-ohm resistance.

o0 o0

P, = fmfulf—, fwmml'-'df. (37)

o 0

Note that P,, is also the square of the r-m-s value of the waveform.
Thus the area under the data power spectrum curve should be numeri-
cally equal to the square of the data r-m-s value. For example, if radar
range measurements are taken during a balloon track, it may be desir-
able to curve fit the data and calculate residuals between the curve fit
and data points. The r-m-s tracking error is then defined as the r-m-s
value of the residuals. Suppose that this gives rise to some value o,.
A power spectrum of these same residuals would give a plot of their
relative frequency distribution. The area under this power spectrum
curve should theoretically be equal to «,2. However, power spectrum
of sampled data cannot generally be calculated as accurately as r-m-s
errors: thus there would be some discrepancies between the results in
a practical case. One method for calculating the power spectrum of
sampled data is described in Appendix VI.

Equation (36) suggests that if a set of radar measurements is
band limited by some filter G (f), the power spectrum of the data will
in general tend to reproduce the absolute square of the filter response.
The resulting plot of P(f) versus f can be analyzed to observe any
deviations or sharp peaks that may indicate undesired oscillations.

Spectrum of Sampled Data

If some continuous data has a certain power spectrum character-
istic that is to be determined after sampling, the question arises of
how the power spectrum of the sampled data is related to the con-
tinuous data. (The discussion is restricted to sampled data that is
equispaced in time.) A general answer to the above question is that
sampling introduces sideband frequencies into the spectrum which
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cause the original power spectrum of the continuous data to be repro-
duced in shape, at frequencies centered about multiples of the sampling
frequency.

To understand this phenomenon, it is desirable to examine a situa-
tion where the continuous data is sampled for a finite time 7 at inter-
vals of T seconds by what is called the unit sampling function u (r,t)
shown in Figure 4.

u(T,t)

i :

UNITY

I [ ]
I )| 2T 3T
t:0

[ —

Fig. 4—The unit sampling function wu (7,t).

The Fourier series representation of this function is given by

nwr
[ sin
T 2r = i i 27 T
u(rt) =—+ Z{—cosn —_—t——r (38)
T ™ & || nwr T T
7 { T

where the quantity nz7 T is the phase angle nf, of the n'™ harmonic
and (27/T) (sin nwr/T) /(nw7/T) is the amplitude of the nt® harmonic.

If some continuous waveform x(t) is sampled by the unit sampling
function u(7,t) as in Figure 5, the output y(t) is given by the product
of u(7,t) and 2 (t) as shown in Equation (39).

T
y(t) =u(nt) 2(t) =—z(t)
14

( nmwr
| sin
27 T < 27 T >
St ] ————cosn| —t —— x(t) i
i .; nrr T T
| T J

(39)



STATISTICS AND SAMPLING CONCEPTS 133

In order to analyze the effects of sampling on the frequency spec-
trum, it is convenient to consider some 2 (f) waveform that contains
only one frequency component f,.

Let x(t) =Veos (2xf,t +6,), (40)
f=1/2, (41)
T
and 0= ; (42)
T
(a) . /—/\/./L\-
0
—
() yir,n §| ‘l H 1 _]
0 t -
(¢) yin ~l /l ﬂ \I
0 o

Fig. 5~—(a) A continuous waveform x(t), (b) the unit sampling function
w(r,t), and (¢) the sampled waveform y(t).

Then Equation (39) becomes

-
y(t) =—V cos(2nf,t + 60,)
T

27 ~_(sin nwf.7
+ |4 { ——cos n(2xf t —0,) cos(2nf,t + 6,) r.
D=1

T nrf,r
(43)
Using the identity
cos AcosB=1/2[cos(A+B) +cos(A—B)], (44)

Equation (43) becomes
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T T *_sin n=f,7
y(t) =— Veceos(2nfot -+ 60,) +—V %{cosmn
T T n—1 MnNufer

(nfy + fo)t —nb,+ 6,] + cos|2x (nf, — fo)t—nf,—46,] } (45)

Equation (45) shows that the sampling process reproduces the original
frequency f, (attenuated by a factor »/7) and also introduces side-
band frequencies nf, + f, whose magnitudes have a (sinx) /& gross
spectrum (see Figure 6).

SPECTRUM v
(a) OF x (t)
'o f—a
Ty
T
SPECTRUM
(b) OF y(t) I I I
fo ':"o' fs+1 2t -1 I 2,48 f—>

s 2t

Fig. 6—Spectrum (a) of x(t) = Veos(27f.t 4+ 6,) and (b) of y(t).

When the original signal x(t) is a composite periodic wave con-
sisting of j frequency components ranging from zero to f, cps, the
frequency spectrum of x(#) would contain 7 vertical lines. The height
of these vertical lines would be equal to the magnitude of the corre-
sponding frequency component. Thus for this case the frequency
spectrum of the sampled signal would contain the lines of the original
spectrum plus sideband frequencies at nf, + f where f is the frequency
of any single line in the original spectrum.

Now, if the composite signal 2 (#) contains an infinite number of
frequency components within its frequency band, then in the limit,
x(t) becomes nonperiodic and its frequency spectrum approaches a
continuous curve. The spectrum g, (f)| of such a signal and the
corresponding spectrum lg,(f)| of the sampled signal are shown in
Figure 7.

Figure 7 clearly illustrates that the sampling frequency f, must
be at least twice the highest significant frequency component in the
original spectrum. If f_ were less than 2f, in Figure 7, the sideband
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lobes of the sampled spectrum would distort the main lobe. One “rule
of thumb’ commonly used in practice is to choose f, equal to or greater
than 3f,.

Sometimes, when a power density spectrum is calculated from a
set of residuals derived from a least-mean-squares curve fit, excessive
spectral components may appear in the region of zero frequency. One
possible cause of this phenomenon is the use of a polynomial curve fit

(@) g, 1]

) s 0] \ Y
; 1
'o 's fo , fth

211 T 210ty t—>
2t
s s
Fig. 7—Frequency spectrum (a) of a nonperiodic signal of a low-pass
frequency band and (b) of the sampled signal.

whose order is too low. For example, if a parameter R actually varied
quadratically with time, and a linear curve fit was specified, the resid-
uals would tend to exhibit a cyclic variation with a fundamental
frequency of about 1/7 cps, where 7T is the total time duration of the
data record (in seconds). In general, T is relatively large, and thus
the effects show up in the vicinity of zero frequency.

APPENDIX I-—DERIVATION OF VARIANCE EXPRESSION (EQUATION (5))

Given a random variable X with mean value X, the variance of X
is defined by

Var (X) = (X —X)2. (46)

If the right-hand member is expanded, Equation (46) becomes

Var (X) = X2 —2XX + (X)= (47)
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The average value of a sum is equal to the sum of the averages;
therefore

Var (X) = X?—2XX + (X)=. (48)
The average value of a constant is the same constant, and the average
value of a constant times a random variable is equal to the constant

times the average value of the random variable. Therefore

Var (X) = X2 —2XX + (X)2=X"—2(X)2+ (X)2=X?— (X)2
(49)

APPENDIX II-——DERIVATION OF TOTAL MEAN-SQUARE-ERROR EXPRESSION
(EQUATION (11))

Refer to Equations (1), (8), (9) and (10). Note that

B?2= (R—Ry)?2 (50)
1
app?=— D (r;—Ry)?
n
1
= — Z (r#—2r,Rp + Ry?)
n
1 2R, 1
=— D ri———> +— ) Ry?
n n n
1 .
=— > r®—2R,R+R;* (51)
n
1
opt=— Z (r;—R)2
n

1 I
:——ZH'F—Z)',-R + (R)?)
n

1 2R 1

:WZ"["—-—Z)',+—Z(F;'~'

n n n

=— > ri— (R (52)
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Subtracting Equation (52) from (51) yields

ap® — o2 = (R)2—2R R, + R)?

— ‘E—Rr):. (53)
Comparing Equations (50) and (53) shows that
B2 = app® — op? (54)

and Equation (11) is proved.

APPENDIX III—THE NORMAL DISTRIBUTION

This section is intended to provide a simplified version of the
concept of a normal (or Gaussian) distribution. The reader who is
interested in a comprehensive treatment of the normal distribution,
or probability distributions in general, can consult References (2),
(6), and (7).

When a population or set of data is said to be normally distributed,
the probabilistic relationships describing the statistics of the data are
defined by the equations and curves shown in Figure 8.

Figure 8a, represented by p(X), is the non-cumulative form of the
normal distribution usually referred to as the normal probability
density function, while Figure 8b is the cumulative form represented
by P(X) and called the normal probability distribution function. If
one states that a population is normal with mean X and standard
deviation ¢ and a single random sample X is drawn, the probability
that the random variable X will be less than or equal to some value
X,, is given by the shaded area of Figure 8a. Expressed mathemati-
cally :

X,

Probability {— x =X =X, } = / p(X)dX

— o0

1 (X —X)2
— ——exp 4 ————— - dX.
. o\/2n 202

(55)

Unfortunately, the integral of Equation (55) cannot be expressed in
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closed form. A series expansion and term by term integration of
p(X) is necessary to evaluate the integral. The definite integral from
—=% to any value X, can then be computed to any desired accuracy by
choosing an appropriate number of terms. The results so obtained
constitute the cumulative form of the normal distribution P (X), where

X

P(X) = /pl.\'nl.\'. (56)

-0

p(X)
(a)
xu xz X X —
1.0 = == = = R
P(x) "
PxX) = fp(x) 4 X
-co
({1 QT — S
plx,) V
PIX,) [/
==

X X,

Fig. 8—Forms of the normal distribution; (a) noncumulative (probability
density function), and (b) cumulative (probability distribution function).

Extensive tables, such as those appearing in Burington and May®
have been computed for evaluating P(X). The results are shown
graphically in Figure 8b. Here the probability P(X;) that a random
selection will be less than or equal to X, is read directly from the
curve. It will be stated here, without proof, that P(=), given by the
total area under p(X) is equal to unity. This is a necessary condition
for p(X) to be called a density function and for P(X) to be termed
a distribution function.

Given the same normal population, suppose it is desired to find the
probability that a point selected at random lies between X, and X..
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This is given graphically by the area under the curve of Figure 8a
contained between X, and X.. Expressed mathematically

.Y2
Probability {X, = X = X, — [ p(X)dx (57)
.\'.l
,\',: .\'I
= ’ p(X)dr — ’ p(X)due. (58)

Table 11—Probability that a Rardom Sample X Drawn from a Normal
Population Will Lie within =K of the Mean X

K Probability {X — Ko = X = X + Ko}
1.60 0.683
1.28 0.800
1.65 0.900
2.00 0.955
3.00 0.997

Thus the desired probability can be determined by reading from
the curve at Figure 8b the values P(X,) and P(X,) and computing
the difference P(X,) — P(X,). Thus, Equation (58) can be re-written

as

Probability | X, = X = X} = P(X.) — P(X,). (59)

Oftentimes, it is desirable to know what the probability is that a
point selected at random will lie within a certain number of standard

deviation units from the mean A. This probability is

X+ Ko
. ) 1 [ (X—X)2
Probability {X — Ko =X = X + Ko| = ——exp<d—— % da.
o o\/ 27 L 202
X—FKo

(60)

The results for various values of K can be found in the tables of Bur-
ington and May.” A few representative values are given in Table II.
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For example there is a 0.683 probability that a value selected at
random from a normally distributed population with mean X and
standard deviation o will lie within +1.000 from X.

The importance of the normal distribution stems from the fact
that a very large class of statistical data tends to be normal or near
normal. Such is the case with radar data, where the presence of noise
causes data to be scattered about its true value—usually in a normally
distributed manner.

APPENDIX IV-—DEVELOPMENT OF CONFIDENCE LEVELS

Suppose that a sample of size n is drawn from an infinite, normally
distributed population whose mean is X and standard deviation is o.
Next, the sample mean », and standard deviation sy are calculated.
Taking a second sample, also of size n, would give rise to a sample
mean and standard deviation w, and s.. A third attempt would give
iy and sy ete. If this procedure were repeated m times (m approaching
infinity) the values u,, Uay Uy, and sy, Su, 8y, - -5, would repre-
sent two sets of random variables U and S characterized by their own
probability distributions. If the sample size n is large (>30) certain
useful approximations can be made regarding the distributions of U
and S and their relationship to the population mean and standard
deviation X and o. Under the specified assumptions, the random vari-
ables U and S are each normally distributed as shown in Figures 9
and 10.

Confidence Levels in Estimating X

Figure 9 shows that the mean of all the sample means u,, ., u,

- u,, is equal to the mean of the population X and the standard devi-

ation of the sample means is given by o/\/n (see References (6) or

(7)). Thus, if one were interested in how wel]l X could be estimated

by drawing a sample of size n and calculating its mean U, the following
reascning would apply.

The probability that U lies between X — q and X + q is given by
the shaded area of Figure 9. This area for any given ¢ could be
determined by using tables of the normal distribution found in Refer-
ence (2). For example, the probability (or area) that results when
¢ = 1.65 standard deviations, is found to be 0.900. Thus there is a
90.0 per cent probability, or confidence level, that

~ 1.650 1.650
X — —=U=X+ —
\'n \n
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o
STANDAND DEVIATION: —
- von
o:POPULATION STANDARD

DEVIATION
X=POPULATION MEAN
n:SAMPLE SIZE

Uz SAMPLE MEAN

p (U)

y—e

*q‘l‘c*{

Fig. 9—The distribution of sample means wu,, ., s, « + + Un
(noncumulative form).

If q is set equal to K standard deviations, a corresponding probability
(or area) can be similarly determined for any specified K. Some rep-
resentative values of confidence levels for various K are shown in
Table I1.

In the previous paragraph, it was assumed that the o of the popu-
lation was known. If ¢ is not known (which is usually the case) the
sample standard deviation S can be used in its place, provided that n
is large (>30), with negligible error. When ¢ is not known and n is
small, the determination of confidence levels for estimating X is more
complex and will not be considered here.

Confidence Levels in Estimating o

Figure 10 shows that the mean of all the sample standard devia-
tions sy, $., $4, - -+ 8, is approximately equal to the standard deviation
of the population, o, and that the standard deviation of the sample
standard deviations is approximately o/\ 2n. (When n is small, these
approximations do not hold. For this case, the relationships are quite

subtle and will not be considered here.)

4
~ STANDAND DEVIATION = J2n

n

o= POPULATION STANDAND DEVIATION

S = SAMPLE STANDARD DEVIATION

p (S) n: SAMPLE SIZE

S -

Fig. 10—The distribution of sample standard deviations s, s:, 85, + + - Sn
. ’
(noncumulative form).
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If S is used to estimate o, the probability that ¢ —q=S =0 + 4
would be given by the shaded area under the curve of Figure 10. For
example, the probability that results for ¢ — 1.28 standard deviations
(found from the tables in Reference (2)) is 0.800. Thus

’ 1.28¢ 1.280
Probability T — S=o+ . = 0.800, (61)
1 \V2n \'2n
or
128 S—o 1.28
Probability S =S = 0.800. (62)
\V2n o \Van

Equation (62) shows that there is an 80.0 per cent probability, or
confidence level, that the per cent error in estimating o is less than
128/\ 2n per cent. Figure 3 illustrates some relationships between
the per cent error and sample size n for various confidence levels. The
general relationship is given by

100K
E(%) = ’ (63)
\/2n

where the confidence level is related to K as shown in Figure 3.

APPENDIX V—DERIVATION OF THE STANDARD DEVIATION OF A SET
OF SMOOTHED DATA USING CORRELATION METHODS

The specific case to be considered is the calculation of the standard
deviation of the average of 10 successive dependent data points
(spaced 0.01 second apart) at the output of a single-tuned low-pass
filter whose 3-decibel bandwidth is 5 ¢ps.

Suppose some radar parameter is sampled at 100 pps and the
resultant samples are curve fitted with some least-mean-squares poly-
nomial. The resulting residuals have a zero average value and a
residual r-m-s error o, whose magnitude is a measure of the “noise
content” of the data.

One question that sometimes arises is, “If o is the r-m-s value of
the residuals, what would be the r-m-s value a, of the averages of ten
successive data points; that is to say, if the data points are divided
into discrete groups of ten each and the average of each group of ten
was calculated, what would be the predicted value of their standard
deviation o, in terms of the ¢ of the raw data?” The relationship
between ¢, and o can be analytically determined using correlation
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techniques, but only if the filter characteristic that gives rise to the
output data is accurately known.

If the filter in question can be represented by an equivalent low-
pass single-tuned filter whose 3-decibel bandwidth is B, the autocorre-
lation function ¢(7) of the output residuals for a wide band noise
input is given by

¢ (7) = o? exp {— 27Br} (64)
where ¢ is the standard deviation or r-m-s value of the output resid-
uals about the polynomial curve fit. (By a previous definition o® is

called the residual variance.)
This equation is derived by the autocorrelation relationship

o0

¢(7) = f S(f) exp {j2nf7} df = f Ny |G(f) |2 exp {j2=f7} df
' ) (65)
where
S(f) is the data’s spectral density =N, |G (f) |,
1

_f“fn
143
B/2

G (f) is the filter transfer function —

N, = noise power per unit bandwidth at the filter input.
For the case in question, B is 5 c¢ps and Equation (64) becomes
¢(7) = a2 exp {—31.47}. (66)

The physical interpretation of an autocorrelation function is that
the average product of all points spaced r seconds apart is given by
¢ (7).

In order to compute ¢, by brute force, residual data points one
through ten would be averaged and their square calculated. This would
be repeated say » times for » successive groups of 10 data points. The
average of the squares of the group averages would give the value
of 0,2 Expressed mathematically,

1 10 ([,_ 2 20 d.‘ 2 n (['_ 2
e (D I DR R P

(67)
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If the first bracketed term is expanded, the result is

s 10 8 )
IZ ] 100 {Zd +22(1idi91+22(Ii(li‘,_,..._+_2i di([i‘!,}
! i

1

(68)

Repeating this for the other bracketed terms in Equation (67)
gives similar results. If this is repeated » times the resulting expres-
sions show that there are a total of

107 d;?* terms (10 per group times r groups)
9rdd, , terms (9 per group times » groups)
8rdd, ., terms (8 per group times » groups)
Trdd,;,, terms (7 per group times r groups)

rdd;, , terms (1 per group times r groups)

If » is large, meaning a large number of residual data points, then
the sum of any one class of terms could be replaced by their average
value times the number of terms. Expressed mathematically,

Z dz> = 10rd?
2 Z dd,.,=2X9rdd,,,

2 ) ddiy.=2X8rdd .
(69)

2 > ddipy=2 X 1rdd;

where the bar denotes the average value. Note that d;? is the average
product of all points spaced 0 seconds apart, did;,, is the average
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product of all points spaced 0.01 second apart, etc. These terms there-
fore become ¢(0), ¢(0.01), ¢(0.02), etc. Equation (67) then becomes

1074 (0) |

+ 187¢ (0.01)
+ 167¢(0.02)
1 + 14r¢:(0.03)

1007

(70)

0% = { |
i

: |
I
|
(

+ 2r¢(0.09) |

Cancelling out the »’s and substituting the appropriate values for
$(0), $(0.01), ete., (as computed from Equation (66)) gives

[ 1002 1

| 18 (0.73102)

|+ 16 (0.5530%)

} 414 (0.3910%)
412 (0.27402)

ll +10 (0.208¢2)

48 (0.1530%)

\

= 0.450". (71)

+ 6 (0.111¢%)
+ 4 (0.081¢%)
+ 2 (0.059¢%)

Therefore

oy~ 0.670. (72)

APPENDIX VI—A TECHNIQUE FOR CALCULATING POWER SPECTRUM
oF EQUI-SPACED DIGITAL DATA

This appendix describes a method developed by Real and Cannady®
for calculating the power density spectrum for data given at equal
space intervals. The computation equations are based on the use of
autocorrelation techniques as described by Blackman and Tukey.” Only
the mechanics of performing the calculations are presented here.
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Restrictions

(a) The input data must be derived from a stationary process;
that is, one whose statistics are time invariant.

(b) The maximum frequency computed for points spaced Af sec-
onds apart is

1
fmnx - cps' (73)
2at

Note that 1/At is equal to the sampling frequency f.. It has
been pointed out that f, must be at least twice the most
significant frequency component in the spectrum in order
that no “folding over” of the sampled data spectrum takes
place.

(¢) For N points spaced At seconds apart, a minimum frequency
increment Af, ;. is defined by

"\flllill = Cps. (74)

NAt

Computation Equations

Suppose a set of data {»;} has been curve fitted by a curve R,(t)
and the residuals d; have been calculated;

di=[r,—R.(t)]. (75)

Note that if R, (?) is a least-mean-squares curve fit, the average resid-
ual is zero.

(a) Calculate for all m in the set 0 =m = N — 1 the autocovari-
ance functions R,, given by

1 N—m

Rm f— di(ll m* (76)

N—m i=
(b) Define a quantity £, such that
Ba=1, 0<m<N-—1,

(77)
E,=1/2, m=0, N—1.
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(¢) Calculate the values of L, — the apparent line power at fre-
quency kAf/4 for all k in the set 0 =k =N —1;

N—1 kemm
L, = 4At Z R,E, cos ——— (78)
m 0 A\V P 1

(d) Calculate the smoothed power density @, at frequency kAf 4
for all k in the set 0=k =N —1;
(s)n = 1 /2 |Lli + Ll ]v
Q,=1/4[Ly_y + 2L, + L. 441, (79)
Qy_1=1/2[Ly_s+ Ly _,].
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