RCA VICTOR SERVICE DATA

VOLUME VI 1950

RADIO RECEIVERS

PHONOGRAPHS

TELEVISION

RADIO CORPORATION OF AMERICA RCA Victor Division Harrison, N. J., U.S.A.

rcaVictor SERVIC IUATA (또 (
 - television recelvers
 - RADIO RECEIVERS -PHONOGRAPHS

This volume is a compilation of Service Data previously issued for the year 1950 with the latest changes and corrections. "RCA Victor," "

PREPARED BY RCA SERVICE CO., INC.
RADIO. CORPORATION OF AMERICA
rCA VICtor division
HARRISON, N. J., U. S. A.

INDEX

The page numbers given in the index below refer to the number at the top of the pages. The numbers which are found in the text and at the bottom of some pages refer only to that particular Service Data.
The regular Service Data will be found on the pages indicated by bold face numbers (1, 2, 3, etc.), supplementary data is indicated by light face numbers.

RADIOS AND PHONOGRAPHS

Model	ChassisNo.Page No.
A-55	RC-1087 1
A-78	RC-1084A 5
A-82	RC-1094
A-91	RC-1095 15
A-101	.RC-1096 or RC-1096B 23
A-106	RC-622 33
A-108	RC-1096 or RC-1096B41, 23
B-411RC-1098 or RC-1098A 43
	RC-1082 or RC-1082A 47
BX55	RC-1088 or RC-1088B
BX57	RC-1088A or RC-1088C 55
X551	RC-1089B59, XI
X552	RC-1089C59, XI
X711	RC-1070A 61
9 Y 510	RC-1077A of RC-1077C 67
9 Y 511	.RC-1077B71, 67
45-EY	.RS-132, RS-132A or RS-132F 73
45-EY-1	RS-132F 73
45-EY-2	.RS-138A or RS-138H 77
45-EY-3	.RS-136, RS-136A or RS-136C79, XI
45-EY-15	5RS-I32H 73
45-JRecord Player81
45-J-2Record Player83, 82
45-J-3Record Player84, 82
45-W-9RC-1095A85, 15
45-W-10	0RC-1096A or RC-1096C89, 23
Supplementary Information:	
9X561	
9×571,	1, 9X572

RECORD CHANGERS

Supplementary Information: Barkhausen Oscillation XIII
Corona Interference-19" Models XVII
Television Interference, Causes and Cure XIV
I-F Harmonic Interference XVI
EM-PM Focus Coil Troubles XVIII
Matching Co-ax to Balanced Line XVII
Horizontal Oscillator Radiation XIII
Substitute 12" PM Speakers XVII
Alignment Hints XII
Changes in R-F Units XIII
Television Protection Feature XIII
60 cycle Buzz in Sound XVI
Index to Chassis Nos. VII, VIII, IX, X 1943-1949 Service Data Listing VI
Model vs. Record Changer X

1 YOU CASH IN ON RCA'S REPUTATION

When you display the RCA emblem in your window or within your shop, you gain immediate recognition from your customers. They recognize RCA as "World leader in radio . . . first in television."

2 YOU'RE POSITIVE OF RCA'S QUALITY AND ACCURACY

When you service an RCA Victor home instrument with RCA tubes or components, you're sure that they're right. They are identical twins of the tubes and parts originally used, and may have actually been manufactured at the same time. All the engineered quality and high standards of the original parts are exactly duplicated, electrically and mechanically.

3 YOU BUILD A LOCAL NAME AS AN RCA SERVICE DEALER

RCA cartons in your shop identify you in your neighborhood as a source for genuine RCA tubes and components, and for genuine RCA Victor replacement parts. Customers will count on you to return their RCA Victor instruments to their original high performance standards.

4 YOU PROTECT YOUR REPUTATION

When something goes wrong with a set you service, your customer places the blame squarely with you, not the distributor or the manufacturer of the "almost as good" part you installed. Every call-back means lost time and money, and a dissatisfied customer rarely returns. You protect your reputation when you use genuine RCA quality parts. You make more than a sale . . . you win a customer, who will learn to depend upon you for all his service needs.

5 YOU ARE ENABLED TO SERVICE ANY RCA VICTOR SET

RCA stocks over 40,000 different parts. The majority of replacement parts for RCA Victor instruments are maintained in stock for at least 10 years. Thus, you're sure of obtaining genuine RCA parts to fit RCA Victor instruments.

6 YOU ORDER RCA PARTS WITH SPEED AND EASE

Your RCA distributor carries an adequate supply of RCA parts, or he can obtain them promptly from RCA's conveniently located warehouses. Factory availability means that you can repair RCA Victor Instruments old and new, with a minimum of effort, and with the assurance that original performance standards will be duplicated.

7 RCA LEADS THE WAY.. IN RESEARCH AND PERFORMANCE

At RCA's famed laboratories in Princeton, N. J., intensive research and analysis result in continuous technical advances in electronics. The benefits of the advances are passed along to you in new and improved products.

...IN RECEIVING TUBES AND KINESCOPES

RCA Electron Tubes and Kinescopes are produced under superior quality controls . . . tested and re-tested before they are released. The RCA brand on any tube is your assurance that it is the exact twin of the tube used in the original RCA Victor instrument.
The RCA brand has top consumer preference. Point out the RCA emblem and you quickly gain the confidence and acceptance of your trade. Today, more than ever before, dependable quality is a primary requirement for electron tubes in every application-television, AM, FM, communications and industry. Identify yourself with the leader in the field ... RCA.

... IN ELECTRONIC COMPONENTS AND SERVICE PARTS

RCA electronic components are scientifically designed and ruggedly constructed to meet your replacement needs. Each component is the result of RCA's pioneering work in the field of electronics, and is built to actual set-tested designs. Developed by famed electronic engineers, RCA components and service parts are designed specifically to work with the tubes and circuits used in the top electronic instruments in the field. You can always depend upon RCA parts, engineered by America's leading manufacturer of electronic components-RCA.

... IN BATTERIES

RCA provides a complete line of highest quality dry batteries - radioengineered for extra hours of dependable service. RCA is "The Radio Battery for the Radio Trade." You're sure of an adequate supply when you need it, because RCA production is geared to coincide with peak seasonal demands. RCA Batteries cover 99% of radio battery demand. The standard flashlight dry cell is sealed-in-steel, to keep it fresh on your shelves, virtually leakproof and moisture-proof. Every cell is aged and individually tested. Exacting laboratory tests prove that RCA Batteries exceed the average of competitive brands. For long life and peak performance, insist upon RCA batteries.

... IN TEST EQUIPMENT

More than anything else, the test equipment in the serviceman's shop is the key to his future and his reputation. Any compromise with quality can mean the difference between accurate, dependable analysis, and constant call backs with consequent loss of time, money, and reputation. Test equipment provides the serviceman with a standard upon which he bases all his decisions. That's why the quality of his test equipment must be superior.
RCA Test Equipment is the standard of dependability used in the manufacture of all RCA Victor Home Instruments, where quality and accuracy are the keynote. The RCA equipment you use to test a receiver is very often the very same equipment used to manufacture that receiver. That's why you can depend upon RCA test equipment.
Accurate, dependable, versatile, economical, attractive . . . these are the qualities that make RCA Test Equipment the best your money can buy.

INDEX (Continued)

1943-1949 SERVICE DATA LISTING

The Service Data listed below will be found in the 1943-1946, 1947-1948 or the 1949 Bound Volumes of RCA Victor Service Data.
Supplementary information is designated with an " S " as a prefix to the bound volume designation.

Model Bound Volume	Model Bound Volume	Model Bound Volume
QHI \qquad 1947-1948	9TW309 \qquad 1949	65U, 65AU \qquad 1943-1946
$\text { 2S7ED } \quad 1947-1948$	9TW333 \qquad 1949	65U-1 \qquad 1943-1946
4QB3, 4QB3X	9TW390 ... 1949	$65 \times 1,65 \times 2 \ldots 1943-1946$
5H	9W51 .-... 1949	65X1, 65X2 $1947-1948$
5H1, 5H2		65X8, 65X9 1943-1946
5Q21, 5Q22, 5Q271947-1948	9W101 ... 1949	
5Q311948	9102 - 1949	66En+mum.........................1943-1946
5Q31X	9W103, 9W105 1949	66ED
	9W106 \qquad 1949 9×561 9×562 \qquad 1949	$66 E-1,66 \times 2,66 \times 3,66 \times 7,$
	$9 \times 561,9 \times 562 \ldots . ~$ 949	$66 \times 1,66 \times 2,66 \times 3,66 \times 7$, 66X8, 66X9 \qquad 1943-1946
6033 …...1947-1948	$\begin{aligned} & 9 \times 571,9 \times 572 \ldots \\ & 9 \times 641,9 \times 642 \ldots \\ & \hline \end{aligned}$	66×11, 66×12, 66X131943-1946
	$9 \times 651,9 \times 652 \ldots 1949$	66×11, 66×12, 66X1351947-1948
60P3 \qquad 1947-1948		67VI, 67AVI1943-1946
60V3	9Y51 .. 1949	67VI, 67AVI S1947-1948
7051 .. 1947 -1948	WCC-9 .. 1949	68R1, 68R2, 68R3, 68R41943-1946
	Q10, Q10A 1943-1946	68R1, 68R2, 68R3, 68R4 ..-51947-1948
8841, 8B42, 8843, 8B46 .--1947-1948	Q10-2, Q10A-21943-1946 Q10-3 ..1943-1946	QU68 \qquad 1947-1948 1943-1946
8BX5	QB11, QB12, QB131943-1946	75×1i, $75 \times 12,75 \times 14$,
$8 B \times 6$ 88×54, 88×55.	Q22A ..1943-1946	75×15, $75 \times 16,75 \times 17$,
88×65 …..................................1947-1948		75×18, 75×191943-1946
	Q34 ... $1943-1946$	$762 \times 11,762 \times 12$
8PCS41		77U ..1947-1948
8R71, 8R72 1947-1948	CV45 ..1943-1946	77V1 ..1947-1948
8R71, 8R72 -......................... S1949	54B1, 54B1-N, 54B2, 5483,	77V2 ..1947-1948
8R74, 8R75, 8R76	54B5, 54B6 \qquad 1943-1946	
8T270, 8TC271	54B1, 54B1-N, 54B2, 54B3,	Q103-2, Q103A-2 1943-1946
	54B5, 54B6 S1947-1948	Q109 .
	55F ..1943-1946	
8TV41 ..1947-1948		
8TV321, 8TV322\|947-1948		
8V7	QB55 \qquad S1947-1948	
		Q122, Q122X1943-1946
8V91 -... 1947-1948	56X, $56 \times 2,56 \times 3$.................1943-1946	RK137-1, RK137-2 1949
8V91 $8 \mathrm{Cl12}$ S1949	56X5 ...1943-1946	RP168 Series .. 1949
8V112 \qquad 1947-1948	56×10	RP168 Series 51950
	56×11 I	RP176, RP176A, RP1768 ..ec. 1943-1946
8 8151 \qquad 1947-1948	58V, 58AV 1943-1946	RPI76, RPI76A, RPI76B ...Sl947-1948
8×53 \qquad 8×72 \qquad 1947-1948	59VI, 59AVI1943-1946	
\qquad $8 \times 71,8 \times 72$ \qquad S1949	QB60 ...1947-1948	RP177, RP177A, RP177B...-1947-1948
$8 \times 521,8 \times 522$ \qquad 1947-1948	QB60 .. 1949	RP178 .. 1947-1948
$8 \times 521,8 \times 522$........................1947-1948	QU61 ..1943-1946	610V1, 610V21943-1946
$8 \times 541, \quad 8 \times 542, \quad 8 \times 544,1987-1948$	Rad. 61-11943-1946	610V1, 610V251947-1948
8 $\times 545,8 \times 546,8 \times 547 \ldots \ldots .1947-1948$	Rad. 61-2 ..1943-1946	612V1, 612V3, 612V41943-1946
$8 \times 541,8 \times 542,8 \times 544$,	Rad. 61-3	612V1, 612V3, 612V4S1947-1948
$8 \times 545,8 \times 546,8 \times 547 \ldots$	Rad. 61-3	621TS ...1943-1946
		630TS, 630TCS1943-1946
		641TV ..1947.1948
9EY3 .. 1949	Rad. 61-8 ...1943-1946	648PTK ...1947-1948
		648PV1947-1948
	Rad. 61-10 1943-1946	711V1, 71IV2, 711 V 1947 -1948
9EY35, 9EY35U, 9EY36,	Postone (PX) 61-10a.......1943-1946	
9EY36U ... 1949	QU62 .. $1947-1948$	730TV1, 730TV21947-1948
91Y		
91YM .	63E, 63EM1943-1946	
9PC41 ... 1949		
		960260-1, -2, -3, -41943-1946
9T240, 9TC240, 9TC245, 1949	R9 \qquad 1943-1946	
9TC247, 9TC249 1949		TV Circuit Description\|947-1948
T246 T270, 9 TC272, 9 TC275 $\ldots . ~$ 949		

INDEX TO CHASSIS NO'S

Identification numbers beginning with R ($R C, R S$, etc.) are used with all radios and some television receivers. Identification numbers bdginning with K (KCS, KRS, etc.) are used exclusively with television.

RADIO CHASSIS

Chassis No.	Model	Chassis No.	Model	Chassis No.	Model
RK-117	711V1, $711 \mathrm{~V} 2,711 \mathrm{~V} 3$, R-F/I-F Chassis	$\begin{aligned} & \text { RC-351C } \\ & \text { RC-351D } \end{aligned}$	$\begin{aligned} & \text { U-124 } \\ & \text { U-122E } \end{aligned}$	RC-427F	TRK-120 Radio Tuner Unit
RK.117A	641TV, 8TV41 Radio R-F/I.F Chassis	RC-351E..	$\begin{aligned} & . \mathrm{U}-119 \\ & .97 \mathrm{~K} \end{aligned}$	RC-427 G	TRK-90 Radio Tuner Unit
RK-121	$612 \mathrm{~V} 1,612 \mathrm{~V} 3,612 \mathrm{~V} 4$ R-F/I-F Chassis	$\begin{aligned} & \text { RC-351K. } \\ & \text { RC-351L. } \end{aligned}$	$\begin{aligned} & .97 K 2,97 T 2 \\ & .96 E 2,96 K 5,96 K 6, \end{aligned}$	RC-429	TRK-5 Radio Tuner Unit
RK.121A	648 PTK, 648PV Radio R.F/I.F Chassis	RC-352.	96T7 $98 \mathrm{EY}, 98 \mathrm{X}, 98 \mathrm{YG}$	RC-435...	9TX-50, 9TX-50M $45 \mathrm{E}, 45 \mathrm{M}-\mathrm{M}, 45 \mathrm{E}-\mathrm{W}$
RK-121C	8V151,R-F/I-F Chassis	RC-352A	97Y	RC.436.	40×-50 to 40×-57
RK-135	8TR29, 8TK29 Radio	RC-352B.	UY-122E	RC. 440	4QB
	Section	RC-352C	UY-124	RC.440A	4QB4
RK-135A	8TR29, 8TK29, 8 TK320	RC-352D	98T2	RC-441.	6Q1
	Radio Section	RC-354.	U-130	RC.441A	.6Q4
RK-135C	.9TW309 Radio Section	RC-354A	HF-4	RC.442.	6Q4X
RK-135D	TA128, TA129, TA169	RC-354B	HF-2	RC.443.	8Q2
	Radio Section	RC-357	9M1	RC.443 B	8QU5-C, 8QU5-M
		RC-357A	9M2	RC-444.	9Q1
RC.315B.	86T6	RC-357J	M-50	RC-444A	9QK
RC-315C.	.5Q1	RC-357K	M-60	RC.449	BK-41, BT-41
RC-318.	.8M	RC-366.	5Q4	RC-453...	.40X-52, 40X-55 (2nd
RC-319.	.87K2, 87T2	RC-381	95X-11		Prod.)
RC-319B	. U-106	RC.381A	95X-6	RC-454...	.9TX-50, 9TX-50M (2nd
RC-320.	.8M1	RC-386.	U.125		Prod.)
RC-320A	8M2	RC-386A	98K2, 98T	RC-455.	BP-55, -56, -85
RC.321..	8M3	RC-386B.	U-25, U-26	RC.456.	46X-11, 46X-12
RC-321A.	8M4	RC-390..	94BK2, 94BT2	RC-456A	46x-13
RC-323.	.95T, 95T1	RC-392	96BK6, 96BT6 Tuner	RC. 457	45X-1, 45×-2
RC.325C	.5Q2			RC-457A.	.45X-1, 45X-2 (2nd
RC-325D	.5Q2X	RC. 394	5Q5, 5Q55, 5Q56		Prod.)
RC-331.	.HF-8, HF-8A	RC.396. ${ }^{\text {RC }}$.5Q5, 5Q55, 5Q56	RC-457D	45X-5, 45X-6
RC-331A	. HF.6	RC.396B	.5Q8	RC.457E.	45X-3, 45X-4
RC-331B.	.U.134, U.134A	RC.396D	5Q12	RC-459..	45X-11, 45X-12
RC-331C.	U-132	RC-396E	.5Q12A	RC.459A.	45×-13
RC.332.	.94X	RC-399	.96T4, 96T5	RC-459B	46X-1, 46X-2
RC-333.	.94BK, 94BT	RC-399A	96 T 6	RC-459C.	46X-3
RC-333A	.94BT6	RC-400.	$96 \mathrm{X}-1$ to $96 \mathrm{X}-4$	RC.459D. .	.45X-11, 45X-12 (2nd
RC.333B.	.94BT1, 94BK1	RC.400A	96X-11 to 96X-14		Prod.)
RC-333C.	.94BT61	RC-401	.9TX-1 to 9TX.5	RC-459E.	45×-13 (2nd Prod.)
RC-335.	.911K		9 X-21,9TX-22	RC-459F.	46X-1, 46X-2 (2nd
RC-335A	.98K	RC-403A	9 9TX-23		Prod.)
RC-335B	99K	RC-404A..	U. 8	RC-459H.	.46X-3 (2nd Prod.)
RC-335C.	.11Q4, 11QK	RC-405.	9 TX-3	RC-459. . .	.45X-111, 45X-112,
RC-335D	. U-126, U. 128	RC-405A..	.9TX-32		Radiola 510
RC-335E	.11QU	RC.405	97X-33	RC-459K	45X-113
RC-335F	910KG	RC.405C	40X-30	RC-459L	45X
RC-335H.	. 997	RC.405D	40x-31	RC-459 M .	. $45 \times-16,45 \mathrm{X}-17$
RC-335K.	. U -129	RC-406	5X5-W	RC-459T...	. $45 \times$-11, 45×-12 (3rd
RC-335KR	U. 30	RC.406A			Prod.)
RC-336.	8QB, 8QBK Tuner Unit	RC-407.	. $94 \mathrm{BP}-1$ Series (94BP. 61, -62, -64, -66, -80,	$\begin{aligned} & \text { RC-461... } \\ & \text { RC-461A.. } \end{aligned}$	$\begin{array}{r} .46 \times-24 \\ .46 \times-23 \end{array}$
RC-337	801 Tuner Unit		-81)	RC-461B.	46X-21
RC-337A	8Q4 Tuner Unit	RC.407B	.94BP.1 (2nd Prod.)	RC-462.	15X
RC-337B	10Q1 Tuner Unit		(94BP-61, -62, -64,	RC-462A	.16X-1, 16X-2, 36X
RC-338	12Q4, 12QK Tuner		-66)	RC-462B	16×-3
	Unit	RC-408	BT-40	RC-462C	. 16×-4
RC-338A	.12QU Tuner Unit	RC-408A	BT-42	RC-464.	Radiola 500, 501
RC. 339.	..HF. 1	RC-408C	BK-42	RC-464A.	. Radiola 511
RC-340.	.94X-1, 94X-2	RC-410.	94BP4, -B, -C, -R	RC-464B.	. Radiola 512,513
RC-341.	. U-111	RC.414.	.6QU	RC-465.	. Radiola P-5
RC-341C	. U. 112	RC.414A	.6Q7	RC-465A.	Radiola P.5
RC-345C	.95x-1	RC-414B	6Q8, 6QK8	RC-472F	. T. 63
RC.345D	. $95 \times$	RC.414C	U-50	RC-473A.	. X-55
RC.345E	.95XL	RC-415	K.60	RC-474D	X-60
RC-345F	.95XLW	RC-415A	. K-80	RC-476.	. K-105
RC. 345 H	U.104	RC.415B	. K-60 (Loop), K-62	RC-477.	.5Q5 (2nd Prod.), Q18
RC. 348.	95T5	RC-415C.	. . K-80 (Loop), K-81,	RC-477A	.5Q6
RC-348A	.96T		K-82	RC-477 ${ }^{\text {B }}$.508 (2nd Prod.)
RC-348C	.96E	RC-415D	K-80 (Loop)	RC-477C	5Q66
RC.348D	96T1	RC-416.	T-64; T-65	RC-478.	.8Q4
RC-348E	. U-115	RC.416A	. T-80	RC.478A.	.704
RC.348F	.95T5LW	RC.418.	.T-55, T-55-S, T-56	RC-478B	7QK4
RC.348H	U-123 (1 band)	RC-418A	K-50	RC.482B	U-9
RC-348J.	. U.121	RC-418B	U. 10	RC-482C	U.9 (2nd Prod.)
RC-348L	U-127E	RC.421.	U-123 (2 bands)	RC-486B	U. 44 Tuner Unit
RC-349.	.97X	RC. 425	T-60	RC-486C	U-45 Tuner Unit
RC-350.	. $9 \times$ to 9×-4	RC-425A	U-12	RC-490	96X-5
RC-350A	.9X-6, 9X-11 to 9X-14	RC-425D	T-62	RC-496	7QB, 7QBK Tuner
RC-351.	. .96K, 96T2	RC-427	TRK-12 Radio Tuner		Unit
RC-351A	.97E, 97KG, 97T		Unit	RC-497.	.K-50 (2nd Prod.)
RC-351B.	. .96K2, 96T3	RC-427A	TRK-9 Radio Tuner Unit	RC-498.	. U-20

RADIO CHASSIS (Continued)

Chassis No.	Model	Chassis No.	Model	Chassis No.	Model
RC-498A.	. U-40	RC-563E	Q11	RC-1000C	Radiola 515
RC-498B.	. U-42 Tuner Unit	RC.563F	Q11	RC-1001	10X
RC-498E	. U-43	RC.563 K	QB55X	RC-1001A.	11X1
RC-498F	K-61	RC-564.	V-215, V-221	RC-1001B	12X, 12X2
RC-501.	U-46 Tuner Unit	RC-564A.	V-219	RC.1001B	10X (2nd Prod.)
RC-501A.	. K-130 Tuner Unit	RC-564B.	V-225	RC-1001C.	$.12 A X, \quad 12 A X 2, \quad 35 X,$
$\text { RC. } 502 .$	$.7 Q 4 X$	RC-566	Q14, Q15	RC-1001C.	Radiola 516, 517,
RC-507	Q22, Q22A, Q32, Q121 (EM)	$\begin{aligned} & \text { RC-566A.. } \\ & \text { RC-566B.. } \end{aligned}$..QU56C, QU56M . Q14E, Q15E		522
RC-507A.	. Q25	RC-567.	27K	RC-1001E.	$14 A X, \quad 14 A X 2, \quad 34 X,$
RC-507B.	QK23	RC.568..	QU51C, QU51M	RC-1001E.	Radiola 526, 527
RC.507C	QU2C	RC-568A	QU55	RC-1002.	28X
RC-507D	QU2M	RC-568B	QU61	RC-1002A	28X5
RC-507F	QU3C	RC-569	28T	RC. 1003.	1X, 1X2, 25X
RC.507H	QU3M	RC-570	.29K	FC-1003A	1AX 1AX2
RC-507J.	Q26	RC.570C	.29K2	RC-1003B.	Radiola 510 (2nd
RC-507K	Q27	RC.570D	.29K2 (2nd Prod.)	RC-1003B.	Radiola 510 (2nd
RC.507L	QU52C	RC-571.	. 211 K		Prod.)
RC-507N	QU52M	RC-572A.	. V-140	RC-1003C	55X
RC-507U	Q121 (PM)	RC-573.	V-209	RC-1003D	Radiola 510 (3rd
RC-508	.Q24	P.C.573A	V-210	-1003D	Prod.), 520
RC-509A.	16T3	RC. 574	R-21	RC-1004A.	25BT2
RC-509B	16T2	RC-585	Q36	RC-1004B.	25 BK, 25 BT3
RC-509C	16K	RC-589	54B1	RC-1004D	Radiola B-52
RC-509F	16 T4 (2nd Prod.)	RC-589A	54B2	RC.1004E	55F, 65F
RC-509H	.16T3 (2nd Prod.)	RC-589B	54B3	RC-1004F.	24BT1, 24BT2
RC-509J.	. 16 T2 (2nd Prod.)	RC-589D	54B1-N	RC. 1004 H	Radiola B-50
RC-511.	18T	RC-589U	54B1 2nd Prod.	RC-1011.	15X (2nd Prod.), 36X
RC-512.	17K	RC-589UA	54B2 2nd Prod.	-1011.	(2nd Prod.) 56 X ,
RC.512A	.19K	RC-589UB	$54 \mathrm{B3}$ 2nd Prod.		56×2, 56×3, Ra.
RC-513..	. $1110 \mathrm{~K}, 110 \mathrm{~K} 2$	RC-599 U E	54B6		diola 61-1, 61-2, 61-3
RC-513A.	111K	RC-592.	Q23	RC-1011A	$56 \mathrm{X}, 56 \times 2,56 \times 3, \mathrm{Ra}$ -
$\begin{aligned} & \text { RC-514 } \\ & \text { RC-517 } \end{aligned}$	$. Q 20, ~ Q 21 ~$ $. V-100$	RC.594C	Q10, Q10A, Q10.2, Q10A-2, Q10.3, Q110		diola 61-1, 61-2, 61-3
RC-517C.	V-105	RC-594D	Radiola 61-6, 61.7	RC-1011B	$56 \mathrm{X}, 56 \times 2,56 \times 3, \mathrm{Ra}$
RC-517F	Radiola R-560P	RC-601	Q122 (EM)		diola 61-1, 61.2, 61-3
RC-517H	V-135	RC-601A	Q122X (EM)		3rd Prod.
RC-517J	. Radiola R-566P	RC-601B	7QV5, QU68	RC-1013.	6×2
RC. 518	V. 300 Tuner Unit	RC-601D	Q122 (PM)	RC-1014.	26×1
RC-518A	V-301, V. 302 Tuner Unis	RC-601E	Q122X (PM)	RC-1014A.	.26X3, Radiola 515 (2nd
RC.519.	.V-200	RC-602A	Q109X	RC. 1014	. 26×4
RC-521.	. V-205	RC.602B	QU62	RC-1017	
RC-521B	. V-405	RC. 604	58V, 58AV	RC-1017A	$65 \mathrm{U}, 65 A \cup$, 65 U.
RC-522.	$V-201$	RC.605	59V1, 59AV1		Radiola 62.1
RC-523.	V-170	RC-606	67V1, 67AV1	RC-1017B	.65U, 65AU (50 cycle)
RC-524.	V-102	RC-606C	67V1, 67AV1 2nd	RC-1020.	..25BP (2nd Prod.)
RC-525.	T-1		Prod., 77V2	RC-1020B.	Radiola P. 5 (2nd
RC-525A.	14BT-2	$\text { RC. } 607$	QB60 68 R , 68R3,	RC-1020B.	Prod.)
RC-525	14BK	RC-608	68R4 48 2, 68R3,	RC-1022.	34X (2nd Prod.)
RC-527		RC. 610	610V1, 610V2	RC-1022A.	12X (2nd Prod.), 35X
RC-527A	15BP-3, -5	RC-610A	730 TV 1 Radio Section		(2nd Prod.),Radiola
RC-527C.	.15BP-7	RC-610B	730TV2 Radio Section		522 (2nd Prod.)
RC.527D	.25BP	RC.610C	$610 \mathrm{~V} 1,610 \mathrm{~V} 2$ 2nd	RC-1023	56x5, Radiola 61-5
RC-529.	. QB2		Prod.	RC-1023A	56×11
RC-529A	QB1, QB11, QB12 Tuner Unit	$\begin{aligned} & \text { RC. } 612 \\ & \text { RC. } 613 A \end{aligned}$	QB. 13 Tuner Unit 710 V 2	RC-1023B	56×10, Radiola 61.10, Postone (PX) 61-10
RC-529D	QB6	RC-614	9Q53	RC.1023C	Radiola 61-10 2nd
RC.529H	Q89 Tuner Unit	RC-614C	9QV5 R-F/I-F Chassis	RC-1034	5×1, $65 \times 2,65 \times 8$,
RC-530	QU5 Tuner Unit	RC.615	$77 \mathrm{V1,8V7}$	RC-1034	65 ${ }^{\text {P }}$, $65 \times 2,65 \times 8$,
RC-531.	.Q44	RC-616	8V112		65×9, Radiola 61-8,
R C-538B	Q30	RC.616A	8V91 21 Radio Section	RC-1035	
RC-538C	Q31	RC-616B	8TV321 Radio Section	RC. 1037	$64 \text { F1, } 64 F 2$
RC.539.	Q33	RC-616C	8 8VV323 Radio Section	RC-1037A	64F3 ${ }^{\text {a }}$
RC-539D	QB-3	RC-616F	8 8V91 2nd Prod.	RC-1037B	8F43
RC-539E	Q34	RC-616H	8 8V 321 2nd Prod.	RC-1038	$66 \times 1,66 \times 2$
RC-540	V-101		Radio Section	RC-1038A	66×3, $66 \times 7,66 \times 8$,
RC-541C.	. 45×18	RC.616K	8 TV323 2nd Prod.		66X9
RC-544	. BP. 10		Radio Section	RC-1040	66BX (3Q4 output)
RC-547.	. VHR-207	RC-616N	9TW333 Radio Section	RC-1040A	66BX (3V4 output)
RC.547A	VHR-407	RC.617A	9TW390 Radio Chassis	RC-1040B	66BX (Selenium rect.)
RC-548	. . VHR-202	RC-618	8V90	RC-1040C	$8 \mathrm{BX6}, 8 \mathrm{BX65}$
RC-551.	.QU7, QU8 Tuner Unit	RC.618A	8V90 2nd Prod.	RC-1040D	8BX6 2nd Prod.
RC-555.	. VHR-307 Tuner Unit	RC.618B	9W101, 9W103	RC-1044	Q103, Q103A, Q103-2,
RC-559.	26BP	RC.618C	9W105		Q103A-2
RC.561.	Q-16	RC.618D	9W102	RC-1044A	Q103X, Q103AX,
RC-561A.	Q-17	RC.620A	4QV8C R-F/I-F		Q103X-2, Q103AX-2
RC-561C.	Q-16E	RC.620	Chassis	RC. 1045	65BR9, Radiola
RC-563A.	QB5, QB55	RC-622	9W106, A106		R65BR9
RC-563B	Q12	RC-1000	.16×11	RC-1046	66×12
RC.563C	Q12	RC-1000A	.16×13	RC-1046A	66×11
RC-563D	Q12	RC-1000B	16×14	RC-1046B	66×13

INDEX TO CHASSIS NO'S (Continued)

RADIO CHASSIS (Cont.)

Chassis No.	Model	Chassis No.	Model	Chassis No.	Model
RC-1046C	66×11 2nd Prod.	RC-1061	$8 \times 681,8 \times 682$	RC-1079	9×571
RC-1046D	66×12 2nd Prod.	RC-1063A	Radiola 752U	RC-1079A	9×572
RC-1046E	66×13 2nd Prod.	RC-1063B	Radiola 75ZU 2nd	RC-1079B	9×561
RC-1047	54B5		Prod.	RC-1079C	9×562
RC-1050	$75 \times 11,75 \times 12$	RC-1084	$65 \times 1,65 \times 2$, Radiola	RC-1079D	9W51
RC-1050A	$75 \times 11,75 \times 12 \text { 2nd }$		61-8, 61-9 2nd Prod., 8×53	RC-1079E RC-1079F	9×571 2nd Prod. 9×572 2nd Prod.
RC-1050B	75×11 3rd Prod.,	RC-1065	$8 \times 541,8 \times 544,8 \times 545$	RC-1080	9×641
	75×14 2nd Prod.,	RC-1065A	$8 \times 542,8 \times 546,8 \times 547$	RC-1080A	9×642
	$75 \times 16,75 \times 17$,	RC-1065B	$8 \times 541,8 \times 544,8 \times 545$	RC-1082	BX6
	$75 \times 18,75 \times 19$		2nd Prod.	RC-1082A	BX6 2nd Prod.
RC-1053	5Q21, 5Q22, 5Q27	RC-1065C	$8 \times 542,8 \times 546,8 \times 547$	RC-1084A	9W78, A78
RC-1053A	5Q21 2nd Prod.		2nd Prod.	RC-1085	9×651
	(117 v.)	RC.1065F	$8 \times 541,8 \times 544,8 \times 545$	RC-1085A	9×652
RC-1053B	5Q21 2nd Prod.		3rd Prod.	RC-1087	A55
	(234 v.)	RC-1065H	$8 \times 542,8 \times 546,8 \times 547$	RC-1088	B $\times 55$
RC-1053C	Q521 (117 v.)		3rd Prod.	RC-1088A	B $\times 57$
RC-1053D	Q521 (234 v.)	RC-1065J	8×541 4th Prod.	RC-1088B	BX55 2nd Prod.
RC-1054	5Q31	RC-1065K	$8 \times 542,8 \times 547$ 4th	RC-1088C	BX57 2nd Prod.
RC-1054A	6Q33		Prod.	RC-1089 B	$\times 551$
RC-1054B	6Q33X	RC-1065L	8×541 5th Prod.	RC-1089C	$\times 552$
RC-1054C	6QU3	RC-1065M	$8 \times 542,8 \times 5475$ th	RC-1090	2T81, 6T84 Radio
RC.1054D	6QV3		Prod.		
RC.1054E	5Q31X	RC-1066	8×521 8×522	RC-1092	6T86, 6T87, 9T89, Radio Chassis
RC-1054F	6QU3Y	RC-1066A	8×522	RC-1092A	Radio Chassis 7T143, Radio Chassis
RC-1055	7 7051 (PM)	RC. 1067	6QP3	RC-1092A	2nd Prod.
RC-1055C	7Q51 (EM) 7851 X	RC-1067A RC-1068	9BX56	RC-1094	A-82
RC-1057A	77 U	RC-1069	$8 \mathrm{B41}$	RC-1095	A.91
RC.1057B	9 Y 7	RC-1069 A	8842	RC-1095A	45-W-9
RC-1058	Radiola 762X11,	RC-1069B	$8 \mathrm{B43}$	RC-1096	A-101, A-108
	762×12	RC-1069C	$8 \mathrm{B46}$	RC-1096A	45-W-10
RC-1058A	Radiola 762×11, 762X12 2nd Prod.	$\begin{aligned} & \text { RC-1070 } \\ & \text { RC-1070A } \end{aligned}$	$\begin{aligned} & 8 \times 71,8 \times 72 \\ & \times 711 \end{aligned}$	RC-1096B RC-1096C	A-101, A-108 2nd Prod. 45-W-10 2nd Prod.
RC-1059	$8 \mathrm{~B} \times 5,8 \mathrm{~B} \times 54,8 \mathrm{~B} \times 55$	RC-1071	4QB3	RC-1098	B-411
RC-1059A	$8 \mathrm{~B} \times 5,8 \mathrm{~B} \times 54,8 \mathrm{~B} \times 55$ 2nd Prod.	$\begin{aligned} & \text { RC- } 1071 \mathrm{~A} \\ & \text { RC- } 1072 \end{aligned}$	$\begin{aligned} & \text { 4QB3X } \\ & 5 \text { QA5 } \end{aligned}$	$\begin{aligned} & \text { RC-1098A } \\ & \text { RC-1100 } \end{aligned}$	B-411 2nd Prod. Q520 (117V.)
$\begin{aligned} & \text { RC-1059B } \\ & \text { RC-1059C } \\ & \text { RC-1060 } \\ & \text { RC-1060A } \end{aligned}$	$9 \mathrm{BX5}$	RC-1077	$9 Y 51$	RC-1100A	Q520 (234V.)
	$9 \mathrm{C} \times 5$ 2nd Prod.	RC-1077A	$9 Y 510$	RC-1101	QB421
	8R71, 8R74, 8R75	RC-1077B	$9 Y 511$		
	8R72, 8R76	RC-1077C	9 Y 510 2nd Prod.		

AUDIO AMP. AND POWER UNITS

RA. 79	9EY31, 9EY32	$\begin{aligned} & \text { R8-94A } \\ & \text { R8-95 } \end{aligned}$	08C-22 CV. 111 Electrifier	RS-123B	648PV Audio Amp. \& Power Supply
R8-77	R-98	R8-98	CV-40 Electrifier	RS-123C	741PCS, 8PC841,
R8-79B	CV-9 Electrifier	RS-102A	U-44 Power Unit		9PC41 Audio Amp.
R8-83-1	PSU-8A	R8-102B	U-46 Power Unit		\& Power Supply
R8-83-2	PSU-8B	RS-102C	K.130 Power Unit	R8-123D	8 V 151 Audio Amp.
R8-83-3	PSU-BC	R8-102D	U-45 Power Unit		Power Supply
RS-83A-1	PSU-10A	RS-102E	V-300, V-301, V-302	R8-126	66E, 66ED, 66E-1
R8-83A-2	PSU-108		Power Unit	RS-127	63E, 63EM
R8-83A-3	PSU-10C	RS-110	QU5 Power Unit	RS-130	9QV5 Power Unit
RS-83C	CV-110 Electrifier	R8-111	CV-112 Electrifier	RS-130A	4QV8C Power Unit
RS-83E	TRK-9, TRK-12, TRK-90, TRK-120	$\begin{aligned} & \text { R8-111A } \\ & \text { R8-112 } \end{aligned}$	CV-112X Electrifier QU8 Power Unit	RS-132	9EY3, 9EY3M, 9EY35, 9EY36, 45-EY
	Radio Power Unit	R8-112A	QU7 Power Unit	RS-132A	9EY35, 9EY36, 45-EY
R8-84	R-91	RS-114A	VHR-307, Power UnIt	RS-132C	QEY3
R8-85	PSU-8E	RS-115	QB1, QB11, QB12,	RS-132F	45-EY, 45-EY-1
RS-85A	P8U-10E	R 11	QB13, 6V. Power	RS-132H	45-EY-15
R8-86	R-89		Unit	RS-136	45.EY-3
R8-89	CV-9X Electrifier	RS-115B	QB9 Power Unit	RS-136A	45-EY-3
R8-89A	TRK.5 Radio Power	RS-119	R-56	RS-136C	45-EY-3
	Unit	RS-123	612V1, 612V3, 612V4,	R8-138A	45-EY-2
RS-89B	U-42 Power Unit		711V1, 711V2, 711 V 3	R8-138H	45-EY-2
RS-90	VA. 21		Audio Amp. Pow.	RS-1000	CV-42 Electrifier
RS-91A	O.50		er Supply	RS-1001	CV-45 Electrifier
RS-91B	R-60	R8-123A	641TV, 648PTK, 8 TV41		
R8-92	M-70 Power Unit		Audio Amp. \& Pow.		

INDEX TO CHASSIS NO'S (Continued)

TELEVISION CHASSIS

Chassis No.	Model	Chassis No.	Model	Chassis No.	Model
KC-3	TT-5	KCS-26A-1	721TCS	KCS-47	6T53, 6T54
KC-3A	TRK-5 TV Chassis	KCS-26A-2	721 TCS (50 cy.)	KCS-47T	6T53, 6T54
KC.3B	TT-5 (50 cy.)	KCS-27-1	730TV1, 730TV2 TV	KCS.47A	6T64, 6T65, 6T71,
KC.3C	TRK-5 (50 cy.) TV Chassis	KCS-27-2	Chassis 730TV1, 730TV2 (50	KCS.47AT	$6 T 74,6 T^{\prime} 75,6 T^{\prime} 76$ $6 T 64,6 T 65,6 T 71$,
KC. 4	TRK-12 TV Tuner		cy.) TV Chassis		$6 T 74,6 T 75,6 T^{\prime} 76$
KC.4A	TRK-9 TV Tuner	KCS-28	8T241, 8T243, 8T244,	KCS-48	6T84, 6T86, 6 T87
KC.4B	TRK-12 (50 cy.) TV		97240	KCS-48T	6T84, 6T86, 6T87
	Tuner	KCS-28A	9 T 240	KCS-49	9 9757
KC.4C	TRK-9 (50 cy.) TV	KCS-28B	9 TC240	KCS.49T	$9 T 57$
	Tuner	KCS-28C	9 T246	KCS-49A	9T77, 9T79
KC-4F	TRK-120 TV Tuner	KCS-29	8T270, 9 T270	KCS-49AT	9T77, 9T79
KC.4H	TRK-90 TV Tuner	KCS-29A	8TC270, 8TC271	KCS-60.	9789
KC.4J	TRK-120 (50 cy.) TV Tuner	$\begin{aligned} & \text { KCS-29C } \\ & \text { KCS-30 } \end{aligned}$	9TC272, 9TC275 8TV321, 8TV323	KCS-60T	9789
			9TW333 TV Chassis	KK.7	TRK-12 TV Power
KCS-20A	630TS	KCS-31	S1000, 9TW390	KK-7	Unit
KCS-20B	630TCS		TV Chassis	KK-7A	TRK-9 TV Power
KCS-20C	630TS (50 cy.)	KCS-32	8TR29	KK.7A	Unit
KCS-20D	630TCS (50 cy.)	KCS-32A	8TK29	KK-7D	TRK-12 (50 cy.) TV
KCS-20J	$8 T S 30$ 8 TS30 (50 cy)	KCS-32B $\mathrm{KCS-32C}$	8TR29 8TK29	KK7E	Power Unit
KCS-21.	621Ts (50 cy.)	KCS-33A	8TK320	KK-7E	TRK-9 (50 cy.) TV
KCS-24	648PTK TV R-F/I-F	KCS-34	9TC247, 9TC249	KK-7F	TRK-120 TV Power
	Chassis	KCS-34B	TC124, TC125, TC127,	KK-7F	Unit
KCS-24A	648PV TV R-F/I-F Chassis		$\begin{aligned} & \text { 9TC245, 9TC247, } \\ & \text { 9TC249 } \end{aligned}$	KK-7J	TRK-90 TV Power Unit
KCS-24B	741PCS, 8PC841 R-F/I-F Chassis	$\begin{aligned} & \text { KCS-34C } \\ & \text { KCS-38 } \end{aligned}$	$\begin{aligned} & \text { T120, T121 } \\ & \text { T100, } 9 \text { T } 246 \end{aligned}$	KK-7H	TRK-120 (50 cy.) TV
KCS-24C	8PCS41, 9PC41	KCS-38C	9T256		
	R-F/I-F Chassis	KCS-40	T164	KRS-20	648PTK, 648PV
KCS-24D	9PC41 R-F/I-F Chassis	KCS-40A	TC165, TC166, TC167, TC168	KRS-20	Horiz. Defl. Chassis 741PCS 8PCS41
KCS-25A	641TV TV Chassis	KCS-40B	6T72	KRS-20A	Horiz. Defl. Chassis
KCS-25C	641 TV (50 cy.) TV Chassis	$\begin{aligned} & \text { KCS. } 41 \\ & \text { KCS. } 41 \mathrm{~A} \end{aligned}$	9TW309 TA129	KRS-20B	8PCS41, 9PC41
KCS-25D	8TV41 TV Chassis	KCS-42A	TA128	KRS-21	Horiz. Defl. Chassis 648PTK, 648PV TV
KCS-25E	8TV41 (50 cy.) TV Chassis	$\begin{aligned} & \text { KCS. } 43 \\ & \text { KCS. } 45 \end{aligned}$	TA169 2T51		Power Supply
KCS-26-1	721T8	KCS-45A	2T60	KRS-21A	741PCS, 8PC841, 9PC41, TV Power
KCS-26-2	721 Ts (50 cy.)	KCS-46	2 T 81		Supply

MODEL vs. RECORD CHANGER (1943 to 1950)

Model Record Changer	Model	Record Changer
A55RP 168 \& 960282-1	6784RP 168 or RP 190-2
A78RP 168 \$ 960282-1		\& 960282-4 or -5
A-82RP 168 or RP 190-2		or 960284.1 or -2
\& $8680282-4$ or -5	6786RP 168 or RP 190.2
A-91RP 168 or RP 190-2		\& 960284-4 or -5
\& 960284-1 or -2	6787RP 168 or RP 190-2
A-101 ..AP $190-2 \& 960282-4$ or -5 or $960284-1$ or -2	7	\& 960284.1 or -2 960001 -
A-106RP 168 \& 960285-1	8 8V41	RP 177A
A-108RP 168 or RP 190-2	8 8TV321	RP 178
\& 960284-1 or -2	8TV323	RP 178
QIYRP 168	8 V 7	RP 178
QEY3RP 168	8V90	RP 178
QU61 $960001-4$	8V91	RP 178
QU62980001-4	8 V112	.RP 178
QU68960001-4	8 V 151	RP 177B
\$1000RP 168 \& 960285-1	9EY3	RP 168
TA128RP 168 \& 960282-1	9EY31	RP 168
TR129RP 188 \& 960282-1	9 EY 32	RP 168
TR169RP 168 \& 960285-1	9EY35	RP 168
2781RP 168 or RP 190-2	9EY35U	RP 168
\& 960282-4 or 5	9EY38	RP 168
4QV8CRP 188 \& 960282-2	9EY36U	.RP 168
6QU3RP 178-3	9JY	RP 168
6QU3YRP 169	9QV5RP 168 \& 960282-2
8QV3RP 178-3		

Model Record Changer	Model Record Changer
9789RP 168 or RP 190-2	55U, 55AU 960015
\& 960284-1 or -2	58V. 58AV 960001.1
9TW309RP 168 \& RP 178	59V1. 59AV1960001-2
9TW333RP 168 \& RP 178	Rad. 62-1860260-2
9TW390RP 168 \& RP 177B	650, 65AU960260-2
9W51RP 168	850-1960280-2
9W78RP 188 \& RP 178	87V1, 878V1960260.1
9W101RP 168	Rad. 75ZURP 178 or 960276
9W102RP 188	77URP 178
9W103RP 168	77V1960260-1
9W105RP 168 \& RP 178	
9W106RP 168 \& RP 178	B10V1..980001-5 or -6 or RP 177
9Y7RP 168	610V2..960001.5 or . 6 or RP 177
9Y51RP 168	612 VIRP 176A of RP 176B
9Y510RP 190-1	612 V 3RP 176 or RP 176
9Y511RP 188	612 V 4RP 176 or RP 176A
45-EYRP 168	641TV960001-4 or -6
45-EY-1RP 168	648PVRP 178
45-EY-2RP 190	710V2RP 177 or RP 177
45-EY-3 ..RP 190-1 or RP 190-3	730TV1RP 177 or RP 177
45-EY-15RP 168	730TV2RP 177 or RP 177A
45-JRP 168	711V1960001-5
45-J-2RP 190-1	711V2 960001.5
45-J-3RP 193	711V3 960001.5
45-W-9RP 190-2	
45-W-10RP 190-2	

SUPPLEMENTARY INFORMATION
 (RADIOS AND RECORD PLAYERS)

RP-168 Series and RP-190 Series Record Changers

Pickup Cartridges:

The following is a listing of pickup cartridges used in RP-168 and RP- 190 Series 45 r.p.m. record changers.
RMP 128-1 Stock No. 74067
Crystal pickup-replaceable sapphire stylus Stock No. 74068-"Normal range".
RMP 128-2 Stock No. 74625
Crystal pickup-replaseable sapphire stylus Stock No. 74818-"wide range".
RMP 128-4 Stock No. 15575
Crystal pickup-replaceable sapphire stylus Stock No. 75770-"wide range".
RMP 128-5 Special Order
Crystal pickup-replaceable osmium stylus (special order) _ "normal range". Use RMP 128-1 for replacement.
RMP 136-1 Stock No. 15476
Crystal pickup—fixed osmium stylus-"normal range". Use RMP 128-1 for replacement.
Stock No. 74666
Variable reluctance pickup-replaceable diamond stylus Stock No. 74622. Not directly interchangeable with any other pickup. Used on Model CP.S203.

Stock No. 74984

Ceramic pickup-"normal range"-replaceable onmium stylus Stock No. 74985. Used on Models QJY and QEY3. (RP. 168 Series only).

Stock No. 16297

Ceramic pickup-"normal range"-replaceable ormium stylus Stock No. 74985. Used on Models QIY2, QEY4 and QEY5. Counterbalance spring must be changed to Stock No. 74060 when center mounting holes are used.

Stock No. S-5578

Ceramic pickup-"normal range"-fized osmium stylus. Used on Models 9QV5 and 4QV8C. Not directly interchangeable with any other pickup.
"Wide Range" vs "Normal Range": The "normal range" pickups have a greater ortput in the middle audio frequencies. The "wide range" pickups are more "flat" and have a greater output in the high audio frequencies. All of the above pickup cartridges are directly interchangeable except as noted.

Use of Variable Reluctance Pickups:

The moet common difficulty encountered in attempting the subatitution of variable reluctance pickups in place of crystal pickups is excessive hum.

This hum is primarily due to induction from the magtetic field of the drive motor. A crystal pickup is unaffected by this magnetic field. The output of variable reluctance pickups, being much lower than crystal pickups, must be provided with greater amplitication (usually with a pre-amplitier) to obtain the equivalent output from the speaker. The hum is also amplified.

Shielding must be provided and can be accomplished by either of two methods.

1. Shielding of the motor with a metal boz preferably of .020' steel. An inner box of non-magnetic metal will provide additional shielding. NOTE: When much a box thield is added, it will also raise the impedance of the motor and reduce its torque. To overcome this difficulty, it will be necessary to raise the voltage applied to the motor. The power consumption of the motor should be measured before and after adding such a box shield.
2. Addition of a steel plate approx. $W^{\prime \prime}$ thick between the mechanism and the motorboard.
There are several cther matters which must be given attention.
3. In most all applications, a pre-amplitier must be used to provide amplification and equalization. A variable reluctance pickup is lower in output and impedance than a crystal pickup.
4. The pickup arm must be changed to accommodate the difference in mounting centers.
5. The counterbalance spring must provide the correct stylus force (approx. 5 grams).
One version of the RP-168 record changer was manufactured using a variable reluctance pickup and a shielded motor. Replacement parts are listed in KP. 168 Series Service Data.

RP 168 Series Record Changer

Polarized Motor:

On some instruments the connection of the power leads of the motor should not be reversed. The leads are color coded and reversed leads may introduce objectionable hum. The record changer mechanisms using this motor are labeled RP 168B-6 or RP 168D. 2 and are used with Models 45.EY and 45-EY-1.
Replacement motors (Stock No. 74071) may not be color coded and in such cases it will be necessary to determine the correct connection by trial.

Models 9X561, 9X562, 9X571, 9X572

Substitute Speakers:

Several speakers have been used as a substitute for the originally listed speakers for the above models. Each speaker requires a different replacement cone as listed below.

Speaker No.	Cone No.	Speaker No.	Cone No.
$92586-2 W$	74758	$92586-4 W$	75759
$92586-4 \mathrm{~F}$	75999	$92586-5 \mathrm{~W}$	75024

Complete 92586-2 speaker available as Stock No. 74679.
Complete 92586-4 speaker available as Stock No. 74664.
Complete 92586-5 speaker available as Stock No. 76393.

45EY-3 (RS-136C)

Service Data:

Late production of Model 45-EY-3 uses chassis stamped RS-136C. This chassis is identical to chassis RS-136A except for the speaker. In RS-136C the speaker is rim mounted and in RS.136A it is pot mounted.

Replacement Parts:

CHASSIS ASSEMBLIES
Stock No.
RS. 136 C
Identical to RS.136A except:
76408 Bracket-Speaker mounting brackets complete with screws (l set)

SPEAKER ASSEMBLY
922258-5
76407 Speaker $-4^{\prime \prime} \times 6^{\prime \prime}$ PM speaker complete with cone and voice coil

X551, X552 (RC 1089B, RC 1089C)

Change in Volume Control:

The volume control used in initial production was 500,000 ohms. This has been changed to a 1 megohm control.

Change in Parts List:

CHASSIS ASSEMBLIES
Add:
75985 Control-Volume control (l megohm) and power switch (R5, Sl)

MISCELLANEOUS
Delete:
74340 Nut-
Add:
72765 Nut-Speed nut to attach foot (4 req'd)

TELEVISION SUPPLEMENTARY INFORMATION

MODELS T100, T120, TCl24, TC125, TCl27, TA128, TA129 DEFLECTION CHANGES

Two Types of Yokes:

Current production of 10 and 12 inch television receivers are employing two different types of deflection yokes. One yoke is the older type which had an iron wire wrap core. The new type yoke has a powdered iron core. The two yokes are easily identified in that the older iron wire wrap yoke has a cardboard outer housing, while the new powdered iron yoke has a moulded bakelite housing.
The two yokes are not directly interchangeable for while the iron wire wrap yoke will work in the circuit designed for the powdered iron core yoke, the powdered iron yoke should not be employed in the circuit designed for the iron wire yoke unless suitable circuit modifications are made.
In order to reduce to a minimum, the amount of field confusion, the replacement parts department will atock only the iron wire wrap yokes so that field modifications of older sets will not be necessary when replacing yokes.
In receivers employing the "ELECTRONIC MAGNIIIER" deflection circuit, R181 was 470 K for the iron wire wrap yokes. This value has been changed to 220 K as a compromise value for both types of yokes.

Early T100 and T120 receivers with straight deflection systems employed a 1 meg renistor for R181 when the iron wire wrap yoke was used. Later some were built using a 150K resistor which gave more width and high voltage with the wire wrap yoke. When the powdered iron yoke is employed, R181 should not be less than 470K (which gives greatest width) nor higher than 1 meg. (which gives the bent linearity). A 470 K resistor is now being used in production as a compromise which is suitable for either type yoke.

Vertical Non-Linearity:

T120 receivers employing the powdered iron core yokes have another modification necessary to prevent poor vertical linearity, this showed up as cramping at the bottom of the picture. The non-linearity was corrected by raising the vertical oscillator plate voltage by changes in the B boost filter as shown in figure 1. This change also prevents the formation of an extremely bright spot on the screen immediately after the set is turned off. If C146B develops excesaive leakage it will cause the picture to be cramped at the bottom.

Figwre 1-B Filter Connections

Raster Ringing:

In most cases, the iron wire wrap yoke type 201D3 will be supplied under stock numbers 71420 and 74262 . In the 20103 yoke, the 56 mmf . capacitor across a portion of the horizontal deflection coil is connected across yoke terminals 1 and 2. Before installing the yoke, check the schematic of the receiver in which the yoke is to be installed. Some models require that the capacitor be between derminals 1 and 2 , and other models specify between torminals 2 and 3 . In the latter case, the capacitor must be reconnected. Failure to connect the capacitor properly will result in bad raster ringing. Except for the connection of the capacitor, the type 201D3 is an exact duplicate of the iron wire wrap yokes used in production.
If excensive raster ringing occurs on the left side of the picture of current $10^{\prime \prime}$ and $12^{\prime \prime}$ receivers, and the yoke
capacitor is correctly connected, and the circuit appears otherwise normal, then remove the yoke red lead from terminal 4 of T110 and reconnect it to terminal 5. This reduces the ring at the possible slight expense of linearity. This modification is applicable to regular and electronic magnifier deflection systems.

If raster ringing occurs near the center or right side of the raster it may be caused by mis-adjustment of the Linearity Control Coil. Proper coil adjustment is best made by turning the core counter-clockwise all the way and then clockwise until the ring just moves off the right side of the picture. Normally the core stud is just about fush with the outside of the chassis. This adjustment is applicable to both the regular deflection system and to the electronic magnifier systems.

On receivers with electronic magnifier dellection system, if the raster rings on the left side with the picture in the normal sire, it may help to change the RC network (C178, R188) in parallel with the series width coil from 10 K and 330 mmi to 5 K and 470 mm .

Poor Vertical Sync:

Reports from the field show that in a few casen this has been caused by Capacitor C-136 (cathode by-pass V-108). In some cases this capacitor had broken loose from ground.

Some vertical oecillator transformers marked 274011 with too high a " Q " caused a white condition at the top of the picture and possible instability of sync. The cure was to lower the transformer " Q " by connecting a 1 meg. resistor across the green and yellow transformer leads.

Unstable Horizontal Sync. (Wavy Picture)

It has been reported from the field, that in a few cases this is caused by the wrong values of C-135, R-144 and R-217.

Part	Correct Value
C-135	.01 mid.
R-144	4700 ohm
R-217	2700 ohm

ALIGNMENT HINT FOR R-F UNITS

During alignment of the r-f unit, it is often advantageous to have a sweep width of 15 mc . or more when adjusting the' high channels. This permits seeing the entire skirts of the curve and makes it easier to see the effects of the various adjustments. When using RCA type WR59A sweep generator, additional sweep width may be obtained by removing the sweep case back and shorting out resistors R14 and R16. After this, the front panel sweep width control still operates as before, except that more sweep width is available on the high channels.

The WR59A should be turned ON and OFF by means of the front panel control. If the sweep was turned off by dis. connecting the power plug or by means of a bench master switch, but the sweep power switch was left on and in the maximum sweep width position, then the sweep modulator may overshoot and hit stationary parts when the power is reapplied.

KRK-8 R-F UNIT ALIGNMENT

It is suggested that the F-M trap adjustment (L203) be adjusted to minimum inductance (slug out) so that the effects of this trap, which is capable of being tuned to Channels 5 ot 6 , will not adversely affect the response of these channels during alignment.

USE OF WR39A \& WR39B TELEVISION CALIBRATORS

In some instances it may be difficult to hear the heterodyne beat between the variable oscillator and the crystal standard in subject instruments, particularly at the high frequencies.
If the audio system of the receiver under test is in good condition, it is suggested that an crudio lead can be run from the head phone jack of the calibrator to the "high" side of the volume control of the television receiver, thus utilizing the additional audio amplification available in the TV chassis.

PRODUCTION CHANGES IN KRK5 AND KRK7 R-F UNITS

In some units a 1.5 mmf . capacitor has been added in parallel with C22 since that capacitor was running on the low capacity side of its tolerance and causing the high pass input filter to cut off at too high a frequency, thus putting a tilt in the channel 2 r-f response.

Figure 2-R-F Unit High Pass Input Filter
In some units, the capacitor C20 (18 mml . ceramic) has been replaced by a small trimmer (7.35 mm. .) as shown in Figure 3. This capacitor was set at the factory at 18 mml . and should not be adjusted in the field. If it is ever necessary to replace the trimmer, use the tixed ceramic capacitor specitied in the replacement parts list.

Figure 3-Top View of R-F Unit

BARKHAUSEN OSCILLATION

The usual effects of Barkhausen oscillation make themselves evident by producing one or more dark, sharply defined vertical lines on the left side of the picture or raster. These lines vary in width and/or intensity from one channel to another and from one brightness level to another. They are usually more apparent on the higher frequency channels and at low brightness settings. In the worst cases, these oscillations tend to upset horizontal synchronization. In the mild cases, they usually annoy the customer more than they do the set.

The only tube in the set that could cause this interference is the 6BG6G since it is the only one that has a positive grid to plate potential at any time. The critical voltages are reached just about the time the tube calls for deflection of the beam to the right hand side of the raster. This happens when the spot is about one third the way across horizontally. Following are a few solutions to the problem:

1. Change the drive control setting.
2. Replace the 6BG6G with another. (The tube being replaced will probably operate satisfactorily in some other chassis.)
3. Change antenna or antenna lead-in placement.

The first method is critical with respect to line voltage and should be adjusted to give satisfactory operation on all should be adjusted to give channels at any line voltage encountered.

The installations using either a built-in antenna or an indoor antenna are often subject to an undue amount of pickup because of their location. The lead-in, if draped near the high voltage compartment can also cause trouble. The solution for this type of trouble is obvious.
If a severe case of Barkhausen oscillation is encountered, and all normal methods have been unsuccessful in eliminating this trouble, a last resort which is usually successful is the installation of an ion trap magnet of any type over the 6BG6 tube. The position of this magnet should be adjusted to eliminate the oscillation.

BROADCAST INTERFERENCE IN KRKS AND KRK7 R-F UNITS

In some cases where a television receiver is in operation on a weak signal but near a strong AM station, interference has been experienced. To cure, insert a 100 mm . capacitor between the high side of T115 and L116, as shown in Figure 4.

Figure 4-Partial Schematic of R-F Unit
In severe cases of BC interference, it is recommended that a coil such as L80 in KRK-2 r-f units be inserted from terminal \# 1 of J 102 to ground.

DETENT BACKLASH- TV R-F UNITS

This particular trouble is easily recognized, and is generally more pronounced on the high frequency channels than on the lower frequency channels. If the fine tuning control requires different positions of adjustment when the detent is switched clockwise to a channel when compared to switching counter. clockwise to the same channel, there is backlash between the detent shaft and the oscillator switch rotor.
In severe cases, this play can result in oscillator drift due to rolor movement. In order to make the detent shaft fit the oscillator witch rotor more accurately, it is convenient to apply any quick-drying cement to the detent shaft, building it up. In unusual cases, more than one coat may be necessary. If too much thickness is built up. it may be sanded or filed to the required thickness.

MODEL KRK-8 AND KRK-8B R-F TUNERS

The KRK-8 tuner is used in $121 / 2^{\prime \prime}$ TV models, and the KRK-8B tuner is used in $16^{\prime \prime}$ and $19^{\prime \prime}$ models. The only ditterence between these iwo units is the front shield plate and the four insulating washers used in mounting this plate.
These fous insulating washers are very important for satisfactory performance of this tuner. A resonant circuit exists between the R-F tuner chassis and the outer shield box. The frequency of this resonance is controlled in design by the use of insulating washers of different thicknesses. In the KRK-8 tuner, these four washers are round-Stock \#73466. In the KRK-8B tuner, the washers are hex shaped-Stock \#75607.
If the R-F tuner is removed for service, the correct washers must be used when the unit is reinstalled.

HORIZONTAL OSCILLATOR RADIATION

Investigation of a number of horizontal oscillation radiation complaints has indicated that almost all of the radiation is from the power lines associated with the television receiver. The simplest method for reducing or eliminating this objectionable interference is the installation of a good quality ac line filter on the TV set (such as Tobe Filterette. Type 1176). It is very important that a good ground connection be employed with a filter of this type.

TELEVISION PROTECTION FEATURE

Underwriters' laboratories have insinted that additional protection be provided in televiaion receivers by adding a 100.000 ohm resistor from one side of the 110 volt a-c line to the chassis. This will parallel one of the capacitors presently connected from each side of the a-c line to the chassis.
On installations incorporating the neon lamp type lightning arrestor, the addition of this resistor may be sufficient to cause one of the neon lamps to glow. Of course, this would result in a lose of signal. If this occurs, it is merely necessary to reverse the power plug. The customer should be so instructed in order to avoid replacement of the line plug in its incorrect position.

Type Of Interference	Character Or Interference	Cause	Suggested Remedies
FM	Diagonal bars orherringbone crosshatch in pix. FM sound in television sound.	FM station on image of low channel television station: FM signal overloading $\mathrm{r}-\mathrm{f}$ unit creating harmonic in receiver which falls on highband television channel Second harmonic of FM transmitter falling on a high band television channel	Adjust $F M$ trap to attenuate $F M$ signal. Also use stub at the receiver cut for the fundamental of the FM station. Vary orientation of television antenna to reduce FM pickup. Second harmonic radiation must be suppressed at transmitter. Orient television antenna to reduce harmonic pickup.
Adjacent Channel Interference	Undesired Station causing blanking out of desiredstation or causing windshield wiper effect.	Inadequate receiver selectivity. Attempting to receive stations beyond their service area.	Align the receiver with special attention to the adjacent channel traps. Install additional adjacent channel traps. Use antenna with good front to back ratio, if applicable. or orient antenna to minimize adjacent channel pickup.
Co-channel Interference	Horizontal bars moving up and down through pix. In some cases the sound may be garbled.	Two stations operating on same channel. Customer located so as to receive signals from both stations.	Use antenna with good front to back ratio on that particular channel if stations are in opposite directions. Orient antenna for best results. "Venetian Blind" condition largely corrected by off-set carrier operation of stations.
Amateur	Cross hatch, horizontal or diagonal bars in picture. In instances of extreme interference pix may be reversed (negative) or pix may be blocked out with no visible beat pattern. Sound in television sound	Pickup of fundamental, harmonic or parasitic frequencies from amateur transmitter. Overload of television r-f unit, from fundamental of amateur transmitter.	If 28 mc interference is picked up in i-f then shield i-f's. If 28 mc interference "leaks" through KRK2 r-f unit, readjust adjacent channel sound trap to reject 28 mc interference. Install a good high pass filter as close to receiver input as possible (directly on head end unit) with short ground connection. With KRK8, avoid use of 72 ohm co-ax transmission line. If interference is definitely due to harmonics or parasitics, arrange with Amateur for reduction of spurious signals -e.g., Frequency multiply in low power stages, shield transmitter, and install low pass filter in transmitter antenna transmission line.
Interchannel	Diagonal bars in picture or undesired pix super-imposed on picture	Double conversion or oscillator harmonic conversions	Adjust FM trap Install stub cut to interfering frequency. Orient antenna to reduce interference.
Diathermy $R-F$ Heating Equipment	Herringbone pattern on pix, also appears as heavy black horizontal bars across picture	Pickup of fundamental, harmonic or parasitic radiations from diathermy equipment.	Same approaches as for radio amateur interference Have owner employ reliable technician to eliminate harmonic or spurious radiations.
Ignition	Horizontal streak acrose pix - Noise in sound - Possible loss of sync.	Mostly due to weak signal being received from television station.	Use outside antenna to get good signal. Locate antenna away from streets or sources of interference. Use co-ax or twin-ex transmission line.
Horizontal Oscillator Radiation	Causes heterdyne whistle in AM Broadcast radio receiver	Harmonics of 15 KC horizontal osc. of television receiver beating with broadcast band signals.	Try to secure stronger signal from radio station, by better radio antenna. Separate television and radio sets by as much distance as possible. Use interference filter on power line at television chassis. Put earth ground on chassis. Shield television chassis.
 Pix 1-F Harmonics In Picture	Herringbone pattern on pix if caused by sound i-f harmonics or bars if caused by picture i-f harmonics	Harmonics of sound or picture i-f's getting back into r-f unit.	Lead dress around sound and pix i-f's critical. Defective by pass capacitors. Use outdoor antenna. Keep lead-in away from last i-f stages. Shift i-f frequencies slightly. See RCA Television Supplement No. 2.

MODELS T164, TCl65, TCl66, TCl67, TCl68

Insufficient Width:

A. INSUFFICIENT WIDTH, KEYSTONE RASTER, ARCING, ETC.

Generally, this condition is caused by the dress of the leads to terminals 1 and 3 of the horizontal yoke. Shorting of these leads to turns of the horizontal yoke winding will account for a small horizontal raster, and the voltage difference between the turns will account for the arcing. In cases of insufficient width on these models, the following changes which were made during production, should be checked:

1. Remove R167. $5600 \mathrm{ohm}, \mathrm{l}$ watt resistor, which is in parallel with Llll. the horizontal linearity coil.
2. Install a 4.7 mm . high voltage capacitor (RCA Part \#75646) from Terminal \#2 of T110 to +250 volt. This connection should be made at junction of fuse F101 and red lead on terminal board in H.V. compartment. The leads of this capacitor must be protected for their entire length by spaghetti and should be dressed away from the high voltage transformer, the 6BG6 tube, and the back cover of the H.V. compartment.

B. NO HORIZONTAL DEFLECTION

In some cases the leads of the horizontal section will make contact with the vertical section of the yoke. Under this condition there will be no horizontal deflection.

There is also a possibility that the saran, or insulating material, between sections will break down resulting in arcing and no horizontal deflection.
Since the majority of yoke defects are improper lead dress, the repair can often be effected in the field. The following is a logical approach:
Remove the yoke plug from the chassis and make a resistance check to possibly determine the defective section or sections:

NORMAL READINGS AT PLUG P106

Pin 4 to Pin 8-Measures approximately 40 ohms
Pin 1 to Pin 2-Measures approximately 3 ohms
Pin 1 to Pin 8-Measures infinity
Pin 4 to Pin 2-Measures infinity
Pio6 (M) PIN VIEW

Figure 5-Yoke Connections to P106
If low resistance readings can be changed by squeezing the bakelite cap of the yoke, this is an indication that lead dress is at fault.

To clear a short, use a long probe and change the lead dress until the resistance readings are normal. Check the lead dress on yoke terminals 1 and 3 first.
If the resistance check is normal and the yoke is still defective, then connect the yoke plug, but do not insert the kine. Turn the receiver on and visually note the location of the arc. Once the location of the improper lead dress is determined, clear as before until the arcing condition does not exist. This type of trouble is of course not indicated by a resistance test, but is apparent only by the arcing condition due to the proximity of the wires.

The majority of failures are due to lead dress as pointed out above, however, one should not overlook the possibility of defective yoke capacitors and improperly soldered connections.

Production Change:

To correct a condition of grid blocking due to high frequency oscillations in the audio circuit of some chassis, the following changes were made early during the production
of these receivers

1. C202, Cl81, and the blue wire are to be removed from pin 6 of V120 socket and relocated on the vacant lug on the terminal board on the chassis side apron.
2. The other end of Cl8l is to be removed from pin 2 of V120 socket and connected to the center lug on the above mentioned terminal board.
3. Cl86 was changed from its former connection at Cl70-B to tie instead at pin 4 of V120 socket.
To reduce regenerative tendencies of the video amplifier at minimum setting of the contrast control:
4. R220 was changed in value from 12,000 ohms to 10,000 ohms.
"Kinky Raster"
Some of the KCS40, KCS40A chassis used in the above models produce non-linear raster edges, caused by capacity coupling of 60 and 120 cycle harmonic components that appear on these edges due to the order of the windings in the power transformer.

Non-linear edges on the raster edge can be corrected by adding a .002 mf .1600 volt oil-filled capacitor (Stk. \# 73817) connected from terminal 6 (red and green lead) of V115 sockel to chassis ground. Production is now adding this capacitor to compensate for this condition.

All chassis having this capacitor added will be marked by red paint on the top of the power transformer.

All power transformers marked with a yellow apot on the top will not require this modification.

The schematic for these models will show this capacitor dotted in place, but with no symbol assigned.

Extension Cables:

The yoke, focus coil and kinescope are fastened to the cabinet in the Tl54 series receivers and not to the chassis as in all previous models.

When the chassis is removed from the cabinet for service, it will be necessary to "unplug" the yoke and focus coil. With either of these two components out of the circuit, the receiver cannot be operated because of the $+B$ disconnect incor porated in each plug.

In order to operate the receiver, removed from the chassis, it will be necessary to use extension cables to connect the yoke and focus coil.

If it is necessary to have the audio system of the receiver connected and operating during servicing, it will also be necessary to ase an extension cable to connect the speaker. In the above models the output transformer is mounted on the speaker frame, and if the speaker is disconnected, the lead supplying $+B$ to the audio output tubes is broken, making the audio amplifier inactive.
Figure 6 describes how these extension cables can be made, also stock numbers of plugs and connectors used.

Figure 6-Extension Cables for T164 Series Receivers

60 CYCLE BUZZ IN SOUND OF TELEVISION RECEIVERS

This interference appeared on 8T270, 9T270, 9T246, T121 and 9TC245 series receivers when operated in strong signal areas.

There are several modifications which will cure this difficulty. These moditications have been made in production on T100, T120, TCl24, T164, TA128, TA129 and TAl69 series .receivers. These moditications are listed below.

RECEIVERS USING ALL 6AGS TUBES IN PICTURE I-F:

1. Replace 6AG5 tube in first picture i-f with others until one is found to cure condition.
(6AGS tubes which have an abnormally sharp grid cut-ott characteristic will cause a buzz in sound. A tube removed for this trouble is not necessarily defective, but can be used in either the 2nd or 4th picture i-f where fixed bias is applied.)
2. Ground test connection in r-f unit (R-13, 100K).
3. Check all filter capacitors in the AGC circuit for wrong connections and also see that they are in good working condition.

I-F HARMONIC INTERFERENCE

This interference has appeared in a number of television receivers. The following discussion applies specifically to Models T100, T120 and T164 and in general to other models using KRK5 series or KRK7 R-F units which may have differing component identification.
Although all the affected receivers employ KRK5 or KRK7 R-F units, the interference is not the fault of the R-F unit.

Sound I-F Interference:

In some instances harmonics created in the sound i-f find their way back into the receiver input circuits and create interference. The sound i-f third harmonic falls into channel 3 , the fourth harmonic falls into channel 6 , the ninth harmonic falls into channel 9 and the tenth harmonic falls into channel 13. These may be identified by removing the second sound i-if tuke to see if the interference disappears. If it does, then the harmonics are created in the sound i - f stage or in the discriminator. The following information may be helpful in eliminating or reducing such interference.
The ground wire running from pin \#2 of the second i-f socket, which runs approzimately an inch and a half to a lance towards the rear of the chassis, should be dressed away from pin \#1 of this socket, and as far as possible towards Terminal B of T112. This will cause the wire to run a curve rather than a straight line and may require a alight lengthening of the ground lead.

Carefully check the i-f and discriminator transformer shield cans and wiring. The shield cans should be tight in place and well grounded to the chassis. In order to insure a good ground of these shield cans, it may be desirable to place some solder on the chassis where the can contacts the chassis so that the can may be pulled into the solder when clamped in place.

Carefully check the lead dress in the discriminator stage, particularly the leads connected to the discriminator transformer, making sure that they conform to all lead dress information contained in the service notes for the instrument involved.

Make sure that all by-pass capacitor leads in the sound i-f system are as short as possible and that the capacitor itself is dressed close to the chassis.

Make certain that the antenna lead-in from the terminal board on the rear of the cabinet to the r-f tuner input is dressed away from the chassis so as not to cause any unbalanced condition to the receiver input.

The normal discriminator wiring is from pin \#l of the 6AL5 to the tube socket shield, then to pin \#6 and from pin \#6 to ground. Disconnect the wire from ground to pin \#6 and ground pin \#l separately with as short a lead as possible.

In some instrumente now in production, a zinc discriminator shield can is being used. This can is soldered directly to the chassis.

Picture I-F Interference:

In some instances harmonics created in the picture i-f find their way back into the receiver input circuits and create

RECEIVERS USING 6BA6 TUBES IN
 1ST \& 3RD PICTURE I-F:

1. Change 3rd picture i-f tube bias. Disconnect RllO-Lll7 and Cl13 from their present tie point (junction R135 and Cl90) and reconnect them to the adjacent tie point of the junction of C197 and R136.
NOTE: A greater AGC control of the r-f stage and lst picture i-f amplifier is obtained by this change. This change was made in production of the 1949 models and also is used in the current models. In fringe areas, a slight reduction in sound may be encountered with this bias change. However, picture sensitivity will not be affected.
In order to improve sound and if no buzz is encountered the bias can be changed to the original point.
2. Ground test connection (Rl3, 100K) in r-f unit.
3. Change R136 from 6800 ohms to lOK.
4. Check all filter capacitors in AGC circuit for correct connection and also to see if they are in good working condition.

As a last resort, the receiver may be aligned to different i.f frequencies. This has the effect of pushing the interference into other channels. The attached chart shows 5 different i-f frequencies and the interferences that might be encountered
in each. Harmonics that fall more than 0.5 mc. below the picture carrier should not cause interference and hence are not listed.

RECEIVER I-F FREQUENCY	MAY HAVE INTERFERENCE ON CHANNEL	CAUSED BY	POSITION OF HARMONIC WITH RELATION TO STATION PIX CARRIER
20.75 mc Sound 1 - f 25.25 mc Pix i. f 19.25 mc Adj. Chan. P:x 26.75 mc Adj. Chan. Snd.	Channel 7 Channel 11 Channel 3 Chinnel 6 Channel 9 Channel 12	7th Pix i.f harmonic 8th Pix i-f harmonic 3rd Sound i-f harmonic 4th Sound i-f harmonic 9th Sound i-f harmonic 10th Sound i-t harmonic	1.5 mc above 2.75 mc above 1.0 mc above .25 mc below .50 mc below 2.25 mc above
$\begin{aligned} & 21.25 \mathrm{mc} \text { Sound } \mathrm{i} \cdot \mathrm{f} \\ & 2.25 \mathrm{mc} \text { Pix i. } \\ & 19.75 \mathrm{mc} \text { Adj. Chan. Pix } \\ & 27.25 \mathrm{mc} \text { Adj. Chan. Snd. } \end{aligned}$	Channel 5 Channel 12 Channel 3 Channel 6 Channel 13	3rd Pix i-f harmonic 8th Pix i.f harmonic 3rd Sound i-f harmonic 4th Sound i.f harmonic 10th Sound i-f harmonic	0 mc . .75 mc above 2.5 mc above 1.75 mc above 1.25 mc above
$\begin{aligned} & 21.75 \mathrm{mc} \text { Sound } 1 \text { 1-f } \\ & 26.25 \mathrm{mc} \text { Pix i. } \mathrm{f} \\ & 20.25 \mathrm{mc} \text { Adj. Chan. Pix } \\ & 27.75 \mathrm{mc} \text { Adj. Chan. Snd. } \end{aligned}$	Channel 5 Channel 8 Channel 6 Channel 10	3rd Pix i-f harmonic 7th Pix i-f harmonic 4th Sound i.f harmonic 9th Sound i-f harmonic	1.5 mc above 2.5 mc above 3.75 mc above 2.5 mc above
21.9 mc Sound i.f 26.4 mc Pix i. f 20.4 mc Adj. Chan. Pix 27.9 mc Adj. Chan. Snd.	Channel 5 Channel 13 Channel 7	3rd Pix i-f harmonic 8th Pix i-f harmonic 8th Sound i-f harmonic	1.9 me above .05 mc below 05 mc below
22.1 mc Sound i. 1 26.6 mc Pix i. f 20.6 mc Adj. Chan. Pix 28.1 mc Adj. Chan. Snd.	Channel 5 Channel 13 Channel 7 Channel 11	3rd Pix i.f harmonic 8th Pix 1 -f harmonic 8th Sound i-f harmonic 9th Sound i-f harmonic	2.25 mc above 1.5 mc above 1.5 mc above .25 mc below

CO-AX TO BALANCED LINE MATCHING NETWORK

In some locations it may be necessary to use 72 ohm co-ax transmission line betweer antenna and receiver because of reflection or interference pick-up. Current line receivers are provided with a 72 ohm co-ax input in addition to the usual 300 ohm input. Early receivers employing KRK-2 series r-f units are provided only with 300 ohm balanced input. To connect the co-ax to these early receivers, construct a network as shown in Figure 7. The matching section should be one electrical half wave-length long for the picture carrier of the weakest signal received.

Figure 7-Co-Ax to Balanced Line Matching Network

MODELS TAl69 AND Sl000

Hum On Phono Operation:

Several of the above instruments have been found to have excessive hum when uning the 960285 record changer ($78 / 331 / 3 \mathrm{r} . \mathrm{p} . \mathrm{m}$.) and require the following modifications of the record changer.

Add a jumper of .016-tinned bus wire $13 \%^{\prime \prime}$ long from terminal of black pickup lead to pickup mounting screw. The silver colored terminal pin of pickup is ground on "low" side and should be connected to the black lead and jumper. The black lead terminal must be removed from the pickup during the soldering to avoid damaging the pickup by excess heat.

CORONA INTERFERENCE19" MODELS

An interference pattern consisting of narrow vertical bars at the left-hand side of the raster, may be the result of internal corona, or arcing, within the 4.7 mmfd . capacitor (C198) located in the plate circuit of the horizontal sweep output tube.
This interference may be mistaken for Barkhausen oscillation, but none of the normal Barkhausen preventive methods such as adjusting the drive, placing a magnet over the 6BG6, etc., will be effective in eliminating the inferference.
If such a condition is encountered, the capacitor should be replaced.

Tl01 DEFECTIVE IN MODELS T120, T121, TCl24, TCl25, TCl27

In some cases, in the above listed receivers, it was found difficult to obtain proper response from Tl and TlOl during alignment. The difficulties are usually caused by reversed slugs in T101 The trap (top) slug should be between $5 / 6$ to $l^{\prime \prime}$ in length (depending on the vendor) and the input (bottom) slug should be about $1 / 2^{\prime \prime}$ long. On some sets the two slugs might have been switched around which will not permit sufficient adjustment on the over-coupled tuning. Both slugs may be removed for examination from the top of the transformer. The short slug should be put in first in re-assembly.

SUBSTITUTE 12" P.M. SPEAKERS

Television instruments have used $12^{\prime \prime}$ P.M. speakers supplied by several vendors. The speaker cones are not interchangeable. The following is a listing of $12^{\prime \prime}$ P.M. speaker and their associated replacement cones which have been used in 1950 televiaion instruments.

Speaker No.	Coze No.	Speaker No.	Cone No.
$92569-5 K$	75642	$92569-9 W$	74901
$92569-5 W$	74901	$92569-10 B$	75875
$92569-6 W$	74901	$92569-10 W$	74901
$92569-7 B$	75875	$92569-11 B$	75875
$92569-7 \mathrm{~K}$	75642	$92569.11 K$	75642
$92569-7 W$	74901	$92569-11 R$	76121
$92569-8 W$	74901	$92569-11 W$	74901
$92569-9 B$	75875	$92569-12 W$	75682

TELEVISION SUPPLEMENTARY INFORMATION

MODELS T120, TC124, TCl25, TCl27

Picture Corner Shadows:

If it is impossible to remove kinescope shadows by the prescribed method (see service notes) of adjusting the focus coil and ion trap magnet, then make the following test:1. Remove the two focus coil mounting screws ($8-32 \times y^{\prime \prime}$) and reverse the focus coil and temporarily replace it in a position adjacent to the deflection yoke as shown in Figure 10.
2. Install the ion trap magnet and kinescope tube socket in a normal manner.
3. With the receiver furned on, adjuat the ion trap magnet for the brightest raster on the screen.
4. Position the focus coil physically, and determine if the focus coil in the reversed position corrects the shadow condition. A slight readjustment of the ion trap magnet may be necessary.
If the above test indicates that the focus coil in a reversed position is the desired position, then the following mounting modification is recommended. See Figure 8 below for details.

	MATERIAL LIST
Quan.	Description
2	Spacer-Insulating bushing, Stock No. 14576
2	Screw-\#8-32 $\times 13 / 4$
2	Washer- $14^{\prime \prime}$ O.D., $1 / 16^{\prime \prime}$ thick, hole to clear \#8-32 screw

Figure \& Focus Coil Monnting Modification

EM-PM FOCUS COIL TROUBLES

In some cases, trouble has been experienced with EM-PM focus coils. These difficulties show up as inability to reach focus with the focus control.
If everything is operating properly, the overall focus and focus regulation is much better with the new coil than with the straight EM type.
The troubles with the PM-EM coil can be summarized as being one or more of the following:-

1. Incorrect placement of the coil on the kine' neck.
2. Too much PM.
3. Too little PM.
4. Polarity of the EM winding reversed in color code and/or hookup.
The normal placement of the coil is with the front plane of the coil approzimately one quarter of an inch behind the back cover of the yoke. Moving the coil back on the kine' will, in effect, be the some as reducing the total llux of the coil. Some cases of too much PM can be thus corrected. In a lew such cases, the correct focus was obtained at the sacrifice of loading spring tension. It is suggested that washers be used to bush up the springs if they are too loose when the correct focus is obtained. Under no circumstances should the EM portion of the coil be reversed to compensate for too much PM. Doing this will eventually run the PM down to zero and make the coil useless along with producing a service call every week or so.
 crease the PM flux. Such is not the case because the PM material is magnetized to a greater density than the EM portion).
Polarity may be checked by the following method:
5. Get as good a focus as possible with the coil up against the yoke. Note the voltage across the EM winding.
6. Move the coil as far to the rear as possible and turn the focus control so that Condition 2 approximates Condition 1 in appearance. Note the voltage across the EM winding.
The voltage across the EM winding should be higher in Condition 2 than in Condition 1.
(The effects of magnetism are minimized as the coil is moved to the rear so that more magnetism must be supplied.
If Condition 2 reading is lower, or if no satisfactory comparison can be obtained by adjustment, then the EM winding is reversed and should be reconnected in the proper way. A tag should be attached to the set to indicate a change if the color code is incorrect so that some future serviceman knows what has been done.
If position and polarity have been checked and it is discovered that there is too little PM, the entire coil must be replaced. The 6BG6 supply should not be reconnected to add to the focus current because it overloads the coil and the shunt potentiometer.
On some sets it will be found that by shorting the 10 ohm resistor, enough control is obtained. This should not be done since the focus potentiometer would be overloaded if the arm is sel near the short circuit end. Moving the coil toward the rear will solve a problem of this type and still permit good focus with the 10 ohm resistor in the circuit.

2T51, 2T60, 2T81

the following changes are suggested in the event any of the listed service problems are encountered in the above models:

1. Noise in Sound-(Fringe Arean)
a. Add .01 mid. capacitor (Stock \#73960) in shunt with C190 with leads as short as possible.
b. Add . 0015 mfd . capacitor C199 (Stock \#73598) from connection point of R192 on TV-Phono switch to ground. (Models 2 T 51 and 2 T 60 only.)
c. Properly align sound I.F. and discriminator circuits.
d. Thoroughly check 1500 mm . "plug-in type" capacitors for open and leakage. (A number of these capacitors have been found in this condition and contribute to weak and noisy sound.)
e. Check 6AU6 second sound I-F tube. Some of these tubes have been found to have remote cut-off characteristics and cause insufficient limiting in this circuit.
2. Picture Bending (Top of Picture)
a. Change cathode resistor R136 of DC restorer tube to 560K.
NOTE: This should only be done in strong signal areas where bending of the top of picture usually occurs. Changing this resistor in weak signal areas may decrease the noise immunity of the restorer circuit.
3. Picture Bending (Bottom of Picture)
a. Change third picture I-F plate load resistor Rlls from 3900 to 1800 ohms.
b. Change fourth picture I-F plate load resistor R119 from 8200 to 18 K ohms. Shunt this resistor with a 36 muh. peaking coil Stock \#75299. It is important that this stock number coil be used because of its distributed capacity. Do not use any other 36 muh. coil.
c. Retune the fourth picture I.F. (T104) to 22.5 mcs . Retune the fifth picture I.F. (L103) to 24.25 mcs.
NOTE: It is important that I.F.'s be "peak" aligned so these two circuits will be tuned to the exact new frequencies betore the overall I.F./R.F. response is "touched up" to obtain a good response curve.
4. Overload of Receiver on Strong Signals

Several cases have been reported where L102 has been installed in reverse position. Wiring this I-F coil correctly has eliminated the trouble.

Specifications

Top View-45 R.P.M. Record Changer
REFER TO RP 168 SERIES SERVICE DATA FOR INFORMATION ON 45 R.P.M. RECORD CHANGER

Tuning Drive Ratto $121 / 2: 1$ (61/6 turns of lonob)
Dial Lamps (2)Type No. 1490, 3.2 volts, . 16 amp.
Power Output
Maximum 1.5 watts Undistorted 1 watt
Weight \qquad
Cabinet Dimenslons
Height 29\%"
Width 30\%"
Depth 17*
Record Players (2)
RP 168
... 45 RPM
Record capacityup to ten RCA 7 in fine groove 960282-1 \qquad

Top View-78/331/3 R.P.M. Record Cbanger
REFER TO 960282 SERVICE DATA FOR INFORMATION ON 78/331/3 R.P.M. RECORD CHANGER

A85

Alignment Procedure

Output Meter Alignmeat.-If this method is used, connect the meter acroms the voice coil and turn the receiver volume control to maximum.

Signal Generator.-For all alignment operations, connect the low side of the signal generator to the receiver chansis and keep the output as low. as possible to avoid AVC action.
It may be desirable to use an isolation transformer (117v./ 117 v .) for the receiver if the signal generator is also a.c. operated.

Steps	Connect high side of sig. gen. to-	Adjust sig. gen. to	Turn radio dial to-	Adjust for max. output-
1	Converter grid (pin \#8 of 12SA7) thru a 1 l mf . capacitor	455 kc	Quiet point near 1600 kc	2nd I.F.
2				T1 top $\&$ bottom lst I.F.
3	Repeat Steps 1 and 2 using alternate loading*			
4	Short wire placed near loop for radiated signal	1620 kc	Gang fully open	C6 (osc.)
5		1400 kc	1400 kc signal	C3 (ant.)
6		600 kc	600 kc signal	L. 2 (osc.) (rock gang)
7	Repeat Steps 4, 5 and 6			

- Alternate loading involves the use of a 22,000 ohm resintor to load the plate winding while the grid winding of the SAME TRANSFORMER is being peaked. Then the grid winding is loaded with the resistor while the plate winding is peaked. Only one winding is loaded at any one time. Remove the 22,000 ohm resistor after T2 and T1 have been aligned.
NOTE: If "alternate loading" is not used during I-F alignment, it mary reault in non-symmetrical response. This in due to the characteristics of the I-F trans. formers used in this chassis.

Dial Pointer Position

With the tuning condenser fully meshed, set the dial pointer to the SECOND score mark from the left hand edge of the dial back plate.

Lead Dress

1. Dress all heater leads down to chassis and as far as possible from all audio grid and plate winding.
2. Dress power cord to side apron and away from tone control.
3. Dress capacitor C22 down to chassis and keep leads as short as possible.
4. Dress pilot light leads and phono. power cables to side apron and away from tone control.
5. Dress phono. A.C. leads on function switch avray from all other terminals and run leads directly through to front apron.
6. Dress output tromsformer leads down to chassis.
7. Dress C20 away from chassis and wire with as short leads at possible.
8. Dress excess loop leads away from tubes and clear of gang condenser.
9. Dress lead from tone control to S-1 terminal \#7 along chassis base and front apron.

Dial-Indicator and Drive Mecbanism

Tube and Trimmer Locations

SCHEMATIC DIAGRAM

$\begin{aligned} & \text { STOCX } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$	DESCRIPTION
	CHASSIS ASSEMBLIES	74762	Switch-Function switchS1
	RC 1087	74918	Tramsiormer-First I.F. transforme
74763	Capacitor-Variable tuning capacitor, C2, C3, C5, C6	73037	Tranformer-Second I.F. transformerT2
71924		74677	Transformer-Output transformerT3
39630		33726	Wamher-"C" washer for tuning knob shaft
74678	Capacior-Electrolytic, comprising 2 sections of 120 mid., 150 volts and 1 section of 40 mid., 25 volts \qquad C19A, C198, C19C		SPEAKER ASSEMBLIES $92586-2$ RL 105 C 2
70603	Capacitor-Tubular, paper, . 003 midd., 400 voltsC20	74758	Cone-Cone and voice coil ansembly
70604	Capacitor-Tubular, paper, . 0035 mid., 400 volts....C7	74679	Speaker-8
73920	Capacitor-Tubular, paper, . 005 mfd .400 volts ..Cl7		
70608	Capacitor-Tubular, paper, .007 mid., 400 volts C12, C21		NOTE:-If stamping on speaker in instrument does not agree with above speaker number, order replace-
73561	Capacitor-Tubular, paper, 01 mid., 400 volts, C16. C22		ment parts by referring to model number of instrument, number stamped on speaker and full description of part required.
70572	Capacitor-Tubular, paper, $015 \mathrm{mid} ., 400$ volts ..C10		
70611	Capacitor-Tubular, paper, $02 \mathrm{mfd} ., 400$ voltsCll		MISCELLANEOUS
73553	Capacitor-Tubular, paper, 05 mid., 400 volts, C9, C14, C23, C24, C25	74205	Bezel-Dial bezel less dial
73935	Clip-Mounting clip for I.F. transformer	70608	Capacitor-Tubular, paper, . 007 mid., 400 volts ..C102
74448	Coil-Oscillator coil ... L2	74298	Clamp-Dial clamp (2 req'd)
30868	Connector-2 contact female connector for motor cable \qquad J3. J4	X3115	Cloth-Grille cloth for mahogany or walnut instruments
71596	Control-Volume control ... 18	X3116	Cloth-Grille cloth for oak instrument
74761	Control-Tone control and power switchR15, S2	74192	Connector-3 contact male connector for pickup cables \qquad .P1, P2
71457	Cord-Power cord and plug	74581	Cover-Mounting screw cover-use with \#74582
+72953	Cord-Drive cord (approx. 48" overall length required.)		screw (3 req'd)
74838	Grommet-Power cord strain relief (1 set)		Decal-Trade mark
72283	Grommet-Rubbur grommet to mount tuning capacitor.	74771	Decal-Control panel function decal for mahogany or walnut instruments
74765	Indicator-Station selector indicator	74772	Decal-Control panel function decal for oak instruments
71116	Lamp-Dicl lamp-Type \#1490	74769	Dial-Glass dial scale
74766	Loop-Antenna loop assembly	74206	Grommet-Rubber grommet to mount 960282
72776	Pin-Contact pin for speaker lead		record changer
75047	Plate-Dial back plate complete with two (2) pulleys less dial	74931	Knob-Tuning control, volume control or tone control and power switch knob-maroon-for mahogany
18469	Plate-Bakelite mounting plate for electrolytic capacitor	728	or walnut instruments b-Tuning control,
74767	Receptacle-Dual phono input receptacleJ1, J2		ch or tone control and power switch knob-
74768	Resistor-Wire wound. 33 ohms, 1 wattR20 Resistorn-Fixed, composition:100 ohms, $\pm 20 \%$, $1 / 2$ watt \qquad	74934	brown-for oak instruments Knob-Function switch knob-maroon-for mahogany or walnut instruments
		74208	Nut-Tee nut to mount RP 168 record changer (3 req'd)
	15.000 ohms, $\pm 10 \%$, 1/2 watt $1 / \mathrm{R}$.	74770	Pull-Door pull
	22,000 ohms, $\pm 10 \%$, 1/2 watt ... ${ }^{\text {a }}$ 2 17		Resistor-Fized, composition: 18,000 ohms, $\pm 10 \%$, $1 / 2$ watt \qquad
		74582	Screw-\#8-32 $\times 134^{\prime \prime}$ special head screw to mount RPl68 record changer (3 req'd)
	220,000 ohms, $\pm 10 \%$, $1 / 2$ watt R19	74269	Screw-\#8-32 $\times 3 /{ }^{\prime \prime}$ trimit head screw for door pull
	470,000 ohms, $\pm 10 \%$, $3 / 2$ watt \qquad R6, R10 3.3 megohm, $\pm 20 \%, 1 / 2$ watt \qquad	74422	Spring-Conical spring to mount RP 168 record changer-upper-L.H.-(2 req'd)
74764	10 megohm, $\pm 20 \%, 1 / 2$ wattR14	74421	Spring-Conical spring to mount RP168 record changer-upper-A.H.-(l req'd)
73117 31251	Socket-Tube socket, miniature for 12BA6 Socket-Tube socket, octal wafer	74423	Spring-Conical spring to mount RP 168 record changer-lower-(3 req'd)
74014	Socket-Dial lamp socket	30900	Spring-Relaining epring for knobs
74038	Spring-Drive cord tension apring	75040	Spring-Mounting spring for 960282 record changer

tStock No. 72953 is a reel containing 250 feet of cord.

Specifications

Tuning Ranges

Standard Broadcast (AM) 540-1,600 kc.
Frequency Modulation (FM) $88-108 \mathrm{mc}$.

Intermedlate Frequency.. \qquad .AM-455 kc., FM-10.7 mc.

Tube Complement

Loudspeaker

Type 92569-9 ... 12 in. P.M.
Voice coil impedance at 400 cycles3.2 ohms

Tuning Drive Ratio
18:1 (9 turns of knob)

Pilot Lamps (3)Type No. 51, 6.8 volts, 0.2 amp .
Power Output
Maximum .. 5 watts
Undistorted ... 2 watts

Cabinet Dimensions
Height 32" Width $301 / 2^{\prime \prime}$ Depth 171/4"

Antennas:

This receiver has buili-in antennas for standard broadcalt (AM) and frequency modulation (FM) reception.

Under average conditions the (FM) antenna will provide matisfactory reception. However, provision is made for the use of external antennas if desired-connect as indicated below:

FM Antenna: Connect the transmission line from an ex. ternal FM dipole antenna to "FM" and "G" terminals. Remove the internal FM antenna wire from terminal "FM."

rca Victor

 AM-FM Radio Receiver Model A78Chassis No. RC-1084A

— Mfr. No. 274 —

Service Data

- 1950 No. 4 -

RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION CAMDEN, N. J., U. S. A.

Record Player (2)

RP168
960282-1 .. 78, 331/8 RPM
For information on 45 RPM changer refer to RCA Victor RP168 Series Service Data

For information on 78, 33 $1 / 3$ RPM changer refer to RCA Victor 960282-1 Series Service Data.

Clircult Description

The chassis used in these receivers have a $6 J 6$ tube (V1) (twin triode), one section of which is used as mixer and the other section as oscillator. The FM antenna coil and the FM oscillator coil are placed in such position as to provide coupling between them. A section of the AM oscillator coil is connected in series with the mixer grid input when the range switch is in AM position.

Dual I-F transformers are used, each transformer containing both AM and FM windings. The I.F amplitier is V2 (6BA6).

The range switch has four functions:
(1) Selection of AM, FM ranges or Phono.
(2) Selection of AVC supply voltages to be applied to the controlled tubes. Simple AVC is applied to the grids of V1 and V2 on AM. Delayed AVC is used on FM and is applied only to the grid of V2.
(3) Controls application of $\mathrm{B}+$ voltage to the plate circuits of V1 (disconnected for PHONO operation).
(4) Controls audio input to volume control.

The driver V3 (6AU6) and ratio detector V4 (6AL5) circuits are similar to those used in other RCA Victor AM-FM receivers.

The audio voltage controlled by the volume control is amplified by V5 (6AV6) and V6 (6V6GI).

The rectifier V7 is type 6X5GT.

POWER-VOLUME
TONE

TUNING

SELECTOR

Alignment Procedure

CORRECT ALIGNMENT OF THE FM BAND REQUIRES THAT THE AM BAND BE ALIGNED FIRST

Alignment Indicators:

An RCA VoltOhmyst or equivalent meter is necessary for measuring developed d-c voltage during FM alignment. Connections are specified in the alignment tabulation. An output meter is also necessary to indicate minimum audio output during FM Ratio Detector alignment. Connect the output meter across the speaker voice coil.
The RCA VoltOhmyst can also be used as an AM alignment indicator, either to measure audio output or to measure a-v-c voltage.

When audio output is being measured the volume control should be turned to maximum.

Signal Generator:

For all alignment operations connect the low side of the signal generator to the receiver chassis. The output should be adjusted to provide accurate resonance indication at all times. If output measurement is used for AM alignment the output of the signal generator should be kept as low as possible to avoid $a_{i} v-c$ action.

Oscilloscope Alignment:

The FM I. F. alignment may be checked using a sweep generator and an oscilloscope. Shunt terminals B and C of T4 with a 1200 ohm resintor. Connect the high side of the oscilloscope to term. C o! T4 in series with a diode probe. Apply the output of the sweep generator (10.7 mc with $\pm 250 \mathrm{kc}$ sweep) to pin No. I of V2 (6BA5) in series with .01 m ., low side of the oscilloscope and sweep generator to chassis. This will show the response of T3.
To check the combined response of T2 and T3: connect the sweep generator to the antenna terminal board-high side to "FM" term. in series with 300 ohms and low side to " G "' terminal. Oscilloscope connections as previously connected.

To check the ratio detector response: remove the 1200 ohm resistor previously used, connect the high side of the oscilloscope direct to term. No. 9 of SI, low side to chassis. Apply the outpul of the sweep generator to pin No. 1 of V3 (6AU6) in series with .01 mf . Note: It is difficult to observe marker signals in this step-center frequency and sweep width should be previously observed.

Critical Lead Dress

1. Short leads on C7.
2. Dress R27 away from switch and Pin 5 of V1.
3. Ground lead on Pin 2 of V2 \& V3 should be down against chassis. Its length is critical.
4. A.V.C. lead from R26 to switch should be dressed against chassis and on front apron side of output transformer.
5. C43 should have short leads and color code end of capacitor should go to coil. Capacitor is to be cemented down with polystyrene cement the same time L2 is.
6. High side loop lead should be dressed away from tubes.
7. Lead from Pin 2 and V1 to terminal A of first dual I.F. transformer should be dressed against chassis.
8. Wire C40 directly between gang condenser and Pin 1 of V1.
9. Keep all the F.M. leads as short as possible.
10. Dress lead from Pin 5 of V2 to terminal A of T3 down against chassis.
11. Dress resistor R15 near chassis base.
12. Dress all A.C. leads away from volume control.
13. Run lead from F.M. Terminal on the antenna terminal board to L2 tap around the can of T2 and away from V2.
14. The taps on L1 \& L2 are critical.
15. The lead from R32 to terminal 10 of SI should be dressed away from the output transformer, T5.
16. Dress C25 and C26 against chassis with the shortest lead length possible..
17. Coupling between pins $5 \& 6$ of VI, and the components attached, should be kept to a minimum.
18. Coupling between LI \& L2 should be adjusted to give the proper oscillator injection voltage to the mirer grid.

AM Alignment
RANGE SWITCH IN BC POSITION

\dagger Use altornate loading.
Altornate loading involves the use of a 47,000 ohm resistor 10 load the AM plate winding while the AM grid winding of the SAME TRANSFORMER is being pecked. Then the grid winding is loaded with the resistor whilo the plate winding is peaked. Only one winding is loaded at any one time. Hemove the 47,000 ohm resistor after T3 and T2 have been aligned.
Oscillator frequency is above signal trequency on both AM and FM.

FM Alignment

RANGE SWITCH IN FM POSITION-VOLUME CONTROL MAXIMUM

Stops	Connect high side of sig. gen, to-	8ig. gen. output	Tura radio dial to-	Adjust for peak output
1	Connect the d-c probe of a Voltohmayst to the negative lead of the 2 mid. capacitor C33 and the common lead to chaseis. Turn gang condenser to max. capacity (fully meshed).			
2	Pin 1 of BAUS in series with .01 mid.	10.7 me. modulated $30 \% 400$ cycles AM (Approx. .05 volt).	Max. cerpacity (fully meshed)	T4 lop core for max. d-c voltage across C33. T4 boltom core for min. audio output.*
3	FM ant. torm in series with a 300 ohm resistor. (Romove ant. lead from "FM" term.)	10.7 mc. Adjust to provide 2 to 3 volis indication on Voltohmyst during alignment.		FM windings. $\dagger \dagger$ T3 top core (sec.). T3 bottom core (pri.).
4				FM windings. $\dagger \uparrow$ T2 top core (sec.). T2 bottom core (pri.).
5		106 me.	106 mc.	L2 osc.** C2 ant. Sel C2 al mans. capacity while adjuating L2.
8		90 mc.	90 mc.	LI cnt.* (Rock gang.)
7	Ropeat Slop: 5 and is until further adjustment does not improve calibration.			

- Two or more poinis may be found which lower the audio output. At the correct point the minimum audio output is approached rapidy and is much lower than at any incorrect point.
t† Align T3 and T2 by means of alternato loading as explained undor AM calignment. Use a 880 ohm resistor instoad of a 47,000 -A L1 and I2 are adin FM windings.
" L1 and L2 are adjuatable by increasing or decreasing the

Dial Scale Actual Size

Substitute Record Changer:

In some instruments a late type RP 168 record changer is used. The mechanism is labeled RP 168D-1. The motorboard is a gold finish and has an "ON-OFF" switch.

This changer is mounted on three rubber grommets instead of springs. Three \# 10×1.in. screws are used to retain the record changer and should be tightened only "finger tight."

The following items (not previously listed) are available as replacement parts:
32875 Switch—"ON.OFF" switch for record changer
75652 Base-Record changer sub-base for mechanisms labeled RP 168D-1
75697 Grommet-Rubber grommet for mounting record changers having "I' nuts on under side of motorboard

Dial Indicator and Drive Mecbamism

Tube and Trimmer Locations

Top View-45 R.P.M. Record Changer

Top View-78/331⁄3 R.P.M. Record Changer

Substitute Speaker:
In some instruments a substitute speaker (stamped 92569-9B) - SL8SL ON YOOTS SD ө1qDTVAD

Simplified Schematic Diagram
$331 / 3,78$ RPM Pbono
Voltage Chart

\％ 号 A	1111	1111	111	1	\％ 1	－80\％	웅	足	1	\mid	1	\mid	$\stackrel{0}{0}$	\＃	$\%$
N		O. © ion	－8．09］	1	$\cdots \stackrel{\infty}{9}$		－		－	\because	$\underset{\sim}{\underset{\sim}{n}}$	\mid	$\stackrel{\square}{0}$	$\stackrel{\text { ®® }}{\circ}$	¢
\％	தinịio	no우ㅇㅜㅜ	$\underset{\sim}{\mathbf{n}}$	，	$\approx \stackrel{\oplus}{i}$		\％		$\stackrel{\bullet}{6}$	$\stackrel{\text { ® }}{ }$	$\stackrel{0}{9}$	1	$\stackrel{?}{0}$	$\stackrel{\text { ¢ }}{\underset{\sim}{\oplus}}$	8
$\begin{aligned} & \text { o } \\ & \frac{a}{a} \\ & \text { a } \end{aligned}$	－Nom	のめのー	nom	1	への	\cdots－	－		\cdots	\cdots	\cdots	\pm	\cdots	ω	\oplus
	을 흘문문				훌문		\％								
\&	\bigcirc	$\stackrel{\leftrightarrow}{\infty}$	8	䃾	3	E	県		$\stackrel{\square}{6}$		$\begin{aligned} & \circ \\ & 0 \\ & 0 \end{aligned}$		\sum_{c}^{∞}	$\begin{aligned} & \text { H } \\ & 0 \\ & 0 \end{aligned}$	苞
$\frac{8}{2}$	\cdots	－	\cdots	＊	∞	\bullet	\cdots		－	\cdots	∞	＊	\cdots	\bullet	－

Voltages and currents measured with tunlng condenser closed Voltages and currents moasured with tuning condonser ciosed
and no signal input should hold within $\pm \mathbf{2 0 \%}$ wlth rated line
voltage． Note：Plate voltage removed from 6 J 6 mixer and oscillator tube
during＂Phono＂ during＂Phono＂operation． The simplified schomatic diagrams ior 9W78 in RCA Victor Bound Volume V aiso apply to Model A78．

$\begin{gathered} \text { sTOCE } \\ \text { NO. } \end{gathered}$	DESCRIPTION	sTOCR NO.	DESCRIPTION
	CHASSIS ASSEMBLIES	$\begin{aligned} & 31251 \\ & 31364 \end{aligned}$	Socket-Tube socket, actal, wafer, for V6 and V7 Socket-Lamp socket
73893	Board-"F. M." terminal board	74038	Spring-Drive cord tension spring
73889	Capacitor-Variable tuning capacitor (C1, C2, C3, C4, C8, C12. C13)	74202 78911 74913	Support-Polystyrene coil support complete with bracket Sw tch-Tene control switch (S4) Switch-Selector switch (Sl)
73866	Capacitor-Ceramic, $2 \mathrm{mmf}$. (C9)	73415	Transiormer--Output transformer (T5)
93056	Capacitor-Ceramic, 5 mmf ((C11)	73743	Transformer - Ratio detector transformer (T4)
39044	Capacitor-Ceramic, 15 mmf . (C42)	70127	Transformer-Power transformer 117v/60c (T1) Trantiormer-First I. F. transformer-dual (T2)
73372	Capacitor-Electrolytic comprising 1 section of 30 mid . 350 volts, 1 section of $30 \mathrm{mid} ., 300$ volts and 1 section of $20 \mathrm{mid} ., 25$ volts (C18凡. C18B, C18C)	$\begin{aligned} & 74019 \\ & 33726 \\ & 73333 \end{aligned}$	Transformer-Second I. F. transformer-dual (T3) Washer-" C " washer for tuning shaft Washer-Insulating washer (extruded) for mountina
39042	Capacitor-Ceramic, 47 mml . (C26)	73332	output transformer (2 required) (far mounting
73867	Capacitor-Ceramic, 56 mmf . (C43)	73332	Waher-lnsulaling washer (flat) for mounting out transformer (2 required)
33379	Capacitor-Ceramic, 68 mmf. (C40)		
48125	Capacitor-Ceramic, 150 mmf . (C7, C19, C45)		SPEAKER ASSEMBLY
39640	Capacitor-Mica, 330 mm . (C30, C31)		92569-9 RMA 274
73748	Capacitor-Ceramic, 1500 mmi . (C39)		Cap-Dust cap RL 111 -14
73473	Capaciter-Ceramic, $5,000 \mathrm{mmf}$. (C44, C10)	74901	Cone and voice coil assembly
73747	Capacitor-Eleetrolytic, $2 \mathrm{mid} ., 50$ volts (C33)	74974	Speaker-12" P. M. speaker (3.16 oz.) complete with
73186	Capacitor-Tubular, paper, . $001 \mathrm{mid} . .400$ volts (C51)		cone and voite coil ($3.2 \mathrm{ohms)}$)
71927	Capacitor-Tubular, paper, 002 mid., 400 voltr (C46)		NOTE: If stamping on speaker does not agree with
72573	Capacitor-Tubular, paper, . 003 mid .400 volts (C28, C47)		above number, order replacement parts by referring to
71926	Capacitor-Tubular, paper, $005 \mathrm{mfd} ., 200$ voltr (C20, C27. C32)		model number of instrument, number stamped on speaker and full description of part required.
71553	Capacitor-Tubular, paper, $005 \mathrm{mid} ., 400$ volts (C14, C16, C17. C21, C22)		MISCELLANEOUS
70608	Capacitor-Tubular, paper, . 007 mid., 400 volts (C49)	72555	Antenna-F.M. antenna Bezel-Dial scale berel
71923	Capacitor-Tubular, paper, . 01 mid., 200 volts (C23, C25)	71599	Bracket-Pilot lamp bracket
71925	Capacitor-Tubular, paper, . $01 \mathrm{mid}$. , 400 volts (C29, C41)	74579	Bumpar-Rubber bumper (black) for 45 RPM changer
72120	Capacitor-Tubular, paper, $015 \mathrm{mid} ., 200$ volts (C48)		drawer for mahogany or walnut instruments (2 required)
72596	Capacilor-Tubular, paper, 02 mid., 200 volte (C50) Capacitor-Tubular, paper, $.05 \mathrm{mid} ., 200$ volts (C15)	74580	Bumper-Rubber bumper (white) for 45 RPM changer drawer for oak instruments
70617	Capacitor-Tubular, paper, 0.1 mid., 400 volts (C37)	75041	Button-Plug bution for shipping bolt holes in 33/78
73744	Coil-Oscillator coil-A. M. (L4)		RPM changer (2 required)
71942	Coil-Filament choke coil (L6)	72437	Cable-Shielded pickup cable complete with pin plug
73918	Coil-Antenna coil-F. M. (L1)	74296	for 45 RPM changer Cable-Shielded pickup cable complete with pin plug
73916	Coil-Oscillator coil-F. M. (L2)		for $33 / 78$ APM changer
30868	Connector-2 contact female connector for motor cable	13103	Cap-Pilot lamp cap
70342	Control-Volume control and power witch (B14, S3)	39644	Capacitor-Mica, 470 mml . (on 78. 33-1/3 APM record changer)
72953	Cord-Drive cord (approx. $48^{\prime \prime}$ overall) Fastener-Push fastener to mount R. F. shelf (4 required)	70602	Capacitor-Tubular, paper, 0025 mid. (on 78, 33-1/3 APM record changer) 400 volte
16058	Grommet-Rubber grommet to mount R. F. shelf (4 roquired)	$\begin{aligned} & 71892 \\ & 74298 \end{aligned}$	Catch-Bullet catch and strike for doors (2 required) Clamp-Dial clamp
73895	Indicator-Station selector indicator	$\times 3046$	Cloth-Grille cloth for mahogany or walnut instruments
11765	Lamp-Dial lamp-Mazda 51	X 3047	Cloth-Grille eloth for oak instruments
74297 33514	Plate-Dial back plate complete with 2 pulleys leas dial	30868	Connector-2 contact temale connector for $33 / 78$ RPM changer motor extenaion cable
52436	Receptacle-Phono input socket-dual Hesistor-Wire wound, 1500 ohms, 4 watts (R22)	30870	Connector-2 contact male connector for $33 / 78$ RPM changer motor extension cable
	Fesintor-Fixed, composition:68 ohms, $\pm 10 \%$. $1 / 2$ watt (R7)	74581	Cover-Mounting screw cover for 45 RPM changer (3 required)
	100 ohms, $\pm 10 \%$, $1 / 2$ watt (R17. R27)	74273	Decal-Trade mark decal (Victrola)
	120 ohms, $\pm 10 \%$, 1/2 watt (R12)	71768	Decal-Trade mark decal (RCA Victor)
	330 ohms, $\pm 10 \%$, 1 watt (R21)	74915	Decal-Control function decal for mahogany or walnut instruments
	560 ohms, $\pm 10 \%$. $1 / 2$ watt (R33)	74916	Decal-Control function decal for oak instruments
	680 ohms, $\pm 20 \%$, 1/2 watt (R9, R11)	74203	Dial-Glast dial scale
	1200 ohms, $\pm 5 \%, 1 / 2$ watt (R23) 3300 ohms, $\pm 5 \%$, $1 / 2$ watt (R24)	74838	Grommet-Power cord strain relief grommet (1 set) Grommet-Rubber grommet to mount $33 / 78$ RPM changer
	6800 ohms, $\pm 10 \%$. $1 / 2$ watt (R37)	74308	(4 required) Hinge-Cabinet door hinges (l set)
	10,000 ohms. $\pm 10 \%$. $1 / 2$ watt (R32) 15,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R13, B18)	74931	Knob-Volume control or tuning control knob-maroonfor mahogany of walnut instruments
	18,000 ohms, $\pm 10 \%$. $1 / 2$ watt (R4) 18,000 ohms, $\pm 10 \%$, 1 watt (R5)	74934	Knob-Tone control switch or selector switch knob-maroon-for mahogany or walnut instruments
	12,000 ohms, $\pm 10 \%$, watt (RS)	72824	Knob-Control knob-brown-for oak instruments
	22,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R8)	73896	Loop-Antenna loop complate
	27,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R6, R30)	74730	Nail-Decorative nail for grille
	33,000 ohms, $\pm 10 \%$. $1 / 2$ watt (R36)	74208	Nut-Tee nut to mounting 45 RPM changer (3 required)
	33,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R25)	74914	Pull-Door pull
	56.000 ohms, $\pm 10 \%$, $1 / 2$ watt (R31)		Resiator-Fixed, composition, 27.000 ohms (on 78, 33-1/3 RPM record changer) $\pm 10 \%$, $1 / 2$ watt
	56,000 ohms, $\pm 10 \%, 1$ watt (R10) 100,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R35)	74582	Screw-\#8-32 x 13/4" special screw for mounting 45 RPM changer (3 required)
	270.000 ohms, $\pm 10 \%$, 1/2 watt (R19, R29)	74113	Screw-\#8-32 $\times 1{ }^{\text {" }}$ trimit head screw for door pull
	470.000 ohms, $\pm 10 \%$, $1 / 2$ watt (R20. R26)	74835	Slide-Slide mechanimm for 45 RPM changer carriag
	$1 \mathrm{megohm}{ }^{\text {a }} \pm 10 \%$, 1/2 watt (R34)	74736	Slide-Slide mechanimm for 33/78 RPM changer carriage
	2.2 megohms, $\pm 20 \%$. $1 / 2$ watt (H 3)	30900	Spring-Retaining spring for knobs
	3.9 megohms, $\pm 10 \%$, 1/2 watt (R2)	74421	Spring-Conical spring for mounting 45 RPM changer-upper-R.H. (l required)
	10 megohms, $\pm 20 \%$, $1 / 2$ watt (R15) 22 megohms. $\pm 20 \%$. $1 / 2$ watt (R16)	74422	Spring-Conical spring for mounting 45 RPM changer-upper-L.H. (2 required)
73894	Shaft-Tuning shaft	74423	Spring-Conical spring for mounting 45 RPM changerlower (3 required)
72516	Socket-Tube socket, 7 contact, miniature, for V4 and V5	75040	Spring-Conical spring to mount $33 / 78$ RPM changer
73606	Sockel-Tube socket, 7 contact, miniature, for V1, V2. and V3	72936	(4 required) Stop-Door stop

FOR RECORD CHANGER SERVICE INFORMATION REFER TO RP-168 SERIES SERVICE DATA OR RP-180 SERIES SERVICE DRTA FOR 45 R.P.M. AND MODEL 960282 SERVICE DRTR FOR 78/331/3 R.P.M.

AM Radio-Phonograph Combination
Model A-82
Chassis No. RC 1094
Service Data

- 1950 No. 21 -

PREPARED BY RCA SERVICE CO., INC.
FOR
RADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

Minalignment of the ball bearings in the carriage alides may cause the roll-out to have excessive drag. If this condition should exist exert a elight additional force in aliding the roll-out to ite limit. This should automatically correct the condition.
Either roll-out is limited in travel by a stop pin at the back ond of each alide. To remove roll-out carriage firat remove the retaining spring and then the stop pins. Removing the connecting cable permits the roll-out to alide out trom the front of the cabinet.

Fig. 1-Connecting Cable Diagram

Fig. 2-Roll-owt Assembly
Note: It is not necessary to remove the "roll-out" from the radio chamis whon aligning the ent. Having the "roll-out" fast to the chassis keeps the dial scale in place for dial calibration reference. Simply remove bottom cover as shown in Figure 2.

A-82

CRITICAL LEAD DRESS

1. Dress all A.C. leads at function switch away from audio terminals.
2. Dress phono and A.M. audio leads to function switch away from Å.C. leads.
3. Dress all A.C. leads at volume control away from audio leads.
4. Dress Rl6 down next to chassis.
5. Dress R14 away from A.C. terminals on V.C.
6. Dress lead from top of V.C. to Sl front, terminal 7 down to chassis along front apron.
7. Dress C17 down to chassis and away from components to Pin 1 of V4.

Socket Voltages

Voltages measured with Chanalyst or VoltOhmyst and should hold within $\pm 20 \%$ with rated line voltage. Tuning condenser closed-no signal input Volume Control Min.

			age
T Tube	Torminal	Phono	A.M.
V.F. Amp.	${ }_{\text {Plate }} 5$		212
	Screen Cathode 7	二	100 1.23
	Grid 1	-	-28
V2 6BE6	Plate 5	-	238
Converter	Screen 6	-	88
	Grid 7	-	-. 25
	Cathode 2	-	-7.2
V3 6BA6	Plate	-	238
I.F. Amp.	Screen 6	二	125
	Cathode 7	-	4.2
	Grid 1	-	-. 28
V4 6AV6	Plate 7	105	
Det. A.F. Amp.	Grid 1	-. 9	-. 93
V5 6C4	Plate 1-5	122	99
Inverter	Grid 6	-18.9	-18.5
	Cathode 7	-12.2	-13
V6 6V6GT	Plate	299	
Output	Screen	292	238
	Grid	-18.9	-18.5
	Cathode 8	-18.9	-18.4
V7 6V6GT	Plate		
Output	Screen	292	238
	Grid 5	-18.9	-18.5
	Cathode 8	-18.9	-18.4
V8 5Y3GT	Cathode 8	309	310
Rectifior			
Total Current V8		69 ma .	66 ma .

Alignment Procedure

Output Meter Alignment.-If this method is used, connect the meter across the voice coil and turn the receiver volume control to maximum.

Signal Generator. - For all alignment operations, connect the low side of the signal generator to the receiver chassis and keep the output as low as possible to avoid AVC action.
Dial Pointer Adjustment.-Rotate tuning condenser until the plates are fully closed. Adjust indicalor pointer to the score mark at the left hand end of the dial.

Stepa	Connect the high side of the teat oncillatorto-	Tune test-onc. to-	Turn radio dial to-	Adjust the following for maximum output
1	Convarter grid in series with a . 01 mfd cap. to Pin 77 of V2	455 kc	Min. cap.	Top and bottom of T1 and T3
2	Short piece of wire placed near loop for radiated aignal	1620 kc	1620 kc	OSC-Cl-8T
3		1400 kc	1400 kc	$\begin{aligned} & \text { RF Cl-1T } \\ & \text { ANT Cl-3T } \end{aligned}$
4		600 kc	600 kc	OSC coil L3 RF coil L3 Adj. aimultaneounly while rocking gang
5		Repeat etope 2, 3 and 4 for greatest ensitivity		

Fig. 3-Cbassis Top View

Fig. 4-Dial Drive

REPLACEMENT PARTS

| STOCK
 No. | DESCRIPTION | | STOCK
 No. | DESCRIPTION |
| :---: | :--- | :--- | :--- | :--- | :--- |

Fig. 5-Scbematic Diagram
Substitute Speaker:
A substitute speaker (stamped 92569-9B) has been used in
Speaker 92569-9B uses Stock No. 75875 cone.
Speaker 92569-9W uses Stock No. 74901 cone.

†Stock No. 72953 is a reel containing 250 feet of cord.

FOR RECORD CHANGER SERVICE INFORMATION REFER TO RP. 168 SERIES SERVICE DATA OR RP. 190 SERIES SERVICE DATA FOR 45 R.P.M. AND MODEL 960284 SERVICE DATA FOR 78/3314 R.P.M.

rca Victor

AM-FM Radio-Phonograph Combination Mode A-91
 Chassis No. RC 1095
 Record Changers 960284 (78/33 1/3 r.p.m.) RP 168 or RP 190-2 (45 r.p.m.)
 Service Data

_ 1950 No. 20 _
PREPARED BY RCA SERVICE CO., INC. FOR
RADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

Specifications

Top View-RP190 Record Changer

Power Supply Rating 115 volts, 60 cycles, 110 watts	
Loudspeaker (92569-12W)	
Size and type ... 12 in. PMVoice coil impedance3.2 ohms at 400 cycles	
Power Output	
(Radio) Undistorted 8 watts (Phono.) Undistorted 10 watts	aximum 9 walts ximum 11 watts
Weight 90 lbs.
Cabinet Dimensions	
Height 32 in . Width 32 in .	Depth 19\%/4in.
Record Changer (RP 168 or RP 190-2)	
Turntable speed	45 r.p.m.
Pickup $\left\{\begin{array}{l}\text { (RP 168-Stock No. 74625) } \\ \text { (RP 190-Stock No. 75575) }\end{array}\right\}$	Crystal
Record Changer (960284-1 or .2)	
Turntable speed ... 78 or 331/3 r.p.m.	
Pickup (Stock No. 75475)Crystal

Top View-960284 Record Changer

Alignment Procedure

CORRECT ALIGNMENT OF THE FM BAND REQUIRES THAT THE AM BAND BE ALIGNED FIRST

Alignment Indicators:

An RCA VoltOhmyst or equivalent meter is necessary for measuring developed d.c voltage during FM alignment. Connections are specitied in the alignment tabulation. An output meter is also necessary to indicate minimum audio output during FM Ratio Detector alignment. Connect the output meter across the speaker voice coil.
The RCA VoltOhmyst can also be used as an AM alignment indicator, either to measure audio output or to measure $\alpha-v-c$ voltage.

When audio output is being measured the volume control should be turned to maximum.

Signal Generator:

For all alignment operations connect the low side of the signal generator to the receiver chassis. The output should be adjusted to provide accurate resonance indication at all times. If output measurement is used for AM alignment the output of the signal generator should be kept as low as possible to avoid a-v-c action.

Circuit Description

This instrument has α nine-tube (including rectifier) chassis which is very similar to those used in other RCA Victor radiophonograph combinations designed for AM-FM reception.

The selector switch has five functions:
(1) Selection of tuning range.
(2) Selection and distribution of a.v.c. voltages.
(3) Application of B+ voltage to tubes V1, V2, and V3.

In "Phono 78/33" and "Phono 45" positions the B+ voltage is removed from tubes V1, V2 and V3.
(4) Selection of audio input applied to the volume control.
(5) Change in output tube bias.

In Radio positions R6 is in parallel with R42.
This receiver has builtin antennas for standard broadcast ($A M$) and frequency modulation (FM) reception.

Provision is made for the use of external antennas it desired.

Critical Lead Dress

Note: The leads listed may not be critical in all receivers. However, by dressing the leads as specified, unusual difficulties will be minimized.

1. The 2.2 meg mixer grid resistor (R 10) should have a minimum practicable amount of lead extending on the grid end.
2. The first A.M. and first F.M. I.F. plate leads should be dressed away from the range switch wafer.
3. The ground strap between the R.F. shelf and the main chassis should be well soldered and kept as short as practicable.
4. Arrange wiring to prevent the filament wire between the mixer (6J6) and lst I.F. (6BA6) tubes from passing near either the mixer grid, or the A.V.C. wiring.
5. Dress filament wires away from all audio coupling condensers.
6. Dress A.C. power switch wires away from the audio coupling condenser (C20) which is wired to the volume control.
7. Dress the mixer grid coupling condenser (C7) away from the lugs on the tront range switch water.
8. The lst I.F. tube A.V.C. by-pass condenser (C16) should ground at the same point as the cathode neutralizing loop.
9. The driver tube plate and screen by-pass condensers (C27. C28) should ground at the same point as the neutralizing loop.
10. The mixer plate by-pass condenser (C15) should ground as close to the R.F. shelf ground strap as practicable.
11. The shielded audio leads connecting to the front function switch wafer should have α minimum of exposed lead on the function switch end.

AM Alignment
function switch in am position

Stops	Connect high side of ing. gen. to-	Sig. gen. output	Turn radio dial to-	Adjust for max. output
1	Stalor of Cl-4in series with .01 ml .	455 kc.	Quiel point at low freq. end.	\dagger Botiom (sec.) $\&$ top (pri.) cores of T4 \dagger Top (sec.) $\&$ bottom (pri.) cores of T2
2	AM ant. terminal in series with 200 mmf.	1620 kc.	Extreme high freq. end.	$\begin{aligned} & \mathrm{Cl}-2 \text { trimmer } \\ & \text { (osc.) } \end{aligned}$
3		1400 kc.	1400 kc. signal	$\begin{gathered} \mathrm{Cl}-4 \text { trimmer } \\ \text { (ant.) } \end{gathered}$
4		600 kc.	600 ke. signal	25 (ose.) Rock Gang
5	Repeat stops 2, 3 and 4			

\dagger First peak T2 and T4 then starting with T4, use alternate leading. Connect a 47,000 -ohm resistor across the primary to load the plate winding while the grid winding of the same trangformer is being peaked. Then load the grid winding with the 47,000 -ohm retistor while the plate winding is being peaked.

FM Alignment

FUNCTION SWITCH IN EM POSITION-VOLUME CONTROL MAXIMUM

Steps	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to-	Adjust for max, output
1	Connect the d-e probe of a Voltohmyst to the negative load of the 2 mid. capacitor C40 and the common lead to chassis. Adjust sig. gen. output to provide approx. -3 v. indication during alignment			
2	Pin \#1 of 6 月U6 (V3) in series with .01 mf .	10.7 mc . AM modulated	-	Top of driver trans. T5 for max. d.c. voltage
3				\dagger Boltom of driver trans. TS for min. audio output
4	Repeat stepl 2 and 3			
5	To FM antenna termincls thru 120 ohms in each side of line	10.7 mc .	low trequency and	- Top (iec.) and botiom (pri.) cores of T3 - Top (sec.) and botlom (pri.) cores of T1
6		90 mc .	90 me.	* L8 (osc.)
7		106 mc .	106 mc .	$\begin{aligned} & \text { Cl-3 trimmer } \\ & \text { (ant.) } \end{aligned}$
8		90 mc.	90 me. aignal	* Ll (ant.) Rock Gang
9	Repeat steps	7 and 8		

+ Two or more points may be found which lower the audio output. At the correct point the minimum audio output is approached rapidly and is much lower than at any incorrect point.
- Align T3 and T1 by means of alternate loading as explained under $\AA M$ alignment. Use a 680 ohm resistor instead of a 47,000 ohm resistor and load the FM windings.
* L1 and L8 are adjustable by increasing or decreasing the spacing between turns.

F. M. Conil Larations

Tube and Trimmer Locations

Socket Voltages

Voltages measured to chassis with VoltOhmyst with no signal input and should hold within $\pm 10 \%$ with 117.volt power supply.

Tube	Terminal	Voltage		
		Phono	A.M.	F.M.
V1 $6 J 6$ Mixer and Oscillator	Plate 2	一	58	53
	Grid 5	-	-1.5	-1.3
	Plate 1	-	35	29
	Grid 6	-	-2.2	-2.0
V2 6BA6 I.F. Amp.	Plate 5	-	197	193
	Screen 6	-	112	104
	Cathode 7	-	0.67	0.77
	Grid 1	-	-1.2	-0.35
V3 6AU6 Driver	Plato 5	-	193	189
	Screen 6	-	125	123
	Cathode 7	-	1.1	1.1
$\begin{aligned} & \text { V4 6AL5 } \\ & \text { Ratio Det. } \end{aligned}$	-	-	-	-
$\begin{aligned} & \text { V5 6AV6 } \\ & \text { A.F. Amp. } \end{aligned}$	Plate 7	112	95	95
	Grid 1	-0.7	-0.7	-0.7
V6 6C4	Plate 1-5	125	90	90
	Cathode 7	-12.2	-11	-11
	Grid 6	-19.2	-15.6	-15.6
$\begin{aligned} & \text { V7 6V6GT } \\ & \text { or } \\ & \text { V8 Output } \end{aligned}$	Plate 3	305	295	295
	Screen 4	299	214	212
	Grid 5	-19.2	-15.4	-15.4
$\begin{aligned} & \text { V9 5Y3GT } \\ & \text { Rectifier } \end{aligned}$	Fildment 2	314	301	301

Dial Cord and Drive Assembly
Cathode Currents (Ma.)

Tube	Terminal	Phono	A.M.	F.M.
V1 6J6	7	-	2.8	2.8
V2 6BA6	7	-	16.6	16.5
V3 6AU6	7	-	9.4	9.3
V4 6AL5	185	-	-	-
V5 6AV6	2	0.8	0.5	0.5
V6 6C4	7	2.2	1.5	1.5
V7 6V6GT	8	35.6	18.6	18.5
V8 6V6GT	8	35.6	18.6	18.5
V9 5Y3GT	2	74.2	72.5	71.7

FUNCTION SWITCH VIEWED FROM FRONT AND SHOWN IN "PHONO 78/33" POSITION (MAX. C/CLOCEWISE)
VOLtages measured to chassis with voltohmyst and no signal input and should hold within $\pm \mathbf{2 0 \%}$ with 117 volt power supply
capacitor values less than 1 are in mf., values greater than 1 are in mmf. unless otherwise specified

FUNCTION SWITCH VIEWED FROM FRONT AND SHOWN IN "AM" POSITION (\#3 CLOCEWISE)
vOltages measured to chasis with voltohmyst and no signal input and should hold withi $\pm 20 \%$ with 117 volt power supply resistance values in ohms, $\mathbf{x}=1000$
capacitor values less than 1 are in mf., values greater than 1 are in mmf. unless otherwise specified

Switch Position Schematic Diagram-"Phono 45"

Switch Position Schematic Diagram-"Phono 78/33"

Record Changer Mounting

Each record changer is mounted in a roll-out carriage. The changer mechanisms are mounted on rubber grommets (45 r.p.m.) or springs (78/33 r.p.m.) and should be free floating.

Two shipping screws hold the 45 r.p.m. changer to its roll-out carriage. They are accessible from the under-side of the carriage and should be REMOVED at time of installation.
Two shipping screws hold the $78 / 33$ r.p.m. changer to its roll-out carriage. They are accessible after the turntable is lifted off and should be LOOSENED at time of installation.

Roll-out Carriage Removal

Each roll-out carriage has two stop pins, (one at the back end of each slide) held in place by a retaining spring. To remove roll-out carriage, it is first necessary to pull the retaining springs out of the slides with a pair of long nose pliers, the stop pins are then easily removed. The roll-out carriage may then be removed from the front of the cabinet after disconnecting its connecting cables.

Roll-out Carriage Travel

The roll-out carriages have a normal movement limitation of approximately 10 inches. If a carriage does not have this amount of movement, it may be due to an obstruction or from slippage or creeping of the balls of the slide mechanism. Travel restriction due to slippage or creeping of balls in the slide mechanism can be corrected by exerting sliohtly greater pull until the normal travel limitation is reached. The carriage should then operate to its full travel with normal pull.

Top View-RP 168 Record Changer

Adjustments

1. PICKUP LANDING-Turn screw "A" slightly to right (clockwise) if landing is on music grooves, or to left if too near edge of record.
2. PICKUP HEIGHT-Turn screw "B" slightly to right (clockwise) if for change cycle pickup does not lift up from as many as ten records on turntable, or to left if when lifting, pickup hits records on spindle. Correct height is $3 / 4^{\prime \prime}$ from turntable to pickup point at maximum.

$\begin{array}{\|c\|} \hline \text { 8TOC: } \\ \hline \end{array}$	DESCRIPTION	$\begin{gathered} \text { stoce } \\ \text { NO. } \end{gathered}$	DESCRIPTION
75599	CHASAIS ASSEMDLIES	756	Switch-Function
		75557	Transformer-Output tranafo
	Capacilor-Variable tuning capacitor complete with drive drum ($\mathrm{Cl}-1, \mathrm{Cl}-2, \mathrm{Cl}-3, \mathrm{Cl}_{1-1}$)	75558	Transformer-Radio detector traneformer (T3)
		037	adjustable cores (T2)
75613	Capacitor		adjustable cores (T4)
39044	Capacitor-Ceramic, 15 mmit. (Cli2)	75559	Transformer-First 1.F tranmormer (F-M) completo wit
75609	Capacitor-Ceramic, 47 mmi. (C45)	75560	Tranjuriormer-Second (T-F
75612 75437	Capacitor-Ceramic, 68 mmf . (C9, ${ }^{\text {cher }}$ (11)	75560	Iranniormer-second (T-F
75914	Capacitor-Coramic, 150 mmi . (Cl4, C30, C43)	75566	Transformer-Power transformer, 117 volt, 60 cycle (T8)
39640	Capacilor-Mica, 330 mmf . (C37, C38) ${ }^{\text {a }}$	33726	Wamber-"C' washer for tuning knob mhatt
3364	Capacilor-Mica, 470 mmf . (C7)		RADIO HOLLOUT CARRIA
7561	Capacilor-Coramic, 1500 mmi . (C19)		
7343	Capacitor-Coramic, 1800 mmf . (C17)	75601	controis
	C28, C29, C34, C36)	75549	Framo-Moulded frame (maroon) for mounting rad
$\begin{aligned} & 73801 \\ & 70642 \end{aligned}$	Capacitor-Tubular, paper, . 001 mid, 400 volte		chasais and 45 RPM record changer-lor mahogany
71926	Capacitor-Tubular, paper, . 005 m mid, 200 volte (C26, C39,	75683	ramo-Moulded frame (light brown) for moun
	Capacitor-Tubular, papar, $005 \mathrm{mfd}, 400$ volts (C33) Copactior-Tubular, paper, 01 midd, 400 volts (C32) Capacitor-Tubular, paper, oil impregnated, $.018 \mathrm{mfd}, 400$ volte (C21)		chasals and 45 RPM record changer-for ook instru-
73920			Handlo-Motal pullout handle for
71925 5847		75551	Handlo-Motal pullout handlo for mounting frame Scrow-\# $0-32 \times 5{ }^{\text {a }}$ crons
			screw to mount radio chanais (4 roq'd)
72120	Capacitor-Tubular, paper, $015 \mathrm{mld}, 200$ volts (C22)		
74010	Capacitor-Tubular, paper, 022 mid , 400 volts (C20, C35)		
73747	Copacitor-Tubular, papar, 05 mid, 400 volte (C16)		ped 02560-12W
72052	Capacitor-Electrolytic, comprising 1 section of 30 mid , 450 volte, 1 section of $30 \mathrm{mid}, 350$ volts and 1 rection of $40 \mathrm{mfd}, 25$ volts (C23A, C23B, C23C)		RL $111 . \mathrm{RI}$
		1386	Cone Cone
73935			Cone-Cane and voice coil assombly (3.2 ohms)
75627	Clip Clip for main cablo-on rear of chasais		Speaker- ${ }^{12^{\prime \prime}}$ P.M. speaker complete with cone and roic coil (3.2 ohms)
75569	Coil-Oscillator coil (R.M.) completo with adjuatable		NOTE: If stomping on apeaker does not agree with abo
75617	Coil-Antensa coil		, ord
71942	Coil-Filcment choke coil (Lis)		full dencription of part required.
74817 35787	Coil-Oncillator coil-F.M (L8)		
	Connector-Singlo contact iocables(12,		- MISCELLAYEOUS
74979		71864	Antonna-F.M antonna
75542	Connecto	75898	
75543	Connector- 2 contact female connector for 45 RPM motor cable (P1)		changer compartanont-for mahogany or walnut instru-
		7589	Back-Back cover-light brown-for 331//78 RPM record
75538	Control-Tone control (R34) powor with (R22, S2)		changer compartment-for oak instruments (assembled to rollout)
$\begin{array}{r} 72953 \\ 75564 \\ 7564 \end{array}$	Cord-Drive cord (approx. $66^{\prime \prime}$ overall length required) Coupling-Spring coupling for function ewitch extenation shaft	75900	Back-Back cover-Maroon-loy radio-15 RPM record
			changer compartment-lor mahogany or walnut instrumente (cutembled to Tolloul)
$\begin{aligned} & 75556 \\ & 74839 \end{aligned}$	Cover-Insulating cover for electrolytic capacitor \#72052 Fastener-Puah fastener for mounting R.F chell (4 required)	75901	Back-Back cover-light brown-ior radio-45 RPM record
			changer comportment-for oak intrumonts (ansombled
16058	Grommel-Rubber grommel for mounting R-F whelf (4 req'd)	30	Board-*-A-F-N"* torminal
		69	Bracket-Stop bracket lona rubber bumper for reco
75547	Grommet-Rubber grommot to mount alide mechanimm to botiom-rear (2 rea'd)		changer rolloute
75548		71599 75696	Bracke 1-Pilot lamp bracket
	Grommet-Rubber grommet to mount slide mechanism to bottom-front ($2 \mathrm{req}^{\prime} \mathrm{d}$)		Bumper-Rubber bumper for record brackot
$\begin{aligned} & 11765 \\ & 75545 \end{aligned}$	Lamp-Dial lamp-Mazda \#51 Nut-Rivnut to fasten screw for mounting chassis (4 req'd) Plate- Eakelite mounting plate for electrolytic capacitor \#72052	74296	ablo-shiolded pickup cable comp
			for 331/6/78 RPM record changer
18469			ablo-shiolded pickup cable complete with pin plug 45 RPM record changer
$\begin{aligned} & 75535 \\ & 75536 \\ & 72602 \\ & 72323 \\ & 73637 \end{aligned}$			Cap-Pilot lamp cap
	Plate-Dial back plate complote with three (3) pulleys	71892	Catch-Bullet catch and strite lor cabinet doors
		X3093	Cloth-Grill cloth for oak inatrumonts
	Pulley-Drive cord pulley ${ }^{\text {P }}$	$\times 3189$	Cloth-Grille cloth for mahogony or walnut instrumonts
	Resistor-Wire wound, 3 ohms, $1 / 2$ watt (R25) Resistor-Wire wound, 3200 ohme, 5 watts (R24) Resiator-Fixed, componition:- 47 ohms, $\pm 10 \%$, $1 / 2$ watt (R26)	74882	Connector-2 contact (polarized) malo connector for an-
		74752	Connector-2 contact
			cable
		75709	Connector-8 contact tomalo connector for main cable
			Connector-Shinglo contact male connector for speaker req'd)
	270 ohms, $\pm 5 \%$ \% 2 watte	3086	Connector- 2 contact female connector for 331/7/78 RPM
	wath	74273	
		7593	Deca-Mrade mark
		74838	Grommet-Power cord strain reliol (1)
		73697	Grommel-Rubber
			chat
	22,000 ohms, $\pm 10 \%$,	75551	Handlo-Motal pullout handle for 331/3/78 RP
		74308	Hinge-Cabin
		75712	Knob-Tuning control, fone control or volume control
	56,000 ohms, $\pm 10 \%$, W/ watt (R32)68,000 ohms. $\pm 10 \% \%$, watt (h39)82,000 ohme $\pm 10 \%$,		and powir switch knob-maroon-for mahogany or
		75713	
			and power ewitch lnob-lor ock instruments
		757	Knob-Function witch knob-maroon-for mahogany
	270,000 ohms, $\pm 10 \%$, $1 / /$ wott (R35)	75715	Knob-Function switch knob-tan-for oak instrumen
		11765	Lamp-Pilot lamp-Masda \#51
		75917	Nail-Rosetto head nail for
		7588	Nut-3peed nut for 331/3/78 RPM record changer mount-
75540 75565 7	22 meqohm, $\pm 20 \%$, \%/ watt (R33)	75916	Pull-Door pull
73584	Shaft-Extonsion shaft for function switch	75907	
	Shield-Tube shield for V5	75883	Screw-\#10-24 $\times 21 / 4^{4}$ sound hoad mac
31251	Sockot-Tube sockel, octal. Wafor	15003	mounting $331 / / 78$ APM record changer
77179	Sockel-Tube sockel, 7 pin, misiature Socket-Tube rockof, 7 pin, miniature for 6J6 tube only Socket-Dial lamp eockel Spring-Retaining apring for tunction ewitch extonaion shaft	74279 75709	
31354		75546	Slido-slide mechanimm for $33 / \mathrm{s} / 78$ RPM \%ecord mount
75563			ing trame
74038	Spring-Drive cord spring Support-Polystyrene support for F.M oncillator coil complote with mounting bracket	71734	Socket-Pilot lamp socket and load
		75902 72936	Spring-Suapondion spring for mati cable

FOR RECORD CHANGER SERVICE INFORMATION REFER TO RP. 190 SERIES SERVICE DATA FOR 45 R.P.M. AND MODEL. 960282 SERVICE DATA FOR 78/331/3 R.P.M.

AM-FM Radio-Phonograph Combination Model A-101
 Chassis No. RC 1096
 Record Changers 960282-4 or 5 (78/33 1/3 r. p. m.) and RP 190-2 (45 r.p.m.)
 Service Data
 — 1950 No. 31 -

PREPARED BY RCA SERVICE CO., INC. FOR
RADIO CORPORATION OF AMERICA rCa victor division
CAMDEN, N. J., U. S. A.

Specifications

Tuning Range

Standard Broadcast (AM) \qquad 540-1,600 kc.
Frequency Modulation (FM) \qquad .88-108 mc. Intermediate Frequencies \qquad AM-455 kc., FM—10.7 mc.

Tube Complement

(1) RCA 6CB6.. R-F Amplifier	
(2) RCA $6 J 6$	Oscillator
(3) RCA 6BA6	Amplifior
(4) RCA 6AU6	Driver
(5) RCA 6AL	Detector
(6) RCA 6A	Amplifier
(7) RCA 6C4	Ph . Inv.
(8) RCA 6V6G	Outpul
(9) RCA 6V6GT	Output
(10) RCA 5Y3GT.	Rectifier
Dial Lamps (2).......................Type No. 51, 6.8 volts, 0.2 amp.	
Jewel Lamp	0.2 cmp .

Top View-RP. 190 Record Changer

Top View-960282 Record Changer
The early production of Model A-10l used 960282 -4 or -5 record changer. Late production uses 960284 -1 or -2 record changer.

Alignment Procedure CORRECT ALIGNMENT OF THE FM BAND REQUIRES THAT THE AM BAND BE ALIGNED FIRST

Alignment Indicatora:

An RCA VoltOhmyst or equivalent meter is necessary for measuring developed d.c voltage during FM alignment. Connections are specified in the alignment tabulation. An output meter is also necessary to indicate minimum audio output during FM Ratio Detector alignment. Connect the output meter cacross the specker voice coil.
The RCA VoltOhmyst can also be used as an AM alignment indicator, either to measure audio output or to measure a.v.c voltage.

When audio output is being measured the volume control should be turned to maximum.

Signal Generator:

For all alignment operations connect the low side of the signal generator to the receiver chassis. The output should be adjusted to provide accurate resonance indication at all times. If output measurement is used for AM alignment the output of the signal generator should be kept as low as possible to avoid a.v.c action.

Circuit Description

This instrument has a ten-tube (including rectifier) chassis which is very similar to those used in other RCA Victor radiophonograph combinations designed for AM-FM reception.
The selector switch has five functions:
(1) Selection of tuning range.
(2) Selection and distribution of a.v.c. voltages.
(3) Application of B+ voltage to tubes.

In "Phono 78/33" and "Phono 45" positions the B+ voltage is removed from tubes V1, V2, V3 and V4.
(4) Selection of audio input applied to the volume control.
(5) Change in output tube bias.

In Radio positions R6 is in parallel with R42.
This receiver has built-in antennas for standard broadcast (AM) and frequency modulation (FM) reception.
Provision is made for the use of external antennas if desired.

Critical Lead Dress

Note: The leads listed may not be critical in all receivers. However, by dressing the leads as specified, unusual difficulties will be minimized.

1. The 2.2 meq mixer grid resistor (R10) should have a minimum practicable amount of lead extending on the grid end.
2. The first A.M. and first F.M. I.F. plate leads should be dressed away from the range switch waier.
3. The ground strap between the R.F. shelf and the main chassis should be well soldered and kept as short as practicable.
4. Arrange wiring to prevent the filament wire between the mixer (6J6) and lst I.F. (6BA6) tubes from passing near either the mixer grid, or the A.V.C. wiring.
5. Dress filament wires away from all audio coupling condensers.
6. Dress A.C. power switch wires away from the audio coupling condenser (C20) which is wired to the volume control.
7. Dress the mixer grid coupling condenser (C7) away from the lugs on the front range switch wafer.
8. The lst J.F. tube A.V.C. by-pass condenser (C16) should ground at the same point as the cathode neutralizing loop.
9. The driver tube plate and screen by-pass condensers (C27, C28) should ground at the same point as the neutralizing loop.
10. The mixer plate by-oass condenser (C15) should qround as close to the R.F. shelf ground strap as practicable.
11. The shielded audio leads connectina to the front function switch wafer should have a minimum of exposed lead on the function switch end.

AM Alignment
FUNCTION SWITCH IN AM POSITION

Steps	Conneet high side of sig. gen. to-	Sig. gen. output	Turn radio dial to-	Adjust for max. output
1	Stator of Cl-4	455 KC	Quiet point at low treq. end.	\dagger Bottom (sec.) 6 top (pri.) cores ol T4 4 Top (sec.) 6 bottom (pri.) cores of T2
2		1620 KC	Extreme high frequency end.	C1.2 trimmer (osc.)
3	AM ant. terminal thru 200 mmi.	1400 KC	1400 KC Signal	$\begin{aligned} & \text { Cl-4 trimmer } \\ & \text { (r. f.) } \\ & \text { Cli.s trimmer } \\ & \text { (ant.) } \end{aligned}$
4		600 KC	$\begin{aligned} & 600 \mathrm{KC} \\ & \text { Signal } \end{aligned}$	
5	Repeat steps 2, 3 and 4			

+First peak T2 and T4 then starting with T4, use alternate loading. Connect a 47,000 -ohm resistor across the primary to load the plate winding while the grid winding of the same transformer is being peaked. Then load the grid winding with the 47,000 -ohm resistor while the plate winding is being peaked.
\ddagger With a 10,000 -ohm resistor hunted acrose Cl-4, peak the oscillator core L5, simultaneously "rocking" the gang condenser for maximum output. Then, remove the $10,000-o h m$ ghunt resistor and peak $L 7$ for maximum output.

FM Alignment
FUNCTION SWITCH IN FM POSITION-VOLUME
CONTROL MAXIMUM

Steps	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to-	Adjust for max. output
1	Connect the dec probe of a Voltohmyst to the negative lead of the 2 mfd . capacitor C 40 and the common lead to chamsis. Adjust sig. gen. output to provide approx. -3 7 . indication during alignment.			
2	Pin \#l of 6AU6 (V4) in saries with .01 ml .	10.7 me AM modulated	\sim	Top of driver trang. TS for max. dec voltage
3				\dagger Bottom of driver trang. TS for min. audio output
4	Repeat siepr 2 and 3			
5	Thru 470 ohms to C1-3. Connect gnd. and of cable close to V2 cathode ground on r-i shelf	10.7 mc	88 mc	- Top (eec.) 6 botiom (pri.) cores of T3 - Top (eec.) bottom (pri.) cores of T3
${ }^{6}$	To FM antenna terminals thru 120 ohms in each side of line	90 mc	90 mc	18 (osc.)
7		108 mc	106 me Signal	C1-6 trimmer (ant.) and Cl-3 trimmer (r. i.)
8		90 me	90 mc Slgnal	$\begin{aligned} & \mathrm{L}_{1} \text { (ant.) and } \mathrm{L2} \\ & (\mathrm{x} . \end{aligned}$
9	Repeat steps 6, 7 and 8			
10	Connect a sweep generator to the antenna terminals thru 120 ohms in each side of line. Connect an oschlloscope to junction of R44 and C41 to check responet and linearity of FM band. Peak to peak separation should not be less than 180 ke.			

+ Two or more points may be found which lower the audio output. At the correct point the minimum audio output is approached rapidly and is much lower than at any incorrect point.
* Use a 680 ohm resistor to load the plate winding while the grid winding of the same trans. is being peaked. Then the grid winding is loaded with the 680 ohm resistor while the plate winding is being peaked. When windings ase loaded, it is necegsary to increase the 10.7 me input to maintain the -3 volts indication.

L8. L1 and L2 are adjustable by increasing or decreasing the spacing between turns. Oscillator signal track above signal fre. quency.

Tube and Trimmer Locations

Socket Voltages

Voltages measured with Chanalyst or VoltOhmyst and should hold within $\pm 20 \%$ with rated line vollage. Tuning condenser closed-no signal input.

Tube	Terminal			Voltage A.M.	F.M.
			Phono		
$\begin{aligned} & \text { V1 } 6 \text { 6B6 } \\ & \text { R.F. Amp. } \end{aligned}$	Plate Screen Cathode Grid	$\begin{aligned} & 5 \\ & 6 \\ & 2 \\ & 1 \end{aligned}$	E	$\begin{array}{r} 203 \\ 48 \\ 0.2 \\ -1.1 \end{array}$	$\begin{array}{r} 132 \\ 39 \\ 0.2 \\ -0.9 \end{array}$
V2 6 J6 Mixer and Osc.	Plate Grid Plate Grid	$\begin{aligned} & 2 \\ & 5 \\ & 1 \\ & 6 \end{aligned}$	I	$\begin{array}{r} 55 \\ -1.4 \\ 33 \\ -2.1 \end{array}$	$\begin{array}{r} 51 \\ -1.2 \\ 27 \\ -1.9 \end{array}$
V3 6BA6 I.F. Amp.	Plate Screen Cathode Grid	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 1 \end{aligned}$	—	$\begin{array}{r} 192 \\ 106 \\ 0.9 \\ -1.1 \end{array}$	$\begin{array}{r} 188 \\ 101 \\ -0.35 \end{array}$
$\begin{aligned} & \text { V4 6AU6 } \\ & \text { Driver } \end{aligned}$	Plate Screen Cathode	$\begin{aligned} & 5 \\ & 6 \\ & 7 \end{aligned}$	—	$\begin{array}{r} 186 \\ 122 \\ 1.05 \end{array}$	$\begin{array}{r} 180 \\ 120 \\ 1.07 \end{array}$
V5 6RL5 Ratio Det.	-	-	-	-	-
$\begin{aligned} & \text { V6 } 6 \text { RV6 } \\ & \text { A.F. Amp. } \end{aligned}$	Plate Grid	$\begin{gathered} 7 \\ 1 \end{gathered}$	$\begin{array}{r} 112 \\ -0.7 \end{array}$	$\begin{array}{r} 94 \\ -0.7 \end{array}$	$\begin{array}{r} 94 \\ -0.7 \end{array}$
V7 6CA Ph . Inverter	Plate Grid Cathode	$\begin{array}{r} 1-5 \\ 6 \\ 7 \end{array}$	$\begin{array}{r} 125 \\ -19.2 \\ -11.1 \end{array}$	$\begin{array}{r} 87 \\ -16 \\ -11.4 \end{array}$	$\begin{array}{r} 85 \\ -16 \\ -11.4 \end{array}$
V8 6V6GT or Output V9	Plate Screen Grid	$\begin{aligned} & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{array}{r} 305 \\ 299 \\ -19.2 \end{array}$	$\begin{array}{r} 295 \\ 208 \\ -16 \end{array}$	$\begin{array}{r} 298 \\ 204 \\ -16 \end{array}$
V10 5Y3GT Rectifior	Filament	2	314	313	313

F. M. Coil Locations

Dial Cord and Drive Assembly
Cathode Currents (Ma.)

Tube	Terminal	Phono	A.M.	F.M.
V1 6CB6	2	-	3	3
V2 6J6	7	-	2.6	2.6
V3 6BA6	7	-	13.2	14.7
V4 6AU6	7	-	9.3	9
V5 6AL5	185	-	-	-
V6 6AV6	2	0.8	0.5	0.5
V7 6C4	7	2.2	1.5	1.5
V8 6V6GT	8	35.6	17.8	17.7
V9 6V6GT	8	35.6	17.8	17.7
10 5Y3GT	2	74.2	73.6	74.2

Instruments using Chassis RC-1096B: C21 is .01 ml . C42 in .0012 mf .

Note:
When the function switch is in "Phono 45" or "Phono 78/33" position the B+ supply voltage to tubes V1, V2. V3 and V4 is disconnected at switch section Sl-3 rear. This esults in higher plate and screen voltages on V6, V7. V8 and V9.
The bias resistor R6 (in parallel with R42 in AM and FM positions) is also disconnected at S1-3 rear. This results in higher grid bias voltage on V8 and V9.
FUNCTION SWITCH VIEWED FROM FRONT AND SHOWN IN "PHONO 78/33" POSITION (MAX. C/CLOCXWISE).
CAPACITOR VALUES LESS THAN 1 ARE IN MF., VALUES GREATER THAN 1 ARE IN MMF. UNLESS OTHERWISE SPECIFIED. RESISTANCE VALUES IN OHMS. $K=1000$.
VOLTAGES MEASURED TO CHASSIS WITH VOLTOHYMST WITH NO SIGNAL INPUT AND SHOULD HOLD WITHIN $\pm 20 \%$ WITH $117-V O L T$ POWER SUPPLY. Simplified Schematic Diagram-"Phono 78/33"

Record Changer Mounting

Each record changer is mounted in a roll-out carriage. The changer mechanisms are mounted on rubber grommets (45 r.p.m.) or springs (78/33 r.p.m.) and should be free floating.

Two shipping screws hold the $45 \mathrm{x} . \mathrm{p} . \mathrm{m}$. changer to its roll-out carriage. They are accessible from the under-side of the carriage and should be REMOVED at time of installation.
Two shipping screws hold the 78/33 r.p.m. changer to its roll-out carriage. They are accessible after the turntable is lifted off and should be LOOSENED at time of installation.

Roll-out Carriage Removal

Each roll-out carriage has two stop pins, (one at the back end of each slide) held in place by retaining spring. To remove roll-out carriage, it is first necessary to pull the retaining springs out of the slides with a pair of long nose pliers, the stop pins are then easily removed. The roll-out carriage may then be removed from the front of the cabinet after disconnecting its connecting cables.

Roll-out Carriage Travel

The roll-out carriages have a normal movement limitation of approximately 10 inches. If they do not have this amount of movement, it may be due to an obstruction or from slippage or creeping of the balls of the slide mechanism. Travel restriction due to slippage or creeping of balls in the slide mechanism can be corrected by exerting slightly greater pull until the normal travel limitation is reached. The carriage should then operate to its full travel with normal pull.

A-101, A-108 (RC-1096B)
45-W-10 (RC-1096C)

Service Data:

Chasnis stamped RC-1096B and RC-1096C are the same as chassis stamped RC. 1096 and RC-1096A respectively except for the value of C21, R20 in volume control circuit and C42, C44 in output tubes plate circuit.

	RC-1096	RC-1096A	RC-1096B \& C
C21	.018	.015	.010 ml.
R20	$18 K$	18 K	22 K ohms
C42	.001	.001	$.0012 \mathrm{mf}$.
C44	.001	.001	.0012 ml.

Substitute Speaker:

Speakers stamped 971494-2 have been used as a substitute for speakers stamped 92569-12, but only with chassis stamped RC-1096B (A-101 and A-108) or RC-1096C (45-W-10). Speakers stamped 92569.12 can be used with any of the above chassis (RC-1096, -A, -B, or -C).

Addition to Parts List:
CHASSIS ASSEMBLIES
Add
76423 Capacitor-Ceramic, 3 mmf . (C10)

Replacement Parts

$\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { STOCE } \\ & \text { NO. } \end{aligned}$	DESCRIPTION
	CHASSIS ASSEMBLIES RC 1096	75542	Connector-8 contact male connector for power input cable (14)
75567	Capacitor-Variable tuning capacitor complete with drive drum ' $\mathrm{Cl}-1, \mathrm{Cl}-2, \mathrm{Cl}-3, \mathrm{Cl}-\mathrm{Cl}-5, \mathrm{Cl}-6$)	75543	Connector-2 contact female connector for 45 RPM motor cable (P1)
		74879	Connector-2 contact female connector for antenna leads
75613	Capacitor-Ceramic, 5 mmf . (C13)	75537	Control-Volume control and power switch (R22, S2)
39396	Capacitor-Ceramic, 100 mmf . (C4)	7556	Control-Tone control-L.F. (R19)
75609	Capacitor-Ceramic, 47 mmi . (C45)	75562	Control-Tone control-H.F. (R34)
75612	Capacitor-Ceramic, 68 mmf . (C9, C11)	+72953	Cord-Drive cord (approx. $66^{\prime \prime}$ overall length required)
39396	Capacitor-Ceramic, 100 mml . (Ci)	75564	Coupling-Spring coupling for function switch extension
75437	Capacitor-Caramic, 100 mmf . (C31)	75556	Cover-Insulating cover for electrolytic capacitor \#72052
75614	Capacitor-Coramic, 150 mmf . (C14, C30, C43, C54)	74839	Fastener-Push fastener for mounting R.F. shelf (4 req'd)
75611	Capacitor-Ceramic, 220 mmf . (C3)	16058	Grommet-Rubber grommet for mounting R.F. whelf (4
39640	Capacitor-Mica, 330 mmf . (C37, C38)		req'd)
39644	Capacitor-Mica, 470 mmf . (C7)	75547	Grommet-Rubber grommet to mount slide mechanism to
75610	Capacitor-Ceramic, 1500 mmi . (C19)		bottom-rear (2 req'd)
74850	Capacitor-Ceramic, 1800 mmi . (C17)	75548	Grommet-Rubber grommet to mount slide mechanism to bottom-front (2 req'd)
73473	Capacitor-Ceramic, 5000 mmf. (C2, C5, C6, C15, C24. C25, C27, C28, C29, C34, C36)	11765	Lamp-Dial lamp-Mazda 51
73801	Capacitor-Tubular, paper, 001 mid , 400 volte (C8)	75544	Nut-Rivnut to fonton screw for mounting chassis (4
70642	Capacitor-Tubular, paper, . $001 \mathrm{mid}, 1000$ volts (C42, C44)		$\mathrm{req}^{\text {d }}$)
71926	Capacitor-Tubular, paper, 005 mid, 200 volts (C26. C39, C41)	18469	Plate-Bakelite mounting plate for electrolytic capacitor \#72052
73920	Capacitor-Tubular, paper, . $005 \mathrm{mid}, 400$ volte (C33)	75535	Plate-Dial back plate complete with three (3) pulleys
71925	Capacitor-Tubular, paper, $01 \mathrm{mid}, 400$ volts (C32)	75536	Pointer-Station selector indicator
72120	Capacitor-Tubular, paper, .015 mid, 200 volte (C22)	72602	Pulley-Drive cord pulley
58476	Capacitor-Tubular, paper, oil impregnated, . 018 mid, 400 volts (C21)	$\begin{aligned} & 72323 \\ & 73637 \end{aligned}$	Resistor-Wire wound, 3 ohms, $1 / 2$ watt (R25) Resistor-Wire wound, 2200 ohms, 5 watts (R24)
74010	Capacitor-Tubular, paper, $02 \mathrm{mid}, 400$ volis ($\mathrm{C} 20, \mathrm{C} 35$)		Resistor-Fixed, composition:-
73553	Capacitor-Tubular, paper, $05 \mathrm{mid}, 400$ voles (C16)		68 ohms, $\pm 10 \%, 1 / 2$ watt, (R1, R26)
73747	Capacitor-Electrolytic $2 \mathrm{mfd}, 50$ volte (C40)		100 ohmm, $\pm 10 \%$, 1/2 watt (R15, R38, R43)
72052	Capacilor-Electrolytic comprising 1 mection of 30 mid, 450 volis. 1 section of $30 \mathrm{mfd}, 350$ volts and 1 section of $40 \mathrm{mfd}, 25$ volts (C23A, C23B, C23C)		120 ohms, $\pm 10 \%, 1 / 2$ watt (R27) 270 ohms, $\pm 5 \%, 2$ watts (R42)
73935	Clip-Mounting clip for A-M, I-F transformers		390 ohme, $\pm 10 \%$, $1 / 2$ watt (R9) 680 ohms, $\pm 10 \%, 1 / 2$ wall (R4)
75627	Clip-Clip for main cable-on rear of chassis		680 ohms, $\pm 20 \%, 1 / 2$ watt (R30, R31)
75569	Coil-Oscillator coil (A-M) complete with adjustable core (L3, L4, L5)		1000 chms, $\pm 10 \%, 1 / 2$ watt (R6)
75570	Coil-R.F. coil complete with adjustable core (L6, L7)		1200 ohms, $\pm 5 \%$, $1 / 2$ watt (R46)
7194	Coil-Filament choke coil (L9)		3300 ohms, $\pm 5 \%, 1 / 2$ watt (R40, R45)
75615	Coil-Antonna coil-F.M (Ll)		8200 ohms, $\pm 10 \% .1$ watt (R3)
74815	Coil-R.F. coil-F-M (L2)		15,000 ohms, $\pm 10 \%, 1 / 2$ watt (R44)
7481	Coil-Oscillator coil-F-M (L8)		18,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R7, R20)
35787	Connector-Single contact female connector for phono cables (12, 13)		22.000 ohms, $\pm 10 \%, 1 / 2$ walt (R28, R29) 27,000 ohms, $\pm 10 \%, 1 / 2$ watt (R18, R21)

[^0]Replacement Parts-Concluded

$\begin{aligned} & \text { STOCX } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$	DESCRIPTION
	39,000 ohms, $\pm 5 \%$, 1/2 watt (R47)		MISCELLANEOUS
	56,000 ohms, $\pm 10 \%, 1 / 2$ watt (R32)	71864	Antenna-F-M antenna
	68,000 ohms, $\pm 10 \%, 1 / 2$ watt (R39)	75705	Antenna-Antenna loop complete less cable
	82,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R36)	75898	Back-Back cover-maroon-for 331/3/78 RPM record
	120,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R8, R16) 150,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R12, R14)		changer compartment-for mahogeny or walnut instruments (assembled to rollout)
	220,000 ohms, $\pm 20 \%, 1 / 2$ watt (Rll) 270,000 ohms, $\pm 10 \%, 1 / 2$ watt (R35)	75901	Back-Back cover-light brown-for radio-45 RPM record changer compartment-for oak instruments (assembled to rollout)
	470,000 ohms, $\pm 10 \%, 1 / 2$ watt (R2, R37, R41, R48) 1.5 megohm, $\pm 10 \%$, $1 / 2$ watt (R17, RS1) 2.2 megohm, $\pm 20 \%$, $1 / 2$ watt (R5, R10, R13)	75900	Back-Back cover-maroon-lor radio-45 RPM record changer compartment-for mahogany or walnut instruments (assembled to rollout)
	10 megohm, $\pm 20 \%$, $1 / 2$ watt (R23)	73680	Board-"A-F-M" terminal board
	22 megohm, $\pm 20 \%$, 1/2 watt (R33)	75694	Bracket-Stop bracket (less rubber bumper) for rollouts
75540	Shalt-Tuning knob shaft	71599	Bracket-Pilot lamp bracket
75565	Shaft-Extension shaft for function switch	75696	Bumper-Rubber bumper for record changer rollout stop bracket
73584	Shield-Tube shield for V1 and V6	75919	Button-Rosette button for speaker grille
75546		74296	Cable-Shielded pickup cable complete with pin plug
31251	Socket-Tube socket, octal, waier		for 331/3/78 RPM record changer
73117	Socket-Tube socket, 7 pin, miniature Socket-Tube socket, 7 pin, miniature for 6CB6 and 6J6	72437	Cable-Shielded pickup cable complete with pin plug for 45 RPM record changer
	tubes only.	13103	Cap-Pilot lamp cap
31364	Socket-Dial lamp socket	71892	Catch-Bullet catch and strike for cabinet door
75563	Spring-Retaining apring for function switch extension shaft	X3189	Cloth-Grille cloth for mahogany or walnut instruments Cloth-Grille cloth for oak instruments
74038	Spring-Drive cord spring	74882	Connector-2 contact (polarized) male connector for an-
74847	Support-Polystyrene support for F-M oscillator coil complete with mounting bracket	74885	tenna loop cable Connector-2 contact male connector for FM antenna ter-
75602	Switch-Function switch (S1-1, S1-2, S1-3)	74752	Connector-2 contact male connector for FM antenna lerminal beard cable
75557	Transformer-Ouput tranmiormer (T7)	75709	Connector-8 contact temale connector for main cable
73743	Transformer-Ratio detector transformer (T5)		(lase shell) (P4)
75558	```Transformer-First I-F transformer (A-M) complete with adjustable cores (T2)```	30868	Connector-2 contact female connector for 331/3/78 RPM record changer motor cable (P2)
73037	Transformer-Second I-F transformer (A-M) complete with adjustable core: (T4)	75474	Connector-Single contact male connector for epeaker cable (2 req'd)
75559	Transformer-First I-F transformer (F-M) complete with adjustable cores (T1)	71984	Decal-Trade mark decal (RCA Victor) Decal-Trade mark decal (Victrola)
75560	Transformer-Second I-F transtormer (F-M) complete with adjustable cores (T3)	74838 37396	Grommet-Power cord strain relief (1 set) Grommet-Rubber grommet for mounting speaker
75566 33726	Transformer-Power transformer, 117 volts, 60 cycle (T6) Washer-"C" washer for tuning knob shaft	75697	Grommet-Rubber grommet for mounting 45 RPM changer
	RADIO ROLLOUT CRRRIAGE	75551	Handle-Metal pullout handle for $331 / 3 / 78$ RPM record changer mounting frame
15603	Decal-Function decal for controls	74308	Hinge-Cabinet door hinge (l set)
75572	Dial-Polystyrene dial scale	75712	Knob-Tuning control, tone control or volume control and power switch knob-maroon-for mahogany or
75571	Frame-Moulded frame (maroon) for mounting radio chassia and 45 RPM record changer-lor mahogany or walnut instruments	75713	walnut instruments Knob-Tuning control, tone control or volume control and power switch knob-lan-for oak instruments
75684	Frame-Moulded trame (light brown) for mounting radio chassis and 45 RPM record changer-for oak instruments	75714	Knob-Function switch knob-maroon-for mahogany or walnut instruments
75551	Handle-Metal pullout handle for mounting frame.	75715	Knob-Function switch knob-tan-ior oak instruments
75555	Screw-\#8-32 $\times 76^{\prime \prime}$ crose recessed pan head machine screw to mount radio chatis ($4 \mathrm{req}{ }^{\prime} \mathrm{d}$)	11765	Lamp-Pilot lamp-Mazda \#51
		75917	Nail-Rosette headnail for grille (3 required)
	SPEREER ASSEMALY	73634	Nut-Speed nut for speaker mounting screw
	Stamped 92569-12W RMA 274	75916	Pull-Door pull
	RL 111.R1	74279	Screw-\#8.32 $\times 7 / 8$ " trimit head screw lor door pull
13867	Cap-Dust cap	75708	Shell-Shell for 8 contact female connector \#75709
75682	Cono-Cone and voice coil asembly (3.2 ohms)	75546	Slide-Slide mechanism for $331 / 3 / 78$ RPM record changer
75681	Speaker-12" P.M. speaker complete with cone and voice coil (3.2 ohms) NOTE:-If stamping on speaker does not agree with above number, order replacement parts by referring to model number of instrument, number stamped on speater and full deacription of part required.	$\begin{aligned} & 31354 \\ & 74734 \\ & 75902 \\ & 72936 \end{aligned}$	mounting frame Socket-Pilot lamp socket and lead Spring-Retaining spring for knobs Spring—Suspension spring for main cable Stop-Cabinet door stop

Antennas

This receiver has built-in antenna for standard broadcast (AM) and frequency modulation (FM) reception.

Provision is made for the use of an external antenna for FM reception it desired. To use external FM antenna - remove the built-in FM antenna lead from the "FM" terminals of the antenna terminal board. Connect the tranmmistion line of an external FM dipole antenna to these two "FM" terminals.

FOR RECORD CHANGER SERVICE INFORMATION REFER TO RP- 168 SERIES SERVICE DATA FOR 45 R.P.M. AND MODEL 960285-1 SERVICE DATA for 78/331/3 R.P.M.

Tuning Range

Standard Broadcast (AM)
$540-1,600 \mathrm{kc}$.
Frequency Modulation (FM) 88-108 mc.
Intermediate Frequencies. AM- 455 kc. FM- 10.7 mc .
Tube Complement

Dial Lamps (2). Type No. 51, 6-8 volts, 0.2 cmp .
Jewel Lamp Type No. 51, 6-8 volts, 0.2 cmp.

Tuning Drive Ralio.
18:1 (9 turns of knob)

Power Supply Rating. 115 volts, 60 cycles, 90 watts

Loudspeaker (92569-6W)

Size and type. 12 in. PM Voice coil impedance. 3.2 ohms at 400 cycles

Power Output
(Radio) Undistorted 5 watts. Maximum 6.4 watts
(Phono.) Undistorted 8 watts
Maximum 9 watts
Cabinet Dimensions
Height $31 / 2 \mathrm{in}$.
Width 39 $1 / 4$ in.
Dopth $171 / 2 \mathrm{in}$.
rca Victor

CRITICAL LEAD DRESS

Note: The leads listed may not be critical in all receivers. However, by dressing the leads as specified, unusual difficul. tles will be minimised.

1. The plate lead of the second IF transformer should be dressed down against the chassis to obtain max. capacity between the lead and chassia. This lead is specified to be two inches long.
2. The "A" band RF transformer plate, and grid leads should be dressed so as to minimize coupling to the RF cmplifier grid circuit, and kept close to chassis when possible.
3. The 2.2 meg. grid resistors connecting to the RF and mixer grids should have a minimum practicable amount of lead extending on the grid end. The leads should be cut off short on the grid end and long on the A.V.C. end.
4. The unshielded plate lead from the function switch to the lst IF transformer should be dressed away from the switch wafer audio lugs as much as possible.
5. The ground strap between the RF shelf and chassis should be well soldered and kept as short as practicable. FM instability may be caused by having this ground strap too long, particularly when no input is connected to the FM antenna terminal.
6. The lead from the 2nd IF to the grid of the 6BA6 lst IF amplifier should be kept short, and dressed against the chassis as much as practicable.
7. The lead from the 2nd IF to the AM detector diode should be dressed to minimize coupling to the 6AV6 lst AF grid and kept close to chassis.
8. Leads from the volume control taps should be kept clear of all filament and output plate wires as in the wiring sample.
9. The loop cable when connected to the AM sec. gang statos should be dressed to have minimum capacity coupling to the stator lug on the RF section of gang condenser.
10. The oscillator coupling condenser Cl 0 should be dressed to have minimum capacity to the mixer grid. Pin No. 5 on V2.
11. The shielding on the shielded lead from the volume control to the function switch should have the minimum practicable exposed wire at the function switch end.

Alignment Procedure CORRECT ALIGNMENT OF THE FM BAND REQUIRES THAT THE AM BAND BE ALIGNED FIRST

Alignment Indicators:

An RCA VoltOhnyst or equivalent meter is necessary for measuring developed d-c voltage during FM alignment. Connections are specified in the alignment tabulation. An output meter is also necessary to indicate minimum audio output during FM Ratio Detector alignment. Connect the output meter across the speaker voice coil.

The RCA VoltOhmyst can also be used as an AM alignment indicator, either to measure audio output or to measure $a-v-c$ voltage.

When audio output is being measured the volume control should be turned to maximum.

Signal Generator:

For all alignment operations connect the low side of the signal generator to the receiver chassis. The output should be adjusted to provide accurate resonance indication at all times. If output measurement is used for AM alignment the output of the signal generator should be kept as low as possible to avoid a-v-c action.

Oscilloscope Alignment:

The FM I-F alignment may be checked using a sweep gen erator and an oscilloscope. Shunt terminals B and C of T4 with a 1200 ohm resistor. Connect the high side of an oscilloscope to terminal C of T4 in series with a diode probe. Apply the output of the sweep generator (10.7 mc . with $\pm 250 \mathrm{kc}$. sweep) to pin No. 1 of V3 (6BA6) in series with .01 mf . Low side of the oscilloscope and sweep generator to chassis. This will show the response of T3.
To check the combined response of T2 and T3: connect the sweep generator to the FM antenna terminals (remove FM antenna lead) in series with 300 ohms. Note: One FM terminal is grounded-it may be necessary to reverse the sweep generator connections. Oscilloscope connections remain as connected.

To check the ratio detector response: connect the high side of the oscilloscope direct to terminal No. 9 of Sl, low side to
chassis. Apply the output of the sweep generator to pin No. 1 of V4 (GAU6) in series with .01 mf . Driver plate circuit connected for normal operation (1200 ohm resistor removed) Note: It is difficult to observe marker signals in this step-center frequency and sweep width should be previously observed.

AM Alignment
RANGE SWITCH IN BC POSITION

8tops	Connet high side of sig. gen. to-	Sig. gon. output	Turn radio dial to-	Rdjust for peak oulput
1	$\begin{gathered} \text { Pin No. } 5 \\ \text { of } V 2 \\ \text { in sorios } \\ \text { with } .01 \text { mid. } \end{gathered}$	455 kc.	Quiet point at low freq. end.	$\begin{aligned} & \text { AM windings. } \dagger \\ & \text { T3 bottom } \\ & \text { core (soc.). } \\ & \text { T3 top } \\ & \text { core (pri.). } \end{aligned}$
2				AM windings. \dagger T2 top core (sec.). T2 boltom core (pri.).
3	Short wire placed near loop for radiated signal	1400 kc.	1400 kc.	Cl-2T (ose.). C1-5T (ant.). Cl-4T (fi.).
4		600 kc.	600 kc.	L8 (osc.) with 10,000 ohms resistor trom RF stator to gnd. (rocking gang)
5				L5 (RF) with the 10,000 ohms removed.
6	Repeat stops 3. 4 and 5 until no improvement in sensitivity is obtained.			

† Une alternate loading.
Alternate loading involves the use of a 47,000 ohm resistor to load the AM plate winding while the AM grid winding of the SAME TRANSFORMER is being peaked. Then the grid winding is loaded with the resistor while the plate winding is peaked. Only one winding is loaded at any one time. Remove the $47,000 \mathrm{ohm}$ one winding is loaded at any one time. Re
Oscillator frequency is above ignal frequency on both AM and FM.

FM Alignment

RANGE SWITCH IN FM POSITION-VOLUME
CONTROL MAXIMUM

Steps	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to-	Adjust for peak output
1	Connect the d-c probe of a VoltOhmyst to the negative lead of the 2 mid. capacitor C42 and the common lead to chastio. Turn gang condonser to max. capacity (fully meshed). Volume Control max.			
2	Pin 1 of V_{4} 6AU6 in series with 470 ohm resistor.	10.7 mc . modulated $30 \% 400$ cycles AM (Approx. .05 volt).	Max. capacity (fully meshed).	T4 lop core for max. d-c vollage across C42. T4 boltom core formin. audio output.
3		10.7 mc . Adjust to provide aboul 4 volts indi. cation on VoltOhmyst during alignment.		FM windings. $\dagger+$ T3 top core (sec.). T3 botlom core (pri.).
4				FM windinge. $\dagger+$ T2 top core (sec.). T2 boltom care (pri.).
3	High and low side of signal gen. through two 120 ohm resistor Toant. terminals.	90 mc .	$90 \mathrm{mc} . \ddagger$	19 (osc.).**
6		108 mc .	108 mc .	$\begin{aligned} & \text { C1.6T (ant.). } \\ & \text { C1.3T (rt.). } \end{aligned}$
7		90 mc .	90 mc .	
1	Repeat steps is obiained.	6 and 7 until	o improv	in sensitivily

- Two or more points may be found which lower the audio out pul. At the correct point the minimum audio output is approached rapidly and is much lower than at any incorrect point.
Ht Align T3 and T2 by means of alternate loading as explained under AM alignment. Use a 680 ohm resistor instead of a 47,000 ohm resistor and load the FM windings.
** L1, I3 and L9 are adjustable by increating or decreasing the
\# After dial pointer has been set accurately on calibration point for "A" band (see dial indicator and drive drawing) tune receiver to 90 me. on FM using dial scale as reference or use dial scale drawing on page 8 .

Tube and Trinmer Locations

Socket Voltages

Voltages measured with Chanalyst or Vol!Ohmyst and should hold within $\pm 20 \%$ with rated line voltage. Tuning condenser closed-no signal input.

Tube	Terminal		Voltage		
			Phono	A.M.	F.M.
$\begin{aligned} & \text { V1 } 6 \text { 6B] } \\ & \text { R.F. Amp. } \end{aligned}$	Plate		-	185	110
	Screen	6	-	120	100
	Cathode	2	-	0.8	0.8
	Grid	1	-0.9	-0.0	-0.6
V2 6 J6 Mixer and Ose.	Plate	1	-	73	80
	Grid	6	-1.07	-2	-3.4
	Plate	2	-	56	56
	Grid	5	-0.54	-5.4	-3.6
$\begin{aligned} & \text { V3 6BA. } 6 \\ & \text { I.F. Amp. } \end{aligned}$	Plate	5	-	180	178
	Screen	6	-	115	111
	Cathode	7	-	0.9	0.9
	Grid	1	-0.95	-1.1	-. 75
$\begin{aligned} & \text { V4 6AU6 } \\ & \text { Driver } \end{aligned}$	Plate	5	-	174	175
	Screen	6	-	125	175
	Cathode	7	-	0.9	0.9
V5 6AL5 Ratio Det.	-	-	-	-	-
$\begin{aligned} & \text { V6 } 6 \text { AV6 } \\ & \text { A.F. Amp. } \end{aligned}$	Plate	7	97	85	80
	Grid	1	-. 72	-. 75	-0.75
V7 6RV6 Inverter	Plate	7	140	110	110
	Grid	1	-18.7	-17.8	-17.3
	Cathode	2	-18	-17	-16.6
V8 6V6GT Outpul	Plate	3	262	270	270
	Screen	1	262	190	190
	Grid	5	-18	-17	-16
$\begin{aligned} & \text { V9 6V6GT } \\ & \text { Output } \end{aligned}$	Plate	3	262	270	270
	Screen	1	262	190	190
	Grid	5	-18	-17	-16
V10 6X5GT Rectilier	Cathode	8	271	275	275

Dial Indicator and Drive Mechanism
CABLE SHOWN IN EXTREME COUNTER CLOCKWISE POSITION

Volume Control Drive Mechanism
Cathode Currents (MA)

Tube	Terminal	Phono	A.M.	F.M.
V1 6B]6	2	-	11.1	11.4
V2 6J6	7	-	6.8	6.6
V3 6BA6	7	-	13.1	13.7
V4 6AU6	7	-	8.2	8.1
V5 6AL5	185	-	-	-
V6 6AV6	2	0.68	.44	.43
V7 6AV6	2	1.7	1.4	1.35
V8 6V6GT	8	33	11.2	11
V9 6V6GT	8	33	11	11
V10 6X5GT	8	66	63	63

The dial scale drawing shown is a full size reproduction. It can be used as a reference in aligmment procedure.

SHIPPING SCREWS

The radio chassis of these instruments is secured to the cabjnet with shipping screws (painted red) which, together with spacing strips, should be REMOVED at the time of installation.

The record changers are each mounted with three screws which should be LOOSENED at the time of installation.

On the RP-168 record changer decorative caps cover the mounting screws. Remove the caps for access to the screws.

REPLACEMENT PARTS

STOCK No.	DESCRIPTION	STOCK No.	DESCRIPTION
	CHASSIS ASSEMBLIES RC 622	${ }^{\prime} 74841$	Coil-R.F. coil - A.M. - complete with adjustable core and stud (L4, L5)
		-74815	Coil-R.F. coil-F.M. (L3)
-74848	Board-"F.M." terminal board	-74816	Coil-Antenna coil--F.M. (LI)
-74641	Cable-Flexible cable to operate volume control	-73817	Coil-Oscillator coil-F.M. (L9)
-74849	Capacitor-Variable tuning capacitor (C1-1, 1-2, 1-3. 1-4, 1-5, 1-6)	71942 5040	Coil-Filament choke coil (L10) Connector-4 contact female connector for speaker
73747	Capacitor-Electrolytic, $2 \mathrm{mmf}$. , 50 volts (C42)		cable (P3)
-74733	Capacitor-Ceramic. 3 mmf . (C9)	30868	Connector-2 contact lemale connector for motor
93056	Capacitor-Ceramic. 5 mmi ((Cl4)		cables (P2A)
39044	Capacitor-Ceramic, 15 mmf . (C11)	-74837	Control-Tone control (R39)
39042	Capacitor-Ceramic, 47 mmf . (C47)	74639	Control-.Volume control and power switch (R23, S2)
33379	Capacitor-Ceramic. 68 mmf . (C10. C12)	72953	Cord--Drive cord (approx. 58" overall length)
39396	Capacitor-Ceramic, 100 mmf . (C6, C8)	-74839	Fastener-Push fastener to hold R.F. shelf assembly (4 required)
71614	Capacitor-Ceramic, 120 mml . (C16)		(4 required) Grommet-Power cord strain relief grommet (l set)
44704 48125	Capacitor--Ceramic, 150 mm . (C15, C22, C23, C34. C48) Capacitor-Ceramic. 150 mmf . (C29)	$\begin{array}{r} \text { • } 74838 \\ 16058 \end{array}$	Grommet-Power cord strain reliol grommet (1 set) Grommet-Rubber grommet for mounting R.F. shelf assembly (4 required)
71920	Capacitor-Ceramic, 220 mmi . (C5)	72069	Grommet-Rubber grommet for rear mounting feet
39640	Capacitor-Mica, 330 mmi . (C39, C40)		(2 required)
74093	Capacitor-Ceramic, 1.500 mmf ($\mathrm{C} 17 . \mathrm{C} 24$)	-73895	Indicator-Station selector indicator
-74850	Capacitor-Ceramic, 1.800 mmf . (C7)	74645	Nut-8-32 hex retainer nut between R.F. shelt and
74009	Capacitor-Ceramic, dual, $4,000 \mathrm{mmf}$. (C20A. C20B, C28A. C28B)	74297	volume control knob Plate-Dial back plate complete with two (2) drive
73473	Capacitor-Ceramic. $5,000 \mathrm{mmi}$. (C3. C4, C13. C18. C32. C46)	18469	cord pulleys less dial Plate-Bakelite mounting plate for electrolytic
72052	Capacitor-Electrolytic, comprising 1 section of 30 mid, 450 volts, 1 section of 30 mfd, 350 volts and 1 section of 40 mid, 25 volts (C31A. C31B, C31C)	$\begin{aligned} & 74640 \\ & 33514 \\ & 73637 \end{aligned}$	Pulley-Pulley and hub assembly for volume control Receptacle-Phono input receptacle Resistor-Wire wound, 2,200 ohms, 5 walt (R27)
71926	Capacitor-Tubular, paper, $005 \mathrm{mfd}, 200$ volte (C27. C33. C41, C45)		Resistor-Fixed, composition: 68 ohms, $\pm 10 \%$, $1 / 2$ watt (R2, R17)
71553	Capacitor-Tubular, paper, 005 mid , 400 volis (C36)		100 ohms, $\pm 5 \%$, 1/2 watt (R29)
70644	Capacitor-Tubular, paper, . $0025 \mathrm{mid}, 1,000$ volts (C43. C44)		100 ohms, $\pm 10 \%$, $1 / 2$ watt (R14, R43) 120 ohms. $\pm 10 \%$, $1 / 2$ watt (R45)
71925	Capacitor-Tubular, paper, . 01 mfd, 400 volte (C37)		300 ohms, $\pm 5 \%, 2$ watt (R44)
71928	Capacitor-Tubular, paper, .02 mid, 200 volts (C30. C35)		$\begin{aligned} & 680 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt (R19) } \\ & 680 \text { ohms, } \pm 20 \% \text {, } 1 / 2 \text { watt (R5, R22) } \end{aligned}$
73638	Capacitor-Tubular, paper, $02 \mathrm{mfd}, 400$ volts (C38)		1.200 ohms. $\pm 5 \%$, $1 / 2$ watt (R35)
73553	Capacitor-Tubular, paper, . 05 mfd .400 volts (C19)		3.300 ohms, $\pm 5 \%$, 1/2 watt (R37)
72120	Capacitor-Tubular, paper, $.015 \mathrm{mld}, 200$ volts (C25. C26)		8.200 ohms, $\pm 10 \%, 1 / 2$ watt (R41) 8,200 ohms. $\pm 10 \%, 1$ watt (R4)
73744	Coil-Oscillator coil-A.M. (L6, L7. L8)		10.000 ohms. $\pm 10 \%$. $1 / 2$ watt (R47)

STOCE No.	DESCRIPTION	$\begin{gathered} \text { STOCX } \\ \text { No. } \end{gathered}$	DESCRIPTION
	15,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R30)	71892	Catch-Bullet catch and strike for doors (3 required)
	18,000 ohms, $\pm 10 \%$, 1/2 watt (R13)	73897	Clamp--Dial clamp (2 required)
	```22,000 ohms, }\pm10%,1/2 watt (R18, R20. R24 27,000 ohms. }\pm10%\mathrm{ , 1/2 watt (R25)```	X3057	Cloth-Grille cloth for mahogany or walnut instruments
	33,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R3, R8)	X1649	Cloth-Grille cloth for blonde instruments
	39,000 ohms, $\pm 5 \%$, $1 / 2$ watt (R38)   39,000 ohms, $\pm 10 \%$, 1 watt (R16)	30868	Connector-2 contact female connector for motor cables
	$\begin{aligned} & 56,000 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt (R6, R21) } \\ & 82,000 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt (R33) } \end{aligned}$	30870	Connector-2 contact male connector for motor cables
	150,000 ohms. $\pm 10 \%$, $1 / 2$ watt (R10)   220,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R9)	74581	Cover-Mounting screw cover for 45 RPM changer (3 required)
	270.000 ohms. $\pm 10 \%$. $1 / 2$ watt (R32)   330,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R46)	74853	Decal-Control function decal for mahogany or wal. nut instruments
	470,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R36, R40, R42)	74854	Decal-Control function decal for blonde instruments
	2.2 megohm, $\pm 20 \%$, 1/2 watt (R1, R7, R11)	74273	Decal-Trade mark decal (Victrola)
	10 megohm, $\pm 20 \%$, 1/2 watt (R26, R34)	71984	Decal-Trade mark decal (RCA Victor)
	47 megohm, $\pm 20 \%$, 1/2 watt (R31)	74842	Dial-Glass dial scale
73894	Shaft-Tuning knob shaft	74851	Grille-Metal grille
73584	Shield-Tube shield for V1	11889	Grommet-Rubber grommet for front apron of chassis
74646	Sleeve-Sleeve and pulley assembly for volume control knob	74838	chassis   Grommet-Power cord strain relief grommet (ll)
74179	Socket-Tube socket, 7 pin, miniature for V1, V2. V3, V4	36610	Hinge-Door hinge (l set) for radio compartment or R.H. record storage compartment
73117	Socket-Tube socket, 7 pin, miniature for V5, V6, V7	36817	Hinge-Door hinge (l set) for L.H. record storage comparment
31251	Socket-Tube socket, octal, water for V8, V9, V10	7182	
31364	Socket-Lamp socket	7182	Knob - Tuning control knob - maroon - for ma. hogany or walnut instruments
74038 -74847	Spring-Drive cord spring ${ }^{\text {Support-Polystyrene support for F.M. oscillator }}$	72824	Knob-Tuning control or tone control knob-brown
-74847	Support-Polystyrene support for F.M. oscillator coil complete with mounting bracket		-for blonde instruments
-74840	Switch-Selector switch (S1)	71822	Knob-Tone control knob-maroon-for mahogany or walnut instruments
73743	Transformer-Ratio detector transformer (T4)	73995	Knob-Volume control knob-brown-for blonde in.
73745	Transformer-First I.F. transformer-dual (T2)		struments
74019	Transformer-Second I.F. transformer-dual (T3)	73994	Knob-- Volume control knob - maroon - for ma-
73601 33726	Transformer-Power transformer- 117 volt, 60 cycle (T1)   Washer-"C" washer for tuning shaft	73230	hogany or walnut iristruments   Knob-Selector switch knob - maroon - for ma-   hogany or walnut instruments
	SPEAKER ASSEMBLIES	73231	Knob - Selector switch knob - brown - for blonde instruments
	92569.6	11765	Lamp-Dial or pilot lamp-Mazda 51
	RL111.13	74843	Loop-Antenna loop complete
	1.1	74208	Nut-Tee nut to mount 45 RPM changer (3 required)
13867	Cap-Dust cap	74852	Pull-Door pull for record changer drawers or radio compartment (5 required)
74901	Cone-Cone and voice coil assembly	74451	Pull-Door pull tor record storage compartments
5039 74753	Connector-4 contact male connector for speaker		Resistor-Fixed, composition. 27,000 ohms (on 78. 331 : RPM record changer). $\pm 10 \%$, $1 / 2$ watt
74753 73636	Speaker-12" P.M. speaker complete with cone and voice coil less plug and transformer	74582	Screw-No. 8-32 $\times 13^{\prime \prime}$ special head screw to mount 45 RPM changer (3 required)
73636	Transiormer-Oulput transiormer   NOTE: If stamping on speaker in instruments	74279	Screw-No. $8.32 \times 7 / \mathrm{s}^{\prime \prime}$ trimit head screw for pull No. 74451
	does not agree with above speaker number, order replacement parts by referring to model number of	74269	Screw-No. $8.32 \times 3,4$ trimit head screw for pull No. 74852
	description of part required.	74835	Slide--Slide mechanism for 45 RPM changer drawer
		74736	Slide-Slide mechanism for 33/78 RPM changer drawer
	MISCELLANEOUS	30900	Spring-Relaining spring for knobs No. 71821. 71822 and 71824
74844	Antenna-F.M. antenna Bezel-Dial scale bezel less dial	72845	Spring-Retaining spring for knobs No. 73994 and
71599	Bracket-Pilot lamp bracket	74421	Spring-Conical spring to mount 45 RPM changer
74296	Cable-Shielded pickup cable complete with pin plug for 33/78 RPM changer	74422	- upper-R.H. (1 required)   Spring-Conical spring to mount 45 RPM changer
71105	Cable-Shielded, pickup cable complete with pin plug for 45 RPM changer	74423	-upper-I.H. (2 required)   Spring-Conical spring to mount 45 RPM changer
13103	Cap-Pilot lamp cap		-lower (3 required)
39644	Capacitor-Mica, 470 mmf . (on 78/331/3 RPM record changer)	72936	Stop-Door stop for record storage compartments (2 required)
70602	Capacitor-Tubular, paper, . 0025 mfd (on $78 / 331 / 3$ RPM record changer), 400 volts	75146	Washer-"C" washer to mount 33/78 RPM changer i2 required)



FOR RECORD CHANGER SERVICE INFORMATION REFER TO RP- 168 SERIES SERVICE DATA OR RP- 190 SERIES SERV. ICE DATA FOR 45 R.P.M. AND MODEL 960284 SERVICE DATA FOR 78/33 $1 / 3$ R.P.M.

## (196) RCA Victor

AM-FM Radio-Phonograph Combination Model A-108
Chassis No. RC 1096
Record Changers 960284 (78/33 1/3 r.p.m.) RP 168 or RP 190-2 (45 r.p.m.)
Service Data -1950 No. 19-

PREPARED BY RCA SERVICE CO., INC. FOR
RADIO CORPORATION OF AMERICA rCa victor division CAMDEN, N. J., U. S. A.

## Specifications

## Tuning Range

Standard Broadcast (AM) $\qquad$ 540-1,600 kc.
Frequency Modulation (FM) $\qquad$ AM-455 kc., FM-10.7 mc.
$\qquad$

Tube Complement


Dial Lamps (2)...........................TYpe No. 51, 6-8 volts, 0.2 cmp .
Jewel Lamp .............................TYpe No. 51, 6-8 volts, 0.2 cmp.


Top View-960284 Record Changer

Replacement Parts

$\begin{aligned} & \text { stocx } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { sTOCI } \\ & \text { NO. } \end{aligned}$	DESCRIPTION
	MISCELLANEOU8	75474	Connector-Single contact male connector for speaker cable ( 2 req d)
71864	Antenna-F-M antenna	71894	Decal-Trade mark decal (RCA Victor)
75705	Antonna-Antonna loop complete less cable	74273	Decal-Trade mark decal (Victrola)
75898	Back-Back cover-maroon-for 331//78 RPM record	74838	Grommet-Power cord atrain relief (1 eet)
	changer compartment-for mahogany or walnut instruments (assembled to rollout)	37396	Grommet-Rubber grommet for mounting mpeaker
75899	Back-Back cover-light brown-for 331//78 RPM record changer compartmont-for oak inntruments (assembled	75697	Grommet-Rubber grommet for mounting 45 RPM changer
	to rollout)	75551	Handle-Metal pullout handle for $331 / 3 / 78$ RPM record changer mounting frame
75803	Back-Back cover-maroon-for radio-45 RPM record changer compartment-for mahogany or walnut ingtru-	74308	Hinge-Cabinet door hinge ( 1 set)
	ments (assembled to rollout)	75712	Knob-Tuning control, fone control or volume control
75904	Back-Back cover-light brown-for radio-45 RPM record changer compartmont-ior oak instruments (assombled to rollout)	75713	and power switch knob-maroon-for mahogany or walnut instrument   Knob-Tuning control, tone control or volume control
73680	Board-"A-F-M" terminal board		and power switch knob-ian-lor oak instruments
75694	Bracket-Stop bracket (lens rubber bumper) for rollouts	75714	Knob-Function witch knob-maroon-for mahogany or walnut instruments
71599	Bracket-Pilot lamp bracket	75715	Knob-Function witch knob-tan-ior oak inatruments
75696	Bumper-Rubber bumper for record changer rollout stop bracket	11765	Lamp-Pilot lamp-Marda \#51
75919	Button-Rosette button for mpeaker grille	75884	Nut-Speed nut for $331 / / 78$ RPM record changer mount. ing screw
74296	Cable-Shielded pickup cable complete with pin plug for $331 / 3 / 78$ RPM record changer	73634	Nut-Speed nut for speaker mounting ecrew
72437	Cable-Shielded pickup cable complete with pin plug for 45 RPM record changer	$\begin{aligned} & 75438 \\ & 75918 \end{aligned}$	Pull-Door pull for upper part of door Pull-Door pull for center of door
13103	Cap-Pilot lamp cap	75907	Screw一 \#10-32 $\times 514^{\prime \prime}$ crons recessed round head special screw to mount 45 RPM record changer
71892 $\times 3144$	Catch-Bullet catch and strike for cabinet door Cloth-Grill cloth for mahogany or wainut jnitrumenta	75883	Screw-\#10-24 $\times 1 / 2^{\prime \prime}$ round head machine screw for
X3089	Cloth-Grille cloth for oak instruments	75626	mounting $331 / 1 / 78$ RPM record changer Screw一\#8-32 $\times 11 / 4^{\prime \prime}$ trimit head screw for door pull.
74882	Connector-2 contact (polarized) male connector for antenna loop cable	75708	Shell-Shell for 8 contact female connector \#75709
74752	Connector-2 centact male connector for FM anvenna torminal board cable	75546	Slide-Slide mechaniem for $331 / 3 / 78$ RFM record changer mounting fram.
75709	Connector-8 contact female connector for main cable (less shell) (P4)	31354	Socket-Pilot lamp socket and lead   Spring-Retaining apring for knobs
30868	Connector-2 contact tomale connector for $331 / / 78$ RPM record changer motor cable (P2)	$\begin{aligned} & 75902 \\ & 72936 \end{aligned}$	Spring-Suspenaion spring for main cable Stop-Cabinet door stop

REFER TO MODEL A-101 ON PAGE 23 FOR FURTHER INFORMATION. THE CHASSIS AND SPEAKER ARE IDENTICAL FOR BOTH MODELS.


## Specifications

Tuning Range .... ............................ . . . . . . . . . . 450 kc
Intermediate Frequency . . . . . . . . . . .

Tube complement:

1. RCA 1R5 $\qquad$
$\qquad$
I.F. Amplifier
2. RCA IU4

## 4.

 2nd Det.-A.F. Amp.-A.V.C.4. RCA 3 V 4.

## ...

$\qquad$ 2nd Det.-A.F. Amp.-A.V.C.

Size and type............................... $2^{\prime \prime}$ ェ $3^{\prime \prime}$ P.M.
Voice coil impedance.......... $13 / 4$ ohms at 1000 cycles

Batteries Required:

Type of Battery
"A"-1.5 volt RCA VS 036 or VS 001
"B"-67.5 volts $\} 8.45$ ma. 40 to 60 hrs. RCA VS 016

Current Consumption

Approz. Life (Intermittent Service) 7 to 10 hrs .

Power Output:
Undistorted
075 watt
Maximum
0.10 watt

Weight (with batteries) . . . . . . . . . . . . . . . slightly under 3 lbs.

## Production Changes:

There are three types of case assemblies in use (two types are stocked) using two types of case backs (one type is stocked). SEE PAGE 4 FOR EXPLANATION OF CASE ASSEMBLY DIFFERENCES.
Two chassis have been used; RC-1098 has all individual resistors and capacitors, RC-1098A has two "Printed Circuit" units which replace ten individual resistors and capacitors.

## Replacement Parts

$\begin{gathered} \hline \text { 8TOCX } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\begin{array}{\|c} \hline \text { STOCK } \\ \text { No. } \end{array}$	DESCRIPTION
	CHABSIS ABSEMBLIES RC 1098, RC 1098R		18,000 ohme, $\pm 10 \%, 1 / 2$ watt (R2) 47,000 ohms. $\pm 20 \%$, $1 / 2$ watt (RB) 100,000 ohms. $\pm 20 \%, 1 / 2$ watt (R1) $1 \mathrm{megohm}, \pm 20 \%$. $1 / 2$ watt (R9)
75778	Antenna-Forrite rod antenna (L)		3.3 mocohm, $\pm 20 \%$, $1 / 2$ watt ( $R 4, R 10$ )
75783	Capacitor-Variable tuning eapacitor ( $\mathrm{Cl}-1 . \mathrm{Cl}-2$ )		4.7 megohm, $\pm 20 \%$, 1/2 watt (R3, R7)
73153			10 megohm, $\pm 20 \%$, $1 / 2$ watt (R8)
78784		70527	Screw-16-32 = $3 / 16^{\prime \prime}$ nocket head set ecrew for volume control knob
73900	Capacitor-Ceramic, $10,000 \mathrm{mmf}$, (C4)	75780	Socket-Tube socket, 7 pin, miniatur
73984	Capacitor-Blectrolytic, 10 mfd .70 volt (C15) (Cl2)	75775	Traneformar-Firat I-F traneformer (Tl)
72788		75776	Tranaformer-Second I-F traneformer (T2)
72315 73961	Capacitor-Tubular, paper, 002 mfd , 2000 volte (C11, C14) Capacitor-Tubular, paper, $003 \mathrm{mfd}$.200 volte (C8)	75777	Transformer-Outputtransformer (T3)
71928	Capacitor-Tubular, paper, . 02 mfd., 200 volte (Cl3)		ER ASSEMBLY
73883	Capacitor-Tubular, paper, 08 mid., 400 volte (C8)		92523
75781	Clip-"A'" Battory mounting clip (negative)		
75010 75774	Clip-Output transformer mounting ecrew clip   Coil-Oncillator coil complete with adjumtable core ( $\mathrm{L} 2, \mathrm{~L} 3$ )	76373	voice coll   MISCELLANEOUS
75782	Contact-"A'" Battery contact (ponitive)   Control-Volume control and power awitch (R6, 81)		Back-Came back
78773 37396	Control-Volume control and power awitch (R6, 81) Grommet-Rubber grommet for antenna rod	78787 75647	Cack-Case cack ombly (front and back) complete with
75779	Knob-Volume control knob-lemeneterew (early typedoes not have "ON' indication)		metal sidetrim, motal grill, and emblem-lens handle and linke (early type - does not have "ON' indication
76321	Knob-Volume control knob-les eet ecrew (late typehas "ON" indication)	76320	
$\begin{aligned} & 75788 \\ & 78372 \end{aligned}$	Lead- " $B^{\prime}$ b battery lead complete with connector   Plate-Four element "Printed Cireuit'" plate stamped		metal side trim, motal grille and emblem-less handie and links (late type haw "ON" indication opening)
2632	942600-1 (diode filter unit C7, C9, R4, R5)	78831	Emblem-"RCA Victor' emblem
78371	Plate-8iz element "Printed Circuit" plate stamped 942859-1 (audio coupling unit Clo, C12, R2. R7.	78848 78849	Grille-Metal grille   Handl-Carrying handle
	R9, R10)	75788	Knob-Dial knob lese pring clip
	Reaistor-Fixed, composition:-	75850	Link-Carrying handle link
	390 ohms, $\pm 10 \%$, $1 / 2$ watt (R11)	78801	Screen-Crinoline mereen (black) for case iront
	1000 ohme, $\pm 20 \%, 1 / 2$ watt (R12)	74734	Spring-Spring clip for dial knob

APPLY TO YOUR RCA DIBTRIBUTOR FOR PRICES OF REPLACEMENT PARTS


Fig. 1-Connection Diagram
In late production chassis:
"'Printed Circuit", unit stamped 942659-1 replaces individual parts C10, C12, R2, R1, R9 and R10.
"Printed Circuit" unit stamped 942660-1 replaces individual parts C7, C9, R4 and R5.


Output Meter.-Connect meter from No. 2 terminal of V4 (plate of 3V4) to ground. Turn volume control to maximum position.

Test-Oscillator.-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.
Note:-The inductance of the antenna coil is adjusted by sliding the coil along the Ferrite rod. This ant. coil is supplied pre-adjusted and cemented to rod. This makes further adjustment unnecessary. However when replacing ant. assembly make certain that the coil end of the rod extends two inches beyond the tube shelf.

## CRITICAL LEAD DRESS

1. Dress all I.F transformer leads down to base and push any excess lead back in can
2. Black lead from lst I-F should lay down against top of tube shelf with capacitor C6 over it.
3. Dress neutralizing capacitor C5 direct and above chassis base, avoid lead length.
4. Dress blue lead from volume control and green lead from terminal board near volume control down to base and under gang frame diagonally to termination.
5. Dress blue lead from output transformer under clamp on back of gang condenser and direct to terminal 2 of V4.
6. Adjust Ferrite antenna so that coil end of rod extends two inches beyond tube shelf.
7. Dress all bare wires, pigtail leads and non-insulated components to prevent shorts.

Stepe	Connect the high side of teat onc. to-	Tuneteetose. to-	Turn radio dial to-	Adjunt the following for max. peak output -
1	Connection lug of Cl-2 located on rear of gang in series with . OI mf.	453 kc	Quiot point noar 1800 kc	$\begin{aligned} & \text { C18, C19 } \\ & \text { 2nd I-F } \\ & \text { trans. } \end{aligned}$
2				$\begin{aligned} & \text { C16. C17 } \\ & \text { lotI=F } \\ & \text { trand. } \end{aligned}$
		Repeat stepa 1 and 2		
4	*Antenna coupling loop (Chasaie in cane)	1400 kc	Rock gang	Cl-1T (osc.)
3		600 kc	${ }^{60} \text { Rock gang }$	12 (osc.)
6		Repeat etepe 4 and 3		

*Steps 4 and 5 require a coupling loop from the signal generator to feed a nignal into the receiver ant. coil. This loop ehould be looesly coupled to the


Fig. 4-Terminal Strip

Fig. 3-Tube and Trimmer Locations

## CHANGES IN CASE ASSEMBLIES:

1. The original back (not stocked) had slots in the bottom edge which engaged with extension tabs of the metal trim of the case front.
2. Late production backs (Stock No. 75787) have molded lips on the bottom edge which fit into slots of the case front. When installing this back on early type case fronts, it will be necessary to break off the locking tabs on each side of the original trim strip.
3. The latest production of case assemblies (Stock No. 76320) have an "ON" indication opening in front of the volume control knob. Volume control knob (Stock No. 76321) is used with this case aseembly.



Fig. 5-Cbassis assembly

## REPLACEMENT OF COMPONENT PARTS

1. To Remove Back Cover
a. Depress top of case midway between the handle eupporte, until the top end of the back separates from the main case.
b. Pull the back cover back and up, thereby unhooking the retain" ing lugs in the bottom of the main case
II. To Replace Batteries
a. Remove back cover.
b. Remove dither or both " $A$ " and " $B$ " batterien an may be necessary. The " $B$ " battery snap fasteners can best be removed by inserting a acrewdriver under the nem fastener strip and prying
upward.
c. The " $\mathbf{A}$ " battery can eaily be removed by pulling back on the spring wize and lifting out.
III. To Remove Main Case
a. Remove front dial. (Jut Pull)
b. Remove back cover.
c. Remove the three screws " A ".
d. Remove "At" clip (Squene and lift out of slot in case).

- Graap the asembly by the apeaker houning and pull the bottom end of the chasais outward then down no the Volume Control knob clears the case.
IV. To Replace Pront Metal Grill
a. Remove tront dial.
b. Remove back cover.
c. Remove chatain.
d. Bend amall tabs inside case and separate metal etrips from cabinot.
- Bend emall tabs inside case and separate grille from cabinet. noart now grille and bend tabe. Note:-A black non-metallic screen is placed between the grille and the cabinet.
V. To Remove Handle
a. Remove handie by separating the square spring wire clipe on each ond of handle and lift out.
VI. To Remove Tubee

There if very little room in the cabinot so it in auggented the chasaie be removed from the cabinet to replace tubes.
a. Remove tront dial.
b. Remove back covez.
c. Remove chaseit
d. Remove tubes.
VII. To Ramove Speaker
a. Remove front dial.
b. Remove back cover.
c. Remove chesele from cabinet.
d. Unsolder voice coil leads.

- Remove two screws " $B$ " and Mit apeaker out.
VII. To Remove Output Transformer
a. Remove front dial.
b. Remove back cover.
c. Remove chassia from cabinet.
d. Unsolder leads.
- Remove two serewg " C " and lift tranformer out.
IX. To Remove Volume Control
a. Remove tront dial
b. Remove back cover.
c. Remove chasis from cabinet.
d. Unsolder leads.
. Looen Allen Sot screw on Volume Control knob and remove knob. (Just Pull).

1. Bend tabs holding Volume Control to chasais and lift the Volume Control out.
X. To Remove Tuning Capacitor
a. Remove tront dial.
b. Remove back cover
c. Remove chasais trom cabinet.
d. Uneolder leade to tuning capacitor.

- Remove three screws " $D$ " holding capactor and lift ont
I. To Remove Oecillator Coll
. Remove front dial.
b. Remove back cover
c. Remove chasai.
d. Uneolder leade to coll.
- Remove coil by unsnapping mounting clipe trom angle bracket.
III. To Remove Firet I-F Tranaforme
a. Ramove front dial
b. Remove back cover
c. Remove chaspis.
d. Romove the mounting screwn of both mpeaker and output trane cormer and move the speaker and transformer as lound necee. eary for eccese to lat I-Y trandormer leads.
- Uneolder four loade from tranformer.

1. Blue lead trom 2 terminal (Plate of 1RS tube).
2. Red lead trom 13 terminal (Screen grid of 3V4 tube).
3. Green lead trom 16 terminal (Control grid of $1 U 4$ tube).
4. Black lead from lug on mall terminal board on top of tube shelf.
5. Bend one mounting lug and unvolder the other lug frose the chasais and lift the transtormer out
III. To Remove 2nd I-F Traneformor
a. Remove front dial.
b. Romove back cover
c. Remove chasin
d. Bemove the mounting bolt of both epeaker and output trangormer and move the spesker and transformer as found neces. ary for access to 2nd 1- trandormer leads.
6. Blue lead trom 2 terminal (Plate of 1 U 4 tube)
7. Red lead from 13 terminal (Screen grid of 1 U 4 tubo).
8. Green load trom 14 torminal (Diode of 1 US tubs).
9. Black lead trom 15 terminal (Dummy terminal of $1 U 5$ tube)

Unsolder the tabe from the chasio and lift the trangformer out.


AC-DC-Battery Portable Receiver Model BX6

Chassis No. RC-1082, RC-1082A Service Data

- 1950 No. 6 -


## RADIO CORPORATION OF AMERICA <br> rCA VICTOR DIVISION <br> CAMDEN, N. J., U. S. A.

## Specifications



Chassis Assembly RClos2A

Weight (Approx.)
Without battery ...... 7 lbs. With battery....... 101/2 lbs.
Power Output
Undistorted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 watt
Maximum. ........................................... . . . . 325 watt
Loudspeaker (92577-3W for RS1082) . . . . . . . . . . . 4 in. P.M.
Loudspeaker (971495-2 for RS1082A) . . . . . . . . . . 4 in. P.M.
Voice coil impedance . . . . . . . . . . . 3.2 ohms at 400 cycles
Cabinet Dimensíons
Height.... 10 in . Width.... 13 in . Depth.... $51 / 2 \mathrm{in}$.
CAUTION.

1. Do not remove any tubes from the chassis with the set operating and the plug connected to the power line. Damage to tubes may result.
2. When cleaning the aluminum portion of the case use soap and water or cleaning fluid. Do not use abrasive cleansers.

## To Remove Chassis:

1. Loosen battery clamps, pull out battery and disconnect battery plug.
2. Unsolder the two loop antenna leads.
3. Remove the two large screws (under handle) in the top of the case (do not loosen small screws).
4. Lay receiver on table with face down.
5. Remove the two screws holding chassis to case sides.
6. The chassis may now be lifted from the case.

## To Remove Speaker RC1082:

1. Remove chassis from case as described above.
2. Unsolder output transformer leads from speaker.
3. Un-hook dial cord tension spring.
4. Remove the two screws " $B$ " holding dial bracket to chassis support bracket.
5. Remove the four screws holding dial bracket to chassis base.
6. Tilt dial bracket forward and remove three screws " $A$ " holding speaker bracket to chassis base.

## To Remove Speaker RC1082A:

1. Remove chassis from case as described above.
2. Unsolder output transformer leads from speaker.
3. Remove screws " C " and lift speaker out.

Insulating Washers:
The mounting bracket and dial frame are insulated from the chassis with insulating washers. This serves to insulate the case from the chassis. In servicing make certain that these washers are in place and properly positioned.

## Alignment Procedure

Output Meter Alignment-It this method is used, connect the meter across the voice coil and turn the receiver volume control to maximum.

Test Oscillator-For all alignment operations, connect the low side of the test oscillator to the receiver chassis and keep the oscillator output as low as possible to avoid AVC action.

Battery operation of the receiver is preterable during align. ment; on $\bar{A} C$ operation an isolation transformer (117v./117v.) may be necessary for the receiver if the test oscillator is also AC operated.

Calibration Scale-The calibrated dial scale is attached to the chassis. It can be used directly as a reference for alignment.

With the gang at full mesh set the dial pointer so that the pointer is $1 / 4^{\prime \prime}$ to the left of the 55 calibration on the dial scale.

Alignment Tabulation

Step	Connect High Side of Sig. Gen. to-	Sig. Gen. Output	Dial   Pointer Setting	Adjust for Max. Output
1	Pin \#6 of 1T4 I.F. Amplifier thru 005 mf .	455 kc	$\begin{gathered} \text { Quiet } \\ \text { point } \\ \text { near } \\ 1600 \mathrm{kc} \end{gathered}$	2nd I.F. Trans. T2 Top \& Bottom
2	Pin \#6 of lR5 Converter thru .005 mf .			lst I.F. Trans. Tl Top \& Bottom
3	Replace bottom cover. Install chassis in case, connect loop and battery. Place "Dummy"* back cover on case.			
4	Short wire placed near loop for radiated signal	1600 ke	1600 kc	Cll (osc.)
5		1400 kc	1400 kc	$\begin{aligned} & \text { C10 (r. f.) } \\ & \text { Cl (loop) } \end{aligned}$
6		600 kc	600 kc	L4 (osc.)   L3 (r. f.)   Alternately while rocking gang
7	Repeat steps 4, 5, and 6			

* A "dummy" back cover is one having holes provided to per. mit alignment with the cover in place. The battery and back cover affect loop alignment. The battery should be in place. If a "dummy" back cover is not available, an improvised cover should be made of sheet aluminum. It should not make contact with any metal portion of the case or chassis.


Tube and Trimmer Locations

NOTE:
The now nemicircular dial cord tension apring shown at loft is used on chasein RC1082A. However, thie new spring can almo be ueed on Chasvis RClO82.


## Critical Lead Dress

9. Dress all leads away from the ballast resistor.
10. Dress ON-OFF switch leads clear of switch actuating lever and shutter.
11. Dress lst a.f. grid resistor (Rll) close to chassis.
12. Dress capacitor C 4 in air between end apron and r.f. tuning condenser frame.

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	$\underset{\text { RClO }}{\text { CHASSIS }}$ ASSEMBLIES	$\begin{aligned} & 73129 \\ & 73037 \end{aligned}$	Transformer-FirstI. F.transformer T1 (L6, L1, C13, C14) Transformer-Second I.F. transformer T2 (L8, L9, C17,
71044	Bracket-Power switch bracket complete with actuating lever less switch	71047	Transiormer-Output transformer................... ${ }^{2} 3$
71056	Bracket-Drive cord pulley bracket complete with pulley (volume control side)	73332	Washer-Insulating washer (flat) for mounting base holder bracket ( 1 req'd) or dial support to chassis (4 req'd)
74995	Bracket-Drive cord pulley bracket complete with two (2) pulleys	73333	Washer-Insulating washer (extruded) for mounting base holder bracket ( 1 req'd) or dial support to
74991	Capacitor-Variable tuning capacitor complete with drum Cl, C3, C9, Cl0, Cll, Cl2	71081	chassis (4 req'd)   Washer-Spring washer to fasten removable drive
$\begin{aligned} & 71924 \\ & \underline{11514} \end{aligned}$	Capacitor-Ceramic, $56 \mathrm{mmf} \ldots \ldots . . .$. C 8 Capacitor-Ceramic, 82 mmf		cord pulley
73922			SPEAKER ASSEMBLY
73113	Capacitor-Electrolytic comprising 1 section of 50 mid., 150 volts, 1 section of 20 mid., 150 volts, 1 sec -		971495-2 FOR RCl082A 92577-3W FOR RC1082
	tion of 160 mid ., 25 volts, and 18 section of 40 mfd .,	71059	Gasket-Sp
	25 volts ..........C29A, C29B, C29C, C29D	76402	Speaker-4 ${ }^{\prime \prime}$ P. M. speaker complete with cone and
$\begin{aligned} & 73803 \\ & 73599 \end{aligned}$	Capacitor-Tubular, paper, $0.002 \mathrm{mfd} ., 400$ volts . C27		voice coil ( 3.2 ohms) for RCl082A
70603	Capacitor-Tubular, paper, 003 mfd .1400 volts . Cls	731	Speaker-4" P.M. speaker complete with cone and voice coil for RCl080
735	Capacitor-Tubular, paper, 01 mid., 400 volts ${ }^{\text {C2 }}$, C25	71079	MISCELLANEOUS   Antenna-Āntenna loop
73562	Capacitor-Tubular, paper, . 02 mid ., 400 volts C24	71074	Arm-Shutter arm lever
75071	Capacitor-Tubular, moulded paper, .047 mid., 400 volts.	$76411$ $74999$	Back-Case back (for RC1082A) Back-Case back (for RCl082)
73553	Capacitor-Tubular, paper, 05 mfd , 400 volts	7107	Bracket-Bearing bracket for shutter arm lev
73551	Capacitor-Tubular, paper, 0.1 midd., 400 volts. .C31	71070	Bracket-Mounting bracket for \#71069 adjustable
73935	Clip-Mounting clip for I.F. transiormers	71069	Capacitor
73114	Coil-Oscillator coil complete with adjustable core L4, L5	7639	Case-Case front complete with insulating strip, emblem and moulded supports (for RC1082A)
74992	Coil-R.F. coil complete with adjustable screw. L2, L3	7500	Case-Case front complete with insulating strip and
71041	Connector - 5 contact male connector for battery cable Control - Volume control		support feet-less shutter (for RCl082)
71057 +72953	Control-Volume control	75001	Clip-Clip to hold battery
70022	Cord-Drive cord (approx. 38 overall length required)	75005	Clip-"C" clip (threaded) for battery holder clip
74998	Dial-Dial scale and window assembly	76412	Clip-'"C" clip-
74838	Grommet--Power cord strain relief (1 set)		sides (for RC1082A)
72283	Grommet-Rubber grommet to mount tuning capacitor (3 required)	75009	Clip-Clip to hold chassis to case (end plates) ( $2 \mathrm{req}{ }^{\prime} \mathrm{d}$ )
71031	Holder - Power cord holder (fiber tube)	76414	Clip-"C' clip used with chassis mounting clip 75009
74994	Knob-Volume control knob (roller type) or tuning control knob (roller type)	75010	Clip- "C" clip and screw for holding case together (two at top, two at bottom)
18469	Plate-Bakelite mounting plate for electrolytic	76416	Clip-Wire clip (hinge spring) for latch cover (for
73111	Pointer-Station selector pointer		RCl082A)
$\begin{aligned} & 72602 \\ & 74322 \end{aligned}$	Pulley - Drive cord pulley (removable) Rectifier-Selenium rectifier	75013	Clip-Spring clip with tab for fastening case front to
73237	Resistor-Wire wound, 33 ohms, fuse type ...... R3	71080	Clip-C
74319	Resistor-Wire wound, 2700 ohms, 7 watts . . . . . R17	76415	Cover-Tenite latch cover (for RCIO82A)
	Resistor-Fixed, composition:	75011	Emblem-"'RCA Victor"
503210	1000 ohms, $\pm 100$, $1 / 2$ watt . . . . . . . . . . . . . . . . R21	76418	Foot-Case foot and battery support (tenite) (for
503215	1500 ohms, $\pm 100$, $1 / 2$ watt . . . . . . . . . . . . . . . . R16		RCl082A)
503218	1800 ohms, $\pm 100$, 1/2 watt . . . . . . . . . . . . . R6, R15	75008	Foot-Case foot and battery support (for RCl082)
503227	2700 ohms, $\pm 10 \%$, $1 / 2$ watt . . . . . . . . . . . . . . . . R19	75016	Handle-Carrying handle
513233	3300 ohms, $\pm 10 \%$, 1 watt . . . . . . . . . . . . . . . . R18	75004	Latch-Spring latch for back cover (RCl082)
504315	15,000 ohms, $\pm 200$, $1 / 2$ watt . . . . . . . . . . . . . . . R20	75018	Link-Carrying handle link (2 req'd)
503327	27,000 ohms, $\pm 100$, 1/2 watt. . . . . . . . . . . . . . . . R10	75003	Nut-Speed nut for carrying handle mounting screw
504368	68,000 ohms, $\pm 200$. $1 / 2$ watt ................ R8		(2 req'd)
504410	100,000 ohms, $\pm 200 \%$, $1 / 2$ watt . . . . . . . . . . . . . . . R ${ }^{\text {R }}$	76413	Pin-Case back hinge pin (for RC 1082A)
504422	220,000 ohms, $\pm 200 \%$, $1 / 2$ watt . . . . . . . . . . . . . R13	75015	Pin-Pivot pin for case shutter
503433	330,000 ohms ${ }^{ \pm} \pm 10 \%$ 1/2 watt . . . . . . . . . . . . . . . R22	75000	Plate-Case top plate
504510	1 megohm, $\pm 200$, $1 / 2$ watt.................... R14	75017	Plate-Mounting plate for carrying handle (2 req'd)
503518	1.8 megohm, $\pm 100 \%$, 1/2 watt . . . . . . . . . . . . . . . . R2	71066	Screw-\#8-32 x ${ }^{3 / 6} 6^{\prime \prime}$ cross recessed binder head screw
503533	3.3 megohm, $\pm 1000$, 1/2 watt. . . . . . . . . . . . . . R7		to hold chassis to top plate ( 2 req'd)
504547	4.7 megohm, $\pm 20 \%$, $1 / 2$ watt . . . . . . . . . . . . . . R12	75002	Screw-\#4 $\times \%^{\prime \prime}$ cross recessed self-tapping round
503556	5.6 megohm, $\pm 100 \%$, $1 / 2$ watt. . . . . . . . . . . . . . . . . R5		head screw to fasten carrying handle (2 req'd)
503568	6.8 megohm, $\pm 100$, $1 / 2$ watt . . . . . . . . . . . . . . . . ${ }^{\text {a }}$	75014	Screw-\#4 $\times 1 / 4^{\prime \prime}$ pan head tapping screw for spring
504610	10 megohm, $\pm 20 \%$, 1/2 watt . . . . . . . . . . . . . . . .Rll		clip 75013 or capacitor bracket
73122	Shatt-Tuning knob shatt	75012	Side-Case side only-less pivot pin
74996	Shield-End shield for dial-L.H.	71072	Spring-Case shutter compression spring
74997	Shield-End shield for dial-R.H.	76417	Spring-Latch mechanism tension spring (for RC
73117	Socket-Tube socket, 7 pin, miniature		1082A)
76400	Spacer-Metal spacer and screw to mount speaker ( 1 set ) (For use with speaker 971495-2)	$\begin{aligned} & 71071 \\ & 75007 \end{aligned}$	Shutter-Case shutter   Strip-Case front insulating strip complete with latch
76368	Spring-Dial cord spring (Semi-circular type)		plate (for RCl082)
30900	Spring-Retaining spring for knob	75008	Support-Moulded support foot for case (2 req'd)
71039	Switch-'"Line-Battery" change switch . . . . . . . . . S1		(for RClO82)
71045	Switch-Power switch........................... S2 $^{\text {d }}$	74353	Washer-Spring washer for shutter shafts



## Specifications

Tuning Range
Intermediate Frequency
$540-1600 \mathrm{kc}$
455 kc .

Tube Complement
(1) RCA 1R5
(2) RCA 1 T 4
(3) RCA IU5
(4) RCA 3V4

A selenium rectifier is used
Power Supply Rating
Power Line Operation
115 volts, d. c. or 50 to 60 cycles a.c.
18 watts
Battery Operated
or
(Average life- 100 hrs . intermittent service)
Loudspeaker (92577-3 or 971495-2)
Size and type
Voice coil impedance
4 in. P.M. dynamic

Tuning Drive Ratio
3.2 ohms at 400 cycles

Power Output
Undistorted- 170 milliwatts Maximum- 350 milliwatts (Output is slightly lower on battery operation)
Cabinet Dimensions
Height $81 / 4 \mathrm{in}$.
Width $103 / 4$ in.
Depth 5 in.
Weight (Approx.)
5 lb . less battery
8 lb .2 oz. with battery

## AC-DC Operation

A power cord is stored inside the cabinel. To open the cabinet, pull backwards on the top of the cabinet back. It is secured by means of two spring clips and catches on the inside of the cabinet. Remove the plug of the power cord from its socket on the chassis and insert the plug into a convenient electrical power outlet. A notch in the right side of the cabinet allows the back to be closed with the cord passing through. Notes: 1. Maximum performance is obtained with the batiery in place. Receiver sensitivity will be lowered if the battery is not in place during AC.DC operation since the battery affects the loop inductance.
2. If reception is not obtained on DC, reverse plug in power outlet. On AC operation, reversal of the plug may reduce hum.

## Battery Operation

Replace the power cord plug in the socket provided on the back of the chassis. Coil up the power cord and place it alongside of the battery. Make certain that it will not interfere with the tuning condenser.
Note: Make certain that the plug is fully inserted (base of plug touching chassis) to assure proper operation of the Batt-Line switch.

AC-DC-Battery Portable Receiver Model BX55
Chassis No. RC-1088, RC-1088B Service Data

- 1950 No. 7 -


## PREPARED BY RCA SERVICE CO., INC.

 FORRADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.


## To Remove Carrying Handle

Early Type:

1. Remove rivets from handle (if present).
2. Turn link and slip out of handle and cabinet.

Late Type:

1. Remove speed nuts holding carrying handle link caps.
2. Remove link caps.
3. Turn link and slip out of handle and cabinet.

## Cabinet Back and Hinges

The cabinet back and hinges may be readily detached from the cabinet. See back page for detailed instructions on their removal.

## Alignment Procedure

Signal Generator.-For all alignment operations, connect the low side of the signal generator to the receiver chassis and keep the output as low as possible to avoid AVC action.

Battery operation of the receiver is preferable during alignment; on a. c. operation an isolation transformer ( $117 \mathrm{v} . / 117 \mathrm{v}$.) may be necessary for the receiver if the signal generator is also a. c. operated.

Note: Battery must be in place for ant. alignment (step 6).

Dial Pointer Position. - With the tuning condenser fully meshed the center of the dial pointer should be in line with the score mark on the chassis.

## Alignment Tabulation

$\left.$| Step | Connect high <br> side of <br> signal <br> generator to- | Signal <br> generator <br> output | Dial <br> pointer <br> setting |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | | Adjust for |
| :---: |
| maximum |
| output- | \right\rvert\,

$\dagger$ With back closed. Trimmer is accessible thru hole in back.

## NOTE

The magnetite cores of T 2 and T 1 may not have visible adjusting screws. The cores have screwdriver slota to permit adjustment (use non-metallic screwdriver).

## Critical Lead Dress

1. Dress antenna loop leads away from adjusting screws on tuning condenser.
2. Dress all capacitors against chassis base.
3. Dress oscillator coil away from chassis and bottom cover.
4. Dress output transformer primary leads against chassis.
5. Dress all leads and components away from selenium rectifier.
6. Dress loop antenna leads into recesses provided in the side of the cabinet. Leave slack at hinged edge of cabinet.

Note: This instrument is designed to be operated with a battery in position inside the cabinet. Reception will be below normal unless the battery is in its normal location

The position of the battery pack affects the loop inductance. Therefore, when the battery is removed, the loop inductance will change (increase) and the sensitivity will be slightly worse because of improper electrical tracking of the loop circuit with the heterodyne oscillator of the receiver.

## CAUTION.-

Do not remove any tubes from the chassis with the set operating and the plug connected to the power line. Damage to tubes may result.


Dial Indicator and Drive Mechanism



## Substitution of Capacitor:

In some instruments section 9D of the four section electro-
lytic capacitor $C 9 A, C 9 B, C 9 C, C 9 D$ is not used. A separate eqłerndoeq euop som sịI poejsul pesn s! roplondod jum OE electrolytic capacitors supplied by certain vendors had common coupling between sections which resulted in excessive hum. Please note that the separate 30 mf . capacitor is used in
place of and not in parallel with the 30 mf . section of the
t parts stock of the four section capacitor (Stock No. 74774) has been found to be satisfactory and substitution of section C9D should not be necessary.

$\begin{array}{\|c\|} \hline \text { STOCK } \\ \text { No. } \end{array}$	DESCRIPTION	$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION
	CHASSIS ASSEMBLIES RC 1088, RC 1088B	$\begin{aligned} & 76368 \\ & 71039 \\ & 73129 \end{aligned}$	Spring-Drive cord tension spring-semi-circular type   Switch-"Line-Battery" change switch   Transformer-First I.F. transformer
76404	Bracket-Drive cord pulley bracket including two pulleys (for RC-1088B)	74775 74779	Transformer-Second I.F. transformer ............ T2 Transformer-Output transformer
74778	Capacitor-Variable tuning capacitor . . . Cl-1, Cl-2	33726	Washer - "C" washer for tuning knob shaft
339622			SPEAKER ASSEMBLIES
74774	Capacitor-Electrolytic, comprising 2 sections of 30   mid., 150 volts, 1 section of 20 mfd . 150 volts and	74165	Speaker-4" P.M. speaker (92577-3) complete with cone and voice coil-for RC-1088
	mid., 150 vection of 30 mfd ., 25 volts. C9A, C9B, C9C, C9D	76402	Speaker-4"' P.M. speaker (971495-2) complete with
72315	Capacitor-Tubular, paper, . 002 mid., 200 volis. . C8		cone and voice coil-for RC-1088B
73920	Capacitor-Tubular, paper, . 005 mfd ., 400 volts $\mathrm{Cl} \mathrm{Cl}^{0}$	76401	Spacer-Spacers (2) and screws (2) to mount
73561	Capacitor-Tubular, paper, . 01 midd., 400 volts. . C6		$971495-2$ speaker on RC-1088 (not required for RC-1088B)
75071	Capacitor-Tubular, moulded paper, 047 mid., 400 volts		RC-1088B)
73553	Capacitor-Tubular, paper, 05 mfd., 400 volts . C2,	75048	Back-Cabinet back complete with loop
		74787	Board-Terminal board-2 conlact
70617	Capacitor-Tubular, paper, 0.1 mfd., 400 volts. . C4,	Y2220	Case-Cabinet front-less back, emblem, handle and dial-early type without holes for mounting link caps.
73935	Clip-Mounting clip for I.F. transformer	Y2327	Case-Cabinet front-less back, emblem, handle and
74780	Coil-Oscillator coil ............... L1, L2		dial-late type with holes for mounting link caps.
73275	Connector-5 contact male connector for battery	$76282$	Cap-Carrying handle link cap ( 2 required)
73125	Control-Volume control and power switch. . RS, S2	74734	Clip-Spring clip for knob
71457	Cord-Power cord and plug	74792	Clip-Striking clip for catch (part of cabinet back)
$\dagger 72953$	Cord-Drive cord (approx. $40^{\prime \prime}$ overall length req'd)		(2 required)
72283	Grommet-Rubber grommet to mount tuning capacitor (3 required)	$\begin{aligned} & 74784 \\ & 74782 \end{aligned}$	Dial-Metal dial scale   Emblem-"RCA Victor" emblem
74838	Grommet-Power cord strain relief grommet (l set)	74785	Handle-Carrying handle (early type-leather)
74776	Indicator-Station selector indicator	76280	Handle-Carrying handle (late type-plastic)
18469	Plate-Mounting plate for electrolytic capacitor	74790	Hinge-Cabinet hinge (2 required)
72602	Pulley-Drive cord pulley	74666	Knob-Tuning or volume control and power switch
74322	Rectifier-Selenium rectifier .................. SR1		knob
73237	Resistor-Wire wound (fuse type) 33 ohms ...... . R12	74786	Link-Link for carrying handle-15/h" length (early
74777	Resistor-Voltage divider, dual, 1300 ohms, 3.5 watts.................................... R13B Resistor-Fized, composition:-	76281	type) (2 required)   Link-Link for carrying handle-l/h" length (late type) (2 required)
		74789	Loop-Antenna loop windin
	680 ohms, $\pm 200 \%$, 1/2 watt . . . . . . . . . . . . . . Rll	74788	Nut-Speed nut to mount terminal board
	2200 ohms, $\pm 10 \%, 1 / 2$ watt . . . . . . . . . . . Rl4 22,000 ohms, $\pm 200 \%, 1 / 2$ watt . . . . . . . . . . 44	73203	Nut-Speed nut to fasten dial, decorative plate and carrying handle link caps (6 required-2 for each
	47,000 ohms, $\pm 200$, $1 / 2$ watt . . . . . . . . . . . R6		purpose)
	100,000 ohms, $\pm 200 \%$, $1 / 2$ watt ................ R1	76279	Plate-Reinforcing plate for mounting chassis in
	$1 \mathrm{megohm}, \pm 20 \%$, $1 / 2$ watt $\ldots$. . . . . . . . . . . . . . . . R9	7544	Rivet-Bevel pointed rivet for
	megohm, $\pm 100 \%$, $1 / 2$ watt .................... ${ }^{\text {R }}$		handle (2 required)
	10 megohm, $\pm 20 \%$, 1/2 watt............. R7, R8	75435	Screen-Crinoline screen for speaker grille
74773	Shatt-Tuning knob shaft for RC-10	74783	Plate-Decorative plate (satin finish) for cabinet
76403	Shaft - Tuning knob shaft for RC-1088B		
73103 73117	Shield-Tube shield for 1 US tube	74301	Screw-No. 8-32 $\times 1{ }^{\prime \prime \prime}$ pan head cross recessed
73117 74038	Socket-Tube socket, miniature Spring-Drive cord tension spring - coil type	74791	screw for chassis mounting (2 required)
	Spring-Drive cord lension spring-coil type	24791	Screw-No. $4 \times 5 / 16$ pan head cross recessed screw to fasten catch to cabinet front

†Stock No. 72953 is a reel which contains 250 ft . of cord.

## APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS

## To Remove Cabinet Back

Disconnect the loop antenna leads. With the back fully open, grip the cabinet as illustrated. Insert a screwdriver under one hinge and pry the center of the hinge out of the opening in the cabinet while maintaining pressure on the back with the fingers and on the cabinet with the thumb. Repeat this procedure with the other hinge. Pull the back straight to the rear using both hands.

## To Remove Hinges

Remove back from cabinet as described above. Spread the hinge apart to remove it from the cabinet back.



Tuning Range
540-1600 kc. Intermediate Frequency .455 kc.
Tube Complement
(1) RCA $1 R 5$
Converter
(2) RCA IU4 Det.-A.V.C.-A. F. Amp.
(3) RCA IUS
(4) RCA 3V4
A selenium rectifier is used
Power Supply Rating
Power Line Operation
115 volts, d. c. or 50 to 60 cycles a. c................ . . 18 watts
or
Battery Operated
VS 050 Battery
(Average life- 100 hrs . intermittent servics)
Loudepeaker (92577-3 or 971495-2)
Size and type
Voice coil impedance
4 in. P.M. dynamic
Tuning Drive Ratio
3.2 ohms at 400 cycles
Power Output
Undistorted-170 milliwatts Maximum-350 milliwatts (Output is slightly lower on battery operation)
Cabinet Dimentions
Height $81 / 4$ in.
Width $103 / 4$ in.
Depth 5 in.

Weight (Åpprox.)
5 lb . less battery
8 lb .2 oz . with battery

## AC-DC Operation

A power cord is stored inside the cabinet. To open the cabinet, pull backwards on the top of the cabinet back. It in secured by means of two spring clips and catches on the inside of the cabinet. Remove the plug of the power cord from its socket on the chassis and insert the plug into a convenient electrical power outlet. A notch in the right side of the cabinet allows the back to be closed with the cord passing through.

Notes: 1. Maximum performance in obtained with the battery in place. Receiver senaitivity will be lowered if the battery is not in place during AC-DC operation since the battery atfects the loop inductance.
2. If reception is not obtained on DC, reverse plug in power outlet. On AC operation, reversal of the plug may reduce hum.

## Battery Operation

Replace the power cord plug in the socket provided on the back of the chassis. Coil up the power cord and place it along. side of the battery. Make certain that it will not interfere with the tuning condenser.
Note: Make certain that the plug is fully inserted (base of plug touching chassis) to assure proper operation of the Batt-Line switch.

## RcAVictor

AC-DC-Battery Portable Receiver
Model BX57
Chassis No. RC-1088A, RC-1088C Service Data

- 1950 No. 11 -

PREPARED BY RCA SERVICE CO., INC. FOR
RADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.


## To Remove Carrying Handle

Early Type:

1. Remove rivets from handle (if present).
2. Turn link and elip out of handle and cabinet.

Late Type:

1. Remove speed nut holding carrying handle link caps.
2. Remove link caps.
3. Turn link and slip out of handle and cabinet.

## Cabinat Back and Hinges

The cabinet back and hinges may be readily detached from the cabinet. See back page for detailed instructions on their removal.

## Alignment Procedure

Signal Generator--For all alignment operations, connect the low side of the signal generator to the receiver chassis and keep the outpul as low as possible to avoid AVC action.
Battery operation of the receiver is preferable during alignment; on a. c. operation an isolation transformer ( $117 \mathrm{v} . / 117 \mathrm{v}$.) may be necessary for the receiver if the signal generator is also a. c. operated.

Note: Battery must be in place for anl. alignment (ntep 6).

Dial Pointer Position.-With the tuning condenser fully meshed the center of the dial pointer should be in line with the score mark on the chassis.

Alignment Tabulation

Step	Connect high side of signal generator to-	Signal generator outpul	Dial pointer setting	Adjust for maximum output-
1	Disconnect loop - remove chassis - remove bottom plate, connect a $10,000 \mathrm{ohm}$ resistor from Cl-1 stator terminal to tuning condenser frame.			
2	Grid of IU4 (pin No. 6) thru .01 mf . capacitor	455 kc	Quiel point near 1600 kc	$\begin{aligned} & \text { T2 (top \& } \\ & \text { bottom) } \\ & \text { 2nd. I-F } \\ & \text { trans. } \end{aligned}$
3	Stator term. of C1-1 thru .01 mf . capacitor			Tl (lop \& bottom) 1st. I-F trans.
4	Remove the $10,000 \mathrm{ohm}$ resistor. Replace bottom cover and install chassis in cabinet. Re-connect loop.			
5	Short wire placed near receiver (for radiated signal)	1620 kc	$\begin{aligned} & \text { Tuning } \\ & \text { condenser } \\ & \text { fully open } \end{aligned}$	Cl-2 trimmer (osc.)
6		1400 kc	1400 ke signal	+Cl-1 trimmer (ant.)
7		600 ke	600 kc signal	$\begin{gathered} f \mathrm{Ll} \\ \text { (osc.) } \\ \text { rock gang } \end{gathered}$
8	Repeat steps 5 and 6.			

\& With back closed. Trimmer is accesaible thru hole in back.

## NOTE:

The magnetite coren of T2 and T1 may not have visible adjusting screwn. The coren have screwdriver alots to permit adjustment (use non-motalic screwdriver).

## Critical Lead Dress

1. Dress antenna loop leads away from adjusting screws on tuning condenser.
2. Dress all capacitors against chassis base.
3. Dress oscillator coil away from chassis and bottom cover.
4. Dress output transformer primary leads against chasmis.
5. Dress all leads and components away from selenium rec. tifier.
6. Dress the 4 mmi . capacitor ( Cl 15 ) down against the .003 mi. capacitor (C14).
7. Capacitor C15 must be connected to the plate terminal of the 1 U 4 socket with as short lead as possible.
8. Dress loop antenna leads into recesses provided in the side of the cabinet. Leave slack at hinged edge of cabinet.

Note: This instrument is designed to be operated with a battery in position inside the cabinet. Reception will be below normal unless the battery is in its normal location.

The position of the battery pack affects the loop inductance. Therefore, when the battery is removed, the loop inductance will change (increase) and the sensitivity will be slightly worse because of improper electrical tracicing of the loop circuit with the heterodyne oscillator of the receiver.

## CAUTION.-

Do not remove any tubes from the chassis with the set operating and the plug connected to the power line. Damage to tubes may resull.


Tube and Trimmer Locations

Substitution of Capacitor:
In some instruments section 9D of the four section electro-
lytic capacitor C9A, C9B, C9C, C9D is not used. A separate 30 mf . capacitor is used instead. This was done because the electrolytic capacitors supplied by certain vendors had common coupling between sections which resulted in excessive hum. Please note that the separate 30 mf . capacitor is used in
place of and not in parallel with the 30 mf . section of the
The replacement parts stock of the four section capacitor
(Stock No. 74774) has been found to be satisfactory and substitution of section C9D should not be necessary.

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{gathered} \text { STOCX } \\ \text { No. } \end{gathered}$	DESCRIPTION
	CHASSIS ASSEMBLIES	73129	Tr
	RC-1088A, RC-1088C	73130	Transformer-Second I.F. transformer . . . . . . . . T2
76404	Bracket-Drive cord pulley bracket including two pulleye (for RC-1088C)	71047 33726	Transformer-Output transformer. . . . . . . . . . . . . . T3 Washer-"C" washer for tuning knob shaft
75	Capacitor-Variable tuning capacitor.... $\mathrm{Cl}-1, \mathrm{Cl}-2$		ER ASSEMBLI
73153	Capacitor-Ceramic, 4 mmf..................... . . Cl5		92577.3
39622 39628	Capacitor-Mica, 56 mmf.............................. C3	74165	Speaker-4" P.M. speaker (92577-3) complete with
74774	Capacitor-Electrolytic, comprising 2 sections of 30		
	mid., 150 volts, 1 section of 20 mifd., 150 volts and 1 section of 30 mid., 25 volts, C9A, C9B, C9C, C9D	7640	Speaker-4" P.M. speaker (971495-2) complete with cone and voice coil-for RC-1088C
72315	Capacitor-Tubular, paper, . 002 midd., 200 volts. . C8 Capacitor-Tubular, paper, . 003 mid., 200 volts. Cl4	76401	Spacer-Spacers(2) and screws(2) to mount 971495-2 speaker on RC-1088A (not required for RC-1088C)
73920	Capacitor-Tubular, paper, . 005 mid., 400 volts. Cl0		
73561	Capacitor-Tubular, paper, . 01 mid., 400 volts. .C6		MISCELLANEOUS
75071	Capacitor-Tubular, moulded paper, .047 mid., 400 volts.	$\begin{array}{r} 75080 \\ 74787 \\ \hline \end{array}$	Back-Cabinet back complete with loop Board-Terminal board-2 contact
73553	Capacitor-Tubular, paper, 05 mfd ., 400 volts, C 2,	Y2227	Cabinet-Cabinet tront including corners and link caps-less dial and plate
70617	Capacitor-Tubular, paper, 0.1 mid., 400 volts. . Cl2 Clip-Mounting clip for IF transtormer	75156	Cap-Carrying handle link cap (2 required)-early type with wide slot for link
74405	Coil-Oscillator coil.................... . . . . Ll, L2	76405	Cap-Carrying handle link cap ( 2 required)-late
73275	Connector-5 contact male connector for battery cable	74339	type with narrow slot for links   Catch-Cabinet back catch (part of cabinet front)
73125	Control-Volume control and power switch. .R5, S2	74734	Clip-Spring clip for knob
70022	Cord-Power cord and plug	74792	Clip-Striking clip for catch (part of cabinet back)
†72953	Cord-Drive cord (approz. 40' overall length req'd)		(2 required)
72283	Grommet-Rubber grommet to mount tuning capacitor	75153	Cover-Cabinet corner cover-L.H.
74838	Grommet-Power cord strain reliel grommet (l set)	75154	Cover-Cabinet corner cover-R.H.
74776	Indicator-Station selector indicator	75157	Dial-Metal dial scale and bezel
18469	Plate-Mounting plate for electrolytic capacitor	74782	Emblem-"RCA Victor" emblem
72602	Pulley-Drive cord pulley	75150	Handle-Carrying handle (early type-leather)
74322	Rectifier-Selenium rectifier ........ 3 . . . . . . . . . . SR1	76280	Handle-Carrying handle (late type-plastic)
73237	Resistor-Wire wound (fuse typo) 33 ohms. . . .R12	74790	Hinge-Cabinet hinge (2 required)
76006	Resistor-Wire wound, 2600 ohms tapped at 1300 ohms 6 watts. .................................... R13	7478	Knob-Tuning or volume control and power switch knob
	Resistors-Fixed, composition:470 ohms, $\pm 200 \%$, $1 / 2$ watt. . . . . . . . . . . . . . . . . . . R2	75151	Link-Link for carrying handle- 1 h/e" length (early type) (2 required)
	680 ohms, $\pm 200,1 / 2$ watt................................... R14 2200 ohms, $\pm 100,1 / 2$ watt. ................	76281	Link-Link for carrying handle-lhi" length (late type) (2 required)
	22,000 ohms, $\pm 20 \%$, 1/2 watt . . . . . . . . . . . . . . . . . . R2	75152	
	47,000 ohms, $\pm 200$, 1/2 watt. . . . . . . . . . . . . . . . . .R6	74788	Nut-Speed nut to mount terminal board
	100,000 ohms, $\pm 2001,1 / 2$ watt. . . . . . . . . . . . . . . . R1 470,000 ohms,$~$ R10	73203	Nut-Speed nut to fasten dial, corner covers, decorative plate or link caps
	1 megohm, $\pm 20 \%$, $1 / 2$ watt . . . . . . . . . . . . . . . . . . . . . .R9	74783	Plate-Decorative plate (satin tinish) for cabinet
	3.9 megohm, $\pm 100 \% 1 / 2$ watt. ................. R3		Pabo dal
	4.7 megohm, $\pm 20 \%, 1 / 2$ watt.	76279	Plate-Reinforcing plate for mounting chassis in cabinet ( 2 required)
7477	Shaft-Tuning knob shatt for RC-1088A	75448	Rivet-Bevel pointed rivet for early type leather
76403	Shaft-Tuning knob shaft for RC-1088C		handle (2 required)
73103	Shield-Tube shield for lUS tube	$75435$	Screen-Crinoline screen for speaker grille
73117 74038	Socket-Tube socket, miniature Spring-Drive cord tension spring-coil type	$74301$	Screw-No. 8-32 $\times 3 / 8^{\prime \prime}$ pan head cross recessed screw for chassis mounting ( 2 required)
76368	Spring-Drive cord tension spring-semi-circular type	74791	Screw-No. 4 I he'" pan head croes recessed
71039	Switch-"Line-Battery" change switch. .......... Sl		screw to fasten catch to cabinet fro

†Stock No. 72953 is a reel which contains 250 ft . of cord.

## APPLY TO YOUR RCA DIBTRIBUTOR FOR PRICES OF REPLACEMENT PARTB

## Change in Resistor:

The 2600 ohm 6 watt resistor (R13) now being uned in Model BX57 is of improved design. The original resistor was a ceramic type and the type now being used is a flat armored type. When the new type is uned to replace the original type, it is necessary to drill a $.120^{\prime \prime}$ diameter hole in the front apron of the chastis to accommodate a seli-tapping screw for mounting purposes.

## To Remove Cabinet Back

Disconnect the loop antenna leads. With the back fully open. grip the cabinet as illustrated. Insert a screwdriver under one hinge and pry the center of the hinge out of the opening in the cabinet while maintaining preasure on the back with the tingers and on the cabinet with the thumb. Repeat this procedure with the other hinge. Pull the back atraight to the rear using both hands.

## To Remove Hinges

Remove back from cabinet as described above. Spread the hinge apart to remove it from the cabinet back.



Replacement Parts


## Alignment Procedure

Test-Oscillator-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.
On a.c. operation an isolation transformer ( $115 \mathrm{v} . / 115 \mathrm{v}$.) may be necessary for the receiver if the lest oscillator is also a.c. operated.

## Lead Dress

1. Dress all capacitors down against chassis.
2. Connect outside foil of all capacitors as indicated in schematic diagram.
3. Locate C9 in its mounting clip so that it butts against chassis.
4. Dress power cord leads away from Rll.

Attachment of Record Player
The audio output cable of the record player should be terminated with a pin plug.
Plug the cable into the receptacle which is accessible through the side of the cabinet.
Insertion of the cable plug into the receptacle removes radio signal from the volume control. The record player cable must be removed from the receptacle to permit radio operation.


Tube and Trimmer Locations


## Change in Volume Control:

The volume control used in initial production was 500,000 ohme. This has been changed to a 1 megohm control.

Steps	Connect the high side of test-oscillator to-	$\begin{aligned} & \text { Tune } \\ & \text { test-osc. } \\ & \text { to- } \end{aligned}$	Turn radio dial to-	Adjuat the following for max. output
1	12BA6 I-F grid throuth .01 mfd. capacitor	455 kc	Quiet-point 1600 kc and of dial	T2 (top and bottom) 2nd I-F trana.
2	Stator of C1-2 through .01 mfd .			T1 (top and bottom) list l-F trans.
3	Short wire placed near loop to radiate signal	1620 kc	Min. cap.	osc. trimmer
4		1400 kc	1400 kc signal	ant. trimmer
5		600 kc	600 kc signal	L2 (osc.) Rock gang
6		Repeat stepe 3,4 and 5.		

POWER SUPPLY POLARITY.-For operation on d.c., the power plug must be inserted in the outlet for correct polarity. If the set does not function, reverse the plug. On a.c., reversal of the plug may reduce hum.

## Change in Schematic Diagram:

Resistor R4 ( 3.3 meg. a.v.c. filter), previoualy connected to the junction of R12 (47K) and the phono jack (J1), is now connected to the junction of R12 and terminal \#2 of the 2nd I-F tranformer. The revised connection is illustrated below.



AM-FM Radio Receiver<br>Model X711

, Chassis No. RC-1070A
Service Data
-1950 No. 17-

# PREPARED BY RCA SERVICE CO., INC. FOR <br> RADIO CORPORATION OF AMERICA <br> rCa victor division <br> CAMDEN, N. J., U. S. A. 

## Specifications

## Tuning Ranges

Standard Broadcast (AM) ................................. 540-1,600 kc.
Frequency Modulation (FM) $\qquad$ 88.108 mc .

Intermediate Frequencies ................ AM- 455 kc., FM-10.7 mc.
Tube Complement


Dial Lamp $\qquad$ Type No. 47, 6-8 volts, 0.15 amp .

Loudspeaker
Type 92572-4W $\qquad$ 5 inch P.M. Voice coil impedance $\qquad$ 3.2 ohms at 400 cycles

Tuning Drive Ratio $\qquad$ $111 / 2: 1$ ( $53 / 4$ tums of knob)

Power Supply Rating
115 volts d.c. or 50 to 60 cycles a.c.
30 watts
Power Output
$\qquad$
Undistorted
1.0 watt

Cabinet Dimansion:
Height...... $8 \frac{8}{8}$ in. Width......127/8 in. Depth...... $75 / 16$ in.

## Power Supply:

This instrument will operate on 115 volts d.c. or 50 to 60 cycles a.c.

If the receiver does not operate on d.c., reverse the power cord. On a.c., reversal of the cord may reduce hum or improve FM reception

## Antennas:

These receivers have built-in antennas for standard broadcast (AM) and frequency modulation (FM) reception.
Under average conditions these antennas will provide satisfactory reception-however provision is made for the use of an external antenna for FM reception if desired.

To use external FM antenna:

1. Remove the wire from under the No. 2 terminal screw of the antenna terminal board. The bare end of this wise should be taped to prevent contact with the antenna terminal screws.
2. Connect the transmission line from an external FM dipole antenna to the No. 1 and No. 2 terminals of the antenna terminal board.

To use builtin FM antenna:

1. The wire extending thru the back of the cabinet must be connected to No. 2 terminal of the antenna terminal board.
2. The power cord should be fully extended and must not be coiled or hanked up.
3. Reversal of the line cord plug may improve reception. DO NOT USE EXTERNAL GROUND.

## CAUTION:

THE CHASSIS IS CONNECTED TO ONE SIDE OF THE POWER SUPPLY. Use caution to prevent contact with pipes, radiators, etc., when servicing with chassis removed from cabinet.

## Control Knobs:

DO NOT ATTEMPT TO REMOVE THE CONTROL RNOBS FROM THE CABINET. The knobs have spring retainers on the inside of the cabinet to prevent their removal. The retainers are accessible only after the chassis has been removed from the cabinet.

## Removal of Chassis:

1. Remove the four screws at the comers of the back coverpull back cover off carefully-the power cord plug and socket at the bottom right-hand corner will pull apart but the antenna leads remain connected.
2. Unhook the dial cord from the pointer.
3. Remove the four screws which hold the chassis to the cabinet (two at sides of chassis base and two on dial cord pulley brackets above the chassis base).
4. Pull the chassis to the rear-the knobs will be retained with the cabinet.

If removal of the chassis is not necessary when servicing, the back cover may be placed on the supports molded into the upper part of the cabinet.

## Alignment Procedure

## Correct alignment of the fm band requires that the am band be aligned first

## Output Indicatorn:

An RCA Voltohmyst or equivalent meter is neceseary for measur. ing developed d-c voltage during FM alignment. Connections are specified in the aligament tabulation. An output meter is also necestary to indicate minimum audio output during FM Ratio Dotector alignment. Connect the output meter across the speaker voice coil.
The RCA VollOhymet can also be used as an RM alignment indicator, either to measure audio output or to measure a-v-c volt. age.
When audio output is being measured the volume control should be turned to maximum.

## Signal Generator:

For all alignment operations except as stated in the tabulation connect the low side of the signal generator to the receiver chasmis. The output should be adjusted to provide accurate resonance indication at all times. If output mearurement is used for AM allgn. ment the output of the signal generator should be kept as low as possible to avoid a-v-c action.

## CRUTION:

The chaseis is connected to one side of the power supply. On a.c operation it it recommended that an isolation transformer (115 v./ll5 v.) be used for the receiver when servicing.

## Oscilloscope Alignment:

The FM I. F. alignment may be checked using a sweep generator and an oscilloscope. Shunt terminals B and C of T3 with a 1,200 ohm resiator. Connect the high side of the oscilloscope to terminal C of T3 in series with a diode probe. Apply the output of the sweep generator ( 10.7 mc with $\pm 250 \mathrm{kc}$. sweep) to pin No. 1 of V2 (6Bl6) in series with .01 ml . Low side of the oscilloscope and sweep generator to chassis. Thi will show the response of T2.
To check the combined response of T1 and T2; connect the sweep generator to the antenna terminal board-high side to No. 2 terminal in series with 300 ohm and low side to No. 1 terminal. Oscilloscope connections as previously connected.
To check the ratio detector response; connect the high side of the oncilloscope direct to terminal No. 5 of S1-1 rear, low side to chassin, apply the output of the sweep generator to pin No. 1 of V3 (12AU6) in series with 01 mi . Driver plate circuit connected for normal operation ( 1200 ohm renistor removed). Note: It is difficult to observe marker signals in this step-center frequency and sweep width should be previously observed.

## Alignment Indicator:

The dial and dial back plate are not attached to the chansie. During alignment a substitute frequency indication must be used. We suggest attaching a paper clip to the dial dxive cord so that its movement may be measured-reler to the "Dial Scale" illustration on page 5.

## CRITICAL LERD DRESS

1. All connections in the mixer-oscillator circuit are extremely critical both in regard to lead length and lead dress. Do not disturb unleme necessary-make careful notation before eervicing if it becomes necessary to disturb this wiring.
2. The ground lead from pin No. 2 of V3 (12RU6 Driver) ie critical in length and munt be dressed down againgt chaseis.
3. Dress audio coupling capacitor C23 away from output transformer.
4. Dress diode filter unit away from alignment hole in T-2.
5. Drest grid lead of V3 (pin 1 of 12RU6) against chassis apron.
6. Dress plate lead of V1 (pin No. 2 of 1916) againgt chassis.
7. Drest loop antenna leads so as to prevent contact with external antenna terminal board.
8. All ground connections to chassis mould be restored to the original p!aces of cennection if dinturbed.
9. Dress capacitor C13 down close to range switch so as to clear the projection on the bottom of the cabinet.
10. The FM ant. and osc. coils must be cemented to the coil support to prevent microphonic howl on FM. Amphenol No. 912 cement is recommended for this purpose. Amphenol No. 916 solvent is recommended as solvent if it becomes necessary to looen the windings.

AM Alignment				
RANGE SWITCH IN AM POSITION				
Steps	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to-	Adjust ior peak output
1	AM ant. section (C3) of tuning cond. in aerios with .01 mid.	455 kc.	Quiot point at low freq. end.	AM windings. $\dagger$ T2 bottom core (sec.). T2 top core (pri.).
2				AM windinge. $\dagger$ Tl top core (sec.). Tl bottom core (pri.).
3	Short wire placed near loop arfonaa for radiated signal.	1620 kc.	Extreme high frequency end.	C12 osc.
4		1400 kc .	1400 kc .	C4 ant.
5		600 kc.	600 kc.	14 onc.   (Rock gang.)
8	Repeal Steps 3, 4 and 5.			

## $\dagger$ Use alternate loading.

Alterncte loading involves the use of a 10,000 ohm resintor to load the AM plate winding while the AM grid winding of the SAME TRANSFORMER is being peaked. Then the grid winding is loaded with the reaistor while the plate winding is peaked. Only one winding is loaded at any one time. Remove the 10,000 ohm rewistor after T2 and T1 have been aligned.

Oscillator frequency is above signal frequency on both $A M$ and FM.

## FM Alignment

RANGE SWITCH IN FM POSITION-VOLUME
CONTROL MAXIMUM

Stop:	Connect high side of sig. gen. to-	Sig. gen. output	Turn radio dial to-	Adjust for peak output
1	Connect the d-c probe of a Vollohmynt to the negative lead of the 2 mid. capacitor C32 and the common lead to chassis. Adjust sig. gen. output to provide approx.-3 v indication during alignment.			
2	Pin 1 of 12RUS in series with .01 mid .	10.7 mc . modulated $30 \% 400$ cycles AM	Max. capacity (fully meshed).	T3 top core for max. d-c voltage across C32.   T3 bottom core for min. audio output."
3	No. 2 ant. term in   series with   a 300 ohm resistor. Connect low aide to No. 1 torminal.   (Remore ant. lead from   No. 2 term.)			FM Windings. $\dagger$   T2 top core (sec.). T2 bottom core (pri.).
4				FM Windinga. Il top core (ate.). Tl bottom core (pri.).
5		108 mc.	106 mc.	Ll onc."• C15 ant.
8		90 mc.	90 mc .	L5 ant.** (Rock gang.)
7	Hepeat Stops 5 and 6 until further adjustment does not improve calibration.			

- Two or more point may be found which lower the audio out. put. At the correct point the minimum audio output is approached rapidly and i much lower than at any incorrect point.
t+ Align T2 and T1 by means of alternate loading as explained under AM alignment. Use a 680 ohm resistor instead of a 10,000 ohm resistor and load the FM windings.
". Ll and LS are adjustable by increasing or decreasing the spacing between turns.


The dial scale drawing shown is a full size reproduction. It can be used as a reference in allgnment procedure.


66

Replacement Parts

$\dagger$ Stock No. 72953 is a reel containing 250 feet of cord
apply to your rca disthibutor for phices of replacement part



Specifications


Tube Complement

1. RCA-12BE6	Converter
2. RCA-12BA6	I-F Amplifier
3. RCA-12AV6	Det., AVC., A-F Amplifier
4. RCA-50L6GT	Output
5. RCA-35W 4	Rectifie

Power Supply Rating... 115 volts, 60 cycles a.c., 60 watts Dial Lamps (2) . . . . . Mazda type 1490, 3.2 volts, 0.16 amp. Loudspeaker (92585-1)

Size and type . . . . . . . . . . . . . . . . . . . . . . . . . . $5^{\prime \prime} \times 7^{\prime \prime}$ P.M.
Voice coil impedance . . . . . . . . . . . 3.2 ohms at 400 cycles


Controls-End View

## Service Hints

The tubes and the dial lamps are accessible by removing the panel-in the front of the record changer compartment.
The chassis metal mounting plate should be flush against the front of the cabinet.
The position of the speaker is adjustable. When correctly positioned, it should set firmly against the front of the cabinet but with no undue strain on the speaker.

Power Output		
Undistorted		
Max		
Cabinet Dimensions Height 73/"	Width 12\%"	Depth 141/4'
Tuning Drive Ratio ............71/2:1 (33/4 turns of knob)		
Record Changer (RP 190-1)		
Turntable speed.		
Records used. . . . . . . . . . . . . . . . . . RCA $^{7} 7$ in. fine groo		
Record capacity		12 records
Pickup (Stock No. 75476)		

FOR RECORD CHANGER SERVICE INFORMATION -REFER TO RP 190 SERIES SERVICE DATA

## Chassis No. RC-1077C

## Service Data:

Late production of Model 9Y510 uses chassis stamped RC-1077C. This chassis is identical to chassis stamped RC-1077A except for the following:
Speaker stamped 92585-3 is used instead of 92585-1. This speaker is rim mounted instead of pot mounted.
The tuning condenser shaft extends approx. 3 "" beyond the drive cord pulley instead of $1 / 4^{\prime \prime}$. This permits the use of a new type of drive cord tension spring.

## Replacement Parts:

## Stock No. <br> CHASSIS ASSEMBLY <br> RC-1077C

Same as RC-1077A except:
76393 Bracket-Speaker mounting brackets and screws ( 1 elt)
If tuning condenser is replaced, use condenser and drive cord spring same as for RC-1077A
76368 Spring-Drive cord tension spring SPEAKER ASSEMBLY 92585-3
76394 Speaker-5" $\times 7^{\prime \prime}$ PM speaker complete with cone and voice coil

## Alignment Procedure

Output Meter-Connect meter across speaker voice coil. Turn volume control to maximum.
Test Oscillator-Connect low side of test oscillator to common wiring in series with a .1 mf . capacitor. If the test oscillator is a.c. operated it may be necessary to use an isolation transformer for the receiver during alignment and the low side of the test oscillator connected directly to common wiring at the electrolytic capacitor. Keep the oscillator output low to prevent $a-v-c$ action.
Dial Pointer Adjustment--Rotate tuning condenser until the plates are fully open. Adjust indicator pointer to 1630 kc (extreme high frequency end of the scale).

Stope	Connect the high side of teent to-	Tune teet-oec. to-	Turn radio dial to-	Adjust the following for max. output
1	I.F. grid, in emies with .1 mfd .	455 kc	$\begin{aligned} & \text { Quiet point } \\ & 1,600 \mathrm{kc} \\ & \text { end of dial } \end{aligned}$	Pri. \& Sec. 2nd I.F. traneformer
3	Converter grid in eeriee with .1 mfd.			Pri. \& Sec. lat I.F. traneformer
NOTE - ANTENNA LOOP AND RECORD CHANGER MUST BE IN CABINET FOR THE FOLLOWINO				
3	Short wire placed near loop for radiated mignal	1.630 kc	Extreme R. H. end (gang open)	$\begin{gathered} 1,630 \mathrm{KC} \\ \text { trimmer (osc.) } \end{gathered}$
4		$1,400 \mathrm{kc}$	1,400 ke	$\begin{gathered} \text { 1,400 KC } \\ \text { trimmer (ant.) } \end{gathered}$
5		600 kc	600 kc	Osc. Coil 13 Rock gang
6	Repeat stegs 3, 4, \& 3 if neceseary			

## LEAD DRESS

1. Dress all heater leads and pilot light leads down to chassis and as far as possible from all audio grid and plate wiring.
2. Dress all exposed leads away from each other and away from chassis to prevent short circuits.
3. Dress lead from R.F. section of gang to V1 pin 7 direct but away from chassis base to reduce capacity, also away from fuse resistor.
4. Dress lead from oscillator section of gang to oscillator coil direct but away from chassis base to reduce capacity.
5. Connect capacitor C2O with short leads between gang frame and mounting bracket.
6. Dress output transformer leads down to base.
7. Dress loop antenna leads away from gang plates and tubes.
8. Dress 33 ohm limiting resistor away from chassis.



Tube and Trimmer Locations


$\begin{gathered} \text { STOCK } \\ \text { NO. } \end{gathered}$	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$	DESCRIPTION
	CHASSIS ASSEMBLIES	75910	Switch-Function awitch. . . . . . . . . . . . . . . . . . . . . . . . . Sl-1
	RC 1077A	74654	Tranalormer-Output tranaformer .. .. . . . . . . . . . . . . . T3
75909	Antenna-Antenna loop assembly . . . . . . . . . . . . . . . . . . . . . 1	75486	Transformer-First I.F. trannformer complete with adjustable
74705	Bracket-Drive cord pulley bracket (R.H.) complete with two (2) pulleys loes long bracket.	75487	cort   Transtormer-Second I.F. transformer complete with adjurtable
74704	Capacitor-Variable tuning capacitor-less bracket. . Cl-1, Cl-2		cores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T2
39624	Capacitor-Mica, 68 mmi. . . . . . . . . . . . . . . . . . . . . . . . . . C5	33726	Washer - "C' washer for tuning knob shaft
39630	Capacitor-Mica, 120 mmi . . . . . . . . . . . . . . . . . . . . . . . . Cl4		ER ASSEMBLIES
39632	Capacitor-Mica, 150 mmf. . . . . . . . . . . . . . . . . . . . . . . . . C20		92585.1
73803	Capacitor-Tubular, paper, . 002 mid, 400 volta . . . . . . . . . . C9	74706	Speaker - 5 ${ }^{\prime \prime}$ ( $7^{\prime \prime}$ P.M. epeaker complete with cone and voice coil
73599	Capacitor-Tubular, paper, . 0025 mid, 400 volta ........ Clo		
73920	Capaeitor-Tubular, paper, .005 mid, 400 volta. . . . . Cl2, Cl7		MISCELLANEOUS
73561	Capacitor-Tubular, paper, . 01 mid., 200 volta . . . . . . . . . . C15	Y2292	Cabinet-Plattic cabinet-maroon-less lid, lid aupport, metal
73562	Capacitor-Tubular, paper, 02 mid., 400 volte . . . . . . . . C13		grille and hinge assemblies
73533	Capacitor-Tubular, paper, 05 mfd., 400 volte, C6, C8, C18, C19	74713	Clamp-Dial clamp (2 req'd)
75911	Capacitor-Electrolytic comprising 1 section of 80 mid., 150 volts and 1 section of $50 \mathrm{mid}, 150$ volts Cl6A, Cl6B	73508	Clip-Spring clip for knob \#74710
		75912	Clip-Spring clip for radio compartment back panel
73935	Clip-Mounting clip for I.F. transtormer	30870	Connector-2 contact male connector for motor cable
74448	Coil-Oscillator coil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L2		
36422	Connector-3 contact female connector for phono imput cable, Il	74192	Connector-3 contact male connector for phono cable
30868	Connector-2 contact female connector for motor cable, P3	74682	Decal-Function awitch decal
74702	Control-Volume control $\qquad$	74273	Decal-Trade mark decal (Victrola)
+72933	Cord-Drive cord (approz, 490 over-all length required)	74722	Dial-Polyatyrene dial scale
70392	Cord-Power cord and plug	74782	Emblem-"RCA Victor" emblem
74454	Gasket-Rubber gasket between epeaker and cabinet	33317	Fatener-Push fastener for antenna loop mounting bracket
74838	Grommet-Strain relief grommet (1 eet)	72894	Foot-Rubber loot (4 req'd)
72283	Grommet-Rubber grommet to mount tuning capacitor	74707	Grille-Metal grille
72602	Pulley-Drive cord pulley	75697	Grommet-Rubber grommet for mounting record changer
72313	Recietor -Fuse type, 33 ohms . . . . . . . . . . . . . . . . . . . . . . . . . R16	75915	Hinge-Cabinet lid hinge (2 req'd)
	Resiator-Fized, composition:	74709	Indicator-Station selector indicator
	82 ohras, $\pm 10 \%$, 1/2 watt . . . . . . . . . . . . . . . . . . . . . . . . . . R17	74710	Knob-Volum control or tuning knob
	150 ohms, $\pm 109 \%$, 1/2 watt . . . . . . . . . . . . . . . . . . . . . . . . . . 144	74711	Knob-Function awitch knob
	270 ohms, $\pm 109$, 1/2 watt . . . . . . . . . . . . . . . . . . . . . . . . . R1	71116	Lamp-Dial lamp-Type 1490
	1000 ohms, $\pm 10 \%$, 1 watt . . . . . . . . . . . . . . . . . . . . . . . . . . . R15	75914	Lid-Cabinet lid only
	22,000 ohms, $\pm$ 209\%, 1/2 wath . . . . . . . . . . . . . . . . . . . . . . . . R2	74717	Mask-End mask for dial (2 req'd)
	47,000 ohms, $\pm$ 209, 1/2 watt . . . . . . . . . . . . . . . . . . . . . . . . . 6	74708	Motif-Decorative motil for front of cabinet
	56,000 ohms, $\pm 109$, 1/2 watt . . . . . . . . . . . . . . . . . . . . . . . 9 9	74788	Nut-Speed nut for radio compartment back panel clipa
	220,000 ohms, $\pm 209$, 1/2 watt . . . . . . . . . . . . . . . . . . . . . 12	72765	Nut-Speed nut to fasten decorative motif
	470,000 ohms, $\pm 209$, 1/2 watt. . . . . . . . . . . . . . . . . . .R7, R13	74715	Panel-Radio compartment back panel
	2.7 megohms, $\pm 10 \%$, 1/2 watt . . . . . . . . . . . . . . . . . . . . . . . 18	74721	Plate-Dial back plate-less dial
	3.3 megohms, $\pm \mathbf{2 0 \% \%}$, 1/2 watt . . . . . . . . . . . . . . . . . . . . . . . . 5 5	73728	Screen-Ventilation sereen
	10 megohms, $\pm 209$, $1 / 2$ watt . . . . . . . . . . . . . . . . . . . . . Rll	74716	Screw- $16-32 \times 1 / 4$ croes receseed oval head machine sc:ew
74701	Shaft-Tuning knob thaft and pulley	74716	for radio compartment back panel (3 req'd)
73584	Shiold-Tube shield tor 12AV6	75913	Screw- ${ }^{\text {W }} 10-32 \times 3 / 4$ crowe recessed round head machine screw
70827	Socket-Tube socket, octal, wafer		for mounting record changer
73117	Socket-Tube socket, 7 pin, miniature	14270	Spring-Retaining apring lor knob /74711
72998	Socket-Dial lamp socket and lead	71824	Stud-Cabinet lid hinge stud and ecrew (2 req'd)
74038	Spring-Drive cord upring	74714	Support-Lid aupport

† Stock No. 72953 is a reel containing 250 feot of cord.

APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS.

## Change in Wiring:

Failure of operation at the low frequency ond was experienced on some chassis when the instrument was turned of and subeoquently turned on again.
Engineering has determined the trouble to be caused by high frequency oncillation of the mixer stage resulting in a blocking action due to an increase in A.V.C. voltage.
The following wiring change was made to oliminate the problem:
The electrolytic capacitor green lead and the red wire from pin 4 of 5016 tube socket were changed from pin 6 of the
12BE6 (mirer) tube socket to pin 4 of the firat I.F. tranaformer.
This change did not altor the circuit but merely changed the connection points of the loads as illustrated below.



THE CHASSIS USED IN MODEL 9Y511 DIFFERS FROM MODEL 9Y510 ONLY IN THE LOOP ANTENNA.

REFER TO MODEL $9 Y 510$ FOR FURTHER INFORMATION.

Radio Phonograph combination

## Modet 9Y511

Chassis No. RC 1077 B
Record Changer RP 168K-4
Service Data

- 1950 No. 27 -

PREPARED BY RCA SERVICE CO., INC. FOR
RADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

## Specifications



## Care of Stylus

The record changer stylus is protected by a permanent metal guard. LINT MAY COLLECT TO CLOG THE OPENING IN THE GUARD AT THE STYLUS POINT AND CAUSE POOR RECORD REPRODUCTION. This may require occasional cleaning of the guard opening-clean by carefully brushing with a small soft brush.

Power Output
Undistorted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I watt
Maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 watts
Cabinet Dimensions
Height $7 \%^{\prime \prime}$ Width $12 \%^{\prime \prime} \quad$ Depth $14 \%^{\prime \prime}$
Tuning Drive Ratio ................71/2:1 (33/4 turns of knob)
Record Changer (RP 168K-4)
Turntable speed................................... . . 45 r.p.m.
Records used . . . . . . . . . . . . . . . . . . RCA-7 in. fine groove
Record capacity
Pickup (Stock No. 74068) ........ Crystal (medium output)
FOR RECORD CHANGER SERVICE INFORMATION - REFER TO RP 168 SERIES SERVICE DATA


## Service Hints

The tubes and the dial lamps are accessible by removing the panel in the front of the record changer compartment.
The chassis metal mounting plate should be flush against the front of the cabinet.

The position of the speaker is adjustable. When correctly positioned, it should set firmly against the front of the cabinet but with no undue strain on the speaker.

Replacement Parts

† Stock No. 72953 is a reel containing 250 feet of cord.


45-EY
Two-tone pickup arm

45-EY-1
Maroon pickup arm


45-EY-15

## rca Victor

Automatic Record Player
Models
45-EY, 45-EY-1, 45-EY-15
Chassis Nos. RS-132, RS-132A, RS-132F, RS-132H

## Service Data

— 1950 No. 9 \& No. 26 -

## PREPARED BY RCA SERVICE CO., INC.

 FOR
## RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION <br> CAMDEN, N. J., U. S. A.

FOR RECORD CHANGER SERVICE INFORMA-TION-REFER TO RP-168 SERIES SERVICE DATA.

Model 45-EY uses Chassis No. RS-132, RS-132- A or RS-132-F. Model 45.EY-1 uses Chassis No. RS-132-F. Model 45-EY-15 uses Chassis No. RS-132-H.

## Specifications

Tube Complement

1. RCA 12AV6 ...................................................... Amplifier
2. RCA 50C5 (in RS-132 or RS-132-A) ...................... Output

RCA 50B5 (in RS-132-F o1 RS-132-H) ................... Output
3. RCA 35W4 ...............................................................Rectilier

## Loudspeaker (92577-6W)

Size and type $\qquad$ 4 in. P.M.
Voice coil impedance $\qquad$ 3.2 ohms at 400 cycles

## Dimensions (overall)

Height, 7\%" Width, 914." Depth, 9\% "

## Power Supply Rating

115 volts, 60 cycles A.C. ........................................ 40 watts
Power Output
Undistorted ........ 1.0 watt Maximum ........ 1.25 watts
Record Changer
Turntable speed
.................................................... 45 r.p.m. fecords used ................................... RCA 7 in. fine groove Record capacity $\qquad$ up to 10 records
Pickup ................................................Crystal (medium output) Stock No. 74067 used with RS-132, RS:132-F or RS-132-H.
Stock No. 74625 used with RS-132-A.


Pickup Landing Adjustment " $A$ "
The pickup point should land hall-way between the outer edge of the record and the first music groove.
If the pickup lands inside the starting grooves-lurn screw "A" slightly clockwise. If pickup lands outaide the starting grooves-lurn screw " $\mathbf{A}$ " slightly counterclockwise.

Pickup Height Adjustment "B"
During cycle the pickup arm must rise high enough to clear a stack of ten records on the turntable, but not high enough to cause the top of the arm to touch records resting on the record supports.
If pickup does not clear a stack of ten records-turn screw "B" slightly clockwise. If pickup arm touches records on record supports-turn screw "B" slightly counterclockwise.

## 45-EY, 45-EY-1, 45-EY-15

## Amplifier Chassis

Three different amplifier chassis have been used in Model 45-EY.

Chassir No. RS-132 and RS-132-A use a 50C5 output tube. Chassis No. RS-132-F uses a 50B5 output tube.
Crystal pickup Stock No. 74067 is used in instruments having chassis RS-132 or RS-132-F. Crystal pickup Stock No. 74625 is used in instruments having chassis RS-132-A.


REPLACEMENT PARTS (For instruments having amp. chassis marked RS-132)


Schematic for amplifier marked RS-132
NOTE: Some amplifiers may have a .022 mid. capacitor in place of .018 (C6)

REPLACEMENT PARTS (For instruments having amp. chassis marked RS-132-A)

$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION	STOCK   No.	DESCRIPTION
	AMPLIFIER ASSEMBLIES RS-132-A		SPEAKER ASSEMBLIES 92577-6W
72281	Capacitor-Electrolytic comprising 1 section of 80 mid., 150 volte; 1 section of 40 mfd., 150 volts; and 1 section of 20 mid., 25 volt	74165	Speaker-4" P.M. speaker complete with cone and voice coll
71934	Capacitor-Tubulcar, paper, . 0015 mid., 600 volts (Cl)		
73920	Capacitor-Tubular, paper, oil impregnated, . 0047 mid., 600 volte (C4)		MISCELLANEOUS
71923	Capacitor-Tubular, paper, $01 \mathrm{mfd} ., 200$ volts (C2, C3)	74135 74793	Baffle-Speaker baffe   Bottom-Cabinet bottom cover
73797	Capacitor-Tubular, paper, . 015 mfd ., 600 volts (C6)	74136	Brackel-Speaker mounting bracket
73553	Capacitor-Tubular, paper, oil impregnated, . 047 mid., 400 volts (C7, C8)	74137	Bracket-Mounting bracket for reject bution and shatt
30868	Connector-2 contact female connector for motor cable	74138	Bution-Reject button and shaft
36422	```Connector-3 contact female connector for phono cable Control-Volume control and power switch```	$Y 2226$ 74190	Cabinet-Plastic cabinet less bottom cover   Cable-Shielded pickup cable complete with 3 contact male plug
28451	Cover-Insulating cover for electrolytic		
73693	Grommet-Power cord train relief grommet	74193	Clamp-Spring clamp for reject button and shaft
28452	Plate-Mounting plate for electrolytic	74192	Connector-3 contact male connector for pickup cable
73237	Resistor-Fuse type, 33 ohm: (R11)	74782	
72314	Resistor—Wire wound, 120 ohms, 5 watts (R7)   Resistor-Fixed, composition:-   150 ohms. $\pm 10 \%, 1 / 2$ watt (R9)   2700 ohmis, $\pm 10 \%$, 1/2 watt (R10)   27,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R4)	74623	Hordware-Sel of mounting parts consinting of 3 flat washers, 3 eyelets and 3 rubber grommet to mount changer
	180,000 ohms, $\pm 10 \%$. $1 / 2$ watt (R2)	74666	Knob-Power switch knob
	270,000 ohms, $\pm 10 \%$. $1 / 2$ watt (R6, R8)	74734	Spring-Retaining spring for knob
73117	4.7 megohm, $\pm 20 \%$, $/ 2$ walt (RS) Socket-Tube socket	74139	Spring-Reject button and shaft return spring
72535	Traisformer-Output transformer	2917	Washer-"C" washer for reject button and shaft

APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS


Schematic for amplifier marked RS-132.A

## Addition to Parts List: <br> AMPLIFIER ASSEMBLIES <br> RS 132A

38412 Control-Volume control and power switch (R3, Sl)

## To Remove Chassis

Hemove the four screws at the corners of the bottom cover, separate the motor power plug and socket and remove the pickup cable from its socket on the amplifier chassis.
Elongated holes permit the speaker position to be adjusted. If the speaker should be replaced or its mounting bracket loosened, the speaker mounting bracket screws should not be tightened until after the bottom cover is assembled to the cabinet.

REPLACEMENT PARTS(For instruments having amp. chansis marked RS-132-F)

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{gathered} \hline \text { STOCR } \\ \text { No. } \end{gathered}$	DESCRIPTION
	AMPLITIER ASSEMBLIES RS-132-F, RS-132-H		SPEAKER ASSEMBLIES 92577.6
73520	Capacitor-Electrolytic comprising 1 section of 80 mid., 150 volts and 1 section of 50 mid., 150 volts (C5A, C5B)	74165	Speaker-4" P.M. speaker complete with cone and voice coil MISCELLANEOUS
73920	Capacitor-Tubular, paper, oil impregnated, . 0047 mfd., 600 volts (C4)	$74135$	Baflle-Speaker baffle   Bottom-Cabinet bottom cover for 45-EY and 45-EY-1
71923	Capacitor-Tubular, paper, . 01 mfd., 200 volts (C3)	74134	Bottom-Cabinet bottom cover for 45-EY-15
58476	Capacitor-Tubular, paper, oil impregnated, . 018 mfd., 400 volts (C6)	$\begin{aligned} & 74136 \\ & 74137 \end{aligned}$	Bracket-Speaker mounting bracket   Bracket-Mounting bracket for reject button and
73551	Capacitor-Tubular, paper, oil impregnated, 0.1 mfd., 400 volts (C7)	74138	shaft   Button-Reject button and shaft
36422	Connector-3 contact female connector for phono cable (Jl)	Y2226	Cabinet-Plastic cabinet less bottom cover for 45-EY and 45-EY-1
30868	Connector-2 contact female connector for motor cable (J2)	Y2295	Cabinet-Plastic cabinet less bottom cover for 45-EY-15
74101	Control-Volume control and power switch (R3, S1)	74193	Clamp-Spring clamp for reject button and shaft
70392	Cord-Power cord and plug for 45-EY-15	74192	Connector-3 contact male connector for pickup cable
28451	Cover-Insulating cover for electrolytic	74782	Emblem-"RCA Victor" emblem
73693	Grommet-Power cord strain reliel grommet (l set)	74623	Hardware-Set of mounting parts consisting of 3
28452	Plate-Mounting plate for electrolytic		flat washers, 3 eyelets and 3 rubber grommets
73237	Resistor-Fuse type, 33 ohms (Rll)		to mount changer
72314	Resistor-Wire wound, 120 ohms, 5 watts (R7) Resistor-Fixed, composition:-	74666	Knob-Volume control and power switch knob for 45-EY and 45-EY-1
	150 ohms, $\pm 10 \%$, $1 / 2$ watt (R9)	74667	Knob-Volume control and power switch knob for 45-EY-15
	2700 ohms, $\pm 10 \%$, $1 / 2$ watt (R10) 270,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R6, R8)	30868	Plug-Two contact female connector for motor cable
	4.7 megohm, $\pm 20 \%$, $1 / 2$ watt (R5)	74734	Spring-Retaining apring for knob
73117	Socket-Tube socket	74139	Spring-Reject button and shaft return spring
72535	Transformer-Output translormer (T1)	2917	Washer-"C" washer for reject button and shatt

apply to your rca distributor for prices or replacement parts



## Automatic Record Player

 MODEL 45-EY-2Chassis Nos. RS-138A, RS-138 H Service Data

- 1950 No. 33 -

PREPARED BY RCA SERVICE CO., INC. FOR
RADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.
FOR RECORD CHANGER SERVICE INFORMATION - REFER TO RP-190 SERIES SERVICE DATA.

## Specifications

Tube Complement

RCA 12AV6	Amplitior
2. RCA 50B5	Power amp. (Outp
RCA 35W4	Rec

Loudspeaker (922258-4)

Size and type
Voice coil impedance.

4x6" P.M. 3.2 ohms at 400 cycles

Power Supply Rating
115 volts, 60 cycles A.C.

## Power Output

Undistorted . . . . . . . . 1.2 watts Maximum. . . . . . . 1.5 watts

Record Changer RP-190-1

Turnta	............... 45 r.p.m.
Records used	RCA-Type 7-inch tine
Record capacity	
Pickup, Crystal	Stock No. 7547

## 45-EY-2 (RS-138H)

## Service Data:

Late production of Model 45-EY-2 uses chassis stamped AS-138H. This chassis is identical to chassis stamped RS-138A except for the speaker. In RS-138H the speaker is rim mounted and in RS-138A it is pot mounted.

## Replacement Parts:

Stock	CHASSIS ASSEMBLY RS-138H
No.	Identical to RS-138A except:
76406	Bracket-Speaker mounting brackets complete

> SPEAKER ASSEMBLY

922258-5
76407 Speaker-4" $\times 6^{\prime \prime}$ PM speaker complete with cone and voice coil

REPLACEMENT PARTS



## Schematic Diagram



## Critical Lead Dress

1. Dress all leads away from R6 and R9
2. Dress electrolytic capacitor away from R6 and R9
3. Dress filament leads down to chassis
4. Solder braid of W-1 such that it acts as a strain relief

## Pickup Height Adjustment

Adjust knurled nut (A) until the distance (during change cycle) between the top of the turntable and the stylus point is approximately $11 / \mathbf{n}^{\prime \prime}$.

## Pickup Landing Adjustment

Adjust the screw driver landing adjustment stud " B " so the stylus lands $2 \% / /^{\prime \prime} \pm 1 / s^{\prime \prime}$ from the side of the center post.


## Tripping Adjustment

Adjust the eccentric tripping stud (C) until the mechanusm trips when the stylus is $1^{10} / 2^{\prime \prime}$ from the side of the center post.
Stop Dog Adjustment
Turn the eccentric screw (E) until the record drops to the turntable without atriking the pickup arm.



FOR RECORD CHANGER SERVICE INFORMATION - REFER TO RP-190 SERIES SERVICE DATA.

## Specifications

The instrument incorporating amplifier RS-136 uses

Crystal RCA Stock No. 75476
Motor (special) 85 volt RCA Stock No. 75937
Tube Complement for RS-136

1. RCA 6SQ7
Amplifier
2. RCA 25L6-GT
Output

## The instrument incorporating amplifier

## RS-136A uses

Crystal RCA Stock No. 75476
Motor 115 volt RCA Stock No. 75760
Tube Complement for RS-136A

2. RCA 50L6-GT .................................................ifier

Loudspeaker (922258-4)
Size and type.
Voice coil impedance
$4 \times 6^{\prime \prime}$ P.M.
3.2 ohms at 400 cycles

Chassis No. RS-136, RS-136A Service Data

- 1950 No. 25 -

PREPARED BY RCA SERVICE CO., INC. FOR
RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION CAMDEN, N. J., U. S. A.

## Power Supply Rating

RS-136, 115 volts, 60 cycles A.C...
RS $-136 \AA, 115$ volts, 60 cycles A.C.
45 watts
50 watts

Power Output
Undistortod..... . 1.25 watts Maximum...... 1.77 watts
Dimensions (over-all)
Height, 7\%" Width, 111/2" Depth, $121 / 6^{\prime \prime}$
Record Changer $\left\{\begin{array}{l}\text { RP-190-1 used with (RS-136A) amp. } \\ \text { RP-190-3 used with (RS-136) amp. }\end{array}\right.$
Turntable speed. . . . . . . . . . . . . . . . . . . . . . . . . . . 45 r.p.m.
Records used........... RCA-Type 7-inch fine groove
Record capacity . . . . . . . . . . . . . . . . . . . . . . . . . 12 records
Pickup.
Crystal (medium output)

## REPLACEMENT PARTS

$\begin{gathered} \text { STOCd } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\begin{gathered} \text { STOC, } \\ \text { No. } \end{gathered}$	DESCRIPTION
	AMPLITIER ASSEMBLIES	75948	Catch-Cabinot catch mechaniom complete lees etriker plale
	RS-136, RS-136A	75954	Cover-Plastic bottom cover-maroon-for cabiant
75942	Balfle-Spmaker baflo board and acreen	74273	Decal-Trademark decal (Victrala)
75980	Capacior-Mectrolytic comprieing 1 section of 80 mfd., 150 olth and 1 section of 50 mid., 150 volts (CSA, CSB)	74782	Emblom-"RCA Victor" amblam
		75697	Grommet - Rubber grommet to mounl record changer (3 req' d)
73920	Capucitor - Tubnalar, paper, 0047 mild., 400 volts uned in RS-136A, roplacement in R'S-136 alwo (Cl)	75936	Handle-Carrying handle-upper eection only
73561	Capacitor-Tubnlar, paper, . 01 mid., 400 volte (C2, C4, C6)	79937	Handle-Carrying handle-botiom eection only
73551	Capacitor-Tubular, paper, 0.1 mif., 400 voll (C3)	75935	Hinge - Cabinet lid hinge (2 req'd)
38407	Control-Volume control (R1)	79945	Knob-Volume control knob-maroon
70392	Cord-Power cord and plug	75933	Lid-Plastic lid-maroon-for cabinet lees "Victrola" decal
75476	Cryetal-Cartridge complete with atylus for RP-190-1 \& 3		and hingea
75941	Grommet-Rubber grommet for motoz and pickup leade protection	75958	Link-Carrying handle link (2 req'd)
74838	Grommet-Power cosd strain zeliof (1 eet)	73760	Motor- 117 volts, 60 cyclee for RP-190-1
75940	Rectifier-Solonium rectifier	75937	Motor-85 volts, 60 cyclee for RP-190-3
33378	Resintor-Wire wound, 22 ohms, 2 watts ueed in RS-136 (R9)	74788	Nut-Speed aut to fowton ventilating ecreen ( $2 \mathrm{req}{ }^{\text {d }}$ )
72314	Ronitor-Wire wound, 120 ohms, 5 watts used in RS-136A only (R9)	75944	Plate-Mounting plate for carrying handle (2 req'd)   Plate-Striker plate lor catch mechanimem
73237	Resiator-Wire wound, 33 ohmes, fuee type (R6)   Revistor- Fized, comporition: -   150 ohms, $\pm 100$, Y/ watt (A7)	79913	Screw- $110-32 \times 3 /{ }^{\prime \prime}$ round head machine acrew to mount record changer (3 req'd)
	1500 ohms, $\pm 10 \%$, $/ 1 /$ walt (R8)   39,000 ohms, $\pm 10001 / 2$ watt ( 72 )   270,000 ohme, $\pm 10 \%$, $1 / 2$ watt (R4, RS)	73931	Screw- $14-40 \times 1 / 4^{\prime \prime}$ flat head machin ecrew to fasten catch mechanism ( 2 req ' d ) or etriker plale ( $2 \mathrm{r} \mathrm{mq}^{\prime} \mathrm{d}$ ) or hinge ( $4 \mathrm{req} \mathrm{d}^{\prime} \mathrm{d}$ )
	4.7 megohm, $\pm 209$. $1 / 2$ watt (R3)	73952	Screw- $16-32$ I He" zound head machine screw for lid support ( 4 req d )
$73939$	Socket-Tube socket	73939	Screw-14 x $7 / s^{\prime \prime}$ cromerecessed filister heod ecrew to assembly
	Trandormer - Output transformer (II)		
	SPEAEER ASSEMBLIES	75950	Spacer-Metal apacer to mount record changer (3 req'd)
	922258-4	14270	Spring-Retaining eprua for volume control knob
75979	Speaker-4" $\geq 6^{\prime \prime}$ P.M. apeaker complote with cone and voice coil	73946	Spring-Pickup arm hold-down epring
		75978	Stud-Tapped etud for handle mounting plate for ecrew
		25943	Support-Cabinet lid support
75926	Can-Plantic case-maroon-complate with "RCA Victor' -mblem leen bottom cover, lid, "Victrola" decal, hinges, catch machauiam and atriker plate	73947	Support-Platio mupport-maroon-for lid support and power cord (located on inside of cabinet)



Schematic Diagram RS-136


Schematic Diagram RS-136A

## Pickup Height Adjustment

Adjust knurled nut ( A ) until the distance (during change cycle) between the top of the turntable and the stylus point is approzimately $1 k^{\prime \prime}$.

## Pickup Landing Adjustment

Adjust the screw driver landing adjustment stud " $B$ " so the stylus lands $2 \%$ " $\pm 1 / 64^{\prime \prime}$ from the side of the center post.

## Tripping Adjustment

Adjust the eccentric tripping stud (C) until the mechanism trips when the stylus is $1^{19} / 32^{\prime \prime}$ from the side of the center post.
Stop Dog Adjustrnent
Turn the eccentric screw (E) until the record drops to the turntable without striking the pickup arm.




## Specifications

Record Changer (RP-168)
Turntable speed .......................................................... 45 r.p.m.
Records $\qquad$ RCA fine groove- 7 in
Record capacity $\qquad$ ............ Up to 10 records Pickup RMP.128-1-Stock No. 74067.. Crystal (medium output)

## Power Supply Rating

115 volts, 60 cycles A.C. $\qquad$ 15 watts
Dimensions (overall)

$$
\begin{array}{lll}
\text { Height } 65 / 8^{\prime \prime} & \text { Width } 91 / 0^{\prime \prime} & \text { Depth } 6 \% / "^{\prime \prime}
\end{array}
$$

## Record Separator

In the out of cycle position the record separator knives or discs are normally concealed inside the center post. During service, the position of the star wheel on the underside of the record changer may be accidentally shilted; this may cause the separator knives to be extended when they should be concealed.

If the separator knives are thus extended-lum the power on so that the turntable is revolving, gently press fingers against the extended knives until they disappear inside the center posi-DO THIS ONLY WHILE MECHANISM IS OUT of CYCLE.

Note: This holds true only to mechanisms having the circular, rotating knives.
rca Victor
Record Changer Attachment MODEL 45J

Mfr. No. 274

## Service Data

- 1950 No. 8 -

RADIO CORPORATION OF AMERICA<br>RCA VICTOR DIVISION<br>CAMDEN, N. I., U. S. A.



## Schematic Diagram

Record Changer Mounting
The cabinet is used as the motorboard of the record changer. The record changer is attached with three screws and bushings. THE PICKUP ARM MUST BE REMOVED BEFORE THE RECORD CHANGER CAN BE REMOVED-REFER TO RP- 168 SERIES SERVICE DATA.

Top and Side Vicus

## FOR RECORD CHANGER SERVICE INFORMA. TION-REFER TO RP-168 SERIES SERVICE DATA.

## Pickup Landing Adjustment "A"

The pickup point should land hall-way between the outer edge of the record and the first music groove.

If the pickup lands inside the starting grooves-iurn screw " $\mathrm{A}^{\prime \prime}$ slightly clockwise. If pickup lands outside the starting grooves-turn screw "A" slightly counterclockwise.

Pickup Height Adjustment "B"
During cycle the pickup arm must rise high enough to clear a stack of eight records on the turntable, but not high enough to cause the top of the arm to touch records reating on the record supports.

If pickup does not clear a stack of eight records-turn screw " $B$ " slightly clockwise. It pickup arm touches records on record supports-turn screw " $B$ " slightly counterclockwise.

REPLACEMENT PARTS

$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION
	MISCELLANEOUS
74097	Boltom-Cabinet boltom cover
74189	Burhing-Shoulder bushing to mount mechanism in cabinet (3 required)
74098	Button-Reject button
Y2151	Cabinel-Plastic cabinet less boltom cover
74296	Cabl-Shielded pickup cable complete with pin plug
74674	Emblem-"RCA Victor" emblem
31051	Foot-Rubber foot (4 required)
73490	Knob-Power awitch knob
-	Resistor-Fixed, composition: 1 megohm. $\pm 10 \%$. 1/2 watt
14270	Spring-Reiaining apring for knob
74871	Switch-Power switch

APPLY TO YOUR RCA DISTRIBUTOR FOR PAICES OF RE PLACEMENT PARTS.

RCA Radlos with Phono Jack
Plug male connector on the end of the "Phono" lead into the female connector on the receiver chassis. If set is provided with a phono switch, push or turn the "Phono" switch to "Phono" position, and operate the Record Changer Attachment according to instructions. If no switch is provided, use an external switch such as RCA Type No. 240X1, connecting it according to instructions for radios without a phono jack.

## Radio-Phonograph Combination:

Most radio-phonograph combinations use resistors and/or capacitors for tone compensation in the phono input circuit.
Where unsatisfactory reproduction is oblained with Model 45] connected into the phono jack of such instruments, we suggest that Model 45] be connected as indicated for radios which do not have a phono jack. These compensation resistors and/or capacitors may also be removed from the chassis and connected on the existing record changer. This will permit record changer switching with the use of an RCA Type No. 202WI Record Player Selector Switch.

## RCA Type No. 202W1 Record Player Selector

This solector switch may be used for combined operation of two record players through one phono input jack. A choice of two types of input jacks and output cable plugs are provided.

## Radios Vithoul Phono Jack

Methods of connecting the Record Changer Attachment to various types of audio systems are given in the accompanying text and illustrations. The data given requires that an RCA Type No. 240X1 (Formerly Stock No. 240) Radio-Phono switch be used for switching from radio to phonograph, as desired. For ease in connecting the "phono" lead to the switch, the male plug on the end of the lead matches the phono jack on the switch.

In general, the Record Changer Attachment must be used with radio receivers having at least two stages of high-gain audio amplification. The output of the Record Changer Attachment should be connected to the input of the first audio tube. and at the same time the output of the radio receiver portion of the chassis should be shorted or opened, to prevent radio signals being heard while the Record Changer Attachment is in operation.

## Installation of Switch

Fasten the bracket to the cabinet in such a position that the switch may be easily reached. For wooden cabinets, a sug. gested place is the upper rear edge of the cabinet. If the radio has a plastic cabinet, the bracket may be fastened to the chassis by self-tapping screws or soldering. In the case of a.c.-d.c sets, the bracket should not be fastened to the chassis. In such cases, a wooden block may be fastened to the chassis and the bracket screwed to the wooden block, care being exercised that there is no metallic path from the bracket to the chassis.

Connect the braided shield extension to the radio chassis by either soldering or placing the spade lug under a mounting screw.


On a.c.-d.c. sets it is neceseary to leolate the cable shield from the chassis. This is best done by connecting the shield to the chassls through a .25 mid . 300 -volt condanes. Care should be taken that the shiold brataing and switch bracket do not come in contact with the chassin.

If the common-negative u'iring in the a.c.-d.c. set is isolated from the set chassis, connect the cable shield, through a .25 mfd. capacitor, to the common-negative wiring, and not to the chassis.


Note:
If attachment is connected to a radio set as shown in Fig. A \& B, it will be necessary to substitute $a$ volume control in place of the 1 meg. fixed resistor in Model 45I since few sets have a volume control following the first audio lube. Stock No. 74101 control ( 1 meg.) and switch is recommended.

For radio recoivers in which the Int-audlo tube has a top grid cap-see Fig. A:

1. Disconnect the grid lead from the first audio tube. ,
2. Connect the cap on the black lead to the clip on the grid lead, as shown above.
3. Connect the clip on the black-brown lead to the grid cap at the top of the lst-audio tube, bending the terminal if necessary to proper size for a metal tube cap.
4. Insert the plug on the end of the record player lead into the jack on the bracket.
5. Secure or position the connection cable assembly so that the cap and clip terminals are well separated from each other and other metal parts.

For radio receivers in which the lst-audio tube is type 6SQ7. 6SR7. $125 Q 7$ or 12SR7-ee Fig. B:

1. Use adaptor plug RCA Stock No. 37798.
2. Remove the lst-audio tube.
3. Solder the switch leads to the adaptor plug terminalsblack to bottom lug-black-brown to top lug.
4. Tape terminals to prevent short circuits when installed in sel.
5. Insert the adaplor into the Ist-audio tube socket.
6. Insert the Ist-qudio tube into the adaptor.
7. Insert the plug on the end of the record player lead into the jack on the bracket.


For other radio receivers in which the lst-audio tube does not have a grid cap; connection to volume control input-see Fig. C.

1. Unsolder the lead from the volume control lug indicated in Fig. C. It is usually necessary to remove the chassis from the cabinet to do this.
2. Solder the black-brown lead (remove clip) to the lug dis. connected in Step 1.
3. Solder the black lead (remove plug) to the lead discon. nected in Step 1. Tape the joint to prevent short circuits.
4. Insert the plug on the end of the record player lead into the jack on the bracket.


## SPECIFICATIONS

Record Changer (RP190-1)

Turntable speed Records used
Record capacity
Pickup (Stock No. 75476)

45 r.p.m. RCA tine groove- 7 in .

12 recorde Crystal (medium output)

Power Supply Rating
115 volts, 60 cycles A.C.
15 watts
Dimensions (overall)
Height 71/4"
Width $101 / 2^{\prime \prime}$
Depth 71/2"
FOR RECORD CHANGER SERVICE IN-FORMATION-REFER TO RP-190 SERIES SERVICE DATA.


Figure 1-Top View


Figure 2-Bottom View

## rca Victor

Record Changer Aftachment

Model 45-J-2
Service Data

- 1950 No. 16 -

PREPARED BY RCA SERVICE CO., INC. FOR

## RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION CAMDEN, N. J., U. S. A.



Figure 3-Schematic Diagram

## ADJUSTMENTS

Adjustments may readily be made with a screw driver according to the following instructions (see Figure 2).
Record Dropping-If record does not drop automatically, turn screw "A" counterclockwise slightly, but not more than $1 / 4$ turn.
Pickup Height-If pickup lifts too high so as to strike records on spindle, turn screw " B " counterclockwise. If it fails to lift after playing last record, turn clockwise. (Pickup point should be approximately l $1 / 2^{\prime \prime}$ above turntable at maximum height during change cycle.)
Landing-If pickup lands too far in on record, turn screw " C " counterclockwise. If it fails to land in far enough on record, turn clockwise.
Tripping-If pickup litts before reaching tinal record groove, turn screw " $D$ " counterclockwise slightly. If pickup fails to lift, turn clockwise slightly.

## REPLACEMENT PARTS

$\begin{aligned} & \text { STOCK. } \\ & \text { No. } \end{aligned}$	DESCRIPTION
Y2272	Cabinet-Plastic cabinet-maroon
74296	Cable-Shielded pickup cable complete with pin plug
70392	Cord-Power cord and plug
31051	Foot-Rubber foot (4 required)
-	Resistor-Fixed, composition; 1 megohm, $\pm 10 \%$, $1 / 2$ watt

APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMIENT PARTS.


## FOR RECORD CHANGER SERVICE INFORMA-TION-REFER TO RP193-1 SERIES SERVICE DATA.

## SPECIFICATIONS

## Record Changer (RP193-1)



## Power Supply Rating

115 volts, 60 cycles A.C.
15 watts

## Dimensions (overall)

Height 65/6"
Width 95/a
Depth 7 "

## ADIUSTMENTS

## PICKUP Land adjustment

Loosen screw marked ("B") and slide the mounting bracket forward to move the landing point away from the centerpost. and back to move the landing point inward.

NOTE: Before making the adjustment, make certain the salety springs are in the pin grooves.

## PICKUP ARM HEIGHT

Loosen the screw marked ("A") on back of the pickup arm and adjust so the pickup will clear a stack of twelve records. Raising the screw in the elongated hole raises the pickup arm. lowering the screw lowers the pickup arm.

rca ${ }^{\text {Ictor }}$

Record Changer Alfachment
MODEL 45-J-3
Service Data

- 1950 No. $30-$


## RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION CAMDEN, N. J., U. S. A.

## Record Changer Mounting

The top part of the cabinet becomes the motor board in this instrument, so in order to remove the record changer assembly from the cabinet, it is lirst necessary to remove the control knob. pickup arm, bottom cover, then the three screws and bushing holding the sub-panel. The entire mechanism can then be lifted out through the bottom of the cabinet.


REPLACEMENT PARTS

$\begin{array}{\|c\|} \hline \text { STOCK } \\ \text { No. } \end{array}$	DESCRIPTION
	MISCELLANEOUS   Model 45-J-3
Y2326	Cabinet-Plastic cabinet complete with "RCA Victor" emblem
74296	Cable-Shielded pickup cable complete with pin plug
70392	Cord -- Power cord and plug
76252	Cover-Cabinet bottom cover
76257	Pickup crystal complete including stylus
76253	Foot-Rubber foot
76251	Knob - Reject knob
	Lockwasher-No. 8 lockwasher-internal teeth-lor mounting screw
	Screw - No. $8-32 \times 3 / 44^{\prime \prime}$ binder head machine screw to mount mechanism in cabinet
	Screw-No. $8-32 \times 7 / 16^{\prime \prime}$ binder head machine screw to mount cabinet bottom cover
76249	Spacer-Metal spacer to mount mechanism in cabinet
76250	Washer-Flat metal washer to mount mechanism in cabinet

APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS.


FOR RECORD CHANGER SERVICE INFORMATION REFER TO RP 190 SERIES SERVICE DATA.

## Specifications

Tuning Range	
Standard Broadcast (AM) . . . . . . . . . . . . . . . . . . . . 540-1.600 kc.	
Frequency Modulation (FM) . . . . . . . . . . . . . . . . . . . 88-108 mc.	
Intermediate Frequencies. . . . . . . . AM-455 kc., FM-10.7 ${ }^{\text {mac. }}$	
Tube Complement	
(1) RCA 6J6.......................... Mixer and Oscillator	
(2) RCA 6BA6................................. I-F Amplifier	
(3) RCA 6AU6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Driver	
(4) RCA 6AL5 . . . . . . . . . . . . . . . . . . . . . . . . . . . Ratio Detector	
(5) RCA 6AV6............... AM Det.-AVC-A-F Amplitier	
(6) RCA 6C4 ........................................ Ph. Ph. Inv.	
(7) RCA 6V6GT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output	
(8) RC\& 6V6GT...................................... . . Output	
(9) RCA 5Y3GT	Rectifier

Dial Lamps (2). . . . . . . . . . . . . Type No. 51.6 .8 volts, 0.2 amp .
Jewel Lamp Type No. 51, 6-8 volts, 0.2 amp .

## Circuit Description

This instrument has a nine-tube (including rectifier) chassis which is very similar to those used in other RCA Victor radiophonograph combinations designed for AM-FM reception.

The selector switch has live functions:
(1) Selection of tuning range.
(2) Selection and distribution of a.v.c. voltages.
(3) Application of B+ voltage to tubes V1. V2 and V3.

In "Phono" and "Aux." positions, the B + voltage is removed from tubes V1. V2 and V3.
(4) Selection of audio input applied to the volume control.
(5) Change in output tube bias.

In "Radio" positions. R6 is in parallel with R42.
This receiver has built-in antennas for standard broadcast (AM) and frequency modulation (FM) reception. Provision is made for the use of external antennas if desired.

Tuning Drive Ratio ...................... 10:1 (5 turns of knob)

Power Supply Rating. . . . . . . . . . 115 volts. 60 cycles, 95 watts

## Loudspeaker (92569-12W)

Size and type.
12 in. PM
Voice coil impedance 3.2 ohms at 400 cycles

## Power Output

(Radio) Undistorted 8 watts . . . . . . . . . . . . . . . Maximum 9 watts
(Phono) Undistorted 10 watts . . . . . . . . . . . Maximum 11 watts

Cablnet Dimensions
Height 32 in. Width $291 / 4 \mathrm{in}$. Depth $193 / 4 \mathrm{in}$.
Weight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 lbs.

## Record Changer (RP 190.2)

Turntable speed
45 r.p.m.
Record capacity. . . . . . . . . . . 12 RCA 7-in. fine groove records
Pickup (Stock No. 75575)............ . Crystal (medium outpul)


Top View-RP 190 Record Changer
The cathode neutralizing loops of V2 (6BA6) and V3 (6AU6)
are insulated wires approx. 2 in. long. Do not alter length.

function switch viewed from front and shown in "aux" position (max. COUNTERCLOCKWise).
voltages measured to chassis with voltohmyst and no signal input and should hold within $\pm 10 \%$ with 117 volt power supply. Capacitor values less than i abe in mf.. values greater than i are in mmf. unless otherwise specified. resistance values in ohms. k $=1000$.

The chassis of Model 45-W-9 is very similar to the chassis used in Model A-91. Refer to Model A-91 on page 15 for further information.

## Differences

Model A-91 has two resistors and a capacitor (R18, R51, C17) for 78/33-1/3 record player tone compensation. These are not used in Model 45-W-9. The "AUX" jack (J3) of Model 45-W-9 corresponds to the "78/33-1/3 Phono" jack of Model A-91.

Capacitor C19 is located in a different part of the circuit but serves the same purpose (isolation of AVC voltage from vol. control).

Capacitor C52 (FM sound circuit) is used in Model 45-W-9 only.

Addition to Parts List:<br>CHASSIS ASSEMBLIES<br>Add:<br>76423 Capacitor-Caramic, 3 mm . (C10)

In "Aux" and "Phono" positions the B+ supply voltage is disconnected in Sl-3 which renders the mixer-oncillator, I.F. amplilier and driver tubes inop erative.

## Record Changer Mounting

Two shipping screws hold the 45 r.p.m. changer to its roll-out carriage. They are accessible from the underside of the carriage and should be RE MOVED at time of installation.

The record change: is mounted with rubber grommets in the carriage and should be tree floating.

## Roll-out Carriage Removal

The roll-out carriage has two stop pins (one at the back end of each slide), held in place by a relaining spring. To remove roll-out carriage, it is first necessary to pull the retaining springs out of the slides with a pair of long nose pliers, the stop pins are then easily removed. The soll-out carriage may then be removed from the front of the cabinet after disconnecting its connecting cables.

## Roll-out Carriage Travel

The radio- 45 r.p.m. carriage has a normal movement limitation of approximately 10 in . If the carriage does not have this amount of movement, it may be due to an obstruction or from slippage or creeping of the balls of the slide mechanism. Travel restriction due to slippage or creeping of balls in the slide mechanism can be corrected by exerting slightly greater pull until the normal travel limitation is reached. The carriage should then operate to its full travel with normal pull.

REPLACEMENT PARTS

$\begin{gathered} \text { STOCX } \\ \text { No. } \end{gathered}$	DESCRIPTION	STOCE No.	DESCRIPTION
	CHASSIS ASSEMBLIES		
	RC 1095A	73935	Clip-Mounting clip for A-M I-F transformers
75599	Capacitor-Variable tuning capacitor (C1-1. Cl -2,	75569	Coil-Oscillator coil (A.M) complete with adjustable core (L3. L4, L5)
	Cl-3. Cl	71942	Coil-Filament choke coil (L9)
		74817	Coil-Oscillator coil--F.M (L8)
75613	Capacitor-Ceramic, 5 mml . (Cl3)	75617	Coil-Antenna coil-F.M (Ll)
39044	Capacitor-Ceramic, 15 mmi . (Cl2)	35787	
75609	Capacitor-Ceramic, 47 mml ( (C45)		up cables (J2, J3)
75612	Capacitor-Ceramic, 68 mml . (C9. C1l)	75542	Connector-8 contact male connector for power in-
75437	Capacitor-Ceramic, 100 mmf . (C31)		put cable (J4)
75614 39640	Capacitor--Ceramic. 150 mmi . (C14, C30, C43) Capacitor-Mica, 330 mmf . (C37, C38)	75543	Connector-2 contact female connector for record changer motor cable (P1)
39644	Capacitor-Mica, 470 mmf . (C7)	74879	Connector-2 contact female connector for antenna
75610	Capacitor-Ceramic, 1.500 mmi ( (C19. C52)	74879	leads
73473	Capacitor-Ceramic, $5,000 \mathrm{mml}$. (C6, C15. C24. C25.   C27, C28, C29, C34, C36)	75537	Control-Volume control and power switch (R22, S2)
73801	Capacitor-Tubular, paper, . $001 \mathrm{mfd}, 400$ volts (C8)	75538	Control-Tone control (R34) $6{ }^{\text {./ }}$ -
70642	Capacitor-Tubular, paper, . 001 mid, 1,000 volts (C42, C44)	+72953	Cord-Drive cord (approximately $66^{\prime \prime}$ overall length required)
72490	Capacitor-Tubular, paper, 005 mid, 200 volts (C26. C39, C41)	75564	Coupling-Spring coupling for function switch extension shaft
73920	Capacitor-Tubular, paper, $005 \mathrm{mid}, 400$ volts (C33)	75556	Cover-Insulating cover for electrolytic capacitor No.
71925	Capacitor-Tubular, paper, $01 \mathrm{mid}, 400$ volts (C32)		72052 P
72120	Capacitor-Tubular, paper, $015 \mathrm{mid}, 200$ volts (C21, C22)	74839	Fastener -Push fastener tor mounting R.F. shelf (4 required)
71928	Capacitor-Tubular, paper, 02 mid .100 volts (C20)	16058	Grommet-Rubber grommet for mounting R.F. shelf (4 required)
73638	Capacitor-Tubular, paper, $02 \mathrm{mfd}, 400$ volts (C35)		(4 required)
73553	Capacitor-Tubular, paper, $05 \mathrm{mfd}, 200$ volts (C16) Capacitor--Electrolytic, 2 mid. 50 volts (C40)	75547	Grommet-Rubber grommet to mount slide mechanism to bottom-rear (2 required)
72052	Capacilor-Electrolytic. comprising 1 section of 30 mid, 450 volts, 1 section of 30 mfd, 350 volts, and 1 section of $40 \mathrm{mid}, 25$ volts (C23A, C23B, C23C)	75546 11765	Grommet-Rubber grommet to mount slide mecha nism to bottom-front (2 required)   Lamp-Dial lamp-Mazda No. 51


$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\begin{gathered} \text { STOCX } \\ \text { No. } \end{gathered}$	DESCRIPTION
75544	Nut-Rivnut to fasten screw for mounting chassis (4 required)	75683	Frame-Moulded frame (light brown) for mounting radio chassis and 45 RPM record changer-for oak
18469	Plate-Bakelite mounting plate for electrolytic capacitor No. 72052	75551	instruments   Handle-Metal pullout handle for mounting frame
75535	Plate-Dial back plate complete with three (3) pulleys	75555	Screw-No. $8.32 \times 3 / 8^{\circ \prime}$ cross recessed pan head machine screw to mount radio chassis
75536	Pointer-Station selector pointer		
72602	Pulley-Drive cord pulley Resistor-Wire wound, 3 ohms, 1/2 watt (R25)		Stamped 92569.12W RMA 274
72323 73637	Resistor-Wire wound, 3 ohms, $1 / 2$ watt (R25)   Resistor-Wire wound, 2,200 ohms, 5 watts (R24)		
	Resistor-Fixed, composition:	13867	Cap-Dust cap
	47 ohms, $\pm 10 \%$, $1 / 2$ watt (R26	75682	Cone-Cone and voice coil assembly
	100 ohms, $\pm 10 \%, 1 / 2$ watt (R15. R38, R43)   120 ohms, $\pm 10 \%, 1 / 2$ watt (R27)   270 ohms, $\pm 5 \%, 2$ walts (R42)   680 ohms, $\pm 20 \%, 1 / 2$ watt (R30)   680 ohms, $\pm 20 \%, 1$ watt (R31)   1,000 ohms. $\pm 10 \%, 1 / 2$ watt (R6)   1,200 ohms, $\pm 5 \%, 1 / 2$ watt (R46)   3.300 ohms, $\pm 5 \%, 1 / 2$ watt (R40, R45)	75681	Speaker-12" P.M. speaker complete with cone and voice coil ( 3.2 ohms)   NOTE: If stamping on speaker does not agree with above number, order replacement parts by referring to model number of instrument, number stamped on speaker and full description of part required.   MISCELLANEOUS
	12,000 ohms, $\pm 10 \%$, 1 watt (R29)	71864	Antenna-F.M antenna
	$18.000 \mathrm{ohms}, \pm 10 \%, 1 / 2 \mathrm{watt}$ (R7, R20)	75705	Antenna-Antenna loop complete, less cable
	$\begin{aligned} & 22,000 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt (R28) } \\ & 27,000 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt (R21) } \end{aligned}$		Back-Back cover-maroon-ior radio-phono com-partment-for mahogany or walnut instruments (assembled to rollout)
	33,000 ohms, $\pm 10 \%, 1 / 2$ watt (R50)   39,000 oinss, $\pm 5 \%$, $1 / 2$ watt (R47)   56.000 ohms, $\pm 10 \%, 1 / 2$ watt (R32)   68,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R39)	75901	Back-Back cover-light brown-for radio-phono compartment-for oak instruments (assembled to rollout)
	82.000 ohms, $\pm 10 \%$, 1/2 watt (R36)	73680	B
	120.000 ohms. $\pm 10 \%$, $1 / 2$ watt (R8, R16) 150,000 ohms, $\pm 10 \%, 1 / 2$ watt (R14)	75694	Bracket-Stop bracket less rubber bumper for radiophono compartment rollout
	270,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R35)	71599	Bracket-Pilot lamp bracket
	390.000 ohms, $\pm 10 \%, 1 / 2$ watt (Rll)	75696	Bumper-Rubber bumper for rollout stop bracket Cable-Shielded pickup cable complete with pin
	470.000 ohms, $\pm 10 \%, 1 / 2$ watt (R37, R41, R48) 1.5 megohm, $\pm 10 \%, 1 / 2$ watt (R17)	72437 13103	plug   Cap-Pilot lamp ap
	2.2 megohm, $\pm 20 \%$, 12 watt (R10, R13)	71892	Catch-Bullet catch and strike
	10 megohm, $\pm 20 \%, 1 / 2$ watt (R23)   22 megohm, $\pm 20 \%, 1 / 2$ watt (R33)	X3144	Cloth-Grille cloth for mahogany or walnut instruments
75540	Shaft-Tuning knob shaft	X3089	Cloth-Grille cloth for oak instruments
75565	Shaft-Extension shaft for function switch	74882	Connector-2 contact (polarized) male connector for
73584 75546	Shield-Tube shield for V5	74882	Connector-2 contact (polarized) male connector for AM loop cable
75546 31251	Slide-Slide mechanism complete for radio chassis bottom	74752	Connector-2 contact male connector for FM antenna terminal board cable
73117	Socket--Tube socket, 7 pin, miniature	75709	Connector-8 contact lemale connector for main cable (less shell) (P4)
74179 31364	Socket-Tube socket, 7 pin, miniature for 6J6 tube only   Socket-Dial lamp socket	75474	Connector-Single contact male connector for speaker (2 required)
31364 75563	Socket-Dial lamp socket   Spring-Retaining spring for function switch extension shaft	30870	Connector-2 contact male connector for motor cable (P1A)
74038	Spring-Drive cord spring	71984 74273	Decal-Trade mark decal (RCA Victor)
74847	Support-Polystyrene support for F.M oscillator coil complete with mounting bracket	74273 37396 74838	Grommet-Rubber grommet for mounting speaker
75600	Switch-Function switch (S1-1, S1-2, S1-3)	74838 75697	Grommet-Rubber grommet to mount record changer
75557	Transformer-Output transformer (T7)	74308	Hinge-Cabinet door hinge (l set)
73743 75558 73037	Transformer-Ratio detector transformer (T5)   Transformer--First I-F transformer (A-M) complete with adjustable cores (T2)	75712	Knob-Tuning control, tone control or volume control and power switch knob-maroon-for mahogany or walnut instruments
73037	Transformer-Second I-F transformer (A-M) complete with adjustable cores (T4)	75713	
75559	Transformer-First I-F transformer (F-M) complete with adjustable cores (T1)	75714	Knob-Function switch knob-maroon-for mahogany or walnut instruments
75560	Transformer-Second I-F transformer (F.M) complete with adjustable cores (T3)	75715	Knob-Function switch knob-tan-lor oak instruments
75566	Transformer-Power transiormer, 117 volts, 60 cycle (T6)	11765	Lamp-Pilot lamp-Mazda No. 51
33726	Washer-"C" washer lor tuning knob shaft	73634 75908	Nut-Speed nut for speaker mounting screws Pull-Door pull
	RADIO ROLLOUT CARRIAGE	75907 75920	Screw-No. $10-32 \times 51 / 4^{\prime \prime}$ cross recessed round head screw (special) to mount rollout frame Screw-No. 10-24 $\times 1^{\prime \prime}$ trimit head screw for door pull
75895	Decal-Function decal for controls	75708	Shell-Shell for 8 contact connector No. 75709
75572	Dial--Polystyrene dial scale	31364	Socket-Pilot lamp socket and lead
75549	Frame-Moulded frame (maroon) for mounting radio chassis and 45 RPM record changer-for mahogany or walnut instruments	$\begin{aligned} & 74734 \\ & 75902 \\ & 72936 \end{aligned}$	Spring-Retaining spring for knobs   Spring-Suspension spring for main cable   Stop-Cabinet door stop



FOR RECORD CHANGER SERVICE INFORMATION REFER TO RP- 190 SERIES SERVICE DRTR.

AM-FM Radio-Phonograph Combination Model 45-W-10

Chassis No. RC 1096A

Record Changer RP 190-2 (45 r.p.m.)
Service Data
— 1950 No. 32 -
PREPARED BY RCA SERVICE CO., INC. FOR
RADIO CORPORATION OF AMERICA
rCa victor division CAMDEN, N. J., U. S. A.

## Specifications




Top View-RP. 190 Record Changer


## A-101, A-108 (RC-1096B)

45-W-10 (RC-1096C)

## Service Data:

Chassis stamped RC-1096B and RC-1096C are the same as chassis stamped RC-1096 and RC-1096A respectively except for the value of C21, R20 in volume control circuit and C42, C44 in output tubes plate circuit.

RC- 1096	RC-1096A	RC-1096B \& C
.018	.015	.010 mf.
18 K	18 K	22 K ohms
.001	.001	.0012 ml.
.001	.001	.0012 mf.

## Substitute Speaker:

Speakers stamped 971494-2 have been used as a substitute for speakers stamped 92569-12, but only with chassis stamped RC-1096B (A-101 and A-108) or RC-1096C (45-W-10). Speakers stamped 92569-12 can be used with any of the above chassis (RC-1096, -A, -B, or -C).
The cathode neutralizing loops of V3 (6BA6) and V4 (6AU6)
are insulated wires approx. 2 in. long. Do not alter length.

Function switch viewed from tront and shown tn "Phone Kux." position (max. c/clockwise).
Capactior values less than 1 are in mf., values greater than 1 are in mmf. unless otherwise specified. resistance values in ohms. $\mathbf{~}=\mathbf{1 0 0 0}$.
VOLTAGES MEASURED TO CHASSIS WITH VOLTOHMYST WITH NO SIGNAL INPUT AND SHOULD

## Record Changer Mounting

Each record changer if mounted in a yill-out acrriago. The changor mechanisms are mounted on rubber grommeta and should be tree floating.
Two shippling screws hold the 45 r.p.m. changer to the roll-out carriage. They are accuasible from the undor-uide of ths corrriage and should be REMOVED at time of installation.

## Roll-out Carriage Removal

Each roll-out carriage has two stop pins, (one at the back and of each slide) held in place by a retaining enpring. To remove roll-out carriage, it is first necemeary to pull the retaining springs out of the slides with a pair of long note pliers, the stop plas are then eanily removed. The roll-out carriage may then be removed from the front of the cabinet after disconnecting ite connecting cables.

## Roll-out Carriage Travel

The roll-out carriages have a normal movement limitation of appioximately 10 inches. If a carriage does not have this cmount of movement, it may be due to an obstruction or trom slippage or creeping of the ball of the sllde mechanim. Travel rentriction due to nllppage or creeping of balls in the glide mechanism can be corrected by exerting sliahtly greater pull until the normal trarel limitation in reached. The ecrriage should then operate to its full travel with normal pull.

Adation to raris lub:
CHASSIS ASSEMBLIES
Add:
76423 Capacitar-Ceramic. 3 mmf . (C10)

## Roplacement Parts

$\begin{aligned} & \text { sTOCI } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { sToct } \\ & \text { NO. } \end{aligned}$	DESCRIPTION
	CHASSIS ASSEMBLIES RCIO9BA	$\begin{aligned} & 74839 \\ & 16058 \end{aligned}$	Fastener-Puah fantoner for mounting R.F. shelf ( 4 roq'd) Grommet-Rubber grommot for mounting R.F. shelf (4 req'd)
75567	Capacilor-Variable tuning capacitor (Cl-1, Cl-2, Cl-3. Cl-4, C1-5, C1-6)	75547	Grommet-Rubber grommet to mount slides to bottomrear ( 2 req'd)
75613	Capacitor-Ceramic, 5 mml ( Cl 3 )	75548	Grommet-Rubber grommet to mount slides to bottomtront ( $2 \mathrm{req} \mathrm{g}^{\mathrm{d}}$ )
39504	Capacitor-Ceramic, 15 mms . (C12)	11765	Lamp-Dial lamp-Masda \#51
75609 75612	Capacitor-Ceramic, 47 mmf . (C45) Capacitor-Ceramic, 68 mmf . (C9,	75544	Nut-Rivnut to faston scrow for mounting chanais (4
39396	Capacitor-Ceramic, 100 mmf . (Ci)	18469	Plato-Bakelite mounting plate for elecrolytic
75437 75614		75535	Plate-Dial back plate complete with three (3) pulleys
75614 75611		7553	Pointer-Station selector indicator
39640	Capacilor-Mica, 330 mmi . (C37. C38)	7260	Pulloy-Drive cord pulley
39644	Capacitor-Mica, 470 mmf. (C7)	72323	Remintor-Wire wound, 3 ohms, 1/2 watt (R25)
75610	Capacitor-Coramic, 1500 mmi. ( $\mathrm{Cl19}$, C52)	73637	Reaintor-Wire wound, 2200 ohmm, 5 watts (R24)
73473	Capacitor-Coramic, 5000 mmf . (C2. C3, C6. Cl5, C24. C25, C27, C28, C29, C34, C36)		Ronintor-Fired, componition:68 ohme, $\pm 10 \%$, 1/h watt (R1, R26)
73747	Capacitor-Electrolytic, 2 mid, 50 volts (C40)		100 ohms, $\pm 10 \%$, 1/2 watt (R15, R39, R3)
72052	Capacitor-Electrolytic, comprising 1 section of 30 mid , 450 volts, 1 section of 30 mid, 350 volts, and 1 eection of $40 \mathrm{mid}, 25$ volts (C23A, C23B, C23C)		120 ohms, $\pm 10 \%$, $1 / 2$ watt (R27)   270 ohms, $\pm 5 \%$, 2 watte (R42)   390 ohms, $\pm 10 \%$, $1 / 2$ watt (R9)
73801	Capacitor-Tubular, paper, . $001 \mathrm{mfd}, 400$ volth (Ca)		680 ohms, $\pm 10 \%$, $1 / 2$ watt (R4)
70642	Capacitor-Tubular, paper, . 001 mid 1000 volte (C42. C44)		680 ohms, $\pm 20 \%$, 1/2 watt (R30, R31) 1000 ohme, $\pm 10 \%$. $1 / 2$ watt (R6)
73920	Capacitor-Tubular, paper, . $005 \mathrm{mfd}, 400$ volte (C26, C33, C39, C41)		1200 ohmm, $\pm 5 \%$, $1 / 2$ watt (R46) 3300 ohms, $\pm 5 \%$, $1 / 2$ watt (R40, R45)
73561 73797	Capacitor-Tubular, paper, 01 mld , 400 voltt (C32)		8200 ohms, $\pm 10 \%$, 1 watt (R3)
73797 71928			$15,000$ ohms, $\pm 10 \%$, $1 / 2$ watt (R44) $)$ (R20) 18,000 ohms, $\pm 10 \%$, watt (R7, R20 $)$
73562	Capacitor-Tubular, paper, $02 \mathrm{mfd}, 400$ volte (C35)		$22,000 \mathrm{ohmm}, \pm 10 \%$, $1 / 2$ watt (R20, R29)
73553	Capacitor-Tubulars, paper, $05 \mathrm{mid}, 400$ volte (C16)		27.000 ohms, $\pm 10 \%$. $3 / 2$ watt (R21)
73935 75569	Coil-Oscillator coil-A.M.-completo with adjuatable		
	screwn (L3, L4, L5)		68,000 ohms, $\pm 10 \%$, 1/2 watt (R39)
75570	Coil-R.F. coil-A.M.-complete with adjustable core (L6, L7)		82,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R36)   120,000 ohms. $\pm 10 \%$. $1 /$ watt (R8, R16)
71942	Coil-Filament choke coil (L9)		150,000 ohms, $\pm 10 \%$, 1/2 watt (R12, R14)
75615	Coil-Antonnc coil-F.M (Li)		220,000 ohme, $\pm 20 \%$, 1/2 watt (R11)
74815	Coll-R.F coil-F.M (L2)		270,000 ohms, $\pm 10 \%$. $1 / 2$ watt (R35)
74817	Coil-Oncillator coil-F.M (Le)		470,000 ohms, $\pm 10 \%$, 1/2 watt (R2, R37, R41, R48)
35787	Connector-Single contact fomale connector for phono cables (J2, J3)		$1.5 \mathrm{megohm}, \pm 10 \%$. $1 / 2$ watt (R17)   2.2 mogohm, $\pm 20 \%$, $1 / 2$ watt (R5, R10, R13)
75542	Connector-8 contact male connector for power input cable (14)		10 megohm, $\pm 20 \%$, 1/2 watt (R23) 22 megohm, $\pm 20 \%$, $1 / 2$ wett (R33)
75543	Connector-2 contact fomalo connoctor for 45 RPM motor cable (Pl)	$\begin{aligned} & 75540 \\ & 75565 \end{aligned}$	Shett-Tuning knob shaft Shaft-Extension shaft for function switch
74879	Connector-2 contact female connector for antenna leads	73584	Shiold-Tube shiold
75537	Control-Volume control and power switch ( H 22, S2)	75546	Slide-Slide mechaniem complete for radio chassis bottom
75561 75562	Control-Tone control-L.F. (R19)	31251	Sockot-Tube mocket, octal, wator
†72953	Cord-Drive cord (approx. $66^{\prime \prime}$ overall)	74179	Socket-Tube mocket, 7 pin, minlature for 6BC6-6J6
75564	Coupling-Spring coupling for function ewitch extonaion shaft	$\begin{aligned} & 31364 \\ & 75563 \end{aligned}$	Socket-Dial lamp sockit for function ewitch extenaion
75556	Cover-Insulating cover for electrolytic		

[^1]
## Replacement Parts-Concluded

STOCX	DESCRIPTION	sTOCX NO.	DESCRIPTION
74038	Spring-Drive cord spring		MISCELLANEOUS
74847	Support-Polystyrene support for F-M omcillator coil complete with mounting bracket	71864	Antenna-F-M antenna
75602	Switch-Function swith (S1)	75705 75900	Antenna-Antenna loop complote lens cable
75557	Tranaformer-Output transformer (17)		ment for mahogany or walnut instruments (assombled
75566	Transformer-Power tranmformer, 117 volts/60 cycle (T6)		to rollout)
73743	Transformer-Ratio detector transformer (T5)	75901	Back-Back cover-light brown-for radio-phono com-
75558	Tranaformer-Firat I-F tranformer (A.M.) complete with adjustable screws (T2)	$73680$	partmont for oak instruments (assembled to rollout) Board-"A-F.M." terminal board $\qquad$
73037	Tranaformer-Second I-F transformer (A.M.) complete with adjuatable screws (T4)	75694 71599	Brackel-Siop bracket less rubber bumper for radio phono compartment rollout Bracket-Pilot lamp bracket
75558	Transformer-First I-F transiormer (F.M.) zomplete with adjuatable screwn (TI)	$\begin{aligned} & 75696 \\ & 72437 \end{aligned}$	Bumper-Rubber bumper for rollout stop bracket Cabie-Shielded pickup cable complete with pin plug
75560	Transformer-Second I-F transformer (F.M.) complete with adjustable ecrews (T3)	$\begin{aligned} & 13103 \\ & 71892 \end{aligned}$	Cap-Pilot lamp cap   Catch-Bullet catch and strive for cabinot doors
33726	Wather-"C" washer for tuning knob shaft	X3089   74882	Cloth-Grille cloth for mahogany or walnut instruments Cloth-Grille cloth for ack instrumentr Connector-2 contact (polarized) male connector for A-M antenna loop cable
	ROLLOUT MECHANISM	75709	Connector-8 contact female connector less shell for main cable
76206	Decal-Control function decal	75474	Connector-Single contact male connector for speaker
75572	Dial-Polystyren dial scale	74752	(2 req'd)   Connector-2 contact male connector for FM antenna
76161	Frame-Moulded frame-maroon-ior mounting radio chatsis and 45 RPM changer for mahogany or walnut instruments	30870	torminal board cable   Connector- 2 contact male connector for AC power cable for 45 RPM changer
76162	Frame-Moulded trame-llght brown-ior mounting radio chasais and 45 RPM changer for oak instruments	$\begin{aligned} & 71984 \\ & 74273 \end{aligned}$	Decal-Trade mark decal (RCA Victor) Decal-Trade mark decal (Vietrola)
76165	Handle-Metal pullout handle for mounting frame	37396 74838	Grommet-Rubber grommet for mounting speaker Grommot-Power cord strain reliof (1 set)
75555	Scrow-\#8-32 $\times 5 / \mathbf{h a n}^{\prime \prime}$ cross recesed pan head screw to mount radio chamin ( 4 req'd)	75697	Grommet-Rubber grommet for mounting record changer (3 req'd)
		$\begin{aligned} & 74308 \\ & 75714 \end{aligned}$	Hinge-Cabinot door hinge (1 eot)   Xnob-Function ewitch knob-maroon-for mahogany or walnut instruments
	SPEAKER ASSEMBLIES 92569-12W	$\begin{aligned} & 75715 \\ & 75712 \end{aligned}$	Knob-Function switch knob-ian-ior oak ingtrumente Knob-Tuning control, tone control or volume control and power switch knob-maroon-for mahogany or walnut instruments
	Cap-Duat cap RL 111 Ml	75713	Knob-Tuning control, tone control or volume control and power switch knob-an-for oak instruments
75682	Cone-Cone complete with voice coil (3.2 ohms)	11765	Lamp-Pilot lamp-Mazda \#51
75681	Speaker-12" P.M. specker complete with cone and voice	73634	Nut-Speed nut for speaker mounting screwn
	cill (3.2 ohms)	75920	Scrow-\#10-24 x
	NOTE:-lf stamping on speaker in instrument does not	75708	Shell-Shell for 8 contact fomale connector \#75709
	agree with above speaker number, order replacement	31364 74734	Socket-Pilot lamp socket   Spring-Retaining spring for knobn
	parts by referring to model number of instrument, number	75902 72936	Spring-Suapension spring for main cable
	stamped on apeaker and full description of part required.	72936	Stop-Cabinet door stop

APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS

## Two Types of Door Pulls:

Two different types of door pulls (fastened with different screws) have been used on this instrument. The parts list should be changed as indicated below.

Stock
No.

## MISCELLANEOUS

75980 Pull-Door pull (basket weave design)
75918 Pull-Door pull (leaf design)
75920 Screw-\#10-24 $\times 1$ " "trimit head screw for door pull \#75908
75626 Screw-\#8-32 $\times 11 / 4^{\prime \prime}$ trimit head screw for door pull \#75918


## TYPE AND MODEL IDENTIFICATION

The record changer mechanism may be used either with or without a metal molorboard. When a metal motorboard is not used, the instrument cabinet serves as the motorboard.
Two major changes have been made since the start of production. One change is the type of pickup arm rest, the original design used a visible rest on the motorboard or instrument cabinet which has been replaced by a rest on the mub-base. The other major change is in the record separators, the original type used rotating gear type of separators which were replaced by a push-out type of separators.

Many other changes have been made and there are differences in the color and tinish of some parts when used with certain instru. ments. These changes did not necessarily involve a change in the identification applied to the bottom of the mechanism sub-base.

Five different pickups are in use: Two (2) crystal pickups, one (1) magnetic pickup and two (2) ceramic pickups. A listing of pickup vs. instrument model is given on page 14.

BECAUSE OF THE DIFFERENCES MENTIONED ABOVE. THE LABEL OR STAMPING ON THE SUB-BASE DOES NOT PROVIDE SUFFICIENT IDENTIFICATION FOR ORDERING REPLACEMENT PARTS.

Replacement parts should be ordered only by stock number. Refer to the illustrations and parts listings for identification.
The RP 168 Series record changer is used in the following instrument models:

RECORD PLAYER ATTACHMENTS
9JY, CP-5203, 45J. QIY
RECORD PLAYERS (without radio)
9EY3, 9EY31, 9EY32, 9EY35, 9EY36, 45EY, QEY3, 45EY1, 45EY15
RADIO-PHONOGRAPH COMBINATIONS
9QV5, 9W51, 9W78, 9W101, 9W102, 9W103, 9W105, 9W106, 9Y7, 9Y51, A55, A78, A106, A82, A91, A108, 9Y511, 4QV8C, 6QU3Y

RADIO.PHONOGRAPH.TELEVISION COMBINATIONS 9TW309, 9TW333, 9TW390, TA128, TA129, TA169, S1000 2T81, 6T84, 6T86, 6T87, $9 T 89$

## AUTOMATIC OPERATION

1. Place a stack of records over the center post, with the desired selections upward, the last record to be played on top.
2. Apply power to drive motor.
3. Push the "start-reject" knob to "start" and let go. The mechanism will automatically play in sequence one side of each record stacked on the separator shelves.
4. To reject a record being played push the "start-reject" knob.
5. At conclusion of playing and as the last record is being repeated, lift the pickup arm and place on its rest. Turn off the power to the drive motor.
6. Remove the stack of records by lifting them straight up.

RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION CAMDEN, N. J., U. S. A.

## SPECIFICATIONS

Turntable speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 r.p.m. Records used. . . . . . . . . . . . . . . . . . RCA seven-inch fine groove Record capacity . . . . . . . . . . . . . . . . . . . . . . . . . Up to 10 records Pickup force.............................................. 5 grams Stylus tip radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 001 inch Type of pickup. Ceramic, crystal or variable reluctance (magnetic) Power supply. . . . . . . . . . . . . . . . . . 105-125 volts, 60 cycle, a.c (May be converted for use on 50 cycle power supply.)

## CAUTION

1. Avoid handling the pickup arm when the mechanism is in cycle.
2. Do not use force to release a jam.
3. Do not try to remove the records on the turntable if the turntable is stopped in cycle.
4. Do not try to operate the mechanism if the separator knives protrude from the center post when the mechanism is out of cycle.
During service, the position of the star wheel on the underside of the record changer may be accidently shifted; this may cause the separator knives to be extended when they should be concealed.
If the separator knives are thus extended - turn the power on so that the turntable is revolving, push the "start-reject" knob and allow the mechanism to complete a change cycle. If the knives continue to be extended - while the turntable is still revolving, gently press fingers against the extended knives until they disappear inside the center post - DO THIS ONLY WHILE MECHANISM IS OUT OF CYCLE.

## LUBRICATION

A light machine oil (SAE No. 10) should be used to oil the bearings of the drive motor.
On all bearing surfaces. excepting the motor bearings. Houghton STA.PUT No. 320, or equivalent, should be used. On all other sliding surfaces, STA-PUT No. 512, or equivalent, is recommended. STA-PUT can be purchased from E. F. Houghton \& Co., 303 W. Lehigh Ave., Philadelphia, Pa.
(Do not oil or grease record separator shelves.)
It is important that the drive motor spindle and the rubber tire on the idler wheel be kept clean and free from oil or grease, dirt, or any foreign material at all times. Carbon tetrachloride or naphtha is satisfactory for cleaning these parts.

RP-168 Series

## CYCLE OF OPERATION

Function	Explanation
Place records over the center post and turn the power on	1. Records rest on separator shelves protruding from either side of the center post.
$\quad$ Push start-reject of knob 若 O.	1. Start-reject knob which is linked to start-reject slide (45A) moves trip pawl (37) into tripping position.   2. As the turntable rotates, the small projection (8A) (extending from the underside of the turntable) contacts ead of trip pawl.



Figure 1.


Figure 2.

Figure 4.


Figure 5.


Pickup arm moves out

1. As the turntable continues to rotate it carries the trip pawl (37) along for a short distance.
2. The stud (37A) on trip pawl applies force against director lever (41) in opposition to tension spring (42).
This force continues to be applied until the stud (41B) on the director lever has been forced through the slot and into the cycling cam (8B).
3. The end (41C) of the director lever extending below the motorboard moves away, allowing the muting switch (63) to close.
4. At the same time the stud (41A) pushes the pickup arm lift lever (35) which in turn raises the pickup arm.



Figure 6.
 separate the lcwe record from the stack and all.ws he record to crop o the turntable


Figure 14.
Figure 10.


Playing of reiord
is completed (nd completed end mechanism ${ }^{\text {change crcle }}$
change cycle
Aner the selection has been completed the sapphire moves into the tripping groove. At this time the trip lever (58) pushes the trip pawl (37) into position for engagement with

This contact between stud (8A) and the trip pawl (37) starts another change cycle and the next record is moved into position for playing.

## SERVICE HINTS

While the pickup arm is moving outward, the end (41C) of he director lever (41) extending below the motorboard. contacts and prevents the star wheel (62) from rotating.
Since the turntable continues to rotate and the star wheel and shath remain stationary, the two small gears 5 A and ©A) embedded in the upper section of the center post rotate hath (7).
The eccentric extending from the upper end of the two embedded gears turns in a slot in the separator shelves 5 and 6). This causes the shelves to move in against the ension of spring (4).
A later type of record separators (knives and shelves), illusrated in Figure 8, are actuated by a cam at the top of the shaft. No gears are used. The cam pushes out on the knives ho lurn pull in on the opposite shelves.
As the shelves recede the separator knives (5B and 6B), mounied above each separator shelf, separate the lower the lower record drops to the turntable
in for landing
As the director lever (41) continues to move toward the out of cycle position the end of the director lever (41E) retains lablilzes the inward (58A) on the trip tever pickup arm which is being pushed in by the pickup arm return lever (50)

The inward movement of the pickup arm is stopped directly above the landing position due to the stud (50B) on pickup arm return lever coming in contact with the eccentric stud 45C).

The stud (41A) on director lever (41) continues to contact pickup arm elevating lever (35) and lowers the sapphire on the start of the record.

As the turntable completes one revolution, the stud (41B) on director lever is pulled through the slot in the cycling cam by the tension spring (42).

The end of the director lever (41D) contacts projection (50C) and unlatches the pickup arm return lever (50).
The end (41C) of the director lever below the motor board moves away from the star wheel and opens muting switch.

Care of Pickup
Lint may collect to clog the opening in the guard at the stylus point and cause poor record repro. DUCTION. This may requise occasional cleaning of the guard
opening-clean by carefully bushing with a small soft brush.

## Replacement of Stylus

Caution: Never bend the stylus support wite.
CRYSTAL PICKUPS (Stock Nos. 74067 and 74625)
remove the two screws holding sapphire guard in place and remove the guard. Remove the small nut and washer on the threaded shaft of the sapphire holder and gently push the shaft through the hole in the armatu
holder assembly comes free. treme care should be used
the twisting motion does not break the cryatal. Take hold of the lower end of the shaft with a pair of pllers while loosening or tightening the nut. being very caroful so as not to strip the hreads or break the crystal.
insert threaded shaft of replacement sapphire holder throug armature shaft and replace the washer and nut. Make sure that the sapphire is in the correct position.
Replace the sapphire guard, positioning it by means of the oversize screw slots. Make certain that the sapphire and its
supporting wire are centered in the quard. Tighten the quard supporing wire are centered in the guard. Tighten the guard
screws. Before using. check to see that the sapphire projectis far enough beyond the guard so that the guard will not touch the record. If necessary, bend the guard a little.

Variable reluctance pickup (Stock No. 74466)
To remove the stylus assembly, insert a bent paper clip or equivalent tool into the stylus stud pin socket at point "A. Press the assembly out from the cartridge with the tool a
shown by the arrow in the illustration below. the arrow in the illustration below.
recess "A." with the locating tab positioned above the locating slot "B" between the two pole pieces. Press assembly in firmly by applying pressure upon the stud pin at point "C" with a blunt tool. Care must be taken to press assembly only at point
"C" so as not to damage or distort the stylus arm. CERAMic PICXUP (Sick
CERAMIC PICKUP (Stock No. 74984)

To remove stylus, insert the point of a knite blade between the sylus wire and the case. The stylus may be pried out of its rybber mounting with a twisting motion of the knile blade. To replace stylus. push end of stylus wire down into its rubber mounting. Be certain that the stylus is centered in the groove of the pickup case.


Figure 16-Stylus Replacement.


Figure 17-Explocled 'View of Sub-base Assembly.

## $\begin{array}{cc}\begin{array}{c}\text { 45-EY } \\ \text { Two tone arm } \\ \text { Stock No. 75058 }\end{array} & \begin{array}{c}\text { 45-EY-1 } \\ \text { Maroon afm } \\ \text { Stock No. 75996 }\end{array} \\ \text { OTHERWISE SAME AS TYPE II }\end{array}$





(O)



## Ub-base assemblies

 ype

Type III
 board
lormed.
lot
Type IV
 Crs.5203:
Sypo V Vase Stock No. 24856. Has turned up lances for



 Type vil
 Type VIII

 note: Types VI and VII
 ${ }_{75081} 120$
NOTE:






Figure 18-Pickup Arm Assemblie
PICKUP ARM ASSEMBLIES (LESS PICKUP
 whers pickup armmentis is sub-batol). Load countor
 Type II


 Type III

 ype iv

ype V

 Type vi
Same ar Type V oxcept that stud (9A) is of full diam
eor tor ontire length. Use No. 74996 for replacement

$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { ILL. } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { ILL. } \\ & \text { No. } \end{aligned}$	DESCRIPTION
		SUB-BASE ASSEMBLIES		68	Clamp-Co
74256	16	Washer-Vellutex washer (pivot arm shaft bearing	74078	69	Washer-Dampening washer for idler wheel (bottom)
74080	17.19	washer)		70	Washer-No. 4 lockwasher for idler mounting (111. No, 22)
72349	18	Bearing-Turntable thrust bearing		71	Nut-No. 4-40 hex nut lor idler wheel mounting stud
72688	20	Washer-'C' ${ }^{\text {' }}$ washer-turntable assembly retainer		72	Washer-Part
74079	22	Stud-Idler wheel mounting stud-for Sub-base Types I, II, III, IV, early VI, and early VII	74071	73	Motor-115 volt, 60 cycle motor complete with con-
74078	23	Washer-Dampening washer for idler wheol-top			nector-shaded pole rype. Not suitable lor 50 cycle
74077	24	Wheel-Idler wheel for all except Model CP-5203	74624	73	Motor-115 volt, 60 cycle motor complete with con-
74470 74858	24	Wheel-Ider wheel for Model CP. 5203   Hardware-Mator mounting hardware consisting of:	74624	73	
	25	Three hex nuts Three lockwashers	7469	73	Motor-115 volt, 60 cycle motor complete with con-
	27	Three llat washers	74621		nector and $5 \mathrm{mf}$. capacitor-tor RP $168-2$ only ${ }^{\text {cotor }}$
	28 29	Three spacers ${ }_{\text {Three }}$	30870	74	Connector-Two prong malo plug (connector) for mo-
74089	30	Spring-Idler wheel tension spring (.195" O.D. x.593" - 14 turns)	73158		Spring-Spring sleeve to convert motors No 74624 to 50 cycle operation
35969	34	Washer-"C" washer to retain pickup arm lift lever		89	
74073	35	Lever-Pickup arm lift lever for mechanisms without dashpot	74859	90	Clamp-To mount dash-pot
74757	35	Lever-Pickup arm lift lever for mechanimm with dashpot	74428	91 92	Dash-pot-Pneumatic dash-pot complete with plunger Washer-"C" washer for mounting adjustment sluds No. 74429 (III. No. 45D) and No. 74130 (III No. 45 C )
	35	Lever-Two piece pickup arm lift lever (use No. 74073 or No. 74757 for replacement			No. 74429 (11. No. 4 PD) and No. 14430 (11. No. 45C)
74805		Spring-Tension spring for two piece pickup arm lift lever (.170 ${ }^{\prime \prime}$ O.D. $\left.\times 3 / 4^{\prime \prime}\right)$	74041	9	d stud-with pivot (9B) and lead
33726	36	Wather-"C', ${ }^{\text {c }}$			ter-balance-Type 1 for use with rest on motor-
74072	37	Pawl-Trip pawl	74443	9	Arm-Pickup arm shell and stud-with pivot (9B) and
74453		Washer-Bearing washer betweon trip pawl (IIl. No. 37) and trip pawl lever (IIl. No. 66)	7443	9	Arm-Pickup arm shell and stud-with pivot (9B) and lead counter-balance-for Model CP .5203 only-
35969	38	Washer-" 'C', Washer to retain main lever			black finish
74076	41	Lever-Main lever (director lever) tor use with turntables having rotating gear record separators	74824	9	Arm-Pickup arm shell and stud-with pivot (9B) and lead counter-balance-Type II for use with rest on
74857	41	Lever-Main lever (director lever) for use with lurntobles having push-out record separators	75058	9	sub-base   Arm-Pickup arm shell and stud-with pivot (9B) and
74084	42	Spring-Main lever spring (.195 ${ }^{\circ}{ }^{\circ} \mathrm{O} . \mathrm{D} . \times$. $800^{\prime \prime}$-271/4			lead counter balance-tor Model 45ty only-twotone finish
	43	Screw-Screw to mount muting switch (No. 6-32 or No. 6 self tapping)	75073	9	Arm-Pickup arm shell and stud-with pivot (9B)less lead counter-balance-Type III-lor use with
	44	Washer-No. 6 lockwanher used with Item 43 (No. 6-32 screw)	74796	9	either type of pickup rest   Arm-Pickup shell and stud-with pivot (9B)-less
74070	45	Base-Sub-base assembly complote with all staked			balance spring-Type $V$-for use with either type of pickup rest
		and riveted parts, including ider leve lever-Type I without pickup rest	75996	9	Arm-Pickup arm shell and stud-with pivot (98)
74743	45	Base-Sub-base assembly complete with all staked			and lead counterbalance-Type 11 -for use with
		and riveled parts, including idler lever and reject lever-Type III with pickup reat	74061	9 B	rest on skup arm pivot-lor use with arms No. 74041 ,
74468	45	Base-Sub-base ansembly complete with all staked			No. 74443, No. 14824, and No. 75058 only (arms stamped 970488)
		lever-less No. 74473 brackot-Type IV-ior RP.	74067	10	Piekup-Crystal pickup cartridge complete including
		168-2-used only on Model CP-5203			sapphire and guard-R
74473		Bracket-Metal bracket with power input connector and audio output jack-RP168-2 only	74	10	Pickup-Crystal pickup cartridge complete including sapphire and quard-RMP 128-2
74856	45	Base--Sub-base assembly complete with all staked	74466	10	Pickup-Magnetic pickup cartridge complete with styus-for Model CP. $5 \% 03$ only
		ss ider lever and reject lever -Type V-with pickup rest	74984	10	Pickup-Ceramic pickup cartridge complete with
74803	45	Base-Sub-base assembly complete with all st			miylus-for Models QIY and QEY3
		and riveted parts, including idler lever-less reject lever-Type Vl-with pickup rest	S-557	10	Pickup-Ceramic pickup cartridge complete with styius-ior Model 9QV5
75652	45	Base-Sub-base assembly complete with all staked and riveled parts-for mechanisms labeled RP	74065	10月	Screw-No. $2.56 \times 3 / 16^{\prime \prime}$ fillister head screw to mount No. 74067 or No. 74625 crystal pickups or No. S-5578
		168D-1 or RP 168D-2 (rame as Type V except having cut-out for clearance of motorboard switch)	7446	10	
74860	45A-1	Lever-heject lever - bottom section - for sub-base Types V VI and VII	7498	10	
74861	45A	Lever-heject lever-lop			pickup (Models QJY and QEY3)
		V . VI and VII	74069 74819	108	Guard-Stylus guard for No. 74067 pickup (RMP 128-1)
74814	45B	Plate-idder wheel mounting plate and slud-ior subbase Type V	74819	108 108	Guard--Stylus quard or No. 74625 pickup (RMP $128-2$ )
74870	45B-1	Retainer-Idler wheel retainer (spring sleeve) for use with No. 74814 plate (45B)	74818	10	
75081	45B-1	Retainer-Idler wheel retainer (horseshoe washer) for			pickup (RMP 128-2) ${ }^{\text {Stylus-Diamond }}$ (tylus and holder for No. 74466 pick.
		use with sub-base Types VI and VII (late production)	74622	10 C	Stylus-Diamond stylus and holder for No. 74466 pickup (Model CP-5203)
74804	45B-2	Warher-Idler wheel bearing wanher (1/2" O.D. $x$ 185" I.D x $032^{\prime \prime}$ thick) (or sub-base Types VI and	7498	100	Stylus-Stylus and holder for No. 74984 pickup (Models QIY and QEY3)
		185 (late production)	74230	10 D	Washer and Nut-to mount No. 74068 or No. 74818
74430		Stud-Eccentric stud for landing adjustment			${ }_{\text {Stylus }}$
7429	45D	Stud-Eccentric stud tor height adjustment Wather-Felt washer (1/2' O.D. $\times 1 / 0^{\prime \prime}$ l.D. $\times 3 / 16^{\prime \prime}$	7406	11	Screw-No. 2-56 x 3/16" fillister head screw to mount stylus guard on No. 74067 or No. 74625 pickups
74082	45E		74062	12	Screw-No. $8-32 \times 13 / 32^{\prime \prime}$ cone point pivot adjusting
74086	46	Spring-Reject lever spring (.203" O.D. x 13/16"-343/4 turns) tor sub-base having one piece reject lever-		13	screw   Nut-Speed nut to hold pickup arm cable
		turns) for sub-base having one piece reject lever1 required	74801	13	Clip-Spring clip to hold pickup arm cable (used only
74427	46	Spring-Reject lever spring (.203" O.D. x .531"-13 turns) for sub-bases having two piece reject lever-	74410	14	on pickup arm Type $V$ and VI-No. 74796)   Screw-No. $4.40 \times 3 / 16^{\prime \prime}$ tillister head screw to lock
		turns) for sub-bases having two piece reject lever2 required	2410	14	pivot screw No. 74062
74074	50	Lever-Return lever (includes spring In. No. 51)	74066	15	Cable-3-wire twisted pickup arm cable complete
74085	51	Spring-Return lever actuating spring (.195" O.D. x 29/32'-371/2 turns)	74465	15	Cable-Shielded pickup arm cable complete with con.
74075	52	Spring-Return lever latch spring (.180'0 O.D. x .535'-			nectors-Model CP-5203 only
		211/2 turns)	*-5580	15	Cable-Shielded pickup arm cable complete with con-
	$\begin{aligned} & 54 \\ & 55 \end{aligned}$	Washer (To clamp trip lever	74060	39	Spring--Counter-balance spring (.171" O.D. x . $695^{\prime \prime}$
	55	(111. No. 58) to pivot	34060	3	43 turns) tor Pickup Arm Types I, II, III and
	57	Screw , arm shatt (m.			when using No. 74067. No. 74625 or No. 74984 pick-
74099	58	Lever-Trip lever (includes Items 54, 55, 56, 57 and 59)			ups (most models)
74426	59	Spring-Trip lever spring (.171" O.D. x $.595^{\prime \prime}-30$ (turns)	74426	39	Spring-Counter-balance spring (.171" O.D. x .595"30 (urns) for Model SQV5 only
33726	60	Washer-"C" washer for star wheel shatt for	74461	39	Spring--Counter.balance spring (i.185" O.D. x .695"-
74083	61	Screw-No. $6-32 \times .281^{\prime \prime}$ cone point set screw for star wheel (2 required)	74798	39	Spring-Counter-balance spring ( $5 / 8 \mathrm{~s}$ \% 0 .
74081	62	Wheel-Star wheel			for Pickup Arm Types V and V1 (Stock No. 74796)
74088	63	Switch-Muting swit	74797	-	Nut-Speed nut to hold No.
	64	rew-No. $8 \times 1 / 4$ " sell tapping screw			Wrm. Trpes ond
33726 74245	65 66	Washer-" "C" washer to retain trip paw	7507		Weight-Lead counter-balance woight for Pickup Arm
74100	67	Spring-Trip pawl lake up apring (.195" O.D. x 3/6"201/2 turns)		-	Screw-No. $4-40$ round head screw to hold No. 75074 weight to No. 75073 Arm



## APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS

Items listed but without Stock Nos. are not stock items.

- Stock Nos. S-5578 and S-5580 are for use in instruments manufactured for RCA International Division and are not stocked by distributors in the U. S. $A$.


Figure 19-
Idler Wheel
Mounting.
$\dagger$ Maroon finish. Does not have provision for mounting "ONOFF" switch. The gold linish motorboard having provision


ON TYPE II TURNTABLES THE CAM (33) 15 CAST INTEGRAL WITH THE TURNTABLE ( 8 )

Figure 20 - Turntable Assemblies, Types I und II.

## Main Lever vs Record Separators:

Two different main levers (director lever) are used depending upon the type of record separators being used.
Stock No. 74076 lever is used only with the rotating gear type of record separators. The end ( 41 C ) that engages the star wheel is long.
Stock No. 74857 lever is used only with the push-out type of record separators. The end (41C) that engages the star wheel is short.


Figure 22- Vain lever.
 NOTE: Use care in dis-assembly to prevent loss of
springs. Remove screws-lift nose slightly-hold both springs. Remove screws-lift nose slightly-hold both
separator knives down against shelves-then remove nose.

Figure 21-Turntuble Assemblies, Type III.

## TURNTABLE ASSEMBLIES

Type 1
Turntable Stock No. 74042. Stamped 940489 or 3R2. Has TAN MARBLEIZED mat and useg rotating qear type of record separators. Use No. 74090 spindle nose-MED (thin wall)
Turntable Stock No. 75065. Same as No. 74042, except tor diameter at top of spindle. Use No. 74620 spindle nose-RED (thick wall)
Turntable Stock No. 75145. Same as No. 75065, except hat it has a RED mat. Use No. 74472 spindle nose -BLACK
Turntable Steck No. 74445. Same as No. 75065, except tor tinish and BLACK mat. Used only on Model CP-5203. Use No. 74472 spindle nose (BLACK)
Type II
Stamped 971009, Follower cam (33) is a part of the turntable casting. Otherwise, similar to No. 75065. Use No. 75065 turntable, and No. 74231 cam for replacement
Type III
Stock No. 74813. Stamped 971009. Has TAN MARBLE. I2ED mat and uses push-out \{ype of yecord separators. Use No. 74863 spindle nose-RED. Although this turntable bears the same stamping as Type II. it does not have the shafts required for mounting the rotating gear type of separators
Stock No. 75059. Same as No. 74813. except that a RED mat is used, Use No. 74795 spindle noseBLACK
NOTE: Main Lever (41)
Stocik No. 74076 lever (with long end 41 C ) is used in conjunction with rotating gear type ol record sepa rators. Stock No. 74857 lever (with short end 41 C is used in conjunction with push-out type of record separators

Figure 23
.Motorbourd Assemblies.


## CHANGES-SERVICE HINTS (Continued from Page 4)

## Pickup Arm Rest:

Two different types of pickup arm rest are in use. The original type was visible on the motorboard. The type presently in use is a metal projection on the sub-base.

The correct grouping of parts must be used, refer to descriptive text on page 6. The two types are illustrated below.


Figure 24-Pichup Arm Rest.

## Spindle Nose and Turntable (Type I):

The wall thickness of the spindle nose (Ill. No. 1) has been increased and the machined shoulder at the top of the turntable decreased accordingly. Thick wall spindle nose will not tit on early type turntable. The new type red spindle nose (thick wall) is available as Stock No. 74620.
NOTE: The screws (IIl. No. 21) which hold the spindle nose to the turntable should not be tightened too tight. The spindle nose can be distorted and cause records to bind.


Figure 27-
Separator Assembly.

## Sub-base Mounting:

The sub-base is attached directly to metal motorboards and to the cabinets of Models 9JY, QJY and 45J with three screws and three washers. No grommets or spacers are used except with Models 9EY31 and 9EY32.
On all other instruments, the sub-base is cushion mounted to the plastic cabinet with rubber grommets, metal spacers. screws and washers. The mounting is illustrated below.


Figure 25-Sub-base Mounting.

## Separator Assemblies (Rotating Gear Type):

A tlat has been added to the separator gears eccentric shafts. This flat permite the shelf (111. Nos. 5 and 6) to stay out until the nose of the blade (IIl. Nos. 5B and 6B) is approximately half-way out. Then the shelf retracts last. This faster action minimizes unequal dropping of records.

The two types of separator assemblies (Stock No. 74096, Ill Nos. 5 and 6) are NOT INTERCHANGEABLE. In addition the early type has been grouped according to mold number fat bottom of spring hole) and installed in pairs.

Group	Group	Group
Mold Number	Mold Number	Mold Number
$1,3,5$	9,10	0,8

Assemblies of one group should not be mixed with assemblies of another group or unequal dropping of records may occur: If a matched pair is not available. tirst check timing of separator knives then the dropping of records; it may be necessary to file the edge of the shelf which released the record last.
The late type (having a flat on the eccentric shaft) do not need to be grouped, but an early assembly should not be used in conjunction with a late assembly (use two early or two late assemblies). The late type may be identitied by its having a shroud at the top of the gear (see Figure 27).

## Turntable Bearing Thrust Washers:

Three thrust washers (Ill. Nos. 17 and 19) are now being used in mounting the turntable. This is done because it was found that the top edge of some idler wheels would contact $a$ nonmachined surface on the underside of the turntable and cause noise similar to that caused by a rough idler wheel.

## Jamming:

On early RP. 168-1 mechanisms it was sometimes possible to jam the mechanism by maintaining pressure on the reject button during cycle. If such jamming should occur check the following:

1. The tip radius of the reject lever (Ill. No. 45A) should be $1 / 10^{\prime \prime}$
2. The edges of the trip pawl (IIl. No. 37) should have a slightly rounded edge (.010" radius).
Present production uses a two piece spring loaded reject lever (IIl. No. 45A) which eliminates the possibility of jamming caused by pressure on the reject button.
Jamming can also be caused by incorrect positioning of the director lever (main lever) (Ill. No. 41) in relation to the star wheel (IIl. No. 62). See Figure 35.


## Intermittent Non-Tripping:

The trip lever spring (Ill. No. 59) has been increased in tension to provide better tripping action. The new spring has 30 turns and is available as Stock No. 74426.
To reduce friction a washer has been added between the trip pawl (III. No. 37) and the trip pawl lever (111. No. 66). It is available as Stock No. 74453.

## Eccentric Adjustment Studs:

In early production the eccentric landing (IIl. No. 45C) and height (III. No. 45D) adjustment studs were staked to the subbase assembly. They are now secured to the sub-base assembly with "C" washers. The landing adjustment stud (Ill. No. 45 C ) is available as Stock No. 74430. The height adjustment stud (IIl. No. 45D) as Stock No. 74429 and the "C" washer (IIl. No. 92) as Stock No. 74431.

## Pneumatic Dashpot

A pneumatic dashpot (Stock No. 74428) has been added to improve pickup arm landing. The dashpot case is clamped to the base sub-assembly and the plunger is attached to the long end of the tone arm lift lever (111. No. 35) (Stock No. 74757).

## Polarized Motor:

On some instruments the connection of the power leads of the motor should not be reversed. The leads are color coded and reversed leads may introduce objectionable hum. The record changer mechanisms using this motor are labeled RP 168B-6 or RP 168D-2 and are used with Models 45-EY and 45-EY-1.
Replacement motors (Stock No. 74071) may not be color coded and in such cases it will be necessary to determine the correct connection by irial.



## RP. 168 Series

## Adjustment Sequence:

1. Synchronize separator shelf (Ill. No. 5) and separator knife (IIl. No. 5B) action (necessary only on rotating gear type of record separators).
2. Adjust position of star wheel (Ill, No. 62).
3. Adjust position of director lever (main lever) (ill. No. 41) in relation to the star wheel by bending if necessary.
4. Adjust tone arm pivot screw (Ill. No. 12) for minimum side play without binding.
5. Adjust sapphire height above motorboard.
6. Adjust tripping position.
7. Adjust landing position.
8. Adjust pickup arm height during cycle.
9. Adjust position of muting switch so that contacts are open $1 / 32^{\prime \prime}$ during playing and are closed during cycle.

## Separator Synchronization:

The following applies only to the rotating gear type of record separators:

1. Make certain the two embedded gears ( 5 and 6) are meshed with gear (7A) on the upper end of the star wheel shaft so the action of the separator knives is synchronized.


Figure 32.


## Star Wheel Position:

1. Turn the star wheel so that the separator knives are in the position indicated in Figure 33 for rotating gear type of separators or fully retracted for push-out separators.
2. Loosen the two set screws (61) sufficiently to permit the star wheel to rotate without disturbing the shaft (7).
3. Rotate the star wheel points directly to a cam screw or nose screw (visible through slot) as shown in Figure 34.
4. Tighten the two set screws (61) and rotate the mechanism through a complete cycle to check operation. The separator knives must rotate $360^{\circ}$ to the starting position as indicated in Figure 33.


Figure 34-Star Wheel Timing.

## Director Lever Position:

Push reject lever and rotate the turntable slowly by hand until the end ( 41 C ) of the director lever moves in to its limit of travel so when the star wheel is rotated it contacts by the amount indicated in Figure 35 for lever with long end. For lever with short end, the star wheel should first contact the end (41C) approximately 1 l6-inch from the front or leading edge of the lever.
If the end of the director lever (main lever) is too close to the star wheel, it will jam. If too far away, it will cause erratic record dropping. If in doubt and unable to measure, move the end toward the star wheel until most of the play is removed when the star wheel is moved back and forth at this setting. With the push-out record separators and the lever with short end, there will be considerable play but the tension of the separator springs holds the star wheel against the lever.


Figure 35 Setting of Director Lever.

## Pivot Screw Adjustment:

Loosen the pivot locking screw (14) and adjust the pivot screw (12) for minimum side play without causing binding.


Figure 36.

## Sapphire Height Adjustment (Out of Cycle):

Bend the lug on the pivot arm (40) so that the sapphire point is approximately $1 / 10^{\prime \prime}$ above the motorboard.


Figure 37.

## Tripping Adjustment:

1. Assemble the pickup arm and trip lever assemblies as shown in Figure 38. Leave the clamping screw (57) loose enough to permit horizontal movement of the trip lever on the shaft. (Allow approximately 010 inch vertical end play.)
2. Turn the eccentric landing adjustment stud (45C) to determine the inward and outward limit of adjustment, then turn it to a setting hall-way between the limits.

## Pickup Arm Height Adjusiment (In Cycle):

Set the mechanism in cycle. Turn the turntable by hand, until the pickup arm has reached its maximum height. By means of a screwdriver turn the height adjustment stud (45D) until the distance between the top of the turntable and the sapphire point is $3 / 4^{\prime \prime}$. Use that position of the eccentric stud which causes the pickup arm to rise during clockwise adjustment of the stud. The location of the adjusting stud is illustrated in Figure 42.


Figure 4l-Height Adjustment.


Figure 42-Height and Landing Adjustment Studs.


Figure 43-Pickup Muting Switch Wiring.


Figure 40-Landing Position.


Figure 45.

FAILS TO GO INTO CYCLE


Figure 46.

Weak director lever (main lever) spring (III. No. 42) or excessive tension on muting switch may cause poor unlatching action and erratic pickup landing.

A drop of cement (Duco Household Cement or similar) applied to the ends of springs will prevent their becoming unhooked. Use care to prevent cementing turns of the springs.

CONTINUOUS TRIPPING


## RECORD DROP ON OR HIT PICKUP ARM



Figure 48.


Figure 49-Spring Sleeve Installed on 60-Cycle Motor Spindle for Operation on 50-Cycle Supply.

## PICKUP UNIT vs. INSTRUMENT MODEL

It is important to use the correct pickup unit. The receiver chassis has compensation designed for one pickup and may be incorrect for other pickups.
Pickup Stock No. 74067 (RMP 128-1) uses a stylus (Stock No. 74068) which has a WHITE paint coding. It is used with the following in struments: 9EY3t, 9EY35, 9EY36. 9JY*. 9TW333, 9TW390. 9W101. 9W102. 9W103, 9W105, 9Y7, 45EY†, 45EYl, 45EY15 and 45J*.
Pickup Stock No. 74625 (RMP 128-2) uses a stylus (Stock No. 74818) which has a BLUE paint coding. It is used with the following instuments: A55, A78, A106, TA128, TA129, TA169, 9EY3十, 9EY31. 9EY32, 9TW309, 9W51. 9W78, 9W106, 9Y51, 4SEYt, S1000, A82. A91. A108, 9Y511, 4OV8C. 6QU3Y, 2T84, 6T86, 6T87 and $9 T 89$.

- Models 9JY and 45J.

No. 74067 pickup is recommended as replacement although No. 74625 has been used as a substitute in some instruments.
The characteristics of the two pickups differ in that No. 74067 has a greater output in the middle audio frequencies. The response of No. 74625 is more "flat" and has a greater output at high audio irequencies.

+ Models 9EY3 and 45EY.
Use No. 7406\% pickup in conjunction with RS132. RS132E or RS132F amplitier.
Use No. 74625 pickup in conjunction with RS132A amplitier.

Pickup Stock No. 74466 (RMP 130-1) uses a stylus (Stock No. 74622) which has a RLACK paint coding it is used only with Model CP-5203.
Pickup Stock No. 74984 is a ceramic pickup used only with Models QJY. QEY3 and 6QU3Y.

Pickup Stock No. S-5578 is a ceramic pickup used with Models 9QV5 and 4QV8C.

## CHANGE IN STYLUS COLOR CODE

The identification color on the bottom of the stylus holder of Stock Nos. 74068 and 74818 has been changed to provide identification of a factory process.

## Stylus Stock No. 74068

Used in pickup Stock No. 74067 (RMP 128-1). Identification color may be either WHITE or BLACK.

## Stylus Stock No. 74818

Used in pickup Stock No. 74625 (RMP 128-2). Identification color may be either BLUE or GREEN.


## MODEL IDENTIFICATION

RP-190-1 (Uses crystal pickup Stock No. 75476. Models RP-190-1a | 45-EY-2, 45-EY-3. 45-J-2 and 9Y510.

RP-190-2 Uses crystal pickup Stock No. 75575. Models A-82, RP-190-2a S.91, A.101, A.108. 45-W-9, 45-W.10, 2T81, 6T84, 6T86, 6T87 and 9T89.

MP.190-3 ! Uses crystal pickup Stock No. 75476* and special RP-190-3a j motor (85 volts). Model 45-EY-3.

RP-190-4 (Uses crystal pickup Stock No. 75476* and different RP-190-4a $\mid$ "On-OH" switch, otherwise same as RP-190-1 and RP-190-1a.

RP-190-5 Uses ceramic pickup Stock No. 72697. different counterbalance spring and motor suitable for 50 cycle conversion. Otherwise same as RP-190-4a. Models QEY4, QEY5 QIY2.
RP-190-6 Uses crystal pickup Stock No. 74067. Otherwise same as RP-190-4a.
${ }^{-}$Use Stock No. 74067, for replacement.
NOTE: RP-190-1 vs. RP-190-1a. RP. 190-2 vs. RP.190-2a, elc.
Two types of cycling slides and counterbalance assemblies have been used. The " $a$ " in the identification indicates the use of the late type assemblies. See Page 10 for details.

## CAUTION

1. Avoid handling the pickup arm when the mechanimm is in cycle.
2. Do not use force to release a jam.
3. Do not try to remove the records on the turniable if the turntable is stopped in cycle.
4. If the separator knives protrude from the center post when the mechanism is out of cycle, push the "start-reject" knob to reject and the condition should be corrected automatically.

## AUTOMATIC OPERATION

1. Place a stack of records over the center post. with the desired selections upward, the last record to be played on top.
2. Push the "start-reject" knob to "start" (forward) and release. The mechanism will automatically play in sequence one side of each record stacked on the separator shelves.
3. To reject a record being played, push the "start-reject" knob.
4. At conclusion of playing and as the last record is being repeated, lift the pickup arm and place on its rest. Turn off the power to the drive motor by pushing back on control knob.
5. Remove the stack of records by lifting them straight up.

45 R.P.M. Automatic Record Changer Service Data
-1950 No. 14 -

# PREPARED BY RCA SERVICE CO., INC. FOR <br> RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION CAMDEN, N. J., U. S. A. 

## SPECIFICATIONS

Turntable speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 r.p.m.	
Records used	RCA type seven-inch fine groove
Record capacity.	12 records
Pickup force	Approx. 5 grams
Stylus tip radius.	. 001 inch
Power supply	105-125 volts, 60 cycle.

(RP.190-3 uses 85 volt, 60 cycle motor.)

## LUBRICATION

A light machine oil (SAE No. 10) should be used to oil the bearings of the drive motor.

On all bearing surfaces, excepting the motor bearings. Houghton STA.PUT No. 320, or equivalent, should be used. On all other sliding surfaces, STA-PUT No. 512, or equivalent, is recommended. STA.PUT can be purchased from E. F. Houghton \& Co., 303 W. Lehigh Ave., Philadelphia, Pa.
(Do not oil or grease record separator shelves.)
It is important that the drive motor spindle and the rubber tire on the idler wheel be kept clean and free from oil or grease, dirt, or any foreign material at all times. Carbon tetrachloride or naphtha is satisfactory for cleaning these parts.

## INDEX

	Page
Specifications	1
Cautions	1
Operation	1
Lubrication	1
Photos	2
Function of Principal Parts.	3
Cycle of Operation.	3-4.5
Do You Know? (Service Hints)	5-6
Service Hints	6-7-8
Adjustment	8.9
Exploded View of Mechanism	10
Service Parts List.	11-12



Fig. 1


Fig. 2

## Trip Lever (77)

The trip lever in mounted on the bottom end of the pickup arm vertical pivot shalt. The function is to transfer the movement of the pickup arm 10 parts of the operating mechanism below the molor board. The end of the trip lever contacts sfud on cycling cam thereby starts tripping action.

## Pickup Arm Return Lever (70)

The function of the pickup arm return lever is to provide a force necessary to push the pickup into landing position. The end of the pickup arm return lever is curved so as to provide a stop for trip lever. This stop determines landing position of the pickup.

## Function of Principal Parts

 Reject Lever (22)The function of the reject lever is to transfer the action of the control knob to the cycling cam thereby starting a change cycle.

## Muting Switch (68)

The lunction of the muting switch is to short the pickup leads to prevent amplify. ing of mechanical noise, of the merchanism during change cycle.

## Cycling Cam (85)

The cycling cam is mounted on the cycling slide. The function of the cam is to trans. fer the rotary motion of the turntable shatt into sliding motion of the cycling slide.

## Stop Dog (82A)

The stop dog is mounted on the end of cycling slide. The function of the stop dog is 10 engage the ratchet wheel on the separator shaft and prevent it from rotating. at the exact moment during change cycle.

## Ratchet Wheel (53)

The function of the ratchet wheel located on the end of the separator shatt is to keep the separator shaft stationary at the proper time. so as to actuate the separator mech. anism inside the centerpost.

## Cycling Slide (82)

The cycling slide is the main connecting medium between the various moving parts.

## Cycle of Operation



Fig. 5


Pickup raises from the rest.

1. As the cycling slide continues to move in the direction of the pickup arm pivot the small incline pressed in the slide causes the elevating rod (74) to lift the pickup arm from the rest.
2. The raised pickup arm moves inward slightly from the inward force of the pickup arm return lever (70), until the stud on the trip lever (77) assembly comes against edge of the cycling slide.
3. The cycling slide continues to move further, which pushes the trip lever back. The eccentric landing adjustment stud (79) contacts and pushes the pickup arm return lever (70) against the tension of the return spring (69).


Fig. 7

Fig. 8

Fig. 9


Pickup moves in for landing.

1. As the cycling slide reaches the limit in its movement in the direction of the pickup arm pivot, the stop dog mounted on the slide engages the rotating ratchet wheel (53).
2. The ratchet wheel and separator shaft (6) then remains stationary and the turntable continues to rotate.
3. The separator shelves and knives are coupled together in such a manner that the flattened end of the separator shaft pushes the knives out, which in turn pulls the opposite shelves in.
4. As the shelves recede, the separator knives mounted above the shelves move out and separate the lower record of the stack and support the remaining records while the lower record drops to the turntable.

Separator knives separate the lower record from the stack and the lower record drops to the turntable.

1. The cycling slide moves away from the pickup arm pivot, due to the force produced by the tension spring (89) keeping the eccentric cycling cam against the rotating knurled roller (62). The knurled roller at this time is returning to the smaller diameter of the cam.
2. The stud on trip lever assembly follows the slide due to the force produced by the action of the pickup arm return lever.
3. After the slide has moved back a short distance the stud on the trip lever assembly no longer follows the slide since the landing adjustment stud comes against the curved stop on the end of the pickup arm return lever. At this moment the pickup is directly above the point of landing.
4. As the cycling slide completes the return movement the elevating rod slides down the incline which lowers the stylus on the record.


Fig. 10

Cycle completed and the record plays.

1. The tab on the cycling slide contacts and opens the muting switch.
2. The stud on the cycling slide pushes pickup arm return lever back to permit free motion of the pickup arm.
3. The change cycle is completed as the cycling slide comes against the stop bracket, at which time the knurled roller rotates in the cut away section of the cam.
4. As the record plays and the pickup arm moves inward.
5. When the stylus reaches the end of the selection the end of the trip lever contacts the stud on the cycling cam. and pushes it slightly.
6. The slight movement of the cycling cam causes engagement with the rotating knurled roller, thereby starting a change cycle.
7. The mechanism repeats the preceding sequence of opera. tions until the last record of the stack has dropped and has been played. This selection will be repeated until the pickup is lifted and placed on the rest.


Fig. 12

Fig. 1.3

## DO YOU KNOW?



Fig. 14



IF THE SHELVES ARE GREASED, FOREIGN MATERIAL MAY COLLECT AND CAUSE BINDING. TENSION SPRINGS MAY NOT HAVE SUFFICIENT FORCE TO PUSH THE SHELVES OUT

Fig. 16

Fig. 15

## SERVICE HINTS

REJECT CONTROL FAILS TO OPERATE


Fig. 17

## RECORD STRIKES PICKUP ARM WHEN DROPPING

PRELIMINARY LANDING ADJUSTMENT MAY BE INCORRECTLY SET


STOP DOG ADJUSTMENT

STOP DOG MAY BE IMPROPERLY SET

MECHANISM FALLS TO SEPARATE RECORDS PROPERLY


Fig. 18


Fig. 19


Fig. 20

## PICKUP FAILS TO LAND PROPERLY



Fig. 22


Fig. 23


Fig. 24
DISTORTED OR NO OUTPUT


Fig. 28


Fig. 29

PICKUP SKIPS GROOVES


Fig. 25
MECHANISM FAILS TO TRIP


Fig. 26


Fig. 27
PREMATURE TRIPPING


Fig. 30



MECHANISM FALLS TO COMPLETE CYCLE

Fig. 35



## TRIPPING



Fig. 37


Fig. 38


Fig. 39

POSITION OF LANDING ADJ. ECCENTRIC STUD FOR PICKUP FURTHEREST -


Fig. 41

## Adjustments

## Pickup Landing Adjustment:

Under ordinary conditions the landing adjustment is a screw. driver adjustment as shown. The adjustment of eccentric landing adjustment stud (B) give: approximately a $1 / 4^{\circ}$ movement. (See Figs. 38, 40.)
H. however, the pickup arm has been removed it is first necessary to make an approximate landing adjustment as follows:

1. With the mechanimm out of cycle and the clamp screw (G) (Fig. 39) loose, place pickup arm on the rest and tighten clamp screw enough to prevent the clamp from slipping on the shatt.
2. Set the landing adjusiment stud $(B)$ as shown (midadjustment). (See Figs. 40. 41.)
3. With the power removed, push reject control to reject. Rotate turntable by hand in the correct direction until the pickup is about ready to land.
4. Loosen clamp screw (G) and move pickup arm so the stylus is approximately 25 / $^{\prime \prime}$ from side of centerpost. Tighten clamp screw. (See Figs. 36, 39.)
5. Exact landing adjustment can now be made by a screw. driver on stud (B). (See Fig. 38.)

Pickup Height Adjustment (See Fig. 38):
Adjust knurled nut (A) until the distance (during change cycle) between the top of the turntable and the stylus point is approximately $1 \frac{1}{6 \prime \prime}$.
NOTE: If unable to adjust for sufficient height, it may be neces. sary to cut a few turns from the compression spring to allow more space on the shatt.
Tripping Adjustment (See Figs. 37, 38):
Adjust the eccentric tripping stud (C) until the mechanism trips when the stylus is $19 / 32^{\prime \prime}$ from the side of the centerpost.
Mounting Bracket Adjustment (See Fig. 38):
Loosen the two screws (F) and move the bracket so it is as near perpendicular to the slide as possible. Move back or forward until the cut away section of the cycling cam clears the knurled roller approximately $1 / 16^{\prime \prime}$. Tighten screws.
Muting Switch Adjustment (See Fig. 38):
Loosen the two screws (D) and adjust the position of the switch so the contacts are approximately $1 / 32$ to $1 / 16$ inches apart when the mechaninm is out of cycle. If the mounting serews do not give sufficient adjustment, bend tab on slide slightly.

## Stop Dog Adjustment (See Fig. 38):

Tum the eccentric secrew (E) until the record drope to the turntable without striking the pickup arm.


$\begin{gathered} \text { STOCE } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { ILI. } \\ & \text { No. } \end{aligned}$	DESCRPPTION	$\begin{gathered} \text { STOCX } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { ML. } \\ & \text { No. } \end{aligned}$	DESCRIPTION
74862 74864 74865 75756	1 2 3 4	Spring-Spindle nose spring--formed   Separator-Separator knife   Shelf—Separator shelf   Spring-Separator shelf return spring (.118"	75719 76098	24 24	Arm-Pickup arm shell only (see note)   Arm-Pickup arm (late type) complete with counterbalance, swivel and pin-less collar, pickup and cable (see note)
33726	5	Washer-"C" washer to hold separator shaft and cam	75728	25	screw-for No. 76098 pickup arm (late type)
75757	6 7	Shafl-Separator shoff with cam Knob-Control knob			plete with connectors for all models using crystal pickups
75739	8	Lever-Reject lever complete with formed spring	76298	25	Cable-3-wire twisted pickup arm cable complete with connector: for RP-190-5 using ceramic pickup
75729	9	Board-Motorboard sub-assembly complete with welded and/or staked studs and rent	71095	26	Nut-Speed nut for cable-in rear of arm
74869	10	Washer-No. 6 flat washer for under head of screws No. 75758	72765 $\cdot 75721$	27 28	Nut-Speed nut for cable-in center of arm
75758	11	Screw-No. 6-32 $\times 1^{\prime \prime}$ fillister head machine screw (holds nose to spindle)	'75724	29	note)
74080	12	Washer-Thrust bearing washer			(see note)
$7574 \varepsilon$	13	Stud-Reject lever mounting stud	-75723	30	Screw-No. $6 \times 11 / 16^{\prime \prime}$ fillister head screw to
75755	14	Cap-Spindle nose cap-red			en counterbalance
75753	15	Turntable-Turntable and shaft assembly complete with finished disc	75886	31	Spring-Counterbalance spring (.180" O.D. $x$ $.600^{\prime \prime}-30$ turns for all models using crysial pickups
75754	15A	Disc-Finished disc for turatable - part of No. 75753	74060	31	Spring-Counterbalance spring (.171" O.D. $x$
74067	16	Pickup-Crystal pickup cartridge complete with stylus (RMP 128-1) for RP-190-1, 3, -4 and -6	-75720	32	pickup   Swivel-Pickup arm swivel (see note)
75575	16 16	Pickup-Crystal pickup cartridge complete with stylus (RMP 128-4) for RP-190-2	-75728	33	Screw-No. 8-32 $\times 5 / /^{\prime \prime}$ cross recessed pan head machine screw to mount pickup arm swivel No. 75720
76297	16	Pickup-Ceramic pickup cartridge complete with stylus for RP-190-5	76100	33	Screw $\rightarrow$ No. $6.32 \times 1 / 4^{\prime \prime}$ hex head machine screw for pivot shaft collar No. 76099
74069	16A	Guard-Stylus guard for No. 74067 pickup			
74819	16A	Guard—Stylus guard for No. 75575 pickup	35969	34	Washer-"C" washer to mount trip lever
74065	16B	Screw-No. 2-56 $\times 3 / 16^{\prime \prime}$ fillister head acrew to mount No. 74069 ar No. 74819 guard	75752	35 36	Washer-Steel thrust washer   Washer-Bearing washer for tone arm
74068	16C	Stylus-Replacement stylus and holder for No. 74067 pickup	74870	37	Retainer-Idler wheel retainer (spring sleeve type)
75770	16C	Stylus-Replacement stylus and holder for No. 75575 pickup	75887 74077	38 39	Washer-Spring warsher for idler wheel
74985	16C	Stylus-Replacement stylus for No. 76297 pickup		40	Nut-No. 6-32 hex nut for mounting motor to Idler lever plate assembly
74230	16D	Nut-Nut and washer to mount No. 74068 or No. 75770 stylus		41	Lockwasher-No. 6 split lockwasher for No. 6-32 hex nut
75722	17	Screw-No. $4 \times 1 / 4$ " fillister head screw to mount pickup	74078	42	Washer-Dampening washer for idler wheel
-75727	18	Spring-Shock absorbing spring (.187" O.D. x 3/4") (see note)	75762	43	Spring-Idler wheel tension spring (.195" O.D. $\times 29 / 32^{\prime \prime}-371 / 2 \text { turns) }$
-75725	19	Nut-No. 8-32 hex nut to mount pickup arm (see note)	75759	44	Plate-Motor mounting plate complete with idler lever
72349	20	Bearing-Thrust bearing	75761	45	Grommet-Rubber grommet for motor mount-
75740	21	Spring-Reject lever spring (formed), part of reject lever	75749	46	ing plate
75742	22	Spring-Keject lever relurn spring (.180" O.D. x $.535^{\prime \prime}-211 / 2$ turns)	33726	47	I.D. $x$ \%" O.D.)-for mounting motor
74782	23	Emblem-"RCA Victor" emblem			sembly

'SEE NOTE ON PAGE 10.

STOCE No.	$\begin{aligned} & \text { ILL. } \\ & \text { No. } \end{aligned}$	DESCRIPTION	STOCX No.	$\begin{aligned} & \text { ILL. } \\ & \text { No. } \end{aligned}$	DESCRIPTION
75760	48	Motor- 117 volt, 60 cycle motor for all models except RP-190-3 and RP-190-5	75730	68 69	Switch-Muting switch   Spring-Pickup arm return lever spring (.195"
75937	48	Motor-85 volt. 60 cycle motor for RP-190-3 (used in some Model 45-EY-3)	75734	70	O.D. $\times 11 / "^{\prime \prime}-69$ turns)   Lever-Return lever
76299	48	Motor-117 volt, 60 cycle motor for RP-190-5 (less conversion spring)	35969	71 72	Washer- "C" washer to mount return lever Cable-Shielded audio cable (see Service
76302	-	Spring-Conversion spring sleeve ( 60 to 50 cycle) for use on No. 76299 motor in RP-190-5	31048	728 73	Data for various instruments)   Plug-Pin plug for audio cable   Power cord (see Service Data for various
74212	49	Nut-Control knob speed nut			instruments)
74431	50	Washer-Spring washer to mount reject lever mounting stud	30870	73A	Connector-2 contact male connector for power cable
75736	51	Collar-Friction collar	75731	74	Rod-Elevating rod
14974	52	Screw-No. $8-32 \times 3 / 16^{\prime \prime}$ hex socket headcup point-ior friction collar	75768	75	Stud-Tripping adjustment stud
75738	53	Wheel-RAatchet wheel	74431	76	Washer-Spring washer for adjusting studs
75750	54	Washer-Flat washer-metal (.0299" $\times .180^{\prime \prime}$ I.D. $\times 9 / 16^{\prime \prime}$ O.D.) - for ratchet wheel, thrust spring	75767	77 78	Lever-Trip lever assembly-less spring and tripping and landing adjustment studs Washer-Spring washer for adjusting studs
75743	55	Spring-Ratchet wheel thrust spring (5/16" O.D. $\times 7 / 16^{\prime \prime}-51 / 2$ turns)	75769 75749	79 80	Stud-Landing adjustment stud   Washer-Flat washer-metal (.0299" x . 190"
33726	56	Washer-"C" washer to mount ratchet wheel			I.D. $\times 7 /{ }^{\prime \prime}$ O.D.)-to mount sub-motorboard
75735	57 58	Bracket-Mounting bracket for slide assembly Lockwasher-No. 8 external teeth lockwasher	75746	81	Spring-Height adjustment spring (.262" O.D. $\times 13 / 16^{\prime \prime}-8$ turns)
74670	59	for cycling slide mounting bracket   Screw-No. $8 \times \mathrm{Z}^{\prime \prime}$ self-tapping hex head screw to mount slide assembly bracket	-75763	82	Slide-Cycling slide assembly complete with stop dog-less cam wheel and stop dog adjusting stud (see note)
75732 76300	60 60	Housing-"On-Off" switch housing and lever —less switch (for RP-190-1, -2 and -3)   Housing-"On-OH" switch housing and lever -lens switch (for RP.190-4, 5 and -6)	76101	82	Slide-Cycling slide (late type) complete with stop dog and safety lever-less cam wheel. safety spring, slop dog spring and slop dog adjusting stud
75733	60A	Switch—"On-Ofi" switch-less housing (for RP-190-1, -2 and -3)	72362	82B	Spring-Safety lever actuating spring (.242" O.D. $\times 1^{\prime \prime}-191 / 2$ turns) for slide No. 76101
76301	60A	Switch-'On-Off" switch-less housing (for RP. 190-4, 5 and .6)	75742	83	Spring-Trip lever spring (. $180^{\prime \prime}$ O.D. x .535" - $211 / 2$ (urns)
	61	Screw-No. $8 \times 1 / 4^{\prime \prime}$ self-tapping hex head screw to mount "On-OH" switch	33726	84	Washer-"C" washer for cam wheel
75737	62	Roller-Knurled roller	75764	85	Wheel-Cam wheel and tire
75751	63	Screw-No. $10-32 \times 17 / 64^{\prime \prime}$ headless set screw-dog point-for knurled roller	75765	86	Spring-Stop dog tension apring (.195" O.D. $\text { = } \left.11 / 16^{\prime \prime}-241 / 2 \text { turns }\right)$
-	64	Clamp-Cable clamp for audio cable	75786	87	Stud-Adjusting stud for stop dog
--	65	Nut-No. 8-32 hex nut to fasten cable clamp ILL. 64	74431	88	Washer-Spring washer for stop dog adjusting stud
74192	66	Connector-3 contact male connector for audio cable	75744	89	Spring-Slide assembly return spring ( $1 / 4^{\prime \prime}$ O.D. $\times 223 / 32^{\prime \prime}$ - 90 turns)
	67	Same as 61	75747	90	Nut-Knurled nut for height adjustment

APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS



The RP193-1 record changer is designed to play and change automatically twelve of the new RCA type seven inch fine groove 45 r.p.m. phonograph records.

## SPECIFICATIONS

Turntable speed	m.
Hecords used	BCA trpe seven-inch fine groove
Record capacity	12 records
Pickup force	Approx. 5 grams
Stylus tip radius	. 001 inch
Power supp	105-125 volts, 80 cycle, a.

## LUBRICATION

A light machine oil (Singer Sewing Machine Oil) or equivalent, should be used to oil the bearings of the drive motor and the following:

> Idler Carriage.
> Pickup Arm Pivot Bearing.
> Top \& Bottom Turntable Shat Bearings.

Houghton STA.PUT No. 512 or equivalent grease should be used on the following:

Ball beating on bottom end of turntable whatt.
Cycling cam shatt.
Points of contact on reject slide assembly.
Cam tracks where the following parts contact.
Elevating rod, pickup arm lever and inclined edge where pinion gear rides.
All gear teeth.
Surfaces where pinion gear drive keys contact shelf and blade assemblies.

Houghton STA.PUT No. 320 can be used on the pinion gear shaft. (However, if available a graphite grease is highly recommended.)
(Do not oil or grease record separator shelves.)
It is important that the drive motor spindle and the rubber tire on the idler wheel be kept clean and free trom oil and grease, dirt, or any toreign material at all times. Carbon tetrachloride or naphtha is satisfactory for cleaning those parts.

STA-PUT can be purchased from E. F. Houghton \& Company. 303 W. Lehigh Avenue, Philadelphia, Pa.

# PREPARED BY RCA SERVICE CO., INC. <br> FOR <br> RADIO CORPORATION OF AMERICA <br> rCA VICtor division <br> CAMDEN, N. J., U. S. A. 

## CAUTION

1. Avoid handling the pickup arm when the mechanism is in cycle.
2. Do not use force to release a jam.
3. Do not try to remove the records on the turntable if the turntable is stopped in cycle with separator blades exposed.

## AUTOMATIC OPERATION

1. Place a stack of records over the center post, with the deslred selection upward, the last record to be played on top.
2. Push the "start-reject" knob toward the back of the cabinet and let go. The mechanism will automatically play in sequence one side of each record stacked on the separator shelves.
3. To reject a record being played, push the "start-reject" knob toward the back of the cabinet.
4. At conclusion of playing and as the last record is being repeated, lift the pickup arm and place on its rest. Turn off the power to the drive motor by pulling forward on control knob.
5. Remove the stack of records by lifting them straight up.

## TABLE OF CONTENTS

Description ..... Pag*
Specifications ..... 1
Lubrication ..... 1
Caution ..... 1
Automatic Operation ..... 1
Function of Principal Parts ..... 2
Adjustments ..... 2
Cycle of Operation ..... 3.4,5
Service Hints ..... 5, 6, 7
Helpful Suggestions (Do You Know?) ..... 7.8
Dismantling Mechanism ..... 8
Exploded View of Mechanism ..... 9
Replacement Parts List ..... 10

## RP-193-1



## Pickup Arm Lever (35)

The function of the pickup arm lever is to direct the horizontal movement of the pick. up arm during change cycle. This is accomplished as the end of the pickup arm lever rides in the channel molded in the cycling cam. Later, as the mechanism is playing. the pickup arm lever follows the movement of the pickup arm until the pickup arm lever contacts and moves the segment engagement gear, thus tripping the mechanism.

## Pinion Gear (13)

The function of the pinion gear is to mount the pinion gear drive keys and transier the rotating motion of the turntable to the cycling cam during change cycle.

## Pinion Gear Drive Keys (13A)

The function of the drive keys mounted on the pinion gear is to actuate the separator mechanism inside the centerpost as they raise and lower with the pinion gear.

## Segment Engagement Gear and Lever Assembly (36A)

The segment engagement gear is mounted on the underside of the cycling cam. During the playing time the segment engagement gear is receded. As the mechanism is tripped the segment gear is extended, thereby making a momentary contact with
the rotating pinion gear. This contact provides the movement to start the cycling cam rotating and carry the mechanism through change cycle.

## Cycling Cam (36)

The function of the cycling com and its molded channels is to direct the movement of the pickup arm and the separator mechaninm during change cycle.

## Detent Lever (17A)

The function of the detent lever is to engage the depression in the side of the cycling cam, and stabilize the cycling cam in the out of cycle position.

## ADJUSTMENTS

## PICKUP ARM HEIGHT

Loosen the screw marked ("A") on back of the pickup arm and adjust so the pickup will clear a stack of twelve records. Raising the screw in the elongated hole raises the pickup arm. lowering the screw lowers the pickup arm.

## PICEUP.LANDING ADJUSTMENT

Loosen screw marked ('B') and slide the mounting bracket forward to move the landing point away from the centerpost, and back to move the landing point inward.
NOTE: Before making the adjustment, make certain the safety springs (26) are in the pin grooves.

## TRIPPING ADJUSTMENT

If mechanism fails to trip when the stylus is approximately $1982^{\prime \prime}$ from the side of the centerpost, bend the end of the segment engagement lever (indicated in drawing at right) out for early tripping and in for late tripping.


## Note:

If spacing between separator blades and separator shelves do not fall between .040 to $.048^{\prime \prime}$ bend blades accordingly.

FUNCTION	EXPLANATION	
Place a stack of records over the centerpost.	1. Records rest on separator shelves protruding from either side of the centerpost.	
Push control knob to reject and release.	1. The control first actuates the power switch applying power to the drive motor. This action starts the turntable rotating.   2. Further movement of the control knob causes the reject lever (39) to move the reject slide (47) sufficiently. for engagement with the end of the segment engagement gear and lever assembly (36A). This movement through the train of levers trips the mechanism.	
Cycling starts.	1. As the reject slide moves the segment engagement gear slightly, the segment gear snaps outward due to the action of trip spring (37).   2. After the segment engagement gear has snapped out, the rotating pinion gear (13) engages the teeth of the segment gear and gives a slight rotary motion to the cycling cam (36). This slight rotary motion causes the teeth of the pinion gear and the teeth of the cycling gear to engage, thus starting change cycle.	

Pickup raises from the rest and moves sut.

1. As the cycling gear starts rotating the pin on the muting switch moves off the boss on the gear permitting the switch to short out the pickup.
2. The elevating rod (30) rides up the incline suriace of the track on the cycling cam, causing the pickup to raise from the rest.

3. As the cycling cam continues to rotate the turned down end of the pickup arm lever (35) follows the channel moulded in the cycling cam and swings the pickup arm out clear of the records.


## RP-193-1

Separator blades separate the lower record from the atack and the lower record drops to the turntable.

1. An instant atter the pickup arm has started to ralse the rotating pinion gear (13) starts to raise also. This is due to the lower edge of the gear riding up the spiral incline formed on the edge of the cycling cam.
2. The raising of the pinion gear and key assembly actuate the separating mechanism inside the centerpost. This action causen the suppont shelves to recede and the separator blades to move out to select the lower record of the stack and to support the remaining records while the bottom record dropi to the turntable.


Pickup mover in for landing.

1. As the mechanism nears the end of the change cycle, the end of the segment engagement gear extending from the top of the rotating cycling gear comen against the mounting bracket. This contact resets the segment engagement gear preventing continuous cycling.
2. The end of the pickup arm lever riding in the channel in the cycling gear, moves the pickup arm in for landing.
3. The pickup lands on the start of the record as the elevating rod rides down the incline on the cycling gear.
4. At this very moment the end of the pickup arm lever moves into the open portion of the cycling cam track. This gives free movement to the pickup arm as it moves across the record.


APM3 - CYCLE OF OPERATION - PICKUP LANDS

Cycling completed and the record plays.

1. The detent lever (17A) snaps the cycling cam into $\alpha$ neutral position as the muting switch pin comes in contact with the boss on the cam. This completes the change cycle.

2. As the record plays, the pickup moves inward.
3. When the stylus reaches the end of the selection, the side of the pickup arm lever (35) contacts and trips the segment engagement gear and a new change cycle is started.
4. The mechanism repeats the preceding sequence of operations until the last record of the stack has dropped to the turntable and has been played.
5. The last record will be repeated until the pickup is lifted and placed on the rest.

RP-193-1


## SERVICE HINTS

Stalling During Change Cycle



Turntable Scrapes


## No Output From Instrument



## "WOW" OR SPEED VARIATION



## CONTINUOUS TRIPPING



THEREFORE THE SEGMENT ENGAGEMENT GEAR IS NEVER RESET


## RUMBLE




MECHANISM FAILS TO TRIP


TURNTABLE RAISES DURING CHANGE CYCLE


## PICKUP SKIPS GROOVES



IF MOUNTING BRACKET IS NOT SEATED PROPERLY OVER
SHOULDER OF SHAFT, MECHANISM MAY FAIL TO TRIP. SHOULDER OF SHAFT. MECHANISM MAY FAIL TO TRIP.
ALSO MUTING SWITCH MAY NOT FUNCTION PROPERLY.


IF THE END OF THE SEGMENT ENGAGEMENT GEAR IS BENT LISHED AND CONTINUOUS TRIPPING WILL RESULT.


IF REJECT SLIDE BINDS, CON-


IF THE MUTING SWITCH IS BENT, MECHANICAL NOISES MAY BE
AMPLIFIED DURING CHANGE CYCLE


IF THE SPRING IS IMPROPERLY BENT, OR THE END OF THE SEGMENT GEAR BINDS IN THE HOUSING OR BEARING, TRIPPING WILL BE ERRATIC


## DISMANTLING MECHANISM

(Refer to exploded view on opposite page)

## REMOVAL OF PICKUP ARM

1. Disconnect pickup wires.
2. Loosen clamp screw 28.
3. Lift pickup arm straight up.

## REMOVAL OF PICKUP ARM SWIVEL (BRACKET)

1. Remove landing adjustment screw 22.
2. Push pivot pin 25 away from the slotted side of the pickup arm shell, bend shell slightly to remove pin and entire swivel assembly will slide out.

## REMOVAL OF TURNTABLE ASSEMBLY

1. The entire turntable and pinion gear assembly (Nos. 1 to 40 inclusive) can be lifted out by removing the "C" washer 40 located below the upper turntable bearing.

## DISMANTLING THE TURNTABLE ASSEMBLY

1. Remove "C" washer 40 located directly below the pinion gear.
2. Slide the pinion gear 13 and spring 12 off the spindle shaft 10.
3. Remove cap 1.
4. Remove screw 2.
5. Separate spindle cover 3 from the turntable.
6. Push pin 8 out to remove spring 7, shelf 6 and blade assembly 5.

## REMOVAL OF TURNTABLE SPINDLE SHAFT

1. Remove "C" washer 9 and lift out spindle shaft 10.

## REMOVAL OF CYCLING CAM

1. Remove screw 34.
2. Lift bracket assembly consisting parts Nos. 31 to 35 inclusive.
3. Remove cycling cam.


$\begin{aligned} & \text { MLL } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { STOC1 } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { MI. } \\ & \text { io. } \end{aligned}$	$\begin{aligned} & \text { STOCX } \\ & \text { NO. } \end{aligned}$	DESCRIPTION
1	76246	$\underset{\text { red }}{\text { Cap-Turatable centerpost housing cap- }}$	34	72409	Screw-\#8-32 $\times 3 / 4{ }^{\prime \prime}$ binder head screw to faston pickup arm bearing bracket
2	76242	Screw-\#8.32 $\times$ \%" cross-recessed shoulder screw	35 36	76222 76217	Lever-Pickup arm shaft and lever   Cam-Cycling cam and gear complete with
3	76241	Housing-Centerpost housing			segment engaging gear and trip apring
4	76247	Washer-Spring washer for turniable centerpost and shoulder screw	36A	-	Gear-Segment engaging gear-part of Ill . \#36
5	76237	Separator-Record separator and knlle	37	76218	Spring-Trip apring
6	76238	Shelf-Record sheli	38	76251	Rnob-Reject knob
7	76239	Spring-Hecord shelf spring (formed)	39	76223	Lever-Reject lever
8	76240	Pin-Rocord sheli and separator pln	40	76221	Washer-"C" washer to fanton spindle and
9	76245	Washer-"C" washer for turntable centorpost	41	76227	centerpost   Screw-\# $10-32 \times 1 / 4^{\prime \prime}$ binder head machine
10	76236	Shaft-Turniable shaft			screw to mount bearing assembly
11	76248	Turntable-Turatable and mat	42	76228	Grommet-Rubber grommet to mounting
12	76244	Spring—Pinion gear return apring ( $23 / 32^{\prime \prime}$ O.D. $11 / "^{\prime \prime}-8 \text { turna) }$	43	76249	Spacer-Metal epacer to mouni mechaninm in plastic cabinet used in (45J3)
13 138	76243	Gear-Turniable pinion gear complete with two (2) drive keys   Key-Drive key for turntable pinion gearincluded in III. \#13	44	76250	Washor-Flat motal washer to mount mechanism in plastic cabinet used in (45J3)
14	76229	Washer-"C" washer to faston idlor wheel on Motor \#9220.1.	45		Screw-\#8.32 x 3/4" binder head machine screw to mount mechomiem in plastic cabInet uned in (45J3)
15	76286	Wheel-ldiler wheel for Motor 9220.1	${ }^{18}$	78233	Spring-Detent lever return epring (\%/44" O.D.
18	78287	Washer-Dampening washer for idier wheel for Motor 9220-1	47	76232	$\times 3 /{ }^{\prime \prime}$-34 turns)   Link-Relect link
17	76231	Base-Sub-base complote with all staked and riveted parts including detent lever	48		Wabher-Flat washer for mounting reject slide
${ }^{17} 18$	76215	Lever-Detent lever-included in IIl. \#17   Arm-Pickup arm complete with counterweight less crystal and cable	49	76230	Spring-Relect slide return spring $1 \% \%^{\prime \prime}$ O.D. $\times 7 / 0^{\prime \prime}-12 \text { turns) }$
19	76257	Crystal-Crystal cartridge complete with stylus	$\begin{aligned} & 50 \\ & 51 \end{aligned}$	32875	Switch-ON-OFF switch complete with cover Screw-\#4 $\times 3 / 16^{\prime \prime}$ cross recessed round head seli tapping screw to mount ON-
20	76216	Scrow-\#2.56 x 1/1/" crols recensed fillisior head machine screw to mount crystal			OFF switch
21	76210	Screw-\#4.40 $\times 1 / 4 "$ binder head machine screw for height adjustment	53.   54.		
22	76210	Screw-\#4-40 $\times 1 / \mathbf{m}^{\prime \prime}$ binder head machine screw for landing adjustment	$\begin{aligned} & 56 \\ & 55 \end{aligned}$	$\begin{aligned} & 76234 \\ & 76226 \end{aligned}$	Bearing-Turntable bearing assembly Washer-Bakellte washer for bearing
23		Cable-Twisted pair cable and connectors			sembly
24	76211	Bracket-Landing adjustment bracket	57	76224	Swlich-Muting switch
25	76212	Pin-Pivot pin	58		Lug-Solder lug
26	76213	Spring-Pickup arm safoty spring $13 / 16^{\prime \prime}$ O.D.   x $35 /$ s $^{\prime \prime}$ "-9 turns)	59	76225	Screw-\#5.40 $\times \$ / 16^{\prime \prime}$ hex head tapping screw for mounting muting switch (2 req'd)
28	75726	Brackel-Pickup arm	60	70	Washer-Flbre washer for mounting motor
	7572	moun'ing bracket	61	76288	Grommet-Rubber grommel for motor
29	75725	Nut-\#8.32 hex nut to fasten mounting bracket	62	76229	mounting plate for Motor 9220-1   Washer-"C" warher to mount motor
30	76235	Rod-Elovating rod	63	76291	Motor-115 volt, 60 crcle motor leas mount-
31	76220	Washor-"'C" washer to fasten plckup arm lever			$9220-1)$
32	57209	Washer-Spring washer for pickup arm lever and bearing bracket	-	76289	Plato-Motor mounting plate for Motor 9220-1
33	76219	Brackei-Plckup arm bearing bracket	-	76290	Spring-Idier wheel apring (3/18" O.D. $x$ $5 / 18^{\circ}$ ) for Motor $9220-1$

Additions to Parts List:
Stock
No. Description
75274 Nut-Knurled nut to faston atylus \#76374
76374 Stylus-Replacement stylus for pickup stamped 988370-1
76323 Stylus-Replacement stylus for pickup stamped 988370-2

## Replacement of Pickup Stylus:

Either one of two types of pickups may be used in this record changer. Each has a replaceable osmium tipped stylus.
The stylus in pickups stamped 988370-1 is secured with a knurled nut. It in only necessary to loosen the knurled nut to remove the stylus. Replacement stylue is Stock No. 76374.
The stylus in pickups stamped 988370-2 is secured by puah fit in the pickup. To remove-insert small blade of a penknife under the stylus (close to shank of holder) and twist the knife blade. To replace-push shank of stylus holder into pickup.


## IDENTIFICATION OF MODELS

Each record changer bears a label on the underside of the motorboard in accordance with the following:

## 960282-1

60 cycle version used in domestic instruments. Has Slock No. 75044 crystal pickup. Used in Models A55, A78, TA128 and TAl29.

## 960282-2

$50 / 60$ cycle version used in instruments designed for export sale. Has Stock No. S-5652 ceramic pickup. Used in Models 9QV5 and 4QV8C.

## 960282-3

50/60 cycle version used in instruments designed for export sale. Has Stock No. 75044 crystal pickup. Used in early production of Model 9QV5.

## 960282 -4

60 cycle version used in domestic instruments. Has Stock No. 75475 crystal pickup. Used in Models A82, 2 T81 and $6 T 84$ (mahogany and walnut).

## 960282-5

Identical to $960282-4$ except for tan finish. Used in Models A82, 2 T 81 and 6 T84 (blonde and limed oak).

## Compensation:

Some of the above record changers have a resistor/capacitor combination on the pickup lead terminal board. This is to compensate for the differing frequency response of various instruments. Correct values of these resistors and capacitors are indicated in the Service Data for the instruments which use the record changer.

## AÚTOMATIC OPERATION

1. Lift the record stabilizing clamp.
2. Place a stack of records, ten inch if desired; over the center post learing the edge of the stack resting on the ten-inch support.
When playing a stack of twelve-inch records, raise both the stabilizing clamp and the ten-inch record support before placing the stack over the center post. The twelve inch records will rest on the main support.
3. Lower the stabilising clamp on the stack of records.
4. Turn the speed selector control for the proper speed.
5. Select the proper stylus by turning the knob at the front end of the pickup arm.
NOTE: The speed selector and the stylus selector controls must indicate the same when selecting for a certain type of record.
6. Turn the control knob in the right hand end of the motorboard to "reject" and release.
The mechanism will play one side of each record in the stack automatically. It will continue to repeat the last record of the stack until the piclcup is raised from the record and placed on the rest.

# PREPARED BY RCA SERVICE CO., INC. 

 FORRADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.
7. To reject a record being played, turn the control knob to reject and release.
8. To remove records, place pickup arm on the rest, turn control knob to "off," raise stabilizing clamp and lift the entire stack.
NOTE: The pickup arm should only be handled when the control is in the manual position or before the pickup has played approximately $1 / 3$ the distance in, if playing automatically. The pickup arm can also be handled when the mechanism is stopped if it feels free to move.

## FEATURES

1. This record changer is a center support, drop type, two speed (78-331/3 rpm) mechanism, designed to play autamatically a series of twelve ten-inch, or ten twelve inch records of the standard 78 rpm type or of the long playing $331 / 3 \mathrm{rpm}$ type.
2. The mechanism is equipped with a light weight, dual stylus pickup cartridge.
3. The cutomatic tripping device is of the acceleration type.
4. The two speeds of 78 or $331 / 3 \mathrm{rpm}$ are controlled by $a$ single knob.
5. The. stylus selection if accomplished by a single knob.

## MANUAL OPERATION

1. Raise both the stabilising clamps and the ten-inch support shelf.
2. Place either a ten or twelve inch record on turniable.
3. Select the proper speed and stylus.
4. Turn control knob to manual.
5. Place pickup on start of the record.
6. When selection is completed, lift pickup arm and place it on the rest.
7. Turn control knob to "off".
8. Lift record straight up to remove.

## HELPFUL SUGGESTIONS

Before servicing the mechanism, inspect the assembly to determine whether all levers, springs and parts are in place and not jammed or bent.

1. Never use force to start or stop the turntable or any part of the mechanism.
2. (a) If for any reason the mechanism becomes jammed, it may be released by pulling both the spiral engagement stud and the cycling carriage return stud downward. Then move the cycling carriage in a clockwise direction (viewed from the boltom).
(b) If the two studs cannot be pulled down, try to remove the turntable by lifting straight up.
3. Cracked or badly chipped recorde may damage the stylus.
4. Do not leave records on the mechanism for an extended period of time as a guard against warpage.


## FUNCTIONS OF PRINCIPAL LEVERS

## Push-off slide actuating lever 30

The actuating lever located inside the support post extends through the motorboard. The function is to transfer the movement of the push rod 51 to the 10 and 12 inch push-off slides.

## Push-off slides 5, 10

The function of the slide is to push the records off the step in the center post.

## Cycling Carriage 69

The cycling carriage forms the main tie link between the various levers. When the mechanism is tripped the cycling carriage engagement stud 42 raises and engages the cycling spiral channel located on the underside of the turntable. This engagement causes the cycling carriage to rotate about its pivot in a counterclockwise direction (Viewed from the bottom). The movement of the carriage continues in the same direction until the inclined portion of the spiral channel pushes the stud down to engage the latch (89). The next instant the cycling carriage return stud (40) becomes unlatched after which it raises and engages the spiral channel which returns the cycling carriage to the normal out of cycle position.

## Cycling Carriage engagement Stud 42

The engagement stud forms a link between the cycling carriage and the cycling spiral on the under side of the turntable. This stud causes the cycling carriage to rotate in a counterclockwise direction (viewed from the bottom of the motorboard).

## Cycling Carriage Return Stud 40

The return stud forms a link between the
cycling carriage and the cycling spiral. This causes the cycling carriage to return to the normal out of cycle position.

## Push Rod 51

The push rod forms a link between the push rod actuating lever (55) and the push off slide actuating lever (30).

## Elevating Rod 19

The elevating rod functions as a lift for the pickup arm.
Push rod actuating lever 55
Push rod actuating lever is a tie link between the push rod (51) and the cycling carriage (69). It also is provided with an adjustment to govern the travel of the push-off slides 5 and 10.

## Friction stabilizing spring 88

This spring forms a wedge which holds the cycling carriage (69) from drilting when the mechanism is in the playing position. In its braking action it provides a means of slowing the movement of the pickup to provide a qentle landing.

## Trip lever (upper) 34

As the pickup arm travels towards the center of the record, the trip lever is carried along by the inter-connecting levers. A small offset located on the turntable shaft rotating with the turntable contacts the end of the trip lever once with each revolution. On each con!act the trip lever is pushed kack slightly. This slight backward movement continues as long as the pickup is moving at a constant rate of speed. When the pickup enters the eccentric groove of the record, the movement is accelerated and thus allows the trip $\operatorname{dog}(34 A)$ to drop
off the edge of the trip latch (89) before the turntable has made a revolution, therefore. the small offset on the turntable strikes the trip lever and in so doing, moves trip latch (89) and starts change cycle.

## Trip Lever (lower) 78

The lower trip lever mechanically linked to the upper trip lever (34) trans!ers the action from the underside of the motorboard to the top of the motorboard.

## Pickup Arm Landing Change Lever 59

The pickup arm landing change lever functions as a stop for the pickup indexing lever (62). The change lever position is altered depending upon the position of the 10 inch record support 4.

## Pickup Arm Indexing Lever 62

The pickup arm lever engages one of the notches in the indexing lever and in so doing determines the landing position of the pickup.

## Pickup arm lever 65

The pickup arm lever is connected to the pickup arm through the pickup arm pivot (20). The inward motion of the pickup arm causes the tripping action as a result of the contact between the pickup arm lever and the lower trip lever.

## Pickup Arm Stabilizing Lever 61

The pickup arm stabilizing lever is actuated by a small tab on the cycling carriage during the change cycle. The forward movement of this stabilizing lever permits contact with the stud (65A) on the pickup arm lever, thereby stabilizing the pickup arm during the change cycle of the mechaniem.


## CYCLE OF OPERATION

## Function

## Description

Place a stack of 10 or 12 inch records over the center post. Lower the record stabilising clamp.

1. The records are supported by notch or step in center post
2. The edge of the records rest on the separator shelf. 10 inch records on the 10 inch shell (4)


Turn speed selector knob to 78 or $33^{1}$ : rpm position (de. pending on type of record).

1. The motor has a turned down shaft providing a means of changing speed by raising or lowering the idler on the dual diameter shaft.

2. The rotation of the stylus knob selects the proper stylus depending on the type of record to be played.


Push Control knob to reject position and release.

1. The Operating Control detent (74) mechanically connected to control knob engages and actuates the power switch (91) starting the turntable rotating.
2. Further rotation of the control knob moves the lower trip lever (78) sufficiently to allow the trip $\operatorname{dog}(34 A)$ to slide off the end of the trip latch (89).

## 12 inch records on the 12 inch shelf (9)

3. The position of the 10 inch support shell (4) (up or down) determines the landing position of the pickup due to the action on the landing change (59) and index (62) levers.
4. As the trip dog slides off the trip latch. the trip lever (34) has moved in sufficiently for the offset on the turntable shaft to contact the end of the trip lever and push it back.
5. The backward movement of the trip lever (34) unlatches cycling engagement stud (42) allowing it to raise and engage the cycling spiral.

6. The inclined end of the carriage located beneath the pickup arm pivot raises the elevating rod (19) lifting the pickup arm.
7. The same end of the cycling carriage has two spring steel blades forming a frictional connection between the cycling carriage and the pickup arm lever (65) by wedging the disc portion of the pickup arm lever between the two blades. This moves the pickup arm outward.


As the cycling carriage engaqement stud (42) engages begins to move counterclockwise (viewed from the bottom of the motorboard) about its pivot.

4. A small tab on the cycling carriage contacts and moves the pickup arm stabilizing lever (61) against the stud (65A) mounted on the tension spring incorporated in the pickup arm lever (65). This contact stabilizes the pickup arm in its movement during change cycle.


Record drops to the turntable.

1. As the cycling carriage continues to rotate, the end nearest the support post contacts push rod actuating lever (55). starting the action necessary to push the record off the center post.
2. The movement of the push rod actuating lever (55) through the linkage of push rod (51) push-oft slide actuating lever (30) and push-off slide (5 or 10 ) pushes the record off the center post.
3. Record drops to turntable.

Note: The mechanism incorporates two push-otf slides: one for ten inch (5) and one for tweive inch records (10).
 for landing.

1. Up to this time the cycling carriage (69) is moving in a counterclockwise direction (viewed from the bottom). After the record is pushed of the center post the lock out lever (86) mounted on cycling carriage contacts the stop and in so doing unlatches the cycling carriage return stud (40).

2. The end of the cycling carriage beneath the pickup arm pivot again makes the frictional contact with the disc on the pickup arm lever (65). This contact moves the pickup arm in for landing.
3. The pickup arm on its inward movement continues to be stabilized by the pickup arm stabilizing lever (61). This stabilizing continues until the tab on the pickup arm lever is against the ten of twelve inch landing notch in the
4. As the cycling carriage return stud (40) raises to engage the spiral on the underside of the turntable. the cycling engagement stud (42) is pushed down and latched by the action of the incline in the spiral tract, thereby disengaging it from the spiral.
5. The cycling carriage is now moving clockwise (viewed from the bottom of the motorboard).
indexing lever. At this point the pickup should be directly over the point of landing on the record.
6. An instant later the small lab on the cycling carriage contacts the side of the pickup arm stabilizing lever, unlatching the indexing lever (62) and permitting free motion of the pickup arm.
7. The elevating rod sliding down the small incline on the cycling carriage permits the pickup to land on the start of the record.


Note: It should be understood that the function of the indexing lever (62) is to determine the landing position of the pickup, both on ten and twelve inch records.
This is done by the pickup arm change lever (59) functioning as a stop for the indexing lever (62). The position of the pickup arm change lever in turn is govemed by the position of the ten inch support shell (4) (up of down).
8. As the pickup is landing the cycling carriage has reached its starting position and the cycling carriage return stud (40) is pushed down by the incline in the cycling spiral and locked in position.


Cycling is completed and record plays.

1. While the record plays, the end of the trip lever (34) is slowly moving toward the center post due to the force produced by the pickup arm down through the linkage of the pickup arm lever (65) trip arm (65C) and the lower trip lever (78).
2. As the trip lever slowly (34) approaches the offeet on the inner shatt of the turniable it is pushed back slightly with each revolution of the turntable.
3. The trip lever continues to be pushed back againat the friction clutch of the trip arm (65C) as long as the pickup
arm moves in at a constanl rate of speed.
4. When the pickup reaches the end of the selection the pickup moves into the eccentric groove quite rapidy. This rapid movement permits the trip dog (34A) to slide off the edge of the trip latch (89) before the ofteet on the turntable shaft has made one revolution. As the offet conlacts the trip lever (34), it unlatiches the trip latch (89) permitting the cycling carriage engagement stud (42) to raise and engage the cycling apiral starting a new cycle.


Pickup raises and moves out.

1. After the mechaniem has been tripped the pickup arm moves out and rises by action of the cycling carriage (69) on the pickup arm lever (65) and the elevating rod (19).
2. The mechanism again follows the preceding sequence of dropping and playing records until the last record of this stack has been played. The mechanism is not provided with an aulomatic stop so the last selection is repeated until the plckup arm is placed on the rest and the power removed from the drive motor.

Note: The pickup arm can be raised and moved to the rest ponition any time after the mechanism has completed the change cycle, providing the pickup has not played more than approximately $1 / 6$ of the selection. If the pickup arm is moved after this time, the mechanism will go into change cycle and the pickup arm should not be retarded in its movement.
The pickup arm can also be handled when the mechanism is not in operation, providing the pickup arm has freedom of motion.

Turn function control knob to manual.

1. The control detent (74) which is mechanically connected to the control knob, actuates the power switch through the control cam (93). This action starts the turniabie rolating.
2. One end of the control cam aleo slides under the collar (79) on the cycling carriage engagement stud (42). This prevents the stud from raising if the trip lever is dinturbed.
3. The control cam also holde the manual lock out lever (90) in such a position that it locks the lower trip lever (78) to prevent tripping. In this potition, the trip lever (34) is held away preventing contact with off-et on turntable shatt.


## 960282 Series

## POSITION OF SUPPORT POST

1. Loosen three mounting screws at the base of the support post.
2. Slide support post to a position as indicated in accompanying drawing. The curvature of the shelf should conform with a $12^{\prime \prime}$ record.
3. Atter push-off slides have been adjusted, try a stack of both 10 and 12 inch records to determine the ease of separation. A compromise from the setting may be necessary due to differences in length of the 10 inch suppor shelf (4).

## ADJUSTMENTS



## Adjustment of Push-OH Slides

1. Trip the mechanism and turn the turntable by hand until the cycling carriage has rotated counterclockwise. (Viewed from the bottom) to its limit.
2. Adjust screw 57 on push rod actuating lever until the 12 inch push-off slide is extending approximately $1 \%$ in;" over the edge of the shelf.
3. Turn lock nut to hold screw and try a stack of 10 and 12 inch records for ease in separation.

## Adjust lock out lever stop (68)

The lock out lever stop (68) should be so adjusted that the cycling carriage return stud (40) raises an instant before the spiral engagement stud (42) is pushed down. If this timing
 is not properly made the mechanism will jam.

## Adjustment of friction clutch on trip arm

1. Turn the threaded washer on the pickup arm lever to produce sufficient friction lor lrip arm so the mechanism will have positive tripping. Care mus! be exercised against excessive friction as it would cause premature wear on the side walls of the record or in many cases, actually jump the grooves.


## Pickup Landing Adjustment

1. Disconnect power from mechanism.
2. Place a $10^{\prime \prime}$ record on turntable.
3. Turn the operating control to reject and release.
4. Rotate the turntable by hand until the tab on the pickup arm lever (65) is about ready to move away from the indexing lever. (The pickup will be a lew inches above the record at this moment).
5. Loosen adjusiment screw and hold the pickup arm lever in this position while moving the pickup arm directly above the point of landing. (Landing should be about half way between the edge of the record and the start of the recorded section. Approximately $4-11 / 16^{\prime \prime}$ from the side of the center post for a $10^{\prime \prime}$ record).
6. Tighten adjustment screw. apply power and check the pickup landing on both 10 and 12 inch records.
If mechanism fails to land properly on $12^{\prime \prime}$ records the tab may be bent. In that case bend slightly.



Fails To Complete Cycle


## Weak-Distorted or No Output



## SERVICE HINTS (Continued)



Pickup Ships Grooves


Turniable Fails To Change Speed or "Wow"


## Fails To Land Properly



Turniable Fails To Rotate


INCLINE IN SPIRAL MAY BE TOO SHALLOW THEREBY FAILING TO PUSH STUOS DOWN FAR ENOUGH cAUSING A JAM.
(BEND INCLINE AWAY FROM TURNTABLE SLIGHTLY)


## DO YOU KNOW?

## (Jamming or Stalling)



## DO YOU KNOW?

(Tripping)


THIS OFFSET ACTUALLY TRIPS THE MECHANISM


THIS INCLINE PUSHES STUDS
*40 \& 42 DOWN DURING CHANGE CYCLE
(Jumping grooves)

IF THERE IS BINDING IN TMESE TWO BEARINGS


THESE BRASS BUSHINGS CAN BE TURNED
TO REMOVE CYCLING CARRIAGE
(Record separation)

RECORDS WILL NOT SEPARATE PROPERLY IF THIS ADJUSTMENT IS NOT CORRECT.
SEE PUSH-OFF SLIDE ADJUSTMENT (PAGE B)

(Pickup landing)


REPLACEMIENT PARTS FOR MOTORS



Exploded view of 60 cycle motor (960282-1, 4, and -5)


Spocd comerol lovers msed in 960282-2 and 960282-3 (order by ifom No. from RCA Imtormational Distributors owly)


## LUBRICATION

The molor bearinge and all pivot bearings, excepting the pickup arm pivot, thould be lubricated with S.A.E. 10 machine oil.
The pickup arm and the trip lever bearinge are riding on ball bearinge which should be packed sparingly with light grease, proforably STA-PUT \#512. Use STA-PUT \#512 or equivalont groase on the edgen of all came and pivote or sliding contacts lncluding the spiral track and engagement stud.

NOTE: Do not oil friction clutch or trip arm 65C. spring stoel wedge on end of cycling carriage 69 or triction brake 88.
NOTE: Koep all and grease from all rubber parts of the mechaniam.

## MODELS 960282-2 AND 960282-3

These record changers are used in instrumenter manuiactused for RCA International Diviaion.

They are identical to 960282-1 except for the following:

1. A motor is uned which may be converted for operation on a 50 cycle power supply. Stock No. S-5637 motor includen mounting plate, grommots, Idler whoel and chango-over mechaniem. A 50 cycle converion apring is aleo included.
2. Two levere (Items \#101 and \#102) are different. (Order replacementa by deecription and inom number.)
3. A cercumic pickup cartridge is uned only with 960282-2. Slock No. S-5652 ceramic cartridge complete, including atylusen.
4. Stock No. 75044 cryatal pickup ir used with 960282-3.

NOTE: For operation on a 50 cycle power supply. Remove original apring sloeve from motor shaft and replace with the 50 cycle conversion apring.

Replacements for iteme used only on 960282.2 and 960282.3 are stocked by RCA International Distributore but are not stocked in the U. S. A. Order partin giving full deecription.


Note: The stylus are not replaceable in Stock No. S-5852 coramic plckup used in 960282-2.


Pichup Assombly-Modols 960282-4 and -5


Mechanism may be used in the following instruments:

Radio Combinations-A108	$\begin{aligned} & .960284 \cdot 1,-2 \\ & .960284 \cdot 1,-2 \end{aligned}$
Televition Combinations-9789	960284-1, -2
-6T87	960284-1. -2

-6T87 ......................960284.1.
(See parts list.)

## SPECIFICATIONS

Turntable speed ................................................. 78 or $331 / 8 \mathrm{pm}$	
Record used .....   Record capacity	. $10^{\prime \prime}$ or $12^{\prime \prime}$ (intermixed)
	Ten twelve-inch
	Twelve ten-inch
	Ten intermixed
Pickup force ..................................................... 10 to 12 grams	
Stylus radius	. 001 inch for 331/3 rpm
	.003 inch for 78 rpm
Type pickup	....................Crystal
Power supply	5 volts, 60 cycles A.C

## INDEX

PageFeatures1
Operation ..... 1
Function of Principal Levers ..... $2 \& 3$
Cycle of Operation ..... 4-5-6-7-8
Service Hints ..... 8-9-10-11
Removing Stylus ..... 10
Do You Know? (Service Hints) ..... 11-12
Adjustments ..... 13
Exploded View of Motor ..... 13
Clearance and Mounting
Mechanism ..... 13
Exploded View of Mechanism ..... 14
Parts List ..... 15-16
Cycle of Operation (Modified Type) ..... 17
General Information on Substitutions andChanges18
Lubrication ..... 18

## FEATURES

1. This record changer is a center support intermix mechanism designed to play automatically a series of records up to ten 12 -inch. twelve 10 -inch, or ten intermixed records of the standard 78 RPM type. It will also play a series of the long playing 33-1/3 RPM type of similar diameter.
2. The mechanism is equipped with a light weight dual stylus pickup cartridge. The proper stylus can be selected by turning a knob in the end of the pickup arm.


Fig. 1

## FUNCTION OF PRINCIPAL LEVERS

## See Fig. 1

## Reject rod (56)

The function of the reject rod is to transfer the action from the control knob to the reject lever.

## Trip slide (98)

The function of the trip slide is to transier the movement of the pickup arm lever to the lower trip pawl. This action starts the change cycle.

## Cycling gear (96)

The function of the cycling gears is to transfer the rotating motion of the turntable to the cycling mechanism.

## Stop arm (43)

When the last record of the stack drops to the turntable, the record support arm drops. The lower end of the record support arm pivot actuates the stop lever thereby transferring the action for automatic stopping.

## Litt arm (89)

The function of the uif arm is to transfer the movement of the cycling slide to the separator mechanism inside the centerpost.

## Stop lever (80)

The function of the stop lever is to raise the trip slide and form a stop for pickup arm return lever. This results in the mechanism stopping automatically.

## Cycling slide (102)

The function of the cycling slide is to transier the action from the cycling gear to the other levers.

See Figs. 1 and 4

## Pickup arm lever (71)

The function of the pickup arm lever is iv transfer movement of the pickup arm to levers located beneath the motorboard. Other levers beneath the motorboard also counter react through the pickup arm lever thereby directing the movement of the pickup arm.

## Reject lever (76)

The function of the reject lever is to actuate the power 8 witch and trip slide.

## See Fig. 2

## Twelve-inch indexing lever (61)

After the completion of each change cycle of the mechanism, the pickup arm automatically is indexed for ten-inch records unless a twelve-inch record has dropped to the turntable. As a twelveinch record drops to the turntable, it moves the twelveinch indexing lever thereby directing the position of the selector lever.

$$
\text { See Fig. } 3
$$

## Trip pawl (upper) (94)

The upper trip pawl functions as an actuating device for the cycling engagement pawl.

## Cycling engagement pawl (96A)

The function of the cycling engagement pawl is to engage the off-sel in the turntable shaft thereby starting change cycle.

See Fig. 4

## Pickup arm return lever (68)

The function of the pickup arm return lever is to provide the force necessary to move the pickup into landing position.

## Selector lever (83)

The function of the selector lever is to form a stop for the pickup arm return lever. The position of selector lever (up or down) determines whether the pickup lands on ten- or twelve-inch records.

## Trip pawl (lower) (97)

The lower trip pawl transfers the action of the trip slide from the lower to the upper side of the cycling gear.

```
(See Exploded View-Fig. 6)
```


## Record support (overarm) (1)

The function of the record support is to stabilize and hold the records in a horizonial plane which is parallel to the motorboard. After the last record of the stack drops to the turntable, the pivot of the record support drops down and actuates the automatic slopping device.

## Center post (34)

The function of the center post is to support the stack of records. It also houses the separating mechanism.


Fig. 2


## CYCLE OF OPERATION

NOTE: In the cycle of operation it is assumed the mechanism has stopped automatically (out of cycle) with the pickup arm on the rest.

Function	Description
Place a stack of records over the center post (intermixed if so desired). Place the record support over the center post.	1. The stack of records rests on the step in the centerpost (34).   2. The hole in the end of the record support (1) permits the end of the support to slide over the center post and rest on the stack of records.
Turn the speed selector knob to 78 or 33-1/3 rpm position.	1. The speed change is accomplished by shifting to either of two shafts on the motor assembly which are rotating at different speeds. The additional shaft is connected by a small rubber belt.

Rotate the knob to select the proper stylus.


1. The function control knob, through the linkage of the function control arm (55), reject rod (56), and reject lever (76) actuates the power switch and the trip slide (98).
Rotate function con. trol knob to reject position and release.
2. The rotation of the stylus knob (3) selects the proper stylus depending on the type of record to be played.
. The speed change is accomplished by shifting to either of tio shat on the different speeds. The additional shaft is connected by $\alpha$ small rubber belt.

Cycling starts.

1. The closing of the power switch starts the lurntable rotating.
2. The trip slide (98) in its movement contacts the lower trip pawl (97) and moves both the lower and the upper trip pawls which are tied logether. The movement of the upper trip pawl (94) actuates the cycling engagement pawl (96A) sufficiently to cause engagement with the off-set on the rotating turntable shaft.
3. The contact between the cycling engagement pawl (96A) and the off-set on the turntable shaft gives the necessary push for the teeth in the cycling gear (96) to engage the teeth in the shaft of the turntable thereby starting change cycle.
 turntable.
4. As the cycling gear rotates, the stud (96B) mounted on the underside of the gear, rides inside a slot cut in the cycling slide (102).
5. The rotation of the cycling gear pushes the cycling slide back and forth.
6. As the slide moves away from the center post, an incline formed on the end of the slide causes the elevating rod (24) 10 raise and lift the plckup arm.
7. At the same time the elevating rod is pushed upward, the pickup arm lever (71) is also carried along from the force transferred through the spring (73). The raising of the pickup arm lever causes the two dimples formed in the pickup arm lever to engage the two holes in the pickup arm return lever (68) and couple them logether. This stabilizes and directs the movement of the pickup arm during change cycle.
8. The cycling slide continues to move away from the center post until the formed end of the slide pushes against the pickup arm return lever. This relieves the force of pickup arm return lever against stop lever (80). This permits the stop lever return spring (85) to expand and return the stop lever to normal position.
9. The end (80A) of stop lever (80) pushes trip slide back ready for the next change cycle.

10. Further movement of the cycling slide causes the slot in the end of the cycling slide to actuate the lift arm (89).
11. The lift arm pushes up on the shaft extending from the bottom end of the center post. This shaft actuates the push off mechanism inside the center post, and the record drops to the turntable.

## 960284-1, -2

3. At this time the tab (96C) on cycling gear pushes down on one end of the selector lever (83) (which is pivoted in the center) thereby raising the other end causing it to latch on the edge (61A) of the twelve-inch indexing lever (61).


The pickup moves in for landing.

1. As the cycling slide returns, the formed edge (102A) on the slide moves back permitting the pickup arm retum lever spring (66) to expand. This causes the pickup arm return lever (68) to move the pickup inward until the pickup arm return lever comes against the selector lever (83). The pickup is now directly above the point of landing.


Mechanism completes cycle.

1. Just before the cycling gear completes cycle, a small tab (102C) on cycling slide makes contact with lower trip pawl (97) thereby moving upper trip pawl (94) and cycling en gagement pawl (96A) back. This prevents the re-engagement with the off-set on the turntable shat which would start a new change cycle.
2. The cycling gear comes to rest as the stud sliding in the cycling slide drops into a small indentation (102B) in the slide. The cut away section of the gear is in position so the gear on the turntable shaft is free to rotate.

3. As the record plays, the pickup moves in toward the center of the record carrying the trip slide along. This is due to the contact made with the pickup arm lever which is rotating with the pickup arm pivot.
4. The trip slide contacts the lower trip pawl and both the lower and upper trip pawls and the cycling engagement pawls move slightly with each revolution of the record. This slight movement of the pawls is reversed each time the off-set on the turntable shaft comes in contact with the cycling engagement pawl. The back movement is taken up in the friction connection between the upper and lower trip pawls.
5. This action continues as long as the pickup moves in at a constant rate of speed. When the stylus leaves the recorded section of the record, the rapid acceleration results in the rapid movement of the cycling engagement pawl. The cycling engagement pawl assumes such a position that the off-set on the turntable shaft makes a positive contact and the cycling cam is pushed sufticiently for engagement between the teeth of the cycling gear and the teeth in the lurntable shaft. This starts change cycle.

Pickup raises and moves out.

1. Alter the mechanism has been tripped the pickup arm moves out from action of the cycling slide (102) on the pickup arm lever (71).
2. The mechanism again follows the preceding sequence of dropping and playing the records until the last record of the stack has been played.

Mechanism stops automatically.

1. As the last record of the stack drops to the turntable the record support drops and actuates stop arm (43). This stop
arm in turn applies force to stop lever through spring (87) and connecting wire (86). At this moment the cycling slide is in its outermost position (away from centerpost) and the hooked end (80B) of stop lever is forced down against, and slides along the top surface of the cycling slide.
2. As the cycling slide returns to the normal out of cycle position, the hooked end (80B) of the stop lever drops through the square hole cut in the slide. The end (80B) now extends slightly below the cycling slide. At this time the pickup arm return lever has rotated too far to be blocked by the other end ( 80 C ) of the stop lever so the pickup is permitted to land on the record.
3. After the last selection has been played the mechanism again goes into change cycle, and the cycling slide moves into its outermont position. At this moment the force which has been applied to the stop lever from the record support causes the end $(80 B)$ of the stop lever to lower, thus extending further through the cycling slide. The other end 80 C of stop lever raises and blocks the pickup arm return lever which at this moment is held back by the cycling slide.

4. Next the cycling slide moves back, carrying the raised trip slide along until finally the formed end (98A) of the trip slide (98) pushes reject lever which in furn actuates the power switch (78). This removes the power from the drive motor and mechanism stops.
5. The elevating rod (24) lowers the pickup arm to the rest.
6. As the cycling gear comes to rest, $\alpha$ small tab (102C) on cycling slide contacts and moves lower and upper trip pawls and cycling engagement pawl back to prevent engagement with off-set on turntable shaft. This prevents atarting $\alpha$ change cycle is power would be applied to drive motor.
(See page 17 for cycle of operation on modified mechanism.)


## SERVICE HINTS

Pickup Arm Strikes Record on Center Post
PICKUP HEIGHT ADJUSTMENT SET TOO HIGH


Speed Change Control Fails to Function


## Pickup Slips Grooves



"Wow" or Speed Variation


## Mechanism Fails to Trip



Premature Tripping


Mechanism Fails to Stop Automatically


Failure to Separate Records Properly


960284-1, -2
Reject Control Fails to Function


Pickup Fails to Land Properly


Distorted or No Output

MAY HAVE BROKEN WIRE

MAY HAVE
BROKEN CRYSTAL
msess
MAY HAVE DEFECTIVE STYLUS
GUARD MAY BE FILLED WITH FOREIGN MATERIAL


After Last Selection Has Been Played Pickup Sets on Rest. But Turntable Continues to Rotate


Mechanism Fails to Play Last Record (New Type SLide)


DO YOU KNOW?


## DO YOU KNOW?

960284-1, -2
HEIGHT ADJUSTMENT IS
INCORRECT, MECHANISM WILL
NOT PLAY A FULL STACK
OF RECORDS
tight vertical bearings may cause the stylus
MAY CKAUSE THE ST

FOR CORRECT LANDING ON $12^{\prime \prime}$ RECORDS, THE RECORD MUST CONTACT THIS LEVER


IF STOP LEVER BINDS, MECHANISM MAY STOP AUTOMATICALLY BEFORE STACK OF RECORDS HAS BEEN PLAYED OT ENLES IN PICKUP ARM LEVER DO RETURN LEVER, PICKUP LANDING WILL BE



960284-1, -2

Landiag Poeltion-The landing poaltion of the stylus is adjusted by means of the landing adjustment screw (21) mounted on the pickup arm support bracket assembly. Turn the screw for correct landing on $10^{\prime \prime}$ records and the $12^{\prime \prime}$ adjustment should automatically be correct.

Pickup Arm Height-The pickup arm height is adjusted by screw (16) located inside the pickup arm. To raise pickup arm turn screw counterclockwise to lower arm turn screw clockwise. The pickup arm height should be adjusted so that with a $116^{\prime \prime}$ stack of records the pickup arm lifts $1 / 4^{\prime \prime}$ straight up as the change cycle starts.
Stylus Force-Stylus force should be ten to twelve grams. Loosen screw (13) and move slide back and forth untll the correct stylus force is oblained.


Mecbanism Monnsing Dimensions


Mechamism Overall Dimensions

960284-1, -2


Exploded View of Entire Mechanism-Fig. 6

$\begin{aligned} & \mathrm{ML} . \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { stocr } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	$\underset{\mathrm{NL} .}{ }$	$\begin{aligned} & \text { sToc: } \\ & \text { NO. } \end{aligned}$	DESCRIPTION
1	75802	Support－Record support complete with plastic cap（maroon）and pla for 960284．1	$37$	75355	Bearing－Thrust bearing   Screw－\＃10．24 $\times 5 / 18^{\prime \prime}$ pan head machine
1	75803	Support－Record support complote with platic cap（tora）and pln for 980284－2	39		crew to mount die－cast sub－aseombly
18	75804	Cap－Plastic cap（maroon）for record sup－ port assembly for 980284－1	40	75832	washer to mount dio－cast sub－ansembly Housing－Record suppori housing（plum
18	75805	Cap－Plestic cap（ian）for record support ansembly for 960284－2	40	75874	hammortone）（dio－cart）for 960284－1 Houling－Record support housing
2	75808	Turntabl－Turntable and hub aneombly			brown）（dio－cast）for 980284－2
3	76409	Enob－Strlus selector knob complote with screw m．\＃4	41	－	Board－Motorboard（plum hammerione） complete with mounting springs，cable
4		Screw－Screw for stylus selector knob（in－ cluded in 76409，III．\＃3）			clamps and motor mounting studs for 960284－1
5	75807	Arm－Pickup arm sholl only complete with ＂RCR Victor＂emblem	41		Board－Motorboard（IIgh brown）complete with mounting springs，cable clamps and
6	753	Plvot－Pickup arm pivot（2 required）			motor mounting studs for 960284－2
7	75808	Cable－Three（3）wire plekup cable com－ plete with connectora	$418$	75385	Lug－Terminal lug   Washer－＂C＂washer for record support
8	75809	Spring－Pickup arm countorbalance spring （coll trpe）	43	75834	shoft   Arm－Siop arm assombly
9	75810	Brackol－Adjustment bracket for countor－ balance spring	44		Screw一\＃6 $\times 5 / 1 R^{\prime \prime}$ hex head sell－tapping scrow to mount record support housing
10		Scrow－Mounting scrow for cryatal			and ntop arm
11	75475	complete with striuses	$\begin{aligned} & 45 \\ & 48 \end{aligned}$		Board－Terminal board（3 contact）   Screw－\＃6－32 $\times 1 / 4^{\prime \prime}$ hex head soll－lapping
118	75497	Stylus－Onmium tip stylus for 78 RPM sec． tion（not coded）			screw to mount terminal board and plek－ up arm plot housing
118	75496	Stylus－Osmlum section（coded ip sipdylus for $331 / 3$ RPM	$\begin{aligned} & 47 \\ & 48 \end{aligned}$	$\begin{aligned} & 75401 \\ & 75830 \end{aligned}$	Spring－Reject rod return apring（coil type） Screw一\＃10 x 1／2＂selh－tapping crons－ro－
11 C	74230	Nut－\＃00－112 nut and washer to mount stylus	49		cessed head screw to mount arm rest Nut－Pal nut to mount threadod bushing
12	75811	Mount－Crystal mount and swivel ansembly			ML．\＃30
13		Screw－\＃6．32 $\times 1 / \mathbf{c}^{\prime \prime}$ round head machine scrow to mount counterbalance spring adjustment brackel	$\begin{aligned} & 50 \\ & 51 \end{aligned}$	$\begin{aligned} & 75835 \\ & 75403 \end{aligned}$	Wanher－Bronze washer for control shath Grommel－Rubber grommel for motor speod control rod
14	71097	Screw一\＃4 $\times 1 / 4^{\prime \prime}$ self tapping scrow for crystal mount and swlvel assembly	52	75836	Arm－Molor speed control arm and shaft assombly
15	75812	Spring－Lock upring（coll type）for height adjustment scraw	$\begin{aligned} & 53 \\ & 54 \end{aligned}$	$\begin{aligned} & 75837 \\ & 75838 \end{aligned}$	Hod－Motor speed control rod Spring－Compression spring for control
18	75813	Screw－Height adjustment screw（hex head）			lever shath（coll type）
17		Nui－Pal nut for mounting plakup arm bracket	55	758	Arm－Function control arm and shaft casombly
18	75814	Spring－Tension spring（coll type）for land－ ing adjustment stud	$\begin{aligned} & 56 \\ & 57 \end{aligned}$	$\begin{aligned} & 75840 \\ & 75841 \end{aligned}$	Rod－Relect rod   Nui－Speed nut for $12^{\prime \prime \prime}$ indexing lever
19		Washer－Mctal（atoel）washor for plekup arm pivot sbatt（ $1 / 18^{\prime \prime} \times 1 / 4^{\prime \prime}$ I．D．$\times 1 / 2^{\prime \prime}$ O．D．）	58	75842	return spring   Spring－12＂indexing lever return spring （formed）
20	75815 75816	Cam－Landing adjustment cam Stud－Landing adjustment etud（eccentric）	59	75392	Washer－＂C＂washer for mounting reject
22	75817	Bracket－Pickup armmounting brackot com．	80	75843	Leg－
		plate with pln	81	75844	Lever－12 $2^{\prime \prime}$ indexing lever
23	75818	Nut－Speed nut for landing adjustment stud	62	753	Washer－＂C＂washer for mounting 12＂
24 25	75819	Rod－Elevating rod			Indexing lovor
25 28	75820 75821	Shath－Pickup arm pivot shat and sleeve Knob－Function control knob（maroon）for	83	75373	Washer－＂C＂washer for mounting cycling gear
26	75822	980284 －1   Knob－Function 980284.2	64 65	75845 75848	Washer－Fibre washer for mounting cycling gear
27	75399	Washer－＂C＂washer to mount function control arm and shaft assembly	86	75847	Spring－Pickup arm retura levar spring （coll ippe）
28	75823	Knob－Motor speed control knob（maroon） for 980284－1	67	75848	Washor－Fiber washer for pickup arm pivot shat
28	75824	Xnob－Motor spoed control knob（tan）for 960284 －2	$\begin{aligned} & 68 \\ & 69 \end{aligned}$	$\begin{aligned} & 75849 \\ & 75850 \end{aligned}$	Lever－Pickup arm return lever   Retainor－Rotainer ring for pickup arm
29	75825	Washer－＂C＂washer to mount motor con－ trol arm and shaft ansembly	70	75851	return lever   Washer－Spring washer for pickup arm
30	75826	Bushlag－Threaded bushing for control mhath			pivot shaft
31	75827	Rest－Ptickup arm rest（maroon）for 980284－1	71	75852	Lever－Pickup arm lever
31	75828	Ros＇－Plckup arm rest（tan）for 960284.2	72		Nui－Pal nut to faston pickup arm lover
32	75829	Housing－Pickup arm pivol shaft housing （plum hammortonc）（die－cast）for 980284－1	73	75854	Spring－Thrust spring（coil trpe）for elevat－ ing rod
32	75873	Housing－Pickup arm plrot shaft housing （light brown）（die－cast）for 980284－2	$\begin{aligned} & 74 \\ & 75 \end{aligned}$	$\begin{aligned} & 75397 \\ & 75855 \end{aligned}$	Washer－＂C＂washer for elevating rod Spring－Return apring（coll type）for stop
33	75830	Screw－\＃10 x 3／2 sell－lapping cross－ro－ cessed head screw to mount plastic logs	76	75856	lever   Lever－Reject lever
34	75831	Spindio－Turniable apindle assembly	77		Screw－\＃10－24 $\times$ 5／18 ${ }^{\prime \prime}$ round head machine
35	75337	Screw－Motorboard mounting scrow（1／4－20 $\times 1 \%{ }^{\prime \prime}$ round head－special）	78	75857	scrow and lockwasher   Switch－＂On－Off＂switch complete with
36	75354	Washer－Thrust washer for turatable bear－ ing（2 required）	79	75841	insulating strip and cover   Nut－Speed nut for fastening swith cover

REPLACEMENT PARTS-Cont.

apply to your rca distributor for phices of replacement parts

REPLACEMENT PARTS (Modified Type)

$\frac{\mathrm{KI}}{\mathrm{NO}}$	$\begin{aligned} & \text { stocr } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \mathrm{KLL} . \\ & \mathrm{NO} . \end{aligned}$	$\begin{aligned} & \text { stoce } \\ & \text { NO. } \end{aligned}$	DESCRIPTION
300	78395	Housing-Record support housing (plum hammortone) (dle cart) for 980284-1	306	-	Screw-Mounting screw for Ill. No. 305 (4.40 Kex. Hd.)
300	76398	Houaling-Record support housing alght brown) (die cast) for 960284-2	$\begin{aligned} & 307 \\ & 308 \end{aligned}$	$\begin{aligned} & 76312 \\ & 76313 \end{aligned}$	Spring-Roject spring   Lever-Stop lever
301	76308	Spring-Record support hold down spring	309	78310	Nut-Tinnerman nut, to mount atop lever on main suppori
302	78307	Brace-Brace for motor board	310	78315	slide-Cycling sllde complete with encape
303	78309	Spring-Friction spring for trip lover assom. bly	311	75861	lover II. 310D   Spring-Escape lover spring
304	76308	Bearing-Hinge bution bearing	312	76314	Spring-Stop lover spring
305	78311	Support-Cycling sllde support	313	76318	Spring-Stop arm take up spring

## EXPLANATION OF AUTOMATIC STOPPING

 ACTION IN MECHANSMS HAVING NEW SLIDE (310) AND STOP LEVER (308) ASSEMBLIES automatically.1. As the last record of the stack drops to the turntable the record support drops and actuates the stop arm (43). This stop arm in turn applies force to stop lever (308) through spring (87) and connecting wire (86). At this moment the cycling slide is in the outermost position (away from centerpost) and the end 308B of stop lever is forced against escape lever 310D which prevents it from lowering any further
2. As the cycling slide returns to the out of cycle position the end (308B) of stop lever slides off the escape lever permitting the end (308B) to extend down through the slot in the cycling slide. At this time the pickup arm return lever has rotated too far to be blocked by the other end (308C) of the stop lever so the pickup is permitted to land on the record.
3. After the last selection has been played the mechanism aqain qoes into change cycle, and the cycling slide moves into its outermost position. At this moment the force which has been applied to the stop lever from the record support causes the end (308B) to lower, thus extending further through the cycling slide. The other end (308C) of stop lever raises and blocks the pickup arm return lever which at this moment is held back by the cycling slide.
4. As the cycling slide moven back, it carries the raised trip slide along until finally the formed end (98A) of the trip slide (98) pushes reject lever which in turn actuates the power switch (78). This removes the power from the drive motor and mechanism stops.
5. The elevating rod (24) lowers the pickup arm to the rest.
6. As the cycling gear comes to rest, a small tab (310C) on cycling slide contacts and moves lower and upper trip pawls and cycling engagement pawl back to prevent engagement with offesel on turntable shaft. This prevents starting a change cycle if power would be applied to drive motor.

NOTE: Assuming the mechanism stopped automatically, the record support will be down as far as it will go and the one end of the stop lever will block the pickup arm return lever.

In the mechanism with the old split type stop lever, when the record support is raied to place a stack of records on the pont, one half of the stop lever can raise therefore the end (80B) can raise up through the square hole in the cycling slide while the other end continues to block the pickup arm return lever.

The lowering of end (80C) at this time would cause the pickup to jump in over the record.

In the case of the new type one piece stop lever (308) the end (308B) remains down until the change cycle starts and the cycling slide has reached the outermost position. At this time the end (308B) slides over the edge of escape lever (310D) and raises when the other end is lowering away from the pickup arm return lever which at this moment is being held back by formed end of cycling slides.


GENERAL INFORMATION ON SUBSTITUTIONS AND CHANGES

$\begin{aligned} & \text { ILL. } \\ & \text { NO. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { ILL. } \\ & \text { NO. } \end{aligned}$	DESCRIPTION
III. No. 300	Record support housing can be used to replace old housing III. No. 40 in which case record support hold down spring, 711. No. 301 can be added to improve automatic stopping of mechanism.	III. No. 309	When substituting the new type stop lever IIl. No. 308 a new spring Ill. No. 312 must be added to increase tension on lever. Tension spring Ill. No. 313 will have to be substituted for III. No. 87.
Ill. No. 301	Record hold down spring can only be used with new support housing III. No. 300. It cannot be used with old support housing Ill. No. 40 because		Tinnerman nuts are used on some castings in place of screws Ill. No. 100. Tinnerman nuts will be included when that type of casting is shipped.
III. No. 302	it does not provide sufficient vertical clearance for pin in record support.   Motor board brace can be added to old type mechanism to straighten the well in which the	Ill. No. 310	Cycling slide can be added to original mechanism if the stop lever new type Ill. No. 308 is also changed. If this change is made also change springs Inl. Nos. 312 and 313.
	turntable rides. This tends to prevent turntable scraping and also to prevent bending of motor board while in transit.	Ill. No. 311	Escape lever spring is the same spring as used on old mechanism item 85.
Ill. No. 303	Friction spring can be added to old mechanism by removing washers, Ill. Nos. 93 and 95. This change tends to improve tripping.	I11. No. 312	Stop lever spring can be substituted in place of spring Ill. No. 85 on mechanism having old type "split" stop lever. This spring is absolutely essential on mechanism using new type stop lever
Ill. No. 304	Hinge button can be used in place of one pivot screw. The use of hinge button tends to control the friction in the vertical pickup arm pivot.	Ill. No. 313	III. No. 308.   Stop arm take up spring must be used when
Ill. No. 305	Slide support Ill. No. 305 can be used on main castings having the standoff moulded on casting. as shown in circle in exploded view.	Ill. No. 75	Stop arm take up spring must be used when mechanism incorporates the following parts:   New type stop lever Ill. No. 308   New type cycling slide Ill. No. 310   Stop lever spring Ill. No. 312   Stop arm spring III. No. 313 can also be used without harm on old type mechanism.   Spring is now deleted on new mechanism using new   Stop lever III. No. 308   Cycling slide Ill. No. 310   Stop arm spring Ill. No. 313   Stop lever spring Ill. No. 312
Ill. No. 306	Mounting screw $4 \times 40$ hex. hd. used with slide support Ill. No. 305.		
III. No. 307	Reject spring can be added to old mechanism to improve the return action of the reject lever.		
III. No. 308	Stop lever assembly is made in one piece and must be used in conjunction with the new type slide III. No. 310. Stop lever assembly 308 and slide 310 can be added to old mechanism as a unit, and not one of the old type and one of the new type.		

## LUBRICATION

The mechanism is properly lubricated when it leaves the factory, so no lubrication should be necessary for a long period of time. If, however, the mechanism has unusual use or high operating temperatures. it may be necessary to add additional lubrication.
It is suggested to use Lubriplate or STA.PUT No. 512 to:

1. Pickup arm pivot.
2. Points of sliding contact with cycling slide, including:
a. elevating rod
b. lilt arm
c. roller on cycling cam
d. pickup arm return lever
e. pickup arm lever
3. End of selector lever contacting tab on cycling gear.
4. Turntable thrust bearing.
5. Sparingly on a trip slide.
6. All points of sliding contact.

Apply a small quantity of light machine oil \#10 or Singer Sewing machine oil to:

1. Trip pawl pivot.
2. Cycling engagement pawl pivot.
3. Bearing of record support.
4. Elevating rod.
5. Bearing of lift arm.
6. Bearing of reject lever.
7. Bearing of stop lever.
8. Bearing of cycling gear.
9. Motor bearings.

NOTE: Keep oil or grease away from all rubber parts.

## Features

1. This record changer is a center support intermix mechanism designed to play automatically a series of records up to ten 12 -inch, twelve 10 -inch, of ten intermixed records of the standard 78 RPM type. It will also play a series of the long playing 33-1/3 RPM type of similar diameter
2. The mechanism is equipped with a light weight dual stylus pickup cartridge which can be selected by turning a knob in the end of the pickup arm.
3. The mechanism will automatically stop and the pickup arm return to the rest position after the mechanism has played the last selection of the stack.
4. The automatic tripping device is of the acceleration type.
5. The speed change is accomplished by a single control mounted on the motorboard.

## Automatic Operation

1. Lift and rotate the record support to one side.
2. Place a stack of records over the center post.
3. Rotate the record support so the center post will extend through the hole in the end of the support.
4. Turn the speed control to select the proper speed.
5. Rotate the knob in the end of the pickup arm to the proper numeral corresponding to the turntable speed.
6. Turn the function control knob to reject and release. The mechanism will play one side of each record of the stack until the last selection has been played at which time it will stop automatically.
7. To reject a record being played, turn the function control knob to reject and release.
8. To remove records, lift and turn the record support to one side.
9. Lift the stack of records straight up.

## Manual Operation

1. Lift and rotate the record support to one side.
2. Place the record to be played on the turntable (tilt slighty) to slide over the stop in the center post.
3. Set the speed and pickup cartridge controls properly.
4. Turn function control to reject and release. (Allow mechanism to complete cycle.)
5. Place the record support (2) over the spindle, permitting it to rest on the step of the spindle.
6. The mechanism will play the record after which it will stop automatically.

## Lubrication

The mechanism is properly lubricated when it leaves the factory, so lubrication should not be necessary for a long period of time. If, however, the mechanism has unusual use or high operating temperatures, it may be necessary to add additional lubrication.

It is suggested to use Lubriplate or STA.PUT No. 512 to:

1. Pickup pivot bushing (27).
2. Frictional contact on the clutch assembly.
3. Lift arm bearing and cam faces.
4. Spring contact on stop rod (89).
5. Channel on cycling cam (50).
6. Roller on end of center post (39), ball bearing races 5-6-7.
7. Trip slide (71)
8. All frictional contacts and gears in general.

Apply a small quantity of light oil No. 10 or Singer Sewing machine oil to:

1. Trip dog (52).
2. Motor bearings.
3. Control levering bearing (59).
4. Record support bearing (2).

NOTE: Keep oil or grease away from all rubber parts.


## Landing adjustment ring (23)

The landing adjustrent ring forms a clamp which is used for landing adjustment and a latch controlling the indexing of 10 and 12 -inch records.

## Reject rod (40)

The reject rod forms a tie between trip dog and control lever (59A).

## Upper trip dog (52)

The trip dog consists of a small piece of hardened steel mounted on the main cycling cam. The contact between the off-set on the turntable shaft and the trip dog cause the teeth of the cam and the teeth of the turntable shaft to engage thereby starting change cycle.

## Lower trip dog (60)

The lower trip dog is in contact with trip slide (71) when tripping. It is connected by friction to the shaft of upper trip dog thereby providing the necessary take up to prevent the pickup from skipping grooves when tripping starts.


## Cycle of Operation

FUNCTION
Place a stack of
records over the
center post (inter-
mixed if so desired).
Place the record
support over the
center post.

NOTE: In the cycle of operation it is assumed the mechanism has stopped automatically with the pickup arm on the rest.

1. The stack of records rest on the step in the center post (39).
2. The hole in the end of the record support (2) permits the end of the support to slide over the center post and rest on the stack of records. This stabilises the records.

## DESCRIPTION



Turn the speed selector knob to 78 or $33-1 / 3$ rpin position.

1. The speed change is accomplished by shifting to either of two shafts on the motor which are rotating at different speeds. The additional shaft is connected by a small rubber belt (36).


78 RPM POSITION

$331 / 3$ RPM POSITION

Rotate the knob to select the proper stylus.

Rotate control knob to reject position and release.

1. The rotation of the stylus knob (8) selects the proper stylus depending on the type of record to be played.
2. The operating control actuates control lever (59A) which in turn actuates the power switch. This starts the turntable rotating.
3. Further rotation of the control knob moves the reject rod (40) sufficiently to actuate the trip dog (52) which starts change cycle.


Cycling starts.

The pickup rises and remains outside turntable area.

1. The reject rod (40) has moved the trip dog (52) sutficiently for the off-set in the rotating turntable shaft to engage and tend to push it away.
2. Since the trip $\operatorname{dog}(52)$ is mounted on the edge of the cycling cam ( 50 ) the movement rotater the cam and in so doing, causes engagement between the teeth in the turntable shaft and the cycling cam. This engagement starts change cycle.

3. As the cycling cam rotates, a small roller mounted on the lift arm (91) follows the track formed in the cycling cam ( 50 ). This engagement causes the lift arm (91) to start rotating in a clockwise direction (viewed from the bottom).
4. The rotation of the lift arm (91) also causes contact with the small roller connecting the push-off mechanism inside the center post. This contact pushes the small roller and shaft upward.


Record dropa to turntable.

1. While the lift arm (91) is rotating the end directly under the pickup arm pivot engages the elevating rod (77) and raises the pickup.
2. The pickup has been setting on the rest so it moves out very little when the lift arm (91) is rotating in a clockwise direction (viewed from bottom).
3. At this same time the extended end of the lift arm (91) contacts end of clutch plate (80) rotating it in a clockwise direction (viewed from bottom) against the tention of epring (78).
4. Since both the clutch plate (80) and housing (85) are rotated to the extreme clockwise direction, the clutch plate is engaged in a notch in the clutch housing which couples the two together.

5. The upward movement of the push-off mechanism actuates the small lever embedded in the center post to engage the center hole of the record and push the record off the step permitting it to drop to the turntable.


The pickup moves in for landing.

1. The next instant the lift arm (91) starts rotating in a counterclockwise direction (viewed from bottom) returning to normal out ol cycle position. The separator mechanism returns to normal, and the pickup arm is pushed in by the force produced by the expanding spring (78).

2. The clutch housing (85) is lowered slightly unlatching the clutch plate (80). This unlatching permits free movement of the pickup arm.
3. The pickup is at this moment landing on the record.

NOTE: It should be made clear at this time that the pickup arm, landing adjustment ring (23), pivot sleeve (26), bushing (27), pivot (82) and clutch assemblies (78 to 88) move horizontally as one unit inside the pivot housing on the motorboard. In addition the pickup pivot sleeve (26) rotates in respect to the bushing (27) in approximately a 5 or 10 degree arc. This movement determines the difference in the landing position on ten- or twelve-inch records.

As the pickup arm is moved out with each change cycle, the landing adjustment ring (23) it latched to the pickup pivot sleeve (26) through the latch (26A). If a ten-inch record drops to the turntable, the latch remains engaged and the pickup lands on the ten-inch record. On the other hand, if a twelve-inch record drops to the turntable, the edge of the secord contacts the small lever at the side of the pickup arm and unlatches the pickup adjustment ring (23). This unlatching allows the pickup to position for landing on twelve-inch records.

Change cycle is completed and record plays.

1. The change cycle is completed as the cam locator lever (50A) engages the two studs extending from the bottom of the motor board. This permits the drive gear on the turntable shaft to rolate in the cut away section of the cycling cam.
2. As the record plays, the pickup moves in toward the center of the record carrying the trip slide (71) along because of the contact made with the projection on the clutch housing which is rotating with the pickup arm pivot.
3. The trip slide (71) moves the trip dog (52) slightly with each revolution of the record, but this movement is reversed each time the off-set on the turntable shat comes in contact with the trip dog (52). The back movement is taken up in the friction connection between the upper and lower trip dog.
4. The pickup arm continues to be pushed in until the ond of the clutch plate (80) comes against the stop. At this instant the pickup is directly over the landing point on the record.



LANDING ADJUSTMENT RING (23) REMAINS LATCHED FOR $10^{\circ}$ REC. ORD LANDING
4. The trip dog (52) is mounted on the edge of the cycling cam (50) at such an angle that as long as the pickup moves in at a constant rate of speed the projection contacts the trip dog (52) along the side and pushes it back. When the pickup leaves the recorded section of the record, the rapid acceleration results in the rapid movement of the trip dog (52). The dog assumes such an angle that the off-set on the lurntable shaft conlacts the end and rotates the cycling cam sufficiently to cause engagement between the teeth of the cycling cam and leeth in the turntable shaft. This starts change cycle.

LANDING ADJUSTMENT RING (23) IS UNLATCHED FOR 12" RECORD LAND. ING


Pickup raises and moves out.

1. After the mechanim has been tripped, the pickup moves out from action of the lift arm on the clutch assembly which is linked to pickup arm.
2. The mechanism again follows the preceding sequence of dropping and playing records until the last record of the stack has been played.
3. After the last selection has been played and the mechanism again goes into change cycle, the support post (2) has dropped sufficiently for the hole in the end to clamp and stop the push-off action built in the center post.
4. Since the push-off action is blocked and the lift arm (91) tends to push up on the separator mechanism, the shaft mounting the small roller moves up into the brass sleeve instead of the entire assembly moving up.
5. The brass sleeve remaining down forming a stop for the end of the stop rod (89) which is mounted on the side of the lift arm (91). This contact causes it to sotate when the lift arm moves by.
6. The bent-up end of the stop rod (89) nearest the pickup arm pivot engages the control lever (59A).
7. The engagement between the stop rod (89) and the control lever (59A) turns the power switch off and also holds one end of the clutch plate causing the pickup to sel down on the rest instead of the record.
8. The cycle is completed when the cycling cam becomes disengaged from the gear on the turntable shaft. This is accomplished by a cut-away section of the cam.



CONTROL LEVER 59A HOLDS


## ADJUSTMENTS

Approximate Landing Adjustment (if pickup arm assembly has been removed).

1. Remove power from mechanism.
2. Place a ten inch record on turntable.
3. Rotate turntable by hand until the pickup is just ready to land. Make sure the notch in the clutch plate remains engaged with clutch housing. The end of the clutch plate must be against stop also.
4. Hold the clutch and plate assembly. Loosen the set screw "C" and move the pickup into the approximate landing position.
5. Allow approximately $1 / 32^{\prime \prime}$ to $1 / 16^{\prime \prime}$ vertical play in pickup pivot shaft. (This vertical play is critical.)
6. Tighten set screw "C."

Exact Landing Adjustment.

1. Remove power from mechanism.
2. Place a ten inch record on turntable.
3. Rotate turntable by hand until pickup is about ready to land.
4. To move pickup in, loosen set screw " $\mathbf{A}$ " a few turns and tighten "B."
5. To move the pickup out, loosen set screw " $B$ " a few turns and tighten " $\mathbf{A}$."

Pickup Arm Height.
Adjust screw (76) in the end of the elevating rod so the under side of pickup crm clears the rest by $1 / 8^{\prime \prime}$ to $3 / 16^{\prime \prime}$ during change cycle.


## PICRUP SEIPS GROOVES




INSUFFICIENT VERTICAL PLAY IN PICKUP PIVOT SHAFT MAY PREVENT UNLATCHING OF CLUTCH, SKIPPNG OF GROOVES MAY RESULT

## fallure to separate records properly



8


## PICKUP FAILS TO LAND CORRECTLY ON $12^{\prime \prime}$ RECORDS



## PICEUP FAILS TO LAND CORRECTLY ON $10^{\prime \prime}$ RECORDS



## REJECT CONTROL DOES NOT FUNCTION



CONTINUOUS TRIPPING


## FAILURE TO TRIP



PREMATURE TRIPPING


PICKUP SETS DOWN ON REST INSTEAD OF RECORD


MECHANISM SHUTS OFF PREMATURELY


## MECHANISM FAILS TO STOP AUTOMATICALLY



SWITCH ARM

## DO YOU KNOW?





THE "OFFSET" ACTUATES TRIP DOG \#52 CAUSING THE GEARS OF THE TURNTABLE SHAFT ANO CYCLING CAM TO ENGAGE AND CARRY THE MECHANISM THROUGH CYCLE



Exploded Viek of Motor (60 Cycle)

$\frac{\mathrm{nL} .}{\mathrm{No}} .$	$\begin{aligned} & \text { STOCEX } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { ILL. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { 8TOCI } \\ & \text { No. } \end{aligned}$	DESCRIPTION
1	75350	Knob-Hecord support knob	49D	75427	Retainer-Retainer ring for drive pulley and shatt
14		Spring-Retaining spring for record support knob	49E	75428	Wauher-Felt washer
2	75351	Support-Record support	49 F	75429	Pulley-Drive pulley and shaft assembly for 33-1/3
3	75352	Turntable			RPM
4	75353	Retainer-Turntable spindle thrust bearing assembly retainer	49G 49 H	75430	Carriage-Idler carriage   Lockwasher-No. 6 internal teeth
5	75354	Washer-Thrust wather for turntabl bearing	491		Terminal lug
6	75355	Bearing-Thrust bearing	49]		Screw-No. $6-32 \times 2^{\prime \prime}$ round head machine screw to mount top plate to motor
7	75354	Washer-Thrust washer for turntable bearing	49K		Screw-No. 6-32 $\times 21 / 8^{\prime \prime}$ round head machine screw
8	75264	Knob-Stylus selector knob (huindle type) complete with screw	49L	75431	to mount top plate to motor   Plate-Friction guide plate
9		Screw-Screw for atylus selector knob (included in 75264, ILL. 8)	49M 49 N	$\begin{aligned} & 75432 \\ & 75433 \end{aligned}$	Spring-Hairpin spring to mount idler carriage Washer-Fibre washer
10	75356	Arm-Pickup arm shell only (plastic)	49		Spacer-Metal spacer to mount top plate to motor
11	75357	Pivot-Pickup arm pivot (2 required)	49Q		Lockwasher-No. 6 internal teeth
12	75358	Cable-Three wire pickup cable complete with connectors	$\begin{aligned} & 49 R \\ & 49 S \end{aligned}$		Terminal lug   Nut-No. 6 hex nu
13		Screw-Mounting screw for crystal (2 required) (No. $4-40 \times 1 / 6^{\prime \prime}$ round head screw)	50	75387	Cam-Main cam (including wire spring)
14	75044	Crystal-Replacement crystal complete with atyluses	$51$	75388 75389	Spring-Cam locater lever pring
14A	75045	Stylue-Stylus only (red) for 33 RPM section	53		Board-Terminal board
148	75046	Stylus-Stylus only (plain) for 78 RPM section	54		Nut-Locknut for speed control
14C	75274	Nut-Mounting nut (knurled) for stylus			bushing
15	75359	Mount-Crystal cartridge mount and awivel assembly	$\begin{aligned} & 55 \\ & 56 \end{aligned}$	75390	Spring-Spacer spring for speed control crank Bumper-Rubber bumper not stocked
16	71097	Screw-Mounting screw for crystal mount (3 required) (No. $4 \times 1 / 4^{\prime \prime}$ self-tapping)	57 58	$\begin{aligned} & 75391 \\ & 75392 \end{aligned}$	Washer-Fibre washer for control lever shaft   Washer-" "C" washer for mounting control lever
17	75360	Spacer-Metal spacer for crystal mount screw.   ILL. 18	59	75393	Lever-Function control crank, link and lever assembly
18	75002	Screw-Mounting screw for crystal mount (No. 4 x 3/8" self-lapping)	60	75394	Pawl-Lower trip pawl
19	75361	Screw-Landing adjustment screw (2 required) (No. $10 \times 1 / 2^{\prime \prime}$ headless-special)	61	75395	Washer-Bronze washer (3/9" O.D.) for trip pawl shatt
20	75362	Spring-Tension spring for indexing latch	62	75396	Washer-Steel washer ( $1 / 4^{\prime \prime}$ O.D.) for trip pawl shalt
21	31085	Screw-Pickup pivot bushing screw (No. $8 \times 1 / \mathbf{b}^{\prime \prime}$ Allen hadd set screw)	63	75397	Washer-"C"* washer lor trjp pawl
22	75363	Spring-Tention spring for landing adjustment ring	64	75398	Washer-Fibre washer ( $1 / 2^{\prime \prime}$ O.D.) for mounting main cam
23	75364	Ring-Landing adjustment ring	65	75399	Washer-"C" washer for mounting main cam
24	75365	Spring-Counterbalance spring for pickup arm	66	75400	Switch-Power switch (includes cover)
26	75367	Pin-Pivot pin for counterbalance spring   Sleeve-Pickup arm pivot sleeve, including latch and two springs	67	75401	Screw-Power switch mounting screw (No. 6.32 x $1 / 4^{\prime \prime}$ hex head)
27	75368	Bushing-Pickup arm pivot sleeve bushing	69	75402	Fastener-Push fastener to mount
28	10941	Ball-Steel ball ( $1 / 8{ }^{\prime \prime}$ diameter)	69	5402	quired)
29 30	75369	Retainer-Ball bearing retainer	70	75403	Grommet-Rubber grommet for motor speed change tie rod (2 required)
31	75	Knob-Speed control knob	71	75404	Lever-Trip slide lever
32	75372	Knob-Function control knob complete with spring	72	75405	Washer-Metal washer to mount trip slide
32R		Spring-Retaining apring for function control knob (included in 75372. ILL. 32)	73		Screw-Mounting screw to mount trip slide lever (No. $4 \times 1 / 4^{\prime \prime}$ hex head self-tapping)
33	75373	Washer-"C" washer for control knob (2 required)	74	75406	Crank-Speed control crank
34	75374	Bushing-Threaded bushing for apeed control crank	75	75407	Rod--Motor speed change tie rod
35	75375	Escutcheon-Index escutcheon	76	75408	Screw-Pickup height adjusting screw (No. 6.32 x $1 / 4^{\prime \prime}$ pan head brass)
36	75376	Belt-Rubber belt for motor drive shaft	77	75409	Rod-Elevating rod
37	75377	Screw-Moforboard mounting screws ( 2 required) (No. 1/4-20 $\times 13 / \mathbf{6}^{\prime \prime}$ round head-special)	78	75410	Spring-Return spring for pickup arm
38	30006	Screw-Set screw for turntable centerpost (No. $8 \times$ 3/6" Allon head set screw)	80	75412	Washer-Spring washer for clutch plate Plate-Clutch plate
39	75378	Spindle-Turntable spindle or centerpost	81	75413	Washer-"C" washer for pickup arm pivot
40	75379	Rod-Reject rod	82	75414	Shaft-Pickup arm pivot shaft
41		Rivet-Mounting rivet for terminal board, ILL. 53	83	75415	Spring-Clutch salety spring
42	75380	Spring-Hairpin spring for idler wheel	84	75416	Guide-Clutch safety spring guide
43	75433	Washer-Dampening washer for idler wheel (2 required)	85 86	75417 75392	Housing-Clutch housing   Washer-"C" washer for clutch ho
44	75382	Wheel-Idler wheel	87	75418	Spring-Conical spring for elevating rod
45	75383	Spring-Tension apring for idler wheel	88	75419	Washer-' $C$ " washer for elevating rod
46	75384	Board-Motorboard complete with lour mounting springs, pivot arm housing, record support housing. terminal board (ILL. 53) and mounting studs	$\begin{aligned} & 89 \\ & 90 \end{aligned}$	75423	Rod-Lift arm stop rod complete with pins. ILL. 90 Pin-Mounting pin for stop rod (included in 75423ILL. 89)
47	75385	Wawher-"C" washer for record support pivot shaft	91	75420	Arm-Lift arm assembly complete with stop rod
48	75386	Grommet-Rubber grommet to mount motor (3 required)			and stop rod mounting pins (includes ILL. 89 and ILL. 90)
49A	75333	Molor- 117 volt, 60 cycle, complete with top plate, idler wheel and drive belt	92 93	75421	Washer-Fibre washer for lift arm shatt Lug-Terminal lug
498	30870	Connector-2 coniact male connector for motor leads	94	-	Screw-Mounting screw for lift arm assembly (No. $8.32 \times 3 / \mathbf{8}^{\prime \prime}$ pan head screw)
49C	75426	Plate-Motor top plate including speed change carriage, 3 mounting grommets and 1 speed change lover grommet	$\begin{aligned} & 95 \\ & 96 \end{aligned}$	75422	Washer-Retainer washer for lift arm shaft Lockwasher-No. 8 lockwasher (internal leeth)



Exploded View of Entire Mechanism

Pickup force should be approximately 8 to 10 grams. This force is determined by the design of the pickup and arm assembly.

However, a tight vertical bearing in the pickup arm will tend to have the same effect as insufficient pickup lorce.



Model Tl00, Mahogany Finish Metal Cabinet

TELEVISION RECEIVER MODEL TIOO
Chassis No. KCS38 — Mfr. No. 274 -
Service Data - 1950 No. T1 -

RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

## GENERAL DESCRIPTION

Model T100 is a table type television receiver in a mahogany finish metal cabinet. The chassis employs twenty-one tubes plus two rectifiers and a 10BP4 kinescope.

Features of the television unit are: full twelve channel coverage: FM sound system: improved picture brilliance: picture
A.G.C: A.F.C horizontal hold; stabilized vertical hold; two slages of video amplification; noise saturation circuits; improved sync separator and clipper; lour mc. band width for picture channel and reduced hazard high voltage supply. An auxiliary audio input jack is provided to permit the use of an external record playing attachment.

## ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE ............... 61 square inches on a 10BP4 Kinescope
R-F FREQUENCY RANGES
\(\left.$$
\begin{array}{cccc}\begin{array}{c}\text { Channel }\end{array} & \begin{array}{c}\text { Channel } \\
\text { Freq. Mc. }\end{array} & \begin{array}{c}\text { Picture } \\
\text { Carrier } \\
\text { Freq. Mc. }\end{array} & \begin{array}{c}\text { Sound } \\
\text { Carrier } \\
\text { Freq. Mc. }\end{array}\end{array}
$$ \begin{array}{c}Receiver <br>

R.F Osc.\end{array}\right\}\)| Freq. Mc. |
| :---: |

FINE TUNING RANGE
Plus and minus approximately 250 kc on channel 2 and plus and minus approximately 650 kc on channel 13.
POWER SUPPLY RATING
KCS38 ........................................ 115 volts, 60 cycles, 230 watt
AUDIO POWER OUTPUT RATING $\qquad$ 2.0 watts max.

LOUDSPEAKERS

KCS38	970773-1 5" ${ }^{\prime \prime} 7^{\prime \prime}$ EM Dynamic, 3.2 ohms		
DIMENSIONS (inches)	Width	Hoight	Dopth
Cabinet (outside)	22	15\%	$211 / 4$
Chassis (overall)	$19^{1 / 2}$	13	20

PECEIVER ANTENNA INPUT IMPEDANCE
Choice: 300 ohms balanced or 72 ohms unbalanced.

WEIGHT
Chassis with Tubes in Cabinet ......................................... 84 lbs. Shipping Weight ................................................................... 99 lbs.

RCA TUBE COMPLEMENT

	Tube Used	Function
(1)	RCA 6AG5	R-F Amplifier
(2)	RCA 6AG5	Converter
(3)	RCA $6 J 6$	R-F Oscillator
(4)	RCA 6AU6	1st Sound I-F Amplifier
(5)	RCA 6AU6	2nd Sound I-F Amplifier
(6)	RCA 6AL5	Sound Discriminator
( 7 )	RCA 6AV6	1st Audio Amplifier
(8)	RCA 6K6GT	Audio Output
(9)	RCA 6BA6	1st Picture I-F Amplifier
(10)	RCA 6AG5	2nd Picture I-F Amplifier
(11)	RCA 6BA6	3rd Picture I-F Amplifier
(12)	RCA 6AG5	4th Picture l-F Amplifier
(13)	RCA 6AL5	Picture 2nd Detector \& Sync Limiter
(14)	RCA 12AU7	1st and 2nd Video Amplifier
(15)	RCA 6SN7GT	....... AGC Amplifier \& Vertical Sweep Oscillator
(16)	RCA 6SN7GT	AGC Rectifier \& lst Sync Separator
(17)	RCA 6SN7GT	Sync Amplifier \& 2nd Sync Separator
(18)	RCA 6K6GT	Vertical Sweep Output
(19)	RCA 6SN7GT	Horizontal Sweep Oscillator and Control
(20)	RCA 6BG6G	Horizontal Sweep Output
(21)	RCA 6W4GT	Damper
(22)	RCA 1B3-GT/8016	High Voltage Rectifier
(23)	RCA 5U4G	Power Supply Rectifier
(24)	RCA 10BP4	Kinescope

## ELECTRICAL AND MECHANICAL SPECIFICATIONS (Continued)

PICTURE INTERMEDIATE FREQUENCIES
Picture Carrier Frequency ...............................................25.75 Mc.
Adjacent Channel Sound Trap .......................................27.25 Mc.
Accompanying Sound Traps ............................................21.25 Mc.
Adjacent Channel Picture Carrier Trap ........................19.75 Mc.
SOUND INTERMEDIATE FREQUENCIES
Sound Carrier Frequency ...................................................21.25 Mc. Sound Discriminator Band Width between peaks ............ 350 kc

VIDEO RESPONSE $\qquad$ To 4 Mc .


## OPERATING INSTRUCTIONS

> The following adjustments are necessary when turning the receiver on for the first time:
> 1. See that the TV-PH switch on the rear apron is in the "TV" position.
> 2. Turn the receiver "ON" and advance the SOUND VOL. UME control to approximately mid-position.
9. Adjust the PICTURE control for suitable picture contrast.
10. After the receiver has been on for some time, it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.
11. In switching from one station to another, it may be necessary to repeat steps 4,8 and 9.
3. Set the STATION SELECTOR to the desired channel.
4. Adjust the FINE TUNING control for best sound fidelity and the SOUND VOLUME control for suitable volume.
5. Turn the BRIGHTNESS control fully counter-clockwise, then clockwise until a light pattern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZONTAL hold control until a picture is obtained and centered.
8. Turn the BRIGHTNESS control counter-clockwise until the retrace lines just disappear.


Figure 1-Receiver Operating Controls
12. When the set is turned on aqain after an idle period, it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. If any adjustment is necessary. step number 4 is generally sufficient.
13. If the positions of the controls have been changed, it may be necessary to repeat steps 2 through 9.
14. To use the instrument with a record player, plug the recordplayer output cable into the PHONO jack on the rear apron, and set the TV.PH switch on "PH." Set the TV-PH switch back to TV on completion of the record program.

NOTE: THE CHASSIS USED IN MODEL TIOO IS VERY SIMILAR TO THE CHASSIS USED IN MODELS T120 AND T121. REFER TO MODELS T120 AND T121 FOR ALIGNMENT PROCEDURE, TEST PATTERN AND WAVEFORM PHOTOGRAPHS, R-F UNIT WIRING, LEAD DRESS AND VOLTAGES. IT SHOULD BE NOTED THAT MODEL T100 USES A 10BP4 KINESCOPE WHEREAS MODELS T120 AND T121 USE A 12LP4 KINESCOPE. THE SECOND ANODE VOLTAGE (RECTIFIER AND KINESCOPE) IS SLIGHTLY LOWER IN MODEL T100.

MODELS T120 AND T121 INCORPORATE A WIDTH SELECTOR SWITCH BUT T100 DOES NOT. MODELS T120 AND T12l USE A PM SPEAKER AND MODEL TIOO USES AN EM SPEAKER.

## high Voltage warning

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH-VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH-VOLTAGE COMPARTMENT SHIELD REMOVED.

ION TRAP MAGNET ADJUSTMENT.-Set the ion trap magnet approximately in the position shown in Figure 2, and with the part number on magnet towards the rear of the chasais. Starting frdm this position immediately adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust the focus control (R191 on the chassis rear apron) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touchen on this adjustment should be made with the brightness control at the maximum position with which good line focus can be maintained.


Figure 2-Yoke and Focus Coil Adjustments

DEFLECTION YOKE ADJUSTMENT.-ll the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment winq screw.

PICTURE ADJUSTMENTS.-It will now be necessary to obtain a test pattern picture in order to make further adjustments. See sleps 3 through 9 of the receiver operating instructions.

If the Horizontal Oscillator and AGC System are operating properly, it should be possible to sync the picture at this point. However, if the AGC threshold control is misadjusted, and the receiver is overloading, it may be impossible to sync the picture.

If the receiver is overloading, turn R138 on the rear apron (see Figure 3) clockwise until the set operates normally and the picture can be synced.

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT.-Turn the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be gradually reduced and when only 3 bars sloping downward to the left are oblained, the picture will pull into sync upon alight additional clockwise rotation of the control. Pull in should occur when the control is approximately 90 degrees from the extreme counter-clockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should be out of sync and should show 1 vertical or diagonal black bar in the raster.

If the receiver passes the foregoing checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Centering Adjustment."


Figure 3-Rear Chassis Adjustments

ALIGNMENT OF HORIZONTAL OSCILLATOR.-If in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull-in point, it will be necessary to make the following adjustments:

Horizontal Frequency Adjustment.-Turn the horizontal hold control to the extreme clockwise position. Tune in c television station and adjust the T109 horizontal frequency adjustment (under the chassis) until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster.

Hosizontal Lock in Range Adjustment.-Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 3 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer Ci53A slightly clockwise. If less than 3 bars are present, adjust C153A slightly counter-clockwise. Turn the picture control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull in point. Repeat this procedure until 3 bars are present.

Repeat the adjustments under "Horizontal Frequency Adjustment" and "Horizontal Locking Range Adjustment" until the conditions specified under each are fultilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.

If it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure For field purposes paragraph "A" under Horizontal Oscillator Wavelorm Adjustment may be omitted.

CENTERING RDJUSTMENT.-No electrical centering controls are provided. Centering is obtained by mechanically orienting the focus coil with the three adjustment screws shown in Fig. ure 2. Center the picture on the screen by adjustraent of these screws. The focus coil should be concentric around the neck of the kinescope 10 prevent curvature of the raster.

FOCUS COIL ADJUSTMENTS.-ll, after making the centering adjustments described in the above paragraph, a corner of the picture is shadowed, it will be necessary to loosen the focus coil mounting screws (shown in Figure 2) and change the position of the coil to eliminate the shadow. Recenter the picture by adjustment of the centering screws.

Recheck the position of the ion trap magnet to insure that maximum brilliance is obtained. Il is important that the kinescope not be operated with the ion trap magnet adjusted for less than maximum brightness. To do so may cause injury to the tube.

WIDTH. DRIVE AND HORIZONTAL LINEARITY ADJUST. MENTS.-Adjustment of the horizontal drive control affects the high-voltage applied to the kinescope. In order to obtain the highest possible voltage hence the brightest and best focused picture, turn the horizontal drive control counter-clockwise until the left side of the picture beging to stretch.

Adjuat the horizontal linearity control Llll to provide beat linearity. Adjust the width control until the picture just fills the mask.

Adjustments of the horisontal drive control affect horizontal oscillator hold and locking range. U the drive control was adjusted, recheck the oscillator alignment.

FOCUS.-Adjust the focus control (RI91 on chassis rear apron) for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS.-Adjust the height control (R155 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R162 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjust ment of the other. Adjust centering to align the picture with the mask.

CHECE TO SEE THRT THE CUSEION AND YOEE THUMBSCREWS RND THE FOCUS COIL MOUNTING SCREWS ARE TIGHT.

HGC THRESHOLD CONTROL. The AGC threshold control R138 is adjusted at the factory and normally should not require readjustment in the field.

To check the adjustment of the AGC Threshold Control, tune in a strong signal, sync the picture and turn the picture control to the maximum clockwise position. Turn the brightness control counter-clockwise until the vertical retrace lines are just invisible. Momentarily remove the signal by switching off chomnel and then back. If the picture reappears immediately, the receiver is not overloading due to improper setting of R138. It the picture requires an appreciable portion of a second to reappear, R138 should be readjusted.

Set the picture control at the maximum clockwise 'position. Turn R138 fully clockwise. The top one-half inch of the picture may be bent slightly. This should be disregarded. Turn R138 counter-clockwise until there is a very, very slight bend or change of bend in the top one-half inch of the picture. Then turn R138 clockwise just sufficiently to remove this bend or change of bend.

If the signal is very weak, the above method may not work as it may be impossible to get the picture to bend. In this case, turn R138 counter-clockwise until the snow in the picture becomes more pronounced, then clockwise until the best signal to noise ratio is obtained.

The AGC control adjustment should be made on a strong signal if possible. If the control is set too far counter-clockwise on a weak signal, then the receiver may overload when a strong nignal is received.

CHECX OF R-F OSCILLATOR ADJUSTMENTS.-Tune in all available etations to see if the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should bo made by the method outlined in the alignment procedure

The adjustments for channels 2 through 5 and 7 through 12 are available from the Lront of the cabinel by removing the utation selector escutcheon as shown in Figure 4. Adjustment for channel 13 is on top of the chassis and channel 6 adjustment is in the kinoscope well.

Replace the cabinet back and make sure that the screws are tight in order to prevent rattling at high volume.

WEAX SGGAL AREA OPERATION-Since the vait majority of receiver are sold in strong signal areas, the chasais are


## Figure 4-R.F Oscillator Adjustments

alligned to produce the cleanent pictures in those areas. However, if the receiver is to be operated in a weak signal area, better performance can be obtained by "peaking" the r-f unit.

To peak the r-f unit in these receivers, disconnect the 390 ohm resistor which is on top of the r-f unlt chossis. Adjust L66 to oblain the best possible plcture on the weakent low channel station received. By this action, the r-i gain, is increased $50 \%$ at the expense of r-f bandwidth and an improvement in the weak signal picture results.

If the peaked receiver is subsequently taken to a strong signal area, the resistor R14 should be connected in place and L66 adjusted for "flat" response on the low channels.

EINESCOPE HRNDLDNG PRECAUTION.-Do not install, romove, or handle the kincecope in any manner, unless shatterproof goggles and heavy gloves are worn. People not so equipped ehould be kept away while handling the linescope. Eeep the kinescope away from the body while handling.

To remove the Linescope, remove the kinescope socket, the ion-trap magnet, and the second-anode connector. Loosen the crose-receseed head screw on the kincecope strap, as shown in Figure 5. Withdraw the Hinescope toward the front of the choustis.

INSTALLATION OF KINESCOPE-Slide the kineacope cushion toward the rear of the chassis. Loosen the deflection yoke adjustment, slide the yoke toward the rear of the chassis and tighten.

The kinescope second anode contact is a recessed melal well in the side of the bulb. The tube must be installed so that this contact is up but rotated approximately 30 degreet toward the high-voltage compartment.
Insert the neck of the kinescope through the deflection and focus coils until the bell of the tube is agcinst the rubber curhion. U the tube sticio, or ifile to slip into place smoothly. investigate and remove the coruse of the trouble. Do not force the tube.

Slip the ion trap magnet arsombly over the neck of the kinescope.
Connect the kinescope socket to the tube base.
Connect the high voltage lead to the kinescope second anode socket.

Wipe the kinescope screen surface and front panel safety glass clean of all dust and finger marks.

To replace the chansis in the cabinet, first tighten the crossrecessed head screw on the kinescope strap. Slide the chasais into the cabinet, then insert and tighten the six chansis bolts. Loosen the kinescope strap from the rear of the cabinet, or from the bottom through a hole in the chasais shelf. The bottom end of the croserecessed head screw is slotted to fit a screwdriver. Push the kinescope forward until the face of the tube is agoinst the mask. Push the yoke cushion forward against the kinescope flare, then tighten the cushion adjusting screws. Push the yoke forward and tighten. Tighten the kinescope strap. Reolace the knobs and the cabinet back.


Figure 5-Chnssis Top View


Figure 6-Chassis Bottom View

Chassis wring ducham

=



	$\cdots$	-
		=
$=$		
-	-	=
		-




$\qquad$
 N M M

$=$









Model T120, Mahogany Finish Metal Cabinet


Model TI21 Mahogany Finish Metal Cabinet

## RADIO CORPORATION OF AMERICA <br> RCA VICTOR DIVISION CAMDEN, N. J., U. S. A.

## GENERAL DESCRIPTION

Models T120 and T121 are $12^{\prime \prime}$ table style television receivers in mahogany finish melal cabinets. The receivers employ twenty-one tubes plus two rectiliers and a 12 LP 4 kinescope.

Features of the receivers are full twelve channel coverage; FM sound system; improved picture brilliance; picture A-G-C; A.F-C horizontal hold; stabilized vertical hold; two stages of video amplification; noise saturation circuits; improved sync separator; four me band width for picture channel and reduced hazard high voltage supply. A phono input jack is provided to permit the use of an external record player.

## ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE ................ 87 square inches on a 12LP4 Kinescope R-F FREQUENCY RANGES

Channel Number	Channel   Freq. Mc.	Picture   Carrier   Freq. Mc.	Sound Carrier Freq. Mc.	Receiver R-F Osc. Freq. Mc.
2.	..54-60..	.55.25.....	.59.75......	......... 81
3.	.60-66.	.61.25.	.65.75	. 87
4.	.66-72	.67.25.	. 71.75	. 93
5.	.76-82	.77.25	.81.75.	103
	....82-88.	..83.25.	87.75	109
7.	..174-180.	175.25	179.75.	201
8.	. 180-186.	181.25	.185.75.	. 207
9	..186-192.	. 187.25	191.75	. 213
10.	..192-198.	.193.25.	.197.75.	219
11.	..198-204.	199.25	203.75	. 225
12.	..204-210.	.205.25.	.209.75.	231
13.	210-216.	211.25.	215.75	237

FINE TUNING RANGE
Plus and minus approximately 250 kc on channel 2 and plus and minus approximately 650 kc on channel 13.

POWER SUPPLY RATING
KCS34C
115 volts, 60 cycles, 230 watts
AUDIO POWER OUTPUT RATING ...................... 2.6 watts max.
LOUDSPEAKER
KCS34C
.92573-4 PM Dynamic, 3.2 ohms

DIMENSIONS (inches)	Width	Hoight	Depth
Cabinet (outside)	22	18	$211 / 4$
Chassis (overall)	191/2	13	201/2

RECEIVER ANTENNA INPUT IMPEDANCE
Choice: 300 ohms balanced or 72 ohms unbalanced.

WEIGHT
Chassis with Tubes in Cabinet ............................................... 92 lbs. Shipping Weight .................................................................. 108 lbs.

RCA TUBE COMPLEMENT


## PICTURE INTERMEDIATE FREQUENCIES

Pleture Carrier Frequency .......................................... 25.75   Adjacent Channel Sound Trap .................................... 27.25   Accompanying Sound Traps $\qquad$ 21.25   Adjacent Channel Picture Carrier Trap $\qquad$ 19.75

SOUND INTERMEDIATE FREQUENCIES
Sound Carrier Frequency .............................................. 21.25 Mc. Sound Discriminator Band Width between peaks .......... 350 kc VIDEO RESPONSE ......................................................... To 4 Mc.
$\qquad$
$\qquad$ Interlaced, 525 line

HORIZONTAL SWEEP FREQUENCY
15.750 cps

OPERATANG CONTROLS (front panel)
$\left.\begin{array}{l}\text { Channel Selector } \\ \text { Fine Tuning } \\ \text { Picture } \\ \text { Brightnens }\end{array}\right\} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ D u a l ~ C o n t r a l ~ K n o b a l ~ C o n t r o l ~ K n o b e ~$

NON.OPERATING CONTROLS (not including r-i \& If adjuntments)
Horizontal Centering .......... top chassis screwdriver adjustment Vertical Centering .............. top chassis screwdriver adjustment Width ................................... rear chaseis screwdriver adjustment Width Selector Switch $\qquad$ rear chassis adjustment
Height $\qquad$ rear chassis adjustment Horisontal Linearity .......... rear chassis screvdriver adjustment Vertical Linearity ..................................... rear chassis adjustment Horizontal Drive ................ sear chassis screwdriver adjustment Horizontal Osc. Freq.
$\qquad$ Horizontal Osc. Waveform bottom chassis adjustment

Horkonal Oac. Wavelora ide chassis adjustment
Horizontal Locking Range rear chassis adjustment
Focus rear chassle adjustment
Ion Trap Magnet top chassis adjustment
Deflection Coil $\qquad$ top chasais wing nut adjustment
AGC Threshold Control rear chassis adjustment

## HIGH VOLTAGE WARNING

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH-VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH-VOLTAGE COMPARTMENT SHIELD REMOVED.

## OPERATING INSTRUCTIONS

The following adjustments are necessary when turning the receiver on for the first time:

1. See that the TV.PH switch on the rear apron is in the "TV" position.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid-position.
3. Set the STATION SELECTOR to the desired channel.
4. Adjust the FINE TUNING control for best sound fidelity and the SOUND VOLUME control lor suitable volume.
5. Turn the BRIGHTNESS control fully counter-clockwise, then clockwise until a light pattern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZONTAL hold control until a picture is ob tained and centered.
8. Turn the BRIGHTNESS control counter-clockwise until the retrace lines just disappeas.


Figure 1-Receiver Operuting Controls
12. When the set is turned on again after an idle period. It should not be necessary to repeat the adjustments if the poaitions of the controls have not been changed. Il any adjustment is necessary, step number 4 is generally sufficient.
13. If the positions of the controls have been changed, it may be necessary to repeat steps 2 through 9.
14. To use the instrument with a record player, plug the recordplayer output cable into the PHONO jack on the rear apron. and set the TV-PH switch on "PH." Set the TV-PH switch back to TV on completion of the record program.

ANTENNA AND POWER CONNECTIONS. - Connect the leads from the antenna to the receiver antenna terminals.

Make sure that the receiver power switch is in the off position. Plug the receiver power cord into a 115 volt 60 cycle a-c outlet.

WARNING.-The high voltage supply in this receiver delivers 10.000 volts! A.C. interlocks are provided at the back of the set so that when the back is removed-so is the power.

ION TRAP MAGNET ADJUSTMENT.-Set the ion trap magnet approximately in the position shown in Figure 2.

Turn the power switch to the "on" position, the brightness control three-quarters clockwise, and picture control fully counter-clockwise.

Immediately adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the rater is slightly above average brilliance. Adjust the focus control (R191 on the chassis rear apron) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches on this adjustment should be made with the brightness control at the maximum position with which good line focus can be maintained.

DEFLECTION YOKE ADJUSTMENT. - If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE ADJUSTMENTS.-It will now be necessary to obtain $\alpha$ test pattern picture in order to make further adjustments. See steps 3 through 9 of the receiver operating instructions.

If the Horizontal Oscillator and AGC SYstem are operating properly, it should be possible to sync the picture at this point. However, if the AGC threshold control is misadjusted, and the receiver overloading. it may be impossible to sync the picture.

If the receiver is overloading. Iurn R138 (on the rear of the chassis, see Figure 3) clockwise until the sel operates normally and the picture can be synced.

CHECK OF HORIZONTAL OSCILLATOR ALGNMENT.Turn the horizontal hold control to the extreme counter-clock. wise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be gradually reduced and when only 3 bars sloping down.


Figure 2-Yoke and Focus Coil Adjustments
ward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull in should occur when the control is approximately 90 degrees from the extreme counter-clockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rolation of the control. At the extreme clockwise position, the picture should be out of sync and should show 1 vertical or diagonal black bar in the raster.

If the receiver passes the foregoing checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with Focus Coil Adjustments.

ALIGNMENT OF HORIZONTAL OSCILLATOR.-If in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull-in point, it will be necessary to make the following adjustments:

Horizontal Frequency Adjustment.-Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the Tl09 horizontal frequency adjustment (under the chassis) until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster.

Horizontal Lock in Range Adjustment.-Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into aync.

If more than 3 bars are present just belore the picture pulls into sync, adjust the horisonial locking range trimmer C153A slightly clockwise. It less than 3 bars are present, adjust C153A slightly counter-clockwise. Turn the picture control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull in point. Hepeat this procedure until 3 bars are present.

Repeat the adjustments under "Horizontal Frequency Adjustment" and "Horizontal Locking Range Adjustment" until the conditions specified under each are fulfilled. When the horisontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.
If it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horisontal Oscillator by the method outlined in the alignment procedure on page 13. For field purposes paragraph "A" under Horizontal Oscillator Wavelorm Adjustment may be omitted.

FOCUS COIL ADJUSTMENTS.-The focus coil should be adjusted so that there is approximately one-quarter inch of space between the rear cardboard shell of the yoke and the flat of the front face of the focus coil. This spacing gives best average focus over the face of the tube. However, it may be neceasary to change this distance slightly in order to compensate for small differences in strength of the permanent magnets in the coil. If the receiver focuses with the focus control at or near the clockwise end of its range, the focus coil should be moved loward the yoke and if locus is obtained at or near the counter-clockwise end of the control, the coil should be moved away from the yoke.
The axis of the hole through the focus coil should be parallel with the axis of the kinescope neck.


Figure 3-Rear Chassis Adjustments

CENTERNG RDJUSTMENT. - No electrical centoring controls are provided. Centering is obtained by loosening the two focus coil mounting screws and sliding the coil up or down or from side to side. If the focus coil was appreciably changed in position or if a corner of the raster is shadowed, check the position of the ion trap magnet. Reposition the magnet within the range of maximum raster brightnens to eliminate the shadow and recenter the picture by sliding the coil. In no case should the magnet be adjusted to cause any lose of brightneas since such operation may cause immediate or eventual damage to the tube. In extreme cases it may be necessary to adjust one or more of the three focus coil compression spring screws to eliminate a comer shadow.

WIDTH, DRIVE AND HORIZONTRL LMERRITY ADJUST. MENTS.-Rdjust the horisontal drive control Cl53B to give a picture of maximum width within the limits of good linearity. Adjust the horizontal linearity control Llll to provide best linearity. Adjust the width control until the picture just fille the mask.

A width control coil and a width selector switch are pro vided. With the switch in position 1 (fully counter-clockwise), adjust the width coil until the picture fill the mak. On low line voltages it may not be possible to get sufficient width by adjuatment of the width coil. In thin case turn the width selector switch clockwise to position 2. In this position the width coil is disconnected, and adjustment of the width coil will have no effect. For still greater width, turn the width selector switch fully clockwise to position 3. In this position. the high voltage is reduced slightly thus permitting greater deflection.

Adjustments of the horizontal drive control affect horizontal oscillator hold and locking range. If the drive control wal adjusted, recheck the oscillator alignment.

HEIGHT AND VERTICAL LDNEARITY RDJUSTMENTS.-Rdjust the height control (R155 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R162 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjuntment of the other. Adjust centering to align the picture with the mask.

FOCUS. - Adjust the focus control (R191* on chassis rear apron) for maximum deflection in the test paftern vertical "wedge" and best focus in the white areas of the pattern.

In some cases it may be possible to improve focus by a slight reposition of the ion trap magnet while staying within the range of maximum brightness.

Check to see that the cushion and yoke thumbscrews and the focus coil mounting screws are tighl.

AGC THRESHOLD CONTROL. - The RGC threshold control R138 is adjusted at the factory and normally should not require readjustment in the field.

To check the adjustment of the RGC Threshold Control, tune in a strong signal, sync the picture and turn the picture control to the maximum clockwise position. Turn the brightmess control counter-clockwise until the vertical retrace lines are just invisible. Momentarily remove the signal by switching off channel then back. If the picture reappears immediately, the receiver is not overloading due to improper setting of R138. If the picture requires an appreciable portion of a second to reappear, R138 should be readjusted.

Sel the picture control at the maximum clockwise position. Tum R138 fully clockwise. The top one-hall inch of the picture may be bent slightly. This should be disregarded. Turn R138 counter-ciockwise until there is a very, very slight bend or change of bend in the top one-half inch of the picture. Then turn R138 clockwise just sufficiently to remove this bend or change of bend.

If the signal is very weak, the above method may not work an It may be impossible to get the picture to bend. In this case, turn R138 counter-clockwise until the snow in the picture becomes more pronounced, then clockwise until the best signal to noise ratio is obtained:

The AGC control adjustment should be made on a strong signal if ponsible. If the control is set too far counter-clockwise on a weak signal, then the receiver may overload when a strong signal is received.

CIIECE OF R-F OSCILLRTOR ADJUSTMENTS.-Tune in all available stations to see it the recelver r-f aecillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure on page 10. The adjustments for chamnels 2 through 5 and 7 through 12 are available from the front of the cabinat by removing the station selector eacutcheon as shown in Figure 4. Adjustment for channel 13 is on top of the chassi and channel 6 adjuatment is in the kinescope well. See Flguree 8 and 9 for their location.


Figure 4 R-F Oscillator Adjusements
Replace the cabinet back and make sure that the screws are dight in order to prevent ratting at high volume.

WERI SIGNAL RREA OPERATYON.-Since the vast majority of receivers are sold in strong signal areas, the chasais are allgned to produce the cleanest pictures is thome areas. However, if the receiver is to be operated in a weak signal area, better performance can be obtained by "peaking" the ifl unit.

To peak the r-f unit in these receivers, disconnect the 390 ohm reaintor which is on top of the r-f unit chassis. Adjust L66 to obtain the best possible picture on the weakent low channel station received. By this action, the r-f gain is increased $50 \%$ at the expense of r-f bandwidth and an improvement in the weak signal picture results.

If the peaked receiver is subsequently taken to a strong signal area, the resistor R14 should be connected in place and L66 adjusted for "flat" response on the low channels.

INSTALLATION OF EINESCOPE-The kinescope second anode contact is a recessed metal well in the side of the bulb. The tube must be installed so that this contact is up but rotated approximately 30 degrees toward the high-voltage compartment.

Insert the neck of the linescope through the deflection and locus coils until the base of the tube protrudes approximately two inches beyond the focus coil. I this tube stichs, or fails to slip into place smoothly, inveatigate and remove the cause of the trouble. Do not force the tube.

Slide the kinescope cushion toward the rear of the chastis. Loomen the deflection yoke adjustment, slide the yoke toward the rear of the chassis and tighten.

Slip the ion trap magnet assembly over the neck of the kinescope.

Connect the kinescope socket to the tube base.
Connect the high voltage lead to the kinescope second anode socket.

Wipe the kinescope screen surface and front panel safety glass clean of all dust and finger marks.

To replace the chassis in the cabinet, first tighten the crossrecessed head screw on the kinescope strap. Slide the chassis into the cabinet, then insert and tighten the six chassis bolts. Loosen the kinescope strap from the rear of the cabinet, or from the bottom through a hole in the chasais shell. The bottom end of the crose-recessed head screw is slotted to fit a screwdriver. Push the kinescope forward until the face of the tube is against the mask. Push the yoke cushion forward against the kinescope Eare, then tighten the cushion adjusting screws. Push the yoke forward and tighten. Tighten the hinescope strap. Replace the knobs, and the cabinet back.


Figure 5-Chassis Top View


Figure 6-Chassis Boltom Viéw

TEST EQUIPMENT. - To properly service the felevision chassis of this receiver, it is recommended that the following test equipment be available:

## R-F Sweep Generator meeting the following requirements:

(a) Frequency Ranges

20 to $30 \mathrm{mc} ., 1 \mathrm{mc}$. and 10 mc . sweep width
50 to $90 \mathrm{mc} ., 10 \mathrm{mc}$. sweep width
170 to $225 \mathrm{mc} ., 10 \mathrm{mc}$. sweep width
(b) Output adjustable with at least .1 volt maximum.
(c) Output constant on all ranges.
(d) "Flat" output on all altenuator positions.

Cathode-Ray Oscilloscope. - For alignment purposes, the os. cilloscope employed must have excellent low frequency and phase response, and should be capable of pasing a 60 -cycle square wave without appreciable distortion. While this requirement is not met by many commercial instruments. RCA Oscilloscopes. types WO-55A. WO-58A. WO-79A, and WO-60C fill the requirement and any of these may be employed.

For video and sync waveiorm observations, the oscilloscope must have excellent frequency and phase response from 10 cycles to at least two megacycles in all positions of the gain control. The RCA typas WO-58A and WO-79A are ideally suited for this purpose.

Signal Generator to provide the following frequencies with crystal accuracy.
(a) Intermediate frequencies
19.75 mc . adjacent channel picture trap
21.25 me. sound $i-f$ and sound traps
22.05 and 24.75 mc . conv. and lirst pix i-f trans.
25.9 mc . second picture i-f transiormer
24.6 mc . fourth picture it transformer
22.0 mc . third picture i-f transformer
22.5 mc . fifth picture i-f transformer
25.75 mc . picture carrier
27.25 mc . adjacent channel sound trap
(b) Radio frequencies

	Picture	Sound
Channel	Carrier	Carrier
Number	Freq. Mc.	Freq. Mc.
2.	55.25	. 59.75
3.	. 61.25	. 65.75
4.	. 67.25	. 71.75
5.	77.25	. 81.75
6.	. 83.25.	. . 87.75
7.	. 175.25	. 179.75
8.	.181.25	. . 185.75
9	. 187,25.	. . 191.75
10.	. 193.25 .	. . 197.75
11.	. 199.25 .	. 203.75
12.	. 205.25.	. 209.75
13.	. 211.25	. 215.75

(c) Output of these ranges should be adjustable and at least .1 volt maximum.

Heterodyne Frequency Metor with crystal calibrator if the signal generator is not crystal controlled.

Electronic Voltmeter of Junior "VoltOhmyat" type and a high voltage multiplier probe for use with this meter to permit measurements up to 10 kv .

Service Precautions. - Il posaible, the chasmis should be serviced without the kinescope. However, if it is necensary to view the raster during servicing, make sure the kinescope retaining strap is secure, and the yoke cushion is up firmly against the flare of the tube.

CRUTION: Do not short the kinescope second anode lead. Its short circuit current is approximately 3 ma . This represents approximately 9 watts dissipation and a considerable overload on the high voltage filter resistor R189.

Adjustments Required. Normally, only the r-f oscillator line will require the attention of the service technician. All other circuits are either broad or very stable and hence will seldom require readjustment.

The oscillator line is relatively non critical. When oscillator tubes are changed, in all probability it will be necessary to adjust only C6 in order to bring the entire line into adjustment.

ORDER OF RLIGNMENT. - When a complete receiver alignment is necessary, it can be most conveniently performed in the following order:
(1) Sound discriminator
(5) R-F and converter lines
(2) Sound i-f transformers
(6) R-F oscillator line
(3) Picture i-f traps
(7) 4.5 mc . video trap
(4) Picture i-f transformers
(8) Sensitivity check

SOUND DISCRIMINATOR ALIGNMENT. - Set the signal generator for approximately . 1 volt output at 21.25 mc . and connect it to the second sound i-f grid.

## Detune Tll3 secondary (bottom).

Set the "Voltohmyst" on the 10 volt scale.
Connect the meter in series with a one megohm resistor to the junction of diode resistors R203 and R204.
Adjust the primary of T113 (top) for maximum output on the meter.

Connect the "VoltOhmyst" to the junction of C183 and R203. Adjust T113 secondary (bottom). It will be found that it is possible to produce a positive or negative vollage on the meter dependent upon this adjustment. Obviously to pass from a positive to a negative voltage, the voltage must go through zero. Tll3 (bottom) should be adjusted so that the meter indicates zero output as the voltage wings from positive to negative. This point will be called discriminator zero output.
Connect the sweep oscillator to the grid of the second sound i-f amplifier.

Adjust the sweep band width to approximately 1 mc. with the center frequency at approximately 21.25 mc and with an output of approximately . 1 volt.

Connect the oscilloscope to the junction of C183 and R203. The pattern obtained should be similar to that shown in Fig. ure 12. If it is not, adjust the Tll3 (top) until the waveform is symmetrical.

The peak-to-peak band width of the discriminator should be approximataly 350 kc . and it should be linear from 21.175 mc . to 21.325 mc .

SOUND I-F RLIGNMENT. - Connect the sweep oscillator to the lirst sound i-f amplitier grid.

Connect the oscilloscope to the second sound i-f grid return (terminal A T112) in series with a $33,000 \mathrm{ohm}$ isolating resistor.

Insert a 21.25 mc . marker signal from the signal generator into the second sound i-f grid.

Adjusi T112 (top and bottom) for maximum gain and sym. metry about the 21.25 mc . marker. The pattern obtained should be similar to that shown in Figure 13.

The output level from the sweep should be set to produce approximately .3 volt peak-to-peak at the second sound i-1 grid return when the tinal touches on the above adjustment are made. It is necessary that the sweep output voltage should not exceed the specified values otherwise the response curve will be broadened. . permitting slight misadjustment to pass unnoticed and possibly causing distortion on weak signals.

The band width at 70\% response from the first sound i.f grid to the second H -f grid should be approximately 200 kc .

PICTURE I-F TRAP ADJUSTMENT. - Connect the "VoltOhmyst" to the junction of R135 and C190.
Remove the 6SN7GT AGC Amplifier tube V107. Connect a 250,000 ohm potentiometer between pins 5 and 6 of the V107 socket. Adjust the potentiometer until the "VoltOhmyst" reads approximaiely -12 volis. Note: Use approximately -6.5 volts blas on sets in which the third pix i-f obtains bias at junction of R135 and C190.

Set the channel switch to the blank position between channel numbers 2 and 13.
Connect the "VoltOhmyst" across the picture detector load resistor R119. Under this condition, both leads of the meter are at approximately -120 volts. In making this measurement, care should be taken not to touch the case of the meter or to permit the meter case to become grounded.

Connect the output of the signal generator to the grid of the converter tube V2. To do this, remove the tube from the socket and fashion a clip by twisting one end of a small piece of wire around pin number 1. Replace the tube in the socket leaving the end of the wire protruding from under the tube. Connect the signal generator to this wire through a $1,500 \mathrm{mmf}$ capacitor keeping the loads as short as possible.

Set the generator to each of the following frequencies and with $a$ thin liber screwdriver tune the specilied adjustment for minimum indication on the "VoltOhmyst." In each instance the generator should be checked against a crystal calibrator to insure that the generator is exactly on frequency.
(1) $21.25 \mathrm{mc} .-\mathrm{Tl} 03$ (top)
(4) $27.25 \mathrm{mc} .-\mathrm{T} 104$ (top)
(2) $21.25 \mathrm{mc} . \mathrm{T} 105$ (top)
(5) $19.75 \mathrm{mc}-\mathrm{T} 106$ (top)
(3) $27.25 \mathrm{mc} .-\mathrm{Tl} 02$ ( fop )
(6) $19.75 \mathrm{mc} .-\mathrm{TlOl}$ (top)

In the above transformers using threaded cores, it is possible to run the cores completely through the coils and secure two peaks or nulls. The correct position is with the cores in the outside ends of the coils. If the cores are not in the correct position, the coupling will be incorrect and it will be impossible to secure the correct reaponse.

PICTURE I-F TRANSFORMER ADJUSTMENTS. - Set the sig. nal generator to each of the following frequencies and peak the specified adjustment for maximum indication on the "VoliOhmyst." During alignment, reduce the input signal it necessary to prevent overloading.
22.5 mc .-T106 (bottom)
24.6 mc .-T104 (boltom)
22.0 mc.-T 103 (bottom)
25.9 mc .-T102 (boltom)

T1 and T101 are coupled by a link and in combination constitute an overcoupled transiormer. The characteristics of such a transformer are such that it is impossible to adjust it 10 a single frequency.

To sweep align Tl and T101 connect a 330 ohm composition resistor across the primary coils of T102, T103, T104 and T106.

Connect the "VoltOhmyst" to the junction of R135 and C190. Adjust the 250,000 ohm potentiometer for -2.0 volts on the meter.

Connect the oncilloscope to the plate of the first video ampli. fier, pin 1 of V106.

Connect a sweep generator to the converter grid through a $1,500 \mathrm{mmf}$ capacitor. Set the generator to eweep from 20.0 mc . to 30.0 mc . and adjust the output to provide $a 4$ volt peak-topeak signal on the scope.

Connect the aignal generator loosely to the converter grid and adjust to provide markers at 22.05 mc . and 24.75 mc .

Adjust T1 (top) and T101 (bottom) to obtain the response shown in Figure 14. The Tl core must penetrate to the terminal board end of the coil in order to obtain the correct response.

Remove the 330 ohm resistors from across T102, T103, T104 and T106.

Adjust the 250.000 ohm potentiometer for a 15 volt peak-topeak signal at the plate of the first video amplifier. The bias as measured by the "VoltOhmyst" should be -12 volts or -6.5 volts for earlier sels.

Observe and analyze the response curve obtained. The response will not be ideal and the i-f adjustments must be rotouched in order to obtain the desired curve. See Figure 15.

On linal adjustment the picture carrier marker must be at approximately $45 \%$ response. The curve must be approximately flat topped, with the 22.1 mc . marker at approximately $95 \%$ response, the 25.0 mc . marker below $90 \%$ and the 26.5 mc . marker at $5 \%$ to $10 \%$ on the response curve.

The most important consideration in making the iff adjustmepls is to get the picture carrier at the $45 \%$ response point. If the picture carrier operates too low on the response curve, loss of low frequency video response, of picture brilliance. of blanking, and of sync may occur. If the picture carrier operates too high on the response curve, the picture becomes smeared. In making these adjustments, care should be taken that no two transformers are luned to the same frequency as i-f oscillation may result.

Remove the converter tube and take off the clip to pin number 1 . Replace the tube in the socket.

Picture I-F Oscillation. - It the receiver will operate without oscillating with the test equipment disconnected but breaks into oscillation or becomes unstable with the equipment conrected, it may become necessary to establish a ground plane. Cover the test bench with a sheet of copper and set the chassis on the sheet. Sel all the test equipment except the "VoltOhmyst" on the sheet and bond or bypass them to it. A Junior "VoltOhmyst" should not be bonded to the sheet since the negative test probe is not always connected to ground during alignment.

If the receiver is badly misaligned and two or more of the i-f transformers are tuned to the same frequency, the receiver may lall into i-f oscillation. I-F oscillation shows up as a volfage across the picture detector load resistor that is unaffected by i-f signal input. If such a condition is encountered, it is sometimes possible to stop oscillation by increasing the grid bias. If so, it should then be possible to align the transformers by the usual method. Once aligned in this manner, the i-f should be stable with reduced bias.

If the oscillation cannot be stopped in the above manner, shunt the grids of the first three pix i.f amplifiers to ground with 1.000 mmf. capacitors. Connect the signal generator to the fourth pix i-f grid and align T106 to frequency. Progressively remove the shunt from each grid and align the plate coil of that stage to frequency.

If this does not stop the oscillation, the difficulty is not due to $1-1$ misalignment as the $i-1$ section is stable when properly aligned. Check all i.f by-pass condensers, transformer shunting resistors, tubes, socket vollages, elc.

RNTENNA, R-F AND CONVERTER LINE ADJUSTMENT.In order to align the r-f tuner, it will first be necessary to set the channel 13 ascillator to frequency. The shield over the bottom of the r-f unit must be in place when making any adjustments.

The channel 13 oscillator may be aligned by adjusting it to beat with a crystal calibrated heterodyne frequency meter, or by leeding a signal into the receiver at the r.f sound carrier frequency and adjusting the oscillator for zero output from the sound discriminator. In this latter case the sound discriminator must first have been aligned to exact frequency. Either method of adjustment will produce the same results. The method used will depend upon the type of test equipment available. Regardless of which method of oscillator alignment is used, the frequency standard must be crystal controlled or calibrated.

If the receiver oscillator is to be adjusted by the heterodyne frequency meter method, couple the meter probe loosely to the receiver ascillator.

If the receiver oscillator is adjusted by feeding in the r-f sound carrier signal, connect the signal generator to the receiver antenna terminals. Connect the "VoltOhmyt" to the sound discriminator output (junction of C183 and R203).

Set the receiver channel switch to 13.

Adjust the frequency standard to the correct frequency (237 mc. for heterodyne frequency meter or 215.75 mc . for the sig. nal generator).
Set the line tuning control to the middle of its range while making the adjustment.

Adjust C6 for an audible beat on the heterodyne frequency meter or zero voltage from sound discriminator.

Now that the channel 13 oscillator is set to frequency. we may procede with the r-f alignment.

Remove the first pix i.f amplitier tube V10ג.
Connect the oscilloscope to the test connection at R13 in the r-1 tuning unit.

Conrect the "VoltOhmyst" to the junction of R135 and C197. Adjust the bias potentiometer for -3.5 volts on the meter.
Connect the rif sweep oscillator to the receiver antenna terminals. The method of connection depends upon the output impedance of the sweep. The P102 connection for 300 ohm balanced or 72 ohm single-ended input are shown in the circuit diagram in Figure 79. If the sweep oscillator has a 50 ohm single-ended output, 300 ohm balanced output can be obtained by connecting as shown in Figure 7.


Figure :-l'nbalanced Siceep Ciable Termination

Connect the signal generator loosely to the receiver antenna terminals.

Since channel 7 has the narrowest response of any of the high frequency channels, it should be adjusted tirst.

Set the receiver channel switch to channel 7.
Set the sweep oscillator to cover channel 7.
Insert markers of channel 7 picture carrier and sound carrier 175.25 mc . and 179.75 mc .

Adjust ClO and Cl4 until the curve lalls symmetrically between the sound and picture carrier markers. Adjust Cll to give the proper bandwidth. Roughly peak L6 in conjunction with slight adjustments of C10 and Cle for a flat-topped. response curve with the sound and picture carriers at $90 \%$ to $95 \%$ response points on this curve. See Figure 16, channel 7.

Switch to channel 12 and adjust L6 lor maximum response and minimum top slope of the curve.

Check the response of channels 7 through 13 by witching the receiver channel swith. sweep oscillator and marker oscillator to each of these channels and observe the response obtained. See Figure 16 for typical response curves. It should be found that all these channels have the proper shaped response with the markers above $80 \%$ response. If the markers do not fall within this requirement on one or more high frequency channels, since there are no individual channel adjustments. it will be necessary to readjust L6. C10, C11 and C14, and possibly compromise some channel slightly in order to get the markers up on other channels. Normally, however, no difticulty of this type should be experienced since the higher frequency channels become comparatively broad and the markers easily lall within the required range.

Channel 6 is next aligned in the same manner.
Set the receiver to channel 6.
Set the sweep oscillator to cover channel 6.
Set the marker oscillator to channel 6 picture and sound carrier frequencies.

Adjust L9, L13. L66 and C12, ior an approximately flat-topped response curve located symmetrically between the markers. L9, L13 and L66 are the center frequency adjustments. C12 is the band width adjustment.

Check channels 5 down through channel 2 by switching the receiver, sweep oscillator and marker ascillator to oach channel and observing the response oblained. In all cases, the markers should be above the $80 \%$ response point. If this is not the case, L9, L13, L66 and C12 should be retouched. On final adjustment, all channels must be within the $80 \%$ specification.

Disconnect the bias pot. and replace V107. Replace V101.
Following an r-i alignment, the oscillator alignment must be checked.

R-F OSCILLATOR LINE ADJUSTMENT. - The r-i oscillator line may be aligned by adjusting it to beat with a crystal calibrated heterodyne frequency meter, or by feeding a signal into the receiver at the r-f sound carrier frequency and adjusting the oscillator for zero output from the sound discriminator. In this latter case the sound discriminator must first have been aligned to exact frequency. Either method of adjustment will produce the same results. The method used will depend upon the type of test equipment available.

Regardless of which method of oscillator alignment is used, the frequency standard must be crystal controlled or calibrated. If the receiver oscillator is to be adjusted by the heterodyne frequency meter method, the calibration frequency listed under R.F Osc. Freq. must be available.

If the receiver oscillator is adjusted by feeding in the r-f sound carrier frequency, the frequencies listed under Sound Carrier Freq. must be available.


If the heterodyne frequency meter method is used, couple the meter probe loosely to the receiver oscillator.
If the r-f sound carrier method is used, connect the "VolfOhmyst" to the sound discriminator output (junction of Cl83 and R203).

Connect the signal generator to the receiver antenna terminals. The order of alignment remains the same regardleas of which method is used.

If the r-f unit is removed from the receiver lor service and is aligned separately the shield over the boltom of the r-f unit must be in place when making adjustments.

Since lower frequencies are obtained by adding steps of inductance, it is necessary to align channel 13 first and continue in reverse numerical order.

Set the receiver channel switch to 13.
Adjust the frequency standard to the correct frequency (237 mc. for heterodyne frequency meter or 215.75 mc . for the signal generator).

Set the fine tuning control to the middle of its range while making the adjustment.

Adjust C6 for an audible beat on the heterodyne irequency meter or zero voltage from sound discriminator. Oscillator adjustments L1 and L2 shown on the schematic are factory control adjustments and should not be touched in the tield.

Switch the receiver to channel 12.
Set the frequency standard to the proper frequency as listed in the alignment table.

Adjust L14 for indications as above.
Adjust the oscillator to irequency on all channels by switching the receiver and the frequency standard to each channel and adjusting the appropriate oscillator trimmer for the speci-

## ALGGNMENT TABLE

THE DETAILED ALIGNMENT PROCEDURE BEGINNING ON PAGE 7 SHOULD BE READ BEFORE ALIGNMENT BY USE OF THE TABLE IS ATTEMPTED.

$\begin{gathered} \text { STEP } \\ \text { No. } \end{gathered}$	$\begin{gathered} \text { CONNECT } \\ \text { SNGNAL } \\ \text { GENERATOR } \\ \text { TO } \end{gathered}$	$\begin{gathered} \text { SIGNAL } \\ \text { GEN. } \\ \text { FREQ. } \\ \text { MC. } \end{gathered}$		$\begin{aligned} & \text { SWEEP } \\ & \text { GEN. } \\ & \text { FREQ. } \\ & \text { MC. } \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { OSCILLOSCOPE } \\ \text { TO } \end{gathered}$	CONNECT "VOLTOHMYST"	MISCELLANEOUS CONNECTIONS AND INSTRUCTIONS	ADJUST	$\begin{gathered} \text { REFER } \\ \text { TO } \end{gathered}$
DISCRIMINATOR AND SOUND I-F ALIGNMENT									
1	2nd sound i-f grid (pin 1. V117)	21.25 .1 volt output	Not used		Not used	In series with 1 meg. to junction of R203 R204		Detune T113 (bot.)   Adjust Til3 (top)   lor max. on meter	$\begin{array}{lr} \hline \text { Fis. } 8 \\ \text { Fig. } 9 \\ \text { FiE. } 10 \end{array}$
2	0	4	"	.	"	Junction of C183 8. R203	Meter on 3 volt scale	T113 (bottom) for zero on meter	$\begin{array}{\|l\|} \hline \text { Fis. } 9 \\ \text { Fig. } 10 \end{array}$
3	"	*	2nd sound i-f grid ( $\operatorname{pin} 1, \mathrm{~V}_{117}$ )	$\begin{gathered} 21.25 \\ \text { center } \\ 1 \text { m. } \\ \text { wide. } \\ .1 \text { v. out } \end{gathered}$	$\begin{array}{\|l\|} \begin{array}{l} \text { Junct. of C183 \& } \\ \text { R203 } \end{array} \\ \hline \end{array}$	Not used	Cbeck for symm waveform (positive not equal adjust they are equal	metrical response e negative). It T113 (top) until	$\begin{aligned} & \text { Fig. } 10 \\ & \text { Fig. } 12 \end{aligned}$
4	1st sound i-f grid (pin 1, V116)		1st sound i-f grid	21.25 reduced output	```Terminal A, T112 in series with a 33,000 obm resistor.```	${ }^{*}$	Sweep output reduced to provide .3 volt p -to-p on scope	-T112 (top bot.) for max. tain and symmetry at 21.25 me.	Fis. 8   Fis. 9   Fis. 10   Fig. 13
PICTURE I-F AND TRAP ADJUSTMENT									
5	Not used		Not used		Not used	Junction of R135 C190	Remore Vio7. Connect potentiometer between pins 5 : 6 of V107 sucket	Adjust pot. for meter reading of -12 volts or -6.5 volts on early sets	Fig. 10
6	Converter grid   (pin 1, V2)	21.25	4		*	Acrose R119	Meter on 3 volt scale. Receiver between 2 : 13	T103 (top) for min. on meter	Fis. 8
7	"	21.25	"		$\cdots$	-	-	$\begin{aligned} & \text { T105 (top) for } \\ & \text { min. } \end{aligned}$	$\because$
8	"	27.25	*		*	"	${ }^{*}$	$\begin{aligned} & T 102 \text { (top) for } \\ & \min . \end{aligned}$	"
-	"	27.25	"		"	"	"	T104 (top) for min.	*
10	"	19.75	$\cdots$		*	"	${ }^{\prime}$	$\begin{array}{ll} \hline \text { T106 (top) for } \\ \text { min. } \end{array}$	"
11	"	19.75	*		${ }^{\prime}$	"	"	T101 (top) for min.	*
12	4	22.5	${ }^{*}$		"	"	"	T108 (bettom) for max. on meter	Fig. 9
13	"	24.6	"		"	-•	"	T104 (bottom) for max.	"
14	"	22.0	"		"	"	"	T103.(bottom) for max.	"
15	"	25.9	"		"	*	"	T102 (bottom) for max.	"
16	"	$\begin{aligned} & 22.05 \\ & 24.75 \end{aligned}$	Converter grid (pin 1, V2)	Sweep$\operatorname{ing}$ 20 to 30 mc .	Pin 1, V106	Junction of R135 4. C190	Shunt 300 ohms across pri. T102. T103, T104, T106. Set bias -2 V. Set swp. Een. for 4 V . P-P on scope.	Adjust T1 (top) and T101 (bottom) for proper response	$\begin{aligned} & \text { Fig. } 8 \\ & \text { Fig. } 9 \\ & \text { Fig. } 14 \end{aligned}$
17	"		"	"	*	"	Remove shunt resistors. Set bias to sive 15 volts $P$ to $P$ on scope.	Adjust T1 (top), T101, T102, T103, T104, T106 (bot.) for proper resp.	$\begin{aligned} & \text { Fis. } 8 \\ & \text { Fig. } 9 \\ & \text { Fig. } 15 \end{aligned}$


18	Antenna terminale	215.75	Not used		Not used	Junction of C183 \& R203 for signal gen. method only	Fine tuning centered. Receiver on cbannel 13. Heterodyne meter coupled to oscillator if used.	C6 for zero on meter or beat on het. fref. meter	$\begin{array}{\|l\|l\|} \hline \text { Fig. } 8 \\ \text { Fig. } 10 \end{array}$
19						Junction of R135 \& C197	Remove V101	Potentiometer for -3.5 volts on meter	$\begin{array}{\|l\|l} \text { Fig. } \\ \text { Fig. } 10 \end{array}$
20	Antenna terminal (loosely)	$\begin{gathered} 175.25 \\ 170.75 \end{gathered}$	Antenna terminals (see text for precaution)	$\begin{aligned} & \text { Sweep- } \\ & \text { int } \\ & \text { channel } \\ & 7 \end{aligned}$	Test Connection R13	Not used	Receiver on channel 7	L6, C10, C11 C14 for fint top response between markers. Markers ahove $90 \%$.	Fig. 8 Fig. 16 (7)
21	"	$\begin{aligned} & 205.25 \\ & 209.75 \end{aligned}$	-*	$\begin{aligned} & \text { channel } \end{aligned}$	${ }^{\prime \prime}$	"	Receiver on channel 12	L6 for man. response and min. slope of top of curve	$\begin{array}{\|l\|l\|} \hline \text { Fiz. } 8 \\ \text { Fig. }{ }^{16} \\ \text { (12) } \end{array}$
22	،	$\begin{aligned} & 175.25 \\ & 179.75 \end{aligned}$	*	channel	*	"	Receiver on cbannel 7	Cbeck to see that response is as above	$\mathrm{Fig.}_{(7)^{16}}$
23	"	$\begin{aligned} & 181.25 \\ & 185.75 \end{aligned}$	*	$\begin{gathered} \text { channel } \\ { }_{8} \end{gathered}$	"	"	Receiver on cbannel 8	*	Fig. 16   (8)
24	"	$\begin{aligned} & 187.25 \\ & 191.75 \end{aligned}$	-"	$\underset{\theta}{\text { channel }}$	"	-	Receiver on channel 9	"	$\begin{array}{\|c} \hline \text { Fig. }{ }^{16} \\ \hline 19)^{\prime} \end{array}$
25	"	$\begin{aligned} & 193.25 \\ & 197.75 \end{aligned}$	"	$\begin{aligned} & \text { channel } \\ & 10 \end{aligned}$	"	"	Receiver on cbannel 10	"	$\underset{(10)}{\text { Fig. }{ }^{16}}$


STEP.	$\begin{aligned} & \text { CONNECT } \\ & \text { SENGNALI } \\ & \text { GENEATOR } \end{aligned}$	$\begin{aligned} & \text { SIGNAL } \\ & \text { GEREL } \\ & \text { FRCO. } \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { SNEPEP } \\ \text { GENEATOR } \end{gathered}$	$\begin{aligned} & \text { SWEEP } \\ & \text { GREN. } \\ & \text { FREO. } \end{aligned}$	CONNET OSCILNESCOPE TO		MISCELLANEOUS instand	adjust	${ }_{\text {ReFER }}^{\text {To }}$
rf and converter line alignment (Cont d)									
28	"	${ }_{20}^{190.75}$	"	${ }_{\text {chennel }}^{\text {chel }}$	"	"	Receiver on channel 11	"	$\mathrm{Fig}_{\text {(ii) }}{ }^{16}$
27	"	$\begin{aligned} & 205.25 \\ & 209.75 \end{aligned}$	"	$\begin{gathered} \text { channol } \\ 12 \end{gathered}$	"	"	Receiver on channel 12	"	${ }_{\text {Fil }}^{\text {(12) }}$ ( ${ }^{16}$
${ }^{28}$	"	211.25 215.75	"	$\begin{array}{\|cc\|c\|} \hline 13 \\ \hline \end{array}$	"	"	Receiver on channel 13	"*	$\underset{\substack{\text { Fif. } \\(13)}}{16}$
29	If the response on any channel (steps 22 tbrough 28 ) is below $80 \%$ at either marker, witch to that cbanne! and adjuat L6, C10, C11 $\& \mathbf{C 1 4}$ to pull response up on that channel. Then recheck steps 22 throukh 28 .								
30	Antenne terminals (loosely)	83.25   87   85	Ant. terminals (see text for precautien)	$\begin{aligned} & \text { Sweep- } \\ & \text { ing } \\ & \text { cban. } 8 \end{aligned}$		Not used	Recoiver on channel 6		
31	"	77.28   81.78	$\cdots$	$\mathrm{cban}_{8}{ }^{\text {chel }}$	"	"	Receiver an channel 5	$\underset{\substack{\text { Check to } \\ \text { response see that } \\ \text { is } \\ \text { at }}}{ }$ respone above	$\mathrm{Fig}_{(3)^{16}}{ }^{16}$
32	"	87.25 71.75	"	channel	"	"	Receiver on channel 4	"	$\underset{(4)}{\text { Figis }}$ (18)
33	"	$\begin{aligned} & 81.25 \\ & 6.75 \end{aligned}$	"	${ }_{\text {channel }}{ }^{\text {a }}$	"	"	Recelver on channel 3	"	
34	"	$\begin{aligned} & 85.25 \\ & 59.75 \\ & \hline 85 \end{aligned}$	"	${ }_{\text {channel }}^{2}$	"	"	Recelver on channel 2	"	${ }_{\text {Fig }}^{(2)}$
${ }^{36}$									


r-F oscillator alignment									
STEP	$\begin{gathered} \text { CONNECT } \\ \text { CENCNATIT } \\ \text { TOTOR } \\ \hline \end{gathered}$	$\begin{gathered} \text { SIGNAL } \\ \text { GEREL. } \\ \text { FRC. } \end{gathered}$	CONNECT HETERODYNE FREQ METER	$\begin{gathered} \text { HET. } \\ \substack{\text { METER } \\ \text { FRER } \\ \text { MC. }} \end{gathered}$	$\begin{gathered} \text { CONNECT } \\ \text { OSCILLOSCOPE } \\ \text { TO } \end{gathered}$	$\begin{gathered} \text { CONNETT } \\ \text { "VOLTOHMYT" } \\ \text { TO } \end{gathered}$	MISCELLANEOUS CONNECTIONS instructions	adjust	${ }_{\text {REFER }}^{\text {TO }}$
${ }^{38}$	Antonna terminals	218.75	Loosely coupled to r-f osc.	237	Not used	$\underset{\substack{\text { Junction of } \\ \text { R203 } \\ \text { Clor } \\ \text { ais } \\ \hline}}{ }$ zen. mathod only	Fine tuning een- tered. Recefiver on chanacl 13	Cb for zero on het. freq. meter	$\begin{aligned} & \text { Fig: } 10 \\ & \text { Fig: } \\ & \text { Fig: } \\ & \hline 8 \end{aligned}$
37	"	209.75	"	231	"	"	Rec. on chan. 12	L14 as above	Fig. 11
38	"	203.75	"	225	"	"	Rec. on chan. 11	L15 as above	"
39	"	197.75	"	219	"	"	Rec. on chan. 10	L16 as above	"
40	"	191.75	"	213	"	"	Rec. on chan. 9	L17 as sbove	"
41	"	185.75	"	207	"	"	Rec. on chan. ${ }^{\text {a }}$	L18 as above	"
42	"	179.75	"	201	"	"	Rec. on chan, 7	L19 as above	"
43	"	87.78	"	109	"	"	Rec. on chan. o	L31 as above	Fig. 9
4	"	81.75	"	103	"	$\cdots$	Rec. on chan. 5	L21 as above	Fig. 11
45	$\cdots$	71.78	"	93	"	"	Roc. on chan. 4	122 as above	${ }^{\circ}$
46	"	68.78	"	${ }^{87}$	"	"	Rec. on chan. 3	L23 at sbove	"
47	"	59.78	"	81	"	"	Rec. on chan. 2	L24 as above	"
48	Repent stope 36 through 47 as a chock.								


agc threshold adjustment						
49	Not used	Not used	Pin 1, V106	Not used	Tune in station, eurn pix control clockwise. Adjust R138 for max. without elipping aync on scope whour cipplac ayne or	${ }_{\text {Fig. }}^{\text {Fig. }} 10$


so	Short circuit terminale $\mathbf{C}$ and D of T100. Tune in a atation.
51	Turn


53


 Turn hold control fully fountorclockwioc. Momantarily romove aignal. Turn bold control slowly clockwice. Note least number of bars belore
pullin. Adjust Locking Range Control (Cis3A) for 3 bar puili-in. Turn hold control fully clockwise. Adjust Tioe Freq. Adjustment until horizontal blanking appears as single vertical or diagonal bar fa pix. 4.5 MC VIDEO TRAP ADJUSTMENT


Figure 9-Bottom Chassis Adjustments

 Figure Il-R-F Oscillator Adjustments


Figure 12
Discriminator
Response





Figure 16-R.F Response


$$
\underbrace{}_{c} \underbrace{\text { corasct }}_{\text {cVOQ }}
$$


the clockwise position. Connect the low capacity probe from the oscillomcope to the plate of the first video amplifio
Adjust the oscilloscope to observe the vertical sync pulse.
Turn the AGC itreshold control R138 fully clockwise, then
sourn clockwise. the reciver gain will increase slowly, increasing the size of the pattern on the oscilloscope. R138 should b
turned counterclockwise until the receiver begins to overloa as indicaled by clipping of the sync. The control should be leff in the maximum gain position in which no clipping of sync is
hohizontal oscillator adiustment. - Normally the adjustment of the horizontal oscillator is not considered to be
a part of the alignment procedure, but since the oscillator wave form adjustment requires the use of an oncilloscope, it can no be done conveniently in the field. The waveform adjustment i
made at the factory and normally should not require readius ment in the field. However, the wavelorm adjustment should be checked whenever the receiver is aligned or whenever the

Horizontal Froquency Rdjustmonh - With a clip lead, shor
 oscillator transiormer Tl 109.
sync the picture if possible.
A.-Turn the horizontal hold control R173 to the extreme clockwise position. Adjunt the Ti09 Frequency Adjustmen
(under the chasis) so that the picture is just out of sync and the horizontal blaming appears in
B. -Turn the hold control approximately one quarter of a turn from the extreme clockwise position and examine
width and linearity of the picture. II picture widh or linearity is incorrect, adjust the horizontal drive conrtol C1538, the wid control L115 and the linearity control L111 until the picture in
correct. It C153B, L115 or L111 were adjutiod, zepeat sitep correct.
above.

Horisontal Locking Range Kdjustmont - Turn the horizonta hold control fully counterclock wise. Momentarily remove the
signal by swilching off channel then back. Slowly turn the horizontal hold control clock wise and note the least number of
diganal barn obainod juat before the pleture pulls into eync

It more than 9 bars are present just before the picture pulle
into sync, adjuat the horizontal locking range trimmer C153A into sync. adiust he horizontal locking range immer C153 slightly counterclockwise. Turn the horizontal hold control counterclockwise, momentarily remove the signal and zecheck the number of bars present at the pull
codure until 7 to 9 bars are present.

Horizontal Oscllacior Wavalorm Adustmont - Remove the
shorting clif trom terminals $C$ and $D$ of TIO9. Tura the horishorting elip from terminalis $C$ and $D$ of Tiog. Turn the ho
 ment Core of T109 (on the outidide of the chanasis) until the hori zontal blanking bar appears in the rastor.
A.-Connect the low capacity probe of an oscilloscope to
terminal C of Tlog. Turn the horizontal hold control one quartior

turn from the clockwise position so that the picture is in aync. The patiern on the oaccllloscope should be as shown in Fig ure 18. Adjust the Oscillator Wavetorm Adjuatment Core
T109 until the two peaks are at the same height. During this adjustment. the picture must bo kept in sync by readjusting
the hold control it necessary.
This adjustment is very important for correct operation of The circuit. If the broad peak of the wave on the oscilloscop poorer, the stabilizing effect of the luned cirruilt is reduce and dritt of the oscillator becomes more serious. On the other
hand, if the broad peak is higher than the sharp peak, the oscillator is overstabilized, the pull-in range becomes inade.
quate and the broad peak can cause double triggering of the oscillator when the hold control approaches the clockwis

Remove the oscilloscope upon completion of this adjuatment.
Chock of Horizontal Oscillator Rdjustments. - Set the hori tarily remove the signal by switching off channel then back Slowly turn the horizontal hold coutrol clockwise and note th pulls into sync. If more than 3 bars are present just before the picture pulle
into sync. adjust the horizontal locking range trimmer CI53A slighly clockwine. If less than 3 bars are present, adjust C153A
slighly counterclock wise. Tum the horizontal hold contro slighly counterciockwis. Turn the horizontal hold contro countierclockwise, momeniarily remove the signal and rocheck
the number of bars present at the pull-in point. Hepeat this
procedure until 3 bars are present.

Turn the horizontal hold control to the maximum clockwise
posilion. The picture should be just out of sync to the exteni position. The piccure should be jus out of sync to the exten or diagonal bar in the picture. Apjust the a siongle vertica
Frequency


Figure $21-H o r i z o n t a l ~ L i n e a r i t y ~$
Control Misadjusted ontrol Misad justed (Pictur
Cramped in Middle) Cramped $\longleftarrow$

Figure ${ }^{22-W i d t h}$ Control
$\xrightarrow{\text { Misadjusted }}$
4.3 MC. VIDEO TRAP ADJUSTMENT. - Tune in a strong in put from a station, and with a very thort clip lead, short the
trap winding of Tio3. Observe the picture for the appearance of a 4.5 m. meat. if the beat appears in the
L1 10 until the beat is eliminaled or minimized

SENSITIVITY CHECR. - A comparative sensitivity chock can be made by operating the reteiver on a woak signal trom a television station and comparing the pisture and sound ob lained to
conditions.
This weak signal can be obtained by connecting the shop
anterna to the roceiver through a ladder type attenuator pad. The number of stages in the pad dopende upon the ingnal strength available at the antenna. $A$ sufficient number of stage
should be inserted so that a $a$ somewhat leas than normal con sraus pitcture is oblcined when the pitcture control is at the maxil
mum clockwise position. Only carbon type resistors should be mum clockwise position. Oal

RESPONSE CURVES. - The response curves shown on page RESPONSE CORVES. - The response curven shown on page
15 and referred to throughout the alignment procedure woar
taken from a production sot. Although these curves are trpical. taken from a production sot. Alth

The response curves are shown in the classical manner of presentation, that is with "response up" and low frequency 1 the left. The manner in which they will be seon in a given tes
set-up will dopend upon the characteristice of the oscilloscope and the swoep generator. The curves may be seen invertod
and /or switched from loft io right depending on the deflection and/or switched from left to right depending on the deflection
polarity of the occilloceope and the phasing of the swosp generator.

ALIGNMENT TABLE. - Both methods of oncillator alignmen


Figure 25-Test Pattern Showing Out of Sync Condition
When Horizontal Hold Control When Horizontal Hold Control
Is in a Counter-clockuise Posi.
tion-Just Before Pulling Into tion-Ju
Sync

$$
\longleftarrow
$$

Figure 26-Test Pattern Showing Out of Sync Condition
When Horizontal Hold Control When Horizontal Hold Control 1s at the
Position

Figure 23-Horizontal Driv Control Misadjusted


PICTURE IF RESPONSE-At times it may be desirable to observe the individual i-f stage response. This can be achieved by the following method:

Shunt all if transformers and coils with a 330 -ohm carbon resistor except the one whose response is to be observed.

Connect a wide band sweep generator to the converter grid and adjust it 10 sweep from 18 mc . 1030 mc .

Connect the oscilloscope across the picture detector load resistor and observe the overall response. The response obtained will be essentially that of the unshunted stage. The effects of the various traps are also visible on the stage response.
Figures 27 through 31 show the responses of the various stages obtained in the above manner. The curves shown are typical although some variation between receivers can be expected. Relative stage gain is not shown.


Figure 27-Response of Converter and First Pix l-F Transformer


Figure 30-Response of Fourth Pix I-F Transformer


Figure 33-Overall Pix I-F Response



Figure 28-Response of Second Pix 1F Transformer


Figure 31-Response of Fifth Pix IF Transformer


Figure 34-Video Response at Average Contrast

Video Signal Input to 1st Video Am. plifier (Pin 2 of V106) (12AU7)

Figure 36-Vertical (Oscilloscope Synced to $1 / 2$ of Vertical Sweep Rate) (5.4 Volts PP)
$4+4$
Figure 37-Horizontal (Oscilloscope Synced to 1/2 of Horizontal Sweep Rate) (5.4 Volts PP)
$\rightarrow$

Sync Feed (Junction of L110, R219 and C194)

Figure 38-Vertical (28 Volts PP)
$\leftarrow$

Figure 39-Horizontal (28 Volts PP) $\rightarrow$


Figure 29-Response of Third Pix IF Transformer


Figure 32-Response from First Pix I.F grid to Pix Det.


Figure 35-Video Response at Minimum Contrast



Input to lat Sync Separator (Pin l of V108) (6SN7GT)

Figure 46-Vertical (23 Volts PP) $\longleftarrow+$

Figure 47-Horizontal (23 Volts PP) $\rightarrow$
Input to 2nd Video Amplifier (Pin 7 of V106) (12AU7)

Figure 40-Vertical (17 Volts PP) $\longleftarrow$

Figure 41-Horizontal (17 Voles PP) $\rightarrow$

Output of 2nd Video Amplifier (Junction of L105 and R127) (Picture Max.)

Figure 42—Vertical (96 Volss PP) $\longleftrightarrow$

Figure 43-Horizontal (96 Volts PP) $\rightarrow$

Input to Kinescope (Junction of R127 and R128) (Picture Max.)

Figure $44-V$ ertical ( 65 Volts PP) $\leftarrow+$

Figure 45-Horizontal (65 Volts PP) $\rightarrow$
$\rightarrow$ (1)

AGC Rectifier Cathode (Pin 6 of V108) (6SN7GT)

Figure 48-Vertical (4.7 Volts PP) $4+$

Figure 49—Horizontal (1.5 Volts PP) $\rightarrow$

Output of lst Sync Separator (Pin 5 of V108) (6SN7GT)

Figure 50-Vertical (24 Volss PP) $\leftarrow$

Figure 51-Horizontal (24 Voles PP) $\rightarrow$



Output of 1st Sync Separator (Pin 2 of V108) (6SN7GT)

Figure 52-Vertical (26 Vols PP) $\leftarrow 4$

Figure 53-Horisontal (25.5 Volts PP)

$$
\rightarrow
$$



Input to Sync Amplifier (Junction of C137, C139 and R145)

Figure 54-Vertical (21 Vols PP) $\longleftarrow 4$

Figure 55-Horizontal (21 Voles PP) $\rightarrow$


Figure 60-Output of Integrating Network (Junction of C144, C145 and R153) (45 Volts PP)

↔

Figure 61-Grid of Vertical Oscillator (720 Volts PP) (Pin 1 of V107) (6SN7GT)
$\rightarrow$


Figure 62-Grid of Vertical Output (160 Voles PP) (Pin 5 of V110) (6K6GT)
$\leftrightarrow+$

Figure 63-Plate of Vertical Output (750 Volts PP) (Pin 3 of V110) (6K6GT)
$\rightarrow$


Figure 64-Input of Vertical Deflec. tion Coils (75 Voles PP) (Junction of Green Lead of T108 and Green Lead of Yoke) $\longleftarrow 4$

Figure 65-Input to Horizontal Oscil. lator (175 Voles PP) (Junction of C153A and C154)
$\rightarrow$


Figure 66-Junction of R168, R176 and R178 (150 Volts PP) 4-4

Figure 67-Grid of Horizontal Oscillator ( 480 Volts PP) (Pin 4 of V111) (6SN7GT)

$$
\rightarrow
$$



Figure 68-Plate of Horizontal Oscil. lator (270 Volts PP) (Pin 5 of V111) (6SN7GT)
$\leftarrow 44$

Figure 69-Terminal "C" of T109

$$
(70 \text { Voles } P P)
$$



Figure 70-Input to Horizontal Output Tube (42 Voles PP) (Junction of C160, R183 and C153B)
$\longleftarrow 4$

Figure 71-Plate of Horizontal Output (Approx. 6,000 Voles PP) (Measured Through a Capacity Voleage Divider Connected from Top Cap of V112 to Ground)
$\rightarrow$

Figure 72-Junction of C167, L115 and Terminal 1 of T110 (165 Vols PP) $\square$

Figure 73-Plate of Damper (125 Voles PP) (Pin 5 of V114) (6W4GT)
$\rightarrow$


Figure 74-Input across Horizontal Deflection Coils (1,150 Voles PP)

$$
\longleftarrow 44
$$

Figure 75-Horizontal Deflection Coil Current ( 0.6 amp. PP) Measured by Inserting a 5 -ohm Resistor in Series with the Horizontal Deflection Coil and the Voltage across the Resistor Observed.
$\rightarrow$


放



Figure 76--R-F Unit iring Diagram

## CRITICAL LEAD DRESS:

1. The ground bus from pin 2 and the center shield of V117 socket should not be shortened or rerouted.
2. Do not change the dress of the filament leads or the bypass capacitore in the picture or sound i-f circuits. The filament leads between V117. V118 and V119 should be down against the chassis and away from grid or plate leads.
3. If it is necessary to replace any of the 1500 mm capacitors in the picture i-f circuit, the lead length must be kept as short as possible.
4. Picture i-f coupling capacitors $\mathrm{Cl} 06, \mathrm{Cl11}, \mathrm{Cl15}$ and Cl 21 should be up and away from the chassis and should be clear of the pix i-f transformer adjustments by at least $1 / 4$ inch. If the dress of any of these capacitors is changed. the i-f alignment should be rechecked.
5. Leads to L102 and L103 must be as short as possible.
6. Dress peaking coils L105, L106 and L107 up and away from the chassis.
7. Dress Cl83 across tube pins 5 and 6 with leads not exceoding $3 / 8$ inch.
8. Dresp Cl29 and C130 up and away from the chassis.
9. Dress the yellow lead from the picture control away from the chassis and away from the volume-control lead. Dreas the yellow lead from pin 8 of V106 away from the chasisis.
10. Dress the green lead from pin 2 of V106 away from the chassis.
11. Dreas Rl68, R169, R170, R176 and R178 up and away from the chassis.
12. The leads to the volume control should be dressed down against the chassis and away from V117 and V118.
13. Contact between the r-l oscillator frequency adjustment screws and the ascillator coils or channel switch eyelets must be avoided.
14. Dress leads from Lll5 (width control coil) away from the translormer frame.
15. Dress Tllo winding leads as shown in Figure 77.


Figure 77-T110 Lead Dress



stoci	descripmon	stock	DESCRIPTION
74593	Chassis assemblies   rcs 34 C   Capacitor-Mica trimmer comprising 1 section of 3.35 mml and 1 eection of 40.370 mml . (C153A. C153B)	73920	Capacitor-Tubular, moulded paper, oil Impreg. nated. 0047 mid, 600 volts (C143. C144, C145, C195)
		735	Capactior-Tubular. papor. oll Imprognated. . 01 mid. 400 volts (C135. C186. C182)
74153	Capacitor-Fil-voltage, $500 \mathrm{mmf} ., 15.000$ volts (C188)	735	Capacior-Tubular. moulded paper, oil improg. natod. . 01 mfd, 600 volts (C159)
3960	Capactios-Mica, 10 mmL ( C128) $^{\text {a }}$	735	Capactior-Tubular, papar, oil tmpregnated. . 01 mid. 1000 volte (C151, C152, C185)
74105	Capacior-Mica. 33 mmf . (C111)	74727	Capactior-Tubular, moulded paper, oil tmprog-
74728	Capacitor-Mica, 39 mml ( $\mathbf{C 1 4 0}$ )		atod, . 018 mld. 1000 volis (C1
84062	Capacitor-Ceramic, 82 mml ( (C120)	7358	Capacior-Tubular, paper. oll Imprognatod. . 022 mid. 400 volts (C155)
39398	Capactior-Ceramic, 100 mmi ( (C175)	74728	Capacior-Tubular, mouldad papar,
75080	Capactior-Mica, 100 mmi . (C138)		nated, $039 \mathrm{mld}, 1000$ volls (C165)
73921	Capacitor-Ceramic. 120 mmL ( C129 $^{\text {a }}$	73553	Capacior-Tubular. paper, all Lmprognatod. . 047
73102	Capacitor-Mica, 180 mml ( (C158)		
7392	Capacitor-Ceramic. 270 mmi ( $\mathbf{C 1 8 3}$. C194, C198)	73592	Capacior-Tubular, moulded papor, oil Impres. nated .047 mld. 600 volts (C150, C156)
73091		73597	Capactior-Tubular, papar, oill lmpraguatod.
68542	Capacitor-Mica, 380 mmL . (C141, C200)		(cise
74250	Capacitor-Mica. 580 mmi (C180)   Capacitor-Ceramic. 1500. mmí (C101. C103. C104. C105. C108. C109. C110. C113. C114. C117. C118. C122. C125. C127. C132. C171, C172. C176, C177. C188. C192. C193. C198)	73551	Capactior-Tubular, paper, oll Imprognated, 0.1 mid. 400 volte (C149)
71432		735	Capactior-Tubular, papor. oll Imprognated, 0.1 mid. 600 volta (C131)
		7379	Capactor-Tubular. paper, oll imprognated 0.22 mid. 400 volte (C136, C157. C162)
73582	Capacitor-Electrolytic, comprising 2 seettons of 40 mid. 450 volts and 1 rection of 10 mid, 450 volts (C148A. C148B. Cl4BC)	737	Capactior-Tubular, papar. oll imprognated, 0.47 mid. 200 volte (C133. C190. C197)
	Capacitor-Electrolytic, comprising 1 soction of 40 mid, 450 volts. 1 section of $10 \mathrm{mfd}, 450$ valte and 1 section of $80 \mathrm{mfd}, 200$ volts (C170凡, C1708. C170C)	7315	Choko-Fllior choke (L104)
73583			Col
		71429	trol coll (L1
	Capacitor-Electrolytic, comprising 1 section of 40 mid, 450 rolts, 1 section of 90 mid, 150 volts and 1 section of 50 mfd, 150 volts (Cl47A, Cl47B. C147C)	71	Coll-Hortzontal linearity contol coll (L111)
73581		74170	Coll-Poaking coil (38 muh) (L117, R110)
			Coll-Poaking coll (93 mub) (L10
	Capacitor-Electrolytic, comprising 1 section of 80 midd. 450 volts, 2 sectlons of 10 mfl 450 volts and 1 mection of 20 mid. 150 volts (C148A. C148B. C148C: C148D)	742	Coll-Peaking coll (180 muh) (L103, L10
73801		715	Coll-Poaktag coill (250 mub) (L108, L107. Ll
	Capacior-Tubular, papar, all Imprognatod, . 001 mide 800 volte (C137)	73477	Coil-Filament choke coill (L10)
73802		745	Connector-2 contact malo connector for power
	Capacior-Tubular, paper, oll Impregnated, . 0015 mfd. 800 volte (C181)	511	
73595	Capactior-Tubular. moulded papar, oll improcg. natod .0022 mid. 800 volts (C142. C154, C181. C184)		
		71789	Connector-Anode connect
73795	Capacior-Tubular, papar. oll lmpregnatod, .0033 mid. 800 valts (C186)	71521	Connector-Ell-volage eapactior connector
		35	Connoctor-Phono input connector (1)





To obtain resintors for which no atock number is given, order by slating type, value af resistance, tolerance and wattage.


## RcAVictor TELEVISION RECEIVERS MODELS TC124, TC125, TC127

Chassis Nos. KCS 34B
Mfr. No. 274

## Service Data

- 1950 No. T6 -

RADIO CORPORATION OF AMERICA<br>rCa victor division<br>CAMDEN, N. J., U. S. A.

## GENERAL DESCRIPTION


#### Abstract

Models TC124. TC125, and TC127 are twelve and onehalf inch television receivers and are electrically identical except for cabinets. The kinescopes are shipped in place in the cabinet. These receivers employ twenty-one tubes plus two rectifiers and a 12LP4 kinescope. Features of the television unit are full twelve channel coverage; FM sound system: improved picture brilliance; picture A-G-C: A-F-C horizontal hold; stabilized vertical hold; two stages of videa amplification; noise saturation circuits; improved sync separator and clipper; lour me. band width for picture channel and reduced hazard high voltage supply. An auxiliary audio input jack is provided to permit the use of an external record playing attachment.


ELECTRICAL AND MECHANICAL SPECIFICATIONS



The chassis used in Models TCl24, TCl25 and TCl27 are identical to the chassis used in Models T120 and T121 except for the addition of a jewel lamp. The service data for Models T120 and T121 will apply to Models TC124, TCl25 and TCl27 except as noted above, the speaker and miscellaneous parts as listed on the following page.

STOCK No.	DESCRIPTION	$\begin{gathered} \text { STOCR } \\ \text { No. } \end{gathered}$	DESCRIPTION
	SPEAKER ASSEMBLIES 92569-7W RLlll.9 RMA-274	74959	Knob-Fine tuning control knob-dark-(outer) for mahogany or walnut instruments-Models TC125 and TCl27
	or 92569-7B	73995	Knob-Fine tuning control knob-ten-(outer) for ook instrumenta
13867	or 92569.7X RMA-252 Cap-Dust cap	75027	Knob-Fine tuning control knob-chocolate brown(outer) for mahogany or walnut instrumentsModel TC124
74901	Cone-Cone and voice coil assembly for 92569-7 W	74960	Knob-Channel selector knob-dark-(inner) for
75875	Cone-Cone and voice coil assembly for 92569.7B		mahogany and walnut instruments-Models TC125 and TCl27
75642	Cone-Cone and voice coil assembly for 92569-7K	74961	Knob-Channel selector knob-tan-(inner) for oak
5118	Plug-3-prong male plug for speaker	74961	Knob-Channel selector knob-tan-(inner) for oak instruments
73635	Speaker-12" PM speaker complete with cone and voice coil less plug	75028	Knob-Channel selector knob-chocolate brown(inner) for mahogany or walnut instruments for Model TC124
	not agree with above speaker number, order replacement parts by referring to model number of instruments, number stamped on speaker and full	74962	Knob-Brightness control or vertical hold control knob-dark-(outer) for mahogany or walnut in-struments-Models TCl25 and TCl 27
	description of part requirsd.	73999	Knob-Brightness control or vertical hold control knob-tan-(outer) for oak instruments
74982	MISCELLANEOUS	75029	Enob-Brightness control or vertical hold control
74968	Back-Cabinet back for Model TC124		knob-chocolate brown-(outer) for mahogany or walnut instruments for Model TC124
	TC127	74969	Knob-Volume control and power switch knob-
72857	Board-"Ant" terminal board		dark-ior mahogany or walnut instruments for
71599	Bracket-Pilot lamp bracket		Models TCl25 and TC127
13103	Cap-Pilot lamp cap	74003	Knob-Volume control and power switch knob-tan-lor oak instruments
71892	Catch-Bullet catch and strike for doors (2 required) for Model TCl27	75030	Knob-Volume control and power switch knob-
X3092	Cloth-Grille cloth for mahogany or wólnut instruments for Model TC124		cbocolate brown-lor mahogany or walnut instruments for Model TCl24
X3093	Cloth-Grille cloth for oak instruments for Model TC124	74963	Knob-Picture control or horizontal hold control knob -dark-(inner) for mahogany or walnut instru-ments-Models TCl25 and TCl27
X3094	Cloth-Grille cloth for mahogany or walnut instruments for Model TCl 25	74001	Knob-Picture control or horizontal hold control
X3089	Cloth-Grille cloth for oak instruments for Model TCl25	75031	knob-tan-(inner) for oak instruments   Knob-Picture control or horizontal hold control
X3074	Cloth-Grille cloth for mahogany or walnut instruments for Model TCl27		knob-chocolate brown-(inner) for mahogany or walnut instruments for Model TC124
X3075	Cloth-Grille cloth for oak instruments for Model TC 127	11765	Lamp-Pilot lamp-Mazda 51
39153	Connector-4-contact inale connector for antenna cable	74730	Nail-Decorative head nail for grille bars (4 re. quired) for Model TCl27
74891	Cushion-Vinylite cushion for metal kinescope mask	74162	Plate-Mounting plate for interlock switch
74731	Decal-Control panel function decal for mahogany or walnut instruments	74971	Plate-Back plate for door pulls (2 required) for Model TCl27
74732	Decal-Control panel function decal for oak instru. ments	74970	Pull-Cabinet door pull (2 required) for Model TC127
71768	Decal-Trade mark decal for Model TCl27	74113	Screw- \#8.32 $\times 1^{1 "}$ trimit head screw for door pulls for Model TCl27
74809	Emblem-"RCA Victor" emblem	72845	Spring-Retaining spring for knobs \#73995, 74959
73642	Escutcheon-Channel marker escutcheon for mahogany or walnut instruments		and 75027
73740	Escutcheon-Channel marker escutcheon for oak instruments	14270	Spring-Retaining spring for knobs \#73999. 74003. 74960. 74961, 74962, 74969, 75028, 75029 and 75030
74755	Glass-Safety glass for Models TC124 and TC127	30330	Spring-Retaining spring for knobs \#74001, 74963
74989	Glass-Safety glass for Model TCl25		and 75031
37396	Grommet-Rubber grommet for speaker mounting (4 required)	73643	Spring-Spring clip for channel marker escutcheon
74308	Hinge-Cabinet door hinge (1 set) (2 required) for Model TCl27	72936	Stop-Door stop for Model TC127   Stud-Locating stud for back covers

REFER TO MODELS T120 AND T121 FOR CHASSIS PARTS LISTING.
APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS


## GENERAL DESCRIPTION

Model TA 128 television, AM.FM radio, phonograph combina tion employs twenty-six tubes plus two rectifiers and a 12LP4 kinescope. The radio tuner unit which feeds through the television audio system covers the AM and the FM broadcast bands. Two record changers are provided to play $331,6,45$ and 78 RPM records.

Features of the television unit are full twelve channel coverage; FM sound system; improved picture brilliance; picture A-G-C: A-F-C horizontal hold; stabilized vertical hold; two stages of video amplification; noise saturation circuits; improved sync separator and clipper; four mc. band width for picture channel and reduced hazard high voltage supply.

## ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE. $\qquad$ .87 equare inches on a $12 \mathrm{LP4}$ kinescope

## TELEVISION R-F FREQUENCY RANGE

Ald 12 television channels, 54 mc . to 88 mc . 174 mc . to 216 mc . Fine Tuning Range. . $\pm 250 \mathrm{kc}$. on chan. $2, \pm 650 \mathrm{kc}$. on chan. 13 Picture Carrier Frequency . . . . . . . . . . . . . . . . . . . . . . . . 25.75 mc . Sound Carrier Frequency . . . . . . . . . . . . . . . . . . . . . . . 21.25 mc .

RADIO TUNING RANGE
Broadcant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540-1,600 kc. Frequency Modulation . . . . . . . . . . . . . . . . . . . . . . . . . 88-108 mc. Intermediate Frequency-AM . . . . . . . . . . . . . . . . . . . . . . 455 kc. Intermediate Frequency-FM . . . . . . . . . . . . . . . . . . . . . 10.7 mc.
POWER SUPPLY RATING...... 115 volts, 60 cycles, 230 watts AUDIO POWER OUTPUT RATING ............... . 6 watt max. CHASSIS DESIGNATIONS

Telovision Chassis			
Radio Charsis			K135D
331/3/78 RPM Record Changer			960282
45 RPM Record Changer. . . . . . . . . . . . . . . . . . . . . . . . .RP168			
Hefer to Service Data 960282 or RP168 for information on the secord changers.			
LOUDSPEAEER 92569.8................ 12 inch PM Dynamic			
Voice Coil Impedance . . . . . . . . . . . . . 3.2 ohms at 400 cycles			
WEIGHT			
Chassis with Tubes in Cabinet. . . . . . . . . . . . . . . . . . . . 180 lbs .			
Shipping Weight .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 lbs.			
DIMENSIONS (iaches)	Width	Height	Depth
Cabinet (outside).	361/4	$341 / 2$	$231 / 2$
Chasais (overall).	183/4	17	181/2

RECEIVER ANTENNA INPUT IMPEDANCE. 300 ohms balanced
If necessary, the television chassis may be fed separately from either a 300 ohm balanced line or a 72 ohm co-ax.

## RCA TUBE COMPLEMENT

Tube Used

(Television Chassis) | Function |
| :---: |
| (1) RCA |
| (2) |

(Radio Tuner Chassis)



Channel Selector Fine Tuning	Dual Control Knobs
Tone   Sound Volume and On.OH Switch	Dual Control Knobs
Picture Horizontal Hold Picture Vertical Hold	Dual Control Knobs
$\left.\begin{array}{l} \text { Picture } \\ \text { Brightness } \end{array}\right\}$	Dual Control Kno
Function Switch	Single Control Kn
Radio Tuning	Single Control Kn

## NON.OPERATING CONTROLS

Horizontal Centering . . . . . . . . . . . . . . . rear chassis adjustment Vertical Centering . . . . . . . . . . . . . . . . . rear chassis adjustment Width . . . . . . . . . . . . . . . . . rear chassis screwdriver adjustment Width Selector Switch . . . . . rear chassis screwdriver adjustment Height . . . . . . . . . . . . . . . . . . . . . . . . . . .rear chassis adjustment Horizontal Linearily . . . . . . rear chassis screwdriver adjustment Vertical Linearity . . . . . . . . . . . . . . . . . . . rear chassis adjustment Horizontal Drive . . . . . . . . .rear chassis screwdriver adjustment Horizontal Oscillator Frequency ..... .bottom chassis adjustment Horizontal Oscillator Waveform .......side chassis adjustment Focus ....................................... . .ear chassis adjustment Ion Trap Magnet . . . . . . . . . . . . . . . . . . . .top chassis adjustment Deflection Coil ................. . . 10 chassis wing nul adjustment Focus Coil ................. . .top chassis screwdriver adjustment

## HIGH VOLTAGE WARNING

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

## KINESCOPE HANDLING PRECAUTIONS

DO NOT OPEN THE KINESCOPE SHIPPING CARTON, INSTALL, REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE REPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

The kinescope bulb encloses a high vacuum and, due to its large suriace area, is subjected to considerable air pressure. For these reasons, kinescopes must be handled with more care than ordinary receiving tuben.

[^2]The following adjustments are necessary when turning the receiver on for the lirst time.

1. Turn the radio FUNCTION switch to Tel.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid-position.
3. Set the STATION SELECTOR to the desired channel.
4. Adjust the FINE TUNING control for best sound fidelity and SOUND VOLUME for suitable volume.
5. Turn the BRIGHTNESS control fully counter-clockwise, then clockwise until a light pattern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZONTAL hold control until a picture is obtained and centered.
8. Turn the BRIGHTNESS control counter-clockwise until the retrace lines just disappear.
9. Adjust the PICTURE control for suitable picture contrast.
10. After the receiver has been on for some time, it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.
11. In switching from one station to another, it may be necessary to repeat stops numbers 4 and 9.

Figure 1-Receiver Operating Controls

12. When the sel is turned on again after an idle period, it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. If any adjustment is necessary, step number 4 is generally sutficient.
13. If the positions of the controls have been changed, it may be neceseary to repeat steps numbers 1 through 9 .
14. For sadio operation turn the FUNCTION witch to AM or FM and tune in station with the radio TUNING control.
15. For phono operation, turn the FUNCTION switch to PH for operation of the $331 / 3 / 78 \mathrm{rpm}$ record changer, or to XPH for opera. tion of the 45 rpm record changer.

# THE TELEVISION SECTION OF THE CHASSIS USED IN MODEL TA 128 IS SIMILAR TO THE CHASSIS OF MODELS T120 AND T121. 

## REFER TO T120, T121 SERVICE DATA ON PAGES 199 TO 210 INCLUSIVE FOR TELEVISION ALIGNMENT PROCEDURE, TEST PATTERN PHOTOGRAPHS, RESPONSE CURVES AND WAVEFORM PHOTOGRAPHS.

## INSTALLATION INSTRUCTIONS



Figure 2-Yoke and Focus Coil Adjustments

Connect the antenna transmission line to the receiver antenna terminals.

Plug the receiver power cord into a 115 volt a-c power source. Turn the receiver power switch to the "on" position, the function swich to "tel," the brightness control three-quarters clockwise. and the picture control counter-clockwise.

ION TRAP MAGNET ADJUSTMENT. - Set the ion trap magnet approximately in the position shown in Figure 2. Starting from this position adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust the focus control (R191 on the chassis rear apron) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches on this adjustment should be made with the brightness control at the maximum position with which good line focus can be maintained.

DEFLECTION YOKE ADJUSTMENT.-If the lines of the raster are not horisontal or squared with the picture mask, rotate the deflection yoke until this condition is oblained. Tighten the yoke adjustment wing screw.

PICTURE ADJUSTMENTS.-It will now be necessary to obtain a test pattern picture in order to make further adjustments. See steps 3 through 9 of the receiver operating instructions.

If the Horizontal Oscillator and AGC System are operating properly. it should be possible to sync the picture at this point. However, if the AGC threshold control is misadjusted, and the receiver is overloading, it may be impossible to sync the picture.

If the receiver is overloading, turn R138 on the rear apron (see Figure 3) clockwise until the set operates normally and the picture can be synced.


Figure 3-Reur Chassis Adjustments
CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT.-TURA the horizontal hold control to the extreme counterclockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clock. wise slowly. The number of diagonal black bare will be gradually reduced and when only 3 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull in should occur when the control is approximately 90 degrees from the extreme counter-clockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should be out of sync and should show 1 vertical or diagonal black bar in the raster.
If the receiver passes the foregoing checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Focus Coil Adjustmente."

ALIGNMENT OF HORIZONTAL OSCILLATOR.-If in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull-in point, it will be necessary to make the following adjustments:

Horisontal Frequency Adjustment.-Turn the horizontal hold control to the exfreme clockwise position. Tune in a television station and adjust the F109 horizontal frequency adjustment (under the chassis) until the picture is just out of sync and the horisontal blanking appears as a vertical or diagonal black bar in the raster.

Horizontal Lock in Range Adjustment.-Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. Slowly turn the horisontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 3 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer C153A slightly clockwise. If less than 3 bars are present, adjust Cl53A slightly counter-clockwise. Turn the picture control coun-ter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 3 bars are present.

Repeat the adjustments under "Horizontal Frequency Adjustment" and "Horizontal Locking Range Adjustment" until the conditions specilied under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horisontal Oscillator Alignment" the oscillator is properly adjusted.

If it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure For tield purposes paragraph " $A$ ". under Horizontal Oscillator Waveform Adjustment may be omitted.

FOCUS COIL ADIUSTMENTS.-The focus coil should be adjusted so that there is approximately $1 / 1$ inch of space between the rear cardboard shell of the yoke and the flat of the front face of the focus coil. This spacing gives best average focus over the face of the tube. However, it may be necessary to change this distance slightly in order to compensate for small differerces in strength of the permanent magnets in the coil. If the receiver focuses with the focus control towards the clockwise end of its range, the focus coil should be moved toward the yoke and if focus is obtained towards the counter-clockwise end of the control. the coil should be moved away from the yoke. In order to prevent the beam from striking the neck of the kinescope, it is important that the axis of the hole through the focus coil should be kept in accurate alignment with the axis of the neck of the kinescope.

CENTERNG ADIUSTMENTS.-Centering is obtained by loosening the two focus coil mounting screws and sliding the coil up or down or from side to side. If a corner of the raster is shadowed, check the position of the ion trap magnet. In extreme cases it may be necessary to adjust one or more of the focus coil compression screws to eliminate a corner shadow.

Recheck the position of the ion trap magnet to insure that maximum brilliance is obtained.

WIDTH. DRIVE AND HORIZONTAL LINEARITY ADJUST. MENTS.-Adjustment of the horizontal drive control affects the high voltage applied to the kinescope. In order to oblain the highest possible voltage, hence the brightest and best focused picture, turn the horizontal drive control counter-clockwise until the left side of the picture begins to stretch.

Adjust the horisontal linearity control Llll to provide best linearity. Adjust the width control until the picture just fills the mask.

Adjustments of the horizontal drive control affect horizontal oscillator hold and locking range. It the drive control was adjusted, recheck the oscillator alignment.

FOCUS.-Adjust the focus control (R191 on chassis rear apron) for maximum detinition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

HEIGHT AND VERTICAL LINEARITY ADIUSTMENTS.-Adjust the height control (R155 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R162 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust centering to align the picture with the mask.

CHECK TO SEE THAT THE CUSHION AND YORE THUMB. SCREWS AND THE FOCUS COIL MOUNTING SCREWS ARE TIGHT.

AGC THRESHOLD CONTROL.-The AGC threshold control R138 is adjusted at the factory and normally should not require readjustment in the field.

To check the adjustment of the AGC Threshold Control, tune in a strong signal. sync the picture and turn the picture control to the maximum clockwise position. Turn the brightness control counter-clockwise until the vertical retrace lines are just invisible. Momentarily remove the signal by switching off channel and then back. It the picture reappears immediately. the receiver is not overloading due to improper selting of R138. If the picture requires an appreciable portion of a second to reappear, R138 should be readjusied.

Set the picture control at the maximum clockwise position. Turn R138 fully clockwise. The top one-half inch of the picture may be bent slightly. This should be disregarded. Turn R138 counter-clockwise until there is a very, very slight bend or change of bend in the top one-hall inch of the picture. Then turn R138 clockwise just sufficiently to remove this bend or change of bend.

If the signal is very weak, the above method may not work as it may be impossible to get the picture to bend. In this case. turn R138 counter-clockwise until the snow in the picture becomes more pronounced, then clockwise until the best signal to noise ratio is obtained.

The AGC control adjustment should be made on a strong signal if possible. If the control is set too tar counter-clockwise on a weak signal, then the receiver may overload when a strong signal is received.

CHECK OF R-F OSCILLATOR ADJUSTMENTS.-Tune in all available stations to see if the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure The adjustments for channels 2 through 5 and 7 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 4. Adjustment for channel 13 is on top of the chassis and channel 6 adjustment is in the kinescope well.


## Figure 4-R.F Oscillator Adjustments

RECORD CHANGER OPERATION.-Turn the receiver function witch to each phono position and check each record player for proper operation.

RADIO OPERATION.-Turn the receiver function switch to AM and FM positions and check the radio for proper operation. Tune in a station of known frequency. If the dial pointer does not point to the correct spot on the dial. slip the dial pointer on the dial cord until the proper indication is obtained.

Replace the cabinet back and make sure that the screws are tight in order to prevent rattling at high volume.

WERK SIGNAL AREA OPERATION.-Since the vast majority of receiver are sold in trong signal areas, the chastis are aligned to produce the cleanent pictures in those areas. However, if the receiver is to be operated in a weak signal area, better performance can be oblained by "peaking" the r-f unit.

To peak the r-f unit in these receivers, dicconnect the 390 ohm resistor which is on top of the rof unit chassis. Adjust $\mathrm{L66}$ to obtain the best possible picture on the weakest low channel station received. By this action, the r-f gain is increased $50 \%$ at the expense of r-f bandwidth and an improvement in the weak signal picture results.

If the peaked receiver is subsequently taken to a strong signal area, the remistor Bl4 should be connected in place and L66 adjusted for "flat" respone on the low channels.

CHASSIS REMOVAL.-To remove the chasels from the cabinel for repair or installation of a new kinescope. remove the back and the knobs, unplug all cable and remove the chassis bolts under the cabinet. Withdraw the chassis from the back of the cabinet. The kinescope is held on the chassin by means of a special strap. so that the chassis, and the kinescope can be handled together, as a unit.

KINESCOPE HANDLING PRECAUTION,-Do not install, romove, or handle the kinescope in any manner, unless shatterproot goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling.

To remove the kinescope, remove the kinescope socket, the ion-trap magnet, and the second-anode connector. Loosen the cross-recessed head screw on the kinescope strap, as shown in Figure 6. Withdraw the kinescope toward the front of the chassis.

INSTALLATION OF KINESCOPE.--Slide the kinescope cushion toward the rear of the chassis. Loosen the deflection yoke adjustment, slide the yoke toward the rear of the chassis and tighten.

The kinescope second anode contact is a recessed metal well in the side of the bulb. The tube must be installed so that this contact is up but rotated approximately 30 degrees toward the high-voltage compartment.
Insert the neck of the kinescope through the deflection and focus coils. If the tube sticks, or fails to slip into place smoothly. investigate and remove the cause of the trouble. Do not force the tube.

Slip the ion trap magnet assembly over the neck of the kinescope.

Connect the kinescope socket to the tube base.
Connect the high voltage lead to the kinescope second anode sockel.
Wipe the kinescope screen surface and front panel safely glass clean of all dust and finger marks.
Tighten the cross-recessed head screw on the kinescope strap.
As may be seen by inspection, the radio dial light and dial pointer are attached to the cabinet front panel. The dial cord is attached to the receiver chassis. The method of attachment may be seen in Figure 5.

Slide the dial pointer to the slop on the high frequency end of the dial. Turn the radio tuning shaft until the gang is completely unmeshed.
Slide the chassis into the cabinet until there is sufficient slack in the pilot light cable, then attach the pilot light sockets to the pilot light bracket.

Insert the chassis to its proper position, then install the six chassis bolts and tighten. Loosen the kinescope strap from the rear of the chassis. Push the kinescope forward until the face of the tube is against the mask. Push the yoke cushion forward against the kinescope flare, then tighten the cushion adjusting screws. Push the yoke forward and tighten. Tighten the kinemcope strap. Replace the control knobs.


Figure 5-Dial Cord and Pointer Assembly
To hook up the dial pointer, reach over the television chassis to the radio and press the dial cord well into the coil spring.

Turn the set on and to radio position to see that the dial lighting is correct. If it is not, adjust the dial lights and shields. Tune in a station of known calibration and check the dial calibration.

Periorm the entire television set-up procedure beginning with Ion Trap Magnet Adjustment.

CABINET ANTENNA.-A cabinet antenna is provided which may be employed in strong signal areas in which no reflections are experienced. The antenna leade are brought out near the receiver antenna terminals.

The link on the antenna terminal board on the back of the cabinet is for use in case it is desirable to connect a separate " $A$ " band antenna.

## POWER CORD



Figure 6-Chassis Top View


Figure 7-Chassis Bottom View

The following measurements represent two sets of conditions. In the first condition a 2200 microvolt test pattern signal was fed into the receiver, the picture was synced and the AGC threshold control was properly adjusted. The second condition was obtained by removing the antenna leads and shortcircuiting the receiver antenna terminals. Voltages shown are as read with "Jr. VoltOhmyst" between the indicated terminal and chassis ground and with the recoiver operating on 117 volte, 60 cycles a-c.

$\begin{aligned} & \text { Tube } \\ & \text { No. } \end{aligned}$	Tube Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		$\begin{gathered} \text { I } \\ \text { Plate } \\ \text { (ma.) } \end{gathered}$	$\begin{gathered} \text { I } \\ \text { Screen } \\ \text { (ma.) } \end{gathered}$	Notes on Measurements
				Pin No.	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts			
V1	6AG5	R-F   Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	140	6	142	287	0	1	-2.4	5	2	
			No Signal	5	67	6	111	287	0	1	-. 4	14.0	5.0	
V2	6AG5	Converter	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	$\begin{array}{r} 130 \\ \text { to } 140 \\ \hline \end{array}$	6	$\begin{array}{r} \cdot 130 \\ 10140 \\ \hline \end{array}$	287	0	1	$\begin{array}{r} \cdot-3.0 \\ \text { to } 0-7.0 \\ \hline \end{array}$	$\begin{aligned} & 7.1 \\ & \text { 80 } 7.7 \end{aligned}$	$\begin{gathered} \quad 2.3 \\ \text { to } 2.7 \\ \hline \end{gathered}$	- Depending upon channel
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	$\begin{array}{r} 104 \\ 10109 \\ \hline \end{array}$	6	$\begin{array}{r} 104 \\ \text { to } 109 \\ \hline \end{array}$	2\& 7	0	1	$\begin{aligned} \hline-2.0 \\ \text { to }-6.0 \end{aligned}$	$\begin{array}{r} 5.3 \\ 105.9 \end{array}$	$\begin{gathered} .8 \\ t o l .0 \end{gathered}$	
V3	6 J 6	R-F Oscillator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	1\&2	$\begin{array}{r} .88 \\ 1095 \\ \hline \end{array}$	-	-	7	. 19	$5 \& 6$	$\begin{gathered} -5.1 \\ \text { to }-7.3 \end{gathered}$	$\begin{array}{r} 1.9 \\ \text { to } 2.7 \\ \hline \end{array}$	-	*Depending upon channel
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	182	$\begin{array}{r} 68 \\ \text { to } 81 \\ \hline \end{array}$	-	-	7	. 16	586	$\begin{aligned} & *-4.5 \\ & \text { to }-6.6 \end{aligned}$	$\begin{gathered} \hline 1.8 \\ 102.1 \\ \hline \end{gathered}$	-	
V101	6BA6	Ist Pix. I-F   Amplifies	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	125	6	125	7	4	1	-12.5	2.8	1.3	
			No Signal	5	95	6	95	7	1.1	1	+. 3	7.5	3.5	
V102	6AG5	2nd Pix. I-F Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	115	6	115	287	. 75	1	0	8.2	2.5	
			No Signal	5	100	6	100	287	. 65	1	0	6.8	2.1	
V103	6BA6	3d Pix. I-F Amplilier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Siqnal } \\ \hline \end{gathered}$	5	110	6	135	7	. 25	1	-2.4	4.0	3.8	
			No Siqnal	5	60	6	100	287	. 75	1	-. 4	11.0	4.8	
V104	6AG5	4th Pix. I-F Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Siqnal } \end{gathered}$	5	170	6	135	287	1.35	1	0	6.5	2.0	
			$\begin{gathered} \text { No } \\ \text { Siqnal } \end{gathered}$	5	175	6	120	287	1.2	1	0	5.9	1.8	
$\begin{gathered} \mathrm{V} 105 \\ \mathbf{A} \\ \hline \end{gathered}$	6AL5	Picture 2d Det.	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Siqnal } \end{gathered}$	7	-113	-	-	1	-. 112	-	-	. 48	-	
			No Sianal	7	-120	-	-	1	-120	-	-	-	-	
$\begin{gathered} \mathrm{V} 105 \\ \mathrm{~B} \end{gathered}$	6AL5	Sync Limiter	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	2	-107	-	-	5	-56	-	-	-	-	
			$\begin{gathered} \text { No } \\ \text { Siqral } \end{gathered}$	2	-80	-	-	5	-60	-	-	-	-	
V106	12AU7	1st Video Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Siqnal } \end{gathered}$	1	-23.2	-	-	3	-111	2	-113	4.38	-	
			No Sianal	1	-19.2	-	-	3	-117	2	-120	3.82	-	
V106	12AU7	2d Video Amplitier	$\underset{\text { Siqnal }}{2200 \mathrm{Mu} . \mathrm{V} .}$	6	-166	-	-	8	$\bullet-5.3$	7	*-12.2	6.2	-	- At average contrast
			$\begin{gathered} \text { No } \\ \text { Sianal } \end{gathered}$	6	-134	-	-	8	$\bullet-5.6$	7	$\bullet-10.3$	6.9	-	
$\begin{gathered} \mathrm{V} 107 \\ \hline \end{gathered}$	$\begin{gathered} \text { 6SN7 } \\ \text { GT } \end{gathered}$	$\begin{gathered} \text { AGC } \\ \text { Amplitier } \end{gathered}$	$\begin{gathered} 2200 \text { Mu. V. } \\ \text { Siqnal } \\ \hline \end{gathered}$	5	-12.6	-	-	6	-55.5	4	-56.5	. 9	_	
			No Sianal	5	+. 3	-	-	6	-60	4	-64	. 3	-	
$\begin{gathered} \mathrm{V} 107 \\ \mathrm{~B} \end{gathered}$	$\begin{gathered} \text { 6SN7 } \\ \text { GT } \end{gathered}$	Vertical Oscillator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Siqnal } \end{gathered}$	2	76	-	-	3	-111	1	-158	2	-	
			No Sianal	2	62	-	-	3	-120	1	-169	2	-	
V108	$\begin{gathered} \text { 6SN7 } \\ \text { GT } \end{gathered}$	AGC Rectifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Sianal } \end{gathered}$	5	97	-	-	6	-3.4	4	-19.3	. 3	-	
			No Sianal	5	81	-	-	6	-8.7	4	-19.3	. 28	-	
V108	$\begin{gathered} \text { 6SN7 } \\ \text { GT } \end{gathered}$	$1 s 1 \text { Sync }$ Separator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Siqnal } \end{gathered}$	2	96	-		3	-1.8	1	-19.5	. 1	-	
			$\begin{aligned} & \text { No } \\ & \text { Sianal } \end{aligned}$	2	81	-	-	3	-9.7	1	-19.3	. 1	-	
V109	$\underset{\text { GT }}{6 \text { SN7 }}$	Sync Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Sianal } \end{gathered}$	2	158	-	-	3	0	1	-4.7	5.25	-	
			No Signal	2	154	-	-	3	0	1	-5.2	3.75	-	

VOLTAGE CHART
TA128

Tube No.	Tube Type	Function	Operating Condition	E. Plat		E. Bcreen		E. Cathode		E. Grid		I Plate   (ma.)	$\begin{gathered} \text { I } \\ \text { Screen } \\ \text { (ma.) } \end{gathered}$	Notes on Mecturements
				Pin No.	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	Pin   No.	Volts			
V109	$\begin{gathered} \text { 6SN7 } \\ \text { GT } \end{gathered}$	Sync Separator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	230	-	-	6	-51	4	-106	. 4	-	
			No Siqnal	5	215	-	-	6	-59	4	-80	. 35	-	
V110	$\begin{gathered} \text { 6K6- } \\ \text { GT } \end{gathered}$	Vertical Output	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signnal } \\ \hline \end{gathered}$	3	223	4	223	8	-67	5	-91		- 7.85	- Screen connected to plate
			No Signal	3	208	4	208	8	-79	5	-101		$\bullet 7.7$	
V111	$\begin{gathered} \text { 6SN7 } \\ \hline \text { GT } \end{gathered}$	Horizontal Osc. Control	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	2	- 48	-	-	3	$-110$	1	-92	2	-	-Variation of hold gives -21.9 to +56 volts on plate
			No Sigmal	2	- 33	-	-	3	-120	1	-108	2	-	
V111	$\begin{gathered} \text { 6SN7 } \\ \text { GT } \end{gathered}$	Horizontal Oscillator	$\begin{gathered} 2200 \text { Mu. V. } \\ \text { Signal } \end{gathered}$	5	70	-	-	6	-111	4	-185	2.4	-	
			No Signal	5	54	-	-	6	-120	4	-192	2.4	-	
V112	6BG6G	Horizontal Output	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	Cap	Do Not Meas.	8	180	3	-90	5	-110	72	9.4	
			No Signal	Cap	Do Not Meas.	8	170	3	-100	5	-115	70	9.2	
V113	$\begin{aligned} & \text { 1B3GT } \\ & \text { /8016 } \\ & \hline \end{aligned}$	H. V.   Rectifier	$\begin{aligned} & \text { Brightness } \\ & \text { Min. } \end{aligned}$	Cap	Do Not Meas.	-	-	287	10,500	-	-	0	-	
			Brightzess Average	Cap	Do Not Meas.	-	-	287	10,000	-	-	. 1	-	
V114	6W4GT	Damper	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	Do Not Meas.	-	-	3	306	-	-	66	-	
			No Signal	5	Do Not Meas.	-	-	3	295	-	-	65	-	
V115	5U4G	Rectitior	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Siqnal } \\ \hline \end{gathered}$	486	335			$2 ¢ 8$	250	-	-	210	-	-A-C meas. ured from plate to trans. cente lap
			No Sigaal	486	335			288	245	-	-	215	-	
V116	6RU6	1st Sound I-F Amplitier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	134	6	134	7	. 9	1	--. 5	8.2	3.3	
			No Signal	5	110	6	110	7	. 7	1	-. 5	5.7	2.6	
V117	6AU6	2nd Sound I-F Amplifier	$\begin{array}{\|c} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Siqnal } \\ \hline \end{array}$	5	148	6	90	7	0	1	-9	1.6	. 8	
			$\begin{gathered} \text { No } \\ \text { Siqnal } \end{gathered}$	5	115	6	60	7	0	1	-. 65	3.35	1.15	
V118	6AL5	Sound Discrim.	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Siqnal } \\ \hline \end{gathered}$	2	-8.4	-	-	5	5.8	-	-	. 35	1.15	
			No Signal	2	-2.0	-	-	5	. 41	-	-	-	-	
			$\begin{array}{\|c} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Siqnal } \\ \hline \end{array}$	7	-3.7	-	-	1	0	-	-	-	-	
			No Signal	7	-1.08	-	-	1	0	-	-	-	-	
V119	6AV6	1st Audio Amplifier	$\begin{array}{\|c} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Siqnal } \\ \hline \end{array}$	7	85	-	-	2	0	1	-. 89	. 49	-	
			No Signal	7	83	-	-	2	0	1	$-.89$	. 4	-	
V120	$\begin{aligned} & \text { 6V6- } \\ & \text { GT } \\ & \hline \end{aligned}$	Audio Output	$2200 \mathrm{Mu} . \mathrm{V} .$   Siqnal	3	102	4	113	8	-99	5	-108	19.3	3.3	
			No Siqnal	3	72	4	80	8	-110	5	-120	18	3	
V121	12LP4	Kinescope	$2200 \mathrm{Mu} . \mathrm{V} .$   Siqnal	Cap	${ }^{\bullet} 10,000$	10	290	11	51	2	20	. 1		- Average Briqhtness
			$\begin{gathered} \text { No } \\ \text { Siqnal } \end{gathered}$	Cap	- 10,000	10	285	11	42	2	14	-	-	-Average Brightness
V301	615	Mixer and Oncillator	No Signal	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 110 \\ & 95 \\ & \hline \end{aligned}$	-	二	7	0	6 5	$\begin{array}{r} -2.0 \\ -5.0 \\ \hline \end{array}$	-	-	Function switch in F-M position
V302	6BA6	Radio I-F Amplifier	No Siqnal	5	210	6	105	7	. 8	1	-0.2	-	-	
V303	6AV6	Radio F-M Driver	No Siqnal	5	205	6	135	7	1.5	1	0	-	-	
V304	6AL5	Radio Ratio Det.	No Signal	2	$\begin{aligned} & -0.2 \\ & -0.2 \end{aligned}$	-	-	1	-0.1	-	-	二	-	
V305	6BF6	- A-M Det. and Phono Precimp.	No Signal	7	-0.2	-	-	2	0	-	-	-	-	

If any lead dressing is necessary, it should be done before aligning the receiver. When making a complete alignment follow the table below in sequence. If only a portion of the circuit is to be aligned select the portion required and follow with the re. maining steps in the section. Any adjustments made on the 455 kc . I-F's make it necessary to adjust the 10.7 mc . I-F's.
"AM" R-F-I-F ALIGNMENT
Test-Oscillator.-For all alignment operations, connect low side of the test-osc. to the receiver chassis, and keep the osc. output as low as possible to avoid a-v-c action. Output Meter.-Connect the meter across the speaker voice coil, and turn the receiver volume control to max.

Stepa	Connect the High Side of the Tent Osc. to-	Tune Test Osc. to	Function Switch	Turn Radio Dial to-	Adjust the following
1	Antenna terminal in series with .01 mld .	455 kc. Modulated	AM	Low Freq. end of Dial	$\dagger$ Top and bot. cores of T301 and T302. (For max. voltage across vaice coil.)
2	Ant. terminal through dummy ant. of 200 mmis .	1.620 kc .	AM	Min. capacity	Osc. C308 for maximum output.
3		$1,400 \mathrm{kc}$.	AM	Tune to signal	Ant. C304 for maximum output.
4		600 kc .	AM	600 kc .	Osc. L306 and Ant. L303.
5	Repeat steps 2. 3 and 4 for maximum output.				

$\dagger$ Use alternate loading. Connect an 18.000 -ohm resistor across the primary to load the plate winding while the grid winding of the same transformer is being peaked. Then load the grid winding with the 18,000 -ohm resistor while the plate winding is being peaked.

## RATIO DETECTOR ALIGNMENT

Connect probe of "VoltOhmyst" to negative side of C328 and low side to chassis. Connect output meter across speaker voice coil.

Steps	Connest the High Side of the Test Osc. to-	$\begin{aligned} & \text { Tune Test Osc. } \\ & \text { to- } \end{aligned}$	Function Switch	Radio Dial Tuned to-	Adjust
6	Pin No. 1 of 6AU6 (V303) in series with .01 mld .	$\begin{gathered} 10.7 \mathrm{mc} . \\ 30 \% \mathrm{AM} \\ \text { Modulated } \end{gathered}$	FM		Top of T303 for maximum DC on "VoltOhmys.".
7	Pin No. 1 of 6AU6 (V303) in series with .01 mfd .		FM		Bottom of T303 for minimum audio output on meter.
8	Repeat steps 6 and 7 as necessary making final adjustment with r-f input level set to give approximately -3.0 volts $d-c$ on "VoltOhmyst."				

"FM" R-F-I-F ALIGNMENT

Stepı	Connest the High Side of the Test Osc. to-	Tune Test Osc. to-	Function Switch	Radio Dial Tuned to-	Adjust
9	Terminal 3 of S301-2 rear through 270 ohms.	10.7 mc .	FM	88 mc .	"T301 and T302 lor max. with r-f input set to give -3 volts on "VoltOhmyst."
10	Terminal 3 of S301-2 rear through 270 ohms.	106 mc .	FM	106 mc .	Set C302 to max. capacity. Squeeze L307 and adjust C302 for maximum.
11	Terminal 3 of S301-2 rear through 270 ohms.	90 mc .	FM	Tune to signal	Squeeze L301 and rock gang for maximum output.
12	Repeat steps 10 and 11 as required.				

- Use a 680 -ohm resistor to load the plate winding while the grid winding of the same transformer is being peaked. Then the grid winding is loaded with 680 -ohm resistor while the plate winding is being peaked.


Figure 8-Chussis, Top View, Showing Adjustments


Figure 9-Dial and Drive Cord Assembly

## CRITICAL LEAD DRESS:

1. Ground lead on pin 2 of V302 and V303 should be dressed down flat on chassis.
2. Dual .005 mid. capacitors and diode filter should be dressed to clear the bottom of the cabinet.
3. Dress C329 across V302 sockets with short and direct leads.
4. Dress V302 plate lead from pin 5 down to the chassis.
5. Dress AVC lead from R32l to switch down to chassis and against back of gang mounting plate.
6. Dress lead from pin 6 of V30S down to chassis and against back of gang mounting plate.
7. Dress AVC lead from lst I-F to switch against chassis and against gang mounting plate.
8. Dress lead from switch to pin 1 of V301 against plate supporting gang.
9. Dress all insulated F-M leads down to chassis.
10. Connect C309 with short lead to pin 6 of V301 keeping body of cap away from plate lead and switch terminals.
11. The coupling between L301 and L307 should be adjusted to give proper injection voltage to the mixer grid. This has been found to be correct when the distance between adjacent end turns is $3 / \%^{\prime \prime}$ to $7 / 10^{\circ "}$ measured at top of the form.
12. Dress cabled leads away from antenna transmission lines.
13. Dress all uninsulated bus wire so as to avoid short circuits.


Figure 10-Radio Chassis Wiring Diagram (RK135D)

THE TELEVISION SECTION OF THE CHASSIS USED IN MODEL TA128 IS SIMILAR TO THE CHASSIS OF MODELS T120 AND T121.

REFER TO T120, T121 SERVICE DATA ON PAGES 199 TO 210 INCLUSIVE FOR TELEVISION ALIGNMENT PROCEDURE, TEST PATTERN PHOTOGRAPHS, RESPONSE CURVES AND WAVEFORM PHOTOGRAPHS.


Figure 11--R.F Unil Wiring Diagram

## TELEVISION CRITICAL LEAD DRESS

1. The ground bus from pin 2 and the center shield of V117 socket should not be shortened or rerouted.
2. Do not change the dress of the filament leads or the bypass capacitors in the picture or sound i-f circuits. The filament leads between V117. V118 and V119 should be down against the chassis and away from grid or plate leads.
3. If it is necessary to replace any of the 1500 mmf capacitors in the picture i.f circuit, the lead length must be kept as short as possible.
4. Picture i-f coupling capacitors $\mathrm{Cl} 06 . \mathrm{Cl11}. \mathrm{Cl15}$ and C 121 should be up and away from the chassis and should be clear of the pix i-f transiormer adjustments by at least $1 / 4$ inch. If the dress of any of these capacitors is changed. the i-f alignment should be rechecked.
5. Leads to L102 and L103 must be as short as possible.
6. Dress peaking coils L105, L106 and L107 up and away from the chassie.
7. Dress C183 across tube pins 5 and 6 with leads not exceeding \%inch.
8. Dress C129 and C130 up and away from the chassis.
9. Dress the yellow lead from the picture control away from the chassis and away from the volume-control leads. Dress the yellow lead from pin 8 of V106 away from the chassis.
10. Dress the green lead from pin 2 of V106 away from the chassis.
11. Dress iR168, R169, R170, R176 and R178 up and away from the chassis.
12. The leads to the volume control should be dressed down against the chassis and away from V117 and V118.
13. Contact between the i-f oscillator frequency adjustment screws and the oscillator coils or channel switch eyelets must be avoided.
14. Dress leads from L110 (width control coil! away from the transformer frame.
15. Dress T110 winding leads as shown in Figure 12.


Figure 12-T110 Lead Dress



${ }_{\text {cosem }}^{\text {maxam }}$	icx oscarrom	${ }_{\text {cosem }}^{\text {sioce }}$	गxscarrom
\％ms		$\stackrel{\text { ıaen }}{ }$	nomen
		nom	－
	隹		
	䢒		
			Somen
			Siseme
	Capaicieraime		
n，ner	，ino		
	Si．		
71526 73477			
	（en		
	边		边
	为		
	为		
$\begin{aligned} & 71441 \\ & 71440 \\ & 74997 \end{aligned}$	${ }^{\text {and }}$		
${ }^{4 \prime}$			
awn			
，men			


		mom mesm			




Model TA129
Walnut,
Mahogany
or Oak

RADIO CORPORATION OF AMERICA<br>rCA VICTOR DIVISION<br>CAMDEN, N. J., U. S. A.

## GENERAL DESCRIPTION

Model TA129 receiver employs twenty-six tubes plus three rectifiers and a 12LP4 kinescope.
The television receiver is provided with Electronic Magnifier deflection circuits by which the center portion of the picture may be enlarged to fill the screen. Choice of picture coverage
is made by operation of a remote switch.
The radio tuner unit which feeds through the television audio system covers the AM and the FM broadcast bands.

Two record changers are provided to play 45 and 78/331/3 RPM records.

## ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE............... 87 square inches on a 12LP4 kinescope

## TELEVISION R-F FREQUENCY RANGE

All 12 television channels, 54 mc . to $88 \mathrm{mc} ., 174 \mathrm{mc}$. 10216 mc . Fine Tuning Range.... $\pm 250 \mathrm{kc}$. on chan. $2, \pm 650 \mathrm{kc}$. on chan. 13 Picture Carrier Frequency .................................................. 25.75 mc . Sound Carrier Frequency ...................................................... 21.25 mc .

RADIO TUNING RANGE


POWER SUPPLY RATING ............ 115 volts, 60 cycles, 300 watts
AUDIO POWER OUTPUT RATING ............................ 6 watts max.
CHASSIS DESIGNATIONS


RECEVER ANTENNA DNPUT DMPEDRNCE.... 300 ohms balanced
If necessary, the television chassis may be fed separately from either a 300 ohm balanced line or a 72 ohm co-ax.
RCA TUBE COMPLEMENT

	Tube Used Punction
(1)	RCA 6AG5 ....................................................R-F Amplifier
(2)	RCA 6AG5 ........................................................Converter
(3)	RCA 6J6 ......................................................R-F Oncillator
(4)	RCA 6AU6 ....................................lst Sound 1-F Amplifier
(5)	RCA 6AU6 ..................................2nd Sound I-F Amplifier
(6)	RCA 6AL5 ..........................................Sound Discriminator
(7)	RCA 6AV6 ........................................lst Audio Amplifier
(8)	RCA 6V6GT ...............................................Audio Output
(9)	RCA 6BA6 ...................................lst Picture I-F Amplifier
(10)	RCA 6AG5 .................................2nd Picture I-F Amplifier
(11)	RCA 6BA6 ...................................3rd Picture I-F Amplifier
(12)	RCA 6AG5 .................................4th Picture I-F Amplitier
(13)	RCA 6AL5 ................Picture 2nd Detector \& Sync Limiter
(14)	RCA 12AU7 ..........................1st and 2nd Video Amplifier
(15)	RCA 6SN7GT .......AGC Amplifier \& Vertical Sweep Osc.
(16)	RCA 6SN7GT .............AGC Rectilier \& lst Sync Separator
(17)	RCA 6SN7GT .........Sync Amplitier \& 2nd Sync Separator
(18)	RCA 6K6GT ...................................Vertical Sweep Output
(19)	RCA 6SN7GT ......Horizontal Sweep Oscillator and Control
(20)	RCA 6BG6G ...............................Horizontal Sweep Output
(21)	RCA 6W4GT .......................................................Damper
(22)	RCA 1B3-GT/8016 ........................High Voltage Rectilier
(23)	RCA 5U4G .....................Power Supply Rectifieı (2 tubes)
(24)	RCA 12LP4 ........................................................Kinescope

(Radio Tuner Chassis)

)	RCA $6 J 6$	.Mixer and Oscillator
(2)	RCA 6BA6	I-F Amplitier
(3)	RCA 6AU6	F-M Driver
(4)	RCA 6AL5	Ratio Detector
(5)	RCA 6BF6	AM Detector AV

[^3]
## (Continued)

PICTURE I-F FREQUENCIES
Picture Carrier Frequency ............................................... . 25.75 mc .
Adjacent Channel Sound Trap ......................................... 27.25 mc .
Accompanying Sound Traps .......................................... 21.25 mc .
Adjacent Channel Picture Carrier Trap ........................ 19.75 mc .
SOUND I.F FREQUENCIES
Sound Carrier Frequency .............................................. 21.25 mc .
Sound Discriminator Band Width between peaks ............ 350 kc .
VIDEO RESPONSE....................................................................... 4 mc.

FOCUS............................................................................ Magnetic
SWEEP DEFLECTION ................................................... Magnetic
SCANNING. Interlaced, 525 line

HORIZONTAL SCANNING FREQUENCY. $\qquad$ 15.750 cps

VERTICAL SCANNING FREQUENCY
60 cps

FRAME FREQUENCY (Picture Repetition Rate).
30 cps

OPERATING CONTROLS (fsont panel)
Channel Selector .....Dual Control Knobs
Fine Tuning
$\left.\begin{array}{l}\text { Tone } \\ \text { Sound Volume and On.Oft Switch }\end{array}\right\}$................Dual Control Knobs
Picture Horizontal Hold
Picture Vertical Hold $\}$.................................Dual Control Knobs
$\left.\begin{array}{l}\text { Picture } \\ \text { Brightness }\end{array}\right\}$...................................................................... Conal Control Knobs
Single Control Knob
Radio Tuning .....................................................Single Control Knob
NON-OPERATING CONTROLS
Horizontal Centering .................................rear chassis adjustment Vertical Centering ......................................rear chassis adjustment Shunt Width Coil ...............rear chassis screwdriver adjustments Serien Width Coil .................rear chassis screwdriver adjustment Expanded Width Coil ..........rear chassis screwdriver adjustmens Width Selector Switch ..........rear chassis screwdriver adjustment Height .........................................................rear chassis adjustment Horizontal Linearity .............rear chassis screwdriver adjustment Vertical Linearity ........................................rear chassis adjustment Horizontal Drive ....................rear chassis screwdriver adjustment Horizontal Oscillator Frequency ........bottom chassis adjustment Horizontal Oscillator Wavelorm .............side chassis adjustment Focus ..........................................................rear chassis adjustment Ion Trap Magnet .........................................fop chassis adjustment Deflection Coil ..top chassis wing nut adjustment
Focus Coil .......................................top chassis screwdriver adjustment

## HIGH VOLTAGE WARNING

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

## KINESCOPE HANDLING PRECAUTIONS

DO NOT OPEN THE KINESCOPE SHIPPING CARTON, INSTALL, REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

The kinescope bulb encloses a high vacuum and, due to its large suriace area, is subjected to considerable alr pressure. For these reasons. kinescopes must be handled with more care than ordinary recelving tubes.

[^4]The following adjustments are necessary when turning the receiver on for the first time.

1. Turn the radio FUNCTION switch to Tel.
2. Turn the receiver "ON" and advance the SOUND VOL. UME control to approximately mid-position.
3. After the receiver has been on for some time, it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.
4. In switching from one station to another, it may be necessary to repeat steps numbers 4 and 9.
5. Set the STATION SELECTOR to the desired channel.
6. Adjust the FINE TUNING control for best sound fidelity and SOUND VOLUME for suitable volume
7. Turn the BRIGHTNESS control fully counterclockwise, then clockwise until a light pattern appears on the screen.
8. Adjust the VERTICAL hold control until the pattern stops vertical movement.
9. Adjust the HORIZONTAL hold control until a picture is oblained and centered.
10. Turn the BRIGHTNESS control counterclockwise until the retrace lines just disappear.
11. Adjust the PICTURE control for suitable picture contrast.


Figure 1-Receiver Operating Controls
12. To operate the Elec tric Magnifier, push the button on the remote cable.
13. When the set is turned on again after an idle period, it should not be necessary to repeat the adjustments if the poaitions of the controls have not been changed. If any adjustment is necessary, step number 4 is generally sufficient.
14. If the positions of the controls have been changed, it may be necessary to repeat steps numbers 1 through 9.
15. For radio operation turn the FUNCTION switch to AM or FM and tune in sta. tion with the radio TUNING control.
16. For phono operation. tum the function switch 10 PH for operation of the 78 rpm changer or to XPH for opera. tion of the 45 rpm changer.

THE TELEVISION SECTION OF THE CHASSIS USED IN MODEL TAI29 IS SIMILAR TO THE CHASSIS OF MODELS T120 AND T121.
REFER TO T120, T121 SERVICE DATA ON PAGES 199 TO 210 INCLUSIVE FOR TELEVISION ALIGNMENT PROCEDURE, TEST PATTERN PHOTOGRAPHS, RESPONSE CURVES AND WAVEFORM PHOTOGRAPHS.

THE RADIO SECTION OF MODEL TA129 IS IDENTICAL TO THE RADIO SECTION OF MODEL TA128. REFER TO PAGE 232 FOR RADIO ALIGNMENT PROCEDURE.

## INSTALLATION INSTRUCTIONS

Remove the television compartment back.
Make sure that all tubes are in place and are firmly seated is their sockets.

Check to see that the high voltage lead is attached to the linescope second anode connector socket on the bell of the tube.
Connect the antenna transmission line to the recelver antenna terminale.
Plug the receiver power cord into a 115 volt a-c power source. Turn the power ewitch to the "on" position, the function switch to Tel, the brightness control three-quarters clockwise, and picture control counterclockwise.

ION TRAP MAGNEI ADJUSTMENT.-Set the ion trap mag. net approximately in the position shown in Figure 2. Starting from this position immediately adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slighty above average brilliance. Adjust the focus control (R191 on the chassis rear apron) until the line structure of the raster is clearly visible. Readjust the ion trap magne: for maximum raster brilliance. The final touches on this adjustment should be made with the brightness control at the maxi-


Figure 2-Yoke and Focus Coil Adjustments
mum position with which good line focus can be maintained. DEFLECTION YOEE KDJUSTMENT.-If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wring screw.

PICTURE RDJUSTMENTS.-It will now be necensary to obtain a test pattern picture in order to make further adjustments. See steps 3 through 9 of the receiver operating instructions.

If the Horizontal Oscillator and AGC Syatem are operating properly. it should be posuble to sync the picture at thil point. However, if the AGC threshold control is misadjusted, and the receiver is overloading, it may be fmpomible to syac the picture.

If the receiver is overloading, turn R138 on the rear apron (see Figure 3) clockwise until the set operates normally and the picture can be synced.


Figure 3-Rear Chassis Adjustments
CRIECE OF HORZONTAL OSCLEATOR RLGNMEATT.-TuTn the horisontal hold control to the extreme counter-clockwise position. The picture should remain in horisontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bar will be gradually reduced and when only 3 bars sloping downward to the left are obtained, the picture will pull into syac upon slight additional clockwise rotation of the control. Pull in should occur when the control is approximately 90 degrees from the extreme counter-clockwise poaition. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the pleture should be out of sync and should show 1 vertical or diagonal black bar in the raster.

If the receiver passes the foregoing checles and the picture is normat and stable. the horizontal oscillatior is properly aligned. Skip "Alignment of Horisontal Owcillator" and proceod with "Focus Coll Adjustments."

ALIGNMENT OF HORIZONTAL OSCILATOR-If in the above check the receiver failed to hold syac with the hold control at the extreme counter-clockwise position or failed to hold syac over 90 degrees of clockwise rotation of the control from the pull-in point, it will be necessary to make the following adjustmonts:

Horizontal Frequency Adjustment.-Iurn the horisontal hold control to the extreme clockwise position. Tune in a television station and adjust the T109 horisontal frequency adjustment funder the chasais) until the picture is just out of sync and the horizontal blanking appears as a vertical or dieagonal black bar in the raster.

Horisonial Lock In Range Adjustment.-Set the horisontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulle into sync.

If more than 3 bars are present just before the picture puils into syruc, adjust the horizontal locking range trimmer Ci53A alightly clockwise. If less than 3 bars are present, adjust Cl53A slightly counter-clockwise. Turn the picture control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull in poinl. Repeat this procedure until 3 bari are presont.

Repeat the adjustments under "Horisontal Frequency Adjustment" and "Horisontal Locking Range Adjuatment" until the conditions specified under each are fulfilled. When the
horisontal hold operates as oullined under "Check of Horizontal Oscillator Alignment" the oecillator is properly adjusted.

If it is imponable to syac the picture at thim point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outined in the aligmment procedure

For field purposes paragraph "A" under Horizontal Oncillator Waveform Adjustment may be omitted.

FOCUS COII. ADJUSTMENTS.-The focus coil should be adjusted so that there is approximately $1 / 4$ inch of space between the rear cardboard shell of the yoke and the flat of the front face of the focus coil. This spacing gives best average focus over the face of the tube. However, it may be necessary to change this distance slighty in order to compensate for small differences in strength of the permament magnets in the coil. In order to prevent the beam from stribing the neck of the Itinescope, it is important that the axis of the hole through the focus coil should be kept in accurate alignment with the axis of the neck of the kinescope.

CENTERLNG RDJUSTMENTS.-Centering is obtained by loosening the two tocus coil mounting screws and sliding the coil up or down or from side to side. If a corner of the raster is shadowed, check the position of the ion trap magnet. Slightly reposition it to eliminate the shadow and recenter the picture by sliding the coil. In extreme cases it may be necessary to adjust one or more of the focus coil compression screws to eliminate a cornez shadow.

Recheck the position of the ion trap magnet to insure that maximum brilliance is obtained. It is important that the kinescope not be operated with the ion trap magnet adjusted for less than maximum brightness. To do so may cause injury to the tube.

PICTURE SIZE AND LINEARITY.-Connect the "Electronic Magnifier" switch to its socket on the rear apron of the chaseis. Set the switch to the large (expanded) picture position. Set the Expanded Width Selector Switch S104 to the counter-clockwise ponition and adjust the Expanded Width Control Ll20 so that the test pattern outer circle normally tangent to the top of the picture is now tangent to the side of the picture. (If the width is not sufficient, set the Expanded Width Selector Switch to the center or the clockwise end position.) Adjust the Horisontal Drive and the Horizontal Linearity Control until the pattern is symmetrical from left to right. In general, the core of the Linearity Control Coil should be between $1 / 2$ to all the way out of the coll.

Set the "Electronic Magnifier" switch to the normal size position. Observe to see II the picture width is correct. If it is not, adjust elther the Series Width Control Coil L121, or the Shunt Width Control Coil Lll5 until the plcture is the correct width. If the Series Width Coil core is out too far, the picture will "ring" on the left half. This ring will be shown as one or more faint light or dark vertical bare somewhere on the left half of the picture with resulting poor horizontal linearity.

When the proper width in obtained, switch to the expanded picture position, wait for a few seconds then switch back to the normal position. Observe if the top of the picture immediately assumes its final position or if it takes several seconds to come to $\alpha$ stop. If the picture requires more than $\alpha$ second to become still, adjust the core of L115 or L121 in and the other out while maintaining the proper width. Repeat the above teat and observe if the picture immediately comes to rest when switched to the normal size position. Continue to adjust L115 and L121 until this condition is satisfied and the picture is the proper width. Observe the picture horizontal linearity and if necestary retouch Horizontal Drive, Linearity and Width Controls L115 and L121.

With the "Electronic Magnifier" switch in normal poaition, adjust the Height (R155) and the Vertical Linearity control (R162) as usual in order to obtain good vertical linearity. In addition, if difficulty is experienced in obtaining good vertical linearity at the top one-half inch of the plcture, slightly adjuat the Vertical Peaking Control Lll9.

Switch to the expanded picture position and note if the proper aspect ratio is obtained. If not, adjust L 112 and/or S104.

Adjustments of the horizontal drive control affect horizontal oscillator hold and locking range. If the drive control was adjusted, recheck the oncillator alignment.
FOCUS.-Adjust the focus control (R191 on chassis rear apron) for maximum definition in the teat pattern vertical "wedge" and best focus in the white areas of the pattern.
תGC THRESHOLD CONTROL.-The AGC threshold control R138 is adjusted at the factory and normally should not require readjustment in the field.
To check the adjustment of the AGC Threshold Control, tune in a strong signal, sync the picture and turn the picture control to the maximum clockwise ponition. Turn the brightness control counter-clockwise until the vertical retrace lines are just invisible. Momentarily remove the signal by switching of channel and then back. If the picture reappear immediately. the receiver is not overloading due to improper setting of R138. If the picture requiren an appreciable portion of a second to reappear, R138 should be readjusted.
Set the picture control at the maximum clockwise position. Tum R138 fully clackwise. The top one-half inch of the picture may be bent slighty. This should be disregarded. Turn R138 counter-clockwise until there is a very, very slight bend or change of bend in the top one-half inch of the picture. Then lurn R138 clockwise just sufficiently to remove this bend or change of bend.

If the aignal is very weak, the above method may not work as it may be imposeible to get the picture to bend. In this case, turn R138 counter-clockwise until the snow in the picture becomes more pronounced, then clockwise unili the best slgnal to noise ratio is obtained.

The AGC control adjustment should be made on a strong signal if possible. If the control is set too far counter-clockwise on a weak signal, then the receiver may overload when a strong signal is received.

CHECE OF R-F OSCLLLATOR RDJUSTMENTS.-Tune in all available stations to see if the recelver r-f oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure

The adjustments for channels 2 through 5 and 7 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 4. Adjustment for channel 13 is on top of the chassis and channel 6 adjustment is in the kinescope well.


Figure 4-R.F Oscillator Adjustments
Replace the cabinet back and make sure that the screws are tight in order to prevent rattling at high volume.

WEAE SIGNAL AREA OPERATION.-Since the vast majority of receiver are sold in strong signal areas, the chassis are cligned to produce the cleanest plctures in thome areas. How. ever, if the receiver is to be operated in a weak signal area, better performance can be oblained by "peaking" the r-f unit.

To peak the r-f unit in these receiverm, disconnect the 390 ohm resistor which is on lop of the r-f unil chassis. Adjust $L 66$ to oblain the best possible picture on the weakest low channel slation received.
If the peaked recelver is subsequently taken to a strong signal area, the resistor R14 should be connected in place and I66 adjusted for "flat" response on the low channels.

CHASSIS REMOVAL.-To remove the chassis from the cabinet for repair or installation of a new kinescope, remove the back and the knobs, unplug all cables and remove the chassir bolts under the cabinet. Withdraw the chassis from the back of the cabinet. The kinescope is held on the chassis by means of a special strap. so that the chassis and the kinescope can be handled together, as a unit.

GINESCOPE HANDLING PRECAUTION.-Do not install, romove, or handle the kinescope in any manner, unless shatterproof goggles and heavy gloves are worn. People not so equipped hould be kept away while handling the kinescope. Keep the kinescope away from the body while handling.

To remove the kinescope, remove the kinescope socket, the ion-trap magnet, and the second-anode connector. Loosen the crosa-recensed head screw on the kinescope strap. Withdraw the kinescope loward the front of the chassis.

INSTALLATION OF EINESCOPE.-Slide the kinescope cushion toward the rear of the chassis. Loosen the deflection yoke adjustment, slide the yoke toward the rear of the chassis and tighten.

The kinescope second anode contact is a recessed metal well in the side of the bulb. The tube must be installed so that this contact is up but rotated approximately 30 degrees loward the high-voliage compartment.
Insert the neck of the kinescope through the deflection and focus coils. If the tube sticks, or fails to slip into place smoothly, investigate and remove the cause of the trouble. Do not force the tube.
Slip the ion trap magnet assembly over the neck of the kinescope.

Connect the kinescope socket to the tube base.
Connect the high voltage lead to the kinescope second anode socket.

Wipe the kinescope screen surface and front panel safety glass clean of all dust and finger marks.
As may be seen by inspection, the radio dial lights and dial pointer are attached to the cabinet front panel. The dial cord is attached to the receiver chassis. The method of atlachment may be seen in Figure 5.
Slide the dial pointer to the stop on the high frequency end of the dial. Turn the radio tuning shaft until the gang is completely unmeshed.

To replace the chassin in the cabinet. first tighten the crose recensed head screw on the kinescope strap. Slide the chassis into the cabinet until there is sufficient slack in the pilot light cable then attach the pilot light sockets to the pilot light bracket.

Insert the chassis to its proper position, then install the six chassis bolts and tighten. Loosen the kinescope strap from the reas of the chatels. Push the kinescope forward until the face of the tube is against the mask. Push the yoke cushion forward against the kinescope flare then tighten the cushion adjusting screws. Push the yoke forward and tighten Tighten the kinescope strap. Replace the control knobe.


Figure 5-Dial Cord and Pointer Assembly
To hook up the dial pointer, reach over the television chassis to the radio and press the dial cord well into the coil spring.

Turn the set on and to radio position to see that the dial lighting is correct. If it is not, adjust the dial lighte and shields. Tune in a station of known frequency and check the dial calibration.

CABINET ANTENNA.--A cabinet antenna is provided which may be employed in strong signal areas in which no reflections are experienced. The antenna leads are brought out near the receiver antenna terminal board.
The link on the antenna terminal board is for use in case it is desirable to connect a separate "A" band antenna.


Figure 6-Chassis Top View


Figure 7-Chassis Bottom View

The following measurements represent two sets of conditions. In the first condition a 2200 microvolt test pattem signal was fed into the receiver, the picture was synced and the AGC threshold control was properly adjusted. The second condition was obtained by removing the antenna leads and short-circuiting the receiver antenna terminals. Voltages shown are as read with "Jf. VoltOhmyst" between the indicated terminal and chassis ground and with the receiver operating on 117 volts, 60 cycles a-c.

Tube No.	Tube Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid				Noles on Measuremante
				$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	Pin No.	Volts	Pin No.	Volts	Pin No.	Volts			
V1	6AG5	R-F Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	140	6	142	$2 \& 7$	0	1	-2.4	. 72	. 33	
			No Signal	5	67	6	111	$2 \& 7$	0	1	-. 4	14.0	5.0	
V2	6AG5	Converter	$2200 \mathrm{Mu} . \mathrm{V} .$ Signal	5	$\begin{aligned} & \cdot 130 \\ & \text { to } 140 \end{aligned}$	6	$\begin{aligned} & 130 \\ & \text { to } 140 \end{aligned}$	2\&7	0	1	$\begin{gathered} -3.0 \\ 10-7.0 \end{gathered}$	$\begin{aligned} & 9.1 \\ & \text { to } 7.7 \end{aligned}$	$\begin{aligned} & \text { e2.3 } \\ & 102.7 \end{aligned}$	- Depending upon channel
			No Signal	5	$\begin{aligned} & 104 \\ & \text { to } 109 \end{aligned}$	6	$\begin{aligned} & 104 \\ & \text { to } 109 \end{aligned}$	287	0	1	$\begin{gathered} \quad-2.0 \\ \text { to }-6.0 \end{gathered}$	$\begin{aligned} & \text { - } 5.3 \\ & \text { to } 5.9 \end{aligned}$	$\begin{gathered} .8 \\ \text { to } 1.0 \end{gathered}$	
V3	$6] 6$	R-F   Oscillator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	182	$\begin{gathered} 88 \\ \text { to } 95 \end{gathered}$	-	-	7	. 19	$5 \& 6$	$\begin{gathered} -5.1 \\ \text { to }-7.3 \end{gathered}$	$\begin{gathered} 1.9 \\ \text { to } 2.7 \end{gathered}$	-	- Depending upon channel
			No Signal	162	$\begin{gathered} 968 \\ \text { to } 81 \end{gathered}$	-	-	7	. 16	5 \& 6	$\begin{array}{r} \hline-4.5 \\ 10-6.6 \end{array}$	$\begin{array}{r} 1.8 \\ \text { to } 2.1 \end{array}$	-	
V101	6BA6	1st Pix. I-F Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	125	6	125	7	. 4	1	-12.5	2.8	1.3	
			No Signal	5	95	6	95	7	1.1	1	+. 3	7.5	3.5	
V102	6AG5	2d Pix. I-F Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	115	6	115	$2 \& 7$	. 75	1	0	8.2	2.5	
			No Signal	5	100	6	100	287	. 65	1	0	6.8	2.1	
V103	6BA6	3d Pix I-F   Amplifier	2200 Mu . V. Signal	5	110	6	135	7	. 25	1	-2.4	4.0	3.8	
			No Signal	5	60	6	100	2 \& 7	. 75	1	-. 4	11.0	4.8	
V104	6AG5	4th Pix. I-F Amplifier	$2200 \mathrm{Mu} . \mathrm{V} .$   Signal	5	170	6	135	$2 \& 7$	1.35	1	0	6.5	2.0	
			No Signal	5	175	6	120	$2 \& 7$	1.2	1	0	5.9	1.8	
$\begin{gathered} \text { V105 } \\ \hline \end{gathered}$	6AL5	Picture 2d Det.	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	7	-113	-	-	1	-112	-	-	. 48	-	
	.		No Signal	7	-120	-	-	1	-120	-	-	-	-	
V105	6AL5	Sync Limiter	2200 Mu . V. Signal	2	-107	-	-	5	-56	-	-	-	-	
			No Signal	2	-80	-	-	5	-60	-	-	-	-	
V106	12AU7	lst Video Amplifier	2200 Mu . V. Signal	1	-23.2	-	-	3	-111	2	-113	4.38	-	
			No Signal	1	-19.2	-	-	3	-117	2	-120	3.82	-	
V106	12AU7	2d Video Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	6	-166	-	-	8	- -5.3	7	- -12.2	6.2	-	- At average contrast
			No Signal	6	-134	-	-	8	- -5.6	7	- -10.3	6.9	-	
$\begin{gathered} \text { V107 } \\ \text { A } \end{gathered}$	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	ACG   Amplifier	$2200 \mathrm{Mu} . \mathrm{V} .$   Signal	5	-12.6	-	-	6	-55.5	4	-56.5	. 9	-	
			No Signal	5	$+.3$	-	-	6	-60	4	-64	. 3	-	
$\begin{gathered} \text { V107 } \\ \text { B } \end{gathered}$	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Vertical Oscillator	2200 Mu . V. Signal	2	76	-	-	3	-111	1	-158	. 2	-	
			No Signal	2	62	-	-	3	-120	1	-169	. 2	-	
V108	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	AGC Rectifier	$2200 \mathrm{Mu} . \mathrm{V} \text {. }$ Signal	5	97	-	-	6	-3.4	4	-19.3	. 3	-	
			No Signal	5	81	-	-	6	-8.7	4	-19.3	. 28	-	
V108	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	1st Sync Separator	$2200 \mathrm{Mu} . \mathrm{V} \text {. }$ Signal	2	96	-	-	3	-1.8	1	-19.5	. 1	-	
			No Signal	2	81	-	-	3	-9.7	1	-19.3	. 1	-	
V109	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Sync Amplifier	2200 Mu . V. Signal	2	158	-	-	3	0	1	-4.7	5.25	一	
			No Signal	2	154	-	-	3	0	1	-5.2	3.75	-	


Tube No.	Tube TYpe	Function	Operating Condition	E. Plate		E. Screon		E. Cathode		E. Grid		$\begin{gathered} \text { ! } \\ \text { Plate } \\ \text { (ma.) } \end{gathered}$	$\begin{gathered} 1 \\ \text { Scroon } \\ \text { (ma.) } \end{gathered}$	Notes on Mecasurements
				$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	Pin   No.	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts			
V109	6SN7 GT	Sync Separator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Sigpal } \end{gathered}$	5	230	-	-	6	-51	4	-106	. 4	-	
			No Signal	5	215	-	-	6	-59	4	-80	. 35	-	
V110	$\begin{aligned} & \text { 6K6- } \\ & \text { GT } \end{aligned}$	Vertical Outpul	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	3	223	4	223	8	-67	5	-91		'7.85	-Screen connected to plate
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	3	208	4	208	8	-79	5	-101		$\bullet 7.7$	
V111	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Horizontal Osc. Control	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	2	-48	-	-	3	-110	1	-92	. 2	-	- Variation of hold gives $-21.910+56$ volts on plate
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	2	-33	-	-	3	-120	1	-108	. 2	-	
V111	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Horizontal Oscillator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	70	-	-	6	-111	4	-185	2.4	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	54	-	-	6	-120	4	-192	2.4	-	
V112	6BG6G	Horizontal Output	$\begin{aligned} & 2200 \mathrm{Mu} . \mathrm{V} . \\ & \text { Signal } \end{aligned}$	Cap	Do Not Meas.	8	180	3	-90	5	-110	68	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	Cap	Do Not Meas.	8	170	3	-100	5	-115	67	-	
V113.	$\begin{aligned} & \text { 183GT } \\ & \text { /8016 } \end{aligned}$	H. V. Rectifier	Brightness Min.	Cap	Do Not Meas.	-	-	2\&7	9500	-	-	0	-	
			Brightness   . Average	Cap	Do Not Meas.	-	-	$2 \& 7$	9000	-	-	. 1	-	
V114	6W4GT	Damper	$\underset{\text { Signal }}{2200 \mathrm{Mu} .}$	5	Do Not Meas.	-	-	3	300	-	-	66	-	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	5	Do Not Meas.	-	-	3	295	-	-	65	-	
$\begin{aligned} & \text { V115 } \\ & \text { V122 } \end{aligned}$	5U4G	Rectifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	486	335			2\&6	250	-	-	210	-	- A-C meas ured from plate to trans. center tap
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	4 6	335			288	245	-	-	215	-	
V116	6AU6	$\begin{aligned} & \text { 1st Sound } \\ & \text { I-F Amplifier } \end{aligned}$	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	134	6	134	7	. 9	1	0	8.2	3.3	
			$\begin{gathered} \text { No } \\ \text { Sigmal } \end{gathered}$	5	110	6	110	7	. 7	1	0	5.7	2.6	
V117	6AU6	2nd Sound   I-F Amplifier	$\underset{\substack{2200 ~ M u . ~ V . ~}}{\text { Signal }}$	5	148	6	90	7	0	1	-9	1.6	. 8	
			No   Signal	5	115	6	60	7	0	1	-. 65	3.35	1.15	
V118	6ALS	Sound Discrim.	$\begin{gathered} 2200 \text { Mu. V } \\ \text { Signal } \end{gathered}$	2	-8.4	-	-	5	5.8	-	-	-	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	2	-2.0	-	-	5	. 41	-	-	-	-	
			$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Siqnal } \end{gathered}$	7	-3.7	-	-	1	0	-	-	-	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	7	-1.08	-	-	1	0	-	-	-	-	
V119	6AV6	1st Audio Amplifier	$\underset{\substack{2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal }}}{ }$	7	85	-	-	2	0	1	-. 89	. 49	-	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	7	83	-	-	2	0	1	-. 89	. 4	--	
V120	$\begin{aligned} & \text { 6K6- } \\ & \text { GT } \end{aligned}$	Audio Output	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	3	102	4	113	8	-99	5	-108	19.3	3.3	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	3	72	4	80	8	-111	5	-114	18	3	
V121	12LP4	Kinescope	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	Cap	9000	10	290	11	51	2	20	. 1	-	Average Briqhtnems
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	Cap	-	10	285	11	42	2	14	-	-	Average Brightnes:
V301	$6{ }^{6} 6$	Mixer and Oscillator	$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{r} 110 \\ 95 \end{array}$	-	二	7	0	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	$\begin{aligned} & -2.0 \\ & -5.0 \end{aligned}$	-	-	Function switch in F-M position
V302	68A6	Radio I.F Ampllier	$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	210	6	105	7	. 8	1	-0.2	-	-	
V303	6AV6	Radio F-M Driver	$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	205	6	135	7	1.5	1	0	-	-	
V304	6AL5	Radio Radio Dot.	$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	$\begin{aligned} & 2 \\ & 7 \end{aligned}$	$\begin{aligned} & -0.2 \\ & -0.2 \end{aligned}$	-	-	$\begin{aligned} & 5 \\ & 1 \end{aligned}$	$\begin{aligned} & -0.2 \\ & -0.1 \\ & \hline \end{aligned}$	-	-	-	-	
V305	6BF6	$\begin{aligned} & \text { Hadio } \\ & \text { A-M Det. } \end{aligned}$	$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	$\begin{gathered} 6 \\ \text { Diode } \end{gathered}$	-0.2	-	-	2	0	-	-	-	-	



Figure 8-Radio Chassis Wiring Diagram (RK135D)

## television critical lead dress

1. The ground bus from pin 2 and the center shield of V117 sockel should not be shortened or rerouted.
2. Do not change the dress of the filament lead or the bypass capaciors in the picture or sound i-f circuits. The filament leads between V117, V118 and V119 should be down against the chassis and away from grid or plate leads.
3. If it is necessary to replace any of the 1500 mmi capacitore in the picture i-f circuit, the lead length must be kept as short as postible.
4. Picture $\mathrm{i}-\mathrm{f}$ coupling capacitors $\mathrm{Cl} 06, \mathrm{Cl11}, \mathrm{Cl} 15$ and Cl 21 should be up and away from the chassis and should be clear of the pix i-f transiormer adjustments by at least $1 / 4$ inch. If the dreas of any of theee capacitors is changed. the i-f alignment should be rechecked.
5. Leade to L102 and L103 must be as short as postible.
6. Dress peaking coile L105, L106 and L107 up and away from the chcusis.
7. Dress C183 across tube pins 5 and 6 with leads not exceeding \%inch.
8. Drees C129 and C130 up and away from the chassis.
9. Dress the yellow lead from the picture control away from the chassis and away from the volume-control leads. Dreas the yellow lead from pin 8 of V106 away from the chastis.
10. Dress the green lead from pin 2 of V106 away from the chassis.
11. Dress R168, R169. R1770, R176 and R178 up and away from the chassis.
12. The leads to the volume control should be dressed down against the chassis and away from V117 and V118.
13. Contact between the r-f oscillator frequency adjustment screws and the oncillator coils or channel switch eyelets must be aroided.
14. Dreas leads from the width control coils away from the transformer frame.
15. Dreas Tll0 winding leads a shown in Figure 9.


Figure 9-T110 Lead Dress







Model TC165
Walnut, Mahogany or Oak


Model TC167
F'alnut, Mahogany or Oak

Model T164 Walnut, Mahogany or Oak


Model TC166 Walnut, Mahogany or Oak


Model TC168 Walnut, Mahogany or Oak

## GENERAL DESCRIPTION

Models T164, TCl65, TCl66, TC167 and TC168 receivers employ twenty-one tubes plus two rectifiers and a 16GP4 kinescope. The receivers are identical except for cabinets, jewel lights and speakers. A phono input jack is provided 10 permit the use of an external record player.

## ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE...... 146 square inches on a 16GP4 kinescope
H.F FREQUENCY RANGES

All 12 television channels, 54 mc . to $88 \mathrm{mc} ., 174 \mathrm{mc}$. to 216 mc . Fine Tuning Range. . $\pm 250 \mathrm{kc}$. on chan. 2. $\pm 650 \mathrm{kc}$. on chan. 13 Picture Carrier Frequency. . . . . . . . . . . . . . . . . . . . . . 25.75 mc . Sound Carrier Frequency............................... . . . 21.25 mc .

ChAssis Designations
KCS40.
In Model T164
KCS40A............. In Model TC165, TC166, TC167, TC168
LOUDSPEARERS
KCS40. . . . . . . . . . . . . (92580-3W) 8" PM DYnamic, 3.2 ohms KCS40A............ (92569-10W) 12" PM Dynamic, 3.2 ohms
rca Victor TELEVISION RECEIVERS MODELS T164, TC165, TC166, TC167, TC168 Chassis Nos. KCS40 or KCS40A

- Mfr. No. 274 Service Data
- 1950 No. T5 -


## RADIO CORPORATION OF AMERICA <br> RCA VICTOR DIVISION <br> CAMDEN, N. J., U. S. A.

POTNER SUPPLY RATING . . . . . 115 volts, 60 cycles, 250 watt AUDIO POWER OUTPUT RATING 3.5 watts max.

RECEIVER ANTENNA INPUT IMPEDANCE
Choice: 300 ohms balanced or 72 ohms unbalanced.
RCA TUBE COMPLEMENT


WEIGHT Model	Chassts with Tubes in Cabinet	Shipping Weight
T164.	96	115
TC165..	101	123
TC166..	106	130
TC167.	123	148
TC168..	117	141

## ELECTRICAL AND MECHANICAL SPECIFICATIONS (Continued)

PICTURE INTERMEDIATE FREQUENCIES
Picture Carrier Frequency ..... 25.75 Mc.
Adjacent Channel Sound Trap ..... 27.25 Mc.
Accompanying Sound Traps ..... 21.25 Mc.
Adjacent Channel Picture Carrier Trap ..... 19.75 Mc.SOUND INTERMEDIATE FREQUENCIES
Sound Carrier Frequency ..... 21.25 Mc.
Sound Discriminator Band Width between peaks ..... 350 kc
To 4 Mc .
FOCUS Magnetic
SCANNING Interlaced, 525 line HORIZONTAL SWEEP FREQUENCY.................... 15.750 cps SWEEP DEFLECTION Magnetic
VERTICAL SWEEP FREQUENCY ..... 60 cpsFRAME FREQUENCY (Picture Repection Rate). . . . . . . . 30 cps

## OPERATING INSTRUCTIONS

The following adjustments are necessary when turning the receiver on for the first time:

1. See that the TV.PH switch on the rear apron is in the "TV" position.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid position. 1
3. Set the STATION SELECTOR to the desired channel.
4. Adjust the FINE TUNING control for best sound tidelity and the SOUND VOLUME control for suitable volume.
5. Turn the BRIGHTNESS control fully counter-clockwise, then clockwise until a light pattern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZONTAL hold control until a picture is obtained and centered.
8. Turn the BRIGHTNESS control counter-clockwise until the retrace lines just disappear.
9. Adjust the PICTURE control for suitable picture contrast.
10. After the receiver has been on for some time, it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.

11. In switching from one sta. tion to another, it may be necessary to repeat steps 4,8 and 9.
12. When the set is turned on again after an idle period, it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. If any adjustment is necessary, step number 4 is generally sufficient.
13. If the positions of the controls have been changed, it may be necessary to repeat steps 2 through 9.
14. To use the instrument with a record player, plug the recordplayer output cable into the PHONO jack on the rear apron. and set the TV.PH switch on "PH." Set the TV.PH switch back to TV on completion of the record program.

## HIGH VOLTAGE WARNING

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED INVOLVES a Shock hazard from the receiver power supplies. work on the receiver should NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH-VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH-VOLTAGE COMPARTMENT SHIELD REMOVED.

## KINESCOPE HANDLING PRECAUTIONS

# DO NOT REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE handling kinescopes. keep the kinescope away from the body while handling. 

## INSTALLATION INSTRUCTIONS

ION TRAP MAGNET ADJUSTMENT.-Set the ion trap magnet approximately in the position shown in Figure 2, and with the part number on magnet towards the rear of the chassis. Starting from this position immediately adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust the focus control (R191 on the chassis rear apron) until the line structure
of the raster is clearly visible. Readjust the ion trap magnet for maxinum raster brilliance. The final touches of this adjust. ment should be made with the brightness control at the maximum position with which good line focus can be maintained.

[^5]

Figure 2-Yoke and Focus Coil Adjustments
PICTURE ADJUSTMENTS.-It will now be necessary to obtain a test pattern picture in order to make further adjustments. See steps 3 through 9 of the receiver operating instructions.

If the Horizontal Oscillator and AGC System are operating properly. it should be possible to sync the picture at this point. However, it the AGC threshold control is misadjusted, and the receiver is overloading. it may be impossible to sync the picture.

It the receiver is overloading, turn R138 on the rear apron (see Figure 3) clockwise until the set operates normally and the picture can be synced.


Figure 3 -Rear Chussis Adjustments
CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT.-TUM the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Usually the picture will remain in sync. Turn the control clockwise slowly. It the picture did fall out of sync upon removal of the signal. the number of aiagonal black bars will be gradually reduced and when only 2 bars sloping downward to the left are obtained. the picture will pull into sync upon slight additional clockwise rotation of the control. The picture should remain in sync for approximately 180 degrees of additional clockwise rotation of the control. At the extreme clock. wise position. the picture should be out of sync and should show 1 vertical or diagonal black bar in the raster.

If the receiver passes the loregoing checks and the picture is normal and stable. the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Focus Coil Adjustment."

ALIGNMENT OF HORIZONTAL OSCILLATOR. - If in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 180 degrees of clockwise rotation of the control from the pull-in point. it will be necessary to make the following adjustments:
Horizontal Frequency Adjusiment.-Turn the Tl09 sine wave core (on the outside of the apron) all the way out of the coil.

Set the locking range trimmer CI53A one-half turn out from maximum capacity.

Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and turn the frequency wave core of T109 under the chassis until the picture syncs and the sync bar just begins to move into the picture.
Note--Occasionally. a lube may be found which does not respond to this alignment procedure since it may not be possible to sync the picture by means of the frequency core when the sine wave core is all the way out of the coil. Yel, the lube may work perfectly well when the circuit is properly aligned. In such a case, it may be necessary to turn the sine wave core in slightly. and readjust the frequency core to obtain sync.

Turn the sine wave core of T109 in until the blanking bar begins to move off to the left of the picture. Alternately turn the sine wave core in and the frequency out. keeping the picture in sync and the blanking bar showing in the picture.

Contirue alternate adjustments until the picture falls from sync into a parasitic oscillation as indicated by a non-synchronized pattern which flickers in width and centering with possibly a light ragged vertical bar through the center of the screen.
Turn the sine wave core out $1 / 2$ turn. Adjust the trequency core in until the picture is in sync and horizontal blanking appears as a vertical bar in the picture.

Check of Pull-in Range.-Turn the horizontal hold control fully counter-clockwise. Connect a 270 K ohm resistor across C156. Momentarily switch off channel and back: the picture will then be out of sync. Turn the hold control clockwise slowly and observe the minimum number of bars obtained just before the picture pulls into sync.
The picture should snap in from two complete blanking bars. If two bars are not obtained, turn the locking range trimmer C153A in to obtain less bars or out to obtain more bars.
If C153A was adjusted, remove the 270 K resistor, turn the horizontal hold control fully clockwise and adjust the T109 frequency core until horizontal blanking appears as a vertical bar in the synced picture. Then repeat the entire check of pull-in range to this point.
Repeat the adjustments under "Check of Pull-in Range" until the conditions specilied are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontat Oscillator Alignment" the oscillator is properly adjusted.
If the oscillator does not hold sync properly at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure on page 13.

FOCUS COIL ADJUSTMENTS. -The tocus coil should be adjusted so that there is approximately one-quarter inch of space between the rear cardboard shell of the yoke and the flat af the front face of the focus coil. This spacing gives best average focus over the face of the tube. The axis of the hole through the focus coil should be parallel with the axis of the kinescope neck.

The focus coil is provided with a magnetic shunt in the form of a metal sleeve as shown in Figure 2. If the receiver íocuses with the focus control near the end of its range, loosen the shunt locking screw and slide the shunt backward or forward until focus occurs in the center range of the focus control.

CENTERING RDJUSTMENT. - No electrical centering controls are provided. Centering is obtained by loosening the two focus coil mounting screws and sliding the coil up or down or from side to side. If the focus coil was appreciably changed in position or if a corner of the raster is shadowed, check the position of the ion trap magnet. Reposition the magnet within the range of maximum raster brightness to eliminate the shadow and recenter the picture by sliding the coil. In no case should the magnet be adjusted to cause any loss of brightness since such operation may cause immediate or eventual dam. age to the tube. In extreme cases it may be necessary to adjust one or more of the three focus coil compression spring screws to eliminate a corner shadow.

WIDTH. DRIVE AND HORIZONTAL LINEARITY ADJUST. MENTS.-Adjustment of the horizontal drive control affects the high voltage applied to the kinescope. In order to oblain the highest possible voltage hence the brightest and best focused picture. adjust horizontal drive counter-clockwise as far as possible without losing tension on trimmer.

Set the width control to minimum picture width.
Turn the horizontal linearity coil out until appreciable loss in width occurs, then in until nearly maximum width and the best linearity is obtained. Do not run the core in beyond the point of maximum linearity change, us the current drawn by the 6BG6G then becomes excessive.

Adjust the width control for the proper picture width.
Readjust linearity. but again not beyond the point of maximum linearity change. If necessary adjust the drive control lor best linearity.

If at very high line voltage, the picture width is excessive even with the width control set at minimum, turn the linearity coil out to obtain the proper width. On high line voltage, excessive width generally will be accompanied by good linearity. without retouching the drive.

Adjustments of the horizontal drive control affect horizontal oscillator hold und locking range. If the drive control was adjusted, recheck the oscillator alignment.

FOCUS.-Adjust the locus control (R191 on chassis rear apron) for maximum delinition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS.-Ad. just the height control (R155 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R162 on rear apron) until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust the focus coil to align the picture with the mask.

Check to see that the cushion and yoke thumbscrews and the locus coil mounting screws are tight.

AGC THRESHOLD CONTROL.-The AGC threshold control R138 is adjusted at the factory and normally should not require readjustment in the field.
To check the adjustment of the AGC threshold control, iune in a strong signal، sync the picture and turn the picture control to the maximum clockwise position. Turn the brightness control counter-clockwise until the vertical retrace lines are just invisible. Momentarily remove the signal by switching of channel and then back. If the picture reappears immediately. the receiver is not overloading due to improper setting of R138. If the picture requires an appreciable portion of a second to reappear, R138 should be readjusted.

Set the picture control at the maximum clockwise position. Turn R138 fully clockwise. The top one-hali inch of the picture may be bent slightly. This should be disregarded. Turn R138 counter clockwise until there is a very, very slight bend or change of bend in the top one-half inch of the picture. Then turn R138 clockwise just sufticiently to remove this bend or change of bend.

If the signal is very weak, the above method may not work as it may be impossible to get the picture to bend. In this case, turn Rl38 counter-clockwise until the snow in the picture becomes more pronounced, then clockwise until the best signal to noise ratio is obtained.

The AGC control adjustment should be made on a strong signal if possible. It the control is set too far counter-clockwise on a weak signal, then the receiver may overload when a strong signal is received.

CHECK OF R-F OSCILLATOR ADIUSTMENTS.-Tune in all available stations to see if the receiver $\mathrm{r} \cdot \mathrm{f}$ oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure on page 9 . The adjustments lor channels 2 through 5 and 7 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 4. Adjustment for channel 13 is on top of the chassis and channel 6 adjustment is in the kinescope well. See Figures 8 and 9 for their location.

Replace the cabinet back and make sure that the screws are tight in order to prevent rattling at high volume.

WEAK SIGNAL AREA OPERATION.-Since the vast majority of receivers are sold in strong signal areas, the chassis are aligned to produce the cleanest pictures in those areas. How ever, if the receiver is to be operated in a weak signal area, better performance can be obtained by "peaking" the r-f unit.


## Figure 4-R-F Oscillator Adjustments

To peak the $\mathrm{r}-\mathrm{f}$ unit in these receivers, disconnect the 390 ohm resistor R14 which is on top of the r-f unit chassis. Adjust L66 to obtain the best possible picture on the weakest low channel station received.

If the peaked receiver is subsequently taken to a strong signal area, the resistor R14 should be connected in place and L66 adjusted for "flat" response on the low channels.

CHASSIS REMOVAL.-To remove the chassis from the cabinet for repair or installation of a new kinescope, remove the control knobs, the cabinet back, unplug the speaker cable, the kinescope socket, the antenna cable, the pilot light cable, the yoke and tocus coil cable. Remove the yoke frame grounding strap and the interlock switch. Take out the six chassis bolts under the cabinet. Withdraw the chassis from the back of the cabinet.

KINESCOPE HANDLING PRECAUTION.-Do not install, remove, or handle the kinescope in any manner, unless shatterprool goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling.
To remove the kinescope from the cabinet, take out the four screws and one wing screw which hold the yoke frame to the cabinet. Remove the kinescope. the yoke frame with yoke and locus coil as an assembly.

INSTALLATION OF RINESCOPE.-Handle this tube by the metal rim at the edge of the screen. Do not cover the glass bell of the tuke with tingermarks as it will produce leakage paths which may interfers with reception. If this partion of the tube has inadvertently been handled, wipe it clean with a sot cloth moistened with "dry" carbon tetrachloride.

Wipe the kinescope screen surface and front panel safety glass clean of all dust and fingermarks with a solt cloth moistened with "Windex" or similar cleaning agent.
Turn the tube so that the key on the base of the tube will be down and insert the neck of the kinescope through the deflection and focus coils. If the tube sticks, or fails to slip into place smoothly, investigate and remove the cause of the trouble. Do not force the tube.

Replace the kinescope and yoke frame assembly in the cabinet. Insert the four screws and wing screw and tighten.

Slip the kinescope as far forward as possible. Slide the kine scope cushion firmly up against the flare of the tube and tighten the adjustment wing screws. Slide the deflection yoke as far forward as possible. If this is not done, difficulty will be encountered in adjusting the ion trap snagnet and focus coil because of shadows on the corner of the raster.
Slide the chassis into the cabinet, then insert and tighten the six chassis bolts.
Slip the ion trap magnet over the neck of the kinescope.
Connect the kinescope socket to the tube base and slip the high voltage lead clip between the rim of the kinescope and the mask.
Reconnect all other cables. Do not forget to replace the yoke frame grounding strap. Perform the entire set-up procedure beginning with lon Trap Magnet Adjustment.

CABINET ANTENNA.-A cabinet antenna is provided which may be employed in strong signal areas in which no reflec. tions are experienced. The antenna leads are brought out near the receiver antenna terminal board.


T164. TCl65. TCl66.
TCl67. TC168


TEST EQUIPMENT. - To service properly the television chassis of this receiver, it is recommended that the following test equipment be available:
R.F Sweep Generator meeting the following requirements:
(a) Frequency Ranges

20 to $30 \mathrm{mc} . .1 \mathrm{mc}$. and 10 mc . sweep width
50 to 90 mc .. 10 mc . sweep width
170 to 225 mc ., 10 mc . sweep width
(b) Output adjustable with at least . 1 volt m.aximum.
(c) Output constant on all ranges.
(d) "Flat" output on all attenuator positions.

Cathode•Ray Oscilloscope. - For alignment purposes, the oscilloscope employed must have excellent low frequency and phase response, and should be capable of passing a 60 -cycle square wave without appreciable distortion. While this requirement is not met by many commercial instruments, RCA Oscilloscopes, types WO-55A, WO.58A, WO.79A, and WO.60C till the requirement and any of these may be employed.
For video and sync waveform observations, the oscilloscope must have excellent frequency and phase response from 10 cycles to at least two megacycles in all positions of the gain control. The RCA types WO.58A and WO.79A are ideally suited for this purpose.

Signal Generator to provide the following frequencies with crystal accuracy.
(a) Intermediate frequencies

> 19.75 mc . adjacent channel picture trap
> 21.25 mc . sound i-f and sound traps
> 22.05 and 24.75 mc . conv. and first pix i-f trans.
> 25.9 mc . second picture i-f transformer
> 24.6 mc . fourth picture i-f transformer
> 22.0 mc . third picture i-f transformer
> 22.5 mc . fifth picture i-f transformer
> 25.75 mc . picture carrier
> 27.25 mc . adjacent channel sound trap
(b) Radio frequencies

	Picture	Sound
Channel	Carrier	Carrier
Number	Freq. Mc.	Freq. Mc.
2.	. 55.25	59.75
3	. 61.25.	. 65.75
4.	. 67.25	. 71.75
5.	. 77.25.	. 81.75
6.	. 83.25	. 87.75
7.	. 175.25.	. 179.75
8.	. 181.25 .	. 185.75
9.	. 187.25 .	. 191.75
10.	. 193.25 .	. 197.75
11.	. 199.25	. 203.75
12.	. 205.25	. 209.75
13.	211.25	. 215.75

(c) Output on these ranges should be adjustable and at least .1 volt maximum.

Heterodyne Frequency Meter with crystal calibrator if the signal generator is not crystal controlled.

Electronic Voltmeter of Junior "VoltOhmyst" type and a high voltage multiplier probe for use with this meter to permit measurements up to 15 kv .

Service Precautions. - If possible, the chassis should be ser. viced without the kinescope. However, if it is necessary to view the raster during servicing, it would be a great convenience to have a sel of yoke, focus coil, kinescope socket. high voltage and speaker extension cables.

CAUTION: Do not short the kinescope second-anode lead. Its short circuit current represents a considerable overload on the high voltage rectifier Vll3.

Adjustments Required. - Normally, only the rescillator line will require the attention of the service technician. All other circuits are either broad or very stable and hence will seldom require readjustment.

The escillator line is relatively non-critical. When oscillator lubes are changed, in all probability it will be necessary to adjust only C 6 in order to bring the entire line into adjustment.

ORDER OF ALIGNMENT. - When a complete receiver alignment is necessary, it can be most conveniently performed in the following order:
(1) Sound discriminator
(5) R•F and converter lines
(2) Sound i-f transformers
(6) R.F oscillator line
(3) Picture i-f traps
(7) 4.5 mc . video trap
(4) Picture i-f transformers
(8) Sensitivity check

SOUND DISCRIMINATOR ALIGNMENT. - Set the signal gen. erator for approximately .1 volt output at 21.25 mc . and con. nect it to the second sound i.f grid.

## Detune T113 secondary (bottom).

Set the "VoltOhmyst" on the 3-volt scale.
Connect the meter, in series with a 1 -meqohm resistor, to the junction of diode resistors R203 and R204.

Adjust the primary of T113 (top) for maximum output on the meter.

Connect the "VoltOhmyst" to the junction of C183 and R203. Adjust T113 secondary (bottom). It will be found that it is possible to produce a positive or negative voltage on the meter dependent upon this adjustment. Obviously to pass from a positive to a negative voltage, the voltage must go through zero. Tll3 (bottom) should be adjusted so that the meter indicates zero output as the voltage swings from positive to negative. This point will be called discriminator zero output.

Connect the sweep oscillator to the grid of the second sound i-f amplifier.

Adjust the sweep band width to approximately 1 mc . with the center frequency at approximately 21.25 mc . and with an output of approximately .1 volt.

Connect the oscilloscope to the junction of C183 and R203. The pattern obtained should be similar to that shown in Figure 12. It it is not, adjust Tll3 (top) until the wavelorm is sym. metrical.

The peak-to-peak band width of the discriminator should be approximately 350 kc . and the trace should be linear from 21.175 mc . to 21.325 mc .

SOUND I-F ALIGNMENT. - Connect the sweep oscillator to the first sound i.f amplifier grid.

Connect the oscilloscope to the second sound i-f grid return (terminal A of T112) in series with a 33,000 -ohm isolating resistor.

Insert a 21.25 mc . marker eignal from the signal generator into the first sound i-f grid.

Adjust Tll2 (top and bottom) for maximum gain and symmetry about the 21.25 mc . marker. The pattern oblained should be similar to that shown in Figure 13.

The output level from the sweep should be set to produce approximately 3 volt peak-to-peak at the second sound $\mathrm{j}-\mathrm{t}$ grid return when the final touches on the above adjustment are made. It is necessary that the sweep output voltage should not exceed the specified values otherwise the response curve will be broadened, permitting slight misadjustment to pass unnoticed and possibly causing distortion on weak signals.

The band width at $70 \%$ response from the first sound i-l grid to the second i-f grid should be approximately 200 kc .

PICTURE I-F TRAP ADJUSTMENT. - Connect the "Volt. Ohmyst" to the junction of R135 and C190.

Remove the 6SN7GT AGC Amplifier tube V107. Connect a 250,000 -ohm potentiometer between pins 5 and 6 of the V107 socket. Adjust the potentiometer until the "VoltOhmyst" reads approximately -12 volis.

Set the channel switch to the blank position between channels number 2 and 13 .

Connect the "VoltOhmyst" across the picture detector load resistor R119. Under this condition, both leads of the meter are at approximately -120 volts. In making this connection. care should be taken not to touch the case of the meter or to permit the meter case to become grounded.

Connect the output of the signal generator to the grid of the converter tube V2. To do this, remove the tube from the socket and fashion a clip by twisting one end of a small piece of wire around pin number 1. Replace the tube in the socket leaving the end of the wire protruding from under the fube. Connect the signal generator to this wire through a 1.500 mmf capacitor keeping the leads as short as possible.

Set the generotor to each of the following trequencies and with $\alpha$ thin fiber screwdriver tune the specitied adjustment for minimum indication on the "VoltOhmyst." In each instance the generator should be checked against a crystal calibrator to insure that the generator is exactly on frequency.
( (1) $21.25 \mathrm{mc} .-\mathrm{T} 103$ (top)
(4) $27.25 \mathrm{mc} .-\mathrm{Tl} 04$ (top)
(2) $21.25 \mathrm{mc} .-\mathrm{T} 105$ (top)
(5) 19.75 mc - T106 (top)
(3) $27.25 \mathrm{mc} .-\mathrm{T} 102$ (top)
(6) 19.75 mc .-T101 (top)

In the above transformers using threaded cores, it is passible to run the cores completely through the coils and secure two peaks or nulls. The correct position is with the cores in the outside ends of the coils. If the cores are not in the correct position, the coupling will be incorrect and it will be impossible to secure the correct response.

PICTURE I-F TRANSFORMER ADJUSTMENTS. - Set the signal generator to each of the following trequencies and peak the specilied adjustment for maximum indication on the "VoltOhmyst." During alignment, reduce the input signal if necessary to prevent overloading.
$22.5 \mathrm{mc} .-$ T1 06 (boltom)
$24.6 \mathrm{mc} .-\mathrm{Tl} 104$ (bottom)
22.0 mc .-Tl03 (bottom)
25.9 mc . T 102 (bottom)

Tl and Tlol are coupled by a link and in combination constitute an overcoupled transformer. The characteristics of such a transformer are such that it is impossible to adjust it to a single frequency.

To sweep align Tl and T 101 , connect a 330 -ohm composition resistor across the primary coils of T102, T103, T104 and T106.

Connect the "VoltOhmyst" to the junction of R135 and C190. Adjust the 250,000 -ohm variable resistor for -2.0 volts on the meter.

Connect the oscilloscope to the plate of the first video amplifier, pin l of V106.

Connect a sweep generator to the converter grid through a $1,500 \mathrm{mmf}$ capacitor. Set the generator to sweep from 20.0 mc. to 30.0 mc . and adjust the output to provide a 4 .volt peak. to-peak signal on the scope.

Connect the signal generator loosely to the converter grid and tune it to provide markers at 22.05 mc . and 24.75 mc .

Adjust Tl (top) and TlOl (bottom) to obtain the response shown in Figure 14. The Tl core must penetrate to the terminal-board end of the coil in order to obtain the correct response.

Remove the 330 -ohm resistors from across Tl02, T103, T104 and T106.

Adjust the 250,000 -ohm potentiometer for a 15 -volt peak-to peak signal at the plate of the first video amplifier. The bias as measured by the "VoltOhmyst" should be -12 volts or less.

Observe and analyze the response curve obtained. The response will not be ideal and the i-t adjustments must be retouched in order to oblain the desired curve. See Figure 15.

On final adjustment the picture carrier marker must be at approximately $45 \%$ response. The curve must be approximately flat topped, with the 22.1 mc. marker at approximately $95 \%$ response and the 25.0 mc . marker below $90 \%$ response. A 26.5 mc. marker must fall between 5 and $10 \%$ response.

The most important consideration in making the i-f adjustments is to get the picture carrier at the $45 \%$ response point. If the picture carrier operates too low on the response curve. loss of low frequency video response, of picture brilliance, of blanking, and of sync may occur. If the picture carrier operates 100 high on the response curve, the picture becomes smeared. In making these adjustments, care should be taken to see that no two transformers are tuned to the same trequency as i-f oscillation may result.

Remove the converter tube and take of the clip to pin number 1. Replace the tube in the socket.

Picture I-F Oscillation. - If the receiver will operate without oscillating with the test equipment disconnected but breaks into oscillation or becomes unstable with the equipment connected, it may become necessary to establish a ground plane. Cover the lest bench with a sheet of copper and set the chassis on the sheet. Set all the test equipment except the "VoltOhmyst" on the sheet and bond or bypass them to it. A Junior "Voltohmyst" should not be bonded to the sheet since the negative lest probe is not always connected to ground during alignment. If the receiver is badly misaligned and two or more of the i-f transformers are tuned to the same frequency, the receiver may fall into i-f oscillation. I-F oscillation shows up as a voltage across the picture detector load resistor that is unaffected by r-f signal inpul. If such a condition is encountered, it is sometimes possible to stop oscillation by adjusting the transformers approximately to frequency by setting the adjustment cores of T101. T102, T103. T104. T105 and Tl06 to be approximately equal to those of another receiver known to be in proper aliqnment. If this does not have the desired effect, it may now be possible to stop oscillation by increasing the grid bias. If so, it should then be possible to align the transformers by the usual method. Once aligned in this manner, the i-f amplifier should be stable with reduced bias.
If the oscillation cannot be stopped in the above manner, shunt the grids of the first three pix i-f amplifiers to ground with $1,000 \mathrm{mmi}$. capacitors. Connect the signal generator to the fourth pix i-f grid and align T106 to frequency. Progres. sively remove the shunt from each grid and align the plate coil of that stage to frequency.

If this does not stop the oscillation, the difficulty is not due to i-f misalignment as the i-f section is stable when properly aligned. Check all i-f by-pass condensers, transformer shunting resistors, tubes, socket voltages, etc.

ANTENNA, R-F AND CONVERTER LINE ADJUSTMENT. - In order to align the r-f tuner, it will first be necessary to set the channel-13 oscillator to frequency. The shield over the bottom of the r-f unit must be in place when making any adjustments.

The channel-13 oscillator may be aligned by adjusting it to beat with a crystal-calibrated heterodyne trequency meter, or by leeding a signal into the receiver at the r-f sound carrier frequency and adjusting the oscillator for zero output from the sound discriminator. In this latter case the sound discriminator must first have been aligned to exact frequency. Either method of adjustment will produce the same results. The method used will depend upon the type of test equipment available. Regardless of which method of oscillator alignment is used, the fre quency standard must be crystal controlled or calibrated.

If the receiver oscillator is to be adjusted by the heterodyne frequency meter method, couple the meter probe loosely to the receiver oscillator.

If the receiver oscillator is adjusted by feeding in the r-f sound carrier signal, connect the signal generator to the receiver antenna terminals. Connect the "VoltOhmyst" to the sound discriminator output (junction of C183 and R203).

Set the receiver switch to 13 .

Adjust the frequency standard to the correct Irequency $(237$ mc. for heterodyne frequency meter or 215.75 mc . for the signal generator).

Set the fine tuning control to the middle of its range.
Adjust C6 for an audible beat on the heterodyne frequency meter or zero voltage from sound discriminator.

Now that the channel-13 oscillator is set to frequency, we may proceed with the r-f alignment.

Connect the "VoltOhmyst" to the junction of R135 and L117. Adjust the 250 K pot. for -3.5 volts on the meter
Remove the first pix i-f amplifier tube V101.
Connect the oscilloscope to the test connection at R13 in the r-f tuning unit.

Connect the r-f sweep oscillator to the receiver antenna terminals. The method of connection depends upon the output impedance of the sweep. The P102 connections for 300 ohm balanced or 72 -ohm single-ended input are shown in the circuit diagrams in Figure 78. If the sweep oscillator has a 50 -ohm single-ended output, 300 -ohm balanced output can be obtained by connecting as shown in Figure 7.


Figure 7-C'nbalanced Sweep Cable Termination
Connect the signal generator loosely to the receiver antenna terminals.

Since channel 7 has the narrowest response of any of the high frequency channels; it should be adjusted first.
Set the receiver channel switch to channel 7.
Set the sweep oscillator to cover channel 7.
Insert markers of chapnel 7 picture carrier and sound carrier, 175.25 mc . and 179.75 mc .

Adjust C10 and C14 until the curve falls symmetrically between the sound and picture carrier markers. Adjust Cll to give the proper band width. Roughly peak L6 in conjunction with slight adjustments of C10 and C14 for a flat-topped rosponse curve with the sound and picture carriers at $90 \%$ to $95 \%$ response points on this curve. See Figure 16, channel 7.
Switch to channel 12 and adjust $L 6$ for maximum response and minimum top slope of the curve.
Check the response of channels 7 through 13 by switching the receiver channel switch, sweep oscillator and marker oscillator to each of these channels and observing the response obtained. See Figure 16 for typical response curves. It should be found that all these channels have the proper shaped response with the markers above $80 \%$ response. If the markers do not fall within this requirement on one or more high frequency channels, since there are no individual channel adjustments, it will be necessary to readjust L6. C10, Cll and C14, and possibly compromise some channel slightly in order to get the markers up on other channels. Normally, however, no difficulty of this type should be experienced since the higher frequency channels are comparatively broad and the markers easily fall within the required range.

Channel 6 is next aligned in the same manner.
Set the receiver to channel 6.
Set the sweep oscillator to cover channel 6.
Set the marker oscillator to channel 6 picture and sound carrier frequencies.

Adjust L9, L13. L66, and C12 for an approximately flattopped response curve located symmetrically between the markers. L9, L13 and L66 are the center frequency adjustments. C12 is the band-width adjustment

Check channels 5 down through channel 2 by switching the receiver, sweep oscillator and marker oscillator to each channel and observing the response obtained. In all cases, the markers should be above the $80 \%$ response point. It this is not the case. L9, L13. L66 and C12 should be retouched. On final adjustment. all channels must be within the $80 \%$ specification.

Disconnect the 250 K pot., and replace V 107 and V101.
Following an $r$-f alignment, the oscillator alignment must be checked.

R-F OSCILLATOR LINE ADJUSTMENT. - The r-i oscillator line may be aligned by adjusting it to beat with a crystal calibrated heterodyne frequency meter, or by leeding a signal into the receiver at the r -i sound carrier trequency and adjusting the oscillator for zero output from the sound discriminator. In this latter case the sound discriminator musi first have been aligned to exact frequency. Either method of adjustment will produce the same results. The method used will depend upon the type of test equipment available.

Regardless of which method of oscillator alignment is used, the frequency standard must be crystal controlled or calibrated. If the receiver oscillator is to be adjusted by the heterodyne frequency meter method, the calibration frequency listed under R-F Osc. Freq, must be available.

If the receiver oscillator is adjusted by feeding in the r-f sound carrier frequency. the Irequencies listed under Sound Carrier Freq. must be available.

Channel Number	Receiver R-F Osc. Freq. Mc.	R.F Sound Carrier Freq. Mc.	Channel Oscillator Adjustment
2.	81	59.75.	L24
3.	. 87.	. 65.75	. .L23
4.	. 93.	. 71.75.	. . 222
5.	. 103.	. 81.75	. .L21
6.	. 109.	. 87.75	. .L31
7.	. 201.	. 179.75	.L19
8.	. 207.	.185.75	.L18
9.	. 213.	.191.75.	. 17
10.	. 219.	. 197.75.	.L16
11.	. . 225 .	. 203.75 .	. 15
12.	. 231.	. 209.75 .	.L14
13.	. 237.	.215.75.	. C 6

If the heterodyne frequency meter method is used, couple the meter probe loosely to the receiver oscillator.

If the r-f sound carrier method is used, connect the "VoltOhmyst" to the sound discriminator output (junction of C183 and R203) and connect the signal generator to the receiver antenna terminals. The order of alignment remains the same regardless of which method is used.
If the r-f unit is removed from the receiver for service and is aligned separately. the shield over the bottom of the r-f unit must be in place when making adjustments.

Since the lower frequencies are obtained by adding steps of inductance. it is necessary to align channel 13 first and continue in reverse numerical order.

Set the receiver channel switch to 13.
Adjust the frequency standard to the correct irequency (237 mc. for heterodyne frequency meter or 215.75 mc . for the signal generator).

Set the fine tuning control to the middle of its range while making the adjustment.
Adjust C6 for an audible beat on the heterodyne frequency meter or zero voltage from sound discriminator. Oscillator adjustments L1 and L2 shown on the schematic are factory control adjustments and should not be touched in the field.
Switch the receiver to channel 12.
Set the frequency standard to the proper Irequency as listed in the alignment table.

## Adjust L 14 for indications as above.

Adjust the oscillator to frequency on all channels by switch. ing the receiver and the frequency standard to each channel and adjusting the appropriate oscillator trimmer for the speci-

T164, TCl65, TCl66,

## TCl67. TCl68

## ALIGNMENT TABLE

the detalled alignment procedure beginning on page 7 Should be read before alignment by use of the thble is attempted.

$\begin{aligned} & \text { STEP } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { SIGNRL } \\ & \text { GENERRTOR } \\ & \text { TO } \end{aligned}$	$\begin{gathered} \text { SIGNAL } \\ \text { GEN. } \\ \text { FREQ. } \\ \text { MC. } \end{gathered}$	$\begin{aligned} & \text { CONNECT } \\ & \text { SWEEP } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$	SWEEP GEN. FREQ. MC.	$\begin{aligned} & \text { CONNECT } \\ & \text { OSCILLOSCOPE } \\ & \text { TO } \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { "VOLTOHMYST" } \\ \text { TO } \end{gathered}$	MISCELLANEOUS CONNECTIONS AND INSTRUCTIONS	ADIUST	$\begin{gathered} \text { REFER } \\ \text { TO } \end{gathered}$
discriminator and sound l-F Rlignment									
1	2nd sound $\mathfrak{i} \cdot \mathrm{f}$ grid (pin 1, V117)	$\begin{aligned} & 21.25 \\ & \text {. } 1 \text { rolt } \\ & \text { output } \\ & \hline \end{aligned}$	Not used		Not used	In sories with 1 meg. to Junction of R203 68204		Detune T113(bot.) Adjusi Tll3 (top) for max. on meter	Fig. 8   Fig. 9   Fig. 10
2	"	"	"		*	$\underset{\mathrm{R2O3}}{\mathrm{Junct}} \text { of } \mathrm{Cl}_{183} \mathrm{E}$	Meter on 3 volt scale	T113 (bottom) for zoro on metor	$\begin{aligned} & \text { Fig. } 9 \\ & \text { Fig. } 10 \end{aligned}$
3	"	"	2nd sound 1.f grid (pin 1, V117)	$\begin{gathered} 21.25 \\ \text { conter } \\ 1 \text { me. } \\ \text { wride } \\ .1 \text { v. out } \\ \hline \end{gathered}$	$\underset{\substack{\text { Junction of } \\ \$ \mathrm{R2O3}}}{\mathrm{Cl} 83}$	Not used	Check for sym wavoform (positi not equal adjus they are equal	etrical reaponse 6 negative). If T113 (top) until	Fig. 10   Fig. 12
4	lat sound i-f grid (pin 1, V116)	$\begin{gathered} 21.25 \\ \text { reduced } \\ \text { output } \end{gathered}$	lst sound l-f grid	21.25 reduced output	Torminal A, T112 in sories with a 33.000 ohm resistor	"	Sweop output reduced to provide .3 voll p-lo-p on scop	T112 (top 8 bot.) tor max. gain and Eymmetryat 21.25 me.	Fig.   Fig. 9   Fig. 10   Fig. 13
PICTURE J.F AND TRAP ADJUSTMENT									
3	Not used		Not used		Not used	```Junetion of R13S 8C190```	Remove V107. Connect potentiometer between ping $\$ 66$ of V107 socket	Adjust pot. for moter reading of -12 volts	Fig. 10
6	Converter grid ( $\mathrm{pin} 1, \mathrm{~V} 2$ )	21.25	*		"	Acrose Rll9	Meter on 3 volt scale. Receiver between 2 and 13	T103 (top) for min. on moter	Fig.
7	"	21.25	"		"	"	"	$\begin{aligned} & \text { T105 (top) for } \\ & \min . \end{aligned}$	"
8	"	27.25	"		"	"	-	$\begin{aligned} & \mathrm{Tl} 102 \text { (top) for } \\ & \text { min. } \end{aligned}$	"
9	*	27.25	"		"	"	"	T104 (top) for $\min$.	*
10	"	19.75	"		"	*	"	$\begin{aligned} & \text { T106 (top) for } \\ & \min . \end{aligned}$	"
11	"	19.73	$\cdots$		"	"	"	T101 (top) for min.	"
12	"	22.5	"		"	"	"	Tl06 (bottom) for max. on moter	Fig. 9
13	"	24.6	"		"	"	"	Tl04 (bottom) lor max.	"
14	"	22.0	"		"	"	"	Tl03 (bottom) for max.	"
15	"	25.9	*		"	"	"	T102 (bottom) for max.	"
$16$	"	$\begin{aligned} & 22.05 \\ & 24.75 \end{aligned}$	Converter grid   (pin 1, Y2)	Sweeping 20 to 30 mc	Pin 1. V106	```Junction of R13S & C190```	Shunt 330 ohms acrose pri. T102. T103. T104, T106. Set bias -2 V. Set swp. gen. for 4 V . P.P on scope.	Adjust T1 (top) and $T 101$ (bot. tom) for proper response	Fig. 8   Fig. 9   Fig. 1
17	"		"	"	"	"	Remove shunt resistors. Set bias to give 15 volts P to $P$ on scope.	Adjust TI (top), T101. T102. T103. T104, T106 (bot.) for proper resp.	Fig.   Fig. 9   Fig. 15


ANTENNA, R-F AND CONVERTER LINE RLIGNMENT									
18	Antenna terminal	215.75	Not used		Not used	Junction of $\mathrm{ClP}_{3}$ © R203 for signal gen. mothod only	Fine tuning centered. Receiveron channel 13. Het -rodyne meter coupled to oscil. lator il used.	C6 for zero on meter or beat on het. freq, meter	$\begin{aligned} & \text { Fig. } 8 \\ & \text { Fig. } 10 \end{aligned}$
19						Junction of R135 81.117	Remove V101	Potentiometor for -3.5 volts on metor	$\begin{aligned} & \text { Fig. } \\ & \text { Fig. } 10 \end{aligned}$
20	Antenna terminal (loosoly)	$\begin{gathered} 175.25 \\ 179.75 \end{gathered}$	Antonna terminals (see toxt for precaution)	SwreepIng channel 7	Test   Connection 813	Not used	Receiver on channel 7	L6. C10, Cll 8 C14 for fiat top response belween markers. Markers above $90 \%$.	Fig. 8 Fig. Fig. (7)
21	"	$\begin{aligned} & 205.25 \\ & 209.75 \end{aligned}$	"	$\underset{12}{\text { channel }}$	"	"	Receiver on channel 12	L6 for max. re. sponse and min. slope of top of curv.	$\begin{aligned} & \text { Fig. } 8 \\ & \text { Fig. } 16 \\ & \text { (12) } \end{aligned}$
22	*	$\begin{aligned} & 175.25 \\ & 179.75 \end{aligned}$	*	$\underset{7}{\text { channel }}$	"	"	Recolver on channel 7	Check to see that response is as above	$\text { Fig. }{ }^{\text {(7) }}$
23	"	$\begin{aligned} & 181.25 \\ & 185.75 \end{aligned}$	"	channel	"	"	Heceiver on chan. nel 8	"	$\text { Fig. } 16$ (8)
24	*	$\begin{aligned} & 187.25 \\ & 191.75 \end{aligned}$	"	$\begin{gathered} \text { channel } \\ \hline \end{gathered}$	"	"	Receiver on channol 9	"	$\begin{gathered} \text { Fig. } 16 \\ (9) \end{gathered}$
25	"	$\begin{aligned} & 193.25 \\ & 197.75 \\ & \hline \end{aligned}$	"	$\begin{gathered} \text { chennel } \\ 10 \end{gathered}$	"	*	Receiver on chan. nol 10	"	$\text { Fig. } 16$ (io)

89IDI 'L9IDL


 E I



su|copand.A1
'99IDL 'S9IDL '*9IL



SO $\quad$ Short circuit torminals $C$ and $D$ of T109. Tune in a station. Set locking zange trimmer C153A $1 / 2$ turn out from maximum.


 $\sin ^{201}$




12
as shown in figre 18, while maintaining the picter
85 A. - Connect the low capacity probe of an oscilloscope to
terminal C of Tiog. Alternately adjust the waveform and fre-
quency cores of Tio9 until the peak of the sine wave is equal



 $\square$










 -














[^6]















 3


号









 SHdYצפOIOHd WYOJ3MYM aNH 3SNOdS34 89IOL 'L9IDI


Input to 2nd Video Amplifier (Pin 7 of V106) (12AU7)

Figure 32-Vertical (17 Volts PP) $\leftrightarrow 4$

Figure 33-Horizontal (17 Volts PP) $\rightarrow$


Output of 2nd Video Amplifier (Junction of L105 and R127) (Picture Max.)

Figure $34-V$ ertical (96 Volts PP)
$\leftrightarrow$

Figure 35--Horizontal (96 Volts PP)

$$
\rightarrow
$$



Input to Kinescope (Junction of R127 and R128) (Picture Max.)

Figure 36-Vertical (65 Volts PP) $\leftrightarrow$

Figure 37-Horizontal ( 65 Volls PP) $\rightarrow$


Input to lst Sync Separator (Pin 1 of V108) (6SN7GT)

Figure 38-Vertical (25 Volts PP) $\leftrightarrow 4$

Figure 39-Horizontal (23 Volts PP) $\rightarrow$


AGC Rectifier Cathode (Pin 6 of V108) (6SN7GT)

Figure 40-_Vertical (4.7 Volts PP) $\longleftarrow 4$

Figure 41-Horizontal (1.5 Volts PP) $\rightarrow$


Output of AGC Rectifier (Pin 5 of V108) (6SN7GT)

Figure 42—Vertical (24 Volts PP) $\leftrightarrow$

Figure 43-Horizontal (24 Volts PP)


T164, TC165, TCl66,
TCl67, TCl68


WAVEFORM PHOTOGRAPHS

Output of 1st Sync Separator (Pin 2 of V108) (6SN7GT)

Figure 44--Vertical (26 Volts PP) $\longleftrightarrow$

Figure 45-Horizontal (25.5 Volts PP) $\rightarrow$

Input to Sync Amplifier (Junction of C137, C139 and R145)

Figure 46-Vertical (21 Volts PP) $\leftarrow$

Figure 47-Horizontal (21 Volts PP) $\rightarrow$

Output of Sync Amplifier (Pin 2 of V109) (6SN7GT)

Figure 48-Vertical (115 Volts PP) $\leftrightarrow$

Figure 49-Horizontal (105 Volts PP) $\rightarrow$

Gathode of 2nd Sync Separator (Pin 6 of V109) (6SN7GT)

Figure $50-$ Vertical ( 17 Volts PP) 4

Figure 51-Horizontal (11 Volts PP) $\rightarrow>$

Figure 52-Output of Integrating Network (Junction of C144, C145 and R153) (45 Volts PP)
$\leftrightarrow \leftarrow$

Figure 53-Grid of Vertical Oscillator ( 720 Volts PP) (Pin 1 of V107)
(6SN7GT)
$\rightarrow$

Figure 54-Grid of Vertical Output (160 Volts PP) (Pin 5 of V110) ( 6 K 6 GT )

$$
\longleftarrow+4
$$

Figure 55--Plate of Vertical Output ( 750 Volts PP) (Pin 3 of V110) (6K6GT)



Figure 5h-Input of Vertical Deflection Coils (75 Volts PP) (Junction of Green Lead of T108 and Green Lead of Yoke)
$\leftarrow 4$

Figure 57-Input to Horizontal Oscil. lator (17.5 Volts PP) (Junction of C153A and C154) $\rightarrow$

Figure 58-Junction of R168, R176 and R178 (150 Voles PP)

$$
4-4
$$

Figure 59-Grid of Horizontal Oscil. lator (480 Volts PP) (Pin 4 of V111) (6SN7GT)
$\rightarrow$


Figure 60-Plate of Horizontal Oscil. lator (270 Volts PP) (Pin 5 of V111) (6SN:CT)
$\leftarrow 4$

Figure 61-Terminal "C" of T109 ( 70 Volts PP)
$\rightarrow$


Figure 62-Input to Horizontal Out. put Tube ( 42 V'olts PP) Junction of C160, R183 and C153B)

## $\longleftarrow 4$

Figure 63-Plate of Horizontal Output (Approx. 6,500 Volts PP) (Measured Through a Capacity Voltage Divider Connected from Top Cap of V112 to Ground)
$\rightarrow$

Figure 64 -Terminal 1 of T110 (200 Volts PP)
$\leftarrow 44$

Figure 65—Plate of Damper (250 Volts PP) (Pin 5 of V114) (6W4GT)
$\rightarrow$

Figure 66-Input to Horizontal Deflection Coils $(3,000$ Volts PP)
$\longleftrightarrow 4$

Figure 67-Horizontal Deflection Coil Current ( 0.5 Amp. PP) Measured by Inserting a 5 -ohm Resistor in series with the yoke and observing the waveform across the resistor.


T164, TC165, TC166.

## TC167, TC168

## VOLTAGE CHART

The following measurements represent two sets of conditions. In the first condition a 2200 microvolt test pattern signal was fed into the recelver, the picture was synced and the AGC threshold control was properly adjusted. The second condition was obtained by removing the antenna leads and short-circuiting the receiver antenna terminals. Voltages shown ase as read with "Ir. VoltOhmyst" between the indicated terminal and chassis ground and with the receiver operating on 117 volts, 60 cycles a-c. Symbol $<$ means less than.

Tube No.	Tube Type	Function	Operating Condition	E. Plat		E. Screen		E. Cathode		E. Grid		$\begin{gathered} 1 \\ \text { Plale } \end{gathered}$(ma.)		Notes on Measurements
				Pin No.	Volts	Pin   No.	Volts	Pin   No.	Volts	Pin   No.	Volts			
V1	6AG5	R-F   Amplifier	2200 Mu . V.   Signal	5	130	6	132	287	0	1	-2.2	5	2	
			No Signal	5	67	6	111	2\& 7	0	1	0.0	14.0	5.0	
V2	6AG5	Converter	2200 Mu . V. Signal	5	$\begin{gathered} 130 \\ \text { to } 140 \end{gathered}$	6	$\begin{aligned} & \text { } 130 \\ & \text { to } 140 \end{aligned}$	$2 \& 7$	0	1	$\begin{aligned} & -3.0 \\ & 10-7.0 \end{aligned}$	$\begin{aligned} & { }^{*} 7.1 \\ & 107.7 \end{aligned}$	$\begin{aligned} & 2.3 \\ & \text { to } 2.7 \end{aligned}$	${ }^{*}$ Depending upon channel
			No Signal	5	$\begin{aligned} & 107 \\ & \text { to } 109 \end{aligned}$	6	$\begin{aligned} & \text { l } 107 \\ & \text { to } 109 \end{aligned}$	287	0	1	$\begin{aligned} & -2.0 \\ & \text { to }-6.0 \end{aligned}$	$\begin{aligned} & \text { '5.3 } \\ & 105.9 \end{aligned}$	$\begin{aligned} & \because .8 \\ & \text { to } 1.0 \end{aligned}$	
V3	6 J 6	R-F Oscillator	2200 Mu. V. Signal	182	$\begin{aligned} & 98 \\ & \text { to } 95 \end{aligned}$	-	-	7	. 19	5 \& 6	$\begin{array}{r} -5.1 \\ 10-7.3 \end{array}$	$\begin{array}{r} \quad 1.9 \\ \text { to } 2.7 \end{array}$	-	- Depending upon channel
			No Signal	182	$\begin{aligned} & 68 \\ & \text { to } 81 \end{aligned}$	-	-	7	. 16	5 \& 6	$\begin{array}{r} -4.5 \\ \text { to }-6.6 \end{array}$	$\begin{array}{r} \quad 1.8 \\ \text { to } 2.1 \end{array}$	-	
V101	6BA6	$\begin{aligned} & \text { lst Pix. I-F } \\ & \text { Amplifier } \end{aligned}$	$\begin{aligned} & 2200 \mathrm{Mu} . \mathrm{V} . \\ & \text { Signal } \end{aligned}$	5	128	6	128	7	. 4	1	-11.0	1.9	. 8	
			No Signal	5	95	6	95	7	1.73	1	$+.2$	8.1	3.4	
V102	6AG5	2d Pix. I•F   Amplifier	2200 Mu . V. Signal	5	119	6	119	287	. 78	1	0	8.8	2.4	
			No Signal	5	100	6	100	287	. 62	1	0	7.4	1.6	
V103	6BA6	3d Pix. I-F   Amplifier	$2200 \mathrm{Mu} . \mathrm{V} .$   Signal	5	81	6	119	7	. 52	1	-2.2	11.1 .	. 3	
			No Signal	5	55	6	96	7	. 62	1	+0.2	13.2	. 3	
V104	6AG5	4th pix. I-F Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	159	6	135	$2 \& 7$	1.5	1	0	7.2	2.2	
			No Signal	5	165	6	118	287	1.35	1	0	6.8	2.4	
$\begin{gathered} \text { V105 } \\ \mathbf{A} \end{gathered}$	6AL5	Picture 2d Det.	2200 Mu . V. Signal	7	-116	-	-	1	-127	-	-	. 3	-	
			No Signal	7	-131	-	-	1	-135	-	-	<0.1	-	
$\begin{gathered} \text { V105 } \\ \text { B } \end{gathered}$	6AL5	Sync   Limiter	2200 Mu . V. Signal	2	-117	-	-	5	-58	-	-	-	-	.
			No Signal	2	-63	-	-	5	-60	-	-	-	-	
V106	12AU7	181 Video Amplifier	$2200 \mathrm{Mu} . \mathrm{V} .$   Signal	1	-18.7	-	-	3	-125	2	-129	2.6	-	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	1	-28.0	-	-	3	-133	2	-135	6.6	-	
V106	12AU7	2d Video Amplifier	$2200 \mathrm{Mu} . \mathrm{V} \text {. }$   Signal	6	$\bullet 120$	-	-	8	- -11.0	7	- -13.2	9.2	-	*At minimum contrast
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	6	-127	-	-	8	- -17.0	7	- -21.0	8.5	-	
			$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	6	-193	-	-	8	- -0.6	7	- -13.1	3.2	-	- At maximum contrast
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	6	-228	-	-	8	- -0.8	7	- 20.0	0.2	-	
$\begin{gathered} \text { V107 } \\ \mathbf{A} \end{gathered}$	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	ACG Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	-11	--	-	6	-58	4	-61	. 12	-	
			No Signal	5	$+0.2$	-	-	6	-60	4	-66	0	-	
$\begin{gathered} \text { V107 } \\ \text { B } \end{gathered}$	$\begin{aligned} & \text { GSN7 } \\ & \text { GT } \end{aligned}$	Vertical Oscillator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	2	125	-	-	3	-127	1	-170	. 31	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	2	120	-	-	3	-135	1	-175	. 30	-	
V108	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	AGC Rectifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	87	-	-	6	-2	4	-19.5	. 3	--	
			$\begin{gathered} \text { No } \\ \text { Sigaal } \end{gathered}$	5	75	-	-	6	-22	4	-28.0	< . 1	-	
V108	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	lst Sync Separator	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	2	87	-	-	3	-3	1	-18.5	<.1	-	
			No Signal	2	73	-	-	3	-22	1	-28.0	$<.1$	-	

T164, TCl65, TC166,
VOLTAGE CHART TCl67, TCl68

Tube No.	TubeType	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		$\stackrel{1}{\text { Plate }}$(ma.)		Notes on Measurements
				Pin   No.	Volts	Pin   No.	Volts	Pin   No.	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts			
V109	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Sync Amplifier	$2200 \mathrm{Mu} . \mathrm{V} .$ Signal	2	153	-	-	3	0	1	-5.0	5.8	-	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	2	160	-	-	3	0	1	-5.6	5.4	-	
V109	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Sync Separator	$2200 \mathrm{Mu} . \mathrm{V} \text {. }$ Signal	5	241	-	-	6	-58	4	-117	. 22.	-	
			No Signal	5	240	-	-	6	-57	4	-65	. 71	-	
V110	$\begin{aligned} & \text { 6K6. } \\ & \text { GT } \end{aligned}$	Vertical Output	$2200 \mathrm{Mu} . \mathrm{V} .$ Signal	3	240	4	240	8	-78	5	-107	10	2.0	Screen connected to plate
			No Signal	3	235	4	235	8	-83	5	-111	10	1.9	
V111	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Horizontal Osc. Control	$\begin{aligned} & 2200 \mathrm{Mu} . \mathrm{V} . \\ & \text { Signal } \end{aligned}$	2	50	-	-	3	$-136$	1	-127	. 11	-	
			No Signal	2	14	-	-	3	- -155	1	*-147	. 10	-	Hold control counterclockwise
			No Signal	2	78	-	-	3	- -140	1	- -142	. 11	-	Hold control clockwise
V111	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Horizontal Oscillator	$2200 \mathrm{Mu} . \mathrm{V} .$ Signal	5	86	-	-	6	-127	4	-193	2.0	-	
			No Signal	5	80	-	-	6	-135	4	-205	1.7	-	
V112	6BG6G	Horizontal Output	$2200 \mathrm{Mu} . \mathrm{V} \text {. }$   Signal	Cap	Do Not Meas.	8	152	3	-117	5	$-145$	67.9	8.1	
			No Signal	Cap	Do Not Meas.	8	150	3	-126	5	-157	66.0	8.0	
V113	$\begin{gathered} \hline \text { 183GT } \\ \hline / 8016 \end{gathered}$	H. V. Rectifier	$\begin{aligned} & \text { Brightness } \\ & \text { Min. } \end{aligned}$	Cap	Do IVot Meas.	-	-	287	12.300	-	-	0	-	
			Brightness Average	Cap	Do Not Meas.	-	-	287	11.700	-	-	. 1	-	
V114	6W4GT	Damper	$2200 \mathrm{Mu} . \mathrm{V} .$ Signal	5	Do Not Meas.	-	-	3	498	-	-	86	-	
			No Signal	5	Do Not Meas.	-	-	3	496	-	-	70	-	
V115	5U4G	Rectilier	$2200 \mathrm{Mu} . \mathrm{V} .$   Signal	486	-385	-	-	288	267	-	-	225	-	*AC measured from plate to trans. center tap
			No Signal	486	- 385	-	-	2\&8	260	-	-	226	-	
V116	6AU6	1 st Sound I.F Amplitier	$2200 \mathrm{Mu} . \mathrm{V} \text {. }$ Signal	5	124	6	124	7	. 87	1	-0.1	7.0	3.0	
			No Signal	5	107	6	107	7	. 75	1	-0.15	6.4	2.3	
V117	6AU6	2nd Sound I-F Amplities	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	130	6	67	7	0	1	-9	4.3	1.5	
			No Signal	5	120	6	60	7	0	1	-0.37	3.7	1.6	
V118	6AL5	Sound Discrim.	2200 Mu . V. Signal	2	-8.4	-	-	5	5.8	-	-	-	-	
			No Signal	2	-0.4	-	-	5	0	-	-	-	-	
			$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	7	-3.7	-	-	1	0	-	-	-	-	
			No Signal	7	-0.4	-	-	1	0	-	-	-	-	
V119	6AV6	1st Audio Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	7	80	-	-	2	0	1	-. 89	. 48	-	
			No Signal	7	77	-	-	2	0	1	-. 89	. 47	-	
V120	$\begin{aligned} & \text { 6K6. } \\ & \text { GT } \end{aligned}$	Audio Output	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Sigmal } \end{gathered}$	3	193	4	135	8	-101	5	-127	12.4	2.1	
			No Signal	3	193	4	121	$8$	-109	5	-135	11.9	2.1	
V121	16GP4	Kinescope	2200 Mu . V. Signal	Cap	12,300	10	250	11	77	2	35	. 06	-	Avg. Bright. Avg. Contrast
			$\underset{\substack{2200 \mathrm{Mu} . \\ \text { Signal }}}{ }$	Cap	12,700	10	250	11	110	2	36	0	-	Min. Bright. Avg. Contrast
			$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	Cap	12,700	10	368	11	105	2	-2	0	-	Low Bright. Min. Contrast
			No Signal	Cap	11.700	10	366	11	73	2	48	. 18	-	Avg. Bright. Avg. Contrast



Figure 68-R.F Unit Wiring Diagram

## CRITICAL LEAD DRESS:

1. The ground bus from pin 2 and the center shield of V117 socket should not be shortened or rerouted.
2. Do not change the dress of the filament leads or the bypass capacitors in the picture or sound i-f circuits. The filament leads between V117, V118 and V119 should be down against the chassis and away from grid or plate leads.
3. If it is necessary to replace any of the 1500 mmf capacitors in the picture i-f circuit, the lead length must be kept as short as possible.
4. Picture i-f coupling capacitors $\mathrm{C} 106, \mathrm{C} 111, \mathrm{Cl} 15$ and C 121 should be up and away from the chassis and should be clear of the pix i-f transformer adjustments by at least $1 / 4$ inch. If the dress of any of these capacitors in changed, the i-f alignment should be rechecked.
5. Dress black lead from terminal C of Tl06 down next to chassis.
6. Leads to L102 and L103 must be as short as possible.
7. Dress peaking coils L105, L106, L107 and L114 up and away from the chassis.
8. Dress Cl83 across tube pins 5 and 6 with leads not exceading $3 / 6$ inch.
9. Dress body of R215 as close to tube pin as possible.
10. Dress C129 and Cl30 up and away from the chassis.
11. Dreas the yellow lead from the picture control away from the chassis and away from the volume-control leads. Dress the yellow lead from pin 8 of V106 away from the chastia.
12. Dress the green lead from pin 2 of V106 away from the chassis.
13. Dress R168, R176 and R178 up and away from the chassis.
14. The leads to the volume control should be dressed down against the chassis and away from V117 and V118.
15. Contact between the r-f oscillator frequency adjustment screws and the oscillator coils or channel switch eyelets must be avoided.
16. Dress three a-c leads to $S 101$ under clamp and away from R211.
17. Dress black lead from power transformer and red lead from Sl02 to terminal board, on top side of four potentiometers.
18. Dress all leads from V115 to V122 on power transformer side of terminal board.
19. All solder joints in the high voltage section should be free of sharp edges.
20. The lead side of the V113 plate cap should be turned away from the fixed high voltage shield and the lead should be dressed away from all objects.
21. All leads under the horizontal plate in the high voltage section should be kept reasonably short and dressed away from the V113 corona ring.
22. The red-black lead from terminal 2 of the deflection yoke should be dressed around the green and yellow leads and away from the red lead. The loose end of the red-black wire should be heavily laped.


	\%u* wata						
\%	Hem	${ }^{2}$	${ }^{-}$				\%
	5		$= \pm=$	5	$E=$	5	15
		vavaim	$\pm= \pm=$		$\underline{y}$	$\underline{=}$	max
$\underline{5}$	\%awsw,	2-xamis	m= $=$		5		\% = wezm
- ${ }^{\text {a }}$ -	- = -	moxamex	\% $=$ = = =		$=$	泡	max
$=$ =	\% $==$	max ${ }^{2}$	:	\%	$\cdots=5$	-	$\underline{v}=$
$\pm$	max ${ }^{\text {a }}$	$\underline{=}$	-	$\cdots$	=	=	- $x^{2}$ =
5		\% = masu			mys	$\pm$	- $x^{-}=$
5VE=		$\cdots$	-w		=	- $=$	- $= \pm=$
$5 \mathrm{ya}=$	\#	$\cdots=$	\% $=$		\% $=$ mam	mamemumum	\%
$\underline{=}$	$\pm \pm$ -	max	WV= $=$			- $=$	\%
$5^{2}$	2-20	$\underline{m}=\mathbf{z}=$			5	$\underline{=}$	-
$5$	$15$	$\cdots$			= $==$	zas	\% $=$ = -
EVN:		$\pm$	+	$\underline{x}=$	=	\% $=$ m $=$	- $=$
$x^{2}=$		2m		www			
5	$1= \pm=2$	$\pm=$ amix					



HORIZONTAL SCANNING FREQUENCY . . . . . . . . . . 15.750 cps	
VERTICAL SCANNING FREQUENCY	60 cps
FRAME FAEQUENCY (Picture Repetition Rate)	. 30 cps
SOUND I.F FREQUENCIES	
Sound Carrier Frequency	21.25 mc .
Sound Discriminator Band Width between	350 k

## PICTURE 1.F FREQUENCIES

Picture Carrier Frequency . . . . . . . . . . . . . . . . . . . . . . . . 25.75 mc .
Adjacent Channel Sound Trap . . . . . . . . . . . . . . . . . . . . 27.25 mc .
Accompanying Sound Traps . . . . . . . . . . . . . . . . . . . . . 21.25 mc .
Adjacent Channel Picture Carrier Trap................ 19.75 mc .

## OPERATING INSTRUCTIONS

The following adjustments are necessary when turning the receiver on for the first time.

1. Turn the radio FUNCTION switch to Tel.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately midposition.
3. Set the STATION SELECTOR to the desired channel.
4. Adjust the FINE TUNING control for best sound fidelity and SOUND VOLUME for suitable volume.
5. Turn the BRIGHTNESS control fully counter-clockwise, then clockwise until a light pattern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZONTAL hold control until a picture is obtained and centered.
8. Turn the BRIGHTNESS con. trol counter-clockwise until the retrace lines just disappear.
9. Adjust the PICTURE control for suitable picture contrast.
10. After the receiver has been on for some time, it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.


Figure 1-Receiver Operuting Conirols:

INSTALLATION INSTRUCTIONS

WARNING.-The high vol!age supply in this receiver delivers 12.000 volts! A.C. interlocks are provided at the back of the set so that when the back is removed so is the power.

ANTENNA AND POWER CONNECTIONS. - Connect the leads from the antenna to the receiver antenna ierminals.

Make sure that the receiver power switch is in the off position. Plug the receiver power cord into a 115 volt, 60 cycle a.c outlet.

Turn the power switch to the "on" position, the brightness control three-quarters clockwise, and picture control fully counter-clockwise.

ION TRAP MAGNET ADJUSTMENT.-Set the ion trap magnet approximately in the position shown in Figure 2. Starting from this position adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust the focus control (Rigl on the chassis rear apron) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches on this adjustment should be made with the brightness control at the maximum position with which good line focus can be maintained.

DEFLECTION YOKE ADJUSTMENT.-If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.


Fizurre 2-Yohe and Forus Cioil Alljustments
PICTURE ADJUSTMENTS.-It will now be necessary to obtain a test pattern picture in order to make further adjustments. See steps 3 through 9 of the receiver operating instructions.
If the Horizontal Oscillator and AGC System are operating properly. it should be possible to sync the picture at this point. However, it the AGC threshold control is misadjusted, and the receiver is overloading, it may be impossible to sync the picture.
If the receiver is overloading. turn R138 on the rear apron (see Figure 3) clockwise until the set operates normally and the picture can be synced.


Figure 3-Rear Chissis Adjusiments
CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT.-Turn the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Usually the picture will remain in sync. Turn the control clock. wise slowly. If the picture did fall out of syac upon removal of the signal, the number of diagonal black bars will be gradually reduced and when only 2 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. The picture should remain in sync for approximately 180 degrees of additional clockwise rotation of the control. At the extreme clock. wise position, the picture should be out of sync and should show 1 vertical or diagonal black bar in the raster.
If the receiver passes the foregoing checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Focus Coil Adjustments."

ALIGNMENT OF HORIZONTAL OSCILLATOR. - II in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed 10 hold sync over 180 degrees of clockwise rotation of the control from the pull-in point, it will be necessary to make the following adjustments:
Horizontal Frequency Adjustment.-Turn the Tl09 sine wave core (on the outaide of the apron) all the way out of the coil.
Set the locking range trimmer C153A one-half turn out from maximum capacity.

Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and turn the frequency wave core of T109 under the chassis until the picture syncs and the sync bar just begins to move into the picture.
NOTE.-Occasionally. a tube may be found which does not respond to this alignment procedure since it may not be possible to sync the picture by means of the frequency core when the sine wave core is all the way out of the coil. Yet, the tube may work perfectly well when the circuit is properly aligned. In such a case, it may be necessary to turn the sine wave core in slightly, and readjust the frequency core to obtain sync.

Turn the sine wave core of Tl09 in until the blanking bar begins to move off to the left of the picture. Alternately turn the sine wave core in and the frequency out, keeping the picture in sync and the blanking bar showing in the picture.

Continue alternate adjustments until the picture fall from sync into a parasitic oscillation as indicated by a non-synchronized pattern which tlickers in width and centering with possibly a light ragged vertical bar through the center of the screen.
Turn the sine wave core out $1 / 2$ lurn. Adjust the frequency core in until the picture is in sync and horisontal blanking appears as a vertical bar in the picture.

Check of Pull.in Range.-Turn the horizontal hold control fully counter-clockwise. Connect a 270 K ohm resistor across Cl56. Momentarily switch off channel and back; the picture will then be out of sync. Turn the hold control clockwise slowly and observe the minimum number of bars obtained just before the picture pulls into sync.

The picture should snrp in from two complete blanking bars. If two bars are not obtained, turn the locking range trimmer Cl53A in to obtain lest bars or out to obtain more bars.

If CI53A was adjusted, remove the 270 K resistor, turn the horizontal hold control lully clockwise and adjust the T109 irequency core until horizontal blanking appears as a vertical bar in the synced picture. Then repeat the entire check of pull-in range to this point.

Repeat the adjustments under "Check of Pull-in Range" until the conditions specified are lulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.

If the oscillator does not hold sync properly at this point and the AGC systom is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure.

- FOCUS COIL ADJUSTMENTS.-The locus coil should be adjusted so that there is approximately onequarter inch of space between the rear cardboard shell of the yoke and the flat af the front face of the focus coil. This spacing gives best average focus over the face of the tube. The axis of the hole through the focus coil should be parallel with the axis of the kinescope neck. The focus coil is provided with a magnetic shunt in the form of a metal sleeve. If the receiver focuses with the focus control at or near the end of its range. loosen the shunt locking screw and slide the shunt forward or backward until locus is obtained with the focus control in the middle of its range.

CENTERING ADJUSTMENT.-No electrical centering controls are provided. Centering is obtained by loosening the two focus coil mounting screws and sliding the coil up or down or from side to side. If the focus coil was appreciably changed in position or if a corner of the raster is shadowed, check the position of the ion trap magnet. Reposition the magnet within The range of maximum raster brightness to eliminate the shadow and recenter the picture by sliding the coil. In no case should the magnet be adjusted to cause any loss of brightness since such operation may cause immediate or eventual damage to the tube. In extreme cases it may be necessary to adjust one or more of the three focus coil compression spring screws to eliminate a corner shadow.

WIDTH. DRIVE AND HORIZONTAL LINERRITY ADJUST-MENTS.-Adjustment of the horizontal drive control affects the high voltage applied to the kinescope. In order to obtain the highest possible voltage hence the brightest and best focused picture, adjust horizonial drive counter-clockwise as far as possible without losing tension on irimmer.

Set the width control to minimum picture width.
Turn the horizontal lisearity coil out until appreciable loss in width occurs, then in until nearly maximum width and the best linearity is obtained. Do not run the core in beyond the point of maximum linearity change, as the current drawn by the 6BG6G then becomes excessive.

Adjust the width control for the proper picture width.
Readjust linearity, but again not beyond the point of maximum linearity change. II necessary adjust the drive control for best linearity.

If at very high line voltage, the picture width is excessive even with the width control set at minimum, turn the linearity coil out to obtain the proper width. On high line voltage, excessive width generally will be accompanied by good linearity, without retouching the drive.

Adjustments of the horizontal drive control affect horizontal oscillator hold and locking range. It the drive control was adjusted, recheck the oscillator allgnment.

FOCUS. - Adjust the focus control (R191 on chassis rear apron) for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS.-Adjust the height control (R155 on chassis rear apron) until the picture tills the mask vertically. Adjust vertical linearity (R162 on rear apron) until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjusiment of the other. Adjust the focus coil to align the picture with the mask.

Check to see that the cushion and yoke thumbscrews and the focus coil mounting screws are tight.
AGC THRESHOLD CONTROL-The AGC threshold control R138 is adjusted at the factory and normally should not require readjustment in the field.

To check the adjustment of the AGC threnhold control, lune

## INSTALLATION INSTRUCTIONS

in a strong signal, sync the picture and turn the picture control to the maximum clockwise position. Turn the brightness control counter-clockwise until the vertical retrace lines are just invisible. Momentarily remove the signal by switching off channel and then back. If the picture reappears immediately. the receiver is not overloading due to improper setting of R138. If the picture. requires an appreciable portion of a second to reappear, R138 should be readjusted.
Set the picture control at the maximum. clockwise position. Tum R138 fully clockwise. The top one-half inch of the picture may be bent slightly. This should be dirregarded. Turn R138 counter-clockwise until there is a very, very slight bend or change of bend in the top one-half inch of the picture. Then turn R138 clockwise just sufticiently to remove this bend or change of bend.

If the signal is very weak, the above method may not work as it may be impossible to get the picture to bend. In this case, turn R138 counter-clockwise until the snow in the picture becomes more pronounced, then clockwise until the best signal to noise ratio is obtained.

The AGC control adjustment should be made on a strong signal if possible. It the control is set too tar counter-clockwise on a weak signal, then the receiver may overload when a strong signal is received.

CHECK OF R-F OSCILLATOR ADJUSTMENTS.-Tune in all available stations to see if the receiver $\mathrm{r}-\mathrm{f}$ oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure. The adjustments for channels 2 through 5 and 7 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 4. Adjustment for channel 13 is on top of the chassis and channel 6 adjustment is in the kinescope well.


RADIO OPERATION.-Turn the receiver function switch to AM and FM positions and check the radio for proper operation. Tune in a station of known frequency. If the dial pointer does not point to the correct spot on the dial, slip the dial pointer on the dial cord until the proper indication is obtained.

RECORD CHANGER OPERATION.-Tum the receiver function switch to each phono position and check each record player for proper operation.

Replace the cabinet back and make sure that the screws are tight in order to prevent ratting at high volume.

WEAE SIGNAL AREA OPERATION.-Since the vast majority of receivers are sold in strong signal areas, the chassis are aligned to produce the cleanest pictures in those areas. However, if the receiver is to be operated in a weak signal area, better performance can be obtained by "peaking" the r-f unit.

To peak the r-f unit in these receivers, disconnect the 390 ohm resistor R14 which is on top of the r-f unit chassis. Adjust L66 to obtain the best possible picture on the weakest low channel station received.

If the peaked receiver is subsequently taken to a strong signal area, the resistor R14 should be connected in place and L66 adjusted for "flat" response on the low channels.

CHASSIS REMOVAL.-To remove the chassis from the cabinet for repair or installation of a new kinescope, remove the control knobe, the cabinet back, unplug the speaker cable.
the kinescope socket, the antenna cable, the pilot light cable, the yoke and focus coil cable. Remove the yoke Irame grounding strap and the interlock switch. Take out the six chassis bolts under the cabinet. Withdraw the chassis from the back of the cabinet.

KINESCOPE HANDLING PRECAUTION.-Do not install, remove, or handle the kinescope in any manner, unless shatterprool goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling.

To remove the kinescope from the cabinet, take out the four screws and one wing screw which hold the yoke frame to the cabinet. Remove the kinescope, the yoke frame with yoke and locus coil as an assembly.

INSTALLATION OF KINESCOPE.-Handle this tube by the metal rim at the edge of the screen. Do not cover the glass bell of the tube with fingermarks as it will produce leakage paths which may interfere with reception. If this portion of the tube has inadvertently been handled, wipe it clean with a soft cloth moistened with "dry" carbon tetrachloride.

Wipe the kinescope screen surface and front panel safety glass clean of all dust and fingermarks with a soft cloth moistened with "Windex" or similar cleaning agent.

Turn the tube so that the key on the base of the tube will be down and insert the neck of the kinescope through the deflection and focus coils. If the tube sticks, or fails to slip into place smoothly, investigate and remove the cause of the trouble. Do not force the tube.

Replace the kinescope and yoke frame assembly in the cabinet. Insert the four screws and wing screw and tighten.

Slip the kinescope as far forward as possible. Slide the kinescope cushion firmly up against the flare of the tube and tighten the adjustment locking screws. Slide the deflection yoke as far forward as possible and tighten. If this is not done, difficulty will be encountered in adjusting the ion trap magnet and focus coil because of shadows on the comer of the raster.
Slide the chassis into the cabinet, then insert and tighten the six chassis bolts.
Slip the ion trap magnet over the neck of the kinescope.
Connect the kinescope socket to the tube base and slip the high voltage lead clip between the rim of the kinescope and the mask.

Reconnect all other cables. Do not forget to replace the yoke frame grounding strap.

As may be seen by inspection, the radio dial lights and dial pointer are altached to the cabinet front panel. The dial cord is attached to the receiver chassis. The method of attachment may be seen in Figure 5.


Figure 5-Dial Cord and Pointer Assembly
Reach over the television chassis to the radio and slip the radio pilot lights on the cabinet pilot light brackets.

To hook up the dial pointer, turn the tuning shaft until the gang is fully meshed. Slip the dial pointer to the low frequency end of the dial and press the dial cord well into the coil spring.

Turn the set on and to radio position to see that the dial lighting is correct. It it is not, adjust the dial lights and shields. Tune in a station of known calibration and check the dial calibration.

Perform the entire television set-up procedure beginning with Ion Trap Magnet Adjustment.
CABINET ANTENNR.-A cabinet antenna is provided for use in strong signal areas in which no reflections are experienced. The leads from the antenna are brought out near the receiver antenna terminal board. To connect the cabinet antenna, attach the leade to the terminal board. If reception is satisfactory, no other antenna is necessary. However, if reception is unsatisfactory, it will be necessary to employ an outdoor antenna or an indoor antenna which can be oriented.

If any lead dressing is necessary, it should be done belore aligning the receiver. When making a complete alignment follow the table below in sequence. If only a portion of the circuit is to be aligned select the portion required and follow with the remaining steps in the section. Any adjustments made on the 455 kc . I-F's make it necessary to adjust the 10.7 mc . I-F's.
"AM" R-F-I-F ALIGNMENT
Test-Oscillator.-For all alignment operations, connect low side of the test-osc. to the receiver chassis, and keep the osc. output as low as possible to avoid a-v.c action. Output Meter.-Connect the meter across the speaker voice coil, and turn the receiver volume control to max.

Steps	Connect the High Side of   the Test Osc. to-	Tune Test Osc.   to-	Function Switch	Turn Radio   Dial to-	Adjust the following

+ Use alternate loading. Connect an 18,000 -ohm resistor across the primary 10 load the plate winding while the grid winding of the same transformer is being peaked. Then load the grid winding with the 18,000 -ohm resistor while the plate winding is being peaked.

RATIO DETECTOR ALIGNMENT
Connect probe of "VoltOhmyst" to negative side of C328 and low side to chassis. Connect output meter across speaker voice coil.

Steps:	Connect the High Side of the Test Osc. to-	Tune Test Osc. to-	Function Switch	Radio Dial Tuned to-	Adjust
6	Pin No. 1 of 6AU6 (V303) in series with .01 mid.	$\begin{gathered} 10.7 \mathrm{mc} . \\ 30 \% \mathrm{AM} \\ \text { Modulated } \end{gathered}$	FM	-	Top of T303 for maximum DC on "VoltOhmyst."
7	Pin No. 1 of 6AU6 (V303) in series with .01 mid.		FM	-	Bottom of T303 for minimum audio output on meter.
8	Repeat steps 6 and 7 as necessary making final adjustment with $r-1$ input level set to give approximately -3.0 volts d-c on "VoltOhmyst."				

"FM" R-F-I-F ALIGNMENT

Steps	Connect the High Side of the Teat Ose. to-	Tune Test Osc. to-	Function Switch	Radio Dial Tuned to-	Adjust
9	Terminal 3 of S301-2 rear through 270 ohms.	10.7 mc .	FM	88 mc .	'T301 and T302 for max. with r-1 input set to give -3 volts on "VoltOhmyst."
10	Terminal 3 of S301-2 rear through 270 ohms.	106 mc.	FM	106 mc .	Set C302 to max. capacity. Squeeze L307 and adjust C302 for maximum.
11	Terminal 3 of S301-2 rear through 270 ohms.	90 mc .	FM	Tune to signal	Squeeze L301 and rock gang for maximum output.
12	Repeat steps 10 and 11 as required.				

- Use a 680 -ohm resistor to load the plate winding while the grid winding of the same transformer is being peaked. Then the grid winding is loaded with 680 -ohm resistor while the plate winding is being peaked.


Figure 6-Chassis, Top View, Showing Adjustments


Figure 7-Dial and Drive Cord Assembly

## CRITICAL LEAD DRESS:

1. Ground lead on pin 2 of V302 and V303 should be dressed down flat on chassis.
2. Dual . 005 mid . capacitors and diode filter should be dressed to clear the bottom of the cabinet.
3. Dress C329 across V302 sockets with short and direct leads.
4. Dress V302 plate lead from pin 5 down to the chassis.
5. Dress AVC lead from R321 to switch down to chassis and against back of gang mounting plate.
6. Dress lead from pin 6 of V305 down to chassis and against back of gang mounting plate.
7. Dress AVC lead from lst I-F to switch against chassis and against gang mounting plate.
8. Dress lead from switch to pin 1 of V301 against plate supporting gang.
9. Dress all insulated F.M leads down to chassis.
10. Connect C309 with short lead to pin 6 of V301 keeping body of cap away from plate lead and switch terminals.
11. The coupling between L301 and L307 should be adjusted to give proper injection voltage to the mixer grid. This has been found to be correct when the distance belween adjacent end turns is $3 / 8^{\prime \prime}$ to $7 / 16^{\prime \prime}$ measured at top of the form.
12. Dress cabled leads away from antenna transmission lines.
13. Dress all uninsulated bus wire so as to avoid short circuits.


Figure 8--Chassis Top View


Figure 9 - Chassis Bottom View

## VOLTAGE CHART

The following measurements represent two sets of conditions. In the first condition a 2200 microvolt test pattern signal was fed into the receiver, the picture was synced and the AGC threshold control was properly adjusted. The second condition was obtained by removing the antenna leads and short-circuiting the receiver antenna terminals. Voltages shown are as read with "Jr. VoltOhmyst" between the indicated terminal and chassis ground and with the receiver operating on 117 volis, 60 cycles a-c. Symbol < means less than.

Tube No.	Tube Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		$\begin{aligned} & \text { I } \\ & \text { Plate } \\ & \text { (ma.) } \end{aligned}$	$\underset{\substack{\text { Screon } \\ \text { (ma.) }}}{\text { I }}$	Notes on Meamurements
				Pin   No.	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	Pin No.	Volts	Pin No.	Volts			
V1	6ÅG5	$\begin{gathered} \text { R-F } \\ \text { Amplifier } \end{gathered}$	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	130	6	132	2\&7	0	1	-2.2	5	2	
			No Signal	5	67	6	111	$2 \& 7$	0	1	0.0	14.0	5.0	
V2	6AG5	Converter	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	$\begin{gathered} \quad 130 \\ \text { to } 140 \end{gathered}$	6	$\begin{array}{r} \quad 130 \\ \text { to } 140 \end{array}$	$2 \& 7$	0	1	$\begin{gathered} *-3.0 \\ 10-7.0 \end{gathered}$	$\begin{aligned} & 7.1 \\ & \text { to } 7.7 \end{aligned}$	$\begin{aligned} & \hline 2.3 \\ & \text { to } 2.7 \end{aligned}$	-Depending upon channel
			No Signal	5	$\begin{gathered} \quad 107 \\ \text { to } 109 \end{gathered}$	6	$\begin{array}{r} \quad 107 \\ \text { to } 109 \end{array}$	$2 \& 7$	0	1	$\begin{array}{r} \hline-2.0 \\ \text { to }-6.0 \end{array}$	$\begin{array}{r} \text { " } 5.3 \\ \text { to } 5.9 \end{array}$	$\begin{gathered} .8 \\ \text { to } \\ 1.0 \end{gathered}$	
V3	6 J 6	$\begin{gathered} \text { R-F } \\ \text { Oscillator } \end{gathered}$	$\underset{\text { Signal }}{2200 \mathrm{Mu} . \mathrm{V} .}$	$1 \& 2$	$\begin{array}{r} 788 \\ \text { to } 95 \end{array}$	-	-	7	. 19	5 \& 6	$\begin{gathered} \bullet-5.1 \\ \text { to }-7.3 \end{gathered}$	$\begin{array}{r} \quad 1.9 \\ \text { to } 2.7 \end{array}$	-	-Depending upon channel
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	1 \& 2	$\begin{gathered} 68 \\ \text { to } 81 \end{gathered}$	-	-	7	. 16	5 \& 6	$\begin{gathered} \circ-4.5 \\ 10-6.6 \end{gathered}$	$\begin{array}{r} 1.8 \\ \text { to } 2.1 \end{array}$	-	
V101	6BA6	1st Pix. I-F Amplitier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	128	6	128	7	. ${ }^{\text {• }}$	1	-11.0	1.9	. 8	
			No Signal	5	95	6	95	7	1.73	1	+. 2	8.1	3.4	
V102	6AG5	$\begin{gathered} \text { 2nd Pix. I-F } \\ \text { Amplifier } \end{gathered}$	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	119	6	119	2\&7	. 78	1	0	8.8	2.4	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	100	6	100	2\& 7	. 62	1	0	7.4	1.6	
V103	6BA6	3d Pix. I-F Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	81	6	119	7	. 52	1	-2.2	11.1	. 3	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	55	6	96	2 \& 7	. 62	1	+. 2	13.2	. 3	
V104	6AG5	4th Pix. I-F Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	159	6	135	2\&7	1.5	1	0	7.2	2.2	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	165	6	118	2 \& 7	1.35	1	0	6.8	2.4	
$\underset{A}{\text { V105 }}$	6AL5	Picture 2d Det.	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	7	-116	-	-	1	-127	-	-	. 3	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	7	-131	-	-	1	-135	-	-	<0.1	-	
$\mathrm{V}_{\mathrm{B}} 05$	6AL5	$\underset{\substack{\text { Sync } \\ \text { Limiter }}}{ }$	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	2	$-117$	-	-	5	-58	-	-	-	-	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	2	-83	-	-	5	-60	-	-	-	-	
V106	12AU7	lst Video Amplifier	$\underset{\text { Signal }}{2200 \mathrm{Mu} .}$	1	-18.7	-	-	3	-125	2	-129	2.6	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	1	-28.0	-	-	3	-133	2	-135	6.6	-	
V106	12AU7	2d Video Amplifier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	6	*120	-	-	8	--11.0	7	--13.2	9.2	-	$\stackrel{\text { At minimum }}{\text { contrast }}$
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	6	-127	-	-	8	- -17.0	7	- -21.0	8.5	-	
$\underset{A}{\mathrm{~V} 107}$	$\underset{\text { GT }}{\text { 6SN }}$	$\begin{gathered} \text { AGCC } \\ \text { Amplifier } \end{gathered}$	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	-11.0	-	-	6	-58	4	-61	. 12	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \\ \hline \end{gathered}$	5	+0.2	-	-	6	-60	4	-66	0	-	
$\begin{array}{\|c\|} \hline \mathrm{V}_{\mathbf{B}} \\ \hline \end{array}$	$\underset{\text { GT }}{\text { 6SN7 }}$	Vertical Oscillator	$\underset{\text { Signal }}{2200 \mathrm{Mu} .}$	2	. 125	-	-	3	-127	1	-170	. 31	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	2	120	-	-	3	-135	1	-175	. 30	-	
V108	6SN7	AGC Rectitier	$\underset{\text { Signal }}{2200 \mathrm{Mu} .}$	5	87	-	-	6	-2	4	-19.5	. 3	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	75	-	-	6	-22	4	-28.0	<.1	-	
V108	$\begin{gathered} \text { 6SN7 } \\ \text { GT } \end{gathered}$	1st Sync Separator	$\underset{\text { Signal }}{2200 \mathrm{Mu} .}$	2	87	-	-	3	-3	1	-18.5	<.1	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	2	73	-	-	3	-22	1	-28.0	$<.1$	-	
V109	$\begin{gathered} \text { 6SN7 } \\ \text { GT } \end{gathered}$	$\begin{gathered} \text { Sync } \\ \text { Amplitier } \end{gathered}$	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	2	153	-	-	3	0	1	-5.7	5.8	-	
			No Signal	2	160	-	-	3	0	1	-5.6	5.4	-	


Tube No．	Tube Type	Function	Operating Condition	E．Plate		E．Screen		E．Cathode		E．Grid		$\begin{gathered} \text { I } \\ \text { Plate } \\ \text { (ma.) } \end{gathered}$	$\underset{\substack{\text { Screen } \\ \text { (ma.) }}}{\text { Sin }}$	Notes on Moanure－ ments
				$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volte	Pin No.	Volt			
V109	$\begin{gathered} \text { 6SN7 } \\ \hline \end{gathered}$	Sync Separator	$\begin{array}{\|c} 2200 \mathrm{Mu} . \\ \text { Signal } \end{array}$	5	241	－	－	6	－58	4	－117	． 22	－	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	240	－	－	6	－57	4	－65	． 71	－	
V110	6K6-	Vertical Output	$\underset{\text { Signal }}{2200 \mathrm{Mu} .}$	3	240	4	－240	8	－78	5	－107	10	2.0	－Screen connected to plate
	．		$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	3	235	4	－235	8	－83	5	－111	10	1.9	
V111	$\begin{gathered} \text { 6SN7 } \\ \text { GT } \end{gathered}$	Horizontal Osc．Control	$\begin{array}{\|c} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{array}$	2	＊48	－	－	3	－136	1	－127	11	－	－Variationof hold gives21.9 to +56volts on plate
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	2	＊33	－	－	3	－140	1	－140	． 10	－	
V111	$\underset{\text { GT }}{\text { 6SN7 }}$	Horizontal Oscillator	$\underset{\text { Signal }}{2200 \mathrm{Mu} .}$	5	86	－	－	6	－127	4	－193	2.0	－	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	80	－	－	6	－135	4	－205	1.7	－	
V112	6BG6G	Horizontal Output	$\begin{array}{\|c} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{array}$	Cap	Do Not Meas．	8	152	3	－117	5	－145	67.9	8.1	
			$\begin{gathered} \text { No } \\ \text { Signal } \\ \hline \end{gathered}$	Cap	Do Not Meas．	8	150	3	－126	5	－157	66.0	8.0	
V113	$\begin{gathered} \text { 1B3GT } \\ 18016 \\ \hline \end{gathered}$	H．V． Rectifier	$\begin{gathered} \text { Brightness } \\ \text { Min. } \\ \hline \end{gathered}$	Cap	Do Not Meas．	－	－	2 \＆ 7	12，300	－	－	0	－	
			Brightness Average	Cap	Do Not Meas．	－	－	2 \＆ 7	11，700	－	－	． 1	－	
Vl14	6W4GT	Damper	$\begin{array}{\|c} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{array}$	5	Do Not Meas．	－	－	3	498	－	－	86	－	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	Do Not Meas．	－	－	3	496	－	－	70	－	
V115	5U4G	Rectitier	$\begin{gathered} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	4\＆6	385			2\＆8	267	－	－	225	－	－A－C meas． ured from plate to trans．center tap
			No Signal	4 \＆6	385			2 \＆ 8	260	－	－	226	－	
V116	6AU6	1st Sound I．F Amplifier	$\underset{\substack{2200 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \\ \hline}}{ }$	5	124	6	124	7	． 87	1	－0．1	2.0	3.0	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	107	6	107	7	． 75	1	－0．15	6.4	2.3	
V117	6AU6	2nd Sound I－F Amplifier	$\begin{array}{\|c} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{array}$	5	130	6	67	7	0	1	－9	4.3	1.5	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	120	6	60	7	0	1	－0．37	3.7	1.6	
V118	6AL5	Sound Discrim．	$\underset{\text { Signal }}{2200 \mathrm{Mu} .}$	$\begin{aligned} & 2 \\ & 7 \\ & \hline \end{aligned}$	$\begin{array}{r} -8.4 \\ -3.7 \\ \hline \end{array}$	－	－	5 1	5.8 0	－	－	－	－	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	$\begin{aligned} & 2 \\ & 7 \end{aligned}$	$\begin{aligned} & -0.4 \\ & -0.4 \end{aligned}$	－	－	5 1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	－	－	－	－	
V119	12AX7	1st Åudio Âmplifier	$\begin{array}{\|c} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{array}$	1	100	－	－	3	0	2	－． 9	－	－	
			$\begin{gathered} \text { No } \\ \text { Signal } \\ \hline \end{gathered}$	1	100	－	－	3	0	2	－． 9	－	－	
		Phase Inverter	$\underset{\text { Signal }}{2200 \mathrm{Mu} .}$	6	130	－	－	8	0	7	－． 9	－	－	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	6	130	－	－	8	0	7	－． 9	－	－	
$\begin{array}{\|l\|} \hline \text { V120 } \\ \text { V123 } \\ \hline \end{array}$	$\begin{gathered} \text { 6V6. } \\ \text { GT } \end{gathered}$	Audio Output	$\begin{array}{\|c} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{array}$	3	230	4	85	8	－113	5	－127	22	5	＊Per tube
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	3	230	4	85	8	$-120$	5	－135	22	5	＊Per tube
V121	16GP4	Kinescope	$\begin{array}{\|c} 2200 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{array}$	Cap	12，300	10	250	11	77	2	35	． 06	－	－Average Brightness
			$\begin{gathered} \mathrm{No} \\ \text { Signal } \\ \hline \end{gathered}$	Cap	11，700	10	250	11	73	2	48	． 18	－	Âverage Brightness
V301	6 J 6	Mixer and Oscillator	$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	$\begin{gathered} 110 \\ 95 \end{gathered}$	二	二	7	0	6 5	$\begin{aligned} & -2.0 \\ & -5.0 \\ & \hline \end{aligned}$	二	二	Function switch in position
V302	6BA6	Radio I－F Amplitier	$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	210	6	105	7	． 8	1	－0．2	－	－	
V303	6ÅV6	Radio F．M Driver	$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	205	6	135	7	1.5	1	0	－	－	
V304	6ALS	Radio Ratio Det，	$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	$\begin{aligned} & 2 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & -0.2 \\ & -0.2 \end{aligned}$	－	－	5 1	$\begin{aligned} & -0.2 \\ & -0.1 \end{aligned}$	二	二	二	二	
V305	6BF6	A－M Det．and Phono Preamp	$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	7	－0．2	－	－	2	0	－	－	－	－	



Figure 10-Radio Chassis Wiring Diagram (RK135D)

## TELEVISION CRITICAL LEAD DRESS

1. The ground bus from pin 2 and the center shield of V117 socket should not be shortened or rerouted.
2. Do not change the dress of the filament leads or the bypass capacitors in the picture or sound i-f circuits. The filament leads between V117, V118 and V119 whould be down against the chassis and away from grid or plate leads.
3. If it is necessary to replace any of the 1500 mmi capacitors in the picture i-f circuit, the lead length must be kept as short as possible.
4. Picture i -1 coupling capacitors $\mathrm{Cl} 06, \mathrm{Cl11}, \mathrm{Cl} 15$ and $\mathrm{Cl21}$ should be up and away from the chassis and should be clear of the pix i-f transtormer adjustments by at least $1 / 4$ inch. If the dress of any of these capacitors is changed. the i-f aligament should be rechecked.
5. Dress black lead from terminal $C$ of $T 106$ down next to chassis.
6. Leads to L102 and L103 must be as short as possible.
7. Dress peaking coils L105, L106 and L107 up and away from the chassis.
8. Dress Cl83 across tube pins 5 and 6 with leads not exceeding $\%$ inch.
9. Dress body of R215 as close to tube pin as possible.
10. Dress Cl 29 and Cl 30 up and away from the chassis.
11. Dress the yellow lead from the picture control away from the chassis and away from the volume-control leads. Dress the yellow lead from pin 8 of V106 away from the chassis.
12. Dress the green lead from pin 2 of V106 away from the chassis.
13. Dress R168, R169, R170, R176 and R178 up and away from the chassis.
14. The leads to the volume control should be dressed down against the chassis and away from V117 and V118.
15. Contact between the $\mathrm{r}-\frac{1}{}$ oncillator frequency adjustment screws and the oscillator coils or channel switch eyelets must be avoided.
16. Dress three a-c leads 10 S 101 under clamp and away from R211.
17. Dress black lead from power transformer and red lead from S102 to teminal board, on top of four potentiometere.
18. Dress all leads from V115 to V122 on power transformer side of terminal board.
19. Dress all leads away from R230.
20. Dress brown and yellow leads of phono motor cable under R165 and under C201.
21. All solder joints in the high voltage section should be free of sharp edges.
22. The lead side of the V113 plate cap should be turned away from the fixed high voltage shield.
23. All leads under the horizontal plate in the high vollage section should be kept reasonably short and dressed away from the V113 corona sing.









Model S1000 Walnut or Mahogany

Chassis Nos. KCS31-1 and RC617B
Mfr. No. 274
Service Data
_ 1950 No. $T 2$ _
RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

## GENERAL DESCRIPTION

Model S1000 is a deluxe 16 inch television and AM.FM radio receiver. Two record changers are provided to play 78. $331 / 3$ and 45 RPM records. The "MAGIC MONITOR," an automatic scratch suppressor, is provided to permit improved reproduction from old or worn records. The instrument employs 34 tubes plus 4 rectifiers and a 16AP4 kinescope.

Features of the television unit are full twelve channel coverage; FM sound system; improved picture brilliance: picture A-G-C; A-F.C horizontal hold; stabilized vertical hold; two stages of video amplification: noise saturation circuits; im proved sync separator and clipper; four me band width for picture channel and reduced hazard high voltage supply.

## ELECTRICAL AND MECHANICAL SPECIFICATIONS

TURE SIZE........ 146 square inches on a 16 inch kinescope	
All 12 television channels, 54 mc .1088 mc .174 mc . to 216 mc . Fine Tuning Range... $\pm 250 \mathrm{kc}$ on chan. $2, \pm 650 \mathrm{kc}$ on chan. 13	
Picture Carrier Frequency.......................................... 25.75 mc .	
Sound Carrier Frequency............................................ 21.25 mc	
VIDEO RESPONSE..................................................... To	
SWEEP DEFLECTION................................................... Magnetic	
FOCUS....................................................................... Magnetic	
RADIO TUNING RANGE	
Broadcast................................................. ............... 540-1.600 kc	
Short Wave. $\qquad$ $9.2-16 \mathrm{mc}$.   Frequency Modulation $\qquad$ $88-108 \mathrm{mc}$.	
Intermediate Frequency-AM ............................................... 455 kc Intermediate Frequency-FM ............................................ 10.7 mc.	
POWER SUPPLY RATING........... 115 volts, 60 cycles, 310 watts	
AUDIO POWER OUTPUT RATING...................... 11 watts max.	
CHASSIS DESIGNATIONS	
Television Chassis ..................................................... KCS31.1	
Radio Chassis ........................................................................RC617B78/331/3 RPM Record Changer ........................................... 960285	
45 RPM Record Changer ............................................... RPI68C	
Refer to Service Data 960285 or RP168 for information on the record changers.	
LOUDSPEARER 92569.6 $\qquad$ 12 Inch PM Dynamic   Voice Coil Impedance. $\qquad$ 3.2 ohms at 400 cycles	
DIMENSIONS (inches) Width Height Depth   Cabinet (outside) .................................... $391 / 2$ $431 / 2$ $243 / 4$	
WEIGHT	
Chassis with Tubes in Cabinet.......................................... 228 lbs.	
Shipping Weight............................................................. 305 lbs.	

RECEIVER ANTENNA INPUT IMPEDANCE.... 300 ohms balanced If desired, television chassis may be fed from 72 ohm co-ax.
RCA TUBE COMPLEMENT

(Radio Tuner Chassis)

	RCA 6B	R-F Amplifier
(2)	RCA 6BA	Mixer
(3)	RCA 6BE6.	Oscillator
(4)	RCA 6BA6.	I-F Amplifier
(5)	RCA 6AU6.	F-M Driver
(6)	RCA 6AL5.	Ratio Detector
(7)	RCA 6AV6.	AM Detector, AVC., AF Amplitier
(8)	RCA 6C4.	Phase Invertor
(9)	RCA, 6V6GT	Audio Output (2 tubes)
(10)	RCA 6BA6.	MM Band Pass Amplifier
(11)	RCA 6BF6.	MM Amplifier and Rectifier
12	RCA 6BA6.	MM Reactance Tube

## TELEVISION OPERATION

The following adjustments are necessary when tuning the receiver on for the first time.

1. Turn the radio FUNCTION switch to Tel.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid-position.
3. Set the STATION SELECTOR to the desired channel.
4. Adjust the FINE TUNING control for best sound fidelity and SOUND VOLUME for suitable volume.
5. Turn the PICTURE control to mid-position.
6. Turn the BRIGHTNESS control fully counterclockwise then clockwise until a light pattern appears on the screen.
7. Adjust the VERTICAL hold control until the pattern stops vertical movement.
8. When the set is turned on again after an idle period, it should not be necessary to repeat the adjustments if the posi. tions of the controls have not been changed. If any adjust. ment is necessary, step number 4 is generally sufficient.
9. If the position of the controls has been changed, it may be necessary to repeat steps numbers 2 through 10.

## RADIO OPERATION

1. Turn the radio FUNCTION switch to the desired band.
2. Tune in the desired station with the TUNING control.

## PUSH BUTTON OPERATION

1. Turn the radio FUNCTION switch to PB.
2. Push the appropriate button to receive the desired station.
3. Adjust the HORIZONTAL hold control until a pic. ture is obtained and centered.
4. Turn the BRIGHTNESS control counterclockwite until the retrace lines just disappear.
5. Adjust the PICTURE control for suitable picture contrast.
6. After the receiver has been on for some time it may be necessary to read. just FINE TUNING control for improved sound fidelity.
7. In switching from one station to another, it may be necessary to repeat steps numbers 4 and 10 .


Figure 1-Receiver Opernting Controls

PHONOGRAPH OPERATION

1. Turn the radio FUNC. TION switch to Ph for opera. tion of the 78/331/4 RPM changer or to XPh. Ior operation of the 45 RPM changer.
2. Place a record on the appropriate changer and slip the changer power switch to "ON".
"MAGIC MONITOR"
The MAGIC MONITOR operates only when the function switch is in the phono position.
3. Push the gold push button to turn MM on.
4. Push the gold push button a second time to turn MM off.

## high voltace warning

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED. IN. VOLVES A SHOCR HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRE CAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

## KINESCOPE HANDLING PRECAUTIONS

do NOT OPEN THE RINESCOPE SHIPPING CARTON, INSTALL, REMOVE OR HANDLE THE RINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE handling kinescopes. keep the KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

[^7]
# MODEL S1000 IS VERY SIMILAR TO MODEL 9TW390. THE TELEVISION CHASSIS IS IDENTICAL. MODEL S1000 USES 960285 RECORD CHANGER ( $78 / 331 / 3$ r.p.m.) INSTEAD OF RP177B ( 78 r.p.m.). THE RADIO CHASSIS DIFFERS ONLY IN THE VALUE OF A FEW COMPONENTS. 

REFER TO MODEL 9TW390 IN VOL. V FOR ADDITIONAL INFORMATION.

## INSTALLATION INSTRUCTIONS

Remove the television front panel by loosening the two wingnuts inside the cabinet and by turning the two locking plates as shown in Figure 2. Hinge the panel at the bottom and tilt it out at the top.


Figure 2-Television Panel, Fron View
Remove the two sell-lapping screw: from the kinescopecushion slide as shown in Figure 3.

Loosen the two kinescope cushion adjustment wing screws and slide the cushion toward the rear of the chassis. Loosen the deflection yoke adjustment. slide the yoke toward the rear of the chassis and tighten.
From the front of the cabinet. look through the deflection yoke and check the alignment of the focus coil with the yoke. If the focus coil is not in line. loosen the two focus coll mounting screws and move the coil until aligmment is obtained. Tighten the mounting screws with the coil in this position.
Loosen the two lower kinescope face centering supports, and set them at approximately mid-position. See Figure 2 for location of the supportm and their adjustment screws. Loosen the two upper supports (from inside the cabinet). slip them up as far as possible and tighten.
Check the centering supports. There should be a small wire clip on the inner surlace of each. The clip in the lower left corner should be connected to the high voltage lead.

EINESCOPE HANDLING PRECAUTION.-Do not open the kinescope shipping carton, install, remove, or handle the kinescope in any manner, unless shatter-proof goggles and heavy gloves are worn. Permons not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling. The shipping carton should be kept for use in case of future moves.


Figure 3-Yoke and Focus Coil Adjustmems
Handle this tube by the metal rim at the odge of the screen. Do not cover the glass bell of the tube with lingermarks as it will produce leakage paths which may interfere with reception. If this portion of the tube has inadvertently been handled. Wipe it clean with a sott cloth moistened with "dry" carbon tetrachloride.
EINESCOPE INSTALLATION.-Turn the kinescope so that the key on the base of the tube will be down and insert the neck of the kinescope through the deflection and focus coils as shown in Figure 4. If the tube sticks, or fails to slip into place smoothly. investigale and remove the cause of the trouble. Do not force the tube.
Slip the ion trap magnet ansembly over the neck of the kinescope with the large magnet towards the base of the tube.


Figure 4-Kinescope Insertion

Connect the kinescope socket to the tube base.
Adjust the four centering supports until the face of the kinescope is in the center of the cabinet opening. Tighten the four supports securely.

Wipe the kinescope screen surface and front panel safety glass clean of all dust and finger marks with a solt cloth moistened with the Drackett Co.'s "Windex" or similar cleaning agent.

Install the cabinet front panel by reversal of the procedure indicated in Figure 2. Fasten the two bars in back of the panel and tighten the wingnuts.

Slip the kinescope as far forward as possible. Slide the kinescope cushion firmly up against the flare of the tube and tighten the adjustment wing screws. Slide the deflection yoke as far forward as possible. If this is not done, difficulty will be encountered in adjusting the ion trap magnet and focus coil because of shadows on the corner of the raster.

The antenna and power connections should now be made. Install the front panel control knobs.

Make sure that all tubes are firmly seated in their sockets and all cable plugs are in the proper sockets as shown in Figure 5.


Figure 5-Interconnecting Cable Diagram
WARNING.-The high voltage supply in this receiver delivers 12,000 volts! II it necessary to remove the kinescope after the receiver has been operating, short the kinescope cone to the chassis before attempting removal of or adjustments to the kinescope. A.C. interlocks are provided at the back of the sel so that when the back is removed-so is the power.

Turn the power switch to the "on" pasition, the brightness control fully clockwise, and picture control counterclockwise.

ION TRAP MAGNET RDJUSTMENT.-Looking at the kinescope gun structure, it will be observed that the second cylinder from the base inside the glass neck is provided with two small metal flags. The ion trap rear magnet poles should be approximately over these flags. Starting from this position adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brighiness control setting until the raster is slightly above average brilliance. Adjust the focus control (R201 on the chassis rear apron) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches on this adjustment should be made with the brightness control at the maximum position with which good line tocus can be maintained.


Figure 6--Rear Chassis Adjustments

DEFLECTION YORE ADIUSTMENT.-If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE RDJUSTMENTS.-It will now be necessary to obtain a test pattern picture in order to make further adjustments. See steps 2 through 10 of the television receiver operating instructions on page 2.

If the Horizontal Oscillator is operating properly. it should be possible to sync the picture at this point.

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT.Turn the horizontal hold control to the extreme counterclockwise position. The picture should remain in horizontal sync. Momen. tarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be grad. ually reduced and when only 3 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull in should occur when the control is approximately 90 degrees from the extreme counterclockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should be out of sync and should show 1 vertical or diagonal black bar in the raster.
If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Centering Adjustment."

ALIGNMENT OF HOLIZONTAL OSCILLATOR.-If in the above check the receiver failed to hold sync with the hold control at the extreme counterclockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull in point, it will be necessary to make the followIng adjustments.
Horizontal Frequency Adiustment.-Turn the horizontal hold control to the extreme clockwise position. Tune in a televiaion station and adjust the T109 horizontal frequency adjustment (under the chassis) until the picture is just out of sync and the horizontal blanking appeass as a vertical or diagonal black bar in the raster.

Horizontal Lock in Range Adjustment.-Set the horizontal hold control to the full counterclockwise position. Momentarily remove the signal by switching off channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 3 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer C153A slightly clockwise. If less than 3 bars are present, adjust C153A slightly counterclockwise. Turn the picture control counterclock. wise, momentarily remove the signal and recheck the number
of bars present at the pull in point. Repeat this procedure until 3 bars are present.
Repeat the adjustments under "Horizontal Frequency Adjustment" and "Horisontal Locking Range Adjustment" until the conditions specified under each are fultilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.
If it is impossible to sync the picture at this point and the AGC system is operating properly it will be necessary 10 adjust the Horizontal Oscillator by the method outlined in the alignment procedure For field purposes paragraph "A" under Oscillator Wavelorm Adjustment may be omitted.

CENTERING RDJUSTMENTS.-Centering is obtained by adjustment of the centering controls and by mechanically orienting the focus coil with three adjustment screws shown in Figure 3. The locus coil should be concentric around the neck of the kinescope to prevent curvature of the raster.

Adjust the focus coil until it is at right angles to the neck of the kinescope. Center the picture with the electrical centering controls. If a shadow appears on a comer of the picture. adjust the locus coil centering screws to eliminate the shadow and re-center the picture with the electrical centering controls.

FOCUS COIL RDJUSTMENTS.-li, after making the centering adjustments in the above paragraph. a corner of the picture is shadowed, it will be necessary to loosen the focus coil mounting screws (shown in Figure 3) and change the position of the coil to eliminate the shadow. Re-center the picture by adjustment of the electrical centering controls and the focus coil centering cdjustments.

Recheck the position of the ion trap magnet to insure that maximum brilliance is obtained.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS.一Ad. just the height control (R155 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R162 on rear apron) until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust vertical centering to align the picture with the mask.

WIDTH. DRIVE AND HORIZONTAL LINEARITY RDJUST. MENTS.-Adjust the horizontal drive control C153B to give a picture of maximum width within the limits of good linearity. Adjust the horizontal linearity control $L 113$ to provide bett linearity.

A width control coil and a width selector switch are provided. With the switch in position 1 (fully counterclockwise), adjust the width coil until the picture fills the mask. On low line voltages it may not be possible to get sufficient width by adjustment of the width coil. In this case turn the width selector switch clockwise to position 2. In this position the width coil is disconnected, and adjustment of the width coil will have no effect. For still greater width, turn the width selector switch fully clockwise to position 3. In this position, the 6BG6G screen voltage is increased as well as disconnecting the width control coil.

Adjustments of the horizontal drive control affect horizontal oscillator hold and locking range. If the drive control was adjusted. recheck the oscillator alignment.

FOCUS.-Adjust the focus control (R235) on chansis rear apron) for maximum definition in the lest pattern vertical "wedge" and best focus in the white areas of the pattern.

CHECE to see that the cushion and yoke thumbscrews and the focul coil mounting screws are tight.

VIDEO BIAS CONTROL-Normally the video bias control (R206) should be in the fully clockwise position. To check to see if this is the correct position, turn the picture control clockwise and adjust the brightness control until the retrace lines just disappear. It the whites are compressed as indicated by a "washed out" appearance in light areas. turn the video bias control counterclockwise until the picture appears normal.

CHECE OF R-F OSCILLATOR ADJUSTMENTS.-Tune in all available stations to see if the recaiver r -f oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outined
in the alignment procedure
The adjustments for channels 2 through 5 and 7 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 7. Adjustment for channel 13 is on top of the chassis and channel 6 adjustment is in the kinescope well.

In the event that it becomes necessary to adjust the channel 6 oscillator, the core may be reached through a hole through the cabinet partition in back of the 960285 record changer.


> Figure i-R.F Oscillator Adjustments

RADIO OPERATION-Turn the receiver function switch to AM and FM positions and check the radio lor proper operation. In switching from radio to television or from television to radio. approximately 30 seconds warm-up time is required.

PUSH-BUTTON ADJUSTMENT-To adjust the radio push buttons, set the function switch to the broadcast band position, tune the receiver to the desired rtation and identify the program. Turn the function switch to the push button position and push the appropriate push bution. Adjust the corrosponding oscillator core until the desired station is heard. Ad. just the corresponding antenna trimmer for maximum output. Proceed in the same manner to adjust the remaining push buttons. Figure 21 shows the location of the push-button adjustments and the range which the adjustments will cover.
Select the proper station call letter marker, moisten the back of the marker and insert in the appropriate recess in the push button bezel. Place marker celluloid cover in the recess over the marker.

RECORD CHANGER OPERATION-Turn the receiver function switch to each phono position and check each record player lor proper operation.

Replace the cabinet back and make sure that the screws holding it are up tight, otherwise it may rattle or buzz when the receiver is operated at high volume.

WEAR SIGNAL ARER OPERATION-Since the vast majority of receivers are sold in strong signal areas, the chassis are aligned to produce the cleanest pictures in those areas. However, if the receiver is to be operated in a weak signal area, better performance can be obtained by "peaking" the r-t unit.
To peak the r- $\{$ unit in these receivers, disconnect the 390 ohm resistor which is on top of the r-t unit chassis. Adjust L66 to obtain the best possible picture on the weakest low channel station received. By this action, the r-f gain, is increased $50 \%$ at the expense of $r-i$ bandwidth and an improvement in the weak signal picture results.
If the peaked receiver is subsequently taken to a strong signal area, the resistor R14 should be connected in place and L66 adjusted for "flat" remponse on the low channele.

CABINET ANTENNA-A cabinet antenna is provided for use in strong signal areas in which no rellections are experienced. The leads from the antenna are brought out near the receiver antenna terminal board. To connect the cabinet antenna, attach the leads to the terminal board. If reception is satisfactory, no other antenna is necessary. However, if reception is unsatisfactory, it will be necessary to employ an outdoor antenna or an indoor antenna which can be oriented.
television voltage chart
：$=\square=\square=$


	砍 ${ }^{5}$	$m$	9	1	－9	1	1	$\overline{3}$	$\because$	$\cdots$	9	$\cdots$	＊	$\stackrel{\sim}{\sim}$	$\pm$	1	1	1	1	－	$\pm$	N	2	1	1	1	1	1	1	1	1
	感首	$\ldots$	$\stackrel{\square}{ \pm}$	1	$99$		－ $\begin{array}{r}\text {－} \\ 2\end{array}$	$\stackrel{\sim}{6}$	¢	$\stackrel{0}{0}$	\＃	9	$\stackrel{\circ}{\circ}$	2	\＃	©̋	$\stackrel{\square}{\circ}$	$\stackrel{\rightharpoonup}{0}$	$\overline{6}$	${ }_{\circ}^{\text {¢ }}$	$\stackrel{N}{\mathrm{~m}}$	을	$\because$	8	$\overrightarrow{0}$	$\stackrel{\otimes}{\circ}$	\%	N	긍	$\stackrel{m}{0}$	$\stackrel{9}{6}$
$\begin{aligned} & \text { ⿹⿺夂丶 } \\ & 山 \\ & 4 \end{aligned}$	$\frac{8}{8}$	$\underset{\mathrm{i}}{\mathrm{~F}}$	$\hat{\phi}$	？	$\begin{array}{r} 9 \\ 9 \\ 9 \\ 8 \end{array}$	9	$\begin{aligned} & \infty \\ & \div 8 \\ & \hdashline 8 \\ & 2 \end{aligned}$	7	$\stackrel{n}{1}$	－	－	$\underset{j}{i}$	$\underset{i}{\sim}$	－	－	1	1	｜	1	$\ni$	$\frac{8}{7}$	\％	5	\％	8	$\frac{5}{7}$	$\stackrel{E}{7}$	8	9	4	8
	曼安	－	－	－	$\cdots$	$\stackrel{\square}{6}$	$\begin{aligned} & \bullet \\ & 0 \\ & 0 \end{aligned}$	－	－	－	－	－	－	－	－	1	1	1	1	－	－	$\sim$	$\cdots$	＊	－	－	－	＊	－	－	－
$\begin{aligned} & \frac{8}{8} \\ & \frac{8}{4} \\ & 0 \\ & 4 \end{aligned}$	$\stackrel{\text { 厉 }}{8}$	－	－	－	－	$\stackrel{\square}{\square}$	$\pm$	$\stackrel{\rightharpoonup}{\text { b }}$	$\stackrel{\rightharpoonup}{0}$	¢	$\stackrel{\square}{6}$	$\overrightarrow{\mathbf{B}}$	$\stackrel{\square}{\circ}$	2		$\cong$	$\underset{1}{\boldsymbol{a}}$	7	8	$\stackrel{\sim}{*}$	$\frac{\pi}{1}$	F	¢	8	8	$\underset{\pi}{0}$	$\frac{\sim}{7}$	5	\％	\％	8
	易家	$\underset{\sim}{n}$	$\underset{\sim}{n}$	$\underset{\sim}{\infty}$	$\underset{\sim}{\mathbf{n}}$	$\cdots$	$\cdots$	$\stackrel{\sim}{4}$	N	$\underset{\sim}{\infty}$	$\begin{aligned} & \text { © } \\ & \text { H } \end{aligned}$	$\begin{gathered} \text { E } \\ \text { © } \end{gathered}$	$\underset{\infty}{\infty}$	$\stackrel{\sim}{4}$	$\underset{\sim}{\infty}$	－	－	$\sim$	$\cdots$	－	＊	©	＊	$\bullet$	$\cdots$	$m$	$m$	$\bullet$	$\cdots$	$\cdots$	m
$5$	$\frac{8}{8}$	\＃	$\Xi$	5	8	I	1	\％	8	N	8	5	8	－	$\stackrel{m}{=}$	I	1	1	1	8	$\sim$	9	둑	1	1	i	1	1	1	1	1
	哦安	－	$\star$	＊	$\omega$	1	1	$\omega$	－	$\bullet$	－	$\bullet$	$\bullet$	$\bullet$	$\bullet$	1	1	1	1	$\cdots$	$\cdots$	＊	＊	1	1	1	1	1	1	I	1
$\frac{\frac{\pi}{2}}{4}$	$\frac{1}{7}$	9	$\pm$	5	8	88	$8$	\％	을	む	\％	암	＊	罵	8	$\underset{T}{\ddagger}$	$\underset{T}{9}$	$\bar{\pi}$	$\frac{8}{7}$	4	¢	＊	7	\％	$\uparrow$	8	8	5	－	5	$\stackrel{\sim}{-}$
		$\cdots$	$\cdots$	$\cdots$	$\sim$	$\pm$	®	$\cdots$	$\cdots$	$\cdots$	$\infty$	$\cdots$	$m$	$\cdots$	$\cdots$	$\sim$	$*$	$\cdots$	$\cdots$	$\cdots$	$*$	$\cdots$									
		$\begin{aligned} & 5 \\ & 3 \\ & \text { 3 } \\ & 8 \\ & 8_{0}^{3} \end{aligned}$	$8$		品葆						定高		2皆		$8$		융						$\circ \frac{70}{5}$								－宕
	复	步空空		\％						4   齐童   丞								皆										4818			
	数閏	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & 8 \\ & 8 \end{aligned}$		$\stackrel{\square}{\circ}$		敛		$$		$\begin{aligned} & \mathbf{8} \\ & \hline \end{aligned}$		$\begin{aligned} & 5 \\ & 5 \end{aligned}$		$3$		$\underset{y}{2}$		$5$		W		$\text { 氨 } 6$		$5$		$5$		56	
	30	5		5		5		5		$\frac{8}{5}$		$\frac{8}{5}$		\％		$\frac{8}{5}$		边		$\stackrel{8}{5}$		$\frac{8}{5}$		$\frac{8}{5}$		${ }_{8}^{8}$		$\stackrel{8}{5}$		8	




Figure 10-Chassis, Top View, Showing Adjustments

## CRITICRL LEAD DRESS

The lead from terminal 5. switch S304, front, to terminal on switch S307, must be dressed belween the main base and r-f shell.
Dress all other leads away from the lead between T301 and S303 tront.
Dress lead from pin 1 V305 to T302 down along chassis base.
Keep R327 dressed down along chassis base.
Keep the leads of C329 as short as possible.
The lead from pin 2 V304 must be dressed close to be dressed close to base. This lead provides degeneration for the i-f stage and neither its length or the point at which it is grounded to the chassis should be changed.
All the r-f and $i \cdot f$ wiring in the receiver is critical as to length and placement and should not be changed unless necessary.

## PUSH BUTTON ADJUSTMENT

Make a list of the desired stations, arranged in order from low to high frequencies.
Turn the range switch to the broadcast position and manually tune in the first station on the list.
Turn range switch to push-button position and press in the second from the letthand button.
Adjust the oscillator core rod to receive the first station.
Adjust the antenna trimmer screw for peak output on the first station.
Proceed in the same manner to adjust for the remaining stations. Repeat adjustments for best results.

RADIO VOLTAGE CHART
Voltages measured in respect to ground, using a "VoltOhmyat."

Tube	Type	Element	Pin	Tol.	Phono.	FM
V301	6BA6	Plate	5	-	175	188
		8cg.	6	-	86	87
V302	6BE6	Plate	5	-	-	130
		G 2.3 .4	687	-	-	120
		G.	1	-	-	-7.8
V303	6886	Plate	5	-	-	250
		Scg.	6	-	30	52
		Grid	1	-	-. 52	-. 45
		Cath.	7	-	. 42	1.1
V304	68A6	Plate	5	-	228	215
		Scg.	6	-	1.0	110
		Cath.	7	-	1.15	1.0
V305	6AU6	Plate	5	-	0	250
		Scg.	6	-	145	184
V306	BAL5	-	-	-	-	-
V307	6BR6	Plato	5	-	211	197
		Scg.	6	-	72	68
		Grid	1	-	0	0
		Cath.	7	-	8.3	7.5
V308	6BF6	Plate	7	-	127	118
		Cath.	2	-	6.6	6.2
V309	6BA6	Plate	5	-	62	60
		Scg.	6	-	22	123
V310	6AV6	Plate	7	88	95	84
		Grid	1	-. 8	-. 8	-. 8
V311	6 CA	Plate	165	170	145	182
		Grid	6	+39	+47	+25.5
		Cath.	7	48	57.5	5.2
V312 V313	6V6GT	Plate	3	240	290	270
		Scg.	4	90	185	175
		Grid	5	-122	-79	-91.5
		Cath.	8	-109	-61	-75



OIAGRAM OF OAIVE COAD
SHOWN WITH OAUM IN EXTREME CLOCKWISE POSITION (CONOENSER POSITION (CONDENSER

MODEL S1000 IS VERY SIMILAR TO MODEL 9TW390.
the television chassis is identical.
Figure 11-Dial and Drive Cord Assembly

MODEL S1000 USES 960285 RECORD CHANGER (78/33 $1 / 3$ r.p.m.) INSTEAD OF RP177B ( 78 r.p.m.). THE RADIO CHASSIS DIFFERS ONLY IN THE VALUE OF A FEW COMPONENTS.

REFER TO MODEL 9TW390 IN VOL. V FOR ADDITIONAL INFORMATION.

Figure 12--Radio Schematic Diagram


Figure 13-R-F Unit Wiring Diagram

## TELEVISION CRITICAL LEAD DRESS:

1. The ground bus from pin 2 and the center shield of V120 socket should not be shortened or rerouted.
2. Dress the body of R195 as close to tube pin as possible.
3. Do not change the dress of the filament leads or the bypase capacitors in the picture or sound i-f circuits. The filcment leads between V120, V121 and V122 should be down against the chassis and away from grid or plate leads.
4. Dress all leads crossing the i-f circuits close to the chassis and held so they cannot move and change alignment.
5. If it is necessary to replace any of the 1500 mmi capacitors in the picture i.f circuit, the lead length must be kept as short as possible.
6. Picture i-f coupling capacitors $\mathrm{Cl} 106, \mathrm{C} 111, \mathrm{Cl15}$ and C 121 should be up and away from the chassis and should be clear of the pix i-i transformer adjustments by at least $1 / 4$ inch. If the dress of any of these capacitors is changed, the i.l alignment should be rechecked.
7. Leads to L102 and L103 must be as short as possible.
8. Dress peaking coils L105, L106. L107, L108 and L109 up and away from the chassis.
9. Dress R129 away from L109.
10. Dress C183 across V121 tube pins 5 and 6 with leads not exceeding $\%$ inch.
11. Dress the blue lead from pin 5 of V122 down against the chassis and under two shielded leads.
12. Dress C129 and C199 up and away from the chassis.
13. Dress the yellow lead from the picture contral away from the chassis. Dress the yellow lead from pin 8 of V106 away from the chassis.
14. Dress the green lead from pin 8 of V107 away from the chassis.
15. Dress R168, R169, R170, R176 and R178 up and away from the chassis.
16. The leads to the volume control should be dressed down against the chassis and away from V119 and V120.
17. Dress the yoke red horizontal deflection lead under the clips of the fixed H. V. shield.
18. Dress the green lead from C166 close to the chassis and away from the red lead connected to T110-4.
19. Insert the red lead into Tllo-4 from the top of the terminal.
20. All soldered connections in the high voltage compartment should be free of sharp points.
21. Contact between the r-f oscillator frequency adjustment screws and the oscillator coils or channel switch eyelets must be avoided.




## TELEVISION RECEIVERS Models 2T5I, 2760

Chassis Nos. KCS45, or KCS45A
— Mfr. No. 274 — Service Data - 1950 No. T12 -

PREPARED BY RCA SERVICE CO., INC. FOR
RADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

## GENERAL DESCRIPTION

Model 2 T 51 and 2 T 60 receivers employ nineteen tubes plus rectilier and a 12LP4 kinescope. The receivers are identical except for cabinets, jewel lights, speakers and filter chokes.

Features of the television unit are: full twelve channel coverage; FM sound system; improved picture brilliance: picture A-G-C; A.F.C horizontal hold; stabilized vertical hold; two stages of video amplification; noise saturation circuits; improved sync separator and clipper; four mc. band width for picture channel and reduced hazard high voltage supply. An auxiliary audio input jack is provided to permit the use of an external record playing attachment.

## ELECTRICAL AND MECHANICAL SPECIF:CATIONS

PICTURE SIZE .................. 87 square inches on a 12LP4 Kinescope
TELEVISION R-F FREQUENCY RANGE
All 12 television channels, 54 mc . to 88 mc .174 mc . to 216 mc . Fine Tuning Range.. $\pm 250 \mathrm{kc}$. on chan. 2. $\pm 650 \mathrm{kc}$. on chan. 13 Picture Carrier Frequency .25 .50 mc .
Sound Carrier Frequency ................................................... 21.00 mc .
VIDEO RESPONSE ....................................................................... 4 mc.
SWEEP DEFLECTION ............................................................................
FOCUS ...................................................................................Magnetic
POWER SUPPLY RATING .......... 115 volts, 60 cycles, 160 watts
AUDIO POWER OUTPUT RATING 5 watts max.

## CHASSIS DESIGNATIONS

KCS45 ...................................................................................................................................... Model 2T51

## LOUDSPEAKERS

KCS45
(970773-2) 5" $\times 7^{\prime \prime}$ EM Dynamic, 3.2 ohms
KCS45A ........................... (92580-4W) 8" PM Dynamic, 3.2 ohms


## RECEIVER ANTENNA INPUT IMPEDANCE

Choice: 300 ohms balanced or 72 ohms unbalanced.
RCA TUBE COMPLEMENT

Tube Used		Function
( 1) RCA 6CB6 ................................................... R-F Amplifier		
(	2) RCA 616	R-F Oscillator and Mixer
( 3	3) RCA 6AU6	1st Sound I-F-Amplifier
(	4) RCA 6AU6	2nd Sound I-F Amplifier
( 5	5) RCA 6AL5	Sound Discriminator
$(6)$	6) RCA 6AV6	1st Audio Amplifier
( 7	7) RCA 6AQ5	Audio Output
$(8$	(8) RCA 6AU6	1st Picture I-F Amplifier
$(9)$	9) RCA 6CB6	2nd Picture I-F Amplitier
(10)	(0) RCA 6AU6	3rd Picture I-F Amplifier
(11)	1) RCA 6CB6	4th Picture I-F Amplifier
$(1$	2) RCA 6AL5	2nd Detector and AGC Detector
(1)	3) RCA 12AU7	. 1st and 2nd Video Amplitier
$(1$	) RCA 12AU7	DC Restorer and Sync Separator
$(1$	5) RCA 6AV6	... Vertical Sweep Oscillator
(16)	6) RCA 6AQ5	Vertical Sweep Output
(1)	7) RCA 6SN7GT	Horizontal Sweep Oscillator and
(18) RCA 6AU5GT ............................ Horizontal Sweep Output		
(19) RCA 6W4GT ......................................................... Damper		
$(2$	) RCA 1B3-GT/	... High Voltage Rectifier
$(21$		..... Kinescope



VIDEO RESPONSE	To 4 Mc .
FOCUS	Magnetic
SWEEP DEFLECTION	Magnetic
HORIZONTAL SWEEP FREQUENCY ........................ 15	5.750 cps
SCANNING ............................................... Interlaced,	525 line
VERTICAL SWEEP FREQUENCY	... 60 cps
FRAME FREQUENCY (Picture Repetition Rato)	. 30 cps

## OPERATING INSTRUCTIONS

[^8]4. Adjust the FINE TUNING control for best sound fidelity and the SOUND VOLUME control for suitable volume.
5. Turn the BRIGHTNESS control fully counter-clockwise, then clockwise until a light pattern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZONTAL hold control until a picture is obtained and centered.
8. Adjust the PICTURE and brightness controls for suitable picture contrast and brightness.

9. Alter the receiver has been on for some time, it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.
10. In switching from one position to another, it may be necessary to repeat steps 4 and 8.
11. When the set is turned on again after an idle period it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. If any adjustment is necessary, step number 4 is generally sutficient,
12. If the positions of the con. trols have been changed. it may be necessary to repeat steps 2 through 9.
13. To use a record player. plug the record-player output cable into the PHONO jack on the rear apron, and set the TV.PH switch to "PH." Upon completion of the record program, set the TV-PH switch to TV position.

Figure 1-Receiver Opernting Controls

## high Voltace warning

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED. IN. VOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY EAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

## KINESCOPE HANDLING PRECAUTIONS

DO NOT REMOVE THE RECEIVER CHASSIS, INSTALL, REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

Make sure that all tubes are in place and are firmly seated in their sockets.
Check to see that the kinescope high voltage lead clip is in place.

Connect the antenna transmission line to the receiver antenna terminals. Plug a power cord into the 115 volt a-c power source and into the receiver interlock receptacle. Turn the receiver power switch to the "on" position, the brightness control fully clockwise, and the picture contral counter-clockwise.

ION TRAP MAGNET ADJUSTMENT.-Set the ion trap mag. net approximately in the position shown in Figure 2. Starting from this position immediately adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Tum the focus control (shown in Figure 2) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum, raster brilliance. The final touches of this adjustment should be made with the brightness control at the maximum clockwise position with which good line focus can be maintained.


Figure 2-Yoke and Focus Magnet Adjustments
DEFLECTION YOEE ADJUSTMENT. -1 the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE RDJUSTMENTS.-It will now be necessary to obtain a test pattern picture in order to make further adjustments.

If the Horizontal Oscillator and AGC System are operating properly, it should be possible to sync the picture at this point. However, if the AGC contral is misadjusted, and the receiver is overloading. it may be impossible to sync the picture.

If the receiver is overloading, turn Sl05 on the rear apron (see Figure 3) counter-clockwise until the set operates normally and the picture can be synced.

CHECE OF HORIZONTAL OSCILLATOR ALIGNMENT.Turn the horizontal hold control to the extreme counter-clock. wise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of syac. Tum the control cloctrwise slowly. The number of diagonal black bars will be gradually reduced and when only 2 bars sloping down. ward to the left are obtained. the picture will pull into sync upon slight additional clockwise rotation of the control. Pull-in should occur when the control is approximately 90 degrees from the extreme counter-clockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwiee rotation of the control. At the extreme clockwise position. the picture should be out of sync and should show I vertical or diagonal black bar in the raster.
If the receiver passes the above checks and the picture is normal and stable, the horisontal oscillator is properly aligned. Skip "Alignment of Horisontal Oscillator" and proceed with "Focus Magnet Adjustment."

ALIGNMENT OF HORIZONTAL OSCILLATOR.-If in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control


Figure 3-Rear Chassis Adjustments
from the pull-in point, it will be necessary to make the following adjustments.

Horizontal Frequency Adjustment.-Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the T107 horizontal frequency adjustment on top of the chassis until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster.
Horisontal Locking Range Adjustment.-Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. The picture may remain in sync. If so turn the Tl08 top core slightly and momentarily switch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 2 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer Cl47A slightly clockwise. If less than 2 bars are present, adjust Cl47A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 2 bars are present.

Hepeat the adjustments under "Horizontal Frequency Adjustment" and "Horizontal Locking Range Adjustment" until the conditions specified under each are fulfilled. When the horisontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.

If it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horisontal Oscillator by the method outlined in the alignment procedure on page 13. For field purposes paragraph "A", under Horizontal Oscillator Waveform Adjustment may be omitted.

FOCUS MAGNET ADJUSTMENT.-The focus coil should be adjusted so that there is approximately three-eighths inch of space between the rear cardboard shell of the yoke and the flat of the front face of the focus magnet. This spacing gives best average focus over the face of the tube.

The axis of the hole through the magnet should be parallel with the axis of the kinescope neck with the kinescope neck through the middle.

CENTERING ADJUSTMENT.-No electrical centering controls are provided. Centering is accomplished by means of a separate plate on the focus magnet. Some centering plates include a locking screw which must be loosened betore centering, and others are held in adjustment by friction. Up and down adjustment of the plate moves the picture side to side and sidewise adjustment moves the picture up and down.
If a corner of the raster is shadowed, check the position of the ion trap magnet. Reposition the magnet within the range of maximum raster brightness to eliminate the shadow and recenter the picture by adjustment of the focue magnet plate. In no case should the magnet be adjusted to cause any loss of brightness since such operation may cause immediate or eventual damage to the tube. In some cases it may be necessary to shift the position of the focus magnet in order to eliminate a corner shadow.

WIDTH. DRIVE AND HORIZONTAL LINEARITY ADJUST-MENTS.-Adjustment of the horizontal drive control affects the high voltage applied to the kinescope. In order to obtain the highest possible voltage hence the brightest and best focused picture, adjust horizontal drive counter-clockwise as far as possible without stretching the left side of the picture. As a first adjustment, set the horizontal drive trimmer Cl43B one-hall turn out from maximum capacity.

Turn the horizontal linearity coil out until appreciable loss in width occurs, then in until nearly maximum width and the best linearity is obtained.

Adjust the width control R178 to obtain correct picture width.
A slight readjustment of these three controls may be neces. sary to obtain the best linearity.

HEIGHT AND VERTICAL LINEARITY RDJUSTMENTS.-Ad. just the height control (R153 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R157 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will.require a readjust. ment of the other. Adjust centering to align the picture with the mask.

FOCUS.-Adjust the focus magnet for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

On locus magnets using two shunts, the one with the cable is the "fine adjustment" and the other is the "focus range" adjustment. In general, the two shunts should be adjusted to approximately equal positions.

Recheck the position of the ion trap magnet to make sure that maximum brightness is obtained.

Check to see that the cushion and yoke thumbscrews and the focus coil mounting screws are tight.


Figure 4-R-F Oscillator Adjustments
CHECE OF R.F OSCLLLATOR RDJUSTMENTS.-Tune in all available stations to see if the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure on page 9. The adjustments for channels 2 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Fig. ure 4. Adjustment of channel 13 is on top of the chassis.

AGC CONTROL. The AGC control switch is provided as an installation adjustment. The normal position for strong signal areas is with the $s$ witch in the number 1 or counter. clockwise position. If impulse type of interference is experienced, turn the switch to the number 2 or center position. In very weak signal areas in which impulse type interference is experienced, turn the switch to position number 3 or fully clockwise. In this position, all AGC is removed and the receiver will overload if the input signal exceeds 200 microvolts. However, for signals under 200 microvolts, this position of the AGC control switch gives best noise immunity of sync.

FM TRAP ADJUSTMENT.-In some instances interference may be encountered from a strong FM station signal. A trap is provided to eliminate this type of interference. To adjust the trap tune in the station on which the interference is observed and adjust the L203 core on top of the r-f unit for minimum interference in the picture.

CAUTION: In some receivers, the FM trap $L 203$ will tune down into channel 6 or even into channel 5 . Needless to say, such an adjustment will cause greatly reduced sensitivity on these channels. If channels 5 or 6 are to be received, check L203 to make sure that it does not affect sensitivity on these two channels.

Replace the cabinet back and reconnect the antenna leads to the cabinet back.

VENTILATION CAUTION.-The receiver is provided with adequate ventilation holes in the bottom and back of the cabinet. Care should be taken not to allow these holes to be covered or ventilation to be impeded in any way.

If the receiver is to be operated with the back of the cabinet near a wall, at least a two-inch clearance should be maintained between cabinet and wall.

CHASSIS REMOVAL.-To remove the chassis for repair or installation of a new kinescope, remove the cabinet kack and the control knobs, unplug the speaker cable, and remove the four chassis bolts under the cabinet. Withdraw the chassis from the back of the cabinet. The kinescope is held on the chassis by means of a special strap. so that the chassis and the kinescope can be handled together, as a unit.
To remove the kinescope, remove the kinescope socket, the ion-trap magnet, and the second-anode connector. Loosen the cross-recessed head screw on the kinescope strap. Withdraw the kinescope toward the front of the chassis.

INSTALLATION OF KINESCOPE.-The kinescope second anode contact is a recessed metal well in the side of the bulb. The tube must be installed so that this contact is up but rotated approximately 30 degrees toward the high-voltage compartment.
Insert the neck of the kinescope through the deflection yoke and tocus magnet. It the tube sticks, or fails to slip into place smoothly, investigate and remove the cause of the trouble. Do not force the tube.

Slide the kinescope cushion toward the rear of the chassis. Loosen the deflection yoke adjustment. slide the yoke toward the rear of the chassis and tighten.

Slip the ion trap magnet assembly over the neck of the kinescope.

Connect the kinescope socket to the tube base.
Connect the high voltage lead to the kinescope second anode socket.
Wipe the kinescope screen surlace and front panel salety glass clean of all dust and finger marks.

To replace the chassis in the cabinet, first tighten the crossrecessed head screw on the kinescope strap. Slide the chassis into the cabinet, then insert and tighten the four chassis bolts. Loosen the kinescope strap trom the rear of the cabinet. Push the kinescope forward until the face of the tube is against the mask. Push the yoke cushion forward against the kinescope flare, then tighten the cushion adjusting screws. Tighten the kinescope strap. Then replace the knobs, and the cabinet back.

ANTENNAS.-The linest television receiver built may be said to be only as good as the antenna design and installation. It is therelore important to select the proper antenna to suit the particular local conditions, to install it properly and orient it correctly.

If two or more stations are available between channels two and six and the two stations are in different directions, it may be possible to make a compromise orientation which will provide a satislactory signal on all such channels.

CABINET RNTENNA.-A cabinet antenna is provided in both model receivers and the leads are brought out near the antenna terminal board. The cabinet antenna may be employed in place of the outdoar antenna in areas where the signals are strong and no reflections are experienced.


Figure 5-Chassis Top View


Figure 6-Chassis Bottom View

TEST EQUIPMENT.-To properly service the television chassis of this receiver, it is recommended that the following test equipment be available:
R.F Sweop Generator meeting the following requirementa:
(a) Frequency Ranges

20 to 30 mc .1 mc . and 10 mc . sweep width
50 to 90 mc ., sweep width
170 to $225 \mathrm{mc} ., 10 \mathrm{mc}$. sweep width
(b) Output adjustable with at least . 1 volt maximum.
(c) Output constant on all ranges.
(d) "Flat" output on all altenuator positions.

Cathode-Ray Oscilloscope.-For alignment purposes, the oscilloscope mployed must have excellent low frequency and phase response, and should be capable of passing a 60 -cycle square wave without appreciable distortion. While this requirement is not met by many commercial instruments, RCA Oscilloscopes, types WO-55A, WO-58A. WO-79A, and WO-60C fill the requirement and any of these may be employed.

For video and sync waveform observations, the oscilloscope must have excellent frequency and phase response from 10 cycles to at least two megacycles in all positions of the gain control. The RCA types WO-58A and WO.79A are ideally suited for this purpose.

Signal Generator to provide the following frequencies with crystal accuracy.

> (a) Intermediate frequencies
> 19.50 mc . adjacent channel picture trap
> 21.00 mc . sound i-t and sound traps
> 22.3 and 25.4 mc . conv. and first pix i-1 trans.
> 25.3 mc . second picture i-f transiormer
> 22.5 mc . fourth picture i-f transformer
> 21.75 mc . third picture i-f transformer
> 24.35 mc . tith picture i-f coil
> 25.50 mc . picture carrier
> 27.00 mc . adjacent channel sound trap
(b) Radio frequencies

Channel Number	Picture Carrier Freq. Mc.	Sound   Carrier   Freq. Mc.
2.	55.25	.. 59.75
3.	61.25	.. 65.75
4.	. 67.25	... 71.75
5.	. 77.25	.. 81.75
6.	83.25	87.75
7.	.175.25.	. 179.75
8.	.181.25.	. 185.75
9.	187.25.	191.75
10	193.25	.. 197.75
11.	.199.25.	. 203.75
12.	. 205.25	. 209.75
13.	211.25.	.. 215.75

(c) Output of these ranges should be adjustable and at loast . 1 volt maximum.

Heterodyne Frequency Meter with crystal calibrator if the signal generator is not crystal controlled.

Electronic Voltmeter of Junior "VoltOhmyst" Iype and a high voltage multiplier probe for use with this meter to permit measurements up to 10 kv .

Service Precautions.-lit possible: the chassis should be serviced without the kinescope. However, if it is necessary to view the raster during servicing, make sure the kinescope retaining strap is secure, and the yoke cushion is up tirmly against the flare of the tube.

CAUTION: Do not short the kinescope second anode lead, Its short circuit current is approximately 3 ma . This respresents approximately 9 watts dissipation and a considerable overload on the high voltage filter resistor R179.

Adjustment Required.-Normally, only the r-f oscillator and mixer lines will require the attention of the service technician. All other circuite are either broad or very stable and hence will seldom require readjustment.

ORDER OF ALIGNMENT.-When a complete receiver alignment is necessary, it can be most conveniently performed in the following order:
(1) Sound discriminator
(5) R.F. unit
(2) Sound i-f transformers
(6) Overall picture i.f
(3) Picture i-1 traps
(7) Horizontal oscillator
(4) Picture i.f transformers
(8) Sensitivity check

SOUND DISCRIMINATOR ALIGNMENT.-Set the signal generator for approximately . 1 volt output at 21.00 mc . and con. nect it to the second sound i-f grid. pin 1 of V116.
Detune Tlll secondary (botom) to the extreme counter. clockwise position.

Set the "VoltOhmyst" on the 3 -volt scale.
Connect the meter, in series with a onemegohm resistor, to pin 7 of V117.

Adjust the primary of T111 (top) for maximum output on the meler.

Connect the "VoltOhmyst" to the junction of R192 and S103. Adjust Tlll secondary (bottom). It will be found that it is possible to produce a posilive or negative vollage on the meter dependent upon this adjustment. Obviously to pass from a positive to a negative voltage, the voltage musi go through zero. Tlll (boltom) should be adjusted so that the meter indicates zero output as the voltage swings from positive to negative. This, point will be called discriminator zero oulput.

Connect the sweep oscillator to the grid of the second sound i-f amplifier, pin 1 to V116.

Adjust the sweep band width to approximately 1 mc . with the center frequency at approximately 21.00 mc . and with an output of approximately il volt.
Connect the oscilloscope to the junction of R192 and S103. The pattern oblained should be similar to that shown in Fig. ure 12. If it is not, adjust Tlll (top) until the wave form is symmetrical.

The peak-to-peak band width of the discriminator should be approximately 400 kc . and the trace should be linear from 20.925 mc . to 21.075 mc .

Nole.-The bottom core and stud in the discriminator transformer are at plus B potential.

SOUND I-F ALIGNMENT.-Connect the sweep oscillator to the first sound i-f amplifier grid, pin 1 of V115.

Insert a 21.00 mc . marker signal from the signal generator into the first sound $i \cdot f$ grid.
With the oscilloscope connected as above, adjust T110 for maximum gain and symmetry aboul the 21.00 mc . marker on the discriminator pattern. The pattern oblained should be similar to that shown in Figure 12.
The output level from the sweep should be sel to produce approximately 1.0 volt peak-to-peak at the junction of R192 and S103, when the final louches on the above adjustment are made. It is necessary that the sweep output voltage should not exceed the specified values otherwise the response curve will be broadened, permitting slight misadjustment to pass unnoticed and possibly causing distortion on weak signals.
The band width at $70 \%$ response from the first sound i-f grid to the second i-f grid should be approximately 530 kc .

PICTURE I-E TRAP ADJUSTMENT.-Connect the "VoltOhmyst" to the junction of R102 and R103.

Obtain a 7.5 volt battery capable of withstanding appreciable current drain and connect the ends of a $1,000 \mathrm{ohm}$ potentiometer across it. Connect the battery positive terminal to chassis and the potentiometer arm to the junction of R102 and R103. Adjust the potentiometer for -3.0 volts indication on the "Voltohmyst."
Set the channel switch to the blank position between channels number 2 and 13 .

Connect the "VoltOhmyst" to pin 2 of V106 and to ground.
Connect the output of the signal generator to terminal D of Tlol.

Set the generator to each of the following frequencies and with a thin fiber screwdriver tune the specified adjustment for minimum indication on the "VoltOhmyst." In each instance the generator should be checked against a crystal calibrator to insure that the generator is exactly on frequency.
(1) $21.00 \mathrm{mc} .-\mathrm{T} 103$ (top)
(4) $27.00 \mathrm{mc} . \mathrm{T} 104$ (top)
(2) $21.00 \mathrm{mc} .-\mathrm{T} 105$ (top)
(5) 19.50 mc .-T101 (top)
(3) $27.00 \mathrm{mc} .-\mathrm{T} 102$ (top)

In the above transformers using threaded cores, it is possible to run the cores completely through the coils and secure two peaks or nulls. The correct position is with the cores in the outside ends of the coils. If the cores are not in the correct position, the coupling will be incorrect and it will be impossible to secure the correct response.

PICTURE I-F TRANSFORMER ADJUSTMENTS.-Set the signal generator to each of the following frequencies and peak the specified adjustment for maximum indication on the "VoltOhmyst." During alignment, reduce the input signal if necessary to prevent overloading.

$$
\begin{array}{ll}
\bullet 24.35 \mathrm{mc} \text {. } \mathrm{L} 102 & 21.75 \mathrm{mc} .-\mathrm{T} 103 \text { (bottom) } \\
\bullet 22.5 \mathrm{mc} \text {-T104 (bottom) } & 25.3 \mathrm{mc} . \text {-T } 102 \text { (bottom) }
\end{array}
$$

*In some receivers R115 was 3900 , R119 was 8.200, and L114 wan omitted, T104 boltom was tuned to 24.35 MC and L102 was tuned to 22.5MC.

R-F UNIT ALIGNMENT.-Disconnect the co-ax link from terminal 2 of the r.f unit terminal board and connect a 39 ohm composition resistor between lugs 1 and 2.
Detune Tl by backing the core all the way out of the coil.
In early production units in which L44 is adjustable, back the L44 core all the way out. Back L203 core all the way out.

In order to align the r-f tuner, it will first be necessary to set the channel 13 -oscillator to frequency. The shield over the bottom of the r-f unit must be in place when making any adjustments.
The oscillator may be aligned by adjusting it to beat with a crystal-calibrated heterodyne frequency meter, or by feeding a signal into the receiver at the r-f sound carrier frequency and adjusting the oscillator for zero output from the sound discriminator. In this latter case the sound discriminator must first have been aligned to exact frequency. Either method of adjustment will produce the same results. The method used will depend upon the type of test equipment available. Regardless of which method of oscillator alignment is used, the frequency standard must be crystal controlled or calibrated.
If the receiver oscillator is to be adjusted by the heterodyne frequency meter method, couple the meter probe loosely to the receiver oscillator.

If the receiver oscillator is adjusted by feeding in the r-f sound carrier signal, connect the signal generator to the receiver antenna terminals. Connect the "VoltOhmyst" to the sound discriminator output (junction of R192 and S103). Also couple the link loosely to lug 2 of the $r$-f unit terminal board so as to permit measurement at sound discriminator.

## Set the channel selector switch to 13.

Adjust the frequency standard to the correct frequency ( 236.75 mc . for heterodyne frequency meter or 215.75 mc . for the signal generator).
Set the fine tuning control to the middle of its range.

Adjust $\mathbf{C l}$ for an audible beat on the heterodyne frequency meter or zero voltage from sound discriminator.

Now that the channel-13 oscillator is set to frequency, we may proceed with the r-f alignment.

Turn the AGC control to the counter-clockwise position.
Connect the bias box to terminal 3 of the r-f unit terminal boaid and adjust the bias box potentiometer for -3.5 volts.

Connect the oscilloscope to the test connection at R5 on top of the r-f unit.

Connect the r-f sweep oscillator to the receiver antenna ferminals. The method of connection depends upon the output impedance of the sweep. The P300 connections for 300 -ohm balanced or 72 -ohm single-ended input are shown in the circuit schematic diagram on page 27. If the sweep oscillator has a 50 -ohm single-ended output, 300 -ohm balanced output can be obtained by connecting as shown in Figure 7.


Figure 7-Unbalanced Sweep Cable Termination
Connect the signal generator loosely to the receiver antenna terminals.

Set the receiver channel switch to channel 8.
Set the sweep oscillator to cover channel 8.
Insert markers of channel 8 picture carrier and sound car. rier, 181.25 mc . and 185.75 mc .

Adjust C9, C11, C16 and C22 for approximately correct curve shape. frequency, and band width as shown in Figure 15. The correct adjustment of C22 is indicated by maximum amplitude of the curve midway between the markers. C16 tunes the r.f amplifier plate circuit and affects the frequency of the curve most noticeably. C9 tunes the converter grid circuit and affects the tilt of the curve most noticeably (assuming that C22 has been properly adjusted). C11 is the coupling adjustment and hence, primarily affects the response band width.

Set the receiver channel switch to channel 6.
Adjust the frequency standard to the correct frequency $(108.75 \mathrm{mc}$. for heterodyne irequency meter or 87.75 mc . for the signal generator).

Set the fine luning control to the middle of its range.
Adjust L5 for an audible beat on the heterodyne frequency meter or zero voltage from soursd discriminator.

Set the sweep generator to channel 6 .
From the signal generator, insert channel 6 sound and pic. ture carrier markers, 83.25 mc . and 87.75 mc .
Adjust L42, L45 and L49 for proper response as shown in Figure 15.
L42 is adjusted to give maximum amplitude of the curve between the markers. L45 primarily affects the tilt of the curve. L49 primarily affects the frequency of response.

Connect the "VoltOhmyst" to the r.f unit test point at R5.
Adjust C7 for -3.0 volts at the test point.
Retouch L42, L45 and L49 for proper response if necessary. If necessary, retouch Cll for proper band width on channel 6 . Continue these retouching adjustments until proper response is obtained and -3.0 volts of oscillator injection are present at the test point.

Set the receiver channel selector switch to channel 8 and readjust Cl for proper oscillator frequency.
Set the sweep oscillator and signal generator to channel 8.
Readjust C9, C16 and C22 for correct curve shape, frequency and band width. Readjust Cll only if necessary.
Switch the receiver, the sweep oscillator and signal generator to channel 13.

Adjust L52 for maximum amplitude of the curve midway between markers and then overshoot the adjustment by turning the slug in the same direction from thte initial setting a little more than the amount of turning required to reach maximum amplitude of response.

Adjust C22 for maximum amplitude of response.
Turn off the sweep generator. Adjust the L43 core for correct channel 13 oscillator frequency. then overshoot the adjustment by turning the slug a little more in the same direction from the initial setting. Reset the oscillator to proper frequency by ad. justment of Cl .

Turn the sweep oscillator back on.
Check the response of channels 7 through 13 by switching the receiver channel switch. sweep oscillator and marker oscillator to each of these channels and observing the response and oscillator injection obtained. See Figure 15 for typical response curves. It should be found that all these channels have the proper shaped response with the markers above $80 \%$ response.

If the markers do not fall within this requirement, switch to channel 8 and readjust C9, C11, C16 and C22 as necessary. If C22 required adjustment, the adjustment should be overshot a small amount and corrected by adjustment of L52 to give maximum amplitude of response between the sound and picture carrier markers. The antenna circuit (L52. C22) is broad so that tracking is not particularly critical.

If the valley in the top of the selectivity curves for the high channels is deeper than normal, the curve can be flattened somewhat by decreasing the inductance of L44 by turning the core stud in. Be sure to check for undesirable remonant suck. outs on channels 7 and 8 if this is done. In later production - units, L44 may be fixed and not require adjustment.

Turn the sweep oscillator off and check the receiver channel $8 \mathrm{r}-\mathrm{f}$ oscillator frequency. If the oscillator is off frequency overshoot the adjustment of Cl and correct by adjusting L43.

Turn the receiver channel selector switch to channel 6. Adjust L5 for correct oscillator frequency.

Turn the sweep oscillator on and to channel 6 and observe the response curve. If necessary readjust L42, L45 and L49. It should not be necesscry to touch Cll.

Check the oscillator injection voltage at the test point. If necessary adjust C7 to give -3 volts injection. If C7 is adjusted, switch to channel 8, and readjust C9 for proper curve shape, then recheck channel 6 .

Switch the receiver through channel 6 down through channel 2 and check for normal reponse curve chapes and oscillator injection voltage.

Likewise check channels 7 through 13. stopping on 13 for the next step.
With the receiver on channel 13, check the receiver oscillator frequency. Correct by adjustment of Cl if necessary.
Adjust the oscillator to frequency on all channels by switching the receiver and the frequency standard to each channel and adjusting the appropriate oscillator trimmer for the specified indication. It should be possible to adjust the oscillator to the correct frequency on all channels with the fine luning control in the middle third of its range.

Channel   Number	Picture Carrier Freq. Mc.	Sound Carrier Freq. Mc.	Receiver R-F Osc. Freq. Mc.	Channel Oscillator Adiustment
2	. 55.25	75	. 80.750 .	L1
3	. 61.25	. 65.75	.86.750.	L2
	.67.25	. 71.75	.92.750.	L3
5.	. 77.25	.81.75.	. 102.750.	. 14
6.	. 83.25	.87.75	. 108.750.	L5
	.175.25.	. 179.75	. 200.750.	.L6
8.	.181.25.	. 185.75	. 206.750.	. 27
	. 187.25.	. 191.75	.212.750.	
10.	. 193.25	. 197.75.	.218.750.	. L 9
11.	. 199.25	.203.75.	.224.750.	L10
12.	. 205.25	. 209.75.	.230.750.	.L11
13.	211.25	215.75	. 236.750	. ${ }^{1}$

Switch to channel 8 and observe the response.
Adjust Tl clockwise while watching the change in response. When Tl is properly adjusted, the selectivity curve will be slightly wider with a slightly deeper valley in its top.

Switch through all channels and observe response. oscilla. for injection and r-f oscillator frequency. Minor touch-ups of adjustments may be made at this time. However, if C7 or C9 are changed appreciably, then a recheck of the oscillator frequency on all channels should be made.

Reconnect the link from T101 to terminal 2 of the r-f unit terminal board.

Since Tl was adjusted during the r-f unit alignment it will be necessary to sweep the overall i-f response.

R-F UNIT TUBE CHANGES.-Since most of the circuits are low capacilance circuits the r-f unit may require readjust. ments when the tubes are changed.

If the 6CB6 r-f amplifier tube is changed, it may be neces. sary to readjust C16 and C22.
If the 6J6 oscillator and mixer tube is changed, then more extensive adjustments are required.

For good conversion efficiency, the oscillator injection to a triode mixer must be held reasonably close to the optimum value. Although there is some latitude in this level, it is nearly expended in the normal variation in injection from channel to channel. Consequently, the adjustment of C7 is limited primarily to establishing the conditions for good conversion. Since changes in oscillator injection affect conversion gain, it also affects the input capacity of the mixer, thus also affecting tracking of the mixer grid circuit. These tube variations with their consequent effect on circuit alignment thereby require readjustment of the r-! unit if maximum conversion efficiency is to be retained after the $6 J 6$ tube is changed. It may be pos. sible, however, to try several 6J6 tubes and select one which gives satisfactory performance without realignment.

SWEEP ALIGNMENT OF PIX I.F.-Set the r-f unit bias to -3.5 volts.

Connect a 47 ohm resistor across the link circuit at T101 terminals $C$ and $D$.

## Remove the second picture iof tube.

With the oscilloscope connected to the r-f unit test connection and the sweep oscillator connected to the antenna terminals. set the sweep output to give 0.1 volt peak-lo-peak on the oscilloscope.

Switch through the channels and select one that is essentially flat and with the two carriers at $90 \%$ response or higher. Channel 6 is usually the most desirable for this test.

Remove the 47 ohm resistor and replace V102
Connect the oscilloscope to terminal 2 of V106 socket.
Clip 330 ohm resistors across R107. R110, R115 and R119.
Connect the bias box to the junction of R102 and R103. Adjust the box for -1 volt.

Adjust the sweep oscillator output to give 0.5 volt peak-topeak on the oscillos cope.

Connect the signal generator loosely to the i-f amplifier.
Adjust Tl and T101 bottom core to obtain the response curve shown in Figure 13.

Remove the 330 ohm resistors across R107, R110, R115 and R119.

## Set the i.f bias to -4.5 volts.

Adjust the sweep output to give 3 volts peak-to-peak on the oscilloscope.

Retouch T1, T101 bottom, T102 bottom. T103 bottom. T104 bottom and L102 to obtain the response curve shown in Fig. ure 14.
the detalled alignment paocedure beginning on page 9 should be read before alignment by use of the table IS ATTEMPTED

STEP No.	CONNECT SIGNAL GENERATOR TO	SIGNAL GEN. FREQ. MC.	CONNECT SWEEP GENERATOR TO	$\begin{aligned} & \text { SWEEP } \\ & \text { GEN. } \\ & \text { FREQ. } \\ & \text { MC. } \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { OSCILLOSCOPE } \\ \text { TO } \end{gathered}$	$\begin{gathered} \text { CONNECT. } \\ \text { "VOLTOHMYST" } \\ \text { TO } \end{gathered}$	MISCELLANEOUS CONNECTIONS AND INSTRUCTIONS	ADJUST	$\begin{aligned} & \text { REFER } \\ & \text { TO } \end{aligned}$
DISCRIMINATOR AND SOUND I-E ALIGNMENT									
1	2nd sound i-f grid (pin 1, VII6)	$\begin{aligned} & 21.00 \\ & .1 \text { volt } \\ & \text { output } \end{aligned}$	Not used	-	Not used.	In series with 1 meg. to pin 7 of V117	Meter on 3 volt scale	Detune T111 (bol.) Adjust Tlll (top) for max, on meter	Fig. 12   Fig.   Fig.
2	*	$\because$	**	-	"	$\begin{aligned} & \text { Iunction of R192 } \\ & \& \$ 103 \end{aligned}$	Meter on 3 volt scale	Tlll (bottom) Ior zero on meter	Fig. 12   Fig.
3	**	"	2nd sound i-f grid (pin 1. V116)	$\begin{aligned} & 21.00 \\ & \text { centor } \\ & 1 \text { me. } \\ & \text { wide } \\ & .1 \text { v. out } \end{aligned}$	Junction of R192 $\& 5103$	Not used	Check for symmetr form (positive 6 equal adjust Tlll equal	cal response wavenegative). If not (lop) until they are	Flg. 12   Fig.
4	1at sound i-f grid (pin, 1, VII5)	$\begin{aligned} & 21.00 \\ & \text { re- } \\ & \text { duced } \\ & \text { output } \end{aligned}$	lst sound $\mathrm{i}-\mathrm{f}$ grid (pin 1, V115)	$\begin{gathered} 21.00 \\ \text { reduced } \\ \text { oulput } \end{gathered}$	"	"	Sweep output reduced to provide 1.0 volt p-to-p on scope	T110 for max. gain and aymmetry al 21.00 mc .	$\begin{aligned} & \text { Fig. } 12 \\ & \text { Fig. } 10 \\ & \text { Fig. } \end{aligned}$

PICTURE I-F AND TRAP ADJUSTMENT


335
ALIGNMENT TABLE
2T51. 2 T60


[^9]| ALIGNMENT TABLE |  |  |  |  |  |  |  | 2T51, 2T60 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { STEP } \\ \text { Sop } \end{gathered}$ | $\begin{aligned} & \text { CONNECT } \\ & \text { SIGNAL } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$ | $\begin{gathered} \text { SIGNAL } \\ \text { SGNE. } \\ \text { FGRE. } \\ \text { MRC. } \end{gathered}$ |  | $\begin{aligned} & \text { SWEEP } \\ & \text { GRER. } \\ & \text { FRCO. } \end{aligned}$ | CONNECT OSCILNSCOPE TO | CONMECT vOTOHMYST TO | MSCELLANEOUS CONNECTIONS instructions | adjust | $\underset{\text { Refer }}{\text { TO }}$ |
| SWEEP RLIGNMENT OF PICTURE 1-F AMPLIFIER |  |  |  |  |  |  |  |  |  |
| 59 | Loosely <br> coupled to i-1 cmplition | ${ }_{25.4}^{22.3}$ | Antenna | $\begin{aligned} & \text { Swopining } \\ & \text { zolecend } \\ & \text { channol } \end{aligned}$ |  | Junction of R102 and Rias |  |  | Fig. : Fig. 10 Fig. 13 |
| 60 | " | $\begin{aligned} & 21.05 \\ & \hline 2.145 \\ & \hline 25.50 \\ & 25.50 \end{aligned}$ | " | " | " | " |  | Sot swoep to givi 3.0 v. pep on oticil Sos. <br>  and $\mathrm{LiO2}$ for do sired responsie | Fig. 14 |



Figure 11-R.F Oscillator Adjusements
Figure 8-Top Chassis Adjustments


Figure 9-Bottom Chassis Adjustments


Figure 10-Test Connection Points


Continued from Page 9

HORIZONTAL OSCILIATOR ADIUSTMENT.--Normally the part of the alignment procedure, but since the oscillator wave form adjustment requires the use of an oscilloscope, it can not be done conveniently in the field. The wavetorm adjustment is made at the tactory and normally should not require readjust.
ment in the field. However. the wavelorm adjustment should ment in the tield. However, the wavelorm adjustment should
be checked whenever the receiver is aligned or whenever the orizontal oscillator operation is improper. Horizontal Frequency Adjustment-- With a clip lead, short
circuit the coil between terminals $C$ and $D$ of the horizontal scillator transtormer T107. Tune in a television station and syne the picture in possible.
A.-Turn the horizontal hold control R168 to the extreme
Llockwise position. Adjust the T107 Frequency Adjustment lackwise position. Adjust the T107 Frequency Adjustment
atop the chassis) so that the picture is just out ot sync and he horizontal blanking appears in the picture as a vertical bar. The position of he bar is unimporant
B.-Turn the hold control approximatity one-quarter of a
turn from the extreme clockwise position and examine the width and linearity of the picture. If picture width or. linearity incorrect, adjust the honizital dive control Cl43B, the width control R178 and the linearity control L113 until the picture is
correct. II C143B. R178 or L113 were adjusted, repeat step A above.

Horizontal Locking Range Adjustment.-Turn the horizontal old control fully counter.clockwise. The picture may remain
sync. If so. turn the T107 top core slightly and momentarily in sync. It so, turn the T107 top core slightly and momentarily
witch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Momentarily
remove the signal by switching off channel then back. Slowly emove the signal by switching off channel then back. Slowly
urn the horizontal hold control clockwise and note the least urnmer horizontal hold controneclockwise and note the least number of
into sync.
If more than 9 bars are present just before the picture pulls
into sync, adjust the horizontal locking range trimmer C143 nito sync. adjust the horizonal locking range rimmer Cli43A
slighly clockwise. If leas than 7 bars are present, adjust C143A slighty clockwise. If less than 7 bars are present. adjust Cl43A
slighly counterclockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck he number of bars present at the pullin point. Repeat this pro-
dre unl io bars are presi.
Horizontal Oscillator Wavetorm Adjustment.- Remove the
shorting clip from terminals C and D of T107. Turn the horiontal hold control to the extreme clockwise position. With a hin fibre screwdriver, adjust the Oscillator Wavelorm Adjust-
ment Core of T107 (under the chassis) until the horizontal manking bar appears in the center.
A.- Connect the low capacity probe of an oscilloscope to
erminal C of T107. Turn the horizontal hold control one-quarter urn from the clockwise position so that the picture is in sync.
The pattern on the oscilloscope should be as shown in Fig. The pattern on the oscilloscope should be as shown in Fig.
are 16 . Adjust the Oscillator Wavelorm Adjustment Core of 107 until the two peaks are at the same height. During this adjustment, the picture must
the hold control it necessary.
This adjustment is very important for correct operation of
the circuit. It the broad peak of the wave on the oscilloscope lower than the sharp peak. the noise immunity becomes and driito of the oscillatoroct becomes more serous. On the other
and it the broad pack is higher than the sharp peak, the hand. it the broad peak is higher than the sharp peak, the
oscillator is overstabilized, the pull-in range becomes inadeoscillator is overstabilized, the pulli-in range becomes inade-
quate ond the broad peak can cause double triggering ot the
oscillator when the hold control approaches the clockwise quatil and the broad peak can cause double triggering
oscillator when the hold control approaches the clockwis position
Remove the oscilloscope upon completion of this adjustment. Check of Horizontal Oscillator Adjustments.-Sel the horizontal hold control to the full counter-clockwise position.
Momentarily remove the signal by swith back. Slowly turn the horizontal hold control clockwise and
note the least number of diagonal bars obtained just before he picture pulls into sync.
1f more than 2 bars are present just before the picture pulls
into sync. adjust the horizontal locking range trimmer Cli43
slighly clockwise. It less than 2 bars are present. adjust
C143A slightly counter-clockwise. Turn the horizontal hold ontrol counter.clockwise momentarily remove the signal and
echeck the number of bars present at the pull-in point. Repeat this procedure until 2 tars are present.
Turn the horizontal hold control to the maximum clockwise
position. The picture should be just out of sync to the extent position. The picture should be just out of sync to the extent that the horizontal blanking bar appears as a single vertical
or diagonal bar in the picture. Adjust the TIO7 Frequency Adjustment until this condition is fulfilled.
SENSITIVITY CHECR.-A comparative sensitivity check can be made by operating the coceiver on a weak signal from a
television station and comparing the picture and sound ab. television station and comparing the picture and sound ob-
tained to that obtained on other receivers under the same conditions.
This weak signal can be obtained by connecting the shop
antenna to the receiver through a ladder type attenuator pad antenna to the receiver through a ladder type attenuator pad.
The number of stages in the pad depends upon the signal strength available at the antenna. A sufticient number of stages
should be inserted so that a somewhat less than normal con. should be inserted so that a somewhat less than normal con-
trast picture is obtained when the picture control is at the maximum clockwise position. Only carbon type resistors should be

RESPONSE CURVES.-The response curves shown on page RESPONSE CUAVES.-The response curves shown on page
tand referred to throughout the alignment procedure were
trom a production set. Although these curves are typical. taken from a production set. Althou
some variations can be expected.
The response curves are shown in the classical manner of
presentation. that is with "response the left. The manner in which they will be seen in a given test set-up will depend upon the characteristics of the oscilloscope and the sweep generator. The curves may be seen inverted
and/or switched from left to right depending on the deflection polarity of the oscilloscope and the phasing of the sweep generator.
ChANGE OF I.F FREQUENCY.-Early production chassis were aligned with 21.25 mc. sound i .1 a and $25.75 \mathrm{mc}$. picture carrier i.f fr 位uencies. See Television Supplement No. 2 for a
discussion discussion of i -
of i i- frequency.
notes on m-F Unit alignment. Because of the frequency spectrum involved and the nature of the device, many
of the r - unit leads and components are critical in some re. spects. Even the power supply leads form loops which couple to the tuned circuits, and if resonant at any of the frequencies involved in the periormance of the tuner. May cause serious
departures from the desired characteristics. In the design of the receiver these undesirable resonant loops have been shifted lar enough away in frequency to allow reasonable latitude in their compore When the r-t unit is aligned in the receiver, no
troublesome. When trouble from resonant loops should be experienced. However. it the unit is aligned in a jig separate from the receiver. attention should be paid to insure that unwanted resonances do no
exist which might present a faulty representation of r-f unit exist which
alignment.
A/resonant circuit exists between the r-f tuner chassis and the outer shield box. which couples into the antenna and r-t plate circuits. The trequency of this resonance depends on the
physical structure of the shield box, and the capacitance be tween the tuner chassis and the front plate. In the KRK8 units. this resonarce should fall betwen 120 and 135 mc . and is
controlled in the design by using insulating washers of dif. ferent thicknesses (in the front plate to tuner chassis mounting) to compensate for difterences in the shield boxes of different models of receivers. The performance of the tuner, particularly
on channels 7 and 8 will be impaired if the proper washers for the particular shield box involved are not used. Obviously then. if the $r$-f unit is removed for service, the washers sho

PICTURE I-F RESPONSE.-At times it may be desirable to ob
serve the individual i-l stage response. This can be achieve serve the individual i.t sta
by the following method: Shunt all ift transtormers and coils with a 330 ohm carbon re-
sistor except the one whose response is to be observed.

Connect a wide band swoep generator to the
and adjust it to sweep from $18 \mathrm{mc}$. to 30 mc. Connect the grill Connect the os cilloscope across the picture detector load re-
sistor and observe the overall response. The response obtained sistor and observe the overall response. The response oblained
will be bessentially that of the unshunted stage. The effects of



Figure 17-Response of Converter and First Pix l-F Transjormer




Figure 1 I- $23-$ Responall Pix





Figure
21-Response of
Pix $I-F \operatorname{Coil}$


Figure 24-Video Response at

Plate of Picture Detector
(Pin 2 of V105)
$(6 A L 5)$ Figure $26-V$ ertical (Oscilloscope
Synced to $1 / 2$ of $V$ ertical Sweep
 $-4$
Figure 27-Horizontal (Oscilloscope
Synced to $1 / 2$ of Horizontal Sweep Synced to $1 / 2$ of Horizontal Sweep
Rate)
$(5.5$ Volts PP)


Figure 28-Vertical (5.3 Volts PP)

Figure 29-Horizontal (5.3 Volts PP)


Figure $19-$ Response of Third
Pix I-F Transformer




Figure 25-Video Response
(100KC Square Wave)



Plate of lst Video Amplifier (Pin 1 of V106) (12AU7)
Voltages depend on setting of Pix control

Figure 30 -Vertical (2.18 Volts PP) $\longleftarrow<4$

Figure 31-Horizontal (2.18 Volts PP) $\rightarrow$

Grid of 2nd Video Amplifier (Pin 7 of V106) (12AU7)
Voltages depend on setting of Pix control

Figure 32-V ertical (2-18 Volts PP)


Figure 33-Horizontal (2.18 Volts PP) $\rightarrow$

Plate of 2nd Video Amplifier (Picture Max.)
(Pin 6 of V106) (12AU7)
Voltages depend on setting of Pix control

Figure 34.-Vertical (15.90 Volts PP) $\longrightarrow-44$

Figure 35-Horizontal (15.90Volts PP) $\rightarrow$

Input to Kinescope (Junction of R121 and C192) (Picture Max.)
Voltages depend on setting of Pix control

Figure 36 -Vertical (15.90 Volts PP) $\longleftarrow<$

Figure 37,-Horizontal (15.90 Volts PP) $\rightarrow$

Cathode of D.C Restorer
(Pin 3 of V107A) (12AU7)
Yoltages depend on setting of Pix control

Figure 38 -Vertical (11-80 Volts PP) $\longleftarrow<4$

Figure 39—Horizontal (11.80Volts PP)
$\Rightarrow$

Grid of D.C Restorer
(Pin 2 of V107A) (12AU7)
loltages depend on setting of
Pix control
Figure 40-V ertical (0.4-7.5 Volls PP) $\longleftarrow$

Figure 41 -Horizontal (0.4.7.5 Volts $\xrightarrow{\text { PP) }}$



## WAVEFORM PHOTOGRAPHS

Grid of Sync Separator
(Pin 7 of V107B) (12AU7)
Voltages depend on setting of Pix control

Figure 42-Vertical (2.5.16 Volts PP) $\longleftarrow \longleftarrow 4$

Figure 43 -Horizontal (2.5-16 Volts PP)


Cathode of Sync Separator (Pin 8 of V107B) (12AU7)
Voltages depend on setting of Pix control

Figure 46 -Vertical (0.2-1 2 Volts PP)


Figure 47-Horizontal (0.2.1.2 Volts PP)
$\Rightarrow$


Figure 48 - Output of Integrating Network (Junction of C139, C140 and R147) (8.5 Volts PP)
$\longleftarrow-4$

Figure 49-Grid of Vertical Oscillator (75 Volts PP) (Pin 1 of V109)
(6AV6)
$\rightarrow$


Figure $50-G r i d$ of Vertical Output (90 Volts PP) (Pin 1 of V110) (6AQ5)
$\leftarrow<$

Figure 51-Plate of Vertical Output ( 600 Volts PP) (Pin 5 of V110)
(6AQ5)
$\rightarrow$



Figure 54 -Grid of Horizontal Oscillator Control (27 Volts PP) (Pin 1 of V111) (6SN7GT)


Figure 55-Cathode of Horizontal Oscillator Control (1.0 Volts PP) (Pin 3 of V111) (6SN7GT)
$\rightarrow$

Figure 56-Junction of R163, R164 and R170 (70 Volts PP)
$\longleftarrow \longrightarrow$

Figure 57 Grid of Horizontal Oscillator (290 Volts PP) (Pin 4 of V111) (6SN7GT)

$$
\rightarrow
$$

Figure 58 Plate of Horizontal Oscil. lator (150 Voles PP) (Pin 5 of V111)
(6SN7GT)
$\longleftarrow \longrightarrow$

Figure 59-Terminal "C" of T107 (100 Volts PP)

$$
\Rightarrow
$$

Figure 60-Input to Horizontal Output Tube ( $60-80$ Volts PP) Depends on setting of drive control (Junc(ion of C152 and Cl43B)


Figure 61-Plate of Horizontal Output (Approx. 5000 Volts PP) (Measured Through a Capacity V'oliage Divider Connerted from Top Cap of ('Il2 to Ground)

$\rightarrow$

Figure 62 Cathode of Damper (2100. 2710 Volts PP) Depends on setting of uidih control (Pin 3 of V114)

$$
(6 W 4 G T)
$$

$$
\leftarrow 4
$$

Figure 63-Plate of Damper (90-130 Volts PP) Depends on setting of width control (Pin 5 of V114) ( $6 W 4 G T$ )
$\rightarrow$

Figure 64-Junction of Yoke and Width Control (80.145 Volts PP) Depends on setting of width control $\longleftrightarrow$

Figure 65-Voltage Across Width Con trol ( 0.85 Volts PP) Depends on setling of width control
$\Rightarrow$


The following measurements represent two sets of conditions. In the first condition, a 2500 microvalt test pattern signal was fed into the receiver, the picture synchronized and the AGC control properly adjusted. The second condition was oblained by removing the antenna leade and short circuiting the receiver antenna terminals. Voltages shown are read with a "Senior VoltOhmyst" lype WV97A between the indicated terminal and chassis ground and with the receiver operating on 117 volts, 60 cycles, a-c. The symbol $<$ means less than.

Tube   No.	Tube Түре	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		$\begin{aligned} & 1 \\ & \text { Plate } \\ & \text { (ma.) } \end{aligned}$	$\underset{\substack{\text { Screen } \\ \text { (ma.) }}}{\text { in }}$	Notes on Measurements
				$\begin{gathered} \text { Pin } \\ \text { No. } \end{gathered}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	Pin   No.	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts			
V1	636	Mixer	$\underset{\text { Signal }}{2500 \mathrm{Mu.}}$	2	135	-	-	7	0	5	-3.25	7.4	-	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	2	130	-	-	7	0	5	-3.1	7.1	-	
V1	6 6]	R-F Oscillator	$\underset{\text { Signal }}{2500 \mathrm{Mu}}$	1	119	-	-	7	0	6	- -4.16	4.83	-	- Depending upon channel
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	1	104	-	-	7	0	6	- 2.37	4.6	-	
V2	6AG5	R.F   Amplifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \end{gathered}$	5	243	6	173	2	<0.1	1	-4.45	0.44	0.13	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	5	197	6	114	2	0.28	1	-0.31	8.6	2.35	
V101	6AU6	1st Pix. I.F Amplifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	205	6	232	7	0.15	1	-5.8	1.32	0.52	-
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	112	6	152	7	1.0	1	-0.6	6.8	2.8	
V102	6CB6	2nd Pix. I.F   Amplifier	$\begin{gathered} 2500 \mathrm{Mu.} \mathrm{~V} . \\ \text { Signal } \end{gathered}$	5	192	6	205	2	0.5	1	-5.8	4.4	0.8	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	118	6	122	2	1.38	1	-0.6	9.8	2.5	
V103	6AU6	3d Pix. 1.F Amplifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \\ \hline \end{gathered}$	5	190	6	228	7	0.2	1	-0.6	1.28	0.55	
			No Signa	5	85	6	145	7	1.8	1	0	6.5	2.98	
V104	6CB6	$\begin{aligned} & \text { 4th Pix. I-F } \\ & \text { Amplifier } \end{aligned}$	$\underset{\text { Signal }}{250 \mathrm{Mu} .}$	5	159	6	148	2	1.8	1	0	9.3	2.7	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	5	166	6	143	2	1.62	1	0	0.42	2.4	
V105	6AL5	Picture   2d Det.	$\underset{\text { Signal }}{2500 \mathrm{Mu} .}$	2	-2.3	-	-	5	0	-	-	8.2	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	2	-0.52	-	-	5	0	-	-	$<0.1$	-	
V105	6AL5	AGC   Rectifier	$\begin{gathered} 2500 \mathrm{Mu.} \mathrm{V.} \\ \text { Signal } \end{gathered}$	7	-9.0	-	-	1	0	-	-	0.12	-	
			No Signal	7	-2.45	-	-	1	0	-	-	<0.1	-	
V106	12AU7	1st Video Amplifier	$\underset{\text { Signal }}{2500 \mathrm{Mu} .}$	1	100	-	-	3	1.0	2	-2.4	3.8	-	At maximum contrast
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	1	48	-	-	3	0.7	2	-0.38	2.7	-	
			$\underset{\text { Signal }}{2500 \mathrm{Mu} .}$	1	180	-	-	3	9.1	2	-2.9	0.69	-	At minimum contrant
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	1	100	-	-	3	5.9	2	-0.38	0.6	-	
V106	12AU7	2d Video Amplifier	$\underset{\text { Signal }}{2500 \mathrm{Mu} .}$	6	221	-	-	8	1.66	7	-6.2	7.5	-	At maximum contrast
			No Signa	6	191	-	-	8	2.6	7	-1.0	11.1	-	
			$\underset{\text { Signal }}{2500 \mathrm{Mu}}$	6	189	-	-	8	2.75	7	-2.6	12.5	-	At minimum contrast
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	6	188	-	-	8	2.69	7	-0.4	12.3	-	
$\begin{gathered} \mathrm{V}_{1} 07 \\ \mathrm{~A} \end{gathered}$	12AU7	D-C Rest. \& Sync Sep.	$\underset{\text { Signal }}{2500 \mathrm{Mu} .}$	1	4.6	-	-	3	48.0	2	-6.2	<0.1	-	At maximum contrant
			No Signal	1	2.8	-	-	3	4.6	2	-0.3	<0.1	-	


Tube No.	Tube Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		I Plate (ma.)		Notes on Measurements
				Pin   No.	Volts	Pin   No.	Volts	Pin No.	Volts	Pin   No.	Volts			
$\begin{gathered} \text { V107 } \\ \text { B } \end{gathered}$	12AU7	Snyc Sep.   \& Amplifier	$2500 \mathrm{Mu} . \mathrm{V}$. Signal	6	44.1	-	-	8	5.9	7	5.69	2.47	-	
			No Signal	6	42.8	-	-	8	6.1	7	6.1	2.58	-	
V108	12LP4	Kinescope	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	Cap	-10,000	10	405	11	69	2	34	0.075	-	*Average Brightness
			No Signal	Cap	$\cdot 10.000$	10	405	11	40	2	9.5	0.04	-	- Average Brightness
V109	6AV6	Vertical Oscillator	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Siqnal } \end{gathered}$	7	93	-	-	2	0	1	-11.2	0.15	-	
			No Signal	7	93	-	-	2	0	1	-11.1	0.15	-	
V110	6AQ5	Vertical Output	$2500 \mathrm{Mu} . \mathrm{V} \text {. }$ Signal	5	250	6	250	2	19.0	1	0	13.9	1.20	
			No Signal	5	248	6	248	2	18.8	1	0	13.8	1.20	
V111	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Horizontal Osc. Control	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Siqnal } \end{gathered}$	2	185	-	-	3	25.0	1	-2.0	. 33	-	
			No Siqnal	2	181	-	-	3	16.3	1	-2.9	. 31	-	
V111	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Horizontal Oscillator	$\underset{\text { Siqnal }}{2500 \mathrm{Mu} .}$	5	161	-	-	6	0	4	-53	1.35	-	
			No Siqnal	5	158	-	-	6	0	4	-54	1.35	-	
V112	$\begin{aligned} & \text { 6AU5 } \\ & \text { GT } \end{aligned}$	Horizontal Output	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	- 440	8	189	3	19.0	1	-8.0	77.0	11.2	-5000 volt
			No Siqnal	5	-435	8	185	3	18.6	1	-7.4	75.0	11.0	pulse present
V113	$\begin{aligned} & \text { 183GT } \\ & / 8016 \end{aligned}$	H. V. Rectilier	Brightness Min.	Cap	-	-	-	287	$\cdot 10,100$	-	-	0.075	-	-10.100 volt
			Brightness Average	Cap	-	-	-	287	$\cdot 10.100$	-	-	0.040	-	pulse present
V114	$\begin{aligned} & 6 W^{4} \\ & \text { GT } \end{aligned}$	Damper	$\begin{gathered} 2500 \text { Mu. V. } \\ \text { Siqnal } \end{gathered}$	5	269	-	-	3	- 430	-	-	88	-	3000
			No Signal	5	264	-	-	3	$\bullet 429$	-	-	87	-	se present
V115	6AU6	1st Sound I-F. Amp.	2500 Mu. Siqnal	5	234	6	168	7	0.98	1	0	8.1	3.24	
			No Siqnal	5	231	6	165	7	0.95	1	0	7.9	3.30	
V116	6AU6	2d Sound   I-F Amp.	2500 Mu . V. Signal	5	200	6	73	7	0	1	-0.45	3.73	1.37	
			No Signal	5	198	6	75	7	0	1	-0.53	3.64	1.28	
V117	6AL5	Sound Discrim.	$2500 \mathrm{Mu} . \mathrm{V} .$   Siqnal	2	-0.6	-	-	5	0.1	-	-	-	-	
			No Siqnal	2	-1.52	-	-	5	1.5	-	-	侕	-	
V118	6AV6	1st Audio Amplifier	2500 Mu . V. Siqnal	7	96	-	-	2	0	1	-0.87	0.54	-	
			No Signal	7	95	-	-	2	0	1	-0.86	0.52	-	
V119	6AQ5	Audio Output	2500 Mu . V. Signal	5	257	6	271	2	19.8	7	0	28.5	1.97	
			No Signal	5	251	6	268	2	19.2	7	0	28.2	1.92	
SR101		Rectifier	2500 Mu . V.   Signal	-	0	-	-	-	141	-	-	226	-	
			No Signal	-	0	-	-	-	140	-	-	245	-	
SR102		Rectifier	2500 Mu . V. Signal	-	141	-	-	-	282	-	-	226	-	
			No Signal	-	140	-	-	-	280	-	-	245	-	

## R-F UNIT WIRING DIAGRAM



Figure 66-R.F Unit Wiring Diagram

## CRITICAL LEAD DRESS:

1. All leads in the picture and sound i-i circuits must be dressed as short and direct as possible with the exception of C107, Cll and Cll7 which are to be dressed with enough slack so as not to have to move the body of the capacitor to align that particular slage.
2. Dress the yellow lead from pin 3 of V106 sockel up in the air and away from V105 socket.
3. Dress all components conhected to V106 socket up and away from the chassis except Ll03.
4. Keep the body and coded end of L103 as close to pin 2 of V105 socket as possible.
5. Keep the bus from pin 5 of V105 socket to L102 as short as possible and employ sleeving to prevent shorting.
6. Dress the red lead from kinescope sockel away from V105 and V106 sockets and on power transiormer side of terminal boards.
7. Dress the yellow lead from the kinescope socket along the rear apron between T107 and V111 socket, up between V107 socket and the power transformer to the terminal board.
8. The green lead from the kinescope socket should be dressed away from all other leads and components and away from V106.
9. Pin 7 of V116 socket should be soldered to the chassis as short as possible.
10. Dress fuse in high voltage compartment so as not to short circuit to ground.
11. Dress the two filament leads away from the T108 high voltage winding by pulling them up through hole so as to have all slack on the transformer side of the insulating board.
12. Keep V113 filament leads away from the metal side of the high voltage compartment shield.
13. Dress Cl 58 on high voltage rectifier socket so as to keep the hot end of the capacitor away from the metal side of the high voltage compartment.
14. Keep all leads away from R177 for heat reasons.
15. Dress R210 and R211 away from all components on account of their heat.
16. Dress AC leads at S102 away from audio components on R194.
17. Clamp W105 in cable lance provided on rear apron.
18. Keep leads on C182 and C183 as short as possible.
19. Keep C133 dressed above leads.
20. Dress the body of Cl31 away from the chassis.
21. Keep Cl50 dressed away from the chassis.
22. Dress the orange lead from $\mathrm{Cl} 60-\mathrm{C}$ on the power transformer side of the terminal boards and around the rear apron side of V106 socket.
23. Dress the body of Rll9 as close to pin 5 on V104 socket as possible.
24. Dress the body of R124 as close to pin 2 on V105 socket as possible.
25. Keep the leads of Cl 22 and $\mathrm{Cl25}$ as short and direct as possible.
26. Keep the leads of $\mathrm{Cl2}$ as short as possible.
27. Dress the leads of the AGC switch S105 next to the base in the chassis and away from sound components.
28. Solder terminal on can of C160 to bracket along with Cl34.




## GENERAL DESCRIPTION

Model 2 T81 is a $121 / 2$-inch television radio phonograph combination. Two record changers are provided to play 78, 331/3 and 45 RPM records. The instrument employs 23 tubes plus 4 rectiliers and a 12 LP 4 kirescope.

Features of the television unit are full twelve channel cov.
erage: FM sound system: improved picture brilliance: picture A.G-C: A.F.C horizontal hold; stabilized vertical hold: two stages of video amplification: noise saturation circuits: improved sync separator and clipper; four me band width for picture channel and reduced hazard high voltage supply.

## Electrical and mechanical specifications

PICTURE SIZE. ....... 87 square inches on a 12LP4 kinescope

## teLEVISION R-F FREQUENCY RANGE

All 12 television channels, 54 mc . to 88 mc .0174 mc . 10216 mc . Fine Tuning Range. . $\pm 250 \mathrm{kc}$. on chan. 2, $\pm 650 \mathrm{kc}$. on chan. 13 Picture Carrier Frequency. . . . . . . . . . . . . . . . . . . . . . . . 25.50 mc. Sound Carrier Frequency . . . . . . . . . . . . . . . . . . . . . . . 21.00 mc. RADIO TUNING RANGE . . . . . . . . . . . . . . . . . . . . . . 540-1,600 kc. Radio Intermediate Frequency. . . . . . . . . . . . . . . . . . . . . . . 455 kc. POWER SUPPLY RATING...... 115 volts, 60 cycles, 235 watts RUDIO POWER OUTPUT RATING $\qquad$ 6.0 watts max. CHASSIS DESIGNRTIONS
Television Chassis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . KCS4 6
$\qquad$ 331/3/78 RPM Record Changer. . . . . . . . . . . . . . . . . . . . . . . . 960282 45 RPM Record Changer. . . . . . . . . . . . . . . . . . . .RP1 68 or RPI90 Refer to Service Data 960282 and RP168 or RP190 for information on the record changers.

LOUDSPEAEER-92569.9 (RL111-14). . . . . 12-inch PM Dynamic
Voice Coil Impedance. ................ . . 3.2 ohms at 400 cycles WEIGHT

Chassis with Tubes in Cabinet.......................... 148 lbs.
Shipping Weight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 lbs.

DINENSIONS (inches)	Whdth	Helght	Depth
Cabinet (outside)	$331 / 4$	$341 / 4$	23\%
TV Chassis (overall)	16	15	201/4

HECEIVER ANTENNA INPUT IMPEDANCE. . 300 ohms balanced
If necessary, the televition chassis may be fed separately from either a 300 -ohm balanced line or a 72 -ohm co-ax.
RCA TUBE COMPLEMENT
Tube Used
(Television Chassis)


(4) RCA 6AU6 ........................ 2nd Sound I-F Amplifier
(5) RCA 6AL5............................. Sound Discriminator
(6) RCA 6AU6........................ Ist Picture I-F Amplifier
(7) RCA 6CB6....................... 2nd Picture I-F Amplifier
(8) RCA 6AU6........................ 3rd Picture I-F Amplifier
(9) RCA 6CB6........................ 4th Picture I-F Amplitier
(10) RCA 6AL5...... Picture 2nd Detector and AGC Detector
(11) RCA 12AU7................. 1st and 2nd Video Amplifier
(12) RCA 12AU7............ DC Reslorer and Sync Separator
(13) RCA 6AV6..................... . Vertical Sweep Oscillator
(14) RCA 6AQ5 ........................ Vertical Sweep Output
(15) RCA 6SN7GT. . . Horizontal Sweep Oscillator and Control
(16) RCA 6AU5GT. ................... Horizontal Sweep Output
(17) RCA 6W4GT ........................................ Damper
(18) RCA 1B3.GT/8016................. High Voltage Rectifier
19) RCA 12LP4. ....................................... . Kinescope
(Radio Chassis)
(1) RCA 6BE6........................................... Converter
(2) RCA 6BA6........................................... I-F Amplifier
(3) RCA 6AV6......................... Detector and lst Audio
(4) RCA 6C4...................................... Phase Inverter
(5) RCA 6V6GT (2 tubes)......................... . . Audio Output
(6) RCA 6X5GT........................................... Rectifier

PICTURE INTERMEDIATE FREQUENCIES	FOCUS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Magnetic
Picture Carrier Frequency . . . . . . . . . . . . . . . . . . . . 25.50 mc.	
Adjacent Channel Sound Trap. . . . . . . . . . . . . . . . . 27.00 mc .	SWEEP DEFLECTION. . . . . . . . . . . . . . . . . . . . . . . Magnetic
Accompanying Sound Traps . . . . . . . . . . . . . . . . . 21.00 mc .	
Adjacent Channel Picture Carrier Trap. . . . . . . . . . . 19.50 mc .	SCANNING . . . . . . . . . . . . . . . . . . . . . . . . Interlpced, 525 line
SOUND INTERMEDIATE FREQUENCIES	HORIZONTAL SWEEP FREQUENCY . . . . . . . . . . . 15.750 cps
Sound Carrier Frequency . . . . . . . . . . . . . . . . . . . . 21.00 me:	
Sound Discriminator Band Width between peaks. .... 400 kc .	VERTICAL SWEEP FREQUENCY . . . . . . . . . . . . . . . . . . 60 cps
VIDEO RESPONSE. . . . . . . . . . . . . . . . . . . . . . . . To 4 mc.	FRAME FREQUENCY (Piclure Repetition Rate) . . . . . . . . 30 cps

## OPERATING INSTRUCTIONS

The following adjustments are necessary when turning the receiver on for the first time:

1. Turn the radio FUNCTION a witch to TV.
2. Turn the receiver "ON" and advance the SOUND VOl UME control to approximately mid-position.
3. Set the STATION SELECTOR to the desired channel.
4. Adjust the FINE TUNING control for best sound fidelity and the SOUND VOLUME control for suitable volume.
5. Turn the BRIGHTNESS control fully counter-clock. wise, then clockwise until a light pattern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZON. TAL hold control until a pic. ture is obtained and centered.
8. Adjust the PICTURE and brightness controls for suitable picture contrast and brightness.
9. After the receiver has been on for some time. it may be necessary to read-

just the FINE TUNING control slightly for improved sound fidelity.
10. In switching from one channel to another, it may be necessary to repeat steps 4 and 8.
11. When the set is turned on again after an idle period it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. If any adjustment is necessary, step No. 4 is generally sutficient.
12. It the positions of the controls have been changed. it may be necessary to ropeat steps 1 through 8.

RADIO OPERATION

1. Turn the radio FUNCTION switch to AM.
2. Tune in the desired station with the TUNING control.
PHONOGRAPH OPERATION
3. Turn the radio FUNCTION switch to 78.33 for operation of the 78/331, RPM changer or to 45 for operation of the 45 RPM changer.
4. Place a record on the appropriate changer and slip the changer power switch to "ON."

## REFER TO MODELS 2 T51 AND 2 T60 (PAGES 327 TO 341) FOR INSTALLATION INSTRUCTIONS, TELEVISION ALIGNMENT AND WAVEFORM PHOTOGRAPHS.

THE TELEVISION OF MODEL 2T81 IS VERY SIMILAR TO THE CHASSIS USED IN MODELS $2 T 51$ AND 2T60. WHEN REFERRING TO MODELS 2T51 AND $2 T 60$ IT SHOULD BE NOTED THAT VI18 (6AV6 lst Audio) AND V119 (6AQ5 Audio Output) ARE NOT USED IN MODEL $2 T 81$.

## HIGH VOLTAGE WARNING

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, DNVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.


Figure 2-R.F Unit Wiring Diagram
TELEVISION CHASSIS TOP VIEW


Figure 3-Chassis Top View


Figure 4 Yoke and Focus Magnet Adjustments


Figure 5-Rear Chassis Adjustments

REFER TO MODELS $2 T 51$ AND $2 T 60$ ON PAGES 327 AND 328 FOR INSTALLATION PROCEDURE.

## RADIO SCHEMATIC DIAGRAM



[^10]Figure 6-Radio Schematic Diagram

Test-Oscllator. - For all alignment operations, connect low side of the test-osc. to the receiver chassis, and keep the osc. output as low as possible to avoid a-v-c action. Output Meter. - Connect the meter across the speaker voice coil, and turn the receiver volume control to max. If any lead dressing is necessary. it should be done before aligning the receiver.

Steps	Connect the High Side of the Test Osc. to-	Tune Test Osc.	Function Switch	Tura Radio Dial to-	Adjust the following
1	Stator of Cl-2 in series with .01 mid .	455 kc . Modulated	AM	Low Freq. end of Dial	tTop and bot. cores of T1 and T2 (For max. voltage across voice coil.)
2	Short wire placed near lbop for radiated signal	1.620 kc .	AM	Min. capacity	Osc. Cl-1 for maximum output
3		1.400 kc .	AM	Tune to signal	Ant. C1-2 for maximum output
4		600 kc .	AM	600 kc .	†Osc. L3 for maximum output
5	Repeat steps 2, 3 and 4 for maximum output.				

+First peak T1 and T2 for maximum output. Then, starting with T2 use alternate loading. Connect a 47,000 -ohm resistor across the primary to load the plate winding while the grid winding of the same transformer is being peaked. Then load the grid winding with the 47,000 -ohm resistor while the plate winding is being peaked. $\dagger+$ "Rock" the gang condenser and adjust L 3 for maximum output.


Figure 7-Dial Cord and Drive Assembly

## CRITICAL LEAD DRESS

1. Dress all filament wiring down to the chassis and away from the audio coupling capacitors.
2. Dress the a-c power-switch leads away from all audio circuit components.
3. Dress all uninsulated bus wire so as to avoid short circuits.


Figure 8-Chassis, Top V'iew, Showing Adjustntents





Model 6 T53 "Neufort"
Mahogany Finish Metal


Model 6T64 "Kingsbury" Walnut, Muhoguny, Limed Oak


Model 6 T71 "Fuirfichl"
Walnar, Mahogany, Limed Oak


Model 6T54 "Kent" Mahogany Finush Meral


Model 6T65 "Highland" Wulnic, Muhogany, Limed Oak


Model oT74 "Regenuy" Walnut, Mahogany

(198) RCA Victor

TELEVISION RECEIVERS Models 6T53, 6T54, 6T64, 6T65, 6T71, 6T74, 6T75, 6T76
Chassis Nos. KCS47, KCS47T, KCS47A or KCS47AT

- Mfr. No. 274 Service Data
- 1950 No. T14 -


# PREPARED BY RCA SERVICE CO., INC. FOR <br> RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION CAMDEN, N. J., U. S. A. 



Madel $6 T 75$ "Modern'
Walnut, Muhoguny, Limed Oak


Model 6 T76 "Provincial" Mahogany, Natural Wialnut, Maple

## ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE....... 146 square inches on a 16GP4 Kinescope TELEVISION R-F FREQUENCY RANGE
All 12 television channels, 54 mc . to 88 mc .174 mc . to 216 mc . POWER SUPPLY RATING. ..... 115 volts, 60 cycles, 205 watts AUDIO POWER OUTPUT RATING. ............. . . 3.5 watts max. CHASSIS DESIGNATIONS
KCS47 or KCS47T. . . . . . . . . . . . . . . . . In Models 6 T53 and $6 T 54$ KCS47A or KCS47AT. .In 6T64, 6T65, 6T71, 6T74, 6T75 and 6T76 LOUDSPEAKERS
KCS47 or KCS47T.....(92580-4) 8" PM Dynamic, 3.2 ohms KCS47A or KCS47AT. . (92569-11) 12" PM Dynamic, 3.2 ohms WEIGHT AND DIMENSIONS (inches)

Model	Net Weight	Shipping Weight	Width	Height	Depth
$6 T 53$	92	117	$211 / 2$	21	20
$6 T 54$	106	139	$211 / 2$	37\%	20
$6 T 64$	88	107	233/4	$363 / 4$	191/4
$6 T 65$	94	112	271/4	$3731 /$	191/2
6 T71	108	131	28	$363 / 4$	221/4
6T74	113	131	$271 / 4$	363/4	$211 / 2$
$6 T 75$	122	. 144	$23^{1 / 2}$	41	21
6 T76	. 109	. 132	28	. 37	$211 / 2$

RECEIVER ANTENNA INPUT IMPEDANCE
Choice: $\mathbf{3 0 0}$ ohms balanced or 72 ohms unbalanced.

RCA TUBE COMPLEMENT


6T53, 6T54, 6T64, 6T65,

PICTURE INTERMEDIATE FREQUENCIES


SOUND INTERMEDIATE FREQUENCIES
Sound Carrier Frequency. . . . . . . . . . . . . . . . . . . . . . . 21.00 mc .
Sound Discriminator Band Width between peaks. . . . . 400 kc


## high voltage warning

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

## KINESCOPE HANDLING PRECAUTIONS

DO NOT REMOVE THE RECEIVER CHASSIS, INSTALL, REMOVE OR HANDLE THE KINESCOPE IN any manner unless shatterproof goggles and heavy gloves are worn. people NOT SO EQUIPPED SHOULD BE KEPT AWAY While handling kinesCOpes. keep the rine. SCOPE AWAY FROM THE BODY WHILE HANDLING.

## OPERATING INSTRUCTIONS

The following adjustment are necessary when turning the receiver on for the first time:

1. See that the TV.PH switch on the rear apron is in the "TV" position.
2. Turn the receiver "ON" and advance the SOUND VOL UME control to approximately mid-position.
3. Set the STATION SELECTOR to the deatred channel.
4. Adjust the FINE TUNING control for best sound fidelity and the SOUND VOLUME con. trol for suitable volume.
5. Turn the BRIGHTNESS control fully counter-clockwise, then clockwise until a light pattern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZONTA-L hold control until a picture is obtained and centered.
8. Adjust the PICTURE and BRIGHTNESS controls for suitable picture contrast and brightness.

9. After the receiver has been on for some time, it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.
10. In switching from one channel to another, it may be necessary to repeat ateps 4 and 8.
11. When the set is turned on again after an idle period it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. If any adjustiont is necessary, step number 4 is generally uufficiont.
12. If the positions of the controls have been changed, it may be necessary to repeat stepe 2 through 8.
13. To use a record player, plug the record-player output cable into the PHONO jack on the rear apron, and set the TV.PH switch to "PH."
14. On console type recaivers. to turn on station escutcheon light, pull out on picture contral knob, and push in to turn off.

Figure 1-Receiver Operating Controls

Check to see that the kinescope high voltage lead clip is in place.

Connect the antenna transmission line to the receiver antenna terminals. Plug a power cord into the 115 volt a-c power source and into the receiver interlock receptacle. Turn the receiver power awitch to the "on" position. the brightmens control fully clockwise, and the picture control counter-clockwise.

ION TRAP MAGNET ADJUSTMENT. - Set the ion trap mag. net approximately in the position shown in Figure 2. Starting from this position immediately adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Turn the focus control (shown in Figure 2) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches of this adjustment should be made with the brightness control at the maximum clockwise position with which good line focus can be maintained.


Figure 2-Yoke and Focus Magnet Adjustments
DEFLECTION YOKE ADJUSTMENT. - If the lines of the raster are not horisontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE ADJUSTMENTS. - It will now be necessary to obtain a tent pattern picture in order to make further adjustments.

If the Horizontal Oscillator and AGC System are operating properly, it should be possible to sync the picture at this point. However, if the AGC control is misadjusted, and the recoiver is overloading. it may be impossible to sync the picture.

If the receiver is overloading, turn S106 on the rear apron (see Figure 3) counter-clockwise until the set operates normally and the picture can be synced.

CHECK OF HORIZONTAL OSCILLATOR ALGNMENT. Turn the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be gradually reduced and when only 2 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull-in should occur when the control is approximately 90 degrees from the extreme counter-clockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the plature should be out of sync and should show 1 vertical or diagonal black bar in the raster.

If the receiver passes the above checks and the picture is normal and stable. the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Focus Magnet Adjustment."

ALIGNMENT OF HORIZONTAL OSCILLATOR. - If is the above check the receiver failed to hold syac with the hold control at the extreme counter-clockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull-in point, it will be necessary to make the follow. ing adjustments.

Horizontal Frequency Adjustment - Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the T108 harizontal frequency adjustment on top of the chassis until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster.

Horizontal Locking Range Adjustment.-Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. The picture may remain in sync. It so turn the Tl08 top core slightly and momentarily switch off channel. Repeat until the picture talls out of sync with the diagonal lines sloping down to the left. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 2 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer Ci47A slightly clockwise. If less than 2 bars are present, adjust Cl47A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 2 bars are present.

Repeat the adjustments under "Horisontal Frequency Rdjustment" and "Horizontal Locking Range Adjustment" until the conditions specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.

If it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Morizontal Oscillator by the method outlined in the alignment procedure on page 9. For lield purposes paragraph " $\boldsymbol{R}$ " under Horizontal Oscillator Waveform Adjustment may be omitted.


Figure 3-Rear Chassis Adjustments
FOCUS MAGNET ADJUSTMENT. - The locus coil should be adjusted so that there is approximately three-eighths inch of space between the rear cardboard shell of the yoke and the flat of the front face of the focus magnet. This spacing gives best average locus over the face of the tube.

The axis of the hole through the magnet should be parallel with the axis of the kinescope neck with the kinescope neck through the middle.

CENTERING ADJUSTMENT. - No electrical centering controls are provided. Centering is accomplished by means of a separate plate on the focus magnet. Some centering plates include a locking screw which must be loosened before centering, and others are held in adjustment by friction. Up and down adjustment of the plate moves the picture side to side and sidewise adjustment moves the picture up and down.

If a corner of the raster is shadowed, check the position of the ion trap magnet. Reposition the magnet within the range of maximum raster brightness to eliminate the shadow and recenter the picture by adjustment of the focus magnet plate. In no case should the magnet be adjusted to cause any loss of brightness since such operation may cause immediate or eventual damage to the tube. In some cases it may be necessary to shift the position of the focus magnet in order to eliminate a corner shadow.

WIDTH. DRIVE AND hORIZONTAL LINEARITY ADJUST. MENTS. - Adjustment of the horizontal drive control affects the high voltage applied to the kinescope. In order to obtain the highest possible voltage, hence the brightest and best focused picture, adjust horizontal drive counter-clockwise as lar as possible without stretching the left side of the picture. As a first adjustment, set the horizontal drive trimmer C147B one-half turn out from maximum capacity.
Turn the horizontal linearity coil out until appreciable loms in width occurs, then in until nearly maximum width and the best linearity is oblained.

Adjust the width control R177 to obtain carrect picture width.
A slight readjustment of these three controls may be necessary to obtain the best linearity.
height and vertical linearity ndjustments. -Adjust the height control (R151 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R156 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust centering to align the picture with the mask.

FOCUS. - Adjust the focus magnet for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

On focus magnets using two shunts, the one with the cable is the "fine adjustment" and the other is the "focus range" adjustment. In general, the two shunts should be adjusted to approximately equal positions.

Recheck the position of the ion trap magnet to make sure that maximum brightness is obiained.

Check to see that the cushion and yoke thumbscrews and the focus coil mounting screws are tight.


Figure 4-R.F Oscillator Adjustments
CHECR OF R.F OSCILLATOR RDJUSTMENTS. - Tune in all available stations to see if the receiver r-f oscillator is adjusted to the proper fiequency on all channels. If adjustments are required. these should be made by the method outlined in the alignment procedure on page 10. The adjustments for channels 2 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 4. Adjustment of channel 13 is on top of the chassis.

AGC CONTROL. - The AGC control switch is provided as an installation adjustment. The normal position for strong sig. nal areas is with the switch in the number 1 or counterclockwise position. If impulse type of interference is experienced, turn the switch to the number 2 or center position. In very weak signal areas in which impulse type interierence is experienced, furn the switch to position number 3 or fully clockwise. In this position, all AGC is removed and the re ceiver will overload if the input signal exceeds 200 microvolts. However, for signals under 200 microvolts, this position of the AGC control switch gives best noise immunity of sync.

[^11]CAUTION. - In some receivers, the FM trap L203 will ture down into channel 6 or even isto channel 5. Needless to say. such an adjustment will cause greatly reduced sensitivity on these channels. If channels 5 or 6 are to be received, check L203 to make sure that it does not affect sensitivity at these two channels.
Replace the cabinet back and reconnect the antenna leads to the cabinet back.

CABINET ANTENNA. - A cabinet antenna is provided in all except model 6T53 and 6T54 receivers and the leads are brought out near the antenna terminal board. The cabinet antenna may be employed in place of the outdoor antenna in areas where the signals are strong and no reflections are experienced.

VENTILATION CAUTION. - The receiver is provided with adequate ventilation holes in the bottom and back of the cabinet. Care should be taken not to allow these holes to be covered or ventilation to be impeded in any way.
II the receiver is to be operated with the back of the cabinet near a wall, at least a two-inch clearance should be maintained between cabinet and wall.

CHASSIS REMOVAL. - To remove the chassis from the cabinet for repair or installation of a new kinescope, remove the control knobs the cabinet back, unplug the speaker cable. the kinescope socket, the antenna cable. the pilot light cable on console models, the yoke and high voltage cable. Remove the yoke frame grounding strap on the wooden cabinet models. Take out the six chassis bolts under the cabinet. Withdraw the chassis from the back of the cabinet.

KINESCOPE HANDLING PRECAUTION. - Do not install, remove, or handle the kinescope in any manner, unless shatterprool goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling.

To remove the kinescope from the cabinet, take out the four screws and one wing screw which hold the yoke frame to the cabinet. Remove the kinescope, the yoke frame with yoke and focus magnet as an assembly.

INSTALLATION OF KINESCOPE. - Handle this tube by the metal rim at the edige of the screen. Do not cover the glass bell of the tube with fingermarks as it will produce leakage paths which may interfere with reception. If this portion of the tube has inadvertently been handled, wipe it clean with a soft cloth moistened with "dry" carbon tetrachloride.

Wipe the kinescope screen surface and tront panel safely glass clean of all dust and fingermarks with a soft cloth moistened with "Windex" or similar cleaning agent.

Turn the tube so that the key on the base of the tube will be down and insert the neck of the kinescope through the deflection coil and locus magnet. If the tube sticks, or fails to slip into place smoothly, investigate and remove the cause of the trouble. Do not force the tube.
Replace the kinescope and yoke frame assembly in the cabinet. Insert the four screws and wing screw and tighten.

Slip the kinescope as far forward as possible. Slide the kinescope cushion firmly up against the flare of the tube and tighten the adjustment wing screws. Slide the deflection yoke as far forward as possible. If this is not done, difficulty will be encountered in adjusting the ion trap and locus magnet because of shadows on the corner of the raster.

Slide the chassis into the cabinet, then insert and tighten the six chassis bolts.

Slip the ion trap magnet over the neck of the kinescope.
Connect the kinescope socket to the tube base and connect the high voltage lead from the rim of the kinescope into the high voltage bushing on the high voltage compartment.

Reconnect all other cables. Do not forget to replace the yoke frame grounding strap. Periorm the entire set-up procedure beginning with Ion Trap Magnet Adjustment.

## CHASSIS TOP VIEW

6T53, 6T54, 6T64, 6T65, 6T71, 6T74, 6T75, 6T76


Figure 5-Chassis Top View

## ALIGNMENT PROCEDURE

TEST EQUIPMENT. - To properly service the television chassis of this receiver, it is recommended that the following test equipment be available:

R-F Sweep Generator meeting the following requirements:
(a) Frequency Ranges

20 to $30 \mathrm{mc} ., 1 \mathrm{mc}$. and 10 mc . sweep width
50 to 90 mc. sweep width
170 to $225 \mathrm{mc} ., 10 \mathrm{mc}$. sweep width
(b) Output adjustable with at least I volt maximum.
(c) Output constant on all ranges.
(d) "Flat" output on all attenuator positions.

Cathode-Ray Oscilloscope. - For alignment purposes, the oscilloscope employed must have excellent low frequency and phase response, and should be capable of passing a 60 -cycle square wave without appreciable distortion. While this requirement is not met by many commercial instruments. RCA Oscilloscopes, types WO.55A, WO-58A, WO-79A, and WO-60C fill the requirement and any of these may be employed.

For video and sync waveform observations, the oscilloscope must have excellent frequency and phase response from 10 cycles to at least two megacycles in all positions of the gain control. The RCA types WO-58A and WO.79A are ideally suited for this purpose.

Signal Generator to provide the following frequencies with crystal accuracy.
(a) Intermediate irequencies
19.50 mc . adjacent channel picture trap
21.00 mc . sound $\mathrm{i} \cdot \mathrm{f}$ and sound traps
22.3 and 25.4 mc . conv. and first pix $\mathrm{j} \cdot \mathrm{f}$ trans.
25.3 mc . second picture i.f transformer
22.5 mc . fourth picture i-f transformer
21.75 mc . third picture i.f transformer
24.35 mc . lifth picture i. 1 coil
25.50 mc . picture carrier
27.00 mc . adjacent channel sound trap
(b) Radio frequencie:

Channel Number	Picture Carrier Freq. Mc.	Sound Carrier Freq. Mc.
2.	55.25	. 59.75
3.	. 61.25.	. 65.75
4.	. 67.25	. 71.75
5.	. 77.25.	. . 81.75
6.	. 83.25	. 87.75
7.	.175.25.	. 179.75
8.	. 181.25	. 185.75
9.	. 187.25 .	. . 191.75
10.	.193.25.	. 197.75
11.	. 199.25 .	. 203.75
12.	. 205.25 .	. . 209.75
13.	.211.25.	. 215.75

(c) Output of these ranges should be adjustable and at least .1 volt maximum.

Heterodyne Frequency Meter with crystal calibrator if the signal generator is not crystal controlled.

Electronic Voltmeter of Junior or Senior "VoltOhmyst" Iype and a high voltage multiplier probe for use with this meter to permit measurements up to 15 kv .

Service Precautions. - If possible, the chassis should be serviced without the kinescope. However, if it is necessary to view the raster during servicing, it would be a great convenience to have a set of yoke, focus coil, kinescope socket, high voltage and speaker extension cables.

CAUTION. - Do not short the kinescope second anode lead. Its short circuit current presents a considerable overload on the high vollage rectilier V112.

Adjustments Required. - Normally, only the r.f oscillator and mixer lines will require the attention of the service technician. All other circuits are either broad or very stable and hence will seldom require readjustment.

ORDER OF ALIGNMENT. - When a complete receiver align ment is necessary, it can be most conveniently performed in the following order:
(1) Sound discriminator
(5) R.F. unit
(2) Sound i-i transformers
(6) Overall picture i-f
(3) Picture i-1 traps
(7) Horizontal oscillator
(4) Picture i-f transformers
(8) Sensitivity check

SOUND DISCRIMINATOR ALIGNMENT. - Set the signal generator for approximately 11 volt output at 21.00 mc . and connect it to the second sound $i-\frac{1}{2}$ grid, pin 1 of V116.

Detune T112 secondary (bottom) to the extreme counter. clockwise position.

Set the "VoltOhmyst" on the 3 -volt scale.
Connect the meter, in series with a 1 -megohm resistor, to pin 7 of V117.

Adjust the primary of T112 (top) for maximum output on the meter.

Connect the "VoltOhmyst" to the junction of R192 and S103. Adjust T112 secondary (bottom). It will be found that it is possible to produce a positive or negative voltage on the meter dependent upon this adjustment. Obviously to pass from a positive to a negative voltage, the voltage must go through zero. T112 (bottom) should be adjusted so that the meter indicates zero output as the voltage swings from positive to nega. tive. This point will be called discriminator zero output.

Connect the sweep oscillator to the grid of the second sound i-l amplitier, pin 1 to V116.

Adjust the sweep band width to approximately 1 mc . with the center frequency at approximately 21.00 mc . and with an output of approximately .1 volt.

Connect the oscilloscope to the junction of R192 and S103. The pattern obtained should be similar to that shown in Fig. ure 12. If it is not, adjust T112 (top) until the wave form is symmetrical.

The peak-to-peak band width of the discriminator should be approximately 400 kc . and the trace should be linear from 20.925 mc . to 21.075 mc .

Note. - The bottom core and atud in the discriminator transformer are at plus $B$ potential.

SOUND I-F ALIGNMENT. - Connect the sweep oscillator to the first sound i.f amplifier grid, pin 1 of V115.

Insert a 21.00 mc . marker signal from the signal generator into the first sound i-f grid.

With the oscilloscope connected as above, adjust T111 for maximum gain and symmetry about the 21.00 mc . marker on the discriminator pattern. The pattern obtained should be similar to that shown in Figure 12.

The output level from the sweep should be set to produce approximately 1.0 volt peak-to-peak at the junction of R192 and S103. when the linal touches on the above adjustment are made. It is necessary that the sweep output voltage should not exceed the specified values otherwise the response curve will be broadened, permitting slight misadjustment to pass unnoticed and possibly causing distortion on weak signals.

The band width at $70 \%$ response from the lirst sound $i-f$ grid to the second i-f grid should be approximately 530 kc .

## ALIGNMENT PROCEDURE

PICTURE I-F TRAP ADIUSTMENT. - Connect the "VoltOhmyst" to the junction of R102 and R201.
Obtain a 7.5 volt battery capable of withstanding appreciable current drain and connect the ends of a 1.000 ohm potentiometer across it. Connect the battery positive terminal to chassis and the potentiometer arm to the junction of R102 and R201. Adjust the potentiometer for -3.0 volts indication on the "VoltOhmyst."
Set the channel switch to the blank position between channels number 2 and 13.

Connect the "VoltOhmyst" 10 pin 2 of V106 and to ground.
Connect the output of the signal generator to terminal D of T101.
Set the generator to each of the following frequencies and with a thin fiber screwdriver tune the specilied adjustment for minimum indication on the "VoltOhmyst." In each instance the generator should be checked against a crystal calibrator to insure that the generator is exactly on frequency.
(1) $21.00 \mathrm{mc} .-\mathrm{Tl} 103$ (top)
(4) 27.00 mc .-T104 (lop)
(2) $21.00 \mathrm{mc} .-\mathrm{T} 105$ (top)
(5) 19.50 mc .-T101 (lop)
(3) $27.00 \mathrm{mc}-\mathrm{T} 102$ (top)

In the above transformers using threaded cores, it is possible to run the cores completely through the coils and secure two peaks or nulls. The correct position is with the cores in the outside ends of the coils. If the cores are not in the correct position. the coupling will be incorrect and it will be impossible to secure the correct response.

PICTURE I-F TRANSFORMER ADJUSTMENTS. - Set the sig nal generator to each of the following frequencies and peak the specified adjustment for maximum indication on the "VoltOhmyst." During alignment, reduce the input signal if necessary to prevent overloading.

$$
\begin{array}{ll}
{ }^{\bullet} 24.35 \mathrm{mc}-\mathrm{L} 103 & 21.75 \mathrm{mc} .-\mathrm{Tl} 103 \text { (bottom) } \\
{ }^{2} 22.5 \mathrm{mc}-\mathrm{Tl} 04 \text { (bottom) } & 25.3 \mathrm{mc} .-\mathrm{Tl} 102 \text { (bottom) }
\end{array}
$$

-In some receivers R113 was 3.900, R119 was 8.200, and L114 was omitted, T104 (bottom) was tuned to 24.35 mc . and L103 was luned to 22.5 mc .

R-F UNIT ALIGNMENT. - Disconnect the co-ax link from terminal 2 of the r-f unit terminal board and connect a 39 ohm composition resistor between lugs 1 and 2.

Detune Tl by backing the core all the way out of the coil.
In early production units in which 144 is adjustable, back the L44 core all the way out. Back L203 core all the way out.

In order to align the r-f tuner, it will first be necessary to set the channel-13 oscillator to frequency. The shield over the bottom of the r -f unit must be in place when making any adjustments.

The oscillator may be aligned by adjusting it to beat with a crystal-calibrated heterodyne frequency meter, or by feeding a signal into the receiver at the r-f sound carrier frequency and adjusting the oscillator for zero output from the sound discriminator. In this latter case the sound discriminator must first have been aligned to exact frequency. Either method of adjustment will produce the same results. The method used will depend upon the type of test equipment available. Regardless of which method of oscillator alignment is used, the frequency standard must be crystal controlled or calibrated.

If the receiver oscillator is to be adjusted by the heterodyne frequency meter method, couple the meter probe loosely to the receiver oscillator.

If the receiver oscillator is adjusted by leeding in the r-f sound carrier signal, connect the signal generator to the receiver antenna terminals. Connect the "VoltOhmyst" to the sound discriminator output (junction of R192 and S103). Also couple the link loosely to lug 2 of the r-f unit terminal board so as to permit measurement of sound discriminator.

Set the channel selector switch to 13.
Adjust the frequency standard to the correct frequency $(236.75 \mathrm{mc}$. for heterodyne frequency meter or 215.75 mc . for the signal generator.

Set the fine tuning control to the middle of its range.

Adjust Cl for an audible beat on the heterodyne frequency meter or zero voltage from sound discriminator.

Now that the channel-13 oscillator is set to frequency, we may proceed with the r-f alignment.
Turn the AGC control to the counter-clockwise position.
Connect the bias box to terminal 3 of the r -f unit terminal board and adjust the bias box potentiometer for -3.5 volts.

Connect the oscilloscope to the test connection at R5 on top of the r-f unit.

Connect the r-f sweep oscillator to the receiver antenna terminals. The method of connection depends upon the output impedance of the sweep. The P300 connections for 300 -ohm balanced or 72 -ohm single-ended input are shown in the circuit schematic diagram. If the sweep ascillator has a 50 -ohm singleended output, 300 -ohm balanced output can be obtained by connecting as shown in Figure 7.


## Figure 7 -Unbalanced Sucep Cable Termination

Connect the signal generator loosely to the receiver antenna terminals.

Set the receiver channel switch to channel 8 .
Set the sweep oscillator to cover channel 8.
Insert markers of channel 8 picture carrier and sound carrier. 181.25 mc . and 185.75 mc .

Adjust C9, C11, C16 and C22 for approximately correct curve shape, frequency, and band width as shown in Fig. ure 15.

The correct adjystment of C22 is indicated by maximum amplitude of the curve midway between the markers. C16 tunes the rof amplifier plate circuit and affects the frequency of the curve most noticeably. C9 tunes the converter grid cir. cuit and affects the tilt of the curve most noticeably (assuming that C22 has been properly adjusted). C11 is the coupling adjustment and hence primarily affects the response band width.

Set the receiver channel switch to channel 6.
Adjust the frequency standard to the correct frequency ( 108.75 mc . for heterodyne frequency meter or 87.75 mc . for the signal generator).

Set the fine tuning control to the middle of its range.
Adjust LS for an audible beat on the heterodyne frequency meter or zero voltage from sound discriminator.

Set the sweep generator to channel 6.
From the signal generator, insert channel 6 sound and picture carrier markers, 83.25 mc . and 87.75 mc .
Adjust L42, L45 and L49 for proper response as shown in Figure 15.

L42 is adjusted to give maximum amplitude of the curve between the makers. L45 primarily affects the tilt of the curve. L49 primarily affects the frequency of response.

Connect the "VoltOhmyst" to the r-f unit test point at R5.
Adjust C7 for -3.0 volts at the test point.
Retouch L42, L45 and L49 for proper response if necessary. If necessary, retouch Cll for proper band width on channel 6. Continue these setouching adjustments until proper response is obtained and -3.0 volts of oscillator injection are present at the test point.

Set the receiver channel selector switch to channel 8 and readjust Cl for proper oscillator frequency.

Set the sweep oscillator and signal generator to channel 8.
Readjust C9, C16 and C22 for correct curve shape, frequency and band width. Readjust Cll only if necessary.

Switch the receiver, the sweep oscillator and signal generator to channel 13.

## ALIGNMENT PROCEDURE

Adjust L52 for maximum amplitude of the curve midway between markers and then overshoot the adjustment by turning the slug in the same direction from the initial selting a little more than the amount of turning required to reach maximum amplitude of response.

Adjust C22 for maximum amplitude of response.
Turn off the sweep generator. Adjust the L43 core for correct channel 13 oscillator trequency. then ovarshoot the adjustment by turning the slug a little more in the same direction from the initial setting. Reset the oscillator to proper frequency by adjustment of Cl .
Turn the sweep oscillator back on.
Check the response of channels 7 through 13 by switching the receiver channel switch, sweep oscillator and marker oscillator to each of these channels and observing the response and oscillator injection obtained. See Figure 15 for typical response curves. It should be found that all these channels have the proper shaped response with the markers above $80 \%$ response.

If the markers do not fall within this requirement, switch to channel 8 and readjust C9, C11, C16 and C22 as necessary. If C22 required adjustment, the adjustment should be overshot a small amount and corrected by adjustment of L52 to give maximum amplitude of response between the sound and picture carrier markers. The antenna circuit (L52, C22 2 is broad so that tracking is not particularly critical.

If the valley in the top of the selectivity curves for the high channels is deeper than normal, the curve can be flattened somewhat by decreasing the inductance of L44 by turning the core stud in. Be sure to check for undesirable resonant suckouts on channels 7 and 8 it this is done. In later production units. L44 may be fixed and not require adjustment.
Turn the sweep oscillator off and check the receiver chan. nel 8 r -f oscillator frequency. If the oscillator is of frequency overshoot the adjustment of Cl and correct by adjusting L43.

Turn the receiver channel selector switch to channel 6. Adjust L5 for correct oscillator frequency.
Turn the sweep oscillator on and to channel 6 and observe the response curve. If necessary readjust L42, L45 and L49. It should not be necessary to touch Cll.

Check the oscillator injection voltage at the test point. If necessary adjust C7 to give -3 volts injection. If C7 is adjusted, switch to channel 8 , and readjust C 9 for proper curve shape, then recheck channel 6.

Switch the receiver through channel 6 down through channel 2 and check for normal response curve shapes and oscilla. tor injection voltage.

Likewise check channels 7 through 13. stopping on 13 for the next step.

With the receiver on channel 13, check the receiver oscillator frequency. Correct by adjustment of Cl if necessary.

Adjust the oscillator to frequency on all channels by switching the receiver and the frequency standard to each channel and adjusting the appropriate oscillator trimmer for the specified indication. It should be possible to adjust the oscillator to the correct frequency on all channels with the fine luning control in the middle third of its range.

Channel   Number	Picture   Carrier   Freq. Mc.	Sound   Carrier   Freq. Mc.	Receiver   R-F Osc.   Freq. Mc.	Channel   Oscillator
Adjustment				

Switch to channel 8 and observe the response.
Adjust Tl clockwise while watching the change in response. When Tl is properly adjusted, the selectivity curve will be slightly wider with a slightly deeper valley in its top.

Switch through all channels and observe response, ascilla. tor injection and r-f oscillator frequency. Minor touch-ups of adjustments may be made at this time. However, if C7 or C9 cre changed appreciably, then a recheck of the oscillator frequency on all channels should be made.

Reconnect the link from Tlol to terminal 2 of the r-f unit terminal board.

Since T1 was adjusted during the r-f unit alignment it will be necessary to sweep the overall i.f response.
R.F UNIT TUBE CHANGES. - Since most of the circuits are low capacitance circuits the r-i unit may require readjustments when the tubes are changed.
If the 6CB6 r-f amplifier tube is changed, it may be necessary to readjust C16 and C22.

If the 6J6 oscillator and mixer tube is changed, then more extensive adjustments are required.

For good conversion efficiency, the oscillator injection to a triode mixer must be held reasonably close to the optimum value. Although there is some latitude in this level, it is nearly expended in the normal variation in injection from channel to channel. Consequently, the adjustment of C7 is limited primarily to establishing the conditions for good conversion. Since changes in oscillator in,ection affect conversion gain, it also affects the input capacity of the mixer, thus also affecting tracking of the mixer grid circuit. These tube variations with their consequent effect on circuit alignment thereby require readjustment of the r-f unit if maximum conversion efficiency is to be retained after the 6J6 tube is changed. It may be possible, however, to try several 616 tubes and select one which gives satisfactory performance without realignment.

SWEEP ALIGNMENT OF PIX I-F. - Set the r-f unit bias to -3.5 volts.

Connect a 47 ohm resistor across the link circuit at T101 terminals C and D .

## Remove the second picture i-f tube.

With the oscilloscope connected to the r-f unit test connection and the sweep oscillator connected to the antenna terminals, set the sweep output to give 0.1 volt peak-to-peak on the oscilloscope.

Switch through the channels and select one that is essentially flat and with the two carriers at $90 \%$ response or higher. Channel 6 is usually the most desirable for this test.

Remove the 47 ohm resistor and replace V102.
Connect the oscilloscope to terminal 2 of V106 socket.
Clip 330 ohm resistor3 across R106, R108, R113 and R119.
Connect the bias box to the junction of R102 and R201. Adjust the box for -1 volt.

Adjust the sweep oscillator output to give 0.5 voll peak-topeak on the oscilloscope.

Connect the signal generator loosely to the i-1 amplifier.
Adjust Tl and T101 bottom core to obtain the response curve shown in Figure 13.

Remove the 330 ohm resistors across R106, R108. R113 and R119.

Set the i-f bias to -4.5 volts.
Adjust the sweep output to give 3 volts peak-to-peak on the oscilloscope.

Retouch T1. T101 bottom, T102 bottom. T103 bottom. T104 bottom and L103 to obtain the response curve shown in Figure 14.

## ALIGNMENT PROCEDURE

HORIZONTAL OSCILLATOR ADJUSTMENT. - Normally the adjustment of the horizontal oscillator is not considered to be a part of the alignment procedure, but since the oscillator waveform adjustment requires the use of an oscilloscope, it can not be done conveniently in the field. The waveform adjustment is made at the factory and normally should not require readjustment in the field. However, the wavelorm adjustment should be checked whenever the receiver is aligned or whenever the horizontal ascillator operation is improper.

Horizontal Frequency Adjustment. - With a clip lead, short circuit the coil between terminals $C$ and $D$ of the horizontal oscillator transformer T108. Tune in a television station and sync the picture if possible.
A. - Turn the horizontal hold control R166 to the extreme clockwise position. Adjust the T108 Frequency Ad,ustment (atop the chassis) so that the picture is just out of sync and the horizontal blanking appears in the picture as a vertical bar. The position of the bar is unimportant.
B. - Turn the hold control approximately one-quarter of a turn from the extreme clockwise position and examine the width and linearity of the picture. If picture width or linearity is incorrect, adjust the horizontal drive control C147B, the width control R177 and the linearity control L110 until the picture is correct. If Cl47B, R177 or L110 were adjusted, repeat step A above.

Korizontal Locking Range Adjustment. - Turn the horizontal hold control fully counter-ciockwise. The picture may remain in sync. If so, turn the T108 top core slightly and momentarily switch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Momentarily remove the signal by switching off channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just belore the picture pulls into sync.

If more than 9 bars are present just before the picture puila into sync, adjust the horizontal locking range trimmer C147A slightly clockwise. If less than 7 bars are present. adjust C147A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 7 to 9 bars are present.

Horizontal Osellator Waveform Adjustment. - Remove the shorting clip from terminals $C$ and D of T108. Turn the horizontal hold control to the extreme clockwise position. With a thin fibre screwdriver, adjust the Oscillator Waveform Ad ustment Core of T108 (under the chassis) until the horizontal blanking bar appears in the center.
A. - Connect the low capacity probe of an oscilloscope to terminal C of T108. Turn the horizontal hold control one-quarter turn from the clockwise position so that the picture is in sync. The pattern on the oscilloscope should be as shown in Figure 16. Adjust the Oscillator Waveform Adjustment Core af T108 until the two peaks are at the same height. During this adjustment, the picture must be kept in sync by readjusting the hold control if necessary.

This adjustment is very important for correct operation of the circuit. If the broad peak of the wave on the oscilloscope is lower than the sharp peak, the noise tmmunity becomes poorer, the stabilizing effect of the tuned circuit is reduced and drift of the oscillator becomes more serious. On the other hand, if the broad peak is higher than the sharp peak, the oscillator is overstabilized. the pull-in range becomes inadequate and the broad peak can cause double triggering of the oscillator when the hold control approaches the ciockwise position.

Remove the oscilloscope upon compietion of this adjustment.
Check of Horizontal Oscillator Adjustments. - Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 2 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer C147A slightly clockwise. If less than 2 bars are present, adjust C147A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 2 bars are present.

Turn the horizontal hold control to the maximum clockwise position. The picture should be just out of sync to the extent that the horizontal blanking bar appears as a single vertical or diagonal bar in the picture. Adjust the T108 Frequency Adjustment until this condition is fultilled.

SENSITIVITY CHECK. - A comparative sensitivity check can be made by operating the receiver on a weak signal from a television station and comparing the picture and sound obtained to that obtained on other receivers under the same conditions.

This weak signal can be obtained by connecting the shop antenna to the receiver through a ladder type attenuator pad. The number of stages in the pad depends upon the signal strength available at the antenna. A sufficient number of stages should be inserted so that a somewhat less than normal contrast picture is obtained when the picture control is at the maxi. mum clockwise position. Only carbon type. resistors should be used to construct the pad.

RESPONSE CURVES. - The response curves shown on page 12 and referred to throughout the alignment procedure were taken from a production set. Although these curves are typical. some variations can be expected.

The response curves are shown in the classical manner of presentation, that is with "response up" and low trequency to the left. The manner in which they will be seen in a given test set-up will depend upon the characteristics of the oscilloscope and the sweep generator. The curves may be seen inverted and/or switched from left to right depending on the deflection polarity of the oscilloscope and the phasing of the sweep generator.

NOTES ON R-F UNIT ALIGNMENT. - Because of the irequency spectrum involved and the nature of the device, many of the r-f unit leads and components are critical in some respects. Even the power supply leads form loops which couple to the tuned circuits, and if resonant at any of the frequencies involved in the performance of the tuner, may cause serious departures from the desired characteristics. In the design of the receiver these undesirable resonant loops have been shitted far enough away in frequency to allow reasonable latitude in their components and physical arrangement without being troublesome. When the r-f unit is aligned in the receiver, no trouble from resonant loops should be experienced. However. if the unit is aligned in a jig separate from the receiver, attention should be paid to insure that unwanted resonances do not exist which might present a faulty representation of r-f unit alignment.

A resonant circuit exists between the r-f tuner chassis and the outer shield box, which couples into the antenna and r-f plate circuits. The frequency of this resonance depends on the physical structure of the shield box, and the capacitance between the tuner chassis and the front plate. In the KRK8 units, this resonance should fall between 120 and 135 mc . and is controlled in the design by using insulating washers of different thicknesses (in the front plate to tuner chassis mounting) to comipensate for differences in the shield boxes of ditferent models of receivers. The performance of the tuner, particularly on channels 7 and 8 will be impaired if the proper washers for the particular shield box involved are not used. Obviously then, if the r-f unit is removed for service, the washers should be replaced in the correct order when the unit is replaced.

6T53, 6T54, 6T64, 6T65. 6T71, 6T74, 6T75, 6T76

## ALIGNMENT TABLE

the detailed alignment procedure beginning on page 6 should be read before alignment by use of the table is attempted

$\begin{aligned} & \text { STEP } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { SIGNAL } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$	SIGNAL GEN. FREQ. MC.	$\begin{aligned} & \text { CONNECT } \\ & \text { SWEEP } \\ & \text { GENEAATOR } \\ & \text { TO } \end{aligned}$		$\begin{gathered} \text { CONNECT } \\ \text { OSCILLOSCOPE } \\ \text { TO } \end{gathered}$	$\begin{aligned} & \text { CONNECT } \\ & \text { "VOLTOHMYST" } \\ & \text { TO } \end{aligned}$	miscellaneous CONNECIIONS AND INSTRUCTIONS	ADJUST	$\begin{aligned} & \text { REFER } \\ & \text { TO } \end{aligned}$
discriminator and sound i-f alignment									
1	2nd sound i-l grid (pin 1, V116)	$\begin{gathered} 21.00 \\ .1 \text { volt } \\ \text { output } \end{gathered}$	Not used		Not used	In serles with 1 meg. to pin 7 of V117	Meter on 3 volt scale	Detune T112 (bot.) Adjust T112 (top) for max. on meter	Fig. 12   Fig. 9   Fig.
2	"	"	"		"	$\begin{aligned} & \text { Junction of R192 } 6 \\ & \text { S103 } \end{aligned}$	Meter on 3 volt scale	T112 (boltom) for zero on meter	Fig. 12   Fig.
3	"	"	2nd sound i-l grid (pin 1, Vil6)	$\begin{gathered} \hline 21.00 \\ \text { conter } \\ 1 \text { me. } \\ \text { wide } \\ .1 \text { v. out } \end{gathered}$	Junction of R192 \& S103	Not used	Check for symmetri form (positive of neq adjust Tlll (top) unt	cal response wave gative). It not equal ll they are equal.	Fig. 12   Fig. 9
4	lst sound i-f grid (pin 1, V115)	$\begin{aligned} & 21.00 \\ & \text { se- } \\ & \text { duced } \\ & \text { output } \end{aligned}$	lat sound i-f grid (pln I, V115)	$\begin{gathered} 21.00 \\ \text { reduced } \\ \text { output } \end{gathered}$	"	"	Sweep oulput reduced to provide 1.0 volt p-to-p on scope	T111 for max. gain and symmetry at 21.00 mc .	Fig. 12   Fig. 10   Fig. 8

## PICTURE I-F AND TRAP ADJUSTMENT

5	Not used		Not used	-	Not used	$\text { Junction of R102 } 6$ R201	Connect bias box to junction of R102 6 R201 and to ground	Adjust potentiometer for -3.0 volts on meter	Fig. 10
6	$\begin{aligned} & \text { Torminal D of } \\ & \text { Tiol } \end{aligned}$	21.00	"	-	"	Pin 2 of V106 and to ground	Meter on 3 volt scale. Receiver between 2813	T103 (top) for min. on meter	Fig. 10   Fig. 8
7	"	21.00	"	-	"	"	"	T105 (top) for min.	Fig. 8
1	"	27.00	"	-	"	"	\%	T102 (top) 10 r min .	\%
9	"	27.00	"	-	"	"	"	T104 (lop) for min.	"
10	"	19.50	"	-	"	"	"	T101 (top) for min.	"
11	"	24.35	"	-	"	"	"	1103 (top) for max.	"
12	"	22.5	"	-	"	"	"	T104 (bot.) for max.	Fig. 9
13	"	21.75	"	-	"	"	"	T103 (bot.) for max.	.
















> Position \#1



Posirion \#3 co







 ng or Capacaloz $\underset{\substack{\text { PICTURE Bend } \\ \text { Under cortal } \\ \text { crit }}}{ }$
















 Trom occh other to redue couplus.














Fikure $25-$ Yideo Response at
Minimum Connras







 Figure 28-Verical (5.3 Vous PP) Fizurre $29 \rightarrow$ Horizonal ( 5.3 Vous PP)
alignment table



WAVEFORM PHOTOGRAPHS
Taken from RCA WO58A Oscilloscope

Plate of ist Video Amplifier (Pin 1 of V106) (l2AU7)
Voltage depends on setting of picture control

Figure 30—Vertical (3.18 Volts PP) 4

Figure 31-Horizontal (3.18 Volts PP) $\rightarrow$

Grid of 2nd Video Amplifier (Pin 7 of V106) (12AU7)
Voltage depends on setiing of picture control

Figure 32-Vertical (3.18 Volts PP) $\leftrightarrow$

Figure 33—Horizontal (3.18 Volts PP) $\rightarrow$

Plate of 2nd Video Amplifier (Picture Max.)
(Pin 6 of Vl06) (l2AU7)
Voltage depends on setting of picture control

Figure 34-Vertical (25.90 Volts PP) $4+$

Figure 35-Horizontal (25.90 Volts PP) $\rightarrow$

Cathode of Sync Separator
(Pin 8 of V107B) (KCS47 or KCS47A)
(Pin 6 of V108A) (KCS47T or $K C S 47 A T$ )

Figure 36_Vertical (25.90 Volts PP) $\longleftarrow \leftarrow$

Figure 37-Horizontal (25-90 Volts PP) $\rightarrow>$

Cathode of D-C Restorer (Pin 3 of V107) (12AU7) Voltage depends on setting of picture control

Figure 38_Vertical (20.80 Volts PP)
4
Figure 39-Horizontal (20-80 Volts PP) $\rightarrow$

Grid of D-C Restorer (Pin 2 of V107) (12AU7)
Voltage depends on setting of picture control

Figure $40-$ Vertical (3.10 Voles PP) $\leftarrow 4$

Figure 41-Horizontal (3.10 Volts PP) $\rightarrow$

6T53, 6T54, 6T64, 6T65 6T71, 6T74, 6T75, 6T76


6T53, 6T54, 6T64, 6T65.
6T71, 6T74, 6T75, 6T76


## WAVEFORM PHOTOGRAPHS

Taken from RCA WOS8A Oscilloscope

Grid of Sync Separator
(Pin 7 of V107B) (KCS47 or KCS47A) (Pin 4 of V108A) (KCS47T or KCS47AT)
Voltage depends on setting of picture control

Figure $42-$ Vertical (6.8 Volts PP) 4

Figure 43-Horizontal (6.8 Volts PP) $\rightarrow$


Cathode of Sync Separator
(Pin 8 of V107B) (KCS47 or KCS47A)
(I'in 6 of V108A) (KCS47T or $K C S 47 A T$ )
Voltage depends on setting of picture control

Figure 46-Vertical (.8-1.0 Volt PP)

$$
44
$$

Figure 47ー-Horizontal (.8-1.0 Volt PP) $\rightarrow$


Figure 48-Output of Integrating Net. work (Junction of Cl39. C140 and R146) (45 Volts PP)
$\leftarrow \leftarrow$
Figure 49-Grid of Vertical Oscillator (Pin 5 of I'108) (KCS47 or KCS47A) (Pin l of llo8B) (KCS47T or KCS47AT)
(180 Volts PP)
$\Rightarrow$


Figure so-Plate of Vertical Oscillator (I'in 3 of V108) (KCS47 or KCS47A) (Pin 2 of V108B) (KCS47T
or KCS47AT)
(120 Volts PP)
$\leftarrow+$
Figure 51-Grid of Vertical Output (190 Volts PP) (Pin 5 of V109) (6K6GT)
$\Rightarrow$


Figure 52-Plate of Vertical Output (1300 Volts PP) (Pin 3 of V109) (6K6GT)

$$
\leftarrow 4
$$

Figure53-Input of Vertical Deflecion Coils ( 15 Volts PP) (Voltage Across Pins 1 and 2 of J101F)
$\rightarrow$


WAVEFORM PHOTOGRAPHS
Taken from RCA WO58A Oscilloscope

Figure 54-Grid of Horizontal Oscil lator Control (22 Volts PP) (Pin 1 of V110) (6SN7GT)
$\leftarrow$

Figure 55-Cathode of Horizontal Oscillator Control (1.0 Volt PP) (Pin 3 of V110) (6SN7GT)
$\rightarrow$

Figure 56-Junction of R162, R163 and R170 (52 Volts PP)
$\leftarrow$

Figure 57-Grid of Horizontal Oscil. lutor (340 Volts PP) (Pin 4 of V110) (6SN7GT)
$\Rightarrow$

Figure 58-Plate of Horizontal Oscillator ( 190 Volis PP) (Pin 5 of V110) ( OSNTGT $^{\prime}$ )

$$
\leftrightarrow 世
$$

Figure 59-Terminal "C" of T108 (120 Volts PP)
$\Rightarrow$

Figure 60-Input to Horizontal Output Tube (80.110 Volts PP) (Junction of C155 and C147B)
$\leftarrow \leftarrow$
Figure 61-Plate of Horizontal Output (Approx. 6,000 Volls PP) (Measured |Through a Capacity Voltage Divider Connected from Top Cap of V111 to Ground)
$\rightarrow$

Figure 62- Cathode of Horizontal Out. put Tube (9.12 Volss PP) (Pin 3 of V111) (6BG6G)
$\leftarrow 4$

Figure 63-Screen of Horizontal Out. put Tube (5.120 Volts PP) (Pin 8 of V111) ( 6 BG 6 G )
$\Rightarrow$

Figure 64-Cathode of Damper (3000 Volts PP) (Pin 3 of Vll3) (6W 4GT)

$$
\leftrightarrow \leftarrow
$$

Figure 65 —Plate of Damper (140 Volts PP) (Pin S of V113) (6W4GT)
$\rightarrow$

6T53, 6T54. 6T64, 6T65, 6T71, 6T74, 6T75, 6T76


VOLTAGE CHART
The following measurements represent two sets of conditions. In the first condition, a 2500 microvolt test pattern signal was fed into the receiver, the picture synced and the AGC control properly adjusted. The second condition was obtained by removing the antenna leads and short circuiting the receiver antenna terminals. Voltages shown are read with a WV97A Senior "VoltOhmyst" between the indicated terminal and chassis ground and with the receiver operating on 117 volts, 60 cycles, $\alpha-c$. The symbol $<$ means less than.

Tube No.	$\begin{aligned} & \text { Tube } \\ & \text { Type } \end{aligned}$	Function	Oparating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		$\begin{gathered} 1 \\ \text { Plate } \\ \text { (ma.) } \end{gathered}$	$\begin{gathered} 1 \\ \text { Scroen } \\ \text { (ma.) } \end{gathered}$	Notes on Mecasurements
				$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts			
V1	6 J 6	Mixer	$\underset{\text { Signal }}{2500 \text { Mu. V. }}$	2	144	-	-	7	0	5	-2.3	6.6	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	2	135	-	-	7	0	5	-2.1	5.6	-	.
V1	6 J 6	$\begin{gathered} \text { R-F } \\ \text { Oscillator } \end{gathered}$	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	1	100	-	-	7	0	6	-3.0	4.0	-	Depending upon channel
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	1	96	-	-	7	0	6	-2.7	3.9	-	
V2	6AG5	$\begin{gathered} \text { R-F } \\ \text { Amplifier } \end{gathered}$	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	250	6	130	2	0.1	1	-3.4	3.0	0.6	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	166	6	84	2	0.4	1	-0.2	10.3	2.3	
V101	6AU6	lst Pix. I-F Amplifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	195	6	222	7	0.3	1	-5.0	1.7	0.8	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	121	6	135	7	0.8	1	-0.8	5.2	2.2	
V102	6CB6	2nd Pix. I-F   Amplifier	$\begin{aligned} & 2500 \mathrm{Mu} . \mathrm{V} . \\ & \text { Signal } \end{aligned}$	5	222	6	203	2	0.3	1	-5.0	2.0	0.7	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	5	124	6	112	2	0.8	1	-0.8	5.5	1.6	
V103	6AU6	3rd Pix. I-F Amplifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	185	6	225	7	0.2	1	-5.0	1.7	0.7	
			No Signal	5	94	6	132	7	0.5	1	-0.75	4.9	2.0	
V104	6CB6	4th Pix. 1.F Amplifier	$\underset{\text { Signal }}{2500 \mathrm{Mu} . \mathrm{V} .}$	5	165	6	142	2	2.25	1	0	9.6	3.1	
			No Signal	5	118	6	132	2	2.1	1	0	9.0	3.1	
V105	6AL5	Picture 2nd Det.	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	7	-2.0	-	-	1	0	-	-	0.3	-	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	7	-0.5	-	-	1	0	-	-	<0.1	-	
V105	6AL5	AGC Rectifier	$\underset{\text { Signal }}{2500 \mathrm{Mu} .} \mathrm{V} .$	2	-9.5	-	-	5	0	-	-	<0.1	-	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	2	-2.0	-	-	5	0	-	-	<0.1	-	
V106	12AU7	1st Video Amplifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	1	100	-	-	3	1.2	2	-2.3	3.6	-	At maximum contrast
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	1	54	-	-	3	0.9	2	-0.5	2.6	-	
			$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	1	190	-	-	3	9.0	7	-2.6	0.9	-	At minimum contrast
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	1	122	-	-	3	6.9	7	-0.5	0.6	-	
V106	12AU7	2nd Video Amplifier	$\underset{\text { Signal }}{2500 \mathrm{Mu} .}$	6	330	-	-	8	125	2	118	9.3	-	At maximum contrast
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	6	295	-	-	8	121	2	110	13.6	-	
			$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	6	300	-	-	8	131	7	120	12.9	-	At minimum contrast
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	6	295	-	-	8	121	7	110	$13 . \varepsilon$	-	
$\begin{array}{\|c} \hline \text { V107 } \\ \mathbf{A} \\ \hline \end{array}$	$\begin{aligned} & 12 \mathrm{AU7} \\ & \mathrm{KCS} 47 \end{aligned}$	D.C Rest. \& Sync Sep.	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	1	5.0	-	-	3	45.5	2	$-4.7$	<0.1	-	At maximum contrast
	KCS47		$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	1	5.5	-	-	3	8.5	2	-0.7	<0.1	-	
$\begin{gathered} \mathrm{V}_{8} 107 \\ \hline \end{gathered}$	$\begin{aligned} & \text { 12AU7 } \\ & \text { XCS47 } \end{aligned}$	Syac Sep. $\&$ Amplifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	6	36	-	-	8	6.0	7	4.7	4.0	-	
	XCS47		$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	6	36	-	-	8	6.0	7	5.5	2.8	-	

6T53, 6T54, 6T64, 6T65,
VOLTAGE CHART
6T71, 6T74, 6T75, $6 T 76$

Tube No.	Tube Iype	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		$\stackrel{1}{\text { Plate }}$   (ma.)	$\stackrel{\text { I }}{\substack{\text { Screon } \\ \text { (ma.) }}}$	Noles on Measurements
				Pin   No.	Volts									
V107	$\begin{aligned} & \text { 12AU7 } \\ & \text { KCS47T } \end{aligned}$	DC Rest. \& Sync. Sep.	$2500 \mathrm{Mu} . \mathrm{V} .$   Signal	1	10	-	-	3	45	2	-4.5	-	-	At maximum contrast
	KCS47T		No Sígnal	1	8	-	-	3	1.7	2	-0.4	-	-	
	KCS47T		$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	6	7.2	-	-	8	54	7	0	-	-	
	KCS47T		No Signal	6	7.0	-	-	8	-	7	0	-	-	
V108A	$\begin{gathered} \text { 6SN7 } \\ \text { KCS47T } \end{gathered}$	Sync. Amplifier	$2500 \mathrm{Mu} . \mathrm{V} .$ Signal	5	50	-	-	6	7.8	4	7.4	-	-	
	KCS47T		No Signal	5	46	-	-	6	7.0	4	7.0	-	-	
V108	$\begin{aligned} & \text { 6SN7 } \\ & \text { or } 6 J 5 \end{aligned}$	Vertical Oscillator	$2500 \mathrm{Mu} . \mathrm{V} .$ Signal	${ }^{2}$	- 345	-	-	$\begin{gathered} 3 \\ \text { or } 8 \\ \hline \end{gathered}$	0	$\begin{gathered} 1 \\ 0 \times 5 \end{gathered}$	$\bullet-58$	0.4	-	- Depends on setting of height control
			No Signal	$\begin{gathered} 2 \\ 0 \\ 0 \end{gathered}$	- 395	-	-	$\begin{gathered} 3 \\ \text { or } 8 \end{gathered}$	0	$\begin{gathered} 1 \\ \text { or } 5 \end{gathered}$	- -58	0.4	-	
V109	6K6GT	Vertical Output	$2500 \mathrm{Mu} . \mathrm{V} .$ Signal	3	370	4	370	8	51	5	0	11.5	1.9	
			No Signal	3	365	4	365	8	51	5	0	11.4	1.9	
V110	$\begin{gathered} \text { 6SN7 } \\ \text { GT } \end{gathered}$	Horizontal Osc. Control	$2500 \mathrm{Mu} . \mathrm{V} .$   Signal	2 .	-160	-	-	3	- -4.6	1	*-14.6	0.32	-	- Depends on setting of hold control
			No Signal	2	-152	-	-	3	- -4.4	1	- -3.5	0.28	-	
V110	$\begin{gathered} \text { 6SN7 } \\ \text { GT } \end{gathered}$	Horizontal Oscillator	$2500 \mathrm{Mu} . \mathrm{V}$. Signal	5	230	-	-	6	0	4	-82	1.8	-	
			No Signal	5	225	-	-	6	0	4	-85	1.8	-	
V111	6BG6G	Horizontal Outpul	$2500 \mathrm{Mu} . \mathrm{V} .$ Signal	5	-630	8	335	3	7.2	5	-33	67	5.0	- 6000 volt pulse present
			No Signal	5	-630	8	329	3	7.2	5	-33	67.1	4.9	
V112	$\begin{gathered} \text { 1B3GT } \\ \text { /8016 } \end{gathered}$	H. V. Rectifier	Brightness Min.	Cap	.	-	-	287	-11,000	-	-	0	-	* 12,000 volt pulse present
			Brightness Maximum	Cap	-	-	-	$2 \& 7$	$\cdot 12,200$	-	-	0.1	-	
V113	$\begin{gathered} \text { 6W4 } \\ \text { CT } \end{gathered}$	Damper	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	387	-	-	3	-391	-	-	69	-	- 3000 volt pulse present
			No Signal	5	380	-	-	3	- 387	-	-	70	-	
V114	5U4G	Rectifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	486	- 368	-	-	2 ¢8	391	-	-	185	-	- AC measured with AC voltmeter
			No Signal	486	- 367	-	-	288	387	-	-	199	-	
V115	6AU6	1st Sound I.F Amp.	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	120	6	120	7	0.8	1	-0.2	6.8	2.9	
			No Signal	5	108	6	108	7	0.8	1	-0.1	6.2	2.8	
V116	6AU6	2nd Sound I.F Amp.	$2500 \mathrm{Mu} . \mathrm{V} .$ Signal	5	118	6	87	7	0	1	-1.3	4.9	2.8	
			No Signal	5	110	6	76	7	0	1	-0.5	6.9	3.1	
V117	6AL5	Sound Discrim.	$2500 \mathrm{Mu} . \mathrm{V} .$ Signal	2	-7.2	-	-	5	0	-	-	$<0.1$	-	
			No Signal	2	-10.0	-	-	5	0	-	-	$<0.1$	-	
V118	6AV6	1st Audio Amplifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	7	95	-	-	2	0	1	-0.5	0.5	-	
			No Signal	7	84	-	-	2	0	1	-0.4	0.4	-	
V119	6K6GT	Audio Output	$2500 \mathrm{Mu} . \mathrm{V} .$ Signal	3	352	4	368	8	131	5	112	28.7	4.3	
			No Signal	3	348	4	360	8	134	5	108	28.8	4.2	
V120	16GP4	Kinescope	$2500 \mathrm{Mu} . \mathrm{V} .$ Signal	Cone	11.000	10	384	11	100	2	46	$<0.1$	$<0.1$	
			No Signal	Cone	12,200	10	375	11	74	2	8.3	<0.1	<0.1	

## R-F UNIT WIRING DIAGRAM



Figure 66-R.F Unit Wiring Diagram

## CRITICAL LEAD DRESS:

1. All leads in the picture and sound i-f circuits must be dressed as short and direct as possible with the exception of C106, C107, C110 and C117, which are to be dressed with enough slack so as not to have to move the body of the capacitor to align that particular stage.
2. Dress all 1,500 mmi, 005 mfd and .01 mid capacitors in the If section with loads as short as ponsible.
3. Drees all wires betweon Tl0l and the rof unit in clamp.
4. Dreas C185 to act as shield for lead between pin 5 of V115 socket to TlllD and picture if circuits.
5. Diess the bodies of resistors R106, R108, R113, R119, R191, R192 and capacitor C176 as close to tube pin as ponsible.
6. Dress L114 with coded end as close to pin 2 of U105 socket as poasible.
7. The length of the bus wire from pin 2 of V116 to ground should not be shortened or rerouted.
8. Drets R194 as close to chasets with leads as short as poutble.
9. Dreas Cl99 with leade as short as possible and away from S108.
10. Eeep the leads on C126 as short and direct as ponsible.
11. Dress all components connected to V106 socket up and away from the chasais except L104.
12. Xeep the body and coded end of L104 as cloee to pin 2 of V105 socket as pomsible.
13. Dress the 4.5 mc . trap L 107 up and away from the chassis bose.
14. Dress C132 up in the air and towards V105 socket.
15. Dress R125 with body as close as possible to pin 2 of U106 sockel.
16. Keep body of R123 as close as possible to pin 2 of V105 socket.
17. Drass C133 and C190 away from C132, C151 and C153.
18. Dress the white wire from picture control R128-3 away from the chassis.
19. Dress all slack on kinescope socket leads under chamsin. Dress brown wire away trom any components associated with V10S or V106.
20. The green lead from the kinencope socket should be dreased away from all other leads and components and away from V106.
21. Drees R133 towards chasis rear apron.
22. Dress all leads in clampe on rear apion away trom V117. V104, V105, V108 sockets and S103.
23. Drese green wire from C147A up and away from chansle.
24. Dress blue wire of Tl07 toward front apron of chassis.
25. Dress. Cl53 down next to the chassis base.
26. Dress blue/white wire from hoight control R15l-3 under R180.
27. Dress R161, R162, R163, R164 and R170 up and away from the chasis and with a half-inch clearance from the soldering point.
28. Dress the yellow wire from pin 3 of V110 wocket over C153.
29. Dress both leade of C198 away from the body of the capacitor.
30. Dress fuse in high voltage compartment so as not to short circuit to ground.
31. Dress blue and blue/yellow wire from power transtormer in 3 clamps on chasais base and away trom $\$ 103$ and video section.
32. Dress both wires on $S 106$ away trom blue/yellow damper leads of Tllo.
33. Dress the brown wise from pin 8 of V114 socket away from V118 socket.
34. Dress all 2 watt resintors away trom each other and away from all wires and other components.



матіс ріквай



## 






## REPLACEMENT PARTS

$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION
	R-F UNIT ASSEMBLIES	75191	Spacer-Insulating spacer for front plate (4 required)
	KRK8B	75163	Spring-Friction spring (formed) for fine tuning cam
10705	Ball-Steel ball for detent (5/32 dia.)	75068	Spring-Retaining spring for oscillator tube shield
75188	Board-Terminal board, 5 contact and ground	74578	Spring-Retaining spring for adjusting screws
75067	Bracket-Vertical bracket for holding oscillator iube shield	73457 30340	Spring-Return spring for fine tuning control Spring-Hair pin spring for fine tuning link
75201	Cable-75 ohms, coax cable ( $71 / 4^{\prime \prime}$ ) complete with coil (W1, L50)	75175	Stator-Oscillator section stator complete with rotor, segment, coils, adjusting screws and capacitors
75186	Capacitor-Ceramic, variable, for fine tuning plunger type (C2)		C3 and C23 (S1-1, C3, C23, L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L43)
75289	Capacitor-Çeramic, $4 \mathrm{mmf} ., \pm 0.5 \mathrm{mmf}$. (C4)	75178	Stator-Convertor stator complete with rotor, coils, capacitors (C10 and C12) and resistors (R4 and
75189	Capacitor-Adjustable, 7-30 mmf. (C22)		R5) (S1-2, C10, C12, L12, L13, L14, L15, L16, L17,
45465	Capacitor-Ceramic, 15 mmf . (C3)		L18, L19, L20, L21, L45, R4, R5, R12)
75196	Capacitor-Ceramic, 39 mmf ( (C5)	75179	Stator-R-F amplifier stator complete with rotor, coils, capacitor (Cl3) and resistor (R6) (Sl-3, Cl3,
75174	Capacitor-Ceramic, trimmer, 50-75 mmf. (C11)		L22, L23, L24, L25, L26, L27, L28, L29, L30, L31,
75199	Capacitor-Ceramic, 270 mmf ( $\mathrm{C} 12, \mathrm{Cl} 3, \mathrm{C} 20$ )		L49, R6)
75641	Capacitor-Ceramic, 390 mmf . (C10)	75180	Stator-Antenna stator complete with rotor, conls,
75166	Capacitor-Ceramic, 1.500 mmf ( $\mathrm{C} 6, \mathrm{C} 14, \mathrm{C} 15, \mathrm{C} 19)$		capacitors (C20 and C21) and resistors (R9, R10,
75089	Capacitor-Ceramic, dual, 1,500 mmf. (C17A, C17B)		R11) (S1-4, C20, C21, L32, L33, L34, L35, L36, L37. L38, L39, L40, L41, L42, L52, R9, R10, R11)
73748	Capacitor-Ceramic, 1,500 mmf. (C18)	75169	Strip-Coil segment mounting strip
73473	Capacitor-Ceramic, $5,000 \mathrm{mmf}$ ( (C21)	75170	Strip-Coil segment mounting strip-LH lower
75172 71504	Capacitor-Tubular, steatite, adjustable, 0.8-1.4 mmf. (C7)   Capacitor-Ceramic, 0.68 mmf . (C23)	75171	Strip-Coil segment mounting strip-LH upper-less trimmer C7
75184	Capacitor-Ceramic, adjustable, $0.75-4 \mathrm{mmf}$., complete with adjusting stud (Cl)	75173	Stud-No. $6-32 \times 13 / 16^{\prime \prime}$ adjusting stud for C7 irimmer
75197	Capacitor-Ceramic, 6.8 mmf . (C8)	75446	Stud-Capacitor stud-brass-No. $4-40 \times 13 / 16^{\prime \prime}$ with $3 / 64^{\prime \prime}$ screw driver slot for trimmer coils L47, L48
75167	Clip-Tubular clip for mounting stand-off capacitors		and capacitor Cl , uncoded and coded "ER"
75182	Coil--Trimmer coil ( $1^{1 / 2}$ turns) with adjustable inductance core and capacitor stud (screw adjustment) for convertor section (C9, L47)	75447	Stud-Capacitor stud--brass-No. $4-40 \times 13 / 16^{\prime \prime}$ with $3 / 64^{\prime \prime}$ screw driver slot for trimmer coils L47, L48 and capacitor Cl , coded numerically and "Hi Q"
75183	Coil-Trimmer coil (3 turns) with adjustable inductance core and capacitor stud (screw adjustment) for r-f section (L48, Cl6)	$\begin{aligned} & 751.81 \\ & 75190 \end{aligned}$	```Transformer--Convertor transformer Washer-Insulating washer (neoprene) for capaci- tor C7```
75185	Coil-Convertor plate loading coil (L44)	75607	Washer--Insulating washer (hex)
75202	Coil-Choke coil, .56 muh (L46) Coil-Choke coil (L51)		CHASSIS ASSEMBI.IES
75187	Core-Adjustable core for fine tuning capacitor C2		KCS47 or KCS47T-Table Model
75162	Detent-Detent mechanism and fibre shaft		KCS 47 A or KCS47AT-Console Model
73453	Form-Coil form for L45 and L49	75228	Bracket-Focus magnet mounting bracket-upper
75165	Link-Link assembly for fine tuning	75229	Bracket-Focus magnet mounting bracket-lower
14343	Retainer-Fine tuning shaft retaining ring Resistor-Fixed, composition:	75515	Bracket-Channel indicator lamp bracket for KCS47A and KCS47AT)
	27 ohms, $\pm 10 \%$, $1 / 2 \mathrm{watt}$ (R8)	76009	Capacitor-Ceramic, 8.2 mmf ., 5,000 volts (C198)
	150 ohms, $\pm 20 \%, 1 / 2$ watt (R10)   3,300 ohms, $\pm 10 \%, 1 / 2$ watt (R6)	75217	Capacitor-Mica trimmer, dual, $10-160 \mathrm{mmf}$. (C147A, C147B)
	3,900 ohms, $\pm 10 \%, 1 / 2 \mathrm{watt}$ (R9, R11)	53511	Capacitor-Ceramic, 10 mmf ( (C128)
	8,200 ohms, $\pm 10 \%, 1 / 2$ watt (R12)	75450	Capacitor-Ceramic, 39 mmf . (C203)
	10,000 ohms, $\pm 5 \%$, $1 / 2$ watt (R3)	71924	Capacitor-Ceramic, 56 mmf . (C106)
	10,000 ohms, $\pm 20 \%, 1 / 2$ watt (R2)	73090	Capacitor-Mica, 82 mmf ( (C146, C148)
	22,000 ohms, $\pm 10 \%, 1 / 2$ watt (R7)	75437	Capacitor-Ceramic, 100 mmf . (C202)
	100,000 ohms, $\pm 20 \%, 1 / 2$ watt (R1, R4, R5)	45469	Capacitor-Ceramic, 100 mmf ( $\mathrm{Cl20}$ )
75164	Rod-Actuating plunger rod (fibre) for fine tuning link	39396	$\begin{aligned} & \text { Capacitor-Ceramic, } 100 \mathrm{mmf} \text {. (C126, C197, C220. } \\ & \text { ©222) } \end{aligned}$
71476	Screw-No. $4-40 \times 1 / 4 / 4$ binder head machine screw for adjusting L6, L7, L8, L9, L10, L11	73102	Capacitor-Mica, 180 mmf ( (C153)
75176	Screw-No. $4-40 \times 3 / 8^{\prime \prime}$ fillister head screw for adjusting L5	75244 39638	Capacitor-Ceramic, 270 mmf . (Cl76)   Capacitor-Mica, 270 mmf . (C180)
75177	Screw-No. $4-40 \times 5 / 16^{\prime \prime}$ fillister head screw for adjusting L1, L2, L3, L4, L43	73091 73094	Capacitor-Mica, 270 mmf . (C107, C110, C117, C125) Capacitor-Mica, 390 mmf . (C215) (in KCS47T and
74575	Screw-No. $4-40 \times .359^{\prime \prime}$ adjusting screw for L42		KCS47AT)
73640	Screw-No. $4-40 \times 7 / 16^{\prime \prime}$ adjusting screw for L52	74947	Capacitor-Ceramic, 500 mmf ., 20.000 volts (C161)
75159	Shaft-Channel selector shaft and plate	$\begin{aligned} & 74250 \\ & 75166 \end{aligned}$	Capacitor-Mica, 560 mmf (C155)   Capacitor-Ceramic, $1500 \mathrm{mmf}(\mathrm{Cl71}$ Cl72)
75160	Shaft-Fine tuning shaft and cam	75166	Capacitor-Ceramic, 1.500 mmf ( (C171, C172)   Capacitor-Ceramic, $1,500 \mathrm{mmf}$. (C102, C103, C109,
75168	Shield-Oscillator and convertor sections shield for r-f unit-snap-on type	75089	Cl13, C115, C116, C122, C129, C168, C186)
75193	Shield-Tube shield for V1	75089	Capacitor-Ceramic, dual, $1,500 \mathrm{mmf}$. (Cl08A, C108B, C111A, C111B, C123A, C123B, C184A, C184B)
75192	Shield-Tube shield for V2	73473	Capacitor-Ceramic, $5,000 \mathrm{mmf}$. (C114, C121, C187)
75088	Socket-Tube socket, 7 contact, miniature, ceramic, saddle mounted	73960	Capacitor-Cercmic, $10,000 \mathrm{mmf}$. (C144, C185, C192, C194, C195)


STOCK No.	DESCRIPTION	$\begin{gathered} \text { STOCE } \\ \text { No. } \end{gathered}$	DESCRIPTION
75877	Capacitor-Ceramic. dual, 10.000 mmi (Cl05A. Cl05B)	5040	Connector-4 contact female connector for speaker cable (P102)
73747	Capacitor-Electrolytic, 2 mid, 50 volts (C124)	35383	Connector-8 contact male connector-part of de-
28417	Capacitor-Electrolytic, $5 \mathrm{mfd}, 450$ volts (C141)		lle
75511	Capacitor-Electrolytic, comprising 1 section of 20 mid, 450 volts, 1 section of $80 \mathrm{mid}, 200$ volts, 1 section of 20 mid, 200 volts, and 1 section of 50 mid, 50 volts (C213A, C213B, C213C, C213D)	68592 75517 75215	Connector-8 contact female connector for deflec. tion yoke leads (J101)   Contact-Anode connector assembly contact only
75510	Capacitor-Electrolytic, comprising 2 sections of 35 mid., 450 volts, 1 section of 10 mid, 450 volts, and 1 section of 5 mfd, 450 volts (C211A, C211B, C211C, C211D, C212A, C212B, C212C, C212D)	75513	R166)   Control-Tone control, volume control and power switch (R195, R197, S101).   Control--Vertical linearity control (R156)
75643	Capacitor-Tubular, moulded paper, oil impreg. nated, .001 mid, 1,000 volts (Cl56)	71440	Control--Height control (Rl5
73598	Capacitor-Tubular, paper, oil impregnated, . 0015 mid. 600 volts (C130, C219)		channel light switch for KCS47A and KCS47AT) (R128. R131, S105)
73595	Capacitor-Tubular, paper, oil impregnated, . 0022 mfd, 600 volts (C137, C191) (C216 in KCS47T)	75216	Control-Picture and briqhtness control for KCS47 and KCS47T (R128, R131)
73599	Capacitor-Tubular, paper, oil impregnated, . 0027 mid, 600 volts (C189)	75516	Control-Width control (R177) Core-Adjustable core and stud for F.M trap N
73795	Capacitor-Tubular, paper, oil impregnated, . 0033 míd, 600 volts (C183)	74956	$75449$
73920	Capacitor-Tubular, paper, oil impregnated, . 0047 mid, 600 volts (Cl38, $\mathrm{Cl} 39, \mathrm{Cl77}, \mathrm{Cl} 181$ )	74	(2 required)   Fastener-Push fastener to mount ceramic tube
73808	Capacitor-Tubular, paper, oil impregnated, . 0082. mifd, 1,000 volts (C188)	73600	socket (2 required)   Fuse-0.25 ampere, 250 volts (F101)
73561	Capacitor-Tubular, paper, oil impregnated, 01 mid. 400 volts (C136, C178, C182)	$\begin{aligned} & 16058 \\ & 3739{ }^{\circ} \end{aligned}$	Grommet-Rubber grommet for 2nd anode lead exit Grommet-Rubber grommet to mount ceramic tube
73594	Capacitor-Tubular, moulded paper, oil impregnated, $01 \mathrm{mid}, 600$ volts ( $\mathrm{C} 140, \mathrm{C} 154$ )	75445	socket (2 required)   Hood-Deflection yoke hood less rubber cushions
73797	Capacitor-Tubular, paper, oil impregnated, . 015 mid. 600 volts (Cl79)	75644 35787	Insulator-2nd anode insulator assembly Jack-Phono input jack (J103)
74727	Capacitor-Tubular, paper, oil impregnated, . 018 mid. 1,000 volts (C159, C160)	75482	Jack-Video jack (d10s)
73562	Capacitor-Tubular, paper, oil impregnated, . 022 mid, 400 volts (Cl45, Cl51)	74953	Magnet-Ion trap magnet (P.M.)   Magnet-Focus magnet complete with adjustable plate and stud
73553	Capacitor-Tubular, paper, oil impregnated, . 047 mid, 400 volts (C149, C199, C221)	75518	Plate--Hi-voltage plate-bakelite-less transformer, capacitor and tube socket
75071	Capacitor-Tubular, moulded paper, . 047 mid, 400 volts (C166, Cl67)	72067	Resistor-Wire wound, 5.1 ohms, 1/2 watt (R193)
73592	Capacitor-Tubular, paper, oil impregnated, . 047 mid, 600 volte (Cl33, Cl50, C190)	75512	Resistor-Wire wound, 4,000 ohms, 10 watts (R181)   Resistors-Fixed, composition:
73597	Capacitor-Tubular, moulded paper, oil impregnated, $.047 \mathrm{mid}, 1,000$ volts (Cl43, Cl58, Cl62, C163)		$\begin{aligned} & 47 \text { ohms, } \pm 20 \%, 1 / 2 \text { watt (R174) } \\ & 82 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt (R103, R107, R112, R184) } \\ & 100 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt (R217) } \end{aligned}$
73551	Capacitor-Tubular, paper, oll impregnated, 0.1 mid , 40 C volts (C132, C196)		$\begin{aligned} & 100 \text { ohms. } \pm 20 \%, 1 / 2 \text { watt (R202, R203) } \\ & 100 \text { ohms. } \pm 10 \%, 2 \text { watts (R175) } \end{aligned}$
73557	Capacitor-Tubular, paper, oil impregnated, 0.1 mid, 600 volts (Cl34)		180 ohms, $\pm 10 \%, 1 / 2$ watt (R116)   220 ohms, $\pm 10 \%, 1 / 2$ watt (R126, R127)
73794	Capacitor-Tubular, paper, oil impregnated, 0.22 mid, 400 volts (C157)		$\begin{aligned} & 390 \text { ohms. } \pm 10 \%, 1 \text { watt (R200) } \\ & 470 \text { ohms, } \pm 10 \%, 1 \text { watt (R218) } \end{aligned}$
74957	Capacitor-Tubular, paper, oil impregnated, 0.22 mid, 600 volts (Cl42)		680 ohms, $\pm 10 \%, 1 / 2$ watt (R226) 1,000 ohms, $\pm 20 \%, 1 / 2$ watt (R102, R104, R109,
73787	Capacitor-Tubular, moulded paper, 0.47 midd, 200 volts (Cl27, Cl35, Cl52)		R114. R117. R159. R185, R189, R219) 1,500 ohms, $\pm 10 \%, 1$ watt (R155)
73154	Choke-Filter choke (L113)		1,800 ohms, $\pm 10 \%, 1 / 2$ watt (R113)
75167	Clip-Tubular clip for mounting atand-off capacitor No. 75166	-	2,200 ohms, $\pm 20 \%, 1 / 2$ watt (R140)   3,900 ohms, $\pm 10 \%$, 1/2 watt (R167)
75210	Coil-Fitth pix, i-f coil complete with adjustable core (L103)		4,700 ohms, $\pm 5 \%, 1 / 2$ watt (R130)   4.700 ohms. $\pm 10 \%, 1 / 2$ watt (R135) (R230 in KCS47T,
71449	Coil-Horizontal linearity control coil (L110)		KCS47AT)
73591	Coil-Antenna matching coil (2 required) (Part of T200)		5.600 ohms, $\pm 5 \%, 1 / 2 \mathrm{watt}$ (R125)   5.600 ohms. $\pm 10 \%, 1 / 2$ watt (R235) (in KCS47T,
75241	Coil--Antenna shunt coil (L202)		KCS47AT)
73477	Coil-Choke coil (L101, L102)		6,800 ohms, $\pm 10 \%, 1$ watt (R120, R176)
71793	Coil-Peaking coil (36 muh) (L106)		6.800 ohms, $\pm 10 \%, 2$ watts (R133, R179)
75299	Coil-Peaking coil ( 36 muh ) (L104)		$8.200 \mathrm{ohms}, \pm 5 \%, 1 / 2$ watt (R106, R169)
76285	Coil-Peaking coil (36 muh) (L114, R119)		8.200 ohms, $\pm 10 \%$, 1/2 watt (R145, R146)
75253	Coil-Peaking coil (120 muh) (L109)		10,000 ohms, $\pm 10 \%$, 1/2 watt (R236) (in KCS4
75252	Coil-Peaking coil ( 500 muh ) ( $\mathrm{L} 105, \mathrm{~L} 108$ )		KCS47AT)
76132	Coil-Peaking coil (500 muh) (Ll15) (in KCS47t, KCS47AT)		$\begin{aligned} & 10,000 \text { ohms, } \pm 10 \%, 2 \text { watts (R207) } \\ & 12,000 \text { ohms, } \pm 5 \%, 1 / 2 \text { watt (R152) } \end{aligned}$
74594 38853	Connector-2 contact male connector for power cord Connector-4 contact female connector for antenna		12.000 ohms, $\pm 10 \%$, $1 / 2$ watt (R188) (R139 in KCS47 and KCS47A)
38853	Connector-4 contact female connector for antenna transformer (J200)		12,000 ohms, $\pm 5 \%, 1$ watl (R108)



## REPLACEMENT PARTS (Continuod)

STOC: No.	DESCRIPTION	STOCZ No.	DESCRIPTION
75521	MISCELLANEOUS   Back--Cabinet back complete with power cord and terminal board for Models 6T64 and 6T75	74959	Knob-Fine tuning knob-maroon-for mahogany, walnut or metal instruments (outer)   Knob-Fine tuning knob - lan - for maple instru-
75522	Back-Cabinet back complete with power cord and terminal board for Models 6T65, 6T71, 6T74 and $6 T 76$	75461	ments (outer)   Knob-Fine tuning knob-beige - for oak instru. ments (outer)
75525	Back-Cabinet back complete with power cord and terminal board for Models 6T53. 6T54	74960	Knob-Channel selector knob - maroon - for mahogany. walnut or metal instruments (inner)
75473	Board--"Ant" terminal board	74961	Knob-Channel selector knob - tan - for maple instruments (inner)
71599	Bracket-Pilot lamp bracket (Models 6T64, 6T65. 6T71, 6T74, 6T75, 6T76)	75462	Knob-Channel selector knob - beige - for oak instruments (inner)
13103	Cap-Pilot lamp cap (Models 6T64, 6T65, 6T71. 6T74, 6T75, 6T76)	74962	Knob-Tone control, brightness control or vertical hold control knob-maroon-lor mahogany, wal-
71892	Catch-Cabinet doors bullet catch and strike (Models 6T71, 6T74, 6T75, 6T76)	73999	nut or metal instruments (outer)   Knob-Tone control, brightness control or vertical
X3120	Cloth-Grille cloth for mahogany or walnut instruments (Model 6T71)		hold control knob - tan - for maple instruments (outer)
X3123	Cloth-Grille cloth for mahogany or walnut instruments (Models 6T64, 6T74, 6T65)	75463	Knob-Tone control, brightness control or vertical hold control knob-beige-for oak instruments (outer)
X3090	Cloth-Grille cloth for oak instruments (Models 6T64, 6T65, 6T71, 6T74)	74963	(outer)   Knob-Picture control, horizontal hold control or
X3129	Cloth-Grille cloth (Model 6T75)		-for mahogany.
X3130	Cloth-Grille cloth (Model 6T76)		(inner)
39153	Connector-4 contact male connector for antenna cable	74001	Knob-Picture control, horizontal hold control or volume control and power switch knob-tan-ior
75474	Connector-Single contact male connector for antenna cable ( 2 required)	75464	maple instruments (inner)   Knob-Picture control, horizontal hold control or
71457	Cord-Power cord and plug		volume control and power switch knob-beige-
75531	Cover-Control cover assembly, including drop panel hinges and emblem	11765	for oak instruments (inner)   Lamp-Pilot or channel indicator lamp-Mazda 51 (Models 6T64, 6T65, 6T71, 6T74, 6T75, 6T76)
75608	Cushion-Dust seal cushion (rubber)	75460	Mask--Light mask-gold-for afk or maple instru.
75440	Decal-Control panel function decal for mahogany or walnut instruments (Models 6T64, 6T65, 6T71, 6T74, 6T76.	75459	ments   Mask-Light mask - burgundy - for mahogany or walnut instruments
75441	Decal-Control panel function decal for oak instruments or maple instruments (Models 6T64. 6T65. 6T71, 6T74, 6T75, 6T76) and walnut instruments (Model 6T75)	73634 75526	Nut--Speed nut for speaker mounting screws (4 required) (Models 6T65, 6T71, 6T74, 6T75, 6T76) Pull-Cabinet door pull (center of door) (Model 6T74)
71984	Decal-Trade mark decal (Models 6T74 and 6T75)	75438	Pull-Door pull (Model 6T71)
71768	Decal-Trade mark decal (Model 6T76)	75527	Pull-Cabinet door pull (top of door) (Model 6T74)
71910	Decal--Trade mark decal (Model 6T71)	75528	Pull-Cabinet door pull-R.H. (Model 6T76)
75532	Decal-Control panel function decal (Models 6T53. 6T54)	$75529$	Pull-Cabinet door pull-L.H. (Model 6T76) Retainer-Snap-on moulding and retainer for safety
76003	Decal-Decorative decal (3 gold stripes) for front of 6T54 cabinel	71456	glass (Models 6T53. 6T54)   Screw-No. $8-32 \times 7 / 16^{\prime \prime}$ wing screw for deflection
74809	Emblem-"RCA Victor" emblem (Models 6T64, 6T65, 6T71, 6T74, 6T75, 6T76)	74307	yoke and focus magnet mounting support Screw-No. $8.32 \times 11 / 4^{\prime \prime}$ trimit head screw for door pull (Model 6T71)
73180	Emblem-"RCA Victor" emblem (Models 6T53, 6T54)	73643	Spring-Spring clip for channel marker escutcheon
75455	Escutcheon-Channel marker escutcheon - dark for mahogany or walnut cabinets (Models 6T64, 6T65, 6T71, 6T74, 6T75, 6T76)	72845	Spring-Retaining spring for knobs Nos. 73995. 74959 and 75461
75456	Escutcheon-Channel marker escutcheon - light for oak or maple cabinets (Models 6T64, 6T65. 6T71, 6T74, 6T75, 6T76)	14270 30330	Spring-Retaining spring for knobs Nos. 73999, 74960, 74961, 74962, 75462 and 75463   Spring-Retaining spring for knobs Nos. 74001, 74963 and 75465
75499	Escutcheon-Channel marker escutcheon - dark for metal cabinet (Models 6T53, 6T54)	74966	Spring-Formed spring for kinescope masking panel
74889	Feet-Felt feet for metal cabinet (Models 6T53, 6T54)	72936	Stop-Cabinet door stop (Models 6T71, 6T74, 6T75, 6T76)
74606	Glass-Safety glass (Models 6T64, 6T65, 6T71, 6T74, 6T75, 6T76)	75457	Washer-Felt washer-dark brown between knob and chamel marker escutcheon for mahogany. or
75530	Glass-Satety glass (Models 6T53, 6T54) Grille-Metal grille (Model 6T71)		walnut instruments
37396	Grommet-Rubber grommet for speaker mounting (4 required) for Models 6T65, 6T71, 6T74, 6T75 and $6 T 76$	75458	channel marker escutcheon for maple instruments (Model 6T76)   Washer-Felt washer-beige-between knob and
74308	Hinge-Cabinet door hinge (1 set) (Models 6T71, 6T74, 6T75, 6T76)	75500	channel marker escutcheon for oak instruments Washer-Felt washer for cabinet back screws

[^12]

Chassis No. KCS40B
— Mfr. No. 274 -
Model
6T72
Walnut,
Mahogany
or Oak

RADIO CORPORATION OF AMERICA<br>rCA victor division<br>CAMDEN, N. J., U. S. A.

## GENERAL DESCRIPTION

Model 6T72 is a console type television receiver in a choice of three cabinet finishes. The chassis employs twenty-one tubes plus two rectiliers and a 16GP4 kinescope.

Features of the television unit are: full twelve channel coverage: FM sound system; improved picture brilliance: picture
A.G-C: A.F.C horizontal hold: stabilized vertical hold; two stages of video amplification: noise saturation circuits: improved sync separator and clipper: four mc. band width for picture channel and reduced hazard high voltage supply. An auxiliary audio input jack is provided to permit the use of an external record playing attachment.

## ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE. ...... 146 square inches on a 16GP4 Kinescope


RCA TUBE COMPLEMENT


## WEIGHT

Chastis with Tubes in Cabinet....................... 116 lbs.

DIMENSIONS (inches)	Width	Holght	Depth
Cabinet (outside).	28	$371 / 6$	23\%
Chassis (overall)	$191 / 4$	11	$181 / 2$

The following adjustments are necessary when turning the receiver on for the first time:

1. See that the TV-PH switch on the rear apron is in the "TV" position.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid. position.
3. Set the STATION SELECTOR to the desired channel.
4. Adjust the FINE TUNING control for best sound fidelity and the SOUND VOLUME control for suitable volume.
5. Turn the BRIGHTNESS control fully counter-clockwise, then clockwise until a light pattern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZONTAL hold control until a picture is obtained and centered.
8. Turn the BRIGHTNESS control counter-clockwise until the retrace lines just disappear.


Figure 1-Receiver Operating Controls
9. Adjust the PICTURE control for suitable picture contrast.
10. After the receiver has been on for some time, it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.
11. In switching from one station to another, it may be neces. sary to repeat steps 4, 8 and 9.
12. When the set is turned on again after an idle period, it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. If any adjust. ment is necessary. step number 4 is generally sufficient.
13. If the positions of the controls have been changed. it may be necessary to repeat steps 2 through 9.
14. To use the instrument with a record player, plug the record. player output cable into the PHONO jack on the rear apron, and set the TV-PH switch on "PH." Set the TV-PH switch back to TV on completion of the record program.

## INSTALLATION INSTRUCTIONS

Connect the antenna transmission line to the receiver antenna terminals. Plug the receiver power cord into a 115 volt a-c power source. Turn the receiver power switch to the "on" position, the brightness control fully clockwise, and the picture control counter-clockwise.

WARNING. - The high voltage supply in this receiver delivers 12.000 volts! A.C. interlocks are provided at the back of the set so that when the back is removed - so is the power.

ION TRAP MAGNET ADJUSTMENT.-Set the ion trap mag. net approximately in the position shown in Figure 2, and with the part number on magnet towards the rear of the chassis. Starting from this position immediately adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Adjust the focus control (R191 on the chassis rear apron) until the line structure of the raster is clearly visible. Readjust the ion trap magnet


Figure 2-Yoke and Focus Coil Adjustments
for maxinum raster brilliance. The final touches of this adjust. ment should be made with the brightness control at the maximum position with which good line focus can be maintained.

DEFLECTION YOKE ADJUSTMENT.-If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE ADJUSTMENTS.-It will now be necessary to obtain a test pattern picture in order to make further adjustments. See sleps 3 through 9 of the receiver operating instructions.

If the Horizontal Oscillator and AGC System are operating properly. it should be possible to sync the picture at this point. However, if the AGC threshold control is misadjusted, and the receiver is overloading. it may be impossible to sync the piciure.

If the receiver is overloading, turn R138 on the rear apron (see Figure 3) clockwise until the set operates normally and the picture can be synced.

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT.-Turn the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Usually the picture will remain in sync. Turn the control clock. wise slowly. If the picture did fall out of sync upon removal of the signal, the number of aiagonal black bars will be gradually reduced and when only 2 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. The picture shovld remain in syinc for approximately 180 degrees of additional clockwise rotation of the control. At the extreme clock. wise position, the picture should be out of sync and should show 1 vertical or diagonal black bar in the raster.

If the recciver passes the foregoing checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Focus Coil Adjustment."

ALIGNMENT OF HORIZONTAL OSCILLATOR. - If in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 180 degrees of clockwise rotation of the control from the pull-in point, it will be necessary to make the following adjustments:
Horizontal Frequency Adjustment.-Turn the Tl09 sine wave core (on the outside of the apron) all the way out of the coil.
Set the locking range trimmer Cl53A one-half turn out from maximum capacity.


Figure 3-Rear Chassis Adjustments
Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and turn the frequency wave core of Tlog under the chassis until the picture syncs and the sync bar just begins to move into the picture.

Note-Occasionally, a tube may be found which does not respond to this alignment procedure since it may not be possible to sync the picture by means of the frequency core when the sine wave core is all the way out of the coil. Yet, the tube may work perfectly well when the circuit is properly aligned. In such a case, it may be necessary to turn the sine wave core in slightly, and readjust the frequency core to obtain sync.

Turn the sine wave core of Tl09 in until the blanking bar begins to move off to the left of the picture. Alternately turn the sine wave core in and the frequency out. keeping the picture in sync and the blanking bar showing in the picture.

Contirue alternate adjustments until the picture falls from sync into a parasitic oscillation as indicated by a non-synchronized pattern which flickers in width and centering with powsibly a light ragged vertical bar through the center of the screen.

Turn the sine wave core out $1 / 2$ turn. Adjust the frequency core in until the picture is in sync and horisontal blanking appears as a vertical bar in the picture.

Check of Pull-in Range.-Turn the horizontal hold control fully counter-clockwise. Connect a 270 K ohm resistor across Cl56. Momentarily switch off channel and back; the picture will then be out of sync. Turn the hold control clockwise slowly and observe the minimum number of bars obtained just before the picture pulls into sync.

The picture should snap in from two complete blanking bars. If two bars are not obtained, turn the locking range trimmer C153A in to obtain less bars or out to obtain more bars.

If CIS3A was adjusted, remove the 270 K renistor, turn the horisontal hold control fully clockwise and adjust the T109 frequency core until horisonial blanking appears as a vertical bar in the synced picture. Then repeat the entire check of pull-in range to thim point.

Repeat the adjustments under "Check of Pull-in. Range" until the conditions specified are fulfilled. When the horisontal hold operates as outlined under "Check of Horisontal Oscillator Alignment" the oncillator is properly adjusted.

If the oscillator does not hold sync properly at this point and the AGC system is in proper adjustment it will be necensary to adjust the Horizontal Oscillator by the mothod outlined in the alignment procedure on page 11.

FOCUS COIL ADJUSTMENTS.-The focus coll should be adjusted so that there is approximately one-quarter inch of space between the rear cardboard shell of the yoke and the flat of the front face of the focus coil. This spacing gives best average focus over the face of the tube. The axis of the hole through the tocus coil should be parallel with the axis of the kinescope neck.

The focus coil is provided with a magnetic shunt in the form of a metal sleeve as shown in Figure 2. If the receiver !ocuses with the focus control neas the end of its range, loosen the shunt locking screw and slide the shunt backward or forward until focus occurs in the center range of the focus control.

CENTERING ADJUSTMENT. - No electrical centering controls are provided. Centering is obtained by loosening the two
focus coil mounteng screws and sliding the coil up or down or from side to side. If the focus coil was appreciably changed in position or if a corner of the raster is shadowed, check the position oi the ion trap magnet. Reposition the magnet within the range of maximum raster brightness to eliminate the shadow and recenter the picture by sliding the coil. In no case should the magnet be adjusted to cause any loss of brightness since such operation may cause immediate or eventual damage to the tube. In extreme cases it may be necessary to adjust one or more of the three focus coil compression spring screws to eliminate a corner shadow.

WIDTH, DRIVE AND HORIZONTAL LINEARITY ADJUST. MENTS.-Adjustment of the horizontal drive control aftects the high voltage applied to the kinescope. In order to obtain the higheat possible voltage hence the brightest and best locused picture, adjuat horizontal drive counter-clockwise as fas as possible without losing tension on trimmer.

Set the width control to minimum picture width.
Turn the horizontal linearity coil out until appreciable loss in width occurs, then in until nearly maximum width and the best linearity is obtained. Do not run th.e core in beyond the point of maximum linearity change, us the current drawn by the 6BG6G then becomes excessive.

Adjust the width control for the proper picture width.
Readjust linearity, but again not beyond the point of maximum linearity change. If necessary adjust the drive control for best linearity.

If at very high line voltage, the picture width is excessive even with the width control set at minimum, turn the linearity coil out to obtain the proper width. On high line vollage, excessive width generally will be accompanied by good linearity. without setouching the drive.

Adjustments of the horizonial dirive control affect horisontal oscillator hold and locking range. It the drive control was adjusted, recheck the oscillator alignment.

FOCUS,-Adjust the focus control (RI91 on chassis rear apron) for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the paitern.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS.-Adjust the height control (R155 on chassis rear apron) until the pictuse fills the mask vertically. Adjust vertical linearity (R162 on rear apron) until the tent pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust the focus coil to align the picture with the mask.

Check to see that the cushion and yoke thumbscrews and the focus coil mounting screws ase tight.

AGC THRESHOLD CONTROL.-The AGC threshold control R138 is adjusted at the factory and normally should not require readjustment in the field.

To check the adjustment of the AGC threshold control, tune in a strong signal, sync the picture and turn the picture control to the maximum clockwise position. Turn the brightness control counter-clockwise until the vertical retrace lines are just invisible. Momentarily remove the signal by switching oft channel and then back. If the picture reappears immediately. the receiver is not overloading due to improper setting of R138. If the picture requires an appreciable portion of a eecond to reappear, R138 should be readjusted.

Sel the picture control at the maximum clockwise position. Turn R138 fully clockwise. The top one-half inch of the picture may be bent slightly. This should be disregarded. Turn R138 counter-clockwise until there is a very, very slight bend or change of bend in the top one-hall inch of the picture. Then turn R138 clockwise just sufficiently to remove this bend or change of bend.

If the signal is very weak, the above method may not work as it may be impossible to get the picture to bend. In this case, turn R138 counter-clockwise until the snow in the picture becomes more pronounced, then clockwise until the best signal to noise ratio is obtained.

The AGC control adjustment should be made on a strong signal if possible. If the control is set too far counter-clockwise on a weak signal, then the receiver may overload when a strong signal is received.

## INSTALLATION INSTRUCTIONS

CHECR OF R-F OSCILLATOR RDJUSTMENTS.-Tune in all available stations to see if the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure on page 10. The adjustments for channels 2 through 5 and 7 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 4. Adjustment for channel 13 is on top of the chassis and channel 6 adjustment is in the kinescope well. See Figures 8 and 9 for their location.


Figure 4-R.F Oscillator Adjustments
Replace the cabinet back and make sure that the screws are tight in order to prevent rattling at high volume.

WEAK SIGNAL AREA OPERATION.-Since the vast majority of receivers are sold in strong signal areas, the chassis are aligned to produce the cleanest pictures in those areas. However, if the receiver is to be operated in a weak signal area, better performance can be obtained by "peaking" the r-f unit.
To peak the r-f unit in these receivers, disconnect the 390 ohm resistor R14 which is on top of the r-f unit chassis. Adjust L66 to obtain the best possible picture on the weakest low channel station received.

If the peaked receiver is subequently taken to a strong signal area, the resistor R14 should be connected in place and L66 adjusted for "flat" response on the low channels.

CHASSIS REMOVAL.-To remove the chasais from the cabinet for repair or installation of a new kinescope, remove the control knobs, the cabinet back, unplug the apeaker cable. the kinescope socket, the antenna cable, the pilot light cable. the yoke and focus coil cable. Remove the yoke frame grounding strap and the interlock switch. Take out the six chassis bolt under the cabinet. Withdraw the chassis from the back of the cabinet.

KINESCOPE HANDLING PRECAUTION.-Do not install, romove, or handle the kinescope in any manner, unless shatterproof goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling.
To remove the kinescope from the cabinet, take out the four screws and one wing screw which hold the yoke frame to the cabinet. Remove the kinescope, the yoke frame with yoke and focus coil as an asembly.

INSTALLATION OF RINESCOPE.-Handle this tube by the metal rim at the edge of the screen. Do not cover the glase bell of the tube with fingermarks as it will produce leakage pathe which may interfers with reception. If this portion of the tube has inadvertently been handled, wipe it clean with a soft cloth moistened with "dry" carbon tetrachloride.

Wipe the kinescope screen suriace and tront panel saiety glass clean of all dust and fingermarks with a soft cloth moistened with "Windex" or similar cleaning agent.

Turn the tube so that the key on the base of the tube will be down and insert the neck of the kinescope through the deflection and focus coils. If the tube sticks, of faile to slip into place moothly, inventigate and remove the cause of the trouble. Do not force the tube.

Replace the kinescope and yoke frame assembly in the cabinel. Insert the four screws and wing screw and tighten.

Slip the kinescope as far forward as possible. Slide the kinoscope cushion firmily up against the flare of the tube and tighten the adjustment wing screws. Slide the deflection yoke as far forward as possil. ©. If this is not dons, difficulty will be encountered in adjusting the ion trap magnet and focus coll because of shadows on the corner of the raster.
Slide the chassis into the cabinet, then insert and tighten the six chassis bolts.
Slip the ion trap magnet over the neck of the kinescope.
Connect the kinescope socket to the tube base and slip the high vollage lead clip between the rim of the kinescope ased the mask.
Reconnect all other cables. Do not forget to replace the yoke frame grounding strap. Perform the entire sel-up procedure beginning with Jon Trap Magnel Rdjustmont.

ANTENNAS.-The finest television receiver built may be said to be only as good as the antenna design and installation. It is therefore important to select the proper antenna to suit local conditions, to install it properly and orient it correctly.

CABINET ANTENNA.-A cabinet antenna is provided which may be employed in strong signal areas in which no reflections are experienced. The antenna leads are brought out near the receiver antenna terminal board.


Figure S-Partial Bottom View of Chassis Showing Channel Light and Channel Light Switch (Chassis is otherwise identical to KCS40A used in Models TC165, TC166, TC167 and TC168)

# THE CHASSIS USED IN MODEL 6T72 IS VERY SIMILAR TO THE CHASSIS USED IN MODELS T164, TC165, ETC. THE DIFFERENCE BEING IN THE ADDITION OF A CHANNEL INDICATOR LIGHT SWITCH (S104) IN MODEL 6T72. 

## THE ALIGNMENT PROCEDURE IS IDENTICAL TO THAT GIVEN FOR MODELS T164, TC165, ETC., ON PAGES 267 TO 273 EXCEPT FOR A SLIGHT DIFFERENCE IN THE ALIGNMENT FREQUENCIES.

(EARLY PRODUCTION OF MODEL 6T72 WAS ALIGNED AT THE SAME FRE
QUENCIES AS MODEL T164. THE CHANGE WAS MADE TO REDUCE I-F HARMONIC INTERFERENCE.)

REFER TO MODELS T164, TC165, ETC., ON PĀGES 261 TO 288 FOR ADDITIONAL SERVICE INFORMATION.

## ALIGNMENT PROCEDURE

Service Precautions. - If possible, the chassis should be serviced without the kinescope. However, if it is necessary to view the raster during servicing, it would be a great convenience to have a set of yoke, focus coil, kinescope socket, high voltage and speaker extension cables.

CAUTION: Do not short the kinescope second-anode lead. Its short circuit current represents a considerable overload on the high voltage rectifier V1l3.

TEST EQUIPMENT. - To service properly the television chassis of this receiver, it is recommended that the following test equipment be available:

R-F Sweep Generator meeting the following requirements:
(a) Frequency Ranges

20 to $30 \mathrm{mc} ., 1 \mathrm{mc}$. and 10 mc . sweep width
50 to $90 \mathrm{mc} ., 10 \mathrm{mc}$. sweep width
170 to 225 mc ., 10 mc . sweep width
(b) Output adjustable with at least .1 volt maximum.
(c) Output constant on all ranges.
(d) "Flat" output on all attenuator positions.

Cathode-Ray Oscilloscope. - For alignment purposes, the oscilloscope employed must have excellent low frequency and phase response, and should be capable of passing a 60 -cycle square wave without appreciable distortion. While this requirement is not met by many commercial instruments, RCA Oscilloscopes, types WO-55A, WO-58A, WO-79A, and WO-60C fill the requirement and any of these may be employed.

Electronic Voltmeter of Junior "VoltOhmyst" type and a high voltage multiplier probe for use with this meter to permit measurements up to 15 kv .

Signal Generator to provide the following frequencies with crystal accuracy.
(a) Intermediate frequencies

> 19.50 mc. adjacent channel picture trap 21.00 mc. sound i-f and sound traps 22.05 and 24.75 mc. conv. and first pix i-f trans. 25.3 mc. second picture i-f transformer 24.35 mc. fourth picture i-f transformer 21.75 mc. third picture i-f transformer 22.5 mc. fifth picture i-f transformer 25.50 mc. picture carrier
> 27.00 mc. adjacent channel sound trap
(b) Radio frequencies

	Picture	Sound
Channel	Carrier	Carrier
Number	Freq. Mc.	Freq. Mc
2.	55.25.	59.75
3.	. 61.25.	. 65.75
4.	. 67.25	. 71.75
5	. 77.25.	. 81.75
6.	. 83.25.	. 87.75
7.	. 175.25.	. 179.75
8.	. 181.25 .	. 185.75
9.	.187.25.	. 191.75
10.	. 193.25	. 197.75
11.	. 199.25.	. 203.75
12.	205.25	. 209.75
13.	211.25.	215.75

(c) Output on these ranges should be adjustable and at least .1 volt maximum.

Heterodyne Frequency Meter with crystal calibrator if the signal generator is not crystal controlled.

Adjustments Required. - Normally, only the r-f oscillator line will require the attention of the service technician. All other circuits are either broad or very stable and hence will seldom require readjustment.

The oscillator line is relatively non-critical. When oscillator tubes are changed, in all probability it will be necessary to adjust only C 6 in order to bring the entire line into adjustment.

ORDER OF ALIGNMENT. - When a complete receiver alignment is necessary, it can be most conveniently performed in the following order:
(1) Sound discriminator
(5) R-F and converter lines
(2) Sound i-f transformers
(6) R-F oscillator line
(3) Picture i-f traps
(7) 4.5 mc . video trap
(4) Picture i-f transformers
(8) Sensitivity check

SOUND DISCRIMINATOR ALIGNMENT. - Set the signal generator for approximately .1 volt output at 21.00 mc . and connect it to the second sound i-f grid.

Detune Tll3 secondary (bottom).
Set the "VoltOhmyst" on the 3 -volt scale.
Connect the meter, in series with a 1-megohm resistor, to the junction of diode resistors R203 and R204.
the detailed alignment procedure beginning on page 5 3hould be read before alignment by use of the table is attempted.

$\begin{aligned} & \text { STEP } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { SIGNAL } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$	$\begin{aligned} & \text { SIGNAL } \\ & \text { GREN. } \\ & \text { FREQ. } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { SWEEP } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$	$\begin{aligned} & \text { SWEEP } \\ & \text { GEN. } \\ & \text { FREQ. } \\ & \text { MC. } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { OSCIIIOSCOPE } \\ & \text { TO } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { "VOLTOHMYST" } \\ & \text { TO } \end{aligned}$	MISCELLANEOUS CONNECTIONS AND INSTRUCTIONS	ADJUST	$\begin{gathered} \text { REFER } \\ \text { TO } \end{gathered}$
DISCRIMINATOR AND SOUND I-F ALIGNMENT									
1	2nd sound i-t grid ( $\mathrm{Pi} 1 \mathrm{1}, \mathrm{V} 117$ )	$\begin{aligned} & 21.00 \\ & \text {-1 volt } \\ & \text { output } \end{aligned}$	Not used		Nol used	In series with 1 meg. to junction of R203 \& R204		Detune T113(bot.) Adjusi T113 (lop) for max. on meter	$\begin{aligned} & \text { Fig. } 8 \\ & \text { Fig. } 9 \\ & \text { Fig. } 10 \end{aligned}$
2	"	"	"		"	$\begin{aligned} & \text { Junct. of } \mathrm{Cl}_{183} \mathrm{E} \\ & \text { R203 } \end{aligned}$	Meler on 3 volt scale	T113 (botiom) for zero on meter	Fig. 9 Fig. 10
3	"	"	2nd sound i-f grid (pin 1. V117)	$\begin{gathered} 21.25 \\ \text { conter } \\ 1 \text { me. } \\ \text { wide } \\ .1 \text { v. out } \end{gathered}$	$\begin{aligned} & \text { Junction of C183 } \\ & \delta R 203 \end{aligned}$	Not used	Chock for symm not equal adjus they are equal	etrical response   d negative). If   Tll3 (iop) until	Fig. 10   Fig. 12
4	lst sound i-f grid (pin 1, V116)	21.00 reduced output	1st sound i.l grid	$\begin{gathered} 21.25 \\ \text { reduced } \\ \text { output } \end{gathered}$	Terminal A. T112 in series with a $33,000 \mathrm{ohm}$ resistor	"	Sweep output reduced to provide .3 rolt p-to-p on scope	T112 (top \& bot.) for max. qain and symmetryat 21.00 mc.	Fig.   Fig. 9   Fig. 13   Fig. 1
PICTURE I-F AND TRAP ADJUSTMENT									
3	Not used		Not used		Not used	$\begin{aligned} & \text { Junction of R135 } \\ & 8 \mathrm{C} 190 \end{aligned}$	Remove V107. Connect potentiometer between piny 586 of V107 socket	Adjust pot. for meler reading of -12 volts	Fiq. 10
6	Converter grid (pin 1, V2)	21.00	"		*	Across R119	Moter on 3 voll scale. Receiver betwaen 2 and 13	T103 (lop) for min. on meter	Fig. 8
7		21.00	"		"	"	"	IlOS (top) for min.	"
8	*	27.00	"		"	*	"	$\begin{array}{lll} \hline 1102 \\ \min . \end{array} \text { (lop) for }$	"
$\bullet$	"	27.00	"		-	"	"	$T 104$ min. (top) for	"
10	"	13.50	"		*	"	"	$\begin{array}{lll} \text { Tlo6 } \\ \text { min. } \end{array} \text { (top) for }$	"
11	"	19.50	"		"	*	*	$\begin{array}{lll} \mathrm{T} 101 \\ \min . \end{array} \text { (top) for }$	"
12	"	22.5	"		"	"	"	I106 (bottom) for max. on meler	Fig. 9
13	"	24.35	"		"	"	"	T104 (bottom) for max.	"
14	"	21.75	"		"	،	"	T103 (bottom) for max.	"
13	"	25.3	"		"	-	"	T102 (botlom) for max.	"
16	"	$\begin{aligned} & 22.05 \\ & 24.75 \end{aligned}$	$\begin{aligned} & \text { Converter } \\ & \text { qrid } \\ & \text { (pin 1. V2) } \end{aligned}$	Sweeping 20 to 30 me	Pin 1, V106	$\begin{aligned} & \text { Junction of R13s } \\ & \delta \mathrm{C} 190 \end{aligned}$	Shunt 330 ohms across pri. Tl02. T103. T104, T106. Set bias-2 V. Set swp. gen. for 4 V . P.P on scope.	Adjust Tl (top) and T101 (bot. tom) for proper response	Fig.   Fig. 9   Fig. 14
17	"		"	"	"	"	Remove shunt resistors. Set bias to give 15 volts P to P on scope.	Adjust T1 (top), T101, T102, T103. T104, T106 (bot.) for proper resp.	Fig. 8   Fig. 9   Fig. 15
ANTENNA, R-F AND CONVERTER LINE ALIGNMENT									
18	Antonan terminals	215.75	Not used		Not used	Junction of C183 \& R203 for signal gen. method only	Fine tuning centered.Receiveron channel 13. Het. -rodyne meter coupled to oseil. lator if used.	C6 for zero on meter or beat on hot. freq. meter	$\begin{aligned} & \text { Fig. } 88 \\ & \text { Fig. } 10 \end{aligned}$
19						```Junction of R135 & L117```	Remove V101	Potentiometer for -3.5 volts on meter	Fig. 8   Fig. 10
20	Antenna torminal (loosely)	$\begin{gathered} 175.25 \\ 179.75 \\ 179 \end{gathered}$	Antenna terminals (see toxt for precaution)	$\begin{gathered} \text { Sweop- } \\ \text { ing } \\ \text { channel } \\ 7 \end{gathered}$	Test   Connection H 13	Not used	Receiver on channel 7	L6. C10, C11 8 Cl4 for flat top response beiween markers. Markers above $90 \%$.	Fig. 8 Fig. Fig. 18 (7)
21	"	$\begin{aligned} & 205.25 \\ & 209.75 \end{aligned}$	"	${ }_{12}$	"	"	Receiver on chan. nel 12	16 for max. re sponse and min. slope of top of eurve	Fig. 8 Fig. 16 (12)
22	"	$\begin{aligned} & 175.25 \\ & 179.75 \end{aligned}$	"	$\underset{7}{\text { channel }}$	"	"	Receiver on channel 7	Check to see that response is as above	$\text { Fig; }{ }^{16}$
23	"	$\begin{aligned} & 181.25 \\ & 185.75 \end{aligned}$	"	$\begin{gathered} \text { channel } \\ 8 \end{gathered}$	"	"	Receiver on channol 8	"	Fig. 16   (8)
24	"	$\begin{aligned} & 187.25 \\ & 191.75 \end{aligned}$	*	$\underset{9}{\text { channel }}$	"	"	Receiver on channel 9	"	$\text { Fig. } 16$ (9)
25	"	$\begin{aligned} & 193.25 \\ & 197.75 \end{aligned}$	"	$\begin{aligned} & \text { chennel } \\ & 10 \end{aligned}$	"	"	Receiver on channel 10	"	$\underset{\text { Fig. } 16}{(10)}$

ALIGNMENT PROCEDURE

STEP		$\begin{gathered} \text { SIGNAL } \\ \text { SREL. } \\ \text { TREO. } \\ \text { MCC. } \end{gathered}$	$\begin{gathered} \text { CONNECT } \\ \text { GENEEPTR } \\ \text { GEOTOR } \end{gathered}$	$\begin{aligned} & \text { SWEEP } \\ & \text { SEREP. } \\ & \text { FREC. } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { OSCILLOSCOPE } \\ & \text { TO } \end{aligned}$	"VOLTOHMET TO	MISCELLANEOUS CONNECTIONS instructions	adjust	$\underset{\text { Refir }}{\text { R }}$
antenna, R-E AND Converter line alagnment (Continuod)									
26	"	${ }^{199.25}$	"	${ }_{\text {channol }}^{\text {che }}$	"	"	Recoiver on chan-   nol 11	"	${ }_{\text {Fig. }}^{1116}$
27	"	cen 205.25	"	$\begin{gathered} \text { channol } 12 \end{gathered}$	"	"	Receiver on chan- nel nel	"	
28	"	$\underset{211.25}{215}$	"	${ }_{13}^{\text {channel }}$	"	"	Reeciver on chan-   nol 13	"	$\underset{\text { Fig. }}{(13)}$
29	If the response on any channel (steps 22 through 28) is below $80 \%$ at pither marker, switch to that channel and adjust L6, Cl0, Cll $\&$ Cl4 to pull response up on that channel. Then recheck steps 22 through 28.								
${ }^{30}$	$\begin{gathered} \text { Antonna } \\ \text { Rorminals } \\ \text { (toosely) } \\ \hline \end{gathered}$	${ }_{8}^{83} 8.25$	Ant. torminals (see text for precaution)	$\begin{aligned} & \text { Swepp- } \\ & \text { ing } \\ & \text { chan. } 6 \end{aligned}$	$\begin{aligned} & \text { Tost } \\ & \text { Connoction R13 } \end{aligned}$	Not usod	$\left\lvert\, \begin{aligned} & \text { Recoivor on chan. } \\ & \text { nol } 16\end{aligned}\right.$	$\begin{array}{\|l\|l\|} \text { L9.1. } & \text { L13, } \\ \text { cin } \\ \text { Gs for raspons } \end{array}$	${ }_{\text {Fig }}^{\text {(6) }} 16$
31	"	${ }_{8}^{77.25}$	"	$\underset{5}{c h a n n e l}$	"	"	Receiver on chan- nel 5	Check to soe that response is as above	${ }_{\text {Fig }}^{\text {(5) }}$ 16
32	"		"	channel	"	"	(Roccivar on chan-		${ }_{\text {Fig. }}^{\text {(i) }}$ ( 16
33	"	${ }_{6}^{61.25}$	"	$\underset{\substack{\text { channol }}}{ }$	"	"	Roceciver on chan- noi	"	${ }_{\text {Fig. }}^{(3)} 16$
34	"	${ }_{59}^{55.25}$	"	${ }_{\text {channol }}$	"	"	Receriver on chan-   nel 2	"	${ }_{\text {Fig }}^{\text {(2) }}$ 16 ${ }^{\text {c }}$
35	If the response on any channel (steps 31 through 34) is bolow $80 \%$ at cither marker, switch to that channel and adiust L9, L13, L66 \& C12 io pull response up on that channel. Then recheck stepi 30 through 34 . Disconnect the bias pot. and replace V101 and Y 107 .								
h.F osciliator alignment									
$\begin{gathered} \text { STEP } \\ \text { No. } \\ \hline \end{gathered}$	$\begin{aligned} & \text { CONNECT } \\ & \text { SENENAL } \\ & \text { GENERTOR } \end{aligned}$	$\begin{gathered} \text { SIGNAL } \\ \text { GEN. } \\ \text { FREQ. } \\ \text { MC. } \end{gathered}$		$\begin{gathered} \text { MET. } \\ \substack{\text { MERER } \\ \text { MRE. } \\ \text { MC. }} \end{gathered}$	CONNECT OSCILIESCOPE TO	$\begin{gathered} \text { CONMET } \\ \text { VOLTOMMYST" } \\ \text { TO } \end{gathered}$	$\begin{aligned} & \text { MISCELLANEOUS } \\ & \text { CONNECTIONS } \\ & \text { INSTAUCTIONS } \end{aligned}$	атjust	$\underset{\text { miflr }}{\text { To }}$
${ }^{36}$	Antonna	215.75	Loosoly couplod to 8.408 c.	236.75	Not used	Junction of 8 8203 Ror fig sig. gon. method only	Fine tuning cen- tored. Receiver on channel 13	C6 tor zero on het frec et. freq. meter	Fig. ${ }_{\text {F }}$
37	"	209.75	"	230.75	"	"	Roc. on chan. 12	124 as abovo	Fig. 11
38	"	203.75	"	224.75	"	"	Roc. on chan. 11	L1s as aboro	,
39	"	197.75	"	${ }^{218.75}$	"	"	Rec. on chan. 10	L16 as abovo	"
40	"	191.75	"	212.75	"	"	Hoc. on chan. 9	L17 as abovo	"
41	"	18.75	"	206.75	"	"	Hoc. on chan. \&	L18 as abovo	"
42	"	179.75	"	200.75	"	"	Rec. on chan. 7	L19 as abovo	"
43	"	87.75	"	108.75	"	"	Rec. on chan. 6	L31 as abovo	Fiq. 9
44	"	81.75	"	102.73	"	"	Rec. on chan. 5	L21 as abovo	Fig. 11
45	"	71.75	"	92.73	"	"	Roc. on chan. 4	L22 as above	"
46	"	65.75	"	86.75	"	"	Roc. on chan. 3	L23 as abovo	-
47	"	59.75	"	80.75	"	"	Roc. on chan. 2	L24 as abovo	.
48	Ropoat stopa 36 through 47 as a check.								
agc threshold adjustment									
49	Not usod		Not used		Pin 1. V106	Not usod	Tune in station. clockwise. Adju lip	turin pix control max. ping syne on seope	$\underset{\text { Fig. }}{\text { Fig. }} 17$
horizontal oscilatior adjustment									
50	Short circuit torminals C and D of T109. Tune in a station. Sat locking range trimmer C153A $1 / 2$ lurn out from maximum.								
51	Turn hold controi fully clockwise. Adjust Tlo9 Froquency Adjustment until horizontal blanking bar appears in the picture.								
52	Tura hold control $1 / / \mathrm{s}$ turn from clockwise 10 syne pieture. Adjust width (R192), linearity (L111) and drive (C153B) controls until picture is corroct. Repeat step 31, then proceod with stop 53.								
53	Remove clip from terminals $C$ and $D$ of Tlo9. Turn hold control fully clockwise. Adjust Tlog Oscillator Wavelorm Adjustment until horizontal blanking bar appears in picture with core in outer of two possible positions.								
54	Connect low capacity probe of oscilloscope to terminal C of Tl09. Alternately adjust Tlog Orcillator Waveform Adjustment and frequency adjustment until broad and sharp peaks of wave on oscilloscope are same height while keaping picture in sync. Remove oscilloscope.								
55	Connect a 270X resistor across CIS6. Turn hold control fully countor-clockwise. Momentarily remove signal. Turn hold control slowly elockwise. Note loast number of bars before pull-in. Adjust Locking hange Control (C153 A) for 2 bar pull-in.								
56	Turn hold control fully clockwise. Adjust tios Freq. Adjustment until horizontal blanking appears as single vortical or diagonal bar in pix.								
	4.5 MC VIDEO TRAP ADJUSTMENT								
57	Tune in a strong station. Short tio3 trap. 14 a 4.5 me . beat appears in picture adjust 4.5 me . trap (Lilio) until beat is oliminated.								
sensitivity check									
${ }^{58}$	Connoct antenna to reeciver hrough attenuator pad to provide weak signal. Compare the pieture and sound obtainad to that obtained on otherrecaivers under the same conditions.								

ALIGNMENT DATA

Continued from Page 5 ALIGNMEN
djust the primary of T 113 (top) for maximum output on the meter.
Connect the "VCliohmyst" io the junction of C183 and R203. djust T113 secondary (bottom). It will be found that it dependent upon this adjustment. Obviously to pass 9 Yrom positive to a negative voltage. the voltage must go througb
zero. T113 (botom) should be adjusted so that the meler indicatess zero output al the voltage seings from positive to
tive. This point will be called discriminator zero output.
C.f ampect the sweep oscillator to the grid of the second sound

Adjust the swoep band widh to approximately 1 mc. wilh
the center frequency at approximately 21.00 mc . and wilh the center frequency at approxim
an output of approximately 1 l
volt.
Connect the oscilloscope to the junction of C183 and R203 The pattern oblacined should be nimilar to that shown in Figure
12. II it is not, adjuat T113 (top) until the wavolorm is sym-

The peak-to-peak band width of the discriminator should be
approximately 350 kc . and the trace should be linear from approximately ${ }_{21}^{350} \mathrm{kc}$. ${ }^{31.150 \mathrm{mc} .}$ to 21.300 mc .

SOUND IF ALIGNMENT. - Connect the awwop oscillator to Connect the oscilloscope to the second sound if grid return
(terminal A of T112) in sories with $\alpha 33,000$-hm isolating cterming

Insert $\alpha 21.25$ me. marker signal from the signal generator
into the first sound ti-4 grid. Adjust T112 (top and bottom) for maximum gain and sym-
metry about the 21.00 mc. marker. The pattern obtained should metry about the 21.00 mc. marker. The
be similar to that shown in Figure 13 .
The output level from the sweep should be set to produce
 made. It is necessary that the swoep outpot voltage hhould no
exceed the specilied values otherwise the response curve will exceed the specilied values otherwise the response curve will
be broaddoned, permitting stight misadjustment to pass un
noticed and posibly

The band width at $70 \%$ response from the first sound it grid to the second i-f grid should be approximatefy 200 kc . PICTURE L-F TRAP ADJUSTMENT.-C
Ohmyst" to the junction of R135 and C190.
Remove the 6SN7GT AGC Amplilier tube V107. Connect a
$250.000-\mathrm{ohm}$ potentiometer between pins 5 and 6 of the V107 250.000 -hm potentiometer between pins 5 and 6 of the V107 socket. Adjust the potentio
approximately -12 volls.
Set the channel switch to the blank position between chan-
nels number 2 and Connect the "VoliOhmys" across the picture detector load
resistor All9. Under this condition, both curds of co meter meter
are at approximately -120 volls. In making this connection, are at approximately -120 volis. In making this connection.
care should be taken not to touch the case of the meter or to parmit the meter case to become grounded.
Connect the output of the signal generator to the grid of the
converter tube V 2 To do this, remove the tube from the socket converter tube V2. To do this, remove the tube from the soccket
and fashion a clip by twisting one end of a small piece of and tashion a clip by twisting one ond of a small piece of
wire around pin number 1 . Replace the tube in the socke Wraving the end of the wire protruding from under the twbe
Connect the signal generator 10 this wire through $a$ t.500 mm Connect the signal generatoror to this wire through
capacior keoping the leads as short as possible.
Set the generotor to each of the following frequencies and
with a thin fiber screwdriver tune the specified qdiustment for with a thin fiber screwdriver tune the specified adjustment for
minimum indication on the "Voliohmyst." In each instance the generator should be checked against a crystal calibrator to

$\begin{array}{ll}\text { (2) } 21.00 \mathrm{mc} .-\mathrm{T105} \text { (top) } & \text { (5) } 19.50 \mathrm{mc} .-\mathrm{T} 106 \text { (top) } \\ \text { (3) } 27.00 \mathrm{mc}-\mathrm{T} 102 \text { (top) } & \text { (6) } 19.50 \mathrm{mc}-\mathrm{Tl101} \text { (top) }\end{array}$
tion is encountered, it is sometimes possible to stop oscillatio
by adjusting the transformers approximately to frequency by by adjusting the transformers approximately 1 to frequency by
betting the adjustmant coras of 101 . T102. T103, T104, T10 and T106 to be approximately equal to those of another rom the desired effect, it may now be possible to stop oscillation by increasing the grid bias. If so. it should then be possibl o align the transformers by the usual method. Once aligne
in this manner, the it amplifier should be stable with reduce bias.
If the oscillation cannot be stopped in the above manne shunt the grids of the lirst three pix i-4 amplifiers to ground
with $1,000 \mathrm{~mm}$. capacitors. Connect the signal generator we fourth pix $i-1$ grid and align $T 106$ to trequency. Progres sively remove the shunt from
coil of that stage to frequency.
If this does not stop the oscillation, the difficulty is not due
io $i=f$ misalignment as the $i=4$ section is stable when properly 10 i.t miscolignment as the $i$ i.f section is stabtle when properly
aligned. Check all $i: 4$ by pass condensers, transtormer shunting aligned. Check all if by.pass conden
ANTENNA, R-F AND CONVERTER LINE ADJUSTMENT. order to align the ref funer, it will first be necessary to set the
channel-13 oscillator to frequency. The shield over the botion the $\mathrm{r} \cdot \mathrm{f}$ unit must be in place when making any adjustmentit. The channel-13 oscillator may be aligned by adjusting it to by feeding a signal into the receiver at the r .t sound carrier
 sund discriminalor. In thise latter case the sound discriminat of adjustment will produce the same results. The method use will depend upon the type of test equipment available. Regard. eass of which method of oscillator alignment is used, the tho
quency standard must be crystal controlled or calibrated.
It the receiver osclllator is to be adjusted by the heterodyne
irequency meter method, couple the meter probe loosely to the Irequency meter m
receiver oscillator. It the receiver oscillator is adjusted by feeding in the r -f
sound carrier Eignal. connect the signal generator to the re ceiver antenna terminals. Connect the ., Voltohmyst" to the the
eound discriminator output (junntion of C183 and R203) to nd discriminator output (junction of C183 and R203
Set the receiver switch to 13 .
Adjust the frequency standard to the correct frequency 236.75
me. for helerodyne Irequency meter or $215.75 \mathrm{mc}$. . me. ior helerodyne
ignal generator).
Set the fine tuning control to the middle of its range. Adfust C6 for an audible beat on the heterodyne frequency
meter or zero voltage from sound discriminator.
Now that the channel-13 oscillator is set to frequency, wo Connect the volit mist to the junction of R135 and L117. Adjust the 250 K pot. for -3.5 volts on the meter
Remove the first pix i.f amplifier tube v101
Connect the oscilloscope to the test connection at R13 the r -f tuning unit.
Connect the ref swoep oscillator to the receiver antenna erminals. The method of connection depends upon the outpur
mpedance of the sweep. The $P 102$ connections for 300 -h alanced or 72 .ohm single-ended input connections for $300-$ oh
 y connecting as shown in Fiqure ?

Since channel 7 has the narrowest response of any of the
high trequency channels, it should be adjutied first. Set the receiver channel switch to channel 7 .
Set the sweep oscillator to cover channel 7.
Insert markers of channel 7 picture carrier and sound carrio
175.25 mc and 179.75 mc . Adjust Cl 10 and $\mathrm{Cl4}$ until the curve talls symmetrically be
tween the sound and picture carrier markers. Adjuyt C11 give the proper band width. Roughly peak L6 in conjunctio with slight adjustments of C10 and Ci4 for a filat-topped ro sponse curve with the sound and picture carriors at at $90 \%$ to
$95 \%$ response points on this curve. See Figure 16, channel 7 , Switch to channel 12 and adjust $L 6$ for maximum respone and minimum top slope of the curve.
Check the response of channels 7 through 13 by switching ascllator to oach of these channels and observing and mark obtained. See Figure 16 for typical response curver. It should be found that all these channels have the proper shaped re sponse with the markers above $80 \%$ response. If the markeri
do not fall within this requirement on one or more high fre quency channelses since there areno on individual channel adjun ments, it will be necensary to readjust L6, C10, C11 and C14,
and possibly compromise some channel slightly in order get the markers up on other channels. Normally, however, no difficulty of this type should be experienced since the highe
requency channelse are comparatively broad and the marker frequency channels are comparatively
easily fall within the required range.

$$
\text { Channel } 6 \text { is next aligned in the same manner }
$$

ene 6 is nexi allgned in
Set the sweep oscillator to cover channel 6
Sot the marker oscillator to channel 6 picture and sound
Adjust L9, L13, L66, and C12 for an approximately flat opped response curve locatod symmetrically botween the narkers. L9. L13 and L66 are the cente
nents. C12 is the band-width adjusument
Check channels 5 down through channel 2 by switching the receiver, swaep oscillatior and marker ooscillararor to wach channel
and observing the response obtained. In all cases, the marke should be above the $80 \%$ response point. If this is not the case, So. L13. L66 and C12 should be retouched. On final adjustmen all channels must be within the $80 \%$ specificaction.
Disconnect the 250K pot.. and replace V107 and V101.
Following an ret alignment. the oscillator alignment must b checked.
R.F OSCILLATOR LINE ADJUSTMENT. - The r.f oscillato Ine may be cligned by adjusting it to beat wilh a crysta anto the receiver at the ref sound carrier Irequency and adjust inlo the receiver at the r.f sound carrier Irequency and adjust
ng the oscillalor for zoro output from the sound discriminutor
in this latter case the sound discriminator must first have bee In this latter case the sound discriminator must first have boen
aligned to exact trequency. Either method of adjustment will aligned to exact frequency. Either method of adjustment will
produce the same resulta. The melhod ured will depend upon
he type of test equipment availabho.
Regardless of which method of oscillator alignment is usod,
the frequency standard must be crystal controll The frequency standard must be crystal controlledon or callbratiod. the receiver oscillator is to be adjusted by the heterodyne
equency meter method, the calibration frequency lintod under trequency meter method. the calibs
R-F Osc. Freq. must be available.


Figure 7-Unbalanced Sweep Cable Termination
Connect the signal generator loosely to the receiver antenna

Channel Number	Recoiver R-F Osc. Freq. Mc	R-F Sound Carrior Freq. Mc.	$\begin{aligned} & \text { Channol } \\ & \text { Osclllator } \\ & \text { Adjuatment } \end{aligned}$
2...	80.750	59.75	L24
3	86.750	65.75	L23
4.	92.750	71.75	L22
5.	.102.750..	81.75	L21
6.	.108.750..	87.75.	L31
	.200.750.	179.75	119
8.	.206.750..	185.75	118
9.	.212.750..	191.75	117
10	.218.750..	197.75	116
11.	.224.750	203.75	115
12.	.230.750	209.75	${ }^{114}$

II the receiver oscillator is adjusted by foeding in the r-f sound carrier frequency, the frequencies listed under Sound Carrier Freq. must be available.

If the heterodyne frequency meter method is used, couple the meter probe loosely to the receiver oscillator.

If the r-i sound carrier method is used, connect the "VoltOhmyst" to the sound discriminator output (function of C183 and R203) and connect the signal generator to the receiver antenna terminals. The order of alignment remains the same regardless of which method is used.
If the $r-f$ unit is removed from the receiver for service and is aligned separately, the shield over the bottom of the r-f unit must be in place when making adjustments.
Since the lower frequencies are obtained by adding steps of inductance, it is necessary to align channel 13 first and continue in reverse numerical order.
Set the receiver channel switch to 13.
Adjust the frequency standard to the correct trequency 236.75 mc . for heterodyne frequency meter or 215.75 mc . for the signal generator).

Set the fine tuning control to the middle of its range while making the adjustment.

Adjust C6 for an audible beat on the heterodyne frequency meter or zero voltage from sound discriminator. Oscillator adjustments L 1 and L 2 shown on the schematic are factory control adjustments and should not be touched in the field.

Switch the receiver to channel 12.
Set the frequency standard to the proper frequency as listed in the aligmment table.

Adjust L14 for indications at above.
Adjust the oscillator to irequency on all chansels by switching the receiver and the trequency standard to each channel and adjusting the appropriate ascillator trimer for the specified indication. It should be possible to adjust the oscillator to the correct frequency on all channels with the fine tuning control in the middle third of its range.

After the aecillator has been set on all channels, start back at channel 13 and recheck to make sure that all adjustments are correct.

AGC TERESHOLD ADJUSTMENT. - The AGC threshold adjustment can be made by the method outlined in the Installa. tion Instructions. However, a more accurate adjustment can be obtained by the use of an oncilloscope.

Tune in a station and advance the picture control to the maximum clockwise position. Connect the low capacity probe from the oscilloscope to the plate of the first video amplifier, pin 1 of V106. Adjust the oscillomcope to observe the horizontal sync pulse.
Turn the AGC threshold control R138 fully clockwise, then slowly counter-clockwise. As the control is turned counterclockwise, the receiver gain will increase slowly, increasing the size of the pattern on the oscilloscope. R138 should be turned counter-clockwise until the receiver begins to overload as indicated by clipping of the sync. The control should be left in the maximum gain position in which no clipping of sync is observed. See Figure 17 for proper wavelorms.

HORIZONTAL OSCILLATOR ADJUSTMENT. - Normally the adjustment of the horizontal oscillator is not considered to be a part of the alignment procedure. bui since the oscillator wavelorm adjustment requires the use of an oscilloscope, it can not be done conventently in the field. The waveform adjustment is made at the factory and normally should not require readjustment in the field. However, the waveform adjustment should be checked whenever the receiver is aligned or whenever the horizontal oncillator operation is improper.

Horizontal Frequoncy Adjustmont-Set the locking range trimmer one half turn out from maximum capacity. With a clip lead, short circuit the coil between terminals $C$ and $D$ of the horizontal oscillator transformer T109. Tune in a television station and sync the picture if possible.
A. - Turn the horizontal hold control R173 to the extreme clockwise position. Adjust the T109 Frequency Adjustment (under the chassis) so that the picture is just out of sync and the horizontal blanking appears in the picture a a vertical bar. The position of the bar is unimportant.

Note.-Occasionally a tube may be found which does not respond to step " $A$ " above, since it may not be possible to sync the picture by means of the irequency core when the sine wave coil is shorted out. Yet, the tube may work perfectly well when the circuit is properly aligned. In such a case it may be necessary to remove the short then turn the sine wave core out then in until it is possible to obtain sync by adjustment of the frequency core.
B. - Turn the hold control approximately one-quarter of a turn from the extreme clockwise position and examine the width and linearity of the picture. If picture width or linearity is incorrect, adjust the horizontal drive control C153B, the width control R192 and the linearity control L111 until the picture is correct. If C153B was adjusted, repeat step "A" and note above.

Horizontal Oscillator Waveform Adjustment - Remove the shorting clip from terminals C and D of T109. Turn the horizontal hold control to the extreme clockwise position. With a thin fibre screwdriver, if necessary, adjust the Oscillator Waveform Adjustment Core of T109 ion the outside of the chassis) until the horizontal blanking bar appears in the raster. The waveform adjustment core will sync the picture in two positions. The core should be in the position nearest the outside of the chassis.
A. - Connect the low capacity probe of an oscilloscope to terminal C of T109. Alternately adjust the wavelorm and irequency cores of T109 until the peak of the sine wave is equal in amplitude to the peak of the saw tooth, on the oscilloscope as shown in Figure 18, while maintaining the picture in synchronization. Then adjust the frequency core until horizontal blanking shows as a vertical bar in the picture.

This adjustment is very important for correct operation of the circuit. If the broad peak of the wave on the oscilloscope is lower than the sharp peak, the noise immunity becomes poorer, the stabilising effect of the tuned circuit is reduced and drift of the oscillator becomes more serious. On the other hand, if the broad peak is higher than the sharp peak, the oscillator is overstabilized, the pull-in range becomes inadequate and the broad peak can cause double triggering of the oscillator when the hold control approaches the clockwise position.

Remove the oscilloscope upon completion of this adjustment.
Check of Oscillator Pull-in Range.-Set the horisontal hold control to the full ccunter-clockwise position.

Connect a 270 K ohm resistor across Cl56.
Momentarily switch off channel and back. The picture will then be out of sync.

Turn the hold control clockwise slowly and observe the minimum number of bare oblained just before the picture pulls into sync. The picture should snap in from two complete blanking bars. If two bars are not obtained turn the locking range trimmer Cl53A in to obtain less bars or out to obtain more bars.

After adjustment of C153A, remove the 270 K resistor, turn the horizontal hold control fully clockwise and readjust the frequency core of T109 until the picture is in sync and the horizontal blanking bar begins to move in the picture. Then repeat the entire "Check of Pull-in Range" procedure to this point. Repeat this procedure until two bar pull-in is obtained.

Turn the horizontal hold control to the maximum clockwise position. The picture should be just out of sync to the extent that the horisontal blanking bar appears as a single vertical or diagonal bas in the picture. Adjust the T109 Fiequency Adjustrment until this condition is fulfilled.
4.5 MC. VIDEO TRAP. - With a strong input from a slation, detune the receiver from the correct fine tuning point. With $\alpha$ very short clip lead, short the trap winding of T103. Observe the picture for the appearance of a 4.5 mc . beat. If the beat appears in the picture, adjust L110 until the beat is eliminated.


To obtain resistors for which no sfock number is given, order by fating type, value of resistance, tolerance and wattage.


## ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE................ 146 square inches on a 16GP4 kinescope TELEVISION R-F FREQUENCY RANGE
All 12 television channels. 54 mc , to $88 \mathrm{mc} ., 174 \mathrm{mc}$. to 216 mc . Fine Tuning Range, $\pm 250 \mathrm{kc}$. on chan. 2, $\pm 650 \mathrm{kc}$. on chan. 13

## RADIO TUNING RANGE

RC1090 ............................................................. AM-540.1600 kc. RC1092 .............................AM-540-1600 kc.-FM-88-108 mc.
AUDIO POWER DUTPUT
RCl090-6 watts max...............................RCl092-11 watts max.
POWER SUPPLY RATING ....................... 115 volts, 60 cycles 6T84-290 watts max.....................6T86 or 6T87-315 watts max.
CHASSIS DESIGNATIONS


RECEIVER ANTENNA INPUT IMPEDANCE 300 ohms balanced.
If necessary, the television chassis may be fed separately from either a 300 -ohm balanced line or a 72 -ohm co-ax.

RCA TUBE COMPLEMENT


## (RCl090 Radio Chassis)




PICTURE INTERMEDIATE FREQUENCIES
Picture Carrier Frequency .......................................... 25.50 Mc.
Adjacent Channel Sound Trap ......................................... 27.00 Mc.
Accompanying Sound Traps ...................................... 21.00 Mc.
Adjacent Channel Picture Carrier Trap ......................... 19.50 Mc.
SOUND INTERMEDIRTE FREQUENCIES
Sound Carrier Frequency ........................................... 21.00 Mc.
Sound Discriminator Band Width between peaks ........ 400 kc.
VIDEO RESPONSE ..... To 4 Mc .
focus Magnetic
SWEEP DEFLECTION Magnetic
sCanning Interlaced, 525 line
HORIZONTAL SWEEP FREQUENCY ..... $15,750 \mathrm{cps}$
VERTICAL SWEEP FREQUENCY ..... 60 cps
FRAME FREQUENCY (Picture Ropetition Rate) ..... 30 cp

THE TELEVISION CHASSIS USED IN MODELS 6T84, $6 T 86$ AND $6 T 87$ IS VERY SIMILAR TO THE CHASSIS USED IN MODELS 6T53, 6T64, 6T71, ETC. REFER TO PAGES 372 TO 385 FOR TELEVISION ALIGNMENT DATA AND WAVEFORM PHOTOGRAPHS.

THE RADIO CHASSIS (RC-1090) USED IN MODEL 6T84 IS IDENTICAL TO THE RADIO CHASSIS USED IN MODEL 2T81. REFER TO PAGES 356 AND 357 FOR SERVICE INFORMATION ON RADIO CHASSIS RC-1090.

## OPERATING INSTRUCTIONS



OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORR ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMLLAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

Connect the antenna transmistion line to the recelver antenna terminals. Plug a power cord into the 115 -volt a-c power source and into the receiver interlock receplacle. Turn the receiver power switch to the "on" position, the brightness control fully clockwise, and the picture control counterclockwise.

ION TRAP MAGNET ADIUSTMENT.-Set the ion trap mag. net approximately in the position shown in Figure 2. Starting from this position immediately adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinemcope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Turn the focus control (shown in Figure 2) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The tinal touches of this adjustment should be made with the brightness control at the maximum clockwise position with which good line focus can be maintained.


Figure 2-Yoke and Focus Magnet Adjustments
DEFLECTION YORE ADIUSTMENT.-If the lines of the raster are not horizontal or equared with the picture maik, rotate the deflection yoke until this condition is oblained. Tighten the yoke adjustment wing screw.

PICTURE ADJUSTMENTS.-It will now be necessary to obtain a test pattern picture in order to make further adjustmentm.
If the Horizonial Oscillator and AGC Symtem are operating properly. it should be ponsible to sync the picture at this point. However, if the AGC control is misadjusted, and the receiver is overloading, it may be imponsible to sync the picture.

If the receiver is overloading, turn S105 on the rear apron (see Figure 3) counter-clockwise until the set operates normally and the picture can be synced.
CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT.Turn the horizontal hold control to the extreme counter-clock. wise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be gradually reduced, and when only 2 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull-in should occur when the control is approximately 90 degrees from the extreme counter-clockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should be out of sync and should show 1 vertical or diagonal black bar in the ranter.

If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Focus Magnet Adjustment."

ALIGNMENT OF HORIZONTAL OSCILLATOR.-If in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull-in point, it will be necemsary to make the follow. ing adjustments.

Horizontal Frequency Adjustmont.-Turn the horizontal hold control to the extreme clockwise ponition. Tune in a television
station and adjust the Tl08 horizontal Irequency adjustment on top of the chassis until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster.

Horizontal Locking Range Adjustment.-Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. The picture may remain in sync. If so turn the T108 top core slightly and momentarily switch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulle into sync.

If more than 2 bars are present just before the picture pulls into sync. adjust the horizontal locking range trimmer C147A slightly clockwise. If less than 2 bars are present, adjust C147R slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 2 bars are present.

Repeat the adjustments under "Horizontal Frequency Ad. justment" and "Horizontal Locking Range Adjustment" until the condition specilied under each are fulfilled. When the horizontal hold operates as outlined under "Check of Morizontal Oscillator Alignment" the oscillator is properly adjusted.

If it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure. For field purposes paragraph "A" under Horizontal Oscillator Wavelorm Adjustment may be omitted.


Figure 3-Rear Chassis Adjustments
FOCUS MAGNET ADJUSTMENT.-The focus coil should be adjusted so that there is approximately three-eighthe inch of space between the rear cardboard shell of the yoke and the flat of the front lace of the focus magnet. This spacing gives best average locus over the face of the tube.

The axis of the hole through the magnet should be parallel with the axis of the kinescope neck with the kinescope neck through the middle.

CENTERING ADIUSTMENT.-No electrical centering controls are provided. Centering is accomplished by means of a separate plate on the focus magnet. Some centering plates include a locking screw which must be loosened before centering, and others are held in adjustment by friction. Up and down adjustment of the plate moves the picture side to side and sidewise adjustment moves the picture up and down.

If a corner of the raster is shadowed, check the position of the ion trap magnet. Reposition the magnet within the range of maximum raster brightness to eliminate the shadow and recenter the picture by adjustment of the focus magnet plate. In no case should the magnet be adjusted to cause any loss of brightness since such operation may cause immediate or eventual damage to the lube. In some cases it may be necessary to shift the position of the focus magnet in order to eliminate a corner shadow.

WIDTH. DRIVE AND HORIZONTAL LINEARITY ADJUST. MENTS.-Adjustment of the horizontal drive control affects the high voltage applied to the kinescope. In order to obtain the highest possible voltage hence the brightest and best

## INSTALLATION INSTRUCTIONS

locused picture, adjust horizontal drive counter-clockwise as lar as possible without stretching the left side of the picture. As a first adjustment, set the horizontal drive trimmer Cl43B onehalf turn out from maximum capacity.
Turn the horizontal linearity coil out until appreciable lose in width occurs. then in until nearly maximum width and the best linearity is obtained.

Adjust the width control R177 to obtain correct picture width.
A slight readjustment of these three controls may be necestary to obtain the best linearity.
HEIGHT AND VERTICRL LINEARITY RDJUSTMENTS.-Ad. just the height control (R1S1 on chastis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R156 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust centering to align the picture with the mask.

FOCUS.-Adjust the focus magnet for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

On focus magnets using two shunts, the one with the cable is the "fine adjustment" and the other is the "focus range" adjustment. In general, the two shunts should be adjusted to approximately equal positions.
Recheck the position of the ion trap magnet to make sure that maximum brightness is obtained.

Check to see that the cushion and yoke thumbscrews and the locus coil mounting screws are tight.


## Figure 4-R-F Oscillator Adjustments

CHECE OF R-F OSCILLATOR RDJUSTMENTS.-Tune in all available stations to see if the receiver r-f oecillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure.

The adjustments for chamnels 2 through 12 are available from the tront of the cabinet by removing the station selector escutcheon as shown in Figure 4. Adjustment of channel 13 is on top of the chassie.
AGC CONTROL-The AGC control switch is provided as on installation adjustment. The normal potition for strong signal areas is with the switch in the number 1 or counterclockwise poation. If impulee type of interierence is experienced, turn the switch to the number 2 or center position. In very weak signal areas in which impulee type interference is experienced, turn the switch to position number 3 or fully clockwise. In this position, all AGC is removed and the re: ceiver will overload if the input signal exceede 200 microvolts: However, for signals under 200 micravolts, this position of the AGC control switch gives best noise immunity of syac.

FM TRAP ADJUSTMENT.-In some inatornces interforence may be encountered from a strong FM station slgnal. $\mathbf{A}$ trap Is provided to eliminate this type of interforence. To adjust the trap tune in the station on which the interforence is obererved and adjust the $L 203$ core on top of the rif unit for minimum interforence in the picture.

CRUTION.-In some receivers, the FM trap L203 will tune down into channel 6 or even into channel 5 . Needless to say, such an adjustmont will cause greatly reduced sensitivity on these channels. If channels 5 or 6 are to be received, check L203 to make sure that it does not affect sensitivity on these two channels.

VENTILATION CRUTION.-The. receiver is provided with adequate ventilation holes in the bottom and back of the cabinet. Care should be taken not to allow these holes to be covered or ventilation to be impeded in any way.

If the receiver is to be operated with the back of the cabinet near a wall, at leant a two-inch clearance should be maintained between cabinet and wall.

CHASSIS REMOVAL-To remove the chastin fom the cabinet for repair or installation of a new kinescope, remove the control knobs, the cabinet back, unplug the speaker cable, the kinescope socket, the antenna cable, the yoke and high voltage cable. Remove the yoke trame grounding strap and the interlock switch. Take out the six chassis bolts under the cabinet. Withdraw the chassis from the back of the cabinet.

ENESCOPE HANDLNG PRECRUTION.-Do not install, romove, or handie the kinescope in any manner, unless shatterproof goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinencope. Keep the kinescope away from the body while handling.

To remove the kinescope from the cabinet, take out the four screws and one wing screw which hold the yoke frame to the cabinet. Remove the kinescope, the yoke frame with yoke and focus magnet as an asembly.
INSTALLATION OF EINESCOPE-Handle this tube by the metal rim at the edge of the screen. Do not cover the glass bell of the tube with fingermarks as it will produce leakage pathe which may interfere with reception. If this portion of the tube has inadvertently been handled, wipe it clean with a soft cloth mointened with "dry" carbon tetrachloride.

Wipe the kinescope screen surface and tront panel safety glass clean of all dust and fingermarks with a soft cloth moistened with "Windex" or similar cleanting agent.
Turn the tube so that the key on the base of the tube will be down and insert the neck of the kinescope through the deflection coil and focus magnet. If the tube sticke, or fails to slip into place smoothly, investigate and remove the cause of the trouble. Do not force the tube.

Replace the kinescope and yoke frame assembly in the cabinet. Insert the fous screws and wing ecrew and tighten.

Slip the kinescope as far forward as posesble. Slide the kinescope cushion tirmly up against the flare of the tube and tighten the adjustment wing screwn. Slide the deflection yoke as far forward as possible. If this is not done, difficulty will be encountered in adjusting the ion trap and focus magnets because of thadows on the corner of the raster.

Slide the chassis into the cabinet, then insert and tighten the six chassis bolts.

Slip the ion trap magnet over the neck of the kinescope.
Connect the kinescope ackel to the tube base and connect the high voltage lead clip from the rim of the kinescope into the high voltage buehing on the high voltage compartment.

Reconnect all other cables. Perform the entire set-up procedure beginning with ion Trap Magnet Adjuetment.

RADIO OPERATION,-Turn the receiver function switch to the positions and check the radio for proper operation. In switching from radio to televition or from television to radio, approzimately 30 seconds warm-up time in required.

RECORD CHANGER OPERATION.-Turn the receiver function witch to each phono position and check each record player for proper operation.

Replace the cabinet back and connect the receiver antenna leads to the cabinet back. Make sure that the screws holding it are up tight, otherwiee it may rattle or busz when the receiver is operated of high volume.

CRBLNET RNTMNNA.-A cabinet antenna is provided for use in strong Eignal areas in which no reflections are experienced. The leads from the antenna are brought out near the receiver antenna terminal board. To connect the cabinet antenna, attach the leads to the terminal board. If reception is satiniactory, no other antenna is necensary. However, if recep. tion in unsatisfactory, it will be necessary to employ an outdoor antenna or an indoor antenna which can be oriented.


Figure S -Cbassis Tap View

If any lead dresaing is necessary, it should be done before aligning the receiver. When making a complete alignment follow the table below in eequence. If only a portion of the circuit is to be aligned select the portion required and follow with the remaining steps in the section. Any adjustments made on the 455 kc . I-F's make it necessary to adjust the 10.7 mc . I-F's.

## "AM" R-F-I-F ALIGNMENT

Test-Oscillator. For all alignment operations, connect low side of the test-onc. to the receiver chassis, and keep the osc. output as low as possible to avoid a-v-c action. Output Meter. - Connect the meter acroms the speaker voice coil, and turn the receiver volume control to max. Turn tone controls for maximum highs and maximum lows. Before aligning set, completely mesh the gang and set the dial pointer to the mechanical max. calibration point at extreme left end of dial.

Step:	Connect the High Side of the Test Osc. lo-	Tune Test Osc. to-	Function Switch	Tum Radio Dial to-	Adjust the following
1	Stator of Cl 4	455 kc. Modulated	AM	Low Freq. end of Dial	†Top and bol. cores of T4 and T2. (For max. voltage acrone volce coill)
2	Ant terminal through dummy ant of 200 mmis.	1.620 kc .	AM	Min. capactiy	Osc. Cl-2T for maximum output
3		1.400 kc .	AM	Tune to signal	$\mathrm{Cl}-4 \mathrm{~T}$ and $\mathrm{Cl}-5 \mathrm{~T}$ for max. output.
4		600 kc .	AM	600 kc .	IOsc. L5 and R-FL7.
5	Repeat steps 2, 3 and 4 for maximum output at 600 kc , and 1,400 kc.				

\& First peak T2 and T4 then starting with T4, use alternate loading. Connect a 47,000 -ohm resistor acroms the primary to load the plate winding while the grid winding of the same transformer is being peaked. Then load the grid winding with the $47,000-0 h m$ resistor while the plate winding is being peaked.
$\ddagger$ With a 10,000 -ohm resistor clipped across Cl .4 , peak the oscillator core $\mathrm{L5}$, simultaneoumly "rocking" the gang condenser for maximum output. Then, remove the 10,000 -ohm shunt resistor and peak L 7 for maximum output.

## FM ALIGNMENT PROCEDURE

Connect probe of "VoltOhmyst" to negative side of C40 and low side to chassis. Connect output meter across speaker voice coil. Turn the tone controls for maximum highs and lows.

Steps	Connect the High side of the Test Osc. to-	Tunc Tost Osc. to-	Function Switch	Radio Dial Tuned to-	Adjust
6	Pin No. 1 of 6RU6 (V4) in series with .01 mid.	$\begin{aligned} & 10.7 \mathrm{mc} . \\ & 30 \% \text { AM } \\ & \text { Modulated } \end{aligned}$	FM		Top of Driver Trans. T5 for maximum DC on "Voltohmyst."
7	Pin No. 1 of 6RU6 (V4) in series with .01 mid.		FM		Bottom of Driver Trans. T5   for minimum audio output on meter.
6	Repeat slops 6 and 7 as necessary making final adjustment with rif input level sel to give approximately -4.0 volte d-c on "VoltOhmyst."				
9	Through 470 ohms to stator. of Cl-3, gang at max. Connect gnd. of cable close to V2 cathode ground on r-f shelf.	10.7 mc .	FM	88 mc .	'T3 thon Tl for max. with r-f input set to give -3 volts on "VoltOhmyst" con nectod across C4D.
10	Connect cable to antenna terminals through 120 ohms in each side of line.	90 mc .	FM	90 mc .	OSC. L8 for max. vollage acros: C40
11		106 mc .	FM	Tune to slignal	ANT, Cl-3 and R-F Cl-6 for max. volt age across C40.
12		90 mc .	FM	Tune to signal	ANT, Ll and R.F L2 for max. voltage acros: C40.
13	Repeat steps 10, 11 and 12 as required.				
14	Connect a sweep generator to the antenna terminals through 120 ohms in each side of line. Connect an oscilloscope io Junction of R44 and C41 and check response and linearity of FM band. Peak to peak separation should not be less than 180 kc.				

- Use a 680 -ohm reaistor to load the plate winding while the grid winding of the same transformer is being peaked. Then the grid winding is loaded with 680 -ohm reaistor while the plate winding is being peaked. When windings are loaded, it is necessary to increase the 10.7 mc . input, since gain will decrease and voltage across C 40 will be lesm.


## CRITICAL LEAD DRESS:

1. The 2.2 meg. mixer grid resistor should have a minimum practicable amount of lead extending on the grid end.
2. The first $\mathbf{A M}$ and first $\mathbf{F M}$ i-f plate leads should be dressed away from the range switch wafer.
3. The ground strap between the r-f shelf and the main chassis should be well soldered and kept as short as practicable.
4. Arrange wiring to prevent the filament wire between mixer and lat i 1 f tubes from passing near the mixer grid. or the AVC wiring.
5. Dress lilament wires away from lst audio and inverter coupling condensers.
6. Dress ac power switch wires away from the audio coupling condenser which is wired to the volume control.
7. Dress the mixer grid coupling condenser away from the lugs on the front range switch wafer.
8. The lst i-f tube AVC and screen by-pass condensers should ground at same point as cathode neutralizing loop.
9. The discriminator tube plate and acreen by-pass condensers should ground at the same point as the neutralizing loop.
10. The mixer plate by-pass should ground as close to the r-f shelf ground strap as practicable.
11. The shielded audio leads connecting to the front function switch wafer should have a min. of exposed lead on the lunction switch end.


Figure 6-Dial and Drive Cord Assembly

Voltages measured with Chanalyst or VoltOhmyst and should hold within $\pm 20 \%$ with rated line vollage. Tuning condenser closed-no signal input.

Tube	Terminal	Voltag*		
		Phono	A.M.	F.M.
$\begin{aligned} & \text { V1 6CB6 } \\ & \text { R.F. Amp. } \end{aligned}$	Plate 5   Screan 6   Cathod 2   Grid 1	-	$\begin{array}{r} 203 \\ 48 \\ 0.2 \\ -1.1 \end{array}$	$\begin{array}{r} 132 \\ 39 \\ 0.2 \\ -0.9 \end{array}$
V2 636 Mixer and Onc.	Plate 2   Grid 5   Plate 1   Grid 6	—	$\begin{array}{r} 55 \\ -1.4 \\ 33 \\ -2.1 \end{array}$	$\begin{array}{r} 51 \\ -1.2 \\ 27 \\ -1.9 \end{array}$
$\begin{aligned} & \text { V3 6BA6 } \\ & \text { I.F. Amp. } \end{aligned}$	Plate 5   Screen 6   Cathode 7   Grid 1	二	$\begin{array}{r} 192 \\ 106 \\ 0.9 \\ -1.1 \end{array}$	$\begin{array}{r} 188 \\ 101 \\ -0.35 \end{array}$
$\begin{aligned} & \text { V4 6RU6 } \\ & \text { Driver } \end{aligned}$	Plate 5   Screen 6   Cathod. 7	二	$\begin{array}{r} 188 \\ 122 \\ 1.05 \end{array}$	$\begin{aligned} & 180 \\ & 120 \\ & 1.07 \end{aligned}$
$\begin{aligned} & \text { V5 6Al5 } \\ & \text { Ratio Del. } \end{aligned}$	- -	-	-	-
$\begin{aligned} & \text { V6 6AV6 } \\ & \text { R.F. Rmp. } \end{aligned}$	$\begin{array}{ll} \text { Plate } & 7 \\ \text { Grid } & 1 \end{array}$	$\begin{array}{r} 112 \\ -0.7 \end{array}$	$\begin{array}{r} 94 \\ -0.7 \end{array}$	$\begin{array}{r} 94 \\ -0.7 \end{array}$
$\begin{aligned} & \text { V7 6C4 } \\ & \text { Ph. } \\ & \text { Inverter } \end{aligned}$	Plate $1-5$   Grid 6   Cathode 7	$\begin{array}{r} 125 \\ -19.2 \\ -11.1 \end{array}$	$\begin{array}{r} 87 \\ -16 \\ -11.4 \end{array}$	$\begin{array}{r} 85 \\ -18 \\ -11.4 \end{array}$
V8 6V6GT or Output V9	Plate 3   Screen 4   Grid 5	$\begin{array}{r} 305 \\ 299 \\ -19.2 \end{array}$	$\begin{array}{r} 295 \\ 208 \\ -16 \end{array}$	$\begin{gathered} 298 \\ 204 \\ -16 \end{gathered}$
V10 5Y36T Rectifier	Filament 2	314	313	313

Cathode Currents (Ma.)

Tube	Terminal	Phono	A.M.	F.M.
V1 6CB6	2	-	3	3
V2 6T6	7	-	2.6	2.6
V3 6BA6	7	-	13.2	14.7
V4 6AU6	7	-	9.3	9
V5 6AL5	185	-	-	-
V6 6AV6	2	0.8	0.5	0.5
V7 6C4	7	2.2	1.5	1.5
V8 6V6GT	8	35.8	17.8	17.7
V9 6V6GT	8	35.6	17.8	17.7
10 5Y3GT	2	74.2	73.6	74.2

Figure 7-
F. M. Coil

Locutions



Figure 8-Chassis, Top View, Showing Adjustments




Figure 11-Simplified Radio Scbematic Diagram Showing Function Switch in FM Position



Figure 12-Television R-F Unit Wiring Diagram

## TELEVISION CRITICAL LEAD DRESS

1. All leads in the picture and sound i-f circuits must be dressed as short and direct as possible with the exception of $\mathrm{Cl} 106, \mathrm{Cl} 07 . \mathrm{Cl} 10$ and Cl 17 which are to be dressed with enough slack so as not to have to move the body of the capacitor to align that particular stage.
2. Dress all 1500 mmf .005 mid and .01 mfd capacitors in the i-f section with leads as short as possible.
3. Dress all wires between T101 and the r-f unit in clamp.
4. Dress Cl85 to act as shield for lead between pin 5 of V115 socket to T111D and picture i-f circuits.
5. Dress the bodies of resistors R106, R108, R113, R119, R191, R192 and capacitor Cl76 as close to tube pin as possible.
6. Drese L 114 with coded end as close to pin 2 of $\dot{U} 105$ socket as possible.
7. The length of the bus wire from pin 2 of V116 to ground should not be shortened or rerouted.
8. Dress R194 as close to chassis with leads as short as possible.
9. Keep the leads on Cl26 as short and direct as possible.
10. Dress all components connected to V106 socket up and away from the chassis except Ll04.
11. Keep the body and coded end of L104 as close to pin 2 of V105 socket as possible.
12. Dress the 4.5 mc . trap L107 up and away from the chassis base.
13. Dress Cl32 up in the air and towards V105 socket.
14. Dress R125 with body as close as possible to pin 2 of V106 socket.
15. Keep body of R123 as close as possible to pin 2 of V105 socket.
16. Drets Cl 33 and Cl 90 away from $\mathrm{Cl} 32, \mathrm{Cl} 51$ and Cl 53 .
17. Dress the white wire from picture control R128-3 away from the chassis.
18. Dress all slack on kine socket leads under chassis. Dress brown wire away from any components associated with V105 or V106.
19. The green lead from the kinescope socket should be dressed away from all other leads and components and away from V106.
20. Dress Rl33 towards chassis rear apron.
21. Dress all leads in clamps on rear apron away from V117. V104, V105, V106 sockets and S103.
22. Dress green wire from Cl47A up and away from chassis.
23. Dress blue wire of T107 toward front apron of chassis.
24. Dress Cl53 down next to the chassis base.
25. Dress blue/white wire from height control R151-3 under R180.
26. Dress R161, R162, R163, R164 and R170 up and away from the chassis and with a half inch clearance from the soldering point.
27. Dress the yellow wire from pin 3 of V110 socket over C153.
28. Dress both leads of Cl98 away from the body of the capacitor.
29. Dress fuse in high voltage compartment so as not to short circuit to ground.
30. Dress blue and blue/yellow wire from power transformer in 3 clamps on chassis base and away from $\mathrm{Sl03}$ and video section.
31. Dress both wires on S106 away from blue/yellow damper leads of Tllo.
32. Dress all 2 watt resistors away from each other and away from all wires and other components.



$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	$\begin{aligned} & \text { R-F UNIT ASSEMBLIES } \\ & \text { KRK8B } \end{aligned}$	75447	Stud-Copacitor stud-brass-No. 4-40 $\times 13 / 16^{\prime \prime}$ with $3 / 6^{\prime \prime}$ screw driver slot for trimmer coile L47. L48 and capacitor Cl coded numerically and " Hi O'
10703	Ball-Steel ball fo	75181	Transformer-I-F convertor tranaformer
75188	Board-Tarminal board, 5 contact and ground	75190	Washer-Insulating washer (neoprene) for capacitor
75067	Bracket-Vertical bracket for holding oncillator tube shield	75607	Washer-Insulating washer (hex)
75201	Cable-75 ohms, coan cable (71/4") complete with coil (W1, L50)		TELEVISION CHASSIS ASSEMBLIES KCS48
75186	Capacitor-Ceramic, variable, for fine tuning-plunger type (C2)		
73289	Capacitor-Ceramic, $4 \mathrm{mmf} ., \pm 0.5 \mathrm{mmf}$. (C4)	$\begin{aligned} & 75515 \\ & 75228 \end{aligned}$	Bracket-Channel indicator lamp bracket   Bracket-Focus magnet mounting bracket-upper
75189	Capacitar-Adjustable, 7.30 mmf . (Cas	75229	Bracket-Focus magnet mounting bracket-lower
75850	Capacitor-Ceramic, 12 mmf . (C24) Capacitor-Ceramic, $15 \mathrm{mmf}$. ( 3 )	76009	Capacitor-Coramic, 8.2 mmf . (C198)
77196	Capacitor-Caramic, 39 mmf . (CS)	75217	Capacitor-Mica trimmer, dual, 10.160 mmf . (C147
75174	Capacitor-Ceramic, trimmer, 50.75 mmf . (C11)	53511	Capacitor-Ceramic, 10 mmf . (C128)
75199	Capacitor-Ceramic, 270 mmf ( (C12, C13, C20)	75450	Capacitor-Caramic, 39 mmf . (C203)
75641		7192	Capacitor-Ceramic, 56 mmf . (C106)
75166	Capacitor-Coramic, 1500 mmf . (C6, C	73090	Capacitor-Mica, 82 mmf . (C146, C148)
75089	Capacitor-Coramic, dual, 1500 mmf . (C17A, C17B)	75437	Capacitor-Ceramic, 100 mmf . (C208)
73748	Capacitor-Ceramic, 1500 mmf . (C18)	45469	Copacitor-Ceramic, 100 mmf ( (C120)
73473	Capacitor-Ceramic, 5000 mmf . (C21) 0.8.	39396	Capacitor-Coramic, 100 mmf . (C126, C197, C220, C222)
75172	Capacitor-Tubular, steatite, adjuatable, 0.8.1.4 mmf. (C7)	73102 74947	Capacitor-Mica, 180 mmf . (C153)   Capacitor-Caramic, 500 mmf ., 20,000 volts (C161)
71504	Capacitor-Ceramic, 0.88 mmf . (C23)	74847	Capacitor-Coramic, 270 mmf ( (C176)
75184	Capacitor-Ceramic, adjustable. $0.75-4 \mathrm{mmf}$., complete with adjusting stud (C1)	73091	Capacitor-Mica, 270 mmf . (C107, C110, C117, C125)
75197	Capacitor-Coramic, 6.8 mmf. (C8)	73094	Capacitor-Mica, 390 mmf . (C215)
75167	Clip-Tubular elip for mounting stand.off capacitora	74250	Capacitor-Mica, 560 mmf . (C155) ${ }^{\text {Capacitor-Caramic, } 1500 \mathrm{mmf} \text {. (C171, C172) }}$
75182	Coil-Trimmer coil ( $11 / 2$ turns) with adjustable inductance core and capacitor stud (ecrew adjustmont) for convertor eection (C9, L47)	$\begin{aligned} & 75166 \\ & 73748 \end{aligned}$	Capacitor-Ceramic, 1500 mmf . (C102, C103, C109, C113.   C115, C116, C122, C129, C168, C186)
75183	Coil-Trimmer coil ( 3 turns) with adjuntable inductance core and capacitor stud (screw adjustment) for r-f eection (L48, C16)	75089	Capacitor-Ceramic, dual, 1500 mmf . (C108A, Cl08B,   C111A, C111B, C123A, C123B, C184A, C184B)   Capacitor-Ceramic, 5000 mmf . (C114, C121, C187)
75185	Coil-Convertor plate loading coil (L44) Coil-Choke coil .56 muh (L46)	73960	Capacitor-Ceramic, $10,000 \mathrm{mmf}$. (C144. C185, C192, C194, C195)
73477	Coil-Choke coil (L51)	73877	Capacitor-Caramic. dual, $10,000 \mathrm{mmf}$. (Cl05A, C105B)
7518	Core-Adjustable core for finetun	73347 28417	Capacitor-Eletroytic, ${ }^{\text {Capacitor-Electrolytic, } 5 \mathrm{mfd} .4} 450$ vol
75162	Detent-Detent mechanism and fibre	15992	Copacitor-Electrolytic, compriaing 1 eection
73453	Form-Coil form for L45 and L49		450 volts. 1 section of $80 \mathrm{mfd} ., 200$ volte and 1 section
75165	Link-Link assembly for fine tuning		$50 \mathrm{mfd} . .50$ volts (C214A, C214B, C214C)
14343	Retainer- Finetuning shaft retaining ring Resintor-Fixed, composition: 27 ohms, $\pm 10 \%, 1 / 2$ watt (R8) watt (R10)	73510	Capacitor-Electrolytic, comprising 2 sectione of 35 mfd. 450 volts, 1 mection of 10 miai 450 volte and 1 gection of 5 mid., 450 volts (C211A, C211B, C211C, C211D, C212A, C212B, C212C, C212D)
	150 ohme, $\pm 20 \%$, $/$ watt (RIO) 3300 ohms, $\pm 10 \%$, $1 / 2$ watt (R6)	75643	Capacitor-Tubular, moulded paper, oil impregnated, 001 mfd. 1000 volts (C156)
	3300 ohms, $\pm 10 \%$, $1 / 2$ watt (R9,	73598	Capacitor-Tubular, paper, oil impregnated, 0015 mfd. 600 rolte (C130 C219)
		73595	Capacitor-Tubular, paper, oil impregnated, .0022 mfd. . 600 volts (C137, C191, C216)
	22,000 ohms. $\pm 10 \%, 1 / 2$ watt (R7)   100,000 ohms, $\pm 20 \%$. $1 / 2$ watt (R1, R4, R5)	73599	Capacitor-Tubular, paper, oil impregnated, $.0027 \mathrm{mfd} .$, 600 volte (C189)
75164	Rod-Actuating plunger rod (fibre) for finetuning link	73920	Capacitor-Tubular, paper, oil impregnated, . 0047 mfd.
71467	Screw - No. $4.40 \times 1 / 4^{\circ}$ binder head machine screw for adjusting L6, L7, L8, L9, L10, L11	7358	800 volt (C138, C139)   Capacitor-Tubular, paper, oil impregnated, $.01 \mathrm{mfd} .$,
75167	Screw-No. 4-40 ${ }^{\text {3/4 }}$ " filliater head screw for adjusting LS		or-Tubul
75177	Screw-No. $4-40$ a $9 / 16^{\prime \prime}$ fillister head acrew for adjusting L1, L2, L3, L4, L43	73584	Capacitor-Tubular, moulded paper, onl impregnated, .01 mid., 600 volts (C140, C1S4)
74575		73797	Capacitor-Tubular, paper, oil impragnated, . 015 800 volts (C190)
73640 75159	Screw-No. $4-40 \times 1 / 16^{\circ}$ adjusting screw for LS Shaft-Channel selector shaft and plate	74727	Capacitor-Tubular, paper, oil impregnated, 01 1000 volte (C159, C160)
75160	Shaft-Fineturing shaft and cam	73562	Capacitor-Tubular, paper, oil impregnated, 022 mfd .,
75168	Shield -Oncillator and convertor sections shield for r-f unit-snap-on type	73553	400 volts (C145, C151)   Capacitor-Tubular, paper, oil impregnated, $047 \mathrm{mfd} .$,
75193	Shield-Tube shiold for V1		Capacitor-Tubular, moulded paper, . $047 \mathrm{mfd}$. . 40
75192	Shield-Tube shield for V2	7507	Capacitor-Tubular, moulded papar, . 047 mfd .400 val
75088	saddle mounted	73592	Capacitor-Tubular, paper, oil impregnated, 047 mfa., 600 volte (C133, C150, C190)
75191 75163	Spacef-Insulating apacer for front plate (4 required) Spring-Friction spring (formed) for fint tuning cam	73597	Capacitor-Tubular, moulded papar, oil impregnated, .047 mfd .01000 volts (Cl43, C158, C162, C163)
75068	Spring-Retaining apring for oscillator tube shiold	73551	Capacitor-Tubular, paper, oil impregnated, 0.1 mfd
74578	Spring-Retaining spring for adjusting screws		
73457 30340	Spring-Roturn spring for fine tuning control	73557	Capacitor-Tubular, papar, oil impregnated, $0.1 \mathrm{mid} .$, 600 volte (C134)
30340 75175	Spring-Hair pin spring for fine tuning link   Stator-Oecillator section stator complete with rotor, seg-	73794	Capacitor-Tubular, papor, oil impregnated, 0.22 mfd. .
23175	ment, coils, adjueting screws and capacitors C3 and C23 (S1-1, C3, C23, L1, L2, L3, L4, LS, L6, L7, L8, L9, L10. L11, L43)	74937	Capacitor-Tubular, paper, oil impregnated, 0.22 mfd. 600 volts (C142)
75178	L10. L11, L43)   Stator-Convertor etator complete with rotor, coile, capacitors (C10 and C12) and reaietors (R4 and RS) (S1-2,	73787 73154	Capacitor-Tubular, moulded paper, 0.47 mfd., 200 volts (C127, C135, C152)   Choke-Filter choke (L113)
	C10. C12, L12, L13, L14, L15, L16, L17, L18, L19, L20, L21, L45, R4, R5, R12)	$\begin{aligned} & 73154 \\ & 75167 \end{aligned}$	Choke-Filter chor Clip166
75179	Stator -R-F amplifier etator complate with rotor, coile, capacitor (C13) and rasistor (R6) (S1-3, C13, L22, L23, L24, L25, L26, L27, L28, L29, L30. L31, L49, R6)	75210 71449	Coil-Fifth pix i-f coil complete with adjuntable core (L103)   Coil-Horizontal linearity control coil (L110)
75180	Stator-Antonna atator complote with rotor, coile, capaci- tors (C20 and C21) and resistors (R9, Rio, R1) (S1-4,	73591	Coil-Antenna matching coil ( 2 req'd) (Part ot T200) Coil-Antenna shunt coil (L202)
	C20. C21, L32. L33, L34, L33, L36, L37, L38. L39, L40,	73477	Coil-Choke coil (L101, L102)
	L41, L42, LS2, R9, R10, R11)	75299	Coil-Peaking coil ( 36 muh ) (L104)
75169	Strip-Coil segment mounting strip-RH center	71793	Coil-Peaking coil ( 36 muh ) (L106)
75170	Strip-Coil segment mounting strip-LH lower	76285	Coil-Peaking coil ( 36 muh ) (L114, R119)
75171	Strip Coil eqgment mounting etrip-LH upper-lese trimmer C7	75253	Coil-Pakking coil (120 muh) (L109)
75173	Stud-No. 6-32 m 13/16" adjusting stud for C7 trimmor	$\begin{aligned} & 75252 \\ & 76132 \end{aligned}$	Coil-Peaking coil ( 500 muh ) (L115) (In KCS48T)
75446	Stud-Capacitorstud-brameno. $4.40 \times 13 / 16^{\circ \prime}$ with $3 / 64^{\circ}$ acrew driver slot for trimmer coile L47, L48 and capacitor C1 uncoded and coded 'ER'"	$\begin{aligned} & 76132 \\ & 35797 \end{aligned}$	Connector-Single contact fomale connector for audio cable (J103)


STOCK No.	DESCRIPTION	STOCK No.	DESCRIPTION
74594	Connector - 2 contact male connector for power cord	74602	Screw-No.
38853	Connector 4 contact female connector for antenna transformer (J200)	73584	focus magnet adjustment ( 3 req'd)
35383	Connector 8 contact male connector-part of deflection yoke (P101)	31231 73249	Socket-Tube socket, oetal, wafer   Socket - Tube, octal, ceramic, plate mounted
68592	Connector 8 contact fermale connector for deflection yoke leade (J101)	31319 73117	Socket-Tube socket, octal, moulded Socket-Tube, socket, 7 pin, miniature
73517	Contact Anode connector assembly contact only	75223	Socket-Tube socket, 9 pin, miniature
75215	Control Horizontal and vertical hold control (R147, R166)	68592	Socket-Tube socket, 6 contact, moulded for V113
75216	Control Pieture and brightnoes control (R128, R131)	715081	Socket-Tubesocket for 183/8016
71441	Control Vertical linearity control (R156)	75718	Socket-Channel indicator light socket
71440	Control Height control (R1S1)	75233	Spring-Comprassion spring for focul magnet adjumt.
75516	Control Width control (R177)		
71498	Core Adjustable core and etud for F-M trap 75449	$\begin{aligned} & 75508 \\ & 75994 \end{aligned}$	Support-Bakelite support only-part of hi-voltage shield Switch-Indicator light awitch (S104)
74956	Cughion Rubber eushion for deflection yoke hood (2 req'd)	76010	Switch-Indicator light witch (S104)
74838	Fastener Push fastener to mount ceramic tube socket (2 req'd)	$\begin{aligned} & 75508 \\ & 74950 \\ & 79144 \end{aligned}$	Transformer-Powertransformer 115 volts, 60 eyele (T110)   Transformer Vertical output tranaformer (T107)   Transformer-Vertical oscillator transformor (T106)
73600		74589	Transformer-First pix, i-ftranaformer (T101, C101, R101)
16058	Grommet Rubber grommet for 2nd. anode lead exit	74590	Transformer-Second pix, i-f transformer (T102, C104)
37396	Grommet Rubber grommet to mount ceramic tube socket (2 req'd)	76364 73574	Transformer-Third pix. i-f transformer (T103, Cl12) Trangormer - Fourth pix. i-f traneformer (TiO4, C118)
75445	Hood Deflection yoke hood leas rubber cushions	75211	Tranaformer Sound iof transformer (simple winding
75644	Insulator 2nd. anode insulator	7142	Transformer-Sound i-i transformer (dual winding
75842	Jack Video jack (J105)		Transtormor-Sound ity transformer (dual winding
75504	Magnet Focus magnet complete with adjuatable plate and stud	75212	Tranaformer Sound discriminator transformor (Tll2. C173, C174, C175)
74953	Magnet Ion trap magnet (P.M.)	75213	Transformer-Horizontal oscillator transformer (T108)
75518	Plate Hi-voltage plate bakelite-lese transformer.capacitor and tube socket	75509	Tranaformer-Antenna matching transformer̃ complete with antenna connector. I-F and F-M traps and shunt
720	Remistor Wire wound, 5.1 ohms, $1 / 2$ watt (R193)'		coil (T200, C200, C201, C202, C203, J200, L200, L201.
75512	Renistor Wire wound, 4000 ohms. 10 watte (R181)	75819	Tranaformer-Hi-voltage tranaformer (T109)
75593	Resistor - Wire wound, 8000 ohms, 15 watte (R212)	71778	Trap-Sound trap (T105, Cl18)
	Reaistor Fixed, composition:   47 ohms, $\pm 20 \%, 1 / 2$ watt (R174)	75242	Trap-I-F trap (L200 (C200), L201 (C201)
	82 ohms. $\ddagger 10 \%$ : $1 / 2$ watt (R103, R107, R112, R184)	75448	Trap-F-M trap complete with adjustable core and atud (L203. C203)
	100 ohme. $\pm 10 \%$, 2 watte (R175)	75251	Trap-4.3 metrap (L107, L131)
	180 ohme, $\pm 10 \%$, $1 / 2$ watt (R116)   $220 \mathrm{ohms}, \pm 10 \%, 1 / 2$ watt (R128, R127)   $680 \mathrm{ohms} . \pm 10 \%, 1 / 2$ watt (R226)   1000 ohms, $+20 \%$. $/$ watt (R102, R104, R109, R114.   R117, R159, R189, R189, R219)	74952	Yoke-Deflection yoke (L111, L112, C164, C165, P101)   RADIO CHASSIS ASSEMBLIES RC 1090-Model 6 T84
	1500 ohms. $\pm 10 \%$. I watt (R1SS)   1800 ohms. $\pm 10 \%$, $1 / 2$ watt (R113)	75541	Bracket-Pulloy bracket complete with drive cord and pulloy
	2200 ohms. $+20 \%$, $1 / 2$ watt (R140) 3900 ohms, $+10 \%$, $1 / 2$ watt (R167)	75534	Capacitor-Variabletuning capacitor complote with drive drum (Cl-1, Cl-2)
	4700 ohms, $\pm 5 \%$, $1 / 2$ watt (R130)	71924	Capacitor-Caramic, 58 mmf . (C8)
	4700 ohms. $\pm 10 \%$, 1/2 watt (R135) (R230 in KCS48T)	39632	Capacitor-Mica, 150 mmf ( (C2, C16, C20)
		73372	Capacitor-Electrolytic compriaing 1 section of 30 mfd . 350 volts, 1 section of $30 \mathrm{mfd} ., 300$ volte and 1 section of 20 mfd., 23 volts (C23A, C23B, C23C)
	8200 ohms. $\pm 5 \%$. $1 / 2$ watt (R106, R169)	73801	Capacitor-Tubular, paper, . 001 mfd .0400 volte (C5)
	8200 ohms, $\pm 10 \%$. $7 / 2$ watt (R14S. R146)	71394	Capacitor-Tubular, paper, . 0015 mfd .600 vole ( Cl 10 )
	10.000 ohms. $\pm 10 \%$. $1 / 2$ watt (R171) (R236 in KCS48T) 10.000 ohms. $\pm 10 \%, 2$ watts (R207)	73851	Capacitor-Tubular, paper, oil impregnated, .018 mfd. 1600 volts (C24)
	$12.000 \mathrm{hms}, \pm 5 \%$ 1/2 watt (R152)	73803	Capacitor-Tubular. paper, . 002 mfd ., 1000 volts (C21, C22)
	12.000 ohms, $\pm 10 \%$, $1 / 2$ watt (R188) (R139 in KCS48)	70603	Capacitor-Tubular, paper, . 003 mid., 400 volte (C17)
	12,000 ohms, $10 \%$, 2 watts (R208, R200)	73920	Capacitor-Tubular, paper, . 005 mid., 400 volta (C15)
	15.000 ohms, $+10 \%$. $1 / 2$ watt (R210)   15.000 ohms, + 10\%, 2 watts (R216)	73561	Capacitor Tubular, paper, 01 mid.. 400 volte (C9. C13, C18)
	18.000 hms. $\pm 10 \%$, 1/2 watt (R119, R121, R122, R13	70572	Capacitor-Tubular, paper, $015 \mathrm{mid} ., 400$ volte (C11)
	$18,000 \mathrm{ohms}, 10 \%$, 1 watt (R138, R180), $22,000 \mathrm{ohms}, \pm 10 \%$, $1 / 2$ watt (R143, R144, R188	58476	Capacitor-Tubular, paper, oil impregnated, . 018 mfd. . 400 volte (Cl2)
	$22.000 \mathrm{ohms}, \pm 20 \%$, 1/2 watt (R192)	73562	Capacitor-Tubular, paper, $02 \mathrm{mfd}$.400 volte (C19)
	27,000 ohms, $\pm 10 \%$. 2 watte (R182)	73533	Capacitor-Tubular, paper, $05 \mathrm{mfd} ., 400$ volts (Cl4)
	${ }^{33}, 000$ R25) hms . $\pm 10 \%$. $1 / 2$ watt (R105, R115, R201, R211.	73935	Clip-Mounting elip for I-F transfor
	33.000 ohm	5627	Clip-Clip for main cable-on rear apron of chasais
	39,000 ohms. $\pm 10 \%, 2$ watte (R204, R205, R208) 47,000 ohms, $\pm 10 \%, 1 / 2$ watt (R141, R187, R222)	75485	Coil-Oscillator coil complete with adjustable core and stud (L3, L4)
	47.000 ohms, $\pm 20 \%$. $1 / 2 / 2$ watt (R110)   56,000 ohms. $\pm 10 \%$. 3/4 watt (R221) (R234 in KCS48T)	35787	Connector-Single contact female connector for 43 RPM pickup cable (J5)
	56.000 ohms. $10 \%$. I watt (R215)   68,000 ohms. $\pm 10 \%, 1$ watt (R168)	75542	Connector-8 contact male connector for power input cable (J6)
	82,000 ohms, $\pm 5 \%$, 1 watt (R172)	75543	Connector-2 contact female connector for 45 RPM motor
	82,000 ohms, $+10 \%$, 1 watt (R184, R165)		cable (P2)
	ohme, $\pm 3 \%, 1 / 2$ watt (R190, R191)   100,000 ohms, $\pm 10 \%$. $1 / 2$ watt (R224) (R233 in KCS48	74878	Connector-Two contact (polarised) fernale connector for
	100,000 ohms. $\pm 20 \%$. 2 watts (R183)   150.000 ohme. $\pm 10 \%$. $1 / 2$ watt (R136, R1S4, R160)	33514	Connector-Dual two contact female connector for 33/18 RPM pickup cable and toleviaion cable (J3, J4)
		75537	Control-Volume control and power switch (R15, 82)
	180,000 ohms, $\pm 10 \%$, 1/2 watt (R142 in KCS48T)	75538	Control-Tone control (R23)
	220,000 ohme, $\pm 10 \%$, $1 / 2$ watt (R157, R158) (R134, R223,	72933	Cord-Drive cord (approx. 60\% overall)
	R231, R232 in $^{-1}$ KCS4 ${ }^{\prime}$ )   270,000 ohms, $\pm 10 \%, 1 / 2$ watt (R150)	75547	Grommet-Rubber grommet to mount slides to bottomrear (2 req.d)
	330.000 ohms, $\pm 10 \% .1 / 2$ watt (R161)	75548	Grommet-Rubber grommet to mount slides to bottom
	390.000 ohms, $\pm 10 \%$. $1 / 2$ watt (R142, R223 in KCS48)	11763	Lamp-Dial lamp-Masda No. 51
		73544	Nut-Rivnutto fasten serow for mounting chatein (4 req'd)
	560,000 ohms, $\pm 10 \% .1 / 2$ watt (R129) (R134 in KCS48)	75535	Plate-Dial back plate complete with three (3) pulleya
	820,000 ohms, 1 megohm, $+10 \%$, $1 / 2$ watt (R162. R220)	75538	Pointer-Station selector pointer
	1 megohm, $\pm 20 \%$ \% $1 / 2$ watt (R178)	72602	Pulloy-Drive cord pulloy
	1.2 megohm. $\pm 5 \%$, $1 / 2$ watt (R149)	72323	Resistor-Wire wound, 3 ohms, $1 / 2$ watt (R31)
	2.2 mogohm, $\pm 10 \%$, $1 / 2$ watt (R118, R153)	73637	Resistor-Wire wound, 2200 ohms, 5 watte (R30)
	3.9 megohm, $\pm 5 \%$. $1 / 2$ watt (R148)		Resistor-Fixed, composition:-
75083	Screw -No. 8-32 $\times 1 / 4$ " wing serew for mounting deflection yoke		$47 \mathrm{ohms} . \pm 20 \%$, $1 / 2$ watt (R32) 270 ohme $+10 \%$ 1/2 watt (R18)
75236	Serew No, $8.32 \times 3 /{ }^{\prime \prime}$ " pan head machineserew (brass) for focus magnet mounting (3 req'd)		330 ohms., $\pm 10 \%$. $1 / 2$ watt (R28) 470 ohms. $\pm 20 \%$. $1 / 2$ watt (R33)



$\begin{gathered} \text { sTock } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	SPEAKER ASSEMBLY	75680	Decal-Tolevision controls function decal for oak instru-
	92569-12W RMA 274	74809	E
		75455	Eacutcheon-Channol marker escutcheon - dark - for mahogany or walnut instrumente
$\begin{aligned} & 13867 \\ & 75682 \end{aligned}$	Cap-Dust cap   Con-Cone and voice coil asembly ( 3.2 ohms)	75456	Escutcheon-Channel marker escutcheon-light-for ook inatrumente
75881	Speaker-12" P.M. speaker complete with cone and voice coil ( 3.2 ohma)		Glame-Safoty Glaae
	Note: If etamping on apeaker does not agree with above	37388 74838	Grommet-Rubber grommat to mount apeaker ( 4 req'd) Grommet-Power cord strain reliof ( 1 set)
	numben order replacement parte by reforring to model number of instrument, number stamped on speaker	75697	Grommet-Rubber grommet to mount 45 RPM changer ( 3 req ' d )
	d full description of part required.	75551	Handle-Motal pullout, handle for 33 1/3/78 RPM phono mounting frame (Modols 6T84 and 6T88)
	MISCELLANEOUS	$\begin{aligned} & 74308 \\ & 36817 \end{aligned}$	
75705	Antenna-Radio antenna loop complete leas cable for Models 6 T86 and 6T87	74959	$\left.67^{\circ}\right)$   Knob-Television fine tuning control knob-maroon-for
75706	Antenna-Radio antenna loop complete leas cable for Model 6784	73995	Knob-Toloviaion fine tuning control knob-tan-for oak instrumonte (outer)
75885	Back-Cabinet back cover for radio-phono (45 RPM) compartmont-aegembled to cabinet (Model 8T84)	73996	Knob-Television channel solector knob-maroon-for
75688	Back-Cabinet back cover for radio-phono (45 RPM)	73997	mahogany or walnut instruments (innor)
75698	Back-Cabinat back cover for radio-phono (45 RPM)	74962	instrumente (inner)   Knob-Televigion brightnest control or vertical hold con-
75700	Back-Back cover complete with torminal board and powor cord for tolovinion chamais (Models 6T84 and 6T86)	13899	trol knob-maroon-for mahogany or walnut instrumente (outer)   Knob-Televiaion brightnese control or vertical hold con-
75701	Back-Back cover complete with tarminal board and	74969	trol knob-tan-for oak instrumente (outer)   Knob-Telovimion channel marker oscutcheon light awitch
75686	Back-Back cover-maroon-for 33 1/3/78 phono compartmont for mahogany or walnut inetruments-	74003	knob-maroon-for mahogany or walnut instruments Knob-Toleviaion channel marker escutcheon light awitch knob-tan-for oak instrumenti
75689	anaembled to rollout (Model 6T84)   Back-Back sover-maroon-for radio-45 RPM phono compartment for mahogany or walnut instrumenteasambled to r sllout (Model 6T84)	74963	Knob-Telovision picture control or horisontal hold control knob-maroon-for mahogany or walnut inatru. monte (inner)
75692	Back-Back cover-maroon-for radio-45 RPM phono	74001	Knob-Television picture control or horisontal hold con-trol-tan-for oak inetrumente (inner)
	compartment for mahogany or walnut inetrumenteasemblod to rollout (Models $8 T 88$ and 6T87)	75712	Knob-Radio tone control, tuning control or volume con-
75699	Back-Eack cover-maroon for 33 1/3/78 RPM phono compartment for mahogany or walnut instrumente-	75713	trol and powerswitch knob-maroon-for mahogany or walnut inatrumente   Knob-Radio tone control. tuning control or volume con-
75687	asembled to rollout (Model 6T86)   Back-Back cover-light brown-for 33 1/3/78 phono compartment for oak instrumente-asembled to rollout (Model 6T84)	75714	trol and powar awitch knob-tan-for oak instrumante Knob-Function switch knob-maroon-for mahogany of walnut instrumenta
75690	Back-Back cover-light brown-for radio-45 RPM phono compartment for oak instrumente-amembled to rollout (Model 6T84)	75715   11765   75459	Knob-Function switch knob-tan-for oak instrumente   Lamp-Pilot or channel indicator lamp-Mazda No. 51   Mank-Channel indicator light mank-burgundy-for
75893	Eack-Back covar-light brown-for radio-45 RPM phono compartment for oak inatrumente-agembled to rollout (Models 6T86 and 6T87)	75460	mahogany or walnut inatrument   Mank-Channol indicator light mask-gold-for oak instrumente
75473	Board-Tolovision antenna terminal board (2 contact)	73834	Nuit-8peed nut for apeaker mounting acrewn (4 req'd)
75707	Board-F-M antonna torminal board (3 contact) for (Models 6T86 and 6T87)	75884	Nut-8peed nut for 33 1/3/78 RPM phono mounting screw (Model 6T86)
75694	Bracket-Radio-45 RPM phono rollout mechaniem etop	75875	Pull-Cabinet door pull (Model 6T84)
75685	bracket loas rubber bumpor   Bracket-33 1/3/78 RPM phono rollout mechaniam stop	75677	Pull-Cabinet door pull for lower doors (Model 6T88)
	bracket lope rubber bumper (Models 6T84 and 6T86)	75678	Pull-Cabinet door pull for uppar doors (Model 6T88)
71599	Bracket-Pilot lamp bracket	75679	Pull-Cabinet door.pull for upper doors (Model 6T87)
75696	Bumper-R Rubber bumper for rollout mechaniem etop bracket	74451 71458	
74545	Cable-Shielded pickup cable complete with pin plug for 33 1/3/78 RPM changer (Madel: 8 T86 and 6T87)	7458 75883	and focus magnot mounting support
74296	Cablo Shielded pickup cable complote with pin plug for	75883	Screw-No. $10-24 \times 21 /{ }^{2 \prime}$ round head machine ncrew to mount 33 1/3/78 RPM phono (Model 6T89)
72447		75377	
	pin pluge	75876	Scrow-No. $8-32 \mathrm{z} 1 / \mathrm{l}^{\prime \prime}$ trimit hoad screw for door pull
72437	Cabl-Shielded pickup cable complete with pin plig for 45 RPM phono	74289	(Model 6T84)   Screw-No. 8-32 = $3 / 4$ "trimit heai screw for door pulls
13103 71892	Cap-Pilot lamp cap	75	(Model 6T86)
X3144	Cloth-Grille cloth for mahogany or walnut inetrumente (Model 8T84)	7582	Screw-No. 8-32 5 /4 trimit haad ecrew for door pulls for uppor doors (Model 6T87)   Screw-No. 8-32 $\mathrm{I}^{\prime \prime}$ "trimit head scrow for door pulle for
X3093	Cloth-Grille cloth for ook instrumente (Model 6T84 and 6T87)	75704	lower doors (Model 6T87)   Shell-Shell for connector RCA 75703
X3130	Cloth-Grille cloth for mahogany or walnut instrumente (Models 8 T86 and 6T87)	75708	Shell-Shell for connector RCA 75709
30870	Connector- 2 contact male connector for motor leade for	75711 74738	Shell-Shell for connector RCA 75710 Slide-Slide mechanism only for 33
75703	Connector- $\mathbf{5}$ contact male connector for television power cord anembly loes sholl	75546	
74882	Connector-2 contact (polarized) male connector for radio anterna loop cable	31364	phono mounting frame (Modols 6 T84 and 6T86) Socket-Pilot lamp eocket
74752	Connector-2 contact male connector for F-M antenna cabl	72845 14270	Spring-Retaining spring for knobs 73998 and 74939 Spring-Retaining epring for knobs 73996, 73997, 73999,
30868 75474	Connector-2 2 contact female connector for main cable Connector-Single contact male connector for spaker (on		74003. 74962 and 74969
75874	Connector-Single contact male connector for spaner (on main cable) ( $2 \mathrm{req}{ }^{\mathrm{d}}$ )	30330 74734	Spring-Retaining spring for knobe 74001 and 74963   Spring-Retaining spring for knobe 75712. 75713. 75714
75709	lese shell (P6 (RC1090) P4 (RC1092)   ctor for main cab	73843	and 75715 (ering-Spring elip for channel marker eacutcheona
73710	Connector-5 contact fomale connoctor for main cable lese sholl (P8 (RC1090) J6 (RC1092)	74986 75691	Spring-Formed spring for kineacope manking panel
39153	Connector-4 contact male connector for telovision antenna cable	772938	Stop-Cabinot door stop
75702	Cord-Telovision power cord complete with two (2) contact female connector less 5 contact male connector	75457	Wagher-Folt wanher-dark brown-between knob and channel marker escutchoon for mahogany or walnut instrumente
70392 75608	Cord-Power cord and plug-part of main cable Cushion-Dunt meal cushion (rubber) for kinencop	75523	Wamher-Folt wanher tan-between knob and channel
74273	Decal-Trade mark decal (Victrola)	75500	scutcheon for oak instrumen
71884	Decal-Trade mark decal (RCA Victor)		wever
75840	Decal-Tolevision controls function decal for mahogany or walnut instruments	75148	Wagher-"C' washor for 33 1/3/78 RPM phono (Model 6T87)

To obtain reaistora for which no stock number it given, order by etating type, value of resistance, tolerance and wattage.


> Model 9 T77 "Hillsdale" Walnut, Mabogany or Oak


Model 9 T79<br>"Northampton"<br>Walnut, Mabogany<br>or Oak

# TELEVISION RECEIVERS MODELS 9T57, 9T77, 9779 

Chassis Nos. KCS49, KCS49T, KCS49A or KCS49AT
-Mfr. No. 274 -
Service Data

- 1950 No. 116 -

PREPARED BY RCA SERVICE CO., INC. FOR
RADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

## GENERAL DESCRIPTION

Model 9T57, 9777 and 9779 receivers are deluxe "19 inch" television receivers. The receivers are identical except for cabinets, jewel lights and speakers.

Features of the television unit are: full twelve channel coverage; FM sound system; improved picture brilliance; picture A.G-C; A.F.C horizontal hold; stabilized vertical hold: two stages of video amplification; noise saturation circuits; improved sync separator and clipper; four mc. band width for picture channel and reduced hazard high voltage supply. An auxiliary audio input jack is provided to permit the use of an external record playing attachment.

ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE ........ 204 square inches on a 19AP4A Kinescope TELEVISION R•F FREQUENCY RANGE
All 12 television channels, 54 mc . to $88 \mathrm{mc} ., 174 \mathrm{mc}$. to 216 mc . Fine Tuning Range.. $\pm 250 \mathrm{kc}$. on chan. $2 . \pm 650 \mathrm{kc}$. on chan. 13 Picture Carrier Frequency ........................................... 25.50 mc . Sound Carrier Frequency ........................................... 21.00 mc .

VIDEO RESPONSE ...........................................................TO 4 mc .
SWEEP DEFLECTION .................................................................. FOCUS ................................................................................Magnetic
POWER SUPPLY RATING ........ 115 volts, 60 cycles, 205 watts AUDIO POWER OUTPUT RATING .................... 3.5 watts max.
CHASSIS DESIGNATIONS
KCS49 or KCS49T ............................................. In Model $9 T 57$ KCS49A or KCS49AT ....................... In Models 9777 and 9779
LOUDSPEAKERS


## RECEIVER ANTENNA INPUT IMPEDANCE

Choice: 300 ohms balanced or 72 ohms unbalanced.
RCA TUBE COMPLEMENT
Tube Used Function


PICTURE INTERMEDIRTE FREQUENCIES	
Picture Carrier Frequency ......................................... 25.50 Mc.	
Adjacent Channel Sound Trap	27.00 Mc .
Accompanying Sound Trape	21.00 Mc .
Adjacent Channel Picture Carrier Trap	19.50 Mc .
SOUND INTERMEDIATE FREQUENCIES	
Sound Carrier Frequency	21.00 Mc .
Sound Discriminator Band Width between	. 400 kc

VIDEO RESPONSE To 4 Mc .
FOCUSSWEEP DEFLECTION ..................................................... Magnetic
SCANNING Interlaced. 525 line
HORIZONTAL SWEEP FREQUENCY ..... 15.750 cps
VERTICRL SWEEP FREQUENCY 60 cps
FRAME FREQUENCY (Picture Repetition Rate) ..... 30 cps

## OPERATING INSTRUCTIONS

The following adjustments are necessary when turning the receiver on for the first time:

1. See that the TV.PH switch on the rear apron is in the "TV" position.
2. Turn the receiver "ON" and advance the SOUND VOL. UME control to approximately mid-position.
3. Set the STATION SELECTOR to the desired channel.
4. Adjust the FINE TUNING control for best sound fidelity and the SOUJND VOLUME control for suitable volume.
5. Turn the BRIGHTNESS control fully counter-clockwise, then clockwise until a light pattern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops verlical movement.
7. Adjust the HORIZONTAL hold control until a picture is obtained and centered.
8. Adjust the PICTURE and BRIGHTNESS controls for suitable picture contrast and brightness.

9. When the set is turned on again after an idle period it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. It any adjustment is necessary, step number 4 is generally sufficient.
10. If the positions of the controls have been changed, it may be necessary to repeat steps 2 through 8.
11. To use a record player, plug the record player output cable into the PHONO jack on the rear apron, and set the TV-PH switch to "PH."
12. On console type receivers. to turn on station escutcheon light, pull out on picture control knob, and push in to turn off.

Figure 1-Receiver Operating Controls

THE CHASSIS USED IN MODELS 9T57, 9T77 AND 9179 IS VERY SIMILAR TO THE CHASSIS USED IN MODELS 6T53, 6T64, 6T71, ETC. REFER TO PAGES 368 TO 385 FOR INSTALLATION INSTRUCTIONS, ALIGNMENT DATA AND WAVEFORM PHOTOGRAPHS.


Figure 2- Yoke and Focus Magnet Adjustments


Figure 3-Kear Chassis Adjustments


Figure 4—Chassis Top View

The following measurements represent two sets of conditions. In the first condition. a 2500 microvolt test pattern signal was fed into the receiver. the picture synced and the AGC control properly adjusted. The second condition was obtained by removing the antenna leads and short circuiting the receiver antenna terminals. Voltages shown are read with a type WV79A senior "VoltOhmyst" between the indicated terminal and chassis ground and with the receiver operating on 117 volts, 60 cycles, a-c. The symbol $<$ means less than.

Tube No.	Tube Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		I   Plate (ma.)	$\begin{gathered} \text { I } \\ \text { Screen } \\ \text { (ma.) } \end{gathered}$	Notes on Measurements
				$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts			
V1	$6] 6$	Mixer	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \end{gathered}$	2	144	$\cdots$	-	7	0	5	-2.3	6.6	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \\ \hline \end{gathered}$	2	135	-	-	7	0	5	-2.1	5.6	-	
V1	$6 J 6$	R-F   Oscillator	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \\ \hline \end{gathered}$	1	100	-	-	7	0	6	- -3.0	4.0	-	- Depending upon channel
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	1	96	-	-	7	0	6	$\cdot-2.7$	3.9	-	
V2	6AG5	R-F   Amplifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	250	6	130	2	$<0.1$	1	-3.4	3.0	0.6	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	5	166	6	84	2	0.4	1	-0.2	10.3	2.3	
V101	6AU6	1st Pix. I-F Amplifier	$\begin{array}{\|c\|} \hline 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{array}$	5	195	6	222	7	0.3	1	-5.0	1.7	0.8	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	121	6	135	7	0.8	1	-0.8	5.2	2.2	
V102	6CB6	2nd Pix. I-F   Amplifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	222	6	203	2	0.3	1	-5.0	2.0	0.7	
			No Signal	5	124	6	112	2	0.8	1	-0.8	5.5	1.6	
V103	6AU6	3d Pix. I-F Amplifier	$\begin{array}{\|c\|} \hline 2500 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \end{array}$	5	185	6	225	7	0.2	1	-5.0	1.7	0.7	
			No Signal	5	94	6	132	7	0.5	1	-0.75	4.9	2.0	
V104	6CB6	4th Pix. I-F Amplifier	$\begin{array}{\|c\|} \hline 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{array}$	5	165	6	142	2	2.25	1	0	9.6	3.1	
			$\begin{gathered} \text { No } \\ \text { Signal } \\ \hline \end{gathered}$	5	118	6	132	2	2.1	1	0	9.0	3.1	
V105	6AL5	Picture   2d Det.	$\begin{array}{\|c} 2500 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \end{array}$	7	-2.0	-	-	1	0	-	-	0.3	-	
			No Signal	7	-0.5	-	-	1	0	-	-	$<0.1$	-	
V105	6AL5	AGC Rectifier	$\underset{\text { Signal }}{2500 \mathrm{Mu} .}$	2	-9.5	-	-	5	0	-	-	$<0.1$	-	
			No Signal	2	-2.0	-	-	5	0	-	-	<0.1	-	
$V 106$	12AU7	1st Video Amplifier	$\begin{array}{\|c\|} \hline 2500 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \end{array}$	1	100	-	-	3	1.2	2	-2.3	3.6	-	At maximum contrast
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	1	54	-	-	3	0.9	2	-0.5	2.6	-	
			$\begin{array}{\|c\|} \hline 2500 \mathrm{Mu} . \\ \text { Signal } \end{array}$	1	190	-	-	3	9.0	2	-2.6	0.9	-	$\begin{aligned} & \text { At minimum } \\ & \text { contrast } \end{aligned}$
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	1	122	-	-	3	6.9	2	-0.5	0.6	-	
V106	12AU7	2d Video Amplifier	$\begin{array}{\|c\|} \hline 2500 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \end{array}$	6	330	-	-	8	125	7	118	9.3	-	At maximum contrast
			No Signal	6	295	-	-	8	121	7	110	13.6	-	
			$\underset{\text { Signal }}{2500 \mathrm{Mu.} \text { V. }}$	6	300	-	-	8	131	7	120	12.9	-	$\begin{gathered} \text { At minimum } \\ \text { contrast } \end{gathered}$
			No Signal	6	295	-	-	8	121	7	110	13.6	--	
$\begin{aligned} & \text { V107 } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \hline \text { 12AU7 } \\ & \text { KCS49 } \\ & \hline \end{aligned}$	D.C Reat.   \& Sync Sep.	$\begin{array}{\|c\|} \hline 2500 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \end{array}$	1	5.0	-	-	3	45.5	2	-4.7	<0.1	-	At maximum contrast
	KCS49		$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	1	5.5	-	-	3	8.5	2	-0.7	$<0.1$	-	
$\begin{array}{\|l\|} \hline \text { V107 } \\ \hline \end{array}$	$\begin{aligned} & \text { 12AUU7 } \\ & \text { KCS49 } \end{aligned}$	Sync Sep.   \& Amplifier	$\begin{array}{\|c\|} \hline 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{array}$	6	36	-	-	8	6.0	7	4.7	4.0	-	
	KCS49		$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	6	36	-	-	8	6.0	7	5.5	2.8	-	

VOLTAGE CHART
9T57, 9T77, $9 T 79$

Tube No.	Tube Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid			I   Screen (ma.)	Notes on Measurements
				Pin   No.	Volte	Pin   No.	Volts	Pin No.	Volte	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts			
V107	$\begin{aligned} & \text { 12AU7 } \\ & \text { KCS49T } \end{aligned}$	DC Rest Sync Sep.	$2500 \mathrm{Mu} . \mathrm{V}$   Signal	1	10	-	-	3	45	2	-4.5	(		At maximum contrast
	RCS49T		No Signal	1	8	-	-	3	1.7	2	-0.4	-	-	
	KCS49T		$\begin{array}{\|c\|} \hline 2500 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \\ \hline \end{array}$	6	7.2	-		8	54	7	0	-	-	
	KCS49T		No Slgnal	6	7.0	-		8		7	0	-	-	
V108A	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \\ & \hline \end{aligned}$	Sync   Amplifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	50	-	-	6	7.8	4	7.4	-	-	
	KCS49T		No Signal	5	46	-	-	6	7.0	4	7.0	-	-	
V108	$\begin{aligned} & \text { 6SN7 } \\ & \text { or } 6 J 5 \end{aligned}$	Vertical Oscillator	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	$\begin{gathered} 2 \text { or } \\ 3 \end{gathered}$	- 395	-	-	$\begin{array}{r} 3 \text { or } \\ 8 \\ \hline \end{array}$	0	$\begin{gathered} 10 \mathrm{or} \\ 5 \end{gathered}$	--58	0.4	-	- Depends on Setting of height control
			No Signal	$\begin{gathered} 2 \text { or } \\ 3 \end{gathered}$	* 395	-	-	$\begin{array}{r} 3 \text { or } \\ 8 \end{array}$	0	$\begin{gathered} 1 \text { or } \\ 5 \end{gathered}$	*-58	0.4	-	
V109	6K6GT	Vertical Output	$\begin{gathered} 250 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	3	370	4	370	8	51	5	0	11.5	1.9	
			No Sigial	3	365	4	365	8	51	5	0	11.4	1.9	
V110	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \\ & \hline \end{aligned}$	Horizontal Ose. Control	$\left\lvert\, \begin{gathered} 2500 \mathrm{Mu} . \\ \text { Signal } \end{gathered}\right.$	2	${ }^{*} 160$	-	-	3	- -4.6	1	- -14.6	0.32	-	- Depende on Setting of hold control
			No Signal	2	-152	-	-	3	*-4.4	1	- 3.5	0.28	-	
V110	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \\ & \hline \end{aligned}$	Horizontal Oscillator	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	230	-	-	6	0	4	-82	1.8	-	
			No Signal	5	225	-	-	6	0	4	-85	1.8	-	
V111	6BG6G	Horizontal Output	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	- 630	8	335	3	7.2	5	-33	67	5.0	- 6000 volt pulse present
			No Signal	5	* 630	8	329	3	7.2	5	-33	67.1	4.9	
V112	$\begin{aligned} & \text { 183GT } \\ & \hline / 8016 \end{aligned}$	H. V. Rectifier	Brightness Min.	Cap	-	-	-	287	${ }^{*} 14500$	-	-	0	-	-14500 volt pulse present
			Brightness Maximum	Cap	*	-	-	287	- ${ }^{12700}$	-	-	0.1	-	
V113	$\begin{array}{\|l} \hline \text { 6W4 } \\ \text { GT } \\ \hline \end{array}$	Damper	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \end{gathered}$	5	387	-	-	3	-391	-	-	69	-	-3000 volt pulse present
			No Signal	5	380	-	-	3	- 387	-	-	70	-	
V114	5U4G	Rectilier	$\begin{gathered} 2500 \text { Mu. V. } \\ \text { Signal } \end{gathered}$	486	- 368	-	-	288	391	-	-	185	-	- AC measured with AC Voltmeter
			No Signal	486	- 367	-	-	288	387	-	-	199	-	
V115	6AU6	1st Sound I-F Amp.	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	120	6	120	7	0.8	1	-0.2	6.8	-2.9	
			No Signal	5	108	6	108	7	0.8	1	-0.1	6.2	2.8	
V116	6AU6	2d Sound I-F Amp.	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	118	6	87	7	0	1	-1.3	4.9	2.8	
			No Signal	5	110	6	76	7	0	1	-0.5	6.9	3.1	
V117	6AL5	Sound Discrim.	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \end{gathered}$	2	-7.2	-	-	5	0	-	-	$<0.1$	-	
			No Signal	2	-10.0	-	-	5	0.	-	-	<0.1		
V118	6AV6	1st Audio Amplifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	7	95	-	-	2	0	1	-0.5	0.5	-	
			No Signal	7	84	-	-	2	0	1	-0.4	0.4	-	.
V119	6K6GT	Audio Output	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \end{gathered}$	3	352	4	368	8	131	5	112	28.7	4.3	
			No Signal	3	348	4	360	8	134	5	108	28.8	4.2	
V120	19AP4	Kinemcope ${ }^{\text {2 }}$	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	Cone	14.00g	10	384	11	100	2	46	<0.1	$<0.1$	
			No Signal	Cone	13,500	10	375	11	74	2	8.3	<0.1	<0.1	

## R-F UNIT WIRING DIAGRAM



Figure S-R-F Unit Wiring Diagram

## CRITICAL LEAD DRESS:

1. All leads in the picture and sound i-f circuits must be dressed as short and direct as possible with the exception of C106, C107, C110 and Cl17 which are to be dressed with enough slack so as not to have to move the body of the capacitor to align that particular slage.
2. Dress all 1500 mmf .005 mid and .01 mid capacitors in the $i-f$ section with leads as short as possible.
3. Dreas all wires between T101 and the r-i unit in clamp.
4. Dress Cl85 to act as shield for lead between pin 5 of V115 sockel to T111D and picture i-f circuits.
5. Dress the bodies of resistors R106, R108, R113, R119, R191, R192 and capacior C176 as close to tube pin as postible.
6. Dress L114 with coded end as close to pin 2 of U105 sockel as possible.
7. The length of the bus wire from pin 2 of V116 to ground should not be shortened or rerouted.
8. Dress R194 as close to chassis with leads as short as possible.
9. Dress C199 with leads as short as possible and away from Sl06.
10. Keep the leads on Cl26 as short and direct as possible.
11. Dress all components connected to V106 socket up and away from the chassis except L104.
12. Keep the body and coded end of L104 as close to pin 2 of V105 socket as possible.
13. Drese the 4.5 mc trap L 07 up and away from the chassis base.
14. Dress C132 up in the air and towards V105 socket.
15. Dress R125 with body as close as possible to pin 2 of V106 socket.
16. Keep body of R123 as close as ponsible to pin 2 of V105 socket.
17. Dreass C133 and C190 away from C132, C151 and Cl53.
18. Dreats the white wire from picture control R128-3 away. from the chasais.
19. Dress all slack on kine socket leads under chassia Dress brown wire away from any components associated with V105 or V106.
20. The green lead from the kinescope socket should be dressed away from all other leads and components and away from V106.
21. Dress R133 towards chassis rear apron.
22. Dress all leads in clamps on rear apron away from V117. V104, V105, V106 sockets and S103.
23. Dress green wire from C147A up and away from chaseis.
24. Dress blue wire of T107 toward front apron of chasais.
25. Drest C153 down next to the chassis base.
26. Dress blue/white wire from height control R151-3 under R180.
27. Drens R161. R162, R163, R164 and R170 up and away from the chassis and with a hall inch clearance from the soldering point.
28. Dress the yellow wire from pin 3 of V110 socket over Cl53.
29. Dress both leads of C198 away from the body of the capacitor.
30. Dress tuse in high voltage compartment so an not to short circuit to ground.
31. Drens blue and blue/yellow wire from power transformer in 3 clamps on chassis base and away from S103 and video section.
32. Dress both wires on S 106 awry trom blue/yellow damper leads of T110.
33. Dress the brown wire trom pin 8 of V114 socket away from V118 socket.
34. Dress all 2 watt resistors away from each other and away from all wires and other components.




8TOCK No.	DEACRIPTION	STOCK	DESCRIPTION
73102	Capacitor-Mica, 180 mmf . (C153)	75810	Coil-Fifth pix, i-f coil complete with adjuatable core (L103)
75844	Capacitor-Ceramic, 270 mmf . (176)		
39838	Capacitor-Mica, 270 mmin . (C180)	71448	Coil-Horizontal linearity coil (Lil0)
73091		73591	Coil-Antenna matching coil (2 required) (Part of T200)
		75241	Coil-Antenna ahunt coil (L202)
73094	Capacitor Mica, 390 mmi. (C215) (in KCS49T and RCS49AT)	73477	Coil-Choke coil (L101, L102)
74947	Capacitor-Ceramic, 500 mmf ., 20.000 volta (C161)	75299	Coil-Peaking coil (36 muh) (L104)
74250	Capacitor-Mica, 560 mmf . (C155)	71793	Coil-Peaking coil ( 36 muh ) (L108)
75166	Capacitor-Ceramic, 1500 mmf ( (C171, C172)	76288	Coil-Peaking coil (38 muh) (L114, R119)
73748	Capacitor-Ceramic. 1500 mmf . (C102, C103, Cl09, Cl13, C115, C118, C122, C129, C168, C188)	75253	Coil-Peaking coil ( 120 muh ) (L109)
75089	Capacitor Coramic, dual, 1500 mmf . (C108A, C108B, C111A, C111B, C123A, C123B, C184A, C184B)	75252	Coil-Peaking coil ( 500 muh ) (L108, L108)
73473	C111A, C111B, C123A, C123B, C184A, C184B) Capacitor-Caramic, 5000 mmf ( (C114, C121, C187)	76132	Coil-Peaking coil (500 muh) (L115 in KCS49T and KCS49AT)
73960	Capacitor Ceramic, $10,000 \mathrm{mmf}$. (C144, C185, C192. C194. C195)	74594 38853	Connector-2 contact male connector for power cord
75877	C194. C195)	38853	Connector-4 contact female connector for antenna trans. former (J200)
15877	Capacitor-Caramic, dual, $10,000 \mathrm{mmf}$ ( (CiosA, C10SB)	5040	Connector-4 contact female connector for apeaker cable
73747	Capacitor-Electrolytic, $2 \mathrm{mfd} ., 50$ volte (C124)		
28417	Capacitor-Electrolytic. 5 mfd., 450 volte (C141)	35383	Connector-8 contact male connector-part of deflection yoke (P101)
75811	Capacitor-Electrolytic, comprising 1 eection of 20 mfd. 450 volte, 1 saction of 80 mfd ., 200 volts. 1 eection of 20 mfd., 200 volts and 1 section of 50 mid ., 50 volts (C213A,	68592	Connector-8 contact female connector for deflection yoke leads (J101)
	C213B, C213C. C213D)	75517	Contact-Anode connector assembly contact only
73510		73215	Control-Horizontal and vertieal hold control (R147, R186)
	5 mfd .450 volte (C211A, C2iliB, C211C, C211D. C212A. C212B, C212C, C212D)	75216	Control-Picture and brightnese control for Model 9T57 (R128, R131)
75643	Capacitor-Tubular, moulded paper, oil impregnated. .001 mfd., 1000 volte (C156)	75314	Control-Picture control. briahtnete control and channal light awitch for Modele 9 T77 \& 9T79, (R128, R131, S103)
73598	Capacitor Tubular, paper, oil impregnated, 0015 mfd. 600 volte (C130, C219)	75513	Control-Tone control, volume control and power awitch (R195, R197, S101)
73593	Capacitor-Tubular, paper, oil impregnated, .0022 mfd . 600 volte (C137. C191) (C216 in KCS49T and KCS49AT)	71441	Control-Vortical linearity control (R156)
73599		71440	Control-Hoight control (R151)
	600 volte (C189)	75516	Control -Width control (R177)
73798	Capacitor- Tubular, paper, oil impregnated, 0033 mfd. . 600 volte (C183)	71498	Core-Adjuntable core and atud for F.M trap No. 75449
73920	Capacitor-Tubular, paper, oil impregnated, 0047 mfd ., 600 volte (C138, C138, C177, C181)	74856	Cushion-Rubber cushion for deflection yoke hood (2 required)
73808	Capacitor-Tubular, paper, oil impregnated, . 0082 mid., 1000 volte (C188)	74839	Fastener-Push fastener to mount coramic tube socket (2 required)
73561	Capacitor-Tubular, paper, oil impregnated, 01 mid., 400 volte (C136. C178. C188)	73600	Fuse- 25 amp., 250 volts (F101)
		16058	Grommet-Rubber grommet for 2nd. anode lead exit
73594	Capacitor-Tubular, moulded paper. oil impregnated, .01 mid., 600 volte (C140. C154)	37396	Grommet-Rubber grommet to mount ceramic tube socket (2 required)
73797	Capacitor-Tubular, paper, oil impregnated, . 015 mfd. 600 volte (C179)	75443	Hood-Deflection yoke hood leas rubber cushions
74727	Capacitor-Tubular, paper, oil impregnated, 018 mfd ., 1000 volta (C159, C160)	75644	Insulator-2nd. anode insulator
73562	$\begin{aligned} & \text { Capacitor-Tubular, paper, oil impregnated, } 022 \mathrm{mfd} . \\ & 400 \text { volt } \end{aligned}$	35787 75482	Jack-Phono input jack (J103)   Jack-Video jack (J105)
73553	Capacitor-Tubular, papar, oil impregnated, $.047 \mathrm{mid} .$. 400 volte (Cl49, C199, C22i) 400 volte (C149, C199, C221)	75504	Magnot-Focus magnet complete with adjustable plate and stud for standard 19AP4A tubee
75071	Capacitor-Tubular, moulded paper, 047 mfd ., 400 volte (C168, C187)	75835	Magnet-Focus magnet complete with adjuatable plate and atud for apecial 19AP4A tubes coded with a dot of
73592	Capacitor-Tubulay, paper, oil impregnated, 047 mid., but volta (C133. C1s0. C180)	78322	green paint   Magnet-Ion trap magnet (P.M.)
73597	Capacitor-Tubular, moulded paper, oil impregnated. .047 mfd., 1000 volte (C143, C158, C162. C183)	75518	Plate-Hi-voltage plato-bakelite les transformor, capacitor and tube eocket
73591	Capacitor Tubular, papor, oil imprognated, 0.1 mid., 400 volte (C132, C186)	72087	Recistor-Wire wound, 9.1 ohms, $1 / 2$ watt (R193)
73557	Capacitor-Tubular, paper, oil impregnated, 0.1 mfd. 600 volta (C134)	75512	Resistor-Wire wound, 4000 ohms, 10 watts (R181)   Resistor-Fixed, compoaition:-
73794	Capacitor-Tubular, paper, oil impregnated, 0.22 mfd. . $4 W$ volta (C157)		```47 ohms, \pm 20%, 1/2 watt (R174) 82 ohms. \pm 10%. 1/2 watt (R103, R107, R112, R184)```
74937	Capacitor-Tubular, paper, oil impregnated, $0.22 \mathrm{mid} .$, buU volte (C142)		100 ohme. $\pm 10 \%$. $1 / 2$ watt (R217)   100 ohms. $\pm 20 \%$. $1 / 2$ watt (R202. R203)
73787	Capacitor-Tubular, moulded paper, 0.47 mfd ., 200 volta ( $1127 . \mathrm{Cl} 35, \mathrm{Cl} 52$ )		100 ohms, $\pm 10 \%, 2$ watts (R175)   180 ohms. $\pm 10 \%, 1 / 2$ watt (R118)
73154	Choke-Filter choke (Ll13)		220 ohms, $\pm 10 \%$. $1 / 2$ watt (R126, R127) 390 ohms. $\pm 10 \%$. 1 watt (R200)
75187	Clip-Tubular clip for mounting stand-off capacitor No. 75166		470 ohms, $\pm 10 \%, 1$ watt (R218) 680 ohms, $\pm 10 \%, 1 / 2$ watt (R228)


$\begin{aligned} & \text { 8TOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { sTOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	1000 ohms, $\pm 20 \%$, $1 / 2$ watt (R102, R104, R109, R114, R117, R159. R188, R189, R219)   1500 ohms, $\pm 10 \%, 1$ watt (R155)   1800 ohms. $\pm 10 \%, 1 / 2$ watt (R113)   2200 ohms, $\pm 20 \%, 1 / 2$ watt (R140)   3900 ohms. $\pm 10 \%$. $1 / 2$ watt (R167)   4700 ohms, $\pm 3 \%, 1 / 2$ watt (R130)	74602	1 mogohm, $\pm 10 \%, 1 / 2$ watt (R173)   1 magohm, $\pm 20 \%$. $1 / 2$ watt (R178, R214)   1.2 megohm, $\pm 5 \%, 1 / 2$ watt (R148)   2.2 mogohm, $\pm 10 \%, 1 / 2$ watt (R118, R1S3)   3.9 megohm, $\pm 5 \%, 1 / 2$ watt (R148)   10 megohm, $\pm 20 \%$. $1 / 2$ watt (R194)   Screw-No. 10-32 = 13/4" round head machine serew for focus magnet adjustment (3 required)
	4700 ohms, $\pm 10 \% .1 / 2$ watt (R135) (R230 in KCS49T and KCs49AT)	75238	Screw-No. $8-32 \times 1 \%$ pan hhead ecrew (brace) tio mount focus magnet ( 2 required)
	5600 ohms, $\pm 5 \%, 1 / 2$ watt (R125)   5000 ohms, $\pm 10 \%$. $1 / 2$ watt (R235) (in KCS49T and KCS49AT)	75083	Screw-No. $8-32 \times 1 / 4$ wing acrew for mounting dellection rok.
	6800 ohms. $+10 \%, 1$ watt (R120, R176)	73884	Shield-Tube ahiold
	$6800 \text { ohms, } \pm 10 \%, 2 \text { watte (R133. R179) }$	31251	Socket-Tube socket, octal, wafer
	8200 ohms. $\pm 5 \% .1 / 2$ watt (R108, R16y)	73117	Socket-Tube socket, 7 pin, miniature
	8200 ohms, $\pm 10 \%$. $1 / 2$ watt (R145, R146)	75223	Sockot-Tube socket, 9 pin, miniature
	10.000 ohms., $\pm 10 \%, 1 / 2$ watt (R238) (in KCS49T and KCS49AT)	73248	Socket-Tube socket, octal, ceramic, plate mounted
	10,000 ohms, $\pm 10 \%, 2$ watte (R207)	31318	Socket-Tube socket, octal, moulded
	12,000 ohms. $\pm 5 \%, 1 / 2$ watt (R132)	71508	Socket-Tube nocket for 1B3/8016
	12,000 ohme, $\pm 10 \%, 1 / 2$ watt (R188) (R138 in KCS47 and KCs478)	68592	Sockot-Tube wocket, 6 contact. moulded for V113
	and KCStiA)	74834	Sockot-Kinescope socket
	12.000 ohme. $\pm 10 \%, 2$ watte (R208, R209)	31364	Socket-Pilot light socket (Models 9T77 \& 9T79)
	15,000 ohms, $\pm 10 \%$. $1 / 2$ watt (R210)	75718	Socket-Channel indicator light socket (Mod 9T77 \& 9T78)
	15,000 ohme, $\pm 10 \%, 2$ watte (R216)	75233	Spring-Compresaion epring for focus magnot adjuet- ment ( 3 required)
	18,000 ohme, $\pm 10 \%$, 1 watt (R138, R180)	75506	Support-Bakelite support only-part of hi-voltage ehield
	22,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R143, R144, R186, R213)	76010	Switch-AGC switch (5106)
	22,000 ohmm. $\pm 20 \%$, $1 / 2$ watt (R182)	33491	Switch-"TV Phono' switch (8103)
	27,000 ohms, $\pm 10 \%$. $1 / 2$ watt (R198)	73508	Transformer-Power transformer 115 volts, 60 cycle (Tl10)
	27.000 ohme. $\pm 10 \% .2$ watte (R182)	74950	Trantormer-Vertical output transformer (T107)
	33,000 ohms, $\pm 10 \%$. $1 / 2$ watt (R105, R115, R201, R211. R225)	74144	Transformer-Vertical oscillator traneformer (T106)
	33,000 ohms, $\pm 20 \%$. $1 / 2$ watt (R123)	74589	Transformer-First pir, i-ftransformer (T101. Cl01, R101)
	39,000 ohme, $\pm 10 \%, 2$ watts (R204, R205, R206)	74590	Transformer-8econd pix, i-ftranaformer (T102, C104)
	47,000 ohms. $\pm 10 \%$, $1 / 2$ watt (R141, R187. R222)	76264	Trantormer-Third pix, i-f transformer (T103. Cl 12 )
	47,000 ohms, $\pm 20 \%$, $1 / 2$ watt (R110)	73574	Transformer-Fourth pix, i-f transformer (T104, C118)
	56,000 ohms. $\pm 10 \%$. $1 / 2$ watt (R221) (R234 in KCS49T and KCS49AT)	75211	Traneformer-Sound i-ftrandormer, aingle windingtype (T111, C169, C170, R186)
	58,000 ohms, $\pm 10 \%$, 1 watt (R215)   68,000 ohms, $\pm 10 \%$. 1 watt (R168)	71424	Trantormer-8ound i-f transformer, dual winding type (T111. Cl69, C170)
	82,000 ohms, $\pm 3 \%, 1$ watt (R172)	75212	Trantormer-8ound discriminator transformer (T112, C173, C174, C173)
	100,000 ohms, $\pm 5 \%$, $1 / 2$ watt (R190, R191)	75213	Transformer-Horisontal oscillator tranuformer (T108)
	100,000 ohms. $\pm 10 \%$. $1 / 2$ watt (R224) (R233 in KCS49T and KCS49AT)   100.000 ohms. $\pm 20 \%$. 2 watte (R183)	75509	Transformer-Antenna matching transformer complote with antenna connector, i -f and F.M trape and shunt coil (T200, C200, C201, C202, C203. J200, L200, L201, L202. L203)
	150,000 ohmm, $\pm 10 \%$, $1 / 2$ watt (R138, R154, R160)	75585	Transformer-Hi-voltage transformer (T109)
	150.000 ohms, $\pm 20 \%$. $1 / 2$ watt (R124)	71778	Trap-Sound trap (T105, Cl19)
	150,000 ohms, $\pm 5 \%$, 1 watt (R170)	75251	Trap-4.5 metrap (Ll07, Cl31)
	180.000 ohms. $\pm 10 \%, 1 / 2$ watt (R142 in KCS49T and KCS49AT)	75242	Trap-I-Ftrap (L200, L201. C200, C201)
	220,000 ohmm, $\pm 10 \%$, $1 / 2$ watt (R137, R158) (R134. R223. R231, R232 in KCS49T and KCS49AT)	75448	Trap-F.M trap complete with adjuetable core and etud (L203. C203)
	270,000 ohms, $\pm 10 \%$. $1 / 2$ watt ( R 150 )   330,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R161, R198)	74958	Yoke-Deflection yoke complete with cable and connector (Lill, L112, C164, C165, P101)
	330,000 ohms, $\pm 5 \%, 1$ watt (R183)		SPEAKER ASSEMBLIES $92580-4$
	390,000 ohms. $\pm 10 \%$. $1 / 2$ watt (R142, R223 in KCS49 and KCS49A)		(For Modal 9T57).
	470,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R111)	75023	Cap-Duat cap
	470.000 ohms, $\pm 20 \%$, 1/2 watt (R199)	75024	Cone-Cone complete with voice coil (3.2 ohms)
	560,000 ohms, $\pm 10 \%$. $1 / 2$ watt (R129) (R134 in KCS49 and KC849A)	5039 75022	Connector-4 contact male connector (J101)
	820,000 ohms, $\pm 10 \%, 1 / 2$ watt (R162, R230)	75022	Speaker-8" P.M. speaker complote with cone and voice coil less plug and trantormor

## REPLACEMENT PARTS (Continued)

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
\& \text { STOCK } \\
\& \text { No. }
\end{aligned}
\] \& DESCRIPTION \& \[
\begin{aligned}
\& \text { STOCR } \\
\& \text { No. }
\end{aligned}
\] \& DESCRIPTION \\
\hline \multirow[t]{5}{*}{78520} \& \multirow[t]{5}{*}{\begin{tabular}{l}
Traneformor- Output transformer (T112) \\
NOTE:-If stamping on epeaker in instrumente does not agree with above spaaker number, ordor replacement parte by reforring to model number of instrument, number stamped on mpeaker and full dencription of part required.
\end{tabular}} \& 75458 \& Encutchoon-Channel marker eecutcheon-dark-for mahogany or malnutinatrumente (Models 9T77 \& 9T79) \\
\hline \& \& 75456 \& Eecutcheon-Channel marker eacutcheon-liaht-for oak intrumente (Models 9 T77 \& 9T79) \\
\hline \& \& 72113 \& Foot-Rubber foot (Model 9TS7) \\
\hline \& \& 75619 \& Glase-Safoty glas \\
\hline \& \& 37396 \& Grommet-Rubber grommet for mounting epeaker (4 required) (Modele 9T77 \& 9T79) \\
\hline 13867 \& Cap-Duat cap \& 756.1 \& Hinge-Control panel hinges (l eet) (Model 9T57) \\
\hline 74901 \& Cone-Cone and voice coil asembly ( \(3.2 \mathrm{ohms)}\) \& 74308 \& Hin je-Cabinet door hinge (1 \\
\hline 5039 \& Connector-4 contact male connector for mpeaker (J102) \& 74959 \& \\
\hline 74974 \& Speaker-12" P.M. speaker complete with cone and voice coil less output tranaformer and connector \& 74859 \& walnutinetrumente (outer) \\
\hline \multirow[t]{4}{*}{75520} \& \multirow[t]{3}{*}{\begin{tabular}{l}
Tranuformer--Output transformer (T113) \\
NOTE:-If atamping on speaker in instruniente doen not agree with above speaker number, order replacement parte by reforring to model number of instrument, number stamped on speaker and full description of part required.
\end{tabular}} \& 75461 \& Knob-Fine tuning knob-beige-for oak instrumente (outer) \\
\hline \& \& 74960 \& Knob-Channal selector knob-maroon-for mahogany or walnut instrumente (inner) \\
\hline \& \& 75462 \& Knob-Channel selector knob-beige-for oak inatru. mente (innor) \\
\hline \& \begin{tabular}{l}
SPEAKER ASSEMBLIES \\
92569-11B \\
(For Models 9T77, 9T79)
\end{tabular} \& 74962 \& Knob-Tone control, brightness control or vertical hold control knob-maroon-for mahogany or walnut instruments (outer) \\
\hline \multirow[t]{2}{*}{75875} \& \multirow[t]{2}{*}{Cone-Cone and voice coil asembly (3.2 oh} \& 75463 \& Knob-Tone control, brightnese control or vertical hold control knob-boige-for oak instrumente (outer) \\
\hline \& \& 74963 \& Knob-Picture control, horizontal hold control or volume control and power switch knob-maroon-for mahogany or walnut instrumente (inner) \\
\hline 75642 \& \begin{tabular}{l}
Cone-Cone and voice coil asembly ( 3.2 ohms) \\
MODEL 9CBl STAND \\
(Used with 9 T57 Instrument)
\end{tabular} \& 75464 \& Knob-Picture control, horizontal hold control or volume control and power switch knob-baige-for oak instrumente (innor) \\
\hline 76008 \& Caster-Caster and socket asembly \& 11785 \& Lamp-Pilot or channel indicator lamp-Mazda 51 (Modele 9T77 \& 9T79) \\
\hline 76097 \& Catch-Door catch and strike (l set) \& \& \\
\hline 76096 \& Hinge-Door hinge (1 set) \& 75459 \& Mask-Channel indicator light mank-burgundy-for \\
\hline 76095 \& Pull-Door pull \& \& mahogany or walnut instrumente (Models 9T77 \& 9T79) \\
\hline 74113 \& Scrow-No. 8-32 × 1" trimit head screw for door pull MISCELLANEOUS \& 75460 \& Mask-Channel indicator light mask-gold-for oak instruments (Models 9T77 \& 9T79) \\
\hline 73586 \& \begin{tabular}{l}
MISCELLANEOUS \\
Back-Cabinet back complete with power cord and terminal board (Model 9T57)
\end{tabular} \& 73634 \& Nut-Speed nut for speaker mounting screws (4 required) (Models 9T77 \& 9T79) \\
\hline 75589 \& Back-Cabinat back complete with power cord and terminal board (Models 9777 \& 9T79) \& 75622 \& Pull-Door pull (Model 9T77) \\
\hline 75473 \& Board-'Ant' terminal board \& 75624 \& Pull-Door pull for lower doors (Model 9T79 \\
\hline 75485 \& Bracket-Mounting brackete for deflection yoke and focus magnet support assembly (Models 9T57 \& 9T77) \& 75625 \& Pull-Door pull for uppor doors (Model 9T79) \\
\hline 73524 \& Bracket-Mounting bracket for deflection yoke and focus magnet eupport amembly (Model 9T79) \& 71458 \& Screw-No. 8-32 \(\times 7 / 16^{\prime \prime}\) wing screw for deflection yoke and focu magnet mounting aupport \\
\hline 71599 \& Brackut-Pilot lamp bracket (Modele 9 T77 \& 9T79) \& 71623 \& Screw-No. 8-32 \(\times\) \% \({ }^{\text {c }}\) trimit head strew for door pull \\
\hline 13103 \& Cap-Pilot lamp cap (Modele 9T77 \& 9T79) \& \& (Model 9T77) \\
\hline 71892
\(\times 1917\) \& Catch-Bullet catch and strike for doors (Modols 9T77 \& 9T79) \& 74113 \& Screw-No. 8-32 \(\times 1^{17}\) trimit head screw for door pull on lower doors (Model 9T79) \\
\hline X1917 \& Cloth-Grille eloth for mahogany or walnut inatrumente (Model 9TS7) \& \& lower doors (Model 9T79) \\
\hline X1918 \& Cloth-Grille cloth for oak instrumente (Model 9T57) \& 7582 \& Screw-No. 8.32 \(211 / 4\) trimit head acrew for door pull on upper doors (Model 9T79) \\
\hline X3093 \& Cloth-Grille cloth for oak instrumenta (Models 9T77 \& 9T79) \& 73643 \& Spring-Spring clip for channel marker encutcheons \\
\hline X3144

39153 \& Cloth-Grille eloth for mahogany or walnut instrumente (Modols 9T77 \& 9T79) \& 75587 \& Spring-Formed epring for mounting Kinemcope masking
panel <br>

\hline 75474 \& | Connector-4 contact male connector for antenna cable |
| :--- |
| Connector-Single contact male connector for ontenno | \& \& <br>

\hline 75474 \& Connector-Single contact male connector for antenna cable (2 requirad) \& 72845 \& Spring-Retaining spring for knoba 74959 \& 75461 <br>
\hline 71457 \& Cord-Power cord and plug \& 14270 \& Spring-Retaining spring for knobe 74960, 74962, 75462 \& 75463 <br>
\hline 75608 \& Cushion-Dust eeal cushion-rubber \& \& <br>
\hline 71884 \& Decal-'RCA Victor' decal (Models 9T57 \& 9T77) \& 30330 \& Spring-Retainang apring for lenobs 74963 \& 7546 <br>
\hline 75618 \& Decal-Control function decal (Model 9T57) \& \& <br>
\hline 75440 \& Decal-Control function decal for mahogany or walnut inatrumente (Modele 9T77 \& 9T79) \& 72936
75500 \& Stop-Cabinet door stop (Models 9T77 \& 9T79) <br>
\hline 75441 \& Decal-Control function decal for oak instrumente (Model
9T7) \& 75500 \& Washer-Felt washer for cabinet back werews <br>
\hline 74809 \& Emblem-'RCA Victor' emblem \& \& channel marker eacutcheon for mahogany or walnut <br>
\hline 75498 \& Escutcheon-Channel marker eecutcheon-dark-for mahogany or walnut instrumente (Model 9T57) \& \& inatrumente (Modols 9 T77 \& 9T79) <br>
\hline 75501 \& Escutcheon-Channel marker encutcheon-light-for ook instrumente (Model 9T57) \& 75458 \& Washer-Felt washer-beige-between knob and channel marker eacutcheon for oak instrumente (Models 9T77 \& 9T79) <br>
\hline
\end{tabular}

To obtain resistors for which no stock number is given, order by statingtype, value of resistance, tolerance and wattage.


GENERAL DESCRIPTION

Model 9 T89 is a deluxe television-AM-FM radio phonograph combination. The receiver employs 26 tubes plus 3 rectifiers and a 19 inch kinescope.

Two record changers are provided to play 45 and 78/331/3 RPM records.
The receiver is provided with cabinet antennas for AM, FM and TV where local conditions permit their use.

## ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE.......... 204 square inches on a 19AP4A kinescope

## TELEVISION R-F FREQUENCY RANGE

All 12 television channels, 54 mc . to 88 mc .174 mc . to 216 mc . Fine Tuning Range... $\pm 250 \mathrm{kc}$. on chan. $2 . \pm 650 \mathrm{kc}$. on chan. 13 Picture Carrier Frequency ............................................... 25.50 mc . Sound Carrier Frequency . 21.00 mc .

RADIO TUNING RANGE

Broadcast	
Frequency Modulation	88-108
Intermediate Frequency-AM	455
Intermediate Frequency--FM	10.7

POWER SUPPLY RATING ............ 115 volts, 60 cycles, 315 watts AUDIO POWER OUTPUT RATING ......................... 11 watt max.

CHASSIS DESIGNATIONS

Television Chassis	.KCS60 or KCS60T
Radio Chassis	RCl 092
78.331: RPM Record Changer	960284
45 RPM Record Changer	RP168 or RP190
Refer to Service Data 960284 on the record changers.	190 for information


LOUDSPEAKER-92569-12 ........................ 12 inch PM Dynamic	.12 inch PM Dynamic 3.2 ohms at 400 cycles		
Voice Coil Impedance			
WEIGHT			
Chassis with Tubes in Cabinet	222 lbs.		
Shipping Weight	. 277 lbs.		
DMMENSIONS (inches)	Width	Height	Depth
Cabinet (outside)	435	$411 / 2$	$271 / 4$
TV Chassis (Overall)	191/4	12	21

RECEIVER ANTENNA INPUT IMPEDANCE
Choice: 300 ohms balanced or 72 ohms unbalanced.

## RCA TUBE COMPLEMENT

## Tube Used Television Chassis Function


(RCl092 Radio Chassis)


[^13](Continued)

PICTURE INTERMEDIATE FREQUENCIES	VIDEO RESPONSE ....................................................... To 4 Mc.
Picture Carrier Frequency ........................................ 25.50 Mc.	FOCUS ....................................................................... Magnetic
Adjacent Channel Sound Trap .................................. 27.00 Mc.	SWEEP DEFLECTION ................................................. Magnetic
Accompanying Sound Traps ..................................... 21.00 Mc.	. ${ }^{\text {chen }}$
Adjacent Channel Picture Carrier Traps .................. 19.50 Mc.	SCANNING .................................................. Interlaced, 525 line
SOUND INTERMEDIATE FREQUENCIES	HORIZONTAL SWEEP FREQUENCY .......................... 15.750 cps
Sound Carrier Frequency .......................................... 21.00 Mc.	VERTICAL SWEEP FREQUENCY ..................................... 60 cps
Sound Discriminator Band Width between peaks ......... 400 kc .	FRAME FREQUENCY (Picture Repetition Rate) ................ 30 cps

## OPERATING INSTRUCTIONS

The following adjustments are necessary when turning the receiver on for the first time:

1. Tum the radio FUNCTION switch to TV.
2. Tum the receiver "ON" and advance the SOUND VOL. UME control to approximately mid-position.
3. Set the STATION SELECTOR to the desired channel.
4. Adjust the FINE TUN. ING control for best sound fidelity and the SOUND VOLUME control for suitable volume.
5. Turn the BRIGHTNESS control fully counter-clockwise, then clockwise until a light paltern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZON. TAL hold control until a picture is obtained and centered.
8. Adjust the PICTURE and BRIGHTNESS controls for suitable picture contrast and brightness.
9. After the receiver has been on for some time, it may be necessary to read.

just the FINE TUNING control slightly for improved sound fidelity.
10. In switching from one channel to another, it may be necessary to repeal steps 4 and 8.
11. When the set is tumed on again alter an idle period it should not be necessary, to repeat the adjustments if the positions of the controls have not been changed. If any adjustment is necessary, step No. 4 is generally sufficient.
12. If the positions of the controls have been changed, it may be necessary to repeat steps 1 through 8 .

RADIO OPERATION

1. Turn the radio FUNC. TION switch to AM.
2. Tune in the desired station with the TUNING con. trol.
PHONOGRAPH OPERATION
3. Turn the radio FUNCTION/switch to $78-33$ for operation of the $78 / 331 / 3 \mathrm{RPM}$ changer or to 45 for opera. tion of the 45 RPM changer.
4. Place a record on the appropriate changer and slip the changer power switch to "ON."

THE TELEVISION CHASSIS USED IN MODEL 9T89 IS VERY SIMLLAR TO THE CHASSIS USED IN MODELS 6T53, 6T64, 6T71, ETC. REFER TO PAGES 372 TO 385 FOR TELEVISION ALIGNMENT DATA AND WAVEFORM PHOTOGRAPHS.

THE RADIO CHASSIS USED IN MODEL 9T89 IS IDENTICAL TO THE RADIO CHASSIS (RC-1092) USED IN MODELS 6T86 AND 6T87. REFER TO PAGES 418, 419, 420, 421 AND 422 FOR SERVICE INFORMA. TION ON CHASSIS NO. RC-1092.

## HIGH VOLTAGE WARNING

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, IN. VOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRE. CAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

Connect the antenna tranmission line to the receiver antenna terminals. Plug a power cord into the 115 -volt a-c power source and into the receiver interlock receptacle. Tum the receiver power switch to the "on" position, the brightness control fully clockwise, and the picture control counter-clockwise.

ION TRAP MAGNET ADJUSTMENT.-Sel the ion trap magnet approximately in the position shown in Figure 2. Slarting from this position immediately adjust the magnet by moving it forward or backward at the same time rotating it slighty around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control selting until the rdster is slightly above average brilliance. Turn the focus control (shown in Figure 2) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches of this adjustment should be made with the brightness control at the maximum clockwise position with which good line focus can be maintained.


Figure 2-Yoke and Focus Magnet Adjustments
DEFLECTION YORE ADJUSTMENT.-It the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.
, PICTURE ADJUSTMENTS.-It will now ke necessary to obtain a test pattern picture in order to make further adjustments.

If the Horizontal Oscillator and AGC System are operating properly, it should be possible to sync the picture at this point. However, if the AGC control is misadjusted, and the receiver is overloading, it may be impossible to sync the picture.

If the receiver is overloading, turn S106 on the rear apron (see Figure 3) counter-clockwise until the sel operates nomally and the picture can be synced.

CHECR OF HORIZONTAL OSCILLATOR ALIGNMENT.Turn the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal zync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be gradually reduced and when only 2 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull-in should occur when the control is approximately 90 degress from the extreme counter-clockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should be out of sync and should show 1 vertical or diagonal black bar in the raster.

If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Focus Magnet Adjustment."

ALIGNMENT OF HORIZONTAL OSCILLATOR.-If in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position of failed to hold sync over 90 degrees of clockwise rotation of the control from the pull-in point, it will be necessary to make the following adjustments.

Horisontal Frequency Adjustment.-Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the Tl08 horizontal frequency adjustment on top of the chassis until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster.

Horizontal Locking Range Adjustment.-Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. The piclure may remain in sync. If so furn the T108 top core slightly and momentarily switch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Slowly lum the horizontal hold control clockwise and note the least number of diagonal bars obtained just belore the picture pulls into sync.

If more than 2 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer C147A slightly clockwise. If less than 2 bars are present, adjust Cl47A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 2 bars are present.

Repeat the adjustments under "Horizontal Frequency Adjustment" and "Horizontal Locking Range Adjustment" until the conditions specilied under each are fulfilled. When the horizontal hold operales as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.

If it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure. For field purposes paragraph " $A$ " under Horizonial Oscillator Wavelorm Adjustment may be omitted.


Figure 3-Rear Chussis Adjustments

FOCUS MAGNET ADJUSTMENT.-The focus coil should be adjusted so that there is approximately three-eighths inch of space between the rear cardboard shell of the yoke and the flat of the front face of the focus magnet. This spacing gives best average focus over the face of the tube.

The axis of the hole through the magnet should be parallel with the axis of the kinescope neck with the kinescope neck through the middle.

CENTERING ADJUSTMENT.-No electrical centering controls are provided. Centering is accomplished by means of a separate plate on the locus magnet: Some centering plates include a locking screw which must be loosened belore centering, and others are held in adjustment by friction. Up and down adjustment of the plate moves the picture side to side and sidewise adjustment moves the picture up and down.

If a comer of the raster is shadowed, check the position of the ion trap magnel. Reposition the magnet within the range of maximum raster brightness to eliminate the shadow and recenter the picture by adjustment of the focus magnet plate. In no case should the magnet be adjusted to cause any loss of brightness since such operation may cause immediate or eventual damage to the tube. In some cases it may be necessary to shift the position of the focus magnet in order to eliminate a comer shadow.

WIDTH. DRIVE AND HORIZONTAL LINEARITY ADJUST. MENTS.-Adjustment of the horizontal drive control affects the high voltage applied to the kinescope. In order to obtain the highest possible voltage hence the brightest and best focused picture, adjust horizontal drive counter-clockwise as far as possible without stretching the left side of the picture As a first adjustment, set the horivontal drive trimmer Cl47B one-half turn out from maximum capacity.

Turn the horizontal linearity coil out until appreciable loss in width occurs, then in until nearly maximum width and the best linearity is obtained.

Adjust the width control R177 to obtain correct picture width.
A slight readjustment of these three controls may be necessary to obtain the best lirfearity.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS.-Adjust the height control (R151 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R156 on rear apion), until the test pattem is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust centering to align the picture with the mask.

FOCUS.-Adjust the focus magnet for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

On focus magnets using two shunts, the one with the cable is the "line adjustment" and the other is the "focus range" adjustment. In general, the two shunts should be adjusted to approximately equal positions.

Recheck the position of the ion trap magnet to make sure that maximum brightness is obtained.

Check to see that the cushion and yoke thumbscrews and the focus coil mounting screws are tight.


Figure 4-R-F Oscillator Adjustments
CHECK OF R.F OSCILLATOR ADJUSTMENTS,-Tune in all available stations to see if the receiver r -l oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure.

The adjustments for channels 2 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Fig. ure 4. Adjustment of channel 13 is on top of the chassis.

AGC CONTROL.-The AGC control switch is provided as an installation adjustment. The normal position for strong signal areas is with the switch in the number 1 or counterclockwise position. If impulse type of interference is experienced, turn the switch to the number 2 or center position. In very weak signal areas in which impulse type interference is experienced, turn the switch to position number 3 or fully clockwise. In this position, all AGC is removed and the receiver will overlcad if the input signal exceeds 200 microvolts. However, for signals under 200 microvolts, this position of the AGC control switch gives best noise immunity of sync.

FM TRAP ADJUSTMENT.-In some instances interference may be encountered from a strong FM station signal. A trap is provided to eliminate this type of interference. To adjust the trap tune in the station on which the interference is observed and adjust the L203 core on top of the r-f unit for minimum interference in the picture.

CAUTION.-In some receivers, the FM trap L203 will tune down into channel 6 or even into channel 5 . Needless to say. such an adjustment will cause greatly reduced sensitivity on these channels. If channels 5 or 6 are to be received, check L 203 to make sure that it does not affect sensitivity on these two channels.

Replace the cabinet back and reconnect the receiver antenna leads to the cabinet back. Tighten the back retaining screws securely otherwise the back may rattle or buzz when the receiver is opercted at high volume.

RADIO OPERATION.-Turn the receiver function switch to the AM and FM positions and check the radio for proper operation. In switching from radio to television or from television to radio, approximately 30 seconds warm-up time is required.

RECORD CHANGER OPERATION.-Turn the receiver function switch to each phono position and check each record player for proper operation.

CABINET ANTENNA.-A cabinet antenna is provided for use in strong signal areas in which no reflections are experienced. The leads from the antenna are brought out near the receiver antenna terminal board. To connect the cabinet antenna, attach the leads to the terminal board. If reception is satisfactory, no other antenna is necessary. However, if reception is unsatisfactory, it will be necessary to employ an outdoor antenna or an indoor antenna which can be oriented

CHKSSIS REMOVAL.-To remove the chassis from the cabinet for repair or installation of a new kinescope. remove the control knobs, the cabinot back, unplug the speaker cable. the kinescope socket, the antenna cable, the yoke and high voltage cabie. Remove the yoke frame grounding strap. Take out the six chassis bolts under the cabinet. Withdraw the chassis from the back of the cabinet.

KINESCOPE HANDLING PRECAUTION.—Do not install, so. move, or handle the kinescope in any manner, unless shatterproof goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling.
To remove the kinescope from the cabinet, take out the four screws and one wing screw which hold the yoke frame to the cabinet. Remove the kinescope, the yoke frame with yoke and focus magnet as an assembly.

INSTALLATION OF KINESCOPE.-Handle this tube by the metal rim at the edge of the acreen. Do not cover the glass bell of the tube with fingermarks as it will produce leakage paths which may interfere with reception. If this portion of the tube has inadvertently been handled, wipe it clean with a soft cloth moistened with "dry" carbon tetrachloride.

Wipe the kinescope screen suriace and tront panel safety glass clean of all dust and fingermarks with a soft cloth moistened with "Windex" or similar cleaning agent.

Turn the tube so that the key on the base of the tube will be down and insert the neck of the kinescope through the deflection coil and focus magnet. If the tube sticks, or fails to slip into place smoothly, investigale and remove the cause of the trouble. Do not force the tube.
Replace the kinescope and yoke frame assembly in the cabinet. Insert the four screws and wing serew and tighten.
Slip the kinescope as far forward as possible. Slide the kinescope cushion firmly up against the flare of the tube and tighten the adjustment wing screws. Slide the dellection yoke as lar forward as possible. If this is not done, difficulty will be encountered in adjusting the ion trap and focus magnets because of shadows on the corner of the raster.
Slide the chassis into the cabinet, then insert and tighten the six chassis bolts.

Slip the ion trap magnet over the neck of the kinescope.
Connect the kinescope socket to the tube base and connect the high voltage lead clip from the rim of the kinescope into the high voltage bushing on the high voltage compartment.

Reconnect all other cables. Perform the entire set-up procedure beginning with Ion Trap Magnet Adjustment.


Figure 5-Chassis Top View





STOCK No.	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
73594	Capacitor-Tubular, moulded paper, oll impreg. nated, 01 mid.. 600 volts (C140, C154)		$\begin{aligned} & 82 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt (R103, R107, H112. } \\ & \text { R184) } \end{aligned}$
74727	Capacitor-Tubular, paper, oil impregnaied, 018 mid., 1000 volts (C159, C160)		100 ohms. $\pm 20 \%$. $1 / 2$ watt (R202, R203) 100 ohms, $\pm 10 \%, 2$ watt (R175)
73562	Capacitor-Tubular, paper, oll impregnaled. . 022 mid.. 400 volts (C145, C151)		180 ohms, $\pm 10 \%$, $1 / 2$ watt (R116)   220 ohms, $\pm 10 \%$, $1 / 2$ watt (R126, R127)
73553	Capacitor-Tubular, paper, oil Impregnaled, 047 mid., 400 volts (C149. C199. C221)		680 ohms. $\pm 10 \%, 1 / 2$ watt (R226)   1000 ohms, $\pm 20 \%$, $1 / 2$ watt (R102, R104, R109.
75071	Capacitor-Tubular, moulded paper, 047 mid., 400 volts (C166, C167)		R114. R117, R159, R185, R189, R219) 1500 ohms, $\pm 10 \%, 1$ watt (R155)
73592	Capacitor-Tubular, paper, oll Impregnated, . 047 mid.. 600 volts (C133. Cl50, C190)		1800 ohms, $\pm 10 \%$, $1 / 2 \mathrm{waft}$ (R113)   2200 ohms, $\pm 20 \%$, $1 / 2$ watt (R140)
73597	Capacitor-Tubular, moulded paper, oil Impreq. nated, .047 mid .01000 volts (C143)		3900 ohms. $\pm 10 \%$, $1 / 2$ watt (R167) 4700 ohms. $\pm 5 \%$. $1 / 2$ walt (R130)
73551	Capacitor-Tubular, paper, oil Impregnated, 0.1 mid., 400 volts (C132, C196)		4700 ohms, $\pm 10 \%$. $1 / 2$ watt (R135) (R230 in KCS60T)
73557	Capacitor-Tubular, paper, oil impregnated, 0.1 mid., 600 volts (Cl34)		```5600 ohms, \pm5%. 1/2 walt (R125) 5600 ohms, }\pm10%,1/2 watt (R235 in KCS60T)```
73794	Capacitor-Tubular, paper, oll Impregnated, 0.22 mid., 400 volts (C157)		$\begin{aligned} & 6800 \text { ohms. } \pm 10 \%, 1 \text { watt (R120, R176) } \\ & 6800 \text { ohms. } \pm 10 \%, 2 \text { watts (R133, R179) } \end{aligned}$
74957	Capacitor-Tubular, paper. oll Impregnated, 0.22 mid., 600 volts (C142)		8200 ohms, $\pm 5 \%$, $1 / 2$ watt (R106, R169)   8200 ohms, $\pm 10 \%$, $1 / 2$ watt (R145, R146)
73787	Capacilor-Tubular, moulded paper, 0.47 mid., 200 volts (C127. Cl35, C152)		10,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R171) (R236 in KCS60T)
73154	Choke-Filler choke (L113)		10,000 ohms, $\pm 10 \%$, 2 watts (R207)
75167	Clip-Tubular, clip for mounting atand-off capacitor 75166		12,000 ohms. $\pm 5 \%$, 1/2 watt (R152)   12.000 ohms. $\pm 10 \%$, $1 / 2$ walt (R188) (R139 in
75210	Coil-Fith pix, i-l coil complete with adjustable core (L103)		KCS60)   12,000 ohms, $\pm 5 \%, 1$ watt (R108)
71449	Coil-Horizontal linearity coil (L110)		12,000 ohme, $\pm 10 \%$, 2 watts (R208, R209)
73591	Coll-Antenna matching coil (2 req'd) (Part of T200)		15.000 ohms. $\pm 10 \%, 1 / 2$ watt (R210)   15.000 ohms, $\pm 10 \%, 2$ watts (R216)
75241	Coil-Antenne shunt coil (L202)		18.000 ohms. $\pm 10 \%$, 1/2 watt (R121, B122, H137)
73477	Coll-Choke coil (L101, L102) Coil-Peaking coll (36 muh) (L104)		18,000 ohms, $\pm 10 \%$, 1 watt (R138, R180)
75299 71793	Coll-Peaking coll (36 muh) (L104) Coll-Peaking coll (36 muh) (L106)		22,000 ohms, $\pm 10 \%, 1 / 2$ watt (R143, R144)   22.000 ohms, $\pm 20 \%$, $1 / 2$ walt (R192)
76285	Coil-Peaking coil (36 muh) (L114. R119)		27.000 ohms, $\pm 10 \%, 2$ watts (R182)
75253	Coil-Peaking coil (120 muh) (L109)		33.000 ohms, $\pm 10 \%$, $1 / 2$ watt (R105, R115, R201.
75252	Coil-Peaking coil ( 500 muh ) (L105, L108)		R211, R225)
76132	Coil-Peaking coil ( 500 muh ) (L115 in KCS60T)		33,000 ohms, $\pm 20 \%$, $1 / 2$ watt (R123)
35787	Connector-Single contact female connector for audio cable (J103)		39,000 ohms, $\pm 10 \%, 2$ watts (R204, R205, R206)   47,000 ohms, $\pm 10 \%, 1 / 2$ watt (R141, R187, R222)
74594	Connector-2 contact male connector for power cord		$\begin{aligned} & 47.000 \text { ohms, } \pm 20 \% \text {. } 1 / 2 \text { watt (R110) } \\ & 56,000 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt (R221) (R234 in } \end{aligned}$
35383	Connector-8 contact male connector-part of deflection yoke (P101)		KCS60T)   56,000 ohms. $\pm 10 \%$, 1 watt (R215)
68592	Connector-8 contact female connector for deflection yoke leads (J101)		$68,000 \text { ohms, } \pm 10 \% \text {. I watt (R168) }$ $82.000 \text { ohms, } \pm 5 \%, 1 \text { watt (R172) }$
38853	Connector-4 contact female connector for antenna transformer (J200)		82.000 ohms. $\pm 10 \%$, 1 watt (R164, R165) 100,000 ohms. $\pm 5 \%$, $1 / 2$ watt (R190, R191)
75517	Contact-Anode connector coniact only		100,000 ohms. $\pm 10 \%$. $1 / 2$ walt (R224) (R233 in
75215	Control-Horizontal and vertical hold control (R147, H166) (R147, R166)		KCS60T)   100,000 ohms, $\pm 20 \%, 2$ watts (R183)
75216	Control-Picture and brightness control (R128, R131)		150,000 ohms. $\pm 10 \%$, $1 / 2$ watt (R136, R154, R160)   150,000 ohms, $\pm 20 \%$, $1 / 2$ watl (R124)
71441	Control-Vertical linearity control (R156)		150,000 ohms, $\pm 5 \%$, 1 watt (R170)
71440	Control-Meight control (R151)		180.000 ohms. $\pm 10 \%$, $1 / 2$ watt (R142 in
71498	Core-Adjustable core and stud for FM trap 75449		220,000 ohms, $+10 \%$, 1,2 watt
74956	Cushion-Rubber cushion for deflection yoke hood (2 req.d)		(R134, R223, R231, R232 in KCS60T) 270.000 ohms. $\pm 10 \%$. $1 / 2$ watt (R150)
74839	Fastener-Push iastener for mounting ceramic tube socket (2 req'd)		```330.000 ohms. }\pm10%\mathrm{ , 1/2 wat1 (R161) 330,000 ohms, \pm5%,1 watt (R163)```
73600 16058	Fuse- 25 amp.. 250 volis (F101) Grommet-Rubber grommet for 2nd anode lead exlt		390,000 ohms, $\pm 10 \%, 1 / 2$ watt (R142, R223 in KCS60)
37396	Grommet-Rubber grommet to mount ceramic tube socket (2 req'd)		$\begin{aligned} & 470,000 \text { ohms, } \pm 10 \% \text {. } 1 / 2 \text { watt (R111) } \\ & 560.000 \text { ohms. } \pm 10 \% \text {. } 1 / 2 \text { watt (R129) (R134 in } \\ & \text { KCS60) } \end{aligned}$
75445	Hood-Dellection yoke hood less rubber cushions Insulator-2nd anode insulator assembly		820.000 ohms. $\pm 10 \%$, $1 / 2$ watt (R162. R220)
75482	Jack-Video jack (J105)		1 megohm, $\pm 10 \%$, $1 / 2$ watt (R173)
76322	Magnel-lon trap magnet (P.M.)		$1 \mathrm{megohm}, \pm 20 \%$, $1 / 2$ watt (R178. R214)
75504	Magnel-Focus magnet complete with adjustable plate and stud for standard 19AP4A tubes		1.2 megohm, $\pm 5 \%$, $1 / 2$ watt (R149)   2.2 megohm, $\pm 10 \%$. $1 / 2$ watt (R118, R153)
75935	Magnet-Focus magnet complete with adjustable plate and stud for special 19ApiA tubes coded with a dot of green paint	75083	3.9 megohm, $\pm 5 \%$, $1 / 2$ watt (R148) Screw-No. $8.32 \times 1 / 4$ " wing screw for mounting deflection yoke
75518	Plate-Hi-voltage plate-bakelito-less transformor, capacitor and tube socket	75236	Screw-No. $8.32 \times 3 /{ }^{\prime \prime}$ pan head screw (brass) to mount focus magnet ( 2 req'd)
72067	Resistor-Wire wound, 5.1 ohms, 1/2 watt (R193)	74602	Screw-No. $10.32 \times 13 / 4$ round head machine
75512	Resistor-Wire wound, 4000 ohms, 10 watts (R181)		merew for focus magnet adjustment (3 req* ${ }^{\text {d }}$ )
75593	Resistor-Wire wound, 8000 ohms. 15 watts (R212) Resistor-Fixed composition: 47 ohms. $\pm 20 \%$. $1 / 2$ watt (R174)	$\begin{aligned} & 73584 \\ & 31251 \\ & 31319 \end{aligned}$	Shield-Tube shield   Sockel-Tube socket, octal, waler   Socket-Tube sockel, octal moulded


8TOCX   No.	DESCRIPTION	$\begin{gathered} \text { STOCX } \\ \text { No. } \end{gathered}$	DESCRIPTION
$\begin{aligned} & 73117 \\ & 75223 \end{aligned}$	Socket-Tube socket, 7 pis, minlature Sockel-Tube socket, 9 pin, miniature	73553	Capacitor-Tubular, paper, 05 mfd., 400 volts (C18)
73248	Socket-Tube socket, octal, ceramic, plate mounted	73835	CHip-Mounting clip for AM l - tromsformer
71508	Sockel-Tube socket for 133/8018	75827	Clip-CUp for main cablo-on rear of chensis
88592	Sockel-Tube socket. 6 coniact, moulded for V113	75569	Coil-Oscillator coll-KM-complete with adju
74834	Sockel-Kinoscope socket		able screws (L3, L4, L5)
75718	Socket-Channel indicator lamp socket	75570	Coit-R.F coll - AM - complete with adjunting
75233	8pring-Compression apring for focus margnof adjustment (3 req'd)	75815	screws (LB, L7)   Coil-FM antenna coll (L1)
75508	Support-Bakelite support oaly-part of hi-voliage shlold	$\begin{aligned} & 71942 \\ & 74817 \end{aligned}$	Coil-Filament choke coll (Ls) Coil-FM oscillator coll (L8)
75594	Switch-Channel indicator lamp switch (8104)	74815	Coil-FM r-f coll (L2)
78010	Switch-AGC switch (S108)	35787	Connector-Single contact female connector for
75508	Transformer-Power trusiormer 115 volt, 60 cycle (T110)		record changer's pickup cables and telovision (J2. I3. J5)
74950	Translormer-Vertical output iscmelormer (T107)	75542	Connector- contact male connector for power
74144	Transformer-Vertical oscillator transformor (T108)		input cable (04)
74588	```Transformer-Firat plx, 1.f transformer (T101, ClO1. R101)```	75543	Connector-2 contact female connector for 45 RPM motor cable (PI)
74590	Transformer-Second plx, If tranaformer (T102. C104)	74878	Connector- 2 contact female connector for antenna leads
76264	Transformer-Third pix. i-f iransformer (T103, C112)	75537	Control-Volume conirol and power switch (R22,
73574	Transformer-Fourth pix. if transformer (T104. Cl18)	75561	S2)   Control-Tone control-L.F. (R19)
75211	Transformer-Sound if transformer, slagle windIng type (Tlll, Cl69, Cl70, R186)	75582 72953	Control-Tone control-H.F. (R34)   Cord-Drive cord-250 H. (approx. $66^{\prime \prime}$ overali
71424	Transformer-Sound if transformen-dual wind. Ing lype (T111, C169, C170)	75564	length required)   Coupling-Spring coupling for function switch ox-
75212	Tramelormer-Sound discriminator tremeformer (T112, C173, C174, C175)	75556	tension shat Cover-Insulating cover for electrolytic
75213	Transformer-Hiorisonial oscillator trensformer (T108)	74839	Fastonor-Push fastener for mounting R-F sholf (4 req'd)
75508	Transformer-Rntenna matching transformer complete with antenna connector, If and FM trap: and shunt coil (T200, C200, C201, C202, C203. 1200. L200. L201. L202, L203)	18058 75547	Grommet-Rubber grommel for mounting R.F shell ( 4 req'd)   Grommet-Rubber grommel to mount slides to bot-lom-rear (2 req'd)
75585 71778	Tramiormer-HD-voliage transformer (T109) Trop-Sound trap (T105, Cl19)	75548	Grommel-Rubber grommet to mount slides to bot-lom-front (2 req'd)
75242	Trap-3.1 trap (L200, C200, L201, C201)	11765	Lamp-Dial lamp-Marda 51
75448	$\begin{aligned} & \text { Trap-FM trap complete with adjuatable core and } \\ & \text { stud (L203, C203) } \end{aligned}$	75544	Nui-Rivnut to faston serow for mounting chanala (4 req'd)
75251	Trap-4.5 me. trop (L107, C131)	18468	Plato-Bakelite mounting plate for eloctrolytic
74952	Yoke-Deflection Yoke complete with cable and connector (L111, L112, C184, C185, P101)	75535	Plato-Dial back plate complete with three (3) pulleys
	RADIO CHASSIS ASSEMBLIES RC 1092	75536 72602   72323	Pointer-Station selector pointer   Pulley-Drive cord pulley   Resiator-Wire wound, 3 ohms, $1 / 2$ watt (R25)
75567	Capacitor-Variable tuning capaclior complete with drive drum (Cl.1, Cl.2, Cl-3, Cl-4, Cl.5, Cl-6)	73637	Resintor-Wise wound, 2200 ohms, 5 watts (R24) Resistor-Fixed, composition:   68 ohms. $\pm 10 \%$, $1 / 2$ watt (R1, R26)
76423	Capacitor-Coramic, 3 mmi. (Cl0)		100 ohms, $\pm 10 \%, 1 / 2$ watt (R15, R38, R43)
75813	Capacitor-Coramic, 5 mmi. (C13)		120 ohms, $\pm 10 \%, 1 / 2$ walt (R27)
39044	Capacitor-Ceramic, 15 mmi. (C12)		270 ohms, $\pm 5 \%, 2$ watts (R42)
75809 75812	Capacior-Coramic, 47 mmi . (C4S) Capacitor-Coramic, 68 mm . (C9, Cll )		390 ohms, $\pm 10 \%$, $1 / 2$ watt (R9)
75612	Capacitor-Coramic, $68 \mathrm{mm}$. . (C9, ${ }^{\text {Caparitor-Ceramic. } 100 \mathrm{~mm} \text {. (C\&) }}$		680 ohms. $\pm 10 \%$, $1 / 2$ watt (R4)   680 ohms, $\pm 20 \%, 1 / 2$ watt (R30, R31)
75437			1000 ohms, $\pm 10 \%, 1 / 2$ watl (R8)
75814	Capacitor-Coramic, 150 mmf ( ${ }^{\text {Cl4. }}$ ( C30, C43, C54)		1200 ohms. $\pm 5 \%$, $1 / 2$ watt (R46)
75811 39840	Capacitor-Ceramic, 220 mmi . (C3) ${ }^{\text {Capactor-Mica, } 330} \mathrm{mmi}$. (C37, C38)		3300 ohms, $\pm 5 \%, 1 / 2$ wat1 (R40, R45)
72571	Capactor-Mica, 330 mmi. (C37. C38)		8200 ohms, $\pm 10 \%$, I walt (R3)   15.000 ohms, $\pm 10 \%$, $1 / 2$ watt (R44)
75610	Capacitor-Ceramic, 1500 mml . (C19)		18.000 ohms, $\pm 10 \%$, $1 / 2$ walt (R7, R20)
74850	Capacitor-Ceramic, 1800 mmf . (C17) ${ }^{\text {c }}$		22.000 ohms, $\pm 10 \%$, 1/2 watt (R28, R29)
73473	Capacitor-Ceramic, 5000 mmi . (C2, C5, C8, C15. C24, C25, C27, C28, C29, C34, C38)		27,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R18, R21) 39,000 ohms. $\pm 5 \%$, $1 / 2$ watt (R47)
73920	Capacitor-Tubular, paper, . 005 mid., 400 valis (C33)		$\begin{aligned} & 56.000 \text { ohms, } \pm 10 \% \text {. } 1 / 2 \text { watt (R32) } \\ & 68.000 \text { ohms, } \pm 10 \%, 1 / 2 \text { wott (R39) } \end{aligned}$
73747	Capacitor-Electrolytic, 2 mfd .50 volts (C40)		82.000 ohms, $\pm 10 \%$, $1 / 2$ watt (R36)
72052	Capacitor-Electrolytic, compriaing 1 section of 30 mid., 450 volts, 1 section of 30 mid., 350 volts. and 1 section of 40 mid. 25 volts (C23A, C23B. C23C)		$\begin{aligned} & 120,000 \text { ohrs. } \pm 10 \%, 1 / 2 \text { watt (R8, R16) } \\ & 150,000 \text { ohms, } \pm 10 \%, 2 / 2 \text { watt (R12, R14) } \\ & 220,000 \text { ohms, } \pm 20 \%, \text { 3/2 watt (R11) } \\ & 270,000 \text { ohms, } \pm 10 \%, 1 / 2 \text { watt (R35) } \end{aligned}$
73801	Capacitor-Tubular, paper, $001 \mathrm{mfd}, 400$ volts (C8)		470,000 ohms, $\pm 10 \%$. 1/2 watt (R2, R37, R41. R48)
70842	Capactior-Tubular, paper, 001 mid., 1000 volts (C12, C44)		1.5 megohm, $\pm 10 \%$, $1 / 2$ watl (R17, R51)   2.2 megohm, $\pm 20 \%$, $1 / 2$ wall (R5, R10, R13)
71828	Capacitor-Tubular, paper, . 005 mid., 200 volts (C26, C38. C41)		10 megohm, $\pm 20 \%, 1 / 2$ watt (R23)   22 megohm, $\pm 20 \%, 1 / 2$ watt (R33)
71925	Capacior-Tubular, paper, 01 mid., 400 volts (C32)	$75540$	Shafl-Tuning knob shaft   8haf-Extension shaf for function switch
72120	Capacitor-Tubular, paper, 015 m/d. 200 volts (C22)	73584	Shield-Tube shield
58476	Capacitor-Tubulerr, paper, oll impregnated, , 010 mitd., 400 volts (C21)	75548	Side-Slide mechanism complete for radio chassis bottom
74010	Capecilor-Tubulor, paper, 02 midd., 400 volts (C20. C35)	$\begin{aligned} & 31251 \\ & 73117 \end{aligned}$	Socket-Tube socket, octal, wafer Socket-Tube socket. 7 pla, miniature


STOCR   No.	DESCRIPTION	$\begin{aligned} & \text { STOCX } \\ & \text { No. } \end{aligned}$	DESCRIPTION
74179	Socket-Tube socket, 7 pin, miniature for V1 and V2	30870	Connector-2 contact maie connector for motor leads for 45 RPM phono
31364	Socke1-Dial lamp sockoi	75474	Connector-Single contact male connector for tole-
75583	Spring-Retaining spring for function switch ex. tossion shaft   Spring-Drive cord tension apring	74752	vision antenna or speaker cable   Connector-2 contact male connector for F.M an. lenna leads
74847	Support-Polystyrone support for FM oscillator coll complote with mounting bracket	39153	Connector- contact male connector for television antenna cable
75568	Switch-Function swltch (S1-1, S1-2, S1-3, S3)	75702	Cord-Power cord and two contact fomale con-
75557	Transformer-Output transformer (T7)	70392	nector less 5 contact male connector
75558	Transformer-First i-f transformer (AM) complete with adjustable cores (I2)	75608	Cushion-Dusi soal cushion (rubber) for kinescope mask
75559	Transformer-First if transformer (FM) complete with adjustable cores (T1)	$\begin{aligned} & 74273 \\ & 71984 \end{aligned}$	Decal-Trade mark decal (Victrola)   Decal-Trade mark decal (RCA Victor)
73037	Transformer-Second if transformer (AM) complete wilh adjustable cores (T4)	75640 74809	Decal-Ielevision controls function decal Emblem-"RCA Victor" amblem
75560	Transformer-Second i-f transiormer (TM) complote with adjustable cores (T3)	75455	Eecutcheon-Channel marker escutcheon Glas:-Safoty glass
75566 33726	```Transformer-Power trangiormer 117 volts, 60 cycles (T6) Washor-" "C" washer for taning knob shaft```	$\begin{aligned} & 74838 \\ & 37396 \end{aligned}$	Grommet-Power cord strain relief (l set) Grommet-Rubber grommet for mounting specker (4 rec.d)
	RADIO ROLLOUT CARRIAGE	75697	Grommet-Rubber grommet for mounting 45 RPM phono (3 req'd)
75573	Decal-Function decal for :adio controls Dial-Polystyrene dial scale	74308	Hinge-Cabinet door hinge (l set) for radio-phono compartment, felevision compartment (L.H. door)
75571	Frame-Moulded frame (maroon) for mounting radlo chassis and 45 RPM changer for mahogcany or walnut instruments	36817	or record storage compartments   Hinge-Cabinet door hinge (l set) for television compartment (R.H. door)
$\begin{aligned} & 75551 \\ & 75555 \end{aligned}$	Handle-Metal pult-out handie for mounting frame Screw-No. 8.32 $\times 5 / \mathbf{h l}^{\prime \prime}$ cross recessed pan hoad	75636	Kingo-Cabinet door hinge ( 1 set) for speaker compartmont-R.H.
	machine screw to mount radio chassis ( 4 req'd)   SPERKER ASSEMBLY   92569-12W RMA 274   RL 111 .A1	75637	Hinge-Cabinet door hinge (l set) for speaker compartment-L.H.   Anob-Television fine tuning control knob-maroon (outer)
13867	Cap-Dust cap   Con--Cone and voice coll assembl	73996	Knob-Television channel selector knob-maroon (inner)
75681	Speaker-12" P.M. speaker complete with cone and volce coll ( 3.2 ohms)	74962	Knob-Television brightness control or vertical hold control knob-maroon (outer)
	NOTE: If slamping on specker does nut agree with above number, order replacement parts by re-	74969	Knob-Television chanael marker light switich knob-maroon
	forring to model number of instrument, number stamped on speaker and full description of part required.	74963	Knob-Television picture conirol or horizontal hold control knob-maroon (inner)   Knob-Radio tone control, tuning control or volume control and power switch knob-maroon
	MISCELLANEOUS	75714	Knob-Function wwith knob-maroon
75705 75688	Anionad-Antonnd loop loss cable   Back-Back cover for radlo-45 RPM phon	11765	Lamp-Pilot or channel indicator lamp-Mazda 51
	partment-assembled to cabinet	75459	Mask-Channel indicator light mark Nut-Speed nut for speaker mounting
75692	Back-Back cover for radio--45 RMP phono com-partment-assembled to rollout	73634 75638	Pull-Door pull for upper doors
75772	Back-Back complete with torminal board, power cord and connector for television chassis compartment	$\begin{aligned} & 75639 \\ & 71456 \end{aligned}$	Pull-Door pull for lower doors Screw-No. 8-32 $\times$ Thic" wing screw for deflection yoke and focus magnet mounting support
75473	Board-TV antonna terminal board (2 contact) part of back	75623	Screw-No. 8-32 x 5/8" trimit head serew for door pull
75707	Board-"A-F.M" antenna terminal board (3 contact)	74279	Screw-No. 8-32 $\times 7 / \mathbf{e n}^{\prime \prime}$ trimit head serew for door pull
75694	Bracket-Stop bracket lesa rubber bumper for ra-dio-45 RPM phono rollout mechanism	75704	Shell-Shell for 5 contact male connector 75703   Shell-Shell for 8 contact female connpctor 75709
71599	Bracket-Lamp brackel	75711	Shell-Shell for 5 contact female connector 75710
75696	Bumper-Rubber bumper for radio- 45 RPM phono rollout stop bracket	74736	Slide-Slide mechanism complete for 33/78 RPM changer drawer
72447	Cable-Shiolded audio cable complete with two   (2) pin plugs	$\begin{aligned} & 31364 \\ & 72845 \end{aligned}$	Socket-Pilot lamp stocket   Spring-Retaining spring for knob 74959
74545	Cable-Shielded pickup cable complete with pin plug for 33/78 RPM phono	14270	Spring-Retaining apring for knobs 73996, 74962 and 74969
72437	Coble-Shielded pickup cable complete with pin plug for 45 RPM phono	30330 73643	Spring-Retalning spring for knob 74963   Spring-Spring clip for channel marker escutcheon
13103 71892	Cap-Pilot lamp cap	75587	Spring-Formed spring for kinescope masking panel
X3188	Cloth-Grille cloth	74734	Spring-Retaining spring for knobs 75712 and
75703	Connector-5 contact male connector-part of back assombly	75691	75714   Spring-Suspension spring (coll type) for main
74882	Connector-2 contact (polarized) male connector for radio antenna loop cable	72936	catble   Stop-Door itop
75709	Connector-8 contact iemale connector-part of main cablo-less sholl	75500	Washer--Felt washer for television chasale back assembly
75710	Connector-5 contact femalo connector-part of main cable-loss sholl	75146	Washer-"C" washer for $331 / 3 / 78$ RPM changer mounling
30868	Connector-2 contaci fomale connector-part of main cable	75457	Washer-Folt washer between knob and channel marker encutcheon

To obtain resistors for which no stock number is given, order by stating type, value of resistance, tolerance and wattage.


[^0]:    + Stock No. 72953 is a reel containing 250 leet of cord

[^1]:    + Btock No. 72953 is a reel containing 250 toet of card.

[^2]:    The large end of the kinescope bulb-particularly that part at the rim of the viewing surface-must not be struck, scratahed or Eubjected to more than moderate pressure at any time. In installation, if the tube sticks or fails to slip moothly into its socket, or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Refer to the Receiver Installation section for detailed instructions on kinescope installation. Hu RCh kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the receiver. Keep the carton for possible future use.

[^3]:    Specifications contlnued on page 2

[^4]:    The large end of the kinescope bulb-particularly that part at the rim of the viewing suriace-must not be struck, scratched or subjected to more than moderate pressure at any time. In installation, if the tube sticks or faila to slip smoothly into its socket. or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Refer to the Recelver Installation section for detalled instructions on kinescope installation. All RCA kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the receiver. Eeep the carton for possible future use.

[^5]:    DEFLECTION YOKE ADIUSTMENT.-If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

[^6]:    

[^7]:    The kinescope bulb eacloses a high vacuum and, due to its large surface area, is subjected to considerable air pressure. For these reasons, kinescopes must be handled with more care than ordinary receiving tubes.

    The large end of the kinescope bulb-paricularly that part at the rim of the viewing suriace-must not be struck, scratched or subjected to more than moderate pressure at any time. In installation, if the tube sticks or falls to slip smoothly into its socket, or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Refer to the Receiver Installation section for detailed instructions on kinescope installation. All RCA kinescopen are shipped in special cartons and should be left in the cartons until ready for installation in the receiver. Keep the carion for possible future use.

[^8]:    The following adjustments are necessary when turning the receiver on for the first time:

    1. See that the TV.PH switch on the rear apron is in the "TV" position.
    2. Turn the receiver "ON" and advance the SOUND VOL UME control to approximately mid-position.
    3. Set the STATION SELECTOR to the desired channel.
[^9]:    

[^10]:    In some rectivers R34 was 100K and-wa: connected between SI. 1 rear terminal 7 and J3. C24 was .0015 and was connected between SI-1 rear terminal 7 and gnd.

[^11]:    FM TRAP ADJUSTMENT. - In some instances interference may be encountered from a strong $F M$ station signal. A trap is provided to eliminate this type of interierence. To adjust the trap tune in the station on which the interiarence is observed and adjust the L203 cose on top of the e-f unit for minimum interference in the picture.

[^12]:    To obtain resistors for which no stock number is given, order by stating type, value of resiatance, tolerance and wattage.

[^13]:    Specifications continued on page 2

