RCA VICTOR SERVICE DATA

VOLUME V
 1949

RADIO RECEIVERS

PHONOGRAPHS

TELEVISION

RADIOCORPORATIONOFAMERICA
RCA Victor Division Harris on, N. J., U.S. A.

rca Victor
 SBRICEDATA

 - television recelvers - RADIO RECEIVERS -PHONOGRAPHS

This volume is a compilation of Service Data previously issued for the year 1949 with the latest changes and corrections.
SEE YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS

PREPARED BY RCA SERVICE CO., INC.
FOR

RADIO CORPORATION OF AMERICA

rca victor division
harrison, N. J., U. S. A.

INDEX

The page numbers given in the index below refor to the number at the top of the pages. The numbers which are found in the toxt and at the bottom of some pages refer only to that particular Service Data.
The regular Service Data is contained in pages having Arabic numerale (1, 2, 3, etc.), supplementary data and last minute information le contalned in pages having Roman numerals (I. II. III. otc.).

RADIOS AND RECORD PLAYERS

Model No.	Chessis No.	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
4QB3	.RC1071	1
4QB3X	.RC1071A	. 1
5QA5	.RC1072	. 7
6QP3	.RC1067	13
7Q51X	.RC1055D	19
8X541RCl065,		
	RC1065	

8X542RCl065A, RCl065D, RC1065H, RCl065K, RCl065M 23
8X544RCl065, RCl065C, RCl065F 23
8X545RCl065, RCl065C, RCl065F 23
8X546RCl065A, RCl065D, RC1065H 23
8X547RCl065A, RCl065D, RCl065H, RCl065K, RCl065M 23
9BX5RCl059B، RC1059C 27
9BX56RCl068 ... 31
9EY3RS132 ... 35
9EYM3RS132 ...37, XIV
9EY31RA79 .. 39
9EY32RA79 ... 39
9EY35RS132, RS132A 41
9EY35URS132, RS132A 41
9EY36RS132, RS132A 41
9EY36URS132, RS132A 41
9JYRecord Player43, XIV
9JYMRecord Player45, XIV
9Q53RC614 .. 47

9W78RCl084A .. 57
9W101RC618B ... 65,77
9W102RC618D ...75، 67
9W103RC618B ..65, 77
9W105RC618C ..65, 77
9W106RC622 ... 79
9X561RC1079B ... 89
9X562RC1079C ... 89
9X571RCl079, RCl079E 91
9X572RCl079A, RCl079F 91
9X641RC108095, XV
9X642RCl080A95, XV
9X651RC1085 ... 97
9X652RC1085A ... 97
9Y7RC1057B .. 101
9Y51RCl077 ... 105

RK137-1Pickup KitXVI
RK137-2Pickup KitXVI

1943-1948 SERVICE DATA LISTING

The Sorvice Data listed below will be found in the 1943-1946 or in the 1947-1948 Bound Volumes of RCA Victor Service Data. Supplementary information is designated with an " 5 " as a prefix to the bound volume designation.

Model Bound Volume	Model Bownd Volame	Model Bound Volums
QHI .-...1947-1948	Q32 ...1943-1946	665-11943-1946
	Q34 ..1943-1946	66×1, 66×2, 66×3, 66×7,
5H ..1943-1946	Q36n.............................1943-1946	$66 \times 8,66 \times 9$...................1943-1946
5H1, 5H21943-1946	CV42 ...1943-1946	66×11, 66×12, 66×131943-1946
5Q21, 5Q22, 5Q271947-1948	CV451943-1946	66×11, 66×12, 66×1351947-1948
5031 ...1947-1948	54B1, 54B1-N, 54B2, 54B3,	67V1, 67AV11943-1946
5031X ..1947-1948	5485, 54861943-1946	67VI, 67AVI1947-1948
6J, 6JM1943-1946	5481, 54B1-N, 54B2, 54 B3,	68R1, 68R2, 68R3, 68R4 …1943-1946
6033 ..1947-1948	5485, 5486 1947-1948	68R1, 68R2, 68R3, 68R4 ...51947-1948
6Q33X ...1947-1948	55F ... 1943 -1946	QU681947-1948
60U3 ...1947-1948	55U, 55AU ……............................1943-1946	QU72, QU72A1943-1946
60V3 ..1947-1948	Q855 ...1943-1946	75×11, 75×12, 75×14,
7051 ..1947-1948	Q855 ... $1947-1948$	75×15, $75 \times 16,75 \times 17$,
7QV5 ……..................................1947-1948	Q855X ..1943-1946	75×18, 75×191943-1946
8841, 8842, 8843, 88461947-1948		75ZU ……................................1947-1948
88×5..1947-1948	56X, 56x2, 56X3 ……….......1943-1946	762×11, 762X121947-1948
80X6 ……..............................1947-1948	56×5..1943-1946	770 ..1947-1948
88X54, 18×551947-1948	56×10..13-1946	77V1 ...1947-1948
88X65 …………...........................1》47-1948	56X11 ... 1943-1946	77V2 ..1947-1948
8F43 ……....................................1947-1948	58V, 58AV ……...........................1943-1946	Q103. Q103A1943-1946
8PCS41 ..1947-1948	59V1, 59AV11943-1946	Q103-2, Q103A-21943-1946
8R71, 8R721947-1948	Q860 .. 1947-1948	Q109 ...1947-1948
8R71, 8R72 S1949		Q109X ..ne......................................1947-1948
8R74, BR75, 8R761947-1948	QU61 ..1943-1946	Q110 ..1943-1946
8T241.8T243.8T2441947-1948	Rad. 61-11943-1946	CVII2X1943-1946
8T270, 8TC2711947-1948	Rad. 61-2 .. $1943-1946$	Q121 ...1943-1946
8TK29, 8TR291947-1948	Rad. 61-31943-1946	Q122, Q122X1943-1946
8 8530 …….................................1947-1948	Rad. 61-51943-1946	RP176, RP176A, RP1768 1943-1946
8TV41 ...1947-1948	Rad. 61-6 ...1943-1946	RP176. RPI76A, RPI76B ...51947-1948
8TV321, 8TV3221947-1948	Rad. 61-7 ..1943-1946	RP177 ...13-1946
8V7 ..1947-1948	Rad. 61-8 ...1943-1946	RP177, RP177A, RP177B1947-1948
8V90 ……..................................1947-1948	Rad. 61-91943-1946	RP1781947-1948
8V91 ..1947-1948		610V1, 610V21943-1946
8V91 ... 51949	Posfone (PX) 61-101943-1946	610 V 1.610 V 2 $51947-1948$
8V112 ..1948	QU62 ..1947-1948	612V1, 612V3, 612V41943-1946
8V112 ...	Rad. 62-11943-1946	612V1, 612V3, 612V451947-1948
8V151 ...1947-1948	63E, 635Mano...an.....................1943-1946	621TS ...1943-1946
8×53..1947-1948	64F1, 64F2, 64F3 ……............1943-1946	630TS, 630TCS1943-1946
$8 \times 71,8 \times 72$ ……........................1947-1948	S5BR9 ………….................................1943-1946	641TV19478
8×71. 8×72................................... 51949	65BR9 ...51947-1948	648PTK ...1947-1948
8 $\times 521,8 \times 522$......................1947-1948	Rad. R650R91943-1946	648PV1947-1948
$8 \times 541.8 \times 542,8 \times 544$.	Rad. R65ER951947-1948	711V1, 711V2, 711 V1947-1948
$8 \times 545,8 \times 546,8 \times 5471947-1948$	65F ..1943-1946	721TS, 721TCS1947-1948
$8 \times 541,8 \times 542,8 \times 544$,	65U, 65AU1943-1946	730TV1, 730TV21947-1948
$8 \times 545,8 \times 546,8 \times 547 \ldots \ldots \ldots51949$	65U-1 ..1943-1946	741PCS
8X681, 8X682 ……...............1947-1948	65X1, 65×2 ………….............1943-1946	960001 Series1943-1946
Q10, Q10A . 1943 -1946	65×1, 65×2 51947-1948	960015 Series1943-1946
Q10-2, Q10A-21943-1946	65×8, 65X91943-1946	960260-1, -2, -3, -41943-1946
Q10-31943-1946	668X ...1943-1946	9602761947-1948
Q811, QB12, Q813 … $\quad 1943-1946$	66E ……...1943-1946	TV Circuit Description …........1947-1948

MODEL vs. RECORD CHANGER (1943 to 1949)

Model	Record Changer	Model	Record Changer	Model Record Changer	Model Record Changer
©QU3	RP 178.3	9EY3SU	RP 188	9TW390RP 168 \& RP 177B	$810 \mathrm{~V} 1.960001-5$ or -6 or RP 177
6QV3	HP 178-3	9EY36	RP 168	55U. 55AU980015	$610 \mathrm{~V} 2 . .960001-5$ or -6 or RP 177
7QV5	960001 -4	9EY36U	RP 188	58V. 58AV $980001-1$	612 V 1RP 176A or RP 178B
erv41	RP 177A	9 9Y	RP 168	59V1. 59AV1980001-2	$612 \mathrm{~V} 3 \ldots \ldots \ldots .$. RP 176 or RP 178A
etV321	AP 178	9W51	RP 168	QU81 360001.4	612 V ($\ldots \ldots \ldots \mathrm{RP} 176$ or RP 178A
8TV323	AP 178	9W78	RP 168 \& RP 178	QU62 $960001-4$	641TV960001-1 or 6
8V7	RP 178	9W101	MP 188	Rad. 62-1960260-2	648PVRP 176
8Vs0	RP 178	9W102	RP 168	65U. 65AU960280-2	710V2 177 or RP 177A
8 V 1	AP 178	9W103	RP 168	65U-1960260-2	730TV1RP 177 or RP 177A
8 V 112	.RP 178	9W105	RP 168 \& RP 178	67V1. 67AV1960260-1	730TV2 $\ldots \ldots \ldots .$. RP 177 or RP 177A
8 V 151	AP 177 ${ }^{\text {a }}$	9W106	RP 168 \& RP 178	QU88960001-4	$711 \mathrm{V1}$....................... 960001.5
9EY3	RP 168	$9 Y 7$	RP 168	Rad. 752URP 178 or 960276	711 V 2 960001.5
9EY91	.RP 168	9 Y 1	RP 188	77URP 178	711 V 3960001-5
9 9Y32	RP 168	9TW309	RP 168 \& RP 178	77V1960260-1	
9EY 95	RP 188	9TW333	RP 168 \& RP 178	77V2 980280-1	

INDEX TO CHASSIS NO'S

Identification numbers beginning with R (RC, RS, etc.) are used with all radios and some television receivers. Identification numbers beginning with K (KCS, KRS, etc.) are used exclusively with television.

RADIO CHASSIS

Chassis No.	Model	Chassis No.	Model	Chassis No.	Morlel
RK-117	711V1, 711V2, 711 V 3 , R.F/I.F Chassis	$\begin{aligned} & \text { RC. } 351 \mathrm{E} \\ & \text { RC. } 351 \mathrm{~F} \end{aligned}$	$\begin{aligned} & \text { U. } 119 \\ & .97 \mathrm{~K} \end{aligned}$	RC-427F	TRK. 120 Radio Tuner Unit
RK.117A	641 TV, 8TV41 Radio R-F/I.F Chassis	RC.351K RC-351L.	$\begin{aligned} & 97 K 2,97 \mathrm{~T}_{2} \\ & .96 \mathrm{E} 2,96 \mathrm{~K} 5,96 K 6, \end{aligned}$	RC-427G	TRK-90 Radio Tuner Unit
RK-121	$612 \mathrm{~V} 1,612 \mathrm{~V} 3,612 \mathrm{~V} 4 \text {, }$ R-F/I-F Chassis	RC. 352	96 T7 $.98 \mathrm{EY}, 98 \mathrm{X}, 98 \mathrm{YG}$	RC. 429	TRK. 5 Radio Tuner Unit
RK.121A	648 PTK, 648PV Radio R-F/I-F Chassis	RC.352A	97Y UY-122E	$\begin{aligned} & \text { RC. } 435 . . \\ & \text { RC. } 435 \text { A. } \end{aligned}$.9TX.50,9TX.50M
RK-121C	8V151, R-F/I-F Chassis	RC-382C	UY-124	RC.436...	$40 \times .50$ to $40 \times .57$
RK-135	8TR29, 8TK29 Radio	RC.3520	98 T2	RC. 440	40B
	Section	RC. 354	U.130	RC.440A	.4QB4
RK.135A	8TR29, 8 TK29, 8T K320	RC-354A	HF. 4	RC-441	601
	Radio Section	RC-354B	HF. 2	RC. 441 A	.6Q4
RK.135C	9TW309 Radio Section	RC-357	9M1	RC. 442	6Q4X
		RC.357A	9M2	RC. 443	8Q2
RC.315B	86T6	RC.357J	M. 50	RC.443B	.8QU5-C, 8QU5.M
	8M	RC.357K	M.60	RC. 444	9Q1
RC. 318 $\text { RC. } 319 .$	8M $81 \mathrm{~K} 2,87 \mathrm{~T} 2$	RC. 366	504	RC.444A	.9QK
RC.319B	U.106	RC. 381	95×11	RC-449	BK.41, BT. 41
RC. 320.	8M1	RC-386	U. 125		Prod.)
RC-320A	8M2	RC.386A	98K2, 98 T	RC-454.	. 9 9TX-50, 9TX-50M (2nd
RC.321.	8M3	RC.386B	U-25, U. 26		Prod.)
RC-321A	.8M4	RC.390.	94BK2, 94BT2	RC-455	. .BP.55, -56, -85
RC. 323.	95T, 95T1	RC. 392	96BK6, 96BT6 Tuner	RC.456	. $46 \times$-11, $46 \times$ - 12
RC.325C	5Q2		Unit	RC.456A.	. 46×13
RC-325D	5Q2X	RC. 394	M-70 Tuner Unit	RC. 457	45X-1, 45X-2
RC.331.	. HF.8, HF-8A	RC. 396	.5Q5, 5Q55, 5Q56	RC-457A.	. $45 \times-1,45 \times-2$ (2nd
RC.331A	HF.6	RC-396B	508		Prod.)
RC-331B	. U.134, U.134A	RC.396D	5Q12	RC.457D	. $45 \times$-5, 45X.6
RC.331C	. U. 132	RC-396E	5Q12A	RC.457E	. $45 \times 3.35 \times .4$
RC-332	.94X	RC. 399.	96T4, 96 T5	RC. 459	. $45 \times$-11, 45×-12
RC-333.	. .94BK, 94BT	RC.399A	.96T6	RC.459A	. 45×13
RC.333A	94BT6	RC.400	$96 \mathrm{X} \cdot 1$ to $96 \times .4$	RC.459B	. $46 \times$-1, 46×-2
RC.333B	.94BT1, 94BK1	RC.400A	. $96 \times$-11 to $96 \times .14$	RC-459C	.46X-3
RC.333C	.94BT61	RC. 401.	9TX-1 to 9TX.5	RC.459D	. $45 \times$-11, 45×-12 (2nd
RC. 335	K	RC. 403.	.9TX-21,9TX.22		Prod.)
RC.335A	98K	RC.403A	9TX-23	RC-459E..	. $45 \times$-13 (2nd Prod.)
RC.335B	.99K	RC.404A	U.8	RC-459F. .	.46X-1, 46X-2 (2nd
RC.335C	.1104, 110K	RC. 405.	9TX.31		Prod.)
RC-335D	. U.126, U. 128	RC.405A	97X.32	RC.459 H	.46X.3 (2nd Prod.)
RC-335E	.11QU	RC.405B	9TX.33	RC-459J. . .	. $45 \times$-111, 45X-112,
RC.335F	910KG	RC.405C	40×130		Radiola 510
RC.335H	T	RC.405D	40X.31	RC-459K	. $45 \times$-113
RC.335K..	. U. 129	RC.406.	$5 \times 5 . \mathrm{W}$	RC.459L	. 45 X
RC-335KR	U. 30	RC.406A	5X5.1	RC-459 M	.45X-16, 45X. 17
$\text { RC. } 336$	8QB, 8QBK Tuner Unit	RC-407.	94BP-1 Series (94BP. $61,-62,-64,-66,-80,$	$\text { RC. } 459 \mathrm{~T} .$	$\begin{aligned} & 45 \times-11,45 \times-12 \text { (3rd } \\ & \text { Prod.) } \end{aligned}$
RC-337	8Q1 Tuner Unit		.81) ${ }^{\text {6, }}$-62, -66, -80,	RC-461.	. $.46 \times-24$
RC.337A	8Q4 Tuner Unit	RC.407B	94BP. 1 (2nd Prod.)	RC.461A	. 46×-23
RC.337B	1001 Tuner Unit	RC.407B	(94BP.61, -62, -64,	RC-4618.	. $46 \times .21$
RC-338	1204, 120K Tuner		-66)	RC-462.	.15x
	Unit ${ }_{\text {U }}$	RC-408	BT. 40	RC-462A..	.16X-1, 16X-2, 36X
RC-338A	12QU Tuner Unit	RC.408A	BT-42	RC.462B	. 16×-3
RC. 339	HF-1	RC.408C	BK.42	RC.462C	. 16×-4
RC. 340	. 94X-1, 94X-2	RC-410.	94BP4, -B, - $\mathrm{C},-\mathrm{R}$	RC-464.	. Radiola 500, 501
RC-341	U-111	RC. 414.	6QU	RC-464A	. Radiola 511
RC-341C	U. 112	RC-414A..	.607	RC-464B..	. Radiola 512,513
RC.345C	.95x-1	RC-414B...	.6Q8, 6QK8	RC.465...	. . Radiola P. 5
RC.345D	95X	RC.414C	U.50	RC.465A.	. Radiola P.5
RC.345E	95XL	RC.415.	K. 60	RC-472F	. T . 63
RC.345F	95XLW	RC.415A	K-80	RC-473A	. X-55
RC-345H	U. 104	RC.415 B	.K.60 (Loop), K-62	RC-474D	. $\mathrm{X}-60$
RC. 348.	${ }^{95}$ T5	RC.415C.	. K-80 (Loop), K-81,	RC-476.	K-105
RC.348A	96 T		K-82	RC-477...	. 505 (2nd Prod.), Q18
RC.348C.	96 E	RC-415D	K-80 (Loop)	RC-477A.	.5Q6
RC.348D.	96 T 1 U.115	RC.416.	T.64, T-65	RC.477B.	.508 (2nd Prod.)
RC. 348 E .	. U.115 $.05 T 5 L W$	RC.416A	. T-80	RC.477C	.5Q66
RC.348F.	..U-123 (1 band)	RC.418..	T.55, T-55-S, T. 66 K.50	$\begin{aligned} & \text { RC. } 478 . . \\ & \text { RC. } 478 \text { A. } \end{aligned}$.904 .704
RC-348J.	U. 121	RC-418B	. . U-10	RC-4788	.70K4
RC-348L	. U.127E	RC.421.	. U-123 (2 bands)	RC-4828	U-9
RC.349.	$97 \times$	RC.425.	. . T-60	RC.482C	U.9 (2nd Prod.)
RC. 350.	$9 \times$ to 9×-4	RC-425A.	. U-12	RC-486日	U. 44 Tuner Unit
RC.350A	9X-6, 9X-11 to 9X-14	RC.425D	.T. 62	RC-496C	U. 45 Tuner Unit
$\begin{aligned} & \text { RC-351... } \\ & \text { RC-351A. } \end{aligned}$. .97E, 97KG, 97T	RC-427	TRK. 12 Radio Tuner	RC. 490	96×-5
RC-351B.	. ${ }^{\text {. } 96 \mathrm{~K} 2,96 \mathrm{~T}}{ }^{\text {a }}$	RC-427A	Unit TRK. 9 Radio Tuner	RC-496	7QB, 7QBK Tuner Unit
RC-351C.	U. 124	RC-427A	Unit	RC-497.	.K-50 (2nd Prod.)
RC.351D	U.122E			RC-498.	

RADIO CHASSIS (Continued)

Chassis No.	Model	Chassis No.	Model	Chassis No.	Model
RC-498A	U-40	RC-563E	Q11	RC-1001B.	12x, 12x2
RC-498B.	U. 42 Tuner Unit	RC-563F	Q1	RC-1001B.	.10X (2nd Prod.)
RC-498E	U. 43	RC.563K	QB55X	RC-1001C	12AX, 12AX2, 35X,
RC-498F	K-61	RC-564	V.215, V-221		Radiola 516, 517.
RC-501.	U-46 Tuner Unit	RC-564A	V-219		522
RC-501A	K-130 Tuner Unit	RC-564B	V-225	RC-10010	14X, 14×2
RC. 502	7Q4X	RC. 566	Q14, Q15	RC. 1001 E .	14AX, 14AX2, 34X,
RC. 507	Q22, Q22A, Q32, Q121	RC.566A RC.566B	QU56C, QU56M Q14E O15E	RC. 1002	Radiola 526, 527
RC.507A.	Q25	RC-567.	27K	RC. 1002 A	28×5
RC-507B.	QK23	RC. 568	QU51C, QU51M	RC-1003.	1X, 1×2, 25X
RC-507C	QU2C	RC-568A	QU55	FC-1003A	1AX, 1AX2
RC.5070	QU2M	RC-568B	QU61	RC-1003B.	Radiola 510 (2nd
RC-507F	QU3C	RC. 569	28 T		Prod.), 511 (2nd
RC. 507 H	QU3M	RC-570.	29K		Prod.)
RC-507J	Q26	RC.570C	29K2	RC-1003C.	55X
RC.507K	Q27	RC-5700	29K2 (2nd Prod.)	RC-1003D	Radiola 510 (3rd
RC.507L	QU52C	RC-571.	211K		Prod.), 520
RC-507N	QU52M	RC-572A	V. 140	RC-1004A	25BT2
RC-507U	Q121 (PM)	RC.573.	V-209	RC-1004B	25BK, 25BT3
RC-508.	Q24	P.C.573A	V. 210	RC-1004D	Radiola B. 52
RC.509..	. 16 T4	RC. 574.	VHR-212	RC. 1004 E	55F, 65F
RC.509A	. 16 T3	RC.582.	V175	RC-1004F	24BT1, 24BT2
RC-509C	16K	RC-585	Q3481	RC-1004H	Radiola B-50
RC-509F	.16T4 (2nd Prod.)	RC.589A	5482	RC-1011.	15x (2nd Prod.), 36x
RC-509H	16T3 (2nd Prod.)	RC-589B	$54 \mathrm{B3}$		(2nd Prod.) 56X,
RC.509J.	. 16 T2 (2nd Prod.)	RC-589D	54B1.N		$56 \times 2,56 \times 3$, Ra-
RC-511.	.187	RC.589U	$54 \mathrm{B1}$ 2nd Prod.		diola 61-1, 61.2, 61-3
RC-512.	17K	RC-589UA	$54 \mathrm{B2} 2$ 2nd Prod.	RC. 1011 A	$56 \mathrm{X}, 56 \times 2,56 \times 3$, Ra-
RC-512A	. 19K	RC-589UB	$54 \mathrm{B3}$ 2nd Prod.		diola 61.1, 61.2, 61-3
RC-513.	. $110 \mathrm{~K}, 110 \mathrm{~K} 2$	RC-589UE	5486		2 nd Prod.
RC.513A	111K	RC.592.	Q23	RC-10118	$56 \mathrm{X}, 56 \times 2,56 \times 3, \mathrm{Ra}$ -
RC. 514	Q20, Q21	RC-594C	Q10, Q10A, Q10-2,		diola 61.1, 61-2, 61.3
RC-517.	V. 100		Q10A-2, Q10-3, Q110		3rd Prod.
RC-517C	V. 105	RC.5940	Radiola 61-6, 61.7	RC-1013.	6x2
RC-517F	Radiola R-560P	RC. 601	Q122 (EM)	RC-1014.	26×1
RC-517H	V-135	RC.601A	Q122X (EM)	RC-1014A	26X3, Radiola 515 (2nd
RC-517J	Radiola R.566P	RC-601B	7QV5, QU68		
RC. 518	V. 300 Tuner Unit	RC.6010	Q122 (PM)	RC-1014B.	26X4
RC.518A	V-301, V-302 Tuner	RC.601E	Q122X (PM)	RC. 1017	$55 \mathrm{U}, 55 \mathrm{AU}$
	Unit	RC. 602	Q109	RC-1017A	$65 \mathrm{U}, 65 \mathrm{AU}, 65 \mathrm{U}-1$,
RC-519.	V-200	RC.602A	Q109X		Radiola 62.1
RC.521.	V-205	RC.602B	QU62	RC. 10178	$65 \mathrm{U}, 65 \mathrm{AU}$ (50 cycle)
RC-521B	V. 405	RC.604	$58 \mathrm{~V}, 58 \mathrm{AV}$	RC. 1020.	25BP (2nd Prod.)
RC-522.	. V-201	RC-605	59V1, 59AV1	RC-1020B.	Radiola P-5 (2nd
RC.523.	V. 170	RC. 606	67V1, 67AV1		Prod.)
RC. 524.	V-102	RC.606C	$67 \mathrm{~V} 1,67 \mathrm{AV1}$ 2nd	RC. 1022.	. $34 \times$ (2nd Prod.)
RC-525.	14BT-1		Prod., 77V2	RC-1022A.	.12X (2nd Prod.), 35X
RC-525A	148T-2	RC. 607 RC. 608	68R1, 68R2, 68R3,		(2nd Prod.), Radiola
RC-525B.	148K	RC. 608	68R1, 68R2, 68R3, 68 R4		522 (2nd Prod.)
RC-526.	158T			RC. 1023	56×5, Radiola $61-5$
RC-527.	158P-1, -2, -4, 6	RC. 610 RC.610A	$730 \mathrm{TV} 1 \mathrm{R}^{\text {Radio Section }}$	RC. 1023 A	56×11 Priola 6110
RC-527A.	15BP.3, 5 .15 BP .7	RC-610A	730 TV 2 Radio Section	RC.1023B	56×10, Radiola 61.10, Postone (PX) 61.10
RC-527C.	25BP.	RC.610C	$610 \mathrm{~V} 1,610 \mathrm{~V} 2$ 2nd	RC. 1023 C	Radiola 61-10 2nd
RC. 529.	QB2				Prod.
RC.529A	QB1, QB11, QB12 Tuner Unit	RC.613A RC. 614	QB. 13 Tuner Unit 710 V 2 9053	RC. 1034	$65 \times 1,65 \times 2,65 \times 8$, 65×9, Radiola 61.8,
RC.529D	QB6	RC.615			
${ }_{\text {RC. }}^{\text {R }}$ - 5390 H	Q89 Tuner Unit	RC-616	$8 \mathrm{8V} 112$	RC-1035 RC. 1037	QU72, QU72A 64F1, 64F2
RC. 530	QU5 Tuner Unit	RC-616A	$8 \vee 91$	RC. 1037	$\begin{aligned} & 64 F 1,64 F 2 \\ & 64 F 3 \end{aligned}$
RC.531..	Q44	RC.6168	8TV321 Radio Section	RC-1037B	8 F 43
RC. 538 B RC-538C	Q30	RC.616C	8TV323 Radio Section	RC-1038	$66 \times 1,66 \times 2$
$\begin{aligned} & \text { RC- } 538 \mathrm{C} \\ & \text { RC. } 539 . \end{aligned}$	Q33	RC.616F	8V112 2nd Prod.	RC-1038A	$66 \times 3,66 \times 7,66 \times 8$,
RC-539D	QB-3	RC-616H RC-616J	8TV321 2nd Prod.		66×9
RC-539E	Q34	RC.616J	Radio Section	RC. 1040	$668 \times$ (3Q4 output)
RC-540.	V-101	RC.616K	8 TV323 2nd Prod.	RC. 10404	668X (3V4 output)
RC-541C.	45×18		Radio Section	RC-1040B	${ }_{88 \times 6,}^{668 \times}$ (Selenium rect.)
RC-544.	. BP. 10	RC.616N	9 WW333 Radio Section	RC.10400	
RC-547.	.VHR-207	RC.617A	$97 W 390$ Radio Chassis	RC-1044	Q103, Q103A, Q103-2,
RC-547A	VHR-407	RC.618	8 V 90		Q103A.2 2 ,
RC-548.	VHR-202	RC-618A	8V90 2nd Prod.	RC-1044A	Q103X, Q103AX,
RC-551.	QU7, QU8 Tuner Unit	RC.618B	9 W 101 , 9W 103	RC.1044A	Q103X-2, Q103AX-2
RC-555	VHR-307 Tuner Unit	RC.618C	9 W 105	RC. 1045	65BR9, Radiola
RC-559	268P	RC.6180	9 W 102		R658́r9
RC.561.	Q-16	RC. 622	9 W 106	RC. 1046	66×12
RC.561A	Q. 17	RC. 1000.	16x11	RC. 1046A	66×11
RC-561C	Q-16E	RC-1000A	.16x13	RC-1046B	66×13
RC.563A	QB5, QB55	RC-1000B	16x14	RC-1046C	66×11 2nd Prod.
RC.563B	Q12	RC. 1000 C	Radiola 515	RC-1046D	66×12 2nd Prod.
RC.563C	Q12	RC. 1001.	10x	RC. 1046 E	66×13 2nd Prod.
RC-563D	Q12	RC-1001A	.11×1	RC. $1047{ }^{\circ}$	$54 \mathrm{B5}$

INDEX TO CHASSIS NO'S (Continued)

RADIO CHASSIS (Cont.)
TELEVISION CHASSIS

Chassis No.	Model	Chassis No.	Model	Chassis No.	Model
RC. 1050	$75 \times 11,75 \times 12$	KC-3	TT-5	K CS-28A	9 T 240
RC. 1050 A	75×11, 75×12 2nd	KC.3A	TRK.5 TV Chassis	KCS-28B	9 TC240
	Prod., $75 \times 14,75 \times 15$	KC.3B	TT. 5 ($50 \mathrm{cy}$.)	KCS.28C	9 9246
RC.1050B	75×11 3rd Prod.,	KC.3C	TRK.5 (50 cy.) TV	KCS-29	8T270, 9T270
	75×14 2nd Prod.,		Chassis	KCS-29A	8TC270, 8 TC271
	$75 \times 16,75 \times 17$,	KC. 4	TRK. 12 TV Tuner	KCS.29C	9 TC272, 9 TC275
	$75 \times 18,75 \times 19$	KC.4A	TRK.9 TV Tuner	KCS-30	8TV321, 8 TV323,
RC. 1053	5Q21, 5Q22, 5Q27	KC.4B	TRK. 12 (50 cy.) TV		9 9W333 TV Chassi
RC.1053A	5 Q21 2nd Prod. (117 v.)	KC.4C	Tuner TRK.9 (50 cy.) TV	KCS-31 KCS-32	9TW390 TV Chassis 8TR29
RC. 1053 B	5Q21 2nd Prod.	KC.4C	Tuner	KCS-32	8TR29 8TK29
	(234 v.)	KC.4F	TRK. 120 TV Tuner	KCS-32B	8TR29
RC. 1054	5Q31	KC.4H	TRK. 90 TV Tuner	KCS.32C	8TK29
RC.1054A	6Q33	KC.4J	TRK-120 (50 cy.) TV	KCS.33A	8 TK320
RC.1054B	6Q33X		Tuner	KCS. 34	9TC247, 9TC249
RC-1054C	6QU3			KCS.34B	9 TC245, 9 TC247.
RC. 1054 D	6QV3	KCS-20A	630TS		$9 \mathrm{TC} 249$
RC.1054E	5Q31X	KCS-20B	630 TCS	KCS. 38	9T246
RC. 1055	7 7051 (PM)	KCS-20C	630TS (50 cy .)	KCS-38C	9 9256
RC. 1055 C	7 7051 (EM)	KCS-200	630 TCS (50 cy.$)$	KCS-41	9TW309
RC.1055D	7Q51X	KCS-20J	8TS30		
RC.1057A	77 U	KCS-20K	8 8TS30 (50 cy.)	KK. 7	TRK-12 TV Power
RC. 1057 B	9 Y 7	KCS. 21	621TS		Unit
RC. 1058	$\begin{aligned} & \text { Radiola } 76 \mathrm{Z} \times 11 \text {, } \\ & 76 \mathrm{Z} \times 12 \end{aligned}$	KCS-24	648PTK TV R.F/I-F Chassis	KK.7A	TRK-9 TV Power Unit
RC.1058A	Radiola 762×11, 76ZX12 2nd Prod.	KCS.24A	648PV TV R.F/I.F Chassis	KK-7D	TRK.12 (50 cy.) TV Power Unit
$\begin{aligned} & \text { RC- } 1059 \\ & \text { RC- } 1059 \text { A } \end{aligned}$	$\begin{aligned} & 8 B \times 5,8 B \times 54,8 B \times 55 \\ & 8 B \times 5,8 B \times 54,8 B \times 55 \end{aligned}$	KCS.24B	741PCS, 8PCS41 R.F/I-F Chassis	KK.7E	TRK-9 (50 cy.) TV Power Unit
	2nd Prod.	KCS.24C	8PCS41, 9PC41	KK.7F	TRK-120 TV Power
RC.1059B	$9 \mathrm{~B} \mathrm{\times 5}$		R-F/I.F Chassis		Unit
RC. 1059 C	$9 \mathrm{BX5}$ 2nd Prod.	KCS.24D	9PC41 R.F/1.F	KK.7J	TRK-90 TV Power
RC. 1060	8R71, 8R74, 8R75		Chassis		Unit
RC. 1060 A	8R72, 8R76	KCS.25A	641TV TV Chassis	KK.7H	TRK. 120 (50 cy.) TV
RC. 1061	$8 \times 681,8 \times 682$	KCS-25C	641TV (50 cy.) TV		Power Unit
RC-1063A	Radiola 75ZU		Chassis $8 T V 41$ TV Chassis		
RC. 1063 B	Radiola .75 ZU 2nd Prod.	$\begin{aligned} & \text { KCS.25D } \\ & \text { KCS.25E } \end{aligned}$	8TV41 TV Chassis 3TV41 (50 cy.) TV	KRS-20	648PTK, 648PV Horiz. Defl. Chassis
RC-1084	$65 \times 1,65 \times 2$, Radiola 61-8, 61-9 2nd Prod.,	KCS-26-1	$\begin{aligned} & \text { Chassis } \\ & \text { 721TS } \end{aligned}$	KRS-20A	741PCS, 8PCS41 Horiz. Defl. Chassis
	8×53	KCS-26-2	721TS ($50 \mathrm{cy}$.)	KRS-20B	8PCS41, 9PC41
RC. 1065	$8 \times 541,8 \times 544,8 \times 545$	KCS-26A-1	721TCS		Horiz. Defl. Chassis
RC-1065A	$8 \times 542,8 \times 546,8 \times 547$	KCS.26A-2	721TCS (50 cy.)	KRS-21	648PTK, 648PV TV
RC. 1065 B	$8 \times 541,8 \times 544,8 \times 545$ 2nd Prod.	KCS-27-1	730TV1, 730TV2 TV Chassis	KRS-21A	Power Supply 741PCS, 8PCS41,
RC.1065C	$8 \times 542,8 \times 546,8 \times 547$ 2nd Prod.	KCS.27-2	730TV1, 730TV2 (50 cy.) TV Chassis		9PC41, TV Power Supply
RC-1065F	$8 \times 541,8 \times 544,8 \times 545$ 3rd Prod.	KCS-28	8T241, 8T243, 8T244, 9T240		
RC.1065H	$\begin{aligned} & 8 \times 542,8 \times 546,8 \times 547 \\ & \text { 3rd Prod. } \end{aligned}$		AUDIO AMP. A	POWER	
RC.1065J RC. 1065 K		RA. 79	9EY31, 9EY32	RS-110	QU5 Power Unit
RC-1065K	$8 \times 542,8 \times 5474$ th Prod.	RS.83-1	PSU.8A	$\begin{aligned} & \text { RS- } 111 \\ & \text { RS. } 111 \text { A } \end{aligned}$	CV. 112 Electrifier CV.112X Electrifier
RC. 1065 L	8×541 5th Prod.	RS-83-2	PSU-8B	RS-112	QU8 Power Unit
RC-1065M	$8 \times 542,8 \times 5475$ th	R S-83-3	PSU-8C	RS.112A	QU7 Power Unit
	Prod.	RS-83A. 1	PSU-10A	RS-114A	VHR. 307 Power Unit
$\begin{aligned} & \text { RC. } 1066 \\ & \text { RC. } 1066 \text { A } \end{aligned}$	8×521 8×522	RS-83A.2	PSU-10B	$\text { RS. } 115$	QB1, QB11, QB12, QB13, 6V. Power
RC. 1067	6QP3	$\begin{aligned} & \text { RS-83A-3 } \\ & \text { RS-83C } \end{aligned}$	CV-110 Electrifier		Unit
RC. 1068	9 BX 56	RS-83E	TRK.9, TRK.12,	RS.115B	Q89 Power Unit
RC. 1069	$8 \mathrm{B41}$		TRK.90, TRK. 120	$\text { RS. } 119$	R. 56
RC.1069A	$8 \mathrm{B42}$		Radio Power Unit	$\text { RS. } 123$	$612 \mathrm{~V} 1.612 \mathrm{~V} 3,612 \mathrm{~V} 4$,
RC-1069B	8843	RS-84	R-91		711V1, $711 \mathrm{~V} 2,711 \mathrm{~V} 3$
RC-1069C	8846	RS-85	PSU-8E		Audio Amp. \& Pow.
RC. 1070	$8 \times 71,8 \times 72$	RS.85A	PSU.10E		er Supply
$\begin{aligned} & \text { RC-1071 } \\ & \text { RC. } 1071 \text { A } \end{aligned}$	4QB3 4 PB3X	RS-86	$\text { R. } 89$	RS-123A	641TV, 648PTK, 8TV41
RC. 1071 A RC. 1072	4QB3X 5QA5	RS-89 RS-89 A	CV.9X Electrifier TRK-5 Radio Power		Audio Amp. \& Pow. er Supply
RC. 1077	9×51	RS-89A	Unit	RS.123B	
RC. 1079	9×571	RS.89B	U. 42 Power Unit		Power Supply
RC-1079A	9 $\times 572$	RS-90	VA. 21	RS-123C	741 PCS, 8PCS41.
$\text { RC. } 1079 \mathrm{~B}$	9×561	RS.91A	0.50		9PC41 Audio Amp.
RC-1079C	9×562	RS.918	R. 60		\& Power Supply
RC.1079 D	9W51	RS. 92	M-70 Power Unit	RS.123D	
RC-1079E	9×571 2nd Prod.	RS.94A	OSC. 22		Power Supply
RC. 1079 F	9×572 2nd Prod.	RS-95	CV. 111 Electrifier	RS-126	$66 \mathrm{E}, 66 \mathrm{ED}, 66 \mathrm{E}-1$
RC. 1080	9×641	RS.98	CV-40 Electrifier	RS-127	$63 \mathrm{E}, 63 \mathrm{EM}$
RC-1080 A	9×642	RS-102A	U. 44 Power Unit	RS. 132	9EY3, 9EY3M, 9EY35,
RC.1084A	9W78	RS.102B	U. 46 Power Unit		$9 E$ Y36
RC-1085	9×651	RS-102C	K-130 Power Unit	RS.132A	9EY35, 9EY36
RC-1085A	9×652	RS 51020	U. 45 Power Unit	$\text { RS. } 1000$	CV. 42 Electrifier
		RS-102E	$\begin{aligned} & \text { V-300, V-301, V-302 } \\ & \text { Power Unit } \end{aligned}$	RS-1001	CV-45 Electrifier

1 YOU CASH IN ON RCA'S REPUTATION

When you display the RCA emblem in your window or within your shop, you gain immediate recognition from your customers. They recognize RCA as "World leader in radio . . . first in television."

2 YOU'RE POSITIVE OF RCA'S QUALITY AND ACCURACY

When you service an RCA Victor home instrument with RCA tubes or components, you're sure that they're right. They are identical twins of the tubes and parts originally used, and may have actually been manufactured at the same time. All the engineered quality and high standards of the original parts are exactly duplicated, electrically and mechanically.

3 YOU BUILD A LOCAL NAME AS AN RCA SERVICE DEALER

RCA cartons in your shop identify you in your neighborhood as a source for genuine RCA tubes and components, and for genuine RCA Victor replacement parts. Customers will count on you to return their RCA Victor instruments to their original high performance standards.

4 YOU PROTECT YOUR REPUTATION

When something goes wrong with a set you service, your customer places the blame squarely with you, not the distributor or the manufacturer of the "almost as good" part you installed. Every call-back means lost time and money, and a dissatisfied customer rarely returns. You protect your reputation when you use genuine RCA quality parts. You make more than a sale . . . you win a customer, who will learn to depend upon you for all his service needs.

5 YOU ARE ENABLED TO SERVICE ANY RCA VICTOR SET

RCA stocks over 40,000 different parts. The majority of replacement parts for RCA Victor instruments are maintained in stock for at least 10 years. Thus, you're sure of obtaining genuine RCA parts to fit RCA Victor instruments.

6 YOU ORDER RCA PARTS WITH SPEED AND EASE

Your RCA distributor carries an adequate supply of RCA parts, or he can obtain them promptly from RCA's conveniently located warehouses. Factory availability means that you can repair RCA Victor Instruments old and new, with a minimum of effort, and with the assurance that original performance standards will be duplicated.

7 RCA LEADS THE WAY.. IN RESEARCH AND PERFORMANCE

[^0]

...IN RECEIVING TUBES AND KINESCOPES

RCA Electron Tubes and Kinescopes are produced under superior quality controls . . . tested and re-tested before they are released. The RCA brand on any tube is your assurance that it is the exact twin of the tube used in the original RCA Victor instrument.
The RCA brand has top consumer preference. Point out the RCA emblem and you quickly gain the confidence and acceptance of your trade. Today, more than ever before, dependable quality is a primary requirement for electron tubes in every application-television, AM, FM, communications and industry. Identify yourself with the leader in the field . . . RCA.

...IN ELECTRONIC COMPONENTS AND SERVICE PARTS

RCA electronic components are scientifically designed and ruggedly constructed to meet your replacement needs. Each component is the result of RCA's pioneering work in the field of electronics, and is built to actual set-tested designs. Developed by famed electronic engineers, RCA components and service parts are designed specifically to work with the tubes and circuits used in the top electronic instruments in the field. You can always depend upon RCA parts, engineered by America's leading manufacturer of electronic components-RCA.

...IN BATTERIES

RCA provides a complete line of highest quality dry batteries - radioengineered for extra hours of dependable service. RCA is "The Radio Battery for the Radio Trade." You're sure of an adequate supply when you need it, because RCA production is geared to coincide with peak seasonal demands. RCA Batteries cover 99% of radio battery demand. The standard flashlight dry cell is sealed-in-steel, to keep it fresh on your shelves, virtually leakproof and moisture-proof. Every cell is aged and individually tested. Exacting laboratory tests prove that RCA Batteries exceed the average of competitive brands. For long life and peak performance, insist upon RCA batteries.

...IN TEST EQUIPMENT

More than anything else, the test equipment in the serviceman's shop is the key to his future and his reputation. Any compromise with quality can mean the difference between accurate, dependable analysis, and constant call backs with consequent loss of time, money, and reputation. Test equipment provides the serviceman with a standard upon which he bases all his decisions. That's why the quality of his test equipment must be superior.
RCA Test Equipment is the standard of dependability used in the manufacture of all RCA Victor Home Instruments, where quality and accuracy are the keynote. The RCA equipment you use to test a receiver is very often the very same equipment used to manufacture that receiver. That's why you can depend upon RCA test equipment.
Accurate, dependable, versatile, economical, attractive . . . these are the qualities that make RCA Test Equipment the best your money can buy.

TELEVISION SUPPLEMENTARY INFORMATION

APPROVED PM ION TRAP MAGNETS FOR RCA TELEVISION RECEIVERS

When ordering PM Ion Trap Magnets for RCA Victor TV receivers, use the stock numbers shown in the Service Data tor the model in question and as repeated below:-

For receivers employing a 10BP4 Kinescope, order Stock No. 73301.
For receivers employing a 12LP4 Kinescope, order Stock No. 74823.
For receivers employing a 16AP4 Kinescope, order Slock No. 74148.
For receivers employing a 16GP4 Kinescope, order Stock No. 74953.

The following illustrated ion trap magnets have been approved for use in RCA Victor Television Receivers, and at various times all have been employed in production.

Ion Trap Maguet (Heppuer Type 7078)
This magnet is approved for use in $10^{\prime \prime}$ and $12^{\prime \prime}$ receivers. In production, if ordered for $10^{\prime \prime}$ receivers, it is stamped $985587-1$, and if ordered for $12^{\prime \prime}$ receivers, it is marked 987069-1.

Ion Trap Magnet (Heppner Type 4)
This magnet is approved for use in $10^{\prime \prime}$ receivers only. In production it is stamped 985587-1.

Inn Trap Magnet (Clarostat TV-I Special)
This magnet is approved for use in $10^{\prime \prime}$ and $12^{\prime \prime}$ and long neck $16^{\prime \prime}$ receivers.
In production, if ordered for $10^{\prime \prime}$ receivers, it is marked $985587-1$, for $12^{\prime \prime}$ receivers, it is marked 987069.1, and for long neck ${ }^{\prime \prime} 6^{\prime \prime}$ receivers, it is marked 986432 -1.

Ion Trap Magnet (Clarostat TV-I)
This magnet is approved for use in $10^{\prime \prime}$ and $12^{\prime \prime}$ receivers.
In production, if ordered for $10^{\prime \prime}$ receivers, it is marked 985587-1, and for $12^{\prime \prime}$ receivers, it is marked 987069-1.

Ion Trap Magnet (RCA type 203D3)
This magnet is approved for use in $10^{\prime \prime}, 12^{\prime \prime}$ and long neck $16^{\prime \prime}$ receivers.
In production, if ordered for $10^{\prime \prime}$ receivers, it is marked 985587 -1, and for $12^{\prime \prime}$ receivers, it is marked 987069 -1, and for long neck $16^{\prime \prime}$ receivers, it is marked 986432-1.

Ion Trap Magnet (Clarostat TV-3 or TV-3S)
TV.3S is approved for use in $12^{\prime \prime}$ receivers, and is stamped 987069 -1. TV-3 is approved for use in long neck $16^{\prime \prime}$ receivers and is stamped 986432-1.

Ion Trap Magnet (Clarostat TV-2A or TV-2S)
TV-2A flux density across the magnet is 306 ± 3 gauss. In production it is stamped 985587.1 and is approved for use in 10" receivers.

TV-2S flux density across the magnet is 55 ± 3 gauss. In production it is stamped 987094.1 and is approved for use in short neck $16^{\prime \prime}$ receivers.

Clarostat magnets type TV-2A and TV-2S are identical in appearance and can be identified only by number or by comparison of magnet strengths.

BARKHAUSEN OSCILLATION

The usual effects of Barkhausen oscillation make themselves evident by producing one or more dark, sharply defined vertical lines on the left side of the picture or raster. These lines vary in width and/or intensity from one channel to another and from one brightness level to another. They are usually more apparent on the higher frequency channels and at low brightness settings. In the worst cases, these oscillations tend to upset horizontal synchronization. In the mild cases, they usually annoy the customer more than they do the set.

The only tube in the set that could cause this interference is the 6BG6G since it is the only one that has a positive grid to plate potential at any time. The critical voltages are reached just about the time the tube calls for deflection of the beam to the right hand side of the raster. This happens when the spot is about one third the way across horizontally.

Following are a few solutions to the problem:

1. Change the drive control setting.
2. Replace the 6BG6G with another. (The lube being replaced will probably operate satisfactorily in some other chassis.)
3. Change antenna or antenna lead-in placement.

The first method is critical with respect to line voltage and should be adjusted to give satisfactory operation on all available channels at any line voltage encountered.

The installations using either a built-in antenna or an indoor antenna are often subject to an undue amount of pickup because of their location. The lead-in, if draped near the high voltage compartment can also cause trouble. The solution for this type of trouble is obvious.

TELEVISION SUPPLEMENTARY INFORMATION

EM-PM FOCUS COIL TROUBLES

In some cases, trouble has been experienced with EM-PM focus coils. These difficulties show up as inability to reach focus with the focus control.

If everything is operating properly, the overall focus and focus regulation is much better with the new coil than with the straight EM type.

The troubles with the PM.EM coil can be summarized as being one or more of the following:-

1. Incorrect placement of the coil on the kine' neck.
2. Too much PM
3. Too little PM.
4. Polarity of the EM winding reversed in color code and/or hookup.
The normal placement of the coil is with the front plane of the coil approzimately one quarter of an inch behind the back cover of the yoke. Moving the coil back on the kine' will, in effect, be the same as reducing the total flux of the coil. Some cases of too much PM can be thus corrected. In a few such cases, the correct focus was obtained at the sacrifice of loading spring tension. It is suggested that washers be used to bush up the springs if they are too loose when the correct focus is obtained. Under no circumstances should the EM portion of the coil be reversed to compensate for too much PM. Doing this will eventually run the PM down to zero and make the coil useless along with producing a service call every week or so.
(It may appear that an "aiding" flux might gradually increase the PM flux. Such is not the case because the PM material is magnetized to a greater density than the EM portion). Polarity may be checked by the following method:
5. Get as good a focus as possible with the coil up against the yoke. Note the vollage across the EM winding.
6. Move the coil as far to the rear as possible and turn the focus control so that Condition 2 approximates Condition 1 in appearance. Note the voltage across the EM winding.
The voltage acrons the EM winding should be higher in Condition 2 than in Condition 1.
(The effects of magnetism are minimized as the coil is moved to the rear so that more magnetism must be supplied.

If Condition 2 reading is lower, or if no satisfactory comparison can be obtained by adjustment, then the EM winding is reversed and should be reconnected in the proper way.
A tag should be attached to the set to indicate a change if the color code is incorrect so that some future serviceman knows what has been done.

If position and polarity have been checked and it is discovered that there is too little PM, the entire coil must be replaced. The 6BG6 supply should not be reconnected to add to the focus current because it overloads the coil and the shunt potentiometer.

On some sets it will be found that by shorting the 10 ohm resistor, enough control is obtained. This should not be done since the focus potentiometer would be overloaded if the arm is set near the short circuit end. Moving the coil toward the rear will solve a problem of this type and still permit good focus with the 10 ohm resistor in the circuit.

CO-AX MATCHING NETWORK

In some locations it may be necessary to use 72 ohm co-ax transmission line between antenna and receiver because of reflection or interference pick-up. Current line receivers are provided with a 72 ohm co-ax input in addition to the usual 300 ohm input. Early receivers employing KRK-2 series r-f units are provided only with 300 ohm balanced input. To connect the co-ax to these early receivers, construct a network as shown below. The matching section should be one electrical half wave-length long for the picture carrier of the weakest signal received.

Co-Ax to Balanced Liwe Matching Network

TELEVISION SUPPLEMENTARY INFORMATION-

BROADCAST INTERFERENCE IN KRK5 AND KRK7 R-F UNITS

In some cases where a television receiver is in operation on a weak signal but near a strong AM station, interference has been experienced. To cure, insert a 100 mml . capacitor between the high side of T115 and L116, as shown below.

Partial Schematic of R-F Unit
In severe cases of BC interference, it is recommended that a coil such as L80 in KRK-2 r-f units be inserted from terminal $\neq 1$ of J 102 to ground.

ALIGNMENT HINT FOR R-F UNITS

During alignment of the r-f unit, it is often advantageous to have a sweep width of 15 mc . or more when adjusting the high channels. This permits seeing the entire skirts of the curve and makes it easier to see the effects of the various adjustments. When using RCA type WR59A sweep generator, additional sweep width may be obtained by removing the sweep case back and shorting out resistors R14 and R16. After this, the front panel sweep width control still operates as before, except that more sweep width is available on the high channels.

The WR59A should be turned ON and OFF by means of the front panel control. If the sweep was turned off by dis. connecting the power plug or by means of a bench master switch, but the sweep power switch was left on and in the maximum sweep width position, then the sweep modulator may overshoot and hit stationary parts when the power is reapplied.

I-F HARMONIC INTERFERENCE

This interference has appeared in a number of television receivers. The following discussion applies specifically to Models 9T270, 9T246, and 9TC245 series and in general to other models using KRK5 series or KRK7 R-F units

Although alt the affected receivers employ KRK5 or KRK7 R-F units, the interference is not the fault of the R-F unit.

Sound I-F Interference :

In some instances harmonics created in the sound i-f find their way back into the receiver input circuits and create interference. The sound i-f third harmonic falls into channel 3 , the fourth harmonic falls into channel 6 , the ninth harmonic falls into channel 9 and the tenth harmonic falls into channel 13. These may be identified by removing the second sound i-f tuke to see if the interference disappears. If it does, then the harmonics are created in the sound i.f stage or in the discriminator. The following information may be helpful in eliminating or reducing such interference.
The ground wire running from pin \#2 of the second i-f socket, which runs approximately an inch and a half to a lance towards the rear of the chassis, should be dressed away from pin \#1 of this socket, and as far as possible towards Terminal B of Tll2. This will cause the wire to run a curve rather than a straight line and may require a slight lengthening of the ground lead.

Carefully check the i-f and diecriminator transformer shield cans and wiring. The shield cans should be tight in place and well grounded to the chassis. In order to insure a good ground of these shield cans, it may be desirable to place some solder on the chassis where the can contacts the chassis so that the can may be pulled into the solder when clamped in place.

Carefully check the lead dress in the discriminator stage, particularly the leads connected to the discriminator transformer, making sure that they conform to all lead dress information contained in the service notes for the instrument involved.

Make sure that all by-pass capacitor leads in the sound i-f system are as short as possible and that the capacitor itself is dressed close to the chassis.

Make certain that the antenna lead-in from the terminal board on the rear of the cabinet to the r.f tuner input is dressed away from the chassis so as not to cause any unbalanced condition to the receiver input.
The normal discriminator wiring is from pin \#1 of the 6AL5 to the tube socket shield, then to pin \#6 and from pin \#6 to ground. Disconnect the wire from ground to pin $\# 6$ and ground pin \#l separately with as short a lead as possible.
In some instruments now in production, a zinc discriminator shield can is being used. This can is soldered directly to the chassis.

Picture I-F Interference:

In some instances harmonics created in the picture i.f find their way back into the receiver input circuits and create
interference in the picture. The interference takes the form of a beat pattern which varies with fine tuning adjustment. In general, the more sensitive the receiver, the more susceptible it is to this sort of interference.

With the 21.25 mc . sound i-f and 25.75 mc . pix i- 1 system currently in use, the third pix i-f harmonic falls into channel 5 and the eighth pix i.f harmonic falls into channel 12 . If such interference is experienced, it may be reduced by the follow. ing steps:

Check the antenna transformer T115, also L67. Check the antenna transmission line for continuity. If any of the above are defective, the interference may be severe.

Shield the fourth picture i.f and video amplifier tubes.
Dress the antenna lead from the r-f unit to the cabinet terminal board as far from the chassis as possible.

The wire leading from L102 and T106 to R120 must lie tight on the chassis.
The 10 mmf : pix detector by-pass capacitor should be wired between terminal C of T106 and pin 7 of the V105 socket with the shortest possible lead lengths and should be dressed down close to the chassis and away from other wiring.

The peaking coil, L103, should lie not over $1 / 4$ inch off the chassis with the shortest possible leads and should be dressed away from other wiring.

The 1500 mmf . by-pass capacitor C193 which goes from plus B to ground at the end of R118 must be in good condition.
The filters on the r-f unit bias and plus B supplies (Cl32, R112, C192, R214, etc.) must be in good condition.
A few receivers have been found to suffer harmonic interference due to a peculiar fault in the 1500 mmf . bypass capacitors. These capacitors check normal at all frequencies up to 150 mc . but exhibit a higher resistance above this point. Therefore, these capacitors will work satisfactorily in i-f positions but show up defective when used to by-pass high frequencies such as are found in the r-f unit or harmonics of the sound and picture i-f's. Therefore, in such cases it would be wise to check $\mathrm{C} 7, \mathrm{C}, \mathrm{Cl} 3, \mathrm{Cl}, \mathrm{Cl}, \mathrm{Cl} 9, \mathrm{Cl} 25, \mathrm{Cl} 32$, Cl76, Cl77, and C192.
A weak 12AU7 (V106) may aggravate the harmonic interference by causing a reduction of AGC voltage.

In general, it is easier from a design standpoint to eliminate low order sound harmonics from the sound circuit than harmonics of higher order from the r-t channels, such as the tenth, etc., since bypass capacitors and ground returns are more effective at the lower frequencies. Likewise, it is more difficult to bypass picture i.f harmonics than sound i.f harmonics, since the impedance of the picture circuits is relatively low compared to that of the sound circuits.

Receivers using BUILT-IN antennas, or having the transmission line draped around the cabinet, are more susceptible to this type of interference. During the installation of a television receiver, this type of interference can be reduced by obtaining as strong a signal from the antenna as possible, and adjusting the AGC control to supply a lower peak voltage to the detector. Thus a higher ratio between TV signal and the i-f harmonic is obtained.

As a last resort, the receiver may be aligned to different i.f frequencies. This has the effect of pushing the interference into other channels. The attached chart shows 5 different i-f frequencies and the interferences that might be encountered
in each. Harmonics that fall more than 0.5 mc. below the picture carrier should not cause interference and hence are not listed.

RECEIVER 1-F FREQUENCY	MAY HAVE INTERFERENCE ON CHANNEL	CAUSED BY	POSITION OF HARMONIC WITH RELATION TO STATION PIX CARRIER
$\begin{aligned} & 20.75 \mathrm{mc} \text { Sound i-f } \\ & 25.25 \mathrm{mc} \text { Pix i-f } \\ & 19.25 \mathrm{mc} \text { Adj. Chan. Pix } \\ & 26.75 \mathrm{mc} \text { Adj. Chan. Snd. } \end{aligned}$	Channel 7 Channel 11 Channel 3 Channel 6 Channel 9 Channel 12	7th Pix i-f harmonic 8th Pix i-f harmonic 3rd Sound i-f harmonic 4th Sound i-f harmonic 9th Sound i-f harmonic 10th Sound i-f harmonic	1.5 mc above 2.75 mc above 1.0 mc above .25 mc below .50 mc below 2.25 mc above
21.25 mc Sound i-f 25.75 mc Pix i. 1 19.75 mc Adj. Chan. Pıx 27.25 mc Adj. Chan. Snd	Channel 5 Channel 12 Channel 3 Channel 6 Channel 13	3rd Pix i.f harmonic 8th Pix i-f harmonic 3rd Sound i-f harmonic 4th Sound i.f harmonic 10th Sound i-f harmonic	0 mc . 75 mc above 2.5 mc above 1.75 mc above 1.25 mc above
$\begin{aligned} & 21.75 \mathrm{mc} \text { Sound i-f } \\ & 26.25 \mathrm{mc} \text { Pix i- } \mathrm{i} \\ & 20.25 \mathrm{mc} \text { Adj. Chan. Pix } \\ & 27.75 \mathrm{mc} \text { Adj. Chan. Snd. } \end{aligned}$	Channel 5 Channel 8 Channel 6. Channel 10	3rd Pix i.f harmonic 7th Pix i-f harmonic 4th Sound i.f harmonic 9th Sound i.f harmonic	1.5 mc above 2.5 mc above 3.75 mc above 2.5 mc above
21.9 mc Sound i-1 26.4 mc Pix i.f 20.4 mc Adj. Chan. Pix 27.9 mc Adj. Chan. Snd.	Channel 5 Channel 13 Channel 7	3rd Pix i.f harmonic 8th Pix i-f harmonic 8th Sound i.f harmonic	1.9 mc above 05 mc below .05 mc below
22.1 mc Sound i. 1 26.6 mc Pix i-f 20.6 me Adj. Chan. Pix 28.1 mc Adj. Chan. Snd	Channel 5 Channel 13 Channel 7 Channel 11	3rd Pix i-f harmonic 8th Pix i-1 harmonic 8th Sound i-f harmonic 9 th Sound if harmonic	2.25 mc above 1.5 mc above 1.5 mc above 25 mic below

60 CYCLE BUZZ IN SOUND OF TELEVISION RECEIVERS

This interterence appeared on 8T270, 9T270, 9T246 and 9TC245 series receivers when operated in strong signal areas. There are several modilications which will cure this diffculty. These modifications are listed below.

RECEIVERS USING ALL 6AG5 TUBES IN PICTURE I-F:

1. Replace 6AG5 tube in first picture i.f with others until one is found to cure condition.
(6AG5 tubes which have an abnormally sharp grid cut-off characteristic will cause a buzz in sound. A tube removed for this trouble is not necessarily defective, but can be used in either the 2nd or 4th picture i-f where fired bias is applied.)
2. Ground test connection in r-f unit (R-13, 100 K).
3. Check all filter capacitors in the AGC circuit for wrong connections and also see that they are in good working condition.

RECEIVERS USING 6BA6 TUBES IN 1ST \& 3RD PICTURE I-F:

1. Change 3rd picture i-f tube bias. Disconnect R110-Lll7 and Cll3 from their present tie point (junction R135 and C 190) and reconnect them to the adjacent tie point of the junction of C197 and R136.
NOTE: A greater AGC control of the r-f stage and lst picture i-f amplifier is obtained by this change.

This change was made in production of the 1949 models and also is used in the current models.
In fringe areas, a slight reduction in sound may be oncountered with this bias change. However, picture sensitivity will not be affected.

In order to improve sound and if no buzz is encountered the bias can be changed to the original point.
2. Ground test connection (R13, 100K) in r-f unit.
3. Change Rl36 from 6800 ohms to 10 K .
4. Check all filter capacitors in AGC circuit for correct connection and also to see if they are in good working condition.

PRODUCTION CHANGES IN KRK5

In some units a 1.5 mmf . capacitor has been added in parallel with C22 since that capacitor was running on the low capacity side of its tolerance and causing the high pass input filter to cut off at too high a frequency, thus putting a tilt in the channel 2 r-f response.

R-F Unit High Pass Input Filter

In some units, the capacitor C20 (18 mmi. ceramic) has been replaced by a small trimmer (7.35 mml .) as shown in the lillus. tration below. This capacitor was set at the factory at 18 mmf. and should not be adjusted in the field. If it is ever necessary to replace the trimmer, use the fixed ceramic capacitor specilied in the replacement parte list.

RADIO SUPPLEMENTARY INFORMATION

9JYM, 9EYM3

Change in Parts List:

Change:

MISCELLANEOUS
73549 Emblem-
10 read:
73549 Emblem-"RCA Victor" emblem (metal)
Add:
"74674 Emblem—"RCA Victor" emblem (plastic)
The metal emblem is attached to the cabinet by bending the wire tabl.

The plastic emblem is attached to the cabinet either with cement or by pressing the ends of the protruding pins with a hot iron after installation.

The two types are not readily interchangeable.

WCC-9 Carrying Case for Model 9JY

Replacement Parts:

Stock No.	Description
74906	Button-Reject button and shaft
74909	Catch-Spring slide catch
74674	Emblem-"RCA Victor" emblem
31051	Foot-Rubber foot (4 required)
74908	Handle-Carrying handle complete
74907	Hinge-Cabinet lid hinge (2 required)
74905	Knob-Volume control and power switch knob
14270	Spring-Retaining spring for knob
74910	Support-Lid support

8R71 (RC 1060)

Change in Oscillator Circuit:

In present production of this model the 1000 ohm resistor (R33) is removed from the oscillator circuit and a 390 ohm (R34) resistor is added. R33 was connected across terminals F and G of the " A " oscillator coil. R34 is connected in series between terminal F of the "A" oscillator coil and \#3 of S2 front. The revised oscillator circuit is shown below.

Oscillator Circwit Revision-8R71

Change in Parts List:

CHASSIS ASSEMBLIES

Delete:

Resistor-Fired, composition, 1000 ohms $\pm 20 \%, 1 / 2$ walt (R33)
Ådd:
Resistor-Fired composition, 390 ohms $\pm 10 \%$. $1 / 2$ watt (R34)

9JY Record Player Attachment

Change in Cabinet Design:

The original production of this instrument has a pickup arm rest as part of the molded plastic cabinet.
The present production uses a modified record changer which has a pickup arm rest on the metal sub-base. The cabinet being used does not have a pickup arm rest.

The stud on the pickup arm was originally of full diameter for its full length. On instruments having the rest on the subbase the stud is either flat on one side or is of maller diameter at the bottom end as illustrated below. If replacement of the cabinet, pickup arm or sub-base is required, the correct grouping of parts must be maintained as listed below.

Rest on Cabinet
Cabinet
Stock No. Y2062
Pickup arm
Stock No. 74041
Sub-base.
Stock No. 74070

Rest on Sub-base
Cabinet
Stock No. Y2151
Pickup arm
Stock No. 74824
Sub-base
Stock No. 74743

Pickup arm Stock No. 74824 may be used as a direct substitute for Stock No. 74041.

NOTE: The above pickup arm and sub-base Stock Nos. are correct only for instruments in which the record changer is RUBBER STAMPED or LABELLED RP 188-1. RP 168-3. AP 168B-1. or RP 168B-3. If the record changer is rubber stamped with any other designation-order by description.

8X71, 8X72 (RC 1070)

Oscillation on FM:

When either of these models is serviced, make certain that the power line antenna isolating capacitor is properly connected. If the capacitor C16 is connected to L7 instead of S2 it will cause oscillation on FM reception when using the power line antenna.

Models 8X71, 8X72-Connection of C16

9X641, 9X642 (RC 1080, RC 1080A)

Service Hint:

The capacitor C7 exists in the circuit due to the capacity between the two conductors of a piece of tlat molded cable. The performance of these radios will be adversely affected if a different cable is used or if separate wires are used during service.

This cable has a capacitance of approximately 2 mmf . and is a short length of 150 ohm transmission line. The correct dimensions are illustrated below.

9X641, 9X642 (RC 1080, RC 1080A)

Change in Resistors:

Resistora Rl (i.f. cathode) and R4 (i.\%. cathode) are listed in 9X641. 9X642 Service Data as 68 ohms each.
Rl is now 330 ohms and R4 is now 220 ohms (180 ohms in some chassis).

If any of these receivers having the 68 ohm resistors are found to be unstable, one or both of these resistors ($\mathrm{R} \mid$ and R4) should be changed to the new values.

Capacitor Substifution:

In some chassis an .025 mf . capacitor has been substituted for the .02 mf . capacitor (Cl5).

8V91, 8Vl12

Substitute Speaker:

In some of the above instruments a substitute speaker (stamped $92569-5 \mathrm{~K}$) has been used in place of the specified speakers (stamped 92569.5 W or $92569-1 \mathrm{KX}$). The cone and voice coil assembly for $92569-5 \mathrm{~K}$ speaker is available as Stock No. 75642.

MI-13174-1, MI-13174-3
 Coin Operated Radio Receiver

Service Data:

This instrument uses α chassis identical to that used in the Radiola 61-10 (described in RCA Victor Service Data 1943-1946 bound volume). It is housed in a metal cabinet and equipped with a coin operated mechanism to control application of input power.

Replacement parts for the chassis and speaker are identical to those listed for Radiola 61.10. Miscellaneous parts are listed below.

Stock No.	Description
55063	Clamp-Dial clamp
55064	Dial-Glass dial scale
17397	Foo-Rubber foot for cabinet (4 required)
70414	Knob-Control knob
30900	Spring-Retaining spring for knob

Apply to your RCA distributor for prices of replacement parts.
The circuit diagram is identical to that given for Radiola 61.10 except for the input power supply as shown below.

InSTALLATION, ADJUSTMENT AND CLEANING OF SLUG REJECTORS

If copper slugs are accepled, loosen adjusting screw (at right center) and move gage approx. 1/64" towards the left. hold gage in position and tighten screw.

H genuine coins are rejected, loosen adjusting screw (at right center) and move gage approx. $1 / 64^{\circ \prime}$ towards the right. hold gage in position and tighten screw.

Best results are- always attained when the slug rejector is mounted level in your machine. Should it become necessary to remove it from the cabinet. it must be handled on a clean bench. as the magnets will attract small iron or steel particles.

At no time should any part of it be oiled or greased. If any moving part does not operate as freely as desired. it is never a matter of lubrication, but rather of adjusting that particular part to its original shape. (for it might have accidentally been bent or distorted) or, more likely, a matter of cleaning it with a brush or cloth. using a little naphtha or alcohol.

Do not ever use files. sand paper or any other abrasives when cleaning the slug rejector.

Be sure your slug rejector is dry and clean at all times.

NOTE - FOR EITHER FIGURE, A JUMPER BETWEEN TEAMINALS 480
PERMITS CONTINUOUS OPERATION.

QB60 (RC 607)

Correction in Parts List:

CHASSIS ASSEMBLIES
Delete:

31518 Spring -

Add:
31418 Spring-Tension spring for pointer and drive cords

RK 137-1, RK 137-2 Ceramic Pickup Kits

Service Data:

These kits are intended tor use in replacing the crystal pickup of certain instruments in areas where extreme temperature and humidity adversely affect the life of crystal pickups.

Each kit contains a small amplifier, required leads and plug adaptors, a ceramic pickup unit and necessary mounting hardware.

RK 137.1 is intended to replace the crystal pickup of Model QU72, 6QU3 or 6QV3. The amplifier power is obtained by wir-ing-in to the radio chassis.

RK $137-2$ is intended to replace the crystal pickup of Model QU61, QU62, QU68, or 7QV5. The amplifier power is obtained by a plug-in adaptor inserted into one of the output tube sockets.

Replacement Parts:

Slock No.	Description
S.5513	AMPLIFIER ASSEMBLIES Cable-Power cable and adaptor plug for RK 137-2 (plug-in type)
S. 4856	Capacitor-Mica, 270 mm!.C6
S-5514	Capacitor-Tubular, 0018 mf ., 600v. ..C3 of RK 137-1. C4
S.5469	Capacitor-Tubular, . 0047 mf .600 vC3 of RK $137-2$
S-5515	Capacitor-Tubular, 0068 ml .400 vCl
S-4444	Capacitor-Tubular, $01 \mathrm{mf}$.400 v.C2
S.4634	Capacitor-Tubular, . 1 mf., 400v.C5. C7 of RK 137-1
S.4579	Plug-Pin plug for output cable Fixed Composition Resistors
S-5485	4700 ohms, $1 / 2$ wattR6 of RK 137.2
S-4621	15.000 ohms, $1 / 2$ wattR6 of RK 137.1
S-4767	100.000 ohms, $1 / 2$ wattR4 of RK 137-2
S.4639	150.000 ohms, 1/2 watt ...R1
S-4559	270.000 ohms, 1/2 watt R4 of RK 137-1
S.4476	470.000 ohms, 1/2 watt ..R5
S. 5516	1 megohm, 1/2 watt ..
S. 4562	2.2 megohm, 1/2 watt ..77
S. 5517	10 megohm. 1/2 watt ..R3
S. 4480	Socket-Input socket
S. 4742	Socket-Tube socket
S-5518	Transformer-Power transformer for RK 137.1 (wire-in type) MISCELLANEOUS
S-5519	Connector-Connector to connect pickup to pickup arm cable
S-5520	Pickup-Ceramic pickup complete for RK 137-1 (wirein (ype)
S.5521	Pickup-Ceramic pickup complete tor RK 137.2 (plug-in type)
S-5522	Plate-Mounting plate for pickup (used with 960001 record changer and Model QU72)
S-5523	Plate-Mounting plate for pickup (used with RP 178 record changer)

CV 120 Power Unit

Service Data:

Model CV 120 is an a.c. power unit designed for use with battery operated radio receivers Model 4QB3 or 4QB3X.
A switch on the unit permits operation from either a 105 to 125 volt or 210.250 volt 50 to 60 cycle power supply.

Schematic Diagram and Parts List-CV 120

TI CONNECTED AS SHOWN FO $117 V$ OPEAA-
TION ROR $234 V$ OPERATION CONNECT BLKITEL TO BLKICAN, ELK TO HICM SIDE OF POWER LINE AND BLK/AED TO ON-OFF

Schematic Diagram RK 137-1

Schematic Diagram RK 137-2

Amplifier Top Vieu' RK 137

Battery Operated Radio Receiver
 Models 4QB3, 4QB3X

Chassis No. RC-1071 RC-1071A

- Mfr. No. 274 -

SEAM CE DAMA
— 1949.... X3—

RADIO CORPORATION OF AMERICA
 rCa international division 745 FIFTH AVE., NEW YORK 22, N. Y.

Specifications

Tuning Ranges-Model 4QB3	
Standard Broadcast ("A"Band	$535.1605 \mathrm{kc}(560.187 \mathrm{~m})$
Medium Wave ("B" Band)	$2.3-7 \mathrm{mc}(131.42 .8 \mathrm{~m})$
Short Wave ("C" Band)7.22 mc ($42.8 \cdot 13.7 \mathrm{~m}$)
Tuning Ranges-Model 4QB3X	
Long Wave ("X" Band) $150.380 \mathrm{kce}(2000-789.5 \mathrm{~m})$Standard Broadcast ("A." Band)Short Wave ("C". Band) $5.9 .18 \mathrm{mc}(50.8187 \mathrm{me}(50.16 .6 \mathrm{~m})$	
Intermediate Frequency ... 455 kc	
Tube Complement	

Battery Required One RCA VSO22 or equivalent
("A" Battery ... 1.5 volts, 250 ma)
("B" Battery ... 90 volts, 11.7 ma)
Ân electrifier (Model CV-112X) may be used as a substitute for the battery when a 105.125 v . or 210.250 v .50 to 60 cycle power supply is available.

Chitical lead dress

1. All oscillator plate leads to coils and range switch to be as short and direct as possible.
2. Keep green and white leads from volume control away from blue and red output transformer leads.
3. All leads from antenna coil (on top of chassis to range switch) to be dressed away from coil windings.
4. Capacitor Cl5 (connected to pin \#4 of 1A7GT socket and pin \#l of lNSGT socket) to be dressed against rear chasais apron.
5. Ground straps or braids to 1A7GT socket and tuninf candenser to be looped to provide freedom of movement.

Cabinet Dimensions

Height	Width	Depth
in. $(23 \mathrm{~cm})$	$145,6 \mathrm{in} .(37 \mathrm{~cm})$	$73 / 410 .(19.5 \mathrm{~cm})$

PHONOGRAPH ATTACHMENT

A jack is provided on the REAR OF THE CHASSIS for con. necting a phonograph attachment. When phonograph attach. ment is in use the tuning should be adjusted to a point where no station is recaived. When not in use the attachment should be disconnected.

SHOWN WITH TUNINC CONDENSER AT MAX CAPACITY, (CLOSED)

Alignment Procedure

Cathode.Ray Aligament is the preferable method.
Output Meter Alignment-If this method is used. connect the meter across the voice coil, and turn the receiver volume control to maximum.

Test-Oscillator-For all alignment operations, connect the low side of the rest-oscillator to the receiver chassis, and keep the oscillator output low to avoid a.v-c action.

Calibration Scale.
The dial scale may be readily removed from the cabinet
and used as a reference during alignment-or the marks on the dial back plate which corresponds to the frequencies indicated on the illustration "Dial Indicator and Drive Mechanism" may be used for reference.

Dial Pointer-With the gang condenser in full mesh the right hand edge of the dial pointer should be set to the left hand reference mark (lst mark) on the dial backing plate.

For additional information refer to booklet "RCA Victor Receiver Alignment."

Model 4QB3X

CHASSIS No. RC-1071A

Stop	Connect high side of toat osc. $10-$	Tune test osc. 10-	Range switch	Turn radio dial to-	Adjust for max. outpul
1	INSGT top cap in series with .01 mf .	455 kc	A	Quiot point neas 1600 kc	T-2 top 6 bottom
2	```1A7GT lop cap in series wilh .01 mf.```				T-1 ${ }^{\circ}$ bottom 6 top
3	Antenna load in series with 220 mmf.	Pre-set 24 ("A" ant.) so that stud projects 7/16 inch.			
4		1400 kc	A	$\begin{aligned} & 1400 \mathrm{kc} \\ & \text { (7th mark) } \end{aligned}$	C6 osc. Cll ant.
5		600 ke		$\begin{aligned} & 600 \mathrm{kc} \\ & \text { (4th mark) } \end{aligned}$	L8 osc. L4 ant.
6		Repeat steps 4 and 5			
7		350 kc	X	$\begin{aligned} & 350 \mathrm{kc} \\ & \text { (8th mark) } \end{aligned}$	C4 ose. C2 ant.
\%		100 kc		$\begin{gathered} 160 \mathrm{kc} \\ \text { (4th mark) } \end{gathered}$	16 osc. 112 ant.
9		Repeat steps 7 and 8			
10	Antenna lead in earies with 300 ohms	15.2 mc	C	$\begin{gathered} 15.2 \mathrm{mc} \\ \text { (7th mark) } \end{gathered}$	C24 onc. \dagger Cl ant."*

- Do not readjust T-2
- ${ }^{\text {R Rock gang while adjusling Cl. }}$
\dagger If two peaks are found, adjust C24 at minimum capacity peak. NOTE: Oscillator tracks above siqnal on all bands.

Tube and Trimmer Locations

Change in Wiring:

The primary leads of the output tromsformer should be comnected as follows:
Blue lead to screea grid (pin \#4) of the 3Q5GT tube.
Red lead to plate (pin \#3) of the 305GT tube.
It has been lound then if the leade were connected acocoding to general practice (opponite to above) undesirable coupling woald be introduced into the circuit.

Change in Audio Circuit:

The following renistors and capocitor have been changed in value:

R10 now 3.3 megohme (was 1.5 megohm)
R12 now 1 megohm (was 470.000 ohms)
R13 now 3.3 megohms (was 1 megohm)
C21 now 220 mmf (was 270 mm)
The plote and screen voltagen of the IUS tube will be slightly lower when using the new realstoss.

Service Hint:
It has beon found advisable to hold the grid lead of the INSGT tube in position with a rubber band. A change in position of this
lead attor alignment will result in detuning of the lit i.f. transformer and lowered sensitivity

Simplified Schematic Diagrams-Chessis No. RC-1071

Replacement Parts

4 Stock No. 72953 is a reel containing 250 feet of cord.
APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS
Change in Parts List:

CHASSIS-ASSEMBLIES		
Delete:		
71540	Capacitor-270 mmi	C21
	Resistor- 470,000 ohms	R12
	Resistor-1 megohm	R13
	Resistor-1.5 megohm	R10
Add:		
51839	Capacitor-Ceramic, 220 mmi	C2l

Resistor-Fixed, composition, 1 megohm $\pm 20 \%$. $1 / 2$ watt
Resistor-Fixed, composition, 3.3 megohm $\pm 20 \%$.
$1 / 2$ watt
R10, R13

Add:

74821 Back-Cabinet back
37831 Fastener-Push fastener for cabinet back (l set of 4)

Model 5QA5

Chassis No. RC-1072-Mfr. No. 274
Service Data
1949... X5

RADIO CORPORATION OF AMERICA
RCA INTERNATIONAL DIVISION 745 FIFTH AVE., NEW YORK 22, N. Y.

Electrical and Mechanical Specifications

Frequency Ranges
Standard Broadcast ("A" Band)
Medium Wave ("B"' Band)
Short Weve ("C" Band)
"31.25 Meter" Spread Band -19.16 Meter' Spread Band

Tube Complement

Power Supply

1. Rating C105-125 and $210.250 v .56-60$ cycles. 25 walts 2. 6.3 volt storage battery Normal 2.7 A -battery saver 2.2 A

The instrument has a switch on the chassis to select 105.125 or 210.250 volt operation (switch marked $117 \mathrm{v} 235 v$). (Shipped with switch in $235 v$ position.)

CRITICAL LEAD DRESS

1. The 6BJ6 screen by-pass capacitor C 27 . should be dressed down to the base with short leads.
2. Dress R2-C10 midway between epread band funing coil and shield plate.
3. Dress 6AQ6 grid lead R12 close to bage.
4. Dress volume conirol coupling capacitar C34 close to base.
5. Dress audio coupling capacitor C30 close to base.
6. Red B+ lead from 6ZYSG socket must be dressed away from audio sockets.
7. Dress 6BJ6 plate lead close to base.
8. Dress speaker leads away from 6AQ6 and 6AK6 tubes.
9. Keep leads on C21 and C37 as short as possible.
10. Keep leads on C20, R16 as short as possible and dress close to rectifier sockel.
11. Dress black lead running from AC switch S5 to $117 / 234$ switch S4 clome to base.
12. Keep slack of pilot socket leads, $A C$ cord and battery cable. out of compartment.
13. Keep leads on LLS and L16 chokes as short as possible.
14. Keep R14, R15 as short as possible and dress close to vibrator socket.
15. Keep leads on C38 and C40 as short as possible.
16. The following transformer leads should be twisted and dressed close to chassis base:
(a) Blue vibrator primary leads
(b) Each AC primazy
(c) 6AYSG plate leads
(d) Red/Yellowcenter tap and one AC filament lead

Description

This instrument is a five-tube fiveband receiver of conventional design with the exception of the spread-band funing.
A two-section gang condenser one section lor antenna and one for oscillator circuit, is used for the A, B, and C bands. The 31-25 Meter and the 19.16 Meter spread bands are tuned by a specially designed permeability tuning system actuated by a cam and rocker assembly which is mechanically fastened to the gang condenser shaft. The core assembly of the permeability tuning system is molded to insure the required tolerances, and tunes both the 31.25 Meter and the 19-16 Meter band with different circuit constants.
In the 31.25 Meter band pasition the 31-25 Meter coils (antenna and oscillator) are used. In the $19-16$ Meter band position the 31.25 Meter and 19.16 Meter band coils are used in parallel.

The inductances of the A-B-C windings of the multiple antenna coil are all fixed. but the inductances of all other coils in the antenna and oscillator circuits are permeability adjusted. Ungrounded screw-iype cores are used for these coils and adjust. ments are made with a non-metallic screwdriver.

Change in Dial Lamp Switch:

Due to procurement difficulties it has been necessary to change the volume control on this chassis. The original control had a dial light ewitch in which pushing in on the control knob caused the switch to close-spring action would return the switch to the open position. With the control now being used it is necessary to pull out on the control knob to close the switch and to push in to return it to the open position (it doen not have spring action return).

5QA5

Alignment Procedure

Test-Oscillator,-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and kep the oscillator output an low as possible to avoid a-v-c action.
Calibration Scale on Indicator-Drive-Cord Drum.-The tuning dial is fastened in the cabinet and cannot be ueed for relerence during alignment, therefore a calibration scale is attached to the indicator-drive-cord drum which is mounted on the haft of the gang condenser. The setting of the gang condenser is read on this scals. which is calibrated in degrees.
As the first step in r-f alignment, check the position of the drum. The "180"" mark on the drum scale must be vertical and directly over the center of the gang-condenser shaft when the plates are fully meshed. The drum is held to the shaft by means of two set screws, which must be tightened securely when the drum is in the correct position.
Pointer for Callbration Scale.-Improvise a pointer for the calibration scale by fastening a piece of wire to the gang-condenser frame, and bend the wire so that it points to the " $180^{\circ \prime \prime}$ mark on the calibration scale when the plates are fully meshed. The correct setting of the gang in degrees, for each alignment frequency, is Recelv the alignment table.
Receiver Dial with Calibration Scale.-To determine the corresponding trequency for any selting of the calibration scales, refer to the dial with calibration scale drawing.

Tube		Fil. V	Plate V.	Screen V	Cathode V.	Grid V.
17V. Volt Operation						
6BE6	v)	6.3	172	82 7
6BJ6	V2	6.3	172	52 7
6AQ6	V3	6.3	49 7
6AK6	V4	6.3	182	172	6.8
6ZY5G	V5	6.3	189	...
Battery Operation						
6BE6	V1	6.0	160	77 6
6BJ6	V2	6.0	160	49 6
6AQ6	V3	6.0	48	\ldots	. 6
6AK6	V4	6.0	168	160	6.0	...
6ZY5G	VS	6.0	175
Vibrator coil		3.9				
Battery Operation (Current Saver)						
6BE6	V1	6.0	102	50
6B16	V2	6.0	102	37
6AQ6	V3	6.0	38
6AK6	V4	6.0	108	102	3.3
62YSG	VS	6.0	110	\ldots
Vibrator		4 volts				

coil

Spread-Band Tuning (Front View)

Dial-Indicator and Drive Mechaniam

Reduced Reproduction of Receiver Dial and Corresponding 0-180 Calibration Scales
The corresponding position of the dial indicator for any setting of the calibration scale can be determined by drawing a line from this point on the bottom calibration scole to the same point on the top calibration scale For example: 143° on the colibration scale corresponds to approximately 600 kc on "A" band, ict. Read instructions under "Alignment Procedures."

R. F. Wiring Diagram (Bottom Viow)

Replacement Parts-5QA5

$\begin{aligned} & \text { stoct } \\ & \text { No. } \end{aligned}$	DESCRIPTION	STOCR No.	DESCRIPTION
	CHASSIS ASSEMBLIES RC-1072	S-4548	Cord-Power cord and plu
	A-F	S.4549	Gear-Gear and hub for range switch shaft
S-4512	Board-Antenna-Ground terminal board	S.453	Gear-Gear and hub lor range switch control shaft
S-4513	Capacitor-Trimmer capacilor, siagle, $4-70 \mathrm{mmf}$. (C2)	S-4551	Lever-Range indicator lever and hub
S.4514	Capacitor-Trimmer capacitor, dual, 4.70 mmi. and 3 -35	S.5431 S.5432	Resislor-Flexible, wire wound, 1.5 ohms, 4 watt (R2 Resistor-Fixed, composition, 10 ohms. I watt (Ri9)
S-4515	mmi. (C14. Cl5) Capacitor-Trimmer capacitor, triple, two sections of $5-25 \mathrm{mmf}$. and one section of $8-50 \mathrm{mmf}$. (C13, C16, C19)	S-4470	Resistor-Fixed, composition, 120 ohms, $1 / 2$ watt (R14, R15)
S.4516	Capacitor-Trimmer capacitor, quadraple, lour sections of $3-35 \mathrm{mml}$. (C3, C4, C5, C8)	S-5433	Resistor-Fixed, composition, 470 ohms, $1 / 2$ walt (R18) Resistor-Fixed, composition, 1200 ohms, 1/2 watt (R22)
S-4517	Capactior-Ceramic, 7 mmi. (C6)	S-5134	Resistor-Fixed, composition, 12,000 ohms, 1/2 walt (R9)
S-4518	Capacitor-Ceramic, 22 mmf . (C17)	S-462.	Resistor-Fixed, composition, 15,000 ohms, 1 watt (R4)
S-4519	Capacitor-Coramic, 27 mmi . (C7)	S.5435	Resistor-Fixed, composition, 15,000 ohms, $1 / 2$ watt (R7, R16)
S-4520	Capacitor-Ceramic, 27 mmi. (C31)	S-4558	Resistor-Fixed, composition, 100,000 ohme, 1/2 watl (R21)
S-4521 S-4	Capacitor-Coramic, 120 mmf . (C18)	S-5436	Resistor-Fixed, composition, 120,000 ohms, 1/2 watt (RS)
S-4439	Capacior-Mica, 220 mmf . (C9) Capacitor-Mica, 560 mmi . (C25)	S.4560	Resistor-Fixed, composition, 330,000 ohms, 1/2 watt (R8)
S-4522	Capacitor-Mica, 3000 mmi . (C24)	1	Resisfor-Fixed, composition, 470,000 ohms, 1/2 watt (R13)
S-4442	Capacitor-Mica, 6000 mmi . (C23)	S-4562	composition, 470,000 ohms, 1/2 watt (R17)
S.4444	Capacitor-Tubular, . 01 mive 400 V. (C28)	S-4478	Renistor-Fixed, composition, 4.7 megohm, $1 / 2$ walt (R12)
S-4448	Capacitor-Tubular, $047 \mathrm{ml} ., 200$ v. (C22)	S-4565	Shaft-Range switch coatrol shaft
S-4523	Capacitor and Resistor Assembly- 56 mm ., capacitor and 33 ohm resistor (C10, R2)	S-4566	Shaft-Tuning control shaft
S-4524	Choke-Cathode choke coil (L14)	S-5437	Shield-Vibrator socket shiold assombly
S-4525	Coil-" $\mathbf{R}^{\prime \prime}$ band oseillator coil with adjustable core and stud (L17. L8)	$\begin{aligned} & \text { S-5438 } \\ & \text { S. } 5439 \end{aligned}$	Shield-Tube shield for 6AQ6 tube Shield-Tube shield for 6ZY5G tube
S-4526	Coil-"B" band oscillator coil with adjustable core and stud (L9, L10)	$\begin{aligned} & \text { S-5440 } \\ & \text { S-5441 } \end{aligned}$	Socket-Dial lamp socket and lead assombly Socket-Dial lamp socket and lead assembly
S-4527	Coil-"C"' band oscillator coil with adjustablo core and stud (L11)	$\begin{aligned} & \text { S. } 4480 \\ & \text { S-4426 } \end{aligned}$	Socket-Phono input or speaker output socket Sockel-Tube socket-minialure-for $6 \mathbf{A Q 6}$ or 6RE6 tubes
S-5456	Coil-"31-25 Motor" band antenna or oseillator coil (L5, L12)	S-5442	Socket-Tube sockel-octal-lor 6ZY5G tube Socket-Vibrator socket
S-4529	Coil-"19-16 Meter" bend antenna or oscillator coil with adjustable core and atud (L6, L13)	$\begin{aligned} & \text { S-544 } \\ & \text { S-5444 } \end{aligned}$	Spring-Dial drive cord tension spring
S.4530	Condenser-Tuning condonser (C1, C26)	S-5445	Switch-Power solector switch (S5, S6)
S-4531	Core-Adjustable core and stud for "31-25 Moter" bend oscillator coll	$\begin{aligned} & \text { S-4569 } \\ & \text { S-4570 } \end{aligned}$	Switch-Radio-Phono awitch (S7) Switch-Voltage change switch (S4)
S-4532	Drum-Tuning condonser drum, hub and cam assombly	S 4571	Transiormer-Second I.F. transformer (T2)
S-4533	Grommet-Rubber grommet to zount tuning condenser	S. 5446	Transformer-Output transformer (T3)
S. 4534	Plato-Rocker arm plate and stud assombly-less adjustable cores	$\begin{aligned} & \text { S } 5447 \\ & \text { S- } 5448 \end{aligned}$	Transformer-Power transformer (T4) Vibrator-Plug-in vibrator
S. 4535 S-4476	Reaistor-Fixed, composition, 22,000 ohms, $1 / 2$ walt (R3) Resistor-Fixed, composition, 470,000 ohms, $1 / 2$ watt (R1)	S-4576	Washer-"C" washer for range switch control shaft (inside)
S-4536	Screw-Rocker arm plate bearing serew	S-4577	Washer-"C" washer to retain tuning control shaft
S-4894	Sockot-Tube sockel		
S-4537	Spring-Rocker arm plato tonsion spring		SPEARER ASSEMBLY
S-4538	Switch-Range switch		STAMPED 92570-4
S-4539	Transformer-Firat If transformer (Tl) MAIN CHASSIS ASSEMBLY	$\begin{aligned} & S 4578 \\ & S-4579 \\ & S-4580 \end{aligned}$	Cone-Speaker cone Plug-Pin plug for speaker cable Speaker-PM speaker complete with cone and connecting cabl-
S-4540	Bracket-Dial cord bracket and pulley assombly (2 required)		ANEOUS
S-5422	Cable-Battery cable complete with fuse holder and spring clips	S-5449	Back-Back cover for cabinot
S-4439	Capacitor-Mica, 220 mmi . (C36)	S-5450	Batfie-Baffle board and grille cioth assombly-less am- blem
S-4541	Capacitor-Tubular, .0033 mil., 600 V. (C35)	S-4583	Bezel-Dial bezel
S-4542	Capacitor-Tubular, . $0047 \mathrm{mf} ., 600$ V. (C39) Capactior-Tubular, . $0068 \mathrm{mf} ., 400 \mathrm{~V}$. (C34)	S-5451	Cabinot-Plastic cabinet
S-5423	Capacitor-Tubular, . $0082 \mathrm{mf.}$,1600 V. (C20)	S-4585 S-5452	Covor-Plastic dial cover
S. 5424	Capacilor-Tubular, $0082 \mathrm{mf}$.400 จ. (C30)	S-4586	Dial-Glass dial seale
S-4820	Capacitor-Coramic, 01 mf ((C29, C40)	S-499	Emblem-Trademark emblem (RCX)
S-4609	Capacitor-Tubular, 01 mf .e 600 V. (C21, C37)	S-4500	Emblom-Trademark emblem (RCA Victor)
S-4444	Capacitor-Tubular, $01 \mathrm{mfi}, 400$ V. (C11. C27. C32)	S-4588	Groremel-Rubber grommet ior chassis mounting
S-4611	Capacitor-Tubular, $003 \mathrm{mf.}$,400 V . (C33) Capacitor-Tubular, $47 \mathrm{mf.}$,200 V. (C3s)	S-4503	Grommel-Rubber grommet for apeaker mounting
S-5426	Capacitor-Electrolytic, four section; 10 mi., 275 V., 20 ml ., 25 च., $30 \mathrm{mif}, 275$ v., and 20 mf ., 275 V. (C12A. C12B, C12C, C12D)	S-4589 S-5453 S-4590 S	Indicutor-suation enloctor indicalor Enob-Power Ewitch knob Knob-Ranqe switch knob
S-5427	Clip-Spring clip for battery cable (2 required)	S-4896	Enob-Tone control knob
S-4546	Coll-"A". "B", and "C" bands antenna coil (L1, L2. L3. L4)	$\begin{aligned} & \text { S-4895 } \\ & \text { S-4591 } \end{aligned}$	Knob-Tuniag control knob Knob-Volume control knob
S-5428	Coil-Choke coil (L15)	S-4893	Lamp-Dial lamp
S.5429	Coil-Choke coil (L16)	S. 545	Plate-Dial back plate
S-5430	Control-Volume control, tone control and dial lamp 3 witch (R10, R11, S8)	$\begin{aligned} & \text { S-5455 } \\ & \text { S-4511 } \end{aligned}$	Screw-Chassis mounting screw Spacer-Metal apacer for apeaker mounting
S-4313	Cord-Dial drive cord (approx. 45 im. required)	S-4595	Shield-Dial lamp shield

AC-DC-Battery Portable Radio
Model 6QP3
Chassis No. RC 1067

- Mfr. No. 274

Service Data

- 1949 No. X4 -

RADIO CORPORATION OF AMERICA
 rCa international division 745 FIFTH AVE., NEW YORK 22, N. Y.

Specifications

Tuning Ranges
Standard Broadcast ("A" Band) $535-1610 \mathrm{kc}$. (560.186 m .) Medium Wave ("B' Band)3-7 mc. (131-42.8 m.)
Short Wave ("C" Band)7-22 mc. ($42.8-13.7 \mathrm{~m}$.) Intermediate Frequency ... 455 kc.
Tube Complement
(1) RCA IT4 ..itier

(4) RCA IU5 ...Del.A.V.C.A.F. Amp.
(5) RCA 3V4 ..Output

Two selenium rectifiers (connected in series) are used.
Power Supply Ratings
Power Line Operation105-125v. or 210.250 v . d.c. or 50 to 60 cycles a.c.
The two swilches on the back of the chassis $(117 \mathrm{v} .234 \mathrm{v}$., AC DC) must be in the correct position for the avalable power supply.

Power consumption .. $\left\{\begin{array}{l}117 \mathrm{v} . \text { d.c. }-7 \text { watts, } 117 \mathrm{v} \text {. a.c. }-11 \text { watts. } \\ 234 \mathrm{v} . \text { d.c. }-14 \text { watts, } 234 \mathrm{v}, ~ a . c .-22 \text { watts. }\end{array}\right.$ NOTE: If reception is not oblained on d.c., reverse the plug in the outlet receptacle.
Battery Operation
Battery pack
RCA VS 019
The power cord plug must be inserted into the socket provided on the top of the chassis
Current consumption" A " (9v.) 50 ma.. "B" (90v.) 14.5 ma

Insulating Washers

The dial support and base holder brackets are insulated from the chassis with insulating washers. This serves to insulate the case from the chassis. In servicing make certain that these washers are in place and properly positioned.

Power Line Operation

A power cord is stored beneath the battery inside the case. Its plug is inserted in a socket on top of the chassis. For power line operation: remove the plug from its socket and insert it into a convenient power supply outlet.

Power Outpu
Undistorted .. 150 milliwatts
Maximum .. 275 milliwatts
Loudspeaker (970268-75)
Size and type ...4" $\times 6^{\prime \prime}$ P.M. dynamic Voice coil impedance3.2 ohms at 400 cycles

Dimenslons
Height........... $13^{1 / 4 "}$ Width........... $9^{\prime 1 / 2 " ~ D e p t h ~} 51 / 2^{\prime \prime}$
Weight ... 9 lbs. (without battery)

Antennas

Under normal conditions the builtin antennas will give satisfactory service. If the receiver is used in a shielded location such as an automobile. alrplane or railway train, an RCA VICTOR EXTERNAL LOOP ANTENNA may be used for improved performance on " A " band.

An external antenna and ground may be connected to the ANT and GND terminal screws at the end of the chassis. This may improve reception on all bands.

For improved short wave reception on battery operation, the metal ground plate should be removed from the case and placed on the ground. Its connecting wire should be attached to the GND terminal screw.

The telescoping rod antenna should be extended to its full height for good short wave reception.

Handle Link Assembly

Alignment Procedure

Cathode-Ray Aligament is the preferable method. Connection for the ascilloscope are shown in the Schematic Diagram.
Output Meter Aliqament-lit this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum.
Test-Oscillator-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output low to avoid a-v-c action.
NOTE-II the test-oscillator is also a.c. operated it may be necessary to use an isolation transformer for the receiver during alignment and to connect the low side of the test oscillator to common wiring-reversal of the plug may reduce hum.

Dial Indicator-With tuning condenser in full mesh, the indicator should be set to the position shown in the illustration "Dial Indicator Position."

For additional information refer to booklet "RCA Victor Receiver Alignment."

Step	Connect high side of test osc. to-	Tune test osc. to-	Range Switch	Turn radio dial to-	Adjust for maximuz outpul-
1	J. F amo. arld (pin \#6) in series with .01 mf .	455 kc.	A	quiet point near 1600 kc .	T2 top \& botlom
2	Converter grid (top cap) in serles with .01 mf .				T1 top $\&$ bottom
3	Rod ant. lead in series with dummy ant. 122 ohms in series with 33 mmf .)	17.75 mc .	C	17.75 mc .	$\begin{gathered} \text { C22 (osc.) } \\ \text { C2 (R.F.) } \\ \text { C14(ant.) } \end{gathered}$
4		7.2 mc .		7.2 mc .	L13 (osc.) L7 (R.F.) L4 (ant.)
5		Repeat Steps 3 and 4.			
6		6.1 mc .	B	6.1 mc.	C28 (osc.) C13 (ant.)
7		2.5 mc .		2.5 mc .	L 12 (osc.) 16 (R.F.) L3 (ant.)
8		Repeat Steps 6 and 7.			
9	Blue loop lead in series with .01 mf .	1400 kc.	A	1400 kc .	C26 (ose.) C21 (R.F.)
10		600 kc .		600 kc .	L11 (osc.) L5 (R.E.)
11		Hepeat Steps 9 and 10.			
12	Assemble receiver, connect loop ant. leads. install rod antenna, connect blue rod ant. lead to C36. Install and connect battery.				
13	Short wire placed near receiver for radiated signal	1400 kc .	A	1400 kc .	C4 (loop)
14		17.75 mc .	C	17.75 mc .	+C14 (ant.) ${ }^{\circ}$
15		6.1 mc .	B	6.1 mc .	+C13 (ant.)

- Rock gang, use maximum capacity peak.
\div Extend rod antenna to fuli height.
Oscillator tracks above signal on all bands.

Filament Circuit

CRITICAL LEAD DRESS

1. Dress all filament leads close to chassis.
2. Dress 33 ohm fuse resistor up and away from all wiring.
3. Dress C40 close to side apron.
4. Keep R14 leads as short as possible and dress close to 1 U5 socket.
5. Dress R24 up and away from chassis.
6. Dress R23 leads under bus wire that runs between lerminal \#3 of 2 nd IF and pin \#2 of 1T4 (IF).
7. Dress C45 aqainst chassis.
8. Keep bus leads on C43 and C38 as short as possible.
9. Dress neutralizing capacitor C15 aqainst chassis.
10. Dress C34 against chassis and keep leads as short as pos. sible.
11. Dress C46 leads up and away Irom IF translormer and keep leads as short as possible.
12. Keep leads on R5 and C16 as short as possible.
13. Keep bus leads on C20 and R13 as short as possible and dress midway between chassis and boltom pan, center R13 bus in chassis hole.
14. Dress "C" oscillator coil lead to $\$ 3-10$ up and away from chassis base.
15. Dress all leads away from "C" oscillator coil.
16. Dress C27 under " B " oscillator trimmer and edge-wise to chassis base.
17. Dress R1 and C3 close to chassis base and away from R.F. grid.
18. Dress "C" R.F. coil lead to S2-10 up and away from chassis base.
19. Keep leads on RII as short as possible and dress close to 1A7 socket.
20. Dress Cl2 close to range switch wafer.
21. Keep 1 A7 I.F. plate lead away from terminal \#1 of lst IF translormer.
22. Dress white leads of " A " and "B" R.F. coils under bus wire to S 2.7 and dress close to range switch wafer.
23. Dress Cll away from range switch shaft.
24. Dress filament leads to R.F. tube between back apron and 1 A7 socket.
25. Dress R3. R4 close to chassis base.
26. Dress $C 7$ away from RF section of range switch and midway between antenna coils and bottom pan.
27. Keep leads to 1 st audio plate as short as possible.
28. Dress wiring near external loop socket to clear external loop pins.
29. Dress loop lead away from tunina drum and battery.
30. Dress leads to S1.3 away from R.F. range switch wafer.
31. Dress "B" R.F. coil leads close to coil.

Tube and Trimmer Locations

Dial Indicalor Position

Loop Antenna Connections

To Remove Chassis

1. Disconnect and remove baltery.
2. Disconnect loop antenna leads.
3. Disconnect rod antenna lead from C36.
4. Separate line ballast cable plug and socket.
5. Disconnect C36 from rod antenna.
6. Remove rod antenna through top of case.
7. Remove range switch knob.
8. Remove the two screws holding chassis to case ends.
9. Remove two screws (under carrying handle) holding base holder bracket to top of case.

A V C Circuit

Dial Indicator and Drite Mechanism

$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION
	CHASSIS ASSEMBLY	S.5169	Resistor-Fixed. composition, 15.000 ohms, 1/2w. (R22)
S.5121	RC-1067	S.5170	Resistor-Fixed. composition. 18.000 ohms, $1 / 2 w$. (R8)
S.5121	Brackel-Drive cord pullay bracket complete with one pulley (volume control side)	S. 5171 S.5172	Resistor-Fixed. composition, 68.000 ohms, $1 / 2 \mathrm{w}$. (R15)
S-5122	Bracket-Drive cord pulley bracket co	$\begin{gathered} \text { S-S172 } \\ \mathrm{C} 5171 \end{gathered}$	Resistor-Fixed. composition, 180,000 ohms, $1 / 2 w$. (R11)
	leys (tuning control side)	$\begin{aligned} & \text { S. } 5173 \\ & \mathrm{~S} 5174 \end{aligned}$	Resisfor-Fixed, composition. 220.000 ohms, $1 / 2 \mathrm{w}$. (R25) Resistor-Fixed, composition. 1 megohm, 1/2w. (R12)
S-5123	Bracket-Drive cord pulley bracket complete with one pulley (tuning control side)	S. 5175	Resistor-Fixed, composition. 3.3 megohm, $1 / 2 \mathrm{w}$. (R18)
S. 5124	Capacitor-Mica trimmer, 1.6 .18 mmf . (Cl4)	S.	Resistor-Fixed, composition, 4.7 megohm, 1/2w. (R3, R4, R6)
S. 5125	Capacilor-Mica trimmer, dual, $1.6 \cdot 18 \mathrm{mmf}$, and 3.35 mm . (C13, C26)	S. 5178	Resistor-Fixed, composition, 5.6 megohm, $1 / 2 \mathrm{w}$. (R5) Resistor-Fixed, composition, 10 megohm, $1 / 2 \mathrm{w}$. (R14)
S.5126	Capacitor-Mica trimmer, 3.35 mml . (C21)	S-S179 S. 5180	Shield-L.H. end shield for dial
S.5127	Capacitor-Mica trimmer, 1.6 .18 mm . (C28)	S.4511	
S-5128	Capacitor-Ceramic, 4 mmf . (Cl5)	5.4512	\qquad
S.5129	Capacitor-Ceramic, 22 mmf . (Cl2)	S-5181	Socket-4 contact socket for line ballast cable
S. 5131	Capacitor-Ceramic. 82 mmf . (C20. C33)	S.4721	Socket-Tube sockel-miniature-for V1
S.5131	Capacitor-Ceramic, 120 mmf . (C3, C7)	S.5182	Socket-Tube sockel-miniature-for V3
S-5108	Capacitor-Ceramic, 270 mml . (C44) Capacior-Mica, 470 mml . (C10, C36)	S.5183	Socket-Tube sockel-miniature-for V4 or V5
S.5134	Capacitor-Tubular. . $001 \mathrm{ml.}$,600 V . (C37)	S-4481	Socket-Tube socket-octal-for V2
S.5135	Capacitor-Ceramic. 0015 ml . (C11)	S-S18	Socket-External loop socket-with ant. \& gnd. term. (Y1, Y2)
S.5136	Capacilor-Mica, 1800 mml . (C27)	S-5185	Spring-Dial drive cord tension spring
S-S137	Capacitor-Molded, $2000 \mathrm{mmf}$. 200V. (C34)	S.5186	Switch-LINE-BATT change switch and bracket (SS)
S-5138	Capacilor-Tubular, . 0022 mf., 600V. (C45)	S. 5187	Switch-Range switch (S1, S2)
S.4541	Capacitor-Tubular, . 0033 mf . 600 V . (C16)	S.5188	Switch-AC-DC or 117-234V. change switch (S4, S7)
S.5139	Capacitor-Mica, 3900 mmf . (C29)	S. 5229	Transformer-First I-F transformer (T)
S. 5140	Capacitor-Molded, . 005 ml ., 200V. (C30)	S. 5230	Iransformer-Second I-F transformer (T2)
S. 4608 S. 4820	Capacitor-Tubular, $0056 \mathrm{mf.}$.400 V . (C39) Capacitor-Ceramic, $01 \mathrm{mf}$. (C19. C32, C43,	S-5231	Transformer-Output transformer (T3)
S-5142	Capacitor-Tubular, . 022 mf ., 400 V . (C31)	S.5189	Washer-Insulating washer (flat) for mounting base holder
S. 4706	Capacitor-Tubular, $047 \mathrm{mf}$. , 400V. (C5, C6, C17. C18)	S-5190	
S-S144	Capacitor-Tubular, . $047 \mathrm{mf.}$.600 V . (C38, C40)		holder bracket or dial support to chassis base (5 required)
S. 5146	Capacitor-Electrolytic, comprising 1 section of 40 mf ., 25 V ., 1 section of $60 \mathrm{mf}$. . 150 V .. I section of $160 \mathrm{mf},. 25 \mathrm{~V}$., \& 1 section of $20 \mathrm{ml} ., 150 \mathrm{~V}$. (C35A. C35B, C3SC. C35D)		SPEAKER ASSEMBLY STAMPED 970268.75
S-4454	Clip-Mounting clip for I-F transformers		
S.5221	Coil-" $\mathbf{A}^{\prime \prime}$ osc. coil complete with adjustable core (L8, L11)	S. 5191	Gaskel-Speaker gasket (black tubing 15 $/ \mathbf{M a ~}^{\prime \prime}$ in length)
S. 5222	Coil-"B" osc. coill complete with adjustable core (LS, L12)	$\text { S.S } 192$	Specker-4" $\times 6^{\prime \prime}$ PM speaker complete with cone and
S. 5223	Coil-"C" osc. coil complete with adjustable core (L10, L13)		voice coil
S. 5224	Coil-"A" R.F. coil complete with adjustable core (LS)		
S.5225	Coil-"B" R.F. coil "complete with adjustable core (L6)		MISCELLANEOUS
S.5226	Coil- "C" R.F. coil complete with adjustable core (L7)	S. 5193	Antenna-Telescopic rod antenna
S. 5227	Coil- "B" ant. coil complete with adjustable core (L3)	S. 5194	Arm-Shulter arm lever
S-5228	Coil-"C" ant. coil complete with adjustable core (L4)	S. 5195	Back-Case back and top cover-less rear feet
S. 5147	Condenser-Variable tuning condenser (Cl. C2. C8, C22. C23)	S.S196 S. 5197	Bracket-Bearing bracket for shutter arm lever Capacilor-Mica trimmer, 3.35 mm . (C4)
S. 5148	Control-Volume control \& power switch (R17, S6)	S. 5198	Clip-Spring clip for case ends (2 required)
S.4313	Cord-Dial drive cord (approx. 40 in. required)	S-S 199	End-Case end-R.H.-with trimmer capacitor and spring
S. 5149 S. 5150	Cord-Power cord		clip-less loop
S. 5150 S.5151	Dial-Dial scale and window assembly	S. 5200	End-Case end-L.H.-complete with line ballast resistors,
S. 4464	Grommet-Rubber grommet for mounting luning condenser (three required)	$\begin{aligned} & \text { S- } 5201 \\ & \text { S- } 5202 \end{aligned}$	cable and spring clip Fool-Case foot-front (2 required)
S.4463	Grommet-Rubber grommet for mounting ant., osc., \& r.f. coils (l required for each) or 1A7GT tube socket (2 required)	$\begin{aligned} & \text { S. } 5203 \\ & \text { S. } 5204 \end{aligned}$	Front-Case front complete with feel. less shutter Grommet-Rubber grommet to insulate rod antenna
S. 5152	Grommet-Rubber grommet for line ballast cable	S-5206	Link-Carrying handle link consisting of two links.
S.5153	Indicator-Station seleclor indicator		shafts and four drive screws (2 required)
S. 5154	Insulator-Bakelite insulator for dial support (2 required)	S. 5207	Knob-Range switch knob
S.5155	Knob-Tuning knob with retaining spring	S. 5208	Nut-Speed nut to retain line ballast resistors in case end
S. 5156	Knob-Volume control \& power switch knob with relaining apring	S. 5209 S. 5210	Loop-Loop antenna (Ll, L2) Plate-External ground plate
S. 5157 S-5158	Plate-Insulating plate for mounting electrolytic capacitor	S. 5211	Plug-4 prong male plug tor line ballast resistor cable
S. 5158 S. 5159	Plate-Insulating plate for selenium rectifiers.	S. 5212	Resistor-Line ballast resistor, flexible, wire wound, 700
S-4829	Rectifier-Selenium rectifier (2 required)	S.5213	Resistor-Line ballast resistor, flexible, wire wound, 950
S. 5160 S-5161	Resistor-Fixed, composition. 12 ohms, $1 / 2 \mathrm{w}$. (R13)		ohms, 24 watts (R26)
S. 5162	Resistor-Fixed, composition, 27 ohms, 1/2w. (R10) Resistor-Fixed, composition, 33 ohms, \mathbf{w} (R 20)	S-5214	Retainer-Spring retainer for battery (2 required)
S. 5163	Resistor-Fixed, composition. 1500 ohms, $1 / 2 \mathrm{w}$. (R16)	S. 5215 S.5216	Retainer-Spring retainer for rear feet (2 required) Screw-Complete set of screws, nuts and washers
S. 5164	Resistor-Fixed, composition, 1800 ohms. $1 / 2 \mathrm{w}$. (R7, R9, R19)	S-5216	Screw-Complete set of screws, nuts and washers fasten case front to case ends.
S-5165	Resistor-Fixed, composition, 1800 ohms, lw. (R24)	S. 5217	Shutier-Case shutter
S. 5166	Resistor-Fixed, wire wound, 2300 ohms. 6w. (R23)	S-5218	Spring-Case shutter compression spring
S. 5167	Resistor-Fixed, composition, 2700 ohms, 1/2w. (R2)	S. 5219	Washer-"C" washer for shutter shafts (2 required)
S.S168	Resistor-Fixed, composition, 15.000 ohms. $1 / 2$ w. (R1)	S-5220	Washer-Dampening washer for shutter shafte (2 required)

Electrical and Mechanical Specifications

Frequency Ranges
Low Frequency ("X" Band) \qquad $150-380 \mathrm{kc}(2000-789.5 \mathrm{~m})$ Standard Broadcast ("A" Band) $525-1600 \mathrm{kc}(571.187 \mathrm{~m})$ Short Wave ("C" Band) .. \qquad $\mathrm{mc}-18.0 \mathrm{mc}$ ($50.8-16.6 \mathrm{~m}$) " 31 -25 Meter"' Spread Band 9.5-12 mc (31.6-25 m) "19-16 Meter" Spread Band 15.1-17.9 me (19.8-16.7 m) Intermediate Frequency ... 455 kc

Tube Complement

(1)	RCA 6BE6	Converter
(2)	RCA 6BA6 I.F. Amplifior.
(3)	RCA 6SQ7	Del.-A.V.C.-A.F. Amp.
(4)	RCA 6F6G	Output
(5)	RCA 6F6G	Output
(6)	RCA 5Y3CT	Rectifier
(7)	RCA 6AT6	Phate Inverter

Loudspeaker

Type 92570-4 ... Permanent-Magnet Dynamic Sise ... 61/2 in. (16.5 cm)

Power Output

Maximum \qquad

Power Supply Ratings

Symbol	Voltage	Frequency	Watts
Rating A	105-125	50-60	60
Raling B	105-125	25-60	. 60
Raling D	ee below)	40-60	60

110 position- 10010115 v .
125 position- 115 to 135 v .
150 position- 135 to 165 \%.
210 position- 180 to 220
240 pomition- 220 to 250 v .
Note: Shipped in 240 v. position. To change, remove round cover on lop of trantformer case and move link to desired poxition.

CAUIION: Remove power cord trom line receptacle before changing link position.

Dial Lamps (2) \qquad Mazda No. 44, 6.3 volte, 25 amp .

Cabinet Dimensions

Height	10-13/16 in. (27.4 cm)
Width	... $161 / \mathrm{in}$ in. (41.3 cm)
Depth	..o.. $81 / 4$ in. (21 cm)
Tuning	1 (63/4 turns of knob)

Description

This instrument if a eeven-tube five-band receiver of conventional design with the exception of the epread-band tuning.
A two-section gang condenser one mection for anfenna and one for oscillator circuit, is used for the X, A, and C bands. The 31-25 Meter and the $19-16$ Meter epread bands are tuned by a opecially designed permeability tuning system actucted by a cam and rocker asembly which is mechanically lastened to the gang condenser shaft. The core asembly of the permeability tuning eystem is molded to insure the required tolerances. and tunse both conetants.

In the 31-25 Meter hand position the 31-25 Meter coile (antenna and oscillator) are used. In the $19-16 \mathrm{Met}$ (trad position the 31-25 Meter and 19-16 Meter band coils are uned in parallel.
The inductances of the AC vindings of the multiple antenna coil are all fixed, but the inductances of all other coils in the antonna and oscillator circuits are permeablity adjuted. Un grounded screwriype cores are used for these colls and adjustmonte are made with a non-melallic ecrewdriver

rca Victor Model 7Q51X

RADIO CORPORATION OF AMERICA

RCA INTERNATIONAL DIVISION
745 FIFTH AVE., NEW YORK 22, N. Y.

Operating Controls

Spread-Band Tuning
(Front View)

Reduced Reproduction of Receiver Dial and Corresponding 0-180 Calibration Scales

The corresponding position of the dial indicator for any sesting of the calibration scale can be determined by drawing a line from this point on the bottom calibration scale to the same point on the top calibration cale. For example: 143° on the calibration scale corresponds to approximately 600 kc on " A " band, etc. Read instructions under "Alignment Procedures."

Abstract

Alignment Procedure Test-Oscillator--For all alignment operations, connect the low side of the testoscillator to the receiver chamsis, and keep the oscillator cutput as low as possible to aroid a-v-c action. Calibration Scale on Indicator-Drive-Cord Drum.-The tuning dial is fastened in the cabinet and cannot be used for reference diring alignment, therefore a calibration scale is attached to the indicrtor drive-cord drum which is mounted on the shaft of the gang con denser. The setting of the gang condenser is read on this scale. which is calibrated in degrees. As the first step in r-f alignment, check the position of the drum. The " $180^{\circ "}$ mark on the drum scale must be vertical and directly over the center of the gang-condenser shalt when the plates are fully meshed. The drum is held to the shatt by means of two set screws, which must be tightened securely when the drum is in the correct position. Pointer for Calibration Scale.-Improvite a pointer for the calibration scale by fastening a piece of wire to the gang-condenser frame. and bend the wire so that it points to the "180"" mark on the calibration scale when the plates are fully meshed. The correct setting of the gang in degrees, for each alignment frequency, is given in the alignment table. Heceiver Dial with Calibration Scale.-To determine the corresponding frequency for any setting of the calibration scales, refer to the dial with calibration scale drawing. Dial-Indicator Adjustraent.-After lastening the chassis in the cabinet, attach the dial indieator to the drive cable with indicator at the end calibration mark, and gang condenser fully meshed. The indicator has a clip for attachment to the cable. Spread-Band Alignment.-For spread-band alignment an extremely high degree of accuracy is required of the test-oscillator, as a slight error will produce considerable inaccuracy on the spread-band dials. Determine the exact dial setting of the test-omcillator fifor fre quencies at or close to the specified alignment trequencies) by one of the following methods: 1. Zero-beat the test-oscillator against short-wave stations of known trequency. 2. Check test-oscillator signals with a crystal controlled oscillator. A final check whould be made on actual reception of short-wave stations of known frequency. For additional informntion, refer to booklet "RCA Victor Receiver Alignment."

Tube and Trimmer Location (Top View)

Step	Connect high side of test oucillator to-	Test oncil. lator frequency	Turn radio dial to-	Adjust for maximum output
1	Pin \#1 of 6BA6 thru .01 mfd . capacitor	453 kc	Quiet point near 600 kc A Band	T-3 2nd I.F. trans.-top and bottom
2	Pin $\# 7$ of 6BE6 thru .01 mfd . capacitor			T-2 1st I.F. trans.-top and bottom
3	Ant. torminal thru 200 mmid capacitor	350 kc	$X \underset{230}{\text { Band }}$	Cl4 osc. C3 ant.
4		160 kc	$\begin{gathered} \text { X Band } \\ 144.9^{\circ} \end{gathered}$	L9 ose. L2 ant.
5		Repeat steps 3 and 4		
6		1400 kc	$\underset{27.3^{\circ}}{\text { A }}$	C15 osc. C4 ant.
7		600 kc	$\begin{gathered} \text { A Band } \\ 142.6^{\circ} \end{gathered}$	Lll osc.
8		Repeat steps 6 and 7		
9	Ant. terminal thru 300 ohm resistor	15.2 mc	$C_{31.70}$	+C16 osc. C5 ant.
10		7.2 mc	$C_{132^{\circ}}^{\text {Band }}$	L13 osc.
11		Fepeat step	9 and 10	
12		9.5 mc	31-25 Meter Band 169.6°	- Cll osc. - C2 ant.
13		11.8 mc	$\begin{aligned} & 31.25 \text { Moter } \\ & \text { Band } 44.80 \end{aligned}$	†L 14 osc. \ddagger L7 ant. \ddagger
14		Repeat stops 12 and 13		
15		17.75 mc	19-16 Meter Band 37.5°	+C19 ose. C8 ant.
16		15.2 mc	19-16 Meter Band 157.2°	+L15 osc. L8 ant.
17		Repeat steps 15 and 16		

\dagger Oscillator frequency is higher than signal frequency on all bands. Use minimum capacity or minimum inductance pealk on oscillator adjustments if two peaks can be obtained.
0° Preset L14 and L7, with tuning condenser at minimum capacity $\left(0^{\circ}\right)$, so that the cores are exactly $1 / 8 \mathrm{in} .(3.175 \mathrm{~mm})$ from the bortom end of their respecive coils (coil end to bottom end of iron corer in insulating rod of the core assembly).
\ddagger If dial reading for maximum output at 11.8 mc is lower than 11.8 mc , rotate studs approx. $1 / 2$ turn clockwise-it higher rotate approx. $1 / 2$ turn counterclockwise.

Critical Lead Dress

1. The 6BA6 screen by-pass capacitor C27 should be dressed clome to the chasmis with whort leads.
2. The grid resistors R12 and R20 should be dressed close to the chassis with short leads.
3. The speaker wires should be dressed as far away from the 6SQ7 and 6AT6 sockets as possible.

7Q51X

AC-DC Radio Receivers $8 \times 541,8 \times 542,8 \times 544$,
$8 \times 545,8 \times 546,8 \times 547$

Chassis No. RC 1065, RC 1065A 1st Prod. RC 1065C, RC 1065D 2nd Prod. RC 1065F, RC 1065H 3rd Prod. RC 1065J, RC 1065K 4th Prod.

Service Data
 -1948 No. II-

PREPARED BY RCA SERVICE CO., INC. FOR
RADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

Specifications

Tuning Range . 540-1600 kc	Power Output
Intermediate Frequency 455 kc	Undistorted. 1.0 wat
Tube Complement	Maximum................................... 1.5 watts
(1) RCA-12SA7. Converter	
(2) RCA-12SK7 Amplitier	
(3) RCA-12SQ7 Det., A.V.C., and A.F. Amp.	Height...... $7^{\prime \prime}$ Width...... $103 / \%^{\prime \prime}$ Depth...... $5 / \%^{\prime \prime}$
(4) RCA-50L6GT (19t, 2nd \& 4th prod.)........... Output RCA-50B5 (RC 1065F, RC 1065H)............ . Output	Power Supply Rating 115 volts, AC, 50 or 60 cycles, or DC 30 watts
	115 volts, AC, 50 or 60 cycles, or DC............. 30 watts
Dial Lamp Mazda No. 47, 6-8 volts, 0.15 amp.	POWER SUPPLY POLARITY -
Loudspeaker (92577-5)	For operation on d-c, the power plug must be inserted in
Size and Type.................. 4 -inch PM	the outlet for correct polarity. If the set does not function,
V. C. Impedance 3.2 ohms at 400 cycles	reverse the plug. On a-c, reversal of the plug may reduce hum.

CHASSIS IDENTIFICATION

lat Production
Chassis No. RC 1065-Models 8X541, 8X544, 8X545.
Chassis No. RC 1065A-Models 8X542, 8X546, 8X547.
2nd Production
Chassis No. RC 1065C-Models 8X541, 8X544, 8X545.
Chassis No. RC 1065D-Models 8X542, 8X546, 8X547.
3rd Production
Chassis No. RC 1065F-Models 8X541, 8X544, 8X545.
Chassis No. RC 1065 H -Models 8×542, 8×546, 8×547.
4th Production
Chassis No. RC 1065J-Model 8X541.
Chawsis No. RC 1065K-Models 8X542, 8X547.
lat Production (RC 1065, RC 1065A)
Has 50L6GT output tube, Stock No. 70133 osc. coil, No. 73485 tuning condenser (stamped 941274-1), No. 73036 lst I.F. trans. (stamped 970441-1), No. 13037 2nd I.F. trans. (stamped $970441-2$) and No. 38410 vol. cont. (500 K stamped 970058-26, -30 or -40).

2nd Production (RC 1065C, RC 1065D)
Has Stock No. 24448 osc. coil, No. 24447 tuning condenser (stamped 941274-2) otherwise same as lst Production.

3rd Production (RC 1065F, RC 1065H)
Uses 50B5 output tube, otherwise same as 2nd Production.
4th Production (RC 1065J, RC 1065K)
Has Stock No. 75486 lat I.F. trans. (stamped 970441-11),
No. 75487 2nd I.F. trans. (stamped 970441-12) and No. 71168 vol. cont. (1 megohm - stamped 970776-4) otherwise similar to 2nd Production.

8X541 Chassis No. RC 1065L 8X542, 8×547 Chassis No. RC 1065M

Alignment Procedure

Critical Lead Dress

1. Dress all heater leads close to chassis.
2. Dress pilot light leads away from speaker cone
3. Dress lead to low side of loop between the two gang condenser leads.
4. Dress C5 (AVC by-pass) close to the bend in the base and clear of the 2nd I.F. transformer.

Test-Oscillator

For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.

On AC operation an isolation transformer ($115 \mathrm{v} . / 115 \mathrm{v}$.) may be necessary for the receiver if the test oscillator is also AC operated.

Dial Centering:

If the mounting of the tuning condenser has been disturbed, it may be necessary to adjust its position after replacing the chassis in the cabinet. This may be done in the following manner:

1. Install chassis and tighten the three mounting screws.
2. Replace tuning knob.
3. Loosen the two screws which hold the tuning condenser mounting bracket to the chassis.
4. Adjust the position of the tuning condenser mounting bracket so that the tuning knob may be rotated without binding on the cabinet. With tuning condenser plates fully meshed the dial should be in the position indicated below.
5. The two screws should then be tightened to maintain this position.

Dial and Indicator

> RC 1065, RC 1065A
> RC 1065C, RC 1065D RC 1065F, RC $1065 H$

Substitute Volume Controls:

The original volume control used in these receivers is stamped 970058-26, 970058-30 or 970058-40. It is a 500,000 ohm control with an internal stop at 50,000 ohms.

Substitute control stamped $970058-20$ is a 500,000 ohm control without the internal stop. An external 68,000 ohm resistor is connected between the high side of the volume control and \#2 lug of the 2nd i.f. transformer.

Substitute control stamped $97900-110$ is a 1 megohm control without the internal stop. An external 68,000 ohm resistor is connected between the high side of the volume control and \#2 lug of the 2nd i.f. transformer. A one megohm resistor is connected in parallel with the control.

Excessive Hum:

When excessive hum is encountered in these models the value of R15 should be checked. The correct value of this resistor is 1200 ohms. In a few instruments which reached the field, this resistor was actually 220 ohms.

Substitute Resistor:

In some chassis, two one-half watt resistors (one each of 2200 ohms and 2700 ohms) are connected in parallel and used as a substitute for the 1200 ohm 1 watt resistor Rl5.

Steps	Connect the high side of test-oscillator to-	Tune test-ose. to-	Turn radio dial to-	Adjust the following for mex. output
1	125K7 I-F trid throush 0.1 mfd. capacitor	455 kc	Quiet-point 1600 kc end of dial	T2 (Top and bottom) 2nd I-F trans.
2	Stetor of Cl through 0.1 mfd .			*T1 (top and bottom) lat I-F trans.
3	Short wire placed near loop to radiate signal	1600 kc	1600 kc	C4 (osc.)
4		1400 kc	1400 kc	†C2 (ant.)
5		600 kc	600 kc	$L 2$ (osc.) Rock gant
6		Repent stepe 3, 4 and 5.		

*Do not readjust T2 when test oecillator is connected to Cl .
tWhen adjusting C2 (ant. trimmer) it in necemary to have the loop in the same position and spacing an it will have when assombled in the cobinet. This spacing is $31 /{ }^{\prime \prime}$ trom chasais to loop.

CHASSIS NOS. RC 1065F AND RC 1065H USE A 50B5 OUTPUT TUBE INSTEAD OF TYPE 50 L 6.

Tube and Trimmer Locations

Third Production Output Tube Circuit
Chassis Nos. RC 1065 F and RC $1065 H$

Capacitor Substitution:

In some chassis .06 mf . capacitors have been used as a substitute for the .05 mf . capacitors Cl 2 and Cl 8 .

Substitute Speaker:

In some chassis speakers stamped 92577-3 or 92577-6 have been used as a substitute for the speaker (92577-5) specified in the parts list.

Schematic Circuit Diagram-Chassis No. RC-1065, RC-1065A
SECOND PRODUCTION (CHASSIS No. RC 1065C, RC 1065D) C3 IS 9.1-113.8 MMF., OTHERWISE AS SHOWN ABOVE

Schematic Circuit Diagram-Chassis No. RC-1065J, RC-1065K

Replacement Parts

Stock No.	DESCRIPTION	Stock No.	DESCRIPTION
73486	CHASSIS ASSEMBLIES RC $1065-8 \times 541,8 \times 544,8 \times 545$ (1st Production) RC 1065A-8X542, $8 \times 546,8 \times 547$ (1st Production) RC $1065 C-8 \times 541,8 \times 544,8 \times 545$ (2nd Production) RC 1065D- $8 \times 542,8 \times 546,8 \times 547$ (2nd Production) RC 1065F-8X541, 8X544, 8X545 (3rd Production) RC $1065 \mathrm{H}-8 \times 542,8 \times 546,8 \times 547$ (3rd Production) RC 1065J-8X541 (4th Production) RC 1065 K -8X542, 8×547 (4th Production) Back-Back cover (maroon) and loop antenna meembly complete for RC1065, RC1065C \& RC1065F Back-Back cover (maroon) and loop antenna asembly complete for RC1065J	74697 54414 70827 74822 73036 75486 73037	jocket-Dial lamp acket and lead aseembly Socket - Tube aocliet (molded) Socket -Tube'socket (wafer) Socket - Tube socket (miniature) for 50B5 tube Tranaformer-Firat 1-F tranaformer (atamped 970441-1) complete with adjustable cores for 1at, 2nd and 3rd productions Tranaformer-Firat l-F tranaformer (atamped 970441-11) complete with adjustable cores for RC1085J and RC1065K Tranaformer-Second 1-F tranaformer (atemped 970441-2) complete with adjustable cores for list, 2nd and 3rd productiona
73487	Back-Back cover (ivory) and loop antenna asembly complete for RC1065A, RC1065D \& RC1065H	75487	Tranaformer-Second 1-F tranaformer (stamped 970441-12) complete with adjustable cores for RC1065J
75906	Back-Back cover (ivory) and loop antenna aseembly complete for RC1065K	12296	and RC10ssK.................................. T2
73485	Capacitor-Variable tuning capacitor for RC1065 and RC1065A. $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C} 4$		SPEAKER ASSEMBLIES
74447	Capacitor-Variable tuning capacitor for $2 \mathrm{nd}, 3 \mathrm{rd}$ and 4th productions C1, C2, C3, C4	73919	$92577-5$
73499 39624	Capacitor-Ceramic, 56 mmf. for 1at, 2nd and 3 rd productions C5	73919	coll MISCELLANEOUS
73501	Capacitor-Ceramic, 150 mmf . for 1st, 2nd and 3rd productions	Y1495	Cabinet-Plastic cabinet-maroon-complete with atation indicator and dial backing disc for Model 8X541
39632	Capacitor-Mica, 150 mmf . for RC1065J and RC1065K	Y1496	Cabinat-Plastic cabinet-ivory-complete with station indicator and dial backing dise for Model 8×542
72571	Capacitor-Mica, $330 \mathrm{mmf}, \ldots$ Capacitor-Tubulat, paper, . 002 mfd., 400 volte C16	Y2096	Cabinet-Plastic cabinet-mahogany-complete with station indicator and dial backing disc for Model 8X544
73920	Capacitor-Tubular, paper, . 005 mfd ., 400 volta. C6	Y2097	Cabinet-Plastic cabinet-walnut-complete with station indicator and dial backing diac for Model 3X545
73562	Capacitor-Tubular, paper, . 02 mfd., 400 volts C14 Capacitor-Tubular, paper, .03 mfd ., 400 volts. C17	Y2098	Cabinet-Plastic cabinet-blonde-complete with station indicator and dial backing disc for Model BX546
73553	Capacitor-Tubular, paper, . $05 \mathrm{mfd} ., 400$ volta C12, C18 Capacitor-Tubular, paper, 0.1 mfd., 400 volta C24	Y2053	Cabinet-Plastic cubinet-white-complete with station indicator and dial bucking disc for Model 8X547
73500 73935	Capacitor-Electrolytic comprising 1 section of 50 mfd ., 150 voltes \& 1 eection of 30 mfd ., 150 volte C19A, C19B	73494	Clip-Spring elip to hold cabinet back and loop aseembly to eabinet (4 required)
73935	Clip-Mounting clip for l-F tranaformer	73489	Dinl-Dialing knob
70133	Coil-Oneillator coil for RC1065 and RC1065A..... L1, L2	73493	Disc-Dial backing dise
7448 38410	Coil-Oscillator coil for 2nd, 3rd and 4th productions L1, L2	70429	Grommet-Rubber grommet to mount apeaker (4 re-quired)-lat production only
38410	Control-Volume control ($1 / 2$ merohm) and power awitch for 1st, 2nd and 3rd productions	73492	Indicator-Station eelector indicator
71168	Control-Volume control (1 megohm) and power switch for RC1065J and RC1065K	7466	Knob-Volume control and power awitch knob-maroon -for Models 8X541, 8X544 and 8X545
70392	Cord-Power cord and plug	7	Knob-Volume control and power awitch knob-ivory -for Model 8X542
72283	Grommet-Rubber grommet to mount variable tuning capacitor (3 raquired)	74247	Knob-Volume control and power switch knob-tanfor Model 8X546
	Resintors-Fixed, composition:- 150 ohms $\pm 20 \%$ 1/2 watt R9	74007	Knob-Volume control and power awitch knob-white -for Model 8×547
	1200 ohms, ± 10 \%, 1 watt R15	31480	Lamp-Dial lamp-Maxda No. 47
	22,000 ohmm, $\pm \mathbf{2 0 \%}$, 1/2 watt	72765	Nut-Speed nut to fasten indicator to cabinet
	220,000 ohms, $\pm 20 \%, 1 / 2$ watt........... R7, R16	73914	Spring-Retaining apring for dialing knob
	470,000 ohms, $\pm 20 \%$, $1 / 2$ watt................. . Rs 	14270	Spring-Retaining apring (flat) for volume control and power switch knob (early typo)
		74734	Spring-Retaining spring (circular) for volume control and power switch knob (late typo)

APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES ON REPLACEMENT PARTS

8X541 Chassis No. RC 1065 L 8X542, 8X547 Chassis No. RC 1065M

These instruments are almost ideatical to th production instruments. Refor to RC 1085] and BC 1065K for all service in. formation.

Specifications

Tuning Range ... $540-1600 \mathrm{kc}$. Intermediate Frequency .. 455 kc.
Tube Complement
(1) RCA 1R5 \qquad ..Converter
(2) $\mathrm{RCA} 1 \mathrm{I}_{4}$ \qquad .1. F. Amplitier
(3) RCA IU5 \qquad
Det.A. V. C.A. F. Amp.
(4) RCA $3 \mathrm{~V}_{4}$ \qquad pu
(5) RCA 11773

Rating
 Power Supply Rating
 Power Line Operation

115 volts, d. c. or 50 to 60 cycles a. c. 18 watte
or
Battery Operated
\qquad
(Average life- 100 hrs . intermittent service)
Loudspeaker (92577-1)
Size and type \qquad
\qquad 4 in. PM dynamic
Voice coil impedance \qquad 3.4 ohms at 400 cycles

Power Output

Undistorted-150 milliwatte Maximum- $\mathbf{2 5 0}$ milliwatts
(Output is slightly lower on battery operation)
Cabinet Dimensions
Height $9^{1 / 2}$ in. Width 11 in . Depth 5 in.
Woight
5 lb . less battery $\quad 8 \mathrm{lb} .2 \mathrm{oz}$. with battery

AC.DC Operation

This receiver will operate on 115 volts. d. c. or 50 to 60 cycles a. c.

A power cord is stored inside the cabinet. To open the cabinet. puinh upward on the two metal ball catches at the top rear of the cabinet. Remove the plug of the power cord from its socket on the chassis and insert the plug into a convenient electrical outlet. A slot in the bottom of the back cover allows the back to be closed with the cord passing through.

Note: If reception is not obtained on d. c., reverse plug in outlet receptacle. This may also reduce hum on a. c. operation.

When returning to battery operation replace the plug in the socket provided on the chassis, roll up the cord and place under the raised portion of the battery holder bracket.

Note: Make certain that the plug is fully inserted boase of plug touching chassis) to assure proper operation of the BattLine switch.

Cabinat Hingoa

The cabinet hinges may be readily removed, they are secured to the cabinet and back by force fit. To remove back from cabinet-pull straight outward on both hinges at the same time.

To Remove Chassis

1. Pull oft the volume control knob
2. Close tuning condenser (dial at 54) to prevent possible damage to tuning condenser.
3. Unsolder the loop leads.
4. Remove the plug from the battery.
5. Remove the two screws holding the boltom edge of the speaker and the screw holding dial back-plate to cabinet.
6. Remove the two slip shields beneath the handle. They may be removed by pushing straight toward the top center of the case. The chassis mounting screws are then accessible.
7. Remove the two screws at the top of the cabinet while supporting the chassis with one hand.
Note: When re-installing, replace speaker holding screws first but do not securely tighten until the two screws at the top of the cabinet have been tightened.

Alignment Procedure

Cathode Ray Allgnment is the preferable method. Connections for the oscilloscope are shown on the schematic diagram.
Output Meter Alignment.-If this method is used, connect the meter across the voice coil and lurn the receiver volume control to maximum.
Test Oscillator.-For all alignment operations, connect the low side of the test oscillator to the receiver chassis and keep the ascillator output as low as possible to avoid AVC action.
Battery operation of the receiver is preferable during alignment; on a. c. operation an isolation transformer ($117 \mathrm{v} . / 117 \mathrm{v}$.) may be necessary for the recelver if the test oscillator is also a. c. operaled.

Note: Battery or substitute must be in place for ant. alignment (step 5).

Stop	Connect high side of tost oscillator to-	Tost oscillator outpul-	$\begin{aligned} & \text { Turn } \\ & \text { receiver } \\ & \text { dial to- } \end{aligned}$	Adjust for maximum peak output
1	Disconnect loop-remove chassis-connect a 1000 ohm resistor from Cl stator terminal to tuniag condenser frame.			
2	Stator terminal of Cl through a 39 mmf . capacitor	455 lce	55	- Top and bottom 12 (2nd. 1.F. trans.) -Top and boltom T1 (lat. I.F trans.)
3	Remove the 1000 ohm resistor. Replace bottom cover and install chassis in cabinet. Re-connect loop.			
4	Short wire placed near receiver (for radiated signal)	1600 ke	160	+C5 (ose.)
5		1400 kc	140	C2 (ant.)
6		600 kc	60	- 12 (osc.) while rocking gang
7		Repeat stops 4, 5 and 6		

NOTES:
-The magnetite cores of L 2 and T 2 and T 1 do not have visible adjusting screws. The cores have screw driver slots to permit adjustment (use non-metallic screwdriver).
+Adjustable thru hole in side of case.
CAUTION.-
Do not remove any tubes from the chassis with the set operating and the plug connected to the power line. Damage to tubes may result.

Critical Lead Dress

1. Dress output plate bypass C20 capacitor against chassis.
2. Dress output plate lead to output transformer against chassis.
3. Dress audio coupling capacitor Cl4 (volume control to grid of 1U5) away from chassis, away from audio limiting resistor R8 and to permit adjustment of second I.F. Transformer.
4. Dress all exposed leads away from each other, and away from chassis to prevent short circuits.
5. Dress all filament and ground leads against chassis.
6. Dress filament bypass capacitor C 23 and accompanying compensating resistor R15 (volume control to 1U4) against volume control.
7. Dress power line cord away from line-battery switch mechanism.
8. Dress all capacitors and wiring away from oscillator coil.
9. Dress 4 mmf . neutralizing capacitor C7 against A.V.C. bypass capacitor C8 (1U4 filament to first I.F. trans.).

Note: These instruments are designed to be operated with a battery in position inside the cabinet. Reception will be below normal unless the battery is in its normal location.

The position of the battery pack affects the loop inductance. Therefore, when the battery is removed, the loop inductance will change (increase) and the sensitivity will be slightly worse because of improper electrical tracking of the loop circuit with the heterodyne oscillator.
Where a battery is temporarily unavailable, a sheet of aluminum $81 / 2^{\prime \prime}$ long $x 3^{5 / 3^{\prime \prime}}$ wide and from .020 to $.050^{\prime \prime}$ thick may be placed in the cabinet in the position occupied by the battery so that it is lying flat down on the bottom. This sheet of aluminum has an effect on the loop inductance similar to the effect caused by the baltery and will, therefore. return the performance of the loop to approximately the same as obtained when a battery is installed. If aluminum is not available, brass may be substituted with approximately the same performance. DO NOT USE STEEL OR IRON since the performance will be adversely affected. If desired, the sheet of aluminum may be waxed to the inside bottom of the case. DO NOT PLACE ANY WAX, CEMENT OR OTHER MATERIAL ON THE LOOP WINDINGS. 455 KC

APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS

Addition to Parts List:
 MISCELLANEOUS

73549 Emblem-"RCA Victor" emblem (metal) '74674 Emblem-'RCA Victor" omblem (plastic)

The plastic emblem is attached to the cabinet either with cement or by pressing the ends of the protruding pins with a hot iron after installation.

The two types are not readily interchangeable.

Oscillator Coil Substitution:

On some RC 1059C chassis a substitute oscillator coil was used. The specified coil (Stock No. 74405) has an identifying GREEN dot of paint. The substitute coil (Stock No. 73114) has an identifying YELLOW dot of paint. The GREEN dot coil should be used only with variable capacitors stamped 941225-7 (Stock No. 74406), the YELIOW dot coil should be used only with variable capaciors stamped $941225-4$ or 941225-6 (Stock No. 74286).

LINE-BATT. Switch:

The LINE-BATT. switch used in these receivers is of the "slide" type. The actual switch does not have numbered terminals al. though the schematic diagrams have numbers indicated. The numbers on the schematic diagrams do not indicate the actual sequence of the terminals on the switch. The illustrations below show the actual sequence of the switch terminals and the corresponding numbers which appear on the schematic diagrams.

Specifications

Tuning Range	540-1600 kc.
Intermediate Frequency	455 kc .
Tube Complement	
(1) RCA IR5	Converter
(2) RCA IU4	F. Amplifier
(3) RCA 1 U 5	-A.F. Amp.
(4) RCA 3V4	Output

Power Supply Rating
Power Line Operation
115 volts d.c. or 50 to 60 cycles a.c. 17 watts
or
Battery Operation
1 RCA VS 065 "A" Battery 7.5 v., 60 ma.

1 RCA VS 016 "B" Battery 67.5 v., 10 ma. (Battery life-approx. 40 hrs . intermittent service)

Power Output
A.C. operation 150 mw . undistorted, $250 \mathrm{mw} . \mathrm{max}$. Batt. operation 70 mw . undistorted, 180 mw . max.

Loudspeaker (92584.1)
Size and type \qquad 4 in. PM dynamic
Voice coil impedance \qquad 3.2 ohms @ 400 cycles

Dial Drive Ratio \qquad 6:1 (3 turns of knob)

Cabinet Dimensions
Height 8^{3} ein.
Width $101 / 2$ in
Depth 5 in.
Weight $\quad 5^{1 / 2} \mathrm{lbs}$. (less batteries) $61 / 4 \mathrm{lbs}$. (with batteries)

To Open Cabinet:

The back is secured to the cabinet with two clip catchel at the top and two hinges at the bottom. To open-while facing the front of the receiver, with the handle in the upright position grip the sides of the cabinet with both hands and push the top of the back to the rear with both thumbs.

To Remove Back:

Open the cabinet as explained above. With the back lully open, grip the cabinet as illustrated. Insert a screwdriver un der one hinge retainer and pry the center of the retainer out of the opening in the cabinet while maintaining pressure on the back with the fingers and on the cabinet with the thumb Repeat this procedure with the other hinge retainer. Pull straight to the rear.

To Remove Cabinet Foot:

Open the cabinet. Grip the end of the spring clip with long nose pliers as illustrated and pull toward the center of the cabinet. Repeat this procedure with the other clip.
rca Victor

AC-DC-Battery Portable Receiver Model 9BX56

Chassis No. RC-1068
— Mfr. No. 274 -

Service Data

- 1949 No. 9 -

RADIO CORPORATION OF AMERICA
 RCA VICTOR DIVISION CAMDEN, N. J., U. S. A.

To Remove Chassis:

1. Remove knobs (pull off).
2. Open cabinet
3. Unsolder loop leads.
4. Disconnect batteries and speaker.
5. Remove the two screws which hold the dial back plate to the cabinet.
6. Remove the TWO SCREWS AT THE BOTTOM EDGE OF THE REAR CHASSIS APRON.
7. Pull chassis to rear.

Removal of Cabinet Back

Removal of Cabinet Foot

$9 B X 56$

Alignment Procedure

Cathode Ray Allgnment is the preferable method. Connections for the oscilloscope are shown on the schematic diagram.

Output Meter Alignment.-If this method is used, connect the meter across the voice coil and turn the receiver volume control to maximum.

Test Oscillator.-For all alignment operations, connect the low side of the test oscillator to the receiver chassis and keep the oscillator output as low as possible to avoid AVC action.

Battery operation of the receiver is preferable during alignment; on a.c. operation an isolation transformer (117v./117v.) may be necessary for the receiver if the test oscillator is also a.c. operated.

Dial Pointer Position.-There are two score marks on the dial back plate-with the tuning condenser fully meshed (closed) the pointer should be set to the LEFT HAND MARK.

The RIGHT HAND MARK is for 1600 kc .
The dial is not easily removed. A reproduction of the dial is illustrated on another page. It is suggested that a tracing be made of it for use in alignment.

Step	Connact high side ol test oscillator to-	Test oscillator outpul-	$\begin{aligned} & \text { Turn } \\ & \text { Teceiver } \\ & \text { dicl to- } \end{aligned}$	Adjust for maximum peak output
1	Disconnect loop-remove chassis-connect a 1000 ohm resistor from Cl stator terminal to tuning condenser frame.			
2	Stator terminal of Cl through a 35 mm . eapacitor	455 kc .	Quiet poins near 160	- Top and bottom 12 (2nd I.F trans.) -Top and bottom Tl (lst I-F trans.)
3	Remove the 1000 ohm resistor. Replace but do not fasten chassis in eabinct. Re-connect loop.			
4	Short wire placed near recoiver (lor radiated signal)	1630 kc.	Max. clockwise	+C5 (osc.)
5		1400 kc .	140	+C2 (ant.)
6		600 kc .	60	- 12 (onc.) while rocking gang
7		Repeat stop\% 4, 5 and 6		
8	Fasten chassis to cabinct.			

NOTES:

- The magnetite cores of L2, T2 and T1 do not have visible adjusting screws. The cores have screw driver slots to permit ad. justment (use non-metallic screwdriver).
+ C5 and C2 are more readily accessible it the chassis is not fully inserted into the cabinet. However the chassis should be near its proper position because its position affects the inductance of the loop.

Power Line Operation:

A power cord is stored inside the cabinet. Open the cabinet and remove the plug of the power cord from its socket on the chassis and insert the plug into a convenient electrical outlet. A slot in the right-hand end of the cabinet allows the back to be closed with the cord passing through.

NOTE: If reception is not oblained on DC. reverse plug in outlet receptacle. On AC operation this may reduce hum.

When returning to battery operation replace the plug in the socket provided on the chassis, with the cord extending toward the back.

NOTE: Make certain that the plug is fully inserted (base of plug touching chassis) to assure proper operation of the BattLine switch.

CAUTION. -

Do not remove any tubes from the chassis with the sel operating and the plug connected to the power line. Damage to tubes may result.

Critical Lead Dress

1. Dress 1RS plate lead and $1 U_{4}$ grid lead down against chassis.
2. Dress all filament and ground leads against chassis.
3. Dress the 4 mmf . neutralizing capacitor $C 7$ against the $1 U 4$ tube socket with short lead at the plate end.
4. Dress .002 mf . capacitor Cl4 down against chassis and away from other wiring.
5. Dress .05 ml . capacitor C 9 down over top of Cl 4 ,
6. Dress capacitors C10 and C22 away from oscillator coil so that pressure is not exerted on the side of the coil.
7. Dress all wiring away from the selenium rectifier.
8. Dress .003 mf . capacitor C 8 as near chassis as possible.

Dial Drite Cord

Dial Scale

The dial scale drawing shown is a full size eproduction. It can be used as a relerence in alignment procedure.

Replacement Parts

STOCX No.	DESCRIPTION		DESCRIPTION
74318			ati-Tuning kn
	CHASSIS RSSEMBLIES RC 1085	38904 Soc 73117 Soc	kel-2 contact sockel ket-Tube sockel
		72540 Spri	㖪-Drive cord spring
	Bracket-Drive cord pulloy bracket complete with two (2) pulbys	36905	
74323	Capacitor-Variable tuning capacitor ($\mathrm{C} 1, \mathrm{C} 2, \mathrm{C}, \mathrm{C}$) Capacitor-Ceramic, 4 mmi . (C7)	73129 Tr	8
73153		35969 Wo	Washer-"C"0 washer for tuning
71924	Capacitor-Ceramic, 56 mmf . (C4)		M
73152	Capacitor-Coramic, $002 \mathrm{mid} ., 200$ volts (C14, C18)		92584-1
73961	Capacitor-Tubular, 0003 mid.. 200 volts (C8)		RL $108 \mathrm{B5}$
72791	Capacitor-Tubular, $005 \mathrm{mid}$. mid., 200 volts (C17)		vo
71923		7411 Sp	Speaker-4" P.M. epeaker complete with cone and voicter
71928	Capacitor-Tubular, . 02 mid., 200 volts (C9)		coil-less output transformer and con
71551 54859		71047 Tr	ansiormer-Output transformer (is
73553	Capacitor-Tubular, 05 mid., 400 volts (C3, C22) Capacitor-Tubular 0.1 mid., 200 volts (C1O)		CELIAN
73784	Capacitor-Tubular, 0.1 mid., 400 volts (C21)	28	Back-Cabinet back complete with two hinges,
70617			d 1
73113	Capacitor-Electrolytic, compriming 150 volts, 1 section of 160 mid. 25 volts and 1 section of $40 \mathrm{mid} ., 25$ volts (C19A, C19B, C19C. C19D)	74327 Bo 74346 B Y2108	Board-Antenna loop lead retaining clip Button-Dial drop door release button Buthon-cal including veneer overlay with drop
73935	Clip-I.F transformer mounting clip (2 requir		door catch, loop and loop supports-less drop dotiv,
73114	Connector- "B'" Battery connector-lons cable (R7, 52)		handle, foot, trim strips, dial, clip
73125	Control-Volume control and power switchired)		and back elip catch (fartens
†72953	Cord-Drive cord (approx. 19" length required)	7433	quired)
70022	Grommet-Rubber grommet to mount tuning required)	74345	Catch-Drop door catch amombly finat (2 required)
		74338	Clip-Spring elip for holding
74321	Indicator-Station selector indicator	74334	Dial-Polystyrene dial zont of cabine
18469		74330	Door-Drop dior victor" emblem (m
		74674	Emblom-"RCA Victor" amblom (plastic)
31572		74331 F	Foot-Cabinet mounting foot-less proting plate and hinge
7432273237		74349	Handle-Carrying handie-lest mountig pla
	Resistor-Wirs,Resistor-Fixed,(R, RS, R1S)Resistor-Fixed, composition, 1000 ohms, $\pm 10 \%, 1 / 2$ walt(R14)		Knob-Volume conur
74319		74326	Loop-Antenna loop (Ll)
		74412	Nut-Speed nut or speaker moual (4 required)
		743337	Nut-Speed nut for mounting veneer overlay (4 required)
	Resistor-Wire wound, 2700 , 3300 ohmm, $\pm 10 \%$, $1 / 2$ watt Resistor-Fixed, comportion, 15000 , 10%, (R18)	$\begin{aligned} & 74340 \\ & 74336 \end{aligned}$	Nut-Spring nut to fasten cabinet trim strip orlay-Vencer overlay for top of cabinet including for each strip)
	Fesistor-Fixed, composition, 15,000 ohms, $\pm 10 \%$, i/2 watt (R16)	74329	drop door catch and release button Pin-Carrying handle hinge pin
	Renistor-Fixed, componition, 39,000 ohms, $\pm 10 \%, 1 / 2 \mathrm{walt}$		Plate-Protective bottom plate for cabindl-
	Resistor-Fixed, componition, 100,000 ohms, $\pm 20 \%, 1 / 2$ wall (R1)	74350	
		74325	Screen-Speak ${ }^{\text {Screw-\#4 }} 3 / 16^{\prime \prime}$ self tapping round head serow
	Resistor-Fixed, composition, 100,0 (R8)		recessed) for mounting drop door catch (2 requir (cross-
	Resistor-Fixed, composition, 220,000 ohms, $\pm 20 \%$, $/ 2$ walt	11	Scrow-\#4 x recessed) serew for cabinet back clip catch (cross.
	Resistor-Fixed, composition, 1 megohm, $\pm 20 \%$, $1 / 2$ watt (R13)	74342	Screw-\#8 $\times 7 / 16^{\prime \prime}$ sell lapping recosmed) screw for carry required)
	Resistor-Fixed, composition, 2.7 megohms,	335	Spring-Drop
	Resistor-Fired, componition, 4.7 megohms, $\pm 20 \%, 1 / 2$ wall (R12)	14270	7 Spring-Retaining spring drop doos selease button
	Resistor-Fixed, composition, 4.7 megohms, $\pm 10 \%$, $1 / 2$ watt		2 Strip-Trim strp-R.H.
	Resistor-Fixed, composition, 6.8 megohms, $\pm 10 \%, 1 / 2$ wat		3 Strip-Trim strip-liH. for carrying handle hinge pla
		3	
	Resistor-Fized, composition, 10 megohms, (R10)		(2 required)
	Resistor-Fixed, composition, 10 mogohms , (R21)	74343	3 Washer-Spring

FOR RECORD CHANGER SERVICE INFORMA-TION-REFER TO RP-168 SERIES SERVICE DATA.

Automatic Record Player
MODEL 9EY3
Chassis No. RS-132 Mfr. No. 274
Service Data

- 1949 No. 1 -

RADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

Specifications

Tube Complement

1.	RCA 12AV6	Amplifier
2.	RCA 50C5	Output
3.	RCA 35W4	Rectifier

Loudspeaker (92577-6W)

Size and type .. 4 in. P.M.
Voice coil impedance3.2 ohms at 400 cycles

Dimensions (overall)

Height, 73/8" Width. $911 / 118^{\prime \prime}$
Dept, 95:/"

Power Supply Rating

115 volts, 60 cycles A.C. \qquad 45 watts

Power Output

Undistortedl. 0 watt Maximum 1.25 wath

Record Changer (RP-168-1)

Turntable speed 45 r.p.m.
Records used \qquad RCA 7 in . fine groove Record capacity \qquad up to 10 records
Pickup ... Crystal (medium output)

REPLACEMENT PARTS

$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION
	AMPLIFIER ASSEMBLIES RS 132
39648	Capacitor-Mica, 680 mmi . (Cl)
72281	Capacitor-Electrolytic comprising 1 section of 80 mid.. 150 volts, 1 section of $40 \mathrm{mid} ., 150$ volts and 1 section of 20 mid., 25 volts (C5)
73961	Capacitor-Tubular, paper, . $003 \mathrm{mfd} ., 200$ volts (C2)
73920	Capacitor-Tubular, moulded paper, . 0047 mid., 600 volts (C4)
71923	Capacitor-Tubular, paper, 01 mid., 200 volis (C3)
58476	Capacitor-Tubular, paper, $018 \mathrm{mfd}$.400 volts (C6)
73553	Capacitor-Tubular, moulded paper, .047 mid., 400 volts (C7. C8)
30868	Connector-2 contact iemale connector for motor cable
36422	Connector-3 contact female socket for phono cable (J1)
74133	Control-Volume control and power switch (R3, SI)
73127	Cover-Insulating cover for electrolytics
73693	Grommet-Power cord strain relief grommet (l set)
72314	Resistor-Wire wound, 120 ohms, 5 watts (R7)
73237	Resistor-Wire wound, 33 ohms. 150 ma (R11) Resistor-Fixed, composition:- 150 ohms. $\pm 10 \%$, $1 / 2$ watt (R9) 2700 ohms. $\pm 10 \%, 1 / 2$ watt (R10) 120.000 ohms. $\pm 10 \%$, $1 / 2$ watt (R4) 180,000 ohms, $\pm 10 \%$, ! s watt (R2) 27.0000 ohms. $\pm 10 \%$, is watt (R6, R8)

APPLY TO YOUR RCA DISTRIBUTOR

Change in Resistor and Capacitor:

To aid in hum reduction R 8 and C 4 have been changed in value. R8 is now 270.000 ohms (was 470,000) and $C 4$ is now .0047 mf (was .002 mf)

$\begin{gathered} \text { STOCR } \\ \text { No. } \end{gathered}$	DESCRIPTION
$\begin{array}{r} 73117 \\ 72535 \end{array}$	470.000 ohms. $\pm 10 \%$, $1 / 2$ watt (R1) 4.7 megohm, $\pm 20 \%$, $1 / 2$ watt (R5)
	Socket-Tube socket
	Transformer-Output transformer (Tl)
	SPEAKER ASSEMBLIES 92577.6 W
74165	Speaker-4" P.M. speaker complete with cone and voice coil. MISCELLANEOUS
74135	Baffle-Speaker baffle
74134	Bottom-Cabinet bottom cover
74136	Bracket-Speaker mounting brackel
74137	Bracket-Mounting bracket for reject button and shaft
74138	Button-Reject button and shatt
Y2071	Cabinet-Plastic cabinet-maroon-less bottom cover
74190	Cable-Shielded pickup cable complete with 3 contact male connector
74193	Clamp-Spring clamp for reject button and shaft
74192	Connector-3 contact male connector for pickup cable cablè
73549	Emblem-"RCA Victor" emblem (metal)
74674	Emblem-"RCA Victor" emblem (plastic)
74623	Hardware-Set of mounting parts consisting of 3 flat washers, 3 eyelets and 3 grommets to mount changer mechanism
73490	Knob-Volume control and power switch knob
74734	Spring-Retaining spring for knob
74139	Spring-Reject button and shalt return spring
2917	Washer-"C" washer for reject button and shaft

FOR PRICES OF REPLACEMENT PARTS.

Service Hint:

The leads of C3 and R5 are close to the chassis base. If either of theae leads touch the chassis it results in low volume. When servicing check the lead dress of these two components.

Schematic Diagram

REJECT BUTTON

Record Separators

In the out of cycle position the record separator knives or discs are normally concealed inside the center post. During service the position of the star wheel on the underside of the record changer may be accidently shifted; this may cause the separator knives to be extended when they should be concealed.

If the separator knives are thus extended-turn the power on so that the lurntable is revolving, gently press fingers against the extended knives until they disappear inside the center post-DO THIS ONLY WHILE MECHANISM IS OUT OF CYCLE.

Record Changer Mounting

The cabinet is used as the motor board of the record changer. The record changer is attached to the cabinet with three screws, grommets and spacers. THE PICKUP ARM MUST BE REMOVED BEFORE THE RECORD CHANGER CAN BE RE. MOVED--REFER TO RP. 168 SERIES SERVICE DATA.

To Remove Chassis

Remove the four screws at the corners of the bottom cover, separate the motor power plug and socket and remove the pickup cable from its socket on the amplifier chassis.

Elongated holes permit the speaker position to be adjusted. If the speaker should be replaced or its mounting bracket loosened, the speaker mounting bracket screws should not be tightened until after the bottom cover is assembled to the cabinet.

The pickup point should land half-way between the outer edge of the record and the tirst music groove.
If the pickup lands inside the starting grooves-lurn screw "A" slightly clockwise. If pickup lands outside the starting grooves-lurn screw "A" slightly counterclockwise.

Pickup Height Adjustment " B "

During cycle the pickup arm must rise high enough to clear a stack of eight records on the turntable, but not high enough to cause the top of the arm to touch records resting on the record supports.

If pickup does not clear a stack of eight records-turn screw "B" slightly clockwise. It pickup arm touches records on record supports-turn screw " B " slightly counterclockwise.

Amplifier Top View

Manual Record Player
Model 9EYM3
Chassis No. RS-1 32
— Mfr. No. 274 -
Service Data

- 1949 No. 10 -

RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION
 CAMDEN, N. J., U. S. A.

Specifications

Tube Complement		
1. RCA 12AV6 ... Amplifier		
2. RCA 50C5 ... Output		
3. RCA 35W4 ... Rectifier		
Loudspeaker (92577-6W)		
Size and type .. 4 in. P.M.		
Voice coil impedance3.2 ohms at 400 cycles		
Dimensions (overall)		
Height, $6^{1 / 40}{ }^{\prime \prime}$	Width, $911 / 10^{\prime \prime}$	Depth, 95/8"
Weight ... $9^{1 / 2} \mathrm{lbs}$.		
Power Supply Rating		
115 volts. 60 cycles A.C. 45 watts		
Power Output		
Undistorted	 1.25 watts

Record Player (RP 186-1)
Turntable speed .. 45 r.p.m.
Record used ...RCA 7 in. fine groove Record capacity .. 1 record Pickup ...Crystal (medium output)

CATHODE CURRENTE
I2AV6 ----- 0.19 MA
$50 C 5----49.3 \mathrm{MA}$
$35 W 4----49.7 \mathrm{MA}$

[^1]
To Remove Chassis

Remove the four screws at the corners of the boltom cover, separate the motor power plug and socket and remove the pickup cable from its socket on the amplifier chasais.
Elongated holes permit the speaker position to be adjusted. If the apeaker should be replaced or its mounting bracket loosened. the speaker mounting bracket screws should not be tightened until after the boltom cover is assembled to the cabinet.

Care of Pickup

The sapphire of the crystal pickup is protected by a perma. nent metal guard. LINT MAY COLLECT TO CLOG THE OPENING IN THE GUARD AT THE SAPPHIRE POINT AND CAUSE POOR RECORD REPRODUCTION. This may require occasional cleaning of the guard opening-clean by carefully brushing with a small soft brush.

Replacement of Sapphire

Caution: Never bend the sapphire support wise.
Extreme care should be used when loosening the nut so that the twinting motion does not break the crystal. Take hold of the lower end of the shaft with a pair of pller while loosen. ing or tightening the nut, being very careful so as not to strip the threads or break the crystal.

Remove the two screws holding sapphire guard in place and remove the guard. Remove the small nut and washer on the threaded shaft of the sapphire holder and gently push the shaft through the hole in the armature shaft until the sapphire holder assembly comes free.

Insert threaded shaft of replacement sapphire holder through armature shaft and replace the washer and nut. Make sure that the sapphire is in the correct position.

Replace the sapphize guard, positioning it by means of the oversize screw slots. Make certain that the sapphire and its supporting wire are centered in the guard. Tiqhten the quard screws. Before using, check to see that the sapphire projects far enough beyond the guard so that the guard will not touch the record. If necessary, bend the guard a little.

REPLACEMENT PARTS

STOCK No.	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
74041	PICKUP \& ARM ASSEMBLY Arm-Pickup arm shell and stud-less crystal, cable and rear pivot arm	73117	Resistor-Fixed, composition, 4.7 megohms $\pm 20 \%$. $1 / 2$ watt (R5) Socket-Tube socket
74059	Arm-Pivot arm and shaft	36422	Socket-3 contact socket for phono input cable
74066	Cable-Twisted pickup cable (12") complete with connectors	72535	Transformer-Output transformer (T1)
74067	Crystal-Crystal cartridge complete including sapphire and guard		MOTORBOARD ASSEMBLY RP 186-1
74069	Guard-Sapphire guard	72349	Bearing-Thrust bearing
38458	Nut-Speed nut to hold pickup cable	30870	Connector-2 contact male connector for motor
74061	Pivot-Tone arm pivot	74087	Grommet-Rubber grommet to mount motor (3 re-
74068	Sapphire-Sapphire and holder		quired)
74065	Screw-\#2-56 \times " $1 / 18$ " fillister head screw to mount crystal (2 required) or needle guard (2 required)	74132	Hardware-Motor mounting hardware consinting of three (3) spacers, six (6) flat washers, three (3) hex
74062	Screw-\#8-32 x 1 $2 / 32^{\prime \prime}$ cone point pivot adjusting screw	74094	nuts and three (3) lockwashers Mat-Turntable mat
74410	Screw-\#4.40 \times 3/10" fillister head set screw to lock pivot screw 74062	74071	Motor- 115 volt. 60 cycle motor complete with male connector
74060	Spring-Pivot arm spring (.171" O.D. x $.695^{\prime \prime}-43$ turns)	74459	Motorboard-Motorboard sub-assembly complete with idler lever, turntable and tone arm posts
74230	Washer-Washer and nut to mount sapphire and	74460	Nose-Spindle nose
	holder	74089	Spring-Idler wheel apring
	ER ASSE	74079	Stud-Idler wheel mounting stud
	RS 132	74452	Turntable-Turntable and shaft complete with rubber mat-less spindle nose
72839	Capacitor-Moulded paper. . $002 \mathrm{mid} ., 400$ volts (C4)	72688	Washer-"C" washer for turntable assembly
73961	Capacitor-Tubular, 003 mfd.	74102	Washer-Dampening washer for idler wheel (bottom)
71923	Capacitor-Tubular, 01 mid., 200 volts (C3)	74078	Washer-Dampening washer for idler wheel (top)
73562	Capacitor-Moulded paper, . 02 mid.. 400 volts (C6)	74080	Washer-Thrust washer for turntable bearing (2 re-
71702	Capacitor-Moulded paper, $05 \mathrm{mid} .{ }^{\text {C8 }} 400$ volts (C7.	74077	quired) Wheel-Idler wheel
72281	Capacitor-Electrolytic, comprising 1 section of 80 mid.. 150 volts; 1 section of $40 \mathrm{mfd} ., 150$ volts; and 1 section of $20 \mathrm{mid} ., 25$ volts (C5A. C5B. C5C)		SPEAKER ASSEMBLY 92577.6W RL108B4
74133	Control-Volume control and power switch (R3. S1)	74165	Speaker-4" P.M. speaker complete with cone and
28451	Cover-Insulating cover for electrolytic capacitor		voice coil
73693	Grommet-Strain relief grommet (l set) for power cord		MISCELLANEOUS
70391	Insulator-Phono input socket insulator	$\begin{aligned} & 74135 \\ & 74134 \end{aligned}$	Bottom-Cabinet bottom cover
30868	Plug-2 contact female pluq for motor cable	74136	Bracket-Speaker mounting bracket
72314	Resistor-Wire wound, 33 ohms. 150MA (R11)	Y2071	Cabinet-Plastic cabinet-maroon-less bottom
	Resistor-Wire wound. 120 ohms. 5 watts (R7) Resistor-Fixed, composition, 150 ohms $\pm 10 \%$, 1/2 watt (R9)	74190	cover Cable-Shielded output cable complete with 3 contact male connector
	Resistor-Fixed, composition, 2700 ohms $\pm 10 \%, 1 / 2$ watt (R10)	$\begin{aligned} & 74192 \\ & 73549 \end{aligned}$	Connector- 3 contact male plug for output cable Emblem-"RCA Victor" emblem
	Resistor-Fixed. composition, 120,000 ohms, $\pm 10 \%$. $1 / 2$ watt (R4)	74087	Grommet-Rubber grommet to mount record player mechanism (3 required)
	Resistor-Fixed, composition. 180,000 ohms. $\pm 10 \%$,	73490	Knob-Volume control and power switch knob
	$1 / 2$ watt (R2) Resistor-Fixed, composition. 270,000 ohms. $\pm 10 \%$.	74462	Sleeve-Rubber sleeve for bottom of pivot arm and shalt
	1/2 watt (R6) Resistor-Fixed. composition. 470.000 ohms, $\pm 20 \%$,	74191	Spacer-Metal spacer to mount record player mechanism (3 required)
	$1 / 2$ watt (R8)	14270	Spring-Retaining spring for knob \#73490
	Resistor-Fixed, composition, 470.000 ohms. $\pm 10 \%$. $1 / 2$ watt (R1)	74463	Washer-Flat metal washer for bottom of pivot arm shalt Washer-Vellutex washer for pivot arm shaft (top)

Portable 45 RPM Record Player
Models 9EY31, 9EY32

- Mir. No. 274 -

Service Data

- 1949 No. 23 -

9EY31 (Brown)
9EY32 (Red)

FOR RECORD CHANGER SERVICE INFORMA-TION-REFER TO RP- 168 SERIES SERVICE DATA,

RADIO CORPORATION OF AMERICA
 RCA VICTOR DIVISION CAMDEN, N. J., U. S. A.

SPECIFICATIONS

Tube Complement

1. RCA 12 SQ 7
Amplifier
2. ACA 50L6GT
Output
3. HCA 3525 GT . Rectifier

Loudspeaker (RA68)

Sise and type. \qquad 5 in. P.M. Volce coil impedance 3.2 ohms at 400 cycles

Dimensions (overall)

Height, 11 1/2"
Width, 14"
Depth, $9^{\prime \prime}$

Power Supply Rating

115 volts, 60 cycles, A.C.......................... . . . 40 watts

Power Output
Undistorted. 0.9 watt Maximum...... 1.3 watts

Record Changer

Turntable speed . 45 s.p.m.
Records used. 7" RCA Fine Groove $^{\text {R }}$
Record capacity. Up to 10 records
Pickup........................... Crystal (medium output)

REPLACEMENT PARTS

$\begin{gathered} \text { stoce } \\ \text { No. } \end{gathered}$	DESCRIPTION	STOCZ No.	DESCRIPTION
75050	AMPLIFIER ASSEMBLIES Stamped RA79 Capacitor-Electrolytic, comprising 2 sections of 50 mid, 150 volts, and 1 section of 20 mid, 25 volts (C5A, C5B, C5C)		$\begin{aligned} & \text { Resistor-Fixed, composition: } \\ & 220 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt (R6) } \\ & 560 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt (R7) } \\ & 33,000 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt (R12) } \\ & 270,000 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt (R3) } \end{aligned}$
73750	Capacitor-Tubular, paper, . 002 mid, 200 volts (C3)		470,000 ohms, $\pm 10 \%, 1 / 2$ watt (R5, R11)
71926	Capacitor-Tubular, paper, . 005 mid, 200 volts (C7)		10 megohm, $\pm 10 \%$, $1 / 2$ watt (R2)
71923	Capacitor-Tubular, paper, 01 mid, 200 volts (C4, C6)	33084	Socket-Tube sockel, octal, wafer
71928	Capacilor-Tubular, paper, 02 mid, 200 volts (C1)		
70615	Capacilor-Tubular, paper, $05 \mathrm{mfd}, 400$ volts (C8)		SPEAKER ASSEMBLIES
73784	Capacitor-Tubular, paper, 0.1 mid, 200 volts (C2)		RA68
30868	Connector-2 contact female connector for motor cable	75053	Speaker-5" P.M. speaker complete with cone and voice coil less transformer
75051	Control-Volume control and power switch (R1, S1)	75054	Transformer-Output transformer
75052	Control-Tone control (R4)		
71783	Cover-Insulating cover for electrolytic		MISCELLANEOUS
35787	Jack-Phono cable input pin jack	75056	Knob-Control knob
18469	Plate-Mounting plate for electrolytic	75057	Screw No. $8 \times 7 /{ }^{\prime \prime}$ cross recessed oval head wood
73237	Resistor-Fuse type, 33 ohms (R8)		screw to mount changer in cabinet (3 required)
48676	Resistor-Wire wound, 150 ohms, 5 watts (R9)	75055	Well--Knob well

Record Separators

In the out of cycle position the record separator knives or discs are normally concealed inside the center post. During service the position of the star wheel on the underside of the record changer may be accidentally shifted: this may cause the separator knives to be extended when they should be concealed.

If the separator knives are thus extended - turn the power on so that the turnable is revolving, gently press fingers against the extended knives until they disappear inside the center post - DO THIS ONLY WHILE MECHANISM IS OUT OF CYCLE.

Pickup Landing Adjustment

(Screw to loft of plckup rest)

The pickup point should land hall-way between the outer edge of the record and the first music groove.

If the pickup lands inside the starting grooves - turn screw slightly clockwise. It pickup lands outside the starting grooves - lurn screw slightly counterclockwise.

Pickup Height Adjustment

(Screw to left of pickup arm pivot)

During cycle the pickup arm must rise high enough to clear a full stack of records on the turntable, but not high enough to cause the top of the arm to touch records resting on the record supporis.
If pickup does not clear a full stack of records - turn screw slightly clockwise. If pickup arm touches records on record supports - turn screw slightly counterclockwise.

Removing Record Player

1. Remove the three screws mounting the motor board.
2. Lift the record changer. remove power cord. audio plug and lift assembly out.

Removing Amplifier Assembly

1. Remove record player.
2. Remove two control knobs (just pull).
3. Remove control mounting nuts as shown in exploded view below.
4. Lift amplifier assembly out.

9EY36
Roy Rogers

W'alt Disney 9EY35

FOR RECORD CHANGER SERVICE INFORMA-TION-REFER TO RP-168 SERIES SERVICE DATA.

NOTE:

Instruments using amplitier stamped RS132 will use crystal pickup Stock No. 74067.
Instruments using amplifier stamped RSI32A will use crystal pickup Stock No. 74625 and other minor differences as indicated in note attached to schematic.

Automatic Record Player
 Models 9EY35, 9EY36

Chassis Nos. RS-132, RS-132A
Service Data
— 1949 No. 20 -
RADIO CORPORATION OF AMERICA
rCa victor division
CAMDEN, N. J., U. S. A.

MODELS 9EY35U, 9EY36U

These models differ from 9EY35 and 9EY36 only in the power cord and the screws which hold the boltom cover to the cabinet.

Specifications

Tube Complement

1. RCA 12AV6 Amplifier
.... Output
2. RCA 50C5 \qquad Rectifier

Loudspeaker (92577.6W)

Size and type 4 in P.M.
Voice coil impedance
\qquad 3.2 ohms at 400 cycles

Dimensions (overall)
Height, 7\%/"
Width, g $^{11 / 11 i^{\prime \prime}}$
Dept. 95/8"

Power Supply Rating

115 volts, 60 cycles A.C. \qquad 45 watts

Power Output

Undistorted 1.0 watt Maximum 1.25 watts

Record Changer

Turntable speed ... 45 r.p.m. Records used. \qquad RCA 7 in. tine groove Record capacity .. up to 10 records Pickup
\qquad Crystal (medium output)

REPLACEMENT PARTS

$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION
	AMPLIFIER ASSEMBLIES RS 132, RS 132A
39648	Capacitor-Mica, 680 mml . . for RS 132 (Cl)
72281	Capacitor-Electrolytic comprising 1 section of 80 mid., 150 volts, 1 section of 40 mfd ., 150 volts and 1 section of 20 mid., 25 volts (C5)
71934	Capacitor-Tubular, paper, $0015 \mathrm{mid} ., 600$ volts for RS 132A (Cl)
73961	Capacitor-Tubular, paper, 003 mfd ., 200 volts for RS 132 (C2)
73920	Capacitor-Tubular, moulded paper, .0047 mid., 600 volts (C4)
71923	```Capacitor--Tubular, paper, . }01\mathrm{ mfd., 200 volts (C2 for RS 132A, C3)```
73797	$\begin{aligned} & \text { Capacitor-Tubular, paper, } 015 \text { mid., } 600 \text { volts for } \\ & \text { RS 132A (C6) } \end{aligned}$
58476	Capacitor-Tubular, paper, 018 mid.. 400 volts for RS 132 (C6)
73553	```Capacitor-Tubular, moulded paper, .047 mld., }40 volts (C7, C8)```
30868	Connector-2 contact female connector for motor cable
36422	Connector-3 contact female socket (phono input)
74133	Control-Volume control (2 meg.) and power switch for RS 132 (R3, S1)
38412	Control-Volume control (500K) and power switch for RS 132A (R3, Sl)
28451	Cover-Insulating cover for electrolytic
73693	Grommet-Power cord strain relief grommet (1 set)
28452	Plate-Mounting plate for electrolytic
72314	Resistor-Wire wound, 120 ohms, 5 watts (R7)
73237	Resistor-Wire wound, 33 ohms, 150 ma (Rll) Resistor-Fixed, composition: - 150 ohms, $\pm 10 \%, 1 / 2$ watt (R9) 2700 ohms, $\pm 10 \%, 1 / 2$ watt (R10) 27,000 ohms, $\pm 10 \%$, $1 / 2$ watt for RS 132A (R4)

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
$\begin{aligned} & 73117 \\ & 72535 \end{aligned}$	$\begin{aligned} & 120.000 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt for RS } 132 \text { (R4) } \\ & 180.000 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt (R2) } \\ & 270.000 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt (R6, R8) } \\ & 470.000 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt tor RS } 132 \text { (R1) } \\ & 4.7 \text { megohm. } \pm 20 \% .1 / 2 \text { watt (R5) } \end{aligned}$
	Socket-Tube socket
	Transformer-Output transformer (Tl)
	SPEAKER ASSEMBLIES 92577.6 W
74165	Speaker-4" P.M. speaker complete with cone and voice coil.
	MISCELLANEOUS
74135	Bafle-Speaker baffe
74134	Bottom-Cabinet bottom cover
74136	Bracket-Speaker mounting bracket
74137	Bracket-Mounting bracket for reject button and shaft
74138	Button-Reject button and shaft
Y2170	Cabinet-Plastic cabinet (Walt Disney) for Model 9EY35
Y2171	Cabinet-Plastic cabinet (Roy Rogers) for Model 9EY36
74190	Cable-Shielded pickup cable complete with 3 contact male connector
74193	Clamp-Spring clamp for reject button and shaft
74192	Connector-3 contact male connector for pickup cable
74674	Emblem-"RCA Victor" emblem
74623	Hardware-Set of mounting parts consisting of 3 tlat washers, 3 eyelets and 3 grommets to mount changer mechanism
74667	Knob-Control knob-ivory
74734	Spring-Retaining spring for knob
74139	Spring-Reject button and shaft return spring
2917	Washer-" "C" washer for reject button and shaft

Schematic for amplifier marked RS-132

The pickup point should land half-way between the outer edge of the record and the first music groove.
If the pickup lands inside the starting grooves-turn screw "A" slightly clockwise. If pickup lands outside the starting grooves-lurn screw " A " slightly counterclockwise.

Pickup Height Adjustment "B"

During cycle the pickup arm must rise high enough to clear a stack of eight records on the turntable, but not high enough to cause the top of the arm to touch records resting on the record supports.
If pickup does not clear a stack of eight records-turn screw "B" slightly clockwise. If pickup arm touches records on record supports-turn screw "B" slightly counterclockwise.

Specifications

Record Changer (RP-168-1)

Turntable speed \qquad 45 r.p.m.
Records used \qquad RCA fine groove -7in.
Record capacity \qquad Up to 10 records
Pickup-Stock No. 74067 \qquad Crystal (medium output)

Power Supply Rating

115 volts, 60 cycles A.C. \qquad 15 watts
Dimensions (overall)
Height 65"
Width $91 /{ }^{10}$
Depth 6\%"

Record Separator
In the out of cycle position the record separator knives or discs are normally concealed inside the center post. During service, the position of the star wheel on the underside of the record changer may be accidently shifted; this may cause the eparator knives to be extended when they should be concealed.
If the separator knives are thus extended-lurn the power on so that the turniable is revolving, gently prese fingers against the extended knives until they disappear inside the conter post-DO THIS ONLY WHILE MECHANISM IS OUT OF CYCLE.
Note: This holds true only to mechaniems having the circular, rotating knives.

Record Changer Aftachment MODEL 9JY

Mfr. No. 274
Service Data

- 1949 No. 2 -

RADIO CORPORATION OF AMERICA
 rCA VICTOR DIVISION
 CAMDEN, N. I., U. S. A.

In some instruments: Black wire is omitted or a shielded wire in used in place of the red-black-white cable.

Top and Side Views

FOR RECORD CHANGER SERVICE INFORMA. TION-REFER TO RP- 168 SERIES SERVICE DATA.

Pickup Landing Adjustment " \mathbf{N}^{\prime}
The pickup point should land hali-way between the outer edge of the record and the first music groove.

If the pickup lands inside the starting grooves-turn screw "A" slightly clockwise. If pickup lands outside the mtarting grooves-turn screw "A" slightly counterclockwise.

Pickup Hoight Adjustment "B"

During cycle the pickup arm must rise high enough to clear a stack of eight records on the turntable, but not high enough to cause the top of the arm to touch records resting on the record supports.

If pickup does not clear a stack of eight records-turn screw "B" slightly clockwise. If pickup arm touches records on record supports-furn screw "B" slightly counterclockwise.

Schematic Diagram

Record Changer Mounting

The cabinet is used as the motorboard of the record changer. The record changer is attached with three screws and buskings. THE PICKUP ARM MUST BE REMOVED BEFORE THE RECORD CHANGER CAN BE REMOVED-REFER TO RP- 168 SERIES SERVICE DATA.

REPLACEMENT PARTS

$\begin{array}{\|c\|} \hline \text { STOCK } \\ \text { No. } \end{array}$	DESCRIPTION
74097	Bottom-Cabinet bottom cover (either model)
74189	Bushing-Shoulder bushing to mount record changer in cabinet (3 required)
74098	Button-Reject bution
Y2062	Cabinet-Moulded cabinet less bottom cover (early model)
Y2151	Cabinet-Plastic less bottom cover-No tone arm rest (late production)
74296	Cable-Shielded pickup cable ($48^{\prime \prime}$) complete with pin plug (late model)
39386	Cable-Shielded pickup cable complete with pin plug (early model)
74101	Control-Volume control and power switch
14086	Cord-Power cord and plug
74674	Emblem-"RCA Victor" emblem (plastic)
73549	Emblem-'RCA-Victor" emblem (metal)
31051	Foot-Rubber foot (4 required)
73490	Knob-Volume control and power switch knobmaroon
14270	Spring-Relaining apring for knob
74871	Switch-Power switch (late model)

RCA Radios with Phono Jack

Plug male connector on the end of the "Phono" lead into the female connector on the receiver chassis. If set is provided with a phono switch, push or turn the "Phono" switch to "Phono" position, and operate the Record Changer Attachment according to instructions. If no switch if provided, use maximum setting of volume control on attachment, and minimum setting of radio volume control which will give acceptable volume, and tune receiver off frequency from any very strong station. In some instances the radio volume control will have the effect of a tone control.

RCA Type No. 202W1 Record Player Selector

This selector switch may be used for combined operation of two record players through one phono input jack. A choice of two types of input jacks and outpui cable plugs are provided.

Radio-Phonograph Combinations

Most radio-phonograph combinations use resistors and/or capacitors for tone compensation in the phono input circuit.

Where unsatisfactory reproduction is obtained with Model 9JY connected into the phono jack of such instruments. we suggest that Model 9JY be connected as indicated for radios which do not have a phono jack.

Radlos Without Phono Jack

Method of connecting the Record Changer Attachment to various types of audio systems are given in the accompanying text and illustrations. The data given requires that an RCA Type No. 240X1 (Formerly Stock No. 240) Radio-Phono switch be used for switching from radio to phonograph, as desired. For ease in connecting the "phono" lead to the switch, the male plug on the end of the lead matches the phono jack on the switch.

In general, the Record Changer Attachment must be used with radio receivers having at least two stages of high-gain audio amplification. The output of the Record Changer Attach. ment should be connected to the input of the first audio tube. and at the same time the output of the radio recelver pertion of the chassis should be shorted or opened, to prevent radio signals being heard while the Record Changer Attachment is in operation.

Installation of Swhich

Fasten the bracket to the cabinet in such a position that the switch may be easily reached. For wooden cabinets, a sug. gested place is the upper rear edge of the cabinet. If the radio has a plastic cabinet, the bracket may be fastened to the chasisis by self-tapping screws or soldering. In the case of a.c.-d.c sets, the bracket should not be fartened to the chassis. In such cases, a wooden block may be fastened to the chassis and the bracket screwed to the wooden block, care being exercised that there is no metallic path from the bracket to the chassits.
Connect the braided shield extension to the radio chassis by either soldering or placing the spade lug under a mounting screw.

On a.c.d.c. sets it is necessary to leolate the cable shield from the chassis. This is best dope by connecting the shield to the chassit through a 25 mifd 300 -volt condenser. Care thould be taken that the shield braiding and switch bracket do not come in contact with the chaseis.

If the common-negative wiring in the a.c.-d.c. set is isolated from the set chassis, connect the cable shield, through .25 mfd. capacitor, to the common-megetive wiring, and
not to the chassis.

Note:

If late production models are connected to a radio set as shown in Fig. A \& B, it will probably be necessary to substitute a volume control in place of the 1 meg . fixed reaintor, since majority of sets do not have a volume control following the first audio tube.

For radlo recelvers in which the lat-audlo tube has a top grid cap-see Fig. A:

1. Disconnect the grid lead from the first audio tute.
2. Connect the cap on the black lead to the clip on the grid lead, as shown above.
3. Connect the clip on the black-brown lead to the grid cap at the top of the first cudio tube, bending the terminal if necessary to proper size for a metal tube cap.
4. Insert the plug on the end of the record player lead into the jack on the bracket.
5. Secure or position the connection cable assembly so that the cap and clip terminals are well separated from each other and other metal parts.
For radlo recelvers in which the lst-audio tube is type 6SQ7. 6SR7. 12SQ7 or 12SR7-ee Fig. B:
6. Use adaptor plug RCA Stock No. 37798.
7. Remove the lst audio tube.
8. Solder the switch leads to the adaptor plug terminalsblack to bottom lug-black-brown to top lug.
9. Tape terminals to prevent thort circuits when installed in set.
10. Insent the adaptor into the lst audio tube socket.
11. Insert the lat audio tube into the adaptor.
12. Insert the plug on the end of the record player lead into the jack on the bracket.

For other radio recolvers in which the lst-audio tube does not have a grid cap; connection to volume control input-see Fig. C, connection to lst-cudio tube control grid-ses Flg. D:

1. Unsolder the lead from the volume control lug indicated in Fig. C or from the control grid pin indicated in Fig. D. It is usually necestary to remove the chasais from the cabinet to do this.
2. Solder the black-brown lead (remove clip) to the lug or pin disconnected in Step 1.
3. Solder the black lead (remove plug) to the lead disconnected in Step 1. Tape the joint to prevent short circuite.
4. Insert the plug on the end of the record player lead into the jack on the bracket.

Specifications

Record Player (RP 186-1)

Turntable speed .. 45 r.p.m. Record used ... 7 in. tine groove Record capacity .. 1 record Pickup \qquad Crystal (medium output)

Power Supply Rating

115 volts. 60 cycles A.C.

\qquad
Dimensions (overall)
Height $5^{1 / 14 i "}$
Width $91 / 6^{\prime \prime}$
Depth 6\%/8"
Weight \qquad

Care of Pickup

The sapphire of the crystal pickup is protected by a perma. nent metal guard. LINT MAY COLLECT TO CLOG THE OPEN. ING IN THE GUARD AND CAUSE POOR RECORD REPRODUCTION. This may require occasional cleaning of the guard opening-clean by carefully brushing with a small soft brush.

RCAVictor

- Mfr. No. 274 -

Service Data
— 1949 No. 11 -

RADIO CORPORATION OF AMERICA
 RCA VICTOR DIVISION
 CAMDEN, N. J., U. S. A.

REPLACEMENT PARTS

$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION	STOCK No.	DESCRIPTION
	PICKUP \& ARM ASSEMBLY	74071	Motor- 115 volt, 60 cycle motor complete with male connector
74041	Arm-Pickup arm shell and stud-less crystal. cable and rear pivot arm	74459	Motorboard--Motorboard sub-assembly complete with idler lever, turntable and tone arm posts
74059	Arm-Pivot arm and shaft	74460	Nose-Spindle nose
74066	Cable-Twisted pickup cable (12") complete with connectors	74089	Spring-Idler wheel spring
74067	Crystal-Crystal cartridge complete including sapphire and guard	$\begin{aligned} & 74079 \\ & 74452 \end{aligned}$	Stud-Idler wheel mounting stud Turntable-Turntable and shaft complete with rub-
74069	Guard-Sapphire quard		ber mat-less spindle nose Washer-"C" washer for turniable assembly
38458	Nut-Speed nut to hold pickup cable	7688	Washer-Dampening washer for idler wheel (bottom)
74061	Pivot-Tone arm pivot	$\begin{aligned} & 74102 \\ & 74078 \end{aligned}$	Washer-Dampening washer for idler wheel (top)
74068	Sapphire-Sapphire and holder	74080	Washer-Thrust washer for turntable bearing (2
74065	Screw-\#2-56 \times "3u" fillister head screw to mount crystal (2 required) or needle guard (2 required)	74080	quired)
74062	Screw-\#8.32 * ${ }^{13} 3_{3,2 " \prime}$ cone point pivot adjusting screw	74077	Wheel-Idler wheel MISCELLANEOUS
74410	Screw-\#4-40 $\times{ }^{2} \mathrm{~K}_{11}$; fillister head set screw to lock pivot screw 74062	74097	Bottom-Cabinet bottom cover
74060	Sprinq-Pivot arm sprinq (.171" O.D. x $.695^{\prime \prime}-43$ turns)	74189	Bushing-Shoulder bushing to mount motorboard in cabinet (3 required)
74230	Washer-Washer and nut to mount sapphire and	Y2062	Cabinet-Plastic cabinet
	holder MOTOPBOAPD ASSEMBIY	39386	Cable-Shielded output cable complete with pin plug Connector - 2 contact female connector for motor
	MOTORBOARD ASSEMBLY	74101	Control-Volume control and power switch
	RP 186.1	73549	Emblem-"RCA Victor" emblem
72349	Bearing-Thrust bearing	31051	Foot-Rubber foot (4 required)
30870	Connector-2 contact male connector for motor	73490	Knob-Volume control knob
74087	Grommet-Rubber qrommet to mount motor (3 required)	74462	Sleeve-Rubber sleeve for bottom of pivot arm and shaft
74132	Hardware-Motor mounting hardware consisting of	14270	Spring-Retaining spring for knob
	three (3) spacers, six (6) flat washers, three (3) hex nuts and three (3) lockwashers	74463	Washer-Flat metal washer for pivot arm shaft (bot- (om) (.190" I.D. x 3/6" O.D. x .020")
74094	Mat-Turntable mat	74256	Washer-Vellutex washer for pivot arm shaft (op)

9JYM

Replacement of Sapphire

Caution: Never hend the sapphire support wire.
Extreme care should be used when loosening the nut so that the twisting motion does not hreak the crystal. Take hold of the lower end of the shaft with a pair of pliers while loosening or tightening the nut, heing very careful so as not to strip the threads or hreak the crystal.

Remove the two screws holding sapphire guard in place and remove the guard. Remove the small nut and washer on the threaded shaft of the sapphire holder and gently push the shaft through the hole in the armature shaft until the sapphire holder assembly comes iree.

Insert threaded end of replacement sapphire holder through armature shatt and replace the washer and nut. Make sure that the sapphire is in the correct position. Replace the sapphire guard, positioning it by means of the oversize screw slots. Make certain that the sapphire and its supporting wire are centered in the guard. Tighten the guard screws. Belore using, check to see that the sapphire projects far enough beyond the guard so that the guard will not touch the record. If necessary, bend the guard a little.

Connecting Record Player Attachment to Radio Receivers

RCA Radios with Phone Jack

Plug male connector on the end of the "Phono" lead into the female connector on the receiver chassis. If set is provided with a phono switch, push or turn the "Phono" switch to "Phono" position. and operate the Record Player Attach. ment according to instructions. It no switch is provided, use maximum settinq of volume control on attachment, and minimum setting of radio volume control which will give acceptable volume, and tune receiver off frequency from any very strong station. In some instances the radio volume control will have the effect of a tone control.

Radio-Phonograph Combinations

Most radio-phonograph combinations use resiators and/or capacitors for tone compensation in the phono input circult.

Where unsatisfactory reproduction is obtained with Model 9JYM connected into the phono jack of such instruments, we suggest that Model 9JYM be connected as indicated for radios which do not have a phono jack.

Radios Without Phono Jack

Methods of connecting the Record Player Attachment to various types of audio systems are qiven in the accompanying text and illustrations. The data given requires that an RCA Type No. 240X1 (Formerly Stock No. 240) Radio-Phono switch be used for switching from radio to phonograph, as desired. For ease in connecting the "phono" lead to the switch, the male plug on the end of the lead matches the phono jack on the switch.
In general, the Record Player Attachment must be used with radio receivers having at least two stages of high-gain audio amplification. The output of the Record Player Attachment should be connected to the input of the lirst audio tube, and at the same time the output of the radio receiver portion of the chassis should be shorted or opened, to prevent radio signals being heard while the Record Player Attachment is in operation.

Installation of Switch

Connect the braided shield extension to the radio chassis by either soldering or placing the spade lug under a mounting screw.
On a.c.d.c. sets it is necessary to isolate the cable shield and switch bracket from the chassis. This is best done by connecling the shield to the chassle through a .25 mid. 300 -volt condenser. Care should be taken that the whield braiding and switch bracket do not come in contact with the chassis.

If the common-negative wiring in the a.c.-d.c. set is isolated from the set chassis, connect the cable shield, through a. $25 \mathrm{~m} / \mathrm{d}$. capacitor, to the common-negative urining, and not to the chassis.

For radio receivers in which the lat-audio tube has a top grid cap-se Fig. A:

1. Disconnect the grid lead from the first audio tube.
2. Connect the cap on the black lead to the clip on the grid lead, as shown above.
3. Connect the clip on the black-brown lead to the grid cap at the top of the first audio tube, bending the terminal if necessary to proper size for a metal tube cap.
4. Insert the plug on the end of the record player lead into the jack on the switch bracket.
5. Secure or position the connection cable assembly so that the cap and clip terminals are well separated from each other and other metal parts.

For radio receivers in which the lst-audio tube is iype 6SQ7. 6SR7. 12SQ7 or 12SA7-see Fig. B:

1. Use adaptor pluq RCA Stock No. 37798.
2. Remove the lat audio tube.
3. Solder the switch leads to the adaptor plug terminalsblack to bottom lug-black-brown to top lug.
4. Tape terminals to prevent short circuits when installed in set.
5. Insert the adaptor into the lat audio tube socket.
6. Insert the lst audio tube into the adaptor.
7. Insert the pluq on the end of the record player lead into the jack on the switch bracket.

For other radio receivers in which the lat-audio tube does not have a grid cap; connection to volume control input-see Fig. C. connection to lst-audio tube control grid-see Fig. D:

1. Unsolder the lead from the volume control lug indicated in Fig. C or from the control grid pin indicated in Fig. D. It is usually necessary to remove the chassis from the cabinet to do this.
2. Solder the black-brown lead (remove clip) to the luq or pin disconnected in Step 1.
3. Solder the black lead (remove cap) to the lead disconnected in Step 1. Tape the joint to prevent short circuits.
4. Insert the plug on the end of the record player lead into the jack on the switch bracket.

RCA Type No. 202W1 Record Player Selector

This selector switch may be used for combined operation of two record players through one phono input jack. A choice of two types of input jacks and output cable plugs are provided.

Specifications

Tuning Ranges Standard Broadcast (" $\boldsymbol{\Lambda}^{\prime \prime}$ Band)	525-1600 kc (571-187 m
Medium Wave ("B"' Band)......	. $2.3-7 \mathrm{mc}(130-42.9 \mathrm{~m}$
Short Wave ("C'" Band)..	. 7.22 mmC (42.9-13.6 m
$\because 31.25$ Meter"' Spread Band	9.5-12 me (31.6-25 m
"19-16 Meter" Spread Band.	15.1-17.9 mc (19.8-16.7 m
Intermediate Frequency	455
Tube Complement	
(1) RCA 6BA6	R.F. Amplifior
(2) ACA 6BE6 Converter
(3) RCA 6Sr 7	I.F. Amp.-Det.-A.V.C
(4) RCA 6SC7	A.F. Amp.-Ph. Inverter
(5) RCA 6F6G	
(6) RCA 6F6G	ull Out
(7) RCA SY3GT	Recti
(8) RCA 6US/6GS	Tuning E

Lamps
Dial Lamps (2) Type 44, 6.3 rolts, 25 amp. Band Indicator Lamp Marda Type 47, 6.3 volts. . 15 amp.

Power Supply Ratings			
Symbol	Voltage	Frequoney	Watts
Rating "D"	(See below)	40 to 60 cyclas	80

Note: Shipped in 240 \%. position Io change, remove round cover on top of tranaformer case and move link to desired position.

110 posit 100 to 1 (S

125 postition- 115 to 115 v v.
135 to $165 v$
210 position- 180 to 220 v .
240 position- 220 to 260 v .

CRUTION: Remove power cord from line receptacle before changing link position.

("C" EAND)

Loudapecker
Type 92579-3........................... 8 in. (20.3 cm) PM Dynamic
Voice Coil Impedance. 2.2 ohms at 400 cycles
Power Output Rating
Undistorted .
Tuning Drive Ratio 151/2:1 (72/4 turns of knob)

Cabinet Dimencions
Height $13.15 / 16 \mathrm{in} .(35.4 \mathrm{~cm})$ Width 20 in. (50.8 cm) (th $10-11 / 16 \mathrm{in} .(27.2 \mathrm{~cm})$

Description

This instrument is an eight tube live-band receiver of conventional design with the exception of the spread-band tuning.
A thre section gang condenser, on section each for antenna, r.f. and oncillator circuite, is used for the $\AA \cdot \cdot B$ and C bands. The 8.E. and oecillator circuite, it used, or the A. B and C bands. The permeability funing system using a rocker arm astembly which is permeabilily funing system using aroczer arm astembly Whica is actuated by a cam atiached to the tuning condenser shatt. The core
assembly of the permeability luning system tunes both the $31-25$ assembly of the permeability tuning system funes both the cist ine 16 Meter bands with diferent circuit connections. Moter and the 19-16 Meter bands with dikerent circuit connections. In the 19-16 Meter band position the 31-25 Meter and the 19-16 Meter band coile are used in parallel.

The inductances of the A.B-C windings of the multiple antenne coil are all fixed, but the inductances of all other coils in the an temna, r.I. and oscillator circuits are adjutable. Ungrounded screw type cores are used for these coils and adjustments are made with a non-metalic screwdriver.

A local-remote switch permite reduction of sensitivity on A band to prevent overloading on trong signals. On all other bands tul sensitivity is used and the swritch is not effective.
The tone control is continuous and is designed to function as a high or. low frequency tone control when the control knob it turned to the rigit or to the left. The center position gives both high and low trequency response

RADIO-PHONO SWITCH (ON BACK)
MS 730

Alignment Procedure

Test-Oscillator-For all alignment operations, connect the low ide of the test-oncillator to the receiver chassis, and keep the sscillator output as low as possible to avoid $a \cdot v-c$ action.
Calibration Scale on Indicator-Drive-Cord Drum.-The tuning dial iliastoned in the cabinet and cannot be used for reference during drive-cord, therefore a calibration seale is attached to the indicator denser. The drum which is mounted on the shaft of the gang con which is calibrated in degrees. condenser is read on this scale. As the first
As the first step in r-f alignment, check the position of the drum. The " 180° mark on the drum scale must be vertical and drum over the center of the gang-condenser shaft when the plates are fully meshed. The drum is held to the shaft by means of two are correct position.

Pointer for Calibration Scale.-Improvise a pointer for the calibra tion scale by fastening a piece of wire to the gang-condencer frame and bend the wire so that it points to the "180" mark on the calibration scale when the plates are fully meshed. The correct given in the alignment table. for each alignment trequency. is

Deceiver Dial
Heceiver Dial with Calibration Scale.-To dotermine the cor. lesponding frequency for any setting of the calibration scales, rofer to the dial with calibration seale drawing.

Dial-Indicator Adjustment--After fastening the chassis in the cabinet, attach the dial indicator to the drive cable with indicator The indicator has a elip for attachment to the cable fully meshed.
Spar hat
Spread-Band Alignment.-For spread-band alignment an extremely high dogree of accuracy is required of the test-oscillator, as a slight dials. will produce considerable inaccuracy on the spread-bend

Determine the exact dial settings of the test-oscillator (for fre quencies at or close to the specified alignment frequencies) by one the following methods:

1. Zero-beat ihe tent-oscillator against short-wave stations of known frequency.
2. Check test-oscillator signals with a crystal controlled oscillator. A linal check should be made on actual reception of short-wave stations of known frequency.
For additional information, rofer to booklet "RCA Victor Receiver

Critical Lead Dress

1. Capacitor C37 should be soldered acrose the 2nd I.F. translormer lugs D and F with the shortest possible leads and away Chassis.
2. Pins No. 1 and No. 3 of the 6SF7 tube should be connected together with a bus wire: pins No. 1 and No. 3 are separately grounded to -hassis.
3. Range switch shield should be grounded to the chassis on the s:de where the 31.25 moter band ant. coil 25 and R.F. coil LII
4. The leads to the extra speaker jack I3 should be twisted and dressed down to the chassis.
5. Capacitor C39 should be dressed between the Radio-Phono switch S7 and the chassis.
6. Resistors R13 and R23 should be grounded to a commpn point, nearest to the ground point of capacitor C43.
7. The lead connecting CiO to the range switch should be-dressed down to the chassis and then vertically up to the proper terminal of the range switch.
. Drezs all unshielded leads and components away trom pins No. 3 and 4 of the 6SC7 tube.

Stop	Connect High Side of Test Oseillator 10-	Test Oscillator Froquency	Turn Radio Dial to-	Adjust for Maximum Output
1	Pin No. 2 of 6857 thru .01 mf . eapacitor	455 kc	Quiet point near 600 ke A Band	T-3 2nd I.F. trant. -lop and bottom
2	Pin No. 7 of 6BE6 thru .01 mil. capacitor			T-2 Ist I.F. trans. -top and bottom
3	Ant, torminal thru 200 mm . capacitor	1400 ke	$\text { A }^{27.3^{\circ}}$	CIs onc. C24 r.f. C5 ant.
4		600 ke	$\begin{aligned} & 142.6^{\circ} \\ & \text { A Band } \end{aligned}$	$L 13$ ose. Le r.t.
5		Repeat steps 3 and 4		
6		455 kc	npprox. ${ }^{142^{\circ}}$ A Band	17 wavetrap MINIMUM OUTPUT
7	Ant. torminal thru 300 ohm resistor	6.1 me	$\begin{aligned} & \text { B Band } \end{aligned}$	C19 onc. C25 r.f. C6 ant.
8		2.5 mc	$\begin{aligned} & 148.9^{\circ} \\ & \text { B Band } \end{aligned}$	$\begin{gathered} \text { L15 one. } \\ \text { L9 r.i. } \end{gathered}$
9		Repeat steps 7	and 8	
10		17.75 mc	$\begin{gathered} 34.4^{\circ} \\ c \text { Band } \end{gathered}$	C20 osc. \dagger Ce6 r.f. C7 ant.
11		7.2 mc	160.3° C Band	$\begin{aligned} & L 17 \text { osc. } \\ & \mathrm{LiO} \text { г.f. } \end{aligned}$
12		Repeat stept 10	0 and 11	
13		9.5 me	$\begin{gathered} 169.6^{\circ} \\ 31-25 \text { Meter } \\ \text { Band } \end{gathered}$	C17 osc. Cll $8 . \mathrm{I}^{\circ}$ C3 ant.
14		11.8 mc	$\begin{aligned} & 44.8^{\circ} \\ & 31.25 \text { Motor } \\ & \text { Band } \end{aligned}$	L18 osc. \ddagger L11 r.f.中 LS ant. \ddagger
15		Repeat uteps 13 and 14		
16		17.75 mc	$\begin{gathered} 37.5^{\circ} \\ \text { 19.16 Moter } \\ \text { Band } \end{gathered}$	C23 osc. \dagger C27 r.f. Clo ant.
17		15.2 mc	$\begin{gathered} 157.2^{\circ} \\ \text { 19. } 16 \text { Moter } \\ \text { Band } \end{gathered}$	1.19 ose. \dagger 12 r.s. L6ant.
18		Repeat steps 16 and 17		

fOscillator frequency is higher than signal frequency on all ands. Use minimum capacity or minimum inductance peak on oscillator adjustments if iwo peaks can be obtained.

- Pre.set L18, L11 and L5, with tuning condensur at minimum capacity (0°), so that the cores are exactly $1 / 1 \mathrm{in} .(3.175 \mathrm{~mm})$ from ron core-not the insulating rod coils (coil end to bottom end of (ing rod of the core assembly).
$\$ 1 \mathrm{dial}$ reading for maximum output at 11.8 me is lower than 11.8 mc , rotate studs approx. $1 / 2$ lurn clockwise-is higher rotate approx. $1 / 2$ turn counterclockwise.

Spread-Band Tuning (Front View)

9Q53

-RANGE SWITCH SHOWN IN POSITION EO

Radio-Phonograph Combination
Model 9W51
Chassis No. RC-1079D

- Mfr. No. 274 -

Service Data

- 1949 No. 19 -

RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION
 CAMDEN, N. J., U. S. A.

Specifications

Tuning Range..........
Intermediate Frequency
$540-1600 \mathrm{kc}$ Intermediale Frequency 455 kc

Tube Complement

(1) RCA 12SA7
Converter

(3) RCA 12SQ7 Det.-A.V.C.-A.F Amplifier
(4) RCA 50L6GT . Output
(5) RCA 35Z.5GT
Rectifier
Power Supply Tating
115 volts a.c., 60 cycles
45 watts total
Power Output

Phases

Rear lieu of Cabinet Showing Shipping Bolf

Shipping Block and Screw-Inside the back of the cabinet in the lower section, and holding the record player secure for shipping on its elide rail. is a wooden shipping block and screw with head painted red. Remove screw and block. The record player drawer will then slide out front.

Dial Lamps (2).......... Mazda type 1490. 3.2 volte, 16 amp. Loudepeaker (92586-2W)

Size and Type............................... . . . 8 in. PM
Voice Coil Impedance. 3.2 ohms at 400 cycles
Cabinet Dimenaions
Height... 28" Width... 181.2" Depth.... 141/4"
Weight. 36 lbs.
Tuning Drive Ratio................. 9 to 1 ($41 / 2$ turns of knob)
Record Changer
Turntable speed
45 r.p.m.
Records used \qquad . RCA 7 in, fine groove
Record capacity \qquad
Pickup \qquad Crystal (medium output)

Power Supply

Although this model employs an AC-DC receiver chassis, the instrument is not suitable for use on DC. as this would damage the motor in the record changer.

Record Changer-Top View

FOR RECORD CHANGER GERVICE INFORMATION - REFER TO RP 168 SERIES SERVICE DATA

Motorboard Packing-The floating motorboard on the record changer, is held secure by three screws with caps. With finger remove caps, then loosen the screws sufficiently to allow removal of packing strips from under sides of motorboard. Remove strips, see that screw are loose enough to allow motorboard to float freely, and replace caps in open screw heads.

Alignment Procedure

Critical Lead Dress

1. Dress all heater leads down to chassis and away from all audio grid and plate wiring.
2. Dress power cord to back apron and away from phono jack.
3. Dress capacitor C18 against back apron.
4. Connect shielded capacitor Cl 3 direct and with a minimum of exposed leads.
5. Dress dial lamp leads on top of chassis around electrolytic capacitor and between 12SQ7 and S0L6GT tubes.
6. Dress output transformer leads down to chassis.
7. Dress excess loop leads away from tubes and clear of tuning condenser.

Test-Oscillator. - For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.

An isolation transformer ($115 \mathrm{v} . / 115 \mathrm{v}$.) may be necessary for the receiver if the test oscillator is also AC operated.

Dial Calibration

With the tuning condenser fully meshed, the dial pointer should be set to the lirst score mark at the left-hand end of the dial back plate. The four score marks represent: Max. cap.. $600 \mathrm{kc}, 1400 \mathrm{kc}$ and min. cap.

Steps	Connect the high slde of test-oscillator $10-$	Tuno test-osc. Io-	Turn radlo dial to-	Adjust the following for max. output
1	125187 d.F grid through 0.1 mid. capacitor	455 ke	Quiet-point 1600 ke end of dial	T2 (top and boltom) 2nd I-F trans.
2	Stator of Cl through 0.1 mid .			- I1 (top and bottom) lat I. $\overline{5}$ trans.
3	Short wire placed near loop to radiate signal	1630 ke	Min. cap.	C4 (ose.)
4		1400 ke	1400 ke	+C2 (ant.)
5		600 kc	600 kc	13 (osc.) Rock gang
5	Repeat steps 3, 4 and 5.			

*Do not readjust T2 when test oscillator is connected ta Cl.
When adjusting C_{2} (ant. Trimmer) it is necessary to have the loop in the same position and sacing as it will have when assembled in the cabinet.

Care of Sapphire

The record changer sapphire is protected by a permanent metal guard. LINT MAY COLLECT TO CLOG THE OPENING IN THE GUARD AT THE SAPPHIRE POINT AND CAUSE POOR RECORD REPRODUCTION. This may require occasional cleaning of the guard opening - clean by carelully brushing with a small soft brush.

Record Separators

In the out of cycle position the record separator knives or discs are normally concealed inside the center post. During service, the position of the star wheel on the underside of the record changer may be accidentally shifted; this may cause the separator knives to be extended when they should be concealed.

If the separator knives are thus extended - turn the power on so that the turntable is revolving, gently press fingers against the extended knives until they disappear inside the center post - DO THIS ONLY WHILE MECHANISM IS OUT of CYCLE.

Landing Adjustment "A"

II the pickup lands inside the starting grooves - turn screw "A" slightly clockwise. If pickup lands outside the starting grooves - turn screw "A" slightly counterclockwise.

Pickup Height Adjustment "B"

During cycle the pickup arm must rise high enough to clear a stack of eight records on the turntable, but not high enough to cause the top of the arm to touch records resting on the record supports.

If pickup does not clear a stack of eight records - or if pickup arm touches records on record supports - turn screw " B " slightly.

Record Changer Adjustments

Dial Indicator and Drive Cord

Tube and Trimmer Locotions

Replacement Parts

tStock No. 72953 is a reel containing 250 feet of cord.

This receiver h zs built-in antennas for standard broadcast (AM) and frequenzy modulation (FM) reception.

Under average conditions the (FM) artonna will provide satisfactory reception. However, provision is made for the use of external antennas it desired-connect as indicated below:

FM Antenna: Connect the transmission line from an external FM dipole entenna to "FM" and "G" terminals. Remove the internal FM antenna wire from terminal "FM."

Alignment Procedure

CORRECT ALIGNMENT OF THE FM BAND
 REQUIRES THAT THE AM BAND BE ALIGNED FIRST

Alignment Indicators:

An RCA Voltohmyst or equivalent meter is necessary for measuring developed d-c voltage during FM alignment, Connections are specified in the alignment tabulation. An output meter is also necessary to indicate minimum audio output during FM Ratio Detector alignment. Connect the output meter across the speaker voice coil.

The RCA VoltOhmyst can also be used as an AM alignment indicator, either to measure audio output or to measure a.v.c voltage.

When audio output is being measured the volume control should be turned to maximum.

Signal Generator:

For all alignment operations connect the low side of the signal generator to the receiver chassis. The output should be adjusted to provide accurate resonance indication at all times. If output measurement is used for AM alignment the output of the signal generator should be kept as low as possible to avoid a-v-c action.

Oncilloscope Alignment:

The FM I. F. alignment may be checked using a sweep generator and an oscilloscope. Shunt terminals B and C of T4 with a 1200 ohm resistor. Connect the high side of the oscilloscope to term. C of T4 in series with a diode probe. Apply the output of the sweep generator (10.7 mc with $\pm 250 \mathrm{kc}$ sweep) to pin No. 1 of V2 (6BA6) in series with .01 ml , low side of the oscilloscope and sweep generator to chassis. This will show the response of T3.
To check the combined response of T2 and T3: connect the sweep generator to the antenna terminal board-high side to "FM" term. in series with 300 ohms and low side to " G " terminal. Oscilloscope connections as previously connected.
To check the ratio detector response; remove the 1200 ohm resistor previously used, connect the high side of the oscilloscope direct to term. No. 9 of Sl. low side to chassis. Apply the output of the sweep generator to pin No. 1 of V3 (6AU6) in series with, 01 mi . Note: It is difficult to observe marker sig. nals in this step--center frequency and sweep width should be previously observed.

Critical Lead Dress

1. Short leads on C7.
2. Dress R27 away from switch and Pin 5 of V1.
3. Ground lead on Pin 2 of V2 \& V3 should be down against chassis. Its length is critical.
4. A.V.C. lead from R26 to switch should be dressed against chassis and on front apron side of output transformer.
5. C43 should have short leads and color code end of capacitor should go to coil. Capacitor is to be cemented down with polystyrene cement the same time L 2 is.
6. High side loop lead should be dressed away from tubes.
7. Lead from Pin 2 and V1 to terminal A of first dual I.F. transformer should be dressed against chassis.
8. Wire C40 directly between gang condenser and Pin l of Vl.
9. Keep all the F.M. leads as short as possible.
10. Dress lead from Pin 5 of V2 to terminal A of T3 down against chassis.
11. Dress resistor R15 near chassis base.
12. Dress all A.C. leads away from volume control.
13. Run lead from F.M. Terminal on the antenna terminal board to L 2 tap around the can of T 2 and away from V2.
14. The taps on L1 \& L2 are critical.
15. The lead from R32 to terminal 10 of Sl should be dressed away from the output transformer, TS.
16. Dress C25 and C26 against chassis with the shortest lead length possible..
17. Coupling between pins $5 \& 6$ of VI, and the components attached, should be kept to α minimum.
18. Coupling between L1 \& L2 should be adjusted to give the proper oscillator injection voltage to the mixer grid.

AM Alignment
RANGE SWITCH IN BC POSITION

Stops	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to-	Adjust for peak output
1	C3 in series with .01 mid.	455 kc.	Quiet point at low treq. end.	AM windinge. \dagger T3 bottom core (sec.). T3 top core (pri.).
2				AM windinge. ${ }^{\dagger}$ T2 top core (sec.). T2 bottom core (pri.).
3	" $\boldsymbol{R}^{\prime \prime}$ terminal of terminal board at rear of chaseis in esties with 220 mmi .	1400 kc.	1400 kc.	C13 onc. C4 ant.
4		600 kc.	600 kc.	L4 osc. (Rock gang.)
3	Repeat Steps 3 and 4.			

\dagger Use altornate loading.
Alternate loading involves the use of a $\mathbf{4 7 , 0 0 0}$ ohm resistor to load the AM plate winding while the AM grid winding of the SAME TRANSFORMER is being peaked. Then the grid winding is loaded with the resistor while the plate winding is peaked. Only one winding is loaded at any one time. Remove the 47,000 ohm resistor after T3 and T2 have been aligned.

Osclllator frequency is above signal frequency on both AM and FM.

FM Alignment

RANGE SWITCH IN FM POSITION-VOLUME CONTROL MAXIMUM

Steps	Connect high side of sig. gen. to-	Siq. qen. output	Turn radio dial to-	Adjust for peak oulput
1	Connect the d.c probe of a Voltohmyst to the negative lead of the 2 mid. capacitor C33 and the common lead to chassis. Turn gang condenser to max. capacify (fully meshed).			
2	$\begin{aligned} & \text { Pin } 1 \text { of } \\ & \text { 6AU6 in } \\ & \text { series with } \\ & .01 \text { mid. } \end{aligned}$	10.7 me. modulated 30\% 400 cycles AM (Appiox. .05 volt).	Max. ca. pacity (fully methed)	T4 lop core for max. d.c voltage across C33. T4 bottom core for min. audio output.*
3	FM ant. torm in series with a 300 ohm resistor. (Remove ant. lead from "FM" term.)	> 10.7 mc. Adjust to provide 2 to 3 volts indi. cation on Voliohmyst during aligmment.		FM windings. $\dagger \dagger$ T3 top core (sec.). T3 bottom core (pri.).
4				```FM windings. }\dagger T2 top core (sec.). T2 bottom core (pri.).```
5		106 me.	106 mc .	12 osc.* C2 ant. Set C2 at max. capacily while adjusting L2.
6		90 mc.	90 mc.	L1 ant.** (Rock gang.)
7	Repeat Stops 5 and 6 until turther adjustment does not improve calibration.			

[^2]

Tube and Trimmer Locations

Top View-RP.168A-1 Record Changer

Top Vieu-RP. 178 Record Changer

Complete Schematic Diagram

 Voltages and currents measured with tuning condenser closed
and no signal input should hold within $\pm 20 \%$ with rated line Note: Plate voltage removed from 6 J mixer and oscillator tube

Replacement Parts

Introduction

All three of these instruments have the new Model AP.168-1 record changer designed for use with the new Victor seven-inch long playing recosds. Model 9W10s also has a Model RP-178 record changer for use with the conventional ten- and twelveinch records.
An auxiliary pheno input jack on the back of the chassis of Models 9W101 and 9W103 (input controlled by the selector switch) is provided to permit the use of an auxiliary record player it desired.

Antennas

These receivers have built-in antennas for standard broadcast (\mathbb{A}) and frequency modulation (FM) reception.
Provision is made for the use of an external antenna for FM reception if desired. To use external FM antenna-remove the builtin FM antenna lecd from the "TM" terminals of the antenna terminal board Connect the transmission line of an external FM dipole antenna to these two "FM" terminale.
FOR RECORD CFIANGER SERVICE INFORMATION REFER TO RP- 168 SERIES SERVICE DATA AND RP- 178 SERIES SERVICE DATA.

AM-FM Radio-Phonograph Combination

 MODELS
Service Data
 \author{ - 1949 No. 4 -

}
RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION
 CAMDEN, N. J., U. S. A.

Tuning Range
Standard Broadcast (AM) ..540-1600 kc.
Frequency Modulation (FM) ..88-108 mc. Intermediate FrequenciesAM- 455 kc . FM- 10.7 mc .

Tube Complement

(1)	RCA 6J6	Mixer and Oscillator
(2)	RCA 6BA6	I-F Amplifier
(3)	RCA 6AU6	Driver
(4)	RCA 6AL5	Ratio Detector
(5)	RCA 6AV6	A.F Amplifier
(6)	RCA 6V6GT	Output
(7)	RCA 6AV6	Det.-AVC-Ph. Inv.
(8)	RCA 6V6GT	Output
(9)	RCA 6X5GI	Rectifier
(10)	RCA 6BF6	Phono Pre-amplifier

Dial Lamps (2)Type No. 51, 6.8 volts, 0.2 amp . Jewel Lamp TYpe No. 51, 6.8 volts, 0.2 cmp .

Tuning Drive Ratio \qquad .18:1 (9 turns of knob)
Power Supply Rating 115 volts, 60 cycles, 90 watts

Loudspeaker (92569-5W)

Size and type ... 12 in. PM
Voice coil impedance 3.2 ohms at 400 cycles
Power Output
Undistorted 6 watts ..Maximum 7 watts

Record Changer (RP-168) Used in all three models			
Turntable speed			
Record capacity \qquad Up to 10 RCA 7 in . fine groove Pickup \qquad Crystal (medium output)			
Record Changer (RP.178) Used in Model 9W105 only			
Cabinet Dimensions	Height	Width	Depth
Model 9W101	34 in .	$31 / 8 \mathrm{in}$.	151\%/18 in.
Model 9W103	34 in .	$301 / 4 \mathrm{in}$.	153/4 in.
Model 9W105	35 in.	34 \%/8in.	16\% in.

Circuit Description

These instruments have a ten-tube (Including rectifier) chassis which is very similar to those used in other RCA Victor radiophonograph combinations designed for AM-FM reception.

The selector switch has five functions:
(1) Selection of tuning range.
(2) Selection and distribution of a.v.c. voltages.
(3) Application of B+ voltage to tubes V1, V2 and V3.
(4) Selection of audio input applied to the volume coatrol.
(5) Application of a.c. power to the record changer motors.

A one-tube pre-amplifier (6BF6 tube No. V10) is used with the input from the RP- 168 record changer.

Alignment Procedure

CORRECT ALIGNMENT OF THE FM BAND REQUIRES THAT THE AM BAND BE ALIGNED FIRST

Alignment Indicators:

An RCA VoltOhmyst or equivalent meter is necessary for measuring developed d-c voltage during FM alignment. Connections are specified in the alignment tabulation. An output meter is also necessary to indicate minimum audio output during FM Ratio Detector alignment. Connect the output meter across the speaker voice coil.

The RCA Voltohmyst can also be used as an AM alignment indicator, either to measure audio output or to measure a-v-c voltage.

When audio output is being measured the volume control should be turned to maximum.

Signal Generator:

For all alignment operations connect the low side of the signal generator to the receiver chassis. The output should be adjusted to provide accurate resonance indication at all times. If output measurement is used for AM alignment the output of the signal generator should be kept as low as possible to avoid a-v-c action.
Oscilloscope Alignment:
The FM I-F alignment may be checked using a sweep generator and an oscilloscope. Shunt terminals B and C of T3 with a 1200 ohm resistor. Connect the high side of an oscilloscope to terminal C of T3 in series with a diode probe. Apply the output of the sweep generator (10.7 mc . with ± 250 kc. sweep) to pin No. 1 of V2 (6BA6) in series with .01 mf . Low side of the oscilloscope and sweep generator to chassis. This will show the response of T2.

To check the combined response of T 1 and T 2 ; connect the sweep generator to the FM antenna terminals (remove FM antenna lead) in series with 300 ohms. Note: One FM terminal is grounded-it may be necessary to reverse the sweep generator connections. Oscilloscope connections remain as connected.

To check the ratio detector response; connect the high side of the oscilloscope direct to terminal No. 9 of Sl, low side to chassis. Apply the output of the sweep generator to pin No. 1 of V3 (6AU6) in series with .01 mf . Driver plate circuit connected for normal operation (1200 ohm resistor removed). Note: It is difficult to observe marker signals in this stepcenter frequency and sweep width should be previously observed.

Response curves illustrated on page 5.

CRITICAL LEAD DRESS

1. Keep leads of C7 short.
2. Dress R27 away from range switch and pin No. 5 of V1.
3. The round lead of pin No. 2 of V2 and V3 should be down against chassis. It length is critical.
4. The AVC lead from R26 to range switch should be dressed against chassis and away from 6AU6 driver tube socket.
5. C43 should have short leads and the color code of the capacitor should go to the coil L4. The capacitor should be cemented down with polystyrene cement at the same time L2 is cemented.
6. The lead from the high side of the loop should be dressed away from tubes.
7. Lead from pin No. 2 of V1 to terminal "A" of lst I. F. transformer should be dressed against the chassis.
8. Connect C40 directly between the gang condenser and pin No. 1 of V1.
9. Make all FM leads as short as possible.
10. Dress lead from pin No. 5 of V2 to terminal " A " of 2nd I. F. transformer down against chassis.
11. Dress resistor R15 near chassis base.
12. Dress all A. C. leads away from volume control.
13. The lead from "FM" terminal of antenna terminal board to L1 tap should be dressed away from V2.
14. The laps on L1 and L2 are critical. L1 tap should be $3 / 4$ turn from the ground end. L2 tap should be $21 / 2$ turns from the gang condenser C8.
15. Dress C25 and C26 against the chassis with the shortest lead length possible.
16. The position of L1 and L2 is critical. L1 should be midway between V1 and the lst I. F. transiomer. The end of L2 should be approximately $3 / 10^{\prime \prime}$ from V1.
17. Capacitor C41 should be secured to the chassis apron with melted wax or cement.
18. FM oscillator coil L2 must be cemented to its support. Amphenol No. 912 cement is recommended for this purpose.
Dial Indicator
With the tuning condenser fully meshed (closed) the indicator should be set to the reference mark on the dial back plate.

Refer to the dial scale reproductions on page 8.

AM Alignment

RANGE SWITCH IN BC POSITION

Steps	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to-	Adjust for peak oulput
1	C3 in series with .01 mid.	455 kc.	Quiel point at low freq. end.	AM windings. \dagger T3 bottom core (sec.). T3 top core (pri.).
2				XM windings. \dagger T2 top core (sec.). T2 bottom core (pri.).
3	Short wire placed near loop for radiated signal	1400 kc .	1400 kc.	C13 osc. C4 ant.
4		600 kc.	600 kc .	L4 osc. (Rock gang.)
5		Repeat Stops 3 and 4.		

† Use alternate loading.
Alternate loading involves the use of a 47,000 ohm resistor 10 load the AM plate winding while the AM grid winding of the SAME TRANSFORMER is being peaked. Then the grid winding is loaded with the reaistor while the plate winding is peaked. Only one winding is loaded at any one time. Remove the $47,000 \mathrm{ohm}$ resistor after T3 and T2 have been aligned.
Oscillalor trequency is above signal trequency on both AM and FM.

FM Alignment

RANGE SWITCH IN FM POSITION-VOLUME CONTROL MAXIMUM

Stops	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to-	Adjust for peak output
1	Connect the d-c probe of a Voltohmyst to the negative lead of the 2 mid . capccitor C33 and the common lead to chaseis. Turn gang condenser to max. capocity (fully meshed).			
2	Pin 1 of 6 RU6 in sorios with .01 mfd .	10.7 mc . modulated $30 \% 400$ cyclos AM (Approx. . 05 voli).	$\begin{gathered} \text { Max. ca- } \\ \text { pacity } \\ \text { (fully } \\ \text { meshod). } \end{gathered}$	T4 top core for max. d-c voltage across C33. T4 botiom core for min. audio output.
3	FMant. term. in series with a 300 ohm resistor. (Remove ant. lead from " FM" $^{\prime \prime}$ torm.)	10.7 mc . Adjust to provide 2 to 3 volts indication on Voltohmyst during allgnment.		FM windingn.t T3 top cort (sec.). T3 bottom core (pri.).
4				FM windings. + T2 top core (sec.). T2 bottom core (pri.).
5		106 mc.	106 mc .	L2 o열. * C2 ant. Set C2 at max. capcrity while adjusting L2.
6		90 mc .	90 me.	11 ant. * (Rock gang.)
7	Repeat Sleps 5 and 6 until further adjustment does not improve calibration.			

- Two or more points may be found which lower the audio output. At the correct point the minimum audio output is approached rapidly and is much lower than at any incorrect point.
$\dagger \dagger$ Align $T 3$ and T2 by means of alternate loading as explained under AM alignment. Use a 680 ohm resistor instead of a 47,000 ohm resistor and load the FM windings.
" L1 and L2 are adjustable by increasing or decreasing the spacing between turns.

Tube and Trimmer Locations

Note: FM miser and oscillator coile are adjustable by increasing or decreasing the spacing between turns. The position of the coils and location of the laps are critical (refer to "Critical Lead Dress").

Socket Voltages

Voltages reeasured with Chanalyst or Voltohmyst and should hold within $\pm 20 \%$ with rated line voltage. Tuning condenser clased-no signal input.

Tube	Terminal		Voltage		
			Phono	A.M.	F.M.
(1) 676	Plate Grid Plato Grid	$\begin{aligned} & 1 \\ & 6 \\ & 2 \\ & 5 \end{aligned}$	$-\overline{0.4}$	$\begin{array}{r} 102 \\ -6.8 \\ 96 \\ -2.7 \end{array}$	$\begin{array}{r} 98 \\ -6.0 \\ 110 \\ -2.5 \end{array}$
(2) 6BA6	Plate Screen Cathode Grid	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 1 \end{aligned}$	$\begin{gathered} \text { — } \\ -0.9 \end{gathered}$	$\begin{array}{r} 196 \\ 100 \\ 0.7 \\ -1.3 \end{array}$	$\begin{array}{r} 192 \\ 83 \\ 0.84 \\ -0.2 \end{array}$
(3) 6AU6	Plate Screen Cathode	5 6 7	-	$\begin{array}{r} 190 \\ 145 \\ 1.25 \end{array}$	$\begin{aligned} & 185 \\ & 141 \\ & 1.21 \end{aligned}$
(4) 6AL5	-	-	-	-	-
(5) 6AV6	Plate Grid	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\begin{array}{r} 125 \\ -0.6 \end{array}$	$\begin{array}{r} 85 \\ -0.6 \end{array}$	$\begin{array}{r} 84 \\ -0.6 \end{array}$
(6) 6V6GT	Plate Screen Cathode	3 4 8	$\begin{array}{r} 299 \\ 295 \\ 21.4 \end{array}$	$\begin{aligned} & 282 \\ & 220 \\ & 15.5 \end{aligned}$	$\begin{array}{r} 280 \\ 217 \\ 15.4 \end{array}$
(7) 6AV6	Plate Grid	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\begin{array}{r} 168 \\ -0.5 \end{array}$	$\begin{array}{r} 125 \\ -0.5 \end{array}$	$\begin{array}{r} 125 \\ -0.5 \end{array}$
(8) 6V6GT	Plate Screen Cathode	3 4 8	$\begin{array}{r} 299 \\ 286 \\ 21.4 \end{array}$	$\begin{aligned} & 282 \\ & 214 \\ & 15.5 \end{aligned}$	$\begin{gathered} 280 \\ 211 \\ 15.4 \end{gathered}$
(9) $6 \times 5 \mathrm{CT}$	Cathode	8	313	300	299
(10) 6BF6	Plate Cathode	$\begin{aligned} & 7 \\ & 2 \end{aligned}$	$\begin{array}{r} 129 \\ 7.2 \end{array}$	$\begin{aligned} & 89 \\ & 5.4 \end{aligned}$	$\begin{gathered} 88 \\ 5.4 \end{gathered}$

Dial Indicator and Drive Mechanism

Cathode Currents (MA)

Tube	Terminal	Phono	A.M.	F.M.
(1) 676	7	-	8.2	8.7
(2) 6BA6	7	-	11.6	13.4
(3) 6AU6	7	-	10	9.7
(4) 6AL5	185	-	-	-
(5) 6AV6	2	0.75	0.5	0.5
(6) 6V6GT	8	25.1	19.1	18.5
(7) 6AV6	2	1.7	1.1	1.1
(8) 6V6GT	8	24.1	18.5	18
(9) 6X5GT	8	54	70.5	71
(10) 6BF6	2	0.77	0.55	0.55

"Aux." (9W 101, 9W 103) or "X PH" (9W 105) Position

Simplified Schematic Diagram
"PH" Position

In Mcdels 9W101 and 9W103 the RP-178 record changer and connecting cables are not used; C36 and R33 are omitted.

The dial scale drauing shown is full size reproduction. It can be used as a reference in alignment procedure.

AM
FM
Dial Scale-Models 9W101 and 9W103

Controls-Models 9W101 and 9W103

SHIPPING SCREWS

The radio chassis of these instruments is secured to the cabinet with shipping screws (painted red) which, together with wood spacing strips, should be REMOVED at the time of installation.

The record chengers are each mounted with three screws which should be LOOSENED at the time of installation.
On the RP-168 -1 record changer decorative caps cover the mounting screws, unscrew the caps for access to the screws.
REFER TO ILLUSTRATIONS ON PAGES 8 AND 9.

Top View-RP-168-1 Record Changer

RP-168 -1 RECORD CHANGER

Pickup Landing Adjustment "A"

The pickup point should land hali-way between the outer edge of the recoid and the first music groove.
If the pickup lands inside the starting grooves-lurn screw " A " slightly clockwise. If pickup lands outside the starting grooves-turn screw " \bar{A} " slightly counterclockwise.
Plckup Height Adjustment "B"
During cycle the pickup arm must rise high enough to clear a stack of eight, records on the turntable, but not high enough to cause the top of the arm to touch records resting on the record supports.

It pickup does not clear a stack of eight records-turn screw "B" slightly clozkwise. If pickup arm touches records on record supports-turn screw "B" slightly counterclockwise.

Record Separators

During service work the position of the star wheel on the underside of the record changer may be accidently shifted; this may cause the record separator knives to be extended when in the out of cycle position.

If the separator knives are thus extended-turn the power on so that the turntable is revolving, gently press fingers against the extended knives until they disappear inside the center post-DO THIS ONLY WHILE MECHANISM IS OUT OF CYCLE.

CARE OF SAPPHIRE

The sapphire point on the pickup is protected with a permanent metal guard. Lint may collect to clog the opening in the guard at the sapphire point and cause poor record reproduction. Occasional cleaning may be necessary; brush carefully with a small soft brush.

Speaker Connections

Top View-RP-178 Record Changer

Replacement Parts

STOCX NO.	DESCAIPTION
	CHASSIS ASSEMBLIES RC 618B-9W101, 9W103 RC 618C-9W105
73893	Board-"F.M." antensa board
73889	Capacitor-Variable tuning capacitor (C1, C2, C3, C4, C8, C12, C13)
73866	Capacitor-Ceramic, 2 mmf. (C9)
93056	Capacitor-Ceramic, 5 mmi. (Cll)
31353	Capacitor-Ceramic, 15 mmi (C 42)
39042	Capacitor-Ceramic, 47 mms. (C26)
73867	Capacitor-Ceramic, 56 mmi. (C43)
33103	Capacitor-Ceramic, 68 mmi. (C40)
48125	Capacitor-Ceramic, 150 mmf. (C7, C19, C38, C50, C53)
39640	Capacitor-Mica, 330 mmi ($\mathrm{C} 30, \mathrm{C} 31)$
73748	Capacitor-Coramic, 1500 mmi. (C39)
73473	Capacitor-Coramic, . 005 mid. (C6, Cl0)
73750	Capacitor-Tubular, 002 mid., 200 volts (C36 for 9W105)
73859	Capacitor-Tubular, . 003 mid., 200 volts (C24)
72573	Capacitor-Tubular, $003 \mathrm{mid}$.400 volis (C28)
70646	Capacitor-Tubular, . $0035 \mathrm{mid.}$,1000 V. (C34, C56)
71926	Capacitor-Tubular, $005 \mathrm{mfd}, 200$ volts (C20, C27, C32)
71553	Capacitor-Tubular, . 005 mid., 400 volts (C14, Ci6, C17, C21, C22)
72120	Capacitor-Tubular, . 015 mid., 200 volts (C52)
71928	Capacitor-Tubular, 02 mfd., 200 volts (C51)
73638	Capacitor-Tubular, 02 mid., 400 volts (C55)
71923	Capacitor-Tubular, . 01 mid., 200 volts (C23, C25)
73561	Capacitor-Tubular, . 01 mid., 400 volts (C58, C59)
71925	Capacitor-Tubular, . 01 mid., 400 volts (C29, C4l, C54)
71551	Capacitor-Tubular, $05 \mathrm{mid} ., 200$ volts (C15)
73747	Capacitor-Electrolytic, 2 mid., 50 volis (C33)
74200	Capacilor-Electrolytic, comprising 1 section of 10 mid., 300 volis and 1 section of $100 \mathrm{mfd} ., 10$ volts (C57R, C57B)
73372	Capacitor-Electrolytic, comprising 1 section of 30 mfd . 350 volts, 1 section of 30 mid.. 300 volts and 1 section of 20 mid., 250 volts (C18A, C18B, C18C)
73918	Coil-Antenna coil-F.M. (\#16 tinned bus wire, 8 lurns per inch, $13 / 4$ turne L.H.-. 469 I. D.) (LI)
73916	Coil-Oscillator coil-F.M. (\#16 tinged bus wire, 7 turns per inch, $43 / 4$ turns R.H.-. 469 I. D.) (L2)

REFER TO PAGE 77 FOR SUPPLEMENTARY INFORMATION Replacement Parts (Continued)

$\begin{array}{\|l\|} \hline \text { sTOCK } \\ \text { No. } \end{array}$	DESCRIPTION
	MISCELLANEOUS
72555	Antenna-F.M
74	Bezel-Dial scalo be
74299	Brackel-Jowol lamp bracket for Model gWios.
71599	Bracket-lowel lamp bracket for Modela $9 W 101$ and $9 W 103$
74268	Button-Rosette button (nall) for grille for Model 9W101
72437	Cable-Shielded pickup cable complete with pin plug (2 required) for Model 9W105
72583	Cable-Shielded pickup cable complote with pin plug for Models 9W101 and 9W103
13103	Cap-Jowel lamp cap
71892	Catch-Bullet catch and strike for doors
742	Clamp-Dial clamp (2 required)
$\times 196$	Cloth-Grille cloth for Model 9W101
$\times 1973$	Cloth-Grille cloth for Model 9W103
$\times 1953$	Cloth-Grille cloth for blonde instruments for Model 9W105
$\times 1897$	Cloth-Grille cloth for mahogany or walnut instrumonts for Model 9W 105
74209	Cover-Mounting screw cover for RPI68A record changer (3.required)
74275	Decal-Control panel decal for limed oak instruments for Model 9W103
74274	Decal-Control panel decal for mahogany or walnut instruments for Models 9W101 \& 9W103
74281	Decal-Control panel decal for blonde instruments for Model 9W105
74280	Decal-Control panel decal for mahogany or walnut instruments for Model 9W105
71768	Decal-Trade mark decal (RCA Vietor) for Model 9W101
74273	Decal-Trade mark decal (Victrola) for Models 9W101 and 9W103
7191	Decal-Trade mark decal (RCA Victor) for Modol 9W105
71966	Decal-Trade mark decal (Victrola) for Model 9W105
74203 74204	Dial-Glass dial scale for Models 9W 101 and 9W103 Dial-Glass dial scal for Model
73180	Emblem-"RCA Victor" omblem for Model 9W 103
11889	Grommet-Rubber grommet for front apron chassis (2 required)
72858	Grommet-Rubber grommel for mounting RP178 record changer (3 required)
73903	Hinge-Cabinet door
72824	Knob-Tone control or selector switch knob-browa-for blonde or limed oak instruments
71822	Knob-Tone confrol or selector switch knob-maroonfor mahogany or walnut instruments
72800	Knob-Tuning or volume control knob-brown-lor blonde or limed oak instruments
71821	Knob-Tuning or volume control knob-maroon-for mahogany or walnut instrumenta
11765	Lamp-Dial or jowal lamp-Marda 51
74300	Loop-Antenna loop complete for. Model 9W105
738	Loop-Antonna loop comploto for Modela 9W101 and 9W103
73109	Nut-Toe nut for mounting RP178 zecord changer (3 roquired)
74208	Nut-Tee nut for mounting RP. 168 record changer (3 required)
73771	Pull-Door pull for record torage compartment door or radio compartmont door for Model 9Wlos
74276	Pull-Doos pull foz Model 9W103
54239	Pull-Door pull for Model 9W101
742	Pull-Record changers' drawer pull for Model eWlos
30	Plug-2 contact fomale plug tor motor cable
30870	Plug-2 prong male plug for motor cable
73184	Runner-Record changor motorboard runnor-R.H.-for RP178 changer-Model 2W105
73183	Runner-Record changer molorboard runner-LuH.-ior RP178 changer-Model 2W105
74271	Runner-Record changer motorboard runner-R.H.-Ior RP188 changer
24272	Runner-Record changer motorboard sunner-L.H.-lor RP168 changer
73110	8crew-\#1/4-20 x $144^{\prime \prime}$ ghlitior head screw for mounting RP178 record changer-Model 9W105
74278	Screw-\#8-30 $\times 1 / 4^{\prime \prime}$ trimit head screw for record changers' drawor pull ior Model 9W 105
74424	Screw-\#8.32 $\times 13 /$ " $^{\prime \prime}$ special serew for mounting RP.188 record changer (3 required)
74289	Screw-\#8-32 \times s/4" trimit head screw for doos pull 12 required) for Model 9W101
24113	8crow-\#8-32 $\times \mathbf{x}^{\prime \prime}$ trimill head scrow for door pull for Model $9 W 103^{10}$
74279	Screw-\#t-32 \times \%" trimit head screw for door pull for record storage compartmont door and radio compartment door for Model 9W105
24421	Spring-Conical spring for mounting RP-188 record changer-uppor-R.H. wide (1 required)
74422	Spring-Conical spring for mounting RP-168 record changer-upper-L.H. side (2 required)
74423	Spring-Conical spring for mounting RP-168 record changer-lower (3 required)
30800	Spring-Retaining apring for knobs
72938	8top-Door stop
73185	Stop-Motal stop fox motorboard runners (2 required)
73182	Track-Record changer compartment track (for RP-168 record changes) (2 required)

\dagger Stock No. 22953 is a reel containing 250 feet of cord.

FOR RECORD CHANGER INFORMATION REFER TO RP 168 SERIES SERVICE DATA

AM-FM Radio-Phonograph Combination Model 9W102

Chassis No. RC-618D
— Mfr. No. 274 —
Service Data

- 1949 No. 14 -

SUPPLEMENT TO 1949 No. 4
(9W101, 9W103, 9W105)

RADIO CORPORATION OF AMERICA
 RCA VICTOR DIVISION CAMDEN, N. J., U. S. A.

Specifications

Tuning Range
Standard Broadizast (AM)
.540-1600 kc.
Frequency Modulation (FM) .88-108 mc.
Intermediate Frequencies \qquad .AM-455 kc., FM-10.7 mc.

Tube Complement
(1) RCA 6J6 \qquad Mixer and Oscillator
(2) RCA 6BA6 .. I-F Amplifier
(3) RCA 6AU5ิ ..
(4) RCA 6ALS ... Aatio Detector
(5) RCA 6AV6 ..Output
(6) RCA 6V6GT ..
(7) RCA 6AV6 ..
(8) RCA 6V6.
(9) RCA 6X513T ...
(10) RCA GBFB

Phono Preamplifier
Dial Lamps (2) \qquad Type No. $51,6-8$ volls, 0.2 amp .
Jowel Lamp Type No. 51, $6-8$ volts, 0.2 amp .

Tuning Drive Ratio \qquad 18:1 (9 turns of knob)

Power Supply Rating \qquad 115 volts, 60 cycles. 90 watts

Loudspeaker (92569-5W)
Size and type \qquad 12 in. PM
Voice coil impedance \qquad .3.2 ohms at 400 cycles

Power Output
Undistorted 6 watts \qquad .Maximum 7 watts

Cabinet Dimenslons
Height 19\%" Width $383 / 4^{\prime \prime} \quad$ Depth 20"
Weight \qquad .71 lbs.

Record Changer
Turntable speed ... 45 r.p.m. Record capacityUp to 10 RCA 7 in. fine groove Pickup ...Crystal (medium oulput)

TUNING

Controls

Schernatic Circuit Diagram-Model 9W102 dentical to 9W101 and 9W103 but not 9W105 (Model 9W105 has two record changers)

Alignment Procedure

Identical to that given in 9W101. 9W103, 9W105 Service Data Except
After the chcssis is installed in the cabinet, recheck the adjustment of C4 (AM Ant.) at 1400 kc . and L4 (AM Osc.) at 600 kc . Two holes in the right hand side of the radio compartment drawe: permit access to these adjustments.

The dial indicator should be set to the SPECIFIED POSITION on the dial back plate with the tuning condenser at max. capacity.

9W102

Dial Indicator and Drive Mechanism

9W101, 9W103, 9W105 (RC-618B, RC-618C) SUPPLEMENTARY INFORMATION

I.F. Transformer Substitution:

In some chassis I.F. transformers stamped 970435-2 have been used as a substitute for 2nd. I.F. transformers stamped 970435.5.
The 455 Kc . windings of $970435-2$ transformers use resonating. capacitors of 235 mm . each, the d.c. resistance of each winding is 8.2 ohm , the transformer indicated in the schematic diagram is stamped 970435.j.

Substitute Speaker:

Speakers stamfed 92569-1 WX have been used as a substitute for 92569.5W speakers in Model 9W101: 92569.1WX speakers have a 2.2 ohm voice coil: 92569.5 W speakers have a 3.2 ohm voire coil.

Speakers stampred $92569-5 \mathrm{~K}$ have been used as a substitute for 92569-5W speakers in Models 9W101. 9W103 and 9W105. They have a 3.2 ohm voice coil (same as 92569-5W).

Change in Wiring:

To improve FM stability one dial lamp is now connected to pin \#2 of V9 (6X5GT). Previously both were connected to pin \# 2 of V8 (6V6GT).

Added Capacitor:

A capacitor (150 mmi .-C44) has been added between the screen grid terminal of V8 (6V6GT) socket and chassie as shown in the illustration below. This was done to eliminate spurious audio oscillation.

Pickup Arm Cable:

The RP-168A-1 record changer pickup arm cable now being used is a three wire cable (RED.WHITE-BLACK). In some instruments the black wire is omitted or a shielded wire may be used as shown in 9W101. 9W103. 9W105 Service Data. The latest connection diagram is given below.

Ouspus Tubes Circuit Pickup Arm Cable Models 9W101, 9W103, 9W105

Incorrect Color Code on Capacitor:

Some ceramic capacitors Cll (5 mmf .) have been used which have a color code of BLACK-GREEN-BLACK. The capacitor is correct, but the color code is incorrect. The normal color code of this capacior is GREEN-BLACK-WHITE.

Record Changer Mounting Screws:

The original mounting screws used a cover which screwed into the top of the mounting screw. The screws now beinq used have a plug.in type of cover.

Replacement Parts

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION	STOCR	DESCRIPTION
	CHASSIS ASSEMBLIES RC 618D	$\begin{aligned} & 73894 \\ & 73632 \end{aligned}$	Shaft-Tuning knob shaft Shield-Tube shield-for V2, V5
73893	Board-"F. M." terminal board	74646	Sleeve-Sleeve and pulley assembly (for volume control knob shaft)
74641	Cable-Flexible cable to operate volume control	72516	Socket-Tube socket, miniature-sor V4, V5, V7
73889	Capacitor-Variable tuning capacitorC1, C2, C3,	73606 31251	Sockel-Tube socket, miniature-for V1, V2, V3
73866		73117	Socket-Tube socket, octal, wafer-
93056		31364	Sockel-Dial lamp or pilot lamp sockel
39044	Capacitor-Ceramic, 15 mmf. ..C42	74038	Spring-Tension spring for drive cord
39042	Capacitor-Ceramic, 47 mmf ..C26	74202	Support-Polystyren support for F.M. oscillator coil com.
73867	Capacitor-Ceramic, 56 mmfC43		plete with mounting bracket
333	Capacitor-Ceramic, 68 mmfC40	73891	Switch-Tone control switch (S4)
48125	Capacitor-Ceramic, $150 \mathrm{mmf} \mathrm{C} 7$, C19, C38, C44, C50, C53	74644	Switch-Selector switch (S1, S2)
39640	Capacitor-Mica, 330 mmfC30, C31	73743	Transformer-Ratio detector transformer (T4)
73748	Capacitor-Ceramic, 1500 mmf 3 (39	5	Transformer-First I.F. transformer-dual (T2)
73473	Capacitor-Ceramic, 5000 mmlC6. C10	74642	Transformer-Second I.F. translormer-dual (T3)
73659	Capacitor-Tubular, $003 \mathrm{mld} ., 200$ voltsC24	74643 33726	Transformer-Power transformer, 115 volt, 60 cycle (T)
72573	Capacitor-Tubular, 003 mfd .400 voltsC28	33726	Washer- "C" washer for tuning knob shaft
70646	Capacitor-Tubular, . $0035 \mathrm{mid} ., 1000$ voltsC34, C56		SPEAKER ASSEMBLIES
71926	Capacitor-Tubular, 005 mid., 200 voltsC20, C27, C32		Stamped 92569.5W
71553	Capacitor-Tubular, 005 mid., 400 voltaC14, C16, C17, C21. C22		Stamped 92569.5W RL $103 B 5$
71923	Capacitor-Tubular, 01 mid., 200 voltsC23, C25		
71925	Capacitor-Tubular, 01 mid., 400 voltsC29, C41, C54	13867	Cap-Dust cap
735	Capacitor-Tubular, 01 mid., 400 voltsC58, C59	73934	Cone-Cone and voice coil assembly
72120	Capacitor-Tubular, 015 mid., 200 voltsC52	5039	Plug-4-prong male plug for speaker
71928	Capacitor-Tubular, 02 mid., 200 voltsCS1	73635	Speaker-12" PM speaker complete with cone and voice
736	Capacitor-Tubular, 02 mfd., 400 voltsC5S		coil-less output transformer and plug
71551	Capacitor-Tubular, 05 mfd., 200 voltsCl5	71145	Suspension-Metal cone suspension
73747	Capacitor-Electrolytic, 2 mid., 50 voltsC33	73636	Transformer-Output transformer (T5)
74200	Capacitor-Electrolytic. comprising 1 section of 10 mld ., 300 volts and 1 section of 100 mfd ., 10 volts....C57A. C57B		Note: If stamping on speaker does not agree with above number, order replacement parts by referring to
73372	Capacitor-Electrolytic. comprising 1 section of 30 mid ., 350 volts, 1 ection of 30 mid ., 300 volts and 1 section of 20 mfd ., 25 volts C18A, Cl8B, C18C		model number of instrument, number stamped on speaker and lull description of part required.
73744	Coil-Oscillator coil-A.M. ..L4		MISCELLANEOUS
73918	Coil-Antenna coil-F.M. ..Ll	74649	Antenna-F.M. antenna
73916	Coil-Oscillator coil-F.M. ...L2	74205	Bezel-Dial scale bezel less dial
719	Coil-Filament choke coil .. $\mathrm{L3}$	74054	Bracket-Pilot lamp bracket
335	Connector-Phono input connection socket (dual)	71	Cable-Shielded pickup cable for record changer, com-
5040	Connector-4-contact female connecting socket for speaker cable	13103	plete with pin plug Cap-Pilot lamp cap
30868	Connector-2-contact female connecting socket for record changer motor cable	$\begin{aligned} & 71892 \\ & 74298 \end{aligned}$	Catch-Door strike and catch Clamp-Dial clamp (2 required)
4639	Control-Volume control and power switch (R14, S3)	$\times 3038$	Cloth-Grille cloth (2 required) for mahogany or walnut
172953	Cord-Drive cord (approximately $48^{\prime \prime}$ overall length re. quired)	$\times 3039$	instruments Cloth-Grille cloth (2 required) for oak instruments
73690 16058	Cord-Power cord and plug Grommet-Rubber grommet to mount R-F shelf if re.	30868	Connector-2-contact female connecting socket for motor
16058	Grommet-Rubber grommet to mount R-F shelf (4 required)	30870	cable Connector-2-contact male connecting plug for motor cable
72069	Grommet-Rubber grommet for rear mounting feet (2 ro- quired)	74581	Cover-Mounting screw cover (plug-in type) for mounting record changer (3 required)
73895	Indicator-Station selector indicator	74737	Decal-Control panel function decal for mahogany or wal-
74645	Nut-\#8.32 hex retainer nut between R-F shelf and volume control knob shaft	74738	nut instruments Decal-Control panel function decal for oak instruments
74297	Plate-Dial back plate ansembly complete with two (2) drive cord pulleys	$\begin{aligned} & 74273 \\ & 74647 \end{aligned}$	Decal-Trade mark decal ("Victrola") Dial-Glass dial scale
74640	Pulley-Pulley and hub for volume control shaft	73549	Emblem-"RCA Victor" emblem (metal)
	Resistors-Fixed composition resistors: 68 ohms, $\pm 10 \%$, $1 / 2$ watt ..R7	889	Grommet-Rubber grommet for tront apron of chassis (2 required)
	100 ohms, $\pm 10 \%$. $1 / 2$ wattR17, R27, R36	73735	Hinge-Drop door hinge (2 required)
	120 ohms, $\pm 10 \%$. $1 / 2$ watt ... 12	71821	Knob-Tuning knob-maroon-for mahogany or walnut instruments
	560 ohms, $\pm 10 \%$, 1/2 watt ..	72824	Knob-Tuning knob-brown-for oak instrumen
	680 ohms, $\pm 20 \%$, $1 / 2$ walt \qquad \qquad R9. R11 1200 ohms, $\pm 5 \%$, $1 / 2$ watt . R 23	73998	Knob-Volume control knob-maroon-for mahogany or walnut cabinots
73637	Remistor-Wire wound, 2200 ohms, 5 waltsR22	73995	Knob-Volume control knob-brown-for oak instruments
	Resistors-Fixed componition resistors: 3300 ohms, $\pm 5 \%$. $1 / 2$ watt ...R24	73230	Knob-Function switch knob-maroon-for mahogany or walnut instrument
	5600 ohms, $\pm 10 \%$. $1 / 2$ watt .. 47	73231	Knob-Function switch knob-brown-ior oak instruments
		345	Knob-Tone control switch knob-maroon-for mahogany or walnut instrument
		74846	Knob--Tone control awitch knob-brown-for oak instruments
	22,000 ohms, $\pm 10 \%$, 1/2 watt ..R48	11765	Lamp-Dial lamp-Mazda 51
	27.000 ohms, $\pm 10 \%, 1 / 2$ wattR8, R40	74648	Loop-Antenna loop
		74208	Nut-Tee nut for mounting record changer (3 required)
	33.000 ohms. $\pm 10 \%$. $1 / 2$ watt ...R6 39,000 ohms, $\pm 10 \%$, $1 / 2$ watt ..R25	74582	Screw-\#8.32 $\times 13 / 4^{\prime \prime}$ special screw for mounting record changer (3 required)
	56.000 ohms, $\pm 10 \%$. 1 watt ... 10	74736	Slide-Record changer tray slide
	82,000 ohms, $\pm 10 \%$, 1/2 watt ..	74421	Spring-Conical spring for mounting record changer-upper-RH side (1 required)
	120,000 ohms, $\pm 10 \%$, $1 / 2$ watt ... 220,000 ohme, $\pm 10 \%$, $1 / 2$ watt	74422	Spring-Conical apring for mounting record changer-
	270,000 ohms, $\pm 10 \%$, 1/2 wattR19, R29		
	330,000 ohms, $\pm 10 \%$. $1 / 2$ watt	74423	Spring-Conical spring for mounting record changerlower (3 required)
	2.2 megohms, $\pm 20 \%$, $1 / 2$ watt \qquad	30900	Spring-Retaining spring for knobs 71821 and 72824
	3.9 megohms, $\pm 10 \%$, 1/2 watt ..	72845	Spring-Retaining spring for knobs 73995 and 73998
	10 megohms, $\pm 20 \%$, $1 / 2$ watt1s, R41	270	Spring-Retaining apring for knobs 73230 and 73231
	22 megohms, $\pm 20 \%$, 1/2 wattR16	73412	Support-Drop door fall support

APPLY TO YOUR RCR DISTRIBUTOR FOR PAICES OF REPLACEMENT PRRTS

4 Substitute Speaker:

In some instruments α substifute speaker (stamped 92569-5K) has been used. The cone and voice coil assembly for $92569-5 \mathrm{~K}$ speaker is avallable as Stock No. 75642. For other items refer to $92569-5 \mathrm{~W}$ speaker listed above.

Antennas

This receiver bas builtin antenna for standard broadcast (AM) and frequency modulation (FM) reception.

Provision is made for the use of an external antenna for FM reception if desired. To use external FM antenna - remove the builtin FM antenna lead from the "FM" terminals of the antenna terminal board. Connect the transmission line af an external FM dipoce antenna to these two "FM" terminalle.

FOR RECORD CHANGER SERVICE INFORMATION REFER TO RP. 168 SERIES SERVICE DATA AND RP. 178 SERIES SERVICE DATA.

Tuning Range

Standard Broadcust (RM) 540-1,600 lec.
Frequency Modulation (FM). 88-108 me.
Intermediate Frequencies. AM- 455 kc., FM- 10.7 mc .

Tube Complement

(1) RCA 6Bj6. R-F Amplifier		
(2) RCA 676......................... Mixer and Oscillator		
(3) RCA 6BA6.................................. . . 1 - Amplifier		
(4) RCA 6AU6....................................... ${ }^{\text {(5) }}$ Driver		
(5) RCA 6AL5 Ratio Detector		
(6) RCA 6AV6.............. AM Det.-AVC-A-F Amplifier		
(7) RCA 6AV6............... Ph. Inv.		
(8) RCA 6V6GT. Outpul		
(9) RCA 6V6GT. Output		
(10) RCA 6X5GT . Rectifior		
Dial Lamps (2). Type No. 51, $6-8$ volts, 0.2 cump. Jewel Lamp Type No. 51, 6-8 volts, 0.2 cmp.		
Tuning Drive Ratio. 18:1 (9 turns of knob)		
Power Supply Fating. 115 volts, 60 cycles, 90 watts		
Loudapeaker (93569-6W)		
Sire and type..................................... 12 in in PM		
Voice coil impejance. 3.2 ohms at 400 cycles		
Powrer Output		
(Radio) Undistorted 5 watts Maximum 6.4 watts (Phono.) Undistorted 8 watts. Maximum 9 watts		
Cabinet Dimenslons		
Holght $311 / 2 \mathrm{in}$.	Width 398/4in.	Dopth 171/2in.

AM-FM Radio-Phonograph Combination Model 9W106

Chassis No. RC-629

Service Data
 - 1949 No. 21 -

RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION CAMDEN, N. J., U. S. A.

Record Changer (RP-168)
Turatable speed. 45 r.p.m.
Hecord capacity. Up to 10 fine groove records Pickup . Crystal (medium output)

Record Changer (RP-178)
Turniable speed. 78 r.p.m.
Record capacity Twelve 10-in. or ten 12-in.
Pickup. Crystal (standard output)

Circuit Description

This instrument has a ton-tube (including rectifier) chassis which is very similar to those used in other RCA Victor radiaphonograph combinations designed for AM-FM reception.

The selector switch has five functions:

(1) Selection of tuning range.
(2) Selection and distribution of a.v.c. voltages.
(3) Application of B+ voltage to tubes V1, V2, V3 and V4.
(4) Selection of audio input applied to the volume control.
(5) Application of a.c. power to the record changer motors.

Operating Controls

CRITICAL LEAD DRESS
 Model 9W106 - RC622

Note: The leads listed may not be critical in all receivers. However, by dressing the leads as specified, unusual difficul. ties will be minimized.

1. The plate lead of the second IF transformer should be dressed down against the chassis to obtain max. capacity between the lead and chassis. This lead is specified to be two inches long.
2. The " A " band RF transformer plate, and grid leads should be dressed so as to minimize coupling to the RF amplitier grid circuit, and kept close to chassis when possible.
3. The 2.2 meg. grid resistors connecting to the RF and mixer grids should have a minimum practicable amount of lead extending on the grid end. The leads should be cut off short on the grid end and long on the A.V.C. end.
4. The unshielded plate lead from the function switch to the 1st IF transformer should be dressed away from the switch waler audio lugs as much as possible.
5. The ground strap between the RF shelf and chassis should be well soldered and kept as short as practicable. FM instability may be caused by having this ground strap too long, particularly when no input is connected to the FM antenna terminal.
6. The lead from the 2nd IF to the grid of the GBA6 1st IF amplifier should be kept short, and dressed against the chassis as much as practicable.
7. The lead trom the 2nd IF to the AM detector diode should be dressed to minimize coupling to the 6AV6 lst AF grid and kept close to chassis.
8. Leads from the volume control taps should be kept clear of all filament and output plate wires as in the wiring sample.
9. The loop cable when connected to the AM sec. gang stator should be dressed to have minimum capacity coupling to the stator lug on the RF section of gang condenser.
10. The oscillator coupling condenser Cl 10 should be dressed to have minimum capacity to the mixer grid. Pin No. 5 on V2.
11. The shielding on the shielded lead from the volume control to the function switch should have the minimum practicable exposed wire at the function switch end.

Alignment Procedure CORRECT ALIGNMENT OF THE FM BAND REQUIRES THAT THE AM BAND BE ALIGNED FIRST

Alignment Indicators:

An RCA VoltOhmyst or equivalent meter is necessary for measuring developed d-c voltage during FM alignment. Connections are specified in the alignment tabulation. An output meter is also necessary to indicale minimum audio output during FM Ratio Detector alignment. Connect the output meter across the speaker voice coil.
The RCA VoltOhmyst can also be used as an $\bar{A} M$ align. ment indicator, either to measure audio output or to measure a.v.c voltage.

When audio outpul is being measured the volume control should be turned to maximum.

Signal Generator:

For all alignment operations connect the low side of the signal generator to the receiver chassis. The output should be adjusted to provide accurate resonance indication at all times. If output measurement is used for $\bar{A} M$ alignment the output of the signal generator should be kept as low as possible to avoid a-v-c action.

Oscilloscope Allgnment:

The FM I.F alignment may be checked using a sweep generator and an oscilloscope. Shunt terminals B and C of T4 with a 1200 ohm resistor. Connect the high side of an oscilloscope to terminal C of T4 in series with a diode probe. Apply the output of the sweep generator (10.7 mc . with ± 250 kc. sweep) to pin No. 1 of V3 ($6 B A 6$) in series with $.01^{-251}$. Low side of the oscilloscope and sweep generator to chassis. This will show the response of T3.
To check the combined response of T2 and T3: connect the sweep generator to the FM antenna terminals (remove FM antenna lead) in series with 300 ohms. Note: One FM terminal is grounded-it may be necessary to reverse the sweep generator connections. Oscilloscope connections remain as connected.
To check the ratio delector response: connect the high side a the oscilloscope direct to terminal No. 9 of SI. low side to
chassis. Apply the output of the sweep generator to pin No. 1 of V4 (6AU6) in series with .01 ml . Driver plate circuit connected for normal operation (1200 ohm resisfor removed). Note: It is difficult to observe marker signals in this step-center trequency and sweep width should be previously observed.

AM Alignment
Range switch in bc position

Steps	Connect high side of sig. gen. to-	\$ig. gen. output	Turn radio dial to-	Adjust for peak output
1	```Pin No. } of V2 in sories with .01 mid.```	455 kc.	Quiet point at low freq. end.	AM windings. \dagger T3 bottom core (sec.). T3 top core (pri.).
2				AM windings. \dagger T2 top core (sec.). T2 bottom core (pri.).
3	Short wire placed near loop for radiated signal	1400 lcc.	1400 kc.	Cl.2T (ose.). Cl. 5 T (ant.). Cl-4T (ri.).
4		600 kc .	600 ke.	$L 8$ (ose.) with 10,000 ohms resistor from RF stator to gnd. (rocking gang)
5				15 (RF) with the 10,000 ohms removed.
6	Repeat Etops 3. 4 and 5 until no improvement in sensi. tivity is obtained.			

+ Use alternate loading.
Alternate loading involves the use of a 47.000 ohm resistor to load the AM plate winding while the AM grid winding of the loaded with the resistor while the plate winding grid winding is one winding is loaded at any one plate winding is peaked. Only resistor after T3 and T2 have been alig. Remove the 47.000 ohm Oscillator frequency is have been aligned.
FM.

FM Alignment

RANGE SWITCH IN FM POSITION-VOLUME
CONTROL MAXIMUM

Steps	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to-	Adjust for peak output
1	Connect the d-c probe of a Voltohmyst to the negative lead of the 2 mid. eapacitor C 42 and the common lead to chassis. Turn gang condenser to max. capacity (fully meshed). Volume Control max.			
2	Pin 1 of V_{4} 6RU6 in series with 470 ohm resistor.	10.7 mc . modulated $30 \% 400$ cycles AM (Approx. .05 volt).	Max. ca. pacity (fully meshed).	T4 fop core for max. d-c voltage across C42. T4 bottom cor* for min. audio output.
3		10.7 mc . Adjust to provide aboul 4 volt indf. cation on VoltOhmyst during alignment.		FM windings. $\dagger+$ T3 top cort (sec.). T3 bpttom core (pri.).
4				FM windings. $\dagger \dagger$ T2 top core (sec.). T2 bottom core (pri.).
5	High and low side of signal gen. through two 120 ohm resistors. To ant. terminals.	90 mc .	$90 \mathrm{mc}. \ddagger$	L9 (osc.).**
6		108 mc .	106 mc .	$\begin{aligned} & \text { Cl-6T (ant.). } \\ & \text { Cl-3T (rf.). } \end{aligned}$
7		90 me.	90 me.	$\begin{aligned} & L 1 \text { (ant.). } \\ & \text { L3 (rt.). } \end{aligned}$
8	Hepeat steps 6 and 7 until no improvement in sensitivity is obtained.			

- Two or more points may be found which lower the audio output. At the correct point the minimum audio outpul is approached rapidly and is much lower than at any incorrect point.
ft Align T3 and T2 by means of alternate loading as explained under AM alignment. Use a 680 ohm resistor instead of a 47,000 ohm resistor and load the FM windings.
** L1, L3 and L9 are adjustable by increasing or decreasing the spacing belween turns.
* Atter dial pointer has been set accurately on calibration point for "A" band (see dial indicator and drive drawing) tune receiver to 90 mc . on FM using dial scale as reference or use dial scale
drawing on page 8 .

Tube and Trimmer Locations

Socket Voltages

Voltages measured with Chanalyst or VoltOhmyat and should hold within $\pm 20 \%$ with rated line voliage. Tuning condenser closed-no signal input.

Tub	Terminal		Voltage		
			Phono	A.M.	F.M.
V1 6Bj6	Plate	5	-	185	110
B.F. Amp.	Screen	6	-	120	100
	Cathode	2	-	0.8	0.8
	Grid	1	-0.9	-0.0	-0.6
V2 6J6	Plate	1	-		80
Mixer and	Grid	6	-1.07	-2	-3.4
Osc.	Plate	2	-	56	56
	Grid	5	-0.54	-5.4	-3.6
V3 6BA6	Plate	5	-	180	178
I.F. Amp.	Screen	6	-	115	111
	Cathode	7	-	0.9	0.9
	Grid	1	-0.95	-1.1	-. 75
V4 6AU6	Plate	5	-	174	
Driver	Screen	6	-	125	175
	Cathode	7	-	0.9	0.9
V5 6AL5 Ratio Det.	-	-	-	-	-
V6 6AV6	Plate	7	97	85	80
A.F. Amp.	Grid	1	-. 72	-. 75	-0.75
V7 6AV6	Plate	7	140	110	110
Inverter	Grid	1	-18.7	-17.8	-17.3
	Cathode	2	-18	-17	-16.6
V8 6V6GT	Plat	3	262	270	270
Output	Screen	4	262	190	190
	Grid	5	-18	-17	-16
V9 6V6GT	Plate	3	262	270	270
Output	Screen	4	262	190	190
	Grid	5	-18	-17	-16
V10 6X5GT Rectilior	Cathode	8	271	275	275

Dial Indicator and Drive Mechanism
CABLE SHOWN IN EXTREME COUNTER CLOCKWISE POSITION

Volume Control Drive Mechanusm
Cathode Currents (MA)

Tube	Terminal	Phono	A.M.	F.M.
V1 6BJ6	2	-	11.1	11.4
V2 6J6	7	-	6.8	6.6
V3 6BA8	7	-	13.1	13.7
V4 6AU6	7	-	8.2	8.1
V5 6AL5	185	-	-	-
V6 6AV6	2	0.68	.44	.43
V7 6AV6	2	1.7	1.4	1.35
V8 6V6GT	8	33	11.2	11
V9 6V6GT	8	33	11	11
V10 6X5GT	8	66	63	83

8 OR
i- V8
$\xrightarrow[400]{? \rightarrow}$
$\stackrel{v}{9}$

SHIPPING SCREWS

The radio chassis of these instruments is secured to the cabinet with shipping screws (painted red) which, together with spacing strips, should be REMOVED at the time of installation.

The record changers are each mounted with three screws which should be LOOSENED at the time of installation.

On the RP-168A-1 record changer decorative caps cover the mounting screws. Unscrew the caps for acceas to the screws.

RP-168 RECORD CHANGER

Pickup Landing Adjustment "A"
The pickup point should land hall-way between the outer edge of the record and the first music groove.

If the pickup lands inside the starting grooves-turn screw "A" slightly clockwise. If pickup lands outside the starting grooves-turn screw "A" slightly counterclockwise.

Pickup Height Adjustment "B"
During cycle the pickup arm must rise high enough to clear a stack of eight records on the turntable, but not high enough to cause the top of the arm to touch records resting on the record supports.
lf pickup does not clear a stack of eight records-turn screw " B " slightly clockwise. If pickup arm touches records on record supports-turn screw " B " slightly counterclockwise.

Record Separators

During service work the position of the star wheel on the underside of the record changer may be accidentally shifted; this may cause the record separator knives to be extended when in the out of cycle position.

If the separator knives are thus extended-turn the power on so that the turntable is revolving, gently press fingers against the extended knives until they disappear inside the center post-DO THIS ONLY WHILE MECHANISM IS OUT OF CYCLE.

CARE OF SAPPHIRE

The sapphire point on the pickup is protected with a permanent metal guard. Lint may collect to clog the opening in the guard at the sapphire point and cause poor record reproduction. Occasional cleaning may be necessary: brush carefully with a small soft brush.

RCA VICTOR

Dial Scale (Actual Size)

Top l'iew RP-178 Record Changer

REPLACEMENT PARTS

STOCK No.	DESCRIPTION	STOCK No.	DESCRIPTION
	CHASSIS ASSEMBLIES RC 622	74841	Coil-R.F. coil - A.M. - complete with adjustable core and stud (L4, L5)
		74815	Coil-R.F. coil-F.M. (L3)
74848	Board-"F.M." terminal board	74816	Coil-Antenna coil-F.M. (Ll)
74641	Cable-Flexible cable to operate volume control	73817	Coil-Oscillator coil-F.M. (L9)
74849	Capacitor-Variable tuning capacitor (C1-1, 1-2, 1-3. $1-4,1-5,1-6)$	$\begin{array}{r} 71942 \\ 5040 \end{array}$	Coil-Filament choke coil (L10) Connector-4 contact temale connector for speaker
73747	Casacitor-Electrolytic, 2 mmi .050 volts (C42)		cable (P3)
74733	Capacitor-Ceramic, 3 mmf . (C9)	30868	Connector-2 contact female connector for motor
93056	Capacitor-Ceramic, 5 mmf . (C14)		cables (P2A)
39044	Capacitor-Ceramic, 15 mmf ((Cl1)	74837	Control-Tone control (R39)
39042	Capacitor-Ceramic, 47 mmin . (C47)	74639	Control-Volume control and power switch (R23, S2)
33379	Capacitor-Ceramic, 68 mmf (($10, \mathrm{Cl2}$)	72953	Cord-Drive cord (approx. 58" overall length)
39396	Capacitor-Ceramic, 100 mmf ((6, C8)	74839	Fastener-Push fastener to hold R.F. shelf assembly
71614	Capacitor-Ceramic, 120 mmi . (Cl6)		(4 required)
44704	Cajacitor-Ceramic, 150 mml . (C15, C22, C23, C34. C48)	$\begin{aligned} & 74838 \\ & 16058 \end{aligned}$	Grommet-Power cord strain reliof grommet (l set) Grommet-Rubber grommet for mounting R.F. shelf
48125	Capacitor-Ceramic, 150 mmf ((299)		assembly (4 required)
71920 39640	Capacitor-Ceramic, 220 mmi . (C5)	72069	Grommet-Rubber grommet for rear mounting feet (2 required)
39640 74093	Capacitor-Mica, 330 mmf . (C39, C40) Ccpacitor-Ceramic, 1.500 mmf ((C17. C	73895	(2 required) Indicator-Station selector indicator
74850	Ccpacitor-Ceramic, $1,800 \mathrm{mml}$. (C7)	74645	Nut-8.32 hex retainer nut between R.F. shelf and
74009	Capacitor-Ceramic, dual, $4,000 \mathrm{~mm}$. (C20A, C20B, $\therefore 28$ A. C28B)	74297	volume control knob Plate-Dial back plate complete with two (2) drive
73473	Ccpacitor-Ceramic, $5,000 \mathrm{mmf}$. (C3, C4, C13, C18. こ32. C46)	18469	cord pulleys less dial Plate-Bakelite mounting plate for electrolytic
72052	Capacitor-Electrolytic, comprising 1 section of 30 mid, 450 volts, 1 section of 30 mid, 350 volts and 1 section of $40 \mathrm{mld}, 25$ volts (C31A, C31B, C31C)	$\begin{aligned} & 74640 \\ & 33514 \\ & 73637 \end{aligned}$	Pulley-Pulley and hub assembly for volume control Receptacle-Phono input receptacle Resistor-Wire wound, 2,200 ohms, 5 watt (R27)
71926	Capacitor-Tubular, paper, $005 \mathrm{mld}, 200$ volts (C27. C33, C41, C45)		Resistor-Fixed, composition: 68 ohms, $\pm 10 \%$, 1/2 watt (R2, R17)
71553	Capacitor-Tubular, paper, . 005 mfd. 400 volts (C36)		100 ohms, $\pm 5 \%$, 1/2 watt (R29)
70644	Capacitor-Tubular, paper, . 0025 mid. 1,000 volts (C43, C44)		$\begin{aligned} & 100 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt (R14, R43) } \\ & 120 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt (R45) } \end{aligned}$
71925	Capacitor-Tubular, paper, $.01 \mathrm{mld}, 400$ volts (C37)		300 ohms, $\pm 5 \%, 2$ watt (R44)
71928	Capacitor-Tubular, paper, $02 \mathrm{mld}, 200$ volts (C30, C35)		$\begin{aligned} & 680 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt (R19) } \\ & 680 \text { ohms, } \pm 20 \% \text {, } 1 / 2 \text { watt (R5, R22) } \end{aligned}$
73638	Capacitor-Tubular, paper, $02 \mathrm{mid}, 400$ volts (C38)		1,200 ohms, $\pm 5 \%$, ${ }^{1 / 2}$ watt (R35)
73553	Capacitor-Tubular, paper, $05 \mathrm{mid}, 400$ volts (C19)		3.300 ohms, $\pm 5 \%,{ }^{1} 2$ watt (R37)
72120	Capacitor-Tubular, paper, $.015 \mathrm{mid}, 200$ volts (C25, C26)		$\begin{aligned} & 8,200 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt (R41) } \\ & 8,200 \text { ohms, } \pm 10 \%, 1 \text { watt (R4) } \end{aligned}$
73744	Coil-Oscillator coil-A.M. (L6, L7, L8)		10,000 ohms, $\pm 10 \%$, ${ }^{1} 2$ watt (R47)

REPLACEMENT PARTS - Continued

STOCX No.	DESCRIPTION	$\begin{gathered} \text { STOCX } \\ \text { No. } \end{gathered}$	DESCRIPTION
	15,000 ohms, $\pm 10 \%$, 1/2 watt (R30)		
	18,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R13)	74581	Cover-Mounting screw cover (plug-in type) for 45 RPM changar (3 required)
	22,000 ohms, $\pm 10 \%, 1 / 2$ watt (R18, R20, R24) 27.000 ohms, $\pm 10 \%$. $1 / 2$ watt (R25)	74853	Decal-Control panel decal for mahogany or wal-
	33.000 ohms, $\pm 10 \%$, $1 / 2$ watt (R3, R8) 39.000 ohms, $\pm 5 \%, 1 / 2$ watt (R38)	74854	Decal-Control panel decal for blonde instruments
	39.000 ohms, $\pm 10 \%$, 1 watt (R16)	74273	Decal-Trade mark decal (Victrola)
	56,000 ohms, $\pm 10 \%$, 1/2 watt (R6, R	71984	Decal-Trade mark decal (RCA Victor)
	82,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R33)	74842	Dial-Glass dial sca
	150,000 ohms, $\pm 10 \%$, 1/2 watt (R10)	74851	Grille-Metal grille
	220.000 ohms, $\pm 10 \%$, $1 / 2$ watt (R9) 270.000 ohms, $\pm 10 \%, 1 / 2$ watt (R32)	11889	Grommet-Kubber grommet for front apron of chassis (2 required)
	$\begin{aligned} & 330.000 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt (R46) } \\ & 470.000 \text { ohms. } \pm 10 \%, 1 / 2 \text { watt (R36, R40, R42) } \end{aligned}$	72856	Grommet-Rubber grommet to mount 78 RPM changer (3 required)
	2.2 megohm, $\pm 20 \%$, 1/2 watt (R1, R7, R11)	74838	Grommet-Strain relief grommet (1 set)
	10 megohm, $\pm 20 \%$, $1 / 2$ watt (R26, R34 47 megohm, $\pm 20 \%, 1 / 2$ watt (R31)	36610	Hinge-Door hinge (l set) for radio compartment door or R.H. record storage compartment door
73894	Shaft-Tuning knob shaft	36817	Hinge-L.H. record storage compartment door hinge
73584	Shield-Tube shield for V1		(1 set)
74646	Sleeve-Sleeve and pulley assembly for volume control knob	71821	Knob-Tuning control knob-maroon-for mahog. any or walnut instruments
74179	Socket-Tube socket, 7 pin, miniature for V1, V2. V3, V4	72824	Knob-Tuning control knob-brown-for blonde in: struments
73117	Socket-Tube socket, 7 pin, miniature for V5, V6, V7	71822	Knob-Tone control knob-maroon-for mahogany
31251	Socket-Tube socket, octal, water for V8, V9, V10		or walnut instruments
31364	Socket-Lamp socket	72824	Knob-Tone control knob-brown-for blonde is.
74038	Spring-Drive cord spring		struments
74847	Support-Polystyrene support for F.M. oscillator coil complete with mounting bracket	73994	Knob-Volume control knob-maroon-lor mahogany or walnut instruments
74840	Switch-Selector switch (S1)	73995	Knob-Volume control knob-brown-for blonde is.
73743	Transformer-Ratio detector transformer (T4)		struments
73745	Transformer-First I.F. transformer-dual (T2)	73230	Knob-Selector switch knob-maroon-for mahog.
74019	Tranaformer-Second I.F. transformer-dual (T3)		any or walnut instruments
73601	Transformer-Power transformer- 117 volt, 60 cycle (T1)	73231	Knob-Selector switch knob-brown-for blonde instruments
33726	Washer-"C" washer for tuning shaltSPEAKER ASSEMBLY$92569-6 \mathrm{~W}$	11765	Lamp-Dial or pilot lamp-Mazda 51
		74843	Loop-Antenna loop complete (L2)
		73109	Nut-Tee nut to mount 78 RPM changer (3 required)
		74208	Nut-Tee nut to mount 45 RPM changer (3 required)
13867	Cap-Dust cap	74852	Pull-Door pull for record changer drawers or radio compartment door (5 required)
73934 5039	Cone-Cone and voice coil assembly Connector-4 contact male connector for speaker	74451	Pull-Door pull for record storage compartment
74753	Speaker-12" P.M. (6.8 oz.) speaker complete with cone and voice coil (3.2 ohm), less output transformer and plug		doors'(2 required) Resistor-Fixed, composition: $3.300 \text { ohms, } \pm 10 \% \text {. } 1 / 2 \text { watt (R12) }$ $68,000 \text { ohms, } \pm 10 \% \text {, } 1 / 2 \text { watt (R15) }$
71145	Suspension-Metal cone suspension	73110	Screw-No. $1 / 4.20 \times 13 / 4{ }^{\prime \prime}$ fillister head screw to
73636	Transtormer-Output transtormer NOTE: If stamping in instruments does not agree with above speaker number, order replacement parts by relerzing to model number of instrument. number stamped on speaker and full description of part required.		mount 78 RPM changer (3 required)
		74582	Screw-No. 8-32 $\times 13 / 4^{\prime \prime}$ special head screw to mount 45 RPM changer (3 required)
		74269	Screw-No. $8.32 \times 3 / 4$ "trimit head screw for door pull No. 74852
		74279	Screw-No. $8-32 \times 7 /{ }^{\prime \prime}$ trimit head screw for door pull No. 74451
	MISCELLANEOUS	74835	Slide-Slide mechanism for 45 RPM changer drawer
74844	Antenna-F.M. antenna	74736	Slide--Slide mechanism for 78 RPM changer drawer
74205	Bezel-Dial scale bezel less dial	30900	Spring-Retaining spring for knobs No. 71821. 71822 and 72824
71593	Bracket-Pilot lamp bracket	72845	Spring-Retaining spring for knobs No. 73994 and
74296	Cable-Shielded pickup cable complete with pin plug	72845	73995
13103	Cap-Pilot lamp jewel	14270	Spring-Retaining spring for knobs No. 73230 and 73231
72120	Capacitor-Tubular. 015 mid (C21) Catch-Bullet catch and strike for cabinet doors (3	74421	Spring-Conical spring to mount 45 RPM changer-
71892	Catch-Bullet catch and strike for cabinet doors (3 required)	74421	upper-R.H. (l required)
73897 $\times 3057$	Clamp-Dial clamp (2 required)	74222	Spring-Conical spring to mount 45 RPM changer-upper-l.H. (2 required)
X3057	Cloth-Grille cloth for mahogany or walnut instruments	74423	upper-L.H. (2 required) Spring-Conical spring to mount 45 RPM changer-
X1649	Cloth-Grille cloth for blonde instruments		lower (3 required)
30870	Connector-2 contact female connector for motor cables	72936	Stop-Door stop for record storage compartment doors (2 required)
30868	Connector-2 contact male connector for motor cables		

9X56]
Maroon

9X562
Ivory

Chassis No. RC-1079-B RC-1079-C

— Mfr. No. 274 —

RADIO CORPORATION OF AMERICA
 RCA VICTOR DIVISION
 CAMDEN, N. J., U. S. A.

Specifications

Power Supply Rating

115 volts a.c., 50 to 60 cycles or d.c.
30 watts

Power Output

Undistorted
Maximum
.85 watts
1.1 watts

Dial Lamps (2)..... Mazda type 1490, 3.2 volts, . 16 amp. Loudspeaker (92586-4)

Size and Type.............................. 8 in. PM
Voice Coil Impedance....... 3.2 ohms at 400 cycles

Cabinet Dimensions

Height... 93/4" Width... 121/2" Depth... $83 / 3^{\prime \prime}{ }^{\prime \prime}$
Weight
9 lbs.
Tuning Drive Ratio.
9 to 1 ($41 / 2$ turns of knob)
POWER SUPPLY POLARITY. - For operation on d.c., the power plug must be inserted in the outlet for correct polarity. If the set does not function, reverse the plug. On a.c., reversal of the plug may reduce hum.

Replacement Parts

$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	DESCRIPTION	Stock No.	DESCRIPTION
	CHASSIS ASSEMBLIES RC 1079B- 0×561 RC 1079C-OX562		330,000 ohms, $\pm 10 \%$, $1 / 2$ watt R6 470,000 ohms, $\pm 10 \%$. $1 / 2$ watt R13 3.3 megohm, $\pm 10 \%$, $1 / 2$ watt R5 10 mezohm, $\pm 10 \%$, $1 / 8$ watt. R11
74655	Back-Cabinet back (maroon) and loop assembly for Model 9X561. L_{1}	$\begin{aligned} & 74859 \\ & 31251 \end{aligned}$	Shaft-Tuning knob shaft and pulley Socket-Tube socket, octal
74656	Back-Cabinet back (ivory) and loop assembly for Model $9 \times 562 . L_{1}$	74663	Socket-Dial lamp socket Spring-Tension epring for drive cord
74653	Capacitor-Variable tunins capacitor. C1, C2, C3, C4	33634	Switch-Phono switch.......................... . S2
71924	Capacitor-Ceramic, 56 mml. C5	74854	Transformer-Output transformer T3
74861	Capacitor-Ceramic, 470 mmi................ C14	73036	Transformer-First 1.F. transformer TI
74682	Capacitor-Electrolytic, comprising 1 section of $60 \mathrm{mid} ., 150$ volts and 1 section of 50 mfd . 150 volts. \qquad C16A, C16B	$\begin{aligned} & 73037 \\ & 33726 \end{aligned}$	
73186 71927	Capacitor-Tubular, . 001 mid., 400 volts C15		SPEAKER ASSEMBLIES
71923	Capacitor-Tubular, 01 mfd., 200 volts. C12		STAMPED 92588-4
72827	Capacitor-Tubular, 01 mfd., 400 volta. C17	74759	Cone-Cone and voice coil assembly
71928	Capacitor-Tubular, 02 mfd., 200 volte. . . . ci C13	74864	Speaker-8' $\mathbf{8}^{\prime \prime}$ P.M. speaker complete with cone
73553	Capacitor-Tubular, 05 mfd., 400 volts. . . . C8, C18		and voice cail
70617	Capacitor-Tubular, 0.1 mid., 400 Volts. C		NOTE: If atamping on speaker does not
74448	Coil-Oscillator coil. L2, L3		agree witb above number, order replacement parts by referring to model number of instru-
35767	Conrector-Phono input connector (socket)		ment, number stamped on speaker and full
74133 +72953	Control-Volume control and power switch. . R10, S1 Cord-Drive cord (approx. $43^{\prime \prime}$ overall length required)		description of part required.
73693	Crommet-Power cord atrein relief (1 set)		MISCELLANEOUS
72283	Grommet-Rubber grommet for mounting tun. ing capacitor (3 required)	74665	Bezel-Round bezel for cabinet-palystyrene
74858	Indicator-Station selector indieator (ivory) for Model 9X561	Y2131	9×561
74657	Indicator-Station selector indicator (red) for Model 9X562	Y2132	Cabinet-Plastic cabinet - ivory - for Model 9×562
71116	Lamp-Dial lamp-Mazda 1490	74804	Clamp-Dial clamp Clip-Dial clip (1 set)
74651	Plate-Dial back plate (maroon) complete with three (3) pulleys for Model 9X561	$\begin{aligned} & 74671 \\ & 74675 \end{aligned}$	Clip-Dial clip (1 set) Cloth-Grille cloth for Model 9×561
74652	Plate-Dial back plate (ivory) complete with three (3) pulleys for Model 9X562	$\begin{aligned} & 74786 \\ & 74668 \end{aligned}$	Cloth-Grille cloth for Model 0×562 Dial-Dial scale
74660	Resistor-Wire wound, 15 ohms, $1 / 2$ watt R16	$\begin{aligned} & 74674 \\ & 74686 \end{aligned}$	Emblem-"RCA Victor" emblem Knob-Control knob-maroon-for Model 9X561
	Resistors-Fixed composition resistors: 82 ohms, $\pm 10 \%$, $1 / 4$ watt. R17	$\begin{aligned} & 74688 \\ & 74667 \end{aligned}$	Knob-Control knob-ivory-for Model 9×562
	150 ohme, $\pm 10 \%$, $1 / 2$ watt.................... R14	74673	Nut-Speed nut to fasten bezel
	1,000 ohms, $\pm 10 \%$, 1 watt. R15 22,000 ohms, $\pm 10 \%$, 1/1 watt............... R2	74669	Screw-No. $8 \times 5 /{ }^{\prime \prime}$ pan head cross-recessed screw to fasten speaker (4 required)
	33,000 ohms, $\pm 10 \%$, $1 / 1 /$ watt. R9 E8,000 ohms, $\pm 10 \%$, $1 / 1$ watt. R4	74670	Screw一No. $8 \times 7 / 16^{\prime \prime}$ pan head cross-recessed screw to fasten dial clamps (2 required)
	$220,000 \mathrm{ohms}, \pm 10 \%$, $1 / 8 \mathrm{matt}$. R12, R18	74734	Spring-Spring clip for knob

Alignment Procedure

Lead Dress

1. Dress all heater leads down to chassis and away from all audio grid and plate wiring.
\because Dress power cord down to chassis base and corner.
2. Dress capacitor C18 against back apron.
3. Dress capacitor C13 down to base alongside of shielded lead.
4. Dress output transformer leads down to chassis.
5. Dress capacitors C9 and C15 as direct as possible.
6. Dress dial lanıp leads on top of chassis between 12 SQ 7 and 50 L 6 GT tubes; below chassis, as short as possible to rectifier socket.
7. Dress excess loop leads away from tubes and clear of tuning condenser.
Test-Oscillator, - For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid $a-v-c$ action.

On AC operation an isolation transformer (115 v./115 v.) may be necessary for the receiver if the test oscillator is also AC operated.

Dial Calibration

With the tuning condenser fully meshed. the dial pointer should be set to the first score mark at the lefthand end of the dial back plate. The four score marks represent: Max. cap. 600 kc 1400 kc min. cal.

Steps	Connect the high side of test-oscillator to-	$\begin{gathered} \text { Tune } \\ \text { test-ose. } \\ \text { to- } \end{gathered}$	Turn radio dial to-	Adjust the following for max. output
1	12SK7 1-F grid through 0.1 mfd. capacitor	455 hc	Quiet-point 1600 kc end of dial	T2 (top and bottom) 2nd I-F trans.
2	Stator of C1 through 0.1 mfd .			*T1 (top and bottom) 1st I-F trans.
3	Short wire placed near loop to radiate signal	1620 kc	Min. cap.	C4 (osc.)
4		1400 kc	1400 kc	+C2 (ant.)
5		600 kc	600 ke	$L 3$ (ose.) Rock gang
6		Repeat steps 3,4 and 5.		

*Do not readjust T 2 when test oscillator is connected to Cl .
${ }^{4}$ Whon adjusting C2 (ant. trimmer) it is necessary to have the loop in the same position and spacing as it will have when assembled in the cabinet.

Hum Reduction:

Due to the excellent bass reproduction of these instruments, the precautionary lead dress should be closely observed for minimum hum in the output.

A shield has been added to capacitor Cl 3 and is connected to common wiring. The outside foil polarity of capacitors C9, C12 and Cl 3 should not be reversed.

Dial Indicator and Drive Cord
Tube and Trimmer Locations

AC－DC Radio Receiver
Models 9X571，9X572
Chassis No．RC－1079 RC－1079A RC－1079E RC－1079F Service Data － 1949 No． 16 －

PREPARED BY RCA SERVICE CO．，INC． FOR
RADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION CAMDEN，N．J．，U．S．A．

Specifications

Tuning Range． Intermediate Frequency

Complement
（1）RCA $1 \because S A 7$
（こ）RCA 1』SK7
（3）RCA 1こSQ7
（4）RCA 50Li（i） T•
\qquad
\qquad Amplifier ．．．．．．．．．．．．．．．．．．．．．．．．．．．．（）utput Power Supply Rating

115 vults a．c．， 50 to 60 cycles or d．c．

Rectifier

30 watts

Dial Lamps（2）．．．．Mazda type $1490,3.2$ volts，． 16 amp． Power Output Undistorted．．． 1.1 watts Maximum）．． 1.75 watts Loudspeaker（92586－2W or $92586-1 \mathrm{~W}$ ）

Size and Type．
8 in．PM Cabinet Dimensions
 Weight
Tuning Drive Ratio．．．．．．．．．9 to 1 （ $41 / 2$ turns of knols）

Replacement Parts

Stock No．	DESCRIPTION	Stock No．	DESCRIPTION
	CHASSIS ASSEMBLIES RC－1079，RC－1079E Model 9X571 RC－1079A，RC－1079F Model 9X572	$\begin{aligned} & 74659 \\ & 31251 \end{aligned}$ 74663	Shaft－Tuning knob shaft and pulley Socket－Tube socket，octal Socket—Dial lamp sockets and lead assembly
74655	Hack－Cabinet back（tan）and loop assembly，．．． L_{1}	74038 74676	
74653	Capacitor－Variable tuning capacitor．C1，C2，C3，C4	74676 75936	Switch－Function switch for RC－1079，RC－1079A．S1
71924		75936 73036	Switch－Function switch for RC－1079E，RC－1079F 31
71514	Capacitor－Ceramic， $82 \mathrm{mmi} . . .$. ．．．．．．．．．．．C11	73037	Transformer－Second 1．F．transformer ．．．．．．．．．．．．T2
73501		74677	Transformer－Output transformer．．．．．．．．．．．．．．．．．．T3
74678	Capacitor－Electrolytic，comprising 2 sections of 120 mfd ．， 150 volts and 1 section of 40 mfd ．， 25 volts．．．．．．．．．．．．．．．．．．．．．．．C16A，C16B，C16C	33726	Washer－＂C＂washer for tuning knob shaft SPEAKER ASSEMBLIES
73186	Capacitor－Tubular， 001 mid．， 400 volts．．．．．．．C9		STAMPED 92586－2W
73961	Capacitor－Tubular， $003 \mathrm{mfd} ., 200$ volts．．．．．．．C10		RL－105C2
71923	Capacitor－Tubular， 01 mfd ， 200 volts，．．．．．．．C12	74758	Cone－Cone and voice coil assembly
72827	Capacitor－Tubular， 01 m dd．， 400 volts．．．．C15，C17	74679	Speaker－8＂P．M．speaker complete with con
71928	Capacitor－Tubular， 02 mfd ， 200 volis．．．C13，C20		and voice coil
73553 70617			SPEAKER ASSEMBLIES
73935	Clipachounting clip for l．F．transformer ．．．．C19，C6		STAMPED 92586－4W
74448	Coil－Oscillator coil ．．．．．．．．．．．．．．．．．．．．．L2，L3	74759	Cone－Cone and voice coil assembly
35787	Connector－Phono input connector（socket）	74664	Speaker－8＂P．M．speaker complete
71596	Control－Volume control．．．．．．．．．．．．．．．．．．．．．．．R10		
72953	Cord－Dial drive cord－250 ft．（approx．43＂ overall length required for cach chassis）	74683	MISCELLANEOUS Base－Grille base for diffuser ring：
73693	Grommet－Power cord strain relief（1 set）	74687	Button－Diffuser decorative button
72283	Grommet－Rubber grommet for mounting tun－ ing capacitor（3 required）	Y2133	Cabinet—Plastic cabinet－maroon－less diffuser ring：and dial—Model 9X571
74658	Indicator－Station selector indicator（ivory）for Model 9X571	Y213	Cabinet－Plastic cabinet－ivory－less diffuser rings and dial－Model 9X572
74657	Indicator－Station selector indicator（red）for Model 9X572	74904 74671	Clamp－Dial clamp Clip－Dial clip（1 set）
71116	Ramp－Dial lamp－Mazda 1490	74689	Cushion－Rubber cushion between cabinet an grille base
74651	Plate－Dial back plate（maroon）complete with three（3）pulleys for Model 9X571	$\begin{aligned} & 74682 \\ & 74688 \end{aligned}$	Decal－Function switch decal Dial－Dial scale．
74652	Plate－Dial back plate（ivory）complete with three（3）pulleys for Model 9X572	74674	Emblem－＂RCA Victor＂emblem
18469	Plate－Bakelite mounting plate for electrolytic capacitor	7468	Model 9X572 Knob－Function switch knob－maroon－for
72313	Resistor－Fuse type， 33 ohms．．．．．．．．．．．．．．．R16		Model 9X571
	Resistors－Fixed composition resistors 82 ohms，$\pm 10 \%$ ， $1 / 2$ watt．．．．．．．．．．．．．．．．．．．．．．．．R17	74666	Knob－Volume control or tuning knob－maroon －lor Model 9X571
	150 ohms，$\pm 10 \%$ ， $1 / 2$ watt．．．．．．．．．．．．．．．．R14	74806	Knob－Volume control or tuning knob－ligh
	1，000 ohms，$\pm 10 \%$ ，${ }^{1}$ watt．．．．．．．．．．．．．．．．．．${ }^{\text {R15 }}$ ．${ }^{\text {d }}$		tan－for Model 9X572
	22，000 ohms，$\pm 10 \%$ ， $1 / 2$ watt ．．．．．．．．．．．．．．．．．．．．．R2 R2	74340 74688	Nut－Speed nut to hold decorative button
	27，000 ohms，$\pm 10 \%$ ， $1 / 2$ watt ．．．．．．．．．．．．．．．R9		Nut－Speed nut to hold diffuser rings（18 quired）
	56，000 ohms，$\pm 10 \%$ ，1／2 watt．．．．．．．．．．．．．．．R4	74684	Ring－Outer diffuser ring（7＂diameter）
	220,000 ohms，$\pm 10 \%$ ， $1 / 2$ watt．．．R6，R7，R12，R18	74685	Ring－Middle diffuser ring（4 15／32＂diameter）
	470,000 ohms，$\pm 10 \%$ ， $1 / 2$ watt ．．．．．．．．．．．．．R13	74686	Ring－Inner diffuser ring（ $2211^{\prime \prime} 32^{\prime \prime}$ diameter）
	1 mesohm，$\pm 10 \%$ ，w，watt．．．．．．．．．．．．．．．．．．．．．．．．．．．．R8	74301	Screw－No． $8 \times 3 / 4$ pan head，cross－recessed
	10 megohms，$\pm 10 \%$ ， $1 / 2$ watt ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．R11	74734	screw for mounting grille base Spring－Retaining spring for knobs

Alignment Procedure

Critical Lead Dress

1. Dress all heater leads down to chassis and away from all audio grid and plate wiring.
2. Dress power cord to back apron and away from phono jack.
3. Dress capacitor C18 against back apron.
4. Connect shielded capacitor C13 direct and with a minimum of exposed leads.
5. Dress dial lamp leads on top of chassis around electrolytic capacitor and between 12SQ7 and 50L6GT tubes.
6. Dress output transformer leads down to chassis.
i. Dress excess loop leads away from tubes and clear of tuning condenser.
Test-Oscillator. - For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to a void a-v-c action.

On AC operation an isolation transformer (115 v./115 v.) may be necessary for the receiver if the test oscillator is also AC operated.

Dial Calibration

With the tuning condenser fully meshed, the dial pointer should be set to the first score mark at the lefthand end of the dial back plate. The four score marks represent: Max. cap. $600 \mathrm{kc} 1,400 \mathrm{kc} \min$. cap.

Steps	Connect the high side of test-oscillator to-	$\begin{aligned} & \text { Tune } \\ & \text { test-osc. } \\ & \text { to- } \end{aligned}$	Turn radio dial to-	Adjust the following for max. output
1	12SK7 I-F grid through 0.1 mid. capacitor	455 kc	Quiet-point 1600 kc end of dial	T2 (top and bottom) 2nd I-F trans.
2	Stator of C1 throush 0.1 mid .			-T1 (top and bottom) 1sti-F trans.
3	Short wire placed near loop to radiate signal	1620 kc	Min cap.	C4 (osc.)
4		1400 kc	1400 ke signal	tC2(ant.)
5		600 kc	600 kc	13 (osc.) Rock sans
6		Repent steps 3,4 and 5.		

*Do not readjust $T 2$ when test oscillator is connected to Cl.
When adjusting C2 (ant. trimmer) it is necesaary to have the loop in the same position and spacing as it will have when assembled in the cabinet.

Dial Indicator and Drive Cord

Tube and Trimmer Locations

Switch Position Schematic Diagrams-RC-1079, RC-1079A

Schematic Diagram-RC•1079, RC•1079A

SPEAKER GRILLE DIFFUSER RINGS

In early production the speaker diffuser rings were fastened in place to the metal speaker grille with speed nuts slipped over plastic tabs protruding through the metal grille base.

In late production these protruding plastic tabs are deformed b heat application, securely fastening the diffuser rings to the metal grille base.

If replacement of any of the diffuser rings is required, it is only necessary to tightly press the rings against the cabinet, and deform the plastic tabs from the inside with a hot solđering iron.
Any ring may be removed or installed without removing any of the other rings. This may be done by pressing on opposite outer edges to form an ellipse large enough to slip over the next smaller ring. Before any ring can be removed, it is necessary to unfasten the plastic tabs which project into the cabinet.

POSITION No. 2-RADIO MIN. HIGHS

POSITION No. 3-RADIO NORMAL

POSITION No. 4-RADIO MAX. HIGHS

SELECTOR SWITCH

CONTACT ON SIDE SHOWN CONTACT ON REVERSE SIDE NO CONTACT EITMER SIDE UNUSED CONTACT
DUMMY TERMIINAL

Selector Switch

Switch contacts \# 2, 3, 4, 5, 8, 9, 10 and 11 have alternate positions desig. nated as "A" and "B." Either 2A or $2 B$ (but not both) may be used on "FRONT" of a switch wafer. Either (but not both) may be used on "REAR" of a switch wafer. Either may be used on both "FRONT" and "REAR." This also applies to contacts \#3, 4, 5, 8, 9, 10 and 11.
Switch contacts \#1, 6, 7 and 12 do not have alrernate positions.

POSITION No. 5-PHONO MIN. HIGHS

I'OSITION No. 6-PHONO NORMAL

POSITION No. 7-PHONO MAX. HIGHS
Switch Position Schematic Diagrams
Chassis RC-1079E, RC-1079F

HUM REDUCTION

Due to the excellent bass reproduction of these instruments the critical lead dress slould be closely observed to obtain minimum hum. The outside foil polarity of capacitors in the audio circuit should not be reversed.

RADIO CORPORATION OF AMERICA
 RCA VICTOR DIVISION
 CAMDEN, N. J., U. S. A.

SPECIFICATIONS

Tuning Range	-1600 kc	Dial Lamp.............. Mazda type 51, 6.8 volis, 0.2 amp.		
Intermediate Frequency	455 kc	Loudspeaker (92572-4)		5-in. P.M.
Tube Complement		Voice coil impedance	3	as at 400 cycles
(1) RCA 12SK7	R.F. Amplifier	Power Output		
(3) RCA 12SK7	I.F. Amplitier	Undistorted		0.75 walt
(4) RCA 12SQ7	Det.A.V.C. A.F. Amp.	aximum		1.25 wats
(5) RCA 35L6GT	Output	Tuning Drive Ratio 10	of knob)
(6) RCA 35z5GT	Rectifier	Woight.		83/4 lbs.
Power Supply Rating 115 volts d. c. or 50 to 32 watts	Cabinet Dimensions Height..... $8^{1 / 2 "}$	Width.... 123/4"	Depth.... $7^{1 / 2 \prime}$

REPLACEMENT PARTS

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION	STOCK No.	DESCRIPTION
	CHASSIS ASSEMBLIES RC 1080-9X641 RC 1080A-9X642		Resistor-Fixed, composition, 22.000 ohms, $\pm 10 \%$. 1/2 watt (R3)
74694	Back-Cabinet back and loop ansembly-maroonfor Model 9X641		Resistor-Fixed, composition. 56.000 ohms. $\pm 10 \%$. 1/2 wall (R7)
74695	Back-Cabinet back and loop assembly-ivoryfor Model 9X642		Resistor-Fixed, composition, 220,000 ohms. $\pm 10 \%$. 3/2 wall (RS, R6)
74692	Capacitor-Variable tuning capacito: (C1, C2. C3. C4, C5, C6)		Resistor-Fixed, composition. 470.000 ohms. $\pm 10 \%$. 1/2 watl (R10) Resistor-Fixed, composition, 2.2 megohm, $\pm 10 \%$,
39042	Capactor-Ceramic, 47 mmf . (C8)		1/2 watt (R8)
71924	Capacitor-Coramic, 56 mmi . (C9)		Resistor-Fixed, composition, 4.7 megohm, $\pm 10 \%$.
73501	Capactor-Caramic, 150 mmf . (Cl2, Cl3) 8		1/2 watt (R9)
74662	Capacitor-Electrolytic, comprising 1 section of 80 mid, 150 volts and 1 section of 50 mid, 150 volis (C19A, C19B)	74691 54414 74697	Shafl-Tuning knob shaft and pulley Socket-Tube socket Socket-Dial lamp socket and lead
72315	Caracitor-Tubulas, 002 mid 200 volts (Clis)	74697 74039	Socket-Dial lamp sockel and lead Spring-Tension pring for drive cord
70572	Capactor-Tubular, 015 mid, 400 volts (C16)	33634	Switch-Radio-Phono switch (S2)
71928	Caractior-Tubulas, $02 \mathrm{mid}, 200$ volts (C15)	73036	Transformer-First I.F. transiormer (Tl)
73553	Cazacitor-Tubulas, 05 mid , 400 volts (C17, C18)	73037	Transformer-Second I.F. trantiormer (T2)
70617	Cagacitor-Tubulaz, . 1 mid, 400 volts (ClO, Cll)	73976	Transformer-Output translormer (T3)
73935	Clip-Mounting clip for I.F. transformer	35969	Washer-"C" washer for tuning shaft
73677	Coil-R.F. coil (L1, L2)	35965	Wamer- C waher lor tunlag shat
74693	Coll--Oscillator coil (L3, L4)		
35787	Connector-Phono input connector (socket)		SPERKER ASSEMBLIES
38410	Control-Volume control and power switch (R14, S1)		Stamped 92572-4
70392	Cord-Power cord and plug ${ }^{\text {ch }}$ " ${ }^{\prime \prime}$		
+72953	Cord-Dial drive cord (approx. 52" overali length required)	73900	Speaker-S" P.M. speaker complete with cone and voice coll
72283	Grommel-Rubber grommel to mount variable tunlag capacitor (3 required)		NOTE.-li stamping of speaker does not agree with above number, order replacement by referring
73693	Grammel-Power cord strain reliol (1 set)		to model number of instrument and number stamped
74696	Ind:cator-Station selector indicator		on speaker.
74690	Plate-Dial back plate complete with four (4) drive cord pulley., less dial		MISCELLANEOUS
74660	Resistor-Wire wound, 15 ohms, $1 / 2$ watt (R13) Retistor-Fixed, composition, 68 ohms, $\pm 10 \%, 1 / 2$	Y2135	Cablnet-Plastic cabinet-maroon-ior Model 9X641
	watt (R1, R4)	Y2136	Cabinet-Plastic cablnet-ivory-for Model 9X642
	Renistor-Fixed, composition, 120 ohms, $\pm 10 \%, 1 / 2$ watt (R11)	$\begin{aligned} & 74699 \\ & 74698 \end{aligned}$	Clamp-Dial clamp (l set) Dial-Dial scale
	Reisistor-Fixed, composition, 1.200 ohms, $\pm 10 \%$,	71821	Knob-Control knob-maroon-ior Model 9X641
	1 watt (R12)	72645	Knob-Control knob-ivory-ior Model 9×842
	Reilstor-Fixed, composition, 12,000 ohm, $\pm 10 \%$,	11765	Lamp-Dial lamp-Marda 51
	32 watt (R2)	30900	Spring-Retaining spring for knobs

\div Stock No. 72953 is a reel containing 250 feet of cord.
APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS.

NOTE.-If reception is not oblained on d.c. operation, reverse plug in outlet receptacle. On a.c. operation this may reduce hum.

The position of the speaker is adjustable: the correct position is indicated on the illustration "Tube and Trimmer Locations."

ALIGNMENT PROCEDURE

Cathode Ray Allgnment is the preferable method. Connections for the oscilloscope are shown on the schematic diagram.

Output Meter Alignment.-If this method is used, connect the meler across the voice coil and turn the receiver volume control to maximum.

Test Oscillator.-Connect low side of lest oscillator to common wiring in series with $\alpha .1 \mathrm{mf}$. capacitor. If the test oscil. lator is a.c. operated it may be necessary to use an isolation transformer for the receiver during alignment and the low side of the test oscillator connected directly to common wiring at the electrolytic capacitor. Keep the oscillator output low to prevent a-v-c action.

Dial Indicator and Drive Mechanism

Stop	Connect high side of sig. gen. to-	3ig. gen. output	Tura radio dial to-	Adjust for peak output
1	Pin No. of 12SA7 tube	455 kc	Quist point near 600 ke	Top and bottom cores ol TI
2				Top and bottom corel of T2
3	" External Antenna" terminal through 100 mal. capacitor	1,400 ke	1,400 kc	C8 Osc. C5 R.F. C4Ant.
4		Shunt C5 with 22,000 ohm resistor		
		600 kc	500 kc	L4 Ose. (Rock gang)
5		Remove	22,000 ohm	esistor from C5
		600 kc	800 ke	12 R.F.
6		Repeat stope 3. 4 and 5		

The position of the loop antenna in relation to the chassis affects adjustment of C4. The correct position is indicated on the illustration "Tube and Trimmer Localions."

Alignment Procedure

Test Oscillator.-Connect high side of test oscillator as shown in chart. Connect low side to chassis. Keep the output low to avoid A.V.C. action.

Note.-lf the test oscillator is A.C. operated it may be necessary to use an isolation transformer ($115 \mathrm{v} . / 115 \mathrm{v}$.) for the receiver during alignment, and the low side of the test oscillator connected to common wiring. Reverse line plug if hum is excessive.

Output Meter.-Connect meter across speaker voice coil. Turn volume control to maximum.

Dial Pointer Adjustment.-Rotate tuning condenser to maximum capacity position (plates fully meshed). Adjust dial to position indicated in drawing.

With the dial adjusted as described above mark the dial pan assembly with a pencil to provide a tuning indicator during alignment.

Cathode Currents

| | | "A" Band | "C" Band | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (1) 12BA6 | 9.7 | ma | 9.6 ma | |
| (2) 12BE6 | 7.8 | ma | 8.1 | ma |
| (3) 12BA6 | 8.7 | ma | 8.4 | ma |
| (4) 12SQ7 | 0.15 ma | 0.15 ma | | |
| (5) 35LL | 37 | ma | 37 | ma |
| (6) 35Z5 | 65 | ma | 65 | ma |

Steps	Connect the High Side of The Test Osc. to-	Tune Test Osc. to-	Range Switch to-	Turn Radio Dial to-	Adjust for maximum output
1	Pin No. 1 of 12BA6 I.F. amp. tube in series with 0.1 mfd .	455 kc.	"A"	Quiet Point near 1600 kc.	Top and bottom T2 2nd I.F. Trans.
2	Pin No. 7 of 12BE6 Converter tube in series with 0.1 mfd .				Top and bottom T1 1st I.F. Trans.
3	Pin No. 1 of 12BA6 R.F. tube in series with 0.1 mfd .				L2 wave trap for minimum output.
4	(Radiated signal) short piece of wire placed near ant.	1630 kc.	"A"	$\begin{aligned} & 1630 \mathrm{kc} . \\ & \text { (Cap. min.) } \end{aligned}$	C-13 "A" Osc.
5		1500 kc .		1500 kc .	C-2 "A" ant.
6		600 kc .		600 kc .	L6 "A" Osc. Rocking gang.
7	Repeat steps 4,5 and 6.				
8	Center terminal on loop antenna Term. board through 47 mfd . Low side to loop primary terminal	18.2 mc .	"C"	$\begin{gathered} 18.2 \mathrm{mc} . \\ \text { (Min. cap.) } \end{gathered}$	C-12* "C" Osc.
9		15.2 mc .		15.2 mc .	C-3**+ "C" Ant.
10		6.1 mc.		6.1 mc .	L. $5+\dagger^{*}{ }^{\prime}$ C" Osc. L-1 "C" Ant.
11	Repeat steps 8,9 and 10 as necessary.				

[^3]

Chassis Top View

Schematic Diagram

Replacement Parts

Stock No.	DESCRIPTION	Stock No.	DESCRIPTION
	CHASSIS ASSEMBLIES RC 1085-9 X651 RC 1085A-9X652 Button-Plugbutton for trimmer adjustment hole Capacitor-Mica trimmer, dual, $\mathbf{3 - 3 5} \mathrm{mm}$. (C3, C12) Capacitor-Mica trimmer, $4-70 \mathrm{mmf}$. (C13) Capacitor-Variable tuning capacitor (C1, C2, C4) Capacitor-Ceramic, 56 mmf . (C9, C11) Capacitor-Ceramic, 150 mmf . (C10, C14, C23) Capacitor-Mica, 590 mmf . (C6) Capacitor-Mica, 3600 mmf . (C5) Capacitor-Electrolytic, comprising 1 section of 30 mfd , 15 volts, and 1 section of $80 \mathrm{mfd}, 150$ volts. (C17A, C17B) Capacitor-Tubular, paper, . $002 \mathrm{mfd}, 200$ volts (C15) Capacitor-Tubular, paper, $.01 \mathrm{mfd}, 400$ volte (C22) Capacitor-Tubular, paper, $.015 \mathrm{mfd}, 400$ volts (C16) Capacitor-Tubular, paper, $.02 \mathrm{mfd}, 200$ volts (C20) Capacitor-Tubular, paper, $.05 \mathrm{mfd}, 400$ volts (C7, C8, C19) Capacitor-Tubular, paper, $0.1 \mathrm{mfd}, 400$ volts (C24) Clip-Mounting clip for I.F. transformer Coil-Oscillator coil-"A" band complete with adjustable core and stud (L6) Coil-Oscillator coil-" C " band complete with adjustable core and stud (L5) Coil-Antenna coil-"C" band (L1) Coil-Series wave trap coil (455 KC) complete with adjustable core and atud (L2) Coil-Peaking coil (12 mh) (L3. R1) Coil-Peaking coil (20 mh) (L4, R18) Control-Volume control and power switch (R19, S2) Cord-Drive cord iapprox. $48^{\prime \prime}$ overall) Grommet-Rubber grommet for chassis base Grommet-Rubber grommet for mounting tuning capacitor (3 req'd) Grommet—Power cord strain relief grommet (1 set) Indicator-Station selector indicator Lead-Antenna lead-part of loop and back covet Loop-Back cover and loop assembly complete with antenna lead for Model 9X651 Loop-Back cover and loop assembly complete with antenna lead for Model 9X652 Plate-Dial back plate complete with 4 drive cord pulleys less dial Receptacle-Phono input jack (J1) Resistor-Fixed, composition: 15 ohms, $\pm 10 \%, 3 / 2$ watt (R15)		tt (R-12)
			120 ohms, $\pm 10 \%$, $2 / 2 /$ watt (R14)
			0 ohms, $\pm 10 \%, 1 / 2$ watt (R7)
42			560 ohms, $\pm 10 \%, 1 / 2$ watt (R6)
74924			1000 ohms, $\pm 10 \%$, $1 / 2$ watt (R2, R17)
74923			1200 ohms, $\pm 10 \%$, 1 watt (R13)
74917			33,000 ohms, $\pm 10 \%$, 1/2 watt (R4) 56,000 ohms, $\pm 10 \%$, $1 / 1 /$ watt (R8)
71924			220,000 ohms, $\pm 10 \%$, 3/2 watt (R3, R9, R1
73501			470,000 ohms, $\pm 10 \%, 1 / 2$ watt (R10)
39665			2.2 megohm, $\pm 20 \%, 3 / 2$ watt (R5)
72312		74922	4.7 megohm, $\pm 20 \%, 1 / 2$ watt (R11)
72315		73117	Socket-Tube socket, 7 contact, minia
73561		54414	Socket-Tube socket, octal, saddle mounted
70572		74697	Socket-Dial lamp socket and lead
71923		74038	Spring-Drive cord tention spring
73553		74921	Switch-Selector switch (S1)
70617		73976	Transformer-Output tranaformer (T3)
73935		7491	Transiormer-First I.F. transformer (T1)
74925		$\begin{aligned} & 73037 \\ & 35969 \end{aligned}$	Tranaformer-Second I.F. tranaformer (T2) Washer-"C" washer for tuning shaft
74926			SPEAKER ASSEMBLIES
74927			$92572-4$
74928		73900	Speaker-5" P.M. speaker complete with cone and voice coil
74930			NOTE:-If stamping in instrument does not agree with above speaker number, order replacement parts by refersing to model
72618 38410			number of instrument, number stamped on speaker and full description of part required.
782953			description of part required.
33139			MISCELLANEOU
72283		Y 2174	Cabinet-Brown plastic cabinet for Model 9X651
74838		Y2175	Cabinet-Ivory plastic cabinet for Model 9X652
74696		74699	Clamp-Dial clamps (1 aet)
70980		74933	Decal-Selector switch function decal
74919		74932 74931	Dial-Polystyrene dial scale Knob-Volume control or tuning control knob-maroon-for
74920		72645	Model 9X651 Knob-Volume control or tuning control knob-ivory-ior
74690		74934	Model 9X652 Knob-Selector switch knob-maroon-for Model 9X651
35787		74935	Knob-Selector switch knob-ivory-for Model 9X652
		11765	Lamp-Dial lamp-Mazda 51
		30900	Spring-Retaining spring for knobs

FOR RECORD CHANGER SERVICE INFORMA-TION-REFER TO RP-168 SERIES SERVICE DATA.

Rca Victor

Radio Phonograph Combination model 9Y7

Chassis No. RC-1057B

Mfr. No. 274
Service Data

- 1949 No. 3 -

RADIO CORPORATION OF AMERICA

RCA VICTOR DIVISION
CAMDEN. N. J.. U. S. A.

Specifications

Tuning Range	$540-1600 \mathrm{kc}$
Intermediate Frecuency	455 kc
Tube Complement	
1. RCA-12SA7	Converter
2. RCA-12SK7	I-F Amplitier
3. RCA-6AQ6	A-F Amplifier
4. RCA-6AQ6	2nd Det.Ph. Inv.
5. RCA-35L6GT	
6. RCA-35L6GT	Push-Pull Output
A selen	

Power Supply Rating $\quad 115$ volts. 60 cycles a.c., 60 watts. Dial Lamps (2)Mazda type 51, $6-8$ volts, 0.2 amp.

Loudspeaker (92573.1K)		
Size and type		
Voice coil impedance 3.4 ohms at 400 cycles		
Power Output		
Undistorted .. 2.2 watt		
Maximum		3.0 watt
Cabinet Dimensions		
Height 91.410	Width 161/4"	Depth 143/3
Tuning Drive Ratio		
Record Changer (RP-168A-1)		
Turntable speed \qquad 45 r.p.m. Records used \qquad RCA 7 in. fine groove Record capacity \qquad up to 10 records Pickup Crystal (medium output)		

Record Separators

In the out of cycle position the record separator knives or discs are normally concealed inside the center post. During service, the position of the star wheel on the underside of the record changer may be accidently shifted; this mav cause the separator knives to be extended when they should be concealed.

If the separator knives are thus extended-turn the power on so that the turntable is revolving. gently press fingers against the extended knives until they disappear inside the center post-DO THIS ONLY WHILE MECHANISM IS OUT of CYCLE.

The record chenger sapphire is protected by a permanent metal guard. LINT MAY COLLECT TO CLOG THE OPENING IN THE GUARD AT THE SAPPHIRE POINT AND CAUSE POOR RECORD REPRODUCTION. This may require occasional cleaning of the guard opening-clean by carefully brushing with a small soft brush.

Alignment Procedure

Output Meter.-Connect meter across speaker voice coil. Turn volume control to maximum.

Test Oscillator.-Connect low side of test oscillator to common wiring in series with $\alpha .1 \mathrm{mf}$. capacitor. If the test oscil. lator is a.c. operated it may be necessary to use an isolation transformer for the receiver during alignment and the low side of the test oscillator connected directly to common wiring at the electrolytic capacitor. Keep the oscillator output low to prevent a.v-c action.

Dial Pointer Adjustment.-Rotate tuning condenser fully counterclockwise (plates fully meshed). Adjust indicator pointer so that it is $3^{3 / 9}$ " from the left hand edge of the dial back plate.

Steps	Connect the high side of test-oscillator to-	$\begin{aligned} & \text { Tune } \\ & \text { test-osc. } \\ & \text { to- } \end{aligned}$	Turn radio dial to-	Adjust the following for max. output
1	I.F. grid. in series with .1 mid .	455 kc	Quiet point $1,600 \mathrm{kc}$ end of dial	Pri. \& Sec. 2nd I.F. transformer
2	Converter grid in series with .1 mid .			Pri. \& Sec. lst I.F. transformer
NOTE-ANTENNA LOOP AND RECORD CHANGER MUST BE IN CABINET FOR THE FOLLOWING				
3	Short wire placed near loop for radiated signal	$1,620 \mathrm{kc}$	Extreme R. H. end (gang open)	C7 (osc.)
4		1.400 kc	1.400 kc	C4 (ant.)
5		600 kc	600 kc	Osc. Coll L3 Rock gang
6	Repeat steps 3, 4, \& 5 if necessary			

Critical Lead Dress

1. Dress all heater leads down against chassis.
2. Dress a.c. lead to rectifier down against back apron
3. Excess power cord, motor cable and dial lamp leads should be dressed outside of chassis.
4. Dress shielded audio lead to front apron and beneath terminal board.
5. Dress lead from term. \#2 of S-1 Front down to base.
6. Dress R13 and R14 in air across electrolytic capacitor terminals.
7. Dress Cl3 down to chassis base.
8. Dress output transformer primary leads down to base.
9. Dress R6 away from shield.
10. Dress R4 away from R13 and R14.
11. Dress R16 directly to V-4 tube socket.
12. Dress R10 over V-4 tube sockel.
13. Dress lead from positive rectifier terminal directly down to and along back apron beneath all other wiring to lst I-F trans. (T-1), then to C19C, keeping wire next to base.
14. Dress R18 away from all other components and wiring.

Pickup Landing Adjustment "A"

The pickup point should land half-way between the outer edge of the record and the first music groove.
If the pickup lands inside the starting grooves-turn screw " \boldsymbol{A} " slightly clockwise. If pickup lands outside the starting grooves-turn screw " \mathbf{A} " slightly counterclockwise.

Pickup Height Adjustment "B"

During cycle the pickup arm must rise high enough to clear a stack of eight records on the turntable, but not high enough to cause the top of the arm to touch records resting on the record supports.
If pickup does not clear a stack of eight recordsturn screw "B" slightly clockwise. If pickup arm touches records on record supports-turn screw "B" slightly counterclockwise.

Record Changer Adjustments

Dial Indicator and Drive Mechanism

Tube and Trimmer Locations

Replacement Parts

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION
	CHASSIS ASSEMBLIES RC 1057B	73012	S
71042	Button-Plug button to cover holes for I.F. trans-	73103	Shield-Tube shield for miniature tubes (2 required)
	tormers adjustment (2 required)	72998	Socket--Dial lamp socket and lead assembly
74246	Capacitor-Variable tuning capacitor (C3, C6, C7)	36422	Socket-Phono input socket, 3 contact
74270	Capacitor-Mica trimmer, 3.30 mm . (C26)	9914	Socket-Tube socket, miniature, for V3
39622	Capacitor-Mica, 56 mmf . (C21)	72516	Socket -Tube socket, miniature, for V4
73499	Capacitor-Ceramic. 56 mmf . (C23)	37605	Socket-Tube socket, octal
39630	Capacitor-Mica. 120 mm . (C27)	74038	Spring-Drive cord spring
70600	Capacitor-Tubular, . 001 mid., 400 volts (C20)	70396	Spring-Volume control gear tension spring
70603	Capacitor-Tubular, . $003 \mathrm{mld} . .400$ volts (C28)	73011	Switch-Power, radio and phono switch (S1. S2)
72791	Capacitor-Tubular, $005 \mathrm{mid}$.400 volts (C10)	73036	Transformer-First I.F. transformer (Tl)
70612	Capacitor-Tubular, 025 mid., 400 volts (C18)	73037	Transformer-Second I.F. transformer (T2)
73561	Capacitor-Tubular, .01 mid., 400 volts (Cl3. Cl4. C15)	73008 33726	Transformer-Output tranaformer (T3) Washer-"C" washer for tuning knob shaft
70572	Capacitor-Tubular, $015 \mathrm{mid}$. . 400 volts ($\mathrm{C} 29, \mathrm{C} 30$)	74029	Washer-Fibre washer for tuning knob shaft
73638	Capacitor-Tubular, $02 \mathrm{mid} . .400$ volts (C9)	70406	Washer-Spring washer for volume control
70611	Capacitor-Tubular, . 02 mid., 400 volts (Cll)	34457	Washer--Spring washer for tuning knob shaft
73553	Capacitor-Tubular, . 05 mid .0400 volts (C8, C25)		SPEAKER ASSEMBLIES 92573.
70615	Capacitor-Tubular, 05 mfd .0400 volts (C24)		
73013	Capacitor-Electrolytic, comprising 1 section of 80 mid., 150 volts, 1 section of 30 mid., 150 volis and 1 section of 10 mid., 150 volts (C19A. C19B, C19C)	72728 74454 72727	Cone-Cone and voice coil assembly Caskel-Rubber gasket for speaker Speaker-5" $\times 7^{\prime \prime}$ P.M. speaker complete with cone and voice coil
73935	Clip-Mounting clip for I.F. transformers (2 required) Coil-Oscillator coil (L2, 13)		MISCELLANEOUS
38403	Control-Volume control (R7)	74225	Bezel-Dial scale bezel less dial
†72953	Cord-Drive cord (approx. 50 " length required)	74209	Cover-Mounting screw cover (threaded type) for
70392	Cord-Power cord and plug		record changer (3 required) (used with 74424
70397	Gear-Power, radio and phono switch gear		screw)
73014	Gear-Volume control gear-less spring	74581	Cover-Mounting screw cover (plug-in type) for
72283	Grommet-Rubber grommet to mount tuning capac. itor (3 required)		record changer (3 required) (used with 74582 screw)
73886	Indicator-Station selector indicator Loop-Antenna loop (L1)	74273	Decal-Trademark decal (Victrola)
74248	Loop-Antenna loop (Ll)	74273	Dial-Polystyrene dial scale
	Plate--Dial back plate complete with three (3) drive cord pulleys, less dial	74237	Escutcheon-Tuning control escutcheon for blonde instruments
30868 73009 73038	Plug-2 contact female plug for motor cable Rectifier-Selenium rectifier (SR1)	74236	Escutcheon-Tuning control escutcheon for mahogany or walnut instruments
73038	```Resistor-Normal value, 66 ohms with positive tem- perature coefficient (R18) Resistor-Fixed, composition, 82 ohms. }\pm10%, watt (R17)```	74235 74234	Escutcheon-Power--radio-phono switch escutcheon for blonde instruments Escutcheon-Power-radio-phono switch escutcheon for mahogany or walnut instruments
73072	Resistor-Normal value. 95 ohms with negative temperature coefticient (R21) Resistor-Fixed, composition, 100 ohms, $\pm 20 \%$, $1 / 2$ watt (R24)	$\begin{aligned} & 72894 \\ & 72692 \\ & 74223 \end{aligned}$	Fool-Rubber foot (4 required) Hinge-Cabinet lid hinge (2 required) Knob-Power, radio and phono switch knob-ianfor blonde instruments
	Resistor-Fixed, composition, 1200 ohms, $\pm 10 \%, 1$ watt (R14)	74222	Knob-Power, radio and phono switch knob-ma-roon-for walnut or mahogany finish instruments
	Resistor-Fixed, composition, 1800 ohms, $\pm 10 \%, 1 / 2$ watt (R13)	74221	Knob-tuning knob-tan-for blonde instruments
	```Resistor-Fixed, composition, 12,000 ohms, }\pm10%\mathrm{ . 1/2 watt (R16)```	74220	Knob-Tuning knob-maroon-for walnut or mahogany finish instruments
	Resistor-Fixed, composition, 22,000 ohms. $\pm 20 \%$. $1 / 2$ watt (R2)	74	Knob-Volume control knob-ian-ior blonde instruments
	Resistor-Fixed, composition. 56,000 ohms, $\pm 10 \%$. 1/2 wall (R23)	1176	Knob-Volume control knob-maroon-lor walnut or mahogany tinish instruments   Lamp-Dial lamp
	Resistor-Fixed, composition, 82.000 ohms. $\pm 10 \%$. $1 / 2$ watt (R19)	74208	Nut-Tee nut for mounting record changer (3 required)
	Resistor-Fixed, composition, 180,000 ohms, $\pm 10 \%$. $1 / 2$ watt (R5)	$\begin{aligned} & 71095 \\ & 74192 \end{aligned}$	Nut-Speed mut for dial scale bezel ( 8 required) Plug-3 prong male plug for shielded pickup cable
	```Resistor-Fixed, composition, 220,000 ohms. }\pm20%\mathrm{ . 1/2 watt (Rl, R10, Rl1) Resistor-Fixed, composition, 330,000 ohms, }\pm10%\mathrm{ . 1/2 watt (R22)```	74424	Screw一\# $8.32 \times 13 / 4$ " special screw (tapped hole) for record changer (3 required) (used with 74209 cover)
	Resistor-Fixed, composition, 470,000 ohms, $\pm 10 \%$. 1/2 watt (R15)	74582	Screw-\#8.32 $\times 13 / 4$ special screw (non-tapped hole) for record changer (3 required) (used with 74581 cover)
	Resistor-Fixed, composition, 470,000 ohms, $\pm 20 \%$. 1/2 watt (R12)	74421	Spring-Conical spring for mounting record changer -upper-R. H. side (1 required)
	Resistor-Fixed, composition, 1.5 megohms. $\pm 10 \%$. $1 / 2$ watt (R20)	74422 74423	Spring-Conical spring for mounting record changer - upper-L. H. side (2 required) Spring-Conical spring for mounting record changer -lower (3 required)
	```Resistor-Fixed, compositlon, 3.3 megohms, }\pm20%\mathrm{ . 1/2 watt (R4) Resistor-Fixed, composition, 10 megohms, }\pm20%\mathrm{ , 1/2 watt (R8, R9)```	$\begin{aligned} & 14270 \\ & 71824 \\ & 30688 \end{aligned}$	Spring-Retaining apring for knobs   Stud-Stud and screw to mount lid hinge (l set)   Support-Cabinet lid support

+ Stock No. 72953 is a reel containing 250 feet of cord.


Specifications
Tuning Range .. ............................................................ 540-1600 kc

Intermediate Frequency ..................................................... 455 kc
Tube Complement


Power Output
Undistorted ........................................................................... I watt
Maximum
1.5 watts

Cabinet Dimensions
Height $7^{3} 4^{\prime \prime}$
Width $12^{3}{ }^{3}$ "
Depth $141 / 4^{\prime \prime}$
Tuning Drive Retio ............................... $71 / 2: 1\left(3^{3} 4\right.$ turns of knob)
Record Changer (KP-168-1 modified or RP.168B-1)
Turntable speed
Records used
Record capacity
RCA 7 in . fine groove Up to 10 records
Pickup Stock No. 74625 ..... ....... Crystal (medium output)

## Service Hints

The tubes ard the dial lamps are accessible by removing the panel in the front of the record changer compartment.

The chassis metal mounting plate should be flush against the front of the cabinet.

The position of the speaker is adjustable. When correctly positioned, it should set firmly against the front of the cabinet but with no undue strain on the speaker.

## Care of Sapphire

The record changer sapphire is protected by a permanent metal guard. LINT MAY COLJECT TO CLOG THE OPENING IN THE GUARD AT THE SAPPHIRE POINT AND CAUSE POOR RECORD REPRODUCTION. This may require occasional cleaning of the guard opening-clean by carefully brushing with a small solt brus 3 .

Radio Phonograph Combination Model 9Y51

Chassis No. RC-1077
Mfr. No. 274

## Service Data

- 1949 No. 18 -


## RADIO CORPORATION OF AMERICA <br> RCA VICTOR DIVISION <br> CAMDEN, N. J., U. S. A.

## Record Separators

In the out of cycle position the record separator knives or discs are normally concealed inside the center post. During service, the position of the star wheel on the underside of the record changer may be accidently shifted; this may cause the separator knives to be extended when they should be concealed.

If the separator knives are thus extended-iurn the power on so that the turntable is revolving, gently press fingers against the extended knives until they disappear inside the center posi-DO THIS ONLY WHILE MECHANISM IS OUT OF CYCLE


Controls


FOR RECORD CHANGER SERVICE INFORMA-TION-REFER TO RP- 168 SERIES SERVICE DATA,

## Alignment Procedure

Output Meter.-Connect meter across speaker voice coll. Turn volume control to maximum.

Test Oncillator.-Connect low side of test oscillator to cammon wiring in series with a .1 mf . capacitor. If the test onclllator is a.c. operated it may be necessary to use an isolation transformer for the receiver during alignment and the low side of the test oscillator connected directly to common wiring at the electrolytic capacitor. Keep the oscillator output low to prevent a-v-c action.

Dial Pointer Adjustrent.-Rotate tuning condenser until the plates are fully open. Adjust indicator pointer to 1630 kc lextreme high frequency end of the scale).

Step:	Connect the high side of test to-	$\begin{aligned} & \text { Tune } \\ & \text { test-osc. } \\ & \text { to- } \end{aligned}$	Turn radio dial to-	Adjust the fol. lowing for max. output
1	I.F. grid, in series with .1 mid.	455 kc	Quiet point $1,600 \mathrm{kc}$ end of dial	Pri. \& Sec. 2nd I.F. transformer
2	Converter grid in series with .1 mid.			Pri. \& Sec. lat I.F. transiormer
NOTE-ANTENNA LOOP AND RECORD CHANGER MUST BE IN CABINET FOR THE FOLLOWING				
3	Short wise placed near loop for radiated signal	1.630 kc	Extreme R. H. end (gang open)	C4 (osc.)
4		1,400 kc	$1.400 \mathrm{kc}$	C2 (ant.)
5		600 kc	600 kc	Osc. Coil L3 Rock gang
6	Ropeat steps 3, 4, \& 5 u necessary			



Dial drive mechanism

## LEAD DRESS

1. Dress all heater leads and pilot light leads down to chassis and as far as possible from all audio grid and plate wiring.
2. Dress all exposed leads away from each other and away from chassis to prevent short circuits.
3. Dress lead from K.F. section of gang to V1 pin 7 direct but away from chassis base to reduce capacity, also away from fuse resistor.
4. Dress lead from oscillator section of gang to oscillator coil direct but away from chassis base to reduce capacity.
5. Connect capacitor $\mathbf{C 2 O}$ with short leads between gang frame and mounting bracket.
6. Dress output transformer leads down to base.
7. Dress loop antenna leads away from gang plates and tubes.
8. Dress 33 -ohm limiting resistor away from chassis.

## Pickup Landing Adjustment " A "

The pickup point should land half-way between the outer edge of the record and the first music groove.
If the pickup lands inside the starting grooves-lum screw "A" slightly clockwise. If plckup lands outside the starting grooves-lurn screw "A."

## Pickup Height Adjustment " $B$ "

During cycle the pickup arm must rise high enough to clear a stack of eight records on the turntable, but not high enough to cause the top of the arm to touch records resting on the record supports.

If pickup does not clear a stack of eight records-turn screw "B" slightly clockwise. If pickup arm touches records on record supports-turn screw "B."


Record changer adjustments


Tube and trimmer location

Schematic Diagram

Replacement Parts

STOCK No.	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	CHASSIS ASSEMBLIES	74677	Transformer-Output transformer ....................................T3
	RC 1077	73488	Transformer--First I.F. transformer ................................Tl
74700	Bracket-Drive cord pulley bracket (L. H.) complete with	73037	Transformer-Second I.F. transtormer ............................... T2
	one (1) pulley and one (1) terminal board.	33726	Washer-"C' washer for tuning knob shaft
74705	Bracket-Drive cord pulley bracket (R. H.) complete with two (2) pulleys less long bracket.		SPEAKER ASSEMBLIES
74704	Capacitor - Variable tuning capacitor-less bracket..C1, C2, C3. C4		Stamped 92585.1
71924	Capacitor-Ceramic, 56 mmf . ............................................ ${ }^{\text {C5 }}$	74706	Speaker $5^{\prime \prime} \times 7^{\prime \prime}$ elliptical P. M. speaker   Note: If stamping on speaker does not agree with above number, order replacement paris by relerring to model number of instrument, number stamped on speaker and full description of part required.   MISCELLANEOUS
74884	Capacitor-Ceramic, '68 mmf. .........................................C11		
39630	Capacitor-Mica, 120 mmf . ................................................. ${ }^{\text {C14 }}$		
39632	Capacitor-Mica, 150 mmf . ............................................C20		
74678	Capacitor-Electrolytic, comprising 2 sections of 120 mid . 150 volts and 1 section of 40 mid., 25 volts .......C16A, C16B, C16C		
72792	Capacitor- Tubular, .001 mid., 200 volts ........................C7		
73186	Capacitor-Tubular, 001 mid., 400 volts ..........................C9	Y2137	Cabinet-Plastic cabinet-maroon
71926	Capacitor-Tubular, $005 \mathrm{mid}$. , 200 volts ...................... Cl2	74713	Clamp-Dial clamp (2 required)
72791	Capacitor-Tubular, $005 \mathrm{mfd} ., 400$ volts ........................ Cl 7	73508	Clip-Spring clip for knob
70602	Capacitor-Tubular, $0025 \mathrm{mid} ., 400$ volts ....................Cl0	74719	
72827	Capacitor-Tubular, $01 \mathrm{mfd} ., 400$ volts ........................Cl5		(2 required)
71928	Capacitor- Tubular, 02 mid., 200 volts ........................C13	74192	Connector-3 contact male connector for shielded pickup cable
73553	Capacitor-Tubular, 05 mfd , 400 volts ............C6, C8, C18,	74682	Decal-Function switch decal
73935	Clip-Mounting clip for I. F. transformer	74273	Decal--Trade mark decal
74448	Coil- Oscillator coil ..................................................... L2, L3	74722	Dial- Dial scale
36422	Connector-3 contact temale connector (phono input socket)	$\begin{aligned} & 74674 \\ & 72894 \end{aligned}$	Emblem-"RCA Victor" emblem Foot--Rubber foot (4 required)
30868	Connector-2 contact female connector for motor cable....P3	74707	Grille-Metal grille
74702	Control-Volume control ...............................................R10	74210	Knob-Reject knob
+72953	Cord-Drive cord (approx. 49" overall length required)	74710	Knob-Volume control or tuning knob
74454	Gasket-Rubber gasket for between speaker and cabinet	74711	Knob-Function switch knob
73693	Grommet-Power cord strain reliel (1 eet)	72692	Hinge-Cabinet lid hinge ( 2 required)
72283	Grommet-Rubber grommet to mount variable capacitor (3 required)	74709	Indicator-Station selector indicator
74703	Loop-Antenna loop ................................ ................................. ${ }^{\text {Ll }}$	71116	Lamp-Dial lamp
18469	Plate-Bakelite mounting plate for electrolytic capacitor	74720	Lever -"Start-Reject" actuating lever
72313	Resistor-Fuse type, 33 ohms $\qquad$	74717	Mask-End mask for dial (2 required)
	150 ohms. $\pm 10 \%$, $1 / 2$ watt   R14 R17	74708	Motif - Decorative motif for front of cabinet
	270 ohms, $\pm 10 \%$. $1 / 2$ watt $\qquad$   1,000 ohms, $\pm 10 \%$, 1 watt $\qquad$	74623	Mounting -One set of hardware consisting of 3 rubber grommets, 3 flat washers, and 3 eyelets to mount record changer
	22,000 ohms, $\pm 10 \%$, 1/2 watt ............................................. ${ }^{\text {R }}$	74715	Panel-Radio compartment back panel
	56,000 ohms, $\pm 10 \%$, $1 / 2$ watt ............................................	74721	Plate - Dial back plate, less dial
	82,000 ohms, $\pm 10 \%$, 1/2 watt ........................................R4	74212	Nut-Speed nut for reject knob
	220.000 ohms, $\pm 10 \%$. $1 / 2$ walt .......................................... 12	74712	Nut-Speed nut for "Start-Reject" actuating lever
		72765	Nut-Speed nut to lasten motil (1 required) or to fasten dial (2 required)
	2.2 megohm, $\pm 10 \%$, 1/2 watt ...................................R3, R8	73728	Screen-Ventilation screen (2 $\left.7 / 16^{\prime \prime} \times 11 / 4{ }^{\prime \prime}\right)(2$ required)
	3.3 megohm, $\pm 10 \%, 1 / 2$ watt ................................................... 5   10 megohm. $\pm 10 \%$, $1 / 2$ walt …................................................	74716	Screw-\$6-32 $\times 1 / 4^{\prime \prime}$ cross-recessed oval head machine screw for lid support (4 required) or radio compartment back panel (3 required)
74701	Shalt-Tuning knob shalt and pulley Shield-Tube shield for $12 \mathrm{AV6}$	14270	Spring-Retaining spring for function switch knob
70827	Socket-Tube socket, octal, wafer	74718	Spring-Return spring for "Start-Reject" actuating lever
73117	Sockel-Tube socket	71824	Stud-Stud and screw to mount lid hinge (1) set) (2 required)
72998	Socket-Dial lamp socket and lead	74714	Support-Lid support
74038	Spring-Drive cord spring   Switch-Function switch		

+ Stock No. 72953 is a reel containing 250 feet of cord.


## APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS.

## Substitute I.F. Transformer:

To maintain production, first I.F, transformers stamped 970441.5 have been used as a substitute for transformers stamped 970441-1. Connections to the two transformers are different as listed and illustrated below.

	Plate	$B+$	Grid	A.V.C.
$970441-5$	4	3	1	2
$970441-1$	1	2	3	4

Bottom Terminal View-970441 Transformer


## TYPE RND MODEL IDENTIFICATION

The record changer mechanism may be used either with or without a metal motorboard. When a metal motorboard is not used, the instrument cabinet serves as the motorboard.
Two major changes have been made since the start of production. One change is the type of pickup arm rest. the original design used a visible rest on the motorboard or instrument cabinet which has been replaced by a rest on the sub-base. The other major change is in the record separators. the original type used rotating gear type of separators whizh were replaced by a push-out type of separa. tors.
Many other changes have been made and there are differences in the color and linish of some parts when used with certain instruments. These changes did not necessarily involve a change in the identification app ied to the bottom of the mechanism sub-base.
Five different pickups are in use: Two (2) crystal pickups. one (1) magnetic pickup and two (2) ceramic pickups. A listing of pickup vs. instrument model is given on page 14.
BECAUSE OF THE DIFFERENCES MENTIONED ABOVE. THE LABEL OR STAMPING ON THE SUB-BASE DOES NOT PROVIDE SUFFICIENT IDENTIFICATION FOR ORDERING REPLACEMENT PARTS.
Replacement parts should be ordered only by stock number. Refer to the illustratiors and parts listings. for identification.
The RP 168 Series record changer is used in the following instrument models:

FECORD PLAYER ATTACHMENTS
9JY. CP-5203, 45J, QJY
RECORD PLAYERS (without radio)
9EY3, 9EY31. 9EY32. 9EY35, 9EY36, 45EY, QEY3
RADIO.PHONOGRAPH COMBINATIONS
9QV5. 9W51. 9V778. gW101, 9W102, 9W103, 9W105, 9W106, 9Y7. 9Y51. A55, A78, A106

RADIO-PL.ONOGRAPH-TELEVISION COMBINATIONS 9TW309, 9TW333. 9TW390. TA128, TA129, TA169, S1000

## AUTOMATIC OPERATION

1. Place a stack of records over the center post, with the desired selections upward. the last record to be played on top.
2. Apply power to drive motor.
3. Push the "start-reject" knob to "start" and let go. The mechanism will automatically play in sequence one side of each record stacked on the separator shelves.
4. To seject a record being played push the "start-reject" knob.
s. At conclusion of playing and as the last record is being repeated. lift the pickup arm and place on its rest. Turn oft the power to the drive motor.
5. Remove the stack of records by lifting them straight up.

## RP-168 Series

45 R.P.M. Automatic Record Changer Mfr. No. 274 Service Data
-1949 No. 5-

## RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION <br> CAMDEN, N. J., U. S. A.

## SPECIFICATIONS

Records used	RCA seven-inch tine groove
Record capacity	Up to 10 records
Pickup force	5 grams
Stylus tip radius.	001 inch
Type of pickup. C	ariable reluctance (magnetic)
Power supply. (May be con	$105-125$ volts, 60 cycle, a.c. 50 cycle power supply.)

## CAUTION

1. Avoid handling the pickup arm when the mechanism is in cycle.
2. Do not use force to release a jam.
3. Do not try to remove the records on the turntable if the turntable is stopped in cycle.
4. Do not try to operate the mechanism if the separator knives protrude from the center post when the mechanism is out of cycle.
During service, the position of the star wheel on the underside of the record changer may be accidently shifted; this may cause the separator knives to be extended when they should be concealed.
If the separator knives are thus extended - turn the power on so that the turntable is revolving. push the "start-reject" knob and allow the mechanism to complete a change cycle. If the knives continue to be extended - while the turntable is still revolving, gently press fingers against the extended knives until they disappear inside the center post - DO THIS ONLY WHILE MECHANISM IS OUT OF CYCLE.

## LUBRICATION

A light machine oil (SAE No. 10) should be used to oil the bearings of the drive motor.
On all bearing surfaces, excepting the motor bearings. Hough. ton STA-PUT No. 320. or equivalent, should be used. On all other sliding surfaces, STA.PUT No. 512, or equivalent, is recommended. STA.PUT can be purchased from E. F. Houghton \& Co., 303 W. Lehigh Ave.. Philadelphia, Pa.
(Do not oil or grease record separator shelves.)
It is important that the drive motor spindle and the rubber tire on the idler wheel be kept clean and free from oil or grease. dirt, or any foreign material at all times. Carbon tetrachloride or naphtha is satisfactory for cleaning these parts.

## CYCLE OF OPERATION

Function
Place records over
the center post and
turn the power on

Explanation

1. Records rest on separator shelves protruding from either side of the conter post.


Figure 1.


Figure 2.


Figure 4.


Pickup arm moves out

1. The end (41E) of the director lever (41) contacts stud (58A) on trip lever (58), starting the pickup arm on its outward movement.
2. The stud ( 58 A ) on trip lever contacte pickup arm return lever (50), pushing it outward against the tension spring (51).
3. As the pickup arm reaches its outermost position, it is locked in position by the latch ( 50 A ) clamping the stud ( 58 A ) on the end of the pickup arm return lever.


111

Separator knives separate the lower record from the theck and allow o the turntable

While the pickup arm is moving outward, the end (41C) of the director lever (41) extending below the motorboard, conlacts and prevents the star wheel (62) from rolating.

Since the turnable continues to rotate and the star wheel and shatt romain slationary, the two small gears (5A and around thed in the upper section the center post rotate shatt (7).

The eccentric extending from the upper end of the two embedded gears lurns in a slor in the separator sheives 5 and 6). Thes auses the shotves 10 min against the A later type of record separators (knives and shelves), illustrated in Figure 8, are actuated by a cam at the top of the which in purn in one opposite shelven which in turn pull in on the opposite shelves.
As the shelves recede the separator knives (5B and 6B), record of the stack and support the remaining records while the lower record drops to the turntable.

Pickup arm moves for landing
apphire is lowored to the record

The stud (41A) on director lever (11) continues to comact pickup arm elevating lever (35) and lowers the sapphire on the start of the record.
. on director lever is pulled thro
cam by the tension spring (42).

The end of the director lever (41D) contacts projection (50C) and unlatches the pickup arm return lever (50).
The end (41C) of the director lever below the motor board moves away from the star wheel and opens muting switch.

Ahter the selection has been completed the sapphire moves into the tripping groove. At this time the trip lever (58) pushes the trip pawl (37) into position for engagement with the stud (8A) on the underside of the turntable.

This contact between stud (8A) and the trip pawl (37) starts position for playing

SERVICE HINTS
Care of Pickup
LINT MAY COLLECT TO CLOG THE OPENING IN THE GUARD AT THE STYLUS POINT AND CAUSE' POOR RECORD REPRO-
DUCTION. This may require occasional cleaning of the guard Dection. This may require occasional cleaning of the guard
opening-clean by carefully brushing with a small soft brush.

## Replacement of Stylu

Caution: Never bend the stylus support wire.
CHYSTAL PICKUPS (Stock Nos. 71067 and 76625 ) Remove the two screws holding sapphire guard in place and threaded shaft of the sapphire holder and gently push th shaft through the hole in the armature shaft until the sapphire holder assembly comes free.
Extrome care should be used when loosening the nut so that the twisting motion does not broak the crystal. Take hold of
the lower ond of the shaft with a pair of pllers while loosening or ughtening the nut. being very careful so as not to strip the threads or broak the crystal.
Insert threaded shath of replacement sapphire holder through armature shaft and replace the washer and nut. Make sur
that the sapphire is in the correct position. thar the sapphire is in the correct position.
Heplace the sapphire guard, positioning it by means of the
oversize screw slose. Make certcin that the saphise and supporting wire are centered in the guard. Tighten the guard screws. Before using. check to see that the sapphire projects far enough beyond the guard so that the guard will not touch
the record. If necessary, bend the guard a litle
houble neluctance ickur
Variable reluctance pickup (Stock No. 74466)
To remove the stylus assembly, insert a bent paper clip or equivalent lose into the stylus stud pin socket at point "A."
Press the assembly out from the cartridge with the lool as shown by the arrow in the illustration below.
To replace the stylus assembly, insert the stud pin into the recess "A," with the locating tab positioned above the locating
slot "B" between the two pole pieces. Press assembly in by applying pressure upon the stud pin at point "C" with a blunt tool. Care must be taken to press assembly only at poin "C" so as not to damage or distort the stylus arm.
CERAMIC PICRUP (Stock No. 74984)

To remove stylus, insert the point of a knite blade between the stylus wire and the case. The stylus may be pried out of it Toplace stylus, push end of sylus of the knile blade, mountung. Be certain that the stylus is centered in the groove of the pickup case.



Figure 17-Explonted View of Sub.buse Assembly.
 (2): FOR MODEL 9QV5 (OTHERWISE SAME
(0)



## sub-base assemblies


 placement
Type III
Sibibe
 orrd res
romel
orm

 | CP.5203: Labelled RPi6e-2 and ubed only with Model |
| :--- | Type V





Type VI

 Type VII
 arm rest on sub-base. Use Stock No. 74803 (Type vit
tor repicement the pickup arm rest is to be de
tormed). оте. Types $V I$ and $v u$ Late production of these typen have the idior whee)
mounting stud (22) staked to its mounting plate diler wheel retaine (hors seshoe washer) is Slock No
isoel. note: Type $V$
Two difterent main levers (director lever) are used,




TYpes imion il



Fipure 18-Pickup Armi Assemblies.
pickur ank asemblies (less pickup) Type
Arm
Arm
sion

 Type



 $\underset{\substack{\text { minto } \\ \text { Tyo ov }}}{ }$


 dex Type vi



$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { ILL. } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { ILL. } \\ & \text { No. } \end{aligned}$	DESCRIPTION
		TURNTABLE			MOTORBOARD ASSEMBLIES
74090	1	Nose-Spindle nose-RED (early type-thin wall) for Turntable Type I	74623		Hardware-To mount sub-base to plastic cabinet of Models 9EY3, 9EY35, 9EY36, 9Y51. 45EY and QEY3
74620	1	Nose-Spindle nose-RED (late type-thick wall) for Turntable Type I or II			or sub-base to motorboard of Models 9EY31 and 9EY32, consisting of:
74863	1	Nose--Spindle nose-RED-Lor Turntable Type III		47	Three (3) grommets
74472	1	Nose-Spindle noso-BLACK-ior Turntable Type I			Three (3) spacers
74795 74091	2	Nose-Spindle nose-BLACK-lor Turntable Type Ill		48 49	
		nose No. 74090, No. 74620, or No. 74472 ,			9EY36, 9Y51, 4SEY and QEY3
74862	2	Spring-Spindle nose spring-formed wire-for apindile nose No. 74863 or No. 74795		49	Screw-No. $8.32 \times 1 / 2^{\prime \prime}$-for 9JY, 45J and QJY   Screw-No. 8-32 $\times 3 / \mathrm{s}^{\prime \prime}$-for instrumonts using spring
	3	Screw-No. $6-32$ round head machine screw for spindle nose spring No. 74091	74209	75	mounting of motorboard Cover-Mounting screw cover (threaded type-3 re-
74095	4	Spring-Separator shelf return epring (1800\% O.D. $\times$	74581	75	quired)-use with No. 74424 screw (III. No. 76 )
	4	Spring-Separator shell return spring (.118" O.D. x III"-16 furas)-iwo required-lor Turntable Type	74424	76	quired)-use with No. 74582 screw (III. No. 76) Screw-No. $8-32 \times 13 / 4^{\prime \prime}$ special screw (with tapped hole) for mounting record changer (3 required)-use
74096	5-6	for Turntable Types I and II   Sheli-Separator ahell for Turntable Type III   Separator-Separator knife for Turntable Type 111	74582	76	
$\begin{aligned} & 74865 \\ & 74864 \end{aligned}$	$\begin{gathered} 5-6 \\ 58 \\ 68 \\ 7 \end{gathered}$				hole) for mounting record changer ( 3 required)use with No. 74581 cover (III. No. 75)
74092		Shaft-Star wheel shaft and gear assembly for Turntable Types I and II	75057	76	Serew-No. $8 \times 7 / \mathbf{g}^{\prime \prime}$ oval head wood screw for mounting record changer (3 required)-for Models 9EY31 and SEY32
74867	7	Shaft-Star wheel shaft with cam for Turntable Type III	73549 74674	77	Emblom-"RCA Victor" emblem-motal   Emblem-"RCA Victor" emblem-plastic
75065	8	Turntablo-Turntable with TAN MARBLEIZED matType l-use No. 74090 RED nose (thin wall)	74423	79	Spring-Conical spring for mounting record changer
74813	8	Turntable-Turntable with TAN MARBLEIZED matType I-use No. 74620 RED nose (thick wall)   Turntablo-Turntable with TAN MARBLEIZED matType III-use No. 74863 RED nose	742	80	boltom (3 required)   Nut-Tee nut for mounting record changer (3 required)
			74184	81	Motorboard - Motorboard complete with welded brackets and stud-less rest and operating parte-
74445	8	Turntable-Turntable with BLACK mat-Type I-use No. 74472 BLACK nose			for all models with motorboard rest except CP-S203, 9EY31 and 9EY32
75145	8	Turntable-Turntable with RED mat-Type I-use No. 74472 BLACK nose   Turntable-Turntable with RED mat-Type III-use No. 74795 BLACK nose	74444	81	Motorboard - Motorboard complete with welded brackets and stud-lens operating parts-lor Model
$\begin{aligned} & 75059 \\ & 74094 \\ & 74471 \\ & 74794 \end{aligned}$	8		75076	81	Mop-5203 - Motorboard complete with welded
	$\begin{gathered} 8 \mathrm{C} \\ 8 \mathrm{C} \\ 8 \mathrm{C} \\ 21 \end{gathered}$	Mat-Turniable mat-IAN MARBLEIZED   Mat-Turntable mat--BLACK   Mat-Turntable mat-RED			brackets and stud-less rest and operating parte. for Models 9EY31 and 9EY32
		Mat-Turntable mat-RED   Screw-No. $6.32 \times 13 / 4^{\prime \prime}$ fillister head screw (holds nose to spindle) two required for Turntable Type 1	74987	81	Motorboard - Motorboard complete with welded brackets and stud-lens operating parts-lor all models without motorboard rest
74868	21	Screw-No. 6.32 $\times 15 /$ " ' fillister $^{\prime}$ head screw (hold nose to spindle) two required for Turntable Types II and III	74185	82	Rest - Pickup arm rest - maroon - for all models (where required) except CP-5203, 9EY31 and 9EY32 Rest-Pickup arm rest-black-used on Model CP.
			7444	82	Rest-pickup arm rest-black-used on Model CP5203 only
74869	$21 /$	Wakher-No. 6 flat washer (for use under No. 74868 screw-two required for Turntable Types II and III	75077	82	Rest-Pickup arm rest and latch-for Models 9EY31
	31	Screw-No. $4-40^{\circ} \times 3$ " ${ }^{\prime \prime}$ fillister head serew (for use with cam, Ill. No. 33)-two required for Turntable Type I	74210	83 83	and $9 E Y 32$   Knob-Reject control knob-maroon Knob-Reject control knob-black
	32	Washer-No. 4 lockwasher-lor use with cam (Ill. No. 33)-iwo required for Turntable Type 1 Cam-Follower cam for Turntable Type I	7442	84	Spring-Conical spring for mounting record changer -upper R.H. side (l required)
74231	33		74212	85	
Two different main levors (director lever) are used, depending upon which turntable assembly is used. Levor (41) Stock No. 74076 has a long end (41C) and is used with Turntables Type 1 and II. Lever (41) Stock No. 74857 has a shost ond and ls used with Turntable Resombly Type III.			33726	86 87	Screw-No. 6 sell-tapping serew   Washar-" "C" washer for mounting reject lever actuating lever
			$\begin{aligned} & 74211 \\ & 74474 \end{aligned}$	88	Lever-Reject lever actuating lever   Switch-"ON-OFF" switch-used on Model CP. 5203 only

## APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS

Items listed but without Stock Nos. are not stock items.

- Stock Nos. S-557B and S-5580 are for use in instruments manufactured for RCA International Division and are not stocked by distributors in the U. S. A.


Figure 19Idler Wheel Mounting.


ON TYPE II TURNTABLES THE CAM (33) IS CAST INTEGRAL WITH THE TURNTABLE (B)

Figure 20 -Turntable Assemblies, Types I and II.

## Main Lever vs Record Separators:

Two different main levers (director lever) are used depending upon the type of record separators being used.
Stock No. 74076 lever is used only with the rotating gear type of record separators. The end (41C) that engages the star wheel is long.
Stock No. 74857 lever is used only with the push-out type of record separators. The end (41C) that engages the star wheel is short.


Figure 22- Main Lever.


NOTE: Use care in dis-assembly to prevent loss of springs. Remove screws-lift nose slightly-hold both separator knives down against shelves-then remove nose.
rigure 21-Turntable Assemblies, Type III.

## TURNTABLE ASSEMBLIES

Type I
Turniable Stock No. 74042. Stamped 940489 or 3 R2. Has TAN MARBLEIZED mat and uter rotating gear type of record separators. Use No. 74090 spindle nose-HED (thin wall)
Turntable Stock No. 7506S. Same as No. 74042, except for diameter at top of spindle. Use No. 74620 apindle nose-RED (thick wall)
Turntable Stock No. 75145. Same as No. 75065, except that it has a RED mat. Une No. 74472 spindle nose -BLACK
Turntable Stock No. 74445. Same at No. 75065, except for finish and BLACK mat. Used only on Model CP.5203. U駺 No. 74472 spindle nose (BLACK)
Type II
Stamped 971009. Follower cam (33) is a part of the turniable casting. Otherwise, similar to No. 75065. Use No. 75065 turntable, and No. 74231 cam for replacement
Type III
Stock No. 74813. Stamped 971009. Ha! TAN MARBLEI2ED mat and unes push-out iype of record separators. Use No. 74863 spindl nose-RED. Although this furntable bears the eame stamping as Type II, it does not have the shafts required for mounting the rotating gear type of separators
Stock No. 75059. Same as No. 74813, except that a RED mat is used. Use No. 74795 spindle noseBLACK

## NOTE: Main Lever (41)

Stock No. 74076 lever (with long end 41C) is used in conjunction with rotating gear type of record sepais used in conjunction with push-out type of record separators


## CHANGES-SERVICE HINTS (Continued from Page 4)

## Pickup Arm Rest:

Two different types of pickup arm rest are.in use. The original type was visible on the motorboard. The type presently in use is a metal projection on the sub-base.

The correct grouping of parts must be used, refer to descriptive text on page 6. The two types are illustrated below.


Figure 24-Pickup Arm Rest.

## Spindle Nose and Turntable (Type I):

The wall thickness of the spindle nose (Ill. No. 1) has been increased and the machined shoulder at the top of the turntable decreased accordingly. Thick wall spindle nose will not fit on early type turntable. The new type red spindle nose (thick wall) is available as Stock No. 74620.
NOTE: The screws (II1. No. 21) which hold the spindle nose to the turntable should not be tightened too tight. The spindle nose can be distorted and cause records to bind.


Figure 27-
Separator Assembly.

## Sub-base Mounting:

The sub-base is attached directly to metal motorboards and to the cabinets of Models 9JY. QJY and 45I with three screws and three washers. No grommets or spacers are used except with Models 9EY31 and 9EY32.
On all other instruments, the sub-base is cushion mounted to the plastic cabinet with rubber grommets, metal spacers, screws and washers. The mounting is illustrated below.


Figure 25-Sub.base Mounting.

## Separator Assemblies (Rotating Gear Type):

A flat has been added to the separator gears eccentric shafts. This flat permits the shelf (Ill. Nos. 5 and 6) to stay out until the nose of the blade (I11. Nos. $5 B$ and 6B) is approximately half-way out. Then the shelf retract fast. This faster action minimizes unequal dropping of records.

The two types of separator assemblies (Stock No. 74096, Ill Nos. 5 and 6) are NOT INTERCHANGEABLE. In addition the early type has been grouped according to mold number (at bottom of spring hole) and installed in pairs.

$$
\begin{array}{ccc}
\text { Group } & \text { Group } & \text { Group } \\
\text { Mold Number } & \text { Mold Number } & \text { Mold Number } \\
1,3.5 & 9.10 & 0,8
\end{array}
$$

Assemblies of one group should not be mixed with assemblies of another group or unequal dropping of records may occur. If a matched pair is not available. first check timing of separator knives then the dropping of records; it may be necessary to file the edge of the shelf which released the record last.
The late type (having a flat on the eccentric shaft) do not need to be grouped, but an early assembly should not be used in conjunction with a late assembly (use two early or two late assemblies). The late type may be identified by its having a shroud at the top of the gear (see Figure 27).

## Turntable Bearing Thrust Washers:

Three thrust washers (III. Nos. 17 and 19) are now being used in mounting the turntable. This is done because it was found that the top edge of some idler wheels would contact a nonmachined surface on the underside of the turntable and cause noise similar to that caused by a rough idler wheel.

## Jamming:

On early RP.l68-1 mechanisms it was sometimes possible to jam the mechanism by maintaining pressure on the reject button during cycle. If such jamming should occur check the following:

1. The tip radius of the reject lever (Ill. No. 45A) should be ${ }^{1} 11$ ' $^{\prime \prime}$.
2. The edges of the trip pawl (III. No. 37) should have a slightly rounded edge (. $010^{\prime \prime}$ radius).

Present production uses a two piece spring loaded reject lever (II1. No. 45A) which eliminates the possibility of jamming ccused by pressure on the reject button.
Jamming can also be caused by incorrect positioning of the director lever (main lever) (III. No. 41) in relation to the star wheel (IIl. No. 62). See Figure 35.


## Intermittent Non-Tripping:

The trip lever spring (Ill. No. 59) has been increased in tension to provide better tripping action. The new spring has 30 turns and is available as Stock No. 74426
To reduce friction a washer has been added between the trip pawl (Ill. No. 37) and the trip pawl lever (III. No. 66). It is avail. able as Stock No. 74453.

## Eccentric Adjustment Studs:

In early production the eccentric landing (Ill. No. 45C) and height (IIl. No. 45D) adjustment studs were staked to the subbase assembly. They are now secured to the sub-base assem. bly with "C" washers. The landing adjustment stud (Ill. No. 45C) is available as Stock No. 74430. The height adjustment stud (Ill. No. 45D) as Stock No. 74429 and the "C" washer (Ill. No. 92) as Stock No. 74431.

## Pneumatic Dashpot

A pneumatic dashpot (Stock No. 74428) has been added to improve pickup arm landing. The dashpot case is clamped to the base sub-assembly and the plunger is attached to the long end of the tone arm lift lever (Ill. No. 35) (Stock No. 74757).

## DISTORTED OUTPUT



Figure 29.


Figure 30.


Figure 31.

## Adjustment Sequence:

1. Synchronize separator shelf (III. No. 5) and separator knife (lll. No. 5B) action (necessary only on rotating gear type of record separators).
2. Adjust position of star wheel (1ll. No. 62).
3. Adjust position of director lever (main lever) (Ill. No. 4l) in relation to the star wheel ky bending it necessary.
4. Adjust tone arm pivat sicrew (1ll. No. 12) for minimum side play without binding.
5. Adjust sapphire height above motorboard.
6. Adjust tripping position.
7. Adjust landing position.
8. Adjust pickup arm height during cycle.
9. Adjust position of muting switch so that contacts are open ${ }^{1}: 2,{ }^{\prime}$ during playing and are closed during cycle.

## Separator Synchronization:

The following applies only to the rotating gear type of record separators:

1. Make certain the two embedded gears (5 and 6) are meshed with gear (7A) on the upper end of the star wheel shaft so the action of the separator knives is synchronized.


Figure 32.


## Star Wheel Position:

1. Turn the star wheel so that the separator knives are in the position indicated in Figure 33 for rotating gear type of separators or fully retracted for pushout separators.
2. Loosen the two set screws (61) sufficiently to permit the star wheel 10 rotate without disturbing the shaft (7).
3. Rotate the star wheel points directly to a cam screw or nose screw (visible through slot) as shown in Figure 34.
4. Tighten the two set screws (61) and rotate the mechanism through a complete cycle to check operation. The separator knives must rotate $360^{\circ}$ to the starting position as indicated in Figure 33.


Figure 34-Star Wheel Timing.

## ADJUSTMENTS

## Director Lever Position:

Push reject Jever and rotate the turntable slowly by hand until the end (41C) of the director lever moves in to its limit of travel so when the star wheel is rotated it contacts by the amount indicated in Figure 35 for lever with long end. For lever with short end. the star wheel should first contact the end (41C) approximately 116 -inch from the front or leading edge of the iever.
If the end of the director lever (main lever) is too close to the star wheel, it will jam. If too far away, it will cause erratic record dropping. If in doubt and unable to measure, move the end toward the star wheel until most of the play is removed when the star wheel is moved back and forth at this setting. With the push-out record separators and the lever with short end, there will be considerable play but the tension of the separator springs holds the star wheel against the lever.


Figure 35-Sulling of Dirertor Lever.

## Pivot Screw Adjustment:

Loosen the pivot locking screw (14) and adjust the pivot screw (12) for minimum side play without causing binding. 9


Figure 36.

## Sapphire Height Adjustment (Out of Cycle):

Bend the lug on the pivat arm (40) so that the sapphire point is approximately 1,$11 ;$ " above the motorboard.


Figure 37.

## Tripping Adjustment:

1. Assemble the pickup arm and trip lever assemblies as shown in Figure 38. Leave the clamping screw (57) loose enough to permit horizontal movement of the trip lever on the shaft. (Allow approximately .010 inch vertical end play.)
2. Turn the eccentric landing adjustment stud (4SC) to determine the inward and outward limit of adjustment, then turn it to a setting hall-way between the limits.


Figure 38.
3. Tripping should occur when the sapphire reaches $\alpha$ position $1 \% / 32^{\prime \prime}$ from the near side of the turntable spindle. This position is adjusted by holding the trip lever and moving the pickup arm inward or outward to obtain the specified position.
4. A convenient way of measuring this distance is to make $\alpha$ mark on the back side of a stroboscope disc $1 \% / 32^{\prime \prime}$ from the inner edge, place the disc on the turntable, with the turntable revolving, hold the disc stationary and move the pickup arm very slowly in towards the turntable spindle.
5. After this position has been obtained, tighten the clamping screw (57) and recheck the tripping position and vertical end play.


Figure 39-Tripping Position.

## Landing Adjustment:

1. After the tripping adjustment has been made as described above, turn the eccentric landing cajustment stud (45C) so that the sapphire will set down on the record halj-way between the outer edge and the first music groove. This position is $2 \%$ " from the turntable spindle. The location of the adjustment stud is illustrated in Figure 42.


Figure 40-Landing Position.

## Pickup Arm Height Adjustment (In Cycle):

Set the mechanism in cycle. Turn the turntable by hand, until the pickup arm has reached its maximum height. By means of $\alpha$ screwdriver turn the height adjustment stud (45D) until the distance between the top of the turntable and the sapphire point is $3 / 4^{\prime \prime}$. Use that position of the eccentric stud which causes the pickup arm to rise during clockwise adjustment of the stud. The location of the adjusting stud is illustrated in Figure 42.


Figure 41-Height Adjustment.


Figure 42-Height and Landing Adjustment Studs.


Figure 43-Pickup Muting Switch Wiring.


Figure 44-Schematic Diagram (Model CP.5203).


PICKUP UNIT vg. INSTRUMENT MODEL

It is important to use the correct pickup unit. The receiver chassis has compensation designed for one pickup and may be incorrect for other pickups.
Pickup Stock No. 74067 (RMP 128-1) uses a stylus (Stock No. 74068) which has a WHITE paint coding. It is used with the following instruments: 9EY3†, 9EY35, 9EY36, 9JY•, 9TW333, 9TW390, 9W101, 9W102, 9W103. 9W105, 9Y7, 45EY $\dagger$ and 45J'.
Pickup Stock No. 74625 (RMP 128-2) uses a stylus (Stock No. 74818) which has a BLUE paint coding. It is used with the following instruments: A55, A78, A106, TAl28, TA129, TA169, 9EY3†, 9EY31, 9EY32. 9TW309, 9W51, 9W78, 9W106, 9Y51, 45EY† and S1000.

- Models 9JY and 45J.

No. 74067 pickup is recommended as replacement although No. 74625 has been used as a substitute in some instruments.
The characteristics of the two pickups differ in that No. 74067 has a greater output in the middle audio frequencies. The response of No. 74625 is more "flat" and has a greater output at high audio frequencies.
$\dagger$ Models 9EY3 and 45EY.
Use No. 74067 pickup in conjunction with RS132. RSI32E or RSI32F amplifier.
Use No. 74625 pickup in conjunction with RSI32A amplifier.

Pickup Stock No. 74466 (RMP 130-1) uses a stylus (Stock No. 74622) which has a BLACK paint coding. It is used only with Model CP-5203.
Pickup Stock No. 74984 is a ceramic pickup used only with Models QJY and QEY3.
Pickup Stock No. S-5578 is a ceramic pickup used only with Model 9QV5.

## CHANGE IN STYLUS COLOR CODE

The identification color on the bottom of the stylus holder of Stock Nos. 74068 and 74818 has been changed to provide identification of a tactory process.

## Stylus Stock No. 74068

Used in pickup Stock No. 74067 (RMP 128-1). Identification color may be either WHITE or BLACK.

## Stylut Stock No. 74818

Used in pickup Slock No. 74625 (RMP 128-2). Identification color may be either BLUE or GREEN.


## GENERAL DESCRIPTION

Model 9PC4I is a forty-one tube Projection Television console. The receiver employs five chassis with a total of forty tubes and a five-inch projection kinescope. A Reflective Optical System provides a $15^{\prime \prime} \times 20^{\prime \prime}$ picture on the screen.

This publication includes all the data applicable only to the 9PC41 such as the Installation Instructions. Wiring Diagram. Circuit Diagram and Replacement Parts List. For alignment information, refer to the Service Data for Model 648PTK.

## electrical and mechanical specifications

PICTURE SIZE

$$
15^{\prime \prime} \times 20^{\circ \prime}
$$

## TELEVISION R-F FREQUENCY RANGES

All 13 telovition channels, 44 mc to $88 \mathrm{mc}, 174 \mathrm{mc}$ to 216 mc . TELEVISION FINE TUNING RANGE

Plus and minus approximately 800 kc on channel 1 , and plus and minus approximately 1.9 me on channel 13.

RECEIVER ANTENNA INPUT MMPEDANCE.. 300 ohm balanced POWER SUPPLY RATING ............ 115 volts. 60 cycles. 530 watts

AUDIO POWER OUTPUT RATING
Undintorted Power Output ........................................................................................................... walts
Maximum Power Output
CHA8SIS DESIGNATIONS

Audio Amplifier ................................................................. RS123C

LOUDSPERKER (92567.2W)
Type ............................................................ 12-inch Electrodynamic
Voice Coil Impedance 2.2 ohms at 400 cycles

WEIGHT

Chassis with Tubes in Cabinet			247 lbs.
Shipping Weight			314 lbs
DIMENSIONS (inches)	Width	Height	Depth
Cabinet (outside)	361/4	391/8	241/4
KCS24D. KCS24C-1 (overall)		$81 / 2$	$131 / 4$
KRS20B.1 (overall)	181/0	11	931/4
KRS21A-1 (overall)	121/4	7\%/4	61/2
RS123C (overall)	131/4	5\%/4	$41 / 4$

[^4]


## HIGH VOLTAGE WARNING

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED. INVOLVES A SHOCR HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE TELEVISION RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

## KINESCOPE HANDLING PRECAUTIONS

DO NOT OPEN THE KINESCOPE SHIPPING CARTON, INSTALL, REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF' GOGGLES AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINE SCOPES. KEEP THE RINESCOPE AWAY FROM THE BODY WHILE HANDLING.

The kinescope bulb encloses a high vacuum and, due to lts large suriace area, is subjected to considerable air pressure. For these reasons, kinescoper must be handled with more care than ordinary receiving tubes.

The large end of the kinescope bulb-particularly that part at the rim of the viewing surlace-must not be struck, scratched or subjected to more than moderate pressure at any time. In installation, if the tube sticks or lails to slip smoothly into its socket, or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Reler to the recelver Installation Instructions section for detailed instructions on kinescope installation. Rll RCA kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the receiver. Keep the carton for possible future use.

Three slightly different models of the 9PC41 are being produced. For convenience, this service note will designate them as 9PC4la, 9PC41b, and 9PC41c, but they will not be so labeled in the field. The 9PC4la usen a KCS24C-1 r-f i-f chassis, and can be recognized readily since it does not have a lighted channel-marker escutcheon. The 9PCS4lb uses chassis KCS24D and has a lighted channel-marker ercutcheon.
but it is made only in walnut and mahogany cabinets. The 9PC4Ic also uses chassis KCS24D and has a lighted channelmarker escutcheon, but is made only in toasted mahogany cabinets and has a different type of interlock switch and hinge lid support. The parts list, schematic, etc., in this note will use the $a, b, c$ designations where differences in the three models make it necessary.

## OPERATING INSTRUCTIONS

The following adjustments are necessary when turning the receiver on for the first time:

1. Raise the lid until the screen is in place.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid-position.
3. Sel the STATION SELECTOR to the desired channel. Set the LOCAL-REMOTE switch to "LOCAL."
4. Turn the PICTURE control fully counter-clockwise.
5. Adjust the PICTURE control for suitable picture contrast.
6. After the receiver has been on for some time. It may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.
7. In switching from one station to another, it may be necessary to repeat sleps number 7 and 10 .
8. Turn the BRIGHTNESS control clockwise, until a glow appears on the screen, then counterclockwise until the glow just disappears.
9. Tum the PICTURE control clockwise until a glow or pattern appears on the screen.
10. Adjust the FINE TUNING control for best sound fidelity and SOUND VOLUME for suitable volume.
11. Adjust the VERTICAL hold control until the pattern stops vertical movement.
12. Adjust the HORIZONTAL hold control until a picture is obtained and centered.

13. If remote operation is desired, set the LOCAL-REMOTE switch to "REMOTE." The brightness and contrast can then be controlled from the remotecontrol box.
14. When the set is turned on again after an idle period, it should not be necessary to repeat the adjustments if the ponithon: of the controls have not been changed. If any adjustment is necessary, atep number 7 is generally sufficient.
15. If the positions of the controls have been changed, it may be necessary to repeat steps number 2 through 10.

Note: The lid is provided with an interlock switch to insure that the receiver will be turned off when the cabinet is closed.

Figure 1-Receiver Operating Controls

The 9PC41 is shipped complete in one carton and with all tubes in place except the 5TP4 Kinescope. The kinescope is packed in a special carton and is shipped separately.

The 9PC4l shipping carton is a plywood box put together with nails. Open the box by removal of the front side. If the front of the carton is removed by prying, do not permit the prying tool to enter the box as the front of the cabinel may become scratched. Slip the cabinet oul of the carton.

A flat skid is attached to the bottom of the receiver cabinet which will permit the cabinet to be moved about without stressing the cabinet joints. This skid should be left on the cabinet until the receiver is placed on display or installed. To remove the skid, take out two nuts on the inside as shown in Figure 2. With a man at each end of the cabinet, lift the cabinet off the skid.

Remove the shipping material as shown in Figure 2. Make sure that all tubes are firmly seated in their sockets.

The deflection yoke and the kinescope anode clip are packed in a carton taped to the horizontal deflection chassis shelf support member.

Untie the canvas dust cover for the optical barrel and tie it off to one side.

Remove the speaker grille by taking out four Phillips head screws from the front four corners of the grille. Disconnect the speaker cable from the speaker and set the grille to one side. The 9PC41 employs a KRK4 optical barrel as shown in Figure 4.
Caution: Handle the corrector lens with care. This lens is made of a plastic material, is soft and can be easily scratched by improper handling or even by rubbing with a cloth. Do not use cleaning fluid on the lens as it may be attacked by some of the chemicals used in such solutions. In short, the lens should be given the care due any precision optical equipment.
Remove the corrector lens from the top of the optical barrel by loosening the screws holding the mounting clips as shown in Figure 4. Caution: Do not loosen the screws hold. ing the corrector lens centering cams or plate.

Although the high voltage filter capacitors of $\alpha$ new receiver are not likely to be charged, it is a good idea to form the habil of discharging the optical barrel belore making any internal adjustments. Take a clip lead, fasten the clip end to the barrel and discharge the unit by making repeated contacts to the kinescope holder with the other end of the lead.

Clean the back of the screen, the front of the $45^{\circ}$ mirror and the optical barrel spherical mirror by "sweeping" the


Figure 2-Removal of Shipping Material
surface with a small camel's hair brush. Any dust on the spherical mirror should be swept into the black center portion where it can be picked up with a piece of scotch tape. Caution: Do not touch the silvered portion of the mirrors. The mirrors are surface silvered and can be damaged by contact with the moist hand. If the screen or mirrors require cleaning, a solution of "Dreft" and water should be employed.
Place a type 202-B-1 test lamp in the kinescope holder and adjust the kinescope centering screws to center the lamp in the holder. Connect the lamp cord into a 110 -volt power outlet and turn the lamp on. Replace the corrector lens. Rotate the lamp so as to produce a picture on the sereen in the proper aspect. Cover the center hole in the corrector lens with a piece of black cardboard in order to prevent light from this source from lowering the resolution.

Ioosen the optical focus adjustment lock screws and adjust the optical focus adjustment for the best overall delinition on the screen. The optical system should show at least 900 line resolution over all the screen. If the system shows less definition, it will be necessary to make the adjustments under "Alignment of Optical Barrel."


Figure 3-KRK-4 Kinescope Holder

ALIGNMENT OF XRE-4 OPTICAL BARREL-With the test lamp in place as described above, turn the optical focus adjustment until the vertical and horizontal lines become double. When the test lamp is properly centered, the lines are parallel. If the lines are not parallel, the kinescope holder requires hori. zontal or lateral centering.

Horisontal or Lateral Centering Adjustment-Loosen the focus sprocket support mounting screws and the idler support mounting screws and slide the three focus sprockets back and forth until the vertical and horizontal lines are parallel.

If the vertical lines are not parallel, the sprockets should be slid straight forwards or backwards until the vertical lines are parallel. If the horizontal lines are not parallel. the sprockets should be slid to one side or the other until the lines are parallel. Upon completion tighten the sprocket support mounting screws taking care that the sprockets do not shift in the process. Make sure the focus sprocket drive chain is in place on all sprockets, slide the idler sprocket back until the drive chain is tight, then tighten the idler sprocket support mounting screws.

Caution: The focus screw extensions above the focus sprockets should be equal for all sprockets. If during the adjustment procedure, the drive chain should fall from the sprockets and the sprockets accidentally turned, it will be necessary to readjust the sprockets until the screw extensions are equal.

Corrector Lens Centering-Turn the focus adjustment until a halo appears around the dot in the center of the test lamp. If the halo is not symmetrical around the dot, loosen the four corrector lens centering cam lock screws and slide the lens about until the halo is symmetrical. Turn the cams up firmly against the lens and tighten the cam lock screws. Care should be taken not to disturb the lens position during the tightening process.


Figure 4-KRK-4 Optical Barrel Adjustments

Check of Optical Barrel Tilt-Adjust the optical focus control to and through the focus range. The picture should go through focus all over at the same time. This does not mean that the definition will be equal over all the picture. but it should be the best definition obtainable. If this is not the case. the optical barrel is not in alignment with the cabinet and requires adjustment as outlined in the following paragraph.

Optical Barrel Tilt Alignment-Turn the optical focus adjuatment counterclockwise until the picture is out of focus then clockwise until the picture begins to come in focus. If one side comes into focus before the rest of the picture, it indicates that that side of the optical barrel should be raised. Loosen the lock nuts and turn the rear jack nuts, shown in Figure 4, 10 raise that side of the barrel and the other jack nut down to lower the other side of the barrel, until both sides of the pic. ture come into focus at the same time.

If the top of the picture comes into focus first as the optical focus adjustment is turned clockwise, it indicates that the jack nut nearest the tront of the cabinet should be adjusted to raise the front of the optical barrel, until top and bottom come into focus at the same time.

When the barrel is properly adjusted, the entire picture will come into best focus all over at the same time as the focus control is rocked through the focus point. At this point the pattern should be in the center of the screen. When this condj. tion of alignment is obtained, tighten the lock nuts being care. ful not to disturb the adjustments.

If the optical barrel tilt adjustments are made, it will be necessary to recheck the adjustmente under Horizontal Optical Adjustments and Lateral Optical Adjustments.

Loosen all the kinescope centering screws equally and just sufficiently to permit removal of the test lamp.

EINESCOPE HANDLING PRECAUTION-Do not open the kine. scope shipping carton, install, remove, or handle the kinescope in any manner, unless shatterproof goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling. The shipping carton should be kept for use in case of future mover.

Open the kinescope shipping carton and remove the tube. Handle this tube by the neck. Do not cover the envelope of the tube with fingermarks as it will produce leakage pathe between the high voltage rim near the screen and the grounded coating on the neck. If this portion of the tube has inadvertently been handled, wipe it clean with a soft cloth moistened with "dry" carbon tetrachloride, which is obtainable at most drug stores.

Wipe the kinescope screen clean of all dust or finger marks with a soft cloth mointened with the Drackett Co.'s "Windex" or similar cleaning agent.

INSTALLATION OF KINESCOPE-The kinescope second anode contact is a recessed metal well in the side of the bulb. A small brass clip (from the carton containing the deflection yoke and front panel control knobs) must be placed in the kine. scope anode connector and the tube inserted in the holder as shown in Figure 3. The tube must be installed so that the socket key on the base of the tube is pointed towards the television chassis. Make sure that the anode clip is horizontal so that it cannot protrude out of the holder.

Tighten the three kinescope centering screws equally to center the tube in the support. Caution: Do not apply too much pressure in tightening the screws as the tube can be cracked by so doing.

Wipe the corrector lens clean with a piece of lens tissue and replace making sure that the arrow on the lens pointe to the rear of the cabinet as before. Tum the lens mounting clips in place and tighten the clip screws.

Turn the deflection yoke so that the slotted end of the bakelite center tube is up and slide the yoke down over the neck of the kinescope. Connect the kinescope socket to the base of the tube. Turn the yoke so that the leads come out towards the rear of the cabinet.

Slip the yoke cables out through the cable sleeve in the op. tical barrel dust cover. The three-prong plug on the unshielded yoke cable should be plugged into the televimion r.f. i-f chassis as shown in Figure 5. The two-prong plug on the shielded yoke cable should be plugged into the horizontal de. flection chassis. The shield braid extension from this cable should be grounded to the chassis by means of the screw provided for this purpose.

Caution-Do not turn the television receiver on with the deflec. tion yoke cables disconnected. To do so may cause the destruction of the kinescope screen.

Remove the cover from the horizontal deflection chassis and take out the strings holding the high voltage filter capacitors in the clips during shipment. Replace the chassis cover.

Reconnect the speaker. Check all chassis interconnecting cables to make sure that all are plugged into the proper sockets as shown in Figure 5.


Figure S-Chassis Interconnecting Cables

The antenna and power connections should now be made. Turn the power switch to the "on" position, the picture control counterclockwise and the brightness control clockwise until a glow appears on the screen.

Adjust the electrical focus control R331 on the horizontal deflection chassis until the raster lines are in sharpest focus as seen when looking down into the barrel. If necessary, reduce the brilliance control selting, and readjust the focus control.

Adjust the optical focus adjustment until the raster lines are in locus on the screen. Turn the deflection yoke until the raster lines are horizontal on the screen and tighten the yoke clamp in this position. Pull the dust cover down around the optical barrel.

Picture Adjustments-lt will now be necessary to oblain a test pattern picture in order to make further adjustments. See step 3 through step 10 of the receiver operating instructions on page 3.

CHECR OF HORIZONTAL OSCILLRTOR ALIGNMENT-The sync link (see Figure 7) must be in the normal position (2 to 3). Turn the horizontal hold control to the extreme counter. clockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off chan. nel then back. Normally the picture will pull into sync.

Turn the horizontal hold control to the extreme clockwise position. The picture-should remain in sync. Momentarily remove the signal. Again the picture should normally pull into sync.

If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aliqned. Skip "Alignment of Horizontal Oscillator" and proceed with HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS.

ALIGNMENT OF HORIZONTRL OSCILLATOR-lif in the above check the receiver failed to hold sync with the hold control at either extreme or lailed to pull into sync after momentary removals of the signal, make the adjustments under "Slight Retouching Adjutments." uf. after making these retouching adjustments. the receiver fails to pass the above checks or if the horizontal oscillator is completely out of adjutment. then make the adjustmente under "Complete Realignment."

Slight Retouching Adjustments-Tune in a Television Station and adjust the fine tuning control for best sound quality. Sync the picture and adjust the picture control for slightly lest than normal contrast. Turn the horizontal hold control to the extreme position in which the oscillator fails to hold or to pull in. Momentarily remove the signal. Turn the T301 trequency adjustment on the chassis rear apron until the oscil. lator pulls into sync. Check hold and pull-in for the other extreme position of the hold control.

Complete Realignment-Tune in a Television Station and adjust the fine tuning control for best sound quality.

With the sync link in the normal position (2-3), turn the T301 frequency adjustment (on rear apron), until the picture is synchronized. (If the picture in not synchronized vertically, adjust the vertical hold.) Adjust the picture control so that the picture is somewhat below average contrast level.

Turn the T301 phase adjustment screw (under chasais, see Fig. ure 19) until the blanking bar, which may appear in the picture, moves to the right and off the raster. The range of this adjustment is such that it is possible to hit an unstable condition (ripples in the raster). The screw must be tumed clock. wise from the unstable position. The length of atud beyond the bushing in its correct position is usually about $1 / 2$ inch.

Tum horizontal hold to extreme counterclockwise position. Turn T301 frequency adjustment clockwise until the picture falls out of sync. Then turn it slowly counterclockwine to the point where the picture falls in sync again.

Readjust T301 phase adjustment so that the left side of the picture is close to the left side of the raster, but does not begin to fold over.

Turn horizontal hold to extreme clockwise. The right side of the picture should be close to the right side of the raster, but should not begin to fold over. If it does, readjust the phase.

Momentarily remove the signal. When the signal is restored. the picture should fall in sync. If it doesn't, turn T301 frequency adjustment counterclockwise $\mu n t i l$ the picture falls in sync.

Turn horizontal hold to extreme counterclockwise position. Remove the signal momentarily. When signal is restored, the picture should fall in sync.

NOTE: If the picture does not pull in sync after momentary removals of signal in both extreme positions of horizontal hold, the pull-in range may be inadequate, though not necessarily. A puil-in through $3 / 4$ of the hold control range may atill be satisfactory.

There is a difference between the pull-in range and hold-in range of trequencies. Once in sync. the circuit will hold about $50 \%$ to $100 \%$ more variation in frequency than it can pull in. Since the range of the horizontal hold control is only approximately equal to the pull-in range, considerable variation may be found due to variations in the cut-off charccteristic of the horizontal oscillator control tube. V303.

Excessive pull-in is objectionable because the higher sonsitivity of the control circuits means also greater susceptibility to noise, and to the vertical sync and equalizing pulses which tend to cause a bend in the upper part of the rater. This effect is more noticeable when the sync link is in the 1-2 position.

Now that a picture has been oblained we may proceed with the picture adjustments.

Adjust the electrical and optical focusing adjustments for maximum definition in the vertical wedge of the tent pattern.

HEIGHT AND VERTICAL LINEARITY ADIUSTMENTS-Adjust the hoight control (R149 on r-\&, i-t chassis rear apron) until the picture fills the screen vertically. Adjust vertical linearity (R175 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust vertical centering to aliga the picture with the mask. In some cases it may be necessary to shift the ponition of the kinescope in the holder (see Figure 3) in order to obtain proper centering of the picture.


Pigure 6-R-F, I-F Rear Chassis Adjustments
WIDTH AND HORIZONTAL LINEARITY ADJUSTMENTS-Turn the horizontal drive (R340 on rear apron) clockwise as far as possible without causing crowding of the right of the picture. This position provides maximum high voltage to the kinescope second anode. Adjust the horizontal linearity control R351 (see Figure 7) until the lest pattern is symmetrical left to right. A slight readjustment of the horizontal drive control may be necessary when the linearity control is used. Adjust the width control (L302 on rear chassis) until the picture just fills the screen horizontally. Adjust horizontal centering to align the picture with the mask. In some cases it may be necessary to shift the position of the kinescope in the holder in order to obtain proper centering of the picture.

Do not turn the horizontal drive control beyond approximately ${ }^{7} s$ of its maximum clockwise position. To do so may cause the output stage to oscillate and result in the loss of horizontal sync.


Figure 7-Horizontal Deflection Chassis Adjustments
FOCUS-Adjust the focus control for maximum definition in the test pattern vertical "wedge." Adjust the optical focus adjustment for best overall focus on the screen.
Check to set that all yoke and optical barrel lock screws are tight.

Pull the dunt cover down around the top of the optical barrel and tie it securely and tightly in place as shown in Figure 2. Tie the cable sleeve tight around the leads to prevent the entry of dust. These precautions are very important for if dust is permitted to enter and settle on the corrector lens, the optical efficiency of the system will be greatly impaired, resulting in a dim picture with poor definition.

CHECK OF R-F OSCILLATOR ADJUSTMENTS-Tune in all available Television Stations to see if the receiver r-f oscillator is adjusted to the proper frequency on these channels. If adjustments are required, these should be made by the method outlined in the alignment procedure of the Service Data for Model 648PTK. The adjustments for channels 1 through 5 and 7 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 8. Adjustments for channels 6 and 13 are under the chassis. Observe the picture for detail, for proper interlacing and for the presence of interference or reflections.


ANTENNA TRAP-In some instances interference may be encountered from FM stations that are on the image frequency of a television station. In other instances interference may be observed on channel 6 from a station on channel 10 or on channel 5 from a station on channel 7.

A series resonant trap across the r-\{ amplitier grid circuit is provided to eliminate this type of interference.

To adjust the trap in the field, tune in the station on. which the inferference is observed. Tune both cores of the trap for minimum interference in the picture. See Figure 14 for the location of the trap. Keep both cores approximately the same by visual inspection. Then, turn one core $1 / 2$ turn from the original position and repeak the second for maximum rejection. Repeat this process until the best rejection is obtained.

VIDEO PEREING SWITCH-A video peaking switch is provided (see Figure 6) to permit changing the video response. Normally the switch should be left open. However, if the pictures from the majority of stations look better with the awitch closed, then the switch should be placed in that position. However, if transients are produced on high contrast pictures then the switch should be left open.

Replace the cabinet back grille. Make sure the screws which hold the back grille in place are tight, otherwise the back may rattle or buzz when the receiver is operating ot high volume.

The R-F, I-F chassis employed in 9PC41 receivers is wired with a remote picture and brightness control as an attach. ment. The attachment can be used or stored in the rear of the cabinet, as desired. The attachment schematic is shown in Fig. 21.

VENTILRTION CAUTION-The receiver is provided with adequate ventilation holes in the bottom and back of the cabinet. Care should be taken not to allow these holes to be covered or ventilation to be impeded in any way. If the receiver is to be operated with the back of the cabinet near a wall, at least a two-inch clearance should be maintained between cabinet and wall.


Figure 9-Correct Picture of Optical Test Lamp Pattern

Figure 10-Ophical Barrel Focus Adjustment Misadjusted


Figure 11-Optical Barrel Horizontal Centering Adjustment Misadjusied
$\leftarrow$ -

Figure 12-Optical Barrel Lateral Centering Adjustment Misadjusted $\longrightarrow$


CHASSIS VIEWS

Figure 13-Horizonsal Deflection Chassis Top View

Measurements made with receiver operating on 117 volts 60 cycles a-c and with no signal input. Voltages shown are read with Jr. "VoltOhmyst" between indicated terminal and chassis ground. Symbol < means "less than."

R-F, I-F CHASSIS, KCS 24D OR KCS 24C-1


R-F, I-F CHASSIS KCS 24D OR KCS 24C-1 (Continued)

Tube No.	Tube Type	Function	Operating Condition *	E. Plate		E. Screen		E. Cathode		E. Grid		IPlate		Notes on Measurements
				Pin   No.	Volts	Pin No.	Volts	Pin No.	Volts	Pin No.	Volts			
V114	6SK7	1 st Sync. Amplifier	Pictr. Min.	8	165	6	113	5	0	4	-4.5	8.5	1.2	
			Pictr. Max.	8	180	6	99	5	0	4	-4.7	4.3	1.1	
V115	6 SH 7	2d Sync. Amplifier	Pictr. Min.	8	150	6	150	5	0	4	-5.3	0	0	
			Pictr. Max.	8	130	6	130	5	0	4	$-5.6{ }^{*}$	0	0	*Depends on noise
V116	6J5	3d Sync. Amplifier	Pictr. Min.	3	82	-	-	8	0	5	-. 4	8.5	-	
			Pictr. Max.	3	73	-	-	8	0	5	$-.4^{*}$	6.8	-	*Depends on noise
V117	6J5	Vertical Oscillator	Pictr. Min.	3	40*	-	-	8	-110	5	-144	. 17	-	*Height, linearity and hold affect readings 2 to 1
V118	$\begin{gathered} 6 \mathrm{KK}- \\ \mathrm{GT} \end{gathered}$	Vertical Output	Pictr. Min.	3	215	4	215*	8	-81	5	-97	16.3	*	*Screen connected to plate
V119	6AT6	Audio Amplifier	Pictr. Min	7	$+75$	-	-	2	0	1	--1	. 13	-	

HORIZONTAL DEFLECTION CHASSIS, KRS 20B-1

V 301	6H6	Horizontal Sync. Discr.	Pictr. Min.	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & -5.0 \\ & -5.0 \end{aligned}$	-	-	$\begin{aligned} & 4 \\ & 8 \end{aligned}$	$\begin{aligned} & -3.2 \\ & -2.2 \end{aligned}$	-	-	-	-	
V 302	$\begin{gathered} 6 \mathrm{KK} 6- \\ \mathrm{GT} \end{gathered}$	Horizontal Oscillator	Hold Max. Resistance	3	240	4	220	8	. 30	5	-27.5	23.3	6.12	
			Hold Min. Resistance	3	230	4	192	8	. 32	5	-23.0	24.8	6.87	
V303	6AC7	Horizontal Osc. Control	Pictr. Min.	8	246	6	127	5	0	4	-3	2.9	. 75	
V304	6 J 5	Horizontal Discharge	Pictr. Min.	3	78	-	-	8	0	5	-38	. 9	-	
V305	$\begin{gathered} 6 B G 6 \\ -G \end{gathered}$	Horizontal Output	Pictr. Min.	Cap	Do not Meas.*	8	280	3	14.0	5	-8	78	9.6	*6000 volt pulse present
V306	$\begin{gathered} 6 B G 6 \\ -G \end{gathered}$	Horizontal Output	Pictr. Min.	Cap	Do not Meas.*	8	280	3	14.0	5	-8	78	9.6	*6000 volt pulse present
V307	8016	H. V Rectifier	Brightness Min.	Cap	*	-	-	287	10.500	-	-	-	-	* 10,500 volt pulse present
			Brightness Max.	Cap	*	-	-	287	10,000	-	-	-	-	* 10,500 volt pulse present
V308	8016	H. V. Rectifier	Erightness Min.	Cap	10,000	-	-	287	20,000	-	-	-	-	
			Brightness Max.	Cap	9,500	-	-	287	19,500	-	-	-	-	
V309	8016	H. V. Rectifier	Brightness Min.	Cap	19,500	-	-	287	29,000	-	-	-	-	
			Brightness Max.	Cap	18,500	-	-	287	28.000	-	-	-	-	
V310	$\begin{gathered} 6 A S 7 \\ -G \end{gathered}$	Damper	Pictr. Min.	285	Do not	-	-	386	470	184	290	$78^{*}$	-	*Total both plates $\$ 1200$ volt pulse
V311	5V4G	Damper	Pictr. Min.	4\%6	Meas. $\ddagger$	-	-	8	570	-	-	156*	-	
V312	5 TP 4	Kinescope	Brightness Min.	Cap	29.000*	10	200	11	0	2	-98	0	-	*Measured with "VoltOhmyst"
			Brightness Max.	Cap	28.000*	10	200	11	0	2	-43	. 35	-	and high voltage multiplier probe

POWER SUPPLY CHASSIS, KRS 21A-1

V401	5U4G	Lo. V. Rectifier	Pictr. Min.	486	-	-	-	288	493	-	-	235*	-	*Total for both
V402	5U4G	Lo. V. Rectifier	Pictr. Min.	486	-	-	-	288	493	-	-	*	-	tubes
V403	5U4G	Lo. V. Rectifier	Pictr. Min.	486	-	-	-	2 \& 8	265	-	-	172	-	

[^5]$9 P C 41$


## CHASSIS VIEWS



Figure 14-R-F, I-F Cbassis Top Viow


Figwre 15-R-F, I-P Chassis Bottom Viow


Figure 18-Powar Smpply Wiring Diagram





Model 9TC2to मं ninut, Mahogany or Tonsted Mahogany


Model 9T240 Walnut, Mahogany. Toasted Mahogany or Oak

## TELEVISION RECEIVERS

 MODELS 9T240, 9TC240Chassis Nos. KCS28, KCS28A, KCS28B — Mfr. No. 274 -
Service Data

- 1949 No. T6 -

RADIO CORPORATION OF AMERICA
rCa victor division
CAMDEN, N. J., U. S. A.

## GENERAL DESCRIPTION

Model 9T240 is a "10 inch" table model television receiver. Model 9TC240 is a "10 inch" console model. These receivers employ twenty-one tubes plus 2 rectifiers and a 10BP4 kinescope. Later models of the $9 T 240$ are fitted with a special
kinescope strap which enables the kinescope to be shipped in place. In this service note, these later models will be designated as 9T240K, but they will not be so labeled in the field.

## ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE
61 sq . in. on a 10 -in. tube
RADIO FREQUENCY RANGES

Channel Number	Channel   Freq. Mc.	Picture   Carrier   Freq. Me.	Sound Carrier Freq. Mc.	Receiver R.F Osc. Freq. Mc.
2	54.60	.55.25	.59.75.	. 81
3.	60.66 .	.61.25.	65.75	87
4.	66.72	.67.25	. 71.75	93
5.	76.82	.77.25	..81.75	103
6.	82-88.	83.25	. 87.75	109
7.	174-180	175.25	179.75	201
8.	180.186.	.181.25	185.75	207
9	186-192	187.25	191.75	213
10.	192-198.	193.25	197.75	219
11.	198.204.	. 199.25	203.75	225
12.	204-210	205.25	209.75	231
13.	210-216.	211.25	215.75	. 237

FINE TUNING RANGE
From plus and minus approximately 250 kc on channel 2 to plus and minus approximately 650 kc on channel 13.
POWER SUPPLY RATING
KCS 28, KCS28A. KCS28B .......... 115 volts, 60 cycles, 250 watts AUDIO POWER OUTPUT RATING
Maximum ........................................................................... 2.4 watts
LOUDSPEAKER 92573.4 (9T240)

Type .......................... $5 \times 7$ inch Permanent Magnet Dynamic Voice Coil Imprdance ...............................3.2 ohms at 400 cycles			
LOUDSPEAKER 92569.7 (9TC240)			
Type   12 inch Permanent Magnet Dynamic   Voice Coil Impedance   3.2 ohms at 400 cycles			
DIMENSIONS (inches)	Width	Height	Depth
Cabinet (outside) 9T240	$22^{14}$	$15^{3} 8$	19\%
Cabinet (outside) 9TC240	$25^{1 / 4}$	$37^{1 / 4}$	$22^{59}$
Chassis Assembly (outside)	191/2	101/2	17
hassis (Overall)	191	13	201/2

RECEIVER ANTENNA INPUT IMPEDANCE
Choice: 300 ohms balanced or 72 ohms unbalanced.

CHASSIS DESIGNATIONS

9 T 240 uses	KCS28
9 T 240 K uses	KCS28A
	KCS28B

WEIGHT
Net with Tubes 9T240. 78 lbs : 9T240K. $78 \mathrm{lbs}: 9 T C 240.103$ lbs.
Shipping Weight-9T240. $81 \mathrm{lbs}: 9 T 240 \mathrm{~K}, 92 \mathrm{lbs}: 9 T C 240.123$ lbs.

ACA TUBE COMPLEMENT

	Tube Used	Function
(1)	RCA 6AGS	R-F Amplitier
(2)	RCA 6AG5	Converter
3)	RCA 616	R-F Oscillator
()	RCA 6AU6	1st Sound I•F Amplitier
)	RCA 6AU6	2nd Sound l-F Amplifier
(6)	RCA 6AL5	Sound Discriminator
(7)	RCA 6AV6	1st Audio Amplifier
(8)	RCA 6K6GT	Audio Outpul
(9)	RCA 6AG5	1st Picture I•F Amplitier
(10)	HCA 6AGS	2nd Picture 1-F Amplitier
(11)	HCA 6AGS	3rd Picture I-F Amplifier
(12)	RCA 6AG5	4th Picture I.F Amplifier
(13)	RCA 6ALS	Picture 2nd Detector \& Sync Liniter
(14)	RCA 12AU7	1st and 2nd Video Amplifier
(15)	RCA 6SN7GT	AGC Amplifier \& Vertical Sweep Oscillator
(16)	RCA 6SN7GT	AGC Rectifier of lst Sync Separator
(17)	RCA 6SN7GT	Syne Amplifier \& 2nd Sync Separator
(18)	RCA 6K6GT	Vertical Sweep Output
(19)	RCA 6SN7GT	Horizontal Sweep Oscillator and Control
(20)	RCA 6BG6G	Horizontal Sweep Output
(21)	RCA 5V4G	Damper
(22)	RCA 1B3-GT 8016	High Voltage Rectifier
(23)	RCA 5U4G	Power Supply Rectifier
(24)	RCA 10BP4	Kinescop

PICTURE INTERMEDIATE FREQUENCIES


SOUND INTERMEDIATE FREQUENCIES

$\qquad$HORIZONTAL SWEEP FREQUENCY.15 .750 cps
VERTICAL SWEEP FREQUENCY 60 cps
FRAME FREQUENCY (Picture Repetition Rate) ..... 30 cps


NON-OPERATING CONTROLS (not including rof \& $\mathrm{l}-1$ adjustmenta)

Horizontal Centering ..........top chassis screwdriver adjustment Vertical Centering ..............top chassis screwdriver adjustment Width ..................................rear chassis screwdriver adjustment Height .........................................................rear chassis adjustment Horizontal Linearity ..........rear chassis scrowdriver adjustment Vertical Linearity .....................................rear chassis adjustment Horizontal Drive ..................rear chassis screwdriver adjustment Horizontal Osc. Freq. ..........................bottom chassis adjustment Horizuntal Osc. Waveform ....................side chassim adjustment Horizontal Locking Range ......................rear chassi adjustment Focus .............................................. ........rear chassis adjustment Ion Trap Magnet .......................................top chassis adjustment Deflection Coil .............................iop chassis wing nut adjustment AGC Threshold Control .........top chassis adjustment on 9T240: rear chasmin adjustruent on 9TC240

## HIGH VOLTAGE WARNING

OPERA TION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH-VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH-VOLTAGE COMPARTMENT SHIELD REMOVED.

## KINESCOPE HANDLING PRECAUTIONS

DO NOT OPEN THE KINESCOPE SHIPPING CARTON, INSTALL. REMOVE OR HANDLE THE KINESCOPE
IN ANY MANNER UNLESS SHATTERPROOF GOGGLES AND HEAVY GLOVES ARE WORN. PEOPLE
NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE
AWAY FROM THE BODY WHILE HANDLING.

The kinescope bulb encloses a high vacuum and, due to its large surface area, is subjected to considerable air pressure. For this reason, kinescopes must be handled with more care than ordinary receiving tubes.

The large end of the kinescope bulb-particularly that part at the rim of the viewing suriace-muat not be struck, scratched or subjected to more than moderate pressure at any time. In installation, if the tube sticks or fails to slip smoothly into its socket. or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Refor to the feceiver Installation secution for detailed instructions on kinescope installation. All RCA kinescopes are shipped in special cartons and should be lof in the cartons until ready for installation in the receiver. Keep the carton for possible future use.


Figure 8-R.F Unit Wiring Diagram

## CRITICAL LEAD DRESS:

1. The ground bus from pin 2 and the center shield of V117 socket should not be shortened os resouted.
2. Do not change the dress of the filament leads or the by* pass capacitors in the picture or sound i-f circuits. The filament leads between V117. V118 and V119 should be down against the chassis and away from grid or plate leads.
3. If it is necessary to replace any of the 1500 mm capacitors in the picture i-f circuit, the lead length must be kept as short as possible.
4. Picture i-f coupling capacitore $\mathrm{Cl} 106, \mathrm{C} 111, \mathrm{C} 115$ and Cl 21 should be up and away from the chassis and should be clear of the pix i-f transformer adjustments by at least $1 / 4$ inch. It the dress of any of these capacitors is changed, the i-f alignment should be rechecked.
5. Leads to L102 and L103 must be as short as possible.
6. Dress peaking coils Ll05, Ll06 and L107 up and away from the chassia.
7. Dress Cl83 across tube pins 5 and 6 with leads not exceeding $3 /$ inch.
8. Dress the blue lead from pin 5 of V119 down against the chassis.
9. Dress C129 and C130 up and away from the chassis.
10. Dress the yellow lead from the picture control away from the chassin and away from the volume-conizol leads. Dress the yellow lead from pin 8 of V106 away from the chassis.
11. Dress the green lead from pin 2 of V106 away from the chassis.
12. Dress R168, R169, R170, R176 and R178 up and away from the chassis.
13. The leads to the volume control should be dressed down against the chassis and away from V117 and V118.
14. Contact between the r-f oscillator frequency adjustment screws and the oscillatoz coils os channel switch eyelet must be avoided.
15. Dress leads from L110 (width control coil) away from the transformer frame.
16. Dress Tllo winding leads as shown in Figure 9.


Figure 9—T 110 Lead Dress

Tube No.	$\begin{aligned} & \text { Tube } \\ & \text { Type } \end{aligned}$	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		$\stackrel{1}{\text { Plate }}$$(m a)$		Noter on Measuramente
				Pin   No.	Volts	Pla   No.	Volts	Pin   No.	Volte	Pin   No.	Volta			
V109	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Sync Amplifier	$\begin{gathered} 2200 \text { Mu. V. } \\ \text { Signal } \end{gathered}$	2	158	-	-	3	0	1	$-4.7$	5.25	-	
			No Signal	2	154	-	-	3	0	1	-5.2	3.75	-	
V109	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Sync   Separator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	230	-	-	6	-51	4	-106	. 4	-	
			No Signel	5	215	-	-	6	-59	4	-80	. 35	-	
V110	$\begin{aligned} & \text { 6K6. } \\ & \text { GT } \end{aligned}$	Vertical Output	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	3	223	4	223	8	-67	5	-91		-7.85	-Scres
			No Signal	3	208	4	208	8	-79	5	-101		-7.7	connected to plate
V111	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Horizontal Osc. Control	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	2	$\cdot 48$	-	-	3	-110	1	-92	. 2	-	- Variation of hold gives
			No Signal	2	$\bullet 33$	-	-	3	-120	1	-108	. 2	-	$-21.910+56$ volt on plate
V111	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Horizontal Oscillator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	70	-	$\checkmark$	6	-111	4	-185	2.4	-	
			No Signal	5	54	-	$\checkmark$	6	-120	4	-192	2.4	-	
V112	6BG6G	Horizontal Output	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	Cap	-	8	160	3	-104	5	-101	93.5	11.5	-5200 volt
			No Signal	Cap	Do Not Meas.	8	142	3	-113	5	-112	90.8	11.2	pulse present
V113	$\begin{aligned} & \text { 183GT } \\ & 18016 \end{aligned}$	H. V. Rectifier	Brightnes: Min.	Cap	.	-	-	287	8500	-	-	0	-	-8500 voll
			Brightness Average	Cap	Do Not Meas.	-	-	287	8400	-	-	. 1	-	pulse present
V114	5V4G	Damper	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	486	.	-	-	288	339	-	-	94.5	-	- 1200 volt
			No Signal	486	Do Not Meas.	-	-	288	322	-	-	92	-	pulse present
V115	5U4G	Rectilier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Siqnal } \end{gathered}$	486	390	$\rightarrow$	-	288	291	-	-	225	-	-A.C meas. ured from plate
			No Signal	486	390	-	-	288	272	-	-	230	-	to trans. center tap
V116	6AU6	1st Sound I.F Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Sigaal } \end{gathered}$	5	134	6	134	7	. 9	1	0	8.2	3.3	
			No Signal	5	110	6	110	7	. 7	1	0	5.7	2.6	
V117	6AU6	2nd Sound   I-F Amplifier	$2200 \mathrm{Mu} . \mathrm{V} \text {. }$   Signal	5	148	6	90	7	0	1	-9	1.6	. 8	
			No Signal	5	115	6	60	7	0	1	-. 65	3.35	1.15	
V118	6ALS	Sound Discrim.	2200 Mu . V. Sianal	2	-8.4	-	-	5	5.8	-	-	-	-	
			No Signal	2	-2.0	-	-	5	. 41	-	-	-	-	
			2200 Mu . V. Siqnal	7	-3.7	-	-	1	0	-	-	-	-	
			No Signal	7	-1.08	-	-	1	0	-	-	-	-	
V119	6AV6	lst Audio Amplifier	$2200 \mathrm{Mu} . \mathrm{V}$. Signal	7	85	-	-	2	0	1	-. 89	. 49	-	
			No Signal	7	83	-	-	2	0	1	-. 89	. 4	$\cdots$	
V120	$\begin{aligned} & \text { 6K6- } \\ & \text { GT } \end{aligned}$	Audio Output	2200 Mu . V. Signal	3	102	4	113	8	-99	5	-108	19.3	3.3	
			No Sianal	3	72	4	80	8	-111	5	-114	18	3	
V121	108P4	Kinescope	2200 Mu. V. Signal	Cap	-8400	10	339	11	51	2	20	. 1	-	- Average Brightaens
			No Signal	Cap	-	10	322	11	42	2	14	-	-	Average Brightness
			$2200 \mathrm{Mu} . \mathrm{V} \text {. }$   Signal	Cap	-	10	339	11		2		. 4	-	Maximum Brightaese
			2200 Mu . V. Signal	Cap	-8500	10	339	11		2		0	-	Minimum Brightuess

## 9T240, 9TC240

## VOLTAGE CHART

The following measurements represent two sets of conditions. In the first condition a 2200 microvolt tent pattern signal was fed into the recoiver, the picture was synced and the KGC threshold control was properly adjusted. The second condition was obtained by removing the antenna leads and short-circuiting the receiver antonna terminals. Voltages shown are as read with "Ir. Voltohmyst" between the indicated terminal and chasele ground and with the receiver operating on 117 volts, 60 cycles a-c.

Tube Na.	Tube Type	Function	Operating Condlition	E. Plate		E. Screen		E. Cathode		E. Grid				Noles am Measuromeate
				Pin No.	Volts	Pin Na.	Volt	PLa No.	Volte	Pin No.	Volts			
V1	6AG5	B-F Ampllier	$2200 \mathrm{Mu} . \mathrm{V}$. Signal	5	146	6	148	267	0	1	-4.9	. 72	. 33	
			No Signal	5	85	6	120	267	0	1	-0.4v	12.0	4.0	
V2	6RG5	Converter	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	$\begin{aligned} & \cdot 130 \\ & \text { to } 140 \end{aligned}$	6	$\begin{aligned} & \cdot 130 \\ & \text { to } 140 \end{aligned}$	267	0	1	$\begin{gathered} -3.0 \\ \text { to }-7.0 \\ \hline \end{gathered}$	$\begin{gathered} 7.1 \\ \text { to } 7.7 \end{gathered}$	$\begin{gathered} \bullet 2.3 \\ 10 \quad 2.7 \end{gathered}$	- Depending upon chanael
			No Signal	5	$\begin{aligned} & .104 \\ & \text { to } 109 \end{aligned}$	6	$\begin{gathered} .104 \\ \text { to } 109 \end{gathered}$	267	0	1	$\begin{aligned} & -2.0 \\ & \text { to }-6.0 \end{aligned}$	$\begin{gathered} \text { } 5.3 \\ \text { to } 5.9 \end{gathered}$	$\stackrel{.8}{10} \stackrel{1.0}{ }$	
V3	6 J 6	R.F   Oscillator	$2200 \mathrm{Mu} . \mathrm{V}$. Sigmal	162	$\begin{gathered} 88 \\ \text { to } 95 \end{gathered}$	-	-	7	. 19	566	$\begin{gathered} -5.1 \\ \text { to }-7.3 \end{gathered}$	$\begin{gathered} 1.9 \\ \text { to } 2.7 \\ \hline \end{gathered}$	-	- Depending upon channel
			No Sigmal	182	$\begin{gathered} 68 \\ \text { to } 81 \end{gathered}$	-	-	7	. 16	586	$\begin{gathered} \cdot-4.5 \\ \text { to }-6.6 \end{gathered}$	$\begin{gathered} 1.8 \\ 10 \quad 2.1 \end{gathered}$	-	
V101	6AG5	$\begin{aligned} & \text { 1st Pix. I-F } \\ & \text { Amplifer } \\ & \hline \end{aligned}$	$2200 \mathrm{Mu} . \mathrm{V} .$	5	141	6	141	287	. 07	1	-3.9	. 8	. 22	
			No Sipacil	5	108	6	108	267	. 11	1	-. 09	4.97	1.73	
V102	6^G5	2d Pix. I-F Amplifior	$2200 \mathrm{Mu} . \mathrm{V} .$ Signal	5	130	6	130	287	. 86	1	0	9.48	3.12	
			No Signal	5	106	6	106	287	. 6	1	0	7.6	2.6	
V103	6AGS	3d Pix. I-F Amplifier	$2200 \mathrm{Mu} . \mathrm{V} .$   Signal	5	130	6	140	247	. 03	1	-3.9	. 51	. 09	
			No Slgnal	5	94	6	109	287	. 11	1	-. 09	3.92	1.5	
V104	6AG5	4th Pix. I-F Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	175	6	145	267	1.38	1	0	7.0	2.0	
			No Sigral	5	167	6	109	267	. 95	1	0	5.7	1.5	
$\begin{gathered} \text { V105 } \\ \quad \AA \end{gathered}$	6AL5	Picture   2d Det.	$2200 \mathrm{Mu} . \mathrm{V} .$   Signal	7	-113	-	-	1	-112	-	-	. 48	-	
			No Signal	7	-120	-	-	1	-120	-	-	-	-	
$\begin{gathered} \text { V } 105 \\ \text { B } \end{gathered}$	6RL5	Sync Limiter	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	2	-107	-	-	5	-56	-	-	-	-	
			No Signal	2	-80	-	-	5	-60	-	-	-	-	
V106	12^U7	lat Video Amplitier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Sio ul } \end{gathered}$	1	-23.2	-	-	3	-111	2	-113	4.38	-	
			No Sigaal	1	-19.2	-	-	3	-117	2	-120	3.82	-	
V106	12月U7	2d Video Amplitier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	6	${ }^{1} 166$	-	-	8	$\bullet-5.3$	7	- -12.2	6.2	-	- At average contrast
			No Signal	6	*134	-	-	8	- -5.6	7	$\bullet-10.3$	6.9	-	
$\begin{gathered} \text { V } 107 \\ \text { A } \end{gathered}$	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	ACG Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \\ \text { Signal } \end{gathered}$	5	-17.9	-	-	6	-55.5	4	-56.5	. 9	-	
			No Signal	5	$-5.2$	-	-	6	-60	4	-64	. 3	-	
$\begin{gathered} \text { V107 } \\ \text { B } \\ \hline \end{gathered}$	$\begin{aligned} & \text { GSN7 } \\ & \text { GT } \end{aligned}$	Vertical Oscillator	2200 Mu. V. Signal	2	76	-	-	3	-111	1	-158	. 2	-	
			No Signal	2	62	-	-	3	-120	1	-169	. 2	-	
V108	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	AGC Rectilior	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	97	-	-	6	-3.4	4	-19.3	. 3	-	
			No Signal	5	81	-	-	6	-8.7	4	-19.3	. 28	-	
V108	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	lst Sync Separator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Sigmal } \\ \hline \end{gathered}$	2	96	-	-	3	-1.8	1	-19.5	. 1	-	
			No Signal	2	81	-	-		-9.7	1	-19.3	. 1	-	



Figure 7-Chassis Bottom View


Figure 6-Chassis Top View
wise position, the picture should be out of sync and should show 1 vertical or diagonal black bar in the raster.

It the receiver passes the foregoing checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Centering Adjustment."

ALIGNMENT OF HORIZONTAL OSCILLATOR.-If in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or falled to hold sync over 90 degrees of clockwise rotation of the control from the pull-in point, it will be necessary to make the following adjustments:

Horisontal Frequency Adjustmeat.-Tum the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the Tl09 horizontal frequency adjustment (under the chassis) until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster.

Horizontal Lock in Range Adjustment.-Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 3 bars are present just belore the picture pulls into sync, adjust the horizontal locking range trimmer C153A slightly clockwise. It less than 3 bars are present, adjust C153A slightly counter-clockwise. Turn the picture control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull in point. Repeat this procedure until 3 bars are present.

Repeat the adjustments under "Horizontal Frequency Ad. justment" and "Horisontal Locking Range Adjustment" until the conditions specified under each are fultilled. When the horizontal hold operates as outlined under "Chock of Horizontal Oscillator Alignment" the oscillator is properly adjusted.

If it in impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure For field purposes paragraph "A" under Horizontal Oscillator Wavelorm Adjustment may be omitted.

CENTERING ADJUSTMENT.-No electrical centering controls are provided. Centering is obtained by mechanically orienting the focus coil with the three adjustment screws shown in Fig. ure 3. Center the picture on the screen by adjustment of these screws. The focus coil should be concentric around the neck of the kinescope to prevent curvature of the raster, and toward the seas of the secsives as fas as possible to produce bettes overall focus.

FOCUS COIL ADJUSTMENTS.-If, aftes making the centering adjustments described in the above paragraph, a corner of the picture is shadowed, it will be necessary to loosen the focus coil mounting screws (shown in Figure 3) and change the position of the coil to eliminate the shadow. Recenter the picture by adjustment of the centering screws.

Recheck the position of the ion trap magnet to insure that maximum brilliance is obtcined.

HEIGHT AND VERTICAL LINEARITY ADTUSTMENTS.-Adjust the height control (R155 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R162 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjusi. ment of the other. Adjust centering to align the picture with the mask.

WIDTH. DRIVE AND HORIZONTAL LINEARITY ADTUST. MENTS.-Adjust the horizontal drive control Cl53B to qive a pleture of maximum width within the limite of good linearity. Adjust the horizontal linearity control Llll to provide beat linearity. Adjust the width control until the picture just fill the mask.

Adjustments of the horisontal drive control affect horizontal oscillator hold and locking range. It the drive control was adjusted, recheck the oncillator allignmont.

FOCUS.-Adjust the focus control (R191 on chassis rear apron) for maximum definition in the lest pattern vertical "wedge" and best focus in the white areas of the pattern.

CHECK TO SEE THAT THE CUSHION AND YOKE ADJUST. ING SCREWS AND THE FOCUS COIL MOUNTING SCREWS ARE TIGKT.

AGC THRESHOLD CONTROL-The AGC threshold control R138 is adjusted at the factory and normally should not require readjustment in the field.

To check the adjustment of the AGC Threshold Control, tune in a strong signal, syac the picture and turn the picture control to the maximum clockwise ponition. Turn the brightness control counter-clockwise until the vertical retsace lines are just invisible. Momentarily remove the signal by switching off channel and then back. If the picture reappears immediately, the receiver is nol overloading due to lmproper setting of R138. If the picture requiren an appreciable portion of a second to reappear, R138 should be readjusted.

The following adjustmeat proceduse applies verbatim for the 9T240, but for the STC240, the AGC control should, in each case, be rotated in a direction oppoaile to that given below.

Set the picture control at the mazimum clockwine poaition. Turn R138 fully counter-clockwise. The top one-half inch of the picture may be bent slightly. This should be disregarded. Tun R138 clockwise until there is a very, very slight bend or change of bend in the top one-hall inch of the picture. Then turn R138 counter-clockwise just sufficiently 10 romove this bend or change of bend.

If the signal is very weak, the above method may not work as it may be impossible to get the picture to bend. In this case, turn R138 clockwise until the now in the picture bocomen more pronounced, then counter-clockwise until the best signal to aoise ratio is obtained.
The AGC control adjustment should be made on a strong signal if possible. It the control in set too far clockwine on a weak signal, then the receiver may overload when a strong signal is received.

Replace the cabinet top on Models 9T240 and 9T240K. Re. check picture centering after the lop is replaced. Replace the cabinet back.

CHECR OF R-F OSCILLATOR ADTUSTMENTS.-Tune in all available stations to see if the receiver r.foscillator is ad. justed to the proper frequency on all channels. If adjustmente are required, these should be made by the method outlined in the alignment procedure

The adjustmente for channels 2 through 5 and 7 thsough 12 are available from the front of the cabinet by romoving the station selector escutcheon as shown in Figure 5. Adjustment for channel 13 is on top of the chassis and channel 6 adjustment in in the kinescope well.


Figure 5-R-F Oscillator Adjustments

Insert the kinescope until the face of the tube protrudes approximately one-quarter of an inch outside the tront of the cabinet. Adjust the four centering slides until the face of the kinescope is in the center of the cabinet opening. Tighten the four slides securely.

Wipe the kinescope screen suriace and front panel safely glass clean of all dust and finger marks with a soft cloth moistened with the Drackett Co.'s "Windex" or similar cleaning agent.

Install the cabinet front panel by reversal of the procedure indicated in Figure 2. Press on the knobe.

Slip the kinescope as far forward as possible. Slide the kinencope cunhion firmly up againat the flare of the tube and tighten the adjustment wing screws. Slide the deflection yoke as far forward as possible.

Connect the high voltage lead to the kinescope second anode socket.

The antenna and power connections should now be made.
Turn the power switch to the "on" position, the brightnens control fully clockwise, and the picture control counterclockwise. Proceed now to "ION TRAP MAGNET ADJUST. MENT."

## INSTALLATION INSTRUCTIONS FOR MODELS 9T240K AND 9TC240

Models 9T240K and 9TC240 are shipped complete in card. board cartons. The kinescope is shipped in place in the receiver.

UNPACEING.-To unpack the 9T240K, tear open the carton flaps. pick up the receiver from under the bottom of the cabinet, and lift it out of the shipping carton. To unpack the 9TC240. turn the shipping carton on its side and tear open the carton bottom Iaps. Fold the flaps up alonq the side of the carton and turn the carton back up. Lift the carton up and off the cabinet. A flat skid is attached to the bottom of the 9TC240. To remove the skid, remove the two nuts from the skid bolts on the inside bottom of the cabinet. Then, with a man at each end of the cabinet. lift the cabinet of the skid.

Take off the cabinet top and back, taking care to unplug the speaker in the 9T240K as the top is removed (the 9TC240 top is not removable). The front paneln of the 9T240K and the 9TC240 are not removable. The operating control knobe are packed in a bag which is tied to the inside of the cabinet. Remove the bag and install the knobs. Remove the protective cardboard shields from the SU4G rectifier tube and the neck of the kinescope.

Connect the antenna and plug the power cord into a 115 volt a-c source. Turn the power switch to the "on" position. the brightnes control fully clockwise, and the picture control counterclockwise. Proceed now to "ION TRAP MAGNET ADJUSTMENT."

CHASSIS REMOVAL.-To remove the chasais from the 9T240K or the 9TC240 for repair or infallation of a new
kinescope, remove the back and the knobs, unplug the speaker cable, and remove the six chasais bolte under the cabinet. Unclip the jowel light on the 9TC240, and pull the cable up through the hole in the chaseis shelf. Withdraw the chassis from the back of the cabinet. The kinescope is held on the chassis by means of a special strap, so that the chasels and the kinescope can be handled together, as a unit.
To remove the kinescope, remove the kinescope socket, the ion-trap magnet, and the second-anode connector. Loosen the cross-recessed head screw on the kinescope strap. al shown an Figure 6. Withdraw the kinescope toward the front of the cacsels.

To replace the chassis in the cabinet, firat remove the shipping screws from the yoke mounting as shown in Figure 3 (lit is not necessary to remove these during installation), and loosen the cushion adjusting screws. Slide the cushion toward the rear of the chasels, and insort the kinescope. Tighton the croas-recested head screw on the kinescope strap. Sude the chastis into the cabinet, then insert and tighten the six chasale bolta. Loosen the rinescope strap. In the 9T240K, this can be done through the top of the cabinet. In the 9TC240, this cam be done from the rear of the cabinot, or from the bottom through a hole in the chasis shell. The bottom end of the crons-recessed head screw is slotted to fit a serewdriver. Push the kinescope forward until the face of the tube is against the mask. Push the yoke cushion forward aqainst the kinescope flare. then tighten the cushlon adjusting screws. Tighten the kinescope strap, then replace the knobs, the iontrap magnet, the second-anode connector, and the kinescope socket.

ION TRAP MAGNET ADIUSTMENT.-Looking at the kinescope gun structure. it will be observed that the second cylinder from the base inside the glass neck is provided with two small metal flags.

The ion trap rear magnet poles should be approximately over the ion trap flags. Starting from this position adjust the magnet by moving it forward or backward af the same time rolating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightaess control setting until the raster is shghtly above average brilliance. Adjust the focur contzol (R191 on the chasil rear apron) until the line structure of the ramter is clearly vinible. Readjust the ion trap maqnet for maximum ranter brilliance. The final touches on this adjustment should be made with the brightneas control of the maximum poaition with which good line focus can be mainicined.


Figure 4-Rear Chassis Adjustments

DEFLECTION YOKE ADJUSTMENT. - If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tiqhten the yoke adjustment wing screw.

PICTURE ADIUSTMENTS.-It will now be necessary to obtain a test pattern picture in order to make further adjustments. See steps 3 through 9 of the receiver operating instructions on page 3.

If the Horizontal Oncillator and AGC System are operating properly. it should be possible to sync the picture at this poirt. However. il the AGC threehold conirol is misadjusted, and the receiver is overloading, it may be imposable to syac the picture.

If the receiver is overloading. Iurn R138 (on top of the chamels for the 9T240; on the rear aprom for the 9TC240, see Figure 6) countor-clockwise for the 9 T240 and clockwise for the 9TC240 until the set operates nomally and the picture cam be syaced.

CHECE OF HORLZONTAL OSCLLLATOR ALIGNMENT.-TUR the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of syac. Turn the control clockwise slowly. The number of diagonal black bar will be gradually reduced and when only 3 bars sloping downward to the left are obtained, the picture will pull into sync upon elioht addittonal clockwise rotation of the control. Pull in should occur when the control is approximately 90 degreen from the extreme counter-clockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clock.

The following adjustments are necessary when turning the receiver on for the first time:

1. See that the TV.PH switch on the rear apron is in the "TV" position.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid-position.
3. Adjust the PICTURE control for suitable picture contrast.
4. Atter the receiver has been on for some time, it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.
5. In switching from one station to another, it may be necessary to repeat steps 4 and 9.
6. Set the STATION SELECTOR to the desired channel.
7. Adjust the FINE TUNING control for best zound lidelity and the SOUND VOLUME control for suitable volume.
8. Turn the BRIGHTNESS control fully counterclockwise, then clockwise until a light pattern appears on the screen.
9. Adjust the VERTICĀL hold control until the pattern stops vertical movement.
10. Adjust the HORIZONTAL hold control until a picture is obtained and centered.
11. Turn the BRIGHTNESS control counterclockwise until the retrace lines just disappear.


Figure 1-Receiver Operating Controls
12. When the set is turned on again after an idle period, it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. Il any adjustment is necessary. step number 4 is generally sufficient.
13. If the positions of the controls have been changed, it may be necessary to repeat steps 2 through 9 .
14. To use the instrument with a record player, plug the recordplayer output cable into the PHONO jack on the rear apron. and set the TV.PH switch on "PH."

## INSTALLATION INSTRUCTIONS FOR MODEL 9T240

Model 9T240 television receiver is shipped complete in one carton except for the 10BP4 kinescope. The kinescope is shipped in a special carton and should not be unpacked until ready for installation.

UNPACKING.-To unpack the receiver, tear open the carton flaps, pick the receiver up from under the bottom of the cabInet and lift it out of the shipping carton.

Take off the cabinet top and back, taking care to unplug the speaker as the top is removed. Hemove the cabinet front panel as shown for Model 9T240 in Figure 2.

Remove the operating control knobs, which are packed in a paper bag tied to the inside of the cabinet brace.


Figure 2-Cabinet, Front View
Femove the protective cardboard shield from the 5U4G rectifier. Make sure all tubes are in place and are firmly seated in their sockets. Remove the two sell-tapping screws from the kinescope cushion slide as shown in Figure 3.

Loosen the two kinescope cushion adjustment wing screws and slide the cushion toward the rear of the chassis. Loosen the deflection yoke adjustment, slide the yoke toward the rear of the chassis, and tighten.

From the front of the cabinet. look through the deflection yoke and check the alignment of the focus coil with the yoke.

If the focus coil is not in line, loosen the two focus coil mounting screws and move the coil until alignment is obtained. Tighten the mounting screws with the coil in this position.


Figure 3-Yoke and Focus Coil Adjustments
Loosen the two lower kinescope face centering slides, and set them at approximately mid position. See Figure 2 for location of the slides and their adjustment screws.

INSTALLATION OF RINESCOPE.-The kinescope second anode contact is a recessed metal well in the side of the bulb. The tube must be installed so that this contact is up but rotated approximately 30 degrees toward the high.voltage compartment.

Insert the neck of the kinescope through the deflection and focus coils until the base of the tube protrudes approximately two inches beyond the focus coil. If the tube sticks, or tails to slip into place smoothly, investigate and remove the cause of the trouble. Do not force the tube.

Slip the ion trap magnet assembly over the neck of the kinescope with the large magnet toward the base of the tube and with the arrow on the assembly up as shown in Figure 3. The front magnet is movable on the assembly. The correct position of the front magnet is with the gap on the side toward the high-voltage compartment. The gap of the large rear mag. net should be on the opposite side and 180 degrees from the gap of the small magnet.

Connect the kinescope socket to the tube base.



smock	dsscmprox	${ }_{\text {cosem }}^{\text {spock }}$	рвscaproor
	Coict	${ }_{132}$	${ }_{\text {coil }}^{\text {coil }}$
	and	${ }^{7128}$	
	边	71521	
	600 volis（C181） Capacitor－Tubular，moulded	338	
	and		
${ }_{3} 380$			
		$\xrightarrow{12120}$	
${ }_{\text {rassa }}$		2910	$\begin{aligned} & \text { (R158. R173) } \\ & \text { Control-Picture control. volu } \\ & \text { switch (R122. R205. S101) } \end{aligned}$
		$\xrightarrow{n}$	come
			込
	Comat reame mided		comen
			为
2			
	.047 mid．．． 600 volts（ClSO． Capacitor－Tubular．moulded .047 mid．． 1000 volts（C165）		come
			Nomben
		${ }^{2151}$	
万sso	600 volts（C131）	2308	foter
9385	Comedeme		隹
	comer		Ratilem
cinctin			
	为		Sole
	（caseme		
	为		Noterem
	C146B．Cl46C．Cl46D）	${ }^{2325}$	\%
，	coin		
$\underset{\substack{21408 \\ 4102}}{2,0}$	（eat		amm


		rs 1	S240，922000，9rcato
spock	गuscantiox	${ }_{\text {cosec }}^{\text {spock }}$	orscarrion
			nemeremen
			$1 / 2$ watt（R140．R200） Resislor－Fixed．composition．
	and		
	为－		
			netitememiaime
	Nomen		
			Remen
		${ }_{\text {\％asis }}$	
		${ }_{\text {cose }}$	
			Somele
		473	semp
	an miso	\％	
		73s2	R．101） Transformer－Second pix 1．F transformer（T102．
			$\xrightarrow{\substack{\text { a }}}$
	$\begin{aligned} & \text { 160. R216) } \\ & \text { d. composition. } 100.000 \text { ohms } \\ & \text { 203. R204) } \end{aligned}$	${ }_{23585}^{235}$	
		$\underset{\substack{\text { prsse } \\ \text { zsse }}}{ }$	
	mide		




ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE ....... 87 square inches on a 12LP4 Kinescope


RECEIVER ANTENNA INPUT IMPEDANCE
Choice: 300 ohms balanced or 72 ohms unbalanced.
RCA TUBE COMPLEMENT


Kinescope

The following adjustments are necessary when turning the receiver on for the first time:

1. See that the TV.PH switch on the rear apron is in the "TV" position.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid-ponition.
3. Adjust the PICTURE control for suitable picture contrast.
4. After the receiver has been on for some time, it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.
5. In switching from one station to another, it may be necessary to repeat steps 4,8 and 9.
6. Set the STATION SELECTOR to the desired channel.
7. Adjust the FINE TUNING control for best sound fidelity and the SOUND VOLUME con. trol for suitable volume.
8. Turn the BRIGHTNESS control fully counter-clockwise, then clockwise until a light pattern appears on the screen.
9. Adjust the VERTICAL hold control until the pattern stops vertical movement.
10. Adjust the HORIZONTAL hold control until a picture is ob. tained and centered.
11. Tum the BRIGHTNESS control counter-clockwise until the retrace lines just disappear.

12. When the set is turned on again after an idle period. it hould not be necessary to re . peat the adjustments if the positions of the controls have not been changed. If any adjustment is necessary. stop number 4 is generally sufficient.
13. If the positions of the controls have been changed, it may be necessary to repeat steps 2 through 9.
14. To use the instrument with a record player, plug the recordplayer output cable into the PHONO jack on the rear apron, and sel the TV.PH switch on "PH." Set the TV-PH switch back to TV on completion of the rec. ord program.


#### Abstract

HIGH VOLTAGE WARNING OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRE. CAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.


## KINESCOPE HANDLING PRECAUTIONS

DO NOT OPEN THE KINESCOPE SHIPPING CARTON, INSTALL, REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING RINESCOPES. REEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

The kinescope bulb encloses a high vacuum and, due to its large surface area. in subjected to conslderable alr pressure. For this reason. kinescopes murt be handied wilh more care than ordinary recoiving tubes.

[^6]Models 9TC245. 9TC247 and 9TC249 recoivers employing KCS34B are shipped complete in one carton with the kinescope in place in the cabinet. Model 9TC247 and 9TC249 receivers employing KCS34 have the kinescope shipped separately in a special carton which should not be opened until ready for installation.

UNPACKING. - These receivers are packed in a cardboard carton. To unpack, turn the shipping carton on its side and tear open the carton bottom flaps. Fold the flaps up along the side of the carton and turn the carton back up. Lift the carton up and off the cabinet.

Remove the cabinet back grille. Take off the two nut on the bolts holding the cabinet on the skid. With a man on each side of the cabinet, lift the receiver up and off the skid.

Remove the protective cardboard shield from the 5U4G rectifier. Remove all shipping material. Remove the envelope containing the control knobs and ion trap magnet.

When installing recaivers employing KCS34B, skip the remainder of the unpacking and kinescope installation instructions and proceed with antenna and power connections.

The following kinescope installation instructions are given for receivers employing KCS34 chassis:

To remove the front panel, loosen the two wingnuts inside the cabinet and lum the two locking plates to vertical as shown in Figure 2. Tilt the panel out at the lop.
TO REMOVE FRONT PANEL, LOOBEN WINGNUTS ANO TURN LOCKING PLATE


Figure 2-Cabinel, Front View
Remove the two self-tapping screws from the kinescope cushion slide as shown in Figure 3.

Loosen the two kinescope cushion adjustment wing screws and slide the cushion toward the rear of the chassis. Loosen the deflection yoke adjustment, slide the yoke toward the rear of the chassis and tighten.


Figure 3-Yoke and Focus Coil Adjustments
From the front of the cabinet. look through the deflection yoke and check the allgnment of the focus coil with the yoke. If the tocus coil is not in line, loosen the two locut coil mounting screws and move the coil until alignment is obtained. Tighten the mounting screws with the coil in this position.

Loosen the two lower kinescope face centering slides, and set them at approximately mid-pomition. See Figure 2 for loca-
tion of the slides and their adjustment screws. Loosen the two upper slides, slip them up as far as possible and tighten.

KINESCOPE HANDLING PRECAUTION. - Do not open the kinescope shipping carton, install, remove, or handle the kinescope in any manner, unless shatter-proot goggles and heavy gloves are worn. People not so equipped hould be kept away while handling the kinescope. Keep the kinescope away from the body while handling. The shipping carton should be kept for use in case of future moves.

INSTALLATION OF KINESCOPE. - The kinescope second anode contact is a recessed metal well in the side of the bulb. The tube must be installed so that this contact is up but rotated approximately 30 degrees toward the high voltage compartment.

Insert the neck of the kinescope through the deflection and focus coils as shown in Figure 4 until the base of the tube protrudes approximately two inches beyond the focus coil. If the tube sticks, or fails to slip into place smoothly, investigate and remove the cause of the trouble. Do not force the tube.


Figure 4-Kinescope Insertion

Slip the ion trap magnet assembly over the neck of the kinescope with the. large magnet towards the base of the tube and with the arrow on the assembly up as shown in Figure 3.

Connect the kinescope socket to the tube buse.
Insert the kinescope until the face of the tube protrudes ap. proximately one-quarter of an inch outside the front of the cabinet. Adjust the four centering slides until the face of the kinencope is in the conter of the cabinet opening. Tighten the four slides eecurely.

Wipe the kinescope screen suriace and front panel safety glass clean of all dust and finger marks with a soft cloth moistened with the Drackett Co.'s "Windex" or similar cleaning agent.

Install the front panel by reversal of the procedure indicated in Figure 2.

Slip the kinescope as far forward as possible. Slide the kinescope cushion firmly up against the flare of the tube and tighten the adjustment wing screws. Slide the deflection yoke as far forward as possible. If this is not done, difficulty will be encountered in adjusting the ion trap magnet and focus coil due to shadows on the corners of the raster.

Connect the high voltage lead to the kinescope second anode contact.

Make sure all tubes are in place and are firmly seated in their sockets.

ANTENNA AND POWER CONNECTIONS. - Connect the leads from the antenna to the receiver antenna terminals.

Install the front panel control knobs.
Make sure that the receiver power switch is in the off position. Plug the receiver power cord into a 115 volt 60 cycle a-c outlet.

WRRNING. - The high voltage supply in this receiver delivers 10,000 volte! A.C. interlocks are provided at the back of the set so that when the back is removed - so is the power.

ION TRAP MAGNET ADJUSTMENT. - Looking at the kine scope gun structure, it will be observed that the aecond cylinder from the base inside the glass neck is provided with two small motal llags, as shown in Figure 5. The ion trap rear magnet poles should be approximately over the ion trap flags.


## Figure 5-Ion Trap Flags

Turn the power switch to the "on" position, the brightness control three-quarters clockwise, and picture control fully counter-clockwise.

Immediately adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust the focus control (Ri91 on the chassis rear apron) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches on this adjustment should be made with the brightness control at the maximum position with which good line focus can be maintained.


Figure 6-Rear Chassis Adjustments
DEFLECTION YOKE ADJUSTMENT. - H the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE RDJUSTMENTS. - It will now be necessary to obtain a test pattern picture in order to make further adjustments. See steps 3 through 9 of the receiver operating instructions on page 2.

If the Horizontal Oscillator and AGC System are operating properly, it should be possible to syac the picture at this point. However, if the AGC threshold control is misadjusted, and the receiver overloading, it may be impomsible to syac the picture.

If the receiver is overloading, turn R138 (on the rear 'of the chassis. see Figure 6) clockwise until the sel operates nor. mally and the picture can be synced.

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT. Turn the horizontal hold control to the extreme counterclockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be grad. ually reduced and when only 3 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull-in should occur when the control is approximately 90 degrees from the extreme counterclockwise position. The picture should remain in sync for approzimately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should be out of sync and should show I vertical or diagonal black bar in the raster.

If the receiver passes the above checks and the picture is normal and stable, the horizontal oncillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Focus Coil Adjustrment."

ALIGNMENT OF HORIZONTAL OSCILLATOR. - If in the above check the receiver lailed to hold sync with the hold control at the extreme counterclockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull-in point, it will be necessary to make the following adjustments.

Horizontal Frequency Adjustment. - Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the Tl09 horisontal frequency adjustment (under the chassis) until the picture is just out of sync and the horizontal blanking appears as a vertic zl or diagonal black bar in the raster.

Horizontal Lock in Range Adjustment - Set the horinontal hold control to the full counterclockwise position. Momentarily remove the signal by switching off channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 3 bars are present just belore the picture pulls into sync, adjust the horizontal locking range trimmer CI53A slightly clockwise. If less than 3 bars are present, adjust C153A slightly counterclockwise. Turn the picture control counterclock. wise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 3 bars are present.
Repeat the adjustments under "Horisontal Frequency Ad. justment" and "Horizontal Locking Range Adjustment" until the conditions specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horisontal Oscillator Alignment" the oscillator is properly adjusted.
If it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oecillator by the method outlined in the alignment procedure. For field purposes paragraph " $A$ " under Horizontal Oscillator Wavelorm Adjustment may be omitted.

FOCUS COIL ADJUSTMENTS. - The focus coil should be adjusted so that there is approximately one-quarter inch of space between the rear cardboard shell of the yoke and the llat of the front face of the focus coil. This spacing gives best average locus over the face of the tube. However, it may be necessary to change this distance slightly in order to compensate for small differences in strength of the permanent magnets in the coil. If the receiver focuses with the focus control at or near the clockwise end of its range, the focus coil should be moved toward the yoke and if focus is obtained at or near the counterclockwise end of the control, the coil should be moved away from the yoke.

The axis of the hole through the focus coil should be parallel with the axis of the kinescope neck.

CENTERING ADJUSTMENT. - No electrical centering controls are provided. Centering is oblained by loosening the two focus coil mounting screws and sliding the coil up or down or from side to side. If the focus coil was appreciably changed in position or if a corner of the raster is shadowed, check the position of the ion trap magnet. Reposition the magnet within the range of maximum raster brightness to eliminale the shadow and recenter the picture by sliding the coil. In no case should the magnet be adjusted to cause any loss of brighiness since such operation may cause immediate or eventual damage to the tube. In extreme cases it may be necessary to adjust one or more of the three locus coil compression spring screws to eliminate a corner shadow.

WIDTH. DRIVE AND HORIZONTAL LINEARITY ADJUST. MENTS. - Adjust the horizontal drive control C153B to give a picture of maximum width withis the limils of good linearity. Adjust the horizontal linearity control Llll to provide best linearity. Adjust the width control until the picture just fills the mask.

A width control coil and a width selector switch are provided. With the switch in position 1 (fully counterclockwise), adjust the width coil until the picture fills the mask. On low line voltages it may not be possible to get sufficient width by adjustment of the width coil. In this case turn the width selector switch clockwise to position 2. In this position the width coil is disconnected, and adjustment of the width coil will have no effect. For still greater width, turn the width selector switch fully clockwise to position 3. In this position, the high voltage is reduced slightly thus permitting greater deflection.

Adjustments of the horizontal drive control affect horisontal oscillator hold and locking range. If the drive control was ad. justed, recheck the oscillator aligmment.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS. - Ad. just the height control (R155 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R162 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust centering to align the picture with the mask.

FOCUS. - Adjust the locus control (R191 on chassis rear apron) for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.
In some cases it may be possible to improve focus by a slight reposition of the ion trap magnet while staying within the range of maximum brightness.

Check to see that the cushion and yoke thumberews and the focus coll mounting screws are tight.

AGC THAESHOLD CONTROL. - The AGC threshold control R138 is adjusted at the factory and normally should not require readjustment in the field.
To check the adjustment of the AGC Threshold Control, tune in a strong signal, sync the picture and turn the picture control to the maximum clockwise position. Turn the brightness control counterclockwise until the vertical retrace lines are just invisible. Momentarily remove the signal by switching off channel then back. If the picture reappears immediately, the receiver is not overloading due to improper setting of R138. If the picture requires an appreciable portion of a second to reappear, R138 should be readjusted.

Set the picture control at the maximum clockwise position. Turn R138 fully clockwise. The top one-hali inch of the picture may be bent slightly. This should be disregarded. Turn R138 counterclockwise until there is a very, very slight bend or change of bend in the top one-half inch of the picture. Then turn R138 clockwise just sufticiently to remove this bend or change of bend.

If the signal is very weak, the above method may not work as it may be impossible to get the picture to bend. In this case, turn R138 counterclockwise until the snow in the picture becomes more pronounced, then clockwise until the best signal to noise ratio is obtained.

The AGC control adjustment should be made on a strong signal if possible. If the control is set too iar counterclockwise on a weak signal, then the receiver may overload when a strong signal is received.

Replace the cabinet back and make sure that the screws holding it are up tight, otherwise it may rattle or buzz when the receiver is operated at high volume.


CHECK OF R.F OSCILLATOR ADIUSTMENTS. - Tune in all available stations to see if the receiver r-f oncillator is adjusted to the proper frequency on all channels. If adjustment are required, these should be made by the method outlined in the alignment procedure.

The adjustments for chan. nels 2 through 5 and 7 through 12 are available from the front of the cabinet by removing the station selector escutcheon ar shown in Figure 7. Adjustment for channel 13 is on top of the chassis and channel 6 adjustment is in the kinescope woll.

CHASSIS REMOVAL. - To remove the KCS34B chassis for repair or installation of a new kinescope, remove the cabinet back and the control knobs, unplug the speaker cable, and remove the six chassis bolts under the cabinet. Withdraw the chassis from the back of the cabinet. The kinescope is held on the chassis by means of a special strap. so that the chassis and the kinescope can be handled logether, as a unit.

To remove the kinescope, remove the kinuscope socket, the ion-trap magnet, and the second-anode connector. Loosen the cross-recessed head screw on the kinescope strap. Withdraw the kinescope toward the front of the chassis.

INSTALLATION OF KINESCOPE. - The kinescope second anode contact is a recessed metal well in the side of the bulb. The tube must be installed so that this contact is up but rotated approximately 30 degrees toward the high-voltage compartment.
Insert the neck of the kinescope through the deflection and focus coils. If the tube sticks, of tails to slip into place smoothly. investigate and remove the cause of the trouble. Do not force the tube.
Slide the kinescope cushion toward the rear of the chassis. Loosen the deflection yoke adjustment, slide the yoke toward the rear of the chassis and tighten.
Slip the ion trap magnet assembly over the neck of the kinescope.

Connect the kinescope socket to the tube base.
Connect the high voltage lead to the kinescope second anode socket.
Wipe the kinescope screen suriace and front panel salety glass clean of all dust and linger marks.

To replace the chassis in the cabinet, first tighten the cross. recessed head screw on the kinescope strap. Slide the chassis into the cabinet, then insert and tighten the six chassis bolts. Loosen the kinescope strap from the rear of the cabinet. Push the kinescope forward until the face of the tube is against the mask. Push the yoke cushion forward against the kinescope flare, then tighten the cushion adjusting screws. Tighten the kincscope strap, then replace the knobs. Repeat the installation adjustments starting with adjustment of ion trap magnet.

WEAK SIGNAL AREA OPERATION. - Since the vast ma. jority of receivers are sold in strong signal areas the chassis are aligned to produce the cleanest pictures in those areas. However, if the receiver is to be operated in a weak signal area, better performance can be obtained by "peaking" the r-f unit.
To peak the rof unit in these receivers, disconnect the 390 ohm resistor which is on top of the r-f unit chassis. Adjust $L 66$ to obtain the best possible picture on the weakest low channel station received. By this action, the r-f gain is increased $50 \%$ at the expense of rof bandwidth and an improvement in the weak signal picture results.
On early production receivers R11 was 1,000 ohms and R14 was omitted. In order to "peak" these units it will be neces. sary to remove the unit from the receiver and change Rll to 10,000 ohms. Once the unit is removed from the chassis Rll is easily accessible on the unit rear wafer. When making this change, if the channel number 2 r-f coil L62 consists of $5^{3} 4$ lurns, the outside turn should be "kniled" one wire diameter away from the rest of the coil in order to provide peak re. sponse on channel 2. The unit should then be replaced and L66 peaked as described above.

If the peaked receiver is subsequently taken to a strong signal uea, the resistor R14 should be connected in place and L66 adjusted for "flat" response on the low channels.


Figure 8-Chussis Top V'iew


Figure 9-Chassis Bottom V'iew

The following measurements represent two sets of conditions. In the first condition, a 2200 microvolt test pattern signal was fed into the receiver, the picture synced and the AGC threshold control properly adjusted. The second condition was obtained by removing the antenna leade and short circuiting the receiver antenna terminals. Voltages shown are read with "Ir. VoltOhmyst" between the indicated terminal and chasals ground and with the receiver operating on 117 volts, 60 cycles, a-c.

Tube No.	Tube   Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid				Notes on Measurements
				Pin   No.	Volts	Pin   No.	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts			
V1	6AG5	R-F   Amplifier	$\begin{aligned} & 2200 \mathrm{Mu} . \mathrm{V} . \\ & \text { Signal } \end{aligned}$	5	140	6	142	$2 \& 7$	0	1	-2.4	5	2	
			No Signal	5	67	6	111	287	0	1	-0.4	14.0	5.0	
V2	6AG5	Converter	2200 Mu.V. Signal	5	$\begin{gathered} * 130 \\ \text { to } 140 \end{gathered}$	6	$\begin{gathered} * 130 \\ \text { to } 140 \end{gathered}$	287	0	1	$\begin{gathered} *-3.0 \\ \text { to }-7.0 \end{gathered}$	$\begin{gathered} * 7.1 \\ \text { to } 7.7 \end{gathered}$	$\begin{aligned} & * 2.3 \\ & \text { to } 2.7 \end{aligned}$	*Dépending
			No Signal	5	$\begin{gathered} \text { *104 } \\ \text { to } 109 \end{gathered}$	6	$\begin{aligned} & \text { *104 } \\ & \text { to } 109 \end{aligned}$	287	0	1	$\begin{gathered} *-2.0 \\ \text { to }-6.0 \end{gathered}$	$\begin{gathered} * 5.3 \\ \text { to } 5.9 \end{gathered}$	$\text { to } 1.0$	upon channel
V3	6 J 6	$\mathbf{R} \cdot \mathbf{F}$   Oscillator	$2200 \mathrm{Mu} . \mathrm{V} \text {. }$ Signal	182	$\begin{gathered} * 88 \\ \text { to } 95 \end{gathered}$	-	-	7	. 19	5 \& 6	$\begin{gathered} *-5.1 \\ \text { to }-7.3 \end{gathered}$	$\begin{gathered} 1.9 \\ \text { to } 2.7 \end{gathered}$	-	pendin
			No Signal	182	$\begin{gathered} * 68 \\ \text { to } 81 \end{gathered}$	-	-	7	. 16	$5 \% 6$	$\begin{gathered} *-4.5 \\ \text { to }-6.6 \end{gathered}$	$\begin{aligned} & { }^{*} 1.8 \\ & \text { to } 2.1 \end{aligned}$	-	pon channel
V101	6BA6	1st Pix. I-F Amplifier	$2200 \mathrm{Mu} . \mathrm{V}$. Signal	5	125	6	125	7	4	1	$-12.5$	2.8	1.3	
			No Signal	5	95	6	95	7	1.1	1	+.3	7.5	3.5	
V102	6AG5	2d Pix. I-F Amplifier	2200 Mu.V. Signal	5	115	6	115	$2 \& 7$	. 75	1	0	8.2	2.5	
			No Signal	5	100	6	100	2 \& 7	. 65	1	0	6.8	2.1	
V103	6BA6	3d Pix. I-F Amplifier	2200 Mu.V. Signal	5	110	6	135	7	25	1	-2.4	4.0	3.8	
			No Signal	5	60	6	100	7	75	1	-0.4	11.0	4.8	
V104	6AG5	4th Pix. I-F Amplifier	2200 Mu.V. Signal	5	170	6	135	$2 \& 7$	1.35	1	0	6.5	2.0	
			No Signal	5	175	6	120	$2 \& 7$	1.2	1	0	5.9	1.8	
$\begin{gathered} \text { V105 } \\ \text { A } \end{gathered}$	6AL5	Picture   2d Det.	$2200 \mathrm{Mu} . \mathrm{V} .$   Signal	7	$-113$	-	-	1	-112	-	-	48	-	
			No Signal	7	-120	-	-	1	-120	-	-	-	-	
$\begin{gathered} \text { V105 } \\ \mathbf{B} \end{gathered}$	6AL5	Sync Limiter	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	2	$-107$	-	-	5	$-56$	-	-	-	-	
			No Signal	2	-80	-	-	5	$-60$	-	-	-	-	
V106	12AU7	1st Video Amplifier	2200 Mu.V. Signal	1	$-23.2$	-	-	3	-111	2	-113	4.38	-	
			No Signal	1	-19.2	-	-	3	$-117$	2	-120	3.82	-	
V106	12AU7	2d Video Amplifier	2200 Mu.V. Signal	6	* 120	-	-	8	*-6.5	7	*-16	6.2	-	*At average contrast
			No Signal	6	*110	-	-	8	*-10.5	7	*-13.5	6.9	-	
$\underset{A}{\text { V1 }} 107$	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	AGC Amplifier	$2200 \mathrm{Mu} . \mathrm{V} \text {. }$   Signal	5	-12.5	-	-	6	-53	4	$-54$	9	-	
			No Signal	5	$+3$	-	-	6	$-60$	4	-66	. 3	-	
$\begin{gathered} \text { V107 } \\ \text { B } \end{gathered}$	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Vertical Oscillator	2200 Mu.V. Signal	2	76	-	-	3	-111	1	-158	. 2	-	
			No Signal	2	62	-	-	3	$-120$	1	-169	2	-	
V108	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	AGC Rectifier	$2200 \text { Mu.V. }$   Signal	5	97	-	-	6	-3.4	4	$-23.2$	. 3	-	
			No Signal	5	81	-	-	6	$-8.7$	4	$-19.2$	28	-	


Tube No.	Tube Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		$\begin{aligned} & \text { I } \\ & \text { Plate } \\ & \text { (ma.) } \end{aligned}$	$\underset{\substack{\text { Screen } \\(\text { ma. })}}{ }$	Notes on Measurements
				Pin No.	Volts	Pin   No.	Volts	$P$ in No.	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts			
V108	$\begin{aligned} & \text { 6SN } 7 \\ & \mathbf{G T T} \end{aligned}$	1st Sync Separator	$\begin{gathered} 2200 \text { Mu.V. } \\ \text { Signal } \end{gathered}$	2	96	-	-	3	-1.8	1	-19.5	1	-	
			No Signal	2	81	-	-	3	-9.7	1	-19.3	1	-	
V109	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Sync Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	2	158	-	-	3	0	1	-4.7	5.25	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	2	154	-	-	3	0	1	-5.2	3.75	-	
V109	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Sync Separator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	230	-	-	6	-51	4	-106	4	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	215	-	-	6	-59	4	-80	35	-	
V110	$\begin{aligned} & 6 \mathrm{~K} 6- \\ & \mathrm{GT} \end{aligned}$	Vertical Output	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \end{gathered}$	3	223	4	223	8	-67	5	-91		*7.85	*Screen connected to plate
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	3	208	4	208	8	-79	5	-101		* 7.7	
V111	$\begin{aligned} & \text { 6SN7 } \\ & \mathbf{G T} \end{aligned}$	Horizontal Osc. Control	$\begin{gathered} 2200 \text { Mu.V. } \\ \text { Signal } \end{gathered}$	2	*48	-	-	3	-110	1	-92	2	-	*Variation of hold gives -21.9 tc +56 volts on plate
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	2	*33	-	-	3	-108	1	-120	2	-	
V111	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Horizontal Oscillator	$\begin{array}{\|c\|} \hline 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{array}$	5	70	-	-	6	-111	4	-185	2.4	-	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	5	54	-	-	6	-120	4	-192	2.4	-	
V112	6BG6G	Horizontal Output	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	Cap	*	8	*135	3	-90	5	$-110$	72	9.4	*6000 volt pulse present
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	Cap	Do Not Meas.	8	*130	3	-100	5	-115	70	9.2	
V113	$\begin{aligned} & \text { 1B3GGT } \\ & / 8016 \end{aligned}$	H. V Rectifier	Brightness Min.	Cap	*	-	-	$2 \& 7$	10200	-	-	0	-	*9700 volt pulse present
			$\begin{gathered} \text { Brightness } \\ \text { Average } \end{gathered}$	Cap	Do Not Meas.	-	-	$2 \& 7$	9700	-	-	1	-	
V114	6W4GT	Damper	$\begin{gathered} 2200 \text { Mu.V. } \\ \text { Signal } \end{gathered}$	5	*	-	-	3	300	-	-	66	-	* 1200 volt pulse present
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	Do Not Meas.	-	-	3	295	-	-	65	-	
V115	5U4G	Rectifier	$\begin{array}{\|c\|} \hline 2200 \text { Mu.V. } \\ \text { Signal } \end{array}$	$4 \% 6$	335	-	-	288	240	-	-	210	-	$\begin{aligned} & \text { *A.C measured } \\ & \text { from plate to } \\ & \text { trans. center tap } \end{aligned}$
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	4 \& 6	335	-	-	$2 \& 8$	230	-	-	215	-	
V116	6AU6	1st Sound I-F Amplifier	$\begin{array}{\|c\|} \hline 2200 \text { Mu.V. } \\ \text { Signal } \end{array}$	5	134	6	134	7	9	1	0	82	3.3	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	110	6	110	7	7	1	0	5.7	2.6	
V117	6AU6	2d Sound I-F Amplifier	$\begin{array}{\|c} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{array}$	5	148	6	90	7	0	1	-9	1.6	8	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	5	115	6	60	7	0	1	$-.65$	3.35	1.15	
V118	6AL5	Sound Discrim.	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	$\begin{aligned} & 2 \\ & 7 \end{aligned}$	$\begin{array}{r} -8.4 \\ -3.7 \end{array}$	-	-	$\begin{aligned} & 5 \\ & 1 \end{aligned}$	$\begin{gathered} 5.8 \\ 0 \end{gathered}$	-	-	-	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	$\begin{aligned} & 2 \\ & 7 \end{aligned}$	$\begin{aligned} & -2.0 \\ & -1.08 \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & 5 \\ & 1 \end{aligned}$	$\begin{aligned} & 41 \\ & 0 \end{aligned}$	-	-	-	-	
V119	6AV6	1st Audio Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	7	85	-	-	2	0	1	-. 89	49	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	7	83	-	-	2	0	1	-. 89	4	-	
V120	$6 \mathrm{KK} 6$	Audio Output	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	3	102	4	113	8	-99	5	-108	19.3	3.3	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	3	72	4	80	8	-111	5	-114	18	3	
V121	12LP4	Kinescope	$\begin{array}{\|c} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{array}$	Cap	*9700	10	290	11	38	2	11	1	-	*Average Brightness
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	Cap	-	10	285	11	34	2	10	-	-	

## R-F UNIT WIRING DLAGRAM



Figure 10-R.F Unit Wiring Diagram

## CRITICAL LEAD DRESS:

1. The ground bus from pin 2 and the center shield of V117 socket should not be shortened or rerouted.
2. Do not change the dress of the filament leads or the bypass capacitors in the picture or sound i-f circuits. The filament leads between V117. V118 and V119 should be down against the chassis and away from grid or plate leads.
3. If it is necessary to replace any of the 1500 mml capacitors in the picture i-f circuit, the lead length must be kept as short as possible.
4. Picture i.f coupling capacitors $\mathrm{Cl} 106, \mathrm{Cl11}, \mathrm{Cl} 15$ and C 121 should be up and away from the chassis and should be clear of the pix i-f transformer adjustments by at least $1 / 4$ inch. If the dress of any of these capacitors is changed, the i-f alignment should be rechecked.
5. Leads to L102 and L103 must be as short as possible.
6. Dress peaking coils L105, L106 and L107 up and away from the chassis.
7. Dress C183 across tube pins 5 and 6 with leads not exceeding $3 / 3$ inch.
8. Dress the blue lead from pin 5 of V119 down against the chassia.
9. Dress Cl29 and Cl30 up and away from the chassis.
10. Dress the yellow lead from the picture control away from the chassis and away from the volume-control leads. Dress the yellow lead from pin 8 of V106 away from the chassis.
11. Dress the green lead from pin 2 of V106 away from the chassis.
12. Dress R168, R169, R170, R176 and R178 up and away from the chassis.
13. The leads to the volume control should be dressed down against the chassis and away from V117 and V118.
14. Contact between the r-f oscillator frequency adjustment screws and the oscillator coils or channel switch eyelets must be avoided.
15. Dress leads from L115 (width control coil) away from the transformer frame.
16. Dress Tll0 winding leade as shown in Figure 11.


Figure II-T110 Lead Dress


				178grcasf，9TC247，9rc249				Replacement Parts（Conituad）			
	Dscarriom		ossco		scarron		Discerprox		Discarprow		pscemm
	，mir askerurs	${ }^{2937}$		2389							Fray
cos						${ }_{\substack{280 \\ 12190}}$					
rsor			Sole			${ }^{3728}$	and				
	and			jnom	come				Resistor－Fixed，composition， 8.200 ohms，$\pm 5^{\circ} \%$, $\begin{aligned} & 1 / 2 \text { watt（Ri64．R175）}\end{aligned}$ Resistor－Fixed，composition， 8.200 ohms．$\pm 10 \%$.		Remen
		${ }^{2}$ 2so		${ }_{7}^{23085}$					ant mix2 mise min		
coind				，			Nameme		\％		ano
\％ 71011	cein	${ }^{2}$		7375					ata		边
		73s8	and				nememiand				
									䢕		Remersum
							为			＂601	
		33050		${ }_{\substack{2023 \\ \\ 7382}}$	Comale					${ }_{\text {H60 }}$	samem
			cosem	${ }_{721}$							
			cose				Sosme				Resare
	为			${ }_{\text {nss }}$			nemmemind			$\underbrace{}_{\substack{\text { nin } \\ \text { nin }}}$	Somble
					Comele				and		
				，	coicle	${ }_{7} \mathrm{sa}$					
	为		coskess						\％ix		Somele
					（eal		为				
										$\underbrace{\substack{\text { cise }}}_{\substack{\text { resis }}}$	Stion
	为										
	边		Capacilor－Mica， 100 mml ． 1.000 volts（C138） Capacilor－Ceramic． 120 mml （C129）	， 319	Comememe				\％		
		${ }_{\substack{\text { and } \\ \text { and } \\ \text { and }}}$	Capacilor－Mica， 180 mml ．（C158） Capacitor－Coramic， $270 \mathrm{mmi} .(\mathrm{C} 183, \mathrm{C} 194, \mathrm{C} 198)$ Capacitor－Mica， 270 mmi ．（C106，C115，C121）		Connector－Hi－voltage capacitor connector Control－Horizontal and vertical hold control R173）		为				边
		cesm		（tack			and		\％		
		${ }^{1,1200}$									
	为			，	comele					${ }^{2} 89$	
	为										Hemen
					Cover－Insulaing cover 71432， 73581 and 73582 Cushion－Rubber cushion for kinescope mounting for KCS 34 B						

[^7]


Model 9T246, Mahogany Finish Metal Cabinet

TELEVISION RECEIVER MODEL 9 T246
Chassis Nos. KCS28C, or KCS38
— Mfr. No. 274 -

## Service Data

— 1949 No. T10 -
RADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

## GENERAL DESCRIPTION

Model 9T246 is a $10^{\prime \prime}$ table model television receiver in a mahogany finish metal cabinet.

This receiver was manufactured in two production runs. The first production employs chassis KCS28C. The second production employs chassis KCS38, which is similar to KCS28C. However, KCS38 represents a change of tube types in three sockets, it employs a different speaker, focus coil, power trans-
former, horizontal and vertical output transformers, picture i-1 iransformers as well as circuit changes.

Complete service data is provided for both chassis. Separate schematic and wiring diagrams lor each chassis are included. When servicing a receiver, care should be taken that the data employed is applicable to the chassis under test.

## ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE .............. 61 square inches on a 10BPA Kinescope


## fine tuning range

Plus and minus approximately 250 ke on channel 2 and plus and minus approximately 650 ke on channel 13.

## POWER SUPPLY RATING

KCS28C
KCS38 .................................................................. 115 volts, 60 cycles, 250 watts
volts, 60 cycles, 230 watts

AUDIO POWER OUTPUT RATING cycles, 230 warts

## LOUDSPEAKERS



RECEIVER ANTENNA INPUT IMPEDANCE
Choice: 300 ohms balanced of 72 ohms unbalanced.

## WEIGHT

Chassis with Tubes in Cabinet ........................................... 84 lbs.
Shipping Weight ................................................................... 99 lbs.
RCA TUBE COMPLEMENT

	Tube Used Function
(1)	RCA 6AG5 .............................................. R-F Amplifier
(2)	RCA 6AG5 ..................................................... Converter
(3)	RCA 6J6 .................................................... R-F Oscillator
(4)	RCA 6AU6 ................................. 1st Sound I-F Amplitier
(5)	FCA 6AU6 .............................. 2nd Sound IFF Amplilier
(6)	RCA 6AL5 ........................................ Sound Discriminator
(7)	RCA 6AV6 ...................................... 1st Audio Amplifier
(8)	RCA 6K6GT ............................................... Audio Output
(9)	RCA 6AG5 or 6BA6 .................. 1st Picture I.F Åmplitier
(10)	RCA 6AG5 .............................. 2nd Picture I-F Amplitier
(11)	RCA 6AG5 or 6BA6 .................. 3rd Picture I-F Amplifier
(12)	RCA 6AGS ................................ 4th Picture I-F Amplitier
(13)	RCA 6AL5 ............... Picture 2nd Detector \& Sync Limiter
(14)	RCA 12AU7 ....................... 1st and 2nd Video Amplifier
(15)	RCA 6SN7GT $\qquad$ AGC Amplifier \& Vertical Sweep Oscillator
(16)	RCA 6SN7GT ......... AGC Rectilier \& lst Sync Separator
(17)	RCA 6SN7GT ....... Sync Amplifier \& 2nd Sync Separator
(18)	RCA 6K6GT ................................ Vertical Sweep Output
(19)	RCA 6SN7GT ................. Horizontal Sweep Oscillator and Control
(20)	RCA 6BG6G ............................ Horizontal Sweep Output
(21)	RCA 5V4G or 6W4GT ......................................... Damper
(22)	RCA 1B3.GT/8016 ........................ High Voltage Rectifier
(23)	RCA 5U4G .................................. Power Supply Rectifier
(24)	RCA 10BP4 ........................................................ Kinescope



OPERATING CONTROLS (front panel)	
Channel Selector	Single Control Knob
Fine Tuning	Single Control Knob
Picture	Dual Control Knobs
Brightness	(KCS38 only)
Picture Horizontal Hold )	
Picture Vertical Hold	ual Control Knobs
Sound Volume and On-O	..Single Control Knob (KCS38 only)

NON-OPERATING CONTROLS (not including r-1: in adjusiments)
Horizontal Centering ..........top chassis screwdriver adjustment
Vertical Centering ..............top chassis screwdriver adjustment Width ....................................rear chassis screwdriver adjustment Height ........................................................rear chassis adjustment Horizontal Linearity ............rear chassis screwdriver adjustment Vertical Linearity .....................................rear chansis adjustment Horizontal Drive ..................rear chassis screwdriver adjustmont Horizontal Osc. Freq. .........................bottom chassis adjustment Horizontal Osc. Wavelorm ...................side chassis adjustment Horizonial Locking Range ......................rear chassis adjustment Focus rear chassis adjustment Ion Trap Magnet .......................................top chassis adjustment Dellection Coil ..............................top chassis wing nut adjustment AGC Threshold Control rear chassis adjustment

# high Voltage warning 

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH-VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH-VOLTAGE COMPARTMENT SHIELD REMOVED.

## KINESCOPE HANDLING PRECAUTIONS

DO NOT REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOG-
GLES AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY
WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

The kinescope bulb encloses a high vacuum and, due to its large surlace area. is subjected to considerable air pressure. For this reason. kinescopes must be handled with more care than ordinary receiving tubes.

[^8]The following adjustments are necessary when furning the seceiver on for the first time:

1. See that the TV.PH switch on the rear apron is in the 'TV'" position.
2. Turn the receiver "ON" and advance the SOUND VOL UME control to approximately mid-position.
3. Adjust the PICTURE control for suitable picture contrast.
4. Atter the receiver has been on for some time, it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.
5. In switching from one station to another, it may be necensary to repeat steps 4,8 and 9 .
6. Set the STATION SELECTOR to the desired channel.
7. Adjust the FINE TUNING control for best sound fidelity and the SOUND VOLUME control for suitable volume.
8. Turn the BRIGHTNESS control fully counter-clockwise, then clockwise until a light pattern appears on the screen.
9. Adjust the VERTICAL hold control until the pattern stops vertical movement.
10. Adjust the HORIZONTAL hold control until a picture is abtained and centered.
11. Turn the BRIGHTNESS control counter-clockwise until the retrace lines just disappear.


Figure 1-Receiver Operating Controls
12. When the set is furned on aqain after an idle period, it should not be necestary to repeat the adjustments if the positions of the controls have not been changed. It any adjustment is necessary. step number 4 is generally sufficient.
13. If the positions of the controls have been changed, it may be necessary to repeat steps 2 through 9 .
14. To use the instrument with a record player, plug the recordplayer output cable into the PHONO jack on the rear apron, and sel the TV.PH switch on "PH." Set the TV-PH switch back to TV on completion of the record program.

## INSTALLATION INSTRUCTIONS

Model 9T246 shipped complete in cardboard cartons. The kinescope is shipped in place in the receiver.

UNPACEING.-To unpack the 9T246, tear open the carton flaps, pick up the receiver from under the bottom of the cabinet, and lift it out of the shipping carton.

On some instruments a flat skid is attached to the bottom of the cabinet. To remove the skid, take out the red head bolts on the bottom. The chassis will not shift in the cabinet when these bolts are removed. Lift the cabinet off the skid.

Take off the cabinet back. The operating control knobs and a set of short chassis bolts are packed in a bag which is tied on top of the chassis. Remove the bag, take the six bolts and put them in the holes in the bottom of the cabinet formerly occupied by the red head shipping bolts.

The receiver may now be placed on a stand, table or other appropriate support. If a table or piece of furniture other than the regular stand is used for support, care must be taken to see receiver is sitting on the cabinet feet. If the bottom of the cabinet is permitted to touch a table top, the table could become badly scratched.

Remove the ion trap magnet and take out the cardboard sleeve between the neck of the kinescope and the inner suriace of the focus coil. Remove the cardboard shield from the 5U4G rectifier.

Replace the ion trap magnet as shown in Figure 2.
Make sure that all tubes are in place and are firmly seated in their sockets.

Check to see that the high voltage lead is attached to the kinescope second anode connector socket on the bell of the tube.

Connect the antenna transmiagion line to the receiver antenna terminals.

Plug the receiver power cord into a 115 volt a-c power source. Turn the receiver power switch to the "on" position, the brightness control fully clockwise, and the picture control counter-clockwise.

ION TRAP MAGNET ADJUSTMENT. - Set the ion trap mag. net approximately in the position shown in Figure 2, and with the part number on magnet towards the rear of the chasnis.


Figure 2-Yoke and Focus Coil Adjusments
Starting from this position adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust the focus control (R191 on the chassis rear apron) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches on this adjustment should be made with the brightness control at the maximum position with which good line focus can be maintained.

DEFLECTION YOEE ADJUSTMENT.-If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is oblained. Tighten the yoke adjustment wing screw.

PICTURE ADIUSTMENTS.-It will now be necessary to obtain a test pattern picture in order to make further adjustments. See stops 3 through 9 of the receiver operating instructions.

If the Horizontal Oscillator and AGC System are operating properly, it should be possible to sync the picture at this point. However, if the AGC threshold control is misadjusted, and the receiver is overloading. It may be impossible to sync the picture.

If the receiver is overloading, furn R138 on the rear apron (see Figure 3) clockwise until the set operates normally and the


Figure 3-Rear Chassis Adjusments
picture can be aynced. On some chansis, the AGC control may be on top of the chassis as shown in Figure 5. On these receivers the control should be turned counter-clockwise until the picture can be synced.

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT.-TuTn the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be gradually reduced and when only 3 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull in should occur when the control is approximately 90 degrees from the extreme counter-clockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should be out of sync and should show 1 vertical or diagonal black bar in the raster.
If the receiver passes the foregoing checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Centering Adjustment."

ALIGNMENT OF HORIZONTAL OSCILLATOR.-ll in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull-in point, it will be necessary to make the following adjustments:
Horizontal Frequency Adjustmont.-Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the T109 horizontal frequency adjustment (under the chassis) until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster.

Horizontal Lock in Range Adjustment.-Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.
If more than 3 bars are present just belore the picture pulls into sync, adjust the horizontal locking range trimmer Ci53A slightly clockwise. If less than 3 bars are present, adjust C153A slighty counter-clockwise. Turn the picture control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull in point. Repeat this procedure until 3 bars are present.
Repeat the adjustments under "Horizontal Frequency Adjustment" and "Horizontal Locking Range Adjustment" until the conditions specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.
If it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure on page 11. For field purposes para-
graph "A" under Horizontal Oscillator Waveform Adjustment may be omitted.

CENTERING ADJUSTMENT.-No electrical centering controls are provided. Centering is obtained by mechanically orienting the focus coil with the three adjustment screws shown in Fig. ure 2. Center the picture on the screen by adjustment of these screws. The focus coil should be concentric around the neck of the kinescope to prevent curvature of the raster.

FOCUS COIL ADJUSTMENTS.-If, after making the centering adjustments described in the above paragraph, a comer of the picture is shadowed, it will be necessary to loosen the focus coil mounting screws (shown in Figure 2) and change the position of the coil to eliminate the shadow. Recenter the picture by adjustment of the centering screws.
Recheck the position of the ion trap magnet to insure that maximum brilliance is obtained.

WIDIH DRIVE AND HORIZONTAL LINEARITY ADJUST-MENTS.-Adjustment of the horizontal drive control affects the high voltage applied to the kinescope. In order to obtain the highest possible voltage hence the brightest and best focused picture, turn the horizontal drive control counter-clockwise until the left side of the picture begins to stretch.

Adjust the horizontal linearity control 1111 to provide best linearity. Adjust the width control until the picture just fills the mask.

Adjustments of the horizontal drive control affect horizontal oscillator hold and locking range. If the drive control was adjusted, recheck the oncillator alignment.

FOCUS.-Adjust the focus control (R191 on chassis rear apron) for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS.-Adsust the height control (R155 on chassis rear apron) until the picture lills the mask vertically. Adjust vertical linearity (R162 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust centering to align the picture with the mask.

Checx to see that the cushion and yoxe thumb. SCREWS AND the focus coll mounting screws are TIGHT.

AGC THRESHOLD CONTROL.-The AGC threshold control R138 is adjusted at the factory and normally should not require readjustment in the field.

To check the adjustment of the AGC Threshold Control, tune in a strong signal, sync the picture and turn the picture control to the maximum clockwise position. Tum the brightness control counter-clockwise until the vertical retrace lines are just invisible. Momentarily remove the signal by $s$ witching off channel and then back. If the picture reappears immediately. the receiver is not overloading due to improper setting of R138. If the picture requires an appreciable portion of a second to reappear, Rl38 should be readjusted.

Set the picture control at the maximum clockwise position. Turn R138 fully clockwise. The top one-hall inch of the picture may be bent slightly. This should be disregarded. Turn R138 counter-clockwise until there is a very, very slight bend or change of bend in the top one-hall inch of the picture. Then turn R138 clockwise just sufficiently to remove this bend or change of bend.

If the sianal is very weak, the above method may not work as it may be impossible to get the picture to bend. In this case, turn R138 counter-clockwise until the snow in the picture becomes more pronounced, then clockwise until the best signal to noise ratio is obtained.

The AGC control adjustment should be made on a strong signal if possible. It the control is set too far counter-clockwise
on a weak signal, then the receiver may overload when a strong signal is received.

CHECR OF R-F OSCILLATOR ADJUSTMENTS.-Tune in all available stations to see if the receiver $\mathrm{r}-\mathrm{f}$ oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure on page 10. The adjustments for channels 2 through 5 and 7 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 4. Adjustment for channel 13 is on top of the chassis and channel 6 adjustment is in the kinescope well. See Figures 8 and 9 for their location.


Figure 4 R-F Oscillntor Adjustments
Replace the cabinet back and make sure that the screws are tight in order to prevent rattling at high volume.

WEAI SIGNAL AREA OPERATION-Since the vast majority of receivers are sold in strong signal areas, the chassis are aligned to produce the cleanest pictures in those areas. How. ever, if the receiver is to be operated in a weak signal area. better performance can be obtained by "peaking" the r-f unit.

To peak the r-f unit in these receivers, disconnect the 390 ohm resistor which is on top of the r-f uni: chassis. Adjust L66 to obtain the best possible picture on the weakest low channel station received. By this action, the r-1 gain, is increased $50 \%$ at the expense of r-f bandwidth and an improvement in the weak signal picture results.
On early production receivers RII was 1000 ohms and R14 was omitted. In order to "peak" these units it will be necessary to remove the unit from the reculver and change RIl to 10.000 ohms. Once the unit is removod from the chassis Rll is easily accessable on the unit rear wafer. When making this change, if the channel number 2 r-f coil L62 consists of $53 / 4$ turns, the outside turn should be "knifed" one wire diameter away from the rest of the coil in order to provide peak response on channel 2. The unit should then be replaced and L66 peaked as described above.

If the peaked receiver is subsequently taken to a strong signal area, the resistor R14 should be connected in place and L66 adjusted for "flat" response on the low channels.

CHASSIS REMOVAL.-To remove the chassis from the $9 T 246$ for repair or installation of a new kinescope. remove the back and the knobs, unplug the speaker cable, and remove the chassis bolts under the cabinet. Withdraw the chassis from the back of the cabinet. The kinescope is held on the chassis by means of a special strap. so that the chassis and the kinescope can be handled together, as a unit.

KINESCOPE HANDLING PRECAUTION.-Do not install, remove, or handle the kinescope in any manner, unless shatterproof goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling.

To remove the kinescope, remove the kinescope socket, the ion-trap magnet, and the second-anode connector. Loosen the cross-recessed head screw on the kinescope strap, as shown in Figure 5. Withdraw the kinescope toward the front of the chassis.

INSTALLATION OF ELNESCOPE-Slide the kinescope cushion toward the rear of the chassis. Loosen the deflection yoke adjustment, slide the yoke toward the rear of the chasais and tighten.

The kinescope second anode contact is a recessed metal well in the side of the bulb. The tube must be installed so that this contact is up but rotated approximately 30 degrees toward the high-voltage compartment.

Insert the neck of the kinescope through the deflection and focus coils. If the tube sticks. or fails to slip into place smoothly. investigate and remove the cause of the trouble. Do not force the tube.

Slip the ion trap magnet assembly over the neck of the kinescope.

## Connect the kinescope socket to the lube base.

Connect the high voltage lead to the kinescope second anode socket.

Wipe the kinescope screen suriace and front panel safety glass clean of all dust and finger marks.

To replace the chassis in the cabinet, first tighten the crossrecessed head screw on the kinescope strap. Slide the chassis into the cabinet, then insert and tighten the six chassis bolts. Loosen the kinescope strap from the rear of the cabinet, or from the bottom through a hole in the chassis shelf. The bottom end of the cross-recessed head screw is slotted to fit a screwdriver. Push the kinescope forward until the face of the tube is against the mask. Push the yoke cushion forward against the kinescope flare, then tighten the cushion adjusting screws. Tighten the kinescope strap, then replace the knobs. Perform the set-up procedure.

ANTENNAS.-The finest television receiver built may be said to be only as good as the antenna design and installation. It is therefore important to select the proper antenna to suit the particular local conditions, to install it properly and orient it correctly.

RCA Television Antenna. type No. 225Al is designed for reception of all iwelve television channels. The antenna uses the 300 -ohm RCA "Bright Picture" television transmission line. The antenna, a dipole with reflector, is unidirectional on channels two through six. When used on these channels, the maximum signal is oblained when the antenna rods are broadside toward the transmitting antenna, with the antenna element between the reflector and the transmitting antenna.

It two or more atations are available between channels two and six and the two stations are in different directions, it may be possible to make a compromise orientation which will provide a satisfactory signal on all such channels.

When operated on channels seven through thirteen (174 to $216 \mathrm{Mc})$. the antenna has side lobes. On these channels, the maximum signal will be obtained when the antenna is rotated approximately 35 degrees in either direction from its broadside position toward the transmitting antenna. In many instances this effect may not cause any difficulties and it may be possible to make a compromise orientation which will permit satisfactory reception on all high and low channels. In some instances, however. this will not be the case due to reflections or to insufficient signal strength from one or more stations.

RCA antennas type 204A1 is available for use in locations in which it is desirable to eliminate side lobes and to have the antennas 7.13 directivity the same as 2.6 directivity.

For use in cases where it is desirable to have adjustable 7-13 directivity different from 2-6. RCA antenna type 206A1 is provided.

If it is impossible to obtain satisfactory results on one or more channels, it may become necessary either to provide means for turning the antenna when switching channels or to install a separate antenna for one or more channels and to switch antennas when switching channels.

In weak signal areas it is possible to "slack" the type 204A1 antenna to obtain increased signal strength by employing one type 204A1 antenna and one type 208Al stacking kit.


Figure 5-Chnssis Top View


Figure 6-Chassis Bottom View

IEST EQUIPMENT.-To service properly the television chassis of this receiver, it is recommended that the following test equipment be available:
R.F Sweep Generator meeting the following requirements:
(a) Frequency Range:

20 to 30 mc .1 mc . and 10 mc . sweep width
50 to 90 mc ., 10 mc . sweep width
170 to 225 mc ., 10 mc . sweep width
(b) Output adjustable with at least .l volt maximum.
(c) Output constant on all ranges.
(d) "Flat" output on all attenuator positions.

Cathode-Ray Oscilloscope.-For alignment purposes, the ofcilloscope employed must have excellent low frequency and phase response, and should be capable of passing a 60 -cycle square wave without appreciable distortion. While this requirement is not met by many commercial instruments. RCA Oacilloscopes, types WO-55A, WO.58A. WO-79A, and WO.60C fill the requirement and any of these may be omployed.

For video and sync waveform observations, the oscilloscope must have excellent irequency and phase response from 10 cycles to at least two megacycles in all positions of the gain control. The RCA types WO-58A and WO-79A are ideally suited for this purpose.

Signal Gencrator to provide the following frequencies with crystal accuracy.
(a) Intermediate frequencies
19.75 mc . adjacent channel picture trap
21.25 mc . sound i. 1 and sound traps
22.05 and 24.75 mc . conv. and first pix $\mathrm{i} \cdot \mathrm{f}$ trans.
25.9 mc . second picture $\mathrm{i}-\mathrm{i}$ transformer
24.6 mc . fourth picture i-f tranaformer
22.0 mc . third picture i-f transformer
22.5 mc . fifth picture ifl transformer
25.75 mc . picture carrier
27.25 mc . adjacent channel sound trap
(b) Radio frequencies

Picture
Carrier


Creq. Mc.

Number
(c) Output on these ranges should be adjustable and at least .1 voli maximum.

Heterodyne Frequency Meter with crystal calibrator if the signal generator is not crystal controlled.

Electronic Voltmeter of Junior "VoltOhmyst" type and a high voltage multiplier probe for use with this meter to permit measurements up to 10 kv .

Service Precautions.-If possible, the chassis should be serviced without the kinescope. However, if it is necessary to view the raster during servicing, make sure the kinescope retaining strap is secure, and the yoke cushion is up firmly against the flare of the tube.

CRUTION: Do not short the kinescope second-anode lead. Its short circuit current is approximately 3 ma . This represent approximately 9 watts dissipation and a considerable over load on the high-voltage filter resistor R189.

Adjustments Required-Normally, only the r-i oscillator line will require the attention of the service technician. All other circuits are either broad or very stable and hence will seldom require re-adjustment.

The oscillator line is relatively non-critical. When oscillator tubes are changed, in all probability it will be neceseary to adjust only C6 in order to bring the entise line into adjustinent.

ORDER OF ALIGNMENT.-When a complete receiver alignment if necessary, it can be most conveniently performed in the following order:
(1) Sound discriminator
(5) R-F and converter lines
(2) Sound i.f transiormers
(6) R-F oecillator line
(3) Picture i.f traps
(7) 4.5 mc . video trap
(4) Picture i-f transformers
(8) Sensitivity check

SOUND DISCRMMNATOR ALIGNMENT.-Set the signal generator for approximately . 1 volt output at 21.25 mc . and connect it to the second sound i-f grid.

## Detune Tll3 secondary (bottom).

Set the "VoltOhmyst" on the 3-volt scale.
Connect the meter, in series with a one-megohm resistor, to the junction of diode resistors R203 and R204.

Adjust the primary of T113 (top) for max. output on the meter.
Connect the 'VoltOhmyst" to the junction of C183 and R203. Adjust Tll3 secondary (bottom). It will be found that it is possible to produce a ponitive or negative voltage on the meter dependent upon this adjustment. Obviously to pass from a positive to a negative voltage, the voltage must go through zero. Tll3 (boltom) should be adjusted so that the meter indicates zero output as the voltage swings from positive to negative. This point will be called discriminator zero output.

Connect the sweep oscillator to the grid of the second sound i-f amplifier.

Adjust the sweep band width to approximately 1 mc . with the center frequency at approximately 21.25 mc . and with an output of approximately .1 voll.

Connect the oscilloscope to the junction of Cl 83 and R203. The pattern obtained should be similar to that shown in Figure 12. If it is not, adjust Tll3 (top) until the wave form is sym. metrical.

The peak to peak band width of the discriminator should be approximately 350 kc . and the trace should be linear from 21.175 mc . to 21.325 mc .

SOUND I.F ALGNMENT.-Connect the sweep oscillator to the first sound i-f amplifier grid.

Connect the oscilloscope to the second sound i-1 grid return (terminal A of.T112) in series with a 33,000 -ohm isolating resistor.

Insert a 21.25 mc . marker signal from the signal generator into the first sound i-f grid.

Adjust T112 (lop and bottom) for maximum gain and symmetry about the 21.25 mc . marker. The pattern oblained should be similar to that shown in Figure 13.

The output level from the sweep should be set to produce approximately .3 volt peak-to-peak at the second sound $\mathrm{i}-\frac{1}{3}$ grid return when the final touches on the above adjustment are made. It is necessary that the sweep output voltage should not exceed the specified values otherwise the response curve will be brocdened, permitting slight misadjustment to pass unnoticed and possibly causing distortion on weak signals.
The band width af $70 \%$ response from the first sound i-1 grid to the second i-f grid should be approx. 200 kc .

PICTURE I－F TRAP ADJUSTMENT．－Connect the＂Volt． Ohmyst＂to the junction of R135 and L117 of KCS 28C chassis or to junction of R135 and C190 of KCS38 chassis．

Remove the 6SN7GT AGC Amplifier tube V107．Connect a 250,000 －ohm potentiometer belween pins 5 and 6 of the V107 socket．Adjust the potentiomeler until the＂VoltOhmyst＂ reads approximately -4.5 volts for KCS28C．Adjust the bias to －6．0 volts for early KCS38 chassis in which L117 is connected to the junction of R135 and C190．Adjust the bias to－12 volts in late KCS38 chassis in which L117 is connected to the junction of R135 and C197．

Set the channel switch to the blank position between chan nels number 2 and 13.

Connect the＂VoltOhmyst＂across the picture detector load resistor R119．Under this condition，both leads of the meter are at approximately -120 volts．In making this connection， care should be taken not to touch the case of the meter or to permit the meter case to become grounded．
Connect the output of the signal generator to the grid of the converter tube V2．To do this，remove the tube from the socket and fashion a clip by twisting one end of a small piece of wire around pin number 1．Replace the tube in the socket leaving the end of the wire protruding from under the tube． Connect the signal generator to this wire through a $1,500 \mathrm{mml}$ capacitor keeping the leads as short as possible．
Set the generator to each of the following frequencies and with a thin fiber screwdriver lune the specified adjustment for minimum indication on the＂VoltOhmyst．＂In each instance the generator should be checked against a crystal calibrator to insure that the generator is exactly on frequency．
（1） $21.25 \mathrm{mc} .-\mathrm{Tl} 03$（top）
（4） 27.25 mc ．－T104（top）
（2） $21.25 \mathrm{mc} .-\mathrm{T} 105$（lop）
（5） $19.75 \mathrm{mc} .-\mathrm{T} 106$（top）
（3） $27.25 \mathrm{mc} .-\mathrm{Tl} 102$（top）
（6） 19.75 mc ．－T101（top）

In the above transformers using threaded cores，it is poasible to run the cores completely through the coils and secure two peaks or nulls．The correct position is with the cores in the outside ends of the coils．If the cores are not in the correct pasition．the coupling will be incorrect and it will be impossible to secure the correct response．

PICTURE I－F TRANSFORMER RDJUSTMENTS．－Set the sig． nal generator to each of the following frequencies and peak the specified adjustment for maximum indication on the＂Volt－ Ohmyst．＂During alignment，reduce the input signal if neces． sary to prevent overloading．

$$
\begin{array}{ll}
22.5 \mathrm{mc} .-\mathrm{Tl} 106 \text { (bottom) } & 22.0 \mathrm{mc} .-\mathrm{Tl} 103 \text { (bottom) } \\
24.6 \mathrm{mc} .-\mathrm{Tl} 104 \text { (bottom) } & 25.9 \mathrm{mc} .-\mathrm{T} 102 \text { (bottom) }
\end{array}
$$

Tl and T101 are coupled by a link and in combination con－ stitute an overcoupled transformer．The characteristics of such a transtormer are such that it is impossible to adjust it to a single frequency．

To sweep aliqn T1 and T101．connect a 330 －ohm componition resistor acroms the primary coils of T102，T103．T104 and T106．
Connect the＂VoltOhmyst＂to the junction of R135 and L117 on KCS28C or junction at R135 and C190 on KCS38．Adjust the 250,000 －ohm variable resiator for -2.0 volts on the meter．

## Connect the oscilloscope to pin 1 of V106．

Connect a sweep generator to the converter grid through a 1.500 mmf capacitor．Set the generator to sweep from 20.0 mc. to 30.0 mc ．and adjust the output to provide a 4 －volt peak． to－peak signal on the scope．

Connect the signal generator loosely to the converter grid and tune it to provide markers at 22.05 mc ．and 24.75 mc ．
Adjust T1（top）and T101（bottom）to obtain the reaponse shown in Fiqure 14．The Tl core must penetrate to the terminal－board end of the coil in order to obtain the correct response．

Remove the 330 ohm resistors from acrose T102，T103，T104 and Tlo6．

Adjust the $250,000 \mathrm{ohm}$ potentiometer for a 15 －volt peak to peak signal at the plate of the first video amplifier．The bias as measured by the＂VoltOhmyst＂should be -4.5 volts or lese for KCS28C．For KCS38 set the bias to -6 volts for early chassis or -12 volts for late chassis．

Observe and analyze the response curve obtained．The re－ sponse will not be ideal and the i．l adjustments must be re－ louched in order to oblain the desired curve．See Figure 15.
On final adjustment the picture carrier marker must be at approximately $45^{\circ}$ o response．The curve must be approxi－ mately flat lopped，with the 22.1 mc ．marker at approxi－ mately $95^{\circ}$ 。 response and the 25.0 mc．marker below $90^{\circ}$ o response．A 26.5 mc ．marker must fall between 5 and $10^{\circ}$ 。 response．
The most important consideration in making the i－f adjust－ ments is to get the picture carrier at the $45^{\circ}$ 。 response point． It the picture carrier operates too low on the response curve． loss of low frequency video response，of picture brilliance，of blanking，and of sync may occur．It the picture carrier op－ erates too high on the reponse curve，the picture becomes smeared．In making these adjustments，care should be taken to see that no two transformers are tuned to the sume fre－ quency as i－f oscillation may result．

Remove the converter tube and take of the clip to pin num－ ber 1．Replace the tube in the socket．

Picture 1－F Oscillation．If the receiver will operate without oscillating with the test equipment disconnected but breaks into oscillation or becomes unstable with the equipment con－ nected，it may become necessary to establish a ground plane． Cover the test bench with a sheet of copper and set the chas－ sis on the sheet．Set all the test equipment except the＂Volt－ Ohmyst＂on the sheet and bond or bypass them to it．A Junior＂VoltOhmyst＂should not be bonded to the sheet since the negative test probe is not always connected to ground during alignment．If the receiver is badly misaligned and two or more of the i－f transformers are tuned to the same fre－ quency．the receiver may fall into i－f oscillation．I－F oscilla－ tion shows up as a voltage across the picture detector load resistor that is unaffected by r－f signal input．If such a condi． tion is encountered．it is sometimes possible to stop oscillation by adjusting the transformers approximately to frequency by setting the adjustment cores of T101．T102．T103．T104．T105 and T106 to be approximately equal to those of another re． ceiver known to be in proper alignment．It this does not have the desired effect，it may now be possible to stop oscillation by increasing the grid bias．If so，it should then be possible to align the transiormers by the usual method．Once aligned in this manner．the i．f amplifier should be stable with reduced bias．

If the oscillation cannot be stopped in the above manner， shunt the grids of the first three pix i－f amplifiers to ground with 1.000 mmf ．capacitors．Connect the signal generator to the fourth pix it grid and align T106 to frequency．Progres－ sively remove the shunt from each grid and align the plate coil of that stage to frequency．

If this does not stop the oscillation．the difficulty is not due 10 i －f misalignment as the i 1 f section is stable when properly aligned．Check all i－f by－pass condensers，transformer shunt． ing resistors，tubes．socket voltages．etc．

ANTENNA，R－F AND CONVERTER LINE ADIUSTMENT．－－In order to align the r－f tuner．it will first be necessary to set the channel． 13 oscillator to frequency．The shield over the bottom of the r－f unit must be in place when making any adjustments．

The channel－ 13 oscillator may be aligned by adjusting it to beat with a crystal－calibrated heterodyne frequency meter，or by feedina a signal into the receiver at the r－f sound carrier frequency and adjusting the oscillator for zero outpul from the sound discriminator．In this latter case the sound discriminator must first have been aligned to exact frequency．Either method of adjustment will produce the same results．The method used will depend upon the type of test equipment available．Re－ gardless of which method of oscillator alignment is used，the frequency standard must be crystal controlled or calibrated．

If the receiver oscillator is to be adjusted by the heterodune trequency meter method．couple the meter probe loosely to the receiver oscillator．

If the receiver oscillator is adjusted by feeding in the r－t sound carrier siznal．conneat the signal generator to the re－ ceiver antenna terminals．Connect the＂VoltOhmyst＂to the sound discriminator output（junction of ${ }^{\circ} \mathrm{C} 183$ and R203）．

Set the receiver switch to 13 ．

Adjust the frequency standard to the correct frequency $(237 \mathrm{mc}$. for heterodyne frequency meter or 215.75 mc . for the signal generator.)

Set the line tuning control to the middle of its range.
Adjust C6 for an audible beat on the heterodyne frequency meter or zero voltage from sound discriminator.

Now that the channel-13 oscillator is set to frequency. we may procede with the r-f alignment.

Connect the "VoltOhmyst" to Cl 32 at the middle terminal of the r-f unit terminal board. Adjust the 250 K pot. for -3.5 volts on the meter.

Remove the first pix i-f amplifier tube V101.
Connect the oscilloscope to the test connection at R13 in the r-f tuning unit.

Connect the r-f sweep oscillator to the receiver antenna terminals. The method of connection depends upon the output impedance of the sweep. The P102 connections for 300 ohm balanced or 72 -ohm single-ended input are shown in the circuit diagrams in Figures 78 and 80. If the sweep oscillator has a 50 -ohm single-ended output. 300 -ohm balanced output can be obtained by connecting as shown in Figure 7.


Figure 7-Unbalanced Siceep (inble Termination

Connect the signal generator loosely to the receiver antenna terminals.

Since channel 7 has the narrowest response of any of the high frequency channels, it should be adjusted first.

Set the receiver channel switch to channel 7.
Set the sweep oscillator to cover channel 7.
Insert markers of channel 7 picture carrier and sound carrier, 175.25 mc . and 179.75 mc .

Adjust C10 and C14 until the curve falls symmetrically between the sound and picture carrier markers. Adjust Cll to give the proper bandwidth. Roughly peak L6 in conjunction with slight adjustments of C10 and C14 for a flat-topped response curve with the sound and picture carriers at $90 \%$ to $95 \%$ reaponse points on this curve. See Figure 16, channel 7.

Switch to channel 12 and adjust $L 6$ for maximum response and minimum top slope of the curve.

Check the response of channels 7 through 13 by switching the receiver channel switch, sweep oscillator and marker oscillator to each of these channels and observing the response obtained. See Figure 16 for typical response curves. It should be found that all these channels have the proper shaped response with the markers above $80 \%$ response. If the markers do not tall within this requirement on one or more high frequency channels, since there are no individual channel adjustments, it will be necessary to readjust L6, C10. C1l and C14, and possibly compromise some channel slightly in order to get the markers up on other channels. Normally. however, no difficulty of this type should be experienced since the higher trequency channels are comparatively broad and the markers easily fall within the required range.

Channel 6 is next aligned in the same manner.
Set the receiver to channel 6.
Set the sweep oscillator to cover channel 6 .
Set the marker oscillator to channel 6 picture and sound carrier trequencies.

Adjust L9, L13, L66, and C. 12 for an approximately flattopped response curve located symmetrically between the markers. L9, L13 and L66 are the center frequency adjust. ments. Cl 2 is the band-width adjustment.

Check channels 5 down through channel 2 by switching the receiver, sweep oscillator and marker oscillator to each channel and observing the response obtained. in all cases. the markers should be above the $80^{\circ}$ o response point. It this is not the case, L9, L13. L66 and C12 should be retouched. On tinal adjustment, all channels must be within the $80 \%$ specification.

Disconnect the 250 K pot., and replare V107 and V101.
Following an r.f alignment, the oscillator alignment must be checked.
R.F OSCILATOR LINE ADJUSTMENT.--The r-i oscillator line may be aligned by adjusting it to beat with a crystal calibrated heterodyne frequency meter, or by feeding a signal into the receiver at the r-f sound carrier frequency and adjusting the oscillator for zero output from the sound dis. criminator. In this latter case the sound discriminator must first have been aligned to exact frequency. Either method of adjustment will produce the same results. The method used will depend upon the type of test equipment available.

Regardless of which method of oscillator alignment is used, the frequency standard must be crystal controlled or calibrated. If the receiver oscillator is to be adjusted by the heterodyne frequency meter method, the calibration frequency listed under R-F Osc. Freq. must be available.

If the receiver oscillator is adjusted by feeding in the r-f sound carrier frequency. the frequencies listed under Sound Carrier Freq. must be available.

| Receiver <br> R-F Osc. <br> Creq. Mc. | R-F Sound <br> Carrier <br> Freq. Mc. |
| :---: | :---: | | Channel |
| :---: |
| Oscillator |
| Rumber |$\quad$| Adjustment |
| :---: |

If the heterodyne frequency meter method is used, couple the meter probe loosely to the receiver oscillator.
If the r-f sound carrier method is used, connect the "VoltOhmyst" to the sound discriminator output (junction of C183 and R203) and connect the signal generator to the receiver antenna terminals. The order of aligament remains the same regardless of which method is used.

If the r-f unit is removed from the receiver for service and is aligned separately, the shield over the bottom of the r-I unit must be in place when making adjustments.

Since lower frequencies are obtained by addina steps of inductance, it is necessary to align channel 13 first and continue in reverse numerical order.

Set the receiver channel switch to 13.
Adjust the frequency standard to the correct frequency $(237 \mathrm{mc}$. for heterodyne frequency meter or 215.75 mc . for the signal generator).

Set the fine luning control to the middle of its range while making the adjustment.

Adjust C6 for an audible beat on the heterodyne frequency meter or zero voltage from sound discriminator. Oscillator adjustments L1 and L2 shown on the schematic are lactory control adjustments and should not be touched in the lield.

Switch the receiver to channel 12.
Set the frequency standard to the proper frequency as listed in the alignment table.

Adjust L14 for indications as above.
Adjust the oscillator to frequency on all channels by switching the receiver and the trequency standard to each channel and adjusting the appropriate oscillator trimmer for the speci-
fied indication. It should be possible to adjuat the oscillatot to the correc: frequency on all channels with the fine tuning control in the middle third of its range.

After the oscillator has been set on all channels, start back at channel 13 and recheck to make sure that all adjumements are correct.

AGC THRESHOLD ADJUSTMENT.-The AGC threshold adjustment can be made by the method outlined in the Installa. tion Instructions. However, a more accurale adjustment can be obtained by the use of an- oscilloscope.

Tune in a station and advance the picture control to the maximum clockwise ponition. Connect the low capacity probe from the ascilloscope to the plate of the first video amplifier, pin 1 of V106. Adjust the oscilloscope to observe the horizontal sync pule.

Turn the AGC threshold control R138 fully clockwise, then slowly counter-clockwise. As the control is turned counterclockwise, the receiver gain will increase slowly, increasing the size of the pattern on the oscilloscope. R138 should be turned counter-clockwise until the receiver begins to overload as indicated by clipping of the sync. The control should be left in the maximum gain position in which no clipping of sync is observed. See Figure 17 for proper waveiorms.

On some KCS28C chassis, the AGC threshold control is on top of the chassis, in which case the control should be turned in the opposite direction to that specified above.

HORIZONTAL OSCILLATOR ADJUSTMENT.-Normally the adjustment of the horizontal oscillator is not considered to be a part of the alignment procedure, but since the oscillator wavelorm adjustment requires the use of an oscilloscope, it can not be done conveniently in the field. The waveform adjustment is made at the factory and normally should not require readjustment in the field. However, the wavelorm ad. justment should be checked whenever the receiver is aligned or whenever the horisontal oscillator operation is improper.

Horisontal Frequency Adjustment.-With a clip lead, short circuit the coil between terminals $C$ and $D$ of the horizontal omellator transformer T109. Tune in a television station and sync the picture if possible.
A.-Turn the horizontal hold control R173 to the extreme clockwise position. Adjust the T109 Frequency Adjustment (under the chassis) so that the picture is just out of syac and the horizontal blanking appears in the picture as a vertical bar. The position of the bar is unimportant.
B.-Tum the hold control approximately one quarter of $\alpha$ turn from the extreme clockwise poation and examine the width and linearity of the picture. If picture width or linearity is incorrect, adjust the horizontal drive control C153B, the width control (L110 for KCS28C or L115 for KCS38) and the linearity control $L 111$ until the picture is correct. If C153B (L110 or L115), or L111 were adjusted, repeat step $\mathbb{A}$ above.

Horizontal Locking Range Adjustment.-Tum the horizontal hold control fully counter-cloctrwise. Momentarily remove the signal by switching off channel then back. Slowly tum the horizontal hold control clockwise and note the least number of diagonal bars obtained jut before the picture pulls into sync.

If more than 9 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer Cl53A slightly clockwise. If less than 7 bars are present, adjuet Cl53A slightly counter-clockwise. Tum the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull in point. Repeat the procedure until 7 to 9 bars are present.

Horizontal Oncllator Waveform Adjustment.-Remove the shorting clip from terminals C and D of T109. Tum the horisontal hold control to the extreme clockwise position. With a thin fibre screwdriver, adjust the Oscillator Waveform Adjustment Core of T109 (on the outside of the chassis) until the horizontal blanking bar appears in the raster.
A.-Connect the low capacity probe of an oncilloscope to terminal C of T109. Turn the horizontal hold control one quarter lurn from the clockwise position so that the picture is in sync. The pattern on the oscilloscope should be as shown in Figure 18. Adjust the Oscillator Waveform Adjustment Core of T109 until the two peaks are at the same height. During this adjustment, the picture must be kept in sync by readjusting the hold control if necessary.

This adjustment is very important for correct operation of the circuit. If the broad peak of the wave on the oscilloscope is lower than the sharp peak, the noise immunity becomes poorer, the stabilizing effect of the tuned circuit is reduced and drift of the oscillator becomes more serious. On the other hand, if the broad peak is higher than the sharp peak. the oscillator is overstabilized, the pull-in range becomes inadequate and the broad peak can cause double triggering of the oscillator when the hold control approaches the clock. wise position.

Remove the oscilloscope upon completion of this adjustment.
Check of Horizontal Oscillator Adjustmenis.-Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into syac.

If more than 3 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer Ci53A slightly clockwise. If less than 3 bars are present, adjust CI53A slightly counter-clockwise. Turn the horizonial hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 3 bars are present.

Tum the horizontal hold control to the maximum clockwise position. The picture should be just out of sync to the extent that the horizontal blanking bar appears as a single vertical or diagonal bar in the picture. Adjust the Tl09 Frequency Adjustment until this condition is fulfilled.
4.5 MC VIDEO TRAP.-With a strong input from a station. detune the receiver from the correct fine tuning point. With a very short clip lead, short the trap winding of T103. Observe the picture for the appearance of a 4.5 mc . beat. If the beat appears in the picture, adjust L104 for KCS28C or L110 for KCS38 until the beat is elimincted.

SENSITIVITY CHECK.-A comparative sensitivity check can be made by operating the receiver on a wreak signal from a television station and comparing the picture and sound obtained to that obtained on other receivers under the same conditions.

This weak signal can be oblained by connecting the shop antenna to the receiver through a ladder type attenuator pad. The number of stages in the pad depends upon the signal strenyth available at the antenna. A sufficient number of stages should be inserted so that a somewhat less than normal contrast picture is obtained when the picture control is at the maximum clockwise position. Only carbon type resistors should be used to construct the pad.

RESPONSE CURVES.-The response curves shown on page 15 and referred to throughout the alignment procedure were taken from a production set. Although these curves are typical, variations can be expected.

The response curves are shown in the classical manner of presentation, that is with "response up" and low frequency to the left. The manner in which they will be seen in a given test set-up will depend upon the characteristics of the oscilloscope and the sweep generator. The curves may be seen inverted and/or switched from left to right depending on the deflection polarity of the oscilloscope and the phasing of the sweep generator.

ALIGNMENT TABLE.-Both methods of oscillator alignment are presented in the alignment table. The service technician may thereby choose the method 10 suit his test equipment.
the detalled alignment procedure beginning on page b should de head before alignment by use of the table is attempted

$\begin{aligned} & \text { STEP } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { SIGNAL } \\ \text { GENERATOR } \\ \text { TO } \\ \hline \end{gathered}$		$\begin{aligned} & \text { CONNECT } \\ & \text { SWEEP } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$		$\begin{aligned} & \text { CONNECT } \\ & \text { OSCILLOSCOPE } \\ & \text { TO } \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { "VOLTOHMYST" } \\ \text { TO } \end{gathered}$	Miscellaneous CONNECTIONS AND instructions	ADJUST	$\underset{\text { REFER }}{\text { TO }}$
	discriminator and sound i-f alignment								
1	2nd sound i-1 grid (pin 1, V117)	$\begin{gathered} 21.25 \\ .1 \text { volt } \\ \text { output } \end{gathered}$	Not used		Not used	In series with 1 meg. to junction of R203 \& R204		Detune 1113 (bol.)   Adjust T113 (lop)   for max. on meter	$\begin{aligned} & \text { Fig. } \\ & \text { Fig. } \\ & \text { Fig. } 10 \end{aligned}$
2	"	"	"		"	$\begin{aligned} & \text { Junct. of } \mathrm{C} 183 \mathrm{E} \\ & \text { R203 } \end{aligned}$	Moter on 3 voll scal.	T113 (boltom) for zero on metor	Fig. 9   Fig. 10
3	"	"	2nd sound i-4 grid (pin 1, V117)	$\begin{gathered} 21.25 \\ \text { center } \\ \text { i me. } \\ \text { wide } \\ \text {. } \begin{array}{c} \text { V. out } \end{array} \end{gathered}$	$\begin{aligned} & \text { Junction of C183 } \\ & 6 \mathrm{R} 203 \end{aligned}$	Not used	Check for symm wavolorm (positive not equal adjust they are equal	etrical pesponse 6 negalive). Ii Tl13 (top) until	Fig. 10   Fig. 12
4	1st sound i-f grid (pin 1. V116)	$\begin{gathered} 21.25 \\ \text { reduced } \\ \text { output } \end{gathered}$	1 st sound i-f grid	$\begin{gathered} 21.25 \\ \text { reduced } \\ \text { output } \end{gathered}$	Terminal A, T112   in series with a 33,000 ohm resistor	"	Sweep output reduced to provid. .3 rolt p-to-p on scope	T112 (top \& bot.) for max. gain and symmotry at 21.25 me.	$\begin{array}{ll}\text { Fig. } & 8 \\ \text { Fig. } & 9 \\ \text { Fig. } & 10 \\ \text { Fig. } & 13\end{array}$


5	Not used		Not used		Not used	Junction of H135 \& 1117 of KC823C. Junction of R135 and C 190 of ECS36.	Remove V107. Connect potentiometer belween pins 56 6 of V107 sockel
6	Converter grid (pin 1, V2)	21.25	"		"	Across R119	Meter on 3 volt scale. Receiverbetween 2 and 13
7	"	21.25	"		$\bullet$	"	"
1	"	27.25	"		$\because$	"	"
g	"	27.25	"		"	"	"
10	"	19.75	"		"	-	"
11	"	19.73	"		"	$\because$	"
12	"	22.5	"		"	"	"
13	"	24.6	"		"	-	"
14	"	22.0	"		"	"	"
15	"	25.9	"		"	"	"
16	"	$\begin{aligned} & 22.05 \\ & 24.75 \end{aligned}$	$\begin{aligned} & \text { Converter } \\ & \text { grid 1, V2) } \\ & \text { (Pin } \end{aligned}$	Swrep. ing 20 to 30 mc .	Pin 1, V106	$\begin{aligned} & \text { Junction of R135 } \\ & \text { \& L117 of XCS20C. } \\ & \text { function of R135 } \\ & \text { and Ci90 of } \\ & \text { KCS38. } \end{aligned}$	Shunt 330 ohms agross pri. Tl02. T103. T104, T106. Set bias -2 V. Set swp. gen. for 4 V . P-P on scope.
17	$\cdots$		"	"	"	"	lemove shunt resistors. Set bigs to give 15 volis $P$ to $P$ on scope.

antenna, r-f and converter line alignment

18	Antenna terminals	215.75	Not used		Not used	Junction of Cle3 \& R203 for signal gen. method only	Fine tuning centered. Receiver on channel 13. Hot--rodyne meter coupled to oseillator if used.	C6 for zero on meter or beat on het. freq. meter	$\begin{aligned} & \text { Fig. } \\ & \text { Fig. } 10 \end{aligned}$
19						Junction of C132 at r.f unit	Remove V101	Potentiometer for -3.5 volts on meter	$\begin{aligned} & \text { Fig. } \\ & \text { Fig. } 10 \end{aligned}$
20	Antenna terminal (loosely)	$\begin{gathered} 175.25 \\ 179.75 \\ \hline \end{gathered}$	Antenna terminala (see toxt for precaution)	$\begin{gathered} \text { Sweop- } \\ \text { ing } \\ \text { channel } \\ 7 \end{gathered}$	Test Connection Ris	Not used	Receiver on channel 7	L6. C10. C1l \& Cl4 for flat top response betweon markers. Markers above $90 \%$.	$\begin{aligned} & \text { Fig. } 8 \\ & \text { Fig. } \\ & \text { Fig. } 16 \\ & { }_{(7)}{ }^{2} \end{aligned}$
21	"	$\begin{aligned} & 205.25 \\ & 209.75 \end{aligned}$	"	${ }_{12}$	"	"	Heceiver on channel 12	16 for max. re. sponse and min. slope of top of curve	Fig. 8   (12)
22	"	$\begin{aligned} & 175.25 \\ & 179.75 \end{aligned}$	"	$\begin{gathered} \text { channel } \\ \hline \end{gathered}$	"	"	Receiver on channol 7	Check to see that response is as above	$\text { Fig. }_{(7)} 16$
23	"	$\begin{aligned} & 181.25 \\ & 185.75 \end{aligned}$	-	$\begin{gathered} \text { channel } \\ 8 \end{gathered}$	"	"	Recoiver on chan. nel 8	$\cdots$	${ }_{\text {(B) }}^{\text {Fiq. }} 16$
24	"	$\begin{aligned} & 187.25 \\ & 191.75 \end{aligned}$	"	$\begin{gathered} \text { channel } \\ 9 \end{gathered}$	"	"	Receiver on channel 9	"	Fig. 16   (9)
25	"	$\begin{aligned} & 193.25 \\ & 197.75 \end{aligned}$	*	$\begin{gathered} \text { channal } \\ 10 \end{gathered}$	"	"	Receiver on channel 10	"	Fig. 16   (10)



## Co

 RECEIVERS USING ALL 6 GG
TUBES IN PICTURE I-F:
. Replaco 6 AGS tube in inity picture it with others until



PRODUCTION CHANGES IN KRK5 AND KRK7 R-F UNITS







Top View of R-F Unit
MODELS 9TC245, 9TC247, 9 TC249 Poor Vertical Sync:





BROADCAST INTERFERENCE IN In some casese where a talovinion reantrs



CO-AX TO BALANCED LINE MATCHING NETWORK




Co-Ax to Balanced Line Matching Network


no fastre on riniscopes.

(2) Vill or vilu hoperative. Chock wavelome on grida and

 (4) vill dircuit inoperativo-Reter to schematicicand wavetorm

Samper tube (vil4) inoperative.
(6) Doleative kino

No VERTCAL DEFECTION:
(1) Vio78 or vill innopertive.
(2) 7107 or 7108 open.
sмиц валтtat
(i) Low Plus B or low line volage.

V122 delective.
poor vertical linearity:
II djuistmonis cannot coreat, chango vile.
erical output tanasomer defeetive.



POOR HoArzovtal LINEAATTY:
II adjustmonts do not correct, change vil2 or vil
(3) C164 or Clis5 defoetive.

Wrintirs on litt sde of rastre
(1) R166, R167 or C 1169 dofetive.

Doletive yoke.
picture out of sync honzontally:
(1) T109 incoroolly tunad.
5) R172. R173 or R1714 defective.
mapriodal or non.symmetalcal haster
(1) Improper ad
hattre and signal on rintscoper but no sout
Sound it diegriminator or or audio cumplifer inoperative 3) $\mathrm{Tl4}$ or or 186 deleative
gentl at yniscope grd but no sync.
 gnal on kinescope grd but no vertical sync Cheok vio7s and casocidited ctruut-C145, Tio7, otc

sgnal on rinescope grd but no horzontal sync.
 Tio9 dotective. C140, C153A, C154, C155, C C157, C C166 or C2200 deleative.
 sound and raster but no picture or sync:
 (2) Bad coniact to kinoscope grid. mcture stable but poor riesoution:

 (4) RF and IF ircuits miacaignod.
hCTURE SMEAR:
RF or IF iccuils mianilignod.
(3) This tuoulle coan originato at the tranemititor-chock on

PCTCURE frter:


(3) Vertical instability may be due to loose connections or noise.
(4) Horizontal instability may be due to unstable transmitted sync.

RASTER BUT NO SOUND, PICTURE OR SYNC:
(1) Defective antenna or transmiation line.
(2) R-F oscillator off frequency.
(3) R-F unit inoperative-check V1. V2. V3.

DARK VERTICAL LINE ON LEFT OF PICTURE:
(1) Reduce horizontal drive and readjust width and horizontal linearity.
(2) Replace V112.

LIGHT VERTICAL LINE ON LEFT OF PICTURE:
(1) C169 defective.
(2) V114 defective.

PICTURE I-F RESPONSE-At times it may by desirable to observe the individual i-f stage response. This can be achieved by the following method:

Shunt all i-f transformers and coils with a 330 -ohm carbon resistor except the one whose response is to be observed.

Connect a wide band sweep generator to the converter grid and adjust it to sweep from 18 mc , to 30 mc .

Connect the oscilloscope across the picture detector load resistor and observe the overall response. The response obtained will be essentially that of the unshunted stage. The effects of the various traps are also visible on the stage response.

Figures 27 through 31 show the responses of the various stages oblained in the above manner. The curves shown are typical although some variation between receivers can be expected. Relative stage gain is not shown.


Figure 27-Response of Converter and First Pix I.F Transformer


Figure 30-Response of Fourth Pix l-F Transformer


Figure 33-Overall Pix I-F Response


Figure 28-Response of Second Pix I-F Transformer


Figure 31-Response of Fifth Pix I-F Transformer


Figure 34-Video Response at Average Contrast


Figure 29-Response of Third Pix l-F Transformer


Figure 32-Response from First Pix I-F grid to Pix Det.


Figure 35-Video Response at Minimum Contrast

## WAVEFORM PHOTOGRAPHS

Video Signal Input to Ist Video Amplifier (Pin 2 of V106) (12AU7)

Figure 36-Vertical (Oscilloscope Synced to $1 / 2$ of Vertical Sweep Rate) (5.4 Volts PP) 4
Figure 37-Horizontal (Oscilloscope Synced to $1 / 2$ of Horizontal Sweep Rate) (5.4 Volts PP) $\rightarrow$
$\begin{gathered}\text { Sync Feed (Junction of L110, R141 } \\ \text { and R219 or Junction of L104, R141 } \\ \text { and R219) }\end{gathered}$
Figure $38-$ Vertical (28 Voles PP)
$\leftarrow 44$
Figure 39-Horizontal (28 Volts PP) $\rightarrow$

Inpue to 2nd Video Amplifier (Pin 7 of V106) (12AU7)

Figure 40 -Vertical (17 Volis PP)
$\longleftarrow$
Figure 41-Horizontal (17 Volts PP)
$\rightarrow$

Output of 2nd Video Amplifier (Junction of L105 and R127) (Picture Max.)

Figure 42-Vertical (96 Volts PP) 54

Figure 43-Horizontal (96 Volts PP) $\rightarrow$


Input to Kinescope (Junction of R127 and R128) (Picture Max.)

Figure 44-Vertical ( 65 Volts PP) $\leftrightarrow 4$

Figure 45-Horizontal (65 Volls PP)



Input to Sync Amplifier (Junction of (:137, C139 and R145)

Figure 54-Vertical (21 Volts PP) $4-4$

Figure 5.5-Horizontul (21 Volts PP)


Cathode of 2nd Sync Separator (Pin 6 of V109) (6SN7GT)

Figure 58-Vertical (17 Volts PP)
4
Figure 59-Horizontal (11 Volts PP)
$\rightarrow$


Figure 60 Output of Integrating Net. work (Junction of C144, C145 and R153) ( 45 Volts PP) $\leftarrow 4$

Figure 61-Grid of Verticol Oscillator ( 720 Volts PP) (Pin 1 of V107)
(6SN7GT)
$\rightarrow$


Figure 62-Grid of Vertical Output (160 Volts PP) (Pin 5 of V110) (6K6GT)
$4+4$
Figure 63-Plate of Verticrl Outpu (750 Volts PP) (Pin 3 of V110) ( $6 \mathrm{K6GT}$ )
$\Rightarrow$


Figure 64-Ineput of Vertical Deflec. tion Coils (75 Volts PP) (Junction of Green Lead of T108 and Green Lead of Yoke)

4
Figure 65-Input to Horizontal Oscil lator (17.5 Volts PP) (Junction of C153A and C154)
$\rightarrow$



Figure 66-Junction of R168, R176 and R178 (150 Voles PP)
$+\sim$

Figure 67-Grid of Horizontal Oscil lator (480 Volts PP) Pin 4 of V111) (6SN7GT)
$\rightarrow$


Figure 68-Plate of Horizontal Oscil. lnsor (270 Voles PP) (Pin 5 of V111) (6SN7GT)
$\leftarrow$
Figure 69-Terminal "C" of T109 (70 Voles PP)
$H$


Figure 70-Input to Horizontal Ousput Tube (42 Volls PP) (Junction of C160, R183 and C153B)

4
Fig. 71-Plate of Horizontal Output (Approx. 5200 v. PP in $10^{\prime \prime}$ sets \& 6000 v. PP in $12^{\prime \prime}$ Sets) (Measured Through a Capacity Voltage Divider Connected from Top Cap of V112 to Chassis)
$\longrightarrow$


Fig. 72-Terminal 1 of T110 (80 v. PP in Chassis using 5V 4G Damper, $165 v$. PP in Chassis using 6W 4GT Damper -Normal Pix Position in 9T256 and 9TW 309)

$$
44
$$

Fig. 73-Cathode of 5V4G Damper Tube (Pin 8 of V114-33 v. PP) or Plate of 6W 4GT Damper Tube (Pin 5 of V114-125 v. PP Normal Pix Posi-tion)-Curve will be Inverted for Chassis using 6W 4GT Damper Tube
$\Rightarrow$

Fig. 74-Input to Horizontal Deflection Coils (Term. 4 of T110)-1150 v. PP in Normal Pix Positon (Curve Will be Inverted for Chassis using 6W 4GT Damper Tube) $\leftarrow$

Figure 75-Horisontal Deflection Coil (Current (0.6 amp. PP) Measured by Inserting a 5 -ohm Resistor in series with the voke and observing the wuve. form across the resistor.

The following measurements represent two sets of conditions. In the tirst condition a 2200 microvolt test pattern signal was fed into the receiver, the picture was synced and the AGC threshold control was properly adjusted. The second condition was obrained by removing the antenna leads and short-circuiting the receiver antenna torminals. Voltages shown are as read with "Ir. VoltOhmyst" between the indicated terminal and chassis ground and with the receiver operating on 117 volts, 60 cycles a.c Values shown are for both chassis except where otherwise indicated.

Tube No.	Tube Trpe	Fuaction	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		1   Plato (ma.)		Notes on Measurements
				Pin No.	Volte	Pin   No.	Volts	Pin   No.	Volts	Pin No.	Volts			
V1	6AG5	R-F   Amplifier	$\begin{gathered} 2200 \text { Mu. V. } \\ \text { Signal } \end{gathered}$	5	$\begin{aligned} & 140 \\ & 146 \\ & \hline \end{aligned}$	6	$\begin{aligned} & 142 \\ & 148 \\ & \hline \end{aligned}$	287	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	1	$\begin{aligned} & -2.4 \\ & -4.9 \end{aligned}$	$\begin{aligned} & .72 \\ & .72 \end{aligned}$	$\begin{aligned} & .33 \\ & .33 \end{aligned}$	$\begin{aligned} & \text { KCS38 } \\ & \text { KCS28C } \end{aligned}$
			No Signal	5	$\begin{aligned} & 67 \\ & 85 \end{aligned}$	6	$\begin{aligned} & 111 \\ & 120 \end{aligned}$	287	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & -0.4 \\ & -0.4 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \text { KCS38 } \\ & \text { KCS28C } \end{aligned}$
V2	6AG5	Converter	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	$\begin{aligned} & .130 \\ & \text { 10 } 140 \end{aligned}$	6	$\begin{gathered} 130 \\ \text { to } 140 \\ \hline \end{gathered}$	287	0	1	$\begin{gathered} \text { •-3.0 } \\ \text { to }-7.0 \end{gathered}$	$\begin{gathered} 7.1 \\ \text { to } 7.7 \end{gathered}$	$\begin{gathered} 2.3 \\ \text { to } 2.7 \\ \hline \end{gathered}$	- Depending upon channel
			No Signal	5	$\begin{gathered} \cdot 104 \\ \text { to } 109 \end{gathered}$	6	$\begin{gathered} \cdot 104 \\ \text { to } 109 \end{gathered}$	287	0	1	$\begin{gathered} \bullet-2.0 \\ \text { to }-6.0 \end{gathered}$	$\begin{gathered} \cdot 5.3 \\ \text { to } 5.9 \end{gathered}$	$\begin{gathered} 9.8 \\ \text { to } 1.0 \end{gathered}$	
V3	616	R-F   Oscillator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Siqnal } \\ \hline \end{gathered}$	182	$\begin{gathered} .88 \\ 1095 \end{gathered}$	-	-	7	. 19	586	$\begin{gathered} \cdot 5.1 \\ 10-7.3 \end{gathered}$	$\begin{gathered} \cdot 1.9 \\ \text { to } 2.7 \\ \hline \end{gathered}$	-	- Depending upon channel
			No Siqnal	182	$\begin{gathered} 968 \\ \text { to } 81 \\ \hline \end{gathered}$	-	-	7	. 16	566	$\begin{gathered} \text { e-4.5 } \\ \text { to }-6.6 \end{gathered}$	$\begin{gathered} 1.8 \\ \text { to } 2.1 \\ \hline \end{gathered}$	-	
V101	$\begin{aligned} & \text { 6BA6 } \\ & \text { 6AG5 } \end{aligned}$	1st Pix. I-F Amplitier	$2200 \mathrm{Mu} . \mathrm{V}$. Signal	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 125 \\ & 141 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 125 \\ & 141 \\ & \hline \end{aligned}$	$287$	$.07$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} -12.5 \\ -3.9 \\ \hline \end{gathered}$	$\begin{gathered} 2.8 \\ .8 \end{gathered}$	$\begin{aligned} & 1.3 \\ & .22 \end{aligned}$	$\begin{aligned} & \text { KCS38 } \\ & \text { KCS28C } \end{aligned}$
			No Signal	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{array}{r} 95 \\ 108 \\ \hline \end{array}$	$\begin{aligned} & 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{array}{r} 95 \\ 108 \\ \hline \end{array}$	$\begin{array}{r} 7 \\ 287 \\ \hline \end{array}$	$\begin{gathered} 1.1 \\ .11 \\ \hline \end{gathered}$	1	$\begin{aligned} & +0.3 \\ & -.09 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 4.97 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 1.73 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { KCS38 } \\ & \text { KCS28C } \end{aligned}$
V102	6AG5	2d Pix. I-F Amplitier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	$\begin{aligned} & 115 \\ & 130 \\ & \hline \end{aligned}$	6	$\begin{aligned} & 115 \\ & 130 \end{aligned}$	287	$\begin{aligned} & .75 \\ & .86 \end{aligned}$	1	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8.2 \\ & 9.48 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.12 \end{aligned}$	$\begin{aligned} & \text { KCS38 } \\ & \text { KCS28C } \end{aligned}$
			No Siqnal	5	$\begin{aligned} & 100 \\ & 106 \\ & \hline \end{aligned}$	6	$\begin{aligned} & 100 \\ & 106 \\ & \hline \end{aligned}$	287	$\begin{aligned} & .65 \\ & .6 \\ & \hline \end{aligned}$	1	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.8 \\ & 7.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { KCS38 } \\ & \text { KCS28C } \end{aligned}$
V103	$\begin{aligned} & \text { 6BA6 } \\ & \text { 6AGS } \end{aligned}$	3d Pix. I-F Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	$\begin{aligned} & 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1110 \\ & 130 \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 135 \\ & 140 \\ & \hline \end{aligned}$	$\begin{array}{r} 7 \\ 287 \\ \hline \end{array}$	$\begin{aligned} & .25 \\ & .03 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} -12.5 \\ -3.9 \\ \hline \end{array}$	$\begin{gathered} 4.0 \\ .51 \\ \hline \end{gathered}$	$\begin{gathered} 3.8 \\ .09 \\ \hline \end{gathered}$	$\begin{aligned} & \text { KCS38 } \\ & \text { KCS28C } \end{aligned}$
			No Signal	5	$\begin{aligned} & 60 \\ & 94 \\ & \hline \end{aligned}$	6	$\begin{aligned} & 100 \\ & 109 \\ & \hline \end{aligned}$	287	$\begin{aligned} & .75 \\ & .11 \end{aligned}$	1	$\begin{aligned} & -0.4 \\ & -.09 \\ & \hline \end{aligned}$	$\begin{gathered} 11.0 \\ 3.92 \end{gathered}$	$\begin{aligned} & 4.8 \\ & 1.5 \end{aligned}$	KCS38 KCS28C
V104	6AG5	4th Pix. I-F Amplitier	$\begin{gathered} 2200 \mathrm{Mu} \text { V. V. } \\ \text { Signal } \\ \hline \end{gathered}$	5	$\begin{array}{r} 170 \\ 175 \\ \hline \end{array}$	6	$\begin{aligned} & 135 \\ & 145 \\ & \hline \end{aligned}$	287	$\begin{array}{r} 1.35 \\ 1.38 \\ \hline \end{array}$	1	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \text { KCS38 } \\ & \text { KCS28C } \end{aligned}$
			No Signal	5	$\begin{aligned} & 175 \\ & 167 \\ & \hline \end{aligned}$	6	$\begin{aligned} & 120 \\ & 109 \end{aligned}$	287	$\begin{aligned} & 1.2 \\ & .95 \end{aligned}$	1	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.9 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { KCS38 } \\ & \text { KCS28C } \end{aligned}$
$\begin{gathered} \text { V105 } \\ \text { A } \end{gathered}$	6AL5	Picture 2d Det.	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	7	$-113$	-	-	1	-112	-	-	. 48	-	
			No Siqnal	7	-120	-	-	1	-120	-	-	-	-	
$\begin{gathered} \mathrm{V} 105 \\ \mathrm{~B} \end{gathered}$	6AL5	Sync Limiter	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	2	-107	-	-	5	-56	-	-	-	-	
			No Siqnal	2	-80	-	-	5	-60	-	-	-	-	
V106	12AU7	1st Video Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	1	-23.2	-	-	3	-111	2	-113	4.38	-	
			No Signal	1	-19.2	-	-	3	-117	2	-120	3.82	-	
V106	12AU7	2d Video Amplitier	$\begin{gathered} 2200 \text { Mu. V. } \\ \text { Siqnal } \\ \hline \end{gathered}$	6	-166	-	-	8	--5.3	7	- -12.2	6.2	-	- At average contrast
			No Siqnal	6	-134	-	-	8	- -5.6	7	- -10.3	6.9	-	
$\begin{gathered} \text { V107 } \\ \text { A } \end{gathered}$	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	ACG Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	$\begin{array}{r} -12.5 \\ -17.9 \\ \hline \end{array}$	-	-	$\begin{aligned} & 6 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & -55.5 \\ & -55.5 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & -56.5 \\ & -56.5 \end{aligned}$	$\begin{aligned} & .9 \\ & .9 \end{aligned}$	-	$\begin{aligned} & \text { KCS38 } \\ & \text { KCS28C } \\ & \hline \end{aligned}$
			$\begin{gathered} \text { No } \\ \text { Siqnal } \end{gathered}$	5	$\begin{aligned} & +0.3 \\ & -5.2 \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & -60 \\ & -60 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline-64 \\ & -64 \end{aligned}$	$\begin{aligned} & .3 \\ & .3 \end{aligned}$	-	$\begin{aligned} & \mathrm{KCS} 38 \\ & \mathrm{KCS} 28 \mathrm{C} \end{aligned}$
$\begin{gathered} \text { V107 } \\ \text { B } \end{gathered}$	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \\ & \hline \end{aligned}$	Vertical Oscillator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	2	76	-	-	3	-111	1	-158	. 2	-	
			No Siqnal	2	62	-	二	3	$-120$	1	-169	. 2	-	
V108	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	AGC Rectifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Siqnal } \\ \hline \end{gathered}$	5	97	-	-	6	-3.4	4	-19.3	. 3	-	
			No Siqnal	5	81	-	-	6	-87	4	-19.3	28	-	
V108	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	lst Sync Separator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	2	96	-	-	3	$-1.8$	1	-19.5	. 1	-	
			No Signal	2	81	-	-		-9.7	1	-19.3	. 1	-	


Tube No.	Tube Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		I Plate   (ma.)		Notes on Measurement
				Pin No.	Volts	Pin   No.	Volts	Pin   No.	Volts	Pin   No.	Volts			
V109	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \\ & \hline \end{aligned}$	Sync Amplifier	2200 Mu . V. Signal	2	158	--	--	3	0	1	-4.7	5.25	-	
			$\begin{aligned} & \text { No } \\ & \text { Siqnal } \end{aligned}$	2	154	--	-	3	0	1	-5.2	3.75	--	
V109	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Sync Separator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	230	--	-.	6	-51	4	-106	. 4	-	
			No Signal	5	215	-	-	6	-59	4	-80	. 35	-	
V110	$\begin{aligned} & \text { 6K6. } \\ & \text { GT } \end{aligned}$	Vertical Output	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Siqnal } \\ \hline \end{gathered}$	3	223	4	223	8	-67	5	-91		-7.85	- Screen connected to plate
			No Siqnal	3	208	4	208	8	-79	5	-101		-7.7	
V111	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Horizontal Osc. Control	$2200 \mathrm{Mu} . \mathrm{V} \text {. }$ Siqnal	2	$\bullet 48$	-	-	3	$-110$	1	-92	. 2	-	-Variation of hold gives -21.9 to +56 volts on plate
			No Siqnal	2	-33	--	-	3	-120	1	-108	. 2	-	
V111	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Horizontal Oscillator	2200 Mu . V. Siqnal	5	70	--	-	6	-111	4	-185	2.4	-	
			No Siqnal	5	54	--	-	6	-120	4	-192	2.4	-	
V112	6BG6G	Horizontal Output	2200 Mu . V.   Siqnal	Cap	Do Not Meas.	8	$\begin{aligned} & 180 \\ & 160 \end{aligned}$	3	$\begin{aligned} & -90 \\ & -104 \\ & \hline \end{aligned}$	5	$\begin{array}{r} -110 \\ -101 \\ \hline \end{array}$	$\begin{aligned} & 68 \\ & 93.5 \end{aligned}$	$\overline{11.5}$	KCS 38 KCS 28 C
			$\begin{gathered} \text { No } \\ \text { Siqnal } \end{gathered}$	Cap	Do Not Meas.	8	$\begin{aligned} & 170 \\ & 142 \end{aligned}$	3	$\begin{array}{r} -100 \\ -113 \end{array}$	5	$\begin{array}{r} -115 \\ -112 \end{array}$	$\begin{aligned} & 67 \\ & 90.8 \end{aligned}$	$11.2$	$\begin{aligned} & \text { KCS38 } \\ & \text { KCS28C } \end{aligned}$
V113	$\begin{aligned} & \text { 1B3GT } \\ & \text { /8016 } \end{aligned}$	H. V. Rectifier	Brightness Min.	Cap	Do Not Meas.	-	-	287	$\begin{aligned} & 9500 \\ & 8500 \end{aligned}$	-	-	0	-	$\begin{aligned} & \text { KCS38 } \\ & \text { KCS28C } \end{aligned}$
			Brightness Average	Cap	Do Not Meas.	--	-	287	$\begin{aligned} & 9000 \\ & 8400 \end{aligned}$	-	-	. 1	-	$\begin{aligned} & \mathrm{KCS38} \\ & \mathrm{KCS} 28 \mathrm{C} \end{aligned}$
V114	$\begin{aligned} & \text { 6W4GT } \\ & \text { 5V4G } \end{aligned}$	Damper	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Siqnal } \end{gathered}$	$\begin{gathered} 5 \\ 4 \& 6 \end{gathered}$	Do Not Meas.	--	-	$\begin{gathered} 3 \\ 288 \end{gathered}$	$\begin{aligned} & 290 \\ & 339 \end{aligned}$	-	-	$\begin{aligned} & \hline 66 \\ & 94.5 \end{aligned}$	-	$\begin{aligned} & \text { KCS38 } \\ & \text { KCS28C } \end{aligned}$
			No Siqnal	486	Do Not Meas.	-	-	288	$\begin{aligned} & 280 \\ & 322 \end{aligned}$	-	-	$\begin{aligned} & 65 \\ & 92 \end{aligned}$	-	$\begin{aligned} & \text { KCS38 } \\ & \text { KCS28C } \end{aligned}$
V115	SU4G	Rectifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Siqnal } \end{gathered}$	$\begin{aligned} & 4 \& 6 \\ & 4 \& 6 \end{aligned}$	$\begin{array}{r} 335 \\ 390 \end{array}$	$\begin{aligned} & \text { For } \\ & \text { For } \end{aligned}$	$\begin{aligned} & \mathrm{KCS38} \\ & \mathrm{KCS} 28 \mathrm{C} \end{aligned}$	$\begin{aligned} & 288 \\ & 288 \end{aligned}$	$\begin{aligned} & 250 \\ & 291 \end{aligned}$	-	-	$\begin{aligned} & 210 \\ & 225 \end{aligned}$	-	- A.C meas. ured from plate to trans. center tap
			No Signal	$\begin{gathered} 4 \& 6 \\ 486 \end{gathered}$	$\begin{aligned} & 335 \\ & 390 \\ & \hline \end{aligned}$	For   For	$\begin{aligned} & \mathrm{KCS} 38 \\ & \mathrm{KCS} 28 \mathrm{C} \end{aligned}$	$\begin{aligned} & 2 \& 8 \\ & 2 \& 8 \end{aligned}$	$\begin{aligned} & 245 \\ & 272 \end{aligned}$	-	-	$\begin{aligned} & 215 \\ & 230 \end{aligned}$	-	
V116	6AU6	1st Sound I.F Amplifier	$2200 \mathrm{Mu} . \mathrm{V}$. Siqnal	5	134	6	134	7	. 9	1	0	8.2	3.3	
			No Signal	5	110	6	110	7	. 7	1	0	5.7	2.6	
V117	6AU6	2nd Sound I.F Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	148	6	90	7	0	1	-9	1.6	. 8	
			$\begin{gathered} \text { No } \\ \text { Siqnal } \end{gathered}$	5	115	6	60	7	0	1	-. 65	3.35	1.15	
V118	6ALS	Sound Discrim.	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Sijnal } \end{gathered}$	2	-8.4	-	-	5	5.8	-	-	-	-	
			$\begin{gathered} \text { No } \\ \text { Siqnal } \end{gathered}$	2	-2.0	-	-	5	. 41	-	-	$\cdots$	-	
			$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Siqnal } \end{gathered}$	7	$-3.7$	-	-	1	0	-	-	-	-	
			$\begin{gathered} \text { No } \\ \text { Siqnal } \end{gathered}$	7	-1.08	-	-	1	0	-	-	-	-	
V119	6AV6	1st Audio Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Siqnal } \end{gathered}$	7	85	-	-	2	0	1	-. 89	. 49	-	
			No Siqnal	7	83	-	-	2	0	1	-. 89	. 4	二	
V120	$\begin{aligned} & \text { 6K6- } \\ & \text { GT } \end{aligned}$	Audio Outpul	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	3	102	4	113	8	-99	5	-108	19.3	3.3	
			$\begin{gathered} \text { No } \\ \text { Sianal } \end{gathered}$	3	72	4	80	8	-111	5	-114	18	3	
V121	10BP4	Kinescope	$\begin{array}{\|c} \hline 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Sianal } \\ \hline \end{array}$	Cap	$\begin{array}{r} 9000 \\ \cdot 8400 \end{array}$	10	339	11	51	2	20	. 1	-	- Average Briqhiness
			No Sianal	Cap	-	10	322	11	42	2	14	-	-	Average Briqhtness
			$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	Cap	-	10	339	11		2		. 4	-	Maximum Brightness
		$\begin{aligned} & \text { KCs38 } \\ & \text { KCS28C } \end{aligned}$	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	Cap	$\begin{array}{r} 9200 \\ \cdot 8500 \end{array}$	10	339	11		2		0	-	Minimum Brightness

1. The ground bus from pin 2 and the center shield of V117 socket should not be shortened or rerouted.
2. Do not change the dress of the filament leads or the bypass capacitors in the picture or sound i-f circuits. The filament leads between V117, V118 and V119 should be down against the chassis and away from grid or plate leads.
3. If it is necessary to replace any of the 1500 mmf capacitors in the picture i-f circuit, the lead length must be kept as short as possible.
4. Picture i-f coupling capacitors C106, Cl11, C115 and Cl21 should be up and away from the chassis and should be clear of the pix i-f transformer adjustments by at least $1 / 4$ inch. If the dress of any of these capacitors is changed, the i-f alignment should be rechecked.
5. Leads to L102 and L103 must be as short as possible.
6. Dress peaking coils L105, L106 and L107 up and away from the chassis.
7. Dress Cl83 across tube pins 5 and 6 with leads not exceeding $3 / 8$ inch.
8. Dress the blue lead from pin 5 of Vll9 down against the chassis.
9. Dress Cl29 and Cl30 up and away from the chassis.
10. Dress the yellow lead from the picture control away from the chassis. Dress the yellow lead from pin 8 of V106 away from the chassis.
11. Dress the green lead from pin 2 of V106 away from the chassis.
12. Dress R168, R169, R170. R176 and R178 up and away from the chassis.
13. The leads to the volume control should be dressed down against the chassis and away from V117 and V118.
14. Contact between the r-f oscillator frequency adjustment screws and the oscillator coils or channel switch eyelets must be avoided.
15. Dress leads from Ll 10 (width control coil) away from the transformer frame.
16. Dress Tllo winding leads away from the windings and away from the transformer frame.

## R-F UNIT WIRING DIAGRAM



Figure 76-R-F Unit Wiring Diagram




\begin{tabular}{|c|c|c|c|}
\hline STOCR No. \& DESCRIPTION \& STOCK No. \& DESCRIPTION \\
\hline 75069 \& \begin{tabular}{l}
R-F UNIT ASSEMBLIES \\
KRR 7 \\
Board-R.F unit power connection terminal board (5 contact)
\end{tabular} \& \[
\begin{aligned}
\& 75068 \\
\& 73457 \\
\& 74188
\end{aligned}
\] \& \begin{tabular}{l}
Spring-Retaining spring for r-f oscillator tube shield \\
Spring-Return spring for line luning control core Spring-Relaining spring ior adjustable core RCA 74187
\end{tabular} \\
\hline 75067 \& Bracket-Vertical bracket for holding r-f oscillator tube shield \& 74578 \& Spring-Retaining spring for adjasting screws RCA 73640 and RCA 74575 \\
\hline \[
\begin{aligned}
\& 73478 \\
\& 74035 \\
\& 53511 \\
\& 54207
\end{aligned}
\] \& ```
Cable-I-F transmission cable (Wl)
Capacitor-Ceramic. 5 mmi . (C4, C5)
Capacitor-Ceramic. 10 mm . (C3)
Capacitor-Ceramic, 18 mml . (C20)
``` \& 73468 \& Stator-Front oscillator section stator complete with rotor, segment, cails. and adjusting screws (SI. L14, L1S, L16. L17, L18, L19, L21. L22. L23, L24) \\
\hline 73449 \& Capacitor-Ceramic trimmer comprising 1 section of 150.190 mml . and 1 section of 65.95 mm . (C11, C12) \& 73469 \& Stator-Rear oscillator section stator complete with rolor, segment and coils (S2, L2S. L26. L27. L28. L29. L30. L32. L33. L34. L35) \\
\hline 73091 \& \begin{tabular}{l}
Capacitor-Ceramic, 270 mm . (C21) \\
Capacitor-Ceramic, 1500 mm.!. (C2. C7. C8. C9, C13. C15. C17. C18. C18)
\end{tabular} \& 73633 \& Stator-Antenna stator complete with rotor and coils (S5. L6. L56. L57. L58. L59, L60. L61, L62. L63. L64, L65, L66, C21) \\
\hline \[
\begin{aligned}
\& 73473 \\
\& 73460
\end{aligned}
\] \& Capacitor-Ceramic, 5000 mml . (C16) Coil-R-F plate coil for channel 6 (LI3) \& 73470 \& Stator-Convertor stator complete. with rotor and coils (S3, L9, L36, L37. L38, L39, L40, L41, \\
\hline 73461 \& Coil-Rear section-Oscillator plate coil for channel 6 (L20) \& 73471 \& \begin{tabular}{l}
L48. L49. L50. LS1) \\
Stator-R-F amplifier stator complete with rotor
\end{tabular} \\
\hline 73462
73475 \& Coil-Coupling inductance coil (L4)
Coil-Antenna filter shunt coil (C67) \& \& and coils (E4. L13, L42, L43, L44, L45, L46, L47, L52. L53. L54. L55. C15. C16. R10) \\
\hline 73476 \& Coil-IFF trap (L7. C22) \& 75446 \& Stud-Capacitor stud-brass \# \(4.40 \times 13 / 16^{\prime \prime}\) with \\
\hline 73477
73874 \& \begin{tabular}{l}
Coil-Choke coil (L1O. L11, L12) \\
Coil-Front section-Oscillator plate coil for channel 6 (L31)
\end{tabular} \& \& 3/64" screw driver slot tor trimmer coils 74109 and 74110 uncoded or coded "ER" \\
\hline 74108 \& Coil-Fine tuning coil (\(11 / 2\) turns) with adjustable inductance core and capacitor slud (plunger adjustment) (Ll, Cl) \& 75447
73448 \& Stud-Capacitor stud-brass \#4.40 x \(13 / 16^{\prime \prime}\) with 3/64" screw driver slot for trimmer coils 74109 and 74110 coded numerically for " \(\mathrm{Hi} Q\) " Transformer-Convertor transformer (T1, R6) \\
\hline 74109 \& Coil-Trimmer coil (\(1^{1 / 2}\) turns) with adjustable inductance core and capacitor stud (screw adjustment) for oscillator section or converter section (L2, L3, C6, C10) \& 73466
74577

2917 \& Washer-Insulating washer for front shield (l set) Washer-Spring washer for fine tuning shaft and cam for KRK 7

\hline 74110 \& Coil-Trimmer coil (3 turns) with adjustable in. ductance core and capacitor slud (serew ad. justment) for r-f amplifier section (LS. Cl4) \& \& | or fine tuning shaft and cam |
| :--- |
| TELEVISION CHASSIS ASSEMBLIES |

\hline 73455 \& Core-Sliding core for fine tuning control trimmer \& \& KCS 28 C-9T246 (la Prod.)

\hline 74187
71493 \& Core-Adjustable core for coil L9 \& \& KCS 38-9T246 (2nd Prod.)

\hline 73440 \& Detent-R-F unit detent mechanism and libre shath \& 74593 \& Capacitor-Mica trimmer, comprising 1 section of 3.35 mm . and 1 section of 40.370 mm . for

\hline 71487 \& Form-Coil form for coil L31 \& \& RCS38 (Cl53A, Cl53B)

\hline 73453 \& Form-Coil form assembly for L9. L13 \& 72809 \& Capaeltor-Mica, 5 mm . (Cl66 for KCS28C)

\hline 73442 \& Link-Link assembly for fine tuning \& 73580 \& Capacitor-Mica, trimmer, comprising 1 section of

\hline 71462 \& Loop-Oscillator to convertor trimmer loop connector \& \& 10.160 mml . and 1 section of 40.370 mml . for KCS28C (C153A, Cl53B)

\hline 74572 \& Plate-Front plate and bushing for KRK 7 \& 39604 \& Capacitor-Mica, 10 mmf . (C126)

\hline \& watt (R4) \& \[
$$
\begin{aligned}
& 74105 \\
& 74726
\end{aligned}
$$

\] \& | Capacitor-Mica. 33 mmf . (Clll) |
| :--- |
| Capacitor-Mica. 39 mmf . (Cl40 for KCS38) |

\hline \& Resistor-Fixed, composition, 150 ohms $\pm 20 \%, 1 / 2$ walt (RS, R9, R12) \& \[
$$
\begin{aligned}
& 64062 \\
& 45233
\end{aligned}
$$

\] \& | Capacitor-Ceramic, 82 mmi . (C120) |
| :--- |
| Capacitor-Ceramic, 100 mml . (C175) |

\hline \& ```
Resistor-Fixed, composition, 1000 ohms }\pm10%\mathrm{ ,
1/2 watt (Rll)

``` & \[
\begin{aligned}
& 75060 \\
& 73921
\end{aligned}
\] & Capacitor-Mica, 100 mml . 1000 v. (C138) Capacitor-Ceramic, 120 mm . (C129) \\
\hline & Resistor-Fixed, composition. 1000 ohms \(\pm 20 \%\). \(1 / 2\) wall (R7) & \[
\begin{aligned}
& 73102 \\
& 51416
\end{aligned}
\] & \begin{tabular}{l}
Capacilor-Mica, 180 mmi . (C158) \\
Capacitor-Mica, 180 mmf . (C140 for KCS28C)
\end{tabular} \\
\hline & ```
Resistor-Fixed, composition, 2700 ohms }\pm10%\mathrm{ .
    1/2 watt (R10)
``` & \[
\begin{aligned}
& 73922 \\
& 73091
\end{aligned}
\] & Capacitor-Ceramic, 270 mml . (Cl83, C194, C198) Capacitor-Mica, 270 mmt . (C106, C11S, C121) \\
\hline & Resistor-Fixed. composition, 10,000 ohms \(\pm 20 \%\). 1/2 watl (RI) & 39642 & Capacilor-Mica, 390 mmi . (C141. C160 for RCS28C: C200 for RCS38) \\
\hline & Resistor-Fixed, composition. 100,000 ohms \(\pm 20 \%\), 1/2 watt (R2, R3, R8, R13) & 74153 & Capacitor-Hi-voltage, 500 mmi ., 15,000 volts (C168) \\
\hline 30340 & Retainer-Retainer ring for fine tuning stud & 74250 & Capacitor-Mica, 560 mmf . (C160 for KCS38; C127. \\
\hline 70881 & Screw-\#4.40 \(\times 1 / 4\) " binder head screw for ad. justing coils L14. L15, L16, L17. L18, L19 & 71501 & \begin{tabular}{l}
C167 for KCS28C) \\
Capacitor-Ceramic, 1500 mmf . (Clol. Clo3.
\end{tabular} \\
\hline 73640 & Screw-\#4.40 \(\times\) "/4" adjusting screw for L66 & & C104. C105. C108, C109, Cl10, C113. Cl14. \\
\hline 71475 & Screw- \(=4.40 \times 15 / 32^{\prime \prime}\) adjusting screw for coils L21. L22. L23, L24 & & \[
\begin{array}{ccccccc}
\text { C117. } & \text { C118. } & \text { C122. } & \text { C125. } & \text { C132, } & \text { C171. } & \text { C172. } \\
\text { C176. } & \text { C177. } & \text { C188. } & \text { C192. } & \text { C193. C196: for }
\end{array}
\] \\
\hline 74575 & Screw-\$4.40 \(\times 17 / 32^{\prime \prime}\) adjusting screw for L6 & & KCS28C and KCS38) (C191 for KCS28C, Cl27 \\
\hline 74573 & Shaft-Channel selector shaft complete with pawl and stud for KRK 7 & 74106 & for KCS38)
Capacitor-Electrolytic. 5 mfd .0
50 \\
\hline 74574 & Shafl-Fine tuning shaft and carn assembly for KRR 7 & 53147 & \begin{tabular}{l}
KCS28C) \\
Capacitor-Electrolytic, \(25 \mathrm{~m} / \mathrm{d} ., 50\) volts (Cl34
\end{tabular} \\
\hline 72951 & Shield-Metal tube shield for V3 & & for KCS28C) \\
\hline 73632 & Shield-Metal tube shield for V1 & 73583 & Capacitor-Electrolytic, comprising 1 section of \\
\hline 75443 & Shield-"U" shape shield for bottom of R-F Unit & & \(40 \mathrm{mid} ., 450\) volts, 1 section of 90 mid .0150 volts, \\
\hline 71494 & Socket-Tube sockel, moulded, 7 prong. saddle mounted & & and 1 section of \(50 \mathrm{mid} ., 150\) volts (C147A C147B. Cl47C) \\
\hline 73450 & Sockel-Tube socket, ceramlc. 7 prong, botlom mounted & 73582 & Capacltor-Electrolytic, comprining 1 section of 40 mid., 450 volts, 1 section of 10 mfd .450 volis \\
\hline 74576 & Spacer-Insulating spacer for front plate (4 required) & & and 1 section of 80 mfd ., 200 volis (Cl70A, Cl70B, Cl 70 C) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline STOCI No. & DESCRIPTION & \[
\begin{aligned}
& \text { STOCK } \\
& \text { No. }
\end{aligned}
\] & DESCRIPTION \\
\hline 71432 & Capacitor-Electrolytic. comprising 2 sections of 40 mid.. 450 volts and 1 section of 10 mid. 450 volts (Cl48A. Cl48B, Cl48C) & \[
\begin{aligned}
& 74170 \\
& 71528
\end{aligned}
\] & \[
\begin{aligned}
& \text { Coil-Peaking coil (} 36 \mathrm{mh} \text {) (L117, R110) } \\
& \text { Coil-Peaking coil (L105, R125, L102, R213 for } \\
& \text { KCS28C) }
\end{aligned}
\] \\
\hline 73581 & Capactior-Electrolytic, comprtsing 1 section of 60 mid., 450 volts, 2 sections of 10 mid., 450 volls and 1 eection of 20 mid.. 150 volte (C146A. C146B, C146C. C146D) & \[
\begin{aligned}
& 72619 \\
& 74594
\end{aligned}
\] & \begin{tabular}{l}
Coil-Peaking coil (L103, R212 for KCS28C) \\
Connector-2 contact male connector for power cabl.
\end{tabular} \\
\hline 73801 & Capacitor-Tubular, paper, oil impregnated, . 001 mid., 1000 volts (C137) & \[
\begin{array}{r}
35787 \\
5119
\end{array}
\] & \begin{tabular}{l}
Connector-Phono input connector (J103) \\
Connector-3 contact fomale connector speaker cable for KCS28C
\end{tabular} \\
\hline 73802 & Capacitor-Tubular, paper, oll impregnated, . 0015 mid., 1000 volts (C181) & 12493 & Connector-5 contact female connector apeaker cable for XCS38 \\
\hline 73595 & Capacitor-Tubular, moulded paper, oll filled. .0022 mid. 600 volts (C161) & 71789 & Connector-Kinescope anode connector \\
\hline 73595 & Capactior-Tubular, paper, oil impregnated, . 0022 mid.. 600 volte (C142, C154, C184) & \[
72734
\] & \begin{tabular}{l}
Conlact-Hi-voltage capactior contact \\
Control-Horizontal and vertical hold control \\
(R158. R173)
\end{tabular} \\
\hline 73795 & Capacitor-Tubular, paper, oil impregnated. .0033 mid .600 volts (C186 for KCS38) & 74047 & Control-Brightnese and picture control for XCS38
(R122, R131) \\
\hline 73920 & Capacitor-Tubular, paper, oil impregnated, . 0047 mm ., 600 volts (C143. C144. C195, C145, C186 for KCS28C) & 38408 & Control-Sound volume control and power switch for XCS38 (R205. S101) \\
\hline 73561 & Capacitor-Tubulay, paper, oil impregnated, . 01 mid., 400 volts (C135) & 71441 & Control-Vertical linearity control (R162) Control-Height contzol (R15S) \\
\hline 73561 & Capacitor-Tubular, paper, oll impregnated, . 01 mid., 400 volts (C182) & 74475 & Control-AGG threshold control (R138) \\
\hline 73565 & Capacitor-Tubular, moulded paper, 01 mid., 600 volte (C151. C152) & \[
\begin{aligned}
& 74597 \\
& 73156
\end{aligned}
\] & \begin{tabular}{l}
Control-Focus control ior KCS38 (R191) \\
Control-Brightness control lor KCS28C (R131)
\end{tabular} \\
\hline 73594 & Capacitor-Tubular, moulded paper, oil filled. .01 mid., 600 volt (ClS9) & 73910 & Control-Picture controi and volume control and power switch for ECS28C (R122. R205. S101) \\
\hline 73565 & Capactior-Tubular, paper, oll impregnated, . 01 mid., 1000 volts (C185) & 7442
71457 & Control-Focus control for ESC28C (R191) Cord-Power cord and plug \\
\hline 74727 & Capactor-Tubular, moulded paper, oil tilled, \(.018 \mathrm{mid} ., 1000\) volts (Cl64 for XCS38) & 71437 & Cover-Insulating cover for electrolytics \#71432. \#73581 \& \#73582 \\
\hline 73562 & Capacitor-Tubular, paper, oil impregnated, 022 mid., 400 volts (C155) & 74418 & Cushion-Rubber curhion for kinescope bottom support \\
\hline 73596 & Capactior-Tubular, moulded paper, oll tilled. .033 mid., 1000 volts (C164 for KCS28C) & 73590 & Cushion-Rubber cushion for deflection yoke hood (2 required) \\
\hline 74728 & Capacitor-Tubular, moulded paper, oil filled. .039 mid., 1000 volts (C165 for KCS38) & 73600 & Fuse- 0.25 amp., 250 volts (F101) \\
\hline 73558 & Capacilor-Tubular, paper, oil impregnated, . 047 mid. 200 volts (C133. C187 for XCS28C) & 71799 & Grommet-Rubber grommet for yoke horizontal lead exit \\
\hline 73553 & Capacitor-Tubular, paper, oil impregnated. . 047 mid., 400 volts (C130, C139) & 37396 & Grommet-Rubber grommel for mouning ceramic tube socket \\
\hline 73592 & Capactioz-Tubular, moulded paper, oil filled. .047 mid., 600 volts (C150) & \[
73301
\] & Magnel-Ion trap magnet (P.M. type) \\
\hline 73592 & Capacitor-Tubulaz, paper, oil impregnated. . 047 mid., 600 volt (Cl56) & \[
18469
\] & Plate-Bakelite mounting plate for electrolytics \\
\hline 73597 & Capacitor-Tubular, paper, oil impregnated. . 047 mid., 1000 volts (C163) & 74598 & Resistor-Wire wound, 2.7 ohms, \({ }^{16}\) walt (R187 for XCS38) \\
\hline 73597 & Capactior-Tubular, moulded paper, oil filled. .047 mid., 1000 volts (C165 lor KCS28C) & 71513 & Resistor-Wire wound. 3.3 ohms, 's watt (R187 for KCS28C) \\
\hline 73551 & Capacitor-Tubular, paper, oll impregnated, 0.1 mid., 400 volts (C149) & \[
\begin{gathered}
72067 \\
18471
\end{gathered}
\] & Resistor-Wire wound, 5.1 ohms, \(1 / 2\) watt (R202) Resistor-Wire wound, 10 ohms, \(1 / 2\) walt (R190 for \\
\hline 73557 & Capacitor-Tubular, paper, oil impregnated, 0.1 mid., 600 volts (C131) & & \begin{tabular}{l}
KCS38) \\
Resistor-Fixed, composition, 10 ohms \(\pm 20 \%\).
\end{tabular} \\
\hline 73794 & Capacitor-Tubular, paper, oll impregnated, 0.22 mid., 400 volts (C157, C162) & & \begin{tabular}{l}
\(1 / 2\) walt (R120) \\
Resistor-Fixed composition, 18 ohms \(\pm 10 \%\). \(1 / 2\)
\end{tabular} \\
\hline 73794 & Capacilor-Tubular, paper, oll impreqnated, 0.22 mid., 400 volts (Cl 36) & & \begin{tabular}{l}
watt (R225 lor KCS38) \\
Resistor-Fixed composition, 39 ohms \(\pm 10 \%\), \(1 / 2\)
\end{tabular} \\
\hline 73787 & Capacitor-Tubular, paper, oil impregnated, 0.47 mid., 200 volts (Cl33 for KCS38) & & \begin{tabular}{l}
watl (R111 for KCS28C: R121 for KCS38) \\
Resistor-Fixed composition, 39 ohmı \(\pm 10 \%\).
\end{tabular} \\
\hline 73787 & Capactior-Tubular, paper, oil impregnated, 0.47 mid., 200 volis (C190, C197) & & \begin{tabular}{l}
watt (R185 for RCS28C) \\
Resistor-Fixed composition. 47 ohms \(\pm 5 \%\), \(1 / 2\)
\end{tabular} \\
\hline 73787 & Capactor-Tubular, moulded paper, oil impreg. nated, 0.47 mid., 200 volis (C199 for XCS28C) & & \begin{tabular}{l}
watt (R111 for KCS38) \\
Resistor-Fixed. composition. 47 ohms \(\pm 20 \%\).
\end{tabular} \\
\hline 73154 & Choke-Filter choke (L.114 ior ECS28C) & & \(1 / 2\) watt (R183) \\
\hline 74585 & Coil-Focus coil for KCS38 (L118) & & Resistor-Fixed composition, 47 ohms \(\pm 10 \%\), 1 \\
\hline 71449 & Coil-Horizontal linearity control coil (L111) & & watt (R184 for \(\mathrm{XCS28C}\)) \\
\hline 71429 & Coil-Width control coll (L110 for ECS28: L. 115 for xCS38) & & ```
Resistor-Fixed composition, 68 ohms }\pm10%,1/
 walt (R105; R102 for XCS28C)
``` \\
\hline 73566 & Coil-Focus coil for KCS28C (L115) & & Resistor-Fixed composition. 68 ohms \(\pm 20 \%\). \(1 / 2\) \\
\hline 71526 & Coil-Peaking coil ( 250 mh ) (L106, L.107, L. 114 for KCS38) & & \begin{tabular}{l}
watt (R123 for KCS38) \\
Resistor-Fixed, composition. 82 ohms \(\pm 10 \%\).
\end{tabular} \\
\hline 73477 & Coll-Choke coll (L101) & & \(1 / 2\) watt (R19S) \\
\hline 71527 & Coil-Peaking coil ( 93 mh ) (L 102 for KCS38) Coll-Peaking coil ( 180 mh ) (L103, L105 for KCS38) & & Resistor-Fixed composition, 100 ohms \(\pm 10 \%\). \(1 / 2\) watt (R121 for XCS28C) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline STOCK
No. & DESCRIPTION & STOCX
No. & DESCRIPTION \\
\hline & Resistor-Fixed, composition, 3.9 megohms \(\pm 10 \%\). \(1 / 2\) walt (R149) & 73572 & Translormer-Second pix if trasslormer for KCS28C (T102. C107) \\
\hline & Resistor-Fixed composition, 6.8 megohms \(\pm 10 \%\). 1/2 watt (R125 for KCS38) & 73573 & \[
\begin{aligned}
& \text { Transformer-Third pix } 1 \text {-f transformer for } \mathrm{KCS} 28 \mathrm{C} \\
& \text { (T103, C112) }
\end{aligned}
\] \\
\hline & Resistor-Fixed, composition, \(10 \mathrm{mejohms} \pm 10 \%\). \(1 / 2\) waft (R148) & 73574 & ```
Transformer-Fourth pix i-1 transformer for
    KCS28C (T104, Cl16)
``` \\
\hline & ```
Renistor-Fixed, composition, 10 megohms }\pm20%\mathrm{ .
 1/2 walt (R201)
``` & 73577 & ```
Trap-4.5 mc. trap (L104, Cl28 for KCS28C; L110.
    Cl28 (or KCS38)
``` \\
\hline 74601 & Screw-\#8.32 \(\times 1 / 0 /\) cross-recensed blader head & 71778 & Trap-Sound trap (I105, C119) \\
\hline & screw for locus coll mounting (2 required) & 73476 & Trap-I-F trap (L116, C189) \\
\hline 74602 & Screw-\#10.32 \(\times 13.4\) " cross-recessed round head screw for focus coll adjustments (3 required) & 71420 & Yoke-Deflection yoke (L108, L109. L112. L113. C169. R166, R167) \\
\hline 74416 & Screw一\#10.32 \(\times 12 / 4 "\) round-head cross-recessed screw lor retaining strap \#74735 & & \\
\hline 73584 & Shield-Tube shield & & SPEAKER RSSEMBLY (for KCS38) \\
\hline 74937 & Sleeve-Rubber sleeve for focus coll & & 970773.1 \\
\hline 73117 & Socket-Tube socket. 7 pix, miniature & & RLI 16.1 \\
\hline 72927 & Sockel-Tube socket. 9 pix, miniature & 71560 & Connector-5 contact male connector for speaker \\
\hline 31251 & Socket-Tube socket, octal, waler & 74599 & Speaker-5" \(\times 7^{\prime \prime}\) EM speaker complete with \\
\hline 73249 & Socket-Tube socket, octal, ceramic, plate mounted & & cone and volce coll \\
\hline 71508 & Socke'-Tube socket for 8016 & & \\
\hline 72741 & Sockel-Kinescope sockel & & SPEAKER ASSEMBLY (for KCS28C) \\
\hline 73586 & Spring-Compression spring used under centering conirol screws (3 required) & & 92573-4 \\
\hline 74595 & Spring-Anode lead spring & & RL109-5 \\
\hline 74936 & Spring-Suspension spring icoll type for kinescope socket leads & 5118 & Connector-3 contact male connector for speaker \\
\hline 74735 & Strap-Retaining strap for kinescope mounting & 73993 & Speaker-5" x 7" P.M. specker complete with cone \(\&\) volce coll \\
\hline 74596
46760 & Support-Bakelite supports (1 set) for mounting hivoltage rectifier tube mounting plate Switch-"TV.Phono" switch (S103) & & MISCELLANEOUS \\
\hline 46760 & & & \\
\hline 74586 & Transformor-Power transiormer. 115 ,volt \(\times 60\) cycle lor KCS38 (T111) & 74637
75039 & \begin{tabular}{l}
Back-Cablnet back \\
Board-"Antenna" terminal board
\end{tabular} \\
\hline 74587 & Transformer-Vertical outpui transformer for KCS38 (T108) & X 3037 & Cloth-Grille cloth \\
\hline 73569 & Transformer-Vertical oscillator transformer (T107) & 39153 & Connector-4 coatact male connector for antenna cable \\
\hline 74588 & Transformer-Morisonial output and hi-voltage transformer for KCS38 (T110) & 74638 & Cushion-Vinylite cushion (\(291 / 4^{\prime \prime}\)) for safety qlass \\
\hline 71419 & Transformer-Sound output transformer (T114) & 74627 & Decal-Control function decal for KCS38 \\
\hline 74589 & Transformer-First plx i-f transformer for KCS38 (T101. Cl02. R101) & 74729 & Decal-Control function decal for KCS28C Emblem-"RCA Victor" emblem \\
\hline 74590 & Transformer-Second pix i-1 transformer for KCS38 (T102, C107) & 73642 & Escutcheon-Channel marker escutcheon Fool-Rubber fool (4 required) \\
\hline 74591 & Transformer-Third pix i-f transformer for KCS38 (T103. Cl12) & \[
74632
\] & Gaskel-Cork gasket for salety glass \\
\hline 74592 & Translormer-Fourth pix 1.1 transformer for RCS38 (T104, Cll6) & 74629
74000 & \begin{tabular}{l}
Glass-Cabinet safety glass \\
Knob-Horizontal hold control or picture control
\end{tabular} \\
\hline 73575 & Transformer-Filth pix i-f transformer (T106, C123. C124) & 74635 & \begin{tabular}{l}
knob \\
Knob-Channel selector knob-dark
\end{tabular} \\
\hline 71424 & ```
Transformer-Sound if transformer (T112, Cl73.
 C174)
``` & 74636 & Knob-Fine luning knob-dark \\
\hline 71427 & Transformer-Sound discriminator Iransformer (T113, C178, C179, Cl80) & 73998 & Knob-Vertical hold control or brighiness control knob \\
\hline 73576 & Transformes-Horizontal ascillator transformer
(T109) & 74002 & Knob-Volume control and power switch knob Nut-Speed nut for safely glase retainers (4 re- \\
\hline 73578 & Transformer-Antenna transformer complete with socket and bracket (II15, J102) & 74630 & \begin{tabular}{l}
quired) \\
Panel-Removable grille panel and cloth assem-
\end{tabular} \\
\hline 73567 & Transformer-Power transformer, 115 volf. 60 cy cle for KCS28C (T111) & 74628 & \begin{tabular}{l}
bly \\
Retainern-Safety glass setainers (l set)
\end{tabular} \\
\hline 73568 & Transformer-Vertical output transformer for KCS28C (T108) & 73643 & \\
\hline 73570 & Transtormer-Horizontal outpui and hivoltage tranformer lor KCS28C (Tllo) & 14270 & Spring-Retaining spring for knobs \#73998. \#74002. \#74636 \\
\hline 73571 & \begin{tabular}{l}
Transiormer-First pix i.f transformer for XCS28C \\
(T101. C102. R101)
\end{tabular} & 30330 & Spring-Retaiaing spring lor knob \#74000 \\
\hline
\end{tabular}

To obtain resistors for which no stock number is given, order by stating type, value of resistance, tolerance and wattage.


Model 9T256, Mahogany Finish Metal Cabinet
```

RADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

```

\section*{GENERAL DESCRIPTION}

Model 9T256 is a 10 -inch table type television receiver in a mahogany linish metal cabinet. The receiver employs twentyone tubes plus three rectifiers and a 10 -inch kinescope.
The receiver is provided with Electronic Magnifier deflection circuits by which the center portion of the picture may be enlarged to fill the screen. Choice of picture coverage is made by operation of a remote switch.

Features of the television unit are full twelve channel coverage: FM sound system: improved picture brilliance; picture A.G.C: A.F.C horizontal hold: stabilized vertical hold: two stages of video amplification; noise saturation circuits; improved sync separator and clipper; lour me. band width for picture channel and reduced hazard high voltage supply. An auxiliary audio input jack is provided to permit the use of an external record playing attachment.

ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE........ 61 square inches on a 10BP4 Kinescope
R-F FREQUENCY RANGES
\begin{tabular}{|c|c|c|c|c|}
\hline Channel Number & \begin{tabular}{l}
Channel \\
Freq. Mc.
\end{tabular} & \begin{tabular}{l}
Plcture \\
Carrier \\
Freq. Mc.
\end{tabular} & Sound Carrier Frea. Mc. & Recelver R-F Osc. Frea. Mc. \\
\hline 2. & \[
.54-60 \ldots
\] & \[
\text { . } 55.25
\] & .. . 59.75. . & \[
\text { . . . . } 81
\] \\
\hline 3. & 60-66 & 61.25 & 65.75. & . 87 \\
\hline 4. & 66-72 & 67.25 & . 71.75 & . 93 \\
\hline 5. & . 76-82. & . 77.25 & . 81.75 & . 103 \\
\hline 6. & 82-88. & . 83.25 & . . 87.75. & . 109 \\
\hline 7. & . 174-180 & 175.25. & .179.75 & . 201 \\
\hline 8. & . 180-186 & . 181.25 & . 185.75 & . 207 \\
\hline 9 & . 186-192 & . 187.25 & . 191.75 & . 213 \\
\hline 10. & . \(192-198\) & . 193.25 & . 197.75 & . 219 \\
\hline 11. & . 198-204 & . 199.25 & . 203.75. & . 222 \\
\hline 12. & 204-210 & . 205.25 & . 209.75 & . 231 \\
\hline 13. & . 210.216. & 211.25 & 215.75 & . 237 \\
\hline
\end{tabular}

FINE TUNING RANGE
Plus and minus approximately 250 kc on channel 2 and plus and minus approximately 650 kc on channel 13.
POWER SUPPLY RATING
KCS38C
115 volts, 60 cycles, 300 watts
AUDIO POWER OUTPUT RATING . . . . . . . . . . . 2.4 watt max.
LOUDSPEAKER
KCS38C. . . . . . 970773-1 5-inch \(\times\) 7-inch EM Dynamic, 3.2 ohms
\begin{tabular}{|c|c|c|c|}
\hline DIMENSION (inches) & Width & Height & Depth \\
\hline Cabinet (outside). & 22 & 15\% & \(211 / 4\) \\
\hline Chassis (overall). & \(19^{1 / 2}\) & 13 & 201/2 \\
\hline
\end{tabular}

RECEIVER ANTENNA INPUT IMPEDRNCE
Choice: 300 ohms balanced or 72 ohms unbalanced.

\section*{WEIGHT}

Chassis with Tubes in Cabinet. . . . . . . . . . . . . . . . . . . . 84 lbs. Shipping Weight . ........................................... . . . 99 lbs.

RCA TUBE COMPLEMENT


\section*{PICTURE INTERMEDIATE FREQUENCIES}

Picture Carrier Frequency ...............................................25.75 Mc.
Adjacent Channel Sound Trap .......................................27.25 Mc.
Accompanying Sound Traps ............................................21.25 Mc.
Adjacent Channel Picture Carrier Trap ........................19.75 Mc.

SOUND INTERMEDIATE FREQUENCIES
Sound Carrier Frequency . . . . . . . . . . . . . . . . . . . . . . 21.25 Mc .
Sound Discriminator Band Width between peaks . . . . . 350 kc
VIDEO RESPONSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . To 4 Mc.


SWEEP DEFLECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . Magnetic

SCANNING
Interlaced, 525 line

HORIZONTAL SWEEP FREQUENCY. . . . . . . . . . . . . . 15.750 cps

VERTICAL SWEEP FREQENCY. . . . . . . . . . . . . . . . . . . . . . 60 cps

FRAME FREQUENCY (Pictuse Repetition Rate).
30 cps

OPERATING CONTROLS (front panel)
Channel Selector . . . . . . . . . . . . . . . . . . . . . . Single Control Knob
Fine Tuning. . . . . . . . . . . . . . . . . . . . . . . . . Single Control Knob Picture and Brightness. .................. . . . Dual Control Knobs Picture Horisontal and Vertical Hold. ...... Dual Control Knobs Sound Volume and On-OH Switch......... Single Control Knob

NON-OPERATING CONTROLS (excluding I-f and \(\mathfrak{j - f}\) adjustments) Horizontal Centering. . . . . . top chassis screwdriver adjustment Vertical Centering. . . . . . . . top chassis screwdriver adjustment Shunt Width Coil. . . . . . . . rear chassis screwdriver adjustment Height . . . . . . . . . . . . . . . . . . . . . . . . .rear chassis adjustment Horizontal Linearity . . . . . . rear chassis screwdriver adjustment Vertical Linearity. . . . . . . . . . . . . . . . . . . rear chassis adjustment Horizontal Drive. . . . . . . . . rear chassis screwdriver adjustment Horizontal Osc. Freq. . . . . . . . . . . . . . bottom chassis adjustment Horizontal Osc. Waveiorm........... . side chassis adjustment Horizontal Locking Range. . . . . . . . . . . rear chassis adjustment Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rear chassis adjustment Ion Trap Magnet . . . . . . . . . . . . . . . . . . . . . top chassis adjustment Deflection Coil... . . . . . . . . . . top chassis wing nut adjustment AGC Threshold Control . . . . . . . . ......rear chassis adjustment Series Width Coil......... rear chassis screwdriver adjustment Expanded Width Coil. . . . rear chassis screwdriver adjustment Width Selector Switch. . . . rear chassis screwdriver adjustment

\title{
HIGH VOLTAGE WARNING
}

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH-VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH-VOLTAGE COMPARTMENT SHIELD REMOVED.

\title{
KINESCOPE HANDLING PRECAUTIONS
}

\begin{abstract}
DO NOT REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGles and heavy gloves are worn. people not so equipped should be kept away WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.
\end{abstract}

The kinescope bulb encloses a high vacuum and, due to its large surface area, is subjected to considerable air pressure. For this reason, kinescopes must be handled with more care than ordinary receiving tubes.

\footnotetext{
The large end of the kinescope bulb - particularly that part at the rim of the viewing surface - must not be struck, scratched or subjected to more than moderate pressure at any time. In installation, if the tube sticks or fails to slip smoothly into its socket, or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Refer to the Receiver Installation section for detailed instructions on kinescope installation. All RCA kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the receiver. Keep the carton for possible future use.
}

The following adjustments are necessary when turning the receiver on for the first time:
1. See that the TV.PH switch on the rear apron is in the "TV" position.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid-position.
3. Set the STATION SELECTOR to the desired channel.
4. Adjust the FINE TUNING control for best sound lidelity and the SOUND VOLUME control for suitable volume.
5. Turn the BRIGHTNESS control fully counter-clockwise, then clockwise until a light pattern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZONTAL hold control until a picture is obtained and centered.
8. Turn the BRIGHTNESS control counter-clockwise until the retrace lines just disappear.
9. Adjust the PICTURE control for suitable picture contrast.


Figure I-Receiver Opernting Controls
10. After the receiver has been on for some time, it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.
11. In switching from one station to another, it may be necessary to repeat steps 4,8 and 9.
12. When the set is turned on again alter an idle period, it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. If any adjustment is necessary, step number 4 is generally sufficient.
13. If the positions of the controls have been changed, it may be necessary to repeat steps 2 through 9 .
14. To operate the Electronic Magnifier push the bution on the remote cable.
15. To use the instrument with a record player, plug the recordplayer output cable into the PHONO jack on the rear apron. and set the TV-PH switch on "PH." Set the TV-PH switch back to TV on completion of the rec. ord program.

\section*{INSTALLATION INSTRUCTIONS}

Model 9T256 is shipped complete in cardboard cartons. The kinescope is shipped in place in the receiver.

UNPACKING. - To unpack the 9T256, tear open the carton flaps, pick up the receiver from under the bottom of the cabinet, and lift it out of the shipping carton.

The receiver may now be placed on a stand, table or other appropriate support. If a table or piece of furniture other than the regular stand is used for support, care must be taken to see receiver is sitting on the cabinet feet. If the bottom of the cabinet is permitted to touch a table top. the table could become badly scratched.

Take oft the cabinet back.
The operating control knobs are packed in a paper bag which is tied on top of the chassis. Remove the bag and install the knobs on the proper control shafts.

Remove the cardboard shield from the SU4G rectifier.
Make sure that all tubes are in place and are lirmly seated in their sockets.

Check to see that the high voltage lead is attached to the kinescope second anode connector socket on the bell of the tube.

Connect the antenna tranamiation line to the receiver antenna terminals.

Plug the receiver power cord into a 115 volt a-c power source. Turn the receiver power switch to the "on" position, the brightness control three-fourths clockwise, and the picture control counter-clockwise.

ION TRAP MAGNET ADJUSTMENT. - Set the ion trap magnet approximately in the position shown in Figure 2, and with the part number on magnet towards the rear of the chassis. Starting from this position immediately adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust the focus
control (R191 on the chassis rear apron) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches on this adjustment should be made with the brightness control at the maximum position with which good line focus can be maintained.

DEFLECTION YOKE ADJUSTMENT. - If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.


Figure 2-Yoke and Focus Coil Adjustments

PICTURE ADJUSTMENTS. - It will now be necessary to obtain a test pattern picture in order to make further adjustments. See steps 3 through 9 of the receiver operating instructions.

If the Horizontal Oscillator and AGC System are operating properly, it should be possible to sync the picture at this point. However, if the AGC threshold control is misadjusted, and the receiver is overloading, it may be impossible to sync the picture.

If the receiver is overloading turn R138 on the rear apron (see Figure 3) clockwise until the set operates normally and the picture can be synced.


Figure 3-Rear Chassis Adjustments

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT. - Turn the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be gradually reduced and when only 3 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull-in should occur when the control is approximately 90 degrees from the extreme counter-clockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise ratation of the control. At the extreme clockwise position, the picture should be out of sync and should show 1 vertical or diagonal black bar in the raster.

If the receiver passes the foregoing checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Centering Adjustment."

תLIGNMENT OF HORIZONTAL OSCILLATOR. - If in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull-in point, it will be necessary to make the following adjustments:

Horizontal Frequency Adjustment. - Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the Tl09 horizontal frequency adjustment (under the chassis) until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster.

Horizontal Lock in Range Rdjustment. - Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 3 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer C153A slightly clockwise. If less than 3 bars are present, adjust C153A slightly counter-clockwise. Turn the picture control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 3 bars are present.

Repeat the adjustments under "Horizontal Frequency Adjustment" and "Horizontal Locking Range Adjustment" until the conditions specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.

If it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure. For field purposes para. graph "A" under Horizontal Oscillator Wavelorm Adjustment may be omitted.

CENTERING ADJUSTMENT. - No electrical centering controls are provided. Centering is obtained by mechanically orienting the focus coil with the three adjustrment screws shown in Fig. ure 2. Center the picture on the screen by adjustront of these screws. The locus coil should be concentric around the neck of the kinescope to prevent curvature of the raster.

FOCUS COIL ADJUSTMENTS. - If, after making the centering adjustments described in the above paragraph, a corner of the picture is shadowed, it will be necessary to loosen the focus coil mounting screws (shown in Figure 2) and change the position of the coil to eliminate the shadow. Recenter the picture by adjustment of the centering screwa.

Recheck the position of the ion trap magnet to insure that maximum brilliance is obtained. It is important that the kinescope not be operated with the ion trap magnet adjusted for less than maximum brightness. To do so may cause injury to the tube.

PICTURE SIZE AND LINEARITY. - Connect the "Electronic Magnifier" switch to its socket on the rear apron of the chassis. Set the switch to the large (expanded) picture position. Set the Expanded Width Selector Switch S104 to the counter-clockwise position and adjust the Expanded Width Control L120 so that the test pattern outer circle normally tangent to the top of the picture is now tangent to the side of the picture. (If the width is not sufficient, set the Expanded Width Selector Switch to the center or the clockwise end position.) Adjust the Horizontal Drive and the Horizontal Linearity Control until the pattern is symmetrical from left to right. In general, the core of the Linearity Control Coil should be between one-half to all the way out of the cail.

Set the "Electronic Magnifier" switch to the normal size position. Observe to see if the picture width is correct. If it is not, adjust either the Series Width Control Coil L121, or the Shunt Width Control Coil L115 until the picture is the correct width. If the Series Width Coil core is out too far, the picture will "ring" on the loft half. This ring will be shown as one or more faint light or dark vertical bars somewhere on the left half of the picture with resulting poor horizontal linearity.

When the proper width is oblained, switch to the expanded picture position, wait lor a few seconds then switch back to the normal position. Observe if the top of the picture immediately assumes its fisal position or if it takes several seconds to come to a stop. If the picture requires more than a second to become still, adjust the core of L115 or L121 in and the other out while maintaining the proper width. Repeat the above lest and observe if the picture immediately comes to rest when switched to the normal size position. Continue to adjust L115 and L121 until this condition is satisfied and the picture is the proper width. Observe the picture horizontal linearity and if necessary retouch Horizontal Drive, Linearity and Width Controls L115 and L121.

With the "Electronic Magnifier" switch in normal position, adjust the Height and Vertical Linearity controls as usual in order to obtain good vertical linearity. In addition, if difficulty is experienced in obtaining good vertical linearity at the top one-halt inch of the picture, slightly adjust the Vertical Peaking Control L119.

Switch to the expanded picture position and note if the proper aspect ratio is obtained. If not, adjust L112 and/or S104.

Two hooks are provided in back of the cabinet to permit coiling up any excess cable to the "Electronic Magnifier" switch.

Adjustments of the horizontal drive control affect horizontal oscillator hold and locking range. If the drive control was adjusted, recheck the oscillator alignment.

FOCUS. - Adjust the focus control (R191 on chassis rear apron) for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

CHECK TO SEE THAT THE CUSHION AND YOXE THUMB. SCREWS AND THE FOCUS COIL MOUNTING SCREWS ARE TIGHT.

AGC THRESHOLD CONTROL. - The AGC threshold control R138 is adjusted at the factory and normally should not require readjustment in the field.

To check the adjustment of the AGC Threshold Control, tune in a strong signal, sync the picture and turn the picture control to the maximum clockwise position. Turn the brightness control counter-clockwise until the vertical retrace lines are just invisible. Momentarily remove the signal by switching off channel and then back. If the picture reappears immediately. the receiver is not overloading due to improper setting of R138. If the picture requires an appreciable portion of a second to reappear, R138 should be readjusted.

Set the picture control at the maximum clockwise position. Turn R138 fully clockwise. The top one-half inch of the picture may be bent slightly. This should be disregarded. Turn R138 counter-clockwise until there is a very, very slight bend or change of bend in the top one-hall inch of the picture. Then turn R138 clockwise just sufficiently to remove this bend or change of bend.

If the signal is very weak, the above method may not work as it may be impossible to get the picture to bend. In this case, turn R138 counter-clockwise until the snow in the picture becomes more pronounced, then clockwise until the best signal to noise ratio is obtained.

The AGC control adjustment should be made on a strong signal if possible. If the control is set too far counter-clockwise on a weak signal, then the receiver may overload when a strong signal is received.

CHECK OF R-F OSCILLATOR ADJUSTMENTS. - Tune in all available stations to see if the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure. The adjustments for channels 2 through 5 and 7 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 4. Adjustment tor channel 13 is on top of the chassis and channel 6 adjustment is in the kinescope well.


Figure 4-R.F Oscillator Adjustments

Replace the cabinet back and make sure that the screws are tight in order to prevent rattling at high volume.

WEAK SIGNAL AREA OPERATION. - Since the vast majority of receivers are sold in strong signal areas, the chassis are aligned to produce the cleanest pictures in those areas. However, if the receiver is to be operated in a weak signal area, better performance can be obtained by "peaking" the rof unit.

To peak the rof unit in these receivers, disconnect the 390 ohm resistor which is on top of the r-f unit chassis. Adjust L66 to obtain the best possible picture on the weakest low channel station received. By this action, the r.t gain is increased
\(50 \%\) at the expense of \(\mathrm{r} \cdot \mathrm{f}\) bandwidth and an improvement in the weak signal picture results.

On early production receivers, R11 was 1,000 ohms and R14 was omitted. In order to "peak" these units it will be necessary to remove the unit from the receiver and change Rll to 10,000 ohms. Once the unit is removed from the chassis R11 is easily accessible on the unit rear wafer. When making this change. if the channel number \(2 \mathrm{r} \cdot \mathrm{f}\) coil L 62 consists of \(5 \%\) turns, the outside turn should be "knifed" one wire diameter away from the rest of the coil in order to provide peak response on channel 2. The unit should then be replaced and L66 peaked as described above.

If the peaked receiver is subsequently taken to a strong signal area, the resistor R14 should be connected in place and L66 adjusted for "flat" response on the low channels.

CHASSIS REMOVAL. - To remove the chassis from the cabinet for repair or installation of a new kinescope, remove the back and the knobs, unplug the speaker cable, and remove the chassis bolts under the cabinet. Withdraw the chassis from the back of the cabinet. The kinescope is held on the chassis by means of a special strap, so that the chassis and the kinescope can be handled together, as a unit.

KINESCOPE HANDLING PRECAUTION. - Do not install, remove, or handle the kinescope in any manner, unless shatter. proof goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling.

To remove the kinescope, remove the kinescope socket, the ion trap magnet, and the second-anode connector. Loosen the cross-recessed head screw on the kinescope strap, as shown in Figure 5. Withdraw the kinescope toward the front of the chassis.

INSTALLATION OF KINESCOPE. - The kinescope second anode contact is a recessed metal well in the side of the bulb. The tube must be installed so that this contact is up but rotated approximately 30 degrees toward the high-voltage compartment.

Slide the kinescope cushion toward the rear of the chassis. Loosen the deflection yoke adjustment, slide the yoke toward the rear of the chassis and tighten.

Insert the neck of the kinescope through the deflection and focus coils until the bell of the tube rests against the yoke cushion. If the tube sticks, or fails to slip into place smoothly. investigate and remove the cause of the trouble. Do not force the tube.

Slip the ion trap magnet assembly over the neck of the kinescope.

Connect the kinescope socket to the tube base.
Connect the high voltage lead to the kinescope second anode socket.

Wipe the kinescope screen surface and front panel safety glass clean of all dust and finger marks.

To replace the chassis in the cabinet, first tighten the crossrecessed head screw on the kinescope strap. Slide the chassis into the cabinet, then insert and tighten the six chassis bolts. Loosen the kinescope strap from the rear of the cabinet, or from the bottom through a hole in the chassis shell. The bottom end of the cross-recessed head screw is slotted to tit a screw. driver. Push the kinescope forward until the face of the lube is againat the mask. Push the yoke cushion forward against the kinescope flare, then tighten the cushion adjusting screws. Push the yoke forward and tighten. Tighten the kinescope strap. Replace the knobs and proceed with the set-up adjustments.

ANTENNAS. - The finest television receiver built may be said to be only as good as the antenna design and installation. It is therefore important to select the proper antenna to suit the porticular local conditions, to install it properly and orient it correctly.


Figure 5-Chassis Top View


The following measurements represent two sets of conditions. In the first condition a 2200 microvolt test pattern signal was fed into the receiver, the picture was synced and the AGC threshold control was properly adjusted. The second condition was obtained by removing the antenna leads and short-circuiting the receiver antenna terminals. Voltages shown are as read with "Jr. VoltOhmyst" between the indicated terminal and chassis ground and with the receiver operating on 117 volts, 60 cycles a-c.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Tube No.} & \multirow[b]{2}{*}{Tube Type} & \multirow[b]{2}{*}{Function} & \multirow[b]{2}{*}{Operating Condition} & \multicolumn{2}{|l|}{E. Plate} & \multicolumn{2}{|l|}{E. Screen} & \multicolumn{2}{|l|}{E. Cathode} & \multicolumn{2}{|r|}{E. Grid} & \multirow[b]{2}{*}{I Plat. (ma.)} & \multirow[b]{2}{*}{\(\underset{\substack{\text { Screen } \\ \text { (ma.) }}}{\text { I }}\)} & \multirow[b]{2}{*}{Notes on Measurements} \\
\hline & & & & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & Pin No. & Volts & \begin{tabular}{l}
Pin \\
No.
\end{tabular} & Volts & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & & & \\
\hline \multirow[t]{2}{*}{V1} & 6AG5 & \[
\begin{aligned}
& \hline \text { R-F } \\
& \text { Amplifier }
\end{aligned}
\] & \[
2200 \mathrm{Mu} . \mathrm{V} .
\] Signal & 5 & 130 & 6 & 132 & \(2 \& 7\) & 0 & 1 & -2.2 & 5 & 2 & \\
\hline & & & No Signal & 5 & 67 & 6 & 111 & \(2 \& 7\) & 0 & 1 & \(+.2\) & 14.0 & 5.0 & \\
\hline \multirow[t]{2}{*}{V2} & 6AG5 & Converter & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} \\
\text { Signal }
\end{gathered}
\] & 5 & \[
\begin{array}{r}
\bullet 130 \\
\text { to } 140
\end{array}
\] & 6 & \[
\begin{array}{r}
\bullet 130 \\
\text { 10 } 140
\end{array}
\] & 287 & 0 & 1 & \[
\begin{gathered}
\text { • }-3.0 \\
\text { 10 }-7.0
\end{gathered}
\] & \[
\begin{gathered}
\bullet 7.1 \\
\text { to } 7.7
\end{gathered}
\] & \[
\begin{gathered}
\quad 2.3 \\
\text { to } 2.7
\end{gathered}
\] & \multirow[t]{2}{*}{- Depending upon channel} \\
\hline & & & No Signal & 5 & \[
\begin{array}{r}
\cdot 104 \\
10 \quad 109
\end{array}
\] & 6 & \[
\begin{array}{r}
104 \\
\text { to } 109
\end{array}
\] & 287 & 0 & 1 & \[
\begin{gathered}
\text { e- } 2.0 \\
\text { to }-6.0
\end{gathered}
\] & \[
\begin{gathered}
\bullet 5.3 \\
\text { to } 5.9
\end{gathered}
\] & \[
\text { to } \stackrel{8}{1.0}
\] & \\
\hline \multirow[t]{2}{*}{V3} & \(6] 6\) & \[
\begin{aligned}
& \text { R-F } \\
& \text { Oscillator }
\end{aligned}
\] & \(2200 \mathrm{Mu} . \mathrm{V}\). Signa! & 1\&2 & \[
\begin{gathered}
988 \\
\text { to } 95
\end{gathered}
\] & - & - & 7 & . 19 & \(5 \& 6\) & \[
\begin{gathered}
\cdot-5.1 \\
\text { to }-7.3
\end{gathered}
\] & \[
\begin{gathered}
* 1.9 \\
\text { to } 2.7
\end{gathered}
\] & - & \multirow[t]{2}{*}{- Depending upon channel} \\
\hline & & & No Signal & 182 & \[
\begin{array}{r}
688 \\
\text { to } 81
\end{array}
\] & - & - & 7 & . 16 & \(5 \& 6\) & \[
\begin{array}{r}
-4.5 \\
\text { to }-6.6
\end{array}
\] & \[
\begin{array}{r}
\quad 1.8 \\
10 \quad 2.1
\end{array}
\] & - & \\
\hline \multirow[t]{2}{*}{V101} & 6BA6 & \[
\begin{aligned}
& \text { 1st Pix. I-F } \\
& \text { Amplifier }
\end{aligned}
\] & \begin{tabular}{l}
\[
2200 \mathrm{Mu} . \mathrm{V} .
\] \\
Signal
\end{tabular} & 5 & 115 & 6 & 115 & 7 & . 4 & 1 & -11.0 & 1.9 & . 8 & \\
\hline & & & No Signal & 5 & 87 & 6 & 87 & 7 & 1.73 & 1 & +. 2 & 8.1 & 3.4 & \\
\hline \multirow[t]{2}{*}{V102} & 6AG5 & 2d Pix. I-F Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 109 & 6 & 109 & \(2 \& 7\) & . 78 & 1 & 0 & 8.8 & 2.4 & \\
\hline & & & No Signal & 5 & 91 & 6 & 91 & 287 & . 62 & 1 & 0 & 7.4 & 1.6 & \\
\hline \multirow[t]{2}{*}{V103} & 6BA6 & 3d Pix. I-F Amplitier & \[
2200 \mathrm{Mu} . \mathrm{V} .
\] Signal & 5 & 81 & 6 & 119 & 7 & . 52 & 1 & -2.2 & 11.1 & . 3 & \\
\hline & & & No Signal & 5 & 55 & 6 & 96 & 7 & . 62 & 1 & +. 2 & 13.2 & . 3 & \\
\hline \multirow[t]{2}{*}{V104} & 6AG5 & 4th Pix. I-F Amplitier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 159 & 6 & 135 & \(2 \& 7\) & 1.5 & 1 & 0 & 7.2 & 2.2 & \\
\hline & & & No Signal & 5 & 165 & 6 & 118 & . 2 \& 7 & 1.35 & 1 & 0 & 6.8 & 2.4 & \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { V105 } \\
\text { A }
\end{gathered}
\]} & 6AL5 & Picture 2d Det. & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 7 & -113 & - & - & 1 & -112 & - & - & . 48 & - & \\
\hline & & & No Signal & 7 & -120 & - & - & 1 & -120 & - & - & - & - & \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { V105 } \\
\text { B }
\end{gathered}
\]} & 6AL5 & Sync Limiter & 2200 Mu . V. Signal & 2 & -107 & - & - & 5 & -56 & - & - & - & - & \\
\hline & & & No Signal & 2 & -80 & - & - & 5 & -60 & - & - & - & - & \\
\hline \multirow[t]{2}{*}{V106} & 12AU7 & lst Video Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 1 & -30 & - & - & 3 & -111 & 2 & -113 & 4.38 & - & \\
\hline & & & No Signal & 1 & -28 & \(\cdots\) & - & 3 & -118 & 2 & -120 & 3.82 & - & \\
\hline \multirow[t]{2}{*}{V106} & 12AU7 & 2d Video Amplitier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal } \\
\hline
\end{gathered}
\] & 6 & -166 & - & - & 8 & -6.5 & 7 & - -12.2 & 6.2 & - & \multirow[t]{2}{*}{\begin{tabular}{l}
-Variation \\
0 to -15 with contrant
\end{tabular}} \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 6 & -160 & - & - & 8 & --9 & 7 & - -10.3 & 6.9 & - & \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { V107 } \\
\text { A }
\end{gathered}
\]} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \text { GT }
\end{aligned}
\] & \begin{tabular}{l}
AGC \\
Amplifier
\end{tabular} & \[
\begin{aligned}
& 2200 \mathrm{Mu} . \mathrm{V} . \\
& \text { Signal }
\end{aligned}
\] & 5 & -11.0 & - & - & 6 & -55.5 & 4 & -56.5 & . 9 & - & \multirow[t]{2}{*}{-Variation of AGC control gives -60 to -75} \\
\hline & & & No Signal & 5 & -. 2 & - & - & 6 & -60 & 4 & *-64 & . 3 & - & \\
\hline \multirow[t]{2}{*}{\[
\underset{\text { B }}{\mathrm{V} 107}
\]} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \text { GT }
\end{aligned}
\] & Vertical Oscillator & \begin{tabular}{l}
\[
2200 \mathrm{Mu} . \mathrm{V} .
\] \\
Signal
\end{tabular} & 2 & -76 & - & - & 3 & -111 & 1 & -158 & . 2 & - & \multirow[t]{2}{*}{*Varlation of height give -30 to \(+170\)} \\
\hline & & & No Signal & 2 & * 62 & - & - & 3 & -120 & 1 & -169 & . 2 & - & \\
\hline \multirow[t]{2}{*}{V108} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \text { GT }
\end{aligned}
\] & \begin{tabular}{l}
AGC \\
Rectifier
\end{tabular} & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { SignaI } \\
\hline
\end{gathered}
\] & 5 & 95 & - & - & 6 & -3.4 & 4 & -19.3 & . 3 & - & \\
\hline & & & No Signal & 5 & 72 & - & - & 6 & -22 & 4 & -28 & . 28 & - & \\
\hline \multirow[t]{2}{*}{V108} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \text { GT }
\end{aligned}
\] & 1st Sync Separator & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} \\
\text { Signal }
\end{gathered}
\] & 2 & 95 & - & - & 3 & -1.8 & 1 & -19.5 & . 1 & -- & \\
\hline & & & No Signal & 2 & 73 & - & - & 3 & -21 & 1 & -28 & . 1 & - & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Tuse No.} & \multirow[b]{2}{*}{Tube Type} & \multirow[b]{2}{*}{Function} & \multirow[b]{2}{*}{Opercting Condition} & \multicolumn{2}{|r|}{E. Plate} & \multicolumn{2}{|l|}{E. Screen} & \multicolumn{2}{|l|}{E. Cathode} & \multicolumn{2}{|r|}{E. Grid} & \multirow[b]{2}{*}{\[
\begin{gathered}
1 \\
\text { Plate } \\
\text { (mote }
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
1 \\
\text { Screen } \\
\text { (ma.) }
\end{gathered}
\]} & \multirow[b]{2}{*}{Notes on Mecruremente} \\
\hline & & & & Pin No. & Volts & \begin{tabular}{l}
Pin \\
No.
\end{tabular} & Volts & Pin No. & Volts & \[
\begin{aligned}
& \text { Pla } \\
& \text { No. }
\end{aligned}
\] & Volts & & & \\
\hline \multirow[t]{2}{*}{V109} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \text { GT }
\end{aligned}
\] & Sync Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 2 & 150 & - & - & 3 & 0 & 1 & -4.7 & 5.25 & - & \\
\hline & & & \[
\begin{aligned}
& \text { No } \\
& \text { Signal }
\end{aligned}
\] & 2 & 145 & - & - & 3 & 0 & 1 & -5.2 & 3.75 & - & \\
\hline \multirow[t]{2}{*}{V109} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \text { GT }
\end{aligned}
\] & Sync Separator & \[
\begin{gathered}
2200 \text { Mu. V. } \\
\text { Signa! }
\end{gathered}
\] & 5 & 220 & - & - & 6 & -51 & 4 & -106 & . 4 & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 205 & - & - & 6 & -59 & 4 & -80 & . 35 & - & \\
\hline \multirow[t]{2}{*}{V110} & \[
\begin{aligned}
& \text { GX6. } \\
& \text { GT }
\end{aligned}
\] & Vertical Output & \[
\begin{gathered}
2200 \text { Mu. V. } \\
\text { Signal }
\end{gathered}
\] & 3 & 210 & 4 & 210 & 8 & -70 & 5 & -91 & -7.85 & & - Screen \\
\hline & & &  & 3 & 190 & 4 & 190 & 8 & -85 & 5 & -101 & -7.7 & & connected to plate \\
\hline \multirow[t]{2}{*}{V111} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \text { GT }
\end{aligned}
\] & Horizontal Osc. Control & \[
\begin{aligned}
& 2200 \mathrm{Mu} . \mathrm{V} . \\
& \text { Signal }
\end{aligned}
\] & 2 & -48 & - & - & 3 & \(-110\) & 1 & -92 & . 2 & - & *Variation of hold gives \\
\hline & & & \[
\begin{aligned}
& \text { No } \\
& \text { Signal }
\end{aligned}
\] & 2 & - 33 & - & - & 3 & -120 & 1 & -108 & . 2 & - & \[
\begin{aligned}
& -80.9 \text { to }+140 \\
& \text { volis on plate. }
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{V111} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \text { GT }
\end{aligned}
\] & Horizontal Oscillator & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 70 & - & - & 6 & -111 & 4 & -185 & 2.4 & - & \\
\hline & & & No Signal & 5 & 70 & - & - & 6 & -120 & 4 & -185 & 2.4 & - & \\
\hline \multirow[t]{2}{*}{V112} & 6BG6G & Horizontal Outpui & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} \\
\text { Signal }
\end{gathered}
\] & Cap & Do Nat Meas. & 8 & 150 & 3 & -115 & 5 & -110 & 72 & 9.4 & \\
\hline & & & No Signal & Cap & Do Nol Meas. & 8 & 145 & 3 & -115 & 5 & -130 & 70 & 9.2 & \\
\hline \multirow[t]{2}{*}{V113} & \[
\begin{aligned}
& \text { 1B3GT } \\
& / 8016
\end{aligned}
\] & H. V. Rectifier & \[
\begin{aligned}
& \text { Brighiness } \\
& \text { Min. }
\end{aligned}
\] & Cap & Do Nol Meas. & - & -- & \(2 \& 7\) & 9500 & - & - & 0 & - & \\
\hline & & & Brightness Average & Cap & Do Not Meas. & - & - & 287 & 9000 & - & - & . 1 & - & \\
\hline \multirow[t]{2}{*}{V114} & 6W4GT & Damper & \(2200 \mathrm{Mu} . \mathrm{V}\). Signal & 5 & Do Not Meas. & - & - & 3 & 300 & - & - & 66 & - & - \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & Do Not Meas. & - & - & 3 & 295 & - & - & 65 & - & \\
\hline \multirow[t]{2}{*}{V115} & 5U4G & Rectifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 486 & - 335 & & & 288 & 220 & - & - & 210 & - & -A.C meas. ured from plate \\
\hline & & & No
Signal & 486 & -335 & & & 288 & 220 & - & - & 215 & - & to trans. center tap \\
\hline \multirow[t]{2}{*}{V116} & 6AU6 & 1st Sound I-F Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 134 & 6 & 134 & 7 & . 9 & 1 & 0 & 8.2 & 3.3 & \\
\hline & & & No Signal & 5 & 110 & 6 & 110 & 7 & . 7 & 1 & 0 & 5.7 & 2.6 & \\
\hline \multirow[t]{2}{*}{V117} & 6AU6 & 2nd Sound I-F Amplifier & \[
\begin{gathered}
2200 \text { Mu. V. } \\
\text { Signal }
\end{gathered}
\] & 5 & 148 & 6 & 90 & 7 & 0 & 1 & -9 & 1.6 & . 8 & \\
\hline & & & No Signal & 5 & 115 & 6 & 60 & 7 & 0 & 1 & -. 65 & 3.35 & 1.15 & \\
\hline \multirow[t]{4}{*}{V118} & 6AL5 & Sound Discrim. & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 2 & -8.4 & - & - & 5 & 5.8 & - & - & - & - & \\
\hline & & & No Signal & 2 & -2.0 & - & - & 5 & . 41 & - & - & - & - & \\
\hline & & & \begin{tabular}{l}
2200 Mu. V. \\
Signal
\end{tabular} & 7 & -3.7 & - & - & 1 & 0 & - & - & - & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 7 & -1.08 & - & - & 1 & 0 & - & - & - & - & \\
\hline \multirow[t]{2}{*}{V119} & 6AV6 & lst Audio Amplifier & \begin{tabular}{l}
\[
2200 \mathrm{Mu} . \mathrm{V} .
\] \\
Signal
\end{tabular} & 7 & 85 & - & - & 2 & 0 & 1 & . 89 & . 49 & - & \\
\hline & & & No Signal & 7 & 83 & - & - & 2 & 0 & 1 & -. 89 & . 4 & - & \\
\hline \multirow[t]{2}{*}{V120} & \[
\begin{aligned}
& \text { 6K6- } \\
& \text { GT }
\end{aligned}
\] & Audio Output & \[
\begin{gathered}
2200 \text { Mu. V. } \\
\text { Signal }
\end{gathered}
\] & 3 & 102 & 4 & 113 & 8 & -99 & 5 & -108 & 19.3 & 3.3 & \\
\hline & & & \[
\begin{aligned}
& \text { No } \\
& \text { Signal }
\end{aligned}
\] & 3 & 72 & 4 & 80 & 8 & -111 & 5 & \(-120\) & 18 & 3 & \\
\hline \multirow[t]{4}{*}{V121} & 108P4 & Kinescope & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & Cap & -9000 & 10 & 290 & 11 & 51 & 2 & 20 & . 1 & - & - Average Brightaens \\
\hline & & & No Signal & Cap & - & 10 & 285 & 11 & 42 & 2 & 14 & - & - & Average Brightness \\
\hline & & & \[
\begin{gathered}
2200 \mathrm{Mu} . \\
\text { Signal }
\end{gathered}
\] & Cap & - & 10 & 290 & 11 & & 2 & & . 4 & - & Maximum Brightness \\
\hline & & & \begin{tabular}{l}
2200 Mu . V. \\
Signal
\end{tabular} & Cap & 9200 & 10 & 290 & 11 & & 2 & & 0 & - & Minimum Brightness \\
\hline
\end{tabular}

\section*{r-F UNIT WIRING DIAGRAM}


Figure 7-R.F Unit \(\boldsymbol{H}^{\prime}\) iring Diagram

\section*{CRITICAL LEAD DRESS:}
1. The ground bus from pin 2 and the center shield of V117 socket should not be shortened or rerouted.
2. Do not change the dress of the filament leads or the bypass capacitors in the picture or sound i-f circuits. The filament leads between V117. V118 and V119 should be down against the chassis and away from grid or plate leads.
3. It it is necessary to replace any of the 1500 mm capacitors in the picture i-f circuit, the lead length must be kept as short as possible.
4. Picture i-f coupling capacitors C106, C111, C115 and C121 should be up and away from the chassis and should be clear of the pix i-f transformer adjustments by at least \(1 / 4\) inch. If the dress of any of these capacitors is changed. the i-1 alignment should be rechecked.
5. Leads 10 L 102 and L103 must be as short as possible.
6. Dress peaking coils L105, L106 and L107 up and away rom the chassis.
7. Dress Cl83 across tube pins 5 and 6 with leads not exceeding \(3 /\) inch.
8. Dress Cl29 and C130 up and away from the chassis.
9. Dress the yellow lead from the picture control away from the chassis and away from the volume-control leads. Dress the yellow lead from pin 8 of V106 away from the chassis.
10. Dreas the green lead from pin 2 of V106 away from the chassis.
11. Dress R168, R169, R170, R176 and R178 up and away from the chassis.
12. The leads to the volume control should be dressed down against the chassis and away from V117 and V118.
13. Contact between the rof oscillator trequency adjustment screws and the oscillator coils or channel switch eyelets must be avoided.
14. Dress leads from the width control coils away from the translormer frame.
15. Dress Tll0 winding leads as shown in Figure 8.


Figure 8-Tllo Lead Dress

Chassis whing diagram







\title{
RADIO CORPORATION OF AMERICA \\ RCA VICTOR DIVISION \\ CAMDEN, N. J., U.S.A.
}

\section*{GENERAL DESCRIPTION}

Models 9T270. 9TC272 and 9TC275 are sixteen inch television receivers. These receivers employ twenty-two tubes plus four rectifiers and a 16AP4 kinescope. The receivers are identical except for cabinets and jewel lights.
Features of the television unit are full twelve channel coverage: FM sound system; improved picture brilliance; picture A-G.C: A.F.C horizontal hold: stabilized vertical hold: two stages of video amplitication; noise saturation circuits; im proved sync separator and clipper; four mc. band width for picture channel and reduced hazard high voltage supply. An auxiliary audio input jack is provided to permit the use of an external record playing attachment.

\section*{ELECTRICAL AND MECHANICAL SPECIFICATIONS}

PICTURE SIZE ......... 146 square inches on a \(16^{\prime \prime}\) kinescope


FINE TUNING RANGE
Plus and minus approximately 250 kc on channel 2 and plus and minus approximately 650 kc on channel 13.
POWER SUPPLY RATING
115 volts. 60 cycles, 285 watts
AUDIO POWER OUTPUT RATING
2.4 watts max.

\section*{LOUDSPEAKERS}

Model 9T270........... 92580-2.. 8" PM Dynamic, 3.2 ohms Models 9TC272. 9TC275 . . 92569-7. . 12" PM Dynamic, 3.2 ohms

DIMENSIONS (inches)
Cabinet (outside) 9T270
Cabinet (outside) 9TC272
Cabinet (outside) 9TC275
Chassis Assembly (outside)
Chassis (Overall)
RECEIVER ANTENNA INPUT IMPEDANCE
Choice: 300 ohms balanced or 72 ohms unbalanced.

WEIGHT
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Chassis with Tubes in Cabinet--9T270} & 90 lbs . \\
\hline 9TC272. & 110 lbs . & 9TC275 & 129 lbs \\
\hline Shipping & 270 & & 09 \\
\hline 9 9C272. & 131 lbs . & 9TC275 & 159 lbs . \\
\hline
\end{tabular}

RCA TUBE COMPLEMENT

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PICTURE I-F FREQUENCIES} \\
\hline \multicolumn{2}{|l|}{Picture Carrier Frequency . . . . . . . . . . . . . . . . . . . . . 25.75 mc.} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Adjacent Channel Sound Trap. . . . . . . . . . . . . . . . . . . . 27.25 mc . \\
Accompanying Sound Trap3. . . . . . . . . . . . . . . . . . . . . . 21.25 mc .
\end{tabular}}} \\
\hline & \\
\hline Adjacent Channel Picture Carrier Trap & 19.75 mc . \\
\hline \multicolumn{2}{|l|}{SOUND I-F FREQUENCIES} \\
\hline Sound Carrier Frequency & 21.25 mc . \\
\hline Sound Discriminator Band Width between peaks & eaks . . . . . . 350 kc \\
\hline VIDEO RESPONSE & To 4 mc . \\
\hline FOCUS & Magnetic \\
\hline SWEEP DEFLECTION & Magnetic \\
\hline SCANNING . . . . . . . . . . . . . . . . . . . . . . . Interl & nterlaced, 525 line \\
\hline \multicolumn{2}{|l|}{HORIZONTAL SCANNING FREQUENCY......... 15.750 cps} \\
\hline VERTICAL SCANNING FREQUENCY & 60 cps \\
\hline FRAME FREQUENCY (Picture Repetition Rate) & ). . . . . . . 30 cps \\
\hline
\end{tabular}

OPERATING CONTROLS (Iront panel)
\begin{tabular}{|c|c|}
\hline Channel Selector
Fine Tuning & Dual Control Knobs \\
\hline Tone Control & \multirow[b]{2}{*}{Dual Control Knobs} \\
\hline Sound Volume and On-Ofi Switch & \\
\hline Picture Horizontal Hold \} & \multirow[t]{2}{*}{Dual Control Knobs} \\
\hline Picture Vertical Hold \} & \\
\hline Brightness & \\
\hline Picture \(\}\) & Dual Control Knobs \\
\hline
\end{tabular}

NON-OPERATING CONTROLS (not including r.f and l-f adjustments)
Horisonial Centering . . . . . . . . . . . . . . . rear chassis adjustment Vertical Centering . . . . . . . . . . . . . . . . . rear chassis adjustment Width. . . . . . . . . . . . . . . . rear chassis screwdriver adjustments Height . . . . . . . . . . . . . . . . . . . . . . . . rear chassis adjustment Horizontal Linearity . . . . . . rear chassis screwdriver adjustment Vertical Linearity . . . . . . . . . . . . . . . . . rear chassis adjustment Horizontal Drive. . . . . . . . . rear chassis screwdriver adjustment Horizontal Oscillator Frequency.... . bottom chassis adjurtment Horizontal Oscillator Waveform...... side chassis adjustment Focus. . . . . . . . . . . . . . . . . . . . . . . . . . . rear chassis adjustmen Ion Trap Magnet. . . . . . . . . . . . . . . . . . . top chassis adjustment Deflection Coil. ............... top chassis wing nut adjustment Focus Coil . . . . . . . . . . . . . top chassis screwdriver adjustment Video Bias

\section*{HIGH VOLTAGE WARNING}

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE the receiver with the high voltage compartment shield removed.

\section*{KINESCOPE HANDLING PRECAUTIONS}
do not open the kinescope shipping carton, install, remove or handle the rine. SCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES, AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

\footnotetext{
The kinescope bulb eneloses a high vacuum and, due to its large suriace area, is subjected to considerable alr pressure. For these reasons. kinescopes must be handled with more care than ordinary recelving tubes.
}

\footnotetext{
The large end of the kinescope bulb-particularly that past at the rim of the viewing surface-muat not be struck, seratched or sub. jected to more than moderate pressure at any ume. In installation, if the tube sticks or falls to slip smoothly into its socket, or deflecting yoke, inventigate and remove the cause of the trouble. Do not force the tube. Refor to the Receiver Installation section for detailed instructions on kinescope installation. All RCA kinescopes are shipped in special cartons and should be left in the cartons untll seady for installation in the receiver. Keep the carton for possible future use
}

The following adjustments are necessary when turning the receiver on for the first time.
1. Turn the receiver "ON" and advance the SOUND VOL. UME control to approximately mid-position.
8. Adjust the PICTURE control for suitable picture contrast.
9. After the receiver has been on for some time, it may be necessary to readjust the FINE TUNING conlrol slightly for improved sound fidelity.
10. In awitching from one station to another, it mqy be neces. sary to repeat steps numbers 3 and 8.
11. When the set is turned on again after an idle period, it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. It any adjustment is necessary. step number 3 is generally sufficient.
5. Adjust the VERTICAL hold control until the pattern stops vertical movement.
6. Adjust the HORIZONTAL hold control until a picture is oblained and centered.
7. Turn the BRIGHTNESS control counterclockwise until the :etrace lines just disappear.


Figure 1-Receiver Opernting Controls
12. If the positions of the controls have been changed. it may be necessary to repeat steps numbers 1 through 8.

A phono input jack and a Television-Phono switch are provided on back of the chassis. The switch must be in the Tel position for television operation.

\section*{INSTALLATION INSTRUCTIONS}

The Model 9T270. 9TC272 and 9TC275 television receivers are shipped complete in one carton except for the 16AP4 kinescope. The kinescope is shipped in a special carton and should not be unpacked until ready for installation.

UNPACKING. - Model 9T270 is shipped in a cardboard carton. To open the carton tear open the carton lop flaps, remove the cardboard side packing material and with a man on two sides of the cabinet, lift it out of the carton.

Models 9TC272 and 9TC275 are also shipped in cardboard cartons. To unpack, turn the shipping carton on its side and tear open the carton boltom flaps. Fold the flaps up along the side of the carton and turn the carton back up. Lift the carton up and off the cabinet.

Remove the cabinet back grille. Remove all shipping Ir \(\mathrm{I}^{-}\) terial. Remove the envelope containing the control knobs and ion trap magnet. Make sure all tubes are in place and are firmly seated in their sockets.

Remove the cabinet front panel by loosening two wingnuts inside the cabinet and turning the two locking plates to the vertical position as shown in Figure 2. In Models 9TC272 and


Figure 2-Cabinet, Front View

9TC275, the panel may then be removed by hingeing the panel at the bottom and pulling out on the top ed-e. In Model 9T270, it will be necessary to remove two screws under the bottom of the cabinet.

REMOVE THE TWO SELF.TAPPING SCREWS FROM THE EINESCOPE CUSHION SLIDE AS SHOWN IN FIGURE 3.

Loosen the two kinescope cushion adjustment wing screws and slide the cushion toward the rear of the chassis. Loosen the deflection yoke adjustment, slide the yoke toward the rear of the chassis and tighten.


Figure 3-Y'oke and Focus Coil Adjustments

From the front of the cabinet, look through the deflection yoke and check the alignment of the focus coil with the yoke. If the focus coil is not in line. loosen the two focus coil mounting screws and move the coil until alignment is obtained. Tighten the mounting screws with the coil in this position.

Loosen the two lower kinescope face centering slides, and set them at approximately mid-position. see Figure 2 for location of the slides and their adjustment screws. Loosen the two upper slides (from inside the cabinet). slip them up as far as possible and tighten.

Check the centering slides. There should be a small wire clip on the inner surface of each. The clip in the lower left corner should be connected to the high voltage lead.

KINESCOPE HANDLING PRECAUTION. - Do not open the kinescope shipping carton, install, remove, or handle the kinescope in any manner, unless shatter-proot goggles and heavy gloves are worn. Persons not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling. The shipping carton should be kept for use in case of future moves.

Handle this tube by the metal rim at the edge of the screen. Do not cover the glass bell of the tube with lingermarks as it will produce leakage paths which may interfere with reception. If this portion of the tube has inadvertently been handled, wipe it clean with a soft cloth moistened with "dry" carbon tetrachloride.

KINESCOPE INSTALLATION. - Slip the Vinylite boot over the metal cone of the kinescope, turn the tube so that the key on the base of the tube will be down and insert the neck of the kinescope through the deflection and focus coils as shown in Figure 4. If the tube sticks, or fails to slip into place smoothly, investigate and remove the cause of the trouble. Do not force the tube.


Figure 4-Kinescope Insertion

Slip the ion trap magnet assembly over the neck of the kinescope with the large magnet towards the base of the tube.

Connect the kinescope socket to the tube base.
Adjust the four centering slides until the face of the kinescope is in the center of the cabinet opening. Tighten the four slides securely.

Wipe the kinescope screen surface and front panel safety glass clean of all dust and tinger marks with a solt cloth moistened with the Drackett Co.'s "Windex" or similar cleaning agent.

Install the cabinet front panel by reversal of the procedure indicated in Figure 2.

For Models 9TC272 and 9TC275 to install the front panel, place the lip on the bottom of the panel in the recess below the kinescope opening and push the top in. Fasten the two bars in back of the panel and tighten the wingnuts.

Slip the kinescope as far forward as possible. Slide the kinescope cushion firmly up against the flare of the tube and tighten the adjustment wing screws. Slide the dellection yake as far forward as possible. If this is not done, difficulty will be encountered in adjusting the ion trap magnet and focus coil because of shadows on the corner of the raster.

The antenna and power connection should now be made. Install the front panel control knobs.

WRRNING. - The high voltage supply in this receiver delivers 12,000 volts! If it is necessary to remove the kinescope after the receiver has been operating, short the kinescope cone to the chassis before attempting removal of or adjustments to the kinescope. A.C. interlocks are provided at the back of the set so that when the back is removed - so is the power.

Turn the power switch to the "on" position, the brightness control fully clockwise, and picture control counterclockwise.

ION TRAP MAGNET ADJUSTMENT. - Looking at the kinescope gun structure, it will be observed that the second cylinder from the base inside the glass neck is provided with two small metal flags, as shown in Figure 5.


The ion trap rear magnet poles should be approximately over the ion trap flags. Starting from this position adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust the focus control (R201 on the chassis rear apron) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches on this adjustment should be made with the brightness control at the maximum position with which good line focus can be maintained.


Figure 6-Rear Chassis Adjustments

DEFLECTION YOXE ADJUSTMENT. - If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE ADIUSTMENTS. - It will now be necessary to obtain a test pattern picture in order to make further adjustments. See steps 2 through 8 of the receiver operating instructions on page 3.

If the Horizontal Oscillator is operating properly, it should be possible to sync the picture at this point.

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT. Turn the horizontal hold control to the extreme counterclockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching of channel then back. Normally the picture will be out of sync. Turn the contiol clockwise slowly. The number of diagonal black bars will be gradually reduced and when only 3 bars sloping downward to the
left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull in should occur when the control is approximately 90 degrees from the extreme counterclockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should be out of sync and should show 1 vertical or diagonal black bar in the raster.

If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizonial Oscillator" and proceed with "Centering Adjustment."

ALIGNMENT OF HORIZONTAL OSCILLATOR. - If in the above check the receiver failed to hold sync with the hold control at the extreme counterclockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull in point, it will be necessary to make the follow. ing adjusiments.
Hotizontal Erequency Adjustment. - Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the T109 horizontal frequency adjustment (under the chassis) until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster.

Horizontal Lock in Range Adjustment. - Set the horizontal hold control to the full counterclockwise position. Momentarily remove the signal by switching off channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.
If more than 3 bars are present just betore the picture pulls into sync, adjust the horizontal locking range trimmer C153A slightly clockwise. It less than 3 bars are present, adjust C153A slightly counterclockwise. Turn the picture control counterclockwise, momentarly remove the signal and recheck the number of bars present at the pull in point. Repeat this procedure until 3 bars are present.

Repeat the adjustments under "Horizontal Frequency Adjustment" and "Horizontal Locking Range Adjustment" until the conditions specilied under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.
If it is impossible to sync the picture at this point and the AGC system is operating properly it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure on page 11. For field purposes paragraph "A" under Oscillator Waveform Adjustment may be omitted.

CENTERING ADJUSTMENTS. - Centering is obtained by adjustment of the centering controls and by mechanically orienting the locus coil with three adjustment screws shown in Figure 3 The focus coil should be concentric around the neck of the kinescope to prevent curvature of the raster.

Adjust the focus coil until it is at right angles to the neck of the kinescope. Center the picture with the electrical centering controls. If a shadow appears on a corner of the picture, adjust the focus coil centering screws to eliminate the shadow and re-center the picture with the electrical centering controls.

FOCUS COIL ADJUSTMENTS. - If, after making the center. ing adjustments in the above paragraph, a corner of the piclure is shadowed, it will be necessary to loosen the focus coil mounting screws (shown in Figure 3) and change the position of the coil to eliminate the shadow. Re-center the picture by adjustment of the electrical centering controls and the focus coil centering adjusiments.
Recheck the position of the ion trap magnet to insure that maximum brilliance is oblained.
hEIGHT AND VERTICAL LINEARITY ADJUSTMENTS. - Adjust the height control (R!S5 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearily (RI62 on rear apron) until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment
of the other. Adjust vertical centering to align the picture with the mask.

WIDTH, DRIVE AND HORIZONTAL LINEARITY ADJUST. MENTS. - Adjust the horizontal drive contral CI53B to give a picture of maximum width within the limits of good linearity. Adjust the horizontal linearity control L113 to provide best Inearity.

A width control coil and a width selector switch are provided. With the switch in position 1 (fully counterclockwise), adjust the width coil until the picture fills the mask. On low line voltages it may not be possible to get sutticient width by adjustment of the width coil. In this case turn the width selector switch clockwise to position 2. In this position the width coil is disconnected, and adjustment of the width coil will have no effect. For still greater width. turn the width selector switch fully clockwise to position 3. In this position. the 6BG6G screen voltage is increased as well as disconnecting the width control coil.

Adjustments of the horizontal drive control affect horizontal oscillator hold and locking range. If the drive control was ad. justed, recheck the oscillator alignment.

FOCUS. - Adjust the tocus control (R201 on chassis reat apron) for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

CHECK TO SEE THAT THE CUSHION AND YOKE THUMB SCREWS AND THE FOCUS COIL MOUNTING SCREWS ARE TIGHT.

VIDEO BIAS CONTROL. - Normally the video bias control (R206) should be in the fully clockwise position. To check in see it this is the correct position, turn the picture control clock. wise and adjust the brightness control until the retrace lines just disappear. If the whites are compressed as indicated by a "washed out" appearance in light areas. turn the video bics control counterclockwise until the picture appears normal.
Replace the cabinet back and make sure that the screws holding it are up tight. otherwise it may rattle or buzz when the receiver is operated at high volume.

CHECK OF R-F OSCILLATOR ADJUSTMENTS. - Tune in all available stations 10 see if the receiver r-f oscillator is adjusted to the proper trequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure on page 10. The adjustments for channels 2 through 5 and 7 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 7. Adjustment for channel 13 is on top of the chassis and channel 6 adjustment is in the kinescope well. See Figures 11 and 12 for their location.


Figure 7 - R.F Oscillator Aldustments

CAUTION. - The ion trap magnet employed for 16AP4 kinescopes is not the same as that used on 10BP4 tubes. Care should be taken to insure that the proper magnet supplied with the instrument is used. The type magnet shown in Figure 3 measures three-fourths of an inch between magnet center lines and carries the number \(986432-1\) stamped on it.


Figure 8-Chassis Top View


Figure 9-Chassis Bottom View.

TEST EQUIPMENT. - To properly service the television chassis of this receiver, it is recommended that the following test equipment be available:
R.F Sweep Generator meeting the following requirements:
(a) Frequency Ranges

> 20 to \(30 \mathrm{mc} ., 1 \mathrm{mc}\). and 10 mc , sweep width
> 50 to 90 mc .10 mc. sweep width
> 170 to \(225 \mathrm{mc} . .10 \mathrm{mc}\). sweep width
(b) Output adjustable with at least .l volt maximum.
(c) Output constant on all ranges.
(d) "Flat" output on all attenuator positions.

Cathode-Ray Oscilloscope, preferably one with a wide band vertical deflection amplifier, an input calibrating source, and a low capacity probe.

For alignment purposes, the oscilloscope employed must have excellent low frequency and phase response, and must be capable of passing a 60 cycle square wave without notice. able distortion. While many commercial oscilloncopes do not meet this requirement, RCA oscilloscopes, types WO 55A, WO 58A. WO 60C and WO 79A till this requirement and any of these may be employed.

For video and sync waveform observations, the oscilloscope must have excellent frequency and phase response from 10 cycles to at least 2 megacycles and in all positions of the gain controls. The RCA types WO 58A and WO 79A are ideally suited for this purpose.

Signal Generator to provide the following frequencies with "crystal" accuracy.
(a) I.F frequencies
19.75 mc . adjacent channel picture trap
21.25 mc sound i-f and sound traps
22.05 and 24.75 mc . converter and first pix \(i \cdot \mathrm{f}\) transformer
25.9 mc. second picture i-f transformer
24.6 mc . fourth picture i-f transformer
22.0 mc . third picture i-f transformer
22.5 mc. fifth picture i-f transformer
25.75 mc . picture carrier
27.25 mc . adjacent channel sound trap
(b) R.F irequencies
\begin{tabular}{lcccc} 
& Picture & Sound & Picture & Sound \\
Channel Carrier & Carrier Channel & Carrier & Carrler \\
Number Freq. Mc. & Freq. Mc. Number Freq. Mc. Freq. Mc.
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 2 & 55.25 & 59.75 & 8 & 181.25 & 185.75 \\
\hline 3 & 61.25 & 65.75 & 9 & 187.25 & 191.75 \\
\hline 4 & 67.25 & 71.75 & 10 & 193.25 & 197.75 \\
\hline 5 & 77.25 & 81.75 & 11 & 199.25 & 203.75 \\
\hline 6 & 83.25 & 87.75 & 12 & 205.25 & 209.75 \\
\hline 7 & 175.25 & 179.75 & 13 & 211.25 & 215.75 \\
\hline
\end{tabular}
(c) Output on these ranges should be adjustable and at least .1 volt maximum.

Heterodyne Frequency Meter with crystal calibrator if the signal generator is not crystal controlled.

Electronic Voltmeter of Junior "Volrohmyst" type and a high voltage multiplier probe for use with this meter to permit meas. urements up to 15 kv .

Service Precautions. - If necessary to remove the chassis from cabinet, the kinescope must first be removed. See Figures 2 and 4. If possible, the chassis should then be serviced without the kinescope. However, if it is necessary to view the raster during servicing. the kinescope should be inserted only after the chassis is turned on end. The kinescope should never be allowed to support its weight by resting in the deflecting yoke. A bracket should be used to support the tube at its viewing screen.

If the receiver is serviced with the kinescope in place. proper precautions should be taken since the metal shell of the kinescope is "hot" with respect to ground.

CRUTION: Do not short the kinescope second anode lead.
Adjustments Required. - Normally, only the r-f oscillator line will require the attention of the service technician. All other circuits are either broad or very stable and hence will seldom require readjustment.

The oncillator line is relatively non critical. When oscillator tubes are changed, in all probability it will be necessary to adjust only C6 in order to bring the entire line into adjustment.

ORDER OF ALIGNMENT. - When a complete suceiver alignment is necessary, it can be most conveniently performed in the following order:
(1) Sound discriminator
(5) R.F and converter lines
(2) Sound i-f transformers
(6) R-F oscillator line
(3) Picture i-f traps
(7) 4.5 mc. video trap
(4) Picture i-f transformers
(8) Sensitivity check

SOUND DISCRIMINATOR RLIGNMENT. - Set the signal generator for approximately 11 volt output at 21.25 mc . and connect it to the second sound i.f grid.

Detune Tll3 secondary (botom).
Set the "VoltOhmyst" on the 10 volt scale.
Connect the meter in series with a one megohm resistor to the junction of diode resistors R215 and R216.

Adjust the primary of T113 (top) for maximum output on the meter.

Connect the "VoltOhmyst" to the junction of C183 and R215. Adjust T113 secondary (bottom). It will be found that it is pos. sible to produce a positive or negative voltage on the meter dependent upon this adjustment. Obviously to pass from a positive to a negative voltage. the voltage must go through zero. Tll3 (bottom) should be adjusted so that the meter indicates zero output as the voltage swings from positive to negative. This point will be called diecriminator zero output.

Connect the sweep oscillator to the grid of the second sound i-f amplifier.

Adjust the sweep band width to approximately 1 mc . with the center frequency at approximately 21.25 mc . and with an output of approximately il volt.

Connect the oscilloscope to the junction of C183 and R215. The pattern obtained should be similar to that shown in Fig. ure 15. It it is not, adjust the T113 (top) until the wave form is symmetrical.

The peak to peak band width of the discriminator should be approximately 350 kc . and it should be linear from 21.175 mc . to 21.325 mc .

SOUND I.F ALIGNMENT. - Connect the sweep oscillator to the first sound i-f amplifier grid.

Connect the oscilloscope to the second sound \(i\)-f grid return (terminal "A" of T112) in series with a 33,000 ohm isolating resistor.

Insert a 21.25 mc . marker signal from the signal generator into the first sound i-f grid.

Adjust T112 (top and bottom) for maximum gain and sym. metry about the 21.25 mc . marker. The pattern obtained should be similar to that shown in Figure 16.

The output level from the sweep should be set to produce approximately 3 volt peak-to-peak at the second sound \(i-1\) grid return when the final louches on the above adjustment are made. It is necessary that the sweep output voltage should not exceed the specitied values otherwise the response curve will be broadened, permitting slight misadjustment to pass unnoticed and possibly causing distortion on weak signals.

The band width at 70\% response from the first sound i-1 grid to the second i-f grid should be approximately 200 kc .

PICTURE J-F TRAP RDJUSTMENT. - Connect the "VoltOhmyst" to the junction of R135 and R136.

Remove the 6SN7GT AGC Amplifier tube V108. Connect a 250.000 ohm potentiomeler between pins 5 and 6 of the V108 socket. Adjust the potentiometer until the "VoltOhmyst" reads approximately -4.5 volts.

Set the channel switch to the blank position between channel numbers 2 and 13.

Connect the "VoltOhmyst" across the picture detector load resistor R120. Under this condition, both leads of the meter are at approximately -125 volts. In making this measurement, care should be taken not to touch the case of the meter or to permit the meter case to become grounded.

Connect the output of the signal generator to the grid of the converter tube V2. To do this, remove the tube from the socket and fashion a clip by twisting one end of a mall piece of wire around pin number l. Replace the tube in the socket leaving the end of the wire protruding from under the tube. Connect the signal generator to this wire through \(\propto 1.500 \mathrm{~mm}\) capacitor keeping the leads as short as possible.

Set the generator to each of the following frequencies and with a thin fiber screwdriver tune the specified adjustment for minimum indication on the "VoltOhmyst." In each instance the generator should be checked against a crystal calibrator to insure that the generator is exactly on frequency.
(1) \(21.25 \mathrm{mc} .-\mathrm{T} 103\) (top)
(2) \(21.25 \mathrm{mc} . \mathrm{Tl} 05\) (top)
(3) 27.25 mc -T 102 (top)
(4) \(27.25 \mathrm{mc} . \mathrm{T} 104\) (top)
(5) \(19.75 \mathrm{mc} .-\mathrm{Tl} 06\) (top)
(6) 19.75 mc .-T 101 (top)

In the above transformers using threaded cores, it is possible to run the cores completely through the coils and secure Iwo peaks or nulls. The correct position is with the cores in the outside ends of the coils. If the cores are not in the correct position. the coupling will be incorrect and it will be impossible to secure the correct response.

PICTURE I-F TRANSFORMER ADJUSTMENTS. - Set the signal generator to each of the following frequencies and peak the specified adjustment for maximum indication on the "Volt-- Ohmyst." During alignment, reduce the input signal it necessary to prevent overloading.
22.5 mc --T 106 (bottom)
24.6 mc -T 104 (bottom)
\(22.0 \mathrm{mc}-\) T 103 (bottom)
25.9 mc .-T102 (bottom)

T1 and T101 are coupled by a link and in combination constitute an overcoupled transformer. The characteristics of such a transformer are such that it is impossible to adjust it to a single trequency.

To sweep align Tl and TlO1, connect a 330 ohm composition resistor across the primary coils of T102, T103, T104 and T106.

Connect the "VoltOhmyst" to the junction of R135 and R136. Adjust the 250,000 ohm potentiometer for -2.0 volts on the meter.

Connect the oscilloscope to the plate of the first video amplifier pin 5 of V106.
Connect a sweep generator to the converter grid through a 1.500 mmi capacitor. Set the generator to sweep from 20.0 mc . to 30.0 mc . and adjust the output to provide a 4 valt peak-topeai signal on the scope.

Connect the signal generator loosely to the converter grid and adjust to provide markers at 22.05 mc . and 24.75 mc .
Adjust TI (top) and Tl01 (bottom) to obtain the response shown in Figure 17. The Tl core must penetrate to the terminal \({ }^{\text {. }}\) board end of the coil in order to obtain the correct response.

Remove the 330 ohm resistors from across T102. T103. T104 and T106.

Adjust the 250,000 ohm potentiometer for a 15 volt peak-topeak signal at the plate of the first video amplifier. The bias as measured by the "VoltOhmyst" should be -4.5 volts or less.

Observe and analyze the response curve obtained. The response will not be ideal and the i-f adjustments must be retouched in order to obtain the desired curve. See Figure 18.

On final adjustment the picture carrier marker must be at approximately \(45 \%\) response. The curve must be approximately flat topped. with the 22.1 mc. marker at approximately \(95 \%\) response, the 25.0 mc . marker below \(90 \%\) and the 26.5 me. marker between \(5 \%\) and \(10 \%\) on the response curve.

The most important consideration in making the i-f adjustments is to gel the picture carrier at the \(45 \%\) response point. If the picture carrier operates too low on the response curve. loss of low frequency video response, of picture brilliance, of blanking. and of sync may occur. If the picture carrier operates too high on the response curve, the picture becomes smeared. In making these adjustments, care should be taken that no two transformers are tuned to the same frequency as i-f oscil. lation may result.
-
Remove the converter tube and take off the clip to pin num. ber 1. Replace the tube in the socket.

Picture I-F Oscillation. - If the receiver will operate without ascillating with the test equipment disconnected but breaks into oscillation or becomes unstable with the equipment connected, it may become necessary to establish a ground plane. Cover the test bench with a sheet of copper and set the chassis on the sheet. Set all the test equipment except the "VoltOhmyst" on the sheet and bond or bypass them to it. A Junior "Volrohmyst" should not be bonded to the sheet since the negative test probe is not always connected to ground during alignment.

If the receiver is badly misaligned and two or more of the If transformers are tuned to the same irequency, the receiver may fall into \(\mathrm{i}-\mathrm{f}\) oncillation. I-F oncillation shows up as a voltage acrons the picture detector load resistor that is unaffected by r - s signal input. If such a condition is encountered, it is sometimes possible to stop oncillation by adjusting the trantformers approximately to frequency by setting the adjustment cores of T101, T102. T103. T104, T105 and T106 to be approximately equal to those of another receiver known to be in proper alignment. If this does not have the desired effect, it may now be possible to stop oscillation by increasing the grid bias. If so, it should then be possible to align the transformers by the unual method. Once aligned in this manner, the i-f should be stable with reduced bias.

If the ascillation cannot be stopped in the above manner, shunt the grids of the first three pix i-f amplifiers to ground with \(1,000 \mathrm{mmf}\). capacitors. Connect the signal generator to the fourth pix i-f grid and align T106 to frequency. Progressively remove the shunt from each grid and align the plate coil of that stage to frequency.

If this does not stop the oscillation, the difficulty is not due to i-f misalignment as the i -f section is stable when properly aligned. Check all i•f by-pass condensers, transtormer shunting resistors, tubes, socket vollages, etc.

ANTENNA, R-E AND CONVERTER LINE RDJUSTMENT. In order to align the r-f tuner, it will first be necessary to set the channel 13 oncillator to frequency. The shield over the bottom of the rif unit must be in place when making any adjustments.

The channel 13 oncillator may be aligned by adjusting it to beat with a crystal calibrated heterodyne frequency meter, or by feeding a signal into the receiver at the rof sound carrier frequency and adjusting the oncillator for zero output from the sound discriminator. In this latter case the sound discriminator must first have been aligned to exact frequency. Either method of adjustment will produce the same results. The method used

\section*{ALIGNMENT PROCEDURE}
will depend upon the type of test equipment available. Regardless of which method of oscillator alignment is used, the fre quency standard must be crystal controlled or calibrated.

If the receiver oscillator is to be adjusted by the heterodyne frequency meter method, couple the meter probe loosely to the receiver oscillator.

If the receiver oscillator is adjusted by feeding in the r-f sound carrier signal, connect the signal generator to the receiver antenna terminals. Connect the "VoltOhmyst" to the sound discriminator output (junction of C183 and R215).

Set the receiver channel witch to 13.
Adjust the frequency standard to the correct frequency (237 mc . for heterodyne frequency meter or 215.75 mc . for the signal generator).

Set the fine tuning control to the middle of its range while making the adjustment.

Adjust C6 for an audible beat on the heterodyne frequency meter or zero voltage from sound discriminator.

Now that the channel 13 oscillator is set to frequency. we may procede with the rif alignment.

Connect the oscilloscope to the test connection at R13 in the \(r-f\) luning unit.

Connect the "VoltOhmyst" to the junction of R133 and R134. Adjust the bias potentiometer for -3.5 volts on the meter.

\section*{Remove the first picture i-f amplifier tube V101.}

Connect the r-f sweep oscillator to the receiver antenna terminals. The method of connection depends upon the output impedance of the sweep. The P102 connection for 300 ohm balanced or 72 ohm single-ended input are shown in the cir. cuit diagram in Figure 80. It the sweep oscillator has a 50 ohm single-ended output. 300 ohm balanced output can be oblained by connecting as shown in Figure 10.


Figure 10-U'nbalanced Sucep Cable Termination

Connect the signal generator loosely to the receiver antenna terminals.

Since channel 7 has the narrowest response of any of the high frequency channels. it should be adjusted first.
Set the receiver channel switch to channel 7.

\section*{Set the sweep oscillator to cover channel 7}

Insert markers of channel 7 picture carrier and sound carrier 175.25 mc . and 179.75 mc .

Adjust Cl0 and Cl4 until the curve falls symmetrically with the sound and picture carrier markers. Adjust C1l to give the proper bandwidth. Roughly peak L6 in conjunction with slight adjustments oi C10 and C14 for a flat-topped, response curve with the sound and picture carriers at \(90 \%\) to \(95 \%\) response points on this curve. See Figure 19, channel 7.

Switch to channel 12 and adjust \(L 6\) for maximum response and minimum top slope of the curve.

Check the response of channels 7 through 13 by switching the receiver channel switch, sweep oscillator and marker oscil. lator to each of these channels and observe the response obtained. See Figure 19 for typical response curves. It should be found that all these channels have the proper shaped response with the markers above \(80^{\circ}\) o response. If the markers do not foll within this requirement cn one or more high frequency
channels, since there are no individual channel adjustments, it will be necessary to readjust L6, C10, Cll and Cl4, and possibly compromise some channels slightly in order to get the markers up on other channels. Normally, however, no difficulty of this type should be experienced since the higher frequency channels become comparatively broad and the markers easily fall within the required range.

Channel 6 is next aligned in the same manner.
Set the receiver to channel 6.
Set the sweep oscillator to cover channel 6.
Set the marker oscillator to channel 6 picture and sound carrier trequencies.

Adjust L9. L13. L66 and \(\mathrm{Cl2}\) for an approximately flat. topped response curve located symmetrically between the markers. L9, L13 and LE6 are the center frequency adjustments. Cl 2 is the band width adjustment.

Check channels 5 down through channel 2 by switching the receiver, sweep oscillator and marker oscillator to each channel and observing the response obtained. In all cases, the markers should be above the \(80 \%\) response point. If this is not the case. L9, L13. L66 and Cl2 should be retouched. On final adjustment, all channels must be within the \(80 \%\) specitication.

Disconnect the bias potentiometer and replace V108. Replace V101.

Following an r-f alignment, the oscillator alignment must be checked.

R-F OSCILLATOR LINE ADJUSTMENT. - The r-f oscillator line may be aligned by adjusting it to beat with a crystal calibrated heterodyne frequency meter, or by feeding a signal into the receiver at the r-f sound carrier frequency and adjusting the oscillator for zero output from the sound discriminator. In this latter case the sound discriminator must first have been aligned to exact frequency. Either method of adjustment will produce the same results. The method used will depend upon the type of test equipment available.

Regardless of which method of oscillator alignment is used. the frequency standard must be crystal controlled or calibrated. If the receiver oscillator is to be adjusted by the heterodyne frequency meter method, the calibration frequency listed under R.F Osc. Freq. must be available.

If the receiver oscillator is adjusted by feeding in the r-f sound carrier frequency, the frequencies listed under Sound Carrier Freq. must be available.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Channel \\
Number
\end{tabular} & Receiver R.FOsc. Freq. Mc. & R-F Sound Carrier Freq. Mc. & Channel Oscillator Adjustmen \\
\hline 2 & 81 & 59.75 & L24 \\
\hline 3 & 87 & 65.75 & . L23 \\
\hline 4 & 93 & 71.75 & L22 \\
\hline 5 & 103 & 81.75 & . L21 \\
\hline 6 & . 109 & 87.75 & . L31 \\
\hline 7 & 201 & . 179.75 & . 119 \\
\hline 8 & . 207 & . 185.75 & L L18 \\
\hline 9 & . 213 & . 191.75 & . 217 \\
\hline 10 & . 219 & . 197.75 & . L16 \\
\hline 11 & . 225 & . 203.75 & . L15 \\
\hline 12 & . 231 & . 209.75 & L L14 \\
\hline 13 & . 237 & . 215.75 & . . C6 \\
\hline
\end{tabular}

If the heterodyne frequency meter method is used, couple the meter probe loosely to the receiver oscillator.

If the r-f sound carrier method is used, connect the "VoltOhmyst" to the sound discriminator output (junction of C183 and R215.

Connect the signal generator to the receiver anterna terminals. The order of alignment remains the same regardless of which method is used.

The shield over the bottom of the r-f unit must be in place when making adjustments.

Since lower Mrequencies are obtained by adding steps of in ductance. it is necessary to align channel 13 lirst and continue in reverse numerical order.

Set the receiver channel switch to 13 .
Adjust the frequency standard to the correct frequency (237 mc. for heterodyne frequency meter or 215.75 mc . for the sig. r.al generator).

Set the fine tuning control to the middle of its range while making the adjustment.

Adjust C6 for an audible beat on the heterodyne trequency meter or zero voltage from sound discriminator. Oscillator adjustments L 1 and L2 shown on the schematic are factory control adjustments and should not be touched in the field.

Switch the receiver to channel 12.
Set the frequency standard to the proper frequency as listed in the alignment table.

\section*{Adjust L14 for indications as above.}

Adjust the oscillator to frequency on all channels by switching the receiver and the frequency standard to each channel and adjusting the appropriate oscillator trimmer for the specified indication. It should be possible to adjust the oscillator to the correct frequency on all channels with the fine tuning control in the middle third of its range.

After the oscillator has been set on all channels. start back at channel 13 and recheck 10 make sure that all adjustments are correct.

HORIZONTAL OSCILLATOR ADJUSTMENT. - Normally the adjustment of the horizontal oscillator is not considered to be a part of the alignment procedure, but since the oscillator wave. form adjustment requires the use of an oscilloscope. it can not be done conveniently in the field. The waveform adjustment is made at the factory and normally should not require readjustment in the field. However. the waveform adjustment should be checked whenever the receiver is aligned or whenever the horizontal oscillator operation is improper.

Horizontal Frequency Adjustment. - With a clip lead, short circuit the coil between terminals \(C\) and \(D\) of the horizontal oscillator transformer T109. Tune in a television station and sync the picture if possible.
A.-Turn the horizontal hold control R173 to the extreme clockwise position. Adjust the T109 Frequency Adjustment innder the chassis) so that the picture is just out of sync and the horizontal blanking appears in the picture as a vertical bar. The position of the bar is unimportant.
B.-Tuin the hold control approximately one quarter of a turn from the extreme clockwise position and examine the width and linearity of the picture. If picture width or linearity is incorrect, adjust the horizontal drive control CIS3B, the width control L112 and the linearity control L113 until the picture is correct. If C153B. L112 or Lill3 was adjusted. repeat step A above.

Horizontal Locking Range Adjustment. - Turn the horizontal hold control fully counterclockwise. Momentarily remove the signal by swithing of channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 9 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer Cis3A slightly clockwise. If less than 7 bars are present, adjust C153A slightly counterclockwise. Turn the horizontal hold control counterclockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 7 to 9 bars are present.

Horizontal Oscillator Waveform Adjustment. - Remove the shorting clip from terminals C and D of Tlo9. Turn the horizontal hold control to the extreme clockwise position. With a thin libre screwdriver, adjust the Oscillator Waveform Adjust. ment Core of Tl09 (on the outside of the chassis) until the horizontal blanking ba: appears in the raster.
A.-Connect the low capacity probe of an oscilloscope to terminal C of T109. Turn the horizontal hold control one quarter
turn from the clockwise position so that the picture is in sync. The pattern on the oscilloscope should be as shown in Fig. ure 20. Adjust the Oscillator Wavelorm Adjustment Core of T103 until the two peaks are at the same height. During this adjustment, the picture must be kept in sync by readjusting the hold control if necessary.

This adjustment is very important for correct operation of the circuit. If the broad peak of the wave on the oscilloscope is lcwer than the sharp peak. the noise immunity becomes poorer, the stabilizing effect of the tuned circuit is reduced and drift of the oscillator becomes more serious. On the other hand, if the broad peak is higher than the sharp peak. the oscillator is overstabilized the pull-in range becomes inade. quate and the broad peak can cause double triggering of the oscillator when the hold control approaches the clockwise position.

Remove the oscilloscope upon completion of this adjustment.
Check of Horizontal Oscillator Adjustments. - Set the horizontal hold control to the full counterclockwise position. Momen. tarily remove the signal by switching off channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 3 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer ClS3A slightly clockwise. If less than 3 bars are present, adjust CI53A slightly counterclockwise. Turn the horizontal hold contiol counterclockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 3 bars are present.

Turn the horizontal hold control to the maximum clockwise position. The picture should be just out of sync to the extent that the horizontal blanking bar appears as a single vertical or diagonal bar in the picture. Adjust the Tl09 Frequency Adjustment until this condition is fulfilled.
4.5 MC. VIDEO TRAP. - Tune in a strong station. With a very short clip lead. short circuit the trap winding of T103. Observe the picture for the appearance of a 4.5 mc . beat. If the beat appears in the picture, adjust L104 until the beat is eliminated. Remove the clip lead.

SENSITIVITY CHECK. - A comparative sensitivity check can be made by operating the receiver on a weak signal from a television station and comparing the picture and sound obtained to that obtained on other receivers under the same conditions.

This weak signal can be oblained by connecting the shop antenna to the receiver through a ladder type attenuator pad. The number of stages in the pad depends upon the signal strength available at the antenna. A sufficient number of stages should be inserted so that a somewhat less than normal contrast picture is obtained when the picture control is at the maximum clockwise position. Only carbon type resistors should be used to construct the pad.

RESPONSE CURVES. - The response curves shown on page 14 and referred to throughout the alignment procedure were taken from a production set. Although these curves are typical. some variations can be expected.

The response curves are shown in the classical manner of presentation, that is with "response up" and low frequency to the left. The manner in which they will be seen in a given test set-up will depend upon the characteristics of the oscilloscope and the sweep generator. The curves may be seen inverted and \({ }^{\prime}\) or switched from left to right depending on the deflection polarity of the oscilloscope and the phasing of the sweep generator.

ALIGNMENT TABLE. - Both methods of oscillato: alignment are presented in the alignment table. The service technician may thereby choose the method to suit his test equipment.

\section*{ALIGNMENT TABLE}

THE DETAILED ALIGNMENT PROCEDURE BEGINNING ON PAGE SHOULD BE READ BEFORE ALIGNMENT BY USE OF THE TABLE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { STEP } \\
& \text { No. }
\end{aligned}
\] & \[
\begin{gathered}
\text { CONNECT } \\
\text { SIGNAL } \\
\text { GENERATOR } \\
\text { TO }
\end{gathered}
\] & \[
\begin{aligned}
& \text { SIGNAL } \\
& \text { GEN. } \\
& \text { FREQ. } \\
& \text { MC. }
\end{aligned}
\] & CONNECT
SWEEP
GENERATOR
TO & \[
\begin{aligned}
& \text { SWEEP } \\
& \text { GEN. } \\
& \text { FREQ. }
\end{aligned}
\] & \[
\begin{gathered}
\text { CONNECT } \\
\text { OSCILLOSCOPE } \\
\text { TO }
\end{gathered}
\] & \[
\begin{gathered}
\text { CONNECT } \\
\text { "VOLTOHMYST" } \\
\text { TO }
\end{gathered}
\] & MISCELLANEOUS
CONNECTIONS
ANSTRUCTIONS & ADJUST & \[
\begin{aligned}
& \text { REFER } \\
& \text { TO }
\end{aligned}
\] \\
\hline \multicolumn{10}{|c|}{DISCRIMINATOR AND SOUND I-F ALIGNMENT} \\
\hline 1 & 2nd sound i.f grid (pin 1. V120) & \begin{tabular}{l}
21.25 \\
.1 volt output
\end{tabular} & Not used & & Not used & In series with 1 meg, to junction of R215 \& R216 & & \begin{tabular}{l}
DetuneT113(bot.) \\
Adjust T113 (top) \\
for max. on meter
\end{tabular} & \[
\begin{aligned}
& \text { Fig. } 13 \\
& \text { Fig. } 12 \\
& \text { Fig. } 11 \\
& \hline
\end{aligned}
\] \\
\hline 2 & - & \(\cdots\) & " & & 4 & \[
\begin{aligned}
& \text { Junct. of C183 a } \\
& \text { R215 }
\end{aligned}
\] & Meter on 3 volt scale & T113 (bottom) for & \[
\begin{aligned}
& \text { Fig. } 13 \\
& \text { Fig. } 12
\end{aligned}
\] \\
\hline 3 & - & * & 2nd sound i-f grid (pin \(1, \mathrm{~V}_{120}\) ) & \[
\begin{gathered}
21.25 \\
\text { center } \\
1 \text { m. } \\
\text { wide } \\
1 \text { v.out } \\
\hline
\end{gathered}
\] & \[
\underset{\text { \& R215 }}{\substack{\text { Junction of C183 }}}
\] & Not used & Cbeck for sym waveform (positiv not equal adjust they are equal & metrical response ve \& negative). If T113 (top) until & \begin{tabular}{l}
Fig. 13 \\
Fig. 15
\end{tabular} \\
\hline 4 & 1st aound i-f grid (pin 1. V119) & \[
\begin{aligned}
& 21.25 \\
& \text { re- } \\
& \text { duced } \\
& \text { output }
\end{aligned}
\] & lst sound i-f grid (pin 1, V119) & \[
\begin{aligned}
& 21.25 \\
& \text { reduced } \\
& \text { output }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Terminal A, T112 } \\
& \text { in series with } \\
& 33,000 \text { ohmm } \\
& \text { resistor. }
\end{aligned}
\] & " & Sweep output reduced to provide .3 volt p-to-p on scope & T112 (top \& bot.) for max. gain and symmetry at 21.25 me. & Fig. 13 Fig. 11 Fig. 16 \\
\hline \multicolumn{10}{|r|}{PICTURE I-F AND TRAP ADJUSTMENT} \\
\hline 5 & Not Used & & Not used & & Not used & Junction of R135 - R136 & Remove V108. Connect potentiometer between pins 5 \& 6 of V108 socket & Adjust potentiometer for \(\mathbf{- 4 . 5}\) volts on meter & \[
\text { Fig. } 13
\]
\[
\text { Fig. } 11
\] \\
\hline 6 & \begin{tabular}{l}
Converter grid \\
(pin 1, V2)
\end{tabular} & 21.25 & \({ }^{\prime}\) & & " & Across R120 & Meter on 3 volt scale. Receiver beiween 2 \& 13 & T103 (top) for min. on meter & \begin{tabular}{l}
Fig. 11 \\
Fig. 13
\end{tabular} \\
\hline 7 & - & 21.25 & * & & 4 & " & - & T105 (top) for
min. & \begin{tabular}{l}
Fig. 13 \\
Fig. 11
\end{tabular} \\
\hline 8 & " & 27.25 & * & & * & " & \(\cdots\) & T102 (top) for & " \\
\hline 9 & " & 27.25 & * & & * & " & * & T104 (top) for
min. & \(\because\) \\
\hline 10 & - & 19.75 & * & & " & \(\cdots\) & " & \[
\begin{aligned}
& \text { T106 (top) for } \\
& \text { min. }
\end{aligned}
\] & " \\
\hline 11 & - & 19.75 & * & & " & " & " & T101 (top) for min. & * \\
\hline 12 & - & 22.5 & * & & * & " & " & T106 (bottom) for max. on meter & Fig. 12 \\
\hline 13 & * & 24.6 & " & & " & " & - & T104 (bottom) for max. & " \\
\hline 14 & - & 22.0 & " & & * & * & " & T103 (hottom) for max. & " \\
\hline 15 & * & 25.9 & " & & \({ }^{*}\) & * & \({ }^{*}\) & T102 (bottom) for max. & " \\
\hline 16 & " & \[
\begin{aligned}
& 22.05 \\
& 24.75
\end{aligned}
\] & \begin{tabular}{l}
Converter Erid \\
(Pin 1, V2 )
\end{tabular} &  & Pin 5, V106 & \begin{tabular}{l}
Junction of R135 \\
R R136
\end{tabular} & Shunt 300 obms across pri. T102, T103, T104, T106. Set bias -2 V. Set 3w. gen. for 4 V . P-P on acope. & Adjust T1 (top) and T101 (bottom) for proper reaponse & \begin{tabular}{l}
Fig. 12 \\
Fis. 17
\end{tabular} \\
\hline 17 & \(\cdots\) & & \(\cdots\) & * & * & " & Remove shunt resistors. Set bias to give 15 volts \(P\) to \(P\) on scope. & Adjust Ti (top), T101, T102, T103, T104, T106 (bot.) for proper resp. & Fig. 11
Fig. 12 Fig. 13 Fig. 16 \\
\hline
\end{tabular}

ANTENNA, R-F AND CONVERTER LINE ALIGNMENT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 18 & Antenna terminals & 215.75 & Not used & & Not used & Junction of C18s * R215 for signal sen. method only & Fine tuning centered. Receiver on channel 13. Heterodyne meter coupled to oseiflator if used. & C6 for zero on meter or beat on het. freq. meter & Fig. 13 Fig. 11 \\
\hline 19 & & & & & & Junction of R133 * R134 & Remove V101 & Potentiometer for -3.5 volts on meter & \begin{tabular}{l}
Fig. 13 \\
Fig. 11
\end{tabular} \\
\hline 20 & Antenna termina, (loosely) & \[
\begin{gathered}
175.25 \\
179.75 \\
179.7
\end{gathered}
\] & Antenna terminals (see text for precaution) & Sweepchangel channel & \begin{tabular}{l}
Teat \\
Connection R13
\end{tabular} & Not used & Receiver on channel 7 & L6, C10, C11 \& C14 for flat top responat between markers. Markers above \(90 \%\). & \begin{tabular}{l}
Fig. 13 \\
Fig. 12 \\
Fig. 11 \\
Fis. 19 \\
(7)
\end{tabular} \\
\hline 21 & " & \[
\begin{array}{|l|l|}
205.25 \\
209.75
\end{array}
\] & -• & \[
{ }_{12}^{\text {channel }}
\] & " & \({ }^{*}\) & Receiver on channel 12 & L6 for max. response and min. slope of top of curve & \[
\begin{gathered}
\text { Fig. } 11 \\
\text { Fig. } 19 \\
\text { (12) }
\end{gathered}
\] \\
\hline 22 & - & 175.25 & * & \[
\underset{7}{\text { channel }}
\] & - & * & Receiver on channel 7. & Check to see that response is as above & \[
\underset{(7)}{\text { Fig. } 19}
\] \\
\hline 23 & - & \[
\begin{aligned}
& 181.25 \\
& 185.75
\end{aligned}
\] & * & \[
\begin{gathered}
\text { channel } \\
8
\end{gathered}
\] & -• & " & Receiver on channel 8 & - & \[
\begin{gathered}
\text { Fig. } 19 \\
(8)
\end{gathered}
\] \\
\hline 24 & * & \[
\begin{aligned}
& 187.25 \\
& 191.75
\end{aligned}
\] & ** & \[
\begin{gathered}
\text { channel } \\
9
\end{gathered}
\] & " & * & Receiver on channel 9 & " & Fig. 19 (9) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{4}{|c|}{ALIGNMENT TABLE} & \multicolumn{3}{|r|}{9T270, 9TC272. 9TC275} \\
\hline STEP & \[
\begin{aligned}
& \text { CONNECT } \\
& \text { CENGEALTOR } \\
& \text { GENATOR }
\end{aligned}
\] & \[
\begin{gathered}
\text { SIGNL } \\
\text { GRENL } \\
\text { FREC. } \\
\text { MC. }
\end{gathered}
\] & \[
\begin{gathered}
\text { CONNECT } \\
\text { SWEEP } \\
\text { GENEATOR } \\
\text { TO }
\end{gathered}
\] & \[
\begin{aligned}
& \text { SWEEP } \\
& \text { GENEN. } \\
& \text { FRC. }
\end{aligned}
\] & \[
\begin{gathered}
\text { CONNECT } \\
\text { OSCILLLSSCOPE } \\
\text { TO }
\end{gathered}
\] & \[
\begin{gathered}
\text { CONECT } \\
\text { "VOLTOHMYST" } \\
\text { TO }
\end{gathered}
\] & miscellaneous CONNECTIONS instructions & adjust & \(\underset{\text { TO }}{\text { Refer }}\) \\
\hline \multicolumn{10}{|c|}{r-p and conver ter line alionment (Cont'd)} \\
\hline 25 & \[
\begin{gathered}
\text { Antenna } \\
\text { ferminal } \\
\text { (loomely) } \\
\hline
\end{gathered}
\] & 193.25
197.75 & \begin{tabular}{l}
Ant, terminals \\
preraution)
\end{tabular} & channel \({ }_{\text {col }}^{\substack{\text { col }}}\) & \begin{tabular}{|l|l|} 
Test \\
Connection R13
\end{tabular} & Not used & \begin{tabular}{|l|l|}
\hline \(\begin{array}{l}\text { Receiver on chan- } \\
\text { nel } 10\end{array}\) \\
\hline
\end{tabular} & \[
\begin{aligned}
& \text { Check to see that } \\
& \begin{array}{l}
\text { response } \\
\text { rebove }
\end{array} \\
& \text { is }
\end{aligned}
\] & \(\underset{\substack{\text { Fig } 19 \\ \text { (10) }}}{ }\) \\
\hline 26 & " & \[
\begin{aligned}
& 199.25 \\
& 203.75
\end{aligned}
\] & ." & \[
\begin{gathered}
\text { channel } \\
11
\end{gathered}
\] & " & " & Receiver on chan. nel 11 & - " & ( \({ }_{\text {Fig, } 19}(11)\) \\
\hline 27 & " & 205.25
209.75 & * & \[
\begin{gathered}
\text { channel } \\
12
\end{gathered}
\] & & " & Receiver on chan. nel 12 & " &  \\
\hline \({ }^{28}\) & " & \[
\begin{aligned}
& 211.25 \\
& 215.75
\end{aligned}
\] & \(\cdots\) & channel \({ }_{13}\) & " & " & Receiver on chan. nel 13 & " &  \\
\hline 29 & \multicolumn{9}{|l|}{If the response on any channel (steps 22 through 28) is below so\% a either marker, switch to that chansel and adjust L6, C10, Cil \& C14 to pull response up on that channel. Then recheck steps 22 through 28 ,} \\
\hline 30 & \[
\begin{array}{|l|l}
\text { Antenna } \\
\text { ferminn } \\
\text { (loosely }
\end{array}
\] & \({ }_{87}^{83} 785\) &  & \[
\begin{gathered}
\text { Swerp- } \\
\text { Swh } \\
\text { chan. }
\end{gathered}
\] & \begin{tabular}{|l|l|} 
Test \\
Comection R13
\end{tabular} & Not used & \begin{tabular}{|l|} 
Receiver on chan- \\
nel 6 - \\
\hline
\end{tabular} & \[
\begin{aligned}
& \text { L9. } 1213, \quad \text { L66 } \\
& \text { C12 } \\
& \text { for } \\
& \text { as above }
\end{aligned}
\] &  \\
\hline 31 & " & \[
\begin{gathered}
77.25 \\
81.75
\end{gathered}
\] & - & channel & * & " &  & \[
\begin{array}{|l|l|}
\hline \text { Check to see that } \\
\text { respone } \\
\text { above }
\end{array} \text { is } \begin{aligned}
& \text { as }
\end{aligned}
\] &  \\
\hline 32 & " & \[
\begin{aligned}
& 87.25 \\
& 71.75
\end{aligned}
\] & \(\cdots\) & \({ }_{\text {channes }}^{4}\) & * & " & \begin{tabular}{l}
Receiver on chan. \\
nel 4
\end{tabular} & - " & \(\stackrel{\text { Fige }}{\text { (i) }}\) (19 \({ }^{19}\) \\
\hline 33 & " & \[
\begin{aligned}
& 61.25 \\
& 65.75
\end{aligned}
\] & * & \[
\underset{3}{c} \begin{gathered}
\text { Channcl } \\
\hline
\end{gathered}
\] & * & \(\cdots\) & \[
\begin{aligned}
& \text { Receiver on chan- } \\
& \text { nel } 3
\end{aligned}
\] & & \(\underset{\substack{\text { Fig, } \\ \text { (3) }}}{\text { cige }}\) \\
\hline 34 & " & \[
\begin{gathered}
55.25 \\
59.75
\end{gathered}
\] & " & \(\underset{\substack{\text { chanel }}}{\text { chen }}\) & " & " & \[
\begin{aligned}
& \text { Receiver on chan- } \\
& \text { nel } 2
\end{aligned}
\] & " \({ }^{\text {a }}\) & \({ }_{\substack{\text { Fig, } \\ \text { (2) }}}^{\text {cid }}\) \\
\hline 35 & \multicolumn{9}{|l|}{ to pull response up on that channel. Then recheck steps 30 through 34. Replace Viol. Disconnect bias pot and replace Vios.} \\
\hline \multicolumn{10}{|c|}{r-F oscillator alicnment} \\
\hline \[
\begin{gathered}
\text { STEP } \\
\text { No. }
\end{gathered}
\] & \[
\begin{gathered}
\text { CONNECT } \\
\text { CNSNAL } \\
\text { CENRATOR } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { SIGNAL } \\
\text { GEN. } \\
\text { FREQ. }
\end{gathered}
\]
\[
\begin{aligned}
& \text { FREQ. } \\
& \text { MC. }
\end{aligned}
\] & CONNECT
HETERODYNE
FREQ. METER & \[
\begin{aligned}
& \text { MET. } \begin{array}{c}
\text { MEFER } \\
\text { FREQE. } \\
\text { MC. }
\end{array}
\end{aligned}
\] & CONNECT
OSCILLOSCOPE
TO & \[
\begin{gathered}
\text { CONNECT } \\
\text { "VOLTOHMYST" } \\
\text { TO }
\end{gathered}
\] & miscellaneous CONNECTIONS instructions & adjust & \(\underset{\text { Refer }}{\text { TO }}\) \\
\hline 38 & Antenna
lerminals & 215.75 & Loosely coupled to r -t ose. & 237 & Not used & \begin{tabular}{l}
Junction of C183 \\
sen. method only
\end{tabular} & Fine tuning cenchednnel 13 & C6 for zera on het. freq. meter & \[
\begin{aligned}
& \text { Fig. } 13 \\
& \text { FFiz } \\
& \text { Fig. } 12 \\
& \hline
\end{aligned}
\] \\
\hline 37 & " & 209.75 & " & 231 & " & ." & Rec. on chan. 12 & L14 as above & Fig. 14 \\
\hline 38 & " & 203.75 & \(\cdots\) & 225 & " & \(\cdots\) & Rec. on chan. 11 & L15 as above & . \\
\hline 39 & " & 197.75 & " & 219 & " & \(\cdots\) & Rec. on chan. 10 & L16 as above & . \\
\hline 40 & " & 191.75 & " & 213 & " & \(\cdots\) & Rec. on chan. 9 & L17 as above & * \\
\hline 41 & " & 185.75 & " & 207 & " & \(\cdots\) & Rec. on chan. 8 & L18 as above & " \\
\hline 42 & " & 179.75 & " & 201 & \(\cdots\) & \(\cdots\) & Rec. on chan. 7 & L19 as ahove & , \\
\hline 43 & " & 87.75 & " & 109 & . & \(\cdots\) & Rec. on chan. 6 & L31 as above & Fig. 12 \\
\hline 44 & \(\cdots\) & 81.75 & " & 103 & " & " & Rec. on chan. 5 & L21 as above & Fig. 14 \\
\hline 45 & " & 71.75 & " & 93 & \(\cdots\) & \(\cdots\) & Rec. on chan. 4 & 122 as above & " \\
\hline 46 & " & 65.75 & * & 87 & " & . & Rec. on chan. 3 & L23 as above & " \\
\hline 47 & -" & 59.75 & " & 81 & * & . & Rec. on chan, 2 & 124 as above & " \\
\hline \multicolumn{10}{|l|}{48 Repeat steps 38 throush 47 as a check} \\
\hline \multicolumn{10}{|c|}{horizontal oscillator adjustment} \\
\hline 49 & \multicolumn{9}{|l|}{Shore circuit terminale C and D of T 109 . Tune in a station.} \\
\hline 50 & \multicolumn{9}{|l|}{Turn hald control fully clockwise. Adjust Tio9 Frequency Adjustment until horizontal blanking bar appears in the picture.} \\
\hline 51 & \multicolumn{9}{|l|}{Turn hold control \(1 / 4\) turn from clockwise to aync picture. Adjust width (L110). linearity (Ll1t) and drive (C153B) controls until picture is correct. Repeat step 50 .} \\
\hline 52 & \multicolumn{9}{|l|}{Turn hold control fully counterclockwise. Momentarily remove signal. Turn hold control slowly clockwise. Note least number of bars before pull-in. Adjust Locking Range Control (C153A) for 7 to 9 bar pull-in.} \\
\hline 53 & \multicolumn{9}{|l|}{Remove clip from terminals C and D of T109. Turn hold control fully clockwise. Adjust T109 Oscillator Waveform Adjustment until horizontal blanking bar appears in picture.} \\
\hline 54 & \multicolumn{9}{|l|}{Connect Inw capacity probe of oseilloseope to terminal C of T109, Turn hold control i/f eurn from clockwise. Adjuat T109 Oscillator Wave arm Adiustment until broad and sharp peaks of wave on oscilloscope are same height. Keep picture in sync with hold control during adjustment. Remove oscilloscope.} \\
\hline 55 & \multicolumn{9}{|l|}{Turn hold control fully counterclockwise. Momentarily remove signal. Turn hold control slowly clockwise. Note least number of bars before pull-in. Adjust Locking Range Control (C153A) for 3 bar pull-in.} \\
\hline \multirow[t]{2}{*}{56} & \multicolumn{9}{|l|}{Turn hold control fully clockwise. Adjust T109 Frea. Adjustment until herizontal blanking appears as single vertical or diagonal bar in pix.} \\
\hline & \multicolumn{9}{|c|}{4.5 MC VIDEO TRAP ADJUSTMENT} \\
\hline 57 & \multicolumn{9}{|l|}{Tune in a strong station. Short trap winding of T 103 with a clip lead. 1 t 4.5 mc beat appears in picture adjust L104 until beat is climinated.} \\
\hline \multicolumn{10}{|c|}{SENSitivity check} \\
\hline 58 & \multicolumn{9}{|l|}{Connect antenna to receiver throush attenuator pad to provide weak signal. Compare the picture and sound obtained to that obtained on other receivers under the same conditions.} \\
\hline
\end{tabular}


Figure 11-Top Chassis Adjustments


Figure 12-Bottom Chassis Adjustmens


Figure 13-Test Connection Points

Note-
123 (6R8 Audio Outpul) is
not uned. V122 (6AVB) is
Bias Clamp only.

Figure 15
Discriminator
Response


Figure 18
Overall l-F


\(\int_{\substack{\text { cnannst } \\ 10}}^{\substack{ \\\hline}}\)

ensener


Figure 19-R.F Response



Figure 20-Horizontal Oscillator W'aveform.s.

igure 23-Horizontal Linearity
Control Misadjusted

\(\#\)


15

Following is a list of symptoms of possibe failures and a indication of some of the possible faults.

NO RASTER ON KINESCOPE:
(1) Incorrect adjustment of ion trap magnet - Magnets reversed either front to back or top to bottom, front magnet incor
rectly oriented. rectly oriented.
(2) V113, V114 or V115 inoperative - check voltage and wave

Horm on grids and plates.
(3) No high voltage If horizontal deflection is operating as evidenced by the correct wavetorm on terminal 4 of hori-
zontal output translormer, the trouble can be isolated to the 3016 circuit. Either the T110 high voltage winding is open points 2 to 3 ). an 8016 tube is delective. its filament circuit
sopen. C167, C168 or C187 is shorted or R189. R190, H191 Al92 or R193 is open.
(4) \(\mathrm{V}_{112}\) circuit inoperative - Reter to schematic and waveiorm chart
(5) Damper tube (V116) inoperative.
(6) Defective kinescope.
(7) R223 open (terminal 3 to R224).
(8) No receiver plate voltage-filter capacitor or filter choke

\section*{no vertical deflection:}
(1) V 108 B or V 111 inoperative-check voltage and wavelorm
on grids and plates.
(2) T107 or T108 open.
(3) Vertical deflection coils open.

\section*{SMALL RASTER:}
(1) Low Plus B or low line voltage.
(2) V113 defective.
poor vertical linearity
(1) If adjustment cannot correct, change V111.
(2) Vertical output transtormer defective.
(3) V108B defective-check voltage and waveforms on grid
(3) \(V 108 B\) def
and plate.
(4) C147, R164, C148B or C150C defective.
(5) Low bias or plate voltage-check rectifiers and capacitors in supply circuils.

POOR HORIZONTAL LINEABITY
(1) If adjustments do not correct. change V113 or V116.
(2) T 110 or L 113 delective.
(3) C 164 or C 165 defective.

Wrinkles on left side of raster:
(1) R166, R167 or C169 defective.
(2) Delective yoke

PICTURE OUT OF SYNC horizontally:
(1) T109 incorrectly tuned.
(2) R172, R173, R174, R176 or R178 defective.
trapezoidal of non.symmetrical raster:
(1) Improper adjustment of focus coil or ion trap magnet.
(2) Defective yoke.
raster and signal on kinescope but no sound:
(1) R-F oscillator off frequency.
(2) Sound i.f. discriminator or audio amplitier inoperative-
check V119. V120. V121. V122, V123 and their sockes voltages.
(3) T114 or C186 delective.
(4) Speaker defective.

Signal at kinescope grid but no sync:
(1) V105A, V106, V108A, V109 or V111 inoperative-check voltage and waveforms at their grids and plates.
(2) Check V104. Try another tube.

Signal on kinescope grid but no vertical sync: (1) Check V108B and associated circuit-C145, T107, etc.
(2) Integrating network inoperative-check.
(3) R154. R155, R157, R158 or R159 defective,
signal on kinescope grid but no horizontal sync (1) T109 misadjusted-readjust as instructed on page 11 . (2) V112 inoperative-check socket voltages and waveforms. (3) T109 defective.
(4) C140. C153A, C154, C155, C157 or C166 defective.
(5) Ii horizontal speed is completely oft and cannot be adjusted
check C158. C159. R172, R173. R174, R179 and R182.

SOUND AND RASTER but no picture or sync:
(1) Pieture i.f. detector or video amplitier inoperative-check
V103, V104, V105. V106 and V107-check socket voltages. (2) Bad contact to kinescope grid
pICTURE STAble but poor resolution:
(1) V105A, V106 or V107 defective.
(2) Peaking coils defective-check for specified resistance.
(3) Make sure that the focus control operates on both sides of proper focus.
(4) R-F and I.F circuits misaligned.

PICTURE SMEAR:
(1) R-F or I.F circuits misaligned.
(2) Open peaking coil.
(3) This trouble can originate at the transmitter-check on

\section*{PICTURE JITTER:}
1) Check for proper operation of hold controls.
(2) It regular sections at the left picture are displaced change
V113.
(3) Vertical instability may be due to loose connections or noise.
(4) Horizontal instability may be due to unstable transmitted sync.

\section*{RASTER BUT NO SOUND. PICTURE OR SYNC:}
(1) Defective antenna or transmission line.
(2) R-F oscillator off frequency.
(3) R.F unit inoperative-check V1, V2. V3.

PICTURE I-F RESPONSE. - At times it may be desirable to observe the individual i-1 stage response. This can be achieved by the following method:

Shunt all i.f transformers and coils with a 330 ohm carbon re. sistor except the one whose response is to be observed.
Connect a wide band sweep generator to the converter grid and adjust it to sweep from 18 mc . to 30 mc .

\section*{DARK VERTICAL LINE ON LEFT OF PICTURE:}
(1) Reduce horizontal drive and readjust width and horizontal linearity.
(2) Replace V113.

LIGHT VERTICAL LINE ON LEFT OF PICTURE:
(1) C169 defective.
(2) V116 defective

Connect the oscilloscope across the picture detector load resistor and observe the overall response. The response obtained will be essentially that of the unshunted stage. The effects of the various traps are also visible on the stage response.

Figures 29 through 33 show the response of the various stages obtained in the above manner. The curves shown are typical although some variation between receivers can be expected. Relative stage gain is not shown.


Figure 29-Response of Converter and First Pix I.F Transformer


Figure 32-Response of Fourth Pix I-F Transformer


Figure 35-Overall Pix I-F Response


Figure 30-Response of Second Pix I-F Transformer


Figure 33-Response of Fifth Pix l-F Transformer


Figure 36-Video Response at Average Contrust


Figure 31-Response of Third Pix l-F Transformer


Figure 3.-Response from First Pix I.F Grid to Pix Det


Figure 3i-V'ideo Response "I Muxinuml Contrast


\section*{WAVEFORM PHOTOGRAPHS}
l'ideo Signal Input to 1st Video Am. plifier (Pin 1 of l'106) (6AU6)

Figure 38-V'ertical (Oscilloscope
Synced to \(1 / 2\) of Vertical Sweep Rate) (2.1 Volts PP)
\(\leftarrow 4\)
Figure 39-Horizontal (Oscilloscope Synced to \(1 / 2\) of Horizontal Sueep Rate) (2.1 Volts PP) \(\rightarrow\)

Input to 2nd Video Amplifier (Pin 5 of V107) (6K6GT)

Figure 40-V'ertical (15 Voles PP)


Figure 41-Horizontal (15 Volts PP)
\(\rightarrow\)

Output of 2nd Video Amplifier (Pin 3 of V107) (6K6GT) (Picture Max.)

Figure 42-Vertical (130 Volts PP) \(\leftarrow 4\)

Figure 43-Horizontal (130 Volts PP) \(\rightarrow+\)

Input to Kinescope (Junction of R131 and R132) (Picture Max.)

Figure 44-Vertical ( 65 Volts PP) \(4+\)

Figure 45-Horizontal ( 65 Voles PP) \(\rightarrow\)

Input to 1st Sync Separator (Pin 1 of V109) (6SN7GT)

Figure 46-Vertical (24 Voles PP) 44

Figure 47-Horizontal (24 Volts PP)



Output of lst Sync Separator (Pin 2 of ''109) (6SN7GT)

Figure 54-V'ertical (48 Volts PP) \(4+\)

Figure 55-Horizontal (38 Volts PP)



Input to Sync Amplifier (Junction of C137, C139 and R144)

Figure 56-l'ertical ( 30 Volts PP)
\(\leftrightarrow 4\)
Figure 5i-Horizontal (17 Volts PP)



Cathode of 2nd Sync Separator (Pin 6 of V110) (6SN7GT)

Figure 60-Vertical (17 Volts PP) \(\leftarrow 4\)

Figure 61-Horizontal (11 Volts PP) \(\Rightarrow\)

Figure 62-Output of Integrating Network (Junction of C144, C145 and R153) ( 38 Volts PP) 44

Figure 63-Grid of Vertical Oscillator (180 Volts PP) (Pin 1 of V108) (6SN7GT)
\(\rightarrow\)


Figure 6t-Grid of Vertical Output (140 Volts PP) (Pin 5 of Vlll) (6K6GT)
\(\longleftarrow\)

Figure 65-Plate of Vertical Output (925 Volts PP) (Pin 3 of Vlll) (6K6GT)
\(\rightarrow\)


Figure 66-Input of Vertical Deflection Coils (75 Volts PP) (Junction of Green Lead of T108 and Green Lead of Yoke)
\(\longleftarrow 4\)

Figure 67-Input to Horizontal OscilLotor (25 Volts PP) (Junction of C153A and C154)
\(\rightarrow\)



Figure 68-Junction of R168, R176 and R178 (140 Voles PP) \(\leftarrow\)

Figure 69-Grid of Horizontal Oscil lator ( 500 Volts PP) (Pin 4 of V112) (6SN7GT) \(\rightarrow>\)

Figure 70-Plate of Horizontal Oscillator (280 Volts PP) (Pin 5 of V112) (6SN7GT)
\(\longleftarrow \leftarrow\)

Figure 71-Terminal "C" of T109 ( 85 Voles PP)
\(\rightarrow+\)

Figure 72-Input to Horizontal Output Tube (75 Voles PP) (Junction of C160, R181 and C153B) \(\leftarrow+\)

Figure 73-Plate of Horizontal Output (Approx. 6,100 Volts PP) (Measured Through a Capacity Volsage Divider Connected from Top Cap of V113 to Ground)
\(\rightarrow\)

Figure 74-Junction of C164, L113 and Terminal 1 of T110 (80 Voles PP)
\[
\leftarrow+14
\]

Figure 75-Cathode of Damper (50 Volts PP) (Pin 8 of V116) (5V4G)
\(\rightarrow\)

Figure 76-Input to Horizontal Deftection Coils (1,600 Volts PP) (Pin 4 of VI16) (5V4G)
\(\leftarrow\)

Figure 77-Horizontal Deflection Coil Current ( 800 ma PP) (Calculated Value from PP Voltage across R199)

The following measurements represent two sets of conditions. In the first condition a 2200 microvolt test pattern signal was fed into the receiver and the picture synced. The second condition was obtained by removing the antenna leads and short circuiting the receiver antenna terminals. Voltages shown are as read with "Jr. VoltOhmyst" between the indicated terminal and chassis ground and with the receiver operating on 117 volts 60 cycles a-c.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Tube No.} & \multirow[b]{2}{*}{\begin{tabular}{l}
Tube \\
Type
\end{tabular}} & \multirow[b]{2}{*}{Function} & \multirow[b]{2}{*}{Operating Condition} & \multicolumn{2}{|r|}{E. Plate} & \multicolumn{2}{|l|}{E. Screen} & \multicolumn{2}{|l|}{E. Cathode} & \multicolumn{2}{|r|}{E. Grid} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { I } \\
\text { Plate } \\
\text { (ma.) }
\end{gathered}
\]} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{Notes on Measurements} \\
\hline & & & & Pin No. & Volts & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & Pin No. & Volts & Pin No. & Volts & & & \\
\hline \multirow[t]{2}{*}{V110} & \[
\begin{aligned}
& 6 S N 7 \\
& \text { GT }
\end{aligned}
\] & Sync Amplifier & 2200 Mu . V. Signal & 2 & 81 & - & - & 3 & -46 & 1 & -48 & 10.8 & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 2 & 71 & - & - & 3 & - 50 & 1 & -54 & 10.8 & - & \\
\hline \multirow[t]{2}{*}{V110} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \text { GT }
\end{aligned}
\] & Sync Separator & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 210 & - & - & 6 & -44 & 4 & -131 & 0.34 & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 200 & - & - & 6 & -51 & 4 & -100 & 0.15 & - & \\
\hline \multirow[t]{2}{*}{V111} & \[
\begin{aligned}
& \text { 6K6- } \\
& \text { GT }
\end{aligned}
\] & Vertical Out put & 2200 Mu. V. Signal & 3 & 197 & 4 & *197 & 8 & \(-76\) & 5 & -96 & 7.7 & 1.3 & *Screen \\
\hline & & & No Signal & 3 & 185 & 4 & \({ }^{*} 185\) & 8 & -93 & 5 & -110 & 7.6 & 1.3 & plate \\
\hline \multirow[t]{3}{*}{V112} & \[
\begin{aligned}
& \text { 6SN } 7 \\
& \text { GT }
\end{aligned}
\] & Horizontal Osc. Control & \[
2200 \mathrm{Mu} . \mathrm{V} .
\] Signal & 2 & 25 & - & - & 3 & -120 & 1 & \(-110\) & 0.24 & - & Horizontal hold control \\
\hline & & & \[
\begin{aligned}
& \text { No } \\
& \text { Signal }
\end{aligned}
\] & 2 & -8 & - & - & 3 & -146 & 1 & -128 & 0.1 & - & completely clockwise \\
\hline & & & No Signal & 2 & +60 & - & - & 3 & -130 & 1 & - 114 & 0.13 & - & Hold control counterclockwise \\
\hline \multirow[t]{2}{*}{V112} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \text { GT }
\end{aligned}
\] & Horizontal Oscillator & \[
2200 \mathrm{Mu} . \mathrm{V} \text {. }
\] Signal & 5 & 75 & - & - & 6 & -115 & 4 & -190 & 2.3 & - & \\
\hline & & & No Signal & 5 & 60 & - & - & 6 & -125 & 4 & -204 & 1.5 & - & \\
\hline \multirow[t]{2}{*}{V113} & 6BG6G & Horizontal Output & 2200 Mu . V. Signal & Cap & * & 8 & 180 & 3 & \(-100\) & 5 & -120 & 90.0 & 10.0 & * 5200 volt \\
\hline & & & No Signal & Cap & Do Not Meas. & 8 & 160 & 3 & \(-112\) & 5 & -126 & 92.6 & 10.4 & pulse present \\
\hline \multirow[t]{2}{*}{V114} & \[
\begin{aligned}
& \text { 1B3GT } \\
& / 8016
\end{aligned}
\] & H. V. Rectifier & Brightness Min. & Cap & * & - & - & 28.7 & 6400 & - & - & - & - & 6000 volt \\
\hline & & & Brightness Max. & Cap & Do Not Meas. & - & - & 287 & 6100 & - & - & - & - & pulse present \\
\hline \multirow[t]{2}{*}{V115} & \[
\begin{aligned}
& \text { 1B3GT } \\
& / 8016
\end{aligned}
\] & \begin{tabular}{l}
H. V. \\
Rectifier
\end{tabular} & Brightness Min. & Cap & * & - & - & 28.7 & 11700 & - & - & - & - & * 6000 volt \\
\hline & & & Brightness Max. & Cap & Do Not Meas. & - & - & 2887 & 11600 & - & - & - & - & pulse present \\
\hline \multirow[t]{2}{*}{V116} & 5V4G & Damper & \[
2200 \mathrm{Mu} . \mathrm{V} \text {. }
\] Signal & 486 & * & - & - & 2 \& 8 & 350 & - & - & 93.0 & - & * 1200 volt \\
\hline & & & No Signal & 486 & Do Not Meas. & - & - & 288 & 340 & - & - & 92.0 & - & pulse present \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { V117 } \\
& \text { V118 }
\end{aligned}
\]} & 5U4G & Rectifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 486 & \({ }^{*} 365\) & - & - & 288 & 277 & - & - & †125 & - & \begin{tabular}{l}
\(\dagger\) Per tube \\
* A-C measured
\end{tabular} \\
\hline & & & No Signal & 486 & * 365 & - & - & 288 & 264 & - & - & \(\dagger 130\) & - & from plate to trans. center tap \\
\hline \multirow[t]{2}{*}{V119} & 6AU6 & 1st Sound I-F Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 131 & 6 & 131 & 7 & 0.65 & 1 & 0 & 6.0 & & \\
\hline & & & No Signal & 5 & 106 & 6 & 106 & 7 & 0.55 & 1 & 0 & 4.9 & & \\
\hline \multirow[t]{2}{*}{V120} & 6AU6 & 2d Sound I-F Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 136 & 6 & 80 & 7 & 0 & 1 & -0.6 & 3.5 & & \\
\hline & & & No Signal & 5 & 111 & 6 & 62 & 7 & 0 & 1 & -0.7 & 3.0 & & \\
\hline \multirow[t]{2}{*}{V121} & 6AL5 & Sound Discrim. & \[
\begin{aligned}
& 2200 \mathrm{Mu} . \mathrm{V} . \\
& \text { Signal }
\end{aligned}
\] & \(\checkmark 2\) & -1.4 & - & - & 5 & 0 & - & - & - & - & \\
\hline & & & No Signal & 2 & \(-0.7\) & - & - & 5 & 0 & - & - & - & - & \\
\hline \multirow[t]{2}{*}{V122} & 6AV6 & 1st Audio Amplifier & 2200 Mu. V. Signal & 7 & 88 & - & - & 2 & 0 & 1 & \(-0.7\) & 0.5 & - & \\
\hline & & & No Signal & 7 & 91 & - & - & 2 & 0 & 1 & \(-0.7\) & 0.5 & - & \\
\hline \multirow[t]{2}{*}{V123} & \[
\begin{aligned}
& \text { 6K6- } \\
& \text { GT }
\end{aligned}
\] & Audio Out put & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 3 & 152 & 4 & 165 & 8 & -94 & 5 & \(-115\) & 24.0 & 3.4 & \\
\hline & & & No Signal & 3 & 139 & 4 & 152 & 8 & \(-107\) & 5 & -125 & 24.0 & 3.4 & \\
\hline \multirow[t]{2}{*}{V124} & 16AP4 & Kinescope & 2200 Mu. V. Signal & Cap & 11700 & 10 & 320 & 11 & 26 & 2 & -29 & 0.08 & - & Average Brightness \\
\hline & & & No Signal & Cap & 11600 & 10 & 305 & 11 & 11 & 2 & -47 & 0.08 & - & Average Brightness \\
\hline
\end{tabular}


Figure \(\mathbf{7 8 - R}\)-F U'nit Wiring Diagram

\section*{CRITICAL LEAD DRESS:}
1. The ground bus from pin 2 and the center shield of V120 socket should not be shortened or rerouted.
2. Dress the body of R195 as close to tube pin as possible.
3. Do not change the dress of the filament leads or the bypass capacitors in the picture or sound i-1 circuits. The filament leads between V120, V121 and V122 should be down against the chassis and away from grid or plate leads.
4. Dress all leads crossing the i-f circuits close to the chassis and held so they cannot move and change alignment.
5. If it is necessary to replace any of the 1500 mmf capacitors in the picture i.f circuit, the lead length must be kept as short as possible.
6. Picture i-f coupling capacitors \(\mathrm{C} 106, \mathrm{Cl11}, \mathrm{Cl15}\) and C 121 should be up and away from the chassis and should be clear of the pix i-f transformer adjustments by at least \(1 / 4\) inch. If the dress of any of these capacitors is changed, the i-f alignment should be rechecked.
7. Leads to L102 and L103 must be as short as possible.
8. Diess peaking coils L105, L106, L107, L108 and L109 up and away from the chassis.
9. Dress R129 away from L109.
10. Dress C183 across V121 tube pins 5 and 6 with leads not exceeding \(3 / 8\) inch.
11. Dress the blue lead from pin 5 of V122 down against the chassis and under two shielded leads.
12. Dress C129 and C199 up and away from the chassis.
13. Dress the yellow lead from the picture control away from the chassis. Dress the yellow lead from pin 8 of V106 away from the chassis.
14. Dress the green lead from pin 8 of V107 away from the chassis.
15. Dress R168, R169, R170, R176 and R178 up and away from the chassis.
16. The leads to the volume control should be dressed down against the chassis and away from V119 and V120.
17. Dress the yoke red horizontal deflection lead under the clips of the fixed H. V. shield.
18. Dress the green lead from Cl66 close to the chassis and away from the red lead connected to T110-4.
19. Insert the red lead into Tllo.4 from the top of the terminal.
20. All soldered connections in the high voltage compartment should be free of sharp points.
21. Contact between the r-f oscillator frequency adjustment screws and the oscillator coils or channel switch eyelets must be avoided.




Model 9'Tए' 309 Walnut,
Mahogany or Toasted Mahogany

RADIO CORPORATION OF AMERICA

\section*{GENERAL DESCRIPTION}

Model 9TW309 receiver employs twenty-six tubes plus three rectifiers and a 12LP4 kinescope.
The television receiver is provided with Electronic Magnifier deflection circuits by which the center portion of the picture may be enlarged to fill the screen. Choice of picture coverage
is made by operation of a remole switch.
The radio tuner unit which feeds through the television audio system covers the AM and the FM broadcast bands.

Two record changers are provided to play 45 and 78 RPM records.

\section*{ELECTRICAL AND MECHANICAL SPECIFICATIONS}

PICTURE SIZE .......... 87 square inches on a 12LP4 kinescope

\section*{TELEVISION R-F FREQUENCY RANGE}

All 12 television channels, 54 mc . to \(88 \mathrm{mc} ., 174 \mathrm{mc}\), to 216 mc . Fine Tuning Range.... \(\pm 250 \mathrm{kc}\). on chan. 2. \(\pm 650 \mathrm{kc}\). on chan. 13
Picture Carrier Frequency
25.75 mc .

Sound Carrier Frequency
21.25 mc .
radio tuning range
Broadcast
\(540-1.600 \mathrm{kc}\).
Frequency Modulation
88.108 mc .

Intermediate Fr€quency-AM
455 kc.
Intermediate Frequency-FM
.10 .7 mc .

POWER SUPPLY RATING ............ 115 volts, 60 cycles, 300 watts
AUDIO POWER OUTPUT RATING
. 6.0 watts max.
CHASSIS DESIGNATIONS

Radio Chassis ............................................................................... 135 C
78 RPM Record Changer .......................................................RP178
45 RPM Record Changer .................................................................. 168
Refer to Service Data RP178 or RP168 for information on the record changers.

LOUDSPEAKER-92569.8 (RLIl1-10) ........... 12 inch PM Dynamic Voice Coil Impedance ............................... 3.2 ohms at 400 cycles WEIGHT
Chassis with Tubes in Cabinet
183 lbs. Shipping Weight 221 lbs.

DIMENSIONS (inches)
\begin{tabular}{ccr} 
Width & Height & Depth \\
37 & \(38^{3 / 4}\) & \(22^{3 / 4}\) \\
\(19^{3} \mathrm{~s}\) & \(12^{1 / 4}\) & \(201 / 4\)
\end{tabular}

RECEIVER ANTENNA INPUT IMPEDRNCE... 300 ohms balanced If necessary, the television chassis may be fed separately from either a 300 ohm balanced line or a 72 ohm co-ax.
RCA TUBE COMPLEMENT
\begin{tabular}{|c|c|c|}
\hline & Tube Used & Function \\
\hline (1) & RCA 6AG5 & R-F Amplifier \\
\hline (2) & RCA 6AG5 & Converter \\
\hline (3) & RCA 6J6 & R-F Oscillator \\
\hline (4) & RCA EAU6 & lst Sound I-F Amplifier \\
\hline (5) & RCA 6AU6 & 2nd Sound I-F Amplifier \\
\hline (6) & RCA 6AL5 & Sound Discriminator \\
\hline (7) & RCA 6AV6 & 1st Audio Amplifier \\
\hline (8) & RCA 6V6GT & Audio Output \\
\hline (9) & RCA 6BA6 & 1st Picture I-F Amplifier \\
\hline (10) & RCA 6AG5 & 2nd Picture I-F Amplifier \\
\hline (11) & RCA 6BA6 & 3rd Picture 1-F Amplifier \\
\hline (12) & RCA 6AG5 & 4th Picture I-F Amplifier \\
\hline (13) & RCA 6AL5 & Picture 2nd Detector \& Sync Limiter \\
\hline (14) & RCA 12AU7 & 1 st and 2nd Video Amplitier \\
\hline (15) & RCA 6SN7GT & AGC Amplifier \& Vertical Sweep Osc. \\
\hline (16) & RCA 6SN7GT & AGC Rectifier \& lst Sync Separator \\
\hline (17) & RCA 6SN7GT & Sync Amplitier \& 2nd Sync Separator \\
\hline (18) & RCA 6K6GT & Vertical Sweep Output \\
\hline (19) & RCA 6SN7GT & Horizontal Sweep Oscillator and Control \\
\hline (20) & RCA 6BG6G & Horizontal Sweep Output \\
\hline (21) & RCA 6W4GT & Damper \\
\hline (22) & RCA 1B3-GT/8016 & High Voltage Rectifier \\
\hline (23) & RCA 5U4G & .Power Supply Rectifie: (2 tubes) \\
\hline (24) & RCA 12LP4 & Kinescope \\
\hline
\end{tabular}
(Radio Tuner Chassis)
\begin{tabular}{|c|c|c|}
\hline (1) & RCA 616 & Mixer and Oscillator \\
\hline (2) & RCA 6BA6 & I-F Amplifier \\
\hline (3) & RCA 6AU6 & F-M Driver \\
\hline (4) & RCA 6AL5 & Ratio Detector \\
\hline (5) & RCA 6BF6 & AM Detector AVC \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline PICTURE I-F FREQUENCIES & OPERATING CONTROLS (front panel) \\
\hline Picture Carrier Frequency .............................................. 25.75 me. &  \\
\hline Adjacent Channel Sound Trap ..................................... 27.25 mc . & Tone \\
\hline Accompanying Sound Traps ...................................... 21.25 mc & Sound Volume and On-Oft Switch \} ..............Dual Control Knobs \\
\hline Adjacent Channel Picture Carrier Trap ..................... .. 19.75 me. & \(\left.\begin{array}{l}\text { Picture Horizontal Hold } \\ \text { Picture Vertical Hold }\end{array}\right\}\) \} ..... ... ............Dual Coñtrol Knobs \\
\hline SOUND I.F FREQUENCIES & Picture \(\}\)..............................................Dual Control Knobs \\
\hline Sound Carrier Frequency ......................................... . 21.25 mc . & Brighiness \({ }^{\text {a }}\) \\
\hline & Function Switch .......................................... Single Control Knob \\
\hline Sound Discriminator Band Width between peaks ..... .... 350 kc . & Radio Tuning ................................ ........... Single Control Knob \\
\hline VIDEO RESPONSE.........................................................To 4 mc. & NON-OPERATING CONTROLS \\
\hline FOCUS...................................................................... Magnetic & \begin{tabular}{l}
Horizontal Centering rear chassis adjusiment \\
Vertical Centering
\(\qquad\)
\(\qquad\) rear chassis adjustment \\
Shunt Width Coil \(\qquad\) rear chassis screwdriver adjustments \\
Series Width Coil \(\qquad\) rear chassis screwdriver adjustment
\end{tabular} \\
\hline SWEEP DEFLECTION ........... ... ... ... ...... .......... Magnetle & Expanded Width Coil \(\qquad\) rear chassis screwdriver adjustment Width Selector Switch \(\qquad\) rear chassis screwdriver adjustment \\
\hline SCANNING............................................... Interlaced, 525 line & Height rear chassis adjustment Horizontal Linearity rear chassis screwdriver adjustment ..............rear chassis Vertical Linearity rear chassis adjustment \\
\hline HORIZONTAL SCANNING FREQUENCY.................... 15.750 cps & Horizontal Drive ...................rear chassis screwdriver adjustment Horizontal Oscillator Frequency ........bottom chassis adjustment Horizontal Oscillator Waveform ..............side chassiz adjustment \\
\hline VERTICAL SCANNING FREQUENCY ............................. 60 cps & Focus .............................................................................................................ssis adjustment
Ion Trap Magnet ....................top chassis wing nut adjustment
Deflection Coil .................. \\
\hline FRAME FREQUENCY (Picture Repetition Rate)................. 30 cps & Focus Coil ...........................top chassis screwdriver adjustment \\
\hline
\end{tabular}

\section*{HIGH VOLTAGE WARNING}

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCX HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WOREING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

\section*{KINESCOPE HANDLING PRECAUTIONS}

DO NOT OPEN THE KINESCOPE SHIPPING CARTON, INSTALL, REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES, AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING EINESCOPES. KEEP THE gINESCOPE AWAY FROM THE BODY WHILE HANDLING.

The kinescope bulb encloses a high vacuum and, due to its large suriace area, is subjected to considerable air pressure. For these reasons. Linescopes must be handled with more care than ordiary receiving tubes.

\footnotetext{
The large end of the kinescope bulb-particularly that part at the rim of the viewing surface-must not be struck, scratched or sub. fected to more than moderate pressure at any time. In installation, If the tube sticks or fails to slip smoothly into its socket, or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Reler to the Recelver fintallation section for detailed Instruction on kinescope installation. All ACA kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the recelver. Keep the carton for possible future use.
}

The following adjustments are necessary when turning the receiver on for the first time.
1. Turn the radio FUNCTION switch to Tel.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid-position.
10. After the receiver has been on for some time, it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.
11. In switching from one station to another, it may be necessary to repeat steps numbers 4 and 9.
3. Set the STATION SELECTOR to the desired channel.
4. Adjust the FINE TUNING control for best sound fidelity and SOUND VOLUME for suitable volume
5. Turn the BRIGHTNESS control fully counterclockwise. then clockwise until a light pattern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZON. TAL hold control until a pic. ture is obtained and centered.
8. Turn the BRIGHTNESS control counterclockwise until the retrace lines just dis. appear.
9. Adjust the PICTURE control for suitable picture contrast.


Figure 1-Receiver Operating Cortrols
12. To operate the Electric Magnifier, push the button on the remote cable.
13. When the set is turned on again after an idle period, it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. If any adjustment is necessary, step number 4 is generally sufticient.
14. If the positions of the conirols have been changed, it may be necessary to repeat steps numbers 1 through 9.
15. For radio operation lurn the FUNCTION switch to AM or \(F M\) and tune in station with the radio TUNING control.
16. For phono operation, turn the function switch to PH for operation of the 78 spm changer or to XPH for operation of the 45 rpm changer.

\section*{INSTALLATION INSTRUCTIONS}

UNPACKING.-The 9TW309 receiver is packed complete with kinescope in a cardboard carion. To unpack, turn the shipping carton on its side and lear open the carton bottom Dlapa. Fold the fiaps up along the side of the carton and turn the carton back up. Lift the carton up and off the cabinet.

A flat skid is attached to the bottom of the receiver cabinet which will permit the cabinet to be moved about withoul stressing the cabinet joints. To remove the skid, take off the nuts from the two bolts that hold the cabinet on the skid. With a man at each end of the cabinet. lift the cabinet off the skid.

From the rear of the cabinet remove the red bracket which holds the RP168 record changer drawer in the closed position. Slide the drawer out. From the top of the changer, remove the three filler plugs from over the motorboard mounting screws. Loosen these three screws just enough to permit removal of two wooden shipping strips under the edge of the motorboard. Tighten the screws just enough to keep the motorboard springs from rattling and replace the filler plugs.

Remove the red bracket which holds the RP178 changer drawer in the closed position. Open the drawer and from the top of the changer, loosen the motorboard mounting bolis until the changer floats lree.

The operating control knnbs are packed in a paper bag and tied to a crossmember in back of the cabinet. Remove the bag and install the knobs on the proper control shalts.

Remove the televinion compartment back.
Make sure that all tubes are in place and are firmly seated in their sockets.

Check to see that the high valtage lead is attached to the kinescope second anode connector socket on the bell of the tube.

Connect the antenna transmission line to the receiver an tenna terminals.

Plug the receiver power cord into a 115 volt a-c power source. Turn the power switch to the "on" position, the func.
tion switch to Tel, the brightness control three-quarters clockwisc, and picture control counterclockwise.

ION TRAP MAGNET ADJUSTMENT. Set the ion trap mag. net approximately in the position shown in Figure 2. Starting from this position immediately adjust the magnot by moving


\section*{Figure 2-Yoke and Focus Coil Adjustments}
it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the ranter is slightly above average brilliance. Adjust the focus control (R191 on the chassis rear capron) until the line structure of the raster is clearly virible. Readjust the ion trap magnet for maximum raster brilliance. The final touches on this adjustment should be made with the brightness control at the maximum poiltion with which good line focus can be maintained.
DEFLECTION YOEE ADJUSTMENT.-If the lines of the raster are not horizontal or equared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE ADJUSTMENTS.-It will now be neceseary to obtain \(\alpha\) test pattern picture in order to make further adjustment. See steps 3 through 9 of the receiver operating inetructions.

If the Horisontal Osellator and AGC Syatem are operating properly, it should be possible to sync the picture at this point. However, if the AGC threshold control is misadjusted, and the receiver is overloading, it may be impossible to aync the picture.

If the receiver is overloading, turn R 138 on the rear apron (see Figure 3) clockwise until the set operates normally and the picture com be syraced.


Figure 3-Rear Chassis Adjustments
CHECE OF HORIZONTRL OSCLLRTOR RLIGNMENT.-Tum the horizontal hold control to the extreme counter-clockwise position. The plcture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of syac. Turn the control clockwise slcwly. The number of diagonal black bar will be gradually reduced and when only 3 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rolation of the control. Pull in should occur when the control is approximately 90 degrees from the extreme counter-clockwise position. The picture should remad in sync for approximately 90 degrees of additional clockwise rotation of the control. At the eztreme clock. wise position, the picture should be out of sync and should show 1 vertical or diagonal black bar in the raster.

If the receiver passes the foregoing checks and the picture is normal and stable, the horizontal ancillator is properly allgned. Skip "Alignment of Horimontal Oscillator" and procoed with "Focus Coil Adjustments."

ALIGNMENT OF HORIZONTAL OSCLLHTOR.-If in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull-in point. It will be necessary to make the following adjustments:

Horisontal Frequency Adjustment.-Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the Tl09 horisontal frequency adjuntment (under the chaseis) until the picture is just out of eync and the horisontal blanking appeare as \(\alpha\) vertical or disagonal black bar in the raster.

Horizontal Lock in Range Adfurtment-Set the horirontal hold control to the full counter-clockwise position. Momentarily remove the signal by witching off channel then back. Slowly tum the horisontal hold control clockwise and note the least number of diagonal bars obtained juat before the pleture pulla into syac.

If more than 3 bars are present just belore the picture pulls into sync, adjust the horisontal locking range trimmer C153A slightly clockwise. If lest than 3 bars are present, adjust Cl53A slightly counter-clockwise. Turn the picture control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull in point. Repeat this procedure until 3 bars are present.

Repeat the adjustments under "Horisontal Frequency Ad. justment" and "Eiorizontal Locking Range Adjustment" until the condition specified under each are fulfilled. When the
horisontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oncillator is properly adjusted.

If it is impossible to aync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjuit the Horisontal Oscillator by the method outined in the aligrment procedure

For field purposes paragraph " \(A\) " under Horizontal Oscillator Waveform Adjustment may be omitted.

FOCUS COIL ADIUSTMEATS.-The focus coll should be adjunted so that there is approximately \(1 / 4\) inch of apace between the rear cardboard shell of the yoke and the flat of the front face of the focus coll. This spacing gives best average focus over the face of the lube. However, it may be necessary to change this distance slightly in order to compensate for small differences in strength of the permaneat magnets in the coll. In order to prevent the beam from striking the neck of the kinescope. It is important that the axis of the hole through the focus coil should be kept in accurate alignment with the axis of the neck of the kinescope.

CENTERING ADTUSTMENTS.-Centering is obtained by loosening the two focus coll mounting serews and sliding the coil up or down or from side to side. If \(\alpha\) corner of the rater is shadowed, check the position of the ion trap magnet. Slightly reposition if to eliminate the shadow and recenter the picture by sliding the coil. In extreme cases it may be necessary to adjust one or more of the focus coil compresesion screws to eliminate a corner shadow.

Hecheck the position of the ion trap magnel to insure that maximum brilliance is obtained. It is important that the linescope not be operated with the ion trap magnet adjusted for less than maximum brightness. To do so may cause injury to the tube.

PICTURE SIZE AND LINEARITY.-Connect the "Electronic Magnifier" switch to its socket on the rear apron of the chassis. Set the switch to the large (expanded) picture pori. tion. Set the Expanded Width Selector Switch S104 to the counter-clockwise ponition and adjust the Expanded Width Control L120 so that the test pattern outer circle normally tangent to the top of the picture is now tangent to the side of the picture. (If the width is not sufficient, set the Expanded Width Selector Switch to the center or the clockwise end porition.) Adjust the Horizontal Drive and the Horizontal Linearity Control until the pattern is symmetrical from left to right. In general, the core of the Linearity Control Coil should be between \(1 / 2\) to all the way out of the coil.

Set the "Electronic Magnifier" switch to the normal sise porition. Observe to see if the picture width is correct. If it is not, adjust elther the Series Width Control Coil L121, or the Shunt Width Contzol Coil Lll5 until the picture is the correct width. If the Serien Width Coil core is out too far, the picture will "ring" on the left hall. This ring will be shown as one or more faint light or dark vertical bars somewhere on the left half of the picture with resulting poor horizontal linearity.

When the proper width is obtained, switch to the expanded picture position, wait for a few seconds then switch back to the normal position. Observe if the top of the picture immediately assumes ite final position or if it takes several second to come to \(a\) stop. If the plcture requires more than a second to become still, adjust the core of L115 or L121 in and the other out while maintaining the proper width. Repeat the above test and obmerve if the picture immediately comes 10 reat when awitched to the normal sise position. Continue to adjust L115 and L121 until this condition is satisiod and the picture is the proper width. Observe the picture horizontal linearity and if necessary retouch Horizontal Drive, Linearity and Width Controls L115 and L121.

With the "Electronic Magnifier" switch in normal position, adjust the Height (R155) and the Vertical Linearity control (R162) as usual in order to obtain good vertical linearity. In addition, If difficulty is experienced in oblaining good vertical linearity at the top one-half inch of the picture, alightly adjust the Vertical Peaking Control L119.

Switch to the expanded picture ponition and note it the proper aspect ratio is obtained. If not, adjust Lll2 and/or S104.

Adjustments of the horizontal drive control affect horizontal oscillator hold and locking range. If the drive control was adjusted, recheck the oscillator alignment.

FOCUS.-Adjust the focus control (R191 on chassis rear apron) for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

AGC THRESHOLD CONTROL. The AGC threshold control R138 is adjusted at the factory and normally should not require readjustment in the field.

To check the adjustment of the AGC Threshold Control, tune in a strong signal, sync the picture and turn the picture control to the maximum clockwise position. Turn the brightness control counter-clockwise until the vertical retrace lines are just invisible. Momentarily remove the signal by switching off channel and then back. If the picture reappears immediately. the receiver is not overloading due to improper selting of R138. If the picture requires an appreciable portion of a second to reappear, R138 should be readjusted.
Set the picture control at the maximum clockwise position. Turn R138 fully clockwise. The top one-half inch of the picture may be bent slightly. This should be disregarded. Turn R138 counter-clockwise until there is a very, very slight bend or change of bend in the top one-half inch of the picture. Then lurn R138 clockwise just sufficiently to remove this bend or change of bend.
If the signal is very weak, the above method may not work as it may be impossible to get the picture to bend. In this case, turn R138 counter-clockwise until the snow in the picture becomes more pronounced, then clockwise until the best signal to noise ratio is obtained.
The AGC control adjustment should be made on a strong signal if possible. If the control is set too far counter-clockwise on a weak signal, then the receiver may overload when a strong signal is received.

CHECK OF R-F OSCILLATOR ADJUSTMENTS.-Tune in all available stations to see if the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure

The adjustments for channels 2 through 5 and 7 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 4. Adjustment for channel 13 is on top of the chassis and channel 6 adjustment is in the kinescope well.


\section*{Figure 4-R-F Oscillator Adjustments}

Replace the cabinel back and make sure that the screws are tight in order to prevent rattling at high volume.

WEAK SIGNAL AREA OPERATION.-Since the vast majority of receivers are sold in strong signal areas, the chassis are aligned to produce the cleanest pictures in those areas. However. if the receiver is to be operated in a weak signal area. better performance can be oblained by "peaking" the I-f unit.
To peak the r-f unit in these receivers, disconnect the 390 ohm resistor which is on top of the rof unit chassis. Adjust L66 to obtain the best possible picture on the weakest low channel station received.
If the peaked receiver is subsequently taken to a strong signal area, the resistor R14 should be connected in place and L66 adjusted for "flat" response on the low channels.

CHASSIS REMOVAL.-To remove the chassis from the cabinet for repair or installation of a new kinescope, remove the back and the knobs, unplug all cables and remove the chassis bolts under the cabinet. Withdraw the chassis from the back of the cabinet. The kinescope is held on the chassis by means of a special strap. so that the chassis and the kinescope can be handled together, as a unit.

KINESCOPE HANDLING PRECAUTION.-Do not install, remove, or handle the kinescope in any manner, unless shatterprool goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling.
To remove the kinescope, remove the kinescope socket, the ion-trap magnet, and the second-anode connector. Loosen the cross-recessed head screw on the kinescope strap. Withdraw the kinescope toward the front of the chassia.

INSTALLATION OF KINESCOPE.-Slide the kinescope cushion toward the rear of the chassis. Loosen the deflection yoke adjustment. slide the yoke toward the rear of the chassis and tighten.

The kinescope second anode contact is a recessed metal well in the side of the bulb. The tube must be installed so that this contact is up but rotated approximately 30 degrees toward the high-voltage compartment.
Insert the neck of the kinescope through the deflection and focus coils. If the tube sticks, or tails to slip into place smoothly. investigate and remove the cause of the trouble. Do not lorce the tube.
Slip the ion trap magnet assembly over the neck of the kinescope.
Connect the kinescope socket to the tube base.
Connect the high voltage lead to the kinescope second anode socket.
Wipe the kinescope screen surface and front panel salety glass clean of all dust and finger marks.

As may be seen by inspection, the radio dial lights and dial pointer are attached to the cabinet front panel. The dial cord is attached to the receiver chassis. The method of attachment may be seen in Figure 5.
Slide the dial pointer to the stop on the high frequency end of the dial. Turn the radio tuning shalt until the gang is completely unmeshed.
To replace the chassis in the cabinet, first tighten the cross recessed head screw on the kinescope strap. Slide the chassis into the cabinet until there is sufficient slack in the pilot light cable then attach the pilot light sockets to the pilot light bracket.

Insert the chassis to its proper position, then install the six chassis bolts and tighten. Loosen the kinescope strap from the rear of the chassis. Push the kinescope forward until the face of the tube is against the mask. Push the yoke cushion forward against the kinescope flare then tighten the cushion adjusting screws. Push the yoke forward and tighten Tighten the kinescope strap. Replace the control knobs.


\section*{Figure 5-Dial Cord and Pointer Assembly}

To hook up the dial pointer, reach over the television chassis to the radio and press the dial cord well into the coil spring.

Turn the set on and to radio position to see that the dial lighting is correct. If it is not, adjust the dial lights and shields. Tune in a station of known lrequency and check the dial calibration.

CABINET ANTENNA.-A cabinet antenna is provided which may be employed in streng signal areas in which no reflections are experienced. The antenna leads are brought out near the receiver antenna leminal board.

The link on the antenna terminal board is for use in case it is desirable to connect a separate "A" band antenna.


Figure 6-Chassis Top View


If any lead dressing is necessary, it should be done betore aligning the receiver. When making a complete alignment follow
the table below in sequence. If only a portion of the circuit is to bo aligned select the portion required and follow with the remaining steps in the section. Any adjustments made on the 455 kc . \(1 \cdot \mathrm{~F}\) 's make it necessary to adjust the 10.7 mc . I-F's.
" \(\mathrm{AM}{ }^{\prime}\) R-F-I-F ALIGNMENT
Tosst.Oscillator,-For all alignment operations, connect low side of the test.osc. to the receiver chassis, and keep the osc. output as low as possible to
volume control to max.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Stopz & Connect the High Side of the Test. Osc. to- & \[
\begin{aligned}
& \text { Tune Tent Osc. } \\
& \text { to- }
\end{aligned}
\] & Function Switch & Turn Radio Dial to- & Adiust the following \\
\hline 1 & Antenna terminal in series with .01 mfd . & 455 kc. Modulated & AM & Low Freq. end of Dial & \begin{tabular}{l}
†Top and hot. cores of T301 and T302. \\
(For max. vollage acrose voice coil)
\end{tabular} \\
\hline 2 & \multirow{3}{*}{Ant. terminal through dummy ant. of 200 mmis .} & 1.620 kc . & AM & Min. capactiy & Osc. C308 for maximum output. \\
\hline 3 & & 1.400 kc . & AM & Tune to signal & Ant. C304 for maximum output. \\
\hline 4 & & 600 kc . & AM & 600 kc . & Osc. L306 and Ant. L303. \\
\hline 5 & 2.3 & aximum & & & \\
\hline
\end{tabular}

5 Repeal steps 2.3 and 4 tor maximum output.
+ Use alternate loading. Connect an 18,000 -ohm resistor across the primary 10 load the plate winding while the grid winding of the
same transformer is being peaked. Then load the grid winding with the 18,000 -ohm resistor while the plate winding is being peaked. RATIO DETECTOR ALIGNMENT
Connect probe of "Voltohmyst" to negative side of C328 and low side to chansis. Connect outpul meter across speaker voice coil.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Steps & Connect the High side of the Test. Osc. 10 - & Tune Test Osc. & Function Swich & Hadio Dial Tuned lo- & Adjusi \\
\hline 6 & \multirow[t]{2}{*}{Pin No. 1 of 6 AU6 (V303) in series with .01 mfd . Pin No. 1 of 6 AU6 (V303) in series with .01 mid} & \multirow[t]{2}{*}{10.7 mc . Modulated} & FM & - & Top of T303 for maximum DC on "VoltOhmyst." \\
\hline 7 & & & FM & - & Botlom of T303 for minimum audio output on meter. \\
\hline 8 & \multicolumn{5}{|l|}{Repeat steps 6 and 7 as necossary makiny final adjustment with rif input level sot to give approximately -3.0 volt d.c on "VollOhmyst."} \\
\hline
\end{tabular}
"FM" R-F-I-F ALIGNMENT

-Use a 680 -ohm resistor to load the plate winding while the grid winding of the same transiormer is being peaked. Then the
grid winding is loaded with 680 -ohm resistor while the plate winding is being peaked.


Figure 9--Chassis, Top View, Showing Adjustments


Figure 10-Dial and Drive Cord Assembly

\section*{CRITICAL LEAD DRESS:}
1. Ground lead on pin 2 of V302 and V 303 should be dressed
down flat on chassis.
2. Dual . 005 mid. capacitors and diode filter should be
dressed to clear the bottom of the cabinet.
3. Dress C329 across V302 sockets with short and direct leads.
4. Dress V 302 plate lead from pin 5 down to the chassis.
5. Dress AVC lead from R321 to swilch down to chassis and against back of gang mounting platie.
6. Dress lead from pin 6 of V305 down to chassis and against avC
Dress AVC lead from 1st I-F to switch against chassis and
against gang mounting plate. Dress lead from switch to pin 1 of V301 against plate sup. porting gang.
. Dress all insulated F.M leads down to chassis.
10. Connect C309 wilh short lead to pin 6 of V301 keeping
body of cap away trom plate lead and switch terminals. 11. The coupling 1301 and \(L 307\) should be adiuted 11. The coupling betwoen L 301 and L 307 should be adjustod
to give proper injection voltage to the mixer grid. This has To give proper injection voltage to the mixer grid. This has
been found to be correct when the distance betwen adbeen iound tore correct when the distance between ad.
jacent end turns is \(7, \mathrm{~m}^{\prime \prime}\) to \(7 / \mathrm{ha}^{\prime \prime}\) measured at top of the form.
12. Dress cabled leads away from antenna transmission lines 13. Dress all uninsulated bus wire so as to avoid shorl circuite

\section*{voltage chart}

The following maasurements represent two sets of conditions. In the first condition a 2200 microvolt test pattern signal was fed into the receiven, the picture was synced and the AGC threshold control was properly adjusted. The seand condition was obtained by removing the antenna leads
and short-circuiting the receiver antena terminals. Voltages shown are as read with "Ir. Voltohmyst" between the indicated terminal and chassis and short-circuiting the receiver anlenna terminals. Voltages show
ground and with the receiver operating on 117 volts, 60 cycles a.c.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Tube } \\
& \text { No. }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Tube } \\
& \text { Type }
\end{aligned}
\]} & \multirow[b]{2}{*}{Function} & \multirow[b]{2}{*}{Operafing Condition} & \multicolumn{2}{|r|}{E. Plate} & \multicolumn{2}{|l|}{E. Screen} & \multicolumn{2}{|l|}{E. Cathode} & \multicolumn{2}{|l|}{E. Grid} & \multirow[b]{2}{*}{\[
\begin{gathered}
1 \\
\text { Plate } \\
\text { (ma.) }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\underset{\substack{\text { Screen } \\ \text { (ma.) }}}{1}
\]} & \multirow[b]{2}{*}{Noles on Measurement} \\
\hline & & & & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volls & \[
\begin{aligned}
& \text { Pin } \\
& \text { No }
\end{aligned}
\] & Vols & & & \\
\hline \multirow[t]{2}{*}{V1} & 6AG5 & R-F Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} \\
\text { Signal } \\
\hline
\end{gathered}
\] & 5 & 140 & \(\bullet\) & 142 & 287 & 0 & 1 & -2.4 & \({ }^{5}\) & \({ }^{2}\) & \\
\hline & & & No
Signal & 5 & 67 & 6 & 111 & 287 & 0 & 1 & -. 4 & 14.0 & 5.0 & \\
\hline v2 & 6AG5 & Converter & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal } \\
\hline
\end{gathered}
\] & 5 & \[
\begin{aligned}
& 130 \\
& 10140
\end{aligned}
\] & 6 & \[
\begin{aligned}
& \cdot 130 \\
& 10140
\end{aligned}
\] & 287 & 0 & 1 & \[
\begin{array}{r}
-3.0 \\
10-7.0
\end{array}
\] & \[
\begin{array}{r}
7.1 \\
\text { to } 7.7
\end{array}
\] & \[
\begin{gathered}
2.3 \\
102.7
\end{gathered}
\] & \multirow[t]{2}{*}{- Depending upon channel} \\
\hline \multirow{3}{*}{v3} & & & \[
\begin{gathered}
\text { No } \\
\text { N:jnal }
\end{gathered}
\] & 5 & \[
\begin{gathered}
\cdot 104 \\
\hline \text { to } 109
\end{gathered}
\] & 6 & \[
\begin{aligned}
& 104 \\
& 10109
\end{aligned}
\] & 287 & 0 & \({ }^{1}\) & \[
\begin{array}{r}
-2.0 \\
00-6.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5.3 \\
\text { to } 5.9
\end{array}
\] & \[
\begin{gathered}
\therefore .8 \\
101.0
\end{gathered}
\] & \\
\hline & 616 & R.F Oscillator & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 182 & \[
\begin{gathered}
888 \\
\hline 88 \\
\hline
\end{gathered}
\] & - & - & 7 & . 19 & \(5 ¢ 6\) & \[
\begin{gathered}
\cdot-5.1 \\
10-7.3
\end{gathered}
\] & \[
\begin{gathered}
1.9 \\
\text { to } 2.7
\end{gathered}
\] & -- & \multirow[t]{2}{*}{- Depending upon channel} \\
\hline & & & Signal & 182 & \[
\begin{gathered}
\cdot 68 \\
1081 \\
108
\end{gathered}
\] & - & - & 7 & . 16 & 586 & \[
\begin{array}{r}
-4.5 \\
10-6.6
\end{array}
\] & \[
\begin{array}{r}
1.8 \\
102.1
\end{array}
\] & - & \\
\hline \multirow[t]{2}{*}{V101} & 6BA6 & 1st Pix. I-F Amplifier & \[
\underset{\substack{220 \mathrm{Mu} \\ \text { Signal }}}{2}
\] & 5 & 130 & 6 & 130 & 7 & . 3 & 1 & -12.5 & 2.8 & 1.3 & \\
\hline & & & \[
\begin{aligned}
& \text { No } \\
& \text { Signal }
\end{aligned}
\] & 5 & 100 & 6 & 100 & 7 & 1.7 & 1 & \(+.3\) & 7.5 & 3.5 & \\
\hline \multirow[t]{2}{*}{V102} & 6AG5 & 2d Pix. I.F Amplifie & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal } \\
\hline
\end{gathered}
\] & 5 & 120 & 6 & 120 & 287 & . 75 & 1 & 0 & 8.2 & 2.5 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 112 & 6 & 112 & 287 & . 65 & 1 & 0 & 6.8 & 2.1 & \\
\hline \multirow[t]{2}{*}{V103} & 6BA6 & 3d Pix l-F Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal } \\
\hline
\end{gathered}
\] & 5 & 90 & 6 & 120 & 2. & . 5 & 1 & -2.4 & 4.0 & 3.8 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 70 & 6 & 100 & 7 & \[
.75
\] & 1 & -. 4 & 11.0 & 4.8 & \\
\hline \multirow[t]{2}{*}{v104} & 6AG5 & 4th Pix. I-F Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 170 & 6 & 135 & 287 & 1.35 & 1 & 0 & 6.5 & 2.0 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 165 & 6 & 115 & 2\&7 & 1.1 & 1 & 0 & 5.9 & 1.8 & \\
\hline \multirow[t]{2}{*}{\[
\underset{A}{\mathrm{~V}_{\mathrm{A}} 105}
\]} & 6AL5 & \[
\begin{aligned}
& \text { Picture } \\
& 2 \mathrm{~d} \text { Del. }
\end{aligned}
\] & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 7 & -115 & - & - & 1 & -112 & -- & - & . 48 & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 7 & -118 & - & - & 1 & -120 & - & - & -- & - & \\
\hline \multirow[t]{2}{*}{\[
\mathrm{V}_{\mathrm{B}} 105
\]} & 6ALS & \[
\begin{aligned}
& \text { Sync } \\
& \text { Limiter }
\end{aligned}
\] & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal } \\
\hline
\end{gathered}
\] & 2 & -107 & - & - & 5 & -56 & - & - & -- & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 2 & -60 & - & -- & 5 & -60 & - & - & - & - & \\
\hline \multirow[t]{2}{*}{V106} & 12AU7 & \[
\begin{aligned}
& \text { 1st Video } \\
& \text { Amplifier } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} \\
\text { Signal } \\
\hline
\end{gathered}
\] & 1 & -9 & - & -- & 3 & -111 & 2 & -115 & 4.38 & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 1 & -28 & - & - & 3 & -114 & 2 & -116 & 3.82 & - & \\
\hline \multirow[t]{2}{*}{V106} & 12AU7 & 2d Video Amplifier & \[
\underset{\substack{2200 \mathrm{Mu} . \mathrm{V} \\ \text { Signal }}}{\substack{\text { and }}}
\] & 6 & -135 & - & - & 8 & --. 1 & 7 & -4.5 & 6.2 & - & \multirow[t]{2}{*}{- At max.} \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 6 & -195 & - & - & 8 & \(\bullet-.6\) & 7 & -17 & 6.9 & - & \\
\hline \multirow[t]{2}{*}{\[
{ }_{A}^{V 107}
\]} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \text { GT }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { ACG } \\
& \text { Amplifier } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} \\
\text { Signal }
\end{gathered}
\] & 5 & -12.6 & - & - & 6 & -55.5 & 4 & -56.5 & . 9 & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & \(+.3\) & - & - & 6 & -60 & 4 & -66 & . 3 & - & \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{V}_{107} \\
\hline
\end{gathered}
\]} & \[
\begin{aligned}
& 6 \text { 6SN } 7 \\
& \mathrm{GI} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { Vertical } \\
& \text { Oscillator }
\end{aligned}
\] & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} \\
\text { Signal }
\end{gathered}
\] & 2 & 86 & - & - & 3 & -115 & 1 & -170 & . 2 & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal } \\
\hline
\end{gathered}
\] & 2 & 72 & - & - & 3 & -120 & 1 & -170 & . 2 & - & \\
\hline \multirow[t]{2}{*}{V108} & 6SN7
GT & AGC Rectifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} \\
\text { Signal } \\
\hline
\end{gathered}
\] & 5 & 87 & - & - & 6 & +. 3 & 4 & -8.5 & 3 & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 90 & - & - & 6 & -26 & 4 & -35 & . 28 & - & \\
\hline \multirow[t]{2}{*}{V108} & 6SN7
GT & lst Sync
Separator & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 2 & 89 & - & - & 3 & 1.35 & 1 & -8.5 & . 1 & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 2 & 76 & - & - & 3 & -21 & 1 & -27 & . 1 & - & \\
\hline \multirow[t]{2}{*}{V109} & \[
\begin{aligned}
& \hline \text { 6SN7 } \\
& \text { GT }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Sync } \\
& \text { Amplifier }
\end{aligned}
\] & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Siqnal }
\end{gathered}
\] & 2 & 153 & - & - & 3 & 0 & 1 & -4.7 & 5.25 & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 2 & 160 & - & - & 3 & 0 & 1 & -5.2 & 3.75 & - & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Tube No.} & \multirow[b]{2}{*}{Tuba Type} & \multirow[b]{2}{*}{Function} & \multirow[b]{2}{*}{Operating Condition} & \multicolumn{2}{|r|}{E. Plate} & \multicolumn{2}{|r|}{E. Screen} & \multicolumn{2}{|r|}{E. Cathode} & \multicolumn{2}{|r|}{E. Grid} & \multirow[b]{2}{*}{I Plate (ma.)} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{Noles on Measurements} \\
\hline & & & & Pin No. & Volts & Pin No. & Volts & \begin{tabular}{l}
Pin \\
No.
\end{tabular} & Volts & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & & & \\
\hline \multirow[t]{2}{*}{V109} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \text { GT }
\end{aligned}
\] & Sync Separator & \[
\begin{aligned}
& 2200 \mathrm{Mu} . \mathrm{V} . \\
& \text { Signal }
\end{aligned}
\] & 5 & 220 & - & - & 6 & -51 & 4 & -106 & . 4 & - & \\
\hline & & &  & 5 & 215 & - & - & 6 & -51 & 4 & -62 & . 35 & - & \\
\hline \multirow[t]{2}{*}{V110} & \[
\begin{aligned}
& \text { 6K6- } \\
& \text { GT }
\end{aligned}
\] & \begin{tabular}{l}
Vertical \\
Output
\end{tabular} & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 3 & 205 & 4 & 205 & 8 & -72 & 5 & -91 & & -7.85 & \multirow[t]{2}{*}{- Screen connected to plate} \\
\hline & & & No Signal & 3 & 200 & 4 & 200 & 8 & -79 & 5 & -101 & & \(\bullet 7.7\) & \\
\hline \multirow[t]{2}{*}{VIII} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \text { GT }
\end{aligned}
\] & Horizontal Osc. Control & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 2 & *34 & - & - & 3 & -105 & 1 & -95 & . 2 & - & \multirow[t]{2}{*}{- Variation of hold gives -21.9 to +56 volts on plate} \\
\hline & & & No Signal & 2 & - 23 & - & -- & 3 & -110 & 1 & \(-110\) & . 2 & -- & \\
\hline \multirow[t]{2}{*}{V111} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \text { GT }
\end{aligned}
\] & Horizontal Oncillator & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal } \\
\hline
\end{gathered}
\] & 5 & 90 & - & - & 6 & -120 & 4 & -175 & 2.4 & - & - \\
\hline & & & No Sigral & 5 & 77 & - & - & 6 & -120 & 4 & -175 & 2.4 & - & \\
\hline \multirow[t]{2}{*}{V112} & 6BG6G & Horizontal Output & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & Cap & Do Not Meas. & 8 & 150 & 3 & -105 & 5 & -125 & 72 & 9.4 & \\
\hline & & & No Signal & Cap & Do Not Meas. & 8 & 145 & 3 & \(-110\) & 5 & -125 & 70 & 9.2 & \\
\hline \multirow[t]{2}{*}{V113} & \[
\begin{aligned}
& \text { 1B3GT } \\
& / 8016
\end{aligned}
\] & H. V. Rectifier & Brightness Min. & Cap & Do Not Meas. & - & - & 267 & 10200 & - & - & 0 & - & \\
\hline & & & Brightness Average & Cap & Do Not Meas. & - & - & 287 & 9700 & - & - & . 1 & - & \\
\hline \multirow[t]{2}{*}{V114} & 6W4GT & Damper & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & Do Not Meas. & - & - & 3 & 295 & - & -- & 66 & - & \\
\hline & & & No Signal & 5 & Do Not Meas. & - & - & 3 & \[
\begin{aligned}
& 280 \\
& 295
\end{aligned}
\] & - & - & 65 & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { V115 } \\
& \text { V122 }
\end{aligned}
\]} & 5U4G & Rectifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 486 & 335 & & & 288 & 235 & - & - & 245 & - & \multirow[t]{2}{*}{- A.C measured from plate to trans. center tap} \\
\hline & & & No Sianal & 486 & 335 & & & 288 & 230 & - & - & 250 & -- & \\
\hline \multirow[t]{2}{*}{V116} & 6AU6 & 1st Sound 1-F Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 134 & 6 & 134 & 7 & . 75 & 1 & -. 15 & 8.2 & 3.3 & \\
\hline & & & No Signal & 5 & 110 & 6 & 110 & 7 & . 8 & 1 & -. 2 & 5.7 & 2.6 & \\
\hline \multirow[t]{2}{*}{V117} & 6AU6 & \begin{tabular}{l}
2nd Sound \\
I-F Amplifier
\end{tabular} & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal } \\
\hline
\end{gathered}
\] & 5 & 133 & 6 & 81 & 7 & 0 & 1 & -9 & 1.6 & . 8 & \\
\hline & & & No Signal & 5 & 120 & 6 & 65 & 7 & 0 & 1 & -. 4 & 3.35 & 1.15 & \\
\hline \multirow[t]{4}{*}{V118} & 6AL5 & Sound Discrim. & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} \\
\text { Siqnal } \\
\hline
\end{gathered}
\] & 2 & -8.4 & - & - & 5 & 5.8 & - & - & - & - & \\
\hline & & & No Signal & 2 & -. 4 & - & - & 5 & . 1 & - & - & - & - & \\
\hline & & & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal } \\
\hline
\end{gathered}
\] & 7 & -3.7 & - & - & 1 & 0 & - & - & - & - & \\
\hline & & & No Signal & 7 & -. 4 & - & -- & 1 & 0 & - & - & - & -- & \\
\hline \multirow[t]{2}{*}{V119} & 6AV6 & 1st Audio Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal } \\
\hline
\end{gathered}
\] & 7 & 90 & - & - & 2 & 0 & 1 & -18 & . 49 & - & \\
\hline & & & No Signal & 7 & 90 & - & - & 2 & 0 & 1 & -. 8 & . 4 & - & \\
\hline \multirow[t]{2}{*}{V120} & \[
\begin{aligned}
& \text { 6V6- } \\
& \text { GT }
\end{aligned}
\] & Audio Outpu: & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 3 & 70 & 4 & 90 & 8 & -99 & 5 & -110 & 10.3 & 3.3 & \\
\hline & & & No Sigzal & 3 & 60 & 4 & 80 & 8 & -111 & 5 & -120 & 18 & 3 & \\
\hline \multirow[t]{2}{*}{V121} & \(122 \mathrm{P4}\) & Kinescope & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Sigial }
\end{gathered}
\] & Cap & 9700 & 10 & 285 & 11 & 40 & 2 & 6 & . 1 & - & - Average Brightne \({ }^{3}\) \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & Cap & 9500 & 10 & 285 & 11 & 42 & 2 & 14 & - & - & - Average Brightne: \\
\hline V301 & 616 & Mixer and Oecillator & No Signal & \[
\begin{aligned}
& 1 \\
& 2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
110 \\
95
\end{array}
\] & - & - & 7 & 0 & \[
\begin{aligned}
& 6 \\
& 5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline-2.0 \\
& -5.0 \\
& \hline
\end{aligned}
\] & - & -- & \\
\hline V302 & 6BA6 & Radio I-F Ampliner & No Signal & 5 & 195 & 6 & 90 & 7 & . 8 & 1 & -0.2 & - & - & \multirow[t]{4}{*}{Function switch in F-M position} \\
\hline V303 & 6AV6 & Radío F.M Driver & No Signal & 5 & 190 & 6 & 135 & 7 & 1.3 & 1 & 0 & - & - & \\
\hline V304 & 6AL5 & Radio Radio Del. & No Sigmal & \[
\begin{aligned}
& 2 \\
& 7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
-0.2 \\
-0.2 \\
\hline
\end{array}
\] & - & - & \[
\begin{aligned}
& 5 \\
& 1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
-0.2 \\
-0.1 \\
\hline
\end{array}
\] & - & - & - & - & \\
\hline V305 & 6BF6 & Radio A-M Det. & No Signal & 7 & 100 & - & - & 2 & 0 & 1 & -6.2 & - & - & \\
\hline
\end{tabular}


Figure 11-R.F Unit Wiring Diagram

\section*{CRITICAL LEAD DRESS:}
1. The ground bus from pin 2 and the center shield of V117 socket should not be shortened or rerouted.
2. Do not change the dress of the filament leads or the bypass capacitors in the picture or sound i-f circuits. The filament leads between V117, V118 and V119 should be down against the chassis and away from grid or plate leads.
3. If It is necessary to replace any of the 1500 mm capacitors is the picture i-f circuit, the lead length must be kept as short as possible.
4. Picture i-f coupling capacitors \(\mathrm{Cl} 06, \mathrm{Cl11}, \mathrm{Cl} 15\) and C 121 should be up and away from the chassis and should be clear of the pix ifi transiormer adjustments by at least \(1 / 4\) inch. If the dress of any of these capacitors is changed. the i-f alignment should be rechecked.
5. Leads to L102 and L103 must be as short as possible.
6. Dress peaking colls L105. L106 and L107 up and away from the chassis.
7. Dress C183 acrose tube pins 5 and 6 with leads not exceeding \(1 / 3\) inch.
8. Dress C129 and Cl30 up and away from the chassis.
9. Dress the yellow lead from the picture control away from the chassis and away from the volume-control leads. Dress the yellow lead from pin 8 of V106 away from the chassis.
10. Dress the green lead from pin 2 of V106 away from the chassis.
11. Dress R168, R169. R170, R176 and R178 up and away from the chassis.
12. The leads to the volume control should be dressed down against the chassis and away from V117 and V118.
13. Contact between the r-f oscillator frequency adjustment screws and the oscillator coils or channel switch eyelets must be avoided.
14. Dress leads from the width control coils away from the transformer frame.
15. Dress T110 winding leads as shown in Figure 12


Figure 12-T110 Lead Dress



\author{
RADIO CORPORATION OF AMERICA \\ rCA VICTOR DIVISION \\ CAMDEN, N. J., U.S. A
}

\section*{GENERAL DESCRIPTION}

Model 9TW333 is a thirty-three tube Television, AM.FM Aadio, Phonograph console combination. The television receiver employs twenty tubes plus two rectifiers and a 10BP4 Kinescope. The AM-FM radio chassis employs nine tubes plus one rectifier.

Two automatic record changers are provided. One is a 78 RPM center post push-oH type (RP178): the other is a 45 RPM type (RP168-1) which plays RCA seven-inch fine-groove records.

\section*{ELECTRICAL AND MECHANICAL SPECIFICATIONS}

\section*{RADIO TUNING RANGE}
\begin{tabular}{|c|c|}
\hline oadcas! & 540-1,600 kc \\
\hline Frequency Modulation & \(88-108 \mathrm{mc}\) \\
\hline Intermediate Frequency-AM & 455 ke \\
\hline Intermediate Frequency-FM & 10.7 mc \\
\hline PICTURE SIZE & \(63 / 8^{\prime \prime} \times 81 / 2{ }^{\prime \prime}\) \\
\hline
\end{tabular}

TELEVISION RADIO-FREQUENCY RANGE
All 12 television channels, 54 mc to \(88 \mathrm{mc}, 174 \mathrm{mc}\) to 216 mc
RECEIVER ANTENNA INPUT IMPEDANCE
Choice: 300 ohms balanced or 72 ohms unbalanced.
POWER SUPPLY RATING
Television Operation . . . . . . . . . . . . . . . . . . . 115 volts, 310 watts
Radio Operation. . . . . . . . . . . . . . . . . . . . . . 115 volts, 70 watts
Phonograph Operation ..................... . 115 volts, 95 watts
AUDIO POWER OUTPUT RATING
Maximum Power Output. . ............................ . . . . 6.5 watts
CHASSIS DESIGNATIONS
Television Chassis. . . . . . . . . ......................... . . . KCS 30-1
Radio Chassis. . . ............................................... RC616N
LOUDSPEAKER (92569-5W)
Type. . . . ..................................... 12-inch PM Dynamic
Voice Coil Impedance
3.2 ohms at 400 cycles

RECORD PLAYERS
RP178. . . . . Refer to Service Data RP178 Series for information RP168-1..... Refer to Service Data RP168 Series for information
\begin{tabular}{lcccc} 
DIMENSIONS (laches) & Length & Helght & Depth \\
Cabinet (outside) 9TW333.............. \(401 / 2\) & 40 & \(221 / 2\)
\end{tabular}

RCA TUBE COMPLEMENT
(KCS 30-1)
Tube Used
(1) RCA 6AG5 ....................................... R-F Amplifier
(2) RCA 6J6....................................... R-F Oscillatos
(3) RCA 6AG5................................... Converter
(4) RCA 6AU6....................... 1st Sound I-F Amplifier (5) RCA 6AU6 ........................ 2nd Sound I-F Amplifier (6) RCA 6AL5 ....................... Sound Discriminator (7) RCA 6AV6 .................................... Bias Clamp (8) RCA 6AG5 ...................... . lst Picture I-F Amplitier (9) RCA 6AG5....................... 2nd Picture I-F Amplifier (10) RCA 6AG5....................... 3rd Picture I-F Amplifier (11) RCA 6AG5..................... 4th Picture I-F Amplifier (12) RCA 6AL5........ Picture 2nd Detector and Sync Limiter (13) RCA 12AU7................ 1st and 2nd Video Amplifier (14) RCA 6SN7GT................ AGC Amplitier and Vertical Sweep Oscillator
(15) RCA 6SN7GT..... AGC Rectifier and lst Sync Separator
(16) RCA 6SN7GT... . Sync Amplifier and 2nd Sync Separator
(17) RCA 6K6GT. . . . . . .............. Vertical Sweep Output
(18) RCA 6SN7GT... Horizontal Sweep Oscillator and Control
(19) RCA 6BG6G .................... . Horizontal Sweep Output
(20) RCA 5V4G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Damper
(21) RCA 1B3-GT/8016................ High Voltage Rectifier
(22) RCA 5U4G. . . . . . . . . . . . . . . . . . . Power Supply Rectifier
(23) RCA 10BP4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kinescope (RC616N)
\begin{tabular}{|c|c|}
\hline RCA \(6 J 6\) & Mixer and O \\
\hline (2) RCA 6BA6 & I-F Amplifier \\
\hline (3) RCA 6AU6 & Driv \\
\hline (4) RCA 6AL5 & Ratio Detecto \\
\hline (5) RCA 6AV6 & AM Detector and Phase Inver \\
\hline (6) RCA 6BF6 & Phono Preamplif \\
\hline (7) RCA 6AV6 & Audio Amplifie \\
\hline (8) RCA 6V6GT & Audio Output (2 tubes) \\
\hline 9) HCA 6X5GT & Recti \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 9TW333 ELECTRICAL AND & ELECTRICAL AND MECHANIC \\
\hline \multicolumn{2}{|l|}{PICTURE INTERMEDIRTE FREQUENCIES} \\
\hline Picture Carrier Frequency & cy . . . . . . . . . . . . . . . . . . . . . . 25.75 mc \\
\hline Adjacent Channel Sound Trap. & d Trap. . . . . . . . . . . . . . . . . . 27.25 mc \\
\hline Accompanying Sound Traps. & Traps . . . . . . . . . . . . . . . . . . . . 21.25 mc \\
\hline Adjacent Channel Picture Carrier Trap. & ure Carrier Trap. . . . . . . . . . 19.75 mc \\
\hline \multicolumn{2}{|l|}{SOUND INTERMEDIATE FREQUENCIES} \\
\hline Sound Carrier Frequency, & Y , . . . . . . . . . . . . . . . . . . . . . . 21.25 mc \\
\hline Sound Discriminator Band Width between peak & and Width between peaks. . . . . . 350 kc \\
\hline VIDEO RESPONSE & . To 4 mc \\
\hline FOCUS & . . Magnetic \\
\hline SWEEP DEFLECTION & . . Magnetic \\
\hline SCANNING . . . . . . . . . . . . . . . . . . . . . . . Inter & . . Interlaced, 525 line \\
\hline \multicolumn{2}{|l|}{HORIZONTAL SCANNING FREQUENCY.......... 15,750 cps} \\
\hline VERTICAL SCANNING FREQUENCY & FREQUENCY . . . . . . . . . . . . . . . 60 cps \\
\hline FRAME FREQUENCY (Picture Repetition Rato). & Picture Repetition Rato). . . . . . . . 30 cps \\
\hline
\end{tabular}

TELEVISION OPERATING CONTROLS (front panel)
\begin{tabular}{|c|c|}
\hline \(\left.\begin{array}{l}\text { Channel Selector } \\ \text { Fine Tuning }\end{array}\right\}\) & Dual Control Knobs \\
\hline Picture & Single Control Knob \\
\hline Picture Horimontal Hold
Picture Vertical Hold & Dual Control Knobs \\
\hline Brightness & Single Control Knob \\
\hline
\end{tabular}

TELEVISION NON.OPERATING CONTROLS (not including ef and H adjustmonis)

Horizontal Centering. . . . . . top chassis screwdriver adjustrment Vertical Centering . . . . . . . . top chassis screwdriver adjustment Width . . . . . . . . . . . . . . . . . rear chassis screwdriver adjustment Height . . . . . . . . . . . . . . . . . . . . . . . . . rear chassis adjustment Horizontal Linearity ..... sear chassis screwdriver adjustment Vertical Linearity . . . . . . . . . . . . . . . . . . rear chassis adjustment Horisontal Drive : ........ rear chassis screwdriver adjustment Horizontal Locking Range. .rear chassis screwdriver adjustment Horizontal Oscillator Frequency.... bottom chassis adjustment Horizontal Oscillator Waveform. . . . . . side chassis adjustment Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . rear chassis adjustment Ion Trap Magnet. . . . . . . . . . . . . . . . . . . top chassis adjustment Dellection Coil. . . . . . . . . . . . . top chassis wing nut adjustment AGC Threshold Control. . ............... top chassis adjustment

\section*{HIGH VOLTAGE WARNING}

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORR ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY EAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH-VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH-VOLTAGE COMPARTMENT SHIELD REMOVED.

\section*{KINESCOPE HANDLING PRECAUTIONS}

DO NOT OPEN THE KINESCOPE SHIPPING CARTON, INSTALL, REMOVE, OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES aND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD bE KEPT AWAY WHILE KINESCOPES ARE beING handled. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

\footnotetext{
The kinescope bulb encloses a high vacuum and, due to lts large suriace area, ie subjected to conaiderable alr pressure. For this reason, kinescopes muet be handled with more care than ordinary recelving tubes.
}

\footnotetext{
The large end of the kinescope bulb-particularly that part at the rim of the viewing surface-must not be struck, scratched, or subjected to more than moderate pressure at any time. In installation, H the tube sticks or falls to shp smoothly Into its socket or deflecting yoke, inventigate and remove the cause of the trouble. Do not force the tube. Refer to the Recelvar Installation section for detalled instructions on kinescope installation. All RCA kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the recelver. Keep the carton for possible future use.
}

\section*{TELEVISION OPERATION}

The following adjustments are necessary when turning the receiver on for the first time:
1. Turn the radio FUNCTION switch to TEL.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid-position.
3. Set the STATION SELECTOR to the desired channel.
4. Adjust the FINE TUNING control for best sound fidelity.
5. Adjust SOUND VOL UME for suitable volume.
6. Turn the BRIGHTNESS control fully counterclockwise, then clockwise until a light pattern ap. pears on the screen.
7. Adjust the VERTICAL hold control until the pattern stops vertical movement.
8. Adjust the HORIZONTAL hold control until a picture is obtained and centered.
9. Turn the BRIGHT. NESS control counterclock-


Figure I-Receiver Operating Controls
wise until the retrace lines just disappear.
10. Adjust the PICTURE control lor suitable picture contrast.
11. After the receiver has been on for some time, it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.
12. In switching from one station to another, it may be neces. sary to repeat steps numbers 9 and 10 .
13. When the get is furned on again after an idle period, it should not be necessary to repeat the adjustments if the posiiions of the controls have not been changed. If any adjustment is necessary. step number 4 is generally sufficient.
14. If the positions of the controls have been changed, it may be neces. sary to repeat steps numbers 2 through 10 .

\section*{RADIO OPERATION}
1. Turn the radio FUNCTION switch to the desired band ( \(A M\) or \(F M\) ).
2. Tune in the desired station with the TUNING control.

\section*{78 RPM PHONOGRAPH OPERATION}
1. Turn the radio FUNCTION switch to PH .

\section*{MANUAL:}
1. Slide the record support shelf toward the center post for 10 -inch records or away from the center post for 12 -inch records.
2. Place the record to be played on the turntable and turn the power awitch on.
3. Place the pickup on the start of the record.

NOTE: The mechanism should be allowed to complete its cycle before attempting to move the tone arm to the rest position.
4. Tum the power swith of manually.
5. Remove the record by raising it straight up without tilting.

\section*{AUTOMATIC:}
1. With the power switch to the off position slide the record support shelf as required for 10 - or 12 -inch records.
2. Place the records to be played in a stack with the desired selections upward and in proper sequence with the last record on top. Load them on the changer by placing them over the center post and resting them on the record support shell. Place the record stabilizing clamp on top of the record stack.
3. Turn the power switch on and press the reject button. The changer will play automatically one side of each record in the stack. The tone arm can be moved to the rest position any time the mechanism is not in cycle.
4. Turn the power switch off, lift the stabilizing clamp and remove the stack from the turntable by placing the fingers of both hands on opposite sides of the turntable and under the stack. Lift the stack of records straight up. Do not tilt or squeeze the stack while removing.

\section*{45 RPM PHONOGRAPH OPERATION}
1. Place a stack of records over the center post, with the desired selections upward and the last record to be played on top.
2. Turn the radio FUNCTION switch to XPH.
3. Push the "start-reject" knob to start, then let go. The mechanism will automatically play in sequence one side of each record stacked on the separator shelves.
4. To reject a record being played push the "start-reject" knob to "reject."
5. As the last record is being repeated, lift the tone arm and place it on the rest.

Model 9TW333 television receiver is shipped coroplete in one carton except for the 10BP4 kinescope. The kinescope is shipped in a special carton and should not be unpacked until ready for installation.

UNPACKING. - The 9TW333 may be shipped in either a cardboard carton or a plywood case. If it is shipped in a card. board carton. tusn the carton on its side and tear open the carton bottom flaps. Fold the tlaps up along the side of the carton and turn the carton back up. Lift the carton up and of the cabinet.

If the receiver is shipped in a plywood case, remove the front side as indicated on the case. If the front is removed by prying, do not permit the prying tool to enter the case as the cabinet may become acratched. Remove the shipping case rail across the front of the cabinet. Do not remove the two rail support screws on each side of the cabinet. Slide the cabinet out of the case by pulling on each side of the cabinet shipping skid.

A flat skid is attached to the bottom of the receiver cabinet which will permit the cabinet to be moved about without danger of breaking a cabinet leg or streasing the cabinet joints. This skid should be left on the cabinet until the receiver is placed on display or installed in the home. To remove the kid. take of the cabinet back and remove iwo nuts on the inside of the cabinet as shown in Figure 2. Then, with a man at each end of the cabinet. lift the cabinet off the skid.

Caution: The radio panel is held in the closed position by two wood screws in a shipping bracket attached to the radio
chassis. The radio panel must not be tipped out until these screws are removed as it may cause the cabinet front to be split or the radio chassis to be badly delormed. Remove the screws shown at Detail B in Figure 2 and take out the two red brackets.

Remove the red shipping brackets which prevent the \(78-\mathrm{rpm}\) record changer from sliding forward (see Figure 2 for location). Loosen the three phillips-head screws which may be seen on top of the \(78 . \mathrm{rpm}\) record-changer motor board.

Loosen the three screws on top of the \(45-\mathrm{rpm}\) record-changer motor board the screw covers must first be removed, or alter. natively. the tee nuts under the motor board may be loosened). Remove the two wooden packing strips from under the motor board.

Remove the sapphire guard clips from both record-changer tone arms.

Take of the television compartment back grille. Remove the front panel by loosening the two wing nuts in back of the panel.

Remove the protective cardboard shield from the SU4G rectifier. Make sure all lubes are in place and are firmly seated in their sockets.

The operating control knobs are packed in a paper bag which is taped to the cabinet back rail. Remove the bag.

Remove the two self-tapping screws from the deflection yoke mounting as shown in Figure 4.


Figure 2-Removal of Shipping Material


Figure 3-Front Panel Removal

Loosen the two kinescope cushion adjustment wing screws and slide the cushion toward the rear of the chassis. Loosen the deflection yoke adjustment, slide the yoke toward the rear of the chassis and tighten. See Figure 4 for the location of the cushion and yoke adjustments.


Figure 4-Yoke and Focus Coil Adjustments

From the front of the cabinet, look through the deflection yoke and check the alignment of the focus coil with the yoke. If the locus coil is not in line, loosen the two focus coil mounting screws and move the coil until alignment is obtained. Tighten the mounting screws with the coil in this position.
Loosen the two lower kinescope face centering slides, and set them at approximately mid-pozition. See Figure 3 for location of the slides and their adjustment screws.

EINESCOPE HANDLING PRECAUTION. - Do not open the kinescope shipping carton, install, remove, or handle the kinescope in any manner, unless shatter-proot goggles and heavy gloves are worn. People not so equipped should be kept away while kinescopes are being handled. Keep the kinescope away from the body while handling. The shipping carton should be kept for use in case of future moves.

INSTALLATION OF EINESCOPE - The kinescope secondanode contact is a recessed metal well in the side of the bulb. The tube must be installed so that this contact is up but inclined approximately 30 degrees toward the high-voltage compartment.

Insert the neck of the kinescope through the dellection and focus coils as shown in Figure 5. II the tube sticks, or faile to slip into place smoothly, inventigate and remove the cause of the trouble. Do not force the tube.

Slip the ion trap magnet assembly over the neck of the kine. scope with the large magnet toward the base of the kinescope.


Figure 5-Kinescope Insertion

The gap of the large magnet should be to the left (as seen from the back of the cabinet) and the gap of the small magnet should be to the right.

The final orientation of the ion trap magnet will be determined by the position of the ion-trap llags. Looking at the kinescope gun structure, it will be observed that the second cylinder from the base inside the glass neck is provided with two small metal flags, as shown in Figure 6. The magnet must be in stalled so that the rear magnet is approximately over the flags and is oriented as shown in Figure 4.


Figure 6-Ion-Trap Flags

\section*{Connect the kinescope socket to the tube base.}

Position the kinescope so that the face of the tube protrudes approximately one-quarter of an inch outside the front of the cabinet. Adjust the fous centering slides until the face of the kinescope is in the center of the cabinet opening. Tighten the four slides securely.

Wipe the kinescope screen surface and front panel safety glass clean of all dust and finger marks with a soft cloth moistened with Drackett Co.'s "Windex" or similar cleaning agent.

Install the cabinet front panel by reversal of the procedure indicated in Figure 3. Install the control knobs an the control shafts.

Check all chassis interconnecting cables to make sure that all are plugged into the proper sockets as shown in Figure 7.

Slip the kinescope as far forward as possihie. Slide the kine scope cushion firmly up againat the flare of the fube and tighten the adjustment wing screws. Slide the deflection yoke as lar forward as possible.

Connect the high-voltage lead to the kinescope second anode socket. The glass-to-metal seal of this connector is iragile and care should be used in making the connection. Only a small amount of pressure should be applied to the connector when inserting the clip. If appreciable pressure is applied the seal may be fractured, permitting air to leak into the tube thus ruining the kinescope.

The antenna and power connections should now be made.
Turn the power switch to the "on" position, the function switch to the television position, the brightness control fully clockwise. and the picture control counterclockwise.


Figure 7-Chassis Interconnecting Cables

ION TRAP MAGNET ADJUSTMENT. - The ion trap rearmagnet poles should be approximately over the ion-trap flags. Starting from this position adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust the focus control (R191 on the chassis rear apron) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The tinal touches on this adjustment should be made with the brightness control at the maximum position with which good line focus can be maintained.


Figure 8-Reur Chassis Adjustments

DEFLECTION YOKE ADJUSTMENT. - If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE ADJUSTMENTS. - It will now be necessary to obtain a test pattern picture in order to make further adjustments. See steps 2 through 8 of the receiver operating instructions on page 3.

If the Horizontal Oscillator and AGC System are operating properly. it should be possible to sync the picture at this point. However, if the AGC threshold control is misadjusted, and the receiver is overloading, it may be impossible to sync the picture.

If the receiver is overloading, turn R138 con top of the chassis, see Figure 10) counterclockwise until the set operates normally and the picture can be synced.

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT. -
Turn the horizontal hold control to the extreme counterclockwise position. The picture should remain in horizontal sync. Momen. tarily remove the signal by switching of channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be grad. ually reduced and when only 3 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control.

Pull in should occur when the control is approximately 90 degrees from the extreme counterclockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should be out of sync and should show I vertical or diagonal black bar in the raster.

If the receiver passes the above checks and the picture is normal and stable. the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Centering Âdjustment."

ALIGNMENT OF HORIZONTAL OSCILLATOR. - If in the above check the receiver failed to hold sync with the hold control at the extreme counterclockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull in point. it will be necessary to make the follow. ing adjustments:

Horizontal Erequency Adjustment. - Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the T109 horizontal frequency adjustment (under the chassis) until the picture is just out of sync and the horizontai blanking appears as a vertical or diagonal black bar in the raster.

Horizontal Lock in Range Adjustment. - Set the horizontal hold control to the full counterclockwise position. Momentarily remove the signal by switching of channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just belore the picture pulls into sync.

If more than 3 bars are present just belore the picture pulls into sync. adjust the horizontal locking range trimmer C153A slightly clockwise. It less than 3 bars are present, adjust C153A slightly counterclockwise. Turn the picture control counterclock. wise. momentarily remove the signal and recheck the number of bars present at the pull in point. Repeat this procedure until 3 bars are present.

Repeat the adjustments under "Horizontal Frequency Adjust. ment" and "Horizontal Locking Range Adjustment" until the conditions specilied under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.

If it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure For field purposes paragraph "A" under Horizontal Oscillator Waveform Adjustment may be omitted.

CENTERING ADJUSTMENT. - No electrical centering controls are provided. Centering is obtained by mechanically orienting the locus coil with the three adjustment screws shown in Figure 8. Center the picture on the screen by adjustrment of these screws. The focus coil should be approximately concentric around the neck of the kinescope to prevent curvature of the raster.

FOCUS COIL ADJUSTMENTS. - If. after making the centering adjustments in the above paragraph, a corner of the picture is shadowed, it will be necessary to loosen the focus coil mountina screws (shown in Figure 8) and change the position of the coil to eliminate the shadow. Recenter the picture by adjustment of the centering screws.

Recheck the position of the ion trap magnet to insure that maximum brilliance is obtained.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS. - Ad. just the height control (R155 on chassis rear apron) until the picture fills the mask vertically ( \(6^{\frac{3}{8}}\) inches). Adjust vertical linearity (R162 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjusment of the other. Adjust centering to align the picture with the mask.

WIDTH. DRIVE AND HORIZONTAL LINEARITY ADJUST. MENTS. - Aqjust the horizontal drive control C153B to give a picture of maximum width within the limits of good linearity. Adjust the horizontal linearity control Llll to provide best linearity. Adjust the width control until the picture just fills the mask.

Adjustments of the horizontal drive control affect horizontal oscillator hold and locking range. It the drive control was adjusted, recheck the oscillator alignment.

FOCUS. - Adjust the focus contral (R191 on chassis rear apron) for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.
CHECK TO SEE THAT THE CUSHION AND YOKE THUMB. SCREWS AND THE FOCUS COIL MOUNTING SCREWS ARE TIGHT.

AGC THRESHOLD CONTROL ADJUSTMENT. - The AGC threshold control R138 is adjusted at the factory and normally should not require readjustment in the field.

To check the adjustment of the AGC Threshold Control, tune in a strong signal, sync the picture and turn the picture contral to the maximum clockwise position. Turn the brightness control counterclockwise until the vertical retrace lines are just invisible.

Momentarily remove the signal by switching off channel then back. If the picture reappears immediately, the receiver is not overloading due to improper setting of Rl38. If the picture requires an appreciable portion of a second to reappear, R138 should be readjusted.

Set the picture control at the maximum clockwise position. Iurn R138 fully counterclockwise. The top one-half inch of the picture may be bent slightly. This should be disregarded. Turn R138 clockwise until there is a very slight bend or change of bend in the top one-half inch of the picture. Then tusn R138 counterclockwise just sufficiently to remove this bend or change of bend.

If the signal is very weak, the above method may not work as it may be impossible to get the picture to bend. In this case. turn R138 clockwise until the snow in the picture becomes more pronounced, then counterclockwise until the best signal to noise ratio is obtained.
The AGC control adjustment should be made on a strong signal if possible. If the control is set too far clockwise on a weak signal, then the receiver may overload when a strong signal is received. If it is not set sufficiently clockwise then the sync noise immunity is decreased.

CHECK OF R-F OSCILLATOR ADJUSTMENTS. - Tune in all available stations to see if the receiver r-f oscillator is ad-


Figure リーR.F Oscillator Adjustments
justed to the proper trequency on all channels. It adjustments are required, these should be made by the method outlined in the alignment procedure The adjustments for channels 2 through \(S\) and 7 through 12 are available from the tront of the cabinet by removing the station selector escutcheon as shown in Figure 9. Adjustment for channel 13 is on top of the chassis and channel 6 adjustment is in the kinescope well.

Observe the picture on all stations for detail, for proper interlacing and for the presence of interference or reflections.

RADIO OPERATION. - Turn the receiver function switch to AM and FM positions and check the radio for proper opera. tion. In switching from radio to television or from television to radio, approximately 30 seconds warm-up time is required.

RECORD CHANGER OPERATION. - Check both record changers according to the procedure given on page 3.

Replace the television receiver metal back grille. Replace the cabinet back. Make sure that the screws holding both backs are up tight otherwise the backs may rattle or buzz when the receiver is operating at high volume.

Advise the customer to keep all packing cartons and hardware for use in case of future moves.

RECEIVER LOCATION. - The owner should be advised of the importance of placing the receiver in the proper location in the room.

The location should be chosen
-Away from bright windows and so that no bright light will fall directly on the screen. (Some illumination in the room is desirable. however.)
- To give easy access for operation and comfortable viewing.
-To permit convenient connection to the antenna.
- Convenient to an electrical outlet.
-To allow adequate ventilation.
ANTENNAS. - The finest television receiver built may be said to be only as good as the antenna design and installation. It is therefore imporiant to use a correctly designed antenna. and to use care in its installation.

REFLECTIONS. - Multiple images, sometimes known as echoes or ghosts, are caused by the signal arriving at the antenna by two or more routes. The second or subsequent image occurs when a signal arrives at the antenna after being reflected off a building, a hill or other object. In severe cases of reflections, even the sound may be distorted. In less severe cases, reflections may occur that are not noticeable as reflections, but that will instead cause a loss of definition in the picture.

Depending upon the circumstances, it may be possible to eliminate the reflections by rotating the antenna or by moving it to a new location. In extreme cases, it may be impossible to eliminate the reflection.

INTERFERENCE. - Auto ignition, street cars, electrical machinery and diathermy apparatus may cause interference which spoils the picture. Whenever possible, the antenna location should be removed as tar as possible from highways, hospitals, doctors' offices, and similar sources of interference.

Short-wave radio transmitting and receiving equipment may cause interference in the picture in the form of moving ripples. In some instances it may be possible to eliminate the interference by the use of a trap in the antenna transmission line. However, if the interfering signal is on the same frequency as the television station, a trap will provide no improvement.

WEAR PICTURE. - When the installation is near the limit of the area served by the transmitting station, the picture may be speckled, having a "snow" effect, and may not hold steady on the screen. This condition is due to lack of signal strength from the transmitter.



Figure 11-Television Chussis Bollom View

\section*{9TW333}

TELEVISION VOLTAGE CHART
The following measurements represent two sets of conditions. In the first condition a 2200 microvolt test pattern signal was fed into the receiver, the picture synced and the AGC threshold control properly adjusted. The second condition was obtained by removing the antenna leads and short circuiting the receiver antenna terminals. Voltages shown are as read with "Jr. VoltOhmyst" between the indicated terminal and chassis ground and with the receiver operating on 117 volts 60 cycles a-c.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Tube No.} & \multirow[b]{2}{*}{Tube Type} & \multirow[b]{2}{*}{Function} & \multirow[b]{2}{*}{Operating Condition} & \multicolumn{2}{|l|}{E. Plate} & \multicolumn{2}{|l|}{E. Screen} & \multicolumn{2}{|l|}{E. Cathode} & \multicolumn{2}{|r|}{E. Grid} & \multirow[b]{2}{*}{I Plate (ma.)} & \multirow[b]{2}{*}{} & \multirow[b]{2}{*}{Notes on Measurements} \\
\hline & & & & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & Pin No. & Volts & Pin No. & Volts & & & \\
\hline \multirow[t]{2}{*}{V1} & 6AG5 & \[
\begin{aligned}
& \text { R-F } \\
& \text { Amplifier }
\end{aligned}
\] & \[
\underset{\text { Signal }}{2200 \text { Mu.V. }}
\] & 5 & 146 & 6 & 148 & 287 & 0 & 1 & -4.9 & . 72 & . 33 & \\
\hline & & & No Signal & 5 & 85 & 6 & 120 & 287 & 0 & 1 & \(-0.4 v\) & 12.0 & 4.0 & \\
\hline \multirow[t]{2}{*}{V2} & 6AG5 & Converter & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal } \\
\hline
\end{gathered}
\] & 5 & \[
\begin{gathered}
\text { } 130 \\
\text { to } 140
\end{gathered}
\] & 6 & \[
\begin{gathered}
\text { * } 130 \\
\text { to } 140
\end{gathered}
\] & 28.7 & 0 & 1 & \[
\begin{array}{|c|}
\hline-3.0 \\
\text { to }-7.0 \\
\hline
\end{array}
\] & \[
\begin{gathered}
7.1 \\
\text { to } 7.7
\end{gathered}
\] & \[
\begin{gathered}
2.3 \\
\text { to } 2.7
\end{gathered}
\] & \multirow[b]{2}{*}{- Depending upon channel} \\
\hline & & & No Signal & 5 & \[
\begin{gathered}
104 \\
\text { to } 109
\end{gathered}
\] & 6 & \[
\begin{gathered}
107 \\
\text { to } 109
\end{gathered}
\] & 287 & 0 & 1 & \[
\begin{gathered}
*-2.0 \\
\text { to }-6.0
\end{gathered}
\] & \[
\begin{gathered}
\$ 5.3 \\
\text { to } 5.9
\end{gathered}
\] & \[
\begin{gathered}
.8 \\
\text { to } 1.0
\end{gathered}
\] & \\
\hline \multirow[t]{2}{*}{V3} & 6 J 6 & R-F Oscillator & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal } \\
\hline
\end{gathered}
\] & 18.2 & \[
\begin{gathered}
88 \\
\text { to } 95
\end{gathered}
\] & - & - & 7 & . 19 & 586 & \[
\begin{array}{|c|}
\hline-5.1 \\
\text { to }-7.3 \\
\hline
\end{array}
\] & \[
\begin{gathered}
1.9 \\
\text { to } 2.7
\end{gathered}
\] & - & \multirow[t]{2}{*}{- Depending upon channel} \\
\hline & & & No Signal & 182 & \[
\begin{gathered}
* 68 \\
\text { to } 81
\end{gathered}
\] & - & - & 7 & . 16 & 586 & \[
\begin{array}{|c|}
\hline-4.5 \\
\text { to }-6.6
\end{array}
\] & \[
\begin{gathered}
1.8 \\
\text { to } 2.1
\end{gathered}
\] & - & \\
\hline \multirow[t]{2}{*}{V101} & 6AG5 & 1st Pix. I-F Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 141 & 6 & 141 & 287 & . 07 & 1 & -3.9 & . 8 & . 22 & \\
\hline & & & No Signal & 5 & 108 & 6 & 108 & 28.7 & . 11 & 1 & \(-.07\) & 4.97 & 1.73 & \\
\hline \multirow[t]{2}{*}{V102} & 6AG5 & 2d Pix. I-F Amplifier & \[
\begin{gathered}
2200 \text { Mu.V. } \\
\text { Signal } \\
\hline
\end{gathered}
\] & 5 & 130 & 6 & 130 & 287 & . 86 & 1 & 0 & 9.48 & 3.12 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 106 & 6 & 106 & 287 & . 6 & 1 & 0 & 7.6 & 2.6 & \\
\hline \multirow[t]{2}{*}{V103} & 6AG5 & 3d Pix. I-F Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 130 & 6 & 140 & 28.7 & . 03 & 1 & -3.9 & . 51 & . 09 & \\
\hline & & & No Signal & 5 & 94 & 6 & 103 & 28.7 & . 11 & 1 & -. 09 & 3.92 & 1.5 & \\
\hline \multirow[t]{2}{*}{V104} & 6AG5 & 4th Pix. I-F Amplifier & 2200 Mu.V. Signal & 5 & 175 & 6 & 145 & 287 & 1.38 & 1 & 0 & 7.0 & 2.0 & \\
\hline & & & No Signal & 5 & 167 & 6 & 109 & 287 & . 95 & 1 & 0 & 5.7 & 1.5 & \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { V105 } \\
\mathbf{A} \\
\hline
\end{gathered}
\]} & 6AL5 & Picture 2d Det. & \[
\begin{array}{|c|}
\hline 2200 \text { Mu.V. } \\
\text { Signal }
\end{array}
\] & 7 & -113 & - & - & 1 & -112 & - & - & . 48 & - & \\
\hline & & & No Signal & 7 & \(-120\) & - & - & 1 & -120 & - & - & - & - & \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { V105 } \\
B
\end{gathered}
\]} & 6AL5 & Sync Limiter & \[
\begin{gathered}
2200 \text { Mu.V. } \\
\text { Signal } \\
\hline
\end{gathered}
\] & 2 & \(-107\) & - & - & 5 & -56 & - & - & - & - & \\
\hline & & & No Signal & 2 & -80 & - & - & 5 & -60 & - & - & - & - & \\
\hline \multirow[t]{2}{*}{V106} & 12AU7 & 1st Video Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 1 & \(-23.2\) & - & - & 3 & -111 & 2 & \(-113\) & 4.38 & - & \\
\hline & & & No Signal & 1 & -19.2 & - & - & 3 & -117 & 2 & \(-120\) & 3.82 & - & \\
\hline V106 & 12AU7 & 2d Video Amplifier & 2200 Mu.V. Signal & 6 & * 166 & - & - & 8 & * -5.3 & 7 & *-12.2 & 6.2 & - & \multirow[t]{2}{*}{* At average contrast} \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 6 & *134 & - & - & 8 & *-5.6 & 7 & *-10.3 & 6.9 & - & \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { V107 } \\
\mathbf{A}
\end{gathered}
\]} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \text { GT }
\end{aligned}
\] & AGC Amplifier & \[
\begin{array}{|c|}
\hline 2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{array}
\] & 5 & -17.9 & - & - & 6 & -55.5 & 4 & - 56.5 & . 9 & - & \\
\hline & & & No Signal & 5 & -5.2 & - & - & 6 & -60 & 4 & -64 & . 3 & - & \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { V107 } \\
\text { B }
\end{gathered}
\]} & \[
\begin{aligned}
& \text { 6SN7 } 7 \\
& \text { GT }
\end{aligned}
\] & Vertical Oscillator & \[
\begin{aligned}
& 2200 \mathrm{Mu} \mathrm{~V} . \\
& \text { Signal }
\end{aligned}
\] & 2 & 76 & - & - & 3 & -111 & 1 & -158 & . 2 & - & \\
\hline & & & No Signal & 2 & 62 & - & - & 3 & -120 & 1 & -169 & . 2 & - & \\
\hline \multirow[t]{2}{*}{V108} & \[
\begin{array}{|l|l}
\hline \text { 6SN7 } \\
\text { GT }
\end{array}
\] & \begin{tabular}{l}
AGC \\
Rectifier
\end{tabular} & 2200 Mu.V. Signal & 5 & 97 & -- & - & 6 & \(-3.4\) & 4 & -19.3 & . 3 & - & \\
\hline & & & No Signal & 5 & 81 & - & - & 6 & -8.7 & 4 & -19.3 & . 28 & - & \\
\hline \multirow[t]{2}{*}{V108} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \text { GT }
\end{aligned}
\] & 1st Sync Separator & \[
\begin{gathered}
2200 \mathrm{Mu} . V . \\
\text { Signal }
\end{gathered}
\] & 2 & 96 & - & - & 3 & \(-1.8\) & 1 & -19.5 & . 1 & - & \\
\hline & & & No Signal & 2 & 81 & - & - & 3 & -9.7 & 1 & -19.3 & . 1 & - & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Tube No.} & \multirow[b]{2}{*}{Tube Type} & \multirow[b]{2}{*}{Function} & \multirow{2}{*}{Operating Condition} & \multicolumn{2}{|r|}{E. Plate} & \multicolumn{2}{|r|}{E. Screen} & \multicolumn{2}{|l|}{E. Cathode} & \multicolumn{2}{|r|}{E. Grid} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { I } \\
& \text { Plate } \\
& \text { (ma.) }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { I } \\
\text { Screen } \\
\text { (ma.) }
\end{gathered}
\]} & \multirow[b]{2}{*}{Notes on Measurements} \\
\hline & & & & Pin
No. & Volts & \[
P_{\text {in }}
\]
No. & Volts & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & Pin
No. & Volts & & & \\
\hline \multirow[t]{2}{*}{V109} & \[
\begin{aligned}
& \hline \text { 6SN } 7 \\
& \text { GT }
\end{aligned}
\] & Sync Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 2 & 158 & - & - & 3 & 0 & 1 & -4.7 & 5.25 & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 2 & 154 & - & - & 3 & 0 & 1 & - 5.2 & 3.75 & - & \\
\hline \multirow[t]{2}{*}{V109} & \[
\begin{array}{|l}
\hline \text { 6SN7 } \\
\text { GT }
\end{array}
\] & Sync Separator & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} \\
\text { Signal }
\end{gathered}
\] & 5 & 230 & - & -- & 6 & -51 & 4 & -106 & . 4 & - & \\
\hline & & & No Signal & 5 & 215 & - & - & 6 & - 59 & 4 & -80 & . 35 & - & \\
\hline \multirow[t]{2}{*}{V110} & \[
\begin{aligned}
& \text { 6K6- } \\
& \text { GT }
\end{aligned}
\] & Vertical Output & \[
\begin{gathered}
\text { 2200 Mu.V. } \\
\text { Signal }
\end{gathered}
\] & 3 & 223 & 4 & 223 & 8 & -67 & 5 & -91 & & * 7.85 & \multirow[t]{2}{*}{*Screen connected to plate} \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 3 & 208 & 4 & 208 & 8 & -79 & 5 & -101 & & - 7.7 & \\
\hline \multirow[t]{2}{*}{V111} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \text { GT }
\end{aligned}
\] & Horizontal Osc. Control & \[
\begin{gathered}
2200 \mathrm{Mu} \cdot \mathrm{~V} \\
\text { Signal }
\end{gathered}
\] & 2 & * 48 & - & - & 3 & -110 & 1 & -92 & . 2 & - & \multirow[t]{2}{*}{- Variation of hold gives -21.9 to +56 volts on plate} \\
\hline & & & No Signal & 2 & *3 & - & - & 3 & -120 & 1 & -108 & . 2 & - & \\
\hline \multirow[t]{2}{*}{V111} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \text { GT }
\end{aligned}
\] & Horizontal Oscillator & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 70 & - & - & 6 & -111 & 4 & -185 & 2.4 & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 54 & - & - & 6 & -120 & 4 & -192 & 2.4 & - & \\
\hline \multirow[t]{2}{*}{V112} & 6BG6G & Horizontal Output & \[
\underset{\text { Signal }}{2200 \text { Mu.V. }}
\] & Cap & 。 & 8 & 160 & 3 & -104 & 5 & -101 & 93.5 & 11.5 & \multirow[b]{2}{*}{-5200 volt pulse present} \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & Cap & \[
\begin{aligned}
& \text { Do Not } \\
& \text { Meas. }
\end{aligned}
\] & 8 & 142 & 3 & -113 & 5 & -112 & 90.8 & 11.2 & \\
\hline \multirow[t]{2}{*}{V113} & \[
\begin{array}{|c|}
\hline 1 \mathrm{~B} 3 \mathrm{GT} \\
\hline / 8016
\end{array}
\] & \[
\begin{aligned}
& \text { H. V. } \\
& \text { Rectifier }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Brightness } \\
& \text { Min. }
\end{aligned}
\] & Cap & - & - & - & 2* 7 & 8500 & - & - & 0 & - & \multirow[b]{2}{*}{*8500 volt pulse present} \\
\hline & & & Brightness Average & Cap & Do Not Meas. & -- & - & 2\% 7 & 8400 & -- & - & . 1 & - & \\
\hline \multirow[t]{2}{*}{V114} & 5V4G & Damper & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} \\
\text { Signal }
\end{gathered}
\] & 4\% 6 & - & - & - & \(2 \& 8\) & 339 & - & - & 94.5 & - & \multirow[b]{2}{*}{-1200 volt pulse present} \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & \(4 \% 6\) & Do Not Meas. & - & - & \(2 \& 8\) & 322 & - & - & 92 & - & \\
\hline \multirow[t]{2}{*}{V115} & 5U4G & Rectifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} \\
\text { Signal }
\end{gathered}
\] & \(4 \% 6\) & * 390 & - & - & \(2 \& 8\) & 291 & - & - & 225 & - & \multirow[b]{2}{*}{*A-C measured from plate to trans. center tap} \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 486 & -390 & - & - & 288 & 272 & - & - & 230 & - & \\
\hline \multirow[t]{2}{*}{V116} & 6AU6 & 1st Sound I-F Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} \\
\text { Signal } \\
\hline
\end{gathered}
\] & 5 & 134 & 6 & 134 & 7 & . 9 & 1 & 0 & 8.2 & 3.3 & \\
\hline & & & \[
\begin{aligned}
& \text { No } \\
& \text { Signal }
\end{aligned}
\] & 5 & 110 & 6 & 110 & 7 & . 7 & 1 & 0 & 5.7 & 2.6 & \\
\hline \multirow[t]{2}{*}{V117} & 6AU6 & 2d Sound I-F Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} \\
\text { Signal }
\end{gathered}
\] & 5 & 148 & 6 & 90 & 7 & 0 & 1 & -9 & 1.6 & . 8 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 115 & 6 & 60 & 7 & 0 & 1 & -. 65 & 3.35 & 1.15 & \\
\hline \multirow[t]{4}{*}{V118} & 6AL5 & Sound Discrim. & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal } \\
\hline
\end{gathered}
\] & 2 & -8.4 & - & - & 5 & 5.8 & - & - & -3 & 1.15 & \\
\hline & & & \[
\begin{aligned}
& \text { No } \\
& \text { Signal }
\end{aligned}
\] & 2 & -2.0 & - & - & 5 & . 41 & - & - & -- & - & \\
\hline & & & \[
\underset{\text { Signal }}{\substack{2200 \text { Mu.V. } \\ \hline \\ \hline}}
\] & 7 & -3.7 & - & - & 1 & 0 & - & - & - & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 7 & \(-1.08\) & - & - & 1 & 0 & - & - & - & - & \\
\hline \multirow[t]{2}{*}{V119} & 6AV6 & Bias Clamp & \[
\begin{gathered}
2200 \text { Mu.V. } \\
\text { Signal }
\end{gathered}
\] & 7 & 0 & - & - & 2 & 0 & 1 & 0 & -- & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 7 & 0 & - & - & 2 & 0 & 1 & 0 & - & - & \\
\hline \multirow[t]{4}{*}{V121} & 10 BP 4 & Kinescope & \[
\begin{gathered}
\text { 2200 Mu.V. } \\
\text { Signal }
\end{gathered}
\] & Cap & -8400 & 10 & 339 & 11 & 51 & 2 & 20 & . 1 & - & *Average Brightness \\
\hline & & & \[
\begin{aligned}
& \text { No } \\
& \text { Signal }
\end{aligned}
\] & Cap & - & 10 & 322 & 11 & 42 & 2 & 14 & - & - & Average Brightness \\
\hline & & & \[
\begin{gathered}
2200 \mathrm{Mu} \cdot \mathrm{~V} \\
\text { Signal }
\end{gathered}
\] & Cap & - & 10 & 339 & 11 & 0 & 2 & 0 & . 4 & - & Maximum Brightness \\
\hline & & & \[
\underset{\text { Signal }}{2200 \mathrm{Mu} . \mathrm{V}}
\] & Cap & * 8500 & 10 & 339 & 11 & 100 & 2 & 20 & 0 & - & \({ }^{*}\) Minimum Brightness \\
\hline & & & & & & & & & & & & & & \\
\hline
\end{tabular}

If any lead dressing is necessary, it should be dene before aligning the receiver. See Critical Lead Dress on page 13. Before aligning set, completely mesh the gang and set the dial pointer to calibration point at extreme left end of dial.
When making a complete alignment follow the tabulated form below in sequence. If only a portion of the circuit is to be aligned, select the portion required and follow with the remaining steps in the chart. Any adjustments made on the AM \(45 S\) kc. I-F's make it necessary to adjust the FM 10.7 mc . I-F's.

\section*{AM I-F, OSC, R-F AND ANT ALIGNMENT}

Test-Oscillator. - For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a.v.c action. Set the oscillator to \(30 \% 400\)-cycle modulation.

Output Meter. - Connect the meter across the speaker voice coil, and lurn the receiver volume control to maximum.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Steps & Connect the High Side of the Test Osc. to- & Tune Test Ose. 10- & Turn Radio Dial to- & Adjust the & peak output \\
\hline 1 & \multirow{2}{*}{C3 in series with . 01 mid .} & \multirow{2}{*}{455 kc.} & \multirow[t]{2}{*}{Quiet point at low freq. end of dial} & - AM windin & \[
\begin{aligned}
& \mathrm{m} \text { core (sec.) } \\
& \text { f.) }
\end{aligned}
\] \\
\hline 2 & & & & AM windin T2 & \[
\begin{aligned}
& \text { n core (pri.) } \\
& \text { c.) }
\end{aligned}
\] \\
\hline 3 & \multirow[t]{2}{*}{Terminal 1 of antenna board in series with 220 mm .} & 1.400 kc. & \(1,400 \mathrm{kc}\). & C13 Oscillator & C4 Antenna \\
\hline 4 & & 600 kc . & 600 kc. & 14 Oscillator & 19 Antenna \\
\hline 5 & \multicolumn{5}{|l|}{Repeat steps 3 and 4.} \\
\hline
\end{tabular}

Use alternate loading. This method involves the use of a 47,000 - ohm resistor to load the primary winding while the secondary winding of the same transformer is being peaked. Then the secondary winding is loaded with the 47.000 -ohm resistor while the primary winding is being peaked. Remove the 47,000 -ohm resistor after T 2 and T 3 have been aligned.

FM RATIO DETECTOR, I-E, OSC, R-F AND ANT ALIGNMENT
\begin{tabular}{|c|c|c|c|c|}
\hline Steps & Connect the High Side of the Test Osc. \(10-\) & Tune Test Osc. to- & Turn Radio Dial to- & Adjust the following \\
\hline 1 & \multicolumn{4}{|l|}{Connect "VoltOhmyst" d-c probe to negative lead of C33, and the meter common lead to chassis ground.} \\
\hline 2 & Pin 1 of V3 (6AU6) in series with .01 mid. & 10.7 mc. AM mod.. . 05 V out. & Low freq. end of dial & T4 top core for max. d.c voltage across C33 It bottom core for minimum audio output** \\
\hline 3 & & 10.7 mc . oulput adjusted to & Low freq. end of dial & \begin{tabular}{l}
FM windings for maximum d-c voltage across C33** \\
T3 top core (sec.) T3 bottom core (pri.)
\end{tabular} \\
\hline 4 & & volte on "VoliOhmyst" & Low ireq. end of dial & \begin{tabular}{l}
FM windings for maximum d-c** \\
I2 top core (sec.) T2 bottom core (pri.)
\end{tabular} \\
\hline 5 & Terminal 1 of antenna board in series with & 106 mc. & 106 mc . & C2 Antenna
L2 Oscillator*...
(S2 at maximum capacity while adjusting L2) \\
\hline 6 & 300 ohms & 90 mc . & 90 mc . & 11 Antonna* . . (Rock gang) \\
\hline 7 & \multicolumn{4}{|l|}{Repeat steps 5 and 6 until further adjustment provides no improvemeat in calibratiou.} \\
\hline
\end{tabular}
* Two or more points may be found which give reductions in the audio output. At the correct tuning point, the minimum audio output is approached rapidly and the output is much less than at any incorrect point.
\(\cdots\) Align T2 and T3 by the use of alternate loading. Use a 680 -ohm resistor to load the primary winding while the secondary winding of the samo transformer is being peaked. Then load the secondary winding with the \(680-\mathrm{ohm}\) resistor while the primary winding is being peaked.
**L1 and L2 are adjusted by increasing or decreasing the spacing between turns of the coils.
NOTE.-The FM alignaent may be checked by means of an FM sweep generator and cathode ray oscilloscope. Set the sweep generator to 10.7 mc center trequency and connect the output lead to the mixer grid Pin 5 of V1 (6]6). Set the siqnal generator to 10.7 me and loosely couple it to the mixer grid to provide a marker. To observe the I-F response. disconnect the 2 mid capacitor C33 trom the ratio detector circuit. Connect the oncillomeope to the junction of R25 and R26.

To observe the Ratio Detector response. reconnect C33 and connect the oscilloscope across the volume control R14.

 6. Lead from pin No. 2 of V1 to terminal "A" of lst I. F. trans. 13. The taps on 12 and \(L 2\) are critical. L1 tap should be \(3 / 4\)
former should be dressed against the chassis.
the gang condenser C8.

Dress C25 and C26 against the chassis with the shortest
lead length possible.
15. The position of L 1 and L 2 is critical. L1 should be midway between V1 and the lst I. F. transformer. The end of L2 Coupling between pins 5 and 6 of VI and the components
attached should be kept to a minimum. Connect C40 directly between the gang condenser and pin
No. 1 of V1.

Dress lead from pin No. 5 of \(V 2\) to terminal " \(A\) " of 2 nd
I. F. transformer down against chass
11. Dress all A. C. leads away from volume control.

The lead from "FM" terminal of antenna terminal board to

Keep leads of C7 short.
Dress R27 away from range switch and pin No. 5 of V1.
The ground lead of pin No. 2 of V2 and V3 should be down
against chassis. lts longth is critical.
The AVC lead from R26 to range switch should be dressed
against chassis.
C43 should have short leads and the color code of the ca-
pacitor should go to the coil L4. The capacitor should be
cemented down with polystyrene cement at the same time
L2 is cemented. cemented is cemented.

GJGEV.OSC


\section*{9TW333}

TELEVISION R-F UNIT WIRING DIAGRAM


Figure 16-R.F Unit W'iring Diagram

\section*{TELEVISION CRITICAL LEAD DRESS}
1. The ground bus from pin 2 and the center shield of V117 socket should not be shortened or rerouted.
2. Do not change the dress of the filament leads or the bypass capacitors in the picture or sound \(i-\frac{1}{}\) circuits. The filament leads between V117 and V118 should be down against the chassis and away from grid or plate leads.
3. If it is necessary to replace any of the \(1,500 \mathrm{~mm}\) capacitors in the picture \(\mathrm{i}-\frac{\mathrm{f}}{\mathrm{c}}\) circuits the lead length must be kept as short as possible.
4. The picture i.f coupling capacitors C106, C111, Cl15 and C121 should be up and away from the chassis and should be clear of the pix i-f transformer adjustments by at least \(1 / 4\) inch. If the dress of any of these capacitors is changed, the i-f alignment should be rechecked.
5. Leads to L 102 and L103 must be as short as possible.
6. Dress peaking coils L105, L106 and L107 up and away from the chassis.
7. Dress C183 across tube pins 5 and 6 with leads not ex. ceeding \(3 / 2\) inch.
8. Dress the blue leads from pin 5 of V119 down against the chassis.
9. Dress Cl29 and C130 up and away from the chassis.
10. Dress the yellow lead from the picture control away from the chassis. Dress the yellow lead from pin 8 of V106 away from the chassis.
11. Dress the green lead from pin 2 of V106 away from the chassis.
12. Dress R168, R169, R170, R176 and R178 up and away from the chassis. In the event that it is necessary to replace one of these resistors, the resistor leads should not be clipped but should be bent and soldered into place in the same manner as the original unit. Strains or excessive heat should not be applied to the leads or bodies of the resistors associated with the horizontal oscillator and control circuits.

Such conditions may cause excessive changes of resistance with age.
13. Contact between the r-f oscillator frequency adjustment screws and the omcillator coils or channel switch eyelets must be avoided.
14. Dress leads from L110 (width control coil) away from the transformer frame.
15. Dress Tll0 winding leads as shown in Figure 17.


Figure 17-T110 Lead Dress
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\sqrt{0}=0=2
\] & 8 & & & \\
\hline  & & & & \(\cdots\) \\
\hline  & & & & \({ }^{\text {® }}\) \\
\hline  & &  &  & \[
\begin{aligned}
& -1 \\
& i=1 \\
& i \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline  & \[
\square^{8} \frac{8}{8}
\] &  & \[
\begin{aligned}
& 4.6 \\
& 4 \\
& 48
\end{aligned}
\] &  \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{} \\
\hline \multicolumn{13}{|l|}{\multirow[t]{9}{*}{}} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}
 H 4 Hu








\section*{GENERAL DESCRIPTION}

Model 9TW390 is a deluxe 16 inch television and AM.FM radio receiver. Two record changers are provided to play 78 RPM and 45 RPM records. The "MAGIC MONITOR," an automatic scratch suppressor, is provided to permit improved reproduction from old or worn records. The instrument employs 34 tubes plus 4 rectifiers and a 16AP4 kinescope.

Features of the television unit are full twelve channel coverage: FM sound system: improved picture brilliance; picture A.G-C; A.F.C horizontal hold: stabilized vertical hold; two stages of video amplification; noise saturation circuits: im. proved sync separator and clipper: four me band width for picture channel and reduced hazard high vollage supply.

\section*{ELECTRICAL AND MECHANICAL SPECIFICATIONS}

PICTURE SIZE............ 146 square inches on \(\alpha 16\) inch kinescope tELEVISION R-F FREQUENCY RANGE
All 12 television channels, 54 mc . to \(88 \mathrm{mc} ., 174 \mathrm{mc}\). to 216 mc . Fine Tuning Range .... \(\pm 250 \mathrm{kc}\) on chan. 2. \(\pm 650 \mathrm{kc}\) on chan. 13 Picture Carrier Frequency............................................... 25.75 mc . Sound Carrier Frequency................................................. 21.25 mc. VIDEO RESPONSE............................................................. To 4 Mc. SWEEP DEFLECTION........................................................ Magnetic FOCUS.............................................................................. Magnetic

RADIO TUNING RANGE
Broadcast.......... 540 .1.600 ke
Short Wave........................................................................ 9.2-16 mc.

Frequency Modulation.......................................................88-108 mc.
Intermediate Frequency-AM.............................................. 455 kc
Intermediate Frequency-FM............................................. 10.7 mc .
POWER SUPPLY RATING............ 115 volts, 60 cycles, 310 watts
AUDIO POWER OUTPUT RATING 11 watts max.

CHASSIS DESIGNATIONS
Television Chassis.............................................................. KCS31-1
Radio Chassis...................................................................... RC617A
78 RPM Record Changer....................................................... RP177B
45 RPM Record Changer................................................ RP168A-1
Refer to Service Data RP177 or RP168 for information on the record changers.
Some receivers have been field modilied to replace the RP177 chanqer with type 960285.


RECEIVER ANTENNA INPUT IMPEDANCE.... 300 ohms balanced If desired, television chassis may be fed from 72 ohm co-ax.
RCA TUBE COMPLEMENT


\section*{TELEVISION OPERATION}

The following adjustments are necessary when funing the receiver on for the tirst time.
1. Turn the radio FUNCTION switch to Tel.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid-position.
3. Set the STATION SELECTOR to the desired channel.
4. Adjust the FINE TUNING control for best sound fidelity and SOUND VOLUME for suitable volume.
5. Turn the PICTURE control to mid-position.
6. Turn the BRIGHTNESS control fully counterclockwise then clockwise until \(\alpha\) light pattern appears on the screen.
7. Adjust the VERTICAL hold control until the pattern stops vertical movement.
13. When theset is turned on again after an idle period, it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. If any adjust. ment is necessary, step number 4 is generally sufficient.
14. If the position of the controle hae been changed, it may be necessary 10 repeat steps numbers 2 through 10.

\section*{RADIO OPERATION}
1. Turn the radio FUNCTION awitch to the deaired band.
2. Tune in the desired slation with the TUNING control.

\section*{PUSH BUTTON OPERATION}
1. Turn the radio FUNCTION switch to PB
2. Push the appropriate button to recelve the desired slation.

PHONOGRAPH OPERATION

1. Tum the radio FUNC. TION switch 10 Ph for operation of the 78 RPM changer or to XPh . for operation of the 45 RPM changer.
2. Place a record on the appropriate changer and sllp the changer power switch to "ON".
"MAGIC MONITOR"
The MAGIC MONITOR operales only when the function switch is in the phono ponition.
1. Push the gold puah button 10 lurn MM on.
2. Push the gold push button \(\alpha\) second time to turn MM off.

\author{
HIGH VOLTAGE WARNING
}

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, IN. VOLVES A SHOCR HAZARD FROM THE RECEIVER POWER SUPPLIES. WORI ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE the receiver with the high voltage compartment shield removed.

\section*{KINESCOPE HANDLING PRECAUTIONS}

DO NOT OPEN THE RINESCOPE SHIPPING CARTON, INSTALL. REMOVE OR HANDLE THE KINE-
SCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES, AND HEAVY GLOVES ARE WORN.
PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE
RINESCOPE AWAY FROM THE BODY WHILE HANDLING.

\footnotetext{
The kinescope bulb encloses a high vacuum and, due to lts large surface area, is subjected to conslderable alr pressure. For these reasons, kinescopes must be handled with more care than ordina:y receiving tubes.

The large end of the kinescope bulb-particularly that part at the rim of the viewing surface-must not be struck, scratched of subfected to more than moderate pressure at any time. In installation, if the tube sticks or fails to sllp smoothly into its socket, or deflecting yoke. investigate and remove the cause of the trouble. Do not force the tube. Refer to the Recelver Installation section for detalled instructions on tinescope instaliation. All RCA kinescopes are shipped in special cartons and should be loft in the cartons until ready for Installation in the receiver. Keep the carton for posible future use.
}

The model 9TW390 is shipped in a plywood box put together with nails. Open the box by removal of the side as designated on the carton. It the side is removed by prying, do not permit the prying tool to enter the box, as the cabinet may become scratched. Slip the cabinet out of the carton.
A llat skid is attached to the bottom of the receiver cabinet which will permit the cabinet to be moved about without stressing the cabinet joints. To remove the skid, take off the cabinet back and remove the nuts from the two bolts that hold the cabinet on the skid. With a man at each ond of the cabinet. lift the cabinet off the skid.

From the rear di the cabinet remove the single wood screw which holds the RP168A record changer drawer in the closed position. Slide the drawer out. From the top of the changer, remove the three filler plugs from over the motorboard mounting screws. Loosen these three screws just enough to permit removal of two wooden shipping strips under the edge of the motorboard. Tighten the screws just enough to keep the motorboard springs from rattling and replace the filler plugs.

Remove the two red brackets which hold the RP177B changer drawer in the closed position. Open the drawer and from the front of the cabinet, pull out two cardboard strips from under the changer motorboard. The motorboard should then be free floating. In the event that it is ever necessary to remove the RP177B, disconnect the changer cables, pull the carriage all the way out then lift up on the front edge. Replace it by a reversal of this procedure.

Remove the two red angle brackets which hold the radio chassis to the cabinet.
Remove the envelope containing the control knobs, ion trap magnet and station call letter tabs.

\section*{Remove all miscellaneous shipping material.}

Remove the television front panel by loosening the two wingnuts inside the cabinet and by turning the two locking plates as shown in Figure 2. Hinge the panel at the bottom and tilt it out at the top.


Figure 2-Television Panel, Front View

Remove the two self-tapping screws from the kinescopecushion slide as shown in Figure 3.

Loosen the two kinescope cushion adjustment wing screws and slide the cushion toward the rear of the chassis. Loosen the dellection yoke adjustment, slide the yoke toward the rear of the chassir and tighten.
From the front of the cabinet, look through the deflection yoke and check the alignment of the focus coil with the yoke. If the focus coil is not in line. loosen the two focus coil mounting


Figure 3-Yoke and Focus Coil Adjustments
screws and move the coil until alignment is obtained. Tighten the mounting screws with the coil in this position.

Loosen the two lower kinescope face centering supports, and set them at approximately mid-position. See Figure 2 for location of the supports and their adjustment screws. Loosen the two upper supports (from inside the cabinet), slip them up as far as possible and tighten.

Check the centering supports. There should be a small wire clip on the inner surface of each. The clip in the lower left corner should be connected to the high voltage lead.

KINESCOPE HANDLING PRECAUTION.-Do not open the kinescope shipping carton, install, remove, or handle the kinescope in any manner, unless shatter-proof goggles and heavy gloves are worn. Persons not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling. The shipping carton should be kept for use in case of luture moves.

Handle this tube by the metal rim at the edge of the screen. Do not cover the glass bell of the tube with fingermarks as it will produce leakage paths which may interfere with reception. If this portion of the tube has inadvertently been handled, wipe it clean with \(a\) soft cloth moistened with "dry" carbon tetrachloride.

EINESCOPE INSTRLLRTION.-Slip the Vinylite boot over the metal cone of the kinescope, turn the tube so that the key on the base of the tube will be down and insert the neck of the kinescope through the deflection and focus coils as shown in Figure 4. If the tube sticks, or lails to slip into place smoothly. investigate and remove the cause of the trouble. Do not force the tube.


Figure 4-Kinescope Insertion

Slip the ion trap magnet aseombly over the neci of the linescope with the large magnet towards the base of the tube.

Connect the kinescope socket to the tube base.
Adjuat the four centering supports until the face of the kincscope in in the center of the cabinet opening. Tighten the four supports securely.

Wipe the Insescope screen surface and front panel safety glase clean of all duat and finger marks with a solt cloth molst. ened with the Drackett Co." "Windex" or similar cleaning agent.

Install the cabinet froni panel by reveral of the procedure indicated in Figure 2. Fasten the two bars in back of the panel and tighten the wingnute.

Slip the kinescope as far forward as posible. Slide the kineacope cushion firmly up against the flare of the tube and tighten the adjumtment wing screws. Slide the deflection yoke as lar forward as posesible. If this is not done, difficulty will be encountered in adjuating the ion trap magnet and locus coil because of shadows on the corner of the rastor.
The antenna and power connections should now be made. Install the front panel control knobs.
Make sure that all tubes are firmly sected in their sockels and all cable plugs are in the proper sockets as shown in Figure 5.


Whanisc.-The high voltage supply in this receiver delivers 12.000 volte! II it in neceasary to remove the kinescope afier the recelver has been operating, short the linescope cone to the chaseis before attempting remoral of or adjurtments to the kinescope. A.C. interlockn are provided at the back of the set so that when the back is removed-mo is the power.

Turn the power awitch to the "on" position, the brightneas control fully clockwise, and picture control counterclockwise.
ION TRAP MAGNET RDJUSTMENT,-Looking ot the ldinescope gun structure, it will be obeerved that the second cylinder from the base inside the glase neci is provided with two small metal flage. The ion trap rear magnet poles should be approximately over these flags. Starting from this position adjust the magnet by moving it lorward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest roster on the screen. Reduce the brightness control setting until the raster is slightly above average briliance. Adjuat the focus control (R201 on the chasail rear apron) until the line structure of the raster is clearly visible. Readjuat the ion trap magnet for maximum raster brilliance. The final touches on this adjuetment should be made with the brightness control at the maximum position with which good line focus com be maintained.


Figure 6-Rear Chassis Adjustments

DEFLECTION YOLE ADJOSTMIXNT.- If the lines of the rater are not horisontal or squared with the picture mank, rotate the dellection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE MDJUSTMENTS.-It will now be neceseary to abiain a test pattern picture in order to make further adjuatments. See sleps 2 through 10 of the televivion receiver operating instructions on page 2.

If the Horisontal Oscillator is operating properly, it should be poasible to sync the picture at this point.

CHECR OF HOREONTAL OBCLLLATOR ALGNMIENT.Turn the horinontal hold control to the extreme counterclockwiee ponition. The picture should remain in horisontal sync. Momen. tarily remove the signal by switching off chamnel then back. Normally the picture will be out of aync. Tum the control clock. wise slowly. The number of diagonal blact bars will be gradually reduced and when only 3 bars sloping downward to the loft cre obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull in should occus when the control is approximately 90 degrees from the extreme counterclockwise postion. The picture should remain in eync for approximately 90 degrees af additional clockwise rotation of the control. At the extreme clockwise position, the picture should be out of syac and should show 1 vertical or diagonal black bor in the roster.

I the receiver parees the above checle and the picture is normal and stable, the horisontal cecilletor is properly aligned. Slip "Alignment of Horisontal Osclllator" and procesd with "Centering Adjuatment."

ALIGMMENT OF HOLIZONTAL OSCLLLATOR-II in the above check the receiver failed to hold syac with the hold control at the extreme counterclockwise pomition or failed to hold syac over 90 degrees of clockwise rotction of the control from the pull in point, it will be necensary to make the following adjuntrnente.

Horisontal Frequency Adfuatment-Tum the horizontal hold control to the extreme clockwise position. Tute in a televition station and adjust the T109 horisontal irequency adjument (under the chassis) until the picture is juat out of syac and the horisontal blanking appears as a vertical or diagonal black bar in the raster.
Horizontal Lock in Range Adjuntment-Set the horizontal hold control to the full counterclockwise poaition. Momentarily remove the signal by switching off channel then back. Slowly turn the horizontal hold control clockwiee and note the lecit number of diagonal bars obtained just beiore the picture pulls into zync.

If more than 3 bars are present just belore the picture pulls into sync, adjuat the horisontal locking range trimmer Ci53A slightly clockwine. If less than 3 bars are present, adjut Cl53A slightly counterclockwies. Turn the pleture control counterclock. wise, momentarily remove the signal and recheck the number
of bars present at the pull in point. Repeat this procedure untll 3 bars are present.

Repeat the adjustments under "Horisontal Frequency Adjustment" and "Horisontal Locking Range Adjuntment" until the conditions specified under each are fulfilled. When the horisontal hold operates as outlined under "Check of Horisontal Oscillator Aligmment" the oecillator is properly adjustod.

If it is impossible to sync the picture at this point and the AGC system is operating properly it will be necessary to adjuat the Horisontal Onclllator by the method outlined in the allignment procedure.

For field purposes paragraph " \(\mathrm{A}^{\prime \prime}\) under Oscillator Wavelorm Adjustment may be omitted.

CENTERING ADJUSTMENTS.-Centoring is ablained by adjustment of the centering controls and by mechanically orienting the focus coil with three adjustment screws shown in Figure 3. The focus coil should be concentric around the neck of the kinescope to prevent curvature of the raster.

Adjust the focus coll until it in at right anglee to the nock of the kinencope. Center the picture with the electrical centering controls. If a shadow appears on a corner of the picture. adjust the focus coil centering screwn to eliminate the shadow and re-center the picture with the electrical centering controls.
FOCUS COIL ADJUSTMENTS.-II, ater making the centoring adjustments in the above paragraph, a corner of the picture is shadowed, il will be necessary to loosen the focus cofl mounting screws (chown in Figure 3) and chanae the position of the coil to eliminate the shadow. Re-center the picture by adjustment of the electrical centering controls and the focu coil centering adjustments.
Recheck the position of the ion trap magnet to insure that maximum brilliance is obtained.

HEIGET AND VERTICAL LDERRITY ADJUSTMENTS.-Adjust the height control (R155 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R162 on rear apron) until the test pattern is symmetrical hom top to bottom. Adjustment of elther control will require a readjustment of the other. Adjuat vertical centering to align the picture with the mask.

WIDTH DRIVE AND HORIZONTAL LINEARITY ADJUST. MENTs.-Adjust the horisontal drive control C1538 to give a picture of maximum width within the limits of good linearity. Adjuat the horisontal linearity control L 113 to provide beit linearity.

A width control coil and a width solector wwitch are provided. With the switch in position 1 (fully counterclockwise), adjuit the width coil until the picture fille the mask. On low line voltages it may not be possible to get sufficient width by adjustraent of the width coll. In this case turn the width selector ewitch clockwie to position 2. In this position the width coll is disconnected, and adjustment of the width coll will have no offect. For still greater width, turn the width selector switch fully clockwise to position 3. In this position, the 6BG6G screen voliage is increased as well as disconnecting the widith control coil.

Adjustments of the horisontal drive control affect horisontal ancillator hold and locking ranqe. If the drive control was adjuitod, recheck the occillator allignment.

FOCUS.-Adjust the focus control (R235) on chassis rear apron) for maximum definition in the test pattern vertical "wedge" and bent focus in the white areas of the pattern.
CRECE to see that the cushlos and yoke thumberowis and the focul coll mountling ecrewt are tight

VIDEO IIAs CONTROL-Nomally the video blas control (R206) should be in the fully clockwise position. To check to see if this is the correct position, turn the pleture control clockwise and adjust the brightneas control until the retrace lines just disappear. If the whiles are compressed as indicated by a "washed out" appearance in light areas, turn the video blas control counterclockwise until the pleture appears normal.

CHECE OF R.F OSCILLATOR ADJUSTMENTS.-Tune in all available station to see if the recelver ref oscillator if adjusted to the proper frequency on all chamenels. If adjustments are required, these should be made by the mothod outlined
in the allgnment procedure. The adjustments for channels 2 through 5 and 7 through 12 are available from the front of the cabinat by removing the mitation selector escutcheon as shown in Figure 7. Adjuitment for channel 13 is on top of the chassis and channel 6 adjustment is in the kinescope well.

In the event that it becomes necessary to adjust the channel 6 ancillator, the core may be reachod through a hole through the cabinet partition in back of the RP177B record changer.


Figure 7-R.F Oscillator Adjustments
RADIO OPERATION-Turn the receiver function wwith to AM and FM positions and check the radio for proper operation. In switching from radio to telovinion or from televiation to radio. approximately 30 seconds warm-up time is required.

PUSH-BUTTON ADJUSTMENT-To adjuat the radio push buttons, set the function switch to the broadcast band position. tune the recelver to the desired station and identify the program. Turn the function switch to the push button position and push the appropriate pueh button. Adjust the corresponding oecillator core until the desired station is heard. Ad. just the corresponding antenna trimmer for maximum outpul. Proceed in the ecime manner to adjut the remaining puih buttons. Figure 10 shows the location of the push-bution adjustments and the range which the adjustments will cover.

Select the proper station call letter marker, mointen the back of the marker and insert in the appropriate recess in the purh button berel. Place marker celluloid cover in the recess over the merker.

RECORD CHANGER OPERATION-Tum the recelver function switch to each phono position and check each record player for proper operation.

Roplace the cabinet back and make sure that the screwie holding it are up tight, otherwise it may rattle or buss when the recelver if operated at high volume.

WERE SIGNAL AREA OPERATION-Since the vast majority of receivers are sold in strong signal areas, the chaseis are aligned to produce the clocnest pletures in thoee arean. How. ever. it the recelver is to be operated in a weak algnal area, better performance can be obtained by "peaking" the r-i unit.

To peak the r-t unit in these receivers, dinconnect the 390 ohm reairtor which is on top of the r-f unit chassis. Adjust L66 to obtain the best possible picture on the weakest low channel station received. By this action, the r-i gain, is increased \(50 \%\) at the expense of rif bondwidth and an mpprovemont in the weak signal pleture results.

On early production recoivers Rll was 1000 ohms and R14 was omitted. In order to "peare" theme units it will be necessary to remove the unit from the receiver and change Rll to 10,000 ohms. Once the unit is removed from the chasele R1I is easily accesstble on the unit rear wafor. When making this change, if the channel number \(2 \mathrm{r}-1\) coil 162 consiats of \(53 / 4\) turns, the outilide turn should be "kniled" one wire dicmeter away from the rest of the coil in order to provide peal response on chomsel 2. The unit should then be replaced and 166 peaked as described above.

If the peaked receiver is subsequently taken to a strong signal area, the resistor hli should bo connected in place and L66 adjustod for "flat" response on the low channels.


Figure 8-Chassis Top View


Figure 9-Chassis Bottom View


Figure 10-Chassis, Top View, Showing Adjustments

\section*{Chitical lead dress}

The lead from terminal S, switch S304, front, to terminal on switch S307, must be dressed between the main base and r-f shelf.
Dress all other leads away from the lead between T301 and S303 front.

Dress lead from pin 1 V305 to T302 down along chassis base.
Keep R327 dressed down along chassis base.
Keep the leads of C329 as short as possible.
The lead from pin 2 V304 must be dressed close to be dressed clowe to base. This lead provides degeneration for the i-istage and neither its length or the point at which it is grounded to the chassis should be changed.
All the \(\mathrm{y}-\mathrm{f}\) and i -f wiring in the receiver is critical as to length and placement and should not be changed unless necessary.

\section*{PUSH BUITON RDJUSTMENT \({ }^{\circ}\)}

Make a list of the desired stations, arranged in order from low to high frequencies.
Turn the range switch to the broadcast position and manually ture in the lirst station on the list.
Turn range switch to push-button position and press in the second trom the lett-hand button.
Adjust the oscillator core.rod to recelve the lirst station.
Adjust the antenna trimmer screw for peak output on the first station.
Proceed in the same manner to adjust for the remaining stations. Repeat adjustments for best results.

RADIO VOLTAGE CHART
Voltages measured in respect to ground, using a "VoltOhmyst."
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Tube & Type & Elemont & Pin & Tel. & Phono. & FM \\
\hline \multirow[t]{2}{*}{V301} & \multirow[t]{2}{*}{6BA6} & Plate & 5 & - & 175 & 188 \\
\hline & & 8 cg. & 6 & - & 86 & 87 \\
\hline \multirow{3}{*}{V302} & \multirow{3}{*}{6BE6} & Plate & 5 & - & - & 130 \\
\hline & & G 2, 3,4 & 887 & - & - & 120 \\
\hline & & G. & 1 & - & - & -7.8 \\
\hline \multirow{4}{*}{V303} & \multirow{4}{*}{6BA6} & Plate & 5 & - & - & 250 \\
\hline & & 8 cg . & 6 & - & 30 & 52 \\
\hline & & Grid & 1 & - & -. 52 & -. 45 \\
\hline & & Cath. & 7 & - & . 42 & 1.1 \\
\hline \multirow{3}{*}{V304} & \multirow{3}{*}{6BA6} & Plate & 5 & - & 228 & 215 \\
\hline & & 8 cg . & 6 & - & 1.0 & 110 \\
\hline & & Cath. & 7 & - & 1.15 & 1.0 \\
\hline \multirow[t]{2}{*}{V305} & \multirow[b]{2}{*}{6AU6} & Plate & 5 & - & 0 & 250 \\
\hline & & Scg. & 8 & - & 145 & 184 \\
\hline V308 & 6AL5 & - & - & - & - & - \\
\hline \multirow{4}{*}{V307} & \multirow{4}{*}{68A6} & Plate & 5 & - & 211 & 187 \\
\hline & & Scg. & 6 & - & 72 & 68 \\
\hline & & Grid & 1 & - & 0 & 0 \\
\hline & & Cath. & 7 & - & 8.3 & 7.5 \\
\hline \multirow[t]{2}{*}{V308} & \multirow[t]{2}{*}{6BF6} & Plate & 7 & - & 127 & 118 \\
\hline & & Cath. & 2 & - & 6.6 & 8.2 \\
\hline \multirow[t]{2}{*}{V309} & \multirow[t]{2}{*}{68A6} & Plate & 5 & - & 82 & 60 \\
\hline & & Scy. & 6 & - & 22 & 123 \\
\hline \multirow[t]{2}{*}{V310} & \multirow[t]{2}{*}{BAV6} & Plate & 7 & 88 & 95 & 84 \\
\hline & & Grid & 1 & -. 8 & -. 8 & -. 8 \\
\hline \multirow{3}{*}{V311} & \multirow{3}{*}{6C4} & Plate & 185 & 170 & 145 & 182 \\
\hline & & Grld & 6 & +39 & +47 & +25.5 \\
\hline & & Cath. & 7 & 48 & 57.5 & 5.2 \\
\hline \multirow{4}{*}{\[
\begin{aligned}
& \text { V312 } \\
& \text { V313 }
\end{aligned}
\]} & \multirow{4}{*}{6V8GT} & Plate & 3 & 240 & 290 & 270 \\
\hline & & Scg. & 4 & 80 & 195 & 175 \\
\hline & & Grid & 5 & -122 & -78 & \(-91.5\) \\
\hline & & Cath. & 8 & -109 & -81 & -75 \\
\hline
\end{tabular}


Figure 11--Dial and Drive Cord Assembly

Figure 12 -Partial Diul Scale (Exact Size, May Be Used During Align. ment).

OIAGRAM OF ORIVE CORO SHOWN WITH DRUM IN EXTAEME CLOCKWISE POSITION (CONOENSEA AT MAX. CAPACITY)



If any lead dressing is necessary, it should be done before aligning the receiver. See Critical Lead Dress on page 8 . Before aligning set, completely mesh the gang and set the dial pointer to the mechanical max. calibration point at extreme left end of dial. When making a complote alignment follow the tabulated form below in sequence. If ouly a portion of the circuit is to be aligned select the portion required and follow the remaining steps in the chart. Any adjustments made on the FM 10.7 mc . I-F's make it necensary to adjust the AM 455 kc . I-F's.

\section*{FM ALIGNMENT}
\begin{tabular}{|c|c|c|c|c|}
\hline Steps & Connect High Side of Otc. to- & Tune Oac. to- & Radio Dial Tuned to- & Adjust \\
\hline 1 & \multicolumn{4}{|l|}{Set the receiver function switch to the FM position. Connect d-c probe of a "Voltohmyme to the negative lead of the 5 mid electrolytic capacitor C372. Connect the common lead of the meter to chassis.} \\
\hline 2 & Driver grid, pin 1, of V5 in series with \(.01 \mathrm{~m} / \mathrm{d}\) & \(10.7 \mathrm{mc} .\), . 1 volts output & - & Ratio Delector transformer T303 fop for maximum d-c voltage across C372. (Approx. 2.5 v.) \\
\hline 3 & \multicolumn{4}{|l|}{Remove meter leads. Connect 68,000 -ohm resistore (within \(1 \%\) of each other) in series, acroms the 10,000 -ohm ratio detector load resistor H365. Connect the common lead of the "VoltOhmyst" to junction of the 68,000 -ohm resistors and the d-c probe to the junction of R335 and R361.} \\
\hline 4 & Same as step 2 & Same as atep 3 & - & With "Voltohmyst" connected as in step 3, adjuat T303 bottom core for zero d-c balance on the meter. \\
\hline 5 & \multicolumn{4}{|l|}{Repeat steps 2 and 4 until no change occurs with further core adjustments.} \\
\hline 6 & \multicolumn{4}{|l|}{Remove the 68,000 ohm resistors. Connect "Voltohymst" d-c probe to C372 negative lead and the meter common lead to chastis.} \\
\hline 7 & Mixer grid pin \#l of 6BA6 in series with a .01 mid capacitor. Keep leads to grid and ground very short. & \begin{tabular}{l}
10.7 mc . \\
Keep the osc. output adjusted to provide 2 to 3 volt across C372.
\end{tabular} & - & \begin{tabular}{l}
- T302 top and bottom FM cores alternately loading pri. and sec. with 680 ohms while the opposite alde of the transformer is being adjusted for maximum voltage acrome C372. \\
T301 top and bottom FM cores same as above.
\end{tabular} \\
\hline 8 & \multirow[t]{2}{*}{To tap of antenna coil L301 in series with 270 ohms.} & 106 mc . & 106 mc. & OSC. C324 for maximum voltage acrose C372. \\
\hline 9 & & 90 mc . & 90 mc . & OSC. L310 for maximum voltage acroes C372. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 10 & \multicolumn{8}{|l|}{Repeat steps 8 and 9 for exact calibration. Check a 95 mc . signal against dial calibration to insure against alignment to image.} \\
\hline 11 & & 106 mc . & 106 mc . & H.F C312 for & maximum & voltage & across & C372. \\
\hline 12 & & 90 mc . & 90 mc . & R-F L308 for & maximum & voltage & across & C372. \\
\hline 13 & \multicolumn{8}{|l|}{Repeat steps 11 and 12 for maximum output. Repeat steps 8 and 9 then 11 and 12 if necessary.} \\
\hline 14 & \multirow[b]{2}{*}{Same as step 8} & 106 mc . & 106 mc . & ANT. C302 for & maximum & voltage & acrome & C372. \\
\hline 15 & & 90 mc. & 90 mc . & ANT. L301 for & maximum & voltage & across & C372. \\
\hline 16 & \multicolumn{8}{|l|}{Repeat steps 14 and 15 lor maximum output.} \\
\hline
\end{tabular}
- Near the correct core position the zero point is approached rapidly and continued adjustment caruses the indicated polarity to reverse. A slow approach to the zero point is an indication of severe detuning, and the bottom core should be fumed in the opposite direction.
- This method. which is known as alternate loading, involves the use of a 680 -ohm resistor to load the plate winding while the grid winding of the same transformer is being peaked. Then the grid winding is loaded with 680 -ohm resistor while the plate winding is being peaked. When windings are loaded, it is necessary to increase the 10.7 mc . input, since gain will decrease and voltage across C372 will be lens.

\section*{AM ALIGNMENT}

Connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output low to avoid a-v-c action. Connect an output meter across the speaker voice coil, and turn the receiver volume control to marimum. "A" band must be allgned before "C" band.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Steps & Connect the High Side of the Test Osc. to- & Tune Test Osc. to- & Range Switch & Turn Radio Dial to- & Adjust the following \\
\hline 1 & Pin \#l of 6BA6 (V303) in series with a 5.6 mmid capacitor & \[
\begin{gathered}
455 \mathrm{kc} \text {. } \\
30 \% 400 \mathrm{cy} . \\
\text { mod. }
\end{gathered}
\] & "A" Band & Low Freq. end of Dial & - Top and bottom AM cores of T301 and T302. (For max. voltage across voice coil.) \\
\hline 2 & "A" band ant. coil pri. through dummy ant. comprised of 200 mm & 455 kc. 30\% mod. & Push Button & " & Adj. I-F Trap C309 for minimum voltage across voice coil. \\
\hline 3 & " & 1400 kc. 30\% mod. & " \(\mathrm{A}^{\prime}\) " Band & 1400 kc. & OSC., C339-R-F, C310-ANT., C303 (For max. voltage acrose voice coil.) \\
\hline 4 & " & 600 kc . 30\% mod. & " \(A^{\prime \prime}\) Band & 600 kc. & OSC., L311-R-F. L306-ANT., L316 (For max. voltage across volce coil.) \\
\hline 5 & \multicolumn{5}{|l|}{Repeat steps 3 and 4 loz maximum output and untll further adjustment does not improve reaponse.} \\
\hline 6 & \multirow[t]{2}{*}{"A" band ant. coil pri. through dummy ant. of 25 monf in series with 150 ohms} & 15.2 mc . & " \(\mathrm{C}^{\prime \prime}\) Band & 15.2 mc . & **OSC., C340-ANT., C305 for may. \\
\hline 7 & & 9.5 mc . & "C" Band & 9.5 mc . & OSC.. L312-ANT., L303 for max. \\
\hline 8 & \multicolumn{5}{|l|}{Hepeat steps 6 and 7 for maximum output and until turther adjustment does not improve response.*"*} \\
\hline
\end{tabular}
 the same transformer is being adjusted.
- To guard against the possibility of alignment to image frequencies increase the temt oscillator output at 15.2 mc. and fune the recaiver to approx. 14.3 mc . on the dial. The oscillator nignal should be heard, though perhaps only faintly. Tune the oscillator to 9.5 mc. and the receiver to 10.6 mc . In this case, the oscillator aignal should not be heard. If these conditions are not satisfied, the receiver is incorrectly aligaed.


\section*{RADIO CIRCUIT DESCRIPTION}

The function switch (S301, S302, S303, S304, S305, S306) controls the following:
\begin{tabular}{ll} 
S306 & AC power input to phono motors \\
S305F & Ant. selections \\
S305R & Ant. selection and record changer audio input to T302 \\
S304R & Ant. tuning and 6.3 V . to dial lamps and V304 heater \\
S304F & Ant. tuning \\
S303R & R.F. tuning \\
S303F & R.F. tuning and lst I. F. trans. primary \\
S301R & Osc. tuning \\
S301F & Osc. tuning and "B" plus input to V305 plate \\
S302F & AVC selection and distribution \\
S302R & TV sound input from J308 \\
& AM sound input from T302 \\
& FM sound input from ratio detector \\
& Phono sound input from V305 screen grid
\end{tabular}

Switch S310 controls A.C. input to the television heater transformer (on TV Chassis) and S3ll changes grid bias on the Hor. Sweep Output tube (Vll3 on TV chassis). Both switches are actuated by the function switch.

The RF stage is untuned on "Push Button" and "C" positions and is tuned on "A" and "FM" positions.
The audio input from the record changers is applied to the secondary of T302 and is amplified by V305. This amplified audio signal appears at the screen grid of V305 and is applied to S302 rear and to the "Magic Monitor". The "Magic Monitor" is made operative (phono input only) or inoperative by a push button (S307A) on the front panel.

\section*{OPERATION OF THE "MAGIC MONITOR"}

This section has three tubes and is located at the rear of the chassis and it operates to control the high frequency components of the audio signal during phono operation.

The audio signal is amplified by V307 and V308 and is rectified by a diode of V308. This rectified voltage is applied to the grid circuit of the reactance tube V309.

The audio signal is also applied to the plate of the reactance tube V309 thru S307A and C367.
When the control voltage on V309 is below a predetermined level the tube will act as a shunt capacity between the audio signal and the chassis thereby attenuating the high frequencies.

Any serious defects in Magic Monitor operation will be made evident by the following tests. An audio oscillator and an a-c voltmeter flat to 3,000 cycles are needed for the tests.
1. Set up the equipment as shown in the illustration below. Although two voltmeters are shown, one meter can be used for both positions.
2. Turn the receiver function switch to \(P H\). Set the audio oscillator to 400 cycles and adjust its output to 0.2 volt (measured across the oscillator output terminals). Adjust the receiver volume control for reading of 1 volt (measured at the voice coil). There should be little or no change in receiver output when the MM push button is actuated.
3. Repeat Step 2 except using oscillator output of 1 volt, 400 cycles. There should be little or no change in receiver output when the MM push button is actuated.
4. Repeat Step 2 except using oscillator output of 1 volt, 3000 cycles. There should be little or no change in receiver output when the MM push button is actuated.
5. Repeat Step 2 except using oscillator output of 0.2 volt, 3000 cycles. With MM push button in the ON position, the output should decrease to approximately \(1 / 5\) of that obtained with MM push button in the OFF position.


Magic Monitor Test Set.up.

The following measurements represent two nets of conditions. In the first condition a 2200 mircovalt test pattern signal wan fed into the recelver, the picture synced. The second condition was obtainod by removing the antenna loads and short circuiting the recelver antenna terminale. Voltages shown are an read with "Ir. VoltOhmynt" between the indicated terminal and chastin ground and with the receiver operating on 117 volte 60 cycles a-c.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Tube No.} & \multirow[b]{2}{*}{Tube Type} & \multirow[b]{2}{*}{Function} & \multirow{2}{*}{Operating Condition} & \multicolumn{2}{|r|}{E. Plate} & \multicolumn{2}{|l|}{E. Seroen} & \multicolumn{2}{|l|}{E. Cathode} & \multicolumn{2}{|r|}{E. Grid} & \multirow[b]{2}{*}{\[
\begin{gathered}
1 \\
\text { Plate } \\
\text { (ma.) }
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
1 \\
\text { Scroon } \\
\text { (ma.) }
\end{gathered}
\]} & \multirow[b]{2}{*}{Notes on Measurements} \\
\hline & & & & Pin
No. & Volts & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Volts & Pin
No. & Volts & Pin
No. & Volta & & & \\
\hline \multirow[t]{2}{*}{V1} & 6AG5 & R-F Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 140 & 6 & 142 & 287 & 0 & 1 & -4.9 & 7 & 3 & \\
\hline & & & \[
\begin{aligned}
& \text { No } \\
& \text { Signal }
\end{aligned}
\] & 5 & 67 & 6 & 111 & 2\&7 & 0 & 1 & -0.3 & 14.0 & 5.0 & \\
\hline V2 & 6AG5 & Converter & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 137 & 6 & 137 & 2\&7 & 0 & 1 & - -5.4 & - & - & \multirow[b]{2}{*}{- Depending upon channel} \\
\hline & & & No Signal & 5 & 108 & 6 & 108 & 287 & 0 & 1 & \[
\begin{gathered}
-2.0 \\
\text { to }-7.0
\end{gathered}
\] & \[
\begin{array}{r}
6.0 \\
10.10
\end{array}
\] & \[
\begin{gathered}
\quad 1.5 \\
\text { to } 3.0
\end{gathered}
\] & \\
\hline \multirow[t]{2}{*}{V3} & 616 & R.F Oscillator & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 182 & 90.5 & - & - & 7 & . 19 & 586 & - 7.0 & - & - & \multirow[b]{2}{*}{-Depending upon channel} \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 182 & \[
\begin{gathered}
968 \\
\text { to } 81
\end{gathered}
\] & - & - & 7 & . 16 & 586 & \[
\begin{gathered}
\cdot-4.5 \\
10-6.6
\end{gathered}
\] & \[
\begin{gathered}
1.8 \\
\text { to } 2.1
\end{gathered}
\] & - & \\
\hline \multirow[t]{2}{*}{V101} & 6AG5 & 1st Pix. I-F Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 136 & 6 & 136 & 287 & < 0.1 & 1 & -4.2 & 0.5 & 0.1 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 110 & 6 & 103 & 287 & 0.17 & 1 & -1.5 & 3.8 & 0.6 & \\
\hline \multirow[t]{2}{*}{V102} & 6AG5 & \begin{tabular}{l}
2d Pix. I-F \\
Amplifier
\end{tabular} & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 122 & 6 & 122 & 287 & 0.9 & 1 & 0 & 10.3. & 2.9 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 96 & 6 & 100 & 287 & 0.6 & 1 & 0 & 6.8 & 2.0 & \\
\hline \multirow[t]{2}{*}{V103} & 6AG5 & 3d Pix. I-F Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 130 & 6 & 137 & 2\&7 & \(<0.1\) & 1 & -4.2 & 1.0 & 3 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 95 & 6 & 106 & 2\& 7 & 0.17 & 1 & -1.5 & 3.6 & 8 & \\
\hline \multirow[t]{2}{*}{V104} & 6AG5 & 4th Pix. I-F Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & 194 & 6 & 137 & 2\&7 & 1.6 & 1 & 0 & 8.3 & 2.7 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & 200 & 6 & 113 & 2\& 7 & 1.2 & 1 & 0 & 7.1 & 1.4 & \\
\hline \multirow[t]{2}{*}{V105} & 6AL5 & \begin{tabular}{l}
Picture \\
2d Del.
\end{tabular} & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 7 & -117 & - & - & 1 & -115 & - & - & 0.2 & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 7 & -130 & - & - & 1 & -125 & - & - & 0.3 & - & \\
\hline \multirow[t]{2}{*}{\[
\underset{\mathrm{B}}{\mathrm{~V} 105}
\]} & 6RL5 & \[
\text { Sync } \text { Limiter }
\] & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 2 & -131 & - & - & 5 & -46 & - & - & \(<0.1\) & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 2 & -100 & - & - & 5 & -52 & - & - & \(<0.1\) & - & \\
\hline \multirow[t]{2}{*}{V106} & 6AU6 & lat Video Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 5 & -68 & 6 & 27 & 7 & -114.5 & 1 & -117 & 3.9 & 1.8 & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 5 & -72 & 6 & 25 & 7 & -124 & 1 & -130 & 3.7 & 1.6 & \\
\hline V107 & \[
\begin{aligned}
& \text { 6K6 } \\
& \text { GT }
\end{aligned}
\] & 2d Vidoo Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 3. & -68 & 4 & 140 & 8 & -47 & 5 & -68 & 10.0 & 2.5 & \multirow[b]{2}{*}{Maximum contrant} \\
\hline & & & \[
\begin{aligned}
& \text { No } \\
& \text { Signal }
\end{aligned}
\] & 3 & \(\cdot 34\) & 4 & 120 & 8 & -52 & 5 & -72 & 11.0 & 2.3 & \\
\hline \multirow[t]{2}{*}{V108} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \text { GT }
\end{aligned}
\] & AGC Amplifier & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Slgnal }
\end{gathered}
\] & 5 & -24 & - & - & 6 & -50 & 4 & -51 & 0.4 & - & \\
\hline & & & No Signal & 5 & -7 & - & - & 6 & -56 & 4 & -60 & <0.1 & - & \\
\hline \multirow[t]{2}{*}{\[
\overline{\mathrm{V}} \mathrm{~B}
\]} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \text { GI }
\end{aligned}
\] & Vertical Oscillator & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 2 & 54 & - & - & 3 & -110 & 1 & -157 & 0.32 & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 2 & 39 & -- & - & 3 & -125 & 1 & -171 & 0.32 & - & \\
\hline \multirow[t]{2}{*}{V109} & \[
\begin{aligned}
& \text { GSN7 } \\
& \mathbf{G T}
\end{aligned}
\] & \[
\begin{aligned}
& \text { AGC } \\
& \text { Rectifier }
\end{aligned}
\] & \[
\begin{gathered}
2200 \mathrm{Mu} \\
\text { Signal }
\end{gathered}
\] & 5 & 27 & - & - & 6 & -51 & 4 & -68 & 0.25 & - & \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Siqnal }
\end{gathered}
\] & 5 & 19 & - & - & 6 & -59 & 4 & -70 & 0.25 & - & \\
\hline \multirow[t]{2}{*}{V109} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \text { GT }
\end{aligned}
\] & lst Sync Separator & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Slqnal }
\end{gathered}
\] & 2 & 23 & - & - & 3 & -52 & 1 & -68 & 0.13 & - & \\
\hline & & & \[
\begin{aligned}
& \text { No } \\
& \text { Signal }
\end{aligned}
\] & 2 & 18 & - & - & 3 & -63 & 1 & -70 & 0.18 & - & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Tube No.} & \multirow[b]{2}{*}{Tube Type} & \multirow[b]{2}{*}{Function} & \multirow[t]{2}{*}{Operating Condition} & \multicolumn{2}{|r|}{E. Plate} & \multicolumn{2}{|l|}{E. Screen} & \multicolumn{2}{|l|}{E. Cathode} & \multicolumn{2}{|r|}{E. Grid} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { I } \\
\text { Plate }
\end{gathered}
\]
\[
(m \alpha .)
\]} & \multirow[b]{2}{*}{\(\stackrel{1}{\text { Screen }}\) ( \(m a\). )} & \multirow[b]{2}{*}{Notes on Mecsurements} \\
\hline & & & & \begin{tabular}{l}
Pin \\
No.
\end{tabular} & Volts & \begin{tabular}{l}
Pin \\
No.
\end{tabular} & Volts & Pin No. & Volt & \begin{tabular}{l}
Pis \\
No.
\end{tabular} & Volts & & & \\
\hline \multirow[t]{2}{*}{V110} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \text { GT } \\
& \hline
\end{aligned}
\] & Sync Amplifier & \begin{tabular}{l}
\(2200 \mathrm{Mu} . \mathrm{V}\). \\
Signal
\end{tabular} & 2 & 81 & - & - & 3 & -46 & 1 & -48 & 10.8 & - & \\
\hline & & & No Signal & 2 & 71 & - & - & 3 & -50 & 1 & -54 & 10.8 & - & \\
\hline \multirow[t]{2}{*}{V110} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \text { GT }
\end{aligned}
\] & Sync Separator & 2200 Mu. V. Slgnal & 5 & 210 & - & - & 6 & -44 & 1 & -131 & 0.34 & - & \\
\hline & & & No Signal & 5 & 200 & - & - & 6 & -51 & 4 & \(-100\) & 0.15 & - & \\
\hline \multirow[t]{2}{*}{V111} & \[
\begin{aligned}
& \text { 6K6 } \\
& \text { GT } \\
& \hline
\end{aligned}
\] & Vertical Output & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Sigmal }
\end{gathered}
\] & 3 & 197 & 4 & -197 & 8 & -76 & 5 & -96 & 7.7 & 1.3 & -Screen \\
\hline & & & \[
\begin{gathered}
\text { No } \\
\text { Signal }
\end{gathered}
\] & 3 & 185 & 4 & \({ }^{\bullet} 185\) & 8 & -93 & 5 & \(-110\) & 7.6 & 1.3 & connected to plate \\
\hline \multirow[t]{3}{*}{V112} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \text { GT } \\
& \hline
\end{aligned}
\] & Horizontal Osc. Control & \begin{tabular}{l}
\[
2200 \text { Mu. V. }
\] \\
Signal
\end{tabular} & 2 & 25 & - & - & 3 & \(-120\) & 1 & \(-110\) & 0.24 & - & Horizontal hold control \\
\hline & & & No Signal & 2 & -8 & - & - & 3 & -146 & 1 & -128 & 0.1 & - & completely clockwise \\
\hline & & & No Signal & 2 & \(+60\) & - & - & 3 & \(-130\) & 1 & -114 & 0.13 & - & Hold control counterclockwis \\
\hline \multirow[t]{2}{*}{V112} & \[
\begin{aligned}
& \text { 6SN7 } \\
& \text { GT }
\end{aligned}
\] & Horizontal Oscillator & \begin{tabular}{l}
\[
2200 \mathrm{Mu} . \mathrm{V} .
\] \\
Signal
\end{tabular} & 5 & 75 & - & - & 6 & -115 & 4 & -190 & 2.3 & - & \\
\hline & & & No Signal & 5 & 60 & - & - & 6 & -125 & 4 & -204 & 1.5 & - & \\
\hline \multirow[t]{2}{*}{V113} & 6BG6G & Horizontal Output & \begin{tabular}{l}
\[
2200 \mathrm{Mu} . \mathrm{V} .
\] \\
Signal
\end{tabular} & Cap & * & 8 & 180 & 3 & -100 & 5 & -120 & 90.0 & 10.0 & * 5200 volt \\
\hline & & & No Signal & Cap & Do Not Meas. & 8 & 160 & 3 & -112 & 5 & -126 & 92.6 & 10.4 & pulse present \\
\hline \multirow[t]{2}{*}{V114} & \[
\begin{aligned}
& \text { 1B3GT } \\
& 18016
\end{aligned}
\] & H. V. Rectifier & Brightness Min. & Cap & - & - & - & 287 & 6400 & - & - & - & - & -6000 volt \\
\hline & & & Brightness Max. & Cap & Do Not Meas. & - & - & 247 & 6100 & - & - & - & - & pulse present \\
\hline \multirow[t]{2}{*}{V115} & \[
\begin{aligned}
& \text { 1B3GT } \\
& \text { /8016 }
\end{aligned}
\] & H. V. Rectifier & Brightneas Min. & Cap & - & - & - & 287 & 11700 & - & - & - & - & * 6000 volt \\
\hline & & & Brightness Max. & Cap & Do Not Meas. & - & - & 247 & 11600 & - & - & - & - & pulee present \\
\hline \multirow[t]{2}{*}{V116} & 5V4G & Daraper & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal }
\end{gathered}
\] & 486 & - & - & - & 288 & 350 & - & - & 93.0 & - & -1200 volt \\
\hline & & & No Signal & 486 & Do Not Meas. & - & - & 288 & 340 & -- & - & 92.0 & - & pulee prenent \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { V117 } \\
& \text { V118 }
\end{aligned}
\]} & 5U4G & Rectifier & \begin{tabular}{l}
\[
2200 \mathrm{Mu} . \mathrm{V} .
\] \\
Signal
\end{tabular} & 486 & - 365 & - & - & 288 & 277 & - & - & +125 & - & \begin{tabular}{l}
\(\dagger\) Per tube \\
- A-C mearured
\end{tabular} \\
\hline & & & No Signal & 486 & - 365 & - & - & 288 & 264 & - & - & +130 & - & from plate to trans. center lap \\
\hline \multirow[t]{2}{*}{V119} & 6AU6 & 1st Sound 1-F Amplifier & \[
2200 \mathrm{Mu} . \mathrm{V} .
\]
Signal & 5 & 131 & 6 & 131 & 7 & 0.65 & 1 & 0 & 6.0 & & \\
\hline & & & No Signal & 5 & 106 & 6 & 106 & 7 & 0.55 & 1 & 0 & 4.9 & & \\
\hline \multirow[t]{2}{*}{V120} & 6AU6 & 2d Sound I-F Ampllier & \[
2200 \mathrm{Mu} . \mathrm{V} .
\] Signal & 5 & 136 & 6 & 80 & 7 & 0 & 1 & -0.6 & 3.5 & & \\
\hline & & & No Signal & 5 & 111 & 6 & 62 & 7 & 0 & 1 & -0.7 & 3.0 & & \\
\hline \multirow[t]{2}{*}{V121} & 6AL5 & Sound Discrim. & \begin{tabular}{l}
\[
2200 \mathrm{Mu} . \mathrm{V} .
\] \\
Signal
\end{tabular} & 2 & -1.4 & - & - & 5 & 0 & - & - & - & - & \\
\hline & & & No Signal & 2 & \(-0.7\) & - & - & 5 & 0 & - & - & - & - & \\
\hline \multirow[t]{2}{*}{V122} & 6AV6 & Bia Clamp & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal } \\
\hline
\end{gathered}
\] & 7 & - & - & - & 2 & 0 & 1 & - & - & - & \\
\hline & & & No Sigrad & 7 & - & - & - & 2 & 0 & 1 & - & - & - & \\
\hline \multirow[t]{2}{*}{V124} & 16AP4 & Kinescope & \[
\begin{gathered}
2200 \mathrm{Mu} . \mathrm{V} . \\
\text { Signal } \\
\hline
\end{gathered}
\] & Cup & 11700 & 10 & 320 & 11 & 26 & 2 & -29 & 0.08 & - & Average Brightnees \\
\hline & & & No Signal & Cap & 11600 & 10 & 305 & 11 & 11 & 2 & -47 & 0.08 & - & Average Brightness \\
\hline
\end{tabular}


Figure 14-R.F Unit Wiring Diagram

\section*{TELEVISION CRITICAL LEAD DRESS:}
1. The ground bus from pin 2 and the center shield of V120 socket should not be shortened or rerouted.
2. Dress the body of R195 as close to tube pin as possible.
3. Do not change the dress of the filament leads or the bypass capacitors in the picture or sound i-f circuits. The filament leads between V120, V121 and V122 should be down against the chassis and away from grid or plate leads.
4. Dress all leads crossing the i-f circuits close to the chassis and held so they cannot move and change alignment.
5. If it is necessary to replace any of the 1500 mmf capacitors in the picture i-f circuit, the lead length must be kept as short as possible.
6. Picture i-f coupling capacitors \(\mathrm{C} 106, \mathrm{C} 111, \mathrm{Cl15}\) and C 121 should be up and away from the chassis and should be clear of the pix i-f transformer adjustments by at least \(1 / 4\) inch. If the dress of any of these capacitors is changed, the i-f alignment should be rechecked.
7. Leads to L102 and L103 must be as short as possible.
8. Dress peaking coils L105, L106, L107, L108 and L109 up and away from the chassis.
9. Dress R129 away from L109.
10. Dress C183 across V121 tube pins 5 and 6 with leads not exceeding \(3 / 3\) inch.
11. Dress the blue lead from pin 5 of V122 down against the chassis and under two shielded leads.
12. Dress C129 and C199 up and away from the chassis.
13. Dress the yellow lead from the picture control away from the chassis. Dress the yellow lead from pin 8 of V106 uway from the chassis.
14. Dress the green lead from pin 8 of V107 away from the chassis.
15. Dress R168, R169, R170, R176 and R178 up and away from the chassis.
16. The leads to the volume control should be dressed down against the chassis and away from V119 and V120.
17. Dress the yoke red horizontal deflection lead under the clips of the fixed H. V. shield.
18. Dress the green lead from C166 close to the chassis and away from the red lead connected to Tllo-4.
19. Insert the red lead into T110-4 from the top of the terminal.
20. All soldered connections in the high voltage compartment should be free of sharp points.
21. Contact between the r-f oscillator frequency adjustment screws and the oscillator coils or channel switch eyelets must be avoided.

```


[^0]: At RCA's famed laboratories in Princeton, N. J., intensive research and analysis result in continuous technical advances in electronics. The benefits of the advances are passed along to you in new and improved products.

[^1]: VOLTAGES MEASURED TO COMMON WIRING WITH "VOLTOHMYST" - SHOULO HOLD WITHIN $\pm 20 \%$

[^2]: - Two or more poinfs may be found which lower the audio out put. At the correct point the minimum audio output is approached rapidly and is much lower than at any incorrect point.
 ti Align T3 and T2 by meane of alternate loading as explained under AM alignment. Use a 880 ohm resistor instead of a 47,000 ohm resistor and load the FM windings.
 * 11 and $\mathrm{L2}$ are adjustable by increasing or decreasing the spacing botween iurns.

[^3]: *Two peaks should be found, use one having lowest capacity.
 *"Two peaks should be found, use one having highest capacity.
 Note: Check for image frequences.
 \dagger Radio dial tuned to 15.2 mc . as in step 9 , tune test osc. to 16.11 mc . where a weaker signal should be heard.
 $\dagger+$ Radio dial tuned to 6.1 mc . as in step 10 , tune test osc. $\mathbf{t} \mathbf{7 . 0 1} \mathbf{~ m e}$, where a weaker signal should be heard.

[^4]: Specifications continued on page 2

[^5]: ** Where separate readings are not listed for max. and min. gain settings of the picture control, the effect of the control is slight and readings are given for "Picture Min."

[^6]: The large end of the kinescope bulb-particularly that part at the rim of the viewing surface-must not be struck, scratched or sub. jected' to more than moderate pressure at any time. In installation, if the lube sticks of ferls to slip smoothly into its sockel os deflecting yoke. investigate and remove the cause of the trouble. Do not lorce the tube. Hefer to the Receiver Installation section for detailed instructions on kinescope installation. All RCA kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the secelver. Xeop the carton for possible future use.

[^7]: \qquad

[^8]: The large end of the kinescope bulb-particularly that part at the rim of the viewing surface-must not be struck. scratched or subjected to more than moderate pressure at any time. In installation, if the tube sticks or tails to slip smoothly into its socket. or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Refer to the Receiver Installation section for detailed instructions on kinescope installation. All RCA kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the receiver. Keep the carton for possible future use.

