RCA VICTOR SERVICE DATA

VOLUME IV
$1947 \cdot 1948$

RADIO RECEIVERS

PHONOGRAPHS

TELEVISION

$$
\begin{aligned}
& \text { RADIO CORPORATION OFAMERICA } \\
& \text { RCA Victor Division } \\
& \text { Camden, N. J., U.S. A. }
\end{aligned}
$$

rca Victor Service Data

RADIO RECEIVERS PHONOGRAPHS TELEVISION

This volume is a compilation of Service Data previously issued for the years 1947, 1948 and early 1949 inclusive, with the latest changes and corrections.

APPLY TO YOUR RCA DISTRIBUTOR FOR
 PRICES OF REPLACEMENT PARTS

[^0]
INDEX

The page numbers given in the index below refer to the number at the top of the pages. The numbers which are found at the bottom of some pages refer only to that particular Service Data.

The regular Service Data is contained in pages having arabic numerals (1, 2. 3, etc.), supplementary data and last minute information is contained in pages having roman numerals (I, II, III, etc.).

MISCELLANEOUS

SUBJECT	PAGE NO.
Index to Chassis Nos. (Pre-War)V. VI	
Index to Chassis Nos. (Post-War)III, IV	
Index to TV Circuit DescriptionVI	
Cabinet TouchupXVI	
Console Loop Antennas XVII	
Defective 6F6G TubesXVI	
External Antenna Connection	XVII
I. F. Transformers \qquad XVI	
I. F. Transformers-TYpe 970441XVI, XVII	
Vibrator Powered Receivers XVII	
Socket Wrench for Pickups XVI	
60 to 50 Cycle Phono ConversionXV	
RCA Batteries .. XVIII	
RCA Kinescopes ... XX	
RCA Speakers .. XIX	
RCA Television Antennas	XXV. XXVI,
	XXVII, XXVIII
RCA Television Components	XXI, XXII,
	XXIII, XXIV
RCA Test Equipmen	VII, VIII, IX, X

MODEL vs. RECORD CHANGER

MODEL REC. CHANGER	MODEL REC. CHANGER
6QU3RP 178-3	67VI, 67AV1960260-1
6QV3RP 178-3	QU68960001-4
7QV5 960001.4	Rad. 75ZURP 178 or 960276
8TV41RP 177A	77URP 178
8TV321RP 178	77V1960260-1
8TV323RP 178	77V2960260-1
8V7RP 178	610V1 $960001-5$ or -6 or RP 177
8V90RP 178	610V2 960001 -5 or -6 or RP 177
8V91RP 178	612V1RP 176A or RP 176B
8V112RP 178	612V3 RP 176 or RP 176A
8V151RP 177B	612 V 4RP 176 or RP 176A
55U, 55AU 960015	641 TV 960001 -1 or 6
58V, 58AV960001-1	648PVRP 176
59V1. 59AVl960001-2	710V2 RP 177 of RP 177A
QU61960001.4	730TV1RP 177 or RP 177A
QU62 960001.4	730TV2RP 177 or RP 177A
Rad. 62-1 960260.2	$711 \mathrm{V1}$................ 960001-5
65U, 65AU960260-2	711V2960001-5
65U-1960260-2	711V3 $960001-5$

1943-1946 BOUND VOLUME MODEL LISTING

Service Data on the instruments listed below will be found in the 1943.1946 Bound Volume of RCA Victor Service Data.

Supplementary information on some of these models is contained in this Bound Volume (1947-1948) as listed below.

MODEL	$\begin{aligned} & 1947-1948 \\ & \text { PAGE NO. } \end{aligned}$	MODEL	$\begin{aligned} & \text { 1947-1948 } \\ & \text { PAGE NO. } \end{aligned}$
5H	-	64F3	
5H1	-	65BR9	XIV, XVI
5H2	-	Rad. 65BR9 ...	XIV, XVI
6J	\square	65F	
6JM	-	65U, 65AU	-
Q10. Q10A	-	65U-1 *...............	
Q10-2, Q10A-2 ..	-	65X1	XI
Q10-3	-	65X2	XI
QB11	-	65X8	
QB12		65X9	-
QB13	-	66BX	-
Q22A		66E	
Q32	-	66ED ...	\square
Q34	-	66E-1	\square
Q36	-	66X1	-
CV42	-	66X2	-
CV45		66X3	-
54B1	XIV	66X7	\square
54B1-N	XIV	66X8	\square
54B2	XIV	66X9	
54B3	XIV	66X11	XVI
54B5	XIV, XVI	66X12	XVI
54B6	XIV	66X13	XVI
55F ...		67Vl, 67AV1	XIV
55U, 55AU		68R1	XIV
QB55	XIV	68R2	XIV
QB55X	XIV	68R3	XIV
56X		68R4	XIV
56X2		QU72. QU72A ..	
56X3	-	Q103, Q103A	-
56X5		Q103-2, Q103A.2	-
56X10	-	Q110	-
56X11	-	CV112X	-
58V. 58AV	-	Q121	-
59V1, 59AV1	-	Q122	
QU61		Q122X	
Rad. 61-1		RP 176	XVI
Rad. 61-2		RP 176A	XVI
Rad. 61-3	-	RP 176B	XVI
Rad. 61-5		RP 177	151
Rad. 61.6		610V1	XIV, XV, XVI
Rad. 61.7	-	610 V 2	XIV. XVI
Rad. 61.8		612 Vl	XV
Rad. 61.9	-	612V3	XV
Rad. 61-10		612V4	XV, XVI
$\begin{aligned} & \text { Postone (PX) } \\ & 61-10 \end{aligned}$	- .	621TS 630TS	
Rad. 62-1	-	630TCS	
63E, 63EM	-	960001 Series	-
64F1	-	960015 Series	
64F2	-	960260-1.-2,-3.-4	-

CHASSIS NO. MODEL NO.	CHASSIS NO.	MODEL NO.
KCS 20A-1630TS (60 cy)	KCS 21-1	..621TS
KCS 20B-1630TCS (60 cy)	KRS 21.1	...648PTK, 648PV. TV Power Supply
KCS 20C. 2630TS (50 cy)	KRS 21A-1	...741PCS, 8PCS41, TV Power Supply
$\begin{array}{ll}\text { KCS 20D-2 } \\ \text { KCS 20J.1 } & \cdots \cdots630 T C S ~(50 ~ c y) ~\end{array}$	KCS 24-1	...648PTK, TV R-F/I-F Chassis
	KCS 24A-1	...648PV, TV R-F/I-F Chassis
KRS 20.1648PTK, 648PV, Horiz. Defl. Chassis	KCS 24B-1	...741PCS, 8PCS41, TV R-F/I-F Chassis
KRS 20A.1 $741 \mathrm{PCS}, 8 \mathrm{PCS} 41$, Horiz. Defl. Chassis	KCS 24C-1	...8PCS41. TV R-F/I-F Chassis
KRS 20B-18PCS41. Horiz. Defl. Chassis		(Continued on page iv)

$\begin{aligned} & \text { CHASSIS } \\ & \text { NO. } \end{aligned}$	MODEL NO.
KCS $25 \mathrm{~A}-1$641TV (60 cy). Television Chassis
KCS 25C-2641TV (50 cy). Television Chassis
KCS 25D. 18TV41 (60 cy). Television Chassis
KCS 25E-28TV41 (50 cy). Television Chassis
KCS 26-1	….........721TS (60 cy)
KCS 26-2	
KCS 26A-1721TCS (60 cy)
KCS 26A-2-721TCS (50 cy)
KCS 27.1730TV1. 730TV2 (60 cy), Television Chassis
KCS 27.2730TV1. 730TV2. (50 cy). Television Chassis
KCS 288T241, 8T243, 8T244
KCS 298T270
KCS 29A	-.........8TC270. 8TC271
KCS 30-18TV321. 8TV323, Television Chassis
KCS 328TR29, Television Section
KCS 32A.8TK29. Television Section
KCS 32B8TR29, Television Section
KCS 32C8TK29, Television Section
KCS 33A-18TK320, Television Section
RS 111ACV-112X, Electrifier
RS 115QB11, QB12, QB13, Power Unit
RK 117711V1, 711V2. 711 V 3, R-F/J-F Chassis
RK 117A641TV, 8TV41. Radio R-F/I-F Chassis
RK 121612V1, 612V3, 612V4, R-F/I-F Chassis
RK 121A648PTK, 648PV, Radio R-F/I-F Chassis
RK 121C8V151, R-F/I-F Chassis
RS 123	$612 \mathrm{~V}, 612 \mathrm{~V} 3,612 \mathrm{~V} 4,711 \mathrm{~V} 1,711 \mathrm{~V} 2,711 \mathrm{~V} 3$, Audio Amp. \& Power Supply
RS 123A641TV. 648PTK. 8TV41. Audio Amp. \& Power Supply
RS 123B648PV, Audio Amp. \& Power Supply
RS 123C 741 PCS 8PCS41, Audio Amp. \& Power Supply
RS 123D.	
RS 12666E, 66ED, 66E-1
RS 12763E. 63EM
RK 135	-............8TK29. 8TR29, Radio Section
RK 135A...8TK29, 8TR29, 8TK320, Radio Section
RC 507Q22A, Q32 Q121 (EM)
RC 507UQ121 (PM)
RC 529A QB11. QB12
RC 539EQ34
RC 563AQB55
RC 563K	QB55X
RC 568BQU61
RC 585	-............Q36
RC 589 54 Bl
RC 589A54B2
RC 589B 5483
RC 589D54B1-N
RC 589U-...........54B1. 2nd Prod.
RC 589UA54B2, 2nd Prod.
RC 589UB54B3, 2nd Prod.
RC 589ue	…….....54B6
RC 594C ..	…............Q10, Q10A, Q10-2, Q10A-2, Q10-3, Q110
RC 594D	-(.)........Radiola 61-6, 61-7
RC 601	Q122 (EM)
RC 601AQ122X (EM)
RC 601 B	…...........7QV5, QU68
RC 601D	…-.........Q122 (PM)
RC 601EQ122X (PM)
RC 602	Q109
RC 602AQ109X
RC 602B	-............QU62
RC 604	….........58V. 58AV
RC 605	…..........59V1, 59AV1
RC 606	-.............67V1. 67AV1
RC 606C67V1, 67AV1. 2nd Prod., 77V2
RC 607QB60
RC 608	-68R1, 68R2, 68R3, 68R4
RC 610610V1, 610V2
RC 610A730TV1, Radio Section
RC 6108730TV2, Radio Section
RC 610C-.........610V1, 610V2. 2nd Prod.
RC 612	-............... QB13
RC 613A	-710V2
RC 61577V1. 8V7
RC 6168V112
RC 616A	…….......8V91
RC 616B	8TV321, Radio Section
RC 616C..8TV323. Radio Section

CHASSIS
 NO.

MODEL NO.
RC 616F
RC $016 H^{-\cdots8 V 112 . ~ 2 n d ~ P r o d . ~}$
RC 616J …...................8TV321. 2nd Prod. Radio Section
RC 616 K
RC 618
RC 618A
RS 1000
RS 1001 RC 1004E RC 1011 RC 1011A RC 1011 B \qquad 6X. 56X2. 56X3. Radiola 61-1, 61-2. 61-3. 3rd Prod.
RC 1017
RC 1017A
RC 1017B
RC 1023
RC 1023A
RC 1023 B
RC 1023 C
RC 1034
RC 1035
RC 1037
RC 1037A
RC 1037B
RC 1038
RC 1038A
RC 1040
RC 1040 A
RC 1040 A
RC
1040 B
RC 1040 C
RC 1040D
RC 1044
RC 1044 A
RC 1045
RC 1046
RC 1046 A
RC 1046B
RC 1046C …...............66X11. 2nd Prod.
RC 1046D ….............66X12. 2nd Prod.
RC 1046E
RC 1047
RC 1050 …..................75X11, 75×12
RC 1050A75X11. 75X12. 2nd Prod., 75X14, 75X15
RC 1050B75X11, 3rd Prod., 75X14, 2nd Prod., 75X16. 75X17. 75X18. 75X19
RC 10535Q21. 5Q22. 5Q27
RC 1053 …..............5Q21. 5Q22. 5Q27
RC 1053B …..............5Q21. 2nd Prod. (234V)
RC 1054
RC 1054A …...............6Q33
RC 1054B ….............6Q33X
RC 1054C …............6QU3
RC 1054D …...............6QV3
RC 10557Q51 (PM)
RC 1055C 7 7951 (EM)
RC 1057A 77 U
RC 1058Radiola 76ZX11. 76ZX12
RC 1058ARadiola 76ZX11. 762X12, 2nd Prod.
RC 1059 ….................8BX5, 8BX54, 8BX55
RC 1059A8BX5. 8BX54, 8BX55, 2nd Prod.
RS 10608R71, 8R74, 8R75
RC 1060A ….................8R72, 8R76
RC 1061 $8 \times 681.8 \times 682$
RC 1063A Radiola 75ZU
RC 106465X1. 65X2. Radiola 61-8, 61-9. 2nd Prod., 8X53
RC 10658X541, 8X544, 8X545
RC 1065A …............ 8X542, 8X546, 8X547
RC 1065C ….................8X541, 8X544, 8X545, 2nd Prod.
RC 1065D ….............8X542. 8X546, 8X547. 2nd Prod.
RC 1065F8X541. 8X545, 8X546, 3rd Prod.
RC 1065H …...............8X542, 8X547, 3rd Prod.
RC 1066 8×521
RC 1066A ….............8X522
RC 1069 8 841
RC 1069A............... 8 B42
RC 1069B8B43
RC 1069C ….............8B46
RC 1070

INDEX TO CHASSIS NO'S. $\begin{gathered}\binom{\text { manufactured }}{\text { before } 1943}\end{gathered}$

Chassis No.	Model	Chassis No.	Model	Chassis No.	Model
RC-315B	. 86 T6	RC.354B.	HF. 2	RC. 443	8Q2
RC.315C	5Q1	RC. 357	$9 \mathrm{M1}$	RC.443B.	8QU5.C, 8QU5.M
RC. 318.	.8M	RC.357A	9M2	RC-444.	9Q1
RC.319.	. $87 \mathrm{~K} 2,87$ T2	RC.357J,	. . M-50	RC.444A.	9QK
RC-319B	U. 106	RC. 357 K .	. M-60	RC. 449	BK-41, BT-41
RC. 320	.8M1	RC-366.	5Q4	$\text { RC. } 453$	40X-52, 40X-55 (2nd
RC-320A.	.8M2	RC-381...	. 95×11		Prod.)
RC-321..	.8M3	RC-381A.	. 95×-6	RC-454..	. 9 TX.50, 9TX.50M (2nd
$\text { RC. } 321 \mathrm{~A}$	8M4	RC.386.	. U. 125		Prod.)
RC. 323	.95T, 95T1	RC-386A..	98K2, 98T	RC-455...	BP-55, -56, -85
RC.325C	5Q2	RC-386B..	U-25, U-26	$\text { RC. } 456$. $46 \times$-11, 46×-12
RC-325D	. 5Q2X	RC-390..	. 94 BK2, 94 BT2	RC.456A.	. $46 \times$ X 13
RC.331..	HF.8, HF.8A	RC-392..	. 96BK6, 96BT6	RC. 457 .	. $45 \times 1,45 \times-2$
RC.331A	HF 6	RC-394.	M. 70	RC-457A.	. 45 X-1, 45X-2 (2nd
RC.331B	U.134, U.134A	RC. $396 \ldots$	5Q5, 5Q55, 5Q56		Prod.)
RC.331C.	$\text { U. } 132$	RC.396B.	5Q8	RC.457D	$45 \times-5,45 \times-6$
RC-332	. $94 \times$	RC.396D	5Q12	RC.457E..	. $45 \times 3,45 \times-4$
RC. 333.	94BK, 94BT	RC.396E.	5Q12A	RC-459...	45x-11, 45X-12
RC-333A	. 94 BT6	RC-399.	. 96T4, 96T5	RC-459A.	45x-13
RC-333B	$94 \mathrm{BT1,94BK1}$	RC. 399 A	96T6	RC-459B.	. $46 \times$-1, $46 \times .2$
RC-333C	.94BT61	RC-400.	. $96 \times \mathrm{X}-1$ to 96×-4	RC.459C.	46×-3
$\text { RC. } 335$	911K	RC. 400 A .	. 96×-11 to 96X-14	$\text { RC. } 459 \mathrm{D} \text {. }$	$45 \times-11,45 \times-12 \text { (2nd }$
RC-335A	$98 \mathrm{~K}$	$\text { RC. } 401$	$9 T X-1 \text { to } 9 T X-5$		Prod.)
RC.335B	.99K	RC-403.	9TX-21,9TX-22	RC-459E..	.45X.13 (2nd Prod.)
RC-335C	.11Q4, 11QK	RC.403A	9TX-23	RC-459F.	$46 \times-1,46 \times-2 \text { (2nd }$
RC.335D	U-126, U-128	RC.404A.	U.8		Prod.)
RC.335E	.11QU	RC.405..	.9TX-31	$R C-459 H .$. $46 \times$-3 (2nd Prod.)
RC. 335 F	910KG	RC-405A	9TX-32	$\text { RC. } 459 \mathrm{~J} .$	$.45 x-111,45 x-112$
RC. 335 H	99T	RC.405B	9TX.33		Radiola 510
RC. 335 K	U. 129	RC.405C	40×130	RC-459K	45×-113
RC.335K R	U. 30	RC.405D	40X-31	RC. 459 L	45X
RC-336...	8QB, 8QBK	RC. 406	$5 \times 5 . \mathrm{W}$	RC. 459 M	. $45 \times-16,45 \times-17$
$\text { RC. } 337$	8Q1	RC. 406 A	$.5 \times 5-1$	$\text { RC. } 459 \mathrm{~T}$. $45 \times$-11, 45X-12 (3rd
RC. 337 A	.8Q4	RC-407.	$94 \mathrm{BP}-1$ Series (94BP.		Prod.)
RC-337B	10Q1		61, -62, -64, -66, -80,	RC.461.	46×-24
RC. 338	12Q4, 12QK		-81)	RC.461A.	. $46 \times .23$
RC.338A	12QU	RC.407B	94BP.1 (2nd Prod.)	RC-461B.	46×-21
$\text { RC. } 339$	HF-1		(94BP-61, -62, -64,	RC-462...	$15 x$
RC. 340	.94X-1, 94X-2		-66)	RC-462A.	.16X-1, 16X-2, 36X
RC. 341	U-111	RC. 408	BT-40	RC-462B..	.16X-3
RC.341C	U-112	RC.408A	BT. 42	RC-462C.	. 16×-4
RC.345C	95×-1	RC.408C	BK.42	RC-464.	Radiola 500,501
RC.345D	. $95 \times$	RC. 410.	94BP4, -B, - C , -R	RC. 464 A .	. Radiola 511
RC-345E	95XL	RC. 414.	6QU	RC-464B.	Radlola 512,513
RC. 345 F	95XLW	RC-414A	6Q7	RC-465...	. Radiola P-5
RC. 345 H	U.104	RC.414B	6Q8, 6QK8	RC-465A.	. Radiola P. 5
RC-348.	95T5	RC.414C	U.50	RC-472F.	. T-63
RC.348A	96T	RC. 415.	K-60	RC-473A.	. X -55
RC.348C	96E	RC.415A	K-80	RC.474D	X-60
RC.348D	96 T1	RC.415 B.	. K. 60 (Loop), K-62	RC-476	. K.105
RC. 348 E	U-115	RC.415C.	. K. 80 (Loop), K-81,	$\text { RC. } 477$. 5Q5 (2nd Prod.), Q18
$\text { RC. } 348 \mathrm{~F}$	95T5LW		K-82	RC-477A.	$.5 \text { Q6 }$
RC-348H	U. 123 (1 band)	RC-4150	K-80 (Loop)	RC-477B..	.5Q8 (2nd Prod.)
RC-348J.	U.121	RC.416.	T.64, T.65	RC.477C	5Q66
RC-348L	U.127E	RC-416A..	T-80	RC. 478.	.9Q4
RC. 349	. $97 \times$	RC. 418.	T.55, T-55-S, T.56	RC-478A.	.7Q4
$\text { RC. } 350$	$9 x$ to $9 x-4$	$\text { RC. } 418 \mathrm{~A}$	K. 50	RC-478B	.7QK4
$\text { RC. } 350 \mathrm{~A}$	9X-6, 9×-11 to 9×-14	RC-418B..	U.10	RC-482B	$\begin{aligned} & \text { U. } 9 \text { (2nd Prod.) } \end{aligned}$
$\text { RC. } 351 .$ $\text { RC. } 351 \mathrm{~A}$	$96 \mathrm{~K}, 96 \mathrm{~T} 2$ $97 \mathrm{E}, 97 \mathrm{KG}, 97 \mathrm{~T}$	RC-421 . .	U.123 (2 bands)	$\begin{aligned} & \text { RC.482C } \\ & \text { RC-486B. } \end{aligned}$. U. 9 (2nd Prod.) . U-44
RC.351B	96K2, 96T3	RC.425A.	U-12	RC-486C.	. U-45
RC.351C	U-124	RC.4250	T-62	RC.490.	.96X-5
RC-351D	U-122E	RC.427..	TRK-12	RC-496..	.7QB, 7QBK
RC.351E	U. 119	RC.427A	TRK-9	RC.497.	. K-50 (2nd Prod.)
RC.351F	97K	RC.427F	TRK. 120	RC-498..	U-20
RC. 351 K	97K2, 97T2	RC.427G	TRK-90	$\text { RC. } 498 \mathrm{~A} .$	U-40
RC-351L	$\begin{aligned} & 96 E 2,96 \mathrm{~K} 5,96 \mathrm{~K} 6, \\ & 96 \mathrm{~T} 7 \end{aligned}$	RC. 429.	TRK-5 9 9TX-50, 9 TX-50M	$\begin{aligned} & \text { RC-498B } \\ & \text { RC-498E } \end{aligned}$	$\begin{aligned} & \text { U-42 } \\ & \text { U-43 } \end{aligned}$
RC. 352	98EY, 98X, 98YG	RC.435A	45E, 45 E.M, $45 \mathrm{E} . \mathrm{W}$	RC.498F	. K-61
RC-352A	.97Y	RC.436..	$.40 \times .50$ to $40 \times .57$	RC.501.	. U-46
RC-352B	UY-122E	RC. 440	4QB	RC-501A	. K-130
RC-352C	UY-124	RC-440A.	.4QB4	RC. 502.	.7Q4X
RC.352D	.98T2	RC-441.	6Q1	RC-507.	. Q22
RC-354.	U. 130	RC.441A	.6Q4	RC.507A	.Q25
RC-354A..	HF-4	RC-442...	.6Q4X	RC-507B.	QK23

INDEX TO CHASSIS NO'S. ($\left.\begin{array}{c}\text { ManuFactuafd } \\ \text { BEFRERE } 1943\end{array}\right)$ - Continued

Chassis No.	Model	Chassis No.	Model	Chassis No.	Model
RC-507C.	Qu2C	RC.529D	QB6	RC-592.	Q23
RC-E07D	QU2M	RC.529H	QB9	RC. 1000	16×11
RC-507F	QU3C	RC. 530	QU5	RC. 1000 A	.16×13
RC-507H	QU3M	RC-531	Q44	RC-1000B.	16×14
RC.507J.	Q26	RC-538B	Q30	RC. 1000 C	Radiola 515
RC.507K	Q27	RC-538C	Q31	RC-1001.	10x
RC.507L	QU52C	RC. 539	Q33	RC. 1001 A	11×1
RC.507N	QU52M	RC-539D	QB-3	RC-1001B	12x, 12X2
RC.508	Q24	RC. 540	V. 101	RC-1001B	10X (2nd Prod.)
RC. 509	16 T4	RC-541C	45×18	RC-1001C.	12AX, 12AX2, 35X,
RC.509A	$16 \mathrm{~T}^{3}$	RC. 544	BP. 10		Radiola 516, 517,
RC-509B	$16 T 2$	RC. 547	VHR-207		522 , 517,
RC-509C	16K	RC-547A	VHR-407	RC. 1001 D	14X, 14X2
RC-509F	16T4 (2nd Prod.)	RC. 548	VHR-202	RC-1001E.	.14AX, 14AX2, 34X,
RC. 509 H	16T3 (2nd Prod.)	RC-551.	QU7, QU8		Radiola 526, 527
RC-509J.	16T2 (2nd Prod.)	RC. 555.	VHR-307	RC. 1002.	28 x
RC-511.	.18T	RC. 559	26BP	RC.1002A	28×5
RC.512.	.17K	RC. 561	Q. 16	RC. 1003.	1X, 1×2, 25X
RC-512A	19K	RC. 561 A	Q-17	FC. 1003 A	1AX, 1AX2
RC.513.	110K, 110K2	RC-561C	Q-16E	RC. 1003 B	Radiola 510 (2nd
RC-513A	111K	RC.563A	QB5		Prod.), 511 (2nd
RC. 514	Q20, Q21	RC-563B	Q12		Prod.)
RC.517	V-100	RC-563C	Q12	RC-1003C.	55X
RC.517C	V-105	RC-563D	Q12	RC. 1003 D	Radiola 510 (3rd
RC.517F	Radiola R-560P	RC.563E	Q11		Prod.), 520
RC-517H	V-135 ${ }^{\text {Radiola R-566P }}$	RC.563F	Q11 $\mathrm{V} .215, \mathrm{~V} .221$	RC. 1004 A .	25BT2
RC-517J	Radiola R-566P	RC-564.	V.215, V-221 V-219	RC. 1004 B .	25BK, 25BT3
RC.518.	V-301, V-302	RC-564B	V. 225	RC. 1004 D .	Radiola B. 52
RC-519.	V.200	RC. 566.	Q14, Q15	RC. 1004 F	248T1, 248T2
RC. 521	V. 205	RC-566A	QU56C, QU56M	RC. 1004 H .	Radiola B-50
RC.521B	V-405	RC.566B	Q14E, Q15E	RC-1011.	15X (2nd Prod.), 36X
RC-522.	V-201	RC.567.	27K		(2nd Prod.)
RC-523.	. V-170	RC. 568	QU51C, QU51M	RC. 1013.	6×2
RC. 524	V-102	RC-568A	QU55	RC.1014..	26×1
RC. 525.	14BT-1	RC-569.	287	RC-1014A	26X3, Radiola 515 (2nd
RC.525A	. 148T-2	RC.570.	29 K		Prod.)
RC-525B	14BK	RC-570C	29K2	RC. 1014 B .	.26X4
RC-526.	. 15BT	RC-570D	29K2 (2nd Prod.)	RC. 1020	25BP (2nd Prod.)
RC-527	. 15BP-1, -2, -4, -6	RC-571.	211K	RC. 1020 B	Radiola P. 5 (2nd
RC-527A.	. 15BP.3,-5	RC-572A	V. 140		Prod.)
RC-527C.	15BP. 7	RC-573.	V-209	RC-1022.	.34X (2nd Prod.)
RC.527D	25BP	P.C.573A	V. 210	RC-1022A.	12X (2nd Prod.), 35X
RC.529.	QB2	RC.574.	VHR-212		(2nd Prod.),Radiola
RC. 529 A .	QB1	RC.582.	V175		522 (2nd Prod.)

INDEX TO TELEVISION CIRCUIT DESCRIPTION

	Page
648PTK. 648PV. 741PCS. 8PCS41	
R-F Unit	306
Sound I-F Amplifier and Discriminator	307
Picture I-F Amplifier and Detector	307
Picture A.G.C Det.. Amp, and Diode	308
Video Amplifier and D-C Restorer	309
Kinescope and Reflective Optical System	309
Sync Amplifiers	310
Vertical Oscillator Discharge and Output	310
Horizontal Oscillator	311
Horizontal Sync Discriminator	311
Horizontal Oscillator Control	311
Horizontal Discharge, Output and Dampers	312
High Voltage Power Supply	313
641 TV . 8TV41	
R-F Unit	216
Sound 1-F Amplitier and Discriminator	217
Picture I-F Amplifier and Detector ...	217
Picture A-G-C Detector, Amplifier and Diode	218
Video Amplifier and D-C Restorer	219
Sync Amplifier and Separator	220
Vertical Oscillator Discharge and Output	220
Horizontal Oscillator	221
Horizontal Sync Discriminator	221
Horizontal Oscillator Control	221
Horizontal Discharge. Output and Reaction Scanning	222
High Voltage Power Supply ..	223

8TV321. 8TV323 R-F Unit 496
Video Amplifier 496
Sync Separation and AGC 497
Horizontal Oscillator and Control 497
Otherwise similar to 641TV, 8TV41.
8TS30
Similar to 641TV and 8TV41. except Model 8TS30 does not have
A-G-C. Audio output is a part of the television chassis
721TS, 721TCS, 730TV1, 730TV2
A-F.C horizontal hold circuit
Otherwise similar to 641TV. 8TV41, except that A.G.C and D-C
restorer are not used. Audio output is part of the television
chassis in Models 721TS and 721TCS.
8T241. 8T243. 8T244
Similar to 8TV321, 8TV323. Audio output is part of the television
chassis.
8T270. 8TC270, 8TC271
Similar to 8TV321. 8TV323. Audio output is part of the television
chassis.
8TK29. 8TR29
Similar to 8TV321. 8TV323. Audio output is part of the television
chassis. A radio tuner unit (RK 135) is attached to the television
chassis.
8TK320
Similar to 8TV321. 8TV323. Audio output is part of the television
chassis. A radio tuner unit (RK 135A) is attached to the tele-
vision chassis.

- Speeds up TV/FM/AM Service
- Permits factory-quality work
- Creates prestige and good.will
- Sturdy All-Steel Canstruction
- Instruments can be quickly removed for use in the field Apractive Satin-Aluminum and Blue-Gray Harameroid

Cash in on the lucrative television service market! Modernize your work bench for efficient TV service with this new RCA 3-Place Test Rack...Instruments are at your fingertips for quick, accurate serv ice. Accommodates any three matched RCA Test Instruments to meet your individual TV, FM, or AM service needs.
Its smart, stylish appearance adds prestige and distinction to your store interior-gives it that business-like, professional look...the trademark of the better service shop. The RCA WS-17A test rack with accompanying instruments quickly pays for itself in customer acceptance, and in the time it saves. Large service shops can use several racks to speed up their service operations.

Variable-Frequency Oscillator
Frequency Ranges (continuous coverage):
$19.110 \mathrm{Mc} ; 170.240 \mathrm{Mc}$ Output Voltage: Better than 0.28 peck-po-peak volt, 0.1 RMS volt at any frequency Output Impedance: 100 ohms Attenuator Range: 100 Impedance af "Mad In" Jack: 5000 ohms Crystol Oscillators:
Basic Crystal Standard Frequency: $2.5-\mathrm{Mc}_{\text {: }}$
Modulating Standard
Modulating Standard Frequency: $0.25-\mathrm{Mc}$;
Adjustable for exact zero-beat with 2.5-Mc
Heperodyn
Detector Input Requirements.
External Signal Beating Against VFO:
1 millivoli
External Signal Beating Against Crystals:
udio Amplifier:
Gain (opprox.): 1000; Output: 0.3 watis max. Loudspeaker:
3. inch cone, Alnico magnet type
Dimensions: $10^{\circ \prime} \times 131 / 2^{\prime \prime} \times 71 / 2^{\prime}$

- SPECIFICATIONS

Frequency Ranges
Pre-war Picture Intermediate, first band: Tv 5.15 Mc TV Sound Intermediate: 20.25-22.25 MC Picture Intermediare, second band:
20.30 N

Picture Intermediate, spare: $25-40 \mathrm{Mc}$ Picture Intermediate, spare: $25-40 \mathrm{Mc}$
(adiustable) FM Radio Intermediate: 10.11 .5 Mc Television RF Chonnels 1-13: 44-50, 54.60. $60.66,66.72,76-82,82-88,174-180,180-186$ 186-192, 192-198, 198-204, 204-210,
$210-216 \mathrm{Mc}$

Output limpedance

RF Ranges: 150.0.150 ohms (normal load) IF and Video Ranges: 100 -ohm cable
termination
Moximum Altenuator Ratio:
RF Ranges: 20000
Maximum Amplitude Variation of Sweep Envelope: All ranges, better than $=1.5 \mathrm{db}$ Horizontal Sweep: Phase Range, 0.160°, Frequency, 60 cps ;
Amplitude, 5.6 peak. 10 -peak (2 RMS) vol 13

- SPECIFICATIONS

Deflection Foctors:
Vertical Amplifier: Better than 0.47 RMS volt/inch* (1.33 peak-to-peak volts/inch Vertical Deflecting Electrodes: 8etter than 42 RMS volts/inch* (120 p.to-p v/in.) Horizontal Amplifier: Befter than 0.53 RMS volts/inch* (1.5 peak-to-peak volts/inch Horizontal Deflecting Electrodes: Better than 48 RMS volts/inch* (135 p.to-p v/in.) Amplifier Gaim (both amplifiers): 90 Input Resistance \& Capacitance:
Vertical Amplifier: 0.5 meg and 55 muf Horizontal Amplifier: 0.5 megohm, shunted by $37 \mu \mu^{f}$
Vertical Deflecting Electrodes: 5.6 megahms shunted by 15 muf
Horizontal Deflesting Electrodes: 5.6 megohms shunted by 12 u $\mu \mathrm{f}$
Sine-Wove amplifiers)
Down less than 50% of 200 kc
Auxiliary Sine-Wave Sweep 60 cps

AUDIO OSCILLATOR WA-54A

The WA.54A Audio Oscillator is a portable, ac operated instrument for generating sinusoidal voltages within the frequency range of 20 to 17,000 cycles. It is used to measure the fidelity of radio receivers, frequency response of audio amplifiers, and modulation characteristics of small transmitters. It is useful to determine fre quencies and mechanical speeds and to trouble shoot TV deflection, sync and video amplifier circuits. Tapped output transformer makes it possible to match the oscillator output to load impedances most frequently encountered ...elec tronic "eye" serves as calibration indicator, out put level indicator, and pilot lamp. Frequency settings are read from a large, easy-to-read drum dial. Shipping weight, 19 lbs. Price: $\$ 152.50$

- SPECIFICATIONS

Frequency Range (continuous): 20 cps to 17 kc Output Impedance: High Level Halanced: 250, 500, 5000 ahms High-Level Unbalanced: 62.5, 125,1250 ohms Low-Level Unbalanced: 10000 min . ohms Outpul Voltage lapprox.
No Load (high level): 40 RMS volts With 5000 . Ohm Load; 25 RMS volts With 500 -Ohm load: 7.9 RMS volts With 250 -Ohm load: 5.5 RMS volts No lood (low level): 2.5 RMS volts Output Voltage Variation (loaded): less than Distartion
Distartion: Less than 5% RMS
Dimensions: $10^{\prime \prime} \times 131 / 2^{\prime \prime} \times 7 \frac{1}{2}$

- SPECIFICATIONS

Infermediate-Frequency Oscillator:
Center-Frequency Range: $8.3-10.8 \mathrm{Mc}$ Scale Accuracy: $\pm 2 \%$
Output: Adjustoble from $1 \mu v$ to 0.1 RMS volp
Sweep Width: 0 to $\pm 200-\mathrm{ke}$ at.8.3 Mc
0 to $\pm 400-\mathrm{kc}$ at 10.7 Mc
Internal Modulation: Line frequency
(External modulation can be appliter
(External modulation con be applied)
Radio Frequency Oscillatar:
Frequency Ronge: $85-110 \mathrm{Mc}$
Frequency Ronge: 85 -
Scale Accuracy: $+2 \%$
Outpuf: Adjustable from $5 \mu v$ to 0.1 RMS vol
Amplitude Modulation: Twice line frequency

FM SWEP GENERATOR WR-53A

Speeds up FM receiver alignment...regardless of band width requirements. Brings the recog. nized advantages of the sweep method of align ment to every FM job. Packed with features which mean speed, accuracy and reliability...if center frequency 8.3 to $10.8-\mathrm{Mc} .$. adjustable if sweep width... facilities for external frequency modulation...rf range continuously variable from 85 to 110 Mc...includes step and fine attenuators...a a scope phase control permits centering of sweep patterns. Provides the signals you need for fast, accurate FM alignment. Shipping weight 17 lbs .

Price: $\$ 89.50$

AUDIO VOLTMETER WV-73A

A sensitive high-impedance ac VTVM capable of measurements from 0.001 RMS volt to 1000 RMS volts ac over a range of 20 to 20,000 cycles. Logarithmic scale and overlapping attenuator assure accuracy even when pointer is at either end of scale. In combination with a modulated high-frequency generator and rectifying probe, the WV 73A is especially useful in determining characteristics of coaxial cables and slotted lines. Standing wave ratios can be read in terms of voltage or db ratios, since the meter is equipped with both scales. The high-fidelity amplifier is externally accessible. Shipping weight, 17 lbs .

$$
\text { Price. } \$ 14050
$$

- SPECIFICATIONS

AC Voltmeter Ronges (1 millivolt ta 1000 RMS volts in $0.04-0.250110 .45,10.425$ $40-250,100-1000$ RMS volts
$D B$ Ranges $0,120 \mathrm{db}$ in 11 ranges) $100,110,120 \mathrm{db}$
$0-$ to $20,30,40,50,60,70,80,90,100, ~$
Frequency Response: Flat within $\pm 0.5 \mathrm{db}$ from 20 eps to 20 kc
nput Resistance ond Capacitance: 1 megohm shunted by less than $25 \mu \mu$
Scole Accuracy: Better than $\pm 5 \%$
Amplifier Gain: 2500 (with $\mathbf{2 5 0 0 0}$-ohm load)

REGULAIED POWER SUPPLY WP-23A

A high-quality unit designed for dependable, continuous service in shop, laboratory, and factory. Output voltage is virtually independent of line-voltage variations as well as load-current variations. Maximum load current capability increases with the output voltage level. Insulated output terminals permit grounding of either the positive or negative terminal. Primarily intended as an extremely stable " B " supply, the WP-23A also can be used as a low-impedance " C " bias supply. Shipping weight, 25 lbs. Price: $\$ 130.00$

Accessories

Extends the de voltage range of RCA VolsOhmyst* and Chan. alys ** Vacuum. Tube Voltmeters
to 30,000 volts. Measures de to 30,000 volts. Measures dc
voltages in television sets, X-ray machines, and other high-volfage devices... useful in measuring the output voltage af pulse-operated and rf power supplies and other high.resist. ance valtage sources that re. quire high-resistance measuring instruments. Both probes are dentical except for the resistance values of the mulfiplier resistor. VoltOhmysts 195 and $195-\mathrm{A}$, and Chanalyst $170-\mathrm{A}$ use probe WG-288. Others use probe WG-284.

- SPECIFICATIONS

Requilated DC Output
Voltage range (continuously adjustable) 0.300 volis
Current range for $120-300$ volts . 0.120 mo
$60-120$ volts. . 0.80 ma
$0-60$ volts . . . 0.60 ma
Regulation for line-voltage variation
of 105 to 125 volts... Less than $11 / 2 \%$
Regulation above 30 volts from zero load to
full load... Less than 1%
Ripple voltage (RMS) ... Less than 8 millivalis
Aumiliary Unregulated DC Output
Voltage (approx.)... 600 volis
Current Capability ... 120 ma
Ripple Voltage !RMS) ... 0.1 volis
Auxiliary Unregulated AC Output
Voltage (RMS) .. 6.3 volts
Current Capability (RMS) ... 5 omperes

carstal probe
 WG-263

Converts VoltOhmyst* Meters 163, 165, 165-A. 195, 195-A WV-65A, WV-75A, and WV.95A into VHF voltmeters for use up to 100 Mc ; also used with Chonalysts" Types 162, 162 -A, 162-B, $162-\mathrm{C}$, and $170 . \mathrm{A}$. Can be used for relative readings to 175 Mc . Price: $\$ 8.95$

WG-275

The RCA Diode Probe WG-275 is designed to aperate in combination with RCA Voltohmyst Electronic Mefer WV-95A; it en obles this instrument to read RMS or peak-to-peak voltages at frequencies from 30 cycles to 250 Mc . The probe fits coaxial "T" connectors, and permits direct measurement of voltages in caaxial lines.
Price: $\$ 30.00$

TEST-EQUIPMENT RACK WS-16A

The WV-95A is truly the "master" electronic multimeter. It combines in one case an ac volt meter, dc voltmeter, ohmmeter, dc microammeter, dc milliameter, capacitance meter, and a dc ammeter. The instrument is ac-line operated. The carefully balanced meter is virtually burnout proof; it has a full-scale accuracy of $\pm 2 \%$, and can be zero-centered for discriminator alignment work. The capacitance measuring circuit includes a polarizing voltage for measurement of electrolytic capacitors. The entire electrical system is insulated from the metal case which may be grounded separately. Accessories available on separate order include a 100 -Mc crystal probe WG-263, and a $250 \cdot \mathrm{Mc}$ peak-to-peak diode probe, WG-275. Unit is complete with three test leads and two test cables with plugs and clips. Shipping weight, 17 lbs .

Price: $\$ 152.50$
*Reg. Trade Mark, U.S. Pot. Off.
,
DC Valimeter Ranges: 0 to $5 \times 10-50 \cdot 100 \cdot 500-1000$ de volts
Input Resistance: 11 megohms on all ranges
AC Volimeter Ranges: 0 to 1 -5-10-50-100-500-1000 RMS volts
Frequency Response, 30 cps to 20 kc
Input Resistance and Capacitance: 0.5 megohms
shunted by $125 \mu_{\mu}$
$D C$ Ammeter Ronges: $0.10,0-100 \mu \mathrm{o}, 0$ to 1.10 .100
ma, 0-1, $0-10$ amps
Ohmmeter Ranges: 0.1 ohm to 1000 megohms in
six ranges
Center-Scale Indications: $10,100,1000,10000$ ohms; $0.1,10$ megohms
Copactitance Meter Ranges ($4 \mu \mu \mathrm{f}$ to 1000
${ }^{\mu f}$ in six ranges)
Center-Scale Indications: 100, $1000 \mu \mu \mathrm{f} ; 0.01$, $0.1,1,10 \mu^{f}$
(Nate: The following dato apply to the WV-95A when used with RCA Diode Probe WG-275 which is supplied on separate order
RF Voltmeter Ranges: 0 to $5-10-50-100$ RMS volts from 30 cps to 17.5 M
0 to 5-10-30 RMS volts from 17.5 to 75 Mc $0.5,0-10$ RMS volts from 75 to 250 Mc
Input Resisfance and Capacitance: $\mathbf{6 2 5 0 0 0}$ ohms shunted by $15.6 \mathrm{\mu} \mathrm{\mu f}$ of 1 Mc
32000 ohms shunted by 14.5 muf at 10 Mc
100 ohms shunted by $13 \mu \mu \mathrm{f}$ at 250 Mc
Meter Indications: RMS value of sine-wave voltage 0.354 peak-to-peak value of resurrent complex wave voltage
Dimensions: $10^{\prime \prime} \times 131 / 2^{\prime \prime} \times 71 / 2^{\prime \prime}$

Accessories

miniature testponit ADAPTER WG-265

The RCA miniature testpaint adapter makes your troubleshooting faster, easier, safer by making tube-base connections accessible on the tube side of the shassis. Pins on one end of the odapter fit into a 7 -pin facilities on the opposite end accommodate all types of 7 pin miniature tubes. Tabs propect for easy probe contort Shipping or easy probe contact. Shipping

STANDARD-VOLTOHMYST* TYPE I95-A

The "work-horse" of electronic meters. Measures RMS ac and dc voltages to 1000 volts, resistance to 1000 megohms, in six ranges. Reads db , dbm , or vu at all audio frequencies. Has zero-center scale for discriminator alignment. 10 megohm dc input resistance minimizes circuit loading. One megohm isolating resistor in probe permits measurement of dc voltages in high-impedance ac circuits. WG-263 accessory Crystal Probe permits of voltage measurements to 100 Mc . Shipping weight, 10 lbs .

Price: $\$ 79.50$

ADVANCED VOLTOHMYST ${ }^{*}$ TYPE WV-75A

A versatile instrument for TV and hf measurements. Accurate to 250 Mc . Can be used for peak-to-peak voltage measurements. Measures RMS ac and dc voltages to 1000 volts, resistance to 1000 megohms. Complete with WG-275 diode probe. Shipping weight, 11 lbs. Price: $\$ 125.00$

BATTERY VOLTOHMYST* TYPE WV-65A

A completely portable instrument that works anywhere. Batteries last up to 10 months with normal use. Measures RMS ac and dc voltages to 1000 volts, resistance to 1000 megohms, and direct current to 10 amps . Input resistance 11 megohms on dc ranges. Has isolating resistor in dc probe for measurement of dc voltages in high-impedance ac circuits. WG-263 accessory Crystal Probe
 permits rf voltage measurements to 100 Mc . Shipping weight, 10 lbs.

Price $\$ 43.75$

OSCILLOSCOPE WO-58A

$5^{\prime \prime}$ oscilloscope affording accurate presentation of synchronizing pulses, deflection waveforms, and composite video signals. Peak-to-peak voltages of waveforms can be read during operation. Deflection waveforms can be traced step-by-step. The crystal probe can be plugged into the kinescope socket of the receiver under test to observe video-amplifier response.

- SPECIFICATIONS:

Price: $\$ 249.50$

Vertical Amplifier

Deflection Factor: 0.18 RMS Volts/in.*(0.5 peak-to-peak volts/inch) Input Resistance and Capacitance

Direct input probe 1 megohm shunfed by 62 بй Compensated probe 2 megohms shunted by 9.5 uuf

Sine-wave Frenquency Response: Flat within 20% from 5 cycles to 2 Mc . 50% from l cycle to 4 Mc .
Square-wave Response:
Tilt and overshoot less than 2% from 30 to 50,000 eycles
Rise time less than $0.15 \mu \mathrm{sec}$ from 10% to 90% of total rise.
Horizontal Amplifier:
Sine-wave frequency response:
Flot within 10% from 6 to 100,000 cycles.

* For Sine Waves

stusfivi DC MICROAMMETER WV-84A

Useful for measuring very small values of cur rent; may be used as high-resistance voltmeter or as high-range ohmmeter. Approaches galvanometer sensitivity. Electronically protected, non-burn-out meter. Accuracy, 0.01 range, $\pm 5 \%$ of full-scale reading; other ranges $\pm 4 \%$. Excellent for weak-current measurements of phototube, multiplier phototube and similar low-current devices. Shipping weight, 7 lbs. Price: $\$ 100.00$

- SPECIFICATIONS

Range: 0.001 ma ta 1 ma fult scale
Full-Scale Indications 6 seales) $0.01 ; 0.1 ; 1.0 ; 10$ 100; 1000 ma
Full-Scale Voltage Drop, (all scales) 0.5 volts
Power Supply (8atieries) 2 RCA.VSIO2, 2 RCA.VSIO6

RCA RIDER CHANAIYST ${ }^{*}$ I62-C

RCA Chanalyst 162 C speeds up those tough service jobs. Monitors inter mittent receivers continuously, while service man is working on other jobs. Turns loss items into profits. 52 -page instruction book shows test set-ups, circuit diagrams, discusses multitudes of obscure troubles, and explains applica tions of Chanalyst Analyzer. Height, $9^{\prime \prime}$; width, $16^{\prime \prime}$; depth, $103 / 4^{\prime \prime}$. Shipping weight, 32 lbs.

- SpECIFICATIONs

RF-IF Chonnel:
Frequency Range: 96-1700 ke Sensitivity: Better than $80 \mu \mathrm{~V}$
to close indicator eye
without probe lead
Scale Accuracy: $\pm 2 \%$
Scalol Accuracy: ± 2
Oscillator Channel:
Frequency Range: $600-15000 \mathrm{kc}$

Scale Aceurocy: $\pm 2 \%$
Audio Channel:
Audio Channel:
Frequency Range: $15-50000 \mathrm{cps} \quad \begin{aligned} & \text { With Crystal Probe : } 0 \text { to } 5, \\ & 0 \text { to } 20 \text { RMS volts, }\end{aligned}$ (for sine Sensitivity (approx.): 0.1 RMS volt to close indicator eye Electronic Voltmeter Channel: Ranges: 0 to 5-25-125-500 dc volts
(Center-scale zero reference)

0 to 20 RMS volts, (for sine waves)
Frequency Response: $\pm 10 \%$ from I kc to 100 Me
Wattmeter Channel:
Range: $50-250$ watts
Dimensions: $9^{\prime \prime} \times 16^{\prime \prime} \times 103 / 4$

TEST

*Trade Mark Reg. U.S. Pat. Of.

29719-R PRINTED IN U.S.A.

5Q3IX (RC 1054E)

Service Data:

This instrument uses antenna and oscillator circuits identical to Model 6Q33X. It is otherwise identical to Model SQ31.

For alignment procedure and tuning circuits refer to Model 6Q33X Service Data and to Model 5Q31 Service Data for other information.

The items listed below are used in Models 5Q31X and 6Q33X but not in Model SQ31.

```
Stock No. Description
    S-5022 Coil-"A.C" bands antenna coil
    S-5023 Coil-"X" band antenna coil
    S-5024 Coil-"A.C'& bands oscillator coil
    S-5025 Coil-"X" band oscillator coil
    S-5020 Switch-Range switch
    S.5021 Dial-Dial scale
    S.5018 Capacitor-Mica, 470 mmi (C41)
    S-5019 Capacitor and Resístor Assembly-56 mml capacitor
        and }10\mathrm{ ohm resistor (C14, R5)
```


$8 \mathrm{B46}$ (RC-1069C)

Service Data:

The Service Data previously published for Models 8B41, 8B42 and 8B43 will apply to Model 8B46 except for color and the replacement parts listed below.

REPLACEMENT PARTS
 CHASSIS ASSEMBLY
 RC-1069C

Same as listed for RC-1069. RC-1069A. RC-1069B EXCEPT
74366 Fastener-Push fastener to hold loop. (2 required) for Model 8B46-tan
74363 Lid-Case top lid complete with lid support and hinges -less loop-Model 8B46-ivory
74365 Loop-Antenna loop complete with connectors-less lid -Model 8B46-ivory
74367 Nameplate-"RCA" nameplate for top lid--Model 8B46
SPEAKER ASSEMBLIES
Same as listed for Models 8B41, 8B42, 8B43

MISCELLANEOUS ASSEMBLIES

74368 Bottom-Case bottorn-Model 8B46-ivory
70457 Catch-Spring catch assembly
74016 Center-Case center complete with spring catch
74369 Handle-Carrying handle-Model 8B46-Ian
73970 Link-Handle link (2 required)
73943 Screw-\#4-40 x : $11 ;$ " binder head screw to hold case center

8X541 TO 8X547 (RC-1065, RC-1065A, RC 1065C, RC 1065D, RC 1065F, RC 1065H)

Substitute Volume Controls:

The original volume control used in these receivers is stamped $970058-26,970058-30$ or $970058-40$. It is a 500,000 ohm control with an internal stop at 50.000 ohms.

Substitute control stamped $970058-20$ is a 500,000 ohin control without the intermal stop. An external 68,000 ohm resistor is connected between the high side of the volume control and \#2 lug of the 2 nd i.f. transformer.

Substitute control stamped $97900-110$ is a 1 megohm control without the internal stop. An external 68,000 ohm resistor is connected between the high side of the volume control and \#2 lug of the 2nd i.f. transformer. A one megohm resistor is connected in parallel with the control.

Addition of Resistor:

To eliminate noise caused by parasitics in the oscillator a resistor (R2 100 ohms) has been added in series with the oscillator coupling capacitor. It is connected between the capacitor and the oscillator coil.

8V7, 77V1, 77V2, 710V2

Alternate Speaker:

An alternate speaker (stamped 92569.1 K) has been used as a substitute for the listed speaker (or speakers) in the above models.
Addition to Parts List:
Under "Speaker Assemblies" add the following: 92569-1K.
70574 Cone Cone and voice coil assembly.
31539 Plug-5 prong male plug for speaker.
37899 Transformer-Output transformer.
Replace complete speaker with Stock No. 71961 (92569-1W).

8 V 91

Change in Parts List:

MISCELLANEOUS

Change:
73753 Pull-
to read:
73753 Pull-Door pull (2 required) for mahogany instruments
Add:
74626 Pull-Door pull (2 required) for blonde instruments

8X53, 65X1, 65X2 (RC-1064)

Substitute Volume Control:

The original volume control used on this chassis is 500.000 ohms with a stop at 50,000 ohms. The substitute control has no such stop-in place of the 50.000 ohm stop an external 47.000 ohm resistor is used. When replacing such a control with Stock No. 70322 the external resistor should be omitted.

The original control is stamped 920400-117.
The substitute control is stamped 97500-117.

8X541, 8X545, (RC 1065F)

8X542, 8X546, 8X547 (RC 1065H)

Service Data:

These instruments differ from those described in 8X541, 8X542, $8 \times 544,8 \times 545,8 \times 546,8 \times 547$ Service Data in that an RCA SOBS tube is used in the output stage. The tuning condenser and oscillator coil used are those described tor the second production of the above models.

Addition to Parts List:

74822 Socket-Tube socket-miniature-Ior 50BS tube

Output Tube Circuit
RC 1065 F E RC $1065 H$

SUPPLEMENTARY INFORMATION

75X11, -12, -14, -15, -16 (RC-1050, -A, -B)

I.F. Transformer Substitution:

In some chassis a substitute lst I.F. translormer has been used. An adapter plate is riveted to the chassis for mounting purposes. A mounting clip is used to secure the transformer to the mounting plate. The revised schematic diagram is shown below.

Substitute Ist I.F. Transformer-75X Series

Addition to Parts List:

CHASSIS ASSEMBLIES
Add:
73935 Clip-Spring clip for mounting I.F. transtormers, type 970441
73036 Transformer-First I.F. transformer, stamped 970441-1 (C6, C7. L6, L7)

75X17, 75X18, 75X19 (RC-1050B)

Service Data:

The Service Data for $75 \times 11,75 \times 12,75 \times 14,75 \times 15,75 \times 16$, will apply to Models $75 \times 17,75 \times 18$ and 75×19 except for the cabinets.

Model 75X17 uses a black cabinet with decorated finish.
Model 75X18 uses a red cabinet with decorated finish.
Model 75X19 uses a white cabinet with decorated finish.

REPLACEMENT PARTS
 CHASSIS ASSEMBLY
 RC-1050B

Same as listed in $75 \times 11,75 \times 12,75 \times 14$
75×15, 75×16 Service Data

SPEAKER ASSEMBLY

Same as listed in $75 \times 11.75 \times 12,75 \times 14$ 75X15, 75X16 Service Data

MISCELLANEOUS

72884 Battle-Speaker battle board and grille cloth
72883 Bezel-Dial scale bezel only-less dial
Y2059 Cabinet-Plastic cabinet (black) for Model 75X17
Y2060 Cabinet-Plastic cabinet (red) for Model 75X18
Y2061 Cabinet-Plastic cabinet (white) for Model 75X19
72868 Dial-Dial scale complete with dial lamp shield
72885 Foot-Mounting foot (bakelite) (2 required)
72869 Indicator-Station selector indicator
74044 Knob-Control knob-black-for Model 75×17
74045 Knob-Control knob-red-for Model 75X18
72890 Knob-Control knob-ivory-for Model 75X19
31480 Lamp-Dial lamp--Mazda 47
73728 Screen-Ventilating screen-black-for back of cabinet for Models $75 \mathrm{X17}$ and 75X18
73729 Screen-Ventilating screen-white-ior back of cabinet for Model 75X19
14270 Spring-Retaining spring for knobs

Model 75×17 Black
Model 75×18 Red
Model 75X19 White
Decorations are similar but not necessarily identical on all cabinete.

75ZU (RC-1063A, RC-1063B)

Dial Drive Cord:

A groove approximately $1 / 16^{\prime \prime}$ deep by $1 / \mathrm{e}^{\prime \prime}$ wide is now included on the outer rim of the bakelite station selector indicator pulley. Stock No. 73060. A portion of the first production has pulleys which do not incorporate this groove.
If trouble is encountered with the drive cord coming off this pulley. either of the following corrections may be applied:
(a) Position the pulley in relation to the gang drum by the adjustment provided on the long support bracket for the dial back plate assembly so that the drive cord occupies the position indicated in the illustration below.
(b) Replace the pulley with one incorporating the groove indicated above.

Service Data-50 Cycle Version:

The Service Data for Radiola 75ZU will apply to this instrument except:

RP-178 record changer only is used.
A conversion spring (Stock No. 73158) is added to the motor spindle shaft for 50 cycle operation.
A decal ("RCA Victor" Stock No. 71984) is added to the front of the cabinet.

Blonde Cabinets:

Service Data previously issued for Radiola 75ZU applies instruments using blonde mahogany cabinets except for the parts listed below which are used with blonde mahogany cabinets.

MISCELLANEOUS
73722 Knob-Power-Phono-radio switch knob-for blonde instruments
73629 Knob-Tuning Knob-for blonde instruments
73630 Knob-Volume control knob-tan-ior blonde instruments

Service Data-2nd. Production RC-1063 B

Service Data for Radiola 75ZU (RC-1063A) applies to this model except for the use of different IF transformers, the addition of Rl5 in the cathode circuit of 12SK7 IF amplifier and the omission of R14 in the diode circuit of 12SQ7 2nd det.

CHASSIS ASSEMBLIES RC-1063B
Same as listed for RC-1063A except:
Resistor-Fixed composition, 120 ohms, $\pm 10 \%$ (R15)
70128 Transformer-First I.F. transformer stamped 922246.11 (L6, L7, C20, C21)
70129 Transformer-Second I.F. transformer stamped 922246 12 (L8, L9, C6, C22, C23)

CHASSIS ASSEMBLIES

70383 Condenser-Variable tuning condenser (C3, C4, C6, C7) MISCELLANEOUS
73631 Knob-Power, radio and phono switch knob-tan-for blonde instruments
73629 Knob-Tuning knob-tan-for blonde instruments
73630 Knob-Volume control knob-for blonde instruments
73109 Nut-Tee nut to mount record changer-3 required
73110 Screw- $1 / 4-20 \times 13 / 4^{n}$ fillister head machine screw to mount record changer

Capacitor Substitution:

In some chassis Cl 8 is .027 mfd . instead of .025 mfd , as specified in Service Data for Model 77 U .
In some chassis two .0035 ml . capacitors are connected in par allel as a substitute for the .007 ml . capacitor C12.

Oscillator Coil Substitution:

In some instruments a substitute oscillator coil has been used. The original coil (Stock No. 70477) uses a capacitive winding (L4) for coupling the oscillator circuit to the oscillator grid (pin \#5) of the $12 S A 7$ tube. The substitute coil uses a 56 mmf . ceramic capacitor for the same purpose (L4 is not used).

77 VI

Change in Parts List:

MISCELLANEOUS

Add:
74186 Grille-Metal grille

711VI, 711V2, 711V3

Interference:

Certain remore localities have recently reported the presence of interference (generally after dark) at prestain frequencies in the broadcast band. Tbis interference, when present, appearss in the back ground severe; and it generally takes the form of code or amateur voice. Accompanying this interference is generally an abnormal quantity of "tweets" or whistles when runing across the band. External antenna(s) make the condition worse.
To overcome this condition a production change has recently been made in the factory to remove a coil (L_{3}) from the chassis and employ a different loop antenna. Instruments having the above changes inthe serial number on the radio chassis.

INSTRUCTIONS FOR CHANGING LOOP ANTENNA CIRCUIT
IN MODEL 7IIV SERIES
(Leads not shown in illustration require no change).
Remove radio chassis.
2. Refer to illustration and remove red lead connecting from L_{3} to terminal 8 of S_{4}
3. Unsolder the blue lead from L_{3} and connect same end to terminal 8 on S4. L. 3 may remain in the chassis without leads connected to it

QU-62

Alternate Speakers:

In some instruments the speakers listed below have been used as alternates for the speakers listed in QU. 62 Service Data.

SPEAKER ASSEMBLIES 92520.1 K

70574 Cone-Cone and voice coil assembly
5118 Plug-3 prong male plug for speaker
70686 Speaker-12"1 PM speaker complete with cone and voice coil less plug 02569.4 W) ${ }^{(U s)}$ alternate for PM speaker stamped 92569.4 W)

SPEAKER ASSEMBLIES

70574 Cone-Cone and voice coil assembly 5119 Plug-3 contact female plug for speaker
31539 Plug- 5 prong male plug for speaker 70573 Speaker-12" E.M. speaker complete with cone and voice coil less output transformer and plugs
70688 Transformer-Output transformer (T4) (C'sed as alternate for EM speaker stamped 92566.3 W)

The alternate speakers will not fit on the mounting holts used with the original speakers. which becomes necessary to use a replacement which differs rom the original equipment speaker, it is suggested that the mounting bolts using rubber grommets. spacers and wood using
screws.
4. Remove loop cahle from loop and from terminal hoard on rear of cabinet.
5. Remove lur from end of yellow loop lead and solder this lead to terminal 5 on antenna terminal board on radio chassis.
6. Re-install radio chassis.
7. Clip off Pin 5 on chassis end of 5 conductor flexible antenna cable and file remainder of pin smooth with surface of plug.
8. Plug 5 conductor cable into antenna terminal board on chassis (see sketch). Note that with one pin removed the plug can he moved one pin to the right and plugged in, making incorrect contact
9. Carefully pull the yellow lead downward along the 5 conductor cable far enough to permit raping it so the plug portion of this cable to prevent the yellow lead from breaking at the soldered joint at terminal 5 when flexed by opening of radio door. "Scotch" or other good tape is suitable.
10. Connect the red and black loop leads to the rear terminals, 4 and 5 respectively from which they were originally removed. Close link from 4105 , no outside antenna is used. If an ourside antenna is used consul sheet or service data for correct connections.
Remove the screw from terminal 6 in the anténna Remove the screw from terminal in antenna nection in the future.
2. Remove old loop and install new loop in its place.
13. Plug loop cable into new loop.
14. Peak the loop trimmer on a weak station around

15. If a test osciliator is available, the low frequencs oscillator core (L.12) adjustment should be made while rocking the eang through 600 kc ., to obtain maximum output. Repeak loop trimmer again at 1400 kc .
16. Groundint one of the FM antenna terminals (connect terminal t to 5) on the board on rear of cabinet may prove advantageous to reduce excess signals if an external FM antenna is used.
NOTE: The new loop referred to above, may be identified by a green paint dor on one metal mounting bracket. Also, the large coil has 20 zurns of wire with only a few contains 13 turns all of which are visible throwgh the holes near the edge.

Change in Parts List:

MISCELLANEOUS

Delete:

71863 Cable
Add:
73250 Cable- 5 conductor molded antenna lead in 71614 Capacitor-Ceramic, 120 mmf - (In shunt with loop primary). 73480 Loop-Anrenna
ments withour loop loadine coil.

(broken lines indicate original wiring removed)

SUPPLEMENTARY INFORMATION

54B1, -2, -3, -5, -6

Battery-Operated Personal Receivers:

When it is expected that a receiver of this type will not be used for a prolonged time-REMOVE THE "A" AND "B" BATTERIES.

Dry cell batteries deteriorate even though not in use. This deterioration will in time result in the chemicals of the battery seeping through the paper covering of the battery. These chemicals will corrode the metal parts of the receiver and may cause extensive damage.

QB55 (RC-563A), QB55X (RC-563K)

Addition of Viscoloid Damper:

A viscoloid damper has been added to the stator plates of the oscillator section of the tuning condenser to reduce microphonics on short wave reception.

Dial Back Plate:

Some of these instruments have used dial back plates without the score marks which may be used as a reference during alignment. The glass dial scale may be removed from the cabinet and used as a reference during alignment or the check points indicated in the illustration (below) may be used.

Alignment Check Points-QB5S, QBS5X

65BR9 Portable Receiver

Battery Care:

The battery used in this receiver should be regarded as a PERISHABLE PRODUCT that will spoll it not given proper attention. Like all other lead storage batteries of this type, it must be given periodic attention if long life is to be expected. Observe the following:
(1) Maintain liquid level to line indicated on the battery case. Do this by adding distilled water as required.
(2) Do not allow to remain in a discharged condition more than a few days.
(3) Do not overcharge. The charge condition is indicated by two indicator balls-GREEN and RED-which float in the electrolyte.

Both balls up-90 to 100% charged.$\begin{aligned} & \text { GREEN ball down } \\ & \text { RED ball up } \\ & \text { Both balls down-less than } 20 \% \text { charged. }\end{aligned}$

(4) NEVER ADD ACID. Acid should never be added to a battery except to replace that which might be accidently lost by spilling or leakage. Do this only according to instructions.
CAUTION: The acid used in this battery is very destructive. It will corrode metal, destroy clothing and burn the skin.

Failure to observe the above precautions may result in permanent damage or total destruction to the battery.

68R1, -2, -3, -4 (RC-608) $610 \mathrm{~V} 1,610 \mathrm{~V} 2$ (RC-610, RC-610C)

10.7 mc . Interference on FM:

In locations where intermediate frequency interterence (not tunable) is encountered on these receivers the following may eliminate the condition:

1. Check lead dress (and correct if necessary) to minimize antenna coupling into IF amplifier input. Resistor RI (located on antenna terminal board) should be dressed on the side of the terminal board away from the 6BE6 1st det. socket V1.
2. Dress 6BE6 1st det. plate lead along shelf base and under C2 (330 mml .) using C2 as a partial shield for this lead.
3. Ground one FM antenna terminal to chassis at terminal board (Dipole still connects normally). This is generally more elfective than connecting a 10.7 MC . series tuned trap from FM antenna terminal to chassis.
4. Place a tube shield over the GBE6 lst det. tube grounding the shield to chassis using as short a ground as possible. Correct for any detuning caused by this method.
5. Correct realignment of circuits is suggested to provide maximum sensitivity since step 3 may reduce sensitivity slightly.

67V1, 67AV1 610V1, 610V2

Alternate Speaker:

An alternate speaker (stamped $92569-1 \mathrm{~K}$) has been used as a substitute for the listed speaker (or speakers) in the above models.
Addition to Parts List:
Under "Speaker Assemblies" add the following: 92569-1K.
70574 Cone-Cone and voice coil assembly.
31539 Plug-5 prong male plug for speaker.
37899 Transformer-Output transformer.
Replace complete speaker with Stock No. 71961 (92569-1W).

$610 \mathrm{~V} 1,610 \mathrm{~V} 2$ (RC-610C)

Change in Resistor:

The 68 ohm resistor located in the cathode circuit of the type 6AU6 FM driver stage has been changed in production from 68 ohms to 120 ohms. This change was made becarse certain 6AU6 tubes were found to draw grid current at the bias value produced by 68 ohms which resulted in a decrease in FM sensitivity.
This resistor is identified as:
R13 in Chassis No. RC-610C-Models 610V1 and 610V2.
The original production (chassis No. RC-610 in Model 610V2) uses a 120 ohm resistor in the above mentioned location and as such requires no change.

Incorrect Loop Antenna:

A small quantity of Model 610V series instruments were shipped through error with incorrect loop antennas.

The incorrect loops contain approximately 14 turns instead of 17 turns. This reduced inductance causes low sensitivity and poor selectivity particularly below 900 kc .

Complaint cases of poor sensitivity, poor selectivity or interference in the form of local station(s) repeating at one or several places on "A" band (except response at the image frequency) should have the loop checked as one possible cause.

The incorrect loop may peak at the high end of "A" band but will not peak at lower trequencles. This may be checked by varying the oscillator coil inductance. The correct loop tracks normally across the band.

Correction to Parts List:

The Stock No. of the antenna terminal board is 72058. It was listed incorrectly in the Service Data as 70258.

60 TO 50 CYCLE CONVERSION FOR RIM-DRIVE PHONO MOTORS

50-Cycle Conversion Springs:

(These instructions supersede all past issues, covering the use of shrunk sleeves.)
Certain record players and automatic recurd changers originally designed for operation on 60 cycle power supply can le converted to permit operation on 5 cycle power supply
A spring sleeve is uscd to increase the dianmeter of the notor drive spindle, to oompensate for the slower speed of the motor when used on a 50 cycle supply.
A talulation of models, motors and conversion springs is given below. Please note, motors other than those listed may not lee suitable for operation on 50 cycle power supply.
To apply the spring-sleeve to the motor spindle, lock the rotor manually and press spring gently over end of spindle, twisting the free end gently over end of spindle, twisting the free end
of spring counter-clockwise (to unwind coil) unof spring counterclockwise (to unwind coit) un-
til til follow
spindle.
The ends of spring should not protrude, and all coils should be close together, allowing a flat even surface of the motor spindle to contact the rubber drive. These springs may be supplied with pigtails to aid in installation. After the spring has been placed on the shaft, clip the pigtails so they do not interfere with the drive wheel.

Spring sleeve installed on 60-cycle motor spindle for operation on 50-cycle supply.

MODEL NUMBER (Record changer in parenthesis)	MOTOR		CONVERSION SPRING Stock No.
	Number on Motor	Srock No.	
QUS (RP-145E)	91655-6	$36254 \dagger$	39749
6J, 6JM	970470.1	72781	72689
QU51C (RP-145E)	91655-6	36254 †	39749
QU51M (RP-152R)	91706-1*	38612	39748
QU52C (RP-152S)	91706.1*	38612	39748
QU52M, QU55 (RP-152R)	91706-1*	38612	39748
QU56C. QU56M	92127-1	-	39681
R 56	91647-3	36404	39681
$58 \mathrm{~V}, 58 \mathrm{AV}, 59 \mathrm{Vt}, 59 \mathrm{AV} 1$ QU61, QU62 (960001)	L. 230270	71960	72533
63E, 63EM	970470-1	72781	72689
$66 \mathrm{E}, 66 \mathrm{E} 1,66 \mathrm{ED}$	L230270	71960	72533
QU72, QU72A	970472-1	70121	72689
V-100, V-101, V-102, V-105	91647.3	36404	39681
V-135, V-140 (RP.162)	91647-5	39031	39750
V-175.V-209, V. 210 (RP-158)	91706.1*	\$8612	39748
$\left.\begin{array}{l}\text { V. } 215 \text { (RP-160) } \\ \text { V. } 219 \text { (RP-160A) } \\ \text { V. } 221 \text { (RP-160B) }\end{array}\right\}$	$\begin{aligned} & 91655.1 \\ & \text { or } \\ & 91655-6 \end{aligned}$	$36254 \dagger$	39749
V. 225 (RP-151)	91845-1	38557	39749
Radiola R-560P	91647.3	36404	39681
Radiola R-566P (RP-162)	91647-5	39031	39750
$610 \mathrm{VI}, 610 \mathrm{~V} 2$ (RP-177)	91706-1*	38612	39749
$610 \mathrm{~V} 1,610 \mathrm{~V} 2$ (960001)	1.230270	71960	72533
612 V 1 (RP-176A.RP-176B) 612 V 3 (RP-176, RP-176A) 612 V 4 $(\mathrm{RP}-176)$	91706-1*	38612	39749
$711 \mathrm{~V} 1,711 \mathrm{~V} 2,711 \mathrm{~V} 3$ (960001)	I. 230270	71960	72533

† Stock No. 36254 discontinued. Use Stock No. 38612 for replacement.

- This motor has been manufactured with two different diameter motor spindle shafts. The listed spring is correct for the original equipment notor, but may not be correct for replacement motors.

Motor with spindle . $136^{\prime \prime}$ dia. uses Stock No. 39748 spring.
Motor with spindle $132^{\prime \prime}$ dia. uses Stock No. 39749 spring.

50 Cycle Motors:

The models listed below can be converted to 50 cycle operation only by replacenent of the complete motor.

$612 \mathrm{~V} 1,612 \mathrm{~V} 3,612 \mathrm{~V} 4$ (RK-121)

Change in Schematic Diagram:

The schematic diagram of RK-121 chassis is changed as follows.
R36 is no longer connected to the junction of R35-R40.R22.R25. It is now connected to R37 and term. \#11 of $S 5$. This change removes the plate voltage from V5 6AU6 when the range 5 witch is in "Phono" position.

The change is illustrated in the partial schematic below. The wiring diagram (Fig. 13) and simplified schematic Fig. 14 are also affected by this change.

Intermittent Noise:

If the shielded lead of the power cable should touch the speaker frame it will cause noise. The power cable should be clamped in such position to prevent contact with the speaker frame.

Change in Parts List:

MISCELLANEOUS
Change:
72590 Back-to read
72580 Back-Cabinet back for 612V3-for center
71868 Frame- Rollout to read . frame with 1868 Frame-Rollout carriage frame with brackets-less wheels
70167 Hinge- to read
70167 Hinge-Speaker compartment door top hinge-L.H. for 612 V 4
70166 Hinge to read
70166 Hinge-Speaker compartment door top hinge-R.H. for 612 V 4

Add

72119 Escutcheon - Escutcheon only - less screen, window and marker strips-for blonde instruments

73334 Hinge-Speaker compartment door bottom hinge (2 required) for 612 V 4

612 V 4 (Blonde)

Service Data:

Service Data previously published for 612 V 1 , $612 \mathrm{~V} 3,612 \mathrm{~V} 4$ applies to Model 612 V 4 using blonde mahogany cabinet except for the follow. ing parts:

73719 Back - Cabinet back - blonde - for 73720 Back required \quad Cabinet back - blonde - for 73720 Back - Cabinet back - blonde - for center
$\times 1825 \mathrm{Cl}$
X 1825 Cloth - Grille cloth - for $612 \mathrm{~V}_{4}$ blonde
The RP-176A record changer is used.

54B5

Addition to Parts List：

70708 Lead－Battery lead assembly

65BR9，Radiola R65BR9

Additions to Parts List：
MISCELLANEOUS
70123 Case－Metal case only for hattery and vibrator－less cover，inner vibrator case，etc．
70124 Case－Metal inner vibrator case
70125 Cover－Battery compartment cover

66X11，66X12，66X13

Oscillator Coil Substitution：

Some oscillator coils which were specified for the first production（RC．1046A，RC＝1046，RC． 1046B）of these models have been used on the second production．（RC－1046C，RC－1046D，RC． 046E）．
Some oscillator coils and associated coupling capacitors（C19）which were specified for the second production have been used on the first production
If replacement is necessary－use the specified parts－the range of inductance adjustment may be insufficient if used otherwise．

Defective 6F6G Tubes

Frying or Sizzling Noise：

It has been found that a frying or sizzling noise evident when the volume control is at mini－ mum is often due to defective 6F6G tubes．Since
such noise is often associated with defective out． put transformers，a hurried diagnosis may indi． cate that the output transformer is at fault when it is actually tube trouble．

RP－176，－A，－B
 Change in Parts List：

Ref．\＃26
Stock No． 70867 Spindle－DISCONTINUED
Add
Stock No． 72422 Spindle－Turntable spindle including disc，less rubber tire．

610V1

Change in Record Changer：

Some instrumente use 960001－6 record changer （blonde）with walnut or mahogany cabinets．These instruments may use blonde carriage guides bezel and cabinet backs which are listed in $610 \mathrm{~V} 1,610 \mathrm{~V} 2$ Service Data as applying to 610 V 2 blonde cabinets．

Change in Chassis：

Some instruments use RC－610 chassis which is deacribed in $610 \mathrm{~V} 1,610 \mathrm{~V} 2$ Service Data as apply

Socket Wrench

Used When Replacing Sapphire Stylus of Crystal Pickups：

A convenient socket wrench to be used when replacing the sapphire stylus of crystal pickups can be easily made from a \＃10－32 Allen type set screw（preferably $11 / 4$＂long）．

The set screw should be modified as follows：
1．Grind off the threads for a distance of $1 / 4$ to $3 /{ }^{\prime \prime}$ from the hexagon socket end．
2．Grind off the hexagon socket end so that the hole is only about＂／⿴囗⿱一一＂deep－or partially fill hole so that the nut just goes in until its outer surface is flush with the end．

612V4

Correction to Parts List：

MISCELLANEOUS
72936 Stop－Stop for speaker compartment doors for 612 V 4 was incorrectly listed as 72396）．

I．F．TRANSFORMERS

Adjustable Cores：

Most I．F．transformers have adjustable cores to resonate the primary and secondary windings．These cores are adjustable from the top and bottom of the chassis．They may or may not have visible screw studs for adjustment．When screw studs are not used the cores have a molded－in slot for adjustment and may be reached through holes in the top and bottom of the transformer．A non－metallic screw driver should be used for adjusting the cores．

I．F．TRANSFORMERS－TYPE 970441

Terminal Identification：

The terminals of this series of I．F transform ers have identifying numbers molded into the termintl base and correspond to the number indicated on the schematic diagrams of the re ceivers in which they are used．
soldering．There is an additional identificationg soldering．There is an additional identification consisting of a spot of paint on the base of No． 1 terminal
the side of number of the transformer is stamped

TERMINALS $5,6 \& 7$
ARE OMTTEO WHEN NOT USEO

on the sitle of the shield can． the terminal view of the base is illustrated at the right．

CABINET TOUCHUP
The appearance of a radio or television cabinet is often the deciding factor between customer satisfaction or dissatisfaction．Since your busi－ tress depends unon customer satisfaction you should always make certain to check appearance as well as yerformance before regarding a serv－ ice job or instatlation as being cumplete．
A successful service man when questioned why he always polished even the dingiest looking cabinets；explained，＂A well polished cabinet makes the radio sound better＂．
A cabinet that is clean，well－polished and free from scratches will give greater customer satis－ faction and will bring good returns on the time and material used．
Every cabinet that is brought into a service shop should be thuroughly cleaned inside and out， all scratches repaired and then carefully polished． After delivary to the customer＇s home all finger． marks should be wiped off．
lit the customer＇s home every cabinet should be at least wiped witl：a polishing cloth and scratches repaired or minimized．

Polishing：

A cream type of polish is recommended．Re－ move all control knobs and apply the polish according to directions on the bottle．Use a clean polishing cloth free from lint and polish with the grain of the wood．Wipe dry with a soft clean cloth．

Removing Scratches and Indentations：

Scratches and inclentations cannot be removed by polishing or by the use of so－called＂scratch renovers．＂l＇olishing will merely cause them to be less noticeable＂scratch removers＂fill up the scratch with a wax which may come off with the next polishing． $1 t$ is necessary to build up the surface with a durable material．To repair deep scratches the surface must first be cleaned and lighty sancled with No． 360 to No． 400 sampaper to remove loose particles of fimish re－ escary－use the scratchi stain the wood if nec－ essary－use a stain which is lighter than the finished surface．The scratch is then filled with Stick shellac applied with a hot burning－in knife． Stick shellac conses in many shades and one should be selected which is lighter than the sur－ rounding finish，two shades may be blended on the burning－in knife．

The lourning－in knife should be heater with an alcolal lamp，and the heated knife to melt the stick shellac which is then applied to the scratch． The knife should lie heated only enough to melt the shellac easily；rub the heated knife across a clean cloth or paper－if drawn across quickly it should not scorch．The hot knife will danage the surrounding surface if held in one place or if too hot．Avoid building up higher than the surrounding surface or excess rubbing will be required to finish it，the surrounding surface
may also be worn thru from this excess rubbing． may also be worn thru from this excess rubbing． After the scratch or indentation has been built up to the level of the surrounding surface it should be sanded down using a hard felt block and No． 360 to No． 400 sandpaper dipped in a light oil，it should be finished by rubbing with $4 / 0$ steelwool．Wipe dry．If spot so re－ paired shows off－color use an artists brush and stain to biend it with the surrounding finish． The spot and surrounding area should then be finished with a padding lacquer such as＂Quala． sole．＂

Use of Padding Lacquer：

Padding lacquer such as＂Qualasole＂is used to build up the lacquer surface of cabinets where a suray gun is not available．To use：
（1）Clean the surface by wiping lightly with a cloth dampened with the denatured al－
（2）Make a small pad of soft cloth（shaping it to reach corners if necessary）and saturate working area of the pad with a padding lacyuer such as＂Qualasole．
（3）Kub lighty with sweeping straight and circular motions raising the pad grad－ uarmits it to dry slightly between strokes） －（Do not work in one spot．）
（4）To remove rub marks－dampen pad with a tew drops of denatured alcohol and rub very lightly as before（straight and cir－ cular）．

Complete Re－finishing：

This work should be done by experienced cabinet finishers．

Caution

Most cabinets are lacquer finished．Do not use varnish on them as varnish and lacquer will not mix．
Some cabinet repair kits which are available contain a bottle of＂french varnish＂which is applied in the same manner as padding lacquer DO NOT USE ON LACQUERED SUR．
FACES．

CONSOLE LOOP ANTENNAS

Identification:

The following data will assist in identifying hinge-type console loops on models listed. Color dots adjacent to each socket hole (except black) identify lead colors.

Model	Approx. No. Turns Secondary	Color Dot	Stock No.
58 V	16 to 17	White at X	$\ddagger 71813$
59 Vl	" ". "	" ${ }^{\text {. }}$ "	
77 V 2	"	"	"
$67 \mathrm{V1}$	161017	White at X	\$71813
610 Vl	." ." ."	OR	-
610 V 2	" "	Blue at Y	"
8 V 151	13 to 14	Yellow at X	71862
612 Vl	" " "	". ..	"
612 V 3	" ${ }^{\prime \prime}$	" ."	"
612 V 4	"	" ${ }^{\text {c }}$ "	"
-711V1	13 to 14	Yellow at X	71862
-711V2	" ".	" ${ }^{\text {" }}$ "	
-711V3	" "	" ${ }^{\text {e }}$ "	"
+711V1	20 to 21	Yellow at X	73480
+711V2	" ${ }^{\prime}$.	AND	,
+711V3	" " "	Green at Y	"

- Early production instruments using series loop loading coll.
tLate production instruments without loop loading coil.
\ddagger Stock No. $70544(58 \mathrm{~V}, 59 \mathrm{~V} 1,610 \mathrm{VI}$ and 610 V 2$)$ is superceded by Stock No. 71813.
Failure to use the correct loop will result in poor ' A " band performance due to improper antenna and oscillator circuit tracking and frequently will introduce added interference particularly when used near local stations. lmage response is only slightly affected.

Hinge Type Console Loop Antennas

I. F. TRANSFORMERS-TYPE 970441

Change in Terminal Base:

Replacement transformers of this series may require enlargement of the terminal slots in the chassis base to prevent shont circuits. The necessary change is illustrated below.

These transformers are Stock Nos. 73036 (970441-1). 73037 (970441-2). 73129 (970441-3), 73130 (970441-4), 73488 (970441-5) and 73254 (970441-6). They have been used in many table model receivers.

Revised Mounting-
I.F. Trans. \#970441

EXTERNAL ANTENNA CONNECTION

Connection to Receivers Having No Provision For Use of External Antenna on Broadcast Band:

The necessity for the use of an external antenna for the broadcast band is so infrequent that this provision is omitted on most radio receivers.

When an external antenna is required it may be coupled to the receiver using either of the two methods described below. The first is the simplest, while the second may prove best it local noise is present.

METHOD No. I.-Winding primary turns around present loop.
One or two turns of wire such as \#18 insulated bell wire wound around the loop antenna along the outer surtace, near the outside turn, will provide a suitable means for coupling from an outside antenna. One end of this twoturn loop antenna should be connected to the outside antenna while the opposite of starting end should be connected to the radio receiver chassis or ground. Additional turns will generally not show too much improvement over the use of two turns and in addition may require re-tuning the antenna circuit by adjustment of the trimmer capacitor. When using this method the loop antenna is still effective if the external antenna is disconnected, and when the external antenna is connected the loop still acts as a means for picking up a certain amount of signal and, of course, noise it noise is present in the immediate vicinity.
METHOD No. Il.-Using a separate antenna transformer in place of the loop antenna.

The most suitable arrangement when using an external antenna is believed to be a method whereby the loop antenna is removed entirely from the circuit and in its place a conventional antenna transformer, consisting of a primary and secondary is used. The secondary winding should have the proper inductance to track with the gang condenser across the band. A transtormer having a variable inductance such as those employing a magnetite core is advantageous to provide proper tracking. When using a separate antenna coil instead of a loop the connecting leads for the circuit should be kept short to avoid pick up on these leads. This method is very advantageous when local noise in the vicinity of the receiver is present which would be picked up on a loop antenna but which would not be picked up near as much on the antenna coil. When such conditions are present the use of a noise reducing antenna is advantageous.

VIBRATOR POWERED RECEIVERS

Vibrator Fails to Start:
When a vibrator has not been used for several months, it may fail to start when placed in service. This may be due to an insulating film which has formed on the contacts. This film may be broken down and the vibrator restored to operating condition by using the following procedure:
(1) Remove the vibrator from the receiver.
(2) Apply iwice normal operating voltage momentarily to the magnet coil of the vibrator through a 5 ohm current limiting resistor. The vibrator shofuld immediately start to operate. this will be noticed as an audible vibration.
CRUTION: Do not apply excess voltage to the receiver.
(3) Re-install the vibrator in the receiver, it should then operate with normal voltage.
NOTE: Be certain that battery is fully charged and that terminals are clean and tight.

RCA Radio Batteries

RADIO－ENGINEERED FOR EXTRA LISTENING HOURS

$\begin{aligned} & \text { RCA } \\ & \text { Type } \end{aligned}$	Voltage	Interchangeable With		Std． Pkg． aty．	Dimensions			List Price	Net Price	
					W．or					
		Eveready	Burgess		1.	Dia．	Hgt．			
VS018	71／2－9－90	754	G6M60		6	10 m	37 伯	$41 / 8$	\＄5．50	\＄3．85
VS019	71／2－9－90	753	F6A60	6	$91 / 2$	2^{23} ，${ }^{1}$	41／8	5.50	3.85	
VS038	71／2－63		G5A42	5	$83 / 8$	$23 / 4$	$41 /$	4.20	2.95	
VS043	11／2－90		5DA60	5	51／2	$211 / 4$	$71 / 8$	4.95	3.45	
VS046	6－75	Zenith 2675	G4B50	6	$12 \mathrm{3} / 8$	$23 /$	41%	4.95	3.45	
VS047	9－90	Zenith 2985	G6B60	6	13\％／8	$23 / 4$	4916	5.50	3.85	
VS050	6－71／2－75		T5250	6	89	2^{7} 品	311 价	4.50	3.15	
VS052	11／2－611／2	Phil 41A4G	4GA41	10	$9 \frac{1 / 8}{8}$	2^{11} 化	37，06	3.95	2.95	
VS053	11／2－63	Phi．41A4FL	4GA42	5	$91 / 8$	2	$43 / 4$	3.95	2.95	
VS054	11／2－90		6TA60	5	10	$23 / 5$	$41 / 8$	5.50	3.85	
VS057	71／2－9－90	Philco P361	T5260	6	98	21／6	$3 \frac{1}{4}$	5.50	3.85	
VS058	9－90	Zenith Z909	F6A 60P	6	91／2	$231 / 28$	$48 / 8$	5.50	3.85	
Kit No． 1	Includes	6－VS036，	1－VS016	12				2.98	2.06	
PORTABLE＂A＂BATTERIES										
VS002	41／2	746	G3	6	4	13／8	411／18	75	.53	
VS003	$71 / 2$	687	G5	5	3%	$23 / 8$	4\％／6	1.10	． 77	
VS004	$11 / 2$	742	4F	6	$25 / 8$	23／6	416	． 95	． 68	
VS005	$11 / 2$		4 FL ，	6	311／6	18／8	$5 \frac{5}{8}$	． 90	.63	
VS007	$11 / 2$	743	6 F	4	315	$28 / 8$	41／5	1.25	． 88	
VS008	$11 / 2$	745	8 FL	6	$37 / 8$	17 ／6	$10 \frac{1}{4}$	1.75	1.23	
VS009	6	744	F4PI	6	2%	25／8	$41 / 8$	$\begin{array}{r}.95 \\ \hline 175\end{array}$	． 67	
VS010	6	718	2 F 4	10	$37 / 8$	$211 / 10$	$51 / 2$	1.75	1.23	
VS011	6	747	2F4L	${ }_{4}^{6}$	37／3	$17 / 4$	$103 / 4$	1.75	1.23 .065	
VS036DP	$11 / 2$	Sealed－in－Steel Display－Pac		480		15／6	$23 / 8$	． 10	． 065	
VS036CP	11／2	Sealed－in－	Steel	480		15 仿	$23 / 8$	． 10	． 065	
		Carry－Pac								
VS065	$71 / 2$	717	C5	12	2s／6	2 126	3114 $41 / 8$	． 95	． 68	
VS067	41／2	736	F3	${ }_{12}$	4	13／6	$3^{41 / 8}$.75 .95	． 53	
VS129	71／2		B5	12	41何	16／18	3	． 95	． 67	
PORTABLE＂B＂BATTERIES										
VS012	45	762	B30	6	$41 / 8$	$28 / 8$	$5{ }^{3}$	2.35	1.65	
VS013	45	482	M30	12	396	$1{ }^{13}$ 价	$51 / 2$	2.00	1.40	
VS014	45		A30	6	3706	$21 / 4$	4916	2.15	1.50	
VS015	45	738	230	10	3	$21 / 4$	4	2.50	1.75	
VS016	$671 / 2$	467	XX45	12	25／8	15／4	$\pm 31 / 4$	2.25	1.58	
VS055	45	456	XX30	12	2^{211}	18，	\＄311 6	1.65	1.16	
VS090	90	490	N 60	12	311／16	18／8	$\ddagger 33 / 4$	2.95	－2．07	
FARM＂AB＇＂BATTERY PACKS										
VS021	11／2－90	758		6	1012／6	$2^{3} 1$	$63 / 8$	5.95	4.46	
VS022	11／2－90	759	17GD60	1	163／4	414		5.95	4.46	
VS045	$11 / 2-90$	Zenith Z28	18GD60	1	129\％	$53 / 1$		5.95	4.46	

FARM＂A＂BATTERIES									
VS024	11／2	740	${ }^{20 \mathrm{~F}}$	${ }^{6}$	${ }^{711110}$	${ }_{4}^{213}$	${ }_{6}$		2.31 3.85
VS025	3	X125		1				${ }_{5.75 *}$	4．03＊
farm＂b＂batteries									
VS026	221／2－45	485	2308 PI	6	81.10	33／1／	${ }^{71} 16$		
vS027	$221 / 2-45$	386	10308PI	4	81 价	45\％	71／6	${ }_{4}^{3.95}$	2．93 ${ }^{\text {3．09＊}}$

RADIO－HEARING AID＂A＂BATTERIES								
＊＊VS070	13／2	Zenith $\mathrm{Z1} 1$－S	TE	20	$1{ }^{156}$	4110	30	． 19

FLASHLIGHT BATTERIES

VS001	$11 /$	950	2	480		$1{ }^{1+6}$	$211 / 2$	． 10	． 065
VS033	$11 / 2$（Baby）	935	1	100		11／2	116／1s	． 10	． 065
VS034	$11 / 2$（Pen．）	915	2	120		3764	2	． 075	． 05
BATTERIES FOR INDUSTRHAL AND ELECTRONIC APPLICATIONS									
VS006S	11／2（Ign．）	6		12		2\％	$\pm 6 \%$	$\begin{aligned} & .70 \\ & .75 * \end{aligned}$	$\begin{aligned} & .465 \\ & .50^{*} \end{aligned}$
VS028	412	781	5360	10	23／8	12 化	$\pm 27 / 8$	． 50	． 35
VS029	$\begin{gathered} 11 / 2-3-41 / 2- \\ 6-71 / 2 \end{gathered}$	773	5540	10	$3^{15} /$／s	7／8	731／8	． 95	． 67
VS030	3－41／2	771	2370 PI	15	41／60	1760	31 18	.81 180	． 56
VS031	$\begin{aligned} & 3-41 / 2- \\ & 161 / 2-221 / 2 \end{aligned}$	768	6156PI	5	4	21／2		1.80	1.26
VS039	165／2－221／2 6 （Hot－ shot）	1461－2	4F4H	4	103／8	$27 / 8$	\＄73／8	$\begin{aligned} & 3.35 \\ & 3.65 * \end{aligned}$	$\begin{aligned} & 2.27 \\ & 2.48 \end{aligned}$
VS040	$6^{\text {shot）}}$	409	F4H	25	$211 / 4$	$2^{11} 18$	\＄48／60	． 80	．525
$\underset{\text { Spring }}{\text { Splo }}$	${ }^{\text {（Lantern）}}$		F2BP	10	25	$13 / 8$	\＄49\％	71	． 48
VS100 VS102	3 $21 / 2$	763	F2BP 4156	10	$3 \mathrm{~s} /{ }^{2}$	$21 / 8$	1284	1.80	1.26
VS106	$11 / 2$	763	4FH	10	211／6	$2^{11,16}$	$\pm 431 / 10$	．70	.465 .50
VS112	22 1／2－45	762 S	5308	5	41／8	$23 / 8$	\＄5 ${ }^{5}$／6	2.15	1.50
VS114	22 12－45		230NX	10	$2^{21} / 2$	127／3	\＄413／6	2.58	1.80
－VS127W	221／2－45		10308 SC	5	8	4	\＄73／8	$\begin{aligned} & 3.95 \\ & 4.17 * \end{aligned}$	2.95 3.04
VS130	11／2－3－41／2	761 T	2370 BP	10	4	176	3^{37}	． 818	.56 .86
VS131	$\begin{aligned} & 3-41 / 2-6-9- \\ & 101 / 2-161 / 2 \\ & 221 / 2 \end{aligned}$	778	51．66SC	5	41／8	21／2	± 35	1.80 45	1.26 .31
VS133	41／2	703	532	10	23／8	12／8	\＄3116	4.45	.31 3.10
VS157	221／2－45	794	$21308 S C$	5	$81 / 8$	4\％8	\＄711／6	$\begin{aligned} & 4.15 \\ & 4.40^{*} \end{aligned}$	$\begin{aligned} & 3.10 \\ & 3.22 * \end{aligned}$

[^1]
Quality-Engineered For
 Dependable Performance -
 Priced For Replacement Needs

RCA $4^{\prime \prime} \times 6^{\prime \prime}$ PM SPEAKER

RCA 8" PM SPEAKER

Check these important features

MOUNTING DESIGNED TO RMA STANDARDS
DUSTPROOF, RUST-RESIITANT

- UNIVERSAL TRANSFORMER MOUNTING BRACKET ON ALL 4",
$4^{\prime \prime} \times 6^{\prime \prime}$ and $5^{\prime \prime}$ PM's except Type 30551
- rugged mechanical construction with welded housing ASSEMBLY
- exclusive rca magnet caamping spring securely locks magnet in position, except Types 423S1 and 30452
- felied cone gives uniform strength, dependablility and SMOOTH "FLUTIER-FREE" RESPONSE
moisture-resistant voice-coil suspension assures HIGH EFFIIIENCY AND DEPENDABILITY

RCA DUO-CONE 15" SPEAKER

SPECIFICATIONS								
SIIE		PERMANENT MAGNET TYPES					MAXIMUM POWER HANDIING CAPABILITY (WATTS)	MOUNTING
		TYPE NO.	?ESONANT plequency	MAGNET WEIGNT	VOICE COIL I	IMPEDANCE		
$2^{\prime \prime} \times 3^{\prime \prime}$		42351	250-365	1.51	11.8 ohms at 1	1000 cycles	0.125	RIM
4"' Ishall	w pot trpel	30452	175-225	1.0	3.2 ohms at	400 cycles	3	RIM or POT
$4^{\prime \prime}$		40452	170-225	1.47	3.2 ohms of	400 cycles	3	RIM or POT
$4 " \times 6 "$		24652	150-200	0.68	3.2 ohms at	400 cycles	3	RIM or POT
$4^{\prime \prime} \times 6^{\prime \prime}$		44652	150-200	1.47	3.2 ohms of	400 cycles	3	RIM or POT
5"		20552	150-200	0.68	3.2 ohms of	400 cycles	3	RIM or POT
5"		40552	150-200	1.47	3.2 ohms al	400 cycles	3	RIM or POT
5"		30551	150-200	1.0	3.2 ohms of	400 cycles	3	RIM or POT
$5^{\prime \prime} \times 7^{\prime \prime}$		25751	120-140	1.47	3.2 ohms at	400 cycles	6	RIM or POT
88^{14}		20852	75-95	2.15	3.2 ohms al	400 cycles	8	RIM
$8{ }^{\prime \prime}$		20854	75-95	2.15	6.8 ohms al	400 cycles	8	RIM
12"		31251	70-85	2.15	3.2 ohms at	400 cycles	12	RIM
12"		41251	70-85	6.8	3.2 ohms at	400 cycles	12	RIM
$12^{\prime \prime}$		41254	70-85	6.8	6.8 ohms at	400 cycles	12	RIM
15"		51551	40-55	2 lb ,	16 ohms at	400 cycles	25 RIM	RIM or FLANGE
312E	TYPE NO.	CESONANT fREQUEMCY		$\begin{aligned} & \text { ELDCO } \\ & \text { ID } \end{aligned}$	OIL IYPES VOICE COII	IL ImPEDANCE	MAXIMUM POWE HANDLING CAPA倍ITY (WATIS)	MOUNTING
$4^{\prime \prime} \times 6^{\prime \prime}$	74651	150-200	450 ohms	at 65 ma .	. 3.2 ohms	at 400 cycles	3	RIM or POT
$5^{\prime \prime}$	70551	150-200	450 ohms	at 65 ma .	. 3.2 ohms	at 400 cycles	3	RIM or POT
$12^{\prime \prime}$	71251	70-85	1000 ohms	at 70 ma .	. 3.2 ohms	at 400 cycles	12	RIM

THE FOUNTAINHEAD OF MODERN TUBE DEVELOPMENT IS RCA

RCA knows how to make television picture fubes . . . the best your money can buy

RCA has all the popular type television picture tubes to meet your present and future renewal requirements. And you can get them from one dependable source . . . your RCA Tube Distributor.

Mass-produced under superior quality controls, RCA television kinescopes of all types are the best that money can buy. You can count on them to meet the critical requirements of television reception.

When you renew with an RCA kinescope, you're selling the brand that has top public preference. RCA kinescopes will help your business grow by leading customers to you as a dependable source for television and radio needs.

Get the full details on the leading line of television picture tubes and sales promotion material from your local RCA Tube Distributor today.

ALWAYS KEEP IN TOUCH WITH YOUR RCA TUBE DISTRIBUTOR

Each component is the result of RCA's pioneering work in the field of all-electronic television. Each component built to
actual set-tested designs. Engineered כy America's leading manufacturer of television components-RCA

TELEVISION COMPONENTS ON THIS PAGE ARE USED IN BOTH DIRECTLY VIEWED AND PROJECTION RECEIVERS

TELEVISION IF AND VIDEO

 COIL KIT - TYPE 204X1A kit of all the coils used in the picture if (frequency 25.75 Mc), sound if (frequency 21.25 Mc) and video circuits of a high-quality television receiver. The RCA 204 Xl kit comprises:
1-Video Series-Peaking Coil type 203L1
1-Video Shunt-Peaking Coil type 203 L
1-Video Shunt-Peaking Coil type 203L2
2-Video Series-Peaking Coils type 203L. 3 2-Video Shunt-Peaking Coils type 203L4 $2-1$ st and 2 nd Sound IF Transformers type 201 K 1 1 -Converter Transformer type 202 K 1
$1-1$ st Picture IF Transformer type 202 K 2
1-2nd Picture IF Transformer type 202 K 3
1-Cathode Circuit Trap type 202 K 4
1 -Sound Discriminator type 203K1
2-3rd and 4th Picture IF Transformers type 202 L 1

PICTURE IF TRANSFORMERS

For staggered-tuned systems operating on a 25.75 Mc picture if and a 21.25 Mc sound if and where the first tuned circuit is broadly tuned and link-coupled to the converter transformer. Such systems are used in RCA Television Receiver Models 8T241, 8T243, 8T244.

Converter Transformer-Designed to oper. ate in the plate circuit of a 6AG5 mixer in conjunction with 202 K 6 .
202 K 6 1st Picture IF Transfoimer-Designed to operate in the grid circuit of a 6AG5 tube in conjunction with 202 K 5 converter in conjunct
202K7 2nd Picture IF Transformer-Designed to operate between two 6AG5 tubes.
202 K 8 3rd Picture IF Transformer-Designed to operate between two 6AG5 tubes
202 K 9 4th Picture IF Transformer-Designed to operate between two 6AG5 tubes.
202K11 Cathode Trap-Designed to operate in the cathode circuit of 4th Picture IF tube.
202 K 10 5th Picture IF Transformer-Designed to operate between a 6AG5 tube and a 6AL5 tube functioning as the detector

TELEVISION TUNER TYPE 201E1

This unit is designed especially for use with stagger-tuned if systems. Handling all 12 television channels, it selects the desired picture and sound carriers, amplifies and converts them to provide a picture if carrier frequency of 25.75 Mc , and a sound if carrier of 21.25 Mc . The tuner includes the rf amplifier stage, converter stage, oscillator stage, fine tuning control, channel switch, converter transformer, and all of their aligning adjustments.

HORIZONTAL BLOCKINGOSCILLATOR TRANSFORMER TYPES 208T1-208T3

This transformer is designed for use in horizontal blocking-oscillator circuits for above-chassis mounting. In such circuits it generates the 15750 cps pulses required to drive the grids of the horizontal-discharge tubes. Type 208 T 3 is similar to the RCA type 208 T 1 except for differences in mechanical design.

HORIZONTAL SYNC-DISCRIMINATOR TRANSFORMER TYPE $208 T 8$

This transformer is designed to couple the 6AL5 horizontal oscillator to the 6AC7 horizontal sync-discriminator for horizontal-frequency control. Both the primary and the secondary have adjustable powderediron cores.

VERTICAL BLOCKING. OSCILLATOR TRANSFORMER TYPES 208T2-208T9

Designed for use in vertical block-

 ing-oscillator circuits which generate the $60-\mathrm{cps}$ pulses required to drive the grids of vertical-discharge tubes. These transformers are electrically similar, but differ in mechanical design.
FILAMENT Choke TYPE 204L1

The RCA 204L1 with an inductance of 0.8 micro-henries is designed to eliminate undesirable rf currents in the heater circuits of the picture if amplifier tubes. The entire unit is coated with a baked-on varnish to insure long life

VERTICAL DEFLECTION OUTPUT TRANSFORMER TYPES 204T2-204T9

These transformers are designed for use in vertical-deflection circuits using RCA-201D1, 201D3, or 201D12 Deflecting Yoke with directly viewed or projection kinescopes requiring 50° magnetic deflection such as RCA10BP4, 5TP4 and 16AP4. Operating with either the 6SN7-GT or 6K6-GT, the 204T2-204T9 Vertical Output Transformer couples the vertical output tube to the Deflecting Yoke. Although different in mechanical design, the 204 T 2 and the 204 T 9 are electrically similar.

Cont. Page 4

RГ TELEvision components FOR DIRECTLY VIEWED TELEVISION RECEIVERS

DEFLECTING YOKE TYPES 201D1-201D3

Designed for use with magnetic-deflection directly viewed kinescopes having deflection angles up to 50°. For circuits employing pulse-operated high-voltage power supplies, may be used with Horizontal Deflection Output and HighVoltage Transformer 211 Tl or 211 T 3 and Vertical Output Transformer 204T2 or 204T9. The 201D3 is the same as the 201D1 but has a built-in 560 -ohm damping resistor connected across each vertical coil and a $56-\mu \mu \mathrm{f}$ capacitor across terminals 1 and 2 of the horizontal coil, and flexible leads.

DEFLECTING YOKE TYPE 20IDI2

Designed for use with kinescopes having neck diameters of 1-7/16 inches and deflection angles up to 53 degrees. It has good deflection sensitivity and is especially designed for use with RCA kinescopes 10BP4, 12LP4 and 16AP4.

WIDTH CONTROL TYPE 201R1

A variable inductor with powderediron core, for adjusting the picture width. It is designed for use with either RCA 211 T 1 or RCA 211 T 3 Horizontal-Deflection-OutputTransformer in circuits where the kinescope anode potential does not exceed 9 kv .

HORIZONTAL LINEARITY CONTROL-TYPE 201R3

This inductor is designed for use as a Horizontal-Linearity Control in deflection circuits utilizing either RCA 211 T 1 or 211 T 3 Horizontal Deflection Output and High-Voltage Transformer.

WIDTH CONTROL TYPE $201 R 4$

A variable inductor constructed with a powdered-iron core and used to adjust the width of the picture on the RCA-16AP4 kinescope. The 201R4 is especially designed to be operated with the RCA-211T5 Horizontal-Deflection-Output and High-Voltage Transformer.

YOKE MOUNTING HOOD TYPE 201X1

This hood holds Deflecting Yoke type 201D1, 201D3, or 201 D 12 which, in turn, supports such kinescopes as RCA-7DP4 or 10BP4. Provisions are made for both radial and axial adjustment of the yoke, so that the picture can be properly oriented. An improved rubber bumper provides safe support for the kinescope. Spring contacts provide a ground for the conductive coating on the outside of the kinescope.

HORIZONTAL LINEARITY CONTROL TYPE $201 R 5$

This inductor is for use in deflection circuits using an RCA-211T5 Hori-zontal-Deflection-Output and HighVoltage Transformer.

FOCUSING COIL TYPE 202D1

The RCA 202D1 is designed for magnetically focused kinescopes, such as the RCA-10BP4 operating at anode potentials up to 10 kilovolts. The 202D1 features the use of oversize wire for rugged and corrosion-free operation. The center hole of the focusing coil is enlarged, providing ample clearance between core and kinescope neck to permit skewing the focusing coil.

HORIZONTAL-

 DEFLECTION OUTPUT AND HIGH-VOLTAGE TRANSFORMER TYPE 2IIT2Designed for pulse-operated highvoltage power supplies with 201D2 Deflecting Yoke, it is used in circuits employing projection kinescope RCA-5TP4 for anode voltages up to 27 kilovolts. Two 6BG6-G's as driver tubes are used to provide $50^{\circ} \mathrm{mag}$ netic deflection.

HORIZONTAL DEFLECTION OUTPUT AND HIGH-VOLTAGE TRANSFORMER -TYPE 211T1

Designed for pulse-operated highvoltage power supplies, this transformer is used with Deflecting Yoke type 201D1, 201D3 or 201D12, and with directly viewed kinescopes, such as types 7DP4 and 10BP4 requiring anode voltages up to 10 kilovolts and having 50° magnetic deflection.

Auto-transformer primary provides voltage for pulse-rectifier tube to supply kinescope anode potential. Filament winding for rectifier tube 1B3-GT is included. Secondary is tapped for connecting Width Control type 201R1. Powdered-iron core insures quiet operation.

ION-TRAP MAGNET TYPE 203D3

A permanent-magnet design for use with kinescopes which utilize iontrap guns and operate with anode potentials of 7 to 14 kilovolts. It is intended for use with the RCA10BP4 or 16AP4. The 203D3 will replace the 203D1 provided a 36 -ohm resistor is substituted in the circuit in place of the 203D1.

ION-TRAP MAGNET TYPE 203D1

A field-coil design for use with kinescopes which utilize ion-trap guns, have a neck diameter of $13 / 8^{\prime \prime}$ to $11 / 2^{\prime \prime}$ and operate with anode voltages up to 10 kilovolts.

HORIZONTAL DEFLECTION OUTPUT AND HIGH-VOLTAGE TRANSFORMER -TYPE 211T3

This is a new Horizontal-Deflection Output and High-Voltage Transformer to be used in pulse-operated power supplies for television receivers requiring kinescope anode voltages up to 9 kilovolts. Designed for use with RCA DeflectingYoke 201D1, 201 D 3 or 201 D 12 , the 211 T 3 is intended for new television receiver designs employing the 10BP4.

HORIZONTAL DEFLECTION OUTPUT TRANSFORMER TYPE 204T3

Designed for use in television receivers employing separate rf-operated high-voltage power supplies. Is used with Deflecting Yoke RCA-201D1, 201D3 or 201D12, and kinescopes requiring anode voltages up to 10 kilovolts and having 50° magnetic deflection. It is used in combination with a single 6BG6-G tube type as the hori-zontal-deflection output tube.

POWER TRANSFORMER TYPE $201 T 10$

A high-quality power transformer for use in television receivers employing approximately 27 tubes. It has a 6.3volt filament winding for a 6W4-GT damper diode, and is especially useful in receivers having a 16AP4 kinescope.

HORIZONTAL-DEFLECTION-OUTPUT AND HIGH-VOLTAGE TRANSFORMER TYPE 2IIT5

Designed for use in pulse-operated power supplies of television receivers having kinescope potentials up to 13.5 kilovolts at no load. In a typical deflection current, it provides ample deflection with a single driver tube for a 16AP4 kinescope.

POWER TRANSFORMERS TYPES 201T6, 201T7, and 201T8

High-quality power transformers for use in television receivers. They feature a low external magnetic field obtained by the use of a copper short-ing-band to provide minimum hummodulation of the kinescope. Their designs also provide for low operating temperature rise permitting their use in receivers having minimum ventilation. The 201T6 is intended for use with 30 -tube receivers; the 201 T 7 , with 24 -tube receivers; and the 201 T 8 , with 21 -tube receivers.

POWER TRANSFORMER TYPE 20IT9

A high-quality power transformer for use in television receivers employing approximately 27 tubes. The 201 T 9 has a 5.0 -volt filament winding for a $5 V 4-G$ damper diode, and is especially useful in receivers having a 16AP4 kinescope.

HORIZONTAL OSCILLATOR AND SYNCHRONIZING CONTROL COIL-TYPE 203RI

RCA 203R1 is a permeability tuned center-tapped oscillator coil for use in television receivers employing a 6SN7-GT as a combination horizontal blocking oscillator and synchronizing control tube.

> HORIZONTAL-BLOCKINGOSCILLATOR COIL AND FREQUENCY-STABILIZING COIL-TYPE 203R2

Consists of a horizontal-blocking oscillator coil and a shock-eycited frequency-stabilizing coil for use in television receivers employing a 6SN7-GT as a combination horizon-tal-blocking oscillator and synchro-nizing-control tube.
The 203R2 is similar to the RCA203R1 except for the addition of a synchronizing stabilizing coil.

VIDEO-CIRCUIT TRAP TYPE 203L5

A 4.5-megacycle video-circuit trap designed to operate in the plate-circuit of the first video amplifier of television receivers. Its function is to attenuate the $4.5-\mathrm{Mc}$ beat frequency which exists in if stages handling both picture and sound if carriers. Permitting beat frequency to pass through video amplifier may result in a beat pattern on the kinescope.

FOR PROJECTION TELEVISION

WIDTH CONTROL TYPE 201R2

This control is a screwdriver adjusted variable inductor, specially designed to provide a convenient and simple control of the picture width for projection-type receivers employing the 5TP4. The inductance is varied by means of a powdered-iron core. It is designed for use with either the RCA 211 T 2 or 204 T1 Horizontal Deflection Out put and High-Voltage Transformers in circuits requiring a kinescope anode potential up to 27 kilovolts.

OPTICS ALIGNER-TYPE 202B1

A high-quality Optics Aligner which can be substituted for the 5TP4 kinescope in adjusting a television projection system. With this Aligner, accurate adjustment and alignment of the reflective optical system can be made conveniently and safely, without the presence of high voltage.

DEFLECTING YOKE TYPE 201D2

Designed for use with projection kinescopes having 50° magnetic deflection and operating at anode voltages up to 27 kilovolts, such as RCA-5TP4. Provides required retrace time when used in deflection circuits having RCA Horizontal Output and High-Voltage Transformer 211 T 2 (pulse-operated) or Horizontal Output Transformer 204 T 1 (rf operated) and Vertical Output Transformer 204 T2. Equipped with clamp for gripping kinescope neck.

HORIZONTAL. DEFLECTIONOUTPUT AND HIGH-VOLTAGE TRANSFORMERTYPE 2IIT2

Designed for pulse-operated highvoltage power supplies with 201D2 Deflecting Yoke, it is used in circuits employing projection kinescope RCA-5TP4 for anode voltages up to 27 kilovolts. Two 6BG6-G's as driver tubes are used to provide $50^{\circ} \mathrm{mag}$ netic deflection.
Auto-transformer primary provides pulse voltage for a tripler rectifier. Three filament windings for the pulse rectifier tubes (183-GT) are included.

FOR TV TRANSMITTING STATIONS

HORIZONTAL OUTPUT TRANSFORMER - TYPE 204T1
A Horizontal Output Transformer designed for deflection circuits employing rf-operated highvoltage supplies. Intended for 50° magneticdeflection kinescopes, it is used with such tubes as the RCA Image Orthicons 2P23, 5655, 5769, 5820, Flying Spot CR Tube 5WP15, and Transcriber Kinescope 5WP11. Used with RCA Deflecting Yokes 201D1, 201D2, 201D3 or 201D12.

201D75—Deflecting-Yoke Assembly (includes keyed Jumbo Annular 7-Pin Socket). For use with Image Orthicons, types 2P23, 5655, 5769, 5820.

201D76-Deflecting Yoke for type 1850-A Iconoscope.
201D77—Deflecting Yoke for type 2F21 Monoscope.
202D75-Focusing Coil for Image Orthicons, types, 2P23 5655, 5769 and 5820.
204D75-Alignment-Coil Assembly for Image Orthicons. Types 2P23, 5655, 5769 and 5820.
201DII-Deflecting Yoke for use with the 5WP15 FlyingSpot CR Tube, and 5WP11 Transcriber Kinescope.

For more durable, lasting replacements - ask your distributor about the full line of genuine RCA Television Components.

Another 7 ricusuph OF RCA TELEVISION ENGINEERING

Originated and Designed by RCA Engineers

> RCA 212A1
the RCA reversible-beam
TV antenna array

- High Overall Front-To-Back Ratio
- Metal Parts Constructed of High-Quality Aluminum -Light Weight and Easy to Install
- Easily Oriented For Maximum Directional Gain
- Uniformly Directional on All 12 Channels
- Reversible Uni-diréctional-Beam
- "Ghost" Pictures caused by line mismatches are absorbed in diplexers

The RCA Reversible-Beam TV Antenna Array receives signals from only one direction at a time; eliminates co-channel interference where stations are approximately 180° apart. It also eliminates adjacent channel interference where the receiver lacks selectivity. RCA-developed "V" attachments provide uniform directional characteristics for all twelve channels. A high overall front-to-back ratio is achieved through the use of driven elements, instead of parasitic elements. This design also makes possible the unique feature of lobe switching.
Sturdily built throughout of high-quality aluminum, the RCA Reversible-Beam Antenna consists of an array of four eight-foot dipoles in the form of a square. A dual transmission line connects the horizontail and vertical dipoles to an attractively packaged diplexing network located at the rear of the receiver. By the mere flick of a switch on the diplexer, antenna directivity can be reversed.

REVERSES BEAM at the flick of a switch

${ }^{1}$

MEASURED AZIMUTH field pattern chan. NET NO. 3-FRONT-TO. back ratio greater THAN 20:1

for locations with co-channel interference

Nowfor the first time, television set owners located between two interfering transmitting stations, both of which are on the same channel, can enjoy pictures with increased clarity and brightness. The diplexing circuit absorbs the unwanted signal and also eliminates "ghost" pictures caused by mismatch between the transmission-line impedance and the receiver-input impedance.
The RCA-212A1, designed at the famous RCA Laboratories, in Princeton, N. J., meets the highest engineering standards. It has been thoroughly field-tested and can be depended upon for optimum performance on both the high and low bands where co-channel interference is a problem.

Comes complete with 4 sets of dipole elements with ' V ' attachments; terminal board assembly; 3 five-foot sections $11 / 4$ " dia. heavy-wall aluminum tubing; 2 crossarms; 2 guy rings; 12 harness standoffs; 10 lead-in standoffs; 1 diplexer; installation instructions.

ces

Type 228A2

Features

I. Uni-directional-covers the full FM band of 88 to 108 megacycles.
2. Excellent for use in areas having low signal strength.
3. Low standing-wave ratio.
4. Lightweight, aluminum elements. All-aluminum construc-tion-lightweight.
5. Strong-resists wear and wind damage.
6. Easy to install-No special rools needed.

TV antenna array

RCA

FM FOLDED-DIPOLE ANTENNA AND REFLECTOR

Full FM Band Coverage-High Gain-Uni-directional ALL-ALUMINUM CONSTRUCTION

Especially designed for FM receivers with 300 -ohm inputs, the RCA Folded-Dipole FM Antenna and Reflector (228A2) gives an unusually flat signal response. Strongest signals are received from a direction broadside to the antenna with interference minimized from the opposite direction.
This RCA FM Antenna is designed for high gain, requires no adjustment of elements and is easily oriented for maximum signal.
RCA 228A2 consists of: 1 folded-dipole, 1 reflector, 1 crossarm; 5 -foot $1 \frac{1 / 4^{\prime \prime}}{}$ dia. aluminum mast, tapered for use with an additional mast section (RCA-207A1) where needed; 2 mast mounting straps with mounting screws; complete instructions.

RADIO CORPORATION OF AMERICA
ELECTRONIC COMPONENTS

RCA 12-GHANNEL TELEVISION ANTENNA-Type 204A1

BASED UPON YEARS OF FIELD EXPERIENCE
 EASILY ASSEMBLED
 ruggediy constructed
 UNI-DIRECTIONAL

Features That Mean Greater Customer Satisfaction

- RCA "V" Attachments For Uni-directional
- Reception On All 12 Channels
- More Uniform Response On Channels 2-6 Than A Folded Dipole
- Uniform Gain Over Each Of The Two TV Bands
- Simple Transmission-Line Connections
- Low-Band Antenna Rods Reinforced With Solid Mounting Studs

Here's an RCA "Leader" to meet the majority of your everyday antenna needs. Engineered and developed by RCA for plus-value service, RCA-204A1 is intended for use in most receiver locations where both high and lowfrequency stations are in the same general direction. Unique RCA "V" attachments provide uniform directional characteristics for all 12 channels.

RCA-204A1 12-Channel Television Antenna is simple in design and appearance. Sturdily built of aluminum, it will withstand high winds, sleet, and ice. Designed for
use with 300 -ohm transmission line, the 204A1 rates " A " for antenna achievement: for overall performance and unusually flat response over each of the two television bands. It can be readily combined with any of the RCA Stacking Kits for fringe or other difficult reception areas.

Supplied with all necessary hardware and sturdy 5 ft . x $11 / 4^{\prime \prime}$ aluminum mast which may easily be extended by addition of RCA-207A1 antenna mast sections. Completely illustrated instructions for installations are included.

For More Gain - Dependable Fringe Area Performance USE RCA STACKING KIT Type 208A1 Atop 204A1
 Simple To Erect And Adjust. Extra Gain For Brighter, Clearer Pictures.
Now...you can have an antenna "tailor made" for fringearea reception on all twelve channels. Uni-directional characteristics of a 208A1-204A1 stacked array remain constant over both upper and lower bands.

RCA-208A1 is easily mounted on the 204A 1 or similar dipolereflector antennas. Designed for use with 300 -ohm transmission line, it requires no external transformers nor matching stubs.

Complete with harness, hardware, and illustrated instructions for setting up 204A1-208A1 combination.

Something New That Gives You Something Extra RCA "V" ATTACHMENTS Type 209A1

- for extra Value

In those locations where all stations are in the same general direction these unique " V " attachments, designed by RCA, provide improved reception on Channels 7-13 when mounted on lowband dipole and dipole reflector antennas. Directional characteristics of such antennas equipped with KCA-209A1 "V" attachments will be uniform for all 12 channels. No adjustments are necessary except usual antenna orientation for maximum signal strength.

No fuss-no bother-easily assembled and mounted on antenna rods.

RCA "HICH-LOW" TELEVISION ANTENNA ARRAY

TYPE 206A1

FOR 12-CHANNEL TELEVISION RECEPTION

- easy to assemble - ruggedly constructed - Improved performance
- Oriented Separately For Maximum Signal Strength
- High Gain On All 12 Channels
- Scientifically Designed For Efficient, Durable Operation
- Sturdy Aluminum Construction-Low-band Antenna Rods Reinforced With Solid Mounting Studs
- Quality Coupling Harness Provided

Here's an antenna that you can depend upon for optimum performance in locations where high and low-channel stations are widely separated. Sturdily built to provide long, dependable service, the 206A1 will withstand severe weather conditions.

RCA-206A1, thoroughly tested for overall performance characteristics, provides superior reception. When used with

300-ohm transmission line, it requires no external transformers nor matching stubs.

Comes complete with harness, all necessary hardware and sturdy 5 ft . $\times 11 / 4^{\prime \prime}$ aluminum mast which may be easily extended by addition of RCA-207A1 antenna mast sections. Completely illustrated instructions included.

For Increased Gain On Channels 7-13

USE RCA-205A1 HIGH-FREQUENCY STACKING KIT

- Simple To Erect and Adjust

RCA-205A1, in combination with the 206A1 or similar high-low television antenna arrays, provides additional highband gain for fringe-area reception. It can also be mounted above RCA-204A1, 225A1, and antennas of similar design for independent high-frequency reception on Channels 7-13; in such installations use RCA-213A1 harness kit for the necessary coupling. Ruggedly constructed of aluminum, its simplified design permits easy stacking and use of a
 single 300 -ohm transmission line.

Use RCA Antennas and Stacking Kits for lasting, dependable performance and increased customer satisfaction

Now you can get the TV Antennas and Accessories you need from one reliable source - your RCA Distributor. RCA's line is engineered to the highest standards . . . designed to meet your requirements.

RCA-210A1
 ANTENNA MAST COUPLING
 Fits $1^{\prime \prime}$ to $13 / 8^{\prime \prime}$ (O.D.) Masts.

RCA-207A1

antenna mast section

 TEMPERED ALUMINUMLength, 5 ft . Diameter, $11 / 4^{\prime \prime}$. Wall thickness, $.065^{\prime \prime}$

RCA-227A1
ANTENNA MAST MOUNTING BRACKETS
Mounts Masts up to $13 / 8$ " O.D.

RCA-201A1 "Bright-Picture" TRANSMISSION LINE
Characteristic Impedance, 300-ohms.

RCA-206X1
LIGHTNING ARRESTER
Designed for RCA-201A1 "Bright-Pic-
 ture" transmission line.

Cabinet Dimensions (Approx.)

Height	(16 centimeters)	6 inches
Width.	(38 centimeters)	$143 / 4$ inches
Depth.	(30 centimeters)	$11 \frac{1}{4}$ inches

Motor. - The drive motor is of simple design and substantial construction. It should require little or no service if properly maintained. Attention to lubrication of the moving parts and occasional cleaning of the mechanism will go far to prevent faulty operation. Should it become necessary to repair the motor, the following procedure should be applied: CAUTION.-Allow the motor mechanism to run down completely before attempting adjustment, repairs, or replacements.

Removing Motor from Cabinet.-Remove the winding crank. Remove the wood screws holding the motor board in the cabinet and the two wood screws holding the cabinet lid support. To dismount the motor, remove the C washer which secures the turntable to the spindle shaft and remove turntable, slightly tapping the spindle while exerting an upward lift on the turntable. Loosen the screw holding the speedregulating lever and remove the latter. The three screws holding motor to motor board should then be removed.

Replacing Main Spring Barrel.-In case of main spring failure, the entire spring barrel and gear should be replaced. Remove the two screws which hold the winding shaft bracket to the top plate and the four nuts holding botton plate to pillars. Remove bottom plate and spring barrel.

Winding Shaft Spring.-This spring functions as a friction ratchet. It is riveted to the winding shaft bracket.

Speed Regulator Lever.-.After assembly, adjust the speed regulator until the turntable rotates at 78 r.p.m.; loosen the speed regulator screw and set pointer to center of speed indicator scale; tighten screw and recheck turntable speed.
Lubrication.-All moving, parts of the motor should be thoroughly cleaned and lubricated every six months to prevent excess wear and to assure proper operation. A small amount of grease should be applied to the worm gear of the governor, the gear of the winding shaft, and on the small pinion gear. All other points, including regulator friction pad, should be lubricated with light oil. All motor parts should be covered with a light film of oil to prevent rusting.

Motor Adjustments:

Speed variations or WOWS may be experienced with these instruments due to a variety of causes. Some of the troubles and corrections are listed below:

1. A regular WOW occurring on every revolution of the turntable, or every few revolutions.
(a) A frequent cause of this difficulty is faulty adjustment of the governor springs. If the governor weights seem to oscillate in and out when the motor is in operation, the spring tension of the three weights may not be evenly balanced. Loosen the spring clamping screws and position the springs so that all three weights are held with the same tension.

RCA
 MODEL QH1

Portable Hand-Wound Phonograph
Mfr. No. 274
Service Data
-1948 No. X2-

RADIO CORPORATION OF AMERICA RCA INTERNATIONAL DIVISION 745 FIFTH AVE., NEW YORK 22, N. Y.

(b) Another possible cause of this trouble is faulty adjustment of the governor bearings. To adjust these bearings:
First: Set the speed regulator lever so that the face of the felt friction pad is close to but not touching the governor friction plate.

Second: Loosen both governor bearing set screws and position the governor so that the motor revolves at rated speed (78 r.p.m.).

Third: Adjust the mesh of the worm and the fiber drive gear by turning the eccentric bearings. These should be set so that the worm meshes properly with the fiber gear without binding.

Fourth: Adjust the distance between bearings so that the governor turns freely with a minimum of end-play.
(c) A take-up spring is mounted on the governor friction plate shaft to ensure against lost motion and erratic operation of this plate. It is essential that this spring be in place to provide adequate tension.
(d) Marred or broken teeth on either gear on the turntable shaft or on the intermediate gear shaft may cause this trouble. If inspection shows this to be the case, the defective gear should be replaced.
2. The turntable loses speed or WOWS on the louder parts of a record:
(a) This may be caused by failure of the governor to respond accurately to speed changes, due to excessive or irregular friction between the sliding friction plate and the governor shaft. When this occurs it may be corrected by removing the weights and working the plate back and forth until it frees up. If the governor shaft does not have a smooth surface it may be necessary to smooth it down slightly using "Crocus Cloth" or to replace the governor.
(b) This condition may also be caused by excessive friction in any part of the motor. Be sure that the governor bearings are properly adjusted as described in section 1 (b). Lubricate all bearings in the motor using a high grade light oil such as RCA Stock No. 7227 Spring Motor Oil. The governor shaft, friction plate, and felt friction pad should also be lubricated with this oil. Lubricate the worm with a light grease such as RCA Stock No. 10975 Electric Motor Grease. Reffove the main spring and pack it with graphite lubricant such as RCA Stock No. 7228.
3. The turntable speed changes erratically over long periods of time.
(a) Tbis may be caused by binding of the main spring due to improper lubrication. To correct this condition pack the spring with graphite grease as described in section 2 (b).
(b) Inspect the gear teeth on the main spring gear. If these are marred or broken, it may be necessary to replace the spring assembly.

Replacement Parts

STOCK No.	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
$\begin{aligned} & 11533 \\ & \\ & 73387 \\ & 73386 \end{aligned}$	MOTOR ASSEMBLIES Ball-Steel ball [$1 / 16^{\prime \prime}$ dia. (App. 1.6 mm)] for governor bearing Bearing-Governor bearings (1 set)	73399	Spring-Speed regulator tension spring
		73395	Washer-" C " washer to hold speed regulator assembly
		73398	Washer-Washer to hold speed regulator
		73393	Weight-Governor weight and spring assembly
	Gear-Intermediate gear (94 teeth) and pinion (11 teeth)		
73391	Gear-Beveled winding gear (64 teeth)		MISCELLANEOUS
73389 73385	Governor-Governor complete Motor-Angle wind spring motor complete		MISCELLANEOUS
73385	Motor-Angle wind spring motor complete less turntable and speed regulator lever	73403	Brake-Turntable brake and lever assembly
73392	Plate-Bottom plate complete with bronze bearing, winding shaft bracket, spring and winding gear	73400 73407	Handle-Carrying case handle Key-Winding key
		73402	Lever-Speed regulator lever
73394	Plate-Top plate complete with two (2) motor spacers, bronze bearing and governor supports	$\begin{aligned} & 73410 \\ & 73409 \end{aligned}$	Screw-Needle screw Soundbox
		$\begin{array}{r} 73409 \\ 73404 \end{array}$	Soundbox Spring-Brake spring
73397	Regulator-Speed regulator assembly	73401	Support Carrying case lid support
73396	Spacer-Speed regulator spacer	73408	Taper tube-Taper tube and support
73388	Spindle-Turntable spindle, drive gear and governor drive gear (30 teeth-fibre)	$\begin{array}{r} 73405 \\ 73406 \end{array}$	Turntable Washer-Washer to fasten turntable to
73390	Spring-Main spring in cup complete with main gear		spindle shaft

Mfr. No. 274
Service Data

- 1948 No. 16 -

RADIO CORPORATION OF AMERICA

RCA VICTQR DIVISION
CAMDEN, N. J., U. S. A

Specifications

$\begin{aligned} & \text { Con } \\ & \text { 6SC7 } \\ & \text { 6AQ5 } \\ & \text { 6AQ5 } \\ & 6 X_{4} \end{aligned}$	Amplifier and Phase Inverter \qquad Push-pull \qquad output Rectifier
Power Supply 115 volts, 60 cysles A.C., 60 watts	
Loudspeaker Type $92580 \cdot 1$ 8 in. P.M. V.C. Impedance 400 cycles	
Power Output Maximum \qquad 7 watts Undisterted 6 walts	
Turntable Diameter Speed \qquad	
Dimensions Height 101/2 in. Width $161 / 3 \mathrm{in}$. Depth 165/8	
eigh	

Description

This instrument may be used with either $33-1 / 3$ or 78 r.p.m. records up to 16 in . in diameler.

A speed selector lever causes either of two drive motors to engage with the rim of the turntable and at the same time actuates a switch to supply power to the motor which is being used.

The output of the amplifier is supplied to two jacks-nne tor speaker and one for head phones. The speaker is disconnected when the phones are being used.

An automatic switch disconnects the motor power supply when the tone arm is in its rest position. The switch on the volume control controls the power input to amplifier and motors.

A receptacle on the motorboard may be used to supply power to a projector it used in conjunction with this instrument.

Replacement Parts

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION
	AMPLIFIER ASSEMBLY		OUTLET PANEL ASSEMBLY
70627	Capacitor-Tubular, $005 \mathrm{mf},$.600 volts (C7)	17570	Jack-Speaker jack (J1)
70610	Capacitor-Tubular, $005 \mathrm{mf.}$,1000 volis (C9, C10)	56103	Jowel-Pilot lamp jowel
70632	Capacitor-Tubular, . $02 \mathrm{mf}$. , 600 volts (C8)	11891	Lamp-Pilot lamp-Mazda \#44
56897	Capacitor-Electrolytic, comprising 2 sections of 20 mfd . 350 volts, 1 section of 10 mid .	$\begin{array}{r} 73832 \\ 73834 \end{array}$	Panel-Outlet panel Receptacle-Power outlet receptacle
	of 40 mid. 25 volts (C12A, C12B, C12C, C12D) section	55718	Resistor-Fixed, wire wound, 3 ohms, 5 watts (Ri6)
	Resistor-Fixed, composition, 390 ohms, 2 watts (R15) Resistor-Fixed, composition, 2200 ohms, 1 watt (R17) Resistor-Fixed, composition, 12,000 ohms, $1 / 2$ watt (R13) Resistor-Fixed, composition, 22,000 ohms, $1 / 2$ walt (R18)	43734	Socket-Pilot lamp socket SPEAKER ASSEMBLY (92580.1)
	Resistor-Fixed, composition, 220,000 ohms, $1 / 2$ watl (R10. R11)	$\begin{aligned} & 73912 \\ & 56899 \end{aligned}$	Cone-Cone and voice coil Speaker-8 in. PM speaker complete with cone and roice
	Resistor-Fixed, composition, 470,000 ohms, $1 / 2$ watt (R12. R14) Resistor-Fixed, composition, 10 megohms, 1/2 watt (R8 RG)		coil
73847	Socket-Tube socket-7 contact-minlature 2 watt (R8, R9)		MISCELLANEOUS
33084	Socket-Tube socket-8 contact-octal	71591	
73848	Transformer-Output transformer (T1)	73846	Case-Carrying case complete
70127	Transformer-Power transformer, 115 volt, 60 cycle (T2)	$\begin{array}{r} 73830 \\ 39533 \end{array}$	Clamp-Tone arm retaining clamp Clip-Retaining clip for idler pulley
	CONTROL PANEL. ASSEMBLY	73843	Grille-Fabric grill for speaker
38409	Control-Tone control-0.5 meg. (R1)	73833	Grille-Metal grille (amplifier cover)
70342	Control-Volume control and power switch, 1.5 meg.. tapped at 0.25 meq . and 0.5 meg . (R7. S4)	$\begin{array}{r} 73842 \\ 73845 \\ \hline \end{array}$	Indicator-Speed indicator (retainer for speed shift lever) Jack-Phones jack (J2)
70601	Capacitor-Tubular, . 002 mf., 200 volts (C2, C4)	73841	Lever-Speed shift lever and knob
70627 70572	Capacitor-Tubular, $0005 \mathrm{mf}$.600 volts (C1)	73823	Motor-Drive motor-78 r.p.m.- 115 volts, 60 cyclesless mounting plate
73836	Knob-Tone control or volume control knob	73824	Motor-Drive motor-33-1/3 r.p.m.- 115 volts, 60 cycle-
73831	Panel-Control panel	73844	loss mounting plate Panel-Phone jack panel
	Resistor-Fixed, composition, 22,000 ohms, $1 / 2$ watt (R4, R5) Resistor-Fixed, composition, 27,000 ohms, $1 / 2$ watt (R6)	39530	Plate-Motor mounting plate with idler pulley bearing
	Resistor-Fixed, composition, $100,000 \mathrm{ohms}$, $1 / 2$ watt (Ra)	73825	Plate-Turntable spindle mounting plate
	Resistor-Fixed composition, $560,000 \mathrm{ohms}$, $1 / 2$ watt (R2)	54370 39529	Plug-Plug for speaker cable
73835	Switch-Speech-Music switch (SI)	$\begin{aligned} & 39529 \\ & 73829 \end{aligned}$	Puley-Turntable drive idler pulley Rest-Tone arm rest
	TONE ARM ASSEMBLY	73826	Splndle-Turntable spindle
73837	Arm-Tone arm shell only-less crystal cartridge and tone arm base	$\begin{aligned} & 39534 \\ & 21630 \end{aligned}$	Spring-Drive idler pulley tension spring Switch-Speed selector switch (S2)
73838	Base-Tone arm base and swivel assembly	73828	Switch-Stop switch (actuated by tone arm) (S3)
73839	Crystal-Crystal pickup cantridge-less stylus	73827	Turntable-121/2 in. turntable
74021	Spring-Tone arm counterbalance spring	39531	Washer-"C" washer for turntable spindle
73840	Stylus-Osmium tipped metal stylus	39532	Washer-Turntable spindle fiber washer

Crystal Pickup

The crystal pickup is equipped with an osmium tipped stylus which is easily replaced.
To replace stylus-gently pry out on the back end of the stylus wire as illustrated. Do not use force or the crystal may be broken.
The position of the stylus guard may be shifted to provide equal clearance on both. sides of the stylus.

Lubrication

The turntable spindle should be lubricated with a good grade of light grease. The motors should be lubricated by saturating the felt
bearing wieks with a good grade of light oil (similar to S.A.E. 10).

Pickup Pressure

The pickup pressure is adjustable by shifting the position of the clamp (on underside of tone arm) to which the counterbalance spring is attached. It should be approx. $11 / 402$.

Stylus Remuval

Service Hints

Remove the four screws and anplifier cover for uccess to tubes.
Always place the tone arm on its rest and secure it with the retainer when not in ust.
When removing the motorboard use care to prevent breaking wires loose from the phones jack.

Best head-phone results will be obtained using head-phones of 1000 to 3000 ohms.

Tubc Locations

Counterbalance Sprina

Crustal Cartrid!̣e

Connction Diagram

Specifications

Frequency Ranges
Standard Broadcast ("A" Band)

Intermediate Frequency
$4.7-18 \mathrm{mc}$. ($63.8-16.7 \mathrm{~m}$.)

Tube Complement
(1) RCA-12SA7 1st Detector-Oscillator
(2) RCA-12SK7
(3) RCA-12SQ7

2nd Detector, A.V.C. and A-F Amplifier
(4) RCA-35L6GT

Output
(5) RCA-35Z5GT

Rectifier
Power Supply Ratings (D.C or 25/60 eycles A.C)
105-125 volts
30 watts

* $135-165$ volts

40 watts
*210-250 volts
*With external voltage dropping resistor.

Power Output Rating

Undistorted	
Maximum	1.0 watt
1.5 watts	

Loudspeaker (92572.3)
Type 5-inch Permanent-Magnet Dynamic Voice Coil Impedance $\quad 3.2$ ohms at 400 cycles Tuning Drive Ratio 18 to 1 (9 turns of knob)

Cabinet Dimensions
Width 11 \%/8"-Height 6 ta"——Depth $61 / 4$ "
POWER SUPPLY POLARITY-For operation on d-c, the power plug must be inserted in the outlet for correct polarity. If the set does not function, reverse the plug. On a-c, reversal of the plug may reduce hum.

Location of Controls

Description

The chassis (stamped RC-1053A or AC-1053B) used in this instrument is nearly Identical to the chassis (stamped RC-1053) used in the original production of Model 5Q21. The differences are listed below.

AC-1053 used an external line voltage resistor for $210-250$ volt operatlon. RC-1053A uses a socket with shorting links for 105-125 volt operation. RC 1053B uses a plug-in line voltage resistor for $210-250$ volt operation.

The position of the 35L6GT output tube is changed and the circult position of R9 is different.
A partial schematic diagram and partial chassis top view are shown below: they are otherwise identical

5Q21, 5Q22, 5Q27

Alignment Procedure

Cathode-Ray Alignment is the preferable metnod. Connections for the oscilloscope are shown in the Schematic Drawing,

Output Meter Alignment-If this method is used, connect the meter across the voice coil. and turn the receiver volume control to maximum.
Test-Oscillotor-For all alixnment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output low to avoid a-v-c action

Note: If the test-oscillator is a-c operated, it may be necessary to use an isolation transformer (117v./117v.) for the receiver during alignment.
Calibrotion Scale-The glass tuning dial may be casily remuved from the cabanet and monnted above the pointer for reference dur from the calanet and monnted above the pointer fur reference dur cast scale must be in line with the left hand mark on the dia backing plate.
Dial Pointer-With the gang condenser in full mesh the dial pointer should be set to the left hand reference mark on the dial backing

Tube and Trimmer Locations

Dial Backing Plato-In the event that only the chassis in returned for service, the marks on the dial backing plate may be uied durink alignment ; refer to the Dial Indicator and Drive Mechanism drawing for corresponding frequencies

For additional information refer to booklet "RCA Victor Receiver Alignment."

Steps	Connect high side of test osc. to-	Tune rest ose. to-	Turn radio dial to-	Adjust for max. output-
1	125K7 1-F grid through .01 mfd . capacitor	455 kc	B. C.; quiet point near 600 kc	Top and bottom T-2 (2nd 1-F Trans.)
2	Stator of gang cond. C3 through .01 mfd .			Top and bottom T-1* (l) st l-F Trans.)
3	Antenna lead through 300 ohm resistor	18.2 mc	S. W.; gang condenser open	C8 (osc.)**
4		15.2 me	S. W.; rock gang at 15.2 mc	C4 (ont.)***
5	Antenma lead through 200 mmf . capacitor	600 ke	B. C.; 600 kc	17 (osc.)
6		1400 kc	B. C.; rock gang of 1400 kc	C10 (osc.)
7		600 kc	B. C.; rock gang of 600 kc	17 (osc.)
8	Repoot stops 6 and 7			

- Do not readjust T2 when test oscillator is connected to C3.
- Use minimum capacity peak if two peaks can be obtained.
-en Image signal of lesser amplitude should occur at 14.3 mc .
NOTE-Oscillator tracks above signals on both bands.

ON EARLY PRODUCTION A 27 MMFD. CAPACITOR (STOCK NO. 70935) 15 CONNECTED BETWEEN ANT. COIL TERMINALS NO. 3 AND NO. 5. IT IS NOT REQUIRED ON REPLACEMENT COILS.

Replacement Parts

Model 5Q21, 2nd Prod.

NOTE-The external voltage dropping resistor should be kept free of surrounding objects to provide adequate ventilation.

SAME AS LISTED FOR MODEL 5Q21 IST PROD. EXCEPT AS LISTED BELOW

		CHASSIS ASSEMBLIES RC-1053A, RC. 1053B
Add:	$\begin{aligned} & 73935 \\ & 70392 \\ & 72308 \end{aligned}$	Clip-Mounting clip for I-F transformers Cord-Power cord Resistor-Plug-in resistor for $210-250$ volt operation (Chassis No. RC-1053B)
		MISCELLANEOUS
Delete:	73272	Back-Cabinet back
Add:	74820	Back-Cabinet back

PRECAUTIONARY LEAD DRESS

1. Dress output slate capacitor $C 24$ and output transformer leads down next to chassis
2. Dress green lead from terminal board to volume control down to chassis and away from adjacent parts.
3. Keep grid end of R2 as short as possible
4. Keep body of C2 away from chassis.
5. Dress R7 and C19 down next to chassis.
6. Twist power cord leads underneath chassis
7. Dress R9 against back apron of chassis.
8. Dress dial lamp leads between speaker and dial back plate bracket.
9. Dress Cl away from antenna coil winding.
10. Dress output transformer secondary leads away from dial drive cord.

Dial Indicator and Drive Mecbanism

Replacement Parts

Models 5Q22, 5Q27

SAME AS LISTED FOR MODEL 5Q21 lst PROD. EXCEPT AS LISTED BELOW

Stock No.

EXCEPT

Y2056 Cabinet-Ivory plastic cabinet for Model 5Q22.
Y2057 Cabinet-Bronze plastic cabinet for Model 5Q27.
73930 Knob-Volume control or tuning knob (ivory) for Model 5Q22.
73931 Knob-Volume control or tuning knob (bronze) for Model 5Q27.

Model 5Q21 1st Prod. Replacement Parts

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { sTOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	$\begin{gathered} \text { CHASSIS ASSEMBLIES } \\ \text { RC } 1053 \end{gathered}$		Resistor-Fixed, composition, 1200 ohms, $\pm 10 \%$, 1 watt (R13) Resistor, Fixed, composition, 33,000 ohms, $\pm 10 \%$, $1 / 2$ wott (R3) Resistor-Fixed, composition, 47,000 ohms, $\pm 20 \%, 1 / 2$ watt (R5)
73252	Capacitor-Variable tuning capacitor (C3, C4, C7, C8)		Resistor-Fixed, composition, $330,000 \mathrm{ohms}, \pm 20 \%, 1 / 2$ watt (RI)
73261			Resistor-Fixed composition, 470,000 ohms, $\geqslant 20 \%, 1 / 2$ watt, (R8, RII)
71924 39636	Capacitor-Ceramic, 56 mmf (C6)		Resistor-Fixed, composition, 2.2 megohm, $\pm 20 \%, 1 / 2$ watt (R2)
39636 39643	Capacitor-Mica, 220 mmf . (C2, C22) Copacitor-Mica, 430 mmf . (C9)		Resistor-Fixed, composition, $3.3 \mathrm{megohm}, \pm 20 \%$, $1 / 2$ watt (R2)
73550	Copacitor-Tubular, molded paper, $.0047 \mathrm{mid}, 600$ valts, (C1, C19, C21)	$\begin{aligned} & 73258 \\ & 73260 \end{aligned}$	Resistor-Fixed, composition, $4.7 \mathrm{megohm}, \pm 10 \%, 1 / 2 \mathrm{waH}$ (R7) Shaft-Tuning knob shoft
73554	Capacitor-Tubular, molded paper, $027 \mathrm{mfd} ., 400$ volts (C24)	70827	Socket-Lamp socket Socket-Tube socket
73552	Copacitor-Tubulor, molded paper, $.033 \mathrm{mfd}, 400$ valis, (C13, C25)	31418 70358	Spring-Drive cord tension spring
73553	Copacitor-Tubular, molded paper, 047 mid., 400 volts,	70358 73036	Switch-Range switch (\$1) Transformer-First I.F. transformer (II)
	(C11, C14)	73254	Transformer-Secand I.F. transformer (T2)
$\begin{aligned} & 73551 \\ & 70371 \end{aligned}$	Copacitor-Tubular, molded paper, $0.1 \mathrm{mfd}$.400 volts (C5) Copacitor-Electrolytic, comprising 1 section of 50 mfd , 150	73253 33726	Transformer-Output transformer (T3) Washer-"C" washer for tuning knob sha
	volts; 1 section of 30 mfd . 150 volts; and 1 section of 20 mfd., 20 volis (C23a, C23b, C23c)		\dagger Stock No. 72953 is a reel containing 250 feet of cord
73256 73255	Coil-Antenna coil (L1, 12, 13, 14, L5)		SPEAKER ASSEMBLIES
73268	Coil-Peaking coil (L8, R14)		92572-3
+3257	Control-Volume control and power switch (R6, S2)	73269	Speaker-5" P.M. speaker complete with cone and vaice coil
+72953	Cord-Dive cord (approx. $43^{\prime \prime}$ overall length required)		
70365	Core-Adjustable core and stud for oscillator coil		MISCELLANEOUS
16058	Grommet-Rubber grommet for mounting luning condenser and speoker	$\begin{aligned} & 73272 \\ & 73273 \end{aligned}$	Back-Cabinet back Board-Speaker baffle and grille cloth, less emblem
73259	Indicator-Station selector indicator	Y1481	Cabinet-Brown plastic cabinet
31480	Lamp-Dial lamp, Mazda 47	73271	Clamp-Diol clamps (1 set)
70364	Nut-Speed nut for mounting oscillatar coil core and stud	73270	Dial-Glass dial scale
73251	Plate-Dial back plate assembly complete with five (5) drive cord pulleys	$\begin{aligned} & 37831 \\ & 35121 \end{aligned}$	Fastener-Push fasteners for cabinet back (1 set) Knob-Range switch knob
72602	Pulley-Drive cord pulley	70473	Knob-Volume control or tuning knob
	Resistor-Fixed, composition, 33 ohms, $\pm 10 \%$, 1 watt (R10)	73274	Moulding-Dial moulding
73263	Resistor-Wire wound, 68 ohms, 2 watt (R9) Resistor-Fixed, composition, 120 ohms, $\pm 10 \%, 1 / 2$ watt (R12)	$\begin{aligned} & 35126 \\ & 30900 \end{aligned}$	Spring-Retaining spring for range switch knob Spring-Retaining spring for volume control or tuning knob

tStock No. 72953 is o reel containing 250 teet of cord.

MODEL 5Q31

Chassis No. RC-1054—Mfr. No. 274

Service Data

1948 X 6

RADIO CORPORATION OF AMERICA
RCA INTERNATIONAL DIVISION
745 fIFTH AVE., NEW YORK 22, N Y

Specifications

requency Ranges
Standard Brocideast ("A" Band) 535.1680 ke (560.179 m) Short Wave ("C" Band) $7.22 \mathrm{me}(12.8-13.7 \mathrm{~m})$

Tube Complement

1) RCA 12 SA 7
2) RCA 12 SQ 7 4) RCA 35L6GT

Dial Lamps (2)

Power Supply Rating

105-125 volts D.C. or $25-60$ cycles A.C. 30 watts

- $210-250$ volts D.C. or $25-60$ cycles A.C. 60 watts
- Resistor pluq, for which socket is provided on the chassis, is required.

Power Output
Undistorted
1.0 watt

Maximum
1.5 watts

Loudspeaker (92576-2)
Type
Voice-coil impedance
Cabinel Dimensions

Height	Width	Depth $9 \mathrm{in} .(23 \mathrm{~cm})$
$143 / 8 \mathrm{in} .(37 \mathrm{~cm})$	$73 / 4 \mathrm{in} .(19.5 \mathrm{~cm})$	

REPLACEMENT PARTS

$\begin{gathered} \text { STOCX } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION
	CHASSIS ASSEMBLIES RC-1054	S.4474	Resistor-Fixed, composition, 56.000 ohms, 1/2 watt (R4)
		S-4475	Resistor-Fixed, composition, 330,000 ohms, $1 / 2$ wall (R2)
S.4435	Bracket-Dial cord pulley bracket-R.H.-complete with four pulleys	S.4476	Resistor-Fixed, composition, $470,000 \mathrm{ohms}, 1 / 2$ watt (R3, Rio. R12)
S. 4436	Bracket-Dial cord pulley bracket-L.H.-complete with one pulley	S 4477	Resistor-Fixed, composition, 820.000 ohms, $1 / 2$ watt (R18)
S-4437	Bracket-Tuning shalt bracket		RB)
S.4438	Capacitor-Ceramic, 150 mml (C18)	S. 4479	Shaft-Tuning shaft
S. 4439	Capacitor-Mica, 220 mml (C12. C22)	S.4480	Sockel-Speaker sockel (J2)
S-4440	Capacitor-Mica, 560 mmi (C9)	S-4481	Socket-Tube socket for 12SA7 lube
S 4441	Capacltor-Mica, 3300 mmi (C8)	S-4482	Socket-Tube socket for 12SK7 and 12SQ7 tubes
S-4442	Capacitor-Mica, 6000 mmt (Cl4)	S.4483	Socket-Tube socket for plug in resistor, 35L6GT and
S-4443	Capacitor-Tubular, $0047 \mathrm{ml}, 600 \mathrm{v}(\mathrm{C} 19, \mathrm{C} 23, \mathrm{C} 24)$		35Z5GT tubes
S. 4444	Capacitor-Tubular. $01 \mathrm{mf}, 400 \mathrm{v}$ (C1, C21)	S-4484	Socket-Dial lamp socket assembly
S. 4445	Capacitor-Tubular, 022 mi .400 v (C20)	S.4485	Spring-Drive cord spring
S. 4446	Capacitor-Tubular. 027 ml .400 v (C26)	S-4486	Switch-Range switch (S])
S. 4447	Capacitor-Tubular, $033 \mathrm{ml}, 200 \mathrm{v}$ (C27)	S.4487	Transformer-First 1.F. transformer (T1)
S-4448	Capacitor-Tubular. $047 \mathrm{ml}, 200 \mathrm{v}$ (C17)	S-4488	Transtormer-Second I.F. transtormer (T2)
S. 4449	Capacitor-Tubular, $056 \mathrm{mi}, 400 \mathrm{v}$ (C)11. Cl6)	S.4489	Transformer-Ouiput transformer (T3)
S. 4450	Capacitor-Trimmer capacitor, dual, 1.6-18 mmi (C2, C3)	S.4490	Washer-"C" washer for tuning shaft
S.4451	Capacitor-Trimmer capacitor, triple, $3-35 \mathrm{~mm}$ \{C4, C5. C6)		SPEAKER ASSEMBLY
S-4452	Capacitor-Electrolytic, comprising one section 80 mid, 150 v , one section $40 \mathrm{mid}, 150 \mathrm{v}$, and one section 20 mid, 25 v (C25A, C25B, C25C)	$\begin{aligned} & \text { S. } 4491 \\ & \text { S. } 4492 \end{aligned}$	Plug-Male pin plug for speaker cable Speaker-4" $\times 6^{\prime \prime}$ PM speaker complete with cone and
S-4453	Capacitor and resistor assembly comprising 39 mmf . capacitor and 10 ohm resistor (C13, R5)		connecting cable
S. 4454	Clip-l-F translormer mounting clip		MISCELLANEOUS
S.4455	Coll-Antenna coil (L1, L2. L3, L4)		
S-4456	Coil-Oscillator coil (L5, L6, L7)	S. 4493	Back-Back cover for cabinet
S-4457	Coil-Peaking coil and resistor assembly (250 microhenry coil and 560 ohm resistor) (LB, R1)	S-4494	Batfle-Baftle board and grille cloth complete with speaker mounting screws-less emblem
S.4458	Cord-Drive cord (approx. 49 in. required)	S-4495	Cabinel-Plastic cabinet
S-4459	Core Adiustable core and stud for oscillator coil	$\text { S. } 4496$	Clip-Dial scale retaining elip (3 required)
S-4460	Cord-Power cord	S. 4497 S. 4498	Cloth-Grille cloth ($6^{\prime \prime} \times 14^{\prime \prime}$) Dial Dial scale
S-4461	Condenser-Variable tuning condenser and pulley assembly (C7, C10, C15)	$\begin{aligned} & \text { S.4498 } \\ & \text { S.4499 } \end{aligned}$	Dial-Dial scale Emblem-Trademark emblem (RCA)
S. 4462	Control-Volume control and power switch (R9. S2)	S-4500	Emblem-Trademark emblem (RCA Victor)
S-4463	Grommet-Rubber grommet for mounting 12SA7 lube sockel (two required)	S. 4501 S. 4502	Fastener-Push fastener for back cover (4 reauired) Gremmet-Rubber grommel for chassis mounting (4 re.
S-4464	Grommef-Rubber grommet for mounting tuning condenser (four required)	S. 4503	quired) Grommet-Rubber grommet for speaker mounting (4 re
S. 4465	Jack-Phono input jack (J)		Indicator-Station indicating pointer
$\begin{aligned} & \text { S. } 4466 \\ & \text { S-4467 } \end{aligned}$	Plate-Bakelite plate for mounting electrolytic capacitor Plate-Dial back plate	S.4505	Knob-Range switch knob
S.4468	Resistor-Fixed, composition, 33 ohms, I watt (R15)	S-4506	Knob-Tuning knob
S. 4469	Resistor-Fixed, wire wound, 68 ohms, 2 walts (R11)	S.4507	Knob-Volume control knob
S-4470	Resistor-Fixed, composition, 120 ohms, $1 / 2$ watt (R13)	S.4508	Lamp-Dial lamp-Mazda type \#1490
S.4471	Resistor-Fixed, composition, 1000 ohms, I watt (R14)	S.4509	Pluq-Plua and shell tor 105.125 volt operation
S-4472	Resistor-Fiked, composition, 33.000 ohms, $1 / 2$ watt (R17)	S.4519	Resistor-Plua in resistor for 210.250 volt operation
S-4473	Resistor-Fixed, composition, 47.000 ohms, 1/2 wall (R7)	S-4511	Spacer-Melal spacer for speaker mounting (4 required)

Alignment Procedure

Cathode-Ray Alignment is the preterable method
Output Meter Alignment-It this method is used, connect the meter across the voice coil. and turn the receiver volume control to maximum

Test-Oscillator-For all alignment operations, connect the low side of the testoscillator to the receiver chassis, and keep the oscillator outpul low to avoid a-v.c action.

NOTE-It the testoscillator is A.C. operated it may be necessary to use an isolation transtormer (117v/l17v) for the receiver during alignment.

Calibration Scale
The dial scale may be readily removed from the cabinet and used as a relerence during alignment-or the marks on the dial back plate which correspond to the trequencies indicated on the illustration "Dial Indicator and Drive Mechanism" may be used tor reterence.

Dial Pointer-With the gang condenser in full mesh the dial pointer should be set to the left hand reteronce mark on the dial backing plate.

For additional information reter to booklet "RCA Victor Receiver Alignment."

POWER SUPPLY POLARITY-For operation on D.C. the power plug must be inserted in the outlet for correct polarity. If the sel does not function, reverse the plug. On A.C. reversal of the plug may reduce hum.

Simplified Schematic Diagrams-Antenna and Oscillator Circuits

RCA MODEL 6Q33

Chassis No. RC-1054A—Mfr. No. 274

Service Data

1948 $\times 8$

RADIO CORPORATION OF AMERICA
 rCa international division

745 FIFTH AVE., NEW YORK 22, N. Y

Tuning Ranges
Standard Broadcast ("A" Band)
Medium Wave ("B" Band)
Short Wave ("C" Band)
$535.1680 \mathrm{kc}(560.179 \mathrm{~m})$ $2.3-7 \mathrm{mc}(131.42 .8 \mathrm{~m})$ $7.22 \mathrm{mc}(42.8-13.7 \mathrm{~m})$

Intermediate Frequency \qquad 455 kc

Tube Complement
Converter

1) RCA-12SA7

2) BCA. $12 \mathrm{SC7}$ (4) RCA-35L6GT (5) RCA-35L6GT Dial Lamps (2)
-A.V.C

	\qquad Push-pull Output Mazda No. 47, 6.3 volts, 15 amp			

A selenium rectifier is used

Power Supply Rating:
105-125 volts D.C. or 25 to 100 eycles A.C \qquad 30 watte - 205-250 volts D.C. or 25 to 100 cycles A.C. 70 watts

- A resistor plug, for which a socket is provided on the chassis, is required.

Power Output
Maximum

Loudspeaker
Type 92573-3
5 in. $\times 7$ in. $(12.7 \times 17.8 \mathrm{~cm})$ Permanent-Magnet Dynamic
Voice-coill Impedance Permanent-..... 3.2 ohms at 400 cycles

Replacement Parts

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCAIPTION
	CHASSIS ASSEMBLIES RC. 1054 A	$\begin{aligned} & S .4618 \\ & S .4619 \\ & S .4471 \end{aligned}$	Resistor-Voltage regulating, 95 ohm (cold value) (R7) Resistor-Fixed, composition, 120 ohms, 1 walt (R21) Resistor-Fixed, composition, 1000 ohms, 1 walt (R19)
S.4435	Bracket-Dial cord pulley bracket-R.H. complete with four pulleys	S.4620 S .4621	Resistor-Fixed, composition, 3900 ohms, $1 / 2$ wall (R16) Resistor-Fixed, composition, 15.000 ohms, Y/2 wall (R14)
S-4436	Brackel-Dial cord pulley bracket-L.H. complete with one pulley	S.4622 $\mathbf{S . 4 6 2 3}$	Resistor-Fixed, composition, $18,000 \mathrm{ohms} 1 /$,2 walt (R18) Resistor-Fixed, composition, 39.000 ohms, $1 / 2$ watt (R10)
S-4437	Brackel-Tuning shaft bracket	S.4474	Resistor-Fixed, composition, 36.000 ohms, $1 / 2$ watt (R4)
S 4605	Capacitor-Coramic, 10 mml (C 23)	S. 4559	Resistor-Fixed, composition. 270.000 ohms. $1 / 2$ watt (R9. R15)
S.4606	Capacltor-Ceramic, 15 mmf (C40) Capacitor-Mica. 220 mmf (C30. C3	S-4475	Resistor-Fixed, composilion, 330,000 ohms, $1 / 2$ watt (R1)
S.4440	Capacitor-Mica, 560 mmi (C4)	S. 4624	Resistor-Fixed, composition, $390.000 \mathrm{ohms} 1 /$,2 wall (R12)
S. 4441	Capacitor-Mica, $3300 \mathrm{mm!}$ (C3) Capacitor-Mica, $6000 \mathrm{mm!}$ (C15)	S. 4476	Resistor-Fixed. composition. 470,000 ohms, $1 / 2$ walt (R2. R17. R20)
S. 4607	Capacitor-Tubular, . 0022 mt .600 v (C28)	S. 4478	Resistor-Fixed, composition, 4.7 meqohms, $1 / 2$ walt (R8)
S. 4541	Capacitor-Tubular, $.0033 \mathrm{ml}, 600 \mathrm{v}$ (C 31$)$	S. 4479	Shatt-Tuning shalt
S.4608		S.4480	Socket-Speaker socket
$\begin{aligned} & S=4609 \\ & S-4444 \end{aligned}$	$\begin{aligned} & \text { Capacitor-Tubular, } 01 \mathrm{mt} .600 \text { V (C17, C3 } \\ & \text { Capacitor-Tubular, } 01 \mathrm{mf}, 400 \text { (C1. C2) } \end{aligned}$	S.4482	Sockel-Tube socket for 12SF7 and 12SC7 lubes
S-4610	Capacitor-Tubular, . 01 mf .400 v (C36)	S.4483	Socket-Tube socket for pluq-in resistor and 35L6GT lubes
S-4447	Capacitor-Tubular, $033 \mathrm{ml} .400 \vee$ (C26)	S.4484	Socket-Dial lamp socket assembly Spring-Drivo cord sprlng
S-4611	Capacitor-Tubular, 033 ml , 400 v (C2S)	S.4485 S. 4486	Sprinq-Drivo cord spring Switch-Range switch (Si)
S.4448	Capacitor-Tubular, $0047 \mathrm{mt}, 200$ v (C19) ${ }^{\text {c }}$ (2) C20, C29)	S.4486 S.4625	Switch-Tone control witch (S3)
S. 4449 S.4450		S.4487	Transformer-First I.F. transtormer (T1)
S.4450 S.4451	Capactior-Trimmer capacitor. duale iwo sections of 3.35	S-4662	Transformer-Second I.F. iranstormer (T2)
	mmt and one section of $4-70 \mathrm{mmt}$ (C5, C6, C7)	S. 4663	Transtormer-Output transformer (T3) Washer-"C" washer for tuning shatt
$\begin{aligned} & \mathrm{S} .4612 \\ & \mathrm{~S} .4613 \end{aligned}$	Capacitor-Electrolytic, 5 mid, 25 volts (C33) Capacitor-Electrolytlc, comprising one section 80 mid , 150 volis, and on section $50 \mathrm{mfd}, 150$ volts (C34A.	S-4490	SPEAKER ASSEMBLY
	C34B)	S. 4665	Cone-Cone and voice coil
S.4453	Capacitor and resistor assembly-comprisinq 39 mm capacitor and 10 ohm resistor (C14, R5)	$\begin{aligned} & \text { S. } 4491 \\ & \text { S-4664 } \end{aligned}$	Plug-Male pin pluq for epeaker cable Speaker-s ${ }^{\text {f }}$ (PM speaker complete with cone and
S 4614	Capacitor and resistor assembly-comprising two 105 mmi capacitors and one 47,000 ohm resistor (C24, C27. R11)		connecting cable
S. 4454	Clip-I-F iransformer mounting clip	S-4626	Back-Back cover for cabinet
5.4453	Coll-Antenna coil (L1, L2. L3. L4) Coil-Oscillator coil (L5, L6, L7)	S-4627	Batle-Battle board and grille cloth complete with
S-4457	Coil-Peaking coil and resietor assembly (250 microhenry coil and 560 ohm resistor) (LB, R3)	$\text { S } 4628$	Cloth-Grille cloth ($8^{\circ *} \times 15^{\prime \prime}$) Dial-Dial scale
S. 4313	Cord-Drive cord (approx. $19 \mathrm{in}. \mathrm{required)}$	S.4498	Emblem-Trademark emblem (RCA)
S.4459	Core-Adjustable core and stud for oscillator coll	S-4500	Emblem-Trademark omblem (RCA Victor)
S. 4460	Cord-Power cord	S.4501	Fastener-Push tastener for back cover (4 required)
S.4461	Condenser-Variable tuning condenser and pulley assem- bly (C11, C13, C16)	S. 4502	Grommet-Rubber grommet for chassls mounting (4 re quired)
$\begin{aligned} & \mathrm{S}-4615 \\ & \mathrm{~S}-4463 \end{aligned}$	Control-Volume control and power switch (R13, S2) Grommet-Rubber grommel for mounting $12 S A 7$ tube	S. 4503	Grommel-Rubber grommet for speaker mounting (4 required)
	socket (two required)	S. 4504	Indicator-Station indicating pointer
S. 4464	Grommet-Rubber grommet for mounting luning condenser (tour required)	S.4629 S.4630	Knob-Range witch knob Knob-Tuning or tone control knob
S-4465	Jack-Phono input lack (11)	S.4630 S.4631	Knob-Tuning of ton control knob Knob-Volumo control knob
S-4466	Plate-Bakelite plate for mounting electrolytic eapacitor	31480	Lamp-Dial lamp. Mazda lype 47
S. 4467	Plate-Dial back plate	S-4632	Pluq-Plug and shell for $105-125$ voll operation
S-4615 S-4617	Rectifier-Selenium rectitier Resistor-Flexible, wire wound, 30 ohm, 3 wall (R6)	S. 4686	Resistor-Plug-in resistor for 210.250 volt operation

6Q33

Alignment Procedure

Cathode Ray Alignment is the preferable method. Connections for the oscilloscope are shown in the Schematic Diaqram.

Output Meter Alignment II this method is used connect the meter across the voice coil, and turn the receiver volume control 10 maximum.

Test-Osciliator for all alignment operations, connezt the low side of the test-oscillator to the receiver chassis, and keep the oscillator output low to avoid a-v-c action.

NOTE. It the testoscillator is A.C. operated it may be necessary to use an isolation transformer (117 v 117 v) for the receivet during alignment and connect the low side of the test oscillator to com. mon wiring-reversal of the plug may reduce hum

Calibration Scale

The dial seale may be readily removed irom the cabinet and used as a reference during alignment or the marks on the dial back plate which correspond to the frequencies indicaled on the Illustration "Dial Indicator and Drive Mechanism" may be used for reterence.

Dial Pointer-With the gang condenser in full mesh the dial pointer should be set to the left hand reterence mark on the dial backing plate
For additional information refer to booklet "RCA Victor Receiver Alignment."

Trube und Trimmer Incution

Stop	Connect high side of test osc. to-	Tune test osc. to	Range switch	Turn radio dial to-	Adjust tor max. output
1	125 FF 7 grid (pin $=2$) in series with .01 ml	455 kc	A	Quiet point near 600 ke	$\text { top } 6^{\mathrm{T} \cdot 2} \text { bottom }$
2	12SA7 grid ($\mathrm{pin}=8$) in series with .01 mi				T. ${ }^{\circ}$ top 6 bottom
$\begin{aligned} & 3 \\ & 4 \end{aligned}$	Antenna lead In series with 220 mmt	1400 kc 600 kc	A	$1400 \mathrm{kc}$ 600 kc	C7 osc. Cljant. 17 osc. (rock gang)
5	Repeat steps 3 and 4				
6	Antenna lead in series with 300 ohms	6.1 mc	B	6.1 mc	C6 osc. C9 ant.
9		18.2 mc	C	18.2 mc	C5 osc. C8 ant. $\%$

- Do not readjust T. 2
+ It two peaks are tound adjust C5 at minimum capacity peak t Rock gang while adjusting C8 use maximum capacty peak NOTE: Oscillator tracks above siqnal on all bands.

Dial Indicator alla Drite Mechammst"

Simplified Schematic Diagrams-Antenna and Oscillator Circuits

PHONOGRAPH ATTACHMENT

A jack is provided on the rear of the chassis tor connecting a phonograph attachment. (Note: the socket on top of chassis is tor speaker.) The output cable of the attachment should be terminated in a Stock No. 31048 plug. It must be removed for
radio reception.

POWER SUPPLY POLARITY-For operation on D.C. the power plug must be inserted in the outlet for correct polarity. It the set does not function, reverse the plug. On A.C. reversal of the plug
may reduce hum.

RCA Victor Ref MODEL 6Q33X

Chassis No. RC-1054B—Mfr. No. 274

Service Data

1949 X 2

RADIO CORPORATION OF AMERICA RCA INTERNATIONAL DIVISION
745 FIFTH AVE, NEW YORK 22, N. Y.

Specifications

Tuning Ranges
Long Wave ("X" Band) 150-380 kc (2000-789.5 m) Standard Broadcast ("A" Short Wave ("C" Band)

Rand) $525-1605 \mathrm{kc}(571-186.9 \mathrm{~m})$ $.5 .9-18 \mathrm{mc}(50.82-16.66 \mathrm{~m})$

Intermediate Frequency \qquad
Tube Complement
(1) RCA-12S
(2) RCA-12SF7
(3) RCA-12SC7
(4) RCA-35L6GT
(5) RCA-35L6GT

A selenium rectifier is used.
Dial Lamps (2) \qquad Mazda No. 47, 6.3 volts, 15 amp.

Power Supply Rating
$\cdot 210-250$ volts d.c. or 25 to 100 cycles a.c.
70 watts

- This instrument may be operated on $105-125$ volts d.c. or 25 to 100 cycles a.c. by replacing the plug-in resistor with a short ing plug.

Loudspeaker (92573.3)
Size and Type........... $5^{\prime \prime} \times 7^{\prime \prime}(12.7 \times 17.8 \mathrm{~cm})$ P-M Dynamic Voice-coil Impedance 3.2 ohms at 400 cycles

Power Output
Maximum 3.75 watts

Undistorted 2.6 watts

Tuning Drive Ratio
18:1. (9 turns of knob)
Cabinet Dimensions
Height 10\%"
(28 cm)

Width $141.1 / 16^{\prime \prime}$
(38 cm)

Depth 7\%"
(20 cm)

PHONOGRAPH ATTACHMENT
A jack is provided on the REAR OF THE CHASSIS for connecting a phonograph attachment. The attachment must be dis. connected for radio reception.

POWER SUPPLY POLARITY-For operation on d.c. the power plug must be inserted in the outlet for correct polarity. If the set does not function, reverse the plug. On a.c. reversal of the plug may reduce hum.

Simplified Schematic Diagrams-Antenna and Oscillator Circuits

Alignment Procedure

6Q33X

Cathode Ray Alignment is the preferable method. Connections lor the oscilloscope are shown in the Schematic Diagram
Output Meter Alignment-It this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum.

Test-Oscillator-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output low to avoid a.v.c action.
NOTE-If the testoscillator is a.c. operated it may be necessary to use an isolation transformer for the receiver during alignment and to connect the low side of the test oscillator to common wir-ing-reversal of the plug may reduce hum.

Calibration Scale

The dial scale may be readily removed from the cabinet and used as a reference during alignment or the marks on the dial back plate which correspond to the frequencies indicated on the illustration "Dial Indicator and Drive Mechanism" may be used lor reference.
Dial Pointer-With the gang condenser in full mesh the dial pointer should be set to the left hand reference mark on the dial backing plate.
For additional information refer to booklet "RCA Victor Receiver Alignment.

Location of Controls

CRITICAL LEAD DRESS

1. Dress output transformer leads down to chassis.
2. Dress heater leads down to chassis.
3. Dress dial lamp leads away from tone control.
4. Dress lead from terminal \#3 of Sl rear between Cl and antenna coil.
5. Dress Cl4-R5 away from C8.
6. Dress lead from terminal \#8 of osc. coil L7 away from C8 and its connecting lead.
7. All leads to rubber mounted parts should be kept flexible.
8. Dress C29 away from T2 and down near chassis.

Step	Connect high side of test osc. to-	Tune test osc. to	Range switch	Turn radio dial to-	Adjust for max. output
1	12SF7 grid (pin 42) in series with .01 mi	455 kc	A	Quiet point near 600 ke	T. 2 top \& bottom
2	12SA7 grid (pin \#8) in series with .01 mi				T.1* lop \& botlom
3	Ant. lead in series with 220 mm f	1400 kc	A	1400 kc	C6 osc. Cl3 ant.
4		600 kc		600 kc	L8 osc. (rock gang)
5	Repeat Steps 3 and 4				
6	Ant. lead in series with 300 ohms	15.2 mc	C	15.2 mc	C5 osc. ${ }^{\dagger}$ C8 ant. \ddagger
7	Ant. lead in series with 220 mm !	350 kc	X	350 kc	C7 osc. C9 ant.
8		160 kc		160 kc	L9 ose. L6 ant.
9	Repeat Steps 7 and 8				

* Do not readjust T-2.
† If two peaks are found adjust C5 at minimum capacity peak.
+ Rock gang while adjusting C8-use maximum capacity peak.
NOTE: Oscillator tracks above signal on all bands.

POINTER 160 KC
SHOWN WITH TUNINC CONDENSER AT MAX. CAPACITY (CLOSED.)

Schematic Diagram

REPLACEMENT PARTS

$\begin{aligned} & \text { STOCX } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	CHASSIS ASSEMBLIES RC. 1054 B
S. 4435	Bracket-Dial cord pulley bracket-R.H. complete with four pulleys
S-4436	Bracket-Dial cord pulley bracket-L.H. complete with one pulley
S. 4437	Bracket-Iuning shaft bracket
S-4605	Capacitor-Ceramic. 10 mmf . (C23)
S. 4606	Capacitor-Ceramic. 15 mm . (C40)
S. 5017	Capacitor-Mica, 180 mmI . (C4)
S. 4439	Capacitor-Mica, 220 mm . (C20, C39)
S. 5018	Capacitor-Mica, 470 mml . (C41)
S. 4440	Capacitor-Mica, 560 mml . (C3)
S. 4442	Capacitor-Mica, 6000 mmf . (C15)
S. 4607	Capacitor-Tubular, $0022 \mathrm{mf}$. , 600v (C28)
S. 4541	Capacitor-Tubular, $0033 \mathrm{mf}$. 600v (C31)
S. 4608	Capacitor-Tubular, $0056 \mathrm{mf}$. , 400v (C32)
S. 4609	Capacitor-Tubular, $01 \mathrm{mf}$. 600v (C37, C38)
S-4444	Capacitor-Tubular, . 01 mi .4 , 400v (Cl. C2)
S. 4610	Capacitor-Tubular. 01 ml ., 400v (C36)
S. 4447	Capacitor-Tubular, $033 \mathrm{mf}$. 400v (C26)
S.4611	Capacitor-Tubular, $033 \mathrm{ml} . .400 \mathrm{v}$ (C25)
S.4448	Capacitor-Tubular, 047 mf ., 200v (C19)
S-4449	Capacitor-Tubular, $056 \mathrm{ml} . .400 \mathrm{v}$ ($\mathrm{C} 10 . \mathrm{C} 12, \mathrm{C} 20 . \mathrm{C} 29)$
S. 4450	Capacitor-Trimmer capacitor, dual. 1.6 .18 mml . (C8, C9)
S. 4451	Capacitor-Trimmer capacitor, triple, two sections of 3.35 mml . and one section of 4.70 mm . (C5, C6, C7)
S. 4612	Capacitor-Electrolytic, $5 \mathrm{mfd} ., 25$ volts (C33)
S. 4613	Capacitor-Electrolytic. comprising one section 80 mid ., 150 volts \& one section $50 \mathrm{mid} ., 150$ volts (C34A. C34B)
S. 5019	Capacitor \& resistor assembly-comprising 56 mmf. capacitor \& 10 ohm resistor (Cl4, R5)
S. 4614	Capacitor \& resistor assembly-comprising two 105 mml . capacitors \& one $\mathbf{4 7 , 0 0 0} \mathrm{ohm}$ resistor (C24, C27. R11)
S-4454	Clip-l-F transformer mounting clip
S-5022	Coil-Antenna coil-A and C bands (L1, L2, L3, L4)
S. 5023	Coil-Antenna coil-X band-with adjustable core (L5. L6)
S-5024	Coil-Oscillator coil-A and C bands (L7, L8)
S-5025	Coil-Oscillator coil-X band-with adjustable core (L9)
S.4457	Coll-Peaking coil \& resistor assembly $(250$ microhenry coil \& 560 ohm resistor) (L8, R3)
S.4313	Cord--Drive cord (approx. 49 in. required)
S. 4459	Core-Adjustable core \& stud for A band oscillator coil
S.4636	Cord-Power cord
S. 4461	Condenser-Variable tuning condenser \& pulley assem. $\mathrm{bly}_{\mathrm{y}}(\mathrm{C} 11, \mathrm{C} 13, \mathrm{C} 16)$
S-4615	Control-Volume control \& power switch (R13. S2)
S-4463	Grommet-Rubber grommet for mounting 12SA7 tube socket (two required)
S.4464	Grommet-Rubber grommet for mounting tuning condenser (four required)
S. 4465	Jack-Phono input iack (Jl)
S. 4466	Plate-Bakelite plate for mounting electrolytic capacitor
S. 4467	Plate-Dial back plate

$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION
S. 4829	Rectifier--Selenium rectifier (SRI)
S-4617	Resistor-Flexible, wire wound. 50 ohms, 3 watts (R6)
S-4618	Resistor-Voltage regulating. 95 ohms (cold value) (R7)
S. 4619	Resistor-Fixed, composition, 120 ohms, 1 watt (R21)
S. 4471	Resistor-Fixed, composition. 1000 ohms, 1 watt (R19)
S-4620	Resistor-Fixed, composition. 3900 ohms, $1 / 2$ watt (R16)
S-4621	Resistor-Fixed, composition, 15,000 ohms, $1 / 2$ walt (R14)
S. 4622	Resistor-Fixed, composition, 18.000 ohms. 1/2 watt (R18)
S. 4472	Resistor-Fixed, composition, 33.000 ohms, $1 / 2$ wall (R4)
S-4623	Resistor-Fixed, composition, 39,000 ohms, 1/2 watt (R10)
S.4559	Resistor-Fixed, composition. 270.000 ohms, $1 / 2$ watt (R9. R15)
S. 4475	Resistor-Fixed, composition, 330.000 ohms, $1 / 2$ watt (R1)
S. 4624	Resistor-Fixed, composition, 390,000 ohms, $1 / 2$ watt (R12)
S. 4476	Resistor-Fixed, composition. 470,000 ohms, $1 / 2$ watt (R2, R17. R20)
S. 4478	Resistor-Fixed, composition, 4.7 megohms, 1/2 watt (R0)
S. 4479	Shafl-Tuning shaft
S-4480	Socket-Speaker socket (J2)
S. 4481	Socket-Tube socket for 12SA7 tube
S. 4482	Socket-Tube socket for 12SF7 \& 12SC7 tubes
S. 4483	Socket-Tube socket for plug.in resistor and 35L6GT tubes
S. 4484	Socket-Dial lamp socket assembly
S.4485	Spring-Driva cord spring
S. 5020	Switch-Range switch (SI)
S. 4625	Switch-Tone control switch (S3)
S. 4487	Transformer-First l.F. transformer (T1)
S. 4662	Transformer-Second I.F. transformer (T2)
S. 4663	Transformer-Output transformer (T3)
S. 4490	Washer-"C" washer for tuning shaft SPEAKER ASSEMBLY (STAMPED 92573.3)
S. 4665	Cone-Cone and voice coil
S-4491	Plug-Male pin pluq for speaker cable
S. 4664	Speaker-5" $\times 7^{\prime \prime}$ PM speaker complete with cone \& connecting cable MISCELLANEOUS
S-4626	Back-Back cover for cabinet
S. 4627	Baftle-Bafle board of grille cloth complete with speaker mounting screws-less emblem
S.4628	Cloth-Grille cloth ($8^{\prime \prime} \times 15^{\prime \prime}$)
S.5021	Dial-Dial scale
S. 4499	Emblem-Trademark emblem (RCA)
S-4501	Fastener-Push fastener for back cover (4 required)
S. 4502	Grommet-Rubber grommet for chassis mounting (4 required)
S. 4503	Grommet-Rubber grommet for speaker mounting (4 required)
S. 4504	Indicator-Station indicating pointer
S. 4629	Knob-Range switch knob
S.4630	Knob-Tuning or tone control knob
S.4631	Knob-Volume control knob
S. 4893	Lamp-Dial lamp-Mazda type 47
S. 4632	Plug-Plug and shell for 105.125 volt operation
S-4666	Resistor-Plug-in resistor for 210.250 volt operation
S.4511	Spacer-Metal spacer for speaker mounting (4 required)

RADIO CORPORATION OF AMERICA
 RCA INTERNATIONAL DIVISION

745 FIFTH AVE., NEW YORK 22, N. Y.

FOR RECORD CHANGER INFORMATION REFER TO SERVICE DATA FOR MODEL RP- 178 (except for the motor used in the record changer).

Specifications

Tuning Ranges
Stancard Broadeast ("A" Band)
Standard Broadeast ("Band)
Medium Wave ("B"Band
Medium Wave ("B" Band
Intermediate Frequency
$535-1680 \mathrm{kc} .(560.179 \mathrm{~m}$. Short Wave ('C Band 2.3 .7 mc.
7.22 mc.
$(42.8-13.7 \mathrm{~m}$.

Tube Complement
(1) RCA 12SA7
t
I.F. Amp Converte

3) $\mathrm{RCA} 12 \mathrm{SC7}$
4) RCA 35L6GT
5) RCA 35L6GT

A selenium rectifier is used.
Dial Lamps $(2$
Mazda No. 47, 6.3 volts, 15 amp.
-Power Supply Ratings
105.125 volts. 50 or 60 cycles A.C. \qquad 55 watts

- 210.250 volts, 50 or 60 cycles A.C. \qquad 100 watts
- A resistor plug for which a socket is provided on the chassis. is required
t Instruments are shipped for operation on 60 cycle power supThey may be converted for 50 cycle operation by the addiply. They may be converted for 50 cycle operation by (spring is supplied with the instrument).
Loudspeaker
Type 92573.3 (For Model 6QU3) $5 \times 7 \mathrm{in} .(12.7 \times 17.8 \mathrm{~cm}$.) Type $92581-3$ (For Model 6QV3) $12 \mathrm{in} .(30.5 \mathrm{~cm}$.) PM dynamic Type ${ }^{\text {Voice coil impedance (Model 6QU3) } 3.2 \text { ohms at } 400 \text { cycles }}$ Voice coil impedance (Model 6QV3) 2.2 ohms at 400 cycles

Power Output
Undistorted
2.6 watts

Undistorte
Tuning Drive Ratlo
18:1 (9 turns of knob)

Cabinet Dimensions
Mode! 6QU3
Model GQV3

Height	Width	Depth
$101 / 4 \mathrm{in}$.	165.1 in	$201 / 2 \mathrm{in}$.
$(26 \mathrm{~cm})$.	$(42.2 \mathrm{~cm})$.	$(52 \mathrm{~cm})$.
$29.7 / 16 \mathrm{in}$.	$241 / 2 \mathrm{in}$.	17 in.
$(74.8 \mathrm{~cm})$.	$(62.2 \mathrm{~cm})$.	$(43.2 \mathrm{~cm})$.

Model 6QV3

ON MODEL GQV3 ON MODEL GQV3

INSIDE OF CABINET

6QU3

CRItical lead dress

1. Dress Cl away from antenna coil windings
. The lead from term. $\Rightarrow 1$ of the antenna coil to term. $\# 2$ of Il should be $31 / 4$ inches in length
All leads from the range witch should be kept short and away from coil windings Dith should be kept short and away and away from C10.
2. Keep body of C39 away from chassis.
3. Keep blue lead of radio phono switch cable taut and away from other leads.
Dress green lead. connecting volume control to terminal tit 4 of 12SC7 soakel, up and away trom other leads.
Dress C28 aqainst front apron of chassis.
4. Dress C28 away from V4 (35L6GT) sockel.
5. Dress output transformer leads down next to chassis.

Alignment Procedure

Test-Oscillator For all alignment operations, connect the low side of the test-ascillator to the receiver chassis, and keep the oscillator output low to avoid a.v.c action.

Note: 11 the test-oscillator is a-c operated, it may be necessary to use an isolation transformer (117v./117v.) for the receiver during alignment and connect the low side of the test-oscillator to common wiring reversal of the plug may reduce hum.

Calibration Scale The dial scale may be readily removed from he cabinet and used as a reference during alignment-or the marks on the dial back plate which correspond to the frequencies indicated on the illustration "Dial Indicator and Drive Mechanism" may be used for reference.

Dial Pointer With the gang condenser in full mesh the dial pointer should be set to the end reference mark on the dial back. ing plate.

For additional information refer to booklet "RCA Victor Receiver Alignment.

Dial Indicator and Drite Mechanism

Step	Connect high side of test ose. to-	Tune test osc. to-	Range switch	Turn radio dial to-	Adjust for max. output
1	12SF7 grid (pin $\# 2$) in series with .01 ml	455 ke	A	Quiet point near 600 kc	$\text { top } \&^{\mathrm{T} \cdot 2} \text { bottom }$
2	12SA7 grid (pin $\#$) in series with .01 ml				T.1* top \& bottom
3	Antenna lead in series with 220 mml	1400 kc	A	1400 kc	C7 ose. C13 ant.
4		600 kc		600 kc	L7 osc. (rock gang)
5		Repeat steps 3 and 4			
6	Antenna lead in series with 300 ohms	6.1 mc	B	6.1 mc	C6 osc. C9 ant.
7		18.2 mc	C	18.2 mc	C5 osc.t C8 ant.*

- Do not readjust T.2.
- If two peaks are tound-adjust C5 at minimum capacity peak.
\ddagger Rock gang while adjusting C8-use maximum capacity peak. NOTE: Oscillator tracks above signal on all bands.

Model 6QU3 Radio-Phono-Tone Suilch
The Radio-Phono-Tone switch used on Model 6QU3 has four positions (Model 6QV3 has six positions). Note that no connec. tions are made to the front section of the switch or to the junction of C25-R14. Otherwise both chassis are schematically identical.

Twbe and Trimmer Locations

6QU3, 6QV3

Schematic Diagram
Model 6QV3 Chassis No. RC-1054D

Simplified Schematic Diagrams-Antenna and Oscillator Circuits

$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION
	CHASSIS ASSEMBLIES		SPEAKER ASSEMBLY (92573.3) Model 6QU3
	RC. 1054 C-Model 6QU3	S. 4665	Cone-Cone and volce coil
		S-449	Plug-Male pin plug for sp
	RC-1054 D-Model 6QV3	S. 4664	Speaker-5" $\times 7^{\prime \prime}$ PM speaker complete with cone and connecting eable
S-4437	Bracket-Tuning shaft bracket-Model 6QU3		
S. 4605	Capatitor-Coramic. 10 mmf . (C23)		
S. 4606	Capactor-Ceramic. 15 mmi . (C29)		SPEAKER ASSEMBLY (92581-3) Model 6QV3
S. 4439	Capactior-Miea, 220 mmi . (C30, C39)		
S-4440	Capacitor-Mica, 560 mml . (C4)	S.4689	Cone-Cone and voice coil
S.4441	Capacitor-Mica, 3300 mml . (C3)	S.4491	Plug-Male pin plug for speaker cable
S. 4442 S. 4607	Capacitor-Mica, 6000 mmi . (C15) Capacitor-Tubular, 0022 ml . 600 v. (C28,	S.4690	Speaker-12 In. PM speaker complete with cone and connecting cable
S.4541	Capacitor-Tubular, . $0033 \mathrm{ml.}$, 600v. (C31)		
S. 4608	Capacitor-Tubular, $0056 \mathrm{mi},. 400 \mathrm{v}$. (C32)		
S. 4609	Capaclior-Tubular, 01 mi., 600v. (C37, C38)		
S.4444	Capacitor-Tubular, $01 \mathrm{ml.}$.400 v . (C1, C2)		MODEL 6QU3-MISCELLANEOUS
$\begin{aligned} & \text { S. } 4610 \\ & \text { S.4447 } \end{aligned}$	Capacitor-Tubular, . $01 \mathrm{mi} ., 400 \mathrm{v}$. (C36) Capaeitor-Tubular, 033 mi ., 400v. (C26)	S. 4626	Back-Back eover for eabinet
S.4611	Capacitor-Tubular, . $033 \mathrm{min.}, \mathrm{400v}. \mathrm{(C25)}$	S. 4645	Battle-Baftle board and grille eloth complete with speaker mounting screws
S.4448 S.4449		S.4646	Clamp-Dial clamp (two required)
S-4449		S-4628	Cloth-Grille cloth (8** $\times 15$)
S.4450	Capacitor-Trimmer capacitor, dual, 1.6.18 mml. (C8, C9)	S. 4647	Decal-Radio-phono switch decal
S-4451	Capacitor-Trimmer capacitor, triple, two sections of 3.35 mmf. and one section of 4.70 mml . (C5, C6, C7)	$\begin{aligned} & \text { S.4648 } \\ & \text { S.4499 } \end{aligned}$	Lial-Dial scale Emblem-Trademark emblem (RCA)
S-4612	Capacitor-Electrolytic, 5 mid., 25 volts (C33)	S. 4500	Emblem-Trademark emblem (RCA Victor)
S.4613	Capacitor-Electrolytic, comprising one section 80 mid., 150 volts and one section 50 mid.. 150 volts (C34A, C34B)	S. 4502 S. 4649	Grommet-Rubber grommet for chassis mounting (4 required) icmmet-Rubber grommet for record changer mounting (3
S. 4453	Capacitor and resistor assembly-compristng 39 mml . capacitor and 10 ohm resistor (C14, RS)	S.4593	required) Grommet-Rubber grommet for speaker mounting (4 required)
S. 4614	Capacitor and resistor assembly-comprising two 105 mm . capacitors and one 47,000 ohm resistor (C24, C27. R11)	S. 4783 S. 4650	Hinge-Lid hinge Indicator-Station Indicating pointer
S.4454	Clip-1.F transformer mounting clip	$\begin{aligned} & \text { S-4650 } \\ & \text { S-4651 } \end{aligned}$	Indicator-Station indicating pointer Knob-Range switch knob
S-4455	Coil-Antenna coil (L1, L2, L3, L4)	S. 4652	Knob-Radio-phono swlich knob
S. 4660	Coil-Osclllator coil (LS, L6, L7)	S-4630	Knob-Volume control or tunlng knob
S.4661	Coil-Peaking coil and resistor assembly (250 micro-henry coil and 560 ohm resistor) (LB, R3)	S-4893	Lamp-Dial lamp-Mazda type 47
S-4313	Cord-Drive cord (approx. 50 in . required)	S. 4653	Molding-Dial molding Nut-Tee nut for mounting record changer (3 required)
S-4635	Core-Adjustable core and stud for osclllator coil	$\begin{aligned} & \text { S. } 4654 \\ & \text { S. } 4655 \end{aligned}$	Nut-Tee nut for mounting record changer (3 required) Partition-Record changer compartment
S-4636	Cord-Power cord-Model 6QU3	$\begin{aligned} & \text { S. } 4655 \\ & \text { S.4656 } \end{aligned}$	Partition-Record changer compartment Plug-Plug and shell for 105.125 volt operation
S-4682	Cord-Power cord-Model 6QV3	S.4656	
S-4461	Condenser-Varlable tuning condenser and pulley assembly (C11, C13, C16)	S.4658	Screw-Fillistor head machine serew ($1 / 4 \times 20$) for mounting record changer
S.4637	Control-Volume control and power switch—Model 6QU3 (R13; S3)	S. 4511	Spacer-Metal spacer for speaker mounting (4 required)
S.4683	Control-Volume control and power switch-Model 6QV3 (R13, S3)	S-4659	Support-Lid support
S.4463	Grommet-Rubber grommet for mountlng I2SA7 tube socket (two required)		MODEL 6QV3-MISCELLANEOUS
S-4464	Grommet-Rubber grommet for mounting tuning condenser (tour required)	S. 4646	Clamp-Dial clamp (two required)
S-4466	Plate-Bakelite plate for mounting electrolytic capacitor	S-4691	Cloth-Grille cloth
S-4638	Plate-Dial back plate and pulley assembly-Model 6QU3	S.4692	Decal-Radio-phono switch decal
S. 4684	Plate-Dial back plate and pulley assembly-Model 6QV3	S.4693	Dial-Dial sealo Emblem-Trademark emblem (RCA)
S. 4616 S. 4617	Rectitier-Selenium rectifier (SRI) Resistor-Flexible, wire wound, 50 ohm, 3 wall (R6)	S.4499	Emblem-Trademark emblem (RCA Victor)
S.4617 S.4618	Resistor-Flexible, wire wound, 50 ohm, 3 wall (R6) Reslstor-Voltage requlating, 95 ohm (cold value) (R7)	S-4699	Grommet-Rubber grommet for chassis mounting (4 required)
S.4619	Resistor-Fixed, composition, 120 ohms, 1 watt (R21)	S. 4649	Grommet-Rubber grommet for record changer mounting (3
S. 4471 S. 4620	Resistor-Fixed, composition, 1000 ohms, 1 watt (R19) Resistor-Flxed, composition, 3900 ohms, $1 / 2$ watt (R16)	S-4901	Grommet-Rubber grommet for speaker mounting
S. 4620 S. 4621	Resistor-Fixed, composition, 3900 ohms, $1 / 2$ walt (R16) Resistor-Fixed, composition, 15,000 ohms, $1 / 2$ watt (R14)		quired)
S-4622	Resistor-Fixéd, composition, 18,000 ohms, 1/2 watt (R18)	S.4906 S.4694	Hinge-Lid hinge (2 required) Indicator-Station indicating pointer
S. 4623	Resisfor-Fixed, composition, 39.000 ohms, $1 / 2$ wall (R10)	$\begin{aligned} & \text { S. } 4694 \\ & \text { S } 4695 \end{aligned}$	Knob-Range switch knob
S. 4474	Hesistor-Fixed, composition, 56,000 ohms, $1 / 2$ watt (R4)	S.4652	Knob-Radlo-phono swlteh knob
S-4639	Resistor-Fixed, composition, 150,000 ohms. $1 / 2$ walt (R22)	$\text { S. } 4596$	Knob-Volume control or tuning knob
S. 4559	Resistor-Fixed, composition, 270,000 ohms, $1 / 2$ watt (R9, R15)	S-4893	Lamp-Dial lamp-Marda type 47
S. 4475	Resistor-Fixed, composition, 330,000 ohms, $1 / 2$ watt (R1)	S-4654	Nut-Tee nut for mounting record changer (3 required)
S. 4624	Reslstor-Fixed, composition, 390,000 ohms, $1 / 2$ watt (R12)	S-4658	Plug-Plug and shell for 105-125 volt operation
S.4476	Resistor-Fixed, composition, 470,000 ohms, $1 / 2$ watt (R2, R17. R20)	S-4657	Resistor-Plug in resistor for $210-250$ voll operation Serew-Fillister head machine scrow (1/4 x 20) for mount.
S-4640	Resistor-Fixed, composition, 3.3 megohms, $1 / 2$ walt (R23)	S. 4	Strew-Fillister head machine screw ($1 / 4 \times 20$) for mount. ing record changer
S.4478 S.4641	Resistor-Fixed, compositlon, 4.7 megohms, $1 / 2$ watt (R8) Shaft-Tuning shaft-Model 6 (U3	S. 4511	Spacer-Metal spacer for speaker mounting (4 required)
S.4685	Shaft-Tuning shaft-Model 6QV3	S. 4697	Support-Lid support
S.4784	Socket-6 contact female socket and motor power cable		
S. 4480	Socket-Speaker sockel or phono input socket (11, J2)		RP.178.3 RECORD CHANGER
S.4481	Socket-Tube socket for 12SA7 tube		RP.178.3 RECORD Change
S.4482	Socket-Tube socket for 12SF7 and 12SC7 tubes		REPLACEMENT PA
S.4483	Socket-Tube socket lor plug-in resistor or 35L6GT tubes	Ident	to those listed In Service Data for RP-17
S. 4462	Socket-Dial lamp socket assembly-Model 6QU3		
S-4686	Socket-Dial lamp socket assembly-Model 6QV3		EXCEPT
S.448	Spring-Drive cord spring	DELETE	
S-4	Switch-Range switch-Model 6QU3 (S1)	ltem 46	Stock No. 72394 Motor
S-4687	Switch-Range switch-Model 6QV3 (S1)	ltem 47	Stock No. 30870 Plug
S. 4644	Switch-Radio-phono switch-Model 6QU3 (S2)		
S.4688	Switch-Radio-phono switch-Model 6QV3 (S2)	ADD	
S-4487	Translormer-First I.F. translormer (TI)	S. 4698	Medallion-Trademark medallion (RCA)
S.4662	Transformer-Second l.F. transformer (T2)	S.4773	Motor- 105 to 125 volt or 210 to 250 volt 60 eyele motor Plug-Six prong male pluq for motor cable
5-4663	Transformer-Output transformer-Model 6QU3 (T3)	S. 4907	Plug-Six prong male plug for motor cable
S.4828 $\mathbf{S} 4490$	Transformer-Output transformer-Model 6QV3 (T3) Washer-"C" washer for luning shaft	S.4774	Spring-Spring sleeve to convert 60 eycle motor to 50 cycle operation

RCA
 \section*{\title{
RCA

 MODEL 7Q51
}}

 MODEL 7Q51
}}

Chassis No. RC-1055, RC-1055C—Mfr. No. 274
Service Data
1948 . . . $\times 7$
RADIO CORPORATION OF AMERICA RCA INTERNATIONAL DIVISION 745 FIFYH AVE., NEW YORK 22, N.Y.

Electrical and Mechanical Specifications

Description

This instrument is a seven-tube five-band receiver of conventional design with the exception of the spread-band tuning.

A iwo-section gang condenser one section for antenna and one for oscillator circuit. is used for the A, B and C bands. The 31-25 Meter and the 19.16 Meter spread bands are luned by a specially designed permeability tuning system actuated by a cam and ocker assembly which is mechanically fastened to the gang condenser shaft. The core assembly of the permeability whing system is molded to insure the required tolerances, and constants. Meter and the $19-16$ Meter bands with dikerent circui
In the 31-25 Meter band position the 31-25 Meter coils (antenna and oscillator) are used. In the 19.16 Meter band position the 31-25 Meter and 19.16 Moter band coils are used in parallel.
The inductances of the A.B.C windings of the multiple antenna coil are all fixed, but the inductances of all other coils in the antenna and oscillator circuits are permeability adjusted. Ungrounded screw-type cores are used for these coils and adjustmebts are made with a non-metallic screwdriver.

Controls

The corresponding position of the dial indicator for any setting of the calibration scale can be determined by drawing a line trom this point on the botom calibration scale to the same point on the top calibration scale For example: 143° on the calibration scale cor responds to approximately 600 ke on " A " band, etc. Read instructions under "Aliqnment Procedures."

Alignment Procedure

Test-Oscillator, For all alignment operations, connect the low side of the test-ascillator to the receiver chassis, and keep the side of the test-oscillator to the receiver chassis, and
Calibration Scale on Indicator-Drive-Cord Drum.- The funing dial is tastened in the cabinet and cannot be used for reference during is tastened in the cabinet and cannot be used for reference during
alignment, theretore a calibration scale is altached to the indicatordrivecord drum which is mounted on the shatt of the gang con denser. The sefting of the gang condenser is read on this scale. which is calibrated in deqrees.
As the tirst step in rit alignment, check the position of the drum. The " 180 "" mark on the drum scale must be vertical and directly over the center of the gang-condenser shatt when the plates are fully meshed. The drum is held to the shatt by means of two set screws, which must be tightened securely when the drum is in the correct position.
Pointer tor Calibration Scale.-Improvise a pointer for the calibration scale bv lastening a piece of wire to the qanq-condenser frame. and bend the wire so that it points to the " 180% mark on the calibration scale when the plates are tully meshed. The correct setting of the qang in degrees, for each alignment trequency, is given in the alignment table.
Receiver Dial with Calibration Scale. To determine the corresponding requency tor any selfing of the calibration scales, refer to the dial with calibration scale drawing.
Dial-Indicator Adjustment.-After tastening the chassis in the cabinet, attach the dial indicator to the drive cable with indicator at the end calibration mark, and gang condenser fully meshed. The indicator has a clip for altachment to the cable.
Spread-Band Alignment.-For spread-band alignment an extemely high degree of accuracy is required of the test-oscillator, as a slight error will produce considerable inaccuracy on the spread-band dials.
Determine the exact dial seltings of the test-oscillator (for tre. quencies at or close to the specitied alignment trequencies) by one of the following methods:

1. Zerobeat the testoscillator against short-wave stations of known frequency
2. Check test-oscillator signals with a crystal controlled oscillator. A tinal check should be made on actual reception of short-wave stafions of known trequency.
For additional intormation, reter to booklet "RCA Victor Receiver Alignment.

Dial-Indicator and Drive Mechanism

S10p	Connect high side of test oacillator $10-$	Tost oscil. lator frequency	Turn radio dial to-	Adjust for maximum output
1	Pin 世1 of 6BA6 thru $01 \mathrm{~m} / \mathrm{d}$. capacitor	455 ke	Quiet point near 600 ke A Band	T. 3 2nd I.F trans.-lop and bottom
2	Pin 77 ol 6BEs thru .01 mid . capacitor			T. 2 1s1 I.F. trans.-top and bottom
3	Ant. terminal thru 200 mmId capacitor	1400 kc	A Band	C14 osc. CS ant.
4		600 kc	$\underset{142.6^{\circ}}{\text { A Band }}$	L7 ose.
5		Repeat stops 3 and 4		
6	Ant. terminal thru 300 ohm resistor	6.1 mc	$\begin{aligned} & \text { B Band } \\ & 28.20^{\circ} \end{aligned}$	Cls osc. C4 ant.
7		2.5 mc	$\begin{aligned} & 8 \text { Band } \\ & 148.90 \end{aligned}$	Ls ose.
-		Repeat step	6 and 7	
\bigcirc		17.75 me	$C_{34.40^{\circ}}$	+C16 osc. C3 ant.
10		7.2 me	$\begin{aligned} & C_{160.30} \\ & \text { Band } \end{aligned}$	111 osc.
11		Repeat stop	9 and 10	
12		9.5 mc	31.25 Meter Band 169.6°	- Cl 13 ose. -C2 ant.
13		11.8 me	$\begin{aligned} & 31-25 \text { Moter } \\ & \text { Band } 44.80 \end{aligned}$	+12 ose. \ddagger L5 ant.!
14		Repeat step: 12 and 13		
15		17.75 me	19-16 Moter Band 37.5°	+Cls osc. C8 ant.
16		15.2 mc	19-16 Moter Band 157.20	+113 osc. Ls ant.
17		Repeat steps 15 and 16		

\dagger Oscillctor trequency is higher than signal trequency on all bands. Use minimum capacity or minimum inductance peak on oscillator adjustments it two peaks can be obtained.

- Preset lil and L5. with tuning condenser at minimum capacity $\left(0^{\circ}\right)$. so that the cores are exadly $1 / 8$ in. $(3.175 \mathrm{~mm})$ from the botiom end at their respective coils (coil in. (3.175 mm) from the botrom end ot their respective coils (coil end to bottom end of ircn
core not thsulating rod of the core assembly). core-not the insulating rod of the core assembly)
11.8 mc , rotate studs approx. $1 / 2$ outputai 11.8 mc is lower than $11.8 \mathrm{mc}, \mathrm{rotate}$ studs approx. $1 / 2$ turn clockwise-it higher rotate
approx. $1 / 2$ turn counterelockwise.

Critical Lead Dress

1. The 6BA6 screen by-pass capacitor C27 should be aressed close to the chassis with short leads
2. The grid resistors R12 and R20 should be dressed close to the chassis with short leads.
3. The speaker wires should be dressed as far away trom the 6SQ7 and 6AT6 sockets as possible

7Q51

SPEAKER COMNECTIONB

Partial Schemallc Diagram-RC.1055C

The above Schematic Diagram shows the power supply and speaker circuils of Chassis No. AC.1055C which uses an EM speaker. Except as described elsewhere Chassis No.
on this paqe it is identical to Chassis No. RC. 1055 .

Chassis No. RC-1055C

*Trimmer capacitors C14. C15 are of different value Bracket is stamped 940415.2 (940401.8 in RC. 1055 chassis).
*Trimmer capacitors C13. C16, C19 are ol diHerent value. Bracket is stamped 940415.5 (924463 it in RC. 1055 chassis).
C2C is used in place of C17: C21 is used in place of C18. Circuit and values are unchanged. The identity ing color code is shown above.

R24 (680 ohms) is used in place of R18 (560 ohms): R7 (22.000 ohms) is used in place of R4 (18.000 ohms) R23 (100,000 ohms) is used in place of R5 (82.000 ohms) The speaker field coil (L15 1060 ohms) replaces R19 (2200 ohms). The revised power supply circuit is shown above.
-In some chassis a live section capacitor (Cl3, Cl4. C15. C16. C19) is used.

Socket Voltages and Cathode Currents

Tube Plate V. Screen V. Cathode V. Current

1. 6BE6	268	93	9.5 ma .
2. 6BA6	268	62		7.6 ma .
3. 6 SQ 7	77	\ldots	0.3 ma .
4. $6 F 6 \mathrm{G}$	265	268	23.5	20.0 ma.
5. 656 G	265	268	23.5	20.0 ma.
6. 5Y3GT	330	57.5 ma .
7. 6AT6	65	...*	0.5 ma .

Capacitorz

R. F. Wiring Diagram (Bollom View)
Using 3 v. fixed bias.

7Q51

Replacement Parts

STOCK No.	DESCRIPTION	STOCK No.	DESCRIPTION
	A.F PLATE SUB.ASSEMBL.Y	S.4561	Resistor-Fixed. composition, 470.000 ohms , $1 / 2$ watt (R14)
S. 4512	Board-Antenna Ground terminal	S. 4562	Resistor-Fixed, composition, 2.2 megohm, 1_{2} watt (R6)
S.4S13	Capacitor-Trimmer capacitor, slngle, 4.70 mmf (C2)	S.4478	Resistor-Fixed, composition. 4.7 megohm, $1 / 2$ watt (Rl2.
-5.4514	Capacitor-Trimmer cafacitor, dual. $4.70 \mathrm{~mm} /$ and 3.35 mml (C14, C15)	S. 4363	A(20) Socket-Dial lamp socket and lead assembly
* 5.4770	Capacitor-Trimmer capacitor, dual. 30.65 mm and 5.50	$\begin{aligned} & \text { S. } 4564 \\ & \text { S. } 4565 \end{aligned}$	Spring-Dia! drive cord tension spring Shatt-Aange switch control shaft
*S.4S1S	Capacitor-Trimmer capacitor, triple, two sertions of 5.25	S. 4566	Shatt-Tuning control shaft
	mmf and one section of 8.50 mml (C13, C16, C19)	S.4480	Socket-Phono input or speaker output socket
-S.4769	Capacitor-Trimmer caprcitor, triple, three sections of 5.50 mmi (Cl3, Cl6, Cl9)	$\begin{aligned} & \text { S.4SA } 7 \\ & \text { S.4482 } \end{aligned}$	Socket-Tube socket, octal, for 6SQ7 tube Socket-Tube socket, octal, tor SY3GT or 6F6G tubes
S.4516	Capacitor-Trimmer capacitor, quadruple, four sections of $3.35 \mathrm{mmf}(\mathrm{C} 3 \mathrm{C} 4 \mathrm{CS} \mathrm{CP}$	$\begin{aligned} & \text { S. } 4568 \\ & \text { S. } 4569 \end{aligned}$	Socket-Tupe socket, miniature, for 6AT6 tube Switch-Radic-phono switch (S6)
S.4517	Capucitor-Ceramic. 7 mm (C6)	S. 4570	Swith-Voliage change switch (S4)
+5.4518	Capacitor-Ce:amic. 22 mm (C 17)	S. 457	I'ranstormer-Second I.F. transformer (T3)
- 5.4771	Capacitor-Ceramic, $22 \mathrm{mmi}(\mathrm{C} 20)$	S.4572	Transtormer-Output transformer (T4)
S.4519	Cepacilor-Ceramie. 27 mm (C 7)	S. 4373	Transtormer-Power translormer, $105-125$ voits, S0/60
S.4520	Copaclor-Ceramic, 27 mml (C31)		cycles (T1)
S. 4521	Capacitor-Ceramic. 120 mml (Cl 18$)$	S. 4574	Transforiner-Power transiormer, 105.12S volts. 25/60
-S. 4772	Capacitor-Ceramic. 120 mm (${ }^{\text {(C21) }}$		cycles (T1)
S. 4439	Capacitor-Mice, 220 mml (C9)	S.4575	Transtormer-Power transtormer, 105.125 or $210-250$ volts
S. 4440	Capacitor-Mica, 560 mmi (C2S)		S0/60 cyeles (T1)
S.4522	Capacitor-Miea, 3000 mmf (C24)	S. 4576	Washer- "C." washer for range switch shaft (inside)
S. 4442	Capacitor-Mica, 6000 mmf (C23)	S. 4577	Washer- "C" washer to retain tuning shalt on range
S.4820	Capactor-Ceramic, 01 mf . (C28)		
S. 4448	Capacitor-Tubular, 047 mf .200 v (C22)		
S.4523	Capacitor and Resistor Assembly- 56 mml capzeitor and 33 ohm resistor (C10. R2)		FC. lossc Maln Chassis Assembly
S. 4524	Choke-Cathode choke coil (L14)		(Reter to listing of RC-10SS)
S.4525	Coil-"A" band oseillator coil with adjustable core and stud (L7. L8)	DELETE	
S.4526	Coil-"B" band cscillator coil with adlustable ecre and stud (L9, L.10)	$\begin{aligned} & \text { S. } 4545 \\ & \text { S. } 4552 \end{aligned}$	Capacitor-Electrolytic capacitor Resistor- 560 ohn:s (R18)
S. 4527	Coil-" "C" band oscillator coil with adjustable core and stud (L.11)	$\begin{aligned} & \text { S.4553 } \\ & \text { S.455s } \end{aligned}$	Resistor- 2200 ohms (R19) Resistor- 18.000 ohms (R4)
S.4528	Coil-"31-25 Meter" band antenna or oscillator coll (L.S. L12)	$\begin{aligned} & \text { S. } 4557 \\ & \text { S.4480 } \end{aligned}$	Resistor- 82,000 ohms (RS) Socket-Speaker socket (used tor phono in both chassis)
S.4529	Coil-"19.16 Meter" band antenna or oscillator ceil with adiustable core and stud (L.6, L.13)	$\begin{aligned} & \text { S. } 4573 \\ & \text { S. } 4574 \end{aligned}$	Transtormer-Power transformer Transtormer-Power transtormer
S. 4530	Condenser-Tuning condenser ($\mathrm{C} 1, \mathrm{C} 26$)	S.4575	Transtormer-Power transformer
S.4531	Core-Adjustable core cnd stud tor 31.25 meter band an.	S. 4572	Transformei-Output transformer
S. 4532	Tenna or oscillator coil ${ }^{\text {drum-Tunirg enndenser drum, hub and eam assembly }}$	$\begin{aligned} & \text { ADD } \\ & \text { S. } 4596 \end{aligned}$	Capaciter-Electrolylic capacitor, comprising three sec.
S. 4533	Grommet-Rubber grommet to mount tuning condenser		tions of $10 \mathrm{mfd}, 450$ volts, and one section of 20 mld .
S.4534	Plate-Rncker arm plate and stud assembly. less adiustable cores	S. 4597	25 volts (C12A, C12B, C12C. C12E) Plig-Four contact female plug for speaker cable
S.4535	Resisto:-Fixed, composition, $22,000 \mathrm{ohms}, 1 / 2$ wolt (R3)	S. 4765	Resistor-Fixed, composition, 680 ohms, 1 watt (R24)
S. 4476	Reststor-Fixpd, composition, 470.000 ohms, $1 / 2$ watt (RI)	S. 1766	Resistor-Fixed, composition, 22,000 ohms, 2 watt (R7)
S. 1536	Serew-Rocker arm plate bearing serew	S 4767	Resistor-Fixed composition, 100.000 ohms. 1 watl (R23)
S.4894	Sockel-Tube socket	S.4598	Transiormer-Power transtormer, 105.125 or 210.250 volts,
S.4537	Spring-Rocker arm plate tension spring		So/60 cycles (T1)
S. 4538	Swilch-Range switch		Other items identical to listing tor RC.10SS
S.4539	Transformer-First 1,F. transformer (T2)		
	* Used on Chassis No. AC.IOSS. - Used on Chassis No. RC-losSC.		SPEAKER ASSEMBLIES-92570.4
Thes	e capacitors may be interchanged as a group but should interchanged individually.	S. 4578	Cone-Speaker co
On so is used	ome Chassis No. RC-10SSC a five-section trimmer capacitor in place of Stock Nos. S.4769 and S.4770.	S.4579 $\mathbf{S . 4 5 8 0}$	Plua-Male pin plug tor speaker cable Speaker-61/2" P.M. speaker complete with cone and connecting cable
	RC-10SS MAIN CHASSIS ASSEMBL.Y		
S.4540	Brackel-Dial enrd bracket and pulley assembly 'iwo re. quired)		SPEAKER ASSEMBL.IES-92S17.1
S. 4439	Capacitor-Mica, 220 mmi (C36)	S 4768	Cone-Speaker
S.4541	Capacitor-Tubular, 0033 ms .600 v (C3S, C37)	S 4599	Coil-Field coil
S.4S42	Capacitor-Tubular. 0047 mt , 1000 v (C40, C41)	S. 4600	Plug-Four prong male plug
S. 4543 S.4820	Capacitor-Tubular, 0068 ml .400 v (C34) Capacitor-Ceramic, 01 mf . (C27)	S. 4601	Speaker-61'2" E.M. speaker complete
S.4820	Capacitor-Ceramic, 01 mf . (C27)	S. 4602	Transtormer-Output transformer
S. 4444	Capacitor-Tubular. $01 \mathrm{mi}, 400$ v (C11, C29, C32, C38. C39)		
S. 4.544	Capceitor-Tubular, . $015 \mathrm{ml}, 400 \mathrm{v}$ (C33)		
S.4545	Capacitor-Electrolytic, comprising one section of 20 mid , 400 volis, two sections of $10 \mathrm{~m} / \mathrm{d} .400$ volts, $2 n d$ one section of 20 mld .25 volts (C12A. C12B, C12C. C12D)	S. 4581	MISCELLANEOUS Back-Back cover for cabinet
S.454\%	Coil-"A", "B" and "C" bands antenna coil (L.1, L.2, L.3,	$\begin{aligned} & \text { S.4S82 } \\ & \text { S.4S83 } \end{aligned}$	Battle-Batfle board and grille cloth assembly Bezel-Dial bezel
S.4547	Control-Volume control, tone control and power switch (R10, R11, S5)	$\begin{aligned} & \text { S. } 4584 \\ & \text { S. } 4585 \end{aligned}$	Cabinet-Plastic cabinet Cover-Plastic dial cover
S.4313	Cord-Dial drive cord (approx. $45^{\prime \prime}$ required)	S. 4586	Dial-Glass aial scale
S. 4548	Cord-Pawer cord	S.4439	Emblem-Trademark emblem (RCA)
S.4549	Gear-Gear and hub for range switch shatt	S. 4500	Emblem-Trademark emblem (RCA Victor)
S. 4550	Gear-Gear and hub for range switch control shall	S. 4587	Grilie-Metal grille
S.4551	Lever-Range indicator lever and hub	S. 4588	Grommet-Rupber grommet lor chassis mounting
S.4552	Resistor-Fixed, composition. 560 ohms, 1 watt (R18)	S. 4503	Grommet-Rubbar grommet for speaker mounting
S.45S3	Resistor-Fixed, composition, 2200 ohms 2 watt (R19)	S. 4589	Indicater-Station selector indicator
S. 4554	Resistor-Fixed, composition, 10.000 ohms, $1 / 2$ watl (Ris)	S. 4590	Knob-Range switch knob
S.4555	Resistor-Fixed, composition, 18,000 ohms, 1 watt (R4)	S.4591	Knob-Volume control knob
S.4556	Resistor-Fixed. composition. 22.000 ohms, $1 \frac{1}{2}$ watt (R9)	S. 4895	Knob-Tuning control knob
S. 4557	Resistor-Fixed, composition, 82.000 ohms, ${ }^{1} 2$ wat (RS)	S. 4896	Knob-Tone control knob
S.4558	Resistor-Fixed, composition, 100.000 ohms, $1 / 2$ walt (R21)	S. 4897	Lamp-Dial lamp. Mazda type No. 44
S.4559	Resistor-Fixed, composition. 270.000 ohms $1 / 2$ watt (R17)	S. 4592	Platp-Dial back plate
S. 4560	Resistor-Fixed, composition. 330.000 ohms, 1's wall (R8)	S. 4593	Serew-Chassis mounting serew
S. 4476	Resistor-Fixed, composition, 470.000 ohms. 1/2 watt (R13, R16)	$\begin{aligned} & \text { S.4S11 } \\ & \text { S.4S9S } \end{aligned}$	Spacer-Melal spacer for speaker mounting Shield-Dial lamp shield

RCA MODELS 7QV5, QU68

Radio-Phonograph Combinations

Chassis No. RC-601 B
Mfr. No. 274

FOR INFORMATION ON RECORD CHANGER REFER TO SERVICE DATA FOR MODEL 960001

Service Data

$1948 \ldots \times 3$

RADIO CORPORATION OF AMERICA RCA INTERNATIONAL DIVISION
 745 FIFTH AVE., NEW YORK 22, N. Y.

Specifications

Frequency Ranges

Standard Broadcast ("A" Band)
Medium Wave (${ }^{\text {B }}$ Band)
"31-25 Meter", Spread Band
"19-16 Meter" Spread Band.
"13-11 Meter" Spread Band.

$$
\begin{array}{r}
540-1000 \mathrm{kc} \cdot(556-187 \mathrm{~m}) \\
2.45-6.3 \mathrm{mc} \cdot(122-47.7 \mathrm{~m}) \\
9.5-12 \mathrm{mc} \cdot(31.6-25 \\
15.1-18 \mathrm{mc})(19.8-16.6 \mathrm{~m}) \\
21.4-27 \mathrm{mc} \cdot(14-11.1 \mathrm{~m})
\end{array}
$$

Intermediate Frequency

Tube Complement

Power Supply Rating

Instruments of Rating C have a switch on the chassis to select 105-125 or 210-250 volt operation (switch marked $117 \mathrm{v} .-235 v$.). (Shippeg with switch in 235 v , position.)
Instruments are shipped for operation on 60 cycle power supply. They may be converted for 50 cycle operation by the addition of a conversion spring to the record changer motor (spring is supplied with the instrument).

Power Output Rating

Undistorted Maximum	5.2 watts 5.7 watts	
Loudspeaker (92569-3)		
Type... 12 in. PM		
V-C Impedance (400 c.p.s.) 2.2 ohms		
Cabinet Dimensions	70V5	OU68
Helsht	$321 /{ }^{\prime \prime}$	33*
Width	$291 /{ }^{\prime \prime}$	301 "
Depth	$1781 /$	18 \% ${ }^{\text {c }}$

Tuning Drive Ratio
Dial Lamp
Compartment Lamp
Indicator Lamp
$25: 1$ ($121 / 2$ turns of $k n o b$)
type 51. 6.3 volts, 0.2 amp .
1 type 55, 6.3 volts, 0.4 amp . 1 type $44,6.3$ volts, 0.25 amp .

MODEL 70V5

7QV5, QU68

Alignment Procedure

Cathode-Ray Alignment is the preferable method. Connections for the osculloscope are shown on the Schematic Diagram.

Test-Oscillctor--For all allgnment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a.v.c action.

Calibration Seale on Indicator-Drlve-Cord Drum.-The funing dial is fastened in the cabinet and cannot be used for reference during is fastened in the cabinet and cannot be used for reierence during alignment, therelore a calibration scale is attached to the indicator drive-cord drum which is mounied on the shalt of the gang condenser. The setting of the gang
which is calibrated in degrees.
As the first step in $\mathrm{r}-1$ alignment, check the position of the drum. The " 180° " mark on the drum scale must be vertical and directly over the center of the gang-condenser shaft when the plates are fully meshed. The drum is held to the shaft by means of iwo set screws, which must be tightened securely when the drum is in the correct position.

Pointer for Calibration Scale.-Improvise a pointer for the calibration scale by fastening a pieze of wire to the gang-condenser trame, and bend the wire so that it points to the " 180 ". mark on the calibration scale when the plates are fully meshed. The correct setting of the gang in degrees, for each alignment irequency, is given in the alignment table

Receiver Dial with Calibration Scale.-To determine the coresponding trequency for any setting of the calibration scales, refer to the dial with calibration scale drawing.

Dial-Indicator Adjustment.-After lastening the chassis in the cabinet, attach the dial indicator the drive cable with indicator at the end calibration mark, and qang condenser fully meshed. The indicator has a clip for attachment to the cable.

Spread-Band Alignment.-For spread-band allgnment an extremely high degree of accuracy is required of the test-oscillator, as a sligh error will produce considerable inaccuracy on the spread-band dials.

Determine the exact dial settings of the test-oscillator (for trequencies at or close to the specified alignment trequencies) by one of the following methods:

1. Zero-beat the test-oscillator against short-wave stations of known trequency
2. Check test-oscillator signals with a crystal controlled oscillator. A tinal check should be made on actual reception of short-wave stations of known trequency.

For additional information, reler to booklet "RCA Victor Receiver Alignment.

Step:	Connect the high side of the testosc. 10-	Tune tentose. to-	Turn Range Switch to	Turn Radio dial to-	Adjust the following for max. peal oulput
1	6 SG7 1. grid in seriea with 01 mfd .	455 rc	"A"Band	Qulet polat near 600 ke (1480)	L19, L18 2nd I. F trane.
2	6SA7 Det. grid in series with 01 mfd .				L17. L18. lst I.F trans.
3	Antonna termiral in series with 200 mmid .	1500 kc	"A" Band	$\begin{gathered} 1500 \mathrm{ke} \\ (100) \end{gathered}$	C22 osc. C7 ant.
4		600 le		$\begin{aligned} & 600 \mathrm{kc} \\ & \left(140^{\circ}\right) \end{aligned}$	$L 15$ osc. 110 ant.
5	Repeat Stepa 3 and 4				
-	Antenna terminal in series with 300 ohms	6.2 mc	"B" Band	$\begin{aligned} & 0.2 \mathrm{mc} \\ & \left(14^{\circ}\right) \end{aligned}$	C21 osc. C6 ant.
7		2.6 mc		$\begin{aligned} & 2.8 \mathrm{me} \\ & \left(1 \$ 2^{\circ}\right) \end{aligned}$	Lls ose. Lt ant.
*	Repeat Steps 6 and 7				
5		11.8 mc	" 31.25 Moter'	$\begin{array}{r} 11.8 \mathrm{mc} \\ (400) \end{array}$	C20 osc.* C5 ant. Rock in* ${ }^{*}$
10	Antenna terminal in serles with 300 ohms	8.5 me		$\begin{aligned} & 9.5 \mathrm{me} \\ & \left.(170)^{\circ}\right) \end{aligned}$	113 osc. $L 6 \mathrm{ant}$.
11		17.75 mc	"11.18 Moter" Band	$\begin{gathered} 17.75 \mathrm{me} \\ \left(40^{\circ}\right) \end{gathered}$	Cls osc.* C4 ant. Rock in ${ }^{*}$
12		15.8 me		$\begin{aligned} & 15.2 \text { me } \\ & \text { (1550) } \end{aligned}$	$L 12$ osc. 14 ont.
13		26.25 me	"13.11 Moter ${ }^{\text {P }}$ Band	$\begin{gathered} 26.25 \mathrm{mc} \\ \left.(48)^{\circ}\right) \end{gathered}$	Cll onc. C3 ont. Rock in**
14		21.35 mc		$\begin{gathered} 21.25 \mathrm{me} \\ \left(100^{\circ}\right) \end{gathered}$	Lll osc. L2 世ut.

Oscillator tracks above signal cn all bands.

- Use minimum capacity peak if two peaki can be obtained. - Use maximum capacity peak if two peaks can be obtained.
R. F. Wiring Diagram
(Bottom View)

SWITCHES VIEWED FROM REAR

7QV5, QU68

Tube and Trimmer Locations (Top View)

Critical Lead Dreas

1. The green and black leads to the Volume Control should be tightly twisted and dressed down towards the chassis away from the $110 / 220$ voll switch and away from the A.C. switch leade.
2. The A.C. switch leads should be twisted and dressed up avay from all other leade.
3. The capacitor (C33) trom the terminal board to Pin ± 2 of the 6SQ7 socket should be dressed down aqainst the chassis. The capacitor leads to be cut as short at possible.
4. The capacitor (C30) from the terminal borrd on the front apron to the high side of the Volume Control should be dresmed aqainst the front apron.
5. The capacitor (C8) trom Pin $\# 8$ of the 6SA7 socket to the range switch should be dressed away from the chassis, range awitch and coils
6. The capacitor and resistor assembly C9 and R3 should be dressed mid-way between the coils LI3 and LS and dressed away from all parts and leads.
7. The capacitor (C16) from the terminal bogrd, on end apron, to the trimmer strip. should be dressed against the end apron.

8. All leads and parts to the 6SA7 socket should have sufficient length to insure tlexibility of socket.
9. All resistor and capacitor leads thould be as short as pos aible.
10. All leads from the coll to range switch should be dressed away from each other and other parts.
All leads from the trimmer to range switch should be dressed away from coils and otber parts.
11. All excess power transformer leads should be dressed against the chassis and away from the tube sockets
12. The resistor (R12) trom Pin 41 to Pin z^{2} of the 6SQ7 socket hould be as short as possible.
13. The resistor (R20) from Pin 41 to Pin $\# 2$ of the 6AT6 socket should be as short as possible
14. All leade from range switch to stator section of gang should be dressed away trom each other and should center in the be dres
cut-out.
15. The leads to Pin $\# 2$, and $\# 4$ of the $65 A 7$ socket should be dressed down against the chasaln and behind the trimmer drip.
16. The lead from Pin \#3 of the 6SA7 socket to terminal "D" of the lst I.F Transformer should be dressed down aqainst the chassis and between the oscillator coils and trimmor strip.
17. The lead from terminal " F " of the lit I-F Transtormer to the Terminal board on end apron should be dressed behind the irimmer strip.
18. Brown and black leads to the electrolytic capacitor should be dressed away from green and black Volume Control leade.
19. Pilot lamp lead should be dressed against the chassis under all other leads to $110 / 220$ volt rwitch.

Reduced Reproduction of Receiver Dial, and Corresponding 0-180 Calibration Scales
The correrponding position of the dial indicator for any setting of the calibration scale can be determined by drawing a line from this point on the bottom calibration scale to the same poins on top calibration scale. For example l48 on the calibration scale corre. sponds to 600 kc on " \boldsymbol{R} " band, etc. Read instructions under "Alignment Procedure.

NOTE : In some sets on some replacement units, the power trans-
former color code may vary from that shown. On univergal transformers (Rating C), the primary No. 1 start may be red; primary No. 2 finish black/red. Secondsries would be: rectifier flament. green/red; high-voltage, brown; high-voltage center tap, black/
brown amplifer flament, blue. In case of doubt, identify windings by resistance or voltage measurements.

Replacement Parts

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\underset{\text { No. }}{\text { STOCK }}$	DESCRIPTION
	CHASSIS ASSEMBLIES	$\begin{aligned} & 31319 \\ & 9914 \\ & \mathbf{7 0 8 2 7} \end{aligned}$	Socket-Tube socket with mouncing plate Socket-Tube socket, minlature Socket - Tube socket, octal
35642	Calibrator-Drive drum calibrator	31418	Spring-Drive or pointer cord tension spring
71088	Capacitor-Ceramic, 0.68 mmf . (C8a) (8) ${ }^{\text {a }}$	38923	Support-Drive cord pulley support bracket complete with pulley-L H
72947 70932	Capacitor-Mica trimmer, dual 4-70 mmf. (C21, C22)	38924	Support-Drive cord puiliey support bracket complete
72948	mmf, and 1 section of $\mathbf{3} \mathbf{3 5} \mathrm{mmf}$, (C5, C6, C7) Capacitor-Ceramic trimmer. trlpie $8-50 \mathrm{mmf}$. (C18. C19, C20)	$\begin{aligned} & 35622 \\ & 72028 \end{aligned}$	Support-Tunine shaft and flywheel support Switch-Radio-phono switch (S6)
70745	Capacitor-Mica erimmer, comprising 1 section of $12-$ 160 mmf and 1 section of $4-70 \mathrm{mmf}\left(\mathrm{Cl}^{\mathrm{C4}}\right)$	70732 32827	Switch-Range switch (S1, S2. S3) Switch-Voltage change swilch (S4)
70935	Capacitor-Ceramic, 27 mmf . (C19a)	32852	Transformer-Power transformer. 105/125 or 210/150
70934	Capacitor-Ceramic, 39 mmf . (Ci3)		vransformer-First I, F. eransformer [T2 (C14, C15,
71924 39630		70917	Transformer-First 1. F. iransformer (T2 (C14, C.15, L16. L17) \|
39636	Capacitor-Mica. 220 mmf . (C8, C34)	70918	Transformer-Second I. F. transformer [T3 (L18, L19.
71932	Capactior-Mica, $\mathbf{5 1 0} \mathrm{mmf}$. (C24)		
72526 72222	Capacitor-Mica, 2000 mmf . (C.23) Capacitor-Moulded paper, 001 mfd.. 400 volts (C47)	33726	Washer-", washer to hold drive bracket
71592	Capacler-Moulded paper, . 002 mfd ., 200 volts (C33)	2917	
72221	Capacitor Moulded paper. $005 \mathrm{mfd} . .200$ volts (C 40)		
71587 71593	Capacitor-Moulded paper. 005 mid.. 600 volts (C10)		SPEAKER ASSEMBIIES
72220	Capacitor-Moulded paper, . $005 \mathrm{mfd} . .1000$ voles (C38, C39)		(R1. 103-3)
71594	Capacitor-Moulded paper. $015 \mathrm{mfd} . .200$ volts (C46)	13867	Cap-Dust cap
71585	Capacitor-Moulded paper, 01 mid , 200 volts (C30)	$3 ¢ 145$	Cone Cone complete with voice coil
72219	Capacitor-Moulded paper, . 01 mid.. 600 volta (C36. C37)	$\begin{aligned} & 71560 \\ & 71961 \end{aligned}$	Plus-5 proni male ilus for apeaker Speaker -12^{-1}. M, speaker complete with cone and
$\begin{aligned} & 71591 \\ & 71586 \end{aligned}$	Capacitor-Moulded paper. . 02 mfd .600 volts (C17) Capacitor-Moulded paper, . 05 mfd ., 200 volts (C16)		voice coil tess output transformer and plus
33195	Capacitor-Electrolytic. comprising 1 section of 20 mId . 450 volts; 2 sections of $10 \mathrm{mfd} ., 450$ volts: and 1 section of $20 \mathrm{mfd} ., 25$ voits (CllA, CilB, CilC: (illD)	37899	Transformer-Output transformer (T4) NOIE: if stampling on speaker does not agree with ahove spraker number, order replacement parts by
38201 70923	Clamp-Cord clamp Coll-Antenna coil, 13 meter hand (L1, L2)		referrins to model number of inserument, number
70924	Coil-Antenna coll, 19 meter band (L3, L4)		stamped on speaker and full description of part required.
70925	Coil-Antenna coll, 31 meter band (L5. L6)		
70926 70927			MISCPLIANFOUS
70920	Coll-Oscillator colt. 13 meter hand (L11)		
70823	Coll-Oscillator coll, 19 meter hand (L12)	72025	Bracket ludicator lamp hracket for Oltor
70825 70829	Coll-Oscillator coll, 31 meter band (L.13)	70590 36,461	Bracker lidicator lamp bracket for Button liue luton for 70 S
70789	Coil-Oscillator coil, "A" band (L15)	72455	Clanm -adicator glass ciamp
70727	Condenser--Varlabie tuning condenser (C1, C2. C12. C.25)	$\begin{aligned} & \times 1620 \\ & \times 1806 \end{aligned}$	Gloth firlite cloth for Ollf8 Gloth Grille cloth for 7015
70826 38409	Control-Volume control and power switch (R11, 85)	72023	(Cover Compartment lamplead cover ($2^{\prime \prime}$ long) (50.8 mim) for Oli6\%
38409 $\mathbf{3 8 4 0 5}$		7054	Cover-(iompartment lamplead cover ($31_{2}{ }^{*}$ long)
†72953	Cord-Drive cord (approz. 27 "overall length required)		(88.9 mm)
†72913	Cord - Indicator cord (approz. 47" oversill length required)	36155	Decal--Bass tone control decal
35627	Drum-Drive drum leas calibrator	35.387	Decal- Power switch decal
35638	Flywheet-Tuning knob shaft flywheei	36074 72448	Decat-Radio-phono nwitch decal
70429	Grommet-Rubber grommet to mount tube socket (2 required)	72448 72449	Decal- Trade mark decal (RCA-Victor)
70930	Grommet-Rubber grommet to mount varlable tuning condenser (4 required)	72451 .36156	Decal-Trade mark decal(RCA) Decai- Treble tone conitrol decal
30868	Plus-2 contact female plug for motor cable	35391	Decal-Tunind decal
12493 35641	Plup-5 contact female plug for speaker cable	72021 38928	Prame-Dlai frame complete less indicator and dial
30732	Resistor- 47 ohms, $1 / 2$ watt (R3)	72027	Glase-Indicator glass for QLer
38884	Resistor- 560 ohms, 1 watt (R19)	30698	Hinge-Cabinet ild hinge
72218	Resistor- 5600 ohms, 4 watts (R30)	36039	Indicator-Station selector Indicator
44294 36714		72024 70836	Knob-Range switch or phono switch knob
36714 30492		70836 5117	Lamp-Conipartment lamp Mazda \#55
30685		11765	Lamp-ilial lamp-Mazda \# 51
8064 3252	Resistor-82,000 ohms. I/ watt (R6)	11891 70546	Lamp-Indicator lamp-Mazda \# - for QUts8
3252 30651	Reslstor- 100.000 ohms. $1 / 2$ watt (R10) Resistor- $\mathbf{2 7 0 . 0 0 0}$ ohms. 1/ watt (R9. R15)	70546	Mountlng-One set of hardware for mounting record changer-consisting of four (4) upper aprings, four
30648	Resistor- 470.000 ohms, $1 / 1$ watt (R2. R14. R16, R18)		(4) lower springs and four (4) clamp nuts
30161	Resistor-820.000 ohms. $/ /$ watt (R27)	37800 72454	Shade-Lamp shade ${ }_{\text {Spring-Cabinet lid support spring for OUts }}$
30649 30992		${ }_{73026}$	Spring Cabinet lid support spring for 70 V 5
14350	Screw-\#8-32 square head set screw for drive drum	14270	Spring Retainine spring for knobs
70832	Shaft-Tuning knob shaft	72026	Strip-Metal strip moulding for OU6R
31364 35787	Socket-Lamp socket	72453 73025	Support - Cuhinet lid support for OU6R
35787	Socket-Phono Input cocket	73025	Support Cabinet lld support for 90V5

\dagger Stock No, 's 72953 and 72913 are reels contalning 250 ft . (76.2 meters) of cord.
Apply to your RCA Distributor for prices of replacement parts.

7QV5

Addition to Parts List:

Battery Personal Receiver Models 8B41, 8B42, 8B43

Chassis No. RC-1069, RC-1069A,
RC-1069B

Mfr. No. 274
Service Data

- 1948 No. 18 -

RADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

Specifications

Tuning Range .. 540-1600 ke	Batleries Required:		
Intermediate Frequency ... 455 ke	Type of Battery	Current Consumption	Approx. Lite (Intermittent Service)
Tube Complement:	"A"-1.5 volt ${ }^{\text {RCA }} \mathbf{}$ VS 036 or vs 001)	0.25 cmp .	7 to 10 hrs.
1. RCA 1R5 .. Converter	"B"-67.5 volts		
	RCA vs 016	8.5 ma .	40 to 60 hrs .
3. RCA IU5 ... 2nd Det.-A.F. Amp.-A.V.C.	Power Output:		
4. RCA 3S4 .. Output	Undistorted		0.05 wa
Loudspeaker (92523-4W):	Maximum		0.10 wat
Size and type ... $2^{\prime \prime \prime} \times 3^{\prime \prime}$ P.M.	Dimensions (overall)		$61 / 4^{\prime \prime} \times 43 / 8^{\prime \prime} \times 33 / 8^{\prime \prime}$
Voice coil impedance $113 / 4$ ohms at 1000 cycles	Weight (with batteries)		$31 / 2 \mathrm{lbs}$

Replacement Parts

$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\begin{gathered} \text { STOCI } \\ \text { No. } \end{gathered}$	DESCRIPTION
	CHASSIS ASSEMBLIES RC 1069-8B41, RC 1069A-8B42, RC 1069B-8B43	73938	Panel-Chrome and mahogany face panel Resistor-Fixed, composition, 820 ohms $\pm 10 \%, 1 / 2$ walt (R11) Resistor-Fixed, composition, 15,000 ohms $\pm 10 \%$, $1 / 2$
$\begin{aligned} & 73937 \\ & 70444 \end{aligned}$	Batlle-Speaker batle and grille eloth Board-Terminal board (5 contact)		Reslstor-Fixed, composition, 68,000 ohms $\pm 20 \%$, $1 / 2$
704	Board-Torminal board (1 contact)		watt (RS)
73947	Capacitor-Variable tuning capacitor ($\mathrm{Cl}, \mathrm{Cl}, \mathrm{C} 4$) Capacitor-Coramic, 4 mmi (Resistor-Fixed, composition, 100,000 ohms $\pm 10 \%$, $1 / 2$ watt (RI)
73962	Capacitor-Ceramic, 33 mmf . (C11)		Resistor-Fixed, composition, 1 megohm $\pm 20 \%, 1 / 2$ watt
73901	Capacitor-Coramic, 51 mmf . (C2)		(R9)
73963 56653	Capacitor-Coramic, 75 mml . (C14)		Resistor-Fixed, composition, 3.3 megohms $\pm 20 \%$, $1 / 2$ watl (R4, R10)
74093	Capactor-Coramic, 1500 mman . (C) 20)		Resistor-Fixed. composition. 4.7 megohms $\pm 20 \%$, 1/2
7396	Capacitor-Coramic, 01 mf . (C5)		watt (R3: R7)
72315 73961	Capacitor-Tubular, Capacitor-Tubular, , 002 mf m., 200 volts (Resistor-Fixed, composition, 10 megohms $\pm 20 \%, 1 / 2$ watt (R8)
7060	Capacitor-Tubular, 005 ml ., 400 volts (Cla)	73944	Screw-\#2-56 $\times 3 / 16^{\prime \prime}$ machine screw to hold lid hinges
7192	Capacitor-Tubular, 02 ml ., 200 volts (C17)		to face panel (2 required)
70615		73939	Screw-\#4.40 x 5/16" binder hoad machine screw to clamp speaker to face panel
70425	Clip-Spring clip for funing knob	73943	Screw-\#4-40 ${ }^{\text {a }} 3 / 16^{\prime \prime}$ binder head screw to tasten face
704	Coll-Oscillator coil (L1, L2)		panel to chassis (3 required)
$\begin{aligned} & 70452 \\ & 73948 \end{aligned}$	Connector-Loop connectors (1 set) complote with oyolets Control-Volum control (R6)	70446	Screw-\#6 $\times 1 / 4^{\prime \prime}$ hex head self-tapping serew to mount battery holder
73957	Fastoner-Push fastener to hold loop (2 required) for Model 8B4l-black	$\begin{array}{r} 70436 \\ 70423 \end{array}$	Socket-Tube socket Spacer-Rubber shock spacer (cemented to case center
73958	Fastener-Push fastener to hold loop (2 required) for Model 8B42-brown	73942	strip) Stud-Lid support stud (face panel end)
73959	Fastener-Push fastener to hold loop (2 required) for	73952 73953	Stud-L.H. lid hinge mounting stud Stud-R.H lid hinge mounting stud
70429	Grommet-Rubber grommet to mount tube support shelf (2 required)	70451	Support-Lid support complete with lid end mounting stud
73950 73951	Hinge-Lid hinge-L.H.-less mounting studs Hinge-Lid hinge-R.H.-less mounting studs	72230	Support-Tube support shelf lons tube sockets and trans-
72229	Holder-"A" battery holder	73945	Switch-Power switch (S1)
73941	Insulator-Loop connector insulator	70442	Transformer-First l.F. iranstormer (Tl [C6, C7])
73936	Knob-Calibrated funing knob	70437	Transformer-Second li.F. transformer (T2 [C12, C13])
73946	Knob-Volume control knob	70440	
73924	Lid-Case top lid complete with lid support and hinges -los: loop-Model 8B41-black		SPEAKER ASSEMBLIES 92523-4 W
73925	Lid-Case top lid complete with lid support and hinges -less loop-Model 8B42-brown	70428	Speaker-2" $\times 3^{\prime \prime}$ P.M. speaker complete with cone and voice coll
73926	Lid-Case top lid complete with lid support and hinges -less loop-Model 8B43-red	73965	Bottom-Case bottom-Model 8B41-black
73954	Loop-Antenna loop complete with connectors-less lid -Model 8B41-black	$\begin{aligned} & 73966 \\ & 73967 \end{aligned}$	Bottom-Case bottom-Model 8B42-brown Bottom-Case bottom-Model 8B43-red
73955	Loop-Antenna loop complete with connectors--less lid	70457	Catch-Spring catch assembly Conter-Case center complete with spring catch
73956	Loop-Antenna loop complete with connectors-less lid -Model 8 B43-red	73968 74022 7396	Handle-Carrying handle-Model BB4-black Handle-Carrying handle-Model 8B42-brown
73949	Nameplate-"RCA" nameplate for top lid	73969 73970	Hande-Carrying hande-Mod
73940	Nut-Speed nut to lock screw clamping speaker to face panel	73943	Screw-\#4-40 x $3 / 16^{\prime \prime}$ binder head screw to hold ease center

Fig. 1-Schematic Diagram

Fig. 2-Tube Shelf Wiring Diagram

Alignment Procedure

Output Meter.-Connect meter trom top lug of TB5 (plate of 3S4) to ground. Turn volume control to maximum position.

Test-Oscillator.-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v.c action.

Alignment Shield.-It is necessary to use a shield during oscillator alignment.
Fig. 3 shows the modifications necessary to convert the center strip portion of a case into a convenient shield to be used as a substitute tor the reqular case center strip during oscillator align. ment.

If a substitute case is not available, a shield may be improvised using a sheet of aluminum (DO NOT USE STEEL) to approximate the shielding effect of the case on the 15.5 tube, tuning condenser and oscillator coil.

CRITICAL LEAD DRESS

1. Dress blue, green, and black leads of second I.F. transformer as direct as possible. If excess lead exists, dress down side of socket and flat against chassis to iransformer opening.
2. Dress audio screen bypass capacitor (C17), and the lead to the volume control, up and underneath the shelf supporting the output iransformer.
3. Dress audio coupling capacitor (C15), directly in front of C17. and against the side of the lst I.F. transformer.
4. Wire in the three capacitors pyramided behind the speaker with enough space at the end of battery holder to allow holder to move when battery is replaced. Dress the ground leads of these capacitors to keep from shorting " $+A$ " to chassis ground.
5. Observe the outside foil connections on all paper capacitors, also the polarity of the electrolytic capacitor, C19.
6. Keep blue and red leads of output transformer above the mounting shelf.

Steps	Connect the high side of test osc. to-	Tune test. ose. to-	Turn radio dial to-	Adjust the following for max. peak output-
1	Connection lug of Cl located on rear of gang in series with .01 mf .	455 kec	$\begin{aligned} & \text { Quiel point } \\ & \text { near } \\ & 1.600 \mathrm{kc} \end{aligned}$	$\begin{gathered} \text { C12. C13 } \\ \text { 2nd I.F } \\ \text { frans. } \end{gathered}$
2				C6. C7 1st J.F trans.
3		Repeat steps 1 and 2		
4	-Antenna coupling loop	1.400 kc	14 Rock gang	C4 (osc.)
5		600 kc	${ }^{60} \text { Rock gang }$	LI (osc.)
6		Repeat steps 4 and 5		

7. Dress leads to gang as far as possible from all metal parts.
8. Dress neutralization bypass capacitor, C9, as near metal chassis as possible.
9. Dress bypass C5 over botlom end of V2 (IU4), tube socket.
10. Dress neutralization capacitor, C8, as near metal chassis as possible.

- Steps 4 and 5 require a coupling loop trom the signal gen erator to feed a signal into the receiver loop located in the lid. This loop should be loosely coupled to the receiver loop antenno so as not to disturb the receiver loop inductance.

Fig. 3-Alignment Shield

Fig. 4-Terminal Board Wirng

Fig. 5-Twbe and Trimmer Locations

Replacement of Component Parts

I. To remove bottom cover:
a. Depress locking spring clip through hole in top of case.
b. With spring clip depressed, pull cover carefully out and up off the retaining lugs in the bottom of the case center strip.
II. To replace batteries:
a. Remove bottom cover.
b. Remove, either or both, the " A " and " B " battery as may be necessary. The "B" battery snap fasteners can best be removed by inserting a screwdriver under the snap tastener strip and prying upward.
III. To remove the case center strip:
a. Remove bottom cover.
b. Remove one screw (A) on the inside at the handle end.
c. Tilt case center strip and lift.
IV. To replace tubes:
a. Remove boltom cover.
b. Remove " B " battery.
c. Remove case center strip.
d. Remove and replace tubes as required.
V. To remove tace panel from chassis plate:
a. Remove dial knob (pull oft).
b. Remove bottom cover (I), batteries (II) and case center strip (III).
c. Unsolder leads to loop connectors.
d. Remove the tour Phillips head screws (B) located at three corners and end close to
e. The face panel may now be folded back into the case top lid.
VI. To remove speaker:
a. Remove face panel (see item V).
b. Unsolder voice coil leads.
c. Remove iwo Phillips head screws (C) on chassis plate holding speaker.
VII. To remove output transformer:
a. Remove speaker (see item VI).
b. Unsolder transformer leads.
c. Remove rivet (use bolt for replacement).
d. Unsolder mounting lug.
VIII. To remove chassis subassemblies from chassis plate:
a. Remove tubes (see item IV).
b. Unsolder grounding strap (E) which connects tube shelf to -hassis plate.
c. $U_{n}{ }^{\circ}$ older two wires which connect to speaker.
d. Unsolder two wires attached to switch.
e. Unalder leads to loop connectors.
f. Remove dial knob (pull oft).
g. Remove two screws (F) holding tube shelf to chassis plate.
h. Hemove nut (G) between I.F. transformers.
i. Remove screw (G) beneath the negative terminal of " A "
i. Remove screw (G) beneath the negative erminal ol aldery holder, and also screw (G) adjacent to volume control below "A" battery holder.

Fig. 6-Chassis Disassembly

1X. To remove volume control:
a. Remove chassis subassembly from chassis plate (see item VIII).
b. Unsolder the iwo leads to the " A " battery holder.
c. Lift up the " A " battery holder by removing the one screw (C) in its base. This holder has a hinge action and musi be lifted up and back to remove.
d. Unsolder volume control leads.
e. Remove volume control knob (attached to shaft with set screw)
4. Remove volume control assembly by bending back four lugs.
X. To remove oscillator coil:
a. Same procedure and steps as covered in item VIII for re. moval of chassis subassembly plus the following.
b. Unsolder oscillator coil leads.
c. Remove coil by unsnapping spring mounting clips from angle bracket.

X1. To remove tuning condenser:
a. Remove case center strip (lll).
b. Unsolder two leads and two ceramic capacitors (C2, C20) from tuning condenser.
c. Remove luning knob (pull oft).
d. Remove the two screws (H) (accessible through dial knob opening) which hold the tuning condenser to the chassis subassembly.
XII. To remove lst l-F transtormer:
a. Remove chassis subassemblies (see item VIII).
b. Unsolder tour leads from lst I-F transformer.

1. Blue to screen of 1R5 tube.
2. Green to grid of lU4 tube.
3. Red to $\mathrm{B}+$ terminal of 5 lug terminal board TB5.
4. Black to terminal board TB2.
c. Unsolder and bend mounting lugs straight on the $1 \cdot F$ transformer can.

XIIl. To remove 2nd I-F Transtormer:
a. Remove chassis subassemblies (see item VIII).
b. Unsolder tour leads from 2nd I.F transformer.
c. Unsolder and bend mounting lugs straight on the I.F transformer can.
XIV. To remove loop assembly:
a. Remove case center strip (see item III).
b. Unsolder leads to loop connectors.
c. Remove snap fasteners holding loop in cover.
d. Carefully pry out on edge next to catch (opposite hinges).
e. When reassembling press loop assembly into top lid on the side next to the connectors to cause the plastic projections on the loop assembly to engage in the detents in the top lid.
XV. To remove witch:
c. Remove case center strip (III).
b. Remove screw (I) which holds switch to chassis plate.
c. Unsolder the two wires which conned to the switch.
d. Unsolder switch from chassis plate.
XVI. To adjust latching of top lid:
a. The hinges are attached to the face panel with Phillips head screws (one to each hinge). The mounting holes of the hinges are sufficiently large to permit adjustment of the hinges when the mounting

Fig. 7-Chassis Disassembly

Model 8BX54

Model 8BX5 5

AC-DC Operation

This receiver will operate on 105 to 125 volts, AC 50 or 60 cycles, or DC.

A power cord is stored inside the cabinet. To open the cabinet, push upward on the two metal ball catches at the top rear of the cabinet. Remove the plug of the power cord from its socket on the chassis and insert the plug into a convenient electrical outlet. A slot in the bottom of the back cover allows the back to be closed with the cord passing through.

NOTE: If reception is not obtained on $D C$, reverse plug in outlet receptacle. This may also reduce hum on AC operation.

When returning to battery operation replace the plug in the socket provided on the chassis, roll up the cord and place under the raised portion of the battery holder bracket.

NOTE: Make certain that the plug is fully inserted (base of plug touching chassis) to assure proper operation of the Batt-Line switch.

AC-DC-Battery Portable Receivers 8BX5, 8BX54, 8BX55

Chassis No. RC-1059-1st. Production
Chassis No. RC-1059A-2nd. Production
Mfr. No. 274

Service Data

- 1948 No. 4-

RADIO CORPORATION OF AMERICA

RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

Specifications

Frequency Range . 540-1,600 kc
Intermediate Frequency . 455 kc
Power Supply Rating
110 to 125 volts, AC 50 or 60 cycles, or DC . . . 18 watts
Batteries required. One RCA Battery Pack VS050
Tube Complement
(1) RCA -1 R5

Converter
(2) RCA-1T4
I. F.-Amplifier
(1U4 in RC-1059A)
(3) RCA-1U52nd Det. AVC. \& A.F.-Amplifier
(4) RCA-3V4 Power Output
(5) RCA-117Z3 Rectifier

Current Consumption

Battery Operation. "A" 60 ma., "B" 10 ma .
(Average life of RCA VS050 Battery
100 hrs . intermittent service.)
Total Rect. Current (117 volt, 60 cycle) 60 ma.
Power Output (AC Operation)
Undistorted 15 watt
Maximum 25 watt (Output is slightly lower on battery operation)

Loudspeaker 4 in. P.M. 3.4 ohms at 400 cycles

Cabinet Dimensions

Height. $9^{1 / 1 / 2}$ in. Width..... 11 in. Depth..... 5 in.

CAUTION.-

Do not remove any tubes from the chassis with the set operating and the plug connected to the power line. Damage to tubes may result.

NOTE: These instruments are designed to be operated with a battery in position inside the cabinet. Reception will be below normal unless the battery is in its norinal location. A substitute may be used-see page 2.

Alignment Procedure

Cathode Ray Alignment is the preferable method. Connections for the oscilloscope are shown on the schematic diagram.

Output Meter Alignment.-If this method is used, connect the meter across the voice coil and turn the receiver volume control to maximum.

Test Oscillator.-For all alignment operations, connect the low side of the test oscillator to the receiver chassis and keep the oscillator output as low as possible to avoid AVC action.
Battery operation of the receiver is preferable during alignment: on AC operation an isoiation transformer ($117 \mathrm{v} . / 117 \mathrm{v}$.) may be necessary for the receiver if the test oscillator is also AC operated.

NOTE: Battery or substitute must be in place for ant. alignment (step 5).

Alignment Tabulation

Step	Connect high side of test oscillator to-	Test oscillator output-	Turn receiver dial to-	Adjust for maximum peak output
1	Disconnect loop-remove chassis-remove bottom plate, connect a $10,000 \mathrm{ohm}$ resistor from Cl stator terminal to tuning condenser frame.			
2	Stator terminal of Cl thru 01 mf. capacitor	455 kc	55	*Top and bottom T2 (2nd. 1-F trans.) "Top and bottom Tl (1st. I-F trans.)
3	Remove the 10,000 ohm resistor. Replace bottom cover and install chassis in cabinet. Re-connect loop.			
4	Short wire placed near receiver (for radiated signal)	1600 ke	160	$\dagger \mathrm{C} 5$ (ose.)
5		1400 kc	140	+C2 (ant.)
6		600 kc	60	-L2 (osc.) while rocking gank
7		Repeat steps 4,5 and 6		

NOTES:
*The magnetite cores of L2 and some T2 and T1 do not have visible adjusting screws. The cores have screw driver slots to permit adjusting screws. The coallic screwdriver).
Adjustable thru hole in side of case which is accessible after unfastening one end of the carrying handle.

Critical Lead Dress

1. Dress output plate bypass C20 capacitor against chassis
2. Dress output plate lead to output transformer against chassis.
3. Dress audio coupling capacitor C 14 (volume control to grid of IU5) away from chassis, away from audio limiting resistor $R 8$ and to permit adjustment of second I.F. Transformer.
4. Dress all exposed leads away from each other, and away from chassis to prevent short circuits.
5. Dress all filament and ground leads against chassis.
6. Dress filament bypass capacitor C23 and accompanying compensating resistor R15 (volume control to IT4 [or 1U4] socket) against volume control.
7. Dress power line cord away from line-battery switch mechanism.
8. Dress all capacitors and wiring away from oscillator. coil.
9. Dress 4 mmf. neutralizing capacitor C7 against A.V.C. bypass capacitor C8 (IT4 [or 1U4] filament to first I.F. trans.).

Substitute for Battery:

The position of the battery pack affects the loop inductance. Therefore, when the battery is removed, the loop inductance will change (increase) and the sensitivity will be slightly worse because of improper electrical tracking of the loop circuit with the heterodyne oscillator.

Where a battery is temporarily unavailable, a sheet of aluminum $81 / 2^{\prime \prime}$ long $\times 35 / 8^{\prime \prime}$ wide and from .020 to $.050^{\prime \prime}$ thick may be placed in the cabinet in the position occupied by the battery so that it is lying flat down on the bottom. This sheet of aluminum has an effect on the loop inductance similar to the effect caused by the battery and will, therefore, return the performance of the loop to approximately the same as obtained when a battery is installed. If aluminum is not available, brass may be substituted with approximately the same performance. DO NOT USE STEEL OR IRON since the performance will be adversely affected. If desired, the sheet of aluminum may be waxed to the inside bottom of the case. DO NOT PLACE ANY WAX, CEMENT OR OTHER MATERIAI. ON THE LOOP WINDINGS.

Insulating Washers:

The tuning condenser is insulated from the chassis with an insulating plate and insulating washers (rubber grommets in Chassis No. RC-1059A). In servicing make certain that these are in place and properly positioned.

1-F Alignment:

It has been found that the value of resistor (10.000 ohms) and capacitor (.01 mf) specified to be used for use during I-F alignment results in mis-alignment (1 to 1.5 kc) of the lst l-F primary.
For more accurate alignment, it is suggested a 1000 ohm resistor and a 39 mmf capacitor be used during $1-F$ alignment.

RC-1059-SCHEMATIC DIAGRAM-Ist. Production

APPROX GAIN OATA USING CHANALYST

To Remave Carrying Handle

1. Pull off the volume control knob.
2. Insert a small knife blade between one side of a spring clip and the cabinet as shown below, push upward on the slip shield to disengage the locking of the slip shield to the spring clip. Repeat this procedure on the other side of the spring clip. The slip shield may then be removed by pushing it upward thus disengaging it from the spring clip.
3. Repeat step 2 for each slip shield.
4. Remove the four screws (2 on each side) which hold the carrying handle to the case.
Caution: When re-assembling-make certain that the slip shield and the spring clip is assembled with their locks in the correct relation to each other.

To Remove Chassis

1. Pull off the volume control knob.
2. Close tuning condenser (dial at 55) to prevent possible damage to tuning condenser.
3. Remove dial knob by grasping both sides with the tips of the fingers of both hands and pull to the front -or-close the tuning condenser, open the back, reach in and push outward on the hub of the dial knob. NOTE: When re-assembling-press inward on the back of the tuning condenser and on the front of the knob to properly seat the hub on the shaft.
4. Remove the two slip shields on the R.H. side of the cabinet (opposite the volume control) and unfasten the end of the carrying handle using the procedure described under, "To Remove Carrying Handle."
5. Unsolder the loop leads.
6. Remove the two screws holding the bottom edge of the speaker to the cabinet.
7. Remove the plug from the battery.
8. Remove the two screws at the top of the cabinet while supporting the chassis with one hand.
NOTE: When re-installing-replace speaker holding screws first but do not securely tighten until the two screws at the top of the cabinet have been tightened.

The cabinet hinges may be readily removed, they are secured to the cabinet and back by force fit. To remove back from cabinet-pull straight outward on both hinges at the same time.

Replacement Parts-1st. Production

Replacement Parts-2nd. Production

STOCK	DESCRIPTION	$\begin{aligned} & \text { sTOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
No.	CHASSIS ASSEMBLIES RC 1059A		Resistor-Fixed composition, 10 megohms, $\pm 10 \%, 1 / 2$ watt (R21) Resistor-Fixed composition, 15 megohms, $\pm \mathbf{2 0 \%}, 1 / 2$ watt
73153	Capacisor-Ceramic, 4 mmF . (C7)		
71924	Capocitor-Ceramic, 56 mmf . (${ }^{\text {a }}$ (C	73103	
73152	Capacitor-Ceramic, 100 mmf (200 volts ($\mathrm{C} 14, \mathrm{Cl} 8$)	73117	
72315		71039 73129	Switch-mine-First 1.F. transformer (T))
71921	Capacitor-Tubular, 000 mfd., 400 volis (C20)	7319 73130	Transformer-Second 1.F. transformer (T2)
72791 71923	Capacitor-Tubular, 01 mfd , 200 volts (C17)	71047	Transformer-Output transformer (T3)
71928	Capacitor-Tubular, 02 mfd ., 200 volts ($\mathrm{Cl6}$) ${ }^{\text {c }}$ (23)		
72596			
70615	Capacitor-Tubular, $051 \mathrm{mfd} \mathrm{\prime}, 200$ volts (C10)		-1
73784			Gasket-Speaker gasket (black tubing)
736127	Capacitor-Electrolytic, comprising 1 section of 50 mtd voles; 1 section of $30 \mathrm{mfd}, 150$ volts and 1 section of $160 \mathrm{mfd} ., 25$ volts (C19A, C19B, C19C)	73123	Speaker-4" PM speaker complete with co MISCELLANEOUS
73935 73114	Clip-Mounting clip for 1.F , rranstormers and ath (12, 13)	73134	Back-Cabinet back-less hinges-Madel 88×5
73126		73721	Back-Cabinet back-less hinges-Model 88×54
73125	Control-Volume control and	73723	Back-Cabinet back-less hinges-Madel oover latch mechanism
70022	Cord-Power cord and plug for mounting iuning condenser	73147	Ball-Metal bail with groove fock (with groove for link)-less
72283	Grommet-Rubber (3 required)	73137	(2 required)-fits on top of cabinet fiber insert (2 required)-hirs on to
73275 73237	Resistor-Wire wound, 33 ohms, 150 MA (R20) ohms, $\pm 10 \%, 1 / 2$ wa	73136 73142	Button-Center button for dial knob Button-Station selector indicator button
	Resistor-Fixed composition, 1000 ohms, (R3, R5, R15) Resistor-Fixed composition, 1200 ohms, $\pm 10 \%, 1 / 2$ watt (R14) Resistor-Fixed composition, 2200 ohms, $\pm 10 \%, 1 / 2$ watt (R18)	Y1464 Y2016 Y2017	Case-Carrying case complete with loop-less meshonism, back complete with loop-less hinges, back cover, latch mechanism and carrying handle -Model 8BX54 Case-Carrying case complete with loop-less hinges, back cover, lateh mechanism and carrying handic -Modal 8EX55 lateh mech
	Resistor-Voltage divider, 2200 ohms, 7 watts (R17) composition, 15,000 ohms, $\pm 10 \%, 1 / 2$ watt	70425	Clip-Spring clip for slip shield ($4 \mathrm{req}{ }^{\prime} \mathrm{d}$)
73132	Resistor-Fixed composition, (R16)	73195 73143	Handle-Carrying handle-Model 88X5
	Resistor-Fixed compositio	73724	Handle-Carrying handle-Model 8BX54
	(R9)	73725 74185	Handle-Carrying handie-Moded) Hinge-Cabinet hinge (2 required)
		74189 73145	Insert-Fibre insert for chassis mounting block (2 requirsa)
	Resistor-Fixed composition, (R8)	$\begin{aligned} & 73135 \\ & 73138 \end{aligned}$	Knob-Dial knob complere wower switch knob
	Resistor-Fixed composition, 220,000 ohm	73459	Link-Carrying handle retaining link (2 requ
	(R11) Resistor-Fixed composition, 1 megohm, $\pm 20 \%, 1 / 2$ woll	73141 73145	
	Resistor-Fixed composition, 2.7 megohms, $\pm 10 \%, 1 / 2$ watt (R13)	73139	Shield-Slip shield for carrying strap (boltom R.H. and L.H. and upper L.H.)
	(R4) Resistor-Fixed composition, 4.7 megohms, $\pm 20 \%, 1 / 2$ watt	73140	Shield-Slip shield for carrying control shaft (upper R.H.)
	Resistor-Fixed composition, 4,7 megohms, $\pm 10 \%, 1 / 2 \mathrm{watt}$ (R12) (R6)	30900 73146 73148 73483	Spring-Retaining spring for dial knob Spring-Extension spring for back cover latch mechanism-1.H. Spring-Extenible drop support for back cover
	Resistor-Fixed composition, 6.8 megohms, (R2)		

APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS

LINE-BATT. Switch:

The LINE-BATT. switch used in these receivers is of the "slide" type. The actual swith does not have numbered terminals al though the schematic diagrams have numbers indicated. The

13T. PROD. CHASSIS NO. RC•1OS9
numbers on the schematic diagrams do not indicate the actual sequence of the terminals on the switch. The illustrations below show the actual sequence of the switch terminals and the corre sponding numbers which appear on the schematic diagrams.

2ND. PROD. CHASSIS NO RC-1059A

rca Victor MODEL 8BX6

Model 8BX6

Specifications

Frequency Range
540-1,600 kc
Intermediate Frequency
455 kc

Power Supply Rating

110 to 125 volts, AC 50 or 60 cycles, or DC 18 watts
Batteries required
One RCA Battery Pack VS019 or equivalent
Tube Complement
(1) $\mathrm{RCA}-1 \mathrm{~T} 4$
R.F.
(2) RCA-1R5
Converter
(3) RCA—1T4 Amplifier
(4) RCA-1U52nd Det. AVC. \& A.F.-Amplifier
(5) RCA-3V4 Power Output
(6) RCA—117Z3 . Rectifier

AC-DC-Battery Portable

Chassis No. RC-1040C
Mfr. No. 274

Service Data

- 1948 No. 2-

RADIO CORPORATION OF AMERICA
 RCA VICTOR DIVISION
 CAMDEN, N. J., U. S. A.

Current Consumption

Battery Operation............"A" 50 ma., "B" 13 ma (Average life of RCA VS019 Battery 125 hrs . intermittent service.)
Total Rect. Current (117 volt, 60 cycle) 61 ma .

Power Output

Undistorted . 150 watt
Maximum . 275 watt
Loudspeaker. 4 in. P.M. 3.4 ohms at 400 cycles
Cabinet Dimensions
Height. . $13^{1 / 2}$ in. Width. . $9^{1 / 2} \mathrm{in}$. Depth. . $5^{1 / 2} \mathrm{in}$. CAUTION.-

1. Do not remove any tubes from the chassis with the set operating and the plug connected to the power line. Damage to tubes may result.
2. When cleaning the aluminum portion of the case use soap and water or cleaning fluid. Do not use abrasive cleansers.

Using External Loop.-

A loop antenna is mounted inside the cabinet. Under normal conditions this will give satisfactory reception. If however, the receiver is used in a shielued compartment such as an automobile, airplane or railroad train, an RCA VICTOR EXTERNAL LOOP ANTENNA can be used.
This external loop antenna has a strap connector cord with identical wo prong plugs on either end, this makes it convenient in connecting it to the circuit through the receptacle located in the left hand side of the chassis.
Open the case, plug the external loop anlenna cord into the socket (it will only go in one way), bring the strap out through the slot in the case and attach the external loop antenna by means of the suction cup to any convenient vertical surface.
This external loop antenna can be stored in the cablnet, in the com partment below the battery pack, and the cord in the small compart ment in the lower right hand corner of the cabinet.

Insulating Washers:

The mounting bracket and dial frame are insulated from the chassis with insulating washers. This serves to insulate the case from the chassis. In servicing make certain that these washers are in place and properly positioned.

To Remove Chassis from Cabinep:

1. Disconnect battery plug and remove battery.
2. Disconnect antenna in cabinet.
3. Remove the two screws in the top of the cabinet (beneath handle).
4. Remove the two battery clips.
5. Remove the chassis from the cabinet.

To Remove Speaker:

1. Remove tubes 3 V 4 and $1 \mathbf{U} 5$.
2. Remove the three screws " B " holding power cord bracket assembly and remove bracket.
3. Remove the three screws " A " holding speaker bracket assembly.
4. Disconnect voice coil leads.
5. The speaker and speaker bracket may now be removed.

AC-DC Operation.-
This receiver will operate on 105 to 125 volts, AC 50 or 60 cycles, or
A power cord is stored in the fiber tube which is clamped above the chassis inside the cabinet. To open the cabinet, push the wire latch on the bottom of the case to the right, and raise the back the socket on the its hinges. Then pull the power cord plug out of the power cord. A slot in the bottom of the cabinet allows the closing of the cabinet with the power cord passing through Clows the cabinet with the cord extending through the slot and insert the plug into with the cord extending thr cunvenient electrical outlet.
When returning to battery operation, be sure to replace the power plug in its socket inside the case with the cord stored in the fiber tube.
NOTE. If reception is not obtained on $D C$, reterse piug in oulet receptacle. This may also reduce hum on AC operation.

Alignment Procedure

Cothode Roy Alignment is the preferable method. Connections for the oscilloscope are shown on the schematic diagram.

Output Meter Alignment.-If this method is used, connect the meter across the voice coil and turn the receiver volume control to maximum.

Test Oscillator.-For all alignment operations, connect the low side of the test oscillator to the receiver chassis and keep the oscillator output as low as possible to avoid AVC action.

Battery operation of the receiver is preferable during alignment : on AC operation an isolation transformer (117v./117v.) may be necessary for the receiver if the test oscillator is also AC operated.

Colibration Scole.-The calibrated dial scale is attached to the chassis. It can be used directly as a reference for alignment.

With the gang at full mesh set the dial pointer so that the pointer is in line with the left hand vertical of the first figure 5 of the figures 55 on the dial scale as illustrated below.

Alignment Tabulation

Stops	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to-	Adjust for peok oupput
1	Pin No. 6 of 114 I.F. Amplifier thru . 01 mfd .	455 kc	Quiet point near 1600 ke	$\begin{aligned} & \text { 2nd I.F. Trans. } \\ & \text { L8, } 19 \\ & \text { top } \dagger \text { \& botrom } \end{aligned}$
2	Pin No. 6 of IR5 Converter thru .01 mfd .			1sp I.F. Trans. 16. 17 top $\mid \&$ botiom
3				2nd I.F. Trans. 18 bottom con
4	High side of loop (Bluolead) in series with .01 mfd . Bottom shield cover in place	1600 kc	1600 kc	C11 (osc.)
5		1400 kc	1400 kc	Clo (r.f.)
6		600 ke	600 kc	$\begin{aligned} & 1.4(\text { osc. }) \\ & 13(r . f .) \end{aligned}$
7	Repeat steps 4,5 and 6			
B	Short wire placed near loop. (Chassis in cabinet and internal loop connected)	1400 kc	1400 kc	Clit (loop) (Cabinet closed)

\dagger Two peaks may be found, the correct peak is that with the core in the outer position (counter-clock wise).
tf Accesslble thru slot in case provided for cable of external loop. NOTE: Adjustments L8, L9, L6, L.7, L4 and L3 do not have visible adjusting screws. The magnetite cores have a serew driver slot to
permit adjustment (use non-metallic screw driver).

Critical Lead Dress

1. Dress all filament leads next to chassis.
2. Keep the leads short on the end of the three components which connect to the grid terminal (\#6) of the r.f. socket. (R-1, R-2, C-2).
3. Keep lead to center section of gang as short as possible.
4. Dress loop leads away from tuning drum and battery.
5. Dress lead to pin \#4 of 1U5 tube away from other wiring.
6. Dress r.f. plate lead away from r.f. grid circuit.
7. Dress components and wiring near external loop socket to clear external loop pins.
8. Dress avc lead away from 2nd IF transformer and associated components.
9. Dress converter plate lead away from chassis and away from output leads.
10. Dress output leads up and away from other wiring.
11. Dress neutralizing capacitor C36, flat against chassis.
12. Dress 1 st audio plate lead up and away from other wiring.
13. Dress 33 ohm resistor (R3) over bottom of rectifier socket and clear of other wiring.
14. Dress R.F. tube plate lead slightly away from chassis base.

Dial-Indicator and Drive Mecbanism

Dial Pointer Setting

8BX6 (RC-1040D)

Service Data:

Model 8BX6 using Chassis No. RC-1040D is identical to those using Chassis No. RC-1040C except that the external loop antenna socket is omitted on RC-1040D

Capacitor Substitution:

In some chassis C 23 is .003 mfd instead of .0025 as specified

+Stock No. 72953 is a reel containing 250 feet of cord.
APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS

Change in Parts List:

Add:
71040 Socket-2 contact female socket for external loop

LINE-BATT. Switch:

The LINE-BATT. switch used in these receivers is of the "slide" type. The actual switch does not have numbered terminals although the schematic diagrams have numbers indicated. The numbers on the schematic diagrams do not indicate the actual sequence of the terminals on the switch. The illustrations below show the actual sequence of the switch terminals and the corresponding numbers which appear on the schematic diagrams.

8BX65 (RC-1040C)

Service Data:

The Service Data previously issued for Model 8BX6 will apply to Model 8BX65. The orly difference is in the finish of the metal case parts. 8 BX 65 has a gold finish. Replacement parts are identical excent for the following which are used on Model 8BX65 only.
Stock No. Description
73879 . Back-Case back complete with center strip, feet and spring latch
73878 Front-Case front complete-less shut-
73875 Link - Carrying handle link group; consisting of two links, two shafts and four drive screws. (two groups required)
73876 Screw-No. $8.32 \times 5 / 16^{\prime \prime}$ screw to hold case together (located under carrying handle two required)
73877 Shutter-Case shutter

Chassis No. RC-1037B Mfr. No. 274

and CV45 Electrifier

Chassis No. RS-1001 Mfr. No. 274

Service Data

-1948 No. 15-

RADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION
CAMDEN, N. J., U.S. A.

Loudspeaker
Type 922058-2
$+x 6$ inch PM
V.C. impedance at 400 cycles
3.t ohins

Power Supply
(1) RCA Battery Pack-V'S0:2
"A" Battery, $1 \frac{1}{2}$ volts, Drain- 0.94 amperes.
"B" Battery, 90 volts, Drain-10.5 ma.
(2) Eilectrifier-(CV-45)

105 to 125 volts, 60 cycles. AC
Cabinet Dimensions
Height 07 \%in in. Width..... $17_{m}^{7} \mathrm{in}$. Depth.....9! in.

Replacement Parts

Stock No.	DESCRIPTION	Stock No.	DESCRIPTION
	CHASSIS ASSEMBLIES	70390	
	RC 1037 B	71403	Transformer-First I.F. transformer (T1)
	RC 1037B	71400	Transformer-Second I.F. transformer (T2)
73884	Capacitor-Variable tuning capacitor (C11, C11a. C12, C12a)	71047 33726	Transformer-Output transformer (T3) Washer-"C'" washer for tuning knob shaft
73901	Capacitor-Ceramic, 51 mmf . (C10)		
39630	Capactior-Mica, 120 mmf . (C8, C9)		SPEAKER ASSEMBLIES
72571	Capacitor-Mica, 330 mmf . (C4) ${ }_{\text {capacitor }}$ Tubular, $002 \mathrm{mfd}$.600 volts (C3)		922258.2
70622	Capacitor-Tubular, $002 \mathrm{mfd}, 600$ volts (C3)		
70606	Capacitor-Tubular, $005 \mathrm{mfd},$.400 volts (C5, C6)	71058	Speaker-4" $\times 6^{\prime \prime}$ elliptical P.M. speaker complete
70617	Capacitor-Tubular, $0.1 \mathrm{mfd} ., 400$ volts (C1)		with cone and voice coil
38593	Capacitor-Electrolytic, $10 \mathrm{mfd}$.990 volts (C7)		
71404	Coil-Antenna coil complete with adjustable core and stud (L1, L2)		MISCELLANEOUS
71401	Coil-Oscillator coil complete with adjustable core and stud (L3, L4)	$\begin{array}{r} 70398 \\ \times 1660 \end{array}$	Clamp-Dial clamp (2 required) Cloth-Grille cloth
71168	Control-Volume control and power switch (R9, S1)	- 73888	Dial-Class dial scale
†72953	Cord-Drive cord. (approx. 52" overall length required)	$\begin{aligned} & 39002 \\ & 70473 \end{aligned}$	Foot-Rubber foot (4 required) Knob-Tuning knob
72283	Grommet-Rubber grommet to mount tuning condenser (3 required)	71164	Knob-Volume control knob
73886	Indicator-Station selector indicator	72649	Motif-Decorative motif Nut-Speed nut to fasten motif
73885	Plate-Dial back plate complete with pulleys, less dial	30900	Spring-Retaining spring for knobs
71162	Plug-Battery shorting plug- 3 prong male		
30550	Plug-4 prong male plug for battery cable Resistor-Fixed, composition, 470 ohms, $\pm 20 \%$, $1 / 2$ watt (R4)		$\begin{aligned} & \text { CV. } 45 \text { ELECTRIFIER } \\ & \text { RS. } 1001 \end{aligned}$
	Resistor-Fixed, composition, 68,000 ohms, $\pm 20 \%$, $1 / 4$ watt (R2) Resistor-Fixed, composition, $220,0 c ̌$ shms, $\pm 20 \%$.	71840	Capacitor-Electrolytic, dual, 2,000 mfd., 6 volts (C3, C4)
	$\begin{aligned} & 1 / 2 \text { watt (R1) } \\ & \text { Resistor-Fixed, composition, } 1 \text { megohm, } \pm 20 \%, 1 / 2 \end{aligned}$	71844	Capacitor-Electrolytic, dual, 20 mfd., 150 volts (C1. C2)
	watt (R5)	35069	Fastener-Push fastener for bottom cover
	Resistor-Fixed, composition, 2.2 megohm, $\pm 20 \%, 1 / 2$	71838	Reactor-Filter reactor
	watt (R6)	71839 72787	Rectifier-Rectifier complete with mounting bracket
	Resistor-Fixed, composition, 3.3 megohm, watt (R3)	12453	Resistor-27 ohms, $1 / 4$ walt (R1)
	Resistor-Fixed, composition, 10 megohm, $\pm 20 \%$, 1/2	30788	Resistor - 4,700 ohms, 1 watt (R2)
	watt (R7, R8)	71841	Socket-3 contact female socket
73887	Shaft-Tuning knob shaft	31027	Socket-4 contact female socket for battery cable
70377	Shield-Shield for 1A7CT tube	37605	Socket-Tube socket
$\begin{aligned} & 71163 \\ & 37605 \end{aligned}$	Socket-Battery shorting socket-3 contact female Socket-Tube socket	71837	```Transformer-Power transformer, 117 volt, 60 cycle (T1)```

Alignment Procedure

Output Meter Alignment.-Connect the meter across the voice coil and turn the receiver volume control to maximum.

Test Oscillator.-Connect the low side of the test oscillator to the receiver chassis, and keep the output low to avoid AVC action.

Pre-Setting Dial.-With gang condenser in full mesh, the pointer should be set at the left-hand end dial calibration mark.

Steps	Connect high side of test oscillator to-	Tune test oscillator to-	Turn radio dial to-	Adjust for maximum output
1	IN5GT grid in series with .1 mid .	455 kc.	Quiet point near 600 kc .	T-2 2nd I.F. trans.
2	1A7GTgrid in series with .1 mfd .			$\begin{aligned} & \text { T-1. } \\ & \text { lsti.F. } \\ & \text { trans. } \end{aligned}$
3	Antenna lead in series with 220 mmfd .	1800 kc .	$\begin{aligned} & 1600 \mathrm{kc} . \\ & \text { mark } \end{aligned}$	C12A
4		540 kc .	540 kc . mark	L3
5		Repeat Steps 3 and 4.		
6		1400 kc .	$\begin{gathered} 1400 \mathrm{kc} . \\ \text { signal } \end{gathered}$	C11A
7		600 kc .	600 kc . signal	L2
8		Repeat Steps 6 and 7.		

*Do not readjust T. 2 .

Critical Lead Dress

1. Keep output plate capacitor dressed close to the chassis.
2. Keep lead from lug A of second IF transformer down and dressed close around the 1 H 5 G T tube socket.
3. Dress $1 N 5 G T$ plate lead close to chassis.
4. Dress Cl down and away from the antenna coil.
5. Dress C 3 and C 5 away from each other.
6. Dress the lead from 2nd. IF transformer to the volume control clear of other components.

Dial Indicator and Drive Mechanism Showing Alignment Check Points
NOTE:-
When using the electrifier, remove the shorting plug on the chassis (adjacent to the 1 A 7 GT tube) and replace it with a similar plug, attached to the electrifier. Also connect the remaining plug attached to the electrifier, in place of the normal battery plug. The receiver will operate in the normal manner, using the same control for turning the set on and off.

Do not plug electrifier into a DC outlet.

Tube and Trimmer Locations

AM-FM Radio Receivers
8R71, 8R74, 8R75
Chassis No. RC-1060
8R72, 8R76
Chassis No. RC-1060A
-Mfr. No. 274 -
Service Data
-1948 No. 7-
RADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

Specifications

Tuning Ranges

Standard Broadcast (AM)............. 540-1,600 kc. Frequency Modulation (FM)

88-108 mc.
Intermediate Frequency AM-455 kc., FM- 10.7 mc .
Tube Complement
(1) RCA 6 J 6.
Mixer and Oscillator
(2) RCA 6 BA 6
I. F. Amplifier
(3) RCA 6AU6 Driver
(4) RCA 6AL5 Ratio Detector
(5) RCA 6AV6...... AM Det.-AVC-A. F. Amp.
(6) RCA 6V6GT Output
(7) RCA 6X5GT. Rectifier

Power Supply Rating...... 115 volts, 60 cycles, 50 watts

Circuit Description

The chassis used in these receivers have a 6 J 6 tube (V1) (twin triode), one section of which is used as mixer and the other section as oscillator. The FM antenna coil and the FM oscillator coil are placed in such position as to provide coupling between them. A section of the AM oscillator coil is connected in series with the mixer grid input when the range switch is in AM position

Dual I-F transformers are used, each transformer containing both AM and FM windings. The I-F amplifier is V2 (6BA6)

The range switch has four functions:
(1) Selection of AM or FM ranges.
(2) Selection of AVC supply voltages to be applied to the controlled tubes. Simple AVC is applied to the grids of V1 and V2 on AM. Delayed AVC is used on FM and is applied only to the grid of V2.
(3) Controls application of $\mathrm{B}+$ voltage to the plate circuits of V1 (disconnected for PHONO operation).
(4) Controls audio input to volume control.

The driver V3 (6AU6) and ratio detector V4 (6AL5) circuits are similar to those used in other RCA Victor AM-FM receivers.

The audio voltage controlled by the volume control is amplified by V5 (6AV6) and V6 (6 V 6 GT).

The rectifier V7 is type 6 X 5 GT .

Loudspeaker

Voice coil impedance at 400 cycles 3.2 ohms
Tuning Drive Ratio............. $7 \ddagger: 1$ (3冬turns of knob)
Dial Lamps (2)........ Type No. 44, 6-8 volts, 0.25 amp .

Power Output

Maximum.................................... 3 watts
Undistorted 2 watts

Cabinct Dimensions

Height.... 93 in . Width....14ik in. Depth.... 8 in.

Antennas:

These receivers have built-in antemas for standard broadcast (AM) and frequency modulation (FM) reception.

Under average conditions these antennas will provide satisfactory reception. However, provision is made for the use of external antennas if desired - connect as indicated below:
Ground: Connect external ground to " G " terminal. Under some conditions an external ground is detrimental to FM reception.

AM Antenna: Connect a single wire antenna to terminal "A."
FM Antenna: Connect the transmission line from an external FM dipole, antenna to "FM" and "G" terminals. Remove the internal FM antenna wire from terminal "FM."
Note: For satisfactory reception on FM-when using the buitt-in FM antenna-the pover cord must be fully e.rtended and must not be coiled or hanked tup.

Alignment Procedure
 CORRECT ALIGNMENT OF THE FM BAND REQUIRES THAT THE AM BAND BE ALIGNED FIRST

Alignment Indicators:

An RCA VoltOhmyst or equivalent meter is necessary for measuring developed $\mathrm{d} \cdot \mathrm{c}$ voltage during FM alignment. Connections are specified in the alignment tabulation. An output meter is also necessary to indicate minimum audio output during FM Ratio Detector alignment. Connect the output meter across the speaker voice coil.

The RCA VoltOlumyst can also be used as an AM alignment indicator, either to measure audio output or to measure a.v.c voltage.
When andio output is being measured the volume control should be turned to maximum.

Signal Generator:

For all alignment operations connect the low side of the signal generator to the receiver chassis. The output should be adjusted to provide accurate resonance indication at all times. If output measurement is used for AM alignment the output of the signal generator should be kept as low as possible to avoid a.e.c action.

Oscilloscope Alignment

The FM I. F. alignment may be checked using a sweep generator and an oscilloscope. Shunt terminals B and C of T3 with a 1200 ohm resistor. Connect the high side of the oscilloscope to term. C of T3 in series with a diode probe. Apply the output of the sweep generator (10.7 me with $\pm 250 \mathrm{kc}$ sweep) to pin No. 1 of V_{2} (6 BA 6) in series with $.01 \mathrm{mf}$. . low side of the oscitloscope and sweep generator to chassis. This will show the response of T2.

To check the combined response of $T 1$ and $T 2$; connect the sweep generator to the antenna terminal hoard-high side to "FM" term. in series with 300 ohms and low side to " G " terminal. Oscilloscope con nections as previously connected.

To check the ratio detector response; remove the 1200 ohm resistor previously used, connect the high side of the oscilloscope direct to term. No. 9 of $S 1$, low side to chassis. Apply the output of the sweep term. No. It is difficult to observe marker signals in this step-center frequency and sweep width should be previously observed.

CRITICAL LEAD DRESS

1. Keep leads of $C 7$ short.
2. Dress R27 away from range switch and pin No. 5 of V1.
3. The ground lead of pin No. 2 of V2 and V3 should be down against chassis. lis length is critical.
4. The AVC lead from R 26 to range switch should be dressed against chassis and on front apron side of the output transformer
5. C43 should have short leads and the color code of the capacitor should go to the coil L4. The calracitor should be cemented down with polystyrene cement at the same time L2 is cemented.
6. The lead from the high side of the loop should be dressed away from tubes.
7. Lead from pin No. 2 of $V 1$ to terminal " A " of 1 st I. F. trans former should be dressed against the chassis.
8. Connect C40 directly between the gang condenser and pin No. 1 of V1.
9. Make all FM leads as short as possible
10. Dress lead from pin No. 5 of V2 to terminal " A " of 2nd 1. F. transformer down against chassis.
11. Dress resistor R 15 near chassis base
12. Dress all A.C. leads away from volume control
13. The lead from the "FM" terminal of the antenna terminal board the tap L1 should be dressed near the chassis between T2 to the tap of Lol shonld be dressed near 6BA6 I. F. amp.
14. The taps on L1 and L2 are critical. L1 tap should be \mathcal{L} turn from the ground end. L2 tap should be 2 d tirns from the gang condenser $\mathbf{C} 8$.
15. The lead from R32 to terminal No. 9 of $S 1$ should be dressed away from the output transformer
16. Dress C25 and C26 against the classis with the shortest lead length possible
17. The position of L 1 and L 2 is critical. L 1 should be milway between V1 and the 1 st I. F. transformer. The end of L2 should be approximately $3 / 16^{\prime \prime}$ from V' 1.
18. The FM osc. coil must be cemented to its support to prevent microphonic howl on FM. Amphenol No. 912 cement is recom mended for this purpose. Amphenol No. 916 solvent may be used if it becomes necessary to loosen the coil.
19. C41 should be waxed or cemented to the chassis apron to prevent microphonic howl.

REFER TO "CHASSIS BOTTOM VIEW"-PAGE 7

AM Alignment
RANGE SWITCH IN BC POSITION

Steps	Connect high side of sig. gen. 10 -	Sig, gen. output	Turn radio dial to-	Adjust for peak output
1	C3 in series with .01 mid .	455 kc .	Quiet point at low freq.end.	AM windings T3 bottom core (sec.). T3 top core (pri.).
2				AM windings. \dagger T2 top core (sec.). T2 bottom core (pri.).
3	" $A^{\prime \prime}$ terminal of terminal board at rear of chassis in series with 220 mm f	1400 kc .	1400 kc .	Cl3 osc. C4 ant.
4		600 kc .	600 kc .	L4osc. (Rock gang.)
5	Repeat Steps 3 and 4.			

+ Use alternate loading
Alternate loathing involves the use of a 47.000 olim resistor to loart the An plate winding while the A.I grid winding of the SAllt TRANSFORMER is being peaked. Then the grid winding is loaded whing ore winding is peaked. Only one winding with and te have been aligned

Oscillator frequency is above signal frequency on both AM and FM.

FM Alignment

RANGE SWITCH IN FM POSITION - VOLUME
CONTROL MAXIMUM

Steps	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to-	Adjust for peak output
1	Connect tbe d-c probe of VoltOhmyst to the negative lead of the 2 mfd . capacitor C33 and the common lead to chassis. Turn gang condenser to max. capacity (fully meshed).			
2	Pin 1 of 6AU6 in series with .01 mfd .	10.7 mc . modulated $30 \% 400$ cycles AM (Approx. .05 volt).	Max.capacity (fully meshed).	T4 top core for max. d-c voltage across C33. T4 bottom core for min, audio output.
3	FM ant. term. in series with a 300 ohm resistor. (Remove ant. lead from "FM"term.)	10.7 mc . Adjust to provide 2 to 3 volts indication on VoltOhmyst during alignment.		FM windings. $\dagger \dagger$ T3 top core (sec.). T3 bottom core (pri.).
4				FM windings. $\dagger \dagger$ T2 top core (sec.). T2 bottom core (pri.).
5		106 mc .	106 mc .	L2 osc.** C2 ant. Set C2 at max. capacity while adjusting L2.
6		90 mc .	90 mc .	L1 ant.". (Rock gang.)
7	Repeat Steps 5 and 6 until further adjustment does not improve calibration.			

* Two or more points may be found which lower the audio output At the correct point the minimun audio output is approached rapiclly and is much lower that at any incorrect point.
t Align T3 and T2 by means of atternate loading as explained under AM alignment. Ise a 680 ohm resistor instead of a 47,000 under resistor and load the FM windings.
** L1 and I. 2 are adjustable by increasing or decreasing the spacing between turns.

Tube and 1'rimmer Locazions

VOLTAGE CHART

Tube	Type		Pin No.	" ${ }^{\prime}$ "	"FM"	Phono
1	$6 \mathrm{J6}$	Plate Plate Grid Grid	$\begin{aligned} & 1 \\ & 2 \\ & 6 \\ & 5 \end{aligned}$	$\begin{array}{r} 108 \\ 94 \\ -6.8 \\ -3.0 \end{array}$	$\begin{aligned} & 106 \\ & 109 \\ & -6.7 \\ & -2.5 \end{aligned}$	$\bar{\square}$
2	6BA6	Plate Screen Cathode Grid	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 1 \end{aligned}$	$\begin{gathered} 185 \\ 110 \\ 0.75 \\ -1.6 \end{gathered}$	$\begin{aligned} & 180 \\ & 94 \\ & 0.88 \\ & -0.5 \end{aligned}$	$\begin{gathered} 195 \\ 105 \\ 0.94 \\ -0.8 \end{gathered}$
3	6AU6	Plate Screen Cathode	$\begin{aligned} & 5 \\ & 6 \\ & 7 \end{aligned}$	$\begin{gathered} 184 \\ 132 \\ 1.1 \end{gathered}$	$\begin{aligned} & 180 \\ & 130 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 195 \\ & 140 \\ & 1.2 \end{aligned}$
4	6AL5	\square	-	-	-	-
5	6AV6	Plate Grid	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\begin{gathered} 74 \\ -0.8 \end{gathered}$	$\begin{gathered} 74 \\ -0.8 \end{gathered}$	$\begin{gathered} 76 \\ -0.8 \end{gathered}$
6	6V6GT	Plate Screen Cathode	$\begin{aligned} & 3 \\ & 4 \\ & 8 \end{aligned}$	$\begin{aligned} & 243 \\ & 193 \\ & 9.7 \end{aligned}$	$\begin{aligned} & 242 \\ & 190 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 245 \\ & 205 \\ & 10.5 \end{aligned}$
7	6X5CT	Cathode	8	250	250	253

CATHODE CURRENTS (MA)

1	$6 J 6$		7	8.6	8	-
2	6BA6		7	12	13	13.1
3	$6 A U 6$		7	13.5	13.2	14.3
4	$6 A L 5$		$1 \& 2$	-	-	-
5	6 AV6		2	0.3	0.3	0.35
6	6 V6GT		8	28.2	27.6	30.4
7	$6 X 5 G T$		8	67	67	65

Voltages and currents measured with tuning condenser closed and no signal input should hold within $\pm 20 \%$ with rated line voltage.

Note: Plate voltage removed from 6J6 mixer and oscillator tube during "Phono" operation.

Note: FM mixer and oscillator coils are adjustable by increasing or decreasing the spacing between turns. The position of the coils and location of the taps are critical (refer to "Critical Lead Dress").

In some chassis the FM osc, coil support (illustrated) is not used, two polystyrene rods cemented to the chassis and to the coil are used instead.

FM Response Curves

Dial Indicator and Drive Mechanism

Complete Schematic Diagram

Simplified Schematic Diagram
" $F M$ " Band
CIRCUIT CHANGES grid circuit (term. E of T2 to pin 1 of V2). The 455 kc . windings of 2nd I. F. trans. stamped 9704

Replacement Parts

+Stock No. 72953 is a reel containing 250 feet of cord.

Substitute Speaker:

[^2]

Replacement Parts

STOCK No.	DESCRIPTION	sTOCK No.	DESCRIPTION
	CHASSIS ASSEMBLIES RC 615 Bracket-Dial bracket-L.H.-complete with drive cord pulley Brocket-Dial brocket-R.H.-complete with drive cord pulley Capacitor-Ceramic, 56 mmf . (C5) Capacitor-Ceramic, 120 mmf . (C18) Capacitor-Tubuler, $0025 \mathrm{mfd} ., 400$ volts (C9, C12) Capacitor-Tubular, $0035 \mathrm{mfd}, 1000$ volts (C19, C20) Capocitor-Tubutar, 002 mfd., 400 volts (C7) Capacitor-Tubular, .005 mfd ., 400 volts (C14, C16) Copacitor-Tubular, $.015 \mathrm{mfd} ., 400$ volts (C13) Capacitom-Tubular, $.01 \mathrm{mfd} ., 400$ volts (C6, C10, C17) Copacitor-Tubular, $02 \mathrm{mfd} ., 400$ volis (C11, C15) Capacitor-Tubular, $.05 \mathrm{mfd} ., 400$ volts (C8) Capecitor-Electrolytic, comprising 1 section of $20 \mathrm{mfd} ., 450$ volts; 1 section of $30 \mathrm{mfd}, 350$ volts; and 1 section of $20 \mathrm{mfd} .{ }^{25}$ volts (C21A, C21B, C21C) Coil-Oscillator coil (12,13) Condenser-Variable tuning condenser (C1, C2, C3, C4) Control-Volume control and power switch (R6, S2) Cond-Drive cord (approx. $49^{\prime \prime}$ overall length required) Grommet-Rubber grommet to mount variable condenser required) Indicator-Station selector indicator Plote-Dial back plate Plug-2 contact female plug for Motor coble Plug-5 contact female plug for speaker cable Pulloy-Drive cord pulley Resistor-Fixed composition, 330 ohms, $\pm 10 \%$, 1 watt (R19) Resistor-Fixed composition, 2200 ohms, $\pm 10 \%, 2$ wats (R20) Resistor-Fixed composition, 8200 ohms, $\pm 10 \%, 1 / 2$ waft (R17) Resistor-Fixed composition, 15,000 ohms, $\pm 10 \%$, 2 watts (R2) Resistom-fixed composition, 18,000 ohms, $\pm 10 \%$, $1 / 2 \mathrm{wath}$ (R4) Resistor-Fixed composition, 22,000 ohms, $\pm 10 \%, 1 / 2$ watt (R1) Resistor-Fixed composition, 27,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R5, R7) Resistor-Fixed composition, 56,000 ohms, $\pm 10 \%, 1 / 2$ watt (R8) Resistor-Fixed composition, 100,000 ohms, $\pm 10 \%, 1 / 2$ waff (R21) Resistor-Fixed composition, 270,000 ohms, $\pm 10 \%, 1 / 2$ watt (R10, R11, R13, R14) Resistor-Fixed composition, 330,000 ohms, $\pm 10 \%, 1 / 2$ watt (R3) Resistor-Fixed composition, 470,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R16, R18) Resistor-Fixed composition, 2.2 megohms, $\pm 20 \%, 1 / 2$ wat (R9) Resistor-Fixed composition, 10 mogohms, $\pm 20 \%$, $1 / 2$ watt (R12, R15) Shaft-Tuning knob shaft Socket-Lamp socket Socket-Phono input socket Socket-Tube socket Spring-Drive cond tension spring	70134	Switch-Range switch (S1) Transformer-First 1. F. transformer (T
70137		70128	Transformer-First I. F. transformer (TI) Transformer-Second I. F. transformer (
70136		70127	Transformer-Power transformer, 117 volt, 60 cycles (T4)
71924		35969	Washer-"C" Washer for tuning shaft
71614 70602			
70646			SPEAKER ASSEMBLIE
70601			
70606		13867	Cap
70572		36145	Cone-Cone and voice coil assembly
70610		71560	Plug-5 prong male plug for speaker
70611 70615		71961	Speaker-12" P.M. speoker complete with cone and voice coll
71976		71145 37899	less output transformer and plug Suspension-Metal cone suspension Transformer-Oulput transformer (T3) NOTE: If stomping on speaker in
70133 70139			with above speaker number, order replacement parts b
70139			referring to model number of instrument, number stomped
+72953			on spooker and full description of part required.
70930			MiSCELLANEOUS
71608		72437	Bracket-Indicotor lamp bracket Cable-Shielded pickup cable complete with pin
70138		13103	Cap-Indicator lamp jewel
30868		70142	
12493		$\times 1796$	Cloth-Grille cloth
72602		73413	Decal-Control ponel decal for blonde instruments
		73084	Decal-Control panel decal for walnut or mohogany instruments
		71910	Decal-Trade mark decal (RCA Victor)
		70141	Dial-Glass dial scale
		72856	Grommet-Rubber grommet for mounting record changer (3 required)
		30698	Hinge-Cabinet lid hinge (4 required)
		7282	Knob-Radio-phonotone switch knob-brown-for blonde instruments
		71822	Knob-Radio-phono-tone switch knob-maroon-for walnut or
		72800	mahogony instruments Knob-Tuning or volume contral knab-brown-for blonde instruments
		71821	Knob-Tuning or volume control knob-moroon-for walnut
		11765	or mahogany instruments
		70140	
		73109	Nut-Tee nut for mounting record changer (3 required)
		31048	Plug-Pin plug for shielded pickup cablo
70135 31364		73110	Screw-1/4-20 fillister head screw for mounting record shanger
31364			(3 required) ${ }^{\text {d }}$ (
35787 31251		30900	Spring-Retaining spring for knobs
31251 31418		73411	Support-Cabinet lid supp
31418		73412	Support-Cabinet lid support-R.H.

Alignment Procedure

Cathode-Roy Alignment is the preferable method. Connections for the oscilloscope are shown on the Schematic Diagram.
Outpup Meter Alignment.-If this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum.

Test Oscillator.-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.

Steps	Connect high side of test oscillotor 10-	Tune teat oscillator to-	Tum radio dial to-	Adjust the following for moximum peak oufput
1	6SK7 grid in sories with .01 mfd .	455 kc .	Quiet Point at 550 kc . and of dial	Top and bottom (2nd 1-F Trans.) T-2
2	6\$A7 grid in series with .01 mfd .			Top and bottom (1st I-F Trans.) 7-1
3	Primary lead on loop in series with 200 mmfd .	1,400 kc.	1,400 kc.	$\begin{aligned} & \text { C4 (osc.) } \\ & \text { C2 (ont.) } \end{aligned}$
4		600 ke .	600 kc .	12 (ose.) Rock gang
5		Repeat steps 3 and 4		

Critical Lead Dress

. Dress speaker cable leads down next to chassis.
2. Dress output plate capacitors next to chassis.
3. Dress plate lead of output tube away from grid of audio amplifier.
4. Dress all a-c leads a way from volume control down next to chassis.
5. Dress lead from top tap of volume control to range-tone switch along front apron of chassis.
6. Dress R12 and R15 down near chassis base.

Controls

Tube and Trimmer Locations (Top View)

Dial Indicator and Drive Mecbanism

Specifications

Tuning Ranges

Stanclard Broadcast (AM). \qquad $5 \neq 0-1,600 \mathrm{kc}$.
Frequency Modulation (FM) \qquad 88-108 mc. Intermediate Frequencies. . AM-455 kc., FM- 10.7 mc . Tube Complement

Tuning Drive Ratio 18:1 (9 turns of knob)
Record Changer (RP-178)
Record Capacity. Trwelve 10-in. or ten 12-in. 'lurntable Speed............................. 78 r.p.m.
Power Supply Rating 115 volts, 60 cycles, 90 watts

Circuit Description

The chassis used in these receivers have a 656 tube (V1) (twin triode), one section of which is used as mixer and the other section as oscillator. The FM antenna coil and the FM oscillator coil are placed in such position as to provide coupling between them. A section of the AM oscillator coil is connected in series with the mixer grid input when the range switch is in AM position.

Dual I-F transformers are used, each transformer containing both $A M$ and $F M$ windings. The I-F amplifier is $V:(6 B A 6)$.

The range switch has four functions:
(1) Selection of tuning range.
(2) Selection of AVC supply voltages to be applied to the controlled tubes. Simple AVC is applied to the grids of V1 and Ve on AM. Delayed AVC is used on FM and is applied only to the grid of V2.
(3) Controls application of $B+$ voltage to V1, V2, V3.
(4) Controls andio input to volume control.

The driver V3 (6AU6) and ratio detector V4 (6AL5) circuits are similar to those used in other RCA Victor AM-FM receivers.

The audio system is conventional. It consists of V5 ($6 \mathrm{AV6}$ a.f. amp.). V7 (6 AV 6 ph . inv.), V 6 and V 8 (6V6GT p. p. output).
'The rectifier is V9 (6X5GT).

Loudspeaker
Type 92579-2 VV (8V90 lst Prod.) 8-in. P.M. Type 92569-5W (8V90 2nd Prod.) 12 in. P.M. Type $92569-1 \mathrm{KX}$ or $92569-5 \mathrm{~V}$ (8 V 91) 12 in . P.M.
Voice coil impedance-

Dial Lamps (2) Type No. $51,6-8$ volts, 0.2 amp .
Jewel Lamp. Type No. $51,6-8$ volts, 0.2 amp.
Power Output
Maximum . 7 watts
Undistorted................................... . . . 6 watts

Antennas:

'These receivers have built-in antemas for standard broadcast (AM) and frequency modulation (FM) reception.

Under average conditions these antennas will provide satisfactory reception. However, provision is made for the use of external antennas if desired - connect as indicated below:

AM Antenna: Connect a single wire antenna to terminal "A" (used on Model 8V91 only).
FM Antenna: Remove the built-in FM antenna lead from the "FM" terminals of the terminal board. Connect the transmission line of an external FM dipole antenna to these two "FM" terminals.
Ground: Connect external ground to "G" terminal (used on Model $8 \backslash^{\circ} 91$ only). Under certain conditions the use of an external ground is detrimental to FM reception.

Controls

Alignment Procedure CORRECT ALIGNMENT OF THE FM BAND REQUIRES THAT THE AM BAND BE ALIGNED FIRST

Alignment Indicators:

An RCA VoltOhmyst or equivalent meter is necessary for measuring developed de voltage during FM alignment. Counections are specified in the alignment tabuiation. An output meter is also necessary to indicate minimum audio output during FM Ratio Detector alignment Cate mimmum audio output during fre output meter across the speaker voice coil.

The RCA VoltOhmyst can also be used as an AM alignment indi cator, either to measure audio output or to measure a-v-c voltage
When audio output is being measured the volume control should be turned to maximum

Signal Generator:

For all alignment operations connect the low side of the signal generator to the receiver chassis. The output should be adjusted to provide accurate resonance indication at all times. If output measure ment is used for A.I alignment the output of the signal generator should be kept as low as possible to avoid a-v-c action.

Oscilloscope Alignment:

The FM I. F. alignment may be checked with the use of a sweep generator and an oscilloscope.
Shunt terminals B and C of $T 3$ (driver tians.) with a 1200 ohm resistor. Connect the output of the sweep generator (10.7 mc . with $\pm 250 \mathrm{kc}$. sweep) to the grid of V2 (6BA61. F.) in series with 01 mid. Connect the higln side of the oscilloscolle to terminal C of T3 in series with a diode probe. Low side of the sweep generator and oscilluscope to chassis. This will slow the response of T2
With the oscilloscope connected as before connect the output of the sweep generator to the "FM" antenna terminal board in series with a 300 olim resistor (disconnect FM antenna); it may be neces sary to reverse the connections of the sweep generator since one "FM" terminal is connected to chassis. This will slow the combined respense of ' $T 1$ and T2

To olserve the Ratio Detector response, remove the 1200 ohm resistor which was shumed across terminals IB and C of T3. Connect the output of the sweep genterator to the grid of the driver tube (N3 6AU6) in series with . 01 mid. and connect the high side of the oscilloscope direct to terminal No. 9 of S1.
Note: It is difficult to observe marker signals in this step; center frequency and sweep, width should be previously olserved.

CRITICAL LEAD DRESS

Keep leads of C7 short.
Dress R27 away from range switch and pin No. 5 of V1.
The ground lead of pin No. 2 of V_{2} and $V 3$ should be down against chassis. Its lengtin is critical.
The AVC lead from R26 to range switch slould be dressed against chassis and away from 6All 6 driver tube socket.
C43 should have short leads and the color code of the capacitor should go to the coil L4. The capacitor shotrld be cemented down with polystyrene cement at the same time L2 is cemented The lead from the high side of the loop should be dressed away from tubes.
Lead from pin No. 2 of V1 to terminal "A" of 1 st I. F. trans former should be dressed against the chassis.
Connect C40 directly between the gang condenser and pin No. 1 Of 1 .
Dress lead from pin No. 5 of $V 2$ to terminal " A " of 2 nd I. F Dress lead from pin No. 5 of 2
transiormer down against chassis.
Dress all A. C. leads away from volume control.
The lead from "FM" terminal of antenna terminal board to L the sliould be dressed away from Va
The taps on L.1 and L2 are critical. L1 tap should be $\$$ turn from the ground end. 1.2 tap slould be 2 t turns from the gang condenser C8.
Dress C25 and C26 against the chassis with the shortest lead length possible.
16. The position of L1 and L2 is critical. Li should be midway be tween V1 and the 1st I. F. transformer. The end of L2 should lie approximately $3 / 16^{\prime \prime}$ from V_{1}
The FM oscillator coil should be cemented to its support Amphenol No. 912 cement is recommented for this purpose. I it is necessary to loosen the coil, use Amphenol No. 916 solvent.
18. Capacitor C41 should be waxed or cemented to the chassis apron

SEE CHASSIS BOTTOM VIEW-PAGE 10.

Dial Indicator

With the tuning condenser fully meshed (closed) the indicator should be set to the reference mark on the dial back plate.

Refer to the dial scale reproductions on page 9.

AM Alignment
range switch in bc position

Step:	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to	Adjust for peak output
1	C3 in series with .01 mfd .	455 kc .	Quiet point at low freq. end.	AM windings. \dagger T3 bottom core (sec.). T3 top core (pri.).
2				```AM windings. } T2 top core (sec.) T2 bottom core (pri.).```
3	"A" terminal of terminal board at rear of chassis in series with 220 mmf .	1400 kc.	1400 kc .	C13 osc. C4 ant.
4		600 kc .	600 kc .	L4 osc. (Rock gang.)
5	Repeat Steps 3 and 4.			

\dagger Use alternate loading.
Aternate loading involves the use of a $47,000 \mathrm{ohm}$ resistor to load the AM plate winding while the AM grid winding of the SAME TRANSFORMER is being peaked. Then the grid winding is loaded with the resistor while the plate winding is peaked. Only one winding
is loaded at any one time. Remove the $47,000 \mathrm{ohm}$ resistor after T 3 is loaded at any one time.
and $T 2$ have been aligned.

Oscillator frequency is above signal frequency on both $A M$ and $F M$.

* " A " terminal used on Model 8 V 91 only. Use radiated signal for Model 8V90.

FM Alignment

RANGE SWITCH IN FM POSITION - VOLUME
CONTROL MAXIMUM

Steps	Connect high side of sig. gen. to-	Sig.gen. output	Turn radio dial to-	Adjust for peak output
1	Connect the d-c probe of a Voltohmyst to the negative lead of the 2 mfd . capacitor C33 and the common lead to chassis. Turn gang condenser to max. capacity (fully meshed).			
2	Pin 1 of GAU6 in series with .01 mfd .	10.7 mc . modulated $30 \% 400$ cycles AM (Approx. 05 volt).	Max.capacity (fully meshed).	T4 top core for max. d-c voltage across C33. T4 bottom core for min. audio output.*
3	FMant. term. in series with a 300 ohm resistor. (Remove ant. lead from "FM" term.)	10.7 mc . Adjust to provide 2 to 3 volts indication on VoltOhmyst during alignment.		FM windings. $\dagger \dagger$ T3 top core (sec.). T3 bottom core (pri.).
4				FM windings. $\dagger \dagger$ T2 top core (sec.). T2 bottom core (pri.).
5		106 mc .	106 mc .	L2 osc.** C2 ant. Set C2 at max. capacity while adjusting L2.
6		90 mc .	90 mc .	$\begin{gathered} \text { L1 ant.** } \\ \text { (Rockgang.) } \end{gathered}$
7	Repeat Steps 5 and 6 until further adjustment does not improve calibration.			

* Two or more points may be found which lower the audio output. At the correct point the minimum audio output is approached rapidly and is much lower than at any incorrect point.
$\dagger \dagger$ Align T3 and T2 by means of alternate loading as explained under AM alignment. Use a 680 ohm resistor instead of a 47,000 ohm resistor and load the FM windings.
** I.1 and L2 are adjustable by increasing or decreasing the spacing between turns.

Voltages measured with Chanalyst or VoltOhmyst and should hold within $\pm 20 \%$ with rated line voltage. Tuning condenser closed-no signal input.

Tube	Terminal.	Voltage		
		Phono	A.M.	F.M.
(1) 6 J 6	Plate 1 Grid 1 Plate 6 Grid 5	$-\overline{-0.4}$	$\begin{array}{r} 102 \\ -6.8 \\ 96 \\ -2.7 \end{array}$	$\begin{array}{r} 98 \\ -6.0 \\ 110 \\ -2.5 \end{array}$
(2) 6BA6	Plate 5 Screen 6 Cathode 7 Grid 1	$-\overline{0.9}$	$\begin{array}{r} 196 \\ 100 \\ 0.7 \\ -1.3 \end{array}$	$\begin{array}{r} 192 \\ 83 \\ 0.84 \\ -0.2 \end{array}$
(3) $6 \mathrm{AU6}$	$\begin{array}{ll} \text { Plate } & 5 \\ \text { Screen } & 6 \\ \text { Cathode } & 7 \end{array}$	二	$\begin{array}{r} 190 \\ 145 \\ 1.25 \end{array}$	$\begin{array}{r} 185 \\ 141 \\ 1.21 \end{array}$
(4) 6AL5	- -	-	-	
(5) 6AV6	$\begin{array}{ll} \text { Plate } & 7 \\ \text { Grid } & 1 \end{array}$	$\begin{array}{r} 125 \\ -0.6 \end{array}$	$\begin{array}{r} 85 \\ -0.6 \end{array}$	$\begin{array}{r} 84 \\ -0.6 \end{array}$
(6) 6V6GT	$\begin{array}{ll} \text { Plate } & 3 \\ \text { Screen } & 4 \\ \text { Cathode } & 8 \end{array}$	$\begin{array}{r} 299 \\ 295 \\ 21.4 \end{array}$	$\begin{array}{\|l\|} 282 \\ 220 \\ 15.5 \\ \hline \end{array}$	$\begin{array}{r} 280 \\ 217 \\ 15.4 \end{array}$
(7) 6 AV 6	Plate 7 Grid 1	$\begin{array}{r} 168 \\ -0.5 \end{array}$	$\begin{array}{r} 125 \\ -0.5 \end{array}$	$\begin{array}{r} 125 \\ -0.5 \end{array}$
(8) 6V6GT	$\begin{array}{ll} \text { Plate } & 3 \\ \text { Screen } & 4 \\ \text { Cathode } & 8 \end{array}$	$\begin{gathered} 299 \\ 295 \\ 21.4 \end{gathered}$	$\begin{aligned} & 282 \\ & 220 \\ & 15.5 \end{aligned}$	$\begin{array}{r} 280 \\ 217 \\ 15.4 \end{array}$
(9) 6X6GT	Cathode 8	313	300	299

Note: FM mixer and oscillator coils are adjustable by increasing or decreasing the spacing between turns. The position of the coils and location of the taps are critical (refer to "Critical Lead Dress").

In some chassis the FM osc. coil support (illustrated) is not used, two polystyrene rods cemented to the chassis and to the coil are used instear.

CATHODE CURRENTS (MA)

Tube	Terminal	Phono	A.M.	F.M.
(1) 6J6	7	-	8.2	8.7
(2) 6BA6	7	-	11.6	13.4
(3) 6AU6	7	-	10	9.7
(4) 6AL5	$1 \& 5$	-	-	-
(5) 6AV6	2	0.75	0.5	0.5
(6) 6V6GT	8	25.1	19.1	18.5
(7) 6AV6	2	1.7	1.1	1.1
(8) 6V6GT	8	25.1	19	18.5
(9) 6X5GT	8	53	70	70.5

Dial Indicator and Drive Mechunism - Model 8V90

NOTE-2nd I.F. Transformer: Complete Schematic Diagram
Some chassis may use 2nd I.F. trans. stamped $970435-5$ (Stock No. 74019), the 455 k.c. windings have a d.c. resistance of 12 ohms each, the

Complete Schematic Diagram

NOTE: In some chassis $R 4$ is 22 K and C42 is 22 mmf .

Simplified Schematic Diagram
Some chassis may use $2 n \mathrm{nd}$ I.F. trans. stamped $970435-5$ (Stock No. 74019), the 455 k.c. windings have a d.c. resistance of 12 oluns each, the
resonating capacitors are 150 mmf . instead of 235 mmf . They are interchangeable with transformers stamped $970435-2$ (Stock No. 73363).

Model 8V90 2nd Production Chassis No. RC-618A

Model 8V91 2nd Production

 Chassis No. RC-616H

The schematic diagrams above show the selector switch (S1) used in $\mathrm{RC}-616 \mathrm{H}$ and $\mathrm{RC}-618 \mathrm{~A}$. The connections to S 2 are identical in all chassis - note that position No. 2 (PHONO) of $\mathrm{RC}-616 \mathrm{H}$ and RC - 618 A corresponds to position No. 1 (PHONO) of RC -616A and $\mathrm{RC}-618$. No connections are made throngh S ? when in AUX. position.

The dial scale drawing shown is a full size reproduction. It can be used as a reference in alignment procedure. Dial Sicale - Morlel $: \mathbf{j} 91$

Chassis Bottom View-Model 8V90

Replacement Parts-Model 8V90-First Prod.

Stock No.	DESCRIPTION	Stock No.	DESCRIPTION
$\begin{array}{r} 73893 \\ 73889 \end{array}$	```CHASSIS ASSEMBLIES RC 618 Board-"FM" antenna board Capacitor-Variable tuning capacitor (C1, C2, C3, C4, C8, C12, C13)```		```Resistor-Fixed, composition, 270,000 ohms, }\pm10%\mathrm{ , 1/2 watt (R19, R29) Resistor-Fixed, composition, 330,000 ohms, \pm10%, 1/8 wall (R28) Resistor-Fixed, composition, 470,000 ohms, }\pm10%\mathrm{ , 1/2 watt (R20, R26, R44)```
$\begin{array}{r} 73866 \\ 31353 \end{array}$	Capacitor-Ceramic, 2 mmf . (C9) Capacitor-Ceramic, 15 mmf . (C42)		Resistor-Fixed, composition, 2.2 megohm, $\pm 20 \%$
39042	Capacitor-Ceramic, 47 mmf . (C26, C37)		Resistor-Fixed, composition, 2.7 megohm, $\pm 10 \%$
73867 33103	Capacitor-Ceramic, 56 mmf . (C43) Capacitor-Ceramic, 68 mmf . (C40)		Resistor-Fixed, composition, 3.9 megohm,
48125 39640	Capacitor-Ceramic, 150 mmf . (C7, C19, C38, C50, C53)		1/2 watt (R2) Resistor-Fixed, composition, 10 megohms, $\pm 20 \%$,
39640 73748			1/2 watt (R15, R41)
73750	Capacitor-Tubular, . 002 mfd., 200 volts (C24, C36)		Resistor-Fixed, composition, 22 megohms, 1/2 walt (R16)
72573		73894	Shaft-Tuning knob shaft
70646	Capacitor-Tubular, $0035 \mathrm{mfd} ., 1000$ volts (C34, C56)	31364	Socket-Dial lamp socket
71926	Capacitor-Tubular, 005 mfd ., 200 volts (C20, C27, C32)	35787 73606	Socket-Phono input socket Socket-Tube socket, miniature, for tubes $\mathrm{V}_{1}, \mathrm{~V}_{2}$
71553	Capacitor-Tubular, . $005 \mathrm{mid} ., 400$ volts (C14, C16, C17, C21, C22)	72516	and V3 Socket-Tube socket, miniature, for tubes V4, V5
71923 71925	$\begin{aligned} & \text { Capacitor-Tubular, } 01 \text { mid., } 400 \text { volts (C29, C41, } \\ & \text { C54) } \end{aligned}$	31251	and $V 7$ Socket-Tube socket, wafer, octal, for tubes V6, V8 and V9
72120	Capacitor-Tubular, $015 \mathrm{mid} ., 200$ volts (C52)	31418	Spring-Drive cor
73638 70612		74202	Support-FM oscillator coil support, complete with
72596	Capacitor-Tubular, . 05 mfd ., 200 volts (C15)	73890	Switch-Selector switch (S1, S2)
73747	Capacitor-Electrolytic, $5 \mathrm{mid} ., 50$ volts (C33)	73891	Switch-Tone control switch' (S4)
73372	Capacitor-Electrolytic, comprising 1 section of 30 mid., 350 volts, 1 section of 30 mfd., 300 volts and 1 section of $20 \mathrm{mfd} ., 25$ volts (C18A, C18B, C18C)	73601 73745	Transformer-Power transformer, 115 volts, 60 cycle (T1) Transformer-First I.F. transformer-dual (T2)
73918	Coil-Antenna coil-F.M. (No. 16 tinned bus wire, 8 turns per inch, $1 \frac{1}{4}$ turns L. H.- 469 in . I. D.) (L.1)	73745 73743	Transformer-Second I.F. transformer-dual (T3) Transformer-Ratio detector transformer (T4)
73916	Coil-Oscillator coil-F.M. (No. 16 tinned bus wire, 7 turns per incl, $4^{2 / 4}$ turns R. H.-. 469 in . 1. D.) (L2)	33726	Washer- "C" washer for tuning knob shaft
73744 70342	Coil-Oscillator coil-"A" band (L4) Control-Volume control and power switch (R14, S3)		SPEAKER ASSEMBLIES
†72953	Cord-Drive cord (approx. $48^{\prime \prime}$ overall length required)		$\begin{aligned} & \text { 92579-2W } \\ & \text { RL 105A1 } \end{aligned}$
70392 16058	Cord-Power cord and plug	74181	Cap-Dust cap
16058	Grommet-Rubber grommet to mount R.F. shelf (4 required)	73912 5039	Cone-Cone and voice coil assembly Plug-4 prong male plug for speaker
72069	Grommet-Rubber grommet for rear mounting feet (2 required)	73911	Speaker- $8^{\prime \prime}$ P.M. speaker complete with cone and voice coil-less output transformer and plug
$\begin{aligned} & 73895 \\ & 73892 \end{aligned}$	Indicator-Station selector indicator Plate-Dial back plate complete with two (2) drive cord pulleys, less dial	73636	Transformer-Output transformer (T5) MISCELLANEOUS
5040	Plug-2 contact female plug for notor cable		
	Resistor-Fixed, composition, 68 ohms, $\pm 10 \%$, $1 / 2$	72555 71599	Antenna-F.M. antenna Bracket-Pilot lamp bracket
	watt (R7)	72437	Cable-Shielded pickup cable complete with pin
	Resistor-Fixed, composition, 100 ohms, $\pm 10 \%, 1 / 2$ watt (R17. R27)	$\begin{aligned} & 13103 \\ & 71892 \end{aligned}$	Cap-Pilot lamp jewel Catch-Bullet catch and strike for doors
	Resistor-Fixed, composition, 120 ohms, $\pm 10 \%$, $1 / 2$ watt (R12)	73897 $\times 1894$	Clamp-Dial clamp (2 required) Cloth-Grille cloth for blonde instruments
	```Resistor-Fixed, composition, 470 ohms, 士10%, 2 watts (R21)```	X1893	Cloth-Grille cloth for mahogany finish or walnut instruments
	Resistor-Fixed, composition, 560 ohms, $\pm 10 \%$, $1 / 2$ watt (R35)	73904	Decal-Control panel decal for mahogany finish or walnut instruments
	Resistor-Fixed, composition, 680 ohms, $\pm 20 \%$ 1/2 watt (R9, R11)	$\begin{aligned} & 73905 \\ & 71984 \end{aligned}$	Decal-Control panel decal for blonde instruments Decal-Trade mark decal (RCA Victor)
	Resistor-Fixed, composition, 1200 ohms, $\pm 5 \%$, $1 / 2$ watt (R23)	71966 73898	Decal-Trade mark decal (Victrola)   Dint-Glass dial scale
73637	Resistor-Wire wound, 2200 ohms, 5 watts (R22)   Resistor-Fixed, composition, 3300 ohms, $\pm 5 \%, 1 / 2$	11889	Grommet-Rubber grommet for front apron of chassis (2 required)
	watt (R24)   Resistor-Fixed, composition, 8200 ohms, $\pm 10 \%, 1 / 2$	72856	Grommet-Rubber grommet for mounting record changer (3 required)
	watt (R43)   Resistor-Fixed, composition, $\mathbf{1 0 , 0 0 0}$ ohms, $\pm 10 \%$,	73903	Hinge-Phono compartment door or radio compartment door hinge ( 1 set)
	$1 / 2$ watt (R32)   Resistor-Fixed, composition, 15,000 ohms, $\pm 10 \%$,	71822	Knob-Selector switch or tone control knob-ma-roon-for mahogany finish or walnut instruments
	1/2 watt (R13, R18, R30)   Resistor-Fixed, composition, 18,000 ohms, $\pm 10 \%$,	72824	Knob-Selector switch or tone control knob-brown -for blonde instruments
	$1 / 2$ watt (R4)   Resistor-Fixed, composition, 27,000 ohms, $\pm 10 \%$,	71821	Knob-Tuning or volume control knob-maroonfor mahogany finish or walnut instruments
	$1 / 2$ watt (R8, R40)   Resistor-Fixed, composition, 27,000 ohms, $\pm 10 \%$, 1 watt (R5)	72800 11765	Knob-Tuning or volume control knob-brown-for blonde instruments   Lamp-Dial lamp-Mazda 51
	Resistor-Fixed, composition, 33,000 ohms, $\pm 10 \%$, 1/2 watt (R6)	73896 73109	Loop-Antenna loop complete
	1/2 walt (R6)   Resistor-Fixed, composition, 39,000 ohms, $\pm 10 \%$	73109	Nut-Tee nut for mounting record changer (3 required)
	$1 / 2$ watt (R25)   Resistor-Fixed, composition, 56,000 ohms, $\pm 10 \%$,	* 73902	Pull-Phono compartment or radio compartment door pull
	$\begin{aligned} & \text { esistor-Fied, } \\ & 1 / 2 \text { watt (R10) } \end{aligned}$	73110	Screw- $1 / 4-20 \times 13 / 4$ fillister head machine screw for
	Resistor- 「ixed, composition, 82,000 ohms, $\pm 10 \%$. $1 / 2$ watt (R42)		mounting record changer ( 3 required)   Spring-Retaining spring for knobs
	Resistor-Fixed, composition, 100,000 ohms, $\pm 10 \%$, 1/2 watt (R33, R45)	72936	Stop-Phono compartment or radio compartment door stop

APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS

Replacement Parts-Model 8V91—First Prod.



FOR RECORD CHANGER SERVICE INFORMATION——REFER TO RP-178 SERIES SERVICE DATA.
rca Victor
AM-FM Radio-Phonograph Combination Model 8V112
1st Prod. Chassis No. RC-616
2nd Prod. Chassis No. RC-616F
Mfr. No. 274
Service Data

- 1948 No. 12 -

RADIO CORPORATION OF AMERICA
rCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

## Specifications

## Tuning Ranges

Standard Broadcast (AM)
$540-1,600 \mathrm{kc}$.
Frequency Modulation (I:M) 88-108 me

Intermediate Frequencies... AM-45j kc., FM-10.7 mc.
Tube Complement


Power Supply Rating . . . . . 115 volts, 60 cycles, 90 watts

## Circuit Description

The chassis used in this receiver has a 6 J 6 tube (VI) (twin triode), one section of which is used as mixer and the other section as oscillator. The FM antenna coil and the l M oscillator coil are placed in such position as to provicle coupling between them. A section of the AM oscillator coil is connected in series with the mixer grid input when the selector switch is in AM position.

Dual $1-F$ transformers are used, each transformer containing both AM and $\mathrm{F} M$ windings. The $I$ - F amplifier is V: ( 6 BA 6 ).

The selector switch has five functions:
(1) Selection of tuning range.
(!) Selection of AVC supply voltages to be applied to the controlled tubes. Simple AVC is applied to the grids of V'1 and Vo on AM. Delayed AVC is used on FM and is applied only to the grid of V2.
(3) Controls application of $\mathrm{B}+$ voltage to $\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3$ and V11.
(1) Controls audio input to volume control.
(5) Controls circuit loading of M.M. reactor tube V11 (6BA6).
The driver V3 (6AU6) and ratio detector V4 (6AL.5) circuits are similar to those used in other RCA Victor AM-FM receivers.

The audio system is conventional. It consists of V5 (6AV6 a.f. amp.), V7 (6AV6 ph. inv.), V6 and V8 (6V6GT p. p. output).

The rectifier is $V 9$ ( $6 \times 5 \mathrm{GT}$ ).
The Magic Monitor system uses V10 (6AV6 M. M amp.) and V11 ( 6 BA6 M. M. reactor). Its operation is described on page 9 .

## Loudspeaker

Type 9こ5669-5
12 in. P.M.
Voice coil impedance at 400 cycles. . . . . . . . 3.2 ohms
Tuning Drive Ratio . . . . . . . . . . . . . 18:1 (9 turns of knob)
Dial Lamps (2) . . . . . . Type No. 51, 6-8 volts, 0.2 amp.
Jewel Lamp. . . . . . . . . . Type No. $51,6-8$ volis, 0.2 amp.
Power Output

Maximum	7 watts
Undistorted	6 watts

Cabinet Dimensions

Record Changer (RP-178)
Record Capacity........ Twelve 10 -in. or ten 12-in.
Turntable Speed.............................. 78 r.p.m.

## Antennas:

These receivers have buitt-in antennas for standard broadcast (AM) and frequency modulation (FM) reception.

Under average conditions these antennas will provide satisfactory reception. However, provision is made for the use of external antennas if desired - connect as indicated below:

Ground: Connect external ground to " $G$ " terminal. Under certain conditions the use of an external ground is detrimental to $F M$ reception.
AM Antenna: Connect a single wire antenna to terminal "A."
FM Antenna: Renove the built-in FM antema lead from the "FM" terminals of the terminal board. Connect the transmission line of an external FM dipole antenna to these two "FM" terminals.

AUX. POSITION USED ON 2ND PROD. ONLY - .-.


POWERVOLUME


TUNING


FM AM PH SELECTOR

## Alignment Procedure <br> CORRECT ALIGNMENT OF THE FM BAND REQUIRES THAT THE AM BAND BE ALIGNED FIRST

## Alignment Indicators:

An RCA VoltOhmyst or equivalent meter is necessary for measuring developed d.c voltage during FM alignment. Connections are specified in the alignment tabuiation. An output meter is also necessary to indicate minimum audio output during FM Ratio Detector alignment, Connect the output meter across the speaker voice coil.
The RCA VoltOhmyst can also be used as an AM aligument indi cator, either to measure audio output or to measure a.v.c voltage
When audio output is being measured the volume control should be turned to maximum.

Signal Generator:
For all alignment operations connect the low side of the signal generator to the receiver chassis. The output should be adjusted to provide accurate resonance indication at all times. If output measurement is used for AM alignment the output of the signal generator should be kept as low as possible to avoid a-v.c action

## Oscilloscope Alignment:

The FM I. F. alignment may be checked with the use of a sweep generator and an oscilloscope.
Shunt terminals B and C of 「3 (driver tians.) with a 1200 ohm resistor. Connect the output of the sweep generator ( 10.7 mc . with $\pm 250 \mathrm{kc}$, sweep) to the grid of $V_{2}\left(6 \mathrm{BA}_{6} 1\right.$. F.) in series with 01 mid. Connect the high side of the oscilloscope to terminal C of T3 in series with a diode probe. Low side of the sweep generator and oscilloscope to chassis. This will show the response of T2,

With the oscilloscope connected as before connect the output of the sweep generator to the "FM" antenna terminal board in series with a 300 olm resistor (disconnect FM antenna); it may be necessary to reverse the connections of the sweep generator since one "FM" terminal is connected to chassis. This will show the combined respense of T1 and $T 2$.
To observe the Ratio Detector response, remove the 1200 ohm resistor which was shunted across terminals B and C of T3. Connect the output of the sweep generator to the grid of the driver tuhe (V3 6 AU 6 ) in series with .01 mfd . and connect the high side of the oscilloscope direct to terminal No. 9 of S1.
Note: It is difficult to observe marker signals in this step; center irequency and sweep width should be previonsly obserwed.

## CRITICAL LEAD DRESS

Keep leads of $\mathrm{C}_{7}$ short.
Dress $\mathrm{K27}$ away from range switch and pin No. 5 of $\mathrm{V}_{1}$
The ground lead of pin No. 2 of V 2 and V3 should be down against chassis. Its length is critical.
The AVC lead from R26 to range switch should be dressed against chassis and away from 6AU6 driver tube socket.
C43 should have short leads and the color code of the capacitor should go to the coil L.4. The capacitor should be cemented down with polystyrene cement at the same time $L 2$ is cemented. The lead from the high side of the loop should be dressed away from tubes.
Lead from pin No. 2 of $V 1$ to terminal "A" of 1 st I. F. trans former should be dressed against the chassis.
Connect C40 directly letween the gang condenser and pin No. 1 of V 1 .
9. Make all Fir leads as short as possible
10. Dress lead from pin No. 5 of V 2 to terminal " $A$ " of 2 nd I. F ransformer down against chassis.
12. Dress all A. C. leads away from volume control.
13. The lead from "FM" terminal of antenna terminal hoard to I. tap should be dressed away from V 2
14. The taps on L1 and L2 are critical. I.1 tap should be $\$$ turn from the ground end. L2 tap should be $2!$ turns from the gang con denser C8.
15. Dress C25 and C26 against the chassis with the shortest lead length possible.
16. The position of $L_{1}$ and $L_{2}$ is critical. $L_{1}$ should be midway be tween $V_{1}$ and the 1 st I. F. transformer. The end of L2 shouk be approximately $3 / 16^{\prime \prime}$ from
17. The F.1 oscillator coil should he cemented to its support Amphenol No. 912 cement is recommended for this purpose. I it is necessary to loosen the coil, use Amphenol No. 916 solvent.
18. Capacitor C41 should be waxed or cemented to the chassis apron.

## Dial Indicator

With the tuning condenser fully meshed (closed) the indicator should be set to the SECONDD REFFRENCEF MARK from the left hand edge of the dial back plate.

Refer to the dial scale reproduction on page 9


AM Alignment
RANGE SWITCH IN BC POSITION

Steps	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to-	Adjust for peak output
1	C3 in series with .01 mfd .	455 kc .	Quiet point at low freq.end.	AM windings. $\dagger$ T3 bottom core (sec.). T3 top core (pri.).
2				AM windings. $\dagger$ T2 top core (sec.). T2 bottom core (pri.).
3	"A" terminal of terminal board at rear of chassis in series with 220 mm .	1400 kc .	1400 kc .	C13 osc. C4 ant.
4		600 kc .	600 kc .	L4osc.   (Rock gang.)
5	Repeat Steps 3 and 4.			

+ Use alternate loading
Alternate loading involves the use of a 47,000 ohm resistor to load the AM plate winding while the AM grid winding of the SAME TRANSFORMER is being peaked. Then the grid winding is loaded with the resistor while the plate winding is peaked. Only one winding is loaded at any one time. Kemove the $\mathbf{4 7 , 0 0 0}$ ohm resistor after T3 and T2 have been aligned

Oscillator frequency is above signal frequency on both $\mathrm{A} M$ and FM .

## FM Alignment

RANGE SWITCH IN FM POSITION - VOLUME
CONTROL MAXIMUM

Steps	Connect high side of sig. gen. to-	Sig.gen. output	Turn radio dial to-	Adjust for peak output
1	Connect the d-c probe of a Voltohmyst to the negative lead of the 2 mfd . capacitor C33 and the common lead to chassis. Turn gang condenser to max. capacity (fully meshed).			
2	Pin 1 of GAU6 in series with .01 mfd .	10.7 mc . modulated $30 \% 400$ cycles AM (Approx. .05 volt).	Max.capacity (fully meshed).	T4 top core for max. d-c voltage acros: C33.   T4 bottom core for min. audio output."
3	FMant. term. in series with a 300 ohm resistor.   (Remove ant. lead from " ${ }^{\prime}$ MM' term.)	10.7 mc .   Adjust to provide 2 to 3 volts indication on Voltohmyst during alignment.		FM windings. $\dagger \dagger$ T3 top core (sec.). T3 bottom core (pri.).
4				FM windings.t+ T2 top core (sec.). T2 bottom core (pri.).
5		106 mc .	106 mc .	L2 osc.** C2 ant.   Set C2 at max. capacity while adjusting L2.
6		90 mc .	90 mc .	Ll ant.** (Rock gang.)
7	Repeat Steps 5 and 6 until further adjustment does not improve calibration.			

* Two or more points may be found which lower the audio output. At the correct point the minimum audio output is approached rapidly and is much lower than at any incorrect point
$\dagger \dagger$ Align T3 and T2 by means of alternate loading as explained under AM alignment. Use a 680 ohm resistor instead of a 47,000 ohm resistor and load the FM windings
** L1 and L2 are adjustable by increasing or decreasing the spacing between turns.


Tube and Trimmer Locations

## SOCKET VOLTAGES

Voltages measured with Chanalyst or VoltOhmyst and should hold within $\pm 20 \%$ with rated line voltage． Tuning condenser closed－no signal input．

Tube	Terminal	Voltage			
		M．M．	Phono	A．M．	F．M．
（1） 6 J 6	$\begin{array}{ll}\text { Plate } & 1 \\ \text { Grid } & 6 \\ \text { Plate } & 2 \\ \text { Grid } & 5\end{array}$	$-\overline{-0.4}$	$-\overline{-4}$ -0.8	$\begin{array}{r} 102 \\ -6.8 \\ 96 \\ -2.7 \\ \hline \end{array}$	$\begin{array}{r} 98 \\ -6.0 \\ 110 \\ -2.5 \end{array}$
（2）6BA6	Plate 5   Screen 6   Cathode 7   Grid 1	二	二	$\begin{array}{r} 196 \\ 100 \\ 0.7 \\ -1.3 \end{array}$	$\begin{array}{r} 192 \\ 83 \\ 0.84 \\ -0.2 \end{array}$
（3） 6 AU 6	$\begin{array}{ll} \text { Plate } & 5 \\ \text { Screen } & 6 \\ \text { Cathode } & 7 \end{array}$	二	二	$\begin{aligned} & 190 \\ & 145 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 185 \\ & 141 \\ & 1.21 \end{aligned}$
（4）6AL5	－－	－	－	－	－
（5） 6 A V6	Plate $\mathbf{7}$   Grid 1	$\begin{array}{r} 95 \\ -0.6 \end{array}$	$\begin{array}{r} 125 \\ -0.6 \end{array}$	$\begin{array}{r} 85 \\ -0.6 \end{array}$	$\begin{array}{r} 84 \\ -0.6 \end{array}$
（6） 6 V 6 GT	$\begin{array}{ll} \text { Plate } & 3 \\ \text { Screen } & 4 \\ \text { Cathode } & 8 \end{array}$	$\begin{array}{r} 295 \\ 275 \\ 19.6 \end{array}$	$\begin{array}{r} 299 \\ 295 \\ 21.4 \end{array}$	$\begin{aligned} & 282 \\ & 220 \\ & 15.5 \end{aligned}$	$\begin{gathered} 280 \\ 217 \\ 15.4 \end{gathered}$
（7） 6 AV 6	$\begin{array}{ll} \text { Plate } & 7 \\ \text { Grid } & 1 \end{array}$	$\begin{array}{r} 158 \\ -0.5 \end{array}$	$\begin{array}{r} 168 \\ -0.5 \end{array}$	$\left\lvert\, \begin{gathered} 125 \\ -0.5 \end{gathered}\right.$	$\begin{array}{r} 125 \\ -0.5 \end{array}$
（8）6V6GT	$\begin{array}{ll} \text { Plate } & 3 \\ \text { Screen } & 4 \\ \text { Cathode } & 8 \end{array}$	$\begin{array}{r} 295 \\ 275 \\ 19.6 \end{array}$	$\begin{gathered} 299 \\ 295 \\ 21.4 \end{gathered}$	$\begin{aligned} & 282 \\ & 220 \\ & 15.5 \end{aligned}$	$\begin{gathered} 280 \\ 217 \\ 15.4 \end{gathered}$
（9） $6 \times 55 \mathrm{GT}$	Cathode 8	310	313	300	299
（10）6AV6	$\begin{array}{ll} \text { Plate } & 7 \\ \text { Cathode } & 2 \end{array}$	$\begin{gathered} 171 \\ 1.85 \end{gathered}$	$\begin{array}{r} 184 \\ 1.98 \end{array}$	$\begin{array}{\|c\|} 131 \\ 1.55 \end{array}$	$\begin{array}{\|l\|l} 130 \\ 1.53 \end{array}$
（11）6BA6	$\begin{array}{lr}\text { Plate } & 5 \\ \text { Screen } & 6 \\ \text { Cathode } & 7 \\ \text { Grid } & 1\end{array}$	$\begin{aligned} & 195 \\ & 56.5 \\ & 0.65 \\ & -0.2 \end{aligned}$	二	二	－0．8

Socket voltages with switch in＂AUX＂position are the same as listed for＂PHONO＂position．

Note：FM mixer and osciliator coils are adjustable by increasing or decreasing the spacing hetween turns．The position of the coils and decreasing the spacing between（urns．The position of the coils
$1_{11}$ some chassis the F $M$ osc．coil support（illustratel）is not used， two polystyrene rods cemented to the chatsis allt to the coil are used insteal．

SHOWN WITH TUNING CONDENSER AT MAXIMUM CAPACITY（FULLY CLOSED）


Dial Indicator and Drive Mechanism

CATHODE CURRENTS（MA）

Tube	Terminal	M．M．	Phono	A．M．	F．M．
（1）6J6	7	-	-	8.2	8.7
（2）6BA6	7	-	-	11.6	13.4
$(3)$ 6AU6	7	-	-	10	9.7
（4）6AL5	$1 \& 5$	-	-	-	-
（5）6AV6	2	0.7	0.75	0.5	0.5
（6）6V6GT	8	23.2	25.1	19.1	18.5
$(7)$ 6AV6	2	1.6	1.7	1.1	1.1
$(8)$ 6V6GT	8	23.2	25.1	19	18.5
（9）6X5GT	8	57	53	70	70.5
$(10)$ 6AV6	2	0.2	0.25	0.2	0.2
$(11)$ 6BA6	7	8.0	-	-	-

CHANGES-In some chassis R35 is omitted, in others it is 330 ohms., In early chassis R4 is 22,000 ohms and C 42 is
 transformers stamped 970435-2 (Stock No. 73363).

Complete Schemutic Dingram-Second Produccion




## Chassis No. RC-616 vs RC-616F

The essential difference between the two chassis is the addition of an AUX. audio input jack on Chassis No. RC-616F. The connections to this AUX. jack are controlled by the selector switch. Chassis No. RC-616 (without AUX. jack) has a four position switch. Chassis No. RC-616F (with AUX. jack) has a five position switch.



0
-


0

0

-

0

The dial smale dracing shomn is a full size reproduction. It ran be used as a reference in alignment procedure.

## MAGIC MONITOR

## Circuit Description

'The Magic Monitor circuit acts as a capacity shunt across the audio input to the volume control when the selector switch is turned to M. M. position. This shumt is not effective when the developed grid voltage applied to the grid of V11 (6BA6 M. M. Reactor) is high enough to cause plate current cut-off.

The phono signal input is applied to the grid of Vio ( 6 AV 6 j M. M. amp.) is amplified and fed through a resistance-capacity network to the diode plates of Vjo which rectifies it and produces a grid voltage on V1l in proportion to the level of the high frequencies contained in the audio signal.

## Tests

(1) Ferd a .104 volt 100 cycle signal from a low impetance nource into the phono jack. Sijust the volune control for maximum out The output level whould decrestse to approximately one-half.
(2) Kepeat Step 1 except using 2 volt signal. Tlee output level should decrease only slightly when the selector switch is turned to M. M. position
(3) Repeat Step 2 except using 3,000 cycle signal. The output level shonld not decrease when the selector switch is turned to M. M. position.
(4) Repent Step 3 except using 04 volt signal. The output level shoukl decrease to approximately one-fourth when the selector switch is turned to M. M. position.


Spenker Connections

## Replacement Parts

Stock No.	DESCRIPTION	Stock No.	DESCRIPTION
	CHASSIS ASSEMBLIES RC-616, RC-616F	72827	Capacitor-Tubular, 01 mid., 400 volts (C29, C41. C54)
73610	Board-Terminal board (FM-G) with tink	73638	Capacitor-Tubular, $02 \mathrm{mfd.}$,400 volts (C55)
73866	Capacitor-Ceramic, 2 mmf . (C9)	73639	Capacitor-Tubular, $03 \mathrm{mfd}$.400 volts (C57)
31353	Capacitor-Ceramic, 15 mmf . (C42)	72596	Capacitor-Tubular, . $05 \mathrm{mfd}$.200 volts (C15)
73664	Capacitor-Ceramic, 39 mmf . (C61)	73747 73372	
39042	Capacitor-Ceramic, 47 mmf . (C26, C37)	73372	Capacitor-Electrolytic, comprising 1 section of 30 mfd., 350 volts, 1 section of $30 \mathrm{mfd} ., 300$ volts and
73867 33103	Capacitor-Ceramic, 56 mmf . (C43)		mid.ection of 20 mfd., 25 volts (C18A, CisB, CisC)
48125	Capacitor-Ceramic, 150 mmf . (C7, C19, C38, C50, C53)	73918	Coil-FM antenna coil (No. 16 tinned bus wire, 8 turns per inch, 1 3/4 turns L. H., . 469 1. D.) (L1)
71920	Capacitor-Ceramic, 220 mmf . (C36)	73916	Coil-FM oscillator coil (No. 16 tinned bus wire, 7
39640	Capacitor-Mica, 330 mmf . (C30, C31, C58, C62)		Coil-Oscillator coil, "A" band (L4)
73748 70646	Capacitor-Ceramic, $1,500 \mathrm{mmf}$. (C39)   Capacitor-Tubular, . $0035 \mathrm{mfd} ., 1,000$ volts (C34,	73744 73607	Condenser-Variable tuning condenser (C1, C2, C3, C4, C8, C12, C13)
73659	Capacitor-Tubular, $003 \mathrm{mfd}$.200 volts (C24)	$\begin{aligned} & 73602 \\ & 70342 \end{aligned}$	Contral-Tone control (S4)
72573	Capacitor-Tubular, .003 mfd .400 volts (C28)	70342 +72953	Control-Volume control and power switch (R14, S3)
71926	```Capacitor-Tubular, . }005\mathrm{ mfd., }200\mathrm{ volts (C20, C27, C32, C59, C60)```	†72953	Cord-Drive cord (approx. 38" overall length required)
72791	Capacitor-Tubular, $005 \mathrm{mfd} ., 400$ volts (C14, C16, C17, C21, C22)	$\begin{aligned} & 73690 \\ & 28451 \end{aligned}$	Cord-Power cord and plug   Covar-Insulating cover for electrolytic capacitor
$\begin{aligned} & 72120 \\ & 71923 \end{aligned}$	Capacitor-Tubular, $.015 \mathrm{mfd} ., 200$ volts (C51, C52)   Capacitor-Tubular, 01 mid., 200 volts (C23, C25)	16058	Grommet-Rubber grommet to mount R. F. shelf (4 required)

## Replacement Parts (continued)



AM-FM Radio Phonograph Combination Model 8V151
RK-121C RF-IF Chassis
RS-123D Power Supply \& AF Chassis Mfr. No. 274 Service Data
-1948 No. 9-

RADIO CORPORATION OF AMERICA<br>RCA VICTOR DIVISION<br>CAMDEN, N. J., U.S. A.

Record Changer (RP-177B)
Turntable Speed................................................ 78 r. Record Capacity..........Ten $12^{\prime \prime}$ or twelve $10^{\prime \prime}$ records Undistorted Power Output...................... . . . 10 watts Maximum Power Output. . . . . . . . . . . . . . . . . . . . 14 watts Loudspeaker (92567-2)
Type . ............................ 12 inch Electrodynamic Voice Coil Impedance. . . . . . . . . . 2.2 ohms at 400 cycles Dial Lamps (6) . . . . . . . . Type No. $51,6-8$ volts, 0.2 amp . Victrola Indicator Lamp. Type No. $44,6-8$ volts, 0.25 amp . Jewel Lamp............. Type No. 51, 6-8 volts, 0.2 amp. Cabinet Dimensions
Height. ... . 367/16" Width. . . . 401/8" Depth..... 1715/16" Tuning Drive Ratio, ...........18.4:1 (4.6 turns of knob) Power Supply Rating . ..... 115 volts, 60 cycles, 180 watts

## FOR RECORD CHANGER INFORMATION REFER TO SERVICE DATA FOR MODEL RP-177B

## Circuit Description

Built-in antennas are provided for Standard Broadcast ("A" Band), Short Wave ("C" Band) and Frequency Modulation (" FM "); connected through the range switch to the R.F. amplifier tube (V1). The output of the R.F. amplifier and the oscillator (V3) is fed into the grid of the mixer tube (V2). The intermediate frequency output of the mixer is coupled through transformers T1 (10.7 me.) and Te ( 455 kc .) (series connected) to the 1 st I.F. amplifier tube. The output of the I.F amplifier is coupled through trans. T3 ( 10.7 mc .) and T4 (455 kc.) whose secondaries are connected to the grid of V5 (2nd I.F.) and the detector diode of V8 (AM Det.) respectively. The 10.7 mc . output of V 5 is coupled through trans. T5 to the grid of the driver tube (V6) whose output is coupled through the driver trans. (T6) and the ratio detector trans. to the ratio detector tube (V7).

Simple A.V.C. is used on "A" and "C" bands, delayed A.V.C. is used on FM.

The audio voltages developed in the detector circuits of V7 (FM) and V8 (AM) are coupled through the range switch and volume control to V8 (AF amp.)

When the range switch is turned to PHONO position the input from the PHONO input jack is fed into the
grid of V5 (this tube serves as 2nd I.F. on FM) ; the output of V5 (as phono. amp) is the screen grid (pin No. 6) and is coupled through the range switch and volume control to V8 (A.F. amp.) and also to the "Magic Monitor" which varies the audio output during phono operation. The audio output of V8 is coupled to the AMP output jack.

When the selector switch is turned to max. counterclockwise position this instrument may be used as an audio amplifier. The audio input for this purpose is connected to the AUX jack (middle) at the rear (or bottom) of the chassis. The input from this jack is coupled through the range switch and volume control to the grid of V8.

Note: Plate voltage supplied to V5 (2nd I.F.) on FM only. Plate and screen voltages supplied to V6 (driver) on FM only. Plate and screen voltages supplied to V3 (osc.) on FM, A and C bands only.
The circuit of the A.F. amplifier chassis is conventional consisting of a 6SN 7GT which serves as audio amplifier and phase inverter feeding into two 6 F 6 G tubes connected in push-pull. A 5 U 4 G rectifier supplies $\mathrm{B}+$ voltage for both chassis ( $\mathrm{RK}-121 \mathrm{C}$ and RS-123D).

The operation of the "Magic Monitor" is described on page 9.

tic Diagram RK.121C-Range Switch shown in FM position. For Simplified Schematic
Diagrams of Range Switch Positions see Figs. 7, 8,9, 10 and 11 .
Crystal rectifier used on late production only. Early production used a diode (pin \#6) of V8
(6AT6) for AM detection

$\stackrel{\square}{2}$	$\sum_{4}$	กิ๋	N（\％	유ㅇㅜㅠํ	\％\％\％	嫘	－${ }_{\text {－}}$		을		${ }_{0}^{\text {Ex }}$	－i8
$\overline{\mathbf{u}}$	3	号ず		点解管	Nัำํ	$\cdots$	：	：	®	80800．	$\pm{ }_{\text {F }}$	9
$4$	㽞		${ }_{\text {cios }}$	－\％－－	NoNㅡ․	$\stackrel{\text { N }}{ }$	．	：	$\stackrel{\square}{\square}$		き＊	8
$\begin{aligned} & 0 \\ & \mathbf{0} \end{aligned}$		\％		：：：	옃N．	$\pm$	．	：	을	Opr	－${ }^{\circ}$	9
									$\begin{aligned} & \hat{N} \\ & \dot{z} \\ & \stackrel{y}{a} \\ & \frac{\vdots}{a} \end{aligned}$			
$\underset{\mathbf{U}}{\mathbf{I}}$	$\stackrel{\text { d }}{2}$		$\begin{aligned} & 9 \\ & \mathbf{c}_{5}^{x} \\ & \mathrm{~m} \end{aligned}$				Rot					¢
$<$	邑	5	N	$\cdots$	خ	$\stackrel{n}{ }$	$\stackrel{\circ}{>}$	F	$\stackrel{\infty}{>}$	$\stackrel{\square}{2}$	$\frac{0}{7}$	$\overline{7}$

[^3]| S＇EI | 61 | $\boldsymbol{\varepsilon z}$ | $8^{\circ} \mathrm{oN}$ | D939 | ＊ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| S＇EI | 61 | $\varepsilon \tau$ | $8 \cdot \mathrm{oN}$ | 3939 | EA |
| $\begin{aligned} & 0.2 \\ & 6.1 \end{aligned}$ | $\begin{aligned} & z \% \\ & 0 . z \end{aligned}$ | $\begin{aligned} & \varepsilon \cdot \tau \\ & 1 \cdot \tau \end{aligned}$ | $\begin{aligned} & 9 \circ^{\circ} \mathrm{N} \\ & \varepsilon \cdot{ }^{\mathrm{N}} \end{aligned}$ | LNS9 | 2＾ |
| 181 | LEI | E®I | 4 | 5phs | 14 |
| （VW）SLN3ษ8ก）30OH\＆V）ชヨlsl7dWV |  |  |  |  |  |
|  |  | se э |  | $\begin{aligned} & \text { 3ndzno } \\ & 59.9 \end{aligned}$ | ＊ 1 |
| $\begin{aligned} & \text { sitz- } \\ & \text { szz } \\ & 9 \nabla \varepsilon \end{aligned}$ | $\begin{aligned} & 1 \triangleright z- \\ & \mathbf{S \bullet z} \\ & 1 S \varepsilon \end{aligned}$ | $\begin{aligned} & \nabla z- \\ & \mathbf{8 9 z} \\ & \varepsilon g \varepsilon \end{aligned}$ |  | $\begin{gathered} \text { indzno } \\ 59.39 \end{gathered}$ | $\boldsymbol{\varepsilon} \boldsymbol{\wedge}$ |
| $\begin{aligned} & L G \\ & 68 \\ & \varepsilon z I \\ & 8 L I \end{aligned}$ | $\begin{aligned} & 19 \\ & \varepsilon s \\ & i \varepsilon! \\ & 06! \end{aligned}$ | $\begin{aligned} & 19 \\ & 98 \\ & z \neq 1 \\ & 10 z \end{aligned}$ |  | $\begin{aligned} & \text { AuI Y Y } \\ & \nexists d y \\ & \text { LNS9 } \end{aligned}$ | 2＾ |
| $\begin{aligned} & \text { ose } \\ & \text { W」 } \end{aligned}$ | $\begin{aligned} & \mathbf{s s \varepsilon} \\ & \mathrm{MS} \\ & \mathbf{0 0} \end{aligned}$ | 098 <br> Hd 10 ＊ny | $\begin{gathered} 8 \cdot \mathrm{O} \\ \text { [eu!uxol } \end{gathered}$ | ？30y <br> องกร <br> odKı | $\begin{gathered} 1 \wedge \\ \text { sqnı } \end{gathered}$ |



## ALIGNMENT PROCEDURE

Before aligning set, completely mesh the gang and set the dial pointer on the mechanical maximum calibration point at the extreme left hand end of the dial.
When making a complete alignment follow in proper sequence the tabulated form below.

If only a portion of the circuit is to be aligned select the portion required, followed by the remaining steps in the chart. Any adjustments made on the FM 10.7 mc . IF's make it necessary to realign the AM 455 kc . IF's.

For " A " and " C " band alignment use output meter across voice coil keeping Test Oscillator output as low as possible to prevent Al'C action.

## CRITICAL LEAD DRESS

## (Make lead dress before alignment)

1. Lead from pin 5, tube V2, to terminal "C' on transformer T1 should be dressed close to chassis.
2. Leads to terminals "C" and "D" on transformer T2 should be dressed close together.
3. The following capacitors must be dressed close to the chassis with leads kept as short as possible: C32, C33, C66, C69, C79, and C80.
4. All FM coil connections must be soldered in exact place as the original. (One-sixteenth inch difference in length may be excessive).
5. Lead from pin 7, tube V8, must be dressed away from lead to terminal " $D$ " of transformer ' $\Gamma$ 7.
6. ALL wiring in the receiver is critical as to length and placement. It is therefore important when servicing, that extreme care should be taken so as not to disturb more of the wiring than absolutely necessary.
Note: Keep tuning capacitor rotor grounding brushes clean and making good contact.

## FM RATIO DETECTOR ALIGNMENT

## SET RANGE SWITCH TO FM POSITION

Steps	Connect. Hish Side of Test Osc. To-	Tune the Osc. To	Turn Vol. Cont. To	Adjust
1.	Connect a 680 ohm Resistor between lugs $D$ and $E$ of the ratio detector transformer T7. Connect DC probe of a voltohmyst to the negative lead of the 5 mfd . Electrolytic capacitor C81. The common lead of the meter to chassis.			
2.	Driver grid pin 1, of 6 AUO V6) in series with a .01 MFD capacitor.	$\begin{aligned} & 10.7 \mathrm{MC} \\ & 30 \% \mathrm{Mod} \\ & \text { 400 Cycles } \\ & \text { AM } \end{aligned}$	Maximum Volume	Driver transformer T6 for maximum DC voltage across C-81
3.	Remove Meter Leads and disconnect the 680 ohm resistor from D and E on T7. Connect two $\mathbf{6 8 , 0 0 0}$ ohm resistors (within $1 \%$ of each other) in series, across C81. Connect the common lead of the Voltohmyst to the center point of the 68,000 ohm resistors and the DC probe to contact No. 7 on rear of Switch wafer SO. Use the 30 volt scale.			
4.	Same as   Step 2	$\begin{gathered} \text { Same as } \\ \text { Step } 2 \end{gathered}$	Volume Control Maximurn	†T7 Bottom core for Zero DC Balance on Voltohmyst t+T7 top core for minimum audio output. (Output meter across voice coil)
5.	Reconnect voltohmyst as in step 1 , omitting the 680 ohm resistor.			
6.	Repeat step 2 omitting 680 ohms.			
7.	Remove all connections.			

$\dagger$ Near the correct core position the zero point is approached rapidly and continued adjustment causes the indicated polarity to reverse. A slow approach to the zero point is an indication of severe detuning, and the bottom core should be turned in the opposite direction.
HThe zero DC balance and the minimum AF output should occur at the same point: if such is not the case, the two cores should be adjusted until both occur with no further adjustment of either core. It may be advantageous to adjust both cores simultaneously, watching the volt ohmyst, and an output meter connected across the voice coil for the point at which both zero $D C$ and minimum output occurs.
Note:- I wo or more points may be found which will satisfy the condition required in step 4. T7 top core should be correctly adjusted when approximately $1 / 6$ inch of threads extend above the can, therefore, it is desirable
to start adjustment with the top core in its furthest "in" position and turn to start adjustment with the top core in its furthest "in" position and turn
out, while adjusting the bottom core, until the first point of minimum AF and minimum DC is reached.


Fig. 4. Tube and Trimmer Locations - Top View.


Fig. 5. Tube and Trimmer Locations - Bottom View.
ANT.-RF.-IF. ALIGNMENT

Steps	Connect the   High Side of   the Test Osc.   to-	Connect   Ground   Side of the   Test Onc.	Tune the   Osc. To	Radio   Dinl   Tuned   to-	Adjust

"FM" IF Alignment

1.	Connect the DC probe of a voltohmyst to the negative lead of the 5 MFD electrolytic capacitor C 81, and the common lead of the meter to chassis ground				
2.	Mixer grid pin   11 of 6BA6,   (V2) in series with a 01   MFD capacitor (Adjust test osc. out put for $6-10$ volts developed across C81)   (Range switch in $\mathbf{P M}$ position) (Use very short lead)	To RF   Tube shelf ground near mixer tube (use very short leads)	$\begin{gathered} 10.7 \mathrm{MC} \\ 30 \% \\ \text { modulated } \\ \text { at } 400 \\ \text { cycles } \\ \text { AM. } \end{gathered}$	Max. cep. (Fully meshed)	-T5, T3, T1 top and bottom cores alternately loading primary a secondary of each transformer with 680 ohms while the opposite side of the same transformer is being adjusted. Adjust all transformers for maximum voltaze across

This method is known as alternate loading which involves the use of a 680 ohm resistor to load the plate winding while the grid winding of the same transformer is being peaked. Then the grid winding is loaded with 680 ohm resistor while the plate winding is being peaked.
When the windings are loaded, it is necessary to increase the 10.7 MC input since the gain will decrease and the voltage across $\mathbf{C 8 1}$ will be less.

ANT-RF-IF-ALIGNMENT (Continued)

"AM" IF Alignment

3.	Mixer grid pin \$1 of (V2) in series with a .01 MFD Capacitor. (Turn band switch to "A" or "C" band)	To chassis ground	455 KC	$\begin{gathered} \text { High } \\ \text { Freq end } \\ \text { of bial } \end{gathered}$	*Top and bottom Cores of T2 and T4. (For maximum voltage across voice coll)

"C" Band OSC.-RF.-ANT. Alignment

4.	"C" Band Ant.   Terminal 3   Through a dummy Ant. comprising a 150 ohm resistor in series with a 25 to 30 mmf capacitor	To Chassis ground	15.5 MC	15.5 MC	$\begin{aligned} & \text { Osc.-C37** } \\ & \text { RF.-C15 } \\ & \text { An.-CB } \\ & \text { (For maximum } \\ & \text { voltage earos } \\ & \text { voice coil) } \end{aligned}$
5.			9.5 MC	9.5 MC	$\begin{aligned} & \text { Ose.-L17*** } \\ & \text { RP-L12 } \\ & \text { Ant. LL } \\ & \text { (For maximum } \\ & \text { voltge ecross } \\ & \text { voice coil) } \end{aligned}$
0.	Repeat steps 4 and 5 for accurate alignment				

"A" Band OSC.-RF.-ANT.

7.	Hifh Side (Rod Lead) of Loop Primary with tinz open through a Dummy Ant.    Capacitor	To Chassis ground	1400 KC	1400 KC	Osc.-C36   RF.-C84   Ant.-C1   (For mazimum voltage acrose voice coil)
8.			600 KC	600 KC	$\begin{gathered} \text { Osc.-L18 } \\ \text { RF-L13 } \\ \text { Ant. Lo } \\ \text { (For maximum } \\ \text { voltage seross } \\ \text { voice coil) } \end{gathered}$
9.	Repeat steps 7 and 8 for Max. output.				

${ }^{* *}$ It is necessary to alternately load the primary and secondary of each $455 \mathrm{KC} \mathrm{I.F} \mathrm{transformer} \mathrm{with} 10,.000 \mathrm{ohms}$ while the opposite side of the same transformer is beink adjusted.
***To guard against the possibility of alignment of L17 and C37 to imaxe frequencies, tune the test oscillator to 15.5 MC and turn the radio dial to 15.5 MC . Then adjust the test oscillator to 16.41 MC (image requency). By increasing the test oscillator output, a signal should be heard.
Tune the test oxcillator to 9.5 MC and turn the radio dial to 9.5 MC , hen adjust the test oscilliator to 10.41 MC (image frequency). By increas ing the test oscillator output, a signal should be heard
(If these image frequencies cannot be heard, the set is incorrectly aligned, therefore reperat steps 4 and 5)).

Steps	Connect the   High Side of   the Test Osc.   to-	Connect   Ground   Side of the   Test Osc.	Tune the   Osc. To	Radio   Dial   Tuned   to-	Adjust

"FM" Band OSC.-RF.-ANT. Alignment

10.	FM antenna terminal \$1 in series with a 120 ohrs	To FM antenna terminal 2 in series with 120	106 MC	106 MC	Osc.-C20 for maximum voltage across C81.
11.	resistor	ohm resistor	88 MC	88 MC	Osc.-L9 for maximum voltage across C81.
12.	Repeat ateps 10 and 11 for exact calibration.				
13.	Remove or turn test oscillator off.			$\begin{gathered} 106 \mathrm{MC} \\ \text { No } \\ \text { Carrier } \end{gathered}$	  RF, C13 for maximum voltage across C81 (Noise Voltage)
14.				$\begin{aligned} & 90 \mathrm{MC} \\ & \text { No } \\ & \text { Carrier } \end{aligned}$	RF, LII for maximum voltage across C81.   (Noise   Voltage)
15.	Repeat steps 13 and 14 for maximum output.				
16.	Same as step 10	Same as step 10	106 MC	106 MC	Ant. C5 for maximum voltage across C81.
17.	Same as step 10	Same as step 10	90 MC	90 MC	Ant. L3 for maximum voltage across C81.
18.	Repeat steps 16 and 17 for maximum qutput.				
19.	Disconnect dummy antenna and adjust Ant. trimmer Cl on loop when set is installed in cabinet.				

** Two points may be found to fulfill the requirements. Use the one with the longest threaded end extending out of the transformer.
***** Two boints can be found having the greatest noise voltage developed. Use the one with the yreater capacity (tighter adjustment).


Fig. 6. Dial Scale Drawing.

Fig. 7. Simplified Schematic Diagram-FM Position.

Fig. 8. Simplified Schommic Diagram-SW Position.


Fig. 9. Simplified Schematic Diagram-BC Position.


When the control voltage on V11 is below a predeter菏 the audio signal and chassis thereby attenuating the high
frequency portion of the audio signal.


Fig. 12. Simplified Schematic Diagram - Position. (AUX.).

## Testing the Magic Monitor:

Any serious defects in Magic Monitor operation will be made evident by the following tests. An audio oscillator and an a-c voltmeter flat to 3,000 cycles are needed for the tests.

Procedure:

1. Set up the equipment as shown in Fig. 10. Although two voltmeters are shown, one can be used in both positions.
2. Turn the receiver function switch to PHONO and turn S 8 to ON position. Set the audio oscillator to 400 cycles and adjust its output to 0.2 volt (measured across the oscillator output terminals). Adjust the receiver volume control for a reading of 1 volt (measured at the voice coil). "lhere
should be little or no change in receiver output when S8 is turned to "M.M." position.
3. Repeat Step 2 except using oscillator output of 1 volt. 400 cycles. There should be little or no change in receiver output when S 8 is turned to "M.M." position.
4. Repeat Step - except using oscillator output of 1 volt, 3,000 cycles. There should be little or no change in receiver output when S 8 is turned to "M.M." position.
5. Repeat Step 2 except using oscillator output of 0.2 volt. 3.000 cycles. When S 8 is turned to "M.M." position the output should decrease to approximately $1 / 5$ of that obtained with S 8 in ON position.


Fig. 13. Wiring Diagram - Magic Monitor Unit.


Fig. 15.
Back View.

Fig. 16.
Record Changer Top View.

Fig. 17.
Control Panel.


## Push-Button Adjustment

The push-buttons should be adjusted for eight favorite stations after the receiver is operating, and has had a 5 or 10 minute warm-up period.

Any standard broadcast or frequency modulation stations may be chosen. The preferable arrangement is to adjust for stations in the order of frequency, from low to high. Proceed as follows:

1. Remove the first PUSH-BUTTON (Just pull) and note the adjustment screw beneath.
2. Loosen the adjustment screw.
3. Manually tune very accurately for the desired station.
4. Push the PUSH-BUTTON rod in till it is against stop.
5. Tighten adjustment screw.
6. Make adjustment for the other buttons, setting up and checking each for the chosen station in a similar manner.
7. Recheck all PUSH-BUTTONS and reset if found necessary.


Fig. 19 Push-Bullon set-up

Fig. 20. Tuning Shaft and Clutch Assembly.


SONE MOOELS MAY HAVE EXTRA SPACING WASMER
TO IRCREASE CLUTCH FRKTION TO IRCREASE CLUTCH FRKTION


Fig. 21. Antenna Terminal Board Connections

EXTERNAL ANTENNAS-If reception is not satisfactory on one or more of the three bands, using the built-in cabinet antennas, an external antenna may be used. The Magic Loop Antenna will usually provide sufficient pickup on the Standard Broadcast band, but if an external dipole is installed to improve reception on Frequency Modulation it may be used for Standard Broadcast and Short Wave as well. Connections are made to the antenna terminal board in the back of the cabinet. External antennas may be erected indoors or outdoors and should be oriented in direction for requirements of best reception. RCA Television Antenna. Stock No. 225 or 226 , or the equivalent with 300 -ohm transmission line is recommended for an external antenna.

Figure 21 (A) shows the Antenna Terminal Board with connections for internal cabinet antennas.

Figure 21 (B) shows connections for the RCA Television Antenna replacing those for the internal FM antenna on terminals 1 and 2, and the internal SW antenna disconnected
at terminal 3. The external dipole antenna is now the antenna for FM and SW bands.

Figure 21 (C) shows the additional change for connecting the Standard Broadcast band to make use of the external RCA Television Antenna. The link across terminals 4 and 5 is changed to terminals 4 and 3 . The external antenna is now effective on all bands. Tighten terminals and be sure that the red, black and yellow leads (R.B.Y.) to terminals 4,5 and 6 are still in place and securely connected.

Figure 21 (D) shows connections for a separate outdoor antenna on SW and SB reception, and the external dipole on FM. This outdoor antenna should consist of a wire 30 to 60 feet or so in length mounted in a convenient location as high as possible. Connect lead-in from the antenna to terminal 3 on the antenna terminal board. This outdoor antenna is effective on SB and SW bands. If this connection makes the SB signal too strong, causing overload and distortion, replace the link across terminals 4 and 5 as in Figure 21 (A) and (B). This outdoor antenna is now effective on SW only


END VIEW OF DRIVE MECHANISM SMOWN WITM TUNING CAPACITOR AT MAX. CAPACITY.

Fig. 22. Dial Cord Assembly.


Fig. 23. Loop Antenna.


Fig. 25. Dial Lamp Assembly.

## Chassis Removal:

As shipped from the factory the R-F/I-F chassis is clamped to the radio compartment door with a shipping bracket which is not visible from the back. The instructions (packed with each instrument) specify that it be removed at the time of unpacking.
Since this bracket is not visible, its removal has been generally overlooked. If it is not removed, the purpose of the rubber mounting for the chassis is defeated and causes microphonlcs.

## To remove bracket:

(1) Remove the six knobs.
(2) Remove the four hex nuts (threaded bushings) which hold the escutcheon in place.
(3) Pull off the two push button knobs located above the phono indicator lamp.
(4) Remove phono indicator lamp.
(5) Remove the bracket which is now visible in the chassis opening for the phono indicator lamp.
(6) Replace the lamp, push buttons, escutcheon, nuts and knobs.


Fig. 24. Speaker Connections.

## Removal of Dial Lamps

1. Remove the six control knobs.
2. Remove the four " T " bushings which hold the escutcheon to the control shafts-remove escutcheon.
3. Remove the screw which holds the dial light assembly to the chassis (accessible from back with radio compartment closed) -pull the assembly out of its retaining slot. (See Fig. 25.)


Fig. 26. Range Switch Coupling Shaft.
To Remove Shaft: Loosen square head set screws "C" in collar of gear. Remove nut " $E$ " (on front apron of chassis) from bushing "D." Push shaft and bushing to the :ear so that shaft and bushing are clear of the chassis apron. Flex the shaft and pull forward.

To Remove Bushing from Shaft: Remove " C " washer from shaft at inside end of bushing, push shaft through bushing to permit removal of " C " washer normally recessed inside bushing. Pull shaft through bushing to inside of chassis.

Replacement Parts

Stock No.	DESCRIPTION	Stock Ne.	DESCRIPTION
	HEAD END UNIT RK 121C	$\begin{aligned} & 11891 \\ & 71962 \\ & 71963 \end{aligned}$	Lamp-Pilot Lamp-Mazda 44   Pinion-Pinion and shaft for tuning capacitor Plate-Bearing plate for tuning capacitor pinio
71964 71651	Arm-Push arm and cam for tuning capacitor Ball-Stel ball ( $3 / 32^{\prime \prime}$ dia.) for manual tuning shaft	7298	Plate-Connecting plate for selector switch exten-
3658	Ball-Steel ball (3/32" dia.) for tuning capacitor	71644	Plate-Dial back plate only, less dial window, dials,
10705	Ball-Steel ball ( $5 / 32^{\prime \prime}$ dia.) tor tuning capacitor		supports, indicator slide, indicator and pu
71638	Board-5 contact terminal board for antenna lead-in	71648	Pulley-later pulley (2 required) or indicator cor
71811 71642	Bracket-laler bracket less pulley Bracket-Dial plate support oracket R.H.	71650	Pumeys ${ }^{\text {Pulley-Manual tuning shaft cord pulley }}$
71043	bracket-Dial plate support bracket L.H.	71636	Receptacle-9 prong mate plug for power cable (J1)
72986	Bushing-Threaded bushing for knob end of switch coupang shalt	$\begin{aligned} & 71637 \\ & 72323 \end{aligned}$	Receptacle-AMP-AUX-PHONO jacks   Kesistor-Wire wound, 3 ohms, $1 / 3$ watt (R32)
$\begin{aligned} & 71809 \\ & 71804 \end{aligned}$			Resistor-Fixed, composition, watt (R54)
71803	Capacitor-Adjustable, 2.5-13 mmf. (C20)		Resistor-rixed, composition, 100 ohms, $\pm 10 \%$, 1/2
71808	Capacitor-Adjustable, 3 -35 mmf. (C37, C84)		watt (R21, K22)
71930	Capacitor-Leramic, 5.6 mmf . (C85)		Resistor-Fixed, composition, 270 ohms, $\pm 10 \%$, $1 / 2$
39043 71807	Capacitor-Ctramic, $6.8 \mathrm{mmf}$. . (C25) Capacitor-Adjustable, $10-160$ mmf . (C8, C15)		
71924			watt (R10)
39396	Capacitor-Ceramic, 100 mmf . (C16, C21, C83, C97)		Resistor-Fixed, composition, 1,000 ohms, $\pm 20 \%$, 1/2
71922 71933	Capacitor-Cerainic, 180 mmf . (C34) Capacitor-Mica, 180 mmf . (C18)		watt (R24, K37, R46)   Resistor-Fixed, composition, 2,200 ohms, $\pm 20 \%$, $1 / 2$
71920	Capacitor-Ceramic, 220 mml . (C6, C10)		watt (R12, R25, R36)
71919	Capacitor-Ceramic, 330 mmf . (C3, C11)		Resistor-Fixed, composition, 2,200 ohms, $\pm 10 \%$, $1 / 2$
$\begin{array}{r}39640 \\ 39644 \\ \hline\end{array}$	Capacitor-Mica, 330 mmf . ${ }^{\text {c }}$ (C92)		(R9, R52)
39646	Capacitor-Mica, 560 mmf . (C94)		Resistor-Fixed, composition watt (R4, R68)
71929	Capacitor-Ceramic, 1000 mmf . (C80) (C53)		Resistor-Fixed, composition, 8,200 ohms, $\pm 10 \%$, $1 / 2$
72117	Capacitor-Tubular, . $0012 \mathrm{mid}$. , 400 v. (C53)		watt (R13, R63)
71927 71921	```Capacitor-Tubular, .002 mid., 400 v. (C59, C95) Capacitor-Tubular, . }003\textrm{mfd.,}200\mathrm{ v. (C9, C26, C27, C62, C82)```		Resistor-Fixed, composition, $\mathbf{1 0 , 0 0 0}$ ohms, $\pm 10 \%, 1$ watt (R6)   Resistor-Fixed, composition, 12,000 ohms, $\pm 10 \%$,
71926	Capacitor-Tubular, 005 mid., 200 v. (C40, C42, C43, C66, C76, C77, C78, C86)		8/2 watt (R76)   Resistor-Fixed, composition; 15,000 ohms, $\pm 20 \%$,
72791	Capacitor-Tubular, $005 \mathrm{mfd} ., 400$ v. (C44, C55, C58, C68, C69, C88, C91)		1/2 watt (R30, R51)   Resistor-Fixed, composition, $\mathbf{1 5 , 0 0 0}$ ohms, $\pm 10 \%$.
72120	Capacitor-Tubular, 015 mfd ., 200 v . (C65)		$1 / 2$ watt (R44, R48)
70612 71923	Capacitor-Tubular, $025 \mathrm{mfd},{ }^{200} \mathbf{2 0 0}$ V. (C64) Capacitor-Tubular, (		Resistor-Fixed, composition, $\mathbf{1 5 , 0 0 0}$ ohms, $\pm 10 \%$, 1 watt (R7)
72827	C93)   Capacitor-Tubular, . 01 mid., 400 v. (C32, C35, C54, C89, C96)		Resistor-Fixed, composition, 22,000 ohms, $\pm \mathbf{2 0} \%$,   1/2 watt (R3, R31, R35, R49)   Resistor-Fixed, composition, 22,000 ohms, $\pm 10 \%$,
70631	Capacitor-Tubular, $01 \mathrm{mid} ., 600$ v. (C61)		$1 / 2$ watt (R18)
$\begin{aligned} & 71588 \\ & 72596 \end{aligned}$	Capacitor-Moulded paper, 01 mfd ., 600 v . (C87) Capacitor-Tubular, . 05 mfd., 200 v. (C33, C39, C41		Resistor-Fixed, composition, 22,000 ohms, $\pm \mathbf{2 0} \%$, 1 watt (R43)
72121	C73, C79) Capacitor-Electrolytic, $5 \mathrm{mid} ., 50 \mathrm{v}$. (C67, C81)		Resistor-Fixed, composition, 27,000 ohms, $\pm 10 \%$, 1/2 watt (R11, R45)
32223	Capacitor-Electrolytic, 15 mfd. , 300 v. (C60)		Resistor-Fixed, composition, $\mathbf{3 9 , 0 0 0}$ ohms, $\pm 10 \%$,
71646	Clamp-Dial clamp (2 required)		1/2 watt (R60)
71940	Coil-Antenna coil-F.M.-Complete with adjustable core and stud (L2, L3)		Resistor-Fixed, composition, 68,000 ohms, $\pm 20 \%$, $1 / 2$ watt (R56)
71856	Coil-Antenna coil-" C " band-complete with adjustable core and stud (L4, L5)		Resistor-Fixed, composition, 82,000 ohms, $\pm \mathbf{1 0 \%}$, $1 / 2$ watt (R29, R64)
71942	Coil-Filament choke coil (L7, L8)		Resistor-Fixed, composition, $\mathbf{1 0 0 , 0 0 0}$ ohms, $\pm \mathbf{2 0 \%}$,
71855	Coil-Loop loading coil-"A" band-complete with adjustable core and stud (L6)		$1 / 2$ watt (R28, R58, R59, R65, R70)   Resistor-Fixed, composition, 100,000 ohms, $\pm 10 \%$,
71937	Coil-Oscillator coil-F.M.-complete with adjustable core and stud (L9)		$1 / 2$ watt (R16)   Resistor-Fixed, composition, 100,000 ohms, $\pm 10 \%$,
71853	Coil-Oscillator coil-" C" band-complete with adjustable core and stud (L17)		1 watt (R75)   Resistor-Fixed, composition, 180,000 ohms, $\pm 10 \%$,
71852	Coil-Oscillator coil-"A" band-complete with adjustable core and stud (L18)		$1 / 2$ watt (R17, R20, R34, R55, R66)   Resistor-Fixed, composition, 220,000 ohms, $\pm 20 \%$,
71854	Coil-R. F. coil- "C'" band-complete with adjustable core and stud (L12)		$1 / 2$ watt (R33, R71, R72, R74)   Resistor-Fixed, composition, 270,000 ohms, $\pm 10 \%$,
71939	Coil-R. F. choke coil (L10)		$1 / 2 \text { watt (R53) }$
71857	Coil-R. F. coil-" $A$ " band Complete with adjustable core and stud (L13, L14)		Resistor-Fixed, composition, 330,000 ohms, $\pm \mathbf{2 0 \%}$, 1/2 watt (R61, R67)
71938	Coil-R. F. coil-F.M.-complete with adjustable core and stud (L11)		Resistor-Fixed, composition, 330,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R77)
38405 38401	Control-Tone control-H.F. (R27)		Resistor-Fixed, composition, 470,000 ohms, $\pm 20 \%$,
38401 71596	Control-Tone control-L.F. (R26) Control-Volume control (R42)		$1 / 2$ watt (R14, R39)
†72987	Cord-Manual drive cord (approx. 42" overall required) or indicator drive cord (approx. $30^{\prime \prime}$ overall required)		$1 / 2$ watt (R57, R69)   Resistor-Fixed, composition, 1 megohm, $\pm 20 \%, 1 / 2$ watt (R1, R2, R19, R73, R78)
71941 71654	Coupling-F.M. coupling unit (L16, C17, R5)		Resistor-Fixed, composition, 2.2 megohm, $\pm 10 \%, 1 / 2$ watt (R15 R41, R47, R50, R62)
71653	Dial-Glass dial scale-Standard Broadcast		Resistor-Fixed, composition, 3.9 megohm, $\pm 10 \%$, 1/2
71652 71805	Dial-Glass dial scale-Short Wave Drum-Tuning condenser drive drum		watt (R8) ${ }_{\text {Resistor }}$ (R23ed ${ }^{\text {composition }} 22$ megohm, $+20 \%$,
71800	Gear-12 tooth gear fastened to selector switch coupling shaft	71798	Resistor-Fixed, composition, 22 megohm, $\pm 20 \%$, $1 / 2$ watt (R23)   Screw-No. 8-32 $\times 5 / 32^{\prime \prime}$ set screw
71801	Cear-18 tooth gear fastened to selector switch shaft	71965	Screw-Push arm locking screw
35844 71799	Gear-Scissor gear for tuning capacitor	71812	Shaft-Manual tuning shaft less spring and pulley
71799	Grommet-Rubber grommet to mount R.F. unit cradle ( 6 required)	73726 73727	Shaft-Selector switch coupling shaft-switch end Shaft-Selector switch coupling shaft-knob end-
70429	Grommet-Rubber grommet to mount tube socket (4 required)	72951	less threaded bushing   Shield-Lead tube shield
72674	Grommet-Rubber grommet for chassis front mounting (2 required)	71833 71834	Socket-Dial lamp socket-R.H. Socket-Dial lamp socket-L.H.
72069	Grommet-Rubber grommet for chassis rear mount-	71931	Socket-Pilot lamp sock
	ing (2 required)	71850	Socket-Tube socket complete with base and shield
71647	Guide-Indicator slide guide	73117	Socket-Tube socket
71832 11765	Indicator-Station selector indicator Lamp-Dial lamp-Mazda 51	72516 71649	Socket-Tube socket, miniature
11765	Lamp-Dial lamp-Mazda 51	71649	Spring-Coil spring for manual tuning shaft

## Addition to Parts List:

Replacement Parts (Continued)

Stock No.	DESCRIPTION	Stock No.	DESCRIPTION
71936	Spr	73715	Back-Cabinet back-tan-for blonde instruments
33622	Spring-Push button arm return spring	71599	Bracket-Jewel lamp bracket
73658	Switch-"Magic Monitor" and power switch (S7, S8)	71874	Bushing-Bushing and washer for large knobs
71802 71645	Switch-Selector switch (S1, S2, S3, S4, S5, S6)	73626	Bumper-Rubber bumper for record changer carriage
71645 71845	Support-Glass support (rubber) (2 required)		actuating link
71845	Iransformer-First 1.F. transformer - F.M. (Ti) (C28, С30)	71884 71863	Button-Push button   Cable-5 wire moulded lead-in cable
71846	Transformer-First 1.F. transformer - A.M. (T2) (C29, C31)	72583 13103	Cable-Shielded pickup cable complete with pin plug
71847	Transformer-Second I.F. transformer - F.M.	38684	Capacitor-Mica trimmer, $\mathbf{2 - 2 0} \mathrm{mm}$
	(C45, C47, C51)	73695	Carriage-Record changer mounting carriage com-
71848	Transformer-Second I.F. transformer - A.M. (T4) (C46, C48, C49, C50)	71892	plete with runners   Catch-Bullet catch and strike for lower doors
71849	Transformer-Third I.F. transformer - F.M. (T5)	72434	Check-Radio compartment door check
71935	Transformer-Driver transformer (T6) (C5)	X1813	Cloth-Grille cloth for mahogany or walnut instruments
71934	Transformer-Ratio detector transformer (T7) (C72, C74)	$\begin{array}{r} \times 1666 \\ 71966 \end{array}$	Cloth-Grille cloth for blonde instruments Decal-Trade mark decal (Victrola)
37435	Washer-"C" washer for holdin	71910	Decal-Trade mark decal
	selector switch shaft	73716	Escutcheon-Escutcheon only less window, screen
31608	Washer-Spring washer for drive cord pulleys or idler pulley	73717	and marker strips for mahogany instruments Escutcheon-Escutcheon only less window, screen
71875	Washer-Spring washer for chassis front mounting	7371	and marker strips for walnut instruments
2917	Washer-Spring washer for selector switch coupling shaft and bushing (knob-end) or manual tuning	73718	Escutcheon-Escutcheon only less window, screen and marker strips for blonde instruments
71810	Window-Dial window (clear glass)	73712	Gasket-Rubber gasket-tan-for under escutcheon for blonde instruments
	IFIER ASSEMBLIES	73713	Gasket-Rubber gasket-black-for under escutcheon for mahogany or walnut instruments
70646	Capacitor-Tubular, . 0035 mid., 1,000 volts ( $\mathrm{C} 5, \mathrm{C} 6$ )		ments
70631	Capacitor-l ubular, $01 \mathrm{mld}, 600$ volts ( $\mathrm{C3} 3$, C4)	73873	Grille-Metal grille for blonde instruments
70632	Capacitor-i ubular, 02 mtd ., 600 volts ( $\mathbf{6} 8$ )	73	Grommet-Kubber grommet for mounting record
72596	Capacitor-Tubular, . $05 \mathrm{mtd} ., 200$ volts (C7)		changer (4 required)
31323 72955	Capacitor-Electrolytic, 16 mfd , 150 volts (C2)	73702	Grommet-Kubber grommet for loop mounting (2
72955	Capacitor-Electrolytic, comprising 1 section of 30 mid., 450 volts; 1 section of 50 mid., 400 volts; and 1 section of 40 mid ., 25 volts (CIA, C1B.	16058 73871	```required) Grommet-Rubber grommet for speaker mounting (3 required)```
11765	Lamp-Jewel lamp-Mazda 51		compartment door hinge (2 required for each
18469	Plate-Mounting plate (bakelite) for electrolytic capacitor	7373	door)   Hinge-L.H. hinge for phono compartment door or
12493	Plug-5 contact female plug for speaker cable		K.H. hinge for radio compartment
	Resistor-Fixed, composition, 2,700 ohms, $\pm 10 \%, 1 / 2$ watt (R3, Ry)	73751	Hinge-R.H. hinge for phono compartment door or L.H. hinge for radio compartment door
	Resistor-Fixed, composition, 22,000 ohms, $\pm 10 \%, 1 / 2$ watt (R4)	73711	Knob-Selector switch or power switch knob-brown -for blonde instruments
	Resistor-Fixed, composition, 27,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R5)	71	Knob-Selector switch or power switch knob-maroon-for mahogany or walnut instruments
	Resistor-Fixed, composition, 47,000 ohms, $\pm 20 \%, 1 / 2$ watt (R11)	72	Knob-Tone control knob-brown-for blonde instruments
	Resistor-Fixed, composition, 220,000 ohms, $\pm 20 \%$, $1 / 2$ watt (R6, R7, K12)	71	Knob-Tone control knob-maroon-for mahogany or walnut instruments
71660	Resistor-Voltage divider, comprising 1 section of 180 ohms, 3.5 watts, 1 section of 2,520 ohms, 3.97	72118	Knob-Volume contel or tuning knob-brown-for blonde instruments
	watts, and 1 section of 2,760 ohms, 9.3 watts (Rla, Rib, Ric)	7182	Knob-Volume control or tuning knob-maroonfor mahogany or walnut instruments
	Resistor-Fixed, composition, $1 \mathrm{megohm}, \underset{2}{2} \%$, $1 / 2$ watt (R10)	7361	Link-Actuating link assembly for record changer carriage-R.H.
35787 71659	Socket-Audio input socket	73617	Link-Actuating link assembly for record changer
71659 31364	Socket-9 prong power socket (J1)		carriage-L.H.
31319	Socket-Tube socket	71969	Marker-Station markers
37048	Transformer-Power transformer, 115 volis, 60 cycle (T1)	72765	Nut-Speed nut to fasten transparent screen to escutcheon (2 required)
71661	Transformer-Output transformer (T2)	$\begin{aligned} & 71879 \\ & 71881 \end{aligned}$	Plate-Backing plate for transparent screen
		71819	Plate-Radio compartment doo
	RL 70R1	30868	plate   Plug-2 contact female plug for power cable
13867	Cap-Dust cap	30870	Plug-2 prong male plug for power cable
71147	Clanp-Clamp to hold metal cone suspension (2 re-	32641 31048	Plug-3 prong male plug for loop cable
	quired)	31048	Plug-Pin plug for shielded pickup cable
71146	Coil-Field coil-1,060 ohms	73872   71878	
11469	Coil-Neutralizing coil	71878 36422	Screen-Transparent screen (Victrola indicator)
36145 31539	Cone-Cone complete with voice coil	73618	Spring-Connecting spring between link and record
71144	Speaker-12" EM speaker complete with cone and voice coil less plug	73697	changer carriage   Spring-Conical spring for mounting record changer
71145	Suspension-Metal cone suspension	71818 30900	Spring-Radio compartment door check spring
	NOTE: If stamping on speaker in instrument does	30900 71867	Spring-Retaining spring for knobs
	not agree with above speaker number, order	71867 73185	Spring-Retaining spring for push button
	replacement parts by referring to model num-	72936	Stop-Stop for lower doors
	ber of instrument, number stamped on	70164	Stop-Stop for phono compartment
	speaker and full description of part required.	71880	Strip-Backing strip for call letter marker plate
	MISCELLANEOUS	73612	Track-Record changer carriage mechanism track complete with mounting plate ( 2 required)
$\begin{aligned} & 72555 \\ & 73714 \end{aligned}$	Antenna-Dipole antenna   Back-Cabinet back-burgundy-for mahogany or walnut instruments	71814 71882	Washer-Rubber washer for radio compartment door check   Window-Window for call letter markers

tStock No. 72987 is a spool containing 150 feet of cord.

## Addition to Parts List:

# RADIO CORPORATION OF AMERICA <br> RCA VICTOR DIVISION <br> CAMDEN, N. J., U. S. A. 

## Specifications

Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540-1600 kc			
Intermediate Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455 kc			
Power Output			
Indistorted . .............................................. 1.0 watt			
Tube Complement			
(1) RCA-12SA?   (2) RCA-12SK7		.	onverter
(3) RCA-12SQ7	t., A.V	and A	mplifier
(4) RCA-50L6GGT			Output
(5) RCA-3525GT			lectifier
Pilot Lamp . . . . . . . . . . . . . . . . . . Muzda No. 51, $6-8$ volts, 0.2 amp .			
Loudspeaker			
Cabinet Dimensions	Height	Width	Depth
Cabinet (Outside)	$7 \%$ "	113/4"	$71 / 20$
Shipping Weight			9 lbs.
Tuning Drive Ratio			20:1



Replacement Parts

stock No.	DESCRIPTION	sTOCK No.	DESCRIPTION
	$\begin{aligned} & \text { CHASSIS ASSEM8LY } \\ & \text { RC-1064 } \end{aligned}$		$\begin{aligned} & \text { Resistor-Fixed composition, } 3.3 \mathrm{megohms}, \pm 20 \%, 1 / 2 \text { walt (R4) } \\ & \text { Resistor-Fixed composition, } 4.7 \text { megohms, } \pm 20 \%, 1 / 2 \text { wall (R6) } \end{aligned}$
39622	Capacitor-Mica, 56 mmf . (C5)	70467 34449	Shaft-Tuning knob shaft
39632	Capacitor-Mica, 150 mmf . (C13)	34449 37605	Socket-Lamp socket   Socket-Tube socket, molded
72571	Capacitor-Mice, 330 mmf . (C23)	37605 70390	Socket-lube socket, molded   Spring-Drive cord tension spring
70606	Capacitar-Tubular, $005 \mathrm{mfd} ., 400$ volts (C16)	73036	Tronsformer-First 1.F. transformer (T1)
70611 70615	Capacitar-Tubular, $02 \mathrm{mfd}$.400 volts (C14, C17)	73037	Transformer-Second I.F. transformer (12)
70615 70617	Capacitor-Tubular, 05 mfd ., 400 volis (C12, C18) Capacitar-Tubulor, 0.1 mfd , 400 volis (C24)	72296	Transformer-Output transformer (T3)
70408	Capacitor-Electrolytic, comprising 1 section of $30 \mathrm{mfd} ., 150$ volts and 1 section of $50 \mathrm{mfd} ., 150$ volts (C19A, C198)	33726	or-"C" washer for tuning knob shaft
$\begin{aligned} & 73048 \\ & 73047 \end{aligned}$	Coil-Oscillator coil (L1, L2)   Condenser-Variable tuning condenser complete with drive drum (C1, C2, C3, C4)		$\begin{aligned} & \text { SPEAKER ASSEMBLY } \\ & 922258-1 \end{aligned}$
70322	Control-Volume control and power switch (R5, S1)   Cord-Drive cord (opprox. 40" overall length required)	70470	Speaker-4" $\times 6^{\prime \prime}$ elliptical speaker complete with cone and voice coil
72283	Grommet-Rubber grommet to mount funing condenser (3 required)		NOTE: If stamping on speaker in instrument does not agree with above speaker number, order by referring to model number of instrument, and number stamped on speaker.   MISCELIANEOUS
70469	Indicator-Station selector indicator		
11765	Lamp-Diol lomp-Marda No. 51		
73049	Loop-Antenno loop complete		
70462	Plate-Dial back plate complete with drive cord pulleys less dial		
36230	Pulley-Drive card pulley   Resistor-Fixed composition, 120 ohms, $\pm 10 \%$, $1 / 2 \mathrm{watl}$ (R9)	73209	Back-Cabinet back
	Resistor-Fixed composition, 1200 ohms, $10 \%$, 1 wath (R15)	70398	Clomp-Dial clamp (1 set)
	Resistor-Fixed composition, 22,000 ohms, $\pm 20 \%, 1 / 2$ watt (R1)	$\times 1660$	Cloth-Grille cloth
	Resistor-Fixed composition, 220,000 ohms, $\pm \mathbf{2 0 \%}$, 1/2 watt	70476	Dial-Glass dial scale
	Resistor-Fixed composition, 470,000 ohms, $\pm 20 \%, 1 / 2$ wott (R8)	$\begin{aligned} & 71821 \\ & 30900 \end{aligned}$	Knob-Control knob-maroon   Spring-Retaining spring for knobs

Output Meter Alignment. - If this method is used, connect the meter across the voice coil, and turn receiser the volume control to maximum.

Test-Oscillator.-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.

Calibration Scale.-The glass tuning dial may be removed from the cabinet and mounted above the pointer for reference during alignment The extreme left hand mark of the Standard Broadcast scale must be in line with the left hand mark on the dial backing plate.

Dial Backing Plate.-In the event that only the chassis is returned for service, the makks on the dial backing plate may be used during alignment; refer to the Dial Indicator and Drive Mechanism drawing for corresponding frequencies

Dial Pointer. - With the gang condenser in full mesh the dial pointer should be set to the left hand reference mark on the dial backing plate.
For additional information refer to booklet, "RCA Victor Receiver Aligninent."

Steps	Connect the high site of test-oscillator $t 0$	$\begin{aligned} & \text { Tune } \\ & \text { tesi-osc. } \\ & \text { to- } \end{aligned}$	$\begin{aligned} & \text { Turn } \\ & \text { radio dial } \\ & \text { to- } \end{aligned}$	Adjust the following for max. peak output
1	12SK7 I-F grid through 0.1 mfd . capacitor	455 kc	Quiet-point $1,600 \mathrm{kc}$ end of dial	T2   Top \& bottom 2nd. I-F trans.
2	Stator of Cl through 0.1 mfd .			*T1   Top \& bottom 1st. I-F trans.
3	Short wire placed near loop antenna	1,300 kc	1,300 kc	$\begin{aligned} & \text { C4 (osc.) } \\ & \text { C2 (ant.) } \end{aligned}$
4		600 kc	600 kc "A" Band	12 (osc.)   Rock gang
5	Repeat steps 3 and 4			

* Do not readjust T2 when test oseillator is cunnected to C1.


Dial-Iudicator and Drive Mechanism


Tube and Trimmer Locations


Model 8X71-Maroon
Model 8X72-lvory


AM-FM Radio Receiver
MODELS 8X71, 8X72
Chassis No. RC-1070
—Mifr. No. 274-
Service Data
-1948 No. 19-

RADIO CORPORATION OF AMERICA<br>RCA VICTOR DIVISION<br>CAMDEN, N. J., U. S. A.

## Specifications

## Tuning Ranges

Standard Broadcast (AM).
Frequency Modulation (FM)
Intermediate Frequencies
AM-. . . . . . . 855 kc .108 mc . $\mathrm{FM}-10.7 \mathrm{mc}$.
Tube Complement
(1) RCA $19 J 6$
Mixer and Oscillator
(2) RCA 6BJ6
(3) RCA 12AU6
(4) RCA $12 A L 5$
(5) RCA 6AQ6
(6) RCA 35 C 5.
(7) RCA $35 W_{4}$

Dial Lamp

Power Supply:
This instrument will operate on 115 volts d.c. or 50 to 60 cycles a.c.

If the receiver does not operate on d.c. reverse the power cord. On a.c., reversal of the cord may reduce hum or improve FM reception.

## Antennas:

These receivers have built-in antennas for standard broad. cast ( $A M$ ) and frequency modulation (FM) reception.

Under average conditions these antennas will provide satis. factory reception however provision is made for the use of an external antenna for $F M$ reception it desired.
To use external FM antenna:

1. Remove the wire from under the No. 2 terminal screw of the antenna terminal board. The bare end of this wire should be taped to prevent contact with the antenna terminal screws.
2. Connect the transmission line from an external FM dipole antenna to the No. 1 and No. 2 terminals of the antenna terminal board.

To use builtin $F M$ antenna:

1. The wire extending thru the back of the cabinet must be connected to No. 2 terminal of the antenna terminal board.
2. The power cord should be fully extended and must not be coiled or hanked up.
3. Reversal of the line cord plug may improve reception. DO NOT USE EXTERNAL GROUND.

Loudspeaker

Voice coil impedance ......... 3.2 ohms a! 400 cycles
Tuning Drive Ratio.................. 111/2:1 ( $5^{3 / 4}$ turns of knob)
Power Supply Rating
115 volts d.c. or 50 to 60 cycles a.c............. 30 watts
Power Oulput

Maximum   Undistorted	

Cabinet Dimensions
Height. . $8 \frac{5}{8} \mathrm{in}$. Width... $127 / 8 \mathrm{in}$. Depth... $75 / 10 \mathrm{in}$.

## CAUTION:

THE CHASSIS IS CONNECTED TO ONE SIDE OF THE POWER SUPPLY. Use caution to prevent contact with pipes, radiators, etc. when servicing with chassis removed from cabinet.

## Control Knobs:

DO NOT ATTEMPT TO REMOVE THE CONTROL KNOBS FROM THE CABINET. The knobs have spring retainers on the inside of the cabinet to prevent their removal. The retainers are accessible only after the chassis has been removed from the cabinet.

Removal of Chassis:

1. Remove the four screws at the corners of the back coverpull back cover off carefully -the power cord plug and socket at the bottom right-hand corner will pull apart but the antenna leads remain connected.
2. Unhook the dial cord from the pointer.
3. Remove the four screws which hold the chassis to the cabinet (two at sides of chassis base and two on dial cord pulley brackets above the chassis bass).
4. Pull the chassis to the rear-the knobs will be retained with the cabinet.

If removal of the chassis is not necessary when servicing the back cover may be placed on the supports molded into the upper part of the cabinet.

## Alignment Procedure

## CORRECT ALIGNMENT OF THE FM BAND REQUIRES THAT the am band be aligned first

## Output Indicators:

An RCA Voltohmyst or equivalent meter is necessary for measuring developed d.c voltage during FM alignment. Connections are specified in the alignment tabulation. An output meter is also necessary to indicate minimum audio output during FM Ratio Detector alignment. Connect the output meter across the speaker voice coil.

The RCA VoltOhmyst can also be used as an $\mathbb{A} M$ alignment indicator, either to measure audio output or to measure a-v-c voltage.

Wher audio output is being measured the volume control should be turned to maximum.

## Signal Generator:

For all alignment operations except as stated in the tabulation connect the low side of the signal generator to the receiver chassis. The output should be adjusted to provide accurate resonance indication at all times. It output measurement is used for AM alignment the output of the signal generator should be kept as low as possible to avoid a-v.c action.

## CAUTION:

The chassis is connected to one side of the power supply. On a.c. operation it is recommended that an isolation transformer (115 v . 115 v .) be used for the receiver when servicing.

## Oscilloscope Alignment:

The FM I. F. alignment may be checked using a sweep generator and an oscilloscope. Shunt terminals B and C of T3 with a 1,200 ohm resistor. Coanect the high side of the oscilloscope to terminal C of T3 in series with a diode probe. Apply the output of the sweep generator ( 10.7 mc with $\pm 250 \mathrm{kc}$. sweep) 10 pin No. 1 of V2 (6Bj6) in series with .01 mf . Low side of the oscilloscope and sweep generator to chassis. This will show the response of T2

To check the combined response of T1 and T2; connect the sweep generator to the antenna terminal board-high side to No. 2 ter. minal in series with 300 ohms and low side to No. 1 terminal. Oscilloscope connections as previously connected.
To check the ratio detector response; connect the high side of the oscilloscope direct to terminal No. 8 of Sl rear, low side to chassis, apply the output of the sweep generator to pin No. 1 of V3 (12AU6) in series with 01 mf . Driver plate circuit connected for normal operation ( 1230 ohm resistor removed). Note: It is difficult to observe :narker signats in this step-center trequency and sweep width should be previously observed.

## Alignment Indicator:

The dial and dial back plate are not attached to the chassis. During alignment a substitute trequency indication must be used. We suggest attaching a paper clip to the dial drive cord so that its movement may be measured-reter to the "Dial Scale" illustration on page 5.

## CRITICAL LEAD DRESS

1. All connections in the mixer-oscillator circuit are extremely critical both in regard to lead length and lead dress. Do not disturb unless necessary-make caretul notation betore servicing it it becomes necessary to disturb this wiring.
2. The ground lead from pin No. 2 at V3 (12AU6 Driver) is critical in length and must be dressed down against chassis.
3. Dress audio coupling capacitor C23 away trom output trans. 1ormer.
4. Dress diode ilter unit away from alignment hole in $\mathrm{T}-2$.
5. Dress grid lead of V3 (pin No. 1 of 12AU6) aqainst chassis apron.
6. Dress plate lend of V1 (pin No. 2 of 1916) against chassis.
7. Dress loop antenna leads so as to prevent contact with external antenna terminal board
8. All ground connections to chassis should be restored to the original places of connection it disturbed.
9. Dress capacitor C13 down close to range switch so as to clear the projection on the bottom of the cabinet.
10. The FM ant. and ose. coils must be cemented to the coil support to prevent microphonic howl on YM. Amphenol No. 912 cement is recommended tor this purpose. Amphenol No. 916 solvent is recommended as solvent it it becomes necessary to !oosen the windings.

AM Alignment				
RANGE SWITCH IN AM POSITION				
Steps	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to-	Adjust for peak output
1	AMant. section (C3) of tuning cond. in series with 01 mld .	455 kc.	Quiet point at low treq. end.	A M windings. $\dagger$ T2 bottom core (sec.). T2 top core (pri.).
2				AM windings. $\dagger$   II top core (sec.). Tl bottom core (pri.).
3	Shorl wire placed near loop antenna for radiated signal.	1620 kc .	Extreme high Irequency end.	Cl2 osc.
4		1400 kc .	1400 ke .	C4 ant.
5		600 kc .	600 kc .	4 osc. (Rock gang.)
6	Repeat Stops 3, 4 and 5.			

† Use alternate loading.
Alternate loading involves the use of a 10,000 ohm resistor to load the AM plate winding while the AM grid winding of the SAME TRANSFORMER is being peaked. Then the grid winding is loaded with the resistor while the plate winding is peaked. Only one winding is loaded at any one time. Remove the $10,000 \mathrm{ohm}$ resistor after T 2 and T 1 have been aligned.

Oscillator frequency is above signal frequency on both AM and FM.

## FM Alignment

RANGE SWITCH IN FM POSITION - VOLUME
CONTROL MAXIMUM

Steps	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to-	Adjust for peak output
1	Connect the d.c probe of a Voltohmyst to the negative lead of the 2 mid . capacitor C32 and the common lead to chassis. Adjust sig. gen. output to provide approx. -3 v. indication during alignment.			
2	Pinlof 12AU6 in series with .01 mid .	10.7 mc . modulated $30 \% 400$ cycles AM.	Max. ca. pacity (fully meshed).	T3 top core for max. d-c voltage across C32.   T3 boltom core for min. cudio output.*
3	No. 2 ant. term in series with a 300 ohm resistor. Connect low side to No. 1   terminal.   (Remove ant.   lead from   No. 2 term.)			FM windings.t† T2 tep core (sec.). T2 boltom core (pri.).
4				FM windings. $\dagger \dagger$ Tl top core (sec.). Tl boltom core (pri.).
5		105 mc .	106 mc.	Ll osc.**   Cl5 ant.
8		90 mc .	90 mc .	$\begin{gathered} \text { L5 ant.** } \\ \text { (Rock gang.) } \end{gathered}$
7	Repeat Steps 5 and 6 until further adjustment does not improve calibration.			

* Two or more points may be found which lower the audio output. At the correct point the minimum audio output is approached rapidly and is much lower than at any incorrect point.
$\dagger$ Align T 2 and T 1 by means of alternate loading as explained under AM alignment. Use a 680 ohm resistor instead of a 10.000 ohm resistor and load the FM windings.
- L1 and L5 are adjustable by increasing or decreasing the spacing between turns.



Dial Scale
The dial scale drawing shown is a full size reproduction. It can be used as a reefernce in alignment procedure



8x71. 8x72
Replacement Parts

$\substack{\text { Slock } \\ \text { No. }}_{\text {Ster }}$	description		description
	Chassis ASSEmblies   RC 1070   Capacitor-Variable tuning capacitor (C3, C4, C7, C11. C12. C14. C15)   Capacitor-Ceramic, 2 mmt . (C5) Capactior-Ceramic, 15 mmi . (C9)   Capaclior-Ceramic, 15 mml . (C9) Capacitor-Ceramic, 56 mm . (C8) Capaitor-Ceramic, 56 mmi. (C)   Capacitor-Ceramic, 56 mmi . (C25, C37) Capacitor-Ceramic, 68 mmt (C6) ( Capacitor-Mica, 100 mml ( C 20 ) Capacitor-Ceramic, 150 mmt . (C)   Capacitor-Ceramic, 150 mmf . (C13) Capacitor-Mica, 330 mmf (C10. C16, C27. C28) Capacitor-Ceramic, $1,500 \mathrm{mml}$ (C2)   Capacitor-Ceramic, $1,500 \mathrm{mml}$. (C2) Capucitor-Ceramic. $004 \mathrm{mt.}$. dual (C19A, C19B) (C24A. C24B) (C34A, C34B)   C24B) (C34A, C34B) Capacitor-Ceramic.   Capacitor-Tubamic, .005 ml . (Cl, C18, C31)   Capacitor-Tubular, $002 \mathrm{mif},$.2000 volts (C26) Capacitor-Tubular, 005 ml (., 200 volts (C22)   Capacitor-I ubular, 01 mi., 200 volts (C23, C36) Capacitor-rubular, $02 \mathrm{mi.}$, 400 volts (C33)   Capacitor-Tubular, $05 \mathrm{ml}, 400$ volts (C17, C30) Capacitor-Electrolytic, 2 mt ., 50 volts (C32)   Capacitor-Electrolytic, comprising (C32)   150 volts. 1 section of $40 \mathrm{mf}$. . 150 volts, and 1 section of   $20 \mathrm{ml.}$,25 volts (C3SA, C3SB, C3SC) Coil-Oscillator coil-F.M. (No. 16 tin   turns per inch. $4 \%$ turns L.H. 469 l.D.) (Li) Coil-Oscillator coil-A.M. (I.2. L3, L4) Coil-Antennc coil-F.M. (No. 16 tinn      plastic insulation, standard hook-up wire, 10 turns, close wind) (L6, L7   Cord-Dive cord (aprol and power switch (R9, S2)   Filter-Diode filter, consisting of two 200 :nmf. capacitors   and cne 47.000 ohm resistor (DF1) Grommet-Rubber grommet to mount tuning capacitor (4   Plug-Power input plug (2 prong male) Resistor-Fixed. composition, 82 ohms, $\pm 10 \%, 1 / 2 \mathrm{watt}$   $\left.\begin{array}{c}\text { (RS) } \\ \text { Resistor-Fixed, composition, } \\ \text { (R3) }\end{array}\right) 100 \mathrm{ohms}, \pm 20^{\circ} \%$, $1 / 2$ walt $~$   Resistor-Fixed, compasition, 100 ohms. $\pm 5 \%$. $1 / 2$ watt (RIS)   Resistor-Fixed. composition. 180 ohms, $\pm 10 \%, 1 / 2$ wall (R11, R21)   (R5. R12)   (R14) Fixed, composition, 680 ohms, $\pm 10 \% .1 / 2$ walt   (R20) Fixed, composition. 820 ohms, $10 \%$. $1 / 2$ wall   (R22) Eixed. composition, 1,000 ohms, $\pm 10 \%$. 1 wall   (R26) Fixed. enmposition, 1.000 ohms, $\pm 20 \%$. $1 / 2$ watt   Resisior-rixed, composition, 1,200 ohms, $\pm 5 \%, 1 / 2$ wall (R16)   Resistor (R17)		Resistor-Fixed, composition, 18,000 ohms, $\pm 10 \%$. $1 / 2$ watt Resistor-Fixed, composition, 39.000 ohms, $\pm 10 \%$, $1 / 2$ watt (R18. R27) Resistor-Fixed, composition, 39,000 ohms, $\pm 5 \% .1 / 2$ watt Resistor-Fixed, composition, 1 megohm, $\pm 20 \%$, $1 / 2$ watt    watt (R4. R24) Resistor-Fixed, composition, 3.9 megohm, $\pm 10 \%$, $1 / 2 \mathrm{watt}$ (R1) Resistor-Fixed, composition, 10 megohms, $\pm 20 \%$. $1 / 2 \mathrm{watl}$ Resistor-Fixed, composition, 22 megohms, $\pm 20 \%, 1 / 2$ watt Shaft-Tuning knob shaft   Socket-Dial lamp socket   Socket-Tube socket for V2, V3, V4, V5, V6, V7 Socket-Tube socket for V1 Spring-Drive cord spring   Support-Dial drive cord pulley suppori complete with   Support-Dial drive cord pulley support complete with puller-R. H.   Transformel-Fiswitch (SI)   Transiormer-Second i.F. Transtormer-dual (T2)   Transformer-Ratio detector transformer (TJ)   Transformer-Output transformer (T4) Washer-"C" washer for tuning knob shaft   SPEAKER ASSEMBLY   92572.4 W   Speaker-5" P.M. speaker complete with cone and voice   MISCELiANEOUS   Back-Cabinet back-maroon-complete with loop, ter.   minal boards. power sock anj power cord for Model   Back-Cabinet back-ivory-complete with loop, ter- minal boards, power socket and power cord for Model   8X72 Dial bezel less dial   Board-FM antenna terminal board   Cabinet-Maroon plastic cabinet for Model $8 \times 71$   Dial-Polystyrene dial scale   Indicator-Station splector indicator   Knoo-Control knob-brown-for Model $8 \times 71$   Lamp-Dial lamp-Marda 47   Loop-Antenna loop (winding only) Nut-Speed nut tor bezel and dial s   Nut-Speed nut tor bezel and dial scale Plate-Dial back plate   Retainer-Knob retainer (knob to cabinet)   Socket- 2 contact power input socket (part of back cover and loop assembly)   Spring-Retaining spring for knobs (knob to shat)

[^4]apply to your rca disthibutor for phices of heplacement parts

[^5]

## Specifications

Tuning Range . . . . . . . . . . . . . . . . . . . . . . . . . . 540-1600 kc	
Intermediate Frequency . . . . . . . . . . . . . . . . . . . . . . . 455 kc	
Power Output	
Undistorted	1.0 watt
Maximum .................................... 1.4 watts	
Tube Complement	
(1) RCA-12BE6	Converter
(2) RCA-12BA6	F. Amplifier
(3) RCA-12AT6. . . -nd	A.F. Amplifier
(4) RCA-50C5	Output
(5) RCA-35 W 4	Rectifier
Pilot Lamp. . . . . . . . . . Mazrla No. 5l, 6-8 volts, 0.2 amp.	
Loudspeaker (92577-1)	
Type	4-inch PM
C. Impedan	t 400 cycles

Cabinet Dimensions
Height.....55/8" Width..... 77/8" Depth......5"

## Power Supply Rating

115 volts, AC, 50 or 60 cycles, or DC $\qquad$
POWER SUPPLY POLARITY. - For operation on $\mathrm{d}-\mathrm{c}$, the power plug must be inserted in the outlet for correct polarity. If the set does not function, reverse, the plug. On a-c, reversal of the plug may reduce hum.

## Critical Lead Dress

1. Dress all heater leads close to chassis.
$\because$ Dress output plate bypass capacitor C11 inside of terminal board
2. Dress all exposed leads away from each other and away from chassis.

Replacement Parts

Stock No.	DESCRIPTION	Stock No.	DESCRIPTION
	CHASSIS ASSEMBLIES   RC 1066-8X521   RC 1066A-8X522	$\begin{aligned} & 34449 \\ & 73117 \end{aligned}$ $73488$	```Resistor-Fixed, composition, 4.7 megohm, =20%, 1/2 watt (R5) Socket-Lamp socket Socket-Tube socket```
73499 73501	Capacitor-Ceramic, $56 \mathrm{mmf}$. . (C5) Capacitor-Ceramic, 150 mmf . (C14)	73488 73037	Transformer-First I.F. transformer (T1) Transformer-Second I.F. Iransformer (T2)
72571	Capacitor-Mica, 330 mmf . (C8)	72296	Transformer-Output transformer (T3)
70601	Capacitor-Tubular, $002 \mathrm{mfd.}$,400 volts (C9)		
70611	Capacitor-Tubular, $02 \mathrm{mfd}$.400 volts (C7, C11) Capacitor-Tubular, $05 \mathrm{mfd}$.400 volts ( $46, \mathrm{C} 12$ )		SPEAKER ASSEMBLY
70615	Capacitor-Tubular, $05 \mathrm{mfd.}$,400 volts (C6, C12) Capacitor-Tubular, $0.1 \mathrm{mfd}$.400 Volts (Ci3)		92577-1 W
73500	Capacitor-Electrolytic, comprising 1 section of 30 $\mathrm{mfd}, 150$ volts and 1 section of $50 \mathrm{mfd} ., 150$ volts (C10A, C10B)	73123	Speaker-4" P.M. speaker complete with cone and voice coil
73935	Clip-Spring clip for mounting I.F. transformers (2 required)		MISCELLANEOUS
70133 73495 73498	Coil-Oscillator coil (L1, L2)   Condenser-Variable tuning condenser (C1, C2, C3, C4)   Control-Volume control and power switch (R4, S1)	$\begin{aligned} & 73502 \\ & \mathbf{Y} 2001 \end{aligned}$	Bezel-Decorative bezel   Cabinet-Ivory plastic cabinet complete with dial back plate, indicator, escutcheon and wire trim for Model $8 \times 522$
73496 73497	Loop-Antenna loop and back cover-for Model $8 \times 521$   Loop-Antenna loop and back cover-for Model	Y1499	Cabinet-Maroon plastic cabinet complete with dial back plate, indicator, escutcheon and wire trim for Model 8X521
73497	$8 \times 522$	73508	Clip-Spring clip to fasten dial knob
	Resistor-Fixed, composition, 100 ohms, $\pm 10 \%$, $1 / 2$	73507	Dial-Calibrated dial knob
	watt (R2)   Resistor-Fixed, composition, 150 ohms, $\pm 10 \%$, $1 / 2$ watt (R8)	73511	```Fastener-Push fastener to hold dial back plate (3 required) Fastener-Push fastener to hold loop (2 required)```
	Resistor-Fixed, composition, 1,200 ohms, $\pm 10 \%, 1$	73504	Indicator-Station selector indicator
	```watt (R9) Resistor-Fixed, composition, 22,000 ohms, #20%, 1/2 watt (R1) Resistor-Fixed, composition, 220,000 ohms, }=20%\mathrm{ ,```	73506	Knob-Volume control and power switch knob-ivory   -for Model 8X522   Knob-Volume control and power switch knob-maroon-for Model $8 \times 521$
	$1 / 2$ watt (R6, R10)	11765	Lamp-Dial lamp-Mazda 51
	Resistor-Fixed, composition, 470,000 ohms, $\pm 20 \%$,	71095	Nut-Speed nut to fasten wire trim (2 required)
	1/2 watt (R7)	73509	Plate-Dial back plate
	Resistor-Fixed, composition, 3.3 megohm, $\pm 20 \%$, $1 / 2$ watt (R3)	$\begin{aligned} & 73503 \\ & 30900 \end{aligned}$	Rod-Wire trim rod Spring-Retaining spring for knobs

Alignment Procedure

Cathode Ray Alignment is the preferable method. Connections for the oscilloscope are shown on the schematic diagram.
Output Meter Alignment.-If this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum.
Test-Oscillator.-For all aligmment operations, comnect the low side of the test-oscillator to the receiver chassis. and keep the oscillator output as low as possible to avoid $\mathrm{a}-\mathrm{v}-\mathrm{c}$ action.
On AC operation an isolation transformer ($115 \mathrm{v} . / 115 \mathrm{r}$.) may be necessary for the receiver if the test oscillator is also AC operated.
For additional information refer to booklet "RCA Victor Receiver Alignment."
NOTE.-If the speaker should be remored in servicing, its position should be checked when re-assembling. The distance between the front of the speaker and the rear chassis apron sliould be maintained at $31 / 2$ inches.

Adjustment for Dial:

On late production slotted holes are provided in the tuning condenser mounting bracket and washers (max. of 5 req'd.) are used on the luning condenser shaft (between dial knob and condenser) to permit adjustment of the dial. If the cabinet or luning condenser should be replaced, it may be necessary to adjust the mounting of the tuning condenser or change the number of washers to prevent rubbing of the dial on the cabinet.

Change in Parts List:

CHASSIS ASSEMBLIES
Delete:
70601 Capacitor-Tubular . 002 mid (C9)
Add:
74063 Capacitor-Ceramic 2000 mmi (C9)
74183 Washer-Vellutex washer for dial knob clearance

Steps	Connect the high side of test-oscillator to-	Tune test-osc. to-	Turn radio dial to-	Adjust the following for max, output
1	12BA6 I-F grid through 0.1 mid . capacitor	455 kc	Quiet-point $1,600 \mathrm{kc}$ end of dial	T-2 (top and bottom) 2nd I-F trans.
2	Stator of Cl through 0.1 mid.			-T-1 (top and bottom) lot I-F trans.
3	Short wire placed near loop to radiate signal."	1.600 kc	$1,600 \mathrm{kc}$	C4 (osc.)
4		1,400 ke	1.400 kc	C2 (ant.)
5		600 kc	600 kc	L. 2 (osc.) Rock geng
6		Repeat steps 3,4 and 5.		

- Do not readjust $\mathbf{T}-2$ when test oseillator is connected to Cl .

Tube and Trimmer Locntions

Schematic Circuit Diagram

Replacement Parts

Alignment Procedure

Critical Lead Dress

1. Dress all heater leads close to chassis.
2. Dress pilot light leads away irom speaker cone
3. Dress lead to low side of loop between the two gang condenser leads.
4. Dress C5 (AVC by-pass) close to the bend in the base and clear of the end I.F. transiormer
Test-Oscillator.-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid $\mathrm{a}-\mathrm{v}-\mathrm{c}$ action.

On AC operation an isolation transformer (115 v./115 v.) may be necessary for the receiver if the test oscillator is also AC operated.

Dial Centering:

If the mounting of the tuning condenser has been disturbed, it may be necessary to adjust its position after replacing the chassis in the cabinet. This may be done in the following manner:

1. Install chassis and tighten the three mounting screws.
2. Replace tuning knob.
3. Loosen the two screws which hold the tuning condenser mounting bracket to the chassis.
4. Adjust the position of the tuning condenser mounting bracket so that the tuning knob may be rotated without binding on the cabinet. With tuning condenser plates fully meshed the dial should be in the position indicated below.
5. The two screws should then be tightened to maintain this position.

Dial and Indicator

Steps	Connect the high side of test-oscillator to	Tune test-asc. to-	Turn radio dial to-	Adjust the following for max, output
1	12SK7 I-F grid through 0.1 mfd. capacitor	455 kc	Quiet-point 1600 kc end of dial	T2 (Top and bottom) 2nd I-F trans.
2	Stator of Cl through 0.1 mfd .			-T1 (top and bottom) lst I-F trans.
3	Short wire placed near loop to radiate signal	1600 kc	1600 kc	C4 (osc.)
4		1400 kc	1400 kc	\dagger C2 (ant.)
5		600 kc	600 kc	$L 2$ (osc.) Rock gang
6		Repeat steps 3,4 and 5.		

*Do not readjust $T 2$ when test oscillator is connected to Cl. \dagger When adjusting C2 (ant. trimmer) it is necessary to have the loop in the same position and spacing as it will have when assembled in the cabinet. This spacing is $31 / 4^{\prime \prime}$ from chassis to loop.

Tube and Trimmer Locations

8X681-(Maroon Plastic)
8X682-(lvory Plastic)

MODELS 8X681, 8X682
Chassis No. RC-1061--Mfr. No. 274
Service Data
1948 . . No. 13

RADIO CORPORATION OF AMERICA rCA VICTOR DIVISION CAMDEN, N. J., U.S. A.

Specifications

Tuning Ranges

Standard Broadcast ("A" Band).......... 540-1600 kc Short Wave ("C" Band) 9.4-12 mc

Intermediate Frequency. 455 kc

Tube Complement
(1) RCA 12 BA 6 \qquad R. F. Amplifier
(2) RCA 12BE6 \qquad Converter
(3) RCA 12BA6 \qquad I. F. Amplifier
(4) RCA 12AT6 Aet. A. A. A.C.
(5) RCA 35C5. Rectifier
(6) RCA 35 W 4

Dial Lamp
Type 47, 6.3 volts, 0.15 amp.
Power Supply Rating
115 volts, D.C. or 50 to 60 cycles, A.C.
30 watts

Loudspeaker

Type 92572-5.
5 in. P.M.
V. C. Impedance
3.2 ohns at 400 cycles

Power Output

Undistorted . 0.7 watts
Maximumı. 1.1 watts

Cabinet Dimensions
Height.... 8 in. Width..... 12 in. Depth..... 7 in in.

Tuning Drive Ratio $7 \frac{1}{2}: 1$ ($3^{\frac{3}{4}}$ turns of knob)

NOTE: If reception is not obtained on DC, reverse plug in outlet receptacle. This may also reduce hum on AC operation.

To Remove Chassis from Cabinet

Remove the four screws at the corners of the bottom cover (accessible through holes in the cabinet base). Do not remove the hex head screws which hold the base to the bottom cover. The cabinet may now be lifted off the cabinet base.

Dial Positioning

If the speaker should be replaced, it will be necessary to readjust the speaker mounting bracket position so that the dial par will fit against the cabinet when the chassis is re-installed in the cabinet.

Insulating Washers

The cabinet base is insulated from the chassis bottom cover. When servicing make certain that the insulating washers are in place and properly positioned.

Alignment Procedure

Test Oscillator.-Connect high side of test oscillator as shown in chart. Connect low side to chassis. Keep the output low to avoid A.V.C. action.
Note.-If the test oscillator is AC operated it may be necessary to use an isolation transformer ($115 \mathrm{v} . / 115 \mathrm{v}$.) for the receiver during aligmment, and the low side of the test oscillator connected to common wiring at pin No. 2 of 12 ATG socket-reverse line plug ii hum is excessive.

Output Meter.-Connect meter across speaker voice. coil. Turn volume control to maximum.

Dial Pointer Adjustment.-Rotate tuning condenser to maximum capacity position (plates fully meshed). Adjust dial to position indicated in drawing.

With the dial adjusted as described above mark the dial pan assembly with a pencil to provide a tuning indicator during alignment.

SHOWN WITH TUNING CONDENSER IN FULL MESH (CLOSED)
Dial-Indicator and Drive Mechanism

Steps	Connect the high side of the test-osc. to-	$\begin{aligned} & \text { Tune } \\ & \text { test-osc. } \\ & \text { to- } \end{aligned}$	Range switch	$\begin{aligned} & \text { Turn } \\ & \text { radio dial } \\ & \text { to- } \end{aligned}$	Adjust for max. output
1	Pin No. 1 of 12BA6 I.F. amp. tube in series with 0.1 mfd .	455 kc	" ${ }^{\text {" }}$	Quiet point 1600 kc end of dial	Top and bottom T2 2nd 1. F. trans.
2	Pin No. 7 of 12BE6 converter tube in series with 0.1 mfd .				Top and bottom T1* 1st1.F. trans.
3	Antenna lead in series with 100 mmfd .	1600 kc	"A"	1600 kc	$\underset{A}{C 14}$
4		1400 kc		1400 kc	$\begin{gathered} \text { C2 } \\ \text { "A"ant. } \\ \text { C10 } \\ \text { "A" R.F. } \end{gathered}$
5		600 kc		600 kc	
6	Repeat Steps 3, 4 and 5.				
7	Pin No. 7 of 12 BE 6 converter in series with 0.1 mfd . capacitor	11.8 mc	"C"	11.8 mc	$\begin{gathered} \text { *C16 } \\ \text { "C"osc. } \end{gathered}$
8		9.5 mc		9.5 mc	$\begin{gathered} \dagger \mathrm{L} 6 \\ \mathrm{C} \text { " osc. } \end{gathered}$
9	Repeat Steps 7 and 8.				
10	Antenna lead in series with 50 mmfd .	11.8 mc	"C"	11.8 mc	$\begin{gathered} * \mathrm{Cl} \\ \text { "Cl ant. } \end{gathered}$
11		9.5 mc		9.5 mc	"C"ant.
12	Repeat Steps 10 and 11.				

*Do not readjust T2.
\dagger Rock gang.

* If two peaks are found use minimum capacity peak on Cl6 (osc.) and maximum capacity peak on C3 (ant.).

Lead Dress

1. Dress all heater leads down to chassis and as far as possible from all audio grid and plate wiring.
2. Dress power cord to side apron away from coupling capacitors.
3. Dress pilot lamp leads toward chassis bottom and away from audio coupling capacitor.
4. Dress all leads and components away from all coils.
5. Dress lead from range switch to phono socket against switch shield and chassis apron.
6. The antenna lead should be taped up when not in use.

Cathode Currents

	"A" Band	" $\mathrm{C} "$ Band
(1) 12 BA 6	4.1 ma	6.9 ma
(2) 12 BE 6	7.3 ma	7.2 ma
(3) 12 BA 6	6.7 ma	7.4 ma
(4) 12 AT 6	0.2 ma	0.2 ma
(5) 35 C 5	34.7 ma	33.5 ma
(6) 35 W 4	52 ma	53 ma

Tube and Trimmer Locations
\rightarrow APPROX.GAIN
DATA USING
CHANALYST.

Replacement Parts

Stock No.	DESCRIPTION	Stock No.	DESCRIPTION
	CHASSIS ASSEMBLIES RC-1061		Resistor-Fixed, composition, $\mathbf{2 2 0 , 0 0 0}$ ohms $\pm \mathbf{2 0 \%}$, $1 / 2$ watt (R11) Resistor-Fixed, composition, 470,000 ohms $\pm 20 \%$,
73536	Arm-Range switch actuating arm a		Resistor
71924 39632			Resistor-Fixed, composition, 1 megohm $\pm 20 \%$, watt (R5)
72571	Capacitor-Mica, 330 mmf . (C22)		Resistor-Fixed, composition, 2.2
64641	Capacitor-Mica, 360 mmf . (C5)		
73075 72791			Resistor-Fixed, composition, 4.7 megohm watt (R10)
71928	Capacitor-Tubular, $.02 \mathrm{mfd} ., 200$ volts (C21)	7353	Rod-Connecting rod between range switch knob and
70611	Capacitor-Tubular, 02 mdd , 400 volts (C27)		actuating arm
72596	Capacitor-Tubular, . 05 mid., 200 volts (C12, C15)	73545	Screen-Dial scre
70615	Capacitor-Tubular, $05 \mathrm{mfd} ., 400$ volts (C26) Capacitor-Tubular, 0.1 mid., 400 volts (C18)	73534	Shaft-Range switch and tuning knobs mounting
70617 73520	Capacitor-Electrolytic, comprising 1 section of 80 mid. 150 volts and i section of 50 mfd ., 150 volts		shaft Shield-Tube shield Socket-Dial lamp socket
	mid., 150 volts and 1 section of 50 mid ., 150 volts (C28A. C2sB)	$\begin{aligned} & 73529 \\ & 73374 \end{aligned}$	Socket-Dial lamp socket Socket-Phono input socket
73526	Clip-Tubular clip for fastening dial-located on dial mounting track (2 required)	$\begin{array}{r} 36069 \\ 9914 \end{array}$	Socket-Tube socket-for tubes V1, V2, V3, V4 Socket-Tube socket-for tubes V5, V6
73518	Coil-R-F coil-" A " band-complete with adjustable	74038	Spring-Drive cord spring
73519	Coil-Antenna coil-"C" band-complete with adjust-	73528 73514	Stud-Dial track idler pulley mounting stud Support-Drive cord pulley support complete
73517	Coil-Oscillator coil-"C"' band-complete with adjustable core and stud (L5, L6)	73535	three (3) pulleys Switch-Selector switch (S1, S2)
73516	Coil-Oscillator coil-" A " band-complete with adjustabie core and stud (L7, L8)	73525	Track-Die cast pulley track and dial mounting ring less fastener clip
73513	Condenser-Variable tuning condenser (C1, C2, C9, C10,C13, C14)	$\begin{aligned} & 73036 \\ & 73037 \end{aligned}$	Transformer-First I-F transformer (T1) Transformer-Second I-F transíormer (T2)
73544	Control-Tone control (R12)	72296	Transformer-Output transformer (T3)
73543 +72913	Control-Volume control and power switch (R9, S3)	33726	Washer-"C". washer to hold pulleys
+72913	Cord-Drive cord (approx. $48^{\prime \prime}$ overall length required)	2917	Washer-"C" washer to hold rangeswitch and tuning knobs shaft
28451	Cover-Insulating cover for electrolytic capacitor	73524	Washer-Insulating washer for mounting chassis
73522	Dial-Dial and screen assembly		tom cover to cabinet base (4 required)
72283	Grommet-Rubber grommet for mounting tuning condenser (3 required) or for mounting capacitor (C3, C16) and bracket (1 required)	73533	Washer-Spring washer to prevent pulleys from rattling or to prevent rattle in range switch and tuning knobs shaft
33139	Grommet-Rubber grommet for range switch connecting rod (2 required)	73540	Washer-Spring washer between tuning knob and mounting bracket
73538	Knob-Range switch knob (thumb wheel type)		
73541	Knob-Tone control knob (thumb wheel type)		SPEAKER ASSEMBLY
73537 $\mathbf{7 3 5 4 2}$	Knob-Tuning knob (thumb wheel type) Knob-Volume control and power switch knob (thumb wheel type)	74103	Speaker-5" P.M. speaker complete with cone and voice coil
73512	Loop-Antenna loop complete (Li)		
73484	Pan-Dial pan and cushion-less track, pulleys and lamp socket		MISCELLANEOUS Base-Metal base for cabinet-less chassis bottom
73530	Pulley-Dial track drive pulley (2 required)		cover or rubber feet
73531	Pulley-Dial track idler pulley (2 half pulleys)		Button-Dial crystal button to diffuse dial lamp light
73237	```Resistor-Wire wound, 33 ohms, 150 MA (R15) Resistor-Fixed, composition, 120 ohms \pm 10%, 1/2 walt (R14) Resistor-Fixed, composition, 150 ohms }\pm10%,1/ watt (R6)```	Y2002 Y2003 73546	Cabinet-Maroon plastic cabinet only for Model 8×681 -less emblem, bezel ring or metal base Cabinet-Ivory plastic cabinet only for Model 8×682 -less emblem, bezel ring or metal base Crystal-Dial crystal
	Resistor-Fixed, composition, 470 ohms $\pm 10 \%$ watt $1 / 2$	73549	Emblem-"RCA-Victor" emblem
		73523	
	waft (R16)	31480 73548	Lamp-Dial lamp-Mazda 47
	Resistor-Fixed, composition, 8200 ohms $\pm 10 \%, 1 / 2$ watt (R3)	73971	Screen-Ventilating screen-black-for back of cabinet for Model 8×681
	Resistor-Fixed, composition, 33,000 ohms $\pm 10 \%, 1 / 2$ watt (R2, R4, R8)	73972	Screen-Ventilating screen-ivory-for back of cabinet for Model $\mathbf{8 X 6 8 2}$

†Stock No. 72953 is a spool containing 250 ft . of cord.

APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS

DIAL PAN AND TRACK ASSEMBLY (Late Production)

In late production the dial pan and track assembly is changed as follows:
(1) The studs (fixed and idler) are shorter - $19 / 32^{\prime \prime}$ vs. $5 / 8^{\prime \prime}$ overall length.
(2) The two half pulleys are replaced by 1 full pulley (Stock No. 73530).
(3) Spring washers are not used.

The parts are interclangeable as follows:
(1) Original stud or original pan using $5 / 8^{\prime \prime}$ studs USE SPRING WASHER - original idler stud (Stock No. 73528) is carried in stock.
(2) Short stud or new pan using ${ }^{10} \%{ }^{\prime \prime}$ " studs - OMIT SFRING WASHER-new pan (Stock No. 73484) is carried in stock.
(3) The two half pulleys may be replaced by one full pulley-both are carricd in stock.

A stop is used to limit the movement of the idler stud, thus preventing the pulleys from junping off the dial track due to rough handling during shipment. This stop may be either a speed nut and screw (A \& B) or a plate taped to the idler arm (C \& D).

RCA
 MODEL QB60

Chassis No. RC-607-Mfr. No. 274

Service Data

$1948 \ldots \ldots 1$

RADIO CORPORATION OF AMERICA RCA INTERNATIONAL DIVISION

745 FIFTH AVE., NEW YORK 22, N. Y.

Electrical and Mechanical Specifications

Frequency Ranges
Standard Broadcast ("A" Band)
Medium Wave (" B " Band)
"31-25 Meter" Spread Band
"19-16 Meter" Spread Band
$540-1600 \mathrm{kc}$
$(550-187$ meters $)$
$2.45-6.3 \mathrm{mc}$
$(122-47.5$ Meters)
$9.5-12 \mathrm{mc}$
$(31.6-25 \mathrm{~meters})$
$15.1-18 \mathrm{mc}$
$(19.9-16.6$ meters)

Intermediate Frequency
Tube Complement
(1) RCA-1N5GT
(2) RCA-1A7GT
(3) RCA-1N5GT
(4) RCA-1U5
(5) RCA-3Q5GT

R-F Amplifier
Converter
I-F Amplifier
2nd Det.-AVC-1st A-F
Output

Phonograph Attachment
A jack is provided on the rear of the chassis for connecting a phonograph attachment. When it is in use adjust the tuning to a point where no station is received. When not in use it should be disconnected from the radio.

Power Supply (Battery Operation)
Battery required 1-RCA VSO-22
$11 / 2$ volts "A", 90 volts " B " or equivalent: 1-RCA VSO-24 $11 / 2$ volts " A "
and 2-RCA VSO-26 $\quad 45$ volts " B "
Battery Currents Normal Battery Saver "A" Battery .3 ampere .25 ampere "B" Battery 13.6 milliamperes 7.2 milliamperes Power Supply (Alternating Current Operation)

Electrifier CV-112X105/125 volts or 210/250 volts 50 to 60 cycles
Power consumption approximately 15 watts
Loudspeaker (92570-2)
Type- $61 / 2$ inch $(16.5 \mathrm{~cm}$) permanent magnet dynamic Voice coil impedance 3.2 ohms at 400 cycles
Power Output Normal Battery-Saver
Undistorted 24 watts 04 watts

Maximum 48 watts 15 watts
Tuning Drive Ratio
Cabinet Dimensions
Height $107 / 1$ inches (28 cm), Width $161 / /$ inches (41 cm), Depth $7 \% / 8$ inches (19 cm)

Reduced Reproduction of Receiver Dial and Corresponding 0-180 Calibration Scales
The corresponding position of the dial indicator for any setting of the calibration scale can be determined by drawing a line from this point on the bottom calibration scale to the same point on the top calibration scale. For example: 148° on the calibration scale corresponds point on the bottom calibration scale to the sately 600 ke on " A " band, etc. Read instructions under "Alignment Procedure."

QB60

Alignment Procedure

Cathode-Ray Alignment is the preferable method. Connections for the oscilloscope are shown on the Schematic Diagram.
Output Meter Alignment.-If this method is used. connect the meter across the voice coil, and turn the receiver volume control to maximum.
Teat-Oscillator.-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.
Calibration Scale on Indicator-Drive-Cord Drum.-The tuning dial is fastened in the cabinet and cannot be used for reference during alignment. therefore a calibration scale is attiached to the indicator-drive-cord drum vihich is mounted on the shaft of the gang condenser. The setting of the gang condenser is read on this scale. which is calibrated in degrees
As the first step in r-f alignment, check the position of the drum. The " $180^{\circ \circ}$ mark on the drum scale must be vertical and directly over the center of the gang-condenser shaft when the plates are fully meshed. The drum is held to the shaft by means of two se serews, which must be tightened securely when the drum is in the correct position

Pointer for Calibration Seale.-Improvise a pointer for the calibration scale by fastening a piece of wire to the gang-condenser frame, and bend the wire so that it points to the " 180° " mark on the calibration scale when the plates are fully meshed. The correct setting of the gang in degrees, for each alignment frequency. is given in the alignment table.
Receiver Dial with Calibration Scale.-To determine the corresponding frequency for any setting of the calibration acales, refer to the dial with callibration scale drawing.

Dial-indicator Adjustment.-After fastening the chassis in the cabinet, attach the dial indicator to the drive cable with indicator at the 540 kc mark, and gang condenser fully meshed. The indicator has a clip for attachment to the cable
Spread-Band Alignment.-For spread-band alignment an extremely high degree of accuracy is required of the test-oscillator, as a alight error will produce considerable inaccuracy on the spread-band dials. Determine the exact dial settings of the test-oscillator (for frequencies at or close to the specified alignment frequencies) by one of the following methods:

1. Zero-beat the test-oscillator against short-wave stations of known frequency.
2. Check test-oscillator signals with a crystal controlled oscillator

A final check should be made on actual reception of short-wave stations of known frequency.
For additional information, refer to booklet "RCA Victor Receiver Alignment."

Steps	Connect the high side of the test-osc. 10	Tune testosc. to-	Range wwitch	$\begin{aligned} & \text { Turn } \\ & \text { radio dial } \\ & \text { to- } \end{aligned}$	Adjust the fol. lowtig for max. peak output
1	I-F grid cap, in series with .01 mfd.	455 ke	A	$\begin{gathered} \text { Quiet } \\ \text { point } \\ \text { near } 180^{\circ} \end{gathered}$	$\begin{aligned} & \text { L23-L24 } 2 \text { 2nd } 1-\mathrm{F} \\ & \text { tranaforme } \end{aligned}$
2	Conv. Grid, in series with .01 m fd.				$\begin{gathered} \mathrm{L} 21 \quad 122 \\ \text { 1st } 1-\mathrm{F} \\ \text { tranaformer } \end{gathered}$
3	Ant. lead in series with 200 mmf .	1.500 kc	A	19°	$\begin{aligned} & \text { C17 (OSC.) } \\ & \text { C12 (RF).) } \\ & \text { CA (} \end{aligned}$
4		600 ke		148°	
5		Repeat steps 3 and 4			
6	Ant. lead In series with 300 ohms	6.1 mc .	B	$16.8{ }^{\circ}$	$\begin{aligned} & \text { C16 (OSC. } \\ & \text { C11 (RF.) } \\ & \text { C3 (ant.) } \end{aligned}$
7		2.5 mc .		165.7°	
8		Repeat steps 6 and 7			
9		11.8 me.	$\begin{aligned} & \mathbf{3 1 - 2 5} \\ & \text { meter } \\ & \text { band } \end{aligned}$	$41 .{ }^{\circ}$	C15 (OSC.) C10 (RF.) C2 (ant.)
10		9.6 me.		150.5°	$\begin{aligned} & \mathrm{L12}(\mathrm{OSC} .) \\ & \mathrm{Li8}(\mathrm{RF} .) \\ & \mathrm{LA} \text { (ant.) } \end{aligned}$
11		Repeat steps 9 and 10			
12		17.75 mc .	19-16 meter band	41°	C13 (OSC.) C9 (RF.) C1 (ant.)
13		15.4 me.		$125.5{ }^{\circ}$	$\begin{aligned} & \mathrm{L} 10(\mathrm{OSC} .) \\ & \mathrm{L} 17 \text { (RF.) } \\ & \mathrm{L2} \text { (} \mathrm{Rnt} \text {.) } \\ & \hline \end{aligned}$
14		Repeat stepa 12 and 13			

- Use minimum capacity peak if two can be obtained.
- If two peaks can be obtained, use the one obtained when the
core screw is farthest out (counter-clockwise).
NOTE: Oscillator tracks above signal on all bands.

R. F. Wiring Diagram (Bottom View)

Dial-Indicator and Drive Mechanism

Tube and Trimmer Locations (Top View)

Resistor Substitution:
In some chassis two 1000
lel as a substitute for the 560 ohm resistor R21.
Capacitor Substitution:
In some chassis the 47 mmf capacitor $C 40$ is a mica capacitor
instead of a ceramic capacitor.

"A" Band

Simplified Schematic Diagram

Replacement Ports

CV-112X (RS-111A)
4886 Capacitor- 05 mfd - 400 volts (C1). 0873 Capacitor-Electrolytic, 2 sections 20 mfd., 150 volts. (C2, C3)
365.53 Capacitor-Electrolytic, 1,000 mfd., 3 volts. (C4, C5, C6)
36547 Coil-High voltage choke coil-200 ohms.
36548 Coil_Low voltage choke coilmurked 1 B84.
36549 Coil-Low voltage choke coil]marked 1885 . 38353 Plug-2-contact filament voltage changing plug.
36551 Rectifier-1.5 volt rectifier.
36552 Socket - 4-contact power output socket.
18008 Socket-Tube socket.
36550 Switch-Power cord switch.
33491 Switch-Voltage change switch.
38393 Transformer-Power transformer-$110-220$ volts, $50-60$ cycle.

Filament Voltage Changing Plug should be in 4 TUBE position.
Battery Saver Switch should be in NORMAL position.

Replacement Parts

$\left\lvert\, \begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}\right.$	DESCRIPTION	$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION
	CHASSIS ASSEMBLIES RC-607	30492 30685	Resistor- 22,000 ohms, $1 / 2$ watt (R12) Resistor- 33,000 ohms, 1/2 watt (R10)
72247	Bracket-Support bracket for battery saver switch	14138	Resistor-68,000 ohms, $1 / / \mathrm{s}$ watt (R6)
35642	Calibrator-Drive drum calibrator	11959	Resistor-180,000 ohms, $1 / 2$ watt (R4)
71921	Capacitor-Tubular, . $003 \mathrm{mfd}$.200 volts (C42)	30562	Resistor-680,000 ohms, $1 / \mathrm{z}$ watt (R15)
45465	Capacitor-Ceramic, 15 mmf . (C21)	30652	Resistor-1 megohm, $1 / 2$ watt (R1, RS, R16)
70935	Capacitor-Ceramic, 27 mmf . (C14)	30649	Reaistor-2.2 megohms, $1 / 2$ watt (R13, R14, R19)
39042	Capacitor-Ceramic, 47 mmf . (C46)	31417	Resistor-3.3 megohms, $1 / 2$ watt (R17)
72843	Capacitor-Mica, 47 mmf . (C40)	30992	Resistor-10 mezohms, $1 / 2$ watt (R7, R8)
71924	Capacitor-Ceramic, 56 mmf . (C27)	14350	Screw-\#8-32 square head set screw for drive drum
72810	Capacitor-Mjes, 100 mmf . (C41)	72248	Shaft-Tuning shaft and flywheel
39636	Capacitor-Mica, 220 mmf . (C7, C8, C20)	70377	Shield-Protective shield for 1A7GT tube
71932	Capacitor-Mica, 510 mmf . (C24)	35787	Socket - Phono or speaker input socket
72526	Capacitor-Mica, 2000 mmf . (C25)	70827	Socket-Tube socket-wafer
70745	Capacitor-Mics trimmer, comprising 1 section of $\mathbf{1 2 - 1 6 0}$ mmf. and 1 section of $4-70 \mathrm{mmf}$. (C1, C2, C9, C10)	31319 72251	Socket-Tube socket-molded for 1A7 tube Socket-Tube socket complete with mounting plate for
72255	Capacitor-Mica trimmer, comprising 1 section of $\mathbf{3 - 3 5}$ mmf., and 1 section of $\mathbf{4 - 7 0} \mathrm{mmf}$. (C3, C4, C11, Cl2)	31518	1U5 tube Spring-Tension spring for pointer and drive cords
72256	Capacitor-Ceramic trimmer, comprising 4 sections of 5-50 mmf. (C13, C15, C16. C17)	72250	Support-L. H. pulley support complete with drive cord pulley
72792	Capacitor-Tubular, $001 \mathrm{mfd}$.200 volts (C44)	72249	Support-R. H. pulley support complete with four (4)
72315	Capacitor-Tubular, . 002 mid., 200 volts (C36)		drive cord pulleys
72490	Capacitor-Tubular, $.005 \mathrm{mfd} ., 200$ volts (C28, C33, C37. C45, C47)	$\begin{array}{r} 72246 \\ 72254 \end{array}$	Switch-Battery saver switch (S5) Switch-Range switch (S1, S2, S3)
71923		71403	Transformer Flrst I. F. transformer (T1, L21, L22.
71928	Capacitor-Tubular, . $02 \mathrm{mfd} ., 200$ volts (C31, C38)	72252	Transformer-Second I. F. transformer (T2, L23, L24,
72253	Capacitor-Electrolytic, comprising 1 section of 20 mfd ., 150 volta and 1 section of $10 \mathrm{mfd} ., 150$ volts (C26A, C26B)	72245	C34, C35, C39) Transformer-Out put transformer (T3)
72263	Coil-Antenna coil, 19-16 meter band (L1, L2)	2917	Washer-"C' washer for tuning shaft
72264	Coil-Antenna coil, 31-25 meter band (L3, L4)		
72262	Coil-Antenna coil, "B" band (L5, L6)		
72261	Coil-Antenna coil. "A" band (L7, L8)		
72267	Coil-Oscillator coil, 19-16 meter band (L9, L10)		SPEAKER ASSEMBLIES
72268	Coil-Oscillator coil, 31-25 meter band (L11, L12)		92570-2 J
72257	Coil-Oscillator coil. "B"" band (L13, L14)		
72258	Coil-Oscillator coil. "A" band (L15, L16)	72520	Cone-Cone and voice coil assembly
72265	Coil-R. F. coil, 19-16 meter band (L17)	31048	Plug-Pin plus for speaker cable
72266	Coil-R. F. coil, 31-25 meter band (L18)	72724	Speaker-6 $1 / 2^{\prime \prime}(161 / 2 \mathrm{~cm})$ P.M. speaker complete with cone
72260	Coil-R. F. coil, "B", band (L19)		and voice coil less cable and plug
72259	Cail-R. F. coil, "A" band (L20)		NOTE: If stamping on speaker in instrument does not
70957	Condenser-Variable tuning condenser (C5. C6, C18. C19. C22, C23) Control-Tone control (R18)		agree with above speaker number, order replacement parts by referring to model number of instrument, number
38401 38404	Control-Volume control and power switch (R9, S4)		stamped on speaker and full description of part required.
†72953	Cord-Drive cord (approx. $53^{\prime \prime \prime}[135 \mathrm{~cm}]$ overall length required)		
$\dagger 72913$	Cord-Pointer cord (approx. $33^{\prime \prime}$ [84 cm] overall length)		MISCELLANEOUS ASSEMBLIES
35627	Drum-Drive drum less calibrator		
70429	Grommet-Rubber grommet to mount 1 U5 tube socket (2 required)	70833 $\text { Y } 1384$	Board-Baffe board and grille cloth Cabinet-Cabinet for Model QB60
37396	Grommet-Rubber grommet to mount R. F. shelf (4 required)	36103	Decal-Power switeh decal Decal-Tone control decal
70391	Insulator-Input socket insulator	71089	Decal-Trade mark decal
30568	Plug-4 prong male plug for battery cable	35391	Decal-Tuning control decal
32289	Pulley-Drive cord pulley (small)	72270	Dial-Glasa dial scale .
35630	Pulley-Drive cord pulley (large)	35647	Frame-Dial frame less indicator and dial
8063	Resistor-330 ohms, $1 / 2$ watt (R20)	70580	Indicator-Station selector indicator
5164 34767	Resiator-560 ohms, $1 / 2$ watts (R21)	72269	Knob-Range switch knob
34767 30733		70836	Knob-Volume control, tone control, tuning or battery switch knob
3219	Resistor-18,000 ohms, $1 / 2$ watt (R2)	14270	Spring-Retaining spring for knobs

Chassis No. RC-602B Mfr. No. 274 FOR INFORMATION ON RECORD CHANGER REFER TO SERVICE DATA FOR MODEL 960001 Service Data
$1947 \ldots . . . \times 5$
RADIO CORPORATION OF AMERICA RCA INTERNATIONAL DIVISION 745 FIFTH AVE., NEW YORK 22, N. Y.

Specifications

Frequency Rauge
Standard Broadcast ("A" Band)
Medium Wave ("B" Band).
"31-25 Meter" Spread Band
"19-16 Meter" Spread Band
"13-11 Meter" Spread Band
Intermediate Frequency
Tube Complement

540-1600 kc (556-187 m) $2.45 \cdot 6.3 \mathrm{mc}(122-47.7 \mathrm{~m})$ $9.5-12 \mathrm{mc}(31.6-25 \mathrm{~m})$
$15.1-18 \mathrm{mc}(19.8-16.6 \mathrm{~m})$ $21.4-27 \mathrm{mc}(14-11.1 \mathrm{~m})$

455 kc

Power Supply Ratings

Symbol	Voltages	Prequency (cycles)	Watts
Rating D	(See below)	$60 \dagger$	150

110 position- 100 min.- 115 max. Note: Shipped in $\mathbf{2 4 0}$-volt position. 125 position- 115 min. -135 max. To change. remove round cover 150 position- 135 min . -165 max . on top of transformer case and $\mathbf{2 1 0}$ position- 190 min . $\mathbf{2 3 0}$ max. move link to required position. 240 position -220 min . -260 max.

CAUTION: Remove power cord from line receptacle before changing link position.
tThis instrument may be operated from 50 cycle power supply if the record changer is modified-refer to 960001 Service Data.

Record Changer . Type 960001-4
Capacity ten 12 in . or twelve 10 in . records

Lamps

Dial lamps 2 Type 51. 6.3 volts 0.20 amp.
Vol. Cont. lamp
Band Indicator lamp
Rec. Changer Comp. lamp

Cabinet Dimensions (Inches)
Overall Chassis Dimensions

1 Type $47,6.3$ volts 0.15 amp. 1 Type 55.6 .3 volts 0.40 amp 1 Type 55.6 .3 volts 0.40 amp

Height	Width	Depth
36	$381 / 3$	17
$71 / 4$	$152 / 4$	$97 / 6$

$\begin{array}{llllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array} 0$

Alignment Procedure

Cathode-Ray Alignment is the preferable method. Connections for the oscillograpls are shown on the Schematic Circuit Diagram.

Output Meter Alignment.-If this method is used. connect the meter across the voice coil. and turn the receiver volume control to maximum.

Test-Oscillator. - For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.
Calibration Scale on Indicator-Drive-Cord-Drum.-The tuning dial is fastened in the cabinet and cannot be used for reference during alignment, therefore a calibration scale is attached to the indicator-drive-cord drum. which is mounted on the shaft of the gang condenser. The setting of the gang condenser is read on this scale, which is calibrated in degrees. The correct setting of the gang in
given in the alignment table.
As the first step in r -f alignment, check the position of the drum. The 1 180° " mark on the drum scale must be vertical, and directly over the center of the gang-condenser shaft when the plates are fully meshed. The drum is held to the shaft by means of two set serews, which must be ightened securely when the drum is in the correct position.

To determine the corresponding frequency for any sewing of the calibra. To determine the corresponding frequency for any seding refer to the calibration scale drawing which shows the dial with 0.180° callibration scales drawn at top and bottom.

Pointer for Calibration Scale. - Inprovise a pointer for the calibration sale by fastening a piece of wire to the gang-condenser frame, and bend the wire so that it points to the " $180^{\circ "}$ mark on the calibration scale when the plates are fully meshed.

Dial-Indicator Adjustment.-After fastening the chassis in the cabinet attach the dial indicator to the drive cable with indicator at the 540 kc mark (the first mark on " A " band to the left of " $550^{\prime \prime}$), and gang condenser fully meshed. The indicator has a spring clip for attachment to the cable.

Spread-Band Alignment.-The most satisfactory method of aligning or checking the spread-band ranges is on actual reception of short-wave stations of known frequency, by adjusting the magnetite-core oscillator coil for each spread-band so that these stations come in at the correct points on the dial.

In exceptional cases, when the set is being serviced in a location where the noise level is high enough to prevent reception of short-wave stations, a test-oscillator may be used for alignment, but an extremely high degree of accuracy is required in the frequency settings of the test-oscillator, as a slight error will produce considerable inaccuracy on the spread-band dials The frequency settings of the test-oscillator may be checked by one or both of the following methods:

1. Determine the exact dial settings of the test-oncillator (for frequencies at or close to the specified alisnment (requencies) by zero-beating the test-oscillator against short-wave stations of known frequency.
2. Use harmonics of the standard-broadcant range of test-oscillator, first checking the frequency settings on this range by means of a crystal-controlled oscillator, or by zero-beating against standard broadcast stations.
When a test-oscillator is employed for spread-band alignment a final check should be made on actual reception of short-wave stations of known frequency, and the magnetite-core oscillator coil for each band ahould be retouched so that the stations come in at the correct pointe on the dial.

For additional information, refer to booklet "RCA Victor Heceiver Alignment."

Steps	Connect the high side of the test-osc. to-	Tune testosc. 10 -	Turn Range Switch to-	$\begin{aligned} & \text { Turn } \\ & \text { radio dial } \\ & \text { to- } \end{aligned}$	Adjust the following for max. peak out put
1	6SK7 I-F grid in series with 01 mfd .	455 kc	"A" Band	Quiet point near 690 kc (148 ${ }^{\circ}$)	L23, L24 2nd. I-F trans.
2	6SA7 Det. grid in series with 01 mfd .				$\begin{gathered} \text { L21, L22 } \\ \text { 1st. I-F trans. } \end{gathered}$
3	Antenna terminal in series with 200 mmfd .	1500 kc	"A" Band	$\begin{gathered} 1500 \mathrm{ke} \\ \left(19^{\circ}\right) \end{gathered}$	C23 osc. C30 rf. C10 ant.
4		600 kc		$\begin{aligned} & 600 \mathrm{kc} \\ & \left(148^{\circ}\right) \end{aligned}$	L20 osc. L15 ri.t Llo ant. \dagger
5	Repeat Steps 3 and 4				
6	Antenna terminal in series with 300 ohms	6.2 mc	$\begin{aligned} & \text { "B" } \\ & \text { Band } \end{aligned}$	$\begin{gathered} 6.2 \mathrm{mc} \\ \left(14^{\circ}\right) \end{gathered}$	$\begin{aligned} & \text { C22 osc.* } \\ & \text { C29 rf. } \\ & \text { C9 ant. } \end{aligned}$
7		2.6 mc		$\begin{aligned} & 2.6 \mathrm{mc} \\ & \left(152^{\circ}\right) \end{aligned}$	L19 osc. \dagger L14 rt . \dagger L8 ant. \dagger
8	Repeat Steps 6 and 7				
9	Antenns terminal in series with 300 ohms	11.8 mc	"31-25 Meter" Band	$\underset{\left(40^{\circ}\right)}{11.8 \mathrm{mc}}$	$\begin{aligned} & \mathrm{C} 21 \text { osc.** } \\ & \text { C28 rf.** } \\ & \text { C8 ant. } \end{aligned}$
10		9.5 mc		$\begin{aligned} & 9.5 \mathrm{mc} \\ & \left(170^{\circ}\right) \end{aligned}$	L18 osc. \dagger L13 rf. \dagger L6 ant. \dagger
11		17.75 mc	"19-16 Meter" Band	$\begin{gathered} 17.75 \mathrm{mc} \\ \left(40^{\circ}\right) \end{gathered}$	C19 osc.* C27 rf.** C7 ant.
12		15.2 mc		$\begin{gathered} 15.2 \mathrm{mc} \\ \left(155^{\circ}\right) \end{gathered}$	L17 osc. \dagger L12 rf. \dagger L4 ant. \dagger
13		26.25 mc	"13-11 Meter" Band	$\begin{gathered} 26.25 \mathrm{mc} \\ \left(42^{\circ}\right) \end{gathered}$	$\begin{aligned} & \text { C18 osc.** } \\ & \text { C26 rf.** } \\ & \text { C6 ant. } \end{aligned}$
14		21.25 mc		$\begin{gathered} 21.25 \mathrm{mc} \\ \left(180^{\circ}\right) \end{gathered}$	L16 osc. \dagger L11 rf. \dagger L2 ant. \dagger

Oscillator tracks above signal on all bands:
-Use minitum capacity peak if two peaks can be obtained.
\dagger These adjustments are pre-set and should not require re-adjustment except when components of the tuning section are changed.

* Rock in-use maximum capacity peak if two peaks can be ohtained.

The instrument label used on some instruments is incorrect in showing tube locations. The r-f shelf assembbly which contains tubes
$6 \mathrm{SG}^{2}$ and $6 \mathrm{SAA}^{2}$ should be turned 90° clockwise. The correct tube locations are illustrated

Dial-Indicator and Drive Mechanism

R. F. Wiring Diagram (Bottom View)

Critical Lead Dress

1. Dress C47 and R16 against chassis.
2. Dress R23 against chassis.
3. Dress $\mathbf{C} 48$ on power transformer side of terminal board.
4. All resistor and capacitor leads should be as short as practical.
5. Twist electrolytic capacitor leads and dress between chassis and electrolytic capacitor.
6. Twist all A.C. leads and keep close to chassis and away from other Cl iponent parts and wires.
7. Dress blue treble tone control (R18) lead along intersection of chassis and rear apron and under electrolytic capacitor.
8. Keep tuning indicator and pilot lamp leads away from 6SQ7 tube.
9. Dress C 35 against RF plate assembly
10. Dress C25 and R7 and C24 midway between range switch and RF coil.
11. Keep coil leads to switch and trimmers with minimum slack but not stretched tight.
12. Flexibility of RF plate assembly must be maintained.
13. Dress black lead from phono-radio switch to range switch close to chassis.
14. Dress C13A away from RF shield
15. Dress C34 against RF plate assembly,
16. Keep all gang leads as short as practical
17. A loop must be maintained in ground braid connecting $R F$ plate assembly to chassis.
18. Dress blue lead to antenna terminal against RF shield.

QU62

Capacitor C12 has been changed from 39 mmf to 3.3 mmf . (1t is used in the oscillator circuit and connected to term. \#12 of S 3 rear.)

$\begin{array}{cc}\text { R. F. Section } & \begin{array}{l}\text { NOTE: Circuits } \\ \text { disconnected or in } \\ \text { got ine are either }\end{array} \\ \text { Simplified Schematic Diagram thru the range }\end{array}$

R. F. Section
Simplified Schematic Diagram

$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	CHASSIS ASSEMBLIES RC-602B	$\begin{array}{r} 30648 \\ 72014 \end{array}$	Resistor $\mathbf{- 7 0 , 0 0 0}$ ohms, 1/4 watt (R5, R17, R19, R21) Resistor-Voltage divider, comprising I section of 3800 ohms, 6 watts, 1 section of 3800 ohms, 3 watts and 1 of 210 ohms,
$\begin{aligned} & 12930 \\ & 72016 \end{aligned}$	Board-"Antenna-Ground" terminal board Bracket-Bracket (L.H.) complete with one (1) Drive cord	30652	2.75 watts (R37a, R37b, R37c) Resistor-1 megohm,
	pulley	11769	Resistor-1.8 megohm, 1/ watt (R15)
12015	Bracket-Bracket (R.H.) complete with two (2) Drive cord pulleys	$\begin{array}{r} 30649 \\ 30992 \end{array}$	Resistor- 2.2 megohms, ${ }^{1}$ watt (R11) Resistor- 10 megohms, ${ }^{1} \frac{1}{2}$ watt (R16, R23)
70840	Cable-Bronze cable for band indicator mechanism	70976	Screen-Band indicator screen-green
71086		14350	Screw-18-32 square head set screw
70965	Capacitor-Ceramic trimmer, comprising 5 sections of $5-50$ mmf. (C18, C19, C21, C22, C23)	$\begin{array}{r} 33438 \\ 0647 \end{array}$	Screw-Thumb serew for tuning tube clip Shade-Lamp shade
70935	Capacitor-Ceramic, 27 mmf . (C20)	72013 31364	Shaft-Tuning knob shaft and flywheel Socket-Lamp socket (clip opening toward lamp)
71924	Capacitor-Ceramic, 50 mmf . (C25)	34909	Socket-Lamp socket (clip opening toward lead)
39636	Capacitor-Mica, 220 mmf ((C3, C13, C24, C46)	70827	Socket-Tube socket-octal
71932	Capacitor-Mica, 510 mmf . (C16)	9914	Socket-Tube socket for oato
72526	Capacitor-Mica, 2000 mmf (C17)	71554	Socket-Tuning tube socket
70931	Capacitor-Mica trimmer, comprising 1 section of $\mathbf{3 - 3 5} \mathrm{mmt}$. and 2 sections of $4-70 \mathrm{mmf}$. (C8, C9, C10, C28, C29, C30)	$\begin{array}{r} 70978 \\ 31418 \\ \hline \end{array}$	Spring-Band indicator disc spring Spring-Tension spring for drive cords
70745	Capacitor-Mica trimmer, comprising l section of $\mathbf{1 2 - 1 6 0} \mathbf{m m f}$. and 1 section of $\mathbf{4 - 7 0} \mathrm{mmf}$. ($\mathrm{Cb}, \mathrm{C} 7$)	$\begin{aligned} & 72020 \\ & 70917 \end{aligned}$	Switch-Range switch (S1, S2, S3, S4) Transformer-First I.F. transformer T1 (L21, L22, C32, C33)
70754	Capacitor-Mica trimmer, comprising 1 section of $\mathbf{4 - 7 0} \mathbf{m m f}$. and I section of $12-100 \mathrm{mmf}$. (C26, C27)	70918	Transformer-Second I. F. transformer T2 (L23, L24, C38, $\text { C } 39, \text { C } 40, C 41)$
71592	Capacitor-Moulded, 002 mfd ., 200 volts (C47)	34183	Transformer-Powertransformer, 110/125/150/210/240volts,
71087	Capacitor-Moulded, 003 mfd .1000 volts (C50, 2000)	71143	Washer- "C0 " ${ }^{\text {che }}$ washer for actuating disc
71587	Capacitor-Moulded, . 005 mfd ., 000 volts (C5, C35, C37)	34373	Washer-" ${ }^{\text {C" }}$ washer for tuning shaft
71593	Capacitor-Moulded, $005 \mathrm{mfd} ., 000$ volts (C45)		
72529 71585	Capacitor-Moulded, 01 mfd , 100 volts (C43) Capacitor-Moulded, $.01 \mathrm{mfd} ., 200$ volts (C42)		PEAKER ASSE
72219	Capacitor-Moulded, $.01 \mathrm{mfd} ., 000$ volts (C4, C34, C48, C49)		02560-4W
72527 72528	Capacitor-Moulded, $05 \mathrm{mfd} ., 100$ volts (C36)		(RL 103-4)
72528 72019		32852	Cap-Dust cap
36599	Capacitor-Electrolytic, comprising 1 section of 30 mfd .450 volts, 1 section of 15 mfd , 350 volts and 1 section of 40 mfd .,	$\begin{array}{r} 36145 \\ 5118 \end{array}$	Cone-Cone complete with voice coil Plug-3 contact male plug for speaker
	25 volts (C44a, C44b, C44c)	72223	Speaker-12" P.M. speaker, complete with cone and voice
$\begin{aligned} & 70726 \\ & 30716 \end{aligned}$	Clip-Retaining clip for coils' core and st'sds Clip-Tuning tube clip	71145	coil less plug Suspension-Metal cone suspension
70923	Coil-Antenna coil, 13-11 meter band (L1, L2)		
70924	Coil-Antenna coil, 19-16 meter band (L3, L4)		
70925 70926	Coil-Antenna coil, 31-25 meter band (15, L6)		SPEAKER ASSEMBLY
70926 70927	Coil-Antenna coil, "A" band (L9, L10)		(RL 70N1)
70964	Coil-R. F. coil, 13-11 meter band (L.11)		
70963	Coil-R.F. coil, 19-16 meter band (Li2)	32852	Cap-Dust cap
70962	Coil-R. F. coil, 31-25 meter band (L13)	11469 12079	Coil-Neutralizing coil
70960	Coil-R. F. coil, "B", band (L14)	12079	Coil-Field coil, 1060 ohms Cone-Cone complete with voice coil
70959 70920		36145 5119	Cone-Cone complete with voice coil Plug- 3 contact female plug for speaker
70823	Coil-Oscillator coil, 19-16 meter band (L17)	71560	Plug - 5 prong male plug tor speaker
70825	Coil-Oscillator coil, 31-25 meter band (L18)	36204	Speaker-12* E.M. speaker complete with cone and voice
70829	Coil-Oscillator coil, "B", band (L19)		coil less output transformer and plugs
70789	Coil-Oscillator coil, " A " band (L20)	71145	Suspension-Metal cone suspension
70957	Condenser-Variable tuning condenser ($\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 11, \mathrm{C} 14$, C15, C31)	37997	Transformer-Output transformer (T4) NOTE: If stamping on speaker in instrument does not agree
72012 72913	Control-H. F. tone control (R18) Cord-Drive cord (approx. 30* overall length)		with above spenker number, order replacement parts by referring to model number of instrument, number stamped
72913	Cord-Indicator cord (approx. $66^{\text {" overall }}$ length)		on speaker and full description of part required.
70969	Core-Adjustable core and stud for "A", band R.F. coil		
70939 70970	Core-Adjustable core and stud for " \mathbf{A} " band oscillator coil Core-Adjustable core and stud for $13-11$ meter band R.F. coil		CONTROL PANEL ASSEMBLIES
70943	Core-Adjustable core and stud for 19-16 meter band antenna coil	39622	Capacitor-Mica, 56 mmf ((C65)
70941	Core-Adjustable core and stud for 13-11 meter band antenna coil	72532 72530	Capacitor-Moulded, . 003 mfd., 200 volts (C63) Capacitor-Moulded, .02 mfd , 100 volts (C60)
70937	Core-Adjustable core and stud for $10-16$ meter band R.F. and oscillator coils, and 13-11 meter band oscillator coil	$\begin{aligned} & 72531 \\ & 72328 \end{aligned}$	Capacitor-Moulded, $.03 \mathrm{mfd} ., 100$ volts (C61) Control-L.F. tone control (R33)
70944	Core-Adjustable core and stud for 31-25 meter band antenna coils, " B " band antenna coil	$\begin{aligned} & 72330 \\ & 31480 \end{aligned}$	Control-Volume control and power switch (R14, S6) Lamp-Volume control lamp-Marda 47
70938	Core-Adjustable core and stud for " \mathbf{A} " band antenna coils, $31-25$ meter band oscillator and R. F. coils and "B" band oscillator coil	31567 35383 14659	Plug-3 prong male plug for control cable Plug- 8 prong male plug for control cable Resistor 6800 ohms, ' 2 watt (R32)
70977	Dise-Band indicator actuating disc	30492	Resistor-22,000 ohms, 1/2 watt (R30)
72011	Drum-Band indicator actuating drum	30685	Resistor- 33,000 ohms, 1/2 watt (R31)
31273	Drum-Condenser drive drum	30493	Resistor- 150,000 ohms, $1 / 2$ watt (R36)
72017	Frame-Dial frame and back plate less dial, tube clip, indicator disc, spring, indicator and " C " washer	$\begin{aligned} & 31449 \\ & 35787 \end{aligned}$	Resistor- 1.5 megohms, $1 / 2$ watt (R34) Socket-Phono in put socket
37396	Grommet-Rubber grommet for mounting R. F. assembly (4 required)	72329	Switch-Local-distance-phono switch (S5)
72018 5117	Indicator-Station selector indicator Lamp-Band indicator lamp-Mazda 55		MISCELLANEOUS ASSEMBLIES
11765	Lamp-Dial lamp-Mazda 51		
18469	Plate-Bakelite mounting plate for electrolytic \$36599	36462	Clamp-Dial clamp
30868	Plug-2 Contact female plug for motor cable (J1)	X1624	Cloth-Grille cloth
31572 12493	Plug-3 contact female plug for power switch cable (J2)	72902 71089	Decal-Control panel decal
12493 35630	Plug-5 contact female plug for speaker cable Pulley-Drive cord pulley (1/8* dia.)	71089 72326	Deca!-Trade mark decal Dial-Glass dial scale
35041		72901	Hinge-Lid hinge-invisible type (4 recuired)
34761	Resistor-10 ohms, 1/9 watt (R2)	72900	Hinge-Lid hinge-spring type (4 requiled)
30732	Resistor- 47 ohms, $1 / 2$ watt (R7)	71905	Knob-Local distance and phono switch knob
34765 34767	Resistor-100 ohms, $1 / 2$ watt (R8)	70836	Knob-Tone control, range switch or tuning knob
34767 71085	Resistor-2200 ohms, 1/2. watt (R10)	72331 5117	Knob-Volume control knob
30492	Resistor-22,000 ohms, $1 / 9$ watt (R6, R12)	70546	Mounting-One set of hardware consisting of four upper
71084	Resistor-39,000 ohms, watt (R)		springs, four lower springs and four clamp nuts to mount
30147	Resistor-39,000 ohms, 1/ watt (R22)		record changer
30651	Resistor-270,000 ohms, $1 / 2$ watt (R13, R20)	14270	Spring-Retaining spring for knobs

APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS

75X11 Maroon 75X12 Ivory 75X14 Mahogany 75X15 Walnut 75×16 Blonde

Specifications

Replacement Parts

[^6]
Alignment Procedure

Output Meter Alignment.-Connect the meter across the voice coil, and turn the receiver volume control to maximum.
Test-Oscillator.-For all alignment operations, connect the low side of the testoscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.
On AC operation an isolation transformer (117v./117v.) may be necessary for the receiver if the test oscillator is also AC operated. Dial Pointer. With the tuning condenser in full mesh the dial pointer should be adjusted to approx. 17.0° counterclockwise from the vertical position. It should be adjusted before re-assembling the bezel to the cabnet. Check on actual reception of stations.
Dis-assembly.-To remove bezel assembly:
Remove the two knobs and the four hex head screws in the feet, pull the bottom of the bezel outward and upward.
To remove chassis from cabinet:
Remove bezel assembly as described above, remove the dial by prying assembly outward on the bottom edge, remove the pointer by pulling siraight to the front, remove the dial lamp, remove the by pulling siraight to the front, remove the dial lamp, re
For additional information refer to booklet "BCA Vistor Receiver Alignment."

Steps	Connect the high side of test-oscillator to-	Tune fent-osc. to-	$\begin{aligned} & \text { Turn } \\ & \text { radio dial } \\ & \text { to- } \end{aligned}$	Adjust the following tor max. peak output
1	12SK7 I-F grid through 0.1 mfd. capacitor	455 kc	Quiet-point $1,600 \mathrm{kc}$ end of dial	L8 and 19 2nd 1 - \mathcal{F} transformer
2	Stator of C2 through 0.1 mfd .			$\begin{gathered} \text { L6 and L7 } \\ \text { 1st I-F } \\ \text { Transformer } \end{gathered}$
3	Ant. lead in series with 200 mmfd .	$1,620 \mathrm{kc}$	tull clock. wise	C3 (osc.)
4		$1,400 \mathrm{kc}$	1,400 ke signal	Cl (ant.)
5		600 kc	600 ke signal	L5 (osc.) Rock gang
6	Repeat steps 3, 4 and 5.			

- Do not readjust L 8 or L 9 when test oscillator is connected to C2.

Tube and Trimmer Locations

Dial-Indicator and Drive Mechanism

REFER TO SERVICE DATA FOR MODEL RP-178 OR MODEL 960276 FOR INFORMATION AND PARTS ON RECORD CHANGER

Radiola 75 ZU

RADIO-PHONOGRAPH COMBINATION Chassis No. RC-1063A Mfr. No. 274 SERVICE DATA

1947 No. R3-

RADIO CORPORATION OF AMERICA
HOME INSTRUMENT DIVISION
CAMDEN, N. J., U. S. A.

Electrical and Mechanical Specifications
Range
Ifermediate Frequency
Tube Complement
(1) RCA Radiotron 12SA7
Converter
2) RCA Radiotron 12SK7
(3) RCA Radiotron 12SQ7........ 2nd Det.a A.V.C., and A.F Amplifier
(4) RCA Radiotron 50L6GT ...ier
(5) RCA Radiotron 35Z5GT Mazda No. $51,6-8$ volts, 0.2 amp .
Power Output
Undistorted .. 1.5 watt
Maximum .. 2.4 watts
Loudspeake
"PM" 4×6 inch elliptical
Type 922258-2 \qquad 3.4 ohms at 400 cycles V.C. Impedance \qquad I Power Supply Rating
$105-125$ volts, A-C, 60 cycles
60 watts

IMPORTANT: Do not plug instrument into a d-c supply.
Access to dial lamp may be obtained by removing sloping panel in record changer compartment.

	Height	Width	Depth
Cabinet dimensions (inches)	101/4	171/4	19
Chassis overall (inches)	9	14	$61 / 4$
Chassis base (inches) ...	15/8	14	$33 / 4$
Tuning Drive Ratio			11:1
Phonograpl.			
Type .. RP-178 or Type 960276-1			
Record Capacity ... Twelve 10 -in.. Ten 12-in.			
Turntable Speed .. 78 r.p.m.			
Type Pickup			

Control Positions

Replacement Parts

$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	CHASSIS ASSEMBLIES		Resistor-Fixed composition, 5.6 megohms $\pm 10 \%, 1 / 2$ watt (R6)
	RC 1063A	73058	Shaft-Tuning knob shaft
70407	Button-Plug button to cover holes for if transformers adjustment	73062 35787	Socket-Lamp sockel Socket-Phono input socket
70997	Capacitor-Ceramic, 5.6 mmf . (C24)	37605	Socket-Tube socket
39650	Capacitor-Mica, 820 mmf . (C15)	70390	Spring-Drive cord tension spring
70601	Capacitor-Tubular, $002 \mathrm{mfd.}$,400 volts (C5, C9)	73061	Spring-Station selector indicator pulley retaining spring
70606	Capacitor-Tubular, 005 mid .400 volts ($\mathrm{Cl}, \mathrm{Cll}$)	70396	Spring-Volume control gear tension spring
70612	Capacitor-Tubular .025 mfd .400 volts (Cl0)	70394	Switch-Power, radio and phono switch (Sl)
70611	Capacitor-Tubular . 02 mid .400 volts (C8)	73036	Transformer-First 1.F. transformer (L6, L7, C20, C21)
70615	Capacitor-Tubular . 05 mid. 400 volts (C2, C14)	73037	Transformer-Second I.F. transformer (L8, L9, C6, C22, C23)
70617	Capacitor-Tubular, 0.1 mid., 400 volts (C3, C4)	72296	Transformer-Output transformer (Tl)
72312	Capacitor-Electrolytic, comprising 1 section of 30 mfd. 150 volts, and 1 section of 80 mid., 150 volts (C25, C26)	33726	Washer-"C" washer for tuning knob shaft
70403	Coil-Osclllator coil (L3, L4, L5)		SPEAKER ASSEMBLIES
73056	Condenser-Variable tuning condenser and drive drum (C16, C17, C18, C19)		922258-2
73057	Control-Volume control (Rl0)	71058	Speaker-4" $\times 6^{\prime \prime}$ P.M. speaker complete with cone and
70392	Cord-Power cord and plug		voice coil
72953	Cord-Drive cord (approx. 38* overall length required)		MISCELLANEOUS
73063	Dial-Dial scale		Cable_Shielded pickup cable for use with BP-178 record
70397	Gear-Power, radio and phono switch gear Gear-Volume control gear-less spring	71105	Cable-Shielded pickup cable for use with RP-178 record changer
72283	Grommet-Rubber grommet to mount tuning condenser (3 required)	72437	Cable-Shielded pickup eable for use with 960276 record changer
73059	Indicator-Station selector indicator	73077	Crystal-Vinylite dial crystal
73010	Loop-Antenna loop complete (L1, L2)	X1661	Cloth-Grille cloth
73055	Plate-Dial back plate less dial	72894	Foot-Rubber foot (4 required)
30868	Plug-2 contact female plug for motor cable	72856	Grommet-Rubber grommet to mount record changer (3)
73060	Pulley-Station selector indicator pulley		required for RP-178) (4 required for 960276)
72313	Resistor-Wire wound, 33 ohms, $1 / 4$ watt (Rll)	72692	Hinge-Lid hinge
	Resistor-Fixed composition, 150 ohms, $\pm 10 \%$, 1/2 watt (R7)	73064	Knob-Power, redio and phono switch knob
	Resistor-Fixed composition, 1200 ohms $\pm 10 \%$, 1 watt (R9)	$\begin{aligned} & 73065 \\ & 73078 \end{aligned}$	Knob-Tuning knob Knob-Volume control knob
	Resistor-Fixed composition, 22,000 ohms $\pm 20 \%$, $1 / 2$ watt	11765	Lamp-Dial lamp
	(R2) Resistor-Fixed composition, $33,000 \mathrm{ohms} \pm 20 \%, 1 / 2$ waft	73109	Nut- I nut for mounting record changer (3 required for RP-178) (4 required for 960276)
	(R14)	73110	Screw-1/4-20 $\times 13 / 4$ fillister head machine screw for
	(R1, R5) Resistor-Fixed composition, 470,000 ohms $\pm 20 \%, 1 / 2 \mathrm{watt}$	73234	Screw- $1 / 4.20 \times 11 / 2$ oval head machine screw for mounting 960276 record changer (4 required)
	(R8)	14270	Spring-Retaining spring for knobs
	Resistor-Fixed composition, 3.3 megohms $\pm 20 \%$, $1 / 2$ watt (R4)	$\begin{array}{r} 71824 \\ 73067 \end{array}$	Stud-Stud and screw to mount one lid hinge Support-Lid support

Alignment Procedure

CAUTION--CLOSE TUNING CONDENSER PLATES COMPLETELY (C-C.W) BEFORE REMOVING CHASSIS FROM CABINET.
Take oft both wooden strips on bottom of cabinet by removing wood screws before loosening chassis bolts.

CRItical lead dress.-

1. All heater wires should be dressed close to chassis.
2. Dress lead from switch to phono jack close to chassis and away from power cord.
3. Dress capacitor between $12 S Q 7$ grid and terminal board away from chassis and away from other parts.
4. Dress lead from arm of volume control to terminal board against front apron and away from other leads.
5. In instrument assembly the lead from the rear section of gang to loop shall be dressed away from chassis and other wires to loop.

Ter: Oscillator.-Cornwt high de oscillator as simen in chart. Connest low side through a lit papactor possible to avoid r.v.e action.

Speaker and Dial Adjustment. If the speaker should isquire Speaker and Dial Adjustmen of the sp ther mounting brar replacement or inturbed, reposition as follows:
Mount a rleer on bracket, adjust b / r so that iront est of speaker raxic:ds
bracket screws.
Mount chassis on wora base with mountung screws loose, Insiall in cabinet and push ch sssis forward unt speaker contacts grille in cabinet and push chassis mounting screw Adjust dial back plate mounting bracket so that the plate is parallel with cabinet.
The two wood buttons at the top of the dial back plate should The two wood buttons at the top of the dial back plate should
be adjusted to provide the best illumination of the dial and peinter

Output Meter Connect meter across speaker voice coil. Turn volume control clockwise to radio maximum high position (3) for alignment.

Dial Pointer Adjustment.-Rotate tuning condenser fully counterDial Poin posiclockwise (plates fllustrated on front page.

Steps	Connect the high side of test-oscillator to-	Tune test-osc. to-	Turn radio dial to-	Adjust the following for max. peak output
1	I.F. grid, in series with .01 mfd.	455 kc	Quiet point 600 kc end of dial	Ls and L9 2nd I.F. transiormer
2	Lst Det. grid in series with L7 .01 mid.		lst I.F. transformer	

NOTE-ANTENNA LOOP AND RECORD CHANGER MUST BE NTENNA LOOP AND RECORD CHANGER
IN CABINET FOR STEPS 3,4 AND 5

3	Antenna termi- nal in series with 220 mmid.	1600 kc	160	C19 (osc.)
4	Hadiated signal	1400 kc	Signal irequency	C17 (ant.)
5	Repeat steps 3 and 4.			

- Do not readjust LB or L9 when test oscillator is connected to 1 st Det.

1st J.F. Trans. Substitution. -The first I.F. transformer may differ from tnat snown in the schematic diagram. Transformers stamped 970441 -1 are as shown in the schematic. Transformers stamped $970441-5$ are connected as follows: term. \#4 to plate of 12SA7. term. \#3 to B+, term. \#1 to grid of $12 S K 7$, term. \#2 to A.V.C. The d.c resistance of each winding is 16 ohms. The primary capacitor C 20 is 131 mmin . the secondary capacitor is 106 mmf .

762X11
(Walnut)

762X12
(livory)

Radiola 76ZX11 and 76ZX12
 1st Prod.-Chassis No. RC-1058 2nd Prod.-Chassis No. RC-1058A Mfr. No. 274
 Service Data
 1947.... R2

RADIO CORPORATION OF AMERICA
HOME INSTRUMENT DIVISION
CAMDEN, N. J., U. S. A.

Specifications

Frequency Range ... 540-1600 kc	Loudspeaker (92572-2)
Intermediate Frequency .. 45.	TYpe ...5-inch PM V. C. Impedance . 3.2 ohms at 400 cycles
Power Output	Cabinet Dimansions Height, 73/4; Width, 121/8; Depth, 63/4
Undistorted ...1.0 watt	Cabinet Dimansions Height 7/4: Widm, 121\%: Depth,
Maximum ...1. 1.5 watts	Power Supply Rating
Tube Complement	105-125 volis, AC, 50 or 60 cycles, or DC 30 watts
(1) RCA Radiotron $12 S \mathrm{~F} 7$..	Pilot Lamp .. type 51, 6-8 volts, 0.20 cmp.
(2) RCA Radiotron 12SK7 ...I.F. Amplifier	Tuning Drive Ratio ... 14.5:1
(3) RCA Radiotron 12SQ72nd Det., A.V.C., and A.F. Amplifier	POWER SUPPLY POLARITY,For operation on d.c, the power
(4) RCA Radiotron 35L6GT ...Power Output	plug must be inserted in the outlet for correct polarity. If the set
(5) RCA Radiotron 12J5GT ..Oscillator	does not function, reverse the plug. On a-c, reversal of the pluy
(6) RCA Radiotron 3525GT ..Rectifier	may reduce hum.

Replacement Parts

$\begin{aligned} & \text { stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION	stock No.	DESCRIPTION
	$\begin{gathered} \text { CHASSIS ASSEMBLIES } \\ \text { RC-1058-RC-1058A } \end{gathered}$		Resistor-Fixed composition, 470,000 ohms, $\pm 20 \%, 1 / 2$ watt (R7)
$\begin{aligned} & 73172 \\ & 72571 \\ & \hline \end{aligned}$	Capacitor-Ceramic, 56 mmfd ., (C19)-ior RC-1058A Capacltor-Mica, 330 mmid . (C8)		Besistor-Fixed composition, 3.3 megohme, $\pm 20 \%$, $1 / 2$ watt (RS)
70606	Capacitor-Tubular, 005 mld ., 400 volts (C9)		
70610	Capacitor-Tubular, 01 mid., 400 volts (C1, C3, C4)		(R9)
70611	Copacitor-Tubular, . 01 mid., 400 volts (C7, Cli)	72886	Shaft-Tuning knob shaft
70615	Capacitor-Tubular, $0.05 \mathrm{mqd.}$,400 volis (C2, C23)	34449	Socket-Lamp socket
39152	Capacitor-Electrolytic. comprising 1 section of 30 mid.	37605	Socket-Tube socket, moulded
	150 volts and 1 section of 50 mid., 150 volts (C20, C21)	32299	Socket-Tube socket-waier
$\begin{aligned} & 73704 \\ & 73163 \end{aligned}$	Coil-Oscillator coil (L3, L4, L5)-lor BC-1058 Coil-Oscillator coil (L3, L4)-for RC-1058A	31418	Spring-Drive cord tension spring
72991	Condenser-Variable tuniny condenser complete with	70411	Tranaformer-First I. F. trankformer (T1)
	drive pulley (C12, C13, C14, C15)-1or RC-1058	70412	Trànsformer-Second I. F. traneformer (T2, C5, C6)
73171	Condenser-Variable tuning condenser, complete with drive pulley (C12, C13, C14, C15)-for RC-1058A	36800	Translormer-Output transformer (T3)
$\begin{array}{r} 38410 \\ \uparrow 72953 \\ 72283 \end{array}$	Control-Volume control and power switch (R13, S1) Cord-Drive cord (approx. $50^{\circ \prime}$ overall length)	35969	Wather-"C" washer for tuning ehaft
72283 37068	Grommet-Aubber grommet to mount tuning condenser (3 required) Indicator-Station selector indicator		SPEARER ASSEMBLY $\mathbf{9 2 5 7 2 - 2 W}$
73030	Indicator-Siation selector indicator		RL 101.3
72602	Plate-Dial back plate complete with drive cord pulleys Pulley-Drive cord pulley Resistor-Fixed composition, 120 ohms, $\pm 10 \%$, $1 / 2$ watt $\text { (} 86,814)$	72201	Speaker-5" P.M. speaker complete whth cone and voice coil miscellaneous
	Resistor-Fixed composition, 1200 ohme, $\pm 10 \%$, I watt (R11)	$\begin{aligned} & 39953 \\ & 70409 \end{aligned}$	Back-Cabinet back for 76ZX11 Back-Cabinet back for 762×12
	Reslator-Fixed composition, 1500 ohms, $\pm \mathbf{2 0} \%, 1 / 2$ watt	Y1429	Cabinet-Brown plastic cabinet for 762X11
		Y1430	Cabinet-Ivory plastic cabinet for $76 \mathrm{ZX12}$
	Resistor-Fixed composition, 3300 ohms, $\pm 20 \%, 1 / 2$ watt (RI)	36890	Clamp-Dial clamp-L.H.
	Resistor-Fixed composition, 22,000 ohms, $\pm 10 \%$, $1 / 2$ watt	72903	Dial-Glass dial scale
	(R2)	37831	Fastener--Push fastener to hold cabinot back (1 net)
	Resistor-Fixed composition, 47,000 ohms, $\pm 20 \%$. $1 / 2$ watt (R12)	$\begin{aligned} & 70414 \\ & 72981 \end{aligned}$	Knob-Control knob-ivory-for 762X12 Knob-Control knob-maroon--for 762X11
	Resistor-Fixed composition, 220,000 ohms, $\pm \mathbf{2 0 \%}, 1 / 2$ walt (R8, R10)	11765	Lamp-Dial lamp-Mazda \#51 Spring-Hetaining spring for knobs

[^7]
Alignment Procedure

Test Oscillator.-Connect high side of test oscillator as shown in chart. Connect low side through a .01 ml capacitor to common "-B." Keep the output signal as low as possible to avoid AVC action.
Output Meter.-Connect leads between speaker voice coil and chassis. Turn volume control to maximum.
Dial Pointer Adjustment.-Rotate tuning condenser fully counterclockwise (plates closed). Adjust indicator to $21 / 8^{\prime \prime}$ from left hand edge of dial back plate.

Steps	Connect the high side of test-oscillator to-	Tune tent-osc. to-	Turs radio dlal to-	Adjust the following for max, peak output
1	Stator of C-12 in series with .01 mfd .	455 lec	Quiel-point 1.600 kc -nd of dial	Sec. and pri. 2nd I-F trans.
2				Sec. and pri. lst I-F trans.
3	Ant. lead in series with 200 mmfd .	1,600 kc	1,800 ke	C14 (ose.)
4		1,300 lac	1,300 lec	C13 ant.
5		600 kc	600 lec	L4 (ose.) Rock in
6	Repeat steps 3, 4 and 5.			

Critical Lead Dress

1. Dress output plate bypass capacitor (C-11 . 02 mf) against chassis.
2. Dress 35L6GT plate lead (red) against chassis and away from volume control, leads and terminals.
Dress audio coupling capacitor ($\mathrm{C} .7 \mathrm{}$..02 mf) away from 35L6GT heater leads.
3. Dress 2nd i-f yellow and brown leads away from output plate Dress 2nd i-f yellow and brown and away from all heater leads.
4. Dress blue and green leads of both i-f transformers back in shields leaving exposed lengths as short as possible.

Dial-Indicator and Drive Mechanism

Tube and Trimmer Locations

Oscillator Circuit-
Chassis No. RC-1058A
Otherwise identical to Chassis
No. RC-1058, except C12 (10-398)

Radio-Phonograph Combination Chassis No. RC-1057A

Mfr. No. 274
Service Data

- 1947 No. 8-

RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION
 CAMDEN, N. J., U. S. A.

Electrical and Mechanical Specifications

Six-Tube, Single-Band, Superheterodyne Receiver
Frequency Range
Intermediate Frequency
Power Output
Undistorted
Maximum
Loudspeaker "PM"
Size
C. Inpuriance

Power Supply Rating

105-125 volts, AC. 60 cycles with RP-178 record chunger 60 watts IMPORTANT--Do not plug chassis into a dec power supply.

REFER TO SERVICE DATA FOR MODEL RP-178 FOR INFORMATION AND PARTS ON RECORD CHANGER

Replacement Parts

STOCK No.	DESCRIPTION	sTOCK No.	DESCRIPTION
	CHASSIS ASSEMBLIES RC 1057A		Resistor-Fixed composition, 470,000 ohms, $\pm 20 \%$, $1 / 2$ wats (R12)
70407	Button-Plug button to cover holes for 1. F. tronsformers adjuspment		Resistor-Fixed composition, 470,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R15)
39622 70600	Capacitor-Mioa, 56 mmf . (C21) Capacitor-Tubular, 001 mfd , 400 volts (C20, C22)		Resistor-Fixed composition, 1.5 megohms, $\pm 10 \%, 1 / 2$ watt (R20)
70606	Copacilor-Tubular, $005 \mathrm{mfd} ., 400$ volts (C1) ${ }^{\text {c }}$ (42)		Resistor-Fixed composition, 3.3 megohms, $\pm \mathbf{2 0 \%}, 1 / 2$ watt
72791	Capacitor-Tubular, 005 mfd ., 400 volts (C10)		(R4) 10 ,
70608	Capacitor-Tubular, 007 mfd ., 400 volts (C12)		Resistor-Fixed composition, 10 megohms, $\pm 20 \%$, $1 / 2$ watt
70612	Capacitor-Tubular, $025 \mathrm{mfd} ., 400$ volis (C18)		(R8, R9)
70610	Capacitor-Tubular, $01 \mathrm{mfd} ., 400$ volis (C13, C14, C15)	73012	Shaft-Tuning knob shoft
71928	Copacitor-Tubular, $02 \mathrm{mfd}$. . 400 volis (C9)	73103	Shield-Tube shield for miniature tubes (2 required)
70611	Capacitor-Tubulor, 02 mfd., 400 volis (C11, C16, C17)	72998	Socket-Dial lamp socket and lead assembly
70615		35787	Socket-Phono input socket
70617	Capacitor-Tubular, $0.1 \mathrm{mfd} ., 400$ volts (C2, C5)	72516	Socket-Tube Socket, miniature
73013	Copacitor-Electrolytic, comprising 1 section of $80 \mathrm{mfd} ., 150$	37605	Socket-Tube socket, molded
	volts; 1 section of 30 mfd ., 150 volis; and 1 section of $10 \mathrm{mfd} ., 150$ volis (C19A, C19B, C19C)	70390 70396	Spring-Drive cord tension spring Spring-Volume control gear tension spring
38201	Clamp-Drive cord clomp	73011	Switch-Power, radio and phono switch (51,52)
70477	Coil-Oscillator coil (L2, L3)	73036	Iransformer-First I. F. transformer (TI)
73007	Condenser-Variable tuning condenser (C3, C4, C6, C7)	73037	Transformer-Second I. F. transformer (T2)
38403	Control-Volume control (R7)	73008	Transformer-Output transformer (13)
72953	Cord-Drive cord (opprox. $\mathbf{5 2}^{\prime \prime}$ overall length)	33726	Washer-" ${ }^{\text {C"; }}$ washer for luning knob shaft
70392	Cord-Power cord and plug	34457	Washer-Spring washer for tuning knob shaft
70397	Gear-Power, radio and phono switch gear		SPEAKER ASSEMBLIES
73014	Gear-Volume control gear-less spring		92573.1K
72283	Grommet-Rubber grommet to mount tuning condenser (3 required)	72728	Cone-Cone and voice coil assembly
73015	Indisator-Station selector indicator	72727	Speaker-5" $\mathbf{x 7}^{\prime \prime}$ PM speaker complete with cone and voice
73010	Loop-Antenna loop complete (LI)		
73006	Plate-Dial back plate complete with (3) pulleys		NOTE: If stamping on speaker in instrument does not agree with above speaker number, order replacement parts by
30868 73009	Plug-2 contact female plug for motor cable Rectifier-Selenium rectifier (SR1)		with above epeaker number, order replacement parts by referring to model number of instrument, number stamped
73038	Resistor-Normal value 66 ohms with positive temperature coefficient (R18)		on speaker and full description of part required. MISCEILANEOUS
73072	Resistor-Fixed composition, 82 ohms $\pm 10 \%, 1$ watt (R17) Resistor-Normal value 95 ohms $038^{\circ} \mathrm{C}$ with negative temperapure coefficient (R21)	71105	Cable-5hielded pickup cable
		73017	Clomp-Dial clamp (2 required)
		$\times 1660$	Cloth-Grille cloth
	Resistor-Fixed composition, 1200 ohms, $\pm 10 \%, 1$ watt (R14) Resistor-Fixed composition, 1800 ohms, $\pm 10 \%, 1 / 2$ watt (R13)	73051	Decal-Styling line decal (2 required)
		71966	Decal-Trade mark decal (Victrola)
	Resistor-Fixed composition, 12,000 ohms, $\pm 10 \%$, $1 / 2$ waft (R16)	$\begin{aligned} & 71984 \\ & 73039 \end{aligned}$	Decal-Trade mark decal (RCA Victor) Dial-Gloss dial scale
	Resisfor-fixed composition, 22,000 ohms, $\pm 20 \%$, $1 / 2$ watt (R2)	72894 72856	Foct-Rubber mounting foot (4 required) Grammet-Rubber grommet to mount record changer
	Resistor-Fixed composition, 82,000 ohms, $\pm 10 \%, 1 / 2$ watt (R19)	72856	Grommet-Rubber grommet to mount record changer required) Handle-Cabinet lid handle
	Resistor-fixed composition, 100,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R6)	72692	Hinge-Cabinet lid hinge (2 required)
		73016	Knob-Powet, radio and phono switch knob
	Resistor-fixed composition, 220,000 ohms, $\pm 20 \%$, $1 / 2$ waft (R1, R10, R11, R22)	73065	Knob-Tuning knob
	Resistor-Fixed composition, 270,000 ohme, $\pm 10 \%$, $1 / 2$ waft (RS)	73078	Knob-Volume control kn
		11765 14270	Lamp-Dial lamp Spring-Retalning spring for
	Resistor-Fixed composition, 390,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R3)	71824	Stud-Stud ond screw to mount lid hinge (1 set)
		73050	Support-Cabinet lid support

Alignment Procedure

CAUTION. -CLOSE TUNING CONDENSER PLATES COMPLETELY (C-C-W) BEFORE REMOVING CHASSIS FROM CABINET.
Take off both wooden strips on bottom of cabinet by removing woodscrews before loosening chassis bolts.

CRITICAL LEAD DRESS

Dress outnut plate hypasses as near chassis as possible.
Uress all filament leads down to chassis
Hress all exposed leads away from each other and away from chassis to prevent short circuits.
Dress R-6 away from shield
Oress R-6 away resistor away from R-13 and R-14
Dress output plate leads down to chasais.
Dress R-18 away from R-15.
Dress R-18 away from R-15.
Dress R-16 sway from V4 sucket.
Dress high side of line cord down to front apron.
11. Dress lead of C-5 which connects to phono input away from side of chassis.
Dial Pointer Adjustment.-Rotate tuning condenser fully counter clockwise (plates fully meshed). Adjust indicator pointer so that it la $3 \mathrm{~s} / \mathrm{m}^{\prime \prime}$ from the left hand edge of the dial back plate.

Tubes 6C4 and 6AQ6 may be replaced by removing the sloping panel (remove four wood screws) in the front of the record changer com(remove parment. Before removing the chas holding the speaker horizontally, This will allow the chassis to be removed and replaced easily. When the chassia is replaced the dial lights should be adjusted so as not to be visible from the front of the cabinet. and yet to give correct dial lighting. Move the speaker so it is flush against the baffe before retightening the hex nuts. The chassis mounting board should be flush against the front of the cabinet. and the chassis mounting holes should be centered over the holes in the board.

The first I-F transformer shown in the schematic is stamped 970441-1 Some chassis will have a first I-F transformer stomped 970441-5. Connections to this alternate transformer ore as shown in the block letters. Performance will be identical for both sets.

Oufput Meter.-Connect meter across speaker voice coil. Turn volume control clockwise to radio maximum high position (3) for alignment

Steps	Connect the high side of testoscillator to-	$\begin{gathered} \text { Tune } \\ \text { ivestosc. } \\ \text { to- } \end{gathered}$	Tum redio dial fo-	Adjust the following for max, peak output
1	I.F. grid, in series with 01 mfd .	455 inc	Quiet point $1,600 \mathrm{kc}$ end of dial	Pri. ${ }^{\text {L Sec. }}$ 2nd $1 . F$. tranaformer
2	1st Det. grid in saries with 01 mfd .			Pri. $E_{\text {Sec. }}$ 1st I.F. trunsformer
NOTE.-ANTENNA LOOP AND RECORD CHANGER MUST BE IN CABINET				
3	Antenna terminol in aries with 220 mmfd .	1,600 ke	1,600 ke	C7 (ose.)
4		1,400 ke	1,400 kc	C4 (ant.)
5		600 ke	600 ke	Osc. Coil 12, 13 Rock gang
6	Repeot steps 3, 4, 25 if necescary			

Tost Oscillator. Connect high side of test oscillator as shown "h chart. Connect low side through a .01 mf capacitor to common

Specifications

Circuit Description
The receiver is a seven tube superheterodyne employing push-pull power unit. AVC is applied to the converter and i-f tubes. The broadcast band utilizes a standard loop antenna
Dimensions

Cabinet	Chassis (overall)
34	$55 / 6$
$261 / 4$	$111 / 8$
$161 / 4$	8
$\ldots . . .$.	$16: 1$

Weight (inches)
Width (inches)
Depth (inches)
Tuning Drive Ratio
Frequency Ranges
Standard Broadcast "A"
540-1,600 kc
Intermediate Frequency
455 kc
Tube Complement

1) RCA-6SA7
2) RCA-6SK7

RCA-6SK7
RCA-6SQ7
) RCA-6SQ7
4) RCA-6SQT
(6) RCA-6V6GT
(7) P.CA-6X5GT

Power Supply Rating (including Phono Motor)
105-125 volts, 60 cycles
.95 watts
Pilot Lamps
(2) Mazda No. $51,6.8$ volts, 0.2 gmp

Compartment Lamp
(1) Mazda No. $51,6.8$ volts, 0.2 amp

Loudspeaker
Electrodynamic .
Size \cdot. 12-inch
V. C. impedance at 400 cycles 2.2 ohms

Power Outpul Rating
Undistorted ... 5 watta

Phonograph

Motor Power consumption (1is v., 60 cycles) ...

Replacement Parts

STOCK No.	DESCRIPTION	STOCK No.	DESCRIPTION
	CHASSIS ASSEMBLIES RC 615 Bracket-Dial bracket-L.H.-complete with drive cord pulley Bracket-Dial bracket-R.H.-complete with drive cord pulley Capacitor-Ceramic, 56 mmf . (C5) Copacitor-Ceramic, 120 mmf . (C18) Capacitor-Tubular, $0025 \mathrm{mfd} ., 400$ volts (C9, C12) Copacitor-Tubular, 0035 mfd , 1000 volts (C19, C20) Copacitor-Tubular, $.002 \mathrm{mfd} ., 400$ volis (C7) Capacitor-Tubular, .005 mfd ., 400 voits (C14, C16) Capacitor-Tubular, $015 \mathrm{mfd} ., 400$ voits (C13) Capacitor-Tubutar, $.01 \mathrm{mfd} ., 400$ volts (C6, C10, C17) Capacitor-Tubular, 02 mfd ., 400 volts (C11, C15) Capacitor-Tubular, 05 mfd ., 400 volts (C8) Copocitor-Electrolytic, comprising 1 section of $20 \mathrm{mfd} ., 450$ volts; 1 section of $30 \mathrm{mfd} ., 350$ volts; and 1 section of 20 mfd., 25 volts (C21A, C21B, C21C) Coil-Oscillator coil (12, 13) Condenser-Variable tuning condenser (C1, C2, C3, C4) Control-Volume control and power switch (R6, S2) Cord-Drive cord (opprox. 49" overall length) Grommet-Rubber grommet to mount variable condenser required) Indicator-Station selector indicator Plate-Dial back plate Plug-2 contact female plug for Motor cable Plug-5 contact female plug for speaker cable Pulley-Drive cord pulley Resistor-Fixed composition, 330 ohms, $\pm 10 \%, 1$ watt (R19) Resistor-Fixed composition, 2200 ohms, $\pm 10 \%, 2$ watts (R20) Resistor-Fixed composition, 8200 ohms, $\pm 10 \%, 1 / 2$ wast (R17) Resistor-Fixed composition, 15,000 ohms, $\pm 10 \%, 2$ watts (R2) Resistor-Fixed composition, 18,000 ohms, $\pm 10 \%, 1 / 2$ watt (R4) Resistor-Fixed composition, 22,000 ohms, $\pm 10 \%, 1 / 2$ watt (RI) Resistor-Fixed composition, 27,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R5, RT) Resistor-Fixed composition, 56,000 ohms, $\pm 10 \%$, $1 / 2 \mathrm{watt}$ (R8) Resistor-Fixed composition, 100,000 ohms, $\pm 10 \%$, $1 / 2$ waft (R21) Resistor-Fixed composition, 270,000 ohms, $\pm 10 \%, 1 / 2$ watt (R10, R11, R13, R14) Resistor-Fixed composition, 470,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R3, R16, R18) Resistor-Fixed composition, 2.2 megohms, $\pm 20 \%, 1 / 2$ watt (R9) Resistor-Fixed composition, 10 megohms, $\pm 20 \%$, $1 / 2$ watt (R12, R15)	$\begin{array}{r} 70135 \\ 31364 \end{array}$	Shaft-Tuning knob shaft Socket-Lamp socket
70137		35787	Socket-Phono input socket
70136		31251	Socket-Tube sock
71924		31418	Spring-Drive cord tension spring
71614		70134	Switch-Range switch (\$1)
70602		70128	Transformer-First I. F. transformer (T1)
70646		70129	Transformer-Second I. F. transformer (12)
70601		70127	Transformer-Power transformer, 117 voli, 60 cycles (T4)
70606		35969	Washer-"C" Washer for tuning shaft
70572			
70610			PEAKER ASSEMBLIES
70611			$92569-1 \mathrm{~W}$
70615			RL
71976		13867	Cap-Dust cap
		36145 71560	Cone-Cone and voice coil assembly
70133		71961	Speaker-12'9 P.M. speaker complete with cone and voice coil
70139			less output transformer and plug
70342		71145	Suspersion-Metal cone suspension
72953		37899	Transformer-Output transformer (T3)
70930			NOTE: If stamping on speaker in instrument does not agree with above speaker number, order replacement parts by
71608 70138			referring to model number of instrument, number stamped
70138 30868			on speaker and full description of part required.
12493			MISCELLANEOUS
72602		71599	Bracket-Lomp bracket
		13103	Cap-Pilot lamp jowel
		70142	Clamp-Dial clamp (1 set)
		$\times 1668$	Cloth-Grille cloth
		73084	Decal-Contral panel decal
		71966	Decal-Trade mark decal (Victrola)
		71910	Decal-Trade mark decal (RCA-Victor)
		70141	Dial-Glass dial scale Hinge-Cabinet lid hinge
		71822	Knob-Range switah knob
		71821	Knob-Tuning or volume control knob
		11765	Lamp-Dial or pilot lamp
		70140 71815	Loop-Antenna loop complete (11) Mounting-One set of hardware consisting of four (4) spring
			two (2) "C" washers and iwo (2) rubber washers to mount record changer
		$\begin{aligned} & 30900 \\ & 73080 \\ & 73083 \end{aligned}$	Spring-Retaining spring for knobs Support-Cabinet lid support-L.H. Support-Cabinet lid support-R.H.

Alignment Procedure
Output Mofer Alignment.-If this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum.
Test Oscillator.-For all alignment operations, connect the low side of the test-osciliator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.

Step:	Connect high side of test oscillator to-	Tune ten oscillater to-	Tum rodie dial to-	Adjust the following for maximum peak output
1	$65 K 7$ grid in series with .01 mfd .	455 kc .	Broodcast Quiet Point of 550 ke. and of dial	Pri, and Sec. (2nd I-F Trans.)
2	6547 grid in series with .01 mfd .			Pri, and Sec. (list l-F Trons.)
3	Primary leod on loop in series with $\mathbf{2 0 0} \mathrm{mm}$ f.	1,400 ke.	1,400 ke.	$\begin{aligned} & \text { C4 (osc.) } \\ & \text { C2 (ant.) } \end{aligned}$
4		600 kc .	600 kc .	12 (ose.) Rock gang
5		Repeas steps 3 and 4		

Change in Record Changer:
Late production of this instrument uses type RP. 178 record changer. Replacement parts are the same except as listed below:

MISCELLANEOCS
-2437 Cable--Shielded pickup cable (used with
R.P. $1 / 8$ record changer)

22856 Grommet-Rubber grommes to mount record changer (3 required for RP.178, 4 re. quired for 960260 record changer)
-1815 Vounting-One set of hardware consisting of four (4) springs, two (2) "C" washers rour (2) spher washers to mount record changer iype 960260
3109 Nut-Te nut to mount record changer (3 required) for ype $\mathrm{RP}+178$ record changer. -3110 Sequired for type RP.1/4.20 $\times \quad 1 / 4$ fillister head ma. chine screw to mount record changer type RP.178 (3 required).

Critical Lead Dress

1. Dress speaker cable leads down next to chassis
. Dress output plate capacitors next to chassis. . Dress all a-c leads away from volume control down next to chassis.
Dress lead from top tap of volume control to range-tone switch along front apron of chassis.
Dress R12 and R15 down near chassis base.

Dial Indicator and Drive Mechanism

당 Rca Victor
 Radio-Phonograph Combination
 MODEL 77V2

Model 77V2

Chassis No. RC-606C, Mfr. No. 274

FOR RECORD CHANCER INFORMATION REFER TO SERVICE DATA FOR MODEL 960260

Service Data

- 1947 No. 10 _

RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION
 CAMDEN, N. J., U. S. A.

Specifications

Circuit Description
The receiver is a seven tube superheterodyne employing push-pull power output. AVC is applied to the converter and i-i tubes. The broadcast band utilizes a standard loop antenna, and the short wave antenna is a wire tacked in the cabinet.

Dimensions	Cabinet	Chassis (overall)
Height (inches)	34	55/8
Width (inches)	333/8	111/8
Depth (inches)	175/8	
Tuning Drive Ratio		14:1
Frequency Ranges		
Standard Broadcast " $\overline{\text { A }}$ \qquad 540-1,600 kc Short Wave 9.2-16 mc		
Intermediate Frequency ... 455 kc		
Tube Complement		
(1) RCA-6SA7 1st Det., Oscillator (2) RCA 6SK7 1-F Amplifier		
(3) RCA-6SQ7 2nd Det., A. V. C. and Phase Inverter		
(4) BCA-6SQ7 ... A-F Amplifier		
(5) RCA-6V6-GT ... Power Output		
(6) RCA-6V6-GT	P	er Output
(7) RCA-6X5-GT		Rectifier

Power Supply Rating (including Phono Motor) 105-125 volts, 60 cycles.
(2) Mazda No. 51, 6.B voits, 0.2 amp.
(2) Mazda No. $51,6.8$ volts, 0.2 amp

Compartment Lamp
(1) Mazda No. 55, 6.8 volts, 0.4 amp

Loudspeaker
92569-1 \qquad
Power Output Rating
Undistorted
Maximum
Record Changer
Type
Record Capacity
Turntable Speed
Type Pickup

RECORD CHANGER-TOP VIEW
FOR INFORMATION ON RECORD CHANGER REFER TO SERVICE DATA FOR MODEL 960260.

COMPLETE SCHEMATIC DIAGRAM

"A" BAND
SIMPLIFIED SCHEMATIC DIAGRAM

SIMPIIIFIED SCHEMATIC DIAGRAM

Alignment Procedure

Output Meter Alignment. If this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum

Test Oscillator.-For all alignment operctions, connect the low side of the test-oscillator to the receiver chassis, and keep the os cillator output as low as possible to avoid a-v-c action

Calibration Scale.-The dial scale printed in this service note may be temporarily attached to the chassis for quick reference during alignment.
Using Printed Dial Scale.-

1. Cut out the printed dial scale, of malee a tracing of the scale.
2. With gang at full mesh the pointer should be set to the sec ond reference mark from the left hand end of the dial backing plate.
3. Place the printed dial scale or the tracing under the pointer so that the extreme left scale graduations coincide with the pointer. Use scotch tape to hold the dial scale in place.
Note.-It is not recommended that the glass dial scale in the cabinet be removed as an alignment reference. This glass dial scale inet be removed as an alignment reference. This glass dial scale is fastened to hold it in place. Removing the glass dial scale will necessitate to hold it in place. Removing the glass dial scale will necessitate
bending the lugs, resulting in their weakening and subsequent bending breakage.
"C" Band Reception.-For best reception on "C" band with an outside antenna, adjust the trimmer screw of C20 on the antenna coil. Turn screw carefully with an insulated screwdriver (RCA Stock No. 31031) while the receiver is tuned to a station in the 31 -meter band. If returning to internal antenna at any time, close the link on the center ferminal and readjust " C " band antenna trimmer C 20 for best reception on 31 -meter band.

For additional information, refer to booklet, "RCA Victor Receiver Alignment."

Steps	Connect high side of test oscillator to-	Tune test oscillator to-	Turn radio dial to-	Adjust the following for maximum peak output
1	6SK7 grid in series with 01 mid.	455 kc.	Broadcast Quiet Point at 550 kc . end of dial	Top and bottom T. 1 (2nd I-F Trans.)
2	6SA7 grid in series with .01 mfd .			$\begin{aligned} & \text { Top and } \\ & \text { bottom } \\ & \text { T-2 } \\ & \text { (lst I-F } \\ & \text { Trans.) } \end{aligned}$
3	Yellow lead on loop in series with 200 mmid . (link closed)	1.400 kc .	Broadcast 1400 kc .	C24 (osc.)
4		600 kc .	Broadcast 600 kc.	14 (osc.) Rock gang
5		Repeat steps 3 and 4.		
6	Antenna terminal in series with 47 mmid.	15.2 mc .	Short Wave 15.2 mc .	$\begin{gathered} \text { C23 (ose.) } \\ \text { C20 (ant.) } \end{gathered}$
7		9.5 mc.	Short Wave 9.5 mc .	$\begin{aligned} & \text { L5 (ose.) } \\ & \text { L3 (ant.) } \end{aligned}$
8		Repeat steps 6 and 7		
9	Install and connect chassis in cabinet with link closed. Tune in a radiated signal of 1400 kc . on broadcast band and peak C32 on loop.			

- Use minimum capacity peak if two can be obtained. Check for selection of correct peak by tuning the receiver to approxi mately 14.3 mc . where a weaker signal should be received.

Oscillator tracks 455 kc , above signal on both bands.

DIAL INDICATOR AND DRIVE MECHANISM

Critical Lead Dress:

1. Dress all A. C. leads away from volume control.
2. Dress lead from top tap of volume control to tone switch along front apron of chassis.
3. Dress R9 and R15 down near chassis base.

Note.-In order to remove the chassis from the cabinet, remove the knobs and the connecting cables, then unscrew the four slotted hex head screws from the two " L " brackets bolted to the rear of the chassis. The chassis may then be slid out toward the bottom rear of the cabinet. Do not remove the hinge screws or the two large nuts in the rear of the chassis. When replacing the chassis, make sure that the tapered pins on the front of the chassis fit into the holes on the metal runners attached to the cabinet door.

SPEAKER CONNECTIONS

EXTERNAL ANTENNA CONNECTIONS
When using external antenna, open link and connect lead-in to terminal screw.

The dial scale drawing shown is a full size reproduction. It can be used as a reference in alignment procedure.

Replacement Parts

For Record Changer Parts refer to Service Data tor Model 960260 . 1

$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\begin{gathered} \text { STOCX } \\ \text { No. } \end{gathered}$	DESCRIPTION
	CHASSIS ASSEMBLIES (RC.606C)		SPEAKER ASSEMBLIES 92569-1 W or 92569-1 WI
71601	Board-"Ant. ground" board	13867	Cap-Dust
71606	Bracket-Dial bracket with drive cord pulley (L. H.)	36145	Cone-Cone and voice coil assembly-(2.2 ohm voice coil)
71605	Bracket-Dial bracket with drive cord pulley (R. H.)	71560	Plug-5 prong male plug for speaker
71615	Capacitor-Ceramic, 27 mmi . (C9)	71961	Speaker-12. PM speaker complete with cone and voice coil
71924			less output transformer and plug (92569-1 W)
71610	Capacilor-Mica trimmer, 3 sections 8.80 mmt (C20. C23. C24)	$\begin{aligned} & 71145 \\ & 37899 \end{aligned}$	Suspension-Metal cone suspension Transformer-Outpui transformer (T6)
71614 39632	Capacitor-Ceramic, 120 mm . (C5, C13) Capacitor-Silvered mica, 150 mmt. (Cl. C2)		
71613	Capacitor-Mica, 640 mmi . (C3)		SPEAKER ASSEMBLIES
70601	Capacitor-Tubular, $002 \mathrm{mfd} ., 400$ volls (C33)		92569-1 W2
70602	Capacitor-Tubular, 0025 mfd., 400 volls (C8, C11)	13867	Cop-Dust cop
70646	Capacitor-Tubular. $0035 \mathrm{mid.}$.1000 volis (C16, C17)	72828	Cone-Cone and vaice coil assembly-(6 ohm voice cail)
70606	Capacitor-Tubular, $005 \mathrm{mtd}$.400 volts (C12)	71560	Plug-5 prong male plug for speaker
70610	Capacitor-Tubular, 01 mid., 400 volis (C6, C10, C14, C31)	71145	Suspension-Metal cone suspersion
70572	Capacto:-Tubular, 015 mid., 400 volts (C18, C19)	73242	Transformer-Oupput Iransformer (T6)
70611	Capacitor-Tubular, 02 mid.. 400 volis (C15)		NOTE: If stomping on speoker in instrument does not ogree
70615	```Capacitor-Tubular, . }05\mathrm{ mid.. }400\mathrm{ volis (C7) Capacitor-Comprising 1 section 20 mfd. 45n volts, 1 section }30\mathrm{ mid. }350\mathrm{ volls and I section 20 mid. 25 volts (C30A, C30B, C30C)```		with obove speaker number, order replacement parts by referring to model number of instrument, number stamped on speaker and full description of part required.
71633	Coil-"A" band oscillator coil (L4)		
71632	Coil-"CC" band antenna coil (L2, L3)		MISCELLANEOUS
71634	Coil-"C' band oscillator coll (L5) ${ }^{\text {c }}$ (21 22)		MISCELLANEOUS
71600	Condenser-Variable tuning condenser (C21, C22) Control-Volume control and power switch (R20, S4)	71819	Brackel-Door check mounting brackel
70342 72953	Control-Volume conirol and power swith (R20. S4)	36461	Button-Plug button 2.20 mmf (CJ
71609	Drum-Drive drum	38684 71820	Capacitor-Mica trimmer, 2.20 mmf. (C32) assembly less Check-Radio compartment door check asmer
72069	Grommet-Rubber grommet for rear mounting feet	71820	Check-Radio compariment door spring
71608	Grommet-Rubber grommet for mounting funing condenger Indicator-Station selector indicator	X1638	Cloth-Grille cloth for walnut instruments
71607	Plate-Dial back plate	X1639	Cloth-Grille cloth tor mahogany instruments
38832	Plug-Pin plug for loop lead	70547 71769	Cover-Compartment lead cover
12493 72602	Plug-Speaker cable plug, 5 contact (female) Pulley-Drive cord pulley mounted on dial bracket	71769	Decal-Control tunction decal for walnut or mahogany instruments
	Resistor-330 ohms. 1 watt (R12)	71910	Decal-Trade mark decal (RCA Victor)
	Resistor-2,200 ohms, 2 watt (R23)	71966	Decal-Trade mark decal (Victrola)
	Resistor-8,200 ohms, 1/2 watt (R14)	71817	Dial-Glass dial scale
	Resistor- 15.000 ohms. 2 watt (R2)	71816	Escutcheon-Dial scale escutcheon less dial
	Resistor- 18.000 ohms, $1 / 2$ watt (R17) Resistor- 22.000 ohms. $1 / 2$ watt (RJ)	11889	Grommet-Rubber grommet to cushion chassit front apron (2 required)
	Resistor-27.000 ohms, $1 / 2$ watt (R4, R1E, R19)	72069	Grommet-Rubber grommet for mounting loop
	Resistor-56,000 ohms, 1/2 walt (R21)	71764	Hinge-Cabinet door hinge (2 required)
		13103	Iewel-Pilot lamp cap
	Resistor -270.000 ohms. $1 / 2$ wall (R6, R7, R8, R11)	71822	Knob-Range switch or tone switch knob
	Resistor-470,000 ohms, $1 / 2$ wall (R10, R13, R18)	71821	Knob-Volume control or tuning knob
	Resistor-2.2 megohms, $1 / 2$ watt (R1, RS)	5117	
	Resistor- 10 megohms, 1/2 watt (R9, R15)	11765	Lamp-Dial lamp
71604	Shaft-Tuning shatt	71813	Loop-Antenna loon complete (L1, C32)
35787	Socket-Input socket ${ }^{\text {Socket-Motor cable socket, } 2 \text { contact (female) }}$	71815	Mounting-One sot of hardware to mount record changer
30868 31364	Socket-Pilot lamp socket		-consisting of four springs, iwo spring washers and iwo rubber washers
31251	Socket-Tube socket	73187	Pull-Door pull
31418	Spring-Indieator cord tension spring	72324	Shade-Compartment lamp shade
71602	Switch-Range witch (S1, S2)	36422	Socket-3 contact socket (temale) for loop leads
71603	Switch-Tone control switch (S3)	71818	Spring-Door check spring
70128	Transtormer-First I-F transtormer (Tl)	30900	Spring-Retaining spring for knobs
70129	Transtormer-Second l.F transformer (T2)	71765	Support-Cabinet lid support and hinge
70127	Transtormer-Power transformer, 117 volis. 60 cycles (T4)	71814	Washer-Rubber washer for door check

APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS

Additions to Parts List:

MISCELLANEOUS
Add
Xi;58 Cloth-Grille cloth fur blunde instru 72825 Decil-Control function deal for homide instruments 53001 Hinge-Cahinet door hinge (2 re. guired) for blonde instruments

[^8]

RCA MODELS Q109, Q109X
 Chassis No. RC602, RC602A, Mfr. No. 274

Service Data
 1947
 X6

RADIO CORPORATION OF AMERICA RCA INTERNATIONAL DIVISION

745 FIFTH AVE., NEW YORK 22, N. Y.

Specifications

Frequency Ranges, Q109

Stondord Broadcast ("A" Band)	$540-1600 \mathrm{kc} .(556-187 \mathrm{~m})$
Medium Wave ("B" Band)	$2.45-6.3 \mathrm{mc} .(122-47.7 \mathrm{~m})$
" 31.25 Meter" Spread Band	$9.5-12 \mathrm{mc} .(21.6-25 \mathrm{~m})$
" 19.16 Meter" Spread Band	$15.1-18 \mathrm{mc} .(19.8-16.6 \mathrm{~m})$
"13.11 Meter" Spread Band	$21.4-27 \mathrm{mc} .(14-11.1 \mathrm{~m})$

Frequency Ranges, Q109X

Long Wave ("X" Band)	140-375 kc. $(2,140-800 \mathrm{~m})$
Standard Broadcast ("A" Band)	540-1600 kc. (556-187 m)
"31.25 Meter" Spread Band	$9.5-12 \mathrm{mc} .(31.6-25 \mathrm{~m})$
"19.16 Metar" Spread Band	$15.1-18 \mathrm{mc} .(19.8-16.6 \mathrm{~m})$
"49.40 Meter" Spread Band	$6 .-7.3 \mathrm{mc} . \quad(50-41 \mathrm{~m})$
intermediate Frequency	455

Tube Complement
Tube Complement
(1) RCA $6 S G 7$
(2) RCA $65 A 7$
(3) RCA $65 K 7$
(4) RCA $6 S Q 7$
(5) RCA $6 A T 6$
(6) RCA $6 F 6 G$
(7) RCA $6 F 6 G$
(8) RCA $5 Y 3$ GT
(9) RCA $6 U 5 / 6 G 5$

Power Oufpuł Rafing
Q109. Q109X

Loudspeaker

Chassis No. RC 602, RC 602A 92562 .
Type (Electrodynomic) $6^{\prime \prime} \times 9^{\prime \prime}$ Elliptica
V.C Impedance (400 c.p.s.) 2.2 hms

Tuning Drive Ratia
22:1
Power Supply Ratings

Symbol	Voltages	Frequency (eycles)	Watts
Rating A	105.125	50.60	80
Roting B	105.125	25.60	80
Rating D	(See below)	50.60	80

$\begin{array}{llll}\text { Rating } D & \text { (See below) } & 50.60 \text {........ } 80\end{array}$
110 position- 100 min. - 115 max. Note: Shipped in 240 -volt position. 125 position- 115 min. -135 max. To change, remove round cover 150 position- 135 min . -165 max. on top of transformer case and 210 position -190 min. -230 max. move link to required position.
240 position- $220 \mathrm{~min}-260 \mathrm{max}$
CAUTION: Remove power cord from line receptacle before changing link position.
Cabinet Dimensions

Phonograph Atlachment.-A jack is provided on the rear of chassis for connection to a phonograph. The cable from the attachment should be terminated in a Stock No. 31048 plug.

Cathode-Ray Alignment is the preferable method. Connections for the oseillograph are shown on the Schematic Circuit Diagram

Output Meter Alignment.-If this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum

Test Oncillatat.-For all alignment operations, connect the low side of the teat-oscillator to the receiver chassis, and keep the oscillator output low as possible to avoid a-v-c action

Calibration Scale on Indicator-Drive-Cord-Drum.-The tuning dial is tastened in the cabinet and cannot be used for reference during alignment, therefore a calibration scale is attachen to the indicator drivecord-drum which is mounted on the shaft of the gang condenser The setting of the gang condenser is read on this scale, which is ralibrated in degrees. The correct setting of the gang in degrees, for each alignment frequency, is given in the alignment table

As the first step in r-f alignment, check the position of the drum The " $180^{\circ "}$ mark on the drum scale must be vertical, and directly over the center of the gang-condenser shaft when the plates are fully meshed. The drum is held to the shaft by means of two set screws which must be tightened securely when the drum is in the correct position.

To determine the corresponding frequency for any setting of the calibration scales, refer to the calibration scale drawing which shows the dial with $0-180^{\circ}$ calibration acales drawn at top and bottom.

Pointer for Calibration Scale.-Improvise a pointer for the calibration scale by fastening a riece of wire to the gang-condenser frame, and bend the wire so that it points to the " $180^{\circ} \mathrm{m}$ mark on the calibration acale when the plates are fully meshed.

Dial-Indicator Adjustment.-After fastening the chassis in the cabinet attach the dial indicator to the drive cable with indicator at the 540 ke mark (the first mark on " A " hand to the left of " 550 "), and gank condenser fully meshed. The indicator has a spring clip for attachment to the cable

Sprood-Band Alignment.-The most satisfactory method of aligning or checking the spread-band rangea is on actual reception of shortwave stations of known frequency, by adjusting the magnetite-core oscillator coil for each anread-band so that these stationa come in at the correct points on the dial

In exceptional cases, when the set is being serviced in a location where the noise level is high enough to prevent reception of short wave atations, a test-oscillator may be used for alignment, but an extremely high degree of accuracy is required in the frequency set lings of the test-oscillator, as a slight error will produce considerable inaccuracy on the spread-band dials. The frequency settings of the test-ascillator may be checked by one or both of the following methods

1. Determine the exact dial settings of the test-oscillator (for fre quencies at or close to the specified alignment frequencies) by ero-beating the test-oscillator against hort-wave statiors of known frequency.
2. Use harmonics of the standard-broadcast range of a test-oscillator, first checking the frequency settings on this range by means of a crystal-controlled oscillator, or by zero-beatins againat standard broadeast stations.
When a test-oscillator is employed for spread-band alignment. final check should be made on actual reception of short-wave stations of known frequency, and the masnetite-core oscillator wave station of known frequency, and the masnetite-core oscilator coil for each band should be retouched so that the stations come in at the correct Por additional i Alignment.

Steps	Connect the high side of the test-osc. to-	Tune testosc. to	Turn Range Switch to-	$\begin{aligned} & \text { Turn } \\ & \text { radio dial } \\ & \text { to- } \end{aligned}$	Adjust the following for max. peak output
1	6SK7 1-F grid in series with .01 mfd .	455 kc	"A"	Quiet point neat 600 kc (148°)	$\begin{gathered} \text { L23, L24 } \\ \text { 2nd. I-F trans. } \end{gathered}$
2	6SA7 Det. crid in series with 01 mfd .				$\begin{gathered} \text { L21, L22 } \\ \text { Ist. I-F trans. } \end{gathered}$
3	Antenna terminal in series with 200 mmfd .	1500 kc	"A" Band	$\begin{gathered} 1500 \mathrm{kc} \\ \left(19^{\circ}\right) \end{gathered}$	C23 osc. C30 rf. C10 ant.
4		000 kc		$\begin{aligned} & 600 \mathrm{kc} \\ & \left(148^{\circ}\right) \end{aligned}$	L20 osc. L15 rf. \dagger L 10 ant. \dagger
5	Repeat Steps 3 and 4				
6	Antenaa terminal in series with 300 ohms	6.2 mc	Band	$\begin{gathered} 0.2 \mathrm{mc} \\ \left(14^{\circ}\right) \end{gathered}$	$\begin{aligned} & \text { C22 osc. } \\ & \text { C29 rf. } \\ & \text { C9 ant. } \end{aligned}$
7		2.6 mc		$\begin{gathered} 2.6 \mathrm{mc} \\ \left(152^{\circ}\right) \end{gathered}$	L19 osc. \dagger L14 rt.t L8 ant. \dagger
8	Repeat Steps 6 and 7				
9	Antenna terminal in series with 300 ohms	11.8 mc	"31-25 Meter" Band	$\begin{gathered} 11: 8 \mathrm{mc} \\ \left(40^{\circ}\right) \end{gathered}$	C21 osc.* C28 rf.** C8 ant."*
10		9.5 mc		$\begin{aligned} & 9.5 \mathrm{mc} \\ & \left(170^{\circ}\right) \end{aligned}$	$L 18$ osc. \dagger L13 ri.t Lo ant. \dagger
11		17.75 me	"19-16 Meter" Band	$\begin{gathered} 17.75 \mathrm{mc} \\ \left(40^{\circ}\right) \end{gathered}$	C19 osc.* C27 ri.** C7 ant." ${ }^{\circ}$
12		15.2 mc		$\begin{gathered} 15.2 \mathrm{mc} \\ \left(155^{\circ}\right) \end{gathered}$	$L 17$ osc. \dagger L12 rt.t L4 ant.t
13		26.25 mc	"13-11 Meter" Band	$\begin{gathered} 26.25 \mathrm{mc} \\ \left(42^{\circ}\right) \end{gathered}$	$\begin{aligned} & \text { C18 osc.* } \\ & \text { C26 rf.** } \\ & \text { C6 mat.* } \end{aligned}$
14		21.25 mc		$\begin{gathered} 21.25 \mathrm{mc} \\ \left(180^{\circ}\right) \end{gathered}$	L16 ose. \dagger Lll rf.t L2 ant. \dagger

Oscillator tracks above signal on all bands
Use minimum capacity peak if two peaka can be obtained. \dagger These adjustments are preset and should not require re-adjuat ment except when components of the tuning section are changed. **rck in-use maximum capacity peak if two peaka can b obtained.

Loudspeaker Connections

Dial-Indicator and Drive Mechanism

R. F. Wiring Diagram (Bottom Vieu)

Q109 (RC-602)

Critical Lead Dres:

1. Dress C47 and R16 against chassis.
2. Dress R23 against chassis.
3. Dress C48 on power transformer side of terminal board.
4. All resistor and capacitor leads should be as short as practical.
5. Twist electrolytic capacitor leads and dress between chassia and electrolytic capacitor.
f. Twist all A.C. leads and keen close to chassis and away from otner component parts and wires.
6. Dress blue treble tone controd (R18) lead along intersection of chassis and rear apron and under electrolytic capacitor.
\&. Keep tuning indicator and pilot lamp leads away from 6SQ7 tube.
7. Dress C35 against RF plate assembly.
8. Dress C25 and R7 and C24 midway between range switch and RF coil.
9. Keep coil leads to switch and trimmers with minimum slack but not stretched tixht.
10. Flexibility of RF plate assembly must be maintained.
11. Dress black lead from phono-radio switch to rance switch close to chassis.
12. Dress C13A away from RF shield.
13. Dreas C34 against RF plate assembly
14. Keep all gang leads as short as practical.
15. A loop must be maintained in yround braid connecting RF plate assembly to chassis.
1N. Dress blue lead to antenna terminal ayainat RF shieid.
Q109X

Steps	Connect the high side of the test-asc. to-	Tune restosc. 10-	Turn Range Switch 10-	Turn radio dial to-	Adjust the following for max, peak output
1	6SK7 I-F grid in series with .01 mfd .	455 kc	Band	Quint point near 600 kc (148 ${ }^{\circ}$)	123, 124 2nd. I-F trans.
2	6SA7 Det. grid in series with .01 mfd .				$\begin{gathered} \text { 121, } 122 \\ \text { 1st. I-F trans. } \end{gathered}$
3	Antenno terminal in series with 200 mmfd .	360 kc	Band	$\begin{gathered} 360 \mathrm{kc} \\ \left(19^{\circ}\right) \end{gathered}$	C23 osc C30 if C10 ant.
4		160 kc		$\begin{aligned} & 160 \mathrm{kc} \\ & \left(133^{\circ}\right) \end{aligned}$	120 asc. 115 rf. \dagger Llo ant t
5	Repeot Steps 3 and 4				
6	Antenna perminal in series with 300 ohms	1500 kc	" A " Band	$\begin{gathered} 1500 \mathrm{kc} \\ (19)^{\circ} \end{gathered}$	$\begin{aligned} & \text { C22 asc. } \\ & \text { C29 if. } \\ & \text { C9 ant. } \end{aligned}$
7		600 kc		$\begin{aligned} & 600 \mathrm{kc} \\ & \left(148^{\circ}\right) \end{aligned}$	119 ose. \dagger 114 rf.t L8 ant. \dagger
8	Repeal Steps 6 and 7				
9	Antenna terminal in series with 300 ohms	7.2 mc	"49-40 Meter Band	7.2 mc (44 ${ }^{\circ}$)	$\begin{aligned} & \text { C21 osc.* } \\ & \text { C28 rf.** } \\ & \text { C8 ont.** } \end{aligned}$
10		6.1 mc		6.1 me $\left(141^{\circ}\right)$	118 ose \dagger 113 f.t 16 ant. \dagger
11		11.8 mc	"31-25 Mater" Band	$\begin{gathered} 11.8 \mathrm{mc} \\ \left(40^{\circ}\right) \end{gathered}$	C19 onc. C27 if."* C7 ant *
12		9.5 mc		$\begin{aligned} & 9.5 \mathrm{mc} \\ & \left(170^{\circ}\right) \end{aligned}$	$L 17$ osc. \dagger 112 nf \dagger 14 ont. \dagger
13		17.75 mc	"19-16 Meter" Bond	$\begin{gathered} 17.75 \mathrm{mc} \\ \left(40^{\circ}\right) \end{gathered}$	C18 ase. C26 if." C6 ant."
14		15.2 mc		$\begin{aligned} & 15.2 \mathrm{mc} \\ & \left(155^{\circ}\right) \end{aligned}$	116 osc. \dagger 111 f. \dagger 12 ont. \dagger

Uscilistor tracks above signal on all bands

- Use minimum capacity jedak if two reaks can be obtained.
*Therse adjustmonk are preset and should not require re-adjunt ment excent when communents of the tuning section are changed. ment excent when maximum capacity peak if two peaks can be ubtained.

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40
\|mandmalual	30	20	10	0										

935607-1

$\begin{array}{llllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array} \quad 0$
 -

Reduced Reproduction of Recciver Dial Q109X, and Corresponding 0-180 Calibration Scales
The currespondink position of the dial indicator for any setting of the calibration acale can be deterinined by drawing a line from this point on the buttam calibration sicale to the same point un top calibration acale. For example 150° on the calibration scale corresponds to 600 ke on "A" Land. etc. Read inatructlons uader "Alignment Procedure.

R. F. Section
Simplified Schematic Diagram

R. F. Section
Simplified Schematic Diagram

$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { No } \end{aligned}$	DESCRIPIION
	CHASSIS ASSEMBLIES$\begin{gathered} \text { RC 602-Q109 } \\ \text { RC } 602 \text { A-Q109X } \end{gathered}$	70968	Core-Adjustable core and stud for Modal Ol09X's "X" band R. F coil
		70969 70937	Core-Adiustable core and stud for "A" bond R. F. coil Core-Adjustable core and stud for 19-16 meter band R. F. a
			oscillator coils and for Q109's 13-11 meter band oscillator coil
12930 70952	Board-"Antenna-Ground" boord Brocket-I.H. brocket complete with drive cord pulley Brockel-R. H. bracket complete with four (4) pulteys Cable-Branze cable ($20^{\prime \prime}$ lang) for band indicator mechanism Colibrator-Drive Drum Colibrator	70970	Core-Adiustable core and stud for Model Q109's $13-11$ meter band R. F. coil
70951		70942	Core-Adiustable core ond stud for Model Q109X's "X" band
70840 35795			oscillator coil
35795 71086		$\begin{aligned} & 70939 \\ & 72011 \end{aligned}$	Core-Adjustable core and stud for "A" band ascillator coil Drum-Bond indicator actuating drum-located on range switch
70935			shaft
73247	Capocitor-Ceramic, 27 mmf . (C20) Capocitor-Ceramic, 33 mmf . (C12)	31273	Drum-Conde
71924		37396	Grommet-Rubber grommet for mounting R. F. assembly (4
71933 39636	Caparitor-Mico, 180 mmt . (C16 for Q109X) Capacitor-Mica, 220 mmf . (C3, C13, C24, C46)	35787	lequired) Jack-Phono input socket
71932	Capacitor-Mico, 510 mmf . (C16 for Q109, ${ }^{\text {C17 }}$ (for Q109X)	5117	Lump-Band indicator lamp-Mazda 55
72526	Copacitor-Mico, 2000 mmf . (C17 for Q109) Copocitor-Mico frimmer, comprising 1 section of 3.35 mmf . and 2 sections of $4-70 \mathrm{mmf}$. for 0109 (C8, C9, C10, C28, C29, C30)	11765	Lamp-Dial lamp-Marda 51
70931		35630 5040 36637	Pulley-Drive cord pulley Plug-4 contocl femole plug for speaker coble Receptacle-AC power receptocle
70966	Copocitór-Mice trimmer, comprising 2 sections of $3-35 \mathrm{mmf}$ and 1 section of 4.70 mmf . for O109X (C8, C9, C10, C28, C29, C30)	3476	Reseptacle-AC power reuplor Resistor-10 ohms. $1 / 2$ wall (R2)
		36732 34765	Resistor-47 ohms, $1 / 2$ woll (R7
70754		34765 37278	Resistor-100 ohms, Resistor-470 ohms, 1 wolt (R23)
	Copacitor-Mico frimmer, comprising 1 section of $4-70 \mathrm{mmf}$. and 1 section of $12-160 \mathrm{mmf}$. (C6, C7 for Q109X, C26, C27 for Q109)	34767	Resistor-2200 ohms, $1 / 2$ woll (R10)
		30436	Resistor-12,000 ohms, $1 / 2$ wall (R15)
70745	Copocilor-Mico irimmer, comprising 1 section of 12-160 mmf. ond 1 section of $4-70 \mathrm{mmf}$. (C6, C7 for O109, C26, C27 for Q109X)	71085 35523	Resistar- 12,000 ohms, 2 walls (R3) Resistor- 15,000 ohms, 2 wotts (R24)
		30492	Resistor-22,000 ohms, 1/2 watt (R6, R12)
70965	Copacilor-Ceramic trimmer, comprising 5 sections of $\mathbf{5 - 5 0}$ mmf. for Q109 (C18, C19, C21, C22, C23)	71084 30651	Resis:or $-39,000$ ohms, I wall (R1) Resisior-270,000 ohms 1/3 wall (R
70967	mmf. for Q109 (C18, C19, C21, C22, C23) Capacitor-Ceramic trimmer, comprising 4 sections of 5.50 mmf . and 1 section of $\mathbf{3 0 - 6 5} \mathrm{mmf}$. for Q109X (C18, C19, C21, C22, C23)	30648	Resistor-470,000 ohms, 1/2 watt (R5, R17, R19, R21)
		30652	Resistor-1 megohm, $1 / 2$ walt (R4, R9)
		30649	Resistor-2.2 megohms, $1 / 2$ wall (R1)
71592	Capocitor-Moulded paper, $002 \mathrm{mfd} ., 200$ valts (C52) Capocitor-Moulded paper, $.002 \mathrm{mfd}, 600$ volts (C47) Capocitor-Maulded poper, $.003 \mathrm{mid} ., 1000$ volis (C50, C51) Capacitor-Moulded paper, 005 mfd., 600 volts (C5, C35, C37) Capocitor-Moulded paper, .005 mld .600 volts (C45) Copocitor-Moulded poper, $.025 \mathrm{mfd}, 200$ volis (C43) Capacitor-Moulded poper, $01 \mathrm{mfd} ., 200$ volts (C42) Capacitor-Moulded paper, 01 mfd., 600 volis (C4, C34, C48, C49)	30992	
71590 71087		14350	Serew-No. 8-32 square head set screw for drive or bond indicator drums
71587		70750	Shaft-Tuning knol shoft and flywhee
71593		34909	Sockel-Band indicator lamp socket
71589		31364	Socket-Dial lamp sockel
71585 72219		70827	Socket-Tube sockel
		79954	Socket-Tube sockei for GAT Socket-Tuning tube socket
72527	Capacitor-Electrolytic, comprising three (3) sections of 10 mfd., 450 volts and one (1) section of $20 \mathrm{mfd} ., 25$ volts (C44A, C44B, C44C, C44D)	31418	Spling-D:ive or indicator cord spring
33014		70955	Switch-"'Loral-Distance"' switch (\$5)
		70956	Switch-Range switch (51, 52, 53, 54)
		70917	Transformer-First 1. F. Tronsformer (11, 121, 122, C32, C33)
70953 38201	Clomp-Mounting clomp for elecirolytic capacitor Clamp-Clamp for drive and pointer cords Clip-Retoining clip for coils core and stud Coil-Antenno coil, 13-11 meter band for Modal Q109 (11, 12)	70918	```Transformer-Second 1. F. transformer (12, 123, 124, C38, C39, C40,C41)```
70726		71154	Transformer-Power transformer, 117 volts, 25 cycle (13)
7092370924		71153	Transformer-Power transformer, 117 volts, 60 cyele (13)
	Coil-Antenno coil, 13-11 meter band for Modnl Q109 (11, 12) Coil-Antenna coil, 19.16 meter bond (LI, 12 for Q109X, 13, 14 for Q109)	70947	Transformer-Power transformer, $110 / 125 / 150 / 210 / 240$ volts, 50/60 cycle (13)
70925	Coil-Antenna coil, 31.25 meter band (13, 14 for Q109X, [5, 16 for Q109)	34373	Washer- "C" washer for tuning shaft
70928	Coil-Antenno coil, 49.40 meter band for Model Q109X (L5, L6) Coil-Antenno coil, "B" band for Model Q109 (L7, 18)		
70926 70927			
	Coil-Antenno coil, " A " band (17,18 for Q109X, 19, 110 for Q109)		SPEAKER ASSEMBLIES
70929 70964	Coil-Antenna coil, "X" band for Model Q109X (L9, L10) Coil-R. F. coil, $13-11$ meter band for Model Q109 (111)		Stamped 92562-1
70963	Coil-R. F. coil, 19-16 meter band (lll for Q109X, 112 for Q109)	70972 5039	Cone-Cone and voice coil assembly Plug-4 prong mole plug for speaker
70962	Coil-R. F. coil, $31-25$ meter band (t12 for Q109X, 113 for Q109)	70971	Speaker-6"x9" E. M. speaker complete with cone and voice coil less output transformer and plug
70961	Coil-R. F coil, 49-40 meter band for Model Ol09X (L13)	3789	
70960	Coil-R. F. coil, "B", band for Model Q109 (114)		
70959 70958	Coil-R. F. coil "A" band (t14 for Q109X, 115 for Q109)		NOIE: If stamping on speaker in instrument does not agres
70920	Coil-Oscillator coil, 13-11 mater band for Model 0109 (L16)		with above speaker number, order replacement parts by referring to model number of instrument, number stomped
70823	Cail-Oscillator coil, 19.16 meter band (L16 fot Q109X, 117 for 0109		on speaker and full description of part required
70825	Coil-Oscillator coil, 31-25 meter band (L17 for Q109X LIB for Q109)		
70921	Coil-Oscillator coil, 49.40 meter band for Model O109X (L18)Coil-Oscillator coil "B' band for Model Q109 (L19)		MISCELIANEOUS
70829		Coil-Oscillator coil, "B", band for Model Olo9 (L19)	
70789	Coil-Oscillator coil. "A" band (L19 for Q109X, 120 for Q109)		
70922	Coil-Oscillator cail, "X" band for Model Q109X (L20)	70919	Bock-Cobinot bock
70957	C15, C31)	30716 $\times 1655$ 71905	Clip-Tuning lube mounting Cloth-Grille cloth
70949		71906	Docal-Control panel decal
70948	Control-Volume control and power switch (R14, 56)	71828	Dial-Glass dial for Q109
72953		71829	Dial-Glass dial for Q109X
72913		70977	Dise-Band indicatar actuating disc-locatod on dial frame
	Core-Adjustable core and stud for " X " bond antenno coilfor Model Q109X	11771	Foot-Rubber foot for cabinet (4 required) Frame-Dial frame and back plape less dial, tube clip, indi-
70938	Core-Adiustable core and stud for "A" band antenna coils, for 31-25 meter band R. F. and oscillator coils for Model Q109's " B " band oscillator coil	70979 72954	calor disc, spring indicator and "C" washer Indicator-Station selector indicator Knob-"Local-Distonce-Phono" switch hnob
70944	Core-Adjustable core and stud for 31-25 meter band antenno coils and for Model Q109's "B" band antenna coil and for Madel Ol09X's 49.40 metet band ontenna coil	72950	Knob- Local-Distonce-Phono switch knob
		72949	Knob-Volume control or tuning knob
		35630	Pulley-Drive cord pulloy
70943	Medel Q109X's $49-40$ metet band ontenna coil Core-Adjustable care and stud for $19-16$ meter band antenna coil Core-Adjustable core and stud for Model Q109's 13-11 meter band antenna coil and for Madel Q109X's 49-40 meter band otcillator coil	70976	Screen-Bond indicator screen-green Shade-Lamp shade
70941		70978	Spring-Band indicator disc spring
		$\begin{aligned} & 14270 \\ & 71143 \end{aligned}$	Spring-Retaining spring forknob Wosher- "C' washer to hold dise

Addition to Parts List:

CHASSIS ASSEMBLIES
72996 Capacitor-Molded paper. .05 mid., 600 v. (C53) 30787 Resistor Fixed composition, 47.000 ohms, 1/2 watt (R25)

RP 177

Motor drives rubber tired disc which is attached to turntable. Record separator swivel and record separator support are gold finish.
Early production has feed-in adjustment.

RP 177A

Motor drives idler wheel which engages with inside rim of turntable.
Record separator swivel and record separator support are finished the same color as the motor board.
Does not have feed-in adjustment.

RP-177B

Same as RP-177A except pickup.

FEATURES

1. This record changer is a two support, drop type, non-intermixing mechanism designed to play automatically a series of twelve ten-inch or ten twelve-inch records of the standard 78 RPM type.
2. The mechanism uses a lightweight, low-noise, crystal pickup cartridqe, equipped with a long-life sapphire point.
3. The tone arm is automatically returned to rest position and the power removed from the drive motor, after the mechanism has finished playing the last selection of the stack.
4. The changer is equipped with an eccentric tripping device which insures tripping on all standard records.
5. A pickup mufing switch is incorporated, which shorts out the pickup while the changer is in cycle. This prevents mechanical noise of moving parts from being amplified.
6. The record support and separator are mechanically linked, requiring only one operation for changing of record size.
7. Moving parts are few in number while playing records. This insures quiet reproduction, free from rumble and wow.
8. The mechanism is provided with a safety clutch which prevents damage to the mechanism in case of a jam due to a defective record.

MANUAL OPERATION

1. Make certain the mechanism is out of cycle with the pickup on the rest.
2. Push "Start-Reject" knob to manual position.
3. Place record on turntable and push the power switch to the "on" position.
4. Lift and place pickup on record.
5. When the selection has finished playing, the plekup will continue to ride in the eccentric groove until the pickup is lifted from the record or the power is semoved from the drive motor.

AUTOMATIC OPERATION

The pickup "rest" consists of a post incorporating a button and shaft connecting a switch beneath the motor board. This switch, which controls the power to the drive motor, is actuated by the weight of the pickup and tone arm while going in and out of rest position.

1. Turn the record support on the left-hand side of the changer, to position it for 10 - or 12 -inch records.
2. Load the records on the supports with the desired selections upward, the last record to be played on top. (Make certain the separator shelf is pushed down when stack is placed on the supports.)
3. Push the "On.OH" knob to the "on" position.
4. Push "Manual-Reject" handle to reject position and release. The mechanism will automatically play in sequence, one side of each record stacked on the supports. After completing the selection on the last record the tone arm will return to rest position and the power will be removed from drive motor.
5. To reject a record being played. push the control handle to "Reject" and release.
6. Litt and turn separator shelf to facilitate the removal of records.
(Note: For automatic operation. each record is required to have the standard eccentric groove.)

Eccentric groove diameter	$33 / 2^{\prime \prime}$ nominal
Eccentricity	$.125^{\prime \prime} \pm .008^{\prime \prime}$
(causes tone arm swing of	$\left..250^{\prime \prime} \pm .016^{\prime \prime}\right)$

Cautions

Before servicing the automatic changer, inspect the assembly to see that all gears, cams, springs, levers, etc., are correctly assembled and in good working order.

1. Never use force to start or stop the motor or any part of the record changing mechanism.
2. Warped or damaged records may cause the mechanism to jam. When jamming orcurs, the salety clutch slips, causing a clicking sound.
3. A cracked or chipped record may damage the sapphire.
4. Warped records may slide on one another whlle playing and result in unsatisfactory reproduction.
5. Do not leave the records on the record posts or on the turntable as they may warp. particularly in warm climates. Most warped records may be flattened by placing them on a flat surface with a heavy flat article placed on top of them for a few days.
6. If, for any reason, the mechanism stalls, turn oft the "On. Off" switch and remove the records from the posts. Start the turntable by turning the switch on and allow the tone arm to complete its cycle.
7. Do not tighten copper-plated, cone-pointed screws until final adjustment has been made.

95 MANUAL REJECT
LEVER

BOTTOM VIEW WITH BOTTOM SUPPORT (72) REMOVED
FIG. 1

FUNCTION OF PRINCIPAL PARTS

Trip Lever 29

When the pickup is riding in the eccentric groove, the trip pawl located on the trip lever engages the ratchet lever. starting the cycle.

Ratchet Lever 67

Portion of lever acts as a ratchet and the other portion acts as a stop or eatch to hold the drive clutch from engaging.
Ratchet Wheel 90 (Fig. 4)
Acts as part of the safety clutch, which is engaged with the cam pawl during cycle.

Drive Cam, Gear and Pawl 93

Transfers motion from turntable through clutch to main gear.
Turntable Spindle Support 82 (Fig. 4)

Forms a bearing for turntable spindle.
Main Cam 80 (Fig. 4)
Has a series of tracks controlling cycling action.
Record Separator Lever, Link, Crank 85 (Fig. 4)
Transters motion from the main cam through the stud, lever and link to the separator post during change cycle.
Feed-in Lever Locking Pawl or Latch 130
Provides a means of locking feed-in lever until the pickup has landed on the record, then unlatching and allowing feed-in lever to gently push the pickup into starting groove. (Used only on early RP-177)

Manual-Reject Control Knob and Lever Assembly 102-101-96-95

In "manual" position, it contacts the stud on clutch portion of drive cam thereby preventing the clutch from engaging and starting cycle.
In "automatic" position, it permits operation of the ratchet lever safety clutch and stop switch.
In "start reject" position, it momentarily closes control switch which is shunted across stop switch. It also moves the ralchet lever away from drive cam pawl. permitting the clutch to engage and start cycle.

Muting Switch Actuating Lever 131

Opens pickup muting switch during the playing cycle.

Tone Arm Lever 71

Directs horizontal motion of tone arm. Il also incorporates an additional retard lever which stabilizes tone arm while the mechanism is in cycle.

Tone Arm Return Lever 63

Moves the tone arm inward and provides positioning for landing

Feed-in Lever 38

A small lever under spring tension pro viding a small amount of force inward on tone arm, after the pickup has landed on record. (Used only on early RP-177)

Tone Arm Elevating Lever 77

Directs vertical motion of tone arm.

Tone Arm Elevating Rod 9 (Fig. 4)
Translers motion from elevating lever to lone arm.
Record Support Shaft, Cam 124
Functions as a lock for record support belt drum.

Record Support and Separator Drums and Belt Assembly 55-56125
Forms a mechanical linkage between record support and record separator.

Record Suppor

Provides a support for the record stack and a handle for record size change.

Record Separator Post and Blade

Functions to support the records and, together with the selector blade, to separate the lowest record of the stack and allow it to drop to the turntable during the change cycle.

Shut-off or Segment Cam 42

Forms a stop for tone arm return lever thereby preventing it from pushing the tone arm in for landing

Retainer Spring and Plate 128

A small piece of phosphor-bronze functioning as a partial lock which stabilizes the tone arm when in the outermost position.

Stop Bracket (part of Motor Board)

A small piece of spring steel used as a stop, which determines the outermost position of tone arm. (Adjustable.)

Cycle of Operation

The changer can be conveniently rotated through the change cycle by pushing the reject handle and revolving the turntable by hand. Eight turntable revolutions are required for one

Function
change cycle. Block up the motor, so it is disengaged from the drive disc, to permit easier manual rotation of the turn table.

Explanation

| Turn Record Support to | 1. Separator post positions itself by means of belt drive. |
| :--- | :--- | :--- |
| lo" or l2" Position as | |
| Desired | |

Preliminary Adjustments for Assembling Mechanism
 See page 6 for final adjustments.

It should be understood that the preliminary adjustments are only approximate and intended to aid in the process of assembling a mechanism in which the major parts have been removed. The final and exact adjustments can be made when the mechanism is completely assembled.

Mounting the Tone Arm:

The assembled tone arm should be mounted with the ratchet lever clamp approximately $1 / 16^{\prime \prime}$ from the end of the pivot arm bushing and against the stop bracket when the tone arm is on the rest as shown in the sketch.
(Note: The $1 / 16^{\prime \prime}$ is only a starting point, the important factor is to have the trip pawl engage the ratchet properly.)

Positioning Record Support Shaft:

Assemble the record support post with the ten inch side (long side) pointing towards the spindle. Adjust the cam so it is locked in position as shown in the sketch.
Take up all the slack in the belt by turning the separation shaft coanter clockwise (viewed from underside) aiding the action of the tension spring when the separator shaft sleeve is against the side of the siot in the motor board nearest the turntable as shown in the sketch.

MS 402

Manual-Reject Lever Mounting:

Place the control handle parallel to the front side of the motor board and pointing towards the "on-oft" switch.
Adjust the control lever so the notch engages the spring of the switch as shown in the sketch when the control handle is in the auto matic position.

Mounting the Separator Knife and "Shut-off" Cam Assembly:

Turn the record support post to the ten inch position and assemble the separator knife, "Shut-off" cam, and separator shaft pin and bushing assembly approximately in line as shown in sketch. Allow the end of the tone arm return lever to ride on the upper side (towards the motor board) of the "shut-off" cam as shown in sketch.

To Remove Tone Arm:

1. Unhook spring
2. Loosen screw
3. Push pin out

To Remove Turntable:

To Remove Separator Knife:

To Remove Tone Arm Bearing:

Do not remove ball bearings from tone arm bearing unless absolutely necessary. If cleaning is necessary immerse entire bearing in cleaning solution such as carbon tetrachloride.

Electrical Connections:

Reference Chart for

Automatic Record Changer Adjustments

Mechanism Jams.
General Irregularity of operation.
(Mechaniam Timing)
With the ratchet lever and the pawl on the drive shatt cam in playing position as shown, remove the bottom support bracket. link and lever assembly. Remove the " C " washer on the main cam shaft and slip the cam down far enough that it can be rotated with respect to the drive gear. Then rotate it until the timing notch is positioned as shown. Put the main gear back in mesh with the drive gear, replace the " C " washer, place the elevating lever on the cam ridge. Make certain the separator link and lever assembly is in its conect position and replace the bottom support bracket.
The timing notch is no longer used, a small projection has been added to the inside of the main cam and gear for timing indication.

Turn the record support post to the ten-inch position. Loosen set screws "C," hold the separator post against the end of its

Records strike separat or post or fail to stay on record shell.
(Spacing Between
Record Posta) slot in the motorboard and turn the belt drum to take up any slack in the belt. Tighten the zinc-plated, blunt-nosed screw and check 10 see that a ten-inch record fits the posts as shown. Then tighten the copper-plated, cone-pointed screw. Loosen set screws "B" and adjust support shelf so both 10 - and 12 -inch records set hall-way up the slope when support post is turned to their respective positions.

Note:-

A small piece of metal (stop bracket) has been welded to the motor board to improve the separation and dropping of the welve-inch records.
Bending the metal limits the outward movement of the record separator post, and in so doing makes it possible to equalize the distances between the spindle and the record support and separato: posts.

With the record supports turned to ten-inch position, place a

Tone arm continues to repeat playing of top record or jams when part way in on record.
(Seqment-cam height or radial position)

With record changer in the ten-inch position and the records re moved from the posts, loosen the set screw "E." Set the record separator segment-cam so that the index finger of the tone arm return lever rides on the middle of the segment-cam, as shown. Rotate the segmentcam until it is in such a position that the index finger will not ride off either end. Check to see that the index finger rides in over top of the cam when the record shelf is depressed by the weight of one record. Tighten the set screw. ten-inch record on the supports. Loosen the set screws "D"
Records do not drop at proper time.
(Record Shelf Timing) record-separating knile is $3 / 3$ inch away from the edge of the record. The teeth on the inner circumference of the knife should be resting in the bottom of their slots at the time the adjustment is made. Tighten the zinc-plated blunt-nosed screw first. sun through cycle several times as a check, then tighten the cone pointed screw.
Note: It may be found necessary to deviate slightly from 33_{2} inch dimension if twelve-inch records do not drop properly.

With the record changer in the ten-inch position, place a tenSapphire does not land inch record on the turntable and rotate the changer through at correct point on 10 . cycle by hand, until the sapphire is just ready to land. Make Inch record.

(Tone Arm Position With Respect To Trip Lever)

Correct dimension from outside edge of spindle to sapphire $411 / 10$ inches. certain that the index finger of the pickup arm return lever is against the record separator shaft and that the tone arm trip lever stud is held firmly against the return lever. Loosen the set screw " F " and move the pickup arm to the correct landing position. Maintain correct alignment between ratchet lever and trip pawl. when tightening set screw "E." (Note-Make certain trip lever stua does not come in contact with motorboard while making this adjustment.)
Place a twelve-inch record on the turntable and rotate the changer through cycle until the sapphire is just ready to land. Loosen screw " G " and adjust end of tone arm retur. lever so it is against separator shaft when pickup is in correct landing position.

Tumtable fails to rotate when the control handle is pushed to "Manual" or "Start-Re. ject" position.
(Control lever and witch position)

Remove the switch cover.
Loosen the two mounting screws "I" and position the switch so as to conform with the following three conditions.

1. When the control handle is in the "Start-Reject" position, the spring blade should ride up the side of the deep notch in the control lever causing the switch contacts to close. (The control handle should return to "Automatic" position automatically.)
2. When the control handle is in the "Automatic" position the spring blade should engage the deep notch in the control lever and in doing so allow the switch contacts to open.
3. When the control handle is in the "Manual" position, the spring blade should engage the shallow notch in the control lever causing the switch contacts to close and at the same time have "Manual Reject" lever move ratchet lever far enough so as to have free movement of trip lever, thereby preventing engagement between trip pawl and ratchet.

Top of tone arm strikes stack of records or sapphire fails to clear the records on the lurn. table.
(Tone Arm Height While In Cycle)
(Tone Arm Height While Out of Cycle)

Rotate the changer through cycle until the tone arm has risen to its maximum height above the tumtable but has not begun to move out. At this point adjust the screw " H " until the distance between the turntable and the sapphire is one and three-sixteenths inches. Tighten the locknut.

Bend end of tone arm support bracket or pivot arm so the pickup end of tone arm clears the motorboard by 3 in inch.

No output.

Noise during cycle.
(Position of pickup shorting switch)

Remove the cover from the switch assembly. Loosen the two mounting screws "J" and position the switch assembly so the shorting switch pawl causes the switch to close during cycle and open while playing records.

Records Jam or Stack Unsteady:

Record too thick, too thin, warped, or has rough edge.

Slow Speed:

Turntable spindle binds on botlom or top bearing.

RP-177A and RP-177B use rim drive-see pqge 14

Tone Arm Continues to Come Down in Rest Position:

MS 117

Tone Arm Lands Incorrectly on Rest, Drifts Off of Rest, or Jumps Suddenly When Moving in for Landing:

1. Bend bracket for tone arm limit stop.
. Bend retainer spring which contacts stud on trip lever, so tone arm is stabilized while on rest or in the outermost position. Do not make too positive contact or motion of tone arm will start with a sudden jump.

SERVICE HINTS (Continued)

Lands Incorrectly:

Incorrect Feed-in:

Feed-in on early RP-177 only.

Repeats Grooves:

Tone Arm Touches Record on Separator Shelf:

Rumble:

RP-177A and RP-177B use rim drive-see page 14

FIG. 2
Bottom view RP-177

FIG. 3
Bottom view RP-177 motorboard only

CHANGES-DIFFERENCES

Pivot Arm Spring

On early RP-177 the pivot arm spring (Rel. No. 4) was anchored to a stud (Ref. No. 3) in the rear of the tone arm. On RP-177A and late RP-177 a (Rer. No.
curved spring (Stock No. 73198) clips into the rear of the tone arm to which the pivot arm spring is anchored
Feed-in Adjustment
On early RP-177 a feed-in provision was used to cause the sapphire to enter the starting groove of the record after the tone arm had landed. This feature was found to be unnecessary and is not used on RP-177A or late RP-177, however, the feed-in adjusting disc may be found on late RP-177.

Stock No.	Ref.	No.	Stock	Ref.	
72655	35	Disc	71548	No.	
70873	38	Lever	-	127	Spring
71550	39	Spring			Lever

FIG. 4
Used only on early RP-177, also screws and washers to mount above items
The major differences between the two models is in the method of driving the turntable. This requires different furntables, motors, motor boards, motor mountings and idler wheels. In RP-177 the motor drives a ruiober tired disc which is attached to the turntable and spindle, in RP-177A the motor drives an idler wheel which engages with the inslde rim of the turntable. In RP-177 the record separator swivel (14), record separator support (16) and record support base (120) are gold tinish whereas in RP-177A they are finished the same color as the motor board.
Record supports (113 \& 114) are metal in RP-177 and molded plastic in RP-177A

The on-off switch (22) ratchet lever spring (66) and tone arm lever spring (71A) have been changed slightly
ILLUSTRATIONS AND LIST OF PARTS FOR RP-177A WILL BE FOUND ON PAGES 14 and 15.
RP-177B is identical to RP-177A except the crystal pickup-see page 15.

$\begin{gathered} \text { Stock } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { Ref. } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Rel. } \\ & \text { No. } \end{aligned}$	DESCRIPTION
72397	1	Arm－Pickup arm shell only less crystal，cable and pivol arm	70877	69	Washer－ $280^{\prime \prime}$ I．D．$\times 7 / 16^{\circ}$ flat washer for link． tone arm lever and main cam
70905	2	Pin－Pivot pin	71547	70	Sprinq－Tone arm lever tension spring（．218＂
39674	3	Stud－Pivot arm spring stud	70858	71	O．D．$x 11 / 2^{\prime \prime}-481$ ， turns） Lever－Tone arm lever loss spring
71099	4		71549	71 A	Spring－Tone arm lever spring（ $180^{\prime \prime}$ O．D．$\times 7 / 8^{\prime \prime}$
71098	5	Clamp－＂U＂clamp to lock pivot $\sigma \mathrm{mm}$ in posi． tion	72420	72	$-541 / 2$ turns） Brace－Bottom support for tone arm lift lever
71097	6	Screw－ $4.40 \times 1 / 4^{\prime \prime}$ long sell tapping screw to lock pivol clamps	71544	73	and main cam Spring－Drum and bell tension spring（．255＂
72414	7	Screw－$\# 6.32 \times 1 / 4^{\prime \prime}$ oval head screw for record separator cap		74	O．D．$\times 1^{3 / 9}{ }^{\prime \prime}-271 / 2$ lurns） Washer－\＃6 lockwasher
72	8	Cap－Record separator cap		75	
38607	9 9	Cushion \rightarrow Rubber cushion for pusher rod	39691	76	Screw－\＃10．32 $\times 7 / \mathrm{B}^{\prime \prime}$ fillister head screw for adjusting tone arm lift lever
70895	10	Spring－Record separator spring－upper（．622＂ O．D．$\times 1.11$ f $^{\prime \prime \prime}$＂$-131 / 2$ turns）	$\begin{aligned} & 38631 \\ & 71104 \end{aligned}$	$\begin{aligned} & 77 \\ & 78 \end{aligned}$	Lever－Tone arm elevating lever Nut－\＃10．32 hex locknut for tone arm lift lever
2917	11	Washer－＂C＂washer for lift rod．drum and belt，tone arm return lever，link，tone arm lever and main cam		79	adjusting screw Washer－Washer，O．D．7／16＂，I．D．3／16＂，T 1／32＂
72416 72413	12 13	Knite－Record separator knite Shelf－Record separator shelf and shaft	$\begin{array}{r} 70864 \\ \cdot 72409 \end{array}$	$\begin{aligned} & 80 \\ & 81 \end{aligned}$	Cam－Main cam Screw－\＃8．32 x $1 / 4$＂binder head screw for furn．
72399	14	Swivel－Record separator swivel and shatt			table spindle support
72400	15	Screw－Record separator swivel and shaft screw	70891	82	Support－Turntable spindle support bearing
72589	16 17	Support－Record separator support Screw－ $10 \times 3,0$ sell tapplng scre	70880 70883	83 84	Screw－$=6.32 \times 5 / 16^{\prime \prime}$ round head screw for
70	，	Nut－9／16．32 hex nut for record separator support			turntable spring plate Link－Record separator
71280	19	Shatt－Record separator botlom shalt	70852 70849	85 86	Bushing－Record separator shalt and bush
71103	20	Pin－Drive pin for record separator shaft end bushing	71100 31118	87 88 88	Screw－ $10.32 \times 5 / 16^{\prime \prime}$ round head serew for link Screw $=10-32 \times 5 / 16^{\prime \prime}$ fillister head screw for
71106 72407 72591	21 22 23	Cover－Metal cover for＂On－Otf＂switch Switch－＂On OH＂switch	31118	88	Screw－$=10-32 \times 5 / 16^{" ~ h i l l i s t e r ~ h e a d ~ s c r o w ~ f o r ~}$ link or for automatic－manual－reject detent lever
72591	23	Escutcheon－Index escutcheon	70850	89	Spring－Record separator shaft bottom spring
72588	24 25	Nut－Hex nut $\mathbf{\# 4 - 4 0}$ Screw－ $4.40 \times 5 / 16^{\prime \prime}$－binder head screw for ＂OnOH＂switch	38624	90	（．290＂O．D．$\times 1.35^{\prime \prime}$－ $143 / 4$ turns） Ratchet－Ratchet wheel（drive cam sprocket）for iurntable drive
70906	26 27	Insulation－Two small pieces of spaghetti Arm－Pivot arm and shall	38626	91	Screw－$=8.32 \times 1 / 4{ }^{\prime \prime}$ fillister head set scrow for
72402	28	Screw一 $=10.32 \times 5$＂fillister head serew for trip lever	70854	92	ratchet wheel Spring－Drive shaft eam and pawl spring（．195＂
70856	29	Lever－Trip lever less spring		93	Cam－Drive shaft cam and pa
71543	30	Spring－Trip lever spring（．135＂O．D．x 21／3	70879	94	Washer－Washer for eam and pawl lever－Automatic－manual－reject operating
3658 70886	31 32	Ball－Steel ball（ $3 / 32^{\prime \prime}$ dia．） Nut－1／4．3＂hex nut for pick	72403	95	Lever－Automatic－manual－reject operaing lever
72585	33	Bushing－Pivo	7240	96	LInk－Link for automatic－reject－manual ope ating and detent levers
70911	34	Bushing－Pivot arm bushing（lower）	36274	97	Wheel－Idler wheel
72655	35	Disc－Feedin adjusting disc	33726	98	Washer－＂C＂washer
5042	36	Screw－$=8.32 \times 1 / \mathbf{R}^{\prime \prime}$ sel screw for lower pivol arm bushing	70863 39996	99 100	Arm－Molor idler arm－less wheel Washer－Fibre washer for idler wheel
72408	37	Screw－$\# 0.32 \times 1 / 4 "$ binder head screw for foed． in adjusting dise	72404 72586	101 102	Lever－Automatic－manual－reject detent lever Lever－Reject lever（handle）
70873	38	Lever－Feedin lever		103	Screw－Hex，head $6.32 \times 1 / 4$ sell－tapping scrow
71550	39	Spring－Feed－in adiusting disc spring $\left(.160^{\prime \prime}\right.$ O．D．$\times 138$＂－ 82 lurns）	$\begin{aligned} & 72410 \\ & 72411 \end{aligned}$	$\begin{aligned} & 104 \\ & 105 \end{aligned}$	Switch－Manual shorting switeh Cover－Manual shorting switch covor
20165	40	Washer－＂C＂washer for ratchet lever，manual operating lever，manual detent lever and teedin lever and tone arm tift lever	72421	106 107 1078	Screw－ $4-40 \times 1 /{ }^{\prime \prime}$ round head machine Turntable－Turntable including rubber mat lens drive disc and tire Mat－Rubber mat only for furniable
32869	41	Serew－$=10.32 \times 5 / 16^{\prime \prime}$ tillister head screw for tone arm control lever	$\begin{aligned} & 70866 \\ & 73054 \end{aligned}$	$\begin{aligned} & 107 A \\ & 108 \end{aligned}$	Mat－Rubber mat only for furntable Spindle－Turntable spindle drive less fire
70848	42	Cam－Shut－oft or segment cam．fastens on record separator shaft	37873 72587	${ }_{109}^{108}$	Screw一\＃ $10.32 \times 3 / 4^{\prime \prime}$ oval head screw for record
70855	43 44	Cover－Stop switch cover Washer－Lockwasher 44	72423	110	cap－Record sup
	45	Screw－Round head screw $\# 4.40 \times 3 / 16^{\prime \prime}$ long	7081	111	Washer－Approx． $7 / 16^{\prime \prime}$ O．D．，3／16＂I．D．， 030 T
70876	46	Swlich－Stop and muting switch，mounted on bracket	70861	112	Screw $=10.32 \times 3 / \mathrm{m}^{\prime \prime}$ binder head screw for rec． ord supports
	47	Nut－Hex nut $\# 6.32$	72418 72417	1113	Support－Record support tor $12{ }^{\prime \prime}$ ，records
72820	48 49	Washer－Lockwasher \＃6	72419	115	Shell－Record support shelf and shot
	50	Screw－Self tapping screw $\# 10.3 / \mathbf{M}^{\prime \prime}$ long	72708	11	Cable－Shielded output cable complete with
32943 71102	51 52	Nut－Pickup stop switch button speed nut Bution－Pickup swp witch button			Plug－Pin plug tor shielded output cable
7102 32869	52 53	Bution－Pickup shop switch button Screw－$\# 10-32 \times 5 / 16$＂fillister head screw for record separator drum flat end	71546	117	Spring－Idler arm tension spring（．187＂O．D．x 7／8＂－31 turns） Grommel－Rubber grommet to mount motor（2
72562	54	Screw一 for record separator drum－cone point	34368 30870	119	required） Plug－2．prong male plug for power cable
70898 70900	55 56	Drum－Record separator drum ${ }_{\text {Belf－Record separator to support bell }}$	72590	120	Base－Record support base
71279	57	Nut－Speed nut to hold cable，rear of pivot arm	38612	121 G	Motor－105－125 volts， 60 eyele
71095	58	Nut－Speed nut to hold cable，rear of arm	39749 71545	${ }_{122}^{121 G}$	Spring－Motor tension spring（ $192^{\prime \prime}$ O．D．$\times 1^{1 / 2 "}$
38458 72584 72551	59 60	Nut－Speed nut to hold cable，tront of arm Cable－Pickup cable，twisted pair	71545	122	$\text { - } 58 \text { turns) }$
38452 70341	618	Guard－Needle quard ${ }^{\text {Gut－Mounting washer and nut for sapphire }}$	70845	124	Cam－Record support shaft cam
72345	61 C	Sapphire－Sapphire and holder assembly	70899	125	Drum－Record support drum
37763 70912	${ }_{62}^{61 D}$	Screw一 $=2.56 \times 1 /{ }^{\prime \prime}$＂serew for needle quard Screw一\＃4．40 $\times 3$ 3＂binder head screw to mount crystal（2 required）	72398	126	Motorboard－Motorboard sub－assembly complete with all welded，staked and riveted pafts－ less operating paris
70847 72401 70884	63 63 64	Lever－Tone arm return lever Screw－Tone arm return lever screw Washer－Bearing washer for tone arm	71548	127	Spring－Feed－in control spring（．160＂O．D．x 11／16＂－52 turns）
70884	64	Washer－Bearing washer for tone arm return lever	72412	128	Plate－Antidrift spring and plate for tone arm （retainer spring）
71726	65	Spring－Tone arm return lever spring（．218 	38873	129	Spring－Conical spring to mount record ehanger （4 required）
71549	66	Spring－ratchet lever spring（ $180^{\prime \prime}$ O．D．x $7 / \mathrm{BN}^{\prime \prime}$ $-541 / 2$ furns）		130	Lever－Feed－in lever locking pawl or lateh．Part
$\begin{array}{r} 73053 \\ \uparrow \ldots \ldots \ldots \end{array}$	67 68	Lever－Ratchet lever Washer－Steel washer O．D． $1 / 2^{\prime \prime}$ I．D．，．193＂，T ．020＂	†．．．．．．．	131	of motorboard Lever－Muting switch actuating lever．Part of motorboard．

FIG. 5
Bottom vieve RP-177A, KP-17\% B

FIG. 6
Bottom riew RP-175A, RP-177B (motorboard on'y)

Turntable drive RP-175A, RP-177B

REPLACEMENT OF SAPPHIRE

RP-177 and RP-177A use crystal Stock No. 72551 and sapphire Stock No. 72345 (has red dot on stylus and no viscoloid damper).

RP. 177B uses crystal Stock No. 70339 and sapphire Stock No. 70915 (has viscoloid damper).

Caution: Never bend the sapphire support wire.
Extreme care should be used when loosening the sapphire mounting nut so that the twisting motion does not break the crystal.

Remove the two screws holding the sapphire guard in place and remove guard. Remove the small nut and washer on the threaded shaft of the sapphire holder and push the shaft through the hole in the viscoloid until the sapphire holder assembly comes free.
Insert threaded shaft of replacement sapphire holder through viscoloid and replace the washer and nut. Make sure that the sapphire is in the correct position. Take hold at the lower end of the shaft with a pair of pliers while tightening the nut, being very careful so as not to strip the threads or break the crystal. Replace the sapphire guard, positioning it by means of the oversize screw slots. Make certain that the sapphire and its supporting wire are centered in the guard. Tighten the guard screws. Before using, check to see that the sapphire projects far enough (approx. .020) beyond the guard so that the guard will not s:rike the record. If necessary, bend the guard a little.
Fote: Pickup force should be approximately 1 to $11 / 4$ oz.

LUBRICATION

A light machine oil (SAE \#10) should be used to oil the bear. ings of the drive motor.
On all bearing surfaces, excepting the motor bearings, Hough. ton STA-PUT No. 320, or equivalent, should be used. On all other surfaces, STA-PUT No. 512, or equivalent, is recommended. STA-PUT can be purchased from E. F. Houghton δ Co., 303 W. Lehigh Âve., Philadelphia, Pa.

It is important that the drive motor spindle and the rubber tire on the friction disc as well as that on the idler wheel be kept clean and free from oil or grease, dirt, or any foreign material at all times. Carbon tetrachloride or naphtha is satisfactory for cleaning these parts.
(Do not oil or grease record separator shaft.)

The Replacement Parts Listed Below Bear the Same Reference Number as the Corresponding Parts used on RP-177. Reier to RP-177 Parts List on Pages 12 and 13 for All Other Parts which are Identical. Refer to "CHANGES-DIFFERENCES" on Page 12.

REPLACEMENT PARTS

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Rel. } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{array}{\|c} \text { stock } \\ \text { No. } \end{array}$	Ref. No.	DESCRIPTION
73198		RP-177A Spring-Curved spring for anchoring pivot arm coil spring.	73315 73316 73309	$\begin{array}{\|l} 114 \\ 115 \\ 118 \end{array}$	Support-Record support for $10^{\prime \prime \prime}$ records. Shell-Record support shell and shaft. Grommel-Rubber grommet to mount motor (3 required).
73311	14	Swivel-Record separator swivel and shatt.	73318	120	Base-Record support base.
32875	22	Switch-"On-OH" switch.	73308	121	
72372	66	Spring-Ratchet lever spring (.170" O.D. $\times 11 / 32^{\prime \prime}$ - 80 Turns).		121G	wheel. Spring-60 to 50 eycle conversion spring.
73053	67	Lever-Ratchet lever.	71180	122	Spring-lder wheel tension spring.
71550	71 A	$\begin{aligned} & \text { Spring-Tone arm lever spring (.160" O.D. } \times 13 / 6^{\prime \prime} \\ & -82 \text { Turns). } \end{aligned}$	73305	123	Screw- $\# 10.32 \times 3 / \mathbf{g}^{\prime \prime}$ fillister head set screw for record support shaft cam-cone point (2 required).
73306	91	Screw-\#8-32 $\times 5 / 16^{\prime \prime}$ fillister head set screw for ratchet wheel.	73312	126	Motor board-Motor board complete with pickup rest, welded, staked or riveted parts less operating parts.
71181 71179	97	Spring-Hairpin spring to fasten drive idler wheel. Wheel-Drive ider wheel.	73310		Fastener-Snap fastener for mounting motor (3 re* quired).
73307	107	Turntable-Turntable and spindle assembly complete with rubber mat.			RP-177B
73313	107A	Mat-Rubber mat for turntable.			Same as RP-177A
73317	111	Washer-3/8" O.D. x .195" I.D. flat washer for mounting record supports.	70339	61	Crystal-Crystal cartridge complete.
73314	113	Support-Record support tor 12" records.	70915	61 C	Sapphire-Sapphire and hoider assembly.

SERVICE HINTS

Pre-tripping-Failure to Trip:

Note: Numbers refer to Item Numbers in parts list on page 13. Refer to FIG. A on this page.

1. The engagement of Items 67 and 93 must be $1 / 64^{\prime \prime}$ to $4.32^{\prime \prime}$ file or bend positioning pin of Item 67 to obtain proper engagement.
2. The engaging surfaces of Items 67 and 93 must be smooth and free of burrs. Stone the surfaces if required-if rough the tone arm jumps into label when mechanism trips.
3. The overlap between the trip pawl of Item 29 and the ratchet of Item 67 must be $3 / 32^{\prime \prime}$ to $4 / \mathbf{a}^{\prime \prime}$.

Tone Arm Travels Over Record Label:

While holding pawl of Item 93 disengaged from ratchet lever 67. place the tone arm in the eccentric groove of a record with the turntable running. The tone arm should swing back and forth freely. Should the tone arm jump the eccentric groove and sweep over the label, more overlap is needed between pawl of trip lever 29 and ratchet of Item 67. This can be obtained by filing approximately $1 / 32^{\prime \prime}$ from the trip pawl as indicated on FIG. A.

Spacing Between Record Posts:

Refer to Service Data, page 6. Adjustment "B" and " C " and to FIG B on this page.

1. Set record separator post, as described on page 6, in the $10^{\prime \prime}$ position.
2. Adjust the $10^{\prime \prime}$ position of the record support by means of the screws "B" so that the $10^{\prime \prime}$ " B " dimension indicated on FIG. B is obtained.
3. Set record support to $12^{\prime \prime}$ position and adjust by means of the screws " B " so that the 12 " " B " dimension indicated on FIG. B is obtained.
4. Bend the stock bracket so that dimension " A " indicated on FIG. B is obtained.

Binding of Turntable:

Refer to FIG. C on this page.

1. Spindle must be seated in spindle support 82.
2. Turntable must be parallel to motorboard.
3. A running cleurance must be provided between drive wheel 90 and spindle support 82 and also between drive wheel 90 and pawl and cam assembly 93.

Record Damage:

Refer to FIG. D on this page.
Record damage may be caused by incorrect spacing between the record separator shelf and knife or by an improperly shaped knife edge.

RP-178 Series Record Changer
RP. 178
Uses 117 V .60 cycle motor. For operation on 50 cycle power supply: a spring, Stock No. 73158 is added to the motor shaft. Used in the following models:
8TV321, 8TV323, 8V7, 8V90, 8V91, 8V112, 9TW333, 9W105, $75 Z \mathrm{U}, 77 \mathrm{U}, 77 \mathrm{VI}$

RP-178-2

Uses 117V. 25 cycle motor.
Used in instruments manufactured by RCA Victor Company Limited (Canda).
RP-178-3
Uses $117 \mathrm{~V} . / 234 \mathrm{~V} .60$ cycle motor. For operation on 50 cycle power supply; a spring. Stock No. S-4774 is added to the motor shaft.

Used in Models 6QU3 and 6QV3.

Index	Paqe
Function of Principal Parts	
Adjustments	
Tone Arm (Out of Cycle) Height Adjustment	- 3
Tone Arm Height Adjustment While in Change Cycle	e
Pickup Landing Adjustment	3
Record Push Cam and Gear Assembly Adjustment	- 3
Removing Turntable	3
Replacing Turntable	3
Turntable Centering	3
Cycle of Operation .. 4-5	
Photograph of Parts	
Parts List ... 7	
Illustrated Service Hints .. 8-10	
Pickup Repeats Grooves	8
Continuous Tripping	8
Premature Tripping	- 8
Failure To Trip or Go Into Cycle	- 8
Changer Will Not Complete Cycle	9
Records Do Not Separate or Drop Properly	9
Distorted Output	9
"Wow" or Slow Turntable Speed	9
Improper Pickup Landing	10
Rumble	10

FEATURES

1. This mechanism is designed to play automatically a series of twelve 10 -inch or ten 12 -inch standard records of the 78 r.p.m. type.
2. It will play manually records up to 12 inches in diameter.
3. Tripping system is of "eccentric" type, insuring reliable automatic operation on all records made to RMA proposed standards.
4. It is a simple operation of sliding the record support to change from 10 to 12 -inch records or vice versa.
5. Cycling mechanism is disconnected completely while rec ords are being played. This reduces the load on the drive motor, thereby reducing the tendency for "wow" or rumble.
6. Low noise sapphire point pickup cartridge.

AUTOMATIC OPERATION

1. With the power switch in the off position slide the record support shelf as required for 10 or 12 -inch records.
2. Place the records to be played in a stack with desired selections upward and in proper sequence with the last record on top. Load them on the changer by placing them over the center post and resting on the record support shelf. Place record stabilizing clamp on top of the record stack.
3. Turn power switch on and press the reject button. The changer will play automatically one side of each record in the stack.
The tone arm can be moved to the rest position any time the mechanism is not in cycle
4. Turn the power switch off, lift the stabilizing clamp and remove the stack from the turntable by placing fingers of both hands directly opposite and under the stack. Then lift straight up-"don't tilt" or squeeze stack.

MANUAL OPERATION

1. Slide the record support shelf in towards the center post for 10 -inch or away from the center post for 12 -inch position.
2. Place the record to be played on the turntable and turn the power switch on.
3. Place the pickup on the start of the record.

Note: The mechanism should be allowed to complete cycle before attempting to move tone arm to the rest positlon.
4. Turn power switch off manually.
5. Remove the record by raising straight up without tilting.

CAUTIONS

1. Avoid handling the tone arm or sliding the record support assembly while mechanism is in cycle.
2. Never turn the power switch off, leaving the mechanism in cycle for an extended period of time.
3. Do not allow the records to remain on supports when not in use.
4. Do not allow oil or grease to come in contact with any rubber parts.
5. Do not install instrument near source of heat. Excessive heat may damage the pickup cartridge.

RP-178 SERIES

Figure 1

FUNCTION OF PRINCIPAL PARTS

Trip Lever-67
When the sapphire is riding the eccentric groove, the trip pawl engages the ratchet lever, starting cycle.

Ratchet Lever-63
Portion of the lever acts as a ratchet and the other portion incorporates a catch for the stud on the cycling cam carriage. The engagement of this stud prevents the mechanism from going into cycle.

Center Post-32
The center post performs the function of supporting and aids in the separation of the records.

Tone Arm Return Lever and Latch--53B
The tone-arm return lever, logether with the latch, locks and stabilizes the tone arm in its outermost position. It also gives the necessary inward motion to the tone arm.

Cycling Cam Carriage-50A
This carriage provides a movable support for the cycling cam.
Tone Arm Director Lever-71
The roller on one end of this lever follows a channel in the cycling cam and thereby pulls on the cable directing the vertical and outward motion of the tone arm.

Locating Lever-12

The sloped portion of the lever forms a stop for the stud on the tone arm return lever thereby determining the landing position of the pickup.

Record Push Cam Gear Assembly-5, 7

Provides a means of coupling the push cam to the rack lever.
Record Support-1A, B, C. D
Provides a support for the edge of the records and a mounting for the record push cam.

Figure 2

Rack Lever-10
One end of the lever follows the eccentric elevated portion of the cycling cam causing the lever to move in and out from the center of the mechanism. The teeth on the rack lever engage the teeth in the record push cam gear producing a rotary motion necessary to push the record off the step in the center post.
Record Push Cam-4
The oval shaped cam located in the record support, rotates during change cycle. This cam engages and pushes the record from the step in the center post.

RP. 178 SERIES

ADJUSTMENTS

Tone arm (out of cycle) height adjustment

1. Rotate the turntable until the shange cycle is completed.
2. Move the tone arm to a position off the edge of the record and allow it to rest freely in air.
3. Bend portion of the tone arm bracket so that the sapphire is $3 / 16$ inches above the flat surface of the motorboard. (Figure 3.)
Tone arm height adjustment while in change cycle
4. Press the reject button and rotate the turntable by hand until the pickup has raised, to the maximum height in the change cycle.
5. Turn the adjustment screw " A " until the sapphire is $13 / 8$ inches above the turntable.
This adjustment will permit the pickup to land and play one record placed on the turntable. At the same time it prevents the tone arm from touching the record resting on the centerpost while the mechanism is going through cycle.
(If this height cannot be reached by the adjustment screw, take up on the cotter pin.) (Figures 4 and 5.)

Pickup landing adjustment

1. Slide the record support as required for playing 10 -inch records.
2. Place a ten-inch record on the turntable and rotate the turntable by hand until the sapphire is just ready to land. Loosen set screws "B" (Figure 6)
3. Hold the trip lever to keep it from moving while the pickup is moved to the start of the record.
4. Tighten the black screw " B " and allow the mechanism to run through cycle automatically. If landing is correct. tighten copper plated screw "B." (Figure 6.)
(Note) No separate 12 -inch landing adjustment is necessary.
Hecord push cam and gear assembly adjustment
5. Have the mechanism out of cycle.
6. With the push cam in place and the record support in the 10 -inch position, assemble and engage the teeth of the push cam gear with the rack lever so the eye in the lever is approximately in line with the centerpost as shown in drawing. (Figure 7.)
7. Set the push cam parallel to the front edge of the record support, make certain the thin edge of the cam is on the left side, viewed from the front or centerpost side of the support. (Figure 8.)
Removing the turntable
8. Loosen the two screws mounting the centerpost. (Figure 10.)
9. The centerpost, turntable and thrust bearing can now be easily lifted out.

Replacing the turntable

1. Slip the turntable over the lower end of the centerpost until it comes against the stop or ears. (Figure 9.)
2. Place the thrust bearing and washers on the bottom end of the centerpost and place the centerpost and turntable in position as shown. (Figure 9.)
3. Turn the spindle so the step in the centerpost is away from the record support. (Figure ll.)
4. Tighten the two mounting screws. (Figure 10.)

Turntable centering

If for any reason the sub-assembly had been removed from the motorboard it is necessary to re center the turntable.

1. Loosen the three sub-assembly mounting bolts. (Figure 12.)
2. Place the turntable in place with the center post extending down through the mounting as shown. (It is not necessary to have the thrust bearing in place for this operation.) (Figure 9.)
3. Center the turntable in respect to the recess in the motorboard by shifting the position of the sub-assembly slightly. (Figure 11.)
4. Tighten the nut on the end of the square head mounting bolt. (Figure 12.)
5. Remove the turntable and tighten the other two mounting bolts. (Figure 12.)

Figure 4

Figure 6

Figure 8

Figure 7

Figure 10
Figure 9

Figure 12

Figure 11

CYCLE OF OPERATION

Explanation

Lift and slide the record support to 10 or 12 inch po. sition as desired

1. Record support locks in position and at the same time the record push cam and gear rotates and assumes a position as required for 10 - or 12 -inch records.

Place the stack of records over the center post

1. The lower record of the stack is sitting on the step in the centerpost, and the edge is resting on the record support.

Push reject button

1. The end of the reject button extending through the motorboard contacts and moves ratchet lever.
2. Ratchet lever unlatches stud which is mounted on cycling car- RE北䛼 riage. This allows the tension spring to pull the cycling cam against the rotating knurled roller and start cycle.

Tone arm rises and moves out

1. As the cycling amm rotates the small roller on the tone arm director lever follows the channel in the cam and in so doing pulls on the cable connected to the tone arm.
2. The hole in the motorboard provides a guide for the tone arm cable. It is so placed as to allow the cable to pull at an angle slightly off 90 degrees thus giving the necessary rising and outward motion of the tone arm.
3. The trip lever which is rigidly connected to the tone arm through the tone arm pivot shaft is moved out with the tone arm.
4. The tone arm return lever has moved out slightly ahead of the trip lever. The tone arm return lever together with the small latch assumes such a position so as to engage the stud on the trip lever and stabilize the tone arm in its outermost position.

The record push cam logether with the "step" in the centerpost separates the lower record of the stack allowing it to drop to the turntable

1. While the cycling cam is continuing to rotate, the rack lever is being pushed outward by the small eccentric elevated cam. with which it is engaged.
2. The teeth in the rack lever being engaged with record push cam gear, converts the sliding action of the rack lever into a rotary motion.
3. The rotary motion of the record push cam pushes the record off the step in the centerpost.

CYCLE OF OPERATION

Function Explanation

Tone arm moves In and lands on record
. As the cycling cam is returning to normal position, the tone arm director lever is gradually allowing a slack in the tone arm cable.
2. While the tone arm director lever is gradually allowing slack in cable, the tone arm return lever is tending to retain the tension on the cable by returning the tone arm to the landing position.
3. The distance the tone arm return lever travels, while moving the pickup in for landing, is determined by the contact between the tone arm locating lever and the stud on the tone arm return lever.
4. After the tone arm return lever has moved the tone arm to the landing position the tone arm director lever continues to move and allow enough slack in the cable so the pickup can sit down on the start of the record.

Sapphire moves into record groove. Record begins to play

1. As the sapphire moves into the playing groove, the cycling cam becomes disengaged from the rotating knurled roller as the roller falls into the step in the cam
2. The change cycle is completed as the stud on the cycling cam carriage becomes engaged with the ratchet lever. This engagement prevents the cycling cam from contacting the knurled roller, starting a new cycle.

The record plays

1. After the playing of the record, the pickup moves into the eccentric groove.
2. The movement of the pickup in the eccentric groove causes the trip pawl to engage the ratchet lever starting a new cycle. (The mechanism plays one side of each record in the stack then repeats the playing of the last record until the pickup is manually placed on the rest or the power removed from the mechanism.)

REPLACEMENT OF SAPPHIRE

Caution: Never bend the sapphire support wire.

Extreme care should be used when loosening the sapphire mounting nut so that the twisting motion does not break the crystal.
Remove the two screws holding the sapphire guard in place and remove guard. Remove the small nut and washer on the threaded shaft of the sapphire holder and gently push the shaft through the hole in the armature shaft until the sapphire holder assembly comes iree.
Do not use force as the crystal may be broken.
Insert threaded shaft of replacement sapphire holder through armature shaft and replace the washer and nut. Make sure that the sapphire is in the correct position. Take hold at the lower end of the shaft with a pair of pliers while tightening the nut, being very carelul so as not to strip the threads or break the crystal. Replace the sapphire guard, positioning it by means of the oversize screw slots. Make certain that the sapphire and its supporting wire are centered in the guard. Tighten the guard screws. Before using, check to see that the sapphire projects far enough (approx. .020) beyond the guard so that the guard will not strike the record. If necessary, bend the guard a little.
Note: Pickup pressure should be approximately 1 to $11 / 4$ oz.

LUBRICATION

Motor
Motor is lubricated at factory to provide normal operation for a long period of time.
If it becomes necessary to lubricate, use SAE \#10 motor oil to saturate the felt wicks on the motor bearings.

Main Bearing
Use STA-PUT \# 512 or SAE \#30 motor oil.
Slides and Levers
Use STA-PUT \#512.
STA-PUT can be purchased from E. F. Houghton \& Co., 303 W. Lehigh Ave., Phila., Pa.

Addition to Parts List:
Ref. No. Stock No
Description
Photograph of Parts
$\left.\begin{array}{l}\text { IB } \\ \text { IC } \\ \text { ID }\end{array}\right\} 74760$ Top clamp (1C) complete with rubber cushion
The above parts were previously listed only as a part of Record Support Assembly (Stock No. 72390).

$\begin{aligned} & \text { REF. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION	REF. No.	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
		OPERATING ASSEMBLIES	39	38458	Nut-Speed nut to hold idler wheel arm stud
1 A	72390	Record Support Assembly 1A, complete with	40	72396	Wheel-Idler wheel including tire
18		rubber cushion 1B, top clamp 1C, and pins 1D	40A		Tire-Rubber tire for idler wheel (not sold separately)
1 D			41	39996	
2	72357	Spring-Record support and clamp spring $\left\{.200^{\circ}\right.$ O.D. $\times 1-31 / 32^{\prime \prime}-371 / 4$ turns)	42	33726	wheel (2 required) Washer-"C" washer to fasten idler wheel
38	72391	Plate-Clamp 3A, plates 3B (1 set) for record support assombly including lockwashers 3C	$43+$		Lug-To hold spring 37 (not stocked)
38 3 C 3 D		support assembly including lockwashers 3C and screws 3D	44	72387	Mounting-Motor mounting hardware consisting of 6 (six) washers, 3 (three) spacers, 3 (three) lockwashers and 3 (three) nuts
4	72356	Cam-Record separator cam and shaft	45	72384	Grommet-Rubber grommet for mounting motor
5	72360	Lever-Record push cam shaft lever, upper			(3 required)
6	72353	Screw- $=8.32 \times 5 / 16^{\prime \prime}$ tilister head screw for Item \#5	46	72394 30870	Motor-117 volt, 60 cycle motor
7	72361	Lever-Record push cam shaft lever, lower (gear and lever assembly'	47	30870	Plug-2 prong male plug lor motor Switch-"OnOH" switch with cover
8	72362	Spring-Record push cam shafl levers connect ing spring (.242" O.D. x $1^{\prime \prime}-191 / 2$ turns)	49	72389	Screw-Mounting screws for power switch (2 required)
9	72354	Washer-Flat washer (29/32" O.D. x .220" I.D.) between rack lever and record separator cam	50	73071	Base-Sub-base assembly complete with cam mounting plate and tone arm return lever and latch less springs
10	72371	Lever-Rack lever	50A		Plate-Cam mounting carriage (Part of 50)
11	72370	Spring-Rack $1-11 / 16^{\prime \prime}-53$ lever lurns) spring (.233" O.D. x	50B		Lever-Tone arm return lever and latch (Part of 50)
12	72352	Lever-Tone arm locating lever	51	72367	Spring-Cam mounting plate spring (.195" O.D.
13	70877	Washer-Brass washer (7/16"O.D. x $280^{\prime \prime}$ 1.D.) to mount locating lever to record separator cam shaft	52	72375	$\times 1.167^{\prime \prime}-381 / 4$ turns) Spring-Return lever spring (.195"O.D. x 7/8"- 26 turns)
14	35969	Washer-"C" washer to fasten locating lever to record separator cam shaft	53	72374	Spring-Return lever latch spring (.165" O.D. $\times 9 / 16^{\prime \prime}-28$ turns)
15	72351	Washer-Brass washer (7/16" O.D. x .195" 1.D.) to mount locating lever to sub-base stud	54	72363	Screw- $=8.32 \times 7 / 16$ " filister head screw to fasten center post (2 required)
16	33726	Washer-"C" washer to fasten locating lever to sub-base stud	55	72347	Hardware-One sel of mounting hardware to mount sub-base consisting of 2 screws, 3
17	72338	Arm-Pickup arm shell only			washers, 3 lockwashers and 3 nuts
18	72344	Jewel-Pickup arm decorative jewel	56	72364	Screw- $40-32 \times \mathrm{l} 1 / 2$ " square head screw to
19	38458	Nut-Speed nut to hold jewel			
20	72551	Crystal-Crystal cartridge complete (including sapphire and guard)	$\begin{aligned} & 57+ \\ & 58+ \end{aligned}$		Clamp Screw
20A	72345	Sapphire-Sapphire and holder assembly	59	72368	Cam-Main cam (including rubber lire)
20 B	70341	Nut-Mounting washer and nut for sapphire	60	72369	Tire-Rubber tire only for main cam
20 C	38452	Guard-Needle quard	61	70877	Washer-Brass washer (7/16" O.D. x 280" I.D.)
20D	37763	Screw- $\# 2.56 \times 1 / 0^{\prime \prime}$ screw for needle quard			to mount main cam
21	70912	Screw- $440 \times 3 / 3^{\prime \prime}$ binder head screw to mount crystal in arm (2 required)	62	35969	Washer-"C" washer to fasten main cam Lever-Ratchet lever, complete with raichet
22+		Cable-Pickup cable (twisted pair)			teeth
23	38458	Nut-Speed nut to hold pickup cable	63 A		Ratchet-Ratchet teeth (Part of 63)
24 25		Sleeving-Sleeving to protect pickup cable	64	72372	Spring-Ratchet lever spring (.170" O.D. x 1.1/32"-80 turns)
25 26	7233918	Shalt-Pickup arm shalt Pivat-Pivot pin 26B, and screw 26A	65	72351	Washer-Brass washer (7/16" O.D. x .195" I.D.)
26	72341	Pivot-Pivot pin 26B, and screw $26 A$ for pickup arm shaft			to mount ratchet lever ${ }^{\text {Washer-"C" washer to fasten ratchel lever }}$
27	72342	Screw— $\pm 4.40 \times 3 / 16^{\prime \prime}$ dilister head machine screw lor locking pivot screw	67	33726 7235	Lever-Trip lever with trio pawl less spring
28	72340	Screw- 8 - $32 \times 1 / 4^{\prime \prime}$ round head machine screw to hold lift cable tie plate	$\begin{aligned} & 67 \AA \\ & 68 \end{aligned}$	72359	Pawl-Trip pawl (Part of 67) Spring-Trip lever spring (.165" O.D. x T/a"-
29	72343	Cable-Pickup arm lift cable complete (including tie plate and cotter pin)	69	32869	62 furns) Screw- $10.32 \times 5 / 16^{\prime \prime}$ filister head machine
29A	72386	Pin-Cotter pin to tosten lift cable			screw for trip lever
29B		Plate-Tie plate nut stocked separately, lift cable (Part of 29)	70	39772	Screw- $10.32 \times 5 / 16$ " filister head set screw for trip lever
30	10941	Ball-Steel ball ($1 / \mathrm{m}^{\prime \prime}$ dia.) for pickup arm shafl	71	72378	Lever-Tone arm lift director lever
31	72348	Washer-Thrust washer (.580" O.D. x . $300^{\prime \prime}$ I.D.) for pickup arm shaft	$\begin{aligned} & 71 A \\ & 72 \end{aligned}$	72376	Spring-Spring leaf (Part of 71) Spring-Pickup lift cable lever spring (.195"
32 l	72346	Spindle-Turntable spindle or center post Guide-Record guide (Part of 32)	73	72379	O.D. $x 1-3 / 32^{\prime \prime}-401 / 4$ turns) Screw- $\# 8-32 \times 3 / 16^{\prime \prime}$ round head adiusting
33	72355	Turniable-Turntable complete with knurled bushireg and rubber mat	74	72380	screw for lift lever Roller-Cable lever roller
$33 \AA$	72564	Mat--Rubber mat only for turntable	75	72381	Washer-Flat washer (1/2" O.D. x 290 " I.D.) to mount lift lever
33 B		Roller-Knurled roller (Part of 33)	76	35969	Washer-"C" washer to tasten lift lever
34	72350	Washer-Thrust washer (.750" O.D. X . 285 1.D.) for turntable spindle (2 required)	77	72383	
35	72349	Bearing-Thrust bearing	78	33225	Nut-Speed nut for mounting tone arm rest
36	72395	Arm-Idler wheel arm and mounting lever	79	72385	Lever-Reject lever
37 38	72393	Spring-Idler spring (.195" O.D. x $11 / 16^{\prime \prime}-17$ turns) Stud-Mounting stud for idler wheel arm	80	$\begin{gathered} 72386 \\ 72382 \end{gathered}$	Pin-Cotter pin to fasten reject lever Motor board-Plastic motor board only, less all operating parts

APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS

+ These parts are not stocked.

Addition to Parts List


```
RP-178-3 Same rs listed for RP-178-EXCEPT
Stock No. Description
```

S. 4698 Medallion-Trademark medallion
S. 4773 Motor- 117 voll or 234 volt, 60 cycle motor

11953 Plug-Six prong male plug for motor cable
S. 4774 Spring-Spring sleeve to convert $=\mathrm{S}-4773$ motor to 50 cycle operation

Changer Will Not Complete Cycle

Records Do Not Separate or Drop Properly

Distorted Output

"Wow" or Slow Turntable Speed

Pickup Repeats Grooves

Failure To Trip or Go Into Cycle

Improper Pickup Landing

Rumble

Mfr. No. 274

RADIO CORPORATION OF AMERICA
 RCA VICTOR DIVISION
 CAMDEN, N. J., U. S. A.

Electrical and Mechanical Specifications

FREQUENCY RANGES	
Standard Broadcast (BC)	c.
Frequency Modulation (FM)	108 mc .
Intermediate Frequency (AM)	455 kc .
Intermediate Frequency (FM)	10.7 mc .
TUBE COMPLEMENT	
(1) RCA 6BE6	FM 1st Det.-Osc.
(2) RCA 6BE6	AM 1st Det.-Osc.
(3) RCA 6BA6	IF Amplifier
(4) RAC 6AU6	Driver
(5) RCA 6AL5	FM Ratio Detector
(6) RCA 6SQ7	AM 2nd Det.A VC-Phase Inverter
(7) RCA 6SQ7	AF Amplifier
(8) RCA 6K6GT	Output
(9) RCA 6K6GT	Output
(10) RCA 5Y3GT	. Rectifier
Pilot Lamps (3) Mazda No. 516 -8 volts 0.2 amp.	
Tuning Drive Ratio	. 16.25 :1

Antennas

Under conditions of normal field strength and interference, the RCA Victor antennas installed inside the cabinet will be effective for Frequency Modulation and Standard Broadeasts.
If reception is not satisfactory on one or both of the bands using the built-in cabinet antennas, one or two external antennas may be used. Connections are made to the antenna terminal boards in the back of the cabinet. External antennas may be erected indoors or outdoors and should be oriented in direction for requirements of best reception. RCA Television Antenna Stock No. 225 or 226 or the equivalent with 300 ohm transmission line is recommended for an FM external antenns. In this case, disconnect the two leads at the wo terminals marked "FM" and aitach the ends of the two lead wires from the RCA Television Antenna transmission line in their places. To replace the Standard Broadcast antenna, connect the lead-in from the antenna to terminal A. This antenna should consist of a wire 30 to 60 feet or so in length, mounted in a convenient location as high as possible. A ground connection to G should not be necessary but a fiexible wire to a waterpipe or other good ground may be used.

CABINET DIMENSIONS		
Height, 35^{\prime}	Width $3711 / 2$	Depth
POWER OUTPUT		
Undistorted		
Maximum . 6.5 watts		
LOUDSPEAKER		
Type (92569-1)		
Voice Coil Impedance2.2 ohms at 400 cycles (Speakers stamped 92569-1W2 are 6 ohms)		
POWER SUPPLY RATING (including phono motor)		
105-125 volts, 60 cycles max. 110 watts		
AUTOMATIC RECORD CHANGER-RP-177		
Type Pickup . Crystal		
Record Capacity		elve 10 -in., Ten 12-in.

Circuit Description

Model 710 V 2 has individual built-in antenns for $\mathbf{F M}$ and $\mathbf{A M}$ coupled to individual 1 st Det.-Osc. tubes (6BE6 V1 and V2). The outputs of these two tubes are connected to separate IF transformers T1 and T2) whose secondarles are in series and connected to the separate IF transformers (T3 and T4) whose prims is connected are in series. The secondary of T3 (FM IF) is connected to the driver tube (6 AU6 V4). The secondary of T4 (AMIF) is connected to the AM second detector (6 SQ 7 V 6). The output of the driver tube (V4) is coupled thru the ratio detector transformer (T5) to the FM ratio detector tube ($6 \mathrm{AL5} \mathrm{~V}_{5}$).

The audio outputs of the $A M$ second detector and the $F M$ ratio detector are connected thru a section of the range gwitch to the volume control input.
The $B+$ supply $(+245 \mathrm{~V})$ to the plates and screen grids of V1 and V2 is controlled thru a section of the range switch.
Simple AVC is used on AM and is applied to both the IF amplifier (V3) and the AM 1st detector (V2). Delayed AVC is used on FM and is applied only to the IF amplifier (V3). The AVC distribution is controlled thru a section of the range switch.

The dial scale drawing shown is a full size reproduction. It can be used as a reference in alignment procedwre.

Alignment Indicators:
An RCA VoltOhmyst or equivalent meter is necessary for measuring developed d-c voltage during FM alignment. Connections are specified in the alignment tabulation below. An output meter is also necessary to indicate minimum audio output during alignment. Connect the output meter across the speaker voice coil
The RCA VoltOhmyst can also be used as an AM alignment indicator, either to measure audio output or to measure a-v-c voltage.
When audio output is being measured the volume control should be turned to maximum.

Signal Generator:

For all alignment operations, except as stated in FM alignment. connect the low side of the signal generator to the receiver chassis. The output should be adjusted to provide accurate resonance indica tion at all times. If output measurement is used for AM alignment the output of the signal generator should be kept as low as possible to avoid a-v-c action

Calibration Scale.-The dial scale printed in this service note may be temporarily attached to the chassis for quick reference during alignment.

Using Printed Dial Scale.-

1. Cut out the printed dial scale, or, make a tracing of the scale.
2. With gang at full mesh the pointer should be set to the first reference mark from the left hand end of the dial backing plate
3. Place the printed dial scale or the tracing under the pointer so that the extreme left scale graduations coincide with the pointer. Use scotch tape to hold the dial scale in place.

Note.-It is not recommended that the glass dial scale in the cabnet be removed an alignment reference. This alass dial scale is fastened to the bezel with sheet metal Jugs bent over the scale to hold it in place. Removing the alass dial scale will necessitate bending the lugs, resulting in their weakening and subsequent breakage.

Critical Lead Dress

1. Dress capacitor CE near chassis base.
2. Dress lead from pin E, V-1, to terminal C, of transformer T1, as near bottom of FM shelf as possible.
3. The lead from capacitor C 24 to the high side of the volume control must be dressed next to chassis along front apron.
4. Dress resistors R32 \& R33 near chassis base.
5. Dress all A.C. leads away from volume control.
6. Solder FM antenna coil primary leads to terminal board with as short a lead length as is practical.
7. Make all FM leads as short as possible
B. The lead from pin 2, V-3, to chassis ground must be dressed as close to base and as near to the back apron as possible. provides degeneration for the if atage and neither should be changed
8. Dress all leads away from the 3300 ohm resistors R94 and R35.

TOP VIEW OF CHASSIS

The FM i-f alignment may be checked by means of an FM sweep generator and cathode ray oscilloscope. Connect the output from the sweep generator, which is set to 10.7 mc ., to the FM 1st Det.Osc. grid (6BE6 Pin No. 7) low side to chassis. Disconnect the 5 mfd . capacitor C34 from the Ratio Detector circuit.
Connect the hish side of the oscilloscope to the junction of R27 and R28, low side to chassis. Adjust the sweep generator and oscilloscope to obtain the response curve.

The Ratio Detector characteristic may be viewed by connecting the osellloscope across the volume control R22. Capacitor C34 should be reconnected before checking the Ratio Detector characteristic.

FM Alignment
RANGE SWITCH IN FM POSITION-VOLUME CONT. MAXIMUM

Steps	Cannect sig. gen.	Sig. gen. output	Turn radio dial to-	Adjustment for peak output
1	Connect the d-c probe of a VoltOhmyst to the negative lead of the 5 mfd . capacitar C34 and the common lead to chassis. Turn gang condenser to max. capacity (fully meshed).			
2	High side to Pin 1 of driver tube 6AU6 in series with 01 mfd low side ta chassis	10.7 mc . modulated $30 \% 400$ cycles AM (Approx. . 1 volt)	Max. capacity (fully meshed)	T5 top core for max. d-c voltage across C34. T5 bottom core for min. audio output
3	High side to one FM ant. term, in series with 01 mfd . Low side to the other FM ant term.	10.7 mc . 30% modulation, 400 cycles AM. Adjust to provide 2 to 3 volts indicotion on Voltohmyst during alignment.		Husing altem nate looding: T3 botrom core (sec.) T3 top core (pri.) II bottom core (sec.) II top core (pri.)
4	Migh side to one FM ant. term. in series with - 120 ohm resistor. Low side to the other FM ant. ferm in	106 mc	106 mc	C2 osc. C4 ant.
5	series with - 120 ohm resistor.	90 mc	90 mc	13 ose. 12 ant.
6	Repeat Steps 4 and 5 until further adjustment does nat improve calibration.			

\dagger Alternate loading involves the use of a 680 ohm resistor to load the plate winding while the grid winding of the SAME TRANSFORMER is being peaked. Then the grid winding is loaded with the resistor while the plate winding is peaked. Only one winding is loaded at any one time. Remove the 680 ohm resistor after T3 and
T1 have been aligned.

AM Alignment

(Correct olignment of the 455 kc . IF requires that the 10.7 mc . If be aligned previously)

RANGE SWITCH IN BC POSITION

Steps	Connect high side of sig. gen. P0-	Sig. gen. output	Tum radio dial to-	Adjust for pook output
1	AM converfer grid 6BE6 V-2 in series with .01 mfd.	455 kc	Quiet point of low freq. end.	†T4 top core (sec.) tT4 bottom core (pri.)
2				\dagger T2 bottom core (sec.) ¡T2 top core (pri.)
3	"A" terminol of ierminal board of rear of chassis in seriss with 200 mmf . (link open)	1400 kc	1400 kc	C12 osc. C 7 ont. (loop)
4		600 kc	600 kc	16 osc. (Rock gang)
5	Repeat Step 3.			
6	After chassis and loop have been installed in cabinet, adiust C7 for max. output on a weak station near 1400 kc .			

tAlign T4 and T2 by means of alternate loading as explained under FM alignment. Use a $47,000 \mathrm{ohm}$ resistor instead of a b80 ohm resistor.

Oscilator frequency is above signal frequency on both AM and FM.

FRONT PANEL CONTROLS

Change in Resistor:
The 68 ohm resistor located in the cathode circuit of the type
6AU6 FM driver stage has been changed in production from 68 ohms to 120 ohms. This change was made because certain produced by 68 ohms which resulted in a decrease in FM sensitivity.

SIMPLIFIED SCHEMATIC DIAGRAM

Replacement Parts

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION	STOCK No.	DESCRIPTION
	CHASSIS ASSEMBLIES RC 613A		Resistor-fixed composition, 10 megohm, $\pm 20 \%$, $1 / 2$ watt (R32, R33) Resistor-fixed composition, 22 megohm, $\pm 20 \%$, $1 / 2$ watt (R29)
73107	Board-"f.M." board-antenna end	72055	Shaft-Tuning knob shaft
73106	Board-Two (2) contact terminal board for transmission line -chassis end	31364 35787	Socket-Lamp socket Socket-Phona input socket
72046	Copacitor-Mica trimmer, 2.5-13mmf. (C2)	72516	Socket-Tube socket-miniature
71808	Capacitor-Adjustable, 3-35 mmf. (C4)	31251	Socket-Tube socket-oc
72334	Capacitor-Adjustable, $4-70 \mathrm{mmF}$. (Cl2)	31418	Spring-Drive cord tension spring
72570	Copacitor-Ceramic, 27 mmf . (C5)	73104	Support-Dial bock plate support-R.H.-complete with four
39042	Capacitor-Ceramic, 47 mmf . (C41)		(4) drive cord pulleys
71924	Capacitor-Ceramic, 56 mmf . (C13)	73105	Support-Dial bock plate support-L.H.-complete with one (1)
71614 39640		72060	drive cord pulley Switch-Rang swith (\$1)
39642	Caparitor-Mica, 390 mmf . (C10)	71603	Switch-Tone control switch (\$2)
70646	Capacitor-Tubular, $0035 \mathrm{mfd} ., 1000$ valis (C42, C43)	72887	Transformer-First I.F. transformer-F.M. (T1)
73186	Capacitor-Tubular, $001 \mathrm{mfd} ., 400$ volts (C23)	71625	Transformer-First I.F. transformer-A.M. (12)
72573	Copocitor-Tubulor, 003 mfd , 400 valts (C25)	72888	Transformer-Second I.F. transformer-F.M (T3)
72874		71631	Transformer-Second I.F. transformer-A.M. (T4)
72490	Capacitor-Tubular, $005 \mathrm{mfd} ., 200$ volis (C19, C29, C30, C31, C44)	$\begin{array}{r} 72889 \\ 71975 \end{array}$	Transformer-Ratio detector transformer (T5) Transformer-Power transformer- 117 volp, 60 cycle (7)
$\begin{aligned} & 71553 \\ & 70606 \end{aligned}$	Capacitor-Tubular, $005 \mathrm{mfd}, 400$ volts (C17, C18, C20, C21) Copacitor-Tubular, $005 \mathrm{mfd} ., 400$ volts (C24, C37)	35969	Washer-" ${ }^{\text {'" }}$ washer for tuning knob shaft
72120	Copocitor-Tubulor, $015 \mathrm{mfd} ., 200$ volis (C27, C28)		SPEAKER ASSEMBLIES
71923	Capacitor-Tubular, 01 mid., 200 volts (C26, C45)		
71925	Copacitor-Tubular, . $01 \mathrm{mfd} ., 400$ volis (C14, C16, C22)		92569-1 W or 92569-1 WI
70610	Copacitor-Tubular, 01 mfd ., 400 volts (C38)	13867	Cop-Dust cap
$\begin{aligned} & 70611 \\ & 71551 \end{aligned}$	Capacitar-Tubular,, $02 \mathrm{mfd} ., 400$ volts (C36) Copacitor-Tubular, 05 mfd .4 200 volts (C15)	36145	Cone-Cone and voice coil assembly-(2.2 ohm voice coil)
72121	Copacitar-Electrolytic, 5 mfd , 50 volts (C34)	71560	Plug-5 prong male plug for speaker
72052	Copacitor-Electralytic, comprising 1 section of 30 mfd ., 450 volts, 1 section of 30 mfd . 350 volts and 1 section of $40 \mathrm{mfd}, 25$ volts (C40A, C40B, C40C)	71145 37899	Speaker-12' PM speaker complete with cont and voice co less output transformer and plug (92569-1 W) Suspension-Metal cone suspension
72335	Coil-Antenna coil-F.M.-complete with adiustable core and stud (L1, 12)	9	隹sformer-Output tronsformer (T6)
72336	Coil-Oscillator coil-F.M.-complete with adjustable care and stud (L3)		SPEAKER ASSEMBLIES
72333	Coil-Oscillator coil-"A" band-complete with adjustable care and stud (L6)	13867	Cap-Dust cap 92569-1 W2
72574	Coit-Filament choke coil (L7)	72828	Cone-Cone and voice coil assembly-(6 ohm voice coil)
72059	Condenser-Variable tuning condenser (C1, C3, C8, C11)	71560	Plug-5 prong male plug for speaker
70342	Control-Volume control and power switch (R22, S3)	71145	Suspension-Metal cone suspension
†72953	Cord-Drive cord (opprox. $82^{\prime \prime}$ overall required)	73242	Transformer-Output transformer (T6)
70392 72069	Cord-Power cord and plug for rear mounting feet (2 required)		
72069	Grommet-Rubber grommet for rear mounting foet (2 required)		with above speaker number, order replacement parts by
71799 71608	Grommet-Rubber grommet to mount R.F. shelf (3 required) Indicator-Station selector indicator		referring to model number of instrument, number stamped on speaker and full description of part required.
71607	Plate-Dial back plate		
30868	Plug-2 contact female plug for motar cable		
12493	Plug-5 contact female plug for speaker cable		MISCEILANEOUS
72602	Pulley-Drive cord pulley Resistor-Fixed composition, $10 \mathrm{ohms}, 1 / 2$ wott (R40)		Antenno-Di-pole antenno
	Resistor-Fixed composition, 10 ohms, $1 / 2$ watt (R40) Resispor-Fixed composition, 47 ohms, $\pm 10 \%, 1 / 2$ watt (R9)	71599	Bracket-Pilot lamp bracket
	Resistor-Fixed composition, 68 ohms, $\pm 10 \%$, $1 / 2$ watt (R15)	72583	Coble-Shielded pickup cable complere with pin plug
	Resistor-Fixed composition, 100 ohms, $\pm 5 \%$, $1 / 2 \mathrm{watt}$ (R18)	13103	Cap-Pilor lomp jewel
	Resistor-Wire wound, 560 ohms, 2 watt (R39) Resistor-Fixed compasition, 820 ohms, $\pm 5 \%, 1 / 2$ watt (R27)	$\begin{aligned} & 71892 \\ & 71820 \end{aligned}$	Catch-Record storage compartment door catch and strike Check-Radio compartment door check
	Resisfor-Fixed composition, 820 ohms, $\pm 5 \%, 1 / 2$ watt (R27) Resistor-fixed composition, 910 ohms, $\pm 5 \%, 1 / 2$ woff (R25)	+ $\times 1752$	Cloth-Grille cloth
	Resistor-Fixed composition, 1000 chms, $\pm 20 \%$, $1 / 2$ wott	73088	Decal-Control panel decal
	(R6, R17)	71910	Decal-Trade mark decal (RCA Victor)
	Resistor-Fixed composition, 2200 ohms, $\pm \mathbf{2 0 \%}, 1$ watp (R11)	71966	Decal-Trade mark decal (Victrolo)
		72682 72861	Dial-Gloss dial scale Escutcheon-Dial escuitcheon less dial
	Resistor-Fixed composition, 6800 ohms, $上 10 \%$, 1 watt (R5)	73181	Grille-Metal grille
	Resistor-Fixed composition, 8200 ohms, $\pm 10 \%$, $1 / 2$ watt (R36) Resistar-Fixed composition, 8200 ohms, $\pm 10 \%$, 1 watt (R4)	11889	Grommet-Rubber grommet for radia chassis mounting strap (2 required)
	Resistor-Fixed composition, 10,000 ohms, $\pm 10 \%, 1 / 2$ wott (R26)	73024 36817 36610	Hinge-Radio compartment door hinge (2 required) Hinge-Record storage compartment door hinge-L.H. (1 set)
	Resistor-Fixed composition, 15,000 ohms, $\pm 10 \%, 1 / 2$ wott	36610	Hinge-Record storage compariment door hinge-R.H. (1 set)
	(R19)	71821	Knob-Contral knob
	Resistor-Fixed Composition, 18,000 ohms, $\pm 10 \%$, 2 wath (RT)	11765	Lamp-Dial or iowel lamp-Mazda 51 , 71
	Resistor-Fixed composition, 22,000 ohms, $\pm 10 \%$, $1 / 2 \mathrm{woft}$ (R2, R3) Resistor-Fixed composition, 22,000 ohms, $\pm 10 \%$, 1 watt (R10)	$\begin{aligned} & 73108 \\ & 70546 \end{aligned}$	Loop-Antenna laop complete ($\mathbf{L}, \mathbf{1 5}, \mathbf{C 7}$) Mownting-One set of hardware to moun: record changer consisting of four (4) upper springs and four (4) lower
	Resistor-Fixed composition, 27,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R23, R24)	$\begin{array}{r} 71819 \\ 30870 \end{array}$	springs Plate-Mounting plate for door check Plug-2 prong mole plug
	Resistor-fixed composition, 33,000 ohms, $\pm 10 \%, 1 / 2$ watt (R16)	30870 73034	Plug-2 prong mole plug Pull-Record storage compartment door pull (2 required)
	Resistor-fixed composition, 100,000 ahms, $\pm 10 \%, 1 / 2$ watt (R20)	72556 73184	Pull-Record changer compartment or radio compartment door pull (2 required) Runner-Record changer mator board runner-R.H.
	Resisfor-fixed composition, 270,000 ohms, $\pm 10 \%, 1 / 2$ watt (R13, R14, R30, R31)	73184 73183 73185	Runner-Record changer motor boord runner-R.H. Rumer-Record changer motor board runner-L.H.
	Resistor-Fixed composition, 470,000 ohms, $\pm 10 \%$, $1 / 2$ watt	73185	Stop-Metal stop for motor board runners (2 required)
	(R37, R38)	72936	-Record storage compartment door stop
	Recistor-Fixed composition, 1 megohm, $\pm 20 \%$, $1 / 2$ watt (RI)	71818	Spring-Radio compartment door check spring
	Resistor-Fixed composition, 1 megohm, $\pm 10 \%, 1 / 2$ wott (R21)	30900 73182	Spring-Retoining spring for knob Track-Record changer compartmont track (2 required)
	Resistor-Fixed composition, 1.5 magohm, $\pm 20 \%, 1 / 2$ watt (R28) Resistor-Fixed composition, 2.2 megohm, $\pm 20 \%, 1 / 2$ watt (RI, R12)	$\begin{aligned} & 73182 \\ & 73248 \end{aligned}$	Track-Record changer compartmont track (2 required) Washer-Flat washer (1" zquare) to maunt record changer (4 required)

\dagger This is a rel containing 260 ft . of cord, order from your distributor by specifying Stock No. and length reguired.

For Auto niptic Recerd Chonger Ports Refer to Service Dato for Model RP-177

APPIY 10 YOUR RCA DISTRIBUTOR FOR PRICES OF REPIACEMENT PARTS

Change in Record Changer:

I.ate production of Model $710 V_{2}$ uses $R l^{\prime}-177 A$
record changer which is very similar to RP'-177 record changer.

Addition to Parts List:
 miscellaneous

[^9]
Introduction

The instrument consists of an eleven tube AM.FM radio, de signed to operate in the trequency bands indicated in the specifications.

In introducing this model it is important that the service man acquaints himself with some of the important factors regarding FM reception.

In some locations, particularly urban areas, a type of distortion peculiar to FM may be experienced.
This is in no way a fault of the receiver, but rather a physical phenomena caused by the signal being rellected from some object. resulting in two or more paths for the transmitted signal.
The reflected signal arriving late and out of phase, tends to amplitude modulate the FM signal.
This distortion may appear as a strange buzz, rattle or swish. It may even give the effect of an overloaded audio stage. In other cases an increase in noise level may be noticed

Choosing a different location for the receiver may eliminate the trouble since the directive folded dipole antenna housed in the cabinet will be directed differently
In other severe cases an outside dipole and reflector pointing in the right direction may correct the trouble.
(See antenna terminal board drawings, page 11.

RADIO CORPORATION OF AMERICA
 RCA VICTOR DIVISION
 CAMDEN, N. J., U. S. A.

Model 711V1

Model 711V2

Model 711V3

Specifications

Frequency Range

Broadcast	540-1.600 kc
Short Wave	9.2 .16 mc
Frequency Modulation	88.108 mc
Intermediate Frequency - AM	455 kc
Intermediate Frequency-FM	10.7 mc
Tube Complement of RK117 Radio Chassis	
(1) RCA-6BA6	R-F Amplifier
(2) RCA -6BE6	Oscillator
(3) RCA-6BA6	Mixer
(4) RCA-6BA6	I-F Amplifier
(5) RCA 6A U6	Driver
(6) RCA-6ALS	Ratio Detector
(7) RCA-6SQ7	Det.-A.V.C.-A.F

Tube Complement of RSI 23 Power Amplifier Unit
(1) RCA-SU4G ... Rectifier
(2) RCA 6 J 5

Phase Inverter
(3) RCA.6F6G

(4) RCA.6F6G
er Output Power Output

Undistorted Power Ourput .. 10 watts
Maximum Power Output ... 11 watts
Total Maximum Power Consumption at 125 volts. 60 cycles .. 170 watts (This instrument can be converted to operate on 50 cycles.)

Loudspeaker (92567-2)
Type ... 12-inch Electrodynamic
Voice Coil Impedance 2.2 ohms at 400 cycles

Automatic Record Changer
Type 960001.5
Record Capacity Twelve 10 -in., Ten 12 -in.

FOR RECORD CHANCER INFORMATION REFER TO SERVICE DATA FOR MODEL. 960001 SERIES

Push-Button Adjustment

Figure I-Pusb-Button Adjustment (Inoking from Rear of Chassis)

The push-bultons connect to separate magnetite-core oscillator coils and separate loop circuit trimmers which must be adjusted for the desired stations. Use an insulated screwdriver or align ment tool such as RCA Stock No. 70180. Allow about tive minutes warm-up period before making adjustments.
The procedure is as follows:

1. Make a list of the desired stations, arranged in order from low to high frequencies.
2. Turn the range switch to the broadcast position and man ually tune in the first station on the list
3. Turn range switch to push-button position and press in the left-hand button
4. Adjust core rod No. 1 to receive the first station. To secure the best adjustment, rotate the loop for least pickup, and adjust core rod No. 1 for peak output
5. Adiust trimmer screw No. I for peak output on the first station.
6. Proceed in the same manner to adjust for the remaining sta tions.
7. Repeat adjustments for best results.

On the 880 to 1.600 kc push-button, the higher frequency stations may be received with core rod No. क either in or out oscillator frequency either 455 kc below or 455 kc above the station fre quency). The adjustment with this core in its out position (oscil lator frequency 455 kc above the station frequency) is the correct one.
NOTE: Clockwine adjustment of cores and trimmers funes the eircuits to lower frequencles.

Alignment

CRITICAL LEAD DRESS
(Any lead dress should be made before alignment.)

1. The lead from terminal 9, switch S4, front, to terminal on switch S7. must be dressed between the main base and R-F shelt
2. The leads from terminals 10 and 11, switch S3, front, must be dressed together and away from the chassis.
3. Capacitor C56 must have shortest possible lead on the end connecting to pin 1 of tube V4.
4. The following capacitors must be dressed close to the chassis, with leads kept as short as possible: C40, C47, C54, C62 and C78.
5. All FM coil connections must be soldered in the exact place as the original coil. (One-sixteenth inch difference in length may be excessive.)
6. All wiring in the receiver is critical as to length and placement, any changes tend to impair the operation of the set.

FM Alignment

Before aligning set, completely mesh the gang and set the dial pointer at the mechanical maximum calibration point at the extreme left-hand end of the dial.
When making a complete alignment follow in proper sequence the tabulated form below.
If only a portion of the circuit is to be aligned select the portion required and follow with the remaining steps in the chart.
Any adjustments made on the FM 10.7 mc I-F's make it neces. sary to adjust the AM 455 ke I-F's.
"FM" RATIO DETECTOR ALIGNMENT
SET RANGE SWITCH TO FM POSITION

Steps	Connect High Side of Osc. to-	$\begin{aligned} & \text { Tune Osc. } \\ & \text { to } \end{aligned}$	Turn Vol. Cont. to	Adiust
1	Connect a 680 -ohm resistor between lugs D and E of the ratio detector fransformer T6. Connect d.c probe of a Voltohmyst to the negative lead of the 5 mfd electrolytic capacitor C77. The common lead of the meter to chassis.			
2	Driver grid pin 1, of 6AU6 (V5) in series with a .01 mid capacitor	$\begin{aligned} & 10.7 \mathrm{mc} \\ & 30 \% \text { mod. } \\ & 400 \text { cycles } \\ & \text { AM } \end{aligned}$	Maximum volume	Driver transformer T5 for maximum d.c voltage across C77
3	Remove meter leads and disconnect the 680.0 hm resistor from D and E on T6. Connect two 68,000 -ohm resistors (within 1% of each other) in series, across the 22.000 ohm ratio detector load resistor R37. Connect the common lead of the Voltohmyst to the center point of the $68,000-\mathrm{hm}$ resistors and the d-c probe to terminal "A" of the ratio detector transformer $T 6$. Use the 30 -volt meter range.			
4	$\begin{gathered} \text { Same as } \\ \text { step } 2 \end{gathered}$	Same as step 2	Maximum volume	*T6 botfom core for zero d-c balance on VoltOhmyst *T6 top core for minimum audio output. (Output meter across voice coil)
5	Reconnect VoltOhmyst as in step 1, omitting the 680 ohm resistor.			
6	Repeat step 2, omitting 680 ohms.			
7	Remove all connections.			

[^10]"FM" R.F_I.F ALIGNMENT
RANGE SWITCH IN FM POSITION

Steps	Connect the High Side of the Test Osc. to-	Connect Ground Side of the Test Osc.	Tune the Osc. to-	Radio Dial Tuned to-	Adjust
1	Connect the d.c probe of α Voltohmyst to the negative lead of the 5 mid electrolytic capacitor C77, and the common lead of the meter to chassis ground.				
2	Mixer grid pin \#l of 6BA6 (V3) in series with a . 01 mfd capacitor (Adjust test osc. output for 6-10 volts developed across C-77) (Range switch in FM Position)	```To RF tube shelf ground```	10.7 MC 30\% modulated at 400 cy cles AM	Max. cap. (Fully meshed)	T3 and T1 top and bottom cores alternately loading primary and secondary of each transformer with 680 ohms while the opposite side of the same transformer is being ad. justed. Adjust all transformers for maximum voltage across C77.
3	FM antenna terminals \#l in series with a 120 ohm resistor	To FM antenna terminal \#2 in series with a 120-ohm resistor	106 mc	106 mc	OSC. C21 for maxi mum voltage across C77.
4			90 mc	90 mc	* OSC. LI 6 for maximum voltage across C77.
5	Repeat steps 3 and 4 for exact calibration.				
6	Same as steps 3 and 4		106 me	106 me	R-F. C44 for maximum volt. age across C77. (Noise voltage.)
7			90 mc	90 mc	- R-F. L19 for maximum voltage across C77. (Noise voltage.)
8	Repeat steps 6 and 7 for maximum output.				
9	$\begin{gathered} \text { Same as } \\ \text { step } 3 \end{gathered}$	$\begin{gathered} \text { Same as } \\ \text { step } 3 \end{gathered}$	106 mc	106 mc	Ant. C3 for maximum voltage across C77.
10	$\begin{gathered} \text { Same as } \\ \text { step } 3 \end{gathered}$	$\begin{gathered} \text { Same as } \\ \text { step } 3 \end{gathered}$	90 mc	90 mc	**Ant. L2 for maximum voltage across C77.
11	Repeat steps 9 and 10 for maximum output.				

- This method is known as alternate loading, which involves the use of a 680 -ohm resistor to load the plate winding while the grid winding of the same transformer is being peaked. Then the grid winding is loaded with 680 -ohm resistor while the plate winding is being peaked.

When the windings are loaded, it is necessary to increase the 10.7 mc input, since the gain will decrease and the voltage across c77 will be less.

* Two positions of the cores in L2. L.19. L.16 will satisfy the condition indicated, but for greatest sensitivity, the core position for L2 and L19 chosen, should be the one which results in the adjusting stud projecting the lesser distance.

For oscillator 416 the reverse is true and the coil should be alignsd with the stud projecting the greater distance.

AM Alignment

Test-Oscillator. For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the side af the test-oscillator to the receiver chassis, and ke
oscillator output as low as possible to avoid a-v.c action.

Output Meter Allgnment.-Connect the meter across voice coil, and turn the receiver volume control to maximum.

Steps	Connect the High Side of the Test Osc. To	Tune Test Osc. to-	Range Switch	Turn Radio Dial to-	Adjust the following
1	Mixer grid \#l pin of 6BA6-V3 in series with .01 mid capacitor	455 kc	"BC" Band	Low Freq. end of Dial	-Top and bottom cores of T2 and T4. (For maximum volt. age aeross volce coil.)
2	High Side of loop Primary in series with a 01 mid capacitor (Link open)	455 kc	" BC " Band	Low Freq. end of Dial	Adj. I.F Trap Ll7 for minimum voltage across voice coil.
3	High Side of Loop Primary Through α Dummy Ant. com-	1400 kc	"BC" Band	1400 kc	Osc.-Cl5 Ant.-Cl (For maxlmum volt. age across voice coil.)
4	$\begin{gathered} \text { prising a } \\ 200-m m i \\ \text { capacitor } \\ \text { (Link open) } \end{gathered}$	600 kc	"BC" Band	600 kc	Osc.-L12 Loop Load L3. (For maximum vollage across voice coil.)
5	Repeat steps 3 and 4 for maximum output.				
6	"C" Band Ant. Terminal $\# 3$ Through a dummy Ant. comprising a $150-\mathrm{hm}$ resistor in series with a 25 to 30 mmi capacitor	15.2 mc	Band	15.2 mc	Osc.-Cl7 Ant.-C4
7		9.5 mc	Band	9.5 mc	$\begin{gathered} \text { Osc.-L13 } \\ \text { Ant.-L4 } \end{gathered}$
8	Repeat steps 6 and 7 for accurate alignment.				
9	Install and connect chassis in cabinet, with Antenna link closed. Tune in a radiated oscillator signal at l,400 ke and peak the " A " band ant. trimmer Cl (on loop).				

- It is necessary to alternately load the primary and secondary of each $455 \cdot \mathrm{kc}$ i.F transformer with 10,000 ohms while the opposite side of the same transformer is being adjusted.
. To guard against the possibility of alignment of L13 and C17 to image frequencies, tune the test oscillator to 15.2 mc and turn the radio dial to 15.2 mc . Then adjust the test oscillator to 16.11 me (image frequency). By increasing the test oscillator output, a signal should be heard.
Tune the test oscillator to 3.5 mc and furn the radio dial to 5 mc then adjust the test oscillator to 10.41 mc (image frequency) By increasing the test oscillator output, a signal should be heard.
(If these image freyuencies cannat be heard, the set is incorrectly aligned, therefore repeat steps 6 and 7.)

Figure 2-Sketch Showing Folded Dipole Installed in Cabinet

Figure 3-Radio Control Panel (See page 11 for fall size dial drawing)

Figure 4-Dial Indicator and Drive Mechanism

Figure S-Chassis, Top View, Showing Adjustments

Figure 6-Loop Antenna
Circuit Diagram Breakdown Description
The schematics have been simplified showing the parts actually required for the instrument to operate in the position to which the band switch is turned.
It can be noted by examining the overall schematic that the circuit used in conjunction with VS and V6 deviate from the conventional form. The explanation of this circuit can be found under the heading of Ratio Detector in the RCA Service Data supplement No. 10.

Figure 12-Simplified Schematic Shown in Broadcast ("A") Band Position Only. (See Note above.)
NOTE: Antenna link closed for loop operation (see page 11 for external antenna connections).

Figure 13-.-Simplified Schematic Shown in "Push-Button" Position Only. (See Note above.)
NOTE: Antenna link closed for loop operation (see page 11 for external antenna connections).

Figure 14-Radio Chassis Wiring Diagram
NOTE: In some instances the color coding of the wiring may be different.

NOTE:
THE SIMPLIFIED SCHEMATIC NDICATES ONLY THOSE PORTIONS OF THE CIRCUIT BEING USED FOR THE PARTICULAR OPERATION: IT IS POSSIBLE FOR A FAILURE IN SOME COMPONENT NOT SHOWN TO AFFECT THE OPERATION OF THE RECEIVER

SWITCH VIEWED FROM
FRONT AND SHOWN IN
"PHONOGRAPH" POSITION

J!

PLUG
PRONG VIEW

$k=1000$

ALL RESISTANGES IN OHMS
ALL CAPACITORS LESS THAN I IN MF
AND ABOVE I IN MMF UNLESS OTHERWISE NOTED.

VOLTAGES SHOULD HOLD WITHIN $\pm 20 \%$ WITH $117 V$ AC. SUPPLY

Figure 15 -Schematic Show'n for Phonograph Reproduction Only

NOTE: Oscillator plate voltage is removed when the band switch is turned to the phono. or television position

Figure 16-Back View of Cahinet

To remove chassis, remove knobs, loosen all interconnecting cables and remove screws holding right angle mounting brackets to metal mounting strips, then lower chassis.

To remove "Roll-out" loosen all interconnecting cables, furn bracket as indicated in circle in the above drawing, pull out through the tront.

Figure 17
The dial scale drawing shown is a full size reproduction. It can be used as a reference in alignment procedure.

Figue 18-Ansenna Terminal Board

External Antennas.-If reception is not satistaciory on one or more of the three bands, using the built-in cabinet antennas, an external antenna may be used. The Magic Loop Antenna will usually provide sufficient pickup on the Standard Broadcast band, but if an external dipole is installed to improve reception on Frequency Modulation it may be used for Standard Broadcast and Short Wave as well. Connections are made to the antenna terminal board in the back of the cabinet. External antennas may be erested indoors or outdoors and should be oriented in direction for best reception. RCA Television Antenna. Stock No. 225 or 226, or the equivalent with $300-\mathrm{hm}$ transmission line is recommended for an external antenna

Figure 18 (A) shows the Antenna Terminal Board with connec tions for internal cabinet antennas.

Figure 18 (B) shows connections for the RCA Television Antenna replacing those for the internal FM antenna on terminals 1 and 2 . and the internal SW antenna disconneted at terminal 3. The ex ternal dipole antenna is now the antenna for $F M$ and $S W$ bands.

Figure 18 (C) shows the additional change for connecting the Standard Broadzast band to make use of the external RCA Television Antenna. The link across terminals 4 and 5 is changed to terminals 4 and 3. The external antenna is now effective on all bands. Tighten terminals and be sure that the red, black and yellow leads (R.B.Y.) to terminals 4,5 and 6 are still in place and securely connected.

Figure 18 (D) shows connections for a separate outdoor antenna on SW and SB reception, and the external dipole on FM. This outdoor antenna should consist of a wire 30 to 60 feet or so in length mounted in a convenient location as high as possible. Connect lead-in from the antenna to terminal 3 on the antenna terminal board. This outdoor antenna is effective on SB and SW bands. if this connection makes the $S B$ signal too strong, causing over. load and distortion, replace the link across terminals 4 and 5 as in Figure 18 (A) and (B). This outdoor antenna is now effective on SW only.

Replacement Parts

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	HEAD END UNIT \#2 AK 117
71638	Board-5 contact terminal board for antenna lead-in
72047	Capacitor-Mica frimmer, $1.6-18 \mathrm{mmf}$. (C3, C44)
72046	Capacitor-Adjustable, 2.5-13 mmf. (C21)
72790	Capacitor-Ceramic, 3.5 mm . (C56)
72037	Capacitor-Mica trimmer, 3.35 mmf . (C15, C17)
39043	Capacitor-Ceramic. 6.8 mmf . (C30)
71807	Capicitor-Adjustable, 10.160 mmf . (C4)
33111	Capacitor-Ceramic, 33 mmt . (C29)
39396	Capacitor-Ceramic. 100 mml ((C14, C20, C38)
71933	Capacitor-Mica, 180 mmi . (C31)
71920	Capacitor-Ceramic, 220 mmq (${ }^{\text {(} 28, ~ C 45) ~}$
72789	Capacitor-Mica, 240 mmi . (C18, C19)
72793	Capacitor-Mica, 330 mmi . (C5)
71929	Capacitor-Ceramic, 1000 mmf . (C78)
72049	Capacitor-Mica trimmer, comorising 1 section of 100 . $540 \mathrm{mmf} ., 2$ sections of $50-400 \mathrm{mml} ., 2$ sections of 25 250 mm , and 1 section of 10.160 mmf . (C7, C8, C9, Clo, Cll, C12)
72792	Capacitor-Tubular, $001 \mathrm{mid}$.200 volts (C68)
71927	Capacitor-Tubular, 002 mid.. 400 volts (C71)
71921	Capacitor-Tubular, .003 mfd ., 200 volts (C22, C34)
72573	Capaeitor-Tubular, . 003 mid., 400 volts (C47)
71926	Capacitor-Tubular $.005 \mathrm{~m} / \mathrm{d} . \mathrm{C} 200$ volts (C16, C32, C35. C46. C67, C74, C75, C76, C79)
71553	Caoacitor-Tubular, 005 mid., 400 volts (C23, C58, C60, C62)

$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION
72791	Capacitor-Tubular, 005 mid.. 400 volis (C72)
72120	Capacitor-Tubular, $015 \mathrm{mtd.}$.200 volts (C65)
71923	Capacitor-Tubular, . $01 \mathrm{mid}$. . 200 volts (C40, C63, C64)
71925	Capacitor-Tubular, 01 mid., 400 volts (C25, C26. C33. C39. C73)
71551	Capacitor-Tubular, $05 \mathrm{mid} . .200$ volts (C54)
72121	Capacitor-Electrolytic, 5 mid.. 50 volts (C57. C77)
72595	Coil-Loop loading coil-"A" band (L3)
71856	Coil-Antenna coil-"C" band (L4, L5)
72044	Coil-Antenna coil-FM (L1, L2)
71852	Coil-Oscillator coil-"'A", band (L12)
71853	Coil-Oscillator coil- "C" band (L13)
71937	Coil-Oscillator coil-FM (L16)
71942	Coil-Filament choke coil (L18)
72050	Coil-P.B. coil-high frequency (L6, L7, L8)
72051	Coil-P.B. coil-low frequency (L9, L10, Lll)
72045	Coil-R.F coil-FM (LI9)
71407	Coil-Wave trap coil (L14, L17)
72038	Condenser-Variable tuning condenser (C2, C6, C13, C24, C43)
72034	Control-Volume control, tone control and power switch (R31, S6, S19)
32634	Cord-Indicator drive cord (approx. 35" overall length) NOTE: Before assembling, stretch to full length
32634	Cord-Manual drive cord (approx. 19" overall lengit) NOTE: Before assembling, stretch to full length
71941	Coupling-FM coupling unit (R5, C27, L15)
72043	Drum-Drive drum
72040	Gear-36 teeth gear

711V1, 711V2. 711V3 Replacement Parts-Continued

STOCX No.	DESCRIPTION	STOCK No.	DESCRIPTION
72042 70930 72069	Gear-Sleeve gear, 32 teeth Grommet-Rubber grommet for mounting R-F shelf (4) required) Grommet-Rubber grommet for rear mounting leet (2 required)		NOTE: If stamping on speaker in instrument does not agree with above speaker number, order re. placement parts by referring to model number of instrument, number stamped on speaker and full description of part required.
72036 !	Indicator-Station selector indicator		Miscellaneous
${ }_{72035} 11765$	Lamp-Dial lamp. Mazda \#51 Plate-Dial back plate	72553 A	Anterna-Dipole an
72602 P	Pulley-Drive cord pulley	72681 B	Back-Cabinet back-mahogany for 711 V 2
71637 R	Receptacle-A-F television and phono terminal	73079 B	Back-Cabinet back-mahogany tor 711 V 1
71636 34763	```Receptacle-9 prong male receptacle tor interconnecting cable (Jl) Resistor-68 ohms, 1/2 watl (RlB)```	72680	Back-Cabinet back-walnut and brown mahogany for 711 V2
34765	Resistor-100 ohms, $1 / 2$ watl (R10)	70168 B	Back-Cabinet back-walnut tor 711V1 and 711V3
5201	Resistor-220 ohms, 12 wall (R8)	72146	Bezel-Push button bez
12262	Resistor-680 ohms, $1 / 2$ watt (R27, R28)	71819	Bracket-Door check mount
30731 34767	Resistor- 1200 ohms, ${ }^{1 / 2}$ watt (R6) Resistor- 2200 ohms, $1 / 2$ watt (R16, R19, R20)	715	Bracket-Pilot lamp cap br
30730	Resistor-2200 ohms,	72908	Bumper-Rubber bumper lor record changer carriaqo (2 required)-711V1 and 711V3
30733 38887	Resistor- 3300 ohms, $1 / 2$ wall (R4) Reslstor-6800 ohms, I watl (R39)	70556	Bumper-Rubber bumper tor record chanqer carriage (2
14250	Resistor-8200 ohms, $1 / 2$ watt (R3)		required)-for 711V2
71914 36714	Resistor- 10,000 ohms, ${ }^{1}$ watt (R12) Resistor-15,000 ohms, 1_{2} watl (R36)	72151	Button-Push button Cable-5 conductor moulded antenna lead-in cable
36714 71915	Resistor- 15,000 ohms, ${ }^{\text {a }}$ (watt (R36) Resistor- 15,000 ohms, 1 watt (Rl1)	73250	Cable-5 conductor moulded antenna lead-in cable Cable-Shielded audio cable complete with two pin plugs
3219	Resistor-18,000 ohms. $1 / 2$ walt (R29)	72	Cable-Shielded pickup cable complete with pin plug
30492 30409		13103	Cap-Pilot lamp cap
71990	Resistor- 27.000 ohms, ${ }^{\text {Resistor- } 27.2000}$ watt (R26),	3868	Capacitor-Mica trimmer, 2.20 mm
30685 3252	Resistor- 33.000 ohms, $1 / 2$ walt (R25) Resistor- 100.000 ohms, $1 / 2$ watt (R9, R34)	72925	Carriage-Record changer carriage only for 711V1 and 711V3 only
30651	Resistor-270,000 ohms. $1 / 2$ watt (R23, R33)	70553	Carriage-Record changer earriage onl
30648	Resistor-470,000 ohms, $1 / 2$ watt (R35)		711 V 2 only
30652 30649	Resistor-1 megohm, $1 / 2$ watt (R1, R1, Resistor- 2.2 megohms, $1 / 2$ wall (R2, R2, R38)	71892	Catch-Door catch an
70249	Resistor-3.9 megohms, $1 / 2$ watt (R15)	72434	Check-Radio compartm
30992	Resistor- 10 megohms, $1 / 2$ watt (R30)	72157	Clip-Push bution be
71917	Resistor- 22 megohms, $1 / 2$ walt (R24)	$\times 1669$	Cloth-Grille cloth-lor
14343 31611	Retainer-Tuning shaft retainer Screw- $=8.32 \times 1 / m$ milled head set screw for gear (RCA		Gr
31	Screw一 $=8.32 \times 1 / 4$ milled head set screw for gear (RCA $=72040$)	$\begin{array}{r} \times 16 ? \\ 726! \end{array}$	Decal-Volume control and tone control function decal
7204	Shaft-Tuning shaft	72696	Decal-Tuning and range switch function
31364 72516	Socket-Lamp socket Socket-Tube socket, miniature	71910	Decal-Trade mark decal (RCA
31251	Sockel-Tube socket, octal	7198	Decal-Trade mark de
72821	Spring-Anti-noise spring (hook) for funing condenser shaft	$\begin{aligned} & 71966 \\ & 72707 \end{aligned}$	Decal-Trade mark decal (Victrola) Dlal-Glass dial seale
31418	Spring-Indicator cord tension spring or drive cord tonsion spring	$\begin{aligned} & 72158 \\ & 73085 \end{aligned}$	Esculcheon-Dial escutcheon less dial Grille-Melal grille for 7lIV!
72031	Support-Dial support and bracket complete with pulley -L.H.	72690 73087	Grille-Metal grille for 7llV2 Grille-Metal grille for 7llV3
72030	Support-Dial support and bracket complete with pulley -R.H.	73087 11889	Grommel-Rubber grommet to cushion chassis front apron Guide-Cariage quide-L.H.
72048	Switch-P.B. selector switch only (S7, S8, S9, S10, S11. S12, S13, S14, S15, S16, S17, S18)	$\begin{aligned} & 72442 \\ & 72441 \end{aligned}$	Guide-Carriage quide-L.H. Guide-Carriage guide-R.H.
72039 72593	Switch-Range switch (S1, S2, S3, S4) Transformer-First I-F transformer. FM (T1. C36, C41)	36610	Hinge-Speaker compartment door hinge (l set)-R.M. for 711V3
71846 72594	Transtormer-First I-F transformer, AM (T2, C 37, C42) Transtormer-Second I-F transtormer, FM (T3, C48, C50)	36817	Hinge-Record storage compartment door
71848	Translormer-Second I.F transiormer, AM (T4, C49, C51, C52, C53)	72692	Hinge-Record changer compartment or ment hinge (2 required)-for 711V2
$\begin{aligned} & 71935 \\ & 71934 \end{aligned}$	Transiormer-Driver transformer (T5, C61) Transformer-Ratio detector translormer (T6, C66, C70)	71945	Hinge-Record changer compariment or ment door hinge-lor 711 V 1 and 711 V 3
		72147	Knob-Range switch knob
	POWER SUPPLY ASSEMBLIES	$\begin{aligned} & 72148 \\ & 72149 \end{aligned}$	Knob-Tone control knob Knob-Tuning knob
	RS 123	72	Knob-Volume control and power switch kn
70646	Capacitor-Tubular, 0033 mid, 1000 volts ((C5, C6)	71862	Loop-Antenna loop comple
70632		72563	Marker-Call letter markers
31323	Capacitor-Electrolytic, $16 \mathrm{mid}, 150$ volts (C2)	70546	Mounting-One set of record changer mounting consisting of lour upper springs, lour botlom springs
72955	Capacitor-Electrolytic, comprising 1 section of 30 mid . 450 volts, 1 section of $50 \mathrm{mfd}, 400$ volts, and 1 section of 40 mid, 25 volts (C1A, CIB, CIC)	31048	and four clamp nuts Pluq-Pin pluq tor shielded pickup cable or audio cable plug tor extension power cable or
18469 11765	Insulator-Mounting insulator for electrolytic Lamp-Pilot lamp. Mazda $=51$	30868	Plug-2 contact lemale plug lor interconnecting cable
12493	Plug-Speaker cable plug	36422	Plug-3 contact female plug
30730	Resistor- 2700 ohms, $1 / 2$ watt (R3)	71967	Plug-9 contact lemale plug
30492 30409		30870	Plug-2 prong male plug ior extension por
30409 30650		32641	Plug-3 prong male plug for loop cable
14583	Resistor- 220,000 ohms, $1 / 2$ watt (R6, R7)	71968 73086	Plug-9 prong male plug for intercornectingartment
71660	Resistor-Comprising 1 section of 180 ohms. 3.5 watts. 1 section of 2520 ohms, 3.97 watts, and 1 section of 2760 ohms, 9.3 watts (R1A, R1B, R1C)	72807	radio compartment doors-lor 711 VI and 711 V 3 Pull-Record storage compartment door pull-lor 711 V 1 and 711 V 3
71659 35787	Socket-9 prong power socket (JI) Socket-Audio input socket (J2)	72694	Pull-Record storage compartment door pull-lor 711 V 2
31364	Socket-Pilot lamp socket	72693	3 Pull-Upper door pull
31319	Sockel-Tube sockel	70551	Petainer-Tray moller retainer strip-L.H.
37048	(T1) Transformer-Output transformer (T2)	70551 7055 70554	Retainer-Tray roller retainer strip-R.H. Roller-Record changer tray rolller
71661		70554	Roller-Record changer tray roller Spring-Door check spring
		72156	Spring-Push button bezel spring
	AKER ASSEMbLIES	72845	5 Spring-Retaining spring lor knob ${ }^{\text {a }} 7$
	92567-2W	14270	Spring-Retaining spring for knob $=12148$
	RL 70R1	34053	3 Spring-Retaining spring ior buthon $=72149$
13867	Cap-Dust cap	30900 3030	0 Spring-Retaining spring for knob $=72130$
71147	Clamp-Clamp to hold metal cone suspension (2 re quired)	72582	2 Stop-Mechanism stop radio compartment door
71146	Coil-Field coil, 1060 ohms	72706 72691	1 Support-Drop support for record changer compartment
11469	Coil-Neutratizing coil		door
36145 31539	Cone-Cone complete with voice coil Plug-5 prong male plug for speaker	70543	3 Support-Loop support complete with mounting brackets and sorina (2 required)
71144	Speoker-12" E.M. speaker complete with cone and voice coil less plug Suspension-Metal cone suspension	$\begin{array}{r} 70555 \\ 2917 \end{array}$	Tire-Rubber tire for tray rollers Washer-"C" washer to fasten rollers

Index

Page
2
Functions of Principal Parts
Adjustments3
Tone Arm Height Adjustment 3
Pickup Landing Adjustment 3
Positioning of "Push Off" Arm 3
Cycle of Operation 4-5
Photograph of Parts 6
Parts List 7
Illustrated Service Hints 8-12
Changer Will not Complete Cycle 8
Records Do not Separate or DropProperly8

Features

1. This mechanism is designed to play automatically a series of twelve 10 -inch or ten 12 -inch standard records of the 78 r.p.m. type.
2. It will play manually records up to 12 inches in diameter.
3. Tripping system is of "constant diameter" type, insuring reliable automatic operation on all records made to RMA proposed standards.
4. It is a simple operation of turning one record support to change from 10 - to 12 -inch records ur vice versa.
5. Cycling mechanism is disconnected completely while records are being played. This reduces the load on the drive motor, thereby reducing the tendency for "wow" or rumble.

Manual Operation

1. Rotate the record separator shelf clockwise for 10inch or counterclockwise for 12 -inch position (numerals 10 or 12 pointing towards center post).
2. Place the record to be played on the turntable and turn the power switch on.
3. Move the control knob to manual and to the on position.
4. Press down firmly but momentarily on the end of the tone arm and let go. The pickup will land automatically on the start of the record. When the selection is completed the pickup will ride the eccentric groove until the pickup is placed on the rest manually.
5. Turn power switch off manually.
6. Remove the record by raising straight up without tilting.

Automatic Operation

1. With the power switch in the off position rotate the record support shelf as required for 10 - or $12-\mathrm{i}$ nch

Pickup Repeats Grooves 9
"Wow" or Slow Turntable Speed
Continuous Tripping 9
Improper Pickup Landing 10
Failure to Trip or Go into Cycle 10
Distorted or No Output 10
Tone Arm Fails to Leave Rest Automatically 11
Premature Tripping 11
Rumble or Howl 11
Lubrication 11
Replacement of Sapphire 12
Page
records until the record size indicated on the support cover is pointing toward the center post. (ROTATE ONLY CI.OCKWISE FOR 10.INCH AND COUNTERCIOCK WISE FOR 12-INCH RECORDS.)
2. Place the records to be played in a stack with desired selections upward and in proper sequence with the last record on top. Load them on the changer by placing them over the center post and resting on the record support shelf. Place record stabilizing clip on top of the record stack.
3. Push the control knob to automatic and to the on position.
4. Press down firmly but momentarily on the end of the tone arm and let go. The changer will continue to play one side of each record of the entire stack automatically.
The tone arm can be moved to the rest position any time the mechanism is not in cycle.
5. Turn the power switch off and remove the stack from the turntable by placing fingers of both hands directly opposite and under the stack. Then lift straight up-"don't tilt" or squeeze stack. Turning the support shelf one-fourth turn facilitates removal of records.

Cautions

1. Avoid handling the tone arm or rotating record support assembly while mechanism is in cycle.
2. Never turn the power switch off, leaving the mechanism in cycle for an extended period of time.
3. Do not allow the records to remain on supports when not in use.
4. Do not allow oil or grease to come in contact with any rubber parts.
5. Do not install instrument near source of heat. Excessive heat may damage the pickup cartridge.

FIG. 2

FUNCTIONS OF PRINCIPAL PARTS

Head Assembly-7, 7A, 7B, 7C
Supports outer edge of record stack and pushes the record off notch in center post and allows it to drop to the tur'ntable while the mechanism is going through cycle.

Center Post-53

Supports the entire stack of records, and together with the offset notch and latch in the center post, provides a means for separating records.
Tone Arm Lift Assembly-16
Couples tone arm to riser plate 36 through arm lift shaft 47, thereby transferring the action for the vertical motion of the tone arm during change cycle.
Arm Control Assembly- $\mathbf{3 0}$
Provides a tie between tube 30B, bracket 30 C and tone arm support bracket 18 , thereby directing the horizontal movement of the tone arm during change cycle. Arm control pin 30 A slides along track in arm control plate 35 , and in so doing, determines the point of landing of the pickup and the point of trip of the mechanism. It also incorporates landing adjusting screw 31.

FIG. 1

FIG. 4

Arm Control Plate Assembly 35, 35A, 35B, 35C
Incorporates a track 35 B which controls the pickup landing and the tripping of the mechanism.
Stop tab 35A functions as portion of the tripping device, stud 35 C , contacting push-off cam 47A controls, the point of landing for both 10 - and 12 -inch records.
Riser Plate Assembly-36, 36A, 36B, 36C
Provides mounting for eccentric cam 48, and incorporates an inclined track 36 C , which controls the vertical movement of the tone arm.
Riser plate tab 36B pushes against curved portion of cam on arm control assembly 30, providing a control for the horizontal movement of tone arm during change cycle. Riser plate bracket 36 A contacting push-off cam 47A provides the necessary motion for push plate 7C.

Eccentric Cam-48

Transfers motion from turntable to riser plate 36 while cycling.
Push-Off Cam and Shaft Assembly-47, 47A
Provides a means of mechanically coupling tone arm lift 16 and push plate 7 assemblies to main cycling mechanism. Cam 47A contacting stud 35 C controls the position of arm control plate while in cycle, which determines the landing point of the pickup on 10 - or 12 -inch records.
Turntable Mounting and Guide Rod Assembly-57, 57A Incorporates the main bearings for the turntable and provides a mounting for guide rods 57A.

Manual Lockout Lever- 59

Consists of a small lever which forms a stop for stud 35C. This prevents arm control plate 35 from moving forward and disengaging stop catch 45 when the mechanism is operated in the manual position.

ADJUSTMENTS

Tone Arm Adjustment
The tone arm height should be so adjusted as to permit the sapphire to engage and ride in the grooves of one record placed on the turntable, but at the same time prevent the tone arm from touching the records on the supports while the mechanism is going through cycle, fig. 5.

1. With the mechanism out of cycle, lift tone arm and check, and make certain tone arm lift 16 engages pin 11 C as shown in fig. 6.
2. With the pickup near the edge of the record, loosen the set screw, holding collar 10, fig. 9 , and moving it up or down on shaft 47, so as to have the conditions indicated in sketch, fig. 5.
Preliminary Landing Adjustments
An accessible landing adjustment screw 31 is provided, but if for any reason the tone arm support bracket has become loose or removed, proceed as follows:
3. With the mechanism out of cycle turn adjustment screw 31, fig. 8, clockwise as far as it will go, then turn counterclockwise two or three full turns.
4. Set head assembly for 12 -inch position; place a 12 -inch record on turntable.
5. Press down on the reject button and rotate the turntable by hand, causing the mechanism to cycle until the pickup is about to land on the record. In this position, the arm control pin 30 A is in a position on track 35B as indicated by "s" and adjustment screw 31 remains against bracket 30 C as indicated in fig. 8.
6. Loosen the two set screws holding the tone arm support bracket.
7. While holding this position, indicated in step 2 , place the sapphire in the starting groove of the record and tighten the two set screws in the tone arm support bracket.
Final Landing Adjustment
The exact landing adjustment can be made by pressing the reject button and rotating the turntable by hand until the pickup is about to land. Then turn adjustment screw 31, fig. 8, until the sapphire is directly above the starting groove of the record. If the mechanism continues to land incorrectly after this adjustment has been made, compensate the difference by turning the screw 31 slightly. Turning screw counter-clockwise will move the landing towards the center post.

Positioning Push-Off Arm

1. With the mechanism out of cycle, turn the push-off cam 47A so that its arm makes a 90° angle with the slide bars as shown in fig. 10. Make certain the large radius side of cam is toward the stud 35 C when the support post is in the 12 -inch position.
2. Place push-off arm 4 over push-off cam shaft 47 , and engage push-off plate pin 7A near the top edge, fig. 7. Tighten set screws.
3. Press down on reject button and rotate the turntable slowly by hand, making certain push plate does not reach its limit before riser plate motion bracket has reached the end of its outward travel. If the push plate should reach its limit, deviate slightly from the 90° angle but make certain that the mechanism operates satisfactorily on both $10^{\prime \prime}$ and $12^{\prime \prime}$ records.
4. Check this for 10 - and 12 -inch setting.

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9
FIG. 10

FIG. 11

FIG. 12

Turn record support to 10 - or 12 -inch position as desired and place a stack of records on supports.	1. Turning the record support positions the push-off cam 47A through the linkage of push-off arin 4 and push-off shaft 47 . In so doing it determines the amount of movement of control plate 35 which in turn governs pickup landing.
Start-reject button.	1. Press down on tone arm; this actuates button on which it is resting. 2. Start-reject button actuates reject lever. 3. Reject lever transfers action to reject latch 59A through coupling wire 42. 4. The unlatching of reject latch allows eccentric cam 48 to be pulled against rotating knurled roller 61 which starts cycle.
Record plays.	1. While the record is being played and the tone arm moves towards the center of the record, the arm control pin 30 A on arm control assembly 30 moves along track $35 B$ as designated by "P," fig. 13. 2. As pickup moves into trip groove on record, tone arm control pin 30A moves into recess in control plate 35 at point indicated by "T," fig. 13. 3. Trip spring 34 pulls arm control plate 35 towards center post 53 , and in so doing allows stop tab 35 A on arm control plate 35 to disengage stop catch 45 on eccentric arm 48. (In manual operation the manual lockout lever holds stud 35C thereby preventing arm control plate from moving forward and starting cycle.)
Cycling starts.	1. Spring 49 pulls eccentric cam 48 , causing rubber tire 48 A to engage rotating knurled roller 61. 2. Eccentric cam 48 mounted on riser plate forces the riser plate assembly back along the guide rails 57A away from center post 53. 3. As riser plate moves, the push-off cam and shaft assembly 47 rides along the inclined track 36 C of the riser plate 36 . 4. This action results in the push-off cam and shaft assembly 47 being pulled down.
Tone arm raises and moves out.	1. The tone arm lift 16 sliding on shaft 47 is pulled downward, contacting lift bearing pin 11C, and causing tone arm to raise and clear record. 2. The riser plate tab 36 B contacting curved portion of arm control assembly 30 , which is coupled to tone arm support bracket assembly, causes the tone arm to be moved outward away from, and clear of the edge of the records. Arm control plate is also being carried along by tab 36 B contacting spring 33.
Record is separated and drops to turntable.	1. As riser plate 36 continues to travel further along guide rods 57 A , the riser plate motion bracket 36 A contacts and rotates the push-off cam and shaft assembly 47. 2. Push-off arm 3, being coupled to push-off cam and shaft assembly 47, is rotated, causing push plate 7C to push record off of projection on center-post and dropping it to the turntable. Note: The small separator latch in the end of the center post functions as a thickness gauge, allowing only one record to be pushed off the projection at one time.
Tone arm is returned and is positioned for landing.	1. As eccentric cam 48 is returning to minimum diameter (out of cycle position), riser plate is being pushed back to normal position by recoil spring 37 . At the same time, the push plate spring 8 is pushing the push plate 7C and push-off arm 4 back to normal position. 2. The portion of arm control assembly mounting the control pin, and the control bracket 30 C , are hinged on the plate forming part of assembly 30 . Since the pin 30 A has followed the track 35 B and the curved portion of bracket 30 C was forced out by motion of tab 36B, the tension of spring 26 is tending to pull them together as the riser plate is returning to normal position. The governing factor in determining how far the bracket will be pulled in, is the setting of the landing adjustment screw 31.
Pickup lands.	1. During part of the change cycle when riser plate is in the outermost position, and carrying arm control plate along by tab 36 B contacting spring 33 , the stud 35 C is stopped by cam 47 A . This acts as a gauge to determine the point of contact of pin 30A on arm control track 35B. This cam having two different radii will govern the distance arm control plate can travel since this is set when the record size change is made. If the smaller radius side of cam 47A is toward stud 35C, the arm control pin 30A will ride portion of track 35B designated by "L," causing the pickup to land on 10 -inch records. On the other hand, if the larger radius portion of cam is toward the stud, the pin will ride along track designated by "S," which determines landing point on 12 -inch records.

FIG. 13

FIG. 14

PHOTOGRAPH OF PARTS
FIG. 15

Replacement Parts

$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { ILL. } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { ILL. } \\ & \text { No. } \end{aligned}$	DESCRIPTION
73338	1	Cover-	73347	36	Riser-Riser plate including
73337	2	Pad-Hold down pad and arm		36 A	-Moiion bracket
71232	3	Spring-Hold down spring		36B	-Riser plate tab Part of 36
72458	4	Arm-Push off arm		36 C	--Inclined track
37458	5	Screw-\#6-32 $\times 1 / 8 "$ set screw	71191	37	Spring-Recoil spring
73339	6	Plate Hold down plate	73353	38	Rest-Pickup arm rest and start-reject button
71177	6 A	Spring-Hairpin spring	73354	39	Lever-Reject lever
73340	7	Head-Head assembly including	71228	40 +41	Spring-Reject lever spring
	$7 \mathrm{7A}$	$\left.\begin{array}{l}\text { Push pin } \\ \text { Rotating plate }\end{array}\right\}$ Part of 7	73355	+41 42	Screw self tapping screws for mounting item 39 Trigger-Reject trigger (wire)
	7 C	Push plate \mid		43	Terminal Terminal strip
71209	8	Spring - rush plate spring	71177	44	Spring-Hair pin spring
71201	9	Screw-\#6-32 $\times 3 / 16^{\prime \prime}$ Bristo head set screw	73352	45	Catch-Reject catch
72461	10	Collar-lift adjusting collar	72486	46	Spring-Reject catch support spring
73342	11 11 A	Arm-Pickup arm shell complete with -Arm mounting rivets	72478	47	Cam-Push off cam including
	11 A 11 B	- Arm mounting rivets	72479	47 A 48	Shaft (part of 47) Cam-Eccentric cam and tire
	11C	Lift stud	71198	48A	Tire-Rubber tire for eccentric cam
	11D	-Plastic button	72480	49	Spring-Eccentric cam spring
73190	11 D	Button-Plastic button for pickup arm		†50	Washer-Washer used to mount eccentric cam
71169	12	Clip-Pickup arm spring clip			(\#8 washer approx. 9/16" O.D.)
70338	13	Crystal-Crystal cartridge complete with guard and sapphire		$\left\lvert\, \begin{array}{\|} \ddagger 51 \\ \dagger 52 \end{array}\right.$	Washer-Lock washer (\#8) Screw-Eccentric cam mounting screw (\# $8 \times$
72345	13A	Sapphire-Sapphire and holder assembly			$32 \times 1 / 4 "$ binder head)
38452	13B	Guard-Sapphire guard	71235	53	Centerpost-
70341	13 C	Nut-Mounting nut and washer for sapphire	73348	54	Turntable-
37763 70912	13 D	Screw-\#2-56 $\times 1 /{ }^{\prime \prime}$ screw for sapphire guard	71239	55	Washer-One set of cork washers for turntable
70912	14 15	Screw-\#4-40 screw to mount crystal (2 required)	71238	56	Bearing-Turntable thrust bearing (including 2 steel washers)
71240	15	Cable-Shielded pickup cable complete with pin plug	73349	57	Support-Turntable mounting support including suide rods
31048 72462	15 A	Plug-Pin plug for shielded cable	73350	58	Screw- \#6 x 5/8" fillister head set screw to mount
72462 72463	16 17	Lift-Pickup arm lift	73351	59	turntable support (4 required) Control-Reject manual control including
72465	18	Support Pickup arm support		59A	-Arm (Part of 59)
	$\dagger 19$	Screw-To mount pickup arm support (two	71228	60	Spring-Reject arm spring
		required)	72926	61	Roller-Turntable shaft knurled roller
		one Allen or Bristo \#6-32 x 1/6" cone point set serew	71200	62 +63	Screw-\#8-32 $\times 1 / 8 "$ bristo head set screw to fastern knurled roller (2 required)
		one Allen or Bristo \#6-32 x 3/16 set screw	71236	64	Nut-Hex nut for centerpost
73341	21	Screw- \#6 x 5/16" Phillips flat head type Z serew		\$65	Screw- \#8 R.H. $1 / /^{\prime \prime}$ screw to mount turntable support
73343	22	Base-Operating mechanism mounting base less all removable parts	71183	66	Motor-Motor (117 volt, 60 cycle) complete with drive idler, tension spring, mounting grom-
73362	22A	Washer-Faston washer to mount mechanism base to motorboard			mets, shaft bushing and mounting bracketless power cord
73356	2324	Knob-Control knob	71413	66A	Wheel-Drive idler wheel for motor stamped
$\begin{aligned} & 72466 \\ & \mathbf{7 2 4 6 9} \end{aligned}$		Washer-Spring washer			$407 \mathrm{B9}$
	24 25	Spring Safety spring	71177	66 B	Pin-Cotter pin (hairpin spring) for drive idler
7247032119	26	Spring-Set down spring Switch-"On-Off" switch	71414	66C	Spring-Drive idler wheel tension spring for
	$\dagger 27 \mathrm{~A}$28	Cover-Switch cover			motor stamped 407B9
73358		Trigger-Manual control trigger (wire)	71244	667	Grommets- Motor mounting grommets
71225	29	Washer-Spring washer	73359	67	Fastener-Snap fastener to mount motor
73344	30	Control-Arm control assembly including	73360	68	(3 required) Grommet-Rubber grommet to mount record
	30 A	-Arm control tube $\}$ Part of 30			changer (4 required)
	30 C	Scew-Bracket	73361	69	Stud-Record changer mounting stud
72472	31	Screw-Larding adjustment screw			(4 required)
73345	32	Spring-Set down adjustment lock spring Spring-Cushion spring		+70	Washer-\#10 Flat washer (OD $1 / 2^{\prime \prime}$)
72474	33	Spring-Cushion spring Spring-Trip spring		71	Screw-Phillips \#10 $32 \times 1 / 2{ }^{\prime \prime}$ flat head counter
73346	$\begin{aligned} & 35 \\ & 35 A \\ & 35 \mathrm{~B} \\ & \mathbf{3 5 C} \end{aligned}$	Spring-Trip spring Control-Arm control plate including			sunk screw used to connect shock mounts to motor board
		$\left.\begin{array}{l} \text {-Stop tab } \\ \text { Track } \\ \text { Size change stop } \end{array}\right\} \text { Part of } 35$	30870	72	Plug-2 prong male AC plug

\dagger These narts are not stocked.

FIG. 16

FIG. 18

RECORDS DO NOT SEPARATE OR DROP PROPERLY

FIG. 19

FIG. 20

FIG. 21

FIG. 22

FIG. 23

FIG. 24
"WOW" OR SLOW TURNTABLE SPEED

FIG. 26

FIG. 25

CONTINUOUS TRIPPING

FIG. 27

FIG. 28

FIG. 29

IMPROPER PICKUP LANDING

FIG. 30

FIG. 32

FIG. 31

FIG. 33

FAILURE TO TRIP OR GO INTO CYCLE

FIG. 34

FIG. 37

FIG. 38

FIG. 35

FIG. 36

Distorted or No Output

FIG. 39

FIG. 40

FIG. 41

RUMBLE OR HOWL

FIG. 42

FIG. 45

MSE42A

FIG. 43

VOLUME CONTROL ADVANCED TOO FAR

FIG. 44

FIG. 47

RECORD DAMAGE

The spindle shelf and the top of spindle shaft should be free from burrs or rough edges to avoid scratching records or damaging record center holes. The record shelf edge should be smooth and be rounded oniy to a minute radius. Never round the bottom edge of the record separator latch.
A slight application of wax on the spindle shaft will prevent "squeal" of a stack of records.

LUBRICATION

Motor
Motor is lubricated at factory to provide normal operation for a long period of time. If it becomes necessary to lubricate, use SAE \#10 motor oil to saturate the felt wicks on the motor bearings.
Main Bearing
Use STA-PUT \#512 or SAE \#30 motor oil.
Slides and Levers
Use STA-PUT \#512.
STA-PUT can be purchased from E. F. Houghton \& Co., 303 W. Lehigh Ave., Phila., Pa.

REPLACEMENT OF SAPPHIRE

FIG. 48

Caution: Never bend the sapphire support wire. Extreme care should be used when loosening the nut so that the twisting motion does not break the crystal. Remove the two screws holding the sapphire guard in place and remove guard. Remove the small nut and washer on the threaded shaft of the sapphire holder and gently push the shaft through the hole in the armature shaft until the sapphire holder assembly comes free. Do not use force or the crystal may be broken

Insert threaded shaft of replacement sapphire holder through armature shaft and replace the washer and nut. Make sure that the sapphire is in the correct position. Take hold at the lower end of the shaft with a pair of pliers while tightening the nut, being very careful so as not to strip the threads or break the crystal. Replace the sapphire guard, positioning it by means of the oversize screw slots. Make certain that the sapphire and its supporting wire are centered in the guard. Tighten the guard screws. Before using, check to see that the sapphire projects far enough (approx. .020) beyond the guard so that the guard will not strike the record. If necessary, bend the guard a little.

Model 641TV
W'alnut, Mahogany or Toassed Mahogany

Model 8TV41
Mabogany

TELEVISION, AM-FM RADIO, PHONOGRAPH COMBINATION MODEL 64ITV
Chassis Nos. KCS 25A-1 (60 cycles), KCS 25C-2 (50 cycles)
RK-117A and RS-123A (50/60 cycles) MODEL 8TV41

Chassis Nos. KCS 25 D-1 (60 cycles), KCS 25 E-2 (50 cycles)
RK-117A and RS-123A (50/60 cycles)Mfr. No. 274
Service Data

- 1947 No. T1 -
- 1948 No. T3-

RADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

GENERAL DESCRIPTION

Models 641TV and 8TV41 are forty-one tube Television, AM-FM Radio, Phonograph console combination. The television unit employs a thirty-tube chassis with ten-inch kinescope.

Features of the television unit are full thirteen channel coverage: FM sound system: improved picture brilliance; picture A-G-C: A-F-C horizontal hold; stabilized vertical hold: two stages of video amplification; noise saturation circuits; threestage sync separator and clipper: four mc band width for picture channel and reduced hazard high voltage supply.

The radio receiver employs a seven-tube tuner unit and a iour-tube audio-amplifier, power-supply unit.

An automatic record changer of the "slicer" type is employed and features a crystal pickup with the "Silent Sapphire" stylus

ELECTRICAL AND MECHANICAL SPECIFICATIONS

Television Channel Number	Channel Freq. Mc.	Picture Carrier Freq. Mc.	Sound Carrier Freq. Mc.	Tel. Rec. R-F Osc. Freq. Mc.
1.	. 44.50	.45.25.	.49.75.	71
2.	.54.60.	.55.25	.59.75.	81
3.	.60-66	61.25	. 65.75	87
	..66-72.	.67.25	.71.75.	. 93
5.	76-82	.77.25	. 81.75	103
6.	82-88.	83.25.	87.75	109
	..174-180.	175.25.	.179.75.	201
8.	. 180-186.	.181.25	185.75	207
9.	. 186-192.	187.25	191.75	213
10.	. 192-198.	193.25.	.197.75.	219
11.	. 198-204	199.25.	.203.75.	225
12.	.204-210.	205.25	209.75	231
13.	210-216	211.25	215.75	237

TELEVISION FINE TUNING RANGE
Plus and minus approximately 800 kc on channel l, and plus and minus approximately 1.9 mc on channel 13.

RECEIVER ANTENNA INPUT IMPEDANCE. 300 ohms, balanced
RADIO TUNING RANGE

Alignment Procedure (Television)Detailed20
Table 26
Alignment Procedure (Radio) 40
Circuit Description (Television) 10
Drawings (Major)
Television
Adjustment Location (Alignment) 25
Adjustment Location (Installation) 7.8
Chassis Bottom View 19
Chassis Top View 18
Chassis Wiring Diagram 1.57
Circuit Schematic 3.55
R-F Unit Wiring Diagram 50
Radio
Adjustment Location 41
Chassis Wiring Diagram 42
Circuit Schematic 43
Page Page
General Description 1
Installation Instructions 6
Kinescope Handling Precautions 2
Operating Instructions 5
Fhotographs
Cabinet 1
Test Pattern 31
Waveform 34
Replacement Parts 59
Service Suggestions 28
Specifications (Elec. \& Mech.) 1
Test Equipment 20
Tube Complement 3
Voltage Chart (Television) 38
Voltage Chart (Radio) 44
Warning (High Voltage) 2

Abstract

HIGH VOLTAGE WARNING OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAU. TIONS NECESSARY WHEN WORKING ON HIGH-VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH-VOLTAGE COMPARTMENT SHIELD REMOVED.

KINESCOPE HANDLING PRECAUTIONS

DO NOT OPEN THE KINESCOPE SHIPPING CARTON, INSTALL. REMOVE, OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES AND HEAVY GLoves are worn. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

The kinescope bulb encloses a high vacuum and, due to its large surface area, is subjected to considerable air pressure. For these reasons, kinescopes must be handled with more care than ordinary receiving tubes.
The large end of the kinescope bulb-particularly the rim of the viewing surface-must not be struck, scratched, or subjected to more than moderate pressure at any time. In installation, if the tube sticks or fails to slip smoothly through the deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Refer to the Receiver Installation section for detailed instructions on kinescope installation. All RCA kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the receiver. Keep the carton for possible future use.

	Tube Used	Function
(1)	RCA-6J6	R-F Amplifier
(2)	RCA-6J6	R-F Oscillator
(3)	RCA-6]6	Converter
(4)	RCA 6BA6	1st Sound I-F Amplifier
(5)	RCA-6BA6	2nd Sound I-F Amplifier
(6)	RCA-6AU6	3rd Sound I-F Amplifier
(7)	RCA-6AL5	Sound Discriminator
(8)	RCA.6AT6	A.G-C Amplifier
(9)	RCA-6AL5	A.G.C Diode and D.C Restorer
(10)	RCA-6AG5	... lst Picture I-F Amplifier
(11)	RCA-6AG5	2nd Picture I-F Amplifier
(12)	RCA-6AG5	3rd Picture I-F Amplifier
(13)	RCA-6AG5	.. 4th Picture I-F Amplifier
(14)	RCA.6AL5	Picture 2nd Detector and A.G.C Detector
(15)	RCA 6AU6	... lst Video Amplifier
(16)	RCA.6K6GT	2nd Video Amplifier
(17)	RCA-6SK7	... lst Syne Amplifier
(18)	RCA-6SH7	.. Sync Separator
(19)	RCA 6 SN7GT	2nd Sync Amplifier and Horizontal Discharge

(20) RCA-6J5 Vertical Sweep Oscillator and Discharge
(21) RCA-6K6GT Vertical Sweep Output
(22) RCA.6AL5 Horizontal Sync Discriminator
(23) RCA-6K6GT Horizontal Sweep Oscillator
(24) RCA.6AC7 …............ Horizontal Sweep Oscillator Control
(25) RCA-6BG6G Horizontal Sweep Output
(26) RCA-SV4G Horizontal Reaction Scanning
(27) RCA•1B3-GT/8016 High Voltage Rectifier
(28) RCA-5U4GPower Supply Rectifiers (2 tubes)
(29) RCA-10BP4 .. Kinescope

RK117A RADIO CHASSIS

	Tube Used	Function
(1)	RCA-6BA6	R-F Amplifier
(2)	RCA-6BE6	Oscillator
(3)	RCA-6BA6	Mixer
(4)	RCA-6BA6	I-F Amplitier
(5)	RCA-6AU6	Driver
(6)	RCA-6AL5	Ratio Detector
(7)	RCA 6SQ7	Audio Amplifier
RSI23A AUDIO AMPLIFIER		
	Tube Used	Function
(1)	RCA.5U4G	Rectifier
(2)	RCA-6J5	Phase Inverter
(3)	RCA.6F6G	Power Output
(4)	RCA-6F6G	Power Output

Figure 1 -Receiver Operating Controls

TELEVISION OPERATION

The following adjustments are necessary when turning the receiver on for the first time.

1. Turn the radio FUNCTION switch to Tel.
2. Turn the receiver "ON" and advance the SOUND VOL. UME control to approximately mid-position.
3. Set the STATION SELECTOR to the desired channel.
4. Turn the PICTURE control fully counter-clockwise.
5. Turn the BRIGHTNESS control clockwise, until a glow appears on the screen, then counter-clockwise until the glow just disappears.
6. Turn the PICTURE control clockwise until a glow or pattern appears on the screen.
7. Adjust the FINE TUNING control for best sound fidelity and SOUND VOLUME for suitable volume.
8. Adjust the VERTICAL hold control until the pattern stops vertical movement.
9. Adjust the HORIZONTAL hold control until a picture is obtained and centered.
10. Adjust the PICTURE control for suitable picture contrast.
11. After the receiver has been on for some time, it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.
12. In switching from one station to another, it may be necessary to repeat steps number 7 and 10 .
13. When the set is turned on again after an idle period. it should not be necessary 10 repeat the adjustments if the positions of the controls have not been changed. If any adjust. ment is necessary. step number 7 is generally sufficient.
14. If the position of the controls has been changed, it may be necessary to repeat steps number 2 through 10.

RADIO OPERATION

1. Turn the radio FUNCTION switch to the desired band (BC. SW or FM).
2. Tune in the desired station with the TUNING control.

PUSH BUTTON OPERATION

1. Turn the radio FUNCTION switch to PB.
2. Push the appropriate push button to receive the desired station.

PHONOGRAPH OPERATION

1. Turn the radio FUNCTION switch to Pho.

AUTOMATIC OPERATION

2. Move the changer tone arm over to the pickup rest position, or it changer is in cycle and the arm cannot be moved. push the Record Changer Control Switch to the manual position until the arm stops in the rest position.
3. Turn Record Support Shelf so that the number corre. sponding to the size of record to be played is toward the turntable spindle.
4. Place the stack of records over the turntable spindle and on the fingers of the Record Support.
5. Pull the Record Changer Control Switch forward and release. The changer will cycle automatically and will stop after the last record has been played.

NOTE

The changer will not operate on intermixed ten and twelve. inch records in the automatic position.

MANUAL OPERATION

6. Move the changer tone arm over to the picikup rest position. or. it the changer is in cycle and the arm cannot be moved, push the Record Changer Control Switch to the manual position until the arm stops in the rest position.
7. Place the record on the turntable.
8. Lift the pickup arm from the rest position and place the needle in the outer groove of the record.

NOTE
The changer will not automatically stop after playing the record when the Control Switch is in the manual position.

Check all chassis interconnecting cables to make sure that all are plugged into the proper sockets as shown in Figure 3. It is possible to insert the receiver antenna and ground plug backwards. The ground wire should go to the middle connector at the radio chassis as shown.

Remove the metal grill in back of the television compartment. Remove the tapes holding the radio and television compart. ment doors.

The radio and television control knobs are packed in envelopes taped to the cabinet lower back cross member. Remove the knobs and install them on their control shafts.

Remove the safety glass and front panel by removing the moulding at the top and bottom of the glass as shown in Fig. ure 4. Caution: The safety glass and front panel fit very
snugly and care must be taken in removing so as not to scratch the cabinet finish.

Loosen the two kinescope cushion adjustment wing screws and slide the cushion loward the rear of the chassis. Loosen the deflection yoke adjustment, slide the yoke loward the rear of the chassis and tighten. See Figure 5 for the location of the cushion and yoke adjustments.

From the front of the cabinet, look through the deflection yoke and check the alignment of the focus coil with the yoke. If the focus coil is not in line, loosen the three focus coil adjustment wingnuts and raise, lower, or rotate the coil until alignment is obtained. Tighten the wingnuts with the coil in this position
Loosen the two lower kinescope face centering slides, and set them at approximately mid position. See Figure 4 for location of the slides and their adjustment screws. Loosen the ion trap magnet adjustment thumb screws.

Figure 2—Removal of Shipping Material

Figure 3-Chassis Interconnecting Cables

TO REMOVE FRONT PANEL, TAKE OUT THESE SCREWS ANU

Fig. 4A-Removal of Front Panel-Model 641TV
If a corner of the raster is shadowed, it indicates that the electron beam is striking the neck of the tube. Loosen the focus coil adjustment wing nuts and rotate the coil about its vertical and horizontal axis until the entire raster is visible, approximately centered and with no shadowed comers. Tighten the focus coil adjustment wing nuts with the coil in this position.

INSTALLATION OF KINESCOPE - The kinescope second anode contact is a recessed metal well in the side of the bulb. The tube must be installed so that this contact is approximately on top. The final orientation of the tube will be determined by the position of the ion trap flags. Looking at the kinescope gun structure, it will be observed that the second cylinder from the base inside the glass neck, is provided with two small metal flags, as showr in Figure 6. The kinescope must be installed so that when looking down on the chassis, the two flags will be seen as shown in Figure 5.

Slip the ion trap magnet on the neck of the kinescope with the large coil toward the base of the tube as shown in Figure 5. Connect the kinescope socket to the tube base Insert the kinescope until the face of the tube protrudes approximately one-quarter of an inch outside the front of the cabinet.

TO REMOVE FRONT PANEL, TAKE OUT THESE SCREWS

Fig. 4B-Kemoval of Front Panel-Model 8TV41

Fig. 5A-Yoke and Focus Coil Adjustments-Model 641TV

Fig. 5B-Yoke and Focus Coil Adjustments-Model 8TV 41

Figure 6-Ion Trap Flags

Figure 7-Kinescope Insertion

Adjust the four centering slides until the face of the kinescope is in the center of the cabinet opening. Tighten the four slides securely.
Wipe the kinescope screen surface and front panel safety glass clean of all dust and finger marks with a soft cloth moistened with the Drackett Co.'s "Windex" or similar clean. ing agent.
Install the cabinet front as indicated in Figure 4.
Slip the kinescope as far forward as possible. Slide the kinescope cushion firmly up against the flare of the tube and tighten the adjustment wing screws. Slide the deflection yoke as far forward as possible. Connect the high voltage lead to the kinescope second anode socket.
The antenna and power connections should now be made. Turn the power switch to the "on" position, the function switch to television the brightness control fully clockwise, and picture control counter-clockwise.

ION TRAP MAGNET ADJUSTMENT-The ion trap rear magnet poles should be approximately over the kinescope flags as shown in Figure 5. Starting from this position adjust the mag. net by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Tighten the magnet adjustment thumbscrews sufficiently to hold it in this position but still free enough to permit further adjustment. Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust the focus control (R184 on the chassis rear apron) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches on this adjustment should be made with the brightness control at the maximum position with which good line focus can be maintained.

FOCUS COIL ADJUSTMENTS - Turn the centering controls R181 and R211 10 mid position. See Figure 8 for location of these rear apron controls.
If a corner of the raster is shadowed, it indicates that the electron beam is striking the neck of the tube. Loosen the focus coil adjustment wing nuts and rotate the coil about its vertical and horizontal axis until the entire raster is visible, approximately centered and with no shadowed corners. Tighten the focus coil adjustment wing nuts with the coil in this position.
DEFLECTION YOKE ADJUSTMENT-If the lines of the raster are not horizontal of squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.
PICTURE ADJUSTMENTS-It will now be necessary to obtain a test pattern picture in order to make further adjustments. See steps 3 through 10 of the receiver operating instructions on page 5.

Figure 8-Rear Chassis Adjustments

CHECK OF LINK CONNECTION-In early receivers, the link board J.02 was connected to the horizontal oscillator control tube. In late production, the link was employed to provide optional video peaking. In order to determine which type of connection is employed in a particular set, touch the finger to terminal \#3. If the picture is displaced horizontally the board is connected to the control tube. Little or no effect may be noticed if the board is connected to the video stage.

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT-If the board was found to be connected to the control tube in the above test, set the link in the normal position (2 to 3). Turn the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will pull into sync.
Turn the horizontal hold control to the extreme clockwise position. The picture should remain in sync. Momentarily remove the signal. Again the picture should normally pull into sync.
If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS.
ALIGNMENT OF HORIZONTAL OSCILLATOR-It in the above check the receiver failed to hold sync with the hold control at either extreme or failed to pull into sync after momentary removals of the signal, make the adjustments under "Slight Retouching Adjustments." If. after making these retouching adjustments, the receiver fails to pass the above checks or if the horizontal oscillator is completely out of adjustment. then make the adjustments under "Complete Realignment."
Slight Retouching Adjustments-Tune in a Television Station and adjust the fine tuning control for best sound quality. Sync the picture and adjust the picture control for slightly less than normal contrast. Turn the horizontal hold control to the extreme position in which the oscillator fails to hold or to pull in. Momentarily remove the signal. Turn the T108 frequency adjustment on the chassis rear apron until the oscillator pulls into sync. Check hold and pull-in for the other extreme position of the hold control.
Complete Realignment-Tune in a Television Station and adjust the fine tuning control for best sound quality.
Turn the T108 frequency adjustment (on rear apron), untill the picure is synchronized. (If the picture is not synchronized vertically, adjust the vertical hold.) Adjust the picture control so that the picture is somewhat below averege contrast level.
Turn the T108 phase adjustment screw (under chassis, see Figure 23) until the blanking bar, which may appear in the picture, moves to the right and off the raster. The range of this adjustment is such that it is possible to hit an unstable condition (ripples in the raster). The screw must be turned clockwise from the unstable position. The length of stud beyond the bushing in its correct position is usually about $1 / 2$ inch.
furn horizontal hold to extreme counter-clockwise position. Turn T108 frequency adjustment clockwise until the picture falls out of sync. Then turn it slowly counter-clockwise to the point where the picture talls in sync again.
Readjust T108 phase adjustment so that the left side of the picture is close to the left side of the raster, but does not begin to fold over.

Turn horizontal hold to extreme clockwise. The right side of the picture should be close to the right side of the raster, but should not begin to fold over. If it does, readjust the phase.
Momentarily remove the signal. When the signal is restored, the picture should fall in sync. If it doesn't, turn T108 frequency adjustment counter-clockwise until the picture falls in sync.

Turn horizontal hold to extreme counter clockwise position. Remove the signal momentarily. When signal is restored, the picture should fall in sync.

NOTE: If the picture does not pull in sync after momentary removals of signal in both extreme positions of horizontal hold, the pull-in range may be inadequate, though not necessarily. A pull-in through $3 / 4$ of the hold control range may still be satisfactory. There is a difference between the pull-in range and hold-in range of frequencie3. Once in sync, the circuit will hold about 50% to 100% more variation in frequency than it can pull in. The range of the horizontal hold control is only approximately equal to the pull-in range, considerable variation may be found due to variations in the cut-off characteristic of the horizontal oscillator control tubes, V124.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS-Adjust the height control (R169 on chassis rear apron) until the picture fills the mask vertically ($6^{3 / 8}$ inches). Adjust vertical linearity (R178 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust vertical centering to align the picture with the mask.

WIDTH AND HORIZONTAL LINEARITY ADJUSTMENTS-Turn the horizontal drive (R187 on rear apron) clockwise as far as possible without causing crowding of the right of the picture. This position provides maximum hiah voltage to the kine. scope second anode. Adjust the width control (L196 on rear chassis) untll the picture just fills the mask horizontally ($81 / 2$ inches). Adjust the horizontal linearity control L201 (see Fig. ure 8) until the test pattern is symmetrical left to right. A slight readjustment of the horizontal drive control may be necessary when the lirearity control is used. Adjust horizontal centering to align the picture with the mask.
If repeated adjustments of drive, width, and linearity fail to give proper linearity, it may be necessary to move the tap on R209. which is located in the high voltage compartment. Adjust. ments of drive, width and linearity must then be repeated.

FOCUS Adjust the focus control (R184 on chassis rear apron) for maximum definition in the test pattern vertical "wedge."
Check to seo that all cushion, yoke, focus coil and ion trap magnet thumb screwa are tight.

CHECK OF R-F OSCILLATOR ADJUSTMENTS-With a crystal calibrated test oscillator or heterodyne frequency meter, check to see if the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure on page 22. The adjustments for channels 1 through 5 and 7 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 9. Adjustments for channels 6 and 13 are under the chassis. See Figure 27 for their location.
Tune in all available Television Stations. Observe the picture for detail. for proper interlacing and for the presence of interference or reflections.

Figure 9-R-F Oscillator Adjustments

ANTENNA TRAP-In some instances an antenna trap has been installed on the receiver to eliminate interference from an FM station on the image of channel 2 or interference on channel 6 from a station on channel 10 or on channel 5 from a station on channel 7. To adjust the trap. tune in the station on which the interference is observed. Tune both cores of the trap (see figure 22) for minimum interference in the picture. Keep both cores approximately the same by visual inspection. Then, turn one core $1 / 2$ turn from the original position and repeak the second for maximum rejection. Repeat this process until the best rejection is obtained. In severe cases of interference, it may be necessary to reorient the antenna to eliminate this difficulty.

VIDEO PEAKING-II the link board 1102 was shown to be connected to the video circuits by the test outlined on page 8. then some video peaking may be obtained by connecting the link in the 2.3 position. It the pictures from the majority of stations look best with the link in the 2.3 position, it should be so connected. However if transients are then produced on high contrast pictures, then the link should be connected in the $1-2$ position.
RADIO OPERATION-Turn the receiver function switch to AM ard FM positions and check the radio for proper operation. In switching from radio to television or from television to radio. approximately 30 seconds warm-up time is required.

PUSH-BUTTON ADJUSTMENT-To adjust the radio push buttons, set the function switch to the broadcast band position, tune the receiver to the desired station and identify the program. Turn the function switch to the push button position and push the appropriate push button. Adjust the corresponding oscillator core until the desired station is heard. Adjust the corresponding antenna trimmer for maximum output. Proceed in the same manner to adjust the remaining push buttons. Figure 10 shows the location of the push-button adjustments and the range which the adjustments will cover.

Figure 10-Push-aution Adjustments
Select the proper station call letter tab, moisten the back of the tab and insert in the appropriate recess in the push button bezel. Place the tab cellophane cover in the recess over the tab.

RECORD CHANGER OPERATION-Open the record changer compartment door and roll the changer out. Move the tone arm to the rest position. Place a record on the turntable. Turn the front record shelf to the position to take the size of records used. Place a stack of records on the shelf. Turn the radio function switch to phono position. Pull the record, changer control switch to the reject position and release.
Replace the television receiver metal back grill. Replace the cabinet back. Tap the nails which hold the back clips in place to insure that all clips are seated firmly against the back. otherwise the back may rattle or buzz when the recoiver in operating at high volume.

TELEVISION CIRCUIT DESCRIPTION

It is advisable that the reader be familiar with a recent stand. ard textbook of television principles in order to understand the receiver circuits and their functions. Such a knowledge is assumed for the purpose of this publication. The discussions which follow will not dwell on the operation of conventional circuits used which have been used in previous receivers and which should be well known. In general, the circuits discussed will be only those that are new to the field.

For ease of understanding the basic operation of the television receiver, a 14 unit block diagram of it is shown in Figure 11. The circuit description will follow the numerical order of these blocks in order to follow a signal through the set in a logical manner.

R-F UNIT (block \# 1)-The r-f unit is a separate subchassis of the receiver. On this subchassis are the r-f amplifier, converter, oscillator, fine tuning control, channel switch, converter transformer, r-f, converfer and oscillator coils and all their tuning adjustments. The unit provides operation on all thirteen of the present television channels. It functions to select the desired picture and sound carriers, amplifies and converts to provide at the converter plate, a picture i-f carrier frequency of 25.75 mc . and a sound i-f carrier of 21.25 mc .

R-F Amplifier-Referring to the schematic diagram (page 59), Tl is a center tapped coil used for the short circuiting of low frequency signals picked up by the antenna which would otherwise be directly applied to the control grids of the 6J6 r-f amplifier, V1. Cl and C 2 are antenna isolating capacitors. The d-c return for the grids of V1 is through R3 and R13 which also properly terminate the 300 ohm antenna transmission line. C3 and C4 are neutralizing capacitors necessary to counteract the grid to plate capacitance of the triode r-f amplifier.

In the plate circuit of the r-f amplifier are a series of inductances L1 to L25 and L2 to L26 inclusive. These inductances may be considered as a quarter wave section of a balanced transmission line which can be tuned over a band of frequen. cies by moving a shorting bar along the parallel conductors.

Adjustable coils L25 and L26 provide the correct length of line for the thisteenth channel, $210-216 \mathrm{mc}$. L13 to L23 and L14 to L24 are fixed sections of line which are added to L25 and L26 as the shorting bar is moved progressively down the line. The physical construction of each one of these inductances is a small non-adjustable silver strap between the switch contacts. Each strap is cut to represent a six-megacycle change

Figure 11-Receiver Block Diagram
in frequency. In order to make the jump between the lowest high frequency channel (174.180 mc) and the highest low frequency channel (82.88 mc), adjustable coils L 11 and L 12 are inserted. To provide for the remaining five low irequency channels, L 1 to L 9 and L 2 to L 10 are progressively switched in to add the necessary additional inductance.

Colls L 1 to L 9 and L 2 to L 10 are unusual in that they are wound in figure 8 fashion on lingers protruding from the switch water. This winding form produces a relatively noncritical coil since the coupling between turns is minimized. A maximum amount of wire is used for the small inductance which is required, thus permitting greater accuracy in manufacturing.

Converter-The converter grid line operates in a similar manner and is so arranged on the switch to provide coupling between it and the r-f line. C10, C12, C13 and a link, provide additional coupling which is arranged to produce at least a 4.5 megacycle band pass on each of the channels.

L80 and Cl4 form a series resonant circuit used to prevent i-f feedback in the converter by grounding its grids for i-f trequency. They also act as a trap to reject short-wave signals of i-f trequency which arrive at the converter grids in a push push manner.

A 6J6 twin triode is used as converter. Since the grids are fed in push pull by both the signal and the oscillator, the heterodyne products (i-f signals) are in phase on the converter plates so the two plates are connected in parallel. Unwanted sig. nals of i-f frequency that arrive at the converter grid in a push pull manner are out of phase on the converter plates. Since the plates are tied together, these signals tend to cancel thus reducing the possibility of interference from this source.
R.F Oseillator-The oscillator line is similar except that trimmer adjustments are provided for each channel and the low frequency coils are not figure 8 windings. For tuning each chan. nel, brass screws are used in close proximity to the nigh frequency tuning straps L66 to L76, and adjustable brass cores are provided for coils L54 to L62. It is obvious that the high frequency adjustments should be made before each lower frequency one.

C15 is a fine tuning adjustment which provides approximately plus or minus 800 kc . variation of oscillator frequency on channel 1 and approximately plus or minus 1.9 mc . on channel 13.

The physical location of the oscillator line with respect to the converter grid line is such as to provide some coupling to the converter grids. This coupling is augmented by the link shown on the schematic and provides a reasonably uniform oscillator voltage at the converter grids over the entire tuning range of the unit.

The converter transformer $T 2$ is a combination picture i.f trans. former, sound trap, and sound i-f transformer. The converter
plate coil is assembled within the structure of a high Q reso. nant circuit tuned to the sound i-f trequency. This high Q coil absorbs the sound i-f component from the primary. Thus on the T2 primary (from which the picture i-f is fed), the sound carrier is attenuated with relation to the picture channel.

SOUND I.F AMPLIFIER AND DISCRIMINATOR (block \#2)-A portion of the energy absorbed by the T2 trap circuit is fed to the first sound i-f amplifier. Three stages of amplification are used to provide adequate sensitivity. A conventional dis. criminator is used to demodulate the signal. The discriminator band width is approximately 350 kc . between peaks.

The output from the discriminator is fed into the radio audio system and is controlled by the radio volume and tone controls.

PICTURE I-F AMPLIFIER AND DETECTOR (block \#3)-The picture i.f amplitier departs considerably from the conventional coupled system. To obtain the necessary wide band characteristic with adequate gain, four stages of i-f amplification are employed. The converter plate and each successive i-f transformer utilize one tuned circuit each and each is tuned to a different frequency. The effective Q of each coil is fixed by the shunt plate load or grid resistor so that the response product of the total number of stages produces the desired overall response curve. Figure 12 shows the relcitive gains and selectivities of each coil and the shape of the curve of the quintuple combination.

Figure 12-Stagger Tuned I-F Response
In order to obtain this band pass characteristic, the picture 1.4 transformers are tuned as follows:
Converter transformer 21.8 mc (T2 primary)
First pix i.f transformer 25.3 mc (T103 primary)
Second pix i.f transformer 22.3 mc (T104 primary)
Third pix i-f coil .. 25.2 mc (L183)
Fourth pix i.f coil .. $23.4 \mathrm{mc}$. (L185)

In such a stagger tuned system variations of individual i-f amplifier tube gain do not affect the shape of the overall i-f response curve if the Q 's and center frequencies of the stages remain unchanged. This means that the i-f amplitier tubes are non-critical in replacement because variations in Gm do not affect the response curve.

To align the i-f system, the transformers are peaked to the specified frequencies with a signal generator. The overall
i-f response is then observed by use of a sweep generator and oscilloscope. Slight deviations from design center circuit Q are compensated for with slight shifts in tuned-circuit center frequency until the desired response curve is obtained. If this response cannot be obtained, the difficulty is likely to be in a component that affects either the frequency or Q of one or more of the i-f coils.

The response curve does shift slightly as the picture control is varied due to the Miller effect. This effect is the change in lube input capacitance as its gain is varied by grid bias changes. The change of input capacitance causes a slight detuning of the preceding i-f coil and a small shift in response curve shape. This effect is slight, however, and when the receiver is aligned with the specified grid bias, no difficulty from this source should be encountered.

For familiarization with the frequencies which are important in the receiver's operation. Figure 13 shows the relative position of the picture and sound carriers for channels 2,3 and 4. If a station on channel 3 is transmitting a picture with video frequencies up to 4 mc ., the picture carrier will have upper side band frequencies up to 65.25 mc . The lower side bands are suppressed at the transmitter.

Figure 13-Television Channel Frequencies
With the receiver r - f oscillator operating at a higher frequency than the received channel, the i-f frequency relation of picture to sound carrier is reversed as shown in Figure 14.

Figure 14-Overall Picture I-F Response
Traps-Since it is necessary for the picture i-f to pass frequencies quite close to the sound carrier frequency. the sound carrier would produce interference in the picture. In order to prevent this interference, traps must be added to the picture If amplitier to attenuate the sound carrier. If the receiver should be operating on channel 3, it is possible ihat interference would be experienced from the channel 2 sound carrier and the channel 4 picture carrier. The adjacent channel traps are provided to attenuate these unwanted frequencies.

The first three traps are absorption circuits. The first trap (T2 secondary) is tuned to the accompanying sound i-f frequency. The second trap (T103 secondary) is tuned to the adjacent channel sound frequency. The third trap (T104 secondary) is tuned to the adjacent channel picture carrier frequency. The fourth trap (T105 secondary) is in the cathode circuit of the fourth picture i-f amplifier V113 and is tuned to the accompanying sound carrier i-f frequency. The primary of Tl05 in series with C181 forms a series resonant circuit at the frequency to which L185 is tuned (23.4 mc .). This provides a low impedance in the cathode circuit at this frequency and permits the tube to operate with a gain. However, at the resonant frequency of the secondary (21.25 mc .) a high impedance is reflected into the cathode circuit, and the gain of the tube for this frequency is reduced by degeneration. The rejection at 21.25 mc . with this circuit is limited to the gain of the tube.
Picture Second Detector-The detector is a conventional hali wave rectifier connected to produce a video signal of the proper polarity.
PICTURE A-G-C DETECTOR, AMPLIFIER AND DIODE (block \#4)-An automatic gain control circuit is employed in connection with the picture i.f system to hold the output from the i-f's substantially constant over a wide range of signal inputs.
The a-g.c system of the picture i-f amplifier (shown in Figure 15) differs considerably from the a-v-c system used in broadcast receivers. In broadcast receivers, it is customary to use the filtered d-c drop across the diode resistor as the source of the a-v-c voltage. This is satisfactory because the d-c voltage thus oblained is directly proportional to the average carrier amplitude at the diode. If it maintains the average carrier amplitude substantially constant, then the a.v-c operates as it should.
In the transmission of television pictures, however, the average carrier amplitude varies greatly with picture content, and an a-g-c system operating on the principle of maintaining a substantially uniform average carrier amplitude therefore is not suitable.
The RMA Standard Television Signal calls for a transmission system known as dec negative transmission. Under this system, the carrier always reaches a uniform maximum ampli. lude during the periods when synchronizing pulses are being transmitted, and a white portion of the scene is represented by minimum or zero carrier condition. Thus, if there is no fading, the peaks of the synchronizing pulses will always represent some constant amplitude, and they, therefore, form a convenient reference for operating a satisfactory picture a.g.c system.
A portion of the output from the fourth i-f amplifier is fed into V114B, the a-g.c detector. Since the time constant of the diode load resistor and filter (R 251 and C 240) is somewhat greater than one horizontal line, the detector is essentially a peak reading voltmeter at sync frequency (15.750 cps). The d-c voltage that appears on the cathode of V114B is therefore proportional to the peak strength of the received signal and substantially independent of the picture content.
Such a system will also tend to read the peak of noise pulses. To prevent this, R252 and the diodes of V108 are used as a two-stage clipper or noise-limiting network. For further protection against noise, the d-c output is fed through an integrating network (R253 and C242) which tends to remove the effects due to random noise.
The d-c output from the integrator is less than that required to control the gain, and since it increases in the positive direction with increases in signal strength, it is necessary 10 am .

Figure 15-Picture A-G-C Circuit
plify and "invert." To accomplish this, the output from the integrator is d.c coupled to the V108 a-g.c amplifier grid.

V108 is operated with approximately minus one hundred volts on the cathode and the plate at or slightly below ground potential. The voltage available from the plate is therefore suitable for use as a control bias.

With a weak signal input, the bias on V108 (obtained across R258 and R257) is sufficient to cause the V108 plate current to be cut off. The V108 plate is therefore at ground potential, no bias is applied to the r-f and i-f grids and the receiver operates at maximum gain. When a strong signal is applied to the receiver, the d-c output from the a.g.c detector opposes the fixed bias on V108 and causes plate current to flow. As a conse. quence, the plate goes negative with respect to ground and this negative voltage is applied to the r-f and i-f grids reducing gain and maintaining constant output from the i-f system.

Since the grid control characteristic of the pentode i-f amplifiers is different from that of the triode r-f amplifier, different bias voltages are required and must be taken from different points in the system.

Also, in order to obtain the maximum signal to noise ratio from the receiver, it is desirable to allow the r-i amplifier to run essentially at full gain on any signal which will not cause overloading of the first i-f stage. The circuit arrangement of Figure 15 including the a.g.c diode (V109B) permits maximum use of r-f gain on weak signals and prevents overloading of the i-f amplifier on strong signals.

On a signal of 1000 microvolts (with the picture control set for normal contrast) the V108 plate is at approx. -2 volts. Since the $\alpha \cdot g \cdot c$ diode plate is placed at approx. $\alpha-2.5$ volt tap on the dividers R261 and R262, the diode does not conduct and the -2 volts on V108 plate is applied to the i.f grids. On a signal of 10,000 microvolts, the a.g-c amplifier is at approx. -5 volts. Under this condition, the $\alpha \cdot g \cdot c$ diode conducts and due to the drop in R256, prevents the i-f bias from rising appreciably above approx. -3 volts. The r-f bias, however, is not limited and can therefore rise above the i.f bias.

This high value of bias on the r-f amplifier is necessary to reduce the triode nearly to cut-oft. Although triodes are not generally considered to be remote cut-of tubes, sufficient curvature is present in the grid control characteristic to provide approximately a ten to one reduction in gain when the bias approaches the plate current cut-off point.

Figure 16 shows a graph of the r-f and i-f bias versus signal input.

Figure 16-Bias versus Signal Input

Picture Control-A manual gain control is also provided since it is necessary to vary the picture contrast because of variations in room lighting, transmitting technique and to suit personal preference in picture balance. The control varies the i-f gain by varying the initial bias on the a-g-c amplifier which in turn varies the r-f and i-f bias.

VIDEO AMPLIFIER AND D.C RESTORER (block \#5)-The function of this section of the receiver is to amplify the video output of the second detector. Two amplifier stages are employed. The gain from the first video grid to output plate is 30 X and the frequency response extends to 4 mc .
Noise Saturation Circuit-Since the synchronizing pulse is "blacker than black" and "black" information must drive the kinescope grid toward cut-oft, the video signal polarity must be such that the sync is negative when applied to the kinescope grid. It is obvious that for the two-stage video amplifier used, the sync pulse from the second detector must also be negative at the first video amplifier grid. The first stage is designed so that with a normal signal input level at its grid, the tube will be working over most of its operating range. Any large noise signal above sync will drive the grid to cut-off and the noise will be limited. In effect, the signal to noise ratio is thus improved.
D.C Restorer-Since the video amplifier is an a-c amplifier, the d-c component of the video signal that represents the average illumination of the original scene will not be passed. Unless this d-c component is restored, difficulty will be experienced in maintaining proper scene illumination. For any given scene, this average illumination could be set properly by the brightness control. However, a change of scene would probably necessitate resetting this control. The d.c restorer accomplishes this setting automatically thus assuring proper picture illumination at all times. For a delailed explanation of the operation of the d-c restorer, see "Practical Television by RCA."

KiNESCOPE (block \#6)-The kinescope is a $10^{\circ \prime}$ tube employing a new type screen material which provides considerably improved picture brilliance. The tube employs magnetic deflection and magnetic focus. An ion trap is employed to prevent the ion beam from producing a brown spot on the screen.
Electrons and ions emitted from the cathode start toward the anode as shown in Figure 17. The non-symmetrical electrostatic field created by the angular cut on the electron gun and first anode, cause the ions and the electron beam to be bent at "A."
The electron beam is more easily deflected by magnetic fields than are the ions so advantage is taken of this effect to sepa-

Figure 17-Kinescope Gun and lon Trap
rate them. The field from the ion trap magnet causes the electron beam to be bent at " B " and " C " and to pass through the anode aperture at " D " headed for the center of the deflection yoke. Since the ions are not appreciably deflected by the field. they fall into the anode and are prevented from reaching the screen.

In installing the receiver, it is necessary to adjust the ion trap magnet location in order to obtain the proper bending of the beam at " B " and " C.'

The inside and outside of the flaring portion of the kinescope bulb are given a metallic coating. The inner coating, which is the second anode, is connected to the high voltage supply. The outer coating is grounded by means of two small springs on the deflection yoke support. The capacity between the two coatings is approximately 500 mmi and is used as a high voltage filter condenser.

SYNC AMPLIFIER AND SEPARATOR (block \#7)-The function of this system is to amplify the sync signal and effect separation of sync from the video.

Sync Amplifer-The first sync cmplifier V118 is a 6SK7 which has α remote cut-off characteristic. The signal from the d-c restorer is fed into this amplifier with the polarity such that the sync is in the negative direction. Noise pulses above sync that remain after the limiting action of the first video grid are thus further compressed and the sync to noise ratio is again improved.

Sync Separator-The sync at the sync separator grid is positive in polarity. The operating voltages applied to the grid, screen and plate, are such that the negative portion of the applied signal is cut off. Thus, the video and blanking pulses are removed and only the sync pulses appear at the sync separator plate.

Second Sync Amplifier- The sync pulses appearing at the second sync amplifier, (V120A), grid are negative in polarity and must be inverted before they can be injected into the sweep oscillators. The signal at the V120A grid is sufficient to drive the tube beyond cut-off and the signal is again clipped. This final clipping removes all amplitude variations between sync pulses due to noise, hum, etc., and it appears with the correct polarity at the plate.
Integrating Network-The purpose of this network is to separate the horizontal from the vertical sync and to pass the vertical to the vertical oscillator.

Since the horizontal sync pulse is of short duration (5 microseconds) and the vertical pulse is of much longer duration (190 microseconds), they can be separated by an r-c filter which is responsive to wave shape. The integrating network which is such α filter is composed of R163, R164, R165, C151,

C152 and C153. In operation it can be considered to be a low. pass filter which by-passes the narrow or high frequency horizontal sync but passes the broad or low frequency vertical sync.

VERTICAL OSCILLATOR DISCHARGE AND OUTPUT (block \#8)-The function of these circuits is to provide a sawtooth of current of the proper frequency and phase to perform the vertical scanning for the kinescope. To produce such a current in the vertical deflection coil, a somewhat differently shaped voltage wave is required.

Since the vertical trace is slow, requiring approximately 16,000 microseconds, and the vertical deflection coil inductance is small, approximately 50 millihenries, the majority of the voltage across the coil during trace is across its resistive component. In order to produce a linear change of current through a resistance, a linear change of voltage is necessary. Retrace, however, must be accomplished within the 666 microsecond vertical blanking time and therefore requires a much faster rate of change of current through the coil. During this time, the effect of the inductance of the coil becomes appreciable because of the required fast rate of change of current. It is therefore necessary to apply a large pulse of voltage across the coil in order to oblain rapid retrace. The composite waveform required to produce a sawtooth of current in the coil is a sawtooth of voltage with a sharp pulse as shown in Figure 18. V121 and V122 supply such a voltage.
Vertical Oscillator and Discharge- A single 635 triode, V121. with its associated components form a blocking oscillator and discharge circuit. The wave form of the voltage at the control grid of this tube with respect to time, is a small, positive surge followed by a large negative drop which returns to the positive condition at a relatively slow rate. During the negative part of the cycle, the grid is beyond cut-off and the discharge capacitor. C158, charges through resistors R169 and R170. When the grid reaches a voltage that permits plate to cathode conduction, C158 discharges through T106 secondary and V121. The discharge current of Cl58 builds up a magnetic field in T106 that in turn induces a positive voltage at the grid of V121. This positive voltage on the V121 grid lowers the plate resistance of the tube and allows C158 to discharge more rapidly. This process builds up very rapidly until Cl58 is nearly discharged. The magnetic field in T106 then collapses and drives the V121 grid negative. The charge placed on C154 due to grid conduction during the positive pulse now holds the grid negative. As the charge on C154 leaks off through R171, R172, etc., the grid slowly becomes less negative and approaches the point which will allow plate to cathode conduction. Just before the conduction point is reached, the 60 cycle vertical synchronizing pulse from the integrating network is applied to the V121 grid. This pulse is sufficient to drive the tube to conduction and the process is repeated. In this manner, the incoming sync maintains control of vertical scanning.

On the plate of V121. a sawtooth of voltage appears due to the slow charging and rapid discharging of Cl58. A sharp negative pulse also occurs during the discharge period. See Fiqure 18. This pulse appears because of the action of R174 and C158, an action which is known as peaking. When V121 is conducting, the plate voltage drops nearly to cathode potential. Cl58 discharges during this time. However, since the conduction time is short, Cl58 cannot be completely discharged due to the time constant of R174 in series with C158. When V121 becomes non-conducting. the plate voltage does not have to rise slowly from cathode potential but instead rises
immediately to an appreciable value due to the charge that remains on ClSB . The plate voltage then slowly rises from this value as Cl58 charges through R170 and R169. Adjustment of the height control R169 varies the amplitude of the sawtooth voltage on V12l plate by controlling the rate at which Cl58 can charge.

The voltage present on the V12l plate is of the shape re quired to produce α sawtooth of current in the vertical detlection coil. It is now necessary to amplify it in a tube capable of supplying a sufficient amount of power.

Vertical Output-A 6K6GT is connected as a triode for the output stage, V122. The vertical output transformer T107 matches the resistance of the vertical deflection coils to the plate impedance of the 6 K 6 GT .

Vertical Linearity Control-R178 is provided as a vertical sweep linearity control. Since the grid-voltage, plate-current curve of V122 is not a straight line over its entire range, the effect of adjustments of R178 is to produce slight variations in the shape of the sawtooth by shifting the operating point of the tube to different points along the curve

Since the slope of the curve varies at these different points and thus varies the effective gain of the tube, it is apparent that adjustments of linearity affect picture height and that such adjustments must be accompanied by readjustments of the height control R169. Adjustments of the height control affect the shape of the sawtooth voltage on the V121 plate so that adjustments of height must be accompanied by readjustments of linearity.

Figure 18-Vertical Sweep Waveforms

HORIZONTAL SYNC DISCRIMINATOR, HORIZONTAL OSCIL. LATOR AND OSCILLATOR CONTROL (block \#9, 10 and 11) -These circuits are a radical departure from the conventional systems used for froming the picture in the horizontal direction. Their features are ease of operation, stability and good noise immunity.

HORIZONTAL OSCILLATOR (block \#10)-The horizontal oscillator is an extremely stable Hartley oscillator operating at the scanning trequency $15,750 \mathrm{cps}$. The primary of T108 (terminals A, B and C) is the oscillator coil. This coil is closely coupled to the secondary winding (terminals D. E and F) and thus feeds a sine wave voltage to V123.

HORIZONTAL SYNC DISCRIMINATOR (block \#9)-The sync discriminator, V123, is a 6ALS dual diode in a circuit which produces a d.c output voltage proportional to the phase displacement between the incoming sync pulses and the sine wave horizontal oscillator voltage.

The sine wave oscillator voltages applied to the plates of V123 are equal in amplitude and opposite in phase. The synchronizing pulses from the second sync amplifier are fed through a small capacitor (Cl 166) to attenuate the vertical sync and then applied to the center tap of T108. The horizontal sync pulses thus appear in phase and of equal amplitude on the diode plates as shown in Figure 19. When the pulse and sine wave are properly phased as in (A), both diodes will produce equal voltage across their load resistances, R191 and R192. However, these voltages are of opposing polarity and therefore the sum of the voltages across these two load resistors will be zero. If the phase of the pulse changes with respect to the sine wave as in (B), the top diode will produce more voltage across R191 than the bottom diode produces across R192. Thus, the voltage across the two will be positive. In (C) the reverse condition exists. It is obvious that the output of the discriminator can swing from positive through zero to negative dependent upon the phase relation of the synchronizing signal and the oscillator. This d.c output is applied to the grid of V124.

BOTTOM DIODE

(B)

Figure 19-Sync Discriminator Waveforms

HORIZONTAL OSCILLATOR CONTROL (block \#11)-V124 the oscillator control is a 6AC7 connected as a reactance tube across the V125 oscillator coil. A change in the d-c output of the sync discriminator produces a change in Gm of V124 which in turn changes the frequency of the oscillator. If the phase of the oscillator shifts with respect to the synchronizing pulse, the corresponding change in d-c from the sync discriminator causes the oscillator to be brought back into correct phase.

Cl67 and Cl70 form a voltage divider to attenuate rapid changes in d-c from the sync discriminator such as are produced by the vertical sync or bursts of noise.
Sync Link-If any phase modulation is present in the trans. mitted sync, a condition which unfortunately still exists in some transmitters to date, a faster response to fluctuations in the sync phase is needed than is provided by the ratio of Cl67 to Cl70.

The sync discriminator will demodulate sync phase variation quite faithfully, however, the filter resistor Rl93 together with the capacity attenuator, Cl 67 and Cl 70 is just as effective in removing this information as it is with respect to the noise disturbances for which it is intended. The removal of this information will produce a horizontal displacement of portions of the picture.

It may be necessary in some instances to sacrifice some noise immunity to compensate for phase modulation in the trans. mitted sync. By switching the link provided for this purpose.

C171 is added across C167 and the speed of response is increased by several times. Therefore, the link of J102 should be connected between terminals 1 and 2 whenever this condition exists.
Before making this change, however, it should first be definitely determined that distortion of the raster is due to phase modulation of the sync. Horizontal "jitter" and distortion of the raster can be caused by operating the picture control at too great a gain setting considering the r-f signal input. Such a setting produces an excessive video signal at the first video amplifier grid. This stage is designed to limit un excessive input in order to improve the signal to noise ratio. If the video input is excessive, the sync is limited and thus removed. At the same time picture information may be introduced into the sync circuits. With extreme excesses of video level, both horizontal and vertir sl sync may be lost. If the receiver operating instructions on page 5 are followed, no difficulty should be experienced with the picture control setting.
HORIZONTAL DISCHARGE, OUTPUT AND REACTION SCAN.
NING (block \#12)-The purpose of these circuits is to produce a sawtooth of current in the deflection coils to provide horizontai scanning for the kinescope.

Horizontal Discharge - One-half of a 6SN7GT is employed for the discharge tube V120B. The function of this stage is to produce a sawtooth voltage for use in the horizontal sweep circuits.

The oscillation in V125 takes place between screen-grid and cathode. Since the peak to peak voltage on its grid is ap. proximately 130 volts, a square wave of voltage is produced on its plate. This wave is differentiated by C176 and R202. and the pulse so obtained is applied to the grid of the discharge tube V120B.

The discharge tube is normally cut off due to bias produced by grid rectification of these incoming pulses. The pulse from V125 overcomes this bias and drives the tube into heavy momentary conduction. During this period the plate voltage falls nearly to cathode potential and C179 discharges rapidly. However, since the period of conduction is quite short, C179 is not completely discharged due to the time constant introduced by R187 and R210 in series with C179. Then when V120B again becomes non conducting, the plate voltage rises quickly to a value determined by the charge remaining on C179. From this point the plate voltage rises slowly and approximately linearly as C179 charges through R204.
Horizontal Output and Reaction Scanning-The operation of these two circuits is so interconnected that it will be neces. sary to discuss them simultaneously. The function of the output tube V126 is to supply sufficient current of the proper wave form to the horizontal deflection coils in order to provide trorizontal scanning for the kinescope. The function of the reaction scanning tube V128 is to stop oscillation of certain components at certain times and thus help provide a linear trace. Other functions of these circuits include the utilization of energy stored in the horizontal deflection coil to furnish retrace and kinescope high voltage. The reaction scanning circuit also recovers some of the energy from the yoke kickback and uses it to help supply the plate power requirements of the output tube.

In operation, the visible portion of the horizontal trace is approximately 53 microseconds in duration. Although the inductance of the horizontal deflection coil is in the order of 8 millihenries, at the horizontal scanning frequency, the reactance of
the coil predominates over its resistance. This is a different case than that encountered in the vertical deflection system and so a different method of operation must be employed.

Horizontal blanking is approximately 10 microseconds in duration. During this time, the kinescope beam must be returned to the left side of the tube, the trace started and made linear. To accomplish all this within the horizontal blanking time, only 7 microseconds can be allowed for the retum trace. In order to obtain such rapid retrace, the horizontal dellection coil, output transformer and associated circuits are designed to resonate at a frequency such that one-half cycle of oscillation at this frequency will occur in the 7 microseconds retrace time limit. This represents a frequency of approximately 71 kc .

During the latter part of the horizontal trace, the output tube conducts very heavily and builds up a strong magnetic field in the deflection coil and output transiormer. When the negative pulse from the horizontal discharge tube is applied to the output tube grid, its plate current is suddently cut off and the magnetic field in the transformer and deflection coil begins to collapse at a rate determined by the resonant frequency of the system. Actually the system is shock excited into oscillation. Since the output tube is cut off and since the voltage generated by the collapsing field is negative on the reaction scanning tube plate so that it is non-conductive, there is essentially no load on the circuit and it oscillates vigorously for one half cycle. If the reaction scanning tube were not present, the circuit would continue to oscillate as shown in Figure $20(A)$. This condition, however, is not permitted. One half cycle of oscillation is permitted because at the end of such a time the cur. rent in the deflection coil has reached a maximum in the opposite direction to which it was flowing at the end of the trace period. This reversal of the direction of flow of current is the requirement for retrace and it is accomplished in the allotted 7 microseconds.
Now that retrace has been completed, it is necessary to start the next trace. The energy which was placed in the deflection coil by the output tube in the latter part of the last trace has not been dissipated. During the one-hall cycle of oscillation, retrace was accomplished with very little loss of energy. The field in the coil was merely reversed in polarity. So, at this point, a strong field exists in the deflection coil.
As mentioned previously, if the coil were not damped, it would continue to oscillate at its natural frequency as shown in Figure $20(A)$. To prevent such an oscillation the reaction scanning tube is brought into action. This tube is in a modified damper circuit which is effectively connected across the deflecting coil.
In the oscillating circuit, the current in the deflection coil laqs the voltage by approximately 90 degrees (one-quarter cycle at oscillation frequency) and when the current has reached its maximum negative value, the voltage across the coil being 90 degrees ahead, has begun to swing positive. When the voltage on the reaction scanning tube plate becomes positive with respect to its cathode, it begins to conduct heavily. This places such a load across the deflection coil that it cannot oscillate. Instead the field begins to decay at a rate permitted by the load which the reaction scanning tube placed on the coil. The circuit constants are such that this decay is linear and at a rate suitable for the visible trace.
If no additional energy were fed into the coil, the field would fall to zero and the kinescope beam would come to rest in the center of the tube. In such an r-l circuit, as the current approaches its final value, it does not do so linearly but asymptotically as indicated in Figure 20 (B). It is therefore
necessary to have the output tube begin to supply power to the deflection coil before the energy in the coil is completely cissipated. Figure 20 (C) shows the shape of the current supplied by the output tube. Although the currents supplied by the output tube and by the decaying field are curved at the cross over point, together they produce a coil current that is linear.

By the time the beam has reached the right side of the kinescope, the output tube is conducting heavily and has built up a strong field in the transformer and coil. At this point. the output tube is again suddenly cut off and the process is repeated.

The 6BG6G plate voltage is supplied through the 5 V4G which is conducting over the major portion of the trace. Capacitors C186 and C188 are charged during this period and this charge is sufficient to supply the 6BG6G plate when the 5V4G is not conducting.

The charge is placed on these capacitors by the receiver $\mathrm{d} \cdot \mathrm{c}$ supply and by the current from the collapse of the field in the horizontal deflecting coil. The a.c axis of the sweep voltage is 275 volts above ground since the T109 secondary is connected to the receiver 275 volt bus. The charge placed on these capacitors by the coil kick-back is therefore in addition to that from the d-c supply and thus the capacitors are charged to a voltage greater than the $d \cdot c$ supply. This permits operation of the 6BG6G at a higher voltage than is obtainable from the receiver power supply and produces an increase in the system efficiency by salvaging energy that would otherwise have been wasted.

Figure 20-Horizontal Sueep Waveforms

Width Control-L196 is provided to vary the output and hence the picture width by shunting a portion of the T109 secondary winding. Clockwise rotation of the adjustment increases the picture width and causes the right side of the picture to stretch slightly.

Horizontal Drive Control-R187, the horizontal drive control, determines the ratio of high peaking and sawtooth voltage on the grid of the output tube and thus affects the point on the trace at which the tube conducts. Clockwise rotation of control increases picture width, crowds the right side of the picture and stretches the left side.

Horizontal Linearity Control-In order to describe the action of the linearity control, some additional facts about damper circuits must be presented.

Figure 21A shows the basic circuit of a conventional damper. During the first hall of the visible trace (which is supplied by the decaying field in the deflection coil), trace linearity is con trolled by the conduction of the damper tube. During this conduction period, capacity Cl is charged by the damper cur. rent. The time constant of Rl and Cl is such that Cl does not completely discharge between traces. This voltage acts as a "bias" on the damper and controls damper tube conduction. By varying the bias on the damper during the trace. a variation of damping action and a consequent control of trace linearity can be achieved.

Figure $21 B$ shows the basic reaction scanning circuit. The tube bias is developed across C 2 which discharges through L1, R2 and C3. By varying L1, the rate and shape of the discharge can be controlled.

Figure 21-Damper Circuils

In Model 641TV, the linearity control is L201 and is provided to effect small improvements in linearity of the left side of the picture. Counterclockwise rotation of the adjustment screw causes the second quarter of the picture to stretch and the first quarter to crowd.

R209 is a damping resistor inserted to control trace linearity on the extreme left edge of the picture. A high and low tap is provided on this resistor by which variations in the yoke and output transformer can be compensated for. This tap is set in the factory and probably will not have to be changed in the field.

HIGH VOLTAGE POWER SUPPLY (block \#13)-The kinescope high voltage supply is unusual in that the power is obtained from the energy stored in the deflection inductances during each horizontal scan. When the 6BG6G plate current is cu: off by the incoming signal, a positive pulse appears on the T109 primary due to the collapsing field in the deflection coil This pulse of voltage is stepped up, rectified, filtered and applied to the second anode of the kinescope. Since the frequency of the supply voltage is high, $(15,750 \mathrm{cps})$, relatively little filter capacity is necessary. Since the filter capacity is small, the stored energy is small, and the high voltage supply is made less dangerous.

LOW VOLTAGE POWER SUPPLY (block \# 15)-The low volt. age power supply provides the filament and plate voltages for the receiver. The unit is conventional, and employs two 5U4G rectitier tubes in parallel to supply 400 volts d.c at approximately 270 ma .

Figure 22-Television Chassis Top View

Figure 23-Television Chassis Bottom Vieu

TEST EQUIPMENT-To properly service the television chassis of this receiver, it is recommended that the following test equipment be available:

R-F Sweop Generator meeting the following requirements:

(a) Frequency Ranges

18 to $30 \mathrm{mc} ., 1 \mathrm{mc}$. sweep width
40 to $90 \mathrm{mc} ., 10 \mathrm{mc}$. sweep width
170 to $225 \mathrm{mc} ., 10 \mathrm{mc}$. sweep width
(b) Output adjustable with at least 11 volt maximum.
(c) Output constant on all ranges.
(d) "Flat" output on all attenuator positions.

Cathoderay Oscilloscope, preferably one with a wide band vertical deflection, an input calibrating source, and a low capacity probe.
Signal Generator to provide the following frequencies.
(a) I-F frequencies
19.75 mc . adjacent channel picture trap
21.25 mc . sound i-f and sound traps
21.8 mc. converter transiormer
22.3 mc. second picture i-f transformer
23.4 mc. fourth picture i-f coil
25.2 mc. third picture i-f coil
25.3 mc. first picture i-f transformer
25.75 mc . picture carrier
27.25 mc . adjacent channel sound trap
(b) R-F irequencies

Channel Number	Picture Carrier Freq. Mc.	Receiver R-F Osc. Freq. Mc.	Sound Carrier Freq. Mc.
1	45.25	71.	49.75
2	55.25	81	59.75
3	61.25	87	65.75
4	67.25	93	71.75
5	77.25	103	81.75
6	83.25	109	87.75
7	175.25	201	179.75
8	181.25	207	185.75
9	187.25	213	191.75
10	193.25	219	197.75
11	199.25	.. 225	203.75
12	205.25	.. 231	209.75
13	211.25	.. 237	215.75

(c) Output on these ranges should be adjustable and at least . 1 volt maximum.

Heterodyne Frequency Meter with crystal calibrator if the signal generator is not crystal controlled.
Electronic Voltmeter of Junior "VoltOhmyst" type and a high voltage multiplier probe for use with this meter to permit measurements up to 10 kv .

Service Precautions-Il necessary to remove the chassis from cabinet, the kinescope rust first be removed. See Figures 4 and 7. If possible, the chassis should then be serviced without the kinescope. However, if it is necessary to view the raster
during servicing, the kinescope should be infserted only after the chassis is turned on end. The kinescope should never be allowed to support its weight by resting in the deflecting yoke. A bracket should be used to support the tube at its viewing screen.

By turning the chassis on end with the power transformer down, all adjustments will be made conveniently available. Since this is the only sale position in which the chassis will rest and still leave all adjustments accessible, the trimmer location drawings are oriented similarly for ease of use.

CAUTION: Do not short the kinescope second anode lead. Its short circuit current is approximately 3 ma . This represents approximately 9 watts dissipation and a considerable overload on the high voltage filter resistor R235.
Adjustments Required-Normally, only the r.f oscillator line will require the attention of the service technician. All other circuits are either broad or very stable and hence will seldom require re-adjustment.
Due to the high frequencies at which the receiver operates the r-f oscillator line adjustment is critical and may be affected by a tube change. The line can bn adjusted to proper frequency on channel 13 with practically any 6J6 tube in the oscillator socket. However, it may not then be possible to adjust the line to frequency on all of channels 7, 8, 9, 10. 11 and 12. To be satisfactory as an oscillator tube, it should be possible to adjust the line to proper frequency with the fine tuning control in the middle third of its range. It may therefore be necessary to select a tube for the oscillator socket. In replac. ing. if the old tube can be matched for frequency by trying several new ones. this practice is recommended. At best, however, it will probably be necessary to completely realign the oscillator line when changing the tube.

Tubes which cannot be used as oscillator will work satisfactorily as r-i amplifier or converter.
The detailed alignment procedure which follows is intended primarily as a discussion of the method used, precautions to be taken and the reasons for these precautions. Then, for more convenient reference during alignment, a tabulation of the method is given. All the information necessary for alignment is given in the table, however, alignment by the table should not be attempted before reading the detailed instructions.

ORDER OF ALIGNMENT-When a complete receiver alignment is necessary, it can be most conveniently performed in the following order:-

Sound discriminator

Sound i-i transformers
Picture i-1 traps
Picture i-1 transformers
R-F and converter lines
R-F oscillator line
Converter grid trap
Retouch picture i-f transformers
Sensitivity check

SOUND DISCRIMINATOR ALIGNMENT-

Set the signal generator for approximately 11 volt output at 21.2 jmc . and connect it to the third sound i-1 grid.

Detune Tll3 secondary (bottom).
Set the "VoltOhmyst" on the 10 volt scale.
Connect the meter in series with a one megohm resistor to the junction of diode resistors R219 and R220. Do not remove the discriminctor shield to make connection to R219 and R220. Connection can be easily made by fashioning a hook on the 1 meg resistor lead and making connection to the transformer lug " C " through the hole provided for the adjusting tool.

Adjust the primary of Tll3 (top) for maximum output on the meter.

Connect the "VoltOhmyst" to the junction of R236 and the sound output cable.

Adjust Tll3 secondary (bottom). It will be found that it is possible to produce a positive or negative voltage on the meter dependent upon this adjustment. Obviously to pass from a positive to a negative voltage, the voltage must go through zero. T113 (bottom) should be adjusted so that the meter indicates zero output as the voltage swings from positive to negative. This point will be called discriminator zero output.

Connect the sweep oscillator to the grid of the third sound i.f amplifier.

Adjust the sweep band width to approximately 1 mc . with the center frequency at approximately 21.25 and with an output of approximately 1 volt.

Connect the oscilloscope to the junction of R236 and the sound output cable.

The pattern obtained should be similar to that shown in T.yure 30A. If it is not, adjust the Tll3 (top) until the wave form is symmetrical.

The peak to peak bandwidth of the discriminator should be approximately 350 kc . and it should be linear from 21.175 mc . to 21.325 mc .

SOUND I-F ALIGNMENT

Connect the sweep oscillator to the second sound i-f amplifier grid.

Connect the oscilloscope to the third sound i-f grid return (terminal A Tll2) in series with a 33.000 ohm isolating resistor.

Insert a 21.25 mc . marker signal from the signal generator into the second sound i.i grid.

Adjust T112 (top and bottom) for maximum gain and symmetry about the 21.25 mc . marker. The pattern obtained should be similar to that shown in Figure 30B.
The output level from the sweep should be set to produce approximately 3 volt peak-to-peak at the third sound i-f grid return when the final touches on the above adjustment are made. It is necessary that the sweep output voltage should not exceed the specified values otherwise the response curve will be broadened, permitting slight misadjustment to pass unnoticed and possibly causing distortion on weak signals.

Connect the sweep and signal generator to the top end of the trap winding of T2 (on top of the chassis). Adjust Tlll (top and bottom), for maximum gain and symmetry at 21.25 mc .
Reduce the sweep output for the final adjustments so that approximately .3 volt peak-to-peak is present at the third sound i-f grid return.
The band width at 70% response from the first sound i-f grid to the third i-i grid should be approximately 200 kc .

PICTURE I-F TAAP ADJUSTMENT-

Turn the receiver picture control fully clockwise.
Remove the 6AT6 a.g.c amplifier, V108.
Construct a bias box by shunting a 10.000 ohm potentiometer across a $4 \frac{1}{2}$ rolt battery. Connect the positive terminal of the battery to the receiver chassis. Connect the arm of the potentiometer to pin 5 of V109. Adjust the potentiometer to provide -3 volts at its arm.
Set the channel switch to channel 13.
Connect the "VoltOhmyst" across the picture second detector load resistor R137.

Connect the output of the signal generator to the junction of L80 and R6. This connection is available on a terminal lug through a hole in the side apron of the chassis, beside the r-f unit. This hole is normally down when the chassis is in the recommended position. Connection can be easily made, however. by allowing the receiver to hang over the edge of the test bench by a few inches.
Set the generator to each of the following frequencies and tune the specified adjustment for minimum indication on the "VoltOhmyst." In each instance the generator should be checked against a crystal calibrator to insure that the generator is exactly on frequency

$$
\begin{aligned}
& 21.25 \mathrm{mc} \text {-T105 (top) } \\
& 21.25 \mathrm{mc} \text {-T2 (top) } \\
& 27.25 \mathrm{mc} \text {-T103 (top) } \\
& 27.25 \mathrm{mc}-\mathrm{T} 102 \text { (bottom) Model 8TV41 only } \\
& 19.75 \mathrm{mc}-\mathrm{T} 104 \text { (top) }
\end{aligned}
$$

PICTURE I-F TRANSFORMER ADJUSTMENTS-

Set the signal generator to each of the following frequencies and peak the specified adjustment for maximum indication on the "VoltOhmyst."
$21.8 \mathrm{mc}-$-T2 (bottom
$25.3 \mathrm{mc}-$-T103 (bottom)
$22.3 \mathrm{mc}-$-T104 (bottom)
$25.2 \mathrm{mc}-$-L183 (top of chassis)
23.4 mc -L185 (top of chassis)

L183 (3rd pix I.F coil) is T102 in Model 8TV41.

If T104 (bottom) required adjustment, it will be necessary to reset T104 (top) for minimum response at 19.75 mc .

Plature I-F Oscillation-If the receiver is badly misaligned and two or more of the i.f transformers are tuned to the same frequency, the receiver may fall into i-f oscillation. I-F oscillation shows up as a voltage in excess of 3 volts at the picture detector load resistor. This voltage is unaffected by r-f signal input and sometimes is independent of picture control setting.

TELEVISION ALIGNMENT PROCEDURE

If such a condition is encountered, it is sometimes possible to stop oscillation by adjusting the transformers approximately to frequency by setting the adjustment stud extensions of T 2 . T103. T104. T105, L183, and L185 to be approximately equal to those of another receiver known to be in proper alignment. If this does not have the desired effect, it may now be possible to stop oscillation by increasing the grid bias. If so. it shoula then be possible to align the :ransformers by the usual method. Once áligned in this manner, the i-f should be stable with reduced bias.
In Model 8TV41, T102 is used in place of L183 (3rd. pix i-f coil).
If the oscillation cannot be stopped in the above manner, shunt the grids of the first three i-f amplifiers to ground with 1000 mmi . capacitors.

Connect the signal generator to the fourth i-f grid and adjust L185 to frequency.

Remove the shunting capacitor from the third i-f grid, connect the signal generator to this grid and align L183 (or T102).

Remove the shunting capacitor from the second i-i grid, connect the signal generator and align T104.

Remove the shunt from the first i-i grid, connect the signal generator to the receiver antenna terminals, and align T2 to irequency.
If this does not stop the oscillation, the difficulty is not due to i-f misalignment as the i-f section is very stable when properly aligned. Check all i-f by-pass condensers, transformer shunting resistors, tubes, socket voltages, etc.

R.F AND CONVERTER LINE ADJUSTMENT-

Connect the rif sweep oscillator to the receiver antenna terminals. If the sweep oscillator has a 50 ohm single-ended output. it will be necessary to obtain balanced output by properly terminating the sweep output cable and connecting a 120 ohm non-inductive resistor in series between the sweep output cable and each receiver antenna terminal as shown in Figure 24.

Figure 2f-Unhalanced Sureep Cable Termination
Connect the oscilloscope to the junction of L80 and R6 (in the r- 1 tuning unit) through a $10,000 \mathrm{ohm}$ resistor.

By-pass the first picture i-f grid to ground through a 1000 mmid . capacitor. Keep the leads to this by-pass as short as possible. If this is not done, lead resonance may fall in the r-f range and cause an incorrect picture of the $\mathrm{r}-\mathrm{f}$ response.
Turn the picture control fully clockwise. Connect the positive terminal of the bias box to the receiver chassis and the arm to pin 5 of V109. Set the potentiometer for -1 volt at its arm.

Connect the signal generator loosely to the receiver antenna terminals.

Set the Cl4 adjustment screw to its approximate normal operating position, $1^{1 / 2}$ turns out from maximum capacity. If the Cl4 capacity is less than this it may produce a resonance in channel 1,2 or 3 . During r-f alignment, such a resonance may show up as a "suck out" in the response curve of one of these channels. Under such conditions it will be impossible to obtain the proper response. With Cl4 set as specified or in later production receivers in which Cl4 is fixed, no such difficulty should be experienced.

Since channel 7 has the narrowest response of any of the high frequency channels, it should be adjusted first.

Set the receiver channel switch to channel 7 (see Figure 29 for switch shaft flat location versus channel).

Set the sweep oscillator to cover channel 7.
Insert markers of channel 7 picture carrier and sound carrier 175.25 mc . and 179.75 mc .

Adjust L25, L26, L51 and L52 (see Figure 31) for an approximately flat topped response curve located symmetrically between the markers. Normally this curve appears somewhat overcoupled or double humped with a 10 or 15% peak to valley excursion and the markers occur at approximately 90% response. See Figure 31. channel 7. In making these adjustments, the stud extension of all cores should be kept approxi. mately equal.
Check the response of channels 8 through 13 by switching the receiver channel switch, sweep oscillator and marker oscillator to each of these channels and observe the response obtained. See Figure 31 for typical response curves. It should be found that all these channels have the proper shaped response with the markers above 70% response. If the markers do not fall within this requirement on one or more high frequency channels, since there are no individual channel adjustments, it will be necessary to readjust L25, L26, LS1 and L52, and possibly compromise some channel slightly in order $t 0$ get the markers up on other channels. Normally however, no difficulty of this type should be experienced since the higher frequency channels become comparatively broad and the markers easily fall within the required range.

Channel 6 is next aligned in the same manner.
Set the receiver to channel 6 .
Set the sweep oscillator to cover channel 6.
Set the marker oscillator to channel 6 picture and sound carrier frequencies.

Adjust L11. L12. L37 and L38, for an approximately flat-topped response curve located symmetrically between the markers.
Check channels 5 down through channel 1 by switching the receiver, sweep oscillator and marker oscillator to each channel and observing the response obtained. In all cases, the markers should be above the 70% response point. If this is
not the case. L11. L12. L37 and L38 should be retouched. On final adjustment, all channels must be within the 70% speciffication.

Coupling between r-f and converter lines is augmented by a link between L12 and L37. This link is adjusted in the factory and should not require adjustment in the field. On channel 6 with the link in the minimum coupling position, the response is slightly overcoupled with approximately a 10% excursion from peak-to-valley. With the coupling at maximum, the response is somewhat broader and the peak-to-valley excursion is approximately 40%. The amount of coupling permissible is timited by the peak-to-valley excursion which should not be greater than 30% on any channel.

R.F OSCILLATOR LINE ADJUSTMENT

The r-f oscillator line may be aligned by adjusting it to beat with a crystal calibrated heterodyne frequency meter. or by feeding a signal into the receiver at the rif sound carrier frequency and adjusting the oscillator for zero output from the sound discriminator. In this latter case the sound discriminator must first have been aligned to exact frequency. Either method of adjustment will produce the same results. The method used will depend upon the type of test equipment available.

If the heterodyne frequency meter method is used. couple the meter probe loosely to the receiver oscillator.

If the r-f sound carrier method is used, connect the "VoltOhmyst" to the sound discriminator output (junction of R236 and the sound output cable.

Connect the signal generator to the receiver antenna terminals.
The order of alignment remains the same regardless' of which method is used.
Since lower frequencies are oblained by adding steps of inductance, it is necessary to align channel 13 first and continue in reverse numerical order.

Set the receiver channel switch to channel 13 .
Adjust the frequency standard to the correct frequency (237 mc. for heterodyne frequency meter or 215.75 mc . for the signal generator).

Set the fine tuning control to the middle of its range while making the adjustment.

Adjust L77 and L78 for an audible beat on the heterodyne frequency meter or zero voltage from sound discriminator. The core stud extensions should be maintained equal by visual inspection except as discussed in the following paragraph entitled Oscillator Pulling.

Switch the receiver to channel 12.
Set the frequency standard to the proper frequency as listed in the alignment table.

Adjust L76 for indications as above.
Adjust the oscillator to frequency on all channels by switching the receiver and the frequency standard to each channel and adjusting the appropriate oscillator trimmer for the speci-
fied indication. It should be possible to adjust the oscillator to the correct frequency on all channels with the fine tuning control in the middle third of its range

After the oscillator has been set on all channels, start back at channel 13 and recheck to make sure that all adjustments are correct.

Oscillator Pulting-If in setting the low frequency channels, the high frequency channels are pulled noticeably off frequency, or if it is impossible to set channels 10,11 or 12 within the range of their respective trimmers, it may be due to interaction between sections of the line. A quick check can be made to determine if this is the case.

The shorting section of the r-f oscillator channel switch, (rotor), should be at ground r-f potential. If this is not the case due to dissymmetry in the circuit, the shorting section may be somewhat above ground. Since at these high frequencies, even the length of the shorting bar represents an appreciable portion of a wave length, the lower frequency section is effectively tapped up on the high frequency section and reflects reactance into it. This reactance varies with low frequency channel oscillator adjustments thus causing a shift in oscillator frequency on the upper channels. One way to cure this difficulty is to adjust the shorting switch to ground potential. This can be accomplished by staggering L77 and L78 until this condition is achieved.

To find it dissymmetry exists, remove the bottom cover from the r-f unit.

Set the channel switch to channel 10 .
Disconnect any input from the receiver.
Connect the "VoltOhmyst" to R6 through the hole in the side of chassis, and measure the oscillator injection into the converter grid.

Take an insulated metal prod and touch the center of the oscillator rotor shorting bar. If the meter reading changes, it indicates that the bar is not at rif ground.

To balance the line, switch to channel 13 and stagger the cores for one or more turns (usually L78 out and L77 in). The final adjustment must leave the oscillator on correct channel 13 frequency

Switch back to channel 10 and touch the switch rotor as before. As before, meter movement indicates unbalance.

For fine balancing touch the switch contacts for channel 10. When balanced, the meter will show equal reduction for both contacts. Continue staggering the cores until balance is obtained.

Repeat the oscillator adjustments for all channels.
In later production receivers, several rif oscillator coil changes were made and a capacitor C19 was added to minimize the oscillator pulling effect. In receivers in which C19 is present the staggering of cores should not be necessary.

641TV, 8TV41

TELEVISION ALIGNMENT PROCEDURE

CONVERTER GRID TRAP ADJUSTMENT-

Connect the sweep generator to the receiver antenna terminals. Observe the precaution for single-ended output generators mentioned in the r-f alignment section.

Connect the oscilloscope to R6 through 10.000 ohms

Shunt the first picture i.f grid to ground with a 1.000 mmf capacitor, keeping the leads as short as possible.

Couple the signal generator loosely to the receiver antenna terminals.

Switch the channel switch and signal generator through the low frequency channels and observe the response on each range.

Select a channel which is essentially flat over the operating range with the sound and picture carrier markers at 90% or higher on the response curve.

Remove the capacitor from the first picture i-f grid and shunt it from the second picture if grid to ground.

Adjust Cl4 for an r-f response curve similar to the one obtained with the first picture i.f grid shunted. See Figure 32

In later production receivers. Cl4 is fixed and obviously this adjustment cannot be made on those sets. In such receivers. this step should be followed as a check to assure that proper converter operation is obtained.

RETOUCHING OF PICTURE I-F ADIUSTMENTS-

The picture i-f response curve varies somewhat with change of bias and for this reason it should be aligned with approximately the same signal input as it will receive in operation If the receiver is located at the edge of the service area, it should be aligned with approximately -1 volt i-f grid bias. However, for normal conditions, (signals of 1000 microvolts or greater), it is recommended that the picture if be aligned with a grid bias of -3 volts.

Connect the r-f sweep generator to the receiver antenna terminals.

Connect the signal generator to the antenna terminals and feed in the 25.75 mc i-f picture carrier marker and a 22.3 mc marker.

Connect the oscilloscope across the picture detector load resistor.

Remove the shunting capacitor from the second picture i-f grid.
Turn the picture control fully clockwise. Connect the bias box and set the potentiometer for -3 volts at its arm.

Set the sweep output to produce approximately 3 volt peak-topeak across the picture detector load resistor.

Observe and analyze the response curve obtained. The re sponse will not be ideal and the $i-1$ adjustments must be retouched in order to obtain the desired curve. See Figure 33

If for example as in Figure $33 \AA$ the response is peaked in the middle, and the picture carrier is low on the response curve slope, then the high Q transiormer T103, (which is peaked at 25.3 mc .-near the picture carrier 25.75 mc .), should be re-
touched to bring the picture carrier response up to approxi mately 40%.

It will then probably be found that the response is generally high on the low frequency end of the curve as in Figure 33B If this is the case, adjust L183. (25.2 mc . and fairly broad), to bring the high frequenry end response up. The picture car rier is thus brought still further up the slope and an approxi mately flat topped response curve is obtained as in Figure 33C
In Model 8TV41, T102 is used in place of Ll83 (3rd, pix i-f coil).
If Tl04 (bottom) required any adjustment, it will be necessary to reset Tl04 (top) for minimum response at 19.75 mc .

On final adjustment the picture carrier marker must be at approximately 45% response. The curve must be approximately flat topped and with the 22.3 mc , marker at approximately 100\% response.

The most important consideration in making the i-f adjustments is to get the picture carrier at the 45% response point. If the picture carrier operates too low on the response curve. loss of low frequency video response, of picture brilliance, of blanking, and of sync may occur. If the picture carrier operates too high on the response curve, the picture definition is impaired by loss of high frequency video response.

The above example is used to show the line of reasoning involved in making the retouching adjustments. Since there are five tuned circuits each aligned to a different frequency, it is obvious that many different conditions can exist, however, similar reasoning will apply to each case. With some experience in making these adjustments, it will be found that the desired response can be readily oblained. In making these adjustments, care should be taken that no two trans. formers are tuned to the same frequency as i-f oscillation may result.

Replace the 6AT6 a-g-c amplifier, V108.

RESPONSE CURVES-The response curves shown on page 30 and referred to throughout the alignment procedure were taken from a production set. Although these curves are typical some variations can be expected. Channel 2 response (not shown) is similar to that of channel 3.

The response curves are shown in the classical manner of presentation, that is with "response up" and low frequency to the left. The manner in which they will be seen in α çiven test set-up will depend upon the characteristics of the oscilloscope and the sweep generator. The curves may be seen in. verted and/or switched from left to right depending on the deflection polarity of the oscilloscope and the phasing of the sweep generator.

ALIGNMENT TABLE-Both methods of oscillator alignment are presented in the alignment table. The service technician may thereby choose the method to suit his test equipment. If it is found that the dual listing is confusing, the unwanted listing can be easily erased.

Figure 26-Top Chassis Adjustments

Figure 27-Bottom Chassis Adjustments

Figure 28-Test Connection Points

Figure 29-R-F Oscillator Adjustments

Figure 30-Sound Discriminator and I-F Response

Figure 31-R-F Response

Figure 32-Effects of C14 Adjustments

Figure 33-Overall Response
the detailed alignment procedure begin fing on page 20 should be read before alignment by use of the table is attempted.

$\begin{gathered} \text { 8TER } \\ \mathrm{No} . \end{gathered}$	$\begin{gathered} \text { CONNECT } \\ \text { SIGNAL } \\ \text { GENERATOR } \\ \text { TO } \end{gathered}$	$\begin{gathered} \text { gIGNAL } \\ \text { GEN. } \\ \text { FREQ } \\ \text { MC. } \end{gathered}$	$\begin{aligned} & \text { CONNECT } \\ & \text { GWEEP } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$	$\begin{aligned} & \text { SWEEP } \\ & \text { GEN. } \\ & \text { FREO. } \\ & \text { MC. } \end{aligned}$	CONNECT OSCILLOSCOPE	$\begin{aligned} & \text { CONNECT } \\ & \text { "VOLTOHMYST" } \\ & \text { TO } \end{aligned}$	MISCELLANEOUS CONNECTIONS AND INSTRUCTIONS	ADJUST	$\begin{gathered} \text { REFER } \\ \text { TO } \end{gathered}$
DISCRIMINATOR AND SOUND I-F ALIGNMENT									
1	3rd sound i-f grid (pin 1, V106)	$\begin{gathered} 21.25 \\ 1.2011 \\ \text { output } \end{gathered}$	Not used		Not uned	In eorios with 1 mog. to junction of R219 \& R220		Detune T113 (bottom). Adjust Tll3 (top) for max. on meter	Fig. 28 Fig. 27 Fig. 26
2	-	-•	*		*	Junct. of R236 \& sound output cable	\qquad	T113 (bottom) for moro on metor	Fig. 28 Fig. 27
3	-	-	3rd sound i-f grid (pin 1, V106)	$\left\|\begin{array}{c} 21.25 \\ \text { conter } \\ 1 \text { mc. } \\ .1 \text { v. out } \end{array}\right\|$	Junction of R236 \& Sound Output Cable	Not used	Check for eymmetr form (ponitive a ne adjust Tll3 (top) un	ical reeponse wavegative). If not equal th they are equal	Fig. 28 Fig. 30
4	2nd sound i-f grid (pin 1, V105)	21.25 ducod output	2nd sound i-f grid	21.25 reduced output	Torminal A. T112 in aorien with 33.000 ohme	*	Swoop output reduced to provide .3 volt p-to-p on scope	T112 (top \& bottom) for max. gain and eymmetry at 21.25 mc .	Fig. 28 Fig. 26 Fig. 27 Fig. 30
5	Trap winding on T2 (top of chas. eis)	21.23 reduced output	T2 ${ }^{\text {rap }}$ winding on	21.25 reduced output	"	"	"	Tlll (top \& bottom) for max gain and eymmetry at 21.25 mc .	$\begin{gathered} \text { Fig. } \end{gathered} 26$

PICTURE I-F AND TRAP ADJUBTMENT

8	Not uneed		Not uned	Not used	Pin 5, V109	Remove V108. Connect bial boz + to gnd. - to Pin 8 V109 socket	Picture control max. bias box -3 volts.	Fig. 28
7	Junction Cl4 and R6	21.25	*	"	dunction of L188 \& R137	Meter on 3 volt ecale. Receiver on channel 13	Tl05 (top) for min. on metor	Fiq. 26
8	"	21.25	-•	*	*	\cdots	T2 (top) for min.	Fig. 28 Fig. 26
			-	"	"	-	T103 (top) for min.	-
9	'*	27.25	\cdots				102 (bottom) for	Fig. 27
10	*	21.25	\cdots	-*	.		min.	
				-•	*	*	T104 (top) for min.	Fig. 26
11	\cdots	18.75	.			*	T2 (bottom) for	Fig. 27
12	"	21.8	"	-	*	-	trax.	Fig. 27
13	"	25.3	"	' ${ }^{\prime}$	'	\cdots	Tl03 (bottom) for max.	"
14	*	22.3	"	'	"	-	T104 (bottom) for max.	"
15	'*	25.2	،	' ${ }^{\prime}$	-	"	Tl02 (top chasais) for max.	Fig. 26
16	"	23.4	*	"	*	*	L185 (top chansis) for max.	'*
17	If T104 (bottom)	uired	djustmen	step 11.				

R-F AND CONVERTER LINE ALIGNMENT

18	Not uned		Not uned		Not uned			Picture control max. biak box -1 volt.	Fig. Fig. 28
18	Antenna torminal (loosely)	$\begin{gathered} 175.25 \\ 17.25 \\ 179.75 \end{gathered}$	Antenna torminale (eoce tozt for precaution)	$\begin{gathered} \text { Swoop- } \\ \text { ing } \\ \text { channel } \\ 7 \end{gathered}$	Junction Cl4 and R8 through 10,000 ohm eories resistor	Not used	lst i-f grid by-panas to gnd. with 1000 mmf. Rectiver on channel 7	L25, L28, LS1 \& L52 for approz: fat top reaporae betweon markers. Markers above $\mathbf{7 0 \%}$	Fig. 28 Fig. 27 Fig. ${ }^{31}$
20	"	$\begin{aligned} & 181.25 \\ & 185.75 \end{aligned}$	"	${\underset{8}{\text { channel }}}^{\text {chan }}$	*	"	Receiver on charnol 8	Check to see that reeponee le as above	${\underset{(B)}{\text { Fig. }}}^{31}$
21	*	$\begin{aligned} & 187.25 \\ & 191.75 \end{aligned}$	-	channel	"	-•	Recelver on channol 8	" ${ }^{\text {c }}$	$\mathrm{Fig.}_{\text {(9) }}{ }^{31}$
22	.	$\begin{aligned} & 193.25 \\ & 197.75 \end{aligned}$	"	$\underset{10}{\text { channel }}$	-•	*	Receivar on channol 10	"	$\begin{gathered} \text { Fig. } \\ (10) \end{gathered}$
23	*	$\begin{aligned} & 199.25 \\ & 203.75 \end{aligned}$	\bullet	channel 11	'•	-	Receiver on channol 11	-•	Fig. 31 (11)
24	**	205.25 208.75	"	channel 12	"	'	Recoivar on channel 12	-•	$\text { Fig. }_{(12)^{31}}$
25	"	$\begin{aligned} & 211.25 \\ & 215.75 \end{aligned}$	-‘	channel 13	*	"	Recoiver on channel 13	"	$\text { Fig. }{ }_{(13)}{ }^{31}$

26 If the response on any channol (Atepe 20 through 25) is bolow 70% at elther marker. awitch to that channel and adjust L25, L26, L51 8 L52 to pull

TELEVISION ALIGNMENT TABLE

$\begin{aligned} & \text { STEP } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { SIGNAL. } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$	$\begin{aligned} & \text { SIGNAL } \\ & \text { GEN. } \\ & \text { FREO. } \\ & \text { MC. } \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { SWEEP } \\ \text { GENERATOR } \\ \text { TO } \end{gathered}$	$\begin{aligned} & \text { SWEEP } \\ & \text { GEN. } \\ & \text { FREO. } \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { OSCILLOSCOPE } \\ \text { TO } \end{gathered}$	CONNECT "VOLTOHMYST" TO	MISCELLANEOUS CONNECTIONS AND INSTRUCTIONS	ADJUST	$\begin{aligned} & \text { REFER } \\ & \text { TO } \end{aligned}$

R-F AND CONVERTER LINE ALIGNMENT (Cont'd)

27	Antenna terminals (loosely)	$\begin{aligned} & 83.25 \\ & 87.75 \end{aligned}$	Antenna terminale (see text for precaution)	Sweoping channel 6	Junction Cl4 and R6through 10,000 ohm series re--istor	Not uned	Receiver on chan. nel 6	L11, L12, L37 \& L38 for reeponee as above	Fig. 31 (6)
28	-	$\begin{aligned} & 77.25 \\ & 81.75 \end{aligned}$	*	$\underset{5}{\text { channel }}$	-	*	Receiver on chan. nol 5	Check to see that response is as above	Fig. 11 (5)
29	-*	$\begin{aligned} & 67.25 \\ & 11.75 \end{aligned}$	"	channel 4	*	*	Receiver on channol 4	-	Fig. 31 (4)
30	*	$\begin{aligned} & 61.25 \\ & 65.75 \end{aligned}$,'	${\underset{3}{\text { channel }}}^{2}$	' ${ }^{\prime}$	*	Recelver on channol 3	'	Fig. 31 (3)
31	"	$\begin{aligned} & 55.25 \\ & 59.75 \end{aligned}$	'	${ }_{2}^{c h a n n e l}$	"	*	Recelver on chan. nol 2	'	
32	*	$\begin{aligned} & 45.25 \\ & 49.75 \end{aligned}$	*	channel	*	*	Receiver on channel 1	*	Fig. 31 (1)

R-F OSCILLATOR ALIGNMENT

$\begin{aligned} & \text { STEP } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { SIGNAL } \\ \text { GENERATOR } \\ \text { TO } \end{gathered}$	$\begin{gathered} \text { GIGNAL } \\ \text { GEN } \\ \text { FREQ } \\ \text { MC. } \end{gathered}$	CONNECT HETERODYNE FREQ. METER TO	$\begin{gathered} \text { HET. } \\ \text { METER } \\ \text { FREO. } \\ \text { MC. } \end{gathered}$	$\begin{gathered} \text { CONNECT } \\ \text { OSCILLOSCOPE } \\ \text { TO } \end{gathered}$	CONNECT "VOLTOHMYST"	MISCELLANEOUS CONNECTIONS AND INSTRUCTIONS	ADJUST	REFER TC
34	Antenna terminale	215.73	Loonely coupled to r-f osc.	237	Not used	Junction of R236 andeound output cable for sig. gen. mothod only	Fine tuning centered for all ad. juatment Receiver on chan. nel 13	L77 \& L78 for zero on meter or beat on hot. freq. meter	Fig. 28 Fig. 27
35	"	209.75	*'	231	*	${ }^{\prime \prime}$	Rec. on chan. 12	L76 as above	Fig. 29
36	\cdots	203.75	' ${ }^{\prime}$	225	*	' ${ }^{\prime}$	Rec. on chan. 11	L74 as above	"
37	"	197.73	''	219	${ }^{\prime}$	-	Rec. on chan. 10	L72 as above	"
38	-	181.73	*	213	"	"	Rec. on chan. 9	L70 a above	"
38	*	185.75	-	207	''	'	Roc. on chan. 8	L88 as above	"
40	'*	179.73	"'	201	'*	-	Rec. on chan. 7	168 as above	"
41	-	87.75	-*	109	''	\cdots	Rec. on chan. 6	L63 \& Le4 as above	Fig. 27
42	-	81.73	' ${ }^{\prime}$	103	-	*	Rec, on chan. 5	L82 as above	Fig. 29
43	-	71.75	**	83	*	''	Rec. on chan. 4	L00 as above	"
44	"	65.75	'*	87	"	**	Rec. on chan, 3	L58 a above	*
45	"	59.75	*	81	*	**	Rec, on chan. 2	L56 as above -	-
46	-	49.73	'*	71	*	*	Rec. on chan. 1	L54 an above	"

Repeat steps 34 through 46 a a check.
RETOUCHING PICTURE 1.F TRANSFORMERS

48			Not uned	Not uned	Pin 5 of V109	Receiver 2 aweep on a channel betweon 1 and 6 known to have good r-f reaponse	$\begin{aligned} & \text { Picture control } \\ & \text { maz. biae boz - } \\ & \text { volte } \end{aligned}$	Fig. 28
49	Antenna terminale (loosoly)	$\begin{aligned} & 22.3 \\ & 28.75 \end{aligned}$	-	Junction and R137	Not used	Retouch pir i-f ad T104 bottome T102 to provide proper re	ustmente (T2. T103. L L185) an nocensary ponee	$\begin{array}{ll} \hline \text { Fig } & 28 \\ \text { Fig } & 27 \\ \text { Fig } & 33 \end{array}$

30. If T104 (bottom) wae adjusted in etep 49, repeat atop 11 and atep 49. Replace V108 upon completion.

ANTENNA TRAP ADJUSTMENT
Select 1 of the 6 itep below for altable method for type of interference encountored.

31-1	Antenna terminale through tormination	193.25	Loosoly coupled to r -f ouc.	109	Not used	Junction of L188 * R137	Rec. on chan. 6	L81 \& L82 for min. on meter	Fig. 28 Fig. 26
81-2	-	109	*	87	*	*	Rec, on chan. 3	"	-•
81-3	-•	179.75	-*	103	'	*	Rec, on chan. 5	*	-*
81.4	'.	103	"	81	"	*	Rec. on chan. 2	"	'
51-5	.	$\begin{gathered} \text { FM } \\ \mathbf{g}_{\text {ta }} . \\ \boldsymbol{F}_{\mathbf{r e q}} . \end{gathered}$	*	81	-•	*	.	"	*
51-6	Not used		Not uned		Not uned	Not used	Roc. on interfered channel	L81 \& L82 for min. interference	'

SENSITIVITY CHECK
52 Connect antenna to receiver through attenuater pad to provide weak eignal. Compare picture and eound obtained to that obtained on other receivere under the earne conditions.

Following is a list of symptoms of possible failures and an indication of some of the possible faults.

NO RASTER ON KINESCOPE:

(1) Incorrect adjustment of ion trap magnet-Coils reversed either front to back or top to bottom. ion trap magnet coil open.
(2) V126 or V127 inoperative-check voltage and waveiorm on grids and plates.
(3) No high voltage if horizontal deflection is operating as evidenced by the correct waveform on terminal 4 of horizontal output transformer, the trouble can be isolated to the 8016 circuit. Either the 5109 high voltage winding is open. (points 2 to 3). the 8016 tube is defective, its filament circuit is open, C187 is shorted or R233 or R235 open.
(4) V125 and V120-B circuits inoperative-check for sine wave on V125 grid, pulse on V120.B grid, and sawtooth on V126 grid. Refer to schematic and wave form chart.
(5) Reaction scanning tube (V128) inoferative.
(6) Defective kinescope
(7) R152 open, (terminal 3 to ground).
(8) No receiver plate voltage-filter capacitor or choke shorted-negative bleeder or filter choke open.

NO VERTICAL DEFLECTION:

(1) V121 or V122 inoperative. Check voltage and wave forms on grids and plates.
(2) T107 open.
(3) Vertical deflection coils open.

NO HORIZONTAL DEFLECTION:

(1) V125, V120B, V1 26 or V128 inoperative-check voltage and wave forms on grids and plate.
(2) T109 open.
(3) Horizontal deflection coil open

SMALL RASTER:
(1) Low Plus B or low line voltage.

POOR VERTICAL LINEARITY:

(1) If adjustments cannot correct, change VI22.
(2) Vertical output transformer defective.
(3) V121 inoperative check voltage and wave forms on grid and plate.
(4) R174, C158, C221.C or C222.B defective.
(5) Low bias or plate voltage-check rectifiers and capacitors in supply circuits.

FOOR HORIZONTAL LINEARITY:
(1) If adjustments do not correct. change V128 or V126.
(2) T109 or L201 defective.
(3) Cl 86 or Cl 88 or R 209 defective
(4) Cl79. R187 or R210 defective.

WRINKLES ON LEFT SIDE OF RASTER:

(1) R180, R201 or Cl81 defective.
(2) Defective yoke.

PICTURE OUT OF PHASE HORIZONTALLY:

(1) T108 winding D to F incorrectly tuned or connected in reverse.
(2) R200 or R202 delective.

IRAPEZOIDAL OR NON-SYMMETRICAL RASTER:
(1) Improper adjustment of focus coil or ion trap magnet.
(2) Defective yoke.

RASTER \& SIGNAL ON KINESCOPE BUT NO SOUND:

(1) R-F escillator off frequency.
(2) Sound i-f or discriminator inoperative-check V104, V105, V106, V107 and their socket voltages.
(3) Radio audio system inoperative.
(4) Speaker defective.

SIGNAL AT KINESCOPE GRID BUT NO SYNC:

(1) Picture control advanced too far.
(2)। V109A. V118, V119, or V120-A inoperative. Check voltage and waveforms at their grids and plates.
(3) Cl 42 defective.

SIGNAL ON KINESCOPE GRID BUT NO VERTICAL SYNC:

(1) Check V121 and associated circuit-Cl54, T106, etc.
(2) Integrating network inoperative-Check Cl49 Cl51, Cl52, Cl53, R162, R163, R164 and R165.

SIGNAL ON KINESCOPE GRID BUT NO HORIZONTAL SYNC:

(1) T108 misadjusted-readjust as instructed on page 8.
(2) V123 or V124 inoperative-check socket voltages and waveforms.
(3) T108 defective.
(4) $\mathrm{Cl} 66, \mathrm{Cl} 67, \mathrm{Cl} 70$ or Cl 71 defective.
(5) If horizontal speed is completely off and cannot be adjusted check C168, C169, R168 and R196.

SOUND \& RASTER RUT NO PICTURE OR SYNC:

(1) Picture i-i. detector or video amplifier inoperative-check V110. V1ll. V112, V113, V114, V115 and Vll6-check socket voltages.
(2) Bad contact to kinescope grid.

PICTURE STABLE BUT POOR RESOLUTION:

(1) Make sure that the focus control operates on both sides of proper focus.
(2) V114, V115 or V116 defective.
(3) Peaking coils defective-check for specified resistance.
(4) $\mathrm{Cl} 38, \mathrm{Cl} 40, \mathrm{Cl} 41$ or Cl 42 defective.
(5) R-F and I-F circuits misaligned.

PICTURE SMEAR:

(1) Video amplifier overloaded by excessive input-reduce picture control setting.
(2) Insufficient bias on V115 and V116 resulting in grid current on video signal. Check bias and possible grid current.
(3) Defective coupling condenser or grid load resistor-check C138, C140, C141, C223B, R138, R142, R143, R148, etc.
(4) This trouble can originate at the transmitter-check on another station.

PICTURE JITTER
(1) Picture control operated at excessive level.
(2) If regular sections at the left picture are displaced change V126.
(3) Vertical instability may be due to loose connections or noise.
(4) Horizontal instability may be due to unstable transmitted sync. Connect sync link to terminal 1 and 2.
(Sync link used only on early 641 TV)

RASTER BUT NO SOUND, PICTURE OR SYNC:
(1) Defective antenna or transmission line.
(2) R-F oscillator off frequency.
(3) R-F unit inoperative Check V1, V2, V3 and their socket voltages.

DARK VERTICAL LINE ON LEFT OF PICTURE:

(1) Reduce horizontal drive and readjust width and horizontal linearity.
(2) Replace Vl26.

LIGHT VERTICAL LINE ON LEFT OF PICTURE:

(1) Cl 81 defective.
(2) V128 defective.
(3) Change tap on R209.

CRITICAL LEAD DRESS:

1. Dress spaghetti-covered leads from A and B on discriminator transformer Tll3 to pin 7 and 2 on V107 tube socket approximately $7 / 16^{\prime \prime}$ above chassis.
2. Dress video capacitors $\mathrm{C}-138, \mathrm{C}-140$ and $\mathrm{C}-141$ up and away from chassis.
3. Dress video peaking coils L-187, L-188, L-189, L-190, L-191 and L-192 up and away from chassis.
4. Contact between the r-f oscillator frequency adjustment screws and the oscillator coils or channel switch eyeleis must be avoided.
5. Dress leads from L196 (width control coil) away from the lead to the cap of V127 ($\mathrm{h}-\mathrm{v}$ rectifier). Contact between these leads will cause arcing and fire.
6. Dress Tl09 winding leads as shown in Figure 34.

Figure 34-T109 Lead Dress

PICTURE I-F RESPONSE-At times it may be desirable to ob. serve the individual i-f stage response. This can be achieved b_{f} the following method.

Select a channel with a flat r-f response as outlined in the converter grid trap adjustment section of the alignment procedure.

Shunt all i-f transformers and coils with a 330 ohm carbon resistor except the one whose response is to be observed.

Connect the oscilloscope across the picture detector load resistor and observe the overall response. The response obtained will be essentially that of the unshunted stage. The effects of the various traps are also visible on the stage response.

Figures 35 through 39 show the response of the various stages oblained in the above manner. The curves shown are typical although some variation between receivers can be expected. Relative stage gain is not shown.

Figure 35-T2 Response

Figure 36-T103 Response

Figure 37-T104 Response

Figure $38-L 183$ (or T102) Response

Figure 39-L185 Response

Figure 40-Normal Picture

Figure 41-Vertical Hold Control Misadjusted
\longrightarrow

Figure 42-Picture Control Misadjusted

\&

Figure 43-Brightness Control Misadjusted

Figure 44-Weak Signal

Figure 45-Interference from Another Signal
\longrightarrow

Figure 46-Sound in the Picture

Figure 47-Interference, Diathermy, etc.

TEST PATTERN PHOTOGRAPHS

Figure 48-Normal Picture

Figure 49-Focus Coil and Ion Trap Magnet Misadjusted \longrightarrow

Figure 50-Focus Control Misadjusted

$\leftarrow *$

Figure 51-Deflection Yoke Misadjusted (Rotated) \xrightarrow{m}

Figure 52-Horizontal Centering Control Misadjusted

Figure 53-Vertical Centering Control Misadjusted
m

Figure 54-Vertical Linearity Control Misadjusted

\leftarrow

Figure 55-Height Control Misadjusted

Figure 56-Horizontal Linearity Control Misadjusted (Picture Cramped in Middle)
\leftarrow

Figure 57-Width Control Misadjusted
\rightarrow

Figure 58-Horizontal Drive Control Misadjusted

Figure 59-Hum in Video and Sync (Picture Off Center to Shou Edge of Raster)

Figure 60-Reflections

\leftarrow

Figure 61-Transients

$$
\longrightarrow
$$

Figure 62-Horizontal Sync Discriminator Transformer Firequency Adjustment Misadiusted

Figure 63-Horizontal Sync Discriminator Transformer Phase Adjustment Misadjusted

CV26A

CV26C

CV26E

CV27A

CV27C

CV27E

WAVEFORM PHOTOGRAPHS

Video Signal Input to 1st Video Amplifier (Juuction of L187, R136, L188 and C138)

Figure 64-Vertical (Oscilloscope Synced to $1 / 2$ of Vertical Sweep Rate) (1.5 Volts PP)
\leftarrow
Figure 65-Horizontal (Oscilloscope Synced to $1 / 2$ of Horizontal Sweep Rate) (1.5 Volts PP)

CV26B

CV26D

CV26F

CV27B

CV27D

Figure 75 -Horizontal (40 Volts PP)

\rightarrow

CV.28A

CV28C

CV28E

CV29A

CV29C

Input to Sync. Separator (Pin 4 of V119) (6SH7)

Figure 76 -Vertical (35 Volts PP)
\leftarrow

Figure 77 -Horizontal (35 Volts PP) \xrightarrow{m}

Output of Sync. Separator (Pin 8 of V119) (6SH7)

Figure 78 -Vertical (75 Volts PP)
4**

Figure 79-Horizontal (75 Volts PP)
\rightarrow

Output of 2nd Sync. Amplifier (Pin 2 of V120-A) (6SN7GT)

Figure 80-Vertical (35 Volts PP)

Figure 81-Horizontal (29 Volts PP)
mpit to Integrating Network (Junc tion of C149, R162 and R163)

Figure 82-Vertical (45 Volts PP)

Figure 83-Horizontal (30 Voles PP) \rightarrow

Figure 84-Output of Integrating Network (Junction of R165, C153 and Yellow Lead of T106). Vertical (32 Volts PP)

Figure 85-Grid of Vertical Osc. (350 Volts PP) (Pin 5 of V121) (6J5) \rightarrow

CV298

CV29D

Figure 86-Plate of Vertical Osc. (140 Volts PP) (Pin 3 of V121)
(6J5)
+
Figure 87-Input Coupling of Ver. tical Ousput (125 Volts PP) (Junction of C157, C158, R170 and Red Lead of T106)
\rightarrow

CV28B

CV28D

CV28F

CVIOA

Cv30C

CV31A

CV3IC

CV3IE

CV32A

WAVEFORM PHOTOGRAPHS

Figure 88-Cathode of Vertical Output (. 75 Volt PP) (Pin 8 of V122) (6 KGGT)
\leftarrow
Figure 89—Plate of Vertical Output (700 Volts PP) (Pin 3 of V122) (6K6GT)
\longrightarrow

Figure 90-Input to Vertical Deflection Coils (60 Volts PP) (Junction of Green Lead of T107 and Green Lead of Yoke)

↔…
Figure 91-Vertical Boost of 1st Sync. Amplifier (16 Volts PP) (Junction of R154, R155 and C146) \rightarrow

Terminal "E" of Sync Discriminator Transformer (T108)

Figure 92-Vertical (16 Volts PP)

Figure 93-Horizontal (13 Volts PP) $\xrightarrow{\longrightarrow}$

Junction of R191 and R192 (Cathode Resistors of Horizontal Sync.
Discriminalor)

Figure 94-Vertical (3 Voles PP)

Figure 95-Horizontal (1.7 Volts PP) \longrightarrow

Cathode of Hor. Sync. Discriminator (Pin 1 of V123) (6ALS)

Figure 96-Vertical (8 Volt PP)

Figure 97-Horizontal (.15 Volt PP)

$$
\longrightarrow
$$

CV3IF

CV32D

CV33A

CV33C

CV33E

CV34A

CV34C

Plate of Hor. Sync. Discr. (Pin 2 of V123) (6AL5)

Figure 100-Vertical (21 Volts PP) \leftarrow

Figure 101-Horizontal (21 Volts PP) $\xrightarrow{\omega}$

Figure 102-Horizontal (95 Volts PP) Terminal "A" of Sync. Discriminator Transformer (T108)
+…
Figure 103-Cathode of Horizontal Oscillator Control (1.5 Volts PP) (Pin 5 of V124) (6AC7)
\longrightarrow
gure 104-Plate of Horizontal Oscillator (225 Volts PP) (Pin 3 of V125) (6K6GT)
\leftarrow
Figure 105-Input of Hor. Discharge (100 Voles PP) (Junction of C176, C177 and R202) \longrightarrow (78 Volts PP) (Pin 5 of V120-B) (6SN7GT)
\&
Figure 107-Cathode of Hor. Outpus (11.5 Volts PP) (Pin 3 of V126) ($6 B G 6-G$) \longrightarrow

Figure 108-Screen of Hor. Output (9 Volls PP) (Pin 8 of V126) (6BG6-G)
\leftarrow
Figure 109-Plate of Horizontal Output (Approx. 6000 Volts PP) (Meas. ured Through a Capacity Voliage Divider Connected from Top Cap of VI26 to Ground)
\longrightarrow

Figure 110-Cathode of Reaction Scanning (60 Voles PP) (Pin 8 of V128) (5V4G)
\leftarrow
Figure 111-Input to Horizontal Deflection Coils (1325 Volts PP) (Pin 4 of V128) (5V4G)

CV34B

CV34E

CV32E

CV338

CV33D

CV33F

641TV 8TV41

TELEVISION VOLTAGE CHART
Measurements made with receiver operating on 117 volts 60 cycles a-c and with no signal input except where otherwise indicated. Voltages shown are as read with Jr. "VoltOhmyst" between indicated terminal and chassis ground except where otherwise noted. Symbol < means "less than."

Tube No.	Tube Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		$\stackrel{\text { I }}{\text { Plate }}$ (ma.)	$\begin{gathered} I \\ \substack{\text { Screen } \\ \text { (ma.) }} \end{gathered}$	Notes on Measurements
				Pin No.	Volts	Pin No.	Volts	Pin No.	Volts	Pin No.	Volts			
V1 6	6J6	R-F Amplifier	Pictr. Min. 1	1\&2	130	-	-	7	0	5 \& 6	-21	$<.1^{*}$	-	*Per Plate
			Pictr. Max. 1	1 \& 2	65	-	-	7	0	5 \& 6	-. 1	4.3*	-	*Per Plate
V2 6	6 J 6	Converter	Pictr. Min. 1	1\&2	130	-	-	7	0	5 \& 6	$\begin{aligned} & -3 \text { to } \\ & -6 . \end{aligned}$	$.5 \text { to }$	-	*Per Plate
			Pictr. Max. 1	1 \& 2	90	-	-	7	0	5\&6	$\begin{aligned} & -2 \text { to } \\ & -5 . \end{aligned}$	$\begin{gathered} .2 \text { to } \\ 3^{*} \end{gathered}$	-	* Per Plate
V3	6 J 6	R-F Oscillator	Pictr. Min. 1	1\&2	105	-	-	7	. 25	5 \& 6	$\left\lvert\, \begin{gathered} -4.5 \text { to } \\ -6.5 \end{gathered}\right.$	2.5*	-	*Per Plate
			Pictr. Max. 1	$1 \& 2$	75	-	-	7	. 15	5\%6	$\begin{gathered} -3.5 \text { to } \\ -5 . \end{gathered}$	1.7*	-	*Per Plate
V104	6BA6	1st Sound I-F Amplifier	Pictr. Min.	5	115	6	115	7	1.6	1	0	11.3	4.7	
			Pictr. Max.	5	101	6	101	7	1.4	1	0	9.7	4.3	
V105	6BA6	2d Sound I-F Amplifier	Pictr. Min.	5	118	6	115	7	1.8	1	0	13	4.8	
			Pictr. Max.	5	103	6	100	7	1.6	1	0	11.5	4.4	
V106	6AU6	3d Sound I-F Amplifier	Pictr. Min.	5	48	6	48	7	0	1	-. 23	3.3	1.3	
			Pictr. Max.	5	41	6	41	7	0	1	-. 24	2.8	1.2	
V107	6AL5	Sound Discrim.	Pictr. Min.	2\&7	-. 45	-	-	4\&5	-	-	-	-	-	
			Pictr. Max.	2 \& 7	-. 45	-	-	4\&5	-	-	-	-	-	
V108	6AT6	AGC Amplifier	Pictr. Min.	7	-32	-	-	2	-99	1	-99	-	-	
			Pictr. Max.	7	0	-	-	2	-97	1	-95	-	-	
$\begin{array}{\|c\|} \hline \text { V109 } \\ \hline \end{array}$	6AL5	DC Restorer	$\begin{aligned} & \text { Brightness } \\ & \text { Min. } \end{aligned}$	7	-98	-	-	1	-76	-	-	-	-	
			$\begin{gathered} \text { Brightness } \\ \text { Max. } \\ \hline \end{gathered}$	7	-1	-	-	1	0	-	-	-	-	
$\begin{array}{\|c\|} \hline V_{B} 109- \\ \hline \end{array}$	bals	AGC Diode	Pictr. Min.	2	-7.2	-	-	5	-7.1	-	-	-	-	
			Pictr. Max.	2	-3.1	-	-	5	-1	-	-	-	-	
V110	6AG5	1st Pix. I-F Amplifier	Pictr. Min.	5	125	6	125	2\& 7	0	1	-7.1	0	0	
			Pictr. Max.	. 5	92	6	92	2\&7	. 2	1	-1.0	4.5	. 6	
V111	bAG5	2d Pix. I-F Amplifier	Pictr. Min.	5	125	6	125	2\&7	0	1	-7.1	0	0	
			Pictr. Max.	5	94	6	94	2 \& 7	. 2	1	-1.0	4.0	1.1	
V112	6AG5	3d Pix. I-F Amplifier	Pictr. Min.	5	130	6	130	2\&7	0	1	-7.1	0	0	
			Pictr. Max.	5	85	6	105	2\&7	. 3	1	-1.0	6.1	1.6	
V113	6AG5	4th Pix. I-F Amplifier	Pictr. Min.	5	84	6	120	2 \& 7	1.3	1	0	6.9	1.8	
			Pictr. Max.	. 5	74	6	106	2\&7	1.15	1	0	6.1	1.6	
$\begin{aligned} & \mathrm{V}_{\mathrm{A}} 14 \\ & \hline \end{aligned}$	6AL5	Picture 2d Det.	Pictr. Min.	7	-. 25	-	-	1	0	-	-	-	-	
V_{B}	6aL5	$\begin{aligned} & \text { AGC } \\ & \text { Detector } \end{aligned}$	Pictr. Min.	2	-105	-	-	5	-104	-	-	-	-	
			Pictr. Max.	. 2	-108	-	-	5	-106	-	-	-	-	
V115	5 6AU6	1st Video Amplifier	Pictr. Min.	. 5	243	6	135	7	0	1	-2.05	5.4	1.8	
			Pictr. Max.	. 5	254	6	117	7	0	1	-2.1	3.8	1.2	
V116	$6{ }_{6}^{6 \mathrm{KK}} \mathbf{G T}$	2d Video Amplifier	Pictr. Min.	3	100	4	135	8	3.3	5	-7.7	9.2	1.6	
			Pictr. Max.	. 3	92	4	117	8	2.5	5	-7.8	7.0	1.4	

Tube No.	Tube Type	Function	Operating $\underset{* *}{\text { Condition }}$	E. Plate		E. Screen		E. Cathode		E. Grid		$\begin{aligned} & \text { I } \\ & \text { Plate } \\ & \text { (ma.) } \end{aligned}$	$\begin{gathered} \text { I } \\ \text { Screen } \\ \text { (ma.) } \end{gathered}$	Notes on Measurements
				Pin No.	Volts	Pin No.	Volt	Pin No.	Volts	Pin No.	Volts			
V117	10BP4	Kinescope	Brightness Min.	Cap	9200*	10	294	11	0	2	-76	0	0	*Measured with "VoltOhmyst" and high voltage multiplier probe
			Brightness Max.	Cap	6000*	10	294	11	0	2	-. 5	. 7	-	
			Brightness Average	Cap	9000*	10	294	-	-	-	-	. 1	-	
V118	6SK7	1st Sync. Amplifier	Pictr. Min.	8	195	6	120	5	0	4	-4.2	10.6	2.9	
			Pictr. Max.	8	216	6	105	5	0	4	-4.3	8.1	2.0	
V119	6SH7	Sync. Separator	Pictr. Min.	8	135	6	135	5	0	4	-5.2	0	0	
			Pictr. Max.	8	117	6	117	5	0	4	-10^{*}	0	0	*Depends on noise
$\begin{array}{\|c} \hline V 120- \\ \mathrm{A} \\ \hline \end{array}$	$\begin{gathered} \text { 6SN7 } \\ \text { GT } \end{gathered}$	2d Sync. Amplifier	Pictr. Min.	2	84	-	-	3	0	1	-. 6	7.9	-	
			Pictr. Max.	2	75	-	-	3	0	1	-9*	6.8	-	*Depends on noise
$\begin{array}{\|l\|l\|} \hline \\ \hline \end{array}$	$\begin{gathered} \text { 6SN7 } \\ \text { GT } \end{gathered}$	Horizontal Discharge	Pictr. Min.	5	-42	-	-	6	-105	4	-145	. 49	-	
V121	6 J 5	Vertical Oscillator	Pictr. Min.	3	60*	-	-	8	-105	5	-145	. 2	-	*Height, linearity and hold affect readings 2 to 1
V122	$\begin{gathered} 6 \mathrm{~K} 6-1 \\ \mathbf{G T} \end{gathered}$	Vertical Output	Pictr. Min.	3	216	4	216*	8	-61	5	-100	7.0	*	*Screen connected to plate
V123	6AL5	Horizontal Sync. Discr.	Pictr. Min.	$\begin{array}{r} 2 \\ 7 \end{array}$	$\begin{aligned} & -5.8 \\ & -6.0 \end{aligned}$	-	-	$\begin{aligned} & 1 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & -2.8 \\ & -2.4 \end{aligned}$	-	-	-	-	
V124	6AC7	Horizontal Osc. Control	Pictr. Min.	8	140	6	82	5	. 05	4	-1.7	6.5	2.0	
V125	$\begin{gathered} 6 \mathrm{KK} 6 \\ \mathbf{G T} \end{gathered}$	Horizontal Oscillator	Hold Max. Resistance	3	195	4	213	8	. 25	5	-29.2	19.4	7.8	
			Hold Min. Resistance	3	185	4	200	8	. 28	5	-22.5	21.7	9.3	
V126	${ }_{-G}^{6 B G 6}$	Horizontal Output	Pictr. Min.	Cap	Do Not Meas.	8	135	3	-97	5	-115	73.8	12.2	*6000 volt pulse present
V127	8016	H. V. Rectifier	$\begin{array}{\|c\|} \hline \text { Brightness } \\ \text { Min. } \\ \hline \end{array}$	Cap	*	-	-	2\% 7	9200	-	-	0	-	*9200 volt pulse present
			$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Brightness } \\ \text { Max. } \end{array} \\ \hline \end{array}$	Cap	*	-	-	2\% 7	6700	-	-	. 7	-	${ }^{7} 9200$ volt pulse present
V128	5V4G	Reaction Scanning	Pictr. Min.	4\&6	Do Not Meas.	-	-	8	360	-	-	86*	-	- 1200 volt pulse present
V129	SU4G	Rectifier	Pictr. Min.	4 \& 6	390*	-	-	2 \& 8	315	-	-	135 \dagger	-	*A-C measured from plate to
N130	5U4G	Rectifier	Pictr. Min.	4 \& 6	390*	-	-	2 \& 8	315	-	-	135 \dagger	-	trans center tap \dagger Measured at filament.

** Where separate readings are not listed for max and min. gain settings of the picture control, the effect of the control is slight and readings are given for "Picture Min."

Following readings taken with video signal applied through video amplifiers to produce 25 volts peaks to peak on Kinescope grid.

$\begin{array}{\|l\|l\|} \hline V 114 \\ B \end{array}$	6AL5	DC Restorer	Pictr. Min.	2	-41	-	-	5	-27	-				
V119	6SH7	Sync. Separator	Pictr. Min.	8	129	6	135	5	-27	4	-21.5	. 9	8	
$\underset{\mathbf{A}}{120-}$	$\begin{aligned} & 6 \mathrm{SN}- \\ & 7 \mathrm{GT} \end{aligned}$	2d Sync. Amplifier	Pictr. Min.	2	88	-	-	3	0	1	-21.5	9.0	.	
V123	6A LS	Horizontal Sync. Discr.	Pictr. Min.	2\% 7	-20	-	-	$1 \% 5$	$\begin{gathered} \mathbf{K}_{1}{ }^{*} \\ \mathbf{K}_{s}-2.1 \end{gathered}$	-	-	-	-	*See arid voltage of V124
V124	6AC7	Horizontal Osc. Control	Pull-in*	8	200(a)	6	100(b)	5		4	$-1.5 \text { to }$	<8.	<2.5	*Varying Hor.
			Hold*	8	200(c)	6	100(d)	5	<. 1	4	(e)	<8.	<2.5	Osc. tuning

(a) Pull-in range varies with tubes from 110-210 to 195-270.
(b) Pull-in range varies with tubes from 80-100 to 100-115.
(c) Hold range varies with tubes from 110-270 to 140-270.
(d) Hold range varies with tubes from 80-115 to $90-115$.
(e) Hold range varies with tubes from 1.5-7.0 to 1.-4.5.

RADIO ALIGNMENT PROCEDURE

If any lead dressing is necessary, it should be done before aligning the receiver. See Critical Lead Dress
Before aligning set, completely mesh the gang and set the dial pointer to the mechanical max. calibration point at extreme left end of dial.
When making a complete alignment tollow the tabulated form below in sequence.
It only a portion of the circuit is to be aligned select the portion required and follow with the remaining steps in the chart.
Any adjustments made on the FM 10.7 mc . I-F's make it necessary to adjust the AM 455 kc . I-F's.

FM ALIGNMENT

"FM" RATIO DETECTOR ALIGNMENT

SET RANGE SWITCH TO FM POSITION

Step:	Connect High Side of Ose. to-	Tune Osc. to-	Turn Vol. Cont. to-	Adjust
1	Connect a 680 -ohm resistor between lugs D and E of the ratio detector transtormer $T 6$. Connect d.c probe of a "VoltOhmyst" to the negative lead of the S mid electrolytic capacitor C77. Connect the common lead of the meter to chassis.			
2	Driver grid, pin 1, of V5 in series with .01 mid	10.7 mc., 30% mod., 400 cycles AM	Maximum volume	Driver transformer $T 5$ for maximum d-c voltage across C77
3	Remove meter leads and disconnect the 680 -ohm resistor from D and E on T6. Connect two 68,000 ohm resistors (within 1% of each other) in series, across the 22,000 -ohm ratio detector load resistor R37. Connect the common lead of the "VoltOhmpt" to the center point of the 68,000 -ohm resistors and the d.c probe to terminal " A " of the ratio detector transformer T6. Use the 30 -voll meter range.			
4	Same as stop 2	Same as stop 2	Maximum volume	- T6 bottom core for zero d-c balance on "VoltOhmyst" - T6 top core for minimum audio output. (Output meter across voice coil)
5	Reconnect "Voltohmyst" as in stop 1, omitting the 680 -ohm resistor.			
6	Repeat step 2, omiting 680 ohms.			
7	Remove all connections.			

- Near the correct core position the zero point is approached rapidly and continued adjustment causes the indicated polarity to reverse. A slow approach to the zero point is an indication of severe detuning, and the bottom core should be turned in the opposite direction.
- The zero d-c balance and the min. a.f output should occur at the same point: if such is not the case, the two cores should be adjusted until both occur with no further adjustment of either core. It may be advantageous to adjust both cores simultaneously. watching the "Volt. Ohmyst," and an output meter connected across the voice coil for the point at which both zero d.c and min. output occur.

NOTE-Two or more points may be found which will satisly the condition required in step 4 . T6 top core should be correctly adjusted when approximately !'s inch of threads extend above the can, therefore, it is desirable to start adjustment with top core at the max. "in" position and turn out. while adjusting the bottom core, until the first point of minimum a-f and minimum d-c is reached.
"FM" R-F-I-F ALIGNMENT
range switch in fm position

Stops	Connect the High Side of the Test Osc. to-	Connoct Ground Side of the Test Osc.	Tune the Osc.	Radio Dial Tuned to-	Adjust
1	Connect "VoltOhmyst". d-c probe to negative lead of C77, and the meter common lead to chassis ground.				
2	Mixer grid pin \#l of 6BA6 (V3) in series with a .01 mid capacitor (Adjust test osc. output for 6.10 volts developed across C.77) (Range switch in FM posi. tion)	To r-f tube shelf ground	10.7 me.. 30% modulated at 400 cycles AM	Max. cap. (Fully meshed)	${ }^{*}$ T3 and T1 top and bottom cores alternately loading pri. and sec. of each transformer vith 680 ohms while the opposite side of the same transformer is boing adjusted. Adjust all transformers for maximum voltage across C77.
3	Ant. term. \#l in series	Ant. Term. \#2	106 mc .	106 mc .	OSC. C21 for max. voltage across C77.
4		in series with 120 ohms	90 mc .	90 mc .	* OSC. L16 for max. voltage across C77.
5	Repeat steps 3 and 4 for exact calibration.				
6	Same as steps 3 and 4		106 mc .	106 mc .	R.F. C44 for max. voltage across C77.
7			90 mc .	90 me.	**R.F. L19 for max. voltage across C77.
8	Repeat steps 6 and 7 for maximum output.				
9	Same as step 3	Same as stop 3	106 mc .	106 mc .	Ant. C3 for max. voltage across C77.
10	Some as step 3	Same als step 3	90 me .	90 mc .	* Ant. L2 for max. voltage across C77.
11	Repeat steps 9 and 10 for maximum output.				

-This method, which is known as alternate loading, involves the use of a 680 ohm resistor to load the plate winding while the grid winding of the same transtomer is being peaked. Then the grid winding is loaded with $680 \cdot 0 h m$ resistor while the plate winding is being peaked. When windings are loaded, it is necessary to increase the 10.7 mc . input, since gain will decrease and valtage across C77 will be less.

- Two positions of the cores in L2, L19. L16 will satisfy the condition indicated, but for greatest sensitivity, the core position chosen for L2 and L19 should be the one which results in the adjusting stud projecting the lesser distance.

For oscillator L 16 the reverse is true and the coil should be aligned with the stud projecting the greater distance.

AM ALIGNMENT

Test.Oscillator.-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.

Output Meter.-Connect the meter across the speaker voice coil, and turn the receiver volume control to maximum.

Stop:	Connect the High Side of the Test Osc. to-	$\begin{aligned} & \text { Tune Test Osc. } \\ & \text { to- } \end{aligned}$	Range Switch	Turn Radio Dial to-	Adjust the following
1	Pin \#1 of 6BA6 (V3) in series with .01 mfd	455 kc .	"A" Band	Low Freq. end of Dial	${ }^{-}$Top and bottom cores of T2 and T4. (For max. voltage acrose voice coll.)
2	Ant. term. \#2 through dummy ant. comprised of 200 mml	455 kc.	"A" Band	"	Adj. 1-F Trap L 17 for minimum voltage acrose voice coil.
3	"	1400 kc.	"A" Band	1400 kc.	Osc.-ClS: Ant.-C82. (For max. voltage across voice coil.)
4	"	600 kc.	"A" Band	600 kc.	Osc.--L12; Ant.-L. 22 (For max. voltage acrons vole coil)
5	Repeat steps 3 and 4 for maximum output.				
6	Ant. term. \#2 through dummy ant. of 25 mmfs in series with 150 ohms	15.2 mc .	"C" Band	15.2 mc .	- ${ }^{\text {Osc.-Cl7: Ant.-C4. }}$
7		9.5 mc.	"C" Band	9.5 mc .	Osc.-L13: Ant.-14.
8	Repeat steps 6 and 7 for accurate allignment.				

- It is necessary to alternately load the primary and secondary of each $455-\mathrm{kc}$. i-f transformer with 10,000 ohms while the opposite side of the same transformer is being adjusted.
- To guard against the possibility of alignment of L 13 and Cl 7 to image frequencies, tune the test oscillator 10 l .11 mc . (image frequency). By increasing the test oscillator output, a signal should be heard.

Tune the test oscillator to 9.5 mc ., and turn the radio dial to 9.5 mc ., then adjust the test oscillator to 10.41 mc. (image frequency). By tacreasing the test oscillator output, a signal should be heard.
(II these image frequencies cannot be heard, the set is incorrectly aligned, therefore repeat steps 6 and 7.)
Note: To increase " A " band sensitivity in weak signal areas cut Link " A " (see figure 116.) For still greater sensitivity, connect a jumper across C69 and readjust C82 at 1400 kc .

Figure 116-Chassis, Top View, Shou'ing Adjustments

Figure 117-Chassis, Bollom Vieu', Showing Adjustments

PUSH-BUTTON ADJUSTMENT

The push buttons connect to separate magnetite-core oscillator coils and separate antenna trimmers which must be adjusted to the desired stations. Use an insulated screwdriver or alignment tool such as RCA Stock No. 70180. Allow about five minutes warm-up period betore making adjustments.

The procedure is as follows:

1. Make a list of the desired stations, arranged in order from low to high frequencies.
2. Tum the range switch to the broadcast position and manually tune in the first station on the list.
3. Turn range switch to push-button position and press in the lefthand button.
4. Adjust the oscillator core rod to receive the first station.
5. Adjust the antenna trimmer screw for peak output on the fint station.
6. Proceed in the same manner to adjust for the remaining stations.
7. Repeat adjustments for best resids.

On the 880 to $1,600 \mathrm{kc}$. push button, the higher frequency stations may be received with the oscillator core rod elther in or out (oscl1lator frequency either 455 kc . below or 455 kc . above the station frequency). The adjustment with this core in its out poastion (oscl)lator frequency 455 kc . above the station frequency) is the correct one.

NOTE: Clockwise adjustment of cores and trimmers tunes the dr. cuits to lower frequenctes.

Figure 118-Radio Chassis Wiring Diagram

Figure 119-Audio Amplifier Wiring Diagram

Figure 120-Radio and Audio Amplifier Schematic Diagram

CRITICAL LEAD DRESS

(Any lead dress should be made belore alignment.)

1. The lead from terminal 9 , switch S 4 , front, to terminal on switch 57 , must be dressed between the main base and r-f shelf.
2. The leads from terminals 1 Oand 11 , switch 53 , front. must be dressed together and away from the chassis.
3. Capacitor C56 must have shortest possible lead on the end connecting to pin 1 of tube V4.
4. The following capacitors must be dressed close to the chassis, with leads kept as short as possible: C40, C47. C54, C62, and C78.
5. All FM coil connections must be soldered in the exact place as the original coil. (One-sixteenth inch difference in length may be excessive.)
6. All r-f and i-f wiring in the receiver is critical as 10 length and placement; any changes tend to impair the operation of the set.

Figure 121-Radio Control Panel

Figure 122-Dial and Drive Cord Assembly

Figure 123-Top View of RSI23A

RADIO VOLTAGE CHART
All voltages were measured in respect to ground, using a "VoltOhmyst."

Tube	Type	Element	Pis	Tel. or Phono.	B.C.	S.W.	FM
V1	6BA6	Plate	5	148	148	154	140
		Scq	6	98	96	97	92
V2	6BE6	Plate	5	0	130	130	135
		Grids $\text { 2. 3. } 4$	6.7	0	140	140	130
		Grid 1 Grid 1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	-	$\begin{aligned} & 550 \mathrm{kc} \\ & -24 \mathrm{v} \\ & 1600 \mathrm{kc} \\ & -14 \mathrm{v} \end{aligned}$	$\begin{aligned} & 9.5 \mathrm{mc} \\ & -10 \mathrm{v} \\ & 15.5 \mathrm{mc} \\ & -16.2 \mathrm{v} \end{aligned}$	$\begin{gathered} 88 \mathrm{mc} \\ -11 \mathrm{mc} \\ 108 \mathrm{mc} \\ -12 \mathrm{v} \end{gathered}$
V3	6BA6	Plate	5	250	24	246	238
		Scq	6	67	69	72	71
V4	6BA6	Plate	5	238	230	230	222
		Scg	6	100	98	98	97
V5	6AU6	Plate	5	-	-	-	232
		Scg	6	-	-	-	105
V8	6AL5	-	-	-	-	-	-
V7	6SQ7	Plate	5	108	102	102	102
V101	5U4G	Fil.		380	-	-	-
V102	615	Plate	3	205	-	-	-
		Cathode	8	54	-	-	-
V103	6F6G	Plate	4	360	-	-	-
		Scq	5	250	-	-	-
V104	8F6G	Same as V103.					
CATHODE CURRENTS WITH FUNCTION SWITCH IN THE FM POSITION							
V1 R-F Amplifier		14.1 ma .	V7 Det. Avc. A.F			0.5 ma .	
V2 Osc.	 12.3 ma .	Power Amp. RSl23A				
V3 Mixer 6.5 ma.		V101 Rectifier total		 140 ma .	
V4 I.F Amplifier		.. 13.5 ma .	V102 Phase inverter			2.15 ma .	
V5 Driver FM	 15.4 ma.	V103 Power		amp.	27 ma .	
V6 Ratio Detector		V104 Power amp.			27 ma .

Figure 124-Speaker Connections

The dial scale drawing shown is a full size reproduction. It can be used as a reference in alignment procedure.
Figure 125-Radio Dial Scale

NOTE: Oscillator plate voltage is removed when the function switch is turned to the television position.
Figure 126-Simplified Schematic-Shown in Television Position

NOTE: Oscillator plate voltage is removed when the function switch is tumed to the phono. position-
Figure 127-Simplified Schematic-Shown in Phono Position

Figare 128-Simplified Schematic-Shown in "A" Band Position

Figure 129-Simplified Schematic-Shown in "C" Band Position

SWITCHES VIEWED FROM FRONT
AND STOWN INN SIMPLIFIED F.M.
(MAX. COUNTER.CLCOKWWISE) POSITION. ALL RESISTANCES IN OMMS
ALL CAPACITORS LESS THAN I INME
ANO ABOVE I IN MMF UNLESS OTMERWISE
NOTED.
VOLTGES SHOULD MOLD WITMIN $\pm 20 \%$ VOLTAGES SHOULD MOLD WITMIN $\pm 20 \%$
WITH $119 V$ SC. SUPPLY. 6AVL5

$$
\begin{array}{cc}
\text { GALS } & \\
& \\
& \\
& \\
& 1000
\end{array}
$$

范:
Figure 131-Simplified Schematic—Shown in FM Position

Figure 132-Television R-F Unit Wiring Diagram

REPLACEMENT PARTS (Continued)

$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	Resistor-Fixed, composition, 27,000 ohms $\pm 10 \%$,	39636	Capacitor-Mica, 220 mml (${ }^{\text {(Cl8) }}$
	1 watt (R188)	727	Capacitor-Mica, 240 mml ((Cl9)
	Resistor-Fixed, composition, 39,000 ohms $\pm 10 \%$, l watt (R197)	72793	Capacitor-Mica, 330 mml . (C5) Capacitor-Ceramic, 1000 mmf ($\mathrm{C} 78, \mathrm{C} 81$)
	```Resistor-Fixed, composition, 39,000 ohms }\pm5%\mathrm{ , l watt (R231) Resistor-Fixed, composition, 47,000 ohms }\pm10%\mathrm{ , 1/2 watt (Rl50)```	72049	Capacitor-Mica trimmer, comprising l section of $100-540 \mathrm{mmf}$., 2 sections of $50-400 \mathrm{mml}, 2$ sections of 25.250 mmf , and 1 section of 10-160 mmf. (C7, C8, C9, Cl0, Cl1, Cl2)
	Resistor-Fixed, composition, 47,000 ohms $\pm 5 \%$, $1 / 2$ watt (R261)	72792	Capacitor-Tubular, .001 mld ., 200 volts (C68) Capacitor-Tubular, 002 mid ., 400 volts (C7l)
	Resistor-Fixed, composition, 47,000 ohms $\pm 5 \%$,	$\begin{aligned} & 71921 \\ & 72573 \end{aligned}$	Capacitor-Tubular, .003 mid., 200 volts (C22, C34) Capacitor-Tubular, 003 mid., 400 volts (C47)
	1 watt (R198)   Resistor-Fixed, composition, 56,000 ohms $\pm 10 \%$,	71926	Capacitor-Tubular, $005 \mathrm{mid} ., 200$ volts (Cl6, C32,   C35, C46, C55, C67, C74, C75, C76, C79)
	$1 / 2$ watt (R173)   Resistor-Fixed, composition, 1 megohm $\pm 10 \%$, $1 / 2$ watt (R157, R229)	71553	Capacitor-Tubular, 005 mid., 400 volts (C23 C58, C59, C60, C62)
	Resistor-Fixed, composition, 1 megohm $\pm 10 \%$,	72791 72120	Capacitor-Tubular, .005 mid., 400 volts (C72) Capacitor-Tubular, 015 mid ., 200 volts (C65)
	1 watt (R235)   Resistor-Fixed, composition, 1.2 megohm $\pm 5 \%$,	71923	Capacitor-Tubular, 01 mid., 200 volts (C40 C63, C64)
	$1 / 2$ watt (Rl43)   Resistor-Fixed, composition, 1.5 megohm $\pm 5 \%$, $1 / 2$ watt (Rl7l)	719251871551	Capacitor-Tubular, 01 mid , 400 volts (C25, C26, C33, C39, C73)   Capacitor-Tubular 05 mld . 200 volts (C54)
		$\begin{aligned} & 71551 \\ & 72121 \end{aligned}$	Capacitor-Electrolytic, 5 mtd . 50 volts (C57, C77)
	1/2 watt (Rl67, Rl76)	72071	Coil-Antenna coil, "A", band (L21, L22)
	Resistor-Fixed, composition, 2.7 megohm $\pm 10 \%$,	71856	Coil-Antenna coil, "C', band" (L4, L5)
	1/2 watt (R260)	72044	Coil-Anteana coil, F. M. Coil-Filament choke coil
	$1 / 2$ watt (Rl56)	71852	Coil-Oscillator coil, "A" band (L12)
	```Resistor-Fixed, composition, 6.8 megohm }\pm10%\mathrm{ , 1/2 watt (R228)```	$\begin{aligned} & 71853 \\ & 71937 \end{aligned}$	Coil-Oscillator coil, "C" band (L13) Coil-Oscillator, F. M. (Ll6)
71456	Screw-Wing screw to mount deflection yoke	72050	Coil-P. B., high frequency (L9, LlO, Lll)
	(3 required)	72051	Coil-P. B., low frequency (L6, L7, L8)
71452	Sleeve-Rubber sleeve for focus coil	72045	Coil-R-F coil, F. M. (L19)
35574	Socket-Pilot lamp socket	71407	Coil-Wave trap coil (Ll4, Ll7)
31251	Socket-Tube socket 8016 tube	72038	Condenser-Variable tuning condenser ($\mathrm{C} 2, \mathrm{C} 6$, C13, C24, C43)
71508	Socket-Tube socket for 8016 tube Socket-Kinescope socket	72145	Control-Volume control, tone control and power
71525	Socket-Kinescope socket	22145	switch (R31, S6, S19)
71972	Socket-Tube socket, miniature, complete with mounting plate	32634	Cord-Indicator, drive cord (approx. $35^{\prime \prime}$ overall length)
71559	Spring-Grounding spring for hi-voltage capacitor		NOTE: Before assembling, stretch to full length. Cord- Manual drive cord (approx. $19^{\prime \prime}$ overall
71453	Stud-Mounting stud for focus coil (2 required)	32634	Cord-Manual drive cord (approx. 19 overall length)
71423	Transformer-First picture i-f transformer (T103, C117)		leagth) NOTE: Before assembling, stretch to full length.
71425	Transformer-Second picture i-f transformer (T104,	$\begin{aligned} & 71941 \\ & 72043 \end{aligned}$	Coupling-F-M coupling unit (R5, C27, L15) Drum-Drive drum
71418	Transformer - Vertical oscillator transformer (T106)	72042	Gear-Sleeve gear, 32 teeth
71417	Transformer - Vertical output transformer (T107)	'72040	Gear-36 tooth gear
71428	Transformer-Horizontal sync. discriminator transformer (T108)	72069	Grommet-Rubber grommet for rear mounting feet (2 required)
71416	Transformer-Horizontal output and hi-voltage transformer (Tl09)	70930	Grommet-Rubber grommet for mounting r-f shelf (4 required)
73708	Third picture i-f transformer (T102, Cl 39) 50 cycle	72036	Indicator-Station selector indicator Lamp-Dial lamp Mazda 51
72775	Transformer-Power transformer, 115 volt, 50 cycle (T110)	72035	Plate-Dial back plate
71415	Transformer-Power transformer, 115 volt, 60 cycle	71636	Plug-9-prong male plug (11)
	(T110)	72602	Pulley-Drive cord pulley
71424	Transformer-First or second sound i-f transformer (T111, T112, C190, C193, C195, Cl98)	71637	Receptacle A.F, television and phono terminal board
71427	Transformer-Sound discriminator transformer (T113, C199, C201, C202)	$\begin{aligned} & 34763 \\ & 34765 \end{aligned}$	Resistor-68 ohms, $1 / 2$ watt (R18) Resistor - 100 ohms, $1 / 2$ watt (RlO)
71422	Trap-Sound trap (Tl05, Cl32)	5201	Resistor-220 ohms, $1 / 2$ watt (R8)
71420	Yoke-Deflection yoke (L193, L194, L197, L198 C181, R180, R201)	12262	Resistor-680 ohms, 1/2 watt (R6, R27, R28) Resistor- 2200 ohms, $1 / 2$ watt (R16, R19, R20)
		30730	Resistor-2700 ohms, $1 / 2$ watt (R7, R14)
	RADIO CHASSIS	30733	Resistor-3300 ohms, 1/2 watt (R4)
	RK117A	38887	Resistor 6800 ohms, 1 watt (R39)
		14250	Resistor - 8200 ohms, $1 / 2$ watt (R3)
71638	Board-5 contact terminal board for antenna cables	71914	Resistor-10,000 ohms, 1 watt (Rl2)
72047	Capacitor-Adjustable, $1.6-18 \mathrm{mmf}$. (C3, C44)	36714	Resistor-15,000 ohms, 1/2 watt (R36)
72046	Capacitor-Adjustable, 2.5-13 mmf. (C21)	71915	Resistor-15,000 ohms, 1 watt (Rll)
72790	Capacitor-Ceramic, 3.5 mml . (C56) (Cl ${ }^{\text {c }}$ Cl7)	3219	Resistor-18,000 ohms, $1 / 2$ watt (R29)
72037	Capacitor-Mica trimmer, 3.35 mml . ($\mathrm{Cl} 5, \mathrm{Cl} 7$)	30492	Resistor- 22,000 ohms, $1 / 2$ watt (R22, R37) Resistor - 27,000 ohms, $1 / 2$ watt (R13, R26, R32)
39043	Capacitor-Ceramic, 6.8 mmf . (C30)	30409	Resistor-27,000 ohms, $1 / 2$ watt (R13, R26, R32)
71807	Capacitor -Adjustable, 10-160 mmf. (C4, C82)	30685	Resistor- $33,000 \mathrm{ohms} ,1 / 2 \mathrm{watt}$ (R25) R34)
33111	Capacitor-Ceramic, 33 mmf . (C29)	3252	Resistor-100,000 ohms, $1 / 2$ watt (R9, R34)
71514	Capacitor-Ceramic, 82 mmf . (C69)	30651	Resistor-270,000 ohms, $1 / 2$ watt (R23, R33)
39396	Capacitor-Ceramic, 100 mmf ($\mathrm{Cl4}, \mathrm{C} 20, \mathrm{C} 38$)	30648	Resistor-470,000 ohms, $1 / 2$ watt (R35)
71933	Capacitor-Mica, 180 mmf ($\mathrm{C} 31, \mathrm{C} 80)$	30562	Resistor-680,000 ohms, $1 / 2$ watt (R40)
71920	Capacitor Ceramic, 220 mmf (C 45)	30652	Resistor-l megohm, $1 / 2$ watt (RI, Rl7)

$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION	STOCK No.	DESCRIPTION
72147	Knob-Radio range switch knob for walnut and standard mahogany instruments	72925	Tray-Record changer mechanism tray for walnut and standard mahogany instruments
72148	Knob Radio tone control knob for walnut and stand. ard mahogany instruments	72909	Tray-Record changer mechanism tray for toasted mahogany instruments
72149	Knob-Radio tuning knob for walnut and standard mahogany instruments	2917	Washer-" $C^{\prime \prime}$ washer for tray roller
72150	Knob-Radio power switch knob for walnut and standard mahogany instruments		
72569	Knob-lnner knob for horizontal hold control for toasted mahogany instruments		MODEL 8 TV41 MISCELLANEOUS
72566	Knob-Inner knob for picture control or brightness control for toasted mahogany instruments	72701	MISCELLANEOUS
72565	Knob Outer knob for picture control, vertical hold control or brightness control for toasted mahogany instruments	$\begin{aligned} & 72439 \\ & 72146 \end{aligned}$	Back-Television chassis back cover Bezel-Push button bezel
72917	Knob Radio range switch knob for toasted mahogany instruments	71599	Bracket-Pilot lamp bracket Bumper-Rubber bumper for record changer tray
72918	Knob-Radio tone control knob for toasted mahogany instruments	72151	Button-Push button Cable-Radio antenna cable
72919	Knob Radio tuning knob for toasted mahogany in. struments	72445	Cable-Shielded audio cable complete with pin plugs-part of interconnecting cable
72920	Knob Radio power switch knob for toasted mahogany instruments	72437	Cable Shielded pickup cable complete with pin plug
72567	Knob- Television fine luning knob for toasted mahogany instruments	13103	Cap-Pilot lamp jewel Carriage-Record changer mechanism carriage
72568	Knob Television channel selector knob for toasted mahogany instruments	72925	less rollers and bumpers Catch-Door catch and strike for radio, phono and
11765	Lamp Dial lamp		speaker compartments and guide for television
72563	Marker-Call letter mar		compartment doors
70546	Mounting-One set of hardware consisting of four upper springs, four lower springs and four clamp nuts to mount record changer	73422 72434	Catch-Door catch and strike for television compartment doors (2 required) Check-Radio compartment door check
31048	Plug Male plug for audio cable	72157	Clip-Push button bezel spring clip
4573	Plug-2-contact female power plug for interconnecting cable (television chassis end)	$\begin{aligned} & \mathrm{X} 1799 \\ & 71982 \end{aligned}$	Cloth Grille cloth Decal-"Brightness--Horizontal Vertical" decal
30868	Plug--2-contact female power plug for radio interconnecting cable and for record changer extension cable	$\begin{aligned} & 72922 \\ & 71966 \\ & 72696 \end{aligned}$	Decal-Picture control and channel marker decal Decal-Trademark decal (Victrola)
30870	Plug-2-prong male plug for record changer extension cable	72695	Decal-Tuning and selector switch decal Decal-Volume control and tone control decal
71968	Plug--9-prong male plug for radio interconnecting cable (power supply end)	72707 73180	Dial-Glass dial scale Emblem-Metal trademark emblem (RCA-Victor)
71967	Plug-9-contact female plug for radio interconnecting cable (radio end)	73220	Escutcheon-Channel marker escutcheon Escutcheon-Dial escutcheon less dial
72705	Pull-Radio or record changer compartments door pull	$\begin{aligned} & 73419 \\ & 73423 \end{aligned}$	Glass-Safety glass Grille-Metal grille
72704	Pull-Television compartment door pull (2 required)	72441	Guide-Carriage guide-R.H.
70551	Retainer-Tray roller relaining strip, L. H.	72442	Guide-Carriage guide-L.H.
70552	Retainer-Tray roller retaining strip, R. H.	73421	Hinge-Center hinge for radio-phono compartment doors
71539	Slide-Centering slide with rubber cushion for kinescope (4 required)	73024	Hinge-L.H. or R.H. end hinge for radio-phono compartment doors
72156	Spring-Push button bezel spring	36610	Hinge-Speaker compartment door hinges (1 set)-R.H.
34053	Spring-Retaining spring for push button	36817	(l set)-R.H. Hinge-Speaker compartment door hinges
72581 4982 72845	Spring-Radio compartment door check spring Spring-Retaining spring for knob \#71533 and \#72567	73420	(l set)-L.H. Hinge-Television compartment door hinges (4 required)
72845	Spring-Relaining spring for knob \#72147 and \#72917	73224 73222	Knob-Channel selector knob Knob-Fine tuning knob
14270	Spring-Retaining spring for knobs \#71534, \#71535. \#71537. \#72565, \#72566 and \#72568	73228	Knob-Horizontal hold control knob
30330	Spring-Retaining spring for knobs \#71536, \#72150. \#72569 and \#72920	73230	Knob-Picture control or brightness control knob (inner)
30900 71538	Spring-Retaining spring for knobs \#72148. \#72149, \#72918 and \#72919	73226 72150	Knob-Picture control, vertical hold control or brightness control knob (outer) Knob-Radio power switch knob
71538	Spring-Spring clip for channel marker escutcheon	72147	Knob-Radio power switch knob Knob--Radio range switch knob
72440	Stop-Record changer mechanism tray stop	72148	Knob-Radio tone control knob
72691	Suppori-Drop support for record changer compartment door for walnut and mahogany instruments	72149	Knob-Radio tuning control knob
73005 70555	Support-Door support for record changer compartment door for toasted mahogany instruments Tire-Rubber tire for tray roller	$\begin{aligned} & 72563 \\ & 70546 \end{aligned}$	Marker-Station marker Mounting-Set of hardware consisting of tour (4) upper springs, four (4) bottom springs and four (4) clamp nuts to mount record changer

REPLACEMENT PARTS (Continued)

GENERAL DESCRIPTION

Model 8TS30 is a thirty-tube, direct-viewing, $10^{\prime \prime}$ table model. Televiation Receiver. The receiver is complete in one unit and is operated by the use of seven front-panel controls. Features of the receiver include: Full thirteen channel coverage; F-M sound system: Improved pleture brilliance: A-F.C horizontal
hold: Stabilized vertical hold: Two stages of video amplifica tion: Noise saturation circults: Three stage sync separator and clipper: Four mc. band width for picture channel, and Re duced hazard high voltage supply.

ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SEE \qquad $65 /{ }^{\prime \prime} \times 812^{\prime \prime}-2^{\prime \prime}$ radius at comer

R-F FREQUENCY RANGES

Channel Number	Channol Freq. Mc.	Picture Carrier Freq. Mc.	Sound Carrier Freq Mc.	Receiver R-F Osc. Freq. Mc.
1.	44.50.	45.25	49.75	71
2.	.54-60.	.55.25.	.59.75	81
3.	.,60-66.	.61.25	..65.75.	... 87
4.	..66.72.	.67.25	.71.75	93
5.	.76-82.	77.25	.81.75	103
6	.82.88	83.25	87.75	109
	.. 174.180.	.175.25.	.179.75	201
8	.180-186	. 181.25	.185.75	. 207
9.	...186-192.	187.25	191.75.	. 213
10.	...192-198.	..193.25.	..197.75.	. 219
11.	...198-204.	.199.25	203.75	225
12.	...204-210.	.205.25.	209.75	. 231
13.	210.216.	211.25	215.75	. 237

F'NE TUNING RANGE
Plus and minus approximately 300 kc on channel 1 and plus and minus approximately 750 kc on channel 13.

POWER SUPPLY RATING
KCS 201.1
. 115 volts., 60 cycles, 320 watts KCS 20K-2 115 volts, 50 cycles, 320 watte

AUDIO POWER OUTPUT RATING
Undintorted
2.5 watts

Marimum
2. 1 watt

LOUDSPEAKER (92573-2)
Trpe Votce Coll Impedance
5×7 lnch Permanent Magnet Dynamic

WEIGKT

Chasais with Tubes in Cabinet (less Xinencope) 80 lbs. Shipping Weight

RECEIVER ANTENNA INPUT IMPEDANCE. . 300 ohme balanced

DIMENSIONS (inches)	Length	Height	Depth	
Cabinet !Outside	26	$141 / 2$	19	
Chassis	Base (Outaide)	\ldots.	$191 / 4$	$33 / 4$
Chassie	$151 / 2$			
Overall	$213 / 4$	$113 / 4$	$161 / 2$	

RCA TUBE COMPLEMENT

PICTURE 1-F FREQUENCIES	
Picture Carrier Frequency	25.75 Mc .
Adjacent Chaninel Sound Trap	27.25 Mc.
Accompanying Sound Traps	21.25 Mc.
Adjacent Channel Picture Carrier Trap	19.75 Mc.
SOUND 1-F FREQUENCIES	
Sound Carrier Frequency 21.25 Mc .Sound Discriminator Band Width between peaks) 350 kc	
VIDEO RESPONSE .. To 4 Mc	
FOCUS .. Magnetic	
SWEEP DEFLECT!ON ... Magnetic	
SCANNING ... Interlaced, 525 line	
HORIZONTAL SCANNING FREQUENCY 15.750 cps	
VERTICAL SCANNING FREQUENCY 60 cps	
FRAME FREQUENCY (Picture Repetition Rate)	. 30 cps

high voltage warning

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIP MENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE こOMPARTMENT SHIELD REMOVED.

KINESCOPE HANDLING PRECAUTIONS

DO NOT OPEN THE KINESCOPE SHIPPING CARTON, INSTALL. REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

The kinescope bulb encloses a high vacuum and, due to its large surface area, is subjected to considerable air pressure. For these reasons, kinescopes must be handled with more care than ordinary receiving tubes.

The large end of the kinescope bulb-particularly that part at the rim of the viewing surface-must not be struck, scratched or subjected to more than moderate pressure at any time. In installation, if the tube sticks or fails to slip smoothly into its socket, or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Refer to the Receiver Installation section for detailed instructions on kinescope installation. All RCA kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the receiver. Keep the carton for possible future use.

The following adjustments are necessary when turning the receiver on for the first time.

1. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid-position.
2. Set the STATION SELECTOR to the desired channel.
3. Turn the PICTURE control fully counter clockwise.
4. Turn the BRIGHTNESS control clockwise, until a glow appears on the screen then counter clockwise until the glow just disappears.
5. Turn the PICTURE control clockwise until a glow or pat tern appears on the screen.
6. Adjust the FINE TUNING control for best sound fidelity and SOUND VOLUME for suit able volume.
7. Adjust the VERTICAL hold control until the pattern stops vertical movement.
8. Adjust the HORIZONTAL hold control until a picture is ob tained and centered.
 should not be necessary to re peat the adjustments if the posi tions of the controls have not been changed. It any adjust ment is necessary, step number 6 is generally sufficient.
9. If the positions of the controls have been changed, it may be necessary to repeat steps number 1 through 9 .

NOTE: If any difficulty is ex perienced with steps number 7 or 8 , turn the PICTURE control $1 / 4$ turn counterclockwise and re. peat those adjustments.

Figure 1-Receiver Operating Controls

INSTALLATION INSTRUCTIONS

The Model 8TS30 television receiver is shipped complete in one carton except for the 10BP4 kinescope. The kinescope is shipped in a special carton and should not be unpacked until ready for installation.

UNPACKING-To unpack the receiver, tear open the carton bottom flaps, pick the receiver up from under the bottom of the cabinet and lift it out of the shipping carton.
The cabinet safety glass front panel is packed in a cardboard box. Remove the box and unpack the panel. Take off the cabinet top and back
The operating control knobs are packed in a paper bag which is tied to the inside of the cabinet brace. Remove the bag.
Remove the protective cardboard shield from the 5 U 4 G rectifier. Make sure all tubes are in place and are firmly seated in their sockets.
Loosen the two kinescope cushion adjustment wing screws and slide the cushion toward the rear of the chassis. Loosen the deflection yoke adjustment, slide the yoke toward the rear of the chassis and tighten. See Figure 2 for the location of the cushion and yoke adjustments.

Figure 2-Yoke and Focus Coil Adjustments

From the front of the cabinet, look through the deflection yoke and check the alignment of the focus coil with the yoke. If the focus coil is not in line, loosen the three focus coil adjustment wingnuts and raise, lower, or rotate the coil until align. ment is obtained. Tighten the wingnuts with the coil in this position.

Loosen the two lower kinescope face centering slides, and set them at approximately mid position. See Figure 3 for location of the slides and their adjustment screws.

Figure 3-Cabinet, Front View

KINESCOPE HANDLING PRECAUTION-Do not open the kine. scope shipping carton, install, remove, or handle the kinescope in any manner, unless shatterprool goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling. The shipping carton should be kept for use in case of future moves.

INSTALLATION OF KINESCOPE-The kinescope second anode contact is a recessed metal well in the side of the bulb. The tube must be installed so that this contact is approximately on top. The final orientation of the tube will be determined by the position of the ion trap flags. Looking at the kinescope gun structure, it will be observed that the second cylinder from the base inside the glass neck is provided with two small metal tlags, as shown in Figure 4. The kinescope must be installed so that when looking down on the chassis, the two flags will be seen as shown in Figure 2.

Figure 1-Ion Trap Flags

Insert the neck of the kinescope through the deflection and focus coils as shown in Figure 5 until the base of the tube protrudes approximately two inches beyond the focus coil. If the tube sticks, or fails to slip into place smoothly, investi gate and remove the cause of the trouble. Do not force the tube.

Figure 5-Kinescope Insertion

Early production receivers employed an EM type of ion trap magnet like that in the model 630TS receiver. Late production receivers employed a PM type magnet as shown in Figure 2.

If an EM type of magnet is applied, slip the assembly over the neck of the kinescope with the coils down and the large coil towards the base of the tube. Tighten the magnet adjustment thumbscrews sufficiently to hold it in position but still free enough to permit adjustment.

If the PM type is employed, slip the assembly over the neck of the kinescope with the large magnet towards the base of the tube and with the arrow on the assembly up as shown in Figure 2. The front magnet is movable on the assembly. The correct position of the front magnet is with the gap on the left side (from the rear of the cabinet) and even with the gap of the rear magnet.

Connect the kinescope socket to the tube base. Insert the kinescope until the tace of the tube protrudes approximately one-quarter of an inch outside the front of the cabinet. Adjust the four centering slides until the face of the kinescope is in the center of the cabinet opening. Tighten the four slides securely.

Wipe the kinescope screen surface and front panel safety glass clean of all dust and finger marks with a soft cloth moistened with the Drackett $\mathrm{Co}{ }^{\text {'s }}$ "Windex" or similar cleaning agent.

Install the cabinet front panel as indicated in Figure 3
To install the front panel place the lip on the bottom of the panel in the recess below the kinescope opening and push the
top in. Insert the two screws from the bag with the knobs into the back of panel as shown in Figure 3.

Slip the kinescope as far forward as possible. Slide the kinescope cushion firmly up against the flare of the tube and tighten the adjustment wing screws. Slide the deflection yoke as far forward as possible. Connect the high voltage lead to the kinescope second anode socket.

The antenia and power connections should now be made. Turn the power switch to the "on" position, the brightness control fully clockwise, and picture control counter.clockwise.

ION TRAP MAGNET ADJUSTMENT-The ion trap rear magnet poles should be approximately over the ion trap flags as shown in Figure 2. Starting from this position adjust the mag. net by moving it forwards or backwards at the same time ro. tating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust the focus control (R184 on the chassis rear apron) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches on this adjustment should be made with the brightness control at the maximum position with which good line focus can be maintained.

FOCUS COIL ADJUSTMENTS-Turn the centering controls R181 and R211 to mid position. See Figure 6 for location of these rear apron controls.

If a corner of the raster is shadowed, it indicates that the electron beam is striking the neck of the fube. Loosen the focus coil adjustment wing nuts and rotate the coil about its vertical and horizontal axis until the entire raster is visible, approximately centered and with no shadowed corners. Tighten the focus coil adjustment wing nuts with the coil in this position.

Figure 6-Rear Chassis Adjustments
DEFLECTION YOXE ADJUSTMENT-If the lines of the raster are not horizontal or squared witin the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE ADJUSTMENTS-It will now be necessary to obtain a test pattern picture in order to make further adjustments. See steps 2 through 9 and the note of the receiver operating instructions on page 3.

CHECE OF HORIZONTAL OSCILLATOR ALIGNMENT-Turn the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will pull into sync. Turn the horizontal hold control to the extreme clockwise position. The picture should remain in sync. Momentarily remove the sig. nal. Again the picture should normally pull into sync.
If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator and proceed with 'FOCIJS' adjustment."

ALIGNMENT OF HORIZONTAL OSCILLATOR-If in the above check the receiver failed to hold sync with the hold control at aither extreme or tailed to pull into sync after momentary removals of the signal, make the adjustments under "Slight Retouching Adjustments." If, after making these retouching adjustments, the receiver fails to pass the above checks or if the horizontal oscillator is completely out of adjustment, then make the adjustments under "Complete Realignment."

Slight Retouching Adjustments-Tune in a Television Station and odjust the fine tuning control for best sound quality. Sync the picture and adjust the picture control for slightly less than normal contrast. Turn the horizontal hold control to the extreme position in which the oscillator fails to hold or to pul in. Momentarily remove the signal. Turn the Tlo8 fre quency adjustment on the chassis rear apron until the oscillator pulls into sync. Check hold and pull-in tor the other extreme position of the hold control.

Complete Realignment-Tune in a Television Station and ad. just the fine tuning control for best sound quality.

Turn the Tl08 frequency adjustment on rear apron until the picture is synchronized. Adjust the picture control so that the picture is somewhat below average contrast level.

Turn the T108 phase adjustment screw (under chassis) until the blanking bar, which may appear in the picture, moves to the right and off the raster. The range of this adjustment is such that it is possible to hit an unstable condition (ripples in the raster). The screw must be turned clockwise from the unstable position. The length of stud beyond the bushing in its correct position is usually about $1 / 2$ inch.

Turn horizontal hold to the extreme counter-clockwise position. Turn Tl08 frequency adjustment clockwise until the picture falls out of sync. Then turn it slowly counter clockwise to the point where the picture falls in sync again.

Readjust T108 phase adjustment so that the left side of the pic ture is close to the left side of the raster, but does not begin to told cuer.

Turn horizontal hold to the extreme clockwise position. The right side of the picture should be close to the right side of the raster, but should not begin to told over. It it does, readjust the phase control.

Momentarily remove the signal. When the signal is re stored. the picture should fall in sync. If it doesn't, turn T108 frequency adjustment counter clockwise until the picture falls in sync.

Turn horizontal hold to the extreme counter-clockwise position Remive the signal momentarily. When signal is restored, the picture shuuld fall in sync.

NOTE: If the picture does not pull in sync after momentary removals of the signal in both extreme positions of horizontal hold, the pull-in range may be inadequate, though not neces sarily. A pull-in through $3 / 4$ of the hold control range may still be satisfactory.

There is a difference between the pull-in range and hold-in range of trequencies. Once in sync, the circuit will hold about 50% to 100% more variation in frequency than it can pull in. The range of the horizontal hold control is only ap proximately equal to the pull-in range, considerable variation may be found due to variations in the cut-off characteristic of the horizontal oscillator control tubes, V124.

FOCUS-Adjust the focus control R184 for maximum definition of tho vertical wedge of the test pattern.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS Adjust the height control (R169 on chassis rear apron) until the picture fills the mask vertically ($63 / 8$ inches). Adjust vertical linearity (R178 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a read. justment of the other. Adjust vertical centering to align the picture with the mask.

WIDTH AND HORIZONTAL LINEARITY ADIUSTMENTS-TuIn the horizontal drive (R187 on rear apron) clockwise as far as
possible without causing crowding of the right of the picture. This position provides maximum high voltage to the kinescope second anode. Addjust the width control (L196 on rear chassis) until the picture just fills the mask horizontally ($81 / 2$ inches). Adjust the horizontal linearity control L201 (see Fig. ure 6) until the test pattern is symmetrical left to right. A slight readjustment of the horizontal drive control may be necessary when the linearity control is used. Adjust horizontal centering to align the picture with the mask.
If repeated adjustments of drive width and linearity fail to give proper linearity, it may be necessary to move the tap on R209, which is located in the high voltage compartment. Adjustments of diive. width and linearity must then be repeated. Check to see that all cushion. yoke, focus coil and lon trap magnet thumb screws are tight. Replace the cabinet back and top. Make sure that the back is on tight. otherwise it may rattle at high volume.
CHECK OF R.F OSCILLATOR ADJUSTMENTS-With a crystal calibrated test oscillator or heterodyne frequency meter, check to see it the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure on page 8 . The adjustments for channels 1 through 5 and 7 through 12 are available from the front of the abainet by removing the station selector escutcheon as shown in Figure 7. Adjustments for channels 6 and 13 are under the chassis.
VIDEO PEAKING LINK-A video peaking link is provided (see Figure 6) to permit changing the video response. If the pictures from the majority of stations look belter with the link closed, ($2 \cdot 3$ position) then the link should be placed in that position. However, if transients are produced on high contrest pictures then the link should be left open ($1-2$ position).

Figure 7-R-F Oscillator Adjustments
ANTENNA TRAP-In some instances interference may be encountered from FM stations that are on the image frequency of a television station. In other instances interference between two television stations may be observed.
Assume that two television stations in α city are operating on channels 6 and 10 . When the receiver is tuned to channel 6 , a small amount of the oscillator voltage (109 mc .) is present on the r-f amplitier grid. This 109 mc . voltage beats with the channel 10 picture carrier and produces an 84.25 mc . signal. This signal falls within the channel 6 range and interferes with the reception of channel 6. A similar case occurs between channels 5 and 7.
A series resonant trap across ther-f amplifier grid circuit is employed to remove theoscillator voltage from the grids and thus eliminate this type of interference.
To adjust the trap in the field. tune in the station on which the interference is observed. Tune both cores of the trap for minimum interference in the picture. See Figure 8 for the 10 cation of the trap. Keep both cores approximately the same by visual inspection. Then, turn one core $1 / 2$ furn from the original position and repeak the second for maximum rejection. Repeat this process until the best rejection is obtained. For shop alignment of the trop see the alignment procedure on page 11
In severe cases of interference, it may be necessary to reduce the signal from the interfering station by reorienting the antenna or by connecting a half wave stub of transmission line across the receiver antenna terminals. The end of the stub should be terminated by a 47 ohm, non inductive resistor.

Figure 8-Chassis Top View

Figure 9-Chassis Bottom Vieu

TEST EQUIPMENT-To properly service the television chassis of this receiver. it is recommended that the following test equipment be available:

R-F Sweep Generator meeting the following requirements:
(a) Frequency Ranges

18 to 30 mc .1 mc . sweep width
40 to $90 \mathrm{mc} ., 10 \mathrm{mc}$. sweep width
170 to 225 mc ., 10 mc . sweep width
(b) Output adjustable with at least .1 volt maximum.
(c) Output constant on all ranges.
(d) "Flat" output on all attenuator positions.

Cathoderay Oscilloscope, preferably one with a wide band vertical deflection, an input calibrating source, and a low capacity probe.

Signal Generator to provide the following frequencies.
(d) I-F Irequencies
19.75 mc . adjacent channel picture trap
21.25 mc . sound i-f and sound traps
21.8 mc . converter transformer
22.3 mc. second picture i.f transiormer
23.4 mc. fourth picture i.f coil
25.2 mc. third picture i-f coil
25.3 mc. first picture if transformer

2575 mc . picture carrier
27.25 mc. adjacent channel sound trap
(b) R-F frequencies

Channel Number	Picture Carrier Freq. Mc.	Sound Carrier Freq. Mc
1	45.25	49.75
2	55.25	59.75
3	61.25	65.75
4	67.25	71.75
5	77.25	81.75
6	83.25	87.75
7	175.25	179.75
8	181.25	185.75
5	187.25	191.75
10	193.25	197.75
11	199.25	203.75
12	205.25	209.75
13	211.25	215.75

(c) Output on these ranges should be adjustable and at least .1 volt maximum.

Heterodyne Frequency Meter with crystal calibrator if the signal generator is not crystal controlled.

Electronic Voltmeter of Junior "VoltOhmyst" type and a high voltage multiplier probe for use with this meter to permit measurements up to 10 kv .
Service Precautions-II necessary to remove the chassis from cabinet, the kinescope must first be removed. See Figures 3 and 5. If possible, the chassis should then be serviced without the kinescope. However, it it is necessary to view the raster during servicing, the kinescope should be inserted only after the chassis is turned on end. The kinescope should never be allowed to support its weight by resting in the deflecting yoke. A bracket should be used to support the tube at its viewing screen.

By turning the chassis on end with the power transformer down, all adjustments will be made conveniently available. Since this is the only sale position in which the chassis will
rest and still leave all adjustments accessible, the trimmer location drawings are oriented similarly for ease of use.
CAUTION: Do not short the kinescope second anode lead. Its short circuit current is approximately 3 ma . This represents approximately 9 watts dissipation and a considerable overload on the high voltage filter resistor R235.
Adjustments Required-Normally, only the r-f oscillator line will require the attention of the service technician. All other circuits are either broad or very stable and hence will seldom require re-adjustment.

Due to the high frequencies at which the receiver operates the r-f oscillator line adjustment is critical and may be affected by a tube change. The line can be adjusted to proper frequency on channel 13 with practically any 6J6 tube in the oscillator socket. However, it may not then be possible to adjust the line to frequency on all of channels 7, 8, 9, 10, 11 and 12. To be satisfactory as an oscillator tube, it should be possible to adjust the line to proper frequency with the fine tuning control in the middle third of its range. It may therefore be necessary to select a tube for the oscillator socket. In replacing. if the old tube can be matched for frequency by trying several new ones, this practice is recommended. At best, however, it will probably be necessary to completely realign the oscillator line when changing the tube.
Tubes which cannot be used as oscillator will work satisfac. torily as r-f amplifier or converter.
ORDER OF ALIGNMENT-When a complete receiver alignment is necessary, it can be most conveniently performed in the following order:

```
Sound discriminator
Sound i-f transformers
Picture i-f traps
Picture i-f transformers
R-F and converter lines
R-F oscillator line
Retouch picture i-f transformers
Antenna trap adjustment
Sensitivity check
```


SOUND DISCRIMINATOR ALIGNMENT-

Set the signal generator for approximately 1 volt output at 21.25 mc . and connect it to the third sound i-i grid.

Detune Tll3 secondary (bottom).
Set the "VoltOhmyst" on the 10 volt scale.
Connect the meter in series with a one megohm resistor to the junction of diode resistors R219 and R220. Do not remove the discriminator shield to make connection to R219 and R220.
Connection can be easily made by fashioning a hook on the 1 meg resistor lead and making connection to the transformer lug " C " through the hole provided for the adjusting tool.
Adjust the primary of Tll3 (top) for maximum output on the meter.
Connect the "VoltOhmyst" to the junction of R236 and C205. Adjust Tll3 secondary (bottom). It will be found that it is pos. sible to produce a positive or negative voltage on the meter dependent upon this adjustment. Obviously to pass from a positive to a negative voltage, the voltage must go through zero. T113 (bottom) should be adjusted so that the meter indicates zero output as the voltage swings from positive to negative. This point will be called discriminator zero output.
Connect the sweep oscillator to the grid of the third sound i-f amplifier.

Adjust the sweep band width to approximately 1 mc . with the center frequency at approximately 21.25 and with an output of approximately 11 volt.

Connect the oscilloscope to the junction of R236 and C205.
The pattern obtained should be similar to that shown in
Fiqure 16 A . If it is not, adjust the Tll3 (top) until the wave form is symmetrical.
The peak to peak bandwidth of the discriminator should be approximately 350 kc . and it should be linear from 21.75 mc . to 21.325 mc .

SOUND I. F ALIGNMENT-

Connect the sweep oscillator to the second sound i-f amplifier qrid.

Connect the oscilloscope to the third sound i-f grid return (terminal A T112) in series with a 33.000 ohm isolating resistor. Insert a 21.25 mc . marker signal from the signal generator into the second sound i-t grid.

Adjust T112 (top and bottom) for maximum gain and symmetry about the 21.25 mc . marker. The pattern obtained should be similar to that shown in Figure 16B.

The output level from the sweep should be set 10 produce approximately 3 volt peak-to-peak at the third sound i.f grid return when the final touches on the above adjustment are made. It is necessary that the sweep output voltage should not exceed the specitied values otherwise the response curve will be broadened, permitting slight misadjustment to pass unnoticed and possibly causing distortion on weak signals.

Connect the sweep and signal generator to the top end of the trap winding of T2 (on top of the chassis). Adjust T111 (top and bottom), for maximum gain and symmetry at 21.25 mc .

Reduce the sweep output for the final adjustments so that approximately 3 volt peak-to-peak is present at the third sound i-f grid return.
The band width at 70% response from the first sound i-f grid to the third if grid should be approximately 200 kc .

PICTURE I-F TRAP ADJUSTMENT-

Turn the receiver picture control for .3 volts on the picture i-f gride.

Set the channel switch to channel 13.
Connect the "VoltOhmyst" across the picture second detector load resistor R137.

Connect the output of the signal generator to the junction of C14 and R6. This connection is available on a terminal lug through a hole in the side apron of the chassis, beside the r-f unit. This hole is normally down when the chassis is in the recommended position. Connection can be easily made. however. by allowing the receiver to hang over the edge of the test bench by a few inches.
Set the generator to each of the following frequencies and tune the specified adjustment for minimum indication on the "VoltOhmyst." In each instance the generator should be checked against a crystal calibrator to insure that the generator is exactly on trequency
21.25 mc - T 2 (top)
21.25 mc -T105 (top)
27.25 mc .-T103 (top)
27.25 mc. T102 (bottom)
19.75 mc .-T104 (top)

Note-On some sets, T102 bottom adjustment is omitted.

PICTURE I-F TRANSFORMER ADJUSTMENTS

Set the signal generator to each of the following frequencies and peak the specified adjustment for maximum indication on the "VoltOhmyst."

```
21.8 mc.-T2 (boltom)
25.3 mc,-T103 (bottom)
22.3 mc.-T104 (bottom)
25.2 me.-T'92 (top of chassis)
23.4 me.-L185 (top of chassis)
```

If T104 (bottom) required adjustment, it will be necessary to reset T104 (top) for minimum response at 19.75 mc .
Picture I-F Oscillation-If the receiver is badly misaligned and two or more of the i-f transformers are tuned to the same frequency, the receiver may fall into i-f oscillation. I-F oscillation shows up as a voltage in excess of 3 volts at the picture detector load resistor. This voltage is unaffected by r-i signal input and sometimes is independent of picture control setting. It such a condition is encountered, it is sometimes possible to stop oscillation by adjusting the transformers approximately to trequency by setting the adjustment stud extensions of T 2 . T103. T104, T105, TT102, and L185 to be approximately equal to those of another receiver known to be in proper alignment. If this does not have the desired effect, it may now be possible to stop oscillation by increasing the grid bias. If so, it should then be possible to align the transformers by the usual method. Once aligned in this manner, the i-f should be stable with reduced bias.

If the oscillation cannot be stopped in the above manner, shunt the grids of the first three pix i-f amplifiers to ground with 1000 mmf . capacitors. Connect the signal generator to the fourth pix i-f grid and align 1185 to frequency. Progressively remove the shunt from each grid and align the plate coil of that stage to frequency

If this does not stop the oscillation, the difficulty is not due to i-f misalignment as the i-f section is very stable when properly aligned. Check all if by-pass condensers, transiomer shunting resistors, tubes, socket voltages, etc.

R-F RND CONVERTER LINE ADJUSTMENT -

Connect the r-i sweep oscillator the receiver antenna terminals. If the sweep oscillator has a 50 ohm single-ended output. it will be necessary to obtain balanced output by connecting as shown in Figure 10.

Figure 10-Uubalanced Sweep Cable Termination
Connect the oscilloscope to the junction of C14 and R6 (in the r-f tuning unit) through a 10,000 ohm resistor.

By-pass the first picture i-f grid to ground through a 1000 mmid . capacitor. Keep the leads to this by-pass as short as possible. If this is not done. lead resonance may tall in the r-f range and cause an incorrect picture of the rif response.

Turn the picture control for -1.5 volls on the r-i grids. Connect the signal generator boosely to the receiver antenna terminals.

Turn the antenna trap L81 and L82 cores fully counterclockwise so that the trap will not affect the channel 6×4 response. Since channel 7 has the narrowest response of any of the

ALIGNMENT PROCEDURE

high frequency channels, it should be adjusted first
Set the receiver channel switch to channel 7 (see Figure 15 for switch shaft flat location versus channel).

Set the sweep osciliator to cover channel 7
Insert markers of channel 7 picture carrier and sound carrie 175.25 mc . and 179.75 mc .

Adjust L25, L26. LSI and L52 (see Figure 17) for an approxi mately flat lopped response curve located symmetrically be ween the markers. Normally this curve appears somewhat overcoupled or double humped with a 10 or 15% peak to val ley excursion and the markers occur at approximately 90% re sponse. See Figure 17, channel 7. In making these adjust ments, the stud extension of all cores should be kept approxi mately equal.

Check the response of channels 8 through 13 by switching the receiver channel switch, sweep oscillator and marker oscillator to each of these channels and observe the response obtained. See Figure 17 for typical response curves. It should be found that all these channels have the proper shaped re sponse with the markers above 70% response. It the markers do not fall within this requirement on one or more high fre quency channels, since there are no individual channel ad justments, it will be necessary to readjust L25, L26, L51 and L52. and possibly compromise some channel slightly in order to get the markers up on other channels. Normally however, no difficulty of this type should be experienced since the higher frequency channels become comparatively broad and the markers easily fall within the required range
Channel 6 is next aligned in the same manner.
Set the receiver to channel 6
Set the sweep oscillator to cover channel 6
Set the marker oscillator to channel 6 picture and sound carrier frequencies.

Adjust L11, L12, L37 and L38, for an approximately flat-topped response curve lucated symmetrically between the markers.

Check channels 5 down through channel 1 by switching the receiver, sweep oscillator and marker oscillator to each channel and observing the response obtained. In all cases, the markers should be above the 70% response point. If this is not the case, L11, L12, L37 and L38 should be retouched. On final adjustment. all channels must be within the 70% specification.

Coupling between $\mathrm{r} \cdot \mathrm{f}$ and converter lines is augmented by a link between L12 and L37. This link is adjusted in the factory and should not require adjustment in the field. On channel 6 with the link in the minimum coupling position, the response is slightly overcoupled with approximately a 10% excursion from peak-to-valley. With the coupling at maximum, the response is somewhat broader and the peak-10-valley excursion is approximately 40%. The amount of coupling permissible is limited by the peak-to-valley excursion which should not be greater than 30% on any channel.

R-F OSCILLATOR LINE ADJUSTMENT-

The r-f oscillator line may be aligned by adjusting it to beat with a crystal calibrated heterodyne frequency meter, or by feeding a signal into the receiver at the r-f sound carrier fre quency and adjusting the oscillator for zero output from the sound discriminator. In this latter case the sound discriminator must first have been aligned to exact frequency. Either method of adjustment will produce the same results. The method used will depend upon the type of test equipment available

Regardless of which method of oscillator alignment is used, the frequency standard must be crystal controlled or calibrated If the receiver oscillator is to be adjusted by the heterodyne frequency meter method, the calibration frequency listed under R-F Osc. Freq. must be available.

If the receiver oscillator is adjusted by feeding in the r-f sound carrier frequency, the frequencies listed under sound carrier Freq must be available

Channel Number	Receiver R-F Ose. Freq. Mc.	R-F Sound Carrier Freq. Mc
1	71	49.75
2	81	59.75
3	87	65.75
4	93	71.75
5	.. 103	81.75
6	.. 109	87.75
7	.. 201	179.75
8	207	.. 185.75
9	.. 213	... 191.75
10	... 219 197.75
11	225	203.75
12	231	209.75
13	237	215.75

If the heterodyne frequency meter method is used, couple the meter probe loosely to the receiver oscillator.
If the rif sound carrier method is used, connect the "Volt Ohmyst" to the sound diseriminator output (junction of R236 and C205

Connect the signal generator to the receiver antenna terminals. The order of alignment remains the same regardless of which method is used.

Since lower frequencies are obtained by adding steps of inductance, it is necessary to align channel 13 first and con tinue in reverse numerical order.

Set the receiver channel switch to 13.
Adjust the frequency standard to the correct frequency (237 mc . for heterodyne frequency meter or 215.75 mc . for the signal generator).

Set the fine funing control to the middle of its range while making the adjustment.
Adjust L77 and L78 for an audible beat on the heterodyne frequency meter or zero voltage from sound discriminator. The core stud extensions should be maintained equal by visual inspection.
Switch the receiver to channel 12
Set the frequency standard to the proper frequency as listed in the alignment table.

Adjust L76 for indications as above.
Adjust the oscillator to frequency on all channels by switching the receiver and the frequency standard to each channel and adjusting the appropriate oscillator trimmer for the specified indication. It should be possible to adjust the oscillator to the correct frequency on all channels with the fine tuning control in the middle third of its range.
After the oscillator has been set on all channels, start back at channel 13 and recheck to make sure that all adjustments are correct.

RETOUCHING OF PICTURE IF ADJUSTMENTS-

The picture i-f response curve varies somewhat with change of bias and for this reason it should be aligned with approxi-
mately the same signal input as it will receive in operation. If the receiver is located at the edge of the service area, it should be aligned with approximately -1 volt i-f grid bias. However, for normal conditions, (signals of 1000 microvolts or greater), it is recommended that the picture i.f be aligned with a grid bias of -3 volts.

Connect the rif sweep generator to the receiver antenna terminals.
Connect the signal generator to the antenna terminals and feed in the 25.75 mc 14 picture carrier marker and a 22.3 mc marker.

Connect the oscilloscope across the picture detector load resistor.

Turn the picture control for -3 volts at its arm.
Set the sweep output to produce approximately 3 volt peak-topeak across the picture detector load resistor.

Observe and analyze the response curve obtained. The response will not be ideal and the i-f adjustments must be retouched in order to obtain the desired curve. See Figure 18.
If T104 (bottom) required any adjustment, it will be necessary to reset Tl04 (top) for minimum response at 19.75 mc .
On final adjustment the picture carrier marker must be at approximately 45% response. The curve must be approximately flat topped and with th? 22.3 mc marker at approximately 100% response.
The most important consideration in making the i-f adjustments is to get the picture carrier at the 45% response point. If the picture carrier operates too low on the response curve, loss of low frequency video response, of picture brilliance, of blanking, and of sync may occur. It the picture carrier operates too high on the response curve, the picture definition is impaired by loss of high frequency video response. In making these adjustments, care should be taken that no two transformers are tuned to the same frequency as if oscillation may result.

ANTENNA TRAP ALIGNMENT-When the receiver is aligned in the shop. the antenna trap should be adjusted to reject the type of interference which might be encountered at the cus. tomer's home. It can be adjusted by actual observation of the interference on the air or by the use of a signal generator. Two methods of adjustment are possible if a signal generator is employed. Select the type of interference and method to suit the test equipment involved.
Method 1 for channel 6-10 interierence. Set the "VoltOhmyst" on the 3 volt scale and connect it to the junction of L188 and R137. Turn the picture control to the maximum clockwise position. Connect the signal generator to the antenna terminals through balancing network as shown in Figure 10. Tune the receiver oscillator 10109 mc . with the fine tuning control as determined by the method employed in the previous section on r-f oscillator line adjustment. Feed in the channel 10 picture carrier (193.25 mc .) from the signal generator. Adjust L81 and L82 for minimum reading on the "VoltOhmyst," keep. ing both cores about the same. For final touches, adjust L81 one-half turn clockwise and readjust L82 for minimum on the meter. If this minimum is lower than the previous, repeat until the lowest minimum is oblained. If this minimum was higher, adjust L8I one-half turn counterclockwse and readjust L82. Repeat for the lowest minimum.
Method 2 for channel 6.10 interference. With the same setup as above, switch the receiver to channel 3 and tune the re.
ceiver oscillator to 87 mc . Feed in a signal of 109 mc . from the signal generator and adjust the trap as above.
Method 1 for channel $5-7$ interference. With the same setup as above, switch the receiver to channel 5 and tune the receiver oscillator to 103 mc . Feed in the picture 7 sound carrier (179.75 mc .) from the signal generator and adjust the trap as above.
Method 2 for channel $5-7$ interference. With the same setup as above, switch the receiver to channel 2 and tune the receiver oscillator to 81 mc . Feed in a 103 mc . signal from the generator and adjust the trap as above.
Method for FM image interference. With the same setup as above, switch the receiver to channel 2 and tune the receiver oscillator to 81 mc . Feed in a signal of the frequency of the interfering FM station and adjust the trap as before.
To adjust the trap by observation of the picture under actual operating conditions, connect an antenna to the receiver and tune in the station on which the interference is observed. Ad. just the trap as above tor minimum interference in the picture. Since the customer's antenna will affect these adjustments slightly. in cases of severe interference it may be necessary to retouch the trap adjustment when the receiver is installed in the customer's home.

SENSITIVITY CHECX-A comparative sensitivity check can be made by operating the receiver on a weak signal from a television station and comparing the picture and sound obtained to that obtained on other receivers under the same conditions.
This weak signal can be oblained by connecting the shop antenna to the receiver through an attenuator pad of the type shown in Figure 11. The number of stages in the pad depends upon the signal strength available at the antenna. A sufficient number of stages should be inserted so that a somewhat less than normal contrast picture is obtained when the picture control is at the maximum clockwise position. Only carbon type resistors shouid be used to construct the pad.

Figure 11-Attenuator Pad
RESPONSE CURVES-The response curves shown on page and referred to throughout the alignment procedure were taken from a production set. Although these curves are typical. some variations can be expected. Channel 2 response (not shown) is similar to that of channel 3

REFER TO PAGES 236 TO 243 INC. FOR RESPONSE CURVES, TEST PATTERN PHOTO. GRAPHS, SERVICE SUGGESTIONS AND WAVEFORM PHOTOGRAPHS.

ALIGNMENT TABLE-Both methods of oscillator alignment are presented in the alignment table. The service technician may thereby choose the method to suit his test equipment.

ALIGNMENT TABLE

the detalled alignment procedure beginning on page s should be read before alignment by use of the table is attempted.

| STEP | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | CONNECT
 SIGNAL
 GENERATOR
 TO | SIGNAL
 GEN.
 FREQ.
 MC. | CONNECT
 GENERATOR
 SWEE | SWEEP
 GEN.
 FREQ.
 MC. | CONNECT
 OSCILLOSCOPE
 TO | CONNECT
 "VOLTOHMYST"
 TO | MISCELLANEOUS
 CONNECTIONS
 AND
 INSTRUCTIONS | RDIUST |

D:SCRIMINATOR AND SOUND I-F ALIGNMENT

1	3rd sound i-f grid (pin 1, V106)	$\begin{gathered} 21.25 \\ .1 \text { volt } \\ \text { output } \end{gathered}$	Not used		Not used	In series with 1 meg. to junction of R219 6 R220		Detune T113 (bottom). Adjust Tll3 (top) for max. on meter	$\begin{aligned} & \text { Fig. } 14 \\ & \text { Fig. } 13 \\ & \text { Fig. } 12 \end{aligned}$
2	"	"	"		"	$\begin{aligned} & \text { Junct } \\ & \text { C205 } \end{aligned} \text { R236 }$	$\begin{aligned} & \text { Meter on } 3 \text { volt } \\ & \text { seale } \end{aligned}$	T113 (boltom) for zero on meter	$\begin{aligned} & \text { Fig. } 14 \\ & \text { Fig. } 13 \end{aligned}$
3	"	"	3rd sound i-f grid (pin 1, V106)	$\begin{gathered} 21.25 \\ \text { center } \\ 1 \mathrm{me} . \\ \text { wide } \\ .1 \mathrm{~V} . \text { out } \end{gathered}$	$\begin{aligned} & \text { Junction of } \mathrm{R} 236 \\ & \& \mathrm{C} 205 \end{aligned}$	Not used	Check for symmet form (positive \& equal adjust Tll3 equal	cal response wavenegative). If not (top) until they are	$\begin{aligned} & \text { Fig. } 14 \\ & \text { Fig. } 16 \end{aligned}$
4	2nd sound i-f grid (pin 1. V105)	$\begin{aligned} & 21.25 \\ & \text { re- } \\ & \text { duced } \\ & \text { output } \end{aligned}$	2nd sound i.f grid	$\begin{gathered} 21.25 \\ \text { reduced } \\ \text { output } \end{gathered}$	$\begin{aligned} & \text { Terminal A. T112 } \\ & \text { in sorios wilh } \\ & j 3,000 \text { ohms } \end{aligned}$	"	Sweep output re. duced to provide . 3 volt p-to-p on scope	T112 (lop 6 bot. fomp for max. gain and sym. metry at 21.25 me.	Fig. 14 Fig. 12 Fig. 13 Fig. 16
5	Trap winding on T2 (top of chas. sis)	21.25 duced output	Trap winding on T2	$\begin{aligned} & 21.25 \\ & \text { reduced } \\ & \text { output } \end{aligned}$	"	"	"	Tlll (lop bot- lom) for max. gain and sym- metry at 21.25 me.	Fig. 12 Fig. 13 Fig. 14 Fig. 16

PICTURE L-F AND TRAP ADIUSTMENT

5	Not used		Not uned	Not uned	$\begin{aligned} & \text { Junction of R189 } \\ & \text { \& R190 } \end{aligned}$		Plature conirol for -3 volis on meter	Fig. 14
7	Junction C14 and H6	21.25	"	"	Junction of Lis8 6 R137	Meter on 3 volt scale. Receiver on channel 13	T105 (top) for min. on meter	Fig. 12
8	"	21.25	"	"	"	"	T2 (top) for min.	Fig. 14 Fig. 12
9	"	27.25	"	"	"	"	Tl03 (top) tor min. T102 (bot.) fer min.	Fig. 12 Fig. 13
10	'	19.75	"	"	"	"	T104 (top) tor min.	Fig. 12
11	"	21.8	"	"	"	"	$\begin{aligned} & \text { I2 (bottom) for } \\ & \text { max. } \end{aligned}$	Fig. 13
12	"	25.3	"	"	"	"	1103 (bottom) for max.	"
13	"	22.3	"	"	"	"	T104 (bottom) for max.	"
14	"	25.2	"	"	"	"	T102 (top charsis) for max.	Fig. 12
15	\because	23.4	"	"	"	"	1185 (top chassis) for max.	"
16	If T104 (boltom) required adjustment in stop 13, repeat step 10.							

17	Not used		Not used		Not used	$\begin{aligned} & \mathrm{Pin}_{\mathrm{V} 108} 5 \text { or } \\ & \mathrm{V}^{2} \end{aligned}$		Picture co -1.5 volts	ontrol for on metor	Fig. 14 Fig. 13
18	Antenag terminal (loosely)	$\begin{aligned} & 175.25 \\ & 179.75 \end{aligned}$	Antenna terminals (see lext for precaution)	$\begin{aligned} & \text { Sweep. } \\ & \text { ing } \\ & \text { channel } \\ & \hline \end{aligned}$	Junction C14 and R6 through 10,000 ohm series re. sistor	Not used	1st if grid by. pass 10 gnd. with 1000 zmmi. Recoiver on channel 7		$\begin{gathered} \text { L51 } \\ \text { approx. } \\ \text { response } \\ \text { markers. } \\ \text { above } \end{gathered}$	Fig. 14 Fig. 13 Fig. ${ }^{17}$
19	"	$\begin{aligned} & 181.25 \\ & 185.75 \end{aligned}$	"	channel	"	"	Receiver on channel 8	Check to response above	see that	$\text { Fiq. }{ }^{17}$
20	"	$\begin{aligned} & 187.25 \\ & 191.75 \end{aligned}$	"	channel	"	"	Recoiver on channel 9	"		$\text { Fig. } 17$
21	"	$\begin{aligned} & 193.25 \\ & 197.75 \end{aligned}$	"	$\underset{10}{\text { channel }}$	"	"	Receiver on channel 10	"		$\text { Fig. } 17$ (10)
22	"	$\begin{aligned} & 199.25 \\ & 203.75 \end{aligned}$	"	$\underset{11}{c h a n n e l}$	"	"	Receiver on channel 11	"		$\text { Fig. }_{\text {(lı) }}{ }^{17}$
23	"	$\begin{aligned} & 205.25 \\ & 209.75 \end{aligned}$	"	${ }_{12}^{\text {channel }}$	"	"	Receiver on chan nel 12	"		$\text { Fig. }_{(12)^{17}}$
24	"	$\begin{array}{\|l\|l\|l\|} 211.25 \\ 215.75 \end{array}$	"	$\underset{13}{c h a n n o l}$	"	"	Receiver on chan nel 13	"		Fig. 17 (13)
25	if the response on any channel (steps 19 through 24) is below 70% at either marker, switch to that channel and adjust L25, L26, LS1, 6 L52 to pul response up on that channel. Then recheck ateps 18 through 24.									

ALIGNMENT TABLE

8TS30

STEP No.	CONNECT SIGNAL GENERATOR TO	SIGNAL GEN. FREQ. MC.	$\begin{aligned} & \text { CONEECT } \\ & \text { SWEEP } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$	SWEEP GEN. FREQ. MC.	$\begin{gathered} \text { CONNECT } \\ \text { OSCILLOSCOPE } \\ \text { TO } \end{gathered}$	$\begin{gathered} \text { CONNECT } \\ \text { "VOLTOHMYST" } \\ \text { TO } \end{gathered}$	MISCELLANEOUS CONNECTIONS AND INSTRUCTIONS	ADJUST	$\begin{gathered} \text { REFER } \\ \text { TO } \end{gathered}$
R-F AND CONVERTER LINE ALIGNMENT (Cont'd)									
26	Antenna terminals (loosely)	$\begin{aligned} & 83.25 \\ & 87.75 \end{aligned}$	Antenna terminals (see text for precaution)	$\begin{aligned} & \text { Sweep- } \\ & \text { ing } \\ & \text { channel } \\ & 6 \end{aligned}$	Junction C14 and R6 through 10,000 ohm serles resistor	Nol used	Receiver on channel 6	$\begin{aligned} & \text { L11. L12, } 137 \text { \& } \\ & \text { L38 for response } \\ & \text { as above } \end{aligned}$	Fig. 17 (b)
27	"	$\begin{aligned} & 77.25 \\ & 81.75 \end{aligned}$	"	$\underset{5}{\text { channel }}$	"	"	Receiver on channol 5	Check to see that responst is as above	Fig. 17 (5)
28	"	$\begin{aligned} & 67.25 \\ & 71.75 \end{aligned}$	"	channel 4	"	"	Receiver on channel 4	"	$\text { Fig. } 17$
29	"	$\begin{array}{r} 61.25 \\ 65.75 \end{array}$	"	channel	"	"	Receiver on channel 3	"	$\text { Fig. } 17$
30	"	$\begin{aligned} & 55.25 \\ & 59.75 \end{aligned}$	"	$\underset{2}{\text { channel }}$	"	"	Receiver on channol 2	"	
31	"	$\begin{aligned} & 45.25 \\ & 49.75 \end{aligned}$	"	$\begin{gathered} \text { channel } \\ 1 \end{gathered}$	"	"	Receiver on channel 1	"	Pic. 17 (1)

 sesponse up on that channel. Then recheck steps 26 through 31.

VOLTAGE CHART

Measurements made with receiver operating on 117 volts 60 cycles a-c and with no signal input except where otherwise indicated Volth Jr. ValtOhmyst detween indicated terminal and chassis ground except where otherwise noted. Symbol < means "less than."

** Where seoarate readings are not listed for max. and min. gain settings of the picture control, the effect of the control is slight and readings are given for "Picture Min."

Tub No.	Tube Type	Function	Operating Condition **	E. Plate		E. Screen		E. Cathode		E. Grid		$\begin{aligned} & \text { I } \\ & \text { Plate } \\ & \text { (ma.) } \end{aligned}$	$\begin{gathered} \text { I } \\ \text { Screen } \\ \text { (ma.) } \end{gathered}$	Notes en Measurementa
				Pin No.	Volts	Pin No.	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	Pin No.	Volts			
V117	10 BP4	Kinescope	$\begin{gathered} \text { Brightness } \\ \text { Min. } \end{gathered}$	Cap	9200**	10	275	11	0	2	-100	0	0	*Measured with VoltOhmyst and high voltage multiplier probe
			$\begin{aligned} & \text { Brightness } \\ & \text { Max. } \end{aligned}$	Cap	6000*	10	275	11	0	2	0	. 7	-	
			Brightness Average	Cap	9000**	10	275	-	-	-	-	. 05	-	
V118	6SK7	1st Sync. Amplifier	Pictr. Min.	8	163	6	129	5	0	4	-4.3	11.5	3.8	
			Pictr. Max.	8	185	6	115	5	0	4	-4.4	9.2	2.9	
V119	6SH7	Sync. Separator	Pictr. Min.	8	134	6	135	5	0	4	-5.2	. 1	. 05	
			Pictr. Max.	8	123	6	125	5	0	4	-9**	. 3	. 1	*Depends on noise
$\begin{aligned} & V_{120} \\ & \hline \end{aligned}$	$\begin{gathered} \text { 6SN7 } \\ \text { GT } \end{gathered}$	2d Sync. Amplifier	Pictr. Min.	2	88	-	-	3	0	1	-. 5	9.0	-	
			Pictr. Max.	2	80	-	-	3	0	1	-9*	7.9	-	*Depends on noise
$\begin{gathered} \mathrm{V} 120- \\ \mathrm{B} \end{gathered}$	$\begin{gathered} \text { 6SN7 } \\ \text { GT } \end{gathered}$	Horizontal Discharge	Pictr. Min.	5	-37	-	-	6	-100	4	-140	. 5	-	
V121	$6{ }^{615}$	Vertical Oscillator	Pictr. Min.	3	70*	-	-	8	-100	5	-150	. 15	-	*Height, linearity and hold affect readings 2 to 1
V122	$\begin{gathered} 6 \mathrm{~K} 6- \\ \mathrm{GT} \end{gathered}$	Vertical Output	Pictr. Min.	3	180	4	180**	8	-70	5	-100	9.0	*	*Screen connected to plate
V123	6AL5	Horizontal Sync. Discr.	Pictr. Min.	2 \& 7	-6.5	-	-	1\&5	-2.1	-	-	9.0	-	
V124	6AC7	Horizontal Osc. Control	Pictr. Min.	8	194	6	105	5	. 05	4	-2.0	3.8	1.1	
V125	$\begin{gathered} 6 \mathrm{KK} 6- \\ \mathrm{GT} \end{gathered}$	Horizontal Oscillator	Hold Max. Resistance	3	190	4	208	8	0	5	-30	17.0	6.7	
			Hold Min. Resistance	3	180	4	194	8	0	5	-23.5	19.5	8.2	
V126	${ }_{-G}^{6 B G 6}$	Horizontal Output	Pictr. Min.	Cap	Do not Meas.*	8	134	3	-91	5	-113	77.0	11.5	* 6000 volt pulse present
V127	8016	H. V. Rectifier	$\begin{aligned} & \text { Brightness } \\ & \text { Min. } \\ & \hline \end{aligned}$	Cap	*	-	-	2\& 7	9200	-	-	0	-	*9200 volt prulse present.
			$\begin{gathered} \text { Brightness } \\ \text { Max. } \end{gathered}$	Cap	-	-	-	2\& 7	6700	-	-	. 7	-	*9200 volt pulse present
V128	5V4G	Reaction Scanning	Pictr. Min.	4\% 6	Do not Meas.*	-	-	8	350	-	-	90	-	${ }^{*} 1200$ volt pulse present
V129	SU4G	Rectifier	Pictr. Min.	4 \& 6	390*	-	-	2\& 8	300	-	-	146	-	*A-C measured
V130	U4G	Rectifier	Pictr. Min.	4\%6	390*	-	-	2\%8	300	-	-	146	-	trans center tap

** Where separate readings are not listed for max. and min. gain settings of the picture control, the effect of the control is slight and readings are given for "Picture Min."

Follow:ng readings taken with video signal applied through video amplifiers to produce 25 volts peaks to peak on Kinescope grid.

$\mathrm{V}_{\mathrm{B}} 114$	6AL5	DC Restorer	Pictr. Min.	2	-41	-	-	5	-27	-	-		\sim	
V119	6SH7	Svnc. Sedarator	Pictr. Min.	8	136	6	142	5	0	4	-21.5	. 9	. 8	
$\mathrm{V}_{\mathrm{A}} 120-$	$\begin{aligned} & 6 \mathrm{SN}- \\ & 7 \mathrm{GT} \end{aligned}$	2d Svnc. Amplifier	Pictr. Min.	2	88	6	142	3	0	4	-21.5 -5.4	. 9	. 8	
V123	6AL5	Horizontal Sync. Discr.	Pictr. Min.	2 \& 7	-20	-	-	1\&5	$\begin{gathered} K_{1} \\ \mathbf{K}_{1}-2.1 \end{gathered}$	1	-5.4	9.0	-	*See arid voltage of V124
V124	6AC7	Horizontal Osc. Control	Pull-in*	8	200(a)	6	100(b)	5	<. 1	4	$-1.5 \text { to }$	<8.	<2.5	*Varying Hor.
			Hold*	8	200(c)	6	100(d)	5	<. 1	4	(e)	<8.	<2.5	Osc. tuning

(a) Pull-in range varies with tubes from 110-210 to 195-270.
(b) Pull-in range varies with tubes from $80-100$ to $100-115$.
(c) Hold range varies with tubes from 110-270 to 140-270.
(d) Hold range varies with tubes from 80-115 to 90-115.
(e) Hold range varies with tubes from 1.5-7.0 to 1.-4.5.

Figure 12-Top Chassis Adjustments

Figure 13-Bottom Chassis Adjustments

Figure 14-Test Connection Points

Figure 15-R-F Oscillator Adjustments

Figure 16-Sound Discriminator and I-F Response

Figure 17-R-F Response

Figure 18-Overall Response

replacement parts (Coninued)

neplacement pahts (Coninued)

Walnut or Mahogany
Chassis No. KCS 24A-I, KRS 20-1, KRS 21 A-I KRK-IA, RK-121A and RS-123B

Mfr. No. 274
Service Data

- 1947 No. T2 -
- 1948 No. T4 -

RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

GENERAL DESCRIPTION

Model 648PTK is a forty-eight tube Projection Television, AM-FM Radio, console combination. The television receiver employs four chassis with a total of thirty five tubes and a fiveinch projection kinescope. A Reflective Optical System provides a $15^{\prime \prime} \times 20^{\prime \prime}$ picture on the screen.

Features of the television unit are full thirteen channel coverage: FM sound system: improved picture brilliance; picture A-G-C: A.F-C horizontal hold; stabilized vertical hold; two stages of video amplification; noise saturation circuits; threestage sync separator and clipper; four me band width for picture channel and reduced hazard high voltage supply.

The radio receiver employs an eight-tube tuner unit and a four-tube audio-amplifier, power-supply unit.

The radio chassis is provided with a Phono input jack to permit the use of an external record player.

Model 648PV is . a forty-eight tube Projection Television, AM-FM Radio, Phonograpn, console combination. The television receiver employs four chassis with a total of thirty-five tubes and a flve-inch projection kinescope. A Reflective Optical System provides a $15^{\prime \prime} \times 20^{\prime \prime}$ picture on the screen.
Features of the television unit are full thirteen channel coverage; FM sound system; improved picture brilliance; pleture A.G.C; A.F-C horizontal hold; stabilized vertical hold; two stages of video amplification; noise saturation circuits; threestage sync separator and clipper; four mc band width for picfure channel and reduced hazard high voltage supply,

The radio receiver employs an elght-tube tuner unit and a four-tube audio-amplifier, power-supply unit.

An automatic record changer of the "slicer" type is employed and leatures a crystal pickup with the 'Silent Sapphire" stylus.

ELECTRICAL AND MECHANICAL SPECIFICATIONS

TELEVISION R-F FREQUENCY RANGES

| Television
 Channel | Picture
 Channel
 Freq. Mc. | Sound
 Carrier
 Freq. Mc. |
| :---: | :---: | :---: | | Tel. Rec. |
| :---: |
| Carrier |
| Freq. Mc. |\quad| R.F Osc. |
| :---: |
| Freq. Mc. |

TELEVISION FINE TUNING RANGE
Plus and minus approximately 800 kc on channel 1 , and plus and minus approximately 1.9 mc on channel 13.

PICTURE SIZE

- $15^{\prime \prime} \times 20^{\prime \prime}$

RADIO TUNING RANGE

Broadcast ... 540-1.600 ke	
Frequency Modulation	88-108 me
Intermediate Frequency-AM	455 kc
Intermediate Frequency-FM	10.7 mc

RECEIVER ANTENNA INPUT IMPEDANCE. 300 ohms balanced

[^11]| Alignment Procedure (Television) Page | Page | |
| :---: | :---: | :---: |
| | General Description ... | . 1 |
| Detailed .. 22 | Interference | 11 |
| Table ... 28 | Installation Instructions .. | - 5 |
| Alignment Procedure (Radio) ... 44 | Operating Instructions ... | . 4 |
| Antenna ... 11 | Pholographs | |
| Circuit Description (Television) ... 12 | Cabinet | 1 |
| Circuit Description (Radio) .. 33 | Test Pattern | 35 |
| Drawings (Major) | Waveform | 38 |
| Television | Precautions | |
| Adjustment Location (Alignment) 30 | Kinescope Handling | 2 |
| Adjustment Location (Installation) 9 | Ventilation | 11 |
| R-F. I-F Chassis Views .. 20 | Reflections | 11 |
| Horizontal Deflection Chassis View 21 | Replacement Parts | 65 |
| Chassis Wiring Diagrams 56 | Scrvice Suggestions | 32 |
| Circuit Schematic ...59-63 | Specifications (Elec. \& Mech.) | 1 |
| R-F Unit Wiring Diagram ..57-61 | Test Equipment | 22 |
| Radio | Tube Complement | 3 |
| Adjustment Location .. 45 | Voltage Chart (Television) | 42 |
| Chassis Wiring Diagram46-47 | Voltage Chart (Radio) | 50 |
| Circuit Schematic ..48-49 | Warning (High Voltage) | 2 |

HIGH VOLTAGE WARNING

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE TELEVISION RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

KINESCOPE HANDLING PRECAUTIONS

DO NOT OPEN THE RINESCOPE SHIPPING CARTON, INSTALL, REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE RINESCOPE AWAY FROM THE BODY WHILE HANDLING.

[^12]
POWER SUPPLY RATING

Television Operation 115 volis, 60 cycles, 530 watts
Radio Operation Phonograph Operation …........ 115 volts, 60 cycles, 165 watts

AUDIO POWER OUTPUT RATING

Mndistorted Power Output ….. 11 watts		
Chassis designations	648PTK	648PV
Television R-F, I-F Chassis	KCS24-1 KCS24A-1
Horizontal Deflection Chassis	KRS20.1	KRS20-1
Television Power Supply Chass	KRS21-1	KRS21A-1
Optical Barrel	KRK1-1	KRK-1A
Radio Chassis	RK121A	RK121-A
Audio Amplifier	RS123A	RS123B
Record Player		

Type Voice Coil Impedance	12-inch Electrodynamic 2.2 ohms at 400 cycles		
WEIGHT	648PTK		648PV
Chassis with Tubes in Cabinet	295 lbs360 lbs		323
Shipping Weight			407
DIMENSIONS (inches)	Width	Height	Dept
Cabinet (outside) 648PTK.	$361 / 4$	$47^{1 / 2}$	22
Cabinet (outside)	48		25

TELEVISION CHASSIS DATA

PICTURE I-F FREQUENCIES

Picture Carrier Frequency ….. 25.75 mc
Adjacent Channel Sound Trap 27.25 mc
Accompanying Sound Traps 21.25 mc
Adjacent Channel Picture Carrier Trap 19.75 mc
SOUND I-F FREQUENCIES
Sound Carrier Frequency ... 21.25 mc
Sound Discriminator Band Width (between peaks) 350 kc
VIDEO RESPONSE .. To 4 mc
FOCUS ..
SWEEP DEFLECTION ... Magnetic
SCANNING .. Interlaced, 525 line
HORIZONTAL SCANNING FREQUENCY 15.750 cps
VERTICAL SCANNING FREQUENCY 60 cps
frame frequency (Picture Repetition Rate) 30 cps
NON-OPERATING CONTROLS (not including r-f and i.f adjustments)
Horizontal Centering .. Horizontal Deflection chassis adjustment Vertical Centering R-F, I-F chassis rear adjustment Height R-F, I-F chassis rear adjustment Vertical Linearity R.F, I-F chassis rear adjustment Width Horizontal Deflection chassis screwdriver adjustment Horizontal Linearity Horizontal Deflection chassis adjustment Horizontal Drive Horizontal Deflection chassis adjustment Horizontal Oscillator Frequency Horizontal Deflection chassis adjustment
Horizontal Oscillator Phase
Horizontal Deflection chassis adjustment
Focus (Electrical) .. Horizontal Deflection chassis rear adjustment Focus (Mechanical)

Optical Barrel adjustment
Deflection Coil
Optical Barrel adjustment
Video Peaking Switch \qquad R-F, I-F chassis rear switch
Horizontal Optical Centering Optical Barrel adjustment
Lateral Optical Centering Optical Barrel adjustment

RCA TUBE COMPLEMENT

KCS24-1, KCS24A-1 R-F. I-F CHASSIS

	Tube Used	Function
(1)	RCA.6J6	R-F Amplitier
(2)	RCA 6 J 6	R-F Oscillator
(3)	RCA.6J6	Converter
(4)	RCA-6BA6	1st Sound I.F Amplifier
(5)	RCA-6BA6	2nd Sound I-F Amplitier
(6)	RCA-6AU6	3rd Sound I-F Amplifier
(7)	RCA.6AL5	Sound Discriminator
(8)	RCA-6AT6 A-G.C Amplifier
(9)	RCA-6AL5	A.G.C Diode and D.C Restorer
(10)	RCA-6AG5	1st Picture I-F Amplifier
(11)	RCA.6AG5	2nd Picture I.F Amplifier
(12)	RCA-6AG5	... 3rd Picture I-F Amplifier
(13)	RCA-6AG5	4th Picture I-F Amplifier
(14)	RCA-6AL5	icture 2nd.Detector and A.G.C Detector
(15)	RCA.6AU6	1st Video Amplifier
(16)	RCA-6V6GT	... 2nd Video Amplifier
(1)	RCA-6SK7	1st Sync Amplifier
(18)	RCA-6SH7 2nd Sync Amplitier
(19)	RCA.6J5	3rd Sync Amplifier
	RCA.6J5	Vertical Sweep Oscillator and Discharge
	RCA-6K6GT	Vertical Sweep Output

KRS20.1 HORIZONTAL DEFLECTION CHASSIS

	Tube Used	Function
(1)	RCA.6H6	... Horizontal Sync Discriminator
(2)	RCA.6K6GT	Horizontal Sweep Oscillator
(3)	RCA-6J5 Horizontal Discharge
(4)	RCA-6AC7	Horizontal Sweep Oscillator Control
(5)	RCA-6BG6G	Horizontal Sweep Output (2 tubes)
(6)	RCA-5V4G Horizontal Damper
(7)	RCA-6AS7G Horizontal Damper
	RCA-1B3-GT/8016	... High Voltage Rectifier (3 tubes)
	RCA-5TP4 Projection Kinescope

KRS21-1, KRS21A-1 TELEVISION POWER SUPPLY CHASSIS
Tube Used
(1) RCA-5U4G

RK121A RADIO CHASSIS

RECEIVER OPERATING INSTRUCTIONS

television operation

The following adjustments are necessary when furning the receiver on for the first time.

1. Turn the radio FUNCTION switch to Tel.
2. Turn the receiver "ON" and advance the sound VOLUME control to approximately mid-position.
3. Set the STATION SELECTOR to the desired channel.
4. Turn the PICTURE control fully counter clockwise.

Figure 1-Receiver Operating Controls 648PTK
5. Turn the BRIGHTNESS control clockwise, until a glow appears on the scteen, then counter-clockwise until the glow just disappears.
6. Turn the PICTURE control clockwise until a glow or pattern appears on the screen.
7. Adjust the FINE TUNING control for best sound fidelity and sound VOLUME for suitable volume.
8. Adjust the VERTICAL hold control until the pattern stops vertical measurement.
9. Adjust the HORIZONTAL hold control until a picture is obtained and centered.
10. Adjust the PICTURE control for suitable picture contrast.
11. After the receiver has been on for some time, it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.
12. In switching from one station to another, it may be necessary to repeat steps number 7 and 10 .
13. When the set is turned on again after an idle period, it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. If any adjustment is necessary, step number 7 is generally sufficient.
14. If the position of the controls have been changed, it may be necessary to repeat steps number 2 through 10.

RADIO OPERATION

1. Turn the radio FUNCTION switch to the desired band (BC, SW or FM).
2. Tune in the desired station with the TUNING control.

PUSH-BUTTON OPERATION

1. Turn the radio FUNCTION switch to the desired band (BC, SW or FM).
2. Push the appropriate push button to receive the desired station.

PHONOGRAPH OPERATION

1. Turn the radlo FUNCTION switch to the phono position.

Figure 1-Receiver Operating Controls 648PV

MODEL 648PTK

Access to the front tubes in the r-f, i-f chassis may be had through the front of the cabinet by raising the door stop as shown in Detail A of Figure 2 and then sliding the right television door all the 'way back. When this check is completed, close the door to its normal position and drop the door stop back in place.

MODEL 648PV

A heat shield is placed over the RSI23 audio amplifier to prevent the rectifier tube from coming in contact with the optical barrel dust shield when the cabinet is closed. Care should be taken to see that this shield is replaced after the cardboard shipping shields have been removed from the RSI 23 amplifier. To get at the optical barrel adjustments, take out three screws on each side of the front of the speaker grill and remove the

Remove the shipping material as shown in Fiqure 2. Make sure that all fubes are firmly seated in their sockets.

Untie the canvas dust cover for the optical barrel and tie it off to one side.
Caution: Handle the corrector lens with care. This lens is made of a plastic material, is soft and can be easily scratched by improper handling or even by rubbing with a cloth. Do not use cleaning fluid on the lens as it may be attacked by some of the chemicals used in such solutions. In short, the lens should be given the care due any precision optical equipment. Remove the corrector lens from the top of the optical barrel by loosening the three screws holding the clamp springs as shown in Figure 4. Caution: Do not loosen the three sctews holding the corrector lens mounting plate. panel.

Figure 2-Removal of Shipping Material MODEL 648PTK

Figure 2-Remotal of Shipping Material MODEL 648PV

Although the high voltage filter capacitors of a new receiver are not likely to be charged, it is a good idea to form the habit of discharging the optical barrel before making any internal adjustments. Take a clip lead, fasten the clip end to the barrel and discharge the unit by making repeated contacts to the kinescope holder shown in Figure 3.

Clean the bask of the screen, the front of the 45° mirror and the optical barrel spherical mirror by "sweeping" the surface with a small camel's hair brush. Any dust on the spherical mirror should be swept into the black center portion where it can be picked up with a piece of scotch tape. Caution: Do not touch the silvered portion of the mirrors. The mirrors are surface silvered and can be damaged by contact with the moist hand. If the screen or mirrors require cleaning, a solution of "Dreft" and water should be employed.

Figure 3-Kinescope Holder
Place a type $202-\mathrm{B}-1$ test lamp in the kinescope holder and adjust the ball screws to center the lamp in the holder. Connect the lamp cord into a 110 -volt power outlet and turn the lamp on. Replace the corrector lens, taking care that the arrow on the edge of the lens points to the rear of the cabinet. Rotate the lamp so as to produce a picture on the screen in the proper aspect. Cover the center hole in the corrector lens with a piece of black cardboard in order to prevent light from this source from lowering the resolution. Pull the dust cover down around the barrel.

Observe the raster on the screen by use of a mirror placed in front of the set. A chrome-plated photographic ferrotype tin is excellent for this purpose.

Figure 4-Optical Barrel Adjustments

Figure S-Chussis Intercomnectivg Cables

IINESCOPE HANDLING PRECAUTION-Do not open the kinescope shipping carton, install, remove, or kandle the kinescope In any manner, unless shatterproof goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling. The shipping carton should be kept for use in case of future moves.

INSTRLLATION OF KINESCOPE-The kinescope second anode contact is a recessed metal well in the side of the bulb. A small brass clip (from the carton containing the deflection yoke and front panel control knobs) must be placed in the kine scope anode contact and the tube inserted in the hoider as shown in Figure 3. The tube must be installed so that the socket key on the base of the tube is pointed towards the horizontal deflection chassis. Make sure that the anode clip is horizontal so that it cannot protrude out of the holder.

Tighten the three ball screws equally to center the tube in the support. Caution: Do not apply too much pressure in tightening the ball screws as the tube can be cracked by so doing.
Wipe the corrector lens clean with a piece of lens tissue and replace on the barrel. Turn the lens mounting clips in place and tighten the clip screws.
Turn the deflection yoke so that the slotted end of the bakelite center tube is up and slide the yoke down over the neck of the kinescope. Connect the kinescope socket to the base of the tube.
Slip the yoke cables out through the cable sleeve in the oplical barrel dust cover. The three-prong plug on the unshielded yoke cable should be plugged into the television r-f i-1 chassis as shown in Figure 5. The two-prong plug on the shielded yoke cable should be plugged into the horizontal defle ation chassis. The shield braid extension from this cable should be grounded to the chassis by means of the screw provided for this purpose.
Caution-Do not turn the television recelver on with the dellection yoke cables disconnected. To do so may cause the destruction of the kinescope screen.

Reconnect the speaker. Check all chassis interconnecting cables to make sure that all are plugged into the proper sockets as shown in Figure 5. It is possible to insert the secelver antenna and ground plug backwards. The ground wire should go to the middle connector at the radio chassis as shown.

Open the kinescope shipping carton and remove the tube. Handle this tube by the neck. Do not cover the envelope of the tube with fingermarks as it will produce leakage paths between the high voltage rim near the screen and the grounded coating on the neck. If this portion of the tube has inadvertently been handled, wipe it clean with a soft cloth molstened with "dry" carbon tetrachloride, which is obtainable at most drug stores.

Wipe the kinescope screen clean of all dust or finger marks with a boft cloth moistened with the Drackett Co.'s "Windex" os similar cleaning agent.

MODEL 648PV
Figure 5-Chassis Interconnecting Cables

INSTALLATION INSTRUCTIONS

Remove the cover from the horizontal deflection chassis and take out the strings holding the high voltage filter capacitors in the clips during shipment. Replace the chassis cover.

The antenna and power connections should now be made. Turn the power switch to the "on" position, the function switch to television, the picture control counterclockwise and the brightness control clockwise untll a glow appears on the screen.

Adjust the electrical focus control R331 on the horizontal deflection chassis until the raster lines are in sharpest focus as seen when looking down into the barrel. If necessary, reduce the brilliance control setting, and readjust the focus control. Pull the dust cover down around the optical barrel.

Adjust the optical focus adjustment until the raster lines are in focus on the screen. Turn the deflection yoke until the raster lines are horizontal on the screen and tighten the yoke clamp in this position.

Picture Adjustmentg-lit will now be necessary to obiain a lest pattern picture in order to make further adjustments. See step 3 through step 10 of the recelver operating instructions on page 4.

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT-The sync link (see Figure 7) must be in the normal position (2 to 3). Turn the horizontal hold control to the extreme counterclockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by turning the picture control fully counterclockwise and then returning it to the operating position. Normally the picture will pull into sync.

Turn the horizontal hold control to the extreme clockwise position. The picture should remain in sync. Momentarily remove the signal. Again the picture should normally pull into sync. If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS.

ALIGNMENT OF HORIZONTAL OSCILLATOR-If in the above check the receiver failed to hold sync with the hold control at either extreme or failed to pull into sync after momentary removals of the signal, make the adjustments under "Slight Retouching Adiustments." If, after making these retouching adjustments, the receiver fails to pass the above checks or if the horizontal oscillator is completely out of adiustment, then make the adjustments under "Complete Realignment."

Slight Retouching Adjustmente-Tune in a Television Station and adjust the fine tuning control for best sound quality. Sync the picture and adjust the picture control for slightly less than normal contrast. Turn the horizontal hold control to the extreme position in which the oscillator fails to hold or to pull in. Momentarily remove the signal. Turn the T301 frequency adjustment on the chassis rear apron until the oscillator pulls into sync. Check hold and pull-in for the other extreme position of the hold control.

Complete Realignment-Tune in a Television Station and adjust the fine tuning control for best sound quality.

With the sync link in the normal position (2-3), turn the T3O1 frequency adjustment (on rear apron), until the picture is synchronized. (If the picture is not synchronized vertically, adjust
the vertical hold.) Adjust the picture control so that the ple ture is somewhat below average contrast level.

Turn the T301 phase adjustment screw (under chassis, see Figure 23) until the blanking bar, which may appear in the picture, moves to the right and off the raster. The range of this adiustment is such that it is possible to hit an unstable condiion (ripples in the raster). The screw must be turned clock wise from the unstable position. The length of stud beyond the bushing in Its correct position is usually about $1 / 2$ inch.

Turn horizontal hold to extreme counterclockwise position. Turn T301 frequency adjustment clockwise until the picture falls out of sync. Then turn it slowly counterclockwise to the point where the picture falls in sync again.

Readjust T30] phase adjusiment so that the left side of the picture is close to the left side of the raster, but does not begin to fold over.

Turn horizontal hold to extreme clockwise. The right side of the picture should be close to the right side of the raster, but should not begin to fold over. If it does, readjust the phase. Momentarily remove the signal. When the signal is restored, the picture should fall in sync. If it doesn't, turn T301 frequency adjustment counterclockwise until the picture falls in sync.

Turn horizontal hold to extreme counterclockwise position. Remove the signal momentarily. When signal is restored, the picture should fall in sync.

NOTE: If the picture does not pull in sync after momentary removals of signal in both extreme positions of horizontal hold, the pull-in range may be inadequate, though not necessarily. A pull-in through $3 / 4$ of the hold control range may still be satisfactory.

There is a difference between the pull-in range and hold-in range of frequencies. Once in sync, the circuit will hold about 50% to 100% more variation in frequency than it can pull in. The range of the horizontal hold control is only approximately equal to the pull-in range, considerable variation may be found due to variations in the cut-off characteristic of the horizontal oscillator control tubes, V303.

Excessive pull-in is objectionable because the higher sensitivity of the control circuits means also greater susceptibility to noise, and to the vertical sync and equalizing pulses which tend to cause a bend in the upper part of the raster. This effect is more noticeable when the sync link is in the $1-2$ position

Now that a picture has been obtained we may proceed with the picture adjustments.

Adjust the electrical and optical focusing adjustments for maximum definition in the vertical wedge of the test pattern.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS-Adjust the height control (R149 on rif, i-f chassis rear apron) until the picture fills the screen vertically. Adjust vertical linearity (R175 on rear apron), until the test paltern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust vertical centering to align the picture with the mask. In some cases it may be necessary to shift the position of the kinescope in the holder (see Figure 3) in order to oblain proper centering of the picture.

Figure 6-R.F, I.F Rear Chassis Adjustments
WIDTH AND HORIZONTAL LINEARITY ADJUSTMENTS-Turn the horizontal drive, R340, clockwise as far as possible without causing crowding of the right of the picture. Adjust the horizontal linearity control, R351, until the test pattern is symmetrical left to right. A slight readjustment of the horizontal drive control may be necessary when the linearity control is used. Adjust the width control, L302, until the picture iust fills the screen horizontally. Adjust horizontal centering to align the picture with the mask. In some cases it may be necessary to shift the position of the kinescope in the holder in order to oblain proper centering of the picture.

Do not turn the horizontal drive control beyond approximately $7 / 8$ of its maximum clockwise position. To do so may cause the output stage to oscillate and result in the loss of horizontal sync.

Figure 7-Horizontal Deflection Chassis Adjustments
FOCUS-Adjust the focus control for maximum definition in the test pattern vertical "wedge." Adjust the optical focus adjustment for best overall focus on the screen.

Tighten all yoke and optical barrel lock screwn.

Pull the dust cover down around the top of the optical barrel and tie it securely in place. Tie the cable sleeve tight around the leads. These precautions are very imporiant for if dust is permitted to enter and settle on the corrector lens, the optical efficiency of the system will be greatly impaired.

CHECE OF R-F OSCILLATOR RDJUSTMENTS-Tune in all available television stations to see if the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure on page 22 . The adjust-
ments for channels 1 through 5 and 7 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 8. Adjustments for channels 6 and 13 are under the chassis. See Figure 17.

Figure 8-R.F Oscillator Adjustments
VIDEO PEAKING SWITCH-A video peaking switch is provided (see Figure 6) to permit changing the video response. Normally the switch should be left open. However, if the pictures from the majority of stations look better with the switch. closed, the switch should be closed. If transients are produced on high contrast pictures, the switch should be left open.

ANTENNA TRAP-A series resonant trap across the r-f ampllfier grid circuit is provided to eliminate interference from an FM station on the image frequency of a television station or interference on channel 6 from a station on channel 10 or on channel 5 from a station on channel 7. To adjust the trap in the field, tune in the station on which the interference is observed. Tune both cores of the trap for minimum interference in the picture. See Figure 16 for the location of the trap. Keэp both cores approximately the same by visual inspection. Then, turn one core $1 / 2$ turn from the original position and repeak the second for maximum rejection. Repeat this process until the best rejection is obtained.

RADIO OPERATION-Turn the receiver function switch to AM and FM positions and check the radio for proper operation.

PUSH-BUTTON ADJUSTMENT-To adjust the radio push buttons, set the function switch to the broadcast band position, tune the receiver to the desired station. Adjust the push buttons as instructed on page 51.

Figure 9-Push.Button Adjustments
Select the proper station call letter tab, moisten the back of it and insert in the appropriate recess in the push button bezel. Place the tab cellophane cover in the recess over the tab.

Replace the cabinet back. Make sure the screws which hold the back in place are tight, otherwise it may rattle or buzz when the recelver is operating at high volume.

INSTALLATION INSTRUCTION TABLE

The following table is provided as a check off list for use when installing the receivers.

Step Nc.	Proceed as Indicated
1	Remove front of shipping carton.
2	Slide cabinet out of carton.
3	Remove cabinet back.
4	Take off two nuts inside cabinet and remove cabinet from skid.
5	Unpack yokes, knobs, anode clip, and kinescope holder ball head screws.
6	Remove shipping materials.
7	Remove radio brackets.
8	Remove shipping tapes.
9	Install control knobs.
10	Make sure all tubes are tirmly seated in thoir sockets.
11	Remove optical barrel dust cover.
12	Remove corrector lens and warning label.
13	Clean screen and mirrors.
14	Insert test lamp in kinescope holder.
15	Replace corrector lens, cover center hole.
16	Misadjust optical focus.
17	Check optical, horizontal and lateral centering.
18	Adjust centering if necessary.
19	Adjust corrector lens centering if necessary.
20	Refocus.
21	If focus is uneven, adjust optical barrel tilt.
22	Repeat steps 17 through 21 if necessary to obtain proper resolution.
23	Remove corrector lens.
24	Remove test lamp.
25	Unpack and clean kinescope.
26	Insert kinescope in kinescope holder.
27	Clean and replace corrector lens.

Step No.	Proceed as lndicated
28	Install deflection yoke, connect cables and kinescope socket.
29	Check all chassis interconnecting cables.
30	Remove high voltage capacitors shipping strings.
3 i	Connect receiver to an a-c line and antenna.
32	Tum receiver on, function switch to Tel.
33	Tune in station per Operating Instructions, steps 3 through 10.
34	Adjust electrical and optical tocus control.
35	Check horizontal oscillator for hold and pull-in with horizontal hold control at each extreme.
36	Align horizontal oscillator (T301) if necessary.
37	Rotate yoke for horizontal pattem, tighten.
38	Adjust height and vertical linearity and vertical centering controls.
39	Adjust width, horizontal drive, linearity and horizontal centering controls.
40	Adjust focus control R331 for max definition of vertical wedge and optical focu adjustment for best overall focus.
41	MAKE SURE ALL OPTICAL ADJUSTMENT LOCKS ARE TIGHT.
42	Replace optical barrel dust cover.
43	Check r-f omcillator frequency on all channels.
44	Observe picture from all available tations.
45	Set vidoo peaking awitch Sl01
46	Check radio for operation on BC, SW, and FM bende.
47	Set push buttons.
48	Adjust antenna trap.
49	Insert station call letter tabs in push button escutcheon.
50	Replace cabinet back.

RECEIVER LOCATION-The owner should be advised of the Importance of placing the receiver in the proper location in the room.

The location should be chosen-

- Away from bright windows and so that no bright light will fall directly on the screen. (Some Illumination in the room is desirable, however.)
-To give easy access for operation and comfortable viewing.
-To permit convenient connection to the antenna.
-Convenient to an electrical outlet.
-To allow adequate ventilation.

VENTILATION CAUTION-The receiver is provided with adequate ventilation holes in the bottom and back of the cabinet. Care should be taken not to allow these holes to be covered or ventilation to be impeded in any way.

If the receiver is to be operated with the back of the cabinet near a wall, at least a twoinch clearance should be maintained between cabinet and wall.

ANTENNAS-The finest television recelver built may be said to be only as good as the antenna design and installation. It is therefore important to use a correctly designed antenna. and to use care in its installation.

RCA Television Antennas, stock \#225 and \#226 are designed for reception on all thirteen television channels. These antennas use the 300.0 hm RCA "Bright Picture" television transmission line. Installation personnel are cautioned not to make any changes in the antenna or substitute other types of transmission line as such changes may result in unsatisfactory pleture reproduction.

The stock \#226 antenna is bi-directional on channels one through slx (44 to 88 Mc). When used on these channels, the maximum signal is obtained when the antenna rode are broadside toward the transmitting antenna.

The stock \#225 antenna with reflector is uni-directional on channels one through six. When used on these channels, the maximum signal is obtained when the antenna rods are broadside toward the transmitting antenna, with the antenna element beween the reflector and the transmitting antenna.

When operated on channels seven through thirteen, (174 to 216 Mc), both types of antennas have side lobes. On these channels, the maximum signal will be obtained when the antenna is rotated approximately 35 degrees in either direction from its broadside position toward the transmitting antenna.

In general, the stock \#225 antenna should be used if reflections are encountered, if the signal strength is weak, or if the receiving location is noisy. If these conditions are not oncountered, the stock \#226 antenna will probably be satistac. tory.

In some cases, the antenna should not be installed permanently until the quality of the picture reception has been observed on a television receiver. A temporary transmission line can be run between receiver and the antenna, allowing sufficient
slack to permit moving the anteana. Then, with a telephone system connecting an observer at the receiver and an assintant at the antenna. the antenna can be positioned to give the most satisfactory results on the received signal. A shift of direction or a few feet in antenna position may effect a tremendous difference in picture reception.

REFLECTIONS-Multiple images, sometimes known as echoes or ghosts, are caused by the signal arriving at the antenna by two or more routes. The second or subsequent image occurs when a signal arrives at the antenna after being reflected off a building, a hill or other object. In severe cases of reflections, even the sound may be distorted. In less severe cases, reflections may occur that are not noticeable as reflections but that will instead cause a loss of definition in the picture.

Depending upon the circumstances, it may be possible to eliminate the reflections by rotating the antenna or by moving it to a new location. In extreme cases, it may be impossible to ellminate the reflection.

Under certain extremely unusual conditions, it may be posalble to rotate or position the antenna so it receives the cleanest plcture over a reflected path. If such is the case, the antenna should be so positioned. However, such a position may give variable results as the nature of reflecting surfaces may vary with weather conditions. Wet surfaces have been known to have different reflecting characteristics than dry surfaces.

INTERFERENCE Auto ignition, street cars, electrical machinery and diathermy apparatus may cause interference which spoils the picture. Whenever possible, the antenna location should be removed as far as possible from highways, has. pitals, doctors' offices and similar sources of interference. In mounting the antenna. care must be taken to keep the antenna rods at least $1 / 4$ wave length (at least 6 feet) away from other antennas, metal roofs, qutters or other metal objects.

Short-wave radio transmitting and receiving equipment may cause interference in the picture in the form of moving ripples. In some instances it may be possible to eliminate the interference by the use of a trap in the antenna transmission line. However, if the interfering signal is on the same trequency as the television station, a trap will provide no improvement.

WEAK PICTURE - When the installation is near the limit of the area served by the transmitting station, the picture may be speckled, having a "snow" effect, and may not hold steady on the screen. This condition is due to lack of elgal strength from the transmitter.

LIGHTNING RRRESTOR-The lightning arrestor contained in the antenna kit should be installed in accordance with the instructions. The mast used to mount the antenna should be provided with a direct ground.

INFORMATION REFERENCES-In short, a television receiving antenna and its installation must conform to much higher standards than an antenna for reception of International Short Wave and Standard Broadcast signals. For further information on antennas and antenna installation see the RCA Booklet entitled "Practical Television by RCA," and also the mecific instructions accompanying the RCA Televiaion Antenna.

It is advisable that the reader be familiar with a recent standard textbook of television principles in order 10 understand the receiver circuits and their functions. Such knowledge is assumed for the purpose of this publication. The discussions which follow will not dwell on the operation of conventional circuits used which have been used in previous receivers and which should be well known. In general, the circuits discussed will be only those that are new to the field

For ease of understanding the basic operation of the television receiver, a 14 unit block diagram of it is shown in Figure 10. The circuit description will follow the numerical order of these blocks in order to follow a signal through the set in a logical manner.

R-F UNIT (block \#1)-The r-i unit is a separate subchassis of the receiver. On this subchassis are the r-f amplifier, converter, oscillator, fine tuning control, channel switch, converter transformer, r-f, converter and oscillator coils and all their tuning adjustments. The unit provides operation on all thirteen of the present television channels. It functions to select the desired picture and sound carriers, amplifies and converts to provide at the converter plate, a picture i-f carrier frequency of 25.75 mc . and a sound i-f carrier of 21.25 mc .

R-F Amplifier-Referring to the schematic diagram (page 59), Tl is a center tapped coil used for the short circuiting of low frequency signals picked up by the antenna which would ctherwise be directly applied to the control grids of the 6J6 r-f amplifier, V1. Cl and C 2 are antenna isolating capacitors. The d-c return for the grids of VI is through R3 and R13 which
also serve to terminate the 300 ohm antenna transmission line C3 and C4 are neutralizing capacitors necessary to counteract the grid to plate capacitance of the triode r-f amplifier.

In the plate circuit of the r-f amplifier are a series of inductances L1 to L25 and L2 to L26 inclusive. These inductances may be considered as a quarter wave section of a balanced transmission line which can be tuned over a band of frequencies by moving a shorting bar along the parallel conductors.

Adjustable coils 25 and L26 provide the correct length of line for the thirteenth channel, 210-216 mc. L13 to L23 and L14 to L24 are fixed sections of line which are added to L25 and L26 as the shorting bar is moved progressively down the line The physical construction of each one of these inductances is a small non-adjustable silver strap between the switch contacts. Each strap is cut to represent a six-megacycle change in frequency. In order to make the jump between the lowest high frequency channel ($174-180 \mathrm{mc}$) and the highest low frequency channel (82.88 mc). adjustable coils L11 and L12 are inserted. To provide for the remaining live low frequency channels, L1 to L9 and L2 to L10 are progressively switched in to add the necessary additional inductance.

Coils L1 to L9 and L2 to L10 are unusual in that they are wound in figure 8 fashion on fingers protruding from the switch wafer. This winding form produces a relatively non critical coil since the coupling between turns is minimized. A maximum amount of wire is used for the small inductance which is required, thus permitting greater accuracy in manufacturing.

Figure 10-Teletision Receiver Block Diagram

Converter-The converter grid line operates in a similar manner and is so arranged on the switch to provide coupling between it and the r-f line. C10, C12. Cl3 and a link, provide additional coupling which is arranged to produce at least a 4.5 megacycle band pass on each of the channels.

L80 and Cl4 form a series resonant circuit used to prevent i-f feedback in the converter by grounding its grids for i-f frequency. They also act as a trap to reject short-wave signals of i-f frequency which arrive ot the converter grids in a push push manner.

A 6J6 twin triode is used as converter. Since the grids are fed in push pull by both the signal and the oscillator, the heterodyne products (i-f signals) are in phase on the converter plates so the two plates are connected in parallel. Unwanted sig. nals of i-f frequency that arrive at the converter grid in a push pull manner are out of phase on the converter plates. Since the plates are tied together, these signals tend to cancel thus reducing the possibility of interference from this source.

R-F Oscillator-The oscillator line is similur except that trimmer adjustments are provided for each channel and the low fre. quency coils are not figure 8 windings. For tuning each chan. nel, brass screws are used in close proximity to the high frequency tuning straps L66 to L76, and adjustable brass cores are provided for coils L54 to L62. It is obvious that the high frequency adjustments should be made before each lower frequency one.

Cl5 is a tine tunirgg adjustment which provides approximately plus or minus 800 kc . variation of oscillator frequency on channel 1 and approximately plus or minus 1.9 mc . on channel 13.

The physical location of the oscillator line with respect to the converter grid line is such as to provide some coupling to the converter grids. This coupling is augmented by the link shown on the schematic and provides α reasonably uniform oscillator voltage at the converter grids over the entire tuning range of the unit.

The converter transiormer T 2 is a combination picture i-f transformer, sound tra's, and sound i-f transformer. The converter plate coil is assembled within the structure of a high Q resonant circuit tuned to the sound i-f irequency. This high Q coil absorbs the sound $i-1$ component from the primary. Thus on the T2 primary (from which the picture i-f is fed), the sound carrier is attenuated with relation to the picture channel.

SOUND I-F AMPLIFIER AND DISCRIMINATOR (block \#2)-A portion of the energy absorbed by the T2 trap circuit is fed to the fizit sound i-f amplifier. Three stages of amplification are used to provide adequate sensitivity. A conventional discriminator is used to demodulate the signal. The discriminator band width is approximately 350 kc . between peaks.

The output from the discriminator is fed into the radio audio syst m and. is controlled by the radio volume and tone controls.

PICTURE I.F AMPLIFIER AND DETECTOR (block \#3)—The picture i-f amplifier departs considerably from the conventional coupled system. To obtain the necessary wide band characteristic with adequate gain, four stages of i-f amplification are employed. The converter plate and each successive i-t transformer utilize one tuned circuit each and each is tuned to a different frequency. The effective Q of each coil is fixed by the shunt plate load or grid resistor so that the response product of the total number of stages produces the desired overall responsive curve. Figure 11 shows the relative gains and selectivities of each coil and the shape of the curve of the quintuple combination.

Figure 11-Stagger Tuned I-F Response
In order to oblain this band pass characteristic, the picture i-f transformers are tuned as follows:

In such a stagger tuned system variations of individual if amplifier tube gain do not affect the shape of the overall i-f response curve if the Q 's and center frequencies of the stages remain unchanged. This means that the if amplifier tubes are non-critical in replacement because variations in Gm do not affect the response curve.

To align the i-f system, the transformers are peaked to the specified frequencies with a signal generator. The overall i- f response is then observed by use of a sweep generator and oscilloscope. Slight deviations from design center circuit Q are compensated for with slight shifts in tuned-circuit center frequency until the desired response curve is obtained. If this response cannot be obtained, the difficulty is likely to be in α component that affects either the frequency or Q of one or more of the i.f coils.

The response curve does shift slightly as the picture control is varied due to the Miller effect. This effect is the change in tube input capacitance as its gain is varied by grid bias changes. The change of input capacitance causes a slight detuning of the preceding if coil and a small shift in response curve shape. This effect is slight, however, and when the receiver is aligned with the specified grid bias, no difficulty from this source should be encountered.

For familiarization with the frequencies which are important in the receiver's operation. Figure 12 shows the relative position of the picture and sound carriers for channels 2,3 and 4. If a station on channel 3 is transmitting a picture with video frequencies up to 4 mc ., the picture carrier will have upper side band frequencies up to 65.25 mc . The lower side bands are suppressed at the transmitter.

Figure 12-Television Channel Frequencies

TELEVISION CIRCUIT DESCRIPTION

With the receiver r-f oscillator operating at a higher frequency than the received channel, the i. f frequency relation of picture to sound carrier is reversed as shown in Figure 13.

Figure 13-Overall Picture I-F Response

Traps-Since it is necessary for the picture i-f to pass frequencies quite close to the sound carrier frequency, the sound carrier would produce interterence in the picture. In order to prevent this interference, traps must be added to the picture i.f amplifier to attenuate the sound carrier. If the receiver should be operating on channel 3. it is possible that inter. ference would be experienced from the channel 2 sound carrier and the channel 4 picture carrier. The adjacent channel traps are provided to attenuate these unwanted frequencies.

The first three traps are absorption circuits. The first trap (T2 secondary) is tuned to the accompanying sound i-f frequency. The second trap (T104 secondary) is tuned to the adjacent channel sound frequency. The third trap (T105 secondary) is tuned to the adjacent channel picture carrier frequency. The fourth trap (T106 secondary) is in the cathode circuit of the fourth picture i-f amplifier V1ll and is tuned to the accompanying sound carrier i-f frequency. The primary of T106 in series with Cl37 forms a series resonant circuit at the frequency to which $L 106$ is tuned (23.4 mc .). This provides a low impedance in the cathode circuit at this frequency and permits the tube to operate with a gain. However, at the resonant frequency of the secondary (21.25 mc .), a high impedance is reflected into the cathode circuit, and the gain of the tube for this frequency is reduced by degeneration. The rejection at 21.25 mc . with this circuit is limited to the gain of the tube.

Picture Second Detector-The detector is a conventional half wave rectifier connected to produce a video signal of the proper polarity.

PICTURE A-G-C DETECTOR, AMPLIFIER AND DIODE (block \#4)-An automatic gain control circuit is employed in connection with the picture i-f system to hold the output from the i-f's substantially constant over a wide range of signal inputs.

The a.g.c system of the picture i.f amplifier (shown in Figure 14) differs considerably from the $a-v-c$ system used in broad. cast receivers. In broadcast receivers, it is customary to use the filtered d-c drop across the diode resistor as the source of the a-v-c voltage. This is satisfactory, because the d-c voltage thus obtained is directly proportional to the average carrier amplitude at the diode. If it maintains the average carrier amplitude substantially constant, then the $a-v-c$ operates as it should.

In the trarsmission of television pictures, however, the average carrier amplitude varies greatly with picture content, and an a.g.c system operating on the principle of maintaining a ubstantially uniform average carrier amplitude therefore is not suitable.

The RMA Standard Television Signal calls for a transmission syster: known as d.c negative transmission. Under this system, the carrier always reaches a uniform maximum amplltude during the periods when synchronizing pulses are being transmitted, and a white portion of the scene is represented by minimum or zero carrier condition. Thus, if there is no fading, the peaks of the synchronizing pulses will always represent some constant amplitude, and they, theretore, form a conventent reference for operating a satisfactory picture a-g.c system.
A portion of the output from the fourth i-f amplifier is fed into V105A, the a-g.c detector. Since the time constant of the diode load resistor and filter (R145 and C153) is somewhat greater than one horizontal line, the detector is essentially a peak reading volmeter at sync frequency ($15,750 \mathrm{cps}$). The d-c voltage that appears on the cathode of V105A is therefore proportional to the peak strength of the received signal and substantially independent of the picture content.

Such a system will also tend to read the peak of noise pulses. To prevent this, R15l and the diodes of V106 are used as a two-stage clipper or noise-limiting network. For further protection against noise, the d-c output is ted through an integrating network (R157 and C158) which tends to remove the effects due to random noise.

The $d-c$ output from the integrator is less than that required to control the gain, and since it increases in the positive direction with increases in signal strength, it is necessary to am.

Figure 14-Picture A-G.C Circuit
plify and "invert." To accomplish this, the output from the integrator is d-c coupled to the V106 a-g.c amplifier grid.
V106 is operated with approximately minus one hundred and ten volts on the cathode and the plate at or slightly below ground potential. The voltage available from the plate is sultable for use as a control bias.
With a weak signal input, the bias on V106 (obtained across R152 and R158) is sufficient to cause the V106 plate current to be nearly cut of. The V106 plate is at approximately ground potential, no bias is applied to the r-1 and 1 -f grids and the receiver operates at maximum gain. When a strong signal is applied to the receiver, the d-c output from the $a-g-c$ detector opposes the fixed bias on V106 and causes more plate current to flow. As a consequence, the plate goes negative with respect to ground and this negative voltage is applied to the r-t and i-f grids reducing gain and maintaining constant output from the i.f system.
Since the grid control characteristic of the pentode 1 -f ampllfiers is different from that of the triode r-f amplifier, different bias voltages are required and must be taken from different points in the system.

Also, in order to obtain the maximum signal to noise ratio from the receiver, it is desirable to allow the r-t amplifier to run essentially at full gain on any signal which will not cause
overloading of the first i-f stage. The circuit arrangement of Figure 14 including the a-g-c diode (V107A) permits maximum use of r-f gain on weak signals and prevents overloading of the i-f amplifier on strong signals.

With an input signal of 1000 microvolts (and the picture control set for normal contrast) the V106 plate is at approx. -2 volts. Since the a.g-c diode plate is placed at approx. $\alpha-2.5$ volt tap on the dividers R193 and R194, the diode does not conduct and the -2 volts on the V106 plate is applied to the 1.4 grids. With a signal of 10,000 microvolts, the $a \cdot g \cdot c$ amplifier plate is at approx. -5 volts. Under this condition, the a-g-c diode conducts and due to the drop in R165, prevents the i.f bias from rising appreciably above approx, $\mathbf{- 3}$ volts. The r-t bias, however, is not limited and can therefore rise above the i. 1 bias.

This high value of bias on the r-f amplitier is necessary to reduce the triode nearly to cut-off. Although triodes are not generally considered to be remote cut-off tubes, sufficient curvature is present in the grid control characteristic to provide approximately a ten to one reduction in gain when the bias approaches the plate current cut-off point.
Figure 15 shows a graph of the r-4 and i-f bias versus signal input.

Figure 15-Bias versus Signal Input
Picture Control-A manual gain control is also provided since it is necessary to vary the picture contrast because of variations in room lighting, transmitting technique and to suit personal preference in plcture balance. The control varies the i-f gain by varying the initial bias on the a-g-c amplifier which in turn varies the r-f and i-f blas.
VIDEO AMPLIFIER AND D.C RESTORER (block \#5)-The function of this section of the receiver is to amplify the video output of the second detector. Two amplifier stages are employed. The gain from the first video grid to output plate is 30 X and the frequency response extends to 4 mc .
The 648PTK is aligned to give a normal test pattern when receiving a signal from a station memploying standard RMA vestigal side band transmission. If the station deviates from this transmission characteristic, then a properly aligned receiver may produce an output with an excessive amount of low frequency video causing the picture to smear.

The 648PTK provides a back panel Video Peaking Switch Slol to modify the video response to compensate for the above mentioned transmitter characteristic. S101 switches a 680 mmf . capacitor across the V113 cathode resistor, Rl76. This reduces the cathode degeneration for high frequencies and thus increases the high video response. Closing the switch for operation of the receiver on such a station will generally improve the good picture. However, if the receiver is then tuned to α station with proper side band suppression, transients may be produced on high contrast pictures such as test patterns. Therefore, it must be determined at the time of installation, if the video peaking switch S101 is to be open or closed

Noise Saturation Circuit-Since the synchronizing pulse is "blacker than black" and "black" information must drive the kinescope grid toward cut-off, the video signal polarity must be such that the sync is negative when applied to the kinescope grid. It is obvious that for the two-stage video amplifier used, the sync pulse from the second detector must also be negative at the first video amplifier grid. The first stage is designed so that with a normal signal input level at its grid. the tube will be working over most of its operating range. Any large noise signal above sync will drive the grid to cut-off and the noise will be limited. In effect, the signal to noise ratio is thus improved.
D.C Restorer-Since the video amplifier is an a-c amplifier, the $\mathrm{d}-\mathrm{c}$ component of the video signal that represents the average illumination of the original scene will not be passed.

Unless this d-c component is restored, difficulty will be experienced in maintaining proper scene iilumination For any given scene, this average illumination could be set properly by the brightness control. However, a change of scene would probably necessitate resetting this control. The d-c restorer accomplishes this setting automatically thus assuring proper picture illumination at all times. For a detailed explanation of the operation of the $\mathrm{d} \cdot \mathrm{c}$ restorer, see "Practical Television by RCA."

KINESCOPE AND REFLECTIVE OPTICAL SYSTEM (block \#6) -The picture tube employed is a 5TP4, a tive inch projection kinescope. The tube operates at approximately 27 kv and employs magnetic deflection and electrostatic focusing. The kinescope screen is backed by a microscopic aluminum film. This coating is porous to the electron stream. However, it is opaque to light and prevents radiation at the back of the screen from reducing picture contrast by illuminating dark areas of the picture. Instead, this light is reflected out the front of the screen thus increasing the picture brilliance by approximately two to one. The aluminum film also prevents a negative charge from building up on the screen. Such a charge tends to repel the electron beam thus reducing the velocity with which the beam strikes the screen with consequent reduction of light output. The aluminum coating provides some protection against screen burns produced by ions in the electron stream. The thick screen employed in high voltage kinescopes also prevents a burn on the back of the screen from being visible on the outer surface of the screen.

The reflective optical system is employed to project the inage from the kinescope on to a large screen. The system consists of the kinescope mounted above and facing a spherical mirror. The spherical mirror reflects the light up through the corrector lens to a forty-five degree plane mirror which in turn reflects the image on to the back of a translucent screen, as shown in Figure 16.

The center section of the spherical mirror is painted black so that the illumination which falls on this sector will not be reflected back on to the face of the kinescope to reduce the picture contrast by illuminating dark areas of the picture.

Since a large spherical mirror by itself will not produce an in focus image. the corrector lens must be employed to bring the image to focus at all points on the screen. The spherical mirror and the forty-five degree mirror are front surfaced mirrors to prevent ghosts which would occur from reflections at the surface of the glass of a rear suriaced mirror.

The screen is composed of two lucite sheets with a partial diffusing layer between them. The back sheet has a fresnel lens molded into its rear surface. The front sheet has vertical ribs molded into its outer surface. The fresnel lens functions to concentrate the light into a narrow viewing angle. The vertical ribs act to increase the horizontal viewing angle above that obtained with a flat surface. The diffusing layer is employed to eliminate interference patterns between the fresnel

TELEVISION CIRCUIT DESCRIPTION

lens and the vertical ribs. The screen and lens combination give a gain of approximately five over that which would be oblained from a ground glass type screen. This gain is obtained at the expense of the illumination at extreme side, upper or lower viewing angles. Since such extreme angles are impractical due to foreshortening of the picture, no disadvantage is achieved and the brilliance from practical viewing angles is increased.

The leads from the deflection yoke and the kinescope socket pass through the optical path directly above the corrector lens. However, due to the fact that the light from any given point on the kinescope passes through all points on the corrector lens, as shown in Figure 16, the leads do not cast a shadow on the picture, but instead reduce the optical efficiency of the system by a very slight amount proportional to the percentage of the corrector lens area blocked by the leads.
This reflective optical system has a resolution of approximately 1500 lines and an efficiency equivalent to an F. 8 lens. Conventional projection optics of this speed for this size kine. scope and screen would be prohibitive from the standpoint of cost and size.
The inside and outside of the flaring portion of the kinescope bulb are given a metallic coating. The inner coating, which is the second anode, is connected to the high voltage supply. The outer coating is grounded by means of two small springs. on the deflection yoke support. The capacity between the two coatings is used as a high voltage filter capacitor.
The vertical axis of the optical barrel is approximately 7 degrees off vertical and the 45 degree mirror is in reality approximately 48 degrees from the horizontal as shown in Figure 16. This arrangement is employed in order to permit placing the barrel slightly forward of the mirror thus making the optical system as compact as possible.

Figure 16-Reflective Optical System
SYNC AMPLIFIERS (block \#7)-The function of this system is to amplify the sync signal and effect the separation of sync from the video.
First Sync Amplifiar-The first sync amplifier Vll4 is a 6SK7 which has a remote cut-off characteristic. The signal from the d.c restorer is led into this amplifier with the polarity such that the sync is in the negative direction. Noise pulses above sync that remain after the limiting action of the first video grid are thus further compressed and the sync to nolse ratio is again improved.

Second Sync Amplifier-The sync at the grid of Vll5, the second sync amplifier grid is positive in polarity. The operating voltages applied to the grid, screen and plate, are such that the negative portion of the applied signal is cut off. Thus, the video and blanking pulses are removed and only the sync pulses appear at the plate.
Third Sync Amplifier-The sync pulses appearing at the third sync amplifier (V116), grid are negative in polarity and must be inverted before they can be injected into the sweep oscillators. The signal at the V116 grid is sufficient to drive the tube beyond cut-off and the signal is again clipped. This final clipping removes all amplitude variations between sync pulses due to noise, hum, etc., and it appears with the correct polarity at the plate.

Integrating Network-The purpose of this network is to separate the horizontal from the vertical sync and to pass the vertical to the vertical oscillator.

Since the horizontal sync pulse is of short duration (S microseconds) and the vertical pulse is of much longer duration (190 microseconds), they can be separated by an r-c filter which is responsive to wave shape. The integrating network which is such a filter is composed of R142, R143, R144, C148, Cl 49 and Cl50. In operation it can be considered to be a lowpass filter which by-passes the narrow or high frequency horizontal sync but passes the broad or low frequency vertical sync.

VERTICAL OSCILLATOR DISCHARGE AND OUTPUT (block \#8)-The function of these circuits is to provide a sawtooth of current of the proper frequency and phase to perform the vertical scanning for the kinescope. To produce such a current in the vertical deflection coil, a somewhat differently shaped voltage wave is required.

Since the vertical trace is slow, requiring approximately 16,000 microseconds, and the vertical deflection coil inductance is small, approximately 50 millihenries, the majority of the voltage across the coil during trace is across its resistive component. In order to produce a linear change of current through a resistance, a linear change of voltage is necessary. Retrace. however, must be accomplished within the 666 microsecond vertical blanking time and therefore requires a much faster rate of change of current through the coil. During this time, the effect of the inductance of the coil becomes appreciable because of the required fast rate of change of current. It is therefore necessary to apply a large pulse of voltage across the coil in order to obtain rapid retrace. The composite waveform required to produce a sawtooth of current in the coil is a sawtooth of voltage with a sharp pulse as shown in Figure 17D. V117 and V118 supply such a voltage.

Vertical Oscillator and Discharge-A single 6J5 triode, V117, with its associated components form a blocking oscillator and discharge circuit. The wave form of the voltage at the control grid of this tube with respect to time, is a small, positive surge followed by a large negative drop which returns to the positive condition at a relatively slow rate as shown in Figure 17A. During the negative part of the cycle, the grid is beyond cutoff and the discharge capacitor, Cl60, charges through resistors R148 and R149. When the grid reaches a voltage that permits plate to cathode conduction, Cl 60 discharges through T107 secondary and V117. The discharge current of Cl60 builds up a magnetic field in T107 that in turn induces a positive voltage at the grid of V117. This positive voltage on the V117 grid lowers the plate resistance of the tube and allows Cl60 to discharge more rapidly. This process builds up very rapidly until Cl60 is nearly discharged. The magnetic field in T107 then collapses and drives the V117 grid negative. The charge placed on ClSS due to grid conduction during the positive pulse now holds the grid negative. As the charge on ClSS leaks off through R15S and R1S6, the grid slowly be. comes less negative and approaches the point which will al-
low plate to cathode conduction. Just before the conduction point is reached, the 60 cycle vertical synchronizing pulse from the integrating network is applied to the V117 grid. This pulse is sufficient to drive the tube to conduction and the process is repeated. In this manner, the incoming sync maintains control of vertical scanning.

On the plate of V117, a sawtooth of voltage appears due to the slow charging and rapid discharging of Cl60. A sharp negative pulse also occurs during the discharge period. See Figure 17B. This pulse appears because of the action of R164 and C160, an action which is known as peaking. When V117 is conducting, the plate voltage drops nearly to cathode potential. Cl60 discharges during this time. However, since the conduction time is short, Cl 60 cannot be completely discharged due to the time constant of R164 in series with C160. When V117 becomes non-conducting, the plate voltage does not have 10 rise slowly from cathode potential but instead rises immediately to an appreciable value due to the charge that remains on Cl 160 . The plate voltage then slowly rises from this value as Cl 60 charges through R148 and R149. Adjustment of the height control R149 varies the amplitude of the sawtooth voltage on V117 plate by controlling the rate at which Cl 60 can charge.

The voltage present on the V117 plate is of the shape required to produce a sawtooth of current in the vertical deflection coil. It is now necessary to amplify it in a tube capable of supplying a sufficient amount of power.

Vertical Output-A 6K6GT is connected as a triode for the output stage, V118. The vertical output transformer T108 matches the resistance of the vertical deflection coils to the plate impedance of the 6 K 6 GT .

Vertical Linearity Control-R175 is provided as a vertical sweep linearity control. Since the grid-voltage, plate-current curve of V118 is not a straight line over its entire range, the effect of adjustments of R175 is to produce slight variations in the shape of the sawtooth by shilting the operating point of the tube to different points along the curve.

Since the slope of the curve varies at these different points and thus varies the effective gain of the tube, it is apparent that adjustments of linearity affect picture height and that such adjustments must be accompanied by readjustments of the height control R149. Adjustments of the height control affect the shape of the sawtooth voltage on the V117 plate so that adjustments of height must be accompanied by readjustments of linearity.

horizontal sync discriminator, horizontal oscil. LATOR AND OSCILLATOR CONTROL (block \#9, 10 and 11) -These circuits are a radical departure from the conventional systems used for framing the picture in the horizontal direc. tion. Their features are ease of operation, stability and good noise immunity.
HORIZONTAL OSCILLATOR (block \#10)-The horizontal oscillator is an extremely stable Hartley oscillator operating at the scanning frequency $15,750 \mathrm{cps}$. The primary of T301 (terminals A, B and C) is the oscillator coil. This coil is closely coupled to the secondary winding (terminals D, E and F) and thus feeds a sine wave voltage to V301.

HORIZONTAL SYNC DISCRIMINATOR (block \#9)-The sync discriminator, V301, is a 6 H 6 dual diode in a circuit which produces a d-c output voltage proportional to the phase dis. placement between the incoming sync pulses and the sine wave horizontal oscillator voltage.
The sine wave oscillator voltages applied to the plates of V301 are equal in amplitude and opposite in phase. The synchronizing pulses from the third sync amplifier are fed through a small capacitor (C301) to attenuate the vertical sync and then applied to the center tap of T301. The horizontal sync pulses thus appear in phase and of equal amplitude on the diode plates as shown in Figure 18. When the pulse and sine wave from the oscillator are properly phased as in (A), both diodes will produce equal voltage across their load resistances, R301 and R303. However, these voltages are of opposing polarity and therefore the sum of the voltages across these two load resistors will be zero if the phase of the sine wave changes with respect to the pulse as in (B), the top diode will produce more voltage across R301 than the bottom diode produces across R303. Thus, the voltage across the two will be positive. In (C) the reverse condition exists. It is obvious that the output of the discriminator can swing from positive through zero to negative dependent upon the phase relation of the synchronizing signal and the oscillator. This d.c output is applied to the grid of V303.

(A)
(B)

Figure 18-Sync Discriminator Waveforms
HORIZONTAL OSCILLATOR CONTROL (block \#11)-V303 the oscillator control is a 6AC7 connected as a reactance tube across the V302 oscillator coil. A change in the d.c output of the sync discriminator produces a change in Gm of V303 which in turn changes the frequency of the oscillator. If the phase of the oscillator shitts with respect to the syrichronizing pulse, the corresponding change in d.c from the sync discriminator causes the oscillator to be brought back into correct phase.

C304 and C306 form a voltage divider to attenuate rapid changes in d.c from the sync discriminator such as are produced by the vertical sync or bursts of noise.

Sync Link-If any phase modulation is present in the trans. mitted sync, a condition which unfortunately still exists in some transmitters to date, a faster response to fluctuations in the sync phase is needed than is provided by the ratio of C304 to C306.

The sync discriminator will demodulate sync phase variation quite faithfully, however, the filter resistor R305 together with the capacity attenuator, C304 and C306 is just as effective in removing this information as it is with respect to the noise disturbances for which it is intended. The removal of this information will produce a horizontal displacement of portions of the picture.
It may be necessary in some instances to sacrifice some noise immunity to compensate for phase modulation in the trans. mitted sync. By switching the link provided for this purpose, C303 is added across C304 and the speed of response is increased by several times. Therefore, the link of J304 should be connected between terminals 1 and 2 whenever this condition exists.

Betore making this change, however, it should first be definitely determined that distortion of the raster is due to phase modulation of the sync. Horizontal "jitter" and distortion of the raster can be caused by operating the picture control at too great a gain setting considering the rit signal input. Such a setting produces an excessive video signal at the first video amplifier grid. This stage is designed to limit an excessive input in order to improve the signal to nolse ratio. If the video input is excessive, the sync is limited and thus removed. At the same time picture information may be introduced into the sync circuits. With extreme excesses of video level, both horizontal and vertical sync may be lost. If the receiver operating instructions on page 4 are followed, no difficulty should be experienced with the picture control sefting.

HORIZONTAL DISCHARGE. OUTPUT AND DAMPERS (block \#12)-The purpose of these circuits is to produce a sawtooth of current in the deflection coils to provide horizontal scanning for the kinescope.

Horizontal Discharge-A 6J5 is employed for the discharge tube V304. The function of this stage is to produce a sawtooth voltage for use in the horizontal sweep circuits.

The oscillation in V302 takes place between screen-grid and cathode. Since the peak to peak voltage on its grid is approximately 100 volts, a square wave of voltage is produced on its plate. This wave is differentiated by C312 and R314, and the pulse so obtained is applied to the grid of the discharge tube V304.

The discharge tube is normally cut off due to bias produced by grid rectification of these incoming pulses. The pulsa from V302 overcomes this bias and drives the tube into heavy momentary conduction. During this period the plate voltage talls nearly to cathode potential and C318 discharges rapidly. Then when V304 again becomes non-conducting, the plate voltage rises slowly and approximately linearly as C318 charges through R316 and C315.

Horizontal Output and Dampers-The operation of these two circuits is so interconnected that it will be necessary to discuss them simultaneously. The function of the output tubes V305 and V306 is to supply sufficient current of the proper wave form to the horizontal deflection coils in order to provide horizontal scanning for the kinescope. The function of the damper tubes V310 and V311 is to stop oscillation of certain components at certain times and thus help provide a linear trace.

Other functions of these circuits include the utilization of energy stored in the horizontal deflection coil to furnish retrace ard kinescope high voltage. The damper circuit also recovers some of the energy from the yoke kickback and uses it to help supply the plate power requirements of the output tubes.

In operation, the visible portion of the horizontal trace is approximately 53 microseconds in duration. Although the inductance of the horizontal deflection coil is in the order of 8 millihenries, at the horizontal scanning frequency, the reactance of the coil predominates over its resistance. This is a different case than that encountered in the vertical deflection system and so a different method of operation must be employed.

Horizontal blanking is approximately 10 microseconds in duration. During this time, the kinescope beam must be returned to the left side of the tube, the trace started and made linear. To accomplish all this within the horizontal blanking time. only 7 microseconds can be allowed for the return trace. In order to obtain such rapid retrace, the horizontal deflection coil, output transformer and associated sircuits are designed to resonate at a frequency such that one-half cycle of oscillation at this frequency will occur in the 7 microseconds retrace time limit. This represents a frequency of approximately 71 kc .

During the latter part of the horizontal trace, the output tubes conduct very heavily and build up a strong magnetic field in the deflection coil and output transformer. When the negative pulse from the horizontal discharge tube is applied to the output tube grids, their plate currents are suddenly cut off and the magnetic field in the transformer and deflection coil begins to collapse at a rate determined by the resonant frequency of the system. Actually the system is shock excited into oscillation. Since the output tubes are cut off and since the voltage generated by the collapsing field is negative on the damper tube plates so that they are non-conductive, there is essentially no load on the circuit and it oscillates vigorously for onehalf cycle. If the damper tubes were not present, the circuit would continue to oscillate as shown in Figure 19 (C), curve 1. This condition however is not permitted. One-half cycle of oscillation is permitted because at the end of such a time the current in the deflection coil has reached a maximum in the opposite direction to which it was flowing at the end of the trace period. This reversal of the direction of flow of current is the requirement for retrace and it is accomplished in the allotted 7 microseconds.

Now that retrace has been completed, it is necessary to start the next trace. The energy which was placed in the deflection coil by the output tubes in the latter part of the last trace has not been dissipated. During the one-half cycle of oscillation, retrace was accomplished with very little loss of energy. The field in the coil was merely reversed in polarity. So at this point, a strong field exists in the deflection coil.

As mentioned previously it the coil were not damped, it would continue to oscillate at its natural frequency as shown in Fig. ure $19(\mathrm{C})$, curve 1. To prevent such an oscillation the damper tubes are brought into action. These tubes are effectively connected across the deflecting coil.

In the oscillating circuit, the current in the deflection coil lags the voltage by approximately 90 degrees (one-quarter cycle at oscillation frequency) and when the current has reached its maximum negative value, the voltage across the coil being 90 degrees ahead, has begun to swing positive. When the voltage on the damper plates becomes positive with respect to their cathodes, they begin to conduct heavily. This places such a load across the deflection coil that it cannot oscillate. Instead the field begins to decay at a rate permitted by the load which the damper tubes placed on the coil. The circuit constants are such that this decay is linear and at a rate suitable for the visible trace.

If no additional energy were fed into the coil the field would fall to zero and the kinescope beam would come to rest in the center of the tube. In such an $\mathrm{r}-\mathrm{l}$ circuit, as the current approaches its final value, it does not do so linearly but asymptotically as indicated in Figure 19 (C), curve 2 . It is therefore necessary to have the output tubes begin to supply
power to the deflection coil before the energy in the coil is completely dissipated. Figure 19 (C), curve 3 shows the shape of the current supplied by the output tubes. Although the currents supplied by the output tubes and by the decaying tield are curved at the cross over point, together they produce a coil current that is linear.

By the time the beam has reached the right side of the kinescope, the output tubes are conducting heavily and have built up a strong field in the transformer and coil. At this point. the output tubes are again suddenly cut off and the process is repeated.

The 6BG6G plate voltage is supplied through the 5 V4G which is conducting over the major portion of the trace. Capacitor C 324 A is charged during this period and this charge is sufficient to supply the 6BG6G plates when the 5 V4G is not conducting.

The charge is placed on this capacitor by the receiver d-c supply and by the current from the collapse of the field in the horizontal deflecting coll. The a-c axis of the sweep voltage is 475 volts above ground since the T302 secondary is connected to the receiver 475 volt bus. The charge placed on this capacitor by the coil kick-back is therefore in addition to that from the d-c supply and thus the capacitor is charged to a voltage greater than the d-c supply. This permits operation of the output tubes at a higher voltage than is obtainable from the receiver power supply and produces an increase in the system efficiency by salvaging energy that would otherwise have been wasted.

Higure 19-Horizontal Sueep Waveforms
Width Control-L302 is provided to vary the output and hence the picture width by shunting a portion of the T302 secondary winding. Clockwise rotation of the adjustment increases the picture width and causes the right side of the picture to stretch slightly
Horizontal Drive Control-The horizontal drive control R340 varies the amount of high peaking on the grid of the horlzontal output tubes and thus affects the point on the trace at which the tubes conduct. The negative pulse is applied to the sawtooth by feeding back a portion of the pulse from the secondary of the horizontal output transformer. Clockwise rotation of the control increases picture width, crowds the right side of the picture and stretches the left side.

Horizontal Linearity Control-In order to describe the action of the linearity control, some additional facts about damper circuits must be presented.
When two horizontal output tubes are employed as in the 648PTK, proper damping cannot be obtained by a single damper tube due to the heavy damping action required during the first quarter of the trace. V3ll a 5 V 4 G provides
damping action over the entire trace. V310 a dual triode is employed to provide the extra damping action required during the first portion of the trace. When the voltage on the damper plate swings positive at the start of the trace, the differentiat. ing network (C331. R350, and R351) in the grid circuit of V310 produces a positive pulse on the damper grid due to the steep wave front of the sweep voltage (shown in Figure 19 (D) at point 1. This positive pulse lowers the plate resistance of the triodes and permits heavy damping current to flow. Then due to the shoft time constant of the grid network, the positive pulse decays and the bias due 10 grid rectification of the pulses cuts the triode damper cft. leaving the 5 V 4 G to provide the damping for the remainder of the trace.

The horizontal linearity control R351 changes the time constant of the differentiation network in the 6AS7G grid circuit and determines the portion of the trace over which the tube conducts, thus controlling linearity on the left side of the picture. Counterclockwise rotation of the control causes the left side of the picture to stretch.
HIGH VOLTAGE POWER SUPPLY (block \#13)-The kinescope high voltage supply is unusual in that the power is obtained from the energy stored in the deflection inductances during each horizontal scan. When the 6BG6G plate currents are cut off by the incoming signal, a positive pulse appears on the T302 primary due to the collapsing field in the deflection coil. This pulse of voltage is stepped up by the auto transformer action of T302 and applied to the plate of the high voltage rectifiers. At the same time, a negative pulse is applied to the cathodes of the rectifiers.
Three type 8016 lubes are employed in a voltage trippler cir. cuit which produces approximately $27 \mathrm{kv} \mathrm{d}-\mathrm{c}$ for operation of the kinescope. The pulses are first rectified by V307 and charge capacitor C326 to near peak-to peak voltage applied between the plate and cathode. Since the cathode of V307 is connected to the plate of V308 by resistors R342 and R343, capacitor C327 will charge to the same voltage as C326. The charge on C327 is thus added to the incoming pulse and V308 rectifies the sum of these voltages thus charging C328 to double the pulse voltage. The cathode of V308 is connected to the plate of V309 through R344 and R345 charging C329 to the same voltage as C328. The charge on C329 is added to the incoming pulse. V309 rectifies the incoming pulse and the d-c charge on C229 to charge C330 to three times pulse voltage.
In practice, due to a slight loss between stages and a small phase shift between the positive and negative pulses, the $d-c$ output is approximately 2.8 rather than 3 times the applied pulse.
Since the frequency of the supply voltage is high (15.750 cps), relatively little filter capacity is necessary Since the filter capacity is small, the stored energy is small, and the high voltage supply is made less dangerous.
Corona rings are employed on the rectifier tube sockets, the high voltage capacitor lugs and on nearby sharp edges in order to prevent carona discharge.
LOW VOLTAGE POWER SUPPLY (block \#15)-The low voltage power supply chassis contains two separate power supplies. One supply provides the filament and plate voltages for the r-f, i-f chassis and the other supply provides for the horizontal deflection chassis. This latter supply employs an interlock cable to the horizontal deflection chassis and a fuse in the power transformer primary to protect the supply in case of short circuits in the horizontal deflection chassis.

In Model 648PV-T109
(3rd. Pix I-F) is used in-
(3rd. Pix L-F)
stead of L. 104

Figure 21 -R-F, I-F Chassis Bottom View

Figure 22-Horizontal Deflection Chassis Top View

Figure 23-Horizontal Deflection Chassis Bottom View

TEST EQUIPMENT-To properly service the television chassis of this receiver, it is recommended that the following test equipment be available:

R-F Sweep Generator meeting the following requirementa:
(a) Frequency Ranges

18 to $30 \mathrm{mc} ., 1 \mathrm{mc}$. sweep width
40 to $90 \mathrm{mc} ., 10 \mathrm{mc}$. weep width
170 to $225 \mathrm{mc} ., 10 \mathrm{mc}$. weep width
(b) Output adjustable with at least 11 voll maximum.
(c) Output constant on all ranges.
(d) "Flat" output on all attenuator positions.

Cathode-ray Oscllloscope, preferably one with a wide band vertical deflection, an input calibrating source, and a low capacity probe.

Signal Generator to provide the following frequencies.
(a) I-F frequencles
19.75 mc . adjacent channel picture trap
21.25 mc . sound $1-1$ and sound traps
21.8 mc. converter transformer
22.3 me. second picture i.f tranaformer
23.4 me. fourth pleture i-f coil
25.2 me. third picture i-f coll
25.3 mc. first picture i-f tranaformer
25.75 mc . picture carrier
27.25 mc. adjacent channel sound trap

(b) R-F Irequencies

(c) Output on these ranges should be adjustable and at least .1 voll maximum.

Heterodyne Frequency Meter with crystal calibrator if the elgnal generator is not crystal controlled.

Electronic Voltmeter of Junior "VoltOhmyst" type and a high voltage multiplier probe for use with this meter to permit measurements up to 30 kv .

NOTE: Since separate power supplies are used for the r-f, 1.f chassis and the horizontal deflection chassis. It is possible to operate the r.f. I-t chassis with the horizontal deflection chassis disconnected and without materially affecting the d-c supply voltage. It is therefore possible to align the r-f, i-f chassis by connecting it alone to the power supply chassis. The vertical oscillator and vertical output tubes are inoperative under such conditions, however the operation of these tubes is unnecessary for alignment purposes.

By turning the chassis on end, all adjustinents will be made convenlently available.

Adjumtmenta Requised-Normally, only the r-f oscillator line will require the attention of the service technician. All other clrcuits are elther broad or very stable and hence will seldom require readjuatment.

Due to the high frequencies at which the recelver operates the r-f oscillator line adjustment if critical and may be affected by a tube change. The line can be adjuated to proper frequency on channel 13 with practically any 636 tube in the oscillator socket. However, it may not then be possible to adjust the Hine to frequency on all of channels 7, 8, 9, 10, 11 and 12. To be satiafactory as an oscillator tube. it should be posalble to adjuat the line to proper frequency with the fine tuning control in the middle third of its range. It may therefore be necensary to select a tube for the oscillator socket. In replacing, if the old tube can be matched for frequency by trying several new ones, this practice in recommended. Ai bert. however, it will probably be necessary to completely realign the oscllator line when changing the tube.

Tubes which cannot be used as osclletor will work batisfactorily as riamplifier or convertor.

The detailed alignment procedure which follows is Intended primarily as a discussion of the method used, precautions to be taken and the reasons for these precautions. Then, for more convenient reference during alignment, a tabulation of the method is given. All the information necessary for allgnment is given in the table, however, alignment by the table should not be attempted before reading the detailed instructions.

ORDER OF ALIGNMENT-When a complete receiver alignment is necessary. it can be most conveniently performed in the following order:-

Sound discriminator

Sound if transformers
Picture l-1 traps
Picture i-f transformers
R-F and converter lines
R-F oscillator line
Converter grid trap (early 648PTK)
Retouch picture i-f transformera
Antenna trap adjustment (late chassis).
Sensitivity check

SOUND DISCRIMINATOR ÅLIGNMENT-

Set the signal generator for approximately .l volt output at 21.25 mc . and connect it to the third sound i.f grid.

Detune T103 secondary (bottom).
Set the "VoltOhmyst" on the 10 volt scale.
Connect the meter in series with a one megohm resistor to the junction of diode resistors R135 and R136. Keep the junction end lead of the resistor as short as possible and dress the test lead away from the i-f section in order to prevent oscillation.

Adjust the primary of T103 (top) for maximum output on the meter.

Connect the "VoltOhmyst" to the junction of R135 and Cl46.
Adjust Tl03 secondary (bottom). It will be found that it is possible to produce a positive or negative voltage on the meter dependent upon this adjustment. Obviously to pass from a positive to a negative voltage, the voltage must go through zero. T103 (bottom) should be adjusted so that the meter indicates zero output as the voltage awings from positive to negative. This point will be called discriminator zero output.

Connect the sweep oscillator to the grid of the third sound I-f amplifier

Adjust the sweep band width to approximately 1 mc. with the center frequency at approximately 21.25 and with an output of approximately 1 volt.

Connect the oscilloscope to the junction of R135 and C146.
The pattern obtained should be similar to that shown in Figure 30A. If it is not, adjust the T103 (top) until the wave form is symmetrical

The peak to peak bandwidth of the discriminator should be approximately 350 kc . and should be linear from 21.175 mc . to 21.325 mc .

SOUND I-F ALIGNMENT-
Connect the sweep oscillator to the second sound i-f amplifier grid.

Connect the oscilloscope to the third sound i-f grid return (terminal \AA T102) in series with a 33,000 ohm isolating resistor.

Insert a 21.25 mc . marker signal from the signal generator into the second sound If grid.

Adjust T102 (top and bottom) for maximum gain and symmetry about the 21.25 mc . marker. The pattern obtained should be similar to that shown in Figure 30B.

The output level from the sweep should be set to produce approximately .3 volt peak-to-peak at the third sound i-1 grid retum when the final touches on the above adjustment are made. It is necessary that the sweep output voltage should not exceed the specified values otherwise the response curve will be broadened, permitting slight misadjustment to pass unnoticed and possibly causing distortion on weak signals.

Connect the sweep and signal generator to the top end of the trap winding of T2 (on top of the chassis). Adjust T101 (top and bottom), for maximum gain and symmetry at 21.25 mc

Reduce the sweep output for the final adjustments so that approximately .3 volt peak-to-peak is present at the third sound i-t grid return
The band width at 70% response from the first sound i-f grid to the third i.f grid should be approximately 200 kc .

PICTURE I-F TRAP RDJUSTMENT-

Turn the receiver picture control fully clockwise.
Remove the 6AT6 a-g-c amplifier, V106.
Construct a bias box by shunting a 10.000 ohm potentiometer across a $41 / 2$ valt battery. Connect the positive terminal of the battery to the receiver chassis. Connect the a!m of the potentiometer to pin 1 of V107. Adjust the potentiometer to provide -3 volts at its arm

Set the channel switch to channel 13 .
Connect the "VoltOhmyst" across the picture second detector load resistor R154.

Connect the output of the signal generator to the junction of L80 and R6. This connection is available on a terminal lug through a hole in the side apron of the chassia, beside the r-f unit. This hole is normally down when the chassis is in the recommended position. Connection can be easily made, however, by allowing the receiver to hang over the edge of the test bench by a few inches.
(Junction of Cl4 and R6 in units where Cl4 is fixed).
Set the generator to each of the following frequencies and tune the specified adjustment for minimum indication on the "VoltOhmyst." In each instance the generator should be checked against a crystal calibrator to insure that the generator is exactly on frequency
21.25 mc .-T106 (top)
21.25 mc .-T2 (top)
27.25 mc .-T104 (top)
27.25 mc .-T109 (bottom) 648PV only.
19.75 mc -T105 (top)

TELEVISION ALIGNMENT PROCEDURE

PICTURE I-F TRANSFORMER ADJUSTMENTS

Set the signal generator to each of the following frequencies and peak the specified adjustment for maximum indication on the "VoltOhmyst."
$21.8 \mathrm{mc}-\mathrm{T} 2$ (bottom)
$25.3 \mathrm{mc}-$ T104 (bottom)
22.3 mc -T105 (bottom)
25.2 mc .-L104 (top of chassis) 648PTK only.
25.2 mc .-T109 (top of chassis) 648PV only.
23.4 mc -L106 (top of chassis)

If T105 (bottom) required adjustment, it will be necessary to reset T105 (top) for minimum response at 19.75 mc .

Plcture I-F Oscillation-If the receiver in badly misaligned and two or more of the if transformers are tuned to the same frequency, the receiver may fall into i-f oscillation. I-F oscillation shows up as a d-c voltage in excess of 3 volts at the picture detector load resistor. This voltage is unaffected by r-f signal input and sometimes is independent of picture control setting.

II such a condition is encountered. it is sometimes possible to stop oscillation by adjusting the transformers approximately to frequency by setting the adjustment stud extensions of T2, T104, T105. T106, L104, and L106 to be approximately equal to those of another receiver known to be in proper alignment.
(In Model 648PV-T109 is used in place of L104).
If thil does not have the desired effect, it may now be possible to stop oscillation by increasing the grid bias. If so, it should then be possible to align the transformers by the usual method. Once aligned in this manner, the i-f should be stable with reduced bias

If the oscillation cannot be stopped in the above manner, shunt the grids of the first three i-f amplifiers to ground with 1000 mmf. capacitors.

Connect the signal generator to the fourth i-f grid and adjust L106 to frequency.

Femove the shunting capacitor from the third i-f grid, connect the signal generator to this grid and align L104.

Remove the shunting capacitor from the second i-f grid, connect the signal generator and align T105.

Remove the shunt from the first i-f grid, connect the signal generator and align T104 to frequency.

Connect the signal generator to the junction of L80 and R6 and align T2 to frequency.

If this does not stop the oscillation, the difficulty is not due to i-f misalignment as the i-f section is very stable when properly aligned. Check all if by-pass condensers, transformer shunting resistors, tubes, socket voltages, etc.

R-F AND CONVERTER LINE ADJUSTMENT-

Connect the r-f sweep oscillator to the recelver antenna terminals. If the sweep oscillator has a 50 ohm single-ended output. it will be necessary to obtain balonced output by connecting as shown in Figure 24.

Figure 24-Unbalanced Sweep Cable Termination

Connect the oscilloscope to the junction of L80 and R6 (in the r-f tuning unit) through a 10,000 ohm resistor.
(Junction of Cl 4 and R 6 in units where Cl 4 is fixed).
By-pass the first picture i-f grid to ground through a 1000 mmfd . capacitor. Keep the leads to this by-pass as short as possible. If this is not done, lead resonance may fall in the r-f range and cause an incorrect picture of the r-f response.

Turn the picture control fully clockwise. Connect the positive terminal of the bias box to the receiver chassis and the arm to pin 1 of V107, Set the potentiometer for -1 volt at its arm.

Connect the signal generator loosely to the receiver antenna terminals.

In most receivers Cl 4 is fixed. However, if Cl 4 is variable, set the Cl4 adjustment screw to its approximate normal operating position, $1^{1 / 2}$ turns out from maximum capacity. If the Cl4 capacity is less than this it may produce a resonance in channel 1, 2 or 3. During r-f alignment, such a resonance may show up as a "suck out" in the response curve of one of these channels. Under such conditions it will be impossible to obtain the proper response. With Cl4 set as specified or in receivers in which Cl4 is fixed, no such difficulty should be experienced.

Since channel 7 has the narrowest response of any of the high frequency channels, it should be adjusted first.

Set the receiver channel switch to channel 7 (see Figure 29 for switch shaft flat location versus channel).

Set the sweep oscillator to cover channel 7.
E-seri markers of channel 7 picture carrier and sound carrier 175.25 mc . and 179.75 mc .

Adjust L25, L26, L51 and L52 (see Figure 31) for an approximately flat topped response curve located symmetrically between the markers. Normally this curve appears somewhat overcoupled or doyble humped with a 10 or 15% peak to valley excursion and the markers occur at approximately 90% response. See Figure 31, channel 7. In making these adjustments, the stud extension of all cores should be kept approximately equal.

Check the response of channels 8 through 13 by switching the receiver channel switch, sweep oscillator and marker oscillator to each of these channels and observe the response obtained. See Figure 31 for typical response curves. It should be found that all these channels have the proper thaped response with the markers above 70% response. If the mariers
do not fall within this requirement on one or more high frequency channels, since there are no individual channel adjustments, it will be necessary to readjust L25, L26, L51 and L52, and possibly compromise some channel slightly in order to get the markers up on other channels. Normally however, no difficulty of this type should be experienced since the higher frequency channels become comparatively broad and the markers easily fall within the required range.

Channel 6 is next aligned in the same manner.
Set the receiver to channel 6 .
Set the sweep oscillator to cover channel 6.
Set the marker oscillator to channel 6 picture and sound carrier frequencies.

Adjust L11, L12, L37 and L38, for an approximately flat-topped response curve located symmetrically between the markers.

Check channels 5 down through channel 1 by switching the receiver, sweep oscillator and marker oscillator to each channel and observing the response obtained. In all cases, the markers should be above the 70% response point. If this is not the case. L11, L12, L37 and L38 should be retouched. On final adjustment, all channels must be within the 70% specification.

Coupling between r-f and converter lines is augmented by a link between L12 and L37. This link is adjusted in the factory and should not require adjustment in the field. On channel 6 with the link in the minimum coupling position, the response is slightly overcoupled with approximately a 10% excursion from peak-to-valley. With the coupling at maximum, the response is somewhat broader and the peak-to-valley excursion is approximately 40%. The amount of coupling permissible is limited by the peak-to-valley excursion which should not be greater than $\mathbf{3 0 \%}$ on any channel.

R-F OSCILLATOR LINE ADJUSTMENT-

The r-f oscillator line may be aligned by adjusting it to beat with a crystal calibrated heterodyne frequency meter, or by feeding a signal into the receiver at the r-f sound carrier frequency and adjusting the oscillator for zero output from the sound discriminator. In this latter case the sound discriminator must first have been aligned to exact frequency. Either method of adjustment will produce the same results. The method used will depend upon the type of test equipment available.

The heterodyne frequency meter is the more universal method since it is applicable to all types of receivers. However, it requires a great many calibration points since receivers with different i-f frequencies employ different oscillator frequencies and hence different calibration points on the frequency meter. This may result in confusion and errors in adjustment.

Since all sets must receive the same stations, the r-f sound carrier frequencies remain the same, regardless of i-f frequency. By use of this method, only one set of calibrating points is necessary. It these trequencies are crystal controlled, this method of alignment becomes very fast and with α mini-
mum chance for error. However, this method is applicable only on receivers that use a sound discriminator, or other type of sound detector that has a detinite and measurable characteristic at center frequency. This method cannot be easily employed on receivers that employ a slope type detector.

Regardless of which method of oscillator alignment is used, the frequency standard must be crystal controlled or calibrated.

If the receiver oscillator is to be adjusted by the heterodyne frequency meter method, the following calibration points must be established

Channel Number	Receiver R-F Osc. Freq. Mc.
1	71
2	81
3	87
4	93
5	103
6	109
7	201
8	207
9	213
10	219
11	225
12	231
13	237

If the receiver oscillator is adjusted by feeding in the r-f sound carrier frequency, the following signals must be avallable.

	R-F Sound Carrier
Number	Freq. Mc.
1	49.75
2	59.75
3	65.75
4	71.75
5	81.75
6	87.75
7	179.75
8	185.75
9	191.75
10	197.75
11	203.75
12	... 209.75
13	215.75

L the heterodyne frequency meter method is used, couple the meter probe loosely to the receiver oscillator.
If the I-f sound carrier method is used, connect the "VoltOhmyst" to the sound discriminator output (junction of R135 and C146).

Connect the signal generator to the receiver antenna terminals.
The order of alignment remains the same regardless of which method is used.

Since lower frequencies are obtained by adding steps of inductance, it is necessary to align channel 13 first and continue in reverse numerical order.

Set the receiver channel switch to channel 13.
Adjust the frequency standard to the correct frequency (237 mc. for heterodyne frequency meter or 215.75 mc . for the signal generator).

Set the fine tuning control to the middle of its range while making the adjusiment.

Adjust L77 and L78 for an audible beat on the heterodyne frequency meter or zero voltage from sound discriminator. The core stud extensions should be maintained equal by visual inspection except as discussed in the following paragraph entitled Oscillator Pulling.

Switch the receiver to channel 12.
Set the frequency standard to the proper frequency as listed in the alignment table.

Adjust L76 for Indications as above.
Adjust the oscillator to frequency on all channels by switch. ing the receiver and the frequency standard to each channel and adjusting the appropriate oscillator trimmer for the specifled indication. It should be poasible to adjust the oscillator to the correct frequency on all channels with the fine tuning control in the middle third of its range.

After the oscillator has been set on all channels, start back at channel 13 and recheck to make sure that all adjustments are correct.

Oscillator Pulling-If in setting the low frequency channels, the high frequency channels are pulled noticeably off frequency. or if it is impossible to set channels i0. 11 or 12 within the range of their respective trimmers, it may be due to inter action between sections of the line. A quick check can be made to determine if this is the case.

The shorting section of the r-f oscillator channel switch, (rotor), should be at ground $r-f$ potential. If this is not the case due to dissymmetry in the circuit, the shorting section mey be somewhat above ground. Since at these high frequencies, even the length of the shorting bar represents an appreciable portion of a wave length, the lower frequency section is effectively tapped up on the high frequency section and reflects reactance into it. This reactance varies with low frequency channel oscillator adjustments thus causing a shift in oscillator frequency on the upper channels. One way to cure this difficulty is to adjust the shorting switch to ground po. tential. This can be accomplished by staggering L77 and L78 until this condition is achieved.

To find if dissymmetry exists, remove the bottom cover from the r-f unit.

Set the channel switch to channel 10.
Disconnect any input from the receiver.

Connect the "VoltOhmyst" to R6 through the hole in the side of chassis, and measure the oscillator injection into the converter grid.

Take an insulated metal prod and touch the center of the oscillator rotor shorting bar. If the meter reading changes, it indicates that the bar is not at rif ground.

To balance the line, switch to channel 13 and stagger the cores for one or more turns (usually L78 out and L77 in). The final adjustment must leave the oscillator on correct channel 13 trequency.

Switch back to channel 10 and touch the switch rotor as before. As before, meter movement indicates unbalance.

For fine balancing touch the switch contacts for channel 10 . When balanced, the meter will show equal reduction for both contacts. Continue staggering the cores until balance is ob tained.

Repeat the oscillator adjustments for all channels.
In later production receivers, several r-f oscillator coil changes were made and a capacitor Cl9 was added to minimize the oscillator pulling effect. In receivers in which C19 is present the staggering of cores should not be necessary.

CONVERTER GRID TRAP ADJUSTMENT-

Connect the sweep generator to the receiver antenna terminals. Observe the precaution for single.ended output generators mentioned in the r-f alignment section

Connect the oscilloscope to R6 through 10,000 ohms.

Shunt the first picture i-f grid to ground with a 1.000 mm . capacitor, keeping the leads as short as possible

Couple the signal generator loosely to the receiver antenna terminals.

Switch the channel switch and signal generator through the low frequency channels and observe the response on each range

Select a channel which is essentially flat over the operating range with the sound and picture carrier markers at 90% or higher on the response curve.

Remove the capacitor from the first picture i.f grid and shun it from the second picture i.f grid to ground.

Adjust Cl 4 for an r-if response curve similar to the one obtained with the first picture i-f grid shunted. See Figure 32

In most receivers, Cl 4 is fixed and obviously this adjustment cannot be made on those sets. In such receivers, this stop should be followed as a check to assure that proper converter operation is obtained.

RETOUCHING OF PICTURE IF ADJUSTMENTS-

The picture i-f response curve varies somewhat with change of bias and for this reason it should be aligned with approximately the same signal input as it will receive in operation.

If the receiver is located at the edge of the service area, it should be aligned with approximately -1 volt i-f grid bias. However, for normal conditions, (signals of 1000 microvolts or greater), it is recommended that the picture i-f be aligned with a grid bias of -3 volts.

Connect the r-f sweep generator to the receiver antenna terminals.

Connect the signal generator to the antenna terminals and feed in the 25.75 mc i-f picture carrier marker and a 22.3 mc . marker.

Connect the oscilloscope across the picture detector load resistor.

Remove the shunting capacitor from the second picture i-f grid
Turn the picture control fully clockwise. Connect the bias box and set the potentiometer for -3 volts at its arm

Set the sweep output to produce approximately .3 volt peak-to. peak across the picture detector load resistor.

Observe and analyze the response curve oblained. The re sponse will not be ideal and the i-f adjustments must be retouched in order to obtain the desired curve. See Figure 33.

If for example as in Figure 33 A the response is peaked in the middle, and the picture carrier is low on the response curve slope, then the high Q transformer T104, (which is peaked at 25.3 mc .-near the picture carrier 25.75 mc .), should be retouched to bring the picture carrier response up to approximately 40%.

It will then probably be found that the response is generally high on the low frequency end of the curve as in Figure 33B. If this is the case, adjust L104, (25.2 mc . and fairly broad), to bring the high frequency end response up and the low frequency response down. The picture carrier is thus brought still further up the slope and an approximately flat topped response curve is obtained as in Figure 33C.

If T105 (bottom) required any adjustment, it will be necessary to reset T105 (top) for minimum response at 19.75 mc .
On final adjustment the picture carrier marker must be at approximately 45% response. The curve must be approximately flat topped and with the 22.3 mc marker at approximately 100% response.

The most important consideration in making the i-t adjustments is 10 get the picture carrier at the 45% response point.

If the picture carrier operates too low on the response curve, loss of low frequency video response, of picture brilliance, of blanking, and of sync may occur. If the picture carrier operates too high on the response curve, the picture definition is impaired by loss of high frequency video response.

The above example is used to show the dine of reasoning involved in making the retouching adjustments. Since there are five tuned circuits each aligned to a different frequency. it is obvious that many different conditions can exist, however, similar reasoning will apply to each case. With some experience in making these adjustments, it will be found that
the desired response can be readily obtained. In making these adjustments, care should be taken that no two tranaformers are tuned to the same frequency as i-f oscillation may result.

Replace the 6AT6 a.g.c amplifier, V106.

SENSITIVITY CGECK-A comparative sensitivity check can be made by operating the receiver on a weak signal from a television station and comparing the picture and sound obtained to that obtained on other receivers under the same conditions.

This weak signal can be obtained by connecting the shop antenna to the receiver through an attenuator pad of the trpe shown in Figure 25. The number of stages in the pad depends upon the signal strength available at the antenna. \& sufficient number of stages should be inserted so that a somewhat less than normal contrast picture is obtained when the picture control is at the maximum clockwise position.

Figure 25-Altenuator Pad

Only carbon type resistors should be used to construct the attenuator pad. Since many of the low value moulded resistors generally available are of wire wound construction, it is advisable to break and examine one of each type of resistor used in order to determine its construction.

RESPONSE CURVES-The response curves shown on page 31 and referred to throughout the alignment procedure were taken from a production set. Although these curves are typlcal. some variations can be expected. Channel 2 response (not shown) is similar to that of channel 3.

The response curves are shown in the classical manner of presentation, that is with "response up" and low frequency to the left. The manner in which they will be seen in a given test set-up will depend upon the characteristics of the oscilloscope and the sweep generator. The curves may be seen inverted and/or switched from left to right depending on the de. flection polarity of the oscilloscope and the phasing of the sweep generator.

ALIGNMENT TABLE-Both methods of oscillator alignment are presented in the alignment table. The service technician may thereby choose the method to suit his test equipment.
the detalled alignment procedure beginning on page 22 should be read before alignment by use of the table is attempted.

$\begin{aligned} & \text { STEP } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { SIGNAL } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$	SIGNAL GEN. FREQ. MC.	$\begin{aligned} & \text { CONNECT } \\ & \text { SWEEP } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$		$\begin{aligned} & \text { CONNECT } \\ & \text { OSCILLOSCOPE } \\ & \text { TO } \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { "VOLTOHMYST" } \\ \text { TO } \end{gathered}$	MISCELLANEOUS CONNECTIONS AND INSTRUCTIONS	ADJUST	$\begin{gathered} \text { REFER } \\ \text { TO } \end{gathered}$

DISCRIMINATOR AND SOUND I.F ALIGNMENT

1	3rd qrid V103)	21.25 . 1 volt output	Not used		Not used	$\begin{aligned} & \text { In series with } 1 \\ & \text { meg. to junction } \\ & \text { of Ri35 \& R136 } \end{aligned}$		Detune Tl03 thot. tom). Adjust 1103 (top) for max. on meter	Fig. 28 Fig. 27 Fig. 26
2	"	"	"		"	$\begin{aligned} & \text { Junct of R135 } \\ & \text { C146 } \end{aligned}$	Meter on 3 volt scale	T103 (bottom) for zero on meter	Flg. 28 Fig. 27
3	"	"	$\begin{array}{ll} \text { 3rd } & \text { sound } \\ \text { grid } \\ \text { V103) } \end{array} \text { (pin } \quad 1,$	$\begin{gathered} 21.25 \\ \text { center } \\ 1 \text { me. mide } \\ \text { wide } \\ 11 \text { v. } \\ \text { out } \end{gathered}$	$\begin{array}{llll} \text { Junct } \\ \text { C146 } \end{array} \text { of R135 of }$	Not used	Check for symmetr form (poritive \& neq adjust Tl03 (top)	cal response waveative). If not equal atil they are equal	$\begin{aligned} & \text { Fig. } 28 \\ & \text { Fig. } 30 \\ & \text { X } \end{aligned}$
4	$\begin{array}{ll} \text { 2nd } \\ \text { grid } \\ \text { vilo2) } \end{array} \text { (pind } \begin{aligned} & \text { i-f } \\ & \text { (pind } \end{aligned}$	21.25 duced output	2nd sound i.f grid	$\begin{gathered} 21.25 \\ \text { reduced } \\ \text { output } \end{gathered}$	Terminal A, T102 in series with 33,000 ohms	"	Sweep output reduced to provide . 3 voll p-to-p on scope	T102 (top \& boltom) for max. gain and symmetry at 21.25 me.	$\begin{aligned} & \text { Fig. } 28 \\ & \text { Fig. } 28 \\ & \text { Fig. } 27 \\ & \text { Fig. } 30 \\ & \text { B. } \end{aligned}$
5	Trap winding on T2 (top of chassis)	$\begin{gathered} 21.25 \\ \text { re } \\ \text { duced } \\ \text { output } \end{gathered}$	$\begin{aligned} & \text { Trap winding } \\ & \text { on } \mathrm{T} 2 \end{aligned}$	$\begin{gathered} 21.25 \\ \text { reduced } \\ \text { outpul } \end{gathered}$	"	"	"	Tlol (top \& boltom) for max. qain and symmetry at 21.25 mc.	$\begin{gathered} \text { Fig. } 26 \\ \text { Fig. } 27 \\ \text { Fig. } 28 \\ \text { Fig. } 30 \\ \text { B } \end{gathered}$

PICTURE I-F AND TRAP ADJUSTMENT

6	Not used		Not used	Nct used	Pin 1 V107	Remove Vio6. Conect bias box $+{ }^{+}$to and lin to	Picture control max. Bias box - 3 volts.	Fig. 28
7	$\substack{\text { Junction } \\ \text { and R6 } \\ *}$ L80	21.25	"	"	$\begin{aligned} & \text { Junction of L109 \& } \\ & \text { R154 } \end{aligned}$	Meter on 3 volt scale. Raceiver on channel 13	T106 (top) for min. on meter	Fig. 26
8	*	21.25	"	"	"	"	T2 (top) for min.	$\begin{aligned} & \text { Fig. } 28 \\ & \text { Fig. } 26 \end{aligned}$
9	"	27.25	-	"	-	"	T104 (top) for min.	"
10	"	27.25	"	"	"	-•	```Tl09.(bottom) for```	Flg. 27
11	"	19.75	"	"	"	"	T105 (top) for min.	Fig. 26
12	"	21.8	"	"	"	"	T2 (boltom) for max.	Fig. 27
13	"	25.3	"	"	"	"	Tl04 (bottom) for max.	".
14	"	22.3	"	*	"	"	T105 (bottom) for	"
15	"	25.2	*	"	"	"	Tl09 (top chassis) for max.	Fig. 26
16	-	23.4	-	"	"	"	1106 (top chassis for max.	\cdots
17	11 T105 (bottom) required adjustment in step 14. repeat step 11.							

R-F AND CONVERTER LINE ALIGNMENT

18	Not used		Not used		Not used		Sot Cl4 $11 / 2$ turns out from max.	Picture control max. Bias box - 1 volts.	Fig. 28 Fig. 27
19	Antenna terminal (loosely)	$\begin{array}{r} 175.25 \\ 8.75 \\ 179.75 \end{array}$	Antenna terminals (see text far precaution)	Sweeping channel 7	Junction 280 and R6 through 10,000 ohm series resistor	Not used	1st i-f grid bypass to and. with 1000 mmf. Receiver on channel 7	L25, L26, LS1 \& L52 for approx. Hat top response between markers. Markers above 70\%	Fig. 28 Fig. 27 Fig. 31 (7).
20	"	$\begin{aligned} & 18125 \\ & 185.75 \end{aligned}$	"	$\underset{8}{\text { channel }}$	"	'	Receiver on channel 8	Check to see that response is as above	$\text { Fig. }{ }^{31}$
21	"	$\begin{aligned} & 187.25 \\ & 191.75 \end{aligned}$	"	$\underset{9}{\text { channel }}$	"	"	Receiver on channel 9	"	$\text { Fig. } 31$ (${ }^{(1)}$
22	-	$\begin{aligned} & 193.25 \\ & 197.75 \end{aligned}$	"	$\begin{gathered} \text { channel } \\ 10 \end{gathered}$	"	"	Receiver on channel 10	"	$\text { Fig. }^{31}$
23	"	$\begin{aligned} & 199.25 \\ & 203.75 \end{aligned}$	"	channel 11	"	"	Receiver on channel 11	"	$\text { Fig. } \left.{ }^{31}\right)^{31}$
24	"	$\begin{aligned} & 205.25 \\ & 209.75 \end{aligned}$	"	channel 12	"	"	Receiver on channel 12	"	${ }_{(12)}{ }^{31}$
25	"	$\begin{aligned} & 211.25 \\ & 215.5 \end{aligned}$	"	$\underset{13}{c h a n n e l}$	"	"	Receiver on channel 13	"	$\text { Fig }{ }_{(13)}{ }^{31}$
26	lt the response on anv channel (steps 20 through 25) is below 70% at either marker, switch to that channel and adjust L25, L26, L51 \& L52 to pull response up on that channel. Then recheck steps 19 through 25.								

[^13]† In some receivers, T109 is replaced by L104 which has no bottom adjustment.

$\begin{aligned} & \text { 8TEP } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { SIGNAL } \\ & \text { GENERRTOR } \\ & \text { TO } \end{aligned}$	$\begin{aligned} & \text { SIGNAL } \\ & \text { GEN. } \\ & \text { FREO. } \\ & \text { MC. } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { SWEEP } \\ & \text { GENERETOR } \\ & \text { TO } \end{aligned}$	$\begin{aligned} & \text { SWEEP } \\ & \text { GENN. } \\ & \text { FREQ. } \\ & \text { MC. } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { OSCILI.OSCOPE } \\ & \text { TO } \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { "VOLTOHMYST" } \\ \text { TO } \end{gathered}$	MISCELLANEOUS CONNECTIONS AND INSTRUCTIONS	ADJUST	$\begin{aligned} & \text { REFER } \\ & \text { TO } \end{aligned}$

R-F AND CONVERTER LINE ALIGNMENT (Cont'd)

27	Antenna ierminal (loosely)	$\begin{aligned} & 83.25 \\ & 87.75 \end{aligned}$	Antonna torminals (see toxt for precaution)	sweoping channel B	Junction L80 and R6 through 10.000 ohm series resistor	Not used	Receiver on chan. nel 8	$\begin{aligned} & \text { L11, L12, L37 \& } \begin{array}{l} \text { L38 } \\ \text { for response as } \\ \text { above } \end{array} \\ & \hline \end{aligned}$	Fig. 31 (B)
28	"	$\begin{aligned} & 77.25 \\ & 81.75 \end{aligned}$	"	$\underset{5}{\text { channel }}$	"	"	Recolver an channol 5	Check to see that response is as above	$\underset{(5)}{\text { Fig. }} 31$
28	"	$\begin{aligned} & 67.25 \\ & 71.75 \\ & \hline \end{aligned}$	"	channel	"	"	Recolver on channol 4	-	$\text { Fig. }{ }_{(4)}{ }^{31}$
30	"	$\begin{aligned} & 61.25 \\ & 65.75 \\ & \hline \end{aligned}$	"	$\underset{3}{\text { channel }}$	"	"	Hocelver on channel 3	"	${ }_{\text {Fig. }}{ }^{\text {(3) }}$
31	"	$\begin{aligned} & 55.25 \\ & 59.75 \end{aligned}$	"	$\begin{gathered} \text { channel } \\ 2 \end{gathered}$	"	"	Recelver on channel 2	"	
32	"	$\begin{aligned} & 45.25 \\ & 49.75 \end{aligned}$	"	$\begin{array}{\|c\|} \hline \text { channel } \\ \hline \end{array}$	"	"	Recelver on channel 1	"	$\begin{gathered} \text { Fig. }{ }^{31} \\ \text { (1) } \end{gathered}$
33	If the response on any channel (steps 28 through 32) is below 70% at oither marker, switch to that channel and adjuk $\mathrm{LII}, \mathrm{L} 12$, L37 6 L 38 to pull response up on that channel. Then recheck steps 27 through 32.								

R-F OSCILLATOR ALIGNMENT

$\begin{aligned} & \text { 8TRPP } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { SIGNAL } \\ & \text { GENERATOR } \\ & \text { TO } \\ & \hline \end{aligned}$	SICNR GETS. FREQ MC.	$\begin{aligned} & \text { CONNECY } \\ & \text { HETERODYNE } \\ & \text { FREQ. METER } \\ & \text { TO } \end{aligned}$		$\begin{gathered} \text { CONNECT } \\ \text { OSCILOSCOPE } \\ \text { TO } \end{gathered}$	$\begin{gathered} \text { CONNECT } \\ \text { "VOLTOHMYST" } \\ \text { TO } \end{gathered}$	MISCELLANEOUS CONNECTIONS AND anstructions	ADJUST	$\begin{aligned} & \text { REFER } \\ & \text { TO } \end{aligned}$
34	Antonna torminals	215.75	Loonely coupled to r-f ose.	237	Not usod	Junction of R135 6 Cl46 for sig. gen. method only	Fine tuning con. tored for all ad. Justments Receiver on chan. nol 13	1776178 for zero on meter or bect on het. freq. meter	Fig. 28 Fig. 27
35	"	208.75	"	231	"	"	Recelver on channel 12	178 as above	Fig. 29
38	"	203.75	"	225	"	"	Recelver on chan. nel 11	174 as above	\because
37	"	197.75	"	218	"	\because	Hecelver on chan. nol 10	172 as above	"
38	"	191.75	"	213	"	"	Receiver on chan. nel 9	170 as above	"
38	"	185.95	"	207	"	"	Recelver on chan. nol 8	168 as above	"
40	"	179.75	"	201	"	"	Recoiver on chan. nol 7	186 as above	
41	"	87.75	"	109	"	"	Hecelver on chan. nol 6	L63 \& L84 as above	Fig. 27
42	"	81.75	"	103	"	"	Recelver on chan. nol 5	L62 as above	Fig. 29
44	"	71.75 85.75	"	83	"	"	Receiver on channol 4	180 as above	"
45	"	65.75 59.75	"	87	"	"	Receiver on channel 3	158 as above	*
48	"	59.75	"	81	"	"	Recelver on channel 2	L58 as above	\cdots
46		49.75	"	71	"	"	Recelver on channel 1	L54 as above	"

CONVERTER GRID TRAP ADJUSTMENT

48	Antonna terminal (loosely)	Sound and Pix Carrier of Selected Channel	Not used	Junction L80 and R6 (in r-1 unit) through 10,000 ohm series resintor	Not used	Connect swoep to ant. terms. lst pix i-f grid bypassed to gnd. with 1000 mmf.	Switch through channols 1 through 6. Select channel with flat response and markers above 80\%	Fig. 28 Fig. 32 (A)
49	"	"	"	"	"	Move 1000 mm . bypass from lat pix $1-t$ grid to 2 nd i-f grid	Adjust Cll for response curvo similar to that oblcined above	$\begin{aligned} & \text { Fig. } 28 \\ & \text { Fig. } 32 \\ & \text { (B) } \end{aligned}$
RETOUCHING PICTURE I-F TRANSFORMERS								
50			Not used	Not used		Receiver 8 swoep on same channel as above. Re. move I-f grid bypass	Picture control max, Bias box -3 volts.	Fig. 28
81	Antenna torminals (loosely)	$\begin{aligned} & 22.3 \\ & 25.75 \end{aligned}$	"	Junction 1109 and R154	Not used	Rotouch plx 1 -t ad T105 bottome 5109 eary to provide prop	strments (T2, T104, of L106) as necenor response	$\begin{aligned} & \text { Fig: } 28 \\ & \text { Fic: } 27 \\ & \text { Flg. } 13 \end{aligned}$
6.	If T105 (bottom) was adjusted in stop St, repeat stop 10 and stop 51 Replace V106 upon completion.							

[^14]648PTK, 648PV
TELEVISION ALIGNMENT TABLE

$\begin{aligned} & \text { STEP } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { SIGNAL } \\ & \text { GENERRTOR } \\ & \text { TO } \end{aligned}$	SIGNAL GEN. FREO. MC.	CONNECT SWEEP GENERATOR TO	SWEEP GEN. FHEQ. MC.	\qquad	CONNECT "VOLTOHMYST" TO	miscelleneous CONNECTIONS AND INSTRUCTIONS	ADJUsT	$\begin{aligned} & \text { REFER } \\ & \text { TO } \end{aligned}$
ANTENNA TRAP ADJUSTMENT									
Select 1 of the 6 steps below for suitable method tor type of interference encountered.									
53.1	Antenna terminals through fermination	193.25	Loosely coupled to r-f osc.	109	Not used	Junction of L109 \& R154	Rec. on char. 6	L81 6 L82 for min. on meter	Fig. 28 Fig. 26
2	"	109	"	87	"	"	Rec. on chan. 3	"	"
. 3	7	179.75	"	103	"	'	Rec. on cheos. 5	"	*
4	"	103	"	81	"	"	Rec. on chan. 2	"	"
-5	\because		"	81	"	"	Rec. ${ }^{\text {an }}$	"	0
-6	Not used		Not used		Not used	Not used	Rec. on interfered changel	L81 \& L82 for min. interfereace	"
SENSITIVITY CHECK									
54	Connect antenna to receiver through attenuator pad to provide weak signal. Compare picture and sound obtained to that obtained on other receivert under the same conditions.								

Figure 26-Top Chassis Adjustments

181 and L82 are omitted in some units.
Ll04 is used in Model 648PTK only-in other chassis it is replaced by Tl09.

Figure 27-Bottom Chassis Adjustments

In most units Clis is fixed.
Model 648PTK only-
T109 is replaced by L104
Ll04 has no bottom adjustment.

Figure 28-Test Connection Points

Figure 30-Sound Discriminator and I-F Response

Figure 33-Overall Response

Figure 32-Effects of C14 Adjustments
L104 is used in Model 648PTX only-in other chassis it is replaced by T109.

In most units Cl4 is fixed.

NO RASTER ON SCREEN

(1) P303 or kinescope socket disconnected.
(2) No high voltage due to tailure of power supply. P401 or interlock disconnected. Fuse in power supply blown or defective. V401 and V402 defective-filter capacitor or choke shorted or filter choke open.
(3) No high voltage-If horizontal deflection is operating as evidenced by the correct wavelorm on terminal 4 of horizontal output transformer, the trouble can be isolated to the 8016 circuits. Either the T302 high voltage winding is open, (points 2 to 3), the 8016 tubes are defective, the 8016 filament circuits are open or one or more of the following capacitors are open or shorted: C326, C327, C328, C329, and C330.
(4) V302 and V304 circuits inoperative-check for sine wave on V302 grid, pulse on V304 grid, and sawtooth on V305 grid. Refer to schematic and wave form chart.
(5) Damper tubes V310 or V311 inoperative.
(6) Defective Kinescope.
(7) R162 defective, R173 open, (terminal 3 to ground).

WRINKLES ON LEFT SIDE OF RASTER:

(1) R184, R186 or C334 defective.
(2) Defective yoke.

RASTER \& SIGNAL ON SCREEN BUT NO SOUND:

(1) R-F oscillator off frequency.
(2) Sound i-f or discriminator inoperative-check V101, V102, V103. V104 and their socket voltages.
(3) Radio audio system inoperative.
(4) Speaker defective.

RASTER BUT NO SOUND, PICTURE OR SYNC.
(1) Defective antenna or transmission line.
(2) R-F oscillator off frequency.
(3) R-F unit inoperative-check V1, V2, V3 and their socket voltages.

SOUND \& RASTER BUT NO PICTURE OR SYNC:

(1) Picture i-f. detector or video amplifier Inoperative-check V108, V109. V110, V111, V105, V112 and V113-check socket voltages.
(2) Bad contact to kinescope grid.

TRAPEZOIDAL OR NON.SYMMETRICAL RASTER:

(1) C334 defective.
(2) Defective yoke.

SMALL RASTER:
(1) Low Plus B or low line voltage.

POOR VERTICAL LINEARITY:

(1) If adjustments cannot correct, change V118.
(2) Vertical output transiormer (T108) defective.
(3) V117 inoperative-check voltage and wave forms on grid and plate.
(4) R164, C160, C165-B or C172-C defectivg.
(5) Low bias or plate voltage-check rectifiers and capacitors in supply circuits.

POOR HORIZONTAL LINEARITY:

(1) If adjustments do not correct, change V305. V306, V310 or V3ll.
(2) T302 or L302 defective.
(3) R346, R348, R350, R351, C331 or C332 defective.
(4) R332, R340 or C318 defective.
(5) R316 delective.

PICTURE OUT OF PHASE HORIZONTALLY:

(1) T301 winding D to F incorrectly tuned or connected in reverse.
(2) R312 or R314 defective.

NO VERTICAL DEFLECTION:

(1) P101 disconnected or cable defective.
(2) P3O1 disconnected or cable defective.
(3) V117 or V118 inoperative. Check voltage and wave forms on grids and plates.
(4) T108 open.
(5) Vertical deflection coils open.

NO HORIZONTAL DEFLECTION:

(1) P401 disconnected or cable defective.
(2) Interlock cable disconnected or defective.
(3) P302 disconnected or cable defective.
(4) V302, V304, V305, V306, V310 or V311 inoperative-check voltage and wave forms on grids and plate.
(5) T302 open.
(6) Horizontal deflection coil open.

SIGNAL ON SCREEN BUT NO SYNC:

(1) Picture control advanced too far.
(2) V107-B, V114, V115, or Vll6 inoperative. Check voltage and waveforms at their grids and plates.
(3) C171 defective.

SIGNAL ON SCREEN BUT NO VERTICAL SYNC:

(1) Check V117 and associated circuit-Cl55, T107, etc.
(2) Integrating network inoperative-check $\mathrm{Cl} 43, \mathrm{Cl} 48, \mathrm{Cl} 49$, C150, R140, R142, R143 and R144.

SIGNAL ON SCREEN BUT NO HORIZONTAL SYNC:

(1) T301 misadjusted-readjust as instructed on page 8.
(2) V301 or V303 inoperative-check socket voltages and waveforms.
(3) T301 delective.
(4) C301, C303. C304, C306 or R306 defective.
(5) If horizontal speed is completely off and cannot be adjusted check C302, C304, C305, C308, C313, C145, R304. R309 and R141.

PICTURE STABLE BUT POOR RESOLUTION

(1) Make sure that the focus control operates on both sides of proper focus.
(2) Optical barrel adjustments misadjusted.
(3) V105, V112 or V113 defẹctive.
(4) Peaking coils defective-check for specified resistance.
(5) Cl57, C164, Cl68 or Cl 71 defective.
(6) R-F and I-F circuits misaligned.

PICTURE SMEAR:

(1) Video amplifier overloaded by excessive input-reduce picture control setting.
(2) Close switch S101.
(3) Insufficient bias on V112 and V1l3 resulting in grid current on video signal. Check bias and possible grid current.
(4) Defective coupling condenser or grid load resistor-check Cl57, C164, Cl68, Cl73-B, R160, R177, R185, R189, etc.
(5) This trouble can originate at the transmitter-check on another station.

PICTURE JITTER:

(1) Picture control operated at excessive level.
(2) If regular sections at the left picture are displaced change V305 and V306.
(3) Vertical instability may be due to loose connections or noise.
(4) Horizontal instability may be due to unstable transmitted sync. Connect sync link to terminal 1 and 2.
(5) C304, R306 or V303 defective.

DARK VERTICAL LINE ON LEFT OF PICTURE:

(1) Reduce horizontal drive and readjust width and horizontal linearity.
(2) Replace V305 and V306.

LIGHT VERTICAL LINE ON LEFT OF PICTURE:

(1) C334 defective.
(2) V310 or V311 defective

CRITICAL LEAD DRESS:

(1) Dress spaghetti-covered leads from A and B on discriminator transformer $T 301$ to pin 3 and 5 on V301 lube socket approximately $3 / 10$ " above chassis.
(2) Dress video capacitors C157, C164 and C168 up and away from chassis.
(3) Dress video peaking coils L108, L109, L110, L111, L112, L113 and L114 up and away from chassis.
(4) Contact between the r-f oscillator frequency adjustment screws and the oscillator coils or channel switch eyelets must be avoided.
(5) Dress T302 winding leads as shown in Figure 34.

RADIO CIRCUIT DESCRIPTION

The radio receiver in the 648PTK is comprised of an eight-tube AM-FM tuner unit and a four-tube audio amplifier and power supply.
The tuner unit employs an r-f amplifier on all bands. One $455 \mathrm{kc} . \mathrm{i}-\mathrm{f}$ stage and a conventional diode detector are em. ployed on A.M. On the FM band, three 10.7 mc . i-f stages and a ratio detector are employed.
When the radio function switch is in the phono position, the second FM i-f amplifier is used as a phono preamplifier. The .002 mf . capacitor on the screen of the 6AU6 bypasses the screen for i-f but not for audio. Therefore, for audio the 6AU6 screen has approximately the same characteristics as the plate of a triode. The audio output from the screen is fed to the volume control and into the radio audio system. The phono preamplifier permits the use of a low output-voltage crystal-pickup in the record player attachment.
In order to make the maximum use of space and components V4 is used as an i-f amplifier on AM and FM. When switch. ing between AM and FM, the i-f transiormers are switched simultaneously with the ant, r-f and osc coils.
The ratio detector, appearing in RCA post-war FM receivers, is a new device for converting a frequency modulated carrier $t 0$ an audio signal, while at the same time offering a high degree of attenuation to any incident amplitude modulation. The relative insensitivity to amplitude variations, which is an inherent characteristic of ratio detectors, enables them to be used without the usual preceding limiter stage, thus affording the use of a high gain i-f stage instead of the low-gain limiter.

Figure 34-T302 Lead Dress

PICTURE I.F RESPONSE-At times it may be desirable to observe the individual i.f stage response. This can be achieved by the following method.

Select a channel with a flat r-f response as outlined in the converter grid trap adjustment section of the alignment procedure.

Shunt all i. 1 transformers and coils with a 330 ohm carbon resistor except the one whose response is to be observed.

Connect the oscilloscope across the picture detector load resistor and observe the overall response. The response obtained will be essentially that of the unshunted stage. The effects of the various traps are also visible on the stage response.

Figures 35 through 39 show the response of the various stages obtained in the above manner. The curves shown are typical although some variation between receivers can be expected. Relative stage gain is not shown.

Figure 35-T2 Response

Figure 36-T104 Response

Figure 37-T105 Response

Figure 38-L104 Response

Figure 39-L106 Response

PH2IOC

PW2IIC

Figure 40-Normal Picture

Figure 41-Vertical Hold Control Misadjusted
\rightarrow

Figure 42-Picture Control Misadjusted
\leftarrow

Figure 43-Brightness Control Misadjusted

\rightarrow

Figure 44-Weak Signal

Figure 45-Interference from Another Signal
\longrightarrow

Figure 46-Sound in the Picture

Figure 47-Interference, Diathermy, etc.
\rightarrow

TEST PATTERN PHOTOGRAPHS

PH 220

Figure $50-$ Optical Barrel Horizontal Centering Adjustment

Misadjusted
$4-$

Figure 51-Optical Barrel Lateral Centering Adjustment

Misadjusted
\longrightarrow

PW2120

PH213C
Figure 52-Electrical Horizontal Centering Control Misadjusted

Figure 53-Electrical Vertical Centering Control Misadjusted
\longrightarrow

Figure 54-Vertical Linearity Control Misadjusted
$4-$

Figure 55—Height Control Misadjusted
\longrightarrow

PH215C

Figure S6—Horizontal Linearity Contral Misadjusted (Picture Cramped in Middle)

4

Figure 57-Width Control Misadjusted
\rightarrow

Figure 58-Horizontal Drive Control Misadjusted
\leftarrow -

Figure 59-Hum in Video and Sync (Picture Off Center to Show Edge of Raster)
\rightarrow

Figure 60-Reflections

Figure 61-Transients (Check position of S101)

$$
\longrightarrow
$$

Figure 62-Horizontal Sync Discriminator Transformer Frequency Adjustment Misadjusted

Figure 63-Horizontal Sync Discriminator Transformer Phase Adjustment Misadjusted

\rightarrow

CVI6B

CV160

CV16F

CV17B

CV17D

CVITF

WAVEFORM PHOTOGRAPHS

Video Signal Input to lst Video Amplifier (Junction of L108 and C157)

Figtore 64-Vertical (Oscilloscope
Synced to $1 / 2$ of Vertical Sweep Rate) (1.8 Volis PP)

$$
\leftarrow
$$

Figure 65-Horizontal (Oscilloscope Synced to $1 / 2$ of Horizontal Sweep Rate) (1.8 Volts PP) \rightarrow

Output of lst Video Amplifier (Junc. tion of L110 and C164)

Pigure 66-Vertical (18 Volts PP) *

Figure 67-Horizontal (18 Volts PP) \longrightarrow
noput to Kinescope Grid (S101 open) Figure 68-Vertical (60 Volts PP) \leftarrow

Figure 69-Horizontal (60 Volts PP) \rightarrow

Input to Kinescope Grid (S101 closed)

Figure 70 -Vertical (60 Volls PP)

Figure 71 -Horizontal (60 Volts PP) $\xrightarrow{*}$

Cathode of D.C Restorer (Pin 5 of V107-B) (6AL5)

Figure 72-Vertical (58 Volts PP) 4-

Figure 73-Horizontal (58 Volts PP)

$$
\longrightarrow
$$

Plate of D-C Restorer (Pin 2 of V107-B) (6AL5)

Figure 74-Vertical (14 Volts PP)

Figure 75-Horizontal (14 Volts PP)

CVIGA

CVI6C

CVIGE

CVI7A

CVI7C

CVITE

CV18B

CV18D

CVI8F

CV19B

CV19D

CVI9E

Plate of 1st Sync. Amplifier (Pin 8 of V114) (6SK7)

Figure 76 -Vertical (70 Volts $P P$) \leftarrow

Figure 77-Horizontal (52 Volts PP) \longrightarrow

Grid of 2 nd Sync. Amplifier (Pin 4 of V115) (6SH7)

Figure 78-Vertical (42 Volts PP)

Figure 79-Horizontal (42 Volts PP) $\xrightarrow{\longrightarrow}$

Plate of 2nd Sync. Amplifier (Pin 8 of V115) (6SH7)

Figure 80-Vertical (110 Voles PP) \leftarrow

Figure 81-Horizontal (110 Volts PP) \longrightarrow

Plate of 3rd Sync. Amplifier (Pin 3 of V116) (6J5)

Figure 82—Vertical (36 Volts PP) $4-$

Figure 83-Horizontal (30 Volts PP) \longrightarrow

Input to Integrating Network (Junction Of C143, R140 and R142)

Figure 84-Vertical (48 Volts PP)
$4-$ 븐
Figure 85-Horizontal (30 Volts PP) \longrightarrow

Figure $86-$ Output of Integrating Network (Junction of R144, C150 and Yellow Lead of T107). Vertical (41 Volts PP)

+ -

Figure 87-Grid of Vertical Osc. (440 Volis PP) (Pin S of V117) (6J5) \longrightarrow

CVIBA

CV18C

CVI8E

CVI9A

CVIPC

CVI9F

CV2OA

CV20C

CV20E

CV210

CV2IF

Figure 88-Plate of Vertical Osc. (160 Volts PP) (Pin 3 of V117)
(6J5)
-
Pigure 89-Input Coupling of Ver. tical Output (130 Volts PP) (Junction of C159, C160 and Read Lead of T107)
\rightarrow

Figure 90-Cathode of Vertical Output (1.3 Voles PP) (Pin 8 of V118) (6 K 6 GT)

4- 혈
Figure 91-Plate of Vertical Output (800 Volts PP) (Pin 3 of V118) ($6 K 6 G T$)
\longrightarrow
gure 92-Input to Vertical Deflection Coils (100 Volts PP) (Pins 2 and 3 on J102)

4 ㄴ
Figure 93-Vertical Boost of 1st Sync. Amplifier (16 Volts PP) (Junction of R121, R122 and C122) \rightarrow

Terminal "E" of Sync. Discriminator Transformer (T301)

Figure 94 -Vertical (21 Volts PP)

Figure 95-Horizontal (18 Volts PP)
\longrightarrow

Junction of R301 and R303 (Cathode Resistors of Horizontal Sync.
Discriminator)

Figure 96-Vertical (7 Volts PP)

Figure 97-Horizontal (4.7 Valts PP)

$$
\rightarrow m
$$

Cathode of Hor. Sync. Discriminator (Pin 4 of V301) (6H6)

Figure 98-Vertical (1.7 Volts PP)

Figure 99-Horizontal (1.7 Volts PP)

CV20B

CV200

CV21B

CV2IC

CV2IE

CV22A

CV23A

CV22E

CV23B

CV23E

CV24B

Plate of Hor. Sync. Discr. (Pin S of V301) (6H6)

Figure 100-Vertical (22 Volts PP) $\leftrightarrow=$

Figure 101-Horizontal (18 Voles PP) \rightarrow

Plate of Hor. Sync. Discr. (Pin 3 of V301) (6H6)

Figure 102—Vertical (22 Volts PP)
\leftarrow
Figure 103-Horizontal(16 Volts PP) \longrightarrow

Figure 104-Terminal " A " of Sync. Discriminator Transformer (T301) Horizontal (100 Volts PP)
+

Figure 105—Plate of Horizontal Oscillator (260 Volts PP) (Pin 3 of V302) (6K6GT)
\rightarrow

Pigure 106-Input of Hor. Discharge (90 Volts PP) (Junction of C312, C314 and R314)
\leftarrow
Figure 107-Plate of Hor. Discharge (100 Volts PP) (Pin 3 of V304) (615)
\rightarrow

Pigure $108-H$ Horizontal Feedback (90 Volts PP) (Arm of Potentiometer R340) \leftarrow

Figure 109-Plate of Horizontal Output (Approx. 6000 Volts PP) (Meas. ured Through a Capacity Voliage Divider Connected from Top Cap of V306 to Ground)
\longrightarrow

CV23F

CV24A

Figure 111 -Input to Horizontal De Rection Coils (1500 Volts PP) (Pin 2 of V310) (6AS7G)

648PTK, 648PV

TELEVISION VOLTAGE CHART

Measurements made with receiver operating on 117 volts 60 cycles a-c and with no signal input. Voltages shown are read with Jr. "VoltOhmyst" between indicated terminal and chassis ground. Symbol $<$ means "less than."

R-F, I-F CHASSIS, RCS24-1

Tube No.	$\begin{aligned} & \text { Tube } \\ & \text { Type } \end{aligned}$	Function	Operating Condition -*	E. Plate		E. Screen		E. Cathode		E. Grid		$\begin{aligned} & \text { I } \\ & \text { Plate } \\ & \text { (ma.) } \end{aligned}$	$\underset{\substack{\text { I } \\ \text { Screen } \\ \text { (ma.) }}}{ }$	Notes on Measurements
				Pin No.	Volts	Pin No.	Volts	Pin No.	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts			
V1	6J6	R-F Amplifier	Pictr. Min.	$1 \& 2$	133	-	-	7	0	5\%6	-34	<.1*	-	*Per Plate
			Pictr. Max.	1\&2	58	-	-	7	0	5\&6	-. 25	6.0^{*}	-	* Per Plato
V2	6 J 6	Converter	Pictr. Min.	$1 \% 2$	128	-	-	7	0	5\&6	$\begin{gathered} -3 \text { to } \\ -6 . \end{gathered}$	$.5 \text { to }$	-	*Per Plate
			Pictr. Max.	1 \& 2	93	-	-	7	0	5 \& 6	$\begin{array}{r} -2 \text { to } \\ -5 . \end{array}$	$.2 \text { to }$	-	*Per Plate
V3	6 J 6	R-F Oscillator	Pictr. Min.	1\%2	110	-	-	7	. 3	5\%6	$\begin{gathered} -4.5 \text { to } \\ -6.5 \\ \hline \end{gathered}$	2.5*	-	*Per Plate
			Pictr. Max.	1\&2	80	-	-	7	. 2	5\&6	$\begin{aligned} & -3.5 \text { to } \\ & -5 \end{aligned}$	1.7*	-	*Per Plate
V101	6BA6	1st Sound I-F Amplifier	Pictr. Min.	5	125	6	125	7	2.0	1	0	15.2	6.2	
			Pictr. Max.	5	107	6	107	7	1.65	1	0	13.	5.1	
V102	6BA6	2d Sound I-F Amplifier	Pictr. Min.	5	125	6	125	7	2.0	1	0	15.4	6.2	
			Pictr. Max.	5	107	6	107	7	1.65	1	0	13.2	5.0	
V103	6AU6	3d Sound I-F Amplifier	Pictr. Min.	5	47	6	47	7	0	1	-. 23	2.8	2.8	
			Pictr. Max.	5	41	6	41	7	0	1	-. 23	2.9	1.8	
V104	6AL5	Sound Discrim.	Pictr. Min.	2\&7	-. 35	-	-	4\&5	-	-	-	-	-	
			Pictr. Max.	2 \& 7	-. 45	-	-	4\% 5	-	-	-	-	-	
$\begin{aligned} & \mathrm{V} 105 \\ & \mathrm{~A} \\ & \hline \end{aligned}$	6 6L5	AGC Detector	Pictr. Min.	2	-110	-	-	5	-110	-	-	-	-	
			Pictr. Max.	2	-110	-	-	5	-110	-	-	-	-	
$\begin{gathered} \mathrm{V} 105 \\ \mathrm{~B} \end{gathered}$	6AL5	Picture 2d Det.	Pictr. Min.	7	. 15	-	-	1	0	-	-	-	-	
V106	6AT6	AGC Amplifier	Pictr. Min.	7	-33	-	-	2	-110	1	-108	-	-	
			Pictr. Max.	7	0	-	-	2	-100	1	-105	-	-	
$\underset{A}{ }$	6AL5	AGC Diode	Pictr. Min.	7	-8.0	-	-	1	-8.0	-	-	-	-	
			Pictr. Max.	7	-3.2	-	-	1	-0.9	-	-	-	-	
$\begin{gathered} \mathrm{V} 107 \\ \mathrm{~B} \end{gathered}$	6AL5	DC Restorer	Briphtness Min.	2	-110	-	-	5	-97	-	-	-	-	
			Brightness Max.	2	-1	-	-	5	0	-	-	-	-	
V108	6AG5	1st Pix. I-F Amplifier	Pictr. Min.	5	143	6	143	2\&7	0	1	-8.1	0	0	
			Pictr. Max.	5	103	6	103	2 \& 7	. 2	1	-1.0	4.5	1.1	
V109	6AG5	2d Pix. I-F Amplifier	Pictr. Min.	5	145	6	145	2\& 7	0	1	-8.1	0	0	
			Pictr. Max.	5	117	6	117	2\&7	. 2	1	-1.0	3.9	1.3	
V110	6AG5	3d Pix. I-F Amplifier	Pictr. Min.	5	147	6	147	2\& 7	0	1	-8.1	0	0	
			Pictr. Max.	5	100	6	111	2\&7	. 21	1	-1.0	4.5	1.3	
V111	6AG5	4th Pix. I-F Amplifier	Pictr. Min.	5	98	6	138	2\& 7	1.4	1	0	7.3	2.3	
			Pictr. Max.	5	82	6	115	2\&7	1.15	1	0	6.1	1.9	
V112	6AU6	1st Video Amplifier	Pictr. Min.	5	188	6	150	7	0	1	-2.25	6.7	2.6	
			Pictr. Max.	5	205	6	130	7	0	1	-2.35	4.3	1.6	
V113	$\begin{gathered} \text { 6V6- } \\ \text { GT } \end{gathered}$	2d Video Amplifier	Pictr. Min.	3	180	4	255	8	8.9	5	-3.9	31.5	9.0	
			Pictr. Max.	3	175	4	249	8	8.5	5	-3.9	30.0	8.5	

R-F. I-F CHASSIS, KCS24-1 (Continued)

Tube Tube No. Type		Function	Operating Condition **	E. Plate		E. Screen		E. Cathode		E. Grid		I Plate (ma.)	Screen (ma.)	Notes on Measurements	
		Pin No.		Volts	Pin No.	Volts	Pin No.	Volts	Pin No.	Volts					
V114	6SK7		1st Sync. Amplifier	Pictr. Min.	8	165	6	113	5	0	4	-4.5	8.5	1.2	
			Pictr. Max.	8	180	6	99	5	0	4	-4.7	4.3	1.1		
V115	6SH7	2d Sync. Amplifier	Pictr. Min.	8	150	6	150	5	0	4	-5.3	0	0		
			Pictr. Max.	8	130	6	130	5	0	4	-5.6*	0	0	*Depends on noise	
V116	6J5	3d Sync. Amplifier	Pictr. Min.	3	82	-	-	8	0	5	-. 4	8.5	-		
			Pictr. Max.	3	73	-	-	8	0	5	-. * *	6.8	-	: Depends on noise	
V117	6 J 5	Vertical Oscillator	Pictr. Min.	3	40*	-	-	8	-110	5	-144	. 17	-	*Height, linearity and hold affect readings 2 to 1	
V118	$\begin{gathered} \text { 6K6- } \\ \text { GT } \end{gathered}$	Vertical Output	Pictr. Min.	3	215	4	215*	8	-81	5	-97	16.3	*	*Screen connected to plate	

HORIZONTAL DEFLECTION CHASSIS. KRS20-1

V301	6H6	Horizontal Sync. Discr.	Pictr. Min.	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & -5.0 \\ & -5.0 \end{aligned}$	-	-	$\begin{aligned} & 4 \\ & 8 \end{aligned}$	$\begin{aligned} & -3.2 \\ & -2.2 \end{aligned}$	-	-			
V 302	$\begin{gathered} \text { 6K6- } \\ \text { GT } \end{gathered}$	Horizontal Oscillator	Hold Max. Resistance	3	240	4	220	8	. 30	5	-27.5	23.3	6.12	
			Hold Min. Resistance	3	230	4	192	8	. 32	5	-23.0	24.8	6.87	
V303	6AC7	Horizontal Osc. Control	Pictr. Min.	8	246	6	127	5	0	4	-3	2.8	. 75	
V304	6J5	Horizontal Discharge	Pictr. Min.	3	78	-	-	8	0	5	-38	. 9	-	
V305	$\begin{gathered} \text { 6BG6 } \\ -\mathrm{G} \\ \hline \end{gathered}$	Horizontal Output	Pictr. Min.	Cap	Do no Meas.*	8	280	3	14.0	5	-8	78	9.6	*6000 volt pulse present
V306	$\begin{gathered} \text { 6BG6 } \\ -G \end{gathered}$	Horizontal Output	Pictr. Min.	Cap	Do not Meas.	8	280	3	14.0	5	-8	78	9.6	*6000 volt pulse present
V307	8016	H. V. Rectifier	Brightness Min.	Cap	-	-	-	287	10,500	-	-	-	9.6	*10,500 volt pulse present
			Brightness Max.	Cap	*	-	-	2 \& 7	10,000	-	-	-	-	*10,500 volt pulse present
V308	8016	H. V. Rectifier	Brightness Min.	Cap	10,000	-	-	2 \& 7	20,000	-	-	-	-	
			Brightness Max.	Cap	9,500	-	-	2 \& 7	19,500	-	-	-	-	
V309	8016	H. V. Rectifier	Br.ghtness Min.	Cap	19,500	-	-	2 \& 7	29,000	-	-	-	-	
			Brightness Max.	Cap	18,500	-	-	2 \& 7	28,000	-	-	-	-	
V310	$\begin{gathered} 6 \mathrm{AS} 7 \\ -\mathrm{G} \\ \hline \end{gathered}$	Damper	Pictr. Min.	$2 \& 5$	Do not	-	-	386	470	1 \& 4	290	78*	-	*Total both plates ± 1200 volt pulse
V311	5V4G	Damper	Pictr. Min.	4 \& 6	Meas. \ddagger	-	-	8	570	-	-	156*	-	present
V312	5TP4	Kinescope	Brightness Min.	Cap	29,000*	10	200	11	0	2	-98	0	-	*Measured with "VoltOhmyst"
			Brightness Max.	Cap	28,000*	10	200	11	0	2	-43	. 35	-	and high voltage multiplier probe

POWER SUPPLY CHASSIS, KRS21-1

V401	5U4G	Lo. V. Rectifier	Pictr. Min.	486	-	-	-	2\&8	493	-	-	235*	-	
V402	5U4G	Lo. V. Rectifier	Pictr. Min.	4 \& 6	-	-	-	288	493	-	-	235	-	*otal for both tubes
V403	5U4G	Lo. V. Rectifier	Pictr. Min.	4 \& 6	-	-	-	2\&8	265	-	-	172	-	

** Where separate readings are not listed for max. and min. gain settings of the picture control, the effect of the control is slight and readings are given for "Picture Min."

648PTK, 648PV

RADIO ALIGNMENT PROCEDURE

If any lead dressing is necessary, It should be done before aligning the receiver. See Critical Lead Dress on page 51.
Before aligning set, completely mesh the gang and set the dial polnter to the mechanical max. calibration point at extreme left end of dial.
When making a complete alignment follow the tabulated form below in sequence.
Li only a portion of the circuit is to be aligned select the portion required and follow with the remaining steps in the chart.
Any adjustments made on the FM 10.7 mc . I.F's make tt necessary to adjust the AM 455 kc . I.F's.

FM RATIO DETECTOR ALIGNMENT

Steps	Connect High Side of the Test Osc. to-	Tune Test Osc. to-	Turn Vol. Cont. to-	Adjust
1	Connect a 680 -ohm resistor between lugs D and E of the ratio detector transformer T7. Connect d-c probe of a "Voltohmyat" to the negative lead of capacitor C81. Connect the common lead of the meter to chassis. Set the function switch to the FM position.			
2	Driver grid, pin 1, of V6 In series with .01 mid	10.7 mc., 30% mod., 400 cycles AM	Maximum volume	Driver transformer T6 for maximum d-c voltage across C81
3	Remove meter leads and disconnect the 680 -ohm resintor from D and E on T7. Connect two 68,000 -ohm resistors (within 1% of each other) in series, across C81. Connect the common lead to the "VoltOhmyst" to the center point of the 68,000 -ohm resistors and the d-c probe to contact No. 7 on the rear of S 7 . Use the 30 -volt meter range.			
4	Same as mep 2	Same as step 2	Maximum volume	'T7 bottom core for zero d-c balance on "VoltOhmyat" * T7 top core for minimum audio output. (Output meter across voice coil)
5	Reconnect "VoltOhmyst" as in step 1, omiting the 680-ohm resintor.			
6	Repeat step 2, omitting 680 ohms.			
7	Remove all connections.			

- Near the correct core position the zero point is approached rapidly and continued adjustment causes the indicated polarity to re verse. A slow approch to the zero point is an indication of severe detuning, and the bottom core should be tumed in the opposite direction.
\cdots The zero d-c balance and the min. a-f output should occur of the same point; if such is not the case, the two cores should be adjusted until both occur with no further adjustment of either core. It may be advantageous to adjust both cores simultaneously, watching the "Voltohmyst," and an output meter connected across the voice coil for the point at which both zero d-c and min. output occur.

NOTE.-Two or more points may be found which will satisty the condition required in step 4. T7 top core should be correctly adjusted when approximately $1 / 8$ inch of threads extend above the can, therefore, it is desirable to start adjustment with top core at the max. "in" position and turn out, while adjusting the bottom core, until the first point of minimum a-f and minimum d-r, is reached.

FM I-F ALIGNMENT

Stop:	Connect the High Side of the Test Osc. to-	Connect Ground Side of the Tost Osc.	Tune the Teat Osc. to-	Radio Dial Tuned to-	Adjust
1	Connect "VoltOhmyst" d-c probe to negative lead of C81, and the meter common lead to chassis ground.				
2	Mixer grld (pln \#1) of 6BR6 (V2) in series with .01 mid (Rdjust teat osc. output for 6.10 volts developed acros: C81)	To rf tube shelf ground	$\begin{aligned} & 10.7 \text { me., } \\ & \begin{array}{l} 30 \% \\ \text { modulated } \\ 400 \text { cycles } \\ \text { AM } \end{array} \end{aligned}$	Max. cap. (Fully meshed) (Function switch in FM position	\cdots..T5, T3 and T1 top and bottom cores alternately loading pri. and sec. of each trans: with 680 ohms while the opposite side of the same trans. is belng adjusted. Adjust all for max. voltage across C81

... This method, which is known as alternate loading, involves the use of a 680 -ohm resistor to load the plate winding while the grid winding of the same transiormer is being peaked. Then the grid winding is loaded with 680 -ohm resistor while the plate winding is being peaked. When windings are loaded, it is necessary to lncrease the 10.7 mc . input, since gain will decrease and voltage across C81 will be less.

AM I-F, OSC, R-F AND ANT ALIGNMENT

Test-Oscillator.-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avold a-v-c action.

Output Meter.-Connect the meter across the speaker voice coil, and turn the receiver volume control to maximum.

Stop:	Connect the High Side of the Test Osc. to-	Tune Test Osc. to-	Function Switch	Iurn Radio Dial to-	Adjust the following
1	Pin \#l of 6BA6 (V2) In series with .01 mfd	455 kc.	'C' Band	High Freq, ond of Dial	†Top and bottom cores of T2 and T4. (For max. voltage across voice coil.)
2	Ant. term \#4 through dummy ant. of 25 mmfs in cerien with 150 ohms	15.5 mc .	"C" Band	15.5 mc .	\dagger †-sc.-C37: R.F-C15; Ant.-C8.
3		9.5 mc .	"C' Band	9.5 mc .	$\dagger \dagger \dagger$ Osc.-L17: R.F-L12: Ant.-L5.
4	Repeat steps 2 and 3 for accurate allgrment.				
5	Ant. term \#4 through dummy ant. of 200 monfs.	1400 kc.	" ${ }^{\text {P }}$ Band	1400 kc .	Osc.-C36: R-F-C84; Ant.-C90. (For max. voltage across voice coll.)
6		600 kc.	" $\mathbf{R}^{\prime \prime}$ Band	600 kc.	Osc.-L18: R-F-L13; Ant.-L21. (For max. voltage acros: voice coll.)
7	Hepeat ateps 5 and 6 for maxdmum output.				

RADIO ALIGNMENT PROCEDURE
648PTK, 648PV

AM I-F, OSC, R-F AND ANT ALIGNMENT (Continued)

flt is necessary to alternately load the primary and secondary of each $455-\mathrm{kc}$. i-f transformer with 10.000 ohms while the opposite side of the same transformer is being adjusted.
$\dagger \dagger$ To guard against the possiLility of alignment of L17 and C37 to image frequencies, tune the test oscillator to 16.41 mc. (image frequency). By increasing the test oscillator output, a signal should be heard.
$\dagger \dagger \dagger$ Tune the test osclllator to 10.41 mc . (image frequency). By increasing the test oscillator output, a signal should be heard. (If these image frequencies cannot be heard, the set is incorrectly aligned, therefore repeat steps 2 and 3.)

FM OSC, R-F AND ANT ALIGNMENT

Steps	Connect High Side of the Test Osc. to-	Connect Ground Side of the Test Osc.	Tune Test Osc. to-	Radio Dial Tuned to-	Adjust
1	Ant. term. \#4 in series with 120 -ohm resistor	Ant. term. \#5 in series with 120 ohms	106 mc .	106 mc .	OSC, C20 lor max, voltage across C81.
2			88 mc .	88 mc .	${ }^{-}$OSC, L9 for max. voltage across C81.
3	Repeat steps 1 and 2 for accurate alignment.				
4	Remove or turn Test Osclllator off.			106 mc .	- R-F, C13 for max. nolse voltage across C81.
5				90 me.	-R.F. Lll for max. noise voltage across C81.
6	Repeat steps 4 and 5 for maximum output.				
7	Ant. term. \#4 in series with 120 -ohm resistor	Ant. term. \#5 in series with 120 ohms	106 mc .	106 mc .	Ant. C5 for max. voliage across C81.
8			90 mc.	90 mc.	Ant. L3 for max. voltage across C81.
9	Repeat steps 7 and 8 for maximum output.				

- Two points may be found to fulfill the requirements. Use the one with the longest threaded end extending out of the transformer. - Two points can be found having the greatest noise voltage developed. Use the one with the greater capacity (tighter adjustment).

Pigure 116-Chassis, Top View, Showing Adjustments

Figure 117-Chassis, Bottom View. Showing Adjustments

Figure 118- Dial Scale Drawing.

Figure 120-Radio and Audio Amplifier Schematic Diagram 648PV

RADIO VOLTAGE CHART
All voltages were measured with respect to ground, using a "VoltOhmyst."

Tube	Type		Pin \#	Tel. or Phono	B.C.	S.W.	F.M.
V1	6BA6	Plate	5	260	225	220	235
		SCG	6	95	110	90	85
V2	6BA6	Plate	5	260	255	240	230
		SCG	6	90	100	70	70
		Cathode	7	6	6.5	1.8	1.3
V3	6BE6	Plate	5	0	160	155	140
		Grids 2-3.4	6.7	0	155	160	140
		Grid 1	1	-	$(1600 \mathrm{KC})$	$\begin{aligned} & -10.5 \\ & (9.5 \mathrm{MC}) \end{aligned}$	$\begin{gathered} -6.6 \\ (108 \mathrm{MC}) \end{gathered}$
		Grid 1	1	-	$\stackrel{-2.7}{(550 \mathrm{KC})}$	$\begin{aligned} & -15.5 \\ & (16.2 \mathrm{MC}) \end{aligned}$	$\left(88^{-9} \mathrm{MC}\right)$
V4	6BA6	Plate	5	245	250	230	220
		SCG	6	110	120	105	95
		Cathode	7	1.4	1.2	1.4	1.5
V5	6AU6	Plate	5	255	245	24 C	230
		SCG	6	145	140	140	140
V6	6AU6	Plate	5	0	0	0	200
		SCG	6	0	0	0	110
V7	6 AL5	-	-	-	-	-	-
V8	6AT6	Plate	7	150	150	150	150
V101	5U4G	Fil.	8	380	-	-	-
V102	6 J 5	Plate	3	230	-	-	-
		Cathode	8	36	-	-	-
$\begin{aligned} & \text { V103 } \\ & \text { V104 } \end{aligned}$	6F6G	Plate	3	375	-	-	-
		SCG	1	270	-	-	-
		Grid	5	-25	-	-	-
	CATHODE CURRENTS WITH FUNCTION SWITCH IN FM POSITION						
V1	R-F Amp.		4 ma.	V	Ratio Del.		-
V_{2}	Mixer		4.7 ma .		Det.Avc.-AF		. 5 ma .
V3	Osc.		5.9 ma .		Power Amp. RS123A		
V4	First I-F		2.4 ma.	V101	Rectifier		140 ma .
V5	2nd I-F-Phono: Amp.		5.6 ma .	V102	Phase Inverter		2.15 ma .
V6	Driver FM		3.7 ma .	V103. V104	Power Output		27 ma . each

- Listed voltages are correct for Model 648PTK. In Model 648PV; there is no plate voltage on V5 except in the FM position, the screen grid voltage on this tube is approximately 30 volts lower in TV, PH, BC and SW positions.

Figure 121-Audio Amplifier Wiring Diagram

CRITICAL LEAD DRESS

(Any lead dress should be made before alignment.)

1. Lead from pin 5, tube V2, to terminal " C " on trans. former Tl should be dressed close to chassis.
2. Leads to terminals "C" and "D" on transformer T2 should be dressed close together.
3. The following capacitors must be dressed close to the chassis with leads kept as short as possible: C32, C33. C66. C69. C79. and C80.
4. All FM coil connections must be soldered in exact place as the original. (One-sixteenth inch difference in length may be excessive.)
5. Lead from pin 7. tube VB, must be dressed away from lead to terminal "D" of transformer T7.
6. All r-f and i-f wiring in the receiver is critical as to length and placement. It is therefore important when servicing, that extreme care should be taken so as not to disturb more of the wiring than absolutely necessary.

NOTE: Keep funing capacitor rotor grounding brushes clean and making good contact.

Figure 123-Removal of Dial Lamos

Figure 125-Speaker Connections

Figure 122-Dial and Drive Cord Assembly

Figure 124-Tuning Shaft and Clutch Assembly

Figure 126-Top View of RS123A

PUSH BUTTON ADJUSTMENT

Figure 127-Push Button Adjustments

The push buttons should be adjusted for eight favorite stations after the receiver is operating, and has had a 5 or 10 minute warm-up period.

Any standard broadcast or frequency modulation stations may be chosen. The preferable arrangement in to adjust for stations in the order of frequency, from low to high. Proceed as tollows:

1. Remove the first push button (just pull) and note the adjustment screw beneath.
2. Loosen the adjustment screw.
3. Manually tune very accurately for the desired station.
4. Push the push button rod in till it is against stop.
5. Tighten adjustment screw.
6. Make adjustment for the other buttons, setting up and checking each for the chosen station in a similar manner.
7. Recheck all push buttons and reset if found necessary.

RADIO SIMPLIFIED SCHEMATICS

Figure 128-Simplified Schematic-Shown in Television Position

Figure 129-Simplified Schematic-Shown in Phono Position

Figure 130-Simplified Schematic-Shou'n in "A" Band Position

Figure 131-Simplified Schematic-Shou'n in "C" Band Position

Figure 132-Simplified Schematic-Shou'n in FM Position

Figure 133-Television R-F Unit Wiring Diagram

Figure 135-Pouer Supply Wiring Diagram

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	TELEVISION R.F UNIT-KRK2A	71473	
71504	Capacitor-Ceramic, 0.68 mmf . (Cl3)		coils or r-f amplifier plate section front segment-
71500	Capacitor-Ceramic, 1.5 mml . (C3, C4)		less coils (Part of S2, S3)
71502	Capacitor-Ceramic. 2.2 mmf ((Cl0)	4	Segment-Converter grid section rear segment-less coils or r-f amplifier plate section rear segment-
71520	Capacitor-Ceramic, 4.7 mmf . (C6, C7, C12)		coils or r-f amplifier plate section rear segmentless coils (Part of S2, S3)
45466 33101	Capacitor-Ceramic, 10 mml (Cl 9) Capacitor-Ceramic, 22 mml . (Cl4)	71467	Segment-Oscillator section front segment-less
71540	Capacitor-Ceramic, 270 mml . (Cl. C2)		
39638 71501	Capacitor-Mica, 270 mmf . (C18)	71468	Segment--Oscillator section rear seqment-less coils (Part of S4)
71501	Capacitor-Ceramic. 1500 mmf . (CS, C8, C9, Cll. Cl7)	72951	Shield-Lead tube shield for V3
72122	Coil-Channel \#l r-f amplifier plate coil-front or rear section or channel \#l converter grid coilfront or rear section (L1, L2, L27, L28)	71494 71461 71466	Socket-Miniature tube socket Spring-Snap spring to hold fine tuning shaft Stator-Oscillator fine tuning stator and bushing
71479	Coil-Channels \#2 and \#3 rf amplifier plate coil -front or rear section or channels \#2 and \#4 converter grid coil-front or rear section (L3, L4. L5. L6, L29, L30, L33. L34)	$\begin{aligned} & 71507 \\ & 71495 \\ & 73239 \end{aligned}$	(Part of Cl 5) Transformet-Antenna transformer (Tl) Transformer-Converter transformer (T2, C16) Trap-Antenna Trap (L81, L82. C21. C22)
71480	Coil-Channel \#4 r-f amplifier plate coil-front or rear section (L7, L8)		TELEVISION RF, I-F CHASSIS-KC
71481	Coil-Channel \#5 r-f amplifier plate coil-front or rear section or channel \#5 converter grid coilfront or rear section (L9, L10, L35, L36)	$\begin{aligned} & 71894 \\ & 72620 \end{aligned}$ $\begin{aligned} & 72620 \\ & 72615 \end{aligned}$	Bearing-R-F unit shaft bearing Cable-Television antenna cable
71492	Coil-Channel \#6 oscillator, converter grid or r-f amplifier plate coil-front or rear sections (L11. L12. L37, L38, L63, L64)	38868 71771 73090	Capacitor-Ceramic, 33 mmf . (C147) Capacitor-Ceramic. 51 mmf . (C124) Capacitor-Mica, 82 mmf .1000 volts (Cl09)
71491	Coil-Channel \#13 converter grid or r-f amplifier plate coil-rear section (L25, L51)	71514	Capacitor-Ceramic, 82 mmf . (C137) Capacitor-Mica, 270 mmi .1000 volts (Cl19. Cl26.
71490	Coil-Channel \#13 converter grid or r-f amplifier plate coil-front section (L26, L52)	39648	Cl31. Cl40. Cl46) Capacitor-Mica, 680 mmf . (C166)
72597	Coll-Channel \#3 converter grid coil-front or rear section (L31, L32)	$\begin{aligned} & 39652 \\ & 72616 \end{aligned}$	Capacitor-Mica, 1000 mmf . (Cl45) Capacitor-Mica, 1000 mm . (Cl56)
71469	Coil-Channel \#l oscillator coil-front or rear section (L53. L54) Coil-Channel \#5 oscillator coil-front section or channel \#2 oscillator coil-rear section (L55, L62)	71501	Capacitor Ceramic, 1500 mmf . (Cl01. C102. Cl04. Cl05. C106. Cl12. Cl13. Cl14. Cl16. Cl17. Cl18. Cl27. Cl28, Cl29. Cl32. Cl38. C141. Cl42. Cl52. C163. C170)
71470	Coil-Channels \#2. \#3 and \#4 oscillator coilfront sections (L56, L58, L60)	$\begin{aligned} & 72524 \\ & 70600 \end{aligned}$	Capacitor-Mica, 4700 mmf . (Cl55) Capacitor-Tubular, .001 mid., 400 volts (Cl53)
72552	Coil-Channel \#3 oscillator coil-rear section (L57)	7060	Capacitor-Tubular, $002 \mathrm{mfd} ., 400$ volts (Cl48)
72553	Coil-Channel \#4 oscillator coil-rear section (L59)	70606	Capacitor-Tubular, $005 \mathrm{mfd} ., 400$ volts (Cl49, C150)
71472 71489	Coil-Channel \#5 oscillator coil-rear section (L.61)	70610	Crapacitor-Tubular, $01 \mathrm{mfd} ., 400$ volte (C108, Cl43.
71489 71488	Coil-Channel \#13 oscillator coil-raar section (L77) Coil-Channel \#13 oscillator coil-front section (L78)	70615	Cl44) Capacitor-Tubular, $05 \mathrm{mfd} ., 400$ volts (Cl11, Cl25,
71505	Coil-Heater choke coil (L79)	70615	C133. Cl39. Cl57)
71506	Coil-Converter grid i-f choke coll (L80)	70636	Capacitor-Tubular, 05 mfd .600 volts (C164)
71493	Connector-Segment connector Core-Channel \#13 front and rear oncillator coil. adjustable core and stud	72996	Capacitor-Moulded paper, .05 mfd ., 600 volts (Cl68. C171)
71498	Core-Channels \#6 and \#13 front and rear converter grid coils or front and rear r-f amplifier plate coils adjustable core and stud	$\begin{aligned} & 73092 \\ & 70617 \end{aligned}$	Capacitor-Tubular, 06 mid.. 1600 volts Capacitor-Tubular, $0.1 \mathrm{mfd} ., 400$ volts (C122, Cl69. Cl75. Cl78)
71497	Core-Channel \#6 front and rear oscillator coils. adjustable core and stud	70659	Capacitor-Tubular. 0.1 mid., 1000 volts (Cl59) Capacitor-Tubular, 0.25 mid., 400 volts (Cl62, C174)
71463 71465	Detent-R-F unit detent mechanism and tiber shaft	70619	Capacitor-Tubular, 0.5 mfd ., 400 volts (Cl58, Cl61)
71465 71464 71487	Disc-Rotor disc for fine tuning control (Part of Cl 5) Drive-Fine tuning pinch washer drive	72611	Capacitor-Electrolytic. 1000 mid., 3 volta non-polarized (C167)
71462	Form-Coil . s m only for channels \#6 and \#13 coils-less winding Loop-Oscillator to converter grid coupling loop	71780	Capacitor-Electrolytic, comprising 1 section of 80 mfd., 450 volts, and 1 section of $10 \mathrm{mfd} ., 450$ volts (Cl65A, Cl65B)
	Resistor Fixed, composition. 47 uhms $\pm 20 \%$ is wall (R8) Resistor Fixed, compasition. 150 ohms $\pm 10 \%$. $1 / 2$ wall (R3, RII, R13) Resistor Fixed, composition. 1000 ohms $\pm 20 \%$. 1'2 wall (R4. R12. R14) Resistor Fixed composition. 4700 ohms $\pm 20 \%$. '\& wall (R1, R2, R7) Resistor Fixed. composition. 10.000 ohms $\pm 10 \%$. '/2 wall (R5) Resistor Fixed. composition. 100,000 ohms $\pm 20 \% \quad l_{2}$ wall (R9, R10) Resistor Fixed composition. 1 megohm $\pm 20 \%$. ' 2 wull (R6)	72612	Capacitor-Electrolytic. comprising 1 section of 40 mid., 450 volts, 1 section of 100 mfd ., 150 volts, and 1 section of 50 mfd ., 50 volts (Cl72A. C172B. Cl72C)
		72169	Capacitor-Electrolytic, comprising 1 section of 40 mfd., 450 volts, 1 section of 10 mid., 450 volts, 1 section of 35 mid., 350 volts, and 1 section of 10 mid., 350 volt (Cl73A, C173B, C173C, C173D)
		72167	Choke-Filter choke (L117)
		71505	Coil-Filament choke coll (L101, L102, L103. L105. L107)
		71426 71526	Coil-Third or fourth picture 1 -i coil (L104. L106)
		71527 72618	Coil-Choke coil (L111) Coil-Choke coil (L113)
14343	Ring-Retaining ring for drive	7179	Coil-Choke coil (L114)
71475	Screw-\#4-40 $\times{ }^{15} / 32^{\prime \prime}$ adjusting screw for colls L54. L56, L58, L60, L62	72619	Coil-Peaking coll (L112, R182) Coil-Peaking coil (L110, R168, L108, R153)
71476	Screw-\#4.40 $\times 1 / 4 "$ binder head screw for adjusting coils L66, L68, L70, L72. L74, L76	$\begin{aligned} & 71971 \\ & 71440 \\ & 72168 \end{aligned}$	Control-Brightness and picture control (R158, R173) Control-Height control (R149) Control-Vertical centering control (R180)

$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION
71811	Bracket-Idler bracket less pulleys	72984	Plate-Connecting plate for selector switch coupling
71643	Bracket-L.H. dial plate support bracket		shafts-for 648PV only.
71642	Bracket-R.H. dial plate support bracket	71644	Plate-Dial back plate only, less window, dials, sup-
72966	Bushing-threaded bushing for knob end of switch coupling shaft-for 648PV only.	71636	port, pulleys and indicator Plug-9-prong male plug for connecting to radio
71791	Cable-R-F cable		power cable (01)
71804	Capacitor-Adjustable, 1.6 .18 mmf . (C5, Cl3)	71648	Pulley-Idler pulley or indicator cord pulley
71809	Capacitor-Adjustable, $1.6-18 \mathrm{mmf}$. (C36)	71650	Pulley-Manual tuning shaft cord pulley
71803	Capacitor-Adjustable, $2.5-13 \mathrm{mmi}$. (C20)	72323	Resistor Wire wound. 3 ohms, 1/2 wall (R32)
$\begin{aligned} & 71808 \\ & 71930 \end{aligned}$	Capacitor-Adjustable, 3.35 mmf (C37. C84) Copacitor-Ceramic, 5.6 mml (C85)		Resistor Fixed, composition, 10 ohms $\pm 20 \%$.
39043	Capacitor-Ceramic, 6.8 mmf . (C25)		$1 / 2$ wall (RJ4)
71807	Capacitor-Adjustable, $10-160 \mathrm{mmf}$. (C8, C15, C90)		Resislor Fixed, composition, 100 ohms $\pm 10 \%$. 1/2 wall (R21. R22)
71924	Capacitor-Ceramic, 56 mmf . (C24) Capacitor-Ceramic, 82 mmf . (C71)		Resistor Fixed, composition. 270 ohms $\pm 10 \%$,
39396	Capacitor-Ceramic, 100 mmf . (C16, C21, C83)		2 wall (R38)
71933	Capacitor-Mica, 180 mmf . (C18)		Resstor Fixed, compnsition, 390 ohms $\pm 10 \%$.
71922	Copacitor-Ceramic, 180 mmf . (C34, C73)		$1 / 2$ wall (R\|0)
71920	Capacitor-Ceramic, 220 mmf . (C6, Cl0)		Resstor Fixed composition. 1000 ohms $\pm 20 \%$.
71919	Capacitor-Ceramic, 330 mmf (C3, C11)		$1: 2$ wall (R24, R37, R46)
71929	Capacitor-Ceramic, 1000 mmf (C 80)		Resistor Fixed, composition. 2200 ohms $\pm 20 \%$.
72117	Capacitor-Tubular, $0012 \mathrm{mfd} ., 400$ volts (C53)		1/2 wall (R12, R2S, R36)
71927	Capacitor-Tubular, $002 \mathrm{mfd} ., 400$ volts (C59)		Resistor Fixed, composition. 2200 ohms $\pm 10 \%$.
71921	Capacitor-Tubular, :003 mid., 200 volts (C9. C26, C27. C82)		$1 / 2$ wall (R9. RS2) Resislor Fixed, composilion. 4700 ohm
71926	Copacitor-Tubular, . 005 mfd .200 volts (C40, C42. C43. C66, C76, C77. C78)		1/2 wall (R4)
71553	Capacitor-Tubular, 005 mid., 400 volts (C44, C55, C58. C68. C69. C88).		Resistor Fixed, composition. 8200 ohms $\pm 10 \%$. 1/2 wall (R13)
72120	Capacitos-Tubular, $015 \mathrm{mfd} ., 200$ volts (C64, C65)		Resistor Fixed, composition. 10.000 ohms $\pm 10 \%$ I wall (R6)
71588 71923	Capacitor-Moulded paper, $01 \mathrm{mfd} ., 600$ volts (C87)		Resistor Fired composition. 15.000 ohms $\pm 20 \%$.
	C63)		' 2 wall (R30. RSI)
71925	Capacitor-Tubular, 01 mid., 400 volts (C32, C35, C54. C62. C89)		Resistor Fixed, compesition, 15.000 ohms * 10%. 1's wall (R48)
70631	Capacitor-Tubular, $.01 \mathrm{mid} . .600$ volts (C61)		Resistor Fixed, composition, 15,000 ohms $\pm 10 \%$.
71551	Capacitor-Tubular, 05 mid., 200 volts (C33, C39. C41, C79)		1 walt (R7) Resistor Fixed, composition. 18,000 ohms $\pm 10 \%$.
72121	Capacitor-Electrolytic, $5 \mathrm{mfd} . .50$ volts (C67, C81)		1/2 wall (R33)
32223	Capacitor-Electrolytic, $15 \mathrm{mfd} ., 300$ volts (C60)		Resistor Fixed, composition. 22,000 ohms $\pm 20 \%$.
71646	Clamp-Dial clamp (2 required)		$1 / 2$ wall (R3, R31. R35, R49)
71940	Coil-F.M antenna coil (L2, L3) ${ }^{\text {Coil- }{ }^{\text {c }} \text { band antenna coil (L4, L5) }}$		Resistor Fixed, composition, 22.000 ohms $\pm 10 \%$.
71942	Coil-Filament choke coil (L7, L8) Coil-F.M oscillator coil (L9)		Resistor Fixed, composition. 22.000 ohme $\pm 20 \%$.
71939	Coil-F.M oscillator coil (L9) Coil-Choke coil (L10)		1 wall (R43)
71938	Coil-F.M r-f coil (Lll)		Resistor Fixed, composition, 27,000 ohms $\pm 10 \%$.
71854	Coil-"C" band r-t coil (L12)		$1 / 2$ wall (RII. R45)
71857	Coil-"A" band r-4 coil (Ll3, L14)		Resistor - Fixed, composition. 100.000 ohms
71853	Coil-"C" band oscillator coil (L17)		$\pm 10 \%$, 1/2 wall (R\|6)
71852	Coil-"A" band oscillator coil (L18)		Resistor - Fired, composition. 100.000 ohms
72071	Coil-"A" band antenna coil (L20, L21)		$\pm 10 \%$, 1/2 wall (R16)
38405	Control-H-F tone control (R27)		Resislor - Fixed, composition. 180.000 ohms
38401	Control-L.F tone control (R26)		$\pm 10 \%$, i's wall (R17. R20)
71596	Control-Volume control (R42)		Resistor - Fized, composition. 270.000 ohms
72987	Cord-Indicator drive cord (approx. 42" overall length) NOTE: Before assembling, stretch to full length		$\pm 10 \%$. $1 / 2$ wall (R29. R40. R53) Resistor - Fixed composition. 470,000 ohms $\pm 20 \%$, i/2 wall (R\|4)
72987	Cord-Manual drive cord (approx. $30^{\prime \prime}$ overall length) NOTE: Before assembling, stretch to full length		Resistor-Fixed. composition. 1 megohm $\pm 20 \%$. 1's wall (R1 R2 R19)
71941	Coupling-F.M coupling unit (L16, C17, R5)		Resistor-Fixed, composition. 2.2 megohm $\pm 10 \%$
71652	Dial-Short wave glass dial seale Dial-Standard broadcast glass dial scale		Resistor-Fixed, composition. 2.2 megohm $\pm 10 \%$. W/2 wall (RIS, R4). R47. RS0)
71654	Dial-F-M glass dial scale		Resistor - Fixed. composition. 3.9 megohm $\pm 10 \%$.
71805	Drum-Drive drum		1/2 watt (R8)
71800	Gear-12-tooth gear fastened to range switch flexible shaft coupling		Resistor Fixed. composition. 22 megohms $\pm 20 \%$. $1 / 2$ wall (R23)
71801	Gear-18-tooth gear fastened to range switch shaft	71798	Screw-\#8-32 $\times 13 / 04^{\prime \prime}$ square head set screw for
35844	Gear-Scissor gear for tuning condenser		flexible shaft
71851	Grommet-Rubber grommet to mount socket (4 re quired)	71965 71806	Screw-Push button arm locking screw
71799	Grommet-Rubber grommet to mount cradle (6 re quired)	71806	Shaft-Coupling shaft for selector switch flexible shaft-for 648PTK only.
71647	Guide-Indicator slide guide	71641	Shaft-Flexible shaft for selector switch knob-io 648PTK only.
71832	Indicator-Station selector indicator		Shaft-Selector switch coupling shaft (switch end)-
11765	Lamp-Dial lamp, Mazda \#51	72982	Shaft-Selector switch coupling shaft (switch end) for 648PV only.
71962	Pinion-Pinion and shaft for tuning condenser	72983	Shaft-Selector switch coupling shaft (knob end)-for
71963	Plate-Bearing plate for tuning condenser pinion		648PV only.

REPLACEMENT PARTS (Continued)
648PTK, 648PV

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	XESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
71538	Spring-Channel marker escurcheon spring	71963	Markers-Call letter markers
72672	Spring-Check spring for R.H. door	70145	Mirror- 45° nilirror
14270	Spring-Retaining spring for television channel se-	73336	Nut-Aluminum nut to tasten ar.sde cable
	lector knob \#71534 or television vertical hold or picture control knob \#71535	70150	Nut-Locknut for optical barrel elevating screw (3 required)
4982	Spring-Retaining spring for television fine tuning knob \#71533	72765	Nut-Speed nut to lasten victrola indicator screen
30330	Spring-Retaining spring for television horizontal hold or brightness control knob \#71536	70146	(2 required) Pin--Mounting pin (2 requited) for front end of
71867	Spring-Retaining spring for radio push button		television chassis
30900	Spring-Retaining spring for radio control knobs \#71821 and \#71883	$\begin{aligned} & 72764 \\ & 71879 \end{aligned}$	Plate-Backing plates (1 set) for pull handle Plate-Backing plate lor victrcla indicator screen
71880	Strip-Backing strip for call letter marker plate	71881	Plat--Call letter marker plate
71875	Washer-Spring-washer for fastening rubber spacer cushioning on radio chassis side	73218	Plate-Plate complete with bullet catch and bracket with pin for cabinet hood-L.H
71882	Window-Window for station call letter markers	73217	Plate-Plate complete with bullet catch
72196	Yoke-Deflection yoke complete with cables (L115. L116, L303. L304. C334, R184, R186, P101, P302)	$\begin{array}{r} 31048 \\ 4573 \end{array}$	bracket with pin for cabinet hood-R.H Plug-Pin plug lor audio cable (2 required) Plug-2 contact female plug on inter-connecting cable-between radio and television power supply
	miscellaneous	30863	Pluq-2 contact female plug on interconnecting
73481 73418	Back-Cabinet back for walnut instruments Back--Cabinet back for mahogany instr	71967	cable- for record changer Pluq-9 contact feniale plug on interconnecting
73731	Boatd-Cabinet antenna terminal instrume		cable-between radio and radio
71888	Botlom-Bottom cover (pan) lor	14793	Plug-2 prong maie plug for deflection yoke
71597	Bracket-Pilot lamp bracket	$14 ? 8$	Plug-3 prong male plug for daflection yoke
70148	Bracket-45 degre mirror mounting bracket complete with felt pad (3 required)	$\begin{aligned} & 73730 \\ & 35383 \end{aligned}$	Plug-3 prong male dlug for antenna cable Flug-8 prong male plug on cable from bleeder
70151	Bushing Anode cable bushing		fesistor box to ret i-f television chassis
71874	Bushing- Bushing and washer for large knobs (4 required)	71968	Plug-9 prong male plug on interconnecting cable -between radio and radio power
72899	Button-Plug button for rollout assembly sides (2 required)	73732	Pull-Door pull for television and radio-phone compartments
71884	Bution-Radio push button	73733	Pull--Door pull for speaker and record storage
72447	Cable-Shielded audio cable complete with.pin plugs-part of interconnecting cable	72170	compartments Resistor-Television, chassis bleeded resistor-
72195	Cable-Shielded audio cable complete with pin plugs		wire wound, comprising I section of 970 ohms, 9 watts and 1 section of 640 ohms, 10.5 watts
13103	Cap-Pilot lamp jewel	71873	Retainer - Rubter retainer to mount record changer
71	Catch-Door strike and catch		(2 required)
7393	Chain-Lid stop chain	73416	Ring-Rubber ring between deflection yoke and
7015	Clamp-Anode cable clamp set		correction lens
72667	Clip-Second anode clip	71878	Screen-Victrola indicator screen
X1813	Cloth-Grille cloth	72194	Screen-Television viewing screen
73213 72748	Cover--Duat cover Decal-Control panel	70149	Screw-Elevating screw for optional barrel (3 required)
71966	Decal-Trade mark decal (Victrola)	71538	Spring-Channel marker escutcheon spring
71593	Escutcheon-Television channel marker escutch. eon	$\begin{aligned} & 71865 \\ & 38873 \end{aligned}$	Spring-Coil spring to hold cable from mechanism Spring-Conical spring to mount record changer
71877	Escutcheon-Radio escutcheon only, less vistrola indicator screen, window and marker strips for mahogany instruments	$\begin{array}{r} 72454 \\ 4982 \\ \hline \end{array}$	Spring-Lid support spring Spring-Retaining spring for knobs
71876	Escutcheon-Radio escutcheon only. less victrola	19270 30330	Spring--Retaining spring for knobs Spring-Retaining spring for knob
	indicator screen, window and marker strips for	30900	Spring-Retaining spring tor knobs
73180	Walnut instruments	67	Spring-Retaining spring for push button
70154	Fastener-Anode cable hi-voltage spring lastener	71866	Stop-Rollou: carriage stop consisting of disc, rubber sleeve and spacer
71868	Frame-Mounting frame and bracket	73069	Stop-Drop door fall supports metal stop (2 re
73734	Gaske-Sealing gasket lor anode cable clamp Grille-Metal grille	71880	
72763	Handle - Pull handle for rollout mechanism	72999	Support-Drop door fall support-R.H.
73219	Hinge-Cabinet lid hinge (2 required)	73000	Suppor-Drop door fall support-L.H.
73735	Hinge-Knife hinge for radio-phono compartment drop door (2 requited) and for television sup	73646	Support-Lid support--R.H.
	port panel (2 required)	73645	Support-Lid support-L.H.
73932	Hinges-Top and bottom hinges for R. H. speaker compartment door. for L. H.	73212	Switch-Television interlock switch Tire-Rubber tire for rear wheela (2 required)
	ment door or record storage compartment door	72	Tire-Rubber tire for front whoels $(2$ required)
$\begin{aligned} & 72901 \\ & 71883 \end{aligned}$	Hinge-Television control door hinge (2 required) Knob-Radio tone control knob	2917	Washer-"C" washer for rubber retainer (2 required)
71821	Knob-Radio luning. volume control, power switch or selector switch knob	71875	Washer-Spring washer for fastening wheels
71536	Knob-Television horizontal hold control or brightness control knob	71887	Wheel-Front wheel and tire assembly (2 required)
71533	Knob-Television tine luning knob	72858	Wheel-Rear wheel and tire assembly (2 required)
71534	Knot-Television channel selector knob	71882	Window-Window for call letter markera
71535	Knob-Television vertical hold control or pleture control knot	72196	Yoke-Deflection yoke complete with cablez and pluga

Model 741PCS

Chassis Nos. KCS 24B-1 or KCS 24C-1, KRS 20A-1 or KRS 20B-1, KRS 21 A-1, KRK 1 A-1 or KRK 4, and RS 123 C - Mfr. No. 274
Service Data

- 1948 No. 12 -

SUPPLEMENT TO 1947 No. 12
RADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

GENERAL DESCRIPTION

Abstract

Models 741PCS and 8PCS41 are forty-one tube Projection Tele vision consoles. The receivers employ five chassis with a total of forty tubes and a five-inch projection kinescope. A Reflective Optical System provides a $15^{\prime \prime} \times 20^{\prime \prime}$ picture on the screen.

Model 8PCS41 has been produced in three versions (different chassis) and are distinguished in this Service Data as 8PCS41, 8PCS41-B, and 8PCS41.C.

This publication includes all the data applicable only to these models such as the Installation Instructions, Wiring Diagram, Circuit Diagram and Replacement Parts Lists. For additional

 information, refer to the Service Data for Model 648PTK.Model 8PCS41

ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE $15^{\prime \prime} \times 20^{\prime \prime}$
TELEVISION R-F FREQUENCY RANGES
All 13 television channels, 44 mc to $88 \mathrm{mc}, 174 \mathrm{mc}$ to 216 mc . TELEVISION FINE TUNING RANGE
Plus and minus approximately 800 kc on channel 1, and plus and minus approximately 1.9 mc on channel 13.

RECEIVER ANTENNA INPUT IMPEDANCE. 300 ohms balanced POWER SUPPLY RATING 115 volts, 60 cycles, 530 watts

AUDIO POWER OUTPUT RATING

CHASSIS DESIGNATIONS

RCA TUBE COMPLEMENT
KCS24B-1 OR KCS24C-1 R-F. I-F CHASSIS

2) RCA-6I6

(4) RCA.6BA6 ... st Sound I-F Amplifier
5) RC.A-6BA6 2nd Sound I-F Amplifier
6) RCA-6AU6 ……...............................3rd Sound I-F Amplifier
7) RCA-6AL5 .. Sound Discriminator
8) RCA-6AT6 ... Audio Amplifier

RCA-6AL5 ….................. A-G.C Diode and D.C Restorer
(11) RCA-6AG5 1st Picture I-F Amplifier
(12) RCA.6AG5 2nd Picture I-F Amplifier
(13) RCA-6AG5 3rd Picture 1-F Amplifier
(14) RCA-6AG5 4th Picture I-F Amplifier
(15) RCA-6AL5 Picture 2nd Detector and A-G-C Detector
(16) RCA-6AU6 ... 1st Video Amplifier
(17) RCA-6V6GT .. 2nd Video Amplifier
(18) RCA-6SK7 ... lst Sync Amplifier
(19) RCA-6SH7 ... 2nd Sync Amplifier

(21) RCA.6J5 Vertical Sweep Oscillator and Discharge
(22) RCA-6K6GT Vertical Sweep Output

[^15]| KRS20A-1 OR KRS20B-1 HORIZONTAL DEFLECTION CHASSIS | | | |
| :---: | :---: | :---: | :---: |
| (1) RCA-6H6 Horizontal Sync Dis | | | |
| (2) RCA-6K6GT Horizontal Swee | | | |
| (3) RCA-6I5 .. Horizontal Discharge | | | |
| (4) RCA-6AC7 Horizontal Sweep Oscillator Control | | | |
| (5) RCA-6BG6G Horizontal Sweep Output (2 tubes) | | | |
| (6) RCA-5V4G ... Horizontal D | | | |
| (7) RCA-6AS7G | | | |
| (8) RCA-1B3-GT/8016 High Voltage Rectitier (3 tubes) | | | |
| (9) RCA-5TP4 Projection Kinescope | | | |
| | KRS2lA-1 TELEVISION POWER SU | WER SUPPLY CHA | |
| (1) RCA-5U4G Rectifier (3 tubes) | | | |
| RSI23C AUDIO AMPLIFIER | | | |
| | | | |
| | | | |
| | | | |
| LOUDSPEAKER (92567-2) | | | |
| Type .. 12 -inch Electrodynamic | | | |
| Voice Coil Impedance 2.2 ohms at 400 cycles | | | |
| WEIGHT | | | |
| Chassis with Tubes in Cabinet Model 741PCS 302 lbs.Shipping Weight .. 405 lbs. | | | |
| | | | |
| Chassis with Tubes in Cabinet Model 8PCS41__ 247 lbs. Shipping Weight .- 314 lbs. | | | |
| | | | |
| DIMENSIONS (inches) | | | |
| Cabinet (outside) 8PCS41........361/4 $391 / 8 \quad 241$ | | | |
| | | | |
| PICTURE I-F FREQUENCIES | | | |
| Picture Carrier Frequency 25.75 mc | | | |
| Adjacent Channel Sound Trap 27.25 mc | | | |
| Accompanying Sound Traps 21.25 mc | | | |
| Adjacent Channel Picture Carrier Trap 19.75 mc | | | |
| SOUND I-F FREQUENCIES | | | |
| Sound Carrier Frequency .. 21.25 mc | | | |
| Sound Discriminator Band Width (between peaks) 350 ke | | | |
| VIDEO RESPONSE ... To 4 mc | | | |

FOCUS ... Electrostatic SWEEP DEFLECTION ... Maqnetic SCANNING .. Interlaced, 525 .line HORIZONTAL SCANNING FREQUENCY 15.750 cps VERTICAL SCANNING FREQUENCY 60 cp: FRAME FREQUENCY (Picture Repetition Rate) 30 cps OPERATING CONTROLS (front panel)

Picture

Brightness
Picture Horizontal Hold
Picture Vertical Hold \qquad
On-OH Switch \qquad
Sound Volume \qquad gle Control Knob Remote Brightness and Picture Controls on some sets. NON-OPERATING CONTROLS (not including r-f and i-f adjust. ments)
Vertical Centering R-F. I•F chassis rear adjustment Height R-F. I-F chassis rear adjustment
Vertical Linearity R-F, I-F chassis rear adjustment Video Peaking Switch R-F. I-F chassis rear switch
Width Horizontal Deflection chassis screwdriver adjustment
Horizontal LinearityHorizontal Deflection chassis adjustment
Horizontal Drive Horizontal Deflection chassis adjustment
Horizontal Centering .. Horizontal Deflection chassis adjustment
Horizontal Oscillator Frequency
Horizontal Deflection chassis adjustment
Horizontal Oscillator Phase
Horizontal .Deflection chassis adjustment
Focus (Electrical) .. Horizontal Deflection chassis rear adjustment Focus (Mechanical) Optical Barrel adjustmeni
Deflection Coil
Horizontal Optical Centering Optical Barrel adjustmen
Lateral Optical Centering Optical Barrel adjustment

HIGH VOLTAGE WARNING

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE TELEVISION RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

KINESCOPE HANDLING PRECAUTIONS

DO NOT OPEN THE KINESCOPE SHIPPING CARTON, INSTALL. REMOVE OR HANDLE THE KINE. SCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINE SCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

The following adjustments are necessary when turning the receiver on for the first time.

1. Lift the lid and open the control panel.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid-position.
3. Set the STATION SELECTOR to the desired channel.
4. Turn the PICTURE control fully counter-clockwise.
5. Turn the BRIGHTNESS control clockwise, until a glow appears on the screen, then counter-clockwise until the glow just disappears.
6. Turn the PICTURE control clockwise until a glow or pattern appears on the screen.
7. Adjust the FINE TUNING control for best sound fidelity and SOUND VOLUME for suitable volume.
8. Adjust the VERTICAL hold control until the pattern stops vertical movement.
9. Adjust the HORIZONTAL hold control until a picture is obtained and centered.
10. Adjust the PICTURE control for suitable picture contrast.
11. After the receiver has been on for some time, it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.
12. In switching from one station to another, it may be necessary to repeat steps number 7 and 10 .
13. When the set is turned on again after an idle period, it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. If any adjust ment is necessary, step number 7 is generally sufficient.
14. If the position of the controls has been changed, it may be necessary to repeat steps number 2 through 10 .

Note: The lid is provided with an interlock switch to insure that the receiver will be turned off when the cabinet is closed.

8PCS41 only

Figure 1-Receiver Operating Controls

Figure 2-Removal of Shipping Material
surface with a small camel's hair brush. Any dust on the spherical mirror should be swept into the black center portion where it can be picked up with a piece of scotch tape. Caution: Do not touch the silvered portion of the mirrors. The mirrors are surface silvered and can be damaged by contact with the moist hand. If the screen or mirrors require cleaning, a solution of "Dreft" and water should be employed.
Place a type 202-B-1 test lamp in the kinescope holder and adjust the ball screws to center the lamp in the holder. Connect the lamp cord into a ll0-volt power outlet and turn the lamp on. Replace the corrector lens. Rotate the lamp so as to produce a picture on the screen in the proper aspect. Cover the center hole in the corrector lens with a piece of black cardboard in order to prevent light from this source from lowering the resolution.

Remove the shipping material as shown in Figure 2. Mate sure that all tubes are firmly seated in their sockets.

Untie the canvas dust cover for the optical barrel and tie it off to one side.

Remove the speaker grille: 741PCS pull out on top of grille; 8PCS41-take out four screws from the front corners of the grille. Disconnect the speaker cable from the speaker and set the grille to one side.

Models 741PCS, 8PCS41 and 8PCS41-C emoloy a KRK1A.1 optical barrel. 8PCS41-B employs a KRK4 optical barrel.

Adjustment procedure and nomenclature for the two barrels are similar and the following instructions are given for both types.

Caution: Handle the corrector lens with care. This lens is made of a plastic material, is soft and can be easily scratched by improper handling or even by rubbing with a cloth. Do not use cleaning fluid on the lens as it may be attacked by some of the chemicals used in such solutions. In short, the lens should be given the care due any precision optical equipment.

Remove the corrector lens from the top of the optical barrel by loosening the screws holding the mountings clips as shown in Figure 4.

Caution: Do not loosen the screws holding the corrector lens centering cams or plate.
Although the high voltage filter capacitors of a new receiver are not likely to be charged, it is a good idea to form the habit of discharging the optical barrel before making any internal adjustments. Take a clip lead, fasten the clip end to the barrel and discharge the unit by making repeated contacts to the kinescope holder with the other end of the lead.

Clean the back of the screen, the front of the 45° mirror and the optical barrel spherical mirror by "sweeping" the

Loosen the optical focus adjustment lock screws and adjust the optical focus adjustment for the best overall definition on the screen. The optical system should show at least 900 line resolution over all the screen. If the system shows less definition. it will be necessary to make the adjustments under "Alignment of Optical Barrel."

Choose the proper alignment procedure for the barrel concerned and upon completion procede with "Check of Optical Barrel Tilt" which applies to both types of barrels.

ALIGNMENT OF KRX-4 OPTICAL BARREL-With the test lamp in place as described above, tum the optical focus adjustment until the vertical and horizontal lines become double. When the test lamp is properly centered, the lines are parallel. If the lines are not parallel, the kinescope holder requires horizontal or lateral centering.
Horizontal or Lateral Centering Adjustment-Loosen the focus sprocket support mounting screws and the idler support mounting screws and slide the three focus sprockets back and forth until the vertical and horizontal lines are parallel
If the vertical lines are not parallel, the sprockets should be slid straight forwards or backwards until the vertical lines are parallel. If the horizontal lines are not parallel, the sprockets should be slid to one side or the other until the lines are parallel. Upon completion tighten the sprocket support mounting screws taking care that the sprockets do not shift in the process. Maka sure the focus sprocket drive chain is in place on all sprockets, slide the idler sprocket back until the drive chain is tight, then tighten the idler sprocket support mounting screws.
Caution: The focus screw extensions above the focus sprockets should be equal for all sprockets. If during the adjustment procedure, the drive chain should fall from the sprockets and the sprockets accidentally turned, it will be necessary to readjust the sprockets until the screw extensions are equal.

Figure 3-KRK-4 Kinescope Holder

Corrector Lens Centering-Turn the focus adjustment until a halo appears around the dot in the center of the test lamp. If the halo is not symmetrical around the dot, loosen the four corrector lens centering cam lock screws and slide the lens about until the halo is symmetrical. Turn the cams up firmly against the lens and tighten the cam lock screws. Care should be taken not to disturb the lens position during the tightening process.

ALIGNMENT OF KRK.1A OPTICAL BARREL-With the test lamp in place as described above, turn the optical focus adjustment until the vertical and horizontal lines become double. When the test lamp is properly centered, the lines are parallel. If the lines are not parallel, the Horizontal or Lateral optical centering controls require readjustment.

Figure 4-KRK-4 Optical Barrel Adjustments

Lateral Optical Adjustment-If the vertical lines are not parallel, loosen the lateral adjustment set screws and turn the lateral adjustment until the vertical lines are parallel. Tighten the adjustment set screws.

Horizontal Optical Adjustment-ll the horizontal lines are not parallel, loosen the optical horizontal centering lock screws and furn the optical horizontal centering adjustment until the lines are parallel. Tighten the adjustment lock screws.
Corrector Lens Centering-Turn the focus adjustment until a halo appears around the dot in the center of the test lamp. If the halo is not symmetrical around the dot, loosen the three corrector lens lock screws and the three corrector lens mounting clip screws and shift the lens until the halo is symmetrical. Tighten the lens centering lock screws with the lens in this position.
Check of Optical Barrel Tilt-Adjust the optical focus control to and through the focus range. The picture should go through focus all over at the same time. This does not mean that the definition will be equal over all the picture, but it should be the best definition obtainable. If this is not the case, the optical barrel is not in alignment with the cabinet and requires adjustment as outlined in the following paragraph.

Optical Barrel Tilt Alignment-Turn the optical focus adjustment counterclockwise until the picture is out of focus then clockwise until the picture begins to come in focus. If one side comes into focus before the rest of the picture, it indicates that that side of the optical barrel should be raised. Loosen the lock nuts and turn the inner jack nuts, shown in Figure 4, to raise that side of the barrel and the other jack nut down to lower the other side of the barrel, until both sides of the picture come into focus at the same time.

If the top of the picture comes into focus first as the optical focus adjustment is turned clockwise, it indicates that the outer jack nut (nearest the focus controls) should be adjusted to raise the front of the optical barrel, until top and bottom come into focus at the same time.

When the barrel is properly adjusted, the entire picture will come into best focus all over at the same time as the focus control is rocked through the focus point. At this point the pattern should be in the center of the screen. When this condition of alignment is obtained, tighten the lock nuts being careful not to disturb the adjustments.

If the optical barrel tilt adjustments are made, it will be necessary to recheck the adjustments under Horizontal Optical Adjustments and Lateral Optical Adjustments.

Loosen all the kinescope ball head screws equally and just sufficiently to permit removal of the test lamp.

INSTALLATION OF KINESCOPE-The kinescope second anode contact is a recessed metal well in the side of the bulb. A small brass clip (from the carton containing the deflection yoke and front panel control knobs) must be placed in the kine scope anode connector and the tube inserted in the holder as shown in Figure 3. The tube must be installed so that the socket key on the base of the lube is pointed towards the hon zontal chassis. Make sure that the anode clip is horizontal so that it cannot protrude out of the holder.

Open the kinescope shipping carton and remove the tube. Handle this tube by the neck. Do not cover the envelope of the fube with fingermarks as it will produce leakage paths between the high voltage rim near the screen and the grounded coating on the neck. If this portion of the tube has
inadvertently been handled, wipe it clean with a soft cloth moistened with "dry" carbon tetrachloride, which is obtainable at most drug stores.

Wipe the kinescope screen clean of all dust or finger marks with a soft cloth moistened with the Drackett Co.'s "Windex" or similar cleaning agent.

Tighten the three ball screws equally to center the tube in the support. Caution: Do not apply too much pressure in tightening the ball screws as the tube can be cracked by so doing.

Wipe the corrector lens clean with a piece of lens tissue and replace making sure that the arrow on the lens points to the rear of the cabinet as before. Turn the lens mounting clips in place and tighten the clip screws.

Turn the deflection yoke so that the slotted end of the bakelite center tube is up and slide the yoke down over the neck of the kinescope. Connect the kinescope socket to the base of the tube. Turn the yoke so that the leads come out towards the rear of the cabinet.

Slip the yoke cables out through the cable sleeve in the optical barrel dust cover. The three.prong plug on the unshielded yoke cable should be plugged into the television ifl, i.f chassis as shown in Figure 5. The two-prong plug on the shielded yoke cable should be plugged into the horizontal deflection chassis. The shield braid extension from this cable should be grounded to the chassis by means of the screw provided for this purpose.
Caution-Do not turn the television receiver on with the deflec. tion yoke cables disconnected. To do so may cause the destruction of the kinescope screen.

Remove the cover from the horizontal deflection chassis and take out the strings holding the high voltage filter capacitors in the clips during shipment. Replace the chassis cover.

Reconnect the speaker. Check all chassis interconnecting cables to make sure that all are plugged into the proper sockets as shown in Figure 5.

Figure S-Chassis Interconnecting Cables

The antenna and power connections should now be made. Tum the power switch to the "on" position, the picture control counterclockwise and the brightness control clockwise until a glow appears on the screen.

Adjust the electrical focus control R331 on the horizontal deflection chassis until the raster lines are in sharpest focus as seen when looking down into the barrel. If necessary, reduce the brilliance control setting, and readjust the focus control.

Adjust the optical focus adjustment until the raster lines are in focus on the screen. Tum the deflection yoke until the raster lines are horizontal on the screen and tighten the yoke clamp in this position. Pull the dust cover down around the optical barrel.

Picture Adjustments-It will now be necessary to oblain a test pattern picture in order to make further adjustments. See step 3 through step 10 of the receiver operating instructions on page 3.

CHECK OF HORIzONTAL OSCILLATOR ALIGNMENT-The sync link (see Figure 7) must be in the normal position (2 to 3). Turn the horizontal hold control to the extreme counterclockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will pull into sync.

Turn the horizontal hold control to the extreme clockwise po. sition. The picture should remain in sync. Momentarily remove the signal. Again the picture should normally pull into sync.

If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with height and vertical linearity adjustments.
alignment of horizontal oscillator-If in the above check the receiver failed to hold sync with the hold control at either extreme or failed to pull into sync after momentary removals of the signal, make the adjustments under "Slight Retouching Adjustments." If, after making these retouching adjustments, the receiver fails to pass the above checks or if the horizontal oscillator is completely out of adjustment. then make the adjustments under "Complete Realignment."

Slight Retouching Adjustments-Tune in a Television Station and adjust the fine tuning control for best sound quality. Sync the picture and adjust the picture control for slightly less than normal contrast. Turn the horizontal hold control to the extreme position in which the oscillator fails to hold or to pull in. Momentarily remove the signal. Turn the T301 fre. quency adjustment on the chassis rear apron until the oscil. lator pulls into sync. Check hold and pull-in for the other extreme position of the hold control.

Complete Realignment-Tune in a Television Station and adjust the fine tuning control for best sound quality.

With the sync link in the normal position (2-3), furn the T301 frequency adjustment (on rear apron), until the picture is synchronized. (If the picture is not synchronized vertically, adjust the vertical hold.) Adjust the picture control so that the picture is somewhat below average contrast level.

Turn the T301 phase adjustment screw (under chassis, see Fig. ure 19) until the blanking bar, which may appear in the picture, moves to the right and of the raster. The range of this adjustment is such that it is possible to hit an unstable condition (ripples in the raster). The screw must be tumed clock. wise from the unstable position. The length of stud beyond the bushing in its correct position is usually about $1 / 2$ inch.

Turn horizontal hold to extreme counterclockwise position. Turn T301 frequency adjustment clockwise until the picture falls out of sync. Then turn it slowly counterclockwise to the point where the picture talls in sync again.

Readjust T301 phase adjustment so that the left side of the picture is close to the left side of the raster, but does not begin to fold over.

Tum horizontal hold to extreme clockwise. The right side of the picture should be close to the right side of the raster, but should not begin to fold over. If it does, readjust the phase.

Momentarily remove the signal. When the signal is restored, the picture should fall in sync. If it doesn't. turn T301 frequency adjustment counterclockwise until the picture falls in sync.

Tum horizontal hold to extreme counterclockwise position. Remove the signal momentarily. When signal is restored, the picture should fall in sync.'

NOTE: If the picture does not pull in sync after momentary removals of signal in both extreme positions of horizontal hold, the pull-in range may be inadequate, though not necessarily. A pull-in through $3 / 4$ of the hold control range may still be satisfactory.

There is a difference between the pull-in range and hold-in range of irequencies. Once in sync, the circuit will hold about 50% to 100% more variation in frequency than it can pull in. The range of the horizontal hold control is only approximately equal to the pull-in range, considerable variation may be found due to variations in the cut-off characteristic of the horizontal oscillator control tubes, V303.

Excessive pull-in is objectionable because the higher sensitivity of the control circuits means also greater susceptibility to noise, and to the vertical sync and equalizing pulses which tend to cause a bend in the upper part of the raster. This effect is more noticeable when the sync link is in the 1-2 postion.

Now that a picture has been obtained we may proceed with the picture adjustments.

Adjust the electrical and optical focusing adjustments for maximum definition in the vertical wedge of the test pattern.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS-Adjust the height control (R149 on r-f, i-f chassis rear apron) until the picture fills the screen vertically. Adjust vertical linearity (R175 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust vertical centering to align the picture with the mask. In some cases it may be necessary to shift the position of the kinescope in the holder (see Figure 3) in order to obtain proper centering of the picture.

Figure 6-R-F, I-F Rear Chassis Adjustments
WIDTH AND HORIZONTAL LINEARITY ADJUSTMENTS-Turn the horizontal drive (R340 on rear apron) clockwise as far as possible without causing crowding of the right of the picture. This position provides maximum high voltage to the kine. scope second anode. Adjust the horizontal linearity control R351 (see Figure 7) until the test pattern is symmetrical left to right. A slight readjustment of the horizontal drive contrel may be necessary when the linearity control is used. Adjust the width control (L302 on rear chassis) until the picture just fills the screen horizontally. Adjust horizontal centering to align the picture with the mask. In some cases it may be necessary to shift the position of the kinescope in the holder in order to obtain proper centering of the picture.

Do not turn the horizontal drive control beyond approximately $1 / 8$ of its maximum clockwise position. To do so may cause the output stage to oscillate and result in the loss of horizontal sync.

Pigure 7-Horizontal Deflection Chassis Adjustments
FOCUS-Adjust the focus control for maximum definition in the test pattern vertical "wedge." Adjust the optical focus adjustment for best overall focus on the screen.

Check to see that all yoke and optical barrel lock screws are tight.
Pull the dust cover down around the top of the optical barrel and tie it securely and tightly in place as shown in Figure 2. Tie the cable sleeve tight around the leads to prevent the entry of dust. These precautions are very important for if dust is permitted to enter and settle on the corrector lens, the optical efficiency of the system will be greatly impaired, rosulting in a dim picture with poor definition.

CHECR OF R-F OSCILLATOR ADIUSTMENTS-Tune in all available Television Stations to see if the receiver r-f oscillator is adjusted to the proper frequency on these channels. If adjustments are required, these should be made by the method outlined in the alignment procedure of the Service Data for Model 648PTK. The adjustments for channels 1 through 5 and 7 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 8. Adjustments for channels 6 and 13 are under the chassis. Observe the picture for detall, for proper interlacing and for the presence of interference or reflections.

Figure 8-R-F Oscillator Adjustments

ANTENNA TRAP-In some instances interference may be encountered from FM stations that are on the image frequency of a television station. In other instances interference may be observed on channel 6 from a station on channel 10 oi on channel 5 from a station on channel 7.

In some sets, a series resonant trap across the r-f amplifier grid circuit is provided to eliminate this type of interference.

To adjust the trap in the field, tune in the station on which the interference is observed. Tune both cores of the trap for minimum interference in the picture. See Figure 14 for the 10 cation of the trap. Keep both cores approximately the same by visual inspection. Then, turn one core $1 / 2$ turn from the original position and repeak the second for maximum rejection. Repeat this process until the best rejection is obtained.

VIDEO PEAKING SWITCH—A video peaking switch is provided (see Figure 6) to permit changing the video response. Normally the switch should be left open. However, if the pictures from the majority of stations look better with the switch closed, then the switch should be placed in that position. However, if transients are produced on high contrast pictures then the switch should be left open.

Replace the cabinet back grille. Make sure the screws which hold the back grille in place are tight, otherwise the back may rattle or buzz when the receiver is operating at high volume.
The KCS24C-1 R-F, I-F chassis employed in 8PCS41-B and 8PCS41-C receivers is wired so that a remote picture and brightness control can be added as an attachment. The attachment is not provided and the chassis attachment socket is fitted with a dummy plug. The attachment schematic is shown in Fig. 23.
VENTILATION CAUTION-The receiver is provided with adequate ventilation holes in the bottom and back of the cabinet. Care should be taken not to allow these holes to be covered or ventilation to be impeded in any way. If the receiver is to be operated with the back of the cabinet near a wall, at least a two-inch clearance should be maintained between cabinet and wall.

Figure 9-Correct Picture of Optical Test Lamp Pattern

$\leftarrow-$

Figure 10-Optical Barrel Focus Adjustment Misadjusted
\longrightarrow

Figure II-Optical Barrel Horizontal Centering Adjustment Misadjusted

Figure 12-Optical Barrel Lateral Centering Adjustment Misadjusted

Chassis views

Figure 13-Horizontal Deflection Chassis Top View

Measurements made with receiver operating on 117 volts 60 cycles a-c and with no signal inpist. Voltages shown are read with Jr. "VoltOhmyst" between indicated terminal and chassis ground. Symbol < means "less than."

R-F, I-F CHASSIS, KCS 24B-1 OR KCS 24C-1

Tube No.	Tube Type	Function	Operating Condition事摂	E. Plate		E. Screen		E. Cathode		E. Grid		$\begin{aligned} & \text { I } \\ & \text { Plate } \\ & \text { (ma.) } \end{aligned}$	$\underset{\substack{\text { Screen } \\ \text { (ma.) }}}{\text { I }}$	Notes on Measurements
				$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	Pin No.	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts			
V1	6J6	R-F Amplifier	Pictr. Min.	1\&2	133	-	-	7	0	5\&6	-34	<.1*	-	*Per Plate
			Pictr. Max.	1\&2	58	-	-	7	0	5\&6	-. 25	6.0*	-	*Per Plate
V2	6 J 6	Converter	Pictr. Min.	1\&2	128	-	-	7	0	5\%6	$\begin{gathered} -3 \text { to } \\ -6 . \end{gathered}$	$\begin{gathered} .5 \text { to } \\ 4 * \end{gathered}$	-	*Per Plate
			Pictr. Max.	1\%2	93	-	-	7	0	5\&6	$\begin{aligned} & -2 \text { to } \\ & -5 . \end{aligned}$	$\begin{aligned} & .2 \text { to } \\ & 3^{*} \end{aligned}$	-	*Per Plate
V3	6 J 6	R-F Oscillator	Pictr. Min.	1\%2	110	-	-	7	. 3	5\%6	$\begin{gathered} -4.5 \text { to } \\ -6.5 \end{gathered}$	2.5*	-	* Per Plate
			Pictr. Max.	1\&2	80	-	-	7	. 2	5\& 6	$\begin{gathered} -3.5 \text { to } \\ -5 . \end{gathered}$	1.7*	-	*Per Plate
V101	6BA6	1st Sound I-F Amplifier	Pictr. Min.	5	125	6	125	7	2.0	1	0	15.2	6.2	
			Pictr. Max.	5	107	6	107	7	1.65	1	0	13.	5.1	
V102	6BA6	2d Sound I-F Amplifier	Pictr. Min.	5	125	6	125	7	2.0	1	0	15.4	6.2	
			Pictr. Max.	5	107	6	107	7	1.65	1	0	13.2	5.0	
V103	6AU6	3d Sound I-F Amplifier	Pictr. Min.	5	47	6	47	7	0	1	-. 23	2.8	2.8	
			Pictr. Max.	5	41	6	41	7	0	1	-. 23	2.9	1.8	
V104	6AL5	Sound Discrim.	Pictr. Min.	2\& 7	-. 35	-	-	4\% 5	-	-	-	-	-	
			Pictr. Max.	2\&7	-. 45	-	-	4*5	-	-	-	-	-	
V_{A}	6AL5	AGC Detector	Pictr. Min.	2	-110	-	-	5	-110	-	-	-	-	
			Pictr. Max.	2	-110	-	-	5	-110	-	-	-	-	
$\begin{aligned} & \mathrm{V}_{1} 05 \\ & \mathrm{~B} \end{aligned}$	6AL5	Picture 2d Det.	Pictr. Min.	7	. 15	-	-	1	0	-	-	-	-	
V106	6AT6	AGC Amplifier	Pictr. Min.	7	-33	-	-	2	-110	1	-108	-	-	
			Pictr. Max.	7	0	-	-	2	-110	1	-105	-	-	
$\begin{aligned} & \text { V107- } \\ & \mathrm{A} \\ & \hline \end{aligned}$	6AL5	AGC Diode	Pictr. Min.	7	-8.0	-	-	1	-8.0	-	-	-	-	
			Pictr. Max.	7	-3.2	-	-	1	-0.9	-	-	-	-	
$\begin{aligned} & \hline \text { V107 } \\ & \text { B } \\ & \hline \end{aligned}$	6AL5	DC Restorer	Brightness Min.	2	-110	-	-	5	-97	-	-	-	-	
			Brightness Max.	2	-1	-	-	5	0	-	-	-	-	
V108	6AG5	1st Pix. I-F Amplifier	Pictr. Min.	5	143	6	143	2\% 7	0	1	-8.1	0	0	
			Pictr. Max.	5	103	6	103	2\&7	. 2	1	-1.0	4.5	1.1	
V109	6AG5	$\begin{aligned} & \text { 2d Pix. I-F } \\ & \text { Amplifier } \end{aligned}$	Pictr. Min.	5	145	6	145	2 \& 7	0	1	-8.1	0	0	
			Pictr. Max.	5	117	6	117	2\&7	. 2	1	-1.0	3.9	1.3	
V110	6AG5	$\begin{aligned} & \text { 3d Pix. I-F } \\ & \text { Amplifier } \\ & \hline \end{aligned}$	Pictr. Min.	5	147	6	147	2 \& 7	0	1	-8.1	0	0	
			Pictr. Max.	5	100	6	111	2\&7	. 21	1	-1.0	4.5	1.3	
V111	6AG5	4th Pix. I-F Amplifier	Pictr. Min.	5	98	6	138	287	1.4	1	0	7.3	2.3	
			Pictr. Max.	5	82	6	115	2\&7	1.15	1	0	6.1	1.9	
V112	6AU6	1st Video Amplifier	Pictr. Min.	5	188	6	150	7	0	1	-2.25	6.7	2.6	
			Pictr. Max.	5	205	6	130	7	0	1	-2.35	4.3	1.6	
V113	$\begin{gathered} \text { 6V6- } \\ \mathbf{G T} \end{gathered}$	2d Video Amplifier	Pictr. Min.	3	180	4	255	8	8.9	5	-3.9	31.5	9.0	
			Pictr. Max.	3	175	4	249	8	8.5	5	-3.9	30.0	8.5	

R-F, I-F CHASSIS, KCS 24B-1 OR KCS 24C-1 (Continued)

Tube No.	Tube Type	Function	Operating Condition **	E. Plate		E. Screen		E. Cathode		E. Grid		$\begin{gathered} \text { I } \\ \text { Plate } \\ \text { (ma.) } \end{gathered}$		Notes on Measurements
				Pin No.	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	Pin No.	Volts	Pin No.	Volts			
V114	6SK7	1 st Sync. Amplifier	Pictr. Min.	8	165	6	113	5	0	4	-4.5	8.5	1.2	
			Pictr. Max.	8	180	6	99	5	0	4	-4.7	4.3	1.1	
V115	6SH7	2d Sync. Amplifier	Pictr. Min.	8	150	6	150	5	0	4	-5.3	0	0	
			Pictr. Max.	8	130	6	130	5	0	4	-5.6*	0	0	Depends on noise
V116	6 J 5	3d Sync. Amplifier	Pictr. Min.	3	82	-	-	8	0	5	-. 4	8.5	-	
			Pictr. Max.	3	73	-	-	8	0	5	-.4 *	6.8	-	Depends on noise
V117	6 J 5	Vertical Oscillator	Pictr. Min.	3	40*	-	-	8	-110	5	-144	. 17	-	Height, linearity and hold affect readings 2 to 1
V118	$\begin{gathered} \text { 6K6- } \\ \text { GT } \end{gathered}$	Vertical Output	Pictr. Min.	3	215	4	215*	8	-81	5	-97	16.3	*	Screen connected to plate
V119	6 AT6	Audio Amplifier	Pictr. Min	7	$+75$	-	\sim	2	0	1	-1	. 13	-	

HORIZONTAL DEFLECTION CHASSIS, KRS 20A-1 OR KRS 20B-1

V301	6H6	Horizontal Sync. Discr.	Pictr. Min.	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & -5.0 \\ & -5.0 \end{aligned}$	-	-	$\begin{aligned} & 4 \\ & 8 \end{aligned}$	$\begin{aligned} & -3.2 \\ & -2.2 \end{aligned}$	-	-	-	-	
V302	$\begin{gathered} \text { 6K6- } \\ \text { GT } \end{gathered}$	Horizontal Oscillator	Hold Max. Resistance	3	240	4	220	8	. 30	5	-27.5	23.3	6.12	
			Hold Min. Resistance	3	230	4	192	8	. 32	5	-23.0	24.8	6.87	
V303	6AC7	Horizontal Osc. Control	Pictr. Min.	8	246	6	127	5	0	4	-3	2.9	. 75	
V304	6 J 5	Horizontal Discharge	Pictr. Min.	3	78	-	-	8	0	5	-38	. 9	-	
V305	$\begin{gathered} \text { 6BG6 } \\ -\mathrm{G} \end{gathered}$	Horizontal Output	Pictr. Min.	Cap	Do not Meas.*	8	280	3	14.0	5	-8	78	9.6	*6000 volt pulse present
V306	$\begin{gathered} \text { 6BG6 } \\ -G \end{gathered}$	Horizontal Output	Pictr. Min.	Cap	Do not Meas.	8	280	3	14.0	5	-8	78	9.6	6000 volt pulse present
V307	8016	H. V. Rectifier	Brightness Min.	Cap	*	-	-	287	10,500	-	-	-	-	10,500 volt pulse present
			Brightness Max.	Cap	*	-	-	2\& 7	10,000	-	-	-	-	* 10,500 volt pulse present
V308	8016	H. V. Rectifier	Brightness Min.	Cap	10,000	-	-	2\& 7	20,000	-	-	-	-	
			Brightness Max.	Cap	9,500	-	-	2\& 7	19,500	-	-	-	-	
V309	8016	H. V. Rectifier	Brightness Min.	Cap	19,500	-	-	2\& 7	29,000	-	-	-	-	
			Brightness Max.	Cap	18,500	-	-	2\& 7	28,000	-	-	-	-	
V310	$\begin{aligned} & \text { 6AS7 } \\ & -G \end{aligned}$	Damper	Pictr. Min.	2\& 5	Do not	-	-	3 \& 6	470	184	290	78*	-	*Total both plates $\ddagger 1200$ volt pulse
$\sqrt{ } \sqrt{11}$	5V4G	Damper	Pictr. Min.	4\&6	Meas. \ddagger	-	-	8	570	\cdots	-	156*	-	
V312	5TP4	Kinescope	Brightness Min.	Cap	29.000*	10	200	11	0	2	-98	0	-	*Measured with "VoltOhmyst"
			Brightness Max.	Cap	28,000*	10	200	11	0	2	-43	. 35	-	and high voltage multiplier probe
					OWER S	SUPP	CH	SSIS.	KRS 2	A.1				
V401	5U4G	Lo. V. Rectifier	Pictr. Min.	486	-	-	-	2 \& 8	493	-	-	235*	-	*Total for both
V402	5U4G	Lo. V. Rectifier	Pictr. Min.	4\% 6	-	-	-	2 \& 8	493	\cdots	-	*	-	tubes
V403	5U4G	Lo. V. Rectifier	Pictr. Min.	4 \& 6	-	-	-	2 \& 8	265	-	-	172	-	

** Where separate readings are not listed for max. and min. gain settings of the picture control, the effect of the control is slight and readings are given for "Picture Min."

Figure 14-R-F, I-F Chassis Top Vieu'

Figure 15-R-F, I-F Chassis Botlom View

Figure 18-Pouer Supply Wiring Diagram

is as shown above.
Figure 19-Horizontal Deflection Chassis Wiring Diagram

${ }_{41 \text { PCS, }}^{38 \mathrm{PCCS}}$
SChematic diagram

sChematic diagram

$\begin{aligned} & \text { STOCE } \\ & \text { No. } \end{aligned}$	\mathbf{E} DESCRIPTION	stock No.	DESCRIPTION
	AUDIO OUTPUT CHASSIS		741PCS
$\begin{aligned} & 70646 \\ & 70632 \end{aligned}$	Capacitor-Tubular, . $0035 \mathrm{mid} ., 1000$ volts (C505. C506) Capacitor-Tubular, 02 mid., 600 volls (C503, C504)		MISCELLANEOUS
$\begin{aligned} & 71551 \\ & 72955 \end{aligned}$	Capacitor-Tubular, 05 mid., 200 volts (C507) Capacitor-Electrolytic, comprising 1 section of 30 midd., 450 volts. 1 section of 50 mid.. 400 volis and 1 section of 40 mid.. 25 volts (C501A, C501B, C501C)	73189	Back-Cabinet back-bollom section
		73188	Back-Cabinet back-lop section
		71599	Bracket-Pilot lamp bracket
		70	Brackel-Forty-fivedegree mirror mounting bracket com- plete with telt pad (4 required)
11765	Insulator-Mounting insulator for electrolytic	70151	Bushing-Anode cable bushing
12493	Plug-5 contact fomale plug tor speaker eable	72195	Cable-Shielded audio lead complete with pin plugs
71660	Resistor-Comprising 1 section of 180 ohms, 3.5 watts, 1 section of 2520 ohms, 3.97 watts and 1 section of 2760	$\begin{aligned} & 13103 \\ & 71892 \end{aligned}$	Cap-Pilot lamp jewel Catch-Drop door catch and strike (2 required)
48344	ohms, 9.3 watts (R501A, RSO1B, R501C)	70152	Catch-Grille frame strike and atch (2 required)
	R508C)	$\times 1756$	Cloth-Grille cloth
		72667 72666	Clip-Kinescope anode clip Cover-Optical bairel dust cover
	Resistor-Fixed composition, 22.000 ohms $\pm 10 \%$. $1 / 2 \mathrm{watt}$	73204	Decal-Control function decal
	$\begin{aligned} & \text { (R504) } \\ & \text { Hesistor-Fixed composition, } 27.000 \text { ohms } \pm 10 \%, 1 / 2 \text { watt } \\ & \text { (R505) } \end{aligned}$	17754 71598	Door-Sliding drop door (2 sections) for covering screen. less hinges Escutcheon-Channel marker escutcheon
	Resistor-Fixed composition, 56,000 ohms $\pm 10 \%$. $1 / 2 \mathrm{watt}$	70154	Fastener-Anode cable hi-voltage spring fastener
	Resislor-Fixed composition, 220,000 ohms $\pm 20 \%$,	70153	Gasket-Sealing gaskel for anode cable clamp
	Resisior-Fixed composition, 220,000 ohms $\pm 20 \% .1 / 2 \mathrm{watt}$ (R506. F 507)	73200 73201	Hinge-Control panel knife hinge (2 required) Hinge-Drop door hinge (2 required)
35787	Socket-Input socket	71536	Knob-Brightness control or horizontal hold control knob
31364	Socket-Pilot lamp socket	71534	Knob--Channel selector knob
71659 31319	Socket-9 prong power socket (1501)	71535	Knob-Picture control or vertical hold control knob
37048	Transtormer-Power transformer. 115 volt, 50/60	71821	Knob-Fine luning knob
71661	(T501)	70145	Mirror-Forty-five-degree mirror
	Transformer-Output tranaformer (TS02)OPTICAL BARAEL ASSEM	73202	Name Plate-"RCA-Victor" nam
		70150	Nut-Locknut ior optic barrel tilt screw
		73203	Nut-Speed nut to fasten name plate (3 required)
		70146	Pin-Mounting pin (2 requited) to mount front end of television chassis
		70147	Plate-Mounting plate for power switch
		73208	Plate-Control panel lock strap plate
72188	Lens-Corrector lens	4573	Plug-2 contact female plug for power switch cable
72187	Mirror-Spherical mirror	14793	Plug-2 prong male plug on deflection yoke cable
72191	Screw- $48-32 \times 1 / 2^{\text {" }}$ scrow for locking horizontal centering adjustment (2 required) ur for locking focus adjustment (2 required)	14782 35383	Plug-3 prong male plug on deflection yoke cable (P101)
		71968	Pluq-9 prong male plug for pleeder resistor cable
72660		31048	Plug-Pin plug for audio cable
72662	Screw- $46.32 \times 15 / 16^{\prime \prime}$ screw for spherical mirror mounting springs (6 required)	73203	Pull-Control panel pull
		73205	Pull-Drop door pull
72192	Screw-412-24 x 1 19/32" screw for horisontal centering adjustment	72170	Resistor-Wire wound comprising 1 section of 970 ohms, 9 watts, and 1 section of 640 ohms, 10.5 watts
$\begin{aligned} & 72189 \\ & 72190 \\ & 72663 \\ & 72664 \\ & 11909 \end{aligned}$	Spring-Six (6) turn spring for kinescope holder Spring-Eight (8) turn spring for kinescope holder Spring-Spherical mirror mounting spring (6 required) Support-Insulating support for kinescope (2 required) Washer-"C" washer for horizontal adjusting plote serew OPTICAL BARREL ASSEMBLY	72194	Screen-Viewing screen
			Screw-Tilt adjustment screw for optic barrel (3 required)
		71538 30330	Spring-Channel marker escutcheon spring
		30330 30900	Spring-Refaining spring for knob \#71536 Spring-Retaining spring for knob $\# 71821$
		30900 14270	Spring-Retaining spring for knob \#71821 Spring-Relaining spring for knob \#71534 and 715
		4982	Soring-Retaining spring for knob \#71533 and
		73207	Strap-Control panel lock strap
		70155	Switch-Power switch
		72196	Yoke-Deflection yoke complete with cables (L115, Lil6, L303. L304, C334, R184, R186, P101, P302)
73328	Band-Kinescope holder contact band		
73323	Band-Spring band for supporting spherical mirror		
73322	Cam-Corrector lens centering cam (4 required)		PCS
73324	Chain-Drive chain		Pres41
73899 72188	Gaskot-Dust seal gasket on bottom of optical barrel		MISCELLANEOUS
73326	Holder-Insulating holder for kinescope		
73325	Mirror-Spherical mirror (12*)	73210	Back-Cabinot back-mahogany
73329	Screw-Centering screw for kinescope (3 required)	73211	Back-Cabinet back-walnut
73321	Spring-Focus scrow compression spring (3 required)	73245	Back-Cabinet back-toasted mahogany
73319	Sprocket-Focus sprocket (3 required)	71599	Bracket-Pilot lamp bracket
${ }^{73327}$ S	Sprockel-ldler sprocket Support-Support for kinescope holder SPEAKER ASSEMBLI 92567-2W RL. 70RI	70148	Bracket-15 degree mirror mounting bracket complete with felt pad (3 required)
		70151	Bushing-Anode cable bushing (8PCS41 only)
		72195	Cable-Shielded audio lead complote with pin plugs
		13103	Cap-Pilot lamp jewel
		71892	Catch-Door catch and strike (3 required)
		72667	Clamp-Anode cable clamp set (8PCS41 only)
		$\times 1759$	Cloth-Grille cloth for toasted mahogany instruments
		$\times 1757$	Cloth-Grille cloth for walnut and mahogany instrumen
13867	Cap-Dust eap	73213	Cover-Dust cover
71147	Clamp-Clamp to hold metal cone suspension (2 required)	73246	Decal-Control panel decal for toasted mahogany instru- meats
11469	Coil-Neutralizing coil	73204	Decal-Control
36145	Cone-Cone complete with voice coil		instruments
31539	Plug-5 prong male plug for speaker	73865	Decal-"Local-romote" switch decal
71144	Speaker-12" EM speaker complote with cone and voice	71598	Escutcheon-Channel marker oscutchoon
71145	coil less plug Suppension-Motal cone suspension NOTE: If stamping on speaker in instrument does not agreo with above speaker number, order replacement parts by roferring to model number of instrument, number stamped on speaker and full description of part required.	70154	Fastoner-Anode cable hi-voltage spring fastoner (8PCS41 only)
		70153	Gasket-Sealing gasket tor anode cable clamp (8PCSA1
			Grille-Metal grille
		73219	Hinge-Cabinet hood hinge (2 required)
		36610	Hinge-Door hinge
		73024	Hinge-Hinge for movable panel behind control panel (2 required)

$\begin{aligned} & \text { STOCE } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION
71536	Knob-Brightness control or horizontal hold control knob tor walnut and mahogony instruments	$\begin{aligned} & 14793 \\ & 14782 \end{aligned}$	Plug-2 prong male plug on deflection yoke cable Plug-3 prong male plug on deflection yoke cable
72569	Knob-Brightness control or horizontal hold control knob	35383	Plug-8 prong male plug on bleeder resistor
71534	Uor loasted mahogany instrumenis	71968	Plug-9 prong male plug on power swritch cable Plug-2 contact temale plug on power switch cable
	instruments	31048	Plug-Pin plug tor audio cable
72568	Knob-Channel selector knob for toasted mahogany instrumonts	$\begin{aligned} & 72291 \\ & 71968 \end{aligned}$	Plug-Dummy plug for sets not using remote control Plug-9 prong male plug tor remote control adapter cable
71535	Knob-Picture control or vertical hold control knob for walnut and mahogany instruments	73214	Pull-Door pull Resistor-Wire wound, comprising 1 section of 970 ohms.
72565	Knob-Picture control or vertical hold control knob for toasted mahogany instruments	73416	9 watts, and 1 section of 640 ohms. 10.5 wotts Ring-Rubber Ring between yoke and correction lens
71533	Enob-Fine tuning knob tor walnut and mahogany instruments	72194	```Screen-Viewing screen Screw-Elevating serew for optic barrel (3 required)```
72567	Knob-Fine tuning knob for toasted mahogany instruments	70150	Screw-Locknut for optic barrell (early type) elevating
71821	Knob-Volume control or power switch knob for walnut and mahogany instruments	71659	screw (3 required) Socket-9 contact female socket for remote control cable
72800	Knob-Volume control or power switch knob for toasted mahoguny instruments	30900	Spring-Rotaining spring for knobs $\ddagger 71822$ and $\ddagger 71824$ Spring-Channel marker escutcheon spring
72824	Knob-Remote control switch knob-brown-for toasted mahogany instruments	72454 30900	Spring-Lid support spring Spring-Retaining spring tor knobs 471534, 71535, 72565
71822	Knob-Remote control switch knob-maroon-for mahogemy or toasted mahogany instruments	14270	and 72568 Spring-Retaining spring for knobs 471800 and 71821
70145	Mirror 45 degree mirror	4982	Spring-Retaining spring for knobs 71533 and 72567
73180	Name Plate-"RCA-Victor" name plate	30330	Retaining spring for knobs 71536 and 72569
73336	Nut-Aluminum nut to fasten ECS24B-1 type anode cable	70164	Stop-Door stop
70146	Pin-Mounting pin (2 required) to mount front end of r-f, i-f chastis	$\begin{aligned} & 73216 \\ & 72453 \end{aligned}$	Support-Lid support-R.H. Support-Lid support-L.H.
73218	Plate-Plate complete with bullet catch and bracket with pin for cabinet hood-L.H.	$\begin{aligned} & 73212 \\ & 70155 \end{aligned}$	Switch-Interlock switch 3witch-Power switch
73217	Plate-Plate complete with bullet catch and bracket with pin for cabinel hood-R.H.	$\begin{aligned} & 73852 \\ & 72196 \end{aligned}$	Switch-Remote control twitch Yoke-Dellection yoke complete with cables
70147	Plate-Mounting plate Ior power switch		

Model 72ITS
Walnut or Mabogany

Service Data

RADIO CORPORATION OF AMERICA
 RCA VICTOR DIVISION CAMDEN, N. J., U.S. A.

GENERAL DESCRIPTION

Abstract

Model 721 TS is a twenty one tube, direct-viewing, table-model Television Receiver having a $10^{\prime \prime}$ picture tube (kinescope). The receiver is complete in one unit and is operated by the use of seven front-panel controls. Features of the receiver include: Full thirteen channel coverage: $1-\mathrm{m}$ sound system; improved picture brilliance; two stages of video amplification; A.F.C horizontal hold. stabilized vertical hold: improved sync amplifier and separator; and reduced-hazard high-voltage supply.

Model 721TCS is a twenty-one tube, direct-viewing, consolemodel Television Receiver having a $10^{\prime \prime}$ picture tube (kinescope). The receiver is complete in one unit and is operated by the use of seven front-panel controls.

ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE
$6 \% /^{\prime \prime} \times 81 / 2^{\prime \prime}$
RADIO FREQUENCY RANGES

Channel	Channel	Picture Carrier Fumber	Sound Carrier	Receiver B-F Osc. Mc
1	44.50	45.25	Freq. Mc	Freq. Mc

FINE TUNING RANGE

Plus and minus approximately 800 kc on channel 1 , and plus and minus approximately 1.9 mc on channel 13

RECEIVER ANTENNA
INPUT IMPEDANCE 300 ohms balanced

POWER-SUPPLY RATING

KCS $26-1$
KCS $26-2 \ldots \ldots \ldots . ~ v o l t s, ~$

RCA TUBE COMPLEMENT

	Tube	Used	Function
(1)	RCA	616	R-F Amplifier
(2)	HCA	616	R-F Oscillator
(3)	RCA	616	Converter
(4)	RCA	6BA6	1st Sound I-F Amplifier
(5)	RCA	6AU6	2nd Sound I-F Ampllier
(6)	RCA	6ALS	Sound Discriminator
(7)	RCA	6AT6	1st Audio Amplifier and Bias Clamp
(8)	RCA	6K6.GT	Audio Output
(9)	RCA	6AGS	1st Picture I-F Amplifier
(10)	RCA	6 AG5	2nd Picture I-F Amplifier
(11)	RCA	6AGS	3rd Piclure I-F Amplifier
(12)	RCA	6AL5	Picture 2nd Detector and Sync Limiter
(13)	FCA	12AU7	1st and 2nd Video Amplifier
(14)	RCA	6SN7.GT	Sync Amplifier and Sync Separator
(15)	RCA	6SN7-GT	Vertical Sweep Oscillator, Discharge and Vertical Sweep Output
(16)	RCA	6SN7-GTHorizontal Sweep Oscillator and Control
(17)	RCA	6BG6-G	Horizontal Sweep Output
(18)	RCA	5V4.G	Damper
(19)	RCA	1B3-GT/8016	High Voltage Rectitier
(20)	RCA	SU4.G	Power Supply Rectifier
(21)	RCA	10BP4	.Kinescope

PICTURE INTERMEDIATE FREQUENCIES

SOUND INTERMEDIATE FREQUENCIES
Sound Carrier Frequency ..25 Mc
Sound Discriminator Band Width (between peaks)....... 350 Kc
VIDEO RESPONSE
FOCUS ...

SWEEP DEFLECTION ..

HORIZONTAL SCANNING FREQUENCY15.750 cps
VERTICAL SCANNING FREQUENCY............................ 60 cps
FRAME FREQUENCY (Picture Repetition Rate)............... 30 cps
OPERATING CONTROLS (front panel)
Station Selector \}..Dual Control Knobs
Fine Tuning
Sound Volume and On-Of Switch.........Single Control Knob Horizontal (Picture Horizontal Hold) Vertica! (Picture Vertical Hold)
Picture (Contrast)
Dual Control Knobs
NON.OPERATING CONTROLS (not including r-f and i-f ad justments)
Horizontal Centerinyrear chassis adjustment
Vertical Centering.......................................rear chassis adjustment
Width..................................rear chassis screwdriver adjustment
Height...r chassis adjustment
Horizontal Linearity...........top chassis screwdriver adjustment
Vertical Linearity...................................ear chassis adjustment

Horizontal Drive.................rear chassis screwdriver adjustment Horizontal Frequency (Fine).................rear chassis screwdriver adjustment
Horizontal Oscillator Frequency (coarse)bollom chassis screwdriver adjustment
Horizontal Locking Range....rear chassis screwdriver adjustment
Focus..rear chassis adjustment

Focus Coil...............................lop chassis wing screw adjustment
Ion Trup Magnet...........top chassis thumb screw adjustment Deflection Coil..........................top chassis wing nut adjustment

AUDIO POWER-OUTPUT RATING

Undistorted \qquad Maximum 2 watts					

LOUDSPEAKER (92565.1) Model 721TS
Type $\quad . \quad . \quad . \quad . \quad . \quad$ inch Electro Magnet Dynamic
Voice Coil Impedance............................3.2 ohms at 400 cycles

LOUDSPEAKER (92567-3) Model 721TCS
Type 12 inch Electro Magnet Dynamic
Voice-Coil Impedance 2.2 ohms at 400 cycles
WEIGHT Model 721TS
Chassis with Tubes in Cabinet (less kinescope) 67 lbs .
Shipping Weight (less kinescope) 78 lbs.
WEIGHT Model 721TCS
Chassis with Tubes in Cabinet (less kinescope) 101 lbs.
Shipping Weight (less kinescope) 117 lbs.
Model 721TS

DIMENSIONS (inches)	Length	Height	Depth
Cabinet (Outside)	. 20	$40^{1 / 2}$	$171 / 2$
Model 721 TCS			
DIMENSIONS (inches)	Length	Height	Depth
Cabinet (Outside).	19	19	19

> HIGH VOLTAGE WARNING
> OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH-VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH-VOLTAGE COMPARTMENT SHIELD REMOVED.

KINESCOPE HANDLING PRECAUTIONS

DO NOT OPEN THE KINESCOPE SHIPPING CARTON, INSTALL, REMOVE, OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE. KINESCOPE AWAY FROM THE BODY WHILE HANDLING.
The large end of the kinescope bulb-particularly the rim of the viewing surface-must not be struck, scratched, or subjected to more than moderate pressure at any time. In installation, if the tube sticks or fails to slip smoothly through the deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Refer to the Receiver Installation section for detailed instructions on kinescope installation.

The following adjustments are necessary when turning the receiver on for the first time:

1. Turn the receiver "ON" and advance the SOUND volume control to approximately mid-position.
2. Sel the STATION SELECTOR to the desired channel.
3. Turn the PICTURE control fully counterclockwise
4. Turn the BRIGHTNESS control fully counterclockwise, then clock. wise until a faint glow just appears on the screen.
5. Turn the PICTURE control approximately three-fourths elockwise.
6. Adjust the FINE TUNING control for best sound fidelity and the SOUND control for suitable volume.
7. Adjust the VERTICAL hold control until the pattern stops vertical movement.

in some receivers "brightness" is the outer knob ano"picturen the inner
8. Adjust the HORIZONTAL hold control until the picture appears on the screen.
9. Adjust the PICTURE control for suitable picture contrast.
10. After the receiver has been on for some time, it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.
11. In switching from one station to another, it may be necessary 10 repeal steps number 6 and 9.
12. When the set is turned on again after an idle period, it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. If any adjustment is necessary, step number 6 is generally sufficient.
13. If the positions of the controls have been changed. it may be necessary to repeat steps number 1 through 9 .

Figure 1-Receiver Operating Comtrols

CIRCUIT DESCRIPTION

The general design features of the $721 T \mathrm{~S}$ television receiver are conventional. However, the a.f.c horizontal hold circuit is new and will be described briefly.

Fundamentally the horizontal oscillator is a free running block ing oscillator and discharge circuit. The incoming syne is superimposed on the horizontal oscillator waveform and ap. plied to the control tube grid. It the two voltages are not in the proper frequency and phase relations, the control tube applies a bias to the uscillator to bring it into sync.

A portion of the bias from the blocking oscillator is applied to the grid of the control tube and is sufficient to keep the control tube cut off except when the sync pulse is high on the slope of the grid waveform as shown in Figure 2-A. If the oscillator changes phase so that the pulse slides down the slope, the plate conduction time decreases as shown in Figure 2.B. It the pulse slides up the slope, then the plate conduction time increases as shown in Figure 2.C. When the control tube conducts capacitors C161 and C167 in its cathode circuit charge to a d-c potential proportional to the plate conduction time. This potential is applied as a bias to the oscillator grid thus shifting the oscillator frequency and pulling it into phase with the sync pulses.

The effect of the various controls associated with the circuit are as follows. L121 is tuned with a slug to effect coarse adjustments in oscillator frequency. C136C is provided to effect fine adjustments in frequency. R156 the horizontal hold control is provided on the front panel to permit a 5% variation of frequency by varying the control tube plate volt. age. C136A is a variable portion of a capacity voltage
divider and is provided to set the amplitude of the waveform on the grid of the control tube so that conduction occurs only on the positive peaks of the wavelorm. The horizontal drive control Cl36B is part of a capacity voltage divider and is provided 10 vary the amount of sawtooth voltage on the V109 grid and hence is a control for picture linearity.

Several components of the oscillator and control circuits have special coefficients or characteristics and in case of failure, should be replaced only by exact replacement. H173 is a special resistor capable of stability of 1% or better. R191 is a high negative coefficient resistor to compensate for warm up drift. It is mounted within about $1 / 4$ inch of the power transformer and chassis for good heat transfer. The dress of this component should not be disturbed.

Strains or excessive heat should not be applied to the leads or bodies of the resistors associated with the horizontal oscillator and control circuits. Such conditions may cause excessive changes of resistance with age. See "Critical Lead Dress" on page 18.

Figure 2-Horizontal Control Waveforms

UNPACEING-To unpack the receiver, tear open the carton flaps, pick the receiver up from under the bottom of the cab inet and lift it out of the shipping carton.
Take the metal grill off the back of the cabinet. Remove the front panel from the cabinet as indicated in Figure 3.

Figure 2-Cabinet, Front View 72ITCS

Figure 3-Cabinet, Front View 721TS
Remove the protective cardboard shield from the 5U4G rectifier. Make sure all tubes are in place and are firmly seated in their sockets.
Loosen the two kinescope cushion adjustment wing screws and slide the cushion toward the rear of the chassis. Loosen the deflection yoke adjustment, slide the yoke toward the rear of the chassis and tighten. See Figure 4 for the location of the cushion and yoke adjustments.
From the front of the cabinet, look through the deflection yoke and check the alignment of the focus coil with the yoke. If the focus coil is not in line, loosen the three focus coil adjustment wingnuts and raise, lower, or rotate the coil until alignment is obtained. Tighten the wingnuts with the coil in this position.
Loosen the two lower kinescope face centering slides, and set them at approximately mid position. See Figure 3 for location of the slides and their adjustment screws. Loosen the ion trap magnet adjustment thumb screws.

Figure 4-Yoke and Focus Coil Adjustments

KINESCOPE HANDLING PRECAUTION-Do not apen the kinescope shipping carton, Install, remove, or handle the kinescope in any manner, unless shatterproof goggles and heavy gloves are worn. People not so equipped should be kept away whlle handling the kinescope. Keep the kinescope away from the body while handling. The shipping carton should be kept for use in case of tuture moves.

INSIALLATION OF XINESCOPE-The kinescope second anode contact is a recessed metal well in the side of the bulb. The tube must be installed so that this contact is approximately on top. The final orientation of the tube will be determined by the position of the ion trap flags. Looking at the kinescope gun structure, it will be observed that the second cylinder from the base inside the glass neck is provided with two small metal tlags, as shown in Figure 5. The kinescope must be installed so that when looking down on the chassis, the two flags will be seen as shown in Figure 4.

Figure 5-Ion Trap Flags
Insert the neck of the kinescope through the deffection and focus coils as shown in Figure 6 until the base of the tube protrudes approximately two inches beyond the focus coil. If the tube sticks, or fails to sllp into place smoothly. Investi. gate and remove the cause of the trouble. Do not force the tube.

Figure 6-Kinescope Insertion

Early production receivers employed an EM type of ion trap magnet like that in the model 630TS receiver. Late production receivers employed a PM type magnet as shown in Figure 4.

If an EM type of magnet is applied, slip the assembly over the neck of the kinescope with the coils down and the large coil towards the base of the tube. Tighten the magnet ad. justment thumbscrews sufficiently to hold it in position but still free enough to permit adjustment.
If the PM type is employed. slip the assembly over the neck of the kinescope with the large magnet towards the base of the tube and with the arrow on the assembly up as shown in Figure 4. The front magnet is movable on the assembly. The correct position of the front magnet is with the gap on the left side (from the rear of the cabinet) and even with the gap of the rear magnet.
Connect the kinescope socket to the tube base. Insert the kinescope until the face of the tube protrudes approximately one-eighth of an inch outside the front of the cabinet. Adjust the four centering slides until the face of the kinescope is in the center of the cabinet opening. Tighten the four slides securely. Wipe the kinescope screen surface and front panel safety glass clean of all dust and finger marks with a soft cloth moistened with the Drackett Co.'s "Windex" or similar cleaning agent. Install the cabinet front panel by reversal of the removing process as shown in Figure 3. Install the control knobs on the proper control shafts.
Slip the kinescope as far forward as possible. Slide the kinescope cushion firmly up against the flare of the tube and tighten the adjustment wing screws. Slide the deflection yoke as far forward as possible. Connect the high voltage lead to the kinescope second anode socket.

The antenna and power connections should now be made. Turn the power switch to the "on" position, the brightness control fully clockwise, and picture control counter-clockwise.

ION TRAP MAGNET RDJUSTMENT-The ion trap rear magnet poles should be placed over the ion trap flags as shown in Figure 4. Starting from this position adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust the focus control (R129 on the chassis rear apron) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches on this adjustment should be made with the brightness control at the maximum position with which good line focus can be maintained.
FOCUS COIL ADJUSTMENTS-Turn the centering controls R152 and R166 to mid position. See Figure 7 for location of these rear apron controls.
U a corner of the raster is shadowed, it indicates that the electron beam is striking the neck of the tube. Loosen the focus coil adjustment wing nuts and rotate the coil about its vertical and horizontal axes until the entire raster is visible, approximately centered and with no shadowed corners. Tighten the focus coil adjustment wing nuts with the coil in this position.

Figure 7-Rear Chassis Adjustments
DEFLECTION YOKE ADIUSTMENT-If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE ADJUSTMENTS-It will now be necessary to obtain a lest pattern picture in order to make further adjustments. See steps 2 through 9, of the receiver operating instructions on page 3.

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT-Turn the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync. Mo. mentarily remove the signal by switching off channel and then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal bars will be gradually reduced and when only $3^{1 / 2}$ to $4^{1 / 2}$ bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull in should occur when the control is approximately 90 degrees from the extreme counterclockwise position. The picture should remain in syinc for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should be out of sync and should show from $3^{1 / 2}$ to $4^{1 / 2}$ bars sloping downward to the right.
If the receiver passes the above checks and the picture in normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Focus" adjustment.

ALIGNMENT OF HORIZONTAL OSCILLATOR-If in the above check the receiver failed to hold sync with the hold control at the extreme counterclockwise position or failed to hold sync at least 60 degrees of clockwise rotation of the control from the pull in point. it will be necessary to make the following adjustments.
Horizontal Frequency Adjustment-Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the rear apron horizontal frequency trimmer C136C until the picture is out of sync and shows $31 / 2$ to 41/2 bars sloping downward to the right. If the trimmer has insufficient range, set the trimmer to mid-position (1 turn out from max. capacity) and adjust the L121 horizontal frequency adjustment until this condition is obtained. See figure 22 for the location of Ll21.
Horizontal Locking Range Adjustment-Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel and then back.
Slowly tum the horizontal hold control clockwise and note the least number of diagonal bare oblained just before the picture pulls into sync.
If more than $41 / 2$ bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer C136A slightly clockwise. It less than $31 / 2$ bars are present, adjust Cl36A slightly counterclockwise. Turn the horizontal hold control counterclockwise, momentarily remove the signal and recheck the number of bars present at the pull in point. Repeat this procedure until $31 / 2$ to $4 / 2$ bars are present.
Repeat the adjustments under "Horizontal Frequency Adjustment" and "Horizontal Locking Range Adjustment" until the conditions specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.
height and vertical linearity adjustments-Adjust the height control (R141 on chassis rear apron) until the picture fills the mask vertically ($63 / 8$ inches). Adjust vertical linearity (R148 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust vertical centering to align the picture with the mask.

WIDTH. DRIVE AND HORIZONTAL LINEARITY ADIUSTMENTS -Turn the width control Lll2 to the maximum clockwise position. Vary the horizontal drive trimmer Cl36B to yield the best compromise between brightness and linearity. Adjust the horizontal linearity control L113 for best linearity of the right hall of the picture. Readjust the width control until the picture just fills the mask. Adjust horizontal centering to align the picture with the mask.

FOCUS-Adjust the focus control R129 for maximum delinition of the vertical wedge of the test pattern.
Check to see that all cushion, yoke, tocus coil and ion trap maqnet thumb screws are tight. Replace the cabinet back grille. Make sure that the back is on tight, otherwise it may rattle at high volume.
CHECK OF R.F OSCILLATOR ADJUSTMENTS-With a crystal calibrated test oscillator or heterodyne frequency meter, check to see if the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure on page 10 . The adjustments for channels 1 through 5 and 7 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 8. Adjustments for channels 6 and 13 are under the chassis. Tune in all available Television Stations. Observe the picture for detail. for proper interlacing and for the presence of interference or reflections. If these are encountered, see the section on antennas on page 6.

Figure 8-R-F Oscillator Adjustments

VIDEO PEAKING LINK-A video peaking link is provided to permit changing the video response. This link is connected at the factory with the peaking in. However, if transients are produced on high contrast pictures the peaking should be taken out by removing the link on the terminal board under the chassis near the V104 socket. See Figures 49 and 51 for the connection and location of the link.

ANTENNA TRAP-In some sets, a series resonant trap across the r-f amplifier grid circuit is provided to eliminate interterence from FM stations on the image of channel 2, from interference on channel 6 from a station on channel 10 or interference on channel 5 from a station on channel 7. In production, this trap is adjusted to reject the channel 6.10 interference. However, in the field, it may be necessary to retouch the adjustments or to readjust the trap for channel $5-7$ or FM image interference.
To adjust the trap in the field, tune in the station on which the interference is observed. Tune both cores of the trap for minimum interference in the picture. See Figure 21 for the location of the trap. Keep both cores approximately the same by visual inspection. Then, turn one core $1 / 2$ furn from the original position and repeak the second for maximum rejection. Repeat this process until the best rejection is obtained. In severe cases of such interference, it may be necessary to reorient the antenna to eliminate this difficulty.
RECEIVER LOCATION-The owner should be advised of the importance of placing the receiver in the proper location in the room.

The location should be chosen-

-Away from bright windows and so that no bright light will fall directly on the screen. (Some illumination in the room is desirable, however.)
-To give easy access for operation and comfortable viewing.
-To permit convenient connection to the antenna.
-Convenient to an electrical outlet.
-To allow adequate ventilation.

VENTILATION CAUTION-The receiver is provided with adequate ventilation holes in the bottom and back of the cabinet. Care should be taken not to allow these holes to be covered or ventilation to be impeded in any way.

ANTENNAS-The finest television receiver built may be said to be only as good as the antenna design and installation. It is therefore important to use a correctly designed antenna, and to use care in its installation.

RCA Television Antennas, stock No. 225 and No. 226, are de. signed for reception on all thirteen television channels. These antennas use the $300 \cdot 0 \mathrm{hm}$ RCA "Bright Picture" television transmission line. Installation personnel are cautioned not to make any changes in the antenna or to substitute other types of transmission line as such changes may result in unsatisfactory picture reproduction.

In some cases. the antenna should not be installed permanently until the quality of the picture reception has been observed on a television receiver. A temporary transmission line can be run between receiver and the antenna, allowing sufticient slack to permit moving the antenna. Then, with a telephone system connecting an observer at the receiver and an assistant at the antenna, the antenna can be positioned to give the most satisfactory results on the received signal. A shift of direction or a lew feet in antenna position may effect a tremendous difference in picture reception.

REFLECTIONS-Multiple images sometimes known as echoes or ghosts, are caused by the signal arriving at the antenna by two or more routes. The second or subsequent image occurs when a signal arrives at the antenna after being reflected of a building, a hill or other object. In severe cases of reflections, even the sound may be distorted. In less severe cases, reflections may occur that are not noticeable as reflections but that will instead cause a loss of definition in the picture.

Depending upon the circumstances, it may be possible to eliminate the reflections by rotating the antenna or by moving it to a new location. In extreme cases, it may be impossible to eliminate the reflection.

Under certain extremely unusual conditions, it may be possible to rotate or position the antenna so that it receives the cleanest picture over a reflected path. If such is the case, the antenna should be so positioned. However, such a position may give variable results as the nature of reflecting surfaces may vary with weather conditions. Wet surfaces have been known to have different reflecting characteristics than dry surfaces.

INTERFERENCE-Auto ignition, street cars, electrical machinery and diathermy apparatus may cause interference which spoils the picture. Whenever possible, the antenna location should be removed as far as possible from highways. hospitals, doctors offices, and similar sources of interference. In mounting the antenna, care must be taken to keep the antenna rods at least $1 / 4$ wave length (at least 6 feet) away from other antennas, metal roofs, gutters, or other metal objects.

Short-wave radio transmitting and receiving equipment may cause interference in the picture in the form of moving ripples. In some instances it may be possible to eliminate the interference by the use of a trap in the antenna transmission line. However, if the interfering signal is on the same frequency as the television station, a trap will provide no improvement.

WEAK PICTURE-When the installation is near the limit of the area served by the transmitting station, the picture may be speckled, having a "snow" effect, and may not hold steady on the screen. This condition is due to lack of signal strength from the transmitter.

Some of the possible troubles that may be encountered, with their effects and causes, are listed below:

NO RASTER ON KINESCOPE-The effect of no raster cun be caused by the following:
(1) Incorrect adjustment of ion trap magnet.
(2) No high voltage. Check V109 (6BG6-G) and V110 (8016) tubes and circuits. If the horizontal-deflection circuits are operating, as evidenced by the correct wavelorm measured on terminal 4 of horizontal output transformer T10S, the trouble can be isolated to the high-voltage rectifier (V110) circuit. Either the high-voltage winding (points 2 to 3 on T105) is open: the 8016 tube is defective: its filament circuit is open; or the high-voltage filter capacitor Cl 42 is shorted
(3) Damper tube (V111, 5V4.G) inoperative. Plate voltage supply for 6BG6-G horizontal output tube is obtained through the damper tube. Check tube, and heater winding on T106. If tube is O.K.. check Lll3 (horizontal linearity coil) for continuity, and capacitors C139 and Cl40 for short circuit.
(4) Defective kinescope. Heater open: cathode "return" circuit open.
(5) No plate voltage. Shorted electrolytic capacitor: open speaker field coil. All $+B$ measurements are accessible for measurement by removing cover from bleeder box.
(6) Horizontal osc. and control tube (V108, 6SN7-GT) inoperative. Check for sawtooth on grid of horizontal output tube (Y109, 6BG6-G). It not present. check wavelorms. voltages, and components in V108 circuits.

HORIZONTAL DEFLECTION ONLY-II horizontal deflection only is obtained, evidenced by a "straight line" across the face of the kinescope, it can be caused by the following:
(1) Vertical oscillator and output tube (V107. 6SN7.GT) inoperative. Check wavelorms and voltages on grid and plate.
(2) Vertical output transformer (T103) open.
(3) Yoke vertical coils open.

POOR VERTICAL LINEARITY-If adjustment of the vertical height and linearity controls will not correct this condition, any of the following may be the cause:
(1) Vertical output transtormer (T103) defective.
(2) Capacitors C128-C or C127.B delective.
(3) V107 (6SN7-GT) defective. Check wavelorms and voltages.
(4) Excess leakage or incorrect value in capacitor C130.
(5) Low plate and bias voltages. Check rectifier tube and capacitors in $+B$ supply circuits.
(6) Capacitor Cl29 defective.

POOR HORIZONTAL LINEARITY If adjustment of controls does not correct this condition, check the following:
(1) Check or replace horizontal output tube (V109, 6BG6-G).
(2) Check or replace damper tube (V111, 5V4-G).
(3) Check waveform on grid of V109.
(4) Check linearity coil L113 for short circuit.
(5) Check capacitors C139 and Cl40 for defects.

TRAPEZOIDAL OR NONSYMMETRICAL RASTER This condition can be caused by:

Defective yoke.

WRINKLES ON LEFT SIDE OF RASTER - This condition can be caused by:

Defective yoke due to R101, R1S1, or C141 (internal in yoke assembly) being wrong value or open. These components are mounted in rear of yoke assembly.

SMALI, RASTER This condition can be caused by:
(1) Low $+B$ or line voltage.
(2) Insufficient output from horizontal output tube V109 (6BG6-G). Replace tube.

RASTER-NO IMAGE, BUT ACCOMPANYING SOUND-This condition can be caused by:
(1) No signal on kinescope grid. Check picture i-f amplifier tubes V101 (6AG5), V102 (6AG5). V103 (6AG5), second de tector V104 (6ALS), and video amplifier Vi05 (12AU7).
(2) Bad contact to kinescope grid. (Lead to socket broken.)

SIGNAL APPEARS ON KINESCOPE GRID BUT IMPOSSIBLE TO SYNCHRONIZE THE PICTURE VERTICALLY AND HORI. ZONTALLY-A condition of this nature can be caused by:
(1) Defective sync amplifier and separator (V106, 6SN7.GT).
(2) If tube is OK. check voltages, waveforms and associated circuits.

SIGNAL ON KINESCOPE GRID AND HORIZONTAL SYNC ONLY - If this condition is encountered, check:

Vertical integrating network capacitors C164. Cl23. C124. C125, and resistors R136, R137, R138.

PICTURE STABLE BUT WITH POOR RESOLUTION-II the picture resolution is not up to standard, it may be caused by any of the following:
(1) Defective picture detector (V104, 6ALS) or video amplifier (V105, 12AU7).
(2) Open video peaking coil. Check all peaking coils (L104. L105, L106, L107) for continuity. Note that L105 and L106 have shunting resistors.
(3) Leakage in V105 grid capacitor Cll5.

If above components are not tound to be defective. check the following:
(1) Check all potentials in video circuits.
(2) Check kinescope grid circuit for poor or dirty contact.
(3) Check adjustment of focus control (R129). It should be effective on either side of proper focus.
(4) Check and realign, if necessary, the picture i.f and r-f circuits.

PICTURE SMEAR-

(1) Normally, smear can be attributed to phase shift at the low-frequency end of the video characteristic. This can be caused by improper values of R and C in the video circuits. Check for grid current on video amplifier tube V105.
(2) This trouble can originate in either the transmitter or the receiver. Check reception from another station.

PICTURE JITTER-

(1) If regular sections at the left of the picture are displaced. replace the horizontal output tube (V109, 6BG6-G).
(2) Vertical instability may be due to loose connections or "noise" received with the signal.
(3) Horizontal instability may be due to unstable transmitted sync. or to "noise."

721TS, 721TCS

TEST EQUIPMENT-To service this receiver properly, it is recommended that the following test equipment be avallable:

R-F Sweep Generator meeting the following requirements:
(a) Frequency ranges:

> 18 to 30 mc .1 mc sweep width
> 40 to 90 mc .10 mc sweep width
> 170 to 225 mc .10 mc sweep width
(b) Output adjustable with at least 1 l volt maximum.
(c) Output constant on all ranges.
(d) "Flat" output in all attenuator positions.

Cathode-ray Oscilloscope, preferably one with a wide band vertical deflection and an input culibrating source.

Signal Generator to provide the following frequencies:
(Output on these ranges should be adjustable and at least .l volt maximum.)
(a) Intermediate frequencies:
21.25 me sound i-f and sound traps
22.8 mc converter transformer
23.9 mc first picture i-f coil
24.5 mc third picture if coil
26.0 mc second picture i-f primary
27.25 mc second picture i-f secondary
(b) Radio frequencies:

Channel	Picture Carrier Freq. Me	Sound Carrier
Freq. Mc		

Heterodyne Frequency Meter with crystal calibrator if the signal generator is not crystal controlled.

Electronic Voltmeter of "Junior VoltOhmyst type" and a high voltage probe for use with this meter to permit measurements up to 10 kv .

SERVICE PRECAUTIONS-Cutouts in the bottom of the cabinet make it possible to do some of the servicing of the receiver without removing the chassis. If the receiver is serviced in the cabinet, a soft pad should be placed under the cabinet when it is inverted, in order to avoid scratching the surface. In manulacture, the cabinet receives a Class 1 rub finish and every effort should be made to preserve that finish.

Il necessary to remove the chassis from cabinet, the kinescope must first be removed. See Figures 3, 4 and 6. It possible. the chassis should then be serviced without the kinescope. However, if it is necessary to view the raster during servicing. the kinescope should be inserted only after the chassis is lurned on end. The kinescope should never be allowed to support its weight by resting in the deflecting yoke. A bracket should be used to support the tube at its viewing screen.

By turning the chassis on end with the power transtormer "up." all adjustments will be made conveniently available. Since this is the only safe position in which the chassis will rest and still leave adjustments accessible, the trimmer location drawings are oriented similarly for ease of use.

CAUTION: Do not permit the kinescope second anode lead to become "shorted" to the chassis. To do so will cause a considerable overload on the high voltage filter resistor R167.

ADJUSTMENTS REQUIRED Normally, only the r-i oscillator line will require the attention of the service technician. All other circuits are either broad or very stable and hence will seldom require readjustment.

Due to the high frequencies at which the receiver operates, the r-f oscillator-line adjustment is critical and may be affected by a lube change. The line can be adjusted to the proper frequency on channel 13 with practically any 616 tube in the socket. However, it may not then be possible to adjust the line to frequency on all of channels 7.8,9,10.11, and 12. For an oscillator lube to be satisfactory, it should be possible to adjust the line to proper frequency with the finetuning control in the middle of its range. It may therefore be necessary to select a tube for the oscillator socket. In replacing, if the old tube can be matched for frequency by trying several new ones, this practice is recommended. At best. however, it will probably be necessary to realign the oscillator line completely after changing the tube.

Tubes which cannot be used as an oscillator may work satis. factorily as an r-f amplifier or a converter.

The detailed alignment procedure which follows is intended primarily as a discussion of the method used, precautions to be taken, and the reasons for these precautions. Then, for more convenient reference during alignment, a tabulation of the method is given. All the information necessary for alignment is given in the tables: however, alignment by the tables should not be attempted before reading the detailed instructions.

ORDER OF ALIGNMENT - When a complete receiver alignment is necessary, it can be most conveniently performed in the following order:

Sound discriminator
Sound i-f transformers
Picture i.f traps
Picture i-f coils
B-F and converter lines
R-F oscillator line
Retouch picture i-f transformers
Sensitivity check

SOUND DISCRIMINATOR ALIGNMENT-

Set the signal generator for approximately 1 volt output at 21.25 mc . and connect it to the second sound i-f grid.

Detune T108 secondary (bottom).
Set the "VoltOhmyst" on the 10 volt scale.
Connect the meter in series with α one megohm resistor to the junction of diode resistors R181 and R182.
Adjust the primary of T108 (top) for maximum output on the meter.

Connect the "VoltOhmyst" to pin 1 of V116 and set on the 3 volt scale.

Adjust T108 secondary (bottom). It will be found that it is possible to produce a positive or negative voltage on the meter dependent upon this adjustment. Obviously to pass from a positive to a negative voltage, the voltage must go through zero. T108 (bottom) should be adjusted so that the meter indicates zero output as the voltage swings from positive to negative. This point will be called discriminator zero output.
Connect the sweep oscillator to the grid of the second sound i-f amplifier.

Adjust the sweep band width to approximately 1 me. with the center frequency at approximately 21.25 and with an output of approximately 11 volt.
Connect the oscilloscope to pin 1 of V116.
The pattern obtained should be similar to that shown in Figure 13A. If it is not, adjust T 10 (top) until the wave form is symmetrical.
The peak to peak bandwidth of the discriminator should be approximately 350 kc . and should be linear from 21.175 mc . to 21.325 mc .

SOUND I.F ALIGNMENT-

Connect the sweep and signal generator to the top end of the trap winding of T3 (on top of the chassis),
Connect the oscilloscope to the second sound i-f grid return (terminal A T107) in series with a 33.000 ohm isolating resistor. Connect a 5600 ohm resistor from terminal A. T107 to ground. Insert a 21.25 mc marker signal from the signal generator into the first sound i-i grid.
Adjust T107 (top and bottom) for maximum gain and symmetry about the 21.25 mc . marker. The pattern obtained should be similar to that shown in Figure 13B. The band width at 80% response from the first sound i-f grid to the second i.f grid should be approximately 250 kc .

The output level from the sweep should be set to produce approximately 3 volt peak-10-peak at the second sound i.t grid return when the final touches on the above adjustment are made. It is necessary that the sweep output voltage should
not exceed the specified values otherwise the response curve will be broadened, permitting slight misadjustment to pass unnoticed and possibly causing distortion on weak signals.

PICTURE I-F TRAP ADJUSTMENT-

Connect the "VoltOhmyst" to the junction of R106 and R107 and adjust the picture control for -3 volts on the meter.
Set the channel switch to channel 13.
Connect the "VoltOhmyst" across the picture second detector load resistor R118 and set it on the 3 volt scale.
Connect the output of the signal generator to the junction of C14 and R6. This connection is available on a terminal lug through a hole in the side apron of the chassis, beside the r-f unit.
Set the generator to 21.25 mc . and check it against a crystal calibrator to insure that the generator is exactly on frequency. Adjust T3 (top), and T101 for minimum indication on the "VoltOhmyst."
Set the generator to 27.25 mc . and adjust T 104 secondary (bottom) for minimum indication on the "VoltOhmyst."

PICTURE I-F COIL ADJUSTMENTS-

Set the signal generator to each of the following frequencies and peak the specified adjustment for maximum indication on the "VoliOhmyst."

```
22.8 mc.-T3 (bottom)
2 3 . 9 ~ m c . - L l 0 1 ~ ( t o p ~ o f ~ c h a s s i s )
26.0 mc.-T104 primary (top of chassis)
24.5 me.-Ll03 (top of chassis)
```

Pleture I-F Oscillation-II the receiver is badly misaligned and two or more of the i-f coils are tuned to the same frequency. the recelver may fall into if oscillation. I-F oscillation shows up as a voltage in excess of 3 volts at the picture detector load resistor. This voltage is unaffected by r-f signal input and sometimes is independent of picture control setting.
If such a condition is encountered, it is sometimes possible to stop oscillation by adjusting the coils approximately to frequency by setting the adjustment stud extensions of $T 3$. L101. T104 and L103 to be approzimately equal to those of another receiver known to be in proper alignment. If this does not have the destred effect, it may now be possible to stop osclllation by increasing the grid bias. If so, it should then be possible to align the colle by the usual method. Once aligned in this manner, the i-f should be stable with reduced bias.
If the oscillation cannot be stopped in the above manner, shunt the grids of the first two i-f cmplifiers to ground with 1000 mmf . capacitors.
Connect the signal generator to the third i-f grid and adjust L103 to trequency.
Remove the shunting capacitor from the second $1 \cdot f$ grid, connect the signal generator to this grid and align T104.
Remove the shunting capacitor from the first i-f grid. connect the signal generator and align Llol.
Connect the signal generator to the junction of C14 and R6 (in the r-f tuning unit) and align T3 to frequency.
If this does not stop the oscillation, the difficulty is not due to $i-f$ misalignment as the i-f section is very stable when properly aligned. Check all i-f by-pass condensers, coil loading resistors, tubes, socket voltages, etc.

* In some receivers. T104 is replaced by L102 which has no bottom adjustment.

ALIGNMENT PROCEDURE (Continued)

R-F AND CONVERTER LINE ADJUSTMENT -

Connect the rif sweep oscillator to the receiver antenna terminals. If the sweep oscillator has a 50 ohm single-ended output, it will be necessary to obtain balanced output by connecting as shown in Figure 9

Figure 9-Unbalanced Sucep Cable Termination

Connect the oscilloscope to the junction of $\mathrm{Cl4}$ and $\mathrm{R6}$ (in the r-f tuning unit) through a $10,000 \mathrm{ohm}$ resistor.

By-pass the first picture i-f grid to ground through a 1000 mmfd . capacitor. Keep the leads to this by-pass as short as possible. If this is not done, lead resonance may fall in the r-f range and cause an incorrect picture of the r-f response.
Connect the "VoltOhmyst" to the junction of R170 and R171 and adjust the picture control for -1 volt on the meter.
Connect the signal generator loosely to the receiver antenna terminals.
Since channel 7 has the narrowest response of any of the high frequency channels, it should be adjusted first.
Set the receiver channel switch to channel 7 (see Figure 18 for switch shaft flat location versus channel).
Set the sweep oscillator to cover channel 7.
Insert markers of channel 7 picture carrier and sound carrier 175.25 mc . and 179.75 mc .

Adjust L25, L26, L51 and L52 (see Figure 16) for an approximately flat topped response curve located symmetrically be. tween the markers. Normally this curve appears somewhat overcoupled or double humped with a 10 or 15% peak to valley excursion and the markers occur at approximately 90% re. sponse. See Figure 17, channel 7. In making these adjust. ments, the stud extension of all cores should be kept approximately equal.
Check the response of channels 8 through 13 by switching the receiver channel switch, sweep oscillator and marker oscillator to each of these channels and observe the response obtained. See Figure 17 for typical response curves. It should be found that all these channels have the proper shaped response with the markers above 70% response. If the markers do not fall within this requirement on one or more high frequency channels, since there are no individual channel adiustments, it will be necessary to readjust L25, L26, L51 and L52, and possibly compromise some channel slightly in order to get the markers up on other channels. Normally however, no difficulty of this type should be experienced since the higher frequency channels become comparatively broad and the markers easily lall within the required range.
Channel 6 is next aligned in the same manner.

Set the receiver to channel 6 .

Set the sweep oscillator to cover channel 6 .
Set the marker oscillator to channel 6 picture and sound carrier frequencies.

Adjust L11, L12, L37 and L38, for an approximately flat-topped response curve located symmetrically. between the markers.

Check channels 5 down through channel 1 by switching the receiver, sweep oscillator and marker oscillator to each channel and observing the response obtained. In all cases, the markers should be above the 70% response point. If this is not the case, L11, L12, L37 and L38 should be retouched. On final adjustment, all channels must be within the 70% specification.
Coupling between $r \cdot f$ and converter lines is augmented by a link between L12 and L37. This link is adjusted in the lactory and should not require adjustment in the field. On channel 6 with the link in the minimum coupling positron, the response is slightly overcoupled with approximately a 10% excursion from peak-to-valley. With the coupling at maximum, the response is somewhat broader and the peak-to-valley excursion is approximately 40%. The amount of coupling per missible is limited by the peak-to-valley excursion which should not be greater than 30% on any channel.
Remove the 1000 mmf capacitor from the first picture i.f grid.

R.F OSCILLATOR LINE ADJUSTMENT-

The r-f oscillator line may be aligned by adjusting it to beat with a crystal calibrated heterodyne frequency meter, or by feeding a signal into the receiver at the r-f sound carrier frequency and adjusting the oscillator for zero output from the sound discriminator. In this latter case the sound discriminator must first have been aligned to exact frequency. Either method of adjustment will produce the same results. The method used will depend upon the type of test equipment available.

Regardless of which method of oscillator alignment is used, the frequency standard must be crystal controlled or calibrated.
If the receiver oscillator is to be adjusted by the heterodyne frequency meter method, the trequencies listed under "R-F Osc. Freq." in the table must be available.
If the receiver oscillator is adjusted by feeding in the r-f sound carrier signal, the frequencies listed under "R-F Sound Carrier" must be available.

Channel	Receiver	R-F Sound
Number	Freq. Mc.	Freq. Mc
1.	... 71	49.75
2.	81	59.75
3	87.	65.75
4.	93.	71.75
5	. 103.	81.75
6.	109	87.75
7.	201	. 179.75
8.	207.	185.75
9.	213	191.75
10	219	. 197.75
11.	225	203.75
12.	231	209.75
13.	237.	215.75

If the heterodyne frequency meter method is used, couple the meter probe loosely to the receiver oscillator.
If the r-f sound carrier method is used, connect the "VoltOhmyst" to pin 1 of V116.

Connect the signal generator to the receiver antenna terminals.
The order of alignment remains the same regardless of which method is used

Since lower frequencies are obtained by adding steps of inductance, it is necessary to align channel 13 first and continue in reverse numerical order.
Set the receiver channel switch to channel 13.
Adjust the frequency standard to the correct frequency (237 mc. for heterodyne frequency meter or 215.75 mc . for the signal generator).
Set the fine tuning control to the middle of its range while mak. ing the adjustment.
Adjust L77 and L78 for an audible beat on the heterodyne frequency meter or zero voltage from sound discriminator. The core stud extensions should be maintained equal by visual inspection.

Switch the receiver to channel 12 .
Set the frequency standard to the proper frequency as listed in the alignment table.
Adjust L76 for indications as above.
Adjust the oscillator to frequency on all channels by switching the receiver and the frequency standard to each channel and adjusting the appropriate oscillator trimmer for the specified indication. It should be possible to adjust the oscillator to the correct frequency on all channels with the fine tuning control in the middle third of its range.

After the oscillator has been set on all channels, start back at channel 13 and recheck to make sure that all adjustments are correct.

RETOUCHING OF PICTURE IF ADJUSTMENTS-

The picture i-f response curve varies somewhat with change of bias and for this reason it should be aligned with approximately the same signal input as it will receive in operation.
If the receiver is located at the edge of the service area, it should be aligned with approximately -1 volt i-f grid bias. However, for normal conditions, (signals of 1000 microvolts or greater), it is recommended that the picture i-f be aligned with a grid bias of -3 volts. Set the picture control for -3 volts at the junction of R106 and R107.

Connect the rif sweep generator to the receiver antenna terminals.

Connect the signal generator to the antenna terminals and feed in the 25.75 mc . if picture carrier marker and a 23 mc . marker.
Connect the oscilloscope across the picture detector load re. sistor, Rll8.
Set the channel switch to channel (between 1 and 6) found to have the best response during the r-f and converter line adjustment.
Set the sweep output to produce approximately 3 volt peak-to. peak across the picture detector load resistor.
Observe and analyze the response curve obtained. The response will not be ideal and the i-f adjustments must be retouched in order to obtain the desired curve. In making these adjustments, care should be taken that no two transformers are funed to the same frequency as i-f oscillation may result.

On final adjustment the picture carrier marker must be at approximately 45% response. The curve must be approximately flat topped and with the 23 mc . marker at approximately 90% response.
The most important consideration in making the i-f adjust ments is to get the picture carrier at the 45% response point. If the picture carrier operates too low on the response curve, loss of low frequency video response, of picture brilliance, of blanking, and of sync may occur. If the picture carrier oper. ates too high or the response curve, the picture definition is impaired by loss of high trequency video response.

SENSITIVITY CHECK-A comparative sensitivity check can be made by operating the receiver on a weak signal from a television station and comparing the picture and sound obtained to that obtained on other receivers under the same conditions.

This weak signal can be obtained by connecting the shop antenna to the receiver through an attenuator pad of the type shown in Figure 10. The number of stages in the pad depends upon the signal strength available at the antenna. A sufficient number of stages should be inserted so that a some. what less than normal contrast picture is obtained when the picture control is at the maximum clockwise position.

Figure 10 -Attenuator Pad

Only carbon type resistors should be used to construct the attenuator pad. Since many of the low value moulded resistors generally available are of wire wound construction, it is advisable to break and examine one of each type of resistor used in order to determine its construction.

RESPONSE CURVES-The response curves shown on pages 12. 14 and 15 and referred to throughout the alignment procedure were taken from a production set. Although these curves are typical, some variations can be expected. Channel 2 r-f response (not shown) is similar to that of channel 3.
The response curves are shown in the classical manner of presentation, that is with "response up" and low frequency to the left. The manner in which they will be seen in a given test set-up will depend upon the characteristics of the oscilloscope and the sweep generator. The curves may be seen inverted and/or switched from left to right depending on the de. flection polarity of the oscilloscope and the phasing of the sweep generator.

ALIGNMENT TABLE-Both methods of oscillator alignment are presented in the alignment table. The service technician may thereby choose the method to suit his test equipment. If it is found that the dual listing is confusing, the unwanted listing can be easily erased.
the detalled alignment procedure beginning on page 8 shoutd be read before alignment by use of the tables is attempted.
DISCRIMINATOR AND SOUND I-F ALIGNMENT

$\begin{aligned} & \text { STEP } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { SIGNAL } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$			$\begin{aligned} & \text { SWEEP } \\ & \text { GEN. } \\ & \text { FREQ. } \\ & \text { MC. } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { OSCILLOSCOPE } \\ & \text { TO } \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { "VOLTOHMYST" } \\ \text { TO } \end{gathered}$	MISCELLANEOUS CONNECTIONS AND INSTRUCTIONS	ADIUST	$\begin{aligned} & \text { REFER } \\ & \text { TO } \end{aligned}$
1	2nd sound i-f grid (pin 1, V115)	$\begin{gathered} 21.25 \\ .1 \text { rolt } \\ \text { output } \end{gathered}$	Not used		Not used	In serios with I meg. to junction of R181 and R182	Meter on 10 volt scale	Detune T108 (bottom). Adjust Tlos (top) for max. on meter.	Fig. 11 Fig. 12
2	"	"	"		"	$\begin{array}{ll} \text { Discriminator } & \text { out- } \\ \text { put (pin } & \text { of } \\ \text { V116) } & \end{array}$	Meter on 3 volt scale	$\begin{aligned} & \text { Tlos (bottom) for } \\ & \text { zero on moter } \end{aligned}$	Fig. 12
3	"	"	2nd sound i-f grid (pin 1, V115)	$\begin{gathered} 21.25 \\ \text { contor } \\ 1 \text { me. } \\ .1 \text { roit } \\ \text { output } \end{gathered}$	Discriminator output (pin 1 of V116)	Not used	Check for symmetr form (positive and equal adjust Tlos equal. See Note	ical response waved negative). If not (top) until they are 1.	$\begin{array}{ll} \text { Fig. } & 11 \\ \text { Fig. } & 12 \\ \text { Fig. } & 13 \end{array}$
4	Trap winding on T3 flop of chassis)	21.25 reduced output	Trap winding on T3	21.25 reduced output	Torminal A. T107 in series with 33,000 ohms. See Note 2.	"	Swoep output reduced to provide .3 volt p-to-p on scope. See Note 3.	T107 (top and bot- tom) for max. gain and sym. metry at 21.25 mc.	Fig. 11 Fig. 12 Fig. ${ }^{13}$

NOTE 1: The peak-to peak bondwidth of the discriminator should be approximately 350 kc. and should be linear from 21.175 me. to 21.325 mi.
 desired response curve. To do this, shunt R176 (Terminal "A" of T107 to chassis) with 5600 ohms.
 of T107) for final touch-up on this adjustment. Signal voltage in excess of 0.3 volt will tend to broaden the response curve permitting mis. adjustment to pass unnoticed.

Figure 1I-Top Chassis Sound I-F Adjustments

Figure 12-Botlom Chassis Sound I-F and Discriminator Adjustments

the detalled alignment phocedure beginning on page g should be read before alignment by use of the tables is attempted.
PICTURE I-F AND TRAP ADJUSTMENT

$\begin{aligned} & \text { STEP } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { SIGNAL } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$			$\begin{aligned} & \text { SWEEP } \\ & \text { GEN. } \\ & \text { FREQ. } \\ & \text { MC. } \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { OSCILLOSCOPE } \\ \text { TO } \end{gathered}$	$\begin{gathered} \text { CONNECT } \\ \text { "VOLTOHMYST" } \\ \text { TO } \end{gathered}$	MISCELLANEOUS CONNECTIONS AND INSTRUCTIONS	ADIUST	$\begin{gathered} \text { REFER } \\ \text { TO } \end{gathered}$
5	Not used		Not used		Not used	Junction R106 and R107	$\begin{aligned} & \text { Set "Station So- } \\ & \text { lector" witch to } \\ & \text { channel } 13 \end{aligned}$	Adjust "Picture" control for -3 volts reading, on "VoltOhmyst	Fig. 15
6	$\begin{aligned} & \text { Junction Cl4 } \\ & \text { and R6 } \end{aligned}$	21.25	"		"	$\begin{aligned} & \text { Junction of } 1104 \\ & \text { and R118 } \end{aligned}$	Moter on 3 volt scal.	T3 (top) and T101 tor min. on metor	Fig. 14
7	"	27.25	"		"	"	"	T104* (bottom) tor \min.	Fig. 15
d	"	22.8	"		"	"		${ }_{\text {max. }}^{\text {T3 }}$ (bottom) for	Fig. 15
9	"	23.9	"		"	"		1101 (top chassis) for max.	Fig. 14
10	-	26.0	"		"	"		T104* (top chassis) for max.	F1g. 14
11	"	24.5	"		"	"		1103 (top chasals) for max.	Fig. 14

NOTE: Oscillation may oceur it the l-t section is badly out of alignment. This will be ovidenced by a moter reading in excess of 3 volts and is eaused by the "staggered" lit stages being tuned to approximatoly the same frequency. It this condition is encountered, adjust the core studs of T3 (boltom) L101, T104 (top), and Llo3 unill oacillation ceases. Oncillation may not be oncountered until proceeding with steps 9 , 10 , or 11 . (Soe

- In some receivers, T104 is replaced by L102 which has no bottom adjustment.

Figure 15-Bottom Chassis Pix I-F Adjustments

- In some recelvers, TlO4 is replaced with L102,

Figure 14-Top Charsis Pix I-F and Trap Adjustments

ALIGNMENT TABLE (Continued)

the detailed alignment procedure beginning on phge should be bead before alignment by use of the tables is attempted.
R-F AND CONVERTER LINE ALIGNMENT

$\begin{aligned} & \text { STEP } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { SIGNAL } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$	$\begin{aligned} & \text { SIGNAL } \\ & \text { GEN. } \\ & \text { FREQ. } \\ & \text { MC. } \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { SWEEP } \\ \text { GENERATOR } \\ \text { TO } \end{gathered}$	SWEEP GEN. FREQ. MC.	$\begin{gathered} \text { CONNECT } \\ \text { OSCILLOSCOPE } \\ \text { TO } \end{gathered}$	CONNECT "VOLTOHMYST" TO	MISCELLANEOUS CONNECTIONS AND INSTRUCTIONS	ADJUST	$\begin{gathered} \text { REFER } \\ \text { TO } \end{gathered}$		
12	Not used		Not used		Not used	Junction of R170 and R171		Picture conirol tor -1 volis on meter	Fig. 16		
13	Antenna terminal (loosely)	$\begin{gathered} 175.25 \\ \text { and } \\ 179.75 \end{gathered}$	Antenna ferminals (see note for pre. caution)	$\begin{aligned} & \text { Sweep. } \\ & \text { ing } \\ & \text { channel } \\ & 7 \end{aligned}$	Junction C14 and R6 through 10,000 ohm series re. sistor	Not uged	lst i-i grid bypass to gnd, with 1000 mmi . Re. ceiver on channel 7	L25. L26. L51 and L52 ior approx. flat top response between markera. Markers above 70\%	Fig. 16 Fig. 17 (7)		
14	"	$\begin{aligned} & 181.25 \\ & 185.75 \end{aligned}$	"	channel	"	"	Receiver on chan. nel 8	Check to see that response is as above	Fig. 17 (8)		
15	"	$\begin{aligned} & 187.25 \\ & 191.75 \end{aligned}$	*	$\underset{9}{\text { channel }}$	-	-	Receiver on chan. nel 9	"	Fig. 17 (8)		
16	"	$\begin{aligned} & 193.25 \\ & 197.75 \end{aligned}$	"	$\underset{10}{c h a n e l}$	"	"	Receiver on chan. nel 10	'	$\underset{(10)}{ }$		
17	"	$\begin{aligned} & 199.25 \\ & 203.75 \end{aligned}$	"	$\underset{11}{\text { channel }}$	"	"	Receiver on chan. nel 11	"	$\begin{aligned} & \text { Fig. } 17 \\ & \text { (j) } \end{aligned}$		
18	"	$\begin{aligned} & 205.25 \\ & 209.75 \end{aligned}$	"	${ }_{12}^{c h a n n e l}$	"	"	Receiver on chan. nel 12	"	Fig. 17 (12)		
19	"	$\begin{aligned} & 211.25 \\ & 215.75 \end{aligned}$	"	$\underset{13}{c h a n n e l}$	"	'*	Receiver on channel 13	"	Fig. 17 (13)		
20	If the response on any channel (steps 14 throu to pull response up on that channel. Then			below 70\% at ei 13 through 19. Junction Cly and R6 through 10,000 ohm series resistor		er marker, switch to that channel and adjust L25, L26, L51			L52		
21				Fig. 17 (6)							
22	"	$\begin{aligned} & 77.25 \\ & 81.75 \end{aligned}$	"			$\underset{5}{\text { channel }}$	"	"	Receiver on chan. nel 5	Check to see that response is as above	$\text { Fig. } 17$
23	"	$\begin{aligned} & 67.25 \\ & 71.75 \end{aligned}$	"	$\underset{4}{\text { channel }}$	"	"	Receiver on channel 4	"	$\text { Fig }_{(4)} 17$		
24	"	$\begin{aligned} & 61.25 \\ & 65.75 \end{aligned}$	"	$\underset{3}{\text { channel }}$	"	"	Receiver on channel 3	'	Fig. 17 (3)		
25	"	$\begin{aligned} & 55.25 \\ & 59.75 \end{aligned}$	"	$\underset{2}{\text { channel }}$	"	"	Receiver on channel 2	"			
28	"	$\begin{aligned} & 45.25 \\ & 49.75 \end{aligned}$	"	channel 1	"	"	Receiver on channel 1	"	$\text { Fíg. } 17$ (1)		
27	If the response on any channel (steps 22 through 26) is below 70% at either marker, switch to that channel and adjust Lll, Ll2, L37 and L38 to pull response up on that channel. Then, recheck steps 21 through 26 . Remove 1000 mmf. capacitor from lst pix i.f grid upon completion.										

NOTE: lf sweep generator has "single ended" output, it will be necessary to use the terminating arrangement shown in Figure 9 , page 10 .

ALIGNMENT TABLE (Continued)
$721 \mathrm{TS}, 721 \mathrm{TCS}$
R-F OSCILLATOR ALIGNMENT

$\begin{aligned} & \text { STEP } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { SIGNAL } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$		CONNECT HETERODYNE FREQ. METER то		$\begin{gathered} \text { CONNECT } \\ \text { OSCILLOSCOPE } \\ \text { TO } \end{gathered}$	$\begin{aligned} & \text { CONNECT } \\ & \text { "VOLTOHMYST" } \\ & \text { TO } \end{aligned}$	MISCELlANEOUS CONNECTIONS instruc instructions	ADJUST	$\begin{aligned} & \text { REFER } \\ & \text { TO } \end{aligned}$
28	Antenna terminals	215.75	Loosely coupled to r-i ose.	237	Not used	Pln 1 of V116 tor sig. gen. melhod only	Fine tuning centered for all ad. justments Receiver on chan. nel 13	L77 and 178 for zero on meter or beat on het. treq. meter	Fig. 19
29 30	\cdots	209.75	"	231	"	"	Receiver on channel 12	176 as above	Fig. 18
30	"	203.75	"	225	"	"	Receiver on channel 1!	1.74 as above	'。
31	"	197.75	"	219	"	"	Receiver on channel 10	L72 as above	"
32	"	191.75	"	213	"	"	Receiver on chan nel 9	L70 as above	"
33 34	"	185.75	"	207	"	"	Receiver on channel 8	L68 as above	"
34	.	179.75	.	201	.	"	Receiver on channel 7	L66 as above	"
35	,	87.75	"	109	"	"	Receiver on chan nel 6	L63 and above	Fig. 19
36 	.	81.75	"	103	"	*	Receiver on channel 5	L62 as above	Fig. 18
38	"	7.75 65.75	"	93	"	"	Receiver on channel 4	L60 as above	"
38 39	"	65.75	.	87	"	"	Receiver on channel 3	L58 as above	"
39	,	59.75	,	81	"	"	Receiver on channel 2	256 as above	"
41		49.75	"	71	"	"	Receiver on channel 1	L54 as above	'

OSCILLATOR ADUUSTMENTS FOR CHANNELS 6 AND 13 ARE ON SIDE OF R:F UNIT

Figure 18-Iront Chassis Oscillator Adjustments

Figure 20-Typical Overall Response Curve

Figure 19—Bottom Chassis Oscillator Adjustments

RETOUCHING PICTURE I-F TRANSFORMERS

$\begin{aligned} & \text { STEP } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { SIGNAL } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$	SIGNAL GEN. FREQ. MC.	$\begin{aligned} & \text { CONNECT } \\ & \text { SWEEP } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$	$\begin{gathered} \text { HET. } \\ \text { METER } \\ \text { FREQ. } \\ \text { MC. } \end{gathered}$	CONNECT OSCILLOSCOPE TO	$\begin{aligned} & \text { CONNECT } \\ & \text { "VOLTOHMYST" } \\ & \text { TO } \end{aligned}$	MISCELLANEOUS CONNECTIONS AND instructions	ADIUST	$\underset{\text { TO }}{\text { REFER }}$
42			Not used		Not used	Junction and R107 R106		Picture control for -3 volts on meter	Fig. 19
43	Antenna terminals (loosely)	$\begin{aligned} & 23.0 \\ & 25.75 \end{aligned}$	Antenna torminals		Junction L104 and R118	Not used	Rotouch pix i-f tom, L101. T104 to sary to provid.	djustments (T3, botand L103) as necesoper response	Fig. 15 Fig. 14 Fig. 20

SENSITIVITY CHECK
44 Connect antenna to the receiver through the attenuator pad to provide a weak signal. Compare the picture and sound obtained to that obtained on other receivers under the same conditions.

Figure 21-Chassis Top View (Showing Location of Major Compowents)

NOTE: IN SOME RECEIVERS, LIO2 IS USED IN PLACE OF TIOA
Figure 22-Chassis Bottom View (Showing Location of Major Components)

Peak to peak voliages shown are nominal when 1 volt peak to peak video signal is applled to let video cumplifer (Vios).

Figure 24-Horizontal (1.0 Valts, P to P)

Figure 25--Vertical (5.0 Volts, P to P)

Figure 27-Vertical (32 Volts, P to P)

Figure 29-Vertical (8 Volts, P to P)

Figure 33-Vertical (10 Volts, P to P)

Input to Kinescope Grid
(Junction of L106 and Green Lead $\quad \longrightarrow$ to Kinescope Socket)

Figure 28-Horizontal (32 Volts, P to P)

Figure 30-Horizontal (8 Volts, P to P)

Figure 31-Vertical (90 Volts, P to P)

Pigure 32-Horizontal (90 Volts, P to P)

- Output of Sync Separator (Pin 6 of V106)
to Sync Sepa
(Pin 2 of V106)

Pigure 3f-Horizontal (10 Volts, P to P)

Figure 35 -Vertical (25 Volts, P io P)
Output of Integrating Network (Junction of R138 and C125)

Figure 38-Plate of Vertical Output Tube
(750 Volts,'P to P)
(Pin 5 of V107)

Figure 41-Horizontal Oscillator Control (45 Volts, P to P) (Junction R158 and R164)

Figure 44-Grid of Horizontal Output
(40 Volts, P to P)
(Pin 5 of V109)

Figure 47-Test Patlern Showing Out of Sync Condition When Horizontal Hold Control Is in a Counterclockuise Posi-tion-Just Before Pulling Into Sync

Figure 36-Grid of Vertical Oscillator Tube
(175 Volts, P to P)
(Pin 1 of V107)

Figure 39-Voltinge Across Ver. tical Deflection Coils (L108, L109) (90 Volts, P to P) (At Green Lead of T103 to Ground)

Figure 12-Grid of Horizontal Oscillator (400 Volts, P to P) (Pin 4 of V108)

Figure 45-Plate of Horizontal Output (Approx. 5000 Volis, P to P) (Measured Through a Capacity Divider Connected from Plate to Grownd)

Figure $48-$ Test Pattern Shouing Out Of Sync Condition W'hen Horizontal Hold Control Is at the Maximum Clockwise Position.

Figure 37-Input to Vertical Output Tube
(65 Volts, P to P)
(Junction of C129 and C130)

Figure 40-Horizontal Oscillator Waveforms and Sync Pulse (20 Volts, P to P) (Junction of C122 and C133)

Figure 43-Horizantal Oscillator Output (60 Volts, P to P) (Junction of C135 and C163)

Figure 46-Voliage Across Horizontal Deflection Coils (Approx. 1100 Volis, P 10 P) (Pin 4 or 6 of V111 so (Ground)

CRITICAL LEAD DRESS

1. Do not permit any strains to be placed on the leads of R126, R157. R158, R164, R165, R173, R188 and R191. Do not permit these re sistors to be exposed to the heat of a soldering iron any more than is absolutely necessary.
2. Dress the temperature compensating resistor Rl9l approxi mately one-quarter inch from the power transformer and the chassis.
3. Dress all video coupling capacitors and peaking coils up and away from the chassis.
4. Contazt between the r-f oscilla tor frequency adjustment screws and the oscillator coils or chan. nel switch eyelets must be avoided.

R196 wos omitted in receivers employ
ing on EM type magnet.

Note
In some receivers the green lead from
he $r-t$ unit is disconnected to ground os

Al All copacitonce values less, than 1 in MF
and obove I in MMF Unless otherwise
noted. Direction of orrows at controls indicates
clockwise rototion. All voltoges measured with "Voltohmyst"
 Coii resistance volues less than 1 ohm

 Optionol video peaking is provided by
the video peoking link. Normolly the link ilennected in ploce. However, it rion slents ore produced on high eontrast pic-
tures the elink should be opened. Sce tig-
ure is for locotion of the link.

MODEL 721TCS

ing on EM type mognet.
in some receives, R-149 was 3300 ohms .
In early production receivers, the resist-
ance of the focus coil wos 247 ohms.
R197 wos employed only in receivers
with the 247 -ohm focus coil.

MODEL 721TS

values in ohms. $k=1000$. ince values less than 1 in MF arro
tion.
meosured with "VoltOhmyst" ure control counterclockwise. ald hold within $\pm 20 \%$ with pply.

In some sets RIO8 is connected to -14V
In some sets L122, R195 and R193 are omitted.

In early production receivers an EM type of ion trop mognet was employed and was connected as shown by the dotted lines.

R196 was omitted in receivers employ ing an EM type magnet

In some receivers, the ontenna trap
(L8) L82, C21 and C22) may be omitted.
In some receivers, the bottom end of
Cl42 is connected to pin 4 of V1ll.

In some receivers; o single coil, LIO2, is used in place of TiO4. Llo2 is tuned to 26 mc .

In early production receivers the resist ance of the focus coil was 247 ohms.

R197 wos employed only in receivers with the 247 -ohm focus coil

Optional video peaking is provided by the video peaking link. Normally the link is connected in place. However, if tran sients ore produced on high controst pic ures, the link should be opened. See fig ure 49 for location of the link.

In some receivers R-149 is 3300 ohms

MODEL 721TCS

In eorly production receivers, on EM type of ion trop magnet was employed ond was connected as shown by the dotted lines.

REPLACEMENT PARTS

REPLACEMENT PARTS (Continued)

$\begin{array}{\|c\|} \hline \text { STOCK } \\ \text { No. } \end{array}$	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCAIPTION
72893	Resistor-Carbon film, type. 100,000 ohms, $\pm 1 \%$. $1 / 2$ watt (R173)	71772	Transformer-Power transformer, 115 volt, 60 cycle (T106)
	Resistor-Fixed composition, 100.000 ohms, $\pm 5 \%, 1$ watt (R164)	73150	Transformer-Power transformer, 115 volt, 50 cycle (T106)
	Resistor-Fixed composition, 120,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R135)	71424	Transformer-Sound if transformer Tl07 (Cl47, Cl48, L116, L117))
	Resistor-Fixed composition, 120,000 ohms, $\pm 10 \%$. 1 watt (R159)	71776	Transformer-Audio output transformer for Model 721TS only (T109)
	Resistor-Fixed composition, 150,000 ohms, $\pm 10 \%$. $1 / 2$ watt (R155)	71427	Transformer-Sound discriminator transformer Tl08 (C151, C152, C153, L118, L119))
	Resistor-Fixed composition, 180,000 ohms, $\pm 10 \%$. $1 / 2$ watt (R158)	73708	Transformer-Second pix, i-f transformer (T104, Cl21)
	Resistor-Fixed composition, 270,000 ohms, $\pm 10 \%$. 1 watt (R126)	72770 71777	Transformer-Horizontal uscillator transformer (L121) Yoke-Deflection yoke (L108, L109, L114, Ll15, C141. R101. R151)
	Resistor-Fixed composition, 330,000 ohms, $\pm 10 \%$. $1 / 2$ watt (R179)	71778	Trap-Sound trap (T101. Cl09)
	Resistor-Fixed composition, 470,000 ohms, $\pm 20 \%$, $1 / 2$ watt (R176. R184)		
	Resistor-Fixed composition, 560,000 ohms, $\pm 10 \%$. $1 / 2$ watt (R189)		SPEAKER ASSEMBLY 92565.1 W
	Resistor-Fixed composition, 560,000 ohms, $\pm 5 \%$, ${ }^{1 / 2}$ watt (R157)		FOR 721TS
	Resistor-Fixed composition, 1 megohm, $\pm 20 \%$, 1/2 watt (R121, R127, R131, R160)	71797	Speaker-4" $\times 6^{\prime \prime}$ elliptical E.M. speaker complete with cone and voice coil
	Resistor-Fixed composition, 1 megohm. $\pm 5 \%$, $1 / 2$ watt (R143)		
	Resistor-Fixed composition, 1 megohm, $\pm 20 \%$, 1 watt (R167)		SPEAKER ASSEMBLIES
	Resistor-Fixed composition, 1.5 meg., $\pm 10 \%$. $1 / 2$ watt (R139)		$\begin{gathered} 92567.3 W \\ \text { RL 70R4 } \end{gathered}$
	Resistor-Fixed composition, 2.2 meg.. $\pm 20 \%$, 1/2 watt (R146)		FOR 721 TCS
	Resistor-Fixed composition, 3.3 meg., $\pm 5 \%$. l watt (R165)	13867	Cap-Dust cap
	Resistor-Fixed composition, 3.9 meg.. $\pm 10 \%$. $1 / 2$	71557	Coil-Field coil (60 ohms)
	watt (R134)	11469	Coil-Neutralizing coil
	Resistor-Fixed composition, 6.8 meg., $\pm 20 \%$, $1 / 2$ watt (R171)	36145	Cone-Cone complete with voice coil
	Resistor-Fixed composition. 6.8 meg., $\pm 10 \%, 1 / 2$	71560	Plug-5 prong male plug for speaker
	watt (Rl40)	71556	Speaker- $12^{\prime \prime}$ EM speaker (60 ohms) complete with cone and voice coil less transformer and plug
	$\begin{gathered}\text { Resistor-Fixed composition, } 10 \mathrm{meg} . \\ \text { watt (R180) }\end{gathered} \quad \pm 20 \%, 1 / 2 \mathrm{~L}$	71145	Suspension-Mctal cone suspension
72738	Resistor-Wire wound, comprising 1 section of 1125 ohms, 20 watts and 1 section of 610 ohms, 20 watts (R153A, R153B)	31301	Transformer-Output transformer NOTE: If stamping on speaker in instrument does
72739	Resistor-Voltage divider, comprising 1 section of 8200 ohms, 5 watts: 1 section of 35 ohms, 0.8 watts; and 1 section of 100 ohms, 2 watts (R154A, R154B, R154C)		not agree with above speaker number, order replacement parts by referring to model number of instrument, number stamped on speaker and full description of part required.
71452	Sleeve-Rubber sleeve for focus coil		
71456	Screw-\#8.32 wing screw for deflection yoke (3 required)		
72741	Socket-Kinescope socket		MODEL 721 TS
31364	Socket-Lamp socket		MODEL 721TS
72773	Socket-Single contact female socket for Cl42		MISCELLANEOUS
71508	Socket-Tube socket for 8016 tube	72786 $\times 1648$	Back-Cabinet back Board-Baffle board
9914	Socket-Tube socket, miniature	72819	Bracket-Decorative bracket for front panel
72516	Socket-Tube socket, miniature (with shield attached)	72805	Decal-Control marker decal (use with control
72927	Socket-Tube socket, noval wafer type		\#71784)
31251	Socket-Tube socket, octal	73194	Decal-Control marker decal (use with control \#73193)
73249	Socket-Tube socket, octal, ceramic, plate mounted	71984	Decal-Trade mark decal
71453	Stud-Mounting stud for ic:cus coil (2 required)	71598	Escutcheon-Channel marker escutcheon
71775	Transformer-Vertical oscillator transformer (T102)	72113	Feet-Rubber feet for cabinet (4 required)
71774	Transiormer-Vertical output transformer (T103)	72818	Glass-Safety glass
71416	Transformer-Horizontal output and high voltage transformer (T105)	71539	Slide-Kinescope centering slide with rubber cushion (4 required)

REPLACEMENT PARTS (Continued)

$\begin{gathered} \text { STOCE } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\begin{gathered} \text { STOCR } \\ \text { No. } \end{gathered}$	DESCRIPTION
71534	Knob-Channel selector knob	71984	
71533	Knob-Fine tuning knob	71598	Decal-Trade mark decal
71536	Knob-Horizontal hold or picture control knob	71598	Escutcheon-Channel marker escutcheon
71537	Knob-Volume control and power switch knob	70126	Glass-Satety glass
71535	Knob-Volume control and power switch, vertical hold or brightness control knob	13103	Jewel-Pilot lamp cap
72817	Plate-Retaining plate complete with wing nut and	71534	Knob-Channel selector knob
72817	spring for top section of cabinet front (2 required)	71533	Knob-Fine tuning knob
14270	Spring-Relaining spring for knobs, \#71535, \#71537	71536	Knob-Horizontal hold or picture control knob
	and \#71534	71537	Knob-Volume control and power switch knob
30330 4982	Spring-Retaining spring for knob \#71536	71535	Knob-Volume control and power switch, vertical
4982 71538	Spring-Retaining spring for knob \#71533 Spring-Spring clip for escutcheon		hold or brightness control knob
71538	Spring-Spring clip for escutcheon	11765	Lamp-Pilot lamp--Mazda 51
	MODEL 721 TCS	72817	Plate-Retaining plate complete with wing nut and spring for removable section of cabinet front panel (2 required)
	MISCELLANEOUS	71539	Slide Kinescope centering slide with rubber cushion (4 required)
72786	Back-Cabinet back	4982	Spring-Retaining spring for knob \#71533
72819 71599	Bracket-Grille bracket to hold baffe Bracket-Pilot lamp bracket	14270	Spring-Retaining spring for knobs \#71534, \#71535
72805	Decal-Control panel decal (for control \#71784)	30330	Spring-Retaining spring for knob \#71536
73194	Decal-Control panel decal (for control \#73193)	71538	Spring-Spring clip for escutcheon

APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS

ELECTRICAL AND MECHANICAL SPECIFICATIONS

RADIO TUNING RANGE
Broadcast
Frequency Modulation
Intermediate Frequency-AM
Intermediate Frequency--FM
PICTURE SIZE

TELEVISION R-F FREQUENCY RANGE

All 13 television channels. 44 mc to $88 \mathrm{mc}, 174 \mathrm{mc}$ to 216 mc RECEIVER ANTENNA INPUT IMPEDANCE . 300 ohms, balanced POWER SUPPLY RATING
Television Operation 115 volts. 345 watts Radio Operation ... 115 volts, 90 watts Phonograph Operation 115 volts, 110 watts
AUDIO POWER OUTPUT RATING
Undistorted Power Output .. 5 watts
Maximum Power Output .. 6.5 watts

CHASSIS DESIGNATIONS

Television Chassis
KCS27-1
Radio Chassis RC 610A (730TV1), RC 610B (730TV2)

LOUDSPEAKER (92569.1)

Type .. 12-inch PM Dynamic Voice Coil Impedance 2.2 ohms at 400 cycles
RECORD PLAYER
RP177 In 730TV1 and 730TV2
Refer to Service Data RP177 for information on record player.

RCA TUBE COMPLEMENT

HIGH VOLTAGE WARNING

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCR HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RE CEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. dO NOT OPERATE THE RECEIVER WITH THE HIGH VOltage COMPARTMENT SHIELD REMOVED.

KINESCOPE HANDLING PRECAUTIONS

DO NOT OPEN THE KINESCOPE SHIPPING CARTON, INSTALL, REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

[^16]
TELEVISION OPERATION

The following adjustments are necessary when turning the receiver on for the first time

1. Turn the radio FUNCTION switch to Tel.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid position
3. Set the STATION SELECTOR to the desired channel
4. Turn the PICTURE control fully counter clockwise
5. Turn the BRIGHTNESS control clockwise, until a glow appears on the screen, then counter clockwise until the glow just disappears.
6. Adjust the HORIZONTAL hold control until a picture is obtained and centered.
7. Adjust the PICTURE control for suitable picture contrast.
8. After the receiver has been on for some time, it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.
9. In switching from one station to another, it may be necessary to repeat steps number 7 and 10 .
10. Turn the PICTURE conrrol clockwise until a glow or pattern appears on the screen
11. Adjust the FINE TUNING control for best sound fidelity and SOUND VOLUME for suitable vol. ume.
12. Adjust the VERTI CAL hold control until the pattern stops vertical measurement.

Figure 1-Receiver Operating Controls
13. When the set is turned on again after an idle period, it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. H any adjustment is necessary, step number 7 is generally sufficient.
14. If the positions of the controls have been changed, it may be necessary to repeat steps num. ber 2 through 10.

RADIO OPERATION

1. Turn the radio FUNCTION switch to the desired band (BC or FM).
2. Tune in the desired station with the TUNING control

PHONOGRAPH OPERATION

1. Turn the radio FUNCTION switch to Pho.

MANUAL OPERATION

2. Slide the changer power switch to "ON."
3. Move the changer tone arm over to the pickup rest position, or, it the changer is in cycle and the arm cannot be moved, push the Record Changer Control Lever to the manual position until the arm stops in the rest position.
4. Place the record on the turntable.
5. Lift the pickup arm from the rest position and place the needle in the outer groove of the record.

AUTOMATIC OPERATION

6. Move the changer tone arm over to the pickup rest position, or if changer is in cycle and the arm cannot be moved, push the Record Changer Control Lever to the manual posi. tion until the arm stops in the rest position.
7. Turn the Record Support Shelf on the left side of the changer to the position corresponding to the size of record to be played.
8. Place the stack of records over the turntable spindle and on the Record Supports
9. Push the Record Changer Control Lever to the reject position and release. The changer will cycle automatically and will stop after the last record has been played.

REFER TO PAGES 395 TO 406 INC. FOR ALIGNM ENT PROCEDURE, SERVICE SUGGESTIONS AND WAVEFORM PHOTOGRAPHS.

INSTALLATION INSTRUCTIONS

Models 730TV1 and 730TV2 television receivers are shipped complete in one carton except for the 10BP4 kinescope. The kinescope is shipped in a special carton and should not be unpacked until ready for installation.

UNPACKING The 730TV1 is shipped in a cardboard carton. To unpack the receiver, turn the shipping carton on its side and tear open the carton bottom flaps. Fold the tlaps up along the side of the carton and turn the carton back ups. Lift the carton up and off of the cabinet.

The 730TV2 is shipped in a plywood case. To open, remove the front side as indicated on the case. If the front is te moved by prying, do not permit the prying tool to enter the case as the cabinet may become scratched. Remove the shipping case rail across the front of the cabinet. Do not rcmove the two rail support screws on each side of the cabinet. Slide the cabinet out of the case by pulling on each side of the cab-
inet shipping skid.

The flat skid attached to the bottom of the receiver cabinet which will permit the cabinet to be moved about without danger of breaking a cabinet leg or stressing the cabinet joints. This skid should be left on the cabinet until the receiver is placed on display or installed in the home. To remove the skid, take off two nuts on the inside of the cabinet as shown in Figure 2. Then, with a man at each end of the cabinet. lift the cabinet off the skid
Remove the front panel by removing two ornamental screws at the top of the panel as shown in Figure 4.
The operating control knobs are packed in a paper bag which is stapled to the inside of the cabinet. Remove the bag and
install the knobs on the control shafts.

Remove the protective cardboard shield from the 5U4G rectifier. Make sure all tubes are in place and are firmly seated in their sockets.

Loosen the channel nut at each corner of the changer as shown in detail B in Figure 2 and remove the two wooden shipping
strips.

Remove the sapphire guard clip from the record changer tone arm as shown in detail A in Figure 2.
Loosen the two wing screws shown in detail C of Figure 2 and take off the changer motor shipping bracket.
In 730TVl receivers remove the two red " J " bolts holding the radio chassis. In 730 TV 2 receivers, loosen the radio mounting screws, remove the two wooden shipping strips, then tighten.
Take off the television compartment back grille. Loosen the two kinescope cushion adjustment wing screws and slide the cushion toward the rear of the chassis, Loosen the deflection yoke adjustment, slide the yoke toward the rear of the chassis and tighten. See Figure 3 for the location of the cushion and

From the front of the cabinet. look through the deflection yoke and check the alignment of the focus coil with the yoke. It the focus coil is not in line, loosen the three focus coil adjustment wingnuts and raise, lower, or rotate the coil until align-
ment is obtained. Tighten the wingnuts with the coil in this ment is obtained. Tighten the wingnuts with the coil in this
position.

Loosen the two lower kinescope face centering slides, and set them at approximately mid position. See Figure 4 for location of the slides and their adjustment screws. Loosen the

Figure 2-Removal of Shipping Material

Figure 3-Yoke and Focus Coil Adjustments

Figure 4-Cabinet, Front View
KINESCOPE HANDLING PRECAUTION-Do not open the kine scope shipping carton, install, remove, or handle the kinescope in any manner, unless shatterprool goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope cway from the body while handling. The shipping carton should be kept for use in case of future moves.
INSTALLATION OF KINESCOPE-The kinescope second anode contact is a recessed metal well in the side of the bulb. The tube must be installed so that this contact is approximately on top. The final orientation of the tube will be determined by the position of the ion trap flags. Looking at the kinescope gun structure, it will be observed that the second cylinder from the base inside the glass neck is provided with two small metal flags. The kinescope must be installed so that when looking down on the chassis, the two flags will be seen as shown in Figure 5.

Figure 5-Ion Trap Flags
Insert the neck of the kinescope through the deflection and focus coil as shown in Figure 6 until the base of the tube protrudes approximately two inches beyond the focus coil. If the tube sticks, or fails to slip into place smoothly, invest. gate and remove the cause of the trouble. Do not force the tube.
Early production receivers employed an EM type ion trap magnet like that in the model 630TS receiver. Late production receivers employed a PM type magnet as shown in Fiqure 3. If an EM type is employed, slip the assembly over the neci of the kinescope with the coils down and the large coil to wards the base of the tube. Tighten the magnet adjustment thumbscrews sufficiently to hold it in position but still free enough to permit adjustment.

If the PM type is employed, slip the assembly over the neck of the kinescope with the large magnet towards the base of the tube and with the arrow on the assembly up as shown in Figure3. The front magnet is movable on the assembly. The correct position is with the gap of the front magnet to the left (from the rear of the chassis) and even with the gap of the rear magnet.

CAUTION-In inserting the kinescope, care should be taken not to push the tube so far into the cabinet that it can tall of the lower centering slides. To do so would place a strain on the neck of the tube and possiby cause the tube to break. Adjust the four centering slides until the face of the kinescope is in the center of the cabinet opening. Tighten the four slides securely.
Wipe the kinescope screen surface and front panel safety glass clean of all dust and finger marks with a soft cloth moistened with the Drackett Co.'s "Windex" or similar cleaning agent.

Figure 6-Kinescope Insertion
To install the front panel, place the recess in the lower edge of the panel in the lip below the kinescope opening and push the top of the panel in. Insert the two ornamental screws into the front of panel as shown in Figure 4.
Slip the kinescope as far forward as possible. Slide the kinescope cushion firmly up against the flare of the tube and tighten the adjustment. wing screws. Slide the deflection yoke as far forward as possible. Connect the high voltage lead to the kinescope second anode socket.
The antenna and power connections should now be made. Turn the power switch to the "on" position, the brightness control fully clockwise, and picture control counter clockwise.

ION TRAP MAGNET ADJUSTMENT-The ion trap rear magnet poles should be approximately over the ion trap flags as s.own in Figure 3. Starting from this position adjust the mag. net by moving it forward or backward, at the same time ro tating it slightly around the neck of the kinescope for the brightest raster on the screen. Tighten the magnet adjust ment thumbscrews sufficiently to hold it in this position but still free enough to permit further adjustment. Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust the focus control (R129 on the chassis rear apron) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches on this adjustment should be made with the brightness control at the maximum position with which good line focus can be maintained.
FOCUS COIL ADJUSTMENTS-Tum the centering controls R152 and R166 to mid position. See Figuce 7 for location of these rear apron controls.
It a corner of the raster is shadowed, it indicates that the electron beam is striking the neck of the tube. Loosen the focus coil adjustment wing nuts and rotate the coil about its vertical and horizontal axis until the entire raster is visible, approximately centered and with no shadowed comers. Tighten the focus coil adjustment wing nuts with the coil in this position.

DEFLECTION YOKE ADJUSTMENT- If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE ADJUSTMENTS-It will now be necessary to obtain a test pattern picture in order to make further adjustments. See steps 2 through 9 of the receiver operating instructions on page 3

Figure 7-Rear Chassis Adjustments
CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT-Tum the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync. Mo mentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal bars will be gradually reduced and when only $3^{1 / 2}$ to $4^{1 / 2}$ bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull in should occur when the control is approximately 90 degrees from the extreme counterclockwise position. The picture should remain in bync for approximately 90 de grees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should be out of sync and should show $3^{1 / 2}$ to $4^{1 / 2}$ bars sloping downward to the right.
If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Focus" adjustment.

ALIGNMENT OF HORIZONTAL OSCILLATOR-If in the above check the receiver failed to hold sync with the hold control at the extreme counterclockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull in point. it will be necessary to make the following adjustments.
Horizental Frequency Adjustment-Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the rear apron horizontal frequency trimmer C136C until the picture is out of sync and shows $31 / 2$ to $41 / 2$ bars sloping downward to the right. If the trimmer has insufficient range set the trimmer to mid-range (1 turn from maximum capacity) and adjust the $L 121$ horizontal frequency adjustment until this condition is obtained. See figure 21 for the location of L121.

Horizontal Lock in Range Adjustment - Set the horizontal hold control to the full counter-clockwise position. Mortentarily re. move the signal by switching off channel then back.
Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.
If more than $41 / 2$ bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer C136A slightly clockwise. If less than $3^{1 / 2}$ bars are present, adjust Cl36A slightly counterclockwise. Turn the horizontal hold control counterclockwise, momentarily remove the signal and recheck the number of bars present at the pull in point. Repeat this procedure until $31 / 2$ to $4 \frac{1}{2}$ bars are present.
Repeat the adjustments under "Horizontal Frequency Adjustment" and "Horizontal Locking Range Adjustment" until the conditions specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS-Adjust the height control (RI4l on chassis rear apron) until the picture fills the mask vertically ($63 / 8$ inches). Adjust vertical linearity (R148 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust vertical centering to align the picture with the mask.

WIDTH, DRIVE AND HORIZONTAL LINEARITY ADJUSTMENTS

 -Turn the width control L112 to the maximum clockwise position. Vary the horizontal drive trimmer C136B to yield the best compromise between brightness and linearity. Adjust the horizontal linearity control L113 for best linearity of the right half of the picture. Readjust the width control until the picture just fills the mask. Adjust horizontal centering to align the picture with the mask.FOCUS-Adjust the focus control (R129 on chassis rear apron) for maximum definition in the test pattern vertical "wedge." Check to see that all cushion, yoke, focus coil and ion trap magnet thumb screws are tight.
CHECK OF R-F OSCILLATOR ADJUSTMENTS-Tune in all available television stations to see it the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjust ments are required, these should be made by the method outlined in the alignment procedure. The adjustments for channels 1 through 5 and 7 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 8. Adjustments for channels 6 and 13 are under the chassis.

Figure 8-R-F Oscillator Adjustments

VIDEO PEAKING LINK-A video peaking link is provided to permit changing the video response. This link is connected at the tactory with the peaking in. However, if transients are produced on high contrast pictures the peaking should be taken out by removing the link on the terminal board under the chassis near the V104 socket.
Observe the picture for detail, for proper interlacing and for the presence of interference or reflections.
ANTENNA TRAP-In some instances interference may be encountered from FM stations thet are on the image frequency of channel 2. In other instances, interference may be observed on channel 6 from a station on channel 10 or on channel 5 from a station on channel 7.
In some sets a series resonant trap across the r-f amplifior arid circuit is provided to eliminate this type of interference. To adjust the trap in the field, tune in the station on which the interference is observed. Tune both cores of the trap for minimum interference in the picture. See Figure 20 or the location of the trap. Keep both cores approximately the scme by visual inspection. Then, turn one core $1 / 2$ turn from the original position and repeak the second for maximum rejection. Repeat this process until the best rejection is obtained. In severe cases of interference it may be necessary to reorient the antenna to eliminate the interference.
RADIO OPERATION-Tum the receiver function switch to AM and FM positions and check the radio for proper operation. In switching from radio to television or from television to radio, approximately 30 seconds warm-up time is required.
RECORD CHANGER OPERATION-Move the tone arm to the rest position. Place a record on the turntable. Tum the record shelf to the position to take the size of records used. Place a stack of records on the shelf. Turn the radio function switch to phono position. Pull the record changer control switch to the reject position and release.

Figure 9-Radio Schemasic Diagram

RADIO ALIGNMENT PROCEDURE

If any lead dressing is necessary, it should be done before aligning the receiver. See Critical Lead Dress on page 12 , Before aligning set, completely mesh the gang condenser and set the dial pointer to the mechanical max. calibration point at ex treme left end of dial.
When making a complete alignment, follow the tabulated form below in sequence
If only a portion of the circuit is to be aligned, select the portion required and follow with the remaining steps in the chart
Any adjustments made on the FM 10.7 mc I-F's make it necessary to adjust the AM 455 kc . $1-\mathrm{F}^{\prime} \mathrm{s}$.
FM ALIGNMENT
"FM" RATIO DETECTOR ALIGNMENT
SET RANGE SWITCH TO FM POSITION

Steps	Connect High Side of Osc. to-	Tune Osc. to-	Adjust
1	Connect d-c probe of a "Voltohmyst" to the negative lead of the 5 mid electrolytic capacitor C20. Connect the common laad of the meter to chassis. Connect an output meter across the speaker voice coil, and turn the receiver volume control to maximum.		
2	Driver grid (pin \#1) of V4 in series with .01 mfd	10.7 mc.. 30% mod., 400 cycles AM Output approx. .l volt	Ratio Detector transformer T5 top core for maximum d.c voltage across C20 (Approx. 4 volts) T5 bottom core for minimum audio output.
3	Repeat the adjustments in step 2 until no improvements can be obtained.		

"FM" R-F-I-F ALIGNMENT
HANGE SWITCH SET IN FM POSITION

Stops	Connect the High Side of the Test Osc. to-	Connect Ground Side of the Test Osc.	Tune the Osc.	Radio Dial Tuned to-	Adjust
1	Connect "Voltohmyst" d-c probe to negative lead of C20 and the meter common lead to chassis ground.				
2	One ant. term. in series with .01 mid .	Other ant. term.	$10.7 \mathrm{mc} ., 30 \%$ modulated at 400 cycles AM output sufficient to provide 2 to 3 volts indica. tion on "Volt. Ohmyst" dur. ing alignment.	Max. Cap. (Fully meshed)	T3 and Tl top and bottom cores altemately loading pri. and sec. of each transformer with 680 ohms while the opposite side of the. same trans. former is being adjusted. Ad. iust all transformers for maximum voltage across C20.
3	One ant. lerm. in series with 120 ohms.	Other ant. term. in series with 120 ohms.	106 mc	106 mc	Osc.C54; Ant.C52 for max, read. ing on the "Vollohmyst."
4	"	"	90 mc	90 mc	Osc.L3; Ant.L2 for max. read. ing on the "Voltohmyst."

AM ALIGNMENT

Test-Oscillator.-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.
Output Meter.-Connect the meter across the speaker voice coil, and tum the receiver volume control to maximum.

Stops	Connect the High Side of the Test Osc. to-	$\begin{aligned} & \text { Tune Test Osc. } \\ & \text { to- } \end{aligned}$	Range Switch	Turn Radio Dial to-	Adjust the following
1	Pin \#7 of 6BE6 (V2) in series with .01 mid	455 kc.	"A" Band	Quiet point at low Freq. end of Dial	- Top and bottom cores of T2 and $T 4$. (For max. voltaqe across voice coil.)
2	Ant. term. \#2 through dummy ant. comprised of 200 mmf	1400 kc.	"A" Band	1400 kc.	Osc.-C56: Ant.-C58. (For max. voltage acros: voice coil.)
3	"	600 kc .	"A" Band	600 kc.	Osc.-L7: Ant.-L5. (For max. voltage ccross voice coil.)
5	Repeat steps 3 and 4 for maximum output.				

- It is necessary to alternately load the primary and secondary of each 455 .kc. i.f transformer with 47.000 ohms while the op posite side of the same transformer is being adjusted.

Critical Lead Dress

1. Dress capacitor Cl near chassis base.
2. Dress lead from pin 5, V-1, to terminal C. of transformer Tl , as near bottom of FM shelf as possible.
3. The lead trom capacitor C29 to the high side of the volume control must be dressed next to chassis along front apron.
4. Dress resistor R20 near chassis base
5. Dress all A.C. leads away from volume control.
6. Solder FM antenna coil primary leads to terminal board with as short a lead length as is practical.
7. Make all FM leads as short as possible.
8. The lead from pin 2, V-3, to chassis ground must be dressed as close to base and as near to the back apron as possible. This lead provides degen. eration for the IF stage and neither its length nor the point at which it is grounded to the chassis should be chonged.
9. Dress all leads away from the 3300 ohm resistors R28 and R29.
10. Dress lead from dummy terminal \#3 on S1 to CS8 away from "A" band oscillator coll.

Figure 10-Chassis, Top View, Showing Adjustments

Figure 11-Radio Panel Controls

Figure 12-Speaker Connections

Figure 13-Dial and Drive Cord Assembly

The dial scale drawing shown is a full size reproduction. It can be used as a relerence during alignment.
Figure 14--Radio Dial Scale

RADIO SIMPLIFIED SCHEMÅTICS

Figure 15-Simplified Schematic—Shown in "A" Band Position

Figure 16-Simplified Schematic-Shou's in FM Position

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	description	$\begin{gathered} \text { stock } \\ \text { so. } \end{gathered}$	description
71504	TELEVISION R.F UNIT KRK2B. 1	${ }^{14}$	Segment-Converter grid section front segment-less coils or rif amplifier plote section front segment
71500		71474	legs coils (Part of S2,
${ }_{71502}^{71520}$	-apucilor--Ceramic. 2.2 mmit (Ci0)		colis or ret amplifiter plate section rear segr
45466		71467	
33101	Capacitor-Ceramic. 22 mmt ((C14)		(Part of S4)
7540 6401		14	Segment-Oscillator section rear segment-less coils
71501	Capacitor-Ceramic. 1500 mm . (C5. C8, C9, C11, C17)	72951	Shield -Lead tube shield for V3
72122		71494	Socket-Tube socket - min
		71461 71466	Spring-Snap sping 10 hold fine tuning rotor Stator-Oscllator fine tuning stator and bushina
21479	Coil-Channels $=2$ and $=3 \mathrm{rt}$ amplitier plate coilfront or rear section or channels $=2$ and \#4 con. verter grid coil-front or sear section (L3, L4, L5,	$\begin{aligned} & 751507 \\ & 72811 \end{aligned}$	(Fart of Cl5) Iransformer-Antenna transformer (T1) Transformer - Converter transformer (T3, C20)
71480	Coil Channel $\neq 4 \mathrm{r} .4$ amplifier plate coil-front or rear section (L7. L8)		TELEVISION CHASSIS KCS 27.1. KCS 27.2
71481	Coil-Channel $=5 \mathrm{r} . \mathrm{f}$ amplifier plate coil-front or rear section or channel $\# 5$ converter grid coilL35, L36	$\begin{aligned} & 71994 \\ & 72435 \end{aligned}$	Bearing-Bearing for $\mathrm{r} \cdot \mathrm{t}$ unit shaft Cable-R.F cable complete with 2 prong male plug
71492	Coil-Channel $\ddagger 6$ oscillator, converter grid or $\mathrm{r}-\mathrm{A}$ amplifier plate coil front or rear sections (L11, L12. $137 \quad$ L38 L63. 164	728	Cable-Shielded audio cable complete with pin plug (37 Jong) Capacitor Mica. 5 mmt (C165)
71491	Coil-Channel $=13$ converter grid $\mathrm{r}-1$ amplifies plate coil - rear section (L25, LS1)	72615 39620	Capacior-Mica. 10 mmi ((C113) Capacior-Mica, 47 mmi (16169)
1490		${ }_{45469} 5$	Capacior-Meramic. 100 mml ((C110)
	plate coil-front section (L26, L52)	${ }^{3962888}$	Capaciior-Mica, 100 mmj (${ }^{\text {Cl192) }}$
72597	Coil-Channel $=3$ converter grid coil-front or rear section (L31, L32)	${ }_{7}^{39630}$	Capacito-Mica, 120 mml . (C122, Cl33) Capacior-Mica. 180 mmt .. 1000 volis (C162)
71469	Coil-Channe! $=1$ oscillator coil-front or rear section (L.53. L54)	73091	Capacitor-Mica, $270 \mathrm{mml} ., 1000$ volts (C104, Cl08. Cl12. C156)
71471	Coil-Channel $\# 5$ oscillator coil-front section or channel $=2$ oscillator coil-rear section (L55, L62)	$\begin{aligned} & 73094 \\ & 71450 \end{aligned}$	Capacitor-Mica, 390 mml .1000 volts (C135, Cl64) Capactor-Hi-voltage capacitor, 500 mml . (Cl42)
71470	Coil-Channels $\# 2, \# 3$ and \#4 oscillator coilfront sections (L56, L58, L60)	71501	Capacitor-Ceramic. 1500 mm . (C102, C105, C106. C107, C111, C114. C145, C146, C150)
72552 7253	Coil-Channel ${ }^{\text {a }} 3$ oscillator coil-rear section (L57), Coil-Channel $=4$ oscillator coil-rear section (L59)	39660 72524	Capacitor-Mica, $2200 \mathrm{mmf}$. (C163)
72553 71472	Coil-Channel		
7148971488	Coil-Channel \#13 oscillator coil-rear section (L77)		10.160 mmf . and 2 sections of 40.370 mmf . (C136A,
	Coil-Channel $=13$ oscillatar coil-front section (L78)		C1368. C136C)
71505 71506	Coil-Heater choke coll (L79)	70601	Capacitor-Tubular, 002 mmd , 400 volit (C123)
$\begin{aligned} & 71506 \\ & 71493 \end{aligned}$	Coil-Converter grid i.f coil (L80) Connector-Segment connector	70622 70606	Capacitor-Tubular, $002 \mathrm{mld}$. . 600 volts (C134) Capacitor-Tubular, 005 mid., 400 volts (C124, C125)
71493 7159	Core-Channel \#13 front or rear oscillator coils' adjustable core and stud	73100	Capacitor-Tubular, oil impregnated, .035 mid. 1000 volts (C139)
498	Core-Channels $\# 6$ and $\# 13$ front and rear con. verter grid coils or front and rear r.t amplifier plate coils' adiustable core and stud	70610	Capacitor-Molded papert. 01 mid.. 400 volts (C143. C144) Capacitor-Tubular 01 mid 400 volts (C149)
71497	Core-Channel $\# 6$ front and rear oscillutor coils'		Capacitor-Tubular, 02 mid., 400 volts (C167)
	adjustable core and stud	70615	Capacitor-Tubular, 05 mid., 400 volts (C103, C115,
72743 71465	Detent-Detent mechanism and fiber shaft Disc-Rolor disc for fine tuning control (Part of C 15)	70636	
7274471487	Drive-Fine tuning drive	101	Capacitor-Tubular, oil impregnated, 0.1 mid., 1000
	Form-Coil form only for channels $\# 6$ and $\# 13$ coils -less winding	70618	volts (C130, C140) Capacitor-Tubular, $0.25 \mathrm{mid} ., 400$ volts (C101, C117.
71462	Loop-Ossillator to converter grid coupling loop		C129, C137, C161)
	Resistor-Fixed composition, 47 ohms $\pm 20 \%, 1 / 2$ watt (R8) Resistor-Fixed composition, 150 ohms $\pm 10 \%, 1 / 2$ watt (R3, R11. R13)	72736	Capacitor-Electrolytic. comprising 1 section of 10 mid., 400 volits, 1 section of 30 mid. 350 volis and 1 section of 30 mid.. 250 volis (C116A, C116B, C116C)
	Resistor-Fixed composition, 1000 ohms $\pm 20 \%$, $1 / 2$ watt (R4. R12, R14)	71780	Capacitor-Electrolytic. comprising 1 section of 80 mid.. 450 volts and 1 section of 10 mid., 450 volts (c127A. 127 B
	Resistl (R1, R2, R7) wat Resistor-Fixed composition, 10.000 ohms $\pm 10 \%$, $1 / 2$ watl (R5) Resistor-Flxed composition, 100,000 ohms $+20 \%$,	11781	Capacitor-Electrolytic, comprising 1 section of 40 mid., 450 volts: 1 section of 40 mid. 150 volls: and 1 section of 130 mid.. 50 volts (C128A, C128B, C128C)
	```watt (R9. R10) Resistor-Fixed composition, 1 megohm }\pm20%\mathrm{ , 1/2 watt (R6)```	71782	Capacitor-Electrolytic, comprising 1 section of 40 mid., 450 volts and 1 section of $10 \mathrm{mfd} ., 350$ volts (C131A, C131B)
${ }_{7}^{14343}$	Ring-Retaining ring for drive   Scrow- $4.40 \times{ }^{1 / 9}$ " adjusting screw for coils L54.   L56, L58, L60 and L62	71436	Capacitor-Electrolytic. comprising 1 section of 250 mid. 10 volts and 1 soction of 1000 mid.. 6 volts C132A, Cl32B)
71476	Screw- \#4.40 $\times 1 / 4$ " binder head screw for adiusting coils L66, L68, L70, L72, L74 and L76	$\begin{aligned} & 7190 \\ & 7429 \end{aligned}$	Choke-Filter choke Coil-First, or third pix i-f coil (L101, L103)


$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	description
71793	Coil-Peaking coil (L104, L107)		Resistor-Fixed composition, 8200 chms $\pm 10 \%, 1 / 2$
${ }_{71529}^{7159}$	Coil Peaking coil (1105. R119, L106, R123)		Watt (R137, R139, R172)
${ }_{71429} 7$	Coil-Width control coil (L112)		Resistor (fixed composition, watt (R106, 1866 , R188)
71449	Coil-Horizontal linearity coil (L.113)		Resistor-Fixed composition, 12.
72770	Coil-Horizontal oscillator coil (1.121)		watt (R107)
73	Coil-Focus coil (L120)		Resistor-Fixed composition, 15.000 ohms
71789	Connector-Kinescope anode connector		Resistor-Fixed composition, 15.000 ohms
71521	Connector-Hivoltage capacitor lead connector		watt (R130)
71784 73193	Control-Brightness and picture control (R108, R128) (use with decal \#73028 or \#73045)		Resistor-Fixed composition, 22.000 chms $\pm 20 \%, 1 / 2$ watt (R136, R177)
73193	Control-Brightness and pitture control (R108, R128) (use with decal \#73196 or \#73197)	72928	Resistor-Temperature compensating resistor, 30,000 ohms, 1/4 watt (R191)
72735	Control-Focus control (R129)		Resistor-Fixed composition. 56.000 ohms $\pm 10 \%$,
71440	Control-Height control (R141)		watt (R142)
43	Control-Horizontal centering or vertical centering control (R152, R166)		
72734	Control-Vertical and horizontal hoid control (R144, R156)		Resistor-Fixed composition, 100.000 ohms $\pm 5 \%$ watt (R164)
71441 72065	Contol-Vertical linecrity control (R148)		Resistor-Fixed composition, $100,000 \mathrm{chms} \pm 10 \%$ watl (R145)
72065 71437	Cord-Power cord and plug		
21437	Cover-- Insulating cover for electrolytics RCA \#71780 and RCA $=7178$ !		Resistoz-Fixed composition. 100.000 ohms wall (R133)
71783	Cover-Insulating cover for electrolytics RCA $=71436$ and $\mathrm{RCA}=71782$		Resistor-Fixed composition, 100,000 ohms $\pm 5$ watt (R181. R182)
72772	Cover-Insulating cover for electrolytic RCA \#72736	72893	
71509	Cushion-Deflection yoke hood upper cushion only		
71510 71792	Cushion-Deflection Yoke hood botlom cushion only Magne:-lon (rap magnet (L110, L 111$)$		wat: (R135)
72737	Nut-Speed nut tor fostening r t unit shield		Resistor-Fixed composition, 120,000 ohms $\pm 1$
71455	Nut $-=8.32$ wing nut for mounting focus coil		Resistor-Fixed composition, $150,000 \mathrm{ohms}=$
18469	Plate-Bakelite mounting plate for electrolytic capacitors		Resistor-Fixed composition, 180,000 ohms $\pm 10 \%$,   ${ }^{1}{ }_{2}$ watt (R158)
310   714	Plug-Pin plug for audio cable		Resistor-Fixed composition, 270.000 ohms $\pm 10 \%$
72850	Plug-2.prong male plug for $\mathrm{r}=\mathrm{d}$ cable		(tar-Fixed composition, 470.000
72067	Resistor-Wire wound, 3.3 ohms, \% ${ }^{3}$ watt (R187)		
	Resisto-Wire wound, 5.1 ohms. is watt (R190)		Resistor-Fixed composition. 560.000 ohms $\pm 5$ watt (R157)
			Resistor-Fixed composition, $560,000 \mathrm{chms}+$
	Resistor-Fixed composition, 47 oh		watt (R189)
	Resistor-Fixed composition, 82 ohms $\pm 10 \%$, $1 / 2 \mathrm{watt}$ (R174)   Resistor-Fixed composition, 82 ohms $\pm 10 \%$, 1 watt	72849	Resistor-Voltage divider consisting of 1 and 1 section of 85 ohms, 2 watt, (R105a. R105b. R105c)
	(R162)   esistor-Fixed composition, 150 ohms $\pm 10 \%$.	72848	Resistor-Wire wound consisting of 1 section of 700   ohms, 12 watts and 1 section of 510 ohms, 10 watts
	stor-Fixed composition, 560 ohms $\pm 10 \%$, 1/2		(R161a. R161b)   Reslstor-Fixed composition. 1 megohm
	tor-Fixed		Resistor-Fixed composid
	-		sistor-fixed composition, watt (12121, H127, R131,
	Resistor-Fixed composition, 1000 ohms $\pm 10 \%$. 1/2 wall (R109, R125)		Resistor-Fixed composition. 1 megohm walt (R167)
	sistor-Fixed composition, 1000 orms $\pm 20 \%$, 1/2 watt (R104, R110, R113, R117, R!50, R178)		Resistor-Fixed composition, 1.5 megohm $\pm 10 \%, 1 / 2$
	istor-Fixed composition, 1200 ohms $\pm 10 \%$, all (R175)		Resistor-Fixed composition, 2.2 megohms $\pm 20 \%, 1 / 2$
	stor-Fixed composition, 3300 ohms, $\pm 5 \%$,		watt (R146)   Resistor-Fixed coniposition, 3.3 megohms
	$\begin{aligned} & \text { att (R193) } \\ & \text { stor }- \text { Fixed } \end{aligned}$		watt (R165)
	(R122)		Resistor-Fixed composition, 3.9 megohm watt (R134)
	esistor-Fixed composition, 3300 ohms		Resistor-Fixed compostion, 6.8 megohms
	Resistor-Fixed compostion, 3900 ohms $\pm 10 \%$, $1 / 2$ watl (R149)		Resistor-Fixed composition, 6.8 megohms
	sistor-Fixed composition, 4700 ohms $\pm 5 \%$, watt (R118)	7145	Screw- ${ }^{\text {wall }}$ (R.32 ${ }^{\text {a }}$ wing screw for mounting deflection
	${ }_{\substack{\text { esistor-FIxed } \\ \text { wart (R163) }}}^{\text {composition, } 4700 \text { ohms } \pm 10 \% \text {, }}$		$\begin{gathered} \text { Yoke } \\ \text { Sleeve } \end{gathered}$
	istor-Fixed composition, 5600 ohms $\pm 5$	${ }^{72741}$	Socket--Kinescope socket
	dith (R111)	72773   $¢ 914$   9	Sockel-Mounting socket for hivoliage capa Sockel-Tube socket, miniature. unshielded
		71508	Sockel-Tube socket for 8016 tube
	$\underset{\substack{\text { Resistor-Fixed } \\ \text { watt } \\ \text { (R132) }}}{\text { composition, }} 6800$ ohms $\pm 20 \%$, $/ 2$	72927	Socket-Tube socket, noval water type Socket-Tube socket, octal



```
All.resitance volues in ohms,ond
copocitonse. volu
c}\begin{array}{c}{\mathrm{ Coil resistance volues less than : ohm}}\\{\mathrm{ Ore not shown.}}
Direction of arrows or controls indi-
All
*)
moximum
```

            \(=100\)
    $$
\begin{aligned}
& \begin{array}{l}
\text { Codes in electrolytic capocitor values } \\
\text { ond their lug identitication morkings }
\end{array} \\
& \mathrm{ln}_{-14 \mathrm{~V}}^{\text {In }} \text { some sets R108 is connected to } \\
& \begin{array}{l}
\text { In some sets, L122, R195 and R193 } \\
\text { are omitied }
\end{array} \\
& \text { in some receivers. R149 is } 3.300
\end{aligned}
$$



Figure 21-Chassis Bottom Vieu" (Showing Location of Major Components)


Early production sets employed bright
ness and picture control
$\# 71784$
in which




REFER TO PAGES 395 TO 406 INC. FOR ALIGNM ENT PROCEDURE, SERVICE SUGGESTIONS AND
WAVEFORM PHOTOGRAPHS.



	易
	（\％
	鮚



## 

uo！ysng P！T－uo！ysng 60bbL

## ：｜S！T sumd of uou！ppy




































等



 NOIIdIUJS3a


 zo


## GENERAL DESCRIPTION

Models 8TO41, 8T․43 and 8Tott are "10 inch" table model television receivers. These receivers employ

Iwenty-one tubes plus 2 rectificrs and a 10 BP 4 kinescope. The receivers are identical except for cabinets.

## ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE. $\qquad$ $63^{\prime \prime} \times 8!!^{\prime \prime}$ - ${ }^{\prime \prime}$ radius at corner

R-F FREQUENCY		RANGES		Receiver
		Picture Carrier	Sound Carrier	
Number	Freq. Mc.	Freq. Mc.	Freq. Mc.	Freq. Mc
2	. $51-60$	55.25	. 59.75	. 81
3.	. 60-66	.61.』う	.63.75	. 87
4.	. 66-72	.67.95	. 71.75	. 93
5.	. 76-32	77.25	. 81.75	. 103
6.	. 82-88	83.25	.87.75	. 109
7.	.174-180.	.175.25.	. 170.75	. 201
8	. 180-186	.181.85.	. 185.75	. 207
	.186-192	187.85.	.191.75.	. 213
10.	. 19:-198	. 193.25.	. 197.75	. 219
11.	. 198-204	. 19925	. 003.75	. 205
12	. 20t-210.	. 205.25.	. 09.75	.231
	210-216	.211.95	.215.75	.237

## FINE TUNING RANGE

Plus and minus approximately 250 kc on channel 2 and plus and minus approximately 650 kc on channel 13.

## POWER SUPPLY RATING

KCS 28
115 volts, 60 cycles, 250 watts

## AUDIO POWER OUTPUT RATING

Maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 watts

## LOUDSPEAKER 92573-4

Type......... $5 \times 7$ inch Permanent Magnet Dynamic Voice Coil Impedance.......... 3.2 ohms at 400 cycles

ENSIONS (inches)	Length	Height	Depth
Cabinet (outside)	2-1/4	151/2	205/8
Cabinet (outside) 8To43	23	16	$201 / 8$
Cabinet (outside) 8 T ${ }^{\text {d }} 4$	$251 / 2$	1434	22
Chassis Assembly (outside)	$191 / 2$	101/2	17
Chassis (Overall).	$191 / 2$	13	201/2

RECEIVER ANTENNA INPUT IMPEDANCE
Choice: 300 ohms balanced or 72 ohias unbalanced.

## WEIGHT

Chassis with Tubes in Cabinet - 8T2 4183 lbs ., 8 T243 $85 \mathrm{lbs}, 8 \mathrm{~T}-4499 \mathrm{lbs}$.
Shipping Weight-8T241....88 lbs.; 8T2 $23 \ldots . .90 \mathrm{lbs}$, 8T244.... 107 lbs

## RCA TUBE COMPLEMENT

Tube Used

(2) RCA 6AG5................................ Converter

(4) RCA 6AU6.............. 1st Sound I-F Amplifier
(5) RCA 6AU6........... 2nd Sound I-F Amplifier
(6) RCA 6AL5.................. Sound Discriminator
(7) RCA $6 A \vee 6 \ldots . . . . .$. . 1st Audio Amplifier
(8) RCA 6K6GT ........................ Audio Output
(9) RCA 6AG5............... 1st Picture I-F Amplifier
(10) RCA 6AG5............ and Picture I-F Amplifier
(11) RCA 6AG5........... 3rd Picture I-F Amplifier
(1!) RCA 6AG5........... 4th Picture I-F Amplifier
(13) RCA 6AL5. . Picture and Detector \& Sync Limiter
(14) RCA 1:AU7........ 1st and 2nd Video Amplifier
(15) RCA 6SN7GT...... AGC Amplifier \& Vertical
(16) RCA 6SN7GT...... AGC Rectifier \& 1st Sync Separator
(17) RC. $\mathbf{1}$ 6SN7GT...... Sync Amplifier \& nind Sync

Separator
(18) RCA 6K6GT............ Vertical Swecp Output
(19) RCA 6SN7GT.... Horizontal Sweep Oscillator and Control
(20) RCA 6BG6G......... Horizontal Sweep Output
(21) RCA 5V4G................................. Damper
(22) RCA 1B3-GT/8016..... High Voltage Rectifiér
(23) RCA 5U4G.............. Power Supply Rectifier
(2t) RCA 10BP4.............................. Kinescope

ELECTRICAL AND MECHANICAL SPECIFICATIONS (Continued)	
PICTURE I-F FREQUENCIES	OPERATING CONTROLS (front panel)
Picture Carrier Frequency................ 25.75 Mc .	Channel Selector \} Dual Control Knobs
Adjacent Channel Sound Trap.............. 27.25 Mc .	
Accompanying Sound Traps............. 21.25 Mc .	
Adjacent Channel Picture Carrier Trap..... 19.75 Mc.	$\left.\begin{array}{l}\text { Picture } \\ \text { Sound Volume and On-Off Switch }\end{array}\right\}$ Dual Control Knobs
SOUND I-F FREQUENCIES	Picture Horizontal Hold \} ......... Dual Control Knobs
Sound Carrier Frequency................... 21.25 Mc .	Picture Vertical Hold
Sound Discriminator Band Width between peaks.. 350 kc	Brightness................... Single Control Knob
VIDEO RESPONSE ................... To \& Mc.	NON-OPERATING CONTROLS (not including r-f \& i-f adjustments)
FOCUS ................................ Magnetic	Horizontal Centering. top chassis screwdriver adjustment Vertical Centering... top chassis screwdriver adjustmen
SWEEP DEFLECTION.................. Magnetic	Width............ rear chassis screwdriver adjustment Height......................... rear chassis adjustmen
SCANNING..................... Interlaced, $5 \mathbf{5}$ ¢ ${ }^{\text {line }}$	Horizontal Linearity.. top chassis screwdriver adjustment Vertical Linearity............... rear chassis adjustment Horizontal Drive... rear chassis screwdriver adjustmen
HORIZONTAL SCANNING FREQUENCY ${ }_{\text {1 }}{ }^{5,750 \mathrm{cps}}$	Horizontal Oscillator Frequency bottom chassis adjustment   Horizontal Oscillator Waveform
VERTICAL SCANNING FREQUENCY .... 60 cps	side chassis adjustment   Focus $\qquad$ rear chassis adjustmen
FRAME FREQUENCY (Picture Repetition Rate) 30 cps	Ion Trap Magnet................ top chassis adjustment Deflection Coil....... top chassis wing nut adjustment

## HIGH VOLTAGE WARNING

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

## KINESCOPE HANDLING PRECAUTIONS

DO NOT OPEN THE KINESCOPE SHIPPING CARTON, INSTALL, REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

The kinescope bulb encloses a high vacuum and, due to its large surface area, is subjected to considerable air pressure. For these reasons, kinescopes must be handled with more care than ordinary receiving tubes.

[^17]The following adjustments are necessary when tuning the receiver on for the first time

1. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid-position.
2. Set the STATION SF:LECTOR to the desired channel.
3. Adjust the FINE TUNING control for best sound fidelity and SOUND VOL. UME for suitable volume.
4. Turn the BRIGHTNESS control fully counterclockwise, then clockwise until a light pattern appears on the screen.
5. Adjust the VERTICAL hold control until the pattern stops vertical movement.
6. Adjust the HORIZONTAL hold control until a picture is obtained and centered.
7. Turn the BRIGHTNESS control counterclockwise until the retrace lines just disappear.


Figure 1-Receiver Operating Controls
8. Adjust the PICTURE control for suitable picture contrast.
9. After the receiver has been on for some time, it may be necessary to readjust the FINE TUNING control slightly for improved sound ficlelity.
10. In switching from one station to another, it may be necessary to repeat steps numbers 3 and 8.
11. When the set is turned on again after an idle period. it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. If any adjustment is necessary, step number 3 is generally suffcient.
12. If the positions of the controls have been changed, it may be necessary to repea: steps numbers 1 through 8 .

## INSTALLATION INSTRUCTIONS

The Model 8 T241, 8 T243 and 8 T 244 television receivers are shipped complete in one carton except for the 10 BP 4 kinescope. The kinescope is shipped in a special carton and should not be unpacked until ready for installation.

UNPACKING.-To unpack the receiver, tear open the carton flaps, pick the recciver up from under the bottom of the cabinet and lift it out of the shipping carton.

Take off the cabinet top and back. Remove the cabinet front nanclas shown for Modet ster 1 in Figure 2. The cabinet front pancls for Models 8 T243 and 8 T244 are removed by taking out two screws on the inside of the cabinet which hold the front panel in place.

The operating control knobs are packed in a paper bag which is tied to the insitle of the cabinet brace.


Figure 2-Cabinet, Front View

Remove the protective cardboard shield from the 5U4C; rectifier. Make sure all tubes are in place and are firmly seated in their sockets.

## REMOVE THE TWO SELF-TAPPING SCREWS FROM THE KINESCOPE CUSHION SLIDE AS SHOWN IN FIGURE 3.

loosen the two kinescope cushion adjustment wing screws and slide the cushion toward the rear of the chassis. Loosen the deflection yoke adjustment. stide the yoke toward the rear of the chassis and tighten.


Figure 3-Yoke and Focus Coil Adjustments.

From the front of the cabinet, look through the deflection yoke and check the alignment of the focus coil with the yoke. If the focus coil is not in line, loosen the two focus coil mounting screws and move the coil until alignment is obtained. Tighten the mounting screws with the coil in this position.
Loosen the two lower kinescope face centering slides, and set them at approximately mid position. See Figure 2 for location of the slides and their adjustment screws.

KINESCOPE HANDLING PRECAUTION. - Do not open the kinescope shipping carton, install, remove, or handle the kinescope in any manner, unless shatterproof goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling. The shipping carton should be kept for use in case of future moves.

INSTALLATION OF KINESCOPE. - The kinescope second anode contact is a recessed metal well in the side of the bulb. The tube must be installed so that this contact is up but rotated approximately 30 degrees toward the high voltage compartment.

Insert the neck of the kinescope through the deflection and focus coils as shown in Figure 4 until the base of the tube protrudes approximately two inches beyond the focus coil. If the tube sticks, or fails to slip into place smoothly investigate and remove the cause of the trouble. Do not force the tube.


Figure 4-Kinescope Insertion
Slip the ion trap magnet assembly over the neck of the kinescope with the large magnet towards the base of the tube and with the arrow on the assembly up as shown in Figure 3. The front magnet is movable on the assembly. The correct position of the front magnet is with the gap on the right side from the rear of the cabinet The gap of the large rear magnet should be on the left side and 180 degrees from the gap of the small magnet.

Connect the kinescope socket to the tube base.
Insert the kinescope until the face of the tube protrudes approximately one-quarter of an inch outside the front of the cabinet. Adjust the four centering slides until the face of the kinescope is in the center of the cabinet opening. Tighten the four slides securely.

Wipe the kinescope screen surface and front panel safety glass clean of all dust and finger marks with a soft cloth moistened with the Drackett Co.'s "Windex" or similar cleaning agent.

Install the cabinet front panel by reversal of the procedure indicated in Figure 2.

For Models 8T243 and 8T244 to install the front panel, place the lip on the bottom of the panel in the recess below the kinescope opening and push the top in. Insert the two screws into the back of panel.

Install the front panel control knobs.
Slip the kinescope as far forward as possible. Slide the kinescope cushion firmly up against the flare of the tube and tighten the adjustment wing screws. Slide the deflection yoke as far forward as possible.

Connect the high voltage lead to the kinescope second anode socket.

The antenna and power connections should now be made.

Turn the power switch to the "on" position, the brightness control fully clockwise, and picture control counterclockwise.

ION TRAP MAGNET ADJUSTMENT. - Looking at the kinescope gun structure, it will be observed that the second cylinder from the base inside the glass neck is provided with two snall metal flags, as shown in Figure 5.


Figure 5-Ion Trap Flags
The ion trap rear magnet poles should be approximately over the ion trap flags. Starting from this position adjust the nagnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust the focus control (R191 on the chassis rear apron) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches on this adjustment should be made with the brightness control at the maximum position with which good line focus can be maintained.


Figure 6-Rear Chassis Adjustments
DEFLECTION YOKE ADJUSTMENT.-If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE ADJUSTMENTS.-It will now be necessary to obtain a test pattern picture in order to make further adjustments. See steps 2 through 8 of the receiver operating instructions on page 3 .

If the Horizontal Oscillator and AGC System are operating properly, it should be possible to sync the picture at this point. However if, the AGC threshold control is misadjusted, and the receiver is overloading, it may be impossible to sync the picture.
If the receiver is overloading, turn R138 (on top of the chassis, see Figure 8) counter-clockwise until the set operates normally and the picture can be synced.
CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT.-Turn the horizontal hold control to the extreme counter-clockwisc position. The picture should remain in horizontal sync. Monientarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be gradually reduced and when only 3 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull in should occur when the control is approximately 90 degrees from the extreme counter-clockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should
be out of sync and should show 1 vertical or diagonal black bar in the raster.

If the recciver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Centering Adjustment."

ALIGNMENT OF HORIZONTAL OSCILLATOR.
-If in the above check the recciver failed to hold sync with the hold control at the extreme counter-clockwise position or falled to hold sync over 90 degrees of clockwise rotation of the control from the pull in point, it will be necessary to make the following adjustments.

Horizontal Frequency Adjustment.-Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the 'Tlu9 horizontal frequency adjustment (under the chassis) until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster.

Horizontal Lock in Range Adjustment.-Set the horizontal hold control to the tull counter-clockwise position. Momentarily remove the signal by switching off channel then back. Siowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 3 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer C153A slightly clockwise. If less than 3 bars are present, adjust Clō3A slightly counter-clockwise. Turn the picture control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull in point. Repeat this procedure until 3 bars are present.

Repeat the adjustments under "Horizontal Frequency Adjustment" and "Horizontal Locking Kange Adjustment" until the conditions specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.

If it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure on page 11. For field purposes paragraph "A" under Horizontal Oscillator Waveform Adjustment may be omitted.

CENTERING ADJUSTMENT.-No electrical centering controls are provided. Centering is obtained by mechanically orienting the focus coil with the three adjustment screws shown in ligure 3. Center the picture on the screen by adjustment of these screws. The focus coil should be concentric around the neck of the kinescope to prevent curvature of the raster.

FOCUS COIL ADJUSTMENTS.-If, after making the centering adjustments in the above paragraph, a corner of the picture is shadowed, it will be necessary to loosen the focus coil mounting screws (shown in Figure 3) and change the position of the coil to eliminate the shadow. Recenter the picture by adjustment of the centering screws.

Recheck the position of the ion trap magnet to insure that maximum brilliance is obtained.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS. - Adjust the height control (R155 on chassis rear apron) until the picture fills the mask vertically ( 6 z inches). Adjust vertical linearity (RIG: on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust centering to align the picture with the mask.

WIDTH, DRIVE AND HORIZONTAL LINEARITY ADJUSTMENTS.-Acljust the horizontal drive control Cl53B to give a picture of maximum width within
the limits of good linearity. Adjust the horizontal linearity control Lill to provide best linearity. Adjust the width control until the picture just fills the mask.

Adjustments of the horizontal drive control affect horizontal oscillator hold and locking range. Ii the drive control was adjusted, recheck the oscillator alignment.

FOCUS.-Adjust the focus control (R191 on chassis rear apron) for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

## CHECK TO SEE THAT THE CUSHION AND YOKE THUMBSCREWS AND THE FOCUS COIL MOUNTING SCREWS ARE TIGHT.

AGC THRESHOLD CONTROL.-The AGC threshold control R138 is adjusted at the factory and normally should not require readjustment in the field.

To check the adjustment of the AGC Threshold Control, tune in a strong signal, sync the picture and turn the picture control to the maximum clockwise position. Turn the brightness control counter-clockwise until the vertical retrace lines are just invisible. Momentarily remove the signal by switching off chamel then back. If the picture reappears immediately, the receiver is not overioading due to improper setting of R138. If the picture requires an appreciable portion of a second to reappear, R138 should be readjusted.

Set the picture control at the maximum clockwise position. Turn R133 fully counter-clockwise. The top one-half inch of the picture may be bent slightly. This should be disregarded. Turn R138 clockwise until there is a very, yery slight bend or change of bend in the top one-half inch of the picture. Then turn R138 counter-clockwise just sufficiently to remove this bend or change of bend.

If the signal is very weak, the above method may not work as it may be impossible to get the picture to bend. In this case, turn R1s8 clockwise until the snow in the picture becomes more pronounced, then counter-clockwise until the best signal to noise ratio is obtained.

The AGC control adjustment should be made on a strong signal if possible. If the control is set too far clock wise on a weak signal, then the receiver may overload when a strong signal is received.

Replace the cabinet top. On Model 8 Te41, recheck picture centering after the top is replaced. Replace the cabinet back.

CHECK OF R-F OSCILLATOR ADJUSTMENTS. -l'une in all available stations to see if the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method ontlined in the alignment procedure on page 10. The adjustments for chamels 2 through 5 and 7 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 7. Adjusiment for channel 13 is on top of the chassis and channel 6 adjustment is in the kinescope well. See Figures 11 and 12 for their location.


Figure 7-R.F Oscillator Adjustments

POWER
CORD


Figure 8-Chassis Top View


Figure 9-Chassis Bottom View

## ALIGNMENT PROCEDURE

TEST EQUIPMENT.-To service properly the television chassis of this receiver, it is recommended that the following test equipment be available:

R-F Sweep Generator meeting the following requirements:
(a) Frequency Ranges

20 to 30 mc . 1 mc . and 10 mc . sweep width
50 to 90 mc ., 10 mc . sweep width
170 to 225 mc. . 10 mc . sweep width
(b) Output adjustable with at least 11 volt maximum.
(c) Output constant on all ranges.
(d) "Flat" output on all attenuator positions.

Cathode-Ray Ossilloscope.-For alignment purposes, the oscilloscope employed must have excellent low frequency and phase response, and should be capable of passing a 60 -cycle square wave without appreciable distortion. While this requirement is not met by many commercial instruments. RCA Oscilloscopes, types WO-55A. WO-58A. WO-79A, and WO-60C fill the requirement and any of these may be employed.
For video and sync wavelorm observations, the oscilloscope must have excellent frequency and phase response from 10 cycles to at least two megacycles in all positions of the gain control. The RCA types WO-58A and WO-79A are ideally suited for this purpose.

Signal Generator to provide the following frequencies:
(a) Intermediate frequencies
19.75 mc . adjacent channel picture trap
21.25 mc . sound $\mathrm{i}-1$ and sound traps
22.05 and 24.75 mc . conv. and first pix i-f trans.
25.9 mc . second picture j .4 transformer
24.6 mc . fourth piclure i-f transformer
22.0 mc . third picture i-f transformer
22.5 mc . fifth picture i-f transformer
25.75 mc . picture carrier
27.25 mc . adjacent channel sound trap
(b) Radio frequencies
\(\left.$$
\begin{array}{ccc}\text { Channel } & \begin{array}{c}\text { Picture } \\
\text { Carrier }\end{array} \\
\text { Fumber }\end{array}
$$ \quad \begin{array}{c}Sound <br>

Carrier\end{array}\right\}\)| Freq. Mc. |
| :---: |

(c) Output on these ranges should be adjustable and at least . 1 volf maximum

Heterodyne Frequency Meter with crystal calibrator if the signal generator is not crystal controlled.

Electronic Voltmeter of Junior "VoltOhmyst" type and a high voltage multiplier probe for use with this meter to permit measurements up to 10 kv .

Service Precautions.-II it is necessary to remove the chas sis from cabinet. the kinescope must first be removed. If possible, the chassis should then be serviced without the kinescope. However, if it is necessary to view the raster during servicing, the kinescode should be inserted only alter the chassis is turned on end. The kinescope should never be allowed to support its weight by resting in the deflecting yoke. A bracket should be used to support the tube at its viewing screen.

By furning the chassis on end with the power transformer down, all adjustments will be made conveniently available. Since this is the only sate position in which the chassis will rest and still leave all adjustments accessible, the trimmer location drawings are oriented similarly for ease of use.

CAUTION: Do not short the kinescope second anode lead. Its short circuit current is approximately 3 ma . This represents approximately 9 watts dissipation and a considerable overload on the high-voltage filter resistor R189

Adjustments Required.-Normally. only the r-f oscillator line will require the attention of the service technician. All other circuits are either broad or very stable and hence will seldom require re-adjustment.

The oscillator line is relatively non-critical. When oscillator tubes are changed, in all probability it will be necessary to adjust only C 6 in order to bring the entire line into adjustment.

ORDER OF ALIGNMENT.- When a complete receiver aliqn ment is necessary, it can be most conveniently pertormed in the following order:
(1) Sound discriminator
(5) R-F and converter lines
(2) Sound i-f transformers
(6) R-F oscillator line
(3) Picture i-f traps
(7) 4.5 mc . video trap
(4) Picture i-f transformers
(8) Sensitivity check

SOUND DISCRIMINATOR ALIGNMENT.--Set the siqnal qen erator for approximately .1 volt output at 21.25 mc . and connect it to the second sound i-f grid.

Detune Tll3 secondary (boltom).
Set the "VoliOhmyst" on the 3 -volt scale
Connect the meter, in series with a one megohm resistor, to the junction of diode resistors R203 and R204.

Adjust the primary of Tll3 (top) for maximum output on the meter.

Connect the "VoliOhmyst" to the junction of C183 and R203. Adjust Tll3 secondary (bottom). It will be found that it is possible to produce a positive or negative voltage on the meter dependent upon this adjustment. Obviously to pass from a positive to a negative voltage, the voltage must go through zero. Tll3 (bottom) should be adjusted so that the meter in dicates zero output as the voltage swings from positive to negative. This point will be called discriminator zero output.

Connect the sweep oscillator to the grid of the second sound i.f amplifier.

Adjust the sweep band width to approximately 1 mc . with the center frequency al approximately 21.25 mc . and with an output of approximately .1 volt.

Connect the oscilloscope to the junction of C183 and R203. The pattern oblained should be similar to that shown in Figure 15. If it is not, adjust T113 (top) until the wave form is symmetrical.

The peak to peak band width of the discriminator should be approximately 350 kc . and the race should be linear from 21.175 mc . to 21.325 mc .

SOUND I-F ALIGNMENT.-Connect the sweep oscillator to the first sound i-f amplifier grid.

Connect the oscilloscope to the second sound i-f grid return (terminal A of T112) in series with a 33,000 -ohm isolating resistor.

Insert a 21.25 mc . marker signal from the signal generator into the first sound i-f grid.

Adjust T112 (top and bottiom) for maximum gain and symmetry about the 21.25 mc . marker. The pattern obtained should be similar to that shown in Figure 14.

The output level from the sweep should be set to produce approximately 3 volt peak-to-peak at the second sound i-1 grid return when the final touches on the above adjustment are made. It is necessary that the sweep output voltage should not exceed the specified values otherwise the response curve will be broadened, permitting slight misadjustment to pass unnoticed and possibly causing distortion on weak signals.

The band width at $70 \%$ response from the first sound i-f grid to the second i-t grid should be approx. 200 kc .

PICTURE I-F TRAP ADJUSTMENT.-Connect the "Volt Ohmyst" to the junction of R135 and R136.

Remove the 6SN7GT AGC Amplifier tube V107. Conned a $250.000 \cdot \mathrm{hm}$ variable resistance between pins $S$ and 6 of the V107 socket. Adjust the resistance until the "VoltOhmyst" reads approximately -4.5 volts.
Set the channel switch to the blank position between channels number 2 and 13.

Connect the "VoltOhmyst" across the picture detector load resistor R119. Under this condition, both leads of the meter are at approximately -120 volts. In making this connection, care should be taken not to touch the case of the meter or to permit the meter case to become grounded.

Connect the output of the signal generator to the grid of the converter tube V2. To do this, remove the tube from the socket and fashion a clip by iwisting one end af a small piece of wire around pin number 1. Replace the tube in the socket leaving the end of the wire protruding from under the tube. Connect the signal generator to this wire through a 1.500 mm f capacitor keeping the leads as short as possible.
Set the generator to each of the following frequencies and with a thin fiber screwdriver tune the specified adjustment for minimum indication on the "VoltOhmyst." In each instance the generator should be checked against a crystal calibrator to insure that the generator is exactly on frequency
(1) 21.25 mc .-T 103 (top)
(4) $27.25 \mathrm{mc}-\mathrm{T} 104$ (top)
(2) $21.25 \mathrm{mc}-\mathrm{TlOS}$ (top)
(5) $19.75 \mathrm{mc}-\mathrm{T} 106$ (top)
(3) 27.25 mc - T 102 (top)
(6) 19.75 mc .-T101 (top)

In the above transformers using threaded cores, it is possible to run the cores completely through the coils and secure two peaks or nulls. The correct position is with the cores in the outside ends of the coils. It the cores are not in the correct position. the coupling will be incorrect and it will be impossible to secure the correct response.

PICTURE I-F TRANSFORMER ADJUSTMENTS.-Set the signal generator to each of the following frequencies and peak the specified adjustment for maximum indication on the "Volt. Ohmyst." During alignment, reduce the input signal if neces. sary to prevent overloading.
22.5 mc .-T106 (bottom)
24.6 mc - T 104 (boltom)
22.0 mc .-T103 (bottom)
25.9 mc .- T 102 (bottom)

TI and TIO1 are coupled by a link and in combination constitute an overcoupled transformer. The characteristics of such a transformer are such that it is impossible to adjust it to a single frequency.

To sweep alizn TI and T101 connect a 330 ohm composition resistor across the primary coils of T102, T103, T104 and T106.

Connect the "Voltohmyst" to the junction of R135 and R136. Adjust the 250.000 ohm variable resistor for -2.0 volts on the meter.

Connect the oscilloscope to the plate of the first video amplifier. pin 1 of V106.

Connect a sweep generator to the converter grid through a 1.500 mmf capacitor. Set the generator to sweep from 20.0 mc . 1030.0 mc . and adjust the output to provide a 4 -volt peak to-peak signal on the scope.

Connect the signal generator loosely to the converter grid and tune it to provide markers at 22.05 mc . and 24.75 mc .

Adjust Tl (top) and Tl0I (bottom) to obtain the response shown in Figure 15. The T1 core must penetrate to the terminal-board end of the coil in order to obtain the correct response.

Remove the 330 ohm resistors from across T102. T103. Tl04 and T106.

Adjust the 250.000 ohm potentiometer for a 15 -volt peak to peak signal at the plate of the first video amplifier. The bias as measured by the "Vollohmyst" should be -4.5 volts or less.

Observe and analyze the response curve obtained. The response will not be ideal and the i-f adjustments must be retouched in order to obtain the desired curve. See Figure 16

On final adjustment the picture carrier marker must be at approximately $45 \%$ response. The curve must be approxi mately flat topped, with the 22.1 mc marker at approximately $95 \%$ response and the 25.0 mc . murker below $90^{\circ}$ response. A 26.5 mc . marker must tall between 5 and $10^{\circ}$ oresponse.

The most important consideration in making the i-f adjust ments is to get the picture carrier at the $45^{\circ}$ o response point. If the picture carrier operates too low on the response curve. loss of low frequency video response. of picture brilliance. of blanking, and of sync may occur. If the picture carrier operates 100 high on the reponse curve. the picture becomes smeared. In making these adjustments, care should be taken 10 see that no two transformers are tuned to the same fre. quency as i-f oscillation may result.

Remove the converter tube and take of the clip to pin number 1 . Replace the tube in the socket.

Picture I-F Oscillation. If the receiver will operate without oscillating with the test equipment disconnected but breaks into oscillation or becomes unstable with the equipment connected, it may become necessary to estab.ish a ground plane. Cover the test bench with a sheet of copper and set the chas. sis on the sheet. Set all the test equipment except the "Volt. Ohmyst" on the sheet and bond or bypass them to it. A Junior "Voltohmyst" should not be bonded to the sheet since the negative test probe is not always connected to ground during alignment. It the receiver is badly misaligned and two or more of the i-f transformers are tuned to the same frequency, the receiver may fall into $i-f$ oscillation. I-F oscillation shows up as a voltage across the picture detector load resistor that is unaffected by r-f signal input. If such a condition is encountered, it is sometimes possible 10 stop oscillation by adjusting the transformers approximately to frequency by setling the adjustment cores of T101. T102. T103, T104. T105 and TIO6 to be approximately equal to those of another receiver known to be in proper alignment. If this does not have the desired effect, it may now be possible to stop oscillation by increasing the grid bias. If so, it should then be possible to align the transformers by the usual method. Once aligned in this manner, the i.f amplifier should be stable with reduced bias.

If the oscillation cannot be stopped in the above manner. shunt the grids of the first three pix i-f amplifiers to ground with 1.000 mm . capacitors. Connect the signal generator to the fourth pix i-f grid and align T106 to frequency. Progres. sively remove the shunt from each grid and align the plate coil of that stage to frequency.

If this does not stop the oscillation, the difficulty is not due to i-f misalignment as the i-f section is stable when properly aligned. Check all i-f pass condensers, transformer shunting resistors, tubes, socket voltages, etc.

ANTENNA. R-F AND CONVERTER LINE ADJUSTMENT.-In order to align the rftuner, it will first be necessary to set the channel-13 oscillator to frequency. The shield over the bottom of the r-f unit must be in place when making any adjustments.

The channel-13 oscillator may be aligned by adjusting it to beat with a crystal-calibrated heterodyne frequency meter, or by feeding a siqnal into the receiver at the r-f sound carrier frequency and adjusting the oscillator for zero output from the sound discriminator. In this latter case the sound discriminator must first have been aligned to exact frequency. Either method of adjustment will produce the same results. The method used will depend upon the type of test equipment available. Regardless of which method of oscillator alignment is used. the frequency standard must be crystal controlled or calibrated.

If the receiver oscillator is to be adjusted by the heterodyne frequency meter method, couple the meter probe loosely to the receiver oscillator.

If the receiver oscillator is adjusted by feeding in the r-f sound carrier signal, connect the signal generator to the re ceiver antenna terminals. Connect the "VoltOhmyst" to the sound discriminator output (junction of C183 and R203).

Set the receiver switch to 13 .

## ALIGNMENT PROCEDURE

Adjust the frequency standard to the correct irequency (237 mc. for heterodyne frequency meter or 215.75 mc . for the signal generator).

Set the fine tuning control to the middle of its range while making the adjustment.

Adjust C6 for an audible beat on the heterodyne frequency meter or zero voltage from sound discriminator.

Now that the channel-13 oscillator is set to frequency. we may procede with the r-f alignment.

Connect the oscilloscope to the test connection at R-13 in the r-f tuning unit.

Connect the "Voltohmyst" to the junction of R134 and R222. Adjust the variable resistance for -3.5 volts on the meter.. Remove the first pix amplifier tube V101.

Connect the r-f sweep oscillator to the receiver antenna terminals. The method of connection depends upon the output impedance of the sweep. The P102 connections for 300 ohm balanced or 720 hm single-ended input are shown in the circuit diagram in Figure 82. If the sweep oscillator has a 50 -ohm single-ended output, 300 -ohm balanced output can be obtained by connecting as shown in Figure 8.


Figure 8-Unbalanced Sweep Cable Termination

Connect the signal generator loosely to the receiver antenna terminals.

Since channel 7 has the narrowest response of any of the high frequency channels, it should be adjusted first.

Sel the receiver channel switch to channel 7.
Set the sweep oscillator to cover channel 7.
Insert markers of channel 7 picture carrier and sound carrier, 175.25 mc . and 179.75 mc .
Adjust C1O and C14 until the curve falls symmetrically between the sound and picture carrier markers. Adjust Cll to give the proper bandwidth. Roughly peak L6 in conjunction with slight adjustments of C10 and C14 for a flat-topped response curve with the sound and picture carriers at $90 \%$ $1095 \%$ response points on this curve. See Fiqure 17. channel 7.
Switch to channel 12 and adjust L6 for maximum response and minimum top slope of the curve.

Check the response of channels 7 through 13 by switching the receiver channel switch, sweep oscillator and marker oscillator to each of these channels and observing the response obtained. See Figure 17 for typical response curves. It should be found that all these channels have the proper shaped response with the markers above $80 \%$ response., If the markers do not fall within this requirement on one or more high frequency channels, since there are no individual channel adjustments, it will be necessary to readjust L6. C10. Cll and C14, and possibly compromise some channel slightly in order 10, get the markers up on other channels. Nomally. however, no difficulty of this type should be experienced since the higher frequency channels are comparatively broad and the markers easily fall within the required range.

Channel 6 is next aligned in the same manner.
Set the receiver to channel 6.
Set the sweep oscillator to cover channel 6.
Set the marker oscillator to channel 6 picture and sound carrier frequencies.

Adjust L9, L13. L66, and C-12 for an approximately flattopped response curve located symmetrically between the markers. L9, L13 and L66 are the center frequency adjustments. Cl2 is the band-width adjustment.

Check channels 5 down through channel 2 by switching the receiver, sweep oscillator and marker oscillator to each channel and observing the response obtained. In all cases. the markers should be above the $80 \%$ response point. If this is not the case. L9. L13, L66 and Cl2 should be retouched. On final adjustment, all channels must be within the $80 \%$ specification.
Disconnect the variable resistance, and replace V107 and V101.
Following an r-f alignment. the oscillator alignment must be checked.

R-F OSCRLATOR LINE ADJUSTMENT.-The r-f oscillator line may be aligned by adjusting it to beat with a crystal calibrated heterodyne frequency meter, or by feeding a signal into the receiver at the r-f sound carrier frequency and adjusting the oscillator for zero output from the sound discriminator. In this latter case the sound discriminator must first have been aligned to exact irequency. Either method of adjustment will produce the same results. The method used will depend upon the type of test equipment available.

Regardless of which method of oscillator alignment is used. the frequency standard must be crystal controlled or calibrated. If the receiver oscillator is to be adjusted by the heterodyne frequency meter method, the calibration frequency listed under R-F Osc. Freq. must be available.

If the receiver oscillator is adjusted by feeding in the r-1 sound carrier frequency, the frequencies listed under Sound Carrier Freq. must be available.

Channel   Number	Receiver R-F Osc. Freq. Mc.	R-F Sound Carrier Freq. Mc.	Channel Oscillator Adjustment
2.	81.	59.75	L24
3.	.. 87	.... 65.75	L23
4.	. 93.	.. 71.75	L22
5.	. 103.	. 81.75	L21
6.	109	87.75.	L31
7.	201.	.179.75.	L19
8.	207	185.75.	L18
9.	213.	191.75	L17
10.	219.	197.75.	L16
11.	. 225.	203.75.	L15
12.	. 231	.209.75.	L14
13.	. 237.	215.75	C6

If the heterodyne frequency meter method is used, couple the meter probe loosely to the receiver oscillator.
If the r-f sound carrier method is used, connect the "VoltOhmyst" to the sound discriminator output (junction of C183 and R203) and connect the signal generator to the receiver antenna terminals. The order of alignment remains the same reqardless of which method is used.
The shield over the bottom of the r-f unit must be in place when making adjustments.
Since lower frequencies are obtained by adding steps of inductance, it is necessary to align channel 13 first and continue in reverse numerical order.
Set the receiver channel switch to 13.
Adjust the frequency standard to the correct frequency ( 237 mc . for heterodyne frequency meter or 215.75 mc . for the signal generator).

Set the fine tuning control to the middle of its range while making the adjustment.

Adjust C6 for an audible beat on the heterodyne frequency meter or zero voltage from sound discriminator. Oscillator adjustments L1 and L2 shown on the schematic are factory control adjustments and should not be touched in the field.
Switch the receiver to channel 12.
Set the frequency standard to the proper frequency as listed in the alignment table.

Adjust L14 for indications as above.
Adjust the oscillator to trequency on all channels by switching the receiver and the frequency standard to each channel and adjusting the appropriate oscillator trimmer for the speci-
fied indication. It should be possible to adjust the oscillator to the correct frequency on all channels with the fine tuning control in the middle third of its range.

After the oscillator has been set on all channels, start back at channel 13 and recheck to make sure that all adjustments are correct

AGC THRESHOLD ADIUSTMENT.-The AGC threshold adjustment can be made by the method outlined in the Installation Instructions. However, a more accurate adjustment can be obtained by the use of an oscilloscope.

Tune in a station and advance the picture control to the maximum clockwise position. Connect the low capacity probe from the oscilloscope to the plate of the first video amplifier, pin l of V106. Adjust the oscilloscope to observe the horizontal sync pulse.

Turn the AGC threshold control Rl38 fully counter-clockwise, then slowly clockwise. As the control is turned clockwise the receiver gain will increase slowly, increasing the size of the pattern on the oscilloscope. Rl38 should be turned clock wise until the receiver begins to overload as indicated by clipping of the sync. The control should be left in the maximum gain position in which no clipping of sync is observed. See Figure 20 for proper waveforms.

HORIZONTAL OSCILLATOR ADJUSTMENT.-Normally the adjustment of the horizontal oscillator is not considered to be a part of the alignment procedure, but since the oscillator waveform adjustment requires the use of an oscilloscope. it can not be done conveniently in the field. The waveform adjustment is made at the factory and normally should not require readjustment in the field. However, the waveform ad. justment should be checked whenever the receiver is aligned or whenever the horizontal oscillator operation is improper.

Horizontal Frequency Adjustment.-With a clip lead, short circuit the coil between terminals $C$ and $D$ of the horizontal oscillator transformer T109. Tune in a television station and sync the picture if possible.
A.-Turn the horizontal hold control Rl73 to the extreme clockwise position: Adjust the T109 Frequency Adjustment (under the chassis) so that the picture is just out of sync and the horizontal blanking appears in the picture as a vertical bar. The position of the bar is unimportant.
B.-Turn the hold control approximately one quarter of a turn from the extreme clockwise position and examine the width and linearity of the picture. If picture width or linearity is incorrect, adjust the horizontal drive control Cl53B the width control L110 and the linearity control Llll until the picture is correct. If Cl53B, Lllo or Llll were adjusted, repeat step $\AA$ above.

Horizontal Locking Range Adjustment.-Turn the horizontal hold control fully counter-clockwise. Momentarily remove the signal by switching off channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync

If more than 9 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer Cl53A slightly clockwise. If less than 7 bars are present, adjust Cl53A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull in point. Repeat the procedure until 7 to 9 bars are present.

Horizontal Oscillator Waveform Adjustment.-Remove the shorting clip from terminals $C$ and D of T109. Turn the horizontal hold control to the extreme clockwise position. With a thin fibre screwdriver, adjust the Oscillator Waveform Adjustment Core of T109 (on the outside of the chassis) until the horizontal blanking bar appears in the raster.
A.-Connect the low capacity probe of an oscilloscope to terminal $C$ of Tl09. Turn the horizontal hold control one quarter turn from the clockwise position so that the picture is in sync. The pattern on the oscilloscope should be as shown in Figure 21 Adjust the Oscillator Waveform Adjustmen Core of Tl09 until the two peaks are at the same height. During this adjustment, the picture must be kept in sync by readjusting the hold control if necessary.

This adjustment is very important for correct operation of the circuit. If the broad peak of the wave on the oscilloscope is lower than the sharp peak, the noise immunity becomes poorer, the stabilizing effect of the tuned circuit is reduced and drift of the oscillator becomes more serious. On the other hand, if the broad peak is higher than the sharp peak, the oscillator is overstabilized, the pull-in range becomes inadequate and the broad peak can cause double trigqering of the oscillator when the hold control approaches the clockwise position

Remove the oscilloscope upon completion of this adjustment.
Check of Horizontal Oscillator Adjustments.-Set the horizontal hold control to the full counterclockwise position. Momentarily remove the signal by switching off channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 3 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer Cl53A slightly clockwise. If less than 3 bars are present, adjust Cl53A slightly counterclockwise. Turn the horizontal hold control counterclockwise, momentarily remove the signal and recheck the number of bars present at the pullin point Repeat this procedure until 3 bars are present.

Turn the horizontal hold control to the maximum clockwise position. The picture should be just out of sync to the extent that the horizontal blanking bar appears as a single vertical or diagonal bar in the picture. Adjust the Tl09 Frequency Adjustment until this condition is fulfilled.
4.5 MC VIDEO TRAP. - With a strong input from a station detune the receiver from the correct fine tuning point. With a very short clip lead, short the trap winding of Tl03. Ob serve the picture for the appearance of $\alpha 4.5 \mathrm{mc}$. beat. If the beat appears in the picture, adjust L104 until the beat is eliminated.

SENSITIVITY CHECK.-A comparative sensitivity check can be made by operating the receiver on a weak signal from a television station and comparing the picture and sound obtained to that obtained on other receivers under the same conditions.

This weak signal can be obtained by connecting the shop antenna to the receiver through a ladder type attenuator pad. The number of stages in the pad depends upon the signal strength available at the antenna. A sufficient number of stages should be inserted so that a somewhat less than normal contrast picture is obtained when the picture control is at the maximum clockwise position. Only carbon type resistors should be used to construct the pad.

RESPONSE CURVES.-The response curves shown on page 14 and referred to throughout the alignment procedure were taken from a production set. Although these curves are typical, variations can be expected.

The response curves are shown in the classical manner of presentation, that is with "response up" and low frequency to the left. The manner in which they will be seen in a given test set-up will depend upon the characteristics of the oscilloscope and the sweep generator. The curves may be seen inverted and/or switched from left to right depending on the deflection polarity of the oscilloscope and the phasing of the sweep generator

ALIGNMENT TABLE.-Both methods of oscillator alignment are presented in the alignment table. The service technician may thereby choose the method to suit his test equipment.
the detailed alignment procedure beginning on page s should be read before alignment by use of the table IS ATTEMPTED.

$\begin{aligned} & \text { STEP } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { SIGNAL. } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$	SICNAL GEN. FREQ MC.	```CONNECT SWEEP GENERATOR ro```	SWEEP GEN. FREQ MC	$\begin{gathered} \text { CONNECT } \\ \text { OSCILLOSCOPE } \\ \text { TO } \end{gathered}$	CONNECT $\begin{gathered} \text { "VOLTOHMYST" } \\ \text { TO } \end{gathered}$	MISCELLANEOUS CONNECTIONS AND INSTRUCTIONS	ADJUST	$\begin{gathered} \text { REFER } \\ \text { TO } \end{gathered}$
DISCRIMINATOR AND SOUND I-F ALIGNMENT									
1	2nd sound iof grid (pin 1. V117)	$\begin{aligned} & 21.25 \\ & 1 \text { volt } \\ & \text { output } \end{aligned}$	Not used		Not used	In series with 1 meg. in junction of R203 \& R204		Detune T113(bot.) Adjust Til3 (top) tor mak. on meter	Fig. 13   Fig. 12   Fig. 11
2	*	"	*		"	$\begin{aligned} & \text { Junction of C183 } \\ & \& \text { R203 } \end{aligned}$	Meter on 3 volt scale	T113(bottom)for zero on meter	Fig. 13   Fig. 12
3	-	"	$\begin{aligned} & \text { 2nd sound i-f grid } \\ & \text { (pin 1, Vili) } \end{aligned}$	$\begin{gathered} 21.25 \\ \text { cellter } \\ 1 \mathrm{mc} \\ \text { wide } \\ 1 \mathrm{v.out} \end{gathered}$	Junct. of C183 \& R203	Not used	Check for symm waveform (positiv not equal adjust they are equal	metrical response e \& negative). If T113 (top) until	Fig. 13   Fig. 15
4	Ist sound i-f grid (pin 1, Vil6)	$\begin{gathered} 21.25 \\ \text { re- } \\ \text { duced } \\ \text { output } \end{gathered}$	Ist sound i-f grid	$\begin{gathered} 21.25 \\ \text { reduced } \\ \text { output } \end{gathered}$	Terminal A. Tilz in series with a 33,000 ohm resistor.	"	Sweep output reduced to provide 3 volt p-to-p on scope	T112 (top \& bot.) for max. gain and symmetry at 21.25 me.	Fig. 13 Fig. 11   Fig. 12   Fig. 16


PICTURE I.F AND TRAP ADJUSTMENT									
5	Not used		Not used		Not used	Junction of R135 \& R136	Remove Vio7. Connect potentiometer between pins 5 \& 6 of V107 socket	Adjust potentiom eter for 4.5 volts on meter	Fig. 13   Fig. 11
6	Converter prid (pin 1, V2)	21.25	"		"	Across R119	Meter on 3 volt scale: Receiver between 2 \& 13	T103 (top) for min. on meter	$\begin{aligned} & \text { Fig. } 11 \\ & \text { Fig. } 13 \end{aligned}$
7	*	21.25	*		"	"	'	T105 (top) for min.	Fig. 13 Fig. 11
8	"	27.25	*		*	"	*	T102 (top) for min.	"
9	*	27.25	.		"	"	"	T104 (top) for min.	"
10	.	19.75	*		-	"	"	Tio6 (top) for min.	*
11	$\cdots$	19.75	-		-	-	"	Thol (top) for min.	*
12	.	22.5	-•		-•	-	"	T106 (bottom) for max. on meter	Fig. 12
13	-	24.6	"		"	'	"	T104 (bottom) for max.	*
14	-	22.0	-		"	،	"	T103: (bottom) for max.	"
15	"	25.9	"		*	*	-	T102 (bottom) for max.	،
16	.	$\begin{aligned} & 21.95 \\ & 24.8 \end{aligned}$	Converter   grid   (pin 1, V2)	Sweeping 20 to 30 mc .	Pin 1, Viof	Junction of R135 \& R136	Shunt 300 ohms across pri. T102. T103, T104, T106. Set bias -2 V. Set swp. gen. for 4 V . P.P on scope.	Adjust Ti (top) and T101 (bottom) for proper response	Fig. 12 Fig. 17
17	..		**	*	*	"	Remove shunt resistors. Sel hias to give 15 volts $P$ to $P$ on scope.	Adjust T1 (top), T101, T102, T103, T104, T10G (bot.) for proper resp.	Fig. 11   Fig. 12   Fig. 18

ANTENNA. R-F AND CONVERTER LINE ALIGNMENT

18	Antenna terminals	215.75	Not used		Not used	Junction of C183 \& R203 for signal gen. method only	Fine tuning centered. Receiver on channel 13. Heterodyne meter coupled to oscillator if used.	C6 for zero on meter or beat on het. freq. moter	Fig. 13   Fig. 11
19						Junction of R134 \& R222	Remove V101	Potentiometer for - 3.5 volts on meter	Fig. 13   Fig. 11
20	Antenna terminal (loosely)	$\begin{array}{r} 175.25 \\ 179.75 \\ 17.7 \end{array}$	Antenna terminals (see text for precaution)	Swreping channel 7	Test   Connection R13	Not used	Receiver on channel 7	L6. C10, C11 \& C14 for flat top response between markers. Markers above $90 \%$.	Fig. 13   Fig. 12   Fig. 11   Fig. 19   (7)
21	"	$\begin{aligned} & 205.25 \\ & 209.75 \end{aligned}$	-	$\begin{gathered} \text { channel } \\ 12 \end{gathered}$	'	"	Receiver on channel 12	L6 for max. response and min. slope of top of curve	Fig. 18 Fig. 19 (12)
22	"	$\begin{aligned} & 175.25 \\ & 179.75 \end{aligned}$	*	$\begin{gathered} \text { channel } \\ 7 \end{gathered}$	"	"	Receiver on channel 7	Check to see that response is as above	Fig. 19   (7)
23	-	$\begin{aligned} & 181.25 \\ & 185.75 \end{aligned}$	-	$\begin{gathered} \text { channel } \\ 8 \end{gathered}$	-	*	Receiver on channel 8	"	Fig. 19 (8)
24	-	$\begin{aligned} & 187.25 \\ & 191.75 \end{aligned}$	.	$\underset{9}{c h n e l}$	"	"	Receiver on channel 9	"	$\begin{aligned} & \text { Fig. } 19 \\ & (9) \end{aligned}$
25	*	$\begin{aligned} & 193.25 \\ & 197.75 \end{aligned}$	-	$\begin{gathered} \text { channel } \\ 10 \end{gathered}$	"	"	Recriver on channel 10	"	$\begin{gathered} \text { Fig. } 19 \\ (10)^{2} \end{gathered}$


STEP No.	$\begin{aligned} & \text { CONNECT } \\ & \text { SICNAL. } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$	$\begin{aligned} & \text { SIGNAL } \\ & \text { GEN. } \\ & \text { FREQ. } \\ & \text { MC. } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { SWEEP } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$	$\begin{aligned} & \text { SWCEP } \\ & \text { GEN. } \\ & \text { FREQ. } \\ & \text { MC. } \end{aligned}$	CONNECT OSCILLOSCOPE	$\begin{gathered} \text { CONNECT } \\ \text { "VOLTOHMYST" } \\ \text { TO } \end{gathered}$	MISCELLANEOUS CONNECTIONS AND INSTRUCTIONS	ADJUST	$\begin{gathered} \text { REFER } \\ \text { TO } \end{gathered}$
RF AND CONVERTER LINE ALIGNMENT (Cont'd)									
26	*	$\begin{array}{r} 199.25 \\ 203.75 \end{array}$	$\bullet$	$\begin{array}{cc} \text { channel } \\ \hline 11 \end{array}$	،	-	Receiver on chan. nel 11	*	$\begin{aligned} & \text { Fig. } 19 \\ & \text { (il) } \end{aligned}$
27	-	$\begin{array}{r} 205.25 \\ 209.75 \end{array}$	-	$\underset{12}{c h a n n e l}$	"	*	Receiver on chan. nel 12	*	$\underset{(12)}{\text { Fig. } 19}$
28	-•	$\begin{aligned} & 211.25 \\ & 215.75 \end{aligned}$	-•	$\begin{gathered} \text { channel } \\ 13 \end{gathered}$	"	*	Receiver on channel 13	"	$\underset{(13)}{\text { Fig. } 19}$
29	If the response on any channel (steps 22 through 28 ) is below $80 \%$ at either marker, switch to that channel and adjust Lf, Clo, Cll $\& \mathrm{Cl} 4$ to pull response up on that channel. Then reiheck steps 22 through 28.								
30	Antenna terminals (loosely)	$\begin{aligned} & 83.25 \\ & 87.75 \end{aligned}$	Ant. terminals (see text for precaution)	Sweep. ing chan. 6	Test   Connection R13	Not used	Receiver on channel 6	L9, L13, L66 \& C12 for response as above	$\underset{\text { (6) }}{\text { Fig. } 19}$
31	-	$\begin{aligned} & 77.25 \\ & 81.75 \end{aligned}$	*	$\underset{5}{c h a n n e l}$	"	"	Receiver on chan. nel 5	Check to see that response is as above	$\underset{(5)}{\text { Fig. } 19}$
32	-	$\begin{aligned} & 67.25 \\ & 71.75 \end{aligned}$	*	channel	"	*	Receiver on chan. nel 4	"	$\underset{(4)^{2}}{ }{ }_{\text {Fig. }} 19$
33	‘	$\begin{aligned} & 61.25 \\ & 65.75 \end{aligned}$	"	$\underset{3}{\text { channel }}$	*	"	Receiver on chan. nel 3	"	$\begin{gathered} \text { Fig. } 19 \\ (3) \end{gathered}$
34	"	$\begin{aligned} & 55.25 \\ & 59.75 \end{aligned}$	*	$\begin{gathered} \text { channel } \\ 2 \end{gathered}$	"	"	Receiver on chan. nel 2	"	$\begin{aligned} & \text { Fig. } 19 \\ & (2) \end{aligned}$

[^18] to pull response up on that channel. Then recheck steps 30 through 34 . Disconnect bias pot and replace Viol and Vioz.

STEP No.	$\begin{aligned} & \text { CONNECT } \\ & \text { SNGNAL } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$	$\begin{aligned} & \text { SIGNAL } \\ & \text { GEN. } \\ & \text { FREQ. } \\ & \text { MC. } \end{aligned}$	CONNECT HETERODYNE FREQ. METER TO	$\begin{aligned} & \text { HET. } \\ & \text { METER } \\ & \text { FREQ. } \\ & \text { MC. } \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { OSCILLOSCOPE } \\ \text { TO } \end{gathered}$	$\begin{gathered} \text { CONNECT } \\ \text { "VOLTOHMYST" } \\ \text { TO } \end{gathered}$	MISCELLANEOUS CONNECTIONS AND INSTRUCTIONS	ADJUST	$\begin{gathered} \text { REFER } \\ \text { TO } \end{gathered}$
36	Antenna terminals	215.75	Loosely coupled to r-f osc.	237	Notused	Junction of C183 \& R203 for sig. gen. method only	Fine tuning centered. Receiver on channel 13	C6 for zero on meter or beat on het freq. meter	Fig. 13 Fig. 12 Fig. 11
37	-	209.75	-	231	"	"	Rec. on chan. 12	114 as above	Fig. 14
38	*	203.75	"	225	"	"	Rec. on chan. 11	L15 as above	*
39	"	197.75	*	219	.	*	Rec. on chan. 10	L16 as above	"
40	*	191.75	-'	213	"	"	Rec. on chan. 9	L17 as above	*
41	"	185.75	-	207	"	"	Rec. on chan. 8	L18 as above	"
42	*	179.75	*	201	"	*	Rec. on chan. 7	L19 as above	*
43	"	87.75	"	109	"	"	Rec. on chan. 6	L31 as above	Fig. 12
44	-*	81.75	"	103	"	"	Rec. on chan. 5	L21 as above	Fig. 14
45	*	71.75	*	93	"	*	Rec. on chan. 4	L22 as above	*
46	-	65.75	،	87	"	"	Rec. on chan. 3	L23 as above	"
47	"	59.75	"	81	"	"	Rec. on chan. 2	124 as above	*

Repeat steps 36 through 47 as a check.
aGC threshold adjustment

48	Not used	Not used	Pin 1, V106	Not used	Tune in station, eurn pix control clockwise. Adjust R138 for max. gain without clipping sync on scope	Fig. 13   Fig. 20
HORIZONTAL OSCILLATOR ADJUSTMENT						
so	Short circuit terminals C and D of T109. Tune in a station.					
51	Turn hold control fully clockwise. Adjust Tlog Frequency Adjustment until horizontal blanking bar appears in the picture.					
52	Turn hold control $1 / 4$ turn from clockwise to sync picture. Adjust width (Lilo). linearity (Lill) and drive (Cl53B) controls until picture is correct. Repeat step 51.					
53	Turn bold control fully counterclockwise. Momentarily remove signal. Turn hold control slowly clockwise. Note least number of bars before pull-in. Adjust Locking Range Control (C153A) for 7 to 9 bar pull-in.					
54	Remove clip from terminals C and D of T109. Turn hold control fully clockwise. Adjust Tio9 Oscillator Waveform Adjustment until horizontal blanking bar appears in picture.					
55	Connect low capacity probe of oscilloscope to terminal C of T109. Turn hold control $1 / 4$ turn from clockwise. Adjust Tlo9 Oscillator Waveform Adjustment until broad and sharp peaks of wave on oscilloscope are same height. Keep picture in sync with hold control during adjustment. Remove oscilloscope.					
56	Turn hold control fully counterclockwise. Momentarily remove signal. Turn hold control slowly clockwise. Note least number of bars before pull-in. Adjust Locking Range Control (C153A) lor 3 bar pull-in.					
57	Turn bold control fully clockwise. Adjust Tlog Freq. Adjustment until horizontal blanking appears as single vertical or diagonal bar in pix.					
4.5 MC VIDEO TRAP ADJUSTMENT						
58	Tune in a strong station. Short the trap winding of T103. If a 4.5 me beat appears in picture adjust Llo4 until beat is eliminated. SENSITIVITY CHECK					
59	Connect antenna to receiver through attenuator pad to provide weak signal. Compare the picture and sound obtained to that obtained on other receivers under the same conditions.					



Figure 11-Top Chassis Adjustments


Figure 12-Bottom Chassis Adjustments


Figure 13-Test Connection Points


Figure 14-R.F Oscillator Adjustments


Figure 15 Discriminator Response


Figure $17^{\circ}$
Tland Tlo1 Response


Figure 18
Overall IF
R.F Response



Figure 19-R.F Response


Figure 20-AGC Threshold Adjustment Waveforms


Figure 21-Horizontal Oscillator Waveforms


Figure 22-Normal Picture

Figure 23-Focus Coil and Ion Trap Magnet Misadjusted


Figure 24-Horizontal Linearity Control Misadjusted (Picture Cramped in Middle)
$\leftrightarrow$

Figure 25-Width Control Misadjusted
$\rightarrow$


Figure 26-Horizontal Drive Control Misadjusted


Figure 27-Transients


Figure 28-Test Pattern Showing Out of Sync Condition When Horizontal Hold Control Is in a Counterclockwise Posi-tion-Just Before Pulling Into Sync

## 4

Figure 29-Test Pattern Showing Out of Sync Condition When Horizontal Hold Control Is at the Maximum Clockwise Position


Following is a list of symptoms of possible failures and an indication of some of the possible faults.

## NO RASTER ON KINESCOPE:

(1) Incorrect adjustment of ion trap magnet-Magnets reversed either front to back or top to bottom, front magnet incorrectly oriented.
(2) V112 or V113 inoperative-check voltage and waveform on grids and plates.
(3) No high voltage-If horizontal deflection is operating as evidenced by the correct waveform on terminal 4 of horizontal output transformer, the trouble can be isolated to the 8016 circuit. Either the T110 higll voltage winding is open (points 2 to 3 ), the 8016 tube is defective, its filament circuit is open, C168 is shorted or R187 or R189 open.
(4) V111 circuit inoperative-Refer to schematic and waveform chart.
(5) Damper tube (V114) inoperative.
(6) Defective kinescope.
(7) R131 open (terminal 3 to ground).
(8) No receiver plate voltage-filter capacitor or filter choke shorted-bleeder or filter choke open.

## NO VERTICAL DEFLECTION:

(1) V107B or V110 inoperative. Check voltage and waveforms on grids and plates.
(2) T107 or T108 open.
(3) Vertical deflection coils open.

## SMALL RASTER:

(1) Low Plus $B$ or low line voltage.
(2) V112 defective.

## POOR VERTICAL LINEARITY:

(1) If adjustments cannot correct, change V110.
(2) Vertical output transformer defective.
(3) V107B defective-check voltage and waveforms on grid and plate.
(4) C150, R164, C147B or C148-C defective.
(5) Low bias or plate voltage-check rectifiers and capacitors in supply circuits.

## POOR HORIZONTAL LINEARITY:

(1) If adjustments do not correct, change V112 or V114.
(2) T110 or L111 defective.
(3) Cl64 or C165 defective.

## WRINKLES ON LEFT SIDE OF RASTER:

(1) R166, R167 or Cl 69 defective.
(2) Defective yoke.

## PICTURE OUT OF SYNC HORIZONTALLY:

(1) T109 incorrectly tuned.
(2) R172, R173 or R174 defective.

## TRAPEZOIDAL OR NON-SYMMETRICAL RASTER

(1) Improper adjustinent of focus coil or ion trap magnet.
(2) Defective yoke.

RASTER AND SIGNAL ON KINESCOPE BUT NO SOUND:
(1) R-F oscillator off frequency.
(2) Sound i-f, discriminator or audio amplifier inopera-tive-check V116, V117, V118, V119, V120 and their socket voltages.
(3) T114 or C186 defective.
(4) Speaker defective.

## SIGNAL AT KINESCOPE GRID BUT NO SYNC:

(1) AGC threshold control R138 misadjusted.
(2) V105A, V107A, V108 or V109 inoperative. Check voltage and waveforms at their grids and plates.

## SIGNAL ON KINESCOPE GRID BUT NO VERTICAL SYNC:

(1) Check V107B and associated circuit-C145, T107, etc.
(8) Integrating network inoperative-Check.
(3) R154, R155, R157, R158 or R159 defective.

## SIGNAL ON KINESCOPE GRID BUT NO HORIZONTAL SYNC:

(1) T109 misadjusted—readjust as instructed on page 11.
(2) Vlll inoperative-clicek socket voltages and waveforms.
(3) T109 defective.
(4) $\mathrm{C} 140, \mathrm{C} 153 \mathrm{~A}, \mathrm{C} 154, \mathrm{C} 155, \mathrm{C} 157$ or C 166 defective.
(5) If horizontal speed is completely off and cannot be adjusted check C158, C159, R172, R173, R174, R179 and R182.

SOUND AND RASTER BUT NO PICTURE OR SYNC:
(1) Picture i-f, detector or video amplifier inoperativecheck V103, V104, V105 and V106-check socket voltages.
(2) Bad contact to kinescope grid.

## PICTURE STABLE BUT POOR RESOLUTION:

(1) V105A or V106 defective.
(2) Peaking coils defective-check for specified resistance.
(3) Make sure that the focus control operates on both sides of proper focus.
(4) R-F and I-F circuits misaligned.

## PICTURE SMEAR:

(1) R-F or I-F circuits misaligned.
(2) Open peaking coil.
(3) This trouble can originate at the transmitter-check on another statioin.

## PICTURE JITTER:

(1) AGC threshold control R138 misadjusted.
(2) If regular sections at the left picture are displaced change V112.
(3) Vertical instability may be due to loose connections or noise.
(4) Horizontal instability may be duc to unstable transmitted sync.

RASTER BUT NO SOUND, PICTURE OR SYNC:
(1) Defective antenna or transmission line.
(2) R-F oscillator off frequency.
(3) R-F unit inoperative-check $\mathrm{V} 1, \mathrm{~V}, \mathrm{~V} 3$

PICTURE I-F RESPONSE-At times it may be desirable to observe the individual i-f stage response. This can be achieved by the following method:

Shunt all i-f transformers and coils with a 330 ohm carbon resistor except the one whose response is to be observed.

Connect a wide band sweep generator to the converter grid and adjust it to sweep from 18 mc . to 30 mc .

DARK VERTICAL LINE ON LEFT OF PICTURE:
(1) Reduce horizontal drive and readjust width and horizontal linearity.
(2) Keplace V112.

LIGHT VERTICAL LINE ON LEFT OF PIC. TURE:
(1) C 169 defective
(2) V114 defective.

Connect the oscilloscope across the picture detector load resistor and observe the overall response. The response obtained will be essentially that of the unshunted stage. The effects of the various traps are also visible on the stage response.
Figures 30 through 34 show the response of the various stages obtained in the above manner. The curves shown are typical although some variation between receivers can be expected. Relative stage gain is not shown.


Figure 30 -Response of Con. verter and First Pix I.F Transformer


Figure 31-Kesponse of Second Pix I.F Transformer


Figure 34 Response of Fi/th Pix I.F Transformer

Figure 37-Viden Response at Average Contrast
 17


Figure 32-Response of Third Pix I-F Transformer


Higure 33-Response of Fourth Pix I-F Transformer


Figure 36-Overall Pix I.F Response


Input to Kinescope (Junction of R127 and R128) (Picture Max.)

Figure 47-Vertical (65 Volts PP)


Figure 48-Horizontal (65 Volts PP)



Input to Ist Sync Separator (Pin 1 of V108) (6SN7GT)

Figure 49-V'ertical (25 Volts PP) $\leftrightarrow 4$

Figure 50-Horizontal (23 Volts PP) $\rightarrow$


AGC Rectifier Cathode (Pin 6 of V108) (6SN7GT)

Figure 51-Vertical (4.7 Volts PP) $\leftrightarrow$

Figure 52-Horizontal (1.5 Volts PP) $\rightarrow$


Output of 1st Sync Separator (Pin 5 of V108) (6SN7GT)

Figure 53-Vertical (24 Volts PP)
$\leftrightarrow 4$
Figure 54-Horizontal (24 Volts PP) $\rightarrow$


Output of Ist Sync Separator (Pin 2 of V108) (6SN7GT)

Figure 55--Vertical (26 Volts PP) $\longleftarrow$

Figure 56-Horizontal (25.5 Volts PP) $\rightarrow$


Input to Sync Amplifier (Junction of C137, C139 and R145)

Figure 57 -Vertical (21 Volts PP)

Figure 58-Horizontal (21 Volts PP) $\rightarrow$



Cathode of 2nd Sync Separator (Pin 6 of V109) (6SN7GT)

Figure 61-Vertical (17 Volts PP) $4+4$

Figure 62-Horizontal (11 Volts PP) $\rightarrow$


Figure 67-Input of Vertical Deflection Coils (75 V'olts PP) (Junction of Green Lead of T108 and Green Lead of Yoke)

$$
4+4
$$

Figure 68-Input in Horizontal Oscillator (17.5 Volts PP) (Junction of C153A and C154)
$\rightarrow$
Figure 63-Output of Integrating Network (Junction of Cl44, C145 and R153) ( 45 Volts PP)
$4-4$
Figure 64-Grid of V'ertical Oscillator (720 Volts PP) (Pin 1 of V107) (6SN7CT)
$\Rightarrow$

Figure 65-Grid of Vertical Output (160 Volts PP) (Pin 5 of V110) (6K6GT)

4
Figure 66-Plate of V'ertical Output ( 750 Volts PP) (Pin 3 of V110) ( 6 K 6 GT )
$\rightarrow$



Figure 69-Junction of R168, R176 and R178 (150 Volts PP)
$\leftrightarrow 4$
Figure 70 -Grid of Horizontal Oscil. lator (480 Volts PP) (Pin 4 of V111) (6SN7GT)
$\rightarrow$

Figure 71-Plate of Horizontal Oscil. lator (270 Volts PP) (Pin 5 of VIII) (6SN7GT)
$4+$
Figure 72-Terminal "C" of T109
(70 Volts PP)
$\rightarrow$


Figure 75-Junction of C165, L111 and Terminal 1 of T110 (80 Volts PP)
Figure 74-Plate of Horizontal Output (Approx. 5,200 Volts PP) (Measured Through a Capacity Voltage Divider Connected from Top Cap of VII2 to Ground)
$\rightarrow$
Figure 73-Input to Horizontal Out put Tube (42 Volts PP) (Junction of C160, R183 and C153B)

## 4

Figure 76-Cathode of Damper ( 33 Volts PP) (Pin 8 of V114) (5V4G)
$\rightarrow$


Figure 77-Input to Horizontal Deflection Coils (1,150 Volts PP) (Pin 4 of V114) (5V4G)
$\leftarrow 4$
Figure 78-Junction of L115 and R192 (6 Volts PP)


The following measurements represent two sets of conditions. In the first condition a 2200 microvolt test pattern signal was fed into the receiver, the picture was synced and the AGC threshold control was properly adjusted. The second condition was obtained by removing the antenna leads and short-circuiting the receiver antenna terminals. Voltages shown are as read with "Ir. VoltOhmyst" between the indicated terminal and chassis ground and with the receiver operating on 117 volts, 60 cycles a.c.

Tube No.	Tube   Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		I   Plate (ma.)	$\begin{gathered} 1 \\ \text { Screen } \\ \text { (ma.) } \end{gathered}$	Notes on Measurements
				Pin   No.	Volts	Pin   No.	Volts	Pin   No.	Volts	Pin No.	Volts			
V1	6AG5	R-F   Amplifier	$2200 \mathrm{Mu} . \mathrm{V}$. Signal	5	146	6	148	287	0	1	-4.9	. 72	. 33	
			No Signal	5	85	6	120	287	0	1	-0.4v	12.0	4.0	
V2	6AG5	Converter	2200 Mu . V. Signal	5	$\begin{gathered} 130 \\ \text { to } 140 \end{gathered}$	6	$\begin{gathered} 130 \\ \text { 10 } 140 \\ \hline \end{gathered}$	2\& 7	0	1	$\begin{gathered} \text { e }-3.0 \\ \text { to }-7.0 \end{gathered}$	$\begin{gathered} 7.1 \\ 107.7 \end{gathered}$	$\begin{gathered} \quad 2.3 \\ \text { to } 2.7 \end{gathered}$	- Depending
			No Signal	5	$\begin{gathered} 104 \\ \text { 10 } 109 \end{gathered}$	6	$\begin{gathered} 104 \\ \text { to } 109 \end{gathered}$	287	0	1	$\begin{gathered} -2.0 \\ 10-6.0 \end{gathered}$	$\begin{gathered} .5 .3 \\ \text { to } 5.9 \end{gathered}$	$\begin{gathered} \quad .8 \\ \text { to } \quad 1.0 \end{gathered}$	upon channel
V3	$6 J 6$	R-F Oscillator	2200 Mu. V. Signal	182	$\begin{gathered} 88 \\ \text { to } 95 \end{gathered}$	-	-	7	. 19	$5 \& 6$	$\begin{gathered} -5.1 \\ 10-7.3 \end{gathered}$	$\begin{gathered} 1.9 \\ \text { to } 2.7 \end{gathered}$	-	- Depending
			No Signal	182	$\begin{gathered} 68 \\ \text { to } 81 \end{gathered}$	-	-	7	. 16	566	$\begin{gathered} -4.5 \\ 10-6.6 \end{gathered}$	$\begin{gathered} 1.8 \\ \text { to } 2.1 \end{gathered}$	-	upon channel
V101	6AG5	1st Pix. I-F Amplifier	2200 Mu V. Signal	5	141	6	141	287	. 07	1	-3.9	. 8	. 22	
			No Signal	5	108	6	108	287	. 11	1	-. 09	4.97	1.73	
V102	6AG5	2d Pix. I-F Amplifier	$2200 \mathrm{Mu} . \mathrm{V} .$ Signal	5	130	6	130	267	. 86	1	0	9.48	3.12	
			No Signal	5	106	6	106	267	. 6	1	0	7.6	2.6	
V103	6AG5	3d Pix. 1-F Amplitier	$\begin{gathered} 2200 \text { Mu. V. } \\ \text { Signal } \end{gathered}$	5	130	6	140	287	. 03	1	-3.9	. 51	. 09	
			No Signal	5	94	6	109	287	. 11	1	-. 09	3.92	1.5	
V104	6AG5	4th Pix. I-F Amplifier	2200 Mu . V. Signal	5	175	6	145	287	1.38	1	0	7.0	2.0	
			No Signal	5	167	6	109	287	. 95	1	0	5.7	1.5	
$\begin{gathered} \text { V105 } \\ \text { A } \end{gathered}$	6ALS	Picture   2d Det.	2200 Mu . V. Signal	7	-113	-	-	1	-112	-	-	. 48	-	
			No Signal	7	-120	-	-	1	-120	-	-	-	-	
$\begin{gathered} \text { V105 } \\ \text { B } \end{gathered}$	6AL5	Sync Limiter	$2200 \mathrm{Mu} . \mathrm{V}$. Signal	2	-107	-	-	5	-56	-	-	-	-	
			No Signal	2	-80	-	-	5	-60	-	-	-	-	
V106	12AU7	lst Video Amplifier	2200 Mu. V. Signol	1	-23.2	-	-	3	-111	2	-113	4.38	-	
			No Signal	1	-19.2	-	-	3	-117	2	-120	3.82	-	
V106	12AU7	2d Video Amplifier	2200 Mu . V. Signal	6	- 166	-	-	8	- -5.3	7	- -12.2	6.2	-	- At average contrast
			No Signal	6	-134	-	-	8	${ }^{*}-5.6$	7	- -10.3	6.9	-	
$\begin{gathered} \text { V107 } \\ \mathbf{A} \end{gathered}$	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	ACG   Amplifier	2200 Mu . V. Signal	5	-17.9	-	-	6	-55.5	4	-56.5	. 9	-	
			No Signal	5	-5.2	-	-	6	-60	4	-64	. 3	-	
$\begin{gathered} \text { V107 } \\ \text { B } \end{gathered}$	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Vertical   Oscillator	$2200 \mathrm{Mu} . \mathrm{V} \text {. }$   Signal	2	76	-	-	3	-111	1	-158	. 2	-	
			No Signal	2	62	-	-	3	-120	1	-169	. 2	-	
V108	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	AGC   Rectifier	$2200 \mathrm{Mu} . \mathrm{V} .$   Signal	5	97	-	-	6	-3.4	4	-19.3	. 3	-	
			No Signal	5	81	-	-	6	$-8.7$	4	-19.3	. 28	-	
V108	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	lst Sync Separator	$2200 \mathrm{Mu} . \mathrm{V} .$   Signal	2	96	-	-	3	-1.8	1	-19.5	. 1	-	
			No Signal	2	81	-	-		-9.7	1	-19.3	. 1	-	


Tube No.	Tube Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		IPlate(ma.)	Screen (ma.)	Notes on Measurements
				Pin No.	Volts									
V109	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Sync Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . V \\ \text { Signal } \\ \hline \end{gathered}$	2	158	-	-	3	0	1	-4.7	5.25		
			No Signal	2	154	-	-	3	0	1	- 5.2	3.75	--	
V109	$\begin{aligned} & \text { 6SN7 } 7 \\ & \text { GT } \end{aligned}$	Sync   Separator	$\begin{gathered} 2200 \text { Mu.V. } \\ \text { Signal } \end{gathered}$	5	230		=.	6	-51	4	5.2 -106	3.75 .4	-	
			No Signal	5	215	-	-	6	-59	4	-80	. 35	-	
V110	$\begin{aligned} & \text { 6K6 } \\ & \text { GT } \end{aligned}$	Vertical Output	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	3	223	4	223	8	-67	5	-91		* 7.85	*Screen
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	3	208	4	208	8	$-79$	5	-101		* 7.7	connected to plate
V111	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Horizontal Osc. Contral	$2200 \mathrm{Mu} . \mathrm{V}$   Signal	2	${ }^{4} 48$	-	-	3	-110	1	-92	2	-	*Variation of hold gives
			No Signal	2	*33	$\cdots$	-	3	$-120$	1	-108	2	-	-21.9 to +56 volts on plate
V111	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Horizontal Oscillator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	70	-	-	6	-111	4	-185	2.4	-	
			No Signa!	5	54	-	-	6	-120	4	-192	2.4	-	
V112	6BG6G	Horizontal Out put	$\begin{gathered} 2200 \mathrm{Mu} . V . \\ \text { Signal } \\ \hline \end{gathered}$	Cap	*	8	160	3	-104	5	-101	93.5	11.5	
			No Signal	Cap	Do Not Meas.	8	142	3	$-113$	5	-112	90.8	11.2	pulse present
V113	$\begin{gathered} \text { 183GT } \\ \hline 8016 \\ \hline \end{gathered}$	H. V. Rectifier	Brightness Min.	Cap	-	-	-	287	8500	-	-	0	-	
			Brightness Average	Cap	Do Not Meas.	-	--	287	8400	-	-	. 1	--	pulse present
V114	5V4G	Damper	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	486	-	-	-	288	339	-	-	94.5	-	
			No Signal	486	Do Not Meas.	-	-	288	322	-	$\ldots$	92	-	- 1200 volt pulse present
V115	5U4G	Rectifier	$\begin{aligned} & 2200 \mathrm{Mu} \cdot \mathrm{~V} \\ & \text { Signal } \\ & \hline \end{aligned}$	486	390	-	-	288	291	-	$=$	225	-	* A.C measured
			No Signal	4\%6	390	-	-	$2 \& 8$	272	-	-	230	-	from plate to trans. center tap
V116	6AU6	1st Sound I-F Amplifier	$2200 \mathrm{Mu} . \mathrm{V} \text {. }$ Signa!	5	134	6	134	7	. 9	1	0	88	3.3	
			No Signal	5	110	6	110	7	. 7	1	0	5.7	2.6	
V117	6AU6	2d Sound I-F Amplifier	$2200 \mathrm{Mu} . \mathrm{V} .$ Signa!	5	148	6	90	7	0	1	-9	1.6	2.6 .8	
			No Signal	5	115	6	60	7	0	1	$-.65$	3.35	1.15	
V118	6AL5	Sound Discrim.	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	2	-8.4	-	-.	5	5.8	-	-.65	3.35	1.15	
			No Signal	2	-2.0	-	-	5	. 41	-	-	-	-	
			$\begin{gathered} 2200 \mathrm{Mu} . V \\ \text { Signal } \end{gathered}$	7	-3.7	-	-	1	0	-	-	-	$\ldots$	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	7	-1.08	-.	-	1	0	-	-	-	-	
V119	6AV6	1st Audio Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	7	85	-	-	2	0	1	$-.89$	. 49	-	
			No Signal	7	83	-	---	2	0	1	$-.89$	. 4	-	
V120	$\begin{aligned} & \text { 6K6- } \\ & \text { GT } \end{aligned}$	Audio Output	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	3	102	4	113	8	-99	5	-108	19.3	3.3	
			No Signal	3	72	4	80	8	-111	5	-114	18	3.3 3	
V121	10BP4	Kinescope	$\begin{gathered} 2200 \mathrm{Mu} \cdot \mathrm{~V} . \\ \text { Signal } \\ \hline \end{gathered}$	Cap	* 8400	10	339	11	51	2	20	. 1	-	*Average Brightness
			No   Signal	Cap	--	10	322	11	42	2	14	-	-	Average Brightness
			2200 Mu .V. Signal	Cap	-	10	339	11		2		. 4	-	Maximum Brightness
			$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \end{gathered}$	Cap	*8500	10	339	11		2		0	-	Minimum Brightness



Figure 19-R.F Unit $\begin{aligned} \text { Tiring Diagram }\end{aligned}$

## CRITICAL LEAD DRESS:

1. The ground bus from pin 2 and the center shield of V117 socket should not be shortened or rerouted.
2. Do not change the dress of the filament leads or the bypass capacitors in the picture or sound i-f circuits. The flament leads between V117, V118 and V119 should be down against the chassis and away from grid or plate leads.
3. If it is necessary to replace any of the 1500 mmf capacitors in the picture i-f circuit, the lead length must be kept as short as possible.
4. Picture i-f coupling capacitors C106, C111, C115 and C121 should be up and away from the chassis and should be clear of the pix i-f transformer adjustments by at least $\ddagger$ inch. If the dress of any of these capacitors is changed, the i-f alignment should be rechecked.
5. Leads to L. 102 and L. 103 must be as short as possible.
6. Dress peaking coils L105, L106 and L107 up and away from the chassis.
7. Dress C183 across tube pins 5 and 6 with leads not exceeding inch.
8. Dress the blue lead from pin 5 of V119 down against the chassis.
9. Dress C129 and C130 up and away from the chassis.
10. Dress the yellow lead from the picture control away from the chassis. Dress the yellow lead from pin 8 of V106 away from the chassis.
11. Dress the green lead from pin 2 of V106 away from the chassis.
12. Dress R168, R169, R170, R176 and R178 up and away from the chassis.
13. The leads to the volume control should be dressed down against the chassis and away from V117 and V118.
14. Contact letween the r-f uscillator frequency adjustment screws and the oscillator coils or chamel switch eyelets must be avoided.
15. Dress leads from 1,110 (width control coil) away from the transformer frame.
16. Dress T110 winding leads as shown in Figure 80.


Figure 80-T110 Lead Dress

Stock	DESCRIPTION	$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	－F UNIT ASSEMBLIES		Resistor－Fixed，composition，2，700 ohms，   $\pm 10 \%$ ．+ watt（R10）
784	Belt－Drive		Fixed，composition，10，000 ohms，
73478	Cable－I－F transmission cable（47＇）（W1）		tt（R
73	Cam－Fine tuning adjustment cam		tor－Fixed，composition，100，000
74035	Capacitor－Ceramic， 5 mmf （（ $4, ~ C 5) ~$		0\％，发 watt（R2，R3，R8，R13）
53	Capacitor－Ceramic， 10 mmf ．（C3）	14343	Retainer－Channel selector shaft retaining
5421	Capacitor－Ceramic， 18 mmf ．（C20）	30340	Retainer－Retainer for fine tuning link stud
73449	Capacitor－Ceramic trimmer，comprising 1 section of $150-190 \mathrm{mmf}$ ．and 1 section of $65-95 \mathrm{mmf}$ ．（C11，C12）	71476	Screw－No． $4-40 \times$ t＇$^{\prime \prime}$ binder head screw for adjusting coils L14，L15，L16，L17，L18，L19
73091	Capacitor－Ceramic， 270 mmf ．（C21）	714	Screw－No．4－40 x 296 adjusting screw for
53494	Capacitor－Ceramic， $1,500 \mathrm{mmf}$ ．（ $\mathrm{C} 2, \mathrm{C} 7, \mathrm{C} 8$ ， C9，C13，C15，C17，C18，C19）	73640	
73473	Capacitor－Ceramic，5，000 mmf．（C16）	9	Shaft－Actuating shaft for fine tuning control
73475	Coil－Antenna filter shunt coil（L67）	73437	Shaft－Channel selector shaft complete with
7347	Coil－Choke coil（L10，L11，L12）		
73874	Coil－Oscillator plate coil or converter grid coil for channel No． 6 （L9，L31）	72951	Shield－Metal tube shield for V3
7346	Coil－Coupling inductance coil（L4）		Shield－Metal shield for drive belt
73	Coil－Fine tuning coil（13 turns）with adjust－	714	Socket－Tube socket
	（smooth bushing type with plunger adjust－ ment）（L1，C1）	73450	Socket－Tube socket，ceramic， 7 prong bottom mounted
741	Coil－Fine tuning coil（ $1 \frac{1}{2}$ turns）with adjust－ able inductance core and capacitor stud （threaded bushing type with plunger ad－ justment） （L1，C1）	73457 74188	Spring－Return spring for fine tuning control core   Spring－Retaining spring for adjustable core 74187
73	Coil－I－F trap（L7，C22）	5	Spring－Tension spring for drive belt shield
73461	Coil－Oscillator plate coil（4 turns）（L20）	3	Stator－Antenna stator complete with rotor
位	Coil－R－F plate coil for channel No． 6 （L13）		and coils（S5，L6，L56，L57，L58，L59，L60，
734	Coil－Trimmer coil（1it turns）with adjust－ able inductance core and capacitor stud （smooth bushing type with screw adjust－ ment）for oscillator section or converter sec－	734	Stator－Converter stator complete with rotor   and coils（S3，L36，L37，L38，L39，L40，L41，   L48，L49，L50，L51）
74109	tion（L2，C6，L3，C10）   Coil－Trimmer coil（1i turns）with adjust－ able inductance core and capacitor stud （threaded bushing type with screw adjust－	734	Stator－Front oscillator section stator com－ plete with rotor，segment，coils and adjust－ L19，L21，L22．L23，L24）
	ment）for oscillator section or converter sec－ tion（L2，C6，L3，C10）	734	Stator－Rear oscillator section stator complete with rotor，segment and coils（S2，L25，L26， L27，L28，L29，
73	Coil－Trimmer coil（3 turns）with adjustable inductance core and capacitor stud（smooth bushing type with screw adjustment）for r－f amplifier section（L5，C14）	7347	Stator－R－F amplifier stator complete with rotor and coils（S4，L42，L43，L44，L45，L46， L47，L52，L53，L54，L55）
74110	Coil－Trimmer coil（ 3 turns）with adjustable inductance core and capacitor stud（threaded bushing type with screw adjustment）for r－f amplifier section（L5，C14）	734	Washer－＂C＂washer for channel selector shaft   Washer－Insulating washers for front shield （1 set）
7	Connector－Oscillator segment connector	73448	Transformer－Converter transformer（T1，R6）
73455	Core－Sliding core for fine tuning control trim－ mer		SIS ASSEMBLIES
7418	Core－Adjustable core for L31		KCS28
73440	Detent－R－F unit detent mechanism and fibre shaft	72809	Capacitor－Mica， 5 mmf ．（C166）
71487		72615	Capacitor－Mica， 10 mmf ．（C126）
	channel No． 6 （L31）	5	Capacitor－Mica， 33 mmf （（C111）
73453	Form－Coil form assembly for L9，L13		Capacitor－Ceramic， 82 mmf （ ${ }^{\text {C120）}}$
73442	Link－Link assembly fine tuning	50	Capacitor－Mica， 100 mmf .1000 v．（C138）
71462	Loop－Oscillator to converter trimmer loop connector	$\begin{aligned} & 39396 \\ & 73921 \end{aligned}$	Capacitor－Ceramic， 100 mmf ．（C175）
736	Nut－Speed nut for drive belt shield	73102	Capacitor－Mica， 180 mmf ．（C158）
73467	Nut－Speed nut to mount trimmer coils 73443，	51416	Capacitor－Mica， 180 mmf ．（C140）
	73444 and 73446	73091	Capacitor－Mica， 270 mmf （（C106，C115，C121）
7343673464	Plate－Fron：plate and bushing	7392	Capacitor－Ceramic， 270 mmf ．（C183，C194，
	Pulley－Idler pulley Resistor－Fixed，composition， $47 \mathrm{ohms}, \pm 20 \%$ ，		C198）
	Resistor－Fixed，composition， 47 ohms，$\pm 20 \%$ ，   $\frac{1}{2}$ watt（R4）	$\begin{aligned} & 39642 \\ & 71450 \end{aligned}$	Capacitor－Mica， 390 mmf （ $\mathbf{C 1 4 1 , ~ C 1 6 0 ) ~}$ Capacitor－Hi－voltage， $500 \mathrm{mmf}, 15,000$ v．
	Resistor－Fixed， $\pm 20 \%$, composition， watt （R5，R9，R12）		（C168）
	Resistor－Fixed，composition， 1,000 ohms，$\pm 20 \%$ ，$\frac{1}{2}$ wattResistor－Fixed，composition，（R7，000 ohms，	$\begin{aligned} & 39646 \\ & 53494 \end{aligned}$	Capacitor－Mica， 560 mmf ．（C127，C167）   Capacitor－Ceramic， $1,500 \mathrm{mmf}$ ．（C101，C103，
			C104，C105，C108，C109，C110，C113，C114，
			C117， C176， C177， C188，


Stock No．	DESCRIPTION	Stock No．	DESCRIPTION
73580	Capacitor－Mica trimmer，comprising 1 sec－ tion of $10-160 \mathrm{mmf}$ ，and 1 section of $\mathbf{4 0 - 3 7 0}$ mmf．（C153A，C153B）	$\begin{aligned} & 71521 \\ & 71789 \\ & 73579 \end{aligned}$	Connector－Hi－voltage capacitor connector   Connestor－Kinescope anode connector   Control－AGC threshold control（R138）
73801	Capacitor－Tubular，moulded paper， .001 mfd ．， 600 volts（C137）	73156 72735	Control－Brightness control（R131） Control－Focus control（R191）
73598	Capacitor－Tubular，moulded paper， 0015	71440	Control－Height control（R155）
73559	mfd．， 600 volts（C181）   Capacitor－Tubular，moulded paper，． 0022 mfd．， 600 volts（C142，C154）	72734	Control－Horizontal and vertical hold control （R158，R173）
73595	Capacitor－Tubular，moulded paper，oil filled， .0022 mfd ．， 600 volts（C161）	73910	power switch（R122，R205，S101）   Control－Vertical linearity control（R162）
7380	Capacitor－Tubular，moulded paper，．． 0022 mfd．， 600 volts（C 184 ）	71457	Cord－Power cord and plug
73550	Capacitor－Tubular，moulded paper，． 0047 mfd．， 600 volts（C143，C144，C186，C195）	71	Cover－Insulating cover for electrolytics Nos． 71432， 73581 and 73582
73920	Capacitor－Tubulas，moulded paper，oil filled， $.0047 \mathrm{mfd} ., 600$ volts（C145）	7360	$\begin{aligned} & \text { required) } \\ & \text { Fuse- } 0.25 \mathrm{amp} \text {., } 250 \text { volts (F1) } \end{aligned}$
7356	Capacitor－Tubular，moulded paper， 01 mfd ， 400 volts（C135，C151，C152，C182）	37396	Grommet－Rubber grommet for mounting ceramic tube socket
73594	Capacitor－Tubular，moulded paper，oil filled， .01 mfd．， 600 volts（C159）	71799	Grommet－Rubber grommet for yoke hori－ zontal lead exit
7356	Capacitor－Tubular，moulded paper， 01 mfd ．， 1，000 volts（ $\mathbf{C} 185$ ）	735	Nut－Speed nut to mount hi－voltage capacitor
7356	Capacitor－Tubular，moulded paper， .022 mfd ．， 400 volts（C155）	$\begin{aligned} & 73301 \\ & 18469 \end{aligned}$	Magnet－Ion trap magnet（PM type）   Plate－Bakelite mounting plate for electrolytics
735	Capacitor－Tubular，moulded paper，oil filled． $.033 \mathrm{mfd} ., 1,000$ volts（C164）	$\begin{array}{r} 5119 \\ 71448 \end{array}$	Plug－3 contact female plug for speaker cable Plug－Male plug for power cable
73558	Capacitor－Tubular，moulded paper，． 047 mfd ．， 200 volts（C133，C187）		Resistor－Wire wound， 3.3 ohms，f watt （R187）
73553	Capacitor－Tubular，moulded paper， 047 mfd ．， 400 volts（C130，C139）	72067	Resistor－Wire wound， 5.1 ohms，$\frac{1}{\frac{1}{2}}$ watt （R202）
73592	Capacitor－Tubular，moulded paper，oil filled， .047 mfd ．， 600 volts（C150）		$\begin{aligned} & \text { Resistor-Fixed, composition, } 10 \text { ohms, } \pm 20 \% \text {, } \\ & \frac{1}{2} \text { watt (R120, R192) } \end{aligned}$
73563	Capacitor－Tubular，moulded paper，． 047 mfd ．， 600 volts（C156）		Resistor－Fixed，composition， 39 ohms，$\pm 10 \%$ ，
735	Capacitor－Tubular，moulded paper， .047 mfd ， 1，000 volts（C163）		Resistor－Fixed，composition， 39 ohms，$\pm 10 \%$ ，
73597	Capacitor－Tubular，moulded paper，oil filled， .047 mfd．，1，000 volts（C165）		
736	Capacitor－Tubular，moulded paper， 0.1 mfd ．， 400 volts（C149）		$\frac{1}{2}$ watt（R183）   Resistor－Fixed，composition， 47 ohms，$\pm 10 \%$ ，
73657	Capacitor－Tubular，moulded paper， 0.1 mfd ．， 600 volts（C131）		1 watt（R184）   Resistor－Fixed，composition， 68 ohms，$\pm 10 \%$ ，
73560	Capacitor－Tubular，moulded paper， 0.22 mfd ．， 200 volts（C136）		$\frac{1}{2}$ watt（R105）   Resistor－Fixed，composition， 82 ohms，$\pm 10 \%$ ，
73593	Capacitor－Tubular，moulded paper， 0.22 mfd ．， 400 volts（C157，C162）		$\frac{1}{\frac{1}{2} \text { watt（R195）}}$   Resistor－Fixed，composition， 100
73787	Capacitor－Tubular，moulded paper， 0.47 mfd ．， 200 volts（C190）		$\pm 10 \%, \frac{1}{2} \text { watt }(\text { R121 })$   Resistor－Fixed，composition， 150 oh
741	Capacitor－Electrolytic， 5 mfd．， 50 volts（C197）		
53147	Capacitor－Electrolytic， $25 \mathrm{mfd} ., 50 \mathrm{v}$ ．（C134）		Resistor－Fixed，composition， 150 ohm
73581	Capacitor－Electrolytic，comprising 1 sec． 60    C146D）		$\pm 10 \%$ ，交 watt（R115）   Resistor－Fixed，composition， 220 ohms，   $\pm 10 \%$ ，is watt（R123）
73583	Capacitor－Electrolytic，comprising 1 sec .40 $\mathrm{mfd} ., 450 \mathrm{v}, 1 \mathrm{sec}$ ．of $90 \mathrm{mfd} ., 150 \mathrm{v}$ ．and 1 $\mathrm{sec} .50 \mathrm{mfd} ., 100 \mathrm{v} .(\mathrm{C} 147 \mathrm{~A}, \mathrm{C147B}, \mathrm{C} 147 \mathrm{C})$		（R190）   Resistor－Fixed，composition， 680 ohms， $\pm 10 \%$ ， 1 watt（R206）
71432	Capacitor－Electrolytic，comprising 2 sec． 40 mfd．， 450 v ．and 1 sec .10 mfd ．， 450 v ．（C148A， C148B，C148C）	73588	Resistor－Voltage divider，comprising 1 sec－ tion of 850 ohms， 12 watt and 2 sections of 650 ohms， 6 watts（R193A，R193B，R193C）
73582	Capacitor－Electrolytic，comprising 1 sec .40  		Resistor－Fixed，composition， 1,000 ohms， $\pm 20 \%$ ，$\frac{1}{2}$ watt（R103，R107，R108，R113， R116，R118，R165，R199）
73154 73477	Choke－Filter choke（Li114） Coil－Choke coil（L101）		Resistor－Fixed，composition，1，200 ohms，
735	Coil－Focus coil（L115）		$\xrightarrow{ \pm 10 \% \text { ，watt }}$（R196）${ }_{\text {desistor－Fixed，}}$
714	Coil－Horizontal linearity control coil（L111）		$\begin{aligned} & \text { esistor-Fixed, composition, } \\ & \pm 10 \%, 2 \text { watt (R194, R208) } \end{aligned}$
74	Coil－Peaking coil（s6 mh．）（L117，R110）		Resistor－Fixed，composition，2，200
726	Coil－Peaking coil（93 mh．）（L103，R212）		（R2）
71528	$\left.\begin{array}{c}\text { Coil－Peaking } \\ \text { R125，R213）}\end{array}\right)$ oil（ 180 mh. ）（L102，L105，		$\begin{aligned} & \text { Resistor-Fixed, } \begin{array}{l} \text { composition, } \\ \pm 10 \% \text {, } \\ \text { I watt } \\ \text { (R161, R217) } \end{array} \text { ohm } \end{aligned}$
71528 71429	Coil－Peaking coil（250 mh．）（L106，L107） Coil－Width control coil（L110）		Resistor－Fixed，composition， 3,300 ohms， $\pm 5 \%$ ，\＆watt（R126）




## ST241, 8T243, 8T244 REPLACEMENT PARTS (Continued)



Stock No.	DESCRIPTION	$\begin{gathered} \text { Stock } \\ \text { Nock } \end{gathered}$	DESCRIPTION
73476	Trap-i-f trap (L116, C189)	73785	Knob-Picture control, vertical hold control or brightness control knob (black) for ma-
	Yoke-Deflection yoke (L108, L109, L112,		
71420	Yoke-Deflection yoke (L108, L109, L112, L113, C169, R166, R167)	32	Knob-Station selector knob (burgundy) for walnut or mahogany instruments (8T244)
	AKER ASSEMBLIES 92573-4 W	32	Knob-Station selector knob (tan) for toasted mahogany instruments (8T243, 8T244)
	Plug-3 prong male plat	${ }^{3}$	Knob-Station selector knob (black) for walnut or mahogany instruments (8T243)
7399	Speaker-5 x 7" PM elliptical speaker complete with cone and voice coil	732	Knob-Volume control and power switch or horizontal hold control knob (burgundy) for walnut and mahogany instruments (8T244)
73641	miscellaneous   Back-Cabinet back	732	Knob-Volume control and power switch or horizontal hold control knob (tan) for
74004	Bezel-Plastic bezel for cabinet wind (8T241)		${ }_{8}^{\text {roasta }}$ ) mahogany instrum
73862	Bezel-Kinescope tube bezel or window frame (8T243, 8T244)	73853	Knob-Volume control and power switch or horizontal hold control knob (black) for walnut and mahogany instruments (8T243)
73864	Bracket-Retainer bracket for removable top panel (2 required) (8T243)	7400	Knob-Brightness control knob (dark) for mahogany instruments (8T241)
72857	Board-Antenna board	74003	Knob-Brightness control knob (tan) for
	Catch-Bulet catch and strike (8T244)		toasted mahogany instruments (8T241)
73858 74033	Catch-Bullet catch and strike (8T244) Decal-Control panel decals for mahogan	73994	Knob-Fine tuning knob (dark) for mahagony instruments (8T241)
73860	walnut instruments (8T241)   Decal-Control panel decal for mahogany or	73995	Knob-Fine tuning knob (tan) for toasted mahogany instruments (8T241)
74034	Decal-Control panel decal for toasted mahagony instruments (8T241)	74000	Knob-Horizontal hold control or volume control and power switch knob (dark) for mahogany instruments (8T241)
73861	Decal-Control panel decal for toasted mahogany instruments (8T243, 8T244)	74001	Knob-Horizontal hold control or volume control and power switch knob (tan) for toasted
71910	Decal-Trade mark decal (8T244)		${ }^{\text {trahogany instruments (8T241) }}$
73740	Escutcheon-Channel marker escutcheon for toasted mahogany instruments	73998	Knob-Picture control or vertical hold control knob (dark) for mahogany instruments
73781	Escutcheon-Channel marker escutcheon for mahogany and walnut instruments ( 8 T 243 )		${ }_{(8 T 241)}$
73642	Escutcheon-Channel marker escutcheon for mahogany or walnut instruments (8T241, 8T,244)	73999	Knob-Picture control or vertical hold control knob (tan) for toasted mahogany instruments (8T241)
72113	Foot-Rubber foot (4 required)	73996	Knob-Station selector knob (dark) for mahogany instruments (8T241)
73863	Glass-Safety glass (8T243, 8T244)	73997	
74005	Glass-Safety glass (8T241)	73997	Knob-Station selector knob mahogany instruments ( 8 T241)
73	Hinge-Cabinet door hinge (top and bottom) ( 2 required) $(8 \mathrm{~T} 244)$	73180	Nameplate-"RCA-Victor" nameplate
73230	Knob-Brightness control knob (burgundy) for walnut and mahogany instruments (8T244)	73913	Plate-Retainer stud plate and wing nut assembly for removable front panel ( 2 required) (8T243)
73231	Knob-Brightness control knob (tan) for toasted mahogany instruments (8T243, 8T244)	74006 39153	Plate-Retainer plate, stud and wing nut assembly for kine shield (2 required) (8T241) Plug-4 prong male plug for antenna cable
73854	Knob-Brightness control knob (black) for	39153 73855	Plug - 4 prong male plug for antenna cabla
	alnut and mahogany instruments (8T243)		Pull-Door pull for L.H. door
782	Knob-Fine tuning control knob (black) for walnut and mahogany instrumenis (8T243)	73859	Roller-Guide rail roller for doors (8T244)
73222	Knob-Fine tuning control knob (burgundy) for walṇut and mahogany instruments (8T244).	71539	Slide-Kinescope centering slide with rubber cushion (4 required)
73223	Knob-Fine tuning control knob (tan) for toasted mahogany instruments (8T243,	14270	Spring-Retaining spring for knobs, Nos. ${ }_{73996} 7324,732957,739298,73999,74002$ and 74003 73996, 73997, 73998, 73999, 74002 and 74003
	8 8244)	3033	Spring-Retaining spring for knobs, Nos. $73228,73229,74000$ and 74001
	or brightness control knob (burgundy) for walnut and mahogany instruments (8T244)	72845	Spring-Retaining spring for knobs, Nos. $73222,73223,73994$ and 73995
73227	Knob-Picture control, vertical hold control or brightness control knob (tan) for toasted mahogany instruments (8T243, 8T244)	73643	Spring-Spring clip for channel marker escutcheon.

To obtain realistors for whicb no stock number in ctiven, order by atating type, ralue of restetance, tolerance and wattag


## electrical and mechanical specifications

PICTURE SIZE ............. 57 square inches on 10 inch tube
TELEVISION R-F FREQUENCY RANGE
All 12 television channels, 54 mc . to $88 \mathrm{mc}, 174 \mathrm{mc}$. to 216 mc . Fine Tuning Range $\pm 250 \mathrm{kc}$ on chan. $2, \pm 650 \mathrm{kc}$ on chan. 13 Picture Carrier Frequency . . . . . . . . . . . . . . . . . . . . . . . 25.75 mc . Sound Carrier Frequency ............................ 21.25 mc .

## RADIO TUNING RANGE



POWER SUPPLY RATING ...... 115 volts, 60 cycles, 250 watts AUDIO POWER OUTPUT RATING ............ 2.4 watts max

## CHASSIS DESIGNATIONS

KCS32, RK135, or KCS32B, RK135A.............. in 8TR29
KCS32A, RK135, or KCS32C. RK135A.
in 8TK29

## LOUDSPEAKERS



DIMENSIONS (inches)	Width	Height	Depth
Cabinet (outside) 8TR29	$22^{1 / 2}$	$181 / 4$	20
Cabinet (outside) 8TK29	$241 / 2$	$391 / 2$	22
Chassis Assembly (overall)	191/2	121/4	20


WEIGHT		
$\left.\begin{array}{c}\text { Chassis with Tubes } \\ \text { in Cabinet }\end{array}\right\}$	$\begin{aligned} & \text { 8TR29 } \\ & \text { 8TK29 } \end{aligned}$	$\begin{gathered} 77 \mathrm{lbs} . \\ 110 \mathrm{lbs} . \end{gathered}$
Shipping Weight	8TR29 8TK29	$131 \mathrm{lbs} \text {. }$

## RECEIVER ANTENNA INPUT IMPEDANCE

Choice: 300 ohms balanced or 72 ohms unbalanced.
RCA TUBE COMPLEMENT

	Tube Used	(Television Chassis)	Function
(1)	RCA 6AG5		R-F Amplifier
(2)	RCA 6J6		R-F Oscillator
(3)	RCA 6AG5		Converter
(4)	RCA 6AU6	lst	d I.F Amplitier
(5)	RCA 6AU6	2nd S	nd I-F Amplifier
(6)	RCA 6ALS	. . So	d Discriminator
(7)	RCA 6AV6	- 1	Audio Amplifier
(8)	RCA 6K6GT	6GT).	Audio Output
(9)	RCA 6AG5	1st P	re I-F Amplitier
(10)	RCA 6AG5	2nd P	re I.F Amplifier
(11)	RCA 6AG5	3rd Pic	re 1-F Amplitier
(12)	RCA 6AGS	- 4th Pic	re I-F Amplifier
(13)	RCA 6ALS	Picture 2nd Detector	nd Sync Limiter
(14)	RCA 12AU7.	1st and 2	Video Amplifier
(15)	RCA 6SN7GT	$A G C A n$	fier and Vertical weep Oscillator
(16)	RCA 6SN7GT	AGC Rectifier and	Sync Separator
(17)	RCA 6SN7GT	Ync Amplifier and 2	Sync Separator
(18)	RCA 6K6GT.	. Vert	Sweep Output
(19)	RCA 6SN7GT	Horizontal Sweep Osci	ator and Control
(20)	RCA 6BG6G	. Horizont	Sweep Output
(21)	RCA SV4G		. Damper
(22)	RCA 1B3GT/		Voltage Rectifier
(23)	RCA SU4G	. Powe	Supply Rectifier
(24)	RCA 10BP4		. Kinescope
(Radio Tuner Chassls)			
(1)	RCA 6J6	Mixer and Oscillator	
(2)	RCA 6BA6	1-F Amplitier	
(3)	RCA 6AU6	F.M Driver	
(4)	RCA 6ALS	Ratio Detector	
(5)	RCA 6AV6	AM Detector AVC	


(Continued)	
PICTURE 1-F FREQUENCIES	OPERATING CONTROLS (tront panel)
Picture Carrier Frequency . . . . . . . . . . . . . . . . . . . 25.75 mc .	Channel Selector \} ..................... Dual Control Knobs
Adjacent Channel Sound Trap . . . . . . . . . . . . . . . 27.25 mc .	Fine Tuning $\quad$ 閏
Accompanying Sound Traps . . . . . . . . . . . . . . . . 21.25 mc .	Tone $\}$........ Dual Control Knobs
Adjacent Channel Plcture Carrier Trap ........... 19.75 mc .	Sound Volume and On-Off Switch
	Picture Horizontal Hold Picture Vertical Hold \} Dual Control Knobs
SOUND I-F FREQUENCIES	Picture Vertical Hold
Sound Carrier Fraquency . . . . . . . . . . . . . . . . . . . . 21.25 mc .	
Sound Discriminator Band Width between peaks...... 350 kc	Function Switch....................... Single Control Knob
EO RESP	Radio Tuning........................ Single Control Knob
	NON-OPERATING CONTROLS
FOCUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Magnetic	Horizontal Centering . . . . . . top chassis screwdriver adjustment   Vertical Centering....... . top chassis screwdriver adjustomeat
SWEEP DEFLECTION ........................ Magnetic	Width ................. rear chassis screvdriver adjustment Height
SCANNING ........................... Interlaced, 525 line	Horizontal Linearity...... rear chassis screwdriver adjustmeat Vertical Linearity . . . . . . . . . . . . . . . . . rear chassis adjustment
HORIZONTAL SCANNING FREQUENCY.......... 15.750 cps	Horizontal Drive . . . . . . . . rear chassis screwdriver adjustment Horizontal Oscillator Frequency .... bottom chassis adjustmeat Horizontal Oscillator Wavetorm . . . . . . side chassis adjustment
VERTICAL SCANNING FREQUENCY................. 60 cps	Focus rear chassis adjustment Ion Trap Magnet. . . . . . . . . . . . . . . . . . . top chassis adjustment Deflection Coil lop chassis wing nut adjustmeat
FRAME FREQUENCY (Picture Repettion Rate) . . . . . . 30 cps	AGC Threshold Control. top chassis adjustment

## HIGH VOLTAGE WARNING

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, IN. VOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORR ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORRING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE the receiver with the high voltage compartment shield removed.

## KINESCOPE HANDLING PRECAUTIONS

DO NOT OPEN THE KINESCOPE SHIPPING CARTON, INSTALL, REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

The kinescope bulb encloser a high vacuum and, due to its large surface area. is subjected to considerable air pressure. For this reason, kinescopes must be handled with more care than ordinary receiving tubes.

[^19]The following adjustments are necessary when turning the receiver on for the first time.

1. Turn the radio FUNCTION switch to Tel.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid. position.
3. Set the STATION SELECTOR to the desired channel.
4. Adjust the FINE TUNING control for best sound fidelity and SOUND VOLUME for suit. able volume.
5. Turn the BRIGHTNESS control fully counterclockwise, then clockwise until a light pattern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZONTAL hold control until a picture is obtained and centered.
8. Turn the BRIGHTNESS control counterclockwise until the retrace lines just disappear.


Figure 1-Receiver Operating Controls
9. Adjust the PICTURE control for suitable picture contrast.
10. After the receiver has been on ior some time, it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.
11. In switching from one station to another, it may be neces. sary to repeat steps numbers 4 and 9.
12. When the set is turned on again atter an idle period, it should not be necessary to ro peat the adjuustments if the positions of the controls have not been changed. If any adjustment is necessary, step number 4 is generally sufficient.
13. If the positions of the controls have been changed, it may be necessary to repeat steps num. bers 1 through 9 .
14. For radio operation turn the FUNCTION switch to AM or FM and tune in station with the radio TUNING control.
15. For phono operation connect phono attachment to receiver and turn FUNCTION switch to AUX.

## INSTALLATION INSTRUCTIONS

The Model 8TR29 and 8TK29 television receivers are shipped complete in one carton except for the 10BP4 kinescope. The kinescope is shipped in a special carton and should not be unpacked until ready for installation.

UNPACKING. - The 8TR29 receiver is packed in a cardboard carton. To unpack, tear open the carton llaps, remove the side packing material and with a man on two sides of the cabinet, lift it out of the shipping carton.

The Model 8TK29 receiver is also packed in a cardboard carton. To unpack, turn the carton on its side, tear open the bottom flaps, fold the flaps along the side and turn the carton back up. Lift the carton up and off of the cabinet.

Take off the cabinet back. To remove the front panel, loosen the two wingnuts inside the cabinet and turn the two locking plates as shown in Figure 2. Tilt the panel out at the top, reach


Figure 2-Cabinet, Front View
in and remove the radio dial light sockets from the bracket on the front panel.
Remove the protective cardboard shield from the 5U4G rec. tifier. Make sure all tubes are in place and are firmly seated in their sockets.

Remove the two self-tapping screws from the kinescope cushion slide as shown in Figure 3.

Loosen the two kinescope cushion adjustment wing screws and slide the cushion toward the rear of the chassis. Loosen the deflection yoke adjustment, slide the yoke toward the rear of the chassis and tighten.


Figure 3-Yoke and Focus Coil Adjustments

From the front of the cabinet, look through the deflection yoke and check the alignment of the focus coil with the yoke. If the focus coil is not in line, loosen the two focus coil mounting screvrs and move the coil until alignment is obtained. Tighten the mounting screws with the coil in this position.
Loosen the two lower kinescope face centering slides, and set them at approximately mid-position. See Figure 2 for location of the slides and their adjustment screws. Loosen the two upper slides, slip them up as far as possible and tighten.

KINESCOPE HANDLING PRECAUTION. - Do not open the kinescope shipping carton, install, remove, or handle the kinescope in any manner, unless shatter-proof goggles and heavy gloves are wom. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling. The shipping carion should be kept for use in case of future moves.

INSTALLATION OF KINESCOPE. - The kinescope second anode contact is a recessed metal well in the side of the bulb. The tube must be installed so that this contact is up but rotated approximately 30 degrees toward the high voltage compartment.

Insert the neck of the kinescope through the deflection and focus coils as shown in Figure 4 until the base of the tube protrudes approximately two inches beyond the focus coil. If the tube sticks, or fails to slip into place smoothly, investigate and remove the cause of the trouble. Do not force the tube.


Figure 4-Kinescope Insertion
Slip the ion trap magnet assembly over the neck of the kinescope with the large magnet towards the base of the tube and with the arrow on the assembly up as shown in Figure 3.

Connect the kinescope socket to the tube base.
Insert the kinescope until the face of the tube protrudes approximately onequarter of an inch outside the front of the cabinet. Adjust the fous centering slides until the face of the kinescope is in the center of the cabinet opening. Tighten the four slides securely.

Wipe the kinescope screen surface and front panel safety glass clean of all dust and finger marks.

As may be seen by inspection, the radio dial lights and dial pointer are attached to the cabinet front panel. The dial cord is attached to the receiver chassis. The method of attachment may be seen in Figure 5.


Figure 5-Dial Cord und Pointer Assembly
Before replacing the front panel, inspect the slit shields on the pilot light brackets to see that they are properly seated and that the slits line up with the dial light plate. Inspect the dial pointer, associated carriage and dial cord to see the method of assembly. Slip the radio pilot lights on the brackets and use the attached piece of scotch tape to tape the pilot light leads to the front panel between the lights. Turn the set on and to radio position to see that the dial lighting is correct.

If it is not, adjust the dial lights and shields. Install the front panel.

To hook up the dial pointer, turn the tuning shaft until the gang is fully meshed. Reach up under the bottom of the cabinet through the finger slot, slip the dial pointer to the low frequency end of the dial and press the dial cord well into the coil spring.

Slip the kinescope as far forward as possible. Slide the kinescope cushion firmly up against the flare of the tube and tighten the adjustment wing screws. Slide the deflection yoke as far forward as possible.

Connect the high voltage lead to the kinescope second anode socket.

The antenna connection should now be made. The link on the antenna terminal board on the back of the cabinet is for use in case it is desirable to connect a separate " $A$ " band antenna.

Install the front panel control knobs.
Turn the power switch to the "on" position, the function switch to Tel , the brighiness control fully clockwise, and picture control counterclockwise.

ION TRAP MAGNET ADJUSTMENT. - Looking at the kinescope gun structure, it will be observed that the second cylinder from the base inside the glass neck is provided with two small metal flags. The ion trap rear magnet poles should be approximately over the ion trap flags. Starting from this position adjust the magnet by moving it forward or backward at the same time rotating it slightiy around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust the focus control (R191 on the chassis rear apron) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches on this adjustment should be made with the brightness control at the maximum position with which good line focus can be maintained.


Figure 6-Rear Chassis Adjustments
DEFLECTION YOKE ADJUSTMENT. - If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE ADJUSTMENTS. - It will now be necessary to obtain a test pattern picture in order to make further adjustments. See steps 3 through 9 of the receiver operating instructions on page 3 .

If the Horizontal Oscillator and AGC System are operating properly, it should be possible to sync the picture at this point. However, if the AGC threshold control is misadjusted, and the receiver overloading, it may be impossible to sync the picture.

If the receiver is overloading, turn R138 (on top of the chassis, see Figure 8) counterclockwise until the set operates nomally and the picture can be synced.

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT. Tum the horizontal hold control to the extreme counterclockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be gradually reduced and when only 3 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull-in should occur
when the control is approximately 90 degrees from the extreme counterclockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should be out of sync and should show 1 vertical or diagonal black bar in the raster

If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Centering Adjustment."

ALIGNMENT OF HORIZONTAL OSCILLATOR. - If in the above check the receiver failed to hold sync with the hold control at the extreme counterclockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull-in point, it will be necessary to make the follow. ing adjustments.

Horizontal Frequency Adjustment. - Iurn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the Tl09 horizontal irequency adjustment (under the chassis) until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster.

Horizontal Lock in Range Adjustment. - Set the horizontal hold control to the full counterclockwise position. Momentarily remove the signal by switching off channel then back. Slowly lurn the horizontal hold control clockwise and note the least number of diagonal bars obtained just betore the picture pulls into sync.
If more than 3 bars are present just betore the picture pulls into sync, adjust the horizontal locking range trimmer CI53A slightly clockwise. If less than 3 bars are present, adjust Cl53A slightly counterclockwise. Turn the picture control counterclock. wise, momentarily remove the signal and recheck the number of bars present a: the pull-in point. Repeat this procedure until 3 bars are present.

Repeat the adjustments under "Horizontal Frequency Ad. justment" and "Horizontal Locking Range Adjustment" until the conditions specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.
It it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure. For field purposes paragraph 'A' under Horizontal Oscillator Waveform Adjustment may be omitted.

CENTERING ADJUSTMENT. - No electrical centering controls are provided. Centering is obtained by mechanically orienting the focus coil with the three adjustment screws shown in Figure 3. Center the picture on the screen by adjustment of these screws. The focus coil should be concentric around the neck of the kinescope to prevent curvature of the raster.

FOCUS COIL ADJUSTMENTS. - If. after making the ceater ing adjustments in the above paragraph, a corner of the pic ture is shadowed. it will be necessary to loosen the tocus coil mounting screws (shown in Figure 3) and change the position of the coil to eliminate the shadow. Recenter the picture by adjustment of the centering screws.

Recheck the position of the ion trap magnet to insure that maximum brilliance is obtained.
height and vertical linearity adjustments. - Ad just the height control (R155 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity ( $R 162$ on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjust. ment of the other. Adjust centering to align the picture with the mask.

WIDTH. DRIVE AND HORIZONTAL LINEARITY ADIUST. MENTS. - Adjust the horizontal drive control CI53B to give a picture of maximum width within the limits of good linearity. Adjust the horizontal linearity control Llll to provide best linearity. Adjust the width control until the picture just fills the mask.

Adjustments of the horizontal drive control affect horizontal oscillator hold and locking range. It the drive control was ad justed recheck the oscillator alignment.

FOCUS. - Adjust the focus control (R191 on chassis rear apron) for maximum delinition in the test pattern vertical "wedge" and best focus in the white areas of the paltern
CHECK TO SEE THAT THE CUSHION AND YOKE THUMB. SCREWS AND THE FOCUS COIL MOUNTING SCREWS ARE TIGHT.

AGC THRESHOLD CONTROL. - The AGC threshold con trol RI38 is adjusted at the factory and normally should not require readjustment in the field.

To check the adjustment of the AGC Threshold Control. tune in a strong signal, sync the picture and turn the picture con trol to the maximum clockwise position. Turn the brightness control counterclockwise until the vettical retrace lines are just invisibie. Momentarily remove the signal by switching oft channel then back. If the picture reappears immediately, the receiver is not overloading due to improper setting of Ri38. If the picture requires an appreciable portion of a second to reappear, R 138 should be readjusted.

Set the picture control at the maximum clockwise position Turn R138 fully counterclockwise. The top one-hall inch of the picture may be bent slightly. This should be disregarded. Turn RI 33 clockwise until there is a very. very slight bend or change of bend in the top one-halt inch of the picture. Then turn R138 counterclockwise just sufficiently to remove this bend or change of bend.

If the signal is very weak. the above method may not work as it may be impossible to get the picture to bend. In this case, turn Rl38 clockwise until the snow in the picture becomes more pronounced, then counterclockwise until the best signal to nolse ratio is obtained.

The AGC control adjustinent should be made on a string signal it possible. If the control is set too far clockwise on a weak signal, then the receiver may overload when a strong signal is received

Replace the cabinet back.
CHECK OF R-F OSCILLATOR ADJUSTMENTS. - Tune in all available stations to see if the receiver rfoscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure. The adjustments for chan nels 2 through 5 and 7 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 7. Adjustment for channel 13 is on top of the chassis and channel 6 adjustment is in the kinescope well.


Figure i-R.F Oscillutor Adjustments

RADIO OPERATION. - Turn the receiver function swhtch to AM and FM positions and check the radio for proper operation. Tune in a station of known frequency. It the dial pointer does not point to the correct spot on the dial, slip the dial pointer on the dial cord to the proper frequency mark on the dial.


Figure 8-Chassis Top View


Figure 9-Chassis Botlom View

## 8TR29, 8TK29

## RADIO ALIGNMENT PROCEDURE

If any lead dressing is necessary, it should be done before aligning the receiver. When making a complete alignment follow the table below in sequence. If only a portion of the circuit is 10 be aligned select the portion required and follow with the remaining steps in the section. Any adjustments made on the $455 \mathrm{kc} I-\mathrm{F}^{\prime} \mathrm{s}$ make it necessary to adjust the 10.7 mc . I.F's.

## "AM" R-F-I-F ALIGNMENT

Test-Oscillator. - For all alignment operations, conneat low side of the test-osc. 10 the receiver chassis, and keep the osc. output as low as possible to avoid a.v.c action. Output Meter. - Connect the meter across the speaket voice coil, and turn the receivet volume control to max

Steps	Connect the High Side of   the Test. Osc. 10-	Tune Test Osc.   to	Function Switch	Turn Radio   Dial to-	Adjust the Iollowing

Use alternate loading. Connect an 18.000 ohm resistor acioss the primary to load the plate winding while the grid winding of the same transformer is being peaked. Then load the grid winding with the 18.000 ohm resistor while the plate winding is being peaked.

## RATIO DETECTOR ALIGNMENT

Connect probe of "VoltOhmyst" to negative side of C328 and low side to chassis. Connect output meter across speaker voice coil.

Steps	Connect the High Side of the Test. Osc. to-	Tune Test Osc. 10-	Function Switch	Radio Dial   Tuned to-	Adjust
6	Pin No. 1 of 6AU6 (V303) in series with .01 mid.	$\begin{gathered} 10.7 \mathrm{mc} . \\ 30^{\circ} \text { AM } \\ \text { Modulated } \end{gathered}$	FM	-	Top of T 303 for maximum DC on "VoltOhmyst."
7	Pin No. 1 of 6AU6 (V303) in series with .01 mld .		FM	-	Bottom of T303 tor minimum audio output on meter.
8	Repeat steps 6 and 7 as nec assary making linal adjustment with $r \cdot 4$ input level set to give approximately -3.0 volts $d \cdot c$ on "VoliOhmyst."				

"FM" R-F-I-F ALIGNMENT

Steps	Connect the High Side of the Test. Osc. 10-	Tune Test Osc. to-	Function Switch	Radio Dial   Tuned to--	Adjust
9	Terminal 3 of S302 rear through 270 ohms.	10.7 mc .	FM	88 mc .	- T301 and T302 with r-f input set to give -3 volts on "VoliOhmyst."
10	Terminal 3 of S302 rear through 270 ohms.	106 mc .	FM	106 mc .	Set C302 to max. capacity. Squeeze L. 307 and adjust C302 for max. output.
11	Terminal 3 of S 302 rear through 270 ohms.	90 mc .	FM	Tune to signal	Squeeze L301 and rock gang tor maximum output.
12	Repeat steps 10 and 11 as required.				

- Use a 680 -ohm resistor to load the plate winding while the grid winding of the same transformer is being peaked. Then the grid winding is loaded with 680.0 hm resistor while the plate winding is being peaked.


Figure 10-Chassis, Top biew. Showing fijustments


Figure 11- Dial and Drive Ciord Assomblv

## CRITICAL LEAD DRESS:

1. Ground lead on pin 2 of V302 and V303 should be dressed down flat on chassis.
2. Dual .005 mid. capacitors and diode filter should be dressed to clear the bottom of the cabinet.
3. Dress C329 across V302 sockets with short and direct leads
4. Dress V302 plate lead from pin $S$ down to the chassis.
S. Dress AVC lead from R321 to switch down to chassis and against back of gang mounting plate.
5. Dress lead from pin 6 of V305 down to chassis and against back of gang mounting plate
6. Dress AVC lead from 1st I-F to switch against chassis and against gang mounting plate.
7. Dress lead from switch to pin 1 of V301 against plate sup. porting gang.
8. Dress all insulated F.M leads down to chassis
9. Connect C309 with short lead to pin 6 of V301 keeping body of cap away from plate lead and switch terminals.
10. The coupling between L301 and L307 should be adjusted to give proper injection voltage to the mixer grid. This has been found to be correct when the distance between ad jacent end turns is 38 " $107 / 16$ " measured at top of the form.
11. Dress cabled leads away from antenna transmission lines.
12. Dress all uninsulated bus wire so as 10 avoid short circuits.


Figure 12-Radio Wiring Diagram (RK135)

Figure 13-Partial Schematic KCS32B or C and RK135A $\Rightarrow$

$$
\{R 301
$$

Television chassis KCS 32 and KCS 32A employ radio chassis RK 135 shown in the complete schematic. Figure 18.

Television chassis KCS 32B and KCS 32 C employ radia chassis RK 135A which ditfers from RK 135 in that P307 is added and connected as shown in the partial schematics. Figures 13 and 14. Two different vers
of $135 A$ are shown.

Figure 14 Partial Schematic KCS32B or C and RK135A


The following measurements represent three sets of conditions. In the first condition, the function switch is in the television position and a 2200 microvolt test pattern signal was ted into the receiver, the picture synced and the AGC threshold control properly adjusted. The second condition was obtained by removing the antenna leads and short circuiting the receiver antenna terminals. In the third condition, in order to get radio operating voltages, the function switch was placed in the F-M position. Voltages shown are read with "Jr. VoltOhmyst" between the indicated terminal and chassis ground and with the receiver operating on 117 volts, 60 cycles, a.c.

$\begin{aligned} & \text { Tube } \\ & \text { No. } \end{aligned}$	Tube Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		$\begin{aligned} & \text { I } \\ & \text { Plate } \\ & \text { (ma.) } \end{aligned}$	$\begin{gathered} \text { I } \\ \substack{\text { Screen } \\ \text { (ma.) }} \end{gathered}$	Notes on Measurements
				Pin No.	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts			
V1	6AG5	R-F   Amplifier	$\underset{\text { Signal }}{2200 \mathrm{Mu} . \mathrm{V} .}$	5	146	6	148	$2 \& 7$	0	1	-4.9	. 72	. 33	
			No Signal	5	85	6	120	287	0	1	-0.4v	12.0	4.0	
V2	6AGS	Converter	$\begin{array}{\|c\|} \hline 2200 \mathrm{Mu} \cdot \mathrm{~V} \\ \text { Signal } \end{array}$	5	$\begin{gathered} 130 \\ \text { to } 140 \\ \hline \end{gathered}$	6	$\begin{gathered} * 130 \\ \text { to } 140 \\ \hline \end{gathered}$	2\&7	0	1	$\begin{aligned} & *-3.0 \\ & \text { to }-7.0 \end{aligned}$	$\begin{gathered} \quad 7.1 \\ \text { to } 7.7 \end{gathered}$	$\begin{gathered} 2.3 \\ \text { to } 2.7 \\ \hline \end{gathered}$	*Depending upon channel
			No Signal	5	$\begin{gathered} 104 \\ \text { to } 109 \end{gathered}$	6	$\begin{array}{r} \quad 104 \\ \text { to } 109 \\ \hline \end{array}$	$2 \& 7$	0	1	$\begin{gathered} -2.0 \\ \text { to }-6.0 \end{gathered}$	$\begin{gathered} \text { * } 5.3 \\ \text { to } 5.9 \end{gathered}$	$\begin{gathered} 8.8 \\ \text { to } 1.0 \\ \hline \end{gathered}$	
V3	6 J 6	R-F Oscillator	$\underset{\text { Signal }}{2200 \mathrm{Mu} .}$	182	$\begin{gathered} 88 \\ \text { to } 95 \end{gathered}$	-	-	7	19	5 \& 6	$\begin{aligned} & *-5.1 \\ & \text { to }-7.3 \end{aligned}$	$\begin{gathered} 1.9 \\ \text { to } 2.7 \end{gathered}$	-	*Depending upon channel
			No Signal	$1 \% 2$	$\begin{gathered} 68 \\ \text { to } 81 \\ \hline \end{gathered}$	-	-	7	. 16	$5 \& 6$	$\begin{aligned} & \quad-4.5 \\ & \text { to }-6.6 \end{aligned}$	$\begin{gathered} 1.8 \\ \text { to } 2.1 \\ \hline \end{gathered}$	-	
V101	6AG5	1st Pix. I-F Amplifier	$\begin{gathered} 2200 \text { Mu.V. } \\ \text { Signal } \end{gathered}$	5	141	6	141	$2 \& 7$	. 07	1	-3.9	. 8	. 22	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	108	6	108	287	. 11	1	$-.07$	4.97	1.73	
V102	6AGS	$\begin{aligned} & \text { 2d Pix. I-F } \\ & \text { Amplifier } \end{aligned}$	$\begin{gathered} 2200 \text { Mu.V } \\ \text { Signal } \end{gathered}$	5	130	6	130	2\& 7	. 86	1	0	9.48	3.12	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	5	106	6	106	$2 \& 7$	. 6	1	0	7.6	2.6	
V103	6AG5	3d Pix. I-F Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	130	6	140	288	. 03	1	-3.9	. 51	. 09	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	94	6	103	$2 \& 7$	. 11	1	-. 09	3.92	1.5	
V104	6AG5	4th Pix. I-F Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ { }_{\text {Signal }} . \end{gathered}$	5	175	6	145	$2 \& 7$	1.38	1	0	7.0	2.0	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	167	6	109	$2 \& 7$	. 95	1	0	5.7	1.5	
$\begin{gathered} \text { V105 } \\ \mathbf{A} \\ \hline \end{gathered}$	6ALs	Picture 2d Det.	$\underset{\text { Signal }}{2200 \text { Mu.V. }}$	7	-113	-	-	1	-112	-	-	48	-	
			No Signal	7	-120	-	-	1	-120	-.	-	-	-	
$\begin{gathered} \mathrm{V} 105 \\ \mathbf{B} \\ \hline \end{gathered}$	6ALs	Sync Limiter		2	-107	-	-	5	-56	-	-	-	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	2	-80	-	-	5	-60	-	-	-	-	
V106	12AU7	1st Video Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	1	-23.2	-	-	3	-111	2	-113	4.38	-	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	1	-19.2	-	-	3	-117	2	-120	3.82	-	
V106	12AU7	2d Video Amplifier	$\begin{array}{\|c\|} \hline 2200 \mathrm{Mu} . \mathrm{V} . \\ \hline \text { Signal } \\ \hline \end{array}$	6	*166	-	-	8	*-5.3	7	*-12.2	6.2	-	*At average contrast
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	6	*134	-	-	8	*-5.6	7	*-10.3	6.9	-	
$\begin{gathered} \text { V107 } \\ \text { A } \\ \hline \end{gathered}$	$\begin{aligned} & \text { 6SN7 } \\ & \mathbf{G T} 7 \end{aligned}$	AGC Amplifier	$\begin{gathered} 2200 \text { Mu.V. } \\ \text { Signal } \\ \hline \end{gathered}$	5	-17.9	-	-	6	-55.5	4	- 56.5	. 9	-	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	5	-5.2	-	-	6	-60	4	-64	. 3	-	
$\begin{array}{\|c} \hline \mathrm{V} 107 \\ \mathrm{~B} \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { 6SN } 7 \\ \text { GT } \end{array}$	Vertical Oscillator	$\underset{\text { Signal }}{2200 \mathrm{Mu} .}$	2	76	-	-	3	-111	1	-158	. 2	-	
			No Signa Signal	2	62	-	-	3	-120	1	-169	. 2	-	
V108	$\begin{array}{\|l\|l\|} \hline \text { 6SN7 } \\ \hline \end{array}$	AGC Rectifier	$\begin{array}{\|c\|} \hline 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{array}$	5	97	--	-	6	-3.4	4	-19.3	. 3	-	
			No Signal	5	81	-	-	6	-8.7	4	-19.3	. 28	-	
V108	$\begin{aligned} & \text { 6SN7 } \\ & \mathbf{G T} \end{aligned}$	1st Sync Separator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	2	96	-	-	3	-1.8	1	-19.5	. 1	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	2	81	-	-	3	-9.7	1	-19.3	. 1	-	


Tube No.	Tube   Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		$\begin{gathered} 1 \\ \text { Plate } \\ \text { (ma.) } \end{gathered}$		Notes on Measurements
				Pin No.	Volts	Pin   No.	Volts	Pin   No.	Volts	Pin   No.	Volts			
V109	$\begin{aligned} & \text { 6SN } 7 \\ & \text { GT } \end{aligned}$	Sync Amplifier	$2200 \mathrm{Mu} . \mathrm{V}$ Signal	2	158	-	-	3	0	1	-47	525	-	
			No Signal	2	154	-	-	3	0	1	-5 2	375	-	
V109	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Sync   Separator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	230	-	-	6	- 51	4	-106	4	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	215	-	-	6	-59	4	-80	35	-	
V110	$\begin{aligned} & \text { 6K6 } \\ & \text { GT } \end{aligned}$	Vertical Output	2200 Mu . V. Signal	3	223	4	223	8	-67	5	-91		* 785	*Screen
			No Signal	3	208	4	208	8	- 79	5	-101		-7 7	connected to plate
V111	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Horizontal Osc. Control	$\begin{array}{\|c\|} \hline 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{array}$	2	* 48	-	-	3	- 110	1	-92	2	-	*Variation of hold gives
			No Signal	2	*33	-	-	3	- 120	1	-108	2	-	-219 to +56 volts on plate
V111	$\begin{aligned} & \text { 6SN } 7 \\ & \text { G'T } \end{aligned}$	Horizontal Oscillator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	70	-	-	6	-111	4	-185	24	-	
			No Signal	5	54	-	-	6	-120	4	-192	24	-	
V112	6BG6G	Horizontal Output	$\begin{array}{\|c\|} \hline 2200 \text { Mu. V. } \\ \text { Signal } \end{array}$	Cap	*	8	160	3	-104	5	- 101	93.5	115	*5200 volt
			No Signal	Cap	Do Not Meas.	8	142	3	-113	5	-112	908	112	pulse present
V113	$\begin{gathered} \text { 1B3GT } \\ 8016 \\ \hline \end{gathered}$	H. V.   Rectifier	Brightness Min.	Cap	*	-	-	2\& 7	8500	-	-	0	-	* 8500 volt
			Brightness Average	Cap	Do Not Meas.	-	-	287	8400	-	-	1	-	pulse present
V114	5V4G	Damper	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \\ \hline \end{gathered}$	486	-	-	-	$2 \& 8$	339	-	-	945	-	* 1200 volt
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	486	$\begin{aligned} & \text { Do Not } \\ & \text { Meas. } \end{aligned}$	-	-	288	322	-	-	92	-	pulse present
V115	5U4G	Rectifier	$\begin{gathered} 2200 \text { Mu. V } \\ \text { Signal } \\ \hline \end{gathered}$	486	390	-	-	288	291	-	-	225	-	A-C measured
			No Signal	486	390	-	-	288	272	-	-	230	-	from plate to trans. center tap
V116	6AU6	1 st Sound I-F Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	134	6	134	7	9	1	0	8.2	33	
			No Signal	5	110	6	110	7	7	1	0	57	26	
V117	6AU6	2d Sound I-F Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	148	6	90	7	0	1	-9	16	8	
			No Signal	5	115	6	60	7	0	1	- 65	3.35	1.15	
V118	6AL5	Sound Discrim.	2200 Mu . V. Signal	$\begin{aligned} & 2 \\ & 7 \end{aligned}$	$\begin{array}{r} -84 \\ -37 \\ \hline \end{array}$	-	-	5	$\begin{gathered} 58 \\ 0 \end{gathered}$	-	-	-	-	
			No Signal	$\begin{aligned} & 2 \\ & 7 \end{aligned}$	$\begin{array}{ll} -2 & 0 \\ -1 & 08 \end{array}$	-	-	$\begin{aligned} & 5 \\ & 1 \end{aligned}$	$\begin{aligned} & 41 \\ & 0 \end{aligned}$	-	-	-	-	
V119	6AV6	1st Audio Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	7	85	-	-	2	0	1	-89	49	-	
			No Signal	7	83	-	-	2	0	1	-89	4	-	
V120.	$\begin{aligned} & \text { 6K6- } \\ & \text { GT } \\ & \hline \end{aligned}$	Audio Output	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	3	102	4	113	8	-99	5	-108	193	3.3	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	3	72	4	80	8	-111	5	-114	18	3	
V121	10BP4	Kinescope	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	Cap	* 8400	10	339	11	51	2	20	1	-	*Average Brightness
			No Signal	Cap	-	10	322	11.	42	2	14	-	-	
V301	$6 J 6$	Mixer and Oscillator	No Signal	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} 107 \\ 90 \end{gathered}$	-	-	7	0	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	$\begin{aligned} & -20 \\ & -5.0 \end{aligned}$	--	-	
V302	6BA6	Radio I-F Amplifier	No Sigrial	5	185	6	100	7	04	1	-01	-	-	Function
V303	6AU6	Radio F.M Driver	$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	5	180	6	135	7	0.7	1	0	-	-	switch in
V304	6AL5	Radio Ratio Det.	$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	2	$\begin{aligned} & -02 \\ & -02 \end{aligned}$	-	-	5 1	-02 0.1	-	--	-	-	$\begin{gathered} \mathrm{F}-\mathbf{M} \\ \text { position } \end{gathered}$
V305	6AV6	Radio A. M Det.	No Signal	Diode	-0.2	-	-	2	0	1	0	-	-	



Figure 15-R.F Unit Wiring Diagram

## CRITICAL LEAD DRESS:

1. The ground bus from pin 2 and the center shield of V117 socket should not be shortened or rerouted.
2. Do not change the dress of the filament leads or the by-pass capacitors in the picture or sound i-f circuits. The filament leads between V117, V118 and V119 should be down against the chassis and away from grid or plate leads.
3. If it is necessary to replace any of the 1500 mmf . capacitors in the picture i-f circuit, the lead length must be kept as short as possible.
4. Picture i- f coupling capacitors Cl06. Clll. C115 and Cl21 should be up and away from the chassis and should be clear of the pix i-f transformer adjustments by at least $1 / 4$ inch. If the dress of any of these capacitors is changed, the i-f alignment should be rechecked.
5. Leads to L102 and L103 must be as short as possible.
6. Dress peaking coils L105, L106 and L107 up and away from the chassis.
7. Dress C183 across tube pins 5 and 6 with leads not exceeding $3 / 8$ inch.
8. Dress the blue lead from pin 5 of V119 down against the chassis.
9. Dress Cl29 and C130 up and away from the chassis.
10. Dress the yellow lead from the picture control away from the chassis. Dress the yellow lead from pin 8 of V106 away from the chassis.
11. Dress the green lead from pin 2 of V106 away from the chassis.
12. Dress R168, R169, R170, R176 and R178 up and away from the chassis.
13. The leads to the volume control should be dressed down against the chassis and away from V117 and V118.
14. Contact between the r-f oscillator frequency adjustment screws and the oscillator coils or channel switch eyelets must be avoided.
15. Dress leads from L110 (width control coil) away from the transformer frame.

Figure 16-Revised Horizontal Deflection System


$\begin{gathered} \text { sTock } \\ \text { No. } \end{gathered}$	CRIPTION	stock	DESCRIPTION
	$\begin{gathered} \text { LEvision R-I } \\ \text { KRK } 5 \end{gathered}$	$\begin{aligned} & 7343939 \\ & 73437 \end{aligned}$	Shafi-Actuating shaft for tine tuning control   Shaft-Channel selector shaft complete with pawl   and stud
73465 73478	Bell-Drive bell Cable-l-F Cransmission cable ( 48	73438	Shalt-Fine tuning control shatt and puliey
73441	Cam-Fine tuning adjustment cam	72951	Shield-Metal tube shield for V3
74035	Capacilor-Ceramic. 5 mmf ( (C4. C5		Shield-M
535	Capacitor-Ceramic. 10 mm	73532 71494	Soc
5420   349	Capacitor-Ceramic. 18 mmi ( ${ }^{\text {( }}$ (20) Capacitor-Ceramic trimmer.	73450	Socket-Tube socket. ceramic. 7 prong. bottom
73449	Capacitor-Ceramic Irimmer, comprising 1 section of 150.190 mml . and 1 section of 65.95 mm . (C.11. C12)	74188	mounted Spring-Retaining spring for adjustable core No.
7309	Capacitor		
5349	Capacitor-Ceramic. 1.500 mmi . (C2. C7. C8. C9. C13. C15. C17. C18. C19)	$\begin{aligned} & 73457 \\ & 73456 \end{aligned}$	Spring-Relurn spring tor tine tuning control Spring-Tension spring tor drive belt shield
73	Capacitor-Ceramic. 5.000 mmf ( (C16)		Stator-Antenna stator complete with rolor and colls
	Coil-A		SS. L6. L56, L57, L58. L59. L60, L61, L62. L6,
	Coil-Choke coil (L10. Lli	73470	
73874   73452   18	Coil-Converter qrid coil for channel No. 6 (L9. L31)		coils (S3. L36. L37, L38, L39, L40, L41, L48. L49.
73462 71108	Coil-Fine tuning coil ( $11 / 2$ turns) with adiustable in ductance core and capacitor stud (threaded bush ing type with plunger adjustment) (LI. Cl)	73468	L50, LSI) Stator-F Front oscillator section stator complete with rotor, segment. coils and adjusting screws (S1.
73443	Coil-Fine tuning coil ( $11 / 2$ turns) with adjustable in ductance core and capacitor stud (smooth bushing type with plunger adiustment) (11. C1)	734	L14, L15, L16. L17, L18, L19. L21. L22. L2l. L2 Stator-Rear oscillator section stator complete with rotor, segment and coils (S2, L25, L26, L27. L28, L29. L30. L32. L33. L34, L35)
73461	Coil-Oscillator plate coil (4 turns) tor channel No. 6 (L20)		Stator-R.F amplitier stator complete with rotor and coils (S4. L42. L43. L44. L45. L46, L47. L52, L53. L54. 55)
	-R.F plate coil for chan		
74109	Coil-Trimmer coil ( $11 / 2$ turns) with adiustable in ductance core and capacitor stud (threaded bush ing type with screw adjustment) for oscillator sec tion or converter section (L2. C6. L3. C10)	$\begin{array}{r} 2917 \\ 7366 \\ 73648 \end{array}$	Washer-C washer for channel selector shaft   Washer-Insulating washers for front shield (1 set)   Transformer-Converter transformer (T1. R6)
7344	Coil-Trimmer coil ( $11 / 2$ (urns) with adiustable in    type with screw adjustment) for oscillator section		television chassis   KCS32. KCS32A KCS32B. XCS32C
	onverter section (L2, C6. L3. C10)	${ }_{72809}$	
		72615	Capactior-Mica. 10 mmf ( (C126)
	type with screw adjustment) tor rit amplitior		
	lion (L5. C14)		Capacitor-Ceramic. 82 mml . (C120)
73446	Trimmer coil (3 turns)	75050 39396	Capacitor-Mica. $100 \mathrm{mmt.c} 1000 \mathrm{v}$. .
	nce core and capacitor stud (smooth bushing	${ }_{7392}$	Capacitor-Ceramic. 120 mmf . $\mathrm{Cl}^{\text {a }}$
	pe with screw adiustmeny) for rt amplitier sec.	51	Capacitor-Mica. 180 mmt . 1 Cl
	Connector-Oscillator segment cond	73102	Capacitor-Mica. 180 mmi . (C158)
74187	Core-Adustable core for L31	73091	Capacitor-Mica. 270 mml . CC106. C115.
73455	Core-Sliding core for line tuning control trimmer	39642	
	Detent-R.F unit detent mechanism and libre shatt	39644	
73453	Form-Coil form assembly tor L9. L13	71450	Capacitor-Hi.voltage. 500 mml . (C
71487 7342	Form-Coil torm tor oscillctor plate coil (L31)	39646	Capacitor-Mica. 560 mm . (C127. C167)
73442 71462	Link-Link assembly for fine tuning ${ }_{\text {a }}^{\text {Loop-Oscillator to converter trimmer loop connector }}$	73580	Capacitor-Mioa trimmer, comprising 1 section 10
73634	Nut-Speed nut tor drive belt shield		and 1 section
734	Nut-Speed nut to mount trimmer coils 73443. 73444 and 73446		Capacitor-Ceramic. C105. 1.500 mml . (C101. C103. C109. C104. C110. C113. C114. C117. C118.
	Plate-Front plate and bushing		C122. C125. C132. C171. C172. C176. C177. C188.
73464	Pulley-Idler pulley		
	Resistor-Fixed. composition. 47 ohms. $\pm \mathbf{2 0 \%}$.		volis (C142. C154. C184)
		73595	lar. moulded paper. oil filled. . 002
	th (RS. R9, R12)		
	Fixed. composition. 1.000 ohms. $\pm 20 \%$.		
		73550	Capacitor-Tubular. moulded paper. . 0047 mid., 600
	$\begin{aligned} & \text { esisfor-rixed. } \\ & 1 / 2 \text { watl (Rlll } \end{aligned}$	73801	paper. 001
	Resistor-Fixed. composition, 2.700 ohms. $\pm 10 \%$.		(C137. C203)
	Hon.		$\begin{gathered} \mathrm{T} \\ \hline 155) \end{gathered}$
	(1)	73596	Capacitor-Tubular. moulded paper, oil Illed. . 033
	Resistor-Fixed. composition. 100,000 ohms. $\pm \mathbf{2 0 \%}$, $1 / 2$ watl (R2. R3. R8. R13)		mid.. 1.000 volis (C164) Capacitor-Tubular. moul
	Retainer-Channel selector shati retaining ring		volis (Ci33. C187)
	Retainer--Retainer tor line tuning link stud	73553	Capacitor-Tubular. moulded paper. . 047 mid... 4
	usting coils L14. L15. L16. L17. L18. L19		
	ew-No. $4.40 \times .296$ adjusting screw tor colls $\mathrm{L6}$.		mid.. 600 volts (C150, C156) ${ }^{\text {c }}$
73640	L21. L22. L23. L24   Screw-No. $4.40 \times 1 /{ }^{\prime \prime}$ "adjusting screw for L66	73564	$\underset{\substack{\text { Capacitor-Tubular. moulded paper, } 047 \text { mid.. } 1.000 \\ \text { volts (C163) }}}{\text { ( } 0}$


	DESCRIPTION	$\begin{gathered} \text { stock } \\ \text { No. } \end{gathered}$	descriptio
73597	Capacitor-Tubular. moulded paper, oil filled. . 047	37502723257404973588	R
	Capacitor-Tubular, moulded paper, 01 mid..		Resistor-Fixed, compositio
	volts (C135. C151. C152. C182)		watl (R185)
S994	Capacitor-Tubular, moulded paper, oil tiled. . 0 mid.. 600 volits (C159)		Resistor-Fixed. composition. 47 ohms. $\pm 20$ watl (R183)
73565	Capacitor-Tubular, moulded paper, 001 mid. . 1.000 volts (C185)		Resistor-Fixed. composition. 47 ohms, $\pm$
73551	Capacitor-Tubular, moulded paper. 0.1 mfd.. 400 volts (C149)		Resistor-Fixed. composition. 68 ohms. $\pm 10 \%$ watt (Flos) watt (R105)
73557	Capacitor-Tubular. moulded paper. 0.1 mfd.. 600 volts (C131)		Resistor-Fixed. composition. 82 ohms. $\pm 10 \%$, wall (R195)
73560	Capacitor-Tubular. moulded paper. 0.22 mid.. 200 volts (C136)		Resistor-Fixed. composition. 100 ohms. $\pm 10$ wall (R121)
73794	Capacitor-Tubular. moulded paper. 0.22 mid.. 400 volts (C157. C162)		Resistor-Fixed. composition. 150 ohms. $\pm 20 \%$, walt (R106. R109, B114, R214)
7378	Capacitor-Tubular. moulded paper. 0.47 mid.. 200 volts (C190. C199)		Resistor-Fixed. composition. 150 ohms. wath (R115)
74106 53147	Capacitor-EElectrolyty. 5 mid. 50 volts (C197)		Resistor-Fixed. composition. 220 ohms. $\pm 10 \%$, $1 / 2$
53147 73581	Capacitor-Electrolytic. 25 mld.., 50 volts (C134)   Capacitor-Electrolytic. comprising 1 section of 60		wall (R123)   Resistor-Fixed. composition. 220 ohms $+10 \%$
	mid.. 450 volis. 2 sections of 10 mid.. 450 volts and 1 section of 20 mid.. 150 volis (C146A. C146B. C146C. C146D)		watl (R223)   Resistor-Wire wound. 330 ohms. 2 watts (R190) (early production-see Figure 18)
33583	Capacitor-Electrolytic. comprising 1 section of 40 mid., 450 volts. I section of 90 mid.. 150 volts. and		Resistor-Wire wound. 390 ohms, 2 watts (R190) (late production-see Figure 16)
	C1ection of 50 mid... 150 volis (C147A. C147B.		Resistor-Wire wound. 500 ohms. 20 watts (R23) Resistor-Fixed. composition. 680 ohms. $\pm 10 \%$
71432	Capacitor-Electrolytic, comprising 2 sections of 40 mid., 450 volts. and 1 section of 10 mid., 450 volts (C148A. C148B, C148C)		watt (R206)   Resistor-Voltage divider. comprising 1 section of 850 ohms 12 wals. and 2 sections
73582	Capacitor-Electrolytic. comprising 1 section of 40 mid.. 450 volts. 1 section of 10 mid., 450 volts. and 1 section of 80 mid.. 200 volis (C170A. C170B cijoci		6 watts (C193A. C193B. C193C) Resistor-Fixed. composition. 1.000 ohms. $\pm 20 \%$, $1 / 2$ walt (R103, R107, R108, R113, R)16 R118 R165. R199)
73154	Choke-Filter choke (L114)		Resistor-Fixed. composition. 1.200 ohms, $\pm 10 \%$.
73477	Coil-Choke coil (L101)		1/2 watt (R196)
73366 71449	Coll-Focus coil (L113) Coll-Horizontal linearity		Resistor-Fixed. 2 watts (R194. R208)
741	Coil-Peaking coil (36 mh.) (L117, R110)		Resistor-Fixed. composition.
72619	Coil-Peaking coil (93 mh.) (L103. R212)		2 watt (R219)
71528 71526			Resistor-Fixed. composition. $\mathbf{2 . 7 0 0}$ ohms. $\pm \mathbf{1 0} \%$. 1/2 watt (R161, R217)
71429	Coil-Width control coil (L110)		Resistor-Fixed. composition. 3.300 ohms. $\pm 5 \%$,
71521 71789	Connector-Hi.voltage capacitor connectior Connector-Kinescope anode connector		
73579	Control-AGC threshold control (R138)		Resistor-Fixed. $1 / 2$ watt (R144) composition.
74047 72735	Control-Brighness and picture control (R122. R131)		Resistor-Fixed. composition. 5.600 ohms. $\pm 10$
72735 74442	Control-Focus control -2250 ohms (R191)		1/2 watt (R141. R218)
74442 71440	Control-Focus control-3000 ohms (R191) Control-Height control (R155)		Resistor-Fixed. composition.有
72734	Control-Horizontal and vertical hold control (R158. R173)		Resistor-Fixed. composition. 5.600 ohms, $\pm 10 \%$. 1 watt (R127)
71441	Control-Vertical linearity control (R162)		Resistor-Fixed. composition. 6.800 ohms. $\pm 10 \%$.
74048	Control-Volume control. tone control and power switch (R205. R233. S101)		y ${ }^{1 / 2}$ watt (Reds 0 ) Resistor-Fixed. composition. 6.800 ohms. $\pm 10 \%$.
71457 71437	Cord-Power cord and plug		1 watt (R186) (early production-see Figure 18)
71437	Cover-Insulating rover for electrolytics Nos. 71432. 73581 and 73582		Resistor-Fixed, composition, 6.800 ohms. $\pm 5 \%$, l watl (R117)
73590	Cushion-Cushion for deflection yoke hood (2 re quired)		Reşistor-Fixed. composition. 6.800 ohms. $\pm 10 \%$ 2 watts (R177. R210)
73600 74030			Resistor-Fixed. composition. 8.200
	Grommet-Rubber grommet to mount AM-FM radio tuner chassis (3 required)		1/2 watl (R152. R153, R171)   Resistor-Fixed. composition, 8.200
37396	Grommet-Rubber grommet to mount ceramic tube sockel (2 required)		1/2 watl (R164. R175. R222)   Resistor Fixed Com,
71799	Grommet-Rubber grommet for anode lead support. ing spring and hi-voltage fixed shield		Resistor-rixed, composition, 8.200 ohms. 1 watt (R128)
73301	Magne--lon trap magnet (P.M type)		Resistor-Fixed. composition. 10.000 ohms. $\pm$ 1/2 watt (R182)
73587 18469	Nut-Speed nut to mount hivoltage capacior Plate-Bakelite mounting plate for electrolytics		Resistor-Fixed, composition. 10.000 ohms, $\pm 5 \%$
5119	Pluq-3 contact iemale plug for speaker cable		
71448	Plug-Male plug tor power cable		2 watts (R186) (late production-see Figure 16)
74316	Plug-3 prong male plug tor RK 135 A audio power supply cable		Resistor-Fixed. composition, 12.000 ohms. $\pm 10 \%$ 1/2 wall (R209)
$\begin{aligned} & 71513 \\ & 72067 \end{aligned}$	Resistor-Wire wound. 3.3 ohms. $1 / 3$ wall (R187) Resistor-Wire wound. 5.1 ohms, $1 / 2$ watt (R202)		Resis tor-Fixed. composition, 12.000 ohms. $\pm 10$
	$\begin{aligned} & \text { Resistor-Fixed, composition. } 10 \text { ohms. } \pm 20 \% .1 / 2 \\ & \text { wall (R120) } \end{aligned}$		Resistor-Fixed. composition. 15.000 ohms. $\pm 10 \%$.   1 wall (R146)






Model BTV321 Walnut, Mahogany or Tousted Mahogany


Model 8TV323 Walnut, Mahogany or Toasted Mahogany

## ELECTRICAL AND MECHANICAL SPECIFICATIONS

## RADIO TUNING RANGE

-10-600 kc		
ncy Modulation		
Intermediate Frequency-AM...................... 455 kc Intermediate Frequency-FM.................... 10.7 mc		
PICTURE SIZE...................... $63 / 8^{\prime \prime} \times 81 / 3^{\prime \prime}$		
TELEVISION R-F FREQUENCY RANGE		
All 12 television channels, 54 mc to $88 \mathrm{mc}, 174 \mathrm{mc}$ to 216		
RECEIVER ANTENNA INPUT IMPEDANCE   Choice: 300 ohms balanced or 72 ohms unbalanced.		
POWER SUPPLY RATING		
Television Operation.............. 115 volts, 310 watts		
Phonograph Operation ................... 115 volts, 95 watts		
UDIO POWER OUTPUT RATING		
Maximum Power Output..................... 6.5 watts		
CHASSIS DESIGNATIONS		
LOUDSPEAKER (92569-5)		
RECORD PLAYER		
Refer to Service Data RP178 for information on record player.		
DIMENSIONS (inches) Length	Length Height	Height Depth
Cabinet (outside) 8TV321.... 39		393/4 22
Cabinet (outside) 8TV323.... 401/		
G WEIGHT (less		

## GENERAL DESCRIPTION


#### Abstract

Models 8 TV 221 and 8 TV3 23 are thirty-two tube Television, AM-FM Radio, Phonograph console combinations. The television receiver employs twenty tubes plus two rectifiers and a 10 BP 4 Kinescope. The AM-FM radio chassis employs eight tubes plus one rectifier. An automatic record changer of the "center post, push-off" type is employed and features a crystal pickup with the "Silent Sapphire" stylus.


RCA TUBE COMPLEMENT
(KCS 30-1)

(RC616B, RC616C, RC616J, RC616K)
(1) RCA 6J6.................... Mixer and Oscillator
(2) RCA 6BA6.............................. I-F Amplifier
(3) RCA 6AU6............................................... Driver
(4) RCA 6AL5............................... Ratio Detector
(5) RCA 6AV6...... AM Detector and Phase Inverter
(6) RCA 6AV6............................ Audio Amplifier
(7) RCA 6V6GT .............. Audio Output (2 tubes)
(8) RCA 6X5GT................................... Rectifier
(3) RCA 6AG5 .............................. Converter
(4) RCA 6AU6........... 1st Sound I-F Amplifier
(6) RCA 6AL5.................. Sound Discriminator
(7) RCA 6AV6............................. Bias Clamp
(8) RCA 6AG5 ............. 1st Picture I-F Amplifier
(9) RCA 6AG5.............. 2nd Picture 1-F Amplifier
(10) RCA 6AG5............ 3rd Picture I-F Amplifier
(12) RCA 6AL5. Picture 2nd Detector and Sync Limiter
(13) RCA 12AU7......... 1st and 2nd Video Amplifier
(14) RCA 6SN7GT........ AGC Amplifier and Vertical
(15) RCA 6SN7GT....... AGC Rectifier and 1st Sync Separator
(16) RCA 6SN7GT...... Sync Amplifier and 2nd Sync
(17) RCA 6K6GT.............. Vertical Sweep Output
(18) RCA 6SN7GT....... Horizontal Sweep Oscillator
(19) RCA 6BG6G ........... Horizontal Sweep Output
20) RCA 5V4G.................................. Damper
(21) RCA 1B3-GT/8016........ High Voltage Rectifier


# TELEVISION, AM-FM RADIO, PHONOGRAPH COMBINATION MODELS 8TV321, 8TV323 

Chassis Nos. KCS30-1 and either RC616B RC616C, RC616J or RC616K. Mfr. No. 274 Service Data
-1948 No. T6-

RADIO CORPORATION OF AMERICA rCA VICTOR DIVISION<br>CAMDEN, N. J., U. S. A.

ed on page 2

## PICTURE I-F FREQUENCIES

Picture Carrier Frequency....................... 25.75 mc
Adjacent Channel Sound Trap................... 27.25 mc
Accompanying Sound Traps................... 21.25 mc
Adjacent Channel Picture Carrier Trap........ 19.75 mc

## SOUND I-F FREQUENCIES

Sound Carrier Frequency ......................... 21.25 mc
Sound Discriminator Band Width between peaks. 350 kc

FOCUS	Magnetic

SWEEP DEFLECTION.................... Magnetic
SCANNING
Interlaced, 505 line
HORIZONTAL SCANNING FREQUENCY
$15,750 \mathrm{cps}$
VERTICAL SCANNING FREQUENCY..... 60 cps
FRAME FREQUENCY (Picture Repetition Rate) 30 cps

TELEVISION OPERATING CONTROLS (front panel)
$\left.\begin{array}{l}\text { Channel Selector } \\ \text { Fine Tuning }\end{array}\right\} \ldots . . . . . . . . .$. . Dual Control Knobs Picture. . . . . . . . . . . . . . . . . . . . . . Single Control Knob $\left.\begin{array}{l}\text { Picture Horizontal Hold } \\ \text { Picture Vertical Hold }\end{array}\right\} \ldots . .$. ... Dual Control Knobs Brightness . . . . . . . . . . . . . . . . . . . Single Control Knob

TELEVISION NON-OPERATING CONTROLS (not including r-f and i-f adjustments)
Horizontal Centering. top chassis screwdriver adjustment Vertical Centering... . top chassis screwdriver adjustment Width............... rear chassis screwdriver adjustment Height. . . . ....................... rear chassis adjustment Horizontal Linearity, rear chassis screwdriver adjustment Vertical Linearity . . . . . . . . . . . . . rear chassis adjustment Horizontal Drive.... rear chassis screwdriver adjustment Horizontal Osc. Frequency. . . bottom chassis adjustment Horizontal Oscillator Waveformı. . side chassis'adjustment Focus. rear chassis adjustment
Ion Trap Magnet top chassis adjustment
Deflection Coil top chassis wing nut adjustment

# HIGH VOLTAGE WARNING 

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

## KINESCOPE HANDLING PRECAUTIONS

do not open the kinescope shipping carton, install, remove, or handle the kineSCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES aND HEAVY GLOVES are WORN. people not so equipped should be kept away while kinescopes are being handled. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

The kinescope bulb encloses a high vacuum and, due to its large surface area, is subiected to considerable air pressure. For this
reason, kinescopes must be handled with more care than ordinary receiving tubes.

[^20]
## TELEVISION OPERATION

The following adjustments are necessary when turning the receiver on for the first time:

1. Turn the radio FUNCTION switch to Tel.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximatel's mid-position.
3. Set the STATION SELECTOR to the desired chansel.
4. Adjust the FINE TUNING control for best sound fidelity.
5. Adjust SOUND VOLUME for suitable volume.
6. Turn the BRIGHT-

NESS control fully counterclockwise, then clockwise until a light pattern appears on the screen.
7. Adjust the VERTICAL hold control until the pattern stops vertical movement.
8. Adjust the HORIZONTAL hold control until a picture is obtained and centered.


Figure 1-Receiver Operating Controls

## RADIO OPERATION

1. Turn the radio FUNCTION switch to the desired band (BC or FM).
2. Tune in the desired station with the TUNING control.

## PHONOGRAPH OPERATION

1. Turn the radio FUNCTION switch to Pho.

## MANUAL OPERATION

I. Slide the record support shelf in towards the center post for 10 -inch or away from the center post for 12 -incl: position.
2. Place the record to be played on the turntable and turn the power switch on.
3. Place the pickup on the start of the record.

NOTE: The mechanism should be allowed to complete cycle before attempting to move tone arm to the rest position.

[^21]1
13. When the set is turned on again after an idle period, it should not idle period, it should not
be necessary to repeat the adjustments if the positions of the controls have not been changed. If any adjustment is necessary, step number 4 is generally sufficient.
14. If the positions of the controls have been the controls have been
changed, it may be necessary to repeat steps numbers 2 through 10 .
9. Turn the BRIGHTNESS control counterclockwise until the retrace lines just disappear.
10. Adjust the PICTURE control for suitable picture contrast.
11. After the receiver has been on for some time, it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.
12. In switching from one station to another, it may be necessary to repeat steps numbers 9 and 10 .
5. Remove the record by raising straight up without tilting.

## AUTOMATIC OPERATION

1. With the power switch in the off position slide the record support shelf as required for 10 - or 12 -inch records.
2. Place the records to be played in a stack with desired selections upward and in proper sequence with the last record on top. Load them on the changer by placing them over the center post and resting on the record support shelf. Place record stabilizing clamp on top of the record stack.
3. Turn power switch on and press the reject button, The changer will play automatically one side of each record in the stack.

The tone arm can be moved to the rest position any time the mechanism is not in cycle.
4. Turn the power switch off, lift the stabilizing clamp and remove the stack from the turntable by placing fingers of both hands on opposite sides of the turntable and under the stack. Lift the stack of records straight up. Do not tilt or squeeze the stack while removing.

Models 8 TV321 and 8TV323 television receivers are shipped complete in one carton except for the 10BP4 kinescope. The kinescope is shipped in a special carton and should not be unpacked until ready for installation.

UNPACKING.-The 8 TV321 is shipped in a cardboard carton. To unpack the receiver, turn the shipping carton on its side and tear open the carton bottom flaps. Fold the flaps up along the side of the carton and turn the carton back up. Lift the carton up and off of the cabinet.

The 8TV323 is shipped in a plywood case. To open, remove the front side as indicated on the case. If the front is removed by prying, do not permit the prying tool to enter the case as the cabinet may become scratched. Remove the shipping case rail across the front of the cabinet. Do not remove the two rail support screws on each side of the cabinet. Slide the cabinet out of the casc by pulling on each side of the cabinet shipping skid.

A flat skid is attached to the bottom of the receiver cabinet which will permit the cabinet to be moved about without danger of breaking a cabinet leg or stressing the cabinet joints. This skid should be left on the cabinet until the receiver is placed on display or installed in the home. To remove the skid, take off the cabinet back and remove two nuts on the inside of the cabinet as shown in Figure 2. Then, with a man at each end of the cabinet, lift the cabinet off the skid.

Caution: The 8TV323 radio panel is held in the closed position by two wood screws in a shipping bracket attached to the radio chassis. The radio panel must not be tipped out until these screws are removed as it may cause the cabinet front to be split or the radio chassis to be badly deformed. Remove the screws shown at Detail B in Figure 2 and take out the two red brackets. Somewhat similar brackets are employed in the 8 TV 321 . These brackets should also be removed.

Loosen the three phillips head shipping screws which may be seen in the top of the record changer motor board. Remove all changer shipping material. Remove the sapphire guard clip from the record changer tone arm as shown in detail A of Figure 2.

Take off the television compartment back grille. Remove the front panel, taking out two ornamental screws from the front panel of the 8 TV 321 cabinet or by loosening two wing nuts in back of the panel in the 8TV323 cabinet.

Remove the protective cardboard shield from the 5 U 4 G rectifier. Make sure all tubes are in place and are firmly seated in their sockets.

The operating control knobs are packed in a paper bag which is taped to the cabinet back rail. Remove the bag.

Remove the two self-tapping screws from the deflection yoke mounting as shown in Figure 4.


Figure 2-Rentoval of Shipping Material


Figure 3-Cabinet, Front View

Loosen the two kinescope cushion adjustment wing screws and slide the cushion toward the rear of the chassis. Loosen the deflection yoke adjustment, slide the yoke toward the rear of the chassis and tighten. See Figure 4 for the location of the cushion and yoke adjustments.


Figure 4-Yoke and Focus Coil Adjustments
From the front of the cabinet, look through the deflecion yoke and check the alignment of the focus coil with the yoke. If the focus coil is not in line, loosen the two focus coil mounting screws and move the coil until alignment is obtained. Tighten the mounting screws with the coil in this position.
Loosen the two lower kinescope face centering slides, and set them at approximately mid position. See Figure 3 for location of the slides and their adjustment screws.
KINESCOPE HANDLING PRECAUTION. - Do not open the kinescope shipping carton, install, remove, or handle the kinescope in any manner, unless shatterproof goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling. The shipping carton should be kept for use in case of future moves.

INSTALLATION OF KINESCOPE. - The kinescope second anode contact is a recessed metal well in the side of the bulb. The tube must be installed so that this contact is up but inclined approximately 30 degrees toward the high voltage compartment.
Insert the neck of the kinescope through the deflection and focus coils as shown in Figure 5. If the tube sticks, or fails to slip into place smoothly, investigate and remove the cause of the trouble. Do not force the tube.
Slip the ion trap magnet assembly over the neck of the kinescope with the large magnet towards the base of the


Figure 5-Kinescope Insertion
kinescope. The gap of the large magnet should be to the left (as seen from the back of the cabinet) and the gap of the small magnet should be to the right.

The final orientation of the ion trap magnet will be determined by the position of the ion trap flags. Looking at the kinescope gun structure, it will be observed that the second cylinder from the base inside the glass neck is provided with two small metal flags, as shown in Figure 6. The magnet must be installed so that the rear magnet is approximately over the flags and is oriented as shown in Figure 4.


## Figure 6-Ion Trap Flags

Connect the kinescope socket to the tube base.
Insert the kinescope until the face of the tube protrudes approximately one-quarter of an inch outside the front of the cabinet. Adjust the four centering slides until the face of the kinescope is in the center of the cabinet opening. Tighten the four slides securely.

Wipe the kinescope screen surface and front panel safety glass clean of all dust and finger marks with a soft cloth moistened with the Drackett Co.'s "Windex" or similar cleaning agent.

Install the cabinet front panel by reversal of the procedure indicated in Figure 3. Install the control knobs on the control shafts.

Check all chassis interconnecting cables to make sure that all are plugged into the proper sockets as shown in Figure 7.

Slip the kinescope as far forward as possible. Slide the kinescope cushion firmly up against the flare of the tube and tighten the adjustment wing screws. Slide the deflection yoke as far forward as possible.

Connect the high voltage lead to the kinescope second anode socket. The glass to metal seal of this connector is fragile and care should be used in making the connection. Only a small amount of pressure should be applied to the connector when inserting the clip. If appreciable pressure is applied the seal may be fractured permitting air to leak into the tube thus ruining the kinescope.

The antenna and power connections should now be made.

Turn the power switch to the "on" position, the function switch to the television position, the brightness control fully clockwise, and picture control counterclockwise.


Figure 7-Chassis Interconnecting Cables
ION TRAP MAGNET ADJUSTMENT. - The ion trap rear magnet poles should be approximately over the ion trap flags. Starting from this position adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust the focus control (R191 on the chassis rear apron) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches on this adjustment should be made with the brightness control at the maximum position with which good line focus can be maintained.


Figure 8-Rear Chassis Adjustments
DEFLECTION YOKE ADJUSTMENT. - If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.
PICTURE ADJUSTMENTS.-It will now be necessary to obtain a test pattern picture in order to make further adjustments. See steps 2 through 8 of the receiver operating instructions on page 3.
If the Horizontal Oscillator and AGC System are operating properly, 11 should be possible to sync the picture at this point. However, if the AGC threshold control is misadjusted, and the receiver is overloading, it may be impossible to sync the picture.

If the receiver is overloading, turn R 138 (on top of the chassis, see Figure 10) counterclockwise until the set operates normally and the picture can be synced.

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT.-Turn the horizontal hold control to the extreme counterclockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be gradually reduced and when only 3 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control.

Pull in should occur when the control is approximately 90 degrees from the extreme counterclockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should be out of sync and should show 1 vertical or diagonal black bar in the raster.

If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Centering Adjustment."

ALIGNMENT OF HORIZONTAL OSCILLATOR. -If in the above check the receiver failed to hold sync with the hold control at the extreme counterclockwise position or failed to hold sync over 90 .degrees of clockwise rotation of the control from the pull in point, it will be necessary to make the following adjustments:

Horizontal Frequency Adjustment. - Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the T109 horizontal frequency adjustment (under the chassis) until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster.
Horizontal Lock in Range Adjustment.-Set the horizontal hold control to the full counterclockwise position. Momentarily remove the signal by switching off channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.
If more than 3 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer C153A slightly clockwise. If less than 3 bars are present, adjust Cl53A slightly counterclockwise. Turn the picture control counterclockwise, momentarily remove the signal and recheck the number of bars present at the pull in point. Repeat this procedure until 3 bars are present.

Repeat the adjustments under "Horizontal Frequency Adjustment" and "Horizontal Locking Range Adjustment" until the conditions specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.

If it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure For field purposes paragraph "A" under Horizontal Oscillator Waveform Adjustment." may be omitted.

CENTERING ADJUSTMENT.-No electrical centering controls are provided. Centering is obtained by mechanically orienting the focus coil with the three adjustment screws shown in Figure 8. Center the picture on the screen by adjustment of these screws. The focus coil should be approximately concentric around the neck of the kinescope to prevent curvature of the raster.

FOCUS COIL ADJUSTMENTS. - If, after making the centering adjustments in the above paragraph, a corner of the picture is shadowed, it will be necessary to loosen the focus coil mounting screws (shown in Figure 8) and change the position of the coil to eliminate the shadow. Recenter the picture by adjustment of the centering screws.

Recheck the position of the ion trap magnet to insure that maximum brilliance is obtained.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS. - Adjust the height control (R155 on chassis rear apron) until the picture fills the mask vertically ( 63 inches). Adjust vertical linearity (R162 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust centering to align the picture with the mask.

WIDTH, DRIVE AND HORIZONTAL LINEARITY ADJUSTMENTS.-Adjust the horizontal drive control C153B to give a picture of maximum width within the limits of good linearity. Adjust the horizontal linearity control Lill to provide best linearity. Adjust the width control until the picture just fills the mask.

Adjustments of the horizontal drive control affect horizontal oscillator hold and locking range. If the drive control was adjusted, recheck the oscillator alignment.

FOCUS-Adjust the focus control (R191 on chassis rear apron) for maximum definition in the test pattern vertica! "wedge" and best focus in the white areas of the pattern.

CHECK TO SEE THAT THE CUSHION AND YOKE THUMBSCREWS AND THE FOCUS COIL MOUNTING SCREWS ARE TIGHT.

AGC THRESHOLD CONTROL ADJUSTMENT.The AGC threshold control R138 is adjusted at the factory and normally should not require readjustment in the field.

To check the adjustment of the AGC Threshold Control, tune in a strong signal, sync the picture and turn the picture control to the maximum clockwise position Turn the brightness control counterclockwise until the vertical retrace lines are just invisible.

Monentarily remove the signal by switching off channel then back. If the picture reappears immediately, the receiver is not overloading due to improper setting of R138. If the picture requires an appreciable portion of a second to reappear, R138 should be readjusted.

Set the picture control at the maximum clockwise position. Turn R138 fully counterclockwise. The top one-half inch of the picture may be bent slightly. This should be disregarded. Turn R138 clockwise until there is a very slight bend or change of bend in the top one-half inch of the picture. Then turn RI38 counterclockwise just sufficiently to remove this bend or change of bend.

If the signal is very weak, the above method may not work as it may be impossible to get the picture to bend In this case, turn R138 clockwise until the snow in the picture becomes more pronounced, then counterclockwise until the best signal to noise ratio is obtained.

The AGC control adjustment should be made on a strong signal if possible. If the control is set too far clockwise on a weak signal, then the receiver may overload when a strong signal is received. If it is not set sufficiently clockwise then the sync noise immunity is decreased.
CHECK OF R-F OSCILLATOR ADJUSTMENTS. -Tune in all available stations to see if the receiver $r$-f oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made


Figure 9—R.F Oscillator Adjustments
by the method outlined in the alignment procedure.
The adjustments for channels 2 through 5 and 7 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 9. Adjustment for channel 13 is on top of the chassis and channel 6 adjustment is in the kinescope well.
Observe the picture on all stations for detail, for proper interlacing and for the presence of interference or reflections.

REFER TO PAGES 442 TO 455 INC. FOR TELEVISION ALIGN ment. SERVICE suggestions, test pattern photoGRAPHS AND WAVEFORM PHOTOGRAPHS.

RADIO OPERATION.-Turn the receiver function switch to AM and FM positions and check the radio for proper operation. In switching from radio to television or from television to radio, approximately 30 seconds warm-up time is required.

RECORD CHANGER OPERATION. - Open the record changer compartment lid and move the tone arm to the rest position. Place a record on the turntable. Slide the record shelf to the position to take the size of records used. Place a stack of records on the shelf. Turn the radio function switch to phono position. Slide the record changer power switch to the on position and push the reject button.

Replace the television receiver metal back grille. Replace the cabinet back. Make sure that the screws holding both backs are up tight otherwise the backs may rattle or buzz when the receiver is operating at high volume.

Advise the customer to keep all packing cartons and hardware for use in case of future moves.

RECEIVER LOCATION.-The owner should be advised of the importance of placing the receiver in the proper location in the roon.
The location should be chosen-

- Away from bright windows and so that no bright light will fall directly on the screen. (Some illumination in the room is desirable, however.)
-To give easy access for operation and comfortable viewing.
-To permit convenient connection to the antenna.
-Convenient to an electrical outlet.
-To allow adequate ventilation.
ANTENNAS. - The finest television receiver built may be said to be only as good as the antenna design and installation. It is therefore important to use a correctly designed antenna, and to use care in its installation.

REFLECTIONS.-Multiple images sometimes known as echoes or ghosts, are caused by the signal arriving at the antenna by two or more routes. The second or subsequent image occurs when a signal arrives at the antenna after being reflected off a building, a hill or other object. In severe cases of reflections, even the sound may be distorted. In less severe cases, reflections may occur that are not noticeable as reflections, but that will instead cause a loss of definition in the picture.

Depending upon the circumstances, it may be possible to eliminate the reflections by rotating the antenna or by moving it to a new location. In extreme cases, it may be impossible to eliminate the reflection.

INTERFERENCE.-Auto ignition, street cars, electrical machinery and diatherny apparatus may cause interference which spoils the picture. Whenever possible, the antenna location should be removed as far as possible from highways, hospitals, doctors' offices, and similar sources of interference.

Short-wave radio transmitting and receiving equipment may cause interference in the picture in the form of moving ripples. In some instances it may be possible to eliminate the interference by the use of a trap in the antenna transmission line. However, if the interfering signal is on the same frequency as the television station, a trap will provide no improvement.

POWER


Figure 10-Television Chassis Top View


Figure 11-Television Chassis Bottom View

## TELEVISION CIRCUIT DESCRIPTION

It is advisable that the reader be familiar with a recent standard textbook of television principles in order to understand the receiver circuits and their functions. Such a knowledge is assumed for the purpose of this publication.

The discussions which follow will not dwell on the operation of conventional circuits used which have been used in previous receivers and which should be well known. The circuits discussed will be only those that are new to the field.

R-F UNIT.-A new design of r-f unit is employed in the Model 8TV321, 8TV323 receivers. This unit employs several novel features which require explanation.
For ease of analysis the input circuit to the r-f amplifier can be broken down into three sections as shown in the simplified schematic of Figure 12.


Figure 12-Simplified Schematic of R-F Amplifier Input
The function of the first section is to match the input to either a 300 balanced transmission line or to a 72 ohm
co-ax line.

This is accomplished by using the equivalent of two 150 ohm transmission lines coiled up on separate coil forms. The act of coiling these transmission lines causes them to have high impedance for any unbalanced current in the lines so that opposite ends of the lines may have different connections in reference to ground. The use of two of these 150 ohm elements allows either a series or series-parallel connection to provide a match for either a 300 balanced or a 72 ohm co-ax antenna transmission
line.
Section 2 of Figure 12 is simply an M-derived high pass filter section matching 300 ohms, cutting off just below channel 2 and has maximum attenuation in the picture i-f frequency range. This filter provides rejection for signals of i-f frequency which otherwise might be passed by the r-f amplifier and cause interference in the picture.

Section 3 of Figure 12 has the dual function of providing some selectivity in the input circuit and of stepping up the voltage at the r-f amplifier grid. The selectivity is approximately equivalent to that of a single tuned circuit with the exception that the skirt selectivity is better on the high frequency side of resonance than on the low frequency side due to the circuit's low pass filter configuration. Tuning is accomplished by switching small increments of inductance in or out of the circuit in order to resonate the network to the desired channel.
Voltage step up is accomplished by feedirg the antenna voltage across a portion of the tank capacitance that is lower in impedance than that portion of the tank capacitance which comprises the input to the tube. Figure 13 shows a further simplification of this type of
tuned circuit. tuned circuit.


Figure 13-Simplified Schematic of Section 3, Figure 12

R11 is the resistance loading for the tuned circuit. This resistance is chosen to provide the proper bandwidth of response and at the same time provide a termination such that the input impedance to the circuit is 300 ohms. The ratio of capacitance of C 20 and the tube input capacitance is such that the impedance is stepped up to 1,000 ohms at the r-f a mplifier grid and the voltage is stepped up approximately 1.8 times.

The r-f amplifier tube is a 6AG5 pentode for good isolation between grid and plate circuits.
Figure 14 shows the simplified schematic of the tuned circuits coupling the plate of the r-f amplifier to the grid of the converter.


Figure 14-Simplified Schematic of R.F and Converter Lines
The primary of this tuned coupled circuit consists of the output capacitance of the r-f amplifier Co shunted by $\mathrm{Lp}, \mathrm{Cb}, \mathrm{Lc}$ and Cc in series.
The secondary consists of the input capacitance Ci of the converter grid shunted by Ls, Lc and Cc in series.

It will be noted that Le and Cc are common to both primary and secondary circuits and consequently provide coupling between the two.
Tuning of the primary and secondary is accomplished as in the antenna circuit by switching inductance in Lp and Ls in order to obtain resonance on the desired channel.

The coupling circuit Lc and Cc is switched in going from low to high channels. One combination of Le and Cc is provided for the low channels and another for the high channels. This thus provides an adjustment for optimum coupling for both groups of channels.

The combination of Lc and Cc is series resonant above the highest frequency channel of the group for which it is used so that the coefficient of coupling is extremely low in the neighborhood of the oscillator frequencies and the image frequencies. This is an important factor in realizing ligh image attenuation ratios and low oscillator radiation characteristics. For these reasons all other forms of stray coupling are reduced to a ninimum and to this end, a grounded shield is placed between the primary and secondary coils.
Correlation of elements between the simplified schematics of Figures 12 and 14 and the actual schematic of Figure 95 should be obvious by inspection. R-F unit adjustments L1, L2, L3, and L5 are not intended for alignment but for factory control purposes.
VIDEO AMPLIFIER.-A d-c coupled video amplifier is employed. The picture control varies the contrast of the picture by varying the a-c gain of the second video amplifier by cathode degeneration. The gain variation is approximately 5 to 1 which is sufficient for a wide range of lighting conditions and viewer preferences. The d-c gain and hence blanking are held substantially constant by the resistor R124 feeding a bucking current at the cathode from -120 volts.
The kinescope screen must be approximately 300 volts positive with respect to the grid. Since this voltage is obtained from the receiver low voltage supply, a novel circuit is employed to permit operating the kinescope grid near ground potential yet permitting d-c coupling to the video amplifier plate which is at a considerably
higher potential.

R128 is the normal load resistor for the second video amplifier and the $a-c$ voltage is capacitively coupled through C130 to the kinescope grid.

The d-c component of the signal voltage developed on the plate side of R 127 is approximately double that across R128 alone. This d-c is divided in half by R130 and R132 and directly coupled to the kinescope grid. The change in d-c potential representing picture background change appearing at the kinescope grid will be the same as that appearing across R128.

The lower end of R 132 is connected to -120 volts so the static or reference d-c voltage at the kinescope grid will be one-half of the d-c voltage between the plate end of R127 and -120 volts. The kinescope grid is thereby permitted to operate at near ground reference potential but at the same time operate at normal $d-c$ and a-c video component voltages.

A 4.5 mc trap L104 and C128 in series with the plate circuit is employed to reduce by a factor of 10 the 4.5 me beat between sound and picture carriers. Consequently the fine tuning adjustment is less critical.

SYNC SEPARATION AND AGC. - One section of V108 is employed to substantially separate vertical sync from the video and the other section performs a dual function of pre-separating horizontal sync and developing a d-c voltage proportional to the tips of sync for automatic gain control purposes.

The complete video waveform from the first video amplifier is fed through R141 and R142 to the grid (pin 1) of V108. This resistance, in conjunction with the input capacity of the tube, attenuates horizontal sync at the grid without attenuating vertical sync.

The other section of V108 is fed the complete video waveform through R141 ( 5,600 ohms). This value of resistance bypassed by the tube input capacity does not materially affect the horizontal sync waveform but does isolate the tube input capacity from the video amplifier. The cathode time constant of this section is designed for the horizontal sync rate. The cathode voltage rises to tips of sync and discharges to blanking in a line interval, consequently most of the video waveform is beyond cutoff on the tubes grid characteristic. This time constant provides good noise immunity at the horizontal rate and permits the best possible horizontal sync under conditions of interference.

Separated horizontal sync pulses appear across the plate resistor R144. The horizontal and vertical sync pulses are then combined in a suitable network and fed to the grid of the sync amplifier.

For the AGC system, the peak voltage appearing on the AGC rectifier cathode is filtered by R139 and C133 and conductively coupled to the grid of the AGC amplifier V107A. A negative voltage for biasing the $r-f$ and $i-f$ amplifiers must be developed by the AGC amplifier. Therefore, the plate of the amplifier must be operated near ground potential, the cathode at a negative voltage and the grid at a slightly more negative voltage. The voltage appearing at the cathode pin 6 of V108 is approximately -8 volts with respect to ground so a divider arrangement consisting of R139, R137 and R138 is employed to obtain the proper reference vol:age to operate the AGC amplifier. The AGC threshold control R138 is provided to set the operating characteristic so that the tips of sync are just below limiting at the first video amplifier. The AGC action will then maintain this level of signal to the video amplifier over the operating range of input signals.

HORIZONTAL OSCILLATOR AND CONTROL. -Fundamentally the horizontal oscillator is a free running blocking oscillator and discharge circuit. The frequency of oscillation of this circuit can be controlled, however, by the adjustment of the operating bias. A control tube is provided which compares the frequency of
the oscillator with the frequency of the incoming sync and produces an output voltage which is proportional to the phase displacement between the two signals. This voltage is applied as bias to the oscillator tube and causes it to oscillate at the frequency of the incoming sync and in the proper phase relation.

One section of the dual triode V111 operates as the oscillator and the other section functions as the control tube.

The details of the operation of the circuit are as follows: The right half of V111 (Figure 26) together with the coils between terminals $A$ and $C$ and $C$ and $F$ of T109, R179 and C161 operate as a normal blocking oscillator and discharge circuit to produce a saw-tooth voltage.

The stabilizing tuned circuit between terminals $C$ and D of T109 is shock excited into oscillation by the pulses of plate current. The sine wave so generated is added to the saw-tooth wave in such a phase that the slope of the wave at the point just prior to discharge is increased by about 3 times. This increase in slope is desired in order to get greater sensitivity of control. This voltage is fed through R180 to the grid of the control tube. A partially integrated pulse from the kickback of the output stage is also fed to the control tube grid in order to increase the discharge slope of the waveform. The sync pulse is also fed into the control tube grid.

A portion of the bias from the blocking oscillator is applied to the grid of the control tube and is sufficient to keep the control tube cut off except when the sync pulse is high on the slope of the grid waveform as shown in Figure $15-\mathrm{A}$. If the oscillator changes phase so that the pulse slides down the slope, the control tube plate conduction time decreases as shown in Figure 15-B. If the pulse slides up the slope, then the plate conduction time increases as shown in Figure 15-C. When the control tube conducts capacitors C155 and C157 in its cathode circuit charge to a d-c potential proportional to the plate conduction time. This potential is applied as a bias to the oscillator grid thus shifting the oscillator frequency and pulling it into phase with the sync pulses.


PULSE ABOVE GRID CuTOFF LEVEL IS PORTION OF WAVEFORM EFFECTIVE in producing oscillator control voltage.

## Figure 15-Horizontal Control Waveforms

The effect of the various controls associated with the circuit are as follows: C153-A is a variable portion of a capacity voltage divider and is provided to set the amplitude of the waveform on the grid of the control tube so that conduction occurs only on the positive peaks of the waveform. T109 is provided with a slug to effect adjustments in oscillator frequency. The tuned circuit of T109 is also provided with a slug to permit accurate control of slope of the oscillator waveform. R173 the horizontal hold control is provided on the front panel to permit a $5 \%$ variation of frequency by varying the control tube plate voltage. The horizontal drive control C153-B is part of a capacity voltage divider and is provided to vary the amount of sawtooth voltage on the V112 grid and hence is a control for picture linearity.

The resistors employed in the oscillator and control circuits have special coefficients or characteristics and in case of failure, should be replaced only by exact replacement. Strains or excessive heat should not be applied to the leads or bodies of the resistors. Such conditions may cause excessive changes of resistance with age. See "Critical Lead Dress" on page 18

## 8TV321, 8TV323

## TELEVISION VOLTAGE CHART

The following measurements represent two sets of conditions. In the first condition a 2200 microvolt test pattern signal was fed into the receiver, the picture synced and the AGC threshold control properly adjusted. The second condition was obtained by removing the antenna leads and short circuiting the receiver antenna terminals. Voltages shown are as read with "Jr. VoltOhmyst" between the indicated terminal and chasais ground and with the receiver operating on 117 volts 60 cyclea a-c.

Tube No.	Tube Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		I Plate (ma.)	I   Screen (ma.)	Notes on Measurements
				Pin   No.	Volts	Pin   No.	Volts	Pin   No.	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volt:			
V1	6AG5	R-F   Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	146	6	148	2\& 7	0	1	$-4.9$	. 72	. 33	
			No Signal	5	85	6	120	28.7	0	1	$-0.1 \mathrm{v}$	12.0	4.0	
V2	6AG5	Converter	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	$\begin{gathered} 130 \\ \text { to } 140 \\ \hline \end{gathered}$	6	$\begin{aligned} & 130 \\ & \text { to } 140 \end{aligned}$	287	0	1	$\begin{gathered} -3.0 \\ \text { to }-7.0 \\ \hline \end{gathered}$	$\begin{aligned} & 7.1 \\ & \text { to } 7.7 \\ & \hline \end{aligned}$	$\begin{gathered} 2.3 \\ \text { to } 2.7 \\ \hline \end{gathered}$	- Depending upon channel
			No Signal	5	$\begin{aligned} & 104 \\ & \text { to } 109 \end{aligned}$	6	$\begin{aligned} & 104 \\ & \text { to } 109 \end{aligned}$	2\& 7	0	1	$\begin{gathered} -2.0 \\ \text { to }-6.0 \\ \hline \end{gathered}$	$\begin{gathered} \text { } 5.3 \\ \text { to } 5.9 \end{gathered}$	$\begin{gathered} .8 \\ \text { to } 1.0 \end{gathered}$	
V3	6J6	$\begin{aligned} & \text { R-F } \\ & \text { Oscillator } \end{aligned}$	$\begin{aligned} & 2200 \text { Mu.V. } \\ & \text { Signal } \end{aligned}$	182	$\begin{gathered} 88 \\ \text { to } 95 \end{gathered}$	-	-	7	. 19	5\&6	$\begin{gathered} -5.1 \\ \text { to }-7.3 \\ \hline \end{gathered}$	$\begin{gathered} 1.9 \\ \text { to } 2.7 \\ \hline \end{gathered}$	-	-Depending upon channel
			No Signal	182	$\begin{gathered} 68 \\ \text { to } 81 \\ \hline \end{gathered}$	-	-	7	. 16	586	$\begin{gathered} -4.5 \\ \text { to }-6.6 \end{gathered}$	$\begin{gathered} 1.8 \\ \text { to } 2.1 \end{gathered}$	-	
V101	6AG5	1st Pix. I-F Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	141	6	141	287	. 07	1	-3.9	. 8	. 22	
			No Signal	5	108	6	108	287	. 11	1	$-.09$	4.97	1.73	
V102	6AG5	2d Pix. I-F   Amplifier	$\underset{\text { Signal }}{2200 \mathrm{Mu} . \mathrm{V}}$	5	130	6	130	287	. 86	1	0	9.48	3.12	
			No Signal	5	106	6	106	287	. 6	1	0	7.6	2.6	
V103	6AG5	3d Pix. I-F Amplifier	$2200 \mathrm{Mu} . \mathrm{V}$   Signal	5	130	6	140	287	. 03	1	-3.9	. 51	. 09	
			No Signal	5	94	6	109	2\& 7	. 11	1	$-.03$	3.92	1.5	
V104	6AG5	4th Pix. I-F Amplifier	$2200 \text { Mu.V. }$   Signal	5	175	6	145	287	1.38	1	0	7.0	2.0	
			No Signal	5	167	6	109	$2 * 7$	. 95	1	0	5.7	1.5	
$\begin{gathered} \text { V105 } \\ \mathbf{A} \end{gathered}$	6AL5	Picture 2d Det.	$2200 \mathrm{Mu} . V$. Signal	7	-113	-	-	1	-112	-	-	. 48	-	
			No Signal	7	-120	-	-	1	-120	-	-	-	-	
$\begin{gathered} \text { V105 } \\ \text { B } \end{gathered}$	6AL5	Sync Limiter	$2200 \mathrm{Mu} . \mathrm{V}$   Signal	2	-107	-	-	5	-56	-	-	-	-	
			No Signal	2	$-80$	-	-	5	$-60$	-	-	-	-	
V106	$12 \mathrm{AU7}$	1st Video Amplifier	2200 Mu.V. Signal	1	-23.2	-	-	3	-111	2	-113	4.38	-	
			No Signal	1	-19.2	-	-	3	$-117$	2	-120	3.82	-	
V106	12AU7	2d Video Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	6	* 166	-	-	8	- -5.3	7	- 12.2	6.2	-	*At average contrast
			No Signal	6	${ }^{*} 134$	-	-	8	- -5.6	7	- -10.3	6.9	-	
$\begin{gathered} \text { V107 } \\ \mathbf{A} \end{gathered}$	$\begin{array}{\|l\|l\|} \hline \text { GSN 7 } \\ \hline \end{array}$	AGC Amplifier	$2200 \mathrm{Mu} . \mathrm{V} .$   Signal	5	-17.9	-	-	6	$-55.5$	4	-56.5	. 9	-	
			No Signal	5	- 5.2	-	-	6	$-60$	4	-64	. 3	-	
$\begin{gathered} \text { V107 } \\ \mathbf{B} \end{gathered}$	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Vertical Oacillator	$2200 \mathrm{Mu} . \mathrm{V} \text {. }$ Signal	2	76	-	-	3	-111	1	-158	. 2	-	
			No Signal	2	62	-	-	3	$-120$	1	-169	. 2	-	
V108	$\begin{array}{\|l\|l\|} \hline \text { 6SN } 7 \\ \text { GT } \\ \hline \end{array}$	AGC Rectifier	$\begin{aligned} & 2200 \mathrm{Mu} . V \\ & \text { Signal } \end{aligned}$	5	97	-	-	6	-3.4	4	-19.3	. 3	-	
			No Signal	5	81	-	-	6	-8.7	4	$-19.3$	. 28	-	
V108	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	1st Sync Separator	$\begin{aligned} & 2200 \text { Mu.V. } \\ & \text { Signal } \end{aligned}$	2	96	-	-	3	-1.8	1	-19.5	. 1	-	
			No Signal	2	81	-	-	3	$-9.7$	1	-19.3	. 1	-	


Tube No.	Tube   Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		$\begin{gathered} \text { I } \\ \text { Plate } \\ \text { (ma.) } \end{gathered}$		Notes on Measurements
				Pin   No.	Volts	Pin   No.	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	Pin No.	Volts			
V109	$\begin{aligned} & \text { 6SN } 7 \\ & \text { GT } \end{aligned}$	Sync Amplifier	$2200 \mathrm{Mu} . \mathrm{V} .$ Signal	2	158	-	-	3	0	1	-4.7	5.25	-	
			No Signal	2	154	-	-	3	0	1	-5.2	3.75	-	
V109	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Sync   Separator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	230	-	-	6	-51	4	-106	. 4	-	
			No Signal	5	215	-	-	6	-59	4	$-80$	. 35	-	
V110	$\begin{aligned} & \text { 6K6- } \\ & \text { GT } \end{aligned}$	Vertical Output	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \\ \hline \end{gathered}$	3	223	4	223	8	-67	5	-91		* 7.85	*Screen connected to
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	3	208	4	208	8	-79	5	-101		$\bullet 7.7$	plate
V111	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Horizontal Osc. Control	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	2	*48	-	-	3	-110	1	-92	. 2	-	- Variation of hold gives
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	2	*33	-	-	3	-120	1	-108	. 2	-	-21.9 to +56 volts on plate
V111	$\begin{array}{\|l} \hline \text { 6SN7 } \\ \text { GT } \end{array}$	Horizontal Oscillator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	70	-	-	6	-111	4	-185	2.4	-	
			No Signal	5	54	-	-	6	-120	4	-192	2.4	-	
V112	6BG6G	Horizontal Output	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	Cap	*	8	160	3	-104	5	-101	93.5	11.5	$\text { * } 5200 \text { volt }$
			No Signal	Cap	Do Not Meas.	8	142	3	-113	5	$-112$	90.8	11.2	pulse present
V113	$\begin{gathered} \text { 1B3GT } \\ / 8016 \end{gathered}$	H. V. Rectifier	Brightness Min.	Cap	*	-	-	2 \% 7	8500	-	-	0	-	* 8500 volt
			Brightness Average	Cap	Do Not Meas.	-	-	287	8400	-	-	. 1	-	pulse present
V114	5V4G	Damper	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	$4 \% 6$	*	-	-	288	339	-	-	94.5	-	-1200 volt
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	4 \& 6	Do Not Meas.	-	-	288	322	-	-	92	-	pulse present
V115	5U4G	Rectifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	486	390	-	-	2\& 8	291	-	-	225	-	*A-C measured
			No Signal	486	390	-	-	288	272	-	-	230	-	from plate to trans. center tap
V116	6AU6	1st Sound I-F Amplifier	$\begin{aligned} & 2200 \mathrm{Mu} \text { M. } \\ & \text { Signal } \end{aligned}$	5	134	6	134	7	. 9	1	0	8.2	3.3	
			No Signal	5	110	6	110	7	. 7	1	0	5.7	2.6	
V117	6AU6	2d Sound I-F Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	148	6	90	7	0	1	-9	1.6	. 8	
			No Sigral	5	115	6	60	7	0	1	$-.65$	3.35	1.15	
V118	6́AL5	Sound Discrim.	2200 Mu.V. Signal	2	-8.4	-	-	5	5.8	-	-	-	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	2	-2.0	-	-	5	. 41	-	-	-	-	
			$2200 \text { Mu.V. }$ Signal	7	-3.7	-	-	1	0	-	-	-	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	7	-1.08	-	-	1	0	-	-	-	-	
V119	6AV6	Bias Clamp	2200 Mu.V. Signal	7	0	-	-	2	0	1	0	-	-	
			No Signal	7	0	-	-	2	0	1	0	-	-	
V121	10BP4	Kineacope	2200 Mu.V. Signal	Cap	* 8400	10	339	11	51	2	20	. 1	-	*Average Brightness
			No Signal	Cap	-	10	322	11	42	2	14	-	-	Average Brightness
			2200 Mu .V. Signal	Cap	-	10	339	11		2		. 4	-	Maximum Brightness
			2200 Mu.V. Signal	Cap	$\bullet 8500$	10	339	11		2		0	-	Minimum Brightness

## RADIO ALIGNMENT PROCEDURE

If any lead dressing is necessary, it should be done before aligning the receiver. See Critical Lead Dress on page 15
Before aligning set, completely mesh the gang and set the dial pointer to the mechanical max. calibration point at extreme left end of dial.

When making a complete alignment follow the tabulated form below in sequence.
If only a portion of the circuit is to be aligned select the portion required and follow with the remaining steps in the chart.

Any adjustments made on the AM 455 kc . I-F's make it necessary to adjust the FM 10.7 mc . I-F's.

## AM I-F, OSC, R-F AND ANT ALIGNMENT

Test-Oscillator.-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action. Set the oscillator to $30 \% 400$ cycle modulation.

Output Meter.-Connect the meter across the speaker voice coil, and turn the receiver volume control to maximum.

Steps	Connect the High Side of the Test Osc. to-	Tune Test Osc. to-	Function Switch	Turn Radio Dial to-	Adjust the following for peak output on the meter
1	C3 in series with .01 mfd .	455 kc	"A" Band	Quiet point at low freq. end of dial	$\begin{aligned} & \text { AM windings* } \\ & \text { T3 bottom core (sec.) } \\ & \text { T3 top core (pi..) } \end{aligned}$
2	"	"	"	"	AM windings* T2 top core (sec.) T2 bottom core (pri.)
3	Terminal 1 of antenna board in series with 220 mmf .	1400 kc	"	1400 kc	C13 Oscillator C4 Antenna
4	"	600 kc	"	600 kc	L4 Oscillator \& L9 Antenna (Rock gang)
5	Repeat steps 3 and 4.				

Use alternate loading. This method involves the use of a 47,000 -ohm resistor to load the primary winding while the secondary winding of the same transformer is being peaked. Then the secondary winding is loaded with the 47,000 -ohm resistor while the primary winding is being peaked. Remove the $\mathbf{4 , 0 0 0}$-ohm resistor after $T 2$ and $T 3$ have been aligned.

FM RATIO DETECTOR I-F, OSC, R-F AND ANT ALIGNMENT

Steps	Connect the High Side of the Test Osc. to-	Tune Test Osc. to-	Function Switch	Turn Radio Dial to-	Adjust the following
1	Connect "Voltohmyst" d-c probe to negative lead of C33, and the meter common lead to chassis ground.				
2	Pin 1 of V3(6AU6) in series with .01 mfd .	$\begin{gathered} 10.7 \mathrm{mc} \\ 30 \% 400 \text { cycle } \\ \text { AM modulated } \\ .05 \text { V. output } \end{gathered}$	FM	Low freq. end of dial	T4 top core for max. d-c voltage across C33   T4 bottom core for min. audio output**
3	Terminal 1 of antenna board in series with 300 ohms	10.7 mc output adjusted to give 2 to 3 volts on "VoltOhmyst"	"	"	FM windings for max. d-c voltage across C33*** T3 top core (sec.) T3 bottom cor: (pri.)
4	"	"	"	"	FM windings for max. d-c***   T2 top core (sec.)   T2 bottom core (pri.)
5	"	106 mc	"	106 mc	L2 Oscillator**** C2 Antenna (set C2 at max. capacity while adjusting L2)
6	"	90 mc	"	90 mc	L1 Antenna**** (Rock gang)
7	Repeat steps 5 and 6 until further adjustment provides no improvement in calibration.				

approached rapidly and the output is much which give reductions in the audio output. At the correct tuning point. the minimum audio output is proached rapidly and the output is much less than at any incorrect point.
** Align T2 and T3 by the use of alternate loading. Use a 680 -ohm resistor to load the primary winding while the secondary winding of the tame tranalormer is being peaked. Then load the secondary winding with the 680 -ohm resistor while the primary winding is being peaked. ** L1 and L2 are adjusted by increasing or decreasing the spacing between turns of the coils.

NOTE-The FM alignment may be checked by means of an FM sweep generator and
 couple it to the mixer grid to provide a marker. To observe the I-F respouse disong (6J6). Set the signal generator to 10.7 me and loosely cuit. Connect the oscilloscope to the junction of R25 and R26.

To observe the Ratio Detector response, reconnect C33 and connect the oscilloscope across the volume control R14.


Note: If it is desired to use separate " $A$ " band antenna, cut the green loop of wife extending from the chassis as shown above and connect the antenna to the wite whicl permits greatest sensitivity.

Figure 16-Chassis, Top View, Showing Adjustments

## RADIO VOLTAGE CHART

All voltages measured to ground, using a "VoltOhmyst"

Tube	Type		Pin No.	"A"	"FM"	TV or Phone
V1	6 6 6	Plate Grid Plate Grid	1 6 2 5	$\begin{array}{r} 102 \\ -6.8 \\ 96 \\ -2.7 \end{array}$	$\begin{array}{r} 98 \\ -6.0 \\ 110 \\ -2.5 \end{array}$	$\bar{Z}$
V2	68A6	Plate Screen Cathode Grid	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 1 \end{aligned}$	$\begin{array}{r} 196 \\ 100 \\ 0.7 \\ -1.3 \end{array}$	$\begin{array}{r} 192 \\ 83 \\ 0.84 \\ -0.2 \end{array}$	$\bar{Z}$
V3	6AU8	Plate Screen Cathode	$\begin{aligned} & 5 \\ & 6 \\ & 7 \end{aligned}$	$\begin{array}{r} 190 \\ 145 \\ 1.25 \end{array}$	$\begin{array}{r} 185 \\ 141 \\ 1.21 \end{array}$	
V4	6AL5	-	-	-	-	-
V5	6AV8	$\begin{aligned} & \text { Plate } \\ & \text { Grid } \end{aligned}$	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\begin{array}{r} 85 \\ -0.6 \end{array}$	$\begin{array}{r} 84 \\ -0.6 \end{array}$	$\begin{array}{r} 125 \\ -9.6 \end{array}$
V8	6V6GT	Plate   Screen Cathode	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 282 \\ & 220 \\ & 15.5 \end{aligned}$	$\begin{array}{r} 280 \\ 217 \\ 15.4 \end{array}$	299 295 21.4
V7	6AV8	$\begin{aligned} & \text { Plate } \\ & \text { Grid } \end{aligned}$	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\begin{array}{r} 125 \\ -0.5 \end{array}$	$\begin{array}{r} 125 \\ -0.5 \end{array}$	$\begin{array}{r} 168 \\ -0.5 \end{array}$
V8	6VEGT	Plate   Screen Cathode	$\begin{aligned} & 3 \\ & 4 \\ & 8 \end{aligned}$	$\begin{array}{r} 282 \\ 220 \\ 15.5 \end{array}$	$\begin{array}{r} 280 \\ 217 \\ 15.4 \end{array}$	$\begin{array}{r} 299 \\ 295 \\ 21.4 \end{array}$
Vo	6X5GT	Cathode	8	300	299	313

## RADIO CRITICAL LEAD DRESS

1. Keep leads of C 7 short.
2. Dress R27 away from range switch and pin No. 5 of V1
3. The ground lead of pin No. 2 of V2 and V3 should be down against chassis. Its length is critical.
4. The AVC lead from R26 to range switch should be dressed against chasis:
5. C43 should have short leads and the color code of the capacitor should go to the coil L4. The capacitor should be cemented down with polystyrene cement at the same time L 2 is cemented.
6. Lead from pin No. 2 of V 1 to terminal " $A$ " of 1 st I. F. trans. former should be dressed against the chassis.
7. Connect C40 directly between the gang condenser and pin No. 1 of V1.
8. Make all FM leads as short as possible.
9. Dress lead from pin No. 5 of V2 to terminal "A" of 2nd I. F. transformer down against chassis.
10. Dress resistor R1J near chassis base.
11. Dress all A. C. leads away from volume control.
12. The lead from "FM" terminal of antenna terminal board to L 1 tap should be dressed away from $\mathrm{V}_{2}$.
13. The taps on L1 and L2 are critical. L1 tap should be $\mathbf{1}$ turn from the ground end. L2 tap should be 23 turns from the gang condenser $\mathrm{C8}$.
14. Dress C25 and C26 against the chassis with the shortest lead length possible.
15. The position of $\mathrm{L}_{1}$ and L 2 is critical. L1 should be midway between V1 and the 1st I. F. transiormer. The end of L2 should be approximately $3 / 16^{\prime \prime}$ from V1.
16. Coupling between pins 5 and 6 of V1 and the components attached should be kept to a minimum.


Figure 17-Speaker Connections


Figure 18——Dial and Drive
Cord Assembly (8TV321)


Figure 19-Dial and Drive Cord Assembly (8TV323)

56

70
(0) 0 )
-




The dial scale drawing shown is a full size reproduction. It can be used as a reference during alignment.
Figure 20-Radio Dial Scale

Figure 21 -Radio Schematic Diagram (RC616J, RC616K)


Figure 23-R.F Unil Wiring Diagram

## TELEVISION CRITICAL LEAD DRESS

1. The ground bus from pin 2 and the center shield of V117 socket should not be shortened or rerouted.
2. Do not change the dress of the filament leads or the by-pass capacitors in the picture or sound i-f circuits. The filament leads between V117 and V118 should be down against the chassis and away from grid or plate leads.
3. If it is necessary to replace any of the 1500 mmf capacitors in the picture i-f circuits the lead length must be kept as short as possible.
4. The picture i-f coupling capacitors $\mathrm{C} 106, \mathrm{C} 111, \mathrm{C} 115$ and C121 should be up and away from the chassis and should ive clear of the pix i-f transformer adjustments by at least $1 / 4$ inch. If the dress of any of these capacitors is changed, the i-f alignment should be rechecked.
5. Leads to L102 and L. 103 must be as short as possible.
6. Dress peaking coils L105, L106 and L107 up and away from the chassis.
7. Dress C183 across tube pins 5 and 6 with leads not exceeding $3 / 8$ inclr.
8. Dress the blue leads from pin 5 of V119 down against the chassis.
9. Dress C129 and C130 up and away from the chassis.
10. Dress the yellow lead from the picture control away from the chassis. Dress the yellow lead from pin 8 of V106 away from the chassis.
11. Dress the green lead from pin 2 of V106 away from the chassis.
12. Dress R168, R169, R170, R176 and R178 up and away from the chassis. In the event that it is necessary to replace one of these resistors, the resistor leads should not be clipped but should be bent and soldered into place in the same manner as the original unit. Strains or excessive heat should not be applied to the leads
or bodies of the resistors associated with the horizontal oscillator and control circuits. Such conditions may cause excessive changes of resistance with age.
13. Contact between the r-f oscillator frequency adjustnent screws and the oscillator coils or channel switch eyelets nust be avoided.
14. Dress leads from L 110 (width control coil) away from the transformer frame.
15. Dress T110 winding leads as shown in Figure 24


Figure 24-T 110 Lead Dress

Stock No.	DESCRIPTION	Stock No.	DESCRIPTION
74305	Spring-Drive cord spring	73737	Dial-Glans dial scale-Model 8 TV321
74202	Support-Polystyrene coil support complete with mounting bracket	73628	Dial-Glass dial scale-Model 8 TV323
73603	Support-Dial plate mounting support complete with pulter-R.H.-for 8 TV323	73740	Emblem-"RCA-Victor" emblem   Escutcheon-Channel marker eacutćcoon for toasted
73604	Support-Dial plate mounting support complete with pulley-L.H.-for 8 TV323	73642	mahogeny instruments   Escutcheon-Channel marker escutcheon for mahogany or walnut instruments
73685	Support-Dial plate mounting support complete pulleys-R.H.-for BTV321	73779	Glase-Safety glase-Model 8 TV321
73668	Support-Dial plate mounting support complete with pulleys-L.H.-for STV321	7377	Glass-Safety slass-Model 8TV323
73668	Switch-Function witch (S1, S2, S3, S8) (8TV321, 8TV323)	73777 72856	Grommet - Rubber grommet for mounting record changer ( 3 required)
74174	Switch-Function switch (S1, S2, S3, S8) (8TV321B, 8TV323B)	11889	Grommet-Rubber arommet for front apron of chassis (2 required)
73801	Transformer-Power transformer, 115 volts 80 cycle (T1)	30698	Hinge-Cabinet lid hinge
73745	Transformer-First I-F transformer-dual (T2) Transformer-Second I-F transformer-dual (T)	73735	Hinge-Radio compartment drop door hinge Model 8 TV323 (2 required)
73743 33726		36817	Hinge-Record storage compartment door blnge Model 8 TV323 (1 set)
	SPEAKER ASSEMBLIES 92589-5W	73903	Hinge-Television compartment door hinge ( 1 set)Model BTV321 \&TV323 or radio compartment door hinge ( 1 set) Model 8TV321
13867	Cap-Dust cap RL 103B5	71822	Knob-Radio sone control or selector awitch knob-maroon-for mahogany or walnut instrumenta
73934 5039	Cone-Cone complete with voice coill ( 3.2 ohms ) Plug-4 prong male plug for speaker	72824	Knob-Radio tone control or selector awitch knob-brown-for toasted mahogany instruments
73835	Speaker-12" P.M. speaker complete with cone and volce coil less output tranaformer and plus	71821	Knob-Radio tuning or volume control knob-maroon -for mahozany or walnut instruments
$\begin{aligned} & 71148 \\ & 73638 \end{aligned}$	Suspension-Metal cone suspension Transformer-Output transformer (TS)	72800	Knob-Radio tuning or volume control knob-brown -for toasted mahogany instruments
	SPEAKER ASSEMBLIES 92569-1 KX	73224	Knob-Television channel selector knob-burgundyfor mahogany or walnut instruments
70574	Cone-Cone and voice coil assembly ( 2.2 ohms)	73225	Knob-Television channel selector knob - tan - for soasted mahogany instrumenta
5039 37899	Plug - prong male plug for speaker Tranaformer-Output transformer (T5)	73222	Knob-Television fine tuning knob-burgundy - for mahogany or walnut instruments
	NOTE: When replacing complete speaker, order RCA 73635 (92589-5W)	73223	Knob-Television fine tuning knob-tan-for toasted mahogany instruments
73739	MISCELLANEOUS Back-Bottom back cover for Model 8 TV323	73228	Knob-Television horizontal hold control knob-bur-sundy-for mahogany or walnut instruments
73641	Back-Television chasis back cover	73229	Knob-Television horizontal hold control knob-tanfor toasted mahogany instruments
73736	Berel-Dial scale bezel less dial for Model 8TV321	73226	Knob-Television picture control, brightness control
73627	Berel-Dial scale berel less dial for Model 8 TV323 Board-"Antenna" terminal board		or vertical hold control knob-burgundy-for mahosany or walnut instruments
71	Bracket-Pilot lamp bracket	73227	Knob-Television picture control, brightness control
72437	Cable-Shielded pickup cable complete with pin plug		or vertical hold control knob-tan-for toasted mahogany instruments
13103	Cap-Pilot lamp jewel	73230	
71892	Catch-Bullet catch and strike for television a record storsge compartment's doors for Model STV 323 or bullet catch and strike for television \& radio com-	73230	trol knob-burgundy-for mahogany or walnut instruments
		73231	Knob-Television picture control or brightness control knob-tan-for toasted mahogany instruments
71820	Check-Radio compartment door check for Model 8 TV323	11765	Lamp-Dial lamp
72337	Clamp-Bottom clamp for dial scale for Model STV321 (2 required)	73109	Nut-Tee nut for mounting record changer (3 required)
73738	Clamp-Upper clamp for dial scale for Model sTV321 (2 required)	71819	Plate - Radio compartment door check mounting plate for Model 8TV323
73643	Clip-Spring clip for channel marker escutcheon	72817	Plate-Retaining plate complete with wing nut and spring for television front pancl (2 required)-
X1824	Cloth-Grille cloth for Model sTV321 toasted mahogany instruments		pring for television front panel Model sTV323
$\times 1823$ $\times 1849$	Cloth-Grille cloth for Model sTV 321 mahozany or walnut instrumenta	72850 73770	Plug-2 prong male plug for antenna cable   Pull-Door pull for television and radio compartmenta ( 6 required) for Model 8TV323
X1649	Cloth-Grille cloth for Model sTV323 soasted mahogany instruments	73771	( 6 required) for Model BTV323   Pull-Door pull for speaker and record storage compartments for Model sTV323
X1639	Cloth-Grille cloth for Model sTV323 mahogany instruments	73778	partments for Model 8TV323   Pull-Door pull for Model BTV321
X1632	Cloth-Grille cloth for Model BTV323 walnut instruments	73	Screw一 $41 / 4-20 \times 2^{\prime \prime}$ fillister head acrew for mounting record changer (3 required)
73773	Decal-Radio control panel function decal for mahogany or walnut instruments (RC616B, RC616C)	72324	Shade-Lamp shade   Slide-Kinescope centering slide (4 required)
73774	Decal-Radio control panel function decal for toasted mahozany instruments (RC616B, RC616C)	73026	Spring-Cahinet lid support spring   Spring-Radio compartment door check spring for
74177	Decal-Radio control panel function decal for mahogany or walnut instruments (RC616J, RC616K)	72845	Model 8TV 323   Spring-Retaining spring for knobs \# 73222 \& 73223
74178	Decal-Radio control panel function decal for toasted mahogany instruments (RC016J. RC616K)	14270	Spring-Retaining apring for knobs \#73224, 73225, 73226, 73227, 73230 \& 73231
73775	Decal-Television control panel function decal for mahogany or walnut instruments	$30330$	Spring-Retalning spring for knobs $\mathbf{\#} 73228$ \& 73229 Spring-Retaining apring for radin control knobs
71966	Decal-Trade mark decal (Victrola)	72938	Stop-Door stop for Model 8 TV321
73778	Decal-Television control panel function decal for toasted mahogany instruments   Decal-Trade mark decal (RCA.Victor)	$\begin{aligned} & 70158 \\ & 71814 \end{aligned}$	Support-Cabinet lid support-L.H.   Washer - Radio compartment door check rubber washer for Model 8TV323

To abtain reastors for which no stock number is given, order by stating type, value of resistance, tolerance and wattage.
apply to your rca distributor for phices of replacement parts


，	${ }_{\text {\％}}^{\text {\％}}$	
苞	年	


欴	
	$\bar{\square}$
号	






Model 8TC270 Winlnut, Mahogany or Tonsted Mahogany

Model 8T270 W'alnut. Mahogany or Toasted Mahogany

TELEVISION RECEIVERS
MODELS 8T270, 8TC270, 8TC271
Chassis Nos. KCS29, KCS29A
Mfr. No. 274
SERVICE DATA

- 1949 No. T1-

RADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

## GENERAL DESCRIPTION

Models 8T270. 8TC270 and 8TC271 are sixteen inch television receivers. These receivers employ twenty-two tubes plus four rectifiers and a 16AP4 kinescope. The receivers are identical except for cabinets.

Features of the television unit are full twelve channel coverage: FM sound system: improved picture brilliance; picture A.G.C: A-F.C horizontal hold: stabilized vertical hold: two stages of video amplification: noise saturation circuits: improved sync separator and clipper: four me band width for picture channel and reduced hazard high voltage supply.

ElECTRICAL AND MECH ANICAL SPECIFICATIONS

PICTURE SIZE ....... $107 / 0^{\prime \prime} \times 13^{3 / 9 \prime \prime}-3 \% 14 ;{ }^{\prime \prime}$ radius at comer r-f frequency ranges

Channel   Number	Channel   Freq. Mc.	Picture Carrier Freq. Mc.	Sound   Carrier   Freq. Mc.	Receiver R-F Osc. Freq. Mc.
2	. 54-60.	55.25	59.75	81
3.	60-66	61.25	. 65.75	. 87
4	66-72.	. 67.25	71.75	93
5.	. 76.82	77.25	81.75	103
6.	82-88	83.25	87.75	. 109
7	174-180	175.25	179.75	201
8.	. 180.186	181.25	185.75	207
9.	. 186-192	187.25	. 191.75	213
10.	. 192-198	193.25	197.75	219
11.	198-204	199.25	203.75	225
12	204-210	205.25	209.75	231
13.	210-216.	211.25	215.75	237

FINE TUNING RANGE
Plus and minus approximately 250 kc on channel 2 and plus and minus approximately 650 kc on channel 13.

POWER SUPPLY RATING ...... 115 volts, 60 cycles, 285 watts AUDIO POWER OUTPUT RATING
2.4 watts max.

LOUDSPERKER 92580-2.............. 8 inch PM Dynamic			
Voice Coil Lmpedance	3.2 oh	at 40	Ycles
DIMENSIONS (inches)	Length	Height	Depth
Cabinet (outside) 8T270	221/2	$221 / 2$	23
Cabinet (outside) 8TC270	$221 / 2$	48	$24^{1 / 2}$
Cabinet (outside) 8TC271	$241 / 2$	$431 / 4$	25
Chassis Assembly (outside)	193\%	$14^{1 / 4}$	$181 / 4$
Chassis (Overall).	193/8	$14^{1 / 4}$	223/4

RECEIVER ANTENNA INPUT IMPEDANCE
Choice: 300 ohms balanced or 72 ohms unbalanced.

WEIGHT

Chassis with Tubes in Cabinet-8T270.............. 88 lbs .		
8TC270.	8TC271	114 lbs.
Shipping		
8 TC 270.	8TC271	145 lb

RCA TUBE COMPLEMENT

	Tube Used	Function
1)	RCA 6AG5	R-F Amplitier
(2)	RCA 6J6	R-F Oscillator
(3)	RCA 6AG5	Converter
(4)	RCA 6AU6	1st Sound I-F Amplifier
(5)	RCA 6AU6	2nd Sound I-F Amplifier
(6)	RCA 6ALS	Sound Discriminator
(7)	RCA 6AV6	lst Audio Amplifier
(8)	RCA 6K6GT	Audio Output
(9)	RCA 6AG5	lst Picture I-F Amphlier
(10)	RCA 6AG5	2nd Picture I-F Amplifier
(11)	RCA 6AG5	- 3rd Picture I-F Amplifier
(12)	RCA 6AG5	4th Picture I-F Amplifier
(13)	RCA 6AL5	Picture 2nd Detector and Sync Limiter
(14)	RCA 6AU6	lst Video Amplifier
(15)	RCA 6K6GT	2nd Video Amplifier
(16)	RCA 6SN7G	AGC Amplifier and Vertical Sweep Oscillator
(17)	RCA 6SN7GT	AGC Rectifier and lst Sync Separator
(18)	RCA 6SN7GT	Sync Amplifier and 2nd Sync Separator
(19)	RCA 6K6GT	. Vertical Sweep Output
(20)	RCA 6SN7GT	Horizontal Sweep Oscillator and Control
(21)	RCA 6BG6G	Horizontal Sweep Output
(22)	RCA 5V4G	Damper
(23)	RCA 1B3-GT	16...........H. V. Rectifier (2 tubes)
(24)	RCA SU4G	Power Supply Rectifier (2 tubes:
(25)	RC	e



OPERATING CONTROLS (front panel)	
Channel Selector	Dual Control Knobs
Fine Tuning	
Tone Control	
Sound Volume and On-Off Switch	Control Knobs
Picture Horizontal Hold	
Picture Vertical Hold	Dual Control Knobs
Brightness	
Picture $\}$	Dual Control Knobs

NON-OPERATING CONTROLS (not including r-f and lif adjustments)
Horizontal Centering . ................. rear chassis adjustment Vertical Centering. .................. rear chassis adjustment Width. . . . . . . . . . . . . . . . . rear chassis screwdriver adjustments Height................................ rear chassis adjustment Horizontal Linearity....... rear chassis screwdriver adjustment Vertical Linearity .................... rear chassis adjustment Horizontal Drive .......... rear chassis screwdriver adjustment Horizontal Oscillator Frequency ..... bottom chassis adjustment Horizontal Oscillator Wavelorm....... side chassis adjustment Focus . . . . ............................. rear chassis adjustment Ion Trap Magnet..................... top chassis adjustment Deflection Coil.............. top chassis wing nut adjustment Focus Coil ................ top chassis screwdriver adjustment Video Bias top chassis screwdriver adjustment

## HIGH VOLTAGE WARNING

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED. INVOLVES A SHOCR HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE TELEVISION RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

## KINESCOPE HANDLING PRECAUTIONS

dC NOT OPEN THE RINESCOPE SHIPPING CARTON, INSTALL, REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

The kinescope bulb encloses a high vacuum and, due to its large surface area, is subjected to considerable air pressure. For these reasons, kinescopes must be handled with more care than ordinary receiving tubes.

The large end of the kinescope bulb-particuiarly that part at the rim of the viewing surface-must not be struck, scratched or subjected to more than moderate preseure of any time. In instailation, if the tube sticks or fails to slip smoothly into its socket, or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Refer to the receiver Installation Instructions section for detailed instructions on kinescope installation. All RCA kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the receiver. Keep the carton for possible future use.

The following adjustments are necessary when luning the receiver on for the first time

1. Turn the receiver "ON" and advance the SOUND VOL. UME control to approximately mid-position
2. Turn the BRIGHTNESS control counterclockwise until the retrace lines just disappear.
3. Adjust the PICTURE control for suitable picture contrast.
4. Set the STATION SELECTOR to the desired channel
5. Adjust the FINE TUNING control for best sound fidelity and SOUND VOLUME for suit able volume.
6. Turn the BRIGHTNESS con trol fully counterclockwise, then clockwise until a light pattern appears on the screen.
7. Adjust the VERTICAL hold control until the pattern stops vertical movement.
8. Adjust the HORIZONTAL hold control until a picture is ob tained and centered.


Figure 1-Receiver Operating Controls
9. After the receiver has been on for some time, it may be nec essary to readjust the FINE TUN ING control slightly for improved sound fidelity
10. In switching from one sta tion to another, it may be neces. sary to repeat steps numbers 3 and 8.
11. When the set is turned on again after an idle period, it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. It any adjustment is necessary, step number 3 is generally sutficient.
12. If the positions of the con. trols have been changed, it may be necessary to repeat steps num bers 1 through 8

## INSTALLATION INSTRUCTIONS

The Model 8T270, 8TC270 and 8TC27l television receivers are shipped complete in one carton except for the 16 AP 4 kinescope. The kinescope is shipped in a special carton and should not be unpacked until ready for installation.

UNPACKING. - Model 8T270 is shipped in a cardboard car ton. To open the carton tear open the carton top flaps, remove the cardboard side packing material and with a man on two sides of the cabinet, lift it out of the carton.

Models 8 TC 270 and 8 TC 271 are also shipped in cardboard cartons. To unpack, turn the shipping carton on its side and tear open the carton bottom flaps. Fold the flaps up along the side of the carton and turn the carton back up. Lift the carton up and off the cabinet.

Remove the cabinet back grille. Remove all shipping material. Remove the envelope containing the control knobs and ion trap magnet. Make sure all tubes are in place and are firmly seated in their sockets.

Remove the cabinet front panel by loosening two wingnuts inside the cabinet and turning the two locking plates to the


Figure 2-Cabinet, Front View
vertical position as shown in Figure 2. In Models 8TC270 and 8TCZ71, the panel may then be removed by hingeing the panel at the bottom and pulling out on the top edge. In Model 8T270 it will be necessary to remove two screws under the bottom of the cabinet.

REMOVE THE TWO SELF-TAPPING SCREWS FROM THE KINESCOPE CUSHION SLIDE AS SHOWN IN FIGURE 3.

Looser the two kinescope cushion adjustment wing screws and slide the cushion toward the rear of the chassis. Loosen the deflection yoke adjustment, slide the yoke toward the reat of the chassis and tighten.


Figure 3-Yoke und Focus Coil Adjustments
From the front of the cabinet, look through the deflection yoks and check the alignment of the focus coil with the yoke. If the focus coil is not in line, loosen the two focus coil mounting screws and move the coil until alignment is obtained. Tighten the mounting screws with the coil in this position.

Loosen the two lower kinescope face centering slides, and set them at approximately mid-position. See Figure 2 for location of the slides and their adjustment screws. Loosen the two upper slides (from inside the cabinet), slip them up as far as possible and tighten.
Check the centering slides. There should be a small wire clip on the inner surface of each. The clip in the lower left corner should be connected to the high voltage lead.

KINESCOPE HANDLING PRECAUTION. - Do not open the kinescope shipping carton, install, remove, or handle the kine scope in any manner, unless shatter-proof goggles and heavy gloves are worn. Persons not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling. The shipping carton should be kept for use in case of future moves.

Handle this tube by the metal rim at the edge of the screen. Do not cover the glass bell of the tube with fingermarks as it will produce leakage paths which may interfere with reception. If this portion of the tube has inadvertently been handled, wipe it clean with a soft cloth moistened with "dry" carbon tetrachloride.

KINESCOPE INSTALLATION. - Slip the Vinylite boot ovę the metal cone of the kinescope, turn the tube so that the key on the base of the tube will be down and insert the neck of the kinescope through the deflection and locus coils as shown in Figure 4. If the tube sticks, or fails to slip into place smoothly, investigate and remove the cause of the trouble. Do not force the tube.


Figure 4-Kinescope Insertion
Slip the ion trap magnet assembly over the neck of the kine. scope with the large magnet towards the base of the tube.

Connect the kinescope socket to the tube base.
Adjust the four centering slides until the face of the kine scope is in the center of the cabinet opening. Tighten the four slides securely.

Wipe the kinescope screen surface and front panel safety glass clean of all dust and finger marks with a soft cloth moistened with the Drackett Co.s "Windex" or similar cleaning agent.

Install the cabinet front panel by reversal of the procedure indicated in Figure 2.

For Models 8TC270 and 8TC271 to install the front panel, place the lip on the bottom of the panel in the recess below the kinescope opening and push the top in. Fasten the two bars in back of the panel and tighten the wingnuts.

Slip the kinescope as far forward as possible. Slide the kinescope cushion firmly up against the flare of the tube and tighten the adjustment wing screws. Slide the deflection yoke as tar forward as possible. If this is not done, difficulty will be encountered in adjusting the ion trap magnet and focus coil because of shadows on the corner of the raster.

The antenna and power connections should now be made. Install the front panel control knobs.

WARNING. - The high voltage supply in this receiver de livers 12,000 volts! If it is necessary to remove the kinescope after the receiver has been operating, short the kinescope cone to the chassis before attempting removal of or adjustments to the kinescope. A.C. interlocks are provided at the back of the set so that when the back is removed - so is the power.

Turn the power switch to the "on" position, the brightness control fully clockwise, and picture control counterclockwise.

ION TRAP MAGNET ADJUSTMENT. - Looking at the kine. scope gun structure, it will be observed that the second cylinder from the base inside the glass neck is provided with two small metal flags, as shown in Figure 5.


Figure 5-Ion Trap Flags
The ion trap rear magnet poles should be approximately over the ion trap flags. Starting from this position adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust the focus control (R201 on the chassis rear apron) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches on this adjustment should be made with the brightness control at the maximum position with which good line focus can be maintained.


Figure 6-Rear Chassis Adjustments
DEFLECTION YOKE ADJUSTMENT. - If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.
PICTURE ADJUSTMENTS. - It will now be necessary to obtain a test pattern picture in order to make further adjustments. See steps 2 through 8 of the receiver operating instructions on page 3.

If the Horizontal Oscillator is operating properly, it should be possible to sync the picture at this point.

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT. Turn the horizontal hold control to the extreme counterclockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back, Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be gradually reduced and when only 3 bars sloping downward to the
left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull in should occur when the control is approximately 90 degrees from the extreme counterclockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should be out of sync and should show 1 vertical or diagonal black bal in the raster.

If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Centering Adjustment."

ALIGNMENT OF HORIZONTAL OSCILLATOR. - If in the above check the receiver failed to hold sync with the hold control at the extreme counterclockwise position or tailed to hold sync over 90 degrees of clockwise rotation of the contro. from the pull in point, it will be necessary to make the follow. ing adjustments.

Horizontal Frequency Adjustment. - Iurn the horizontal hold control to the extreme clcckwise position. Tune in a television station and adjust the Tl09 horizontal frequency adjustment (under the chassis) until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster.

Horizontal Lock in Range Adjustment. - Set the horizontal hold control to the full counterclockwise position. Momentarily remove the signal by switching off channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just betore the picture pulls into syne.

If more than 3 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer Cl53A slightly clockwise. If less than 3 bars are present, adjust Cl53A slightly counterclockwise. Turn the picture control counterclockwise, momentarily remove the signal and recheck the number of bars present at the pull in point. Repeat this procedure until 3 bars are present.

Repeat the adjustments under "Horizontal Frequency Adjustment" and "Horizontal Locking Range Adjustment" until the conditions specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.

If it is impossible to sync the picture at this point and the AGC system is operating properly it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure on page 11. For field purposes paragraph " $A$ " under Oscillator Waveform Adjustment may be omitted.

CENTERING ADJUSTMENTS. - Centering is obtained by adjustment of the centering controls and by mechanically orienting the focus coil with three adjusiment screws shown in Figure 3. The focus coil should be concentric around the neck of the kinescope to prevent curvalure of the raster.

Adjust the focus coil until it is at right angles to the neck of the kinescope. Center the picture with the electrical centering controls. If a shadow appears on a corner of the picture, adjust the focus coil centering screws to eliminate the shadow and re-center the picture with the electrical centering controls.

FOCUS COIL ADJUSTMENTS. - If, after making the centering adjustments in the above paragraph, a corner of the picture is shadowed, it will be necessary to loosen the focus coil mounting screws (shown in Figure 3) and change the position of the coil to eliminate the shadow. Re-center the picture by adjustment of the electrical centering controls and the focus coil centering adjustments.

Recheck the position of the ion trap magnet to insure that maximum brilliance is obtained.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS. - Adjust the height control (R155 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R162 on rear apron) until the test pattern is symmetrical from top to
bottom. Adjustment of either control will require a readjustment of the other. Adjust vertical centering to align the picture with the mask.

WIDTH, DRIVE AND HORIZONTAL LINEARITY ADJUSTMENTS. - Adjust the horizontal drive control Cl53B to give a picture of maximum width within the limits of good linearity. Adjust the horizontal linearity control Lll3 to provide best linearity.

A width control coil and a width selector switch are provided. With the switch in position 1 (fully counterclockwise). adjust the width coil until the picture fills the mask. On low line voltages it may not be possible to get sufficient width by adjustment of the width coil. In this case turn the width selector switch clockwise to position 2. In this position the width coil is disconnected, and adjustment of the width coil will have no effect. For still greater width, turn the width selector switch fully clockwise to position 3 . In this position, the 6BG6G screen voltage is increased as well as disconnecting the width control coil.

Adjustments of the horizontal drive control affect horizontal oscillator hold and locking range. If the drive control was adjusted, recheck the oscillator alignment.

FOCUS. - Adjust the focus control (R201 on chassis rear apron) for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

CHECK TO SEE THAT THE CUSHION AND YOKE THUMB SCREWS AND THE FOCUS COIL MOUNTING SCREWS ARE TIGHT.

VIDEO BIAS CONTROL. - Normally the video bias control (R206) should be in the fully clockwise position. To check to see if this is the correct position, turn the picture control clockwise and adjust the brightness control until the retrace lines just disappear. If the whites are compressed as indicated by a "washed out" appearance in light areas, turn the video bias control counterclockwise until the picture appears normal.

Replace the cabinet back and make sure that the screws holding it are up tight, otherwise it may rattle or buzz when the receiver is operated at high volume.

CHECK OF R-F OSCILLATOR ADJUSTMENTS. - Tune in all available stations to see if the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure on page 10 . The adjustments for channels 2 through 5 and 7 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 7. Adjustment for channel 13 is on top of the chassis and channel 6 adjustment is in the kinescope well. See Figures 11 and 12 for their location.


Figure 7-K.F Oscillator Adjustments
CAUTION. - The ion trap magnet employed for 16AP4 kinescopes is not the same as that used on 10BP4 tubes. Care should be taken to insure that the proper magnet supplied with the instrument is used. The type magnet shown in Figure 3 measures three fourths of an inch between magnet center lines and carries the number 986432-1 stamped on it.



Figure 9-Chassis Bottom View

## 8T270, 8TC270, 8TC271

## VOLTAGE CHART

The following measurements represent two sets of conditions. In the first condition a 2200 microvolt test pattern signal was fed into the receiver. the picture synced and the AGC threshold control properly adjusted. The second condition was obtained by removing the antenna leads and short circuiting the receiver antenna terminals. Voltages shown are as read with "Jr. VoltOhymst" between the indicated terminal and chassis ground and with the receiver operating on 117 volts 60 cycles a-c.

Tube No.	Tube   Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		I Plate (ma.)	I   Screen (ma.)	Notes on Measurements
				Pin No.	Volts	Pin No.	Volts	Pin   No.	Volts	Pin No.	Volts			
V1	6AG5	$\mathbf{R} \cdot \mathbf{F}$   Amplifier	$\underset{\text { Signal }}{2200 \mathrm{Mu} .}$	5	140	6	142	287	0	1	-49	7	3	
			No Signal	5	67	6	111	287	0	1	-0.3	140	50	
V2	6AG5	Converter	$2200 \mathrm{Mu} . \mathrm{V} .$ Signal	5	137	6	137	287	0	1	*-54	-	-	*Depending upon channel
			No Signal	5	108	6	108	287	0	1	$\begin{gathered} -2.0 \\ \text { to }-70 \end{gathered}$	$\begin{aligned} & \text { +6.0 } \\ & \text { to } 10 \end{aligned}$	$\begin{aligned} & 1.5 \\ & \text { to } 3.0 \end{aligned}$	
V3	6J6	R-F   Oscillator	2200 Mu . V. Signal	182	90.5	-	-	7	19	5 \& 6	- -7.0	-	-	*Depending upon channel
			No Signal	1 \& 2	$\begin{gathered} \text { } 68 \\ \text { to } 81 \end{gathered}$	-	-	7	16	5 \& 6	$\begin{gathered} \text { to }-4.5 \\ \text { to }-66 \end{gathered}$	$\begin{gathered} \text { } 1.8 \\ \text { to } 2.1 \end{gathered}$	--	
V101	6AG5	1st Pix. I-F Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	136	6	136	287	$<0.1$	1	-4.2	0.5	01	
			No Signal	5	110	1	103	287	017	1	-15	38	0.6	
V102	6AG5	2d Pix. I-F   Amplifier	$2200 \mathrm{Mu} . \mathrm{V}$. Signal	5	122	6	122	288 7	0.9	1	0	10.3	29	
			No Signal	5	96	6	100	287	06	1	0	68	20	
V103	6AG5	3d Pix. 1-F Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	130	6	137	$2 \& 7$	$<0.1$	1	-4.2	10	3	
			No Signal	5	95	6	106	28.7	0.17	1	-1.5	36	8	
V104	6AG5	4th Pix. I-F Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	194	6	137	287	16	1	0	83	27	
			No Signal	5	200	6	113	287	12	1	0	71	14	
$\underset{\text { A }}{\substack{\text { V105 }}}$	6ALS	Picture 2d Det.	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	7	-117	-	-	1	-115	-	-	0.2	-	
			No Signal	7	-130	-	-	1	-125	--	-	0.3	-	
$\begin{gathered} \text { V105 } \\ \mathbf{B} \end{gathered}$	6ALS	Sync Limiter	$\begin{aligned} & 2200 \mathrm{Mu} . \mathrm{V} . \\ & \text { Signal } \end{aligned}$	2	-131	-	-	5	-46	-	-	$<01$	-	
			No Signal	2	-100	-	-	5	-52	-	-	$<0.1$	-	
V106	6AU6	1st Video Amplifier	$\begin{gathered} 2200 \text { Mu. V. } \\ \substack{\text { Signal }} \end{gathered}$	5	$-68$	6	27	7	$-114.5$	1	-117	39	18	
			No Signal	5	-72	6	25	7	- 124	1	-130	3.7	16	
V107	$\begin{aligned} & \text { 6K6 } \\ & \mathbf{G T} \end{aligned}$	2d Video Amplifier	$\begin{gathered} 2200 \text { Mu. V. } \\ \text { Signal } \\ \hline \end{gathered}$	3	*68	4	140	8	-47	5	-68	10.0	25	Maximum contrast
			No Signal	3	* 34	4	120	8	-52	5	-72	11.0	2.3	
$\begin{gathered} \text { V108 } \\ \text { A } \end{gathered}$	$\begin{array}{\|l\|} \hline \text { 6SN 7 } \\ \hline \text { G' } \\ \hline \end{array}$	AGC Amplifier	2200 Mu . V. Signal	5	-24	-	-	6	-50	4	-51	0.4	-	
			No Signal	5	-7	-	-	6	-56	4	-60	$<0.1$	-	
$\begin{gathered} \text { V108 } \\ \hline \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { 6SN } 7 \\ & \text { GT } \end{aligned}\right.$	Vertical Oscillator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	2	54	-	-	3	-110	1	-157	0.32	-	
			No Signal	2	39	-	-	3	-125	1	-171	032	-	
V109	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	AGC Rectifier	$2200 \mathrm{Mu} . \mathrm{V}$. Signal	5	27	-	-	6	-51	4	-68	0. 25	-	
			No Signal	5	19	-	-	6	- 59	4	-72	0.25	-	
V109	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	1st Sync Separator	2200 Mu . V. Signal	2	23	-	-	3	-52	1	-68	0.13	-	
			No Signal	2	18	-	-	3	-63	1	$-70$	0. 18	-	


Tube No.	Tube Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		1 Plate   (ma.)		Notes on Measurements
				Pin No.	Volts	Pin   No.	Volts	Pin No.	Volts	Pin   No.	Volts			
V110	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Sync Amplifier	2200 Mu . V. Signal	2	81	-	-	3	-46	1	-48	10.8	-	
			No Signal	2	71	-	-	3	- 50	1	-54	10.8	-	
V110	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Sync Separator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \end{gathered}$	5	210	-	-	6	-44	4	-131	0.34	-	
			No Signal	5	200	-	-	6	-51	4	-100	0.15	-	
V111	$\begin{aligned} & \text { 6K6- } \\ & \text { GT } \end{aligned}$	Vertical Output	2200 Mu . V. Signal	3	197	4	*197	8	-76	5	-96	77	13	*Screen
			No Signal	3	185	4	${ }^{*} 185$	8	-93	5	-110	7.6	1.3	connected to plate
V112	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Horizontal Osc. Control	$2200 \mathrm{Mu} . \mathrm{V} \text {. }$ Signa!	2	25	-	-	3	-120	1	-110	0. 24	-	Horizontal hold control
			No Signal	2	-8	-	-	3	-146	1	-128	0.1	-	completely clockwise
			No Signal	2	+60	-	-	3	$-130$	1	-114	0.13	-	Hold contral counterclocirwise
V112	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Horizontal Oscillator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	75	-	-	6	-115	4	-190	2.3	-	
			No Signal	5	60	-	-	6	-125	4	-204	1.5	-	
V113	6BG6G	Horizontal Output	$2200 \mathrm{Mu} . \mathrm{V} \text {. }$ Signal	Cap	*	8	180	3	$-100$	5	-120	90.0	10.0	5200 vo
			No Signal	Cap	$\begin{aligned} & \text { Do Not } \\ & \text { Meas. } \end{aligned}$	8	160	3	-112	5	-126	92.6	10.4	pulse present
V114	$\begin{aligned} & \text { 1B3GT } \\ & \hline 8016 \end{aligned}$	H. V. Rectifier	Brightness Min.	Cap	*	-	-	287	6400	-	-	-	-	${ }^{*} 6000$ volt
			Brightness Max.	Cap	Do Not Meas.	-	-	2\& 7	6100	-	-	-	-	pulse present
V115	$\begin{aligned} & 1 \mathrm{B3GT} \\ & \hline 8016 \end{aligned}$	H. V. Rectifier	Brightness Min.	Cap	*	-	-	287	11700	-	-	-	-	*6000 volt
			Brightness Max.	Cap	Do Not Meas.	-	-	287	11600	-	-	-	-	pulse present
V116	5V4G	Damper	$2200 \mathrm{Mu} . \mathrm{V}$. Signal	486	-	-	-	288	350	-	-	93.0	-	1200 vo
			No Signal	486	Do Not Meas.	-	-	$2 \& 8$	340	-	-	92.0	-	pulse present
$\begin{aligned} & \text { V117 } \\ & \text { V118 } \end{aligned}$	5U4G	Rectifier	2200 Mu. V. Signal	486	* 365	-	-	2\& 8	277	-	-	\$125	-	$\dagger$ Per tube   *A.C measured
			No Signal	486	* 365	-	-	2 \& 8	264	-	-	†130	-	from plate to trans. center tap
V119	6AU6	1st Sound I-F Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	131	6	131	7	0.65	1	0	6.0		
			No Signal	5	106	6	106	7	0.55	1	0	4.9		
V120	6AU6	2d Sound I-F Amplifier	$2200 \mathrm{Mu} . \mathrm{V} \text {. }$ Signal	5	136	6	80	7	0	1	-0.6	3.5		
			No Signal	5	111	6	62	7	0	1	-0.7	3.0		
V121	6AL5	Sound Discrim.	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	2	-1.4	-	-	5	0	-	-	-	-	
			No Signal	2	-0.7	-	-	5	0	-	-	-	-	
V122	6AV6	1st Audio Amplifier	2200 Mu. V. Signal	7	88	-	-	2	0	1	-0.7	0.5	-	
			No Signal	7	91	-	-	2	0	1	-0.7	0.5	-	
V123	$\begin{aligned} & \text { 6K6- } \\ & \text { GT } \end{aligned}$	Audio Output	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	3	152	4	165	8	-94	5	-115	24.0	34	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	3	139	4	152	8	-107	5	-125	24.0	3.4	
$\checkmark 124$	16AP4	Kinescope	2200 Mu. V. Signal	Cap	11700	10	320	11	26	2	-29	0.08	-	Average Brightness
			No Signal	Cap	11600	10	305	11	11	2	-47	0.08	-	Average Brightness

## ALIGNMENT PROCEDURE

TEST EQUIPMENT. - To properly service the television chassis of this receiver, it is recommended that the following test equipment be available:

R-F Sweep Generator meeting the following requirements:
(a) Frequency Ranges

20 to 30 mc .1 mc . and 10 mc . sweep width
50 to 90 mc ., 10 mc . sweep width
170 to 225 mc ., 10 mc . sweep width
(b) Output adjustable with at least . 1 volt maximum
(c) Output constant on all ranges.
(d) "Flat" output on all attenuator positions

Cathode-Ray Oscilloscope, preferably one with a wide band vertical deflection, an input calibrating source, and a low capacity probe

Signal Generator to provide the following frequencies.
(a) I-F frequencies
19.75 mc . adjacent channel picture trap
21.25 mc . sound $\mathrm{i}-\mathrm{f}$ and sound traps
22.05 and 24.75 mc . converter and first pix i-f transformer
25.9 mc , second picture i-f transformer
24.6 mc . fourth picture i-f transformer
22.0 me. third picture i-f transformer
22.5 me. fifth picture i-1 transformer
25.75 mc . picture carrier
27.25 me. adjacent channel sound trap
(b) R-F frequencies

Channel	Piclure	Sound
Number	Freq. Mc.	Freq. Mc.
2	55.25	59.75
3	61.25	65.75
4	67.25	71.75
5	77.25	81.75
6	83.25	87.75
7	175.25	179.75
8	181.25	185.75
9	187.25	191.75
10	193.25	- 197.75
11	199.25	. 203.75
12	205.25	209.75
13	211.25	215.75

(c) Output on these ranges should be adjustable and at least .1 volt maximum.

Heterodyne Frequency Meter with crystal calibrator if the signal generator is not crystal controlled.

Electronic Voltmeter of Junior "VoltOhmyst" type and a high voltage multiplier probe for use with this meter to permit meas. urements up to 10 kv .

Service Precautions. - If necessary to remove the chassis from cabinet, the kinescope must first be removed. See Figures 2 and 4 . If possible, the chassis should then be serviced without the kinescope. However, it it is necessary to view the raster during servicing. the kinescope should be inserted only after the chassis is turned on end. The kinescope should never be allowed to support its weight by resting in the deflecting yoke. A bracket should be used to support the tube at its viewing screen.

By turning the chassis on end with the power transformer down, all adjustments will be made conveniently available. Since this is the only sate position in which the chassis will rest and still leave all adjustments accessible, the trimmer location drawings are oriented similarly for ease of use.

CAUTION: Do not short the kinescope second anode lead
Adjustments Required. - Normally, only the r-f oscillator line will require the attention of the service technician. All other circuits are either broad or very stable and hence wilt seldom require re-adjustment.

The oscillator line is relatively non critical. When oscillator tubes are changed, in all protability it will be necessary to adjust only C 6 in order to bring the entire line into adjustment.

ORDER OF ALIGNMENT. - When a complete receiver alignment is necessary, it can be most conveniently performed in the following order
(1) Sound discriminator
(5) R-F and converter lines
(2) Sound i-f transformers
(6) R-F oscillator line
(3) Picture i-f traps
(7) 4.5 mc . video trap
(4) Picture i-f transformers
(8) Sensitivity check

SOUND DISCRIMINATOR ALIGNMENT. - Set the signal generator for approximately 11 volt output at 21.25 mc . and con. nect it to the second sound i-f grid.

## Detune T113 secondary (bottom).

Set the "VoltOhmyst" on the 10 volt scale.
Connect the meter in series with a one megohm resistor to the junction of diode resistors R215 and R216.

Adjust the primary of Tll3 (top) for maximum output on the meter.

Connect the "VoltOhmyst" to the junction of C183 and R215. Adjust T 1.13 secondary (bottom). It will be found that it is possible to produce a positive or negative voltage on the meter dependent upon this adjustment. Obviously to pass from a positive to a negative voltage, the voltage must go through zero. T113 (bottom) should be adjusted so that the meter indicates zero output as the voltage swings from positive to negative. This point will be called discriminator zero output.

Connect the sweep oscillator to the grid of the second sound i.f amplifier.

Adjust the sweep band width to approximately 1 mc . with the center frequency at approximately 21.25 mc . and with an output of approximately il volt.

Connect the oscilloscope to the junction of C183 and R215. The pattern obtained should be similar to that shown in Figure 15. If it is not, adjust the T113 (top) until the wave form is symmetrical.

The peak to peak band width of the discriminator should be approximately 350 kc , and it should be linear from 21.175 mc . 10 21.325 mc .

SOUND I-F ALIGNMENT. - Connect the sweep oscillator to the first sound i.f amplifier grid.

Connect the oscilloscope to the second sound i-f grid return (terminal " $A$ " of T112) in series with a 33,000 ohm isolating resistor.

Insert a 21.25 mc marker signal from the signal generator into the first sound i-f grid.

Adjust $\mathrm{Tll2}$ (top and bottom) for maximum gain and sym. metry about the 21.25 mc . marker. The pattern obtained should be similar to that shown in Figure 16.

The output level from the sweep should be set to produce approximately 3 volt peak-to-peak at the second sound i-f grid return when the final touches on the above adjustment are made. It is necessary that the sweep output voltage should not exceed the specified values otherwise the response curve will be broadened, permitting slight misadjustment to pass un noticed and possibly causing distortion on weak signals.

The band width at 70\% response from the first sound i-f grid to the second i-f grid should be approximately 200 kc .

PICTURE I-F TRAP ADJUSTMENT. - Connect the "VoltOhmyst" to the junction of Rl35 and Rl36.

Remove the 6SN7GT AGC Amplifier tube V108. Connect a 250,000 ohm potentiometer between pins 5 and 6 of the V108 socket. Adjust the potentiometer until the "VoltOhmyst" reads approximately -4.5 volts.
Set the channel switch to the blank position between channel numbers 2 and 13.

Connect the "VoltOhmyst" across the picture detector load resistor R120. Under this condition, both leads of the meter are at approximately -125 volts. In making this measurement, care should be taken not to touch the case of the meter or to permit the meter case to become grounded.
Connect the output of the signal generator to the grid of the converter tube V2. To do this, remove the tube from the socket and fashion a clip by twisting one end of a small piece of wire around pin number 1. Replace the tube in the socket leaving the end of the wire protruding from under the tube. Connect the signal generator to this wire through a 1.500 mmt capacitor keeping the leads as short as possible.

Set the generator to each of the following frequencies and with a thin fiber screwdriver tune the specified adjustment for minimum indication on the "VoltOhmyst." In each instance the generator should be checked against a crystal calibrator to insure that the generator is exactly on frequency.
(1) 21.25 mc .-T1O3 (top)
(2) 21.25 mc . Tl 105 (top)
(3) 22.25 mc .-T102 (top)
(4) $27.25 \mathrm{mc}-\mathrm{T} 104$ (top)
(5) 19.75 mc - -Tl 06 (top)
(6) 19.75 mc .-T 101 (top)

In the above transformers using threaded cores, it is possible to run the cores completely through the coils and secure two peaks or nulls. The correct position is with the cores in the outside ends of the coils. If the cores are not in the correct position, the coupling will be incorrect and it will be impossible to secure the correct response.

PICTURE I-F TRANSFORMER ADJUSTMENTS. - Set the signal generator to each of the following frequencies and peak the specified adjustment for maximum indication on the "VoltOhmyst." During alignment, reduce the input signal if neces. sary to prevent overloading.
$22.5 \mathrm{mc} .-\mathrm{T} 106$ (bottom)
$24.6 \mathrm{mc} .-\mathrm{T} 104$ (bottom)
$22.0 \mathrm{mc}-\mathrm{T} 103$ (bottom)
$25.9 \mathrm{mc} .-\mathrm{T} 102$ (bottom)

Il and T101 are coupled by a link and in combination constitute an overcoupled transformer. The characteristics of such a transformer are such that it is impossible to adjust it to a single frequency.

To sweep align T1 and T101, connect a 330 ohm composition resistor across the primary coils of T102. T103. T104 and T106.

Connect the "VoltOhmyst" to the junction of R135 and R136. Adjust the 250,000 ohm potentiometer for -2.0 volts on the meter.

Connect the oscilloscope to the plate of the first video amplifier pin 5 of V106.

Connect a sweep generator to the converter grid through a $1,500 \mathrm{mmf}$ capacitor. Set the generator to sweep from 20.0 mc . to 30.0 mc . and adjust the output to provide a 4 volt peak-topeak signal on the scope.

Connect the signal generator loosely to the converter grid and adjust to provide markers at 22.05 mc . and 24.75 mc .

Adjust Tl (top) and T101 (bottom) to obtain the response shown in Figure 17. The Tl core must penetrate to the terminal board end of the coil in order to obtain the correct response.

Remove the 330 chm resistors from across Tl02, Tl03. Tl04 and Tl06.

Adjust the 250,000 ohm potentiometer for a 15 volt peak-topeak signal at the plate of the first video amplifier. The bias as measured by the "VoltOhmyst" should be -4.5 volts or less.

Observe and analyze the response curve obtained. The response will not be ideal and the i-f adjustments must be retouched in order to obtain the desired curve. See Figure 18.

On final adjustment the picture carrier marker must be at approximately $45 \%$ response. The curve must be-approximately flat topped, with the 22.1 mc . marker at approximately $95 \%$ response, the 25.0 mc . marker below $90 \%$ and the 26.5 mc. marker between $5 \%$ and $10 \%$ on the response curve.

The most important consideration in making the i-f adjustments is to get the picture carrier at the $45 \%$ response point. If the picture carrier operates too low on the response curve, loss of low trequency video response, of picture brilliance, of blanking, and of sync may occur. If the picture carrier operates too high on the response curve, the picture becomes smeared. In making these adjustments, care should be taken that no two transformers are tuned to the same frequency as i-f oscillation may result.

Remove the converter tube and take of the clip to pin number 1 . Roplace the tube in the socket.

Picture I-F Oscillation. - It the receiver will operate without oscillating with the test equipment disconnected but breaks into oscillation or becomes unstable with the equipment connected, it may become necessary to establish a ground plane. Cover the test bench with a sheet of copper and set the chassis on the sheet. Set all the test equipment except the "VoltOhmyst" on the sheet and bond or bypass them to it. A Junior "VoltOhmyst" should not be bonded to the sheet since the negative test probe is not always connected to ground during alignment.

If the receiver is badly misaligned and two or more of the i-f transformers are tuned to the same frequency, the receiver may fall into if oscillation. I-F oscillation shows up as a voltage across the picture detector load resistor that is unaffected by r-f signal input. If such a condition is encountered, it is sometimes possible to stop oscillation by adjusting the transformers approximately to frequency by setting the adjustment cores of T101, T102, T103. T104, T105 and T106 to be approximately equal to those of another receiver known to be in proper alignment. It this does not have the desired effect, it may now be possible to stop oscillation by increasing the grid bias. If so, it should then be possible to align the transformers by the usual method. Once aligned in this manner, the i-t should be stable with reduced bias.

If the oscillation cannot be stopped in the above manner, shunt the grids of the first three pix i-f amplifiers to ground with $1,000 \mathrm{mmf}$. capacitors. Connect the signal generator to the fourth pix i-f grid and align T106 to frequency. Progressively remove the shunt from each grid and align the plate coil of that stage to frequency.

If this does not stop the oscillation, the difficulty is not due to i-f misalignment as the i-f section is stable when properly aligned. Check all i-i by-pass condensers, transformer shunting resistors, tubes, socket voltages, etc.

ANTENNA. R-F AND CONVERTER LINE ADJUSTMENT. In order to align the r-f tuner, it will first be necessary to set the channel 13 oscillator to frequency. The shield over the bottom of the r-f unit must be in place when making any adjustments.

The channel 13 oscillator may be aligned by adjusting it to beat with a crystal calibrated heterodyne frequency meter, or by feeding a signal into the receiver at the r-f sound carrier frequency and adjusting the oscillator for zero output from the sound discriminator. In this latter case the sound discriminator must first have been aligned to exact frequency. Either method
of adjustment will produce the same results. The method used will depend upon the type of test equipment available. Regard less of which method of oscillator alignment is used, the trequency standard must be crystal controlled or calibrated.

If the receiver oscillator is to be adjusted by the heterodyne frequency meter method, couple the meter probe loosely to the receiver oscillator.

If the receiver oscillator is adjusted by feeding in the r.f sound carrier signal. connect the signal generator to the re ceiver antenna terminals. Connect the "VoltOhmyst" to the sound discriminator output (junction of C 183 and R215)

Set the receiver channel switch to 13 .
Adjust the frequency standard to the correct trequency (237 mc . for heterodyne frequency meter or 215.75 mc . for the signal generator).

Set the fine tuning, control to the middle of its range while making the adjustment.

Adjust C6 for an audible beat on the heterodyne frequency meter ar zero voltage from sound discriminator.

Now that the channel 13 oscillator is set to frequency we may procede with the r-f alignment

Connect the oscilloscope to the test connection at R13 in the r-f tuning unit.

Connect the "VoltOhmyst" to the junction of R133 and R134. Adjust the bias potentiometer for -3.5 volts on the meter.

Remove the first picture i-f amplifier tube V101.
Connect the r-f sweep oscillator to the receiver antenna terminals. The method of connection depends upon the output impedance of the sweep. The PlO2 connection for 300 ohm balanced or 72 ohm single-ended input are shown in the circuit diagram in Figure 80. If the sweep oscillator has a 50 -ohm single-ended output, 300 ohm balanced output can be obtained by connecting as shown in Figure 10.


## Figure In-Unbalanced Sweep Cable Termination

Connect the signal generator loosely to the receiver antenna terminals.

Since channel 7 has the narrowest response of any of the high frequency channels, it should be adjusted first.

Set the receiver channel switch to channel 7.
Set the sweep oscillator to cover channel 7.
Insert markers of channel 7 picture carrier and sound carrier 175.25 mc . and 179.75 mc .

Adjust C10 and C14 until the curve falls symmetrically with the sound and picture carrier markers. Adjust Cll to give the proper bandwidth. Roughly peak L6 in conjunction with slight adjustments of Cl 0 and Cl 4 for a flat-topped. response curve with the sound and picture carriers at $90 \%$ to $95 \%$ response points on this curve. See Figure 19, channel 7.

Switch to channel 12 and adjust $L 6$ for maximum response and minimum top slope of the curve.

Check the response of channels 7 through '3 by switching the receiver channel switch, sweep oscillator and marker oscillator to each of these channels and observe the response obtained. See Figure 19 for typical response curves. It should be found that all these channels have the proper shaped response with the markers above $80 \%$ response. If the markers do not fall within this requirement on one or more high frequency
channels, since there are no individual channel adjustments, it will be necessary to readjust L6, C10, C11 and C14, and possibly compromise some channels slightly in order to get the markers up on other channels. Normally, however, no dificulty of this type should be experienced since the higher fre. quency channels become comparatively broad and the markers easily fall within the required range
Channel 6 is next aligned in the same manner.
Set the receiver to channel 6 .
Set the sweep oscillator to cover channel 6.
Set the marker oscillator to channel 6 picture and sound carrier trequencies.

Adjust L9, L13, L66 and C12 for an approximately flat. topped response curve located symmetrically between the markers. L9, L13 and L66 are the center frequency adjustments. Cl2 is the band width adjustment.

Check channels 5 down through channel 2 by switching the receiver, sweep oscillator and marker oscillator to each chan nel and observing the response obtained. In all cases, the markers should be above the $80 \%$ response point. If this is no the case, L9, L13, L66 and Cl2 should be retouched. On final adjustment, all channels must be within the $80 \%$ spectication.

Disconnect the bias potentiometer and replace V108. Replace V101.

Following an r-f alignment, the oscillator alignment must be checked.

R-F OSCILLATOR LINE ADJUSTMENT. - The r-f oscillator line may be aligned by adjusting it to beat with a crystal calibrated heterodyne frequency meter, or by feeding a signal into the receiver at the rif sound carrier frequency and adjusting the oscillator for zero output from the sound discriminator In this latter case the sound discriminator must first have been aligned to exact frequency. Either method of adjustment will produce the same results. The method used will depend upon the type of test equipment available.
Regardless of which method of oscillator alignment is used the frequency standard must be crystal controlled or calibrated. If the receiver oscillator is to be adjusted by the heterodyne frequency meter method, the calibration frequency listed under R-F Osc. Freq. must be available.
If the receiver oscillator is adjusted by feeding in the r-f sound carrier frequency, the frequencies listed under Sound Carrier Freq. must be available.

Channel   Number	Receiver R-F Ose. Freq. Mc.	R-F Sound Carrier Freq. Mc.	Channel Oscillator Adjustment
2	81	59.75	L24
3	87	65.75	. L23
4	93	71.75	. L22
5	103	81.75	. 21
6	. 109	87.75	. L31
7	. 201	179.75	L19
8	. 207	185.75	. 118
9	. 213	191.75	. 117
10	. 219	. 197.75	. L16
11	. 225	203.75	. L15
12	. 231	. 209.75	L14
13	237	215.75	C6

If the heterodyne frequency meter method is used, couple the meter probe loosely to the receiver oscillator.
If the r-f sound carrier method is used, connect the "Volt Ohmyst" to the sound discriminator output (junction of C183 and R215).

Connect the signal generator to the receiver antenna terminals. The order of alignment remains the same regardless of which method is used.

The shield over the bottom of the r-f unit must be in place when making adjustments.

Since lower frequencies are obtained by adding steps of in ductance, it is necessary to align channel 13 first and continue in reverse numerical order.

Set the receiver channel switch to 13 .
Adjust the frequency standard to the correct frequency (237 mc . for heterodyne frequency meter or 215.75 mc . for the signal generator).

Set the fine tuning control to the middle of its range while making the adjustment.
Adjust C6 for an audible beat on the heterodyne frequency meter or zerc voltage from solund discriminator. Oscillator adjustments L1 and L2 shown on the schematic are factory control adjustments and should not be touched in the field.

Switch the receiver to channel 12.
Set the frequency standard to the proper frequency as*listed in the alignment table.

Adjust Ll4 for indications as above.
Adjust the oscillator to frequency on all channels by switching the receiver and the frequency standard to each channel and adjusting the appropriate oscillator trimmer for the speci fied indication. It should be possible to adjust the oscillator to the correct irequency on all channels with the fine funing control in the middle third of its range.

After the oscillator has been set on all channels, start back at channel 13 and recheck to make sure that all adjustments are correct.

HORIZONTAL OSCILLATOR ADJUSTMENT. - Normally the adjustment of the horizontal osciliator is not considered to be a part of the alignment procedure, but since the oscillator waveform adjustment requires the use of an oscilloscope, it can not be done conveniently in the field. The waveform adjustment is made at the factory and normally should not require readjustment in the field. However, the waveform adjustment should be checked whenever the receiver is aligned or whenever the horizontal oscillator operation is improper.

Horizontal Frequency Adjustment. - With a clip lead, short circuit the coil between terminals $C$ and $D$ of the horizontal oscillator transformer T109. Tune in a television station and sync the picture if possible.
A.-Turn the horizontal hold control R173 to the extreme clockwise position. Adjust the Tl09 Frequency Adjustment (under the chassis) so that the picture is just out of sync and the horizontal blanking appears in the picture as a vertical bar. The position of the bar is unimportant.
B.- Turn the hold control approximately one quarter of a turn from the extreme clockwise position and examine the width and linearity of the picture. If picture width or linearity is incorrect, adjust the horizontal drive control C153B, the width control L112 and the linearity control L113 until the picture is correct. if Cl53B. Ll12 or Lll3 was adjusted, repeat step A above.
Herizontal Locking Range Adjustment. - Turn the horizontal hold control fully counterclockwise. Momentarily remove the signal by switching off channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 9 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer Cl53A slightly clockwise. If less than 7 bars are present, adjust C153A slightly counterclockwise. Turn the horizontal hold control counterclockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 7 to 9 bars are present.

Horizontal Oscillator Waveform Adjustment. - Remove the shorting clip from terminals $C$ and D of Tl09. Turn the horizontal hold control to the extreme clockwise position. With a thin fibre screwdriver, adjust the Oscillator Waveform Adjustment Core of T109 (on the outside of the chassis) until the horizontal blanking bar appears in the raster.
A.-Connect the low capacity probe of an oscilloscope to terminal C of T109. Turn the horizontal hold control one quarter
turn from the clockwise position so that the picture is in sync. The pattern on the oscilloscope should be as shown in Figure 20. Adjust the Oscillator Wavelorm Adjustment Core of Tl0S until the two peaks are at the same height. During this adjustment, the picture must be kept in sync by readjusting the hold control if necessary.

This adjustment is very important for correct operation of the circuit. If the broad peak of the wave on the oscilloscope is lower than the sharp peak, the noise immunity becomes poorer, the stabilizing effect of the tuned circuit is reduced and drift of the oscillator becomes more serious. On the other hand, if the broad peak is higher than the sharp peak, the oscillator is overstabilized, the pull-in range becomes inadequate and the broad peak can cause double triggering of the oscillator when the hold control approaches the clockwise position.

Remove the oscilloscope upon completion of this adjustment.
Check of Horizontal Oscillator Adjustments. - Set the horizontal hold control to the full counterclockwise position. Momentarily remove the signal by switching off channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 3 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer Cl53A slightly clockwise. If less than 3 bars are present. adjust C153A slightly counterclockwise. Turn the horizontal hold control counterclockwise, inomentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 3 bars are present.

Turn the horizontal hold control to the maximum clockwise position. The picture should be just out of sync to the extent that the horizontal blanking bar appears as a single vertical or diagonal bar in the picture. Adjust the Tl09 Frequency Adjustment until this condition is fulfilled.
4.5 MC. VIDEO TRAP. - Tune in a strong station. With a very short clip lead, short circuit the trap winding of Tl03. Observe the picture for the appearance of a 4.5 mc . beat. If the beat appears in the picture, adjust Ll04 until the beat is eliminated. Remove the clip lead.

SENSITIVITY CHECK. - A comparative sensitivity check can be made by operating the receiver on a weak signal from a television station and comparing the picture and sound obtained to that obtained on other recelvers under the same conditions.

This weak signal can be obtained by connecting the shop antenna to the receiver through a ladder type attenuator pad. The number of stages in the pad depends upon the signal strength available at the antenna. A sutficient number of stages should be inserted so that a somewhat less than normal contrast picture is obtained when the picture control is at the maximum clockwise position. Only carbon type resistors should be used to construct the pad.

RESPONSE CURVES. - The response curves shown on page 16 and referred to throughout the alignment procedure were taken from a production set. Although these curves are typical. some variations can be expected.
The response curves are shown in the classical manner of presentation. that is with "response up" and low frequency to the left. The manner in which they will be seen in a given test set-up will depend upon the characteristics of the oscilloscope and the sweep generator. The curves may be seen inverted and/or switched from left to right depending on the deflection polarity of the oscilloscope and the phasing of the sweep generctor.

ALIGNMENT TABLE. - Both methods of oscillator alignment are presented in the alignment table. The service technician may thereby choose the method to suit his test equipment.
the detailed alignment procedure beginning on page 10 Should be read before alignment by use of the table IS ATTEMPTED.

$\begin{gathered} \text { STEP } \\ \text { No. } \end{gathered}$	$\begin{gathered} \text { CONNECT } \\ \text { SIGNAL } \\ \text { GENERATOR } \\ \text { TO } \end{gathered}$	$\begin{gathered} \text { SIGNAL } \\ \text { GEN. } \\ \text { FREQ. } \\ \text { MC. } \end{gathered}$	$\begin{aligned} & \text { CONNECT } \\ & \text { SWEEP } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$	$\begin{gathered} \text { SWEEP } \\ \text { GEN. } \\ \text { FKEQ } \\ \text { MC } \end{gathered}$	CONNECT OSCILLOSCOPE	CONNECT "VOLTOHMYST" TO	MISCELLANEOUS CONNECTIONS AND INSTRUCTIONS	ADJUST	$\begin{gathered} \text { REFER } \\ \text { TO } \end{gathered}$
discriminator and sound i-f alignment									
1	2nd sound i-f grid (pin 1, V120)	$\begin{aligned} & 21.25 \\ & .1 \text { volt } \\ & \text { output } \end{aligned}$	Not used		Not used	In series with 1 meg. 10 junction of R215 \& R216		Detune T113 (bot.) Adjust T113 (top) for max. on meter	Fig. 13   Fig. 12   Fig. 11
2	"	"	*		"	$\begin{aligned} & \text { Junct. of } \mathrm{Cl} 183 \text { at } \\ & \mathrm{R} 215 \end{aligned}$	Meter on 3 volt scale	T113 (bottom) for zero on meter	$\text { Fig. } 13$ $\text { Fic. } 12$
3	"	"	2nd sound i-f grid (pin 1, V120)	$\begin{aligned} & 21.25 \\ & \text { center } \\ & 1 \text { mc. } \\ & \text { wide } \\ & .1 \text { v. out } \end{aligned}$	Junction of C183 \& R215	Not used	Check for symm waveform (positiv not equal adjust they are equal	metrical response解 \& negative). If T113 (top) until	Fig. 13 Fig. 15
4	Ist sound i-f grid (pin 1. V119)	$\begin{aligned} & 21.25 \\ & \text { re- } \\ & \text { duced } \\ & \text { output } \end{aligned}$	Ist sound i-f grid (pin 1, V119)	$\begin{aligned} & 21.25 \\ & \text { reduced } \\ & \text { output } \end{aligned}$	Terminal A, Til2 in series with a 33,000 ohm resistor.	"	Sweep output reduced to provide . 3 volt p-to-p on scope	T112 (top \& bot.) for max. gain and symmetry at 21.25 me.	Fig. 13 Fig. 11 Fig. 16

PICTURE I-F AND TRAP ADJUSTMENT

5	Not Used		Not used		Not used	$\begin{aligned} & \text { Junction of R135 } \\ & \text { \& R136 } \end{aligned}$	Remove Vios. Connect potentiorneter belween pins 5 \& 6 of $\checkmark 108$ socket	Adjust potentiometer for -4.5 volts on meter	Fig. 13   Fig. 11
6	Converter grid (pin 1, V2)	21.25	"		"	Across R120	Meter on 3 volt scale. Receiver between $2 \& 13$	T103 (top) for min. on meter	$\begin{aligned} & \text { Fig. } 11 \\ & \text { Fig. } 13 \end{aligned}$
7	"	21.25	"		"	*	"	$\begin{array}{lll} \mathrm{T} 105 & \text { (top) } \\ \min . \end{array}$	Fig. 13   Fig. 11
8	*	27.25	"		"	*	"	$\begin{array}{ll} \text { T102 } \\ \min . \end{array} \text { (top) for }$	"
9	-	27.25	*		"	"	"	T104 (top) for min.	"
10	"	19.75	*		"	*	"	$\begin{aligned} & \text { T106 (top) for } \\ & \text { min. } \end{aligned}$	"
11	"	19.75	*		-	"	"	$\begin{aligned} & \text { T101 (top) for } \\ & \min . \end{aligned}$	-"
12	،	22.5	-		-	"	"	$\begin{aligned} & \text { T106 (bottom) for } \\ & \text { max. on meter } \end{aligned}$	Fig. 12
13	-	24.6	،		"	"	*	T104 (bottom) for max.	"
14	"	22.0	*		"	*	"*	T103 (botlom) for max.	"
15	"	25.9	"		"	"	"	$\begin{aligned} & \text { T102 (boltom) for } \\ & \text { max. } \\ & \hline \end{aligned}$	"
16	"	$\begin{aligned} & 22.05 \\ & 24.75 \end{aligned}$	Converter erid   (Pin 1, V2)	$\begin{aligned} & \text { Sweep- } \\ & \text { int } \\ & 20 \text { to } \\ & 30 \mathrm{mc} . \end{aligned}$	Pin 5, V106	Junction of R135 - R136	Shunt 300 ohms acrose pri. T102, T103, Ti04. T106. Set bias -2 V. Set swp. gen. for 4 V . P.P on scope.	Adjust TI (top) and T101 (bottom) for proper response	Fig. 12   Fig. 17
17	$\propto$		"	"	"	"	Remove shunt resistors. Set bias to give 15 volts $P$ to $P$ on scope.	Adjust TI (top), T101, T102, T103. T104, T106 (bot.) for proper reap.	Fis. 11 Fig. 12   Fig. 13   Fig. 18

ANTENNA, R-F AND CONVERTER LINE ALIGNMENT

18	Antenna terminals	215.75	Notused		Not used	Junction of Cls3 \& R215 for signal gen. mirthod only	Fine tuning centered. Receiver on channel 13. Heterodyne meter coupled to oscil. lator if used.	C6 for zero on meter or beat on het. feq. meter	Fig. 13   Fig. 11
19						$\begin{aligned} & \text { Junction of R133 } \\ & \text { \& Ri34 } \end{aligned}$	Remove V101	Potentiometer for 3.5 volts on meter	$\begin{aligned} & \text { Fis. } 13 \\ & \text { Fig. } 11 \end{aligned}$
20	Antenna terminal (loosely)	$\begin{aligned} & 175.25 \\ & 179.75 \\ & 179.75 \end{aligned}$	Antenna terminals (see text for precaution)	Sweepint   channel	Test Connection R13	Not used	Receiver on channel 7	L6, C10, C11 \& Cl4 for flat top response between markers. Markers above $\mathbf{9 0} \%$.	Fig. 13   Fig. 12   Fig. 11   Fig. 19   (7)
21	-	$\begin{aligned} & 205.25 \\ & 209.75 \end{aligned}$	"	$\begin{gathered} \text { channel } \\ 12 \end{gathered}$	"	"	Receiver on channel 12	L6 for max. retaponse and min. slope of top of curve	$\begin{aligned} & \text { Fig. } 11 \\ & \text { Fig. } 19 \\ & \text { (12) } \end{aligned}$
22	-	$\begin{aligned} & 175.25 \\ & 179.75 \end{aligned}$	"	channel	"	"	Receiver on channel 7.	Check to see that response is as above	$\text { Fig. }_{(7)^{19}}$
23	"	$\begin{aligned} & 181.25 \\ & 185.75 \end{aligned}$	"	channel 6	"	"	Receiver on channel 8	"	$\begin{gathered} \text { Fig. } 19 \\ (8))^{2} \\ \hline \end{gathered}$
24	*	$\begin{aligned} & 187.25 \\ & 191.75 \end{aligned}$	-	$\underset{\theta}{\text { channel }}$	*	'	Receiver on channel 9	"	$\underset{(9)}{\text { Fig. } 19}$



Figure 23-Harizontal Linearrity
Control Misad iusted
(Picture Control Misad justed (Pictury
Cramped in Middle) Cramped in Midd

Fipure 24-Width Control Misadjusted


Figure
Control Misaljutusted Drive
$\longleftarrow$

Figure 26-Transients


8T270. 8TC270, 8TC271
Following is a list of symploms of possible failures and
of some of the possible faults.
no raster on kinescope:
(1) Incorrect adjustment of ion trap magnet-Magnets reversed either iront to
rectly oriented.
(2) V113. V114 or V115 inoperative -check voltage and wave form on grids and plates.
(3) No high voltage-If horizontal deflection is operating as evidenced by the correct wavelorm on terminal 4 of hori-
zontal output transformer, the trouble can be isolated to the zontal output transformer, the trouble can be isolated to the
8016 circuit. Either the T110 high voltage winding is open (points 2 to 3). an 8016 tube is delective, its filam is open. C167. C168 or C187 is shorted or R189, R190. R191 R192 or R193 is open.
(4) V112 circuit inoperative-Refer to schematic and waveform char
(5) Damper tube (V116) inoperative.
(6) Detective kinescope.
(7) R223 open (terminal 3 to R224
(8) No receiver plate vollage - filler capacitor or filter choke
shorled-bleeder or filter choke
no vertical deflection:
() Vi.08B or Vill inoperative-check voltage and waveforms
on grids and plate
(2) T107 or T108 open.
(3) Vertical deflection coils open.

## SMALL RASTER:

(1) Low Plus B or low line voltage.
(2) V113 delective.
poor vertical linearity
(1) It adjustment cannot correct, change V111
(2) Vertical output transformer defective.
(3) VIOBB defective-check vollage and waveforms on grid and plate.
(4) C147, R164, C148B or C150C defective.
(5) Low bias or plate vollage-check rectifiers and capacitors in supply circuits.

## poor horizontal linearity

(1) If adjustments do not correct. change V113 or V116.
(2) T1.10 or L113 defective.
(3) Cl 164 or C 165 defective.
whinkles on left side of raster
(1) R166, R167 or Cl69 defective
(2) Defective yoke.
picture out of sync horizontally:
(1) T109 incorrectly tuned.
(2) R172, R173, R174, R176 or R178 detective.
trapezoidal or non.symmetrical raster
(1) Improper adjustment of focus coil or ion trap magne

## 2) Defective yoke.

raster and signal on kinescope but no sound:

1) R-F oscillator off frequency.
(2) Sound i.f. discriminator or audio amplifier inoperative-
check $V 119, V 120, V 121$. V122, V123 and their socke voltages.
(3) T114 or C186 detective
(4) Speaker defective.
signal at kinescope grid but no sync:
V105A. V106, V108A. V109 or V111 inoperative-check voltage and wavetorms at their grids and plates.
(2) Check V104. Try another tube.
signal on kinescope grid but no vertical sync 1) Check $V 108 B$ and associated circuit-C145, T107, etc.
2) Integrating network inoperative-check.
(3) R154, R155, R157, R158 or R159 defective

SIGNAL on kinescope grid but no horizontal sync (1) T 109 misadjusted-readjust as instructed on page 13.
(2) V112 inoperative-cineck socket voltages and waveforms
3) T 109 defective.
(4) C140, C153A, C154, C155, C157 or C166 defective.
(5) It horizontal speed is completely oft and cannot be adjusted
check C158. C159. R172. R173. R174, R179 and R182.

SOUND AND Raster but no picture or sync:
(1) Picture i.f. detectior or video amplifier inoperative check
V103. V104, V105. V106 and V107-check socket voltages.
(2) Bad contact to kinescope grid.
picture stable but poor resolution:
(1) V105A, V106 or V107 defective.
2) Peaking coils defective-check for specified resistance.
(3) Make sure that the focus control operates on both sides of
proper focus. 4) R.F and I.F circuits misaligned.

## picture smear:

(1) R-F or I.F circuits misaligned.
(2) Open peaking coil.
(3) This trouble can originate at the transmitter-check on

## PICTURE ITTER:

(1) Check for proper operation of hold controls.
(2) If regular sections at the left picture are displaced change

$\underset{\substack{\text { STEP. } \\ \text { No. }}}{ }$	$\begin{gathered} \text { CONNECT } \\ \text { GENERALTOR } \\ \text { GENETOR } \end{gathered}$	$\begin{aligned} & \text { SIGNAL } \\ & \text { GENEL } \\ & \text { FREQ. } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { SENEFP } \\ & \text { GENEATOR } \\ & \text { TO } \end{aligned}$	$\begin{aligned} & \text { SWEEP } \\ & \text { CEN. } \\ & \text { FREQ. } \\ & \text { MC. } \end{aligned}$	CONNECT OSCILLOCOPE TO	$\begin{gathered} \text { CONNECT } \\ \text { "VOLTOHMYST" } \\ \text { TO } \end{gathered}$	MISCELLANEOUS   CONAECTITNS   INSTRUCTIONS	adjust	$\underset{\text { TOFER }}{\text { Ref }}$			
r.F And Converter line alignment (Conitd)												
25	$\begin{aligned} & \text { Antenna } \\ & \text { terminal } \\ & \text { (loosely) } \end{aligned}$	${ }_{1}^{193.25}$	$\begin{aligned} & \text { Ant. terminula } \\ & \text { (see text for } \\ & \text { precaution) } \end{aligned}$	$\underset{\substack{\text { channel } \\ 10}}{ }$		Not ured	\|l	l	l	Receiver on chan-   nel   10	$\begin{aligned} & \text { Check to see that } \\ & \text { response in as } \\ & \text { above } \end{aligned}$	${ }_{\text {Fig. }}^{\text {(10) }}$ ( ${ }^{\text {a }}$
26	"	(199.25	"	channel		"	Receiver on chan-		${ }_{\text {Fig. }}^{\text {(1i) }}$ (19 ${ }^{\text {a }}$			
27	"	$\begin{gathered} 205.25 \\ 209.75 \end{gathered}$	"	$\begin{gathered} \text { channel } \\ 12 \end{gathered}$		"	Receiver on chan. nel 12	"				
${ }^{28}$	"	211.25 215.75	"	channel		"	Receiver on chan- nel 13	"	$\underset{\substack{\text { Fig. } \\(13)}}{\text { 19 }}$			
29	If the reaponse on any channel (atepa 22 through 28) is below $80 \%$ at either marker, awitch to that channel and adjust L6, C10, C11 \& C14 to pull response up on that channel. Then recheck steps 22 through 28 .											
30	$\begin{aligned} & \text { Antenna } \\ & \text { ereminale } \\ & \text { (loosely) } \end{aligned}$	${ }_{\text {87 }}^{83.25}$	Ant. terminals (see text fo preceution)	$\begin{gathered} \text { Sweep- } \\ \text { cing } \end{gathered}$		Not used		$\left\lvert\, \begin{array}{ll} \text { L9. } & \text { L13. } \\ \text { Lis } \\ \text { C12 } \\ \text { as } \end{array}\right.$	${ }_{(6){ }_{\text {Fig. }}{ }^{19} \text { (19, }}$			
31	"	-77.25   81.75	"	$\underset{5}{\text { channel }}$	"	"	Receiver on chan- nel S		${ }_{\text {Fig }}(19$			
32	"	${ }_{7}^{67.25}$	"	channel	"	"	Recelver on chan- nel 4	"	${ }_{\text {Fitif }}{ }_{\text {(4) }}{ }^{18}$			
${ }^{3}$	"	61.25 65.75	"	${ }_{\text {channel }}$	"	"	Receiver on chan- nel 3	"	${ }_{\substack{\text { Fig. } \\(3)}}^{19}$			
34	"	5s.75	"			-	Receiver on chan-   nel 2	"	$\underset{\substack{\text { Fig. } \\ \text { (2) }}}{ }$			
35	to pull response up on that channel. Then recheck ateps 30 through 34 . Replace V101. Disconnect bias pot and replace viog.											
r-F oscillator alignment												
$\begin{gathered} \text { STEP } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { CONNECT } \\ & \text { GENERATOTOR } \end{aligned}$	$\begin{gathered} \text { SIGNAL } \\ \text { GEN. } \\ \text { FREQ. } \\ \text { MC. } \end{gathered}$	CONNECT HETERODYNE FREQ. METER FREQ. ${ }^{\text {MO }}$	$\begin{gathered} \text { MET. } \\ \text { METER } \\ \text { FREQ. } \\ \text { MC. } \end{gathered}$	$\begin{aligned} & \text { CONNECT } \\ & \text { OSCILLLOCOPE } \\ & \text { TO } \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { "VOLTOHMYST" } \\ \text { TO } \end{gathered}$	miscellaneous CONNECTIONS instructions	adjust	$\underset{\text { Refer }}{\text { TO }}$			
${ }^{36}$	$\underbrace{}_{\substack{\text { Antenna, } \\ \text { terminals }}}$	215.75	Loosely coupled to r-f osc.	237	Not ueed		$\begin{array}{\|l} \begin{array}{l} \text { Fine tuninf con- } \\ \text { ened } \\ \text { cered } \\ \text { chane eciver or on } \end{array} \\ \hline \end{array}$					
37	"	209.75	"	231	"	"	Rec. on chan. 12	L14 as above	Fig. 14			
38	"	203.75	"	225	"	"	Rec. on chan. 11	L15 as above	"			
39	"	197.75	"	219	"	"	Rec. on chan. 10	L16 as above				
40	"	191.75	"	213	"	"	Rec. on chan. a	L17 at above				
41	"	185.75	"	207	"	"	Rec. on chan. s	L18 as sbove	"			
42	"	178.75	"	201	"	"	Rec. on chan. 7	L19 as abovo	"			
43	"	87.75	"	109	"	"	Rec. on chan. 6	L31 as abovo	Fig. 12			
44	"	81.78	"	103	"	"	Roc. on chan. 5	L21 at above	Fif. 14			
48	"	71.78	"	93	"	"	Rec. on chan. 4	122 ac abovo	"			
46	"	65.75	"	87	"	"	Rec. on chan. ${ }^{\text {a }}$	L23 as above	"			
47	"	59.75	"	81	"	"	Rec. on chan. 2	L24 as above	"			
48	Repoat stops 36 through 47 as a check.											
HORIZONTAL OSCILLATOR ADJUSTMENT												
49	Short circuit terminale $C$ and $D$ of Tio9. Tune in a station.											
50	Turn boid control fully clockwlso. Adjust Tios Froquency Adjustment untll horizontal blanking bar appeare in the pleture.											
51	Turn hold control $1 / \frac{1}{}$ turn from clockwise to eync pleture. Adjust width (L110), linearity (Lili) and drive (C1s3B) controls until picture la correct. Repeat step 50											
52	Turn hold control fully counterclockwise. Momentarily remove signal. Turn hold control slowly clockwise. Note least number of bars before pull-in. Adjust Locking Range Control (CiB3A) for 7 to 9 bar pull-in.											
53	Remove clip from terminale C and D of Tiog. Turn hold control fully clockwise. Adjust T109 Oacillator Waveform Adjustment until horizontal blanking bar appears in picture.											
54	form Adjustment until broad and sharp peaka of wave on oscilloscope are same height. Keep picture in aync with hold control during adjustment. Remove oscllloscope.											
${ }_{5} 5$	Turn bold control fully counterclockwise. Momentarlly ramove signal. Turn hold control slowly clockwise. Note least number of bars before pull-in. Adjuet Locking Range Control (Cis3A) for 3 bar pull-in.											
${ }_{68}$	Turn hold control fully clockwige. Adjust Tio9 Freq. Adjustment until horizontal blanking appoars as ingile voritical or diagonal bar in plx.											
4.5 MC VIDEO TRAP ADJUSTMENT												
${ }^{87}$												
sensitivity check												
${ }^{\text {ss }}$	Connect antenna to recelver through attenuator pad to provide weak algnal. Compare the plcture and sound obtalned to that obtained on other receivers under the same conditions.											



Figure ll-Top Chassis Adjustments


Figure 12-Bottom Chassis Adjustments


Figure 13-Test Connection Poinss


Figure 14-R-F Oxillator Adjustments

NOTE-FIGS. 11 AND 12: IN MODEL 8TK320 THE AUDIO OUTPUT TUBE (V123) IS TYPE 6V6GT.




$\int_{\operatorname{cnannec}}^{\infty}$	$\int_{\substack{\operatorname{cmannar} \\ s}}^{\infty}$	$\int_{\text {cmanare }}^{2}$




Pisure 20-Horizontal Oxillator Waveforms
(3) Vertical instability may be due to loose connections or noise.
(4) Horizontal instability may be due to unstable transmitted sync.

RASTER BUT NO SOUND. PICTURE OR SYNC:
(1) Defective antenna or transmission line.
(2) R-F oscillator of frequency.
(3) R-F unit inoperative-check V1, V2, V3.

PICTURE I-F RESPONSE. - At times it may be desirable to observe the individual i-f stage response. This can be achieved by the following method:
Shunt all i-f transformers and coils with a 330 ohm carbon re sistor except the one whose response is to be observed.

Connect a wide band sweep generator to the converter grid and adjust it to sweep from 18 mc . to 30 mc .

## DARK VERTICAL LINE ON LEFT OF PICTURE:

(1) Reduce horizontal drive and readjust width and horizontal linearity.
(2) Replace V113.

LIGHT VERTICAL LINE ON LEFT OF PICTURE:
(1) C169 defective.
(2) V116 defective.

Connect the oscilloscope across the picture detector load resistor and observe the overall response. The response obtained will be essentially that of the unshunted stage. The effects of the various traps are also visible on the stage response.

Figures 29 through 33 show the response of the various stages obtained in the above manner. The curves shown are typical although some variation between receivers can be expected. Relative stage gain is not shown


Figure 29-Response of Converter and First Pix I.F Transformer


Fikure 30-Response of Second I'ix I-F Transformer


Figure 31-Response of Third Pix I.F Transformer


Figure 32-Response of Fourth Pix I.F Transformer


Figure 35-Overall Pix I.F Response


Figure 36-Video Response at Average Contrast


Figure 34-Response from First Pix IFF grid to Pix Det.


Figure 37-Video Response at Maximum Contrast


Input to 1st Sync Separator (Pin 1 of V109) (6SN7GT)

Figure 46-Vertical (24 Volts PP)
$\leftrightarrow$
Figure 47-Horizontal (24 Volts PP) $\longrightarrow$


Input to 2nd Video Amplifier (Pin 5 of V107) (6K6GT)

Figure 40 -Vertical (15 Volts PP) $\leftarrow$

Figure 41-Horizontal (15 Volts PP) $\rightarrow$

Output of 2nd Video Amplifier (Pin 3 of V107) (6K6GT) (Picture Max.)

Figure 42-Vertical (130 Volts PP)
$\leftrightarrows+$
Figure 43-Horizontal (130 Volts PP) $\rightarrow$

Input to Kinescope (Junction of R131 und R132) (Picture Max.)

Figure 44-Vertical (65 Volts PP)
$\leftrightarrow+$
Figure 45-Horizontal ( 65 Volts PP) $\rightarrow$



ACC Rectifier Cathode (Pin 6 of V109) (6SV7GT)

Figure 48-Vertical (4.3 Volts PP) $\longleftarrow 4$

Figure (19—Horizontal (2.2 Volts PP)
$\rightarrow$

Output of AGC Rectifier (Pin 5 of V109) (6SN7GT)

Figure 50--Vertical (19 Volic PP)
4
Figure 51-Horizontal (19 Volts PP) $\rightarrow$


Cathode of 1st Sync Separator (Pin 3 of (l'109) (6SN7GT)

Figure 52-Vertical (1.3 Volts PP) $\leftarrow 4$

Figure 53-Horizontul (0.9 Volts PP)


Output of Ist Sync Separator (Pin 2 of V'109) (6SN7GT)

Figure 54-V'ertical (48 Volts PP) $\longleftarrow+$

Figure 55-Horizontal (38 Volts PP) $\rightarrow$


Input to Sync Amplifier (Junction of C137, G139 and R144)

Figure $36-V$ ertical ( 30 Volts PP) $4+$

Figure 57-Horizontal (17 Volts PP) $\rightarrow$



Figure 64-Grid of Vertical Output (140 Volts PP) (Pin 5 of Vlll) ( 6 K6GT) $\longleftarrow 4$

Figure 65-Plate of Vertical Output (925 Volts PP) (Pin 3 of V1ll) $(6 \mathrm{~K} 6 \mathrm{GT}$ )
$\rightarrow$

Figure $60-$ Input of Vertical Deflec. tion Coils ( 75 Volts PP) (Junction of Green Lead of T108 and Green Lead of Yoke)
$\leftrightarrow$
Figure 67-Input to Horizontal Oscil. Intor (25 Volts PP) (Junction of C153A and C154)
$\rightarrow$


Cathode of 2nd Sync Separator (Pin 6 of VII0) (6SN7GT)

Figure 60 -Vertical (17 Volts PP)
$\longleftarrow 4$
Figure 61-Horizontal (11 Volts PP) $\rightarrow$

Figure 62-Output of Integrating Network (Junction of C144, C145 and R153) (38 Volts PP)
$\longleftarrow+$
Figure 63-Grid of Vertical Oscillator ( 480 Volts PP) (Pin 1 of V108) (6SN7GT)
$\rightarrow$



Figure 68-Junction of R168. R176 and R178 (140 Volts PP)
$4+$
Figure 69-Grid of Horizontal Osril. Intor (500 Volts PP) (Pin 4 of V'112) (6SN7GT)
$\rightarrow$


Figure 70 -Plate of Horizontal Oscil. lutor (280 Volts PP) (Pin 5 of V112)
(6SN-GT)
$4-4$
Figure il-Terminal "C" of T109 (85 Volts PP)
$\rightarrow$


Figure 72-Input to Horizontal Out. put Tube ( 75 Volts PP) (Junction of C160, R181 and C153B)

$$
4+4
$$

Figure 73-Plate of Horizontal Output (Approx. 6,100 Volts PP) (Measured Through a Capacity Voltage Divider Connected from Top Cap of V113 to Ground)
$\rightarrow$


Figure 74-Junction of C164, L113 and Terminal l of T110 (80 Volts PP)


Figure 75-Cathode of Damper $(50$ Volts PP) (Pin 8 of V116) (5V 4G)
$\rightarrow$


Figure 76-Input to Horixontal Deflection Coils (1,600 Volts PP) (Pin 4 of V116) (5V4G)
$4+$

Figure 77-Horizontal Deflection Coil Current ( 800 ma PP) (Calculated Value from PP Voltage across R199)
$\rightarrow>$


8T270, 8TC270. 8TC271


Figure 78-RF Unit Wiring Diagram

## CRITICAL LEAD DRESS:

1. The ground bus from pin 2 and the center shield of V120 socket should not be shortened or rerouted.
2. Dress the body of R195 as close to tube pin as possible.
3. Do not change the dress of the filament leads or the bypass capacitors in the picture or sound i-f circuits. The filament leads between V120, V121 and V122 should be down against the chassis and away from grid or plate leads.
4. Dress all leads crossing the i-f circuits close to the chassis and held so they cannot move and change alignment.
5. If it is necessary to replace any of the 1500 mmf capacitors in the picture i-f circuit, the lead length must be kept as short as possible.
6. Picture i-f coupling capacitors $\mathrm{C} 106, \mathrm{C} 111, \mathrm{Cl15}$ and C 121 should be up and away from the chassis and should be clear of the pix i-i transformer adjustments by at least $1 / 4$ inch. If the dress of any of these capacitors is changed, the i-f alignment should be rechecked.
7. Leads to L102 and L103 must be as short as possible.
8. Dress peaking coils L105, L106. L107. L108 and L109 up and away from the chassis.
9. Dress R129 away from Llo9.
10. Dress C183 across V121 tube pins 5 and 6 with leade not exceeding $3 / 8$ inch.
11. Dress the blue lead from pin 5 of V122 down against the chassis and under two shielded leads.
12. Dress C129 and C199 up and away from the chassis.
13. Dress the yellow lead from the picture control away from the chassis. Dress the yellow lead from pin 8 of V106 away from the chassis.
14. Dress the green lead from pin 8 of V107 away from the chassis.
15. Dress R168, R169, R170, R176 and R178 up and away from the chassis.
16. The leads to the volume control should be dressed down against the chassis and away from V119 and V120.
17. Dress the yoke red horizontal deflection lead under the clips of the fixed H. V. shield.
18. Dress the green lead from Cl66 close to the chassis and away from the red lead connected to T110-4.
19. Insert the red lead into T110.4 from the top of the terminal.
20. All soldered connections in the high voltage compartment should be free of sharp points.
21. Contact between the $\mathrm{r}-\mathrm{f}$ oscillator frequency adjustment screws and the oscillator coils or channel switch eyelets must be avoided.

REPLACEMENT PARTS


REPLACEMENT PARTS (Continued)

$\begin{gathered} \text { sTOCK } \\ \text { No. } \end{gathered}$	description	$\begin{gathered} \text { stock } \\ \text { No. } \end{gathered}$	deschiption
	C122. C125. C132. C171, C172. C176, C177. C188. C191. C192. C193. C196)	74142 71449	Coil-Focus coil (L117)
73801	Capacitor-Tubular, moulded paper, 001 mid., 600 volts (C137)	74170	Coil-Peaking coil (36 mh) (L119,
		71527	Coil-Peoking coil (93 mh) (L107)
	Capacitor-Tubular, moulded volts (C142. C154, C184)	71529	Coil-Peaking coil (120 mh) (L102. R119. L108. R226)
73595	Capacitor-Tubular, moulded paper, oil treated, .0022 mid., 600 volts (C161;	$\begin{aligned} & 742 \\ & 715 \end{aligned}$	Coil-Peaking coil ( 180 mh ) (L106)   Coil-Peaking coil ( 180 mh ) (L105. R123. L109, R130)
73795	Capacitor-Tubular. moulded paper. . 0033 mid... 600	71526	Coil
	volts (C202)	71429	Coil-Width control coil (L112)
379	Capacitor-Tubular, moulded paper, . 0039 mid.. 600 volts (C198)	357	Connector-Anode connector   Connector-Phono input connector (Jllo)
73920	Capacitor-Tubular, moulded paper, oil treated.	71521	Con
		74047	Control-Brightness and picture control (R127, R223)
S50	Capacitor-Tubular, moulded paper, 0047 mid.. 600 volts (C127. C143. C144, C186, C195, C200)	${ }_{7}^{7735}$	Control-Focus control (R201)
73561		$74146$	Control-Height control (R155)   Control-Horizontal centering or video bias control
73594	volts (C134. C151. C152, C182)   Capacitor-Tubular, moulded paper, oil treated. . 01 mid., 600 volts (C159)	72734	Control-Horizontal centering or video bias control (R199. R206)   Control-Horizontal and vertical hold control (R158.
73565	mid., 600 volts (C159)   Capacitor-Tubular, moulded paper, .01 mid., 1.000 volts (C185)	74	R173)   Control-Tone control, volume control and power switch (R197, R217. S101)
73562	Capacitor-Tubular, moulded paper, .022 mid.. 400 volts (C155)	71441	Control-Vertical linearity control (R182)
73596	Capacior-Tubular, moulded paper, oil treated. . 033	71443	Control-Vertical centering control (R202)
	mid., 1.000 volts (C164)	71457	Cord-Power cord and plug
73553	Capacitor-Tubular. moulded paper. 047 mid.. 400 volts (C129, C139)	71437	Cover-Insulating cover for electrolytics Nos. 71432. 73581 and 73583
73592	Capacitor-Tubular, moulded paper, 047 mid., 600 volts (C147, C156)	72772	Cover-Insulating zover for electrolytics No. 71436
73597	Capacitor-Tubular, moulded paper, oil treated, . 047	73590 73600	Fuse- 0.25 ampere, 250 volts (F101. F102)
73564	Capacitor-Tubular, moulded paper, 047 mid.. 1.000 volts (C163)	37396	Grommet-Rubber grommet to mount ceramic tube socket (2 required)
73784	Capacitor-Tubular.		Grommet-Rubber grommel for 2nd anode lead
	olis (C201)		Magnel-lon trap magnet (PM type)
73551	Capacitor-Tubular, moulded paper, 0.1 mid.. 400 volts (C130, C149)	18469	Plate-Bakelite mounting plate Plug-3 contact female plug for speaker cable
73360	citor-Tubular	71448	Plug-Male plug for power cable
	volits (C135)	74156	nd. 3.9 ohms. $1 / 3$ watt (R18)
73794	Capacitor-Tubular, moulded paper, 0.22 mid.. 400 volits (C157. C162)	72067	R190)   Resistor-Wire wound, 5.1 ohms, $1 / 2$ watt (R214)
73787	Capacitor-Tubular, moulded paper, 0.47 mid., 200 volts (C133. C190)		Resistor-Fixed, composition, 10 ohms, $\pm 20 \%$, $1 / 2$ watt (R121)
74106	pacitor-Electrolytic. 5 mid.,. 50 volts (C131)		
74266	Capacitor-Electrolytic. $40 \mathrm{mdd}$.400 volis (C205)		
71432	Capacitor-Electrolytic, comprising 2 sections of 40 mid.. 450 volts, and 1 section of 10 mid.. 450 volts (C150A. C150B Cl50C)		watt (R183)   Resistor-Fixed, composition. 68 ohms, $\pm 10 \%, 1 / 2$
73581	Capacitor-Electrolytic, comprising 1 section of 60 mid., 450 volts, 2 sections of 10 mid. 450 volts. and 1 section of 20 mid.. 150 volts (C146A, C146B. C146C. C146D)		watt (R105)   Resistor-Fixed. composition. 82 ohms. $\pm 10 \%$, $1 / 2$ watt (R207)   Resistor-Fixed. composition, 82 ohms. $\pm 5 \%$, $1 / 2$
582	Capacitor-Electrolytic. comprising 1 section of 40 mid., 450 volts, 1 section of $10 \mathrm{mfd} ., 450$ volts. and 1 section of 80 mid., 200 volts (C194A. C194B, C194C)		watt (R122)   Resistor-Fixed. composition. 100 ohms. $\pm 10 \%$, $1 / 2$ watt (R228)   Resistor-Fixed. composition, 120 ohms. $\pm 10 \%$. $1 / 2$
73583	Capacitor-Electrolytic, comprising l section of 40 mid., 450 volts, 1 section of 90 mid., 450 volts. and 1 section of 50 mid.. 150 volts (C148A. C148B, C148C)		watt (R126)   Resistor-Fixed. composition, 150 ohms. $\pm 20 \%$, $1 / 2$ watt (R106. R109, R114, R198)
436	Capacitor-Electrolytic. comprising 1 section of 250 mid., 10 volts, and 1 section of 1,000 mid.. 6 volts (C170A, C170B)		```watt (RIl5) Resistor-Fixed. composition, 150 ohms. }\pm10%, watts (R184)```
73154	Choke-Filter choke (L116)	14197	Resistor-Wire wound. 470 ohms, 4 watts (R200)
73578	Coil-Antenna matching coils complete with socket and bracket (T115)		Resistor-Fixed. composition, 680 ohms, $\pm 10 \%$, watt (R220)
347	Coil-Choke coil (L101)	74213	Resistor-Wire wound. 820 ohms, 4 watts (R20S)



TOM 9


     （SOIS）Чग！ME ．．OUOपय AL．，－पग！MS       （at！oypq）hoddne abld pourar $\Lambda$－uoddns poal apoud paz rof hoddns an！aydg－1roddns Alquasso apid      －ad bu！ads ainssard ayok pud pooh－buidis bulads apouy－bulads （ралипbал 乙）вугоя    polunour əpld＇د，    palunous       IL2כI8 rayjos adorsauty－10yวos       izin pud ozin roj ppatys aqni－ppaths    pud pooy lunous of maras buicm z\＆－8 o N －maras （عIzy） $\mathrm{HDM} \mathrm{z} / \mathrm{T}$       （6मIG） $11 \mathrm{DM} z /$       （ع914 6SI甘＇zعIL＇IEI甘）иDM $z_{1}$    （LSIG） $110 \mathrm{DM} 2 / 1$ pax！ 1 －101s！soy    （8bIE＇6cा니）HDM z／ （6918）110M $\mathrm{z} / \mathrm{h}$ ＇pax！d－s015！！sey （6It）HDM $z /$ （ $61 z$ If $) 11 \mathrm{DM} z / 1$ ＇pax！d－101s！say    （zIzq） 110 Dm z／ ＇paxid－101stsay （ts LY） $110 \mathrm{DM} 2 / 2$    （E614＇Z6IY＇I6IU）shDm $Z$   \％01耳＇swиo 000＇081＇uom！sodwos＇pox！d－1015！say         ＇\％s $\mp$＇su：ч० 000＇OSI＇uоu！ （ PLLH ） HDM I    （081女 8914）11DM $2 /$     			L028   SSIbl
NOILdIHOS3］	$\stackrel{\text { º }}{\text { ¢ }}$－	NOIIdIHOS3¢	－$\stackrel{\circ}{\circ} \mathrm{N}_{\text {YOOLS }}$


（perpinbes y）       โLzวI8 pud 0Lzכ18 sepow sof dole rood－dols    sqouy 10；bupds bupuopey－bupds eqoux $30 \mid$ bupds bupuploy－burads sqouy $30 \mid$ bupuds bupriploy－bupds    โLZOL8 lopow 201 リाnd                02218       ILEDIS    pud ina 6utM bufpipui olid puo pmis－aldid ILzO18    Iくこう18    ［LZつI8 lepow 10 I          dubl 10nd－dull sureus             घ；                         so inulda sof－yiop－q०ur butun orij－qoux                （posmb       OLZI8 lopow rol ssojb    $0 \angle Z 18$ lopow 10 （perinber f）100 seqqny－100a		              0L2DI8      1LZDI8    5，mournis지    ทีemnnax    SnO3NYTIJOSIW （pesịnbes                           CYSOI TH   Mz－08sを6   XTaw3ssy yixyads fomal dupl rild－doj   1／とכI8         Bnjd ssef＇ros evios pao ecos q！！ejelduos seypods＇W＇d＂8－1eypeds sexpeds sol bind epour buosd $\varepsilon$－bnld Liquesso nos espos puo evo $\longrightarrow$－ato doo ima－doj   （L914＇9914＇6910      （6815 8IIT）don Al－doli   （6IIJ＇soli）dDil punos－dDII   （8Z1כ＇POIT）don oepla otu s．p－dDaI   （tili）semsojsumg indino oipny－damiojgudid   （0815＇6LIJ－8ん15      （Vに）      （III）      （OIII）1amofeum               （＊210        	08 IC6 18614 894TL 417L 9114L くてIbL 0916L 8I6IX LI6IX －sLEL EOIEI 66SIL LS8ZL 8SITL   61914   Lz71L   vert   chic   sulv 9258L 8998 4   with   s $45 \mathrm{c} \ell$   14sel   clscl
NOILdIYOS3¢	$\begin{aligned} & \circ \mathrm{N} \\ & \mathrm{x} O \mathrm{OLS} \end{aligned}$	NOILdHOS3	$\begin{aligned} & \text { ºn } \\ & \text { yOIs } \end{aligned}$



Model B7K 320 म alnut Mahogany or Toasted Mahogany

RADIO CORPORATION OF AMERICA<br>RCA VICTOR DIVISION<br>CAMDEN, N. J., U.S. A.

REFER TO PAGES 522 TO 535 INC. FOR TELEVISION ALIGN MENT AND WAVEFORM PHOTOGRAPHS

## GENERAL DESCRIPTION

The Model 8TK320 is a " 16 inch" television, AF-FM radio combination. The receiver employs twenty-seven tubes plus tour rectifiers and a 16AP4 kinescope. A phono input jack is provided to permit the use of an external record player.

Fealures of the television unit are full twelve channel cov-
erage: FM sound system: improved picture brilliance; picture A-G.C: A.F-C horizontal hold: stabilized vertical hold; iwo stages of video amplification; noise saturation circuits; improved sync separator and clipper: four me band width for picture channel and reduced hazard high voltage supply.

## electrical and mechanical specifications

PICTURE SIZE ..... 146 square inches on a 16 inch kinescope

## TELEVISION R-F FREQUENCY RANGE

All 12 television channels, 54 mc . to 88 mc . 174 mc . to 216 mc . Fine Tuning Range . $\pm 250 \mathrm{kc}$. on chan. $2 . \pm 650 \mathrm{kc}$. on chan. 13
Picture Carrier Frequency . . . . . . . . . . . . . . . ......... 25.75 mc .
Sound Carrier Frequency .............................. 21.25 mc.

## RADIO TUNING RANGE



LOUDSPEAKER 92582-3 (RL 103C21).... 12 inch PM Dynamic Voice Coil Impedance............... 3.2 ohms at 400 cycles

## WEIGHT

DIMENSIONS (inches)	Widih	Helght	Depth
Cabinet (outside)	301/4	$461 / 2$	$24^{3 / 4}$
Chassis (Overall)	193/6	121/4	201/4

RECEIVER ANTENNA INPUT IMPEDANCE. 300 ohms balanced
If necessary, the television chassis may be fed separately from either a 300 ohm balanced line or a 72 ohm co-ax.

## RCA TUBE COMPLEMENT

	Tube Used	(Tolevision Chassla)	Functlon
(1)	RCA		R-F Amplifier
(2)	RCA 6]6		R-F Oscillator
(3)	RCA 6AG5		Converter
(4)	RCA 6AU6	. . lst	d I.F Amplifier
(5)	RCA 6AU6	. 2nd	d I-F Amplifier
(6)	RCA 6AL5		Discriminator
(7)	RCA 6AV6	.	Audio Amplifie:
(8)	RCA 6V6GT		Audio Output
(9)	RCA 6AG5	$18 t$	I.F Amplifier
(10)	RCA 6AG5	2nd	re 1-F Amplifier
(11)	RCA 6AG5	3rd	re I-F Amplifier
(12)	RCA 6AG5	. 4th	1.F Amplifier
(13)	RCA 6AL5	Picture 2nd Detec	d Sync Limiter
(14)	RCA 6AU6		ideo Amplifier
(15)	RCA 6K6GT		Video Amplitier
(16)	RCA 6SN7G	AGC	er and Vertical weep Oscillator
(17)	RCA 6SN7G	AGC Rectifier and	Sync Separator
(18)	RCA 6SN7GT	ync Amplifler and	Sync Separator
(19)	RCA 6K6GT	. Ver	Sweep Output
(20)	RCA 6SN7GT	rizontal Sweep Osc	tor and Control
(21)	RCA 6BG6G	Horiz	Sweep Output
(22)	RCA 5V4G		Damper
(23)	RCA 1B3-GT/	H. V	ectifier (2 tubes)
(24)	RCA 5U4G	Power Supply	ectifier (2 tubes)
(25)	RCA 16AP4		Kinescope

## (Radio Tuner Chassis)

$)$	RCA 6]	Mixer and Oscillator
(2)	HCA 6BA6.	... I-F Amplitier
(3)	FCA 6AU6	F.M Driver
(4)	HCA 6AL5	Ratio Detector
(5)	RCA 6AV6	AM Detector AVC

PICTURE I-F FREQUENCIES

FOCUS . . . . . . . . . . . . . . . . ......................... Magnetic

SWEEP DEFLECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . Magnetic
SCANNING . . . . . .......................... Interlaced, 525 line
HORIZONTAL SCANNING FREQUENCY ............ 15.750 cps
VERTICAL SCANNING FREQUENCY.................... 60 cps

FRAME FREQUENCY (Picture Repetition Rate)
30 cps

OPERATING CONTROLS (front panel)

Channel Selector $\}$	Dual Control Knobs
Fine Tuning $\quad$	Dual Control Knobs
Tone	Dual Control Knobs
Sound Volume and On.OH Switch	Dual Control Knobs
Picture Horizontal Hold	Dual Contral Knobs
Picture Vertical Hold	Dual Control Knobs
Picture	Dual Control Knob
Brightness (	Dual Control Knobs
Function Switch	Single Control Knob
Radio Tuning	Single Control Knob

## NON-OPERATING CONTROLS

Horizontal Centering . . . . . . . . . . . . . . . . rear chassis adjustment Vertical Centering .................... rear chassis adjustment Width . . . . . . . . . . . . . . . . rear chassis screwdriver adjustments Height . . . . . . . . . . . . . . . . . . . . . . . . . rear chassis adjustment Horizontal Linearity . . . . . . rear chassis screwdriver adjustment Vertical Linearity ...................... rear chassis adjustment Horizontal Drive. ......... rear chassis screwdriver adjustment Horizontal Oscillator Frequency .... bottom chassis adjustment Horizontal Oscillator Waveform ....... side chassis adjustment Focus................................ rear chassis adjustment Ion Trap Magnet..................... top chassis adjustment Deflection Coil. ............. top chassis wing nut adjustment Focus Coil................ top chassis screwdriver adjustment Video Bias ........................ rear chassis adjustment

## HIGH VOLTAGE WARNING

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, IN. VOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NESESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

## KINESCOPE HANDLING PRECAUTIONS

DO NOT OPEN THE RINESCOPE SHIPPING CARTON, INSTALL, REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. REEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

[^22]The following adjustments are necessary when turning the receiver on for the firat time.

1. Turn the radio FUNCTION awitch to Tel.
2. Turn the receiver "ON" and advance the SOUND VOL. UME control to approximately mid-position.

## 3. Set the STATION SELECTOR to the desired channel.

4. Adjust the FINE TUNING control for best sound fidelity and SOUND VOLUME for suitable volume.
5. Turn the BRIGHTNESS control fully counterclockwise, then clockwise until a light pattern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZONTAL hold control until a picture is obtained and centered.
8. Turn the BRIGHTNESS control counterclockwise until the retrace lines just disappear.


Figure 1-Receiver Operating Controls
12. When the set is turned on again after an idie period, it should not be necessary to re peat the adjustments if the positions of the controls have not been changed. If any adjustment is necessary, step number 4 is generally sufficient.
13. If the positions of the controls have been changed, it may be necessary to repeat steps numbers 1 through 9 .
14. For radio operation turn the FUNCTION switch to AM or FM and tune in station with the radio TUNING control.
15. For phono operation, connect phono attachment to receiver and turn the FUNCTION switch to AUX.

## INSTALLATION INSTRUCTIONS

The Model 8TK320 television receives is shipped complete in one carton except for the l6AP4 kinescope. The kinescope is shipped in a special carton and should not be unpacked until ready for installation.

UNPACKING. - The 8TK320 receiver is packed in a cardboard carton. To unpack, turn the shipping carton on its side and tear open the carton bottom flaps. Fold the flaps up along the side of the carton and turn the carton back up. Lift the carton up and of the cabinet.

Remove the cabinet back grille. Remove all shipping material. Remove the envelope containing the control knobs and ion trap magnet.
To remove the front panel, loosen the two wingnuts inside the cabinet and furn the two locking plates to vertical as shown in Figure 2. Tilt the panel out at the top, reach in and semove the radio dial light sockets from the bracket on the front panel.

TO REMOVE FRONT PANEL LOOSEN WING NUTS AND TURN
LOCKING-PLATES TO VEATICAL. HINGE PANEL AT BOTTOM


Figure 2-Cabinet, Front View

Remove the protective cardboard shield from the $5 U 4 \mathrm{G}$ rectifler. Make sure all tubes are in place and are firmly seated in their sockets.

Remove the two self-tapping screws from the kinescope cushion slide as shown in Figure 3.

Loosen the two kinescope cushion adjustment wing screws and slide the cushion toward the rear of the chassis. Loosen the deflection yoke adjustment, slide the yoke toward the rear of the chassis and tighten.


Figure 3-Yoke and Focus Coil Adjustments
From the front of the cabinet, look through the deflection yoke and check the alignment of the focus coll with the yoke. If the focus coil is not in llne, loosen the two focus coil mounting screws and move the coil until alignment is obtained. Tighten the mounting screws with the coil in this position
Loosen the two lower kinescope tace centering slides, and set them at approximately mid-position. See Figure 2 for location of the slides and their adjustment screws. Loosen the two upper slides, slip them up as far as possible and tighten.

Check the centering slides. There should be a small wire clip on the inner surface of each. The clip in the lower left corner should be connected to the high voltage lead.

KINESCOPE HANDLING PRECAUTION. - Do not open the kinescope shipping carton, install, remove, or handle the kinescope in any manner, unless shatter-proof goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling. The shipping carton should be kept for use in case of future moves.

Handle this tube by the metal rim at the edge of the screen. Do not cover the glass bell of the tube with finger marks as it will produce leakage paths which may interfere with reception. If this portion of the tube has inadvertently been handled, wipe it clean with a cloth moistened with carbon tetrachloride.

KINESCOPE INSTALLATION. - Slip the cellulose boot over the metal cone of the kinescope, turn the tube so that the key on the tube base will be down and insert the kinescope neck through the deflection and focus coils as shown in Figure 4. If the tube sticks, or fails to slip into place smoothly, investigate and remove the cause of the trouble. Do not force the tube


## Figure f-Kinescope Insertion

Slip the ion trap magnet assembly over the neck of the kinescope with the large magnet towards the base of the tube.

Connect the kinescope socket to the tube base.
Adjust the four centering slides until the face of the kinescope is in the center of the cabinet opening. Tighten the four slides securely.

Wipe the kinescope screen surface and front panel safety glass clean of all dust and finger marks with a soft cloth moistened with the Drackett Co.'s "Windex" or similar cleaning agent.

As may be seen by inspection, the radio dial lights and dial pointer are attached to the cabinet front panel. The dial cord is attached to the receiver chassis. The method of attachment may be seen in Figure 5.


Figure 5-Dial Cord and Pointer Assembly
Before replacing the front panel, inspect the slit shields on the pilot light brackets to see that they are properly seated and that the slits line up with the dial light plate. Inspect the
dial pointer, associated carriage and dial cord to see the method of assembly. Slip the radio pilot lights on the brackets and use the attached piece of scotch tape to tape the pilot light leads to the front panel between the lights. Turn the set on and to radio position to see that the dial lighting is correct. If it is not, ad ust the dial lights and shields. Install the panel.

To hook up the dial pointer, turn the tuning shaft until the gang is fully meshed. lieach over the television chassis to the radio. slip the dial pointer to the low frequency end of the dial and press the dial cord well into the coil spring.

Slip the kinescope as far forward as possible. Slide the kinescope cushion firmly up against the flare of the tube and tighten the adjustment wing screws. Slide the deflection yoke as far forward as possible. If this is not done, difficulty will be encountered in adjusting the ion trap magnet and focus coil because of shadows on the corner of the raster.

The antenna connection should now be made. The link on the antenna terminal board on the back of the cabinet is for use in case it is desirable to connect a separate " $A$ " band antenna.

Install the front panel control knobs.
WARNING. - The high voltage supply in this receiver delivers 12,000 volts! If it is necessary to remove the kinescope after the receiver has been operating, short the kinescope cone to the chassis before attempting removal of or adjustments to the kinescope. A.C. interlocks are provided at the back of the set so that when the back is removed - so is the power.

Turn the power switch to the "on" position, the function switch to Tel, the brightness control fully clockwise, and picture control counterclockwise.

ION TRAP MAGNET ADJUSTMENT. - Looking at the kinescope gun structure, it will be observed that the second cylinder from the base inside the glass neck is provided with two small metal flags. The ion trap rear magnet poles should be approximately over the ion trap flags. Starting from this position adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust the focus control (R201 on the chassis rear apron) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The tinal touches on this adjustment should be made with the brightness control at the maximum position with which good line focus can be maintained.


## Figure 6-Rear Chassis Adjustments

DEFLECTION YOKE ADJUSTMENT. - If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE ADJUSTMENTS. - It will now be necessary to obtain a test pattern picture in order to make further adjustments. See steps 3 through 9 of the receiver operating instructions on page 3 .

If the Horizontal Oscillator is operating properly, it should be possible to sync the picture at this point.

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT. Turn the horizontal hold control to the extreme counterclockwise position. The picture should remain in horizontal sync. Momen. tarily remove the signal by switching oft channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be gradually reduced and when only 3 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull in should occur when the control is approximately 90 degrees from the extreme counterclockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should be out of sync and should show 1 vertical or diagonal black bar in the raster.
If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Centering Adjustment.

ALIGNMENT OF HORIZONTAL OSCILLATOR. - If in the above check the receiver failed to hold sync with the hold control at the extreme counterclockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull in point, it will be necessary to make the following adjustments.
Horizontal Frequency Adjustment. - Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the T109 horizontal frequency adjustment (under the chassis) until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster.

Horizontal Locking Range Adjustment. - Set the horizontal hold control to the full counterclockwise position. Momentarily remove the signal by switching off channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.
If more than 3 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer Cl53A slightly clockwise. If less than 3 bars are present, adjust Cl53A slightly counterclockwise. Turn the picture control counterclock. wise, momentarily remove the signal and recheck the number of bars present at the pull in point. Repeat this procedure until 3 bars are present.

Repeat the adjustments under "Horizontal Frequency Adjustment" and "Horizontal Locking Range Adjustment" until the conditions specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.

If it is impossible to sync the picture at this point and the AGC system is operating properly it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure. For field purposes paragraph "A" under Horizontal Oscillator Waveform Adjustment may be omitted.

CENTERING ADJUSTMENTS. - Centering is obtained by ad justment of the centering controls and by mechanically orient ing the focus coil with three adjustment screws shown in Figure 3. The focus coil should be concentric around the neck of the kinescope to prevent curvature of the raster.

Adjust the focus coil until it is at right angles to the neck of the kinescope. Center the picture with the electrical center ing controls. If a shadow appears on a corner of the picture, adjust the focus coil centering screws to eliminate the shadow and re-center the picture with the electrical centering controls.

FOCUS COIL ADJUSTMENTS. - If, after making the centering adjustments in the above paragraph, a corner of the picture is shadowed, it will be necessary to loosen the focus coil mounting screws (shown in Figure 3) and change the position of the coil to eliminate the shadow. Re-center the picture by adjustment of the electrical centering controls and the focus coil centering adjustments.

Recheck the position of the ion trap magnet to insure that maximum brilliance is obtained.
height and vertical linearity adjustments. - Ad. just the height control (R155 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (Rlb2
on rear apron) until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust vertical centering to align the picture with the mask

WIDTH, DRIVE AND HORIZONTAL LINEARITY ADJUSTMENTS. - Adjust the horizontal drive control Cl53B to give a picture of maximum width within the limits of good linearity. Adjust the horizontal linearity control Lll3 to provide best linearity.

A width control coil and a width selector switch are provided. With the switch in position 1 (fully counterclockwise), adjust the width coil until the picture fills the mask. On low line voltages it may not be possible to get sufficient width by adjustment of the width coil. In this case turn the width selector switch clockwise to position 2. In this position the width coil is disconnected, and adjustment of the width coil will have no effect. For still greater width, turn the width selector switch fully clockwise to position 3. In this position, the 6BG6G screen vultage is increased as well as disconnecting the width control coil.

Adjustments of the horizontal drive control affect horizontal oscillator hold and locking range. If the drive control was adjusted, recheck the oscillator alignment.

FOCUS. - Adjust the locus control (R201 on chassis rear apron) for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.
Check to see that the cushion and yoke thumbscrews and the focus coil mounting screws are tight.

VIDEO BIAS CONTROL. - Normally the video bias control (R206) should be in the fully clockwise position. To check to see it this is the correct position, turn the picture control clockwise and adjust the brightness control until the retrace lines just disappear. If the whites are compressed as indicated by a "washed out" appearance in light areas, turn the video bias control counterclockwise until the picture appears normal.
Replace the cabinet back and make sure that the screws holding it are up tight, otherwise it may rattle or buzz when the receiver is operated at high volume.

CHECK OF R.F OSCILLATOR ADJUSTMENTS. - Tune in all available stations to see if the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure. The adjustments for channels 2 through 5 and 7 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 7. Adjustment for channel 13 is on top of the chassis and channel 6 adjustment is in the kinescope well.


CAUTION. - The ion trap magnet employed for 16AP4 kine. scopes is not the same as that used on 10BP4 tubes. Care should be taken to insure that the proper magnet supplied with the instrument is used. The type magnet shown in Figure 3 carries the number 986432 -1 stamped on it .

RADIO OPERATION. - Turn the receiver function switch to AM and FM positions and check the radio for proper opera. tion. Tune in a station of known frequency. If the dial pointer does not point to the correct spot on the dial. slip the dial pointer on the dial cord until the proper indication is obtained.



The following measurements represent three sets of conditions. In the first condition, the tunction switch is in the television position and a 2200 micro volt test pattern signal was fed into the receiver and the picture synced. The second condition was obtained by removing the antenna leads and shor: circuiting the receiver antenna terminals. In the third condition, in order to get radio operating voltages, the function switch was placed in the F-M position. Voltages shown are read with "Jr. VoltOhmyst" between the indicated terminal and chassis ground and with the receiver operating on 117 volts, 60 cycles, a-c.

Tube No.	Tube Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		$\begin{gathered} \text { I } \\ \text { Plate } \\ \text { (ma.) } \end{gathered}$		Notes on Measurements
				Pin No.	Vclts	Pin No.	Volts	Pin No.	Volts	Pin No.	Volts			
V1	6AG5	R-F   Amplifier	$\underset{\text { Signal }}{2200 \mathrm{Mu} .}$	5	140	6	142	$2 \& 7$	0	1	-49	. 7	3	
			No Signal	5	67	6	111	287	0	1	-0 3	14.0	50	
V2	6AG5	Converter	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \\ \hline \end{gathered}$	5	137	6	137	$2 \& 7$	0	1	- -54	-	-	* Depending
			No Signal	5	108	6	108	$2 \& 7$	0	1	$\begin{gathered} -2.0 \\ \text { to }-70 \end{gathered}$	$\begin{aligned} & \text { * } 6.0 \\ & \text { to } 10 \end{aligned}$	$\begin{gathered} 15 \\ \operatorname{to} 30 \end{gathered}$	upon channel
V3	6J6	$R-F$   Oscillator	$2200 \mathrm{Mu} . \mathrm{V}$. Signal	182	90.5	-	--	7	19	586	- -7.0	-	-	${ }^{*}$ Depending
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	182	$\begin{gathered} 68 \\ \text { to } 81 \end{gathered}$	-	-	7	16	5\&6	$\begin{gathered} -4.5 \\ \text { to }-66 \end{gathered}$	$\begin{gathered} 1.8 \\ \text { to } 2.1 \end{gathered}$	-	upon channel
V101	6AG5	1st Pix. I-F Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	136	6	136	287	$<0.1$	1	-4.2	05	0.1	
			No Signal	5	110	6	103	$2 \& 7$	017	1	$-1.5$	38	0.6	
V102	6AG5	2d Pix. I-F Amplifier	$\begin{gathered} 2200 \mathrm{M} \perp . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	122	6	122	$2 \& 7$	09	1	0	10.3	29	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	96	6	100	2\& 7	0.6	1	0	6.8	20	
V103	6AG5	3d Pix. I-F Amplifier	$2200 \mathrm{Mu} . \mathrm{V} .$ Signal	5	130	6	137	2\& 7	$<0.1$	1	-4.2	10	3	
			No Signal	5	95	6	106	2\& 7	0.17	1	-15	36	8	
V104	6AG5	4th Pix. I-F Amplifier	$2200 \mathrm{Mu} . \mathrm{V} \text {. }$ Signal	5	194	6	137	$2 \& 7$	16	1	0	8.3	2.7	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	5	200	6	113	$2 \& 7$	12	1	0	7.1	1.4	
$\begin{gathered} \text { V105 } \end{gathered}$	6AL5	Picture 2d Det.	$\begin{gathered} 2200 \text { Mu. V. } \\ \text { Signal } \end{gathered}$	7	-117	--	-	1	-115	-	-	02	-	
			No Signal	7	-130	-	-	1	-125	-	-	0.3	-	
$\begin{gathered} \mathrm{V} 105 \\ \mathrm{~B} \end{gathered}$	6AL5	Sync Limiter	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \end{gathered}$	2	-131	-	-	5	-46	-	-	$<0.1$	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	2	-100	-	-	5	-52	-	-	$<0.1$	-	
V106	6AU6	lst Video Amplifier	$2200 \mathrm{Mu} . \mathrm{V} .$ Signal	5	-68	6	27	7	$-114.5$	1	$-117$	3.9	18	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	-72	6	25	7	-124	1	-130	3.7	1.6	
V107	$\begin{aligned} & 6 \mathrm{~K} 6 \\ & \mathrm{GT} \end{aligned}$	2d Video Amplifier	2200 Mu . V. Signal	3	*68	4	140	8	-47	5	-68	10.0	2.5	-Maximum
			No Signal	3	*34	4	120	8	-52	5	-72	11.0	23	contrast
$\begin{gathered} \text { V108 } \\ \text { A } \end{gathered}$	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	AGC Amplifier	$\begin{gathered} 2200 \text { Mu. V. } \\ \text { Signal } \end{gathered}$	5	-24	-	-	6	-50	4	-51	0.4	-	
			No Signal	5	-7	-	-	6	-56	4	$-60$	$<0.1$	-	
$\begin{gathered} \text { V108 } \\ \mathbf{B} \end{gathered}$	$\begin{aligned} & \text { 6SN } 7 \\ & \text { GT } \end{aligned}$	Vertical Oscillator	2200 Mu . V. Signal	2	54	-	-	3	-110	1	-157	0.32	-	
			No Signal	2	39	-	-	3	-125	1	-171	0.32	-	
V109	6SN7	AGC   Rectifier	2200 Mu . V. Signal	5	27	-	-	6	-51	4	-68	0.25	-	
			No Signal	5	19	-	-	6	-59	4	$-70$	0.25	-	
V109	$\begin{aligned} & \text { 6SN 7 } \\ & \text { GT } \end{aligned}$	1st Sync Separator	$\begin{aligned} & 2200 \mathrm{Mu} . \mathrm{V} . \\ & \text { Signal } \end{aligned}$	2	23	-	-	3	-52	1	-68	0.13	-	
			No Signal	2	18	-	-	3	-63	1	$-70$	0. 18	-	
V110	$\begin{aligned} & \text { 6SN } 7 \\ & \text { GT } \end{aligned}$	Sync Amplifier	2200 Mu . V. Signal	2	81	-	-	3	--46	1	-48	10.8	-	
			No Signal	2	71	--	-	3	-50	1	-54	10.8	-	
V110	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Sync Separator	$2200 \mathrm{Mu} . \mathrm{V} .$ Signal	5	210	-	-	6	-44	4	-131	0.34	-	
			No Signal	5	200	-	-	6	-51	4	$-100$	0. 15	-	



It any lead dressing is necessary, it should be done before aligning the receiver. When making a complete alignment tollow the table below in sequence. If only a portion of the circuit is to be aligned select the portion required and follow with the remaining steps in the section. Any adjustments made on the 455 kc . l-F's make it necessary to adjust the 10.7 mc . I-F's.

## "AM" R-F-I-F ALIGNMENT

Test-Oscillator. - For all alignment operations, connect low side of the test-osc. to the receiver chassis, and keep the osc. output as low as possible to avoid a-v-c action. Output Meter. - Connect the meter across the speaker voice coil, and turn the receiver volume control to max.

Steps	Connect the High Side of the Test. Osc. to-	Tune Test Osc. to-	Function Switch	Tum Radio Dial to	Adjust the following
1	Antenna terminal in series with .01 mid .	455 kc. Modulated	AM	Low Freq. end of Dial	†Top and bot. coren of T301 and T302. (For max. voltage across voice coll.)
2	Ant. terminal through dummy ant. of 200 mmis.	$1,620 \mathrm{kc}$.	AM	Min. capaclty	Osc. C308 for maximum output.
3		1.400 kc .	AM	Tune to signal	Ant. C304 for maximum output.
4		600 kc .	AM	600 kc .	Osc. L306 and Anl. L303.
5	Repeal steps 2. 3 and 4 for maximum output.				

$\dagger$ Use alternate loading. Connect an $18,000 \cdot 0 \mathrm{hm}$ resistor across the primary to load the plate winding while the grid winding of the same transformer is being peaked. Then load the grid winding with the 18,000 -ohm resistor while the plate winding is being peaked.

RATIO DETECTOR ALIGNMENT
Connect probe of "VoltOhmyst" to negative side of C328 and low side to chassis. Connect output meter across speaker voice coil.

Stops	Connect the High Side of the Test. Osc. to-	Tune Test Osc. to-	Function Switch	Radio Dial Tuned to -	Adjust
6	Pin No. 1 of 6AU6 (V303) io series with .01 mid.   Pin No. 1 of 6AU6 (V303) in series with .01 mid.	$\begin{gathered} 10.7 \mathrm{mc} . \\ 30 \% \text { 凡M } \\ \text { Modulated } \end{gathered}$	FM	- -	Top of T303 for maximum DC on "VoltOhmyst."
7			FM	-——	Bottom of T303 for minimum audio outpul on meter.
8	Repeat steps 6 and 7 as necessary making final adjustment with r-i input level set to give approximately -3.0 volte d-c on "VoltOhmyst."				

"FM" R-F-I-F ALIGNMENT

Stopa	Connect the High Side of the Test. Ose. to-	$\begin{aligned} & \text { Tune Test Osc. } \\ & \text { to- } \end{aligned}$	Function Switch	Radio Dial Tuned to	Rdjust
9	Torminal 3 of S 302 rear through 270 ohms.	10.7 mc .	FM	88 mc .	-T301 and T302 with r-f input set to give -3 volte on "VoltOhmyst."
10	Terminal 3 of S302 rear through 270 ohme.	106 mc .	FM	108 mc .	Set C302 to max. capacity. Squeeze L307 and adjust C302 for maximum.
11	Terminal 3 of S302 rear through 270 ohms.	90 mc .	FM	Tune to elgad	Squeese L301 and rock gang for maximum output.
12	Repeat stops 10 and 11 as required.				

- Use a 680 -ohm resistor to load the plate winding while the grid winding of the same transformer is being peaked. Then the grid winding is loaded with 680 -ohm resistor while the plate winding is being peaked.


Figure 11-Dial and Drive Cord Assembly

## CRITICAL LEAD DRESS:

1. Ground lead on pin 2 of V302 and V303 should be dressed down flat on chassis.
2. Dual .005 mid . capacitors and diode filter should be dressed to clear the bottom of the cabinet.
3. Dress C329 across V302 sockets with short and direct leads.
4. Dress V302 plate lead from pin 5 down to the chassin.
5. Dress AVC lead from R321 to switch down to chassis and against back of gang mounting plate.
6. Dress lead from pin 6 of V305 down to chassis and againat back of gang mounting plate.
7. Dress AVC lead from Iet I-F to switch againut chaseis and against gang mounting plate.
8. Dress lead from switch to pin 1 of V301 against plate supporting gang.
9. Dress all insulated F.M leads down to chassis.
10. Connect C309 with short lead to pin 6 of V301 keeping body of cap away from plate lead and switch terminals.
11. The coupling between L301 and L307 should be adjusted to give proper injection voltage to the mixer grid. This has been found to be correct when the distance between adjacent end turns is $3 / \mathbf{" 月}^{\prime \prime}$ to $7 / 10^{\prime \prime}$ measured at top of the form.
12. Dress cabled leads away from antenna transmlssion lines.
13. Dress all uninsulated bus wire so as to avoid short circuits.

Following is a list of symptoms of possible failures and an indication of some of the possible faults.

## NO RASTER ON KINESCOPE:

(1) Incorrect adjustment of ion trap magnet-Magnets reversed either front to back or top to bottom, front magnet incorrectly oriented.
(2) V113, V114 or V115 inoperative -check voltage and waveform on grids and plates.
(3) No high voltage-If horizontal deflection is operating as evidenced by the correct waveform on terminal 4 of horizontal output transformer, the trouble can be isolated to the 8016 circuit. Either the TllO high voltage winding is open (points 2 to 3), an 8016 tube is defective, its filament circuit is open, C167, CI68 or Cl87 is shorted or R189, R190, R191. R192 or R193 is open.
(4) Vll2 circuit inoperative - Refer to schematic and waveform chart.
(5) Damper tube (V116) inoperative.
(6) Defective kinescope.
(7) R223 open (terminal 3 to R224).
(8) No receiver plate voltage-filter capacitor or filter choke shorted-bleeder or filter choke open.

## NO VERTICAL DEFLECTION:

(1) V108B or V1ll inoperative-check voltage and wavelorms on grids and plates.
(2) T107 or T108 open.
(3) Vertical deflection coils open.

## SMALL RASTER:

(1) Low Plus B or low line voltage.
(2) V113 defective.

## POOR VERTICAL LINEARITY:

(1) If adjustment cannot correct, change Vlll.
(2) Vertical output transformer defective.
(3) V108B defective check voltage and wavelorms on grid and plate.
(4) C147, R164, C148B or C150C defective.
(5) Low bias or plate voltage-check rectitiers and capacitors in supply circuits.

## POOR HORIZONTAL LINEARITY:

(1) If adjustments do not correct, change V113 or V116.
(2) T110 or L113 defective.
(3) C164 or C165 defective.

## WRINXLES ON LEFT SIDE OF RASTER:

(1) R166, R167 or Cl69 defective.
(2) Defective yoke.

## PICTURE OUT OF SYNC HORIZONTALLY:

(1) T109 incorrectly tuned.
(2) R172, R173, R174, R176 or R178 defective.

## TRAPEZOIDAL OR NON.SYMMETRICAL RASTER:

(1) Improper adjustment of focus coil or ion trap magnet.
(2) Defective yoke.

## RASTER AND SIGNAL ON KINESCOPE BUT NO SOUND:

(1) R-F oscillator off frequency.
(2) Sound i-f, discriminator or audio amplifier inoperativecheck V119, V120. V121, V122. V123 and their socket voltages.
(3) T114 or C186 defective.
(4) Speaker defective.

## SIGNAL AT KINESCOPE GRID BUT NO SYNC:

(1) V105A. V106, V108A, V109 or Vlll inoperative check voltage and waveforms at their grids and plates.
(2) Check Vl04. Try another tube.

SIGNAL ON KINESCOPE GRID BUT NO VERTICAL SYNC:
(1) Check V108B and associated circuit-Cl45. T107, etc.
(2) Integrating network inoperative-check.
(3) R154, Rl55, R157. Rl58 or Rl59 defective.

SIGNAL ON KINESCOPE GRID BUT NO HORIZONTAL SYNC:
(1) Tl09 misadjusted-readjust as instructed.
(2) V112 inoperative - check socket voltages and waveloms.
(3) T109 defective.
(4) Cl40, Cl53A, C154, C155, Cl57 or Cl 66 defective.
(5) If horizontal speed is completely off and cannot be adjusted check Cl58, C159, R172, R173, R174, R179 and R182.

## SOUND AND RASTER BUT NO PICTURE OR SYNC:

(l) Picture i-f, detector or video amplifier inoperative-check V103. V104, V105, V106 and V107-check socket voltages.
(2) Bad contact to kinescope grid.

## PICTURE STABLE BUT POOR RESOLUTION:

(1) V105A, V106 or V107 defective.
(2) Peaking coils defective-chock for specified resistance.
(3) Make sure that the focus control operates on both sides of proper focus.
(4) R-F and I-F circuite misaligned.

## PICTURE SMEAR:

(1) R-F or I-F circuits misaligned.
(2) Open peaking coil.
(3) This trouble can originate at the transmitter-check on another station.

## PICTURE JTIER:

(1) Check for proper operation of hold controls.
(2) If regular sections at the left picture are displaced change V113.
(3) Vertical instability may be due to loose connections or noise.
(4) Horizontal instability may be due to unstable transmitted sync.

## RASTER BUT NO SOUND, PICTURE OR SYNC:

(1) Defective antenna or transmission line.
(2) R-F oscillator of trequency.
(3) R-F unit inoperative-check V1, V2, V3.

PICTURE I-F RESPONSE. - At times it may be desirable to observe the individual i-f stage response. This can be achieved by the following method:
Shunt all i-f transformers and coils with a 330 ohm carbon resistor except the one whose response is to be observed.
Connect a wide band sweep generator to the converter grid and adjust it to sweep from 18 mc . to 30 mc .

DARE VERTICAL LNE ON LEFT OF PICTURE:
(1) Reduce horizontal drive and readjust width and horisontal linearity.
(2) Replace V113.

LIGHT VERTICAL LINE ON LEFT OF PICTURE:
(1) Cl69 defective.
(2) V116 defective.

Connect the oscilloscope across the picture detector load resistor and observe the overall response. The response obtained will be essentially that of the unshunted stage. The effects of the various traps are also visible on the stage response.

## television critical lead dress

1. The ground bus from pin 2 and the center shield of V120 socket should not be shortened or rerouted.
2. Dress the body of Rl95 as close to tube pin as possible.
3. Do not change the dress of the filament leads or the bypass capacitors in the picture or sound i-f circuits. The filament leads between V120, V121 and V122 should be down against the chassis and away from grid or plate leads.
4. Dress all leads crossing the i-f circuite close to the chassis and held so they cannot move and change alignment.
5. If it is necessary to replace any of the 1500 mmi. capacitors in the picture i-f circuit, the lead length must be kept as short as possible.
6. Picture i-f coupling capacitors Cl06, Cl11, Cl15 and Cl21 should be up and away from the chassis and should be clear of the pix i-f transformer adjustments by at least $1 / 4$ inch. If the dress of any of these capacitors is changed. the i-f allgnment should be rechecked.
7. Leads to L102 and L103 must be as short as possible.
8. Dress peaking coils LiC5, L106, L107, L108 and L109 up and away from the chassis.
9. Dress R129 awcy from L109.
10. Dress C183 actoss V121 tube pins 5 and 6 with leade not oxceeding $1 / 6$ inch.
11. Dress C129 and C199 up and away from the chassis.
12. Dress the blue lead from pin 5 of V122 down against the chassis and under two shielded leads.
13. Dress the yellow lead from the picture control away from the chassis. Dress the yellow lead from pin 8 of V106 away from the chassis.
14. Dress the green lead from pin 8 of V107 away from the chassis.
15. Dress Rl68, R169, R170, R176 and R178 up and away from the chassis.
16. The leads to the volume control should be dressed down against the chassis and away from V119 and V120.
17. Dress the red and yellow lead from the power iransformer away from the two terminal boards on the end apron of the chassis and away from all audio circults.
18. Dress the yoke red horizontal deflection lead under the clips of the fixed H. V. shield.
19. Dress the green lead from Cl66 close to the chassis and away from the red lead connected to T110-4.
20. Insert the red lead into T110.4 from the top of the terminal.
21. All soldered connections in the high voltage compartment should be tree of sharp pointe.
22. Contact between the r-f oscillator frequency adjustment screws and the oscillator coils or channel switch eyelets must be avoided.

TEST PATTERN PHOTOGRAPHS


Figure 12-Normal Picture
$\qquad$


Figure 14-Horizontal Linearity Control Misadjusted (Picture Cramped in Middle)
$\longrightarrow$

Figure 15-Width Control Misaljusted


Figure 16-Horizontal Drive Control Misadjusted

## -

Figure 17-Transients
$\rightarrow$


Figure 18-Test Pattern Showing Out of Sync Condition When Horizontal Hold Control Is in a Counterclockwise Post-tion-Just Before Pulling Into Sync

Figure 19-Test Pattern Show ing Out of Sync Condition When Horizontal Hold Control Is at the Maximam Clockwise Position



Figure 20-Radio Chassis Wiring Diagram (RK135A)

## R-F UNIT WIRING DIAGRAM



Figure 21 -R.F Unit Wiring Diagram

${ }_{8 \text { rras20 }}^{58}$


	simed	x
		边
	${ }^{n 3}$	
\％osmen	，	边
边		
mime	${ }_{\text {maz }}$	\％oic
边		
min		
	${ }^{\text {masem }}$	matio
\％merseme		deme
		${ }^{\text {a }}$
min		
anemememe		ceiete creme
	simb	
		边
Nameme		边
		边
		mex
	$\substack{\begin{subarray}{c}{2021 \\ \text { nexo }} }} \\{\hline} \end{subarray}$	隹
		Nome
		为
䢕		mimerime
		mind





[^0]:    Copyright, 1950, by Radio Corporation of America, RCA Victor Division, Camden, N. J., U. S. A.

[^1]:    ＊＊Exact equivalent of Zenith Z1－S and Ray－O－Vac PFI；slightly larger than Burgess TF and Eveready 1052P．＊Pacific Coast price．Wax dipped．$\ddagger$ Includes term，height which aver， $1 / 8^{\prime \prime}$ ．

[^2]:    In some instruments speakers stamped 92572.4 W have been used as a substitute for the specified speaker (92572-2W). For replacement use the specified speaker (Stock No. 72201).

[^3]:    ＂Tuning condenser at high frequency end．
    $\dagger$ Tuning condenser at low frequency end．

    RADIO CHASSIS CATHODE CURRENTS（MA） \begin{tabular}{|r|r|r|r|r|r|r|}
    \hline V1 \& 6BA6 \& No．7 \& 16.9 \& 16.5 \& 16.5 \& 14 <br>
    \hline V2 \& 6BA6 \& No．7 \& 3.1 \& 3.2 \& 3.8 \& 4.9 <br>
    \hline

 

    \hline$V 2$ \& VBA6 \& No．7 \& 3.1 \& 3.2 \& 3.8 \& 4.9 <br>
    \hline$V 2$ \& VBE \& No． 2 \& \& 14.1 \& 14.1 \& 15.8 <br>
    \hline

 

    \hline V4 \& 6BA6 \& No．7 \& 14 \& 13.8 \& 13.8 \& 13.2 <br>
    \hline

 

    \hline V5 \& 6AU6 \& No．7 \& 1.8 \& 1.8 \& 1.8 \& 3.9 <br>
    \hline V6 \& \& NAU \& \& <br>
    \hline

 

    \hline V6 \& 6AU6 \& No．7 \& 0 \& 0 \& 0 \& 18.3 <br>
    \hline V7 \& 6AL5 \& \& 0 \& 0 \& 0 \& 0 <br>
    \hline

 

    \hline V7 6AL5 \& $\cdots$ \& 0 \& 0 \& 0 \& 0 <br>
    \hline
    \end{tabular}

    
     Voltages measured with Chanalyst or Voltohmyst and
    should hold within $\pm 20 \%$ with rated power supply．No

[^4]:    Stock No. 72953 is a teel containing 250 teel of cord.

[^5]:    Addition to Parts List
    $71923 \begin{gathered}\text { Capaciior-Thbular. } 01 \mathrm{mt..} 200 \mathrm{v.} \text { (C38) (same as } \\ \text { C23. C36) }\end{gathered}$

[^6]:    † STOCK NO. 72953 IS A REEL CONTAINING 250 FEET OF CORD.

[^7]:    $\dagger$ This is a reel containing 250 ft . of cord. urder from your distributor by specifying Stock No. snd length reguired.

[^8]:    ©32+1 Full-Woor pull for blonde insiru ments Pull-I)our pull for w:alnut and mat hogany instruments
    7176t Hinge-Cabinct door hinge (2 re quired) for walnus and mahogany instru nients

[^9]:    Xif97 Cloth-Grille clorh
    73417 Decal-Conrmi panel decal
    $73+17$ Secal-Conron panel
    72800 Knoh-Control Knoh
    The ahove parts are for use on instruments with a
    hlonde mahogany cabinet.
    73479 Stud- $1 / 4^{\prime \prime}-20 \times 21 / /^{\prime \prime}$ Stud to mount RP-177
    record changer (4 required)

[^10]:    - Near the correct core position the zero point is approached rapidly and continued adjustment causes the indicated polarity to reverse. $A$ slow approach to the zero point is an indication of severe detuning, and the bottom core should be furned in the op posite direction
    * The zero d-c balance and the minimum A-F output should occur at the same point: if such is not the case, the two cores should be adjusted until both occur with no further adjustmen of either core. It may be advantageous to adjust both cores simultaneously, watching the Voltohmyst, and an output meter connected across the voice coil for the point at which both zero d.c and minimum output occurs.

    NOTE. Two or more points may be found which will satisfy the condition required in slep 4. T7 top core should be correctly adjusted when approximately $1 / 8$ inch of threads extend above the can, therefore, it is desirable to start adjustment with the top core in its furthest "in" position and turn out, while adjusting the bot tom core, until the first point of minimum A-F and minimum d-c is reached.

[^11]:    Specifications continued on page 3

[^12]:    The kinescope bulb encloses a high vacuum and, due to its large surface area, is subjected to considerable air pressure. For these reasons, kinescopes must be handled with more care than ordinary receiving tubes.

    The large end of the kinescope bulb-particularly that part at the rim of the viewing surlace-must not be struck, scratched or subjected to more than moderate pressure at any time. In installation, if the tube sticks or fails to slip smoothly into fts socket, or deflecting yoke, investigate and remove the cause of the trouble. Do not force the fube. Refer to the receiver Instaliation Instructions section for detailed Instruction on kin escope installation. All RCA kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the receiver. Keep the carton for possible future use.

[^13]:    * Junction of C14 and R6 in unlts where C14 is fixed.

[^14]:    - Junction of C14 and R6 in units where C14 is fixed.
    $\dagger$ In some receivers, Tl09 is replaced by Llo4,

[^15]:    Specificatione continued on page 2

[^16]:    The kinescope bulb encloses a high vacuum and, due to its large surlace area, is subjected to considerable air pressure. For these reasons, kinescopes must be handled with more ca:e than ordinary receiving tubes,

    The large end of the kinescope bulb-particularly that part at the rim of the viewing surlace-must not be struck, scratched or subjected to more than moderate pressure at any time. In installation, if the tube sticks or fails to slip smoothly into its socket, or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Reler to the Recelver Installation section for detailed instructions on kinescope in tallation. All RCA kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the receiver. Keep the carton for possible future use.

[^17]:    The large end of the kinescope bulb-particularly that part at the rim of the viewing surface-must not be struck. scratched or subjected to more than moderate pressure at any time. In installation. if the lube sticks or faile to slip amoothly into tis sockel or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Refer to the Recelver Instaliation eection for detailed instructions on kinescope installation. All RCA kinescopes are shipped in special cartons and should be left in the cartons untll ready for installation in the recelver. Keep the carton for possible future use.

[^18]:    If the response on any channel (ateps 31 through 34) is below $\mathbf{8 0 \%}$ : either marker, switch to that channel and adjust L9, LI3, L66 \& Cl2

[^19]:    The large end of the kinescope bulb-particularly that part at the rim of the viewing suriace-must not be struck, scratched or subfocted to more than moderate pressure at any time. In installation, If the tube sticks or fails to ship smoothly into its sockel or deflecting poke. Investigate and remove the cause of the trouble. Do not force the tube. Befer to the Receiver Installation section for detailed instructions on kinescope installation. All RCA kinescopes are shipped in special cartons and should be left in the cartons until ready for installation th the recelver. Koep the carton for possible future use.

[^20]:    The large end of the kinescope bulb-particularly that part at the rim of the viewing surface-must not be struck, scratched, or subjected to more than moderate pressure at any time. In installation, if the tube sticks or fails to slip smoothly into its socket or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Reler to the Receiver Installation section for detailed instructions on kinescope installation. All RCA kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the receiver. Keep the carton for possible future use.

[^21]:    4. Turn power switch off manually.

    Turn power swich off manually.

[^22]:    The kinescope bulb encloses a high vacuum and, due to tis large surface area, is sublected to considerable air pressure. For these reasons, kinescopes must be handied with more care than ordinary receiving lubes.

    The large end of the kinescope bulb-particularly that part at the rim of the viewing surface-must not be struck, scratched or sub. jected to more than moderate pressure at any time. In installation, if the tube sticks or falls to slip smoothly into its socket, or deflecting yoke, investigate cand remove the cause of the trouble. Do not force the tube. Refor to the Receiver Installation section for detailed instructions on kinescope installation. All RCA kinescopes are shipped in special cartons and should be left in the cartons untll ready for installation in the receiver. Keep the carton for possible future use.

