RCA VICTOR SERVICE DATA

VOLUME VII 1951

RADIO RECEIVERS
PHONOGRAPHS

TELEVISION

```
RADIO CORPORATION OF AMERICA RCA Victor Division Harrison, N. J., U.S.A.
```


RCA Victor SERICEDATA (29)

 - television receivers

 - television receivers - RADIO RECEIVERS - RADIO RECEIVERS -PHONOGRAPHS

 -PHONOGRAPHS}

This volume is a compilation of Service Data previously issued for the year 1951 with the latest changes and corrections.

RECEIVED
JAN 16 1953
c. E. WELSHER

PREPARED BY RCA SERVICE CO., INC.
RADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION
HARRISON, N. J., U. S. A.

INDEX

The page numbers given in the index below rofor to the number at the top of the pages. The numbers which are found in the toxt and at the bottom of some pages refer only to that particular Sorvice Data.
The regular Service Data will be found on the pages indicated by boldiace numbers (1, 2, 3, etc.). Supplementary data is indicated by lightiace numbers.

Modol	Chassis	Page.
No.	No.	No.
7T143	$\ldots K C S-48 A . ~ R C-1092 ~$	

9T105KCS-49B, KCS-49BF,
KCS-49BF-2106-123, 169
9T126, $9 T 128$....KCS-49C, KCS-49CF, KCS-49CF-2106-123, 169
9T147KCS-60A, RC-1092
106-112, 120-123, 151-155, 191
16T152KCS-47E113-123, 204
17T153, 17T154,
17T155.
17T160KCS-66 .. 227
17T162, 17T172, 17T173.
17T174KCS-66A .. 227
17T172K, 17T173K,
17T174KKCS-66D .. 227
21T159, 21T165..KCS-68E234-243, 263
21T176, 21T177.
21T178,
21 T179KCS-68C234-243, 263
Supplementary Information:
4T101, 4T141 ...IV
9T79 ..
KRK5, KRK5A, KRK5B ..IV

Interchangeability of R-F tunersVIII
Oscillation switch wafersVIII
R-F unit oscillator trackingIX

Correcting pix i-f responseIX
Television receiver cross-referenceX
High-pass filter ..V
Ion trap magnets for 10BP4, 12LP4 and 16AP4
kinescopes ...
Deflection yokes for 7T103 Series and 17T153
Series receivers.
High voltage arcs at kinescopesV
Corond interference ..V

MISCELLANEOUS

Crystal pickup cross referenceXII
Index to Model Numbers 1923 to 1951XX
Index to Chassis Numbers prior to 1930XXVIII
Index to Chassis Numbers 1938 to 1951XVI
Fixed composition resistor stock number codeV

SUPPLEMENTARY INFORMATION

RADIO

1X51 Series

Change in Volume Control Knob:
The original volume control knob had a smooth outer edge. The knob used in late production has a dimpled edge. The Stock Nos. of the new knobs are listed below.

77140 Knob-Volume control knob-maroon-Model 1X51
77235 Knob-Volume control knob-ivory -Model 1X52
77237 Knob-Volume control knob-green -Model 1 X53
77238 Knob-Volume control knob-tan -Model 1X54
77239 Knob-Volume control knob-blue -Model IX55
77240 Knob-Volume control knob-red -Model 1X56
77236 Knob-Volume control knob-white -Model 1X57

X551, X552 (RC-1089B, RC-1089C)

Addition of Resistor:
A. 33 ohm resistor has been added between pin \#5 and pin \#6 of the rectifier tube socket. This resistor minimizes the current surge which occurs if the set is turned on immediately after having been turned off. Dial lamp and tube life is lengthened by the addition of this resistor. The revised rectifier circuit is illustrated below.

Additions to Parts List:

CHASSIS ASSEMBLIES	
514033	Resistor-Fixed composition, 33 ohms $\pm 20 \%, 1$ watt (R11) MISCELLANEOUS
77230	Button-Plug button-maroon-ior phono attach. ment socket-Model X551
77231	Bulton-Plug button-ivory-for phono attachment sockel-Model X552

9 Y510

Alternate Speaker:

In some receivers speakers stamped 92585-5 have been used instead of the specified 92585 -1 speaker.

SPEAKER ASSEMBLY

77270 Speaker-5" $\times 7^{\prime \prime}$ P.M. speaker complete with cone and voice coil.

A-106, 9W106

Correction to Parts List:

```
CHASSIS ASSEMBLIES
```

The Stock No. of the F.M. oscillator coil is incorrectly listed as 73817. The correct Slock No. is 74817.

240X1 Radio-Phono Switch

Alternate Color of Lead Wires:

Instructions for the use of Type 240X1 switch indicate BLACK and BLACK-BROWN colors of leads. Alternate colors used are BLUE and WHITE respectively.

PX600

Addition to Parts List:

76726 Emblem-'"RCA Victor" emblem

1X591, 1X592 (RC-1079R, RC-1079L)

Change in Parts List:

The Service Data for these models linte only one emblem. The listed emblem (Stock No. 76588) is correct for Model 1 X591 only and is maroon color. The correct emblem for Model 1X592 is Stock No. 74782 and is gold fini hh.
Change in Control Knob:
Late production of these models use control knobs with a dimpled edge.

The sfock Nos. of the dimpled knobs are al follows:
77234 Knob-Control knob-maroon-for Model 1X591
77235 Knob-Control knob-ivory-ior Model 1X592
X551, X552, 1X51 Series
9Y510, 45EY3

Change in Emblem:

Original production of the above receivers used a plastic emblem which was secured to the cabinet by heat-sealing the plastic studs. Present production usen a die-cast metal emblem which is secured to the cabinet with three speed nuts. Additions to Parts Lists:

77033 Emblem-"RCA Victor" emblem (metal)
77351 Nut-Speed nut to fasten \#77033 emblem to cabinet

TELEVISION

9T57, 9T77, 9T79

Change in Parts List:

Change:	MISCELLANEOUS		
75624	Pull		
to read:			
75624	Pull-Door pull for lower doors (Model 9T79) Note: Prongs on Bail mount from outer sides of Escutcheon.		
Add:	Pull-Door pull for lower doors (Model 9T79)		
76641	Note: Prongs on Bail mount from inner side of Escutcheon.		

KRK5, KRK5A, KRK5B, R. F. Unit Additions to Parts List:

Refer to all models using subject units and add the following:-
75995 Strip-Mounting strip for switch segments and coil forms for L9, L13, L31 (center)
76861 Strip-Mounting strip for switch segments complete with two (2) terminals (R. H.)
76862 Strip-Mounting strip for awitch segments (L. H.)

4T1O1, 4T141

Addition to Parts List: RF UNIT ASSEMBLIES

76754
$\left.\begin{array}{l}\text { BLACK } \\ \text { or } \\ \text { BLUE }\end{array}\right\}$ Radio input to switch

BLACK-BROWN
Or
Audio output from switch

HIGH PASS FILTER FOR REJECTION OF INTERFERING SIGNALS BELOW 50 MC.

If interference is experienced due to the presence of strong signals below 50 mc . it can usually be eliminated by the use of a high pass tliter. To be effective, the filter must be installed at the r-f units with as short leads as possible and the case of the filter connected to the r-f unit chassis.

Figure 5 shows the method of attaching the antenna input connectors to the filter so that it can be "plugged" directly into the antenna matching units employed with KRK5, KRK7 and KRK8 r-f tuners.
Figure 6 shews the method of mounting the filter on receivers employing KRK2 r-f units.

Figure S-Filter for KRKS, KRK7 and KRK8 R-F Units

Figure 6-Filter for KRK2 R-F Units

NEW TYPE ELECTRON GUN IN 10BP4, 12LP4 AND 16AP4 KINESCOPES

All RCA tubes of these types now being manufactured have a new type of electron gun similar to the one employed in the RCA type 16GP4 kinescopes. In most cases it will be found that the EM ion trap magnet or the two ring PM type ion trap magnets originally employed with these tubes will also operate satisfactorily with the tubes employing the new guns. However if trouble should be experienced, it can be eliminated by the use of the single PM ion trap magnet employed with 16GP4 kinescopes.

DEFLECTION YOKES FOR TT103 AND 17T153 SERIES RECEIVERS

In production, yoke, Stock No. 74952 was used for magnetic focused Model 7T103, and electrostatic focused Model 7T103B receivers.

Likewise, in production, yoke, Stock No. 76616 was employed for electrostatic focused Model 17 T153 and magnetic focused 17T172K and $17 T 150$ series receivers.

Magnetic focus causes the picture to be rotated about 5 degrees from the position which the same yoke would produce on an electrostatic focused kinescope. Thir rotation of the picture can be corrected by rotating the yoke around the neck of the kinescope in the proper direction. However, only a limited range of adjustment is provided by the wing screw on the yoke.
In production, the yoke was positioned within the retaining strap so that the picture was straight when the wing screw adjustment was in the center of its range. Naturally this yoke position varied depending on whether the yoke was to be used with a magnetic or electrostatic focused kinescope.

The yoken stocked by the Replacement Parts Dept. may have been adjusted for either electrostatic or magnetic focused kinescopes depending upon which was in production at the time of ordering. In the event of yoke failure, when the yoke is replaced, it may be necessary to adjust the yoke within its strap in order to straighten the picture.

HIGH VOLTAGE ARCS AT KINESCOPES

During days of humid weather, difficulty may be experienced with arcing across the bell of metal cone picture tubes due to a collection of dust and moisture around this area.
In the past, many remedies have been suggested, all of which have been helpful for a short period of time. The best field remedy found to date has been an application of "Car-Plate", mid. by S. C. Johnson \& Son, Racine, Wis.
The following procedure should be employed:

1. Remove the entire coating on glass bell, using methanol or acetone.
2. Wash the glass bell thoroughly with a good detergent.
3. Dry the glass bell thoroughly.
4. Apply a good coating of Johnson's "Car-Plate". Allow to dry, then wipe off the white residue. Brush application is satisfactory.

CORONA INTERFERENCE-MODEL 9T57, SERIES RECEIVERS

An interference pattern consisting of narrow vertical bars at the left-hand side of the raster, may be the result of internal corona, or arcing, within the 4.7 mmid capacitor (C198) located in the plate circuit of the horizontal sweep output tube.

This interference may be mistaken for Barkhausen oscillation, but none of the normal Barkhausen preventative methods such as adjusting the drive, placing a magnet over the 6BG6, etc., will be effective in eliminating the interference.
If such a condition is encountered, the capacitor should be replaced.

FIXED COMPOSITION RESISTOR STOCK NO. CODE

The RCA six digit stock number for tized composition resistors.
The first digit will always be 5 .
The second digit is to indicate the wattage. $\mathrm{O}=1 / 2$ watt, $1=1$ watt, $2=2$ watt.
The third digit is to indicate the resistor tolerance. $2=5 \%$, $3=10 \%, 4=20 \%$.
The fourth digit is for the number of zeros following the significant tigures of the resistor value.
The fifth and sixth digits are for the significant figures of the resiator value.
Example 503268 is the stock number of a $1 / 2$ watt, fixed composition resistor, 6800 ohms $\pm 10 \%$.

A few resistors are still being listed in the Service Data under four or five digit stock numbers. This is because there are still some of these resistors in stock packaged under the old stock numbers. However, as these are depleted, the new stock will be carried under the six digit stock number system.
Wire wound or cther special resistors will continue to carry four or tive digit stock numbers.

NOTES ON 17T153, 17T154, 17T155, 17T160, 17T162, 17T163, 17T172, 17T172K, 17T173, 17T173K, 17T174, 17T174K, 21T159, 21T165, 21T176, 21T177, 21T178 AND $21 T 179$ TELEVISION RECEIVERS

SIPARATION OF SOUND AND PICTURE IN WEAK SIG. NAL AREAS-Normally the picture carrier falls at 5090 on the slope of the overall responee curve as shown below. When receiving signale of less than 50 microvolts, on intercarrier receivers, it in common practice to adjust the tine tuning control 50 as to move the picture carrier up the slope to improve the signal to noise ratio. The actual amount which the carrier is moved depends upon the signal strength. On extremely weak signale, the picture carrier may be moved as high as 86% to 90% on the slope of the curve. Thim may represent a change of as much as .75 megacycles of all frequencios being passed through the pix i-f amplifier. Under such conditions the sound may become weak and noisy even on intercarrier receivers. The reason for this is shown in figure 1 below.

Figure 1 -Details of Overall Response Curves
When the picture carrier is rolled up the slope and lowered in trequency by .75 mc ., the sound carrier is also lowered in frequency by 75 mc . to become 40.50 mc . As can be ween by the enlarged section of the response curve, the sound carrier begins lo fall into the adjacent channel picture trap with a consequent reduction of sound output. Receiver de. signs which do not incorporate an adjacent channel picture trap may avoid this difficulty at the expense of adjacent channel picture rejection.

It is possible to overcome the above described difficulty in many casen by a simple adjustment which can be made in the field without the aid of test equipment. When the picture carrier is rolled up the slope by .75 mc ., the adjacent channel picture carrier is lowered in frequency to 39.00 mc . and no longer falle into the adjacent channel picture trap. If the
 40.50 mc . to riee somewhat and produce stronger sound and will produce greater adjacent channel picture rejection under the actual operating condition. If a strong signal is available on another channel and the fine tuning is adjusted to roll the picture carrier down the slope to the normal 50% point, the adjacent channel picture trap will appear mistuned. However, it is not likely that adjacent channel picture interference will be experienced on strong signals.

In addition to the above adjuatment, T107, normally peaked at 41.8 mc ., may be lowered in frequency to provide improved sound gain. Care should be taken in making thie adjustment not to lower its frequency any more than necessary as it reduces adjacent channol picture rejection somewhat and might cause difficulty from sound in the picture if a strong signal is available on another channel.

The above adjustments may be made without removing the chassis from the cabinet. First, tune in the desired channel and adjust the fine tuning control for best picture. Then, since the adjacent channel picture trap is under the kinescope, disconnect the high voltage lead at the chassis to prevent getting a shock. Turn the T104 top core clockwise, approximately $1 / 2$ turn if it is a threaded core type or approximately $11 / 2$ turn clockwise if it employs a brass stud extending from the transformer shield. Restore the kinescope high voltage connection. Then, from the top of the chassis, adjust TlO7 clockwise $1 / 2$ turn or less.

If adjacent channel picture interference is a severe problem, it may be necessary to remove the chassie from the cabinot and adjuat T104 top core while observing the pioture for minimum interference.

R-F AND I-F BIAS RATIOS-In medium tield strength areas an occasional receiver may show some snow on signals in the 300 to 1000 microvolt signal range due to an improper ratio of r-f and i-f bias. If the r-f bias in high with respect to the i-f bias, the picture becomes snowy. If the $i-f$ bias is too high with respect to r-f bias, the receiver may overload on strong signals.

To determine whether or not the biases are of the correct ratio, tune in a signal and measure the r-f bias, the i.f bias and the AGC amplifier plate voltage with a "VoltOhmyat". The signal must be steady during these measurements. Plot these points on the accompanying graph. The values should fall within the range of the dotted lines.

Figure 2-Cbart of R-F, I-F Bias Ratios
According to the graph, when the AGC amplitier plate measures -45 volts, the $i-\frac{1}{\text { bias should be }-8.2 \text { volts. If the }}$ i- 1 bias actually measured -10 volts, it indicates that R143 or R145 is too low in value and/or R144 or R150 is too high. If, however, the $i-f$ bias actually measured -6 volts it indi. cates R143 or R145 is too high in value and/or R144 or R150 is too low. The resistors originally employed in production were 10% tolerance units. However, if R143 and R145 are at one limit of their tolerance and R144 and R150 are at the other limit of their tolerance, a considerable error in i-f bias is produced.

Similarly at -45 volts AGC amplifier plate voltage the r-f bias should measure -6.8 volte. If the i - f bias should measure say -12 volts, it indicates that R128 or R129 is too low or R127 is too high or the R145 volt bus is too low. If the bias is too low, obviously the converse is true.
In several instances, r-1 or 1-f bias difficulties have been traced to leaky electrolytic capacitore $\mathrm{Cl24}$ or Cl 38 . In two known instances, one of these two capacitors was con. nected into the circuit in reversed polarity due to a reversal of the polarity markings on the capacitor.

The above AGC bias circuit description in for the 17T153 series receivers. The $21 T 176$ receivers are similar except for slight differences which cause the biases to occur at slightly
different AGC plate voltages. different AGC plate voltages.

AGC THRESHOLD CONTROL ADJUSTMENT-The AGC control is adjusted at the factory to provide maximum pos. sible gain without clipping sync for all signals above the receiver threshold up to 25000 microvolts. The adjustment of this control should not be touched in the field unless it is definitely known to be incorrect. If the control is misadjusted so as to increase the receiver gain, it may overload when a strong signal is received or when a weak signal temporarily increases in strength due to unusual propagation conditions. On the other hand, if the receiver gain is lowered by the AGC control, the sync noise immunity is reduced.
In order to reduce the prominence of nnow on weak signals it is important that the picture control not be operated at its maximum clockwise position. Such an adjustment will provide a higher contrast picture but at the same time may produce an apparent poorer signal to noise ratio due to the fact that an excentive amount of signal on the kinescope grid causes the snow to bloom or delocus thus causing the llake particle to become larger and more prominent than normal. At the same time it is equally important that the receiver be focused to obtain the appearance of the least amount of
snow in the picture. To do this, focus the receiver by the method directed in the Service Data. As a tinal adjustment, adjust the focus control for the appearance of minimum snow in the picture.

Only under two conditions can it be considered permis. sible to adjust the AGC control. In an area where the signal is so weak that the snow practically obscures the picture after having taken all the above precautions, then the AGC control may be adjusted to give the best signal to noise ratio. It should be recognized however, that trouble from loss of sync noise immunity might be experienced.

The other condition which would justify adjustment of the AGC control is where a signal of over 25,000 microvolts is received. Under this condition the AGC control should be adjusted until the receiver no longer overloads.

NOTES ON GERMANIUM CRYSTAL DETECTOR CRIOlSeveral different types and makes of crystals are used, such as IN60, 1N64 and CK706. These crystals have slightly different characteristics and may not be directly interchange. able. In production, these differences are taken care of by varying the value of R154 which is located in T109. This resistor is cormally 10K. However, to take care of different crystals, this resistor may vary from 5600 ohms to 10 K ohms.

If the crystal is to be replaced, it should be replaced by one of the same make and type. However, if desired, the entire T109 transformer and matching resistor may be installed. In any event, if T109 or CR1Ol is replaced, the over-all re. sponse should be checked.

If a crystal is replaced, care should be taken to get it connected in the proper polarity. Since germanium crystals are marked differently than selenium rectifiers, confusion may result. Selemium rectifiers are marked + and - to show the polarity of the d-c output voltage. Germanium crystals are marked to show the polarity of voltage that must be applied to obtain maximum current flow. The cathode end of a germanium crystal may be coded with green paint or marked -. The anode end may not be coded or may be coded + . In schematic symbols, the anode is shown as an arrow (\downarrow) and the cathode as a flat bar. In TIO9, the anode $(+)$ end is connected to terminal A and the cathode $(-)$ end to terminal D. Care should aleo be taken not to overheat the crystal with the soldering izon as damage to the crystal may reault.

As a protection against damage to the crystal detector, a $220 \mathrm{ohm}, 1 / 2$ watt resistor has been added in series with the screen of 1110 , the 6AG7 video amplifier. Thie resistor is designated as R174 in both 17 and 21 inch receivers and is carried under stock number 503122. It is shown in the latest editions of the receiver Service Data.

TIO4 FREQUENCY CHANGE-In late production receivers, the adjacent channel picture trap in T104 has been tuned to 39.25 mc . rather than 39.75 mc . This resulte in elightly more sound sensitivity when operating the receiver in fringe areas. It also provides slightly higher adjacent channel picture rejection when the fine tuning is adjusted so as to roll the picture carrier up on the slope of the i - f response as is done in receiving weal signals. This change, suggested as a field adjustment, was covered more fully in RPT Tip, Volume II, Iscue 9, doted November 19, 1951.
KRKII OSCILLATOR INJECTION VOLTAGE-If low oacillator injection voltage is encountered in KRK1l r-f unit, it may be necessary to select a 6×8 tube which will give proper injection when the r-f unit is properly aligned. Recent changes in the circuit and parts makes it easier to obtain sulficient injection with average 6X8 tubes. R-F units in which these changes ore made are marked M1. The parts list of the 17 inch recelver Service Data lists parte for early and late production units.
FUSE CHANGE-Early production receivers employed a 0.25 ampere fuse. This was later changed to a 0.20 ampere slow blow type. The latest production receivers have reverted to the regular type 0.25 ampere fuse, stock number 73600. If a fuse requires replacement, it is recommended that the regular type be employed.

LEAD DRESS IN KRKI1-In several early production units, difficulty has beon reported due to the shield of the cable from Tl shorting against C28. When working on one of these units, take care not to disturb the dress of this cable so as to make this short more likely to happen in service. It may also be a worthwhile precaution to wrap the shield of the cable with several turns of tape at the point where it passes C28. In late production units, this lead has been dressed so that a short cannot occur.

VERTICAL SYNC AND HOLD IN $17 T 153$ SERIES-In a few cases it has been found that C172 has changed value with time and temperature requiring resetting the vertical hold control during initial warm-up and causing the control to be operated at the extreme clockwise position. If such a condition is encountered, replace Cl72 with another capacitor which will permit normal operation of the control.

Several cases have been reported from the field that R191 was connected to the cathode side of R266 instead of the junction of R265 and R266. This results in 70 to 80 volts on the cathode pin 6 of V113 instead of the normal 100 volts, causing unstable vertical sync.

KCS68 VERTICAL SYNC INSTABILITY DUE TO REFLEC-TIONS-In some cases, reflections may cause vertical sync to be unstable. The following changes to KCS68 chassis are suggested as a possible cure for this condition at a slight detrement of sync noise immunity on weak signals.

1. Change R185 to $1.0 \mathrm{meg}, \pm 10 \%, 1 / 2$ watt, Stock No. 503510 .
2. Change R186 to $3.9 \mathrm{meg}, \pm 10 \%$, $1 / 2$ watt, Stock No. 503539.
3. Change R189 to $22 \mathrm{~K}, \pm 10 \%, 1 / 2$ watt, Stock No. 503322.
4. Change Cl60 to .056 mid, 400 volts, Stock No. 73791.
5. Add a 100 mml capacitor, Stock No. 39628 from pin 4 of V113 to ground.
The above changes apply only to KCS68 and are not applicable to KCS66 series chassis.

SOCKET CONNECTIONS TO 1B3GT RECTIFIER (KCS66 SERIES) - In some KCS66 series chassis, the 1B3GT socket, terminal 5 has been used as a tie point. It has been found that some brands of tubes have an internal connection in the tube between pins 5 and 7. Such tubes will not operate in KCS66 series chassis which are wired as noted above.
When replacing the 1B3GT tube in the field, the service. man may employ one of the three following method to avoid difficulty.

1. Use a tube which does not employ a connection between pins 5 and 7. RCA tubes do not have this connection.
2. Rewire the 1B3GT tube socket so that terminal 4 is employed as the tie point instead of terminal 5.
3. If the tube has a connection between pins 5 and 7, clip pin 5 off of the tube base.
DEFLECTION TROUBLE SYMPTOMS IN 21-INCH RE. CEIVERS-Fold over or white bar in center of ranter. This trouble may be caused by low screen voltage on the 6CD tube due to R253 or R235 being open.
Low brilliance, change in pix size and linearity, etc. This may be caused by a delective L106.

Poor interlace-To prevent coupling between the vertical and horizontal sweop circuits, thus causing poor interlace, dress the red lead from the yoke socket to the HV transformer under the lance on the side of the high voltage cage. To prevent parasitic oscillations in the horizontal aweop cizcuit Cl85 should be connected from pin 2 of V116 to ground inatead of from the nearby terminal board to ground.

17CP4, 21AP4 AND 17QP4 KINESCOPES-If cartain kine: scope "electron gun" parts become magnetized, "poor focus" may result. To demagnetize these tubes, connect a 630TS seceiver EM focus coil to 110 volts a.c and pass the coil alowly over the kinescope neck, past the "gun" and slowly withdraw.

R-F TUNERS

The attached information lists the differences between the various types of KRK2, KRK5, KRK7 and KRK8 series r-f tuners. This information should be helpful in adapting one type of unit to another in event the correct type is not available.

KRK2 SERIES TUNERS

Recoiver Model	R-F Unit	Dotent Stock No.	Converter Tronalormer Top	Conv. Trang.
Cop.				

NOTE \# l-Converter transformers using 62 mmf . capacitors are aligned on the primary side to 22.8 mcs . and are recognized by a painted dot on top. All others are aligned
to 21.8 mcs.
NOTE \#2-There is no difference between the KRK2 and the KRK2A, except that " $2 A$ " " unit is used in the pro-
jection receivers.
NOTE \#3-Using the 621TS (KRK2) r-f unit in the 630TS or $8 T 530$ without the moditication indicated may result in i-f oscillation. Using the 630TS (KRK2) r-f unit in the 621 TS without moditication indicated may result in insufficient sound.
NOTE \#4-The KRK2 unit can be changed to a KRK2B-1 by changing the detent, tap on converter transformer, and converter shunt capacitor as listed above. All other parta are identical.

KRK5 AND KRK7 SERIES TUNERS

Roceiver Model	${ }_{{ }^{\prime}{ }^{\text {R }} \text { nit }}$	Front Plate	Chan. Sel. Shatt	Actuating Shaft	Shatt Longth
8 8T241	KRKS	73436	73437	73439	Short
8TV321-3	KRES	73436	73437	73439	Short
87270	KRK5A	74166	74168	74167	Long
8TK 320 $8 T R 29$	RRR5A	74166	74168	74167	Long
$\left.\begin{array}{l} \text { 8TR29 } \\ \text { 8TK29 } \end{array}\right\}$	KRKS	73438	73437	73439	Short
97240	KRK5	73436	73437	74439	
9TC240	KRESA	74166	74168	74439	Long
9TC245-47-49	KRES	73438	73437	73439	Short
9 T246	KRK7	74572	74573	$\left\{\begin{array}{l}74574 \\ 74577\end{array}\right.$	-
9 T236	KRK7	74572	74573	$\left\{\begin{array}{l}74574 \\ 74577\end{array}\right.$	-
$\left.\begin{array}{l} 9 T 270 \\ 9 T C 272.5 \end{array}\right\}$	KAK5A	74166	74168	74167	Long
9TW309	KRKS	73436	73437	73439	Short
9TW333	KRIES	73436	73437	73439	Short
9TW390	KRE5A	74168	74168	74167	Long
T100	KRK7	74572	74573	$\{74574$	
T120	KRE5	73438		(74577	-
T121	ERR5	73436	73437	73439 73439	Short
TCl24-5.7	KRE5	73436	73437	73439	Short
TA128	kRES	73436	73437	73439 7349	Short
TA129	KRKS	73436	73437	73439 73439	Short
T164 $\left.{ }_{\text {TC165-6-7.8 }}\right\}$	KRKSB	73436	73437	73439	Short
TA169	KRK5B	73436	73437		
S1000	Krksa	74166	74168	73439 74167	
$6 T 72$	ERESB	73436	73437	73439	Short

NOTE \# l-KRK5 units may be converted to KRK5A by the replacement of the front plate, fine tuning shaft ane channel selector shaft. (Parts No. 73436, 73437 and 73439 are replaced by Parts No. 74166, 74167 and 74168.)
NOTE \# 2-KRK5, KRK5A and KRK5B* units may be con. verted to KRK7 by discarding the following parts: Stock Number

73465
73441
73634
73436
73464
14343
73437
73438
73439
73454
73456
~ 74166
$\because 74167$
~ 74168

Description
Belt, fine tuning
Cam, fine tuning
Nut, speed nut
Front Plate and Bushing
Pulley, fine tuning
Retainer for chan. sel. shaft
Shaft, channel sel.
Shaft, fine tuning
Shaft, actuating
Shield for belt
Spring, belt tension
Front Plate and Bushing
Shaft, actuating
Shaft, channel selector
and replace with the following Parts:
Stock Number

74572	Description
74573	Front Plate and Bushing
74574	Shaft-Channel Selector
74577	Shaft- Fine tuning and
	Spring Cam Assembly

-The KRK5B unit is the same as the KRK5, except the inside front corner of the tuner shield is cut off diagonally.
"These parts used with KRK5A only.

KRK8 SERIES TUNERS

Roceiver Model	$\underset{\text { Unft }}{\text { R-F }}$	Chan. Sel Shaft	Fine Tuning Shafle Cam	Ingulating	Front
2 T 51.60	Eax8		Sharia Cam 75160	Washer	Plato
$2 \mathrm{T81}$	KRKB	75159	75160	73466 (Round)	-
47101	KRKBC	78133	75160	73466 (Round)	
4 T141	KRKBC	76133	7613	73466 (Round)	76754
6T33-54-64. 65-71-74-75-76	KRKBB	75159	76134	73466 (Round)	76754
6T84-86-87	KRKBB	75159	75160	75607 (Hex)	78135
7T103-103B. 104-1048-1118. 112-112B-122. 122B-123-123B 124-125B. 132	ETK8B	75159 75159	75160 75160	76507 (Hex)	76135 76135
77143	KRK8B	75159	75160	75607 (Hex)	
9757.77.79	KTK88	75159	75160	75607 (Hex)	76153 76135
9789 9 9125-126.128	KhK8B	75159	75160	75607 (Hex)	76135
91105-126.128 97147	KRK8B	75159	75160	75807 (Hex)	76135
$16 \mathrm{T152}$	KRKBB	75159	75160	75607 (Hex)	76135
		23159	75160	75607 (Hex)	76135

NOTE \# 1-Any KRK8 series r-f tuner can be changed from a KRK8 to a KRK8B or 8C, or vice-versa, by installing the proper parts as listed above for each unit. All other parts
are identical.

NOTE \#2-Front plate No. 76135 is for the KRK11 tuner, but can be used on the KRK8B tuner.

OSCILLATOR SWITCH WAFERS

Some switches have a wax treated waler. Heat, due to soldering operations, melts the wax and loosens the switch terminal on which the inductances are mounted. Operation ing ewith causes variations in inductance during switch. ing operations. Tuning will vary, depending on the direction of approach of the channel selector switch. This is the result of compression and expansion of the coils mounted on the loose switch contacts. Therefore, when repairing r-f units, take care not to overheat the oscillator switch wafer. If the wafer is thus damaged, replacement of the wafer is the most prac-

R-F UNIT OSCILLATOR TRACKING

The frequercy of the r-f unit oscillator is a function of the circuit inductance and capacity, and since the steps of inductance are fairly well fixed on Channels 7 to 12 , inclusive, the only sizeable vaiiables that are available are (l) the capacity and (2) Channel 13 inductance.

Figure 3-Simplified Schematic of R-F Oscillator.
On KRK2, "C" consists of stray capacity, fine tuning capacity anc (in some units only a "gimmic", a piece of insulated wire about $1 / 4$ inch long) between the plate pins on the tube socket.

On KRK5, KRK7 and new KRK8, " C " is composed of stray capacity and a real adjustable capacitor.

On KRK2, "C" becomes less with a counter-clockwise rotation of the fine tuning control.

On KRK5, KRK7 and KRK8, a clockwise rotation of the fine tuning control gives less capacity.

To properly track an r-f unit oscillator on the high channels, the following process may prove helpful:

1. Make sure that the adjustment screws for Channels 7 to 12 , inclusive, are spaced about $1 / 32$ of an inch ($11 / 2$ turns from full in position) away from the rivets holding the inductance strap.
2. Tune for correct Channel 13 oscillator frequency by using the readily available adjustments for the purpose (a capacity trimmer on the KRK8 and an inductance slug on the KRK5.)
3. Without moving the fine tuning control, turn the detent to Channel 7 position and note the oscillator frequency.
4. If the noted frequency is higher than it should be, the Channel 13 capacity should be increased and the Channel 13 inductance should be decreased. Go back to Channel 13 and make the necessary changes to give both the correct frrquency and an approzimation of tracking correction. See Chart below.
5. If, on the other hand, the Channel 7 oncillator frequency is lower than it should be, the Channel 13 capacity should be decreased and the inductance increased. See Chart below.

KRK2

To Increase Channel 13 Capacity	To Decrease Channel 13 Capa
1. Pick oecillator tube to give lower frequescy.	1. Pick oucillatos tube to give higher frequency.
2. Add a "gimmic" botwear oscillator tube socket plate pine or move the exieting "gimmic clomer. (Use a production eample for refereace-some units already have a "gimmic".)	2. Move "gimmic" away from plate pine.
3. Chect crome foed copacitore for correctnens of value.	3. Check crose foed copacitors lor value.
To Increase Channel 13 Inductance	To Dec
The Channel 13 aluge are bram and normally ineortod through the coil. If the alug screws otick out about $\%$ of an inch, they are in their minimum inductance position and any luning. aither in or out, gives a change toward the maximum inductonce position.	
1. Move Chomed 13 alug in if the stud protruden $3 / 1$ of an inch, or leas. Move out il they protrude more than $\%$ of an inch.	1. Move Chanmel 13 alug out if the stud protrudes $1 /$ of an inch, or lese. Move in if they protrude more than \% of an inch.

KRK5 AND KRK7

To Increase Channel 13 Inductance To Decrease Channel 13 Inductance
1. Screw brase slug out of L1 and L2.
Thene slugs are avallable from the bottom of the r-i unit chassis and are normally cemented lightly.

KRK8
To Increase Channal 13 Inductance To Decrease Channel 13 Inductance

1. Screw brass slug out of coil. 1. Screw braem alug into coll.

This slug is available from front of unit only.
On the KRK5, KRK7 and KRK8, the Channel 13 capacity adjustment is fairly obvious. Screwing the stud out gives less capacity; in, gives more capacity.
After the proper adjustments have been made to give oscillator tracking within 1.0 mc . or so from 13 to 7 , each channel can be individually aligned by using the available screw trimmers.
For field use in areas having two or more high channel stations, a wlightly different approach may be taken:

1. If the highest high channel is aligned with the tine tuning contered and the lowest high channel calls for a clockwise rotation of the fine tuning control, Step 4 applies for KRK2 and Step 5 for all other units.
2. If the highest high channel is aligned with the fine tuning centered and the lowest high channel calls for a counterclockwise rotation of the fine tuning, Step 5 applies for KRK2 and Step 4 for other units.
Step 4 means an increase of Channel 13 capacity and a decrease of inductance.
Step 5 means a decrease of Channel 13 capacity and an increase of inductance.

USE OF WR39A \& WR39B TELEVISION CALIBRATORS

In some instances it may be difficult to hear the heterodyne beat between the variable oscillator and the crystal standard in subject instruments, particularly at the high frequencies.

If the audio system of the receiver under test is in good condition, it is suggested that an audio lead can be run from the head phone jack of the calibrator to the "high" side of the volume control of the television receiver, thus utilizing the additional audio amplification available in the television chassis.

CORRECTING PIX I-F RESPONSE OF RECEIVERS USING KRK5, KRK7 or KRK8 R-F UNITS

Curve "A" below illustrates a normal pix i-f response. Curves " B " and " C " below, illustrate results that are obtained in some cases due to abnormal conditions in the i-f syatem.
"Correcting" Curve "B", by using the adjusting slugs. usually results in placing the pix carrier minus .75 mc . point at the top of the curve which, again, is not the proper alignment. "Correcting" Curve "C",", usually results in very much reduced gain and an excessivé amount of adjacent channel response.
To correct Curve " B " with the minimum amount of bad effects, the turns of the second pix I-F trap (T-102) should be moved away from the primary of the same transformer. Moving the whole trap coil about two or three nicks up the coil form is usually sufficient.

To correct Curve " C ", the following must be checked:

1. Make sure that the cathode sound trap is not shorting.
2. Check the sound I-F alignment.
3. Check sweep and scope response by removing "blanking"" on the sweep and checking for response overlap. (A defective scope cable or input can cause overshoot on this side of the response curve.)
4. If none of the above results in a satisfactory curve, then the sound take-off trap coil (T-103) should be moved up and away from T-103 primary. One notch on the coil form is usually sufficient.

Figure 4-Overall Response Curves

TELEVISION RECEIVER MODELS AND CHASSIS

Receiver Models	Tolovision Chassis	Radio Chassis	Record Changer	Kine-	$\begin{aligned} & \mathrm{R} \cdot \mathrm{~F} \\ & \text { Tuner } \end{aligned}$	Speaker Size	Tolevision Power Supply	$\begin{array}{\|c\|} \hline \text { Audio } \\ \text { Amplitier } \end{array}$
TT5 (PRE WAR) TRK5 (PRE WAR)	$\begin{aligned} & \mathrm{KC} .3 \text { or KC.3B } \dagger \\ & \mathrm{KC}-3 \mathrm{~A} \text { or } \mathrm{KC}-3 \mathrm{C} \dagger \\ & \hline \end{aligned}$	RC429 \& RS89A		$\begin{aligned} & \hline \text { 5BP4 } \\ & \text { 5BP4 } \end{aligned}$	5 channels 5 channels	None $12^{\prime \prime} \mathrm{EM}$		
TRK9 (PRE WAR) TRK90 (PRE WAR) TRK12 (PRE WAR) TRK120 (PRE WAR) 621 TS	$\begin{array}{\|l\|} \hline \text { KC. } 4 \mathrm{~A} \text { or } \mathrm{KC}-4 \mathrm{C} ~ \end{array} \mathrm{t}$			$\begin{aligned} & \hline \text { 9AP4 } \\ & \text { 9AP4 } \\ & 12 A P 4 \\ & 12 A P 4 \\ & \hline \end{aligned}$	5 channel 5 channele 5 channele 5 channele	$\begin{aligned} & 12^{\prime \prime} \mathrm{EM} \\ & 12^{\prime \prime} \mathrm{EM} \end{aligned}$	$\begin{aligned} & \mathrm{KK} .7 \mathrm{~A} \text { or } \mathrm{KK} .7 \mathrm{E} \dagger \\ & \mathrm{KK} .7 \mathrm{H} \\ & \mathrm{KK} .2 \text { or } \mathrm{KK} .7 \mathrm{D} \dagger \\ & \mathrm{KK} .7 \mathrm{~F} \text { or } \mathrm{KK} .7 \mathrm{~J} \dagger \end{aligned}$	
621 TS	KCS21			7DP4	KRK2	$4^{\prime \prime} \times 6^{\prime \prime}$ EM		
630TS	$\begin{aligned} & \text { KCS20A or } \\ & \text { KCS2OC-2 } \end{aligned}$			10BP4	KRK2	$5^{\prime \prime}$ EM		
630TCS	$\begin{aligned} & \text { KCS20B or } \\ & \text { KCS20D. } 2 \dagger \end{aligned}$			10BP4	KRK2	12" EM		
641 TV	$\begin{aligned} & \text { KCS25A.1 or } \\ & \text { KCS25C. } 2 \dagger \end{aligned}$	RK117A	$\begin{aligned} & 960001 \\ & \text { (78 RPM) } \end{aligned}$	10BP4	KRK2	12" EM		RS123A
648PTK	$\begin{aligned} & \text { KCS24.1* } \\ & \text { KRS20.1** } \\ & \text { KRK1.1**** } \end{aligned}$	RK121A		5TP4	KRK2A	$12^{\prime \prime}$ EM	KRS21	RS123A
648PV	$\begin{aligned} & \text { KCS24A.1* } \\ & \text { KRS20-1** } \\ & \text { KRK1A }^{* * * *} \end{aligned}$	RK121A	$\begin{aligned} & \text { RP176 } \\ & \text { (78 RPM) } \end{aligned}$	5TP4	KRK2A	12' EM	KRS21A-1	RS123B
221TS	$\begin{aligned} & \text { KCS26-1 or } \\ & \text { KCS26-2 } \end{aligned}$			10BP4	KRK2B-1	$4^{\prime \prime} \times 6^{\prime \prime} \mathrm{EM}$		
721TCS	$\begin{aligned} & \text { KCS26A.1 or } \\ & \text { KCS26A-2 } \dagger \end{aligned}$			10BP4	KRK2B-1	12" EM		
$\begin{aligned} & \text { 730TV1 } \\ & \text { 730TV } \end{aligned}$	$\begin{array}{\|l} \mathrm{KCS27} 2 \mathrm{l} \text { or } \\ \mathrm{KCS} 27-2 \dagger \\ \hline \end{array}$	$\begin{aligned} & \text { RC610A } \\ & \text { RC610B } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RP177 } \\ & \text { RP177 } \end{aligned}$	$\begin{aligned} & 10 \mathrm{BP} 4 \\ & 1 \mathrm{BPP} 4 \end{aligned}$	$\begin{aligned} & \text { KRK2B-1 } \\ & \text { KRK2B-1 } \end{aligned}$	$\begin{aligned} & 12 \text { " } \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \end{aligned}$		
741PCS	$\begin{array}{\|l\|l\|} \text { KCS24B-1* } \\ \text { KRS20A.-1** } \\ \text { KRK1A-1**** } \end{array}$			5TP4	KRK2A	12" EM	KRS21A-1	RS123C
8PCS41	$\begin{aligned} & \text { KCS24B-1* } \\ & \text { KRS20A.1** } \\ & \text { KRK1A.1*** } \end{aligned}$			5TP4	KRK2A	$12^{\prime \prime} \mathrm{EM}$	KRS21A-1	RS123C
8PCS41B	$\begin{aligned} & \text { KCS24C-1** } \\ & \text { KRS20BB1** } \\ & \text { KRK4*** } \end{aligned}$			5TP4	KRK2A	$12^{\prime \prime} \mathrm{EM}$	KRS21A-1	RS123C
8PCS41C	$\begin{aligned} & \text { KCS24C-1* } \\ & \text { KRS20A.1** } \\ & \text { KRK1A-1*** } \end{aligned}$			5TP4	KRK2A	$12^{\prime \prime} \mathrm{EM}$	KRS21A-1	RS123C
8TS30	$\begin{aligned} & \mathrm{KCS} 20 \mathrm{~J}-1 \text { or } \\ & \mathrm{KCS} 20 \mathrm{~K} \cdot 2 \dagger \end{aligned}$			10BP4	KRK2	$5^{\prime \prime} \times 7^{\prime \prime}$ PM		
8TV41	$\begin{aligned} & \text { KCS25D.1 or } \\ & \text { KCS25E. } 2 \dagger \end{aligned}$	RK117A	$\begin{array}{\|l\|l\|} \hline \text { RP177A } \\ \text { (78 RPM) } \\ \hline \end{array}$	10BP4	KRK2	$12^{\prime \prime} \mathrm{EM}$		RS123A
8T241, 8T243, 8T244	KCS28			10BP4	KRK5	5"x ${ }^{\prime \prime}$ PM		
$\begin{aligned} & 8 \mathrm{~T} 270 \\ & 8 \mathrm{TC} 270,8 \mathrm{TC} 271 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{KCS29} \\ & \mathrm{KCS} 29 \mathrm{~A} \end{aligned}$			$\begin{aligned} & 16 \mathrm{AP} 4 \\ & 16 \mathrm{AP} 4 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { KRK5A } \\ \text { KRK5SA } \end{array}$	$\begin{array}{\|l\|} \hline 8^{\prime \prime} \mathrm{PM} \\ 8^{\prime \prime} \end{array}$		
$\begin{aligned} & \hline \text { 8TR29 } \\ & \text { 8TK29 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { KCS32 or 32B } \\ & \text { KCS32A or 32C } \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { RK135 or } 135 A \\ \text { RK135 or 135A } \end{array}$		$\begin{aligned} & \text { 10BP4 } \\ & \text { 10BP4 } \end{aligned}$	$\begin{aligned} & \mathrm{KRK} 5 \\ & \text { KRKS } \end{aligned}$	$\begin{aligned} & 5^{\prime \prime} x 7^{\prime \prime} \text { PM } \\ & 12^{\prime \prime} \text { PM } \end{aligned}$		
8TK320	KCS33A-1	RK135A-1		16AP4	KRK5A	$12^{\prime \prime}$ PM		
$\begin{aligned} & \hline \text { 8TV321 } \\ & \text { 8TV323 } \end{aligned}$	$\begin{array}{\|l} \hline \text { KCS30-1 } \\ \text { KCS30-1 } \end{array}$	$\begin{array}{\|l\|} \hline \text { RC616C or } K \\ \text { RC616B or } J \\ \hline \end{array}$	$\begin{aligned} & \text { RP178 } \\ & \text { RP178 } \end{aligned}$	$\begin{aligned} & 10 \mathrm{BP} 4 \\ & 10 \mathrm{BP} 4 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \text { KRK5 } \\ \text { KRK5 } \end{array}$	$\begin{aligned} & 12^{\prime \prime} \text { PM } \\ & 12^{\prime \prime} \text { PM } \end{aligned}$		
9PC41(a) 9PC41(b), 9PC41(c)	KCS24C-1** KRS20B.1** KRK4*** KCS24D** KRS20B.1** KRK4****			$\begin{aligned} & 5 \mathrm{TP} 4 \\ & 5 \mathrm{TP4} \end{aligned}$	KRK2A KRK2A	$12^{\prime \prime}$ EM $12^{\prime \prime} \mathrm{EM}$	KRS21A. 1 KRS21A. 1	RS123A RS123A
$\begin{aligned} & \text { 9T240 } \\ & \text { 9T240K } \\ & \text { 9TC240 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { KCS28 } \\ \text { KCS28A } \\ \text { KCS28B } \end{array}$			$\begin{aligned} & \text { 10BP4 } \\ & \text { 10BP4 } \\ & \text { 10BP4 } \end{aligned}$	KRK5 KRK5 KRK5A	$\begin{aligned} & 5^{\prime \prime} \times 7^{\prime \prime} \mathrm{PM} \\ & 5^{\prime \prime} \times 7^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \end{aligned}$		
9TC245, 9TC247, 9TC249	KCS34B or KCS34 in some 247 \& 249			12LP4	KRK5	$12^{\prime \prime}$ PM		
9 T 246	$\begin{aligned} & \mathrm{KCS28C} \text { or } \\ & \mathrm{KCS38} \end{aligned}$			$\begin{aligned} & \text { 10BP4 } \\ & \text { 10BP4 } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { KRK7 } \\ \text { KRK } \end{array}$	$\begin{aligned} & 5^{\prime \prime \prime} \times 7^{\prime \prime} \mathrm{PM} \\ & 5^{\prime \prime} \times 7^{\prime \prime} \mathrm{EM} \end{aligned}$		
9 T 256	KCS38C			10BP4	KRK7	5"x7" EM		
$\begin{aligned} & \text { 9T270 } \\ & \text { 9TC272, } 9 \mathrm{TC} 275 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{KCS29} \\ \mathrm{KCS} 29 \mathrm{C} \\ \hline \end{array}$			$\begin{aligned} & 16 \mathrm{AP4} \\ & 16 \mathrm{AP4} 4 \end{aligned}$	KRK5A	$\begin{aligned} & 8^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \end{aligned}$		
9TW309	KCS41-1	RK135C	$\begin{aligned} & \text { RP178 (78 RPM) } \\ & \text { RP168A-1(45RPM) } \end{aligned}$	12LP4	KRK5	$12^{\prime \prime}$ PM		

TELEVISION RECEIVER MODELS AND CHASSIS

Receiver Models	Television Chassis	Radio Chassis	Record Changer	Kinescope	$\begin{gathered} \text { R-F } \\ \text { Tuner } \end{gathered}$	Speaker Size	Television Power Supply	Audio Amplifier
9TW333	KCS30-1	RC616N	RP178 (78 RPM) RP168A.-1(45RPM)	10BP4	KRK5	$12^{\prime \prime}$ PM		
9TW390	KCS31-1	RC617A	$\begin{aligned} & \text { RP177B (78 RPM) } \\ & \text { RP168A-1(45RPM) } \end{aligned}$	16AP4	KRK5A	$12^{\prime \prime}$ PM		
T100	KCS38			10BP4	KRK7	5'x $7^{\prime \prime}$ EM		
T120, T121	KCS34C			12LP4	KRK5	$5^{\prime \prime} \times 7^{\prime \prime} \mathrm{PM}$		
TC124, TCl25, TCl27	KCS34B			12LP4	KRK5	$12^{\prime \prime}$ PM		
TA128	KCS42A	RK135D	$\begin{aligned} & 960282 \text { (33 78) } \\ & \text { RP168 (45 RPM) } \end{aligned}$	12LP4	KRK5	$12^{\prime \prime}$ PM		
TA129	KCS41A.1	RK135D	$\begin{aligned} & 960282(33,78) \\ & \text { RP168C (} 45 \text { RPM) } \end{aligned}$	12LP4	KRK5	$12^{\prime \prime}$ PM		
$\begin{aligned} & \hline \text { T164 } \\ & \text { TC165, 166, 167, } 168 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { KCS4O } \\ & \text { KCS40A } \end{aligned}$			$\begin{aligned} & \text { 16GP4 } \\ & 16 \mathrm{GP} 4 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { KRK5B } \\ \text { KRKSB } \end{array}$	$\begin{aligned} & 8^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \end{aligned}$		
TA169	KCS43	RK135D	$\begin{aligned} & 960285(33.78) \\ & \text { RPl68C }(45 \mathrm{RPM}) \end{aligned}$	16GP4	KRK5B	$12^{\prime \prime}$ PM		
S1000	KCS31-1	RC617B	$\begin{aligned} & 960285(33 / 78) \\ & \text { RP168C (} 45 \mathrm{RPM} \text {) } \end{aligned}$	16AP4	KRK5A	$12^{\prime \prime}$ PM		
$\begin{aligned} & \hline 2 \mathrm{~T} 51 \\ & 2 \mathrm{~T} 60 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { KCS45 } \\ & \text { KCS45A } \\ & \hline \end{aligned}$			$\begin{aligned} & \hline \text { 12LP4 } \\ & \text { 12LP4 } \end{aligned}$	$\begin{aligned} & \text { KRK8 } \\ & \text { KRK } \end{aligned}$	$\begin{aligned} & 5^{\prime \prime} \times 7^{\prime \prime} \text { EM } \\ & 12^{\prime \prime} \mathrm{PM} \end{aligned}$		
2 T 81	KCS46	RCl090	$\begin{aligned} & 960282(33 / 78) \\ & \text { RP168 (45 RPM) } \end{aligned}$	12LP4	KRK8	$12^{\prime \prime}$ PM		
$4 \mathrm{TlO1}$	KCS61			14EP4	KRK8C	5'x7' PM		
4T141	KCS62	RC1090	$\begin{aligned} & 960282(33 / 78) \\ & \text { RP190-2 (} 45 \mathrm{RPM} \text {) } \end{aligned}$	14EP4	KRK8C	$12^{\prime \prime}$ PM		
6 T72	KCS40B			16GP4	KRK5B	$12^{\prime \prime}$ PM		
$\begin{aligned} & \hline \text { 6T53, 6T54 } \\ & \text { 6T64,65,71, 74, 75, } 76 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { KCS47 or } 47 \mathrm{~T} \\ & \text { KCS47A or } 47 A T \end{aligned}$			$\begin{aligned} & \text { 16GP4 } \\ & \text { 16GP4 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { KRK8B } \\ \text { KRK8B } \end{array}$	$\begin{aligned} & 8^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \end{aligned}$		
$\begin{aligned} & 6 \mathrm{~T} 84 \\ & 6 \mathrm{~T} 86,6 \mathrm{~T} 87 \end{aligned}$	$\begin{aligned} & \text { KCS48 or } 48 \mathrm{~T} \\ & \mathrm{KCS} 48 \text { or } 48 \mathrm{~T} \end{aligned}$	$\begin{aligned} & \mathrm{RClO90} \\ & \mathrm{RCl} 1092 \end{aligned}$	$\begin{aligned} & 960282 \text { or } 284 \\ & \text { RP168 or } 190 \\ & 960282 \text { or } 284 \\ & \text { RP168 or } 190 \end{aligned}$	$\begin{aligned} & \text { 16GP4 } \\ & \text { 16GP4 } \end{aligned}$	$\begin{aligned} & \text { KRK8B } \\ & \text { KRK8B } \end{aligned}$	$\begin{aligned} & 12^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \end{aligned}$		
7T103, 7T104 7T103B, 7T104B 7T12,12,123, 124 7T112B, 122B, 123B, 125B 7T12B, 122B, 123B 7T111B 7T132	$\begin{aligned} & \text { KCS47B } \\ & \text { KCS47F } \\ & \text { KCS47C } \\ & \text { KCS47G or GF } \\ & \text { KCS47GF-. } \\ & \text { KCS47GGF-2 } \\ & \text { KCS47D } \end{aligned}$		RP190	$\begin{aligned} & \text { 17CP4 } \\ & 17 \mathrm{GP4} \\ & 17 \mathrm{GP} 4 \\ & 17 \mathrm{GP} \\ & 17 \mathrm{GP} 4 \\ & 17 \mathrm{GP} 4 \\ & 17 \mathrm{CP} 4 \end{aligned}$	KRK8B KRK8B KRK8B KRK8B KRK8B KRK8B KRK8B	$8^{\prime \prime}$ PM $8^{\prime \prime}$ PM $12, ~ P M$ $12^{\prime \prime}$ PM $12^{\prime \prime} \mathrm{PM}$ $8^{\prime \prime} \mathrm{PM}$ $12^{\prime \prime} \mathrm{PM}$		
7T143	KCS48A	RCl092	$\begin{aligned} & 960284 \text { (33 78) } \\ & \text { RP190 (45 RPM) } \end{aligned}$	17CP4	KRK8B	$12^{\prime \prime}$ PM		
$\begin{aligned} & \hline \text { 9T57, } \\ & \text { 9T77, } 9 \mathrm{~T} 79 \end{aligned}$	$\begin{aligned} & \text { KCS49 or } 49 \mathrm{~T} \\ & \text { KCS49A or } 49 A T \\ & \hline \end{aligned}$			$\begin{array}{\|l\|} \hline 19 A P 4 A \\ \text { 19AP4A } \end{array}$	$\begin{aligned} & \text { KRK8B } \\ & \text { KRK8B } \end{aligned}$	$\begin{aligned} & 8^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \end{aligned}$		
9 T 89	KCS60 or 60T	RCl092	$\begin{aligned} & 960284(3378) \\ & \text { RP168 or } 190 \end{aligned}$	19AP4A	XRK8B	$12^{\prime \prime} \mathrm{PM}$		
$\begin{aligned} & 9 \mathrm{~T} 105 \\ & 9 \mathrm{~T} 126,9 \mathrm{~T} 128 \end{aligned}$	$\begin{aligned} & \text { KCS49B, 49BF } \\ & \text { or } 49 \mathrm{BF} .2 \\ & \text { KCS49C, } 49 \mathrm{CF} \\ & \text { or } 49 \mathrm{CF}-2 \end{aligned}$			$\begin{aligned} & 19 \AA P 4 A \\ & 19 A P 4 A \end{aligned}$	$\begin{array}{\|l\|} \text { KRK8B } \\ \text { KRK8B } \end{array}$	$\begin{aligned} & 8^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \end{aligned}$		
9 T 147	KCS60A	RC1092	$\begin{aligned} & 960284 \text { (33 78) } \\ & \text { RP190 (45 RPM) } \end{aligned}$	19AP4A	KRK8B	12 PM		
16 T 152	KCS47E			16GP4	KRK8B	$8^{\prime \prime}$ PM		
$\begin{aligned} & 17 \mathrm{~T} 153,154,155,160 \\ & 17 \mathrm{~T} 162,17 \mathrm{~T} 174 \\ & 17 \mathrm{~T} 172,17 \mathrm{~T} 173 \\ & 17 \mathrm{~T} 172 \mathrm{~K}, 17 \mathrm{~T} 173 \mathrm{~K} \\ & 17 \mathrm{~T} 174 \mathrm{~K} \end{aligned}$	$\begin{aligned} & \text { KCS66 } \\ & \text { KCS66A } \\ & \text { KCS66A } \\ & \text { KCS66D } \\ & \text { KCS66D } \end{aligned}$			$\begin{aligned} & \text { 17GP4 } \\ & 17 \mathrm{GP} \\ & 17 \mathrm{GP} \\ & 17 \mathrm{CP} 4 \\ & 17 \mathrm{CP} 4 \end{aligned}$	$\begin{aligned} & \text { KRK11 } \\ & \text { KRK11 } \end{aligned}$	$8^{\prime \prime}$ PM $8^{\prime \prime} \mathrm{PM}$ $12^{\prime \prime} \mathrm{PM}$ $12^{\prime \prime} \mathrm{PM}$ $8^{\prime \prime}$ PM		
21T159 21 1T165 21 T176, 177, 178, 179	KCS68E KCS68E KCS68C			$\begin{aligned} & \text { 21AP4 } \\ & \text { 21AP4 } \\ & \text { 21AP4 } \end{aligned}$	$\begin{aligned} & \text { KRK11 } \\ & \text { KRK11 } \\ & \text { KRK11 } \end{aligned}$	$\begin{aligned} & 8^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \end{aligned}$		

RCA CRYSTAL PICKUP DATA

CRYSTAL CARTRIDGE DRAWING CODE

"A". Top Netdle Hole
-B" Viscoloid Damper "C' Thick ($5 / 16 \cdot i n$.) Mig. Hole
 'E", (irounded Lur
 "L"" $13 / 16-\mathrm{in}$. Needle Screw "M" $15 / 16 \cdot \mathrm{in}$. Needle Screw

MS 1151 I

us 1131 I

ms 1151 G

MS HS1 к

FIG. 14

FIG. 15

FIG. 17 comace,

FIG. 18 compacr)

FIG. 19

FIG. 20

FIG. 22

FIG. 25

FIG. 26

FIG. 27

MODEL vs. PICKUP CARTRIDGE

Model	Record Co Changer	Cartridge Stock No.
A. 55	RP. 168	74625
	960282-1	+ 75044
A. 78	RP-168 $960282-1$	$\begin{array}{r} 74625 \\ +\quad 75044 \end{array}$
A-82	RP-168 .	- 74625
	RP-190-2	75575
	960282-4	
	or $\cdot 5$	75475
A. 91	RP-168	- 74625
	RP-190-2	- 75575
	960284-1	
	or -2	75475
A. 101	RP.190-2	- 75575
	$\begin{aligned} & 960282-4 \\ & \text { or }-5 \text { or } \end{aligned}$	† 75475
	$960284-1$	
A-106	RP-168	74625
	960285-1 \dagger	75044
A-108	RP-168 *	- 74625
	RP-190-2 *	- 75575
	960284-1	
	or-2 \dagger	+ 75475
$\mathrm{O}-50$ OEY	RP. 168	33217 74984
QEY-4	RP-190-5	76297
OEY-S OJY OJY-2 OU-2C OU.3C	RP-190-5	76297
	RP-168	74984
	RP-190-5	76297
		33905
		33905
OU-SC OU.51C OU-52C OU-56C OU-61	RP-145E	33905
	RP-145E	35171
	RP-152S	35171
		33122
	960001.4	39851
OU-62	960001-4	39851
OU-68	960001-4	39851
OU-72		39851
		39851
R-56		39686
R-60		33122
R-89		31050
		31050
		31050
R-93C		31050
R-93F		33122
R-94B		31050
R-98		31156
R-100		33122
R-103S		33122
R-560P		33122
R-566PS-1000	RP-162	38610
	RP-168 *	- 74625
TA. 128	960285-1 +	+ 75044
	RP-168	- 74625
	960282-1 +	+ 75044
TA-129	RP-168	- 74625
	960282-1	75044
TA-169	RP-168	- 74625
	960285-1 \dagger	+ 75044
U. 8		33122
U. 9		33122
U-10		33122
U-12		33905
U-20		33905
U-25 RP-132M		31156
U. 26 RP.132M		31156
U. 30 RP.132M		31156
U-40 RP-139A 35171		
U-42	RP. 145	35171
U-43	RP-145	35171
	RP-145	35171
U-45	RP-139A	35171
U-46	RP-140	33905
U-50		33217
U-104		31050
U-106	RP.129B	
	(9820)	14820
U-107	RP-129A	
U-108	(9820) RP-129 (9820)	20) $\begin{array}{r}14820 \\ 14820\end{array}$
U-109	RP-129 (9820)	20) 14820
U-111		31050
U-112		31050
U-115		31050
U.119		31156
U. 121		
U-12\%E		31156
UY-122E		31156
U-123	RP-139B	31156 31156

Model	Record Changer	Cartridge Stock No.
UY-124		31156
U-123	RP-132C	31156
U-126		31156
U-127E		31050
U-128	RP. 132	31156
U-129	RP-132F	31156
U-130	RP-132C	31156
U-132	RP-132B	32632
U-134	RP-132B	32632
V-100		33122
V. 101		33122
V. 102		33905
V. 105		33122
V-135	RP. 162	38610
V-140	RP. 162	38610
V-170	RP. 152	35171
V-175	RP-158	38610
V-200	RP-152A	35171
V-201	RP-152A	35171
V-205	RP-152B	37158
V-209	RP-158	38610
V-210	RP-158	38610
V-215	RP. 160	38453 39550
V-219	RP. 160	38453
		39550
V-221	RP-160	$\begin{aligned} & 38453 \\ & 39550 \end{aligned}$
V-225	RP-151 Top	p 38453
	RP-151 Bott	tt. 38598
V-300	RP-152J	37158
V.301	RP. 153	33905
V-302	RP-153	33905
V-405	RP-152J	37158
VA-15	RP-152	35171
VA-20		31050
VA-21		33122
VA-22	RP-139D	31156
VA-22A	RP-145C	33905
VA-24	RP-145C	33905
VHR-202	RP-155	37158
VHR-207	RP. 155	37158
VHR-212	RP-161	38610
VHR-307	RP. 155	37158
VHR-407	RP-155	37158
2-S7-ED		73839
2-T-81	RP-168	74625
	RP-190-2	75575
	960282.4	
		† 75475
4-OV-8C	$\begin{aligned} & \text { RP-168 } \\ & 960282-2 \end{aligned}$	$\begin{aligned} & \text { " S-5578 } \\ & \text { † S-5652 } \end{aligned}$
4-T-141	RP-190-2	- 75575
	960282-4	
	or-5	75475
6-J		70338
6-JM		70338
6.OU		33122
6-OU-3	RP-178-3	72551
6-OU-3Y	RP-168	74984
6-OV-3	RP-178-3	72551
6-T-84	RP-168	- 74625
	RP-190-2	- 75575
	960282 -4	
	or-5	+ 75475
6-T-86	RP-168	- 74625
	RP.190-2	- 75575
	960284-1	
	$\stackrel{\text { or-2 }}{ }$	+ 75475
6-T-87	RP-168	- 74625
	RP-190-2	- 75575
	$\begin{aligned} & 960284-1 \\ & o r-2 \end{aligned}$	+ 75475
$7-\mathrm{OV}-5$	960001 -4	39851
7.T-132	RP-190-2	75575
7.T. 143	RP-190-2	- 75575
	960284-1	
$\begin{aligned} & 8-\mathrm{QU}-5 \mathrm{C} \\ & 8-\mathrm{TV}-41 \end{aligned}$	or-2	75475
		34307
	RP-177A	72551
8-TV-321	RP. 178	72551
8-TV-323	RP. 178	72551
8-V-7	RP-178	72551
8-V-90	RP-178	72551
8-V-91	RP-178	72551
8-V.112	RP-178	72551
8-V-151	RP-177B	70339
9-EY-3	RP-168	74067
9-EYM-3	RP-168	74067
9-EY-31	RP-168 RP-168	74665 74625

Model	Record Ca Changer Sto	Cartridge Stock No.
9-EY-35	RP-168	74067
9-EY-36	RP-168	14067
9-JY	RP-168	74067
9-JYM	RP-168	74067
9-OV-5	RP-168	- S-5578
	960282-2	+ S-5652
9-T-89	RP-168	74625
	RP-190-2 *	- 75575
	960284-1	75475
9-T-147	RP-190-2 *	75575
	960284-1	
	or-2	† 75475
9.TW-309	RP-168	- 74625
	RP-178	+ 72551
9-TW-333	RP-168 :	- 74067
	RP-177	+ 72551
9.TW-390	RP-168 •	74067
	RP-177 \ddagger	+72551
9-W-51	RP-168	74625
9-W-78	RP-168 *	- 74625
	RP-178 \ddagger	± 72551
9. W-101	RP. 168	74067
9-W-102	RP-168	74067
9.W-103	RP. 168	74067
9.W-105	RP-168 *	74067
	RP-178	+ 72551
9.W-106	RP. 168	74625
	RP-178 \$	+ 72551
9-Y-7	RP-168	74067
9. Y-51	RP. 168	74625
9-Y -510	RP-190-1	75476
	or: 4	76318
9-Y-511	RP-168	74625
11.0 U	RP-132A	31156
12 -OU	RP-132A	31156
45-EY	RP-168	$\begin{aligned} & 74067 \\ & 74625 \end{aligned}$
45-EY-1	RP-168	74067
45-EY-2	RP-190-1	/75476
	or. 4	76318
45-EY-3	RP-190.1	75476
45-EY-15	cr-168	76318
45-J	RP-168	74067
45-J.2	RP-190-1	75476
	or. 4	76318
45-J.2	RP-190-6	74067
45-J-3	RP. 193	76257
45-W-9	RP-190-2	75575
45-W-10	RP-190-2	75575
55-U, 55-AU	960015	[71173
		70338
58-V, 58-AV	960001-1	39851
59.V.1	960001-2	70332
S9-AV-1	960001.2	70332
62-1	960260-2	70338
63-E		70338
63-EM		70338
65-U	960260-2	70338
65.AU	960260-2	70338
65-AU-1	960260-2	20338
66-E		20332
66-ED		70332
66-E-1		70332
67-V.1	960260-1	10338
67-AV-1	960260-1	70338
75-ZU	$\begin{aligned} & \text { RP- } 178 \text { or } \\ & 960276 \end{aligned}$	72551 70338
77.V	RP-178	72551
77-V-1	960260-1	70338
77-V-2	960260-1	70338
610-V.1	960001 -5or-6	-6 39851
610.V-2	$960001-5$ or-6	$\begin{array}{ll}77 & 72551 \\ \text {-6 } & 39851\end{array}$
	or RP. 177	7772551
612-V.1	$\begin{aligned} & \text { RP-176A or } \\ & \text { RP-176B } \end{aligned}$	- 70339
612-V-3	RP-176 or	
	RP.176B	B 70339
612-V-4	$\begin{aligned} & R P-176 \text { or } \\ & R P-176 B \end{aligned}$	- 70339
641-TV	960001-1	
	or-6	39851
648-PV	RP-176	70339
710-V-2	RP-177 or	
711.V-1	RP-171A $960001-5$	- 72551
711-V-2	960001 -5	39851

Model
711.V. Changer Stock No.
$\begin{array}{lll}711-V-3 & 960001.5 & 39851 \\ 730-T V-1\end{array}$ $\begin{array}{ccc} & \text { RP-177A } \\ 730-T V-2551 \\ \text { RP-177 or }\end{array}$

- $=45 \mathrm{r} . \mathrm{p} . \mathrm{m}$.
$t=78 / 33$ r.p.m.
PICKUP CARTRIDGES WITH NEEDLE SCREW

	$\begin{gathered} \text { Stock No. } \\ 14820 \\ 30708^{4} \\ 31050 \\ 31156 \\ 32632^{4} \end{gathered}$		
	$\begin{aligned} & 33122^{\star} \\ & 33217^{\star} \\ & 33905^{\star} \\ & 34225 \\ & 34307 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	
	$\begin{aligned} & 34710 \\ & 35171^{\star} \\ & 37158 \end{aligned}$	$\begin{array}{r} 10 \\ 7 \end{array}$	
	$\begin{aligned} & 39686{ }^{4} \\ & 71173 \end{aligned}$	$\begin{aligned} & 12 \\ & 15 \end{aligned}$	
\triangle Discontinued: $30708 \rightarrow$ use 14820 $32632 \rightarrow$ นระ 31156 $33122 \rightarrow$ นะอ 9890 $33217 \rightarrow$ นระ 9890 $33905 \rightarrow$ นระ 37158 $35171 \rightarrow$ use 37158 $39686 \rightarrow$ นระ 9890			
PICKUPS WITH			
REPLACEABLE STYLUS			
Pickup		Stylus	
Stock No.	$\begin{aligned} & \text { Fig. } \\ & \text { No. } \end{aligned}$	Stock No.	Fig. No.
9890	16-2N	39863 ${ }^{\text {4 }}$	101
$38453{ }^{4}$	17-AL	$38449{ }^{\text {a }}$	102
38598	18	38449*	
38610	13	39564103	
398514	19.2N	39863*	
39550	17-2N	38449 ${ }^{\text {- }} 102$	
39919	17-AL	38449 ${ }^{\text {- }} 102$	
70332 ${ }^{\text {4 }}$	19-AL	38449* 102	
70338	14-AL	72345101	
70339	14-AL	70915102	
72551	14-ZN	72345101	
73839	20	$73840 \quad 104$	
74067	21	$74068 \quad 105$	
74625	21	74818	
74984 ${ }^{\text {* }}$	22	$\begin{aligned} & 74985 \\ & 7504 \mathrm{D} \\ & 75046 \mathrm{D} \\ & 75496(1) \\ & 754970 \end{aligned}$	107108108109109
75044	23		
75475	24		
75575	25	$\begin{aligned} & 75770 \\ & 39863 \\ & 76374 \\ & 76323 \end{aligned}$	110
75976	16-2N		101
76257	126		111
76297 ${ }^{\text { }}$	28		107
76318*	21		109
S-5652 ${ }^{\text {a }}$	23		108

PICKUPS WITH FIXED

 STYLUS

ZN=Zinc case.
AL = Aluminum case
Ceramic type pickup
-Discontinued:
$38449 \rightarrow$ use 70915
$38453 \rightarrow$ use 39919
$39851 \rightarrow$ use 75976
$39863 \rightarrow$ use 73345
$70332 \rightarrow$ นe 75976
$74984 \rightarrow$ นe 76297
$75476 \rightarrow$ use 74067
76318 -use 74067
(2331/s r.p.m.—RED
378 r.p.m.-PLAIN
(3)F or pickups marked 988370-1 OFor pickups marked 988370-2
S. 5652 and S-5578 are available

RCA RENEWAL PRODUCTS

RECEIVING TUEES AND KINESCOPES

With RCA Receiving Tubes and Kinescopes, Top Quality Control makes the difference. The RCA brand on any tube is your best assurance of dependable performance in every AM, FM, television, and industrial application.

ELECTRONIC COMPONENTS, AND SERVICE PARTS

When you need one of the more than 40,000 exclusive RCA Service Parts or one of the versatile new RCA "Universal" type TV components, you can rely on RCA's unparalleled quality.

TEST EQUIPMENT

RCA Blue Ribbon instruments-preferred by professionals in servicing, production, and research. Manufactured to exacting standards by professionals . . . for professionals.

Specify RCA Batteries because they're powerful and long lasting. For Radio- 47 types that service 99% of all radio requirements. For Industry- 32 types covering standard and special needs. Insist on RCA -The Radio Battery for the Radio Trade.

for every TV-RADIO servicing need

RCA RADIO-TV Service Information

```
* Schematics
```

* Schematics
\star Alignment Procedures
\star Alignment Procedures
* Waveforms
* Waveforms
\star Trouble-shooting Suggestions
\star Trouble-shooting Suggestions
* Wiring Diagrams
* Wiring Diagrams
\star Production Changes

```
\star Production Changes
```

Accurate servicing information on all RCA Victor Radio, Phono, and TV sets...data which can't be found elsewhere ... is at your fingertips with the famous Bound Volumes of RCA Victor Service Data. Here is detailed, authoritative information for the rapid, profitable servicing of any RCA Victor home instrument.

Prepared by RCA servicing experts, RCA Victor Service Data will give you the information you need to know in the fastest possible time. Watch your job turn-over time on RCA Victor sets decrease once you use this authentic servicing aid.

You'll save time and dollars by maintaining a complete file of these handsome, sturdily bound volumes of RCA Victor Service Data. See your local RCA Parts Distributor today.

Aluthoriative- Complete

RCA's Comprehensive
Literature Gives You
The Servicing
Information
You Need.

For Quick, Ready
Answers To All
Your Servicing
Problems
... Get Authentic
RCA Literature
From Your
RCA Distributor!

INDEX TO CHASSIS NO'S

Identification numbers beginning with R (RC, RS, etc.) are used with all radios and some television recelvers. Identification numbers beginning with K ($K C S, K R S$, etc.) are used exclusively with television.

RADIO CHASSIS

INDEX TO CHASSIS NO'S (Continued)

RADIO CHASSIS (Continued)

Chassis No.	Model	Chassis No.	Model	Chassis No.	Mode
RC-498A	U-40	RC-563D	Q12	RC-620B	Q641 (50/60 cy.)
RC-498B	. U-42 Tuner Unit	RC-563E	Q11	RC-620C	Q641 (25 cy.)
RC-498E	U-43	RC.563F	Q11	RC-620D	4QV8C R-F/I-F
RC-498F	K.61	RC.563K	QB55X		Chassis
RC-501	U. 46 Tuner Unit	RC-564	V-215, V-221	RC-622	.9W106, A 106
RC-501A	K-130 Tuner Unit	RC.564A	V.219	RC-1000	16×11
RC-502	.7Q4X	RC-564B	V.225	RC. 1000 A	16×13
RC-507	.Q22, Q22A, Q32, Q121	RC. 566	Q14, Q15	RC-1000B	16×14
	(EM)	RC.566A	QU56C, QU56M	RC-1000C	.Radiola 515
RC-507A	Q25	RC-566B	Q14E, Q15E	RC-1001	10x
RC-507B	. QK23	RC. 567	27K	RC-1001A	11×1
RC-507C	QU2C	RC-568	QU51C, Qu51M	RC-1001B	12X, 12X2
RC-507D	QU2M	RC.568A	QU55	RC-1001B	10X (2nd Prod.)
RC. 507 F	. Qu3C	RC.568B	QU61	RC.1001C	12AX, 12A2, 35X,
RC-507 H	. Qu3m	RC. 569	28 T		Radiola 516, 517,
RC-507J	.Q26	RC-570	29K		522
RC-507K	.Q27	RC-570C	29K2	RC-1001D	.14X, 14×2
RC-507L	.QU52C	RC-570D	29K2 (2nd Prod.)	RC-1001E	.14AX, 14AX2, 34X,
RC-507N	QU52M	RC-571	211k		Radiola 526, 527
RC-507U	.Q121 (PM)	RC.572A	V-140	RC-1002	28X
RC-508	.Q24	RC-573	V-209	RC-1002A	.28×5
RC-509	16T4	RC.573A	V.210	RC-1003	1x, 1x2, 25x
RC-509A	.16T3	RC-574	VHR-212	RC-1003A	1AX, 1AX2
RC-509B	.16T2	RC. 582	V175	RC-1003B	Radiola 510 (2nd
RC-509C	.16K	RC. 585	Q36		Prod.), 511 (2nd
RC-509F	.16T4 (2nd Prod.)	RC-589	54B1		Prod.)
RC-509H	.16T3 (2nd Prod.)	RC-589A	54B2	RC-1003C	.55X
RC-509J	.16T2 (2nd Prod.)	RC-589B	54B3	RC-1003D	.Radiola 510 (3rd
RC-511	.18T	RC-589D	54B1-N		Prod.), 520
RC-512	.17K	RC.589U	54B1 2nd Prod.	RC-1004A	25BT2
RC-512A	.19K	RC-589U A	.54B2 2nd Prod.	RC-1004B	25BK, 25BT3
RC-513	.110K, 110K2	RC-589UB	54B3 2nd Prod.	RC-1004D	Radiola B-52
RC-513A	.111K	RC-589UE	.54B6	RC-1004E	.55F, 65F
RC-514	. Q20, Q21	RC-592	Q23	RC-1004F	.24BT1, 24BT2
RC-517	.V. 100	RC-594C	Q10, Q10A, Q10-2,	RC. 1004 H	. Radiola B-50
RC-517C	.V-105		Q10A-2, Q10-3, Q110	RC-1011	.15x (2nd Prod.), 36x
RC-517F	.Radiola R-560P	RC-594D	Radiola 61-6, 61-7		(2nd Prod.)
RC-517H	.V-135	RC-601	Q122 (EM)		$56 \times 2,56 \times 3, \mathrm{Ra}$ -
RC-517J	. Radiola R-566P	RC-601A	Q122X (EM)		diola 61-1, 61-2, 61-3
RC-518	. V-300 Tuner Unit	RC-601B	.7QV5, QU68	RC-1011A	56X, 56×2, 56×3, Ra-
RC-518A	$\underset{\substack{\text { Unit } \\ \text { Unit }}}{\text { V-302 Tuner }}$	$\begin{aligned} & \text { RC-601D } \\ & \text { RC-601E } \end{aligned}$	$\begin{aligned} & \therefore \text { Q122 (PM) } \\ & . Q 122 X(P M) \end{aligned}$		diola 61-1, 61-2, 61-3 2nd Prod.
RC. 519	.V-200	RC-602	Q109	RC-1011B	$56 \mathrm{X}, 56 \times 2,56 \times 3$ R R-
RC-521	V-205	RC-602A	Q109x		diola 61-1, 61-2, 61-3
RC-521B	. V-405	RC-602B	QU62		3 rd Prod.
RC-522	. V-201	RC-604	.58V, 58AV	RC-1013	6×2
RC-523	V-170	RC-605	.59V1, 59AV1	RC-1014	26×1
RC-524	. V-102	RC-606	67V1, 67AV1	RC-1014A	26×3, Radiola 515
RC-525	. 148T-1	RC-606C	.67V1, 67AV1 2nd		(2nd Prod.)
RC-525A	. 14BT-2		Prod., 77V2	RC-1014B	26X4
RC-525B	.14BK	RC.607	QB60	RC.1017	55U, 55AU
RC.526	.15BT	RC-608	68R1, 68R2, 68R3,	RC-1017A	.65U, 65AU, 65U-1,
RC-527	158P-1, -2, -4, -6		68R4		Radiola 62.1
RC-527A	.15BP-3, -5	RC-610	.610V1, 610V2	RC-1017 ${ }^{\text {B }}$	$65 \mathrm{U}, 65 \mathrm{AU}$ (50 cycle)
RC-527C	.158P.7	RC-610A	.730TV1 Radio Section	RC-1020	25BP (2nd Prod.)
RC-527D	.25BP	RC-610B	.7307V2 Radio Section	RC-1020B	Radiola P-5 (2nd
RC-529	QB2	RC.610C	610 V 1.610 V 2 2nd		Prod.)
RC-529A	.QB1, QB11, QB12 Tuner Unit	RC-612	Prod. QB-13 Tuner Unit	$\begin{aligned} & \text { RC-1022 } \\ & \text { RC-1022A } \end{aligned}$.34X (2nd Prod.) 12X (2nd Prod.), 35X
RC-529D	.QB6	RC-613A	.710V2		(2nd Prod.), Radiola
RC. 529 H	.Q89 Tuner Unit	RC-614	.9Q53		522 (2nd Prod.)
RC. 530	.QU5 Tuner Unit	RC-614C	.9QV5 R-F/I-F Chassis	RC-1023	56×5, Radiola 615
RC-531	. Q44	RC-614D	.9QV5 R-F/I-F	RC. 1023 A	56×11
RC-538B	Q30		Chassis	RC-1023B	.56X10, Radiola 61-10,
RC-538C	.Q31	RC-615	.77V1, 8V7		Postone (PX) 61.10
RC. 539	. Q33	RC.616	.8V112	RC-1023C	Radiola 61-10 2nd
RC-539D	QB-3	RC.616A	.8V91		Prod.
RC-539E	Q34	RC.616B	.8TV321 Radio Section	RC-1034	$65 \times 1,65 \times 2,65 \times 8$,
RC-540	. V -101	RC.616C	.8TV323 Radio Section		65X9, Radiola 61-8,
RC-541C	.45×18	RC-616F	.8V112 2nd Prod.		61-9
RC-544	. BP-10	RC-616H	.8V91 2nd Prod.	RC. 1035	QU72, QU72A
RC. 547	.VHR-207	RC.616J	.8TV321 2nd Prod.	RC-1037	64F1, 64 F2
RC-547A	.VHR-407		Radio Section	RC-1037A	64F3
RC-548	.VHR-202	RC-616K	.8TV323 2nd Prod.	RC.1037B	8F43
RC-551	.QU7, QU8 Tuner		Radio Section	RC-1038	.66×1, 66×2
RC. 555	Unit VHR-307 Tuner Unit	RC-616N	.9TW333 Radio Section	RC.1038A	$.66 \times 3,66 \times 7,66 \times 8$, 66×9
RC-559	.26BP	RC-618	.8V90 Radio Chassis	RC-1040	${ }^{666 \times 9}$ (3Q4 output)
RC-561	Q-16	RC.618A	.8V90 2nd Prod.	RC-1040A	.668X (3V4 output)
RC-561A	Q-17	RC-618B	.9W101, 9W103	RC. 1040 B	66BX (Selenium rect.)
RC-561C	Q-16E	RC-618C	.9W 105	RC.1040C	$8 \mathrm{BX6}, 8 \mathrm{BX} 65$
RC-563A	QB5, QB55	RC-618D	.9W 102	RC.1040D	88X6 2nd Prod.
RC.563B	Q12	RC-620A	.4QV8C R-F/I-F	RC-1044	Q103, Q103A, Q103-2,
RC.563C	Q12		Chassis		Q103A-2

AUDIO AMP. AND POWER UNITS							
Chassis No.	Model	Chassis No.	Model	Chassis No.	Model		
RA-79 . .	9EY31. 9EY32	RS-102B	U-46 Power Unit	RS-123D ..			
		RS-102C	K-130 Power Unit		RS-12666E, 66ED, 66E.1		
RS-77	R-98	RS-102D	U-45 Power Unit				
RS-79B	CV-9 Electrifier	RS-102E	V-300, V-301, V-302	RS-12763E, 63EM			
RS-83-1	PSU.8A		Power Unit	RS-1309QV5 PoWRS-130A			
RS-83-2	PSU-8B	RS-110	QU5 Power Unit	RS-130A4QV8C Power Unit RS-1329EY3, 93Y3M, 9EY35,			
RS-83-3	PSU-8C	RS-111	CV-112 Electrifier	$\begin{gathered} \text { REY } 36,45-E Y \\ \text { RS-132A } \ldots . .9 \text { EY } 35,9 E Y 36,45-E Y \end{gathered}$			
RS.83A-1	PSU-10A	RS-111A	CV-112X Electrifier				
RS-83A-2	SU-10B	RS-112	QU8 Power Unit	RS-132CQEY3			
RS-83A-3	PSU-10C	RS-112A	QU7 Power Unit	RS-132F 45 -EY, 45-EY			
RS-83C	CV-110 Electrifier	RS-114A	VHR-307 Power Unit	RS-132H			
RS-83E	TRK-9, TRK-12, TRK.90, TRK- 120	RS-115	QB1, QB11, QB12,	RS-136RS-136A 4545 - EY- ${ }^{\text {E }}$ - 3			
	TRK-90, TRK-120 Radlo Power Unit		QB13, 6V. Power				
RS-84	R-91		Unit				
RS-85	PSU-8E	RS-115B	QB9 Power Unit	RS-136C45-EY-3			
RS-85A	PSU-10E	RS-119	R-56 $612 \mathrm{~V}_{1}$ 612V3, 612V4.	RS-136E45-EY-3			
RS-86	R-89	RS-123	$612 \mathrm{~V} 1,612 \mathrm{~V} 3,612 \mathrm{~V}$, $711 \mathrm{~V} 1,711 \mathrm{~V} 2,711 \mathrm{~V} 3$	RS-138A45-EY-2			
RS-89	CV-9X Electrifier		Audio Amp \& Pow.	RS-138B QEY4			
RS-89A	TRK-5 Radio Power Unit		Audio Amp. \& Power Supply	RS-138E QEY4			
RS-89B	U-42 Power Unit	RS-123A	64TV, 649PTK, 8TV41	RS-138F45-EY-2			
RS-90	VA-21		Audio Amp. \& Pow-	RS-138H 45-EY-2			
RS-91A	O-50		er Supply	RS-138M 45-EY-26			
RS-91B	R-60	RS.123B	648PV Audio Amp. \&	RS-139A15E			
RS-92	M-70 Power Unit		Power Supply				
RS-94A	OSC-22	RS-123C	741PCS, 8PCS41,	RS-140A QEY6			
RS-95	CV-111 Electrifier		9PC41 Audio Amp.	RS-1000CV-42 Electrifier			
RS-98	CV-40 Electrifier		\& Power Supply	RS-1001CV-45 Electrifier			
RS-102A	U-44 Power Unit						

INDEX TO CHASSIS NO'S (Continued)

TELEVISION CHASSIS

MODEL vs. RECORD CHANGER (1943 to 1951 incl.)

Model	Record Changer
A55	.RP 1688 880282-1
A78	RP 168 \& 960282-1
A-82	..RP 168 or RP 190-2
A-91	NP 168 or RP 190-2
	6 960284-1 or -2
A.101	190-2 $6960282-4$ or -5
	or 960284-1 or -2
A-106	RP 188 \& 980285.1
A-108	.RP 168 or RP 190-2
QJY	...RP 168
QEY 3RP 168
QU61960001-4
QU62n..... 980001-4
QU68	.980001-4
\$1000	RP 1686960285.1
TA128	RP 168 6 980282-1
TA129	RP 188 \& 980282-1
TA169	RP 188 \& 960285-1
2 T 1	.RP 188 or RP 190-2
	6 960282-4 or -5
$\begin{aligned} & 4 \mathrm{QV8C} \\ & 4 \mathrm{Tl41} \end{aligned}$	RP 168 \& 9602e2-2
RP 190-2
	6 960282-4 or -5
6QU36QU3YRP 178-3
	RP 188
6QV3RP 178-3

Model	Record Changer
BT84	RP 168 or RP 190-2 6 980282-4 or -5 or 980284-1 or -2
6786	. RP 168 or RP 190-2 $6960284-4$ or -5
6T87	RP 168 or RP 190-2 $6960284-1$ or -2
7QV5960001-4
7 T 143RP 190-2 6 980284-1 or -2
8TV41	,RP 177A
8TV321	.RP 178
ETV323	.RP 178
$8 \mathrm{V7}$.RP 178
8 V 80	...RP 178
8V91	RP 178
8V112	RP 178
8V151	..RP 177B
8EY3	RP 168
9EY31	RP 168
9EY32	.RP 168
9 EY 35	.RP 168
9EY3SU	RP 168
9EY36	RP 168
9EY36U	RP 168
9JY	,RP 168
9QV5	RP 168 ¢ 960282-2

Model	Record Changer
$9 T 89$.RP 168 or RP 190-2 6 960284-1 or -2
9 T 147	,
	6 980284-1 or -2
9TW309	RP 168 \& RP 178
9TW333	RP 168 \& RP 178
9TW390	RP 168 6 AP 177B
9W51RP 188
9W78	RP 1686 RP 178
9W101	...RP 168
9W102	RP 168
9W103	RP 168
9W10s	RP 1686 RP 178
9W106	RP 1886 RP 178
9 Y 7	.RP 168
$9 Y 51$	RP 168
9Y510	.RP 190-1
9Y511	\ldots...RP 168
15E	RP 190A-1
	6 Manual Turntable
45-EY	RP 168
45.EY-1	RP 168
45-EY-2	RP 190
45-EY-3	AP 190-1 or RP 190-3
45-EY-4	RP 190-2
45-EY-15	..RP 168
45-EY-26	RP 190月-2
45-JRP 188

COMPLETE INDEX OF MODELS

NOTES:

tdenotes "Radiola"
 - denotes "Victor"

All others "RC.A" or "RCA Victor"
Refer to the index of the listed Volume for additional information contained in that Volume.

VOL. 1	. 1923 to 1937
VOL. II	. 1938 to 1942
VOL. III	. 1943 to 1946
VOL. IV	. 1947 to 1948
VOL. V	. 1949
VOL. VI	. 1950
VOL. Vil	951

Model	Chassis No. or Description	Vol. P'age	Model	Chassis No. or Description	Vol. Page
AA-1400	Detector-Amplifier	$1-238$ A	- E. 152	R-32 Amp. \& Speaker.	
AA. 1520	R-F Amplifier ...	$1-238 \mathrm{~A}$	G-8	Armchair Control ..	$1-619 \mathrm{~B}$
tAC	Audio Amplifier	I- 2A	HF. 1	RC. 339	$11-5 C$
tAR	R-F Amplifier .	I- 1A	HF-2	RC-354B	II - 14C
AR-1300		I-238A	HF-4	RC-354A	$11-14 \mathrm{C}$
A-55	RC-1087	VI- 1	HF-6	RC-331A	II - 124C
A. 78	RC-1084A	VI- 5	HF-8	RC-331	$11-124 \mathrm{C}$
A. 82	RC-1094	VI- 11	K-50	RC-418A, RC-497	11-504C
A.91	.RC-1095	VI -15	K-60	RC-415	$11-531 \mathrm{C}$
A. 101	RC-1096, RC-1096B	VI- ${ }^{23}$	2nd Prod.	RC-415B	1t-537C
A-106	RC-622	VI- 33	K-61	RC-498F	$11-548 \mathrm{C}$
	Correction to Parts Li	V11- V	K-62	RC-415B	$11-537 \mathrm{C}$
A-108	RC-1096, RC-1096B ...	VII- 41	K-80	RC-415A	$11-531 \mathrm{C}$
BC6-4		1-90B	2nd Prod.	RC-415C, RC-415D	$11-537 \mathrm{C}$
BC6.6		1-948	K-81, K-82	RC-415C	$11-537 \mathrm{C}$
BC7-9		I-122B	K-105	RC-476	$11-664 \mathrm{C}$
BK-41	RC.449	$11-458 \mathrm{C}$	K-130	RC-501A, RS-102C	$11-498 \mathrm{C}$
BK-42	RC-408C	.11-460C	MB-1, MB-2, MB-3	Repl. Motor Board	I - 13A
BP. 10	.RC-544	. $11-297 \mathrm{C}$	M1.8122	Power Unit	$11-34 \mathrm{C}$
BP-55, BP-56,	.RC-455	II - 522C	M1-13174	Coin Operated Radio	V - XV
BT6-3		1-908	M-30		I-118A
BT6.5		$1-948$	M-32		I-135A
BT6.10		1-908	M-34		1-287B
BT7-8		I-122B	M -50	RC-357 J	.11-217C
BT. 40	RC-408	. 11 -456C	M-60	RC.357K	$11-222 \mathrm{C}$
BT-41	RC.449	11-458C	M-70	RC-394	$11-560 \mathrm{C}$
BT-42	RC-408A	$11-460 \mathrm{C}$	M-101, M-104		1-409B
BX-6	. RC-1082, RC-1082A	VI- 47	M-105		I-4208
BX-55	RC-1088, RC-1088B	$V 1-51$	M-107		1-4378
BX-57	RC-1088A, RC-1088C	VI- 55	M-108		I-409
†B-50	RC-1004H	$11-399 \mathrm{C}$	M-109		I-449B
+B-52	RC-1004D	11 -407C	M-116		I-4598
B.411	RC-1098, RC-1098A	VI- 43	M-123		1-480B
CRD-9 A.C.	Record Dimonstrator	. 1 - 186B	OSC. 22	Phono. Oscillator	$11-395 \mathrm{C}$
CRD-9 D.C.	Record Demonstrator	. 1 - 1888	0.1	Portable Victrola	1- 1B
CV-8	Power Unit	I-160B	O-2	Portable Victrola	.11- 20C
CV-9	RS-79B	. $11-610 \mathrm{C}$	$0 \cdot 3$	Portable Victrola	11-33C
CV-40	RS-98	.11-458C	O-6, 0-10	Portahle Victrola	$11-20 \mathrm{C}$
CV-42	RS 1000	.11-404C	O-11	Portable Victrola	$1-18$
CV. 45	RS-1001	111- 67	O-12, 0-14	Portable Victrola	.11- 20C
CV-110	RS 83 C	.11-34C	O.15	Portable Victrola	1 1- 18
CV. 111	RS-95	.11-44C	O-16, 0-19	Portable Victrola	$11-20 \mathrm{C}$
CV-112	RS-111	.11-23C	O-50	Record Player	11-509C
CV-112X	RS-111A	.11-87C	PLF. 10	Power Line Filter	$11-81 \mathrm{C}$
CV-120	Power Unit	v - XVI	PSU-8A, PSU-8B,		
C6-2		1-988	PSU-8C	Power Unit	: $11-211 \mathrm{C}$
C6.8		I-103B	PSU-8E	Power Unit	$11-213 \mathrm{C}$
C6.12		I-1078	PSU-10A, PSU-10B,		
C7.6		I-127B	PSU.10C	Power Unit	.11-211C
C7-14		I-988	PSU-10E	Power Unit	.11-213C
C8-15		I- 146B	PT-3.3.	Record Player	II ${ }^{149 A}$
C8.17		I-152B	PX61.10	RC-1023B	V11- 111
C8-19, C8-20		I-161B	PX-600	RC-1110	V11- 45
C9-4		I-1468	+P-5	RC-465, RC-1020B	.11-83C
C9.6		I-152B	P. 31		I- 128 A
C11-1, C113		$1-215 \mathrm{~B}$	QB-1	RC.529A	$11-8{ }^{\text {8 }}$
C13-2, C13-3		$1-2308$	QB. 2	RC-529	$11-23 \mathrm{C}$
C15-3, C15-4		I-2538	QB-3	RC-539D	.11-34C
D7-7		I-127B	QB-5	RC-563A	.11-87C
D8-28		1-1618	QB. 6	RC-529D	$11-{ }^{13 C}$
D9-19		I-152B	QB-9	RC. 529 H	$111=88$
D11-2		1-219B	QB-11, QB-12	RC-529A	111-7
D22-1, D22-1A		I-262B	QB-13	RC-612	111- 7
-E.35	Electrola	I-138A	QB-55.	RC-563A	III- 41
-E. 135	R-32 Amp. \& Speaker		QB-55X	RC-563K	III- 43

COMPLETE INDEX OF MODELS (Continued)

Model	Chassis No. or Description	Vol. Page	Model	Chassis No. or Description	Vol. Page
QB-60	RC-607	IV - 113	RE-20		77A
	Correction to Par	V- XVI	RE-40, RE-40P		-282B
QH-1	Record Player	IV - 1	-RE-45		- 138A
QK-23	RC-507B	11- 27C	-RE-57		I-151A
QU.2C	RC-507C	II- 27C	RE-73		1-151A
QU-2M	RC-507D	11- 27C	-RE-75		I-138A
QU-3C	RC-507F	II- 39C	RE-80		I - 3108
QU-3M	RC-507H	II-39C	RE-81		I-200A
QU-5	RC-530, RS-110	11-89C	RE-81.SW	RE-81 with SW-3	Converter.1
QU. 7	RC-551, RS-112A	II-147C	-RE-154	Similar to RE-45.. 1
QU-8	RC-551, RS-112	II-147C	-RE-156	Similar to RE-45.	
QU-51C, QU-51M	RC-568	II-511C	RK-24	Phono. Osc. (Stock	No. 9554).1-2818
QU-52C	RC-507L	II-516C	RK-137-1, RK-137	Ceramic Pickup Ki	itv - XVI
QU-52M	RC-507N	. II-516C	RO-23		I- 94A
QU-55	RC-568A	II-511C	RP-132 Series	Automatic Record	Changer.II-698C
QU-56C, QU-56M	RC-566A	$11-526 \mathrm{C}$	RP-139 Series	Automatic Record	Changer. II-698C
QU-61	RC-5688	111-59	RP-140	Automatic Record	Changer.II-698C
QU-62	RC-6028	IV - 119	RP-145 Series	Automatic Record	Changer.II-698C
QU-68	RC-6018	IV- 28	RP-151	Automatic Record	Changer. $11-713 \mathrm{C}$
QU.72, QU-72A	RC-1035	III-103	RP-152, RP-153,		
Q-10, Q-10A, Q-10-2			RP-155, RP-157	Automatic Record	Changer. II - 726C
Q-10A-2	RC-594C	III- 5	RP-158, RP-160,		
Q-10-3	RC-594C	111- 111	RP-161, RP-162	Automatic Record	Changer. $11-737 \mathrm{C}$
Q-11	RC-563E, RC-563F	II-309C	RP-168 Series	Automatic Record	Changer.V-109
Q-12	RC-563, $563 \mathrm{~B},-563$	D.11-309C		 VI- 93
Q-14, Q-15	RC-566	. $11-330 \mathrm{C}$	RP-176 Series	Automatic Record	Changer. III - 121
Q-14E, Q-15E	RC-566B	.11-330C	RP-177	Automatic Record	Changer. 118 - 133
Q-16	RC-561	II-361C	RP-177 Series	Automatic Record	Changer.IV - 151
Q-16E	RC-561C	II-361C	RP-178	Automatic Record	Changer. IV - 167
Q-17	RC-561A	11-369C	RP-190 Series	Automatic Record	Changer. VI- 107
Q-18	RC-477	II- 62C		VII- 33
Q-20, Q-21	RC-514	II-381C	RP-193	Automatic Record	Changer. VI - 119
Q-22	RC-507	11- 27C	†RS	Detector-Amplifier $1-2 A$
Q-22A	RC-507	III- 15	\dagger RT	Antenna Coupler	1- 1A
Q-23	RC-592	11-396C	R-3B		1-38
Q-24	RC-508	$11-401 \mathrm{C}$	R-3C		- 48
Q. 25	RC-507A	II - 27C	R-4		I- 19A
Q-26	RC-507J	II-39C	R-5	olet	. 1 - 22A
Q-27	RC-507K	$11-27 \mathrm{C}$	R-5 D.		I- 23A
Q-30	RC-5388	$11-438 \mathrm{C}$	R-5X		1- 24A
Q-31	RC-538C	$11-438 \mathrm{C}$	R-6		I- 19A
Q-32	RC-507	III- 15	R-7	Superotte	1- 27A
Q-33	RC-539	$11-452 \mathrm{C}$	R-7A		I- 32A
Q-34	RC-539E	. 111 - 19	R-7 D. C.		1-34A
Q-36	RC-585	.111- 23	R-7 L. W.		1-36A
Q-44	RC-531	$11-462 \mathrm{C}$	R-8		I- 38A
Q-103, Q-103A,			R-8 D.		I- 43A
Q-103A-2, Q-103-2	R-1044	III-107	R-9		I- 27A
Q-103AX, Q-103AX-2,			R-9 D		1-34A
Q-103X, Q-103X-2	RC-10448	111-107	R-10		$1-38 \mathrm{~A}$
Q. 109	RC-602	IV - 143	R-10 D.		I- 34A
Q.109X	RC-602A	IV-143	R-11		$1-49 A$
Q. 110	RC-594C	III- IV	R-12		$1-38 \mathrm{~A}$
Q-121	RC-507, RC-507U	. III-111	-R-14, R-15		I- 60A
Q. 122	RC-601, RC-601D	III - 115	R-17, R-17M, R-17		I-2598
Q.122X	RC-601A, RC-601E	.III- 115	R-18W		1-261B
Radiola II	AR-800	I- 3A	R-21		I- 49A
Radiola III, IIIA	AR-805, AR-806	I- 4A	R-22		$1-2798$
Radiola IV, V	AR-880, AR-885A	I- 6A	R-24	R-71 with SW-3 C	Converter...
Radiola VI	AR-895	1-7A	R-24A	R-73 with SW-3 Con	Converter...
Radiola VII, VIIB		1-8A	R-24A	R-73A with SW-3	Converter..
Radiola Super VIII	AR-810	I- 9A	R-24B	R-718 with SW-3 C	Converter.
Radiola IX		I- 10A	R-25 D.		. 1 - 48
Radiola X		I- 11A	R-27		1-2598
Radiola Grand		I- 3A	R-28 Series		$1-2828$
Rad. Regenoflex		$1-11 A$	R-28P		1-2828
Rad. Superheterodyno.	AR-804	$1-98 A$	-R-32		I- 138 A
RAE-26		I- 49A	-R-34		I- 151A
RAE-59		1-77A	-R-35		I-151A
RAE-68		$1-195 A$	R-37, R-38		1-290B
RAE. 79		I-77A	R-37P, R-38P		I-292B
RAE-84		I-207A	-R-39		I-151A
RAE-84.SW	RAE-84 with SW-3	arter	R-43		I-163A
$\dagger R \mathrm{C}$.	Detector-Amplifior	1- 1A	R-50		1-77A
-RC. 3.	Victor R-15	$1-604$	R.518		I-2958
RE-16A		1- 27A	-R.52 ${ }_{\text {R }}$-53		1-138A
-RE-17		I- 60A	R-55		1-2958
RE-18, RE-18A		I- 49A	R-56	Record Player	. $11-530 \mathrm{C}$
RE-19		I- 38A	R-60	Record Player	$11-509 \mathrm{C}$

COMPLETE INDEX OF MODELS（Continued）

Model	Chassis No．or Description	Vol．Page	Model	Chassis No．or Description	
$\dagger \mathrm{R}$－65BR9	RC－1045 ．．．．	．III－IV			Vol．Page
R－70		$\therefore I-198 A$	UY－122E	KCS－40 RC－3528	$\begin{aligned} & \text { VI }=281 \\ & . \quad 1 I-692 C \end{aligned}$
R－718		304B	UY－124	RC－352C	11－692C
R－72		3078	U－8	RC－404A	－215C
R－73		3048	U－9	RC－482B，RC－482C	－ 283 C
R－73A		3138	U－10	RC－418B	－299C
R－74		－3138	U－12	RC－425A	11－320C
R－75		－200A	U－20	RC－498	$11-384 \mathrm{C}$
R－75A		－3108	U－25，U－28	RC－388B	－409C
R－76，R－77		313 B	U－30	RC－335KR	I－444C
R－78			U－40	RC－498A	11－384C
R－783W	R－78 with		U－42	RC－498B，RS－89B	． $11-384 \mathrm{C}$
R－89	Record Play		U－43	RC－498E	． $11-384 \mathrm{C}$
R－90，R－90P	d	I－568C	U－44	RC－486B，RS－102A	．11－467C
R－91		1－3788	U－45	RC－486C，RS－102D	．11－467C
R－91B	cord Player	II－569C	U－46	RC－501，RS－102B	． 11 －498C
R－92	Recorder	${ }^{3828}$	U－50	RC－414	11－82C
R－93，R－93A	Record Player	1－3838	U－101．		4148
R－93B，R－93C	－Record Player	i1－571C	U－102E		－ 328 B
R－93F，	－Record Player	II－572C	U－104	RC－345	11－4148
$\begin{aligned} & \text { R-93: } \\ & \text { R-94 } \end{aligned}$	Record Player	1－3858	U－105		． 1 － 423 C
R－94 R－948	Record Player	1－385B	U－106	RC－319B	－4298
R－95	Record Player	11－594C	U－107		－4238
R－96， $\mathrm{R}^{\text {－} 97}$	Record Player	I－3928	U－108，U－109		－4418
R－98	Record Player	二 3988	U－111	RC－341，RC－341M	II－877C
R－99	Record Player		U－112	RC－341C，RC－341CM	． $11-677 \mathrm{C}$
R－100	Record Player	11－3988	U． 115	RC－348E	11－680C
R－1038	Record Player	11 二562C	U．119	RC－351E	$11-683 C$
†R－560P	RC－517F ．．．	－661C	U．121	RC．348J	$11-687 \mathrm{C}$
\dagger R－568P	RC－517J		U．122E	RC－351D	．11－683C
＋SR		－ 708 C	U． 123	RC－348H，RC－421	$11-687 \mathrm{C}$
SR－1，SR－2，SR－3	Two－speed Tur	${ }_{13}{ }^{\text {a }}$	－ 124	RC－351C	II－683C
SWA－2，SW－2．	Short Wave Co		U－125	RC－386	$11-694 \mathrm{C}$
SW－3	Short Wave Co	1 －16A	U－128	RC－3350	11－444C
SW－10	Short Wave Co	－${ }^{58}$	U．127E	RC－348L	11－687C
S－1000	KCS－31，RC－61	VI $=307$（	U－128	RC－3350 RC－335	－444C
TA－128	KCS－42A，RK．	VI -223	U．130	RC－354	－444C
$\text { TA- } 129$	KCS－41A，RK．	VI－243	U－132	RC－331C	II二 124 C
TC－124，	3，RK－13	－ 289	U－134	RC－3318	． $11-124 \mathrm{C}$
$\text { TC. } 127$			VA－15	Record Player	．11－343C
TC－165，TC－166，		－22	VA－20，VA－21	Wireless Record Play	． $11-392 \mathrm{C}$
TC－167，TC－168	KCs－40A		VA－22，VA－24	Wireloss Record Play	． $11-343 \mathrm{C}$
TH－10	D．C．Inverter	213 B	－VE7－3 to VE15－1	Refer to numerical li	
TRK－5	KC－3，KC－3A，		VHR－202	RC－548	11－781C
	RS－89A ．．．．．		VHR－207	RC－547	$1-781 \mathrm{C}$
TRK－9，TRK－12	Tolevision \＆R	11－251C	VHR－212	RC－574	$11-782 \mathrm{C}$
TRK－90，TRK－120	Telovision \＆R	．11－251C	VHR－307	RC－555	$11-799 \mathrm{C}$
TT－5	KC－3，KC－3B	．．11－93C	VV2－35 to VV9－18	Refor to	761C
T4．8，T4－9．．．		I－148	V－30．．．．．．．．．．．	Record Player	．1－249A
T4－8A，T4－9A		$1-178$	V－100	RC－517 ．	11－654C
T5		－198	V －101	RC－540	$11-656 \mathrm{C}$
T5．2	－cord Playor	1－25A	V． 102	RC－524	11－658C
T6－1		－ 528	$V-105$	RC－517C	11－668C
T6－7		二 1038	V－135	RC－517H	II－708C
T6－9		－1038	V－140	RC－572A	II－710C
T6－11		－1108	V－170	RC－523	． 11 －749C
T7－5		－ 1078	V －175	RC－582	． $11-753 \mathrm{C}$
T7－12			V －200	RC－519	$11-756 \mathrm{C}$
T8－14		－1488	V－201	RC－522	． $11-756 \mathrm{C}$
T8－16		－ 1528	V－205	RC－521	．11－771C
T8－18		－ 1618	V－209	RC－573	$11-775 \mathrm{C}$
T9－7，T9－8		－ 1618	V －210	RC－573A	． $11-775 \mathrm{C}$
T9－9		－ 1908	$\checkmark-215$	RC－564	．11－789C
T9－10		－15	V－219	RC－564A	．11－789C
T10－1		－1463	V－221	RC－564	．11－789C
T10－3			$V-225$	RC－564B	．11－789C
T11－8			V－300	RC－518	II－794C
T－55，T－55s	RC－418		V－301，V－302	RC－518A	$11-794 \mathrm{C}$
T－56	RC．418	11－504C	W－405	RC－521B	$11-771 \mathrm{C}$
T－60	RC－425	． 11 －543C		Carrying Case	－XIV
T－62	RC－425D	$11-543 \mathrm{C}$	X－60		－524C
T－63	RC－472F	II－551C	X－551	RC－1089 B	
T．64，T－65	RC－416	． 11 －554C		Added Re	VII二
． 100	RC－416A	11 －554C	X－552	RC－1089C	VI－ 69
T－120， $\mathrm{T}^{\text {－}}$－12	KCs－38 KCS－34C	179		Added Resiator	－V
	KCs－34c		711		VI－ 61

COMPLETE INDEX OF MODELS (Continued)

COMPLETE INDEX OF MODELS (Continued)

COMPLETE INDEX OF MODELS (Continued)

Modrl	Chussis No. or Description	Vol. Page	Merdel	Chussis No. or Description	Vol. Puge
-12-1	Cromwell	I - 57A	$\dagger 33$ D.C.	(220 V.$)$	- 145A
-12.2	Tuscany	I-57A	$34 \times$	RC-1001E, RC-1022	II - 324C
-12-15	AZ-774, AZ-1077	I-58A	$35 \times$	RC.1001C, RC-1022A	$11-291 \mathrm{C}$
-12.25		- 59A	$36 \times$	RC.462A	$11-337 \mathrm{C}$
13K		I - 225B	36X	RC. 1011	.11-341C
14AX, 14AX2	RC-1001E	.11-324C	40X-30	RC.405C	.11-243C
14BK	RC.525B	. $11-328 C$	40x-31	RC.405D	.11-243C
14BT-1	RC-525	. 11 - 328C	40X-50 to -57	RC. 436	11-243C
14BT-2	RC-525A	. $11-328 \mathrm{C}$	$40 \mathrm{X}-52$ (2nd Prod.)	RC. 453	. 11 - 246C
14X. 14×2	RC-1001D	. 11 - 324C	40X-55 (2nd Prod.)	RC.453	. 11 - 246C
$15 \mathrm{BP}-1,-2,4,-6$	RC-527	. $11-333 \mathrm{C}$	+41.....	AR. 782	I - 158A
15BP-3, -5	RC-527A	. $11-333 \mathrm{C}$	+41 D.C.	AR-871	I - 161A
15BP. 7	RC-527C	. $11-333 \mathrm{C}$	$\dagger 42$		60A
15BT	RC. 526	$11-335 \mathrm{C}$	+44	AR-594	- 164A
15E	RS-139A	VII - 19	45-E Series	RC.435A	. 11 - 475C
15K		. 1 I-236B	45-EY	RS-132. RS-132A, RS	. Vi - 73
15 U		I - 241 B	45-EY-1	RS-132F	VI - 73
15X	RC-462	11-337C	45-EY-2	RS-138A, RS.138H	VI- 77
(2nd Prod.)	RC. 1011	. $11-341 \mathrm{C}$		$\text { RS }-138 \mathrm{~A}, \mathrm{RS}-138 \mathrm{~F},$	
-15.1.	Hyperion	. 1 - 112 A			$\begin{aligned} & \therefore V I I-23 \\ & \therefore C . V I-79 \end{aligned}$
+16.	AR -924	I - 65A	45-EY-3	RS-136, RS-136A, RS-	$6 \mathrm{C}$
16 K 16 T 2	.RC-509C	$\begin{aligned} & 11-344 \mathrm{C} \\ & .11-344 \mathrm{C} \end{aligned}$		RS-136, RS-136A, RS RS-136E	$\text { Vill - } 25$
16T3	.RC-509A. RC-509H	.11-344C	45-EY-4	RS-140..	VII - 29
$16 T 4$. RC-509. RC-509F	. 11 -351C	45-EY-15	RS-132H	VI - 73
16 T 152	KCS-47E	VII - 204	45-EY-26	RS-138L. RS-138M	VII - 31
16X-1, 16X-2	RC.462A	. 11 - 337C	45-J	Record Player	$V 1-81$
16X-3	RC-462B	. 11 - 337C	45-J-2	Record Player	83
16X-4	RC.462C	. 11 -355C	45-J-3	Record Player	VI-84
16X-11	RC-1000	11-357C	45-W-9	RC-1095A	VI-85
$16 \mathrm{X}-13$	RC. 1000A	11-357C	45-W-10	RC-1096A, RC-1096C	VI- 89
16X-14	RC. 1000B	11-357C	45X	RC.459L	$11-477 \mathrm{C}$
$\dagger 17$	AR-927	I - 67A	45X-1, 45x-2	RC-457. RC-457A	-481C
17K	RC. 512	11-365C	45X-3, 45X-4	RC-457E	481 C
17T-153, 17T-154.	KCS-66	VII-227	$45 \times-5,45 \times-6$	RC-457D	$\cdots .11-484 \mathrm{C}$
$\text { 17T-155, } 17 \mathrm{~T} \cdot 160$	KCS-66	VII - 227	$45 \mathrm{X}-11,45 \mathrm{X}-12$	RC.459, RC-459D, RC	T. 11 - 477C
17T-162	KCS-66A	VII - 22 ?	45 X -13	RC.459A, RC-459E	
$\begin{gathered} \text { 17T-172, } 17 \mathrm{~T}-173 \text {, } \\ 17 \mathrm{~T}-174 \ldots . . \end{gathered}$		11-227	$\begin{aligned} & 45 x-16,45 x-17 \\ & 45 x-18 \end{aligned}$	$\begin{aligned} & \text { RC. } 459 \mathrm{M} \\ & \text { RC. } 541 \mathrm{C} \end{aligned}$	$\begin{aligned} & .11-486 C \\ & .11-489 C \end{aligned}$
17T-172K, 17T-73K,	KCS-66A	$11-227$	$45 X-18$ $45 X-111,45 X-112$	RC-459J	. 11 -486C
17T-174K	KCS-66D	VII - 227	45X-113	RC.459K	. $11-486 \mathrm{C}$
+18.	AR-936	. 1 - 71A	+46	AR-596	- 164A
$\dagger 18$ D.C.	AR-891	$1-74 A$	46 D.C.	AR-597	. 1 - 169A
18 T	RC-511	. $11-372 \mathrm{C}$	$46 \times-1,46 \times-2$	RC-459B, RC.459F	. $11-491 \mathrm{C}$
19K	RC-512A	$11-377 \mathrm{C}$	46×-3.	RC.459C, RC.459H	. $11-491 \mathrm{C}$
$\dagger 20$	AR-918	$1-75 A$	$46 \mathrm{X}-11,46 \mathrm{X}-12$	RC-456	. 11 - 494C
$\dagger 21$	AR-1258	.1 - 92A	46x-13	RC-456A	. $11-494 \mathrm{C}$
21T-159, 21T-165	KCS-68E	VII - 263	$\begin{aligned} & 46 x-13 \\ & 46 x-21 \end{aligned}$	RC.461B	. 11 - 496C
21T-176, 21T-177, 21T-178, $21 \mathrm{~T}-179$			$46 \times$-23	RC.461A	. $11-456 \mathrm{C}$
	$\text { AR - } 1265$	$\begin{aligned} & 1-263 \\ & I-92 A \end{aligned}$	46X-24	RC. 461	. 11 - 496C
+24	AR-804	I- 98A	$\dagger 47$	AR-1147	. 1 - 171A
24BT-1, -2	RC. 1004 F	$11-399 \mathrm{C}$	+48		60A
$\dagger 25$	AR-919	I - 103A	+50	AR-910	ar to Rad. 18
+25 A.C.	AR-919, UP-971	I - 105A	+51	AR-904	ilar to Rad. 18
25 BK	RC-1004B	. $11-404 C$	+51 D.C.		1 - 74A
25BP	RC-527D. RC-1020	. 11 - 83C	54B-1	RC-589, RC-589U	111. 29
25BT-2	RC. 1004 A	. 11 - 407C	54B-1N	RC-589 D	$.111-29$
25BT-3	RC-1004B	. 11 - 404C	54 B -2	RC-589A, RC-589UA	$.111-29$
$25 \times$	RC-1003	II- 1C	$54 \mathrm{~B} \cdot 3$	RC-589B, RC-589UB	. 111 - 29
$\dagger 26$		I- 98A	54B-5	RC-1047	$.111-33$
26 BP	RC-559	. $11-414 \mathrm{C}$	54 B-6	RC-589 U E	$.111-111$
26×-1	RC-1014	. 11 -416C	55F.	RC. 1004 E	. 111 - 37
26X-3	RC-1014A	.11-416C	55A U, $55 \cup$. 111 - 39
26X-4	RC-1014B	. 11 -416C	55AU, 55 U	RC. 1003 C	. 11 -520C
27K	RC-567	. $11-421 \mathrm{C}$	$56 \mathrm{X}, \stackrel{56 X}{ }$	RC-1011, RC-1011A,	
+28 +	$\begin{aligned} & \text { AR-920, UP-972 } \\ & \text { AR-920, AR-969 } \end{aligned}$	$\begin{aligned} & I-112 A \\ & . I-107 A \end{aligned}$	56x, 56x-2, 56x.3	RC-1011B 111 - 45
28T	RC-569 il -825!	56X-5	RC. $1023 . .$.	$.111-47$
28 X	RC-1002	11-429C	56X-10	RC-1023B	. 111 - 47
28X-5	RC.1002A	. 11 -423C	56X-11	RC.1023A	. 111 - 49
29K	RC-570	. 11 - 434C	$58 A V, 58 V$	RC. 604	. 111 - 51
29K2	RC-570C, RC-570D	. 11 -434C	59 AV -1, 59V-1	RC. 605	$111-55$
$\dagger 30$	AR-921	. I - 122A	$\dagger 60$	AR-954	I-176A
+30A	AR-906, AR-926	I-124A	†61-1, 61-2, 61-3	RC-1011, RC-1011A,	
+30A D.C.	AR-912 .	I - 124 A		RC.1011B	$111-\quad 111$
+32	AR-925	. 1 - 131A	+61-5	RC-1023	111 - 111
†32 D.C.	AR:928	. 1 - 131A	+61-6, 61-7	RC-594D	$.111-63$
†33	AR-784	I - 143A	+61-8, 61-9	RC-1034, RC-1064	$.111-$ IV
+33 D.C.	(110 V.)	I - 147A	+61-10	RC-1023B, RC.1023C	.11- 111

COMPLETE INDEX OF MODELS (Continued)

COMPLETE INDEX OF MODELS (Continued)

Model	Chassis No. or Description	Vol. Page
120		1-2928
121, 122		$1-4748$
124		1-2925
125		$1-484 \mathrm{~B}$
126-B		1-488B
127		I-491B
128		1-497B
128-E		$1-5048$
135-B		I-1228
140		$1-509 \mathrm{~B}$
141, 141-E		-5098
142.B		I-5178
143		I-520B
210		1-4538
211		1-465B
211K	RC-571	11-779C
214		I-462B
220		I-530B
221		I-4748
222		I-5308
223		I-533B
224		1-497B
224-E		$1-5048$
225		$1-4848$
226		I-497B
235-B		1-1228
236-8		- 5378
240, 240-E		1-509B
241-B		1-5178
242, 243		1-5208
260, 261		I-3788
262, 263		I-5408
280		I-550B
281		I-5598
300		$1-574 \mathrm{~B}$
301		I-4058
310		1-4538
320, 321		1-474B
322		I-4970
322-E		$1-5048$
327		1-4918
330, 331		I-576B
340, 340-E		1-5098
341, 342		. 1 -520B
380, 380-HR		1 -550B
381		1-559B
+500, 501	RC-464	$11-481 \mathrm{C}$
$\dagger 510$	RC.459	11-486C
2nd \& 3rd Prod.	RC-1003B, RC-1003D	II- 1C
$\dagger 511$	RC-464A	. $11-486 \mathrm{C}$
2nd Prod.	RC-1003B	.11- 1C
+512, 513	RC-464B	. $11-486 \mathrm{C}$
+515	RC-1000C	.11-357C
2nd Prod.	RC-1014A	11-416C
+516, 517	RC-1001C	11-291C
+520	RC-1003D	11- 10
+522	RC-1001C RC-1022A	.11-291C
+526. 527	RC-1001E	$11-324 \mathrm{C}$
$610 \mathrm{~V}-1$	RC-610C	.111-145
610 V -2	RC-610, RC-610C	III- 145
612V-1, 612V-3, 612V	RK-121\& RS-123	.111-153
621TS	KCS-21-1	111-199
630TCS	KCS-20B-1, KCS-20D-2	. 111 - 279
6307s	KCS-20A-1, KCS-20C-2	111-235
641 TV	KCS-25A-1, KCS-25C-2, RK-117A, RS-123A	$.1 \mathrm{~V}-207$
648PTK	Proj. Telev.-Radio Comb	. . IV - 295
648PV	Proj. Telev.-Radio. Phono. Comb.	IV - 295
-690	Rad. 82 with Aut. Record Changer	
710V-2	RC-613A	.IV-177
711V-1, 711V-2,		
$711 \mathrm{~V}-3$	RK-117, RS-123	.IV-173
721TCS	KCS-26A-1, KCS-26A-2	. V - 389
721TS	KCS-26-1, KCS-26-2	. IV-389
730TV-1	KCS-27-1, KCS-27-2,	
	RC-610A	IV-417

INDEX TO CHASSIS NO.'S.

(PRIOR TO 1930)

SALES NAME vs MODEL NUMBER

AM-FM Radio Receiver Model 1R81

Model 1R81"Livingston"

Specifications

Tuning Ranges
Standard Broadcast (AM).............. . 540-1,600 kc.
Frequency Modulation (FM) 88-108 mc.
Intermediate Frequency..... AM-455 kc., FM- 10.7 mc .
Tube Complement
(1) RCA 6AU6...Chassis RC-1102......R. F. Amp. RCA 6CB6...Chassis RC-1102A, RC-1102B
\& RC-1102C
.R. F. Amp.
(2) RCA 6X8 Mixer and Oscillator
(3) RCA 6BA6.......................... I. F. Amplifier
(4) RCA 6AU6................................... Driver
(5) RCA 6AL5......................... Ratio Detector
(6) RCA 6AV6....... AM Det.-AVC-A. F. Amp.
(7) RCA 6V6GT............................... Output
(8) RCA 5Y3GT

Rectifier

Circuit Description

The receiver is provided with a tuned RF stage (V1 6AU6 or 6CB6) on both AM and FM bands.

The mixer section of the 6X8 tube (V2) operates as a pentode on AM reception and as a triode on FM reception. This provides best signal to noise ratio.

The range switch has five functions:

1. Selection of AM or FM tuning ranges.
2. Selection and distribution of AVC voltages. Full AVC is applied to V1, V2 and V3 in AM position. Delayed AVC is applied to V1 and V3 in FM position (V2 is not controlled).
3. Controls the application of $B+$ voltages to the plate and screen circuits of V1 and V2 (disconnected in phono position).
4. Controls audio input to volume control.
5. Switches mixer section of V2 (6X8) from pentode operation on AM to triode operation in FM position.
The driver V4 (6AU6) and ratio detector V5 (6AL5) circuits are similar to those used in other RCA Victor AM-FM receivers.

The audio voltage controlled by the volume control is amplified by V6 (6AV6) and V7 (6V6GT).

The rectifier (V8) is type 5 Y 3 GT .

Power Supply Rating...... 115 volts, 60 cycles, 70 watts

Loudspeaker

Type... . . 8 in. P.M.
Voice coil impedance at 400 cycles......... 3.2 ohms
Tuning Drive Ratio..............71/4:1 (35/8 turns of knob)
Dial Lamps (2)......... Type No. 44, 6-8 volts, 0.25 amp .

Power Output

Maximum	watts
Undistorted	2.5 watts

Cabinet Dimensions

Height. . 10 in. Width.. $161 / 2 \mathrm{in}$. Depth.. 9 in.

Weight

$193 / 2 \mathrm{lbs}$.

Antennas:

The receiver has a built-in Ferrite rod antenna for AM band and the FM antenna input is capacity coupled to power line.
Under average conditions the receiver does not require an external antema. However, provision is made for the use of external antenna if desired-connect as indicated below:

AM antenna: Open the link (normally connects terminals \#1 and \#2). Connect a single wire antenna to terminal \#1.
FM antenna: Remove the built-in antenna lead from \#3 terminal. Connect the transmission line (300 ohm) from an external dipole antenna to terminals \#2 and \#3.
Ground: An external ground can be attached to terminal \#2 if desired. Under some conditions an external ground is detrimental to FM reception.

Note: For satisfactory reception on FM when using the built-in FM antenna the pozcer cord must be fully extended and must not be coiled or hanked up.

Alignment Procedure

Due to the use of separate I.F. transformers, there is little interaction between the 10.7 mc . and the 455 kc . adjustments.

There is a slight interaction of adjustments on the tuning condenser between AM and FM.

If a large amount of adjustment is required of any circuit, all others should be checked in the following order:

> FM I.F.
> AM I.F.
> AM Osc., ant. and r.f.
> FM Osc., ant. and r.f.

Alignment Indicators:
For measuring the developed d-c voltage across C29 during FM align. ment an RCA VoltOhmyst or an equivalent meter should be used. An output meter connected across the voice coil is also needed to indicate minimum audio output during FM Ratio Detector alignment.

The RCA VoltOhmyst can also be used to indicate audio output voltage across the voice coil or developed voltage on the AVC bus.

Sipnal Generator:

For alignment operations connect the low side of the signal generator to the receiver chassis. The output of the signal generator should always be controlled to prevent over-loading or excessive AVC action.

Oscilloscope Alignments

It is preferable to use a sweep generator and oscilloscope for aligning I. F. and R.F. circuits to obtain a visual observation of curve shape during alignment.

With FM sweep generator connected between FM ant. (\#3) ter. minal and chassis and oscilloscope connected between the junction of R28.C30 and chassis the overall FM response may be observed. Ther $50,000 \mathrm{mv}$, input to peak separation of not leas than 180 kc . with $50,000 \mathrm{mv}$. input.

CRITICAL LEAD DRESS

1. Dress diode lead from second I. F. away from filament lead going to 6A V6 lst audio tuhe socket.
2. Lead from lug terminal " $\mathrm{B}^{4 \prime}$ of the Ist FM transformer to rear switch wafer terminal \#10 should not he changed from the original, 3 inche long plus or minus $1 / 4^{\prime \prime}$ of $\# 22$ copper vinylite covered.
3. A.C. leads from power switch on volume control should be dressed as far as possihle from the audio-leads and audio coupling con. densers near or connecting to the volume control terminals.
4. Ground straps hetween the R.F. shelf and the main chassis should not be relocated.
5. The connection point of capacitor C10 is critical, therefore should not he altered. It must be connected to the function switch and not to the I.F. transformer.

[^0]
FM Coil Locations

AM Alignment
RANGE SWITCH IN AM POSITION

Stops	Connect hish side of sis. sen. to-	Sig. gen. output	Turn radio dial to-	Adjust for peak output
1	Pin 1 of V3 6BA6 in ceries with .01 mfd .	455 kc.	Quiet point at low freq. end.	T4 bottom core (pri.). T4 top core (sec.).
2	Pin 7 of V2 6×8 in cories with .01 mfd .			T2 top core (sec.). T2 bottom core (pri.).
3	No. 1 torminal on ant. input strip	1620 kc.	Mish freq. end of dial (min. cap.)	C1-5T
4		1400 kc.	1400 kc . aignal	C1-2T ant. Cl-3T r.f.
5		Shunt a 10,000 ohm resistor acroas the r.f. eaction of the gang.		
6		600 kc.	600 ke . dignal	L6 osc." (Rock gang.)
7		Remove the 10,000 ohm reaistor and peak L4 r.f.*		
8	Repent 3, 4, 5, 8 and 7			

*The correct adjustment of the OSC. (L6) core is that peak ob tained with core fartherest away from the coil mounting clips. R.F. obtainable) with core closest to the mountined (2 peaks are seldom obtainable) with core closest to the mounting clips.

FM Alignment

RANGE SWITCH IN FM POSITION - VOLUME
CONTROL MAXIMUM

Step*	Connect hish side of sis. Een. to-	Sig. Een. out put	Turn radio dial to-	Adjust for peak output
1	Connect the d-c probe of a VoltOhmyat to the negative lead of the 2 mfd . capacitor C 29 and the common load to chaceis.			
2	Pin 1 of V_{4} GAU6 in earies with .01 mf .	Adjust to provide 3 to 4 volts indication on VoltOhmyat during alisnment.	Quiet point at low freq. end.	T5 top core for max. d-c voltate across C23. T5 bottom core for min. audio out put.
3	Pin 1 of V3 BA 6 in cories with .01 mf .			$\dagger \dagger$ T3top cors (sec.). T3 bottom core (prl.).
4	Pin 7 of V_{2} 4X8 in eariee with .01 mf .			T1.top core (sec.). T.l bottom core (pri.).
5	43 ant. torm. in cerloe with a 300 ohm resiator. (Remove ant. land from 43 term.)	50 me.	50 me.	1.7 osc. ${ }^{\text {¢ }}$
6		108 mc.	106 me. sienal	Cl-1T ant. Cl-4T raf.
7		30 me.	90 mc . eirnal	11 ant。禺
8	Repeat Stope 5, 6 and 7 until further adjustment does not improve callibration.			

[^1]

VOLTAGE CHART

Tube	Type	Elementa	Pin No．	＂${ }^{\text {A }}$＂	＂FM＂	Phono．
1	$\begin{gathered} \text { RF amp. } \\ \text { sAUb } \\ \text { (RC-1102) } \\ \\ \text { RF amp. } \\ \text { ©CB6 } \\ \text { (RC-11C2A) } \end{gathered}$	Plate Screan Cathode Grid Plate Screen Cathode Grid	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 1 \\ & 5 \\ & 6 \\ & 2 \end{aligned}$	$\begin{array}{r} 195 \\ 100 \\ 0.2 \\ -1.0 \\ 195 \\ 84 \\ 0.4 \\ -0.4 \end{array}$	$\begin{array}{r} 178 \\ 80 \\ 0.3 \\ -0.6 \\ 151 \\ 64 \\ 0.45 \\ -.5 \end{array}$	$\begin{aligned} & \text { 二 } \\ & \text { 二 } \\ & \text { 二 } \end{aligned}$
2	Mixer 6X8 Osc． 6X8	Plate Scroen Grid Plate Grid	$\begin{aligned} & 8 \\ & 8 \\ & 7 \\ & 3 \\ & 2 \end{aligned}$	$\begin{array}{r} 64 \\ 64 \\ -3.1 \\ 883 \\ -5.3 \end{array}$	$\begin{array}{r} 65 \\ 65 \\ -2.2 \\ 77 \\ -1.1 \end{array}$	$\begin{aligned} & = \\ & = \end{aligned}$
3	$i_{\text {GBAG }}$	$\begin{gathered} \text { Plato } \\ \text { Scroen } \\ \text { Cathode } \\ \text { Grid } \end{gathered}$	$\begin{aligned} & 5 \\ & 6 \\ & 7 \end{aligned}$	$\begin{array}{r} 200 \\ 122 \\ 0.7 \\ -1.4 \end{array}$	$\begin{array}{r} 200 \\ 110 \\ 0.9 \\ -0.4 \end{array}$	$\begin{array}{r} 210 \\ 124 \\ 0.9 \\ -0.7 \end{array}$
4	Driver 6AU6	Plate Screen Cathode	$\begin{aligned} & 5 \\ & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & 199 \\ & 130 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 202 \\ & 138 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 220 \\ & 150 \\ & 1.6 \end{aligned}$
5	Ratio Det． 6AL5	－	－	－	－	－
6	$\begin{aligned} & \text { AF Amp. } \\ & \text { \&AVG } \end{aligned}$	Plate Grid	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\begin{array}{r} 72 \\ -0.8 \\ \hline \end{array}$	$\begin{array}{r} 72 \\ -0.7 \\ \hline \end{array}$	$\begin{array}{r} 75 \\ -0.7 \\ \hline \end{array}$
7	Output SVECT	Plate Screen Cathode	$\begin{aligned} & 3 \\ & 4 \\ & 8 \end{aligned}$	$\begin{array}{r} 244 \\ 200 \\ 10 \end{array}$	$\begin{array}{r} 248 \\ 210 \\ 10.5 \end{array}$	$\begin{array}{r} 248 \\ 230 \\ 12 \end{array}$
6	Rectifier 5Y3CT	Fil．	8	260	262	265

The heater voltage of the mixer／oscillator tube（6X8）is approx． .4 volt lower than other tubes in the same circuit．This is due to the filament choke coils L10 and L11．

Voltages and currents measured with tuning condenser closed and no signal input should hold within $\pm 20 \%$ with rated line voltage． RCA VoltOhmyst used for measuring all voltages．

CATHODE CURRENTS（MA）

Tube		Torminal	A．M．	F．M．	Phono
	（RAU6 （RC－1102） （CB6 （RC－1102A）	7	2.9	4.0	-
2	EX8	6	4.6	4.6	-
3	6BA6	7	11.6	13.2	13.6
4	6AU6	7	10.4	10.2	11.2
5	GAL5	-	-	-	-
6	EAV6	2	0.3	0.3	0.36
7	EVEGT	8	34	33.4	37
8	5Y3GT	8	65	66	63

Dial Cord and Drive Assembly

SIMPLIFIED SCHEMATC DIAGRAM-"AM"

-In Chansis No. RC-1102R the RoF.
amplifier is RCR 6CB6. Sockot con-
amplifer is KCR 8C8. Soczot COM
nections are difiezent-see page 6 for

- In Chassis No. RC.1102A the R.F. amplifier is RCA 6CB6. Socker con nectiona are dilferent-soe illustration
below for details.
\downarrow

$$
\underset{\text { RATIO }}{6 A^{5} L 5}
$$

A few receivers were manufactured using a substitute IN TRANSFORMERS STAMPED 971169-2, CONINTERCHANGED.
NTERCHANGED. I.F. transformer (T-3 2nd F.M.). The connections to 1.F. transformer (T-3 2nd F.M.). The connections to
this transformer differ from that shown in the schematic diagram as follows :
THE ORIGINAL TRANSFORMER IS STAMPED
971169-3. 971169-3.

Simplified Schematic Diagram—"FM"-Chassis Nos. RC-1102B, RC-1102C

Replacement Parts

Stoolk No.	DESCRIPTION	Stock No.	DESCRIPTION
	CHASSIS ASSEMBLIES	503233	3,300 ohms, $\pm 10 \%$, $1 / 2$ watt (R29)
	RC 1102, RC 1102A	503282	8,200 ohms, $\pm 10 \%$, $1 / 2$ watt (R4)
	Re 1102, RC 1102R	503310	10,000 ohms, $\pm 10 \%$, 1/2 watt (R38 in RC-1102B, RC-1102C)
76343	Antenna-Ferrite rod antenna complete with coil less masonite support and grommets	503315	15,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R28) (R35 in RC-1102, RC1102A)
12717 76325	Board-Antenna torminal board Bracket-Drive cord pulley bracket	503318	18,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R9) (R40, R41, in RC-1102B, RC=1102C)
76333	Capacitor-Variable tuning capacitor (C1-1, C1-2, C1-3.	503322	22,000 ohms, $\pm 10 \%$, 1/2 watt (R17, R34)
7 333	C1-4, C1-5, C1-6)	503327	27,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R38 in RC-1102, RC-1102A)
76577	Capacitor-Laramic, $1.2 \mathrm{mmf}$. (C44)	513333	33,000 ohms, $\pm 10 \%$, 1 watt (R10) .
57090	Capacitor-Ceramic, 3 mmf . (C42)	503338	39,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R31 in RC-1102, RC-1102A)
76350	Capacitor-Ceramic, 10 mmf . (C10)	503347 503410	47,000 ohms, $\pm 10 \%$ \% $1 / \frac{1}{}$ watt (R35 in RC-1102B, RC-1102C)
76348	Capacitor-Ceramic, 12 mmf . (C11)	$\begin{aligned} & 503410 \\ & 503412 \end{aligned}$	100,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R3, R20, R23) 120,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R11)
75437	Capacitor-Ceramic, 100 mmf . (C19)	503433	330,000 ohme, $\pm 10 \%$, $1 / 2$ watt (R22)
		503438	390,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R13)
44202	Cepacitor-Ceramic, 150 mmf . (C37 in RC-1102, RC-	$\begin{aligned} & 504447 \\ & 503456 \end{aligned}$	470,000 ohms, $\pm 20 \%$. $1 / 2$ watt (R25, R32) 560,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R39 in RC-1102, RC-1102A)
3832	Capacitor-Mica, 150 mmf. (C41)	504522	2.2 megohm, $\pm 20 \%$, $1 / 2$ watt (R1, K5)
75611	Capacitor-Ceramic, 220 mmf. (C2, C7)	503539	3.9 megohm, $\pm 10 \% .1 / 2$ watt (R8)
38640	Capacitor-Mica, 330 mmf . (C24, C25)	504610	10 megohm, $\pm 20 \%$, $1 / 2$ watt (R15)
39662	Capacitor-Mica, 2700 mmf . (C38)	504622	22 megohm, $\pm 20 \%$, $1 / 2$ watt (R21)
73473	Capacitor-Ceramic, 4700 mmf . (C3, C6, C8, C13, C14, C15, C17, C21) (C23 in RC-1102B, RC-1102C) (C26, C27, C28,	$\begin{aligned} & 76339 \\ & 73584 \end{aligned}$	Shaft-Tuning knob shaft Shisld-Tube shield for V1, VG
	C17, C21) (C23 in RC-1102B, RC-1102C) (C26, C27, C28, C36, C39, C40)	$\begin{aligned} & 73584 \\ & 76331 \end{aligned}$	Shisld-Tube shield for V1, VG Shield-Tube shield for V2
3848	Cepacitor-Mice, 400 mmf. (C12)	35787	Socket-Phono input socket (J1)
73747	Capacitor-Electrolytic, 2 mfd .150 volts (C29)	73117	Socket-Tube socket, 7 pin, miniature
73330	Capacitor-Electrolytic comprising 1 section of 30 mfd. 350 rolte, 1 section of 50 mfd . 300 volte and 1 section	$\begin{aligned} & 70827 \\ & 75336 \end{aligned}$	Socket-Tube socket, octal, wafer Socket一Tube socket, 9 pin, miniature, addle mounted
	350 volte, 1 eection of 50 mfd., 300 volte and 1 eection of $20 \mathrm{mfd} ., 25$ volt: (C35A, C35B, C35C)	$\begin{aligned} & 76336 \\ & 35574 \end{aligned}$	Socket-Tube socket, 9 pin, miniature, aaddle mounted Socket-Dial lamp socket
75249	Cepacitor- 'ubular, paper, . $001 \mathrm{mf} ., 600 \mathrm{~V}$ (C16 in RC1102, RC-1102A)	$\begin{aligned} & 76332 \\ & 76342 \end{aligned}$	Spring-Drive cord spring Support-Antenna support (misonite) only
73818	Capacitor-Tubular, paper, . 0027 mf ., 1600 V (C32 in RC1102, RC-1102A)	$\begin{aligned} & 76334 \\ & 76326 \end{aligned}$	Switch-Function switch (Si-1, S1-2, S1-3) Transformer-Power transformer 117 volt 60 cycle (T7)
73795	Capacitor-Tubular, paper, $.0033 \mathrm{mf} ., 600 \mathrm{~V}$ (C16 in RC1102B, RC-1102C)	76327 73743	Tranaformer-Output transformer (TG) Traneformer-Ratio detector transformer
73818	Capacitor-Tubular, paper, . 0033 mf . 1600 V (C32 in RC-	76335	Tranaformer-Ratio detector transformer (TS)
	1102B, RC-1102C)	75559	Tranaformer-Firat 1.F. transformer-F.M. (Ti)
73920	Cepecitor-Tubular, paper, 0047 mf ., 600 V (C22 in RC1102B, RC-1102C) (C23 in RC-1102, RC-1102A) (C30, C33)	$\begin{array}{r} 76328 \\ 76329 \end{array}$	Tranaformer-Second I.F. tranaformer-A.M. (T4) Tranaformer-Second I.F. transformer-F.M. (T3)
73561	Capacitor-Tubular, paper, 01 mfd., 400 volta (C31)	33726	Washer-"C" washerfor tuning knobshoft orfor station
73797	Capacitor-Tubular, paper, $015 \mathrm{mf} ., 600 \mathrm{~V}$ (C43 in RC1102, RC-1102A)		selector shaft and pulloy
$\begin{aligned} & 735 \$ 2 \\ & 73554 \end{aligned}$	Capacitor-Tubular, paper, .022 mfd., 400 volta (C20) Capacitor-Tubular, paper, $027 \mathrm{mf} ., 400 \mathrm{~V}$ (C22 in RC-		SPEAKER ASSEMBLIES
73554	Capacitor-Tubular, paper, $027 \mathrm{mf} ., 400 \mathrm{~V}$ (C22 in RC1102, RC-1102A)		Stamped 32586-6W, 92586-7W or 22586-8W
73558	```Capacitor-Tubular, paper, .047 mf., 200V (C5, C18) (C43 in RC-1102B, RC-1102C)```	75023	Cap-Duat cap RMA 274
		75024	Cone-Cone and voice coil axaembly (3.2 ohms)
73935	Clip-Mountins clip for A.M.-l.F. tranaformers	76392	Speeker-8" P.M. (92586-7 W) speaker complete with cone and voice coil
76337	Coil-Oscillator coil-A.M.-complete with adjustable core (LS, L6)	74664	and voice coil Speaker-3" P.M. apeaker (92586-8W) complete with cone
76338	Coil-RF coil-A.M.-complete with adjuatable core (L3, L4)		and voice coil MISCEIIANEOUS
76352	Coil-Oncillator coil-F.M. (L.7)		MISCELLANEOUS
76353	Coil-RF coil-F.M. (L2)	76359	Back-Cabinet back
76354	Coil-Antenna coil-F.M. (L.1)	76355	Bezel-Decorative bezel-round-forfront of cabinet
71942	Coil-Filament choke coil (L.9)	Y2328	Cabinet-Plastic cabinet-maroon
76351	Coil-Filament choke coil (L10, L11)	76678	Clip-Sprins clip for cabinet back
70342	Control-Volume control and power switeh (R14, S2)	76363	Decal-Control function decal-early type (below knobs)
75538	Control-Tone control (R24)	76767	Decal-Control function decal-late type (above knobs)
70392 +7253	Cord-Power cord and plug "-Drive cord (approx. 51 overall lensth required)	76356	Dial-Polystyrene dial scale
472853 7483	Cord-Drive cord (approx. ${ }^{\text {5 }}$ (overall length required)	74782	Emblern-"RCA Victor" emblem
74838	Fastenur-Push fastener for RF shelf mountine (4 req'd)	76360	Knob-Function awiteh knob-typo 11
16058	Grommet-Rubber Erommet for RF shelf (4 req'd)	75712	Knob-Function witch knob-type 2
76344	Grommet-Rubber trommet for mounting ferrite rod antenne to masonite eupport (2 req'd)	76765 76361	Knob-Function switch knob-type if Knob-tuning control, tone control or volume control
76345	Insert-Hard rubber ineert for antenna mounting Erommets (2 req'd)	74711	and power awitch knob-type 1 Knob-tuning control, tone control or volume control
76340	Pan-Speaker pan asembly complete less atation selector pointer shaft and pulley	75714	and power awitch knob-type 12 Knob-tunine control, tone control or volume control
76341	Pulley-Station aelector pointer ahaft and pulley		and power switch knob-type 3
76346	Resiator-Wire wound, 1200 ohme, 4 watte (R33) Reaistors-Fixed, composition:	76766	Knob-tuning control, tone control or volume control and power awitch knob-type fi
503068	88 ohms, $\pm 10 \%$, $1 / 3$ watt (R2, R12)	11891	
503110	100 ohme, $\pm 10 \%$, 1/2 watt (R27)	76425	Nameplate-"AM-FM'" nameplate (tenite)
503112	120 ohms, $\pm 10 \%$, $1 / 2$ watt (R16)	72765	Nut-Speed nut to fasten bezel assembly (4 req'd)
513133	330 ohms, $\pm 10 \%$. 1 watt (R26)	76362	Pointer-Station selector pointer
503139	390 ohms, $\pm 10 \%$, $1 / 2$ watt (R6)	76357	Reflector-Dial scale reflector
503156	560 ohms, $\pm 10 \%$, w/2 watt (R37)	76358	Screan-Grille screen
503168	680 ohms, $\pm 10 \%$, $1 / 2$ watt (R7, R18, R19)	74734	Spring-Retaining apring forknobs-types \%1, 3, and \$4
503212	1,200 ohms, $\pm 10 \%$, $1 / 2$ watt (R30, R36)	14270	Spring-Retaining spring forknobs-type \$2

+Stock No. 72953 is a reel containing 250 feet of cord.
APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACMENT PARTS

Differing Types of Knobs-Model IR81

Dial Scale

SHIELDING

The box shield over the RF and Converter tubes and the under chassis shielding of the function switch reduces the FM oscillator radiation of Model 1R81 to a point within the limits recently established by the Federal Communications Commission.

If either of these shields should be left off after servicing, the receiver may (in strong signal areas) apparently still function normally but the FM oscillator radiation will be greatly increased. This radiation will have an adverse effect on nearby television receivers and other FM radios.

The dial scale drawing shown is a full size reproduction. It can be used as a reference in alignment procedure.

Additions to Parts List:

76958 Capacitor-Ceramic, 120 mmf (C4)
73551 Capacitor, Tubular, paper, 0.1 mf, 400 volts (C34) MISCELLANEOUS
77232 Knob-Function switch knob-type 5
77233 Knob-Tuning control, tone control or volume con. trol and power switch knob-type 5

	1X51 SERIES:	
1X51	1X52	1X53
(Maroon)	(Ivory)	(Green)
1X54	1×55	1X56
(Tan)	(Blue)	(Red)
	IX57	
	(White)	

AC-DC Radio Receivers
1X51 Series
Chassis No. RC 1104, PC 1104A, RC 1104 B
RC 1104-1, RC 1104A-I, RC $1104 B-1$
RC 1104C, RC 1104D, RC $1104 E$
Service Data - 1951 No. 8 -

PREPARED BY RCA SERVICE CO., INC. FOR
RADIO CORPORATION OF AMERICA
rCa Victor division
CAMDEN, N. J., U. S. A.

Specifications

Tuning Range
.540 .1600 kc Intermediate Frequency .. 455 kc

Tube Complement
CHASSIS NO. RC 1104, RC 1104A. RC $1104 B$
(1) RCA 12SA7 ... ${ }^{\text {Converter }}$
(2) RCA 12BA6 ..F. Amplifier
(3) RCA 12SQ7Det.-A.V.C.-A.F Amp.
(4) RCA 50L6GT ...Output
(5) RCA 3525GT ..Rectifier

CHASSIS NO. RC 1104-1. RC 1104A.1. RC $1104 \mathrm{~B}-1$
Same as above except rectifier is RCA $35 W_{4}$ instead of RCA 35Z5GT.

CHASSIS NO. RC 1104C. RC 1104D. RC 1104E
(1) ACA 12BE6

Converter
(2) RCA 12BA6 ..I.F. Amplitier
(3) RCA 12AV6Det.-A.V.C.-A.F. Amp.
(4) RCA 50C5 ...Output
(5) RCA 35W4 ..Rectifier

Dial Lamp ..Type 47, 6.8 volts, 0.15 amp.

Chassis Identilication

Model No.	IX51	1 X52 1 X57	1×53.1 X54 $1 \times 55.1 \times 56$
Chassis No.	RC 1104	RC 1104A	RC 1104B
	RC 1104-1	RC 1104A-1	RC 1104B-1
	RC 1104C	RC 1104D	RC 1104E

Power Supply Rating
115 volts, AC, 50 or 60 cycles, or DC 30 watts
Loudepeaker
Size and Type ...4-inch PM
V.C. Impedance
3.2 ohms at 400 cycles

Power Output
Undistorted ..l.l watts
Maximum
. 1.4 watts
Dimentions (Ov erall)
Height............75/8" Width............ $11816^{\prime \prime \prime}$ Depth............ 6% "
Weic̣ht .. 6 lbs. net

Dial Centering

If the mounting of the tuning condenser has been disturbed, it may be necessary to adjust its position after replacing the chassis in the cabinet. This may be done in the following manner:

1. Replace tuning knob.
2. Install chassis and tighten the mounting screws.
3. Loosen the two screws which hold the tuning condenser mounting bracket to the chassis.
4. Adjust the position of the tuning condenser mounting bracket so that the tuning knob may be rotated without binding on the cabinet.
5. The two screws should then be tightened to maintain this position.

Power Supply Polarity

For operation on d.c. the power plug must be inserted in the outlet for correct polarity. If the set does not function, reverse the plug. On a-c, reversal of the plug may reduce hum.

Replacement of Dial Lamp

To replace the dial lamp the back cover must be removed. It is secured to the cabinet with four spring clips. Use care to avoid breaking the lead wires from the back cover to the chassis. The dial lamp socket is located at the upper left corner of the speaker and may be removed by pulling diagonally up and to the right.

If higher than normal line voltage causes repeated burning out of the dial light, it may be replaced with a type \#44 lamp instead of the specified type \#47. Type \#44 will provide less illumination than type \#47. but it will last longers

Critical Lead Dress

1. Dress all capacitors down against chassis. Connect outaide foil of all capacitors as indicated in schematic diagram.
2. Locate C-10 in its mounting clip so that it butts against end of chassia.
3. Dress all circuit wiring against chassis.
4. Dress R-1l away from R-4.
5. Dress junction of R-2 and C-2 to prevent short circuits to chassis and dial back plate.

Tube and Trimmer Locations
Chassis No. RC 1104, RC 1104A, RC 1104B
For Chassis No. RC 1104-1, RC 1104 A .1 and RC-1104B-1 the sectifier tube is type 35 W 4 instead of 3525 GT .

Test-Oscillator

For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oncillator output as low as possible to avoid a-v.c action.
On AC operation an isolation transformer (115 v./115 v.) may be necessary for the receiver if the test oscillator is also AC operated.

Staps	Connect the high side of test-oscillator 10-	Tuno to-	Turn radio dial to-	Adjust the following for max. output
1	12BA6 I-F grid through . 01 mid. capacitor	455 kc	Quiet-point 1600 ke. end of dial	
2	Stator of Cl. 2 through .01 mid.			T1 (top and bottom) let J-F trans.
3	Short wire placed near 100 p to radiato signal	1620 kc	Extrame clockwise (platos fully open)	osc. trimmer
4		1400 kc	1400 ke siqnal	tant. trimmer
5		600 kc	600 kc signal	L2 (osc.) Rock gang
6		Repoat stops 3, 4 and 5.		

- Do not readjust T2 when test omeillator is connected to Cl-2.
t When adjusting ant. trimmer it is necersary to have the loop in the same position and spacing as it will have when assembled in the cabinet. This spacing is approximately $51 / 2^{\prime \prime}$ from dial back plate to loop.

CHASSIS NO. RC 1104, RC 1104A, RC 11048 Schematic Circusit Diagram

For Chasaly No. RC 1104-1, RC 1104A-1 and RC-1104D-1 the rectifier tube is type 35W4 instead of 35z5GT.

Schematic Circuit Diagram
CHASSIS NO. RC 1104C. RC 1104D. RC 1104 E

Production Changes

In early production RC 1104, RC 1104A and RC 11048:
R3 was 3.3 megohm (now 2.2 meg.).
R6 was 10 megohm (now 4.7 meg.).
R13 was omitted (plate circuit of rectifier tube).
A few lst l.F. transformers (Tl) were used which had an incorrect primary capacitor. To permit the use of these transformers, two 5 mmf . ceramic capacitors were added across the primary (Term. \#1 to Term. \#2).

In early production RC 1104-1, RC 1104A-1, and RC 1104B-1: R13 was omitted (plate circuit of rectifier tube).

In late production of RC-1104C, RC-1104D and RC-1104E the power line attachment cord enters the chassis close to the volume control.

Thbe and Trimmer Locations
Chassis No. RC 1104C, RC 1104D, RC $1104 E$

Replacement Parts

Stock No.	DESCRIPTION	Stock No.	DESCRIPTION
	CHASSIS ASSEMBLIES	74734	Spring-Spring clip for tuning control knob
	RC 1104, RC 1104-1. RC 1104C Model 1 X51 RC 1104A, RC 1104 A.1, RC 1104 D Models $1 \times 52,1 \times 57$	54414	Socket-Tube socket, octal, moulded, saddle-mounted for 12SA7 and $12 S Q 7$ tubes
	RC 1104B, RC $11048-1$, RC $1104 E$ Models 1×53. 1X54, 1X55, 1×56	70827	Socket-Tube socket, octal, wafer for 3525GT and SOL6GT tubes
76712	Antenna-Antenna loop and back cover for Models	76714	Trandormer-Output transformer (T3)
		75486	Transformer-First L.F. transformer (Tl)
76730	Antenna-Antenna loop and back cover for Modele 1×52 and 1×57	75487	Transformer-Second I.F. tranaformer (T2)
76715	Capactior-Variable tuning capacitor (Cl-1. Cl-2)		SPEAKER ASSEMBLIES
39624	Capacitor-Mica, 68 mm . (C2) Capacitor-Mica, 150 mmf . (C4)		971495.1
39632 72571		76391	Speaker-4" P.M. Epeaker complete with cone and
76718	Capacior-Electrolytic comprising 1 section of 50 mid., 150 volts and 1 section of $30 \mathrm{mid} ., 150$ volts (C10A, C108)		MISCELLANEOUS
73599	Capacitor-Tubular, paper, . 0027 mid., 600 volis (C8)	Y2379	Cabinet-BLUE piastic cabinet less "RCR Victor" emblem for Model 1X55
73561	Capacitor-Tubular, paper, 01 mid., 400 volts (C5)	Y2377	Cabinet-GREEN piastic cablnet less "RCA Victor"
73554	Capacitor-Tubular, paper, 027 mid., 400 volts (C9)		emblem for Model 1X53
73553	Capacitor-Tubular, paper, $047 \mathrm{mfd} ., 400$ volts (C3. Cl1)	Y2375	Cabinet-IVORY plastic cabinet less "RCA Victor" emblem for Model 1×52
73551	Capaciter-Tubular, paper, oil impregnated. 0.1 mid., 400 volts (C6)	Y2373	Cabinet-MAROON plastic cabinet less "RCA Victor" emblem for Model 1X51
73935	Clip-Mounting ellp for I.F. transtormer	Y2380	Cabinet-RED plastic cabinet less "RCA Victor"
74448	Coll-Oscillator coll complete with adjustable core (L1, L2)	Y2378	emblem for Model IX56 Cabinet-TAN plastic cabinet len "RCA Victor"
74285	Control-Volume control and power switch (R5, S1)		emblem for Model 1X54
70392	Cord-Power cord and plug	Y2376	Cabinel-WHITE plantic cabinet lens "RCA Victor" omblem for Model 1×57
74838	Grommel-Power cord strain relief (l set)	76798	Clip-Speed clip for dial back plate (lower) (2 req"d)
72283	Grommet-Rubber grommet for mounting variable capacitor	76799	for Models $1 \times 51,1 \times 53,1 \times 54,1 \times 55,1 \times 56$
76713	Snob-Tuning control knob	76799	Clip-Speed clip for dial back plate (lower) (2 req'd) for Models 1X52, 1×57
31480	Lamp-Dial lamp-Marda \#47 Resletors-Fixed, composition:-	76797	Clip-Sppeed clip for dial back plate (uppor) (2 req'd)
514033	33 ohms, $\pm 20 \%$, 1 walt (R13)	73494	Clip-Spring clip to faston antenna and back assembly to cabinet (4 req'd)
504110	110 ohms, $\pm 20 \%$, $3 / 2$ watt (R2, R12)	76720	Dial-Polystyrene dial sealo
503115 513212	150 ohms. $\pm 10 \%$, $1 / 2$ watt (R10) 1200 ohms, $\pm 10 \%$, 1 watt (R11)	74782	Emblom-"RCA Victor" omblom
504322	22,000 ohms, $\pm 20 \%$, $1 / 2$ watt (R1)	76760	Knob-Volume control knob-BLUE-for Model 1×55
504347	47.000 ohms, $\pm 20 \%$, $1 / 2$ watt (R4)	76758	Knob-Volume control knob-GREEN-ior Model 1×53
504422	220.000 ohms, $\pm 20 \%$, 价 watt (R7, R8)	74667	Snob-Volume control knob-IVORY-for Model
504447	470.000 ohme, $\pm 20 \%$, $1 / 2$ watt (R9)		1×52
504532	2.2 mogohm, $\pm 20 \%$, $1 / 2$ watt (R3)	76719	Enob-Volume control knob-MAROON-ior Model
504547	4.7 megohm, $\pm 20 \%$, 1/2 watt (R6)		1×51
76802	Shiold-Dial lamp shield for Models 1X52, 1X53. 1X54, 1X55, 1×56 and 1×57	76781	Knob-Volume control knob-RED-ior Model 1X56
73584	Shield-Tube shiold for 12RV6 tube	76759	Enob-Volume control knob-TAN-ior Model 1×54
76723	Sockot-Dial lamp socket complete with leads	74007	Anob-Volume control knob-WHITE-for Model
76716	Socket-Tube socket, 7 pin miniature, wafer with contor shiold for 128E6, 128A6 and 12AV6 tubes	76721	1X57
74822	Sockel-Tube socket, 7 pln minialure, water less center shield for 50C5 and 35W4 tubes	74734	cabinet) Spring-Spring clip for volume control knob

Replacement Parts

Stock No.	DESCRIPTION	Slock No.	DESCRIPTION
	CHASSIS AsSEMBLIES HC 1079K-1X591 RC 10791-1X592	503422 503433 503447 503533	220,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R12, R18) 330,000 ohms, $\pm 10 \%$, $1 / 2$ walt (R6) 470,000 ohms, $\pm 10 \%$, $1 / 2$ walt (R13) $3.3 \mathrm{mogohm}, \pm 10 \%, 1 / 2$ watt (R5)
76584	Antonna-Antenna loop and back cover (L1)	503610	10 mogohm , $\pm 10 \%$, $1 / 2$ watt (R11)
74653	Capacitor-Variable tuning capacitor (C1, C2, C3, C4)	74658	Shaft-Tuning knob shaft and pulley
71924	Capacitor-Coramic. 56 mmi. (C5)	74697	Sockel-Dial lamp sockot, water
75198 74662		$\begin{aligned} & 31251 \\ & 76368 \end{aligned}$	Sockel-Tube sockel, octal, wafer Spring-Drive cord spring
74662	Capacitor-Electrolytic, comprising 1 section of 80 mid.. 150 volts, and 1 section of 50 mid., 150 volts (C18A, C16B)	$\begin{aligned} & 76388 \\ & 33634 \end{aligned}$ 74654	Spring-Drive cord spring Switch-Radio-phono Ewitch (S2) Trunsformer-Output transformor (T3)
75643	Capacitor-Tubular, paper, 0001 mid., 1000 volts (C9)	74918	Tranaformer-First 1.F. transformer (TI)
73595	Capaeitor-Tubular, paper, . $0022 \mathrm{mid} ., 800$ volts (C15)	73037	Transformer-Socond 1.F. transformer (T2)
73789	Capacilor-Tubular, paper, . 0068 mid., 400 volis (C12)	33726	Washer-"C" washer for tuning knob shaft
73561 73562	Capacitor-Tubular, paper, $01 \mathrm{mid.0} 400$ volls (${ }^{\text {Caparitor-Tubular, }}$)		SPEARER SSEMBLIES
73553	Capacilor-Tubular, paper, . 047 mfd., 400 volts (C8, C18)		SPEAKER ASSEMBLIES
73551	Capacilor-Tubular, paper, 0.1 mid.. 400 volts (C6, C19)		${ }^{92595} 5.5 \mathrm{~W}$
73935	Clip-Mounting clip for 1.F. transiormor		RL $105 \mathrm{Cl}^{\text {R }}$
74448	Coil-Oscillator coil complote with adjustable core (L2, L3)		
35787	Connector-Phono input connector (sockel)	75023	Cap-Dust cap
75474	Connector-Single contact male connector for speaker cable	$\begin{aligned} & 75024 \\ & 76392 \end{aligned}$	Cone-Cone and voice coil Speaker-8" P.M. speaker complete with cone and voice
74133 +72953 +	Control-Volume control and powor awitch ($\mathrm{H} 10,81$) Cord-Drive cord (approx. 43" overall length required)		coil NOTE. If tamping on apeaker in ingtrument does n
70392	Cord-Power cord and plug		agree with above speaker numberm, order roplocement
73693	Grommel-Powrer cord strain reliof (1, set)		parts by referring to model number of instrument, number
72283	Grommet-Rubber grommet ior mounting variable tuning capacitor		stamped on speaker and full description of part requised
71116	Lamp-Dial lamp, Mazda \#1490		MISCELLANEOUS
76585	Pointer-Station selector pointer		
72602	Pulley-Drive cord pulley	Y2358	Cabinel-Plastic cabinot-maroon-for Model 1×591
	Rosistors-Fixed, componillon:	Y2359	Cabinel-Plastic cabinet-lvory-for Model 1×592
504015	15 82 ohms, $\pm 20 \%$, $1 / 2$ watt (R16) 10%, $1 / 2$ watt (R17)	$\times 3231$ 76588	Cloth-Grille cloth only
503115	150 ohms, $\pm 10 \%$. $1 / 2$ watt (R14)	76588	Emblem-'RCA Viclor" amblem
513210	1000 ohms, $\pm 10 \%$, 1 watt (R15)	76587	Grillo-speaker qrill and cloth ass
503322	22.000 ohms, $\pm 10 \%$, 1/2 walt (R2)	74666	xnob-Control knob-maroon-for Model 1×591
503347	47.000 ohms, $\pm 10 \%$, $1 / 2$ watt (R9)	74667	Knob-Control knob--Ivory-for Model 1×592
503358	56,000 ohms, $\pm 10 \%$, 1/2 watt (R4)	74734	Spring-Retalning spring for knob

[^2]APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS

Lead Dress

1. Dress all heater leads down to chassis and away from all audio grid and plate wiring.
2. Dress power cord against chassis base.
3. Dress capacitor C18 against back apron.
4. Dress capacitor C13 down to base alongside of shielded lead.
5. Dress output transíormer lead down to chassis.
6. Dress capacitors C9 and C15 as direct as possible.
7. Dress dial lamp leads on lop of chassis between 12SQ7 and 50L6GT tubes; below chassis, as short as possible to rectifier socket.
8. Dress excess loop leads away from tubes and clear of tuning condenser.

Test-Oscillator.-For all clignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid $\alpha-v-c$ action.

On AC operation an isolation transformer (115 v./115 v.) may be necessary for the receiver if the test oscillator is also AC operated.

Dial Calibration

With the luning condenser fully meshed, the dial pointer thould be set to the first score mark at the left-hand end of the dial back plate. The four score marks represent: Max cap. 600 kc 1400 kc min. cap.

8tops	Connect the high side of test-oscillator to-	Tune testorc. 10-	Turn radio dial to-	Adjust the following for max. output
1	$\begin{aligned} & \text { 12s. } 7 \text { I-F grid } \\ & \text { through o.1 } \\ & \text { mid. coppeltor } \end{aligned}$	455 kc	Quiet-point 1800 ke end of dial	72 (top and bottom) 2nd I-F trans.
2	Stator of C1 through 0.1 mid.			- T1 (top and bottom) lat I-F trans.
3	Short wire placed near loop to radiate signal	1620 ke	Min. cap.	C4 (osc.)
4		1400 ke	1400 ke signal	+C2 (ant.)
5		600 ke	800 ke elgnal	L3 (ose.) Rock gang
6		Repeat stepa 3,4 and 5.		

- Do not readjust T2 when test oscillator is connected to Cl. \dagger When adjusting C2 (ant. trimmor) it is necencary to have the epeaker and loop in the same position and spacing as they will have when assembled in the cabinot.

POWER SUPPLY POLRRITY.-For operation on d.c., the power plug must be inserted in the outlet for correct polarity. If the sel does not function, reverse the plug. On a.c., reversal of the plug may reduce hum.

Dial Indicator and Drive Cord

Tube and Trimmer Locations

In late production R 16 is 33 ohms.

Specifications

Tube Complement	
1. RCA 6SQ7	A.F. Amplitier
2. RCA 6SQ7	Ph . Inverter
3. RCA 6V6GT	Output
4. RCA 6V6GT	Output
5. RCA SY3GT	Rectitier
Power Supply Rating 115 volts, 60 cycles	80 watts
Power Output Undistorted 10 watts	Maximumll watts
Loudspeaker	
Size and type	12 inch P.M.
Voice coil impedance	. 3.2 ohms 6400 cycles
Pilot Lamp	da \# $51,6.8$ volts, 2 amp

RP-190A-1 Record Changer:

The record changer will play up to fourteen 45 r.p.m. records having a $11 / 2$ inch center hole. It is identical to RP-190-2a record changer except for the omission of the power switch.

FOR RECORD CHANGER SERVICE DATA REFER TO RP-190 SERIES SERVICE DATA.

Manual Turntable:

The manual turntable will play one $331 / 3$ or 78 r.p.m. record up to twelve inches in diameter. The speed is controlled by a knob on the motorboard. The correct stylus is selected by a lever knob on the end of the pickup arm.

VOLUME CONTROL STOP

This instrument is provided with a volume control stop to provide a pre-determined "maximum" volume level and yet allow normal volume control operation up to the predetermined "maximum."

Adjusting "Maximum" Volume Level:

With the instrument operating, remove the volume control knob. Note the extending ends of two coil springs (one light and one heary) on the volume control shaft.

TO INCREASE

Turn control fully clockwise and then, with end of a pencil or similar item, press counterclockwise on the end of the LIGHT spring. Rotate control shaft clockwise until desired level is reached. Release pressure on the spring and replace knob.

TO DECREASE

Turn control fully clockwise and then, with the end of a pencil or similar item, press clockwise on the end of the HEAVY spring. Rotate control counterclockwise to a very low level. Increase volume to desired level as described above.

Pickup Arm Mounting - Manual Motorboard

MANUAL MOTORBORRD SERVICE HINTS
(a) Stylus force of pickup arm should be 8 to 10 grams. Insufficient force resulting from use of incorrect spring or pickup may allow stylus to jump grooves. Excessive force may cause distortion and record wear.
(b) Pickup arm pivots should be adjusted to provide a minimum of side play - yet allowing free vertical movement. Binding may cause stylus to jump groove.
(c) Inner surface of turntable rim must be clean and smooth. Idler wheel and drive pulleys must have no rough spots and be free of oil and grease. Roughness may cause rumble - oil may cause wow.
(d) Lubricate idler wheel and drive pulleys with a good quality light oil - one or two drops for each is sulficient.
(e) The pickup arm pivot shaft may be lubricated with a tilm of light oil. The pivot post rubber mounting should not be excessively compressed. The bearing nut should be tightened only enough to elevate the pivot shaft $1 / 32^{\prime \prime}$ above the post with the steel ball in place. This ball must be in place to permit free lateral pickup arm movement.

CRITICAL LEAD DRESS

1. Dress all filament leads next to chassis.
2. Dress power cord lead, from strain relief grommet to on-olt switch, along side apron.
3. Dress A.C. leads at ON-OFF switch away from all audio components.
4. Dress output tube plate leads next to chassis.
5. Dress C8 next to chassis and wire with as short leads as practical.
6. Dress lead from arm of low frequency tone control to grid of V-3 away from A.C. leads at ON-OFF switch.

MODIFICATION

Although designed and assembled for 3-speed operation provision is made for modification of this instrument for 33 and 45 rpm performance only. To eliminate the use of the 78 SPEED control and 78 stylus, proceed as follows:

To-alter SPEED SELECTOR control

Tie both pickup arms to their rests and place the instrument on its left side (not on control knobs) on a table. Through the opening in the bottom of the cabinet, discon nect the black power plug and the phono plug from its chassis connection. While supporting the top panel, remove the hex head screw and washer, centrally located beneath the top panel at the back of the cabinet.
Place cabinet upright, move SPEED SELECTOR to 45 position, then lift off top panel assembly.
From the back, the switch can be viewed from beneath the top panel and conversion effected as shown below. Bend the 33 stop to the vertical position of the adjacent 78 stop. The speed change lever (on left) should now halt against the vertical 33 stop, eliminating the 78 speed position.

Replace top panel (rubber supporting grommets must be in place) and the hex head screw and washer.
NOTE: It is important that screw be tightened until top panel can be lifted approximately $1 / 16$ inch only. The board should float freely on its mounts; there must be no restriction of movement.

Reconnect the black power plug and insert phono plug in the chassiz socket. Place the instrument in the upright position and untie pickup arms.

To adapt STYLUS CONTROL LEVER -

With lever in 33 position, loosen left holding screw just enough to turn lug to the position shown below and tighten screw. This will prevent the 78 stylus from being turned for use.

Before Operation -
Remove SPEED SELECTOR knob and turn over the CIRCULAR PLATE which will now show only 33 OFF 45 positions. Replace knob on shaft.

Reverse the lelt INSTRUCTIONS PLATE to read for 33 operation only.

 IN MME. EXCEPT TMOSS INDICATED.
VOLTAGES MEASUREO TO COMMOM WIGING WITH CHANALYGT OR
POWER LINE SUPPLY.

$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION	$\begin{gathered} \text { stock } \\ \text { No. } \end{gathered}$	DESCRIPTION
76731	TWO SPEED MANUAL TURNTABLE Pickup Árm Assembly	76684	Resistor-Wire wound, 0.47 ohms, 1 watt ...R16, R17 Resistors-Fixed, composition:-
	m-Pickup arm shell-less cartridge, mount, and	52312	270 ohms, $\pm 10 \%$, 2 watts
		523268	6800 ohms, $\pm 10 \%, 2$ watts
76734	Bracket-Pickup arm mounting bracket complete with pivot pin and counterbalance spring	503282	8200 ohms, $\pm 10 \%$, $1 / 2$ wattR13
		503315	15,000 ohms, $\pm 10 \%, 1 / 2$ watt
76737	Cable-3 wire pickup arm cable complete with connectori	503327	27,000 ohms, $\pm 10 \%, 1 / 2$ watt …e............. R2
76738	Knob-Stylus selector knob complete with	503447	470,000 ohms, $\pm 10 \%$, $1 / 2$ watt
76732	Mount-Pickup mount and swivel assembly	5046	10 megohm, $\pm 20 \%, 1 / 2$ watt R4, R8
74230	Nut-\#00-112 nut and washer to mount stylus	31364	Socket-pilot lamp socket
75475	Pickup-Dual stylus pickup crystal cartridge complete with two stylus	5441	Socket-T
75366	Pin-Pivot pin for counterbalance spring	71979	Stop-Volume control adjustable stop (two springs)
75357	Pivot-Pickup arm pivot (2 req'd)		Transformer-Output transformer T2
76733	Post-Pickup arm pivot post and stop pin	75566	Transformer-Power transformer, 117 volt 60 cycle . Tl
76736	Ring-Retaining ring for pickup arm mounting bia		FUNCTION SWITCH AS
71097	Screw-\#4 $\times 1 / 4$ " self tapping screw for pickup mount and swivel (4 req'd)	72437	Cable-Shielded audio cable complete with pin plug (switch to amplifier)
76735	Spring-Counterbalance spring	785	Capacitor-Ceramic, $1800 \mathrm{mmi} C 102 ~$
75497	Stylus-Osmium tip stylus for 78 RPM (not coded)	75643	Capacitor-Tubular, paper, . 001 mf., 1000 volts . Clol
75496	Stylue-Osmium tip stylus for $331 / 3$ RPM (coded red) Motor and Turntable Assembly Connector-2 contact male connector for motor leads	30868	Connector-Two contact female connector for motor cables101A, P102A
30870		30870	Connector-Two contact male connector for motor power cable
76751	Grommet-Rubber grommet to mount motor (3 req'd)	76693	Lever-Speed change lever (mounted on switch shaft)
76753	Motor-117 volt 60 cycle motor complete with mounting plate-less \#76768 plate and idler wheel	503318	Resistors-Fixed composition: 18,000 ohms, $\pm 10 \%, 1 / 2$ watt
76768	Plate-Speed control pulley mounting plate complete with pulleys	503356 503515	56,000 ohms, $\pm 10 \%$, $1 / 2$ watt ….................R101
7674	Pulley-78 RPM pulley	76694	Switch-Function
76743	Pulley-331/s RPM pulley		1, S102, S103
76749	Sleeve-Spring sleeve for motor shaft		
7675	Spring-Detent spring (below motor mounting		1494-2
76744	Spring-Hairpin spring to retain idler wheel		RLIIIBI
76745	Spring-Idler wheel tension spring labove motor mounting plate)	023	Cap-Dust cap RMA274
76752	Turntable-Finished turntable ($9^{\prime \prime}$ dia.)	76296	Cone-Cone and voice coil (3.2 ohms)
76	Washer-Flat	6389	Speaker-12" P.M. speaker complete with cone and
35969	Washer-"C" washer to retain turnable on shaft		
76750	Wheel-Idler wheel 45 R.P.M. AUTOMATIC RECORD CHANGER RP 190A-1 Same as listed for RP 190-2a in RP 190 Series Service Data except for the omission of the on-ofl switch and switch housing		NOTE:-lif stamping on speaker instrument does not agree with above speaker number, order replacement parts by referring to model number stamped on speaker and full description of part required.
		40	MISCELLANEOUS Baille-Bafile board and grille cloth
	FIER ASSEMBLIES RSI $39 A$	094	Ball-Steel ball ($1 / 8$ " dia.) for pickup arm mounting
76685	Capacitor-Ceramic, $560 \mathrm{mmf}$. C7	13103	
71976	Capacitor-Electrolytic comprising 1 section of 20 mid. . 450 volts, 1 section of 30 mid ., 350 volts and : section of $20 \mathrm{mid} ., 25$ volts ClÁ, ClB, ClC	113	Foot-Rubber foot (4
		75697	Grommel-Rubber grommet for mounting 45 RPM changer (3 req'd)
73850	Capacitor-Tubular, paper, oil impregnated, . 0012 mid., 1000 volts ClO, Cll	72856	Grommet-Rubber grommet for motor board (4 req'd)
73795	Capacitor-Tubular, paper, 0033 mid., 600 volts CS	74979	Knob-Selector switch knob-tan
73561	Capacitor-Tubular, paper, . 01 mid., 400 C2. C6, C8voltsCapacitor-Tubular, paper, 015 mid .600 volts \quad C3		Knob-Tone control or volume control knob-brown Lamp-Pilot lamp-Mazda 51
73797		76692	Link-Motor speed change link (bent-end section only)
62	Capacitor-Tubular, paper, 022 mid., 400 volts C4, C9	76691	Link-Motor speed change link (slotted section only)
35787	Connector-Phono input connector (sockel)jl	76	Nut-Pickup arm pivot shaft bearing nut
72776	Connector-Single contact male connector for speaker leads (2 req'd)	$\begin{aligned} & 736 \\ & 7668 \end{aligned}$	Nut-Speed nut for speaket mounting screws (4 req'd) Rest-Pickup arm rest (for $331 / 3$-78 RPM arm)
30868	Connector-2 contact female connector for motor power	7668	Sleeve-Rubber sleeve (39/64 O.D. x 7/16" I.D. x 11/32") for pickup arm pivot post
38405	Control-H.F. tone controlR9	14270	Spring-Retaining spring for knob 74057
38402	Control-L.F. tone control and power switch . R10, S1		Spring-Retaining spring for knob 72118
71980	Control-Volume control-less stopR3	266887	Spring-Speed change link and lever tension spring
74838	Grommel-Power cord strain reliel (1 set)		$1 / \mathbf{e n}^{\prime \prime}$) for pickup arm pivot post (2 req'd)

FOR RECORD CHANGER SERVICE INFORMA. TION - REFER TO RP-190 SERIES SERVICE DATA.

Specifications

Tube Complement for RS-138A and RS-138H

1. RCA 12 SQ 7

Amplifier
2. RCA 50L6.GT
3. RCA 35 W 4 .

Power amp. (Output) Rectifier

Tube Complement for RS-138F

1. RCA 12AV6...ifier
2. RCA 50B5 or 50C5* Power amp. (Output)
3. RCA 35W4.................................. Rectifier
*Refer to Instrument Label for Correct Replacement.
Loudspeaker
Size and type.
Voice coil impedance. 3.2 ohms at 400 cycles

RCAVictor

Automatic Record Player

model 45 -EY-2

Chassis No. RS-138A, RS-138F, RS-138H Service Data

- 1950 No. 33 -

PREPARED BY RCA SERVICE CO., INC. FOR

RADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION
CAMDEN, N. J., U.S.A.

Power Supply Rating
115 volts, 60 cycles A.C.
50 watts

Power Output
Undistorted......1.2 watts Maximum.....1.5 watts
Dimensions (over-all)
Height, 8\%" Width, $10 \%^{\prime \prime} \quad$ Depth, $8 \% /^{\prime \prime}$

Record Changer (RP-190-1, RP-190-4 or RP-190.6)

Turntable speed	45 r.p.m
Records used.	RCA-Type 7-inch fine groove
Record capacity	12 records
Pickup.	Crystal (medium output)

Note: Three types of pickups have been used. Use Stock No. 74067 for replacement.

REPLACEMENT PARTS

STOCK No.	DESCRIPTION	STOCK No.	DESCRIPTION
	AMPLIFIER ASSEMBLIES	73117	Socket-Tube socket, 7 pin, miniature
	RS-138A, RS-138F, RS-138H	70827	Socket-Tube socket, octal, wafer
76202	Baffle-Speaker bafte and grille cloth	75939	Tranalormer-Output trandormer 11
76406	Bracket-Speaker mounting brackets complote with screws-lor rim mounted apeakers		SPEAKER ASSEMBLIES 922258.4
39626	Capacitor-Mica, 82 mmf............................C7	75979	Speaker-4" $\times 6^{\prime \prime}$ P.M. speaker complete with cone and voice coil (pot mounted spaler)
75980	Capacitor-Electrolytic comprising 1 section of 50 mid, 150 volts, and 1 eection of 80 mfd, 150 volte. C5A, C5B		
73920	Capacitor-Tubular, paper, $005 \mathrm{mid}, 400$ volte Cl		SPEAKER ASSEMBLIES 922258-5
73561		76407	Speaker-4" $\times 6^{\prime \prime \prime}$ P.M. speater complote with cone and voice coil (rim mounted apeaker)
70613	Capacitor-Tubular, paper, 03 mid, 400 volte....... C6		
73551	Capacitor-Tubular, paper, 0.1 mid, 400 volte C3		MISCELLANEOUS
78201	Control-Volume control . 1		Cabinet-Plastic cabinet-maroon-lens bottom cover
70392	Cord-Power cord and plug	78203	
74838	Grommet-Power cord atrain reliel (l eet)		Cover-Bottom cover for cabinet-burgundy-com. plete with feet
73693 72314		75697	Grommet-Rubber grommet to mount changer mechaniem (3 req' d)
	Resiator-Fired, composition: - 33 ohms, $\pm 20 \%$, 1 waft	77139	Knob-Volume control linot
	150 ohme, $\pm 10 \%$, $1 / 2 \mathrm{watt}$ 1500 ohms, $\pm 10 \%$, $1 / 2$ watt	76204	Screw- " $10-32$ I $/ /^{\prime \prime}$ round head machine screw to mount changer mechaniem ($3 \mathrm{req}{ }^{\prime} \mathrm{d}$)
		76205	Screw " $6.32 \times$ the" her washer head machine serew lor securing bottom cover (4 req ' d)
	4.7 megohm, $\pm 20 \%$ \% $1 / 3$ watt 83	74734	Spring-Spring clip for volume control hnob

45-EY-2

Schematic Diagram RS-138A and RS-138H

Schematic Diagram RS-138F

R8-138A. R8-138H

Alternate Output Tube

Type 50B5 tube has been used as an alternate for type 50C5 tube. THE TWO TYPES ARE NOT DIRECT SUBSTITUTES. REFER TO INSTRUMENT LABEL FOR CORRECT REPLACEMENT. CHECK
 SOCKET WIRING IF IN DOUBT.

Critical Lead Dress

1. Dress all leads away from R6 and R9
2. Dress electrolytic capacitor away from R6 and R9
3. Dress filament leads down to chassis
4. Solder braid of W-1 such that it acts as a strain relief

Pickup Height Adjustment

Adjust knurled nut (A) until the distance (during change cycle) between the top of the turntable and the stylus point is approximately $1 \%^{\prime \prime}$.

Pickup Landing Adjustment

Adjust the screw driver landing adjustment stud " B " so the stylus lands $2 \%^{\prime \prime} \pm 4 / 4 n^{\prime \prime}$ from the side of the center post.

Tripping Adjustment

Adjust the eccentric tripping stud (C) until the mechaniem trips when the stylus is $1{ }^{1 \%} / z^{\prime \prime}$ from the side of the center poot.

Stop Dog Adjustment

Turn the eccentric screw (E) until the record drops to the turntable without striking the pickup arm.

FOR RECORD CHANGER SERVICE INFORMATION - REFER TO RP-190 SEIES SERVICE DÅTA.

Specifications

Tube Complement for RS-136

1. RCA 6SQ7

Amplitier
2. RCA 25L6-GT

Output
Tube Complement for RS-136A, RS-136C

1.	RCA 12SQ7	Ampli
2.	RCA 50L6-GT	Outp
3.	. RCA 3525-GT	Rect

Tube Complement for RS-136E

1. RCA 12AV6

Amplifier
2. RCA 50 C 5

Output
3. RCA 35 W 4

Rectifier

Loudspeaker

Size and type
$4 \times 6^{\prime \prime}$ P.M.
Voice coil impedance3.2 ohms at 400 cycles

Height 7\%"
Width, 1142"
Depth, $12 \frac{1}{1^{\prime \prime}}$
rca Victor

Automatic Record Player Model 45-EY-3

Chassis No. RS-1 36, RS-136A, RS-136C, RS-1 $36 E$
Service Data

- 1950 No. 25 -

PREPARED BY RCA SERVICE CO., INC. FOR

RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION CAMDEN, N. J., U. S. A.

Weight

13 lbs. net

Power Supply Rating

With RS-136 amplifier and RP-190-3 record changer 115 volts, 60 cycles A.C. 45 watts With RS-136A, RS-136C or RS-136E amplifier and RP-190-1, RP-190-4 or RP-190-6 record changer 115 volts, 60 cycles A.C. 50 watts
Power Output

Undistorted	1.2 watts	Maximum	1.5 watts
ecord Changer	$\left\{\begin{array}{lll}\text { (RP-190-1, } & \text { RP-190-3, } & \text { RP-190-4 } \\ \text { RP-190-6. }\end{array}\right.$		

NOTE: RP-190-3 used only in conjunction with RS-136 amplifier.
Turntable speed 45 r.p.m.
Records usedRCA-Type 7-inch tine groove
Record capacity 12 records
Pickup Crystal (medium output)
NOTE: Three different pickups have been used. Use Stock No. 74067 for replacement.

Chassis Identification

Chorsis stamped RS-136 use two octal base tubes and a selenium rectilier. The speaker is pot mounted.

NOTE: The record changer (RP-190-3) used in conjunction with this chassis has a special motor ($85 \mathrm{~s}, 300 \mathrm{ma}$) to obtain the proper filament voltages.

Chassis stamped RS-136A use three octal base tubes. The speaker is pot mounted.
Chassis stamped RS-136C use three octal base tubes. The speaker is rim mounted.
Chassis stamped RS-136E use three miniature type tubes. The speaker is rim mounted.

Access to Tubes

To gain access to tubes, remove the four screws which hold the bottom cover to the case.

Critical Lead Dress

1. Dress R6 and R9 up and away from socket and all other parts.
2. Dress C6 up and away from output tube socket.
3. Dress C3 away from rectifier socket.
4. Dress all wiring down against chassis.
5. Use caution when installing chassis in cabinet so that leads on back of speaker will not be pinched.

Schematic Diagram RS-136
NOTE: The record changer (RP-190-3) used in conJunction with this chassis has a special motor ($85 \mathrm{~F}, 300 \mathrm{ma}$) to obtain the proper filament voltages.

Tube Locations (Bollom View)

Schematic Diagram RS-136A and RS-136C

Tube Locations
(Bottom•View)

Schematic Diagram RS-136E

Tube Locations (Bottome View)

RECORD CHANGER ADJUSTMENTS

Pickup Hoight Adjustment

Adjuat knurled nut (A) until the dis ance (during change cycle) betwoen the top of the turntable and the stylus point is approximately $11 / \mathrm{s}^{\prime \prime}$.

Pickup Landing Adjustment

Adjust the screw driver landing adjustme:t stud " B " so the stylus land $2 \% \%^{\prime \prime} \pm 1 / 64^{\circ}$ trom the side of the center post.

Tripping Adjustment

Adjust the eccentric tripping stud (C) until the mechcmism trips when the strlus is $11 \% 2^{\circ "}$ from the side of the center post.

Stop Dog Adjustment

Turn the eccentric screw (E) until the record drope to the turntable without etriking the pickup arm.

REPLACEMENT PARTS

$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	AMPLIFIER ASSEMBLIES RS-136, RS-136A, RS-136C, RS-136E		MISCELLANEOUS
		75942	Bafle-Speaker bafle board and screen
76408 75980	Bracket-Speaker mounting brackets complete with screws (l set) for rim mounted speakers Capacitor-Electrolytic comprising 1 section of 50	75926	Case-Plastic case with "RCA Victor" emblemless bottom cover, top lid, "Victrola" decal, hinges, catch mechanism, and striker plate
	volts (C5A, C5B)	75948	Catch-Cabinet catch mechanism complete-less striker plate
73920	Capacitor-Tubular, paper, oil impregnated, 0047 mid., 400 volts, for RS-136A, RS-136C and RS136 E , also as replacement for .005 mf . in RS136 (Cl)	$\begin{aligned} & 75954 \\ & 74273 \end{aligned}$	striker plate Cover-Bottom cover for cabinet (plastic) Decal-Trademark decal (Victrola)
73561	Capacitor-Tubular, paper, oil impregnated, . 01 mid., 400 volts (C2, C4, C6)	74782 75697	Emblem-"RCA Victor" emblem
73551	Capacitor-Tubular, paper, oil impregnated, 0.1 mid., 400 volts (C3)	75697	Grommet-Rubber grommet to mount record changor (3 req'd)
38407	Control-Volume control (R1)	75956	Ha
70392	Cord-Power cord and plug	75957	Handle-Carrying handle-bottom section only
74838	Grommet-Power cord strain relief (1 set)	75955	Hinge-Cabinet lid hinge (2 req'd)
75941	Grommet-Rubber grommet for motor and pickup leads protection	75945	Knob-Volume control knob-maroon
73693	Grommet-Output transformer leads strain relief (l sel)	75953	Lid-Top lid for cabinet-less "Victrola" decal and hinges
75940	Rectifier Selenium rectifier for RS-136	75958	Link-Carrying handle link (2 req'd)
33378	Resistor-Wire wound, 22 ohms, 2 watts, used in RS-136 (R9)	74788	Nut-Speed nut to fasten ventilating screen (2 req'd)
73237	Resistor-Wire wound, 33 ohms, fuse type (R6)	75944	Plate-Mounting plate for carrying handle (2 req'd)
72314	Resistor-Wire wound, 120 ohms, 5 watts, used in RS-136A, RS-136C and RS-136E (R9)	75949	Plate-Striker plate for catch mechanism.
503115	150 ohms, $\pm 10 \%, 1 / 2$ watt (R7) 1500 ,	75913	Screw-\#10-32 $\times 3 / 4$ " round head machine screw to mount record changer (3 req'd)
503339 503427	39,000 ohms, $\pm 10 \%, 1 / 2$ watt (R2) 270,000 ohms $\pm 10 \%, 2 / 2$ watt (R4	75951	Screw-\#4-40 $\times 1 / 4^{\prime \prime}$ flat head machine screw to fasten catch mechanism (2 req'd) or striker plate (2 req'd) or hinge (4 req'd)
503547	4.7 megohm, $\pm 10 \%, 1 / 2$ watt (R3)	75952	Screw-\#6-32 ${ }^{3 / 11^{\prime \prime}}$, round head machine screw for
54414	Socket-Tube socket, octal, moulded, saddle type		lid support (4 req'd)
70827	Sockel-Tube socket, octal, wafer	75959	Screw-\#4 $\times 7 / 16^{\prime \prime}$ cross-recessed fillister head screw
74822	Sockel-Tube socket, 7 pin miniature, wafer		to mount carrying handle (4 req'd)
75939	Transformer-Output transformer (T1)	75950	Spacer-Metal spacer to mount record changer (3 req'd)
	$\underset{922258-4}{\text { SPEAKER ASSES }}$	76674	Spring-Handle retuin spring
75979	Speaker-4" $\times 6^{\prime \prime}$ P.M. speaker complete with cone and voice coil (pot mounted speaker)	$\begin{aligned} & 14270 \\ & 75946 \end{aligned}$	Spring-Retaining spring for volume control knob Spring-Pickup arm hold-down spring
		75978	Stud-Tapped stud for handle mounting plate screw
	922258-5	75943	Support-Cabinet lid support :
76407	Speaker-4" $\times 6^{\prime \prime}$ P.M. speaker complete with cone and voice coil (rim mounted speaker)	75947	Support-Plastic support for lid support and power cord (located on inside of cabinet)

FOR RECORD CHANGER SERVICE INFORMATION - REFER TO RP-190 SERIES SERVICE DATA.

Tube Complement

1. HCA 12 SC 7
Amplitier and Phase Invert.
2. RCA 35L6-GT (2 tubes)
3. RCA $3525-G T$
Push-Pull Output Rectifier

Loudspeaker (92586-6W or 92586-9W)
Size and type
Voice coil impedance
3.2 ohms
8" P.M.

Power Supply Rating
115 volis, 60 cycles A.C.
Power Output
Undistorted
2.3 watts

Maximum .. 3.2 watts
(29) RCA Victor

Automatic Record Player model 45-EY-4

Chassis No. RS 140
SERVICE DATA
— 1952 No. 1 -

PREPARED BY RCA SERVICE CO., INC.
FOR

RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION CAMDEN, N. J., U. S. A.

Dimensions (over-all)

Height, 8\%" Width, $111_{2^{\prime \prime}} \quad$ Depth, 131/2"

Record Changer RP190-2

Turntable speed $\ldots \ldots . .$. RCA-Type 7 -inch tine | groove |
| :--- |
| Records used |
| Record capacity |
| Pickup |

Turntable speed
Record capacity Pickup

Up to 14 records Crystal

REPLACEMENT PARTS

$\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$	DESCRIPTION	STOCK	DESCRIPTION
	AMPLIFIER ASSEMBLIES	54414	Socket-Tube socket
	RS140	73008	Transformer-Output tranaformer (Tl)
76782	Bracket-Lamp bracket		SPEAKER ASSEMBLIES
93514	Capacitor-Ceramic, 68 mmf . (C14)		SPEスKER ${ }^{\text {dSSEMBLIES }}$
74521	Capacitor-Electrolytic, 5 mid., 50 volts (C5)		$\begin{aligned} & 92586-6 \mathrm{~W} \\ & \text { RLIO5Cl4 } \end{aligned}$
75980	Capacitor-Electrolytic, comprising 1 section of 50 mfd. 150 volts and 1 section of 80 mid., 150 volts (C10A, C10B)	75024	Cone-cone and voice coil (3.2 ohms)
73595	Capacitor-Tubular, paper, 0025 mfd .600 volte (C6)	76392	Speaker-8' P.M. seaker complete with cone and voice
73788	Capacitor-Tubular, paper, 0056 mid., 400 volta (C7)		coil (3.2 ohms)
73789	Capacitor-Tubular, paper, . 0068 mid., 400 volts (C3)		SPEAKER ASSEMBLIES
73561	Capacitor-Tubular, paper, $.01 \mathrm{~m} / \mathrm{d} ., 400$ volts (C2, C8, C11, C12)		$\begin{gathered} 92586-9 W \\ \text { RLI05F2 } \end{gathered}$
73797	Capacitor-Tubular, paper, . 015 mid., 600 volts (C4)		
73553	Capacitor-Tubular, paper, $047 \mathrm{mid} ., 400$ volts (Cl, Cl3)	75024	Cone-cone and voice coil (3.2 ohms)
73551	Capacitor-Tubular, paper, $0.1 \mathrm{mid} ., 400$ volts (C9)	74664	Speaker-8'4 P.M. speaker complete with cone and voica
38975	Connector-2 contact temale connector for motor cable (J2)		coil (3.2 ohms)
36422	Connector-3 contact female connector for pickup cable (J1)		MISCELLANEOUS
75338	Control-Tone control (R16)	76786	Board-Speaker baffe board and grille cloth
70342	Control-Volume control and power witch (R4, Sl)	76791	Bumper-Rubber bumper for cabinet lid (2 req'd)
75575	Crystal-Cartridge complete with stylus	76778	Cabinet-Plastic cabinet-maroon-complete with polystyrene escutcheon, rubber feot, baffle board and ventil-
74838	Grommet-Power cord strain reliel (1 eet)		rene escutcheon, rubber feet, bant board ating screens less lid, lid support and hinges
11765	Lamp-Pilot lamp-Mazda 51 Realstor-Fixed, composition:-	76789	Cap-Pilof lamp cap
		74273	Decal-"Victrola" decal
513082	82 ohms, $\pm 10 \%, 1$ watt (R12)	76793	Escutcheon-Polystyrene escutcheon complete with "RCA Victor" emblem
503115	150 ohms, $\pm 10 \%$, 1/8 watt (R6)	76787	Foot-Rubber foot (4 req'd)
514210 503239	1000 ohms, $\pm 20 \%$, 1 watt (R14) 3900 ohms, $+10 \%$, 4/ watt (R5)	75697	Grommet-Rubber grommet for mounting changer (3 req'd)
503239	3900 ohms, $\pm 10 \%$, 42 watt (R5) 15,000 ohms, $+10 \%$, 1/2 watt (R10)	75955	Hinge-Cabinet lid hinge
503327	27,000 ohms, $\pm 10 \%, 1 / 8$ watt (R3)		Lid-Plastic lid for cabinet less "Victrola' decal
503339	39,000 ohms, $\pm 10 \%$, 1/2 watt (R2)	76790	Nut-Speed nut to fasten pilot lamp cap
504410	100,000 ohms, $\pm 20 \%$, 1/3 watt (R13)	76788	Screen-Ventilating screen (2 req'd)
503422	220,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R7, R8)	76792	Screw-\#4-40 x 1/4 cross recessed flat head machine
503447	470,000 ohms, $\pm 10 \%, 1 / 2$ watt (R9, Rll)		screw for lid hinge
503456	560,000 ohms, $\pm 10 \%$, 1/8 watt (RI7)	76204	Screw-\#10-32 $\times 1 / h^{\prime \prime}$, round head machine screw for mounting changer (3 req'd)
76783	Shield-Lamp shield	74734	Spring-Spring clip for control knob
76723	Socket-Pilot lamp socket and leads	76785	Support-Lid support

Schematic Diagram RS.140

Production Changes:

In early production R1 was 2.2 megohm and C15 was omitted. A capacitor C15 (820 mmf) and a resistor (820 K) was connected (in parallel) at the muting switch of the record changer. IF R1 IS 680K AND ClS IS USED IN THE CHASSIS, THERE SHOULD BE NO RESISTOR AND CAPACITOR ON THE RECORD CHANGER.

R15 was 15 ohms in early production.

Additions to Parts List:

CHASSIS ASSEMBLY

76864
514033
503468

77140

Capacitor-Ceramic, 820 mml (C15)
Resistor-Fized, composition, 33 ohms, $\pm 20 \%$,
1 watt (R15)
Resistor-Fixed, composition, 680,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R1)

MISCELLANEOUS
Knob-Control knob

Top Vieu

Automatic Record Player Model 45-EY-26
Chassis No. RS-138L, RS-138M Record Changer RP 190A-2 Service Data - 1951 No. 6 -
PREPARED BY RCA SERVICE CO., INC. FOR
RADIO CORPORATION OF AMERICA
RADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION
RCA VICTOR DIVISION
CAMDEN, N. J., U.S.A.
CAMDEN, N. J., U.S.A.

Specifications

Tube Complement for RS-138L

1. RCA 12 SQ 7

Amplifier
2. RCA 50L6-GT
3. RCA 35W 4

Output
Rectifier
Tube Complement for RS-138M

1. RCA 12AV6

Amplifier
2. RCA 50 C 5

Output
3. RCA 35W 4

Rectifier
Power Supply Rating
115 volts, 60 cycles A.C.
50 watts

Power Output

Undistorted..... 1.2 watts Maximum..... 1.5 watts NOTE:

This instrument uses a special screw (Holt type) to attach the chassis base to the cabinet. This was done as a safety measure because the instrument was designed for use by children.
This type of screw can not be removed by either a common or a Phillips type of screw driver. A common screw driver may be modified for use with these screws by grinding a "V" in the end. Refer to the illustration at right.

Loudspeaker (922258-5)

Size and type
Vize coil impedance3.2 ohms at 400 cycles

Dimensions (over-all)
Height, $83 / /^{\prime \prime} \quad$ Width, $10 \% /^{\prime \prime} \quad$ Depth, $88 / 3^{\prime \prime}$
Record Changer RP 190A-2

Turntable spee	$45 \mathrm{r} . \mathrm{p} . \mathrm{m}$.
Records used.	RCA-Type 7-inch fine groove
Record capacit	up to 14 records

Pickup, Crystal (medium output) Stock No. 76318 (Use Stock No. 74067 for replacement)

REPLACEMENT PARTS

$\begin{aligned} & \text { STOCR } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { STOCX } \\ & \text { No. } \end{aligned}$	DESCRIPTION
	AMPLIFIER ASSEMBLIES RS-138L, RS-138M	$\begin{aligned} & 70827 \\ & 74822 \end{aligned}$	Socket-Tube socket, octal, wafor Socket-Tube socket, 7 pin, miniature, for 12AV6 and SOCS tuber
$\begin{aligned} & 76202 \\ & 39626 \end{aligned}$	Baflle-Speaker baffe and grille cloth Capacitor-Mica, 82 mmi.	$\begin{aligned} & 73117 \\ & 75939 \end{aligned}$	Sockel-Tube socket, 7 pin, minialure for 35 W 4 tube Traneformer-Output transformer
75980 75643	Capacitor-Electrolytic, comprising 1 section of 50 mid., 150 volte and 1 section of 80 mid., 150 valts C5A, C5B Capacitor-Tubular, paper, . 001 mld., 1000 valte. C9		SPEAKER ASSEMBLIES $922258-5$
75643	Capacitor-Tubular, pappr, 0047 mid., 600 volte. Cl		
73561		76407	Speaker-4" $\times 6^{\prime \prime}$ P.M. apeaker complote with cone
73533	Capacitor-Tubular, paper, . 047 mid., 400 volts . . C3, C8		
76201	Control-Volume control R1		MISCELLANEOUS
70392	Cord-Power cord and plug		
73693	Grommet-Power cord or tranatormer lead strain reliof (l set)	74734	Clip-Spring clip for knob
72314	Resistor-Wire mound, 120 ohms, 5 watta R9	76722	Cover-Bothom cover-ivory-complete with foet
513033	Renistore-Fired compontion- 33 ohms, ± 10 \% 1 watt R 6	75697	Grommot-hubber grommet for mounting change mechanism ($3 \mathrm{req}{ }^{\prime} \mathrm{d}$)
503115	150 ohme, $\pm 10 \%$, $1 /$ watt $\mathrm{R7}$	77234	Knob-Contral knob with mpring clip-ivory
503215 503347	1500 ohms, $\pm 10 \% .1 / 2$ watt R 82	76205	Screw- 6-32 x $5 / 16^{*}$ hox washer head machine ecrew for bottom cover ($4 \mathrm{req}{ }^{\prime} \mathrm{d}$)
503347 503427		76204	Screw- $10-32 \times 7 / 8^{\prime \prime}$ round head machine screw
503547	4.7 megohm, $\pm 10 \%, 1 / 2$ watt R3		for mounting changer mechaniem (3 req'd)

Schematic Diagram RS-138L

Critical Lead Dress

1. Dress all leads away from R6 and R9
2. Dress electrolytic capacitor away from R6 and R9
3. Dress filament leads down to chassis
4. Solder braid of $W-1$ such that it acts as a strain relief

Tube Locations RS-138M

Tube Locations RS-138L

[^3]

MODEL IDENTIFICATION

RP-190-1 Uses crystal pickup Stock No. 75476° or 76318.* RP-190.1a $\}$ Models 45-EY-2, 45-EY-3, 45-J-2 and 9Y510.
RP-190-2 Uses crystal pickup Stock No. 75575. Models A-82. RP-190-2a A-91, A-101, A-108, 45-EY-4, 45-W-9, 45-W-10, 2T81, $4 \mathrm{Tl} 41,6 \mathrm{~T} 84,6 \mathrm{~T} 86,6 \mathrm{~T} 87,7 \mathrm{~T} 143,9 \mathrm{~T} 89$ and 9 T 147.
RP-190-3 Uses crystal pickup Stock No. 75476° or 76318^{*}
RP-190-3a $\{$ and special motor (85 volts). Model 45-EY-3.
RP-190-4 Uses crystal pickup Stock No. 75476° or 76318°
RP-190-4a and different "On-Off" switch, otherwise same as RP-190-1 and RP-190-1a.
RP-190-5 Uses ceramic pickup Stock No. 76297, different counterbalance spring and motor suitable for 50 cycle conversion. Otherwise same as RP-190-4a. Models QEY4, QEY5 QJY2.
RP-190-6 Uses crystal pickup Stock No. 74067. Otherwise same as RP-190-4a.
RP-190A-1 Uses crystal pickup Stock No. 75575. Does not use "On-Off" switch. Otherwise same as RP-190-2a.
RP-190A-2 Uses crystal pickup Stock No. 76318. * Five parts differ in color only. Otherwise same as RP-190-1a. ${ }^{*}$ Use Stock No. 74067 for replacement.
NOTE: RP-190-1 vs. RP-190-1a.
RP-190-2 vs. RP-190-2a, etc.
Two typen of cycling slides and counterbalance assemblies have been used. The " a " in the identification indicates the use of the late type assemblies. See Page 10 for details.

CAUTION

1. Avoid handling the pickup arm when the mechanism is in cycle.
2. Do not use force to release a jam.
3. Do not try to remove the records on the turatable if the turntable is stopped in cycle.
4. If the separator knives protrude from the center post when the mechanism is out of cycle, push the "start-reject" knob to reject and the condition should be corrected automatically.

AUTOMATIC OPERATION

1. Place a stack of records over the center post, with the desired selections upward, the last record to be played on top.
2. Pull the "start-reject" knob to "start" (forward) and release. The mechanism will automatically play in sequence one side of each record stacked on the separator shelves.
3. To reject a record being played, pull the "start-reject" knob.
4. At conclusion of playing and as the last record is being repeated, lift the pickup arm and place on its rest. Turn of the power to the drive motor by pushing back on control knob.
5. Remove the stack of records by lifting them straight up.

RCAVictor RP-190 Series

45 R.P.M. Automatic Record Changer Service Data

-1950 No. 14-

PREPARED BY RCA SERVICE CO., INC. FOR
 RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION
 CAMDEN, N. J., U. S. A.

SPECIFICATIONS

able speed	45 r.p.m.
Records used.	RCA type seven-inch tine groove
Record capacity	Up to 14 records
Pickup force	. Approx. 5 grams
Stylus tip radius	. 001 inch
Power	25 volts, 60 cycle, α.

(RP-190-3 uses 85 volt, 60 cycle motor.)
(RP-190-5 may be converted to 50 cycle operation.)

LUBRICATION

A light machine oil (SAE No. 10) should be used to oil the bearings of the drive motor.

On all bearing suriaces, excepting the motor bearings, Houghton STA-PUT No. 320, or equivalent, should be used. On all other sliding surfaces, STA-PUT No. 512, or equivalent, is recommended. STA-PUT can be purchased from E. F. Houghton \& Co., 303 W. Lehigh Ave., Philadelphia, Pa.
(Do not oil or grease record separator shelves.)
It is important that the drive motor spindle and the rubber tire on the idler wheel be kept clean and free from oil or grease. dirt, or any foreign material at all times. Carbon tetrachloride or naphtha is satisfactory for cleaning these parts.

INDEX

	Page
Specilications	1
Cautions	1
Operation	1
Lubrication	1
Photos	2
Function of Principal Parts.	3
Cycle of Operation.	3-4-5
Do You Know? (Service Hints).	5-6
Service Hints	6-7-8
Adjustments	$8-9$
Exploded View of Mechanism.	10
Service Parts List.	11-12

Fig. 1

Fig. 2

Trip Lever (77)

The trip lever is mounted on the bottom end of the pickup arm vertical pivot shaft. The function is to transler the movement of the pickup arm to parts of the operating mechanism below the motor board. The end of the trip lever contacts stud on cycling cam thereby starts tripping action.

Pickup Arm Return Lever (70)

The function of the pickup arm return lever is to provide a force necessary to push the pickup into landing position. The end of the pickup arm return lever is curved so as to provide a stop lor trip lever. This stop determines landing position of the pickup.

Function of Principal Parts
 \section*{Reject Lever (22)}

The function of the reject lever is to transfer the action of the control knob to the cycling cam thereby starting a change cycle.

Muting Switch (68)

The function of the muting switch is to short the pickup leads to prevent amplity. ing of mechanical noise, of the merchanism during change cycle.

Cycling Cam (85)

The cycling cam is mounted on the cycling slide. The function of the cam is to transfer the rotary motion of the rurntable shaft into sliding motion of the cycling slide.

Stop Dog (82A)

The stop dog is mounted on the end of cycling slide. The function of the stop dog is to engage the ratchet wheel on the sep. arator shaft and prevent it from rotating, at the exact moment during change cycle.

Ratchet Wheel (53)

The function of the ratchet wheel located on the end of the separator shaft is to keep the separator shaft stationary at the proper time. so as to actuate the separator mech. anism inside the centerpost.

Cycling Slide (82)

The cycling slide is the main connecting medium beiween the various moving parts.

Cycle of Operation

Fig. 5

Fig. 6

Separator knives separate the lower record from the stack and the lower record drops to the turntable.

Pickup moves in tor landing.

1. As the cycling slide reaches the limit in its movement in the direction of the pickup arm pivot. the stop dog mounted on the slide engages the rotating ratchet wheel (53).
2. The ratchet wheel and separator shaft (6) then remains stationary and the turntable continues to rotate.
3. The separator shelves and knives are coupled together in such a manner that the flattened end of the separator shaft pushes the knives out. which in turn pulls the opposite shelves in.
4. As the shelves recede, the separator knives mounted above the shelyes move out and separate the lower record of the stack and support the remaining records while the lower record drops to the turntable.

Fig. 7

Fig. 8

KNIVES IN - SHELVES OUT

Fig. 9

1. The cycling slide moves away from the pickup arm pivot. due to the force produced by the tension spring (89) keeping the eccentric cycling cam against the rotating knurled roller (62). The knurled roller at this time is returning to the smaller diameter of the cam.
2. The stud on trip lever assembly follows the slide due to the force produced by the action of the pickup arm return lever.
3. After the slide has moved back a short distance the stud on the trip lever assembly no longer follows the slide since the landing adjustment stud comes against the curved stop on the end of the pickup arm return lever. At this moment the pickup is directly above the point of landing.
4. As the cycling slide completes the return movement the elevating rod slides down the incline which lowers the stylus on the record.

Fig. 10

Cycle completed and the record plays.

1. The tab on the cycling slide contacts and opens the muting switch.
2. The stud on the cycling slide pushes pickup arm return lever back to permit free motion of the pickup arm.
3. The change cycle is completed as the cycling slide comes against the stop bracket, at which time the knurled roller rotates in the cut away section of the cam.
4. As the record plays and the pickup arm moves inward.
5. When the stylus reaches the end of the selection the end of the trip lever contacts the stud on the cycling cam, and pushes it slightly.
6. The slight movement of the cycling cam causes engagement with the rotating knurled roller, thereby starting a change cycle.
7. The mechanism repeats the preceding sequence of operations until the last record of the stack has dropped and has been played. This selection will be repeated until the pickup is lifted and placed on the rest.

Fig. II

Fig. I?

Fig. 13
DO YOU KNOW?

OR MISSING, PICKUP WILL
$\begin{array}{ll}\text { IF THIS SPRING IS LOOSE } & \text { IF THERE IS A BIND IN THIS } \\ \text { OR MISSING PICKUP WILL } & \text { PIVOT, MECHANISM MAY NOT }\end{array}$ TRIP
?

Fig. 14

F THE SHELVES ARE GREASED, FOREICN MATERIAL MAY COLLECT AND CAUSE EINDINC. TENBION SPRINGS MAY NOT HAVE SUFFICIENT FORCE TO PUSH THE
SHELVES OUT.

Fig. 16
Fig. 15

SERVICE HINTS

REJECT CONTROL FALLS TO OPERATE

Fig. 17

RECORD STRIKES PICKUP ARM WHEN DROPPING

PRELIMINARY LANDING ADJUSTMENT MAY BE INCORRECTLY SET

STOP DOG ADJUSTMENT BE IMPROPERLY SET

MECHANISM FAILS TO SEPARATE RECORDS PROPERLY

Fig. 18

Fig. 19

Fig. 20

PICKUP FAILS TO LAND PROPERLY

Fig. 22

Fig. 23

Fig. 24
DISTORTED OR NO OUTPUT

Fig. 28

Fig. 29

PICRUP SKIPS GROOVES

Fig. 25
MECHANISM FAILS TO TRIP

Fig. 26

Fig. 27
PREMATURE TRIPPING

Fig. 30

Fig. 32

CONTINUOUS TRIPPING

Fig. 34

MECHANISM FAILS TO COMPLETE CYCLE

Fig. 35

ADJUSTMENTS

Fig. 36

TRIPPING

Fig. 37

Adjustments

Pickup Landing Adjustment:

Under ordinary conditions the landing adjustment is a screwdriver adjustment as shown. The adjustment of eccentric landing adjustment stud (B) gives approximately a $1 / 4^{\prime \prime}$ movement. (See Fig』. 38, 40.)
If, however, the pickup arm has been removed it is first necessary to make an approximate landing adjustment as follows:

1. With the mechanism out of cycle and the clamp screw (G) (Fig. 39) loose, place pickup arm on the rest and tighten clamp screw enough to prevent the clamp from slipping on the shaft.
2. Set the landing adjusiment stud (B) as shown (midadjustment). (See Figs. 40. 41.)
3. With the power removed, push reject control to reject. Rotate turntable by hand in the correct direction until the pickup is about ready to land.
4. Loosen clamp screw (G) and move pickup arm so the stylus is approximately $2 \frac{3 / 8^{"}}{}$ from side of centerpost. Tighten clamp screw, (See Figs. 36, 39.)
5. Exact landing adjustment can now be made by a screw. driver on stud (B). (See Fig. 38.)

Pickup Height Adjustment (See Fig. 38):
Adjust knurled nut (A) until the distance (during change cycle) between the top of the turntable and the stylus point is approximately $11 / s^{\prime \prime}$.
NOTE: If unable to adjust for sutticient height, it may be necessary to cut a lew turns from the compression spring to allow more space on the shaft.

Tripping Adjustment (See Figs. 37, 38):
Adjust the eccentric tripping stud (C) until the mechanism trips when the stylus is $19 / 32^{\prime \prime}$ from the side of the centerpost.

Mounting Bracket Adjustment (See Fig. 38):
Loosen the two screws (F) and move the bracket so it is as near perpendicular to the slide as possible. Move back or forward until the cut away section of the cycling cam clears the knurled roller approximately $1 / 16$ ". Tiqhten screws.
Muting Switch Adjustment (See Fig. 38):
Loosen the two screws (D) and adjust the position of the switch so the contacts are approximately $1 / 32$ to $1 / 16$ inches apart when the mechanism is out of cycle. If the mounting screws do not give sulficient adjustment, bend tab on slide slightly.
Stop Dog Adjusiment (See Fig. 38):
Turn the eccentric screw (E) until the record drops to the turntable without striking the pickup arm.

Original counterbalance and swivel assembly
-

\begin{tabular}{|c|c|c|c|c|c|}
\hline STOCX
No. \& \[
\begin{aligned}
\& \text { ILL. } \\
\& \text { No. }
\end{aligned}
\] \& DESCRIPTION \& STOCR No. \& \begin{tabular}{l}
ILL. \\
No.
\end{tabular} \& DESCRIPTION \\
\hline 74862 \& 1 \& Spring-Spindle nose spring--formed \& 74782 \& 23 \& Emblem-"RCA Victor" emblem (maroon) \\
\hline 74864 \& 2 \& Separator-Separator knife \& 76726 \& 23 \& Emblem-'RCA Victor' emblem (red) \\
\hline 74865 \& 3 \& Shelf-Separator shelf \& -75719 \& 24 \& Arm-Pickup arm shell only (see note) \\
\hline 75756 \& 4 \& Spring-Separator shelf return spring (. \(118^{\prime \prime}\) O.D. \(\times 3 / 4 \prime-16\) turns) \& 76098 \& 24 \& Arm-Pickup arm (black) (late type) complete with counterbalance, swivel and pin - less \\
\hline 33726 \& 5 \& Washer-"C"' washer to hold separator shaft and cam \& 76709 \& 24 \& collar, pickup and cable (see note) \\
\hline 75757 \& 6 \& Shaft-Separator shaft with cam \& \& \& balance, swivel and shaft-less pickup \\
\hline 75741 \& 7 \& Knob-Control knob (maroon) \& \& \& and cable \\
\hline 76725 \& 7 \& Knob-Control knob (red) \& 76099 \& 24A \& Collar-Pickup arm pivot shaft collar-less \\
\hline 75739 \& 8 \& Lever-Reject lever complete with formed spring \& 75728 \& 25 \& screw-for late type pickup arm Cable-3-wire twisted pickup arm cable com- \\
\hline 75729 \& 9 \& Board-Motorboard sub-assembly complete with welded and/or staked studs and rest \& \& \& plete with connectors for all models using crystal pickups \\
\hline 76724 \& 9

10 \& Board-Motorboard (ivory) complete with welded and/or staked studs and rest \& 76298 \& 25 \& Cable-3-wire twisted pickup arm cable complete with connectors for RP-190-5 using ceramic pickup

\hline 74869 \& 10 \& Washer-No. 6 tlat washer for under head of screws No. 75758 \& 71095 \& 26 \& Nut-Speed nut for cable-in rear of arm

\hline 75758 \& 11 \& Screw-No. $6.32 \times 1^{\prime \prime}$ fillister head machine screw (holds nose to spindle) \& 72765

$\cdot 75721$ \& $$
\begin{aligned}
& 27 \\
& 28
\end{aligned}
$$ \& Nut-Speed nut for cable-in center of arm Weight-Counterbalance weight-die cast (see

\hline 74080 \& 12 \& Washer-Thrust bearing washer \& \& \&

\hline 75748 \& 13 \& Stud-Reject lever mounting stud \& -75724 \& 29 \& Pin-Pin for anchoring shock absorbing springs

\hline 75755 \& 14 \& Cap-Spindle nose cap-red \& \& \& (see note)

\hline 75753 \& 15 \& Turntable-Turntable (black) and shaft assem. bly complete with finished disc \& -75723 \& 30 \& Screw-No. $6 \times 11 / 16^{\prime \prime}$ fillister head screw to fasten counterbalance (see note)

\hline 76727 \& 15 \& Turntable-Turntable (red) and shaft complete with finished disc \& 75886 \& 31 \& Spring-Counterbalance spring (.180" O.D. x $.600^{\prime \prime}-30$ lurns for all models using crym(al pickups

\hline 75754 \& 15A \& Disc-Finished disc for turntable - part of No. 75753 and 76727 \& 74060 \& 31 \& Spring-Counterbalance spring (.171" O.D. x 695" - 43 turns for RP-190-5 using ceramic

\hline 74067 \& 16 \& Pickup-Crystal pickup cartridge complete with stylus (RMP 128-1) for RP-190 1, -3, -4. -6 and RP-190A-2 \& -75720 \& 32 \& | .695 - 43 turns for RP-190-5 using cercmic pickup |
| :--- |
| Swivel-Pickup arm swivel (see note) |

\hline 75575 \& 16 \& Pickup-Crystal pickup cartridge complete with stylus (RMP 128-4) for RP-190-2 and RP-190A. 1 \& ${ }^{\bullet} 75726$ \& 33 \& Screw-No. 8-32 x 5/8" cross recessed pan head machine screw to mount pickup arm swivel No. 75720

\hline 76297 \& 16 \& Pickup-Ceramic pickup cartridge complete with stylus for RP-190-5 \& 76100 \& 33 \& Screw-No. $6.32 \times 1 / 4^{\prime \prime}$ hex head machine screw for pivot shaft collar No. 76099

\hline 74069 \& 16A \& Guard-Stylus guard for No. 74067 pickup \& 35969 \& 34 \& Washer-"C" washer to mount trip lever

\hline 74819 \& 16A \& Guard-Stylus guard for No. 75575 pickup \& 75752 \& 35 \& Washer-Steel thrust washer

\hline 74065 \& 16B \& Screw-No. $2.56 \times 3 / 16^{\prime \prime}$ fillister head screw to mount No. 74069 or No. 74819 guard \& 76005 \& 36

37 \& | Washer-Bearing washer for tone arm |
| :--- |
| Retainer-Idler wheel retainer (spring sleeve |

\hline 74068 \& 16C \& Stylus-Replacement stylus and holder for No. 74067 pickup \& 75887 \& 38 \& | type) |
| :--- |
| Washer-Spring washer for idler wheal |

\hline 75770 \& 16C \& Stylus-Replacement stylus and holder for No. 75575 pickup \& 74077 \& $$
39
$$ \& Wheel--Idler wheel

\hline 74985 \& 16C \& Stylus-Replacement stylus for No. 76297 pickup \& \& 40 \& Nut-No. 6-32 hex nut for mounting motor to idler lever plate assembly

\hline 74230 \& 16D \& Nut-Nut and washer to mount No. 74068 or No. 75770 stylus \& - 74070 \& 41 \& Lockwasher-No. 6 split lockwasher for No. 6-32 hex nut

\hline 75722 \& 17 \& Screw-No. $4 \times 1 / 4{ }^{1 \prime}$ fillister head screw to mount pickup \& 74078 \& 42
43 \& Washer-Dampening washer for idler wheel Spring-Idler wheel tension spring (.195" O.D.

\hline -75727 \& 18 \& | Spring-Shock absorbing spring (.187" O.D. |
| :--- |
| $x 3 / 4$ ") (see note) | \& 75759 \& 44 \& | $\times 29 / 32^{\prime \prime}-37 \frac{1}{2}$ (urns) |
| :--- |
| Plate-Motor mounting plate complete with |

\hline $\bullet 75725$ \& 19 \& Nut-No. 8-32 hex nut to mount pickup arm (see note) \& 75761 \& 45 \& | idler lever |
| :--- |
| Grommet-Rubber grommet for motor mount- |

\hline 72349 \& 20 \& Bearing-Thrust bearing \& \& \& ing plate

\hline 75740 \& 21 \& Spring-Reject lever spring (formed), part of reject lever \& 75749 \& 46 \& Washer-Flat washer-metal (.0299" $\times .190^{\prime \prime}$ I.D. $\times 3 / /^{\prime \prime}$ O.D.)-for mounting motor

\hline 75742 \& 22 \& Spring-Reject lever return spring (. $180^{\prime \prime}$ O.D. $\times .535^{\prime \prime}-21 \frac{1}{2}$ turns) \& 33726 \& 47 \& Washer-"C" washer to mount motor assembly

\hline
\end{tabular}

$\begin{gathered} \text { STOCX } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { ILL. } \\ & \text { No. } \end{aligned}$	DESCRIPTION	$\begin{gathered} \text { STOCR } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { ILL. } \\ & \text { No. } \end{aligned}$	DESCRIPTION
75760	48	Motor- 117 volt, 60 cycle motor for all models except RP-190-3 and RP-190-5	- -	65	Nut-No. 8-32 hex nut to tasten cable clamp ILL. 64
75937	48	Motor-85 volt, 60 cycle motor for RP-190-3 (used in some Model 45-EY-3)	74192	66	Connecter-3 contact male connector for audio cable
76299	43	Motor-117 volt, 60 cycle motor for RP-190-5 (less conversion spring)		67	Same as 61
76302	-	Spring-Conversion spring sleeve (60 to 50 cycle) for use on No. 76299 motor in RP-190-5	76004	69	Spring-Pickup arm return lever spring (.195" $\text { O.D. } \times 11 / 4^{\circ \circ}-69 \text { (urns) }$
			75734	70	Lever-Return lever
74212	49	Nut-Control knob	35969	71	Washer- "C" washer to mount return lever
74431	50	Washer-Spring washer to mount reject lever mounting stud	-_	72	Cable-Shielded audio cable (see Service Data for various instruments)
75736	51	Collar-Friction collar	31048	72A	Plug--Pin plug for audio cable
14974	52	Screw-No. $8.32 \times 3 / 16^{\prime \prime}$ hex socket headcup point-for friction collar	-_		Power cord (see Service Data for various instruments)
75738	53	Wheel-Ratchet wheel	30870	73A	Connector-2 contact male connector for
75750	54	Washer-Flat washer-metal (.0299" $\times .180^{\prime}$ I.D. $\times 9 / 16^{\prime \prime}$ O.D.) - for ratchet wheel, thrust spring	75731	74	power cable Rod--Elevating rod
75743	55	Spring-Ratchet wheel thrust spring (5/16"	75768	75	Stud-Tripping adjustment stud
		O.D. $\times 7 / 16^{\prime \prime}-51 / 2$ turns)	74431	76	Washer-Spring washer for adjusting studs
33726	56	Washer-"C" washer to mount ratchet wheel	75767	77	Lever-Trip lever assembly-less spring and
75735	57	Bracket-Mounting bracket for slide assembly	74431	78	tripping and landing adjustment studs
	58	Lockwasher-No. 8 external teeth lockwasher for cycling slide mounting bracket	74431 75769	78 79	Stud-Landing adjustment stud
74670	59	Screw-No. $8 \times 3 /{ }^{\prime \prime}$ self-tapping hex head screw to mount slide assembly bracket	75749	80	Washer -Flat washer-metal (.0299" x . 190" I.D. $x 3 / 3^{\prime \prime}$ O.D.)-to mount sub-motorboard
75732	60	Housing-"On.Off" switch housing and lever -less switch No. 75733	75746	81	Spring-Height adjustment spring (.262" O.D. $\times 13 / 16^{\prime \prime}-8 \text { turns) }$
76300	60	Housing-"On-OH" witch housing and lever -less switch No. 76301	-75763	82	Slide-Cycling slide assembly complete with stop dog-less cam wheel and stop dog adjusting stud (see note)
			76101	82	Slide-Cycling slide (late type) complete with stop dog and safety lever-less cam wheel. salety spring, stop dog spring and stop dog adjusting stud
				82A	Dog-Stop dog-part of Item 82
			72362	82B	Spring-Safety lever actuating spring (.242" O.D. $\times 1^{\prime \prime}-19^{1 / 2}$ turns) for slide No. 76101
			75742	83	Spring-Trip lever spring (.180" O.D. x .535" - $211 / 2$ turns)
75733	60A	Switch-"On-OH" switch—less housing No. 75732	33726 75764	84 85	Washer-" C " washer for cam wheel Wheel-Cam wheel and tire
76301-75737	60A	Switch-"On-Of" switch-less housing No. 76300	75765	86	Spring-Stop dog tension spring (.195" O.D. $\times 11 / 16^{\prime \prime}-24^{1 / 2}$ iurns)
	61	Screw-No. $8 \times 1 / 4^{\prime \prime}$ self-tapping hex head screw to mount "On-Off" switch	75766	87 88	Stud-Adjusting stud for stop dog
	62	Roller-Knurled roller	74431	8	ing stud
75751	63	Screw-No. 10.32 $\times 17 / 64^{\prime \prime}$ headless set screw-dog point-for knurled roller	75744	89	Spring-Slide assembly return spring ($1 / 4^{\prime \prime}$ O.D. $\times 223 / 32^{\prime \prime}-90$ iurns)
	64	Clamp-Cable clamp for audio cable	75747	90	Nut-Knurled nut for height adjustment

Chassis No. RC-1110
Service Data

- 1951 No. 4 -

PREPARED BY RCA SERVICE CO., INC.
FOR
RADIO CORPORATION OF AMERICA rca victor division
CAMDEN, N. J., U. S. A.

Specifications

Tuning Range
Intermediate Frequency
Power Supply Rating
Power Line Operation
115 volts, d. c. or 50 to 60 cycles a. c. 15 watts
Battery Operated using RCA VS 057 Battery (Average battery life - 100 hrs . intermittent service)
Battery current
"A" 50 ma., "B" 13 ma.
Tube Complemes.t
(1) RCA 1 TA
(2) RCA 1RS
(3) RCA IT4
(4) RCA IUS
(5) RCA 3V4

A selenium rectifier is used.

To Remove Hinges

Remove back from cabinet as described at right. Spread the hinge apart to remove it from the cabinet back.

Removal of Cabinet Back

Weight (Âpprox.)
Without battery . 5 lb .10 oz . With battery. . 9 lb .6 oz.
Power Output
Undistorted
Maximum
Loudspeaker
Voice coil impedance
Cabinet Dimensions
Height.... 8% in. Width... $12 \not / 4$ in. Depth.... $5 \% \mathrm{in}$.

To Remove Chassis:

1. Pull out battery and disconnect battery plug.
2. Unsolder the two loop antenna leads.
3. Remove handle, remove the two large screws lunder handle) in the top of the case.

To Remove Cabinet Back
With the back lully open, grip the cabinet as illustrated. lnsert a screwdriver under one hinge and pry the center of the hinge out of the opening in the cabinet while maintaining pressure on the back with the fingers and on the cabinet with the thumb. Repeat this procedure with the other hinge. Pull the back straight to the rear using

Rear View With Back Removed

Alignment Procedure

Output Meter Alignment - If this method is used, connect the meter across the voice coil and turn the receiver volume control to maximum.

Test Oscillator - For all alignment operations, connect the low side of the test oscillator to the receiver chassis and keep the oscillator output as low as possible to avoid AVC action.

Battery operation of the receiver is preferable during alignment; on AC operation an isolation transformer ($117 \mathrm{v} . / 117 \mathrm{v}$.$) may be necessary for the receiver if the test$ oscillator is also AC operated.

Dial Pointer Position - With the tuning condenser fully meshed the center of the dial pointer should be in line with the score mark on the chassis.

Stop	Connect High Side of Sig. Gen. to -	Sig. Gon. Outpu	Dial Pointer Sotting	Adjust for Maz. Output
1	Disconnect loop-remove chassis-remove bottom plate.			
2	Pin ${ }^{4} 6$ of 1 T4 I.F. Amplifier thru 005 mf .	455 kc	Quiet point 1600 kc	2nd I.F. Trans. T2 Top \& Bottom
3	Pin \#6 of 1R5 Converter thru .005 mi .			1st I.F Trans. Tl Top \& Bottom
4	Replace bottom cover and install chassis in cabinot. Re-connect loop.			
5	Short wire placed near loop for radiated zignal	1620 kc	min. cap.	1600 ke ose. trimmer Cl-3T
6		1400 kc	1400 kc Signal	1400 ke r.t. $\&$ ant. trimmers*
7		Connect a 22,000 ohm resintor in parallel with r.I. tuning cond. Cl-2		
8		600 kc	600 kc Signal	L4 ose. core* while rocking gang
9		Remove the 22,000 ohm resistor from r.f. tuning cond. $\mathrm{Cl}-2$.		
10		600 kc	600 kc Signal	L3 r.f. core
11	Repeat Stops 5, 6, 7, 8, 9 and 10.			

*The position of the battery affects loop inductance. The battery should be in place during steps 5 to 11.

Critical Lead Dress

1. Dress all filament leade next to chaseis.

2: Keep the leads short on the end of the three components (R1, R2, C2), which connect to the grid terminal (\#6) of the r.i. socket.
3. Dreas tuning condenser leads direct and avoid excess lead length.
4. Drens loop leads away from tuning drum and battery.
5. Dress r.f. plate lead against chassis base.
6. Dress a.v.c. lead against chasesis base.
7. Drens $+B$ load to output translormer against chassis base.
8. Dress lst a.f. plate resistor (R15) up and away from other wiring.
9. Dress all leads away from the ballast resistor (R19).
10. Dress lat a.l. grid resistor (R12) close to chassis.
11. Dress capacitor C3 in air between end apron and r.f. coil with foil end to tuning condenser frame.

CAUTION. -

Do not remove any tubes from the chassis with the set operating and the plug connected to the power line. Damage to tubes may result.

Dial-Indicator and Drive Mechanism

Schematic Diagram

$\begin{array}{\|l\|} \hline \text { STOCK } \\ \text { No. } \end{array}$	DESCRIPTION	$\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$	DESCRIPTION
		503327	27,000 ohms, $\pm 10 \%$, $1 / 2$ watt814
	CHASSIS ASSEMBLIES	504368	68,000 ohms, $\pm 20 \%$, $1 / 2$ watt R10
		504410	100,000 ohms, $\pm 20 \%$, $1 / 2$ watt …............ R5
		504422	220,000 ohms, $\pm 20 \%$, $1 / 2$ watt R15
76660	Capacitor-Variable tuning capacitor complete with drive drum Cl-1, Cl-2, Cl-3	504510	1 megohm, $\pm 20 \%$, 1/2 watt R16
73153	Capacitor-Ceramic, 4 mmi. C21	503518	
39622	Capacitor-Mica, 56 mmi. C7	504547	
71514	Capacitor-Ceramic, 82 mml C2, C12	503556	
76659	Capacitor-Electrolytic, comprising 1 section of 50	503533	
	mid., 150 volts, 1 section of 40 mid., 150 volts, 1 section of 160 mid., 25 volts and 1 section of 40 mild.	503568	6.8 megohm, $\pm 10 \%$, $1 / 2$ watt \ldots............. Rl
	25 volts C18A, C18B, C18C, C18D	504610	10 megohm, $\pm 20 \%$, $1 / 2$ wallR12
73595	Capacitor-Tubular, paper, . 0022 mid., 600 volts . .Cl7	76658	Shaft-Tuning knob shaft
73795	Capacitor-Tubular, paper, $0033 \mathrm{mld} ., 600$ volts . C8	73117	Socket-Tube socket
73796	Capacitor-Tubular, paper, . 0039 mid., 600 volts . C19	76368	Spring-Drive cord spring
73561	Capacitor-Tubular, paper, . 01 mid., 400 volts Cl3, C16	71039	Switch-"Line-Battery" switch Sl
73562	Capacitor-Tubular, paper, $022 \mathrm{mid} ., 400$ volts C14	71047	Translormer-Output translormer T3
73558	Capacitor-Tubular, paper, 047 mid., 200 volts C4, C5	73129	Translormer-First I.F. transformer Tl
73553	Capacitor-Tubular, paper, .047 mid., 400 volts C3, C6, C9, Clo	75487	Transiormer-Second I.F. transiormerT2
75071	Capacitor-Tubular, moulded paper, 047 mid., 400 volts	33726	Washer-"C" washer for tuning knob shaft
73551	Capacitor-Tubular, paper, 0.1 mid., 400 volts.. Cll		SPEAKER ASSEMBLIES 971495.2
73935	Clip-Mounting clip for I.F. translormers		
73114	Coil-Oscillator coil complete with adjustable core L4. LS	76402	Speaker-4" P.M. speaker complete with cone and voice coil (3.2 ohms)
74992	Coil-R.F. coil complete with adjustable core . L2, L3		CELLANEOUS
71041	Connector-5 contact male connector for battery cable		
74285	Control-Volume control and power switch....R9, S2	76664	Antenna-Antenna loop 11
+72953	Cord-Drive cord (approx. $47^{\prime \prime}$ overall length required)	76667	Back-Cabinet back complete with hinges
70022	Cord-Power cord and plug	76661	Board-Antenna loop lead terminal board com-lete with clip
74838	Grommet-Power cord strain relief (1 set)	76670	Bracket-Carrying handle strap bracket
72283	Grommet-Rubber grommet to mount tuning capacitor (3 required)	76662	Bracket-Mounting bracket for handle (2 required)
18469	Plate-Bakelite mounting plate for electrolytic capacitor	76666	Cabinet-Cabinet complete with escutcheon, dial, "RCA Victor" emblem, grille, baffe and loop-less back and hinges
76656	Pointer-Station selector pointer	74339	Catch-Cabinet back clip catch-iastens to cabinet
72602	Pulley-Drive cord pulley		Iront (2 required)
74322	Rectilier-Selenium rectitier	74790	Hinge--Cabinet hinge (2 required)
74319	Resistor-Wire wound, 2650 ohms, 7 watts R19	76663	Knob-Control knob
73237	Resistor-Wire wound, 33 ohms, luse typeR21	76665	Retainer-Retainer lor carrying handle strap 12 re. quired)
504210		74791	Screw-\#4 x 5/16" cross recessed pan head thread cutting screw for catch \#74339
503215	1500 ohms, $\pm 10 \%$, $1 / 2$ watt R17	76671	Screw-\#6 $\times 1 / 2^{\prime \prime}$ cross recessed round head thread cutting screw for carrying handle
503218	1800 ohms, $\pm 10 \%$, $1 / 2$ watt R6, R18		
503227	2700 ohms, $\pm 10 \%$, $1 / 2$ watt 3		Spring-Spring clip for knob
513233	3300 ohms, $\pm 10 \%$, 1 watt R22	76669	Strap-Carrying handle strap
504315	15,000 ohms. $\pm 20 \%$, 1/2 watt ... R20	76668	Support-Handle assembly support (polystyrene) 12 required)

GENERAL DESCRIPTION

Model 4 T 101 receivers employ nineteen tubes plus rectifier and a 14EP4 kinescope.
Features of the television unit are: full twelve channel coverage: FM sound system: improved picture brilliance; picture A.G.C: A.F.C horizontal hold: stabilized vertical hold; two
stages of video amplification; noise saturation circuits: improved sync separator and clipper: four mc. band width for picture channel and reduced hazard high voltage supply. An auxiliary audio input jack is provided to permit the use of an external record playing attachment.

ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE
.96 square inches on $\propto 14 E P 4$ Kinescope R-F FREQUENCY RANGES

		Picture	Sound	Receiver
Channel	Channe!	Carrier	Carrier	R-F Osc.
Number	Freq. Mc.	Freq. Mc.	Freq. Mc.	Freq. Mc.
2.	54.60.	55.25	.59.75.	80.750
3.	.60.66	61.25	65.75	.86.750
	.66.72.	.67.25	.71.75.	92.750
5.	.76-82	.77.25	.81.75	102.750
6.	82-88	.83.25.	87.75	108.750
7.	.174-180.	175.25	179.75	200.750
8.	180-186.	181.25	185.75	206.750
9.	.186-192	187.25	191.75	212.750
10.	.192-198	.193.25	197.75	. 218.750
11.	198-204.	199.25	203.75.	.224.750
12.	.204.210.	. 205.25	209.75	. 230.750
	.210-216.	.211.25	215.75.	. 236.750
VIDEO RESPONSE ... 4 mc.				
SWEEP DEFLECTION ... Magnetic				
FOCUSMagnetic				
POWER SUPPLY RATING 115 volts, 60 cycles, 160 watts				
AUDIO POWER OUTPUT RATING 5 watts max.				
LOUDSPEAKER (92585-2W)5 $5^{\prime \prime} \times 7^{\prime \prime}$ PM Dynamic. 3.2 ohms				
DIMENSIONS (inches)		Width	Height	Depth
Cabinet (outside)		181/8	16^{18}	23 s \%
WEIGHT Model		Chassis with in Cabine		Shipping Weight
4 T 101.		.73 lbs .		85 lbs .

RECEIVER ANTENNA INPUT IMPEDANCE

Choice: 300 ohms balanced or 72 ohms unbalanced.

RCA TUBE COMPLEMENT

	Tube Used	Function
(1	RCA 6CB6	R-F Amplitier
	RCA 6]6	R-F Oscillator and Mixer
	RCA 6AU6	1st Sound I-F-Amplitier
	RCA 6AU6	.. 2nd Sound I-F Amplifier
(5) RCA 6AL5	Sound Discriminator
(RCA 6AV6	lst Audio Amplitier
7	7) RCA 6AQ5	Audio Output
	RCA 6AU6	1st Picture I-F Amplifier
$(9$	9) RCA 6CB6	.2nd Picture I-F Amplifier
$(10$	0) RCA 6AU6	3rd Picture I-F Amplitier
(11)	RCA 6CB6	4th Picture I-F Amplifier
(1)	RCA 6AL5	Picture 2nd Detector and AGC Detector
	RCA 12AU7	. 1st and 2nd Video Amplifier
	RCA 12AU7	DC Restorer and Sync Separator
	RCA 6SN7GT	Sync. Amp. and Vertical Sweep Osc.
	RCA 6AQ5	Vertical Sweep Output
(17)	RCA 6SN7GT	Horizontal Sweep Osc. and Control
	RCA 6AU5GT	. Horizontal Sweep Output
(19)	9) RCA 6 W 4 GT	Damper
	0) RCA 1B3-GT/	.. High Voltage Rectitier
	1) RCA 14EP4	.Kinescope

PICTURE INTERMEDIATE FREQUENCIES
Picture Carrier Frequency .. 25.50 Mc .
Adjacent Channel Sound Trap 27.00 Mc .
Accompanying Sound Traps .. 21.00 Mc .

SOUND LNTERMEDIATE FREQUENCIES

Sound Carrier Frequency ... 21.00 Mc .
Sound Discriminator Band Width between peaks 400 kc
\qquad
\qquad
\qquad

SCANNING Interlaced, 525 line

HORIZONTAL SWEEP FREQUENCY $15,750 \mathrm{cps}$
VERTICAL SWEEP FREQUENCY .. 60 cps

FRAME FREQUENCY (Picture Repetition Rate)
30 cps

OPERATLNG CONTROLS (front Panel)

NON-OPERATING CONTROLS (not including rof \& 1-i adjustments)
Picture Centering top chaseis adjustment Width ... rear chassis adjustment Height ... rear chaseis adjuntment Horizontal Linearity rear chasais screwdriver adjustment Vertical Linearity rear chasais adjustment Horizontal Drive rear chaseis screwdriver adjustment Horizontal Osc. Freq. top chassis adjustment Horizontal Osc. Waveform bottom chassis adjustment Horizontal Locking Range sear chassis adjustment Focus top chasais adjustment Ion Trap Magnet top chaseis adjustment Deflection Coil Iop chassis wing nut adjustment AGC Control Switch rear chasmis adjumtment

high voltage warning

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, IN. VOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

KINESCOPE HANDLING PRECAUTIONS

DO NOT REMOVE THE RECEIVER CHASSIS. INSTALL, REMOVE OR HANDLE THE KINESCOPE IN any manner unless shatterproof goggles, and heavy gloves are worn. people NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINE. SCOPE AWAY FROM THE BODY WHILE HANDLING.

The kinescope bulb encloses a high vacuum and, due to it lasge suriace area, is subjected to conaiderable alr pressure. For this reason, kinescope must be handied with more care than ordinary recelving tubes.

The large end of the kinescope bulb-particularly that part at the rim of the viewing suriace-must not be struck, scratched ot subjected to more than moderate pressure at any time. During service if the tube sticks or fails to slip smoothly foto ite sockel or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Refer to the Recelver lastallation section for detaled instructions on kinescope installation. All RCA replacement kinescopes are shipped in special cartons and should be left in the cartons untll ready for installation in the recelver.

The following adjustments are necessary when tuming the receiver on for the firt time:

1. See that the TV-PH switch on the rear apron is in the 'IV' position.
2. Turn the receiver "ON" and advance the SOUND VOL. UME control to approximately mid-position.

3. Set the STATION SELECTOR

to the desired channel.

4. Adjust the FINE TUNING control for best sound fidelity and the SOUND VOLUME control for suitable volume.
5. Turn the BRIGHTNESS control fully counter-clockwise, then clockwise until a light pattern appears on the screen.
6. Adjuat the VERTICAL hold control until the pattern atops vertical movement.
7. Adjuat the HORIZONTAL hold control until a picture is obtained and centered.
8. Adjust the PICTURE and brightness controls for suitable picture contrast and brightness.

9. After the receiver has been on for some time, it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.
10. In switching from one position to another, it may be necessary to repeat steps 4 and 8.
11. When the set is turned on again after an idle period it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. If any adjustment is necessary. step number 4 is generally sufficient.
12. If the positions of the controls have been changed, it may be necessary to repeal steps 2 through 9 .
13. To use a record player. plug the record-player output cable into the PHONO jack on the rear apron, and set the TV.PH switch to "PH." Upon completion of the record program, set the TV.PH awitch to TV position.

Figure 1-Receiver Operating Controls
INSTALLATION INSTRUCTIONS

These receivers are shipped complete in cardboard cartons. The kinescope is shipped in place in the receiver.

Take the receiver out of the carton and remove all packing material.

Install the control knobs on the proper control shafts.
Make sure that all tubes are in place and are firmly seated in their sockets.
Check to see that the kinescope high voltage lead clip is in place.

Connect the antenna transmission line to the recaiver antenna terminale. Plug a power cord into the 115 volt a-c power source and into the receiver interlock receptacle. Tum the receiver power switch to the "on" position, the brightness control fully clockwise, and the picture control counter-clockwise.

ION TRAP MAGNET ADJUSTMENT. Set the ion trap magnet approzimately in the position shown in Figure 2. Starting from this position immediately adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Turn the focus control (shown in Figure 2) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches of this adjust. ment should be made with the brightness control at the maximum clockwise position with which good line focus can be maintained.

Figure 2-Yoke and Focus Magnet Adjustments

DEFLECTION YOIE ADJUSTMENT,-If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is cbtained. Tighten the yoke adjustment wing screw.

PICTURE ADJUSTMENTS.-It will now be necessary to obtain a test pattern picture in order to make further adjustments.
If the Horizontal Oscillator and AGC System are operating properly, it should be possible to sync the picture at this point. Howeyer, if the AGC control is misadjusted, and the receiver is overloading, it may be impossible to sync the picture.
If the receiver is overloading, turn S 105 on the rear apron (see Figure 3) counter-clockwise until the set operates normally and the picture can be synced.

CHECR OF HORIZONTAL OSCILLATOR ALIGNMENT.Turn the horizontal hold control to the extreme counter-clock. wise position. The picture shouid remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be gradually reduced and when only 2 bara sloping down. ward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull-in should occur when the control is approximately 90 degrees from the extreme counter-clockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should be out of sync and should show 1 vertical or diagonal black bar in the raster.

Figure 3-Rear Chassis Adjustments

If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properiy aiigned. Skip "Alignment of Horizonlal Oscillator" and proceed with "Focus Magnet Adjustment."

ALIGNMENT OF HORIZONTAL OSCILLATOR.-H in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull-in point, it will be necessary to make the following adjustments.

Horizontal Frequency Adjustment.-Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the T107 horizontal frequency adjustment on top of the chassis until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster.

Horizontal Locking Range Adjustment.-Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. The picture may remain in sync. If so tum the Tl07 top core slightly and momentarily switch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars oblained just before the picture pulls into sync.

If more than 2 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer Ci43A slightly clockwise. If less than 2 bars are present, adjust C143A slightly counter-clockwise. Turn the picture control counterclockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 2 bars are present.

Repeat the adjustments under "Horizontal Frequency Ad. justment" and "Horizontal Locking Range Adjustment" until the conditions specified under each are fultilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.

If it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure on page 11. For field purposes paragraph "A" under Horizontal Oscillator Waveform Adjustment may be omitted.

FOCUS MAGNET ADJUSTMENT.-The focus coil should be adjusted so that there is approximately three-eighths inch of space between the rear cardboard shell of the yoke and the flat of the front face of the focus magnet. This spacing gives best average focus over the face of the tube.

The axis of the hole through the magnet should be parallel with the axis of the kinescope neck with the kinescope neck through the middle.

CENTERING ADJUSTMENT.-No electrical centering controls are provided. Centering is accomplished by means of a separate plate on the focus magnet. Some centering plates include a locking screw which must be loosened before centering, and others are held in adjustment by friction. Up and down adjustment of the plate moves the picture side to side and sidewise adjustment moves the picture up and down.

If a corner of the raster is shadowed, check the position of the ion trap magnet. Reposition the magnet within the range of maximum raster brightness to eliminate the shadow and recenter the picture by adjustment of the focus magnet plate. In no case should the magnet be adjusted to cause any loss of brightness since such operation may cause immediate or eventual damage to the tube. In some cases it may be necessary to shift the position of the focus magnet in order to eliminate a comer shadow.

WIDTH. DRIVE AND HORIZONTAL LINEARITY ADJUST-MENTS.-Adjustment of the horizontal drive control affects the high vollage applied to the kinescope. In order to obtain the highest possible voltage hence the brightest and best focused picture, adjust horizontal drive counter-clockwise as far as possible without stretching the left side of the picture. A s a first adjustment, set the horizontal drive trimmer Cl43B one-halif turn out from maximum capacity.

Turn the horizontal linearity coil oul until appreciable loss in width occurs, tisen in uaiis narrly maximum width and the best linearity is obtained.
Adjust the width control R178 to oblain correct picture width.
A slight readjustment of these three conirols may be necessary to obtain the best linearity.

HEIGHT AND VERTICAL LINEARITY RDJUSTMENTS.-Ad. just the height control (R153 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R157 on rear apron), until the lest pattern is ammetrical from top to botlom. Adjustment of either control will require a readjustment of the other. Adjust centering to align the picture with the mask.

FOCUS.-Adjust the focus magnet for maximum definition in the test pattern vertical "wedge" and best locus in the white areas of the pattern.

On focus magnets using two shunis, the one with the cable is the "fine adjustment" and the other is the "focus range" adjustment. In general, the two shunts should be adjusted to approximately equal positions.
Recheck the position of the ion trap magnet to make sure that maximum brightness is obtained.
Check to see that the yoke thumbscrew and the focus magnet mounting screws are tight.

Figure 4-R-F Oscillator Adjustments

CHECE OF R.F OSCILLATOR ADJUSTMENTS.-Tune in all available stations to see if the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure on page 10 . The adjustments for channels 2 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Fig. ure 4. Adjustment of channel 13 is on top of the chassis.

AGC CONTROL-The AGC control switch is provided as an installation adjustment. The normal position for strong signal areas is with the switch in the number 1 or counterclockwise position. If impulse type of interference is experenced, turn the switch to the number 2 or center position. In very weak signal areas in which impulse type interference is experienced, tum the switch to position number 3 or fully clockwise. In this position, all AGC is removed and the receiver will overload if the input signal exceeds 200 microvolts. However, for signals under 200 microvolts, this position of the AGC control switch gives best noise immunity of sync.

FM TRAP ADJUSTMENT.-In some instances interference may be encountered from a strong FM station signal. A trap is provided to eliminate this type of interference. To adjust the trap tune in the station on which the interference is observed trap and adjust the L203 core on top of the rif unit for minimum interference in the picture.

CAUTION: In some receivers, the FM trap L203 will tune down into channel 6 or even into channel 5. Needless to say. such an adjustment will cause greatly reduced sensitivity on these channels. If channels 5 or 6 are to be received, check L 203 to make sure that it does not affect sensitivity on these two channels.

Replace the cabinet back and reconnect the antenna leads to the cabinet back.

CABINET ANTENNA.-A cabinet antenna is provided in both model receivers and the leads are brought out near the antenna terminal board. The cabinet antenna may be employed in place of the outdoor antenna in areas where the signals are strong and no reflections are experienced.

RECEIVER LOCATION.-The owner should be advised of the importance of placing the receiver in the proper location in the room.

The location should be chosen-
-Away from bright windows and so that no bright light will fall directly on the screen. (Some illumination in the room is desirable, however.)
-To give easy access for operation and comfortable viewing.
-To permit convenient connection to the antenna.
-Convenient to an electrical outlet.
-To allow adequate ventilation
VENTILATION CAUTION.-The receiver is provided with adequate ventilation holes in the bottom and back of the cabinet. Care should be taken not to allow these holes to be covered or ventilation to be impeded in any way.
If the receiver is to be operated with the back of the cabinet near a wall, at least a two-inch clearance should be main. tained between cabinet and wall.

CHASSIS REMOVAL.-To remove the chassis for repair or installation of a new kinescope. remove the cabinet back and the control knobs, unplug the speaker cable, and remove the four chassis bolts under the cabinet. Withdraw the chassis from the back of the cabinet. The kinescope is held on the chassis by means of a special strap. so that the chassis and the kinencope can be handled together, as a unit.

To remove the kinescope, remove the kinescope socket, the ion-trap magnet, and the second-anode connector. Loosen the cromerecessed head screw on the kinescope strap. Withdraw the kinescope toward the front of the chassis.

INSTALLATION OF KINESCOPE.-The kinescope second anode contact is a recessed metal well in the side of the bulb. The tube must be installed so that this contact is toward the high-voltage compartment.

Insert the neck of the kinescope through the deflection yoke and focus magnet. If the tube sticks, or fails to slip into place smoothly, investigate and remove the cause of the trouble. Do not force the tube.

Slide the kinescope cushion toward the rear of the chassis. Loosen the deflection yoke adjustment, slide the yoke toward the rear of the chassis and tighten.
Slip the ion trap magnet assembly over the neck of the kinescope.

Connect the kinescope socket to the tube base.

Connect the high voltage lead to the kinescope second anode socket.

Wipe the kinescope screen surface and front panel saiety glass clean of all dust and finger marks.

To replace the chassis in the cabinet, first tighten the crossrecessed head screw on the kinescope strap. Slide the chassis into the cabinet, then insert and tighten the four chassis bolts. Loosen the kinescope strap from the rear of the cabinet. Push the kinescope forward until the face of the tube is against the mask. Push the yoke cushion forward against the kinescope flare, then tighten the cushion adjusting screws. Tighten the kinescope strap. Then replace the knobs, and the cabinet back.

ANTENNAS. - The finest television receiver built may be said to be only as good as the antenna design and installation. It is theretore important to select the proper antenna to suit the particular local conditions, to install it properly and orient it correctly.
RCA Television Antenna, type No. 225Al is designed for reception of all twelve television channels. The antenna uses the 300 -ohm RCA "Bright Picture" television transmission line. The antenna, a dipole with reflector, is unidirectional on channels two through six. When used on these channels. the maximum signal is oblained when the antenna rods are broadside toward the transmitting antenna, with the antenna element between the reflector and the transmitting antenna.

If two or more stations are available between thannels two and six and the two stations are in different directions, it may be possible to make a compromise orientation which will provide a satisfactory signal on all such channels.

When operated on channels seven through thirteen (174 to 216 Mc), the antenna has side lobes. On these channels, the maximum signal will be obtained when the antenna is rotated approximately 35 degrees in either direction from its broadside position toward the transmitting antenna. In many instances this effect may not cause any difficulties and it may be possible to make a compromise orientation which will permit satisfactory reception on all high and low channels. In some instances, however, this will not be the case due to reflections or to insufficient signal strength from one or more stations.

RCA antenna type 204A1 is available for use in locations in which it is desirable to eliminate side lobes and to have the antennas 7.13 directivity the same as 2.6 directivity.

For use in cases where it is desirable to have adjustable 7.13 directivity different from 2.6. RCA antenna type 206A1 is provided.

If it is impossible to obtain satisfactory results on one or more channels. it may become necessary either to provide means for tuning the antenna when switching channels or to install a separate antenna for one or more channels and 10 switch antennas when switching channels.

In weak signal areas it is possible to "stack" the type 204§1 antenna to obtain increased signal strength by employing one type 204A1 antenna and one type 208A1 stacking kit.

REFLECTIONS.-Multiple images sometimes known as echoes or ghosts, are caused by the signal arriving at the antenna by two or more routes. The second or subsequent image occurs when a ignal arrives at the antenna atter being reflected off a building, a hill or other object. In severe cases of reflections, even the sound may be distorted. In less severe cases. reflections may occur that are not noticeable as reflections but that will instead cause a loss of definition in the picture.

Depending upon the circumstances, it may be possible to eliminate the reflections by rotating the antenna or by moving it to a new location. In extreme cases, it may be impossible to eliminate the reflection.

INTERFERENCE.-Auto ignition, street cars, electrical machinery and diathermy apparatus may cause interierence which spoils the picture. Whenever possible, the antenna location should be removed as far as possible from highways, hospitals, doctors offices and similar sources of interference. In mounting the antenna, care must be taken to keep the antenna rods at least $1 / 4$ wave length (at least 6 feet) away from other antennas, metal rools, gutters or other metal objects.

Short-wave radio transmitting and receiving equipment may cause interference in the picture in the form of moving ripples. In some instances it may be possible to eliminate the interference by the use of a trap in the antenna transmission line. However, if the interfering signal is on the same frequency as the television station, a trap will provide no improvement.

WEAI PICTURE.-When the installation is near the limit of the area served by the transmitting station, the picture may be speckled, having a "snow" effect, and may not hold steady on the screen. This condition is due to lack of signal strength from the transmitter.

Figure 5-Chassis Top View

Figure 6-Chassis Boltom View

TEST EQUIPMENT.-To properly service the television chassis of this receiver, it is recommended that the following test equipment be available:

A-F Sweep Generator meeting the following requirements:
(a) Frequency Ranges

20 to 30 mc .1 mc . and 10 mc . sweep width
50 to 90 mc ., sweep width
170 to 225 mc ., 10 mc . sweep width
(b) Output adjustable with at least .1 volt maximum.
(c) Output constant on all ranges.
(d) "Flat" output on all attenuator positions.

Cathode-Ray Oscilloscope.-For alignment purposes, the oscilloscope employed must have excellent low frequency and phase response, and should be capable of passing a 60 -cycle square wave without appreciable distortion. While this requirement is not met by many commercial instruments. RCA Oscilloscopes, types WO-55A, WO-57A, WO.58A, WO-79A. WO.79B and WO-60C till the requirement and any of these may be employed.

For video and sync waveform observations, the oscilloscope must have excellent trequency and phase response from 10 cycles to at least two megacycles in all positions of the gain control. The RCA types WO.58A, WO-79A and WO-79B are ideally suited for this purpose.

Signal Generator to provide the following frequencies with crystal accuracy.
(a) Intermediate frequencies
19.50 mc . adjacent channel picture trap
21.00 mc . sound $\mathrm{i}-\mathrm{f}$ and sound traps
22.3 and 25.4 mc . conv. and lirst pix i-f trans.
25.3 mc . second picture $\mathrm{i}-1$ transformer
22.5 mc. fourth picture i-f transformer
21.75 mc . third picture i-f transformer
24.35 mc . fifth picture i-1 coil
25.50 me. picture carrier
27.00 mc . adjacent channel sound trap
(b) Radio frequencies

Pleture
Carrier
Creq. Mc.

Number \quad\begin{tabular}{c}

Sound
Carrler

Freq. Mc.
\end{tabular}

(c) Output of these ranges should be adjustable and at least .1 volt maximum.

Heterodyne Frequency Meter with crystal calibrator if the signal generator is not crystal controlled.

Electronic Voltmeter of Junior "VoltOhmyst" type and a high voltage multiplier probe for use with this meter to permit measurements up to 10 kv .

Service Precautions.-If possible, the chassis should be serviced without the kinescope. However, if it is necessary to view the raster during servicing, make sure the kinescope retaining strap is secure, and the yoke cushion is up firmly against the flare of the tube.

CAUTION: Do not short the kinescope second anode lead. Its short circuit current is approximately 3 ma . This respresents approximately 9 watts dissipation and a considerable overload on the high voltage filter resistor R179.

Adjustrants Required.-Normally, only the r-f oscillator and mixer lines will require the attention of the service technician. All other circuits are either broad or very table and hence will seldom require readjustment.

ORDER OF ALIGNMENT.-When a complete receiver alignment is necessary, it can be most conveniently performed in the following order:
(1) Sound discriminator
(5) R.F. unit
(2) Sound i-f transformers
(6) Overall picture i-f
(3) Picture i-f traps
(7) Horizontal oscillator
(4) Picture i-l transformers
(8) Sensitivity check

SOUND DISCRIMINATOR ALIGNMENT,-Set the signal generator for approximately .1 volt output at 21.00 mc . and connect it to the second sound i-f grid, pin 1 of V116.

Detune Tlll secondary (bottom) to the extreme counterclockwise position.
Set the "VoltOhmyst" on the 3 -volt scale.
Connect the meter, in series with a one-megohm resistor, to pin 7 of V117.
Adjust the primary of T111 (top) for maximum output on the meter.

Connect the "VoltOhmyst" to the junction of R192 and S103. Adjust Tlll secondary (bottom). It will be found that it is possible to produce a positive or negative voltage on the meter dependent upon this adjustment. Obviously to pass from a positive to a negative voltage, the voltage must go through zero. Tlll (bottom) should be adjusted so that the meter indicates zero output as the voltage swings from positive to negative. This point will be called discriminator zero output.

Connecp the sweep oscillator to the grid of the second sound i-f amplifier, pin 1 to V116.

Adjust the sweep band width to approximately 1 mc . with the center frequency at approximately 21.00 mc . and with an output of approximately .1 volt.

Connect the oscilloscope to the junction of R192 and S103. The pattern obtained should be similar to that shown in Figure 12. If it is not. adjust Tlll (top) until the wave form is symmetrical.
The peak-to-peak band width of the discriminator should be approximately 400 kc . and the trace should be linear from 20.925 mc . to 21.075 mc .

Note.-The bottom core and stud in the discriminator transformer are at plus B potential.

SOUND I-F ALIGNMENT.-Connect the sweep oscillator to the first sound i-f amplifier grid, pin 1 of V115.
Insert a 21.00 mc marker signal from the signal generator into the first sound i-f grid.
Connect the oscilloscope to the second sound i-f grid return (terminal \AA of T 110) in series with a 33,000 ohm isolating resistor.

Adjust T110, top and bottom, for maximum gain and symmetry about the 21.00 mc . marker on the discriminator pattern. The pattern obtained should be similar to that shown in Figure 13.

The output level from the sweep should be set to produce approximately 0.3 volt peak-to-peak at the second sound i-1 grid, when the final touches on the above adjustment are made. It is necessary that the sweep output voltage should not exceed the specified values otherwise the response curve will be broadened, permitting slight misadjustment to pass unnoticed and possibly causing distortion on weak signals.

The band width at 70% response from the first sound ift grid to the second i-f grid should be approximately 200 kc .

PICTURE I-F TRAP ADJUSTMENT.-Connect the "Volf. Ohmyst" to the junction of R102 and R103.

Obtain a 7.5 volt battery capable of withstanding appreciable current drain and connect the ends of a 1.000 ohm potentiometer across it. Connect the battery positive terminal to chassis and the potentiometer arm to the junction of R102 and R103. Adjust the potentiometer for -3.0 volts indication on the "Voltohmyst."
Set the channel switch to the blank position between channels number 2 and 13.

Connect the "VoltOhmyst" to pin 2 of V106 and to ground.
Connect the output of the signal generator to terminal D of T101.

Set the generator to each of the following frequencies and with a thin fiber screwdriver tune the specified adjustment for minimum indication on the "VoltOhmyat." In each instance the generator should be checked against a crystal calibrator to insure that the generator is exactly on frequency.
(1) $21.00 \mathrm{mc} .-\mathrm{TlO3}$ (top)
(4) 27.00 mc .-T104 (top)
(2) $21.00 \mathrm{mc} . \mathrm{T} 105$ (top)
(5) $19.50 \mathrm{mc} .-\mathrm{T} 101$ (top)
(3) 27.00 mc .-T102 (top)

In the above translormers using threaded cores, it is polssible to run the cores completely through the coils and secure two peake or nulls. The correct position is with the cores in the outside ends of the coils. If the cores are not in the correct position, the coupling will be incorrect and it will be impos. sible to secure the correct response.

PICTURE I-F TRANSFORMER ADJUSTMENTS.-Set the sig. nal generator to each of the following frequencies and peak the specified adjustment for maximum indication on the "VoltOhmyst." During alignment, reduce the input signal if neces. sary to prevent overloading.

$$
\begin{array}{ll}
24.35 \mathrm{mc} .-\mathrm{L} 102 & 21.75 \mathrm{mc} .-\mathrm{Tl} 103 \text { (bottom) } \\
22.5 \mathrm{mc} .-\mathrm{Tl} 04 \text { (bottom) } & 25.3 \mathrm{mc} .-\mathrm{Tl} 102 \text { (bottom) }
\end{array}
$$

R.F UNIT ALIGNMENT.-Disconnect the co-ax link from ter. minal 2 of the r-i unit terminal board and connect a 39 ohm compomition resistor between lugs 1 and 2.
Detune Tl by backing the core all the way out of the coil.
In early production units in which 144 is adjustable, back the L44 core all the way out. Back L203 core all the way out.

In order to align the r-f tuner, it will first be necessary to set the channel l3-oscillator to frequency. The shield over the bottom of the r-f unit must be in place when making any adjustments.

The oscillator may be aligned by adjusting it to beat with a crystal-calibrated heterodyne frequency meter, or by leeding a signal into the receiver at the r-l sound carrier frequency and adjusting the oscillator for zero output from the sound discriminator. In this latter case the sound discriminator must first have been aligned to exact frequency. Either method of adjustment will produce the same results. The method used will depend upon the type of test equipment available. Regardless of which method of oscillator alignment is used, the frequency standard must be crystal controlled or calibrated.
If the receiver oscillator is to be adjusted by the heterodyne frequency meter method, couple the meter probe loosely to the receiver oscillator.
If the receiver oscillator is adjusted by feeding in the r-I sound carrier signal, connect the signal generator to the receiver antenna terminals. Connect the "VoltOhmyst" to the sound discriminator output (junction of R192 and S103). Also couple the link loosely to lug 2 of the r-f unit terminal board so as to permit measurement at sound discriminator.

Set the channel selector switch to 13.

Adjust the frequency standard to the correct irequency (236.75 mc . for heterodyne frequency meter or 215.75 mc . for the signal generator).

Set the fine tuning control to the middle of it range.

Adjust Cl for an audible beat on the heterodyne frequency meter or zero voltage from sound discriminator.
Now that the channel-13 oscillator is set to frequency, we may proceed with the r-f alignment.

Turn the AGC control to the counter-clockwise ponition.
Connect the bias box to terminal 3 of the r-f unit teminal board and adjust the bias box potentiometer for -3.5 volte.
Connect the oncllloscope to the test connection at R5 on top of the rof unit.

Connect the r-f sweep oscillator to the receiver antenna terminals. The method of connection depends upon the output impedance of the sweep. The P300 connection for 300 -ohm balanced or 72 -ohm single-ended input are shown in the circuit schomatic diagram on page 27. If the sweep oscillator has a 50 -ohm single-ended output, 300 -ohm balanced output can be obtained by connecting as shown in Flgure 7.

Figure 7-Unbalanced Sweop Cable Termination
Connect the signal generator loosely to the receiver antenna terminals.
Set the receiver channel switch to channel 8.
Set the aweep oncillator to cover channel 8.
Insert markers of channel 8 picture carrier and sound carrier, 181.25 mc . and 185.75 mc .
Adjust C9, C11. C16 and C22 for approximately correct curve shape. frequency, and band width as shown in Figure 16.
The correct adjustment of C22 is indicated by maximum amplitude of the curve midway between the markers. C16 tunes the rof amplifier plate circuit and affects the frequency of the curve most noticeably. C9 tunes the converter grid circuit and affects the till of the curve mont noticeably (assuming that C22 has been properly adjusted). C11 is the coupling adjustment and hence primarily affects the response band width.
Sel the recelver channel switch to channel 6.
Adjust the irequency standard to the correct frequency (108.75 mc . for heterodyne frequency meter or 87.75 mc . for the signal generator).

Set the fine tuning control to the middle of its range.
Adjust L5 for an audible beat on the heterodyne frequency meter or zero voltage from sound discriminator.

Set the sweep generator to channel 6.
From the signal generator, insert channel 6 sound and pic. ture carrier markers, 83.25 mc . and 87.75 mc .

Adjust L42, L45 and L49 for proper response as shown in Figure 16.

L42 is adjusted to give maximum amplitude of the curve between the markers. L45 primarily affects the tilt of the curve. L49 primarily affects the frequency of response.

Connect the "VoltOhmyst" to the r-I unit test point at R5.
Adjust C7 for -3.0 volts at the test point.
Retouch L42, L45 and L49 for proper response if neceseary. If necessary, retouch Cll for proper band width on channel 6 . Continue these retouching adjustments until proper response is obtained and -3.0 volts of omcillator injection are present at the test point.

Set the receiver channel selector switch to channel 8 and readjust Cl for proper ascillator frequency.

Set the sweep oncillator and signal generator to channel 8.
Headjust C9, C16 and C22 for correct curve shape, trequency and band width. Readjust Cll only if necessary.

Swith the receiver, the swoep oscillator and signal generator to channel 13.

Adjust L52 for maximum applitude of the curve midway between markers and then overshoot the adjustment by turning the slug in the same direction from the initial setting a little more than the amount of turning required to reach maximum amplitude of response.

Adjust C22 for maximum amplitude of response.
Turn off the sweep generator. Adjust the L43 core for correct channel 13 oscillator frequency, then overshoot the adjustment by turning the slug a little more in the same direction from the initial setting. Reset the oscillator to proper frequency by ad. justment of Cl .

Turn the sweep oscillator back on.
Check the response of channels 7 through 13 by switching the receiver channel switch, sweep oncillator and marker oscillator to each of these channels and observing the response and oscillator injection obtained. See Figure 16 for typical response curves. It should be found that all these channels have the proper shaped response with the markers above 80% response.

If the markers do not fall within this requirement, switch to channel 8 and readjust C9, C11, C16 and C22 as necessary. If C22 required adjustment, the adjustment should be overshot a small amount and corrected by adjustment of L52 to give maximum amplitude of response between the sound and picture carrier markers. The antenna circuit (L52, C22) is broad so that tracking is not particularly critical.

If the valley in the top of the selectivity curves for the high channels is deeper than normal. the curve can be flattened somewhat by decreasing the inductance of L44 by turning the core stud in. Be sure to check for undesirable resonant suck. outs on channels 7 and 8 if this is done. In later production units, L44 may be fixed and not require adjustment.

Tum the sweep oscillator off and check the receiver channel 8 r -f oscillator frequency. If the oscillator is off frequency overshoot the adjustment of Cl and correct by adjusting L43.
Turn the receiver channel selector switch to channel 6. Adjust L5 for correct oscillator frequency.

Turn the sweep oscillator on and to channel 6 and observe the response curve. If necessary readjust L42, L45 and L49. It should not be necessary to touch Cll.

Check the oscillator injection voltage at the test point. If necessary adjust C7 to give -3 volts injection. If C7 is adjusted, switch to channel 8 , and readjust $C 9$ for proper curve shape, then recheck channel 6 .

Switch the receiver through channel 6 down through channel 2 and check for normal response curve shapes and oscillator injection voltage.

Likewise check channels 7 through 13, stopping on 13 for the next step.
With the receiver on channel 13, check the receiver oscillator Irequency. Correct by adjustment of Cl if necessary.

Adjust the oscillator to frequency on all channels by awitch. ing the receiver and the frequency standard to each channel and adjusting the appropriate oscillator trimmer for the specified indication. It should be possible to adjust the oscillator to the correct irequency on all channels with the fine tuning control in the middle third of its range.

Channel Number	Pleture Freq. Mc. Carrier	Sound Freq. Mc. Carrier	Receiver Freq. Mc. R-F Onc.	Channel Oscillator Adjustment
2.	. 55.25	.59.75	.80.750.	L1
3.	.61.25	. 65.75	. 86.750 .	. 12
	. 67.25	. 71.75	. 92.750	L3
5.	. 77.25 .	. 81.75	. 102.750	L4
6.	. 83.25	. 87.75	. 108.750	L5
	-175.25	. 179.75	. 200.750	.L6
8.	. 181.25	. 185.75	. 206.750.	. 17
	. 187.25	.191.75	. 212.750 .	.L8
10.	. 193.25	. 197.75	. 218.750.	L9
11.	. 199.25	. 203.75	.224.750.	.L10
12.	. 205.25	. 209.75	. 230.750	L11
13.	. 211.25	.215.75	. 236.750	

Switch to channel 8 and observe the response.
Adjust Tl clockwise while watching the change in response. When Tl is properly adjusted, the selectivity curve will be slightly wider with a slightly deeper valley in its top.
Switch through all channels and observe response, oscilla. tor injection and ref oscillator frequency. Minor touch-ups of adjustments may be made at this time. However, if C7 or C9 are changed appreciably, then a recheck of the oscillator frequency on all channels should be made.
Reconnect the link from T101 to terminal 2 of the r-f unit terminal board.
Since Tl was adjusted during the r-f unit alignment it will be necessary to sweep the overall i-f response.

R-F UNIT TUBE CHANGES.-Since most of the circuits are low capacitance circuits the r-I unit may require readjustments when the tubes are changed.

If the 6CB6 r-f amplifier tube is changed, it may be neces. sary to readjust C16 and C22.

If the $6 J 6$ oscillator and mixer tube is changed, then more extensive adjustments are required.

For good conversion efficiency, the oscillator injection to a triode mixer must be held reasonably close to the optimum value. Although there is some latitude in this level, it is nearly expended in the normal variation in injection from channel to channel. Consequently, the adjustment of C7 is limited primarily to establishing the conditions for good conversion. Since changes in oscillator injection affect conversion gain, it also affects the input capacity of the mixer, thus also affecting tracking of the mixer grid circuit. These tube variations with their consequent effect on circuit alignment thereby require readjustment of the r-1 unit if maximum conversion efficiency is to be retained after the 6J6 tube is changed. It may be pos. sible, however, to try several 6J6 tubes and select one which gives satisfactory performance without realignment.

SWEEP RLIGNMENT OF PIX I.F.-Set the r.f unit bias to -3.5 volts.

Connect a 47 ohm resistor across the link circuit at T101 terminals C and D.

Remove the second picture i-l tube.

With the oscilloscope connected to the r-f unit test connection and the sweep oscillator connected to the antenna terminals, set the sweep output to give 0.1 volt peak-to-peak on the oscilloscope.

Switch through the channels and select one that is essentially flat and with the two carriers at 90% response or higher. Channel 6 is usually the most desirable for this test.

Remove the 47 ohm resistor and replace V102
Connect the oscilloscope to terminal 2 of V106 socket.
Clip 330 ohm resistors across R107. R110, R115 and R119.
Connect the bias box to the junction of R102 and R103. Adjust the box for -1 volt.

Adjust the sweep oscillator output to give 0.5 volt peak-topeak on the oscilloscope.

Connect the signal generator loosely to the i-f amplifier.
Adjust Tl and T 101 bottom core to obtain the response curve shown in Figure 14.

Remove the 330 ohm resistors across R107, R110, Rll5 and R119.
Set the i-f bias to -4.5 volts.
Adjust the sweep output to give 3 volts peak-to-peak on the oscilloscope.

Retouch T1. T101 bottom, T102 bottom. T103 bottom, T104 bottom and L102 to obtain the response curve shown in Fig. ure 15 .

HORIZONTAL OSCILLATOR RDJUSTMENT.-Normally the adjustment of the horizontal oscillator is not considered to be a part of the alignment procedure, but since the oscillator wave. form adjustment requires the use of an oscilloscope, it can not be done conveniently in the field. The waveform adjustment is made at the factory and normally should not require readjustment in the field. However, the wavelorm adjustment should be checked whenever the receiver is aligned or whenever the horizontal oscillator operation is improper.

Horizontal Frequency Adjustment.-With a clip lead, short circuit the coil between terminals C and D of the horizontal oscillator transformer Tl07. Tune in a television station and sync the picture if possible.
A.-Turn the horizontal hold control R168 to the extreme clockwise position. Adjust the T107 Frequency Adjustment (atop the chassis) so that the picture is just out of sync and the horizontal blanking appears in the picture as a vertical bar. The position of the bar is unimportant.
B.-Turn the hold control approximately one-quarter of a turn from the extreme clockwise position and examine the width and linearity of the picture. If picture width or linearity is incorrect, adjust the horizontal drive control C143B, the width control R178 and the linearity control L113 until the picture is correct. If Cl43B, R178 or Lll3 were adjusted, repeat step A above.

Horizontal Locking Range Adjustment.-Turn the horizontal hold control fully counter-clockwise. The picture may remain in sync. If so, turn the T107 top core slightly and momentarily switch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Momentarily remove the signal by switching off channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 9 bars are present just belore the picture pulls into sync, adjust the horizontal locking range trimmer C143A slightly clockwise. If less than 7 bars are present, adjust C143A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 7 to 9 bars are present.

Horizontal Oscillator Waveform Adjustment.-Remove the shorting clip from terminals C and D of T107. Turn the horizontal hold control to the extreme clockwise position. With a thin fibre screwdriver, adjust the Oscillator Wavetorm Adjustment Core of T107 (under the chassis) until the horizontal blanking bar appears in the center.
A.-Connect the low capacity probe of an oscilloscope to terminal C of T107. Turn the horizontal hold control one-quarter turn from the clockwise position so that the picture is in sync. The pattern on the oncilloscope should be as shown in Figure 17. Adjust the Oscillator Waveform Adjustment Core of T107 until the two peaks are at the same height. During this adjustment, the picture must be kept in sync by readjusting the hold control if necessary.

This adjustment is very important for correct operation of the circuit. If the broad peak of the wave on the oscilloscope is lower than the sharp peak, the noise immunity becomes poorer, the stabilizing effect of the tuned circuit is reduced and drift of the oscillator becomes more serious. On the other hand, if the broad peak is higher than the sharp peak, the oscillator is overstabilized, the pull-in range becomes inadequate and the broad peak can cause double triggering of the oscillator when the hold control approaches the clockwise position.

Remove the oscilloscope upon completion of this adjustment.
Check of Horizontal Oscillator Adjustments.-Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 2 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer C143A slightly clockwise. If less than 2 bars are present, adjust C143A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 2 bars are present.

Turn the horizontal hold control to the maximum clockwise posilion. The picture should be just out of sync to the extent that the horizontal blanking bar appears as a single vertical or diagonal bar in the picture. Adjust the T107 Frequency Adjustment until this condition is fulfilled.

SENSITIVITY CHECK.-A comparative sensitivity check can be made by operating the receiver on a weak signal from α television station and comparing the picture and sound obtained to that obtained on other receivers under the same conditions.

This weak signal can be obtained by connecting the shop antenna to the receiver through a ladder type attenuator pad. The number of stages in the pad depends upon the signal strength available at the antenna. A sufficient number of stages should be inserted so that a somewhat less than normal contrast picture is obtained when the picture control is at the maxi. mum clockwise position. Only carbon type resistors should be used to construct the pad.

RESPONSE CURVES.-The response curves shown on page 14 and referred to throughout the alignment procedure were taken from a production set. Although these curves are typical, some variations can be expected.

The response curves are shown in the classical manner of presentation, that is with "response up" and low frequency to the left. The manner in which they will be seen in a given test set-up will depend upon the characteristics of the oscilloscope and the sweep generator. The curves may be seen inverted and/or switched from left to right depending on the deflection polarity of the oscilloscope and the phasing of the sweep generator.

NOTES ON R-F UNIT ALIGNMENT.-Because of the frequency spectrum involved and the nature of the device, many of the r-f unit leads and components are critical in some respects. Even the power supply leads form loops which couple to the tuned circuits, and if resonant at any of the frequencies involved in the performance of the tuner, may cause serious departures from the desired characteristics. In the design of the receiver these undesirable resonant loops have been shifted far enough away in frequency to allow reasonable latitude in their components and physical arrangement without being troublesome. When the r-f unit is aligned in the receiver, no trouble from resonant loops should be experienced. However, if the unit is aligned in a jig separate from the receiver, attention should be paid to insure that unwanted resonances do not exist which might present α faulty representation of r-f unit alignment.

A resonant circuit exists between the r-f tuner chassis and the outer shield box, which couples into the antenna and r-f plate circuits. The frequency of this resonance depends on the physical structure of the shield box, and the capacitance between the turer chassis and the front plate. In the KRK8 units, this resonance should fall between 120 and 135 mc . and is controlled in the design by using insulating washers of different thicknesses (in the front plate to tuner chassis mounting) to compensate for differences in the shield boxes of different models of receivers. The performance of the tuner. particularly on channels 7 and 8 will be impaired if the proper washers for the particular shield box involved are not used. Obviously then, if the r-f unit is removed for service, the washers should be replaced in the correct order when the unit is replaced.

THE DETAILED ALIGNMENT PROCEDURE BEGINNING ON PRGE SHOULD BE READ BEFORE ALIGNMENT BY USE OF THE TABLE is ATTEMPTED

$\begin{aligned} & \text { STEP } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { SIGNAL } \\ \text { GENERATOR } \\ \text { TO } \end{gathered}$	$\begin{aligned} & \text { SIGNAL } \\ & \text { GEN. } \\ & \text { FREQ. } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { SWKEPP } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$		$\begin{aligned} & \text { CONNECT } \\ & \text { OSCILLOSCOPE } \\ & \text { TO } \end{aligned}$	$\begin{aligned} & \text { CONNECT } \\ & \text { "VOLTOHMYST" } \\ & \text { TO } \end{aligned}$		ADJUsT	$\begin{gathered} \text { REFER } \\ \text { TO } \end{gathered}$
DISCRIMINATOR AND SOUND l-F Alignment									
1	2nd sound i-f grid (pin 1, VII6)	$\begin{aligned} & 21.00 \\ & .1 \text { volt } \\ & \text { outppus } \end{aligned}$	Not used	-	Not used.	In series with 1 meg. to pin 7 of V117	$\begin{aligned} & \text { Motor on } 3 \text { valt } \\ & \text { seale } \end{aligned}$	Detune Tlll (bol.) Adjust Tlll (top) for max. on meter	Fig. 12 Fig. Fig.
2	"	"	"	-	"	$\begin{aligned} & \text { Junction of } 8192 \\ & \$ \$ 103 \end{aligned}$	Metor on 3 volt scale	Tlll (bottom) for zero on moter	Fig. 12 Fig.
3	"	"	2nd sound $1-1$ grid (pin 1, V116)	$\begin{gathered} 21.00 \\ \text { center } \\ .1 \mathrm{v} . \text { out } \end{gathered}$	$\begin{aligned} & \text { Junction of } 8192 \\ & \& S 103 \end{aligned}$	Not used	Check for symmetri form (positive ${ }^{6}$ equal adjust Tlll -qual	cal response wavenegative). If not (top) until thoy are	Fig. 12 Fig. 8
4	lat sound i.f grid (pin, 1, VII5)	$\begin{aligned} & 21.00 \\ & \text { ro- } \\ & \text { duted } \\ & \text { output } \end{aligned}$	lat sound ith grid (pin 1, V1ls)	$\begin{gathered} 21.00 \\ \text { redueed } \\ \text { output } \end{gathered}$	TorminalK of Tllo in with 33 E	"	Sweep oulput re. duced to provide 0.3 volt p-to-p on scope	T110 (top and bot.) for max. gain and symmetry of 21.00 me.	$\begin{aligned} & \text { Fig. } 13 \\ & \text { Fig. } 10 \\ & \text { Fig. } 8 \end{aligned}$

PICTURE I.F AND TRAP ADIUSTMENT

ALIGNMENT TABLE										4T101
$\begin{gathered} \text { STEP } \\ \mathbf{N o .} \mid \end{gathered}$	$\begin{gathered} \text { CONNECT } \\ \text { SIGNLI } \\ \text { GENERTOR } \\ \text { TO } \end{gathered}$	$\begin{aligned} & \text { SIGNAL L } \\ & \text { GREEL. } \\ & \text { FRCO. } \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { SWNEEPR } \\ \text { GENERTOR } \\ \text { TO } \end{gathered}$	$\begin{gathered} \text { SWEEP } \\ \text { SERE. } \\ \text { FRE. } \end{gathered}$	CONMECT HETEROCYYE FREQ. METER		CONECT "VOLTOEMYBT" TO	MISCELLLANEOUS CONNECTIONB insthuctions	adjust	${ }_{\text {Repler }}^{\text {TO }}$
24	$\begin{aligned} & \text { Antonne } \\ & \text { torminal } \\ & \text { (loomoly) } \end{aligned}$	${ }_{18}^{181.25}$	Antonna ferminale precaution)	Sweeping channe	Not used	-	Not used	Roc. on chan. 8. Roaduust C9, C18 and and band width. Hoadjuat clil only it necossary.		
25	"	$\underset{\substack{211.25 \\ 215.75}}{ }$	"	$\begin{gathered} \text { Sweoping } \\ \text { chanael } \\ 13 \end{gathered}$	Not usod	-	Not usod	Roc. on chan. 13. Adjust 152 for max. overshoot a little more than the amount of turning requirod to roach max. rosponplitude of renponse.		
26	"	215.75	Not ueod	-	Loonely coupled to r-i osellator	236.75	Junction of R192 gon. method only	Fine funing contorod. Recoivor on chan, 13. Adjust L43 Lor correct channol io propor froq. by adjustment of C1.		${ }_{\text {Flq. }}^{\text {F\% }} 10$
27	"	${ }_{2099.75}^{205.25}$	Antenna terminala precaution)	channol	Not used	-	Connect "Voll Ohmyst" to r-f unit tost point at R5	Roc. on chan. 12	Check to see that and -3.0 volts of osc. injection it	${ }_{\text {Fig. }}^{\text {Fig. }} 18$
29	"	${ }^{1990.25}$		${ }_{\text {channol }}^{11}$	"	-	"	Rac. on chan. 11	"	$\left.{ }_{\text {Fig. }}{ }^{16}\right)^{18}$
29	"	${ }^{1939.25} 19$	"	${ }_{\text {channol }}^{10}$	"	-		hoc. on chan. 10		${ }^{\mathrm{Fig}(10)^{18}}$
30	"	(197.25	"	$\stackrel{\text { channol }}{9}$		-		Hoc. on chan.		${ }^{\mathrm{Fig}(9)}{ }^{18}$
${ }^{31}$	"	(181.25	"	${ }_{8}^{\text {channol }}$		-		Hoc. on chan.		${ }^{\mathrm{Fig}(0)}{ }^{18}$
32	"	${ }_{179.75}^{175.25}$	"	${ }_{\text {channol }}^{7}$,	-	,	Hoc. on chan.	,	${ }^{\mathrm{Fig}}(7){ }^{18}$

34 Ropoat stop 23. It the osellator ts off froquency ovorihoot the adjuatment of C 1 and correct by adjuating L 43.

38	Antonna forminals (loonaly)	87.95	Not used	-	Loosely coupled	108.75	gen. method only	Roc. on chan. 6		Fig. 10
37	."	$\begin{aligned} & 83.25 \\ & 87.75 \end{aligned}$	Ant. terminals (see toxt for	$\begin{gathered} \text { Sweeping } \\ \text { channel } \\ 6 \end{gathered}$	Not usod	-	Not usod	nocosary to touch Cll.		 Flg.
${ }^{38}$	Not usod	-	Not used	-	Not usod	-		Chock osc. Injoction. juat $\mathrm{C7}$ to tivo -3 just c9 1 lor proper response then ropeaxt stop. 37.		Mq. ${ }_{\text {Mq. }}{ }^{\text {a }}$
39	$\begin{aligned} & \text { Antonna } \\ & \text { terminals } \\ & \text { (loosely) } \end{aligned}$	${ }_{8}^{77.25}$	precaution)	channol	"	-	"	Roc. on chan. 5	Check to see tha renponse in correct osc. injection is present	${ }_{\text {Figic }}^{\text {(})}{ }^{16}$
40	"	${ }_{71.75}^{87.25}$	"	$\operatorname{channel}_{4}$	"	-	"	Rec. on chan.		${ }^{\text {ig }}$ (9) ${ }^{16}$
41	"	${ }_{85}^{81.25}$	"	$\underset{3}{\text { channel }}$	"	-	"	Hoc. on chan.	"	${ }_{\text {Fig. }}^{(3)}{ }^{16}$
42	"	${ }_{59}^{55.75}$	"	channol	"	-	"	Roc. on chan.	"	${ }_{\text {Figs }}^{(2)}{ }^{16}$

44	Antenna	215.75	Not usod	-	Loosely coupled to r - 1 oscillator	236.75	Junction of R192 Sio3 for sig. gon. mothod only		Cl for zero on met. freq. meter	Fiq. ${ }^{\text {Fig }}$ \% ${ }^{\text {a }}$
45	"	209.75	"	-	"	230.75	"	Roc. on chan. 12	111 as abovo	Fig. 11
48	\cdots	203.75	"	-	"	224.75	"	Rec. on chan. 11	110 as abovo	Pig. 11
47	"	197.75	"	-	"	218.75	"	Roc. on chan. 10	18 as above	Fiq. 11
48	"	191.75	"	-	"	212.75	"	Rec. on chan. ${ }^{\text {a }}$	L8 azabovo	Fig. 11
49	"	185.75	"	-	,	208.75	"	Roc. on chan. -	${ }_{17}{ }^{\text {a as abovo }}$	Fig. 11
50	"	178.75	"	-	"	200.75	"	Roc. on chan. 7	L6 at abovo	Fig. 11
51	"	${ }^{187.75}$	"	-	"	108.75	"	Hoc. on chan. ${ }^{\text {a }}$	${ }_{15}{ }^{\text {a }}$ asabaro	Fig. 11
52	"	81.75	"	-	"	102.75	"	Hoc. on chan. 5	14 as abovo	Fig. 11
53	"	71.75	"	-	"	92.75	"	Hoc. on chan. 4	${ }_{2} .3$ as abovo	Fl9. 11
54	"	B5.75	"	-	"	88.75	"	Hoc. on chan. 3	12 as abovo	Fig. 11
55	"	59.75	"	-	"	80.75	"	hoc. on chan. 2	L1 as abovo	Fig. 11
56	Ropeat stops 41 llbrough 55 as a check.									
57	Antonna	${ }_{\substack{181.25 \\ 185.75}}^{181}$	Antenna forminal	Swooping channel	Not usod	-		Roc. on chan. 8. propory adhustad widor with a allg in top.		${ }_{\text {Fiq. }}^{\text {(i) }}{ }^{16}$

homove 39 ohm rosistor and roconnoct link from T101 to torminal 2 of r-f unit torminal board. Proccood with ewoop allgnment of Plx l-F.

1
R :

9. 110
19.

Nin) six

Figure 8-Top Chassis Adjustments

Figure 9-Bottam Chassis Adjustments

Figure 10-Test Connection Paints

Figure II-R.F Oscillotor Adjustments

Figure 16-R.F Response

Figure 17-Horizontal Oscillator Wavejorms

4T101 TEST PATTERN PHOTOGRAPHS

Figure 18-Normal Picture

Figure 19-Focus Magnet and
lon Trap Magnet Misadjused $\xrightarrow{\longrightarrow}$

Figure 20-Horizontal Linearity
Control Misadjusted (Picture Control Misad justed (Picture
Cramped in Middle)

Figure 21-Width Control Misadjusted \Rightarrow

Figure 22-Horizontal Drive Control Misadjusted \longleftarrow

Figure 23-Transients
\Rightarrow

Figure ${ }^{24}$ Thest Pattern Show. ing Out of Sync Condition
When Horizontal Hold ConPro. Is in a Counter-clockwise Posi. tion-Just Before Pulling Into

Figure 25-Test Pattern Showing Out of Sync Condition When Horizontal Hold Control Is at the Maximum Clockwise
Position Position

Following is a list of symptoms of possible failures and an indication of some of the possible faults:

NO RASTER ON RINESCOPE:

(1). Incorrect adjustment of ion trap magnet. Magnet reversed either tront to back or top to bottom
(2) V112 or V113 inoperative. Check wavetorms on grids and places.
(3) No high voltage-if horizontal deflection is operating as evidenced by the correct waveform on terminal 1 of
high voltage transtormer, the trouble can be isolated to high voltage transtormer, the trouble can be isolated to
the 1 B3GT circuit. Either the T108 high voltage winding is open, the 1B3GT tube is detective, its filament circuit is open, C158 is shorted, or R179 is open.
(4) V111 circuit inoperative-Reler to schematic and wave form chart.
(5) Damper tube (V114) inoperative
(6) Delective kinescope.
(7) R134 open.
(8) No receiver plate voltage-filler capacitor shorted-or filler choke open.
no vertical deflection:
(1) V109 or V110 inoperative. Check voltage and waveforms on grids and plates.
(2) T106 open.
(3) Vertical deflection coils open

SMALL RASTER:

(1) Low Plus B or low line voltage.
(2) V112 defective.
poor vertical linearity:
(1) If adjustments cannot correct, change V110.
(2) Vertical output transformer T106 defective.
(3) V109 delective-check voltage and wavetorms on grid and plate.
(4) C141, R155, C132A or C132C defective
(5) Low plate voltage-check rectifiers and capacitors in supply circuits.
6) It height is insufficient, try changing viog.

POOR HORIZONTAL LINEARITY:

(1) If adjustments do not correct, change V112 or V114.
(2) T108 or L113 defective.
(3) C156 or C157 delective

wrinkles on left side of raster:

(1) C155, R160 or C123 defective.
(2) Defective yoke.
picture out of sync horizontally
(1) T107 incorrectly tuned.
(2) R167, R168 or R169 defective.

TRAPEZOIDAL OR NON SYMMETRICAL RASTER:
(1) Improper adjustment of focus magnet or ion trap magne (2) Defective yoke.
haster and signal on rinescope but no sound
(1) R-F oscillator off frequency.
(2) Sound i.f. discriminator or audio amplifiex inoperativecheck
voltages.
T112 or C 178 defective
(4) Speaker defective.
signal at kinescope grid but no sync:

1) AGC control switch S 105 misadjusted.
(2) V107B, inoperative. Check voltage and wavelorms at its grid and plate.
signal on rinescope grid but no vertical sync:
(1) Check V109 and associated circuit-C140, R200, etc.
(2) Integrating network inoperative-Check.
(3) R148, R149, R150, R151. R152. R153. R154, R201, R202,
C159 or C179 delective.

59 or C179 defective
(4) Gas current. grid eminsion or grid cathode leakage in
(5) Replace.
signal on kinescope grid but no horizontal sync:
(1) T107 misadjusted-readjust as instructed on page 11. 2) V111 inoperative-check socket voltages and waveforms. 3) T 107 defective.
(4) $\mathrm{C} 144, \mathrm{C} 143 \mathrm{~A}, \mathrm{C} 145, \mathrm{C} 146, \mathrm{C} 147, \mathrm{C} 148$, or C 150 defective. (5) it horizontal speed is completely off and cannot be adjusted
check R167. R168. R169, R170, R171, R173 and R215.

SOUND AND RASTER but no picture or sync:
(1) Picture i.f., detector or video amplifier inoperative-check 103. V104, V105 and V106-check socket voltages.
(2) Bad contact to kinescope grid.
picture stable but poor resolution:
(1) V105 or V106 defective.
(2) Peaking colls defective-check for specilied resistance.
(3) Make sure that the focus control operates on both sides
of proper focus.
of proper tocus.
(4) R-F and I.F circuits misaligned.

PICTURE SMEAR:

(1) R-F or $1 \cdot \mathrm{~F}$ circuits misaligned.
(2) Open peaking coil.
(3) This trouble can originate at the transmitter-check on another station.

PICTURE IITTER:

(1) AGC control switch S105 misadjusted.
(2) It regular sections at the left picture are displaced change
(3) Vertical instability may be due to loose connections or noise.
(4) Horisontal instability may be due to unstable transmitted sync.

RASTER BUT NO SOUND, PICTURE OR SYNC:

(1) Defective antenna or transmission line.
(2) R-F oscillator off frequency.
(3) R-F unit inoperative-check V1, V2.

PICTURE I-F RESPONSE.-At times it may be desirable to observe the individual i-f stage response. This can be achieved by the following method:
Shunt all i-f transiormers and coils with a 330 ohm carbon resistor except the one whose response is to be observed.
Connect a wide band sweep generator to the converter grid and adjust it to sweep from 18 mc . to 30 mc .

DARE VERTICAL LINE ON LEFT OF PICTURE:
(1) Reduce horizontal drive and readjust width and horizontal linearity.
(2) Replace V112.

LIGHT VERTICAL LINE ON LEFT OF PICTURE:
(1) C155 defective.
(2) V114 defective.

Connect the oscilloscope across the picture detector load resistor and observe the overall response. The remponse oblained will be essentially that of the unshunted stage. The effects of the various traps are also virible on the stage response.
Figures 26 through 30 show the response of the various stages obtained in the above manner. The curves shown are typical although some variation between receivers can be expected. Relative stage gain is not shown.

Figure 26-Response of Con. verter and First Pix I-F Transormer

Figure 29-Response of Fourth Pix I.F Transformer

Figure 32-Overall Pix I.F Response

Figure 27-Response of Second Pix I-F Transformer

Figure 30-Response of Fifth Pix 1.F Coil

Figure 33-Video Response at Average Contrast

Figure 28-Response of Third Pix I.F Transformer

Figure 31-Response from First Pix I.F Grid to Pix Det.

Figure 34-Video Response (100KC Square Wave)

Plate of Picture Detector (Pin 2 of V105) (6AL5)
Figure 35-Vertical (Oscilloscope Synced to $1 / 2$ of Vertical Sweep Rate) (5.5 Volts PP) $\longleftarrow+$

Figure 36-Horizontal (Oscilloscope Synced to $1 / 2$ of Vertical Sweep Rate) ${ }^{1 / 5} 5$ Volts PP)

Grid of 1st Video Amplifier (Pin 2 of V106) (12AU7)

Figure 37-Vertical (5.3 Voles PP) $\longleftarrow<$

Figure 38-Horizontal (5.3 Volts PP) \rightarrow

Plate of 1st Video Amplifier (Pin 1 of V106) (12AU7)
Voltages depend on setting af Pix control

Figure 39-V ertical (2.18 Volts PP) $\longleftarrow \longleftarrow$

Figure $40-$ Horizontal (2.18 Volts PP) \rightarrow

Grid of 2nd Video Amplifier (Pin 7 of V106) (12AU7)
Voltages depend on setting of Pix control

Figure 41-Vertical (2.18 Volts PP)
$\longleftarrow \longleftarrow$
Figure 42-Horizontal (2.18 Volts PP)

Plate of 2nd Video Amplifier
(Picture Max.) (Pin 6 of V106) (12AU7)
V oltages depend on setting of Pix control

Figure 43-Vertical (15.90 Volts PP)
4
Figure 44-Horizontal (15.90 Volts PP) \rightarrow

Input to Kinescope (Junction of R121 and C192) (Picture Max.)
Voltages depend on setting of Pix conerol

Figure 45-Vertical (15.90 Volts PP) $\longleftarrow<4$

Figure 46-Horizontal (15.90 Volts PP) \rightarrow

Cathode of D-C Restorer (Pin 3 of V107A) (12AU7)
Voltages depend on setting of Pix control

Figure 47-Vertical (11-80 Volts PP)
$\longleftarrow<4$
Figure 48-Horizontal (11-80 Volts PP) \rightarrow

Grid of D.C Restorer
(Pin 2 of V107A) (12AU7)
Voltages depend on setting of Pix control

Figure 49-Vertical (3.10 Volts PP)
$\longleftarrow \leqslant$
Figure 50-Horizontal (3-10 Volts PP) \rightarrow

Grid of Sync Separator (Pin 4 of V109A) (6SN7GT)
Voltages depend on setting of
Pix control
Figure $51-$ Vertical (11-14 Volts PP)
$\longleftarrow \longleftarrow 4$
Figure 52 -Horizontal (11-14 Volts PP) \Rightarrow

Plate of Sync Separator (Pin 5 of 109A) (6SN7GT)

Figure 53-Vertical (32 Volts PP)
$\longleftarrow \longleftarrow$
Figure 54-Horizontal (32 Volts PP) \rightarrow

Figure 61-Junction of C159, C179 and R202 (275 Volts PP)
$4-4$

Figure 62-Input of Vertical Deflection Coils (20 Volts PP) (Junction of Green Lead of T106 and Green Lead of Yoke)

Figure 63-Grid of Horizontal Oscil. lator Control (27 Volts PP)
(Pin 1 of V111) (6SN7GT) $\longleftarrow \square$

Figure 64-Cathode of Horizontal Oscillator Control (1.0 Voles PP) (Pin 3 of V111) (6SN7GT)

Figure 57-Output of Integrating Net. work (Junction of C139, C140 and R147) (8.5 Volts PP) $\longleftarrow 4$

Figure 58-Grid of Vertical Oscillator (75 Voles PP) (Pin 1 of V109B) (6SN7GT)
$\xrightarrow{+}$

Figure 59-Grid of Vertical Output (110 Volts PP) (Pin 1 of V110) (6AQ5)
$\longleftarrow \square$

Figure 60-Plate of Vertical Output (700 Volts PP) (Pin 5 of V110) (6AQ5)
\Rightarrow

Figure 65-Junction of R163, R164 and R170 (70 Volts PP)

Figure 66-Grid of Horizontal Oscil. lator (290 Volts PP) (Pin 4 of V111) (6SN7GT)
\rightarrow

Figure 67-Plate of Horizontal Oscil. lator (150 Volts PP) (Pin 5 of V111) (6SN7GT)

Figure 68-Terminal "C" of T107 (100 Volts PP)
\rightarrow

Figure 69-Input to Horizontal Output Tube ($60-80$ Volts PP) Depends on setting of drive control (Junc. tion of C152 and C143B)

$$
\leftrightarrow-4
$$

Figure 70-Plate of Horizontal Output (Approx. 5000 Volts PP) (Measured Through a Capacity V'oltage Divider Connected from Top Cap of V102 to Ground)

Figure 71 -Cathode of Damper 12100. 2700 Volts PP) Depends on setting of width control (Pin 3 of V114) (6 F 4 GT)

$$
4<4
$$

Figure 72—Plate of Damper 190.130 Volts PP) Depends on selting of width control (Pin 5 of V114) (6F4GT)
\rightarrow

Figure 73-Junction of Yoke and Width Control (80-145 Volts PP) Depends on setting of width control

Figure 74-Voltage Across Width Control (0.85 Volts PP) Depends on set. ting of width control
\rightarrow

The following measurements represent two sets of conditions. In the first condition, a 2500 microvolt fest pattern signal was fed into the receiver, the picture synchronized and the AGC control properly adjusted. The second condition was oblained by removing the antenna leads and short circuiting the receiver antenna terminals. Voltages shown are read with a "Senior VoltOhmyst" type WV97A between the indicated terminal and chassis ground and with the receiver operating on 117 volts, 60 cycles. a.c. The symbol < means less than.

Tube No.	Tube Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		I Plate (ma.)		Notes on Measurements
				Pin No.	Volts	Pin No.	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	Pin No.	Volts			
V1	6 J 6	Mixer	$2500 \mathrm{Mu} . \mathrm{V}$. Signal	2	135	-	-	7	0	5	-3.25	7.4	-	
			No Signal	2	130	-	-	7	0	5	-3.1	7.1	-	
V1	6 J 6	R-F Oscillator	2500 Mu. V. Siqnal	1	119	-	-	7	0	6	- -4.16	4.83	-	*Depending upon channel
			No Siqnal	1	104	-	-	7	0	6	$\bullet-2.37$	4.6	-	
V2	6AG5	R-F Amplifier	2500 Mu. V. Signal	5	243	6	173	2	<0.1	1	-4.45	0.44	0.13	
			No Signal	5	197	6	114	2	0.28	1	-0.31	8.6	2.35	
V101	6AU6	1st Pix. I-F Amplifier	$2500 \mathrm{Mu} . \mathrm{V}$. Siqnal	5	205	6	232	7	0.15	1	-5.8	1.32	0.52	
			No Signal	5	112	6	152	7	1.0	1	-0.6	6.8	2.8	
V102	6CB6	2nd Pix. I-F Amplifier	$2500 \mathrm{Mu} . \mathrm{V}$. Siqnal	5	192	6	205	2	0.5	1	-5.8	4.4	0.8	
			No Signal	5	118	6	122	2	1.38	1	-0.6	9.8	2.5	
V103	6AU6	3d Pix. I-F Amplifier	$2500 \mathrm{Mu} . \mathrm{V}$. Siqnal	5	190	6	228	7	0.2	1	-0.6	1.28	0.55	
			No Signal	5	85	6	145	7	1.8	1	0	6.5	2.98	
V104	6CB6	4th Pix. I-F Amplifier	2500 Mu . V. Signal	5	159	6	250	2	1.8	1	0	9.3	2.7	
			No Signal	5	166	6	248	2	1.62	1	0	0.42	2.4	
V105	6AL5	Picture 2d Det.	$2500 \mathrm{Mu} . \mathrm{V}$. Signal	2	-2.3	-	-	5	0	-	-	8.2	-	
			No Signal	2	-0.52	-	-	5	0	-	-	<0.1	-	
V105	6AL5	AGC Rectifier	$2500 \mathrm{Mu} . \mathrm{V} .$ Siqnal	7	-9.0	-	-	1	6.0	-	-	0.12	-	
			No Signal	7	-2.45	-	-	1	5.5	-	-	<0.1	-	
V106	12AU7	lst Video Amplifier	$2500 \mathrm{Mu} . \mathrm{V} .$ Signal	1	100	-	-	3	1.0	2	-2.4	3.8	-	At maximum contrast
			No Signal	1	48	-	-	3	0.7	2	-0.38	2.7	-	
			$2500 \mathrm{Mu} . \mathrm{V}$. Signal ${ }^{\circ}$	1	180	-	-	3	9.1	2	-2.9	0.69	-	At minimum contrast
			No Signal	1	100	-	-	3	5.9	2	-0.38	0.6	-	
V106	12AU7	2d Video Amplifier	2500 Mu. V. Signal	6	221	-	-	8	1.68	7	-1.3	7.5	-	At maximum contrast
			No Signal	6	191	-	-	8	2.6	7	-. 9	11.1	-	
			$2500 \mathrm{Mu} . \mathrm{V}$. Signal	6	189	-	-	8	2.75	5	-. 5	12.5	-	At minimum contraut
			No Signal	6	188	-	-	8	2.69	7	-. 2	12.3	-	
V107	12AU7	D.C Rest. \& Sync Sep.	2500 Mu. V. Signal	1	7.5	-	-	3	46.0	2	-4.6	<0.1	-	At madmum
			No Signal	1	5.2	-	-	3	15.0	2	-1.0	<0.1	-	contruat

Tube No.	Tube Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		I Plate (ma.)		Notes on Measurements
				Pin No.	Volts									
V107	12AU7	DC Resi Snyc Sep.	$2500 \mathrm{Mu} . \mathrm{V}$. Slgnal	6	8.6	-	--	8	58	7	0	-	-	At Maximum Contras!
			No Signal	6	6.2	-	-	8	14	7	0	-	-	
V108	14EP4	Kinescope	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	Cap	$\cdot 10,000$	10	405	11	69	2	34	0.075	-	-Average Brightnesa
			No Signal	Cap	$\cdot 10,000$	10	405	11	40	2	9.5	0.04	-	-Average Brightness
V109A	6SN7GT	Sync Amplifier	2500 Mu . V. Signal		70	-	-	6	10.2	4	8.6	-	-	
			No Signal	5	18	-	-	6	8.2	4	6.2	-	-	
V109B	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Vertical Oscillator	2500 Mu . V. Signal	2	132	-	-	3	0	1	-13.2	0.15	-	
			No Signal	2	132	-	-	3	0	1	-12.0	0.15	-	
V110	6AQ5	Vertical Outpul	2500 Mu . V. Signal	5	290	6	290	2	22	1	-0.5	13.9	1.20	
			No Signal	5	290	6	290	2	22	1	-0.5	13.8	1.20	
V111	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Horizontal Oac. Control	2500 Mu . V. Signal	2	185	-	-	3	25.0	1	-2.0	. 33	-	
			No Signal	2	181	-	-	3	16.3	1	-2.9	. 31	-	
V111	$\begin{aligned} & \text { 6SN7 } \\ & \text { GT } \end{aligned}$	Horizontal Oscillator	$2500 \mathrm{Mu} . \mathrm{V}$. Signal	5	161	-	-	6	0	4	-53	1.35	-	
			No Signal	5	158	-	-	6	0	4	-54	1.35	-	
V112	$\begin{aligned} & \text { 6AU5 } \\ & \text { GT } \end{aligned}$	Horizontal Output	2500 Mu . V. Signal	5	- 440	8	189	3	19.0	1	-8.0	77.0	11.2	-5000 volt pulse present
			No Signal	5	- 435	8	185	3	18.6	1	-7.4	75.0	11.0	
V113	$\begin{aligned} & \text { 1B3GT } \\ & \text { /8016 } \end{aligned}$	H. V. Rectifier	Brightnets Min.	Cap	.	-	-	287	*10,100	-	-	0.075	-	- 10,100 volt pulse present
			Brigitnesa Average	Cap	-	-	-	287	$\cdot 10,100$	-	-	0.040	-	
V114	$\begin{aligned} & 6 W 4 \\ & G T \end{aligned}$	Damper	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	269	-	-	3	-430	-	-	88	-	- 3000 volt pulse present
			No Signal	5	264	-	-	3	-429	-	-	87	-	
V115	6AU6	lat Sound I.F. Amp.	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	234	6	188	7	0.98	1	0	8.1	3.24	
			No Signal	5	231	6	165	7	0.95	1	0	7.9	3.30	
V116	6AU6	2d Sound I-F Amp.	2500 Mu. V. Signal	5	200	6	73	7	0	1	-0.45	3.73	1.37	
			No Signal	5	198	6	75	7	0	1	-0.53	3.64	1.28	
V117	6AL5	Sound Diecrim.	$2500 \mathrm{Mu} . \mathrm{V} .$ Signal	2	-0.6	-	-	5	0.1	-	-	-	-	
			No Slgnal	2	-1.52	-	-	5	1.5	-	-	-	-	
V118	6AV6	lst Audio Amplifier	$2500 \mathrm{Mu} . \mathrm{V} .$ Signal	7	96	-	-	2	0	1	-0.87	0.54	-	
			No Signal	7	95	-	-	2	0	1	-0.86	0.52	-	
V119	6AQ5	Audio Output	2500 Mu. V. Signal	5	257	6	271	2	19.8	7	0	28.5	1.97	
			No Signal	5	251	6	268	2	19.2	7	0	28.2	1.92	
SR101		Rectifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	-	0	-	-	-	141	-	-	226	-	
			No Signal	-	0	-	-	-	140	-	-	245	-	
SR102		Rectifior	$\underset{\substack{2500 \mathrm{Mu} . \\ \text { Signal }}}{ }$	-	141	-	-	-	282	-	\square	226	-	
			No Signal	-	140	-	-	-	280	-	-	245	-	

Figure 75-R.F Unit Wiring Diagram

CRITICAL LEAD DRESS:

1. All leads in the picture and sound i-f circuits must be dreased as short and direct as possible with the exception of C107. Cll and Cll7 which are to be dressed with enough slack so as not to have to move the body of the capacitor to align that particular stage.
2. Dress the yellow lead from pin 3 of V106 socket up in the air and away from V105 socket.
3. Dress all components connected to V106 socket up and away from the chassis except L103.
4. Keep the body and coded end of Ll03 as close to pin 2 of V105 socket as possible.
5. Keep the bus from pin 5 of V105 socket to L102 as short as possitle and employ sleeving to prevent shorting.
6. Dress the red lead from kinescope socket away from V105 and V106 sockets and on power transformer side of terminal boards.
7. Dress the yellow lead from the kinescope socket along the rear apron between T107 and V111 socket, up between V107 socket and the power transformer to the terminal board.
8. The green lead from the kinescope socket should be dressed away from all other leads and components and away from V106.
9. Pin 7 of V116 socket should be soldered to the chassis as short as possible.
10. Dress fuse in high voltage compartment so as sot to short circuit to ground.
11. Dress the two filament leads away from the Tl08 high voltage winding by pulling them up through hole so as to have all slack on the transformer side of the insulating board.
12. Keep V113 tilament leads away from the metal side of the high voltage compartment shield.
13. Dress Cl58 on high voltage rectifier socket so as to keep the hot end of the capacitor away from the metal side of the high voltage compartment.
14. Keep all leads away from Rl77 for heat reasons.
15. Dress R210 and R211 away from all components on account of their heat.
16. Dress AC leads at S102 away from audio components on R194.
17. Clamp W105 in cable lance provided on rear apron.
18. Keep leads on C182 and C183 as short as possible.
19. Keep C133 dressed above leads.
20. Dress the body of Cl31 away from the chassis.
21. Keep Cl50 dressed away from the chassis.
22. Dress the orange lead from C160-C on the power transformer side of the terminal boards and around the rear apron side of V106 socket.
23. Dress the body of R119 as close to pin 5 on V104 socket as possible.
24. Dress the body of R124 as close to pin 2 on V105 socket as possible.
25. Keep the leads of C122 and C125 as short and direct as possible.
26. Keep the leads of Cl26 as short as possible.
27. Dress the leads of the AGC switch Sl05 next to the base in the chaseis and away from sound components.
28. Solder terminal on can of Cl60 to bracket along with Cl34.

GENERAL DESCRIPTION

Model 4 IL4 is a 14 -inch television radio phonograph combination. Two record changers are provided to play 78, 331/3 and 45 RPM records. The instrument employs 23 tubes plus 4 rectifiers and a 14EP4 kinescope.

Features of the television unit are full twelve channel cov-
erage: FM sound system; improved picture brilliance; picture A.G-C: A.F.C horizontal hold; stabilized vertical hold: two stages of video amplification; noise saluration circuits: improved sync separator and clipper: four me band width for picture chanal and reduced hazard high voltage supply.

ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE........ 96 square inches on a 14EP4 kinescope

TELEVISION R-E FREQUENCY RANGE

All 12 televition channels. 54 mc . to $88 \mathrm{mc} ., 174 \mathrm{mc}$. to 216 mc . Fine Tuning Range. . $\pm 250 \mathrm{kc}$. on chan. $2, \pm 650 \mathrm{kc}$. on chan. 13 Picture Carrier Frequency . 25.50 mc . Sound Carrier Frequency 21.00 mc . RADIO TUNING RANGE. 540-1,600 kc.

Radio Intermediate Frequency . 455 kc. POWER SUPPLY RATING...... 115 volts, 60 cycles, 235 watts AUDIO POWER OUTPUT RATING. 6.0 wate max. CHASSIS DESIGNATIONS
Televinion Chastie

.KCS62

Radio Chassis. RC1090
$33 \% / 78$ RPM Record Changer. 960282-4 or 5
45 RPM Record Changer.................................... RP190-2
Refer to Service Data 960282 or RP190 for information on the record changers.

LOUDSPERKER-92589.9 (RLI11-14). 12-inch PM Dynamic
Voice Coil Impedance. 3.2 ohms at 400 cycles WEIGHT
Chassis with Tuben in Cabinet. 149 lben.
Shipping Weight. 183 lbs.

DIMENSIONS (Inches)	Wldth	Helght	Depth
Cabinet (outside)	$333 / 4$	35	25
TV Chassis (overall)	16	15	2014

RECEIVER ANTENNA INPUT IMPEDRNCE. . 300 ohms balanced
If necessary, the television chassis may be fed separately from either a 300 -ohm balanced line or a 72 -ohm co-ax.

RCA TUBE COMPLEMENT

	Tube Used	(Televition Chassis)	Function
	RCA 6CB6		R-F Amplifier
(2)	RCA $6 J 6$	R-	tor and Mixer
(3)	RCA 6AU6	. ls	I-F Amplitier
(4)	RCA 6AU6	2r	I-F Amplitier
$5)$	RCA 6A		Discriminator
(6)	RCA 6AU6	1	I-F Amplitier
(8)	RCA 6CB6	2nd	I-F Amplitier
(8)	RCA 6AU6	3rd	I-F Amplitier
)	RCA 6CB6	. 4 th	I-F Amplitier
0)	RCA 6AL5.	Picture 2nd Detector	AGC Detector
1)	RCA 12AU7	. lst and	ideo Amplifier
2)	RCA 12AU7	DC Restor	ync Separator
3)	RCA 6SN7GT	ync. Amp. and Ver	eep Oscillator
4)	RCA 6AQ5	.	Sweep Output
5)	RCA 6SN7GT	Horizontal Sweep	or and Control
6)	RCA 6AU5GI	. Hori	Sweep Output
1)	RCA 6W4GT		Damper
	RCA 1B3-GT/		age Rectifier
(19)	14E		Kinescope

(Radlo Chassla)

PICTURE INTERMEDIATE FREQUENCIES

Picture Carrier Frequency	25.50 mc .
Adjacent Channel Sound Trc	27.00 mc .
Accompanying Sound Traps	21.00 mc .
Adjacent Channel Picture C	19.50 mc .

SOUND INTERMEDIATE FREQUENCIES

Sound Carrier Frequency . 21.00 mc.
Sound Discriminator Band Width between peaks..... 400 kc .
VIDEO RESPONSE To 4 mc.
FOCUS.. Magnetic
SWEEP DEFLECTION. Magnetic

TV OPERATING CONTROLS (Front Panel)

Channel Selector \mid Fine Tuning	Dual Control Knobs
Picture 1	Dual Control Knobs
Brightness)	Dual Control Knobs
Picture Horizontal Hold !	Dual Control Knobs
Picture Vertical Hold i	Dual Control Knobs
Escutcheon Light Switch	Single Control Knob
HORIZONTAL SWEEP FREQUENCY	15.750 cps
SCANNING	Interlaced, 525 line
VERTICAL SWEEP FREQUENCY	. . . 60 cps
FRAME FREQUENCY (Picture Repet	e) 30 cps

HIGH VOLTAGE WARNING

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, IN. VOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRE. CAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

REFER TO PAGES 56 TO 69 FOR TELEVISION ALIGNMENT PROCEDURE AND WAVEFORM PHOTOGRAPHS.

OPERATING INSTRUCTIONS

[^4] control for sultable volume.
5. Turn the BRIGHTNESS control fully counter-clockwise, then clockwise untll a light pattern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZON. TAL hold control untll a picture in obtained and centered.
8. Adjust the PICTURE and brightness controls for sultable picture contrast and brightness.
9. After the rcceiver has been on for some time. it may be necessary to read.
just the FINE TUNING control slightly for improved sound fidelity.
10. In switching from one channel to another, it may be necessary to repeat steps 4 and 8.
11. When the aet if turned on again after an idle period it should not be necessary to repeat the adjustments it the positions of the controls have not been changed. If any adjustment is necessary, step No. 4 is generally sufficient.

12. If the positions of the control have been changed. it may be necessary to repeat steps 1 through 8.

RADIO OPERATION

1. Turn the radio FUNC. TION switch to AM.
2. Tune in the desired sta. tion with the TUNING con. trol.

PHONOGRAPH OPERATION

1. Turn the radio FUNC. TION switch to 78.33 tor operation of the 78/331:s RPM changer or to 45 for operation of the 45 RPM changer.
2. Place a record on the appropriate changer and slip the changer power switch to "ON."

Make sure that all lubes are in place and are firmly seated in their sockets.

Check to see that the kinescope high voltage lead clip is in place.

Connect the antenna transmission line to the receiver antenna terminals. Plug a power cord into the 115 -volt a-c power source and into the receiver interlock receptacle. Turn the receiver power switch to the "on" position, the brightness control fully clockwise, and the picture control counter-clockwise.

ION TRAP MAGNET ADJUSTMENT. - Set the ion trap magnet approximately in the position shown in Figure 2. Starting from this position immediately adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the hrightest raster on the screen. Reduce the brightness control setting untit the raster is slightly above average brilliance. Turn the focus control (shown in Figure 2) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches of this adjustment should be made with the brightness control at the maximum clockwise position with which good line focus can be maintained.

Figure 2-Yoke and Focus Magnet Adjustments

DEFLECTION YOKE RDJUSTMENT. - If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE RDJUSTMENTS. - It will now be necessary to obtain a test pattern picture in order to make further adjustments.
If the Horizontal Oscillator and AGC System are operating properly. it should be possible to sync the picture at this point. However, if the AGC control is misadjusted, and the receiver is overloading. it may be impossible to sync the picture.

If the receiver is overloading. turn S 105 on the rear apron (see Figure 3) counter-clockwise until the set operates normally and the picture can be synced.

CHECE OF HORIZONTAL OSCILLATOR ALIGNMENT. Turn the horizontal hold control to the extreme counter-clock. wise position. The picture should remain in horisontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be gradually reduced and when only 2 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull-in should occur when the control is approximately 90 degrees from the extreme counter-clockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should be out of sync and should show I vertical or diagonal black bar in the raster.

If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Focus Magnet Adjustment."

RLIGNMENT OF HORIZONTAL OSCILIATOR. - If in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 90 degrees o' clockwise rotation of the control from the pull-in point, it will be necessary to make the follow. ing adjustments.

Horizontal Frequency Adjustment. - Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the Tl07 horizontal frequency adjustment on top of the chassis until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster.

Horizontal Locking Range Adjustment. - Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. The picture may remain in sync. If so turn the Tl07 top core slightly and momentarily switch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulis into sync.

It more than 2 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer C143A slightly clockwise. If less than 2 bars are present, adjust C143A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 2 bars are present.

Repeat the adjustments under "Horizontal Frequency Ad. justment" and "Horizontal Locking Range Adjustment" until the conditions specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment:' the oscillator is properly adjusted.

If it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method oullined in the alignment procedure. For field purposes paragraph "A" under Horizontal Oscillator Waveform Adjustment may be omitted.

Figure 3-Rear Chassis Adjustments
FOCUS MRGNET ADJUSTMENT. - The focus coil should be adjusted so that there is approximately three-eighths inch of space between the rear cardboard shell of the yoke and the flat of the front tace of the focus magnet. This spacing gives best average focus over the face of the tube.

The axis of the hole through the magnet should be parallel with the axis of the kinescope neck with the kinescope neck through the middle.

CENTERING ADJUSTMENT. - No electrical centering controls are provided. Centering is accomplished by means of a separate plate on the locus magnet. Some centering plates include a locking screw which must be loosened before centering, and others are held in adjustment by friction. Up and down adjustment of the plate moves the picture side to side and sidewise adjustment moves the picture up and down.

If a corner of the raster is shadowed, check the position of the ion trap magnet. Reposition the magnet within the range of maximum raster brightness to eliminate the shadow and
recenter the picture by adjustment of the focus magnet plate. Is no case should the magnet be adjusted to cause any lons of brightness mince such operation may cause immediate or eventual damage to the tube. In some cases it may be necessary to shift the position of the focus magnet in order to eliminate a corner shadow.

WIDTH, DRIVE AND HORIZONTAL LINEARITY AUJUST. MENTS. - Adjustment of the horizontal drive control affects the high voltage applied to the kinescope. In order to obtain the highest possible voltage hence the brightest and best focused picture, adjust horizontal drive counter-clockwise as far as possible without etretching the left side of the picture. As a first adjustment, set the horizontal drive trimmer C143B one-half turn out from maximum capacity.

Turn the horizontal linearity coll out until appreciable loss in width occurs. then in until nearly maximum width and the best linearity is obtained.

Adjust the width control R178 to obtain correct picture width.
A slight readjustment of these three controls may be necessary to oblain the best linearity.

HEIGHT AND VERTICAL LINERRITY ADJUSTMENTS. - Adfust the height control (R153 on chasisis rear apron) until the picture fille the mask vertically. Adjust vertical linearity (R157 on sear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust centering to align the picture with the makk.

FOCUS. - Adjust the focus magnet for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

Hecheck the position of the ion trap magnet to make sure that maximum brightness is ohtained.

Check to see that the yoke thumbscrew and the focus magnet mounting screws are tight.

Figure 1-R.F Oscillator Adjustments

CHECX OF R-F OSCILLATOR ADJUSTMENTS. - Tune in all available stations to see if the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjustmente are required, these should be made by the method outlined in the alignment procedure on page 10. The adjustrients for channels 2 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Fig. ure 4. Adjustment of channel 13 is on top of the chassis.

AGC CONTROL. - The AGC control switch is provided as an installation adjustment. The normal position for strong sig. nal areas is with the switch in the number 1 or counterclockwise position. If impulse type of interference is experienced, turn the switch to the number 2 or center position. In very weak signal areas in which impulse type interference is experienced, turn the switch to position number 3 or fully clockwise. In this position, all AGC is removed and the receiver will overload if the input signal exceeds 200 microvolts. However, for signals under 200 microvolts, this position of the AGC control switch gives best noise immunity of sync.

FM TRAP ADJUSTMENT. - In some instances interference may be encountered from a strong FM station aignal. A trap is provided to eliminate this type of interference. To adjust the trap tune in the station on which the interference is observed and adjust the L203 core on top of the r-f unit for minimum interference in the picture.

CRUTION. - In some receivers, the FM trap L203 will tune down into channel 6 or even into channel 5. Needless to say, such an adjustment will cause greatly reduced sensitivity on these channels. If channels 5 or 6 are to be received, check L203 to make sure that it does not affect sensitivity on these two channels.

RADIO OPERATION. - Turn the receiver function switch to the AM position and check the radio for proper operation. In switching from radio to television or from television to radio. approximately 30 seconds warm-up time is required.

RECORD CHANGER OPERATION. - Turn the receiver function witch to each phono position and check each record player for proper operation.

Replace the cabinet back and make sure that the screws holding it are up tight. otherwise it may rattle or buzz when the receiver is operated at high volume.

CABINET ANTENNA. - A cabinet antenna is provided for use in strong signal areas in which no reflections are experienced. The leads from the antenna are brought out near the receiver antenna terminal board. To connect the cabinet antenna, attach the leads to the terminal board. If reception is satimfactory, no other antenna is necensary. However, if reception is unsatisfactory, it will be necessary to employ an outdoor antenna or an indoor antenna which can be oriented.

CHASSIS REMOVAL. - To remove the chassis for repair or installation of a new kinescope, remove the cabinet back and the control knobs, unplug the speaker cable, and remove the four chassis bolts under the cabinet. Withdraw the chassis from the back of the cabinet. The kinescope is held on the chassis by means of a special strap, so that the chassis and the kinescope can be handled together, as a unit.

To remove the kinescope, remove the kinescope socket, the ion-trap magnet. and the second-anode connector. Loosen the cross-recessed head screw on the kinescope strap. Withdraw the kinescope toward the front of the chassis.

INSTALLATION OF KINESCOPE. - The kinescope second anode contact is a recessed metal well in the side of the bulb. The tube must be installed so that this contact is toward the high-voltage compartment.

Insert the neck of the kinescope through the deflection yoke and focus magnet. If the tube sticks, or sails to stip into piace smoothly, investigate and remove the cause of the trouble. Do not force the tube.

Slide the kinescope cushion toward the rear of the chassis. Loosen the defiection yoke adjustment, slide the yoke toward the rear of the chassie and tighten.

Slip the ion trap magnet assembly over the neck of the kinescope.

Connect the kinescope socket to the tube base.
Connect the high voltage lead to the kinescope second anode socket.

Wipe the kinescope screen surface and front panel safety glass clean of all dust and finger marks.

To replace the chassis in the cabinet, tirst tighten the crossrecessed head screw on the kinescope strap. Side the chassis into the cabinet, then insert and tighten the four chasais bolts. Loosen the kinescope strap from the rear of the cabinet. Push the kinescope forward until the face of the tube is against the mask. Push the yoke cushion forward against the kinescope flare, then tighten the cushion adjusting screws. Tighten the kinescope trap. Then replace the knobs, and the cabinet back.

Figure 6-Chassis Bottom View

Figure 7-Rudio Schematic Diagram

Test-Oscillator. - For all alignment operations, connect low side of the test-osc. to the receiver chassis, and keep the osc. output as low as possible to avoid a-v-c action. Output Meter. - Connect the meter across the speaker voice coil, and furn the receiver volume control to max. If any lead dressing in necessary, it should be done before aligning the receiver.

Stops	Connect the High Side of the Tent Osc. to-	Tune Test Osc. 10-	Function Switch	Iupn Radlo Dlal to-	Adjust the following
1	Stator of Cl-2 in serier with .01 mid.	455 kc. Modulated	AM	Low Freq. end of Dial	+Top and bot. cores of T1 and T2 (For max. voltage across voice coil.)
2	Short wire placed near loop for radiated signal	1.620 kc .	AM	Min. capacity	Osc. Cl-1 for maximum output
3		1.400 kc .	AM	Tune to signal	Ant. Cl-2 for maximum output
4		600 kc .	AM	600 kc .	HOsc. L3 for maximum output
5	Hepeat steps 2, 3 and 4 for maximum output.				

†First peak T1 and T2 for maximum output. Then, starting with T2 use alternate loading. Connect a 47.000-ohm resistor across the primary to load the plate winding while the grid winding of the same transformer is being peaked. Then load the grid winding with the 47,000 -ohm resintor while the plate winding is being peaked.
†'"Rock" the gang condenser and adjust L3 for maximum output.

Figure 8-Dial Cord and Drive Assembly

CRITICAL LEAD DRESS

1. Drese all filament wiring down to the chassis and away from the audio coupling capacitors.
2. Dress the $\alpha-c$ power-switch leads away from all audio circuit components.
3. Dress all uninsulated bus wire so as to avoid short circuits.

VOLTAGE CHART

Iube	Iype	Pin No.	Radio	Phono
V1	6BE6	Plate, Pin 5	208	-
	Converter	Screen, Pin 6	88	-
		Cathode, Pin 2	0	-
		Grid, Pin 7	-.77	-
V2	6BA6	Plate, Pin 5	208	-
	I-F Amp.	Screen, Pin 6	118	-
		Cathode, Pin 7	2.42	-
V3	Grid, Pin 1	-.68	-	
	Audio Amp.	Plate, Pin 7	84	94
V4	Grid, Pin 1	-.86	-.84	
	Inverter	Plate, Pins 1 \& 5	70	83
		Cathode, Pin 7	2.95	3.6
V5	GV6GT	Plate, Pin 3	250	255
V6	Audio	Screen, Pin 4	208	250
	Output	Cathode, Pin 8	13.1	17.3
		Grid, Pin 5	0	0
V7	6X5GT		.01	.04
	Rectifier	Cathode, Pin 8	255	260

Figure 9—Chassis. Top View, Showing Adjustments

Figure 10-Television R.F Unit \boldsymbol{H}^{\prime} iring Diagram

television critical lead dress

1. All leads in the picture and sound $i-f$ circuits must be dressed as short and direct as possible with the exception of Cl07, Clll and Cll7 which are to be dressed with enough slack so as not to have to move the body of the capacitor to align that particular stage.
2. Dress the yellow lead from pin 3 of V106 socket up in the air and away from V105 socket.
3. Dress all components connected to V106 socket up and away from the chassis except L103.
4. Keep the body and coded end of Llo3 as close to pin 2 of V105 socket as possible.
5. Keep the bus from pin 5 of V105 socket to L102 as short as possible and employ sleeving to prevent shorting.
6. Dress the red lead from the kinescope socket away from V105 and V106 sockets and on the power transformer side of the terminal boards.
7. Dress the yollow lead from the kinescope socket along the rear apron between T107 and V111 socket, up between V107 socket and the power transformer to the terminal board.
8. The green lead from the kinescope socket should be dressed away from all other leads and components and away from V106.
9. Pin 7 of V116 socket should be soldered to the chassin as short as possible.
10. Dress the fuse in the high voltage compartment so as not to short circuit to ground.
11. Dress the two filament leads away from the Tl08 high voltage winding by pulling them up through the hole so as
to have all slack on the transformer side of the insulating board.
12. Keep the V113 filament leads away from the metal side of the high voltage compartment shield.
13. Dress Cl58 on the high voltage rectifier sockel so as to keep the hot end of the capacitor away from the metal side of the high voltage compartment.
14. Keep all leads away from Rl77 for heat reasons.
15. Dress R210 and R211 away from all components on account of their heat.
16. Keep the leads at C182 and C183 as short as possible.
17. Keep Cl33 dressed above leads.
18. Dress the body of Cl31 away from the chassis.
19. Keep Cl50 dressed away from the chascis.
20. Dress the orange lead from C160C on the power trans. former side of the terminal boards and around the rear apron ide of V106 socket.
21. Dress the body of R119 as close to pin 5 of V104 socket as possible.
22. Dress the body of R124 as close to pin 2 of V105 socket as posaible.
23. Keep the leads of Cl22 and Cl25 as short and direct as posaible.
24. Keep the leads at Cl26 as short as possible.
25. Dress the leads of the AGC switch S105 next to the base in the chassis and away from sound components.
26. Solder terminal on can of Cl60 to bracket along with Cl34.

GENERAL DESCRIPTION

Early production of the above listed receivers employed a magnetic locus kinescope type 17CP4. Late production receivers employed an electrostatic focus kinescope type 17GP4. To identify receivers, those employing electrostatic focus kinescopes have a letter " B " following the model number. The chassis in the "B" series of receivers is different from ecrly production units only to the extent of the changes necessary to operate the new kinescope. There are minor differences in the installation adjustments. Instructions for both series of chassis are given.

All 7T111B and some 7T112B, 7T122B and 7T123B receivers were converted to intercarrier sound by the tactory. The chassis in these receivers was marked KCS47GF-2. Additional receivers of all models may have been converted to intercarrier sound in the field. The sound portion of field converted recelvers should be the same as that shown in the KCS47GF-2 schematic. However, it is possible that other production changes listed on page 43 may not have been made. A separate alignment procedure is given for the intercarrier receivers.

ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE. . 146 sq. inches on α 17CP4 or 17GP4 Kinescope TELEVISION R-F FREQUENCY RANGE
All 12 television channele, 54 mc . to $88 \mathrm{mc} ., 174 \mathrm{mc}$. to 216 mc . POWER SUPPLY

115 volts, 60 cycles. . 7 T132. 230 watts, all others 205 wats AUDIO POWER OUTPUT

7T132. 10 watts max., all other 3.5 watts Record Changer RP190-2 (45 RPM). \qquad Model 7T132 only Refer to Service Data RP190 for information on the changer. CHASSIS DESIGNATIONS
KCS47B........................... In Models 7 T103 and 7T104 KCS47F In Models 7T103B and 7T104B KCS47C............................. Model 7T112. 7T122. 7 T 123 and 7T124 KCS47G. KCS47GF Models 7T112B, 7T122B, 7T123B and 7T125B KCS47D. In Model 7T132 KCS47GF-2.In some Model. 7T111B, 7T112B, 7T122B and 7T123B WEIGHT (lbe.) RND DIMENSIONS (inchet)

	Net	Shipping			
Model	Welght	Weight	Width	Hoight	Dopt
7T103. 7T103B	91	104	211/2	21	215
7T104, 7T104B	92	105	211/2	37\%	15
7T111B	92	111	22\%	361/16	9
7T112.7T112B	97	117	$271 / 4$	3713	21
7T122, 7T122B	111	137	28	$363 / 4$	22\%
7T123, 7T123B	116	137	271/4	361/4	23
7 T 124	125	150	231/2	41	
7T125B	112	138	28	37	
7 T 132	130	168	385\%	345	

RECEIVER ANTENNA INPUT IMPEDANCE
Choice: 300 ohms balanced or 72 ohms unbalanced.
RCA TUBE COMPLEMENT

Tube Used

Function

(1) RCA 6CB6 ... Amplifier
(2) RCA 6J6 R-F Oscillator and Mixer (3) RCA 6AU6 lst Sound I-F Amplifier (4) RCA 6AU6 2nd Sound I-F Amplifier (5) RCA 6AL5 Sound Discriminator or Ratio Datector (6) RCA 6AV6 1st Audio Amplifier (7) RCA 6K6GT Audio Output (8) RCA 6AU6 1st Picture I-F Amplitier (9) RCA 6CB6 2nd Picture I-F Amplitier (10) RCA 6AU6 3rd Picture I-F Amplifier (11) RCA 6CB6 th Picture I-F Amplifier (12) RCA 6AL5 Picture 2nd Detector and AGC Detector (13) RCA 12AU7 lst and 2nd Video Amplifier (14) RCA 12AU7 DC Restorer and Sync Separator (15) RCA 6SN7GT . . . Sync Separator and Vertical Sweep Osc.
(16) RCA 6K6GT Vertical Sweep Output (17) RCA 6S67GT ... Horisontal Sweep Oncillator and Control (18) RCA 6BG6G Horizontal Sweep Output (19) RCA 6W4GT Damper (20) RCA 1B3-GT/8016 High Voltage Rectifier (21) RCA 17CP4 or 17GP4........................... Kinescope (22) RCA 5U4G .. Rectifier
(23) RCA IV2 (In B models only).............. . Focus Rectifier

7T103, 7T103B, 7T104, 7T104B, 7T111B, 7T112, 7T112B, 7T122, 7T122B, 7T123, 7T123B,	
7T124, 7T125B, 7T132 ELECTRICRL AND MTCHENICRL SPECTFICATIONS	
PICTURE INTERMEDIATE FREQUENCIES	OPERATING CONTHOLS (Front Panel)
Picture Carrier Frequency . 25.50 mc.	Channel Selector
	Adjacent Channel Sound Trap. 27.00 mc . Tine Tuning
Accompanying Sound Traps. 21.00 mc .	$\left.\begin{array}{l}\text { Picture } \\ \text { Brightnens }\end{array}\right\} \ldots .$. Dual Control Knobs
Adjacent Channel Picture Carrier Trap. 19.50 mc .	$\left.\begin{array}{l}\text { Picture Horizontal Hold } \\ \text { Picture Vertical Hold }\end{array}\right\} \ldots$. . Dual Control Knobs
SOUND INTERMEDLATE FREQUENCIES	Sound Volume and On-Off Switch (
Sound Corrier Frequency. 21.00 mc.	Tone Control $\}$........Dual Control Knobs
Intercarrier chassis have 4.5 mc. sound H .	NON-OPERATING CONTROLS (not including of and if adjust. mente)
VIDEO RESPONSE . To 4 mc.	Piclure Centering. Iop chassis adjustment
	Width . rear chassis adjustment
FOCUS............ . 17CP4 is Magnotic, 17GP4 is Electrontatic	Height . rear chassis adjustment
	Horizontal Linearity rear chassis screwdriver adjustment
SWEEP DEFLECTION. Magnetic	Vertical Linearity rear chassis adjustment
	Horizontal Drive. rear chassis screwdriver adjustment
SCXNNING. Interlaced, 525 line	Horizontal Oscillator Frequency Iop chassis adjustment
	Horizontal Oscillator Waveform. bottom chassis adjustment
HORIZONTAL SWEEP FREQUENCY 15.750 cps	Horizontal Locking Range. rear chassis adjustment
	Focus . top chassis adjustment
VERTICAL SWEEP FREQUENCY 60 cps	Ion Trap Magnet. top chassis adjustment
	Deflection Coil. top chassis wing nut adjustment
FRAME FREQUENCY (Pieture Repetition Rate). 30 cps	AGC Control Switch. rear chassis adjustment

high voltage warning

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCR HAZARD FROM THE RECEIVER POWER SUPPLIES. WORE ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE the receiver with the high voltage compartment shield removed.

KINESCOPE HANDLING PRECAUTIONS

DO NOT REMOVE the receiver chassis, install, remove or handle the kinescope in anY Manner unless shatterproof goggles, and heavy gloves are worn. people NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINE. SCOPE AWAY FROM THE BODY WHILE HANDLING.

The kinescope bulb enclosen a high vacuum and. due to its large surface area, in subjected to considerable air pressure. For this reason. the kinescope must be handled with more care than ordinary receiving tubes.

The large end of the kinescope bulb - particularly that part at the rim of the viowing surface - must not be struck, scratched or subjected to more than moderate pressure at any time. During service 4 the tube sticks or fails to silp smoothly into its sockot, or defiecting yoke, investigate and semove the cause of the trouble. Do not force the lube. Refer to the Recolver lnstallation section for detailed instructions on binescope installation. All FCX roplacement kinescopes are shipped in spocial cartions and should be loft in the cartone until ready for installation in the receiver.

The following adjustments are necesuary when turning the receiver on for the first time.

1. See that the TV.PH switch on the rear apron is in the "TV" position.
2. Turn the receiver "ON" and advance the SOUND VOL UME control to approximately mid-position.
3. Set the STATION SELECTOR to the demired channel.
4. Adjust the FINE TUNING control for best sound fidelity (or best pix in intercarrier sets) and the SOUND VOLUME control for suitable volume.
5. Turn the BRIGHTNESS control fully counter-clockwise, then clockwise until a light páttern appears on the screan.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZONTAL hold control until a picture is obtained and centered.
8. Adjust the PICTURE and BRIGHTNESS controle for suitable picture contrast and brightness.

9. After the receiver has been on for some time, it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.
10. In switching from one channel to another, it may be necessary to repeat steps 4 and 8.
11. When the set is turned on again after an idle period it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. II any adjuntment is necessary. step number 4 is generally sufficient.
12. If the positions of the con trols have been changed, it may be necessary to repeat steps 2 through 8.
13. To use a record player, plug the record-player output cable into the PHONO jack on the rear apron, and set the TV.PH switch to "PH."
14. On console type receivers. to turn on station escutcheon light, pull out on picture control knob, and push in to turn off.

Figure 1-Receiver Operating Controls

INSTALLATION INSTRUCTIONS

Early production ACA Victor 17 -inch television receivers employed a magnetic focus kinescope type 17CP4. Late production receivers employed an electromatic locus kinescope type 17GP4. To identify receivers, those employing electrostatic focus kinescopes have a letter "B" following the model number. The chassis in the "B" series of receivers is different from early production units only to the extent of the changes necesary to operate the new kinescope. Both series of chassis operate equally well.

There are minor differences in the installation adjustments. Instructions for both series of chassis are given in the following procedure:

UNPACEING. - These receivers are shipped complete in cardboard cartons. The kinescope is shipped in place in the receiver.
Take the receiver out of the carton and remove all packing material.
Install the control knobs on the proper control shafts.
Make sure that all tubes are in place and are limly seated in their sockets.

Check to see that the kinescope high voltage lead clip is in place.

Connect the antenna transmission line to the receiver antenna terminals. Plug a power cord into the 115 volt a-c power source and into the receiver interlock receptacle. Turn the receiver power switch to the "on" position, the brightness control fully clockwise, and the picture control counter-clockwise.

Figure 2-Yoke and Focus Magnet Adjustments

ION TRAP MAGNET ADJUSTMENT. - Set the ion trap mag. net approximately in the position shown in Figure 2. Starting from this position immediately adjuit the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Turn the locus control (shown in Figure 2) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches of this adjust ment should be made with the brightness control at the maximum clockwise position with which good line focu can be maintained.

DEFLECTION YOKE ADJUSTMENT. - If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE ADJUSTMENTS. - It will now be necessary to obtain a test pattern picture in order to make lurther adjustments.

If the Horizontal Oscillator and AGC System are operating properly, it should be possible to sync the picture at this point. However, if the AGC control is misadjusted, and the recolver is overloading. it may be impossible to sync the picture.

If the receiver is overloading, turn Sl06 on the rear apron (see Figure 3) counter-clockwise until the set operates normally and the picture can be synced.

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT. Turn the horizomal hold control to the extreme counter-clock.

Figure 3-Rear Chassis Adjustments

INSTALLATION INSTRUCTIONS

wise position. The picture should remain in horisontal sync. Mamentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be gradually reduced and when only 2 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull-in should occur when the control in approximately 90 degrees from the extreme counter-clockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should be out of sync and should show 1 vertical or diagonal black bar in the raster.

If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Focus Magnet Adjustment."

ALIGNMENT OF HORIZONTAL OSCILLATOR. - If in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pullin point, it will be necessary to make the following adjustments.

Herizontal Frequency Adjustment. - Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the T108 horizontal frequency adjustment on top of the chassis until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster.

Horlsontal Locking Range Adjustment. - Set the horisontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. The picture may remain in sync. If so turn the Tl08 top core slightly and momentarily switch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Slowly turn the horisontal hold control clockwise and note the least number of diagonal bars obtained just belore the picture pulls into sync.

If more than 2 bars are present just before the picture pulls into sync, adjust the horisontal locking range trimmer C147A slightly clockwise. If less than 2 bars are present, adjust C147A slightly counter-clockwise. Turn the horizontal hold control counterclockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 2 bars are present.

Repeat the adjustments under 'Horisontal Frequency Adjusiment" and "Horisontal Locking Range Adjustment" until the conditions specified under each are fulfilled. When the horisontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.

If it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure on page 11. For field purposes paragraph " A " under Horisontal Oscillator Wavelorm Adjustment may be omitted..

FOCUS MAGNET ADJUSTMENTS (Disregard for B Modela). The focus magnet should be adjusted so that there is approximately three-eighths inch of space between the rear cardboard shell of the yoke and the flat of the front face of the focus magnet. This spacing gives best average focus over the face of the tube.

The axia of the hole through the magnet should be parallel with the axis of the kinescope neck with the kinescope neck through the middle.

CENTERING RDJUSTMENT (Dinregard for B Modele). - No electrical centering controls are provided. Centering is accomplished by means of a separate plate on the focus magnet. The centering plate includes a locking screw which must be loosened before centering. Up and down adjustment of the plate mover the picture side to side and sidewise adjustment moves the picture up and down.

If a corner of the raster is shadowed, check the position of the lon trap magnel. Reposition the magnet within the range of maximum raster brightness to eliminate the shadow and recenter the picture by adjustment of the focus magnet plate.

In no case should the magnet be adjusted to cause any loss of brightness since such operation may cause immediate or eventual damage to the tube. In some cases it may be neces. sary to shift the position of the focus magnet in order to eliminate a corner shadow.

CENTERING ADJUSTMENT (For B Models). - Receivers em. ploying electrostatic kinescopes are provided with special centering magnets. These magnets are in the form of two wire rings mounted on a non-magnetic tube which is placed around the neck of the kinescope at a distance of about three-fourths of an inch in back of the deflection yoke. When the magnets are rotated on the tube so that the gaps in the rings are together, maximum centering effect is produced. To shift the picture, rotate one of the magnets with respect to the other. To shift the picture in the desired direction rotate the entire centering magnet assembly on the neck of the kinescope. By alternately rotating one magnet with respect to the other, then rotating the entire assembly around the neck of the tube, proper centering of the picture can be obtained.
It in importarit that the centering magnets not be operated too close to the yoke as the a-c field irom the yoke may cause the centering magnets to become demagnetized.

WIDIH. DRIVE AND HORIZONTAL LINEARITY ADJUST. MENTS. - Adjustment of the horizontal drive control affects the high voltage applied to the kinescope. In order to obtain the highest possible voltage hence the brightest and best focused picture, adjust horizontal drive counter-clockwise as far as possible without stretching the left side of the picture. As a first adjustment, set the horizontal drive trimmer Cl47B one-hali turn out from maximum capacity.

Turn the horizontal linearity coil out until appreciable loss in width occurs, then in until nearly maximum width and the bet linearity is obtained.

Adjust the width control R177 to obtain correct picture width.
A slight readjustment of these three controls may be neces. sary to obtain the best linearity.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS. -Adjust the height control (R151 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R156 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust centering to align the picture with the mask.

FOCUS. - Adjust the focus magnet for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.
Recheck the position of the ion trap magnet to make sure that maximum brightness is obtained.

Check to see that the yoke thumbscrew and the focus magnet mounting screws are tight.

FOCUS (For B Models only). - Set the brightnese control for average brightness. Set the focus control slightly counter-clock. wise from the position of best focus. Adjust the ion trap magnet for maximum brightness. Within the range of maximum brightness, a region of best locus will occur. Set the ion trap magnet within this region of best tocus. This adjustment is critical if optimum focus is to be obtained. Do not use the ion trap magnet as a centering adjustment. Center the picture with the centering magnet. Repeat the above procedure until no improvement is obtained.

With the picture at average brightness, focus the receiver on the vertical wedge of a teat pattern. The horizontal lines of the raster should be in focus or nearly so. If it is necessary 10 compromise between wedge focus and raster line focus, favor the wedge focus as long as the raster lines are visible. Normally at low brightness the center of the picture is in sharpest locus. At maximum useable brightness, best locus will be obtained near the edges of the picture. This condition gives best average tocus with changes in brightness.

7T103, 7T103B, 7T104, 7T104B, 7Tll1B, 7Tll2, 7T112B, 7T122, 7T122B, 7T123, 7T123B,

Figure $+-R . F$ Oscillator Adjustments

CHECK OF R-F OSCILLATOR ADJUSTMENTS. - Tune in all available stations to see if the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure on page 10 . The adjustments for channels 2 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Fig. ure 4. Adjustment of channel 13 is on top of the chassis.
AGC CONTROL. - The AGC control switch is provided as an installation adjustment. The normal position for strong signal areas is with the switch in the number 1 or counterclockwise position. If impulse type of interference is experienced, turn the switch to the number 2 or center position. In very weak signal areas in which impulse type interference is experienced, turn the switch to position number 3 or fully clockwise. In this position, all AGC is removed and the receiver will overload if the input signal exceeds 200 microvolts. However, for signals under 200 microvolts. this position of the AGC control switch gives best noise immunity of sync.

FM TRAP ADJUSTMENT. - In some instances interterence may be encountered from a strong FM station signal. A trap is provided to eliminate this type of interference. To adiust the trap tune in the station on which the interference is observed and adjust the L 203 core on top of the r-f unit for minimum interference in the picture.

CAUTION. - In some receivers, the FM trap L203 will tune down into channel 6 or even into channel 5. Needless to say. such an adjustment will cause greatly reduced sensitivity on these channels. If channels 5 or 6 are to be received, check L203 to make sure that it does not affect sensitivity at these two channels.

Replace the cabinet back and reconnect the antenna leads to the cabinet back.

CABINET ANTENNA. - A cabinet antenna is provided in all except models 7 T103 and 7T104 series receivers and the leads are brought out near the antenna terminal board. The cabinet antenna may be employed in place of the outdoor antenna in areas where the signals are strong and no reflec tions are experienced.

SCREEN CLEANING. - In the event that it becomes neces sary to clean the face of the kinescope, this may be accom plished without removal of the chassis on models 7T103 and $7 T 104$ series. Pry off the small ornamental clip just below the glass and take out the screws which hold the glass retainer in place. Take out the safety glass. Replace it by a reversal of this procedure.

CHASSIS REMOVAL. - To remove the chassis from the cabinet for repair or installation of a new kinescope, remove the control knobs, the cabinet back, unplug the speaker cable. the kinescope socket, the antenna cable, the pilot light cable on console models, the yoke and high voltage cable. Remove the yoke frame grounding strap on the wooden cabinet models. Take out the four chassis bolts under the cabinet. Withdraw the chassis from the back of the cabinet.

KINESCOPE HANDLING PRECAUTION, - Do not install, remove, or handle the kinescope in any manner, unless shatterprool goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling.

To remove the kinescope from the cabinet, loosen the two nuts and disengage the rods alongside the kinescope. Remove the wing screw which holds the yoke frame to the cabinet. Remove the kinescope, the yoke lrame with yoke and focus or centering magnet as an assembly.

INSTALLATION OF EINESCOPE. - Handle this tube by the metal rim at the edge of the screen. Do not cover the glass bell of the tube with tingermarks as it will produce leakage paths which may interfere with reception. If this portion of the tube has inadvertently been handled, wipe it clean with a solt cloth moistened with "dry" carbon tetrachloride.

Wipe the kinescope screen surface and front panel safety glass clean of all dust and fingermarks with a soft cloth moistened with "Windex" or similar cleaning agent.

Turn the tube so that the key on the base of the tube will be down and insert the neck of the kinescope through the deflection coil and focus magnet. If the tube sticks, or fails to slip into place smoothly, investigate and remove the cause of the trouble. Do not force the tube.

Replcce the kinescope and yoke frame assembly in the cabinet. Insert the wing screw and tighten. Engage the two side rods into the yoke frame and tighten the two nuts. Slide the deflection yoke as far forward as possible. If this is not done, difficulty will be encountered in adjusting the ion trap and locus magnet because of shadows on the corner of the raster.

Slide the chassis into the cabinet, then insert and tighten the four chassis bolts.

Slip the ion trap magnet over the neck of the kinescope.
Connect the kinescope socket to the tube base and connect the high voltage lead from the rim of the kinescope into the high voltage bushing on the high voltage compariment.

Reconnect all other cables. Do not forget to replace the yoke frame grounding strap. Perform the entire sef-up procedure beginning with lon Trap Magnet Adjustment.

ANTENNAS. - The finest television receiver built may be said to be only as good as the antenna design and installation. It is therefore important to select the proper antenna to suit the particular local conditions, to install it properly and orient it correctly.

RCA Television Antenna, type No. 225A1 is designed. for reception of all twelve television channels. The antenna uses the 300 ohm RCA "Bright Picture" television transmistion line. The antenna, a dipole with reflector, is unidirectional on channels two through six. When used on these channels, the maximum signal is obtained when the antenna rods are broadside toward the transmitting antenna, with the antenna element between the rellector and the transmitting antenna.
If two or more stations are available between channels two and six and the two stations are in different directions, it may be possible to make a compromise orientation which will provide a satisfactory signal on all such channels.

When operated on channels seven through thirteen (174 to 216 mc .), the antenna has side lobes. On these channels, the maximum signal will be obtained when the antenna is rotated approximately 35 degrees in either direction from its broadside position toward the transmitting antenna. In many instances this effect may not cause any difficulties and it may be possible to make a compromise orientation which will permit satisfactory reception on all high and low channels. In some instances, however, this will not be the case due to reflections or to insufficient signal strength from one or more stations.

RCA antenna type 204Al is available for use in locations in which it is desirable to eliminate side lobes and to have the antennas 7.13 directivity the same as 2.6 directivity.

For use in cases where it is desirable to have adjustable $7-13$ directivity different from 2-6. RCA antenna type 206 Al is provided.

If it is impossible to obtain satisfactory results on one or more channels, it may become necessary either to provide means for tuning the antenna when switching channels or to insiall a separate antenna for one or more channels and to switch antennas when switching channels.
In weak signal areas it is possible to "stack" the type 204A1 antenna to obtain increased signal strength by employing one type 204A1 antenna and one type 208Al stacking kit.

7T103, 7T103B, 7T104, 7T104B, 7T111B, 7T112.
7T112B, 7T122, 7T122B, 7T123, 7T123B,
7T124, 7T125B, 7T132
CHASSIS TOP VIEW

Figure 5-Chassis Top View

7T103, 7T103B, 7T104, 7T104B, 7T111B, 7T112. 7T112B, 7T122, 7T122B, 7T123, 7T123B,
CHASSIS BOTTOM VIEW 7T124, 7T125B, 7T132

Figure 6 -Chassis Bottom View

KCS47B, RCS47C, KCS47D, KCS47F, KCS47G KCS47GF ALIGNMENT PROCEDURE

TEST EQUIPMENT. - To properly service the television chas. sis of this receiver, it is recommended that the following test equipment be avallable:

R-F Sweep Generator meeting the following requirements:
(a) Frequency Ranges

20 to 30 mc .1 mc . and 10 mc . sweep width
50 to 90 mc., sweep width
170 to $225 \mathrm{mc} ., 10 \mathrm{mc}$. sweep width
(b) Output adjustable with at least . 1 volt maximum.
(c) Output constant on gll ranges.
(d) "Flat" output on all attenuator positions.

Cathode-Ray Oscilloscope. - For alignment purposes, the oscilloscope employed must have excellent low frequency and phase response, and should be capable of passing a 60 -cycle square wave without appreciable distortion. While this requirement is not met by many commercial instruments. RCA Oscilloscopes, iypes WO.55A. WO.57A. WO-58A. WO.79A. WO.79B and WO.60C fill the requirement and any of these may be employed.

For video and sync wavelorm observations, the oscilloscope must have excellent irequency and phase response from 10 cycles to at least two megacycles in all positions of the gain control. The RCA types WO.58A, WO.79A and WO.79B are ideally suited for this purpose.

Signal Generator to provide the following frequencies with crystal accuracy.
(a) Intermediate frequencies
19.50 mc . adjacent channel picture trap
21.00 mc . sound $\mathrm{i} \cdot \mathrm{f}$ and sound traps
22.3 and 25.4 mc. conv. and first pix i. 1 trans.
25.3 mc . second picture $i \cdot 1$ transformer
22.5 mc . fourth picture i.f transiormer
21.75 mc . third picture i.f transformer
24.35 mc . fifth picture i. $\cdot \mathrm{f}$ coil
25.50 mc . picture carrier
27.00 mc. adjacent channel sound trap
(b) Radio frequencies

Channel Number	Picture Carrier Freq. Mc.	Sound Carrier Freq. Mc.
2	55.25	. 59.75
3.	. 61.25	. 65.75
4.	. 67.25	. 71.75
5.	77.25	. 81.75
6.	83.25	. 87.75
7.	. 175.25	. 179.75
8.	. 181.25	. 185.75
9.	. 187.25	. 191.75
10.	. 193.25	. 197.75
11.	. 199.25.	. 203.75
12	. 205.25 .	. 209.75
13.	.211.25.	215.75

(c) Output of these ranges should be adjustable and at least . 1 volt maximum.

Heterodyne Frequency Meter with crystal calibrator if the signal generator is not crystal controlled.

Electronic Voltmeter of Junior or Senior "VoltOhmyst" type and a high voltage multiplier probe for use with this meter to permit measurements up to 15 kv .

Service Precautions. - If possible, the chassis should be serviced without the kinescope. However, if it is necessary to view the ranter during sorvicing, it would be a great convenience to have a set of yoke, focus magnet, kinescope sockel. high voltage and speaker extonsion cables.

CAUTION. - Do not short the kinescope second anode lead. Its short circuit current presents a considerable overload on the high voltage rectifier V1l2.

Adjustments Required. - Normally only the r-f oscillator and mixer lines will require the attention of the service technician. All other circuits are either broad or very stable and hence will seldom require readjustment.

ORDER OF ALIGNMENT. - When a complete receiver align. ment is necessary. it can be most conveniently pertormed in the following order:
(1) Sound discriminator
(5) R.F. unit
(2) Sound i.f transformers
(6) Overall picture i-f
(3) Picture i-l traps
(7) Horizontal oscillator
(4) Picture i-l transiormers
(8) Sensitivity check

SOUND DISCRIMINATOR ALIGNMENT. - Set the signal generator lor approximately .1 volt output at 21.00 mc . and connect it to the second sound i.f grid, pin 1 of V1l6.

Detune Tl12 secondary (bottom) to the extreme counterclockwise position.

Set the "VoltOhmyst" on the 3 -volt scale.
Connect the meter, in series with a 1 -megohm resistor, to pin 7 of V117.

Adjust the primary of T112 (top) for maximum output on the meter.

Connect the "VoltOhmyst" to the junction of R192 and S103. Adjust Tll2 secondary (bottom). It will be found that it is possible to produce a positive or negative voltage on the meter dependent upon this adjustment. Obviously to pass from a positive so a negative voltage, the voltage must go through zero. Tll2 (bottom) should be adjusted so that the meter ind:cates zero output as the valtage swings from positive to nega. tive. This point will be called discriminator zero output.

Connect the sweep oscillator to the grid of the second sound i. f amplifier, pin 1 to V116.

Adjust the sweep band width to approximately 1 mc . With the center frequency at approximately 21.00 mc . and with an output of approximately 11 volt.
Connect the oscilloscope to the junction of R192 and S103. The pattern obtained should be similar to that shown in Figure 12. If it is not, adjust T112 (top) until the wave form is symmetrical.

The peak-to-peak band width of the discriminator should be approximately 400 kc . and the trace should be linear from 20.925 mc . to 21.075 mc .

Note. - The bottom core and stud in the discriminator trans. former are at plus B potential.

SOUND I-F ALIGNMENT. - Connect the sweep oscillatos to the first sound i-f amplifier grid, pin 1 of Vlls.

Insert a 21.00 mc. marker signal from the signal generator into the first sound $\mathrm{i}-\mathrm{i}$ grid.

Connect the oscilloscope to the second sound i-f grid return (terminal A of Tlll) in series with a 33.000 -ohm isolating resistor.

Adjust Tlll (top and bottom) for r:aximum gain and sym. metry about the 21.00 mc . marker. The pattern obtained should be similar to that shown in Figure 13.

The output level from the sweep should be set to produce approximately .3 volt peak-to-peak at the second sound i-f grid return when the final touches on the above adjustment are made. It is necessary that the sweep output voltage should not exceed the specified values otherwise the response curve will be broadened. permitting slight misadjustment to pass unnoticed and possibly causing distortion on weak signals.
The kand width at 70% response from the first sound i-f grid to the second $i \cdot f$ grid should be approximately 200 kc .

PICTURE I-F TRAP RDJUSTMENT. - Connect the "VoliOhmyst" to the junction of R102 and R201.

Obtain a 7.5 volt battery capable of withstanding appre. ciable current drain and connect the ends of a 1,000 ohn. potentiometer across it. Connect the battery positive terminal to chassis and the potentiometer arm to the junction of R102 and R201. Adjust the potentiometer for -3.0 volts indication on the "VoltOhmyst."

Set the channel switch to the blank position between channels number 2 and 13.

Connect the "VoltOhmyst" to pin 2 of V106 and to ground.
Connect the output of the signal generator to terminal D of Tlol.

Set the generator to each of the following frequencies and with a thin fiber screwdriver tune the specilied adjustment for minimum indication on the "VoltOhmyst." In each instance the generator should be checked against a crystal calibrator to insure that the generator is exactly on frequency.
(1) $21.00 \mathrm{mc} .-\mathrm{T} 103$ (top)
:4) $27.00 \mathrm{mc} .-\mathrm{Tl} 04$ (top)
(2) $21.00 \mathrm{mc} .-\mathrm{Tl} 105$ (top)
(5) $19.50 \mathrm{mc} .-\mathrm{Tl} 101$ (top)
(3) 27.00 mc .-T102 (top)

In the above transformers using threaded cores. it is possible to run the cores completely through the coils and secure two peaks or nulls. The correct position is with the cores in the outside ends of the coils. If the cores are not in the correct position, the coupling will be incorrect and it will be impos. sible to secure the correct response.

PICTURE I-F TRANSFORMER ADJUSTMENTS. - Set the sig. nal generator to each of the following frequencies and peak the specilied adjustment for maximum indication on the "VoltOhmyst." During alignment, reduce the input signal if necessary to prevent overloading.

$$
\begin{array}{ll}
\cdot 24.35 \mathrm{mc} \text {-L } 103 & \cdot 21.75 \mathrm{mc} .-\mathrm{Tl} 103 \text { (bottom) } \\
\cdot 22.5 \mathrm{mc}-\text { T } 104 \text { (bottom) } & \cdot 25.3 \mathrm{mc} .-\mathrm{T} 102 \text { (bottom) }
\end{array}
$$

*NOTE-KCS47GF (7T112, etc.), KCS49BF (9T105) and KCS49CF (9T126, 9T128) chasais are aligned to different frequencies. See note on page 41.
R.F UNIT ALIGNMENT. - Disconnect the co-ax link from terminal 2 of the rf unit terminal board and connect a 39 ohm composition resistor between lugs 1 and 2.

Detune Tl by backing the core all the way out of the coil.
In early production units in which L44 is adjustable, back the L44 core all the way out. Back L203 core all the way out.

In order to align the r-f tuner, it will first be necessary to set the channel-13 oscillator to frequency. The shield over the bottom of the r-f unit must be in place when making any adjustments.

The oscillator may be aligned by adjusting it to beat with a crystal-calibrated heterodyne frequency meter, or by feeding a signal into the receiver at the r-f sound carrier frequency and adjusting the oscillator for zero output from the sound discriminator. In this latter case the sound discriminator must first have been aligned to exact frequency. Either method of adjustment will produce the same results. The method used will depend upon the type of test equipment available. Regardless of which method of oscillator alignment is used, the frequency standard must be crystal controlled or calibrated.

If the receiver oscillator is to be adjusted by the heterodyne frequency meter method, couple the meter probe loosely to the receiver oscillator.

If the receiver oscillator is adjusted by feeding in the r-f sound carrier signal, connect the signal generator to the receiver antenna terminals. Connect the "VoltOhmyst" to the sound discriminator output (junction of R192 and S103). Also couple the link loosely to lug 2 of the r-f unit terminal board so as to permit measurement of sound discriminator.

Set the channel selector switch to 13 .
Adjust the frequency standard to the correct frequency $(236.75 \mathrm{mc}$. for heterodyne frequency meter or 215.75 mc . for the signal generator).

Set the fine tuning control to the middle of its range.
Adjust Cl for an auable beat on the heterodyne trequency meter or zero voltage from sound discriminator.

Now that the channel-13 oscillator is set to frequency, we may proceed with the r-f alignment.
Turn the AGC control to the counter-clockwise position.
Connect the bias box to terminal 3 of the r-f unit terminal board and adjust the bias box potentiometer for -3.5 volts.
Confect the oscilloscope to the test connection at R5 on top of the r-f unit.

Connect the r-f sweep oscillator to the receiver antenna terminals. The method of connection depends upon the output impedance of the sweep. The P300 connections for 300 -ohm balanced or $72-0 \mathrm{hm}$ single-ended input are shown in the circuit schematic diagram. If the sweep oscillator has a 50 -ohm singleended output, 300 -ohm balanced output can be obtained by connecting as shown in Figure 7.

Figure :-Unbalanced Sucep Cable Termination
Connect the signal generator loosely to the receiver antenna ierminals.

Set the receiver channel switch to channel 8.
Set the sweep oscillator to cover channel 8.
Insert markers of channel 8 picture carrier and sound carrier, 181.25 mc . and 185.75 mc .

Adjust C9, C11, Cl6 and C22 for approximately correct curve shape, frequency, and band width as shown in Fig. ure 16.

The correct adjustment of C22 is indicated by maximum amplitude of the curve midway between the markers. Cl6 tunes the r-f amplifier plate circuit and affects the frequency of the curve most noticeably. C9 tunes the converter grid cis. cuit and affects the tilt of the curve most noticeably (assuming that C22 has been properly adjusted). C11 is the coupling ad. justment and hence primarily affects the response band width.

Set the receiver channel switch to channel 6.
Adjust the frequency standard to the correct frequency $(108.75 \mathrm{mc}$. for heterodyne frequency meter or 87.75 mc . for the signal generator).
Set the fine tuning control to the middle of its range.
Adjust LS for an audible beat on the heterodyne frequency meter or zero voltage from sound discriminator.
Set the sweep generator to channel 6.
From the signal generator, insert channel 6 sound and picture carrier markers. 83.25 mc . and 87.75 mc .

Adjust L42. L45 and L49 for proper response as shown in Figure 16.

L42 is adjusted to give maximum amplitude of the curve between the markers. L45 primarily affects the tilt of the curve. L49 primarily affects the frequency of response.

Connect the "VoitOhmyst" to the r-f unit test point at R5.
Adjust C7 for -3.0 volts at the test point.
Retouch L42, L45 and L49 for proper response if necessary. If necessary, retouch Cll for proper band width on channel 6. Continue these relouching adjustments until proper response is obtained and -3.0 volts of oscillator injection are present at the test point.

Set the receiver channel selector switch to channel 8 and readjust Cl for proper oncillator frequency.

Set the sweep oscillator and signal generator to channel 8.
Readjust C9, C16 and C22 for correct curve shape. frequency and band width. Readjust Cll only if necessary.

Switch the recelver, the sweep oscillator and signal generator to channel 13.

KCS47B, KCS47C, KCS47D, KCS47F, KCS47G XCS47GF ALIGNMENT PROCEDURE

Adjust 152 for maximum amplitude of the curve midway between markers and then overshoot the adjustment by turning the slug in the same direction from the initial setting a little more than the amount of turning required to reach maximum amplitude of response.
Adjust C22 for maximum amplitude of response.
Turn off the sweep generator. Adjust the L43 core for correct channel 13 oscillator trequency, then overshoot the adjustment by turning the slug a little more in the same direction from the initial setting. Reset the oscillator to proper frequency by adjustment of Cl .

Turn the sweep oscillator back on.

Chock the response of channels 7 through 13 by switching the receiver channel switch, sweep oscillator and marker oscillator to each of these channels and observing the response and oscillator injection obtained. See Figure 16 for typical response curves. It should be found that all these channels have the proper shaped response with the markers above 80% response.
It the markers do not fall within this requirement, switch to channel 8 and readjust $\mathrm{C}, \mathrm{C} 11, \mathrm{C} 16$ and C 22 as necessary. If C22 required adjustment, the adjustment should be overshot a small amount and corrected by adjustment of L52 to give maximum amplitude of response between the sound and picture carrier markers. The antenna circuit (L52, C22) is broad so that tracking is not particularly critical.
It the valley in the top of the selectivity curves for the high channels is deeper than normal, the curve can be flattened some what by decreasing the inductance of L44 by turning the core stud in. Be sure to check for undesirable resonant suckouts on channels 7 and 8 if this is done. In later production units, L44 may be fixed and not require adjustment.
Turn the sweep oscillator off and check the receiver channel 8 r -f oscillator frequency. Il the oscillator is off frequency overshoot the adjustment of Cl and correct by adjusting L43.
Turn the receiver channel selector switch to channel 6. Adjust L5 for correct oscillator frequency.
Turn the sweep oscillator on and to channel 6 and observe the response curve. If necessary readjust L42, L45 and L49. It should not be neceseary to touch C11.

Check the oscillator injection voltage at the test point. If necessary adjust C7 to give -3 volts injection. If C7 is adjusted, switch to channel 8, and readjust C9 for proper curve shape, then recheck channel 6 .
Switch the receiver through channel 6 down through channel 2 and check for normal response curve shapes and oscillator injection voltage.
Likewise check channels 7 through 13, stopping on 13 for the next step.

With the receiver on channel 13, check the receiver oscillator frequency. Correct by adjustment of Cl if necessary.

Adjust the oscillator to frequency on all channels by switch. ing the receiver and the frequency standard to each channel and adjusting the appropriate oscillator trimmer for the specified indication. It should be possible to adjust the oscillator to the correct frequency on all channels with the fine tuning control in the middle third of its range.

Channel Number	Picture Carrior Freq. Mc.	Sound Carrier Freq. Mc.	Recelvar R-F Osc. Freq. Mc.	Chanal Oscillator Adjustment
2.	55.25.	59.75	80.750	Ll
3. .	61.25.	65.75	86.750	L2
4.	. 67.25	71.75	92.750	L3
	77.25.	. 81.75.	. 102.750.	L4
6.	83.25	. 87.75.	. 108.750.	L5
7...	.175.25.	.179.75.	. 200.750.	L6
8.	. 181.25	.185.75.	.206.750.	L7
9.	.187.25.	.191.75.	.212.750.	L8
10.	. 193.25	. 197.75.	. 218.750.	19
11.	.199.25.	. 203.75 .	. 224.750.	L10
12.	.205.25.	. 209.75.	.230.750.	L11
13...	211.25.	. 215.75.	.236.750.	. Cl

Switch to channel 8 and observe the response.

Adjust TI clockwise while watching the change in response. When Tl is properly adjusted, the selectivity curve will be slightly wider with a slightly deeper valley in its top.
Switch through all channels and observe response, oncillator injection and r-t oscillator frequency. Minor touch-ups of adjustments may be made at this time. However, if C7 or C9 are changed appreciably, then a rechack of the oscillator frequency on all channels should be made.
Reconnect the link from T101 to terminal 2 of the r-f unit terminal board.

Since Tl was adjusted during the $\mathrm{r}-\mathrm{f}$ unit alignment it will be necessary to sweep the overall i-f response.

R-F UNIT TUBE CHANGES. - Since most of the circuite are low capacitance circuits the r-f unit may require readjust. ments when the tubes are changed.
If the 6CB6 r-f amplifier tube is changed, it may be neces. sary to readjust C16 and C22.
If the $6 J 6$ oscillator and mixer tube is changed, then more extensive adjustments are required.
For good conversion efficiency, the oscillator injection to a triode mixer must be held reasonably close to the optimum value. Although there is some latitude in this level. it is nearly expended in the normal variation in injection from channel to channel. Consequently, the adjustment of $\mathrm{C7}$ is limited primarily to establishing the conditions for good conversion. Since changes in oscillator injection affect conversion gain, it also affects the input capacity of the mixer, thus also affecting tracking of the mixer grid circuit. These tube variations with their consequent effect on circuit alignment thereby require readjustment of the r-f unit if maximum conversion efticiency is to be relained after the 6J6 tube is changed. It may be possible, however, to-try several 6 J 6 tubes and select one which gives satisfactory performance without realignment.
SWEEP ALIGNMENT OF PIX I-F. - Set the rf unit bias to -3.5 volts.
Connect a 47 ohm resistor across the link circuit at T101 terminals C and D .

Remove the second picture i-f tube.

With the oscilloscope connected to the r-f unit test connection and the sweep oscillator connected to the antenna terminals, set the sweep output to give 0.1 volt peak-to-peak on the oscilloscope.

Switch through the channels and select one that is essentially flat and with the two carriers at 90% response or higher. Channel 6 is usually the most desirable for this test.

Remove the 47 ohm resistor and replace V102.
Connect the oscilloscope to terminal 2 of V106 socket.
Clip 330 ohm resistors across R106, R108. R113 and R119.
Connect the bias box to the junction of R102 and R201. Adjust the box for -1 volt.
תdjust the aweep oscillactor output to give 0.5 volt peak-topeak on the oncilloscope.
Connect the signal generator loosely to the inf amplifier.
Adjust T1 and Tl01 bottom core to obtain the response curve shown in Figure 14.
Remove the 330 ohm resistors across R106, R108, R113 and R119.
Set the if bias to -4.5 volts.
Adjust the sweep output to give 3 volts peak-to-peak on the oncilloscope.
Retouch T1, T101 bottom, 102 bottom, T103 bottom. T104 bottom and L103 to obtain the response curve shown in Fig.
ure 15 .

HORIZONTAL OSCILLATOR SDJUSTMENT. - Normally the adjustment of the horizontal oscillator is not considered to be a past of the ulignment procedure, but since the ancillator waveform adjustment requires the use of an oscilloscope. it can not be done conveniently in the field. The waveform adjustment is made at the factory and normally should not require readjustment in the field. However, the waveiorm adjustment should be checked whenever the receiver is aligned or whonever the horizontal oscillator operation is improper.

Horisontal Frequency Adjustment - With a clip lead, short circuit the coil between terminals C and D of the horizontal oscillator transformer T108. Tune is a television station and sync the picture if possible.
A. - Turn the horizontal hold control R166 to the extreme clockwise position. Adjust the T108 Frequency Adjustment (atop the chassis) so that the picture is just out of sync and the horisontal blanking appears in the picture as a vertical bar. The position of the bar is unimportant.
B. - Turn the hold control approximately one-quarter of a Iurn from the extreme clockwise position and examine the width and linearity of the picture. If picture width or linearity is incorrect, adjust the horizontal drive control C147B, the wridth control R177 and the linearity control L110 until the picture is correct. If C147B, R177 or Lill were adjusted, repeat step A above.

Horizontal Locking Range Adjustment. - Turn the horisontal hold control fully counter-clockwise. The picture may remain in sync. If so, turn the Tl08 top core slightly and momentarily switch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Momentarily remove the aignal by switching off channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just beiore the picture pulis into sync.

If more than 9 bars are present just before the picture pulls into sync, adjust the horisontal locking range trimmer C147A slightly clockwise. If less than 7 bars are present, adjust C147A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise. momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 7 to 9 bars are present.

Horizontal Oscillator Wavelorm Adjustment. - Remove the shorting clip from terminals C and D of T108. Turn the horisontal hold control to the extreme clockwise position. With a this fibre screwdriver, adjust the Oscillator Waveform Ad.ustment Core of Tl08 (under the chassis) until the horizontal blanking bar appears in the center.
A. - Connect the low capacity probe of an oscilloscope to terminal C of T108. Turn the horizontal hold control one-quarter turn from the clockwise position so that the picture is in sync. The pattern on the oncilloscope should be as shown in Fig. ure 17. Adjust the Oscillator Waveiorm Adjustment Core of T108 until the two peaks are at the same helght. During this adjustment, the picture must be kept in sync by readjusting the hold control if necessary.

This adjustment is very important for correct operation of the circuit. If the broad peak of the wave on the ofcilloscope is lower than the sharp peak, the noise immunity becomes poorer. the stabilizing effect of the tuned circuit is reduced and drift of the ofcillator becomes more serious. On the other hand, if the broad peak is higher than the sharp peak, the oscillator is overstabilized, the pull-in range becomes inadequate and the broad peak can cause double triggering of the oncillator when the hold control approaches the clockwise ponition.

Remove the oscillomcope upon completion of this adjustment.
Check of Horizontal Oscillator Adjustmente. - Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars oblained just before the picture pulls into sync.

If more than 2 bars are present just before the picture pulls into syac, adjust the horizontal locking range trimmer C147A slightly clockwise. If lees than 2 bars are present, adjust C147A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 2 bars are present.
Turn the horisontal hold control to the maximum clockwise position. The picture should be just out of eync to the extent that the horimontal blanking bas appears as a single vertical or dirgonal bar is the picture. Adjust the T108 Frequency Adjustment until this condition is fulfilled.

SENSITIVITY CHECK. - A comparative sensitivity check can be made by operating the receiver on a weak signal from a television station and comparing the picture and sound obtained to that obtained on other receivers under the same conditions.

This weak signal can be obtained by connecting the shop antenna to the receiver through a ladder type attenuator pad. The number of stages in the pad depend upon the signal strength available at the antenna. § sufficient number of stages should be inserted so that a somewhat less than nomal contrast picture is obtained when the picture control is at the maxi. mum clockwise position. Only carbon type resistors should be used to construct the pad.

RESPONSE CURVES. - The response curves shown on page 14 and referred to throughout the alignment procedure were taken from a production set. Although these curves are typical, some variations can be expected.

The response curves are shown in the classical manner of presentation, that is with "response up" and low frequency to the left. The manner in which they will be seen in a given test set-up will depend upon the characteristice of the oscilloscope and the sweep generator. The curves may be seen inverted and/or switched from left to right depending on the deflection polarity of the ancilloscope and the phasing of the sweep generator.

NOTES ON R-F UNII ALIGNMENT. - Because of the irequency spectrum involved and the nature of the device. many of the r-i unit leade and componente are critical is some respects. Even the power supply leads form loops which couple to the luned circuits, and if resonant at any of the frequencies involved is the performance of the tuner, may cause serious departure from the desired characteristics. In the denign of the receiver these undesirable resonant loops have been shifted far enough away in frequency to allow reasonable latitude in thair componente and physical arrangement without being troublesome. When the r-f unit is aligned in the receiver, no trouble from resonant loops should be experienced. However, If the unit is aligned in a jig separate from the receiver, atten. tion should be paid to insure that unwanted retonances do notexist which might present a faulty representation of r-f unit alignment.

A resonant circuit exists between the r-f tuner chassis and the outer shield box, which couples into the anterina and r-1 plate circuits. The frequency of this resonance depends on the physical structure of the shield box, and the capacitance between the tuner chassis and the front plate. In the KRK8 units, this resonance should fall between 120 and 135 mc . and is controlled in the denign by using insulating washers of dif. ferent thicknesses (in the front plate to tuner chassis mounting) to compensate for differences in the shield boxes of different models of receivers. The performance of the tuner. particularly on channels 7 and 8 will be impaired if the proper washers for the particular shield box involved are not used. Obviously then. if the r-f unit is removed for service, the washers should be replaced in the correct order when the unit is replaced.

ECS47B. KCS47C. KCS47D, KCS47F, KCS47G KCS47GF ALIGNMENT TABLE
the detalled alignment procedure beginning on page o should be read before alignment by use of the table im attempted

NOTE-KCS47GF (TT112, etc.), KKCS49BF (9T105) and KCS49CF (9T126, 9T128) chaseis are aligned to different fre-
quencies. See note on page 41.

KCS47GF-2, KCS47E, KCS49BF-2, KCS49CF-2 ALIGNMENT TABLE
the detalied alignment procedure beginning on page it should be read berohe alignment by use of the table is attempted,

KCS47GF-2, KCS47E, KCS49BF-2, KCS49CF-2 ALIGNMENT TABLE

RCS47B, KCS47C, KCS47D, KCS47F, KCS47G RCS47GF ALIGNMENT TABLE

${ }_{\substack{\text { STEP } \\ \text { Nap }}}^{\text {a }}$	$\begin{array}{\|c} \text { CONNECT } \\ \text { BENEAI } \\ \text { GENATOR } \end{array}$	$\begin{aligned} & \text { BIGNAL } \\ & \text { GREL. } \\ & \text { FRCO. } \end{aligned}$		$\begin{aligned} & \text { SWEEP } \\ & \text { cemer } \\ & \text { FRMC. } \end{aligned}$		$\begin{aligned} & \text { HETT } \\ & \text { METR } \\ & \text { MMER } \\ & \text { MAC. } \end{aligned}$	$\begin{gathered} \text { connect } \\ \text { "VOLTOHMYST" } \\ \text { TO } \end{gathered}$	miscellaneous CONNECTIONS instructions	addust	${ }_{\text {REFPR }}^{\text {TO }}$							
24		$\underset{185.75}{18.25}$	Anteana (serminals for procaution)	$\underset{-}{\text { Sweeping }} \begin{gathered} \text { channol } \\ 8 \end{gathered}$	Not usod	-	Not used	Hoc. on chan. 8. Roadjust Cs, CL5 and ancessary.									
25	"	${ }_{215.75}^{21.25}$	"	$\underset{\substack{\text { Swooping } \\ \text { channol } \\ 13}}{\text { sen }}$	Not usod	-	Not usod										
26	"	215.75	Not used	-		236.75	Junction of R192 gen. melthod only	Fine tuning contored. Rocoiver on chan.13. Aduatch treq. then overshoot. Roset the ouc. to proper ireq. by adjustment of C1.		${ }_{\text {Fiq. }}^{\text {Fig. }} 11$							
27	"	${ }_{209.75}^{205.25}$	Antenaa (erminal. for fore caution)	$\begin{gathered} \text { channal } \\ 12 \end{gathered}$	Not unod	-	Connoct "Volt nait fost point at нs	Roc. on channel 12	Chock 10 soo that ro- jection is present	${ }_{\substack{\text { Fiq. } \\ \text { Fig. } 16 \\ 10}}$							
28	"	$\begin{aligned} & 199.25 \\ & 203.75 \end{aligned}$		${ }_{\text {channol }}^{11}$	"	-	"	Roc. on channel 11	"	${ }_{\substack{\text { Figq. } \\ \text { (i) }}}^{\text {16 }}$							
29	"	${ }_{197.75}^{193.25}$	"	${ }_{\text {channel }}^{10}$	"	-	"	Roc. on channel 10	"	${ }_{\text {Fiq. }}{ }_{\text {Fif) }} 16$							
30	"	1978.25	"	${ }_{\text {channel }}$	"	-	"	Rec. on channel 9	"	${ }_{\text {Fiq. }}^{(9)}{ }^{16}$							
${ }^{31}$	"	181.25 185.75	"	${ }_{8}^{\text {channol }}$	"	-	"	Rec. on channel 8	"	${ }_{\text {Fiq. }}^{\text {F }}$ (18) ${ }^{16}$							
${ }^{32}$	"	$\begin{aligned} & 175.25 \\ & \substack{79.75} \end{aligned}$	"	${ }_{\text {channol }}{ }^{\text {a }}$	"	-	"	Roc. on channel 7		${ }_{\text {Fig }}{ }_{\text {If }} 16$							
33	 Ropeat stop 23. It the oscillator is oft frequency overzhoot the adjustment of C1 and correct by							34 and adjust C9, C11, C16 and C22 as ariustment, the acjustment should be ween the sound and picture carrier markers.									
34								Repeat steps 27 through 34 until all adjustments are obtained.									
35																	
36	Hatenaa (loosely)	87.75	Not usod		$\left\lvert\, \begin{aligned} & \text { Loonoly Couplod } \\ & \text { to } \mathrm{x}-\mathrm{l} \text { oncillatior }\end{aligned}\right.$	100.75	$\left\lvert\, \begin{aligned} & \text { Junction of R192 } \\ & \text { Sol } \\ & \text { sion. } \\ & \text { gen mothod only. } \end{aligned}\right.$	Roc. on channel 6	 	${ }_{\text {Frig. }}{ }_{\text {Fig }} 10$							
37	"	${ }_{8}^{83.75}$	Ant. fermincts (see toxt ior pre caution	$\begin{array}{\|c} \text { Swooping } \\ \text { channel } \\ \text { col } \end{array}$	Not used	-	Not usod	sary to touch C11.	II necesarry readjus should not bo necer								
${ }^{38}$	Nol used	-	Not usod	-	Not usod	-		Cbeck oace. injoctio C7 to give -3 voll propar response the	and readjuast c9 for ropeat stop 37.	${ }_{\text {Fig. }}{ }_{\text {Fig. }}{ }^{\text {g }}$							
39	$\begin{gathered} \text { Antonna } \\ \substack{\text { Orminaly } \\ \text { (100soly }} \end{gathered}$	77.25 81.75	Ant. terminals (see toxi for pre- caution) (a)	channol	"	-	"	Rec. on channel 5	Check to see that reponse is correct and	${ }_{\text {Fiq. }}^{\text {(5) }}$ (${ }^{16}$							
40	"	${ }_{\substack{\text { che } \\ 71.25}}$	"	${ }_{\text {channel }}$	"	-	"	Hoc. on channel 4	foction is prosent	${ }_{\substack{\text { Fiq. } \\(9) \\ \text { (1) }}}$							
41	"	${ }_{\text {ckin }}^{65.25}$	-	${ }_{\text {channel }}^{3}$	"	-	"	Rec. on channel 3	"	${ }_{\text {Fig. }}^{\text {Fig }}$ (${ }^{16}$							
42	"	$\begin{aligned} & 55.25 \\ & 59.75 \end{aligned}$	"	${ }_{\text {channel }}$	"	-	"	Hoc. on channel 2	"	${ }_{\text {Fig. }}^{(2)}{ }^{16}$							
43	Likewise check channels 7 through 13. as outlined in slops 32 back ihrough 27, stopping on channol 13 for next step.																
4	Antenna Corminals	215.75	Not used	-	$\begin{aligned} & \text { Loosely coupled } \\ & \text { to r-i oscillator } \end{aligned}$	236.75		Fine tuning centered ${ }_{13}$ Receiver on channe	Cl for zero on meter or bea meter	${ }_{\text {Fig. }}^{\text {Fig. } 10}$							
45	"	209.75	"	-	"	230.75	"	Hec. on channol 12	L11 as above	Fig. 11							
46	"	203.75	"	-	"	224.75	"	Roc. on channel 11	110 as above	Fig. 11							
47	"	197.75	"	-	"	218.75	"	Rec. on channal 10	I9 as above	Fig. 11							
48	"	191.75	"	-	"	212.75	"	Hec. on shannel 9	Ls as above	Fig. 11							
49	"	185.75	"	-	"	206.75	"	Rec. on channol ${ }^{\text {e }}$	17 as above	Fig. 11							
50	"	179.75	"	-	"	200.75	"	Rec. on channel 7	L6 as above	Fig. 11							
51	"	87.75	"	-	"	108.75	"	Roc. on channel 6	Ls as abovo	Fig. 11							
52	"	81.75	"	-	"	102.75	"	Roc. on channor 5	14 as above	Fig. 11							
53	"	71.75	"	-	"	32.75	"	Roc. on channal 4	13 as above	Fig. 11							
54	"	65.75	"	-	"	86.75	"	Roc. on ehannel 3	12 as above	Fiq. 11							
53	"	59.75	"	-	"	80.75	"	Rec. on channel 2	11 as above	Fiq. 11							
56	Repeat slops 44 through 55 as a check.																
57	Antenna torminal	${ }_{185}^{181.25}$	Antenna	$\left\lvert\, \begin{gathered} \text { Sweoping } \\ \text { chaniel } \\ 8 \end{gathered}\right.$	Not used	-		Hec. on chan. 8. Oscilloscope at R5 test point. Adjus! T1 clockwise. When propwider with a slightly deeper valley in top.		${ }_{\text {Fig }}^{\text {(6) }}$ (${ }^{16}$							

 39 Romove 39 ohm resistor and reconneet link from T101 to torminal 2 of r -f unit terminal board. Procead with sweep alignment of Pix l.F.

KCS47B, KCS47C, KCS47D, KCS47F, KCS47G KCS47GF-2 ALIGNMENT TABLE

$\begin{gathered} \text { step } \\ \text { No. } \end{gathered}$	$\begin{gathered} \text { CONNECT } \\ \text { GENGNA } \\ \text { GENATATOR } \\ \text { TO } \end{gathered}$	$\begin{gathered} \text { SGNAL } \\ \text { GRNO. } \\ \text { FRCO. } \end{gathered}$		$\begin{gathered} \text { SWEEP } \\ \text { GEREP. } \\ \text { FRCO. } \end{gathered}$	$\underset{\substack{\text { COMNET } \\ \text { OsCHOCOPE }}}{\text { TO }}$	$\begin{aligned} & \text { CONNECT } \\ & \text { "-vOLTOHMYST" } \\ & \text { TO } \end{aligned}$	MISCELLANEOUS CONNECTIONS instructions	ndjust	$\xrightarrow{\text { RIfick }}$
sweep alignment of picture lif amplifier									
50	Loosely couplod to 1-4 amplitior	${ }_{25.4}^{22.3}$	Antoana	$\begin{aligned} & \text { Sweeping } \\ & \text { selected } \\ & \text { channel } \end{aligned}$	Torminal 2 of V 106 sockot	$\begin{aligned} & \text { Junction of R102 } \\ & \text { R201 } \end{aligned}$			
61	"	$\begin{aligned} & 21.85 \\ & 24.75 \\ & 25.50 \\ & 26.25 \end{aligned}$	"	"	"	"	Remove 330 ohm re- sistors. Set bias box for -4.5 .	Sol swoep to givo 1oscope. Pdiluat 12 il T103 bot., T102 bot: and Lio3 Ior dosirad response.	Fig. 15

Figure 8-Top Chassis Adjustments

Figure 9-Bottom Chassis Adjustments

Figure 10-Test Connection Points

Figure II-R.F Oscillator Adjustments

Figure 1i-Horizontul Oscillator Waveforms

KCS47GF-2, KCS47E, KCS49BF-2, KCS49CF-2 ALIGNMENT TABLE

$\begin{aligned} & \text { BTEP } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { CONNECT } \\ \text { BIGNRL } \\ \text { GENRRTOR } \\ \text { TO } \end{gathered}$	$\begin{gathered} \text { SIGNAL } \\ \text { GEN. } \\ \text { FREQ. } \\ \text { MC. } \end{gathered}$		$\begin{gathered} \text { SWEEP } \\ \text { GEN. } \\ \text { PREQ. } \\ \text { MC. } \end{gathered}$	$\begin{gathered} \text { CONNECT } \\ \text { OSCILLOSCOPE } \\ \text { TO } \end{gathered}$	$\begin{gathered} \text { CONNECT } \\ \text { "VOLTOHMYST" } \\ \text { TO } \end{gathered}$	M8CELRNEOUS CONNECTION8 AND INSTRUCTIONS	ADJUsT	$\frac{\text { ANTR }}{\text { TO }}$
SWEEP RLIGNMENT OF PICTURE I-F RMPLIFIER									
80	Loosoly coupled to i-f amplifior	$\begin{aligned} & 22.2 \\ & 25.4 \end{aligned}$	Antenna terminals	Sweeping selected channel	Torminal 2 of V10s sockot	$\begin{aligned} & \text { Junction of R102 } \\ & \text { R201 } \end{aligned}$	Solect channol known to have good r-1 response. Clip 330 ohm resistors acros: R108, R108, R113, R119. Comnect bias box to Junction R102, R201.	Adjust bias box for -1.0 V. Sot aweop to give 0.5 F . p-p on oncilloscope. Adjust Tl and TlOl for correct response.	Fig. 18 Fig. 18 Fig. 20 Fig. 24
61	*	$\begin{aligned} & 21.85 \\ & 24.75 \\ & 25.50 \\ & 26.25 \end{aligned}$	*	"	*	10	Hemove 330 ohm rosistore. Sut bias box for -4.5 v.	Sot sweep to give 1.0 v. p-p on oecil loscope. Rdjust T1, T101 bot., T102 bot., T 103 bot., T104 bot. and L. 103 for desired response.	Fig. 25

Figure 18-Top Chassis Adjustments

Figure 19-Bottom Chassis Adjustments

Figure 20-Test Connection Points

Figure 21-R-F Oscillator Adjustments

Figure 22 Ratio Det.
Ratio Det
Response

Figure 23 Sound 1-F Response

Figure 24 $\begin{array}{cc}\text { Tl and T101 } \\ \text { Response } & \text { Overall I-F } \\ \text { R-FR Response }\end{array}$

Figure 26-R.F Response

Figure 27-Horizontal Oscillator Waveforms

KCS47GF-2, KCS47E, KCS49BF-2, KCS49CF-2 ALIGNMENT PROCEDURE

TEST EQUIPMENT. - To properly service the television chassis of this receiver, it is recommended that the following test equipment be available:

R-F Sweep Generator meeting the following requirements:
(a) Frequency Ranges

20 to $30 \mathrm{mc} ., 1 \mathrm{mc}$. and 10 mc . sweep width
50 to 90 mc ., sweep width
170 to $225 \mathrm{mc} ., 10 \mathrm{mc}$. sweep width
(b) Output adjustable with at least . 1 volt maximum.
(c) Output constant on all ranges.
(d) "Flat" output on all attenuator positions.

Cathode-Ray Oscilloscope. - For alignment purposes, the oscilloscope employed must have excellent low frequency and phase response, and should be capable of passing a 60 -cycle square wave without appreciable distortion. While this requirement is not met by many commercial instruments. ACA Oscilloscopes, IYpes WO-55A, WO-57A, WO-58A, WO-79A. WO-79B and WO-60C fill the requirement and any of these may be employed.
For video and sync wavelorm observations, the oscilloscope must have excellent, frequency and phase response from 10 cycles to at least two megacycles in all positions of the gain control. The RCA types WO-58A, WO-79A and WO.79B are ideally suited for this purpose.

Signal Generator to provide the following frequencies with crystal accuracy.
(a) Intermediate frequencies
19.50 mc . adjacent channel picture trap
21.00 mc . sound $\mathrm{i}-\mathrm{f}$ and sound traps
22.2 and 25.4 mc . conv. and first pix i-f trans.
22.53 mc . second picture i.f transformer
25.35 mc . fourth picture i-f transformer
21.95 mc . third picture $\mathrm{j} . \mathrm{f}$ iransformer
23.7 mc . fifth picture i.f coil
25.50 mc . picture carrier
27.00 mc . adjacent channel sound trap
(b) Radio irequencies

	Picture	Sound
Channel	Carrier	Carrier
Number	Freq. Mc.	Freq. Mc.
2.	55.25	. 59.75
3.	61.25	. . 65.75
4.	. 67.25.	. 71.75
5.	. 77.25	. 81.75
6.	. 83.25	. 87.75
7.	. 175.25	. 179.75
8.	. 181.25	. 185.75
9.	. 187.25 .	. 191.75
10.	. 193.25	. . 197.75
11.	. 199.25.	. 203.75
12.	. 205.25 .	. 209.75
13.	.211.25.	. 215.75

(c) Output of these ranges should be adjustable and at leas .1 volt maximum.

Heterodyne Frequency Meter with crystal calibrator if the signal generator is not crystal controlled.

Electronic Voltmeter of Junior or Senior "VoltOhmyst" type and a high voltage multiplier probe for use with this meter to permit measurements up to 15 kv .

Service Precautions. - If possible, the chassis should be serviced without the kinescope. However, if it is necessary to view the raster during servicing, it would be a great convenience to have a set of yoke, focus magnet, kinescope socket. high valtage and speaker extension cables.

CAUTION. - Do not short the kinescope second anode lead. Its short circuit current presents a considerable overload on the high voltage rectifier V112.

Adjustments Required, - Normally, only the rof oecillator and mixer lines will require the attention of the service technician. All other circuits are either broad or very stable and hence will seldom require readjustment.

ORDER OF ALIGNMENT, - When a complete receiver alignment is necessary, it can be most conveniently performed in the following order:
(1) Ratio detector
(5) Picture i-f transformers
(2) Sound i-f transformers
(6) R-F unit
(3) Sound Take-off transformer
(7) Overall picture i-1
(4) Picture i-f traps
(8) Horizontal oscillator

RATIO DETECTOR ALIGNMENT. - Set the signal generator at 4.5 mc . and connect it to the second sound $\mathrm{i}-\mathrm{f}$ grid. pin 1 of V116. Set the generator for $30 \% 400$ cycle modulation.
As an alternate source of signal, the RCA WR39B or WR39C calibrator may be employed. In such a case, connect the calibrator to the grid of the fourth pix i-f amplitier, pin 1 of V104.

Set the frequency of the calibrator to 25.50 mc . (pix carrier) and modulate with 4.5 mc . crystal. The 4.5 mc . signal will be picked off at T114 and amplified through the sound i-I amplifier.
Connect the "VoltOhmyst" to the junction of R279 and R281.
Connect the oscilloscope across the speaker voice coil and turn the volume control for maximum output.
Set the trimmer C287 (on the bottom of the V117 socket) for minimum capacity.
Tune the ratio detector primary. T112 top core for maximum d-c output on the "VoltOhmyst." Adjust the signal level from the signal generator for 5 volts on the "VoltOhmyst" when finally peaked. This is approximately the operating level of the ratio detector for average signals.
Tune the ratio detector secondary T112 bottom core for minimum AM oulput on the oscilloscope.

Repeat adjustments of T112 top for maximum de and T112 bottom for minimum output on the oscilloscope making final adjustments with the 4.5 mc . input level adjusted to produce 5 volts d-c on the "VoltOhmyst."
Connect the "Voltohmyst" to the junction of R192 and S103 and note the amount of d-c present. If this voltage exceeds ± 1.5 volts, adjust C287 by turning the core in until zero d-c is obtained. Readjust the Til2 bottom core for minimum output on the oscilloscope. Repeat the adjustments of C287 and T112 bottom care until the voltage ot R192 and S103 is less than ± 1.5 volts when T112 bottom core is set for minimum indica. tion on the oscilloscope.

Connect the "VoltOhmyst" to the junction of R279 and R281 and repeak the Tll2 top core for maximum dic on the meter and again reset the generator so that the meter reads minus 5 volts.

Repeat the adjustments in the above two paragraphs until the voltage at R192 and S103 is less than ± 1.5 volts when the T112 top core is set for maximum d-c at the junction of R279 and R281 and the T112 bottom core is set for minimum indication on the oscilloscope.

SOUND I.F ALIGNMENT. - Connect the sweep generator to the first sound i-f amplitier grid, pin 1 of V115. Adjust the generator for a sweep width of 1 mc . at a center frequency of 4.5 mc .
Insert a 4.5 mc . marker signal from the signal generator into the first sound $i-f$ grid.
Connect the oscilloscope in series with a 10,000 -ohm resistor to terminal A of T111.

Adjust T111 top and bottom cores for maximum gain and symmetry about the 4.5 mc . marker on the iff response. The pattern obtained should be similar to that shown in Figure 23.
The output level from the sweep should be set to produce approximately 1.0 volt peak-to-peak at terminal A of Tlll when the final touches on the above adjustment are made. It is necessary that the sweep output voltage should not exceed the specified values otherwise the response curve will be broadened. permitting slight misadjustment to pass unnoticed and possibly causing distortion on weak signals.

Connect the oscilloscope to the junction of R192 and S103 and check the linearity of the response. The pattern obtained should be similar to that shown in Figure 22.

KCS47GF-2, KCS47E, KCS49BF-2, KCS49CF-2 ALIGNMENT PROCEDURE

SOUND TARE-OFF ALIGNMENT. - Connect the 4.5 mc generator in series with a 1,000 -ohm resistor to terminal "D" of T114. The input signal should be approximately 0.5 volta.
Short the fourth pix iff grid to ground, pin 1 V104, to prevent noise from masking the output indication.
As an alternate source of signal the RCA WR39B or WR39C calibrator may be used. In such a case, disregard the above two paragraphs.
Connect calibrator across link circuit. T101 C, D, and modulate 25.50 carrier with 4.5 mc . crystal.

Connect the crystal diode probe of a "VollOhmyst" to the plate of the video amplifier, pin 6 of Vio6.

Adjust the core of Tll4 for minimum output on the meter. Remove the short from pin 1 V104 to ground if used.

PICTURE I-F TRAP RDJUSTMENT, - Connect the "VoltOhmyst" to the junction of R102 and R201.

Oblain a 7.5 volt battery capable of withstanding appre. ciable current drain and connect the ends of a 1.000 ohm potentiometer across it. Connect the battery positive ferminal to chassis and the potentiometer arm to the junction of R102 and R201. Adjust the potentiometer for -3.0 volts indication on the "VoltOhmyst."

Set the channel switch to the blank position between channels number 2 and 13.

Connect the "VoltOhmyst" to pin 2 of. V106 and to ground.
Connect the output of the signal generator to terminal D of Tl01.

Set the generator to each of the following frequencies and with a thin fiber screwdriver tune the specified adjustment for minimum indication on the "VoltOhmyst." In each instance the generator should be checked against a crystal calibrator to insure that the generator is exactly on frequency.
(1) $21.00 \mathrm{mc} .-\mathrm{T} 103$ (top)
(3) 27.00 mc .-T104 (top)
(2) 27.00 mc . T 102 (top)
(4) $19.50 \mathrm{mc} . \mathrm{Tl} 01$ (lop)

In the above transformers using threaded cores, it is possible to run the cores completely through the coils and secure two peaks or nulls. The correct position is with the cores in the outside ends of the coils. It the cores are not in the correct position, the coupling will be incorrect and it will be impos. sible to secure the correct response.

PICTURE I.F TRANSFORMER ADJUSTMENTS. - Sel the sig. nal generator to each of the following frequencies and peak the apecilied adjustment for maximum indication on the "Volt. Ohmyst." During alignment, reduce the input signal if neces. sary to prevent overloading.

$$
\begin{array}{ll}
23.7 \mathrm{mc} .- \text { L103 } & 21.95 \mathrm{mc} .- \text { T103 (bottom) } \\
25.35 \mathrm{mc} .- \text { T104 (bottom) } & 22.53 \mathrm{mc} .- \text { T102 (bottom) }
\end{array}
$$

R.F UNIT ALIGNMENT. - Disconnect the co-ax link from terminal 2 of the r. 1 unit terminal board and connect a 39 ohm composition resistor between lugs 1 and 2.

Detune Tl by backing the core all the way out of the coil.
In early production units in which L44 is adjustable, back the L44 core all the way out. Back L203 core all the way out.

In order to align the rif tuner, it will first be necessary to set the channel-13 oscillator to frequency. The shield over the bottom of the r-f unit must be in place when making any adjustments.

The oscillator may be aligned by adjusting it to beat with a crystal-calibrated heterodyne frequency meter. Couple the meter probe loosely to the receiver oscillator.

Set the channel selector switch to 13.
Set the fine tuning control to the middle of its range.
Adjust the heterodyne frequency meter to the correct frequency (236.75 mc .).

Adjust Cl for an audible beat on the heterodyne frequency meter.

Now that the channel-13 oscillator is set to frequency, we may proceed with the rof alignment.
Turn the AGC control to the counter-clockwise position.
Connect the bias box to terminal 3 of the $\mathrm{r} \cdot \mathrm{f}$ unit terminal board and adjust the bias box potentiometer for -3.5 volts.
Connect the oscilloscope to the test connection at RS on top of the r-f unit.
Connect the rd sweep oscillator to the receiver antenna terminals. The method of connection depends upon the output impedance of the sweep. The P300 connections for $300-\mathrm{hm}$ balanced or 72 -ohm single-ended input are shown in the circuit schematic diagram. If the ε weep oscillator has a 50 -ohm singleended output, $300-\mathrm{hm}$ balanced output can be obtained by connecting as shown in Figure 28.

Figure 28-Unbalanced Sweep Cable Termination

Connect the signal generator loosely to the receiver antenna rerminale.

Set the receiver channel switch to channel 8.
Set the sweep oscillator to cover channel 8.
Insert markers of channel 8 picture carrier and sound car. rier. 181.25 mc . and 185.75 mc .

Adjust C9. C11. C16 and C22 for approximately correct curve shape, frequency, and band width as shown in Fig. ure 16.
The correct adjustment of C22 is indicated by maximum amplitude of the curve midway between the markers. C16 tunes the r-f amplitier plate circuit and affects the frequency of the curve most noticeably. C9 tunes the converter grid circuit and affects the tilt of the curve most noticeably lassuming that C22 has been properly adjusted). C11 is the coupling ad. justment and hence primarily affects the response band width.

Sel the receiver channel switch to channel 6 .
Adjust the heterodyne frequency meter to the correct frequency (108.75 mc .).

Set the fine funing control to the middle of its range.
Adjust L 5 for an audible beat on the heterodyne frequency meter.

Set the weep generator to channel 6.
From the signal generator, insert channel 6 sound and pic. ture carrier markers, 83.25 mc . and 87.75 mc .

Adjust L42, L45 and L49 for proper response as shown in Figure 26.

L42 is adjusted to give maximum amplitude of the curve between the markers. L45 primarily affects the tilt of the curve. L49 primarily affects the frequency of response.

Connect the "VoltOhmyst" to the r-f unit test point at R5.
Adjust C7 for -3.0 volts at the test point.

Retouch L42. L45 and L4s for proper response if necensary. If necessary, relouch Cll for proper band width on channel 6. Continue these retouching adjustments until proper response is obtained and -3.0 vols of oscillator injection are present at the lest point.

Sol the receiver channel selector switch to channel 8 and readjust Cl for proper oscillator frequency.
Set the sweep oscillator and signal generator to channel 8.
Readjust C9, C16 and C22 for correct curve shape. frequency and band width. Readjust Cll only if neceasary.
Switch the receiver, the aweep oscillator and signal generator to channel 13.
Adjust L52 for maximum amplitude of the curve midway between markers and then overshoot the adjustment by turn. ing the slug in the same direction from the initial setting a little more than the amount of turning required to reach maximum amplitude of reaponse.

Adjust C22 for maximum amplitude of response.

Turn of the sweep generator. Adjust the L43 core for correct channel 13 oscillator trequency, then overshoot the adjustment by turning the slug a little more in the same direction from the initial selting. Reset the oscillator 10 proper frequency by adjustment of Cl .

Turn the sweep oscillator back on.
Check the response of channels 7 through 13 by switching the receiver channel switch, sweep oscillator and marker oscillator to each of these channels and observing the response and oscillator injection obtained. See Figure 26 for typical response curves. It should be found that all these channels have the proper haped response with the markers above 80% response.

If the markers do not fall within this requirement, switch to channel 8 and readjust C9, C11, C16 and C22 as necessary. If C22 required adjustment, the adjustment should be overshot a small amount and corrected by adjustment of L52 to give maximum amplitude of response between the sound and picture carrier markers. The antenna circuit (L52, C22) is broad so that tracking is not particularly critical.

If the valley in the top of the selectivity curves for the high channels is deeper than normal, the curve can be flattened somewhat by decreasing the inductance of L44 by luraing the core stud in. Be sure to check for undesirable resonant suckouts on channels 7 and 8 if this is done. In later production units, L44 may be fixed and not require adjustment.

Turn the sweep oscillator of and check the receiver channol 8 r-f oscillator frequency. It the oacillator is off irequency overshoot the adjustment of Cl and correct by adjusting L43.

Turn the receiver channel eelector switch to channel 6 . Adjust LS for correct oscillator frequency.

Turn the sweep oscillator on and to channel 6 and obeerve the response curve. Lf necessary readjust L42, L45 and L49. It should not be necessary to touch Cll.

Check the oscillator injection voltage at the test point. Is necessary adjust C7 to give -3 volts injection. If C7 is adjusted, swith to channel 8, and readjust C9 for proper curve shape, then recheck channel 6.

Switch the receiver through channel 6 down through channel 2 and check for normal response curve shapes and oscilla. tor injection voliage.

Likewise check channels 7 through 13. stopping on 13 for the next step.

With the receiver on channel 13. check the receiver oscillator frequency. Correct by adjustment of Cl if necessary.

Adjust the oecillator to irequency on all channels by switching the receiver and the frequency standard to each channel and adjusting the appropriate oscillator trimmer for the specified indication. It should be possible to adjust the oscillator to the correct frequency on all channels with the fine tuning control in the middle third of its range.

Channel Number	Pleture Carnior Freq. Mc.	Sound Carrier Freq. Mc.	Recolver R-F Oes. Freq. Mc.	$\begin{aligned} & \text { Chemenel } \\ & \text { Oscillator } \\ & \text { Adjustment } \end{aligned}$
2.	55.25	59.75.	80.750.	Ll
3.	61.25	. 65.75	. 86.750.	L2
	. 67.25.	. 71.75	. 92.750.	$L 3$
	77.25	81.75	.102.750.	. 44
6.	83.25	. 87.75	. 108.750.	L5
7.	.175.25.	179.75.	. 200.750.	L6
8.	. 181.25.	185.75.	. 206.750.	. 17
9.	.187.25.	191.75.	. 212.750.	18
10.	.193.25.	197.75.	. 218.750.	. 19
11.	. 199.25.	203.75.	. 224.750.	. 110
12.	. 205.25.	. 209.75.	. 230.750.	. Lll
13.	211.25.	. 215.75.	.236.750.	. . Cl

Switch to channel 8 and obs rve the response.
Adjust Tl clockwise while watching the change in response. When Tl is properly adjusted, the selectivity curve will be slightly wider with a slightly deeper valley in its top.

Switch through all channels and obeerve response, ascillator injection and rif oscillator frequency. Minor touch-ups of adjustments may be made at this time. However, if C7 or C9 are changed appreciably. then a recheck of the ascillator frequency on all channels should be made.

Reconnect the link from T101 to terminal 2 of the r-f unit terminal board.

Since Tl was adjusted during the r-f unit alignment it will be necessary to sweep the overall i-f response.

R-F UNIT TUBE CHANGES. - Since most of the circuits are low capacitance circuits the r-f unit may require readjustments when the tubes are changed.

If the 6CB6 r-f amplitier tube is changed, it may be necessary to readjust C16 and C22.

If the 6J6 oncillator and mixer tube is changed, then more extensive adjustments are required.
For good converaion efficiency, the oscillator injection to α triode mixer muat be held reasonably close to the optimum value. Although there is some latitude in this level, it is nearly expended in the normal variation in injection from channel to channel. Consequently, the adjustment of C7 is limited primarily to establishing the conditions for gond conversion. Since changes in oscillator injection affect conversion gain, it also aflects the input capacity of the mixer, thus also affecting tracking of the mixer grid circuit. These tube variations with their consequent effect on circuit alignment thereby require readjustment of the r-f unit if maximum conversion efficiency is to be retained after the $6 J 6$ tube is changed. It may be poesible, however, to try several 616 tubes and select one which gives satisactory periormance without realignment.

SWEEP ALIGNMENT OF PIX I-F. - Set the rif unit bias to -3.5 volts.

Connect a 47 ohm reaistor acrose the link circuit at T101 terminals C and D.

Remove the second picture i-f tube.
With the oscilloscope connected to the r-f unit test connection and the sweep oscillator connected to the antenna terminals, set the sweep output to give 0.1 volt peak-to-peak on the oscilloscope.

Switch through the channels and select one that is essen. tially flat and with the two carriers at 90% response or higher. Channel 6 is usually the most desirable for this test.

Remove the 47 ohm resistor and replace V102.
Connect the ascilloscope to terminal 2 of V106 socket.
Clip 330 ohm resistorz across R106, R108, R113 and R119.
Connect the bias box to the junction of R102 and R201. Adjust the box for -1 volt.

Adjust the sweep oscillator output to give 0.5 volt peak-topeak on the oscilloncope.

Connect the signal generator loosely to the $1-\mathrm{f}$ amplifier.
Adjust T1 and T101 bottom core to obtain the response curve shown in Figure 24.

Remove the 330 ohm reaistors acrose R106, R108, Rll3 and R119.

Set the $i-1$ bias to -4.5 volts.

Adjust the sweep output to give 3 volts peak-to-peak on the oecilloscope.

Retouch T1, T101 bottom, T102 bottom, T103 bottom, T104 bottom and LiO3 to obtain the response curve shown in Fig. ure 25.

HORIZONTAL OSCLLLATOR RDJUSTMENT. - Normally the adjustment of the horisontal oncillator is not considered to be a part of the alignment procedure, but since the oscillator waveform adjustment requires the use of an oscilloscope. it can not be done conveniently in the field. The waveform adjustment is made at the factory and normally should not require readjustment in the field. However, the waveiom adjustment should be checked whenever the receiver is aligned or whenever the horisontal oecillator operation is improper.

Horisontal Frequency Adjustment. - With a clip lead, short circuit the coil between terminals C and D of the horisontal oeclllator transformer T108. Tune in a television station and sync the picture if possible.
A. - Turn the horisontal hold control R166 to the extreme clockwise position. Adjust the T108 Frequency Adjustment (ciop the chasis) so that the picture is just out of syac and the horisontal blanking appears in the picture as a vertical bar. The position of the bar is unimportant.
B. - Turn the hold control approximately one-quarter of a turn from the extreme clockwise position and examine the width and linearity of the picture. If picture width or linearity is incorrect, adjust the horisontal drive control Cl47B, the width control R177 and the linearity control L110 until the picture is correct. If C147B, R177 or L110 were adjusted, repeat step A above.

Horizontal Locking Range תdjustment. - Turn the horizontal hold control fully counter-clockwise. The picture may remain in sync. If so, turn the Tl08 top core slightly and momentarily switch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Momentarily remove the signal by switching off channel then back. Slowly furn the horisontal hold control clockwise and note the least number of diagonal bars obtained just betore the picture pulle into syac.
H more than 9 bars are present just before the picture pulls into sync, adjust the horisontal locking range trimmer Ci47A slightly clockwise. If less than 7 bars are present, adjust C147A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pullin point. Repeat this procedure until 7 to 9 bars are present.

Horizontal Oscllator Wavelorm Adjustmont. - Remove the shorting clip from terminals C and D of T108. Tum the horizontal hold control to the extreme clockwise position. With a thin fibre screwdriver, adjust the Oscillator Waveform Adjustment Core of TIOQ (under the chassis) until the horizontal blanking bar appears in the center.
A. - Connect the low capacity probe of an oscilloscope to terminal C of T108. Turn the horisontal hold control one-quarter tum from the clockwise position so that the picture is in sync. The pattern on the oscilloscope should be as shown in Fig. ure 27. Adjust the Oscillator Waveform Ãdjustment Core of T108 until the two peaks are at the same height. During this adjustment, the picture must be kept in sync by readjusting the hold control if necessary.

This adjustment is very important for correct operation of the circuit. If the broad peak of the wave on the oscilloscope is lower than the sharp peak, the noise immunity becomes poorer. the stabilising effect of the tuned circuit is reduced and drift of the oscillator becomes more serious. On the other hand, if the broad peak is higher than the sharp peak, the oscillator is overstabilised, the pull-in range becomes inadequate and the broad peak can cause double triggering of the oecillator when the hold-control approaches the clockwise position.

Remove the oncilloscope upon completion of thil adjustment.
Check of Horisontal Oscillator Adjustments. - Set the horzontal hold control to the full counter-clockwise ponition. Momentarily remove the signal by switching off channel thon back. Slowly turn the horisontal hold control clockwise and note the least number of diagonal bars obtained just belore the picture pulle into sync.

If more than 2 bars are present just before the picture pulls into sync, adjust the horisontal locking range trimmer C147A slightly clockwise. If less than 2 bare are present, adjust C147A slightly counter-clockwise. Tum the horisontal hold control counter-clockwise, momentarily remove the aignal and recheck the number of bars present at the pullin point. Repeat this procedure until 2 bars are present.

Turn the horizontal hold control to the maximum clockwise position. The picture should be just out of sync to the extent that the horizontal blanking bar appears as a single vertical or diagonal bar in the picture. Adjust the Tio8 Frequency Adjustment until this condition is fulfilled.

SENSITIVITY CHECK - A comparative sensitivity check can be made by operating the receiver on a weak signal from a television atation and comparing the picture and sound obtained to that obtained on other receivers under the same conditions.

This weak signal can be obtained by connecting the shop antenan to the receiver through a ladder type attenuator pad. The number of stages in the pad depends upon the signal strength available at the antenna. A sufficient number of stages should be inserted so that a somewhat less than normal contrast pictuse is obtained when the picture control is at the maximum clockwise ponition. Only carbon type resistors should be used to construct the pad.

RESPONSE CURVES. - The response curves shown on page 17 and relerred to throughout the alignment procedure were taken from a production set. Although these curves are typical, some variations can be expected.

The response curves are shown in the classical manner of presentation, that is with "response up" and low frequency to the left. The manner in which they will be seen in α given test set-up will depend upon the characteristics of the oscilloscope and the aweep generator. The curves may be seen inverted and/or switched from left to right depending on the dellecsion polarity of the ascilloscope and the phasing of the sweep generator.

NOTES ON R-F UNIT ALIGNMENT. - Because of the irequency spectrum involved and the nature of the device, many of the rof unit leads and components are critical in some respects. Even the power supply leads form loops which couple to the tuned circuits, and if remonant at any of the frequencies involved in the periomance of the tuner, may cause serious departures from the desired characteristics. In the design of the receiver these undesirable resonant loops have been shifted far enough away in frequency to allow reasonable latitude in their components and physical arrangement without being troublesome. When the r-f unit is aligned in the receiver, no trouble from resonant loops should be experienced. However, If the unit is aligned in a jig separate from the receiver, attention should be paid to insure that unwanted resonances do not exist which might present a faulty representation of r-f unit alignment.

A resonant circuit exists between the rof tuner chassis and the outer shield box. which couples into the antenna and r-i plate circuits. The frequency of this resonance depends on the physical structure of the shield box, and the capacitance between the tuner chaseis and the front plate. In the KRK8 units, this resonance should iall between 120 and 135 mc . and is controlled in the deaign by using insulating washers of dif. ferent thicknemsen (in the front plate to tuner chasais mounting) to compensate for differences in the shield boxes of different models of receivers. The performance of the tuner, particularly on channels 7 and 8 will be impaired if the proper washers for the particular shield box involved are not used. Obviously then, if the r-f unit is removed for service, the washers should be replaced in the correct order when the unit is replaced.

7T103, 7T103B, 7T104, 7T104B, 7T111B, 7T112.
7T112B, 7T122, 7T122B, 7T123, 7T123B,

WAVEFORM PHOTOGRAPHS
Taken from RCK WO58A Oscilloscope

Plate of Picture Detector (Pin 7 of V105) (6AL5)

Figure 29-Vertical (Oscilloscope Synced to $1 / 2$ of Vertical Sweep Rate) (5.5 Volts PP) $\leftrightarrow+$

Figure 30-Horizontal (Oscilloscope Synced to $1 / 2$ of Horizontal Sweep Rate) (5.5 Volts PP)
\rightarrow

Grid of 1st Video Amplifier (Pin 2 of V106) (12AU7)

Figure 31-Vertical (5.3 Volts PP) $\leftarrow+$

Figure 32-Horizontal (5.3 Volts PP) \rightarrow

Plate of Ist Video Amplifier
(Pin 1 of V106) (12AU7)
Voltage depends on setting of picture control

Figure 33-Vertical (3.18 Volts PP) 4

Figure 34-Horizontal (3.18 Volts PP) \Rightarrow

Grid of 2nd Video Amplifier (Pin 7 of V106) (12AU7) Voltage depends on setting of picture control

Figure 35-Vertical (3-18 Volts PP) \leftrightarrow

Figure 36-Horizontal (3.18 Volts PP) \rightarrow

Plate of 2nd Video Amplifier (Picture Max.)
(Pin 6 of V106) (12AU7)
Voltage depends on setting of picture control

Figure 37-Vertical (25-90 Volts PP) \longleftarrow

Figure 38-Horizontal (25-90 Volts PP)

7T103, 7T103B, 7T104, 7T104B, 7T111B, 7T112, 7T112B, 7T122, 7T122B, 7T123, 7T123B,
WAVEFORM PHOTOGRAPHS
7T124, 7T125B, 7T132
Taken from RCA WO58A Osellloscope

Input to Kinescope (Junction of L109 and R135) (Picture Max.)
Voltage depends on setting of picture control

Figure 39—Vertical (25-90 Volts PP) $\longleftarrow 4$

Figure 40-Horizontal (25.90 Volts PP) \rightarrow

Cathode of D.C Restorer
(Pin 3 of V107) (12AU7)
Voltage depends on setting of picture control

Figure 41-Vertical (20.80 Volts PP)
4

Figure 42 -Horizontal (20-80 Volts PP)

Grid of D.C Restorer (Pin 2 of V107) (12AU7) Volurge depends on setting of picture control

Figure 13-Vertical (3.10 Volts PP) $\longleftarrow 4$

Figure 44-Horizontal (3.10 Volts PP) \rightarrow

Grid of Sync Separator (Pin 4 of V108A)
Voltage depends on setting of picture control

Figure 45-Vertical (6.8 Volts PP) 44

Figure 46-Horizontal (6.8 Volts PP) \rightarrow

Plate of Sync Separator
(Pin 5 of V108A)
Voltage depends on setting of picture control
'igure 47 -Vertical (14.16 Volts PP) $\longleftarrow 4$

Figure 48 -Horizontal (14-16 Volts PP)

7T103, 7T103B, 7T104, 7T104B, 7T111B, 7T112.
7T112B, 7T122, 7T122B, 7T123, 7T123B,
WAVEFORM PHOTOGRAPHS
Taken from RCA WO58A Oscilloscope

Cathode of Sync Separator (Pin 6 of V108A)
Voltage depends on setting of picture control

Figure 49—Vertical (.8-1.0 Volt PP) $\longleftarrow+$

Figure 50-Horizontal (.8.1.0 Volt PP) \rightarrow

Figure 51-Output of Integrating Network (Junction of C139, C140 and R146) (45 Volts PP) $\longleftarrow 4$

Figure 52-Grid of Vertical Oscillator (Pin 1 of V108R) (180 Volts PP)

Figure 53-Plate of Vertical Oscillator (Pin 2 of V108B) (120 Volts PP) 4

Figure 55-Plate of Vertical Output (1300 Volts PP) (Pin 3 of V109) (6K6GT)
$\leftarrow+$
Figure 54-Grid of Vertical Output (190 Volts PP) (Pin 5 of V109) (6K6GT)
$\rightarrow+$

Figure 57-Grid of Horizontal Oscil. lator Control (22 Volts PP)
(Pin 1 of V110) (6SN7GT) $\leftarrow+$

Figure 58-Cathode of Horizontal Oscillator Control (1.0 Vole PP) (Pin 3 of V110) (6SN7GT)
Figure 56-Input of Vertical Deflection Coils (15 Volts PP) (Voltage Across Pins 1 and 2 of JlolF)

$\rightarrow+$

WAVEFORM PHOTOGRAPHS
7T124, 7T125B, 7T132
Taken from RCA WOS8A Osellloscope

Figure 59-Junction of R126, R163 and R170 (52 Volts PP) $\longleftarrow+$

Figure 60-Grid of Horizontal Oscillator (340 Volts PP) (Pin 4 of V110) (6SN7GT)
\rightarrow

Figure 61-Plate of Horizontal Oscillator (190 Volts PP) (Pin 5 of V'110) (6SN7GT)
44

Figure 62-Terminal "C" of T108 (120 Volts PP) \rightarrow

Figure 63-Input to Horizontal Out. put Tube (80.110 Volts PP) (Junction of C155 and C147B) $\leftarrow 4$

Figure 64-Plate of Horizontal Output (Approx. 6,000 Volts PP) (Measured Through a Capacity Voltage Divider Connected from Top Cap of V111 to Ground)
\rightarrow

Figure 65 -Cathode of Horizontal Out. put Tube (9.12 Volts PP) (Pin 3 of V111) (6BG6G)
$\leftrightarrow 4$

Figure 66-Screen of Horizontal Out. put Tube (5.120 Volts PP) (Pin 8 of V111) ($6 B G 6 G$)

Figure 67-Cathode of Damper (3000 Volts PP) (Pin 3 of V113) (6W4GT) $\longleftarrow 4$

Figure 68-Plate of Damper (140 Voles PP) (Pin 5 of V113) (6 W 4 GT)

7T103, 7T103B, 7T104, 7T104B, 7Tll1B. 7Tll2.
7Tl12B, 7Tl22, 7T122B, 7T123, 7T123B,

7T124, 7T125B, 7T132

VOLTAGE CHART
The following measurements represent two sets of conditions. In the first condition, a 2500 microvolt test pattern signal was fed into the receiver, the picture synced and the AGC control properly adjusted. The second condition was obtained by removing the antenna leads and short circuiting the receiver antenna terminals. Voltages shown are read with a WV97A Senior "VoltOhmyst" between the indicted terminal and chassis ground and with the receiver operating on 117 volts, 60 cycles, a-c. The symbol < means less than.

Tube No.	Tube Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		Notes on Measuzements
				$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volta	Pin No.	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	Pin No.	Volts	
V1	6 J 6	Mixer	$\underset{\text { Signal }}{2500 \text { Mu. V. }}$	2	180	-	-	7	0	5	-2.3	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	2	160	-	-	7	0	5	-2.1	
V1	$6] 6$	$\begin{gathered} \text { R-F } \\ \text { Oscillator } \end{gathered}$	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	1	100	-	-	7	0	6	-3.0	Depending upon channel
			No Signal	1	90	-	-	7	0	6	-2.7	
V2	6CB6	R.F Amplifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	220	6	160	2	0.1	1	-3.4	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	150	6	100	2	0.4	1	-0.2	
V101	6AU6	1st Pix. I-F Amplitier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	195	6	222	7	0.3	1	-5.0	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	90	6	115	7	0.6	1	-1.0	
V102	6CB6	2nd Pix. I-F Amplifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	222	6	203	2	0.3	1	-5.0	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	115	6	95	2	0.5	1	-1.0	
V103	6AU6	3rd Pix. I-F Amplitier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	185	6	225	7	0.2	1	-5.0	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	100	6	115	7	0.6	1	-1.0	
V104	6CB6	4th Pix. I-F Amplifier	$\begin{aligned} & 2500 \mathrm{Mu} . \mathrm{V} . \\ & \text { Signal } \end{aligned}$	5	165	6	142	2	2.2	1	0	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	130	6	110	2	1.7	1	0	
V105	6AL5	Picture 2nd Det.	$\begin{gathered} 2500 \text { Mu. V. } \\ \text { Signal } \end{gathered}$	7	*-3.5	-	-	1	0	-	-	-Depends on picture
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	7	- -0.8	-	-	1	0	-	-	*Depends on
V105	6AL5	AGC Rectilier	$\begin{gathered} 2500 \text { Mu. V. } \\ \text { Signal } \end{gathered}$	2	--9.0	-	-	5	6.0	-	-	*Depends on picture
			No Signal	2	$\cdot-1.3$	-	-	5	5.8	-	-	-Depends on noise
V106	12AU7	1st Video Amplifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	1	100	-	-	3	1.2	2	-2.3	At maximum contrast
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	1	50	-	-	3	0.6	2	-0.8	
			$\begin{gathered} 2500 \mathrm{Mu} . \\ \text { Signal } \\ \hline \end{gathered}$	1	190	-	-	3	9.0	2	-3.6	At minimum contrast
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	1	102	-	-	3	6.3	2	-0.8	
V106	12AU7	2nd Video Amplifier	$\begin{aligned} & 2500 \mathrm{Mu} . \mathrm{V} . \\ & \text { Signal } \end{aligned}$	6	310	-	-	8	125	7	115	At maximum contrast
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	6	275	-	-	8	120	7	105	
			$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	6	286	-	-	8	135	7	120	At minimum contrast
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	6	265	-	-	8	121	7	105	
V107	12AU7	DC Rest. \& Sync. Sep.	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	1	9.8	-	-	3	52	2	-5.2	At maximum contrast
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	1	5.8	-	-	3	14.5	2	-1.0	
			$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	6	8.0	-	-	8	52	7	0	At maximum
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	6	5.7	-	-	8	14.5	7	0	cont

Tube No.	Tube Type	Fruction	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		Notas on Measurementy
				$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volte	
V108A	6SN7GT	Sync. Amplifier	$\begin{aligned} & 2500 \mathrm{Mu} . \mathrm{V} . \\ & \text { Signal } \end{aligned}$	5	42	-	-	6	8.5	4	- 8.0	Át soaximum contrast
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	44	-	-	6	6:5	4	5.7	
V108	6SN7GT	Vertical Oscillatar	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { figignal } \end{gathered}$	2	*300	-	-	3	0	1	$=-60$	- Bupends of serting of height contral
			No	2	* 309	\rightarrow	-	3	θ	1	$\bullet-58$	
V109	6K6GT	Vertical Output	$\begin{gathered} 2500 \mathrm{Mu}, \\ \text { Signal. } \end{gathered}$	3	370	4	370	8	51	5	0	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	3	370	4	370	8	51	5	0	1
V110	6SN7GT	Horizontal Osc. Control	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	2	-160	-	-	3	*1.5	1	*-20	-Depends on setting of hold control and osc. adjustments
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	2	$\cdot 160$	-	-	3	$\text { - }-11: 0$	1	-21	
V110	6SN7GT	Horizontal Oscillator	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	230	-	-	6	0	4	-82	
			No Siqnal	5	225	-	-	6	0	4	-85	
V111	6BG6G	Horizontal Output	2500 Mu . V. Signal	Cap	* 610	8	340	3	8.8	5	-33	-6000 volt pulse present
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	Cap	$\cdot 610$	8	330	3	8.8	5	-33	
V112	$\begin{aligned} & \text { 1B3GT } \\ & / 8016 \end{aligned}$	H.V. Rectifier	$\begin{aligned} & \text { Brightness } \\ & \text { Min. } \end{aligned}$	Cap	-	-	-	$2 \& 7$	$\cdot 11,000$	-	-	- 12,000 volt pulse present
			Brightness Maximum	Cap	-	-	-	$2 \& 7$	-12.200	-	-	
V113	6W4GT	Damper	$\underset{\text { Signal }}{2500 \mathrm{Mu} .}$	5	380	-	-	3	610	-	-	-3000 volt pulse present
			$\begin{gathered} \text { No } \\ \text { Sianal } \end{gathered}$	5	375	-	-	3	610	-	-	
V114	SU4G	Rectifer	$\begin{gathered} 2500 \mathrm{Mu} \text { V. } \\ \text { Signal } \end{gathered}$	486	-368	-	-	288	390	-	-	- AC measured with AC voltweter
		\checkmark	$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	486	-367	-	-	$2 ¢ 8$	385	-	-	
V115	6AU6	1st Sound I-F Amp.	$\begin{gathered} 2500 \mathrm{Mu} \mathrm{~V} . \\ \text { Signal } \end{gathered}$	5	120	6	120	7	0.5	1	-0.5	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	5	110	a	110	7	0.6	1	-0.1	
V116	6AU6	2nd Sound I-F Amp.	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signof } \end{gathered}$	5	115	6	80	7	-	1	-19	4
		10	$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	5	110	6	75	7	-	1	-1.0	-
V117	6ALS	Sound Discrim.	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	2	-7.2	-	-	5	0	-	-	Sound Discriminator in all chassis but KCS47GF-2
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	2	-10.0	-	-	5	0	-	-	
V117	6AL5	$\begin{gathered} \text { Ratio } \\ \text { Detector } \end{gathered}$	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Siqgal } \\ \hline \end{gathered}$	2	1.2	-	-	5	8.8	-	-	Ratio Detector Used in KCS47GF-2 Only
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	2	0.4	-	-	5	7.8	-	-	
V118	6AV6	lst Audio Amplifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	7	86	-	-	2	0	1	-0.8	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	7	78	-	-	2	0	1	-0.8	
V119	6K6GT	Audio Output	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	3	350	4	360	8	145	5	118	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	3	350	4	360	8	135	5	110	
V120	$\begin{gathered} \substack{17 \mathrm{CP} 4 \\ 17 \mathrm{GP4}} \end{gathered}$	Kinoscope	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	Cone	11.000	10	380	11	100	2	46	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	Cone	12,200	10	375	11	74	2	8.3	

Figure 69-K.F Unil Wiring Diagram

CRITICAL LEAD DRESS:

1. All leads in the picture and sound i-f circuits must be dressed as short and direct as possible with the exception of C106, C107. CllO and ClI7. which are to be dressed with enough slack so as not to have to move the body of the capacitor to align that particular stage.
2. Drege all $1,500 \mathrm{mmf}, .005$ mid and .01 mid capacitors in the i-f section with leads as short as possible.
3. Dress all wires between T101 and the r-f unit in clamp.
4. Dress Cl85 to act as shield for lead between pin 5 of V115 socket to T111D and picture i-f circuits.
5. Dress the bodies of resistors R106. R108. R113. R119.- R191. R192 and capacitor Cl76 as close to tube pin as possible.
6. Dress Lil4 with coded end as close to pin 2 of Vl05 socket as possible.
7. The length of the bus wire from pin 2 of V118 to ground should not be shortened or rerouted.
8. Dress \#lig4 as close to chassis with leads as short as possiblv.
9. Dress C199 with leads as short as possible and away from Sl06.
10. Keep the leads on Cl26 as short and direct as possible.
11. Dress an components connected to V106 socket up and away from the chassis except L104.
12. Keep the body and coded end of LY04 as close to pin 2 of V105 socket as possible.
13. Dress the 4.5 mc . trap L 107 up and away from the chassis base.
14. Dress C132 up in the air and towards V 105 socket.
15. Dress R125 with body as close as possible to pin 2 of U106 sockel
16. Keep body of R123 as close as possible to pin 2 af V105 sockel.
17. Dress Cl33 and C190 away from $\mathrm{Cl} 32, \mathrm{Cl} 51$ and C 153 .
18. Dress the white wire from picture control Ri28-3 uway from the chassis.
19. Dress all slack on tanescope socket leads under chassis. Dress brown wire away from any components asseciated with $\vee 105$ or VI06.
20. The green lead from the kinescope socket should be dressed away from all other leade and components and away from V106.
21. Dress R133 towards chassis rear apron.
22. Dress all leads in clamps on rear apion away from V1l7. V104. V105. V106 sockets and Sl03.
23. Dress green wive from C147A up and away from chassis.
24. Dress blue wire of Tl07 toward front apron of chassis.
25. Dress C153 down mext to the chassis bowe.
26. Dress blue/white whe from height control R151-3 under H180.
27. Dress R161, R162. R163. R164 and R170 up and away from the chassis and with a hallinch clearance from the solder. ing point.
28. Dress the yollow wire from pin 3 of V110 socket over C153.
29. Dress both leads of Cl98 away Irom the body of the eapacitor.
30. Dress fuse in high voltage compartment so as not to shost circuit to ground.
31. Dress blue and blue/yellow wire from power transformer in 3 clamps on chassis base and away from S103 and video section.
32. Dress both wires on S 106 away Irom blue/yellow damper leads of Tllo.
33. Dress the brown wire from pin 8 of V114 socket away from V118 socket.
34. Dress all 2 watt resistors away from each other and away from all wires and other components.

KCS47GF-2 CHASSIS WIRING DIAGRAM

KCS47D CHASSIS WIRING DIAGRAM

KCS47GF-2 CIRCUIT SCHEMATIC DIAGRAM

Figure 7 7-K K
Chassis W Wiring Diagram

垶 ant to.	
d) $\begin{aligned} & \text { P3o0A-M } \\ & \text { sea } \\ & \text { view }\end{aligned}$	

Due to a severe resistor shortage during the production of this series a receivers it was found neessary to substitute resistors of ditterent values
trom the nominal value shown on the schematic. These substituions were approved by the engineering department for each particular application in
the circuit only it the change in value did not impair receiver operation. I he circuit only if the change in value did nol impair receiver operation. In
some such instances, these substitutions involved a change in the value of $\%$. $10 \%, 20 \%$ or in a few instances even greater change.
Troper resistance was obtained by the use of series, parallel or eveen series parallel combinations of resistors in order to oblain the correct value of re. In should become necessary to replace a resistor or group of resistors, the values shown in the schematic and parts list should be employed.
It the value of the resistor to be replaced is ditterent from the value shown
in the schematic, and the schematic value is not available, then it is per missible to replace it with the value found in the receiver or some value be.
 struction. Such resistors should not be employed in the r.f unit, i.t or video
sections as the inductive eftect of these resistors may impair circuit operation

\％	－	＂）
	－	－
	－	＝
	$\underline{4}$＋	
	\％an	\％\％＝w
	\％omem	－${ }^{\text {a }}$ atav
\％		
	＝－＝axamum	Wvatim
	\％as＝＝	
	a	\％－2
	－	\％
	$\underline{\square}$	：
	± 2	
		\％
	\％$=$＝	
	$=$	
	$\underline{\square} \mathrm{L}$ 区	Wtw
		Ex（ixatimema
	＋itasamamin	
		\％ratu

Sock	－x．incarrow	${ }_{\text {sioce }}^{\text {sice }}$	osscarrom
	：ame weilidian	$\underset{\substack{1285 \\ 7204}}{ }$	min
			satimeram
coma	aide		
，\％i．			
y＂ud	azarex		smed
			边
			comen
\％ 7 lisa			
${ }^{\text {lums }}$			$\xrightarrow{92569-118}$
$\xrightarrow{\text { mose }}$	Sixile		
			Sex
${ }_{1232}$	込	${ }^{13}$	何
7			
${ }^{\text {y，}}$		\％sin	baye bis

GENERAL DESCRIPTION

Model 7T143 is a 17 -inch television, AM-FM radio phonograph combination. Two record changers are provided to play $78,331 / 3$ and 45 RPM records. The instrument employs 27 tubes plus 3 rectifiers and a 17CP4 kinescope.

Features of the television unit are full twelve channel cov-
erage; FM sound system; improved picture brilliance; picture A-G.C; A.F-C horizontal hold; stabilized vertical hold; two stages of video amplification; noise saturation circuits; improved sync separator and clipper; four me band width for picture channel and reduced hazard high voltage supply.

ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE.............. 146 square inches on a 17CP4 kinescope

TELEVISION R-F FREQUENCY RANGE

All 12 television channels. 54 mc . to $88 \mathrm{mc} ., 174 \mathrm{mc}$. to 216 mc . Fine Tuning Range. $\pm 250 \mathrm{kc}$. on chan. 2. $\pm 650 \mathrm{kc}$. on chan. 13

RADIO TUNING RANGE
AM .. 540-1600 kc.
FM $.88-108 \mathrm{mc}$.

AUDIO POWER OUTPUT. \qquad . 11 watts max.

POWER SUPPLY RATING

Model 7 T143. .115 volts, 60 cycles, 315 watts max.

CHASSIS DESIGNATIONS

Television Chassis...
Radio Chassis.... ..RC1092
$331 / 3 / 78$ RPM Record•Changer.. 960284
45 RPM Record Changer..RP190
Refer to Service Data 960284, or RP190 for information on the record changers.
LOUDSPEAEER- 92569inch PM Dynamic
Voice Coil Impedance 3.2 ohm at 400 cycles

WEIGHT		Net Wel		Shipplng Weight	
7T143	,	... 180			222
DIMENSIONS	(Cabinet	Outide)	Width	Hoight	Depth
7T143			. $381 / 2$	39	237\%

RECEIVER ANTENNA INPUT IMPEDANCE 300 ohms balanced.
If necessary, the televiaion chassis may be fed separately from either a 300 -ohm balanced line or a 72 -ohm co-ax.

RCA TUBE COMPLEMENT

(RC1092 Radio Chassis)

RCA 6CB6			
2) RCA 6 J 6			
3) RCA 6BA6			
4) RCA 6AU6 ... Driver			
(5) RCA 6AL5 .. Ratio Detector			
) RCA 6AV6 AM Det., AVC and Audio Amplifi			
(7) RCA 6C4 ... Phase Inver			
(8) RCA 6V6GT (2 tubes) Audio Out			
9) RCA 5Y3GT .. Rect			

PICTURE INTERMIEDIATE FREQUENCIES
Picture Carrier Frequency ... 25.50 Mc.
Adjacent Channel Sound Trap .. 27.00 Mc.
Accompanying Sound Traps 21.00 Mc.
Adjacent Channel Picture Carrier Trap 19.50 Mc

SOUND INTERMEDIRTE FREQUENCIXS
Sound Carrier Frequency .. 21.00 Mc.
Sound Diecriminator Band Width between peaks 400 kc .
VIDEO RESPONSE .. To 4 Mc.
FOCUS .. Magnetic

SWEEP DEFLECTION ... Magnetic

OPERATING CONTROLS (froal Pamel)

SCANNING:
Interlaced, 525 line
HORIZONTAL SWEEP FREQUENCY 15.750 cps

VERTICAL SWEEP FREQUENCY 60 cp

FRAME FREQUENCY (Picture Repetition Rate) 30 cp

high Voltage warning

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPEMATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

OPERATING INSTRUCTIONS

The following adjustments are necessary when turning the receiver on for the first time:

1. Turn the radio FUNCTION switch to TV.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid-position.
3. Set the STATION SELECTOR to the desired channel.
4. Adjust the FINE TUNING control for best sound fidelity and the SOUND VOLUME control for suitable volume.
5. Turn the BRIGHTNESS control fully counter-clockwise, then clockwise until a light pattern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZON. TAI hold control until a pic. ture is obtained and cen. tered.
8. Adjust the PICTURE and BRIGHTNESS controls for suitable picture contrast and brightnems.
9. After the receiver has been on for some time. it may be neceseary to read.

Figure 1-Receiver Operating Controls
just the FINE TUNING control slightly for improved sound fidelity.
10. In switching from one channel to another, it may be necessary to repeat steps 4 and 8.
11. When the set is turned on again after an idle period it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. If any adjustment is necessary. step No. 4 is generally sufficient.
12. If the positions of the controls have been changed. it may be necessary to repeat steps 1 through 8.

RADIO OPERATION

1. Turn the radio FUNCTION switch to AM.
2. Tune in the desired station with the TUNING control.
PHONOGRAPH OPERATION
3. Turn the radio FUNC. TION switch to 78.33 for operation of the 78/331/3 RPM changer or to 45 for operation of the 45 RPM changer.
4. Place a record on the appropriate changer and slip the changer power switch to "ON."

Make sure that all tubes are in place and are firmly seated in their sockets.

Check to see that the kinescope high voltage lead clip is in place.

Connect the antenna transmistion line to the receiver antenna terminals. Plug a power cord into the $115 \cdot \mathrm{volt}$ a-c power source and into the receiver interlock receptacle. Turn the receiver power switch to the "on" position, the brighiness control fully clockwise, and the picture control counterclockwise.

ION TRAP MAGNET ADJUSTMENT.-Set the ion trap magnet approximately in the position shown in Figure 2. Starting from this position immediately adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Turn the focus control (shown in Figure 2) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches of this adjustment should be made with the brightness control at the maximum clockwise position with which good line focus can be maintained.

Figure 2-Yoke and Focus Magnet Adjustments

DEFLECTION YORE ADJUSTMENT.-If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE ADJUSTMENTS.-It will now be necessary to obtain a test pattern picture in order to make further adjustments.

If the Horizontal Oscillator and AGC System are operating properly, it should be possible to sync the picture at this point. However, if the $\mathbb{A} G C$ control is misadjusted, and the receiver is overloading, it may be impossible to sync the picture.

If the receiver is overloading, turn Sl05 on the rear apron (see Figure 3) counter-clockwise until the set operates normally and the picture can be synced.

CHECE OF HORIZONTAL OSCILLATOR ALIGNMENT.Turn the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be gradually reduced, and when only 2 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull-in should occur when the control is approximately 90 degrees from the extreme counter-clockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should be out of sync and should show' 1 vertical or diaqonal black bas in the raster.

If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Focus Magnet Adjustment."

ALIGNMENT OF HORIZONTAL OSCILLATOR.-If in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull-in point, it will be necessary to make the follow. ing adjustments.
Horizontal Frequency Adjustment. -Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the Tl08 horizontal frequency adjustment on top of the chassis until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster.

Horizontal Locking Range Adjustment.-Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. The picture may remain in sync. If so turn the T108 top core slightly and momentarily switch off channel. Repeat until the picture falle out of sync with the diagonal lines sloping down to the left. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 2 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer C147A slightly clockwise. If less than 2 bars are present, adjust Cl47A slighty counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procédure until 2 bars are present.

Repeat the adjustments under "Horizontal Frequency Adjustment" and "Horizontal Locking Range Adjusiment" until the conditions specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.

If it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure

For field purposes paragraph " A " under Horizontal Oscillator Waveform Adjustment may be omitted.

Figure 3-Rear Chassis Adjustments
FOCUS MAGNET ADJUSTMENT.-The focus coil should be adjusted so that there is approximately three-oighthe inch of space between the rear cardboard shell of the yo':e and the flat of the tront face of the focus magnet. This spacing gives best average focus over the face of the tube.

The axis of the hole through the magnet should be parallel with the axis of the kinescope neck with the kinescope neck through the middle.

CENTERING ADJUSTMENT.-No electrical centering controls are provided. Centering is accomplished by means of a separate plate on the focus magnet. Some centering plates include a locking screw which must be loosened before centering, and others are held in adjustment by friction. Up and down adjustment of the plate moves the picture side to side and sidewise adjustment moves the picture up and down.

If a corner of the raster is shadowed, check the position of the ion trap magnet. Reposition the magnet within the range of maximum raster brightness to eliminate the shadow and recenter the picture by adjustment of the focus magnet plate.

In no case should the magnet be adjusted to cause any loss of brightness since such operation may cause immediate or eventual damage to the tube. In some cases it may be necessary to shift the position of the focus magnet in order to eliminate a corner shadow.

WIDTH. DRIVE AND HORIZONTAL LINEARITY ADJUST-MENTS.-Adjustment of the horizontal drive control affects the high valtage applied to the kinescope. In order to obtain the highest possible voltage hence the brightest and best focused picture, adjust horizontal drive counter-clockwise as far as possible without stretching the left side of the picture. As a first adjustment, set the horizontal drive trimmer C143B onehall turn out from maximum capacity.

Turn the horizontal linearity coil out until appreciable loss in width occurs, then in until nearly maximum width and the best linearity is obtained.

Adjust the width control R177 to obtain correct picture width.
A slight readjustment of these three controls may be necessary to obtain the best linearity.
HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS.-Adjust the height control (R15l on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (kl56 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjust. ment of the other. Adjust centering to align the picture with the mask.

FOCUS.-Adjust the focus magnet for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

On focus magnets using two shunts, the one with the cable is the "fine adjustment" and the other is the "focus range" adjustment. In general, the two shunts should be adjusted to approximately equal positions.

Recheck the position of the ion trap magnet to make sure that maximum brightness is obtained.

Check to see that the yoke thumbscrew and the focus magnet mounting screws are tight.

CHECK OF R-F OSCILLATOR ADJUSTMENTS.-Tune in all available stations to see if the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure on page 10 . The adjustments for channels 2 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 4. Adjustment of channel 13 is on top of the chassis.

AGC CONTROL.-The AGC control switch is provided as an installation adjustment. The normal position for strong signal areas is with the switch in the number 1 or counterclockwise position. If impulse type of interference is experienced, furn the switch to the number 2 or center position. In very weak signal areas in which impulse type interference is experienced, turn the switch to position number 3 or fully clockwise. In this position, all AGC is removed and the receiver will overload if the input signal exceeds 200 microvolts. However, for signals under 200 microvolts, this position of the AGC control switch gives best noise immunity of sync.

FM TRAP ADJUSTMENT.-In some instances interference may be encountered from a strong FM station signal. A trap is provided to eliminate this type of interference. To adjust the trap tune in the station on which the interference is observed and adjust the L 203 core on top of the r-f unit for minimum interference in the picture.

CAUTION.-In some receivers, the FM trap L203 will tune down into channel 6 or even into channel 5. Needless to say, such an adjustment will cause greatly reduced sensitivity on these channels. If channels 5 or 6 are to be received, check L203 to make sure that it does net affect sensitivity on these two channels.

RADIO OPERATION.-Turn the receiver function switch to the positions and check the radio for proper operation. In switching from radio to television or from television to radio. approximately 30 seconds warm-up time is required.
RECORD CHANGER OPERATION.-Turn the receiver function switch to each phono position and check each record player for proper operation.

Replace the cabinet back and connect the receiver antenna leads to the cabinet back. Make sure that the screws holding it are up tight, otherwise it may rattle or buzz when the receiver is operated at high volume.

CABINET ANTENNA.-A cabinet antenna is provided for use in strong signal areas in which no reflections are experienced. The leads from the antenna are brought out near the receiver antenna terminal board. To connect the cabinet antenna, attach the leads to the terminal board. If reception is satisfactory, no other antenna is necessary. However, if recep. tion is unsatisfactory, it will be necessary to employ an outdoor antenna or an indoor antenna which can be oriented.

CHASSIS REMOVAL.-To remove the chassis from the cabinet for repair or installation of a new kinescope. remove the control knobs, the cabinet back, unplug the speaker cable, the kinescope socket, the antenna cable. the yoke and high voltage cable. Remove the yoke irame grounding strap and the interlock switch. Take out the four chassis bolts under the cabinet. Withdraw the chassis from the back of the cabinet.
KINESCOPE HANDLING PRECAUTION,-Do not install. remove, or handle the kinescope in any manner, unless shatterproof goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling.

To remove the kinescope from the cabinet, loosen the two nuts and disengage the rods along side the kinescope. Remove the wing screw which holds the yoke frame to the cabinet. Remove the kinescope, the yoke frame with yoke and focus magnet as an assembly.

Figure 4-R-F Oscillator Adjustments

INSTALLATION OF KINESCOPE.-Handle this tube by the metal rim at the edge of the screen. Do not cover the glass bell of the tube with fingermarks as it will produce leakage paths which may interfere with reception. If this portion of the tube has inadvertently been handled, wipe it clean with a soft cloth moistened with "dry" carbon tetrachloride.

Wipe the kinescope screen surface and front panel safety glass clean of all dust and fingermarks with a soft cloth moistened with "Windex" or similar cleaning agent.

Turn the tube so that the key on the base of the tube will be down and insert the neck of the kinescope through the deflection coil and focus magnet. If the tube sticks, or fails to slip into place smoothly, investigate and remove the cause of the trouble. Do not force the tube.

Replace the kinescope and yoke frame assembly in the cabinet. Insert the wing screw and tighten. Engage the two side rods into the yoke frame and tighten the two nuts.

Slide the deflection yoke as far forward as possible. If this is not done, difficulty will be encountered in adjusting the ion trap and focus magnets because of shadows on the corner of the raster.

Slide the chassis into the cabinet, then insert and tighten the four chassis bolts.

Slip the ion trap magnet over the neck of the kinescope.
Connect the kinescope socket to the tube base and connect the high voltage lead clip from the rim of the kinescope into the high voltage bushing on the high voltage compartment.

Reconnect all other cables. Perform the entire set-up procedure beginning with ion Trap Magnet Adjustment.

Figure 5-Radio Schematic Diagram

If any lead dressing is necessary, it should be done before aligning the receiver. When making a complete alignment follow the table below in sequence. If only a portion of the circuit is to be aligned select the portion required and follow with the remaining steps in the section. Any adjustments made on the 455 kc . I.F's make it necensary to adjust the 10.7 mc . I-F's.

"AM" R-F-I-F ALIGNMENT

Test-Oscillator.-For all aligament operations, connect low side of the test-osc. to the receiver chassia, and keep the osc. output' as low as possible to avoid a-v-c action. Output Meter.-Connect the meter across the speaker voice coil, and turn the receiver volume control to max. Turn tone controls for maximum highs and maximum lows. Before aligning set, completely mesh the gang and set the dial pointer to the mechanical max. calibration point at extreme left end of dial.

Steps	Connect the High Side of the Tent Osc. to-	Tune Test Osc. to-	Function Switch	Turn Radio Dlal to-	Adjut the following

\dagger First peak T2 and T4 then starting with T4, use alternate loading. Connect a 47,000 -ohm resistor across the primary to load the plate winding while the grid winding of the same transformer is being peaked. Then load the grid winding with the $47,000-0 h m$ resistor while the plate winding is being peaked.

I With a 10,000 -ohm resistor clipped across C1-4, peak the ascillator core L5, amultaneously "rocking" the gang condenser for maximum output. Then, remove the 10,000 -ohm shunt resistor and peak 17 for maximum output.

FM ALIGNMENT PROCEDURE

Connect probe of "VoltOhmyst" to negative side of C40 and low side to chassis. Connect output meter across speaker voice coil. Turn the tone controls for maximum highs and lows.

Steps	Connect the High side of the Test Osc. to-	Tune Tost Osic. to-	Function Switch	Radio Dlai Tuned to	Adjust
6	Pin No. 1 of 6AU6 (V4) in serien with .01 mfd .	$\begin{aligned} & 10.7 \mathrm{mc} . \\ & 30 \% \text { AM } \\ & \text { Modulated } \end{aligned}$	FM		Top of Driver Trans. T5 for maximum DC on "VoltOhmyst."
7	Pin No. 1 of 6AU6 (V4) in series with .01 mid.		FM	- -	Bottom of Driver Trans. T5 for minimum audlo output on meter.
8	Repeat steps 6 and 7 as necessary making final adjustment with r-f input level set to give approximately $\mathbf{4 . 0}$ volth d-c on "VoltOhmyst."				
9	Through 470 ohms to stator. of Cl-3, gang at max. Connect gnd. of cable close to V2 cathode ground on r-1 shelf.	10.7 mc .	FM	88 mc .	'T3 then Tl for max. with rif input set to give -3 volis on "VoltOhmyst" connected across C40.
10	Connect cable to antenna terminals through 120 ohm in each side of line.	90 mc .	FM	90 mc .	OSC, L8 for max. voltage across C40.
11		106 mc .	FM	Tune to signal	ANT, C1.3 and R.F Cl. 6 for max. volt age across C40.
12		90 mc .	FM	Tune to signal	ANT, L1 and R.F L2 for max. voltage across C40.
13	Repeat steps 10, 11 and 12 as required.				
14	Connect a sweep generator to the antenna terminale through 120 ohms in each side of line. Connect an oscilloncope to Junction of R44 and C41 and check response and linearity of FM band. Peak to peak separation should not be less than 180 kc .				

- Use a 680 -ohm resistor to load the plate winding while the grid winding of the same transformer is being peaked. Then the grid winding is loaded with 680 -ohm resistor while the plate winding is being peaked. When windings are loaded, it is necessary to increase the 10.7 mc . input, since gain will decrease and voltage across $\mathbf{C 4 0}$ will be less.

CRITICAL LEAD DRESS:

1. The 2.2 meg. mixer grid resistor should have a minimum practicable amount of lead extending on the grid end.
2. The first $\AA M$ and first FM i.f plate leads should be dressed away from the range switch wafer.
3. The ground strap between the $x-1$ shelf and the main chassis should be well soldered and kept as short as practicable.
4. Arrange wiring to prevent the filament wire between mixer and lst i-f tubes from passing near the mixer grid, or the AVC wiring.
5. Dress filament wires away from 1 st audio and inverter coupling condensers.
6. Drese ac power switch wires away from the audio coupling condenser which is wired to the volume control.
7. Dress the mixer grid coupling condenser away from the lugs on the front range switch wafer.
8. The lst i-f tube AVC and screen by-pass condensers should ground at same point as cathode neutralizing loop.
9. The discriminator tube plate and screen by-pass condensers ehould ground at the same point as the neutralizing loop.
10. The mixer plate by-pass ahould yround as close to the r-f shelf ground strap as practicable.
11. The shielded audio leads connecting to the front function switch wafer should have a min. of exposed lead on the

Figure 6-Dial and Drive Cord Assembly

Voltages shown are as read with "Ir. VoltOhmyst" between the indicated terminal and chassis ground, with the receiver operating on 117 volts, 60 cycles, a-c and with no signal inpul.

Tube No.	$\begin{aligned} & \text { Tube } \\ & \text { Type } \end{aligned}$	Tube Function	Tube Elemen!	Pin No.	AM	FM	Phono
V1	6CB6	R-F Amplifier	Plate Screen Cathode Grid	5 6 2 1	$\begin{gathered} 203 \\ 48 \\ 0.2 \\ -1.1 \end{gathered}$	$\begin{array}{r} 132 \\ 39 \\ 0.2 \\ -0.9 \end{array}$	\square
V2	676	Oscillator and Mixer	Plate Grid Plate Grid	$\begin{aligned} & 2 \\ & 5 \\ & 1 \\ & 6 \end{aligned}$	$\begin{array}{r} 55 \\ -1.4 \\ -2.1 \end{array}$	$\begin{array}{r} 51 \\ -1.2 \\ 27 \\ -1.9 \end{array}$	
V3	6BA6	1-F Amplifior	Plate Screen Cathode Grid	5 6 7 1	$\begin{array}{r} 192 \\ 106 \\ .93 \\ -1.1 \end{array}$	$\begin{array}{r} 188 \\ 101 \\ .25 \\ -0.35 \end{array}$	
V4	6AU6	Driver	Plate Screen Cathode Grid	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 1 \end{aligned}$	$\begin{gathered} 186 \\ 122 \\ 1.05 \\ 0 \end{gathered}$	$\begin{gathered} 180 \\ 120 \\ 1.07 \\ 0 \end{gathered}$	
V5	6RL5	Radio Det.	-	-	-	-	-
V6	6RV6	Audio Amp.	Plate Grid	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\begin{gathered} 94 \\ -0.7 \end{gathered}$	$\begin{gathered} 93 \\ -0.7 \end{gathered}$	$\begin{array}{r} 112 \\ -0.7 \end{array}$
V7	6C4	Inverter	Plate Cathode Grid	$\begin{array}{r} 1 \& 5 \\ 7 \\ 6 \end{array}$	$\begin{gathered} 87 \\ -11.4 \\ -16.0 \end{gathered}$	$\begin{gathered} 85 \\ -11.4 \\ -16 \end{gathered}$	$\begin{gathered} 125 \\ -11.1 \\ -19.2 \end{gathered}$
$\begin{aligned} & \text { V8 } \\ & \text { V9 } \end{aligned}$	$\begin{aligned} & \text { 6V6GT } \\ & \text { 6V6GT } \end{aligned}$	Audio Power Output	Plate Screen Grid	$\begin{aligned} & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{gathered} 295 \\ 208 \\ -16.0 \end{gathered}$	$\begin{array}{r} 298 \\ 204 \\ -16 \end{array}$	$\begin{array}{r} 305 \\ 299 \\ -19.2 \end{array}$
V10	5Y3GT	Rectifier	Flament	2\&8	313	313	314

Figure 7-Cbassis, Top View, Sbowing Adjustments

Figure 9—Simplified Radio Schematic Diagram Showing Function Switch in FM Position

The following measurements represent two sets of conditions. In the first condition, a 2500 microvolt test pattern aignal was fed into the recelver, the picture synced and the AGC control properly adjusted. The second condition was obtained by removing the antenna leads and short circuiting the receiver antenna terminals. Voltages shown are read with a type WV97A senior "VoltOhmyst" between the indicated terminal and chanale ground and with the recelver operating on 117 volls. 60 cycles, a-c. The symbol $<$ means less than.

Tube No.	Tube Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		$\begin{aligned} & \text { I } \\ & \text { Plate } \\ & \text { (ma.) } \end{aligned}$	$\underset{\substack{\text { Screөn } \\ \text { (ma.) }}}{\text { I }}$	Notes on Measurements
				Pin No.	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	Pin No.	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts			
V1	6]6	Mixer	$\underset{\text { Signal }}{2500 \mathrm{Mu} . \mathrm{V}}$	2	144	-	-	7	0	5	-2.3	6.6	-	
			No Signal	2	135	-	-	7	0	5	-2.1	5.6	-	
V1	6 J 6	R-F Oscillator	$\begin{array}{\|c} 2500 \mathrm{Mu} \\ \text { Signal } \end{array}$	1	100	-	-	7	0	6	- -3.0	4.0	-	*Depending upon channel
			No Signal	1	96	-	-	7	0	6	- -2.7	3.9	-	
v2	6AG5	R-F Amplifier	$\begin{array}{\|c\|} \hline 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{array}$	5	250	6	130	2	0.1	1	-3.4	3.0	0.6	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	166	6	84	2	0.4	1	-0.2	10.3	2.3	
V101	6AU6	1st Pix. I-F Amplifier	$\begin{array}{\|c\|} \hline 2500 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \\ \hline \end{array}$	5	195	6	222	7	0.3	1	-5.0	1.7	0.8	
			No Signal	5	121	6	135	7	0.8	1	-0.8	5.2	2.2	
V102	6CB6	2nd Pix. I-F Amplifier	$\begin{array}{\|c\|} \hline 2500 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \end{array}$	5	222	6	203	2	0.3	1	-5.0	2.0	0.7	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	124	6	112	2	0.8	1	-0.8	5.5	1.6	
V103	6AU6	3d Pix. I-F Amplitier	$\begin{array}{\|c\|} \hline 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{array}$	5	185	6	225	7	0.2	1	-5.0	1.7	0.7	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	94	6	132	7	0.5	1	-0.75	4.9	2.0	
V104	6CB6	4th Pix. I-F Amplifier	$\begin{array}{\|c\|} \hline 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{array}$	5	165	6	142	2	2.25	1	0	9.6	3.1	
			No Signal	5	118	6	132	2	2.1	1	0	9.0	3.1	
V105	6AL5	Picture 2d Det.	$\begin{array}{\|c\|} \hline 2500 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \end{array}$	7	-2.0	-	-	1	0	-	-	0.3	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	7	-0.5	-	-	1	0	-	-	<0.1	-	
V105	6AL5	AGC Rectifier	$\begin{array}{\|c\|} \hline 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{array}$	2	-9.5	-	-	5	5.5	-	-	<0.1	-	
	-		No Signal	2	-2.0	-	-	5	5.5	-	-	<0.1	-	
V106	12AU7	lst Video Amplitier	$\begin{array}{\|c\|} \hline 2500 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \\ \hline \end{array}$	1	100	-	-	3	1.2	2	-2.3	3.6	-	At maximum contrast
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	1	54	-	-	3	0.9	2	-0.5	2.6	-	
			$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	1	190	-	-	3	9.0	2	-2.6	0.9	-	At minimum contrast
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	1	122	-	-	3	6.9	2	-0.5	0.6	-	
V106	12AU7	2d Video Amplitier	$\begin{array}{\|c\|} \hline 2500 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \end{array}$	6	330	-	-	8	125	7	118	9.3	-	At maximum contrant
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	6	295	-	-	8	121	7	110	13.6	-	
			$\begin{array}{\|c\|} \hline 2500 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \end{array}$	6	300	-	-	8	131	7	120	12.9	-	At minimum contrast
			No Signal	6	295	-	-	8	121	7	110	13.6	-	
V107	12AU7	$\begin{aligned} & \text { DC Rent } \\ & \& \text { Sync Sep } \\ & \hline \end{aligned}$	$\underset{\text { Signal }}{2500 \mathrm{Mu} .}$	1	10	-	-	3	45	2	-4.5	-	-	At Maximum Contrast
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	1	8	-	-	3	1.7	2	-0.4	-	-	
			$\begin{array}{\|c\|} \hline 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{array}$	6	7.2	-	-	8	54	7	0	-	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	6	7.0	-	-	8	-	7	0	-	-	

Tube No.	Tube Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		I Plate (ma.)	I Screen (ma.)	Notes on Measurements
				Pin No.	Volts	Pin No.	Volts	Pin No.	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts			
V108A	6SN7GT	Sync Amp	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \end{gathered}$	5	50	-	-	6	7.8	4	7.4	-	-	
			No Signal	5	46	-	-	6	7.0	4	7.0	-	-	
V108	6SN7GT	Vertical Oscillator	$\begin{gathered} 2500 \mathrm{Mu} . \\ \text { Signal } \end{gathered}$	2	-395	-	-	3	0	1	- -58	0.4	-	*Depends on Setting of
			No Signal	2	395	-	-	3	0	1	- -58	0.4	-	height control
V109	6K6GT	Vertical Output	$2500 \mathrm{Mu} . \mathrm{V} .$ Signal	3	370	4	370	8	51	5	0	11.5	1.9	
			No Signal	3	365	4	365	8	51	5	0	11.4	1.9	
V110	6SN7GT	Horizontal Osc. Contro	$\begin{array}{\|c\|} \hline 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{array}$	2	${ }^{1} 160$	-	-	3	- -4.6	1	- 14.6	0.32	-	- Depends on Setting of
			No Signal	2	*152	-	-	3	- -4.4	1	- -3.5	0.28	-	hold control
110	6SN7GT	Horizontal Oscillator	2500 Mu . V. Signal	5	230	-	-	6	0	4	-82	1.8	-	
			No Signal	5	225	-	-	6	0	4	-85	1.8	-	
V111	6BG6G	Horizontal Output	2500 Mu. V. Signal	5	-630	8	335	3	7.2	5	-33	67	5.0	* 6000 volt
			No Signal	5	-630	8	329	3	7.2	5	-33	67.1	4.9	
V112	$\begin{aligned} & \text { 1B3GT } \\ & / 8016 \end{aligned}$	H. V. Rectifier	Brightness Min.	Cap	-	-	-	287	11.000	-	-	0	-	* 12000 volt
			Brightness Max.	Cap	-	-	-	$2 \& 7$	12.200	-	-	0.1	-	pulse present
$v 113$	$\begin{aligned} & \text { 6W4 } \\ & \text { GT } \end{aligned}$	Damper	$\begin{aligned} & 2500 \mathrm{Mu} . \mathrm{V} \\ & \text { Signcl } \end{aligned}$	5	387	-	-	3	-	-	-	69	-	*3000 volt
			No Signal	5	380	-	-	3	-	-	-	70	-	pulse present
9114	5U4G	Rectifier	$\underset{\substack{2500 \mathrm{Mu} \\ \text { Signal }}}{ } \mathrm{V} .$	486	-368	-	-	288	391	\square	-	185	-	- AC measured with AC
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	486	-367	-	-	288	387	-	-	199	-	Voltmeter
V115	6AU6	1st Sound I.F. Amp.	$2500 \mathrm{Mu} . \mathrm{V}$. Signal	5	120	6	120	7	0.8	1	-0.2	6.8	2.9	
			No Signal	5	108	6	108	7	0.8	1	-0.1	6.2	2.8	
V116	6AU6	2d Sound I-F Amp.	$2500 \mathrm{Mu} . \mathrm{V}$. Signal	5	118	6	87	7	0	1	-1.3	4.9	2.8	
			No Signal	5	110	6	76	7	0	1	-0.5	6.9	3.1	
V117	6AL5	Sound Discrim.	$2500 \mathrm{Mu} . \mathrm{V}$. Signal	2	-7.2	-	-	5	0	-	-	<0.1	-	
			No Signal	2	-10.0	-	-	5	0	-	-	<0.1	-	
H118	6AV6	Bias Clamp	2500 Mu . V. Signal	7	0	-	-	2	0	1	-3.4	-	-	
			No Signal	7	0	-	-	2	0	1	-0.2	-	-	
W120	17CP4	Kinescope	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	Cone	11.000	10	384	11	100	2	46	<0.1	<0.1	
			No Signal	Cone	12.200	10	375	11	74	2	8.3	<0.1	<0.1	

Figure 12 -Television R-F Unit Wiring Diagram

TELEVISION CRITICAL LEAD DRESS

1. All leads in the picture and sound i-f circuits must be dressed as short and direct as possible with the exception of C106, C107, C110 and Cl17 which are to be dressed with enough slack so as not to have to move the body of the capacitor to align that particular stage.
2. Dress all 1500 mmf .005 mfd and .01 mid capacitors in the $\mathrm{i}-\mathrm{f}$ section with leads as short as possible.
3. Dress all wires between T101 and the r-f unit in clamp.
4. Dress Cl85 to act as shield for lead between pin 5 of V115 socket to T111D and picture i-1 circuits.
5. Dreas the bodies of resimtors R106, R108, R113, R119, R191, R192 and capacitor C176 as close to tube pin as possible.
6. Dress L114 with coded end as close to pin 2 of U105 mocket as posaible.
7. The length of the bus wire from pin 2 of V116 to ground should not be shortened or rezouted.
8. Dreas R194 as close to chaseis with leads as short as postible.
9. Keep the lead on C126 as short and direct as ponsible.
10. Dress all components connected to V106 socket up and away from the chassis except L104.
11. Keep the body and coded end of L104 as cloce to pin 2 of V105 socket as possible.
12. Dress the 4.5 mc . trap L107. up and away from the chassis base.
13. Dress Cl32 up in the air and towards V105 sockel.
14. Dreas R125 with body as close as ponsible to pin 2 of V106 socket.
15. Keep body of R123 as close as postible to pin 2 of V105 socket.
16. Dreas Cl 33 and Cl 90 away from $\mathrm{Cl} 32, \mathrm{Cl} 51$ and Cl 53.
17. Dress the white wire from picture control R128.3 away from the chassin.
18. Dress all slack on kine socket leads under chastis. Dreas brown wire away from any components ansociated with V105 or V106.
19. The green lead from the kinescope socket should be dressed away from all other leads and components and away from V106.
20. Dreas R133 towarde chastis rear apron.
21. Dreas all leade in clamps on rear apron away from V117, V104, V105, V106 sockets and S103.
22. Dreat green wire from Cl47A up and away from chassis.
23. Dress blue wire of T107 toward front apron of chasis.
24. Dress Cl53 down next to the chassis base.
25. Drese blue/white wire from height control R151-3 under R180.
26. Dreas R161, R162, R163, R164 and R170 up and away trom the chasais and with a half inch clearance from the soldering point.
27. Dreas the yellow wire from pin 3 of V110 socket over Cl53.
28. Dress both leads of C198 away from the body of the capacitor.
29. Dress fuse in high voltage compartment so as not to whort circuit to ground.
30. Dress blue and blue/yellow wire from power tranformer in 3 clampa on chasais base and away from S103 and video section.
31. Dress both wires on S106 away from blui/yellow damper leade of T110.
32. Dress all 2 watt resistore away from each other and away from all wires and other components.

${ }_{\text {spock }}^{\text {sock }}$	mascartox	spoox	stapurtow
	UNIT ASS KRKBE		Seamen
${ }_{\text {rax }}$	Comer ceme		
${ }^{2}$			
			seprea
$\underset{\substack{7301 \\ \text { sind }}}{8}$	in	$\underset{\substack{25172 \\ 2546}}{ }$	
	momm		
		$\xrightarrow[\substack{\text { zise } \\ \text { cise }}]{\text { cos }}$	wat
，	and		Mnssess
$\underset{\substack { \sin \\ \begin{subarray}{c}{10 n{ \operatorname { s i n } \\ \begin{subarray} { c } { 1 0 n } }\end{subarray}}{\substack{20}}$	Anemen		comer
	\％		边
	\％eito		con
	込		
\％es			com
		come	
soma			
min	－ 108		
com		com	coicle
	边	${ }_{\substack{\text { numb } \\ \text { num }}}$	comeme
	Tititititititit	con	comer
		${ }_{\text {zsso }}$	
	边		
	3mern	${ }^{\text {nema }}$	込
	max memeder	$\xrightarrow{\text { ness }}$	
	Sirume	nose	
		永边	cem
		nsom	cort
			comem
	2ita		

 and
and and
and

 Dseserpion E

Model 9T10S "York" Mabogany, Walnut or Oak

Model 9T126 "Hillsdale" Walnut, Mabogany or Oak

Model 9T128
"Provincial"
Walnut, Mabogany
or Maple

TELEVISION RECEIVERS MODELS 9T105, 9T126, 97128
Chassis Nos. KCS49B, KCS49BF, KCS49C, KCS49CF, KCS49BF-2, or KCS49CF-2
-Mfr. No. 274 Service Data

- 1951 No. T5 -

PREPARED BY RCA SERVICE CO., INC. FOR

RADIO CORPORATION OF AMERICA
 rCA VICTOR DIVISION
 CAMDEN, N. J., U. S. A.

GENERAL DESCRIPTION

The majority of the above receivers were built with conventional 21.00 mc ., sound i-f systems.
Chassis marked KCS49BF-2 or KCS49CF-2 were converted to intercarrier sound by the factory. Additional receivers of all modela may have been converted in the field. The sound portion of the field converted receivers should be the same as that shown in the enclosed intercarrier schematic. However it is possible that other production changes listed on page 35 may not have been made in the field. A separate alignment procedure is given for the intercarrier receivers.

ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE. . 204 square inches on a 19AP4A Kinescope TELEVISION R-F FREOUENCY RANGE
All 12 television channels, 54 mc . to $88 \mathrm{mc} ., 174 \mathrm{mc}$. to 216 mc . Fine Tuning Range. $\pm 250 \mathrm{kc}$. on chan. $2, \pm 650 \mathrm{kc}$. on chan. 13 Picture Carrier Frequency 25.50 mc . Sound Carrier Frequency 21.00 mc.
Intercarrier receivers have 4.5 mc . sound I-F.
VIDEO RESPONSE
SWEEP DEFLECTION
FOCUS
.To 4 mc.
...
POWER SUPPLY RATING. . 115 volts, 60 cycles, 205 watts
AUDIO POWER OUTPUT RATING 3.5 watts max. CHASSIS DESIGNATIONS
KCS49B Series................................... In Model 9T105

LOUDSPEAKERS

KCS49B Series....... (92580-4) $8^{\prime \prime}$ PM Dynamic, 3.2 ohms KCS49C Series (92569-11) 12" PM Dynamic, 3.2 ohms DIMENSIONS (inches) Width Height Depth Cabinet (outside), 9 T105 241/4 231/4 265/8 Cabinet (outside), 9T1 $26 \ldots . .$. 29 401/4 $277 / 8$ Cabinet (outside), 9T1 28.......... 291/4 401/4 263/4

WEIGHT Model	Chassis with Tubes in Cabinet	Shipping Weight
9 Tl 05.	103	122
$9 \mathrm{T126}$	135	159
97128	133	165

RECEIVER ANTENNA INPUT IMPEDANCE
Choice: 300 ohms balanced or 72 ohms unbalanced.

RCA TUBE COMPLEMENT

Tube Used Function
(1) RCA 6CB6
R-F Amplifier
(2) RCA 6 J6
(3) RCA $6 A \cup 6$
(4) RCA $6 A \cup 6$
(5) RCA 6ALS
(6) RCA $6 A V 6$
(7) RCA 6K6GT

Sound Discrimina
R-F Oscillator and Mixer
1st Sound I-F Amplifier 2nd Sound I-F Amplifier
(8) RCA $6 A \cup 6$ lst Audio Amplifier

Picture I-F Amplitier
(9) RCA 6CB6 2nd Picture I-F Amplifier
(10) RCA 6AU6 3rd Picture I-F Amplifier
(11) RCA 6CB6 4th Picture I.F Amplifier
(12) RCA 6AL5 ... Picture 2nd Detector and AGC Detector
(13) RCA 12AU7

1st and 2nd Video Amplifier
(14) RCA 12AUT

DC Restorer and Sync Separator
(15) RCA 6SN7GT

Sync Separator and Vertical Sweep Oscillator
(16) RCA 6K6GT

Vertical Sweep Output
(17) RCA 6SN7GT. Horizontal Sweep Oscillator and Control
(18) RCA 6BG6G Horizontal Sweep Output
(19) RCA 6W4GT Damper

(21) RCA 19AP4A Kinescope
(22) RCA SU4G

Rectifier

PICTURE INTERMEDIRTE FREQUENCIES	
Picture Carrier Frequency	25.50 Mc .
Adjacent Channel Sound Trap	27.00 Mc .
Accompanying Sound Traps	21.00 Mc .
Adjacent Channel Picture Carrier Trap	19.50 Mc .
SOUND INTERMEDIATE FREQUENCIES	
Sound Carrier Frequency	21.00 Mc .
Intercarrier chassis have 4.5 Mc . sound i-f	
VIDEO RESPONSE .. To 4 Mc.	
FOCUS ..	Magnetic
SWEEP DEFLECTION ..	Magnetic
SCANNING ... Interlaced, 525 line	
HORIZONTAL SWEEP FREQUENCY 1	15.750 cps
VERTICAL SWEEP FREQUENCY 60 cp:	
FRAME FREQUENCY (Picture Ropetition Rate) 30 cps

HIGH VOLTAGE WARNING

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

KINESCOPE HANDLING PRECAUTIONS

DO NOT REMOVE THE RECEIVER CHASSIS, INSTALL, REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES, AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

The kinescope bulb encloses a high vacuum and, due to its large surface area, in subjected to considerable ais pressure. For this reason, the kinescope must be handled with more care than ordinary recelving tubes.

The large end of the kinescope bulb-particularly that part at the rim of the viewing surface-muet not be struck, seratehed or subjected to more than moderate pressure at any time. During service if the tube shicke or faile to slip smoothly into its socket, or deflecting yoke, Investigate and remove the cause of the trouble. Do not force the tube. Rofer to the Receiver Installation section for defaled instructions on kinescope installation. All RCA replacement kisescopes are shipped in special carions and should be loft in the carion until ready for installation in the receiver.

The following adjustments are necessary when turning the receiver on for the first time:

1. See that the TV.PH switch on the rear apron is in the "TV" position.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid-position.
3. Set the STATION SELEC. TOR to the desired channel.
4. Adjust the FINE TUNING control for best sound tidelity (or best pix in intercarrier sets) and the SOUND VOLUME control for suitable volume.
5. Turn the BRIGHTNESS control fully counter-clockwise, then clockwise until a light pattern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZONTAL hold control until a picture is obtained and centered.
8. Adjust the PICTURE and BRIGHTNESScontrols for suitable picture contrast and brightness.

9. After the receiver has been on for some time, it may be necessary to readjust the FINE TUNING control slightly for improved sound fidelity.
10. In switching from one channel to another, it may be necessary to repeat steps 4 and 8 .
11. When the set is turned on again after an idle period it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. If any adjustment is necessary, step number 4 is generally sufficient.
12. If the positions of the controls have been changed, it may be necessary to repeat steps 2 through 8.
13. To use a record player, plug the record player output cable into the PHONO jack on the rear apron, and set the TV-PH switch to "PH."
14. On console type receivers, to turn on station escutcheon light, pull out on picture control knob, and push in to turn off.

Figure 1-Receiver Operating Control

INSTALLATION INSTRUCTIONS

These receivers are shipped complete in cardboard cartons. The kinescope is shipped in place in the receiver.

Take the receiver out of the carton and remove all packing material.

Install the control knobs on the proper control shafts.
Make sure that all lubes are in place and are firmly seated in their sockets.
Check to see that the kinescope high voltage lead clip is in place.

Connect the antenna transmission line to the receiver antenna terminals. Plug a power cord into the 115 voll a-c power source and into the receiver interlock receplacle. Turn the receiver power switch to the "on" position, the brightness control fully clockwise, and the picture control counter-clockwise.

ION TRAP MAGNET ADJUSTMENT. Set the ion trap mag. net approximately in the posltion shown in Figure 2. Starting trom this position immediately adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Turn the focus control (shown in Figure 2) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches of this adjustment should be made with the brightness control at the maxi mum clockwise position with which good line focus can be maintained.

Figure 2- Yoke and Focus Magnet Adjustments

DEFLECTION YOKE ADJUSTMENT.-If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtaised. Tighten the yoke adjustment wing screw.

PICTURE ADJUSTMENTS.-Il will now be necessary to obtain a test pattern plcture in order to make further adjustments.
If the Horizontal Oscillator and AGC SYstem are operating properly, it should be possible to sync the picture at this point. However, if the AGC control in misadjusted, and the receiver is overloading, it may be impossible to sync the picture.

If the receiver is overloading, turn $\$ 106$ on the rear cppron (see Figure 3) counter-clockwise until the set operates normally and the picture can be synced.

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT.Turn the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bare will be gradually reduced and when only 2 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull-in should occur when the control is approximately 90 degrees from the extreme counter-clockwise position. The picture should remain in aync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should be out of sync and should show 1 vertical or diagonal black bar in the raster.

Figure 3-Rear Chassis Adjustments

INSTALLATION INSTRUCTIONS

If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Focus Magnet Ådjustment."

ALIGNMENT OF HORIZONTAL OSCILLATOR.-If in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull-in point, it will be necessary to make the following adjustments.

Horizontal Frequency Adjustment.-Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the T108 horizontal frequency adjustment on top of the chassis until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster.

Horizontal Locking Range Àdjustment.-Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. The picture may remain in sync. If so turn the Tl08 top core slightly and momentarily switch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down to the lett. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 2 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer C147A slightly clockwise. It less than 2 bars are present, adjust C147A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 2 bars are present.

Repeat the adjustments under "Horizontal Frequency Ad. justment" and "Horizontal Locking Range Adjustment" until the conditions specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Hori. zontal Oscillator Alignment" the oscillator is properly adjusted.

It it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure. For field purposes paragraph "A" under Horizontal Oscillator Waveform Adjustment may be omitted.

FOCUS MAGNET ADJUSTMENT.-The focus magnet should be adjusted so that there is approximately three-eighths inch of space between the rear cardboard shell of the yoke and the flat of the front face of the focus magnet. This spacing gives best average focus over the face of the tube.

The axis of the hole through the magnet should be parallel with the axis of the kinescope neck with the kinescope neck through the middle.

CENTERING RDJUSTMENT.-No electrical centering controls are provided. Centering is accomplished by means of a separate plate on the focus magnet. Some centering plates include a locking screw which must be loosened before centering, and others are held in adjustment by friction. Up and down adjustment of the plate moves the picture side to side and sidewise adjustment moves the picture up and down.

If a corner of the raster is shadowed, check the position of the ion trap magnet. Reposition the magnet within the range of maximum raster brightness to eliminate the shadow and recenter the picture by adjustment of the focus magnet plate. In no case should the magnet be adjusted to cause any loss of brightness since such operation may cause immediate or eventual damage to the tube. In some cases it may be necessary to shift the position of the focus magnet in order to eliminate a corner shadow.

WIDTH. DRIVE AND HORIZONTAL LINERRITY RDJUST-MENTS.-Adjustment of the horizontal drive control affects the high voltage applied to the kinescope. In order to obtain the highent possible voltage hence the brightest and best focused picture, adjust horizontal drive counter-clockwise as far as possible without stretching the left side of the picture. As a first adjustment, set the horizontal drive trimmer C147B one-half turn out from maximum capacity.

Turn the horizontal linearity coil out until appreciable loss in width occurs, then in until nearly maximum width and the best linearity is obtained.

Adjust the width control R177 to obtain correct picture width.
A slight readjustment of these three controls may be necensary to obtain the best linearity.
hEIGHT AND VERTICAL LINEARITY ADJUSTMENTS.-AAdjust the height control (R151 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical lineanty (R156 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust centering to align the picture with the mask.

FOCUS.-Adjust the focus magnet for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.
On focus magnets using two shunts, the one with the cable is the "fine adjustment" and the other is the "locus range" adjustment. In general, the two shunts should be adjusted to approximately equal positions.
Recheck the position of the ion trap magnet to make sure that maximum brightness is obtained.

Check to see that the yoke thumbscrew and the focus magnet mounting screws are tight.
CHECR OF R-F OSCILLATOR ADJUSTMENTS.-Tune in all available stations to see if the receiver $\mathrm{r}-\mathrm{f}$ oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure on page 10 . The adjustments for channels 2 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 4. Adjustment of channel 13 is on top of the chassis.

Figure 4-R:F Oscillator Adjustments

AGC CONTROL.-The AGC control switch is provided as an installation adjustment. The normal position for strong signal areas is with the switch in the number 1 or counterclockwise position. It impulse type of interference is experienced, turn the switch to the number 2 or center position. In very weak signal areas in which impulse type interference is experienced. turn the switch to position number 3 or fully clockwise. In this position, all AGC is removed and the receiver will overload if the input signal exceeds 200 microvolts. However, for signals under 200 microvolts, this position of the AGC control switch gives best noise immunity of sync.
FM TRAP ADJUSTMENT.-In some instances interference may be encountered from a strong FM station signal. A trap is provided to eliminate this type of interference. To adjust the trap tune in the station on which the interferenci is observed and adjust the $L 203$ core on top of the r-f unit for minimum interierence in the picture.
Caution: In some receivers, the FM trap L203 will tune down into channel 6 or even into channel 5. Needless to say such an adjustment will cause greatly reduced sensitivity on these channels. If channels 5 or 6 are to be received, check L203 to make sure that it does not affect these two channels.

Replace the cabinet back and reconnect the receiver antenna leads to the cabinet back. Tighten the back retaining screws securely otherwise the back may rattle when the receiver is operated at high volume.

CABINET ANTENNR.-A cabinet antenna is provided in these receivers and the leads are brought out near the antenna terminal board. The cabinet antenna may be employed in place of the outdoor antenna in areas where the signals are strong and no reflections are experienced.

GECEIVER LOCATION.-The owner should be advised of the importance of placing the receiver in the proper location in the room.

The location should be chosen-

- Away from bright windows and so that no bright light will fall directly on the screen. (Some illumination in the room is desirable, however.)
-To give easy access for operation and comfortable viewing.
-To permit convenient connection to the antenna.
-Convenient to an electrical outlet.
-To allow adequate ventilation.
VENTILATION CAUTION.-The receiver is provided with adequate ventilation holes in the bottom and back of the cabinet. Care should be taken not to allow these holes to be covered or ventilation to be impeded in any way.

If the receiver is to be operated with the back of the cabinet near a wall, at least a two-inch clearance should be maintained between cabinet and wall.

CHASSIS REMOVAL.-To remove the chassis from the cabinet for repair or installation of a new kinescope, remove the control knobs. the cabinet back, unplug the speaker cable, the kinescope socket, the anterna cable, the pilot light cable on console models, the yoke and high voltage cable. Remove the yoke frame grounding strap on the console models. Take out the six chassis bolts under the cabinet. Withdraw the chassis from the back of the cabinet.

IINESCOPE HANDLING PRECAUTION.-Do not install, remove, or handle the kinescope in any manner, unless shatterprool goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling.
To remove the kinescope from the cabinet, take out the four screws and one wing screw which hold the yoke frame to the cabinet. Remove the kinescope, the yoke frame with yoke and focus magnet as an assembly.

INSTALLATION OF KINESCOPE--Handle this tube by the metal rim at the edge of the screen. Do not cover the glans bell of the tube with fingermarks as it will produce leakage paths which may interfere with reception. If this portion of the tube has inadvertently been handled, wipe it clean with a moft cloth moistened with "dry" carbon tetrachloride.

Wipe the kinescope screen surface and front panel safety glans clean of all dust and fingermarks with a soft cloth molstened with "Windex" or similar cleaning agent.
Turn the tube so that the key on the base of the tube will be down and insert the neck of the kinescope through the deflection coll and focus magnet. If the tube sticks, or fails to slip into place smoothly, investigate and remove the cause of the trouble. Do not force the tube.
Replace the kinescope and yoke frame assembly in the cabinet. Insert the four screws and wing screw and tighten.
Slip the kinescope as far forward as possible. Slide the kinescope cushion firmly up against the flare of the tube and tighten the adjustment wing screwn. Slide the deflection yoke as far forward as possible. If this is not done, difficulty will be encountered in adjusting the ion trap and focus magnets becauee of shadows on the corner of the raster.

Slide the chassis into the cabinet, then insert and tighten the six chassis bolts.

Slip the ion trap magnet over the neck of the kisescope.
Connect the kinescope socket to the tube base and connect the high voltage lead clip from the rim of kinescope into the high vollage bushing on the high voltage compartment.

Reconnect all other cables. Do not forget to replace the yoke frame grounding strap. Perform the entire set-up prosedure beginalag with Ion Trap Magnet Adjustment.

ANTENNAS.-The finest television receiver bull may be said to be only as good an the antenna design and installation. It is therefore important to select the proper antenna to suit the particular local conditions, to install it properly and orient it correctly.

RCA Television Antenna, type No. 225A1 is designed for reception of all twelve television channels. The antenna uses the 300 -ohm RC\& "Bright Picture" televiaion tranamisaion line. The antenna, a dipole with reflector, is unidirectional on channels two through six. When used on these channels, the maximum signal is oblained when the antenna rods are broadside toward the transmitting antenna, with the antenna element between the reflector and the trammitting antenna.

If two or more stations are available between channels two and six and the two stations are in different directions, it may be possible to make a compromise orientation which will provide a satisfactory signal on all such channels.

When operated on channels seven through thirteen (174 to 216 Mc), the antenna has side lobes. On these channels, the maximum signal will be obtained when the antenna is rotated approximately 35 degrees in either direction from its broadside position toward the transmitting antenna. In many Instances this effect may not cause any difficulties and if may be possible to make a compromise orientation which will permit satisfactory reception on all high and low channels. In some instances, however, this will not be the case due to reflections or to insufficient signal strength from one or more stations.

RCA antenna type 204Al is available for use in locations in which it is desirable to eliminate side lobes and to have the antennas 7.13 directivity the same as $2-6$ directivity.

For use in cases where it is desirable to have adjustable $7-13$ directivity different from 2-6, ACA antenna type 206A1 is provided.

If it is impossible to obtain satisfactory results on one or more channels, it may become necessary either to provide means for tuning the antenna when switching channels or to install a separate antenna for one or more channels and to switch antennas when switching channels.

In weak signal areas it is possible to "stack" the type 204A1 antenna to obtain increased signal strength by employing one type 204A1 antenna and one type 208A1 stack. ing kit.

REFLECTIONS.-Multiple images sometimes known as echoes or ghosts, are caused by the signal arriving at the antenna by two or more routes. The second or subsequent image occurs when a eignal arrives at the antenna after being reflected off a building, a hill or other object. In severe cases of reflections, even the sound may be distorted. In less severe casea, reflections may occur that are not noticeable as reflections but that will instead cause a loss of definition in the picture.

Depending upon the circumstances, it may be possible to eliminate the reflections by rotating the antenna or by moving ft to a new location. In extreme cases, it may be imponsible to eliminate the reflection.

INTERFERENCE-Auto ignition, street cars, electrical machinery and diathermy apparatus may cause interference which spoils the picture. Whenever possible. the antenna location should be removed as fas as possible from high. ways, hompitals. doctors offices and similar sources of interference. In mounting the antenna, care must be taken to keep the antenna rods at least $1 / 4$ wave length (at least 6 feet) away from other antennas, metal roofs, gutters or other metal objects.

Short-wave radio transmitting and receiving equipment may ccuse interference in the picture in the form of moving ripples. In some instances it may be possible to eliminate the interference by the use of a trap in the antenna transmis. sion line. However, if the interfering signal is on the same frequency as the lelevision station, a trap will provide no improvement.

WEAI PICTURE-When the installation is near the limit of the area served by the tramsmitting station, the picture may be speckled, having a "nnow" effect, and may not hold steady on the screen. This condition is due to lack of signal etrength from the transmitter.

Figure s-Chassis Top View

Figure 6-Chassis Bottom View

The following measurements represent two sets of conditions. In the first condition, a 2500 microvolt test pattern signal was fed into the receiver, the picture synced and the AGC control properly adjusted. The second condition was obtained by removing the antenna leads and short circuiting the receiver antenna terminals. Voltages shown are read with a type WV79A senior "VoltOhmyst" between the indicaled terminal and chassis ground and with the receiver operating on 117 volts, 60 cycles, $a-c$. The symbol $<$ means less than.

Tube No.	Tube Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		Notes on Measurements
				$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	
V1	6 J 6	Mixer	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	2	155	-	-	7	0	5	-2.3	
			No Signal	2	150	-	-	7	0	5	-2.1	
V1	6 J 6	R-F Oscillator	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	1	95	-	-	7	0	6	*-3.0	*Depending upon channel
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	1	85	-	-	7	0	6	*-2.7	
V2	6AGS	R-F Amplifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	5	230	6	155	2	<0.1	1	-3.4	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	150	6	90	2	0.4	1	-0.2	
V101	6AU6	lst Pix. I-F Amplifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	195	6	222	7	0.3	1	-5.0	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	95	6	105	7	0.6	1	-0.2	
V102	6CB6	2nd Pix. I-F Amplifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	222	6	203	2	0.3	1	-5.0	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	105	6	85	2	0.7	1	-0.2	
V103	6AU6	3d Pix. I-F Amplitier	$\underset{\text { Signal }}{2500 \mathrm{Mu.} \mathrm{V.}}$	5	185	6	225	7	0.2	1	-5.0	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	95	6	105	7	0.6	1	-0.2	
V104	6CB6	4th Pix. I.F Amplifier	$\begin{gathered} 2500 \mathrm{Mu} . \\ \text { Signal } \\ \hline \end{gathered}$	5	165	6	142	2	2.25	1	0	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	135	6	115	2	1.7	1	0	
V105	6ALS	Picture 2d Det.	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	7	-2.0	-	-	1	0	-	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	7	-0.6	-	-	1	0	-	-	
V105	6ALS	AGC Rectifier	$\underset{\text { Signal }}{2500 \mathrm{Mu.} .}$	2	-9.5	-	_	5	6.5	-	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	2	-0.2	-	-	5	5.8	-	-	
V106	12AU7	$18 t$ Video Amplifier	$\underset{\text { Signal }}{2500 \mathrm{Mu} .}$	1	165	-	-	3	0.6	2	7.7	At maximum contrast
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	1	45	-	-	3	0.5	2	-0.7	
			$\underset{\text { Signal }}{2500 \mathrm{Mu} .}$	1	215	-	-	3	6.5	2	-7.8	At minimum contrast
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	1	90	-	-	3	5.2	2	-0.7	
V106	12AU7	2d Video Amplifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	6	330	-	-	8	135	7	130	At maximum contrast
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	6	275	-	-	8	125	7	110	
			$\underset{\text { Signal }}{2500 \mathrm{Mu} .} .$	6	300	-	-	8	150	7	130	At minimum contrast
			No Signal	6	275	-	-	8	126	7	110	
V107	12AU7	DC Rest Sync Sep.	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	1	8	-	-	3	45	2	-5.0	At maximum contrast
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	1	4.2	-	-	3	7.5	2	-0.4	
			$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	6	6.6	-	-	8	35	7	0	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	6	4.2	-	-	8	7.5	7	0	contrast

CRITICAL LEAD DRESS:

21. Diene R R133 towurde chacaiis roar apron.

20. Dreas the yollow wire tram pin 3 al vilo moched ored

32. Prand boit wibes on S106 away tom bluo/youlow damp

away trom all wiriee and oltar componenth.

\%			
			-
	$\underline{\square}$		\%
	.		
	$\underline{5}$ 上 $=$		
	5		
	2ma		
	5		
	$\pm=$		
	5-		$\underline{5}$
	=		\pm
	$=5$		
	20		=
	$2 \pm \leq$		
	\pm		\%iza
	*		
			me

GENERAL DESCRIPTION

Model 9T147 Is a doluxe televinion-AM.FM radio phonograph combination. The receiver employ 27 tubes plus 3 rectiflers and a 19 inch kinescope.

Two record changere are provided to play 45 and 78/33\% RPM records.
The receiver in provided with cabinet antennas for AM, FM and TV where local conditions permit their une.

ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE 8IZE.......... 204 squase inches on a 19AP4 k kinescope

TELEVISION R-F FREQUENCY RANGE

All 12 telovision channele, 54 mc . to $88 \mathrm{mc} ., 174 \mathrm{mc}$. 10216 mc . Fine Tuning Range.... ± 250 kc. on chan. $2, \pm 650 \mathrm{kc}$. on chan. 13
Picture Carrier Frequency
.25 .50 mc .
Sound Carrier Frequency
.21 .00 mc .

RADIO TUNLNG RANGE

Broadcast \qquad .540-1,600 ke. Frequency Modulation ..-108 me. Intermediate Frequency-AM ... 455 kc. Intermediate Frequency-FM .. 10.7 me.

POWER SUPPLY RATING 115 volte, 60 cycles, 315 watts
AUDIO POWER OUTPUT RETING \qquad .11 watts mas.

CHASSIS DESIGNATIONS

Television Chassis ..
Radio Chassia .. 0 .
78/331/8 RPM Record Changer ... 960284
45 RPM Record Changer ...RP190
Hefer to Service Data 960284 or RP190 for information on the record changers.

DIMENSIONS (Inches)	Width	Holght	Dopth
Cabinet (outaide)	43\%	41 1/2	28\%
TV Chasais (Overall)	191/4	12	21

RECEIVER RNTENNR INPUT MMPEDANCE
Cholce: 300 ohm balanced os 72 ohme unbalanced.
RCA TUBE COMPLEMENT

PICTURE INTERMEDIATE FREQUENCIES	OPERATING CONTROLS (front Panel)
Plcture Carrier Frequency .. 25.50 Mc.	Channel Selector \}................................... Dual Control Knabe
Adjacent Channel Sound Trap 27.00 Mc.	Fine Tuning ${ }^{\text {a }}$
Accompanying Sound Trapa 21.00 Mc.	Picture \qquad Dual Control Knabe
Adjacent Channel Pleture Carrier Traps 19.50 Mc.	
Sound Carrier Frequency ... 21.00 Mc.	Chan. Selector Emcutcheon Light Switch Single Control Knob
Sound Discriminator Band Width between peaks 400 kc.	NON-OPERATING CONTROLS (not lacluding res and lif adustments)
VIDEO RESPONSE ... T0 4 Mc.	Picture Contering \qquad top chaseis adjustment Width \qquad rear chamals adjustment
FOCUS .. Magnetic	Height \qquad rear chassls adjustmont Horizontal Linearity \qquad rear chasels screwdriver adjustmont
SWEEP DEFLECTION ... Magnetic	Vertical Linearity \qquad rear chaseis adjustment Horizontal Drive \qquad rear chassis screwdriver adjustment
SCANNING ... Interlaced, 525 line	Horizontal Osc. Freq. \qquad top chassin adjustment Horizontal Osc. Waveform \qquad bottom chassis adjustment
HORIZONTAL SWEEP FREQUENCY 15,750 cps	Horizonial Locking Range \qquad rear chassis adjustment Focus \qquad .s. top chastis adjustment
VERTICAL SWEEP FREQUENCY 60 cps	Ion Trap Magnet \qquad top chastir adjustment Deflection Coil \qquad top chassis wing nut adjustment
FRAME FREQUENCY (Picture Repetition Rate) 30 cps	AGC Control Switch rear chasals adjustment

high Voltage warning

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCR HAZARD FROM THE RECEIVER POWER SUPPLIES. WORR ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

KINESCOPE HANDLING PRECAUTIONS

DO NOT REMOVE THE RECEIVER CHASSIS, INSTALL, REMOVE OR HANDLE THE RINESCOPE IN any manner unless shatterproof goggles, and heavy gloves are worn. people NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

The kinescope bulb encloses a high vacuum and, due to lts large surface area, is aubjected to conslderable air presture. For this reason, the kinescope must be handled with more care than ordinary recelving tubes.

The large end of the kinescope bulb-particularly that part at the rim of the viewing surface-must not be atruck, scratched or subjected to more than moderate pressure at any the. During nervice if the tube sticke or faile to slip smoothly into its socket or deflecting yoke. investigate and remove the cause of the trouble. Do not force the tube. Rofor to the Recelver Installation section for detalled instructions on kinescope inntallation. All RCA replacement kinescopes are shipped in epectal cartone and should be lett in the cartons until ready for installation in the recelver.

The following adjustmente are necessary when turning the receiver on for the first time:

1. Turn the radio FUNCTION switch to TV.
2. Turn the recelver "ON" and advance the SOUND VOLUME control to approximately mid-position.
3. Set the STATION SELECTOR to the denired channel.
4. Adjunt the FINE TUN. ING control for best sound fidelity and the SOUND VOLUME control for suitable volume.
5. Tum the BRIGHTNESS control tully counter-clockwien, then clockwise until a light pattern appears on the screen.
6. Adjuat the VERTICAL hold control until the pattorn stops vertical movement.
7. Adjuat the HORIZONTAL hold control until a picture is obtained and centered.
8. Adjuat the PICTURE and BRIGHTNESS controls for suitable pleture contrast and brightness.
9. Atter the receiver has been on for some thme, it may be neceneary to read.

just the FINE TUNING control slightly for improved sound fidelity.
10. In switching from one channel to another, It may be necessary to repeat steps 4 and 8.
11. When the set is turned on again after an idle period it should not be necensary to repeat the adjustments if the ponitions of the controle have not been changed. If any adjuntment is necessary. step No. 4 is generally sufficient.
12. If the positions of the controls have been changed, it may be necessary to repeat steps 1 through 8.

RRDIO OPERATION

1. Turn the radio FUNCTION ewitch to AM.
2. Tune in the denired station with the TUNING control.
PHONOGRAPH OPERATION
3. Turn the radio FUNC TION awitch to $78-33$ for operation of the 78/331/3 RPM changer or to 45 for operation of the 45 RPM changer.
4. Place a record on the appropriate changer and slip the changer power witch to "ON."

REFER TO PAGES 151 TO 155 FOR RADIO SERVICE INFORMATION

REFER TO PAGES 106 TO 112 FOR TELEVISION ALIGNMENT PROCEDURE AND 120 TO 123 FOR WAVEFORM PHOTOGRAPHS.

INSTALLATION INSTRUCTIONS

Install the control knobs on the proper control shafte.
Make sure that all tubesiare in place and are firmly seated In thefr mockets.

Check to see that the kinescope high voltage lead clip is in place.

Connect the antenna tranamisation line to the receiver antenna terminale. Plug a power cord into the 115 -volt a-c power source and into the receiver interlock receptacle. Turn the receiver power switch to the "on" position, the brightness control fully clockwise, and the picture control counter-clociswies.

ION TRAP MAGNEI ADJUSTMENT. Sot the jon trap magnet approximately in the position shown in Figure 2. Starting from thil position immediately adjust the magnot by moving it forward or backward at the ame time rotating it slightly around the neck of the kinescope for the brightert rater on the screen. Reduce the brightneas control metting until the raster in slightly above average brilliance. Turn the focus control (shown in Figure 2) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches of this adjustment should be made with the brightneme control at the maximum clockewie poaition with which good line focus can be maintained.

[^5]

Figure 2-Yoke and Focus Magnet Adjustments
PICTURE ADJUSTMENTS.-It will now be neceneary to obtain a teat pattern pleture in order to make further adjustments.

If the Horizontal Oscillator and AGC System are operating properly, it should be possible to sync the picture at this point. However, if the AGC control is misadjusted, and the receiver is overloading, it may be impoesible to sync the picture.

If the receiver is overloading, turn Sl 06 on the rear apron (see Figure 3) counter-clockwise untll the set operates normally and the picture con be syaced.

CRECE OF HORIZONTAL OSCLLATOR RLGNMENT.Turn the horizonial hold control to the extreme counter-clockwise position. The picture should remain in horisontal sync. Momentarily remove the signal by awitching off channel thon back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be gradually reduced and when only 2 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull-in should occur when the control is approximately 90 degreas from the extreme counter-clockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should be out of sync and should show 1 vertical or diagesal black bar in the raster.

Figure 3-Rear Chassis Adjustmerns
If the receiver passes the above checks and the picture is nomal and stable, the horizontal oselliator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Focus Magnet Adjustment."

ALIGNMENT OF HORIZONTAL OSCILLATOR.-If in the above check the recelver failed to hold aync with the hold control at the extrome counter-clockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull-in point, it will be necessary to make the follow. ing adjusiments.

Horisontal Frequezcy Adjustment.-Turn the horizontal hold control to the extreme clockwise poaition. Tune in a television slation and adjust the Tl08 horizontal frequency adjustmont on top of the chassis until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster.
Horisontal Locking Range Adjumtment.-Set the horisontal hold control to the full counter-clockwise position. Momentarly romove the signal by switching off chanael then back. The plclure may remain in eync. If so turn the T108 top core slightly and momentanly switch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bare obtained just before the pleture pulle into sync.

If more than 2 bars are present just belore the picture pulls Into syac, adjust the horizontal locking range trimmer Ci47A slightly clockwise. Li lose than 2 bars are present, adjust C147A elightly counter-clockwise. Turn the horisontal hold control counter-clockwise, momentarily remove the eignal and recheck the number of bars present at the pulli-in point. Repeat this procedure until 2 bars are present.
Repeat the adjustments under "Horimontal Frequency Adjustment" and "Horizontal Locking Range Adjustment" until the conditions specified under each are fulsilled. When the horisontal hold operates as outlined under "Check of Horizontal Oselliator Alignment" the oscillator is properly adjuted.

If it is imposaible to sync the picture at this point and the AGC systom is in proper adjustment it will be necessary to adjust the Horisontal Oscillator by the method outlined in the allgnment procedure

For field purposes paragraph "A" under Horisontal Oecillator Waveform Adjustmont may be omitted.

FOCUS MAGNET ADJUSTMENT.-The focus coil should be adjusted so that there is approximately three-elghthe inch of space between the rear cardboard shell of the yoke and the flat of the front tace of the focue magnet. This spacing gives best average focul over the face of the tube.

The axis of the hole through the magnet should be parallel with the axis of the kinescope neck with the kinescope neck through the middle.

CENTERING ADJUSTMENT.-No electrical centering controls are provided. Centering is accomplished by means of a separate plate on the focus magnet. Some centering plates include a locking screw which must be loosened before centering, and others are held in adjustment by friction. Up and down adjustment of the plate moves the picture side to side and sidewise adjustment moves the picture up and down.

If a comer of the raster is shadowed, check the position of the ion trap magnet. Reposition the magnet within the range of maximum raster brightness to eliminate the shadow and recenter the picture by adjustment of the focus magnet plate. In no case should the magnet be adjusted to cause any loes of brightness since such operation may cause immediate or eventual damage to the tube. In some cases it may be necessary to shift the position of the focus magnet in order to eliminate a comer shadow.

WIDTH. DRIVE AND HORZONTAL LINEARITY ADJUST. MENTS.-Adjustment of the horisontal drive control affecte the high voltage applied to the kinescope. In order to obtain the highest possible voltage hence the brightest and bert focused picture, adjust horizonlal drive counter-clockwise as far as possible without stretching the left side of the picture As a lirit adjustment, set the horizontal drive trimmer Cl47B one-halt tum out from maximum capacity.

Turn the horizontal linearity coll out until appreciable loss in width occurs, then in until nearly maximum width and the best linearity is obtained.

Adjust the width control R177 to obtain correct picture width.
A slight readjustment of these three controls may be necessary to obtain the bent linearity.

HEIGET AND VERTICAL LINEARITY ADJUSTMENTS.-Adjust the height control (R151 on chascis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R156 on rear apron), until the test pattem is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust centering to align the picture with the makk.

FOCU8.-Adjust the focus magnet for marimum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

On focus magnets using two shuntm, the one with the cable is the "fine adjustment" and the other is the "focus range" adjustment. In general, the two shunts should be adjusted to approximatoly equal positions.

Recheck the position of the ion trap magnet 10 make sure that maximum brightness is obtained.

Check to see that the yoke thumbscrew and the focu magnet mounting screws are tight.

Figure 4—RF Oscillator Adjustments

CHECX OF R-F OSCILLATOR RDJUSTMENTS.-Tune in all available stations to see if the receiver r-l oscillator is adjuated to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure on page 10. The adjutments for channels 2 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Fig. ure 4. Adjustment of channel 13 is on top of the chassis.

AGC CONTROL.-The AGC control switch is provided as an installation adjustment. The normal position for strong signal areas is with the switch in the number 1 or counterclockwise position. If impulse type of interference is experienced, turn the switch to the number 2 or center position. In very weak signal areas in which impulse type interference is experienced, turn the switch to position number 3 or fully clockwise. In this position, all AGC is removed and the receiver will overload if the input signal exceeds 200 microvolts. However, for signals under 200 microvolts, this position of the AGC control switch gives best noise immunity of sync.

FM TRAP ADJUSTMENT.-In some instances interference may be encountered from a strong $F \mathbf{M}$ station signal. A trap is provided to oliminate this type of interforence. To adjust the trap tune in the station on which the interierence is observed and adjust the L203 core on top of the r-f unit for minimum interference in the picture.

CAUTION.-In some receivers, the FM trap L203 will tune down into channel 6 or even into channel 5. Needless to say, such an adjustment will cause greatly reduced sensitivity on these channels. If channels 5 or 6 are to be received, check L203 to make sure that it does not affect sensitivity on these two channels.

Replace the cabinet back and reconnect the receiver antenna leads to the cabinet back. Tighten the back retaining screws securely otherwise the back may rattle or buzz when the receiver is operated at high volume.

RADIO OPERATION.-Turn the receiver function swith to the AM and FM positions and check the radio for proper operation. In switching from radio to television or from television to radio, approximately 30 seconds warm-up time is required.

RECORD CHANGER OPERATION.-Turn the receiver function switch to each phono position and check each record player for proper operation.

CABINET ANTENNA.-A cabinet antenna is provided for use in strong signal areas in which no reflections are experienced. The leads from the antenna are brought out near the receiver antenna terminal board. To connect the cabinet antenna, attach the leads to the terminal board. If reception is satisfactory, no other antenna is necessary. However, if reception is unsatisfactory, it will be necessary to employ an ouldoor antenna or an indoor antenna which can be oriented

RECEIVER LOCATION.-The owner should be advised of the importance of placing the receiver in the proper location in the room.
The location should be chosen--
-Away from bright windows and so that no bright light will fall directly on the screen. (Some illumination in the room is desirable, however.)
-To give easy access for operation and comfortable viewing.
-To permit convenient connection to the antenna.
-Convenient to an electrical outlet.
-To allow adequate ventilation.
VENTILATION CAUTION.-The receiver is provided with adequate ventilation holes in the bottom and back of the cabinet. Care should be taken not to allow these holes to be covered or ventilation to be impeded in any way.

If the receiver is to be operated with the back of the cabinet near a wall, at least a two-inch clearance should be maintained between cabinet and wall.

CHASSIS REMOVAL.-To remove the chassis from the cabinet for repair or installation of a new kinescope, remove the control knobs, the cabinet back, unplug the speaker cable. the kinescope socket, the antenna cable, the yoke and high voltage cable. Remove the yoke trame grounding strap. Take out the six chassis bolts under the cabinet. Withdraw the chatsis from the back of the cabinet.

EINESCOPE HANDLING PRECAUTION.-Do not install, remove, or handle the kinescope in any manner, unless shatterproof goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling.

To remove the kinescope from the cabinet, take out the four screws and one wing screw which hold the yoke frame to the cabinet. Remove the kinescope, the yoke frame with yoke and tocus magnet as an assembly.

INSTALIATION OF KINESCOPE.-Handle this tube by the metal rim at the edge of the screen. Do not cover the glass bell of the tube with fingermarks as it will produce leakage paths which may interfere with reception. It this portion of the tube has inadvertently been handled, wipe it clean with a soft cloth moistened with "dry" carbon tetrachloride.

Wipe the kinescope screen surface and tront panel safety glass clean of all dust and fingermarks with a soft cloth moistened with "Windex" or similar cleaning agent.

Turn the tube so that the key on the base of the tube will be down and insert the neck of the kinescope through the deflection coil and focus magnet. If the tube sticks, or fails to slip into place smoothly, investigate and remove the cause of the trouble. Do not force the tube.

Replace the kinescope and yoke frame assembly in the cabinet. Insert the four screws and wing screw and tighten.

Slip the kinescope as far forward as possible. Slide the kinescope cushion firmly up against the flare of the tube and tighten the adjustment wing screws. Slide the deflection yoke as far forward as possible. If this is not done, difficulty will be encountered in adjusting the ion trap and tocus magnets because of shadows on the corner of the raster.

Slide the chassis into the cabinet, then insert and tighten the six chassis bolts.

Slip the ion trap magnet over the neck of the kinescope.
Connect the kinescope socket to the tube base and connect the high voltage lead clip from the rim of the kinescope into the high voltage bushing on the high voltage compartment.
Reconnect all other cables. Perform the entire sel-up procedure beginning with Ion Trap Magnet Adjustment.

REFLECTIONS.-Multiple images sometimes known as echoes or ghosts, are caused by the signal arriving at the antenna by two or more routes. The second or subsequent image occurs when a signal arrives at the antenna after being reflected off a building, a hill or other object. In severe cases of reflections. even the sound may be distorted. In less severe cases, reflections may occur that are not noticeable as reflections but that will instead cause a loss of definition in the picture. Depending upon the circumstances, it may be possible to eliminate the reflections by rotating the antenna or by moving it to a new location. In extreme cases, it may be impossible to eliminate the reflection.

INTERFERENCE-Auto ignition, street cars, electrical machinery and diathermy apparatus may cause interference which spoils the picture. Whenever possible, the antenna location should be removed as far as possible from highways, hospitals, doctors' offices and similar sources of interference.

Short-wave radio transmitting equipment may cause interference in the picture in the form of moving ripples. In some instances it may be possible to eliminate the interference by the use of a trap in the antenna transmission line. However, if the interfering signal is on the same frequency as the television station, a trap will provide no improvement.

WEAE PICTURE.-When the installation is near the limit of the area served by the transmitting station, the picture may be speckled, having a "snow" effect, and may not hold steady on the screen. This condition is due to lack of signal strength from the transmitter.

Figure 5-Chassis Top View

Figure 6-Chussis Bottom View

The following measurements represent two sets of conditions. In the first condition, a 2500 microvolt test pattern signal was fed into the recelver, the picture synced and the AGC control properly adjusted. The second condition was obtained by removing the antenna leads and short circuiting the receiver antenna terminals. Voltagen shown are read with a WV97A Senior "VoltOhmyst" between the indicated terminal and choresis ground and with the receiver operating on 117 volts, 60 cycles, $a-c$. The symbol $<$ means less than.

Tube No.	Tube Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid				Notes on Measuremonts
				Pin No.	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	Pin No.	Volts			
V1	$6] 6$	Mirer	$\begin{aligned} & 2500 \mathrm{Mu} . \mathrm{V} . \\ & \text { Signal } \end{aligned}$	2	144	-	-	7	0	5	-2.3	6.8	-	
			No Signal	2	135	-	-	7	0	5	-2.1	5.6	-	
V1	616	R.F Oscillator	2500 Mu . V. Signal	1	100	-	-	7	0	6	-3.0	4.0	-	- Depending upon chamnel
			No Signal	1	95	-	-	7	0	6	-2.7	3.9	-	
V2	6AG5	$\begin{aligned} & \text { R-F } \\ & \text { Amplifier } \end{aligned}$	$2500 \mathrm{Mu} . \mathrm{V} .$ Signal	5	250	6	130	2	0.1	1	-3.4	3.0	0.6	
			No Signal	5	166	6	84	2	0.4	1	-0.2	10.3	2.3	
V101	6AU6	1st Pix. I-F Amplifier	$2500 \mathrm{Mu} . \mathrm{V} .$ Signal	5	195	6	222	7	0.3	1	-5.0	1.7	0.8	
			No Signal	5	121	6	135	7	0.8	1	-0.8	5.2	2.2	
V102	6CB6	2nd Pix, I.F Amplitier	2500 Mu . V. Signal	5	222	6	203	2	0.3	1	-5.0	2.0	0.7	
			No Signal	5	124	6	112	2	0.8	1	-0.8	5.5	1.6	
V103	6AU6	3d Pix. I.E Amplifier	2500 Mu . V. Signal	5	185	6	225	7	0.2	1	-5.0	1.7	0.7	
			No Signal	5	94	6	132	7	0.5	1	-0.75	4.9	2.0	
V104	6CB6	4th Pix. I.F Amplifier	2500 Mu . V. Signal	5	165	6	142	2	2.25	1	0	9.6	3.1	
			No Signal	5	118	6	132	2	2.1	1	0	9.0	3.1	
V105	6AL5	Picture 2d Det.	2500 Mu . V. Signal	7	-2.0	-	-	1	0	-	-	0.3	-	
			No Signal	7	-0.5	-	-	1	0	-	-	<0.1	-	
V105	6A15	AGC Rectifier	2500 Mu . V. Signal	2	-9.5	-	-	5	5.5	-	-	<0.1	-	
			No Signal	2	-2.0	-	-	5	5.5	-	-	<0.1	-	
V106	12AU7	1st Video Amplifier	$2500 \mathrm{Mu} . \mathrm{V}$. Signal	1	100	-	-	3	1.2	2	-2.3	3.6	-	At maximum contrast
			No Signal	1	54	-	-	3	0.9	2	-0.5	2.6	-	
			2500 Mu . V. Signal	1	190	-	-	3	9.0	2	-2.6	0.9	-	At minimum contrast
			No Signal	1	122	-	-	3	6.9	2	-0.5	0.6	-	
V106	12 AU7	2d Video Amplifier	2500 Mu. V. Signal	6	330	-	-	8	125	7	118	9.3	-	At maximum contrast
			No Signal	6	295	-	-	8	121	7	110	13.6	-	
			$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$	6	300	-	-	8	131	7	120	12.9	-	At minimum contrant
			No Signal	6	295	-	-	8	121	7	110	13.6	-	
V107	12AU7	DC Rest \& Sync Sep.	2500 Mu . V. Signal	1	10	-	-	3	45	2	-4.5	-	-	At maximum contrast
			No Signal	1	8	-	-	3	1.7	2	-0.4	-	-	

Tube No.	Tube Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		1 Plate (ma.)		Notes on Measurements
				Pin No.	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	Pin No.	Volts			
V107	12AU7	DC Rest $\&$ Sync Sep.	$2500 \mathrm{Mu} . \mathrm{V}$. Signal	6	7.2	-	-	8	54	7	0	-	-	
			No Signal	6	7.0	-	-	8		7	0	-	-	
$\begin{gathered} \text { V108 } \\ \AA \end{gathered}$	6SN7	Sync Amplifier	$2500 \mathrm{Mu} . \mathrm{V} .$ Signal	5	50	-	-	6	7.8	4	7.4	-	-	
			No Signal	5	46	-	-	6	7.0	4	7.0	-	-	
V108	6SN7GT	Vertical Oscillator	$2500 \mathrm{Mu} . \mathrm{V} .$ Signal	2	*395	-	-	3	0	1	--58	0.4	-	-Depends on setting of
			No Signal	2	*395	-	-	3	0	1	- -58	0.4	-	ight control
V109	6SN7GT	Vertical Output	$2500 \mathrm{Mu} . \mathrm{V} .$ Signal	3	370	4	370	8	51	5	0	11.5	1.9	
			No Signal	3	365	4	365	8	51	5	0	11.4	1.9	
V110	6K6GT	Horizontal Osc. Signal	$\begin{aligned} & 2500 \mathrm{Mu} . \mathrm{V} \text {. } \\ & \text { Osc. Contro. } \end{aligned}$	2	-160	-	-	3	$\begin{array}{r} -4.6 \\ 25.0 \end{array}$	1	$\begin{array}{r} -14.6 \\ -2.0 \end{array}$	0.32	-	- Depends on setting of
			No Signal	2	$\begin{array}{r} \text { •152 } \\ 181 \end{array}$	-	-	3	$\cdot-4.4$	1	$\begin{array}{r} \bullet-3.5 \\ -2.9 \end{array}$	0.28	-	hold control
V110	6SN7GT	Horizontal Oscillator	2500 Mu . V. Signal	5	230	-	-	6	0	4	-82	1.8	-	
			No Signal	5	225	-	-	6	0	4	-85	1.8	-	
V111	6BG6G	Horizontal Output	2500 Mu . V. Signal	5	-630	8	325	3	7.2	5	-33	67	5.0	-6000 volt
			No Signal	5	-630	8	329	3	7.2	5	-33	67.1	4.9	present
V112	$\begin{aligned} & \text { 1B3GT } \\ & / 8016 \end{aligned}$	H. V. Rectifier	Brightness Min.	Cap	-	-	-	287	-14,500	-	-	. 0	-	14,500 volt
			Brightnest Maximum	Cap	-	-	-	287	$\cdot 12.700$	-	-	0.1	-	prosen
V113	$\begin{aligned} & \text { 6W4 } \\ & \text { GT } \end{aligned}$	Damper	$\begin{aligned} & 2500 \mathrm{Mu} . \mathrm{V} . \\ & \text { Signal } \end{aligned}$	5	387	-	-	3	-	-	-	69	-	3000 volt
			No Signal	5	380	-	-	3	-	-	-	70	-	prost
V114	5U4G	Rectilier	2500 Mu . V. Signal	460	-368	-	-	2825	391	-	-	185	-	* AC measured with AC
			No Signal	486	-367	-	-	288	387	-	-	199	-	voltmeter
V115	6AU6	Ist Sound I-F. Amp.	$2500 \mathrm{Mu} . \mathrm{V} .$ Signal	5	120	6	120	7	0.8	1	-0.2	6.8	2.9	
			No Signal	5	108	6	108	7	0.8	1	-0.1	6.2	2.8	
V116	6AU6	2d Sound I-F Amp.	$2500 \mathrm{Mu} . \mathrm{V} .$ Signal	5	118	6	87	7	0	1	-1.3	4.9	2.8	
			No Signal	5	110	6	76	5	0	1	-0.5	6.9	3.1	
V117	6AL5	Sound Discrim.	$2500 \mathrm{Mu} . \mathrm{V} .$ Slgnal	2	-7.2	-	-	5	0	-	-	<0.1	-	
			No Signal	2	-10.0	-	-	5	0	-	-	<0.1	-	
V118	6AV6	Bias Clamp	$2500 \mathrm{Mu} . \mathrm{V} .$ Signal	7	0	-	-	2	0	1	-3.4	-	-	
			No Signal	7	0	-	-	2	0	1	-0.2	-	-	
V120	19月P4	Kinescope	$2500 \mathrm{Mu} . \mathrm{V} .$ Signal	Cone	14,000	10	384	11	100	2	46	<0.1	<0.1	
			No Signal	Cone	13,500	10	375	11	74	2	8.3	<0.1	<0.1	

Figure 7-Television R.F Unit Wiring Diagram

TELEVISION CRITICAL LEAD DRESS

1. All leads in the picture and sound IH circuite must be dressed as short and direct as ponsible with the enception of C106, C107, C110 and C117 which are to be dressed with enough slack so an not to have to move the body of the capacitor to allgn that particular atage.
2. Dreat all 1500 mmf .005 mfd and .01 mid capaction in "the i-f section with leads as short as pasible.
3. Drete all wiren between T101 and the rff unit in clamp.
4. Drest C185 to act as shield for lead betweon pin 5 of V115 socket to T111D and pleture iff ctrcuitis.
5. Dreas the bodies of resiator R106, R108, R113, R119, R191, R192 and capacitor C176 as close to tube pin ar ponelble.
6. Dress L114 with coded end at close to pin 2 of U105 socket as ponslble.
7. The length of the bus wise from pin 2 of V118 to ground should not be shortened or rerouted.
8. Dress Cl99 with leads as short as posible and away from S106.
9. Keep the leads on C126 as short and direct as posible.
10. Dress all components connected to V108 socket up and away from the chanals except L104.
11. Keop the body and coded end of L104 as close to pin 2 of V105 socket as ponsible. .
12. Drest the 4.5 me trap L 107 up and away from the chasis base.
13. Dress C132 up in the alr and towards V105 socket.
14. Drese R125 with body as close as posable to pin 2 of U106 socket.
15. Keep body of R123 as clom as posible to pla 2 of V105 socket.
16. Drese C133 and C190 away from C132, C151 and C153.
17. Drest the white wire from plcture control R128-3 away from the chassif.
18. Dreas all slack on kine socket leads under chasain. Drens brown wire away from any components assoclated with V105 or V106.
19. The green lead from the kinescope socket should be dressed away from all other leads and componontis and away from V106.
20. Drese Rl33 towards chasain rear apron.
21. Dreas all leads in clamps on zear apron away from V117. V104, V105, V106 sockets and s103.
22. Drese green wire from Cl47A up and away from chasiln.
23. Dreat blue wire of T107 toward front apron of chasels.
24. Dress Cl53 down next to the chasin base.
25. Dress blue/white wire from helght control R151-3 under R180.
26. Dress R161, R162, R163, R164 and R170 up and away from the chansis and with a half inch clearance from the soldering point.
27. Dress the yellow wire from pin 3 of V110 socket over C153.
28. Dress both leads of C198 away from the body of the capacitor.
29. Drens fuee in high voltage compartment so as not to short clrcult to ground.
30. Dreme blue and blue/yollow wire from power transformer in 3 clamps on chasis base and away from S103 and video section.
31. Dreas both wires on S106 away from blue/yollow dermper leads of T110.
32. Dreas all 2 watt resinton away from each other and away from all wires and other componentis.

Model 16T152
"Talbot".
Mabogany Finish
Metal Cabinet

Rca Victor television recelver MODEL 16 TI52

Chassis No. KCS47E

- Mfr. No. 274 -

Service Data

- 1951 No. T9 -

PREPARED BY RCA SERVICE CO., INC. FOR
RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

GENERAL DESCRIPTION

Model 16T152 is a " 16 inch" selevision receiver.
Feature of the television unit are: full twelve channel coverage; Intercarrier FM sound system: improved picture brilliance: picture A.G.C: A.F.C horizontal hold: stabilized vertical hold; two stages of video amplification; noise satura-
tion circuits: improved sync separator and clipper: four mc. band width for picture channel and reduced hazard high voltage supply.

An auxiliary audio input jack is provided to permit the use of an external record playing attachment.

ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTYRE SIZE............ 146 square inches on a 16GP4 Kinescope
TELEVISION R-F FREQUENCY RANGE
All 12 television channels, 54 mc . to $88 \mathrm{mc} ., 174 \mathrm{mc}$. to 216 mc . Fine Tuning Range. $\pm 250 \mathrm{kc}$. on chan. $2 . \pm 650 \mathrm{kc}$. on chan. 13 Picture Carrier Frequency ... 25.50 mc . Sound Carrier Frequency 21.00 mc . and 4.5 mc . VIDEO RESPONSE ...To 4 mc . SWEEP DEFLECTION .. FOCUS ... POWER SUPPLY RATING 115 volte, 60 cycles, 205 watts AUDIO POWER OUTPUT RATING 3.5 watts max. CHASSIS DESIGNATION ..

LOUDSPEAKER(92580-4) 8" PM Dynamic, 3.2 ohms

DIMENSIONS (inch	es) Width	Hoight	Depth
Cabinet (outside)	$211 / 2$	21	20
WEIGHT Model	Chassis with Tubes in Cabinot		Shipping Weight
167152	92 lbs		117 lbs

RECEIVER ANTENNA INPUT IMPEDANCE

Choice: 300 ohm balanced or 72 ohms unbalanced.

RCA TUBE COMPLEMENT
Tube Used Function
(1) RCA 6CB6 .. Amplifier
(2) RCA 6J6 R•F Oscillator and Mixer
(3) RCA 6AU6 lst Sound I-F Amplifier
(4) RCA 6AU6 2nd Sound I.F Amplifier
(5) RCA 6AL5 .. Ratio Detector
(6) RCA 6AV6 ... lst Audio Amplifier
(7) RCA 6K6GT .. Audio Output
(8) RCA 6AU6 lat Picture I-F Amplifier
(9) RCA 6CB62nd Picture I-F Amplifier
(10) RCA 6AU6 3rd Picture I-F Amplifier
(11) RCA 6CB6 4th Picture I-F Amplifier
(12) RCA 6AL5 Picture 2nd Detector and AGC Detector
(13) RCA 12AU7 lst and 2nd Video Amplitier
(14) RCA 12AU7 DC Restorer and Sync Separator
(15) RCA 6SN7GT Sync Separator and Vertical Sweep Oscillator
(16) RCA 6K6GT Vertical Sweep Output
(17) RCA 6SN7GT ... Horisontal Sweep Oacillator and Control
(18) RCA 6BG6G Horisontal Sweep Output
(19) RCA 6W4GT ... Damper
(20) RCA 1B3-GT/8016 High Voltage Rectifier
(21) RCA 16GP4 ... Kinescope
(22) RCA 5U4G .. Rectifier

PICTURE INTERMEDIATE FREQUENCIES	
Picture Carrier Frequency .. 2	25.50 Mc.
Adjacent Channel Sound Trap	27.00 Mc .
Accompanying Sound Traps 2	21.00 Mc .
Adjacent Channel Picture Carrier Trap	19.50 Mc .
SOUND INTERMEDIATE FREQUFNCIES	
Sound Carrier Frequency ... 4.5 Mc.	
Sound Discriminator Band Width between peake 400 kc	
VIDEO RESPONSE .. To 4 Mc.	
FOCUS ...	Magnetic
SWEEP DEFLECTION ..	Magretic
SCRNNING .. Interlaced,	, 525 line
HORIZONTAL SWEEP FREQUENCY 15	15.750 cps
VERTICAL 8WEEP FREQUENCY 60.0 cp	
FRAME FREQUENCY (Picture Ropetition Rate)	

high Voltage warning

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCX HAZARD FROM THE RECEIVER POWER SUPPLIES. WORR ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORRING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMP ARTMENT SHIELD REMOVED.

KINESCOPE HANDLING PRECAUTIONS

DO NOT REMOVE THE RECEIVER CHASSIS, INSTALL, REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES, AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. REEP THE KINE SCOPE AWAY FROM THE BODY WHILE HANDLING.

[^6]The following adjustments are necessary when furning the recelver on for the first time:

1. See that the TV.PH ewitch on the rear apron is in the "TV" position.
2. Turn the recelver "ON" and advance the SOUND VOLUME control to approzimately mid-position.
3. Set the STATION SELECTOR to the desired channel.
4. Adjuat the FINE TUNING control for beat picture and the SOUND VOLUME control for auitable volume.
5. Turn the BRIGHTNESS control fully counter-clockwise, then clockwise until a light pattorn appears on the screen.
6. Adjuint the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZONTAL hold control until a picture is oblained and centered.

8. Adjust the PICTURE and BRIGHTNESS controls for suitable picture controust and brightness.
9. In switching from one channel to another, it may be necessary to repeat stops 4 and 8.
10. When the set is turned on again after an idle period it ahould not be necessary to re peat the adjustmente if the posi. Hons of the controle have not been changed.
11. If the positions of the con. trols have been changed, it may be necessary to repeat stops 2 through 8 .
12. To use a record player. plug the record player output cable into the PHONO jack on the rear apron, and set the TV-PH switch to "PH."
Figure 1-Receiver Operating Control

REFER TO PAGES 113 TO 123 FOR TELEVISION ALIGNMENT PROCEDURE AND WAVE FORM PHOTOGRAPHS

INSTALLATION INSTRUCTIONS

Make sure that all tubes are in place and are firmly seated in their sockets.
Check to see that the kinencope high voltage lead clip is in place.
Connect the antenna tranmmiesion line to the receiver antenna terminals. Plug a power cord into the 115 volt ace power source and into the recelver interlock receptacle. Turn the receiver power swltch to the "on" position, the brightness control fully clockwise, and the picture control counter-clockwise.

ION TRAP MAGNET ADJUSTMENT.-Set the ion trap mag. net approximately in the potition shown in Figure 2. Starting from this ponition immediately adjust the magnet by moving it forward or backward at the same time rolating it alightly around the neck of tho kinescope for the brighteat raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Turn the focus control (shown in Figure 2) until the line structure of the raster is clearly vieible. Readjust the ion trap magnet for maximum raster brilliance. The final touches of this adjust. ment should be made with the brightness control at the maxi mum clockwise position with which good line focus can be maintained.

DEFLECTION YOEE ADIUSTMENT.-It the lines of the raster are not horisontal or squared with the plature mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE ADJUSTMENTS.-It will now be necessary to obtain a test pattern picture in order to make further adjustments.

If the Horizontal Oscillator and AGC System are operating properly, It should be poselble to sync the picture at this point. However, if the AGC control is misadjusted, and the receiver Is overloading, It may be imposeible to sync the picture.

If the recelver it ovarloading, turn S106 on the rear apron (see Figure 3) counter-clockwite untll the sot operates normally and the picture can be synchronized.

Figure 2-Yoke and Focus Magret Adjustments

CHECE OF HORIZONTAL OSCILLATOR ALIGNMENT.Turn the horizontal hold control to the extreme counter-clockwise position. The pleture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bare will be gradually reduced and when only 2 bars sloping down. ward to the left are obtained, the plcture will pull into sync upon slight additional clockwise rotation of the control. Pull-in should occur when the control it approximately 90 degrees from the extreme counter-clockwise position. The picture should remain in syac for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should be out of sync and should show 1 vertical or diagonal black bar in the raster.

Figure 3-Rear Chassis Adjustments

If the receiver passes the above checks and the picture in normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oncillator" and proceed with "Focu: Magnet Adjustment."

ALIGNMENT OF HORIZONTAL OSCILLATOR.-II in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull-in point, it will be necessary to make the follow. ing adjustments.

Horizontal Frequency Adjustment-Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the T108 horizontal frequency adjustment on top of the chaesis until the picture is just out of mye and the horizontal blanking appears as a vertical or diagonal black bar in the raster.

Horizontal Locking Range Adjustment.-Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the aignal by switching off channel then back. The picture may remain in sync. If so turn the T108 top core slightly and momentarily switch off channel. Repeat until the picture falls out of syne with the diagonal lines sloping down to the lelt. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 2 bars are present just before the plcture pulls into sync, adjust the horizontal locking range trimmer C147A slightly clockwise. If less than 2 bars are present, adjust C147A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat thin procedure until 2 bars are present.

Repeat the adjustments under "Horizontal Frequency Ad. justment" and 'Horizontal Locking Range Adjustment" until the conditions specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.

If it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure. For field purposes para. graph "A" under Horizontal Oscillator Waveform Adjustment may be omitted.

FOCUS MAGNET ADJUSTMENT.-The focus magnet should be adjusted so that there is approximately three-eighths inch of space between the rear cardboard shell of the yoke and the flat of the front face of the focus magnet. This spacing gives bent average focus over the face of the tube.

The axis of the hole through the magnet should be parallel with the axis of the kinescope neck with the kinescope neck through the center of the opening.

CENTERING ADJUSTMENT.--No electrical centering controls are provided. Centering is accomplished by means of a separate plate on the focus magnet. Some centering plates
include a locking screw which must be looened before centering, and others are held in adjustment by friction. Up and down adjustment of the plate moves the picture mide to side and sidewise adjustment moves the picture up and down.

If a comer of the raster is shadowed, check the position of the ion trap magnet. Reposition the magnet within the range of maximum raster brightness 10 eliminate the shadow and recenter the picture by adjustment of the focus magnet plate. In no case should the magnet be adjusted to cause any lons of brightness since auch operation may cause immediate or eventual damage to the tube. In mome cases it may be necensary to shift the position of the focus magnet in order to oliminate a corner shadow.

WIDTH. DRIVE RND HORIZONTAL LINEARITY ADJUST-MENTS.-Adjustment of the horisontal drive control affects the high voltage applied to the kinescope. In order to obtain the highent possible voltage hence the brightest and best focused picture, adjust horizontal drive counter-clockwise as far as possible without stretching the left side of the picture. As a first adjustment, set the horizontal drive trimmer Cl47B one-half turn out from maximum capacity.

Turn the horizontal linearity coil out until appreciable lons in width occurs, then in until nearly maximum width and the best linearity is obtained.

Adjust the width control R177 to obtain correct picture width.
A slight readjustment of these three controis may be necessary to obtain the best linearity.

HEIGHT AND VERTICAL LINEARITY ADIUSTMENTS.-Adjust the height control (R151 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R156 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust centering to align the picture with the mask.

FOCUS.-Adjust the focus magnet for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

Hecheck the position of the ion trap magnet to make sure that maximum brightness is oblained.

Check to see that the yoke thumbscrew and the focus magnet mounting screws are tight.

CHECE OF R-F OSCILLATOR ADJUSTMENTS.-Tune in all available stations to see if the receiver r-l oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure on page 10. The adjustments for chamels 2 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 4. Adjustment of channel 13 is on top of the chassis.

Figure 4-R-F Oscillator Adjustments

AGC CONTROL.-The AGC control switch is provided as an inistallation adjustment. The normal position for strong signal areas is with the switch in the number 1 or counterclockwise position. If impulse type of interference is experi. enced, turn the awitch to the number 2 or center position. In
very weak signal areas in which impulse type interference is experienced, turn the switch to position number 3 or fully clockwise. In this position, all AGC is removed and the receiver will overload if the input signal exceeds 200 microvolts. However, for signals under 200 microvolts, this position of the AGC control switch gives best noise immunity of sync.

FM TRAP ADJUSTMENT.-In some instances interference may be encountered from a strong FM station signal. A trap is provided to eliminate this type of interference. To adjust the trap tune in the station on which the interierence is observed and adjust the L203 core on top of the r-f unit for minimum interference in the picture.

Caution: In some receivers, the FM trap L203 will tune down into channel 6 or even into channel 5. Needless to say such an adjustment will cause greatly reduced sensitivity on these channele. If channels 5 or 6 are to be received. check L203 to make sure that it does not affect these two channels.

Replace the cabinet back and reconnect the receiver antenna leads to the cabinet back. Tighten the back retaining screws securely otherwise the back may rattle when the receiver is operated at high volume.
INDOOR ANTENNA.-A cabinet antenna is not provided in these receivers since it would not operate properly inside the metal cabinet. However a separate indoor antenna may be employed in place of the outdoor antenna in areas where the signals are strong and no rellections are experienced.

RECEIVER SUPPORT CAUTION.-The complete receiver weighs approximately 92 pounds. This represents a consider. ably greater load than can usually be placed on the average small table. Only a very sturdy table should be used to support the receiver.

Due to the weight of the receiver, the cabinet should not be dragged or slid across the supporting table as damage to the table tinish may result.

RECEIVER LOCATION.-The owner should be advised of the importance of placing the receiver in the proper location in the room.
The location should be chosen-

- Away from bright windows and so that no bright light will fall directly on the screen. (Some illumination in the room is desirable, however.)
-To give easy access for operation and comfortable viewing.
- To permit convenient connection to the antenna.
-Convenient to an electrical outlet.
-To allow adequate ventilation.
VENTILATION CAUTION.-The receiver is provided with adequate ventilation holes in the bottom and back of the cabinet. Care should be taken not to allow these holes to be covered or ventilation to be impeded in any way.
If the receiver is to be operated with the back of the cabinet near a wall, at least a two-inch clearance should be main. tained between cabinet and wall.

CHASSIS REMOVAL.-To remove the chassis from the cabinet for repair or installation of a new kinescope, remove the control knobs, the cabinet back, unplug the speaker cable, the kinescope socket, the antenna cable, the yoke and high voltage cable. Take out the chassis bolts under the cabinet. Withdraw the chassis from the back of the cabinet.

KINESCOPE HANDLING PRECAUTION.-Do not install, re. move, or handle the kinescope in any manner, unless shatterproof goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling.

To remove the kinescope from the cabinet, loosen the two nuts and disengage the rods alongside the kinescope. Remove the wing screw which holds the yoke frame to the cabinet. Remove the kinescope, the yoke frame with yoke and focus magnet as an assembly.

INSTALLATION OF KINESCOPE.--Handle this tube by the metal rim at the edge of the screen. Do not cover the glass bell of the tube with fingermarks as it will produce leakage paths which may interfere with reception. if this portion of the tube has inadvertently been handled, wipe it clean with a soft cjoth moistened with "dry" carbon tetrachloride.

Wipe the kinescope screen surface and front panel satety glass clean of all dust and tingermarks with a solt cloth moistened with "Windex" or similar cleaning agent.

Turn the tube so that the key on the base of the tube will be down and insert the neck of the kinescope through the deflection coil and focus magnet. If the tube sticks, or fails to slip into place smoothly. investigate and remove the cause of the trouble. Do not force the tube.

Replace the kinescope and yoke frame assembly in the cabinet. Insert the wing screw, connect the side rods and tighten.

Slide the deflection yoke as far forward as possible. If this is not done, difficulty will be encountered in adjusting the ion trap and focus magnets because of shadows on the corner of the raster.

Slide the chassis into the cabinet, then insert and tighten the chassis bolts.

Slip the ion trap magnet over the neck of the kinescope.
Connect the kinescope socket to the tube base and connect the high voltage lead clip from the rim of kinescope into the high voltage bushing on the high voltage compartment.

Reconnect all other cables. Perform the entire set-up procedure beginning with Ion Trap Magnet Adjustment.

REFLECTIONS.-Multiple images sometimes known as echoes or ghosts, are caused by the signal arriving at the antenna by two or more routes. The second or subsequent image occurs when a signal arrives at the antenna after being reflected off a building, a hill or other object. In severe cases of reflections, even the sound may be distorted. In less severe cases. reflections may occur that are not noticeable as reflections but that will instead cause a loss of definition in the picture.

Under certain extremely unusual conditions, it may be possible to rotate or position the antenna so that it receives the cleanest picture over α reflected path. If such is the case, the antenna should be so positioned. However, such a position may give variable results as the nature of reflecting surfaces may vary with weather conditions. Wet surfaces have been known to have different reflecting characteristics than dry surlaces.

Depending upon the circumstances, it may be possible to eliminate the reflections by rotating the antenna or by moving it to a new location. In extreme cases, it may be impossible to eliminate the reflection.

INTERFERENCE.-Auto ignition, street cars, electrical machinery and diathermy apparatus may cause interference which spoils the picture. Whenever possible, the antenna location should be removed as far as possible from highways, hospitals. doctors offices and similar sources of interference. In mounting the antenna, care must be taken to keep the antenna rods at least $1 / 4$ wave length (at least 6 feet) away from other antennas, metal roots, gutters or other metal objects.
Short-wave radio transmitting and receiving equipment may cause interference in the picture in the form of moving ripples. In some instances it may be possible to eliminate the interference by the use of a trap in the antenna transmission line. However, if the interfering signal is on the same frequency as the television station, a trap will provide no improvement.

WEAK PICTURE.-When the installation is near the limit of the area served by the transmitting station, the picture may be speckled, having a "snow" effect, and may not hold steady on the screen. This condition is due to lack of signal strength from the transmitter.

SCREEN CLEANING.-In the event that it becomes nesessary to clean the face of the kinescope, this may be accomplished without removal of the chassis. Pry cff the small ornamental clip just below the glass and take out the screws which ohold the glass retainer in place. Take out the satety glass. Replace it by a reversal of this procedure.

Figure 5-Chassis Top View

Figure 6-Chassis Bottom View

The following measurements represent two sets of conditions. In the first condition, a 2500 microvolt fest pattern signal was fed into the receiver, the picture synced and the AGC control properly adjusted. The second condition was obtained by removing the antenna leads and short circuiting the receiver antenna terminals. Voltages shown are read with a type WV79A senior "VoltOhmyst" between the indicated terminal and chastia ground and with the receiver operating on 117 volts, 60 cycles, $a-c$. The symbol < means less than.

Tube No.	$\begin{aligned} & \text { Tube } \\ & \text { Type } \end{aligned}$	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		Notes on Meaturementa
				$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	Pin No.	Volts	Pin No.	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	
V1	6 J 6	Mixer	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	2	180	-	-	7	0	5	-2.3	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	2	160	-	-	7	0	5	-2.1	
V1	636	R-F Oscillator	$\underset{\text { Signal }}{2500 \mathrm{Mu} .}$	1	100	-	-	7	0	6	*-3.0	*Depending upon channel
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	1	90	-	-	7	0	6	*-2.7	
V2	6CB6	R-F Amplifier	$\underset{\text { Signal }}{2500 \mathrm{Mu.} .}$	5	220	6	160	2	<0.1	1	-3.4	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	150	6	100	2	0.4	1	-0.2	
V101	6AU6	$\begin{aligned} & \text { lat Pix. I-F } \\ & \text { Amplitier } \\ & \hline \end{aligned}$	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	195	6	222	7	0.3	1	-5.0	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	5	90	6	115	7	0.6	1	-1.0	
V102	6CB6	$\begin{aligned} & \hline \text { 2nd Pix. I-F } \\ & \text { Amplifier } \\ & \hline \end{aligned}$	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	222	6	203	2	0.3	1	-5.0	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	115	6	95	2	0.5	1	-1.0	
V103	6AU6	$\begin{aligned} & \text { 3d Pix. I.F } \\ & \text { Amplifier } \end{aligned}$	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	185	6	225	7	0.2	1	-5.0	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	100	6	115	7	0.6	1	-1.0	
V104	6CB6	4th Pix. I-F Amplifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	165	6	142	2	2.2	1	0	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	130	6	110	2	1.7	1	0	
V105	6ALS	Picture 2d Det.	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	7	*-3.5	-	-	1	0	-	-	*Depends on picture
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	7	*-0.8	-	-	1	0	-	-	*Depends on noise
V105	6ALS	AGC Rectifier	$\underset{\text { Signal }}{2500 \mathrm{Mu} .}$	2	*-9.0	-	-	5	6.0	-	-	*Depends on picture
			No Signal	2	*-1.3	-	-	5	5.8	-	-	*Depends on noise
V106	12AU7	1st Video Amplifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	1	100	-	-	3	1.2	2	-2.3	At maximum contrast
			No Signal	1	50	-	-	3	0.6	2	-0.8	
			$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	1	190	-	-	3	9.0	2	-3.6	At minimum contrast
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	1	102	-	-	3	6.3	2	0.8	
V106	12AU7	2d Video Amplifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	6	310	-	-	8	125	7	115	At maximum contrast
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	6	275	-	-	8	120	7	105	
			$\underset{\text { Signal }}{2500 \mathrm{Mu} .}$	6	286	-	-	8	135	7	120	At minimum contrast
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	6	265	-	-	8	121	7	105	
V107	12AU7	DC Rest Syac Sep.	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	1	9.8	-	-	3	52	2	-5.2	At maximum contrast
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	1	5.8	-	-	3	14.5	2	-1.0	
			$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	6	8.0	-	-	8	52	7	0	At maximum
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	6	5.7	-	-	8	14.5	7	0	contrast

Tube No.	Tube Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		Notes on Measurements
				$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	Pin No.	Volts	
V108A	6SN7GT	Sync Amplifier	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	42	-	-	6	8.5	4	8.0	At maximum contrast
			No Signa Signal	5	44	-	-	6	6.5	4	5.7	
V108B	6SN7GT	Vertical Oscillator	$\underset{\substack{2500 \mathrm{Mu} \\ \text { Signal V. }}}{ }$	2	*300	-	-	3	0	1	*-60	*Depends on Setting of height control
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	2	*300	-	-	3	0	1	*-58	
V109	6K6GT	Vertical Output	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	3	370	4	370	8	51	5	0	
			No Signal	3	370	4	370	8	51	5	0	
V110	6SN7GT	Horizontal Osc.Control	$\underset{\text { Signal }}{2500 \mathrm{Mu} .}$	2	*160	-	-	3	*1.5	1	*-20	*Depends on Setting of hold control and osc adjustments
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	2	*160	-	-	3	*-11.0	1	-21	
V110	6SN7GT	Horizontal Oscillator	$\underset{\text { Signal }}{2500 \mathrm{Mu} .}$	5	230	-	-	6	0	4	-82	
			No Signal	5	225	-	-	6	0	4	-85	
V111	6BG6G	Horizontal Output	$\underset{\text { Signal }}{2500 \mathrm{Mu} .}$	Cap	*610	8	340	3	8.8	5	-33	*6000 volt pulse present
			No Signal	Cap	*610	8	330	3	8.8	5	33	
V112	$\begin{aligned} & \text { 1B3GT } \\ & \text { /8016 } \end{aligned}$	H. V. Rectifier	Brightness	Cap	*	-	-	$2 \& 7$	11,000	-	-	*14500 volt pulse present
			Brightness Maximum	Cap	*	-	-	$2 \& 7$	12,200	-	-	
V113	6W4GT	Damper	$\begin{gathered} 2500 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	380	-	-	3	610	-	-	*3000 volt pulse present
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	375	-	-	3	610	-	-	
V114	5U4G	Rectifier	$\underset{\text { Signal }}{2500 \mathrm{Mu.} .}$	486	*368	-	-	$2 \& 8$	390	-	-	*AC measured with AC Voltmeter
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	486	*367	-	-	$2 \& 8$	385	-	-	
V115	6AU6	$\begin{aligned} & \text { lst Sound } \\ & \text { I-F Amp. } \end{aligned}$	$\underset{\text { Signal }}{2500 \mathrm{Mu} .}$	5	120	6	120	7	0.5	1	-0.5	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	110	6	110	7	0.6	1	-0.1	
V116	6AU6	2d Sound	$\underset{\text { Signal }}{2500 \mathrm{Mu} .}$	5	115	6	80	7	0	1	-19	
			No Signal	5	110	6	75	7	0	1	-1.0	
V117	6AL5	Ratio Detector	$\underset{\text { Signal }}{2500 \mathrm{Mu} .}$	2	1.2	-	-	5	8.8	-	-	
			No Signal	2	0.4	-	-	5	7.8	-	-	
V118	6AV6	lst Audio Amplifier	$\underset{\text { Signal }}{2500 \mathrm{Mu} .}$	7	86	-	-	2	0	1	-0.8	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	7	78	-	-	2	0	1	-0.8	
V119	6K6GT	Audio Output	$\underset{\text { Signal }}{2500 \mathrm{Mu} .}$	3	350	4	360	8	145	5	118	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	3	350	4	360	8	135	5	110	
V120	16GP4	Kinescope	$\underset{\text { Signal }}{2500 \mathrm{Mu.} .}$	Cone	11,000	10	380	11	100	2	46	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	Cone	12,200	10	375	11	74	2	8.3	

Figure 7-R-F Unit Wiring Diagram

CRITICAL LEAD DRESS:

1. All leads in the picture and sound i.f circuits must be dressed as short and direct as possible with the exception of $\mathrm{Cl} 06, \mathrm{Cl07}, \mathrm{Cl10}$ and $\mathrm{Cll7}$ which are to be dressed with enough lack so as not to have to move the body of the capacitor to align that particular stage.
2. Dress all 1500 mmi .005 mid and .01 mid capacitore in the i-f section with leads as short as possible.
3. Dress all wires between T 101 and the r-f unit in clamp.
4. Dress Cl85 to act as shield for lead between pin 5 of V115 socket to T111D and picture i-f circuits.
5. Dress the bodies of resistors R106, R108, R113, R119, R191, R192 and capacitor C176 as close to tube pin as possible.
6. Dress L114 with coded end as close to pin 2 of V105 sockel as possible.
7. The length of the bus wire from pin 2 of V116 to ground should not be shortened or rerouted.
8. Dress R194 as close to chassis with leads as short as ponsible.
9. Dress C199 with leads as short as pomsible and away from Sl06.
10. Keep the leads on C126 as short and direct as possible.
11. Dress all components connected to V106 socket up and away from the chassis except 1104.
12. Keep the body and coded end of L104 as close to pin 2 of V105 socket as possible.
13. Dress the 4.5 me trap L107 up and away from the chassis base.
14. Dress Cl32 up in the air and towards V105 socket.
15. Dress Rl25 with body as close as ponstble to pin 2 of V106 socket.
16. Keep body of R123 as close as possible to pin 2 of V105 socket.
17. Dress Cl 33 and Cl 90 away from $\mathrm{C} 132, \mathrm{Cl} 51$ and C 153.
18. Dress the white wire from picture control R128-3 away from the chansis.
19. Dress all slack on kine socket leads under chasain Dress brown wire away from any components associated with V105 or V106.
20. The green lead from the kinescope sockel should be dressed away from all other leads and components and away from V106.
21. Dress Rl33 towards chasmis rear apron.
22. Dress all leads in clamps on rear apron away from V117. V104, V105, V106 sockets and S103.
23. Dress green wise from ClifA up and away from chassis.
24. Dress blue wire of Tl07 toward front apron of chatais.
25. Drese Cl53 down next to the chaseis base.
26. Dress blue/white wire from height control R151-3 under Rl80.
27. Dress R161. R162. R163, R164 and R170 up and away from the chassis and with a half inch clearance from the soldering point.
28. Dress the yellow wire from pin 3 of V110 socket over Cl53.
29. Dress both lead of C198 away from the body of the capacitor.
30. Dress fuse in high voltage compartment so as not to short circuit to ground.
31. Dress blue and blue/yellow wire from power transformer in 3 clamps on chastis base and away from S103 and video section.
32. Dress both wires on S106 away from blue/yellow damper leads of Tllo.
33. Dress the brown wire from pin 8 of V114 socket away from V118 socket.
34. Dress all 2 watt resistors away from each other and away from all wirem and other components.

${ }_{\text {spock }}^{\text {spox }}$	mex mexprow	smock		Dssamprown
Sess	Comememe	（sezese	，mix omm	析
	and	seara	aro omm： 58.	
	为	mind	oseme tor	． wem
	边	${ }^{12} 688$	边	
${ }_{222} 2$		Stame	comeme	
${ }_{3 s 3}{ }^{\text {a }}$	Comile			
		semaza	emo	
${ }^{2} 5 \mathrm{~s}$ S	\％Comeral mash	seno	1o，oxo	
	\％e	，		
zese	ramemerambamamer	senaz	12.000 cme：$: 10$	08，\％wom
${ }_{\substack{\text { nea }}}^{\text {nex }}$		sind		\％
	amen	sins	1 Smos ommo som	om，
vete		Sane	边	
，	Nomen		nememe	
gate		$3 \operatorname{senzax} 2$		\％ram
rss			s，mosomeme	109．nmear
${ }_{7 \text { sese }}$	n．．．e	504333		边
${ }_{\substack{\text { noex }}}$		sensa 0	r．asomome	1208．180enta
		Sasse	Sex	Noum
somar		genese	comeme	
zuese	Ma mome	sinese	Baxammm ：sm	Sen，iment
Sosen		Sexase		cosion
Sento		Sention		
senie		Sents		通
Sonte	为	sats	，	
sinur		sene 2		－108， 14 wam
Smare	\％o	souns		
Sorio	为	512433		
		semer	$\underbrace{}_{\substack{\text { ramam } \\ \text { romed }}}$	
Seaze		mese		

Model 17 T1s3 "Briswl" Mabegriny Rivisb Molal

Model 17T1S4 "Wbitiold" Mabogeny Graimed Metal Blowds Greiwed Metal

Madel 17T1ss "Prestem" Wilnsit, Mabogany, Lined Oct

Model 17T162 "Caldwall" Wiluwt, Mabogeniy, Limed Och

Madel 17T160 "Hamplom" Telwne, Mabegeny, Limed Och

Model 17 T172 "Covjingtom" Wimmt, Mabezmy, Limed Oah rca Victor television recelvers MODELS 17T153, 17T154, 17T155, 17T160, 17T162, 17T172, 17T172K, 17T173, 17T173K, 17T174, 171174K

Chassis Nos. KCS66 or KCS66A or KCS66D -Mfr. No. 274 Service Data

- 1951 No. T7 -

PREPARED BY RCA SERVICE CO., INC. FOR
RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION CAMDEN, N. J., U.S.A.

Model 17 T173 "Cilbow:" Walmut, Mabosamy

Model $17 T 174$ "Kemaldl"
Modol $17 T 174$ "Komdall"
Wilnmt, Mabogeny, Limed

ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE. . 146 sq. in. on a 17CP4 or 17GP4 Kinescope TELEVISION R-F FREQUENCY RANGE
All 12 television channels, 54 mc . to $88 \mathrm{mc} ., 174 \mathrm{mc}$. to 216 mc .
Picture I.F Carrier Frequency
45.75 mc .

Sound I.F Carrier Frequency 41.25 mc . and 4.5 mc . POWER SUPPLY RATING. . 115 volts, 60 cycles, 190 watts AUDIO POWER OUTPUT RATING 5.0 watts max. CHASSIS DESIGNATIONS
KCS66.......... . In Modele 17T153, 17T154, 17T155 \& 17 T160
KCS66A........ . In Models 17T162, 17T172, 17T173 \& 17 T174 KCS66D............ In Models 17T172K, 17TI73K \& 17T174K
LOUDSPEAKERS
92569-14W, 12" PM Dynamic in Modele 17T172, 17T172K, 17T173\&17T173K
$971494-1$ W, $12^{\prime \prime}$ PM Dynamic in Models 17 TI72 \& 17TI72K $971490-2 W, 8^{\prime \prime}$ PM Dynamic in all other model receivers.

WEIGHT Model	Chaseis with Tubes in cabinat	Shipping Weight
$17 T 153$	82 lbe .	94 lbs.
17 T 154	82 lbe .	94 lbm
17 T 155	74 lba.	94 lbe .
$17 T 160$	80 lbs .	103 lbs .
17 T 162	94 lba .	116 lbs .
17 T 172	102 lbs	129 lba .
171173	106 lbs .	130 lbs .
17 T 174	96 lbs	121 lbe

RECEIVER ANTENNA INPUT IMPEDANCE
Choice: 300 ohms balanced or 72 ohms unbalanced.
RCA TUBE COMPLEMENT

	Tube Used	Function
	RCA 68 C 7	R-F Amplitier
	RCA 6X8.............. $\mathrm{R}-\mathrm{F}$	R-F Oscillator and Mixer
(3)	RCA 6AU6................. lat	lat Picture I-F Amplitier
(4)	RCA 6CB6. 2 nd	2nd Picture I-F Amplitier
(5	RCA 6CB6................. 3rd	3rd Picture I-F Amplifior
(6)	RCA 6CB6. 4 th	4th Picture I-F Amplitior
(7	RCA 6AG7	Video Amplifier
(8)	RCA 6AU6................. lst	lat Sound I-F Amplifier
(9)	RCA 6AU6................. 2nd	2nd Sound I-F Amplitier
(10)	RCA 6ALS	Ratio Detector
1	RCA 6AV6	1st Audio Amplitier
(12)	RCA 6AQ5	Audio Output
(13)	RCA 6CB6	AGC Amplifier
(14)	RCA 6SN7GT	Syac Soparator
(15)	RCA 6SN7GT Vert Syac Amplifier	litier and Vert Sweep Oac.
(16)	RCA 6AQ5 V	Vertical Sweep Output
(17)	RCA 6SN7GT Horiz	Horizontal Sync Amplitier
	RCA 6SN7GT . Horizontal Sweep O	op Oscillator and Control
(19)	RCA 6BQ6GT Hori	.Horizontal Sweep Output
20)	RCA 6W4GT	Damper
(21)	RCA 1B3-GT/8016 H	High Voltage Rectifier
(22)	RCA lV2 (in KCS66 \& KCS66A)	A) Focus Rectifior
(23)	RCA 17GP4 (in KCS66 \& KCS66A)	S66A)Kinescope

PICTURE INTERMEDIATE FREOUENCIES

Picture Carrier Frequency	45.75 mc .
Adjacent Channel Sound Trap	47.25 mc .
Accompanying Sound Traps	41.25 mc .
Adjacent Channel Picture Carrier Trap	39.25 mc .

SOUND INTERMEDIATE FREQUENCIES
Sound Carrier Frequency 4.5 Mc.

Sound Discriminator Band Width between peaks 400 kc
VIDEO RESPONSE 4 Mc.
FOCUS
SWEEP DEFLECTION
SCANNING
Interlaced, 525 line
HORIZONTAL SWEEP FREQUENCY 15,750 cpa
VERTICAL SWEEP FREQUENCY 60 cps
FRAME FREQUENCY (Picture Repotition Rato) . 30 cps

OPERATING CONTROLS (front Panel)

Channel Selector Fine Tuning	Dual Control Knobs
$\left.\begin{array}{l} \text { Picture } \\ \text { Brightness } \end{array}\right\}$.Dual Control Knobs
Picture Horizontal Hold Picture Vertical Hold	Dual Control Knobe
Sound Volume and On-OH Switch Tone Control	Dual Control Knobs
NON-OPERATING CONTROLS adjustments)	cluding r-£ \& i-f

Picture Centering. to chassis adjustment

Width

 rear chassis adjustment Height.ear chassis adjustment Horizontal Linearityrear chassis screwdriver adjustment Vertical Linearityear chassis adjustment Horizontal Driverear chassis screwdriver adjustmentHorizontal Osc. Freq.
Horizontal Osc. Wavelorm
Horizontal Locking Range Focus
Ion Trad Magnet
Deflection Coil
AGC Control Switch top chassis adjustment bottom chassis adjustment rear chasnis adjurtment top chastis adjustment top chassis adiustment top chasere wing nut adjustment rear chassis adjustment

high Voltage warning

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOR. OUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

KINESCOPE HANDLING PRECAUTIONS

DO NOT REMOVE THE RECEIVER CHASSIS, INSTALL, REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES, AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINE. SCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

The kinescope bulb encloses a high vacuum and, due to its large surface area, is subjected to considerable air pressure. For this reason, the kinescope murt be handled with more care than ordinary receiving tubes.

The large end of the kinescope bulb-particularly that part at the rim of the viewing surface-must not be struck, scratched or subjected to more than moderate pressure at any time. During service if the tube sticke or fails to slip smoothly into its socket, or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Refer to the Receiver Installation section for detailed instructions on kinescope installation. All RCA replacement kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the receiver.

The following adjustments are necessary when turning the receiver on for the firat time:

1. See that the TV-PH switch is in the "TV" position.
2. Turn the receiver "ON" and advance the SOUND VOL-

UME control to approximately mid-ponition.
8. Adjuat the PICTURE and BRIGHTNESS controls for suitable picture contrast and brightness.
9. In switching from one channel to another, it may be necessary to repeat stepm 4 and 8.
3. Set the STATION SELECTOR to the desired channel.
4. Adjust the FINE TUNING control for beat picture and the SOUND VOLUME control for suitable volume.
5. Turn the BRIGHTNESS control fully counter-clockwise, then clockwise until a light pattern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZONTAL hold control until a picture is obtained and centered.

10. When the set is turned on again after an idle period it should not be necessary to repeat the adjustments if the positions of the controls have not been changed.
11. If the positions of the controls have been changed, it may be necessary to repeat steps 2 through 8.
12. To use a record player, plug the record player output cable into the PHONO jack on the rear apron, and set the TV-PH switch to "PH".

Figure 1-Receiver Operating Control

INSTALLATION INSTRUCTIONS

Early production of these RCA Victor 17 -inch television receivers employed an eloctrostatic focus kinescope type 17GP4. Late production receivers employ a magnetic focus kinescope type 17CP4. To identity receivers, thone employing magnetic focus kinescopes have a letter " K " following the mode number. The chassis in the " K " series of receivers is different from early production units only to the extent of the changes necessary to operate the other kinescope.
There are minor differences in the installation adjustments. Instructions for both series of chasuis are given in the following procedure:

UNPACKING.-These receivers are shipped complete in cardboard cartons. The kinescope is shipped in place in the receiver.
Take the receiver out of the carton and remove all packing material.

Make sure that all tubes are in place and are firmly seated in their sockets.

Check to see that the kinescope high voltage lead clip is in place.

Connect the antenna transmission line to the recoiver antonna terminals. Plug a power cord into the 115 volt a-c power nource and into the receiver interlock receptacle. Turn the receiver power switch to the "on" position, the brightness control fully clockwise, and the picture control counter-clockwise.

Figure 2-Ion Trap Magnet and Centering Adjustments

ION TRAP MAGNET ADJUSTMENT.-Set the ion trap magnet approximately in the position shown in Figure 2. Starting from this position immediately adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is elightly above average brilliance. Turn the focus control until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches of this adjustment should be made with the brightness control at the maximum clockwise position with which good line focus can be maintained.
DEFLECTION YOKE ADJUSTMENT. - If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.
PICTURE ADJUSTMENTS.-It will now be necessary to obtain a test pattern picture in order to make further adjuatments. Connect the antenna transminsion line to the receiver.

If the Horizontal Oscillator and AGC System are operating properly, it should be possible to sync the picture at this point. However, it the AGC control is misadjusted, and the receiver is overloading, it may be impossible to sync the picture.
If the receiver is overloading, turn Rl75 on the rear apron (seo Figure 3) counter-clockwise until the set operates normally and the picture can be synced.

Figure 3-Rear Cbassis Adjustments

CHECK OF HORIZONTAL OSCILLATOR ALIGN-MENT.-Turn the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be gradually reduced and when only 2 or 3 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull-in should occur before the control has been turned 120 degrees from the extreme counter-clockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should remain in sync and should not show a black bar in the picture.

If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Centering Adjustment."
ALIGNMENT OF HORIZONTAL OSCILLATOR.-It in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull-in point, it will be necessary to make the following adjustments.

Horizontal Frequency Adjustment.-Turn the horizontal hold control to the extreme clockwise position. Tuze in a television station and adjust the T113 horizontal fraquency adjustment at the rear of the chassis until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black kar in the raster. Then furn the Tll3 core until the bar moves out of the picture leaving it in sync.

Horizontal Locking Range Adjustment.-Set the horizontal hold control to the full counter-clockwise position. Mcmentarily remove the signal by switching off channel then back. The picture may remain in sync. If so turn the Tll3 rear core slightly and momentarily switch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Slowly turn the horizontal hold control clockwise and note the least number of diagonal kars obtained just before the picture pulls into sync.

If more than 3 bars are present just betore the picture pulls into sync, adjust the horizontal locking range trimmer C181A slightly clockwise. It less than 2 bars are present, adjust Cl 81 A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 2 or 3 bars are present.

Repeat the adjustments under "Horizontal Frequency Adjustment" and "Horizontal Locking Range Adjustment" until the conditions specitied under each are fultilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.
It it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure on page 11 . For field purposes paragraph "B' under Horizontal Oscillator Waveform Adjustment may be omitted.

CENTERING ADJUSTMENT' (Disregard for "K" Mod-els).-The electrostatic focus kinescopes are provided with special centering magnets. These magnets are in the form of two wire rings mounted on a non-magnetic tube which is placed around the neck of the kinescope at a distance of about three-fourths of an inch in back of the deflection yoke. When the magnets are rotated on the tube so that the gaps in the rings are together, maximum centering effect is produced. To shift the picture, rotale one of the magnels with respect to the other. To shift the picture in the desired direction rotate the entire centering magnet assembly on the neck of the kinescope. By alternately rotating one magnel with respect to the other, then rotating the entire assembly around the neck of the tube, proper centering of the picture can be obtained.

It is important that the centering magnets not be operated too close to the yoke as the a-c field from the yoke may cause the centering magnels to become demagnetized.

FOCUS MAGNET ADJUSTMENTS (Disregard for electrostatic Models). -The focus magnet should be adjusted so that there is approximately three-eighths inch of space between
the rear cardboard shell of the yoke and the flat of the front face of the locus magnet. This spacing gives best average focus over the face of the tube.

The axis of the hole through the magnet should be parallel with the axis of the kinescope neck with the kinescope neck through the middle.

CENTERING ADJUSTMENT (Disregard for electrostatic Models).-Centering is accomolished by meanis of a separate plate on the focus magnet. The centering plate includes a locking screw which must be loosened before centering. Up and down adjustment of the plate moves the picture side to side and sidewise adjustment moves the picture up and down.

If a corner of the raster is shadowed, check the position of the ion trap magnet. Reposition the magnet within the range of maximum raster brightness to eliminate the shadow and recenter the picture by adjustment of the focus magnet plate. In no case should the magnet be adjusted to cause any loss of brightness since such operation may cause immediate or eventual damage to the tube. In some cases it may be necessary to shift the position of the focus magnet in order to eliminate a corner shadow.

WIDTH, DRIVE AND HORIZONTAL LINEARITY ADJUSTMENTS.-Adjustment of the horizontal drive control affects the high voltage applied to the kinescope. In order to obtain the highest possible voltage hence the brightest and best focused picture, adjust horizontal drive trimmer C181B counter-clockwise until the picture begins to "wrinkle" in the middle then clockwise until the "wrinkle" disappears.

Turn the horizontal linearity control L107 clockwise until the picture begins to "wrinkle" on the right and then counterclockwise until the "wrinkle" disappears and best linearity is obtained.

Adjust the width control Ll06 to obtain correct picture width.
A slight readjustment of these three controls may be necessary to obtain the best linearity.

Adjustments of the horizontal drive control affect horizontal oscillator hold and locking range. If the drive control was adjusted, recheck the oscillator alignment.

HEIGHT AND VERTICAL IINEARITY ADJUST. MENT'S. -Adjust the height control (R203 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R214 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust centering to align the picture with the mask.

FOCUS ADJUSTMENTS (Disregard for "K" Módels). Set the brightness control for average raster brightness. Set the focus control R239 (see Figure 3) slightly counter-clockwise from the best focus position. Adjust the ion trap magnet for maximum brighiness. Within the range of maximum brightness, a region of best focus will occur. Set the ion trap magnet within this region of best focus. Do not use the ion trap magnet as a centering adjustment.
If the picture is not properly centered on the screen, readjust the centering magnet.

Adjust the focus control for best vertical wedge resolution consistent with good line focus. As a tinal check, turn the brightness control for low picture brightness. Best focus should occur in the center of the picture. Turn the brightness control for maximum useable brightness. Best focus should occur near the edge of the picture. This condition of adjustment gives the best average focus.

FOCUS (Disregard for electrostatic Models). - Adjust the focus magnet for maximum detinition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

Recheck the position of the ion trap magnet to make sure that maximum brightness is oblained.

Check to see that the cushion and yoke thumbscrews and the focus coil mounting screws are tight.
CHECK OF R-F OSCILLATOR ADJUSTMENTS.Tune in all available stations to see if the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure on page 7. The adjustments for channels 2 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 4. Adjustment for channel 13 is on top of the chassis.

Figure $4-$ R-F Oscillator Adjustments
AGC THRESHOLD CONTROL.-The AGC threshold control Rl75 is adjusted at the factory and normally should not require readjustment in the field.

To check the adjustment of the AGC Threshold Control, tune in a strong signal and sync the picture. Momentarily remove the signal by switching off channel and then back. If the picture reappears immediately, the receiver is not overloading due to improper setting of R175. If the picture requires an appreciable portion of a second to reappear, or bends excessively, R175 should be readjusted.
Turn R175 fully counter-clockwise. The raster may be bent slightly. This should be disregarded. Turn Rl75 clockwise until there is a very, very slight bend or change of bend in the picture. Then turn R175 counter-clockwise just sufficiently to remove this bend or change of bend.

If the signal is weak, the above method may not work as it may be impossible to get the picture to bend. In this case, turn Rl75 clockwise until the snow in the picture becomes more pronounced, then counter-clockwise until the best signal to noise ratio is obtained.

The AGC control adjustment should be made on a strong signal if possible. If the control is set too far clockwise on a weak signal, then the receiver may overload when a strong signal is received.

FM TRAP ADJUSTMENT.-In some instances interference may be encountered from a strong FM station signal. A trap is provided to eliminate this type of interference. To adjust the trap tune in the station on which the interference is observed and adjust the L58 core on top of the antenna matching transformer for minimum interference in the picture.

CAUTION.-In some receivers, the FM trap L58 will tune down into channel 6 or even into channel 5 . Needless to say, such an adjustment will cause greatly reduced sensitivity on these channels. If channels 5 or 6 are to be received, check L58 to make sure that it does not affect sensitivity on these two channels.

CABINET ANTENNA.-A cabinet antenna is provided in the receivers having wooden cabinets and the leads are brought out near the antenna terminal board. The cabinet antenna may be employed in place of the outdoor antenna in areas where the signals are strong and no reflections are experienced.

CHASSIS REMOVAL.-To remove the chassis from the cabinet for repair or installation of a new kinescope, remove the control knobs, the cabinet back, unplug the speaker cable, the kinescope socket, the antenna cable, the pilot light cable on console models, the yoke and high voltage cable. Take out the chassis bolts under the cabinet. Withdraw the chassis from the back of the cabinet.

KINESCOPE HANDLING PRECAUTION.-Do not install, remove, or handle the kinescope in any manner, unless shatterproof goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling.

To remove the kinescope from the cabinet, loosen the two nuts and disengage the rods alongside the kinescope. Remove the wing screw which holds the yoke frame to the cabinet. Remove the kinescope, the yoke frame with yoke and focus or centering magnet as an assembly.

INSTALLATION OF KINESCOPE.-Handle this tube by the metal rim at the edge of the screen. Do not cover the glass bell of the tube with fingermarks as it will produce leakage paths which may interfere with reception. If this portion of the tube has inadvertently been handled, wipe it clean with a soft cloth moistened with "dry" carbon tetrachloride.

Wipe the kinescope screen surface and front panel safety glass clean of all dust and fingermarks with a soft cloth moistened with "Windex" or similar cleaning agent.

Turn the tube so that the key on the base of the tube will be down and insert the neck of the kinescope through the deflection coil and focus magnet. If the tube sticks, or fails to slip into place smoothly, investigate and remove the cause of the trouble. Do not force the tube.

Replace the kinescope and yoke frame assembly in the cabinet. Insert the wing screw and tighten. Engage the two side rods into the yoke frame and tighten the two nuts. Slide the deflection yoke as far forward as possible. If this is not done, difficulty will be encountered in adjusting the ion trap and focus magnet because of shadows on the corner of the raster.

Slide the chassis into the cabinet, then insert and tighten the chassis bolts.

Slip the ion trap magnet over the neck of the kinescope.
Connect the kinescope socket to the tube base and connect the high voltage lead clip from the rim of kinescope into the high voltage bushing on the high voltage compartmint.

Reconnect all other cables. Perform the entire set-up procedure beginning with Ion Trap Magnet Adjustment.

ANTENNAS.-The finest television receiver built may be said to be only as good as the antenna design and installation. It is therefore important to select the proper antenna to suit the particular local conditions, to install it properly and orient it correctly.

If two or more stations are available and the stations are in different directions, it may be possible to make a compromise orientation which will provide a satisfactory signal on all such channels.
If it is impossible to obtain satisfactory results on one or more channels, it may become necessary either to provide means for turning the antenna when switching channels or to install a separate antenna for one or more channels and to switch antennas when switching channels.

REFLECTIONS.-Multiple images sometimes known as echoes or ghosts, are caused by the signal arriving at the antenna by two or more routes. The second or subsequent image occurs when a signal arrives at the antenna after being reflected off a building, a hill or other object. In severe cases of reflections, even the sound may be distorted. In less severe cases, reflections may occur that are not noticeable as reflections but that will instead cause a loss of definition in the picture.

Depending upon the circumstances, it may be possible to eliminate the reflections by rotating the antenna or by moving it to a new location. In extreme cases, it may be impossible to eliminate the reflection.
INTERFERENCE.-Auto ignition, street cars, electrical machinery and diathermy apparatus may cause interference which spoils the picture. Whenever possible, the antenna location should be removed as far as possible from highways, hospitals, doctors' offices and similar sources of interference. In mounting the antenna, care must be taken to keep the antenna rods at least $1 / 4$ wave length (at least 6 feet) away from other antennas, metal rools, gutters or other metal objects.

Short-wave radio transmitting and receiving equipment may cause interference in the picture in the form of moving ripples. In some instances it may te possible to eliminate the interference by the use of a trap in the antenna transmission line. However, if the interfering signal is on the same frequency as the television station, a trap will provide no improvement.

WEAK PICTURE.-When the installation is near the limit of the area served by the transmitting station, the picture may be speckled, having a "snow" effect, and may not hold steady on the screen. This condition is due to lack of signal strength from the transmitter.

Figure 5-Chassis Top View

Figure 6-Chassis Bottom View

ALIGNMENT PROCEDURE

TEST EOUIPMENT.-To properly eorvice the tolevinion chasis of this receiver, it is recommended that the following teot equipment be available:
R-F Sweop Gererator meeting the following requirements:
(a) Frequency Ranges

35 to 90 mc ., 1 mc . to 12 mc . swoep width
170 to $225 \mathrm{mc} ., 12 \mathrm{mc}$. swoop width
(b) Output adjustable with at least 11 volt maximum.
(c) Output constant on all ranges.
(d) "Flat" output on all attenuator positions.

Cathode-Ray Oscilloncope.-For alignment purposes, the oscilloecope employed muat have excellent low frequency and phase response, and should be capable of passing a 60 -cycle square wave without appreciable distortion.
For video and sync wavelorm obeervations, the oscilloscope must have excellent frequency and phase reaponse from 10 cycles to at least two megacycles in all positions of the gain control.
Signal Genorator to provide the following frequencien with cryatal accuracy.
(a) Intermediate frequencies 4.5 mc . sound i - f transiormer
39.25 mc . adjacent channel picture trap
41.25 mc . sound trap
45.75 mc . picture carrier
47.25 mc . adjacent channel sound trap
(b) Radio frequencies

Channel Number	Picture Carrier Freq. Mc.	Sound Carrior Freq. Mc.	Receiver R-F Osc. Freq. Mc.
2	55.25	59.75	. 101
3.	61.25	65.75	. 107
4.	67.25	. 71.75	. 113
5.	77.25	81.75	. 123
6.	83.25	87.75	129
7.	.175.25.	. 179.75.	221
8.	.181.25.	185.75	227
9.	.187.25.	191.75	. 233
10.	. 193.25	197.75.	239
11.	. 199.25	203.75.	. 245
12	205.25.	209.75	. 251
13.	.211.25.	215.75	. 257

(c) Output of these ranges should be adjustable and at least l volt maximum.
Heterodyne Frequency Meter with crystal calibrator if the signal generator is not crystal controlled.

Electronic Voltmetor of Junior or Senior "VoltOhmyat" type and a high voltage multiplier probe for use with this meter to permit measurements up to 20 kv .

CAUTION: Do not short the kinescope second anode lead. Its short circuit current presents a considerable overload on the high voltage rectifier V119.

ORDER OF ALIGNMENT.-When a complete receiver alignment is necessary, it can be most conveniently performed in the following order:

(1) Ant. Matching Unit	(6) Picture I-F Traps
(2) R-F Unit	(7) Picture I-F Trans.
(3) Ratio Detector	(8) Sweep Alignment of I-F
(4) Sound I-F Trans.	(9) Horizontal Oscillator
(5) Sound Take-O\&t Trans.	(10) Sensitivity Check

ANTENNA MATCHING UNIT ALIGNMENT.-The antenno matching unit is accurately aligned at the factory. Adjustment of this unit should not be attempted in the customer's home since even slight misalignment may cause serious attenuation of the signal especially on channel 2. The r-f unit is aligned with a particular antenna matching transformer in place. If for any reason, a new antenna matching trans: former is installed, the r-f unit should be realigned.

The F-M Trap which is mounted in the antenna matching unit may be adjuated without adverely affecting the allgnment of the unit.

To align the antenna matching unit discomnect the lead from the IM trap L58 to the channel selector switch S5.

With a short jumper, connect the output of the matching unit through a 1000 mmf . capacitor to the grid of the second pix i-f amplifier, pin 1 of V107.
Replace the cover on the matching unit while making all adjustments.

Remove the first pix i-f amplifier tube V106.
Connect the positive terminal of a bias box to the chames and the potentiometer arm to the junction of R143 and R144. Set the potentiometer to produce approximately -6.0 volts of bias at the test point TPIOL.
Connect an oscilloncope to the video test point TP102 and set the oscilloscope gain to maximum.

Connect a signal generator to the antenna input terminals. Modulate the signal generator 30% with an audio signal.
Tune the signal generator to 45.75 mc . and adjust the generator output to give an indication on the oscilloscope. Adjust L59 in the antenna matching unit for minimum audio indication on the oscilloscope.
Tune the signal generator to 41.25 mc . and adjust $L 60$ for minimum audio indication on the oscilloscope.
Remove the jumper from the output of the matching unit.
Connect a 300 ohm $1 / 2$ watt composition resiator from L58 to ground, keeping the leads as short as possible.

Connect an oscilloscope low capacity crystal probe from L58 to ground. The sensitivity of the oscilloscope should be approximately 0.03 volts per inch. Set the oscilloscope gain to maximum.
Connect the r-f sweep generator to the matching unit antenna input terminals. In order to prevent coupling reactance from the sweep generator into the matching unit, it is advisable to employ a resistance pad at the matching unit terminals. Figure 11 shows three different resistance pads for use with sweep generators with 50 ohm co-ax output, 72 ohm co-ax output or 300 ohm balanced output. Choose the pad to match the output impedance of the particular aweep employed.
Connect the signal generator loosely to the matching unit antenna terminals.
Set the sweep generator to sweep from 45 mc . to 54 mc . With RCA type WR59A sweep generators, this may be accomplished by retuning channel number 1 to cover this range. With WR59B sweep generators this may be accomplished by retuning channel number 2 to cover the range. In making these adjustments on the generator, be sure not to turn the core too far clockwise so that it becomes lost beyond the core retaining spring.

Adjust L61 and L62 to obtain the response shown in tigure 12. L61 is most effective in locating the position of the shoulder of the curve at 52 mc . and L 62 should be adjusted to give maximum amplitude at 53 mc . and above consistent with the specitiod shape of the reaponse curve. The adjustments in the matching unit interact to some extent. Repeat the above procedure until no further adjustments are necessary.
Remove the 300 ohm resistor and crystal probe connections. Restore the connection between L58 and S5. Replace V106.

R-F UNIT ALIGNMENT.-An r-f unit which is operative and requires only touch up adjustments, requires no prosetting of adjustments. For such units, skip the remainder of this paragraph. For units which are completely out of adjustment, preset all adjustments to the approximate center of their range with the following exceptions: Set C18 so that the screw head is approximately three-eighths of an inch above chassis. Set the TI core for maximum inductance (core turned counter-clockwise). Set Cll near maximum capacity (onequarter turn from tight). Do not change any of the adjustments in the antenna matching unit.
Disconnect the link from terminals " A " and " B " of T104 and terminate the link with a 39 ohm composition resistor.
The r-f unit is aligned with zero AGC bias. To insure that the bias will remain constant, take a clip lead and short circuit the r-f unit power terminal board terminal 3 to ground.
Connect the oscilloscope to the test point TPI on top of the r-f unit. Set the oscilloscope gain to maximum.
Turn the receiver channel selector switch to channel 2.

Connect the output of the signal generator to the grid of the r-f amplifier, V2. To do this, remove the tube from the socket and fashion a clip by twisting one epid of a small piece of wire around pin number 7. Reploce the tube in the socket leaving the end of the wire protruding from under the tube. Connect the signal generator to this wire through a 1,500 mmf capacitor.
Tune the signal generator to 43.5 mc. and modulate it 30% with a 400 cycle sine wave. Adjust the signal generator for maximum output.

Adjust L65 on top of the r-f unit for minimum 400 cycle indication on the oscilloscope. If necessary, this adjustment can be retouched in the tield to provide additional rejection to one specific frequency in the i-f band pass. However, in such cases, care should be taken not to adjust it so as to reduce sensitivity on channel 2.

Remove the wire clip from pin 7 of V2 and replace the tube and tube shield.

Set the channel selector switch to channel 8.
Turn the fine tuning control 30 degrees clockwise from the center of its mechanical range now and at all times when adjusting the oscillator frequency.

Adjust Cl for proper oscillator frequency, 227 mc . This may be done in several ways. The easiest way and the way which will be recommended in this procedure will be to use the signal generator as a heterodyne frequency meter and beat the oscillator against the signal generator. To do this, tune the signal generator to 227 mc . with crystal accuracy. Insert one end of a piece of insulated wire into the r-f unit through the hole provided for the adjustment for Cll. Be careful that the wire does not touch any of the tuned circuits as it may cause the frequency of the r-f unit oscillator to shift. Connect the other end of the wire to the "r-f in" terminal of the signal generator. Adjust Cl to obtain an audio beat with the signal generator.

Connect the sweep generator through a suitable attenuator as shcwn in Figure 11 to the input terminals of the antenna matching unit.

Connect the signal generator loosely to the antenna terminals.

Set the sweep oscillator to cover channel 8.
Set the oscilloscope to maximum gain and use the minimum input signal which will produce a useable paftern on the oscilloscope. Excessive input can change oscillator injection during alignment and produce consequent misalignment even though the response as seen on the oscilloscope may look normal.

Insert markers of channel 8 picture carrier and sound carrier, 181.25 mc . and 185.75 mc .

Adjust C9, Cll, Cl5 and Cl 8 for approximately correct curve shafe, frequency, and kand width as shown in Figure 13.
The correct adjustment of Cl 8 is indicated by maximum amplitude of the curve midway between the markers. Cl5 tunes the r-f amplifier plate circuit and affects the frequency of the pass band most noticeably. C9 tunes the mixer grid circuit and affects the tilt of the curve most noticeably (assuming that C18 has been properly adjusted). C11 is the coupling adjustment and hence primarily affects the response band width.

Set the receiver channel switch to channel 6.
Adjust the signal generator to the channel 6 oscillator fre. quency 129 me.
Turn the fine tuning control 30 degrees clockwise from the center of its mechanical range.

Adjust L5 for an audible beat with the signal generator as before.

Set the sweep generator to channel 6.
From the signal generator, insert channel 6 sound and picture carrier markers, 83.25 mc . and 87.75 mc .

Adjust L48, L50 and L53 for proper response as shown in Figure 13.

L50 tunes the r-f amplifier plate circuit and primarily affects the frequency of the pass band. L53 tunes the r-f amplitier grid and is adjusted to give maximum amplitude of the curve between the markers. L48 affects the tilt of the curve but not quite the same as C9 adjustment. When the circuits are correctly adjusted and L48 is rocked on either side of its proper setting, the high frequency (sound carrier) end of the curve appears to remain nearly fixed in amplitude while the picture carrier end tilts above or below this point.

Turn off the sweep and signal generators.

Connect the "VoltOhmyst" to the r-f unit test point TP1.
Adjust the oscillator injection trimmer CB for -3.5 volts or at maximum if -3.5 volts cannot be reached. This voltage should fall between -2.5 and -5.5 volts on all channels when the alignment of all circuits is completed.

Turn the sweep oscillator and signal generator back on and recheck channel 6 response. Readjust L48, L50 and L53 if necessary.

Set the receiver channel selector switch to channel 8 and readjust Cl for proper oscillator frequency, 227 mc .

Set the sweep oscillator and signal generator to channel 8 .
Readjust C9, Cl1, Cl 5 and Cl8 for correct curve shape, frequency and band width.

Turn off the sweep and signal generators, switch back to channel 6 and check the oscillator injection voltage at TPI if C9 was adjusted in the recheck of channel 8 response.

If the initial setting of oscillator injection trimmer C8 was far off, it may be necessary to adjust the oscillator frequency and response on channel 8, adjust the oscillator injection on channel 6 and repeat the procedure several times before the proper setting is obtained.

Turn off the sweep generator and switch the receiver to channel 13.

Adjust the signal generator to the channel 13 oscillator frequency 257 mc .

Set the fine tuning control 30 degrees clockwise from the center of its mechanical range.

Adjust L46 to obtain an audible beat. Slightly overshoot the adjustment of L46 by turning the slug a little more in the same direction from the original setting, then reset the oscil. lator to proper frequency by adjusting Cl to again obtain the beat.

Check the response of channels 7 through 13 by switching the receiver channel switch, sweep oscillator and marker oscillator to each of these channels and observing the response and oscillator injection obtained. See Figure 13 for typical response curves. It should be found that all these channels have the proper shaped response with the markers above 80% response.

If the markers do not fall within this requirement, switch to channel 8 and readjust $\mathrm{C}, \mathrm{Cl1}, \mathrm{Cl} 5$ and Cl 8 as necessary.

Turn off the sweep generator and check the channel 8 oscillator frequency. If Cl has to be readjusted for channel 8 , the principle of overshooting the adjustment and then correcting by adjusting L46 should be followed in order to establish the L/C ratio for the desired oscillator tracking.
Turn the receiver channel selector switch to channel 6. Adjust L5 for correct oscillator frequency, 129 mc .

Turn the sweep oscillator on and to channel 6 and observe the response curve. If necessary readjust L48, L50 and L53.

Switch the receiver through channel 6 down through channel 2 and check for normal response curve shapes and oscillator injection voltage.
If excessive tilt in the same direction occurs on channels 2 , 3 and 4, adjust C18 on channel 2 to overshoot the correction of this tilt, then switch to channel 6 and adjust LS3 for maximum amplitude of curve between markers. This adjustment should produce "flat" response on the low channels if the other adjustments especially L48 are correct.

Likewise check channels 7 through 13, stopping on 13 for the next step.

With the receiver on channel 13 , check the receiver oscillator frequency. Correct by adjustment of Cl if necessary.

Adjust the oscillator to frequency on all channels by switching the receiver and the heterodyne freq. meter to each channel and adjusting the appropriate oscillator trimmer to obtain the audible beat. It should be possible to adjust the oscillator to the correct frequency on all channels with the fine tuning control in the middle third of its range. When employing WR39 calibrators to adjust the receiver oscillator, tune the calibrator to one half the receiver oscillator frequency on channels 4,5 and 6 and to one fourth the receiver oscillator frequency on channels 11,12 and 13.

ALIGNMENT PROCEDURE

Channel Number	Picture Carrier Freq. Mc.	Sound Carrier Freq. Mc.	Receiver R-F Osc. Freq. Mc.	Channel Oscillator Adjustment
2	55.25	59.75	101	Ll
3.	. 61.25	65.75	107	L2
4.	. 67.25	. 71.75	113.	L3
5.	77.25	81.75	123.	L4
6.	83.25	87.75	129.	L5
7.	175.25	179.75	221	L6
8.	181.25	185.75	227	L7
9.	187.25	191.75	233.	L8
10.	193.25	197.75	239.	$L 9$
11.	199.25	203.75	245	L10
12.	. 205.25	209.75	251	Ll1
13.	. 211.25	215.75	257.	Cl

Remove the 39 ohm resistor from the link and reconnect the link to terminals " A " and " B " of T104.
RATIO DETECTOR ALIGNMENT. - In order to obtain good ratio detector alignment an AM modulated signal generator that is exceptionally free from FM modulation must be employed. Set the signal generator at 4.5 mc . and connect it to the second sound i-f grid, pin 1 of V1O2. Set the generator for $30 \% 400$ cycle modulation.
As an alternate source of signal, the RCA WR39B or WR39C calibrator may be employed. If used, connect its output cable to the grid of the 4th pix i-f amplifier, pin 1 of V109. Set the frequency of the calibrator to 45.75 (pix carrier) and modulate with 4.5 mc . crystal. Also turn on the internal AM audio modulation. The 4.5 mc . signal will be picked off at T11OA and amplified through the sound i-f amplifier.
Connect the "VoltOhmyst" to the junction of R11O and R114.
Connect the oscilloscope across the speaker voice coil and turn the volume control for maximum output.
Set the trimmer C226 (on the bottom of the V103 socket) for minimum capacity.
Tune the ratio detector primary, T102 top core for maximum DC output on the "VoltOhmyst." Adjust the signal level from the signal generator for 10 volts on the "VoltOhmyst" when finally peaked. This is approximately the operating level of the ratio detector for average signals.

Connect the "VoltOhmyst" to the junction of R112 and Cl13.
Adjust the T1O2 bottom core for zero d-c on the meter. Then, turn the core to the nearest minimum AM output on the oscilloscope.
Repeat adjustments of T102 top for maximum DC and TlO2 bottom for minimum output on the oscilloscope making tinal adjustment with the 4.5 mc . input level adjusted to produce 10 volts d-c on the "VoltOhmyst" at the junction of R11O and Rll4.

Connect the "VoltOhmyst" to the junction of R112 and Cll3 and note the amount of d-c present. If this voltage exceeds ± 1.5 volts, adjust C 226 by turning the core in until zero d-c is obtained. Readjust the T102 bottom core for minimum out put on the oscilloscope. Repeat the adjustments of C226 and T102 bottom core until the voltage at 1112 and C113 is less than ± 1.5 volts when Tl02 bottom core is set for minimum indication on the oscilloscope.

Connect the "VoltOhmyst" to the junction of R11O and R114 and repeat the T102 top core for maximum $\mathrm{d}-\mathrm{c}$ on the meter and again reset the generator output so that the meter reads minus 10 volts.

Fepeat the adjustments in the above two paragraphs until the voltage at R112 and C113 is less than ± 1.5 voits when the T102 top core is set for maximum d-c at the junction of fllo and R114 and the T102 bottom core is set for minimum indication on the oscilloscope.

SOUND I-F ALIGNMENT. - Connect the sweep generator to the first sound i-f amplifier grid, pin 1 of V101. Adjust the generator for a sweep width of lmc.at a center frequency of 4.5 mc .

Insert a 4.5 mc . marker signal from the signal generator into the first sound i-f grid. With the WR39B or WR39C calibrators the 4.5 mc . crystal signal may be obtained at the - - F out terminal by turning the variable osc. switch off, the calibrate switch to 4.5 mc . and the volume control with mod. off.

Connect the oscilloscope in series with a 10,000 ohm resistor to torminal \AA of TiOl

Adjust TlOl top and bottom cores for maximum gain and symmetry about the 4.5 mc . marker on the i - f response. The pattern obtained should be similar to that shown in Figure 14.
The output level from the sweep should be set to produce approximately 2.0 volt peak-to-peak at terminal A of T1Ol when the final touches on the above adjuatment are made. It is necessary that the sweep output voltage should not exceed the specified values otherwise the response curve will be broadened, permitting slight misadjustment to pass unnoticed and possibly causing distortion on weak signals.

Connect the oscilloscope to the junction of R112 and Cll3 and check the linearity of the response. The pattern obtained should be similar to that shown in Figure 15.

SOUND TAKE-OFF ALIGNMENT.-Connect the 4.5 mc. generator in series with a 1000 ohm resistor to terminal "C" of T110. The input signal should be approximately 0.5 volts.

Short the fourth pix i-f grid to ground, pin 1 V109, to prevent noise from masking the output indication.

As an alternate source of signal the RCA WR39B or WR39C calibrator may be used. In such a case, dirregard the above two paragraphs. Connect calibrator across link circuit, T104 A, B, and modulate 45.75 carrier with 4.5 mc . crystal.

Connect the crystal diode probe of a "VoltOhmyst" to the plate of the video amplitier, pin 8 of V110.

Adjust the core of TllO for minimum output on the meter.
Remove the short from pin 1 V109 to ground, if used.
PICTURE I-F TRAP ADJUSTMENT.-Connect the i-f signal generator across the link circuit on terminals A and B of T104.

Connect the "VoltOhmyat" to teat point TP101.
Obtain a 7.5 volt battery capable of withstanding appreciable current drain and connect the ends of a $1,000 \mathrm{ohm}$ potentiometer across it. Connect the battery positive terminal to chassis and the potentiometer arm to the junction of R143 and R144.
Set the bias pot to produce approximately -1.0 volt of bias at test point TP1OL.
Connect the "VoltOhmyst" to test point TP1O2 at the picture detector.

Set the signal generator to each of the following frequencies and adjust the corresponding circuit for minimum d-c output at TP102. Use sufticient signal input to produce 1.0 volt of d-c on the meter when the tinal adjustment is made.

mc	T104 top core
41.25 mc .	T105 bottom cor
47.25 mc .	T106 bottom core

PICTURE I-F TRANSFORMER ADJUSTMENTS. -Set the signal generator to each of the following frequencies and peak the specitied adjustment for maximum indication on the "VoltOhmyst." During alignment, reduce the input signal if necessary in order to produce 1.0 volt of d-c at test point TP1O2 with -1.0 volt of i-f bias at test point TPIOl.
43.7 mc .

T109
45.5 mc .
.T108
41.8 mc.
.T107
To align T105 and T106, connect the sweep generator to the first picture i-f grid, pin 1 of V106 through a 1000 mmf . ceramic capacitor. Shunt R141, R149 and terminals " A " and " F " of T109 with 330 ohm composition resistors. Set the i-f bias to -1.0 volt at test terminal TP1Ol. Connect the oscilloscope to test point TP102.
Adjust T105 and T106 top cores for maximum gain and curve shape as shown in Figure 16. For final adjustments set the output of the sweep generator to produce 0.5 volts peak-to-peak at the oscilloscope terminals.
To align Tl and T104, connect the sweep generator to the mixer grid test point TP2. Use the shortest leads possible, with not more than one inch of unshielded lead at the end of the sweep cable.
Set the channel selector awitch to channel 4.
Connect a 180 ohm composition resistor from terminal B of T105 to the junction of R135 and C132. Connect the oncilloscope diode probe to terminal B of T105 and to ground.
Couple the signal generator loosely to the diode probe in order to obtain markers.
In some receivers, C22l is variable and is provided as a bandwidth adjustment. Preset C22l to minimum capacity.

Adjust Tl (top) and T104 (bottom) for maximum gain at 43.5 mc . and with 45.75 mc . at 70% of maximum response. Adjust C22I until 41.25 mc . is at 80% response with respect to the low frequency shoulder at approzimately 41.9 mc . as shown in Figure 16.

In receivers in which C221 is fired, adjust T1 (top) and T104 (bottom) for maximum gain and the response shown in Figure 17.
Disconnect the diode probe, the 180 ohm and three 330 ohm resistors.

SWEEP ALIGNMENT OF PIX I-F.-Connect the oscil-

 loscope to the test point TPIO2.Adjust the bias potentiometer to obtain -6.0 volts of bias as measured by a "VoltOhmyst" at test point TPIOI.
Leave the sweep generator connected to the mirer grid test point TP2 with the shortest leads possible and with not more than one inch of unshielded lead at the end of the sweep cable. If these precautions are not observed, the receiver may be unstable and the response curves obtained may be unreliable.
Adjust the outpul of the sweep generator to oblain 3.0 volts peak-to-peak on the oscilloscope.
Couple the signal generator loosely to the grid of the first pir i-f amplifier. Adjust the output of the signal generator to produce small markers on the response curve.
Retouch T108 and T109 to obtain the response shown in Figure 18. Do not adjust T107 unless absolutely necessary. If T107 is adjusted too low in frequency it will raise the level of the 41.25 mc . sound i -f carrier and may create interference in the picture. It will also cause poor adjacent channel picture rejection. If Tl07 is tuned too high in frequency, the level of the 41.25 mc . sound i-f carrier will be too low and may produce noisy sound in weak signal areas.
Remove the oscilloscope, sweep and signal generator connections.
Remove the bias boz employed to provide bias for alignment.
HORIZONTAL OSCILLATOR ADJUSTMENT.-Normally the adjustment of the horizontal oscillator is not considered to be a part of the alignment procedure, but since the oscillator waveform adjustment may require the use of an oscilloscope, it can not be done conveniently in the field. The waveform adjustment is made at the factory and normally should not require readjustment in the field. However, the waveform adjustment should be checked whenever the receiver is aligned or whenever the horizontal oscillator operation is improper.
Horizontal Frequency Adjustment. -Tune in a station and sync the picture. If the picture cannot be synchronized with the horizontal hold control R201B, then adjust the T113 frequency core on the rear apron until the picture will synchronize. If the picture still will not sync, turn the T1l3 waveform adjustment core (under the chassis) out of the coil several turns from its original position and readjust the T113 frequency core until the picture is syachronized.
Examine the width and linearity of the picture. If picture width or linearity is incorrect, adjust the horizontal drive control C181B, the width control L1O6 and the linearity control L107 until the picture is correst.

Horizontal Oscillator Waveform Adjustrnent. - The horizontal oscillator waveform may be adjusted by either of two methods. The method outlined in paragraph A below may be employed in the field when an oscilloscope is not available. The service shop method outlined in paragraph B below requires the use of an oscilloscope.
A. -Turn the horizontal hold control completely clockwise. Place adjustment tools on both cores of T113 and be prepared to make simultaneous adjustments while watching the picture on the screen. First, turn the T113 frequency core (on lie rear apron) until the picture falls out of sync and one diagonal black bar sloping down to the right appears on the screen. Then, turn the waveform adjustment core (under the chassis) into the coil while at the same time adjusting the frequency core so as to mainlain one diagonal black bar on the screen. Continue this procedure until the oscillator begins to motorboat, then turn the wavefrom adjustment core out until the motorboating just stops. As a check, turn the T113 frequency core until the picture is synchronized then reverse the direction of rotation of the core until the picture begins to fall out of sync with the diagonal bar sloping down to the right. Continue to turn the frequency core in the same direction. Additional
bars should not appear on the screen. Instead, the horizontal oscillator should begin to motorboat. Retouch the adjustment of the T113 wavelorm adjustment core if necessary until this condition is obtained.
B.-Connect the low capacity probe of an orcilloscope to terminal C of Tll3. Turn the horizontal hold control onequarter turn from the clockwise position so that the picture is in sync. The pattern on the oscilloscope should be as shown in Figure 19. Adjust the wavelorm adjustment core of Tll3 until the two peaks are at the same height. During this adjustment, the picture must be kept in sync by readjusting the hold control if necessary.
This adjustment is very important for correct operation of the circuit. If the broad peak of the wave on the oecilloucope is lower than the sharp peak, the noise immunity becomes poorer, the stabilizing effect of the tuned circuit is reduced and drift of the oscillator becomes more serious. On the other hand, if the broad peak is higher than the sharp peak, the oscillator is overstabilized, the pull-in range becomes inadequate and the broad peak can cause double triggering of the oscillator when the hold control approaches the clockwise position.
Remove the oscilloscope upon completion of this adjustment. Horizontal Locking Range Adjustment. - Set the horizontal hold control to the full counter-clockwise position. Momentarily semove the signal by switching off channel then back. The picture may remain in sync. If so turn the T113 frequency core slightly and momentarily switch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars oblained just beloze the picture pulls into sync.
If more than 3 bars are present just belore the picture pulls into sync, adjust the horizontal locking range trimmer Cl81A slightly clockwise. If less than 2 bars are present, adjust Cl81A slightly counter-clock wise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 2 or 3 bars are present.
Turn the horizontal hold control to the maximum clockwise position. Adjust the Tll3 frequency core so that the diagonal bar sloping down to the right appears on the screen and then reverse the direction of adjustment so that bar just moves off the screen leaving the picture in synchronization.
SENSITIVITY CHECK.-A comparative sensitivity check can be made by operating the receiver on a weak signal from a television station and comparing the picture and sound obtained to that obtained on other receivers under the same conditions. This weak signal can be obtained by connecting the shop antenna to the receiver through a ladder type attenuator pad.

RESPONSE CURVES.-The response curves shown on page 14 are typical though some variations can be expected.
The response curves are shown in the classical manner of presentation, that is with "response up" and low frequency to the left. The manner in which they will be seen in a given test set-up will depend upon the characteristics of the oscilloscope and sweep generator.

NOTES ON R-F UNIT ALIGNMENT -Because of the frequency spectrum involved many of the r-f unit leads are critical in some respects. Even the power supply leads form loops which couple to the tuned circuits, and if resonant at any of the frequencies involved in the performance of the tuner, may cause serious departures from the desired characteristics. In the design of the receiver these undesirable resonant loops have been shifted far enough away in frequency to allow reasonable latitude in physical arrangement without being troublesome. When the $\mathrm{r} \cdot \mathrm{f}$ unit is aligned in the receiver, no trouble from resonant loops should be experienced. However, if the unit is aligned in a jig separate attention should be paid to insure that unwanted resonances do not exist which might present a faulty representation of alignment.

A resonant circuit exists between the r-f tuner chassis and the outer shield box, which couples into the antenna and r-f plate circuits. The frequency of this resonance depends on the structure of the shield box. This resonance is controlled by using insulating washers of proper thickness in the front plate to tuner chassis mounting. Obviously, if the r-f unit is removed for service, the washers should be replaced in the correct order.

17T153, 17T154,
17T155, 17T160, 17 T 162,
17T172, 17T172K, 17T173,
17T173K, 17T174, 17T174K

ALIGNMENT TABLE

the detailed alignment procedure beginning on page b should be read before alignment by use of the table is attempted

$\begin{aligned} & \text { Stop } \\ & \text { No. } \end{aligned}$		$\begin{aligned} & \text { SIGNAL } \\ & \text { GRN. } \\ & \text { FREO. } \end{aligned}$	CONNECT SWEEP GENERATOR TO	$\begin{aligned} & \text { SWEEP } \\ & \text { GEN. } \\ & \text { FREQ. } \end{aligned}$	CONNECT HETERODYNE FREO. METER TO	METER FREO.	$\begin{aligned} & \text { CONNECT } \\ & \text { OSCILLOSCOPE } \\ & \text { TO } \end{aligned}$		ADJUST	$\underset{\text { TO }}{\text { REFER }}$

ANTENNA MATCHING UNIT ALIGNMENT

1	Do not adjupt this unit unlose fairly certain that it requires adjumtment. Disconnect lead from L58 to S5. Connect the output of the matching unit through 1000 mmf . to pin 1 of V107. Replace cover on the matching unit. Remove V106 from ite socket. Connect a bias boz to the junction of R143 and R144 and set it to produce -6 volts at TP 101.									
2	Antenna terminals	45.75 me. 30% mod.	Not used	-	Not uned	-	TP102. Scope gain to max.	-	L59 for min. audio on scope	Fig. 7
3	"	41.25 mc . $30 \% \mathrm{mod}$.	"	-	"	-	"	-	L60 for min. audio on scope	Fig. 7
4	Antenna terminale loosely		Antennaterminals through pad	45 to 54 me.	"	-	Scope xtal probe to L58	Remove 1000 mmf . Connect 300 ohme from L58 to gnd.	L61 and L62 to obtain response of Fig. 12	Fig. 7 Fig. 11 Fig.

R-F UNIT ALIGNMENT

5	If unit is complotely out of adjustment. preset all adjumtments to center of range with following exceptions. Set Clis so that head in \#" above chamain. Set T1 max. counterclockwise. Set C11 $1 / 4$ turn from max. clockwiee. Disconnectlink from T104 and torminate with 39 ohms. Short r-f unit power terminal 3 to ground. Set fine tuning 30 degreen clockwise from mechanical center of ite range for all oscillator adjubtments.									
8	Grid. pin 7 of V2 through 1500 mmf .	$\begin{aligned} & 43.5 \mathrm{mc} . \\ & 30 \% \mathrm{mcd} . \\ & 400 \mathrm{cy} . \end{aligned}$	Not used	-	Not used	-	TP1. Gain to maximum	Set r-t unit on channel 2	L65 formin. indication on scop.	$\left\|\begin{array}{l\|l\|} \hline \text { Fig. } \\ \text { Fig. } 10 \end{array}\right\|$
7	Not uned	- -	Not used	-	Loosely to ref unit oscillator	227 mc .	Not used	R-F unit on channol 8	Cl for beat on het. freq. meter	Fig. 7
8	Antenna termi. nale loosely	$\begin{gathered} 181.25 \\ \text { and } \\ 185.75 \end{gathered}$	Antennaterminale through pad	$\operatorname{Channel}_{8}$	Not used	-	TP1. Gain to maximum	Use min. eignal which will give useable pattern	C9. C11, C15 and C18 for reaponse shown in Fig. 13	Fig. 7 Fig. 13
9	Not used	-	Not ueed	-	Loosely to r-f unit oscillator	129 mc .	Not ueed	R-F unit on channel 8	LS for beat on het. freq. metor	Fig. 8
10	Antenna terminals loonely	$\begin{aligned} & 83.25 \\ & \text { ond } \\ & 87.75 \end{aligned}$	Antennaterminals through pad	${\underset{8}{C h a n}}^{\text {Chal }}$	Not used	-	TP1. Gain to maximum	"	L48. L50 and L53 for response shown in Fig. 13	$\begin{aligned} & \hline \text { Fig. } 7 \\ & \text { Fig. } 13 \end{aligned}$
11	Not used	-	Not uned	-	Not used	-	Not used	Rec. on channel 8. Connect ''Volt. Ohmyet" to TPI	C8 for -3.5 volte on meter	Fig. 7
12	Antenna torminale loosely	$\begin{aligned} & 83.25 \\ & \text { and } \\ & 87.75 \end{aligned}$	Antennaterminals through pad	$\begin{gathered} \text { Channel }_{8} \end{gathered}$	Not used	-	TP1. Gain to maximum	$\underset{\substack{\text { R.F } \\ \text { nol } 6}}{ }$	Check response readjust L48, L50 and LS3 if neceseary	$\begin{aligned} & \text { Fig. } 7 \\ & \text { Fig. } 13 \end{aligned}$
13	Not used	-	Not used	-	Loosoly to r-f unit oncillator	227 mc .	Not used	R-F unit on channol 8	Cl for beat on het. freg. meter	Fig. 7
14	Antenna tarminale loomely	$\begin{gathered} 181.25 \\ \text { and } \\ 185.75 \end{gathered}$	Antennaterminals through pad	$\underset{8}{\text { Channel }}$	Not used	$-$	TPl. Gain to maximum	"	Check response adjust C9, C11, C15 and C18 if necessary	Fig. 7
15	If C9 wasmeadjusted in step 14, repeat step 11, etop 13 and step 14 until the conditione specified in each step are fulfilled without additional adjust mente.									
18	Not used	-	Not used	-	Loosely to r-f unit oscillator	251 mc .	Not used	Rec. on channel 13	L46 for beat on het. ireq. meter. Overshoot L46 slighty and adjust Cl for beat	Fig. 7
17	Antenna terminale loosely	$\begin{aligned} & 211.25 \\ & 215.75 \end{aligned}$	Antennaterminale through pad	Channel 13	Not uned	-	TP1. Gain to maximum	Rec. on channel 13 "VoltOhmyst" on TP1	Check to see that response is correct and -3.0 volte of osc. injection is present	Fig. 13
18	"	$\begin{array}{r} 205.25 \\ 209.75 \end{array}$	"	$\underset{12}{\substack{\text { Channel } \\ \hline}}$	Not used	-	"	Rec. on channel 12	"	Fig. 13
18	"	$\begin{aligned} & 199.25 \\ & 203.75 \end{aligned}$	"	Channel	"	-	"	Rec. on channel 11	"	Fig. 13
20	"	$\begin{aligned} & 193.25 \\ & 197.75 \end{aligned}$	"	$\underset{10}{\text { Channel }}$	"	-	"	Rec. on channel 10	"	Fig. 13
21	"	$\begin{aligned} & 187.25 \\ & 191.75 \end{aligned}$	"	Channel	"	-	"	Rec. on channel 9	"	Fig. 13
22	"	$\begin{aligned} & 181.25 \\ & 185.75 \end{aligned}$	"	${ }_{8}^{C h a n n e l}$	"	-	"	Rec. on channel 8	"	Fig. 13
23	"	$\begin{array}{r} 175.23 \\ 179.75 \end{array}$	"	$\underset{7}{\text { Channel }}$	"	-	"	Rec. on channel 7	"	Fig. 13

If the reaponse of any channel (steps 17 through 23) is below 80% at either marker, adjust C9, C11, C15 and C18 as necessary to pull reaponse up on than channel yet maintain correct response on channel 8 .

Repeat step 13. If the oncillator is off frequency overehoot the adjustment of Cl and correct by adjusting L46.
Repeat steps 18 through 25 until all adjustmente are obtained.

26	Repeat steps 18 through 25 until all adjustments are obtained.									
27	Not uned	-	Not used	-	Loosely to r - f unit oscillator	129 mc .	Not used	Rec. on channel 8	$L 5$ for beat on het. freq. meter	Fig. 7
28	Antenna torminale loosely	$\begin{aligned} & 83.25 \\ & 87.75 \end{aligned}$	Antennaterminals through pad	$\underset{6}{\text { Channel }}$	Not used	-	TP1. Gain to maximum	Rec. on channol 6 "Voltohmyst" on TP1	Check to see that response is correct and -3.0 volts of onc. injection is present	Fig. 7 Fig. 13
29	"	$\begin{aligned} & 77.25 \\ & 81.75 \end{aligned}$	"	$\underset{5}{\text { Channel }}$	"	-	"	Rec. on channel 5	"	Fig. 13
30	"	$\begin{aligned} & 67.25 \\ & 71.75 \end{aligned}$	"	Channel 4	"	-	'	Rec. on channel 4	"	Fig. 13
31	"	$\begin{aligned} & 61.25 \\ & 65.75 \end{aligned}$	"	$\underset{3}{\text { Channel }}$	"	-	"	Rec. on channel 3	"	Fig. 13

Figure 20 -Normal Picture

ligure 21-Vocus Magnet and
lon Trap Magnet Misadjusted Magnet Misadjusted

igure 22-Horizontal Livearity
Control Misad justed (Piclure Control Misadjusted (Picture
Cramped in Middle) $\longleftarrow<$

Figure 23-W「idth Control $\xrightarrow{\text { Misad justed }}$

Figure 24-Horizontal Drive Control Misadjusted
igure 25-Transients $\xrightarrow{25-T r a n s i e n}$

Figure 27-Test Pattern Show.
ing Out of Sync Condition When
Who Horizontal Hold Control Is at the
Maximum Cloctuise Posion Maximum Clockwise Position 17T153,17T154, $17 T 155,17 T 160,17 T 162$,
$17 T 172,17 T 1722.17 T 113$,
$17 T 173 K, 17 T 174,17 T 174 \mathrm{~K}$

Following is a list of symploms of possible failures and an indication of some of the ponsible faults:

NO RASTER ON KINESCOPE:
(1) Incorrect adjustment of ion trap magnet. Magnet reversed either front to back or top to bottom
(2) V116 or V117 inoperative. Check waveforms on grids and plates.
(3) No high voltage-if horizontal deflection is operating as evidenced by the correct waveform on terminal 1 of high voltage transformex, the trouble can be isolated to the
1B3GT circuit. Either the T114 high voltage winding is open, the 1B3GT tube is defective, its filament circuit is open or Cl 97 is shorted.
(4) Vllo circuit inoperative-Refer to schematic and wave form chart.
(5) Damper tube (V120) inoperative.
6) Defective kinescope
(7) R218 open.
(8) No receiver plate voltage-6ilter capacitor shorted-or filter choke open.

N VERTICAL DEFLECTION

(1) V114B or V115 inoperative. Check voltage and waveforms on qrids and plates
(2) Tlll open.
(3) Vertical deflection coils open.

SMALL RASTER
(1) Low Plus B or low line voltage
(2) V117 defective

POOR VERTICAL LINEARITY:
(1) If adjustments cannot correct, change V115.
(2) Vertical outpul translormer Tlll defective
(3) V114B delective-check voltage and wavetorms on grid and plate.
4) $\mathrm{C} 168, \mathrm{C} 170, \mathrm{C} 171, \mathrm{C} 172, \mathrm{C} 173$ or C 174 defective
(5) Low plate voltage-check rectifiers and capacitors in supply circuits.
(6) If height is insufficient, try changing V114

POOR HORIZONTAL LINEARITY:

(1) If adjustments do not correct, change V117, or V120 (2) $\mathrm{Tl1} 4$ or $\mathrm{L107}$ delective
(3) C 195 or C 196 delective.
(1) C199 defective
(2) Defective yoke

PICTURE OUT OF SYNC HORIZONTALLY
(1) T113 incorrectly tuned.
(2) R226, R227 or R201B defective

TRAPEZOIDAL OR NON SYMMETRICAL RASTER:
(1) Improper adjutment of eentering or focus magnet or for (2) Defective yoke

RASTER AND SIGNAL ON KINESCOPE BUT NO SOUND:
(1) Tllo defective
(2) Sound i-f, ratio detector or audio amplifier inoperative-
check VIO1, ViO2, VIO3 and their socket voltages.
(3) Audio system defective
(4) Speaker defective.

SIGNAL AT KINESCOPE GRID BUT NO SYNC:
(1) AGC control R175 misadjusted.
(2) Vlll, inoperative. Check voltage and waveforms at its

SIGNAL ON KINESCOPE GRID BUT NO VERTICAL SYNC:
(1) Check V114B and associaled circuit.
(2) Integrating network inoperative-Check.
(3) V113 or V114A defective or associated circuit defective
(4) Gas current grid emission or grid cathode leakage in

SIGNAL ON KINESCOPE GRID BUT NO HORIZONTAL SYNC:
(1) Tll3 misadjusted-readjust as instructed on page 11.
(2) V112 or V113 inoperative-check socket voltages and waveforms.

(4) C157, C181A, C182, Cl
Cl 83 defective. $\mathrm{Cl} 84, \mathrm{Cl85}, \mathrm{Cl} 86, \mathrm{Cl} 87$ or

(5) If horizontal speed is completely off and cannot be
adjusted check R226, R227, R2O1B, R229, R230 and R231.

SOUND AND RASTER BUT NO PICTURE OR SNYC:
(1) Picture, detector or video amplitier defective-check
CR101 and V110-check socket voltages. (2) Bad contact to kinescope cathode.

PICTURE STABLE BUT POOR RESOLUTION
(1) CRIOl or V110 defective
(2) Peaking coils defective-check resistance.
(3) Make.sure that the focus control operates on both sides
of proper focus.
(4) R-F and I-F circuits misoligned

PICTURE SMEAR:
(1) R-F or I-F circuits misaligned.
(2) Open peaking coil.
(3) This trouble can originate at the transmitter-check on

PICTURE JITTER:

(1) AGC control R175 misadjusted
(2) If regular sections at the left picture are displaced

Stop No.	$\begin{aligned} & \text { CONNECT } \\ & \text { GENONAL } \\ & \text { GENETOTOR } \end{aligned}$	$\begin{gathered} \text { SIGNAL} \\ \text { GENEL } \\ \text { FRCO. } \end{gathered}$	$\begin{aligned} & \text { CONNECT } \\ & \text { GENEEFPTOR } \\ & \text { GENETOTO } \end{aligned}$	$\begin{aligned} & \text { SWEEP } \\ & \text { GEREP } \\ & \text { FMC. } \end{aligned}$	$\begin{aligned} & \text { CUNHECT } \\ & \text { HETERODYME } \\ & \text { FREO. METER } \\ & \text { TO } \end{aligned}$	$\begin{aligned} & \text { HET: } \\ & \text { METER } \\ & \text { FRC. } \end{aligned}$	$\left\lvert\, \begin{array}{c\|} \text { CONNECT } \\ \text { OSCLILHOBCOPE } \\ \text { TO } \end{array}\right.$	MISCELLANEOUS CONNECTINB INSTRUCTIONS	adjust	${ }_{\text {Refer }}^{\text {Tor }}$
32	"	595.25	"	Cthannel		-	"	Rec. on channol 2		Fig.
33	If excemive tilt in the same direction occure on channels 2, 3 and 4, adjust C18 on channel 2 to ovarahoot the correction of this tilt them switeh to channol 6 and adjust L53 for mar. amplitude of respone between carrier markere.									
34	Check r-f reeponee and oucillator injection on channols 7 through 13 atops 23 back up through step 17 ztopping on channel 13 for the next stop.									
${ }_{3}$	Not unod	-	Not usod	-	$\left\lvert\, \begin{aligned} & \text { Loosenly coupled } \\ & \text { to } r-f \text { oecill }\end{aligned}\right.$	257 mc.	$\begin{aligned} & \text { TPl. Gain to } \\ & \text { maximum } \end{aligned}$	Rec. an channel 13	Cl for boat on hot. troc. motor	. 7
36	"	-	"	-	"	251 mc .	"	Rec. on channel 12	Lil as above	Fig. 7
37	"	-	"	-	"	245 mc .	"	Rec. on channel 11	L10 as above	Fig. 1
38	"	-	"	-	"	239 mc .	"	Roc. en channel 10	29 as abovo	Fig. 7
39	"	-	"	-	"	233 mc .	"	Roc. on channol 9	L8 as above	Fig. 7
40	"	-	"	-	"	222 mc .	"	Rec. on channel 8	L7 as above	Fig. 7
41	"	-	"	-	"	221 mc .	"	Rec. on channol 7	L6 as above	$\stackrel{\text { Fig. } 7}{ }$
42	"	-	"	-	"	129 mc .	"	Rec. on channol 6	LS as abovo	Fig. 7
43	"	-	"	-	"	123 mc .	"	Roc. on channel 5	L4 as above	Fig.
44	"	-	"	-	"	113 mc .	".	Roc. on channel 4	L3 as above	Fig. 7
43	"	-	"	-	"	107 mc .	"	Rec. on channol 3	L2 as above	Fig. 7
48	"	-	"	-	"	P201 me.\|	\| "	Roc. on channol 2	L1 as above	Fig. 7
47	Repoat atepe 35 through 46 ae a check. On completion, remove 39 ohm resistor and reconnect link to torminale A and B of T 104.									

RATIO DETECTOR, SOUND I.F AND SOUND TAKE.OFF ALIGNMENT

48			Not ueed
49	"	"	"
50		4.5 mc .	1at Sound 1-F Grid (pin 1 . grid
51	"	"	"
52		"	Not used

Not ueod	-	
"	--	"
"	-	
"	-	Junction ${ }^{\text {Jit }}$ R112 and
"	-	

PICTURE I-F AND TRAP ADJUSTMENT

53	Not umed	-	Not uead	-	Not ueod	-	Not used	Connect biae box to RMoltohmy and at TP	unction of R143 and 101 .	
54	Sig. Gen. aroms	39.25 mc .	"	-	"	-	"	"Voltohmyrot to To give - 1.0 volt doc	T104 top core to give min. dec on mator. min. dec on meter.	Fig. 9
${ }_{3}$	"	41.25 mc .	"	-	"	-	"		T105 bot. for min.	Fig. 10
56	"	47.25 mc .	"	-	"	-	"	"	T108 bot. for min.	Fig. 10
57	"	43.7 mc .	"	-	"	-	,	Sig. Gon. output to give Gel. Vd.c at $\xrightarrow[\text { TPIO2. }]{\text { give }}$	T109 for max.	Fig. 7
9	"	45.5 mc .	"	-	"	-	"		T108 for max.	Fig. 9
${ }^{50}$	"	41.8 mc .	"	-	"	-	"		T107 for max.	Fig. 9
∞		$\begin{aligned} & \text { Various } \\ & \text { Figo. } \end{aligned}$		$\begin{gathered} 40 \text { to } \\ 88 \mathrm{mc} . \end{gathered}$	"	-	TPO ${ }_{\text {Tosat }}$ point			Fig. ${ }_{\text {Fige }}$
81	Connnectod loosen to diod probe	$\begin{gathered} \text { Various } \\ \text { Fig. } 17 \end{gathered}$	Mixer grid tent point TP2 with short lead -hortlead	$\begin{gathered} 40 \text { to } \\ 48 \text { me. } \end{gathered}$	"	-	Scope diod probe to 7108 - and to gnd.			${ }_{\text {Fig, }}^{\text {Fig }}$ if
62	Connoctod loonely to gridid of 1st piai i-f	$\begin{gathered} \text { Various } \\ \text { Fig. } \\ \text { Fige } \end{gathered}$	"	"	"	-	Connoct to TPIO2			Tig. 18

ALIGNMENT DATA

Figure 7-R-F Unit Adjuctments

Figure \&-R-F Oscillator Adjustoments

$$
5
$$

Figure 9-Top Chassis Adjustment.

Tigure 10- Bara Cb A Ajurteres

Figure 11-Sweep Attenuator Pads

Tigure 12-Antenna Matching Unit Response

Figure 13-R-F Respons

Figure 14
Sound $1 . F$
Response
igure 15
atio Det.

(3) Vertical instability may be due to loose connections or noise.
(4) Horizontal instability may be due to unstable transmitted sync.

RASTER BUT NO SOUND, PICTURE OR SYNC:

(1) Defective antenna or transmission line.
(2) R-F oscillator off trequency.
(3) R-F unit inoperative-check V1, V2.

PICTURE I-F RESPONSE.-At times it may be desirable to observe the individual i-f stage response. This can be achieved by the following method:
For Tl07, Tl08 or Tl09, shunt all i-f transformers with a 330 ohm carbon resistor except the one whose reaponse is to be observed.
Connect a wide band sweep generator to the second pix i-f grid and adjust it to sweep from 38 mc . to 48 mc .

DARK VERTICAL LINE ON LEF' OF PICTURE:

(1) Reduce horizontal drive and readjust width and horizontal linearity.
(2) Replace V117.

LIGHT VERTICAL LINE ON LEFT OF PICTURE:
(1) Cl 93 defective.
(2) V120 defective.

Connect the oscilloscope to test point TP1O2 and observe the overall response. The response obtained will be essentially that of the unshunted stage.
To see the response of transformers T1, T104 and T105, T106, follow the instructions given on page 10.

Figures 28 through 36 show the response of the various stages obtained in the above manner. The curves shown are typical although some variation between receivers can be expected. Relative stage gain is not shown.

RESPONSE PHOTOGRAPHS

Figure 28-Overall Pix I-F Response

Figure 31-Response of T107 Pix I-F Transformer

Figure 34-Video Response at Average Contrast

Takon from RCA WO58A Oscilloscope

Figure 29-Response of Tl-T104 Pix I-F Transformers

Figure 32-Response of T108 Pix I-F Coil

Figure 35-Video Response (100 KC Square Wave)

Figure 30-Response of T105-T106 Pix I-F Tramsformer

Figure 33-Response of T109
Pix I-F Coil

Figure 36-Video Response (60 Cycle Square Wave)

17T153, 17T154, 1TT155, 17T160, 17T162. 17T172, 17T172K, 1TT173, 17T173K, 17T174, 17T174K

WAVEFORM PHOTOGRAPHS

Taken from RCA WO58A Oscilloscope

Grid of 1st Video Amplifier (Pin 4 of V110) (6AG7) Voltage Depends on Picture
Figure 37-Vertical (Oscilloscope Synced to $1 / 2$ of Vertical Sweep Rate) (6.0 Volts PP)

Figure 38-Horizontal (Oscilloscope Synced $101 / 2$ of Horizontal Sweep

Rate) (6.0 Volts PP)
\rightarrow

Plate of 1st Video Amplifier (Pin 8 of V110) (6AG7)
Voltage depends on picture
Figure 39-Vertical (105 Volts PP)
$\longleftarrow \leqslant$
Figure 40-Horizontal (105 Volts PP)
\rightarrow

Grid of Sync Separator (Pin 4 of V113) (6SN7)
Voltage depends on picture
Figure 41-Vertical (30 Volts PP) 4

Figure 42-Horizontal (30 Volts PP)
\rightarrow

Plate of Sync Separator (Pin 5 of V113) (6SN7) (.25 mfd in series with probe)

Figure 43-Vertical (33 Volts PP)

Figure 44-Horizontal (8 Volts PP)

Grid of Vertical Sync Amp (Pin 4 of V114A) (6SN7)

Figwre 45-Vertical (12 Volts PP)

Figure 46-Horizontal (5 Volts PP)

WAVEFORM PHOTOGRAPHS
Taken from RCA WO58A Oecilloscope

Plate of Vertical Sync Amp (Pin 5 of V114A) (6SN7)

Figure 47-Vertical (27 Volts PP)

$$
4
$$

Figure 48-Horizontal (16 Volts PP) \rightarrow

Figure 49-Grid of Vertical Sweep Osc. (Pin 1 of V114B) (6SN7)
(25 Volts PP)
\leftarrow

Figure 50-Plate of Vertical
Sweep Osc. (Pin 2 of V114B)
(30 Volts PP)
\rightarrow

Figure 51-Grid of Vertical Sweep Owtpset (Pin 1 of V11s) (6AQ5) (35 Volts PP)

Figure 52-Plate of Vertical Sweep Oxtput (Pin s of VIIS) (6AQS) (800 Volts PP)
\rightarrow

Cathode of Sync Separator (Pin 3 of V113) (6SN7)

Figure 53-Vertical (11 Volts PP)

$$
\downarrow 4
$$

Figure 54-Horizontal (6 Volts PP)

Grid of Sync Separator (Pin 1 of V113) (6SN7)

Figure 55-Vertical (40 Volts PP)

$$
\longleftarrow+4
$$

Figure 56-Horizontal (40 Volts PP)

WAVEFORM PHOTOGRAPHS

Taken from RCA WO58A Oscilloscope

Plate of Sync Separator (Pin 2 of V113) (6SN7)

Figure 57-Vertical (15 Volts PP)

$$
4-4
$$

Figure 58 -Horizontal (15 Volts PP) \rightarrow

Plate of Hor. Sync Amp. (Pin 5 of V112) (GSN7)

Figure 61 -Verical (70 Volts PP)
\qquad

Figure 62-Horizontal (70 Volts PP)
\rightarrow

Grid of Hor. Sync Amp.
(Pin 1 of V112) (GSN7)
Figure 63-Vertical (65 Volts PP)

Figure 64-Horizontal (65 Volts PP)

Cathode of Hor. Sync Amp (Pin 3 of V112) (6SN7)

Figure 65-Vertical (18 Volts PP)

Figure 66-Horizonsal (18 Volts PP)

WAVEFORM PHOTOGRAPHS

Taken from RCA WO58A Oscilloscope

Figure 67-Grid of Horizontal Oscillator Control (Pin 1 of V116) (6SN7GT) (22 Volis PP)

Figure 68-Cathode of Horizontal Oscillator Control (Pin 3 of V116) (6SN7GT) (1.3 Volts PP)

$$
\rightarrow>
$$

Figure 69-Grid of Horizontal Oscillator (Pin 4 of V116) (6SN7GT) (390 Volis PP) $\longleftarrow \square$

Figure 70-Plate of Horizontal Oscillator (Pin 5 of V116) (6SN7GT) (140 Volts PP) \rightarrow

Figure 71-Terminal "C" of T113 (120 Volts PP)

Figure 72-Grid of Horizontal Output Tube (Pin 5 of V117) (6BQ6) (95 Volts PP)

Figure 73-Plate of Horizontal Output (Approx. 4000 Volts PP) (Measured Through a Capacity Voltage Divider Connected from Top Cap of V117 to Ground)
$\leftrightarrow \square$
Figure 74- Cathode of Damper (Pin 3 of V120) ($6 W_{4} G T$) (2300 Volts PP)
\Rightarrow

Figure 75-Plate of Damper (Pin 5 of V120) ($6 W 4 G T$) (180 Volts PP)
$\leftrightarrow \longrightarrow$

Figure 76-Plate of AGC Amplifier (Pin 5 of V111) (6CB6)
(600 Volts PP)

\Rightarrow

The following measurements reprenent two rets of conditions. In the first condition, a 5000 microvolt test pattern signal was fed into the recoiver, the picture synced and the AGC control properly adjusted. The second condition was obtained by removing the antenna leads and short circuiting the receiver antenna terminals. Voltages shown are read with a type WV97A senior "VoltOhmyst" between the indicated terminal and chaseris ground and with the receiver operating on 117 volts, 60 cycles, a-c. The symbol < means less than.

Tube No.	Tube Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		Notes on Measurements
				$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	Pin No.	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	
V1	6x8	Mixer	$\begin{gathered} 5000 \mathrm{Mu} \\ \text { Signal } \end{gathered}$	9	-	8	-	6	0	7	-	
			No Signal	9	$\begin{gathered} 145 \text { to } \\ 150 \end{gathered}$	8	$\begin{gathered} 145 \text { to } \\ 150 \end{gathered}$	6	0	7	$\begin{array}{\|c\|} \hline-2.8 \text { to } \\ -3.5 \end{array}$	Depending on channel
V1	6x8	R-F Oscillator	$\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	3	-	-	-	6	0	2	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	3	$\begin{gathered} 88 \text { to } \\ 108 \end{gathered}$	-	-	6	0	2	$\begin{array}{\|c\|} \hline-3.0 \text { to } \\ -5.1 \\ \hline \end{array}$	Depending on channel
V2	6BQ7	R-F Amplifier	$\begin{gathered} \hline 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	6	-	-	-	8	-	7	-	
			No Signal	6	$\begin{gathered} 133 \text { to } \\ 138 \end{gathered}$	-	-	8	1.1	7	-	Depending on channel
V2	6BQ7	R-F Amplitier	$\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	1	-	-	-	3	-	2	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	1	260	-	-	3	$\begin{gathered} 133 \text { to } \\ 138 \end{gathered}$	2	-	Depending on channel
V101	6AU6	$\begin{aligned} & \text { lat Sound } \\ & \text { I-F Amp. } \end{aligned}$	$\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	255	6	185	7	0.8	1	-1.0	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	5	245	6	165	7	0.9	1	0	
V102	6AU6	2d Sound I.F Amp.	$\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	260	6	52	7	0.17	1	-24	
			No Signal	5	255	6	54.0	7	0.12	1	*-1.5	*Unreliable measuring point. Voltage depende on noice.
V103	6AL5	Ratio Detector	$\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	7	0.54	-	-	1	15.1	-	-	7.5 kc deviation at 400 cycles
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	7	-0.85	-	-	1	*6.85	-	-	*Unreliable measuring point. Voltage depends on noine.
V104	6AV6	lat Audio Amplifier	$\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Siqnal } \\ \hline \end{gathered}$	7	102	-	-	2	0	1	-0.3	At min. volume
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	7	100	-	-	2	0	1	-0.3	At min. volume
V105	6AQ5	Audio Output	$\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	245	6	254	2	17	7	0	At min. volume
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	240	6	250	2	17	7	0	At min. volume
V106	6AU6	lat Pix. I-F Amplitier	$\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	248	6	255	7	0.2	1	-6.7	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	150	6	120	7	1.0	1	* 0	*Unreliable measuring point. Make measurement at T104-D.
V107	6CB6	2nd Pix. I-F Amplitier	$\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	249	6	232	2	0.15	1	-6.7	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	145	6	108	2	0.8	1	0	
V108	6CB6	3d Pix. I.F Amplitier	$\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	145	6	135	2	1.2	1	0	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	130	6	127	2	1.1	1	0	
V109	6CB6	4th Pir. I.F Amplitier	$\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	215	6	150	2	2.1	1	0	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	210	6	140	2	2.0	1	0	
V110	6AG7	Video Amplitier	$\underset{\text { Signal }}{5000 \mathrm{Mu.}}$	8	135	6	150	5	1.35	4	-3.0	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	8	100	6	125	5	1.65	4	*-0.6	*Depende on noise
V111	6CB6	AGC Amplitier	$\underset{\text { Signal }}{5000 \mathrm{Mu.}}$	5	-35.8	6	238	2	120	1	120	AGC control met for normal operation
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	4.0	6	265	2	100	1	80	AGC control set for normal operation

Tube	$\underbrace{\substack{\text { Tube } \\ \text { Tpe }}}_{\text {Tupe }}$	Function	Oporatiogconditioncosem	E. Plate		E. Screen		E. Cathode		E. Grid		Noter on Measurements
				${ }_{\text {Prem }}^{\substack{\text { Pin } \\ \text { No }}}$	Volts	${ }_{\substack{\text { Pin } \\ \text { No. }}}^{\text {den }}$	Volts	${ }_{\substack{\text { Pin } \\ \text { No. }}}$	Volts	${ }_{\text {Pin }}^{\substack{\text { Pin } \\ \text { No }}}$	Vols	
$v 112$	6SN7GT			2	150	-	-	3	1.2	1	-38.0	
			$\mathrm{Simol}_{\text {Nomal }}^{\text {Nom }}$	2	143	-	-	3	0.68	1	-18	
				5	77	-	-	6	0	4	-1.3	
			$\mathrm{Sigol}_{\text {Sigal }}^{\text {Nol }}$	5	25	-	-	6	-	4	-0.8	*Voltage deponds on noise.
v113	6SNYGT	$\underset{\substack{\text { Hor. Sync } \\ \text { Soparaor }}}{\text { a }}$		2	269	-	-	3	118	1	100	
			$\mathrm{Sigol}_{\text {Sol }}^{\text {Nol }}$	2	263	-	-	3	*90	1	${ }^{80}$	
V113	6SNVGT	$\xrightarrow{\text { Vorts. Sync }}$ Soparatrer		5	450	-	-	6	125	4	100	
			Sispol	5	400	-	-	6	100	4	80	
v114A	6SNGGT	$\substack{\text { Verts. Snac } \\ \text { Amplifar }}$		5	12.0	-	-	6	0	4	0.13	
			$\mathrm{S}_{\text {Sigoal }}^{\text {Nol }}$	5	11.0	-	-	6	-	4	0.05	
v114B	6smyg			2	${ }^{53}$	-	-	3	-	1	-14.8	${ }^{\text {Dopendid on } \text { atitigy of Vort. }}$ bold contol.
			$\mathrm{Sigol}_{\text {Sigal }}^{\text {Nom }}$	2	.53	-	-	3	-	1	-14.1	
v115	6A05	Vorital		5	245	6	259	2	21.5	1	0	
			$\mathrm{signol}_{\text {Sol }}^{\text {Nom }}$	5	240	6	252	2	21.6	1	0	
v116	6SN2GT	Horitental		2	182	-	-	3	8.0	1	12.5	
			$\mathrm{Simol}_{\text {Sigal }}^{\text {Nom }}$	2	180	-	-	3	-3.0	1	19.5	
				2	135	-	-	3	8.8	1	-13.5	Hor. bold counterctlockwise
			${ }_{\substack{\text { a }}}^{5000 \mathrm{Mu}, \mathrm{v}}$ S.igai	2	225	-	-	3	8.8	1	12.5	Hor. bold clockwise
$v 116$	6sNYGT	Horimolt		5	185	-	-	6	-	4	58	
			$\mathrm{Si}_{\text {Sopol }}^{\text {Nol }}$	5	180	-	-	6	-	4	-67	
				5	185	-	-	6	-	4	${ }^{58}$	Hor. bold counterclockwise
				5	185	-	-	6	-	4	58	Hor. bold clockwise
v117	6B86GT	Horiontal		Cap	.	4	168	8	18.0	5	-15.0	
			sispol	Cap	.	4	168	8	18.5	5	-15.0	
v118	1v2			9	.	-	-	485	4280	-	-	¢High Voltage
Omittod on "K" Models			$\mathrm{Si}_{\text {Sigol }}^{\text {Nol }}$	9	.	-	-	485	4220	-	-	
v119	${ }_{\substack{133 G 7 \\ 18016}}$	$\xrightarrow{\text { H.vectior }}$		Cap	-	-	-	$2 ¢ 7$	13,500	-	-	
			Sisolal	Cap	-	-	-	$2 \otimes 7$	13,200	-	-	$\xrightarrow{\text { High Vollage }}$ Pube Prooat
v120	6W4GT	Dampor		5	266	-	-	3	.	-	-	$\underset{\substack{\text { Higiob Voliage } \\ \text { Pube Preasel }}}{ }$
			Sigol	5	261	-	-	3	-	-	-	$\underset{\substack{\text { High V Voltage } \\ \text { Pube Preaent }}}{ }$
v121		Kinescope		Cono	13,500	10	475	11	140	2	90	At average Brighmous
			Sigol	Cone	13,200	10	470	11	135	2	90	At average Brightmose

CRITICAL LEAD DRESS:

4. Dress Clit down between R117 (volume control) and
water slol-2.
5. Ground R130 to pin 3 of V106 and R138 to pin of V107.
6. Do not change the grounding of R141, R146 and R149.
7. Keep the bus wire fom T 109 A A 10 C 146 (plug in capaci-
tor short ond direct.
8. Ground the filaments of ofockets V107, V1.08 and V109
8. Ground the filaments of socketiv1 viov vive and V109

1.) Dress C 153 and R 1770 (kine cathode) up in the air above

15. Dress prit close io the chasisis with leads as short as

 18. Dress oll 2 watt reaitors paya foom each other and all 19. Dress all wires away trom damper tube V 120 .
20. Blue wire from pin 5 V 116 to T T 113 . A should not be more
21. tress all peakking coils u p and away from the base.

Model 21T159 "Selfridse" Welmut, Mabogeny, Limed Onk

Model 21T165 "Moredisb" Whuf, Mabogeny, Limed Oak Welment, Mehogevy, Limed Oak

Model 21 T176 "Smffolk" Walment, Mabosany, Limed Onk

Model $21 T 178$ "Rockinghan"
Model $21 T 178$ "Rockingba
Walnut. Mabogany
almen. Mabogney, Limed Onk

Model 21T179 "Cleremdon" Welment, Mabogeny, Meple

TELEVISION RECEIVERS
 MODELS 2IT159, 2IT165, 21T176, 21T177, 21T178, 21T179
 Chassis Nos. KCS68C or KCS68E
 — Mfr. No. 274 Service Data - 1951 No. 78 -

PREPARED BY RCA SERVICE CO., INC. FOR
RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

GENERAL DESCRIPTION

Models 21T159, 21T165, 21T176, 21T177, 21T178, and 21 T179 are deluxe "21 inch" television receivers. The receivers are identical except for cabinets, speakers and the use of pilot lights on some models.

Features of the television unit are: full twelve channel coverage: "totem" r-f amplifier; intercarrier FM sound system; ratio detector: 40 mc picture $\mathrm{j}-1$; improved picture brilliance: pulsed picture A.G.C: A.F.C horizontal hold; stabilized vertical hold; compensated video gain control; noise saturation circuits; im. proved sync separator and clipper; four mc. band width for picture channel and reduced hazard high voltage supply. An auxiliary audio input jack is provided to permit the use of an external record playing attachment.

ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE 227 square inches on a 21AP4 Kinescope
TELEVISION R-F FREQUENCY RANGE
All 12 tolovision channols, 54 mc . to $88 \mathrm{mc}, 174 \mathrm{mc}$, to 218 mc . Picture I-F Carrier Frequency
45.75 mc .

Sound I-F Carrier Frequency
VIDEO RESPONSE
SWEEP DEFLECTION
FOCUS
POWER SUPPLY RATING
115 volte, 60 cycles, 300 watts
AUDIO POWER OUTPUT RATING 5.0 watte max. LOUDSPEAKERS

RECEIVER ANTENNA INPUT IMPEDANCE
Choice: 300 ohms balanced or 72 ohms unbalanced.
RCA TUBE COMPLEMENT

Tube Used

(1) RCA 6BQ7
(2) RCA 6X8
(3) RCA 6AU6
(4) RCA 6CB6
(5) RCA 6CB6
(6) RCA 6CB6
(7) RCA 6AG7
(8) RCA 6AU6
(9) RCA 6AU6
(10) RCA 6AL5
(11) RCA 6AV6
(12) RCA 6AQ5
(13) RCA 6CB6
(14) RCA 6SN7GT
(15) RCA 6SN7GT
(16) RCA 6AQ5
(17) RCA 6SN7GT
(18) RCA 6SN7GT
(19) RCA 6CD6G
(20) RCA 6W4GT (2 tubes)
(21) RCA 1B3.GT/8016
(22) RCA 5U4G (2 tubes)
(23) ACA 21AP4

Function
R-F Amplitier
R-F Oscillator and Mixer 1st Picture I-F Amplitior 2nd Picture 1.F Amplitior 3rd Picture I-F Amplifier 4th Picture I-F Amplifier

Video Amplitier Ist Sound I-F Amplifier 2nd Sound I-F Amplifier Ratio Detector
1st Audio Amplifier
Audio Output
AGC Amplifier Sync Separator Vert Syrc Amplitier and Vert Sweep Onc.

Vertical Sweep Output Horizontal Sync Amplifier Horizontal Sweep Oscillator and Control Horizontal Sweep Output

Dampers
High Voltage Rectifier
Rectifiers
Kinescope

(Continued)

OPERATING CONTROLS (front Panel)
$\left.\begin{array}{l}\text { Picture } \\ \text { Brightnees }\end{array}\right\}$... Dual Control Kno
$\left.\begin{array}{l}\text { Picture Horizontal Hold } \\ \text { Picture Vertical Hold }\end{array}\right\}$..............................Dual Control Kno
$\left.\begin{array}{l}\text { Sound Volume and On-Of Switch } \\ \text { Tone Control and Phono Switch }\end{array}\right\}$.............Dual Control Knobs.
NON-OPERATING CONTROLS (not lacluding pif and if adjuemonts)
Picture Centering \qquad top chasala adjustment Width \qquad rear chasis adjustment
Horizontal Linearily rear chasils scrowdriver adjustment
Vertical Linearity rear chasils adjustment
Vertical Peaking Control rear chassis adjustment
Horizontal Drive rear chassis screwdriver adjustment
Horizontal Oscillator Frequency rear chassis adjustment
Horizontal Oscillator Waveform bottom chasais adjustment
Horizontal Locking Range rear chassis adjustment
Focus .. top chassis adjustment
Ion Trap Magnet top chassis adjustment
Deflection Coil top chassis wing nut adjustment
AGC Control .. rear chassin adjustment

HIGH VOLTAGE WARNING

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORR ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WOREING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

KINESCOPE HANDLING PRECAUTIONS

DO NOT REMOVE THE RECEIVER CHASSIS, INSTALL, REMOVE OR HANDLE THE RINESCOPE IN any manner unless shatterproof goggles. and heavy gloves are worn. people NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

The kinescope bulb encloses a high vacuum and. due to tis large surface area. Is subjected to comiderable air prossure. For this reason, the kinescope must be handled with more care then ordinary recelviag tuben.

The large end of the kinescope bulb-particularly that part at the rim of the viewlag suriace-must not be struck, seratched or subjected to more than moderate preasure of any time. During service it the tube sticke or faile to allp amoothly lato lts soctel or delecting yoke. Investigate and remove the cause of the trouble. Do not force the tube. Refor to the Recelver lastallation secten for detailed lantructions on kinescope installation. All RCA replacement kinescopes are shipped in special cartone and should be left in the cartons until ready for installation in the recelver.

The following adjustments are necessary when turning the receiver on for the first time.

1. See that the TV.PH switch is in the "TV" position.
2. Tum the receiver "ON" and advance the SOUND VOLUME control to approximately mid-position.
3. Set the STATION SELECTOR to the desired channel.
4. Adjust the FINE TUNING control for best pix and the SOUND VOLUME control for suitable volume.
5. Tum the BRIGHTNESS con* trol fully counter-clockwise, then clockwise until a light pattern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZONTAL hold control until a picture is oblained and centered.

8. Adjust the PICTURE and BRIGHTNESS controls for suitable picture contrast and brightness.
9. In switching from one channel to another, it may be necessary to repeal steps 4 and 8.
10. When the set is turned on again after an idle period it should not be necessary to repeat the adjustment if the posi. tions of the controls have not been changed. If any adjustment is necessary. step number 4 is generally sufficient.
11. If the positions of the controls have been changed, it may be necessary to repeat steps 2 through 8.
12. To use a record player. plug the record-player output cable into the PHONO jack on the rear apron, and set the TV.PH switch to "PH."

Figure 1-Receiver Operating Controls

REFER TO PAGES 234 TO 243 FOR TELEVISION ALIGNMENT PROCEDURE

INSTALLATION INSTRUCTIONS

Make sure that all lubes are in place and are firmly seated in their sockets.
Check to see that the kinescope high voltage lead clip is in place.

Plug a power cord into the 115 voll a-c power source and into the receiver interlock receptacle.
Turn the receiver power switch to the "on" position, the brightness control fully clockwise, and the picture control coun-ter-clockwise.

ION TRAP MAGNET ADJUSTMENT.-Set the ion trap mag. net approximately in th position shown in Figure 2. Starting from this position immediately adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen.

Figure 2 Ion Trap and Centering Magnet Adjustments

DEFLECTION YOKE RDJUSTMENT.-It the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.
PICTURE ADJUSTMENTS.-It will now be necessary to obtain a test pattern picture in order to make further adjustmenta. Connect the antenna transmission line to the receiver.
If the Horizontal Oacillator and AGC System are operating properly, it should be possible to sync the picture at this point. However, if the AGC control is misadjusted, and the recelver is overloading, it may be impossible to sync the picture.
If the receiver is overloading, turn Rl75 on the rear apron (see Figure 3) counter-clockwise until the set operates normally and the picture can be synchronized.

CHECX OF HORIZONTAL OSCILLATOR ALIGNMENT.Turn the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by ewitching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be gradually reduced and when only 2 bars sloping downward to the lett are obtained, the picture will pull into sync upon alight additional clockwise rotation of the control. Pull-in should occur before the control has been turned 120 degrees from the extreme counter-clockwise position. The picture should remain in aync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should remain in sync and should not show a black bar in the picture.

If the receiver passes the above checks and the picture is normal and stable. the horizontal oncillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Centering Adjumement."
should the ion trap magnet be adjuated to cause any loss of brightness since such operation may cause immediate or eventual damage to the tube. In some casen it may be necessary to ehift the position of the focus magnet in order to eliminate a corner shadow.

WIDTH, DRIVE AND HORIZONTAL LINEARITY ADJUST. MENTS.-Adjustment of the horizontal drive control affect the high voltage applied to the kinescope. In order to oblain the highest possible voltage hence the brightest and best focused plcture, adjust horisontal drive trimmer C181B for maximum drive (minimum capacity) consiatent with a linear raster. Com. pression of the rastor due to excensive drive can be seen as a white vertical bar or bars in the right half of the picture. Bealdes compresaion caused by excessive drive, another item to watch for is the change in linearity at the extreme left with changen of brightness control setting. By proper adjustment of the linearity coll, the changes in linearity with changes in brightness can be made negligible. In general, to achieve this condition, the linearity coil should be set slightly on the high inductance side (core slightly clockwise) of the optimum position and the linearity rheostat R209 should be as far clock. wise as ponible.

Note: In late production receivers, R209 has been omitted since it normally was operated at zero resistance.

Preset the following adjustments as directed:
A.-Place the width plug (P105) in the minimum width poettion (top).
B.-Set the width control coll L106 in approximately mid position.
C.-Set the linearity control coll L107 near minimum inductance (counter-clockwise).
D.-Set the linearity control rheostat near zero reaisance (clockwise).
E.-Set the drive capacitor C181B in the maximum drive position (counter-clockwise).

If the raster is cramped or shows compression bars on the right half of the picture turn C181B clockwise until this condition is junt eliminated.

Adjust the linearity control coil L107 clockwise until best linearity and maximum deflection or best compromise are obtained then turn one quarter turn clockwise from this poattion.

Rotouch the drive trimmer C181B if necessary to obtain best linearity and maximum width.

Check the horisontal linearity at various settings of the brightness control R218. There should be no compresaion of the right half and no appreciable change of linearity eapecially at the extreme left of the picture. If objectional change does occur, turn linearity coil L107 slightly clockwise and repeat the test.

Adjust the width control L106 to fill the mask.
If the left side of the picture appeare stretched, turn the linearity control sheostat R209 counter-clockwiee. If the left side of the picture is cramped, turn R209 clockwise. Whenever possible, correct nonlinearity by adjustment of R209 rather than by reduction of drive.
If the line voltage in low and it becomen imponsible to fill the mask. move the width plug P105 to the bottom poaltion. The width coil L106 is inoperative in thim position.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS.Adjust the height control (R203 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R214 on zear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. If the top few lines of the picture are stretched or squeezed, adjust the vertical peaking control R207 untll this condition is corrected.

FOCUS-Adjust the focus magnet for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

Recheck the position of the ion trap magnet to make aure that maximum brightness is obtained.

If necensary readjust centering to align the picture with the mask

CHECX OF R-F OSCILLATOR ADJUSTMENTS.-Tune in all available stations to see if the receiver rof oscillator is adjusted to the proper frequency on all channels. If adjutmenta are required, these should be made by the method outlined in the alignment procedure The adjustments for channels 2 through 12 are available from the front of the cabinet by
removing the station selector escutcheon as shown in Figure 4 Adjustment for channel 13, is on top of the chassis.

Figure 4-R.F Oscillator Adjustments
AGC THRESHOLD CONTHOL.-The AGC threshold control R175 is adjusted at the factory and normally should not require readjustment in the field.
To check the adjustment of the AGC Threshold Control, tune in a strong signal and sync the picture. Momentarily remove the eignal by witching oft channel and then back. If the picture reappears immediately, the receiver is not overloading due to improper setting of R175. If the picture requires an appreciable portion of a second to reappear, or bends excessively. R175 should be readjusied
Turn R175 fully counter-clockwise. The raster may be bent slightly. This should be disregarded. Turn R175 clockwise until there is a very, very slight bend or change of bend in the picture. Then turn R175 counter-clockwise just sufficiently to remove this bend or change of bend.
If the signal is weak, the above method may not work as it may be impossible to get the picture to bend. In this case, turn R175 clockwise until the snow in the picture becomes more pronounced, then counter-clockwise until the best signal to noise ratio is obtained.
The AGC control adjustment should be made on a strong signal if possible. If the control is set too far clockwise on a weak signal, then the receiver may overload when a strong signal is received.
FM TRAP ADJUSTMENT.-In some instances interference may be encountered from a strong FM atation signal. A trap is provided to eliminate this type of interference. To adjust the trap tune in the station on which the interference is observed and adjust the L58 core on top of the antenna matching transformer for minimum interference in the picture.
CAUTION.-In some receivers, the FM trap L58 will tune down into channel 6 or even into channel 5. Needless to say. such an adjustment will cause greatly reduced sensitivity on these channels. If channels 5 or 6 are to be received, check L58 to make sure that it does not affect sensitivity on these two channels.
Replace the cabinet back and connect the receiver antenna leads to the cabinet back. Make sure that the screws holding it are up tight, otherwise it may rattle or buzz when the receiver is operated at high volume.

KINESCOPE HANDLING PRECRUTION.-Do not install, remove. or handle the kinescope in any manner, unless shatterproof goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling.

Handle this tube by the metal rim at the edge of the screen. Do not cover the glass bell of the tube with fingermarks as it will produce leakage paths which may interfere with reception. If this portion of the tube has inadvertently been handled. wipe it clean with a soft cloth moistened with "dry" carbon tetrachloride.

To remove the kinescope from the cabinet, loosen the two nuts and disengage the rods alongside the kinescope. Remove the wing screw which holds the yoke frame to the cabinet. Remove the kinescope, the yoke frame with yoke and focus or centering magnet as an assembly.
INSTALLATION OF KINESCOPE.-Handle this tube by the metal rim at the edge of the screen. Do not cover the glass bell of the tube with fingermarks as it will produce leakage paths which may interfere with reception. If this portion of the lube
has inadvertently been handled, wipe it clean with a solt cloth moistened with "'dry" carbon tetrachloride.

Wipe the kinescope screen surface and front panel safety glass clean of all dust and fingermarks with a soft cloth moislened with "Windex" or similar cleaning aqent.

Tum the tube so that the key on the base of the tube will be down and insert the neck of the kinescope through the deflection coil and focus maqnet. If the tube sticks, or fails to slip into place smoothly, investigate and remove the cause of the trouble. Do not force the tube.

Replace the kinescope and yoke frame assembly in the cabinet. Insert the wing screw and tighten. Engage the two side rods into the yoke frame and tighten the two nuts. Slide the deflection yoke as lar forward as possible. If this is not done, difficulty will be encountered in adjusting the ion trap and focus magnet because of shadows on the corner of the raster.

Slide the chassis into the cabinet, then insert and tighten the four chassis bolte.

Slip the ion trap magnet over the neck of the kinescope.
Connect the kinescope socket to the tube base and connect the high voltage lead from the rim of the kinescope into the high voltage bushing on the high voltage compartment.

Reconnect all other cables. Do not forget to replace the yoke frame grounding strap. Perlorm the entire set-up procedure beginning with the Ion Trap Magnet Adjustment.

ANTENNAS.-The finest television receiver built may be said to be only as good as the antenna design and installation. It is therefore important to select the proper antenna to suit the particular local conditions. to install it properly and orient it correctly.

CRBINET ANTENNA.-A cabinet antenna is provided in these receivers and the leads are brought out near the antenna terminal board. The cabinet antenna may be employed in place of the outdoor antenna in areas where the signals are strong and no reflections are experienced.
REFLECTIONS.-Multiple images sometimes known as echoes or ghosts, are caused by the signal arriving at the antenna by two or more routes. The second or subsequent image occurs when a siqnal arrives at the antenna after being reflected off a building, a hill or other object. In severe cases of reflections, even the sound may be distorted. In less severe cases. reflections may occur that are not noticeable as reflections but that will instead cause a loss of definition in the picture.

Under certain extremely unusual conditions, it may be possible to rotate or position the antenna so that it receives the cleanest picture over a reflected path. If such is the case, the antenna should be so positioned. However, such a position may give variable results as the nature of reflecting surfaces may vary with weather conditions. Wet surfaces have been known to have different rellecting characteristics than dry surfaces.

Depending upon the circumstances. it may be possible to eliminate the reflections by rotating the antenna or by moving it to a new location. In extreme cases, it may be impossible to eliminate the reflection.

INTERFERENCE.-Auto ignition, street cars, electrical machinery and diathermy apparatus may cause interference which spoils the picture. Whenever possible, the antenna location should be removed as far as possible from high. ways, hospitals, doctors offices and similar sources of interference. In mountina the antenna, care must be taken to keep the antenna rods at least $1 / 4$ wave lenath (at least 6 feet) away from other antennas, metal rools. gutters or other metal objects.
Short-wave radio transmitting and receiving equipment may cause interference in the picture in the form of moving ripples. In some instances it mav be possible to eliminate the interference by the use of a trap in the antenna transmis. sion line. However, if the interfering siqnal is on the same frequency as the television station, a trap will provide no improvement.

WERE PICTURE.-When the installation is near the limit of the area served by the transmittina station, the picture may be speckled, having a "snow" effect, and may not hold steady on the screen. This condition is due to lack of signal strenath from the transmitter.

21T159, 21T165
CHASSIS TOP VIEW
21T176. 21T177
21T178, 21T179

Figure 5-Chassis Top View

Figure 6-Chassis Bottom View

WAVEFORM PHOTOGRAPHS
Taken trom RCA WOSBA Oscilloncope

Grid of lst Video Amplifier (Pin 4 of V110) (6AG7)
Figure 7-Vertical (Oscilloscope Synced to $1 / 2$ of Vertical Sweep Rate) (5.5 Volts PP)
$\longrightarrow \longrightarrow$

Figure 8-Horizontal (Oscilloscope Synced to $1 / 2$ of Horizontal Sweep Rate) (5.5 Volts PP)

$$
\rightarrow
$$

Plate of lst Video Amplifier (Pin 8 of V110) (6AG7)

Voltage depends on picture
Figure 9_-Vertical (110 Volts PP) $\leftarrow \longrightarrow$

Figure $10-$ Horizontal (110 Volts PP) \rightarrow

Grid of Sync Separator (Pin 4 of V113) (6SN7)
Voltage depends on picture
Figure 11 _Vertical (75 Volts PP)

Figure 12 -Horizontal (75 Volts PP)
\rightarrow

Figure 13 -Plate of Sync Separator (Pin 5 of V113) (6SN7) (35 Volts PP) Voltage depends on picture

Figure 14 -Cathode of Sync Separator (Pin 6 of V113) (6SN7) (10 Volts PP)

Figure 15 -Grid of Vert. Sync Ampli. fier (Pin 4 of V114A) (6SN7) (12 Volts PP)
$\leftarrow \longrightarrow$

Figure 16--Plate of Vert Sync Ampli. fier (Pin 5 of V114A) (6SN7) (100 Volts PP)
\rightarrow

WAVEFORM PHOTOGRAPHS
Taken from RCA WO58A Osclloscope

Figure 17-Grid of Vertical Oscillator (Pin 1 of V114B) (6SN7) (135 Volts PP) $\longrightarrow \longrightarrow$

Figure 18-Plate of Vertical Oscillator (Pin 2 of V114B) (6SN7)
(105 Volts PP)
\rightarrow

Figure 19_Grid of Vertical Output (105 Volts PP) (Pin 1 of V115) (6AQ5)
\longleftarrow

Figure 20_Plate of Vertical Output (900 Volts PP) (Pin 5 of V115) (6AQ5)

Figure 21 Cathode of Vertical Output (1.0 Volts PP) (Pin 2 of V115) (6AQ5)
$\longrightarrow \square$

Figure 22 -Grid of Kinescope (Pin 2 of V121) (12 Volts PP)
\rightarrow

Cathode of Sync Separator (Pin 3 of V113) (6SN7)

Figure 23-Vertical (15 Volts PP)
$\longleftarrow+$

Figure 24 -Horizontal (8 Volts PP)
\rightarrow

Grid of Sync Separator (Pin 1 of V113) (6SN?)

Figure 25 -Vertical (110 Volts PP)
$\longleftarrow \longrightarrow 4$

Figure 26-Horizontal (110 Volts PP) \rightarrow

WAVEFORM PHOTOGRAPHS

Taken from RCA WOS8A Oscilloscope

Plate of Sync Separator (Pin 2 of V113)

Figure 27-Vertical (30 Volts PP) $\rightarrow-4$

Figure 28 -Horizontal (30 Volts PP) \rightarrow

Plate of Hor Sync Amp (Pin 5 of V112) (6SN7)

Figure 31-Vertical (85 Volts PP)
$\longrightarrow \longrightarrow$

Figure 32 -Horizontal (85 Volts PP) \rightarrow

Grid of Hor Sync Amp (Pin 1 of Vll2) (6SN7)

Figure 33-Vertical (75 Volts PP) $\longleftarrow \longrightarrow 4$

Figure 34 -Horizontal (75 Volts PP)

Cathode of Hor Sync Amp (Pin 3 of V112) (6SN7)

Figure 35 -Vertical (18 Volts PP) 4

Figure 36-Horizontal (18 Volts PP)

Figure 37-Grid of Horizontal Oscillator Control (25 Volts PP) (Pin 1 of V116) (6SN7GT)
$\longleftarrow \leftarrow$

Figure 38 - Cathode of Horizontal Oscillator Control (1.3 Volts PP) (Pin 3 of V116) (6SN7GT)
\rightarrow

Figure 39 Grid of Horizontal Oscillator (550 Volts PP) (Pin 4 of V116) (6SN7GT)
$\square \longrightarrow+4$

Figure 40-Plate of Horizontal Oscil. lator (290 Volts PP) (Pin 5 of V116) (6SN7GT)
\rightarrow

Figure 41-TTerminal "C" of T114 (150 Volts PP)

Figure 42_Grid of Horizontal Out. put Tube (140 Volts PP) (Pin 5 of V117) (6CD6G)
\rightarrow

Figure 43-Plate of Horizontal Output
(Approx. 5400 Volts PP) (Measured Through a Capacity Voltage Divider Connected from Top Cap of

V117 to Ground)

Figure 44-Cathode of Damper $(2300$ Volts PP) (Pin 3 of V119) (6W4GT)

olts PP) (Pin 3 of V119) (6W 4GT)

Figure 45-Plate of Damper (100 Volts PP) (Pin 5 of V119)
(6 W 4GT)
\longrightarrow

Figure 46 Plate of AGC Amplifier (Pin 5 of V111) (6CB6)
(700 Volts PP)
$\rightarrow \rightarrow$

21T159. 21T165

VOLTAGE CHART

21T176, 21T177
21T178, 21T179
The following measurements represent two sets of conditions. In the first condition, a 5000 microvolt test pattern signal was fed into the receiver, the picture synchronized and the AGC control properly adjusted. The second condition was obtained by removing the antenna leads and short circuiting the receiver antenna terminals. Voltages shown are read with a type WV97A senior "VoltOhmyst" between the indicated terminal and chassis ground and with the receiver operating on 117 volis, 60 cycles, a-c.

21T159, 21T165
21T176, 21T177
21T178, 21T179

Tube No.	Tube Type	Function	Operating Condition	E. Plate		E. Screen		E. Cathode		E. Grid		$\begin{gathered} \text { I } \\ \text { Plate } \\ \text { (ma.) } \end{gathered}$	$\underset{\substack{\text { Screen } \\(\text { ma. }}}{I}$	Notes on Measurements
				$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	Pin No.	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Volts			
V111	6CB6	AGC Amplifier	$\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	-27	6	238	2	152	1	155	0.1	3.4	```AGC control set for normal operation```
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	5	4.5	6	218	2	135	1	118	0	0	
V112	6SN7GT	Hor. Sync Amplifier	$\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	2	152	-	-	3	0.9	1	-44	1.1	-	
			No Signal	2	135	-	-	3	*0.4	1	*-30	0.5	-	*Depends on noise
			$5000 \mathrm{Mu} . \mathrm{V} .$ Signal	5	86	-	-	6	0	4	-2.0	5.5	-	
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	50	-	-	6	0	4	-1.8	4.6	-	
V113	6SN7GT	Hor. Sync Separator	$\underset{\text { Signal }}{5000 \mathrm{Mu} .}$	2	374	-	-	3	216	1	155	1.2	-	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	2	372	-	-	3	155	1	134	0.8	-	
V113	6SN7GT	Vert. Sync Separator	$\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	345	-	-	6	205	4	135	<0.1	-	
			No Signal	5	340	-	-	6	160	4	130	<0.1	-	
V114A	6SN7GT	Vert. Sync Amplifier	$\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	7.0	-	-	6	0	4	-0.2	0.6	-	
			No Signal	5	* 7.0	-	-	6	0	4	*0	0.5	-	*Depends on noise
V114B	6SN7GT	Vertical Oscillator	$\underset{\text { Signal }}{5000 \mathrm{Mu} .}$	2	176	-	-	3	0	1	-27	0.2	-	
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	2	176	-	-	3	0	1	-27	0.2	-	
V115	6AQ5	Vertical Output	5000 Mu . V. Signal	5	359	6	359	2	30	1	0	17.3	1.2	
			No Signal	5	357	6	357	2	29	1	0	17.3	1.2	
V116	6SN7GT	Horizontal Osc. Control	$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	2	188	-	-	3	-24	1	-42	0.37	-	
			$\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	2	145	-	-	3	-18	1	-42	0.4	-	Hor. hold coun-ter-clockwise
			$\underset{\text { Signal }}{5000 \mathrm{Mu} .}$	2	230	-	-	3	-18	1	-42	0.4	-	Hor. hold clockwise
V116	6SN7GT	Horizontal Oscillator	$\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	258	-	-	6	0	4	* 91	2.0	-	Depends on Oscillator Adjustment
			No Signal	5	256	-	-	6	0	4	*-94	2.0	-	
V117	6CD6G	Horizontal Output	$\underset{\text { Signal }}{5000 \mathrm{Mu} .}$	Cap	* 700	8	165	3	12.5	5	-30	110	15.0	*High Voltage Pulse Present
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	Cap	*200	8	165	3	12.5	5	-30	110	15.0	
V118	$\begin{aligned} & \text { 1B3GT } \\ & \hline \end{aligned}$	H. V. Rectifier	$5000 \mathrm{Mu} . \mathrm{V} .$ Signal	Cap	-	-	-	2\& 7	16,000	-	-	0.2	-	*High Voltage Pulse Present
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	Cap	*	-	-	287	16,400	-	-	0.2	-	
$\begin{aligned} & \text { V119 } \\ & \text { V120 } \end{aligned}$	6W4GT	Dampers	$\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	5	355	-	-	3	*640	-	-	57	-	*High Voltage Pulse Present
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	5	353	-	-	3	*640	-	-	57	-	
V121	21AP4	Kinescope	$\begin{gathered} 5000 \mathrm{Mu.} \text { V. } \\ \text { Signal } \end{gathered}$	Cone 16,000		10	555	11	140	2	82	0.2	-	At average Brightness
			$\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$	Cone 16,400		10	550	11	132	2	76	0.2	-	
$\begin{aligned} & \text { V122 } \\ & \text { V123 } \end{aligned}$	5U4G	Rectifiers	$\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$	4 \& 6	388	-	-	2\&8	389	-	-	${ }^{1} 139$	-	Per Tube
			$\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$	486	386	-	-	$2 \& 8$	387	-	-	* 145	-	

Figure 47- R.F I'nit Wiring Diagram

CRITICAL LEAD DRESS:

1. Keep all wiring in the pix i-1. sound i.f and video circuits as short as possible.
2. Keep the leads on C110, C111, C112, C200, R109, R110, R111, R112, R114, R115 and R233 as short and direct as possible.
3. Do not change the bus wire connection to pin 2 of V101 and V102. Sleeving is used on these wires to insure length and to prevent shorting.
4. Dress Cll4 down between R117 (volume control) and wafer S101-2.
5. Ground R130 to pin 3 of V106 and R138 to pin 7 of V107.
6. Do not change the grounding of R141, R146 and R149.
7. Keep the bus wire from T109.A to C146 (plug in capacitor) short and direct.
8. Ground the filaments of sockets of V107, V108 and V109 independently of the socket center pin. Use ground lances provided near each socket.
9. Dress C198 straight up to act as a shield between T101-A and V110-4.
10. Dress Cl53 and R170 (kine cathode) up in the air above the terminal board.
11. Keep the leads connected to T114.C and T114.D (synchoguide) down so that they will not short out when the chassis is placed in the cabinet.
12. Do not reroute any wires between T104 and the terminal board along side it. Keep all leads on the foot side of the terminal board.
13. Dress all wires routed past T104, shielded wires W102 and W103 under the big lances near T104.
14. Dress all a-c leads to S102 under the large lances on the front apron and away from R243.
15. Dress R116 close to the chassis with leads as short as possible.
16. Dress C206, C221 and C212 up in the air and away from all other leads and components.
17. Dress all leads away from bleeder resistor R243.
18. The blue lead from pin 5 of Vlll to the terminal board under the high voltage cage should be routed between V117 socket and the rear apron.
19. Keep leads on C214 as short and direct as possible.
20. Dress R206 away from all other wires and components to prevent excessive heating.
21. Keep the wire from the vertical output transformer Tll4 away from the SU4G rectifier tubes.
22. Dress all 2 watt resistors away from each other and all other wires and components.
23. Dress all wires away from damper tubes V119 and V120.
24. Blue wire from pin 5 Vll6 to Tll4.A should not be more than 5 inches long.
25. Dress all peaking coils up and away from the base.

	\％
	免
	\％
	亳

[^0]: -6AU6 is used as R.F. Amp. In RC-1102
 6CB6 is used as R.F. Amp. in RC-1102A, RC-1102B, BC-1102C

[^1]: - Two or more points may be found which lower the audio output At the correct point the minimum audio output is approached rapidly and is much lower than at any incorrect point.
 $\dagger \dagger$ Alternate loading may be necessary to provide accurate observation of peaks.
 Alternate loading involves the use of a 680 ohm resistor to load the plate winding while the grid winding of the SAME TRANS FORMER is being peaked. Then the grid winding is losded with the resistor while the plate winding is peaked. Only one winding is loaded at any one time. Remove the 680 ohm resistor after T3 and T1 have been aligned

 Oscillator frequency is above signal frequency on both $A M$ and FM.
 Extreme care should be used to avoid running the I.F. cores all the way through the winding and out the other end. Double peaks or serious overcoupling will result. The correct adjustment may be determined by atarting the core all the way out (threads extended). The first beat obtained when tuning should be the correct peak.

 * Note: FM antenna, mixer and oscillator coils are adjustable by increasing or decreasing the apacing between turm the tap on the antenna coil is $5 / 1$ turn $\pm 1 / 1$ turn from the ground end.

[^2]: + Stock No. 72953 is a reel containing 250 feet of cord.

[^3]: Schematic Diagram RS-138M

[^4]: The following adjustments are necessary when turning the recelver on for the first time:

 1. Turn the radio FUNCTION switch to TV.
 2. Turn the recelver "ON" and advance the SOUND VOL. UME control to approximately mid-position.
 3. Set the STATION SELECTOR to the desired channel.
 4. Adjust the FINE TUNING control for best sound fidelity and the SOUND VOLUME
[^5]: DEFLECTION YOEE ADJUSTMENT,-If the lines of the raster are not horizonial or squared with the picture mask, rotate the deflection yoke until this condition is oblained. Tighten the yoke adjuatment wing screw.

[^6]: The kinescope bulb encloses a high vacuum and, due to lit large surface area, in subjected to conalderable air pressutre. For this reason. the kisescope must be handled with more care than ordinary recolving tubes.

 The large ond of the kinescope bulb-particularly that part at the rim of the viowing surface-must not be struck, scratehed or subjected to more than moderate prossure at any time. During service it the tube iticke or fatls to slip amoothly lato its socket, or dellecting roke, inventigate and remove the cause of the trouble. Do not force the tube. Refor to the Recelver Installation section for defalled instructions on kinescope lnstallation. All RCX roplacement kinescopen are shipped in apectal cartons cusd should be left in the cartom until ready for installation in the recelver.

