amateur radio

Date
Certificate No
President
\qquad

Merry Christmas and Happy New îjear to all our Chients

REALISTIC DX-150 SOLID STATE COMMUNICATIONS RECEIVER

Features: 240v. a.c. or 12 v . d.c. operation. 30 transistors and diodes. 535 Kc . to 30 Mc . in four bands. Bandspread tuning, " S " meter, a.m./c.w./ s.s.b. Product detector tor s.s.b. Compact size $141 / 2 \times 91 / 4 \times 61 / 2 \mathrm{in}$. Polished metal panel, small internal speaker
F.O.R. Price $\mathbf{S 2 2 9 . 5 0}$

Matching external speaker £ 3.30 extra.

No. 62 TRANSCEIVERS

Wireless Set No. 62 Mk. 2 (Pye). Frequency range 1.6 to 10 Mc . in two bands, in-built 12 v . genemotor power supply. Clean condition. Fully air tested on transmit and receive.
F.O.R. Price $\$ 49.50$ inc. circuit diagram

WESTON LM-300 MOBILE TAXI RADIO

Low Band a.m. 60 Kc . bandwidth. $70-80 \mathrm{Mc}$. Crys tal channel locked, single channel. In-built transistor power supply. 12v. operation, suit country taxi service or conversion to Ham bands, inc. microphone and cradle.
F.O.R. Price $\$ 45$. Packing 50c

AS NEW AND AIR TESTED
 LAFAYETTE 5W. C.B. TWO-WAY RADIO*

Model HE-20, fully transistorised, solid state, 13 transistors, 10 diodes, 27.240 Mc . Provision for 23 channels, crystal channei locked, push-pull audio modulator. 455 Kc . mechanical filter, spotting switch for accurate reception. t.v.l. trap, 230 v . a.c. and 12 v . (positive or negative ground), in-built p.a. amplifier. Idaal for fixed base station or emergency mobile, including misrophone and mobile cradle. Fibreglass helical aerial 4 ft. high, cowl mount. 'Subject to P.M.G. approved licence.
F.O.R. Price $\$ 169.50$ tax paid for mobile use SS 16.50 extra

BENDIX BC-221 FREO. METER
125 Kc . to 20 Mc .. including a.c. power supply. crystals, calibration book. etc.
F.O.R. Price 549.50, packing 75c

TRIO COMM. RECEIVER MODEL 9R-59DE

Fourband receiver covering 550 Kc . to 30 Mc continuous, and electrical bandspread on 10,15 . 20,40 and 80 metres. 8 valves plus 7 diode circuit. $4 / 8 \mathrm{ohm}$ output and phone jack. SSB.CW, ANL variable BFO. S meter. sep. bandspread dial. i.f. 455 kc ., audio output 1.5%... variable $R F$ and $\dot{A} \dot{F}$ gain controls. $115 / 250 \mathrm{v}$. AOC mains. Beautifully designed. Size: $7 \times 15 \times 10 \mathrm{in}$. With instruction manual and gervice data.

Speaker to sult, type SPSD, \$15 inc. tax.

MULTIMETERS

MODEL C-1000 POCKET MULTIMETER

1000 ohms per volt. AC volts: $0-10,50,250,1000$.
 mA . Resistance: 0.150 K ohms (3K centre), Two
colour scale. Range selector switch. Dimensions: $31 / 2 \times 21 / 4 \times 1$ in.

Price $\mathbf{\$ 6 . 5 0}$ post free

MODEL 200H MULTIMETER
20.000 ohms per volt. DC volts: 0.5, 25. 50. 250 , 500 . 2500 (20,000 o.p.c.). AC volts: 0-15, 50, 100 500. 1000 (10,000 o.p.e.). DC current: 50 UA ., 2.5 $\mathrm{mA} .{ }^{250} \mathrm{~mA}$. Resistance: $0.60 \mathrm{~K} / 6 \mathrm{M}$ ohm (scale centre $300,30 \mathrm{~K}$ ohm). Capacitance: 10 pF . to 0.001
 22 db . Size $41 / 2 \times 31 / 4 \times 11 / \mathrm{ln}$.

Price $\$ 11.25$ post 30c

MODEL CT330 MULTIMETER

20,000 ohms per volt. DC volts: $0-6,6,30,120$, $600 \mathrm{~K}, 2 \mathrm{~K}, 3 \mathrm{~K}, 6 \mathrm{~K} . \mathrm{AC}$ volts: 0.6 .30 .120 . $600,1.2 \mathrm{~K}$ (10 K o.p.v.). DC current: 0.0 .06 mA ., 60 mA ., 600 mA. Resistance: $0.6 \mathrm{~K}, 600 \mathrm{~K}, 6 \mathrm{M}$. $600 \mathrm{Megohm}(30$, $3 \mathrm{~K} .30 \mathrm{~K}, 300 \mathrm{~K}$ ohm centre scale). Capacitance: 50 PF. to 0.001 uF., 0.001 uF. to 0.2 UF. Decibels: $\mathrm{pF}_{\text {in }}$ to to plus 63 db . Size approx. $51 / 2 \times 3^{3} \mathrm{~m} \times 13 / 4 \mathrm{ln}$.

Price $\$ 16.75$ post 30 c
MODEL OL-64D MULTIMETER
20.000 ohms per volt. $D C$ volts: 0.025 . 1, 10, 50 , 250. 500. 1000 (at 20 K o.p.v.), 5000 (at 10 K o.p.v.) AC volts: $0-10,50,250,1000$ (at 8 K O.P.v.) DC current: 50 UA., 1 mA ., 50 mA . 500 mA .. 10 amps Resistance 0.4 K 400k 9 M 40 Megohm. Db amps Resistance: $0.4 \mathrm{~K}, 400 \mathrm{~K} .4 \mathrm{M}, 40$ Megohm. Db. scale uF . Inductance: 0.5000 H . Size $53 / 4 \times 41 / 4 \times 13 / 4$ in

Price $\$ 19.50$ post 30c
NEW MODEL US-100
Overload protection. Shockproof movement. Polar. ity switch. DC volts: $0.0 .25,1.25,10,50,250$, 1000 (20K O.p.v.). AC volts: $0.2 .5,10,50,250$, 1000 (5 K o.p.v.). DC current: $1 \mathrm{~mA}_{\mathbf{\prime}} 25 \mathrm{~mA}, ., 500$ mA and 10 amp . AC current: 10 amp . Resistance: $0-50 \mathrm{M}$ ohm (centre scale 50). $\mathrm{R} \times 1,10,100.1 \mathrm{~K}$
 $\begin{array}{ll}\text { 10K. } \\ \text { plus } & 50 \\ \text { db. }\end{array}$

Price $\$ 28.75$ post 40 c
MIRROR SCALE
MODEL AS100/DP HIGH SENSITIVITY
100.000 ohms per vot DC. Mirror scale, protected movement. DC volts: 3. 12. 60, 120, 300, 600, 1200 (100 K o.p.v.). AC volts: 6. 20, 120, 300, 600, 1200 (10 K o.p.v.). DC current: 12 uA -, $6 \mathrm{~mA}, 60 \mathrm{~mA}$. $300 \mathrm{~mA} . \mathrm{V} 12$ amps. Resistance: $2 \mathrm{~K}, 200 \mathrm{~K}$, 20 M 200Megohm. Decibels: -20 to plus 63 db . Audio output: 6, $30,120,300,600,1200$ volts a.c. Size $71 / 2 \times 51 / 2 \times 23 / 4 \mathrm{in}$.

Price $\$ 34.50$ post 75 c

MODEL A10/P G1ANT ($61 / 2$ inch) METER, CIRCUIT TESTER
30,000 ohms per volt DC with in-built signal injector overload protected DC vots: $0.5,2.5$, 10 50,250 . 500 . 1000 (at 30 K o.p.v.). 5000 (at 10 K o.p.v). AC volts: $2.5,10,50,250,500$. 1000 (at 10 K o.p.v.). DC current: 50 UA . 1 mA ., 50 mA . $500 \mathrm{~mA} . .1$ amp., $10 \mathrm{amp} . \mathrm{AC}$ current: 1 amp. ., $10 \mathrm{amp} . \mathrm{R}^{2}$ Resistance: $10 \mathrm{~K}, 100 \mathrm{~K} .1 \mathrm{M}, 100 \mathrm{Megohm}$. Signal Injector: Blocking oscillator circuit with ${ }^{\text {a }} 2 \mathrm{SA} 102$ Trans. Decibels: -20 to plus 63 db Size: $6^{1 / 2} \times 7^{1 / 4} \times 3^{3 / 4}$ in.

Price $\$ 55$ tax paid, post 75c

TE-16A TRANSISTORISED TEST OSCILLATOR

Frequency range: 400 Kc . to 30 Mc . In five bands Modulated $800 \mathrm{c} / \mathrm{s}$. sine wave. Modulation: 30 p.c approx. Output 1 mp .: Low Impedance. Dimen sions: $57 / 8 \times 57 / 6 \times 35 / 8 \mathrm{ln}$. Weight: 1.5 lb .

Price \$24 tax pald, post 75c

"NIKKA" 1 WATT TRANSCEIVERS

P.M.G. approved. Solid state. 14 transistors, circuit inc. r.f. stage. 27.240 Mc . Iprovision for two channels). Range boost circuit. Up to 10 miles in open country or water. Buzzer type call system. Squelch control. Complete with leather carrying case.

Price S175.00 Pair
NEW A.W.A. T.V. TUNER
Model 49806. Uses 6U8 and 6BO7A
Price $\$ 5.50$ postage 50 c

PACK OF RESISTORS

100 Resistors of $1 / 2$ and 1 watt rating. Price $\$ 1.75$ post 20c

BRAND NEW			SPEAKERS		
21/2 inch	8 ohms	Price	\$1.75	Postage	20c
3 inch	8 ohms	\cdots	\$2.00	-	20 c
4 lnch	8 ohms	''	\$2.25	-	20c
4 inch	15 ohms	"	\$2.25	"	20c
3DX	8 ohms	''	\$3.95	\cdots	20c
3DX	15 ohms	''	\$3.95	1	20c
6 A7	8 ohms	"	\$5.50	\cdots	40c
6A7	15 ohms	''	\$5.50	"	40c
8 A 7	8 ohms	'	\$7.20	-	40c
8 87	15 ohms	'*	\$7.20	\cdots	40c
12A9	8 ohms	"	\$18.75	**	50c
12A9	15 ohms	-	\$18.75	**	50c
Nett Price					

NEW STEREO HEADDPHONES

Large rubber earpiece. Frequency range 100 to 1500 cycles. 8 ohms impedance.

Price $\$ 6.75$ post 30 c

DELCO TRANSISTORS

Type 2NAA1
Type 2N278
Price $\$ 2.40$ postage 10 c Type 2N301

LT91 RECTIFIER
20 Volt 2 Amp.
Price $\$ 1.50$ post 10c

HAM
 RADIO SUPPLIERS 323 ELIZABETH STREET, MELBOURNE, VIC., 3000

Phones: 67-7329, 67-4286 All Mail to be addressed to above address
We sell and recommend Leader Test Equipment, Pioneer Stereo Equipment and Speakers, Hitachi Radio Valves and Transistor Radios. Kew Brand Meters. A. \& R. Transformers and Transistor Power Supplies, Ducon Condensers, Welwyn Resistors, etc.

Sideband Electronics Engineering

P.O. BOX 23, 33 PLATEAU ROAD, SPRINGWOOD, N.S.W., 2777.

Telephone (STD 047) 511-394
Sydney showroom only, not for business transactions, 145a George Street, near Circular Quay, Mondays to Fridays, 0900 to 1700 hours. Telephone $27-5885$

- Adequate stocks now of all YAESU-MUSEN equipment, procured directly from Japan, they cannot as yet afford an assembly plant in Hong Kong. For the various Y.M. sets my stock of spare parts include all crystals used, calibrators, voltage regulators, tone oscillators, VFO blocks, relays, chokes, valves, power transformers, etc., etc.
- Prices and stocks are as advertised in my November and December 1969 ads., with the following additions and a few price changes:
- YAESU-MUSEN 6 and 2 Metre solid state Converters, 10 metre band output, \$25.
- KOKUSAI Mechanical Filters, $2.7 \mathrm{Kc} / \mathrm{s}$. bandpass, $1 / 2^{\prime \prime} \times$ $1 / 2^{\prime \prime} \times 134^{\prime \prime}$ modern miniature size, with input-output transformers and matching USB/LSB carrier crystals, $\$ 40$.
- At half the original cost, two sample Japanese 10 to 80 metre Ham bands Receivers, AM, CW, SSB reception, S meters. 240 V . AC built-in power supply:

UNICA SR-600, built-in speakerette, $\$ 35$.
UNICA SR-700, 1600 kc . i.f. crystal filter, calibrator, $\mathbf{\$ 6 0}$.

- NEWTRONICS 10 to 40 metre four-band Verticals, type 4-BTV, $\$ 55$. Same with 80 metre top-loading coil, $\$ 70$.
- All SWAN and GALAXY equipment on indent order basis only. SW350C $\$ 545$.
- HY-GAIN TH6DXX, on indent order basis, \$210.

The World's Most Versatile Circuit Building System!

SIZES: $1 / 8^{\prime \prime}$ and $1 / 16^{\prime \prime}$ WIDTHS
Length: 100 ft. roll, 5 ft. card
IDEAL FOR PROTOTYPE AND PRODUCTION CONSTRUCTION

USEFUL FOR WIRING REPAIRS
\star NO DRILLING \quad FAST \quad NO mess
Available from all Leading Radio Houses
Marketed by-
ZEPHYR PRODUCTS PTY. LTD.
70 BATESFORD RD., CHADSTONE, VIC., 3148
Telephone 56-7231

MANUFACTURERS OF RADIO AND ELECTRICAL EOUIPMENT AND COMPONENTS

PRECISION MADE

JaCKS AND JaCK PLUGS

List No: $\mathbf{J . 1 3}$

Lise No: J. 15

Lise No: P. 39

This complete Range of slender Panel Jacks, conforming fully to B.S. 666, covers practically every switching and contacting requirement, in all kinds of circuits and is suitable for a wide range of equipment and apparatus. Highest grades of B.S. Materials and Finishes are used, including strong: rustproofed steel brackets, springiest Number-S P.O. -grade nickel silver blades, and pure fine silver contacts. Many of these Jacks in continuous use have given two decades, or more, of service.
Nuts and Bushes. Electroplated hard gold to 0.15 micro-nl. approx., can be supplied if required.
new three-pole side entry JACK PLUG

The third 'Ring' contact between the 'Sleeve' and 'Tip' can serve as a guard-ring or as a third pole, or 'Sleeve' can carry screening continuity of 2 -pole + screen cable.

TECHNICAL DATA AND DIMENSIONS
List No.

Available from all Leading Radio Houses
Write. Phone or Call us for Technical Leaflets

Sole
Agents:

608 COLLINS STREET, MELBOURNE, VIC., 3000
64 ALFRED STREET, MILSONS POINT, N.S.W., 2061

34 WOLYA WAY, BALGA, PERTH, W.A., 6061
L. E. Boughen \& Co., 30 Grimes St., Auchenflower. Old., 4066

Our Sixtieth Year

In 1910 the use of v.h.f. and higher bands for regular communication was only a dream. In those days a satellite circling the earth transmitting on Amateur frequencies and extending those bands so that they could be used for international communication was not even a dream.

In 1970 the Wireless Institute of Australia will be preparing its case on behalf of the Australian Amateur Service to retain its existing allocations at frequencies which could not even be used 60 years ago. We shall also see the first Australian Amateur satellite circling the earth. In 1970 Amateurs will continue to fight their way through congestion on overcrowded h.f. bands that have a ciensity of Amateur population that would have secmed incredible sixty years ago.

In 1910 the Wircless Institute of Australia was formed. In sixty years the primary objectives of the organisation have changed as has the character of our hobby generally. Whereas once Radio Amateurs' interests followed almost identical lines, today the ability to be interested in a great diversity of modes, techniques, and frequencies is the characteristic of the hobby. Amateurs have, of course, always been interested in experimentation and communication, the former leading to the latter.

Today the same is true but in many different ways and on many different bands. But as our hobby has grown more sophisticated and diverse, so have the pressures on Amateurs becoming increasingly complex and diverse. No longer can the shorter wave bands be abandoned to Amateurs as being of no use to anyone else.

Radio frequency has become one of the most valuable resources of the world today. Amateurs must now justify their retention of their bands in competition with a multitude of other users. As the pressures have increased on Amateur frequency allocations as the years have passed, so has the im-
portance of a strong organisation representing the Amateur Service, grown. The organisation started sixty years ago is today a significant voice in our country in relation to the question of frequency allocations-it has to be, as strong national organisations of Amateurs throughout the world is our only defence for the very continuation of our hobby.

This year then, marks the sixtieth anniversary of the Wireless Institute of Australia. We can indeed be proud of the fact that we are the oldest Radio Society in the World. This year we shall honour the past and the foresight of our founders and at the same time we shall take time to reflect on how much technology has advanced in those sixty years. Starting in the March issue, "Amateur Radio" shall be publishing a history of the Wireless Institute of Australia written by former Federal President, Max Hull.

From the 1st January, Australian Amateurs have the privilege of using the alternative prefix "AX" instead of the prefix "VK". The Rules of the Cook Award celebrating the fact that 1970 is also the Cook Bi-Centenary year, have been circulated to over seventy societies and publications overseas. These Rules are re-printed in this issue of "Amateur Radio". Nearly a quarter of a million commemorative QSL cards have been printed and distributed to Amateurs throughout Australia. All Divisions will be conducting functions highlighting the sixtieth birthday of the Wireless Institute of Australia. A feature will be the dinner in Adelaide conducted by the South Australian Division in conjunction with the Federal Convention.

Once again, I urge all members to participate in the activities that are planned for this year. We have printed 1,000 Certificates for the Cook Award. It is hoped that you will like the design which is featured on the front cover of this issue. Federal Executive would
indced be happy to find that it has not printed sufficient Certificates.
But let us above all else, make this a year for strengthening our own organisation. The late John Moyle, coming home from the I.T.U. Conference in Geneva in 1959, wrote:

> ". . We must obtain a much greater sense of Federal responsibility from the ordinary Amateur and from the Divisions. At the moment this sense is at its lowest ebb and has been for years. Coming straight from Geneva where our very future was being battled for, I was astounded and disccuraged to find that Divisions had voted against holding a Convention this year. At the very time when our future and past organisation is of primary importance, the Federal Council was not to meet, apparently because it couldn't think of anything important enough to discuss. We must find councillors and Divisional leaders who have much wider vision than this or our excellent, and often elaborate, Divisional set-ups will be of little use if we haven't the bands to use them. Secondly, we must evolve a Federal set-up which will work and will attract councillors of high standing and experience who can tackle the job of improving our own standing and priority in the communications world. At present the Federal Council isn't doing its job and Federal Executive has become exhausted trying to cope with an almost impossible situation. are pre-
> I do say that unless we are prepared to solve the problem and to spend money doing it we can't blame F.A.S.C. or anyone else if they overlook Amateur claims because we are inadequately organised to handle them. To my mind it is an urgent and critical situation."

Let us examine ourselves in our sixtieth year to see whether today, ten years after John Moyle wrote that. we can still be subject to the same criticism. Let us in 1970 seek a vastly increased membership. Let us do all in our power to add to the strength and stability of our organisation which is, in the last resort, the only real means of defence that we have.

[^0] Federal President. W.I.A.

A SOLID STATE 432 Mc . CONVERTER

Developed by the VK3 V.H.F. PROJECTS COMMITTEE

$I^{*}$$N$ keeping with the function of the Projects Committee of the VK3 V.h.f. Group, that is to develop for interesied Amateurs "state of the art" (as best we know it) projects, a 432 Mc. solid state converter has now been made available.

Amateurs who have in the past, either built their own converters on the v.h.f bands or have assembled any of the converter kits developed by this Group, should have a minimum of difficulty in the construction and final alignment of this latest project. Any Amateur who has only the basic knowledge of transistors and tuned circuits should not be deterred, he may require just a little more time and patience.

To construct this converter you will require the following equipment. A grid dip oscillator or any other signal generator capable of producing a signal at the frrst i.f. frequency and at 432 Mc. This may be with either a fundamental or a harmonic. And, lastly, a reasonably high input impedance d.c. voltmeter, capable of reading down to about 5 volts d.c. full-scale deflection.
practice, as can be seen from the formulae below, if the first stage has adequate gain (say in excess of 10 db .) and the following stage has reasonably low n.f. (say less than 10 db .), then the total n.f. is almost entirely determined by the first stage.

Noise Factor $=10 \log$ Noise Figure
N.Fa. (total) $=$ N.Fa. (lst stage) + $\frac{\text { N.Fa. (2nd stage) }}{\text { Gain lst stage }}+$ exc.
where N.Fa. = Noise Factor.
(b) For best performance and adaptability the converter should be double conversion where a low tunable i.f. is desired. This has been accomplished by using a first i.f. in the 52 Mc. region: by having such a high first i.f., image responses have been reduced to a negligible level and desensitising of the r.f. amplifier by local oscillator injection has been avoided. 2 his permits use of tunable i.f. as low
a second i.f., a suitable system can be selected to allow for oscillator injection either on the low or high side of 432 Mc. so as to obtain forward or reverse tuning.
(c) The converter was to have sufficient gain that the unit was readily usable with tunable i.f. receivers of relative low sensitivity, such as car receivers and AR7s, etc.
(d) Finally, that the complete kit should be of low cost.

DESCRIPTION

The first amplifier stage in common with all stages that carries the r.f. signal, consists of 2 N 5245 . The r.f. amplifier has strip lines in the gate (L1) and drain (L3) circuits to ensure a high operating Q. The input line (L1), which is tuned to resonance by the trimmer C 1 , is tapped at the 50 ohm input impedance point, to ensure matching to co-axial cables. The first stage is decoupled from the positive supply rail by the 390 ohm resistor R13 and the feed-through capacitor CG.

DESIGN CONSIDERATIONS

Initially the converter was designed to satisfy a number of needs and these are mentioned briefly in the following.
(a) Field effect transistors were selected because of the interent low cross modulation characteristics, as well as exhibiting reasonable gain and noise figure. The device selected was the u.h.f. field effect transistor manufactured by Texas Instruments TIS88/ 2N5245.

The 2N5245/TIS88 has a quoted device noise figure of 4 db . maximum with a minimum gain of 10 db . at 400 Mc . in neutralised common source configuration. In theory it would be possible only to achieve the device n.f. if the device was followed by stages having zero n.f., i.e. impossible; however, in

[^1]as broadcast band to be used. Where a high tunable i.f. is desired (20 Mc . upwards) a single conversion is adequate. The circuit of the double conversion converter is shown in its entirety by Fig. 1. The single conversion section is on the same diagram and is designated as the double conversion unit less those components within the dotted boxes.

The single conversion mode is from 20 Mc. upwards. This arrangement allows for a large number of output possibilities, i.e. as a single conversion unit to feed an existing 6 metre converter, or in the case of Amateur Television, into a commercial television set via a $4: 1$ balun on a suitable channel, e.g. Channel 0 in Sydney, Adelaide, Perth, or Channel 1 in Melbourne, Brisbane and Tasmania. In the case of double conversion up to 18 Mc . for

Similar decoupling of the source is obtained by the feed-through capacitor C5 between the source of Q1 and the 220 ohm resistor R22.

Neutralising of the r.f. amp. Q1 is readily accomplished with L2 which resonates with the drain to gate feed back capacitance to form a high impedance parallel resonant circuit at 432 Mc . The output signal at L3 is coupled to the input strip line L4 of the mixer Q2. This line is made to resonate by the trimmer C3. Injection of the oscillator frequency is from the 10 pF . (C17) to the tap on the mixer strip line. Decoupling at 432 Mc . of the mixer $Q 2$ source lead is again via a feed-through capacitor C 7 between Q2 and the 2.7 K ohm source resistor (R14).

Selection of the required output freouency is by the drain series tuned
circuit of L 5 and the 10 pF . capacitor (C12). The parallel resonant circuit of L 6 and 10 pF . (C11) completes the band-pass filter at the required first i.f. frequency. A low impedance tap nominally 50 ohms unbalanced is provided in L6 so as an output can be obtained after the first i.f. This can be fed to a t.v. set (after matching) or to another converter if only a single conversion converter conflguration is required.

L6 and Cll make the input circuit to the second mixer Q3 which has been designed to have the link L 13 in the source.

The crystal fundamental frequency is injected and the correct level into the second mixer via this link. The load of the second mixer is the untuned 4.7 K ohm (R18). As the gain of this configuration drops very fast above 30 Mc. and the crystal fundamental frequency is usually above 40 Mc ., the unwanted frequencies are effectively filtered out.

Coupling to the i.f. amplifier (Q4) is by the 0.002 uF. capacitor C10 to the gate resistor 100 K ohm (R17). The gain of this stage is very large and it is recommended that the source by-pass capacitor C8 be left off (allowing a small amount of negative feed back)
until it is established that more gain from the converter is required for good reception.

The output stage in the signal chain is via a direct coupled source follower Q5, providing low impedance, so as coaxial cable or tunable i.f. can be adequately matched to the converter.

The crystal oscillator and accompanying frequency multiplier chain requires some comment in detail, as this is the stage that most difficulty will be encountered.

The crystal oscillator uses a bipolar transistor (Q6); this enables reliable and stable operation even with crystals of low activity. The oscillator is zener regulated at 9.1 volt from the positive supply rail by R1 which is 220 ohms, or 390 ohms should the diode be omitted. Adjustment to exact crystal frequency is possible with L7. The maximum of frequency shift is about 10 Kc . at 432 Mc ., and any attempt to exceed this will result in the crystal ceasing to oscillate reliably.

The crystal fundamental is taken from the emitter of Q6 via the dividing network of the 10 pF . (C21) and 100 pF . (C23) capacitors and passed via the 10 pF . (C22) to L12. This coil is tuned to the crystal fundamental and ensures that a pure sine wave is transferred

to the link L13 for injection into the second mixer. The collector load of Q6 is tuned to twice the crystal frequency (around 90 Mc .), enabling the oscillator to also act as a doubler. The output of the oscillator is fed to the base of the second multiplier stage via a capacitive matching network of 6.8 pF . (C26) and the 18 pF . (C30). The output is from L9 which has been tuned to four times the crystal frequency (approx. 170-200 Mc.). This makes the second stage also a frequency doubler.

The last stage normally operates as a frequency doubler. However, where an output is required in the broadcast band in Channel 0 areas, this stage will be a tripler. The input to Q8 is again from a capacitive dividing network of 3.3 pF . (C27) and 10 pF . (C33). The collector load is an r.f. choke and the injection frequency is transferred via the 1 pF . (C28) capacitor to the parallel tuned circuit of Lll and C4. The correct injection level for the first mixer is obtained by the two 10 pF . (C29, C17) capacitors which are in series with the taps on coils L11 and L4.

A supply voltage of 12 volts at approx. 30 mA . is required. However, unlike previous projects, the negative supply rail is not isolated from earth; this could not be conveniently done without substantially increasing the complexity of the converter board layout.
The converter is constructed on an epoxy fibre glass printed circuit board of $4^{\prime \prime} \times 4 \frac{3}{\prime \prime}^{\prime \prime}$ which has had the copper surfaces gold plated to eleviate problems associated with skin effects and soldering. All the fixed capacitors below 100 pF . are NPO or NT50 ceramic, whilst 100 pF . and above are $\mathrm{Hi}-\mathrm{K}$ disc ceramic or mylar. Resistors must be of small dimension. Ratings up to I watt are suitable although $\frac{1}{2}$ watt in many instances can be used with almost zero lead length.

All the coil formers used are Neosid type A (single) and the type B (double) with screening cans on all coils except L2. Bases of these formers have not been used, instead, a 7/32" hole is drilled in the board and the formers glued directly into the board. In all cases F29 v.h.f. slugs are used for tuning.

FERFORMANCE

All prototypes measured were with noise figures in the vicinity of 3.9 to 6 db . These figures were measured with a Rhode and Swartz type STKU noise generator.

The gain of the converter is adequate for all reasonable applications, with the conversion gains of the double and single conversion prototypes measuring in excess of 35 db . and 22 db . respectively. With all tuned circuits peaked for 432.0 Mc ., the 3 db . bandwidth was about $2 \frac{1}{2}$ Mc. The noise figure was substantially constant over this range. The bandwidth is quite adequate for normal operation in this part of the band. However, should the converter be required for Amateur t.v. a bandwidth of 7 Mc. is easily obtained by stagger tuning, but some slight sacrifice of gain and noise figure will be noticed. In all instances, the noise figure was noted to be better than comparable valve converters.

No cross modulation measurements were made; however on-air tests showed good performance with strong adjacent signal conditions. No diode protection was found necessary on the r.f. amplifier of the converter, as the 2N5245 have reverse breakdown of 30 v . and a maximum forward gate current rating of 50 mA .

CRYSTAL SELECTION

All crystals are type " D ", third overtone, and the choice of crystal frequency will depend on whether double or single conversion is used. Each group will now be mentioned.
(a) Single conversion is recommended for i.f. frequencies above 20 Mc. and will fall into possibly one of the following catagories:
 ON PRINTED CIRCUIT BOARD

MAKE SHIELDS FROM SINGLE OR DOU 日LE SIDED PRINTEO CIRCUIT BOARD.
(1) 6 metre output to be connected into an external 6 metre converter of acceptable design.
(2) Either Channel 0 or 1, or, if desired a higher frequency, depending on the area for Amateur Television.
(3) For use with a good quality communication receiver either on the 10 or 15 metre bands.
We have included the formula for single conversion and some examples have been calculated (see Table 1):

$$
\text { Crystal frequency }=\frac{432-\text { I.F. }}{8}
$$

I.F. Mc.	Crystal Frequenc; Mc.
52 to 54	47.5
28 to 30	50.5
21 to 23	51.375

Table 1.

(b) Double conversion.-Most of the double conversion frequencies are acceptable, however where the first i.f. falls within either Channel 0 or 1 , the converter will need to be shielded to stop very strong t.v. signals from these stations breaking into the first i.f. The same situation may occur if the first i.f. is in the 6 metre band where strong local signals exist from Amateur stations. These restrictions, we feel, are not of a very serious nature, as many Amateurs will agree it is a good practice to have any converter shielded.

Because of the number of variables in double conversion, i.e. crystal, first i.f. and second i.f. frequencies, we have included a sample calculation and a short table (Table 2 or Table 3) of some of the more common second i.f. frequencies.
(i.) Forward tuning:-

Crystal $=\frac{432-\text { Second I.F. }}{9}$
First I.F. $=\mathrm{Xtal}+$ Second I.F.
Osc. Inject. Freq. $=$ Xtal $\times 8$

If a second i.f. of 7 Mc . to 9 Mc . is required, then substituting 7 Mc . in equation (1), we obtain a crystal frequency of 47.2222 Mc . Taking this value and transferring it into equation (2) we arrive at a figure for the first i.f. frequency of 54.2222 Mc . and the oscillator injection frequency of 377.777 Mc . as calculated by equation (3).

Second IJF Mc.	Crystal Mc.	First IF. Mc.	
0.6 to 1.6	47.9333	48.5333	(1)
2 to 4	47.7777	49.7777	(1)
4 to 6	47.5555	51.5555	(1)
4.5 to 6.5	47.5000	52.0000	(2)
6 to 8	47.3333	53.3333	
7 to 9	47.2222	54.2222	
8 to 10	47.1111	55.1111	
9 to 11	47.0000	56.0000	(3)
12 to 14	46.6666	58.6666	(3)
14 to 16	46.4444	60.4444	(3)

Table 2.
Notes: 11, Channel 0 may Interfere.
1216 Metre may interfere.
(3) Channel 1 may interfere.

A further variation of the forward tuning mode is possible if Channel 0 interference is contemplated.

Broadcast band: Crystal 39.2181 and first i.f. is at 38.6181 . The last doubler in the multiplier chain is changed to a tripler, injection is both above 432 Mc . and the crystal frequency. A similar situation exists when tuning 3.5 Mc . and above. Crystal equals 38.9545 Mc . and the first i.f. is 35.4545 Mc . The formulae for calculating the crystal frequencies in these cases are as follows:

$$
\text { Crystal }=\frac{432-\text { Second IIF. }}{11}
$$

First I.F. $=$ Crystal - Second I.F.
(ii.) Reverse tuning: This may be required in areas where interference from Channel 1 is contemplated, when a second i.f. between 9 and 15 Mc . is used.

$$
\text { Crystal }=\frac{432+\text { Second INF }}{9}
$$

First INF. = Crystal - Second I.F.
An example of this, say the receiver tunes 14 to 15 Mc ., then 15 Mc . corresponds to 432 Mc . and 14 Mc . corresponds to 433 Mc .

Second I.F. Mc.	Crystal Mc.	First I.F. Mc.
5 to 3	48.5555	43.5555
7 to 5	48.7777	41.7777
15 to 14	49.6666	34.6666

Table 3.

COIL DATA

L2-4 turns 22 B. \& S. enamel wire, close wound and spaced $1 / 16^{\prime \prime}$ out from shield.
L5- $10 \frac{1}{2}$ turns 26 B. \& S. enamel wire, close wound.

L6-912 turns 26 B. \& S. enamel wire, close wound, tapped at $2 \$$ turns from earth end.
L7-18 turns 30 B. \& S. enamel wire, close wound.
L8-10! turns 26 B. \& S. enamel wire, spread over most of former, tapped at 3 turns from hot end.
L9-41 turns 26 B. \& S. enamel wire, spread over half the length of the former, tapped at 1 it turns from hot end.
L10-R.F.C.- $5 \frac{1}{2}$ turns $3 / 16^{\prime \prime}$ i.d. 26 B. \& S. enamel wire. Close wound, spread to resonate on desired frequency.
Ll1-1f turns 14 S.W.G. tinned, close wound, tap at $\frac{1}{2}$ turn from earth end.
L12-141 turns 30 B. \& S. enamel wire, close wound, tapped at $5 \frac{1}{2}$ turns from cold end.
L13-23 turns 26 B. \& S. enamel wire, close wound, close coupled to L12 on same former.

Note.

L5 and L6 will tune 46-64 Mc. Adjust turns to suit own i.f. if necessary. L12/L13-L12 closest to board.

CONSTRUCTION

Complete construction details will be supplied with the kits made available from the VK3 Division. However, those not wishing to obtain the kit, a few hints may be welcome.

First mount on the board the co-axial sockets, crystal socket, the feed-through capacitors from the top of the board and the trimmers from the copper side. The method can be easily seen by examining the photographs with this article.

Locating lands on the Neosid former should be filed off and the formers glued into the board with Araldite, making sure that the formers line up correctly with the holes in the cans. When the Araldite has set hard, all coils on the top of the board can then be wound. The cans should now be soldered on to protect the coils.

All the components on the top of the board can now be mounted, as well as Lll on the underside of the board as shown in Fig. 2. Prepare strip lines and shields as shown in Figs. 2 and 3. Cement the Neosid former into the shield, by inserting into the hole from L3 side of shield.

Mount Q2 above C7 with the source lead as short as possible. Solder the drain and gate connection in that order. Position and solder L4 into place above Q2. Solder tap from C17 onto the edge of mixer line, L3 can now be fitted into place. Carefully solder into place above C5 the FET Q1, ensuring absolute minimum source length. Place the shield between L1 and L3 into place and run solder along the length of the board. L1 can now be installed and the tap connected from the input connector. The last shield is now installed, solder is run along the junction of the two shields and along the board. Make sure that the copper path between C17 and C29 does not foul the shields. The neutralising circuit can now be completed. Sec Fig. 4.

Much has been mentioned about the soldering of FETs and bipolar transistors and we strongly recommend that you re-read the articles previously published by the Project Committee. One further point worth mentioning here is to ensure that the board be floating above earth whilst soldering takes place. Take the example where

FIG. 5 COMPCNENT AYOUT 432 MH2 CONVERTER
soldering irons similar to the scope are used. If both sides of the secondary winding of a transformer are floating from earth, electrostatic coupling between primary and secondary may couple a high voltage (several megohms impedance) to the secondary, even at this high impedance, the voltage still could become sufficient to damage the gate junction of the device, earthing one side of the secondary will overcome this. However, with both the board and one side of the transformer earthed, there could be during its cperation in excess of $\frac{1}{2}$ volt r.m.s. between the earthed transformer secondary and the earthed barrel, due to the very high current in the lead (approx. 30 amp .). Assuming 1v. peak, this is equivalent to a supply of low impedance and whilst soldering the device if there is insufficient circuit resistance to limit the current (50 mA . maximum gate current 2 N 5245 , or 10 mA. for MPF102/6/7 and 2N3819), the gate to source junction acts as a forward based diode and excessive current can easily destroy the device.

The Projects Committee always advocates that the best protection is to isolate the board from earth whilst soldering transistors and FETs.

ALIGNMENT

Fit crystal and connect to power supply (12 volts). Wind L12 slug fully in. Adjust L7 and L8 for maximum d.c. change across R7, the emitter resistor of the second multiplier Q7. Connect the voltmeter across the emitter resistor R9 and the third multiplier Q8 and peak L9 for maximum d.c. change.

Adjust the trimmer C4 across Lll for maximum change across the emitter resistor R14 of the first mixer Q2. Spread or compress the R.F.C. (L10) in conjunction with the above adjustment for maximum volts as above. Connect the voltmeter across the source resistor R15 of the second mixer Q3. Screw out the slug of L12 and notice the magnitude of the change. After determining this, set the slug to read one-third of maximum change.

Feed a signal of the first i.f. frequency in via the first i.f. output coaxial socket and tune L6 for maximum signal strength in the tunable i.f.

An aerial can now be connected to the input socket, tune $\mathrm{C} 1, \mathrm{C} 2$ and C 3 for maximum signals, either from a local 432 Mc. station or from a signal generator (either a fundamental or harmonic).

Adjust L2, the neutralising coil, for maximum r.f. amplifier stability. It is now advisable to re-peak all coils again with the exception of L12. Final alignment may be carried out with the aid of a simple noise generator if available, or with weak off-air signals.

AVAILABILITY

A number of kit sets will be made available later this month, depending on delivery of components from overseas. The price of the kits, less crystal, will be: Double conversion $\$ 22.00$ post paid, and single conversion $\$ 18.50$ post paid.

The double conversion unit is shown in its entirity in Fig. 1, whereas the (Continued on Page 25)

THE NATURE OF MATTER

LECTURE NO. 1

C. a. CULLINAN,* VK3AXU

I^{N}N order to obtain any Radio Certificate it is necessary to have a good understanding of The Nature of Matter, hence this series of lectures starts with this subject mainly in the form of definitions.

ELEMENT

The name of a chemically individual unit of matter. There are 90 elements found in nature, plus two which can only exist in nature for a short time. In addition, there are 11 transurani: elements which have been created by man in atomic reactors, atom smashers and similar devices.

ATOM

The smallest material particle of a given element, measuring a hundrej millionth of a centimeter in diameter, $1 \div 100,000,000$, or $1 \times 10^{-8} \mathrm{~cm}$.

Its weight is about 1×10^{-22} gramme.
Atoms are made of electrons orbiting around a central nucleus.

COMPOUND

A group of atoms which are chemically linked, e.g. pure water consists of the two elements hydrogen and oxygen, mixed in the ratio of two atoms of hydrogen and one atom of oxygen.

mOLECULE

The smallest amount of a compound which can exist as such. Any further division would result in dividing up into its individual elements. A molecule of pure water is $\mathrm{H}_{2} \mathrm{O}$. Further division would result in obtaining two atoms of hydrogen and one atom of oxygen.

ELECTRON

An infinitesimal atomic particle carrying a unit electrical charge (normally negative), i.e. a negatively charged particle. The diameter of an electron is $5 \div 10,000,000,000 \mathrm{~cm}$. In an atom, one or more electrons orbit around a positively charged nucleus. Electricity is a flux of electrons. All radio work is based on the use of electrons and we will deal, later, more fully with electrons.

NUCLEUS

This is a condensation of matter at the core of the atom, it carries a positive electric charge around which electrons orbit. Nuclear energy is derived from this core.

PROTON

A "heavy" particle in the nucleus carrying a positive electrical charge. There are as many protons in an atom as there are electrons (for a neutral atom).

NEUTRON

Another "heavy" particle on the nucleus. It is electrically neutral and
 Broadcast Station 3CS for students studying for a P.M.G. Radio Operator's Certificate.

It is assumed that the student has a knowledge of Mathematics to the Intermediate Certificate level of the Victorian Education Department.
is a constituent of atomic nuclii. It is free neutrons which cause the splitting or fission of the nuclii in heavy elements, such as uranium U235. There are other particles in the nucleus but these do not concern us to any extent.

ATOMIC NUMBER z

(Not to be confused with the symbol Z used in electrical work to represent the word impedance.)

The atomic number is that given to each element, in an orderly table, by its chemical classification. It is equal to the number of protons or electrons. It does not take into account neutrons or other particles in the atom. Hydrogen is the lightest element, having 1 proton and 1 electron, hence its atomic number is 1. Uranium is the heaviest neutral element with 92 protons and 92 electrons, atomic number 92. The heaviest of all elements is man-made and to date is Lawrencium. Discovered in 1961, its atomic number is 103 and its chemical symbol is Lw.

The chemical behaviour of an atom is determined by the electrons in its outer shell. It is by changing electrons in the outer shells that some elements can mix to become compounds.

However, the so-called rare gases cannot mix chemically to form compounds as the external shells of their atoms already possess all possible electrons for that element.

Element	Possesses External Electrons	Atomic Number
Helium (He)	2	2
Neon (Ne)	8	10
Argon (A)	8	18
Krypton (Kr)	18	36
Xenon (X)	18	54
Radon (Rn)	32	86

These gases are chemically inert because each of their outermost shells has complete electron-saturation.

Mass Number A.-This is the total number of protons and neutrons in the neucleus and is so named as almost the whole of the weight of an atom is in the nucleus.

Isotope.-This is the name given to the varieties of an atom, varieties which are chemically the same, but physically are different. An isotope is defined by the name of the element and a number consisting of the atomic number and the mass number.
Let us examine uranium. Any sample of natural uranium, no matter how treated chemically cannot be divided into any other form of uranium, although it can be combined with other elements to form compounds. However, by elaborate mechanical or electrical means it is possible to get three different lots of uranium, each chemically the same, but having certain physical differences because the number of neutrons are different in each lot of uranium, although the number of protons are the same.

For example:
U234-atomic number 92 plus 142 neutrons-234.
U235-atomic number 92 plus 143 neutrons- 235 .
U238-atomic number 92 plus 146 neutrons- 238 .
Atomic Weight.-The atomic weight is now taken as the weight of one atom of any element, compared with the weight of one atom of carbon which has been arbitarily given a weight of 12 exactly. The atomic weight is the weighted mean of all the isotopes being considered. Atomic weight has no units, such as grammes, etc. The mass is checked with a Spectrometer. Numbers in brackets indicate that the element is unstable and has a constantly changing nucleus.

Electron Arrangement.-The number of electrons in each orbit or shell, from inner to outer.

IONS

In some atoms the electrons in the outer shells are held loosely and in certain conditions may become completely disassociated with the atom. The atom then becomes an ion, the process being known as ionisation.

An atom which has lost an electron in this way is known as a positive ion as the positive charge in the nucleus now exceeds the negative charge in the remaining electrons.

A negative ion is an atom which has captured one or more electrons, and as a result the negative charge in the electrons is greater than the positive charge in the nucleus. Thus ions can be considered as an electrical imbalance in an atom, compared with the neutral state, and caused by the loss or gain of one or more electrons.

So far we have studied matter from the view-point of a single atom. However, the smallest amount of any element which is familiar to us consists of millions of atoms, so we must consider now, how these atoms cling together to make masses of an element, particularly in the solid state, rather than in the liquid or gaseous states.

Many years ago, Max von Laue experimented with x-rays by photographing them after they had passed through a crystal of copper sulphate. He found that diffraction of the x-rays took place and that the regularity of crystal shapes was due to the arrangement of their basic atomic units.

Today the x-ray diffraction technique is widely used in industry; of interest to us in determining the correct "cuts" for making quartz crystal plates for use in the oscillators in transmitters, also it is used in the manufacture of transistors.

BONDING OF ATOMS

But what holds one atom to another? This is a bonding force of electrical attraction between the negatively charged electrons of one atom and the total positive charge of another atom.

There are four types of such bonds, and it is the minute differences between such bonds that account for the particular properties of such solid substances.

Ionic Bonding.-This type of bonding exists in the crystals of common salt because one atom of the sodium loses one electron to an atom of chlorine (common salt is sodium chloride), thus creating ions (charged particles) having strong attraction to each other.

Covalent Bonding is the name of the bond in which one atom shares one or more of its electrons with another atom. This bond produces a material of exceptional hardness. The classic examples are the diamond and graphite, which are both pure carbon.

Metallic Bonding is the name given to the special bonding of metals.

Alpha and Beta particles cause intense ionisation in the matter which they penetrate. Gamma rays also cause ionisation.

RADIO ACTIVITY

This is the expulsion by a nucleus, which has an excess of energy, of one or more particles or of energy in the form of radiation. There are three forms:

Alpha Activity.-The expulsion of a group of two protons and two neutrons. This is a helium nucleus or alpha particle.

Reta Activity.-The expulsion of an electron from the nucleus. The capture of one of the orbiting electrons (negative) is the equivalent of the emission of positive Beta emission.

Gamma Activity.-This is the emission of ultra short-wave electro-magnetic radiation.

All three of these emissions are harmful to human life.

Heat, also. can cause ionisation.
IContinued on Page 141

MODERN TABLE OF THE ELEMENTS

Atomic	
Number	Name
1	Hydrogen
2	Helium
3	Lithium
4	Bergllium
5	Boron
6	Carbon
7	Nitrogen
8	Oxygen
9	Fluorine
10	Neon
11	Sodium
12	Magnesium
13	Aluminium
14	Silicon
15	Phosphorus
16	Sulphur
17	Chlorine
18	Argon
19	Potassium
20	Calcium
21	Scandium
22	Titanium
23	Vanadium
24	Chromium
25	Manganese
26	Iron
27	Cobalt
28	Nickel
29	Copper
30	Zinc
31	Gallium
32	Gernianium
33	Arsenic
34	Selenium
35	Bromine
36	Krypton
37	Rubidium
38	Strontium
39	Yttrium
40	Zirconium
41	Niobium
42	Molybdenum
43	Technetium
44	Ruthenium
45	Rhodium
46	Palladium
47	Silver
48	Cadmium
49	Indium
51	Tin
52	Antimony
	Tellurium

	Atomic Welght
H	1.0080
He	4.0026
LI	6.939
Be	9.0122
B	10.811
C	12.011
N	14.007
O	15.999
F	18998
Ne	20.183
Na	22.990
MG	24.312
Al	26.982
Sl	28.086
P	30.974
S	32.064
CL	35.453
Ar	39.948
K	39.102
Ca	40.08
Sc	44.956
Ti	47.90
V	50.942
Cr	51.996
Mn	54.938
Fe	55.847
Co	58.933
Ni	58.71
Cu	63.54
ZN	65.37
GA	69.72
Ge	72.59
AS	74.922
SE	78.96
Br	79.909
Kr	83.80
Rb	85.47
Sr	87.62
Y	88.905
Zr	91.22
Nb	92.906
Mo	95.94
Tc	(99)
Ru	101.07
Rh	102.91
Pd	106.4
Ac	107.87
Cd	112.40
In	114.82
Sn	118.69
Sb	121.75
Te	127.60

Electron Arrangement
linner to outer orbit)
1
2
$2-1$
$2-2$
$2-3$
$2-4$
$2-5$
$2-6$
$2-7$
$2-8$
$2-8-1$
$2-8-2$
$2-8-3$
$2-8-4$
$2-8-5$
$2-8-6$
$2-8-7$
$2-8-8$
$2-8-8-1$
$2-8-8-2$
$2-8-9-2$
$2-8-10-2$
$2-8-11-2$
$2-8-13-1$
$2-8-13-2$
$2-8-14-2$
$2-8-15-2$
$2-8-16-2$
$2-8-18-1$
$2-8-18-2$
$2-8-18-3$
$2-8-18-4$
$2-8-18-5$
$2-8-18-6$
$2-8-18-7$
$2-8-18-8$
$2-8-18-8-1$
$2-8-18-8-2$
$2-8-18-9-2$
$2-8-18-10-2$
$2-8-18-12-1$
$2-8-18-13-1$
$2-8-18-13-2$
$2-8-18-15-1$
$2-8-18-16-1$
$2-8-18-18$
$2-8-18-18-1$
$2-8-18-18-2$
$2-8-18-18-3$
$2-8-18-18-4$
$2-8-18-18-5$
$2-8-18-18-6$
2

Atomic Number	Name		Atomic Weight	Electron Arrangement IInner to outer orbit)
53	Iodine	i	126.90	2-8-18-18-7
54	Xenon	X	131.30	2-8-18-18-8
55	Caesium	Cs	132.91	2-8-18-18-8-1
56	Barium	Ba	137.34	2-8-18-18-8-2
57	Lanthanum	La	138.91	2-8-18-18-9-2
58	Cerium	Ce	140.12	2-8-18-19-9-2
59	Praseodymium	Pr	140.91	2-8-18-21-8-2
60	Neodymium	Nd	144.24	2-8-18-22-8-2
61	Promethium	Pm	(147)	2-8-18-23-8-2
62	Samarium	Sm	150.35	2-8-18-24-8-2
63	Europium	Eu	151.96	2-8-18-25-8-2
64	Gadolinium	Gd	157.25	2-8-18-25-9-2
65	Terbium	Tb	158.92	2-8-18-26-9-2
66	Dysprosium	Dy	162.50	2-8-18-28-8-2
67	Holmium	Ho	164.93	2-8-18-29-8-2
68	Erbium	Er	167.26	2-8-18-30-8-2
69	Thulium	Tm	168.93	2-8-18-31-8-2
70	Ytterbium	Yb	173.04	2-8-18-32-8-2
71	Lutetium	Lu	174.97	2-8-18-32-9-2
72	Hafnium	Hf	178.49	2-8-18-32-10-2
73	Tantalum	Ta	180.95	2-8-18-32-11-2
74	Tungsten	W	183.85	2-8-18-32-12-2
75	Rhenium	Re	186.2	2-8-18-32-13-2
76	Osmium	Os	190.2	2-8-18-32-14-2
77	Iridium	Ir	192.2	2-8-18-32-15-2
78	Platinum	Pt	195.09	2-8-18-32-17-1
79	Gold	Au	196.97	2-8-18-32-18-1
80	Mercury	HG	200.59	2-8-18-32-18-2
81	Thallium	Ti	204.37	2-8-18-32-18-3
82	Lead	Pb	207.19	2-8-18-32-18-4
83	Bismuth	Bi	208.98	2-8-18-32-18-5
84	Polonium	Po	(210)	2-8-18-32-18-6
85	Astatine	At	(210)	2-8-18-32-18-7
86	Radon	Rn	(222)	2-8-18-32-18-8
87	Francium	Fr	(223)	2-8-18-32-18-8-1
88	Radium	Ra	(226)	2-8-18-32-18-8-2
89	Actinium	Ac	(227)	2-8-18-32-18-9-2
90	Thorium	Th	232.04	2-8-18-32-18-10-2
91	Protactinium	Pa	(231)	2-8-18-32-20-9-2
92	Uranium	U	238.03	2-8-18-32-20-9-2
93	Neptunium	Np	(237)	2-8-18-32-22-9-2
94	Plutonium	Pu	(242)	2-8-18-32-24-8-2
95	Americium	Am	(243)	2-8-18-32-25-8-2
96	Curium	Cm	(247)	2-8-18-32-25-9-2
97	Berkelium	BK	(247)	2-8-18-32-27-8-2
98	Californium	Cf	(249)	2-8-18-32-28-8-2
99	Einsteinium	Es	(254)	2-8-18-32-29-8-2
100	Fernium	Fm	(253)	2-8-18-32-30-8-2
101	Mendelevium	Md	(256)	2-8-18-32-31-8-2
102	Nobelium	No	(254)	2-8-18-32-32-8-2
103	Lawrencium	Lw	(257)	2-8-18-32-32-9-2

COMMONSENSE TRANSISTOR PARAMETERS*

R. L. GUNTHER, \dagger VK7RG

THE principal characteristics of transistors are many, and they can be presented as an imposing array of facts or as a few simple principles. Unfortunately for simplification, transistor behaviour is rather complicated, and oversimplification is charming but not very useful. In the following discussion, I attempt to present The Transistor Story in as commonsense and painless manner as possible, but there are still many details. If you want the Good Oil on transistors, you'll have to settle in and read it all patiently.

Further details may be found, among other places, in the "Grandma's Tests" series of 1967 issues of "The Australian E.E.B.", and in the Transistor Manuals by R.C.A., G.E., and Motorola. A particularly lucid though elementary treatment is given in the "Semiconductor" chapter of "Basic Radio Course" by "Electronics Australia".

That strange name, "Grandma's Tests" arose from author R. S. Maddever's observation that the best way to handle transistors is to do it the way Grandma did with eggs: try them and see. That is our approach too.

POWER RATING

Like many transistor ratings, this is a myth. If you try to put 30 w . into a "30w." transistor, you'll be sorry, particularly if that rating assumes an infinite heat sink ("case $25^{\circ} \mathrm{C}$. "). And then we have the interesting fact that the same transistor may be rated at "100w." by the Americans and at "30w." by everyone else. Ignoring the possibility that Americans do everythins bigger, there are two practical approaches possible, both bad:

You can simply aim to dissipate at most, one-half of the maximum rating (preferably the most pessimistic one), and hope for the best. Or you can apply power gradually in a test system using the same heat sink (if any), until the transistor gets hot. A germaniur: one should not become more than "pretty warm," and silicon should not boil water.
" PAMR " or equivalent is the maximum power a transistor can take just sitting in "free" air. But the air in those test labs is a lot cheaper than inside your congested chassis, and healthy derating would be prudent.
"Pсаки" or equivalent means that the power transistor can suffer unless the case is kept at some certain temperature. Often this is specified at $25^{\circ} \mathrm{C}$. (about $77^{\circ} \mathrm{F}$.), but this is absurd, because the only way you can meet that is to feed it zero power, or use an infinite heat sink. Infinite heat sinks are expensive, and more useful is to derate at a given number of watts per degree, as given in the Specifications (or Specs of similar transistors), aim-

[^2]ing for a maximum operating temperature of $60-90^{\circ} \mathrm{C}$. for silicon if you are brave. For reference: $100^{\circ} \mathrm{C}$. boils water or you.

A bad, though useful rule of thumb is: use one square inch of heat sink (e.g. measured on one side of a flat piece) for every watt to be dissipated, if the temperature of the transistor (or diode) is allowed to reach $60^{\circ} \mathrm{C}$. ($140^{\circ} \mathrm{F}$.) above "ambient temperature". "Ambient temperature" is the hottest temperature your semiconductor will reach without passing current, and includes heat from nearby transistors, transformers, valves, resistors, etc.

A word of caution: very small semiconductors, as diodes, do not have much heat capacity. If you touch them, your finger will draw out some heat. The back of a finger or hand is more sensitive, a lip even more so; but I stopped that lip-nonsense after a careless embrace with an angry diode. Rod Reynolds points out that it is very important to remove voltage from a semiconductor before feeling it; his voice has the ring of truth, and I suspect the fruit of a vivid experience.

CURRENT RATING AND CURRENT GAIN

Equally aprocryphal. If you plan to use a transistor as a switch, you can run the maximum "rated" current through it if the voltage is low enough. For ordinary voltages you must keep the current low enough not to exceed the power rating: $\mathrm{P}_{\mathrm{c}}=\mathrm{Vcs} \times \mathrm{I}_{\mathrm{c}}$. In other words you cannot run both "rated" current and voltage at the same time.

At worst, P_{c} must not exceed the practical power rating. At best, the current should not be large enough to degrade the current gain, β (or $h_{P E}$).

To a first approximation, $\beta=I_{c} / I_{n_{1}}$ where $\mathrm{I}_{4}=$ collector current, $\mathrm{I}_{s}=$ base current to produce that Ic. As Ic increases from zero, β increases up to a point, and then as $I_{\text {. }}$ is increased further, β goes down-fast. Don't be surprised, therefore, if the transistor you are running at 1 mA . has enough gain. The value from the books may be specified for $I_{c}=10 \mathrm{~mA}$., or something. Murphy's Law requires that if you were operating at 10 mA ., the manufacturer would have specifled the gain at 1 mA .

The more β varies with collector current, the less linear is the transistor. Some transistors, like the Fairchild 2N4250, AY1115 and 2N4354 are extremely linear over a wide range of collector currents, but most are not this good. Poor linearity means high distortion, and if you want to eliminate distortion you will have to use negative feedback, or valves-or FETs. FETs tend to be considerably more linear than ordinary (bipolar) transistors.

I must mention here that although β is usually considered to be "current gain', it is only so if the load resistance is below about r_{c} / β (e.g. 1 K for
low power transistors). Otherwise β is somewhat higher than actual current gain obtained, although I shall continue to describe β as "current gain" as a useful approximation. It is interesting to realise that β bears the same relationship to transistors as does μ for valves, so the proper name for β is "current amplification factor", just as that for μ is "(voltage) amplification factor".

MAXIMUM VOLTAGE RATING

This rating is so confusing that we can disregard published values altogether. You cannot necessarily depend on the voltage rating of bought-transistors. If they are disposals type (often advertised as "new"), the rating may be lower (or higher) than advertised. If they are commercial types, the ratings are likely to be higher than in the catalogue, though the increasing popularity of Improved American ratings tends to reduce this margin of safety.
In a number of Fairchild and Mullard transistors tested, the voltage ratings were appreciably higher than listed in the specs. sheets. They do this, presumably on purpose, to give their transistors a reputation for reliability, because the concept of liberal safety factors for semiconductor ratings is not yet universally appreciated. It is possible that the extra ratings allow for "production spread", but there does not seem to be evidence for this in practice -at least in the degree found.
In any event, you can only depend on a given rating if you test it yourself, and when you do that you can get more performance out of semiconductorsas discussed in the recent articles on Computer Transistors ("A.R.," Aug., Sept., Dec., 1969).

ABSOLUTE MAXIMUM VOLTAGE RATING

Then there is the problem about inflexible semiconductors. In general, the maximum peak voltage actually in your circuit (including transients) should never exceed one-half the absolute maximum voltage rating. This rule should never be violated.' But what is the "absolute maximum rating"? It is the value beyond which destruction of the transistor becomes virtually inevitable. Stories to the contrary involve the abovementioned hidden safety factors, or occasionally marginal effects. Those stories also do not always take into account the fact that there are several different types of transistor voltage ratings, as described adequately in the articles on Computer Transistors ("A.R.," Aug., Sept., Dec., 1969).

With large resistance in the base circuit, the collector breakdown voltage will be relatively low: BV.cro. With small resistance, it will be higher: $B V_{\text {cris. }}$ In between it will be $\mathrm{BV}_{\text {cbr }}$, depending on R. This is particularly relevant for transistors used as Class C

[^3]r.f. amplifiers, where the problem of collector voltage rating may be important. If the load is reactive and/or the collector is modulated, you need the highest voltage rating, and the most resistance you will want in the base circuit is that of an r.f. choke or base link. If you use a base-leak resistor, voltage rating of both collector and base (for practical purposes) go down, and drive must be controlled carefully. ${ }^{2}$

FREQUENCY RATING

Although this subject has been treated very well by the G.E. "Transistor Handbook" and Mullard "Reference Manual of Transistor Circuits," there is some room for simplification. In the following discussion I shall present commonsense rules of thumb about frequency ratings, and practical examples. There is some detail, but it is necessary to enable you to use transistors more effectively.

Fia. 1-Frequency response.
A: 015, 065. etc. B: 033, 083, etc
Slope equals 6 db ./octave, and 20 db ./decade.
Figs. 1 and 2 show the basic material of the subject as the books tell ithere applied to computer board transistors. Although the Figures look complicated, we can get useful results from them quickly and easily. To do this we must look at the language of frequency.

Assume that a given transistor has a current amplification factor, $\beta_{0}=100$. That subscript nought refers to the fact that the gain is measured at 1 Kc . or so.

Assume that it has a power gain. PG $=35 \mathrm{db}$. (that's really a power gain of 3,160 , but it sounds more impressive to engineers to say db . $=10$ $\log P_{z} / P_{1}$).

Fig. 2.-Typical alloy diffused type (015, 065, atc.)
In Fig. 1, $f \propto_{n}$ is the Alpha cut-ofl frequency, being the frequency at which \propto (current "gain" of common-base amplifier) is down by 3 db . (i.e. by 30%, because for everything except power, now db. $=20 \log \mathrm{~F}$, where F is the factor comparing before and after. Here $\left.F=\propto_{s} / \propto_{1}\right)$.

In Figs. 1 and 2, $\mathrm{f} \propto_{r}$ is the Beta cutoff frequency when the common-emitter circuit is used; it is the frequency at which β is 3 db . down. In this instance, the initial 100 has fallen to 70.7.

[^4]In Figs. 1 and 2, $f_{t}=$ gain-bandwidth product, simply the frequency at which $\beta=1.0$, which is more useful than you think, as we shall see.

In Fig. 2, $f_{\text {m.x }}$ is the frequency at which PG $=1.0$, and theoretically the maximum frequency of oscillation.

Note that f_{0} " is about the same as if (more or less), therefore considerably more gain can be obtained at high frequencies from the common-base than the common-emitter configurations.

If the frequency of operation is much above $f \circ r$, the gain falls off at the rate of 6 db . per octave, being merely an obscure way of saying that gain halves every time frequency doubles (also: 20 db . per decade; doesn't that sound impressive?). When this happens we get the very useful relationship ${ }^{*}$ that

$$
\mathbf{f}_{\mathrm{T}}=\beta \times \mathbf{f}
$$

where $\mathrm{f}>\mathrm{f} \propto$:
and

$$
\mathbf{f}_{1} \boldsymbol{L}_{\mathrm{E}}=\mathrm{f}_{\mathrm{T}} / \boldsymbol{\beta}_{10}
$$

with useful implications: gain can be traded for bandwidth, $f \propto_{k}$, by selection of pl, or by feedback. There are numerous other trade-offs (i.e. compromises) which can be made with transistors, cranky beasts that they are, and a knowledge of them can increase transistor amplifier performance, and reduce experimenter frustration ${ }^{\text {c }}$ considerably. They can also lead to the design of more stable amplifiers, and that will be the subject of my next article in these pages.
The f_{r} relationship has another practical conseauence. In the data sheets you will often see $h_{\text {rw }}$ (β) specified at a given high frequency. If you know that $f_{T}=h w e x$, you can obtain the value for f_{r} immediately by simple multiplication. Nice, eh? (Practical example of this below.)

Once we know $f r$, what can we do with it? It is a conveniently succinct measure of transistor frequency capability: maximum practical usable frequency will generally be not more than one-half f_{r} for common-emitter, and the gain is looking pretty sick at that point, not to mention the greater tendency toward instabilities which have to be neutralised and unilateralised (resistive neutralisation). In com-men-base, maximum usable frequency will be at least f_{r} and likely well beyond, but the instability problem becomes acute at the limit, and neutralisation is not as easy.

For high frequency transistors, $f_{\text {mas }}$ is generally larger than f_{T}, and the actual amount larger depends on some complicated matters involving base resistance and collector capacitance.
For the AF106, for example, $f_{\text {s. }}=$ $5.5 \mathrm{f}_{\mathrm{T}}$, for the AFX11, $\mathrm{f}_{\mathrm{y} i x}=2 \times \mathrm{f}_{\tau}$, while for the 2N917, they are nearly equal.

The rule of thumb about maximum practical frequency being some half f_{T} is, therefore, a rather loose one, but it does give you a general guide to start on.

[^5]A practical measure of high frequency performance of a transistor is its maximum frequency of oscillation in your own test oscillator; details have been described in "Computer Transistors, Part II." in "A.R." Dec. 1969. The frequency so obtained may be designated "fowe," but is not to be confused with $\mathrm{f}_{\text {v.s. }}$. The latter is the maximum frequency you are supposed to be able to obtain, but it is largely an illusion. duse will give you a realistic characteristic, although it will only be a relative one, depending on the characteristics vï your equipment.

AN EXAMPLE

Let's come out of thie clouds with an example. Consicer the STC 2 SC 32 silicon mesa transistor. The data sheet shows β of 2.0 at 100 Mc. Using the handy formula given above,

$$
\begin{aligned}
\mathbf{f}_{\mathbf{T}} & =\beta \times \mathrm{f}, \\
\mathrm{f}_{\mathbf{r}} & =2.0 \times 100 \mathrm{Mc} \\
& =200 \mathrm{Mc} .
\end{aligned}
$$

That looks pretty impressive, but now let's use the second formula.

If the transistor has a gain, β_{0} of 50 at 1 Kc .,

$$
\begin{aligned}
\mathbf{f} \propto_{r} & =\mathbf{f}_{\mathbf{T}} \div \beta_{11} \\
& =200 \mathrm{Mc} \div 50 \\
& =4 \mathrm{Mc} .
\end{aligned}
$$

This is the frequency at which the common-emitter gain starts to drop appreciably, and looks a lot less impressive than does 200 Mc ., doesn't it? Between that 4 Mc . and the 200 Mc ., the current gain is roughly halving every time the frequency doubles (viz. " 6 db . per octave"); the power gain is falling at about that rate too, sometimes faster. See Fig. 3.

To operate at 20 metres this impres-sive-looking transistor will have moderate current gain indeed, and at 5 metres it is nearly useless. There is only one trouble with this brilliant argument: it does not conform to the facts. Let's look a little deeper.

CURRENT GAIN VS. POWER GAIN

We are accustomed to talk about voltage gain in valves, so since a com-mon-emitter circuit looks much like an ordinary valve circuit, we just make that into current gain, and all seems well. But it isn't. Owing to the low impedances of the transistor, we must consider only (or mostly) power gain for useful purposes. Why? Consider a typical transmitter using 2SC32s." They

[^6]work fine at 50 Mc .; power gain of about 15 db . allows a single 2N3643 (Fairchild) to drive two 2SC32s to about 1 w . output. And yet, from Fig. 3, current gain is only about 4. The answer lies in some simple relationships, all derived from Ohm's Law.

Since $P=I \cdot R$, it would seem reasonable that power gain $=$ (current gain) ${ }^{3}$ (resistance gain), but in practice a Murphy's factor of 5 must be included to make it come out right. Thus:

PG $=\beta^{2} \times 0.2 \times\left(r_{10:} \div r_{1 k}\right)$ (approximately) where resistance gain, $\mathrm{RG},=\mathrm{r}_{\mathrm{ol}} \div \mathrm{r}_{1:}$ (or $\mathrm{RG}=1 \div \mathrm{h}_{\mathrm{II}:} \mathrm{h}_{11}$)," essentially a measure of the output vs. input resistance of the transistor. Note that PG here is actual magnitude, not db . $\mathrm{db} .=10 \log \mathrm{PG}$.

POWER GAIN IN A

REAL CIRCUIT

Now if we apply that formula to a few typical conditions, we obtain data as in Table 1.

The figures for the typical low power transistor (from G.E. "Transistor Manual") are given for comparison, and would be relevant for a collector current of about 1 mA . The effect of
$\mathrm{f}_{\mathrm{MAX}}=\mathrm{f} \sqrt[2]{9}$
and $\quad f=f_{\text {max }} \div 3$
Here $\mathrm{f}_{\mathrm{s} . \mathrm{x}}=300 \mathrm{Mc}$., so $\mathrm{f}=300 \mathrm{Mc}$. $\div 3=100 \mathrm{Mc}$.

This means that our 2SC32 with $\mathrm{f}_{\text {vax }}$ of some 300 Mc . could be used usefully as a power amplifier up to about 100 Mc., in spite of the fact that at that frequency the current gain is only about 2.' Nice, huh? This is obviously more useful than f_{t} although you can see now where we got the rough rule of thumb that maximum practical frequency of amplification is $\frac{1}{4}$ to $\frac{1}{2}$ of f_{T} assuming neutralisation, unilateralisation, excellent geometry, and good fortune.

THE USES OF COMMONSENSE

There is yet another interesting trick you can perform with f and PG.

I mentioned in a preceding section that in common-base, the transistor could be used up to f_{τ} and well beyond. Let's see how that works. If we readjust our previous formula slightly,

$$
P G=\alpha^{*} \times\left(r_{o n} \div r_{\| I}\right)
$$

where as before, $r_{o n} \div r_{11}$ is resistance gain.

With an ordinary low power transistor, output resistance might be 1.5

Fig. 3 Point	Transistor Type	Frequency	$\begin{gathered} \bar{O}_{\text {Output }}^{\text {Resistance }} \end{gathered}$		$\begin{gathered} \text { Resist- } \\ \text { ance } \\ \text { Galn } \end{gathered}$	β	Power Gain
	Low Power	1 Kc .	$40 \mathrm{~K} \Omega$	$1.5 \mathrm{~K} \Omega$	27	50	$67 \frac{1}{2} \mathrm{~K}=49 \mathrm{db}$.
A	2 SC 32	10 Mc .	900,	75Ω	12	16	$310=25 \mathrm{db}$.
B	"	50 Mc .	3908	39n	10	3.8	$32=15 \mathrm{db}$.
C	,	200 Mc .	100n?		ca. 10	1.0	$2=3 \mathrm{db}$.
D	"	300 Mc .	0		0	1.0	$1=0 \mathrm{db}$.

Tabe 1.

running 50 mA . through the 2 SC 32 at the higher frequency has, as you can see at Point A, the effect of lowering resistance and gain appreciably. The resistance gain, however, stays pretty constant up to $\mathrm{f}_{\mathrm{T}}=200 \mathrm{Mc}$., but since β falls at 6 db./octave, power gain falls steadily with frequency. At 50 Mc . (point B) it is still large enough to rull Doc. Kelly's transmitter. At $f_{\mathbf{r}}=200$ Mc. (point C), there isn't much left. for practical purposes. At $\mathrm{f}_{\mathrm{n}, \mathrm{x}}=300$ Mc. (point D) there is still no current gain, but now the transistor has turned into a very leaky sieve, there are dire phase shifts, resistance gain suddenly falls to nothing, the transistor is a dead short, and who cares.

This dreadful point is $f_{\text {xAX, }}$, and is of interest to engineers, who appear to have wonderous oscillators which can oscillate just up to that point, for which reason " $\mathrm{f}_{\text {max }}$ " is short for "f $\mathrm{f}_{\text {owe }}$ max".

Now it so happens that

$$
\mathrm{P}_{1+x}=\mathrm{f} \sqrt[2]{\mathrm{PG}}
$$

and this has a commonsense use in giving us a springboard to calculate useful values of power gain.

Thus, if we make a reasonable as.sumption that the minimum useful PG $=9.0(=9.5 \mathrm{db}$.$) , then$
6. See "The Elusive H Parameter." C. Kleinert. WB6BIH, "73.: Dec. 1968. D. 20. Also Handbooks by G.E. and Mullard. Also "Dlodes and Transistors.: G. Fontaine IPhilips Tech. Libraryi, chapter on "Transistor Parameters.'
megohms, and input resistance 30 ohms, giving a resistance gain $=1.5$ megohms $\div 30$ ohms $=50,000$, which is highe: than 27, isn't it.

Power gain $=(0.98)^{2} \times 50,000=$ $48,000=46.8 \mathrm{db}$., about the same as c.e.

But in the 2SC32 medium power transistor being considered, the low frequency $\alpha_{11}=0.98$ (corresponding to $\beta=50$). The output resistance is now 1500 ohms and input resistance only 4.5 ohms. This very considerable decrease compared with low power is mainly due to the higher collector current of this transistor. With really substantial transistors like the SE3030, collector and base resistances become microscopic, and it becomes quite difficult to draw from or deliver power to them; thereby hangs a long tale, which I shall explore in another article. Now,
Resistance gain $=1500 \div 4.5=335$ at 10 Mc .

Power gain $=(0.9)^{2} \times 335=270$ $=24.3 \mathrm{db}$. (see Fig. 3, dotted line, point E).

The resistance gain falls somewhat, to about 100 at f_{T}, at which point $f_{c} \propto_{r}$ has come down to about 0.75, giving $P G=17.5 \mathrm{db}$. (point F); compare with 3 db . (point C) in common-emitter. At this point \propto begins to fall at $6 \mathrm{db} . /$ octave, and PG about twice that fast,
7. VKTLL reports that some p.a. amplification
is possible at 2 metres with 2 SC32.
so that at 600 Mc . there is a mere 6 db . or so of power gain (point G). Even so, that is quite a lot better than the performance of the same transistor in common-emitter, where at 600 Mc . it has melted into a heap of hot slag.

The performance of common-base is impressive, even if you have to reduce the frequency a bit to keep it stable. One can conclude only that commonemitter is still used so much because it looks so comfortingly like a valve. The input impedance of common-base (analogous to grounded grid) is indeed low, of ten less than 10 ohms. Although this is often mentioned as a problem in coupling to the driver, modern interstage coupling techniques use variations of series-resonant circuits (e.g. L or T networks, and series peaking inductance) to allow power transfer over very wide ranges of impedances, and using reasonable values of components. Details about this have appeared in the R.C.A. "Silicon Power Circuits Manual" and in the Amateur periodical literature during the past two years (for example, "Designing Interstage Networks," by R. L. Nelson, K6ZGQ, "Ham Radio," Oct. 1968, p. 59, except note errors in Eqns. 3a and 5-I can supply details-R.L.G.), to which in due course I shall add a bit either here or in "EEB".

Although common-base has been criticised for instability when it has been pushed too high in frequency. this is not necessary if you are not greedy. It is quite sufficient to get the 2SC32 operating efficiently at 2 metres. This saves money for a given power, and makes best use of material readily available; in the same power range is also the Fairchild 2N3642 or AY6102, or Motorola 2N3137 (or 2N697 at lower erequency). With really good overlay transistors," truly remarkable performance could be expected from commonbase at healthy frequencies: the R.C.A. 2N3375 or 2N3866; or Mullard BLY34, 2N3553 or 2N3375.
Instability problems can be attacked as for any other transistorised system: neutralisation, and a number of nonconventional garden recipes for taming transistor power amplifiers. ${ }^{\text {. }}$
All remaining commonsense aspects of frequency response behaviour of transistors have been discussed in the preceding articles on Computer Board Transistors ("A.R.," Aug., Sept. and Dec. 1969)

COMMON-BASE: A PRACTICAL EXAMPLE

The recent literature brings a good example of the use of common-base to obtain improved performance from

[^7]transistors," ${ }^{1 "}$ and to break with valve tradition. In this case, Iw. output is obtained (from 2 w . input, 18v.) at 144 Mc. from paralleled 2N2218 "Snowflake" (T.I.) or "Annular Star" (Motorola) transistors in common-base configuration. These are quite similar to the 2 SC 32 s mentioned above, having only a bit higher power rating; most of the numbers described for the 2SC32 will apply to the 2 N 2218 (or to the Motorola 2N2218A with higher voltage rating).

Thus, Fig. 3 here, shows that the 2N2218 should provide about 19 db . of power gain in common-base at 2 metres compared to about 6 db . in commonemitter. In GW3DFF's transmitter, the necessary drive (about 13 mW . to the final p.a.) is generated by a conventional 2N1613 crystal oscillator, followed by three unconventional 2N2218 multiplier stages, all in common-base. Obviously most of this multiplicity of drivers is required for the frequency multiplication; 13 mW . is not difficult to obtain from a single transistor operated at fundamental frequency.

This transmitter is notable for its good design throughout, including current equalisation via separate bypassed emitter resistances for the paralleled p.a. transistors, L-coupling networks throughout (including output) to obtain efficient coupling to the low-Z loads yet with practical component values, and zener diodes shunting the modulation transformer to keep maximum voltage peaks down to the collector ratings of the final transistors (and driver, which is also modulated). The author states that it also works well as n.b.f.m. simply by using a BA107 varicap diode across the crystal in the oscillator.

A few comments are in order. The author states that "Although the power gain in common-base is less than in the more usual common-emitter connguration, stability is much improved and unwanted frequencies from the crystal oscillator and multiplier stages are not passed through to the final power amplifier so easily." Although the stability and isolation are certainly better than common-emitter at this frequency, the power gain at 2 metres is not less than that in common-emitter, as you can see from Fig. 3 here. The author is confused by the fact that the gain of common-base would be somewhat less at low frequencies, but this is certainly not true at 144 Mc., as illustrated by my previous discussion. At this frequency the common-base set-up produces excellent results where common-emitter would give mediocre performance even if operating under ideal conditions (neutralised, unilateralised, etc.).

Furthermore, it should be noted that the specification sheets state values for f_{T} and f_{11} at modest currents, 10 mA . for the $2 \mathrm{SC} 32,20 \mathrm{~mA}$. for the 2 N 2218 . This will fall considerably at practical transmitter values of collector current (e.g. 100 mA .), making the comparison of common-base vs. common-emitter performance even more impressive at high operating frequencies. In addition,

[^8]if a parallel-resonant output tuned circuit is used it will be easier to couple it to the higher collector impedance of common-base, although it is still necessary to run the collector to a tap if adequate Q is to be achieved, since collector output resistance will still be less than 1000 ohms at these power levels, even for common-base.

If, therefore, we must copy valve circuitry when using transistors, let us give more attention to the transistorequivalent of grounded-grid, to obtain much better high frequency response from transistors of modest cost.

ACKNOWLEDGMENT

I wish to acknowledfe the assistance and :pecial Insights provided by R. A. Reynolds. VK7ZAR. and numerous other individuals with whom I have discussed these matters, here and abroad.

REPBRBNCES

1. "Understanding Transistor Response Parameters." by R. Hejhal, Motorola Semiconductor Technical Information Sheet AN-139 iCannon Filectric. Aust.). Also now in Motorola Data Book.
2. "The Transistor Unity Gain Parameters," "Miniwatt Digest." March 1966, p. 90 . more rigorous than I. but useful. Note that several other references are specified in the bibliographies of these two references.
3. "Diodes and Transistors," by G. Fontaine IPhilips Technical Library, 1063).
4. "Selected Semiconductor Circuits Handbook." ed. by S. Schwartz iwlley. 1961. but now avallable in Inexpenslve Services Edition, from larger bookshopsi.
5. "Transistor Circult Design" ITexas Instruments Stafi'. ed. by J. A. Walstom and J R. Miller (McGraw-Hill. 1983), p. 326.
6. Various Transistor Handbooks or Manuals 'G.E., Motoroln, R.C.A.), as conventent. Also Mullard Reference Manual of Transistor Circuits, and R.C.A. Silicon Power Circuits Manual.

THE NATURE OF MATTER
 (Continued from Page 10)

ATMOSPHERE

The complex gas which surrounds the earth. We call it air.

Biosphere.-This is the thin terrestrial layer where life exists.

Troposphere.-Air from sea-level to 6-7 $\frac{1}{2}$ miles altitude.

Stratosphere.-Rarified air from 7 $\frac{1}{2}$ miles to about 30 miles altitude.

Ionosphere.-This consists of a number of layers of ionised gas (mainly hydrogen) extending from about 25 miles to about 250 miles.

By means of Ionosphere Sounding Stations it has been found that the various layers in the ionosphere have different characteristics which effect the propagation or radiation of radio waves. The ionosphere plays a tremendously important role in broadcasting.

C Layer.-The lowest layer in the ionosphere is known as the C layer. It lies just above the stratosphere and is mainly ozone. Ultra-violet light from the sun penetrates the ionosphere to the ozone layer where most of it is blocked and relatively little gets through to the earth.

D Layer.-This layer lies above the C layer at about 30 miles, corresponding very nearly to the upper height of the ozone layer. Very low frequency radio waves, $10 \mathrm{KHz} .-550 \mathrm{KHz}$., are reflected from this layer. However, the attenuation increases very rapidly with wavelength (i.e. the layer absorbs a lot of the radio frequency waves) and this is the reason that transmitters using these frequencies are of very high
power. Also, this layer is relatively stable and this combines to allow very long distance communication to be maintained by such stations.
Fortunately, radio waves of shorter wavelength (higher frequency) penotrate this layer, and are reflected by other layers. Some radio waves manage to go right through the ionosphere as though there were windows in it. These radio waves are used for outerspace communications, transmissions via the moon and radio astronomy. In addition, light from the sun and stars gets through.

E Layer.-The height of this layer is about 10 km . It is known as the Ker-nelly-Heaviside layer. Fortunately for us, in medium frequency broadcasting, this layer reflects all radio waves in the band 550 to 1600 KHz ., and represents a source of reception of broadcast programmes over distances of hundreds of miles at night.

During the daytime the E layer becomes very heavily ionised due to the action of the sun, so that most high angle broadcast waves are absorbed and reception is dependant on the ground wave. After dark a de-ionising process sets in and a state is soon reached where the critical number of ions exists for proper reflection of these medium waves.

F Layer.-This layer is at about 175 miles above the earth at night time. At this height the density of the ai: is so low that recombinations of ions and electrons does not take place quickly as the particles can travel relatively great distances before meeting.

The ionisation decreases after sundown and reaches a minimum just before sunrise. During daytime the F layer splits into two parts, known as the F1 and F2 layers. The average virtual heights are 140 and 200 miles. These layers are highly ionised about noon, but at sunset they merge into the single F layer.

The F layer reflects high frequency radio waves up to about 60 MHz . at the peak of the 11-year-solar-cycle.
These notes about the ionosphere are necessarily brief and conclude the lecture on The Nature of Matter.

Wireless Institute of Australia
 Victorian Division A.O.C.P. CLASS

commences Theory:
TUESDAY, 17th FEB., '70
Morse:
THURSDAY, 19th FEB., '70
Theory is held on Tuesday evenings. and Morse and Regulations on Thursday evenings, 8 to 10 p.m.
Persons desirous of being enrolled should communicate with Secretary, W.I.A., Victorian Division. P.O. Box 36, East Melbourne, Vic., 3002. (Phone 41-3535, 10 a.m. to 3 p.m.)

ONE WAY

BRIAN J. WARMAN,* VK5BI

When the XYL decided I should take some long service leave for an extended trip Interstate, I was faced with the prospect of being off the air for a couple of months, or going mobile. Mobileering doesn't bother me normally as we are far away from other Amateurs in this part of Australia, and the only time we use the car is to get from point A to point B as rapidly as possible.

I was lucky enough to buy a Weston B.C.A. type transceiver through the Wireless Institute. This unit is normally crystal controlled on two channels which can be very close to the 40 and 80 metre bands. I decided the best band for my purpose was 40 , so I converted the receiver oscillator from crystal control with a simple "tickler" type oscillator. It was possible to arrange enough bandspread so that a slow motion dial proved unnecessary. The mixer and r.f. sections were left fixed tuned.

The next step was to arrange for a b.f.o. so that I could copy s.s.b. for my regular sked with VK5VB. Transistors were an obvious choice here and I finished with a small sub-assembly on a bit of fibreboard built around a surplus transistor i.f. transformer. I originally took the supply for the b.f.o. from the 12 v . low tension line, stabilised of course with a zener diode. I found, however, the b.f.o. was being modulated with vibrator hash. Finally, I put in a dropping resistor from the h.t. line, stabilised with a zener, and no problems.

The b.f.o. proved very sensitive to temperature variations. I probably could have improved things by selection of a different transistor type, but there just wasn't time. I understand absolute b.f.o. stability is a bit difficult to achieve with transistor circuits. I also added a r.f.-i.f. gain control to assist copy on strong s.s.b. signals and this completed the transceiver mods. No product detector was used.

I gave a lot of thought to the type of antenna to be employed. I finished up using a centre loaded whip for the following reasons.

Time.-I had heard helicals take a lot of time to prune and get up to peak efficiency, and I have had a lot of experience with loaded whips in other fields.

Mounting.-From listening on the air, I concluded the best place for a helical would be in the centre of the car top and I wasn't about to instal a pack rack or drill a hole in the top of my car, no sir, not this boy!

The photograph shows what I did. I made up a mounting from a piece of P.V.C. $1 \frac{1}{2}$ " irrigation pipe, 15 " long.
*Cowell. South Australia, 5602.

At each end I poured epoxy resin, thus fastening the socket for the whip mounting at the top and the steel piece for fastening to the car bumper at the other. The diagram shows the steel pipe the whip slides into, and also the finger which ensures good electrical connection from the feeder to the whip.

The whip proper is almost 12 feet long overall. The loading coil at the centre has a winding of stranded P.V.C. hookup wire $2^{\prime \prime}$ diameter and of $3^{\prime \prime}$ winding length. I will not give details of the coil construction as my coil was made from material available. If I was making it again, I'd probably mould one from epoxy resin. The reason I used the stranded hookup wire was I didn't have any large diameter copper wire.

Tuning was simple. I loaded the transmitter for maximum output at the rig and then using a field strength meter I tapped up the coil by pushing a pin into the windings until I got maximum indication on the field strength meter. The actual tap is very critical, and on my coil a movement of even an inch around a turn made a significant change.

The next whip I make will be shorter and I'll compensate for this by adding more turns on the coil. We collected tramway wires in VK3, and low bridges in VK2, and a lot of funny stares in VK4, if you know what I mean.

At this stage, I had plenty of r.f. coming out of the transmitter and could pick up plenty of signals until I started the engine. My Australia's own was S9. Diving under the bonnet, I remembered the mechanic's cure for
all engine ills-remove the carbon spark plug leads. Personally I have never had any trouble with these. I guess they age in time, but I think heavy-handed mechanics who grab the lead to pull it off a plug rather than pull it off at the actual spark plug cap might be the main reason for failure. This would stretch the outside of the lead and leave a failure in the carbon track. That's my theory anyway. I put the leads back on, noticed an immediate improvement in the noise problem, and no difference to the car's performance.

I still had noise. I thought it was from the low tension side of the points and tried condensers on the ignition side of the coil without success. Finally an inspiration born from despair prompted me to dive under the car and short out the exhaust pipe to the underframe. The noise stopped dramatically. I bonded the exhaust to the body just forward of the front muffler with a piece of heavy braid and could then work mobile.

I must recommend anyone contemplating an extended trip to instal a simple mobile. Driving for long periods it gives one a real boost to be able to switch off the juvenile rubbish one gets on the broadcast band. It was handy more than once to get directions in a strange location from a local, and several times a break-in station asked us in for an eyeball. I hope I've proved there is no mystery to putting one in your car.

A.R.R.L. INTERNATIONAL DX COMPETITION
 PRECIS OF RULES

Dates: Phone 7th/8th Feb., 7th/8th March. C.W. 21st/22nd Feb., 21st/22nd March. commencing at 0001 GMT Saturday and finishing 2400 GMT Sunday in each case.

Object: DX stations to contact as many of the 48 mainland United States and Canadian Call Areas as possible. Repeat contacts are permitted on additional bands.

Contact Exchange: DX to send RS(T) and d.c. Input power. The W/VE station will transmit RS(T) and his State or Province.

Points: Each complete QSO, 3 points: each incomplete QSO, 2 points.
Multiplier: On each band, the 48 states plus VO and VE1 to VE8 (total 57). Final multiplier is the sum of multipliers worked on each band and QSO points times the final multiplier equals the claimed score.

Loga containing dates, times in GMT band, exchanges and points to A.R.R.L. marked "A.R.R.L. Internationsl DX Competion", 225 Main Street. Newington, Conn., U.S.A., 06111. to arrive no later than 27th April, 1970 .

B.A.R.T.G. SPRING R.T.T.Y. CONTEST

When: 0200 GMT, Saturday, 21st March, untII 0200 GMT. Monday. 23rd March, 1970. The total contest period is 48 hours, but not The total contest period is 48 hours, Times spent in listening periods count as operating time. The 12 -hour non-operating period can be taken at any time during the contest. but off-periods may not be less than two hours at a time. Tlmes on and of the air must be summarised on the log and score sheets.

Bande: 3.5, 7, 14, 21 and 28 MHz . Amateur bands.

Stations may not be contacted more than once on any one band, but additional contacts may be made with the same station if a different band is used
Country Status: A.R.R.L. Countries Lisi. except KL7. KH6 and VO to be considered as separate countries.
Measagen exchanged will consist of: (a) time GMT, ib) message nuinber and RST.
Points: lat All two-way r.t.t.y. contacts with statlons within one's own country will earn two points.
(b) All two-way r.t.t.y. contacts with stations outside one's own country will earn ten points.
(c) All stations will receive a bonus of 2no polnts per country worked including their own. Note: Any one country may be counted again if worked on another band, but continents are counted once only.
Scoring: 'al Two-way exchange points times total countries worked.
(b) Total country points times number of continents worked
'c) Add $|a|$ and $|b|$ together to obtain your final score
Sample scors: $1 a 1$ exchange points 13021 multiplied by countries 1101, equal 3,020; (b) country points $\mathbf{2} 2.0001$ multipiled by continents 131. cqual 6.000: ic| $1 a$) and $|b|$ added to glve a score of 9.620
Logs and Score Shects: Use one log for each band and indicate any rest periods. Logs to contain: band. time GMT. message and RST numbers sent and recelved and exchange points claimed. All logs must be received by isth May, IDill, to qualify.

Awards: Certificates will be awarded to the two top scorers in each country. The final positions in the results table will be valid for entry in the "World Champion of R.t.t.y." Champlonship.

The judges decision will be final and no correspondenze can be entered into in respect of incorrect or late entrjes.
Send your contest logs to Ted Double. G8CDW. B.A.R.T.G. Contest Manager, 33 B Windmill Hill. Enfeld. Middlesex, England.

$J_{\text {echnical }}$ Correspondence

PLATING OF COILS

Editor "A.R.," Dear Sir,
I have read with interest the article on the plating of coils, written by R. G. Stone, VK5PB, and can readily appreciate the need (page 13, "A.R." Nov. 1969) to produce a mirror finish on the wire of the coil, since irregularities of only a few microns represent serious ciscontinuity in the "skin" in which the r.f. current flows.

However, mechanical polishing, i.e. buffing, can leave a residue of deformation in the surface of the wire below the mirror finish so produced and this would have an undesirable effect on the conductivity of the skin. This does not ignore the effect of deformation as a whole, caused during the winding of the coil-but of course, the current flows in the skin, which need not be further deformed if electrolytic or chemical polishing be used.

The solutions and methods used to polish copper are well known and published in the book "The Electrolytic and Chemical Polishing of Metals in Research and Industry," Tegart, W. J. McG., Pergamon Press, London, 1956, and elsewhere, but anyone interested, who has no access to this information, could contact me.
-T. W. Barnes, VK2ABI.

PREDICTION CHARTS FOR JANUARY 1970

AUSTRALIAN DX CENTURY CLUB AWARD

OBJRCTS

1.1 This Award was created in order to stimulate interest in working DX in Australla and to give successful applicants soine tangible recognition of their achievements.
1.2 This Award, to be known as the "DX Century Club" Award. will be issued to any Australian conditions.
1.3 A certificate of the Award will be issued to the applicants who show proof of having contacted one hundred countries, and will be endorsed as necessary, for contacts made using only one type of emission.

REQUIRBMENTS

2.1 Verifications are required from one hundred different countries as shown in the Official Countries List.
2.2 The Official Countries List will be published annually in "Amateur Radio" and will be amended from time to time as required. Should a country be deleted from the Countries List at any time, members and intending members will be credited with such couniry if the date of contact was before such deletion.
2.3 The commencing date for the Award is 1st January 1946. All contacts made on or after this date may be included.

OPERATION

3.1 Contacts must be made in the H.F. Band (Band 7) which extends from 3 to 30 Mc . but such contacts must only be made in the authorised Amateur Bands in Band ?
3.2 All contacts must be two-way contacts on the same band.
not be allowed.
3.3 Contacts may be made using any authorised type of emission for the band concerned.
3.4 Credit may only be claimed for contacts with stations using regularly-assigned Govwith stations using regulariy-assigned Gov-
ernment call algns for the country conernment
cerned.
3.5 Contacts made with ship or aircraft stations will not be allowed, but land-moblle stations may be claimed provided thelr specific location at the time of contact is clearly shown on the vertification.
3.6 All stations must be contacted from the same call area by the applicant (except as belowi. although if the applicant's call sign is subsequently changed, contacts will be allowed under the new call sign providing the applicant is still in the same call area.
If the applicant moves to another call area. contacts must be made from within a radlus of 150 miles of the previous location to qualify for award purposes. If the distance of the new location from the old exceeds a radius of 150 miles, a separate application for a new a ward must be made
claiming only contacts made from the new claiming
location.
3.7 All contacts must be made when operating in accordance with the Regulations lald down in the "Handbook for the Guldance of Operators of Amateur Wireless Stations" or lits auccessor.

VERIFICATIONS

4.1 It will be necessary for the applicant to produce verifications in the form of QSL cards or other written evidence showing that two-way contacts have taken place.
4.2 Each verification submitted must be exactly as received from the station contacted, and altered or forged verifications will be grounds for diaqualification of the appllcant.
4.3 Each verification submitted must show the date and time of contact, type of emission date and time of contact, type of emission and irequency band used, the report and the location or add
the time of contact.
4.4 A check list must accompany every application setting out the delalls for each claimed station in accorda
details required in Rule 4.8 .

APPLICATIONS

5.1 Applications for membership shall be addressed to the Federal Awards Manager, W.I.A., P.O. Box 67. East Melbourne, Vic. 31112, yccompanied bv the verlfications and
check list with sufficient postage enclosed check list with sufficient postage enclosed
for their return to the applicant, registrafor thelr return to the applica
tion belng included if desired.
S.2 A nominal charge of 25 c , which shall also he forwarded with the application, will be made for the issue of the certificate to successful applicants who are non-membera of the Wireless Institute of Australia.
5.3 Successful applicants will be listed periodically in "Amateur Radio". Members of the D.X.C.C. Wishing to have their verified country totals, over and above the one hundred necessary for membership. listed Awards Manager.
5.4 In all cases of dispute. the decision of the Federal Awards Manager and two W.I.A. In the interpretation and application of these Rules ahall be final and binding.
5.5 Notwithstanding anything to the contrary in these Rules, the Federal Councll of the W.I.A. reserves the right to amend them when necessary.

AUSTRALIAN

objects
1.1 This Award has been created in order to stimulate interest in the V.H.F. bands ill Australia, and to give successfui applicanis some tangible recognition of their achievements.
1.2 This Award, to be known as the "V.H.F. Century Club" Award, will be issued to any Australian Amateur who satisfies the following conditions.
1.3 Certificates of the Award will be issued to the applicants who show proof of having made one hundred contacts on the V.H.F. bands, and will be endorsed as necessary, for contacts made using only one type of emission.

REQUIREMENTS
2.1 Contacts must be made in the V.H.F. Band (Band 81 which extends from 30 to 300 Mc ., but such contacts must only be made in the authorised Amateur Bands In Band 8 .
2.2 In the case of the authorised bands between 30 and 100 Mc .. verifications are required from one hundred different stations at least seventy of which must be Mc. and 56 to 60 Mc. will be counted as one band for the purposes of the Award.
2.3 In the case of the authorised Amateur Band between 100 to 200 Mc ., verlfications from one hundred different stations are required.
2.4 It is possible under these rules for one applicant to recelve two certificates, onc for each of the authorised Amateur Bands nominated in Rules 2.2 and 2.3 .
A. 3 The commencing date for the Award is 1st June, 1949. All contacts made on or after this date may be included.

operation

3.1 All contacts must be two-way contacts on the same band, and cross band contacts will not be allowed.
3.2 Contacts may be made using any authorfsed type of emission for the band concerned.
3.3 Fixed stations may contact portable/moblle stations and vice versa, but portable/ mobile station applicants must make their contacts from withln the same call area.
3.4 Applicants. when operating either portable/ mobile or fixed, may contact the same starion orerse, but may no include both Applicants may only count one contact for a station worked as a limited licensee with a Z call sign who is subsequently contacted as a full A.O.C.P. bolder.
3.6 All stations must be contacted from the same call area by the applicant (except as below I, although if the applicant's call sign is subsequently changed, contacts will be allowed under the new call sign providing the applicant is still in the same call area.
If the applicant moves to another call area. contacts must be made from within a radlus of 150 miles of the previous localion to quallfy for award purposes. If the distance of the new location from the old application for a new award must be made claiming only contacts made from the new location.
3.7 All contacts must be made when operating in accordance with the Regulations lald down in the "Handbook for the Guldance of Operators of Amateur Wireless Stations or its successor.

VERIPICATIONS

4.1 It will be necessary for the applicant to produce verifications in the form of QSL cards or other written evidence showing that two-way contacts have taken place.
4.2 Each verification submitted must be exactly as received from the station contacted, and grounds or for disquallication of the appll groun
cant.
3 Each verification submitted must show the date and time of contact. type of emission and frequency band used. the report and and requency band used, the report and the location of contact
4.4 A check list must accompany every appllcation setting out the following detalls:-
4.4.1 Applicant's name and call sign, and whether a member of the W.I.A. or not.
4.4.2 Band for which application is made. and whether spectal endorsement is involved.
4.4.3 Where applicable, the date of change of call sign and previous call sign.
4.4.4 Details of each contact as required by Rule 4.3.
4.4.5 The applicant's location at the time of each contact if portable/moblle operation is involved.
4.4.6 Any relevant detalls of any contact about which some doubt might exist.

APPLICATIONS

5.1 Applications for membership shall be addressed to the Federal Awards Manager, W.I.A., P.O. Bax fiz, East Melbourne, Vic., 3002 . accompanied by the verifications and check list with sufficient postage enclosed for their return to the applicant, registration being included if desired.
5.2 A nominal charge of 25 c , which ahall also be forwarded with the application, will be made for the issue of the certificate to successiul applicants who are non-mem
of the Wireless Institute of Australia.
5.3 Successful applicants will be listed periodically in "Amateur Radio". Members of the V.H.F.C.C. Wishing to have their veri-
fied totals, over and above the one hundred necessary for membership. listed will notify these totals to the Federal Awards Manager.
5.4 In all cases of dispute. the decistion of the Federal Awards Manager and two officera of the Federal Executive of the W.I.A. In the interpretation and application of these Rules shall be final and binding.
5.5 Notwithstandine anything to the contrary in these Rules, the Federal Councll of the W.I.A. reserves the right to amend them when necessary.

AUSTRALIAN D.X.C.C. COUNTRIES LIST

A2, ZS9-Botswana
AC1, 2, 5-0-Bhutan
AC3-Sikkim
AC4-Tibet
AP-East Pakistan
AP-West Pakistan
BV-Taiwan
BY-China
C2, VK8-Nauru
C3, PX-Andorra
CE-Chile
CE9AA-AM, FB8Y, KC4AA-US, LA, LU-Z, OR4, UA1, VK0, AX0, VP8, ZL5, ZM5, 8J-Antarctica
CEOA-Easter Is.
CEOX-San Felix
CEOZ-Juan Fernandez
CM, CO-Cuba
CN2, 8, 9-Morocco
CP—Bolivia
CR3, 5-Portuguese Guinea
CR4-Cape Verde Is.
CR5-Principe, Sao Thome
CR6—Angola
CR7-Mozambique
CR8, 10-Portuguese Timor
CR9-Macao
CT1—Portugal
CT2-Azores
CT3-Madeira Is.
CX—Uruguay
DJ, DK, DL, DM-Germany
DU, DX-Philippine Is.
EA-Spain
EA6-Balearic ls.
EA8-Canary Is.
EA9—Rio de Oro
EA9-Spanish Morocco
EA0-Spanish Guinea
EI-Republic of Ireland
EL, 5L-Liberia
EP-Iran
ET3, 9E, 9F-Ethiopia
F -France
FB8W-Crozet Is.
FB8X-Kerguelen Is.
FB8Z-Amsterdam and St. Paul Is.
FC-Corsica
FG7-Guadeloupe
FH8, FB8-Comoro Is.
FK8-New Caledonia
FL8-French Somaliland
FM7-Martinique
FO8-Clipperton Is.
FO8-French Oceania
FO8M-Maria Theresa
FP8-St. Pierre and Miquelon
FR7-Glorioso Is. (from 25/6/60)
FR7-Juan de Nova (from 25/6/60)

FR7-Reunion Is.
FR7-Tromelin
FS7-Saint Martin
FW8-Wallis and Futuna Is.
PY7-French Guiana and Inini
G, GB-England
GC-Guernsey and Dependencies
GC-Jersey Is.
GD-Isle of Man
GI-Northern Ireland
GM-Scotland
GW-Wales
HA, HG-Hungary
HB-Switzerland
HB0, HE-Liechtenstein
HC-Ecuador
HC8-Galapagos Is.
HH-Haiti
HI-Dominican Republic
HK-Columbia
HKO-Bajo Nuevo
HKO-Malpelo Is.
HKO—San Andres and Providencia
HL, HM—Korea
HP-Panama
HR, HQ-Honduras
HS-Thailand
HV-Vatican
HZ, 7Z-Saudi Arabia
I, IT-Italy
IS1-Sardinia
JA, JH, JR, KA-Japan
JD1, KA1, KG6I-Bonin and Volcano Is.
JD1, KA1, KG6I-Marcus Is.
JT-Mongolia
JW, LA/P—Svalbard
JX, LA/P—Jan Mayen
JY-Jordan
K, KN, W, WA, WB ,WN-United States of America
KB6-Baker, Howland and American Phoenix Is.
KC4-Navassa Is.
KC6-Eastern Caroline Is.
KC6—Western Caroline Is.
KG4-Guantanamo Bay
KG6-Guam
KG6R, S, T-Mariana Is.
KH6, WH6-Hawaiian Is.
KH6-Kure Is.
KJ6-Johnston Is.
KL7, WL7-Alaska
KM6-Midway Is.
KP4, WP4-Puerto Rico
KP6-Palmyra Group, Jarvis Is.
KR6, 8-Ryuku Is.
KS4-Swan Is.
KS4B, HK0-Serrana Bank and Roncador Cay
\ldots
C.W.
\qquad

[^9]
.............
\qquad
\qquad
.....

	Phene	c.w.		Phone	C.w.
XF4-Revilla Gigedo			7Q7, ZD6-Malawi		
XT-Voltaic Republic (from 6/8/60) ..			7X, FA-Algeria		
XU-Cambodia			8P, VP6-Barbados		
XW8-Laos			8Q, VS9M-Maldive Is.		
XZ2-Burma			8R, VP3-Guyana		
YA-Afghanistan			8Z4-Saudi Arabia/Iraq Neutral Zone		
YB, YC, YD, PK, 8F-Indonesia (from 1/5/63)			9A1, M1-Republic of San Marino 9G1, ZD4-Ghana (from 5/3/57)		
YI_Iraq			9H1, ZB1-Malta		
YJ, FU8-New Hebrides			9J, VQ2-Zambia		
YK-Syria			9K2-Kuwait		
YN, YNO-Nicaragua			9K3, 8Z5-Kuwait/Saudi Arabia Neu-		
YO-Rumania			tral Zone		
YS, HU-Salvador			9L1, 2D1-Sierra Leone		
YU-Yugoslavia ..			9M2, 4-Western Malaysia (fr. 16/9/63)		
YV, 4M-Venezuela			9M6, 8-Eastern Malaysia (fr. 16/9/63)		
YVO-Aves Is.			9N1-Nepal		
ZA-Albania			9Q5, OQ5, 0-Republic of the Congo ...		
ZB2-Gibraltar			9U5-Burundi (from 1/7/62)		
ZD3-The Gambia			9V1, 0, VS1, 9M4-Singapore (prior to		
ZD5, ZS7-Swaziland			16/9/63 or after 8/8/65 only. From		
ZD7-St. Helena			16/9/63 to 8/8/65 Singapore counts		
ZD8-Ascension Is.			as 9M2-West Malaysia)		
ZD9-Tristan da Cunha \& Gough Is.			9X5-Rwanda (from 1/7/62)		
ZE-Rhodesia			9Y4, VP4-Trinidad and Tobago		
ZF1, VP5-Cayman Is.			*-Blenheim Reef		
ZK1-Cook Is.			*-Geyser Reef		
ZK1-Manahiki Is.					
ZK2-Niue					
ZL, ZM-New Zealand			* Since there is no apparent claim	count	to th
ZL, ZM/A-Auckland and Campbell Is.			reefs, no prefix will be shown. Confir	tions	
ZL, ZM/C-Chatham Is. ...			only after $4 / 5 / 67$ will be accepted		
ZL, ZM/K-Kermadec Is.					
ZM7-Tokelaus			DELETED COUNTRIES		
ZP-Paraguay					
ZS1, 2, 4, 5, 8-South Africa				Phone	C.W.
ZS2-Prince Edward and Marion Is.			C9-Manchuria (prior 16/9/63)		
ZS3-South-West Africa			CN2-Tangier (prior 1/7/60)		
1M-Minerva Reefs			CR8-Damao, Diu (prior 1/1/62)		
1S-Spratly Is.			CR8-Goa (prior 1/1/62)		
3A-Monaco			EA9—Ifni (prior 13/5/69)		
3V8-Tunisia			ET2-Eritrea (prior 15/11/62)		
3W8, XV5-Vietnam			FF8-French West Africa (pr. 7/8/60)		
3X, 7G-Republic of Guinea			FI8-French Indo China (pr. 21/12/50)		
3Y, LA/G-Bouvet Is.			FN-French India (prior 1/11/54)		
4S7-Ceylon			FQ8-French Equ. Africa (pr. 17/8/60)		
4U-I.T.U. Headquarters, Geneva			[1-Trieste (prior 1/4/57)		
4W-Yemen			I5-Italian Somaliland (prior 1/7/60)		
4X, 4Z-Israel			JZO-Nether. New Guinea (pr. 1/5/63)		
5A-Libya			PK1, 2, 3-Java (prior 1/5/63)		
5B4, ZC4-Cyprus			PK4-Sumatra (prior 1/5/63)		
5H3, VQ3-Tanzania			PK5-Netherlands Borneo (pr. 1/5/63)		
5N2, ZD2-Nigeria ..			PK6-Celebes \& Moluc. Is. (pr. 1/5/63)		
5R8, FB8-Malagasy Republic ...			UN1-Karelo-Finnish Rep. (pr. 1/7/60)		
5T-Mauritania (from 20/6/60)			VO-Newfoundland (prior 1/4/49)		
5U7-Niger Republic (from 3/8/80)			VQ6-Brit. Somaliland (prior 1/7/60)		
5V-Togo Republic			VS4-Sarawak (prior 16/9/63)		
5W1, ZM6-Samoa			VS9H-Kuria Muria Is. (pr. 29/11/67)		
5X5, VQ5-Uganda			ZC5-Brit. North Borneo (pr. 16/9/63)		
5Z4, VQ4-Kenya			ZC6-Palestine (prior 2/7/68)		
6O1, 2, 6-Somali Republic			ZD4-Gold Coast, Togol'd (pr. 6/3/57)		
6W8, FF8-Senegal Rep. (from 20/6/60)			9M2-Malaya (prior 16/9/63)		
6Y5, VP5-Jamaica			9S4-Saar (prior 1/4/57)		
7P8, ZS8-Lesotho			9U5-Ruanda-Urundi (between 1/7/60 and $1 / 7 / 62$ only)		

7Q7, ZD6—Malawi
7X, FA-Algeria
8P, VP6-Barbados
8Q, VS9M—Maldive Is.
8Z4-Saudi Arabia/Iraq Neutral Zone
9A1, M1—Republic of San Marino
9G1, ZD4-Ghana (from 5/3/57)
ZB1-Malta

9K2—Kuwait
9K3, 8Z5—Kuwait/Saudi Arabia Neutral Zone
9L1, 2D1-Sierra Leone
9M2, 4—Western Malaysia (fr. 16/9/63)
9M6, 8-Eastern Malaysia (fr. 16/9/63)
9Q5, OQ5, 0-Republic of the Congo
9U5-Burundi (from 1/7/62)
9V1, 0, VS1, 9M4-Singapore (prior to 16/9/63 or after 8/8/65 only. From 16/9/63 to $8 / 8 / 65$ Singapore counts as 9M2-West Malaysia)
X5-Rwanda (from 1/7/62)
*-Blenheim Reef
*-Geyser Reef

* Since there is no apparent claim by any country to these reefs, no prefix will be shown. Confirmations for contact only after $4 / 5 / 67$ will be accepted for D.X.C.C. credit.

DELETED COUNTRIES LIST

C9-Manchuria (prior 16/9/63)
CN2—Tangier (prior $1 / 7 / 60$)
-Damao, Diu (prior 1/1/62)
CRA Goa (prior 1/1/62)
ET2-Eritrea (prior 15/11/62)
FF8-French West Africa (pr. 7/8/60)
FI8-French Indo China (pr. 21/12/50)
FN-French India (prior 1/11/54)
FQ8-French Equ. Africa (pr. 17/8/60)
—Trieste (prior 1/4/57)

JZO-Nether. New Guinea (pr. 1/5/63)
PK1, 2, 3-Java (prior 1/5/63)
PK5-Netherlands Borneo (pr. 1/5/63)
PK6-Celebes \& Moluc. Is. (pr. 1/5/63)
UN1-Karelo-Finnish Rep. (pr. 1/7/60)
VQ6-Brit. Somaliland (prior $1 / 7 / 60$)
VS4-Sarawak (prior 16/9/63)
VSSH-Kuria Muria 1s. (pr. 28/11/67)
ZC6-Palestine (prior 2/7/68)
ZD4—Gold Coast, Togol'd (pr. 6/3/57)
-Malaya

9U5-Ruanda-Urundi (between 1/7/60 and 1/7/62 only)
C.W.
\qquad
\qquad
\qquad
\qquad

1296 Mc. Solid State Converter

H. N. SANDFORD,* VK4ZT

The Converter described was used to establish the 138 -mile Australian record contact with VK4KE. From the onset of the project it was decided to develop a solid state LO chain in order to gain experience with transistors in the u.h.f. range. The improved frequency stability obtained would allow narrow-band operation with a consequent reduction in transmitter power output. To achieve any distance on low power, portable operation from 12 volts would be necessary.

$I^{*}$$N$ the past, the tendency to build units like a battleship stemmed mainly from having access to a well equipped workshop. As I now use what is probably a typical "Ham" workshop consisting of a vice and a few hand tools, I was forced to modify construction methods accordingly. The majority of projects are now built using 26 gauge tinplate. It is easy to work, solders well with a 25 -watt soldering iron and most important of all, provides excellent r.f. screening. Providing care is taken with the mechanical design, this light gauge metal provides adequate mechanical stability. This metal is available at reasonable prices in most cities, stocked for use at Technical Colleges.

DESCRIPTION

The mixer employs an s.h.f. diode in a trough line which feeds into a FET low noise i.f. pre-amplifier using an MPF107. The local oscillator chain uses five Fairchild AY1119 transistors. An i.f. of 28.5 Mc . was chosen, allowing 0.5 Mc . below 1296 Mc . with a standard 28-30 Mc. band. The third overtone crystal oscillator Q1 operates on a frequency of 52.8215 using a Pye crystal. Q2, Q3 and Q4 are doublers operating on the respective frequencies of 105.625 , 211,25 and 422.5 Mc . Common base configuration was chosen as this provides a convenient layout with the minimum number of components per stage.

My choice of Fairchild AY1119 transistor's from the overwhelming number

- 18 Loch Street. Toowoomba, Qld., 4350.
of types available was dictated mainly by cost (50 cents, including tax, direct from manufacturer). I use this cheap NPN transistor for most i.f. and r.f. applications where noise figure is not important. It has an $\mathbf{F T}_{\mathbf{T}}$ of around 450 Mc . and will produce $20-30$ milliwatts of r.f. output in the low v.h.f. range. The AY1114 is a direct PNP substitute and may be used without change when a positive earth is desired. Another important factor, especially for country Amateurs, is the prompt and efficient service provided by Fairchilds, a feature sadly lacking with many suppliers.

Q5 triples to 1267.5 Mc ., providing up to 1 mA . mixer diode current. It was originally intended to use the more common but less efficient diode multiplier but, fortunately, I did not have a suitable diode such as the 1 N 82 on hand. As there appeared to be plenty of output from Q4 on 422.5 Mc., it seemed possible that an AY1119 would provide sufficient output as a tripler. Success was immediate and so simple it took me some time to convince myself the output was on the correct frequency.
The total collector lead length of one inch is approximately resonant at 1267.5 Mc. to provide maximum drive to the LO trough-line. The trough-line portion of the converter is similar to that described in the A.R.R.L. V.h.f. Handbook and originally appeared in March "QST" 1961.

The LO injection is coupled to the diode together with the signal to produce the desired i.f. output on 28.5 Mc .

A neutralised Motorola MPF107 JFET is used in the i.f. pre-amplifier to provide the lowest possible noise figure. An MPF102 could be used for this stage, but is more difficult to neutralise due to the higher feedback capacity and may not produce as good a noise figure as the MPF107.

As this type of diode mixer has a considerable conversion loss, the noise figure of the i.f. pre-amplifier contributes directly to the overall noise figure of the converter. If a 14 Mc . i.f. is chosen, then the MPF102 would probably be suitable, but some degradation of overall noise figure may result due to the poor image rejection.

CONSTRUCTION

The general layout and dimensions are given in Figures 2 through 6.

Some variation may be required to use components on hand and should not be a problem as long as all leads are kept as short as possible. The LO chain was constructed separately and then soldered to the main chassis after adjustment. This was convenient for the prototype but the chassis could be constructed from one piece, if desired, with suitable partitions. It was originally intended to construct the i.f. amplifier in the compartment at the end of the mixer diode, but this would have rendered the diode inaccessible so the pre-amplifier was constructed in a separate box and screwed to the top of the converter with small $\ddagger^{\prime \prime} x$ No. 2 P.K. screws.

2 B.A. or No. 10 N.F. countersunk or cheeschead screws are used for tun-

Top view with 28 Mc. if. pre-amplifler cover iemoved. Note no external connection 1012 volt supply line which is fed via l.f. co-axial cable.

Bottom vlew: Crystal mounted in foam polystyrene at lower left. The callector coupling loop and mounting of OF in the trough-line wall is visible.
ing screws at the centre of each troughline. This size provides a fine thread for tuning with a large diameter that reduces wobble. A nut is soldered to the top of the chassis using a spare screw. The end of the screw to be used can be slotted before threading into position.

Both half-wave lines of $\mathfrak{k}^{\prime \prime}$ o.d. copper tubing are soldered centrally in the trough-lines after the tuning screws have been fitted. The signal input loop of 18 gauge wire is soldered to the connector, threaded through the mounting hole, out through a small clearance hole in the end plate, and then soldered into position after the connector is tightened.

The mixer diode mount is constructed from tinplate as shown in Fig. 4. A small strip g' $^{\prime \prime} \times 3 / 16^{\prime \prime}$ is cut almost through at intervals of $1 / 16^{\prime \prime}$ to form fingers. The strip is then bent around a $f^{\prime \prime}$ drill or similar size to the diode body. The seam is soldered, then the base of this section is soldered to the capacitor plate C15. Remove all burrs
and tension the fingers to provide a firm fit on the diode body.
The capacitor is formed by a thin layer of teflon, polythene or P.V.C. tape between C15 and partition 2 (Fig. 4). The P.K. mounting screws land inside the ends of the two ${ }^{\prime \prime}$ " copper tubes, L11 and L12. The heads of the screws are insulated from C15 plate with small washers.

The diode pin contact may be salvaged from an old bakelite octal wafer socket or may be fashioned from a small piece of tinplate. Solder a length of 18 gauge tinned copper wire to the contact, bend as shown in Fig. 2 and solder to partition 2 in the signal trough-line. It is not advisable to use a good diode while soldering as it could be damaged by heat. Assemble the diode mount C15 and check for shorts before insertion of the diode.
Construction of the LO chain on the L section is straightforward. The holes in the partition shields for Q2-Q5 should be a neat fit. Bend the emitter and collector leads over at right angles be-

C1. C3. C18, C19-1000 pF. disc ceramic.
C2. C5-10 pF. tubular ceramic.
. C8. C10, C17. C20-0.5-5 pF. tubular ceramic trimmers. (Avallable at 5c each, Hare and Forbes Pty. Ltd.. 180 George St., Parramatta Sydney, N.S.W., 2150.)
C6. C7. C9, C11. C12. C16, C23-1000 pF. ceramic
C13. feed-through
C13. C14-2 BA or 10NF screws with lock washer and nut.
C15-Dlode by-pass capacitor (FIg. 2 and text).
C21-12 pF. tubular ceramic.
$\mathrm{C} 21-12 \mathrm{pF}$. tubular ceramic.
D1-IN21. iN23 or other sultable v.h.f./s.h.f. mixer 11 diode
J1. J2-BNC or Belling Lee sockets.
J3-2.5 mm. minlature closed clrcuit phone jack
Li-12 tums 28 s.w.g. 5/16 Inch dlameter slug tuned former.
L2-1 turn single strand hook-up wire, cold end L1 (see text).
L3-2 turns single strand hook-up wire, centre 11
L4-5 tums 16 s.w.g. ilinned copper, $7 / 16$ inch Inside diameter, winding length $1 / 2$ inch.
L5. L7. L9-1 turn single strand hook-up wire. 7/16 inch inside dlameter.
L6-3 turns 16 s.w.g. $7 / 16$ Inch inside dlameter, winding length $3 / 8$ Inch.
L8-1 $1 / 4$ turns 16 s.w.g. tinned copper. $7 / 18$ Inch Inside diameter. winding length $3 / 8$ Inch.

L10-1 Inch collector lead of O5 (Fig. 2 and text). Li1, L12- $1 / 4$ inch outside diameter tubo. 41/4 Inch 13 long, Fig. 2.
L13-1/2 Inch length 18 s.w.g. innned copper wire (see text).
L14-7/8 inch length 18 s.w.g. tinned copper wire (see text).
L15-7 7 i2 turns 28 8.w.g. enamal, close wound over cold end L16 (808 text)
L16-17 turns 28 s.w.g. enamel, close wound, 5/16 Inch outside diameter former mounted over Inch
C17.
L17-60 turns 35 s.w.g. enamel, progressive winding on $3 / 16$ outside diameter slug tuned former (aes text)
L18-17 turns 28 8.w.g. enamel, close wound, 5/18 inch outside dlameter former mounted over C20.
L19-2 turns single strand hook-up wire over cold and L18.
O1. O2, O3. O4, O5-AY1119 (Fairchild).
O6-MPF107 (Motorola)
R1-5.1K $1 / 4 \mathrm{w}$. Carbon.
R2-22K $1 / 4 \mathrm{w}$. carbon.
R3-10K $1 / 4 \mathrm{w}$. carbon (see text)
R4-470 ohm $1 / 4 w$. carbon.
R5- 33 ohms $1 / 4 w$. carbon.
R6-200 ohms $1 / 4 W$. carbon (select value to give X1-52.8125 Mc. third overtone cryatal (Pye).
fore insertion, but take care not to rotate the leads. If the angle is incorrect straighten the lead and re-bend in the desired direction. The base lead is soldered hard up to the transistor case. This is important as base lead inductance degrades the performance of the stage.

There is no room to use a heat sink but this is not necessary as the manufacturer's data sheet states: "Soldering temperature not to exceed $300^{\circ} \mathrm{C}$. for more than ten (10) seconds." Tin the chassis first, then use a hot iron as quickly as possible. I have removed and replaced one transistor several times with no detectable reduction in performance. Once the multiplier chain is operating satisfactorily, solder this section to the side of the trough-line and install Q5.

The i.f. pre-amplifier is constructed in a simple box (Fig. 5) and attached to the top of the converter with four $\mathrm{f}^{\prime \prime} \mathrm{x}$ No. 2 P.K. screws. The lid is a press fit. A baseplate attached with P.K. screws completes the construction and is desirable to reduce radiation from the trough-lines.

ADJUSTMENT

10 Chain.-This is most conveniently adjusted before soldering to the troughline. If a suitable g.d.o. or t.d.o. is available, the individual circuits may be tuned before wiring up the 12 v . supply line. Connect a multimeter on the $0-10 \mathrm{~mA}$. range from C 7 to the chassis. Slowly bring the g.d.o. up to LA until a reading of $\mathbf{1 - 2} \mathrm{mA}$. is obtained on the meter. Tune the g.d.o. for maximum indicated current, taking care not to exceed full scale by moving the g.d.o. away as required. The current peak indicates the resonant frequency of L4. The trimmer C4 should now be adjusted so that the resonance for this stage occurs at 105.625 Mc . The turns spacing of L4 may require adjustment if resonance occurs outside the range of C 4 . Pre-tune the remaining multiplier stages in a similar manner.

This method of adjustment has several advantages. Firstly by monitoring the collector current of Q2, this ensures the ratings of the transistor will not be exceeded, especially when using a valve g.d.o. with high output. Secondly as the application of power to the transistor changes resonance, this may be allowed for by running the collector current at the approximate value to be used in the circuit. Thirdly, many g.d.o's, particularly on the higher ranges, exhibit a very poor dip, but this method is extremely sensitive and not subject to false dips.

Connect C6 to the 12 v . supply and C7 via a $0-10 \mathrm{~mA}$. meter to the supply. Adjust the crystal oscillator tuning for maximum current indication which should be about 4 mA . The feedback coupling L2 should be as loose as possible consistent with reliable oscillator starting. If the coupling is too tight the oscillator may revert to fundamental operation or even free run.

It is unlikely that a receiver covering this range will be available to check these conditions. This can be overcome with the use of the normal Amateurband receiver and a cheap signal generator. The signal generator, which

FIG. 2. CONVERTER LAYOUT.

FIG. 3. PRE-AMP. LAYOUT.

> Holes 'A'. Toclear 0.001 faedthroughs.
> .. "D' CI3 CM euning serews
> .- 'E' Tapping hales for boltom eover.

FIG.4. SHEET METAL MAIN CHASSIS DIMENSIONS.
should be set to about 0.1 v . output, is fed into the simple diode mixer, Fig. 7. A one-turn link on the end of a length of co-ax. is used to couple in the oscillator. The output of the mixer is fed to a receiver tuned for example to 14.0 Mc. Any frequency clear of stray pick up may be used. For this reason, it is desirable to construct the mixer in a small screened box and use good co-ax cable. Almost any diode will work but a greater sensitivity will be obtained using a detector diode or a high speed computer diode.

The difference from say the third overtone frequency 52.8125 - 14.0 Mc . is 38.8125 Mc. Some signal generators may not operate above 30 Mc ., in which case the second harmonic of 19.406 Mc . may be used. When the signal generator is tuned to the correct frequency, a strong beat should be heard in the receiver with the b.f.o. on and carefully check for any spurious oscillations for at least $\pm 1 \mathrm{Mc}$. If there is doubt that a beat is being produced by the crystal oscillator, this may be confirmed by detuning L1 slightly, or alternatively, sufficient frequency shift usually occurs if the hand is brought close to L1. If the spurious oscillations are found, it may be necessary to lower the value of R3 and also re-check the coupling of L2. This must be as loose as possible consistent with reliable starting when L 1 is tuned slightly to the "slow" side of the peak.

When the oscillator is operating correctly there should be no output on the fundamental frequency of 17.604 Mc . Check this by tuning the generator to 3.604 or 31.604 Mc . and searching for a beat. The latter frequency is the more desirable as there is less chance of being confused with a harmonic from the signal gencrator. This method may also be used in reverse to check the calibration of a signal generator at several points with known crystal oscillators.

When the oscillator is operating satisfactorily, adjust L3 coupling until Q2 collector current is $4-5 \mathrm{~mA}$. L2 and L3 should now be waxed into position to prevent any movement. Connect the $0-10 \mathrm{~mA}$. meter from C9 to the 12 v supply and tunc C 4 for maximum Q3 collector current. It may be necessary to adjust the turns of L4 for the peak to occur near the centre of the range of C4. Adjust L5 coupling to produce 6-7 mA. Q3 collector current. Proceed with the adjustment of L8 and L9, in a similar manner to give approximately 7 mA . collector current in Q4. It is unlikely there is sufficient range in C8 or C10 to tune to the wrong harmonic.

The oscillator section should now be soldered to the trough-line portion of the converter. Mount Q5 with the collector lead as shown in Fig. 2. The overall length of the lead to the top of the feedthrough capacitor should be about one inch. Apply power and peak C10 for maximum Q5 collector current. Adjust link L9 for 2.5 to 3 mA . Q5 collector current, re-checking C10 tuning. Mount the i.f. pre-amplifier unit and connect. Tune the LO cavity screw for maximum mixer diode current, which should be 0.5 to 1 mA . If the tuning of the carly LO stages is checked, the tuning may appear very, very broad, being due to saturation in the multipliers. It is safer to check each
individual stage collector current except that L8 and C13 may be tuned for maximum mixer current.

If there is doubt about the operating frequencies of L8 and L11, these may be checked with Lecher lines by observing a dip in oscillator current when the lines are link coupled to the appropriate collector tuned circuit. Their use is described in most Handbooks. However, if the trough-line peak occurs with a gap of about $1 / 16$ inch for C13, then all multipliers are probably operating correctly. This completes the LO chain adjustment.
I.F. Pre-Amplifier.-Apply power and if necessary adjust the value of R6 to give 4 to 5 mA . drain current. Connect the output of the pre-amplifier to the receiver tuned to the nominal frequency of 28.5 Mc . Normally the stage will oscillate over a considerable portion of L17's range. Adjust L17 until the oscillation ceases and tune to the centre of the "stable area".

Peak L16 and L18 for maximum noise in the receiver and re-check L17 again. It may help to link couple in an external signal to peak input and output circuits. Due to large variation in FETs it may be necessary to add or remove turns from L17. Final adjustments should be made for best noise figure.

Mixer.-As very few will have access to a good noise generator, a weak 1296 Mc. signal is necessary to optimise the mixer. The harmonic of a 144 or 432 Mc. transmitter will suffice. It is necessary to provide a resistive termination for the converter by construction of a simple unit shown in Fig. 8. Mount two connectors on a "U" shape bracket. Connect either 75 or 50 ohm resistors, depending on the co-ax. to be used, with the shortest possible leads. Only carbon composition type resistors should be used as the spiral track type become very reactive above about 30 Mc . Reduce the 432 Mc . transmitter power output to about $\frac{1}{1}$ watt and connect to the load resistor R1.

Providing a suitable mixer diode such as the 1 N 21 , 1 N 23 , etc., is used, it should now be possible to detect a harmonic from a 432 Mc . transmitter connected via the terminating unit. The type number of most s.h.f. mixer diodes is followed by a letter, e.g. 1N23F. The higher the letter, the lower the noise figure, and also the higher the price. As usual, a compromise is required unless one is obtainable free!

The noise figure is best optimised with a signal close to the noise level. Judgment by ear is uncertain so should be determined by measurement. Connect a low range a.c. voltmeter or v.t.v.m. across the receiver output. It may be necessary to couple directly across the output transformer via a capacitor in order to obtain sufficient noise level to give a reading on the voltmeter of say 0.5 volt. It is not necessary to remove the a.g.c. if the signal is kept very low.

Apply the signal to the converter and tune for maximum indication on the meter. If this exceeds more than about 1v. it will be necessary to either reduce transmitter power output or decrease the coupling between R1 and R2 on the terminating unit. If the signal level

F!G.6. BASE PLATE.

FIG. 1. DIODE MIXER FOR CHECKING OVERIONE OSCILLATOR PERFORMANCE.

FIG. 8. SIGNAL SOURCE. TERMINATION.
R1- $1 / 2$ or 1 watt, 50 or 75 ohm carbon composition. R2- $1 / 4$ watt, 50 or 75 ohm carbon composition.

is much higher, it is difficult to detect the small changes which indicate if one is proceeding in the right direction.

The adjustments may now proceed. Tune the receiver a few kilocycles of the signal and if necessary adjust the receiver gain control to give the reference 0.5 v . noise level reading. Re-tune to the signal and note the signal level. Make an adjustment and note the difference ketween noise and signal level. As some adjustments affect the overall gain it will be necessary to make small adjustments to the receiver gain control for 0.5 v . reference noise level before noting the signal level. We are looking for an increase in signal over noise. When this exceeds a $2: 1$ ratio then reduce the signal level slightly and continue. This may sound tedious, but can be performed quite rapidly with practice.

The mixer trough-line may be initially peaked by tuning until a dip is noted in diode current, then screwing C14 out slightly so tuning this circuit higher in frequency.

The adjustments controlling the noise figure are:-
(1) Signal Trough: Normally tuned for maximum signal.
(2) Mixer Current: Alter injection in small increments of say $50 \mu \mathrm{~A}$. to find the optimum level which is normally 0.2 to 0.3 mA ., but will depend on the actual diode. The injection level may be conveniently controlled initially by detuning C10. Once the optimum level is found, the coupling of L9 may be adjusted to give this value with L8 peaked.
(3) Diode Coupling: The area enclosed by the link should be close to that shown in Fig. 2. Try altering the area by lengthening and shortening the lead in say $1 / 8$ inch steps. Once again this will depend on the diode.
(4) Input Coupling: The area of the link controls the matching and should be close to that shown.
(5) I.F. Pre-amp.: The adjustment of L17 is critical for best n.f. and also the input coupling L15. Adjust L17 in small steps, re-peak C 17 and C20 and check S/N. The number of turns on the coupling L15 should be varied also.
After optmising these adjustments as described, I was able to measure the n.f. on a commercial noise generator. It was found to be 9.8 db . which appears from literature available to be about as good as can be expected with a simple mixer using this type of diode.

POWER FEED

It will be noticed that the bottom of L 19 is shown connected to the 12 v . line. This proved to be a simple but effective expedient to feed power to the converter via the co-ax. i.f. cable, thus allowing the converter to be mounted close to the antenna. I use a modifled BC454 Command receiver similar to that described in June 1968 "A.R.," but converted to 28-30 Mc. with link coupling to the input of the r.f. stage. The bottom end of this link is returned to 12v. supply line in the receiver. No degradation of overall noise figure or gain resulted, and also eliminates the (Contlinued on Page 27)

Wireless Institute of Australia offers to
 Overseas and Australian Stations the...

COOK BI-CENTENARY AWARD

To mark the occasion of the 200th anniversary of the discovery of the eastern coast of Australia by Captain Cook in the year 1770, the Wireless Institute of Australia is issuing a Special Award to be known as the "Cook Bi-Centenary Award". It will be available free to any licensed Radio Amateur throughout the world who, during 1970, makes two-way radio contact with the required number of Australian Amateur Stations as set out below.

1970 is also the 60th anniversary of the founding of the Wireless Institute of Australia, the Australian Amateur body which has served the interests of Rodio Amateurs since 1910 and is the world's oldest Radio Society.

Decause of the special significance of the ycar 1970, a new prefix will be available for use by Australian Amateurs between 1 st January and 31st December, 1970. At the option of the station operator during this period, the VK prefix may be replaced by the special AX prefix.

AWARD RULES

Operation.-Only Australian Amateur Stations using the special AX preflx may be worked for the purposes of this award. Contacts may be made on any band or mode available to Australian Amateur stations. Cross-band operation will not be permitted. No contacts made with ship or aircraft stations in Australian Territories will be eligible, but land mobile or portable stations may te contacted provided the location of the station worked, at the time of the contact is clearly indicated. Operators at all times must operate within the terms of their station licence. Al! contacts must be made during the period 1st January to 31st December, 1970, inclusive. Contestants may work each station once only during this period for the purposes of this award.

Requirements

Overseas Applicants. - Stations outside Australian Territory must contact 50 different Australian Amateur Stations using the AX prefix during the abovementioned period.

AX Applicants.-Stations within Australia must contact 100 different Australian Amateur stations using the AX prefix. working the required number of stations in each Call Area as per the list below, during the specified period:

AX1	(VK1)	3	Stations
AX2	(VK2)	30	$"$
AX3	(VK3)	30	$"$
AX4	(VK4)	11	$"$
AX5	(VK5)	11	$"$
AX6	(VK6)	6	$"$
AX7	(VK7)	4	$"$
AX8 (VK8)	1	$"$	
AX9 (VK9)	3	$"$	
AX0 (VK0)	1	$"$	

Total
100 Stations

Applications.-Stations applying for the Award are not to forward QSL cards, but instead should submit a list of the stations worked (in order of Call Signs by Call Areas) plus the following details of each contact: Date, time (GMT), band, mode, report. This list, certified by two other licensed Amateurs plus a statement to the effect that they have sighted the log entries of the applicant, should be sent to:

Awards Manager, W.I.A.
 P.O. Box 67,
 East Melbourne, Vic., 3002, Australia.

Applications should be clearly marked "Cook Award" on the back of the envelope containing the check list plus the full postal address to which the award is to be sent. All applications are to be received at the above address no later than 31st December, 1971, as no further entries will be accepted after this date.

Certificates will be forwarded free of charge by surface mail. However, if airmail return is required, eight IRC coupons must be included to cover the extra cost involved.

\%

VK3 NATIONAL PARKS AWARD

The Victorian Division of the W.I.A. offers an attractive certificate for working from or to 15 of the 22 National Parks in Victoria. It is a very pleasant and rewarding experience to operate from the various Parks and this is an appropriate time of the year to visit them since many operators are on holidays, and plenty of QSOs are to be had.

Awards are open to all VK and overseas Amateurs, and any operator who works 15 or more different Parks may apply for the award. There is no time limit.

Worked from Certificates have been issued to:

No. 1-H. L. Hepburn, VK3AFQ
2-J. P. Downie, VK3APD
3-H. G. Hodge, VK3HE
", 4-R. E. Jordon, VK3AKJ
", 5-H. L. Hepburn, VK3AFQ.
Worked to Certificates have been isseud to:

No. 1-L. Jackson, VK3XM
2-A. Chandler, VK3LC
3-K. Roget, VK3YQ
4-I. Stafford, VK3XB
5-M. Stafford, VK3KS
6-E. Manifold, VK3EM
7-H. L. Hepburn, VK3AFQ
", 8-J. O. Bail, VK3ABA

AUSTRALIS OSCAR 5 LAUNCH DUE ON

 9th JANUARYIn a letter to the Radio Amateur Satellite Corporation (AMSAT), the United States National Aeronautics and Space Administration (NASA) has agreed to launch the Australis Oscar 5 Amateur Radio Satellite as the secondary paylcad on the TIROS-M weather satellite launch. TIROS-M and AO-5 will be launched by a twostage Delta rocket from the Western Test Range, California. The launch is currently scheduled for 1116 GMT ± 10 minutes, on 9th January, 1970.

If all goes well, AO-5 will be ejected from the Delta about one hour after launch and will be in range of south-east Australia about two hours after launch. Western Australia should first hear the satellite about four hours atier leunch.

Details of when the satellite can be heard in each State may be obtained from the State Oscar co-ordinators (whose names appear on page 7 of October, 1989, "A.R."), and, as the launch date draws near, from the Divisional broadcasts.

Amateurs and S.w.l's intending to track the satellite should contact their state co-ordinators now, in order to obtain telemetry reporting forms.

If the AO-5 satellite goes into orbit as planned, it will be the fifth Amateur Radio Satellite put into space. Oscars 1-4 were built by Radio Amateurs in California. Australis Oscar 5 was built in Australia and is, therefore, the first foreign-built Amateur Radio Satellite to be launched by the United States. It is, incidentally, only the second satellite built in Australia. The first, WRESAT, was launched from Woomera in December 1967.

432 Mc. CONVERTER
 (Contlnued from Page 8)

single conversion is shown in Fig. 1 less those components isolated by the dotted boxes.

As a service only to those Amateurs purchasing either kit, we have arranged to supply crystals suitable for this converter. These can be obtained by including a remittance for $\$ 5.80$ together with the required crystal frequency when placing your order.

Inquiries should be addressed to:
432 Converter,
W.I.A. Victorian Division,
P.O. Box 36,

East Melbourne, Vic., 3002.

FOR THE MOBILE* OPERATORS

Being a shipboard operator, I have long been dependant upon accumulators, and as everyone knows the charge/ discharge cycle of lead acid cells is as depicted in Fig. 1.

Fig. 1.
From this it can be seen that, except at time of full charge or discharge, the potential difference between the terminals of a lead acid cell remains constant under loads within the capacity of the cell (10amp./hours, etc.).

It follows, therefore, that accurate voltmeter readings will indicate battery condition.

In the case of a 12 volt battery, this means that when the meter reads 10.8 volts the cells are fully discharged. And, when under charge, the voltmeter reads 13.2 volts, the cells have reached full charge.

Non expanded scale mater 15 V

seale meter

Fig. 2.
These small changes from the working voltage are not easily discerned on a 15 v . or 20 v . scale meter. However, they can easily be seen on an expanded scale voltmeter (see Fig. 2).

This is easily achieved with a 1 mA . meter (1000Ω p.v.), a 4 K resistor and a Mullard zener diode BZY88/C10 (see Fig. 3).

Fig. 3.
The meter will read 12 volts at the centre of the scale as at B in Fig. 2 and the condition of the battery can be immediately seen.
-Sqdn. Ldr. K. McCarthy, VKPAR, M. M:
"Pandemonium". P.O. Box 99A, Port Moresby. T.P.N.G.

[^10]
RULES FOR GANDHI CENTENARY WRI AWARD 1969-70

To acquire this award 1 Worked Republic of India during Gandhi Centenary year 1969-70) any Amateur station, single operator, located In any I.A.R.U. region/country has to score at least 50 points $10 r$ operation between 26 th January, 1030, and 30th September. 1970-out of which at least one contact must have been made with VU2 or VUO station during the period 1st Oct. 1969 to 30th Sept. 1970.
Scoring may be obtalned by any method detailed below:
(a) Contacts with different VU2 stations between 26th Jan. 1950 and 30th Sept 1969 count one point per contact.
(b) Contacts with different VUo stations (other than those in " a " above) count ten polnts per contact.
(c) Contacts with different VU2 stations tother than those in " a " and " b " above) between the period 1st Oct. 1969 to 30th Sept. 1970 count four points per contact.

Example: Station VU2CZ and VUOCZ are considered as same station.

Contacts may be made in any mode. any authorised frequency and within the limits. rules and regulations prescribed in the country of operation of the Radio Amateur.

Applications for the Award with fees of 10 1.R.C's or Rs. 4/- Indian, must be malled not later than 31st December, 1970. to the A.R.S.I.. P.O. Box 534, New Delhi-1. Indla, along with proof of contact ss stated below:
tal By QSL cards, and/or
(b) By log extract certified by any member society of the I.A.R.U. (or its direct branches/divisions) and/or
|CI By certificate of verification of QSL cards by the member-soclety of the I.A.R.U. (or its direct branches/divisions).

The decisions of the Councll of the A.R.S.I. in issuing the Awards shall be final and binding on the applicant. This Award rules do not alter the rules of the WRI Award in force.

is

DIPLOME ALBERT SCHWEITZER

The French section from Department 68, in co-operation with stations TR8 of Gabon, issues the D.A.S. Award to all forelgn Amateurs and S.w.l. who submit proof of communication as follows:
Contacts may be made over any perlod starting from 1st October. 1969, using all modes. h.f. from 3.5 to 29.7 MHz .30 QSLs are required. 2 QSLs from Depariment 68, 2 QSLs from TR8, 26 QSLs from stations in the following clties: CE3 Santlaga, CX1 Montevideo, DL7 Berlin. EA4 Madrid, G London, HB9 Bern. HK3 Bogota, 11 Rome. JA1 Tokyo, KH6 Honolulu, KL7 Cordova, LAS Oslo, LU Buenos Aires. OE1 Vlenna, OH Helsinki, ON Brusselles, OZ Copenhagen. PAO Amsterdam, PY2 Brasilia. SM5 Stockholm. SP Varsovie, UA Moscow. VE3 Ottawa. VK1 Canberra. w/K3 Washington. XE1 Mexico City, YU Belgrade. YV5 Caracas, ZL2 Wellington, ZSi Cape Town.
Applications to be made in the form of log cxtracts signed by two Amateurs. QSL cards to be in hard. Cost five IRCs plus your QSL card blank to A.R.S., F9KJ. 68 Flaxlanden. France.

~

THE RARE ONES OF NEW ORLEANS CERTIFICATE

The Rare Ones of New Orleans, a group of Amateur Radio operators in the New Orleans area. are dedicated to promote iriendship on the Amsteur bands. A beautiful certlificate is offeren to all Amateurs who:
1-Contacts each of the elght "Critters".
2-Sends a QSL to each one you contact confirming the QSO.
3-Sends n log extract showing dates. times, etc.. to the group requesting the certincate.
All QSL cards. log extracts, correspondence, etc., should be addressed to The Rare Ones, P.O. Box 29285. New Orleans, La., 70129, U.S.A.

AUSTRALIAN RADIO AMATEUR

CALL BOOK

1969.70 EDITION

NOW AVAILABLE

药

Get your copy now from your
Division or usual Supplier
\star
Price 75c

TECHNICAL ARTICLES

Readers are requested to submit articles for publication in "A.R.," in particular constructional articles, photographs of stations and gear, together with articles suitable for beginners, are required.

Manuscripts should preferably be typewritten but if handwritten please double space the writing, Drawings will be done by "A.R." staff.

Photographs will be returned if the sender's name and address is shown on the back of each photograph :;ubmitted.

Please address all articles to the EDITOR "A.R.,"
P.O. BOX 36,

EAST MELBOURNE,
VICTORIA, 3002.

New Equipmeni

SENNHEISER MD411 MICROPHONE

Designed for high quality voice communications and better p.a. and tape recordings, with the following features: Three impedances (switchable): high, 25 K ohm, medium 800 ohm, low 200 ohm; super cardioid pattern; frequency range, $50-12,500 \mathrm{~Hz}$.; desk stand supplied with microphone, also suitable for floor-stand mounting; windshield available for windy locations (MZW411); may be used with any transistor or valve recorders; two required for stereo recordings. Accessories: MZH21 flexible shaft; MZS142 floor-stand (collapsible), MZA216 thread adaptor $\mathbf{8}^{\prime \prime}$ to $\mathbf{s}^{\prime \prime \prime}$. Price $\$ 32.79$ plus sales tax if applicable.

Further information from R. H. Cunningham Pty. Ltd., 608 Collins Street, Melbourne, Vic., 3000.

BI-MESAR POWER TRANSISTOR

Fairchild Australia Pty. Ltd. have just released the first Bi -Mesar power transistor in Australia.
It is the 2 N 3055 , a high power silicon transistor and uses the new Fairchild developed process called Bi-Mesar.

Bi-Mesar is a high-volume, low-cost process producing exceptionally reliable power amplifiers and switches. As the name suggests, this process uses a double (Bi) epitaxial growth, with a Mesa collector-base etch, and a Planar (AR) emitter-base.

Key features of Bi-Mesar power transistors are:
(1) High forward and reverse-bias safe area;
(2) Leakage levels approaching planar structures due to an exclusive Vapox protection of the mesa collector-base junction;
(3) High voltage;
(4) Typical frequency response of 2-7 MHz., and
(5) Excellent switching performance, both in speed and saturation characteristics.
Further information can be obtained from Fairchild Australia Pty. Ltd., 420 Mt. Dandenong Road, Croydon, Vic., 3136.

CENTRE PIECE FOR SPIDER QUAD

A cast aluminium alloy centre piece for spider (boomless) quad aerials has recently been developed in Australia. It is designed to fit tube type supports 1.9 inches in diameter ($1 \frac{1}{2}$ inch water pipe or similar).

Each of a pair of castings accepts bamboo, metal or fibreglass spreaders up to 1.062 inch diameter at the butt. Individual halves of the quad aerial can be completed on the ground before it is fitted to the supporting tube.

Galvanised bolts pass through clearance holes in one piece into tapped holes in the other; after tightening upon the support, nuts and washes are fitted to loci the bolts in place. The complete assembly measures $6^{\prime \prime} \times 6^{\prime \prime}$ x $4_{4}^{3 / 1}$ and weighs 4 lb .6 oz .

Available, complete with bolts, nuts and washers, for the modest price of $\$ 10$ plus $\$ 1$ packins and postage from S. T. Clark, 26 Bellevue Ave., Rosanna, Vic., 3084.

LOG BOOK

IS NOW AVAILABLE
Larger, spiral-bound pages with more writing space.

Price 75c each

plus 17 Cents Post and Wrapping
Obtainable from your Divisional Secretary. or W.I.A.. P.O. Box 36, East Melbourne, Vic., 3002

1296 Mc . CONVERTER
 (Continued from Page 24)

problem of a separate battery feed. The 144 Mc. converter is likewise adapted so that to change from 144 to 1296 Mc it is only necessary to change the i.f. cable, which is very convenient for portable work.
If it is not desired to modify the i.f. receiver, or is a valve type receiver, then an isolating capacitor and suitable choke may be used to feed the 12 v . int, the co-ax. in the more usual manner. If this feature is not required in the converter, return the bottom of L19 to chassis in the usual manner. The 12 v . on the antenna connector of the i.i. receiver may prove embarrassing if coupled to a folded dipole, etc., and this can be obviated by fitting a slide switch on the receiver to return the link to chassis or supply as required.

CONCLUSION

The construction and adjustment of a simple but effective 1296 Mc. converter has been described in detail in the hope that its simplicity may encourage some of the d.c. boys to "have a go". No special test equipment is required and with the exception of the mixer diode, uses cheap readily available components. VK4KE constructed a similar converter using silver plated brass and achieved almost identical results. There appears to be little advantage in silver plating other than appearance. Time permitting, it is intended to describe the construction of the varactor triplers and antennas used on this project.

"It says to broadcast the seeds"

D X
Sub-Editor: DON GRANTLEY
P.O. Box 222. Penrith, N.S.W., 2750
(All ilmes in GMT)
This month has been an average one for DX In this country, with some rather exceptional doing some odd things. such as belng open to doing some odd things such as being open to Eastern States, fifteen has been average, twenty has had some good openings, particularly
around 1900 z when we have had some fine around 1900 when we have had some fine
loggings from the Middle East and Central European areas. There is quite a lot DX on forty and eighty metres, particularly in the c. W. segment. whilst the noise level has been
mostly too high for any sustained activity on top band. I do note, however, that the first
VK6 to W contact was held on Sept. 29 , when VK6 to W contact was h
VK6NK worked WSRTQ.

By the time this goes to press, we will be using the alternative prefx AX, issued for use at the discretion of the call-holder. Prefx
hunting has become the latest form of rat-race hunting has become the latest form of rat-race heard and worked all there is to work, and the use of a new prefix anywhere is good for
a dogpile. The New Zealand boys report that a dog were rushed when the ZM prefix became operative over there, and it can be assumed that our DX boys plus the overworked QSL
bureau managers will have o hectic New Year.
One short note here for the S.w.l's. It is very pleasing to hear on the grapevine that there has been a very good line-ud of entrants in the 1969 VK/ZL Contest by the VK S.w.l's.
The scores when Jock ZM2GX gets them all sorted out will be more than interesting. for sorted out will be more than interesting. for into the five-figure bracket.

Recent publicity in a national electronics magazine in reference to goings on on the bands has not been of any help to our Ama-
teur fraternity or the W.I.A. as a whole. teur fraternity or the W.I.A. as a
Unfortunately publicity of this nature reflects on all Amateurs. regardless of whether or not they are involved. or whether the "goings on" ever, are no respectors of persons and on reading material of this nature. naturally point the finger at all of us, S.w.I. and Amateur alike. The editor concerned is quite entitled to write would have done the same, lact remains that it should not have been necessary to draw attention to "licensed larrikins" as the alorementioned writer refers to them. To use another of his expressions, the boat should have been rocked long ago, before this state of affairs developed. We must face it. ihere is an element in Amateur Radio, particulariy on before the P.M.G.. the commercial interests before the P.M.G.. the commercial interests
and anyone elsc who wants our bands, starts and anyone elsc who wants our bands, staris using this our very limited portion of the spectrum of our very limit

The editorial makes the point that there is fear of being branded a P.M.G. plmp by some of those chaps who tolerate these goings
on. This may be so, but one is entitled to take any reasonable action necessary to protect his property, and the bands certainly are our property. A call to the P.M.G. Monitors, active. will most likely be the best course of action. Give all the particulars you can, exact irequencies where possible. and if you can tape it. so much the better. There was a slogan in use prior to the last I.T.U. ConferAmateur bandsi, if you don't use them. you'll lose them. I would suggest that if they are used by these few irresponsibles in the manner they are using them. we will lose them even quicker.
With the advent of the summer season in the southern hemisphere, we will no doubt have a few more DX-peditions on our hands. A1-
ready several are being reported. firstly there ready several are being reported, firstly there
is a good chance that Clipperton will be activated some time in the new year with the call FOBEC. Watch for it. as it will go on with little or no advance publicity.
During the ' CQ " World Wide Phone Contest on October 25/26 DJ6QT/CT3, IIMOL and 4MIA were active. and nll cards are being handled by DX-pedition of The Month.

Another one for the distant days. DL7FT End a companion plan to visit Albania for the
uate. and will be a bonanza for the DX boys This report from W2NUT to LIDXA
San Marino. a country which 1 heard way back in 1952 . but have never confrmed, is and 14209 at 23002 . His QSL to W4DQS.

W2GHK reports that logs from CRSSP are missing for the periods between Sept. 11, 1967 and Dec. 21, 1987, also Feb. 25, 1968, to April
6 . 1968. No logs have arrived since June 30 . 6.19
1968.

Actlvity from South Georgia is reported 4204 am . Who has been using 14225, also Also VP8JV Operator Rick. QSL via R.S.G. year from mid-November. QSLs being handled by DX-pedition of the month

Tibet is active once again, with AC4AH being worked on 14211 at 11122 , and asks for QSLs via W2MQ
Mongolia still remains active with UA9VH, JT1 being worked on 14220, asks QSLs to Box 639, Ulan Bator. Also JT1AG "Dambi

Activity from Turkey is often treated as suspect. but one genuine station is Ted TA1NF. who has been active on 14180, at 20002. QSLs to Box 699. Karakoy, Istanbul. Turkey
One of the regular contributors to this column is the Long Island DX Association from annlversary. The work this club has done in the past is lar more than sending out a them well on this occasion, and look forward to our continued association with them

Sunspot activity is still on the down grade and the prediction for December and January is 88 and 87 respectively. The latest confirmation is for July with 88
Roy ZMIAAT/K commenced operation from Raoul Is on Oct. last. Unfortunately his transceiver fell into the sea whilst unloading, however despite these initial troubles, he manages to get on the air almost daily on the publicised frequencies, using c.w. and s.s.b. Fie has been on all bands, but is using 20 mnst as well. and will be operating on 51.50 using 20 watts a.m. only. It is possible that his tour of duty will be extended to cover two years.

ZM1BN/A was due to commence activity on 19th Nov. for a period of three months from the Snares, however is there is a possibility of side trips to Bounty. Antipodes and Campbell Is.. it may be well worth watching him QSL to ZL2AFZ. The other N.Z. of interest is of course. Lester 2M3PO/C who is currently on from Chatham Is. between shifts.

The dermit for AP2MR to operate from Eas Pakistan was not recelved until too late however he is now trying to get there for the
Jack C2IJW, formerly VK9RJ, is active on 14170 or thereabouts daily at approximately 06002. also on 7 MHz . at 07002 . and 28500 to 23600 at 00302. His correct QTH for QSLs is Pacific.
The stations signing CW3BH and CWOAA were special calls from Uruguay during their recent contest, and count for prefix hunters only
Re a previous paragraph pertaining to M11 on San Marino, there is a note from Geof OSI DX news sheet ${ }^{\circ}$ o the efreugh IIDXA how him as W4DQS. Probably the latter is for W stations only. His frequencies by the 7080.

UPOL 16 and UPOL 17 are two floating U.S.S.R. stations in the Russian Arctic Zone

ZD to B
ZD9BM from Gough Is. Is now active on all bands. and Is reported to operate on 14230
Mondays and Wednesdays. Heard here in VK Mondays and Wednesdays. Heard here in VK at 0700z.

There is plenty of 5 V activity ihese days and of particular interest to VK is the reported sked between ZLIAV and 5VZDB at 14153 on s.s.b. at $0600 z$ I queried this call sign, how ever my own logging of him at 1950 z on 14 MHz. soon cleared that uD. 5V4JS is also on the air, often working W stations on the lons ath using 21279 at around $1700 z$.
Reports from the FR7 area state that FR7ZQ and ZU will be active for four months from Europa, that FR7ZL will go there also, and that FR7ZP will shortly leave Europa for Bassas DA. India
News from KC4 says Ross Is. activity by KC4USX who QSLs via K2BPP. From Palmer Archipelagn we have KC4USP operating on 14225.

Alan ZD9BE reports that he returned from Gough Is. to his home QTH in England last August. and thus the current station signing
ZD9BE is a pirate. ZD9BE is a pirate.
Gus W4BPD is now plannink another DXpedition. this time in the comink Spring season This one is timed to last from $60-90$ days and it is hoped to include Chagos. Blenheim Reef St. Brandon. Algalea, Wizard Reef. Aldabra Geyser Bank and possibly FH8, FR7. AC3 and ACs. Remember too that W2MZV is now 9U5CR is now active. usually around 14280 between 18002 and 20002. With QSLs to ONBTO who has a new QTH: Edward de Jansstraat 30. Sint-Andries, Belglum.

Trans Paclic DX tests on 160 metres are dated for 1330-1600 Saturdays on Nov. 29, Dec tions chll CQ DX test during first nve minutes and the following odd five minutes during the hour, DX stations call during the even five minutes. W/VEnia and Asian stations trying to from 11302 . VKs are requested to use 18001860 kc .
Though not in the rare category. Canary Is still excites interest. and two of the most active stations from there are EABDV who has been operating on 10 metres of 14210 . The latter's QTH is normally around ${ }^{\text {nox }}$ 215. Tenerife, Canary Island.
If you are looking for Halti. HHODL checks 14332 around 21002 . and 20 mx has been quite 14332 around 21002. and 20 mx has been quite good here in VK2 at that time.
With the introduction some time ago of the five-band DXCC by the A.R.R.L., there has been a mad scramble for contacts on the lower bands. Here are some calls to look for On 80 and 40 mx : HR2PEV. CNBDW, EABBN.
EABF, EL2AK, FG7XX. HR1KAS, KP4AST, TG81A, ZC4HS, CR4BC, CR7FM, EA9BR. OA: 4BS, VP9GJ, 9HIK. JW3XK. LXIDW. T12HP KZSRF, VP9VK, 日Y4AA. Many of these have been heard or worked here in VK in the early hours, or in the case of the Pacifc and South Americans, Jack VK3AXQ down in Tatura, reports working KC4USX on 20 at 08522 iss, operator Terry, QTH Williams Field, with QSLs to K2BPP plus two IRCs. Jack also worked FK$88 N$ iguy) at 07582 with good copy at $18{ }^{10}$
20 w.p.m. c.w. Asks for QSL to Box 352 . 20 w.p.m. $\mathbf{c . w . w . A s k s ~}{ }^{2}$
Barry VK5BS reports working 9NIRA recently and says QSL to K6OE. Has anybody in the current call book?
I mentioned recently some of the W stations now are concentrating on the lower bands. rotary quad on 80 mx
Marion 1s. rarely rates a mention these days, 14297 from 0300 to 1600 dally. If no results on that frequency, he ranges up to 14320 . My report says QSL to $\mathbf{Z S 6 L W}$, and the operation is a.m. only. This report from the Pacific DX net news service
Recently stations in Honduras have had difficulty in recelving their QSLs. The reason for HR is not stated. however there is now a new Tropical Radio and Telegraph Co.. La Lima, Honduras Republic, Central America.
Honduras Republic, Central America. They are W2ARB. John Julik, and K9EAB, Chas. Corne. the latter had
1 mentioned earlier in these notes that the trans-Pacific 160 metre tests are being held. as a matter of possible interest. although of Atlantic tests are aliso being held on the SunAtlantic tests are also being held
days following the Pacific tests.

AWARDS

There is only one this month. the Pacific work 25 official This is issued to those who countries since Jan. 3. 1969 GCR list plus one U.S. dollar to KHGGLU. The net operates, as we have sald before, on Tuesdays and Fridays. $0600-1000$ on 14265 s.s.b
And that brings us to the close of another issue, and from the editine point of view, another year. Notes appearing in this issue are
by courtesy of Geoff Watts DX news sheet. LIDXA. ISWL magazine "Monitor'. George ZL2AFZ. George Allen. Barry VK5BS. Jack News Radio Club. Mac Hilliard. Eric TrebilNews Radio Club, Mac Hilliard. Eric
cock. Srebil-
Steve Ruediger. Pacific DX Net and my own observations.
My thanks to all who have assisted over the past year. and wish all the very best to aill be a happy one. and full of exotic DX.
73. Don WIA-L2022.

Overseas
 Magazine Review

Compiled by Syd Clark, VK3ASC

October 1masi-

"BREAK-IN"

A Four Watt erp Transelver. ZliAFQ. It is really more of a trinsmitter/receiver as the only common portion is the a.f. nmp. A.in. or c.w. on 80 mx .

A Trangistorised Two-Tone Test Oxclllator ZLIAU. Using two simple phase shift networks, it provides signals at approx. 1 and KHz. for tests.
Some Notes on Choke Input Filters, ZLIHQ As the title implies.

An Audio Peak IImiter, ZliUl. You cail by using one of these without flat topping.

Branch 2!!-A Brief History. ZL1HQ. Shows how a rroup of enthusiastic Amateurs can equip themselves with a clubroom and gear over a number of years. Perhaps we could arrange to follow suit in Melbourne.
Downward Ho, ZL4AC. A tale of the twen-Note.-Subscriptions to "Break-In" can he arranged through the W.I.A. Ask your Secrearranged throu

October 1:000

"CQ"

Inside the Electron Microscope, W2FEZ. The author takes his readers from the "Crook's" tube through modern electron optics and de100.000 times and more can be achieved.

Build a Complete Six Metre Station, Part 11. WA2NDM. Conclusion of the article on a six metre moblle which began in September issuc.
The Haunted llam. K3KMO. A humourous story of t.v.l. and its cure.
Have You Tried Triacss. W2IYG. Actually I have! I bought n gadget recently which can be used to control the speed of my electric drill. This article tells you how to make such a device for yourself and do a few more tricks as well.
Instant Service Nets; WCARS, MWARS, and ECARS: WBGIZF. Triffic nets are an important part of Amcrican Amateur Radio. With our ban on third party traffic, we do not have such things.
The Reversi-Conpler, Wile. An antenna tuner that covers 160 metres. That is the author's statement. Actually it does more by
covering the other bands as well. Into the bargain. it is motor tuned.

A Junk Box Pateh. KOGBT. This article describes a phone patch which can be built with a minimum cash outlay.
Australis Osear .S Progress. W3ASK. The latest gen on this project.
"CQ" Reviews the Drake 2-NT C.W. Trans well with a Drake 2-C recelver.

A Tri-band Quad and Two Metre Beam on the Same Mast. WB2FWS. Perhaps this will
supply the answer to one of your problems.

"HAM RADIO'

Transmitiling Mixers for Six and Two. K2ISP. With one of these and an 80-10 mx exciter you can participate in the fun on the V.h.f. bands. Tubes are used and complete
detalls are given including p.c.b. layouts and very clear photographs.
Now Programmable Repeater Ifentifier. W6AYZ. Now that VK is installing v.h.f. repeaters in some areas. this device should be of interest.
To Clip or Not to ClIp. K6KA. What clipping does. how it works and how it can be used without splattering all over the band.

High Frequency Antennas. W2WLR. Many different types of antenna are described and the discussion all leads up to four types designed by the author. He claims some rathe: unusual properties for his designs.
Solid State Sampling Equipment for Slow
Scan Television. \mathbf{D}. Watson and S. M. K. Horne. VE3EGO. Who is on what frequency and when for the N.E.. U.S.A Adapted from an article in the Canadian Journal Electrohi. Jan. '69.

BlockIng Osclliators, W6GXN. Useful pulse senerator information
Six-Metre Cubleal Quad, W6DOR. At these frcquencies rigid D.v.c. condult or water plpe and fittings make a useful contribution to the finished product
Wireless Point Loma, W6BLZ. History of a station in Callfornia which opened in 1906. In the eariy days communication between amcouraged. ouraged.
Fies Power Solid State Transmitter, K2ZSQ. Two iransistors, a crystal and a few
Ideal Transmit-Recelve Switeh. K3KMO. He claims that all other T-R switches suffered from serious disadvantages which this one has eliminated. You can. according to the
author. medify yours to do the same things.

May 10u9-
Linear Integrated Circuit Applications, hing. Runs to about 24 pages
Recelver Performance in F.M. Repeaters. K3ZBA. How to Improve the talk-in range using shielding and tuned cavity filters.
miniature R.T.T.Y. Converter, KgMRL. A Iandard circuit adapted to use an IC.
Homebrew Keyer Paddle, W3NK. For those Homebrew Keyer padde, mechanically inclined readers of article in "A.R." and a more elegant
cent finish.
R.F. Activated Switch for Two Metres, by K2ZSQ. Designed for use on v.h.f. equipment. this is a piece of equipment which should ap-
deal to VKs. It was adapted from a commerdeal to Vk
Integrated Nolse Blanker. W2EEY. This unit makes use of three uLg14 integrated circuits. it is clalmed to be highly effective.
The Integraicd Station, WiNLB. You readers of American Amateur magazines may have been Inirigued by the advertisements of an crganisation which calls itself "Signal One". National Cash Register Company, did not apNational Cash Register Company, did not ap-
pear. but nou it is stated to be part of the pear. but now it is stated to be part of the
E.C i. division of that company. The standard C.CI division of that company. The standard box full of tricks. All h.f. bands from 1.8 to 29.7 MHz . in bands one MHz. wide. with nixie read-out of frequency to 100 Hz ., it uses all solid state components except for the innal which is an R.C.A. 8072 conduction cooled tube running 300 watts input on s.s.b. It has two v.f.o's bullt in as well as an electronic keyer and every other gadget that an ardent DXer could need including the ability to simultancously recelve two signals of the operator's choice. I cannot find a price at the moment. but I think I did see it mentioned somewhere at around $\$$ US3.000, which means that if you are a worker you will need to win Tatts, the Golden Casl:ct. State Lotery or the Blg Philou reward money before you can import one. The duty and sales tax would probably buy you a Collins KWM-2.

June 1989-
Single Band S.S.B. Transcelver, WIDTY. Mostly solid state. KVG Alter on 9 MHz . with v.f.o. on $5-5.5 \mathrm{MHz}$ and running 800 volts on a 6883 tetrode which gives about 50 watts
p.e.p. output. It looks as though it could D.e.p. output. It looks as though it could easily be modified to operate on other bands or even on two or three bands.
External Anode Tetrodes, W6SAI. Handy reference information on the popular range of Erence information on the popular range of 1947 onwards.
Water Cooling the \geq Csin, K6MYC. These are popular on u.h.f., if you can get one at the ight price. Sometimes the life can be short f they are pushed and the plumbing will reduce the risk of sudden failure.
A Modular FM Communicalions Receiver, K8AUH. More solid state stuff
Crystal Control for the HW-100, KIGUU. $1 \leq$ you have a requirement for operation on paricular fiver, either fixed or mobile, you could find this article of interest.

Getting Started on R.T.T.Y.. K6JFP. Circuits for sending and receiving r.t.t.y. plus some station improvement ideas.
Wiring and Grounding. WiEZT. Proper grounding is necessary for correct operation of many circuits. Ground loops can often cause unwanted deffects. This article tel
Top Iaaded $x 11$ Metre Vertical Antenna, by VEITG. Loaded at the top with an umbrellis and at the bottom with a coil. This 80 mx antennal is claimed to dive excellent results. C.W.
W2EEY. Selectivity with Crystal By-passing.
Circults for adding selectivity for .w. operation
The Homebrew Art, WOPEM How to "homebrew" equipment that works.
"OHM"-The Oriental Ham Magazine
Published by Phil Wight. VS6DR. editor Roy Chalu. This is the irst issue of a magazine telling about the activities of Hams in the Orient. It is a slim volume published in Hong Kong and Including a section on the activ ities of the Hong Kong Amateur Radio Trans mitting Society (H.A.R.T.S.).
Hong Kong Reports. on the air from VS6 Listing some twenty-five odd Amateurs who are active from H.K. with a short resume of the gear they use.

Verification . I'll Stay Right Here, VS6AA A humourous article about some of, the lurks

PARF VSGAL and "DX Deditil
RARF. VS6AL describes the Fully Automated Robot Fox. Something simllar to the unit we a few years ago.

Ham Profle. VS6BE. Lyell Loutit is appar ently a man of many parts as he is also VK2BE He is an airline pilot now after having been a professional radio operator for some twenty
years. Collins
S line. 75 S 3 . 32 S 3 , 30L1. Operyears. Collins S line. $75 \mathrm{S3}$. $32 \mathrm{S3}$.
ates mostly on 14,21 and 28 MHz .

Quad Antennas. Dimensions for 20 mx quads ranging from 2 element with $1 / 8$ th wavelengti spacing to a 6 element monster on a 60 It boom. All dimensions are for 20 mx .
DX. VHF. Report on the I.A.R.U. Region 3 Association meeting held in Sydney during Easter 1868

"QST"

Amatevr F.M. and Hepeaters, W8TEE W6GDO This article discusses ifm. operating practices and the closely related subject of Amateur repeaters.

Diode Switch for V.H.F. F.M. Channel Selec tion, VEAHJ. Use some diodes as switches and the switch can be any place that is convenient. A Junk Box Transistor Checker, W7MRX Simple and effective it is claimed
The Transistor Giant. VU2JN. 3.5-21 MHz and running 75 watts input on c.w. or about 25 watts on phone
An Etched Circuit Monimatch for Checking Your Antenna sysem, WIICP
Using aual Band Moblle Antenna. WAGKGP 80 a tuned trap system. this antenna cover A and inx without switching-mechanically Twin converters for 50 and 144 MHz
The Swan Multidrive \because Metre Antenna WIHDQ writes about W6KZK's antenna.
I.ong Delayed Echoes ${ }^{\prime}$ QST" May 1969) has excited quite n bit of interest and prompted publication. This issuc to sube 48it sugeters for publication. This issue ipage 48, suggests that effect on tape that the recordings can be effert on tape that the recordings can be analysed to provide useful information on a device known as a "Sona-graph". These mach ines. made by the Kay Electric of Plnebrook New Jersey. U.S.A.. are in use in Australla If any reader has tape recordings for analysi and wants them analysed. the reviewer can probably pu
machinc. Oscar I. WAlluO/WB2OHH. Mor dope for those who are interested.

So You W'ant To Win An S.S. Contest, by WA6IVN. The goal and the equipment required to put, you in the running. You provide the "push"

"RADIO COMMUNICATION"

September lillig- for Amateurs, G3BOB Side band limiting. lincompex. diversity combining and limiting. lincompex. diversity combining How to get the most out of it.
slame-Solid State Integrated Auto Morse Encoder. G8BTB. With no moving parts. this gadget automatically sends CQ/Test, Call Sign and possibly anything else you would like to build in.
Aerials-Planning and Rating Problems. by
G2RVN. The G2RVN. The things your city council may want to know.
Technical Topics. G3VA. regular feature. A disertation on the latest from here and there An Investigation Into Table-Top Television Aerials. G3NMR. If vou want to know which type a G reckons is best read this

October IMG:
AS: MHz single sideband Transmititer, by G2A1H. Part I of what is really two trans mitters. one for 70 MHz .. the British equival ent of our 50 Milz. band. and the other for
432 MHz . Valves are: used. Warkshop Practice for the Radio Amateur, G3OMK. Some useful hints for the "do it voursiel " ${ }^{\prime \prime}$ fraternity.
An Add On Product Detector for a Transistor Receiver. G3SBA

Dual Gate FET Converiers for Two and Four Metres, G3VFD. 3N140, 3N141 and 2N3819s are used. Units are built in die cast boxes.

Teevision and Radio Interference Trends by G3VA. Figures to prove there is some.

Television Interference-Its Causes and Eemedies, GW3RWX. How to rid yourself or your neighbour of it. Useful transmitting balun item.
Project Oscar, G2AOX. About Australis osear 5.

"RADIO ZS"

The journal of the South African Radio League. This is one of the smallest magazines gublished by a sister society. It usually consists of forty pages, each $51 / 2 \times 83 / 4$ inch-
 smaller than "QST" and other American publications by half an inch on each side. It is attractively presented on good quality paper. Some of the articles appear to be a little re-
mote from Amateur Radio. In the July issue mote from
We have: A Remote Reading Electronic Thermometer, zS6WI. Uses a bridge circuit with a thermistor in one leg.
Death in the Shack. ZS6HR describes the precautions every Amateur should take for the salety of his family, visitors and himself.
Resonant Impedance and Frequency Measurement, ZS6-191/7P8AJ. Describes an instrument known as an Antenna Nolse Bridge. There is a commercial version on the market.

Angnst 1969-

A High Performance Converter for Forty Metres, ZS6AUN. This is a project which should satisfy those of us who have been eyeing the new components on sale through the Disposais Group. It uses two MPF102s, a 2N706 and an OCl 70 .
An Avenue of Friendship. ZS6GH. Diana Green gives us an insight into the thoughts of a lady operator
A Sideband Package $2 S$ Style, ZS6WL. For those who have already modified a receiver sideband. this is a suitable transmitter.

Septeraber 1969-
A Mobile 7 MHz. RIg, ZS6SX. Designed as a single band rig, this unit uses no transistors. only valves. d.c. input is a maximum of 35 w . to a QRE03/12. A converter from 7 MHz . to a car radio as tunable l.f. is built in.
Use These Formolae and Calculations, by ZS6XK. Some time ago the author described a plece of equipment as using a component of 10 uH . and was chastised for it. He now tells all of his interested readers how to translate between X turns of Y wire on a Z size former into uH. and other useful hints as well.

"SHORT WAVE MAGAZINE"

Septeraber 1909-

Introduction to Logic Switching, G3TDT. The sub-title tells you what it is all about. "A design for an electronic keyer using integrated circuits".
Discossing Phased Vertical Antennae, G3DDN, A tri-band system giving directivity control by switching. Calculations, measurements and practical application.
Labgear 180-Twin Transmitter, G3VCJ. How to make it give out on 80 mx .
A practical 14-Centimetre Converter, G3EEZ. Tunable output within the range $24-30 \mathrm{MHz}$.

October 1969—
A Super Gain Antenna for Forty Metres, by W4NVK. Nine db. on 40 mx might be called
FET Chirper, K6QKL Signal source for peaking converters for optimum signal-to-nolse ratio.
The Inside Info on Alexander Graham, by W2FEZ. How the telephone really works.
Lealy Lines, K2AGZ. Similar to "Grumbles" but by a licensed Amateur.
Scope Cailinator, WiOLP. Gadget you can uild to improve your scope.
Vidiots that have known me, KIYSD. Sense of humour test, if you funk, go back to 11 mx . The Protector, WAOHKC. Protects your gear from line voltage surges.
Slower Taning Rates for Older Receivers, W4RNL. Just like "band-spread"
Positive Identification of Calibrator Harmonics, K5LLI. Keeps you off 6950 and other poor DX bands
Adapting A.M. Transmitter to F.M, WA 4UZM. Good heavens, is everyone going v.h.f. f.m.
C.B. Sets on Six. WB2FHW. No need to junk that C.B. rig when you get your Tech. icence.
Proportional Control Crystal Oven, W2CLL. You will need this for Moonbounce and such. A Crystal Filter Phasing Control, W2LT. Look at the i.f. response and be amazed.
Grounded Grid Filament Chokes, W2IK. You need these for linear amplifiers.
Equipment Cabinets with Style, W2OLP. Make it look commercial.
V.H.F.-F.M., Part I., WB2AEB. Advantages and practices. When?
Bring Back the Q Multiplier, WaRHR. Invaluable for c.w., notches out carriers too.
The C.R. Beam, WA4FDQ. Two metre corner reflector beam.
The A.R.R.L. Board and Amateur Eadio, W7ZC. Ex A.R.R.L. Director evaluates meeting. Cheap and Easy Power Supply, K4FQU. For a sideband transceiver.
Getting Your Extra Clans Licence, Part IX., Modulation. By ' $73^{\prime \prime}$ " staff
Ham Jamboree, WB6IZF. Talks about the Jamboree on the Air.

Operation Cai's Paw, W5CA. The tale of two kitties.
Konight V - 107 for Six and Two Metres, by KGGKX.
Careers In the F.A.A., W6.JTT. Get on the government payroll.

FOURTH

SIDEBAND GATHERING

HAMILTON

A.N.A. Week-end

24th and 25th JANUARY, '70
Contact Ern VK3AEM, Box 366 Hamilton, Vic., 3300, or on 3677 Kc 10 p.m. nightly for information.

NEW CALL SIGNS

JUNE-SEPTEMBER, 1969
VKibh-W. R. Hempel, 33 Krichauff St., Page, VKINE-N. ${ }^{2614}$. P. Eyre, 17 Rusden St.. Garran, VKIZFR-F. Y. Ranner, 3 Whitelaw St., Pearce. VKIZJB-S. J. Lowes. 10 Macleay St., Turner. VK1ZKC-R. F. Casey. 20 Nelson Pl.. Curtin. VK1ZKQ-D. W. F. King (Cpl.), Flat 1, Block 4. Stuart Flats, Griffith, 2603.

VK1ZOL-M. G. Foster, 65 A'Beckett St., Wat-VKIZRN-R ${ }^{\text {Son }}{ }^{\mathbf{2 6}} \mathbf{W}$. Nash, 15 Richmond St., Mac-VKIZTA-T. ${ }^{\text {quarie. }}{ }^{2814 .}$
rens. 2807.
rens.
NM.
Mawson,
2807.
2807. Mawson, 2807.
VK2TV-W. G. Welss, 4 Warah St., Ettalong VK2VD-R. Weach. 2257.
ville Rd., Villawood, 2163; Postal: C/O.
 British Insulated Callenders Cables
Aust.) Pty. Ltt. 15 O'Connell St., 'Aust. P Pty. Ltत. 15 O'Connell St.,
Svdney. 2000.
-V. J. Gнy. $13 / 248$ Pacific H'way, Ar-VK2VI-V. J. Gry.
VK2VO \rightarrow Limin. Thomason, 41 Oaks Ave., Dee VK2YS-P. Why. ${ }^{2099}$ Bowers, 58 Stanley St., KooVK2AGN(ngil. 2650.
Prince St., Springw, "Woodlands," 15 Prince St., Springwood. 2777
VK2ASD'T-R. A. Girdo. 111 Cooper Rd.. BirvK2AtJong. P. Crowe, 2A Clovelly Rd., HornsVK2AYUy. ${ }^{2077 .}$. Smith, 7 Pacific H'way, Mur-VK2BBH-C. Dekber. 17 Smith St.. Manly, VK2BBK-R. A. Maitland. 3 Albany St., Gos-VK2BCS-C. C. Talbert. 6/43 Milson Rd., Cre-VK2BDS-D. B. Shaw. O.T.C. Radio Station,
 VK2BEE-E. F. Corton, 7 Neptune St., Reves-VK2BEG-E. W. Graham. Boundary Rd., Bath-VK2BER-R. CIC. Everett. 212 Austral St., Tem-VK2BHM-H. B. Milburn. 37 Baloone St., Nar-VK2BJP-J. ${ }^{\text {rnbri }}$ K. $\mathbf{2 3 9 0}$. Oisen. $1 / 237$ Darley Rd., Rand-VK2BJQ-J. ${ }^{2031}$.
K2BJQ. H. Sutherland. 32 Cremorne Rd., VK2BKU-G. Cremorne. Jones, 2 Hillside Cres., VK2BLE-L. Groen. 21 Egan Pl., Beacon Hill, VK2BLP-L. E Peasley, 176 Loftus St., Tem-VK2BMI-R ${ }^{\text {ora }}{ }^{2668}{ }^{\mathbf{O}}$. Lohr. 858 Henry Lawson Dr.,
PK2BPA-N. Point Williams. 43 Laura St. Ban-
 St., St. Leonard, 2065; Postal: 21/26 Raglan St.. Mosman, 2088.
VK2BTM-A. T. Monck. 27 Park St.. Port Macquarie, 2444.
VK2BYC-Birronk and District Youth Radio Club, Station: 111 Cooper Rd.. Birrong. 2143; Postal: P.O. Box 324. Bankstown. 2200.
VK2CAD-D. C. Reynolds, C/o. Earth Satellite vk2zBJ-P. B. Moree. 2400 Webster. 25 Bayview Ave., Earlwood. 2206.
VK2ZCC-C. J. Bourke. 14 Birch St., Batlow, $\mathrm{VK2ZCL} \underset{-}{2730}$ C. J. Collyer. Station: Portable; Postal: Airtelu. R.A.A.F. Base, Rich-VK2ZEG-W. L. Laird. 93 Kentucky St., Armi-VK2ZFY-A. ${ }^{\text {dale. }}{ }^{2350}$. Kent. 19 Glorla Cres., Lake Heights. 2502.
VK2ZGX-C. G. Palmer. 15 Davidson Ave., VK2ZHC-C. D. Hay. 48 Rockleigh St.. Thorn-VK2ZHI-G. A. Puckett. 9 Alexandra St., HunVK2Zhters Hill. 2110 .
VK2ZIS-T ${ }^{\text {ters }}$ A. McKeachie. 147 Powderworks
 VK2ZNI-P. T. Nicholson. 99 Copeland Rd., VK2ZNQ-N. A. Cameron. 10 Clifford St.. Muswellbrook. 2333.

VK2ZPC-P. J. Carter, 5 Bell Pl., Mt. Pritch-VK2ZQF-P. ${ }^{\text {ard }}{ }^{2170}$ C. Nieuwendyk. 228 Margaret VK2ZQG-P. J. Huntington, 6 Elimatta St. VK2ZRN-AR. J. Buller. 18 Burke St., Swansea, VK2ZRO-R. N. S. Stone, 4 Yarraga PI., Yowle VK2ZSF-S. F. Nolan, 102 Quigg St., Lakemba, VK2ZTK-R. J. McCosker, Yagoona Hotel, 299 Cooper Rd., Yagoona, 2199.
T-C. J. Lamp, 121 Klora
VK2ZTT-C. J. Lamp, 121 Klora St., Canley VK2ZVF-E. C. Herivel, 16 Lindley SL. Edge-VK2ZWU-J. D. Wollfson, 239 Eastern Valley Way, Middle Cove, 2068.

VK3II-F. A. J. Forse, 44 Dunloe Ave.. Box VK3PO-E. Thompson-Boyd, 17 Sydney Ave., VK3QE-R. F. J. Caleo, 8 Ryder St., Niddrie. VK3RG $\underset{-2}{\mathbf{S 0 4 2} .}$ M. Kiser, 3 Daracombe Ave., Kew. VK3TN ${ }^{\text {s10. }} \mathbf{J}$. H. Lehmann. 74 Dunnlop St., MortVKsZAA lake, McL. Bennett (Lt.-Co.), "Tigimus," VK3AAD-E. D. Buck, 269 Gooch St., Thorn-
 North Balwyn, 3104.
VK3AFT-D. O. Spires, 4 Turnbull St., Sale, vK3AGS-G. S. Sutherland, 6 Carinya Crt., VK3AIV-M. Bencisier, Ironbark Rd., Yarram-VK3AJX- W. H. Kelly, 58 Linn St., Bendigo. VK3AKC-R ${ }^{3550}$. W. Wilkinson, 3 Harcourt St., Newtown, 3220.
VK3ANP-D. H. Waring, Cr. Murdoch and Cubbes Rds.. Wancaratta, 3677.
VK3AOH-R. E. Hartkopf, 34 Toolangi Rd.. Alphington, 3078.
VK3APB-M J. Williams, 9 Monrelth Ave. Flora Hill, Bendigo, 9550.
VK3ASN-K. J. Assender, 140 Collins St. Mentone, ${ }^{\text {S194. }}$ Grancis, 31 Donald St..
 Waverley.
M150.
VK3AVJ-R. I^{2} Jennings, 11 Dunbar Ave., Caulfield. 3162.
VK3AVR-D. C. Gray, 21 Dunlop Ave., Kew. VK3AWW-R. F. A. Lopez. 16 Coac St., Broad-VK3AXH-I. G. McDonald, 7 PIke Crt., Noble
 VK3AYV-Hont. \mathbf{W}. Anders, 325 Waverley Rd.. Mt. Waverley, ${ }^{3149 .}$
VKSAYZ-R. L. Cassidy. 68 Kernon St., StrathVK3BAE more. Lindsay. Flat 4. 10 Daley St., vK3BAJ-U. H. Aalbers, 7 Reserve Ave., MitVK3BAL cham. J. Kosina, 2 Ottawa Ave., Blackburn. $31 s 0$.
VK3BAN-F. H. Whitton (Rev.), 204 Church-
'Il Ave., Braybrook. 3019.
VK3BAP-J. E.' Nicholson, Flat 16,254 Dande-
nong Rd. East St. Kilda, 1182 . nong Rd. East St. Kilda. 1182.
VK3BAQ-R. F. Fisher, 241 Royal Pde., Parkville. ${ }^{3} /{ }^{3052 .}$.
VK3BAS/T-R. G. Thomas, 35 Crow St., East日urwood. 3151.
vкзвAT G. G: Keon. 2 Cowper St, North Essendon, 3041.
VK3BAU-R. M. Bruce. 49 Tooronga Rd., East Malvern. 3145.
VK3BAW-E. A. Williams, Raglan St., Sale, 3850.
$\mathrm{X}-\mathrm{M}$

VK3BAX - M. G. Hepner. 43 Bellarine St., Gee-VK3BBH-A. ${ }^{\text {long. }} \mathbf{L}$ W. Haddrell. Glenburvie Rd., Whittleses, 3757.
VK3BCA-J. A. Capaldi, Flat 4, 30 Sheppar-VK3BCD-E. Ge. Egan. Unit 2. 637 Blackburn
 VK3BCM-W. J. M. McAuley. 24 St. Ninians VK3BCN-C. Br. Nelson, 149 Brougham St., VKsCDP-D. A. Page. 24 Old Geelong Rd..

VK3YAU-Monash University Radio and Electronics Club, University Union, Monash University, 3168 .
VK3YBI-I. C. Beulke. 183 Olive Gr., Midura. VK3YBJ-B. J. Andrews, 28 Outlook Dr., Bur-VK3YEM-R. J. Martindale, 6 Ilora Crt., Glen Waverley. 3150 .
VK3YBZ-J. M. Stewart. Flat 4, 24 Auburn VK3YCP-P. Hawthorn, Collen, Flat 4, 371 Dandenong VK3ZCG-G. S. Cox. Main St., LIndenow, 3865 VK3ZFH-I. C. Nally. 28 Carbenna Pde., West VK3ZKN-E. G. Hutchings. Tahara, 3301.
VK3ZKN-E. G. Hutchings, Tahara, 3301 . Nistone Ave., Nid-VK3ZPP-P. B. Mil, 2 Ivy St., Parkdale, 3194. VK3ZQH-F. A. S. McCowan, 21 Halliday St. VK3ZUI-S. Waverley, ${ }^{3149 .} 298$ St. Kilda St., Brighton, 3186.
VK3ZWD-P. B. Carey, 468 Barkley St., Foots-VK3ZXN-A. Bindemanla. 3 Maude St., Gee-VK3ZZO-E. J. Cusworth. 46 Travers St. vk3zZS-C. L. Lowne. 127 Vines Rd., North Geelong. 3215.

VK4AL-A. R. Tarbit, Station: Mt. Nebo: VK4AZ-A. R. Renton, Presbyterlan Manse. VK4AZ-A. R. Ren
VK4CA Allora. C. Aldred. 15 Monmouth St., Morninkside, 4170 .
VK4EY $\underset{\text { West }}{ }$ E. Laing. 33 Berrimilla St., Manly West. E. 4179.
VK4FU-F. E. Roden, 10 Livermore St., RockVK4IE K. K. Edwards, 39 Robertson St., Sher-VK4IN-I. R. ${ }^{\text {wood. }} 4075$.
VK4IN-I. R. Horrocks, 98 Duke St., AnnerVK4IW ley. ${ }^{1103 .}$ A. Dickson. 4 Pullen Rd., Everton VK4NI-A. H. Nicholls. Cr. Mona and Richard-VK4NQ-H. Bon B. Waldegrave. Hardy Rd., BirkVK4NY dale. ${ }^{4159 .}$ Travaglia, 64 Heldelberg St. VK4PB-C. P. Littleboy. 17 Longman Tce.. VK4PV Che. J. M Renton. 20 Harold St., West VK4QA-A. Townsville, Aarssc. ${ }^{4810}$ Eifficld Rd., Woody VK4QN-D Point. 4019
VK4QN-D. R. Ham. Station: Sparrow St. Longreach, 4730
Longreach.
VK4TW-C. T. Ferris. M/S 264 Childers Rd. Bundaberg, 4870
VK4UH-A. F. Kearncy, 22 Muriel St.. Maryborough. 4650.
VK4UP-T. B. Rodda, Carina Downs, Spring-
 VK4ZD -M . DA. Richardson. 36 Rockburry St., Bald Hills. 4036.
VK4ZBQ-C. P. O'Brien, 12 Waratah St., Altkenvale. 4812.
$X-R$.
VK4ZDX-R. A. Bathgate, 53 Arrol St., Camp HIII, 4152.
VK4ZHA- \mathbf{W}. H. Albrecht, 12 Fourteenth Ave., Kedron. 4031.
VK4ZHH-A. J. Murphy. 4 Esplanade. Pialba, VK4ZHJ-H. J. Simpson. 13 Clayton St., Ayr. VK4ZHS—D. H. Snell. 14 Mary Si.. West End. VK4ZJD-P. J. Donovan, 130 Gray Ave., Cor-VK4ZME-A. ${ }^{\text {Inda. }}{ }^{4075}$ Morgan, Officers' Mess, VK4ZMS.A.A.F Sase. Townsville. ${ }^{\text {Morton, }} 17$ Crown St., Too-VK4ZRC-R. C. ${ }^{\text {woomba. }}{ }^{4350}$ Prior. 7 Parry St., Belgian VK4ZRL-R. L Reseck. Station, Eton Rd., Walkerston. 4740: Postal: P.O. Box 28 . Walkerston. 4740.
VK5IF-I. B. Fisk. 64 Paringa Ave., Somerton VK5NB J. A. McLachlan. 7 Austral Tce., MorVKsoonor M. Lansbury. 17 Anderson St. VK5OT/T-M. D Sobels. Station: 2 Dean St. Para Hills. 5098: Postal: P.O. Box 37. VK50BPara Hills. 5098
VK5QB-D. J. Tanner. 8 Bridport St.. Eliza-VK5SJ/T-J. A. Hampel, 16 Mitchell St., GlenVK5SN $\underset{\mathbf{5 0 1 7}}{\underset{K}{\text { gowrie. }} \mathbf{G} . ~ H u r n . ~} 4$ Manoora St. Osborne. 5017.

VKISR-South Eust Radio Group. Station: Glenburnie. 5291: Postal: P.O. Box 542, Mt. Gambier. 5290
VK5SV-Kambier, Pledger, Mitchel Ave., River-
 VKstz wood. Bosi. Dennis, 9 Walnwright St., ClarKKsTZ ence Gardens, 5039.
VK5zs-1st St. Mary's Scout Group. Osborne VK5CGA J. M. Marry, 4 Chapman St., Black-VKsZDI-D. K. Ireland. 109 David Tce., Woodville Park, 5011 .
VK5ZDT-D. W. Thwaites, Station Cr. West and South Tces., Stansbury. 5582: Postal: P.O. Box 77, Stansbury, 5582

VK5ZFI-G. E. Thomas, 115A Angas Rd., West-
VK5ZFM-L. J. Philips. 61 Lucas St., RichMKSZFN mond. 5039 .
VK5ZFN-R. L. Baker, 18. The Strand. Brahma Lodge. 5109 .
VK5ZGU-J. W. Coates, 28 Collingwood St., VK5ZHM-M. E. Hamition, 9 Sussex St., Warradale, 5046.
VK52ID-I. J. Dalwood, 60 Ilford St., Vale VK5ZJEPBr, S. So8. Went. 32 Hilliers Rd., Mor-VK5ZJM-J. Male. Clay, 94 Gawler St., Salis-VK5ZLP-W. S. Kitto. 51 Lefevre Tce., North VKSZNJ-S. N. Johnston, 7 Hayles Rd., Elizabeth Park, 5113.
VK5ZRT-R. Battllana, 17 Queen St., Alberton, VK5ZSK-J. D. Nunan, 1 Lasscock Ave., Lock-VK5ZWM-W. D. Moulton, Station: 6 Coorara Ave.. Payneham South. 5070; Postal: C/o. Radio SDN. Tynte St.. North Adelaide. 5006.

VK6DD/T-P. J. Beacher, 11 Crimea St. Mor-VK6EQ-A. B. Hollebon, 76A. Fifth Ave., Shoal-VK6GI-G. M. Summers. 171 Morley Dr., Mor-
 VK6JD-J. Dentley, H102. ${ }^{\text {Bliton, R.F.D.S. Control Sta- }}$ VK6RM-R. M. Tutton, 5 Errinbee St.. Shel-VK6SS-S. J. Stewart. 39 Hancock St., NollaVK6CIA $\underset{\text { mara. }}{\mathbf{J}}{ }^{606}$. Kelly-Hart. Station: Portable: Postal: C/o. Percival Publishing Co., 17 Elizabeth St., Melbourne. Vic.. Yok. VKGZEU-P. ${ }^{\text {ine }}$. V. West. 255 Fulham St., Clover-VKBZEY-F. \mathbf{F}. Teixeira, O.T.C. Satellite Sta-VK6ZFU-L. Janes. R.A.A.F. Base. Pearce. VK6ZFW-R. K. Green. 14 Doust St. Canning-
 Woodlands. 6018.
VK6ZGI-Perth Modern Snr. High School Radio VK6ZGJ-W. Roberts Rd.. Sublaco, 6008. Coolbellup. 6163 .
VKBZKZ-D. V. Hambleton, 116 Astley SL. Gosnells, 6110.
VK7AP-G J. Polmear, 219 Newtown Rd., VK7BA-L. L. Jensen (Mrs.), Kayena, 7251. VK7CX—B. R. Waldron, 62 Connaught Cres.. Launceston, 7250.
VK7DL-Deloraine HIgh School Radio Club. Lansdowne Pl., Deloraine. 7304.
VK7EM/T-W. J. Nickols, 4 Quinn St., PenVK7JV Juin. Van Staveren, 30 Waveney St.. Launceston, 7250.
VK7MB-A.C. McBurnie. 29 Benjafield Tce.,
 Hobart, 7000.
VK7UV-R. B. Trollope, 5 Balmoral Rd., Kings-VK7VK-B. Beach. Rieusset. 202 Carella St., How-VK7ZIF-1. Rah. Fill ${ }^{2018}$. 29 Rosny Esplanade, Montagu Bay. 7018.
VK7ZSF-S. D. Fraser, 137 Penquite Rd., Loun-VK7ZWK-W, F. Kititson, 80 Boxhill Rd., Claremont, 7011.

VksjC-J. A. Cooper. Eldo Tracking Station. VK8MA-W. R R. Edwards. 2446 Alawa Cres., VKazCW-J. F. B. Wellard. Station: 4373 Bagot Rd. Darwin. 5790; Postal: P.O. Box 1137. Darwin, 5794.

VK9NI-A. A. McCullagh, "Hiblscus Flats," VK9ZAL-R. N. Neland. Station: Lot 29, Blanch St. Rabaul. N.G.: Postal: C/o. Tutt Bryant. Rabaul. N.G.

CANCELLATIONS

VKIZVT-D. S. Thomas. Transferred to Vic. VK2CI-G. Kempton. Now VK4XX.
VK2II-A. W. Adams. Transferred to Vic.
VK2OT/T-M. D. Sobels. Now VK5OT/T.
VK2TK-E. Thompson-Boyd. Now VK3PO.
VK2XU-W. L. Nye. Not renewed.
VK2WN/T-J. A. Hampel. Now VKSSJ/T.
VK2ADD-D. C. Reynolds. Now VK2CAD.
VK2RRL-D. F. A. LoDez. Now VK3AWW.
VK2ZDY-R. B. Craham. Not renewed. to Vic. VK2ZFF-F. F. Teixeira. Now VK6ZEY. VK2ZKU-G. ${ }^{\text {C. Teixeira. Now VK6ZEY. }}$ VK2ZMV-A. A. Grifiard. Now VK2AGN. VK2ZMV-A. A Grifiard Now VK2A VK2ZPY-R. A. Girdo. Now VK2ASD/T.

VK3CC-H. M. Baln. Not renewed.
VK3CR-A. A. Andross. Not renewed.
VK3PE-E. Sundstrup. Transferred to N.G
VK3PM-N. G. Williams. Now VK2BPA
VK3SC-W. G. H. Sargent. Not renewed
VK3SF-R. M. Tutton. Now VK6RM.
VK3UL-A. H. F. Nickols. Not renewed.
VK3YH-R. R. Howe. Not renewed.
VK3YH-R. R. Howe. Not renewed.
VK3AHO-W R Hempel. Now VKIBH.
VK3AOY-P. L. Mahan. Transferred to W.A. VK3AQP-J. McL. Bennett (Lt.-Col.). Now VK3ZA
VK3ATI-J. E. Reilly, Not renewed.
VK3AXS-E. Smith Not renewed.
VK3AZT-P. P. Addis. Not renewed
VK3ZAA-G. S. Sutherland. Now VK3AGS.
VK3ZAZ-S. R. Gregory. Transferred to S.A.
VK3ZBO-C. P. O'Brien. Now VK4ZBQ.
VK3ZDT-P. G. Thorne. Not renewed.
VK3ZCG/T-W. G. Francis. Now VK3ASV/T.
VK3ZEH-G. A. Hassell. Not renewed.
VK3ZER-R. W. Wilkinson. Now VK3AKC.
VK3ZFC-A. L. W. Haddrell. Now VK3BBH.
VK3ZFJ-E G. Egan Now VK3BCD.
VK3ZFK-R. F. J. Caleo Now VK3QE.
VK32GI-J. A. Gilmour. Not renewed.
VK3ZHV-R. Grecnwood-Smith. Not renewed
VK3ZHX一H. E. Jones. Not renewed.
VK3ZLG-R. J. Green. Now VKSAYQ.
VK3ZZMX-E D. Buck. Now VK3AAD.
VK3ZOK-D. C. Gray. Now VK3AVR.
VK3ZOK-D. C. Gray. Now VK3AVR.
VK3ZQQ-R. F. Casey. Now VKIZKC.
VK3ZQY-M. G. Hepner. Now VK3BAX.
VK3ZSX-S. F. Lane. Not renewed.
VK3ZTI-P. D. McKenzie. Not renewed.
VK32RG/T-R. G. Thomas. Now VK3BAS/T.
VK3ZUB-A. R. Gray. Not renewed.
VK3ZUE-R. J. Jennings. Now VK3AVJ.
VK32UR-L. Janes. Now VK6ZFU.
VK32VE—P. A. Sweetser. Not renewed.
VK32VH-H. W. Anders. Now VK3AYV VK32WM-W. D Moulton. Now VK5ZWM VK32ZD-D. K. Morgan. Transferred to N.G.
VK4CL-L. C. Witerworth. Deceased.
VK4CO-G. Cole. Not renewed.
VK4EE-E. C. Bick. Transferred to Vic.
VK4NE-N. P. Eyre. Now VKINE.
VK4OX-R. C. Marschke. Transferred to Vic. VK4RP-Ciontarf Beach High School Radio Club Not renewed
VK4SE-S. S. St. George. Not renewed.
VK4SO-J. S ORourke. Not renewed.
VK4YJ-G. W. Jane. Not renewed.
VK4ZAG-J. C. E. Diton. Not renewed
VK4ZBO-A. R. Tarbit. Now VK4AL.
VK4ZEP-P. R. Aldred. Now VK4CA.
VK4ZEP-P. C. Aldred. Now VK4CA.
VK4ZIR-I. R. Milne. Transferred to Tas.
VK4ZJE-J. K. Edwirds. Now VK4IE.
VK4ZMA-C. J. Collyer. Now VK2ZCL.
VK4ZOL-M. G. Foster. Now VKizOL.
VKSEQ-A. B. Hollebon. Now VK6EQ.
VK5MM- C. Purcell. Not renewed.
VK5MM-L. D. McKenzie. Deceased.
VKs'rM-R. D. Martin. Transferred to N.G
VK5ZAW-A. C. Wohlfarth. Not renewed.
VK5ZCK-R. L. Reseck. Now VK4ZRL.
VK5ZCQ-J. A. MeLachlan. Now VKSNB.

VK5ZDZ/T-I. F. Ingham. Not renewed.
$\because K 5 Z E D-J . B$. Dennis. Now VK5TZ.
VKSZEH-W. E. Giles-Clark. Now VKSTW. VKSZGV-1. B Wllcox. Transterred to W.A. VKSZIE-R. B. Zlelinski-Petersen. Not renewed VK5ZJB-J. R. Beaumont. Transterred to Vic.
VK6AB-E. J. Boudell. Not renewed.
VK6PV-D. B. Shaw. Now VK2BDS
VK6ZD-J. T. Kelly-Hart Now VKBCIA.
VK6ZAS-S. J. Stewart. Now VK8SS.
VK6ZADC/T-P. J. Beacher. Now VK6DD/T.
VK7DA-D. H. Waldon. Not renewed. VK7FG-C. H. Ranft. Not renewed. VK7ZAT-J. R. Gumley, Not renewed. VK7ZBW-B. R. Waldron. Now VK7CX. VK7ZRV-R. J. Verrall. Now VK7RZ. VK7ZWNTR-W. J. Nickols. Now VK7EM/T.
VK8MR-M. DA. Richardson. Now VK4ZD. VK8PT-C. C. Talbert Now VK2BCS.
VK8ZCA-M. W. Mclennan. Not renewed.
VKYGZ-G. Zepczyk |Fr.I. Not renewed. VK9HG-H. J. Hicks. Transferred to N.S.W. VKgRD-R. A. Doty. Not renewed.

LOW DRIFT CRYSTALS

\square
1.6 Mc. to 10 Mc .,
0.005% Tolerance, $\$ 5$
4
10 Mc. to 18 Mc., 0005% Tolerance, $\$ 6$

Regrinds \$3

THESE PRICES ARE SUBJECT
to sales tax

SPECIAL CRYSTALS: PRICES ON APPLICATION

MAXWELL HOWDEN

15 CLAREMONT CRES., CANTERBURY,

VIC., 3126
Phone 83-5090

Sub-Editor: ERIC JAMIESON, VKSLP
Forreston, South Australla, 5233.

By the time you read this the grenter part of the summer DX season will have been with us, there is little point in my telling you at
great length how things have been as you great length how things have been as you
already know by reason of interstate contacts on 6 metres. At this stage of writing. of course, there have been the usual occasional openings to varlous States, and sound from the New Zesland t.v. station on 50.750 Mc. pops in occasionally in VK5. Stories are agaln coming in of working a thousand miles or more with 1 watt to a whip aerial. etc. and this. of course, is a great thrill at the time. However. let not the younger or less experienced think this is all that is needed. Be assured. that this sort of working is only possible effectively during a strong sporadic opening. The stations which co on working is folding are those running plenty of power to good efficient aerial systems, the others must content themselves listening to the local stations using this system working the DX in and out of the noisc

So, if you have been a bit disappointed with what you have worked this ycar. set yourself up with the best station your skill and finance
will allow. 40 or 50 watts of r.f. for morel will allow. 40 or 50 Watts of r.f.
with as mary more
watts of audio suitably clipded With as many watts of Audio suitably clipded and fitteredi 18 you are going to use a.m... an FET converter. at least a 4-element beam as high as possible. and you will be a force 10 be reckoned with on the band. The chap who
uses his v.f.o. like a garden hose. swishing uses his v.f.o. like a garden hose,
from one part of the band to another invariably misses out on contacts, too. If you have a good signal you can gencrally establish yourself in a position on the band which may only need you to move a few kilohertz either way to keep you in the clear at all times (with luck!!.
Nothing in the way of any news or notes have come to hand from Interstate this month so if the rest of you don't want to read mainly VKS news. you had best get out the pens and last month 1 ame iniormation. As advocated ast month. In keen on contests and portable formation can be given through these columns if supplied early cinough. You are reminded however of the VK2 V.h.f. and T.v. Group who however of the guphort the John Moyle Notional Field Day on 7 th ind 8 th February by holding Field Day on 7 th mind 8 th February by holding
their V.h.f./U.h.f. Ficld Day at the same time their V.h.f./U.h.f. Ficld Day at the same time details of their Fleld Day were given in the last issue of "A.R." Referring to the John port than usual from this State, and hop? port than usual from this State, and hop? this will be equally matched in other areas. The Western Zone of VK3 generally provides the muin arca of contact for VK5 though it is quite possible to work into Melbourne on these occaslons. Let us inl
effort during this AX year!

I did recelve one note from Interstate Just in time actually. from Rod VKSZSD. who is presently holcd up in Rvie. N.s. Wis an artive experimenter on 52 , 144, 432. 576 and 1296 MHz . experimenter on 52 , 444 gear with him. VKB will and has taken all his gear with him. VK8 will also be noting inslly came irom there. As he becomes established we look forward to hearing more of his achlevements in the field of u.h.f.

Probably about next March or April I would like to launch a message for transmission using 144 MHz ., to be passed through as many States as possible and returned in the shortest posby relay his been succossfully done in New Zealand and other overseas countries, and I can see no reason why one could not be sent from VK5 through all the Eastern States and back again in a couple of days or so. Be. back arain in a couple of days or so. BeVK5 and VKG without Amateur population, if 144 MHz . is used it will probably exclude the Westerners unfortunately More detalls will be given next issue with proposed date of commencement.

Dour VK8KK. from Darwin. arrived in Ade lalde ahead of schedule and has been meetin: up with varinus friends since. Doug asks ior some corrections to previously published in Pakistanl is definitely not on. KRGTAB has been able to get on the rir again followin damage by a cyclone, ind that VK9DJ is on
he alr operating with low power. He reports the Japancse beacon JAllGY is stlll being heard. frequency varying between 51995 an 51998 KHz. using m.c.w. but with poor keying characteristics ing in ". appears most of the stations forming the "northern gang" putting signals into the Darwin area operale around 2010 KHz . so that wide areas of the band need not be tuned-only a few KHz. either Side of this frequency. Peter VK8ZKA, Barry ex VK21, together with Doug. form the more active group of 6 metre enthusiasts in Darwin News has now been received that official per mission is being granted to Peter VKazKa o relay the Sunday morning broadcasts of VK5WI in Darwin
At the time of writing no information is pvallable whether the VKB beacon at Albany is operational. However. it Is Ilsted in the unlikely the VK6s would allow such a valuable beacon to of the air during the peok eacon to be off the air during the peak of ppeors io be operating on a frequency 145.060 MHz . using c.w. and the call sign ZL3VHF. No other details as yet.
VK2 50.750 Wellington t.v. sound
VK3 14.750 Channel SA, Wollongong
Under construction
VK4 51.750 Channel O. Brisbane
VK5 53.000 VK5VF. Mount Lofty
144.800 VKSVF: Mount Lofty

VK6 144.500 VK6VE. Mount Barker (Albany)
145.000 VK6VF. Tuart Hill.

VK7VF Devonport
VKVVF, Devonport.
Two metre beacons in VK2 and VK4 would seem to be ali that is needed 10 complete a rery invourable pleture for communication on his band. and it seems a plty that these two States, both of whom are very favourably situated fpartlcularly as far as VKS is con cerned for DX attempts during periods of very high sporadic E activity on 52 MHz . predicting band openings. Such beacons would predicting band openings. Such beacons would Tasman in New Zealand to both of these States. It's over to you chaps!

For those of you who are really keen to work across to New Zealand, and particularly those looking for that elusive ZL4 for WASNZ on 6 metres, don't overlook the keenness 0 David ZLAPG, currently v.h.f. editor in "Break n". David operates on 51.553 MHz . Tunning 120 watts of a.m. phone or c.w. to a b-element wide-spaced yagi at 45 feet. Due to Shannel 2 N.Z. t.V.. he can only operate on Sundays between the hours of 0800 and 1000 E.S.T. or after t.v. close down, usually 2105 L.S.T. He will accept skeds any time in thes hours. Except for Stan ZLAMB. who runs 10 watts on 52 MHz. David is the only ZLA on metres. On the 2 metre scene stations in the 100 watt class in Dunedin are Peter ZL4LV
Ken ZLATAR and Hugh ZLATAH, the latter unning a 4X250B on 144.140! Peter and David have high power extenslons to run 1 kw . on 144 and 432, and both usually operate on 144.100 exactly; they re the only stations currently very active

Both David and Hugh ZL4TAH are very keen o work ZL.4-VKS and are prepared to erect permanent high-gain antennas on 144 . giving some thought to such antennas as La ort Rhombics, reputed to give 30 db of אain Huch of course is keen to make use of his 32-element 25 -ft lons yagi with a min 21 dh. So keep your ears on ZL4 during the summer months.

THANKS

To round off the notes, this month. I feel our hanks should go to Cyrll VK3ZCK, for his !frorts as V.h.i. Sub-Editor in the past. I know rom past experlence in writing notes for the VKS journal Just what a problem exists at Imes to ret enough notes, and Cyril has cerainly had to dig deep for some time now to keep his column together. I hope the v.h.f be allotted space in "A.R." each month by corwarding information of a national interest Thank you, Cyril. on behalf of the v.h.f aang, your past problems with lack of news is now right in my lap

I hope everyone had a Merry Christmas and of DX for 1970 . Thought for the month: "I you want people to notice your faults, star glving advice.
73. Eric VK5LP. The Volce in the Hills

MBET THE OTHER MAN
An Interstate Amateur whs $t 0$ have been featured in this segment this month, but probably duc to copy closing several days early for the January issue, we have missed out. However. I have nt very short nolice asked
another prominent VK5 Amateur to fill the another prominent VK5 Amateur to fill the
gap and he has kindly consented to do so.
Bob Murphy, VK5ZDX. lives at Oaklands Park, 9 miles south-west of the city of Ade laide, at an elevation of some 60 fcet. First incensed in 1961. Bob has been very promineit in VKS Amatcur affiirs. He is A member of
the W.I.A., was Secretary of the V.h.f. Groud for three years. n member of the Amateur Advisory Council for one year. He has probably set a VK5 record in that he has provided a relay on 52.150 MHz . of the VK5WI Sunday morning broadcast for betwcen 5 and 6 years, and conducts a lengthy call back afterwards. Bob is custodian of the 6 and 2 metre beacons. and was prominent in the design and construction of them. He is at present Technical joined with Rob VK5RG in having two articles published in "A.R."

Bob Murphy. VK5ZDZ

Bob is currently operational on 52 MHz using a Clapp multiplicr v.f.o. and with an yagi ht 55 fect. H1s 6 mx converter uses a he agaln runs 100 watts oripinating from a mixer-type v.i.o. and fed through to a QQE06/40 in the final. A 10 -element yngi at 65 feet ensures a rood signal. The converter uses an EB8CC cascode. The tunible i.f. is a much modified AR7 with $2 \mathbf{k H z}$. mech. Alter, product detector and other mod cons. The modulator runs 100 watts from Class B zero blas 807 s In addition to the above station equipment Bob has in specially constructed vio. controlled 6 and 2 metre rig for poriable operation trolled 6 and 2 metre rig for poriable operation variety of good antennas to take out with him Also mobile equipment is a feature of his uperations, and he runs 35 watts to an 832 A on 6 mx and 50 watts to a QQE03/20 on 2 mx . His moblle recelvers use a common oscillator chain at 46 MHz . to 6AM6 on mx and 6CW 130 miles whilst mobile! Modified double converted 6-9 MHz Command receiver for the tunable i. ℓ.
Bob has worked all VK call areas except VKO, plus ZL1, 2 and 3. and JA1. 2, 3 and 5 on 52 MHz ., while on 144 MHz . contacts acros the border to VK3 and VK4. His presen equipment is all a.m.. but he is preparing for 6 and 2 mx s.s.b. sear using the filter methor His thoughts for the future include operations on 432 , plans to increase his 2 mx antenna system to 28 elements arther portiale el. yiasis conjunction with Wnlly VKSZWW. he has won both the V.h.f. Field Dilss so far held), and both the V.h.f. Field Dinss so far held, nind in all States.

CONTEST CALENDAR

Until 1lth Jan.: Ross A. Hull V.h.f. Metnorial 7th/8th Feb.: John M. Moyle National Field Day. 36th A.R.R.L. International DX $21 \mathrm{st} / 22 \mathrm{nd}$ Feb.: 36 th A.R.R.L. International 7th/8th March: 36th A.R.R.L. Internitional DX 21st/22nd March: 36th ARR Internationa DX Competition isecond c.w. week-end)

TRANSISTORS
 CO-AX. FITTINGS, DIODES, RESISTORS, CAPACITORS

These and many other new components are available from the Victorian Division of the Wireless Institute of Australia. Members of any Division wishing to take advantage of this service may obtain a Components List by sending an S.A.S.E. (preferably $4^{\prime \prime} \times 9^{\prime \prime}$) to:

DISPOSALS COMMITTEE
P.O. BOX 65 .

MT. WAVERLEY,
VIC., 3149

SHOUT YOURSELF A XMAS BOX
 that will last the whole year!
 A subscription to "Break-In" official journal of N.Z.A.R.T.
 will cost you only \$2.35.
 Send it to: Federal Subscription Manager. Wireless Institute of Australia, P.O. Box 67. East Melbourne, Vic., 3002.

COMMONSENSE ELECTRONICS
 Construction, useful theory, news, views and comments.
 Send for Sample Copy
 THE AUSTRALIAN E.E.B.

P.O. Box 177, Sandy Bay, Tasmania, 7005,
ATTENTION AMATEURS AND S.W.L'snow available
CRANK-UP TOWERS
GALVANISED. GUYED
45 ft . light 2 -section, $\$ 99$60 ft . medium 3 -section, $\$ 175$60 ft . heavy 3-section, $\$ 199$F.O.R. Perth, W.A.
Coming soonl 50 ft . Crank-up IIlt-over.Free Samples
AX OSL CARDS RUBBER STAMPS
Call, Zone, Name and Address $\$ 3.50$
Call, Zone $\$ 2.25$
Name and Address $\$ 3.00$
K.K., 18 Cowrle Cres., Mt. Pleasant, W.A., 6153
REPAIRS TO RECEIVERS, TRANSMITEERS
Constructing and testing: xtal conv.,
any fraquency; Q5-ers, R9-ers, andtransistorised equipment.
ECCLESTON ELECTRONICS
146a Cotham Rd., Kew, Vic. Ph. 80-3777
Swan Electronics Service Co.
Accredited Distributor for
Swan, Hallicrafters, etc., Receivers and Transmitters
Specialised Service on allSwan Transcelvers

Correspondence

Any opinion expressed under this heading is the individual opinion of the writer and does not necessarily colncide with that of the Publishers.

C.W. AND A.O.C.P.

Editor "A.R.," Dear Sir,
In Dec. "A.R." VK3ZJC had some comments in opposition to c.w. as a requirement for the A.O.C.P.

I would point out that the I.T.U. makes c.w. obligatory to obtaining a licence. As v.h.f. is not normally a long distance means of communication, the administrating body in this country has waived this requirement for these frequencies. Our government, a signatory to the I.TU., feels also that c.w. is a national asset to the community and that this should be encouraged.

At the present reduced speed level, there is nobody-unless he is moribund in which case he could not pass the technical section'who cannot fulfil the requirement. With only about 40 sounds to learn, it is more simp!e than any foreign language to acquire.

Personally. I learnt it the incorrect way it turns outl completely on my own because at that time there was no one in my bush locality who could tell me a thing about it.

Rather than ask for its exclusion. I would press for our prewar requirement, when an operator had a compulsory twelve month period of c.w. only operation in order to become proficient in communication techniques. At ihat time a written request had to be made to the P.M.G. Department asking for permission to use phone and stating reason why phone should be used.
-Ken Gillespie. VK3GK.

THE REMEMBRANCE DAY CONTEST

Editor "A.R.," Dear Sir,
In my book, the only people interested in Contests are those who participate, yet we note that in the VK R.D. Contest each year, "per cent. participation" enters into the tray in order to determine a winner. How rein order t
diculous!!!

To determine the winner of a horse race. non-starters are just that-non-starters-and the same applies to motor car races-as a matter of fact to all "contests" except the R.D. Amateur Radio Contest of ours!!!

It's about time the winning R.D. Contest State was determined solely from the efforls of active participants only. and consideration for those not interested ibe they at home. interstate or even overseasi forgotten!! iCut interstate or even ove

The total points of active participants for a State, divided by the number of participants aggregating that total, should determine tr. 3 average score of each State-the winning State being that with the highest average from the aggregate of those who took part-forget abous those who didn't take part!!! iLet's be a b't more reallstic than we appear to be at present. -Eric Trebllcock, WIA-L3043

FEDERAL AWARDS

D.X.C.C.

As no amendments to members' totals were recelved for this issue, the listing remains as shown in December 1969 "A.R."

Please note that the address for Federal Awards is now:

Federal Awards Manager, W.i.A.,
P.O. Box 6\%.

East Melbourne, Vic., 300z.
No forther mall should be forwarded to Box 2611 W. G.P.O. Melbourne.

CHANGE OF ADDRESS

W.I.A. members are requested to promptly notify any change of address to their Divisional Secretary —not direct to "Amateur Radio."

SILENT KEY

It is with deep regret that we record the passing of -

VK3AOB-E. F. O'Brien.

MOBILE MARINE OPERATION

we !rave bcin advised by Alan Reid. : KJAHR that he will be operating mobile marine uver line Xmas/New Year period. He w.ll leave Miclbourne on 22nd December and riciurn on $17 t i 1$ January, on the Italian vessel "Achille Lauro". Pcrts of call will include Sydney. Auckland. Papeete ITahitil, Suva and Wellington.
It will be realised that Alan will cover much on the route covercd by Captain Cook, 200 sears ago. and the trip he is taking gives idded Interest to the mobile marine operalion. At the time of preparing these notes, it is not known what call sign will be used. but we hop: it will be AX3AIIR. Operation is cxpected to be limited to 20 metres s.s.b. With uossibly a little c.w.

HAMADS

Minimum $\mathbf{S i}^{1}$ for forty words.
Extra words, 3 cents each.
hamads will not be published unless ACCOMPANIED BY REMITTANCE.
Advertisements under thls heading will be accepted only fram Amateurs and S.w.I's. The Publishera reserve the right to raject any advartising which. reserve the right to raject any advartising which.
in their opinion, is of a commerclal natura. Cooy in their opinion, is of a commercial natura. Copy must be recelved at P.O. 36 East Neiboumb, accompany the advertisement.

FOR SALE: Collins $75 S 38$ Receiver, excellent condition, $\$ 600$ o.n.o. LM10 Frequency Meter with a.c. Dower supply. SA5. C.R.O. Tube, 2 inch, type
902 . SA. Heathkit Signal Generator, SG8. \$20. Russell Bradshaw. VK3Sx. Phone 82-2152 (Melb.).

FOR SALE: FR100B Receiver, FL200B Transmitter, FL1000 Linear. TH3J Beam with rotator and Indi: FL1000 Linear. TH3 Beam with rotator and Indi-
cator. Together or separate. VK3AWD, Phone 99. cator. Togath
1286 (Melb.).

FOR SALE: FR100B Receiver In mint condition. \$225. L. Janes. No. 3 TELU. R.A.A.F. Base. Pearce, W.A., 6085.

FOR SALE: Power Supply, 2KV, 300 mA . PI-section L-C filter. S35. Power Supply. iKV. $300 \mathrm{~mA} ., 250 \mathrm{~V}$ $150 \mathrm{~mA} .{ }^{2} 250 \mathrm{~V}$. low current, -250 V . bias, 12.6 V A.C. and $6.3 V$. A.C.. S35. Modulator, $90 W$ UM3 transformer, internal power supply, S35. VK3ZZY. Phone 50-4367 (Melb.).

FOR SALE: Pye 6v. Converter (solid state). run that 12v. mobile in your 6v. car. S20. Pye 6v. converter transformar (ex 3A). 30w. d.c. Out. S5. Kevin Trevarthen. VK32DG. 28 Malcolm St., Black. burn, VIc. Phone $89-3523$.

WAANIED: Ham Band Recaiver, preferably Drake $2 A$ or 28 or similar. Also Leader LSG10 or LSGif Signal Generator. Phone 560-0645 (Melbourne).

WANTED: S8101, KWM2, NCX5, etc.. with power supply. Details and price to MacAskili, 3 Edwards Ave.. Beecroft, N.S.W. Phone 871-1622.

WANTED: 522 Transceiver Jn mint condition. Also S.s.b. Transceiver, 4-band, portable type, late model with schematic. For Sale: Heathklt Mohlmodel with schematic. For Sale: Heathkit Moht VKAHK, H. Kinzbrunner. P.O. Box 59, Atherton, VKAHK, H.
North OId.

WANTED TO BUY: Modulation Transformers, multi tapped Woden or similar. Must be 75 watts r.m.s. rating or greater, with sufficiently wide response 0 accept 10 db feedback or more. Viva la A.M! Tony Sanderson. VK3AML. Phone A.H. 53.1229 (Melb.). Thank you.

This is the EiG performance set that obsoletes tube receivers ... a professionallooking set that appeals to amateurs and short wave listeners alike. The DX 150 gives long-range, world-wide realistic reception on 4 bands, including Broadcast. Fully transistorised-all solid state-no warmup delays; the DX 150 will run on dry cells if current fails or is not available; will operate from a car's cigarette lighter or any 12 V DC service. A 240 V AC power supply is also built in. Over 30 semi-conductors-product detector for SSB CW, plus fast and slow AVC-variable pitch BFO-illuminated electrical bandspread, fully calibrated for amateur bands-cascade RF stage-ANL for RF and AFzener stabilised-OTL audio-illuminated " s " meter-built-in monitor speaker plus front panel jack for external (optional) matching speaker.

Realistic Performance Realistic Price
 $\$ 229.50$

Attractive silver extruded front panel, solid metal knobs, grey metal cabinet, size $141^{\prime \prime} \times 91^{\prime \prime} \times 6 \frac{1^{\prime}}{}$.
CONSULT YOUR LOCAL RADIO DEALER, OR
MAIL THIS COUPON
Piease forward free iltustrated literature and specifications on Realistic.
Name

(A unit of Jacoby Mitchell Holdings Ltd.) 376 EASTERN YALLEY WAY. ROSEVILLE. 2069 Cables and Telegraphic Address: 'WESTELEC.

Hy-Q

 ELECTRONICS
Australia's

EXTEND THEIR PRODUCT RANGE TO INCLUDE

© Fundamental and overtone crystals from 1 MHz . to 125 MHz .
(3) 10.7 MHz . crystal filters for $25 \& 30 \mathrm{KHz}$. systems.

SEND FOR FULL DETAILS IF YOU HAVE NOT ALREADY RECEIVED THEM
$H_{y} \cdot Q$
Electronics
Hy-Q ELECTRONICS PTY. LTD.

10-12 ROSELLA STREET,
P.O. BOX 256,

FRANKSTON, VICTORIA 3199.

Telephone 783-9611. Area Code 03. Cables: Hyque Melbourne

Telex: 31630

BRIGHT STAR CRYSTALS

FOR ACCURACY, STABILITY, ACTIVITY AND OUTPUT
THREE MONTHS SPECIAL OFFER-
STANDARD AMATEUR CRYSTALS
Style hciu holder, frequency range 9 to 15 Mc .
0.01% \$4.25
$0.005 \% \$ 5.50$
Prices include Sales Tax and Postage

COMMERCIAL CRYSTALS

in hC6U holder, 0.005\% tolerance, frequency range 9 to 15 Mc . $\mathbf{\$ 6 . 0 0}$ plus Sales Tax and Postage

Write for list of other tolerances and frequencies available.
New Zealand Representatives: Messrs. Carrell \& Carrell, Box 2102, Auckland Contractors to Federal and State Government Departments

BRIGHT STAR RADIO

LOT 6, EILEEN ROAD, CLAYTON, VIC., 3168
Phone 546-5076
With the co-operation of our overseas associates our crystal manufacturing methods are the latest ALUMINIUM ALLOY TUBING

IDEAL FOR BEAM AERIALS AND T.V.
LIGHT $\quad \star$ STRONG \star NON-CORROSIVE
Stocks now available for Immediate Delivery

ALL DIAMETERS - $1 / 4^{\prime \prime}$ TO $3^{\prime \prime}$

Price List on Request
STOCKISTS OF SHEETS-
ALL SIZES AND GAUGES

GUNNERSEN ALLEN METALS

 pTy. LTD.SALMON STREET, PORT MELB'NE, VIC. Phone 64-3351 (10 lines) Thone $64-33 \mathrm{Matal}$:" Mes.

HANSON ROAD, WINGFIELD, S.A.
Phone 45-6021 (4.. lines) T'grams: "Metals" Adel.

USEFUL ACCESSORIES

for the Radio Amateur

* SWR Meter K-109. Dual impedance, switchable 52/75 ohms. Useable up to VHF. Has Amphenol type co-ax sockets (SO-239). \$19.50.
* SWR Meter, K-108. Smaller size, impedance 52 ohms. SO-239 sockets. Includes rod antenna and can be used as FS meter. \$17.00.
\star Field Strength Meter, K-101. Has 200 UA. $2^{\text {n }}$ meter, sensitivity control, telescopic pick-up antenna, socket for earphone, magnetic "stik-on" base. \$12.00.
* Field Strength Meter, K-102. Tunable, four bands 1.6 to $150 \mathrm{Mc} / \mathrm{s} ., 100 \mathrm{uA}$. meter, five-section telescopic antenna. Very sensitive. \$15.00.
\star Multimeter, KEW-66. 20.000 ohm/volt, AC/DC. Has overload protection, anti-parallax mirror. Switched ranges. 1 V . to $1,000 \mathrm{~V}$.. 50 UA . to 500 mA ., 5 megohm, db. scale. Accuracy 3%. Size: $71 / 4^{\prime \prime} \times 4^{\prime \prime} \times 13 / 4^{\prime \prime}$. A very dependable high quality Multimeter. \$21.30.
* FF-30DX Yaesu three-section Low-Pass Filter, for TVI reduction. Cui-off freq. $35 \mathrm{Mc} / \mathrm{s}$. - 70 db . at $36 \mathrm{Mc} / \mathrm{s}$. Maximum attenuation $47 \mathrm{Mc} / \mathrm{s}$. and up. Suitable $50-80$ ohms. Power 1 KW. P.E.P. at 75 ohms. Has SO-239 sockets. $\$ 18.50$.
\star Polyphase (U.S.A.) Co-ax Switches. Complete with numbered switch indicator plate: SO-239 sockets at rear, and mounting template. PS-752, 2-position, \$15.00: PS-750, 5-position, $\$ 19.80$.
* "SOLARI" 24-Hour Digital Read-out Clocks. 230 volt, 50 c.p.s.. light weight desk type. $7^{\prime \prime} \times 3^{3 / 4 \prime}$. Weight $11 / 2 \mathrm{lb}$. (shpg. wt., 3 lb.). In beige or light grey. $\$ 32.00$.
\star Also available, a large range of Amphenol type connectors, 50 -ohm co-ax cable RG8U and RG58AU, H.D. antenna rotators, speech compressors. electronic keyers.

Prices include Sales Tax. Freight and Postage extra.
BAIL ELECTRONIC SERVICES
60 SHANNON ST., BOX HILL NORTH, VIC., 3129 Telephone 89-2213

(4)ECONOMICAL SSB! FT-200 FIVE-BAND TRANSCEIVER

A superb quality, low cost, versatile transceiver. Covers $80-10 \mathrm{mx}$, tuning range 500 Kc . each band. On 10 mx , crystal supplied for $28.5-29 \mathrm{Mc}$. (Crystals available optional extra for full 10 mx coverage.) SSB, CW, AM; with a speech peak input of 300 w . Transistorised VFO, voltage regulator, and calibrator. 16 valves, 12 diodes, 6 transistors. PA two 6JS6A pentodes. ALC, AGC, ANL, PTT and VOX. Calibrated metering for PA cathode current, relative power output, and receiver S units. Offset tuning $\pm 5 \mathrm{Kc}$. Uses a 9 Mc . crystal filter with bandwidth of 2.3 Kc . at - 6 db . Selectable sidebands, carrier suppression better than -40 db . Sideband suppression better than -50 db .

Fixed channel facility optional extra, useful for net operation, skeds, etc.
Operates from conservatively rated separate 230 volt 50 c.p.s. AC power supply, FP-200, which includes built-in speaker. A 12 volt DC power supply is also available. Transceiver incorporates power take-off and low level R.F. drive outlets suitable for transverters.
Cabinet finished in communication grey lacquer. Panel, etched, satin finish aluminium.
Price, FT-200, $\$ 345$ inc. S.T.
Imported Yaesu matching Power Supply FP-200. with speaker, for use with above FT-200, $\$ 85$ inc. S.T.

Other well known Yaesu Models: FTDX-100 Transistorised Transceiver, FTDX-400 Transceiver, FLDX-2000 Linear Amplifier, FLDX-400 Transmitter, FRDX-400 Receiver, FR-50 Receiver, FTV-650 6 Metre Transverter, FF-30DX Low Pass Filter, 600 c.p.s. CW Mech. Filter for FRDX-400, 600 c.p.s. CW Grystal Filter for FTDX-400. Also: SWR Meters, Co-ax. Switches, F.S. Meters, Co-ax. Conn, Hy-Gain (U.S.A.) Beams.

All sets checked before despatch. After-sales service, spares availability, 90-day warranty. All Yaesu sets sold by us are complete with plugs, power cables and English language instruction manual.
Sole Australian Agent:

NEW STOCK JUST ARRIVED

"Rapar" AC BRIDGE
 Model BR8

Measures:
Resistance, Capacitance,
Inductance and
Transformer Turns Ratios
Price $\$ 46.00+15 \%$ s.t.

SPECIFICATIONS:

Resistance: 0.1 ohm to 11.1 megohm in 5 ranges Accuracy: 0.1 ohm to $10 \mathrm{ohm} \pm 2^{\prime} ; \pm 0.1 \mathrm{ohm}$ 10 ohm to 5 megohm $\pm 1 \%$ 5 megohm to 11.1 megohm $\pm 5 \%$
Inductance: 1 uH . to 111 H . in five ranges Accuracy: 1 uH . to $.100 \mathrm{uH} . \pm 5 \% \pm 1 \mathrm{uH}$. 1 mH . to $111 \mathrm{H} . \pm 2^{\prime}$ /

Capacitance: 10 pF . to 1110 uF .
Accuracy: 10 pF . to 100 pF . $\pm 2 \% \pm 10 \mathrm{pF}$.
111 pF . to $111 \mathrm{uF} . \pm 1.5 \%$
111 uF . to $1110 \mathrm{uF} . \pm 5 \%$
Turns Ratio: To 11100:1 $\pm 1.5 \%$
Bridge Frequency: 1 Kc .
Power Source: 1×216 9-volt battery Size: $7 \frac{1}{1} 2^{\prime \prime}$ wide $\times 5^{\prime \prime}$ high $\times 3^{\prime \prime}$ deep.

RADIO
 PARTS
 PTY.
 LTD.

MELBOURNE'S WHOLESALE HOUSE
562 Spencer St., Melbourne, Vic., 3000. Phone 329-7888, Orders $\mathbf{3 0 - 2 2 2 4}$ City Depot: 157 Elizabeth Street. Melbourne. Vic., 3000. Phone 67-2699 Southern Depot: 1103 Dandenong Rd., East Malvern. Vic., 3145. Ph. 211-6921

amateur

COOK
BI-CENTENARY AWARD
"I, who had ambition notonly to go farther than 4. any man had ever been before, but as far as it was possible for man to go . . "

> Captain Jantes Cook, In a letter to the Admiralty. 1769

Awad No
................. No
Mode
Dato \qquad BH-Centenary of the firsi visit to NZ, by thim world tamour navigator and scientist

REALISTIC DX-150 SOLID STATE COMMUNICATIONS RECEIVER

Fesiures: 240v. a.c. or 12 v . d.c. operation. 30 transistors and diodes. 535 Kc . to 30 Mc . in four bands. Bandgpread tuning. ' S " meter, a.m./c.w./ s.s.b. Product detector for s.s.b. Compact siza. $141 / 8 \times 31 / 4 \times 61 / 2$ in. Polished metal panel, small internal speaker
F.O.R. Price $\mathbf{S 2 2 9 . 5 0}$

Matching external speaker $£ 13.30$ extra.

No. 62 TRANSCEIVERS

Wireless Set No 62 Mk. 2 (Pye). Fraquency range 1.6 to 10 Mc in two bands. in-built 12 v . genemotor power supply. Clean condition. Fully sir tested on transmit and receive.
F.O.R. Price $\$ 49.50$ inc. circuit diagram

WESTON LM-300 MOBILE TAXI RADIO

Low Band a.m. 60 Kc bandwidth. 70.80 Mc Crystal channel locked. single channel. In.built transls:or power supply. 12v. operation, suit country taxi service or conversion to Ham bands, inc. microphone and cradle
F.O.R. Price S45. Packing 50c

as new and alr tested
 LAFAYETTE 5W. C.B. TWO-WAY RADIO*

Madel HE-20, fully transistorised, solid state, 13 translstors. 10 diodes, 27.240 Mic. Provision for 23 channels, crystal channal locked, push-pull audio modulator. 455 Kc . mechanical fitter, spotting switch for accurate reception. t.v.i. trap, 230v. a.c. and $\mathbf{2 v}$. (positive or negative ground). in-bullt p.a. amplifier. Ideal for fixed base station or emargency mobile. Including microphone and mobile cradle. Fibreglass helical aerial 4 ft . high, cowl mount. -Subject to P.M.G. approved Ilcence.
F.O.R. Price $\$ 169.50$ tax paid for mobile use $\$ \$ 16.50$ extra

BENDIX BC-221 FREQ. METER

125 Kc . to 20 Mc .. including a.c. power supply. crystals, callbration book. etc
F.O.R. Price \$49.50, packing 75c

TRIO COMM. RECEIVER MODEL 9R-59DE

[^11]
MULTIMETERS

MODEL C-1000 POCKET MULTIMETER 1000 ohms per volt. AC volts: $0.10,50,250,1000$. DC volts: $0.10,50,250$. 1000. DC current: 0.100 mA. Resistance: 0.150 K ohms (3 K centre). Two colour scale. Range selector switch. Dimensions: $31 / 2 \times 21 / 4 \times 1$ in.

Price $\mathbf{S 6 . 5 0}$ post free

MODEL 200H MULTIMETER

 $\begin{array}{lllllll}20.000 & \text { ohms } & \text { per volt. DC volts: } 0.5 & 25, & 50 . & 250 . \\ 500 . & 2500(20.000 & \text { o.p.c. }) . & A C \\ \text { volts: } & 0.15 . & 50, & 100 .\end{array}$ $\mathrm{mA} . .250 \mathrm{~mA}$. Resistance: $0.60 \mathrm{~K} / 6 \mathrm{M}$ ohm iscale centre 300 . 30 K ohm). Capacitance: 10 pF . to 0.001 centre 300 . ${ }^{30 \mathrm{~K}}$ ohm). Capacitance: 10 pF . to 0.001
uF .10 .001 uF . to 0.1 uF . Db. scale: -20 db . to plus 22 db . Size $41 / 2 \times 31 / 4 \times 11 / 8 \mathrm{ln}$.

Price S11.25 post 30c

MODEL CT330 MULTIMETER

20.000 ohms per volt. DC volts: 0.6. 6. 30. 120. $600.12 \mathrm{~K}, 3 \mathrm{~K} .6 \mathrm{~K} . \mathrm{AC}$ volts: 0.6 . 30.120 .600 .1 .2 K (10 K opv.). DC current: $00.06 \mathrm{~mA} . .60 \mathrm{~mA} . .600$ mA . Resistance: 0.6 K .600 K . 6 M . 600Megohm (30 , 3 K .30 K .300 K chm centre scalej. Capacitance: 50 PF. to 0.001 UF . 0.001 uF . to 02 UF . Decibels:

Price $\$ 16.75$ post 30 c

MODEL OL-64D MULTIMETER

20,000 ohms per volt. DC volts: 0.025. 1, 10, 50 . 250. 500. 1000 (at 20 K o.p.v.), 5000 (at 10 K o.p.v.) $A C$ volts: 0.10 .50 .250 , 1000 (at 8 K O.P.v.) DC current: $50 \mathrm{uA} ., 1 \mathrm{~mA} ., 50 \mathrm{~mA}$.. $500 \mathrm{~mA} ., 10$ amps Resistance: $0.4 \mathrm{~K}, 400 \mathrm{~K}, 4 \mathrm{M}, 40 \mathrm{Megohm}$. 'Db. scale: -20 to plus 36 db . Capacitance: 250 pF . 100.02 uF. Inductance 0.5000 H . Size $53 / 4 \times 41 / 9 \times 13 / 4 \mathrm{in}$.

Price $\$ 19.50$ post 30 c

NEW MODEL US-100

Overload protection. Shockproof movement. Polar ity switch. DC volts: $00.25,1.25,10.50 .250$ 1000 (20K o.p.v.). AC volts: 0-2.5, 10, 50, 250, 1000 (5 K o.p.v.). DC current: 1 mA ., 25 mA ., 500 mA and 10 amp . AC current: 10 amp . Resistance: 0.50 M ohm (centre scale 50). $\mathrm{A} \times 1.10 .100$. 1 K . 10 K Db scale: -20 to plus 10 . plus 22 , plus 35 . plus 50 db .

Price $\$ 28.75$ post 40c
MIRROR SCALE
MODEL AS100/DP HIGH SENSITIVITY 100.000 ohms per vot DC. Mirror scale. protected movement. DC volts: 3. 12. $60,120,300.600 .1200$ (100K O.D.V.). AC volts: 6, 20, 120, 300. 600, 1200 (10 K o.p.v.). DC current: $12 \mathrm{uA} ., 66 \mathrm{~mA} .60 \mathrm{~mA}$. $300 \mathrm{~mA} ., 12 \mathrm{amps}$. Resistance: $2 \mathrm{~K}, 200 \mathrm{~K}, 20 \mathrm{M}$ 200Megohim. Decibels -20 to plus 63 db . Audio output: 6, 30. $120,300.600 .1200$ volts a.c. Size $71 / 2 \times 51 / 2 \times 23 / 4$ in.

Price S34.50 post 75c
MODEL A10/P GIANT ($61 / 2$ inch) METER. CIRCUIT TESTER
30.000 ohms per volt DC with in-built signal iniector overload protected. DC vots: 0.5. 2.5. 10 . 50. 250, 500, 1000 (at 30K o.p.v.). 5000 (at 10 K o.p.v.). AC volts: 2.5. 10, 50, 250, 500, 1000 (al 10 K op.v.) DC current: $50 \mathrm{uA} . .1 \mathrm{~mA} .: 10 \mathrm{~mA}$., 500 mA. . 1 amp. 10 amp. AC current: 1 amp. 10 amp Resistance: 10 K . 100 K . $1 \mathrm{M}, 100 \mathrm{Megohm}$. Signal Injector: Blocking osclilator circult with a 2SA102 Trans Decibels: -20 to plus 63 db . Size: $61 / \times 71 / 4 \times 33 / 4 \mathrm{In}$.

Price $\$ 55$ tax paid, post 75c

TE-16A TRANSISTORISED TEST OSCILLATOR

Frequency range: 400 Kc . to 30 Mc . in five bands Modelated $300 \mathrm{c} / \mathrm{s}$. sine wave Modulation: 30 p.c approx. Oulput imp.: Low impedance. Dlmen sions: $5^{7} \% \times 5^{\%}$. $\times 3 \% \mathrm{in}$. Weight: 1.5 lb

Price $\$ 24$ tax paid, post 75c
"NIKKA" 1 WATT TRANSCEIVERS
P.M.G. approved Soltd state, 14 iransistors, circuit inc. r.f. stago. 27.240 liAc. (provision for two chan. nels). Range buost circuii. Up io 10 miles in open country or water buzzer iype call system. Squalch control. Complete with leather carrying case.

Price $\$ 175.00$ Pair

NEW A.W.A. T.V. TUNER

Model 49806. Uses GUB and GBO7A
Price S5.50 postage 50c

PACK OF RESISTORS

100 Resistors of 1 is and 1 watt rating
Price $\mathbf{S 1 . 7 5}$ post 20c

BRAND NEW SPEAKERS

2 $1 / 2$ inch	8 ohms	Price	\$1.75	Postage	20c
3 Inch	8 ohms	.	52.00	..	20 c
4 Inch	8 ohms	.	\$2.25	..	20 c
4 inch	15 ohms	,	\$2.25	"	20 C
3DX	8 ohms	,	S3.95	"	20c
3DX	15 ohms	.	\$3.95	.	20c
GA7	8 ohms	'	S5.50	.	40 c
GA7	15 ohms	.	S5.50	'	40 C
CA7	8 ohms	"	57.20	.	40c
EA7	15 ohms	.	S7.20	"	40 c
(2A)	8 ohms	.	S18.75	..	50 c
(2A)	15 ohms	..	S18.75	.	50c
Nett Price					

NEW STEREO HEADPHONES

Large rubber earpiece. Frequency range 100 to 150 J cycles 8 ohms impedance

Price $\$ 6.75$ post 30c

DELCO TRANSISTORS

Type 2N441
Type 2N278
Type 2 N 301

Price $\mathbf{S 2 . 4 0}$ postage ${ }^{10 \mathrm{c}}$ Price S6 00 postage 10c Price $\$ 2.50$ postage 10c

LT91 RECTIFIER

20 Volt 2 Amp.
Price S1.50 post 10c

haM

RADIO SUPPLIERS 323 elizabeth street, melbourne, vic., 3000

Phones: 67-7329, 67-4286 All Mail to be addressed to above address
We sell and recommend Leader Test Equipment. Pioneer Stereo Equipment and Speakers. Hitachi Radio Valves and Transistor Radius. Kew Brand Meters. A. \& R. Transformers and Transistor Power Supplies. Ducon Condensers. Welwyn Pesistors, etc.

Publishers:
VICTORIAN DIVISION W.I.A.
Reg. Office: 478 Victorle Parade. Eaat Melbourne. Vic., 3002.

Editor:

K. E. PINCOTT

VK3AFJ
Assistant Editor:
E. C. Manlfold VK3EM

Publications Committee:
A. W. Chandler VK3LC
Ken GIIlesple VK3GK
Peter Ramaay VK3ZWN
W. E. J. Roper (Secretary) VK3ARZ

CIrculation-
Lack Kelly VK3AFD
Draughtaman:-
Clem Allan VK3ZIV
John Blanch VK3ZOL
John Whiteheed VK3YAC

Enquiries:

Mra. BELLAIRS, Phone 41-3535, 478 VIctorla Parade. East Melboume. Vic.. 3008. Hours: 10 a.m. to 3 p.m. only.

Advertising Reprosentatives:

AUSTRALIAN MEDIASERV
21 Smith St., Fitroy. Vic., 3085. Tel. 41-4962. P.O. Box 100, Fitaroy. Vic., 3065.

Advertisement material should be sent direct to the printers by the first of each month.
Hamads should be addreased to the Editor.

Printers:

"RICHMOND CHRONICLE," Phone 42-2419.
Shakespeare Streat, Richmond, Vic.. 3121.

All matters pertaining to "A.R." other then advertising and subscriptions. should be eddressed to:

THE EDITOR.
"AMATEUR RADIO,"
P.O. BOX 36.

EAST MELBOURNE, VIC.. 3002.

Members of the W.I.A. should refer all enquirles regarding dellivery of "A.R." direct. to their DIvialonal Secretary and not to "A.R." direct. Two montha' notice is required before a change of malling address can be effected. Readers should note that any change In the addreas of their transmitting station must. by P.M.G. regulation. be notified to the P.M.G. In the regulation, be notiriod to the PiM.G: in the state be reatified. A convenient form la proalso be notifed. A conv.
vided in the "Call Book".

CONTENTS

Page

Technical Articles:-

A Graphical Method for Locating Interfering Beat and Har-
monic Frequencies 14
$\begin{array}{ccccccc}\text { Commonsense and Instabilities in Transistorised Trans- } \\ \text { mitters } & \text {.. } 11\end{array}$
Electric Current and Ohms Law 10
Long-Delayed Echoes . . . Radio's "Flying Saucer" Effect 6
S:mple "No Holes" Mobile Mount 15

General:-

Apollo Manned Flight Room at Tidbinbella, A.C.T. 13
Awards for Technical Articles 16
Correspondence 17
Currently Radlating Satellites 16
DX 20
Federal Comment: World Administrative Radio Commur-
ications Conference for Space Telecommunications .. 5
Higginbotham Award 16
Obituary 17
Overseas Magazine Review 16
Prediction Charts for February 1970 22
Provisional Sunspot Numbers 20
Silent Keys 21
VHF 18
W.I.A. Cook BI-Centenary Award 19

Worked North Queensland Award 19

Contests:-

Annual ZL Field Day 20
Contest Calendar 20
Feedback:
1969 National Field Day 21
1969 R.D. Contest 21

COVER STORY

Reproduction of New Zealand's ZM Cook BI-Centenary Certificato. Details of this award were published in "A.R.," November 1969, page 24.

This is the BIG performance set that obso-
letes tube receivers . . . a professionallooking set that appeals to amateurs and short wave listeners alike. The DX 150 gives long-range, world-wide realistic reception on 4 bands, including Broadcast, Fully transistorised-all solid state-no warmup delays; the DX 150 will run on dry cells if current fails or is not available: will operate from a car's cigarette lighter or any 12V DC service. A 240 V AC power supply is also built in. Over 30 semi-conductors--product detector for SSB/CW, plus fast and slow AVC-variable pitch BFO-illuminated electrical bandspread, fully calibrated for amateur bands-cascade RF stage-ANL for RF and AFzener stabilised-0TL audio-illuminated " S " meter-built-in monitor speaker plus front panel jack for external (optional) matching speaker.

Realistic Performance Realistic Price
\$229-50

Attractive silver extruded front panel, solid metal knobs, grey metal cabinet, size 14t" $\times 9{ }^{\prime \prime}{ }^{\prime \prime} \times 6 \frac{1}{2}{ }^{\prime \prime}$.

CONSULT YOUR LOCAL RADIO DEALER, OR
MAIL THIS COUPON
today

[^12]

Hy-Q ELECTRONICS

Australia's

 largest independent crystal manufacturers
EXTEND THEIR PRODUCT RANGE TO INCLUDE

- Fundamental and overtone crystals from 1 MHz . to 125 MHz .
- 10.7 MHz . crystal filters for $25 \& 30 \mathrm{KHz}$. systems.

SEND FOR FULL DETAILS IF YOU HAVE NOT ALREADY RECEIVED THEM

$H_{y}-\mathrm{O}$

Electronics
Hy-Q ELECTRONICS PTY. LTD.

10-12 ROSELLA STREET,
P.O. BOX 256,

FRANKSTON, VICTORIA 3199.

Telephone 783-9611. Area Code 03. Cables: Hyque Melbourne

Telex: 31630

AGENTS:

W.A.: Associated Electronic Services P/L., P.O. Box 35. Morley, 6062.

Phone 76 - 385 .
Chone : Radcomsery Perth
TAS.: Hobart Radlo Clinic
129 gathurst St., Hobart, 7000.
Phone 34-3884.

SIDEBAND ELECTRONICS ENGINEERING

Prices of the following stock are net, cash Springwood, N.S.W., sales tax included. All equipment is fully imported from the various factories in Japan, the U.S.A. and the U.K., no local or other assembly away from the factories. All sold under standard factory-backed warranty, which is one year for YaesuMusen, with expert after-sales service, based on 20 years of SSB experience. Yaesu-Musen units come complete with all plugs and power cables.
The only exception is made for the FT-200 power supply-speaker unit, which physically is a copy of the Yaesu supply, but own design and I maintain that I can make a better heavy duty unit in co-operation with the Australian transformer manufacturers, for genuine 230/240/250 volt AC, than any of the imported power supplies.

Arie Bles
YAESU-MUSEN-
FT-DX-400 De Luxe Transceiver $\$ 525$
FL-DX-400 Transmitter $\$ 350$
FT-DX-100 AC/DC Transceiver $\$ 515$
FR-DX-400 Receiver \$375
FR-DX-400SDX De Luxe Receiver, with all access- ories, with CW filter, FM filter and FM dis- criminator, 2 and 6 metre Converters $\$ 475$
FT-200 Transceiver with 230/240/250V. AC heavy duty supply-speaker unit $\$ 410$
FL-DX-2000 Linear Amplifier $\$ 225$
2 and 6 metre Solid State Converters \$25
FF-30-DX Low Pass Line Filters $\$ 15$
SWAN-
SW350C Transceiver with 230/240/250V. AC power supply-speaker unit $\$ 550$
SW350C Transceiver with Swan 14-230 AC/DC power supply $\$ 600$
GALAXY-
GT-550 Transceiver with AC power supply-speaker unit $\$ 725$
J-BEAM-
TRIPLE THREE full size 3 element 10-15-20 metre Yagi Beam with built-in 52 ohm balun $\$ 180$
HY-GAIN-
TH6DXX tri-band 6 element Yagl Beam, on indentorder only8210
HYOUAD tri-band Cubical Quad, 10-15-20 metre, one co-ax. feedline $\$ 130$
BN-86 Balun $\$ 20$
TH3JR tri-band Junior Yagi Beam $\$ 110$
14AVQ 10 to 40 metre Vertical $\$ 45$
18AVQ 10 to 80 metre Vertical $\$ 75$
MOSLEY-
TA33JR 3 element tri-band Junior Beam $\$ 95$
MP-33 Mustang Array $\$ 120$
NEWTRONICS-
4-BTV 10 to 40 metre Vertical $\$ 55$
With 80 metre top-loading coil $\$ 70$
MOBILE WHIPS-
WEBSTER Bandspanner, 10 to 80 metre continuallyadjustable$\$ 55$
MARK HW-40 40 metre Helical Whip $\$ 20$
MARK HW-3 10/15/20 metre tri-band Helical Whip $\$ 35$
Swivel Mount and Spring for Mobile Whips $\$ 10$
ROTATORS-CDR HAM-M heavy duty Rotator, with 230 V . indi-cator-control unit$\$ 165$

ANTENNA NOISE BRIDGE-

OMEGA TE-7-01 Bridge

\$25

CRYSTALS-

FT-241 Series, Channel 0.79, box of 80 crystals .. $\$ 15$ Individual Crystals from $\$ 0.25$ to $\$ 2$-for 455 KHz . ones. Sets of six matched Crystals, including two USB/ LSB carrier/VFO Crystals:

$$
\begin{aligned}
& \text { From } 400 \text { to } 450 \mathrm{KHz} \text {.... } \$ 5 \text { to } \$ 10 \\
& \text { From } 460 \text { to } 500 \mathrm{KHz} \text {.... } \$ 10 \text { to } \$ 5
\end{aligned}
$$

FILTERS

KOKUSAI Mechanical Filters, 2.7 KHz . bandpass, modern miniature size, with input-output transformers and matching USB/LSB carrier Xtals ..
9 MHz . Crystal Filters, as used in Yaesu FT-200 \$30 12V. DC SUPPLIES-

ACITRON heavy duty, fits all Transceivers 8110 CO-AXIAL CABLE-

52 and 75 ohm, 3/16 inch diam, $\$ 0.25$; 52 ohm 3/8 Inch diam.. $\mathbf{S 0 . 5 0}$ per yard; any lengths up to 100 yards.
Connectors, Amphenol type PL-250 male \$1.25

BALUNS-

Exact duplicate of Hy-Gain BN-86, excellent copy $\$ 12.50$
S.W.R. METER-

Callbrated Output Meter, $0-100$ and 0-500 Watt and S.W.R.
\$35
GONSET-
2 metre SSB/AM/CW Transceivers. 144 to 148 MHz ., continuous range, with 115 V . AC power supply-speaker unit, solid state design with transmit mixer-driver-final valves, 20w. p.e.p. S350
TRANSFORMERS, ETC.-
NATIONAL Kingsgrove, N.S.W., brand new, still in stock: U60/285 285-0-285V. 60 mA ., 5 V . and 6 V . fil. $\$ 1.25$ U60/325 325-0-325V. 60 mA ., 5 V . and 6V. fil. $\$ 1.25$ $\mathrm{U} 60 / 385385-0-385 \mathrm{~V}$. 60 mA ., 5 V . and 6 V . fil. 81.25 U80/385 385-0-385V. $80 \mathrm{~mA} ., 5 \mathrm{~V}$., 6 V ., 6 V . fil. 51.50 PA80/300 300-0-300V. $80 \mathrm{~mA} ., 5 \mathrm{~V}$. and 6 V . fil. $\$ 1.50$
E30/80 30H. 80 mA. Choke $\$ 1.00$
F15/150 15 H. 150 mA . Choke $\$ 1.00$
8451240 to 115 V . 2A. 200W. Step-down Isolation Transformer
9716240 to 240 V . 75 W . Isolation Tarnsformer .. $\$ 1.50$
6610240 to 5 V . 3A. Filament Transformer $\$ 0.50$
Various Transistor Output Transformers: 85, 375 and 245 ohms to 3.5 ohms
6 and 12V. Vibrator Supply Transformers $\$ 0.25$
Neon Ballast Chokes, 15W. S0.25

Allow sufficiently for packing, handling and freight for transformer orders, only a few of them will fill the limit weight for post parcels.

Main specifications of Rotator:
Electric power source: 230V. AC. $50 / 60$ Hertz. Torque: $400 \mathrm{Kg} / \mathrm{cm}$.
Time for one revolution: 60 seconds, approx.
Brake system: Electro magnetic double plunger lock-in.
Brake power: $5,000 \mathrm{Kg}, \mathbf{c m}$.
Vertical load: Dead weight, $500 \mathrm{Kg} . ;$ nominal load, 70 Kg.
Mast diameter: $1 \frac{1}{4}$ to $2 \% / 2$ inches.
Weight: 16 lb., approx.
Control cable: Seven conductors.
Approx. sizes: height. $133 / 4$ in.; base dlam., $51 / 4$ In.: rotation diam., $71 / 2$ in.

BEAM ROTATOR EMOTATOR MODEL 1100M

YOU CAN CONTROL THE DIRECTION OF YOUR BEAM ANTENNA FROM YOUR OPERATING POSITION

The heavy duty model 1100 M features rugged cast aluminium construction, stainless steel bolts, nuts and washers. Bearing design with 90 -ball bearing provides high vertical carrying capacity, and resistance to bending pressures due to unbalanced weight, wind, etc. Limit switches prevent over-run. Positive braking with solenoid operated double plunger, operates when drive paddle is released. Steel gears transmit drive from a fractional horse-power motor.

Antenna boom may be fixed to a short vertical mast clamped in top of rotator which is designed for base mounting at the top of a mast or tower. Six mounting holes are provided. An adaptor is available, as an optional extra, to enable mounting on a vertical fixed tube mast. Clamp assemblies are of sturdy construction and clamp blocks are reversible for small or large diameter mast within the range $1 \frac{1}{4} 4^{\prime \prime}$ to $21 / 4^{\prime \prime}$ diameter. U bolts stainless steel 9 mm . diam.

The Indicator-Control Bcx is attractively finished in grey, with large illuminated meter, indicator lights and piano lever "Left-Right" controls coupled to micro-switches. Transformer is within Control Box.

Shipment of rotators, control cable and accessories arriving this month.

BAIL ELECTRONIC SERVICES
 60 SHANNON ST., BOX HILL NORTH, VIC., 3129.
 Phone 89-2213

N.S.W. Rep.: A. J. ("SANDY") BRUCESMITH, 11 Ruby Street, M.osman, N.S.W., 2088.

Telephone 969-8342

The World's Most Versatile Circuit Building System!

SIZES: $1 / 8^{\prime \prime}$ and $1 / 16^{\prime \prime}$ WIDTHS
Length: 100 ft. roll, 5 ft. card
IDEAL FOR PROTOTYPE AND PRODUCTION CONSTRUCTION

USEFUL FOR WIRING REPAIRS

* fo Drilling * FAST $\quad \star$ NO MESS

Available from all Leading Radio Houses
Marketed by-

ZEPHYR PRODUCTS PTY. LTD.

70 BATESFORD RD., CHADSTONE, VIC., 3148
Telephone 56-7231

MANUFACTURERS OF RADIO AND ELECTRICAL EOUIPMENT AND COMPONENTS

World Administrative Radio Communications Conference for Space Telecommunications

As has previously been announced in "Amateur Radio," the International Telecommunications Union has called a World Administrative Radio Communication Conference for Space Telecommunications, to open in Geneva in June 1971 with a maximum duration of seven weeks.

Who better to comment on the significance of this Conference than Mr. R. E. Butler, the Deputy SecretaryGeneral of the I.T.U. On 15th September $1969, \mathrm{Mr}$. Butler addressed the I.T.U. (C.C.I.R.) Study Group IV. (Space Telecommunications) at Geneva. He said: "Personally, I believe, and I think that many will agree, that this will be one of the most important radio-communication conferences ever held by the Union-ranking in importance to the 1947 Atlantic City Confer-ence-for the profound influence it will have on future frequency service allocations, including sharing and the recognition to be given to the incentives that will arise for the maximum exploitation of satellite capacity and orbits, as well as the determination of the necessary co-ordination procedures at the various international levels-more important, say, than the 1963 Space Conference, when much attention was being focused on the public telecommunication and research needs and different orbital considerations."

There is no doubt that the I.T.U. appreciates the role that can be played by the Amateur Service in space communications. Three days earlier, on 12th September, Mr. Butler opened the International Amateur Radio Convention held at Geneva. Again, I quote from his words: ". . . I think that world communications and international communication and co-operation have a tremendous debt to Radio Amateurs. You all have always been to the forefront of developing co-operation, and providing the back-up assistance in time of stress; and here I speak from practical experience from my country [Australia], that from time to time is ravaged by the climatic disturbances and national disasters in the way of floods and fires at country and near country centres. On many occasions,
normal telecommunications have been severed and great reliance has been placed in the provision of advice and guidance to the people in the more difficult areas through the use of the 'ham operators'. Their proficiency has been the foundation of many community service requirements. Such are the contributions of the Amateur Radio operator which go on almost unnoticed but quite successfully.
"If I turn to another aspect, we hear a great deal these days on the developments of global communication systems, specially in the use of satellites. Again, almost unnoticed, with their much less elaborate plans, the Amateurs have again shown their energy in being to the forefront. You have organised your own satellite experiments, which gave the possibility of many Amateurs joining in the use of this new technology. With the orbits which were selected, there have been more or less global use of the satellites.
". . . as the I.T.U. faces its responsibilities, it is pleasing to know that we can still rely on the contribution of the Amateurs towards the achievement of our basic and mutual objectives."

The Federal Executive is very alive to the significance of the 1971 Space Frequencies Conference. Whilst the planning at a governmental level for that Conference is at its very earliest stages, it is most important that the Amateur Service is fully prepared to meet the challenge of that Conference. Already, preliminary discussions have taken place with our Administration, but the problem is global, not national, and therefore, the Executive has been engaged in considerable correspondence with its fellow I.A.R.U. Member Societies overseas.

One of the great issues for the Amateur Service at this Conference is the right of the Amateur Service to have the unrestricted privilege of using its frequency allocations for space communications. No doubt other issues will emerge, but at this time to predict what these issues will be would be
mere speculation. The question of frequency allocations must loom large. The position is complicated by the fact in the allocations above the 144-148 MHz . allocation, the Amateur Service allocations are shared bands with the Amateur Service as the secondary user.

At this stage, the Administrations are preparing for the Conference by preparing their own proposals which are collated by the I.T.U. Headquarters at Geneva, and are circulated throughout the world for consideration by all Administrations.
How important to the Amateur Service are the v.h.f. and higher frequency allocations? I suppose if one attempted to answer this question on the basis of band usage, one would inevitably be drawn to the conclusion that these bands are not terribly important, but this is to be short sighted in the extreme. The Amateur Service is only just beginning to move into these higher allocations, as techniques and components become more readily available. To date they have primarily been the province of the serious experimenter. There is no doubt that satellite communications will offer increasingly wide horizons for the Amateur Service generally.

The Amateur Service cannot afford to suffer any frequency loss, for it is the potential use of these bands in the future, using techniques that may require significant bandwidth, that is the corner stone of the Amateur Service's case. The loss of frequency now may not seem to be terribly important, but in the future, such a loss may turn out to be an irretrievable tragedy.

The Wireless Institute of Australia will formulate its policy towards the World Administrative Radio Communication Conference for Space Telecommunications at the Federal Convention to be held at Easter this year. The Federal Executive has prepared for the consideration of Federal Councillors a detailed comprehensive and confidential report.

As an organisation, we cannot afford not to be prepared-and we shall be prepared.
-michael owen, vk3ki.
Federal President, W.I.A.

LONG-DELAYED ECHOES ... RADIO'S "FLYING SAUCER" EFFECT*

BY O. G. VILLARD, JNR., W6QYT; C. R. GRAF, W5LFM; AND J. M. LOMASNEY, WA6NIL

HAVE you ever had the experience of hearing your own voice repeat the last couple of words of your transmission, after you have switched over to receive? Or have you been aware, after another station stands by, that a weaker signal on the same frequency is repeating the last few words of the transmission, with exactly the same "fist"?

Well, believe it or not, some Amateurs have. If you, dear reader, think us out of our minds to even bring this matter up, rest assured that there are many others who share your view and would cheerfully consign us to the booby hatch. If you haven't tuned out by now, you are undoubtedly asking: just who are the folk who have had this experience? Are they emotionally unstable types, prone to LSD-style hallucinations? But hear this: one is a professor of mathematics at a well known West Coast university; another is a physicist at a midwest research foundation; still another has managerial responsibility for important communication satellite programmes at a prominent West Coast aerospace corporation, and most of the rest have a professional connection with electronics in some way.

Hard to discount their reports, it appears. Were these men hoaxed, you ask? That's always a possibility, and it apparently has happened in the past. But what about the instances where the echo was heard both on the Ham's own signal, and on the signal of the station being worked? It would take a pretty clever spoof to simulate both the sound of long-distance transmission and the transmit-receive timing. Still, it could be done, just as a photograph of a flying saucer can be handily simulated with the aid of ordinary crockery.

That's what makes the study of longdelay echoes (LDEs) exciting. At the moment, there is no really indisputable proof that they exist. Scientists remain unconvinced about UFOs, and LDEs are in the same category. However, an increasing body of experimental evidence argues for the reality of LDEs, and it is interesting that a number of new ideas for possible theoretical explanations have come to light only within the last couple of years.

Scientific research is placed under great handicaps when the effect being studied is highly infrequent in occurrence. The handicap is even worse when there is no satisfactory theory to guide experimentation. In these circumstances it hardly pays to set up a special test if a useful result is achieved only once a year on the average. This problem is well known to astronomers, who depend almost entirely on Amateur

[^13]- Amateur help is needed in unravelling the mystery of signal "echoes" which persist for times much longer than round-the-world propagation delays. This baffling and unexplained effect. wherein whole words-and not just syllables -are repeated, was first reported in 1928, and occurs so rarely that many doubt its reality. Interest in the subject has been re-awakened by recent discoveries in plasma physics which-if applied to the ionosphere-suggest new possible explanations. The authors review the reports known to them, suggest that the effect is real, and solicit further observations.
reports to locate comets which pop into view in unannounced places and at unannounced times. Busy professionals simply cannot devote that many hours per year to scanning the skies. LDEs provide an analogous opportunity for Hams to be of service to the professional community. Reports on LDEs, with time logged accurately, should be invaluable in helping to solve this particular puzzle.

(0) UP TO END OF 1927

(b) AFTER ENO 1927

Fig. 1.-Detalls of the transmitting set-ups used for the lirst obsorvations of long-delayed echoes

BACKGROUND

Echoes of very long delay were first reported in 1928 (References 1 and 2), not long after international short-wave broadcasting got under way. Transmitter powers were around ten kilowatls; antennas were tilted wire (see Fig. 1); the radio frequency used was around ten megacycles, and receivers were for the most part regenerative. Oscilloscopes and tape recorders were unheard of. On the other hand, interference levels were far below those of
today. The experiment consisted of transmitting one or more dots or dashes, and timing the received signals with the aid of a stop watch. Delays ranged from 2 to 30 seconds. Echoes were heard at locations both close to and distant from the transmitter, sometimes epparently at the same time. Fig. 2 shows an example.

Fig. 2.-Some early observations of long-delayed echoes. some of which ware epparently audible at three locations at the same ilmo. Signals were sent every 30 seconds: note the briefness of the total perlod of reception. (From Reference 2)

A number of theories in explanation of the observations were tried and discarded. The basic difficulty is that radio waves in most circumstances travel at the velocity of light (186,000 miles per second), so that a complete transit of the earth takes only oneseventh of a second. A trip to the moon and back takes roughly two seconds. One theory held that the waves might be slowed down sufficiently if they happened to be close to the ionospheric "critical frequency"; however, it soon became obvious that the accompanying losses would inevitably swallow them up. Loss also makes the possibility of multiple passes around the earth unlikely (210 are required for a 30 -second delay)-for the ionospheric gas is by its very nature a lossy dielectric. The hypothesis that echoes might be returned from uncharted clouds of electrons far distant from the earth was seriously considered at the time; today, of course, we know that deep space holds no surprises of that particular sort.

By the middle 1930s few echoes were being received, and the matter remained dormant until the Cavendish Laboratory of Cambridge University undertook a study in 1948 (Reference 3). In a careful year-long test involving transmission of about 27,000 test signals at 13.4 and 20.6 MHz ., not one LDE was recorded. No further published scientific activity seems to have taken place since that time.

In the intervening years there appears to have been at least one Amateur report which was discovered to be a hoax, and in another instance a mechanical fault in a recording was responsible for reports of "delayed echoes" audible on a standard-fre-quency-station time announcement.

In scientific work when none of the postulated explanations satisfactorily explains a reported effect, and when a reputable scientific organisation attempts to find it experimentally and doesn't succeed, there is an understandable and almost overpowering impulse on the part of other members of the scientific fraternity not to become further involved. This is how LDEs came to have roughly the same dubious status as UFOs.

Some 18 of the type 3 events were observed in a period of about a year. These findings were reported to the Office of Naval Research under whose contract the work was performed, but they were never published because it could not be proved beyond reasonable doubt that the observed signals were in reality caused by WWV transmissions. They could, for example, have been the result of an obscure fault in the transmitter, although this is considered highly unlikely. WWV frequencies are shared by other standardfrequency stations throughout the world; this introduces troublesome uncertainty. (So does harmonic radiation from 100 KHz . crystal oscillators on the Hewlett-Packard Palo Alto production line, as WB6FDV found out in a

Fig. 3. - Signal-intensity-versus-time recording for normal conditions Upper channel is background nolse 3D KHz. away. Lower channel is standby of WWV-20 carrler. Note rapid drop Into background nolse leval. Receiver bandwidth: 100 fiz.

TIME—
(0845 P.S.T. FEB. 28,1959)

MORE RECENT EXPERIMENTS

In 1958, W5LFM drew W6QYT's attention to field-strength recordings in which there was an apparent decay of received-signal energy during the 30 -second interval of carrier interruption for identification purposes. This behaviour, which could have been ascribed to weak (perhaps incoherent) long-delayed echo energy, turned out in the end to be due to the effect of mechanical "stiction" on operation of the pens of the then-standard Ester-line-Angus paper-chart recorders. The observation did, however, suggest an inexpensive means for collecting data on possible LDEs: use a more suitable recorder and see what is left behind on the frequency when WWV's carriers leave the air once an hour. Studies of this sort were made by W6QYT with the help of various part-time graduatestudent assistants at Stanford University in the period 1958-1960 (Reference 4). The following suspicious circumstances were - very occasionally noted:
(1) Extra noise, decaying exponentially for tens of seconds;
(2) Extra noise of roughly constant intensity, enduring for about the same period of time (see Figs. 3 and 4), and
(3) Instances where the same noise actually contained a weak signal similar to the WWV carrier. (An example is shown in Fig. 5.)
classic bit of detective work.) A more sophisticated experiment was clearly needed to decide the matter one way or another, and the effort was sidetracked owing to the pressure of other activities.

POSSIBLE THEORETICAL EXPLANATIONS

If h.f. signals are to endure for tens of seconds, a way must be found for ionospheric loss to be overcome. In the 1930s the possibility of signal amplification in the ionosphere had not occurred to anyone, but today we can

Flg. 5-Lower record (e frequency amplitude-time plot) shows possible 15-second "echo" of WWV-20 transmission. (Note the 60 Hz . hum side frequencles on the WWV carrier prior to standby.) There is no proof that this signal was really related to the WWV tranemiseion: only a presumption based on observation of a large number of records of thle type.
visualise a number of means by which this might take place. Parametric amplification has been suggested (Reference 5): the ionosphere is not a perfect linear dielectric, and if we could exploit this property, one signal -in principle-could "pump" another.

Another new development is maser amplification; the ionospheric plasma is acted upon by a whole spectrum of radiation from the sun; is it possible that amplification-producing population inversion somehow takes place? Still another explanation has to do with signal storage in the ordered motion of electrons spinning around magnetic fleld lines; for example, there might be an ionospheric analogue of the phenomenon of spin echoes in nuclear magnetic resonance.

Professor F. W. Crawford of Stanford University has been studying-on paper and in the laboratory-plasmas that "talk back", almost like Edison's original phonograph (Reference 6). A complex signal is fed in, which then disappears insofar as the external circuit is concerned. To call it out, the plasma is pulsed; a replica reversed in time then appears (see Fig. 6). These "plasmas with memory"-and the above is only one scheme of many-are most readily studied when comparatively high pressures and gigahertz radio frequencies are used. The tantalising feature of these experiments is that if they could be extended to ionospheric pressures and h.f. frequencies, the indicated time delays fall right in the 3-30 second ball park.

Another remarkable and comparatively recent finding is the so-called "stimulated natural emission" observable at v.l.f. At very low frequencies (on the order of 15 KHz .), radio signals both travel underneath the ionosphere and penetrate it. Those which penetrate are guided by the magnetic fleld lines and travel from northern to southern hemispheres at phenomenally high altitudes over the equator (one or two earth radii). During their travel, these waves actually rearrange the ambient electrons and store energy in them. This energy is available to amplify any signals of the same frequency after the causative wave is shut off. As a result, an unstable but recognisable replica of the signal is heard after the original transmission stops. Examples are shown in Fig. 7, which is taken from Reference 7. This mechanism most emphatically will not work at h.f., since

the circumstances are then wholly different. But the fact that radio signal amplication in the ionosphere can happen at all, makes the possibility that something analogous might happen at h.f. seem more likely.

These new developments in the understanding of plasmas stimulated W6QYT to ask for reports of LDEs at a recent get-together of the Northern and Southern California DX Clubs; to his surprise five excellent ones were received; they are included in the summary following.

W5LFM, who has also been interested in this subject since 1958, has collected reports from W5VY and W5LUU, and has himself observed d difficult-to-explain half-second time delay on the time ticks of a Russian standard-frequency station.

SUMMAAE OF CHARACTERISTICS

The Stanford recordings suggestedbut did not prove-that incoherent noise "echoes" may exist, as well as coherent ones containing a replica of the signal. The Amateur and the early reports, of course, deal only with the coherent variety, which seem to be appreciably less frequent in occurrence. Following is a summary of the conclusions which can be derived from the Amateur reports taken as a group:
(1) Multiple-second "coherent" signal echoes, either phone or c.w., appear to be real, and are observable for short periods of time at highly infrequent intervals.
(2) They are qudible both on a station's own signals, and on signals of other stations.

0 nseefom

P ECNO
Fig. 6.-Examples of signal storage in plasma at microwave frequencies. Above are plots of amplitude versus time (from left to right). The signals marked EI are the inputs, which are stored; the readouts are the replicas designated "echo", which require for thelr release application of the pulses "p". (Photo courtesy of Professor F. W.

SUMMARY OF LDE REPORTS

Date	Call	Band MHz.	Approx. Duration Seconds	Time, GMT	Phone/ CW	Audible on Own/Other
Oct. 16, 1932	W6ADP	28	18	≈ 1800	CW	Own
Winter. 1950-51	W5LUU	7	5	≈ 0300	CW	Own
Winter, 1965	K6EV	14	$3-4$	$0600-0700$	SSB	Own
Dec. 2. 1967	W5VY	28	3	1328	SSB	Own
Jan. 27. 1968	W5LFM	10	$1 / 2$	$1400-1430$	Time Ticks	Station RID
Dec. 18, 1968	W6KPC	28	1	≈ 2000	SSB	Other
Jan. 21, 1969	W6OL	14	$6-10$	1536	CW	Other
Feb. 17, 1969	K6CAZ	2	≈ 2	$1430-1500$	SSB	Own and Other

(3) They have been observed at 7, 14,21 and 28 MHz ., but apparently not at higher frequencies.
(4) They either occur most frequently (or perhaps are most easily heard) when a given band is just "opening up"-i.e. when skywave propagation to some point on earth is just becoming possible.
(5) They seem to be audible when long-distance propagation is good and when geomagnetic activity is low. (The presence of longpath as well as short-path propgation, or signals from stations at antipodal locations, is apparently a good omen.)
(6) Stations reporting LDEs typically have been ones having antennas well up in the air, at locations reasonably good for DX, but other than that no exceptional facilities seem to be required.
(7) An active Ham who DXes one or two hours a day, may expest to hear an LDE once a year, on the average.
(8) The LDEs appear to be one single echo, rather than several successive ones.
(9) No Doppler shift is perceptible.
(10) The sound of the echo resembles that of a DX signal (i.e. it apparently involves long-distance multipath propagation).
(11) The strength is usually weak, although some reports have put it as S3 or more.
(12) Echo strength always decays with time, rather than the other way around.
(13) The total time interval during which the echo effect can be heard is remarkably shortusually no more than a few minutes.
(14) There is some indication that LDEs may be heard more frequently on signals which have travelled through the northern and southern auroral zones.

A COMPARISON

It isn't clear that the currentlyobserved effect is the same thing as was reported in the 1930 s , since the early accounts all stressed a multiplicity of signals returned for a single outgoing pulse. But a connection is certainly possible.
It is interesting to compare the circumstances of the experiments of those times with those of today. The early work involved high transmitter power (10 kw . or so), relatively non-directional antennas (tilted wires) radiating upward as well as outward, frequencies of the order of 10 MHz ., and comparatively short-distance propagation. Today's observations were performed with lower power, higher beam gain, higher frequencies, antennas directing their energy closer to the horizon, and longdistance propagation.
As the Cambridge group (Reference 3) pointed out, perhaps the most significant difference between "then" and "now" is the greater crowding of the

Fig. 7-Artificially stimulated natural emisslons (similar to "echoes"') at v.l.f.' shown here as a matter of interest only. Uppermost spectrogram
shows v.l.f. spectrum as 10 shows v.lif. spectrum as 10 . ceived near the transmitters: NAA is the lowest frequency signal, at 14.7 KHz . Lower two records, taken aboard the USNS Eltanin In the Antarctic, show diagonal emissions growing out of NAA dashes. Energy stored In the magnetosphere while NAA is transmitting, is released in the form of unstable, partly coherent radlo signals. Note: this particular mechanlam does not work at h.f.: however, it is conceivable that something analog̣ous might. (From Reference 7)

h.f. spectrum. In their view their lack of results might in part be explained by the difficulty of finding a clear channel. It is certainly true that they operated in commercial telegraphy bands, which are comparatively crowded; it is also true that their antennas were directive upward, since they were primarily looking for reflections from electron clouds in space. It is also possible to speculate that, if maser amplification were involved, interference would have the effect of syphoning off amplifying power which might otherwise go into keeping the echo going. (This would be in addition to the obscuring effect of the interference.) The QRM would tend to be amplified, instead of the echo, since stimulated electrons in giving up their energy will tend to look themselves to the strongest signals of the appropriate frequency present at any given time.

WHAT AMATEURS CAN DO TO HELP

Additional Amateur reports of LDEs are urgently needed to guide on-going research. If an LDE is experienced, the most important single piece of information to write down is the exact time of occurrence. Because LDEs are so transistory, it may be possible to establish a relationship to other, equally transistory geophysical events simply by making a time-of-occurence comparison. Try to log, at the time, all the circumstances of the experimental set-up-frequency, antenna heading, etc., plus a careful description of the observed effect.

It is suggested that the making of special transmissions in the hope of catching an LDE is a sure road to total frustration. Best bet is to act as if they didn't exist. However, if you have a tape recorder which can be spared from other duty, use it to record the output of the station receiver at all times. A single tape can be used over and over again. Then, should an echo put in an appearance, you'll have it trapped-if the tape hasn't worn out in the meantime! Frequency-amplitude-time plots (similar to "voice prints"), made from such recordings, should be very instructive. However, tapes (like photos of UFOS) can be easily faked, so don't expect to convince skeptical scientists and garner instant glory by producing a single example: nobody will bite. Nevertheless, many tapes collected over a period of time at many locations, and containing internally consistent information, may well permit the piecing together of a sensible explanation.

It's fun to think that in this era of "big" science, there is still an era where Amateur Radio operators can make contributions which will be as uniquely valuable as those provided to astronomers by the amateur cometwatchers.

SOME REACTIONS UPON HEARING LDEs

Those who are privilcged to hear LDEs are clearly members of a highly exclusive club, since many Amateurs active for 20 years or more have never observed anything like it. Yet some who do, such as W5VY and W6CAZ,

Please send reports toWGOYT,
Radioscience Laboratory. Stanford University. Stanford, California, 94305.
All communications will be acknowledged and credit given.
report that they hear LDEs on the average about once a year when they are operating regularly (perhaps 1-2 hours per day on the average). Hence, the effect must happen at least this often.

W6QYT has queried ship-to-shore radio-telegraph operators of the Mackay Radio receiving site at Half Moon Bay, California, with negative results. It appears that these men, who contact ships at varying distances throughout the world, every day, around the clock, and in several wavebands, simply do not hear LDEs. However, a typical ship transmitter has a power in the order of 150 watts, and a non-directional antenna; hence it is not as potent as most Amateur stations.

Psychologists say that the human mental computer is astonishingly efficient at recognising something which is known. This is probably an important aspect in the identification of one's own voice cr "fist". One wonders how many weak LDEs associated with other transmissions may have gone unnoticed, because the ear tends to shut out-auto-matically-anything it classes as QRM, and therefore spurious.

The almost universal reaction to hearing a good LDE is total astonishment. For this reason the memory tends to be fresh even after the passage of years. Some of the reports convey this feeling quite dramatically. According to W6OL, "I was just tuning the band, listening, and heard this Russian working someone. There was
some slight QRM on his transmission but the copy was reasonably good. However, I heard him sign and then I realised that the QRM was his echo, and that I could again copy the last part of the transmission." Says W8KPC, who heard "whole words, if they were not too long, . . . the echo was so loud, long, and startling that my reaction was to 'talk' about it with someone!

I've never heard such long echoes before or since." In W6ADP's words, "I was calling ON4AU on 28 MHz ., and switched over to listen and heard on my own frequency ON4AU de W6ADP K. Was very weird and never will forget it. Signal sounded like it was coming a long way but was S6 or so."

ACKNOWLEDGMENT

The assistance of Professor B. Dueno, KP4HF, is gratefully acknowledged. Members of the staff of WWV and WWVH have provided useIul information. Measurements at Stanford University were supported in part by the Office of Naval Research under contracts Nonr-22s 124) and Nonr-225(64).

REPERENCE8

1. Stormer, C., "Nature," 122. 1928. p. 681.
2. Van der Pol. B., "Nature." 122, December 1928. pp. 878-9.
3. K. G. Budden and G. G. Yates, "A Search for Radio Echoes of Long Delay." Journ. of Atmos. and Terr. Physics. 2, 1952, pp. 272Atm
4. Quarterly Status Reports, Tri-Service Contract Nonr-2251241 NR. 373 360. Stanford Electronics Laboratorles, Stanford, Californin. See reports 17-25, covering the period October 1958-December 1980.
5. Hurker. K. J., and Crawford, F. W., Stanford University Instltute for Plasma Research. Report No. 264, December 1988.
6. F. W. Crawford, "A New Look at Very Long Delayed Radio Echoes," Combined Session URSI Spring Meeting. April 1968.
7. R. A. Helliwell, "Whistlers and Related Ionospheric Phenomena," Stanford University Press, Stanford, California, 1965.

WIRELESS INSTITUTE OF AUSTRALIA feDeral executive

The Institute can now offer annual subscriptions to following Amateur Journals:

"OST"—Associate membership and renewals, \$6.40.

\star R.S.G.B. "Radio Communication" (ex "The Bulletin") is only sent with membership of Society. \$5.50. Send for application form.

* "CQ" Magazine, S5.70; Three Years, \$13.50.
* "73" Magazine, \$5.50; Three Years, \$11.50.
* "Ham" Magazine, \$5.50; Three Years, $\$ 11.50$.
R.S.G.B., A.R.R.L., "CQ" and " 73 " Publications available.

Send remittance to Federal Executive, C/o. P.O. Box 36. East Melbourne, Vic., 3002.
Receipt of your first issue will serve as acknowiedgment of your sub. Allow six weeks for dellvery.

ELECTRIC CURRENT AND OHMS LAW

LECTURES TWO AND THREE

C. A. CULLINAN,* VK3AXU

ELECTRIC CURRENT

In some atoms, notably silver and copper, the outer electrons can be replaced by other electrons and thus move from atom to atom. This constitutes a flow of electric current.

Current is measured in Amperes, after its discoverer, Ampere.

TERMS

$$
\begin{aligned}
& \begin{array}{l}
\text { Ampere } \\
\text { Milli-ampere }
\end{array}=\text { one-thousandth of } \\
& \text { an ampere } \\
&=1 \times 10^{-3} \text { ampere. } \\
& \text { Micro-ampere }=\text { one-millionth of } \\
& \text { an ampere } \\
&=1 \times 10^{-6} \text { ampere. }
\end{aligned}
$$

Resistance.-In some atoms, the electrons are very difficult to move, so it becomes very hard to pass an electric current. Such atoms or molecules are known as insulators.

The unit of resistance is the Ohm, named after Ohm.

Ohm

$$
\begin{aligned}
\text { Megohm } & =\text { one million ohms } \\
& =1 \times 10^{6} \text { ohms. } \\
\text { Milliohm } & =\text { one-thousandth of an } \\
& \text { ohm } \\
& =1 \times 10^{-3} \mathrm{ohm} .
\end{aligned}
$$

1 ohm is the resistance of a column of mercury at $0^{\circ} \mathrm{C}$., having a uniform cross section, a height of 106.3 cm . and weighing 14.452 grammes.
E.M.F.-Electromotive Force, also known as electrical pressure or voltage. It is the electrical force or pressure between two points. It is usually called Volt after Volta.

Volt

$$
\begin{aligned}
\text { Megavolt } & =\text { one million volts } \\
& =1 \times 10^{6} \text { volts. } \\
\text { Kilovolt } & =1 \text { thousand volts } \\
& =1 \times 10^{3} \text { volts. } \\
\text { Millivolt } & =\text { one-thousandth of a } \\
& =1 \times 10^{-3} \text { volt. } \\
& =1 \times 10^{-6} \text { volt. }
\end{aligned}
$$

MeV.-The unit of energy applied to the radio active emission of particles or similar radiation. Not to be confused with electro-magnetic radiation.
$\mathrm{MeV}=$ about one-millionth of an erg $=1$ million electron volts.
$1 \mathrm{erg}=$ work done in moving a mass of 1 gramme a distance of 1 centimeter.

The term MeV should not enter the course.

[^14]- Continuing the series of lectures by C. A. Cullinan, VK3AXU, at Broadcast Station 3CS for students studying for a P.M.G. Radio Operator's Certificate.

OHMS LAW

This is a fundamental law of electricity and must be completely memorised:

$$
\text { Current }=\frac{\text { E.M.F. }}{\text { Resistance }}
$$

This is usually written:
$C=E \div R$, where C is current in amperes (sometimes known as I).
$\mathbf{E}=$ E.M.F. (voltage) or pressure or volts.
$\mathbf{R}=$ resistance in ohms.
In A.C. calculation, R is known as Z, the symbol of Impedance.

One ampere is the current which will flow in a resistance of 1 ohm when an E.M.F. of 1 volt is applied.

Transposing:

$$
\begin{aligned}
& C=E \div R \\
& E=C \times R \\
& R=E \div C
\end{aligned}
$$

Power.-This is expressed in the unit Watt.

KW or $\mathrm{Kw}=1$ kilowatt $=1,000$ watts.
$\mathbf{M w}=1$ megawatt $=1,000,000$ watts (used mainly in electrical power systems). Do not confuse with radio term of:
$\mathrm{mW}=1$ milliwatt $=$ one-thousandth of a watt $=1 \times 10^{-3}$ watt.

The watt is a unit of power. The watt-hour is a unit of energy.

Suppose a power station can produce $100,000 \mathrm{Kw}$. and it operates continuously for one year. Then the energy it will have produced
$=100,000 \times 8760 \mathrm{KWH}$ (kilowatt hours), as there are 8760 hours in a normal year.
$=876,000,000$ kilowatt hours.
$=876$ megawatt hours.

RESISTANCE

When two or more resistances are connected in series, the total resistance is the sum of the individual resistances. However, when two or more resistances are connected in parallel the resultant
resistance is less than the smallest, as determined by the formula known as the Reciprocal of the Reciprocals.
R total $=\frac{1}{\frac{1}{R 1}+\frac{1}{R 2}+\frac{1}{R 3}+\frac{1}{R N}}$
The following problem will illustrate both the calculations of resistances in series and resistances in parallel (shunt).

Problem

In the following circuit, find:
(1) The voltage drop across each resistance.
(2) Current in each resistance.
(3) Total current in the circuit.

It is assumed that the battery has zero internal resistance.

A. The simplest way to tackle this problem is to find, firstly, the total current, because when this is known all the other answers can be derived from Ohms Law.
B. Ohms Law states $C=E \div R$. Therefore to find the total, it is necessary to find the total resistance of the circuit, therefore we have to calculate the effective resistance of the three parallel resistances and add this value to the 6 ohms series resistance $R 1$.

$$
\begin{aligned}
\mathbf{R} \text { (parallel) } & =\frac{1}{\frac{1}{\mathrm{R} 2}+\frac{1}{\mathrm{R} 3}+\frac{\mathrm{R} 4}{1}} \\
& =\frac{1}{\frac{1}{5}+\frac{1}{25}+\frac{1}{100}} \\
\text { Find LCM } & =\frac{100 .}{\frac{1}{5}+\frac{1}{25}+\frac{1}{100}} \\
& =\frac{100}{\frac{1}{20+4+1}} \\
& =\frac{100}{\frac{25}{100}}
\end{aligned}
$$

Remove reciprocal. Invert bottom term.

$$
\begin{aligned}
& \text { Therefore } R \text { (parallel) }=\frac{100}{25} \\
&=4 \text { ohms. } \\
& \text { (Continued on Page }
\end{aligned}
$$

Commonsense and Instabilities in Transistorised Transmitters

R. LEO GUNTHER,* VK7RG

"To be a follower of fashion is not always a wise choice."

G3VA in "Technical Topics,"
"Radio Communications," Jan. 1869
Although the above quotation was in reference to the illusion that s.s.b. bears charismatic virtue compared to n.b.1.m., it could well be applied to the modern myth that transistors can replace valves in just about anything, including transmitters. The past five years of writing about semiconductors in the Australian "E.E.B." may have established me as a firm advocate of semiconductors. If so, I believe that I ought to be able to point out some of their limitations. The point of this article will be to show that if transistors are used at r.f. in transmitters, they must be used properly, and that if this is too difficult, valves could well be a better choice!

DIRE PRECAUTIONS

For some two years I have been filling the pages of "E.E.B." with a series of articles on the design of transistorised transmitters, polnting out that there are certain unique limitations of voltage, linearity, and frequency which must be considered if the beasts are to behave properly.
For this, I have acquired a certain reputation as a prophet of Doom. I do not think, however, you could accuse the author of "Technical Topics" and of "Amateur Radio Techniques" (by R.S.G.B.) of a lack of technological insight, yet he makes much the same points in his columns in "Radio Com-munication"-for example in Feb. 1968, p. 103: "Transistor Transmitter Instabilities" and "High Power Transistor P.A's."

He points out that most troubles arise when the transmitter is detuned, and particularly when loads are reactiveand when does this not occur in Amateur practice? To my surprise, paralleled transistors are more efficient than in push-pull, but only if they share current equally, as via separate base drive adjustment-and when is this ever done in Amateur transmitters?

Many of the same points are raised in the excellent R.C.A. "Silicon Power Circuits Manual," and in numerous other places. And for every chap who writes to say that his transmitter works fine without all that fuss, there are two or three who complain that transistors are untameable, often expensively so. Their transistors bave perished from overdrive, overvoltage, inexplainable and ineradicable parasitics, or from heat death (inefficient operation or unequal current sharing).

Even worse are the numerous experimenters who are content if they can merely get a lamp to light at the output, or who have parasitics creeping out from every condenser, but who prune them by careful glue and white-

[^15]wash, and by efficiencies which rarely represent Q over 5. And their harmonic outputs?

Yes "it will work," but so will a spark coil; many of the contemporary results are as appalling as the signal from a spark coil-and nearly as broad. They arise from the assumption that "transistors are just like valves." Well, they are not, they're different. And the difference becomes more pronounced as the power goes up. And if you are going to get good results from them, it requires a few simple precautions, frequently found in the now readily-available literature on the subject.

ON MAKING EFFICIENCIES

The following article, disguised as a review of some interesting literature, will lay stress on three main points:
(1) Instabilities must not be tolerated. These include oscillation, or tendency to oscillation of an amplifier at any frequency.
(2) Efficiency must be reasonable, both for coupling and for output. This involves suitable impedance matching, and it involves a judicious choice of collector conduction angle and tank Q (Ref. 1-4).
(3) There is no need to use transistors as a matter of fashion. In those instances where valves can do a better job, valves will do a better job, simpler, cheaper, and easier. Such an instance arises in many applications which require more than a few watts of power at r.f.

Yes, certainly valves have dlaments "which soak up power". So do transistors and coils as often used. But, to achieve efficiency with the semiconductor you must sacrifice reliability; not so with the lowly valve.

I must mention here that in the following discussion I am not necessarily exhorting you to read the articles (unless, of course, you become interested in looking them up), but merely to think about the points raised, and apply them to your own experiencc. This will make it unnecessary to reproduce any diagrams here. If you don't remember what a neutralised amplifier looks like, look it up. The recently published "Radio Communication Handbook" by R.S.G.B. is a fine source for much relevant information.

AN ILLUMINATLNG ARTICLE

A good framework around which to mould the first point would be: "A 1969 Model 50 Mc. Transistor Transceiver," by T. H. Campbell, WA7FJC, "QST," Jan. 1969.

In addition to a very interesting transmitter, a 0rst closs receiver is described, using, among other things, the cascoded triode configuration of triode FETs (Ref. 9) in the r.f. and if. stages (and why not the mixer?).

INTERCHANGEABILITY OF POWER TRANSISTORS

There are various transistor types specifled for his transmitter, but in my opinion you need not be concerned about "exact equivalents" for such things. The main requirement is to use P_{0} and f_{T} ratings (Ref. 10-12) appropriate for your needs. For this 50 Mc. transmitter, the 2 N 2217 in the final has $P_{c}=800 \mathrm{~mW}$. maximum, I_{T} >250 Mc. The Fairchild 2N3642 or Motorola 2N3137 would do the same thing, the AY6102 at perhaps less collector current, the Motorola 2N697 at one-fourth the frequency. For higher power (or more efficiency at the same power!), the R.C.A. 2N3375 or 2N3868, or Mullard BLY34, 2N3553, or 2N3375 would be worth using. Much of the concern about interchangeability is groundless. Many transistors are more alike than the detalled specification sheets might lead you to believe. (Ref. $12,13$.

INPUT AND DRIVE

An excellent rule of thumb mentioned by WA7FJC is to limit the total collector d.c. input to the amplifier to the maximum dissipation rating of the transistor. This provides a generous and often necessary safety factor. Driving stages are no problem: drive the final until the desired collector current is obtained under load, with due respect for base-voltage ratings, etc. (Ref. 1, 2.)
In this case, the driver (a 300 mW . 2N708) supplied 100 mW . to drive the Anal to 500 mW . Although that is only 7 db . of final gain, the high drive was necessary because of emitter-circuit degeneration; the latter is desirable (up to a point), because it increases linearity of the final, particularly for modulation.
An unbypassed resistor in the emitter is, however, undesirable if it increases emitter circult inductance (Ref. 5), or requires too much r.f. drive, or reduces power output excessively.

THE VIRTUES OF NEUTRALISATION:

Of special interest in this "QST" circuit is a very important point I have been stressing in correspondence with an author who has sent us a nice transistorised transmitter circuit. WA7FJC says: "Note neutralisation in the final stage. This may not be necessary to prevent oscillation, but it is important in securing good modulation characteristics. Just because an amplifier does not oscillate when not ncutralised does not mean that feedback does not exist, but rather that there is not enough to cause the stage to take off. In renlit it mas be close to the edge. The feed back in such an amplifier is not a corstant It varies over the modulation cycle, and its effect on the stage pim varies, so the rf output is not a linear function of the modulator output
Neutralisation is done by slowly in-
creasing the capacitance (of the neutralising condenser) while watching the current meter. At some point there will be a sudden increase in current Quickly back off the capacitor until the current drops down. Set it (the neutralising condenser) so that you can turn the tuning capacitor . . . about 30° farther toward maximum setting than where the output peaks, before the current jumps up. This is only an approximate setting, but it will keep the amplifier stable, and provide excellent modulation characteristics."

The author also admits an often overlooked fact, that neutralisation of transistor power amplifiers can never be complete, though he overlooks the fact that unilateralisation \dagger can improve it. The actual reason for the trouble is the varicap-effect of the collector-base junction; this is well discussed in Ref. 7. The result is that neutralisation, particularly of a power amplifier, can only be a compromise at best.

What WA7FJC contributes, is to point out that compromise is worth making -a fact generally denied in the fancy technical literature-because of the exaggeration of that varicap effect during modulation voltage peaks. Neutralisation has another unexpected advantage: the detuning of the final on modulation peaks (Ref. 7) is largely avoided and correct tuning of the final is greatly simplified. The same tuning is valid with or without modulation! Very interesting.

Other conditions and prerequisites for good modulation are discussed in Refs. 3 and 4, and likely to appear further there if time permits. I might mention that WATFJC, like a lot of other good people, modulates his drivers from a tap on the modulation transformer, but this is not necessary, and adds only to modulation transformer problems; see Ref. 4.

I wonder how these brave blokes in America can assault the airwaves with microwatt a.m. signals in competition with the forest of single sideband splatters?

HIDDEN INSTABILITIES

The point made by WA7FJC concerning hidden instabilities is very important. If your power (or other) amplifier does not oscillate when you turn it on, it may still be potentially unstable. If you obtain oscillation, say when the collector voltage is raised above a certain level, or when base bias is reduced, you need not feel pleased if the instability disappears when you reduce the collector voltage or increase the bias. This is a point transistors share with valves, and as I have often maintained, a good knowledge of valve amplifier behaviour is invaluable for understanding much transistor performance.

THE EFFECT OF BASE BIAS

In many transmitters, base reverse bias or bypassed emitter bias is used to drive the stage further into Class C (see Refs. 1, 2, 6), in an effort to obtain higher efficiency and better stablily. The higher efficiency can indeed be

[^16]obtained, but only under certain rigorous conditions, as discussed in those References. But it is quite undesirable to increase base bias merely to keep a stage from oscillating!

Consider the case with valves. In order to ascertain the tendency towards parasitics in an r.f. power amplifier, a searching method is to reduce the class C bias until the valve draws current up to anode dissipation, without any r.f. drive. If instabilities or parasitics are present which were absent with heavier bias, it shows that there is a fault which must be corrected. Because, when the amplifier is biased normally in class C, and when it is driven to the normal pulsed anode current condition, it is no longer cut off, and obviously the instability can occur just as it did when the bias was reduced artificially. This results in apparently unexplainable instability, or broadness of signal, or modulation nonlinearity, or excessive harmonic output, etc.-all maddeningly obscure symptoms, obscure because they appear to be hidden when you look for them.

Exactly the same thing happens with transistors, and it matters not at all that the bias-polarity and I_{1} / I_{11} characteristics of a transistor differ somewhat from those of a valve. The main problem with transistors is to match them properly, at input and at output, as I shall discuss further in due course.

Once the instabilities have been chased by applying diverse cures (Ref. 7), you can bias the stage or increase the voltage as you please-consistent with limitations of breakdown voltages. If your power amplifier is stable only when you detune it, or only when you sclf-bias it (e.g. by a base-leak), chase out that instability, don't tolerate it!

THE USES OF HIGH POWER TRANSISTORISED TRANSMITTERS?

In the December 1968 issue of " 73 Magazine" is one of many articles on high (for transistors) power transmitters. It is a good example of a point which can well be made about these beasts. That transmitter puts out 30 watts, using the T.I. equivalent of the SE3030, but is high power r.f. in transistors practical? (See Ref. 5.) Can the considerable problems of matching low impedances be overcome satisfactorily? There is an appalling amount of transistor circuitry which simply translates valve configuration into com-mon-emitter transistor design, with scant regard for the one really big difference between them: the transistor is a power-operated device, rather than voltage, and impedances are low. The higher the power, the lower the impedances. This poses the problem of how to get the power in and out efficiently (c.f. Ref. 12).

Certainly some kind of signal can be produced by circuitry treating transistors as small valves, but what kind of practice is that? Consider the output tank of the abovementioned 30 w . amplifier. For a Q of 12 (Ref. 5), 1 amp. line current would produce a circulating tank current of 12 amps . in his (essentially) parallel resonant circuit. Obviously he's not attaining a Q of 12 in his little "miniductor" in π-configuration, nor are any of you who use nice miniature output tanks
to go with those nice miniature r.l. power transistors.

In addition, modern design calls for loading of even modestly high power collectors by L or T networks, not pi, to obtain adequate coupling with sufficient harmonic rejection. This subject has been covered well in the R.C.A. "Silicon Power Circuits Manual", "Amateur Radio Techniques" (R.S.G.B.), and in much periodical literature here and abroad.

VALVES ARE NICER

Furthermore, that 30 w . transmitter takes 4 watts of drive, and the collector efficiency is only 50%. If it were modulated, the driver would also need to be modulated as usual, and output transient voltage problems could be encountered. Any attempt to increase collector efficiency would increase risk of collector or base voltage breakdown. And so forth. A valve at that power is simpler to adjust, easier to drive, easier to power, more efficient, and gives far fewer troubles and harmonics. Good low power (e.g. < $50 w$.) bottles are plentiful and cheap; over 50 w ., Eimac has some glorious ones. This is progress?

This fact has been recognised by numerous "hybrid" designs which have appeared in the literature, the most recent being "The 2 Metre Transistor Transmitter Plus One," by R. W. McDonald, " 73, ," Jan. 1969, p. 28. It uses transistors to drive a 6146, explicitly neutralised. It also uses a nice f.m. system with phase modulation in early stages to give 5 kc . deviation at 144 Mc .

In the case of the " 6 Metre Exciter," by K. W. Robbins ("73," Sept. 1968, p. 52) only one watt is obtained from a 6CL6 driven by transistors, but this is with a modest anode voltage of $150 \mathrm{v} \cdot \ddagger$ It runs an oscillator at 45 Mc . and uses a 5-6 Mc. FET v.f.o. in a very stable heterodyne arrangement, giving stable mixed output at $50+\mathrm{Mc}$.

One intriguing hybrid system was "Five Transistors-Two Tubes-35W." by J. A. Meissner, "QST," April 1962, p. 16, in which an ordinary transmitter $(2 \mathrm{E} 30 \rightarrow 2 \mathrm{E} 24)$ is modulated by a transistorised anode modulator, but the d.c. power for the final is obtained by audio rectified from the modulator: This allows:
(1) Mobile operation with low average power consumption;
(2) Always 100% modulation for any level of modulation;
(3) Reduced construction cost, and with the many-
(4) Advantages of a valve in the final p.a.;
(5) It overcomes the traditional objection to valves in mobile: the power converter;
(6) But because of the low duty cycle, the final valve may be run at an appreciably higher input power without damage. You can't do that with transistors, because they don't have a reserve of cu:rent carriers. (Ref. 4, 14.)
With modern design, the driver could be transistorised, and no h.t.

[^17]supply would be required at all! I must build one of these with 3A5s one day.

And that is the reason why you see hybrid circuits from time to time in the literature (e.g. Ref. 8).

WHY THIS ARTICLE?

If you have been brave enough to get this far, you may be wondering about this strange article which comments favourably or acridly on other articles. In this increasingly complicated world there is an excess of information being accumulated, and not enough sense made of it. What is the use of a mountain of technical magazines every month if they merely inundate you with an indigestible array of facts? How many of those circuits are you going to build? How many are you going to remember?

There is a need for articles which correlate it all, bring together main points, and leave the details to the bookshelf. One reason for the deserved popularity of G3VA's monthly "Technical Topics" in "Radio Communication" is the fact that he does just this; it is probably the most significant feature in the whole of the Amateur periodical literature. But there cannot be too much of this kind of correlating, and my present effort has been of that kind, extracting points important for design and discussing them in the light of practical requirements. I invite you to contribute to this effort, too, with suitable articles in "A.R." and to help make more sense out of the Information Explosion.

ERROR

Please note that in the Jan. 1969 "QST" transceiver article by WA7FJC there is a serious error. He has a 4700 ohm unbypassed resistor in the emitter of the r.f. power amplifier. Since its average collector current is about 70 mA ., this is obviously an absurd value. The resistance is possibly 470 ohms, or more likely 47 ohms. The unbypassed resistor increases linearity, but if it is too large it reduces collector voltage too much, and it also increases opportunity for emitter-circuit inductance, which is bad (Ref. 5).

REFERENCES

If the Australian "E.E.B." appears here below more frequently than might appear justified by its modest activity, it is only a method to save space. Those references contain a wealth of other references to a wide varlety of artlcles from the literature. many of which are summarised, with comments. A number of other references is listed explicitly in the body of the present article, in text.
111 ".E.E.B.." Aug. 1967, esp. p. 104.
12। "E.E.B." Scpt. 1967, esp. D. 115, 119.
141 "E.E.B."" Dec. 1967. esp. p. 169.
151 "E.E.B.," May 1968, p. 46, 49.
161 "E.E.B.". Sept. 1968.
171 "E.E.B.." Jan. 1969. D. 3-4.
191 .-E.E.B. \because Feb. 1969, D. 21 April 1969, also likely June
1101 "Amateur Radio." Aug. 1969, p. 11, "Transistors on Computer Boards." by VK72RO and VK7RG
111) "Amateur Radio." Dec. 1969, p. 21, "Transistors on Computer Boards-Some' Further sistors on Computer Bo.
Thoughts," by VK7RG.
1121 "Amateur Radio." Jan. 1970. p.11, "Commonsense Transistor Parameters," by VKmonsen
1131 "Coryra." Feb. 1889, p. 4, "The Versatle AY1101." by VKIRD.
1141 "Break-In." Oct. 1886. "The Behaviour of Transistors in Class C Amplltude Modulated Service." by ZL3RH.

ELEC. CURRENT \& OHMS LAW

(Continued from Page 10)
Now total series $R=6$ ohms +4 ohms $=10$ ohms.

Then the current in the circuit, from Ohms Law, $C=E \div R,=100 \div 10$. Therefore total current $=10$ amperes.

Next it is necessary to find the voltage drop across R1 (6 ohms) and the three resistors, R2, R3 and R4 in parallel (4 ohms).

To do this we transpose Ohms Law so that $\mathrm{E}=\mathrm{C} \times \mathrm{R}$. Therefore the voltage drop across R1, 6 ohms $=10$ $\times 6=60$ volts. Also the voltage drop across R2, R3, R4 (4 ohms) $=10 \times 4$ $=40$ volts. Proof, 60 volts +40 volts $=100$ volts, which is the voltage of the battery.

Thus it will be seen that the voltage across each of the three paralleled resistances is 40 volts, but as each is different in resistive value, it will have a different current flowing in it.

Again we use Ohms Law, $C=E$ \div R. Therefore
C through $R 2=40 \div 5=8 \mathrm{amps}$.
C through R3 $=40 \div 25=1.6 \mathrm{amps}$.
C through R4 $=40 \div 100=0.4 \mathrm{amp}$.
Proof: We know that the total current in the circuit is 10 amperes, therefore the total current through the parallel combination of R2, R3, R4 must be 10 amperes.

Then $8+1.6+0.4=10$ amperes.
Then answers to the questions are:
(1) Voltage drop across

R1 $=60$ volts
$R 2=40$ volts
$\mathrm{R} 3=40$ volts
$R 4=40$ volts.
(2) Current in cach resistance:
$\mathrm{R} 1=10$ amperes
R2 $=8$ amperes
$\mathrm{R} 3=1.6$ amperes
$\mathrm{R} 4=0.4$ ampere.
(3) Total current in circuit: $=10$ amperes.
Note that the questions were phrased in such a manner that the logical method of working them out required a different sequence. This is often done in examination papers. Also note that current has been expressed throughout in amperes, voltages in volts and resistance in ohms.
This is because Ohms Law states that:
The current in amperes = E.M.F. in volts \div resistance in ohms.

APOLLO MANNED FLIGHT ROOM AT TIDBINBELLA, A.C.T.

If you occasionally regret the lack of a beam to maintain communications, be grateful you are not forced to the lengths which the space programme demands. Above Leon, a harmonic of VK3TX. is contemplating part of the equipment in the Apollo manned flight room at Tidbinbella. A.C.T. We regret the photograph does not show the UNIVAC computer also, but the photographer had to use something on which to rest his camera!

K.W. ELECTRONICS KW2OOOB TRANSCEIVER

COVERS 10 TO 160 METRES
\star Six-band operation.
\star Lift-up inspection lid
\star Two-speed V.F.D. tuning.
\star Mechanical Filter provides passband for SSB.

* No external antenna switching required.
* Independent transmit and receive frequencies or true transceive operation.
$\star 180$ Watts P.E.P.
\star Matching AC power supply with built-in speaker.
\star Side Tone Monitor for CW.
\star Crystal controlled Receiver first mixer.
\star Output Impedance adjustable.
\star Easy to install in a vehicle for mobile operation.
\star Lightweight, attractive, robust and efficient.

Write for Technical Leaflet
solo ancmatan aeme SIDEBAND RADIO
73 COLE STREET, ELWOOD, VIC., 3184
Phone 96-1877

[^18]
A Graphical Method for Locating Interfering Beat and Harmonic Frequencies

A. B. HOLLEBON,* VK6EQ

In the design of any equipment which generates its required frequencies by the heterodyne method it is always necessary to guard against the production of unwanted frequencies by the mixing of harmonics of the original input frequencies. Even if the original input frequencies are themselves free from harmonics, the mixing process will generate them and the output signal will contain a surprisingly large number of unwanted frequencies. For example if two signals are mixed and account is taken of all harmonics up to the tenth order, the output will contain a total of 220 frequencies made up of the two original frequencies and their harmonics, plus 100 sum and 100 difference frequencies.

The simple graphical method described below allows all possible beat frequencies and harmonics up to any desired order to be read off directly. For convenience, the following notation is used:
(a) The input frequencies are denoted by X and Y. (If one of the input frequencies is produced by a v.f.o., it should be denoted by Y.)
(b) Harmonics of the input frequencies are denoted by $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$, etc., and Y1, Y2, Y3, etc.
(c) The beat frequency produced by the addition of the second harmonic of X and the fifth harmonic of Y is denoted by X2Y5+, while the difference frequency between the same harmonics is denoted by X2Y5-.

AN EXAMPLE

In order to illustrate the method, the following problem will be used as an example. Frequencies of 9.0 MHz . (X) and 5.2 MHz . (Y) are to be mixed to produce a beat frequency of 14.2 MHz . What beat and harmonic frequencies will fall below 20 MHz . if harmonics up to fifth order are considered?

The sequence of operation is as follows:

1. Using a fairly large sheet of ordinary squared graph paper, mark out a scale of frequency on the right hand edge of the paper extending up to at least five times frequency Y. Mark out the same scale along the lower edge of the paper extending out to at least five times frequency X. See Fig. 1.
2. Mark a series of points on the left hand edge of the paper to indicate the harmonics of frequency Y. In this particular case, these points would fall at $5.2,10.4,15.6,20.8$ and 26.0 MHz . Number these points as shown to identify the harmonics.
3. Mark a similar series of points along the upper edge of the paper to identify the harmonics of frequency \mathbf{X}.
[^19]In this case these points will fall at $9.0,18.0,27.0,36.0$, and 45.0 MHz . Draw a vertical line through each of the X harmonic points.
4. From each Y harmonic point draw a line sloping upwards to the right at 45°. These lines are known as sum lines.
5. Draw a second series of 45° lines through each of the Y harmonic points. These lines slope downwards to the right and are known as difference lines
6. At any point where a difference line meets the X axis a reversed difference line is drawn which slopes upwards to the right at 45°. Sum lines and reversed difference lines are there-
fore parallel and equally spaced. (The use of reversed difference lines may be avoided if desired by extending the difference lines below the X axis in their original direction and using a double size page of paper.)

All possible beat frequencies produced by harmonics of the input frequencies are now indicated on the graph wherever a vertical X harmonic line intersects a sum line, a difference line or a reversed difference line. The frequency of any particular beat may be read off from the right hand scale. The combnation of frequencies producing that beat may be determined by (Continued on Page 15)

X0		X1		X2		X3		X4		X5	
Y3	15.6	$\mathrm{X} 1 \mathrm{Y} 2+$	19.4	X2Y0	18.0	X3Y2-	16.6	X4Y4	15.2	X5Y5-	19.0
Y2	10.4	X1Y5-	17.0	X2Y1-	12.8	Х3Y3-	11.4	X4Y5-	10.0		
Y1	5.2	X1Y1+	14.2	X2Y5-	8.0	X3Y4	6.2				
		X1Y4-	11.8	X2Y2-	7.4	X3Y5-	1.0				
		XiYo	9.0	X2Y4-	2.8						
		X1Y3-	6.6	X2Y3-	2.4						
		X1Y1-	3.8								
		X1Y2-	1.4								

Table 1.

Fig. 1.

SIMPLE "NO HOLES" MOBILE MOUNT

Some time ago, when I had a towbar on my car, I made up some mobile antenna bases using a pipe cap into which was cast an epoxy resin. By using a muffler clamp and a piece of flat steel about $12^{\prime \prime} \times 2^{\prime \prime} \times \frac{1}{4}^{\prime \prime}$ the base was mounted well clear of the bodywork of the car; it could also be easily adjusted for rake.

As the tow-bar had never been used for its designed purpose of towing a trailer I decided when I bought my present HK Holden that the bar was an unnecessarily expensive luxury and sought another method of mounting the antenna base. It appeared that a bracket made from $0.064^{\prime \prime}$ (16 s.w.g.) half hard aluminium would be strong enough and so this was tried out. On my second try, I hit upon a design which is simple to make, unobtrusive, and strong enough to stand upon. It can be made to fit any bumper, regardless of contour.

I will describe my mount, which is designed for a HK Holden, but, which should fit some other models with little or no modification. Dimensions can be adjusted to suit the particular type of bumper bar used on your car.

Materials required are: a piece of half hard aluminium $12^{\prime \prime} \times 4^{\prime \prime} \times 0.064^{\prime \prime}$ and two "Jubilee" hose clamps of a size large enough to go around the girth of the bumper for Holdens. They need to be about $13^{\prime \prime}$ long and I have used No. 5's.

The aluminium is cut and folded so that four lugs $1_{\frac{1}{2}}{ }^{\text {" }}$ wide protrude on either side of the body of the mount and the clamps hold the unit firmly in place against the bumper. I found that it was a good idea to form a small hook on the top piece but found that such a hook was a disadvantage on the bottom.

Having marked out your piece of metal and cut the notches in to the drilled holes, it is a simple matter to fold the flaps inwards in a vyce by using a couple of short lengths of angle iron or hardwood of appropriate size. This will permit you to fold only to a right angle. At this point, if you feel that you would like a stronger mount, another strip two inches wide and about
nine inches long is placed inside the channel and the flaps closed over it. My mount appears to be strong enough without the additional piece.

The $2^{\prime \prime}$ piece across one end then has a 90° bend put in it and with a piece of $\frac{1}{}$ " thick material inside the bend, a hook is formed.

Now mark the position of the hole for your antenna base and after cutting the hole, the mount can be fitted to the car using the jubilee clips.

Please note that the rear bumper of HK Holdens have a protruding lug under the bumper in the most appropriate mounting place and if the mount is made wider than $2^{\prime \prime}$ it will not fit. You can, of course, make it wider and fit it nearer to the number plate cutout if you wish.

Those who have different types of car may find the following hints helpful.

Measure the girth of the bumper, add about one inch and use this dimension to purchase the Jubilee clamps. If you cannot get one to go right around the bumper, they may be opened up and joined end to end.

An easy way to establish the sizes of the top and bottom sides of the angle is to loop a tape measure around the bumper bar and with a pencil or large nail work on the extended loop to establish the dimensions X and Y which are, of course, $5 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ and $6^{\prime \prime}$ in the case of HK Holdens.

I found it convenient to drill $\frac{1}{}{ }^{\prime \prime}$ diameter holes at the ends of the pieces to be notched out and then cut the notches with tinman's shears.

Those contemplating mobile operation for the first time may wonder how they can get the co-ax from the transceiver to the mount without disfiguring the car. This is easy as the door sills are removable and so the co-ax can be run under them along one side, up under the back seat and down into the spare wheel well. In the bottom of this well can be drilled a hole which you will later fill with a grommet before disposing of the car or you can use the drain hole provided.

A GRAPHICAL METHOD FOR LOCATING INTERFERING BEAT AND HARMONIC FREQUENCIES

(Continued from Page 14)
following the sum or difference lines back to the Y axis, and by following the vertical lines down to the X axis to locate the harmonic concerned. In the case of a beat which occurs on a reversed difference line, it is necessary to follow this line down to the X axis and then follow the corresponding difference line up to the Y axis.

For example, point B represents the beat frequency X1Y2+ (19.4 MHz.), while point C represents $\mathrm{X} 2 \mathrm{Y} 1-$ (12.8 MHz .)

Table 1 shows all harmonic and beat frequencies below 20 MHz . as read from Fig. 1. The values in each column are those obtained by reading down each X harmonic line in turn.

This method of predicting beat frequencies may be extended to cover the case where one of the input frequencies is variable. This situation arises when a v.f.o. is used in a transmitter which then heterodynes the signal to the final output frequency.
The graph is drawn up in the usual way using the lowest available v.f.o. frequency and plotting its harmonics on the Y axis. Each of the predicted beat frequencies is then transformed from a sum line or a difference line and downwards from a reversed difference line. The length of the vertical line drawn from any intersection point is equal to the v.f.o. tuning range multiplied by the order of the sum, difference or reversed difference line on which it is based.

If for example the 5.2 MHz . signal in the above system was derived from a v.f.o. with a range of $5.2-5.5 \mathrm{MH}$., then point B (19.4 MHz .) would be transformed into the range 19.4-20.0 MHz . since B lies on a second order sum line. In a similar manner point C (12.8 MHz .) would be transformed into the range $12.5-12.8 \mathrm{MHz}$. since C lies on a first order reversed difference line.

O
 verseas
 $M_{\text {agazine }}$ Review

Compiled by Syd Clark. VK3ASC

July 1צ60—

"HAM RADIO"

LeE Periodic Yagi Beam Antenna, W6SAI. As its name implles. this antenna is a combination of the L.P. and the Yagl. The L.P antenna is a very useful device when it is desired to operate over n wide band of frequencles. i.e. $3-30 \mathrm{MHz}$. It is not so useful when narrow, harmonically relnted bands are used. BIII Orr suggests this as one nnswer to the problem.
C.W. Trangeetver for 10 and me Melfen, by K30IO. FET front-end. followed by a mixtur of bipolar transistors and FETs until a $12 A U 6$ driver is used to drive a 1625 final. Some would say why a 1625? He had it on hand.
Direct Methods of Measuring Antenna Gain,
KiJYO. Describes how to obtain meaningful K6JYO. Describes how to obtain meaningful
data using aimple equipment. VK3ATN rates data using aimple equipment. VK3ATN rates a mention.
The Crystal Oacillater, W6GXN. A complete lators to enhance your technical reference file
Complete Tranaverter lar six Metren, by wA91GU. Showing how you can get on 6 mx s.s.b. using one of these and a 40 mx transcelver.
stub Bandawitched Antennas. W2EEY. Degribing two multiband veriticals, a fxed sta tion antenna and a iwin lend portable-no loading colls or traps.

Glass semicondectora. WiEZT. Who said glass is an insulntor? it seems some of it is semiconductoring.

A 10 Metre Boblall Curtaln Array, VEitG. A modified three clement brondside antenna that will more than double your radiated power.

Avent 1969-

A Larie Homebrew Parabolle Reflector, by WB6IOM. Cnmpletc detnils for a sixteen foo parabolic reflector using honeycomb sandwich construction. Honeycomb foll and epoxy as a fller is becoming popular in many places. This will probably interest the Moonbouncers.
salld gtate QS'er. W5TKP. Replacing dot tubes with cool iransistors makes this 21-yearald veteran better than ever. Two versions are described by WSTKP, "the QS'er reviver."

Diatartion In F.M. syatems. W5JJ. Adjustment of receiver and transmitter for optimum performance in the $\mathrm{f} . \mathrm{m}$. mode.

8imple Frequeney-Divider Calibrater ualne MOS ICs. W6GXN. MOSFETs have been used In many Amateur r.f. amplifier designs. Here is a different application.
Putting Together a Moblle Inataliation, by wofCH. A recipe for summer fun. Using a Galaxy, too, ah what Bles, sri bliss.
A New Maltiband Guad Antenma. DJ4VM. This driven array features several improvements over conventional quads for three-band operation.

A New C.W. Monitor, W2EEY. The versatile IC appears again-this time in an r.f. actuated keying monitor featuring the low cost uLS14. keying monitor featuring the low cost uloit. K8AUH. Selective call and tone burst signalling provide enhanced $\mathrm{f} . \mathrm{m}$. operation.

September 1069-
F.M. Techniques and Practices for V.II.F. Amateyrs. W6SAI. History and Information on the advantages and disadvantares of 1.m Practical cincuits are discussed and some commercial equipment is described.

Uaing Integrated Cirealis with single Polarity Power 8upplies. W2EEY. This clears up the question of power-supply connections to the question of power-supply connections io
linear 1 Cs and precsnts some hints on lead linear iCs nnd precsents some hints on lead
dress and bypassing. A Frequency Triplep ler Izsa Mc, W\&API.
Introducing the varactor as an cficient microIntroducing the varactor as an efficient micro-
wave harmonic gencrator for transmitting use. wave harmonic gencrator for transmiting use.
Tunable Band Pasa Filtera fer 25 to 2500 M . K6RIL. Here are some useful additions to your v.h.f. and u.h.f. test equipment.
gingle-Pale Band Pass Filtera. W6HPH. Filters for operation on 21. 28. 50 and 432 MHz . are described.
8tanderde for Amateur Microwave Communications. K6HIJ. This standard microwave system offers a practical means for Amateur work above 1 GHz .

Salld State Modification of Moblle Converter. John R. Schuler. An easy way to modernise a Gonset tube converter for moble use.
Affect of Mismatched Tranamitier Loada, by W5JJ. Does the character of the laad affect Hower amplifier efficiency?
This completes the run-through of nine issues of "Ham Radio" which have arrived to date. My summing up of the journal is that it presents items of intercst to all Amateurs in a very complete manner. Text is comprehensive without being unnecessarily wordy. Production is clear and precise and any comments which are made are done in a dignified manner. I have no hesitation in recommending this journal to my fellow Amateurs.

"QST"

November, Alwis)-
The Collinear Yast Qaartet. W6KPC. It has often been said that an outstanding aerial will get bettcr resulis than high power. This design, which consists of four six element yagls, the upper pair 103 feet above ground, has a gain of about 15 db . on 10 metres.
Let'a Talk Translatora, by Robert E. Stoffels. Reprinted from Telephone Engineer and Management. Part One covers the structure of matter and its application to transistors. This Is the first of a nine-part theoretical series: written especlally for persons with a limited technical backaround.
A solld state speech Pracessor, WB2EYZ. A controlled amount of cllpping added to compression gives n better overall result. In speech processing than does elther alone.
A Code Practice Oacllator and C.W. Menltor, WBBTUM. A simple gndget for the beginner In Amateur Radio or solld state technique.
A $21 / 2$ M Mas. Tranaverter for X.s MHE. Tranacelvers. If you are stuck with a monoband transcelver for the 80 metre band, this article shows how you can get onto ten and arteen with relatively little trouble and ex-

Atmospheric Nolae and Recelver genalitilis. w7IV. The statement is often made that reviver the statement is often made that rethe frequency of transmission falls. Here are the figures to demonstrate the point.
A Co-ax Fed Trap Dipole for mo to 10 Mx, wilcP. Here is a multiband aerial which is casy to make and adjust. It can be used with one or two poles for support.
Perfect Morse Code from Teleispe Tape Inexpenalvely. KiPLP. A minor plug-in modification to n transmitter-distributor and you can use a teletype machine to send Morse at about quarter of teletype specd.

Recent Equipment. "QST" reviews the Inoue FDFM-2. A small 2 meire iransceiver running about one watt output from dry batterles and iwo watts from an accumulator. Sells in the U.S.A. for about 250 dollars. It has a larger brother which gives at least five walts output and sells for about 300 dollars. W1HDQ seemed to like the rig which he suggested as being good value for money. They have not yet been seen in Australia.
Tranamisalon Line Sections lor R.F. Cbotes and By-passing, W6AXT. At v.h.f. or u.h.f. line sections perform better and are practical substitutes for the usual types of r.f. chokes and by-pass capacitors.

TRANSISTORS

CO-AX. FITTINGS, DIODES, RESISTORS, CAPACITORS

These and many other new components are available from the Victorian Division of the Wireless Institute of Australia. Members of any Division wishing to take advantage of this service may obtain a Components List by sending an S.A.S.E. (preferably $4^{\prime \prime} \times 9^{\prime \prime}$) to:

DISPOSALS COMMITTEE
P.O. BOX 65 .

MT. WAVERLEY.
VIC., 3149

AWARDS FOR TECHNICAL ARTICLES

With the change in the closing of our financial year to the end of December, it was necessary for the Publications Committee to consider the awards for articles published during the year a little earlier than usual. This matter was considered at the December meeting and it was unanimous that the series on the Solid State Transceiver by Harold Hepburn, VK3AFQ, and Ken Nisbet, VK3AKK, was a clear-cut winner, and the top award has been shared by these gentlemen. Awards have also been made to Col. Harvey, VK1AU, and Wal. Salmon, VK2SA.

Our congratulations to all these Amateurs, and we trust we will have the pleasure of receiving further material from them all.

HIGGINBOTHAM AWARD

Some sort of record has been established this year as for the second year in succession, the Higginbotham Award has gone to Rodney Champness, VK3UG, in recognition of his consistent work for and submissions to "A.R." Congratulations Rodney.

CURRENTLY RADIATING SATELLITES

The following are satellites currently radiating and observation of which is reckoned to be of scientific value. The list does not therefore include all satellites radiating. These data have been taken from COSPAR Information Bulletin for October 1969 by VK3TX.

The Designation is followed by the Name and Frequency MHz. (Power).

CONTINUOUS BEACONS

1964-6A-Explorer 22-20, 40, 41 (250 mW.); 360 (100 mW.$)$; 162, 324.
1966-110A-ATS-1-136, 47, 137.35 (2 watts).
1968-02A-Explorer 36-162 (300 mW).; 324 (400 mW .); 972 (500 mW .). 1968-69A-ESSA-7-136.77 (250 mW.). 1968-84A-Aurora- 136.170 (200 mW .). 1968-100B-TTS-2-136.86 (100 mW .). 1968-110A-OAO-2-136.441 (160 mW .) 1968-114A-ESSA-8—136.770 (250 mW .)

CONTINUOUS TELEMETRY

1966-16A-ESSA-2-137.550.
1967-114A-ESSA-6-137.500.
1968-17A-Explorer 37-136.521, 137.590 (150 mW .).
1968-114A-ESSA-8-137.620 (5w.).
1969-37A-Nimbus 3-136.950 (5w.); 136.50.

Corresponáence

Any oplnion expressed under this heading is the Individual opinlon of the writer and does not
necessarlly coincide with that of the Publlshers.

MORE ON THE USE OF C.W.

Editor "A.R.," Dear Sir
The letter from VK3ZJC published in December issuc indicates a lack of appreciation. which is quite common in correspondence on this subject. of international regulations to which Australia subscribes as

the Internationsl Telecom. Union.

It is by international ngreement that a demonstration of proficiency in c.w. must oc demonstrated by a candidate for a licence granting operation on DX bands.
Personally. I can assure the writer that I am not a "brass pounder". my interest lies in QSP SSB DX. but I did not expect a change in inte
As for stratifying Amateurs. is this not common to all fields of endeavour; greater reward requires greater exertion. The latest trends oversens. especially in U.S.A. which country has the world's largest Amateur popu lation. has been to extend the scope of incen tive licensing: power. frequencies, etc.. being dependant upon the level of examination dassed.
In many countries, including U.S.S.R., which has the second largest Amateur population. quite severe restrictions are placed on new licensees unttl they have proved their c.w. proficle
Personally, I feel that "Limited" licensees have a "good go" in this country compared to most other countries which "tolerate" Amateur Radio. Let us not forget that the demands on "our" frequencies by other Services are of Amateur Radio as a Service of selp training.
-Bert Foster, VK5EW

Editor "A.R.," Dear Sir,

Mr. Martin. VK3ZJC, hopes that his comments regarding c.w.-or the deletlon of itwill provoke understatement of the year as this could be spread throughout the pages of this Journal but to take the load off the Editor, let's summarise it by saying. Mr. Martin you like phone or more precisely, you dislike c.w (a) You consider is archalc:
(b) It takes up room that could be used by phone stations:
(c) You find the code difficult to master, and
(d) It prevents you using some Amateur bands.
In relation to lai. your view that c.w. Is old hat would be hotly contended by thousand it as THE mode of operation. They do not decry other modes. This is a free cholce hobby decry other modes. This is a free choice hobbl in which (to the irony of some) others stin prefer
like c.w.

As for 'bl. the operation of slow scan t.v. r.t.t.y. and facsimile come into the category of c.w. and must therefore be taking up pre-
cious space although one does not need to cious space although one does not
read code to use these transmissions.
In (c) lies an honest statement that you find it hard to master the code. Believe me. OM everyone finds it hard going at the beginning. and if 1 sound like Father Time then that's hard luck. but if you stick with it. it will eventually "click". Even the Apollo teams found it a bind. so we are told. but they stil had to learn it as a back-up facility. Once you bent it you'll find the c.w. gang just as enthusinstic, dedicated and proficient as any other segment of Amateurs.
Finally, relating to (d). you say that you are prevented from using six Amateur bands because of the retention of the c.w. requirements. The Amnteur Service is tolerated partly because it constitutes a force of trained opera tors and technicians capable of supplying emergency communications and the most reliable mode is c.w.-it is as simple as that As members of that Service let's stop quibbling about idiotic trivials and concentrate on decent transmissions. We may retain our bands in that way.
-B. S. Clarke, VKSBS
Editor "A.R.," Dear Sir,
I would like to comment on the letter of John Martin, VK3ZJC. concerning Morse and Novice licences
When. as VK3ZOM. ${ }^{1}$ got some QSL cards, I added the letters F.M.S.T. after my name.
i had earned the title. In small letters at the
bottom of the card it explained that the letters stood for "failed morse seven times"
I tried first in 1850 and practised with a friend. After some months we sat. He passed and I failed. I did the same thing with another person who was learning. After having failed five times and seen two people who started from scratch with me both Dass. I gave it away. ${ }^{\text {Those days. }}$
About twelve years later-having lost all the credits for the theory and regus., I did the whole show again, with the same result. but this time I got a Limited licence. I had and missed again
A friend, who had taught Morse, tried an Interesting test. He read out. In English, a series of letters and timed the speed at which actlon time, etc. was such that 1 broke down at 15 w.p.m. Under these conditions 1 had no hope of taking Morse at 14 w.p.m. I gave it away.
When the 10 w.p.m. test came in, however. I decided that I had enough margin and what had been a physical impossibility was now merely a matter of work and practice. With the ald of a tape recorder and an ear plug (in trains and trams and lunch hoursi, 1 eventually made it. Having done things the hard wa
First of all find out if you have a real chance by getting someone to time your ability to write down letters one at a time when they are dictated in English. If you have 50 per
cent. or more margin over the code speed. cent. or more margin over the code speed.
you can do it. Then when you learn the code you can do it. Then when you learn the code digures and practice in code groups of mixed langage.
I came out of the exam-the one I passedwithout the slightest idea of what I had been writing. Not many people realise that-
thereisnoneeduhatever

I may be biased but I still feel annoyed about he idiocy which insisted on 12 nnd later 14 w.d.m. Tor Amnteurs when commerclal opera tors could get a licence at 10 w.p.m., but that is now old hat. What 1 think should be done now is to have phone and c.W. bands after the fashion of the U.S.A., with possibly some other additional encouragement to those Who wish to learn and use c.w. But John Martin is himself rather unfair. Just as some able c.w. operators assume that "anyone can pass the Morse test" he seems to assume that "anyone can pass the theory". I would suggest that at least as many candidates have as much rouble with theory as with Morse. especially nuw. Even back in 1950 when 1 first sit for the exam. I had had more experience in radio than most examinees, including some years at radio repair work. But while I could answer questions about suderhets in my sleep I found all the questions about transmitters, standing waves, aerials and so on required a lot of work and study. One can at least practice Morse before the exam.. but one can't practice ransmitting until one has passed!
I most definitely think there should be a simplified theory exam and that they should have the option of having he use of the c.W. bands if they also pass a simplified Morse test, say 5 w.p.m. After a year or possibly two the Novice should be
able to pass the full theory exam. and, if he wishes. the 10 w.p.m. Morse and thus acquire a full licence. Meantime, he will be entitled power the normal bands but with a maximum power of say 10 watts. Essentially the Novice licence would be a means of giving a beginner
a chance to learn enough to pass the full test. a chance to learn enough to pass the full test.

OBITUARY

BRUCE CHAPMAN, VKSBA
Old Timers will be sad to learn of the death on 27th November, 1969. of Bruce Chapmen, VK2BA. who passed away in the Royal North Shore Hospital after a long illness.
In the early 30s. Bruce took an active part in Amateur affairs in N.S.W., and was one of the top c.w. operators of that tume For a period before the last war, he was stationed at Tulagi in the Solomon Islands and under the call sign of VR4BA became well known on the air as at that time he provided one of the few Amateur Radio inks with that area of the Pacific.
After War Service with the Royal Australian Navy in the Pacific area, he set up again from Sydney as VK2BA.
Although not active on the alr in recent years, he retained his keen interest in the technical side of Amateur Radio and at the time of his death was accumulating some sophisticated equipment with the intention of making a "comeback" on the alr from property which he had acquired at S.
Bruce's passing will be a loss to those who knew him and who were his asso cintes both in business and Ham Radio ffairs.

ARTHUR GEDDES HENRY, EX-VK2ZK

Arthur Geddes Henry, who used the cal of VK2ZK in the late 1920s, was an excellen Morse operator and won the W. T. Craword Trophy in that field on at least two occasions.
During the war, and after, he was 100 busy to continue Amateur activitles and he allowed his licence to lapse. At no time however did he lose interest in Amateur work and his passing is a sad loss to us all. Born in 1907. Arthur was an engineer with the N.S. Whallways when he enlisted 12468, and he progressed through the ranks to the rank of Major. Arthur served in Signals in the Middle East, covering the campaigns in Greece. Crete and Syria, and later had periods in New Guinea and Morotai.
Arthur was 2 I/C 5 WT in 1 Aust. Corps S!gs. and joined Australian Special Wireess Group as 2 I/C at the Group's incepwith Central Bureau and left the Army in with Central Bur
He was a lovable character and although his parade ground standards rarely reached
Duntroon helghts, he was always popular
and much of the success that the Units nchieved can be attributed to his resourcepulness.
He joined the Unit at Seymour. whence he arrived from Sydney, bringing with him all the Ham operntors that he could collect -skilled operators, signalmen able to ide:itify operators by their style of sendingindeed manna from heaven in those early days of the war.
Intensive training began, on equipment that was in various miraculous ways obtained for the Unit by Arthur and John Ryan, with a result thnt it was n well. section met with instant success and played a valuable part in the retreat in Grecce. Then followed the grim days of Crete when agaln the section fulfiled a vital role.
Arthur's strength of character showed up when the order to head for the ports and abandon the island was given. His concern was the transport and he and n lew Crivers were n week later than the main bedy in getting off. because he determinedly goi his trucks through to the embarka-
tion point only then to have to destroy tion

them.

His technical knowledge and experience proved a great asset when the section was expanded into the group.
Always a keen photographer, on a recent trip to the M.E. he took photographs from the same places as 26 years previously, and compared the views
Willams Fitzmaurice Hill ably says for us a.ll: "Artt.ur was a wonderful comrade, a man to be respected. with a vast store oi technical knowledge. He would not wish o be mourned. We who are left, can look into the West and remember.'
Vale. Arthur!

CYKIL BAKER, VKGZBG

It is with deep regret that we report the pil:sing of another of our Ambleur fraternty in VK6. in the person of Cyril Baker. November, Cyr
Since receiving his licence in February 1905 he was often henrd on six metres using both l.m. and a.m. and also on two metres il.m. Although Cyril had not en. joyed the bist of health during the last twelve months, he was still mobilecring right up to the time of his passing.
The VKG Division extends their deepest sympathy to his family in their bereavement.

1870 is with us now nnd what a start it got In VKS. Gales and heavy rain lashing the State, near freezing temperatures, none of which were very conducive towards spending turned up in the form of brief openings to VK4 and VK6. Quite a bad start for the enthusiasm shown in VK2 for any hope of Interstate contacts on n large scale for the launching of their introduction to the AX prefix with a $24-h o u r$ contest for v.h.f. opera-
tors. But maybe conditions were better in tors. But maybe conditions were better in the east. in the absence
contrary we will hope so.

Slx metre DX has been spasmodic as predicted. However, the VK4s and VK6s were observed having a "real ball" on Saturday. States worked right ncross Australla. Here in VKS we could hear both sides of the contacts. and that's about all we could do. too, as nelther of the parties concerned wanted io miss those 2.000 mile contacts.

That same day saw probably the greatest activity of the DX season on 2 metres. Erarly in the morning S9 contacts were available our old friends Rov 3AXV, Roy 3AOS. Jim 3AEF. Bob $3 A R M$. with a newcomer Eric $32 K N$ near Hamilton being available. In the S.E.
of S.A. Trevor 5ZTN and Col 5CJ held the fort. while John $5 Q Z$ portable at a place called Birthday Hill, some 36 miles south of Woomera, had a rather lonely time with the longest distance worked to 5LP on a hill near home. Not content with this sort of activity entirely. Wally 5ZWW procecded to make tape recordings of VKBVE. the beacon on 144.500 it Albanv, audible with long slow QSB from C645 to 0830 E.S.T.. varying from S2 to S5. and again that night from 2030 to midnight to S5. again that night from 2030 to midnight to Ss.
The path is about 1.100 miles and if only you The path is about 1,100 miles and if only "kick" chnps in onets from hearing even bencons on 2 mx over these distances. I Am sure you would get on with the job of constructing 2 mx beacons in your States:

The only reports of signals from Japan in the VKS replons this season was that from E.S.T. on 52.010 MHz . on 191 h Dec. Maybe we can get a roundup of news from the North tainly has his share of contacts with exotic areas.

NEW sïf MHz. RECORD?

As the result of my much advocated portable operation. It seems likely a new distance record has becn set for 56 M 2810 this time in the vicinity of 200 miles oll 28th Dec. The participants were John 5QZ, assisted by Treva
$5 Z I S$. who situated themselves on Hancocks 5ZIS. who situated themselves on Hancocks
Lookout in Horrocks Prss near Port Augusta, nnd Graham 5Z.JL conveniently placed about 15 miles south of Port Lincoln. John reports signals were extremely strang on 2 mx . even on the whip antenna. On 576. signals both
wrys were SB, 9 with virtually no QSB. The ways were S8,9 with virtually no QSB. The
equipment used was stabilised gear at both equipment used was stabilised gear at both
ends. Both parties used s!milar recelving ends. Both parties used s!milar recelving
equipment consisting of modified $5 Q Z$ type 432 MHz . converters for use on 576 . The two transmitters were using QQE03/20s with about 5 watts output on a.m. 5ZIL used a 16 clement phased array of standard arrangement. 5QZ used a 32 clement extended array. Most of the distance consisted of a water path. A claim for the record is to be lodged shorily. I am sure all Amateurs will shy well done to these enthusiasts. Next month it is possible n photograph of the specially made car-roof mounted 32 element antenns used by John 5QZ will be avallable for publication.
On the subject of portable operation and just what can be donc, it is pleasing to note Bob 3AOT was going to operste from Mt. Buninyong. near Ballarat. from 3rd to llth Jan. on the 52. 144. 432 and 1296 MHz . bands!
It is hoped something can be passed on to It is hoped something can be passed on to
you from this well organised operation. Which you from this well organised operation, Which
is perhaps a trial run for the John Moyle National Field Day on 7th and 8th Feb.
Everyone is reminded that this Field Day provides an excellent opportunity for hill top and other portable operation As there are two
periods. one for 24 hours, the other for 6 hours.

It scems likely there will be quite a bit of activity of this nature in VK3, and probably VK5. which will be well supplemented by the VK2 VHF and TV Group who are combining treir VHF/UHF Field Day to coincide with the N.F.D. Providing the weather pattern is sultable with the likely meisure of activity already midicated. chances readily exist for some really long distance contacts. If Eddie IVP is able to get out on Mt. Ginini, near Canberra during the same perind the plans will be complete. Full details of the John Moyle Field Day have slready been provided In "A.R.," read them carefully.

Much intcrest and activity seems to be centred in and around Melbourne on 1286 MHz. at present. According to Peter 3ZYO. there ire sbout cight active stations on the band, and nightly skeds are kept over $50-m i l e$ paths. Ron 3AKC and Wilf 7WF are working towards extending the present $136-$ mile record for the band to 223 miles. At the time of writing. nothing has come through of any success. but when it does I hope to be able to give you sil plenty of details. Good luck gents. I wonder how long it will be before Rod 2ZSB Iex 5ZSD. 6ZDS starts stirring up interest on this band in his area, perhaps to work ZL? v.h.f. and s.s.b.

Listening around the bands and overhearing conversations, one canmot help but feel a controversy is in the making and as far as I can gather centres around those not able to receive s.s.b. signals on v.h.f. as distinct from those who won't work s.s.b. stations, there being quite a number in the first case, and a few in the second. Personally, although I advocate full station facilities wherever possible at any time, and this includes the iacility of being able to receive and work s.s.b. stations. however no one has the right to expect fll stations whom they might select at random to be adequately prepared to work nny mode: there may be perfectly valid ressons for any such insbility, lack of finance ability or skill not on the air long enough, shortage of time breakdowns, etc. At the same time one could conceivably expect a station running high conceivabiy expect a ststion running high nll modes, but this may stlll not always be so.

It scems, therefore, that if you operate s.s.b. oll v.h.f. and call an o.m. station you mus be prepared to accept the fact that a percentage of such stations will not be equipped to read vou. likewise, If the a.m. operator calls a s.s.b. station, he too may not find himself beIng read elther if his signal is not stable. as a gond s.s.b. receiver receives the a.m. Signal
on one sideband only, and if vou wobble around on one sideband only, and if you wobble around much he can't read you elther. So, untll you have what could be a classic example of an a.m. station calling an s.s.b station and then telling him he can't read his signals due to
no b.f.o.. none of you really have a case to b.f.o..

However, to try and spresd the versatility of operation ns much as possible, it seems desirible for some assistance to be available to get more b.f.n's and product detectors into receivers and with this in mind. I am hoping to appear in "A.R." in the near future. In to appear in "A.R." in the near future. In in its proper perspective, and think before talking. And all credit to the young chap who recently came to light with a Pye Reporter tuncable over 6 metres, and with a b.f.o.!!

My predictions last month thnt the VKGs would not let us down by not hnving their 2 mx beacon running has already been proved ty the note about its reception here in VK5 carlier in this column. The current list of beacons is as follows:-

| ZL2 | 50.750 | Wellington t.v. sound. |
| :--- | ---: | :--- | :--- |
| ZL3 | 145.000 | ZL3VHF. |
| VK2 | 51.740 | Channel 0, Western N.S.W. |
| | 143.750 | Channel 5A. Wollongong. |
| VK3 | 51.760 | Channel 0. Melbourne. |
| | 144.700 | Under construction. |
| VK4 | 51.750 | Channel 0. Brisbane. |
| VK5 | 53.000 | VK5VF. Mi. Lofty. |
| | 144.800 | VK5VF, Mt. Lofty. |
| VK6 | 52.006 | VK6VF, Tuart HIl. |
| | 144.500 | VK6VE, Mt. Barker Albany). |
| | 145.000 | VK6VF, Tuart Hill. |
| | 435.000 | VK6VF Ion by arrangement). |
| VK7 | 144.900 | VK7VF. Devonport. |
| JA1 | 51.996 | JAlIGY, Japan. |

I was very plensed to receive a letter from Divid VK3QV with some very interesting ining a contact on 28 MHz. on $27 t h$ Dec. Al. has ing a contact on 28 MHz. on $27 t h$ Dec. Al. has
betn in Okingwa for 10 years and during that
ime has worked on 52 MHz . to VK4. 6, 8 and . Doup VK8KK has mentioned Al. as being worked from the Darwin srea. Unfortunately Al. will be retiring from Federal Service soon and leaves to settle in California in March and will have the call KH6FJY/WG pending llacation of a call with the prefix WC6. In U.S.A. he will be confined to 50 MHz . and bove as he has a Technicians licence. On Okinawa this is distinguished by the letter in the call. which also allows him to oper te on 28 MHz . there, but not in the States Channel 0 television from Brisbane had been copied a number of times in Okinawa.
Members of the indigenous population are allocated KR8 calls, and at Oct. 1968 about 110 such calls had been issued. Apparently a couple have shown interest in 6 metres so here may be someone to carry on the good work from there. The natlve tongue is Japanse, and Al. says their standard of English is not as Rood as most JA operators, so here may be one stumbling block. So exit to a keen v.h.f. operitor in the north, we here in VK will be the worse for the ending of this particular era.

Remember to send in your logs for the Ross full Contest. full detalls in October "A.R." Hope also to hear you portable in the John Moyle Field Dny, 7th and 8th Feb. Will close at this point as I want to leave a little more room for some of the very interesting things which can be written about this month's "Met he Other Mnn". Thought for the month: "A lie may take care of the present, but it has no future."

73. Eric VK5LP. The Voice in the Hills.

HEET THE OTHER MAN

Mcet Ron Wilkinson, VK3AKC, ex VK3ZER Newtown near Geelong, at an elevation of about 150 feet. right near the water in o DXer's paradise First licensed 200 M. Ron now operates on 52, 144. 432 and 296 MHz . bands. On 52 he runs 18 watts to a QQE03/12 coupled to a 5 element wide spaced vagi. 30 fect high. Recciving is done with a 6 AG5 in the front end of the converter. Due to Channel 0 . activity is restricted to Sunday mornings or after t.v. closes

On 144, Ron runs two transmitters, both using QQE06/40s, one on s.s.b. 250 watts p.e.p. he other 60 watts of a.m., with a 16 foot long 0 clement wide spaced yagi. 50 feet high, 6CW4 cascode converter.

On 432, another $6 / 40$ is used to give 60 watts 0 A 52 element 14 yagisi array at 39 leet with an AFY16 cavity front end in the converter. The tunable i.f. is 9 MHz .

Of comparatively recent tlmes Ron has launched out on 1286 MHz . and made his presence felt. Running 3 watts to a 2C39BA in a radial cavity to a 6 ft . 9 in. dish, he has worked UKi line-of-sight 70 times over a S6 to S9 plus. The station moth. with signals with the a.m. equipment is zero bias 807 s running about 75 watts.
All VK call areas 1 to 9 inclusive plus 2L1
to 4 have been worked by Ron on 6 metres.

Wireless Institute of Australia
 Victorian Division A.O.C.P. CLASS

commences
Theory
TUESDAY, 17th FEB., '70
Morse:
THURSDAY, 19th FEB., '70
Theory is held on Tuesday evenings. and Morse and Regulations on Thursday evenings. 8 to 10 p.m. Persons desirous of being enrolled should communicate with Secretary W.I.A., Victorian Division, P.O. Box 36. East Melbourne. Vic., 3002. (Phone 41-3535, 10 a.m. to 3 p.m.)
plus 120 JA stations. Has also worked K6HGP in Hawaii, following this contact he was called by a W8 but unable to make contact. Has also been heard by VETAQQ and has a card to prove it: On 144 VK2, 3, 4, 5 and 7 have been worked, the VK6 beacon at Albany has been heard on a number of occasions, and has also worked ZL2 and ZL3. On 432, VK3, 5 and 7 represent his efforts, and is currently attempting to create a record on 1296 MHz . by working VK7WF, a distance of 223 miles. Knowing Ron and his efforts, he will do it? The Ross Hull Memorial Contest Trophy has twice been won by Ron, and on one occasion he came second.
With the return of the requested information Ron sent along some additional notes which set out more clearly some aspects of his v.h.f. operations. On 146 f.m. he regularly works operations. On 146 fm he regularly works biles, for this he uses a 10 element vertical

40 feet high, running 15 watts f.m. The coaxial cable used on all bands is PT29M which has a loss of 6.33 db . per 100 feet at $1,000 \mathrm{MHz}$. On 432 Ron mentions working six north corst VK7s at distances of 223 to 275 miles, two of these consistently throughout the winter months, too. On 1296 MHz . Ron flnds the 6 ft. dish works very well, fed with 30 feet of PT29M. This goes into two trough line cavities-one for the diode multiplier on 1152 MHz., which is a 1N82A, the other to a IN3ER diode mixer. This is fed into the 144 MHz . converter then to the 9 MHz . tunable i.f. In the hotted up AR7. The 1298 transmitter consists of a QQE06/40 on 432 driving a modulated tripler, a 2C39BA in a radial cavity with 3 watts output. Both 432 and 1296 together, are modulated for best results. The radial cavtiy was built by Les vK3ZBJ.
Looking to the fuiure, Ron says he is going all out for this record attempt with VK7WF

BIII VK2ZAC at his location. Mt. Ginini, 30 miles south of Canberra, A.C.T., 7/12/69.

Dick VK2BDN at his location, trig point on Mt. Canobolas, 7/12/69.
on 1296, and said the building of the 6 ft .9 in dish was a large undertaking. He finds different heights suit some areas, not others. A difference of four feet suits one part of Melbourne, and full height of 40 feet suits another He concludes 1296 to be a very interesting band and has stirred sufficient interest in VK7 for other stations over there to want to try and cross the water as well. Good luck to all in these experiments with low power.

149 AIR MILES ON 1296 MHz.
After about 12 months of improving gear and finding a suitable path on Sunday, 7th December, 1969 , at 0905 hours. Bill VK2ZAC and Dick VK2BDN worked over a distance of 148 miles on 1296 MHz . with signals 5 and 9 both ways: this distance bettered the previously set record by 16 miles (VK4KE/4 and VK4ZJ/4 made contact over a path of 132.6 miles on made contact over a
2nd
Bill VK2ZAC was located at Mt. Ginini, 30 miles south of Canberra, A.C.T., while Dick's IVK2BDN I location was on Mi. Conoblas overlooking Orange. The gear, which was 90 per cent. home brew, consisted of two 4 ft . 6 in. parabolic dishes with 4-turn helix antennae to excite them. Bill's line up of gear included a f.m. 2 metre exciter (15 watts output) driving a veractor tripler to 432 MHz . and a veractor tripler to 1296 MHz . (output about 4 watts), the receiver being a crystal locked converter to a tunable i.f. at 14 MHz with a f.m. detector. The gear used at VK2BDN's location included a f.m. 432 MHz . exciter running 13 watts output driving a veractor tripler to 1296 MHz . with 8 watts output, the recelver being a crystal locked converter into tunable i.f. with the first conversion at 144 MHz .

Although 16 miles does not appear to be any great increase in distance for this new record, anyone who has been to N.S.W. must realise the difficulty in finding a suitable path. However with 5 and 9 signals over the path of 149 miles, we are looking at
give us 220 miles.-VK2BDN.

$\dot{~}$

W.I.A. COOK BICENTENARY AWARD

It is with great pleasure that we announce the following recipients:-

Certificate No. 1-
E. J. Kenny, ZM2QK (first world-wide).

Certificate No. 2-
H. G. Wilson, AX2AGO (first Australian).

Interest in the Award has exceeded all expectations and it has been most encouraging to hear the very friendly spirit among the stations working towards the Award.
-Geoff Wilson, AX3AMK.
Federal Awards Manager.

WORKED NORTH QUEENSLAND AWARD

RULES

1. The award is available to any licensed Amateur who is able to confirm contact with five Amateur Stations in North Queensland.
2. North Queensland is defined as that purt of the State of Queensland North in latitude of Sarina and includes such cities as Mackay, Ayr, Townsville, Charters Towers, Mt. Isa and Cairns.
3. Conflrmation is required in the form of QSL cards or a check list. the accuracy of which is confirmed by an executive officer of a Radio Club or Society.
4. The Townsville Amateur Radio Club is the sponsor of the award. Any queries relating to the award will be resolved solely by the Club.
5. A handsome multicolour certificate will be sent to those who apply and qualify for the award.
6. Applications should be addressed toThe Secretary.
Townsville Amateur Radio Club,
P.O. Box 964.

Townsville, Qld., 4810.

AMATEUR FREQUENCIES:
 ONLY THE STRONG GO ONSO SHOULD A LOT MORE AMATEURS!

Sub-Editor: DON GRANTLEY
P.O. 80x 222, Penrith. N.S.W., 2750
(All times in GMT)

Fro:n George Studd. ZL2AFZ. DX editor for the N.Z.A.R.T.. comes news of the stations for Which he is QSL manager. Firstly, ZMIAAT/K t: now actlve on all bands following the mis-
l:ap th his transcelver. however he has had to lap to his transcelver. however he has had to
change trequencies to 7010 and 3510 due to change irequencies to 2010 nnd 3510 due to
heavy QRM. Inward QSLs arc being cleared heavy QRM. InWard QSLs are being cleared
by return inail. ZM3PO/C is active but cannot give a regular time of operation due to shift commitments. His cards will be delayed While al new batch is printed. Finally. Barry ZMIBN/A will be active by the time this reiches press. he has been troubled by equidnient fnults.
1 would like to thank George for regularly mailling notes to us. they are full of information and of course a real asset to me in compiling. His QTH for stations under his managewent is: G. Studd. ZM2AFZ. 48 Nuffeld Ave., Napicr. N.Z. In passing. George is one of the best c.w. operators in the world. I remember one occission n few years ago when he was In contact With ${ }^{\text {a }}$ KG6. Think contact was testing out an electronic keyer. The longer they went the faster they went finally they left me at n speed where 1 was forced to leave the pencil and take to the typewriter, finally, in order to copy the QSO 1 had to record it at 7 i.p.c. on tape. and replay at $3^{3 / 4}$ i.d.s. Even at that it was still haster
It is expected that there will be a DXpedition to Hasselwood Rock near Rockall Is. in the Outer Hebrides by DL5YT in May 1970. ind there is a strong possibility of D.X.C.C. credit for this one.

Band conditions have been steady for this inonth. with some good DX on the lower binds. Dirticularly 80 metres. George Allen over in Perth logged about ${ }^{\text {ing }} \mathbf{~ G D T X F}$. G3. JA1. SM7. UAO. PK1, DJ5 and OH2 one night a few weeks ago, whilst and OH2 one night a few weeks ago, whilst the following are reported as worked from ZL:
G. ON4. HB9. GC3. CP1. T1, VE6. W9. K6/B/ 0 5/O. PJO. LU2. KX6 and many others. The irequencles given are all in the s.sb. segment. frequencies given are all in the 5.5
and times ranke from 0600 to 12002

On 40 metres. similar conditions prevall, with good openings to most parts of the world. ind to all W call areas. The commercials in the c.w. segment make copy difficult, but nevertheless. there is activity there.
There has been a couple of good openings oil 160 metres. these belng reported by George Allen who heard the Europeans on this band at around 21002 G3IGW and G3RPB are involved in the skeds, and also some DLs have been heard. This is too late for the Eastern Stites. as the sun is high at that rime and of course
The main DX bands have bcen mainly good. 20 has occasional fat periods. but on the whole has beell outstanding. with good openings on 15 and decreasing activity on 10 .

There will have been activity from Albania by the tirre you read this. ZAIBA from the Tirana Technical High School was due un carlv December for 10 days. QTH C/o. P.O. Tirinna.
VP2AA has been reported on 15 metres ut 22502. name Barney. new QSL address is Box 4f. St. John. Antigua.
W2KGO/MM was heard here during the Apollo 12 jaunt. he is the station operating froin USS Hornet. the rescue ship for the asisonaughts. We understand that he has a spectal QSL.
QSL information for EABBG on Balearic I-land is WIRLV for American stations only. DL7FT for the rest of the world. The station has been working 21320 at around $1230 z$
mentioned earlier in these notes that Rock. all is. miny get D.X.C.C. credit. necording to reinted this bulin the A.R.RL. have now use a hellicopter to fy a DX-pedition there
This iecal. is a new station operating from Anguilla. reported by Bernard Hughes of the ISWL. He is active daily on 14180 at about 1930z. QSLS RO to British Amateur Radio until end of February. The following information has been recelved by Stew Foster. DX editor of Monitor from
KicSM. who states that he has been in-
structed by the stations for whom he is man ager to QSL only when the QSL or report is accompanied by SASE or IRCs. The station for whom he is manager are 9V1OI, 9V10X, MP4BGR. MP4BGW. MP4BGY, 9K2CA, 9K2CB,
9K2CC and SVOWM. States that he cannot uee the burenu.
Recently n station was active calling himself 7G1CG, however he was not located offc ially in the Republic of Guinea, therefore is regarded as illegial.
Here is the litest list of YB prefixes. YBO City of Djakarta: YB1, West Java: YB2, Central Java: YB3. East Java: YB4, South Sum atra: YB5. Central Sumatra: YB6, North Sumatra: YB7. Borneo Is. or Kalimantam as it is known: YB8. Celebes: YB9 covers all islands east of Java, including Irian Barat.
Now one for the SWLs. Since the cessation of the SWL page here in "A.R."" the question of QSL ladder positions for VK SWLs often crops up. 1 try to keep A record here, and would be pleased to here occasionally from active listeners as to their scores. Number o countries heard/confirmed/zones confirmed, and American states confirmed. The top dositions as far as 1 can ascertain at present in order of countries confirmed are Eric Trebilcock. Peter Drew. Ernie Luff who has just pas
the 200 mark with myself fourth on 197.

Another award of interest is the Mercury Award. This covers QSOs and reports since October 1, 1960. with members of the Royal Navy Amsteur Radio Society. The basic requirement is for 20 points for U.K. stations. 10 for other Europeans, and we here in Australia need only 5 points for the award in its basic form. Each member counts as one point. with HQ station G3BZU or G3BRN councing as two points. Stations can be worked Stickers are issued for each additional point over basic requirement CHC rules apply fee is $2 / 6$ sterling or 5 IRCs. Certified lipt to the custodian. G3HZL. 153 Worple Rd., Isleworth Middlesex. England.
At this stage we will continue with QSL will out the remainder inis issue. First of all I have full informaraic BD FOJS BL F3KT BS ONSED BT F5JB. CD FiJS. BL F3KT, BS ONSFD, BT F8YY, CJ FiXM, CI HG9SJ, CK W7GVA, CL K7ADD, CM F9ET. CN F8VQ

QTH SECTION

DUIBEN-Box 370, Manila. Philippine ls.
DU7GB-Box 15, San Carlos. P.I.
EABGA-Cas 215. Tenerlfe, Canary Is.
EA9EJ-Justo Benedicto Perez. Cas 172. E Aalun. Spanish Sahara
EA9ER-Angel Cuervo, Cas 227. El Aalun
HC8GS-Luclo Saltos. Santa Cruz, Islas Gala TIAK Dagos. Ecuador
JTIAK-Box 92. Ulan Bator, Mongolia.
KA9ZZ-Box 573, A.P.O.. San Francisco, Callf. KJ6CF-P.M.R.. ${ }^{\text {P62 }}$ Box 141. A.P.O.. San FranKM6BI ${ }^{-}$R. McCormick. A.R.S. KM6BI, F.P.O. San Francisco. Calif.. U.S.A., 96614.
KV4AD-Box 2126. St. Thomas U.S., Virgin Is., 00801
MP4TCQ J. Hammond, Radio Troop. 222 SIg. Sqn., B.F.P.O., 64, London.
PZ1BI-Box 1810. Moengo, Surinane, South America.
TT8AF-B.P. 444. Fort Lamy. Republic of VPICP-B.P.X. A8s. Belize. British Honduras VQ8CR-R. Mills, C/O. Admiralty Office, Vacaos. Mauritlus.
VQBCU-Box 13582. Tampa, Florida. U.S.A., 33611.

YA1AB-Bnx 76, Kabul. Afghanistan.
YA2HWI-Bnx 638. Kabul
4J0FR-Box 88. Central Radio Club, Moscow.
4LOCR-Box 88. Moscow
601KM-Bnx 948. Mogadiscio, Somali Republic,
9Q5EA-Box 76. Kapanga, Republic of Congo, 9V0OX-Box 2964. Singapore.
The foregoing by courtesy of the ISWL. London

As these notes are more or less a fll in during the holidays. they are of necessity short. Normal notes will resume with the next issue. 1 am very grateful for the number who have taken the trouble to write, ring or tape with various notes and comments, these being essential to the smooth running of any such project. I look forward to your continued support for the new year.

Acknowledgment of copy for this issue to George Allen, Georke Studd, ZL2AFZ: Stewart Foster and Bernard Hughes, of the ISWL: Geoff Watts. DX News Sheet: LIDXA, Steve RuediKef. and Mac Hilliard. 73 and good DX. de
Don WIA-L2022.

CONTEST CALENDAR

7th/8th February: John M. Moyle National Field Day.
7th/8th February: 36th A.R.R.L. International DX Competition ilst phonel.
21st/22nd February: 36th A.R.R.L. International DX Competition (1st c.w.)
28th Feb./15th Murch: I.A.R.C. Propagation Research Competition ic.w./r.t.t.y. sec tion:.
7th/8th March: 36th A.R.R.L. International DX Competition 12nd phone).
15th March/19th April: Propagation Research Competition (phone section).
21st/22nd March: 36th A.R.R.L. International DX Competition 12 nd c.w.).
15th/16th August: Remembrance Diy Contest. 3rd/4th October: VK-ZL-Occanla DX Contestphone.
10th/11th October: VK-ZL-Oceanla DX Contest 5th Dec./11th Jan. 1971: Ross A. Hull V.h.f. Memorlal Contest.

PROVISIONAL SUNSPOT NUMBERS

NOVEMBER 1800

Dependent on observations at Zurich Observaory and its stations in Locarno and Arosa

Mean cquals 87.8.
Sinoothed Mean for May 1968: 103.2.

Smoothed Mean for June 1969: 102.6
Predictions of the Smoothed Monthly

-Swiss Federal Observatory, Zurich.

ANNUAL ZL FIELD DAY

When: 0300 to 1200 GMT. Saturday, 14th Feb. and 1800 GMT Saturday. to 0300 GMT Sunday 15th Feb.
Object: To contact as many portable and mobile $\mathbf{Z L} / \mathbf{Z M}$ stations as possible on phone and c.w.
Bands: 40 and 80 metres only.
Exchanges: VKs to give RSITI Dlus QSO number starting from 001 . $\mathrm{ZL} / \mathrm{ZMs}$ will give similar number plus their Branch number e.g. $579024 / 11$.

Scoring: Claim 3 points for each phone conact and 5 points for each c.w. contact. Mul taply the total points from both bands by the tiply the total points from both bands by the sum of the Branches worked on each band ed ach mode. Ii.e. the one Branch
das at multiplier four times!
Post logs to $\mathbf{Z L 2 G Z}$. 152 Lytion Road, Gis bornc. New Zealand. as soon as possible. Cer tificates will be awarded to the top VK In each district.

FEEDBACK

The Federal Contest Committee wish to advise the following corrections to results of recent W.I.A. Contests.

1969 NATIONAL FIELD DAY

Receiving (Section F)

6-Hour Division

Delete L-5096, T. Hannaford, 1015 points. Certificate winner now becomes L-5015, W. Clayson, 189 points.

24-Hour Division

Add L-5096, T. Hannaford, 1015 points, who becomes winner of this section.

1969 R.D. CONTEST

Divisional Scores

Delete the table of Divisional Scores and replace with the following-

	Log		Partici-
Division	Entry	Licensees	pation
VK2+1+9	111	1,972	5.6%
VK3	80	1,785	4.5%
VK4+9	80	752	10.6%
VK5+8	89	769	11.6%
VK6+9	56	436	12.8%
VK7	59	238	24.8%
		Total	
	Av. Top	State	State
Division	6 Logs	Points	Score
VK2+1+9	1,120	33,000	2,986
VK3	781	20,800	1,713
VK4+9	1,277	26,053	4,049
VK5+8	1,106	25,337	4,038
VK6+9	918	17,270	3,136
VK7	1,068	15,806	4,986

New South Wales

Transmitting Phone-Section (a):
VK2BNA's score to read 1,116 points-not 116.

COMMONSENSE ELECTRONICS

Construction, useful theory, news, views and comments.

Send for Sample Copy
THE AUSTRALIAN E.E.B.
P.O. Box 177, Sandy Bay, Tasmania, 7005,

Swan Electronics Service Co. Accredited Distributor for
Swan, Hallicrafters, etc., Recelvers and Transmitters
Spacialised Service on all Swan Transceivers
14 GLebe 8t., edgecliff, n.8.W., 2027. Ph. 32 -5465

REPAIRS TO RECEIVERS, TRANSMITTERS
Constructing and testing: xtal conv. any frequency; O5-ers, R9-ers, and transistorised equipment.
ECCLESTON ELECTRONICS
146a Cotham Rd., Kew, Vic. Ph. 80-3777

Victoria

Transmitting Phone-Section (a): Delete VK3OP, 327 points.
Transmitting C.W.-Section (b): Add VK3OP, 327 points.
VK3OP now becomes the leader in this section.

Analysis of R.D. Results

Revised list of top six logs for VK2 and VK5-

None of the above alterations affect the overall winner of the 1969 Contest. Tasmania remains the winner by a somewhat greater margin than was first published, but the difference between second and third placegetters, VK4 and VK5, has been lessened.

The Federal Contest Committee regret any inconvenience that the above alterations may cause and apologise to those concerned. Despite all precautions errors do slip by and this time Murphy won hands down.

SILENT KEYS

It is with deep regret that we record the passing of-

VK2BA-Bruce Chapman
Ex-VK2ZK-A. G. Henry
VK3EW-Eric Wheller
VK3AWO-Arthur Oakes
VK6ZBG-Cyril Baker
VK7PA-A. E. Allen

HAMADS

Minimum 51 for forty words.
Extra words, 3 cents each.
hamads will not be published unless ACCOMPANIED BY REMITTANCE.

Advertisements under this heading wlll be accepted only from Amateura and S.w.I's. The Publighers reserve the right to rejoct any advertising which. reserve the right to reject any arclal nature. Copy In their opinion, of acommercial nature. Copy must be received at P.O. ${ }^{355_{n}}$ Eant Nic., 3002 , by sth of the month and remittance must accompany the advertisement.

EXCHANGE: BC221 Frequency Meter for decent Recelver. 64 O'Grady Street. Albert Park, Vic. 3206.

FOR SALE: Byer " 66 " Tape Recorder complete with tuner and new full track heads. The machine has been completely overhauled and is in excelient condition. complete with accessorles. \$450. Senn former and table stand. S40.' J. W. Naim, P.O. Box 432. Traralgon. Vic.. 3844.

FOR 8ALE: One MR10A Carphone. complete with all cables and Channel A xtals, S35 or best offer Contact Howard Anders, VK3AYV. Phone 277-1207 after hours

FOR SALE: Hallicrafters VFO. perfect, all bands 2-80 mx. Eico Tx 90 w .. built. in ant. relay, matching network, etc. $10-80 \mathrm{mx}$. Tagether $\$ 150$ or best olfer. Power Chokes $15 \mathrm{H} .150 \mathrm{~mA} ., 30 \mathrm{H} .80 \mathrm{~mA}$., $\$ 1.50$ each. Schoning. G.P.O. Box 392, Sydney. N.S.W., 2001. Phone 602.0333 Ext. 318

FOR SALE: Heathklt "Mohican" GC-1A solid state Rx, $450 \mathrm{KHz}, 10 \quad 32.0 \mathrm{MHz} . \quad \mathbf{S 1 0 0}$ o.n.o. $\mathrm{H}_{\mathrm{Vi}} \mathrm{P}$. Trutmann. VK3HV,
3214. Phone 79111 office hours or 78404 after 5 p.m. or week-ends.

FOR SARE: Lafayette HA600 Translstor Communications Recelver. coverage 150 KHz . to 10 MHz ., bandspread on Amateur frequencies, condition as new. S140. WIII trade VHF gear. J. Oliver. 73 Normanstone Rd., Launceston. Tas., 7250. VK7JO.

FOR 8ALE: MR3A Carphone Junior. 2 mx FM Trans. ceiver. S4O. Commercial appearance H.B. 80-10 mx SSB-AM Tx. 200w. p.e.p.. 9 MHz . McCoy filter. 8236 PA. cost $\$ 350$, sell $\$ 150$ o.n.o. VK32X, Phone Traralgon 73135.

FOR SALE: Trio 9R-59D Communications Receiver. As new condition, features an in-built 3.5 MHz . crystal calibrator and bandspread for all Ham bands. S 160.00 . Contact VK3ZZY at 50.4367 after hours

FOR SALE: Type TAA300 Integrated Circuit Audio Amplitiers. 1 watt r.m.8. out w/th 8.5 mV . in. 8.15 ohm load. S3.15 each including data, circuit. Write or call VK5ZRN, 24 Gulfiview Road, Blackwood. S.A., 5051.

FOR SALE until 20/3/70: 25w. 2 mx AM Tx-Rx, S140. ATR2B Transcelvor, complete, S50. Hallicrafters SX17A. S150. Eddystone 888A, new, S200. 150w. H.B. S.band Transmilter. S75. 50w. DSB 6band Transmitter, SS5. 52.525 MHz . FM Receiver. S15. 60.100 MHz. AM/FM SWL-ZC-Receiver, $\$ 18$. 150w. high power 2 mx Tx-Modulator, xtal.VFO. complete. $\$ 200$. 7-band A.W.A. 617TZ Receiver. S45. 6 mx 15w. AM Base Stations. 545 . 2 mx 146 MHz. FM Vintens. SA5. MR10C 146 MHz .. S5U. MR3A 52.525 MHz . AC/DC. S60. Pye 734 LB AM Ease Statlons. S50 each. For further details and complete IIsting of unconverted HB/LB AM/FM Carphones. send SAE to 31 Donald Street, Morwell. Vic.. Phone 43953.

FOR SALE: Yaesu FL50 Transmitter, complete with External VFO. S165 Pye Ranger Carphone, complete with xtals on 53.032 MHz . net. $\mathbf{S 3 5}$. 50 -foot Triangular Telescoplc Tower, S55. Inspection invited. Mike Trickett. VK3ASQ. 8 Matlock St. Herne HIII. Geelong. Vic. Phone 71886.

FOR 8ALE: (1) Heathkit Transmitter DX100B. 150w.. par. 6146. mod. class B. modified differentlal keylng: also for use with Heath SSB Adaptor Model SB10. $110 \mathrm{v} . / 240 \mathrm{v}$. a.c. operated, freq 160 mx to spares included S150. (2) Heath SB10 SSB Adap. spares included. S150. [2] Heath SB10 SSB Adaptor, 9 valves. 10w. p.e.p. AAM USB/LSB, Vox, manual. mod. for p.t.t. spares Included. SSO Abovo itams are in excellent condition and are used on alr as an SSB combination. Manuals, wiring diagrams. and modification articles. data and connecting cables are included. (3) Johnson Matchbox. 275 watts. as new, in orlg. carton. complete with instructions and diagrams. S90. (4) Channelmaster Beam Rotator. 240v. a.c./24v. operation. complete 60 feat approx. 3-wire control cable and Indicator control box. working and good condition. \$50. George Manning. VK3XJ. P.O. Box 46, Birchip. Vic. (Phone 9).

HRO-60 Recelver, SSB/AM/CW, 1.7 io 30 MHz . General coverage and/or Ham Bands only. Your chance to own one of the greatest communicaions Receivers at a reasonable price. S695.00 VK3TD. Phone 783.9611 or 787-1407 (after hours).

WANYED: Triband Beam (any condition), also Rotator wanted. Have 2 element 10 mx Beam with Balun. Accept reasonable offer. Have 4 element 6 mx Beam Accept reasonable offer. Ian Dunlop VK2AVS. 7 James St., Murwlllumbah, N.S.W., 2484.

WEBSTER Band Spanner Moblle Antenna. 10-80 mix new. S30. Webster Model 3400F De Luxe Marine Antenna, extends to $26 \mathrm{ft} ., \mathrm{S} 45.240$ watt SSB Transcelver, 10/20;40/80 metre bands. less power supply. \$180. 1000 volt 250 mA . Power Supply for above Transceiver, S100. VK3TD. Cassiobury Ave.. Mt. Eliza. Vic. Phone 783.9611 (office). 787-1407 (after hours).

200 WATT. 4-band SSB Transceiver chassis. sultable converslon to Ham Bands. $\$ 30$. 800 watt Linear Amplifier partially built. all parts including pair of 811 tubes and Power Supply. S99. VK3TD. Phone 783-9611 or 787-1407 (after hours).

BRIGHT STAR CRYSTALS

FOR ACCURACY, STABILITY, ACTIVITY AND OUTPUT

THREE MONTHS SPECIAL OFFER-

STANDARD AMATEUR CRYSTALS
STYLE HC6U HOLDER, FREQUENCY RANGE 9 TO 15 Mc .

$$
\begin{array}{ll}
0.01 \% & \$ 4.25 \\
0.005 \% & \$ 5.50
\end{array}
$$

Prices Include Sales Tax and Postage

COMMERCIAL CRYSTALS

IN HC6U HOLDER, 0.005% TOLERANCE, FREQUENCY RANGE 9 TO 15 Mc. $\$ 6.00$ plus Sales Tax and Postage

Write for list of other tolerances and frequencies avallable.
New Zealand Representatives: Messrs. Carrell \& Carreli, Box 2102, Auckland Contractors to Federal and State Government Departments

BRIGHT STAR RADIO

LOT 6, EILEEN ROAD, CLAYTON, VIC., 3168
Phone 546-5076
With the co-operation of our overseas assoclates our crystal manufacturing methods are the latest

DURALUMIN ALUMINIUM ALLOY TUBING

IDEAL FOR BEAM AERIALS AND T.V.
\star LIGHT $\quad \star$ STRONG \star NON-CORROSIVE
Stocks now available for Immediate Delivery
ALL DIAMETERS - $1 / 4^{\prime \prime}$ TO $3^{\prime \prime}$
Price List on Request STOCKISTS OF SHEETSALL SIZES AND GAUGES
GUNNERSEN ALIEN METALS PTY. LTD.

SALMON STREET, PORT MELB'NE, VIC. Phone 64-3351 (10 lines)

HANSON ROAD,
WINGFIELD, S.A.
Phone 45-6021 (4. ${ }^{(4)}$ lines) Thrams: "Matals" Adel.

EDDYSTONE H.F. Communications Receivers

Model "940"

The Eddystone " 940 " is a general purpose communications receiver covering from 480 KHz . to 30 MHz . in five overlapping ranges. It is suitable for the reception of CW. AM and SSB signals. and by reason of the two RF and two IF stages incorporated, a high performance is secured throughout the frequency ranges.
Amateur Net Price: $\$ 540.88+25 \%$ S .

"EC1O" Transistorised

RUGGED - COMPACT - LIGHT!

Designed for Commercial and Amateur use
General purpose coverage- 550 KHz . to 30 MHz .

Amateur Net Price: $\$ 179.40$ plus 25% Sales Tax

FEATURES-

- Adequate bandspread, correct degree of selectivity for the various modes of signal, ease of tuning SSB signals. and frequency stability.
- Continuously variable selectivity in the 100 KHz . second IF stages, crystal filter can be switched in to give an extremely narrow band for CW.
- Mode switch selects either upper or lower sideband.
- Large \mathbf{S} meter, each division 6 db . change of level.
- Image rejection better than 50 db . at highest frequency and proportionally greater at lower frequencies.

FEATURES-

- Cascode type ist RF amplifier stage.
- Separate FiF and AF gain controls.
- Three selectivity positions-broad 10 KHz ., narrow 4 KHz , crystal filter 400 Hz . (with ganel-operated phasing control).
- Panel-motinted carrier level meter.
- Separate detectors for AM and for CW/SSB.
- Ffficient Noise Limiter.
- Gear-driven slow motion drive and vernier scale.
- Imaze rejection: At 1 MHz .40 db ., at 8 MHz .75 db ., at 20 MHz .40 db .
- Push-pull audio output stage.

Model "EA12"

The Eddystone "EA12" is a model specially designed for use by Amateur Radio operators and covering the six major Amaieur bands from 1.8 MHz . to 28 MHz . It possesses an exceedingly good electrical performance and will pro duce first-class results with all modes of signals.

Amateur Net Price: S563.12 plus 25% Sales Tax

available ex stock - Write for fully illustrated technical brochures

\author{
608 Collins St., Melbourne, Vic.. 300024 Wolya Way, Balga, Perth, W.A, 6061
 Phone 61-2464
 64 Alfred St., Milsons Pt., N.S.W., 20.51
 Phone 929-8066
 [^20]}

Regulated Power Supply BATTERY ELIMINATOR

SPECIALLY FOR LARGER BATTERY OPERATED TAPE RECORDERS

TYPE PS 104
Designed primarily for Tape Recorders where a regulated voltage supply is necessary to prevent speed variation with load changes. A versatile power supply with a range of output voltages making it ideal for design, testing and repair of Transistor Radios, Amplifiers. Record Players. Test Equipment, etc. It is also eminently suitable for use in Schools, Universities. Government Departments and Industry.

Manufactured by

A \& R ELECTRONIC EQUIPMENT

COMPANY PTY. LTD.
A \& R-SOANAR GROUP COMPANY
42.46 LEXTON ROAD, BOX HIL!, VIC., 3128
Phones 89-0238, 89-0239

AGENTS IN ALL STATES

N.S.W.: SOANAR ELECTRONICS PTY. LTD.

82 Carlton Cres.. Summer Hill. Ph. 798-6999. OLD.: \quad A. A. VENN PTY. LTD.
71.73 Dongett St., Valley. Bris. Ph. 51.5421.
S.A. SCOTT THOMPSON PTY. LTD.

93 Gilles St.. Adelaide. Phone 23-2261.
W.A.: EVERETT AGENCY PTY. LTD.

17 Northwood St., W. Leederville. Ph. 8.4137.

LOW DRIFT CRYSTALS

$\dot{\sim}$

1.6 Mc. to 10 Mc .,
0.005\% Tolerance, \$5
is
10 Mc. to 18 Mc., 0005\% Tolerance, \$6 $ங$

Regrinds \$3
THESE PRICES ARE SUBJECT TO SALES TAX

SPECIAL CRYSTALS: PRICES
ON APPLICATION

MAXWELL HOWDEN

15 CLAREMONT CRES., CANTERBURY, VIC., 3126

Phone 83-5090

LOG BOOK

IS NOW AVAILABLE
Larger, spiral-bound pages with more writing space.

Price 75c each
plus 17 Cents Post and Wrapping Obtainable from your Divisional Secretary, or W.I.A., P.O. Box 36. East Melbourne, Vic., 3002

approved \&
 accepted

by leading manufacturers and Government Departments

ELNA

ELECTRONIC

COMPONENTS

- Electrolytic Capacitors
- Polyester Capacitors
- Carbon Potentiometers

Australia's largest selling imported capacitors are produced by one of the world's major components manufacturers

Write or phone for illustrated brochure

SOANAR

ELECTRONICS

PTY. LTD.
A \& R-Soanar Group of Companies
VIC: 45 Lexton Rd.. Box Hill: 89-7323.
NSW: 82 Carlton Cr., Summer Hill: 798-6999. OLD: R. A. Venn Pty. Ltd., Valley: 51-5421. SA: Scott Thompson Pty. Ltd., Adelaide: 23-2261.
WA: Everett Agency Pty. Ltd., West Leederville: 8-4137.

A superb quality, low cost, versatile transceiver. Covers $80-10 \mathrm{mx}$, tuning range 500 Kc . each band. On 10 mx , crystal supplied for $28.5-29 \mathrm{Mc}$. (Crystals available optional extra for full 10 mx coverage.) SSB, CW, AM; with a speech peak input of 300 w . Transistorised VFO, voltage regulator, and calibrator. 16 valves, 12 diodes, 6 transistors. PA two 6JS6A pentodes. ALC, AGC, ANL, PTT and VOX. Calibrated metering for PA cathode current, relative power output, and receiver S units. Offset tuning $\pm 5 \mathrm{Kc}$. Uses a 9 Mc . crystal filter with bandwidth of 2.3 Kc . at -6 db. Selectable sidebands, carrier suppression better than - 40 db . Sideband suppression better than - 50 db .
Fixed channel facility optional extra, useful for net operation, skeds, etc.

Operates from conservatively rated separate 230 volt 50 c.p.s. AC power supply, FP-200, which includes built-in speaker. A 12 volt DC power supply, DC-200, is also available. Transceiver incorporates power take-off and low level R.F. drive outlets suitable for transverters.

Cabinet finished in communication grey lacquer. Panel, etched, satin finish aluminium.

Price, FT-200, S345 inc. S.T.
Imported Yaesu matching Power Supplies:
FP-200 \$85 including Sales Tax
DC-200 \$118
Available ex Stock

Other well known Yaesu Models: FTDX-100 Transistorised Transceiver, FTDX-400 Transceiver, FLDX-2000 Linear Amplifier, FLDX-400 Transmitter, FRDX-400 Receiver, FR-50 Receiver, FTV-650 6 Metre Transverter, FF-30DX Low Pass Filter, 600 c.p.s. CW Mech. Filter for FRDX-400, 600 c.p.s. CW Crystal Filter for FTDX-400. Also: SWR Meters, Co-ax. Switches, F.S. Meters, Co-ax. Conn., Hy-Gain (U.S.A.) Beams.

All sets checked before despatch. After-sales service, spares availability, 90 -day warranty. All Yaesu sets sold by us are complete with plugs, power cables and English language instruction manual. Prices and specifications subject to change.

Sole Australian Agent:

BAIL ELECTRONIC SERVICES

NEW STOCK JUST ARRIVED

'RAPAR'
 MULTI-TESTER

MODEL SK-100

* 23 RANGES.
\star 100K O.P.V. ON D.C. 10K O.P.V. ON A.C.
* OVERLOAD PROTECTION.
* MIRROR SCALE.

Ranges:

D.C. Volts: $0-0.6,3,12,60,300,1,200$.
A.C. Volts: $0-6,30,120,300,1,200$.
D.C. Current: $0-12$ uA., 300 UA., 6 mA ., 600 mA ., and 12 A .
A.C. Current: 0-12 A.

Ohms: $0-20$ megohms in four ranges.
Centre Scale Reading: 150, 1.5K, 15K and 150 K ohms.
DB.: -20 to $+17.0 \mathrm{db} .=1 \mathrm{~mW}$. in 600 ohm line.

TRADE PRICE:
$\$ 30.40$
$+15 \%$ Sales Tax where applicable

MELBOURNE'S WHOLESALE HOUSE

562 Spencer St., Melbourne, Vic., 3000. Phone 329-7888, Orders 30-2224 City Depot: 157 Elizabeth Street, Melbourne, Vic., 3000. Phone 67-2699 Southern Depot: 1103 Dandenong Rd., East Malvern, Vic., 3145. Ph. 211-6921

amateur

rodio

Vol. 38, No. 3
MARCH, 1970
Registered at G.P.O., Melbourne. for transmission by post as a periodical

Price 30 Cents

REALISTIC DX-150 SOLID STATE COMMUNICATIONS RECEIVER

Features: 240 v . a.c. or 12 v . d.c. operation. 30 transistors and diodes. 535 Kc ., to 30 Mc . In four bands. Bandspread tuning, " S " meter, a.m./c.w./ s.s.b. Product detector for s.s.b. Compact size. $141 / a \times 914 \times 61 / 2 \mathrm{in}$. Polished metal panel. smali internal speaker.
F.O.R. Price $\$ 229.50$

Matching external speaker $£ 13.30$ extra.

No. 62 TRANSCEIVERS

Wireless Set No. 62 Mk. 2 (Pye). Frequency range 1.6 to 10 Mc . in two bands, in-built 12 v . genemotor power supply. Clean condition. Fully air tested on transmit and receive.
F.O.R. Price $\$ 49.50$ inc. circuit diagram

WESTON LM-300 MOBILE TAXI RADIO

Low Band a.m. 60 Kc. bandwidth, $70-80 \mathrm{Mc}$. Grystal channel lceked, singlo channel. In built transistor power supply, 12 v . operation, suit country taxi service ur conversion to Ham bands, inc. microphone and cradle.
F.O.R. Price \$45. Packing 50c

AS NEW AND AIR TESTED
 LAFAYETTE 5W. C.B. TWO-WAY RADIO*

Modal HE-20, fully transistorised, solid state, 13 transistors. 10 diodes, 27.240 Mc . Provislon for 23 channels, crystal channel locked, push-pull audio modulator, 455 Kc. mechanical filter, spotting switch for accurate reception, t.v.i. trap, 230 v . a.c. and 12 v . (positive or negative ground), in-bullt p.a. amplifier. Ideal for fixed base station or emergency mobile, including microphone and mobile gency mobile, Fibreglass helical aerial 4 ft . high, cowl mount. 'Subject to P.M.G. approved licence.
F.O.R. Price $\$ 169.50$ tax paid
for mobile use $\$ \$ 16.50$ extra.
BENDIX BC-221 FREO. METER
125 Kc . 1020 Mc ., including a.c. power supply. crystals, calibration book, etc.
F.O.R. Price $\$ 49.50$, packing 75c

TRIO COMM. RECEIVER

MODEL 9R-59DE

MULTIMETERS

MODEL C-1000 POCKET MULTIMETER
1000 ohms per volt. AC volts: $0.10,50,250,1000$. DC volts: $0.10,50,250,1000$. DC current: $0-100$
 colour scale. Range selector switch. Dimensions: colour scaie. Range selector switch. $31 / 2 \times 21 / 4 \times 1$ in.

Price $\$ 6.50$ post free

MODEL 200H MULTIMETER

20.000 ohms per volt. DC volts: 0-5, 25, 50, 250. 500.2500 (20,000 o.p.c.). AC volts; 0 . 0 15. 50 . 100. 500. 1000 (10,000 o.p.c.). DC current: 50 UA, 2.5 mA ., 250 mA . Resistance: $0.60 \mathrm{~K} / 6 \mathrm{M}$ ohm (scale centre 300, 30 K ohm). Capacitance: 10 pF . to 0.001 UF./0.001 UF. to 0.1 uF. Db. scale: -20 db . to plus 22 db . Size $41 / 2 \times 31 / 4 \times 11 / 8 \mathrm{In}$.

Price $\$ 11.25$ post 30c

MODEL CT330 MULTIMETER
20,000 ohms per volt. DC volts: 0-6, 6, 30. 120. $600,1.2 \mathrm{~K}, 3 \mathrm{~K}, 6 \mathrm{~K}$. AC volts: $0.6,30,120,600.1 .2 \mathrm{~K}$ (10 K o.p.v.). DC current: 0.0 .06 mA . $60 \mathrm{~mA} . .600$ mA . Resistance: $0.6 \mathrm{~K}, 600 \mathrm{~K}, 6 \mathrm{M}, 600 \mathrm{Megohm}(30$. $3 \mathrm{~K}, 30 \mathrm{~K}$. 300 K ohm centre scale). Capacitance: 50 pF . to 0.001 uF , 0.001 uF . to 0.2 uF Decibels: -20 to plus 63 db . Size approx. $51 / 2 \times 33 / 8 \times 13 / 4 \mathrm{in}$.

Price $\$ 16.75$ post 30 c

MODEL OL-64D MULTIMETER

20.000 ohms per volt. DC volts: $0.025,1,10,50$, 250, 500, 1000 (at 20 K o.p.v.), 5000 (at 10 K o.p.v.). AC volts: $0-10,50,250,1000$ (at 8 K o.p.v.) DC
 Resistance: $0-4 \mathrm{~K}, 400 \mathrm{~K}, 4 \mathrm{M}, 40 \mathrm{Megohm}$. Db. scale: - 20 to plus 36 db. Capacitance: 250 pF . to 0.02 uF. Inductance: $0-5000 \mathrm{H}$. Size $53 / 4 \times 41 / 8 \times 13 / 4 \mathrm{In}$. Price $\$ 19.50$ post 30 c
NEW MODEL US-100
Overload protection. Shockproof movement. Polarity switch. DC volts: 0-0.25, 1, 25,10 . 50,250 , 1000 (20K o.p.v.). AC volts: $\mathbf{0 - 2 . 5}, 10,50,250$, mA . and 10 gmp AC current: 1 mA ., $25 \mathrm{~mA} .{ }^{2} 500$ mA . and 10 amp . AC current: 10 amp . Resistance: 0.50 M ohm (centre scale 50), R x 1, 10. 100 , 1 K , 10K. Db. scale: -20 to plus 10, plus 22, plus 35 , plus 50 db .

Price $\mathbf{\$ 2 8 . 7 5}$ post 40c

MIRROR SGALE

MODEL AS100/DP HIGH SENSITIVITY
100,000 ohms per vot DC. Mirror scale, protected movement. DC volts: 3, 12, 60, 120, 300, 600,1200 (100K o.p.v.). AC volts: 6, $20,120,300,600,1200$ (10K o.p.v.). DC current: 12 uA ., 6 mA .60 mA. $300 \mathrm{~mA} ., 12 \mathrm{amps}$. Resistance: $2 \mathrm{~K}, 20 \mathrm{~K}, 20 \mathrm{M}$, 200Megohm. Decibels: -20 to plus 63 db . Audio output: $6,30,120,300,600,1200$ volts a.c. Size $71 / 2 \times 51 / 2 \times 23 / 4 \mathrm{in}$.

Price $\$ 34.50$ post 75 c
MODEL A10/P GIANT (61/2 Inch) METER, CIRCUIT TESTER
30.000 ohms per volt DC with In-built signal injector, overload protected. DG vots: $0.5,2.5$, 10 . $50.250,500,1000$ (at 30 K o.p.v), 5000 (al 10 K o.p.v.). AC volts: 2.5, $10,50.250,500,1000$ (at 10 K o.p.v.) DC current: 50 UA ., $1 \mathrm{~mA} .: 50 \mathrm{~mA}$. . $500 \mathrm{~mA} ., 1$ amp.. 10 amp. AC current: 1 amp., 10 amp. Resistance: $10 \mathrm{~K} .100 \mathrm{~K}, 1 \mathrm{M}, 100$ Megohm. Signal Injector: Blocking oscillator circuit with Size: $61 / 2$ Trans. Decibels: - 20 to plus 63 db . Size: $61 / 2 \times 71 / 4 \times 33 / 4$ In.

Price $\$ 55$ tax paid, post 75c

TE-16A TRANSISTORISED TEST OSCILLATOR

Frequency range: $\mathbf{4 0 0} \mathbf{K c}$. to $\mathbf{3 0} \mathrm{Mc}$. In five bands Modulated $800 \mathrm{c} / \mathrm{s}$. sine wave. Modulation: 30 p.c. approx. Output Imp.: Low Impedance. Dimensions: 57.s $\times 5$ 7. $\times 3^{7}$ in in. Weight: 1.5 lb .

Price S 24 tax paid, post 75c

"NIKKA" 1 WATT TRANSCEIVERS

P.M.G. approved. Solid state. 14 iransistors. circuit inc. r.f. stage. 27.240 Mc . (provlsion for two chan. nels) Range boost circuic. Up to 10 miles in open country or water. tuzzer iyps cal system.
Squelch control. Complete with leather carrying case.

Price $\mathbf{\$ 1 7 5 . 0 0}$ Pair
NEW A.W.A. T.V. TUNER
Model 49836. Uses 6U8 and 6BO7A.
Price 95.50 postage 50c
PACK OF RESISTORS
100 Resistors of $1 / 2$ and 1 watt rating
Price $\$ 1.75$ post 20c

BRAND NEW SPEAKERS					
$21 / 2$ inch	8 ohms	Price	\$1.75	Postage	20c
3 inch	8 ohms	-	\$2.00	.*	20 c
4 inch	8 ohms	-	\$2.25	"	20 c
4 inch	15 ohms	"	\$2.25	-	20c
30X	8 ohms	-	\$3.95	-	200
3DX	15 ohms	-	S3.95	-	20c
6 A7	8 ohms	'	\$5.50	*	40 c
6 A7	15 ohms	'	\$5.50	-	40c
8A7	8 ohms	-	\$7.20	*	40 c
8A7	15 ohms	.	\$7.20	-	40 c
12A9	8 ohms	.	S18.75	*	50 c
12A ${ }^{\text {a }}$	15 ohms	,	S18.75	**	50 c
Nett Price					

NEW STEREO HEADPHONES

Large rubber earpiece. Frequency range 100 to 1500 cycles. 8 ohms impedance.

Price $\mathbf{\$ 6 . 7 5}$ post 30 c

DELCO TRANSISTORS

Type 2N441
Type 2N278
Type 2N301

Price S2.40 postage 10 c Price 56.00 postage 10c Price 52.50 postage 10 C

LT91 RECTIFIER
20 Volt 2 Amp.
Price $\$ 1.50$ post 10 c

RADIO SUPPLIERS 323 elizabeth street, melbourne, vic., 3000

Phones: 67-7329, 67-4286 All Mail to be addressed to above address
We sell and recommend Leader Test Equipment. Pioneer Stereo Equipment and Speakers. Hitachi Radio Valves and Transistor Radios. Kew Brand Meters, A. \& R. Transformers and Transistor Power Supplies, Ducon Condensers. Welwyn Resistors, etc.

MARCH, 1970
Vol. 38, No. 3

Enquiries:
Mrs. Bellairs. Phone 41-3535, 478 Victoria Parade, East Melbourne, Vic., 3002 . Hours: 10 a.m. to 3 p.m. only.

Advertising Representatives:

AUSTRALIAN MEDIASERV

21 Smith St., Fitzroy. Vic., 3085. Tel. 41-4982. P.O. Box 108, fitroy, Vic., 3065.

Advertisement material should be sent direct to the printers by the first of each momth.
Hamads should be addressed to the Editor.

Printers:

"RICHMOND CHRONICLE," Phone 42-2419.
Shakespeare Street. Richmond. Vic., 3121.

> All matters pertaining to "A.R." other than advertising and subscriptions. should be addressed to:
> THE EDITOR,
> "AMATEUR RADIO,"
> P.O. BOX 36.
> EAST MELBOURNE, VIC.. 3002 . Members of the W.I.A. should refor all engulr.
lea regarding dallvery of "A.A.
dlrect..to theli, lea regarding dellvery of A.A. Slrect. to their Two months' notice is required before a change of malling address can be effected. Readers should note that any change in the address of their transmitting station must. by P.M.G. regulation, be notifled to the P.M.G. In the State of residence; in addition. "A.A." should also be notifled. A convenlent form is provided In the "Call Book".

CONTENTS

Page Technical Articles:-

A Hub for Tri-band Spider Quads 12
Antenna Farming 18
A Solld State Amateur S.S.B. Receiver, Part Two 16
Australis Oscar 5: It's in Orbit! 8
Australis Oscar 5 Orblts the Earth 7
FET Conversion of Leader LSG11 Signal Generator 20
The History of Amateur Radio and the Wireless Institute
of Australia, Part One 21
The Multiband Double Dipole 11

General:-

COVER STORY

The launch of Delta 76 containing Australis Oscar 5 Satellite. See stories on pages 7 and 8 of this issue. The cover photograph and the two other photographs on pages 7 and 9 are by courtesy of NASA, U.S.A.

Automatic Aerial Rotator

NEW...UNRIVALLED AERIAL ROTATING SYSTEM!

Complete with direction control unit - fully synchronised balanced bridge circuit.

- Rugged-water tight.
- Hollow shaft, $1 \frac{1}{2 \prime \prime}$ diam.
- Loading: 112 lbs. (max.)
- Rotation angle: 360 deg.
- Permanently lubricated.
- Speed: 1 r.p.m.
- Magnetic disc brake.
- 240v. AC (60w.); drive 42v.

Sole Australian Agents:

Victoria:
608 COLLINS ST., MELBOURNE,
3000 . Phone 61-2464
New South Wales:
64 ALFRED ST., MILSONS POINT,
2061.

Phone 929-8066
Western Australia:
34 WOLYA WAY, BALGA, PERTH, 6061.

Phone 49-4919
Quaensland:
L. E. BOUGHEN \& CO.

30 GRIMES ST., AUCHENFLOWER, 4066.

Phone 7-4097

Hy-Q ELECTRONICS

Australia's

 largest independent crystal manufacturers
EXTEND THEIR

 PRODUCT RANGE TO INCLUDE- Fundamental and overtone crystals from 1 MHz . to 125 MHz .
- 10.7 MHz . crystal filters for $25 \& 30 \mathrm{KHz}$. systems.

SEND FOR FULL DETAILS IF YOU HAVE NOT ALREADY RECEIVED THEM
$H_{y}-Q$
Electronics Hy-Q ELECTRONICS PTY. LTD.

10-12 ROSELLA STREET.
P.O. BOX 256 ,

FRANKSTON, VICTORIA 3199.
Telephone 783-9611. Area Code 03. Cables: Hyque Melbourne
Telex: 31630

agents:

W.A.: Assoclated Elactronic Services PiL.. PO. Box 35 . Morley, 6062. Phone 76 -3858
Cables: Radcomserv. Perth
TAS.: Hobart Radio CIInic
129 Bathurst St.. Hobart. 7000.
Phone 34-3884.

BATTERY SAVER -A.C. ADAPTOR

 Permits A.C. mains operation of Transistor and other 6-9v. Battery Powered Equipment at Negligible Power Cost!- 6 or 9 volt (nominal voltage) selected by external switch.
- Double insulated for absolute safety.
- Handsome cabinet complete with 3 -pin power point plug, and radio lead with plug.

- Suitable for any 6 or 9 volt battery operated transistor equipment.
Approved by Electricity Supply Authorities PS64 specially for Tape Recorders PS82 specially for Transistor Radios

Manufactured by
A \& R ELECTRONIC EQUIPMENT COMPANY PTY. LTD.
A \& R-Soanar Group Company
42-46 LEXTON ROAD, BOX HILL, VIC., 3128
Phones: 89.0238, 89.0239
AGENTS IN ALL STATES
N.S.W.: SOANAR ELECTRONICS PTY. LTD. 82 Carton Cres.. Summer Hill. Ph. 798-6999. OLD.: R. A VENN PTY. LTD.

R1.73 Doggett St.. Valley. Bris. Ph. 51-5421.
S.A.: SCOTT THOMPSON PTY LTD

93 Gilles St.. Adelaide. Phone 23.2261.
W.A.: EVERETT AGENCY PTY. LTD

17 Northwood St., W. Leederville. Ph. 8-413?.

SIDEBAND ELECTRONICS ENGINEERING

Prices of the following stock are net, cash Springwood, N.S.W., sales tax included. All equipment is fully imported from the various factories in Japan, the U.S.A. and the U.K., no local or other assembly away from the factories. All sold under standard factory-backed warranty, which is one year for YaesuMusen, with expert after-sales service, based on 20 years of SSB experience. Yaesu-Musen units come complete with all plugs and power cables.
The only exception is made for the FT-200 power supply-speaker unit, which physically is a copy of the Yaesu su;ply, but own design and I maintain that I can make a better heavy duty unit in co-operation with the Australian transformer manufacturers, for genuine $230 / 240 / 250$ volt AC, than any of the imported power supplies.

Arie Bles
YAESU.MUSEN-
FT-DX-400 De Luxe Transceiver $\$ 525$
FL-DX-400 Transmitter \$350
FT-DX-100 AC/DC Transceiver S515
FR.DX-400 Receiver 8375
FR-DX-400SDX De Luxe Receiver, with all access- ories, with CW filter, FM filter and FM dis- criminator, 2 and 6 metre Converters S475
FT-200 Transceiver with 230/240/250V. AC heavy duty supply-speaker unit \$410
FL-DX-2000 Linear Amplifier $\$ 225$
2 and 6 metre Solid State Converters \$25
FF-30-DX Low Pass Line Filters $\$ 15$
SWAN-
SW350C Transceiver with 230/240/250V. AC power supply-speaker unit $\$ 550$
SW350C Transceiver with Swan 14-230 AC/DC power supply $\$ 600$
GALAXY -
GT-550 Transceiver with AC power supply-speakerunit\$725
J-BEAM-
TRIPLE THREE full size 3 element 10-15-20 metre Yagi Beam with built-in 52 ohm balun $\$ 180$
HY-GAIN-
TH6DXX tri-band 6 element Yagi Beam, on indentorder only\$210
HYQUAD tri-band Cubical Quad, 10-15-20 metre, one co-ax. feedline $\$ 130$
BN-86 Balun S20
TH3JR tri-band Junior Yagi Beam $\$ 110$
14AVO 10 to 40 metre Vertical 545
18AVO 10 to 80 metre Vertical \$75
MOSLEY-
TA33JR 3 element tri-band Junior Beam $\$ 95$
MP-33 Mustang Array $\$ 120$
NEWTRONICS-
4-BTV 10 to 40 metre Vertical 855
With 80 metre top-loading coil S70
MOBILE WHIPS-
WEBSTER Bandspanner, 10 to 80 metre continually
820
MARK HW-3 10/15/20 metre tri-band Helical Whip 835
Swivel Mount and Spring for Mobile Whips S10
ROTATORS-
CDR HAM-M heavy duty Rotator, with 230V. indi-cator-control unit$\$ 165$

ANTENNA NOISE BRIDGE-

OMEGA TE-7.01 Bridge
$\$ 25$
CRYSTALS-
FT-241 Series, Channel 0-79, box of 80 crystals .. $\$ 15$ Individual Crystals from 50.25 to $\$ 2$-for 455 KHz . ones. Sets of six matched Crystals, including two USB/ LSB carrier/VFO Crystals:

From 400 to 450 KHz . $\$ 5$ to $\$ 10$

$$
\text { From } 460 \text { to } 500 \mathrm{KHz} \text {. } \$ 10 \text { to } \$ 5
$$

FILTERS-
KOKUSAI Mechanical Filters, 2.7 KHz . bandpass, modern miniature size, with input-output transformers and matching USB/LSB carrier Xtals ..
9 MHz . Crystal Filters, as used in Yaesu FT-200 830
12V. DC SUPPLIES-
ACITRON heavy duty, fits all Transcelvers \$110 CO-AXIAL CABLE-

52 and 75 ohm, 3/16 inch diam, S0.25; 52 ohm $3 / 8$ inch diam., S0.50 per yard; any lengths up to 100 yards.
Connectors, Amphenol type PL-250 male $\$ 1.25$
SO-239 female $\$ 1.00$
BALUNS-
Exact duplicate of Hy-Gain BN-86, excellent copy $\$ 12.50$
S.W.R. METER-

Calibrated Output Meter, $0-100$ and 0-500 Watt and S.W.R.

GONSET-

2 metre SSB/AM/CW Transceivers, 144 to 148 MHz ., continuous range, with 115 V . AC power supply-speaker unit, solid state design with transmit mixer-driver-final valves, 20w. p.e.p. \$350
TRANSFORMERS, ETC.-
NATIONAL Kingsgrove, N.S.W., brand new, still in stock: $\mathrm{U} 60 / 285285-0-285 \mathrm{~V}$. 60 mA ., 5 V . and 6 V . fil. $\$ 1.25$ U60/325 325-0-325V. 60 mA ., 5 V . and 6 V . fil. $\$ 1.25$ U60/385 385-0-385V. 60 mA ., 5V. and 6V. fil. $\$ 1.25$ U80/385 385-0-385V. 80 mA ., 5V., 6V., 6V. fil. $\$ 1.50$ PA80/300 300-0-300V. $80 \mathrm{~mA} ., 5 \mathrm{~V}$. and 6 V . fil. $\$ 1.50$
E30/80 30H. 80 mA. Choke \$1.00
F15/150 15 H. 150 mA. Choke \$1.00
8451240 to 115 V . 2A. 200 W . Step-down Isolation Transformer
52.50

9716240 to 240 V . 75W. Isolation Tarnsformer .. $\$ 1.50$
6610240 to 5V. 3A. Filament Transformer \$0.50
Various Transistor Output Transformers: 85, 375 and 245 ohms to 3.5 ohms
80.50

6 and 12V. Vibrator Supply Transformers 80.25
Neon Ballast Chokes, 15W. \$0.25

Allow sufficiently for packing, handling and freight for transformer orders, only a few of them will fill the limit weight for post parcels.

Main specifications of Rotator:

 Electric power source: 230 V . AC. $50 / 60$ Hertz Torate: $400 \mathrm{~kg} / \mathrm{cm}$.Time for one revolution: 60 seconds, approx. Braike system: Electro-magnetic double plunger Brake lock-in.
Vertical load: Dead weight. $500 \mathrm{Kg} . ;$ nominal load 70 Kg.
Mast diameter: $1 \frac{1}{4}$ to $2 \frac{1}{2}$ inches.
Weight: 16 lb ., approx.
Control cable: Seven conductors.
Approx. sizes: height. $13^{3} 4$ in.; base diam., $51 / 4 \mathrm{in}$.; rotation diam. $71 / 2$ in.
Specifications and Prices subject to change. AUSTRALIAN AGENT:

BEAM ROTATOR EMOTATOR MODEL 1100M

YOU CAN CONTROL THE DIRECTION OF YOUR BEAM ANTENNA FROM YOUR OPERATING POSITION

The heavy duty model 1100 M features rugged cast aluminium construction, stainless steel bolts, nuts and washers. Bearing design with 90 -ball bearing provides high vertical carrying capacity, and resistance to bending pressures due to unbalanced weight, wind, etc. Limit switches prevent over-run. Positive braking with solenoid operated double plunger, operates when drive paddle is released. Steel gears transmit drive from a fractional horse-power motor.

The 1100 M can be mounted on a fixed tubular mast if an additional clamp assembly is bolted to the base. Otherwise, the rotator is base mounted on a flat plate fixed to the top of the mast or tower. Six mounting holes are provided. The antenna boom is supported on a short vertical tube held by the top clamp assembly. Clamp assemblies are of sturdy construction and clamp blocks are reversible for small or large tube within the range $11 / 4^{\prime \prime}$ to $21 / 4^{\prime \prime}$ diameter. U bolts are stainless steel 9 mm . diam.

The Indicator-Control Box is attractively finished in grey, with large illuminated meter, indicator lights, power switch. and "Left-Right" controls. Transformer is within Control Box. Control Box size: $51 / 2^{\prime \prime} \times 83 / 8^{\prime \prime} \times 4^{\prime \prime}$; weight $81 / 2 \mathrm{lbs}$.

1100 M with Indicator-Control Box and bottom mast clamp, $\$ 165.00$.
1100M with Indicator-Control Box (less bottom mast clamp), \$148.50.
Special 7 -conductor Cable for 1100 M .60 cents per yard.
All prices include Sales Tax. Freight is extra.

The World's Most Versatile Circuit Building System!

SIZES: $1 / 8^{\prime \prime}$ and $1 / 16^{\prime \prime}$ WIDTHS
Length: 100 ft. roll, 5 ft. card
IDEAL FOR PROTOTYPE AND PRODUCTION
CONSTRUCTION
USEFUL FOR WIRING REPAIRS
\star NO DRILLING $\quad \star$ FAST $\quad \star$ NO MESS

Available from all Leading Radio Houses

Marketed by-
ZEPHYR PRODUCTS PTY. LTD.
70 BATESFORD RD., CHADSTONE, VIC., 3148
Telephone 56-7231

MANUFACTURERS OF RADIO AND ELECTRICAL EOUIPMENT AND COMPONENTS

complete the following sequence of numbers

659,664 109,944 18,324

Of course you immediately recognized a geometric progression and by now will have pencilled
in 3054. Because we introduced our 2N3055 last month we thought this would be a logical
way to introduce our 2 N 3054 this month.

2N3054 is a general purpose NPN power
transistor, manufactured by the new patented Fairchild Bi-mesar process. 2 N 3054 is an ideal driver for the 2 N 3055 .

Available for immediate delivery.

420 Mt. Dandenong Road, CROYDON, VIC., 3136. P.O. Box 151, Croydon. Cables: Fairchild Melbourne. Telephone: 723 4131. Sydney Office: 43 7508. Adelaide: 51 7083. Auckland. N.Z.: 579307 . NEW ZEALAND DISTRIBUTING AGENTS: John Gilbert \& Co. Ltd., Tasman Buildings, Anzac Avenue, Auckland, N.Z. FAIRCHILD DEVICES NOW AVAILABLE IN DISTRIBUTOR QUANTITIES FROM: GEORGE BROWn \& Co., 267 Clarence Street, Sydney, N.S.W., 2000. General Accessories, 81 Flinders Street, Adelaide, S.A., 5000 . J. H. Magrath \& Co. Pty. Ltd., 208 Lit. Lonsdale Street, Melbourne, Vic., 3000 . Radio Parts Pty. Lid., 562 Spencer Street, West Melbourne, Vic., 3003 . Douglas Electronics, 7 Gralunga Street, Mansfield, Qíd., 4122.

FEDERAL COMMENT

1970-008B is the official designation, although it would be hard to find a less impressive title, for the Australis Oscar package launched on 23rd January, 1970.

Four years of planning, delays and frustration were of little consequence compared to the few weeks before the launch. "Go," "No," "Go" signals were the order of the day and taxed everyone's patience to the limits. Understandably, it came somewhat of an anticlimax to believe that on a warm Friday night in Melbourne that Australis Oscar 5 was in orbit, acquired, and as far as could be determined was functioning as planned.

Subsequent Amateur history may give scant reference to this event, but when it is realised that apart from being an Australian Amateur "first," the way has been opened for the Amateurs of this country to participate in future projects, more sophisticated, more expensive, but more versatile than was ever considered the case four years ago.

International recognition is a difflcult thing to achieve in any sphere, but we would like to modestly believe that the Amateur Service in this country, with the launching of Australis Oscar 5 has "arrived". To have made this possible, tributes must be paid to the administrators of Project Australis: the vigour with which Richard Tonkin and Owen Mace followed the project to fruition is especially commendable. To everyone-designers, technicians, communicators, public relations people, the many organisations and Government departments that supported the project, and, of course, the AMSAT fellows themselves, we owe a special debt of gratitude.

Those who listened to the launch and subsequent events on the VK2 and VK3 Divisional Stations must have been impressed with the truly international
flavour of the proceedings. Initiated by Chris. Jones, VK2ZDD, the broadcast provided all the drama of on-thespot reporting necessary to add colour to the event. Our thanks again go to Chris Jones and Tim Mills for a fine job.

As this is written, Australis Oscar 5 is in its third week of successful operation, but all Amateurs whether as active participants or indulgent onlookers must take stock of the situation and be ready to assist in future packages.

We believe that this Institute and all Amateurs alike should be involved in these projects: the ability to design and construct has been amply demonstrated and it is of vital importance to retain the skills of those associated with the project and maintain the confidence of the AMSAT group in our future operations.

No one can predict with any degree of certainty the style of future Amateur Radio operations, but it is obvious that the expansion of all aspects of v.h.f.-u.h.f. techniques is going to play an ever increasing role in Amateur experimentation and communication. The Australis group must further develop these techniques and with this success under its belt it has the potential to design the next package in the series. Already preliminary work has been done on a multi-channel translator, but as with most things of sophistication, money will be needed to bring the aims to reality

As said earlier, this Institute has faith in the project and its personnelhow we and you can assist will be on the agenda for the Federal Convention at Adelaide this year.

History, it is said, has a habit of repeating itself-we sincerely hope it does.

AUSTRALIS OSCAR 5 ORBITS THE EARTH

By RICHARD TONKIN*

Abstract

The Australian-built Amateur Radio satellite, AUSTRALIS OSCAR 5 was successfully launched into space at 1131 GMT, 23rd January, 1970. The 39-lb. satellite piggy-backed into orbit on a NASA Delta rocket from the Western Test Range, California

THE launching marked the first time that an Australian-built Amateur satellite had been put into space and it ended a four-year "drought" in Amateur space launchings since the orbiting of OSCAR 4 in 1965.

AUSTRALIS OSCAR 5 went into an orbit very close to the planned one. The orbital parameters are:

Through the co-operation of the P.M.G., O.T.C. and the A.B.C., VK2AWI and VK3WI were able to broadcast a direct description of the launching which was relayed from the N.A.S.A. Goddard Space Flight Centre in Maryland. Amateurs and S.w.l's throughout Australia reported hearing the broadcasts.

The successful orbiting of AUSTRALIS OSCAR 5 is the culmination of four years of effort by a great number of people throughout the world. The satellite was designed and built by Amateur Radio members of the Melbourne University Astronautical Society. Les Jenkins, VK3ZBJ, later joined the project and built the command receiver for the satellite. Construction of AUSTRALIS OSCAR 5 was completed in June 1967 and it was delivered to Project OSCAR in San Francisco by three members of the Australis project. Project OSCAR tried unsuccessfully to obtain a launch for the satellite and the cause was taken up early in 1969 by AMSAT (Radio Amateur Satellite Corporation), a Washingtonbased group of Amateurs. AMSAT were successful in negotiating a launch with NASA and were responsible for the preparation of the satellite for flight.

It is significant that, while preparations for the launch of AUSTRALIS OSCAR 5 were going ahead, the Australis group became part of the Institute and is now known as W.I.A.-Project Australis. This was a logical step to take, especially when it is remembered that Australian Amateurs, through the W.I.A. contributed $\$ 400$ towards the cost of building AUSTRALIS OSCAR 5.

INITIAL RESULTS FROM

AUSTRALIS OSCAR 5

After a successful launching, AUSTRALIS OSCAR 5 (international name 1970-008B) separated from the Delta rocket over East Africa at 1237 GMT. Reports from SR8AS, on the island of Madagascar, indicated that both the 144.050 MHz . and the 29.450 MHz .

[^21]transmitters were operating and that everything looked good. On its first orbit of the earth, the satellite was tracked by Amateurs in India, Germany, France, England, Canada, America, New Zealand and Australia. At this stage, it is uncertain who had the honour of being the first VK station to hear AUSTRALIS OSCAR 5, but it was probably a VK4. The following stations reported reception on the first orbit:

VK4ZGL, VK4PJ, VK2OD, VK1CR, VK3ZBJ, VK3AVF, VK3ABP and VK-

7PF. There are undoubtedly many more who monitored the first pass and a list of all Amateurs and S.w.l's who reported hearing the satellite during its transmitting life will be published in the next issue of "A.R."

Following the first few orbits, it became clear that the satellite's internal temperature had risen to a higher level than had been anticipated. It had been planned that the temperature should stabilise to about $25^{\circ} \mathrm{C}$. and a special paint pattern was applied to the satel(continued on page 10)

Oscar 5 Satellite is weighed by Jan King in Spacecraft Lab. at Kennedy Space Centre, Western Test Range Operations Division, Vandenberg Air Force Base, Calif.

AUSTRALIS OSCAR 5: IT'S IN ORBIT!•

By GEORGE JACOBS, \dagger W3ASK

It's UP, it's finally UP, the AUSTRALIS OSCAR 5 satellite is flying!!! It made it successfully on 23rd January, 1970. After a lapse of almost four years, there's an Amateur Radio satellite again orbiting the earth, high in space.

AT precisely 2 seconds past 1131 GMT on January 23, a giant two stage Delta-N booster rocket began to lift slowly off its pad at NASA's Western Test Range near Lompoc, California. Amid a tremendous roar and a blinding blaze of flame and smoke, the 39 -pound AUSTRALIS OSCAR 5 satellite, nestled in the framework of the giant booster, began its piggyback ride into space.

An hour and five minutes later, over South Africa, the Delta-N attained its orbital altitude of approximately 900 miles. and the AUSTRALIS OSCAR 5 satellite was ejected into space to become the fifth in a series of satellites designed and built by Radio Amateurs and Amateur Science enthusiasts, to successfully achieve an orbit in space.

Once in orbit, beacon transmitters aboard the satellite began transmitting telemetry data on 29.450 MHz . in the 10 metre band and 144.050 MHz . in the two metre band.

The first Radio Amateur to report receiving the beacon transmissions was 5R8AS as the satellite passed into range of his QTH on the island of Madagascar, off the south-east coast of Africa. He reported reception of the 2 metre beacon from 1238 GMT until it passed out of range at 1241.

Now that the AUSTRALIS OSCAR 5 satellite is in orbit, it has undergone some name changes. Officially, according to international agreement, the satellite has been given the designation 1970-008B. As part of the OSCAR concept, it now bears the official title of AUSTRALIS OSCAR 5, or unofficially, AOA 5 or just plain OSCAR 5 for short.

INITIAL OBSERVATIONS

As the satellite sped away from 5R8AS's QTH at a speed of 15,951 m.p.m., its initial orbit next took it into range of western Europe and the easternmost coast of North America. G2AOX, the OSCAR co-ordinator for Europe, reported good telemetry signals from the 2 metre beacon which he copied from 1244 to 1305 GMT, using a simple dipole antenna. Both G2BVN and G3DAH also reported reception of the 2 metre transmitter during its initial orbit.

DL3OJ and DJ4ZCA were among the first to report reception of the satellite's 10 metre signals. DJ4ZCA copied the signal from 1246 to 1303 GMT, and DL3OJ from 1246 to 1305 GMT.

Among the first to hear the 2 metre signal in North America was VE1AFB

[^22]who logged it between 1302 and 1311 GMT, peaking 59 .

WA1IOX at the Talcott Mountain Science Centre, Avon, Conn., was among the first U.S. Radio Amateurs to copy AOA5's signals during its initial orbit. He reported excellent reception of the 2 metre transmission between 1304 and 1312 GMT.

Ironically, during its initial orbit, the OSCAR 5 satellite passed within range of its birthplace at the University of Melbourne in Australia. Its signals were copied by the Melbourne University Radio Club between 1346 and 1358 GMT with solid telemetry reception.

It was a text book launch, and all indications were that the satellite was operating within its nominal design range, and the project was off to a good start. (At the end of the initial orbit, however, the modulation on the 10 metre signal was observed to drop off sharply, and later reports indicated that it was very difficult to decode the telemetry on this channel for this reason. As we go to press the reason for this low telemetry level has not been determined. The 2 metre telemetry circuit continues to operate properly.)

With each successive orbit, more and more Radio Amateurs throughout the world began to tune the satellite's signals, and by the end of the first day of operation, AMSAT headquarters had already received more than 100 tracking, telemetry and reception reports.

The 2 metre transmitter, which is operating continuously, is expected to have a life period of about a month, and may not be operating by the time this appears in print. The 10 metre transmitter, which will be operating primarily during week-ends, may still be oderating during March. Be sure to check 144.050 MHz . daily and 29.450 MHz . on week-ends to see if you can receive signals from OSCAR 5. There may still be time.

FOUR-YEAR EFFORT SUCCESSFUL

The successful launch of the AUSTRALIS OSCAR 5 satellite culminates a four-year effort on the part of a large number of devoted Radio Amateurs on two continents.
The idea for the satellite was conceived during March 1966 by the members of the Melbourne (Australia) University Astronautical Society and the Melbourne University Radio Club. With the assistance of the Wireless Institute of Australia and the Australian electronics industry, the satellite was designed and built entirely by the Amateur participants. It went from drawing board to completion in little more than a year's time.

The completed satellite arrived at the west coast headquarters of Project

OSCAR during July 1967, where it remained for more than a year and a half while attempts were made to cut awav the red tape encountered in arranging for a piggyback launch.

During March 1969, with the formation of the Radio Amateur Satellite Corp. (AMSAT), ${ }^{1}$ the Australian built satellite was shipped to AMSAT's Washington, D.C., headquarters. It took another nine months for AMSAT to put the satellite into final shape for launch acceptance, to arrange with NASA for the launch, and to wait out the many agonising delays caused by booster difficulties. But all this came to a happy and successful end at 1131 GMT on 23rd January, 1970.

BIG NEWS IN AUSTRALIA

The launch of OSCAR 5 made big news in Australia since this was only the second Australian-built satellite ever to make it into space. News of its launch was carried on the front page of many newspapers, and it was featured on radio and television as a major news story.

A direct commercial cable circuit was leased by the Australians between the University of Melbourne and the Oscar Control Centre at the NASA's Goddard Space Flight Centre, Greenbelt, Md. The line was in use for a three-hour period beginning about 15 minutes before launch. Every word and piece of information that was filtered through the control centre was fed live to Australia. The count-down and some of the control centre's commentary was carried live by radio and television stations in Australia.

In addition, W1AW [also VK2AWI and VK3WI.-Ed.] and several AMSAT stations operating in various h.f. Amateur bands, transmitted the count-down and the control centre commentaries live to Radio Amateurs throughout the world. After the satellite was successfully in orbit, these stations stood by to receive tracking and other reports bound for the control centre. At one point the amount of traffic flowing in and out of OSCAR control sounded much like Houston control during an Apollo mission!

INITIAL RESULTS

The following are initial orbital and signal data for the OSCAR 5 satellite confirmed by observer reports received during the first several days the satellite was in operation.

Date of launch: January 23, 1970.
Time of launch: 11:31:02 GMT.
Place of launch: NASA Western Test Range, Lompoc, California.

Information concerning membership in AM-
SAT can be obtained from AMSAT, P.O. Bnx SAT can be obtained from AMSAT, P.O. Bnx
27. Washinkton. D.C., U.S.A., 20044 .

Frequencies: 144.050 MHz . in 2 mx band; 29.450 MHz . in 10 mx band.
Period: 115.06 minutes.
Inclination: 102 degrees (to the equator).
Altitude: 910 miles apogee; 880 miles perigee.
Equatorial crossings: 28.8 degrees progressively to the west for each new orbit in a south-tonorth direction.
The 2 metre beacon transmitter seems to be operating perfectly. Maximum signal is just under a half microvolt, and the telemetry modulation is strong, sharp and clear. There appears to be some trouble with the 10 metre telemetry signals, however. As expected, because of propagation differences, this signal is somewhat weaker than the 2 metre signal, but unexpectedly the level of telemetry modulation is also very low. Many observers have reported considerable difficulty decoding the 10 metre telemetry signal for this reason.

Initial telemetry data indicates that the satellite is operating nominally within its designed range. Channel 1 indicates a battery current reading of between 60 and 70 mA . when both beacon transmitters are operating. Channel 3 indicates a battery voltage fairly stable at approximately 20 volts. According to Channel 5, the satellite's internal temperature which was as low as $25^{\circ} \mathrm{C}$. during its initial orbit, has risen somewhat during the first few days of operation and appears to have stabilised at approximately $40^{\circ} \mathrm{C}$. Channel 7 shows that the satellite's skin temperature varies between approximately 35 and $50^{\circ} \mathrm{C}$., depending on whether it is in the earth's shadow or in full view of the sun.

Channels 2, 4 and 6 indicate that the satellite is spinning at its predicted rate.

FUTURE OSCAR SATELLITES

The effort that finally led to the successful launch of AOA5 is indicative of AMSAT's tremendous vitality. Even before the heat had time to cool at the launching pad, AMSAT officials were discussing future plans with high level NASA officials and with some of America's leaders in the field of space communications.

It's a bit too early to say what the next OSCAR satellite might be like, but AMSAT is busily evaluating and testing a two metre translator built by European Radio Amateurs, called EURO-OSCAR. At a recent conference of Region 1 (Europe and Africa) of the International Amateur Radio Union, a decision was taken for AMSAT to vigorously pursue the launch of the EUROOSCAR satellite. If all goes well, perhaps this will be the next OSCAR satellite to make it in space.

With a success already chalked up, Project Australis, under the sponsorship of the Wircless Institute of Australia, proposes to build a channelised Amateur repeater as the next AustralisOscar satellite. While plans have not yet been finalised, the use of the 144 MHz. band for the up-link and the 432 MHz . band for the down-link, along with the use of solar power, is being considered.

Lunger range, AMSAT is investigating the possibility of including two Amateur experiments as a part of the huge ATS-G satellite to be launched by NASA during 1973. One proposed experiment is a channelised repeater aboard the satellite which would receive signals in the $144-146 \mathrm{MHz}$. band and retransmit them in the 420-450 MHz . band. Another ATS-G experiment proposed by AMSAT would consist of the transmission of Radio Amateur television signals for translation and relay back to earth by the satellite in the 432 MHz . band, where the signals would be receivable on regular home t.v. sets equipped with special low-noise converters and fairly high gain antennas.
There is even talk of plans for a moon-based OSCAR repeater to be brought to the moon by some future astronaut!

These activities are leading the way in demonstrating that Amateur Radio, through participation in space communication experiments, continues to
make worthwhile contributions in the field of communications, and in furthering man's knowledge of science.

INTERESTING PRIMARY PACKAGE

Almost lost in the glare of excitement surrounding the OSCAR 5 satellite is TIROS $-M$, the primary package with which the Radio Amateur satellite was launched piggyback into space. This satellite is also of considerable interest to Radio Amateurs since it is the latest and the largest of a long series of operational weather satellites.

TIROS-M is the first in a new series of improved TIROS operational satellites, and now that it is successfully in orbit, will be called ITOS-1. This second generation operational weather satellite will not only more than double the daily weather coverage now possible from earlier satcllites, but will do it at less cost, more effectively and during a longer lifetime.

ITOS-1 will provide cloud cover photos night and day, every 12 hours, and will relay these photos to earth via

Jan King and assistant instal Oscar 5 Satellite in position on launch vehicle at fourth level of gantry, SLC 2 West, Vandenberg Air Force Base, Calif.
an on-board Automatic Picture Transmission (APT) system. A relatively inexpensive ground receiving station can be used to receive APT weather transmissions, and many of them have been built and are operated by Radio Amateurs. ${ }^{2}$

ITOS-1 is in an orbit very similar to OSCAR 5 , and is transmitting telemetry data on command on 136.77 MHz ., and APT data on command on 137.5 MHz .

SOME FIRSTS

Among the firsts chalked up by AOA5 are the following:

- First Radio Amateur satellite to be launched by NASA. The four previous OSCAR satellites were launched by the U.S. Air Force. With launches now possible under civilian auspices, the OSCAR programme has considerably greater flexibility than in the past.
- First satellite to operate in the 10 metre band. All previous OSCAR satellites operated in either the 144 or 432 MHz . bands, or both. This makes it possible for a much greater number of Radio Amateurs to copy OSCAR 5's signals than was possible with previous satellites.
- Along with the TIROS-M primary package, OSCAR 5 was the first satellite to be launched by a two-stage Delta-N booster rocket. The Delta-N, used for the first time, contains six solid-fuel strap-on rockets for additional thrust at lift-off.
- First Radio Amateur satellite to be command controlled from the ground. The satellite's 29.450 MHz . transmitter will be turned on and off from the ground to permit week-end operation only, in an effort to conserve battery power.
- First Amateur satellite to contain a magnetic self-stabilising system (MASS), to reduce spin, roll and signal fading.

Along with these firsts is also a second. The satellite is the second built by Australians to be launched successfully. WRESAT-1, launched on November 29, 1967, is the only other Aus-tralian-built satellite to make it into space. This was a scientific satellite which made solar and ionospheric observations.

HISTORICAL OSCAR DATES

Dec. 12, 1961-Jan. 1, 1962: OSCAR 1, Amateur Radio's first satellite, transmitted telemetry data on 2 metres.

June 2-June 20, 1962: OSCAR 2 transmitted telemetry data on 2 metres.

March 9-24, 1965: OSCAR 3, Amateur Radio's first translator in space operated up and down-links in the 2 metre band. A 2 metre telemetry beacon transmitter continued to operate until July 9, 1965.

Dec. 21, 1965-mid-March, 1966: Operational period of OSCAR 4's translator, with the up-link on 2 metres and the down-link in the 432 MHz . band.

Jan. 23, 1970 . . : Launch of OSCAR 5 at 1131 GMT with 10 and 2 metre beacon telemetry transmitters.

[^23]OSCAR 5 ORBITS THE EARTH (continued from page 71
lite to achieve this figure. After several days in orbit, the satellite's internal temperature stabilised at about $43^{\circ} \mathrm{C}$. It is not known at this stage why the temperature rose to this figure, but, as the satellite had been successfully tested to $80^{\circ} \mathrm{C}$. before launch, the $43^{\circ} \mathrm{C}$. figure has not caused any real concern.
The modulation level of the 29.450 MHz. transmitter has been observed to be very low. Reports have varied from 5 to 40% modulation, with the higher frequency telemetry tones being very difficult to decode. It was originally thought that there may be a problem in the 29.450 MHz . modulator which was keeping the transmitter duty cycle on more than planned, but subsequent commanding off of the 10 metre transmitter has shown that it is drawing normal current from the battery, indicating that the modulator is operating properly. The answer will probably have to await detailed analysis of the telemetry data from the satellite. The 10 metre transmitter is apparently radiating full power.
The 144.050 MHz . transmitter seems to be operating normally, with close to 100% modulation reported by VK3ZBJ. With average to good signal to noise ratios, most stations have reported that they can receive and decode the 7 -channel telemetry data without too much difficulty.

About a week after the launching, the horizon sensors (photo-transistors) mounted on the sides of AUSTRALIS OSCAR 5 indicated that the Magnetic Attitude Stabilisation System (MASS) was lining the satellite up with the earth's magnetic field. MASS consists of a bar magnet and hysteresis rods. The idea of using this system was to stop the satellite from tumbling randomly in space and to stop fading due to tumbling on the 10 metre signal and reduce it on the 2 metre signal. The system appears to be working very well. One point of interest is that daytime (northbound) passes of the satellite over Australia have yielded good signals as the spacecraft comes over the horizon, but these signals have tended to weaken as the point of closest approach to the tracking station is reached. As AMSAT have reported that they are getting extremely good 2 metre signals over the U.S., this indicates that the satellite's 2 metre transmitting antenna is pointing away from the earth as it travels north from the south magnetic pole.
An American Amateur station in Connecticut had the honour of being the first to successfully command the AUSTRALIS OSCAR 5 satellite. On orbit 61, on 28th January, the Connecticut station sent a coded command to the satellite and turned off the 29.450 MHz . transmitter. However, Les Jenkins, VK3ZBJ, who built the satellite's command receiver, was not far behind. He succeeded in commanding the 10 metre transmitter on again on orbit 72 , on 29 th January. Since then, Les has demonstrated that he can command the 10 metre transmitter on and off at will. These tests represent the first time that any ground control has been exercised over an Amateur Radio
satellite and they show the degree of sophistication of which Amateurs are capable.

At the time of going to press, AUSTRALIS OSCAR 5 has been orbiting the earth for 15 days. At this stage it seems likely that the 2 metre signal will be audible for about another two weeks and the 10 metre signal should continue for about another four weekends, before the satellite's chemical batteries are exhausted.
[Stop Press.- On 14/2/70 the 10 metre transmitter was turned on and will remain on for the duration of the satellite. This change of plan became apparent when it was found difficult to turn the 10 metre transmitter on with the reduced voltage available. At this date also, the 2 metre transmitter was so weak that telemetry data was un-readable.-Ed.]

THE NEXT STEPAUSTRALIS OSCAR 6

AUSTRALIS OSCAR 5 is essentially a test satellite and the forerunner of bigger and better things to come. Its main purposes were to provide Amateurs throughout the world with a test and training satellite so that they could learn the techniques of satellite tracking and data decoding and to conduct a number of experiments in satellite technology and radio propagation. The satellite also served as a training ground for the Radio Amateurs who are going to build AUSTRALIS OSCAR 6.

The design of AUSTRALIS OSCAR 6 is already well advanced. It now seems likely that Australian Amateurs will build the electronics for the satellite and that AMSAT will finish the spacecraft structure and power supply. There is also a possibility that a translator built by DJ4ZC will be carried in the satellite.

AUSTRALIS OSCAR 6 will be the most advanced Amateur Radio satellite ever launched. VK3ZBJ is now working on a channelised translator for the satellite which will also carry multichannel telemetry and command systems. It is hoped that the satellite will have an active life of one year, using a solar cell power supply.

AUSTRALIS OSCAR 5 has proved that Australian Amateurs, given the necessary support, can build a satellite that will work. There is no reason to suppose that, given the backing of Radio Amateurs and of industry, W.I.A.Project Australis cannot again deliver the goods to AMSAT: If AMSAT's enthusiasm and success in getting AUSTRALIS OSCAR 5 into space is any indication, there should be yet another Amateur Radio satellite orbiting the earth in the not too distant future.

CONTEST CALENDAR

28th Feb./15th March: I.A.R.C. Propagation Rerearch Contest ic.w. and r.t.t.y.).
7th/8th March: 28th A.R.R.L. International DX Competition iphonel.
7th/8th March: B.E.R.U. (c.w. only).
218t/22nd March: 381h A.R.R.L. International DX Competition (c.w.).
28th Mar./19th April: I.A.R.C. Propagation Research Contest iphonel.
15th/18th August: Remembrance Day Contest. 3rd/4th October: VK,ZL/Ocennta DX Context (phone).

The Multiband Double Dipole

TED GABRIEL;* VK6TG (ex-VK2AVG)

While the operation of an Amateur Station in remote areas may not, at first glance, appear difficult with pre-sent-day equipment. the writer encountered several problems when operating in a modern construction camp in the North West.

Construction workers in this area are housed in air-conditioned, metal clad trailer units and the wide use of short wave transistor radios makes an outside aerial necessary.
The result is a weird jungle of "spider webs," "d.f. loops" and "bird cages on sticks" into which the Amateur operator must tread warily when erecting a transmitting antenna.

A multiband "trapped" dipole (K2GU) was tried first, the traps being carefully resonated with a grid dip oscillator. After adjustment, the antenna appeared to work well on 40 and 20 metres, but there were complaints of b.c.i. from those listeners close to the antenna.

Checks with an s.w.r. meter indicated the presence of standing waves on the feed-line, though these were not excessive. More importantly, since this type of antenna is a compromise, it was realised that harmonics were probably being radiated-possibly from the traps.

It was then decided to revert to simple dipoles with the hope of attaining low s.w.r's, and the following multiband design was developed using a single 75 ohm co-axial cable feed-line.

CONSTRUCTION

As indicated in Fig. 1, the upper dipole is cut for a half-wave on 40 metres (7075 KHz .) and the lower dipole for a half-wave on 20 metres ($14,175 \mathrm{KHz}$.). Leave sufficient wire in the end loops for adjustments and fasten with electrical service connectors.

The central insulator of the upper dipole has a $4^{\prime \prime}$ thick perspex sheet attached to it and the lower dipole can be fastened through holes in the bottom corners of the sheet, or to another insulator fastened to the bottom edge of the sheet (see Fig. 3).

The upper dipole supports the lower one by means of perspex spacers ($3 \frac{1}{2}^{\prime}$ $x \frac{1}{2}^{\prime \prime} \times 3 / 16^{\prime \prime}$). the separation between the wires being 2 2 "'though the spacing is not critical.

[^24]From the end insulator of the lower dipole to the far end spacer a length of carpenter's nylon chalk line is ideal for tensioning.

Support the antenna from the end insulators of the upper dipole and run another light rope from the bottom of the end spacer to the mast to tension the lower dipole and square up the array.

The 75 ohm co-axial cable can be attached to the centre perspex sheet directly or with fittings. The centre conductor of the cable is joined to one
side of both the upper and lower dipoles and the braid is joined to the other two sides (Figs. 2 and 3).

Adjust the length of the upper dipole for resonance on 40 metres (this will correspond to $1 \frac{1}{2}$ wavelengths on 15 metres) and the lower dipole for 20 metres. The extra wire at the ends and the use of service connectors facilitates this task.

An s.w.r. bridge is essential in order to obtain the lowest possible values when tuning, thus helping to avoid b.c.i. and t.v.i.
(continued on page 15)

Fig. 2

Fig. 3

```
VKGTG MULTI BAND DOUBLE DIPOLE
                                    FOR
                                    40,20& 15 METRES
```


Fig. 1

A Hub for Tri-band Spider Quads

S. T. CLARK,* VK3ASC

THERE is romance in the story of the invention of the Quad aerial at short wave broadcasting station HCJB at Quito, 10,000 feet up in the Ecuadorian Andes in 1939, and Bill Orr, W6SAI, tells the story without frills in his excellent book, "All About Cubical Quad Antennas". (The title is intended to indicate that the book is devoted entirely to this subject.)

An aerial with the characteristics of the Quad cannot fail to appeal to Amateurs. In the thirty years that Quads have been in existence we have seen many papers published on various designs and the aerial has been highly developed until versions are now available which are capable of operation on at least three bands. The majority of Amateurs and manufacturers have confined themselves to designs using a boom although there have been some designs published which use two pyramids, apex to apex, to achieve identical electrical spacing on each of the operating bands.

The writer does not claim to have studied everything that has been written on the subject, but he has read most of the articles which came his way during the last thirty years and has never ceased to be amazed at the ingenuity of the designs presented.

Single-band aerials do not appear to present any special problems for constructors of reasonable mechanical ability, the "Bird Cage" and "Swiss Quad" are interesting, and, no doubt, effective versions of the Quad, but multi-band versions of these designs are mechanically complex.

Increased interest in DX recently caused this subiect to be studied afresh and it appeared that a set of broad specifications could be set down:

1. Construction should be simple enough to be completed satisfactorily by Amateurs of limited ability working with hand tools.
2. The acrial should be capable of operation on the three DX bands of 14,21 and 23 MHz .
3. The impedance should be constant on all bands to minimise matching problems.
4. It should be capable of being fed by one feedline if required.
5. The zerial should be light in weight and operated with a lightweight rotator (maximum weight 25 lbs.).
6. Forward gain should be about 6 db. with a good front-to-back ratio.
The A.R.R.L. Antenna Book (11th Edition) wos studied, but found to be greatly lacking in detail. Other references were also studied such as bast issues of "QST" and "A.R." which were on file. Berause of the criterion that the impedance should be constant on all bands, the design had to consist of two pyramids apex to apex. An article

"Close Spacing the W3QEF Quad" by Kridler in "QST" for January 1962, in which a number of earlier references are given, contained most of the answers. An even more informative article, "The Spider Quad" by Peter B. Langenegger, HB9PL, appeared in "QST" Dec. 1967. Langenegger's ingenious design appeared to offer the answers to all of the problems inherent in the construction of a tri-band Quad.

HUB PROBLEM

When it was decided to proceed with construction and procurement action commenced, it was found that purchasers of a few pounds of steel tubing and plate cut into thirteen separate pieces were not very welcome at the steel yards. In any case, the pieces had to be welded together, the assemblies cleaned, and then the whole taken to a galvaniser, Even though the writer has trained as a turner and fitter and has a workshop which is well equipped by Amateur standards, it appeared that the "ultimate" answer had not been found to the hub problem.

Was there an answer that had not appeared in the literature?

Re-reading the available literature highlighted the fact that all of the hub assemblies aescribed were fabricated from a number of pieces of steel plate, tube or angle, and that they were essentially "one off" designs with a very high labour content.

Having had some success with aluminium castings on another project, it was decided to thoroughly investigate this method and a number of models were made up in wood and plastic to test the concept. By this stage some basic ingredients had been worked out. It appeared desirable that each half of the Quad, i.e. each pyramidal set of loops should be entirely separate for ease in assembly, after which the two halves could be bolted together on a vertical support tube, to form the complete Quad.

A wooden model of one half was therefore made and taken for discussion with a pattern maker (who turned out to have an uncle who was an Amateur) and the finer details were thrashed out. The final design appears to meet the needs of the majority of Amateurs who require to build an aerial of this type and the cost of professionally produced pattern and core box for the production of professional castings appears to have been more than justified by the better job which is obtained.

From the response that the writer has had to date it would appear that the construction of two element triband quads has been seriouslv inhibited by the lack of a suitable hub assembly and that the way is now open to anyone of modest ability and means to erect a Quad which is very largely of his own construction.

VK3ASC HUB SPECIFICATIONS
The hub consists of two aluminium alloy castings bolted base to base. Assembled dimensions are $6^{\prime \prime} \times 6^{\prime \prime} \times$ 4\}". Weight, 4h lbs. complete with galvanised mounting bolts, nuts and washers. Eight sockets $1^{\prime \prime}$ diameter by $2^{\prime \prime}$ deep are provided to accept the spreaders which enter the assembly at a dihedral angle of $22 \frac{1^{\circ}}{}$ to the base surface which is formed to fit a tube $1.9^{\prime \prime}$ diameter ($1_{2}^{1 \prime \prime}$ water pipe) and the centre of which is co-axial with the support tube. This surface is referred to in this paper as "the neutral plane".

A dihedral angle of $22 \frac{1}{}^{\circ}$ gives a spacing of $10^{\prime} 8^{\prime \prime}$ (0.15 wavelength) which is stated by Orr to give a feedpoint impedance of 75 ohms when the centre of the antenna is 0.5 wavelength (33') above ground level. Spacing may be adjusted as described later. Spreader length required, 14.1' for a loop 18.5 on a side. Spreader fixing method: cementing with "Araldite" is recommended. Grub screws may be used if desired.

To provide the answers to questions which have been asked by many VKs during the last few months, some alternative methods of construction and certain design points are discussed below.

FEEDPOINT IMPEDANCE
 AND SPACING

The feedpoint impedance is stated by Orr to vary between 60 and 110 ohms as the spacing is varied from 0.1 to 0.2 of a wavelength. In addition, the impedance will vary somewhat with effective height. It is therefore necessary to choose a spacing which suits the Amateur's own situation best. 0.15 wavelength has been chosen in the design of this hub because it is a figure recommended by Orr as presenting a load of 75 ohms when the antenna height is 33 feet. The required dihedral

Element dimensions and insulator placement for the Spider Quad. The figures
in columns D, E and F are only approximate.

IFrom "OST" Dec. 19871
angle is $22 \frac{1}{2}^{\circ}$, which can be easily obtained. Forward gain is about maximum at this spacing and the spreader arms are shorter and stiffer than for 0.2 wavelength.

ADJLSTING THE SPACING

1. By making the spreaders a loose fit in the sockets, they can be adjusted to the required angle and allowed to set at the chosen angle.
2. Casting wall thickness is $\frac{1}{4}^{\prime \prime}$; this is more than necessary and sockets may, if desired, be re-machined to a different angle.
3. If aluminium or stcel tubing is used for the inner spreader sections a permanent "set" of a few degrees can easily be put in the spreaders by bending over the knee or with an elcetrician's bending tool.

Small variations from the recommended spacing are not considered to be significant.

A method of fastening the antenna wire to the fibreglass rods.

Ifrom "OST" Dec. 1967j

SPREADERS

The most aesthetically pleasing effects are obtained if tapered spreaders are used. For many years it was common practice to use bamboo fishing poles for this purpose. Although inexpensive, about $\$ 12.00$ ($80 \mathrm{c} / \mathrm{lb}$.) for a set of eight 16-18 feet nominal starting length, some Ainateurs consider them to have a short lifetime. One Amateur of the writer's acquaintance has a set still in operation after seven years. For this reason they are considered to provide a solution which is acceptable to many.
Tubular fibreglass fishing rod blanks are probably the best "standard production" raw material for spreaders because they are strong, light in weight, straight and need no painting. $11^{\prime} 6^{\prime \prime}$ tubular fibreglass blanks weigh a modest 9$\} \mathrm{oz}$. and cost $\$ 9.00$ each. Longer blanks will cost considerably more. The price almost doubling between $11^{\prime \prime} 6^{\prime \prime}$ and 13' $6^{\prime \prime}$.

If you are keen to have the best without incurring the expense of "all fibreglass" spreaders, it is reasonable to fit about five feet of 1 " diam. 17 s.w.g. aluminium alloy tubing in the centre of the pyramidal assembly as the 28 MHz . loop is attached at about the 7 mark. Of course, bamboo (Rangoon Cane) could also be used for the outer ends of composite spreaders.
VK3ASC's plans at present are confined to the use of 14 canes fitted directly into the hub sockets, the only metal in the structure is the hub and the elements.

Serious experiments have not been conducted with fibreglass because of the high cost, but it is known that
other Amateurs have used tubular Abreglass for spreaders and it is hoped that an opportunity to try this material may present itself during the next year.

In the meantime Rangoon Canes of the semi-solid variety, nominally 16-18' in length have been selected from bulk stocks to be similar in length, taper, and weight with butts approximately $1^{\prime \prime}$ diameter. The butt is ground reasonably cylindrical on a $10^{\prime \prime}$ diameter disc grinder for more than two inches, about $1 / 32^{\prime \prime}$ smaller in diameter than the sockets which are $1^{\prime \prime}$. Tips are then removed beyond the first knuckle past the 14^{\prime} mark where the cane is $5 / 16^{\prime \prime}$ to $3 / 8^{\prime \prime}$ in diameter.
These canes are now a loose push fit into the hub sockets and at this stage are given a protective coating of good quality exterior house paint. Primer, undercoat and two top coats were applied according to the paint manufacturer's directions.

ALL-METAL SPREADERS

It has been reported that the satisfactory operation of Quads is impaired by large pieces of metal within the immediate field of the aerial. Some American manufacturers have been offering spreaders made of aluminium alloy tubing in their Quad kits for a number of years and so they cannot be useless.

One manufacturer who has recently commenced advertising Quads states in his advertising that his tubing supports are broken up by the judicious use of insulating material and it is suggested that an Amateur could devise spreaders consisting of a number of pieces of aluminium alloy tubing of about 18 s.w.g. wall thickness for the inner $1^{\prime \prime}$ diameter sections and then reducing by $1 / 8^{\prime \prime}$ steps to about $3 / 8^{\prime \prime}$ o.d. at the tips, the joints would only r.eed to be three to four times the tube diameter for maximum strength and the smaller tube could be wrapped with polythene or similar film to insulate it from the outer at each of the joints.

Side view showing the spacing between elements for a W3QEF close-spaced Quad. Opposing elements, not shown, are similarly spaced.

IFrom "OST" Jan. 19621

If the last half inch or so of the outer tube is slit with a hacksaw at the ends, then a few turns of stainless steel wire of about $18 \mathrm{~s} . \mathrm{w} . g$. could be twisted around the end to hold the tubes firmly together mechanically with the film forming an insulator between them. Such a construction form would ensure that the spreaders are broken electrically into pieces which are too small to interfere with the operation of the beam.

FIXING THE SPREADERS

As supplied, the hub has no special method of fixing the spreaders into the sockets. The recommended method is to use "Araldite" or other epoxy adhesive. A wood or hardboard plate $6^{\prime \prime} \times 6^{\prime \prime}$ is made with two holes matching the outer holes in each half of the hub. These should be about $\frac{1}{4}$ " diam. and two bolts about $2^{\prime \prime}$ long will be required for temporary use whilst the epoxy is setting. The bolts hold each hub half down onto a piece of tubing of identical diameter to that of the support structure with a small piece of polythene film interposed to prevent adhesion.

An alternative is to use grub screws which may be hidden in the inside pockets.

ERECTING THE PYRAMIDS

Using builder's layout techniques, a jig was set up in the back lawn. An area at least 20° square is required. Four garden stakes about 8^{\prime} long are required to form the corners of a square $18^{\prime} 6^{\prime \prime}$ on a side. Lines are run across diagonally to establish the geometric centre of the square and a short stake about $18^{\prime \prime}$ or $24^{\prime \prime}$ long made from a piece of $2^{\prime \prime} \times 3^{\prime \prime}$ hardwood is driven vertically into the ground and a nail driven into it vertically where the two diagonals cross. The top of this stake need only be about six inches above ground level.

Fix a piece of hardboard/plywood $6^{\prime \prime}$ square to the top of this centre stake with its diagonals running out to the corner stakes. Fix the first half of the hub, resting upon a short length of 11" water pipe, with polythene film interposed between the metallic surfaces, to this square with d' $^{\prime \prime}$ bolts.

Tri-Gamma feed system is well suited to 20-15-10 metre Ouad. The gamma wires are adjusted to reduce interaction as well as to provide a proper impedance transformation. Gamma capacitors are used to resonate system.

IFrom "All About Cubical Ouad Antennas"]

With the builder's line establish a horizontal "reference plane" at some suitable point on the corner stakes. If the ground is not level and flat this may not be at the bottom of the hub half, which is the most convenient point. This is fairly easy to do using a spirit level or builder's "line level" placed in the centre of each span of line.

The position at which each spreader is to intersect the corner stakes is now marked on each stake in accordance with the element spacing you have decided upon. About $4^{\prime} 6^{\prime \prime}$ from the bottom of the hub for $1 / 8$ th wavelength spacing, and about 7^{\prime} from the bottom of the hub for $1 / 5$ th wavelength spacing. i.e. half the element spacing.

Mix a quantity of epoxy cement and put the required amount into each of the sockets. There should be enough for some to just ooze out as the spreader bottoms, forming a fillet where spreader and hub join. Fix the tip of No. 1

Method of feeding the Spider Quad and of selecting the desired radiator. K1 and K2 are d.p.d.t. mercury relays with 115 v . a.c. coils. S 1 can be either a 2 -pole. 3-position rotary or a d.p.d.t. toggle switch with a centre-off position.

IFrom "OST" Dec. 19671
spreader to number 1 stake at the appropriate point. Repeat the process next with the opposite spreader and then the other two. By sighting along the spreaders it is a relatively easy matter to ensure that they are straight, and that they form the corners of a neat pyramid.
During the curing process, the wire elements can be measured (twice) and then cut, making due allowance for the tails to attach the centre insulators in both elements and to form the stub cn the reflector.

FIXING THE ELEMENTS TO THE SPREADERS

A number of methods can be used.

1. Drill holes in the spreaders at appropriate places, thread wire through and wire into place. Not desirable as it permits moisture to enter.
2. Use small porcelain insulators at each corner which are fixed to the spreaders with wire droppers, as per W3QEF and others. Considered to be rather unsightly.
3. Epoxy a plastic ring to the spreaders and form a metal eye outside the ring to which the aerial element is wired and then soldered; a la HB9PL. Considered to be very good but perhaps a little difficult of adjustment.
4. Labgear Ltd. of England recommend the use of $3^{\prime \prime}$ of fibreglass sleeving $1.5-3 \mathrm{~mm}$. in diameter, obtainable from electrical insulation supply houses. at each corner through which the loops pass (24 required) which are in turn lashed to the spreaders with nylon thread or line. Simple and neat.
5. Plastic eyes can be made from polystyrene, perspex or other material such as old toothbrush handles, which can be fixed to the spreaders in a manner similar to that used for fixing runners to fishing rods. Runners could, in fact, be used if desired.

When the first assembly is complete and the epoxy has set, it may be re-
moved from the jig and the second half assembled. At this point it is probably wise to point out that it is almost impossible to make two identical hub halves; these have a mark on them indicating the way they "match" and should be re-assembled in this fashion, it is therefore wise to check that these index marks will line up when the halves are completely assembled.
Now that each assembly is complete, it is only necessary to fix the support tube so that it is cantilevered out about ten feet some six feet above the ground. If this is fixed firmly in a horizontal plane with the bolt holes vertically above one another, it will be easy enough to carry the number one assembly with the long fixing bolt in it and drop it into position on the tube. The second assembly can now be manouevred into position beneath the tube, and moved vertically upwards until the mounting bolt can engage the threads. Fit all three bolts loosely into position and tighten evenly. Fit washers and lock nuts and you are ready for a hoistting party.

ADJUSTMENT

Complete details are given in "All About Cubical Quads," by William I. Orr, W6SAI, and also in "QST" for December, 1967. An extract from this "QST" follows:
"The only elements in the Spider Quad that require adjustment are the reflectors. Tuning can be accomplished by feeding power to the antenna and adjusting each reflector stub for minimum field strength as measured on a simple field strength meter located in back of the antenna. However, this procedure requires three men, if the job is to be done within a reasonable length of time. One man slides a shorting bar up and down the reflector stub, one controls the rig, and one measures the field strength. This was the first method we used; however, after one of the men was burned by r.f. on a reflector, we quickly sought a safer and easier way.
"In the procedure arrived at, no transmitter is needed. We made a simple transistor crystal oscillator that would supply a signal in each band, and hung the unit by two 10 -foot copper wires in a tree that was approximately 150 feet from the Quad. The supporting wires served as an antenna for the oscillator. Alignment was accomplished by pointing the back of the Quad at the distant oscillator and adjusting each reflector stub for a minimum S meter reading on the station receiver."

FEEDING

"All About Cubical Quads" carries some information on this, and in "QST" Dec. 1967 HB9PL suggests a very practical method. Since all elements in this system are an identical portion of a wavelength apart, the feed point impedance will be similar and the three driven elements may be connected in parallel and fed with suitable twin line or co-ax. if desired.

Since the impedance at the feedpoint of the Quad will vary with the spacing of the elements and the height above ground it may be necessary for in-

DRIVEN ELEMENT				
Loop Side				
$\frac{1000}{F} \quad \frac{250}{F}$				
MHz. Feet Feet				
$\begin{array}{lll}14.2 & 70.50 & 17.60\end{array}$				
$21.2 \quad 47.25 \quad 11.80$				
$\begin{array}{lll}28.8 & 34.75 & 8.68\end{array}$				
REFLECTOR				
	Driven Elem. Driven Elem. $+3 \% \quad+5 \%$			
	Lood	Side	Loop	Side
	$\frac{1030}{5}$	$\frac{257.5}{F}$	$\frac{1050}{F}$	$\frac{252.5}{F}$
MHz.	Feet	Feet	Feet	Feet
14.2	72.50	18.15	74.00	18.50
21.2	48.25	12.15	49.60	12.40
28.8	35.75	8.94	36.50	9.125

SPACING (Wavelength)

	0.125λ	0.135λ	0.15λ	
	$\frac{125}{F}$	$\frac{135}{F}$	$\frac{150}{F}$	$\frac{0.2 \lambda}{F}$
14.2	8.80	9.50	10.56	14.1
21.2	5.90	6.37	7.08	9.45
28.8	4.34	4.68	5.22	6.94
	PYRAMID HEIGHT			
14.2	4.40	4.75	5.28	7.05
21.2	2.95	3.18	3.54	4.73
28.8	2.17	2.34	2.60	3.47

SPREADER LENGTH (Calculated for Reflector)

14.2	13.79	13.90	14.09	14.85
21.2	9.24	9.30	9.40	9.95
28.8	6.72	6.77	6.86	7.75

ANGLE TO NEUTRAL PLANE FOR REQUIRED SPACING $18.5^{\circ} \quad 20^{\circ} \quad 22^{\circ} \quad 28.3^{\circ}$

Having estabished the length of a side on any loop, it is relatively easy to calculate the length of the half diagonal which is $\sqrt[2]{2} \times$ half the side, or ($\sqrt[2]{2} \times$ side $) \div 2=$ $(1.414 \times$ side $) \div 2$.

Since the vertical height of the triangle of which the spreader forms the hypotenuse equals half the desired spacing, and the base is equal to $(\sqrt[2]{2} \times$ side $) \div 2$, then the length of the spreader for any desired spacing will be

$\sqrt[2]{ }$ base $^{2}+$ height 2

and the angle to the neutral plane, i.e. along the support axis and the join in the two castings can then be found from trigonometrical tables because the cotangent of the angle $=$ base \div height, or tangent of the angle $=$ height \div base.

Total amount of wire needed: 350 feet; this allows a small safety factor and includes stubs.

Weight:
$350^{\prime} \times 0.064^{\prime \prime}$ (16 s.w.g., 14 a.w.g.),
4 lb .6 oz .
$350^{\prime} \times 0.051$ (16 a.w.g.), 2 lb .12 oz. Hub, 4 lb .8 oz.
Spreaders (Bamboo), 12-15 lb.
Nylon Line (100 lb .), abt. 2 oz.
dividual constructors to study their own situations and so arrange the variables so that a low v.s.w.r. will be presented to the transmitter by the assembled and adjusted system.

VK3SM, Alan Crewther, suggests that if the reflector is 5% larger than the driven element a tuning stub will be unnecessary.

RECOMMENDED REFERENCES

"All Abort Cublcal Quad Antennas." by William I. Orr, WGSAI.
"The Spider Quad," by Peter B. Langenegger. HBPPL. "QST"' Dec. 1867.
"Close Spacing the WAQRF Quad." by Irvin D. Kridler, W7BTB, "QST"'Jan. 1982. A numD. Kridler, W7BTB, "QST" Jan. 1982. A num-
ber of earlier references are given in this ber of earlier references are given in this latter article and although many of these have been studied. It is believed that the references given above are sufficient for the purpose. For one thing. most of the papers which precede Kridler deal only with the so-called "compromise spacing" type of three band Quad if a three band Quad is described.
Another reference which is strongly recommended, especially if the intending constructor is not proffcient in knotting, is "Knots and Rigs" by Dick Lewers. This book was written for fishermen and will prove invaluable to the Amateur as it is necessary to use fishermen's technigues for some of the fixing.

MULTIBAND DOUBLE DIPOLE

(continued from page 11)
There does not appear to be much interaction between the dipoles and the following average s.w.r's were obtained at VK6TG with the antenna only 25 feet above ground:

15 metres	$\ldots . . .$.	1.8	to 1	
20 metres	$\ldots .$.	\ldots.	1.6	to 1
40 metres	$\ldots .$.	\ldots.	1.1	to 1

No doubt these figures could be improved on under better conditions, but S9 reports have been received from Singapore and the Pacific area on 15 metres with a modest 65 watts p.e.p.

My thanks to VKs 6CT, 6RG, 6KJ and others for reports. Chris VK6CT has built a similar antenna for 20,15 and 10 metres.
This simple multi-band antenna could be the answer for city dwellers with limited space as well as being a compact portable unit.

CUBICAL QUAD COMPONENTS

To those who purchased a Clark hub, thank you. To those who waited, an apology for increased prices.
Hub, complete with mounting bolts, \$15. Canes, set of $8,1^{\prime \prime}$ butt fitted to hub. S12. Lightwelght $7 / 8^{\prime \prime}$ butt. S10. Heavyweight $11 / \mathrm{g}^{\prime \prime \prime}$. S14. Ali canes matched and trimmed to 14 ft . length.
Kits: Hub, canes, $350 \mathrm{ft} .0 .064^{\prime \prime}$ h.d. copper wire, 55 yds. 100 lb . nylon IIne, insulators and fibreglass tube. S40. Prices include sales tax.
Hubs p.p. S1, other items freight forward.
S. T. CLARK

26 Bellevue Av., Rosanna, Vic., 3084

A SOLID STATE AMATEUR S.S.B. RECEIVER

The second of a series of articles by Fairchild engineers describing the circuitry and construction of a Solid State Amateur S.S.B. Receiver. This article describes the design concepts, circuit operation and construction of the 9 MHz . filter and i.f., beat frequency oscillator, product detector and a.g.c. system. (Part One appeared in "A.R."' October 1969, page 13.)

Many varied techniques have been tried to optimise the performance of this section. The basic requirements are set down as follows:
(1) To amplify and detect a single sideband signal approximately 10 $\mu \mathrm{V}$. to provide adequate input level to the audio amplifier and a.g.c. system.
(2) To reject as much as possible spurious signals and provide a relatively flat passband of 3 KHz .
(3) To maintain constant output over a wide range of input voltage.
(4) To handle relatively large input levels without severely distorting the modulation envelope.
(5) To provide some form of signal strength indication.
(6) To enable selection of either the upper or lower sidebands and maintain good carrier re-insertion stability.
(7) The detection system to also be functional for amplitude modulated signals.

FILTER

To maintain the concept of versatility from the point of view that some sections may at a later date be used as part of a system for the generation of a sideband signal, the filter section was not integrated into the design of the i.f. amplifier. It is better kept as a separate block with input and output buffers. The circuit used is described by Pye for use with the 9-0A crystal filter. There was no need to alter that design since it fulfilled our requirements as a functional block.

The bandpass response of the filter did not quite come up to expectations. It suffered from a 6 db . peak at the low frequency end which could not be flddled out by the trimmer pads on input and output. The trimmers appeared to have only minor affect on the harmonic peaks on either side of the skirt and so consequently were left out.

I.F. AMPLIFIER

The i.f. amplifier block caused a great deal of concern since the original conception was to use an integrated circuit (the uA703C). However, basic limitations on the 703 as an a.m. i.f. amplifier were realised and a discrete design was considered necessary.
The uA703 was designed as an f.m. i.f. amplifier or limiter, and as such provides a limiting action by the use of a constant current tail which allows

[^25]limiting to occur without either transistor in the differential pair saturating. From a limiting point of view, this is ideal because the tuned circuit loading is not increased at the limiting level and bandpass remains constant.
In controlling the gain of the uA703 the low input is pulled down to reduce the tail current and hence the gain. But in so doing the limiting level also decreases, hence with the required gain reduction ($\approx 60 \mathrm{db}$.) the output in the unlimited region is so low as to be unusable. Because our a.g.c. is audio derived, a secondary effect of the limiting action is to completely block the receiver once the modulation is clipped off. The inability to handle large signals without limiting, forced us to use a discrete design, which, although it appears more complicated and difficult to construct, proved far superior for this application.

Three voltage biased SE5023s were used for their excellent forward a.g.c. action. Two stages may have been just adequate, but would be more critical in construction since the 25 db . gain per stage required would decrease the stability margin to a dangerous level. Three stages, on the other hand, operating at about $20 \mathrm{db} . /$ stage would be

9 MHz . FILTER \& I.F.

more docile and would enable a superior a.g.c. action.

The i.f. transformers were wound on a standard Neosid former type " A ". The dynamic impedance of each is approximately 30 K ohms with a loaded Q of 10 , providing a bandwidth of approximately 300 KHz . Care must be taken when winding the coils to make sure that the secondary is wound very close to (or on top of) the "cold" end of the primary. This close coupling is essential to provide stable operation of each stage.
the a.g.c. range is in excess of 100 db ., but this is deliberately limited for the above reasons to about 60 db .
A.g.c. control on the first device is achieved by making use of the current gain in second device and providing a threshold level for its operation, i.e. until the emitter of Q2 reaches 3.9 volts, Q1 is operating at maximum gain. When the diode turns on, it has in itself an a.g.c. effect since it loads the output from the filter block with 100 ohms plus the dynamic impedance of the diode. This system improves the

A.g.c. action is provided on all three stages. The last two devices are turned "on" via the AY1115 a.g.c. amplifier. The current required into the base of the AY1115 to give full a.g.c. control will be dependant on its current gain. This is compensated for by varying the series resistor to the a.g.c. block so that its full output swing is utilised. In effect what we are doing is decreasing the loop gain of the a.g.c. system such that we introduce an increased slope in the a.g.c. curve (i.e. $\mathrm{e}_{1 \mathrm{~s}}$ versus eodr). Ideally this is not a desirable feature since one always tries for a flat a.g.c. curve, but one is then faced with the problem of providing a varying deflection on the S meter.

One solution to this problem would be to have a separate rif. amplifier with only a limited amount of gain control so that the full scale deflection of the S meter could be controlled over a specified range of input voltage independent of actual a.g.c. range. However, this involves a lot of extra expense and is not justifled by the degree of importance placed on S meter read-ings-hence the compromise in a.g.c. range. With a low value series resistor (22 K ohms) and a high gain AY1115,
signal to noise ratio for low level inputs and a similar threshold will be used on the front-end r.f. amplifier to be described in a following article.

B.F.O. AND PRODUCT DETECTOR

The b.f.o. is a simple Colpitts circuit which is also described by Pye as a recommended oscillator circuit. Several methods were considered for switching
the two crystals without the need for two distinct oscillators. Associated with this problem is one of mechanical construction. It is desirable to keep the b.f.o. as close as practical to the product detector and yet direct crystal switching can only be achieved by building the oscillator close to the switch mechanism. An alternative to this is to provide some form of diode switching so that only a d.c. control voltage is required to perform the function. A minimum of two diodes, several resistors and by-pass capacitors would be required. This weighed up against the extra expense of one transistor for a completely separate oscillator decided the issue in favour of the latter approach. Upper and lower sidebands are selected by simply switching rail supplies to each oscillator. The outputs are commoned and drive through an emitter follower to provide isolation between the oscillator and product detector.

The product detector is similar to a balanced mixer as described by McAleer. \dagger It is a fairly common configuration and is simple but very effective. The emitter of Q 4 is tied back to the base of Q5 and similarly the emitter of Q5 is tied back to the base Q4. The collectors are commoned so that for either a b.f.o. input or a signal input, at a low level, the collector currents will cancel and the output will be zero. This is because one half acts as an inverting amplifier (common emitter) and the other as a non-inverting amplifier (common base). When both signals are present the sum and difference frequencies occur at the collectors where one is filtered out via the r.f. choke and capacitors to leave the difference frequency (audio component) at the output.

The measured output amplitude of the detector with a b.f.o. signal present is a linear function of the input level up to approximately 5 mV . p-p. With no b.f.o. signal, the output will be zero until the detector is overdriven to about 50 mV . p-p. Hence for an a.m. signal the i.f. amplifier runs at a higher gain compared to an equivalent s.s.b. signal. This is of no consequence since tne system has more than adequate gain to adjust for the difference in detector efficiencies for s.s.b. and a.m. operation. continued on Dage 281

* McAleer, H. Y, "Mixer Circuit Has Clean Quiput," "Electronic Industries," Oct. 1960.

ANTENNA-FARMING Lightweight Yagis for $\mathbf{7}$ and 14 MHz .

A. J. C. THOMPSON,* VK4AT

THE Yagis to be described in this article are actually only one section of the experiment undertaken at this QTH in order to lift up my signals from the very bottom of the list. I was very fortunate in having two very experienced Amateurs in the persons of VK4XR and VK4LN to guide my footsteps.

The signal situation changed for the better when indicators were used on the t_{x} and were also better understood. The same technique brought both feedlines and antennas into line also. For the latter some different indicators had to be developed. It was just one more step to use these same indicators to subdue reluctant Yagis.

As I live in the country, text books are easier to obtain than periodicals. This may be a very doubtful advantage but at least (with antennas) you only get the subject in which you are interested and at any level that you can cope with. In the country we have an added advantage in that the Public Library will supply three books at a time for a month with the option of another month.

By sheer accident I had taken notes of formulae for Yagi construction from over a dozen different text books. I then worked these out on a 14 MHz . basis and studied the peculiar result. One of them had the characteristics that I required and it is this design (with a few necessary changes and the addition of an extra element) that is used in both Yagis here. It is the matching of the impedance at the dipole that is of importance, but in this case the addition of the extra element at such a low wavelength-height did appear to improve its performance.

We are dealing now with practical results but the reasons for obtaining them should be stated also. In dealing with reasons, my opinions are not necessarily right even though several stated facts may suggest that they are. Another point that I wish to make is that, in the case of the Yagis mentioned here, no attempt has been made to obtain maximum gain. We have to accept all the disadvantages of this tyde of erection and then try for maximum gain under those conditions. Even then we accept less than that gain by easing the probable error factor. As an example, you could cut open wire line to within 1% for an electrical halfwave, but with co-ax., because of age and type, you could be 10% or more out.

During the last two years, four Yagis have been tested here. A 2 and 5 element, at one-eighth wavelength height, on 7 MHz .; and a 4 and 5 element, at one-quarter and one-eighth wavelength heights on 14 MHz . Actually spreading out sideways instead of up was the
order at this QTH because of the area available. Long wires, Vees, and Rhombics failed on the shorter hauls on 7 MHz . when tested against Yagis, but on the receiver under bad QRM conditions the Rhombic was outstandingly successful. The high gain of the Yagi was usually a disaster on the receiver. At other times when QRN was localised the narrow beam was an advantage. At this QTH two different antennas are in use on the tx and rx at all times except when conditions are good.

We are apt to copy t.v. techniques even on our longer wavelengths, but actually our aims are quite different. We require only one band and can sacrifice bandwidth for extra gain. Even the diameter of the elements, $6 / 1000$ wavelengths so suitable for bandwidth and structural strength, does nothing for us either. Even the use of longer reflectors and shorter directors is designed for extra t.v. bandwidth. Many Amateurs are denied overseas contacts on 14 MHz . because of the difficulties associated with the erection of the necessary beam, and the danger associated with such, under storm conditions.

On this antenna-farm, many different antennas have been tried out and discarded for various reasons until at present they have dwindled down to a 7 and 14 MHz . Yagis, a big Rhombic and an off-centre fed multiband of no particular merit and temperamental, too.

In industry full advantage has been taken of lightweight materials in modern structures. It is a trend that we should also follow. On any antenna-

[^26]farm ease of construction and erection are very important. These factors are obviously dependent on the weight of the structure to be supported. This problem was tackled here in various ways, but mainly on feed-line techniques. Feed lines themselves of 300 ohms in Yagis used as folded dipoles have the disadvantage of requiring co-ax. at the centre. If, instead, we use 300 ohm line instead of co-ax. then the folded dipole has to have three elements instead of two.

This disadvantage was overcome in the 7 MHz . Yagi with five elements, by constructing a three-wire folded dipole spaced at distances of diameter of wire X by 6 (equal to 300 ohms for two wires). The necessary spacers were placed about 2 ft . apart. They were constructed out of $1^{\prime \prime}$ polystyrene piping. It is fairly rigid. This has been pulled up and down continually over 18 months and shows no ill effects and has no tendency to twist. This latter is the hardest thing to cope with in home-brew lines.

The above comments deal with the main weight problems. Nylon cord was used on two sides, using 16 g . galvanised steel-wire strung between them for the elements. This cord shows no sign of deterioration after 18 months of use. This light-weight method of eliminating posts presented a lot of problems even with such a light weight to support. When strung between four posts, it still sags down and inwards too. The 7 MHz . Yagi ended up with eight posts to support five elements.

FIRST 14 MHz . YAGI

The first of the 14 MHz . Yagis will be described now. It was similar to the 7 MHz . but had a two element folded dipole and used co-ax.

The requirements were:
(1) It had to be as nearly as possible a square when complete.
(2) It should be able to be rigged on the ground.
(3) It had to be very light.
(4) It had to be easily lowered, turned, and then raised in any one of four positions quickly.
The square chosen (diagram C) had a reflector of 35 ft . but because of the impedance importance, only two of the three directors were used in this Yagi, which meant it was only 28 ft . long overall. The four supporting posts were placed 37 fect apart. The main weight problem occurred at the folded dipole portion where a fishing rod took the co-ax. weight and a sideways pull with string assisted things too. The inward pull was countered to some extent by (diagram C) where shorter leads were used on the centre elements to the nylon cord. The different heights of the elements were arranged correctly
by diagram C where the higher end elements were lowered to the centre levels by means of an extra cord and this pulled outwards and spiralled down the post.

After the four supporting poles had been erected this outfit was constructed and erected by two men in an afternoon. Contacts from Venezuela to Canada were later made using a Galaxy transceiver. The outfit for this band, since then, has been a Viking $t x$ on 120 w . a.m.

To assess its performance I have looked up the \log book and notes of that time. It appears that I started off about 8 p.m. and worked five American stations in a couple of hours, two of them being very long QSOs. During the following week at about the same time a couple of Ws were worked in short sessions each time at intervals of a couple of days. These QSOs were for the purpose of checking band conditions to see if the former session had been average. Afterwards I evidently had classed it at about average for that particular week. Being a dairy-farmer I was unable to operate at an earlier hour when band conditions are usually
well astray. I had a tuned half wave feed line on the reflector too for awhile, so everything that could happen did happen.

There is a big difference between working with a Yagi that is already correct and trying to get a Yagi to work when some factor has upset the estimated impedance values. In this case the doubtful factors are the low wavelength height and the structural components. Neither of the two 14 MHz . Yagis erected needed alterations according to the indicators, but that is just luck. To save mental tangles, the following things should be considered when reading the indicators:
(1) Up to a quarter wave space, a parasite reduces the input resistance of the driven element.
(2) Shorter directors and longer reflectors lose gain but increase the bandwidth.
(3) The input impedance of each element varies according to its position in the array.
(4) End-fire arrays (like Yagis) are less affected by the height factor than curtain arrays.

DIAG.C.

much better. Being on a.m., it was necessary to put the signal dead centre on an s.s.b. CQ call, so much time was wasted looking for CQ calls or the termination of a QSO.

Being quite new to this particular tx and also to an overseas band made the situation worse. However, the results satisfied me that the beam itself was quite normal. A better example perhaps would be the checks against a Galaxy conducted by VK4LN. The Viking was usually about 4 points below that of the Galaxy. Checked against a Command on 60 w . it is usually about one S point better. I regret that better DX figures were not obtained, but I was testing the Yagi beam, not the DX. The signal strengths given were mostly $6-8$. I am fully aware, too, that the big and efficient beams over there are, by the law of reciprocity, helping us to get these reports.

y MHz. YAGI

At this QTH initial trials began on 7 MHz . with a 2 element Yagi. It was in use for about a year before I was satisfied that I understood its behaviour. Unless the Yagi's behaviour towards indicators is well understood, these same indicators will lead you
(5) The phase changes with the separation of the elements and also with the length of the parasite.
(6) The phase of the parasite current relative to that of the driven element increases with separation.
(7) The magnitude of the current in the parasite falls off rapidly as it separates from the driven element.
(8) A 2 element beam can both be driven, but if we detune the reflector its resonant frequency would approach that of the driven element to the point when equal currents would exist. If the process was still continued it would become a director.
From the above you can see all the things that would occur when I tuned the reflector. At the same time, because of its position, the reflector has least effect on the other elements if the spacing is used to alter the impedance value of the dipole. It must be remembered, however, that the spacing has to be such that the impedance at the dipole is right. In this case it is 16 ohms which is 16×4 for a folded dipole. The gain is 11 db . Gain must be sacrificed for correct impedance. The
maximum gain occurs at about 0.14 wavelength spacing for the director and about 0.17 for the reflector.
For indicators, two factors upset them:
(1) Phase changes are linked with the beam direction.
(2) A parasite approaching the driven element would register more current in its own indicator but the output would probably be less.

LATEST 14 MHz . YAGI

Finally, I will describe the present 14 MHz . Yagi built on a more permanent basis with two extra poles to overcome the sagging properties of the former one. This one was designed to test (1) lighter structural supports, (2) the effect of one-eighth wavelength height instead of one-quarter. Diagram D shows the position of the six poles required, two each being for the reflector, dipole and the end director. Under these circumstances the two remaining directors (this was changed to five elements) were strung on nylon cord, then the ends of which were at-

FET Conversion of Leader LSGll Signal Generator

JOHN MEYLAND,* VK3AJM, and JOHN BROUGH-SMYTH, \dagger VK3ZBW

An article describing conversion of Signal Generators to all FET operation by John Beckett, VK3FE, and appearing in the Eastern and Mountain District Radio Club Bulletin (VK3) recently prompted the writers to try out their ideas on their Leader LSG11 units, and as the results were more than satisfactory on the units converted it was decided to write them up and pass them on, as the ubiquitous LSG11 seems to figure prominently in most Amateur shacks visited by the writers.

It is stressed that ideas were arrived at in a rather hit and miss approach, and doubtless there are many other modifications that can be made such as varicap fine tuning, further reduction on the dial drive, etc.; these we will leave to the individual. The mods as follow can be done with parts readily obtainable through the W.I.A. components sales department.

1. Remove all wiring and components from a.c. mains lead to R13 and C15 inclusive. Remove all heater wiring, by-passes, dial light.
2. Remove valves from sockets. Obtain a 7 -pin and a 9 -pin plug that will plug into the existing valve sockets. These are used to mount the FETs.
3. 12BH7 socket. Carefully solder with suitable heat sinking a 2 N 3819 FET. Drain to pin 6, gate pin 7, source pin 8 to the 9 -pin plug (pin numbers as seen from underneath). Solder another 2 N 3819 or an MPF102: drain to pin 1, gate pin 2, source pin 3.

Note: The 2N3819 and MPF102 have different base connections. Incidentally, we couldn't make an MPF102 function as an oscillator in this circuit.
4. 6AR5 socket. Solder an MPF102 to the 7 -pin plug: drain to pin 5 or 6, gate pin 1, source pin 2.
5. Remove R2 (5K) and replace with IK $\frac{1}{2}$ watt.
6. By-pass R4 (300 ohms) with 100 $\mu \mathrm{F}$. 3 volt electrolytic for a.f. and also $0.001 \mu \mathrm{~F}$. for r.f.
7. Reduce C14 (output coupling) to 68 or 100 pF .

- 29 Hardisty St., Wangaratta, Vic., 3677. r 58 A Phillipson St., Wankaratta, Vic., 3677.

8. Mount a 9 volt battery in the case, ground negative lead and wire positive to one side of the switch on VR1. Wire the other switch terminal direct to the h.t. rail.
9. Wire a $0.001 \mu \mathrm{~F}$. ceramic by-pass across audio terminals.

Without further modification you now should have a FETised signal generator capable of performing all the functions the valve version will do, but with vastly increased stability and, as a most
significant improvement, the elimination of signal radiation which has been escaping by the a.c. mains lead. This leakege in the valve versions has made level attenuation almost impossible in the higher frequency bands.

We almost forgot to mention, the units are completely portable in this modified form and there is no warm-up period required. Battery current has been measured at $8 \frac{1}{2} \mathrm{~mA}$., so replacement should be infrequent with intermittent use.

The History of Amateur Radio and the Wireless Institute of Australia

By G. MAXWELL HULL,* VK3ZS

THE story of Amateur Radio, as far as Australia is concerned, commences in the year 1901, and that of the Wireless Institute of Australia in 1910. This extraordinarily romantic story would never have been possible had it not been for amateur and professional electrical experimenters, predominantly in the nineteenth century. but also as far back as the eighteenth century.

The Institution of Radio Engineers of Australia (I.R.E.)-now known as the Institute of Radio and Electronic Engineers (I.R.E.E.) - in celebrating Radio Foundation Day in 1936, fixed 12th December, 1901, as the birthday of radio-the marvel and mystery of the wonderful twentieth century.

In writing this history it would therefore seem in order to take the reader back briefly to this early period of "electrical discovery" which in retrospect led so naturally to the development of "wireless" as it was termed, and from which the Wireless Institute of Australia derived its name.

EARLY ELECTRICAL EXPERLMENTERS

One merely has to look again at basic theory to bring to mind many of the names of early electrical experimenters; names such as Franklin, Coulomb, Volta, Oersted. Ohm. Faraday, Morse, Henry, Joule, Maxwell, Hertz, Fleming, Ampere, Edison, Bell, Kelvin, Galvani, and many others later on, whose names became attached to electrical terms, laws and inventions.

Benjamin Franklin (1706-1790) was an amateur experimenter with electricity, inter alia, in the eighteenth century. He conducted his most famous experiment at Philadelphia (U.S.A.) in 1752 by flying a home-made kite during a thunder storm, proving by the discharge of sparks from a key attached to the ground end of the kite-wire that lightning was electricity. It is generally agreed by early authorities that Franklin created the electrical termsarmature, condenser and battery.

The French physicist and engineer, Charles Augustin de Coulomb (17361806), who as a French aristocrat fortunately escaped the guillotine of the tempestuous years of the French Revolution, can be stated as having first investigated electrical and magnetic measurement during his invention of the torsion balance for measuring electrical attraction. His name became attached to the practical unit of quantity of electricity, being the quantity conveyed by a current of one ampere in one second. His contribution placed the

[^27]> - The story of Amateur Radio and of the Wireless Institute of Australia-the Soclety which has represented it for 60 years-ls indeed a fascinating one; a story deplcting man's involvement in and advancement of a technical art which at its Inception was formidable Investigation of the myster ious and unknown world of electromagnetlo energy.
> 1970. the Anniversary Year of Captain Cook's early discovery of the east coast of Australia 200 years ago. before the blrth of electricity. seems a fitting time to write the history of Amateur Radio and the WIreess Instituie of Australia
> The historical records of Amateur Wireless Experimenters is far from complete in the early years, for so much was done by 80 few in the remoteness of home workshops and of which little or no pub licity was given. that records of these activities-If such were ever recordedhave been lost over the many years.
> What information is avallable. however. makes for a fascinating story. The series of articles commencing in this issue of 'Amateur Radio' magazine, therefore, is an attempt to record for posterity the romantic history of Amateur WIraless com mencing before the tum of the century and concluding in 1970.
> From this period of 60 years will be recorded the true facts avallable from these records: of the early electrical experi nenters to the birth of radlo transmission and reception; of the men who made Ama teur Radio a "living thing" and paved the way for commercial broadcasting and com munications; of the WIreless Institute of Australia and other Clubs and Socleties who protected portions of the frequency spectrum for the continued use of future experimenters and hobbyists: and of al the activities originated and perpetuated by the Wireless institute of Australia in malntaining Amateur Radio as a vital sociological and technological pursult for man kind in Australia and in those countries which countenanced its use.
twin sciences of electricity and magnetism on what today we call a "quantitative" basis, that is to say on a basis of firm and indisputable measurement. This provided a sound foundation for those learned experimenters of later years. Amongst other electrical terms, amateur wireless experimenters had to learn and understand the meaning of the term "Coulomb".

The advancement of the science of electricity and magnetism was not always strictly confined to the electrical experimenter. For instance, Luigi Galvani (1737-1798)—an Italian physiologist and anatomist boin at Bologna -made various experiments and studied the effects of electricity upon the nervous and muscular systems of frogs, during which he invented a metallic arc, composed of two metals, which, when placed in contact with the nerve and muscle of a frog respectively, caused the latter to contract. He wrongly concluded that the. frog's legs contained electricity that was released when the legs touched metal. What we know now is that the electric current
was produced by chemical action. For a long time, however, people referred to electric current as "Galvanic Current", thus Galvani's name became attached to the galvanic battery, galvanic pile, galvanometers and the process of galvanising. The word "galvanism" was derived from his name which any dictionary gives as being-electricity produced by chemical action, the branch of physics dealing with this and the use of such electricity for medical purposes.

Not long after Coulomb came an Italian physicist and philosopher by the name of Count Alessandro Volta (17451827) who similarly carried out experiments with static and current electricity. He invented the electrophore in 1775 and an electrical condenser in 1782. It was Volta who discovered why Galvani's frogs legs twitched when he learned that the chemical action of moisture and two different metals, such as the copper and iron used by Galvani, produced electricity. He made the first battery, called the "voltaic pile", and the earliest absolute electrometer, both of which brought him great fame. The unit of electromotive force (volt) was named after him.

So far, it seems, these early experiments were concerned with electric "voltage" and electric "current" as different but related units. It was Hans Christian Oersted (1777-1851), a Danish scientist, who first discovered the "electromagnetic" relationship in 1819 by observing that a current flowing through a wire would make a compass needle move, thereby proving that an electric current has a magnetic effect. In the same year, the French mathematician and physicist, Andre Marie Ampere (1775-1836), born in Lyon, also discovered electromagnetism. He showed that parallel electric currents attract each other if they move in the same direction and repel if their directions are opposite. His mathematical theory describing this phenomena provided the foundation for the development of electrodynamics. He also discovered that an electric current flowing through a coiled wire acts like a magnet, and this led to the invention of the galvanometer (to which Galvani's name was attached), an instrument for detecting and measuring electric currents. By 1822, Ampere had worked out the laws that formed the basis for the science of current electricity and so the unit of current became known as "the Amp" or "Ampere".

Around the same period, 1826 to de precise, George Simon Ohm (17871854), a German school teacher and physicist born at Erlangen, formulated the law of electrical resistance, which
bears his name. Ohm's Law was the most important law in electricity which in its original simple explanation said: "The strength of the current in a circuit varies directly as the electromotive force and inversely as the resistance of the circuit". On this law rested the future development of the science which otherwise would have been greatly retarded.

In this same decade, the well known English chemist, electrician, and natural philosopher, Michael Faraday (17911867), was studying the effects of electromagnetism, amongst other things. Born at Newington, London, the son of a blacksmith, his work was widely diversified from chemical research, electricity and magnetism to the manufacture of glass for optical purposes. His most famous discovery, which was to have far reaching effects, was electromagnetic induction. He had rightly believed that if electricity could produce magnetism, then magnetism could produce electricity, and he proved this theory in 1831 when he discovered that moving a magnet in a coil of wire caused an electric current to flow in the coil.

Almost every year, except for three years of bad health (1841-1844), saw some remarkable discovery by Faraday in connection with magnetism and electricity. Amongst the most important were: the identity of electricity from different sources (1833); electro-chemical decomposition (1834); the relation of clectric and magnetic forces (1838); magnetic rotary polarisation (1845); diamagnetism (1846); and polarity of diamagnetics and the relation of diamagnetism to crystalline forces (1849). It was said of Faraday that his lucidity, his experimental skill and the natural charm of his manner combined to make him extraordinarily successful as a lecturer. Many of these early experimenters delivered lectures and wrote papers and books on their discoveries and this much of the knowledge became available to others.

Born in Charlestown, Massachusetts, U.S.A., in the same year as Michael Faraday was a man whose name will never be forgotten-Samuel Finley Breese Morse (1791-1872), famous for his invention of the electric telegraph and the Morse code, the latter becoming the code universally used throughout the world in the early telegraph days and remaining a "natural" for communication by wireless when it eventually became a commercial proposition. The Morse code was the basis upon which communication could take place between nations irrespective of language barriers and it has remained so as a sociological aspect of Amateur Radio communication.

Not unimportant, too, was the telegraphic side of Morse's work. First as President of the National School of Design in the U.S.A. (1826) and as Professor of Design at the University of New York City (1835), he devoted considerable time to the experimental field of electric and galvanic research, which resulted in the development of high quality electromagnets so widely used in the telegraph and telephone systems of the world, and which, of course, found a wide use as "relays"
as the science of wireless progressed later on.

Seven years after Michael Faraday and Samuel Morse were born, cam? Joseph Henry (1799-1878), an American born at Albany, New York, who was to become a great scientist and mathematician. Independently in 1831, at the same time as Faraday, Henry had also discovered that magnetic energy could be transformed into electrical energy. They both had found. in fact, that currents would be caused to flow in a closed conducting loop if the average intensity of the magnetic field passing through that loop was changed. The current so induced in the loop would flow only while such change was taking place, its strength would be proportional to the rate of change, and its direction would depend on the direction of the field and whether it was increasing or decreasing. It mattered not whether the change in the number of magnetic lines passing through the loop was caused by changes in the field itself or by a movement of the loop with respect to the field or by a movement of the field with respect to the loop. These laws of elec-tro-magnetic induction directly paved the way for the electric dynamo, just as the converse laws had paved the way for the electric motor.

Joseph Henry did a lot of work with electromagnets; large magnets of great lifting power, and small powerful socalled "intensity" magnets. He was first to actually magnetise iron at a distance and at one stage in history controversy arose between Henry and Morse as to who actually invented the electric telegraph. However, there seems no doubt that the honors went to Morse. The name of Henry was attached to the electrical term "inductance" which was to play such a vital role in the later development of wireless.
Another eminent English physicist was James Prescott Joule (1818-1889). His early work which played such an important part in later electrical development was on magnetism; particularly, again, the magnetisability of iron by electric currents, a research which led to a definition of a practical unit of current. He stated a law (now called Joule's Law) that heat is produced in an electrical conductor. The unit of energy, used to measure the amount of work done, was named in his honor. It is equal to the energy needed in send an electric current of one ampere through a circuit of one ohm resistance. In the United States of America in 1894, an act of Congress made the Joule a legal unit. It was too small for commercial measurement, so kilowatt hours was used instead. Joule shared in discovering the law of the conservation of energy which states that: "energy used up in one form re-appears in another and is never lost". Two German physicists, Hermann Helmholtz and Julius von Mayer, and the British physicist, Lord Kelvin, also worked on the law.

THE EMERGENCE OF WIRELESS

With all this knowledge available from the developments by the aforementioned experimenters, and many
others too numerous to mention in detail in this brief reference, it was not surprising that the nineteenth century saw the commercial development of the electric light, the telegraph, the telephone, the electric bell, electric motors which of course brought about electric traction, the generator, the alternator, and many other electrical devices.

It is also not surprising, therefore, that towards the end of the century emerged the greatest development of all-electromagnetic wave propagation. Into the electrical scene came James Clark Maxwell (1831-1879), the Scottish physicist born in Edinburgh. His principal researches were into the composition and vision of color, the kinetic theory of gases, and electricity and magnetism. Upon Maxwell's theory of electromagnetic wave propagation was based his electromagnetic theory of light. But a little before Maxweil developed his profound theories some remarkable experiments on electric waves had been carried out by the German experimenter, Heinrich Rudolf Hertz (1857-1894), who had received his final training in experimental and mathematical physics in Berlin under Hermann Helmholtz. It was Hertz's experiments which formed the central feature of Maxwell's profound theory. And so we again observe the interlacing of these early imporant developments because of the knowledge being available to many experimenters.

However, the experimental proof of Maxwell's theorem can assuredly be credited to Hertz who produced very rapidly oscillating electric currents by means of sparks between the plates of a condenser. Although these oscillations were said at the time to be rapid, we know today that they were comparatively slow (low frequency and long wavelength). His guiding principle was resonance. Kelvin had shown earlier under what conditions an electrical discharge was oscillatory in character, and Hertz showed how to make an instrument in tune with this oscillation.

Having proved the existence of electric waves propagated through space, he went on to show that they could be reflected, refracted, polarised and diffracted, just as light is. He measured the velocity of propagation and found it to be of the same order as that of light and radiant heat. The practical development of the experimental facts established by Hertz was wireless telegraphy, and from this point of view his discoveries rank with Faraday's and Henry's discovery of electromagnetic induction. More recently his name replaced the electrical term "cycle per second" to denote frequency.

And so a stage was reached close to the turn of the century where a vast amount of electrical phenomena had been discovered and put to use in the practical sense but no one had found a practical use precisely for the electromagnetic propagation discoveries of the day. It was to be an Italian born electrical engineer, Guglielmo Marconi (1874-1937), who was to set the stage for the practical use of wireless transmission and reception which led to present-day radio broadcasting and
global communication in which Radio Amateurs played such an important part.

Marconi is often referred to as "the inventor of wireless", but of course he wasn't really as the reader will understand from what has been said already. But he was a clever inventor and engineer who saw the practical application and did something about it. His first experiments were made in Italy in 1895, then put to practical use in England in 1896 because the Italian government took no interest in what he was doing.

He applied for and received from the British government the first wireless patent, the famous No. 7777. The patent was based in part on the theory that the distance of communication increases rapidly as the height of aerials is increased.

In 1897 Marconi formed the first wireless company which installed wireless sets in lighthouses along the English coast. He sent the first wireless telegraphic message across the English Channel, a distance of 85 miles, in March 1899. He spanned the Atlantic from a sending station at Poldhu, Cornwall, England, to a receiving station at St. John's in Newfoundland in 1901, and from Canada to Newfoundland in 1902. The signal was the letter " S " sent in Morse code. Marconi made many advances and took out many patents in the commercial field of wireless before he died in 1937. His work brought him honors from governments throughout the world. The Italian government made him a senator of the kingdom of Italy for life in 1909, and he received the hereditary title of Marquis in 1929. He always considered himself an amateur.

THE ENTRY OF AMATEUR WIRELESS EXPERIMENTERS

The final practical application of Hertzian waves by Marconi just before the turn of the century must surely have been the most exciting period of scientific investigation the world had known. It certainly had been exciting enough for purely amateur experimenters to have closely followed the course of events for there is ample evidence, although not a lot of precise history available, to show that Marconi was not the only one to have developed equipment with which to transmit and receive electromagnetic waves, which we now know as radio frequency energy, although he undeniably was the first to do so commercially. All over the world in countries where great learning had evolved, the man-on-thestreet as well as the qualified engineer was interesting himself in the marvellous and mysterious wireless, duplicating what had already been done and experimenting with new ideas based on the available technical knowledge. Amateur Wireless was born! It heralded a new race of human beings who rapidly became known around the world as Radio Amateurs or "Hams" and whose exploits, experimenting, and contributions to the progress of the science has made history ever since.

Around the turn of the century Australia was not behind in producing a few keen anateur experimenters whose
curiosity, initiative and determination set the stage not only for Amateur Radio as we know it today but also for medium and short wave broadcasting.

As far back as the year 1896, G. W. Selby, of Malvern, Victoria, was already exploiting the great subject, and he exchanged correspondence with the British physicist, Sir Oliver Lodge, who at that time was evincing keen interest in the new marvel of science. Also before the year 1900 Professor W. C. Kernot and Messrs. H. W. Jenvey and F. W. Chambers, of the Victorian Postal Department, were experimenting in the same direction.

In 1901, at the same time as Marconi was making his epic trans-Atlantic transmissions, Walter Jenvey (the father of Bill Jenvey, VK2ZO), was operating his own experimental wireless station at Red Bluff, near Elwood, Victoria, under the call sign RB. Walter Jenvey was then the Chief Electrical Engineer to the Victorian Post Office and according to the Melbourne "Argus" newspaper of the 11th April, 1901, he had forwarded the following report to Mr. F. L. Outtrim, the permanent head of the Postal Department:
"I beg to report that during the Easter holidays I conducted a series of experiments in wireless telegraphy. By kind permission of Mr. G. Chirnside, I was enabled to establish a station at Point Cook, near Werribee, and the results surpassed my expectations. Messages were exchanged between Point Cook and Point Ormond (the Red Bluff), a distance of 10 miles in a direct line, the signals being firstclass. As no mast was available, we flew a kite which served admirably. I think there would have not been any difficulty in transmitting messages over 20 miles. If the government desired it, a station could be established at Point Lonsdale for the purpose of welcoming the Duke and Duchess of Cornwall and York whilst the S.S. 'Ophir' is still 20 miles or more from the shore."
The records show that the government took notice of his suggestion and he was requested to estabilsh the station at Queenscliff on the western head of the entrance to Port Phillip Bay. The S.S. "Ophir", as it transpired, did not carry wireless but the H.M.S. "St. George", the escorting cruiser, was so fitted and two-way communication with Queenscliff and later Red Bluff was carried out up to 30 miles. This is, so far as is known, the first recorded occasion of wireless communication between shore and ship from Australia and a Rock Cairn was set up to mark the site from which the transmission took place. The visit of the Duke and Duchess of Cornwall and York marked the occasion of the first Federal Parliament in Australia. The coherer detectors used for receiving the messages between the H.M.S. "St. George" and Jenvey's land station were attached to operate Morse tape-inkers and much of this historic ship-to-shore communication is preserved in the Museum of Applied Science, Melbourne.

After leaving Melbourne, the S.S. "Ophir", accompanied by H.M.S. "St.

George" and H.M.S. "Juno", proceeded to Hobart, Tasmania, where Mr. Hallam, a telegraphist engineer of the Postal Department, assisted by "Pop" Medhurst, ZXD (VK7AH), made W/T contact with H.M.S. "St. George" from the then defence battery on One Tree Point at the Long Beach Light, better known as "Blinking Billy".

In Manchester (England) in 1936 the eminent British physicist, Professor W. C. Bragg, described to a gathering of people the work of his grandfather, Sir Charles Todd, in the sending of the first wireless messages to Australia, and of his own assistance in the project. Sir Charles Todd was South Australia's frst postal chief in 1901 and was responsible for the great work of constructing the overland telegraph from Adelaide to Darwin. He was already an old man when the first whisperings of Marconi's wireless were heard around the world, but his imagination was deeply stirred. A wireless installation was fixed near Adelaide between two stations two miles apart and signals were successfully broadcasted.

Another series of early experimental transmissions were carried out at St. Stanislaus College, Bathurst, New South Wales, in 1904. Father Slattery was the amateur experimenter and his flrst tests were conducted in the Collegc grounds where he transmitted to receiving equipment operated by Father O'Reilly, assisted by a Mr. John King. Encouraged by his success, he then transmitted to the tower of St. Michael and St. John's Cathedral, a distance of three-quarters of a mile, and then from the College to the Catholic Presbytery at Kelso, over three miles, where the signals were received by Father O'Reilly and Father Flanagan. Brief details of these transmissions are contained in the College records and the equipment is still there, preserved in good condition.

By 1905 there were quite a large number of experimenters throughout the world. In Australia the Wireless Telegraphy Act came into force requiring experimenters to apply for experimental permits for receiving purposes. Most of the commercial equipment in existence at this time was concerned with the naval, lighthouse and marine services around the world. As far as England and Australia were concerned, authority for its use was vested under control of the Navy. It was not surprising, therefore, that the Admiralty raised early objections when in 1908 Messrs. C. P. Bartholomew and W. H. Hannan, of N.S.W., and R. Sutton, of Victoria, applied for experimental licences to transmit. The matter was referred to the Crown Law Department under whose guidance a suitable licence form was produced and the problem with the Admiralty was apparently overcome. 1908 also saw the first Handbook on wireless transmission and reception.

There is some doubt that all experimenters took out licences, for records indicate a larger number of active spark coil transmitters on the air than licences issued. The commercial transmitters used various systems-Marconi, Shaw, Telefunken, and Lodge-Muirhead to name a few. Amateur experimenters used adaptations of some of these Spark
systems were basically of two main types-the fixed spark and the rotary spark. The rotary spark was probably too costly for amateur experimenters since it required power-either engine or electric motor-to drive a very high voltage alternator. The fixed spark was more easily produced and the historically most common one used by amateur experimenters was the old Ford Model T spark coil, the operating key being connected in the six-volt d.c. winding of the device.

Up to and during the 1914-18 World War, the wavelengths of the spark transmissions were from several thousand metres down to 600 metres or so, the term "frequency" being adopted at a much later date. Short waves as yet had not been discovered, the amateur experimenter being destined to achieve this. The valve had not been developed for commercial use although Fleming had developed the first thermionic valve-called the Ionised Gas Detector (Diode)-in 1904.

Two years later (1906) the American inventor, Lee de Forest, inserted the grid, thus producing the first valve capable of amplification, which became known as the Audion or Triode. By 1913, Lee de Forest, together with Langmuir, Hogan and Meissner, introduced the principle of self-oscillation and regenerative amplification using the triode valve which was to have far reaching effects along with other important developments in finally sounding the death knell to the old spark transmissions although a few old marine transmitters continued to bark out their "rock crusher" signals well into the first half of the century. Chaw-chitty-chaw-chitty-chaw-chaw was one expressive way by which these signals were described!

The receivers employed coherer detectors consisting of filings which were caused to cohere by the incoming signal and de-cohere upon the receipt of vibrations from a buzzer or bell. Later, the electrolytic detector was developed. This used the principle of electrolysis whereby a small battery shunted across a large and a small set of electrodes decomposed a dilute solution of sulphuric acid, forming hydrogen on the smaller electrode (which was usually a needle point), having the effect of polarising the cell which stopped current flow through the telephones connected in series with the battery. When a train of oscillations passed through the cell, it acted in a manner opposite to the cell and depolarised it, thereby allowing a current to flow to produce an audible signal.

Then came one of the most ingenious detectors, invented by Marconi, called the magnetic detector. It utilised a magnetic band of iron tape which, driven by a clockwork motor, slowly moved past two horseshoe magnets in the field of which was a primary and secondary winding through the middle of which the iron band passed. When a train of waves passed through the low resistance primary winding, the iron tape (continuously rotating) was always coming under the influence of the first horseshoe magnet. It was reasoned that the train of waves had the eflect of destroying the hysterisis of
the iron just before the tape reached the Reld of the second horseshoe magnet which restored the molecules of the iron. This action caused a rapid magnetic change, thus causing a change in the lines of force induced in the primary winding which in turn caused an audible signal when a pair of telephones were connected across the higher resistance of the secondary winding. In modern jargon, we would term this the primary and secondary impedance of a small audio transformer in which the iron tape formed the magnetic core. One cannot help but observe in this device the basis for the evolution of the magnetic tape recorder.

Badge of the Amateur Wireless Sociciy of Victoria struck 1909.

Most of the detectors of the day were discontinued after the first World War with the exception of the well known crystal or galena detector, which continued in use for many years. The various materials used, galena being a common one, had the natural ability to pass a current in one direction but not in the reverse direction; in other words it was diode rectification. When a train of waves reached the detector, one half cycle was able to pass and the opposite half cycle was blocked, thus again an audio signal was produced in a pair of telephones. Today we use solid state diodes to do the same thing. The earlier type used an adjustable "catswhisker" to locate a sensitive spot whereas the modern diode of a suitable type has a constant sensitivity.

In 1970 it is difficult to imagine what wireless was really like in these early days. Ten-year-old school boys today can learn, understand and readily construct quite sophisticated equipment with little difficulty and they have available to them individual and complicated components with which to do so. But in the period we are talking of there were very few commercial components available although it was not many years before the business ma.l grasped the opportunity of supplying such components. They were, however. quite expensive by the economic standards of the day and amateur experimenters largely used their ingenuity and applied mechanical skill to construct their own components, from winding their own inductances, chokes and transformers to manufacturing an assortment of mechanical contrivances.

BIRTH OF THE WIRELESS INSTITUTE OF AUSTRALIA
People in all walks of life who have a common interest also have a desire to congregate together and amateur experimenters were no exception. And so it was, in 1909, history records the fact of a group of Victorian Amateurs who gathered together to form the Wireless Institute of Victoria. In the same year another group formed the Amateur Wireless Society of Victoria. The former society held their meetings in Oxford Chambers (now demolished), Bourke Street, Melbourne, and the latter held their meetings in an upstairs room of P. H. McElroy's premises in Swanston Street, Melbourne, later occupied by Homecrafts Pty. Ltd. Both thesc organisations struck badges which are illustrated herein, and as far as is known, were the only ones to do so.

In 1910 the members of the Amateur Wireless Society of Victoria disbanded their club and joined forces with the Wireless Institute of Victoria. In the same year a group of experimenters formed the Wireless Institute of New South Wales. The members of both these Institutes, recognising the value of banding together to share and advance their common interests, expanded their activities to form the Wireless Institute of Australia, and whilst remaining autonomous, became The first national amateur radio society in the world.

In 1913 a group of Western Australian amateur experimenters met for the purpose of forming a wireless telegraph club. It became known as the W.A. Radio Club which held its meetings in the science room at the Perth Boys' School. A branch of the club was formed in the same year at Kalo, Western Australia. By June 1914, it was decided to expand the scope of the club's activities and its name was changed to the W.A. Institute of Radio and Scientific Experimenters.

The fever of wireless transmitting spread all over the Commonwealth and in many other countries. In Australia many cther clubs and associations were formed of which there is no record other than vague references. But the outcome was a tremendous development of brotherhood between people whose interest was a common one. Little did they realise that as 1914 approached, the world would be enacontinued on page 301

The first known Wireless Institute badge struck for a group of Victorian Experimenters who formed the Wireless Institute of Victoria in 1909.

Overseas

 Magazine Review

 Magazine Review}

Compiled by Syd Clark, VK3ASC

"BREAK-IN"

November 19ng-
VHF AM Transistor Transmitter, by L. M. Cash. Reprinted from Mullard "Technical Commurications.' Jan. 1868. Transmitter gives Commur. out on $136-174 \mathrm{MHz}$. Conversion to 144

Bread-Boarding a Transistor Resonance Incleator $\mathrm{ZL2BEV}$.
Recelving Amateur T.V., ZL2TAR.
Microphone Amplifer, ZL1AZN. Three transistors and a small 9 v . battery.
Deinnostration Power Supply, ZLitGB. Used to demonstrate power supply theory and the characteristics of a diode and a triode.
Soldering for the Beginner, zL2TJK and
Soldering for the Beginner, 2L2TJK and ZL2日FR. Help for the beginner.
December 1960-
My Experience with the HRF Delta Loop, think lor a moment that the made the writer an easily built version of the Quad and so it might be for 15 OR 10 metres. It is rather ungainly for twenty and so far no one has ungainly for iwenty and so far no one

Quartz Crystal Oscillators, ZL3NH.
Why Crystals Work at Two Frequencies, by ZL3ON.

ATV No. Z. ZL2TAR. The second in lis sfries on Amateur t.v.
The Novice Radio Training Scheme, ZL2TJK and ZL2BFR. A low voltage transistor regulated power supply is described.

November 1!36 -

"CQ"

"Propagation Special"-the sign in large letters on the front says.

Shortwave Radio and the lonosphere, W3ASK and Stanley Leinwall.
Wptlmising Short Wave Communications, by W3ASK and Stanley Leinwall.

Don'c he Afrald of the Big Bad Blackont, W2EEY. Sunspots, etc.
Vlif ionospheric Propagation, W3ASK, etc.
A 8unspot Story Cycle 20: The Declining Years. W3ASK, etc.
A Seven Year Propagation Forecast for the Amateur DX Bands. W3ASK, etc.
Interstellar DX KBBW
"CQ" Reviews the "Swan Mode 280 Cygnet". Wilf W2AEF says that it is good money's worth. There is now a Model 270 on the which costs about another 100 dollars in the Which
U.S.A.

December 1:09-

Field Effect Transistors, GWNJY. This two part irticle describes the basic field effect transistor and the newer, more advanced types. Part 1 covers the JFET. MOSFET and the various modes of operation. Part 2 will cover the device characteristics, blasing, dual gate FETs and circultry.

Dealgn for a Solld State Regulated Power Supply. 2L2BDB. Some very interesting information of power supply design.
A Monltor for the $n \mathrm{~N}-$ st MHz . Hand. W2SI.
Cne modified small transistor radio and there Cne modified small transistor radio and there you are.
Appllcations of Information Theory to Slow Scan Television. WA7MKA.

Convert your Old Novice Rig to 160, by useful on this bind watch jobs are stm gest the wires do not touch where they are shown as crossing-otherwise no inductance.

Antenna Adjustment. The Easy Way, by WAlHDP. To save the heart from all that ladder climbing
will " Reviews the Collins S-Line, W2AEF Wilt is of the opinion that there is no substitute for quality when it comes to getting satisfaction from a product. We should all buy the very best we can afford. So far as manufactured products are concerned, the good last longer than the poor.
FSK for the Transcelver. W9TKR. A small unit for adding to a v.fo.

Australls Oscar it. Progress Report. K8VTR/B. The Translatur icreen Switeh, WA9FDQ.
Tilkes the plite of thit old clamp tube circuit.

Surplus. Eliot White describes the circuit and operation of the LM series Frequency Meters used by the U.S. Navy during the last war. Similar to the Army BC-221 (SCR-211) series. Operation was from a.c.

"OHM"-The Oriental Ham Magazine

 December 1060-DX-pedtion: Spratly Island. The story of a boat trip to Spratly Island, 26th-29th Jan. The VSB operators operated on h.f. bands from 80-10 metres using an FT200.

Standing waves: Why?. KR6JT. A discussion on this interesting subject
CQWW (Phone). Operational patterns. Graphical records of activity of three Aslan staiions in the 1989 CQWW Phone Contest.
Ilam Profle, CR!aAK. Rare DX. Fern is Deputy Postmaster and Chief of Technical Services in the small Portuguese colony of Macao.

Reclprocal Operatiog Agrecments, HS3AL.
The Oriental Ham Magazine will be sent to subscribers outside Hong Kong by surface mail for SUS2.00 per year. Postage by air can be arranged.

December lsus-

"QST"

In Line R.F. Power Metering. WICER. Several commercial versions are discussed and a simllar home-built type is described in detail. These units are not frequency sensitive like the ulder Monimatch type.
Let's Talk Transistors. Part 2. Crystals, donors, acceptors and holes.
Modernising a Classic 13n6 MMz. Converter, WB2EGZ. Simplification through solid state design.
Some Common Questions and Their Answers, WIICP Specially for beginners.
MO8PETs for Tubes K2BLA. By using an external power supply or the bias voltage devcloped in the cathode circuit. it is possible to modify an older receiver stage by stage beginning at the r.f. ampllifer.
A Phone Patch for the Collins S-Line, by WikLK. Also stated to work with equipment of slmilar purpose from other makers.
A Tri-band Vertical Antenna, ODSCG. Three band matching without iraps.
Sideband from a Soltease. WB6IzF. This Amateur apparently travels a lot in other people's cars and has developed n way of Hamming without the car showing it has
A Power Supply for that Big Linear, WICER. 3 kV ., 1 amp .. $117 / 234 \mathrm{v}$.
The Band Divider Beam Antenna. WGTYG and W4TDI. For 7 MHz ., non rotatable.
Recent Equlpinent. The Drake L-4B Linear Amplifier is reviewed.
Amplifier is reviewed. K8VTR/3. Another article by the same author nlso nppears in December "CQ". same author also appears in December ${ }^{\text {Napassar Revisited. W4QCW. Another DX- }}$ pedition story.

"RADIO COMMUNICATION"

November 1969-

A 4.52 MHz. Single Sldebard Transmititer. Part \&. G2AIH. Continuing the description begun in the October issue. Detalled description including the "mctal bashing".
Technical Topics, G3VA's regular feature. Many VK Amateurs would gain from reading the preamble to Pat's technical discussion. Tolerance is the watch-word. He strongly stresses the doint that the "NEW" product is not necessarily better. Discussion follows on diode attenuators. lonk delayed echoes. direct conversion 14 MHz . s.s.b. receiver, and VXOs is also described.

"RADIO Z8"

October 196:-
The LM Special. ZSBAOU A iransistorised 80 and 40 metre in mand
and Thirty Five Fand Tower, ZSBBFW, he means tower. it is self supporting. The author states that a tower "kit" would have cost him R150. he baulked at this and rang cost him Risu. he baulked at this and rang him with all the material to bulld one for R35. Cominent. Should support a tri-band Quad. Cominent. Should support a tri-band An Efficient Kite, ZSGPA. Seems the best
160 metre DX is to be had using kites or 160 metre DX is to be had using kites or billoons. Some also say that if the wind is in the right direction they are very good for puting a fishing line out beyond the breake truly use's many terhniques.

The Caravanner, ZSBKO This sinall transmitter is of hybrid design. runs $12-15$ watts input and takes 5 a. from a 12 v . battery. Final and modulator use instant heating QQC04/15 valves and the heating up time is only about one second.
Some Aids for Radio Hams, Prof. Shroe Luse. Humorous type article.
Moblle Antenna Mount, ZS6ET. Some of you may have seen those expensive Webster type ball mounts about. This article tells you how to make one for next to nothing if you are expert on a lathe and have a ball turning attachment.
December 106-
Continuously Adjustable Fully Regulated Power Supply, ZS5HF. 0-15 volts at up to 1 Power Supply, ZSSHF. 0-15 volts at up to 1
amp. Ripple is extremely low at less than 20 mv .
${ }^{20} \mathrm{mV}$. . Hunting, the Pretoria Wiay. ZSBAES. A simall transistor "sniffer". Lood construction is also described.
intruder Watch and the w.i.A. Reprint from "A.R."

"THE SHORT WAVE MAGAZINE"

October 19Gla-
Signal Discriminator for CW Working, by G3RSW. An interesting receiver terminal unit giving single-signal audio selectivity. Circuit and results are described.
Loop Aerlal for Top Band, G3WPO. One method of getting out on 1.8 MHz ., even though you are operating from a restricted space.
Radiating a Bllp Tone, G8BQH. The idea was picked up from the Apollo 11 mission and used initially as a gimmick. During the period of use it was found that the "bllp" served a uscful purpose at times and the practice has been continued.
Tuning Co-axial Cable Fed Aerials, G3OVE. Described as a method of obtaining true resonance. Voltage is sampled at 13 points along a length of co-ax. Which is colled and tapped at each turn. Indicator is a 250 uA . meter.
Second Channel BCI, G3OGR. How to keep your slgnals from being received by BC recelvers tuned to the "image" frequency.
Integrated DIgital Morse Key. G3XMH. This design is based on surplus integrated circuits and operates at speeds from 8 to 40 w.p.m Veroboard construction is used.

November 1069-

Top Band Moblle Transcelver, G3EGC. A valve design for true Tx/Rx operation. Circuitry. construction and results are described. This is a design, the success of which has been proved in operation over two years.
An AC Bridge for Measurement of R, L and C. G3TKR. A useful test instrument with a high order of accuracy.
Two Metre
Two Metre Recelver with Tunahle First Oscillator. G3VMU. A solid state design which eliminates the multiplier chain.
High Gain VHF/URF Aerlal Array. G8ATK. Three element yagis are used on four metres and J-Beam Parabeams on two metres and 70 centimetres.
SWL. Points of interest to SWLs are discussed by Justin Cooper.
December 190日-
Simple Tx for Four Metres. GM3NHQ. Circuitry and construction detalls. A chance to use up some of those old valves you have. Carried out by finger control on the microChrried
phone
Top Band Moblle Transcelver. Part 2, G3EGC. Alignment details-operation and results.
The KW Viceroy on Top Band, G3SCJ. Modincation for 160 metre operation. Using separhte mixer and oscillator.
Using the Heath Mohican as a Station Recelver. GC3WOW. Comments on the author's experiences in Malawi.
G.3WRO/M on the Norfolk Broads, G3WRO. An nccount of a pleasant holiday afloat
Tackling Recelper Allgnment, G2HR. Some practical points for the newcomer.
Notes on the Eddystone 840A/8411C Recelvers, G3OGR. Hou to get to know sets which are offered in the second hand market.
"73"
The comments are "73's" and not those of The comments are " 73 's' and not those
the reviewer. My remarks are in brackets. An Approach io Slx Metre S.S.B., WA1FRJ. Using an NCX-2 or other s.s.b. transceiver. I.F. Noich Filter, W2EEY. For the last word in selectivity for your transceiver.
Callibrate that Home-brew Dlal, K9STH Accurate callbrations on any band.
icontinued on next piger

Slow Scan Colour Pletures, WA2EMC. Using additive synthesls.
A Remote V.F.O. for the HWSZA, AP2MR Split frequency operation simplifier
Cheap and Simple for 81x. WB6BIH. Three ransistor PC board converter
The Mismatched R.F. Transmission Line WSJJ. High s.w.r. makes no difference at all, hardly.
BKX Bridge, W8BKX. R.f. bridge modelled after the General Radio bridge.
"Religion. Politics or Sex. WiDIS. And other 'QST"-approved QSO topics.
W.R.F.-F.M. Part M. Moblle Inatallations, by WB2AEB. Another chapter in our effort to get you on f.m.
The Umbrella Antenna, W2EEY. Efficient antennn for 48-80-160 metres.
solld State sis'er Tranamitter, K1CLL. Three transistor converter
Fascinating Fundamentala i. Electrobtatics W2FEZ. Elektron is Greek for "amber".
Apoll T.V. and Radio. WifjE. Detalls on the radio end of the moon trid.
The Recelver-The overlooked Piece of Tent Equipment, KizJH. Handy.
A Voltare Sextuple: Power Sapply, W5NGX "QST" would never publish anything this sexy iDo not follow his circuit-there is a shori circulted input.)
circuited Unikey, K9MLD. If you are a c.w. man this'll get you.

Tranalator Power Sapplies, K6KA. Robbing power from the rig or recelver. sistors just won't make it without the right sistors just wont mike it without the right trouble. 1
F.M. Recelver Tweeker, WBUAW. Alignment gadget for 1 m . receivers.
A Mate for the 8wan sin, WB2MPZ. Adaptink the SWan TCU to the 350 .
The Ball of Wax-A Calibrator, W6GXN. 200-100-50-25 KHz. callbrator.

Blectrornic Varlac, KgJSC. Using a triac.
8B-8s Modifeation, W4MNW. Adding a callbrator, c.w. coverage, etc.

Call Lettering Lunacy. Moschcovitz. Being about b/c call letters and such.
Extra Class Licence Course, Part 10. Staff. You should be able to pass the exam. by now 8.B.E. Improvements Made Easy. W6JDD Bunch of Ideas for the SB34 owner.

December Incil-
This is headlined as a spectal "buyer's guide" issue. The index follows:

Qalck Easy. Dependable Tranalstor Dlode Checker, WBICC. For those who like checkered diodes.

Did Samuel Morae Really Invent the Telegraph? W2FEZ. Telegraph? What's that?

Comblnation Dummy Load/Attenastor Net work, W2EEY. Also doubles as a hot plate for your coffec warming. (May be okay if r.f. is very cheap!
Tuned Fliter Chokes-The Easy Way, W2OLU
Can your filter chokes carry a tune? Drop dead you knit-picker.

Bandswitching the 8 wian 250 and TV-2, by K3LNZ. For six and two metre operation lickety split.
Cheap and Easy selectivity. W5INU. A c.w audio filter for less than $\$ 10$.
V.h.F.-F.M. Part 8, Hand Held Portables, WB2AEB. Continuing our effort of brainwashing you into $1 . m$
sunspots and the Ham, WB2VFX. If you can't beat 'em. join 'em.
8.S.T.V., SMOBUO. Lecture at the International Congress of Amateur Television

Amateur Radio in the Clasaroom. KOHUD. Drives the kids right out of their everlasting minds.

The Galaxy RV-5.50 Remote V.F.O., W6AJZ. Test report from an exclted and happy user Calculation made atile Easier. WIEZT. Stuff our dumb high schools should have tought.
Univeral Dual Frequency Crystal Callbrator. W2EEY. Using those new IC's.
Adding Your Transcelver, VE3ECU/W0 Adding Incremental tuning. A blessing.
Tranalstor Class B and C Power Amplifier Design. VK3ZRY. Slide rule lovers, arise and rejoice ior an article for you

Two for Mobile, K6ZFV. Power supplies, not a love story.

Amategr Microwave Prequency Meter, 1 to 10 GHz. K1CLL. Simple, but necessary test equipment for GHz. tinkerers.
unid lo Organiser, WB2WYO. Nice companion unlt for the station transceiver
Converting a CB Transcelver to Slx Metres WB6BIH. What else can you do with them? Exira Class Licence Conrse. Part 11. Staff Oscillators.
Topographical Maps for the Radio Amatear, W9VZR. For transmitter hunts, and other Amateur applications.
Fascinating Pundamentals. III. Magnetism W2FEZ. An irrelevant dip into history.

Corresponáence

Any oplnion expressed under this heading is the individual opinion of the writer and does not

AU8TRALIA - AND CAPTAIN COOK Editor "A.R.." Dear Sir,
What is all this nonsense that I hear on the alr-"CQ DX from Able X-ray One XYZ"? Are we not trying to publicise Australia, plus Captaln Cook? What is wrong with "CQ DX from AUSTRALIA X-RAY One XYZ'י etc.?
J. E. George, VKiJG.

IWe do not agree with the idea of "fiddling" with the NATO code. but would be interested to know what others may think.-Ed.l

JOHN MARTIN REPLIES

Editor "A.R.," Dear Sir
I acknowledge Ken Gillespie's letter on the c.w. question in January "A.R." I have already submitted a further letter correcting my om!s sion of the matter of the I.T.U. regulations However, some further comments, if I may, on Ken Gillesdie's letter.
First. I question his logic where he says that the government upholds the c.w. regulations because it feels that c.w. should be encouraged". The word "encourage" implies the existence of a choice and this is, of course. not so. Certainly the use of c.w. should be encouraged, but i feel that compulsion is a very poor form of encouragement.
Also, the fact that v.h.f. is not normally capable of long-distance communication is Irrelevant. There is h.f. DX and v.h.f. DX. The use of c.w. is advantageous for both. But why make it compulsory for one and not for the other? If it is not deemed necessary for v.h.f., why make it compulsory for h.f.?

Further. I would certainly disagree with the proposition that c.w. is easier to learn than n foreign language. I have studied French, Latin and Greek during the past ten years, and I still ind that learning c.w. Is a much more ormidable proposition. Please, Ken, be tolerant of the weaknesses of others!
Finally. on the proposition that we return to the pre-war regulation, I fall to see why in order to become proficlent in communleation techniques. It was thought necessary to confine operators to c.w. only. surely a phone operator can become just as proficlent in communication techniques in a year as can a c.w. operator.
Anyway. Ken. I would certainly prefer to discuss this topic over the microphone than through a Morse key. My fingers would inevitably get tangled $u d$. and my arguments would come out all a-stammer!

John Martin, VK3ZJC.

EQUIPMENT FOR A CLUB OR GROUP

I have for disposal a $40 / 50$ watt modulator with UM transformer. prototype working solid state Amateur band receiver including all crystals in cabinet, a 2 metre converter, a BC454 6/9 MHz., a signal generator, an enclosed professionally made cabinet for 19 inch panels. about six power packs with heavily rated chokes and transformers, plus a number of other bits and pieces with no real junk.

Also. I have the last five years' issues of "OST," "S.W. Magazine" and R.G.S.B. Bulletins plus various handbooks.

I would like to give these away free to any group or club of younger impecunious enthusiasts who otherwise might not be able to afford them.

Would anyone interested please write to VK3OG, 7 Thornton Road. Mount Eliza, Victoria, 3930.

New $\sum_{\text {quipment }}$

RECHARGEABLE BATTERY

A complete range of Sonnenschein, dry-fit batteries is now available from R. H. Cunningham Pty. Ltd. Sonnenschein batteries are rechargeable leadacid accumulators which require no maintenance and have all the advantages of dry batteries. They may be heavily loaded, and will operate in any position; they can be stored for long periods of time, and are ideally suited for use in portable equipment. A 22page, fully illustrated technical manual on dry-fit batteries and charging techniques is available from R. H. Cunningham Pty. Ltd., 608 Collins Street, Melbourne, 3000.

S.S.B. TRANSCEIVERS

Two new amateur band transceivers have now been made available in Australia. Manufactured by KW Electronics Ltd., Dartford, Kent, U.K., the model KW "Atlanta" is a 500 watt p.e.p. unit operating from 10 to 80 metres, and the model KW 2000B transceiver has 180 watts p.e.p. (150 watts c.w.), 10 to 160 metres. Designed specifically for amateur use, the units are built to high engineering standards and have all the feature requirements for amateur operation. Illustrated technical specifications are available from the Australian agent: Sideband Radio, 73 Cole Street, Elwood, Vic., 3184.

SOLID STATE S.S.B. RECEIVER
 continued from page 171

The b.f.o. and product detector should be mounted well away from the i.f. circuitry to avoid any injection of the b.f.o. signal into the i.f. amplifier. The effectiveness of shiclding between these two stages may be checked by disconnecting the b.f.o. from the product detector and listening for a beat note on an a.m. signal.

AUDIO HANG A.G.C.

The audio derived a.g.c. consists of a two-stage audio amplifier which operates from the detector output to produce a convenient signal for detection. An emitter follower detector circuit is used since it enables a very fast rise time. The fall time is determined by the emitter time constant. and may be selectable as shown. Time constants shown are 0.5 second and 2.5 seconds, but may be adjusted to the individual's preference.

The S meter operates directly from the a.g.c. control linc and is a $100 \mu \mathrm{~A}$. movement. If it is desired to use a 1 mA . movement then an extra stage of current amplification is necessary to avoid loading the detector output. An alternative circuit for a 1 mA . movement will be described at a later date.

The next article will deal with the design of the v.f.o., mixers and crystal oscillators.

Sub-Editor: ERIC JAMIESON, VKSLP Forreston, South Australia, 5233.

AMATEUR BAND BEACONS

VK4 144.390 VK4VV, 107 m . w. of Brisbane. VK5 53.000 VK5VF, Mount Lofty.
VK6 ${ }^{52.006}$ VK6VF, Tuart Hill 52.900 VKGTS, Caarn Hin 144.500 VK6VE, Mount Barker (Albany). 435.000 VK6VF (on by arrangement). $\begin{array}{lll}\text { VK7 } & 144.900 \\ \text { ZL3 } & 145.000 & \text { ZL3VHF, Chistchurch N.Z. }\end{array}$
You might be excused for asking why have the v.h.f. notes for this month been preceded certainly very good reasons that this should be so. If ever any demonstration was needed of the value of beacons it was shown at the ond of January, Commencing on the night of end of January, Commencing on the night of VK6VE. the 2 metre beacon at Albany, was good strength in Adelaide. He also observed that Bernie VKBKJ was on 40 metres in a contact, and Bernie operates from Albany! It contact 40 to 2 metres was in operation, continuing to a full 2 metre both ways QSO, with signals S 6 to S 8 , around 2300 EST. Subsequently, Mick VK5ZDR, Bob VK5ZDX, Col VK5RO and John VK5QZ worked VK6KJ who
was operatins on 144.015 MHz. During this time the beacon continued about 55 to 6 . The next morning on the 31st, the beacon was there again, continuing on and off throushout the day, and culminating in another group of contacts with Bernie that night, again with very good signals.
However, the prize really must go to the Sunday. 1st Feb., for a day of outstanding 2 metre achlevement. The beacon was there first thing in the morning and so was VK6KJ. Some contacts were made around 0900 EST;
after the VK5WI broadcast the VK6VE beacon after the VK5WI broadcast the VK6VE beacon
continued to indicate to all and sundry that the path was open to the west and improving, leading up to some $1 / 2$ hours of contacts between Bernte and every available VK5 (Including myself behind a thundering great hill to the west!). Not being content only with the way with Colin VK5ZKR in Mt. Gambler (1,350 miles), Chris VK5ZFA at Millicent (1,300), culminating in a contact with Bob VK3AOT at Mt. Waverley and Geoff VK3AMK at Frankston, at distances around 1,550 miles, signals being R5 x S5.

What a grand day it was. V.h.f. has not recelved such a shot in the arm for a long time and if ever you fellows in VK2 and VK3 need proof of the value of beacons, particularly on 2 metres, you should have it now 1 Perhaps
if VK2 cannot do it, would VK1 think about If VK2 cannot do it, would VK1 think about
it. being favourably situated from Adelaide, it, being favourably situated from Adelaide,
Melbourne and Brisbane. It is very certain that none of these contacts would have eventuated without the advance warnings glven by the two beacons. An interesting observation was that these contacts were being made even
after 1130 EST!
During the same period some tremendous signals were being received from VK3 into VK5, so it appears the whole of the southern area of Australia was wallowing in a huge M.h.f. Lrough. Tony VK5ZDY at Stirling in the Mt. Lotty Ranges worked Winston VK7WF on
2 metres, while on 432 Tony had a full strength 2 metres, while on 432 Tony had a full strength
$11 / 2$ hour contact with Colin VK5ZKR in Mt. $13 / 2$ hour contact with Colin VK5ZKR in Mt .
Gambier $(200$ miles), following it the next Gambier (200 miles), following it the next morning by almost making it two ways on
the same band with Gordon VK3AGV in Colac (350 miles)

AUSTRALIS OSCAR 5

Another milestone In 2 metre activity is surely being shown by the continuing successful operation of the 2 metre beacon of the Australls ever since launch. Full credit must go to aring the package, and they, as well as us, the remainder, must feel a great measure of, the remainder, must feel a great measure of pride that Amateurs can still make things power output of the device can make such a power output of the device can make such a big signal in a recelver at such long distances,
and the whole venture has created a lot of genuine interest, particularly as the 2 metre beacon can be copied on even rather mediocre equipment. No further comment in this column as I would expect the whole success story will be the subject of a special article by those better informed

From Roy VK6ZFL, of the Carnarvon Amateur Radio Club, comes news that they now have a beacon operating 24 hours a day on
52.900 MHz . using the call sign VK6TS in c. w . 52.900 MHz . using the call sign VK6TS in c.w. It runs with about 8 watts output to a vertical dipole 40 feet high, reception reports would be appreclated and should be sent to the Secretary, Carnarvon Amateur Radio Club, C/o. A.W.A., Box 348, P.O., Carnarvon, W.A., 6701. The boys there have a local 52.6 MHz . net with eight stations on. Transequatorial scatter contacts with JA are possible from there for about eight months of the year, Only two sporadic von this year and have been ho the availabilty of their beacon signals might persuade some of the stations to the east to turn their beams north-west! 2 metre activity in that beams restricted because of locallty, being 600 miles from Perth.
Roger VK2ZRH reports from the Sydney area that JA contacts from there have been available on and off during November, December lengthening enough for the signals to reach the southern States. Roger worked David 2L4PG on 52.050 MHz . on 1 st Jan. This is interesting as David would be the first ZL4 on 6 metres to be heard for a long time. It crease next year, many are still looking for that elusive ZL4 for W.A.D.Z.L. Of further interest. Roger mentions hearing VK3s or VK5s on 144 MHz . ragchewing on 8th Dec., but despite repeated calls with full power, they could not be broken up. Such is the luck of the game: at the same time, however, had other VK5s might have been able to do something about itl
Pleased to have a letter from Eddie VKIVP Who reports not a lot of 6 metre contacts in ing through thick and thin to s.s.b may tickbeen partly responsible for this. On 3rd Jan. he journeyed to Mt. Delegate ($4,300 \mathrm{ft}$.) in Vietoria to work back to Canberra (120 miles) to give Canberra home stations their first 2 metre contacts with VK3, as he had been unable to persuade any VK3 operators to do VK3 worked VKı. Hard to bellevel" Good a.m. signals all the time over the distance, but comparable gear on f.m. was reasonable copy only during peak reception hours. Eddie noted during strong 6 metre openings between VK3/5 to VK4 that the stronger stations were being copied R5 S4-6 on back scatter but could not entice any contacts. From this he concludes it seems to be pointless increasing his power any further. Any comments?

万7\% MHx. ROOF-MOUNTED ANTENNA

Last month I mentioned the record breaking attempt on 576 MHz . by John VK5QZ and

John VKSOZ with his roof-mounted 32 extended element 576 MHz . array

Graham VK5zJL. A photograph in this issue depicts the specially made roof-mounted an tenna used by John. Further to this, John end Graham recently joined forces and journeyed to Mit. Gambier to try and work back to Ton VK5ZDY at Stirling. Contacts were very scratchy over the 200 plus miles path, but two way contacts actually were made. Further detalls next time.

GENERAL NEWS

Brian VK5ZBR at Gawler, 25 miles from Adelaide, got in a few very "sneaky" contacts with some JA stations on Sunday, 25 th Jan JAIODA was worked at S 9 , while those from JA3 and JA7 managed to rise to S5. Everyone else seemed to have been concentrating on tracking Oscar 5 and missed out. Brian also reported the Japanese beacon JAligy on 51.995 with m.c.w. was $\mathbf{S 6}$
operating pleased to report that VK4VV is now operating on 144.390 MHz . on m.c.w. This is the latest 2 metre beacon to take to the air and is the long awaited final effort from VKA and will be a very welcome addition to our graduall lengthening iist. Ge station is loca details are yet avallable. Thanks to Tom VK$4 Z A L$ for sending telegram about this.
VK5 of Australia's leading Amateurs (not a serious quains ac guinted on the v.h.i. bands with Greenwich in fime (GMT), not only for contests, bu types day operation, and contacts of al received Q pl ints out that this year he has TST, EAST cards bearing is usine Summe Time, there is possibility other States will follow, what then? Overseas QSL cards in variably carry GMT, which anyone may convert to local time for checking loss. Frequently cards sent overseas with local time only are never replied to at all These are al valid points and worth thinking about In most shacks the least requirement for ease of conversion would be another clock set to GMT, your QSL cards would carry GMT, so no re-conversion is needed. It is realised of nourse that it is one thing to have people agree to such a proposal, and to have people agree to such a proposal, and another to get evergone to do it, but a start conld be con sidered somewhere. What are your opinions about this that thou any opions to add to suggestions that the lowest 100 KHz . of both 6 and 2 metres should be reserved for DX working, and that local contacts be avoided in this area? Any comments in writing will conclusions may be ultimately drawn.
Peter VK3ZYO, in a letter re VK3 activities, says quite a few Ross Hull Contest operators took advantage of the increased points outside 50 miles from a capital city, and went out portable. Very pleasing indeed to see this upsurge in portable activity. I note that Bob VK3AOT spent a week in a caravan on Mt. Buninyong using 6, 2 and 432, and Alan VK$3 Z H U$ tried to break the 1296 MHz . record with lan VK3ATY and camped on various peaks outside the 50 mile limit, using 144, 432 and 1296 MHz .
Peter reports 1296 MHz . activity is pretty constant with about seven stations on. Four of these, VKs $3 \mathrm{AKC}, 3 \mathrm{ZKB}, 3 Z \mathrm{HU}$ and $3 Z Y O$ used the band consistently to increase their Ross Hull scores, which was particularly helpful in view of low scoring on 432 and 144 to interstate.
so far Ron VK3AKC and Whf VK7WF have not quite made it on 1296 MHz across the water two way, but signals are being heard so it appenrs only a matter of time.
VK6KJ did extend inland path from Bernie to allow pay extend inland enough for a period to allow Ray VK3ATN at Birchip to work him on 2 metres. Fancy Roy VK3AXV going on holldays at this time!
That seems to be about all the general news for now. Closing with the thought for the month: "It may take forever to win men's minds by persuasion, but that's quicker than
73, Eric VK5LP. The Volce in the Hills.
STOP PRESS (3/2/70)
The tremendous ducting to VK6 from VK5 continues unabated. Signals just as strong as ever after four days and nights. Bernie VK6KJ has worked about every 2 metre signa likely to be available around southern Australia. Wally VK6WG and Brian VK6JA now getting in on the kill. Signals from them rather selective, and some stations in VK5 not hearing them. signals on tids of hundreds exceedingly strong over paths of hundreds of miles. Some even looking for these outstanding conditions. never observed before, to abate somewhat to allow some more sleep to be had. Many 2 metre transmitters and converters brought out of mothballs of years standing to work VK6.
(continued on next page)

VHF NOTES

MEET THE OTHER MAN

Mr. J. L. C. Bickford lives at 22 Mansfield Street. Rockhampton, Qld., and probably better known to all of us as Lance. VK4ZAZ/T For those situated at the end of the longer skip paths few 6 metre $D x$ openings to would not include a contact with Lance. First licensed in 1957, he originally operated on the 56 MH2. allocation before 50 MHz. became available. on 52 MHz . at present Lance runs 150 watts of a m using push pull 6146 s . a wide spaced 4 element yagi 45 feet high, converter irame grid r.f. end to an AR 300 n 144 MHz. he runs 130 watts of a.m. or 300 watt p.e.p on s.s.b. Using QQE06/40s. The antenna is a 10 element yaki, 53 reet high, nuvistor r.f.
front end in converter to a BC312. The modufront end in converter to a BC312.
lator uses Class B zero bias 807 s .

Lance's list of prefixes worked on 8 metres reads like a book. VK1 to VK8 inclusive, two areas of VK9. ZL1, ZL2, ZL3, W, KH6, KR6, KG6, HL9. JA, being made up of some 2,900 contacts, all but a few belng DX contacts. Other areas heard include W7, WO. CERAE (beacon), VS8CJ, British Ch. 1 and Ch. 2 t.v. sound, and various Russian and Asian t.v. stations frequently. All these have been heard in the region 40 to 50 MHz . Awards recelved for 6 metre operation include Worked All States, All Japan Districts, 1st VK4 National Field Day 1962, 1st VK4 Ross Hull. He is eligible for but has not claimed yet Worked All JA prefixes, One Day AJD, and Elizabethan Award. All that represents a pretty good innings on 6 metres.

Lance VK4ZAZ/T

Things go quite a bit quieter when it comes to 144 MHz . as his only contacts on that band have been during perlods of high sporadic E activity. However, Lance has managed to work VK2, 3 4, 5 and 7 , and holds the VK4 State record for working VK7ZAH on $1 / 1 / 67$. He also holds the State record on 6 metres for his contact with K6GRC in 1958. His location is about 300 feet above sea level.

Looking to the future Lance is interested in high power scatter research on 52, 144 and 432 MHz ., and is considering 432 MHz . portable operation from Mt. Archer, 2,000 feet a.s.1. not far away. Television experiments on 432 are also pending, using a nuvistor converter into his 52 MHz . converter.
With his information Lance forwarded several pages of very interesting observations made over years of DX working. A pity there is too much for inclusion here, but he has summarised a few points. Best DX worked, 6 metres to W6, 2 metres to VK7. His most gloomy period was listening to W7s and W0s working Wis. some using 20 watts to converted 522 s , and peaking S8! He makes an observation that for some trans-equatorlal conditions both s.s.b. and c.w. are useless. Extra high level a.m. is superior under these conditions.

I feel Lance has so much to offer from interested observations of propagation phenomena ested it would be worth a separate article in that it would be worth a separate article in One experiment he mentions is that of workOne experiment he mentions is that of working JA2 when 100 mW . of signal produced Lince, you are an interesting man in an interesting location.

NEW CALL SIGNS

OCTOBER 1969

VK0GR-Hea Gehrke, Casey. Antarctica.
VKOHM-H. Milburn, Heard Island.
VKOKW-K. P. Warchot. Macquarie Island.
VKOLD-H. H. Brown, Macquarie Island.
VKOMZ-M. D. Zappert, Davis, Antarctica.
VK2BAZ-C. R. B. Bamford, 23 Palnters Lane. Terrigal, 2260.
VK2BDN/T-R. C. F. Norman. 23 Queen St. Croydon, 2132.
VK2BEV-E. J. Van Blerk. 35 Larool Cres., Thornleigh, 2120.
VK2BKP-K. J. Pickett. 8/7 Lowe St. Clovelly.
VK2BLX-A. E. Barlow, 654 Princes H'way, VK2BWF-W. F. Cromarty, 560 Buchhorn St., VK2BWG-R. G. ${ }^{\text {Lavingtong }}$ Wright, 25 Mermald Ave. Maroubra. 2035. VK2ZLO/TーJ. Rowe, 51 Merley St., West VK2ZNL-F. W. Nolan, 122 Carringbah Rd., Randwick. 2031.
VK2ZYD-S. Griffith, $1 / 46$ Nicholson St., Wollstonecraft, 2065.
VK3JU-C. J. Holliday, 30 Gardenia St., Blackburn. 3130.
VK3MK-B. P. Balley, "Selworthy," 298 Mitcham Rd., Mitcham, 3132.
VK3ON-J. G. Foster, 58 Fulton Rd., Mt. Eliza, VK3UL-A. H. F. Nickols, 7 Judith St., Carnegie. 3163
VKsAAM-P. S. Carne, 3 Thurling St., Mentone. 3194.
VK3ACL-P. C. McEwan, 16 Falcon Crt., East Doncaster, 3109.
VK3AHA/T-G. Collings, Lot 66, Evelyn Rd. Ringwood. 3134.
VKSAIW—J. R. Graham, 14 Malcolm St., McKinnon. 3204
VK3AQU-R. H. Leskie. 15 Cecil St., Horsham, 3400.

VK3AZM-D. L. Godfrey, 10 Alexander Ave., Moe. 3825.
VK3BAA-G. R. Crosier, Flat 9, 1314 Main St., Ballarat, 3350
VK3BAG-R. J. L. Kelly. 62 Kilby Rd., North Kew, 3101
vK3bal - F' Hattom, Appel St., Castlemalne. VK3BAM-J. V. Griffin, 85 Percy St. Mitcham, VK3BAZ-1. J Kennedy, 15 Cook St., Newtown. VK3BBE ${ }_{3616}^{\mathbf{C 2 2 0}} \mathbf{T} . \quad$ M Davie, "Midlands." Tatura, VK3BBD-A. K Bothe. 241 Royal Pde., Park-VK3BBJ-J. Gruber. 18 Newcastle St., East VK3BBK-G. F. Jenkinson. 7 Gladesville Dr., East Bentleigh, 3204.
VK3BBL-G. N. Brown, Yanac, 3418.
VKSBBM-R. C. Marschke, 55 Alma Rd., East St. Killda, 3183.
VK3BBO-D. R. Hutton, 17 Trent St., Newborough North, 3828.
VK3BBW-G. C. F. Dillon, 7 Banksia Crt. Heathmont, 3135.
VK3BEX-L. J. Middleton, Flat 3. 6 Blamey St., Ascot Vale, 3032.
VK3BCJ-R. C. G. Jackson. 36 Hampton SL. Broadmeadows. 3047.
vK3BCL-R. J. H. Clarke, 23 Glen Dr., Eagle-VK3BCQ-P. T. Ament, 12 Hastings St., Wendouree, 3355.
VK3BDH-T. D. Hogan. "Madang," King Lake VK3CCA-R

1 S. Linskeet, Sergeants' Mess. No. ${ }_{3012}^{1}$ Stores Depot, R.A.A.F.. Tottenham, VK3YAE-M. Imber. 2A Carinya Cres., North Caulfield, 3161
VK3YAF J. R. Beaumont, Flat 3, 564 Pascoe Vale Rd. Bascoe Vale, 3044
VK3YAH-Swinburne Electronics Soclety, C/o. Swinburne College of Technology, John St., Hawthorn, 3122.
VK3YAI-P. R. Johnstone, 6s Karnak Rd., Ashburton, 3147.
VK3YAM-P. R. Maher. 34 Candover St., Geelong West. 3218.
VK3YAO-A. W. Biddle, Flat 4, 74 Stephenson St., Kew, 3101.
VK3YAP-R. E. Proudlock, 14 Railway Cres., Korumburra, 3950
VK3YAQ-B. A. Butler. Flat 4, 12 McCracken VK3YAR-R. J. Malcolm, Boisdale, 3860 .
VK3YAW-P. J. McClusky, 13 Holloway St., Newport, so18.

VK3YAY-I. R. Morehouse, Flat 4, 7 Derry VK3YBC-'w. F. Colborne, 80 Hill Rd., North VK3YBE/T-T. G. Foster, 802 Sebastod St., Ballarat, 3850.
VKSYBG-M. Grezory, 19 Burns St., Wan-

tham. 3085.
VKIYBN-G. F. Shaw, 31 Landsborough St., VK3YCE-C. W. Eyre, ${ }^{\text {North }}$ Ballarat ${ }^{3350}$. Sallors Gully Rd., Eaglehawk. 3556
VK3YCK-M. C. Elias, 20 Thoresby Gr., Ivan-VK3ZNZ-T. ${ }^{\text {R }}$. Powney, 72 D The Terrace, Ocean Grove, 3220 . Waverley, 3149

VK5XT-K. H. May, 37 Janice St., Murray VK5ZFO-R. J. Lever, 6 Walte Rd., Urrbrae, VK5ZLA-L. A. Crighton, 109 Selth St., Albert
Park. 5014. 17 Kentish Rd., Elizabeth Downs, 5113.
VK8ZGL-D. S. O'Sullivan, 8 Elleen St., Cottesloe, 6011.
VK6ZGN-J. B. Wilcox, Flat 9, Alexander Court. 31 Herdsman Pde., Wembly, 6014.
VK8ZGQ-L. J. Pannell, 20 Hare St., Kal-VK7ZIR-I. R. ${ }^{\text {goorlie, }}$ mans Bay, 7152.
VK8ZCF-B. M. Chester, Flat 3, Cr. Nudl and Quarry Sts., Stuart Park, Darwin, 5780.
VK9AE-F. A. Eastick, Station: Port Moresby, P.; Postal: P.O. Box 2087. Konedobu.

VK9BL- ; B. Lennon, Station: Portion 51, Cr Musgrave St. and Ela Beach Rd., Port Moresby, P.: Postal: C/o. OTC(A). P.O. Box 56, Port Moresby, P.
VKODS-B. W. Smeaton, Station: Section 38 Lot 7. Madang, N.G.; Postal: P.O. Box 446. Madang. N.G.

VK9ES-E. Sundstrup. Station: Flat 2, Lot 3 Section 2433, Dysox St., Lae, N.G.; Postal: P.O. Box 1124, Lae, N.G.
VK9GG-G. E. Groat, Station: Lutheran Mission. Madang, N.G.: Postal: Lutheran VK9LL-P R Gibson Station: TC Wee st Rabaul. N.G.: Postal: P.O. Box 530, Rabaul. N.G.
VK9MS-N. P. Stime. M.D., Station: Lutheran Mission, Madang, N.G.; Postal: Lutheran Mission, P.O. Box 676, Madang, N.G.

ERRATA

VK3BAI-R. E. Maricle. Previously recorded as VKBBAT.
VK3BAR-C. J. Kosina. Previously recorded as VKibibal.

CANCELLATIONS

VK210-A. E. Barlow. Now VK2BLX. VK2LL-P. R. Gibson. Now VK9LL.
VK2AHS-N. E. Parsons. Transferred to T.P. N.G.

VK2ZCF/T-R C. F. Norman. Now VK2BDN/T. VK2ZWC-W. F. Cromarty. Now VK2B WF.

VK3AFX-J. G. Foster. Now VK3ON.
VKIAAV-F. E. T. Weaver. Not renewed
VKSAUE-R. Grelg. Tranaferred overseas
VKSAYX-B. P. Balley. Now VKSMK. VK9ZFA-G. F. Jenkinson. Now VKSBBBK. VKSZHC/T-G. Collings, Now VK3AHA/T. VK3ZHD-G. C. F. Dillon. Now VK3BBW VK3ZLT-P. C. McEwan. Now VK3ACL. VKSZZOS-G. N. Brown. Now VK3BBL VK3ZQP-P. C. Carne. Now VR3AAM. VK3ZTL-T. L. Lindsay. Not renewed. VK3ZVG/T-G. A. Cohen. Transferred to A.C.T. VK3ZYF-C. J. Holliday. Now VK3JU. VK3ZYU-R. J. H. Clarke. Now VK3BCL VK3ZZA-P. T. Ament. Now VK3BCA.
VK5ZGC-K. A. Sweeny. Not renewed. VK5ZKM-K. H. May. Now VR5XT.
VKSZQB-H. Dittloff. Not renewed.
VK6RT-J. P. Morgan (Rev. Bro.). Transferred to Victoria.
VK8ZCF-B. M. Chester. Now VK8CF.
VK9JS-J. B. Stacy. Transferred to N.S.W. VK9KW-K. W. Turtle. Not renewed.

Sub-Editor: DON GRANTLEY
P.O. Box 222. Penrlth, N.S.W., 2750
(All times in GMT)

The AX prefixes have certainly given us a much needed boost in activity, and it is pleasing to notice quite a number of cals wast few years now very much to the fore in the $D X$ years In the interests of retaining our frequency allocations. lit us hope that this in-
creased activity remains after the AX allocacreased activity remains
tion has been withdrawn.

Band conditions have been holding up reasonably well, twenty metres as usual is to the fore. but there have been some fine openings on the other bands, namely ten which has been producing some fine openings in the early from Europe at around 18002 , and I noticed openings today ifeb. 11 at 20002 . So the activity continues, there still remalns a wealth of cials. From the s.wil angle most of it is readable, but to work it may be a different readable, Shift the JAs from fifteen metres and there must be some good DX there, however the QRM from the former seems to over-ride the other stations.

Whilst the bands remain fairly good, so too does the quality of the DX, particularly around $2000 z$ on twenty metres, and if current rumors of projected activity are any way true, then
we are in for a feast of DX. Some on the we are in for a feast of DX. Some on the
rumor list are ZK1/Manlhiki, FH8, VQ1. 9J2ED olanning a jaunt to Botswana and taking 160 metre gear, W9FIU a maybe for Swan Is. and Serrana Bank. FR7ZQ shorily from Europa, the time of writing.

It is understood that no more nationals will be licensed from San Marino. however activity will continue as the italian Amateurs will still be able to obtain operating permits. Cur-
rently active from there is M1B, who has been rently active 18 ram
on 14235 at 1800 z

There is still quite an amount of activity from Thailand With HS1AF. John, Box 2008: HS3JR ""RIff". QSL to VK1RR; WBAHID/HS3: and HS4ADJ who QSLs via WA2VTL.

From Gnlnpagos comes a report that HC8FN is due back there and will have better antennae this time. That many QSLs are received manager. reports that many QSLs are received these contacts are with a pirate as Forrest HCBFN does not work c.w.
The following prefixes are active on 80 mx and audible in this country: VP2, XW8. ZM/K. VKS. PZ1. His and many others. With the exception of ZFIGC. all were on c.w
There has been a further broadening of the reciprocal operating agreement between Brit. aln and the U.S.A.. to include many of the them is given in the Long Is. DXA Bulletín them is kiven in the Long Is. DXA Bulletin
of Jan. 20, however a full summary of the of Jan. 20 , however a full summary of the
situation will be published in the March issue situation will be published in the".
of the A.R.R.L. publication "QST".

The relief crews for the popular FB8 stations have been announced and here is the story as 1 have it. FB8ZZ from New Amsterdam will be uperated by Georges. and QSLs do to F8US. FB8YY from the Antarctic will have a new op., but QSLs stlll go via F9MS
who, by the way, is awaiting the 1969 logs. Who, by the wny, is awaiting the 1969 logs FB8XX Irom Kergulen should be staffed by our ops. after Henry goes QRT. One will he
Maurice F6APG 14040 daily c.w. 0130 to 0200 z . and 14137 KHz s.s.b. daily from. 18-17002. 21220 Sundays at 1300z. F2MO remains QSL manager and he expects to have the 1968 logs by the time you read this. The new operators at all
the bases should have taken over by this time.
There will be a change of operator from Comore Is., FH8CD due to go QRT, will be
replaced by Hughes FH8CE with no break in operation.

Activity from Cape Verde Is. is reported from CR4BQ on 14131 KHz at about 2000 z . QTH Box 43. St. Vincent. Cape Verde Is.. and
a second station CR4BC 'Julio". who has been a second station CR4BC "Julio"
also on forty and eighty s.s.b.

Congratulations 10 Bob VK2ASZ for being
Oth Continental and Country winner for the both Continental and Country winner for the
recently held Lebanon RA.L. Contest. Bols. who lives only a few miles down the road from this QTH. is one of our younger and
more versatile operators, being equally al home on c.w. as on s.s.b., and is also very prominent in v.h.f. circles.

The operation by K2IXP from C3ICQ An dorra is having cards returned by the A.R.R.L however it is believed that the operator wil provide the necessary substantiation that is
required to quallfy this jaunt for A.R.R.I. require

QSLs for the activity from Heard Is. VKOHM will be fortheoming, but don't despair if you have to walt untli maybe June when he is due back to civilisation.

If you are looking for CEOAE on Easter Is. it may be of interest to note that they are normally on 21 MHz., but do come down on are around 14220 from times ranging from 0400 to 1200.
The 1 R0 prefixes currently in use are for stations situated in Rome for 1970, and are valid as prefixes only. The two most often heard here are 1ROJZ, who says QSL to IIJX.
and IROKGR. who asks for his QSLs to IIDLP.
Midway Is. usually has regular operation therefore is not often in the news, however K4BNV/KM6 is a new one to me. Benny is the operator and is usually on 28545 on Satwide open then. a contact on that band could result.

KS4 Swan Is. is about to be handed over to Honduras in the near future, and the as to its future status for A.R.R.L. D.X.C.C. as to its future status for A.R.R.L. D.X.C.C. ised their agreements, and these have been studied by the League. They add that any decision to alter the present status will be
announced in "OST". announced in "QST"

Re the operation late in December from Market Reef by OJOMR. this operation has been classed as one of the best operations weather and the time was given over to extensive operation on forty and eighty c.w.. to enable DX hunters to gain more credits to enable DX hunters to gain more credits required the recelving operator to repeat back OJOMR's report to him, and he would acknowledge the confirmation. It has been suggested that if this requirement was not complied with, then maybe no card will follow. I don't say then maybe no card will be the case. but apparently there this will be the case, but apparently there is a good chance. QSLs for the oderation go manners of some who tried to make contact the better.
Once again we have to refer to a rumor, this concerns a story that SVOWOO, operating from Greece, was in fact a pirate. This acis in fact very legal and asks for his QSLs via W. S. Kelly. U.S. Embassy. Athens, Greece. or via A.P.O. New York 0822j.
Several odd calls showed up from the U.S.S.R during the early part of December. U4L/2 Whs a special station travelling through Russia,
U4L/1 was an expedition to Ulanovah, UKOA U4L/1 was an expedition to Ulanovah. UKOA was an expedition to Zone 23, with no infor-
mation available on UKOB. All QSLs to Box 88. Moscow.

Have you worked or heard TYBATE and wondering what has happened to your QSL: The holder of the call, Fred Powell, advises gtation was used for a few contacts in 1867 ant all contacts since then must have been with a pirate.

The operation from Revilla Gigedo by XF4KS and XF4EB was completed on Dec. 17 withOut incident. and QSLS for the former 80 to by the way was used for twenty metre operation only.

Operation from Qatar was due to have taken place on Feb. 21 running to 27, as the opera tion will be completed by the time this copy reaches you we will be content with QSL
data. Call MP4QBK, and for other than VE and w contacts. the QSLs go to MP4BHH with I.R.C. if Dossible.

Talking of direct QSLs. recently the P.M.G. Department reduced the surface mall rate on tries from Forelgn to Commonwealth rate. The reduction is from seven cents per ounce XZ2. XU, KC6. KXB. BV. all the French Polynesian countries. YB, JA. XW8, CR9, KGB, 9N1, FK8. DU, CR8, KR6. HL. HS Dlus al The reduction does not apply to other than the reduction does not letters and cards.
A note to hand from Keith VK4DG to the effect that there will be a further jaunt to T18PE/Tl9 Cocos Is.. from March 1 for four
weeks. The operation will be on five bands weeks. The operation will be on five bands
and both modes will be used. There is a trip
planned by Don K6JGS for Feb. 10. QSL via this is related and SABE. required. but Keith I don't know. It is understood that the TigCI group, consisting of seven operators, will go to Roncador CAY as W9FIU/KS4B.
Dr. Fred Lieberman is now in Sikkim mainly to tape music of the Hill people, however he has the call AC3PT and has been reported on frequencies around 14320 at times ranging from 12002 to $1500 z$. His QTH for QSLs is his home address. WiFLS. Dr. Fred Lieberman. Music Dept. Brown University. Box 703. Providence. R.1. U.S.A.

Further to a previous note on the recent operation to Market Reel. It is reported that they plan a further trip there in May, using more c.W. operation and assisting those hunt-
ing five-band D.X.C.C. On their recent trip. they worked 140 countries, and made 9.800 QSOs.
VQ8CFB. operating from St. Brandon, has
now forsaken the unstable v.f.o. for xtal control now forsaken the unstable v.f.o. for xtal control The controlled frequencles are 14028, 14130 . 230 and 330 . He plans to be there until May
and asks for QSLs to go to Box 467 . Port and asks for QSLs to go to Box 467. Port for new prefixes if they nre not in operation already. SB6 for Algalea, 3B7 for St. Brandon. 3B8 Mauritlus, 3B9 for Rodriquez.

ZKIAJ is QRV from Raratonga for two years and hopes to have a quad erected shortly. He checks into the Pacifc DX net on 14265 on
Tuesday and Friday. Geoff Watts' news sheet Tuesday and Friday. Geoff Watts' news sheet
says QSL to KH6GLU with S.A.S.E. and I.R.C's. says QSL to KH6GLU with S.A.S.E. and I.R.C's. noon in early January at 0G30z. I believe you can QSL him direct to Box 90, Raratonga. Cook Is.
OK5FIS is a special station operating from Dec. 1, 1969. until April 30, by Radio Club Tatry, from the Tatry mountains to cover the world ski-ing championship. Uses one kw. on A note to hand from Ian VK3BBA to the effect that Norm Chapman, ex VK3ANC, is now resident in Zambia with the call gJ2NC. He would be delighted to contact any VK and wishes to be remembered to friends in the Eastern Zone. His address is Box 124, Lusaka,
Zambia. Ian's contact was on 14180 at $1645 z$.
9NIRA is a YL, Jinny Beyer. Box 81. Kathmandu, Nepal. In a recent QSO with Barry VKSBS. she gave her manager as K6OE whose QTH we were chasing last month. In a second QSO with Barry. the above address was forthcoming.
The station signing YT1BCD operator "Vasa" is a special prefix being used by the Pancevo Radio Club station YU1BCD to commemorate
25 years of Independence. I understand most 25 years of Independence
YUs are using the prefix
KJ6BZ should be QRT by now after his period of service. and in a QSO on Jan. 4 said that all requests lor QSLs for his past
operation should now go to home address of Operatio
ZS2M1 from Marion Is. is now on s.s.b. and is on the air daily from 1500 to 1800 z on 14200 . Another redort says his frequencies range from 14145 to 150 . with QSL to ZS6LW
Franz Josef land has been represented regularly on c.w. by UAIKED, however for those understood that UAIKBW/UA1 will be having a s.s.b. expedition to Franz Josef in April a s.s.b. expe
of this year.
It is understood that Pete, ex DL4PM. is operating ns XV5PM from Vietnam. also from on hoard ship off the coast as WA2USX/MM. Most of the operation is on 80 metres and he
has been logged in the U.K. at $2200 z$ on 3795 .
Another pirate for the list. ZDABE has been heard quite a lot in recent months, however months before the pirate appeared.
KC4USV is at McMurdo Station on Ross Island and is located in Zone 30. His QSL goes to
Support
Activities, FiP.O., New York. N.Y., U.S.A., 09501

Finally, chaps. I have filed away here the ast twelve moinths issucs of LIDXA news sheet. Geof Watts News Sheet, and Monitor. formation pertaining to out of the way DX operation during the period. Should any reader need information on a call worked or heard during that period. drop me a s.a.s.e. glving Thanks for this month's issue to the ISWL. Thanks for this month's issue to the Assn., Barry VK5BS. Jack VK3AXQ. Ernie Luff. Chas Thorpe and N.Z.A.R.T. I would also like to thank those who have written to
me over the Christmas period. and I appreme over the Christmas period, and I App

SILENT KEY

It is with deep regret that we record the passing of-

VK3CX—Alan G. Brown. VK3GX-Reg Gibson.

FEDERAL AWARDS

COOK BI-CENTENARY AWARD The following additional stations have qualified for the award:-

Cert. No.	Call	Cert No.	Call
3	AX5FO	22	AX4LZ
4	AX1BC	23	ZM1BBH
5	AX3JW	24	AX5WV
6	AX2NS	25	ZMIAKG
7	ZM3NS	26	KH6AH
8	AX4UC	27	G8NY
9	ZM3QN	28	ZM3FM
10	AX3AMK	29	AX3AIC
11	AX7PD	30	Ax7JV
12	ZM3RK	31	AX52B
13	DLBNU	32	W8SPJ
14	9J2GJ	33	CTIFL
15	OA4LM	34	JA9CAF
16	AX4KS	35	AX2QZ
17	ZM2FA	36	W3BVL
18	AX5FY	37	LA3XG
19	AX4DO	38	AX3LV
20	CR71C	39	G3AAE
21	9VINR	40	KA9JC

PEDERAL AWARD RECORDS

To enable accurate and up-to-date records of W.I.A. awards to be malntained. the following information should be sent to the Federal Awards Manager

1. Any change of call sign by W.I.A. award holders
2. Any change of address by W.I.A. award holders.
Many holders of awards have changed from Limited licences to Full licences and it is often difficult to trace the new call slign.
Any information given will be most appreclated.
"CQ" 8.8.B. DX AWARD
In October 1969 "A.R." page 24 it was announced that "CQ" intended to withdraw their "CQ" S.S.B. DX AWARD. Due to continued Interest in this award. "CQ" has decided to continue issuing the award for a further period of 12 months. If sufficient interest is shown in the award during this period it will be continued on a permanent basis.
Application forms for this award may be obtalned by forwarding a s.a.s.a.e. 19×4 in. 1 to the Federal Awards Manager, W.I.A., P.O.
Box 67. East Melbourne. Vic., 3002 .
-Geof Wilson. VK3AMK.
Federal Awards Manager.

REPAIRS TO RECEIVERS, TRANSMITTERS
Constructing and resting: xtal conv..
any frequency; 05 -ars. R9-ars, and transistorised equipment.
ECCLESTON ELECTRONICS
146a Cotham Rd., Kaw, Vic. Ph. 80-3777
Swan Electronics Service Co.
Accredited Distributor for
Swan, Hallicrafters, etc., Receivers and Transmitters
Specialised Service on all Swan Transceivers
14 GLEBE 8t., edgecliff. N.s.W., 2027. Ph. 32.546s

OVERSEAS STUDY COURSE

FOR AUSTRALIAN ELECTRONICS ENGINEERS

Young Australian electronics engineers and scientists have a unique opportunity to further their careers through an international scheme of post-graduate study.

The scheme offers selected applicants a full year's overseas study, with the twin objectives of:

- Improving their general knowledge in modern electronic techniques and disciplines, and
- Providing more specialised training in one of the main fields of applied electronics.
It includes free travel, accommodation and study programmes, plus out-of-pocket expenses, free medical schemes, etc., and offers students the opportunity to obtain the degree of Master of Electronic Engineering at the completion of the year's course.

The scheme is operated by Philips Institute of Technological Studies, which was set up in 1957 by the international Philips electronics organisation, based at Eindhoven, the Netherlands.

The P.I.I. scheme, which is intended for non-employees of Philips throughout the world, is designed to provide young (under 30) graduates with one year of post-graduate study in the various branches of science and technology which come within the ambit of Philips' activities.

Students accepted in the P.I.I., which is located at Philips' world headquarters in Eindhoven, undertake private theoretical and experimental studies within the Institute, attend lectures by experts from the Company's research and factory laboratories, and are offered the opportunity to obtain practical experience in these laboratories.

The programme of studies is individual and every effort is made to keep lectures and practical work periods in accordance with each student's own preferences.

The number of places for each year's P.I.I. course is purposely kept low (30 in total) in order to guarantee good personal contact between staff and students, and the academic standards of applicants for the course must consequently be high.

The 1970-71 course, which commences in the last week in September 1970 will specialise in control and industrial electronics. In 1971-72 and 1972-73 the main subjects will be chosen from communication techniques and digital techniques respectively.

Full details on the Philips International Institute and application forms for the 1970-71 course are obtainable from the P.I.I's representative in Australia, Mr. H. J. Brown, Technical Director, Philips Industries Ltd., 69-79 Clarence Street, Sydney, N.S.W., 2000.

Interested persons are requested to contact Mr. Brown as soon as possible because all applications for this course must be received by the Institute in Eindhoven before May 31, 1970.

HISTORY OF A.R. AND W.I.A.
(continued from page 24)
veloped in a conflagration without parallel in human history. Here was the opportunity for those who had become skilled in the new marvel of communications to put their skill to practical use in the national interest. How they did this in World War I., the problems which faced the hobby of Amateur Radio after the conclusion of hostilities, how these were overcome and how Amateur Radio really flourished will be continued in the next article.
ito be continuedi

HAMADS

Minimum S1 for forty words. Extra words, 3 cents each. hamads will not be published unless ACCOMPANIED BY REMITTANCE.
Advertisements under thls heading will be accepted only from Amateurs and S.w.l's. The Publishers reserve the right to reject any advertising which, In their opinion, is of a commerclal nature. Copy must be recsived at P.O. 36, East Melbourne, Vic., 3002 , by 5 th of the manth and remittance must accompany the advertisemant.

FOR SALE: A.W.A. 40 watt FM Base Station, rack mounted, with separate speech amplifier/control unit. fitted crystals on Channel A. Dynamic microphone and verlical dipole antenna included. Complete station ready to go, \$45. VK3CDR. Phone 787.2318 (Melb.).

FOR 8ALE: MR3A Carphone, 3 channels. less xtals, $\$ 25.00$. Pye Mk. 3 on 53.032 net frequency, $\$ 25.00$. Palr of 5 iransigtor Walkle-Talkles, brand new, on $27.065 \mathrm{MHz} . \quad \$ 35.00$. 5.5 MHz . Xtal Fliter plus U.S.B.. L.S.B.. and Test Carrier Xials. \$15.00. Vectronome rape Recorder with malns adaptor. 58.00. A.W.A. 10 watt Amplifier pre-amp. and equaliser and 12 Inch speaker. Si5.00. VK3AHG, 20 Grandview Road, Box Hill South. Vic., 3128. Phone 288-2024.

FOR SALE: T.C.A. Base Station (1674), high band F.M.. converted to net operation, $3 / 20$ final. S44. T.C.A. (1674), carphone. high band F.M., converted to net operation, S30. Unit 4 Stereo Amp (R. \& H.) 10 watts per channel, \$30. Two Rola Myers St.. Geelong. V/C., 3220.

FOR SALE: Type S Power Supply. power trans. to 1250v. 300 mA ., chokes to sult, block condensers. meters. recelvers, valves. all kinds Including QB3/300. 838s, sockets to suit, and many other items Including modulation transimrs. W. H. Ross, VK3UT. Prlvate Bag 40. Warrnambool. VIc., 3280.

SELL: DX100 Transmitter and SR600 Ham Band
Recelver, 500 c.p.s. I.F. Complete with spares,
ATU, accessories. manuals, etc.. 550 the lot-
or will consider individusi offers. Both sets in
mint condition. A. Shawsmith.VK4SS 35 Whynot mint condition. A. Shawsmith, VK4SS, 35 Whynot St.. West End. Brisbane. Old.

SIDEBAND is okay. but-UM3 or similar Modula. tion Transformers wanted for Ancient Modulation transmitters. Also required are 811A trlodes for modulator p.a's. And urgently needed is a large number of 25 K to 600 ohm line transformers (or similar). Viva la A.M. Contact VK3AML, A.H. phone 53-1229, or VK3UI phone 81-4973

WANTED: Heavy duty 12 volt power supply and 3 or 5 band S.S.B. Transceiver. Prices and con. dition please to VK3AHG, 20 Grandview Road, Box Hill South. Vic.. 3128. Phone 288-2024.

WANTED: Yaesu FL50 Transmitter and FV50 VFO. Price and particulars to K. Bicknell. 4B Sanderson Rd., Lesmurdie. W. Aust., 6076.

866A8, new. In cartons. for sale. Priced at 20 cents each. Postage and packing to all VK Call Areas, 75 cents in lots of six Apply VKAWI. Box
638. G.P.O.. Brisbane. Old., 4001 .

PREDICTION CHARTS FOR MARCH 1970

(Prediction Charts by courtesy of lonospheric Prediction Service)

BRIGHT STAR CRYSTALS

FOR ACCURACY, STABILITY, ACTIVITY AND OUTPUT

SPECIAL OFFER-

STANDARD AMATEUR CRYSTALS

style hc6u holder, freouency range 6 to 15 MHz .

$$
\begin{array}{ll}
0.01 \% & \$ 4.25 \\
0.005 \% & \$ 5.50
\end{array}
$$

Prices include Sales Tax and Postage

COMMERCIAL CRYSTALS

IN HC6U HOLDER. 0.005% TOLERANCE. FREQUENCY RANGE 6 TO 15 MHz . $\$ 6.00$ plus Sales Tax and Postage

Write for list of other tolerances and frequencies available.
New Zealand Representatives: Messrs. Carrell \& Carrell, Box 2102, Auckland Contractors to Federal and State Government Departments

BRIGHT STAR RADIO

LOT 6, EILEEN ROAD, CLAYTON, VIC., 3168
Phone 546-5076
With the co-operation of our overseas associates our crystal manufacturing methods are the latest

DURALUMIN ALUMINIUM ALLOY TUBING

IDEAL FOR BEAM AERIALS AND T.V.

\star LIGHT $\quad \star$ STRONG * NON-CORROSIVE

Stocks now available for Immediate Delivery
ALL DIAMETERS - $1 / \mathbf{4}^{\prime \prime}$ TO $3^{\prime \prime}$
Price List on Request
STOCKISTS OF SHEETS-
ALL SIZES AND GAUGES
GUNEERSEN ALLEN METALS PTY. LTD.

SALMON STREET,

PORT MELB'NE, VIC.
Phone 64-3351 (10 lines) T'grams: "Metals" Melb.

HANSON ROAD,
WINGFIELD, S.A.
Phone 45-6021 [4 lines]
T'grams: "Mêtals'" Adei.

K.W. ELECTRONICS KW ATLANTA TRANSCEVER

* BUILTIN NOISE LIMITER
* BUILTIN 100 KHz. CRYSTAL CALIBRATOR
* FULL P.T.T. OPERATION
* AUTOMATIC LINEARITY CONTROL
\star UPPER AND LOWER SIDEBAND SELECTION BY PANEL SWITCH
\star STEEP SLOPE CRYSTAL FILTER, 5.2 MHz .
\star MATCHING A.C. POWER SUPPLY UNIT WITH BUILT-IN SPEAKER \star FULL COVERAGE ALL BANDS, 3.5 to 30 MHz . $\quad \star$ SSB, AM, CW

Write for Technical Leaflet
sole Aussalate Agent: SIDEBAND RADIO
73 COLE STREET, ELWOOD, VIC., 3184
Phone 96-1877

ChOOSE THE BEST-II COSTS NO MORE

O. T. LEMPRIERE \& CO. LTD. Mead Office: 3141 Bowden 81., Alaxandpla. N.8.W., 2015 and it Melboume - Brlabene - Adalalde - Perth - Newcastle

WIRELESS INSTITUTE OF AUSTRALIA FEDERAL EXECUTIVE

The Institute can now offer annual subscriptions to following Amateur Journals:

* "OST"—Associate membership and renewals, \$6.40.
\star R.S.G.B. "Radio Communication" (ex "The Bulletin") is only sent with membership of Society. \$5.50. Send for application form. \star "CQ" Magazine, \$5.70; Three Years, \$13.50.
* "73" Magazine, \$5.50; Three Years, \$11.50.
* "Ham" Magazine, \$5.50; Three Years, S11.50.
R.S.G.B., A.R.R.L., "CQ" and "73" Publications avallable.

Send remittance to Federal Executive, C/o. P.O. Box 36, East Melbourne, Vic., 3002.

Recalpt of your first lssue will serve as acknowledgment of your sub. Allow six weaks for dalivery.

LOW DRIFT crystals

出
1.6 Mc. to 10 Mc., 0.005% Tolerance, $\$ 5$
\star
10 Mc. to 18 Mc., 0.005% Tolerance, $\$ 6$ *

Regrinds \$3

THESE PRICES ARE SUBJECT to sales tax

SPECIAL CRYSTALS: PRICES
ON APPLICATION

MAXWELL HOWDEN

15 CLAREMONT CRES., CANTERBURY,

VIC., 3126
Phone 83-5090

LOG BOOK

IS NOW AVAILABLE
Larger, spiral-bound pages with more writing space.

Price 75c each
plus 17 Cents Post and Wrapping
Obtainable from your Divisional Secretary, or W.I.A., P.O. Box 36, East Melbourne, Vic., 3002

M/
ECONOMICAL SSB! FT-200 FIVE-BAND TRANSCEIVER

A superb quality, low cost, versatile transceiver. Covers $80-10 \mathrm{mx}$, tuning range 500 Kc . each band. On 10 mx , crystal supplied for $28.5-29 \mathrm{Mc}$. (Crystals available optional extra for full 10 mx coverage.) SSB, CW, AM; with a speech peak input of 300 w . Transistorised VFO, voltage regulator, and calibrator. 16 valves, 12 diodes, 6 transistors. PA two 6JS6A pentodes. ALC, AGC, ANL, PTT and VOX. Calibrated metering for PA cathode current, relative power output, and receiver S units. Offset tuning $\pm 5 \mathrm{Kc}$. Uses a 9 Mc . crystal filter with bandwidth of 2.3 Kc . at -6 db. Selectable sidebands, carrier suppression better than - 40 db . Sideband suppression better than - 50 db .
Fixed channel facility optional extra, useful for net operation, skeds, etc.

Operates from conservatively rated separate 230 volt 50 c.p.s. AC power supply, FP-200, which includes built-in speaker. A 12 volt DC power supply, DC-200, is also available. Transceiver incorporates power take-off and low level R.F. drive outlets suitable for transverters.

Cabinet finished in communication grey lacquer. Panel, etched, satin finish aluminium.

Price, FT-200, $\$ 345$ inc. S.T.
Imported Yaesu matching Power Supplies:
FP-200 \$85 including Sales Tax
DC-200 \$118
New shipmentl Ample stocks for immediate delivery.
Other well known Yaesu Models: FTDX-100 Transistorised Transceiver, FTDX-400 Transceiver, FLDX-2000 Linear Amplifier, FLDX-400 Transmitter, FRDX-400 Receiver, FR-50 Receiver, FTV-650 6 Metre Transverter, FF-30DX Low Pass Filter, 600 c.p.s. CW Mech. Filter for FRDX-400, 600 c.p.s. CW Crystal Filter for FTDX-400. Also: SWR Meters, Co-ax. Switches, F.S. Meters, Co-ax. Conn., Hy-Gain (U.S.A.) Beams.
All sets checked before despatch. After-sales service, spares availability, 90 -day warranty. All Yaesu sets sold by us are complete with plugs, power cables and English language instruction manual. Prices and specifications subject to change.
Sole Australian Agent:

BAIL ELECTRONIC SERVICES
 60 Shannon St., Box Hill North, Vic., 3129. Phone 89-2213

N.S.W. Rep.: A. J. ("SANDY") BRUCESMITH, 11 Ruby Street, Mosman, N.S.W., 2088. Telephone 969-8342 South Aust. Rep.: FARMERS RADIO PTY. LTD., 257 Angas Street, Adelaide, S.A., 5000. Telephone 23-1268

'RAPAR'

AUDIO GENERATOR

MODEL A-1

A professional instrument housed in a grey crackle finish, metal case, with a carrying handle and rubber feet.

Supplied with test leads and instruction booklet.

SPECIFICATIONS

Frequency Range: Sine-20 Hertz to 200 KHz .
Square-20 Hertz to 30 KHz .
Calibration Accuracy: $=2^{\prime},+$ h.p.s.
Output Voltage: Sine—Max. 21V.p./p.
Square-Max. 24V. p./p.
Distortion: Less than $1^{\prime \prime}$ (at 20 KHz . and below).
Tube Complement:
12AT7. 12BH7A. Silicon Diode. Thermistor.
Power Supply:
A.C. 50 h.p.s. 230 V .

Dimensions:
$6^{\prime \prime} \times 8^{\prime \prime} \times 4 \frac{1}{1} 2^{\prime \prime}$ 。
Net Weight:
5 lb .

Trade Price $\$ 35.20+15^{\prime}$, Sales tax

MELBOURNE'S WHOLESALE HOUSE 562 Spencer St., Melbourne, Vic., 3000. Phone 329-7888, Orders 30-2224 City Depot: 157 Elizabeth Street. Melbourne, Vic., 3000. Phone 67-2699 Southern Depot: 1103 Dandenong Rd., East Malvern, Vic., 3145. Ph. 211-6921

Vol. 38. No. 4 APRIL, 1970

Reaistered at G.P.O. Melbourne for transmission by post as a periodical Price 30 Cents

REALISTIC DX-150 SOLID STATE COMMUNICATIONS RECEIVER

Features: 240v. a.c. or 12 v . d.c. operation. 30 transistors and diodes. 535 Kc . to 30 Mc . in four bands. Bandspread tuning. " S " meter, a.m./c.w./ s.s.b. Product detector for s.s.b. Compact size. $141 / 8 \times 91 / 4 \times 61 / 2 \mathrm{in}$. Polished metal panel, small internal speaker
F.O.R. Price $\mathbf{\$ 2 2 9 . 5 0}$

Matching external speaker £ 13.30 extra.

No. 62 TRANSCEIVERS

Wireless Set No. 62 Mk. 2 [Pye]. Frequency range 1.6 to 10 Mc . In iwo bands. In-bulit 12 v . genemotor power supply. Clean condition. Fully air lested on transmit and receive.
F.O.R. Price $\$ 49.50$ inc. circuit diagram

WESTON LM-300 MOBILE TAXI RADIO

Low Band a.m. GO Kc. bandwidth, 70-80 Mc. Crys tal channel locked, single channel. In-bullt transistor power supply. 12v. operation. suit country taxi service or conver
F.O.R. Price S45. Packing 50c

as new and air tested
 LAFAYETTE 5W. C.B. TWO.WAY RADIO*

Model HE-20, fully transistorised, solid state, 13 transistors. 10 diodes, 27.240 Mc . Provision for 23 channels, crystal channel locked, push-pull audio modulator, 455 Kc. mechanical filter, spotting switch for accurate reception. t.v.l. trap. $230 v$. a.c. and 12v. (positive or negative ground). in-built p.a. amplifler. Ideal for fixed basa station or emergency mobile, including microphone and mobile crade. Fibreglass helical aerial 4 ft . high, cowl mount. *Subject to P.M.G. approved licence.
F.O.R. Price $\$ 169.50$ tax paid for mobile use $\$ \$ 16.50$ extra.

BENDIX BC-221 FREQ. METER
125 Kc . to 20 Mc ., including a.c. power supply, crystals, calibration book, etc.
F.O.R. Price $\$ 49.50$, packing 75 c

TRIO COMM. RECEIVER

MODEL 9R-59DE
Four-band receiver covering 550 Kc . to 30 Mc . continuous. and electrical bandspread on 10,15 , 20, 40 and 80 metres. 8 valves plus 7 diode circuit. $4 / 8$ ohm output and phone jack. SSB-CW, ANL.
 gain controls. $115 / 250 \mathrm{v}$. ÄC mains. Beautifully gain controls, $115 / 250 \mathrm{~V}$. AC mains. Beautifuly designed and service data.

PRIGE $\$ 175$ inc. sales tax
Speaker to suit, type SPSD. \$15 Inc. tax.

MULTIMETERS

MODEL C. 1000 POCKET MULTIMETER

1000 ohms per volt. AC volts: $0-10,50,250,1000$. DC volts: $0-10,50,250,1000$. DC current: 0.100 mA. Resistance: 0.150 K ohms (3 K centre). Two colour scale. Range selector switch. Dimensions: $31 / 2 \times 21 / 4 \times 1$ in.

Price $\$ 6.50$ post free
MODEL 200H MULTIMETER
20.000 ohms per volt. DC volts: $0.5,25,50,250$. 500.2500 (20,000 o.p.c.). AC volts: 0 - $15,50,100$, 500. 1000 (10,000 o.p.c.). DC current: 50 uA', 2.5 mA ., 250 mA . Resistance: $0.60 \mathrm{~K} / 6 \mathrm{M}$ ohm (scale centre $300,30 \mathrm{~K}$ ohm). Capacitance: 10 pF . to 0.001 $\mathrm{uF} . / 0.001 \mathrm{uF}$. to 0.1 uF . Db. scale: -20 db . to plus 22 db . Size $41 / 2 \times 31 / 4 \times 11 / 8 \mathrm{in}$.

Price $\$ 11.25$ post 30c
MODEL CT330 MULTIMETER
20,000 ohms per volt. DC volts: 0.6 , 6. 30. 120, $600.1 .2 \mathrm{~K}, 3 \mathrm{~K}, 6 \mathrm{~K}$. AC volts: $0.6,30.120,600,1.2 \mathrm{~K}$ (10K o.p.v.). DC current: $0.0 .06 \mathrm{~mA} .60 \mathrm{~mA} ., 600$ mA . Resistance: $0-6 \mathrm{~K}, 600 \mathrm{~K}, 6 \mathrm{M}, 600 \mathrm{Megohm}$ (30. $3 \mathrm{~K}, 30 \mathrm{~K}, 300 \mathrm{~K}$ ohm centre scalej. Capacitance: 50 PF, to 0.001 uF .i 0.001 uF . to 0.2 UF . Decibels: - 20 to plus 63 db . Size approx. $51 / 2 \times 35 / 8 \times 13 / 4 \mathrm{in}$.

Price $\$ 16.75$ post 30 c

MODEL OL-64D MULTIMETER

20,000 ohms per volt. DC volts: 0.025. 1, 10, 50 , 250. 500, 1000 (at 20 K o.p.v.), 5000 (at 10 K o.p.v.) AC volts: $0-10,50,250,1000$ (at 8 K O.P.v.) DC current: 50 uA., 11 mA ., 50 mA . 500 mA ., 10 amps . Resistance: $0-4 \mathrm{~K}, 400 \mathrm{~K}, 4 \mathrm{M}, 40$ Megohm. ${ }^{4} \mathrm{Db}$. scale: -20 to plus 36 db. Capacitance: 250 pF . to 0.02 uF. Inductance: $0-5000$ H. Size $53 / 4 \times 4 \% \times 13 / 4$ in.

Price $\$ 19.50$ post 30 c

NEW MODEL US-100

Overload protection. Shockproof movement. Polarity switch. DC volts: $0-0.25,1,25,10,50,250$, 1000 (20K o.p.v.). AC volts: $0-2.5,10,50$, 250 , 1000 (5 K o.p.v.). DC current: 1 mA ., $25 \mathrm{~mA}, 50 \mathrm{~m}^{\prime}$ mA . and 10 amp . $A C$ current: 10 amp . Resistance: $0-50 \mathrm{M}$ ohm (centre scale 50), $\mathrm{A} \times 1.10,100,1 \mathrm{~K}$, 10K. Db. scale: -20 to plus 10 , plus 22 , plus 35 , plus 50 db

Price $\$ 28.75$ post 40c
MIRROR SCALE
MODEL AS100/DP HIGH SENSITIVITY
100,000 ohms per vot DC. Mirror scale, protected movement. DC volts: 3, 12, 60, 120, 300, 600, 1200 (100K o.p.v.). AC volts: 6, 20, ${ }^{120,} 300.600,1200$
 300 mA . 12 amps . Resistance: $2 \mathrm{~K}, 200 \mathrm{~K}, 20 \mathrm{M}$, 200Megohm. Decibels: - 20 to plus 63 db . Audio output: $61 / 30,120,300,600,1200$ volts a.c. Size

MODEL A10/P GIANT ($61 / 2$ inch) METER, CIRCUIT TESTER
30,000 ohms per volt DC with in-bult signal injector, overload protected. DC vots: 0.5. 2.5, 10, 50, 250, 500,1000 (at 30 K o.p.v.), 5000 (at 10 K o.p.v.). AC volts: 2.5, 10, $50,250,500,1000$ (at o.p.v.). AC
10 K
o.p.v.).
DC 500 mA. . 1 amp., 10 amp . AC' currant: 1 amp.., 10 amp. Resistance: $10 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{M}, 100 \mathrm{Megohm}$. Signal Injector: Blocklng oscillator circuit with a 2SA102 Trans. Decibels: -20 to plus 63 db . Size: $61 / 2 \times 71 / 4 \times 33 / 4$ in.

Price $\$ 55$ tax paid, post 75 c

TE-16A TRANSISTORISED TEST OSCILLATOR

Frequency range: 400 Kc . to 30 Mc . In five bands. Modulated $800 \mathrm{c} / \mathrm{s}$. sine wave. Modulation: 30 p.c. approx. Output Imp.: Low impedance. Dimen slons: $57 / 8 \times 57 / 8 \times 37 / 8$ in. Weight: 1.5 ib .

Price S24 tax paid, post 75c

"NIKKA" 1 WATT TRANSCEIVERS

P.M.G. approved. Solid state, 14 transistors, circuit inc. r.f. stage. 27.240 Mc . (provision for two channels). Range boost circuit. Up to 10 miles in open country or water. Buzzer type call system. Squelch control. Complete with leather carrying case.

Price $\$ \mathbf{1 7 5 . 0 0}$ Pair
NEW A.W.A. T.V. TUNER
Model 49806. Uses 6UB and 6BQ7A.
Price $\$ 5.50$ postage 50 c

PACK OF RESISTORS

100 Resistors of $1 / 2$ and 1 watt rating.
Price $\$ 1.75$ post 20 c

BRAND NEW SPEAKERS					
21/2 inch	8 ohms	Price	\$1.75	Postage	20 c
3 inch	8 ohms	"	\$2.00	..	20 C
4 Inch	8 ohms	-	\$2.25	.*	20 c
4 inch	15 ohms	"	\$2.25	..	20 c
3DX	8 ohms	-	\$3.95	..	20 c
3DX	15 ohms	'	\$3.95	.	20 C
6 A7	8 ohms	.,	\$5.50	-	40c
6 A7	15 ohms	'	\$5.50	..	40c
BA7	8 ohms	.	\$7.20	..	40 c
8A7	15 ohms	,	\$7.20	.	40 c
12A9	8 ohms	-	\$18.75	.	50 C
12A9	15 ohms	-	\$18.75	"	50 c
Nett Price					

NEW STEREO HEADPHONES

Large rubber earpiece. Frequency range 100 to 1500 cycles. 8 ohms impedance.

Price $\mathbf{\$ 6 . 7 5}$ post 30 c

DELCO TRANSISTORS

Type 2N441 Price $\$ 2.40$ postage 10c Type 2N278 Price $\$ 6.00$ postage 10c Type 2N301 Price $\$ 2.50$ postage 10c

LT91 RECTIFIER

20 Volt 2 Amp.
Price $\$ 1.50$ post 10 c

[^28]JOURNAL OF THE WIRELESS INSTITUTE OF AUSTRALIA. FOUNDED 1910

APRIL, 1970
Vol. 38, No. 4

Publishers:

VICTORIAN DIVISION W.I.A.
Reg. Office: 478 Victoria Parade, East Melbourne, Vic.. 3002.

Editor:

K. E. PINCOTT

VK3AFJ
Assistant Editor:
E. C. Manlfold VK3EM

Publications Committee:
Ken GIllesple VK3GK
Peter Remsay VK3ZWN
W. E. J. Ropar (Secretary) VK3ARZ
Clrculation-
Jack Kelly VK3AFD

Draughtamen:-
Clem Allen Vk3ZIV
John Blanch VKBZOL
John Whitehead VK3YAC

Enquiries:
Mrs. BELLAIRS. Phone 41.3535. 478 Victorie
Parade, East Melbourne. Vic., 3002. Houra: 10 a.m. to 3 p.m. only.

Advertising Representatives:
AUSTRALIAN MEDIASERV
21 Smith St., Fitzroy, Vic., 3065. Tel. 41-4962. P.O. Box 108, Fitzroy, Vic., 3065.

Advertisement materlal should be sent direct to the printers by the firat of each month.
Hamads should be addressed to the Editor.

Printers:

"RICHMOND CHRONICLE." Phone 42-2419. Shakespeare Street. Richmond, Vic., 3121.

All matters pertaining to "A.R." other than advertising and subscriptions, should be addressed to:

> THE EDITOR.
> "AMATEUR RADIO."
> P.O. BOX 36 .
> EAST MELBOURNE, VIC.. 3002 .
*

Members of the W.I.A. should refer all enquirles regarding dellvery of "A.R." direct to their Divialonal Secretary and not to "A.R." direct. Two monthe notice la required before a change iwo monthe notrce la required before a change of malling address can be offected. Readers should note that any change In the addross of
their tranamitting station must, by P.M.G. thelr tranamitting station must, by P.M.G.
regulation, be notified to the P.M.G. In the regulatlon, be notified to the P.M.G., In the
State of residence; In addition, "A.A." should State of residence: In addition. "A.R." should
also be notified. A convenient form la proalso be nolified. A conve.
vided in the "Call Book".

CONTENTS

Technical Articles:-

Design Data for Short and Medium Length Yagi-Uda Arrays 13
S.W.R. Indicators-Trick or Treat? 12

The Wheatstone Bridge 7
W.I.A. Federal Executive:-

Federal Comment: "The Year in Review" 6
W.I.A. Federal Executive: Report to Federal Council (1970) 16

General:-

COVER STORY

Wolf Melchhardt (left) and Rick Sayers. VK4ZRS (right) of the Townsville Amateur Radio Club. Picture shows ingenious method of mounting 3 el . beam for 2 metre tx hunt on back of VK4EX's small sedan.

HY-GAIN AMATEUR ANTENNAS

Fully Imported from U.S.A.

COMPREHENSIVE RANGE TO SUIT MOST REQUIREMENTS

H.F. BEAMS: TH6DXX, TH3Jr, TH3Mk3 and HyQuad Tribanders for 10,15 and 20 m .; 204BA, 203BA Monobanders for 20 m .
TRAP VERTICALS: 18AVQ (80.10 m .) , 14AVQ ($40-$ 10 m .) and 12AVQ ($20-10 \mathrm{~m}$.).
ACCESSORIES: LA-1 co-ax. lightning H.F. MOBILE WHIPS: New "Hamcat" Whips and associated fittings.
V.H.F. ANTENNAS: Beams-66B six elem. 6 m. . DB-62 duo-bander for 6 and $2 \mathrm{~m} . ; 23 \mathrm{~B}, 28 \mathrm{~B}$ and 215B (3, 8 and 15 elem. 2 m. beams). Also Ground Planes, Mobile Whips and Halos. ators \& El end insulators for doublets. HEAVY DUTY ROTATOR: Emotator Model 1100 M available for H.F. beams.
BAIL ELECTRONIC SERVICES, 60 Shannon St., Box Hill North, Vic., 3129. Ph. 89-2213
N.S.W. Rep.: A. J. ("SANDY") BRUCESMITH, 11 Ruby Street, Mosman, N.S.W., 2088. Telephone $969-8342$

South Aust. Rep.: FARMERS RADIO PTY. LTD., 257 Angas Street, Adelaide, S.A., 5000. Telephone 23-1268

BRIGHT STAR CRYSTALS

FOR ACCURACY, STABILITY, ACTIVITY AND OUTPUT
SPECIAL OFFER-
STANDARD AMATEUR CRYSTALS
STYLE HC6U HOLDER, FREQUENCY RANGE 6 TO 15 MHz .
$\mathbf{0 . 0 1 \%} \quad \$ 4.25$
$0.005 \% \$ 5.50$
Prices include Sales Tax and Postage

COMMERCIAL CRYSTALS

IN HC6U holder. 0.005% tolerance, frequency range 6 to 15 MHz . $\mathbf{\$ 6 . 0 0}$ plus Sales Tax and Postage
Write for list of other tolerances and frequencies available.
New Zealand Representatives: Messrs. Carrell \& Carrell, Box 2102, Auckland Contractors to Federal and State Government Departments

BRIGHT STAR RADIO

LOT 6, EILEEN ROAD, CLAYTON, VIC., 3168
Phone 546-5076
With the co-operation of our overseas associates our crystal manufacturing methods are the latest

DURALUMIN ALUMINIUM ALLOY TUBING

IDEAL FOR BEAM AERIALS AND T.V.
\star LIGHT $\quad \star$ STRONG \star NON-CORROSIVE
Stocks now available for Immediate Delivery
ALL DIAMETERS - $1 / 4^{\prime \prime}$ TO $3^{\prime \prime}$
Price List on Request
STOCKISTS OF SHEETS-
ALL SIZES AND GAUGES
GUNNERSEN ALLEN METALS
PTY. LTD.
SALMON STREET,
PORT MELB'NE, VIC.
Phone 64-3351 (10 IInes)
T'grams: "Metals" Melb.
HANSON ROAD,
WINGFIELD, S.A.
Phone 45-6021 (4, lines) T'grams: "Metals" Adel.

SIDEBAND ELECTRONICS ENGINEERING

Prices listed below are net, cash Springwood, N.S.W., sales tax included. All equipment is fully imported directly from the various factories in Japan, the U.S.A., and the U.K.; no local assembly or elsewhere away from the factories, except for the FT-200 Power Supply-Speaker units; they are a physical copy of the Yaesu supply, but of my own design and I maintain that I can make a better heavy duty supply in co-operation with the Australian transformer manufacturers, for genuine 230/ $240 / 250$ volts $A C$, than any of the imported supplies.
All equipment is sold under standard factory backed warranty, which is ONE YEAR for YAESU-MUSEN. with expert after-sales service, based on 20 years of SSB experience. Yaesu-Musen units come complete with all plugs and power cables and English manuals, checked, tested and where required. adjusted or modified before shipment.
YAESU-MUSEN-
FT-DX-400 De Luxe Transceiver §525
FT-DX-100 AC/DC Transceiver, solid state 8515
FL-DX-400 Transmitter $\$ 350$
FR-DX-400 Receiver $\$ 375$
FR-DX-400-SDX De Luxe Receiver, with all access- ories-CW filter, FM filter and FM discrimina- tor, 2 and 6 metre converters built-in S475
FT-200 Transceiver with 230/240/250V. AC Power Supply-Speaker unit, heavy duty design \$410

S25
FF-30-DX Low-pass Co-ax. Line TVI Filters $\$ 15$
SWAN-
SW350C Transceiver with AC Power Supply-Speaker unitSW350C Transceiver with Swan 14-230 AC/DCS550
power supply $\$ 600$
GALAXY-
GT-550 Transceiver with AC power supply-speaker unit §725
Galaxy External VFO S125
GONSET-
2 metre SSB/AM/CW Transceivers, 144 to 148MHz . continuous range, VFO controlled, with115V. AC power supply-speaker unit attached.solid state design$\$ 350$
J-BEAM-TRIPLE THREE full size 3 element 10-15-20 metreYagi Beam, with built-in 52 ohm balun, 18 ft .boom, 35 ft . longest reflector element $\$ 18$
HY-GAIN-
HY-QUAD Tri-band Cubical Quad, 10-15-20 metre,one co-ax. feedline$\$ 130$
TH3JR Tri-band 3 element Junior, 10-15-20 metre Yagi Beam $\$ 110$
BN-86 Balun $\$ 20$
14AVO 10 to 40 metre Vertical $\$ 45$
18AVQ 10 to 80 metre Vertical \$75
MOSLEY-
TA33JR 3 element trl-band Junior Beam $\$ 95$
NEWTRONICS-
4-BTV 10 to 40 metre Vertical $\$ 55$
Same with 80 metre top-loading coil $\$ 70$
MOBILE WHIPS-WEBSTER Bandspanner, 10 to 80 metre continually
adjustable $\$ 55$
MARK HW- 40 40 metre Hellcal Whip $\$ 20$
MARK HW-3 10/15/20 metre tri-band Helical Whlp $\$ 35$
$\$ 10$

AOTATORS-

CDR HAM-M heavy duty Rotators, with 230 V . indicator-control unit. for up to $2^{\prime \prime}$ masts S165
8-conductor Control Cable for Rotators per yard 75c
ANTENNA NOISE BRIDGE-
OMEGA TE-7-01 Bridge, May delivery $\$ 25$

CRYSTALS-

FT-241 Series. Channels 0-79, box of 80 Crystals, 375 to 515 KHz ., with a 400 and 500 KHz . one included
Individual FT-241 Crystals from 25c to $\$ 2$ for 455 KHz .
Sets of six matched FT-241 Crystals, including two USB/LSB carrier-VFO Crystals:From 400 to 450 KHz . $\$ 5$ to S 10

FILTERS-

KOKUSAI Mechanical Filters, 2700 or 500 Hertz CW bandpass filters, miniature size, with inputoutput transformers
9 MHz . Crystal Filters as used in the Yaesu FT-200 S30
12V. DC SUPPLIES-
ACITRON extra heavy duty Mobile Supplies S110
Several good used DC Supplies available. S30 to S 80
CO-AXIAL CABLE-
52 and 75 ohm 3/16" diameter per yard 25 c
52 ohm 3/8" diameter, any length per yard 50 c
Connectors. Amphenol type PL-259 male S 1.25
SO-239 female $\$ 1.00$

BALUNS-

Exact duplicate of Hy-Gain BN-86, excellent local product

S12.50

S.W.R. METER-

Calibrated Output Meter, three ranges, 1-100 and 0-500 Watts and S.W.R.

TRANSFORMERS, ETC.-

Made by NATIONAL Co., Kingsgrove, N.S.W., brand new. still in stock:

U60/325 60 mA ., $325-0-325 \mathrm{~V}$.. 5 V . and 6 V . filaments S 1.25
U60/385 60 mA ., $38500-385 \mathrm{~V}$., 5 V . and 6 V . filaments $\$ 1.25$
U80/385 80 mA ., $385-0-385 \mathrm{~V}$., 5,6 and 6 V . filaments S 1.50
E30/80 80 mA., 30 Henry Chokes S 1.00
F15/150 150 mA., 15 Henry Chokes S1. 00
8451240 to 115V. 2A. 200W. Step-down Isolation Transformers
9716240 to 240 V . 75 W . Isolation Transformers S 1.00
6610240 to 5V. 3A. Filament Transformers S 0.50
Various Transistor Output Transformers, 85, 375 and 245 ohms to 3.5 ohms
Valve Output T'formers, 10.000 to 3.5 and 15 ohms S1.00
6 and 12 V . Vibrator Supply Transformers S0.25
Neon Ballast Chokes, 15W. 240V. S0.25

This is the BIG performance set that obsoletes tube receivers .. a professionallooking set that appeals to amateurs and short wave listeners alike. The DX 150 gives long-range, world-wide realistic reception on 4 bands, including Broadcast. Fully transistorised-all solid state-no warmup delays; the DX 150 will run on dry cells if current fails or is not available; will operate from a car's cigarette lighter or any 12 V DC service. A 240 V AC power supply is also built in. Over 30 semi-conductors-product detector for SSB/CW, plus fast and slow AVC-variable pitch BFO-illuminated electrical bandspread, fully calibrated for amateur bands-cascade RF stage-ANL for RF and AFzener stabilised-OTL audio-illuminated " S " meter-built-in monitor speaker plus front panel jack for external (optional) matching speaker.

Realistic Performance
 Realistic Price
 \$229-50

 CONSULT YOUR LOCAL RADIO DEALER, OR MAIL THIS coUPON toclelyPlease forward free illustrated literature and specificalions on Realistic.

Name. \qquad

Attractive silver extruded front panel, solid metal knobs, grey metal cabinet, size $14 \frac{1}{\prime \prime}^{\prime \prime} \times 9 \frac{1}{\prime \prime}^{\prime \prime} \times 6 \frac{1}{2}$ ".

(A unit of Jacoby Mitchell Holdings Ltd.) 376 EASTERN VALLEY WAY, ROSEVILLE. 2069. Cables and Telegraphic Address: 'WESTELEC.'

Hy-Q ELECTRONICS

Australia's

 largest independent crystal manufacturers
EXTEND THEIR PRODUCT RANGE TO INCLUDE

- Fundamental and overtone crystals from 1 MHz . to 125 MHz .
- 10.7 MHz . crystal filters for $25 \& 30 \mathrm{KHz}$. systems.

SEND FOR FULL DETAILS IF YOU HAVE NOT ALREADY RECEIVED THEM
$H y-Q$
Electronics
Hy-Q ELECTRONICS PTY. LTD.

10-12 ROSELLA STREET,
P.O. BOX 256,

FRANKSTON, VICTORIA 3199.
Telephone 783-9611. Area Code 03.
Cables: Hyque Melbourne
Telex: 31630
AGENTS:
W.A.: Assoclated Electronic Services P/L., P.O. Box 35. Morley, 6062. Phone 76.3858.
Cables: Radcomserv, Perth.
TAS.: Hobart Radio Clinic
129 Bathurst St., Hobart. 7000 Phone 34-3884.

THE WHEATSTONE BRIDGE

LECTURE No. 4

C. A. CULLINAN,* VK3AXU

The purpose of this lecture is to provide further practice with Ohms Law, and leads to the development of a practical Wheatstone Bridge suitable for measurement of Resistance, Capacitance and Inductance.

The Wheatstone Bridge is a device for accurate measurement of Resistance, Capacitance and Inductance.

The basic bridge was invented in 1833 by Samuel Hunter Christie, but no practical applications for its use were developed until 1843. In that year, Sir Charles Wheatstone applied Ohms Law to the bridge network in connection with problems in telegraphy.

As a result of this work the bridge has been known ever since as the Wheatstone Bridge.

Now-a-days there are many variations of the Wheatstone Bridge, these having been developed for specific purposes.

Fig. 1.
Consider the circuit of Fig. 1. Let each resistance be exactly 500 ohms and assume that the battery has no internal resistance. We know from d.c. theory that the total value of the two resistances will be 1,000 ohms.

We also know from our studies of Ohms Law that the voltage between A and B will be exactly the same as between B and C.

Let us prove this.
Firstly, we have to find the current (I) flowing in the two resistances.

From Ohms Law,

$$
\begin{aligned}
\mathrm{I} & =\mathrm{E} \div \mathrm{R} \\
\text { therefore } \mathrm{I} & =100 \div 1,000 \\
& =0.1 \text { ampere or } \\
& 100 \text { milliampere. }
\end{aligned}
$$

Next find the voltage between A and B.

Transposing Ohms Law formula,

$$
\begin{aligned}
\mathrm{E} & =\mathrm{I} \times \mathrm{R} \\
\text { therefore } \mathrm{E} & =0.1 \times 500 \\
& =50 \text { volts }
\end{aligned}
$$

Now, since in our problem each of the two resistances is exactly equal to the other, then the voltage between B and C is also 50 volts.

The next step to develop the Wheatstone Bridge is to add two more resistances, each of exactly 500 ohms, wired in series and the combination connected in parallel across the battery (see Fig. 2).

Since R2 and R4 are exactly the same in value as R1 and R3, it follows that the current flowing in R2 and R4 is also 0.1 ampere.

[^29]- Continuing the series of lectures by C. A. Cullinan, VK3AXU. at Broadcast Station 3CS for students studying for a P.M.G. Radio Operator's Certificate.

Fig. 2.
Therefore the voltage between D and E will be 50 volts, and between E and F. 50 volts.

We also know from d.c. theory that the current which flows in R1 and R3 flows in the same direction as the current in R2 and R4.

Therefore it becomes obvious that as the voltage at both B and E is 50 volts in respect to either the positive or negative pole of the battery, and as the polarity must be the same at both B and E, then there cannot be any difference of voltage, or potential difference, between B and E.

PRACTICAL EXPERIMENT

Connect a voltmeter of a type which does not consume current (such as a vacuum tube voltmeter) between points B and E. We will not be able to read any voltage.

Next let us remove the voltmeter and replace it with a sensitive ammeter.

This ammeter will have some resistance and we can now re-draw the circuit (Fig. 3) to show this ammeter.

In practice it would be a microammeter having the pointer in the centre of the scale when no current is flowing. A current of 100 microamperes in either a positive or negative direction will cause the pointer to move full scale, either right or left. Such a meter is known as zero centre meter.

Fig. 3.
It will be found that no current will flow in the ammeter, because there is no potential difference between B and E.

What we have done so far is to prove that when R1, R2, R3 and R4 are exactly equal, no current will flow in the ammeter.

Suppose now that we change the value of the resistors. Let us make R1 and R2 each exactly 750 ohms and R3 and R4 250 ohms.

Using the formulae shown previously we find that the voltage between A and B, and also between D and E, will be 75 volts each, and between B and C, and also between E and F, will be 25 volts each. Once again no potential difference will exist between B and E , therefore no current can flow in the ammeter.

If we continue this type of analysis we find that if R1 and R2 are exactly equal and, if R3 and R4 are also equal, although R1, R2, R3 and R4 can be widely different (say 999 ohms each for R1 and R2, and 1 ohm for R3 and R4), then no current will flow in the ammeter. Calculate these figures and verify this statement.
But if we change the value of any one of the resistors, then current will fow in the ammeter because a potential difference will exist between B and E. Let us go back to our circuit and change the resistor values a little as shown in Fig. 4, for example. (Note erratum in the value of $\mathrm{R4}$; this should read 100 ohms.)

Note.-The value of RA as shown is incorrect. R4 should read 100 ohms.
From our previous calculations we know that the voltage at B is 50 volts in respect to either A or C. However the voltage at E will be:

Between D and E, 83.33 volts,
and between E and $F, 16.66$ volts. (Because of the recurring decimals, the total calculated voltage is not 100 , but this does not matter in this calculation because it is sufficiently accurate.)

We now see that a potential or voltage difference exists between points B and E. Measure this with a vacuum tube voltmeter.

Now if we connect our ammeter between B and E it will show a current flow. Because of this current flow through the ammeter, our calculations above will not be exactly correct although they are for the vacuum tube voltmeter. Again we need not worry about this discrepancy.

We have now established the following regarding the Wheatstone Bridge:

1. If resistances R1 and R2 are equal to each other, no current flows in the ammeter if resistances R3 and R4 also are equal to each other. In other words, the Bridge is in a balanced condition.
2. If resistances R 1 and R 2 are equal to each other, current will fow
in the ammeter if resistances R3 and R4 are not equal to each other. The Bridge is unbalanced.
3. If resistances R1 and R2 are equal to each other and if either R3 or R4 is adjusted so that they become equal to each other, the Bridge becomes balanced and current will cease to flow through the ammeter.
4. If resistances R1 and R2 are equal to each other and either R3 or R4 is made an accurately calibrated variable resistance, then if we connect an unknown resistance for the remaining resistor we can measure the value of the unknown resistance by adjusting the calibrated resistance until no current flows in the ammeter, indicating that the bridge is balanced. We then read the scale or calibration of the calibrated resistor to give us the value of the unknown resistance.

Therefore Bridge Balance is obtained when $\mathrm{R} 1 \div \mathrm{R} 3=\mathbf{R 2} \div \mathbf{R} 4$.

Further mathematical analysis will show, too, that Bridge Balance can be obtained when R1, R4 = R2, R3.

A SIMPLE PRACTICAL BRIDGE

Fig. 5.
R3 is an adjustable, calibrated resistor, known as a decade resistance box. It can be adjusted in steps of 1 ohm from 0 to $1,111,110$ ohms.

It consists of six switches. Each switch has one moving pole and eleven positions (Fig. 6). Position 1 is 0 ohms.

Switch 1 has 10 resistors each 1 ohm $\pm 1 \%$, knob marked $\times 1$.
Switch 2 has 10 resistors each 10 ohms $\pm 1 \%$, knob marked $\times 10$.
Switch 3 has 10 resistors each 100 ohms $\pm 1 \%$, knob marked $\times 100$.
Switch 4 has 10 resistors each 1,000 ohms $\pm 1 \%$, knob marked $\times 1 \mathrm{~K}$.
Switch 5 has 10 resistors each 10 K ohms $\pm 1 \%$, knob marked $\times 10 \mathrm{~K}$.
Switch 6 has 10 resistors each 100 K ohms $\pm 1 \%$, knob marked \times 100 K .
The switches are wired in series.
The IN on the first switch and the OUT on the last switch are wired to terminals on the box so that it can be connected into various circuits.

The resistors are high stability types and the switches of good quality, preferably ceramic.

In a precision box artifically aged

PRACTICAL WOFK

The following items are available:Two 600 ohms $\pm 1 \%$ resistors.
One decade resistance box as described above.
One 9v. battery.
One vacuum tube voltmeter. The meter can be set to half scale electrically to give a centre zero meter and use the $1 \frac{1}{2}$ volts d.c. range for the bridge.

One centre zero micro-ammeter, 100-0-100 $\mu \mathrm{A}$.
Make up the above bridge using these components (Fig. 5). Use a number of different resistors as the unknown and balance the bridge with the decade resistance box. Note that sometimes an exact balance cannot be obtained because the exact value lies between two successive 1 -ohm steps.
For normal practical radio work this bridge will measure resistors within its range with sufficient accuracy.

Balance occurs when R1 $\div \mathrm{R} 3=$ $\mathbf{R 2} \div \mathbf{R 4}$, or
R1, R4 $=$ R2, R3.
Thus $\mathrm{R} 4=(\mathrm{R} 2 \times \mathrm{R} 3) \div \mathrm{R} 1$.
Therefore $\mathbf{R} 4=R 3(R 2 \div R 1)$.
This means that R4 must always be equal to the value of $R 3$ times the multiplying factor ($\mathrm{R} 2 \div \mathrm{R} 1$).

If some fixed value is set for R1, then a change in R2 alone will change the multiplying factor.

Now this means that we can expand the usefulness of the original bridge to cover far greater values of R4, and this gives us a means of measuring a wide variety of resistance values if we allow R4 to represent each of these known resistances. Let us call R4, R unknown R_{u} or R_{x}. (The u or x signifying unknown.)

We can design, now, a more practical bridge than our earlier one.

Firstly, make R1 two precision resistors; 1,000 ohms and 10,000 ohms, with a switch so that either can be used, will be very suitable. The 1,000 ohm resistor used in one position only.
Secondly, R2 can be a number of switched precision resistors so that we can alter the ratio of R1 to R2. It is desirable that the resistors for R2 change in the ratio of $10-1$ to make mental calculations easy. Thus R2 can be resistors one each of 1 ohm, 10 ohms, 100 ohms, 1,000 ohms, 10,000 ohms and two of 100,000 ohms.
The multiplying factors we get will be:-

$$
\begin{aligned}
\mathrm{R} 2 \div \mathrm{R} 1= & 1 \div 10,000 \\
& 10 \div 10,000 \\
& 100 \div 10,000 \\
& 1,000 \div 10,000 \\
& 10,000 \div 10,000 \\
& 100,000 \div 10,000 \\
& 100,000 \div 1,000
\end{aligned}
$$

In decimal equivalents these are: $0.0001,0.001,0.01,0.1,1.0,10.0$, and wire-wound resistances would be used. 10 c .0 .
$\int_{0}^{\ln]}$
Fig. 6.

Thirdly, let R3 be a calibrated adjustable resistance of maximum value of 10,000 ohms. It can be a calibrated rheostat or a decade resistance box.

Referring back to our previous formula, $\mathrm{R}_{\mathrm{x}}=(\mathrm{R} 2 \times \mathrm{R} 3) \div \mathrm{R} 1=$ R3 (R2 \div R1).

Now let us assume that R3 is set for 100 ohms and that R2 is switched to its 1 ohm resistor, then the bridge will balance only when R_{x}, the unknown, is 0.01 ohm, i.e. R3 $=100$ ohms. Ratio $($ R2 \div R1) $=0.0001=100 \times$ $0.0001=0.01$ ohm .

At the other end of the range of measurement of the instrument let the balance of the bridge be obtained with R3 at maximum resistance. 10,000 ohms, R1 switched to 1,000 ohms and R2 switched to 100,000 ohms. The ratio of $R 2 \div R 1=100$, so the value of the unknown resistance R_{x} is $R 3 \times 100$ $=10,000 \times 100=1$ megohm.

Fig. 7.
Note that only one 100,000 ohm resistor is used in R2 by paralleling the 6th and 7th contacts of the switch.

Depending on how small R3 can be set, in its minimum position, the range of measurement will be from 0.001 ohm (if R3 is 10 ohms) to 1 megohm, and the accuracy will depend on the degree of precision of all the resistors in use.
In many bridges R3 is a 10,000 ohms rheostat which has been calibrated so that 100 ohms is marked $0.1,500$ ohms $0.5,1,000$ ohms $1.0,5,000$ ohms 5 , and 10,000 ohms 10 , with appropriate markings in between.
(In practice, a bridge of this type can be made to measure to 0.001 ohm although theoretically it could go to 0.0001 ohm .)

The switch for the multiplying or ratio resistors R2 is marked with the multiplying factor. When balance is obtained it is only necessary to read the numerical calibration of R3 and multiplying by the multiplier with simple mental arithmetic.

The next part of this lecture will deal with variations of the Wheatstone Bridge using a.c. as the power source and will conclude with a description of a versatile general-purpose bridge.

ALTERNATING CURRENT RESISTANCE MEASUREMENTS

The Wheatstone Bridges described so far use d.c. for the power source and a sensitive ammeter as the null or balance indicator.

However, it is possible to use an alternating current as the power source and a pair of headphones to detect the null or balance when obtaining the d.c. resistance value of a resistance.

If an audio frequency oscillator, operating at 1,000 cycles per second, is connected in place of the battery as the power supply, then this tone will be heard in a pair of headphones, which are connected in place of the meter, except when the bridge is in perfect balance, and sometimes this is the preferred method to use.

However, it is essential that the a.c. resistance or reactance of the resistor being measured is very small, and not greater than the reactance of the various resistances used in the bridge. For instance, if the bridge is made from non-inductive resistors or resistors having negligible reactance at 1 KHz ., then if a highly inductive resistor is used as the unknown, a proper balance would not be obtained.

However, it is possible to balance out the reactive component by connecting a condenser across one of the other arms of the bridge.

THE WHEATSTONE BRIDGE FOR MEASUREMENT OF CAPACITANCE

We have already seen that the Wheatstone Bridge can be used with a source of alternating current for the measurement of resistance, and since a capacitance will pass an alternating current, but will block a direct current, it would appear feasible to use an a.c. version of the Wheatstone Bridge to measure capacitance, and we will find that this is so although the bridge has to be arranged a little differently to the resistance bridge.

The reactance of a capacitance (condenser) is known as X_{c} and is derived from the formula $X_{\text {: }}$ (in ohms) $=$ $1 \div 2 \pi \mathrm{FC}$, where F is any frequency in Hertz (cycles) per second, C is the capacitance in farads.

Let us find the reactance of a condenser of $0.01 \mu \mathrm{~F}$. at $1,000 \mathrm{~Hz}$. (cycles per second).

Then $X_{c}=2 \times 3.14 \times 1000 \times 0.01$ $\times 10^{-6}$.

If the reactance of some condensers is calculated to three significant figures at the same frequency, it will be seen that the reactance of a condenser varies in inverse proportion to its capacity, i.e. at $1,000 \mathrm{~Hz}$.:

$$
\begin{array}{lll}
0.001 & \mu \mathrm{~F} . & =159,100 \\
0.01 & \mu \mathrm{~F} . & =15,910 \\
0.1 & \mu \mathrm{~F} . & =1,591 \\
1.0 & \mu \mathrm{~F} . & " \\
159
\end{array} \quad ",
$$

Obviously from this we cannot substitute an unknown condenser in place of the unknown resistance (R_{x}) in our resistance bridge.

However, let us examine the situation with our simple bridge if we substitute a known value of capacitance for one of the ratio arms of the bridge (Fig. 8).

Referring to our earlier discussion of the development of the Wheatstone Bridge, we can apply the same reasoning to this new circuit.

If the resistance of R1 equals the reactance of Cl , and if the resistance of R3 equals the reactance of C2, then the bridge will balance. (This statement is a simplification of the system.)

The formula for balance is:-

$$
\begin{aligned}
\frac{\mathrm{R} 1}{\frac{1}{\mathrm{C} 1}} & =\frac{\mathrm{R} 3}{\frac{1}{\mathrm{C} 2}} \\
\text { or } \frac{\mathrm{R} 3}{\mathrm{C} 1} & =\frac{\mathrm{R} 1}{\mathrm{C} 2} \\
\text { This becomes } \mathrm{Cl} & =\frac{\mathrm{R} 3}{\mathrm{R} 1}(\mathrm{C} 2) .
\end{aligned}
$$

Therefore we make C 2 a condenser of known value, of good quality and high accuracy and use it as a standard of reference.

The bridge now appears as shown in Fig. 9.

We can easily make this bridge more practical and incorporate in it some of the resistances used in our more elaborate d.c. resistance bridge.

Firstly, we change the previous bank of multiplier resistances over to the R1 position, leave R3 the calibrated variable resistance and use two switched standard condensers in place of the previous unknown resistance R_{x}. C_{1}, the unknown condenser, takes the place of R2.

However, we still have a problem to solve.

Condensers have internal resistance and this can vary considerably. The losses in condensers cause the power factor of condensers to differ widely and unless the power factor of the unknown condenser is equal, exactly, to that of the standard reference condenser, then the bridge will not balance because the phase shifts will not be the same.

Now precision condensers are necessarily good condensers and they are expensive, but they will have very low losses hence the power factor will be low.

If a condenser could be manufactured without losses then its power factor would be zero and if a resistance were added in series with it, then the combination would represent a condenser with losses.

Now if the standard reference condenser is a really good one, with negligible losses, then we could add a variable resistance in series with it to make its power factor the same as that of the unknown condenser (unless the unknown has an even better power factor, a rather unlikely situation if we make a good bridge).

An expression for the approximate power factor is:-

$$
\begin{aligned}
\text { Power factor } & =\frac{R}{\frac{1}{2 \pi F C}} \\
& =R(2 \pi \mathrm{FC})
\end{aligned}
$$

where R is the value of the series resistance of the condenser, and $1 \div$ (2π FC) is the reactance of the condenser.

This is known as the Dissipation Factor, CD.

In order to cover a wide range of capacitance measurement, it is desirable to use two standard reference condensers, one of $0.01 \mu \mathrm{~F}$. and the other $0.1 \mu \mathrm{~F}$. Both should be high quality mica condensers, not paper dielectric types as the mica ones will have lower losses.

Each condenser should be accurate in its value to within $\pm 1 \%$.

Let us see what happens if we calculate the power factor for the $0.01 \mu \mathrm{~F}$. condenser at $1,000 \mathrm{~Hz}$. from the above formula.

Power factor (Pf) $=$

$$
\begin{aligned}
6.28 \times & 1,000 \times 0.01 \times 10-6 \\
& =0.0000628
\end{aligned}
$$

assuming the condenser has negligible losses.

If we wish to be able to compensate for unknown condensers having a power factor up to 1.0 we must put a variable resistor in series with our $0.01 \mu \mathrm{~F}$. condenser so that it will appear to have a power factor of 1.0 .

If we calculate the maximum value of this resistor we will find that one of 16,000 ohms will give a power factor of 1.0048 , i.e. $0.0000628 \times 16,000=$ 1.0048. Whilst 0 ohms will give a power factor of 0 . Therefore various resistance values between 0 and 16,000 ohms will enable us to obtain power factor or dissipation factor adjustments between 0 and 1 .

However in order to use the $0.1 \mu \mathrm{~F}$. standard condenser it would not be practicable to utilise the 16,000 ohms variable resistor but one of one-tenth this resistance would be suitable.
In practice, it may not be possible to obtain variable resistances of exactly 1,600 and 16,000 ohms, so that it would be necessary to use standard rheostal.s or potentiometers of 2,000 and 20,000 ohms respectively and ignore the resistance above either 1,600 ohms or 16,000 ohms.
Each of these two resistances can be calibrated $0-10$ and given simple multiplying factors to make the bridge more readily useable.
In bridge terminology the 16,000 ohms variable resistor is known as a DQ resistor and the 1,600 ohms variable resistor is labelled $C D$. The switch used to change from one to the other is labelled CDQ.
The practical bridge now appears as shown in Fig. 10.
To operate the bridge, $S 1$ is set to the approximate range for the condenser to be measured. R2 is then varied for minimum sound in the headphones. S 2 is switched to CD and the CD resistance varied, together with R3. If a proper null cannot be found, S2 is switched to DQ and the DQ resistor
varied, together with R3. There may be some interlocking between R3 and either the CD or $D Q$ resistors. Also, it may be necessary to alter the setting of switch SI. It may not be possible to get a complete null but the one obtained should be very deep. Stray capacity to ground in the $1,000 \mathrm{~Hz}$. generator, and other stray capacities, may make a complete null impossible.

Some experience is desirable in learning to adjust this type of bridge so at the start the student should use well marked condensers for the unknown in order to obtain practice.

Fig. 10.

THE WHEATSTONE BRIDGE FOR MEASUREMENT OF INDUCTANCE

As the reactance of an inductor varies directly with the inductance, the Wheatstone Bridge can be used for the measurement of inductance in a similar manner as for resistance measurements, if a.c. is used instead of d.c., and an inductance standard is used in place of the resistance standard.

However, in practical bridges for inductance measurement it is not usual to use an inductance for the standard because an inductance may be influenced by external magnetic fields, also in most types of inductors variations in inductance occur as the applied voltage varies. Obviously such variations in inductance are undesirable in a standard.

Fortunately it is possible to use a capacitor in a bridge for the measurement of inductance if the position of the bridge arms are interchanged.

Fig. 11.
It will be noted that the standard reference capacitor and the unknown are in opposite arms (see Fig. 11), thus an increase in reactance in one arm is compensated by a decrease in the other opposite arm and the ratio of the two reactances is given by the ratio of the two resistance arms R1 and R3.

Just as it is impossible to make a capacitor which does not have any losses so it is impossible to make an inductance which does not have losses, therefore with such an inductance bridge as shown, it would be almost impossible to obtain a true null because of the differences in phase shift.

Fortunately adjustable resistances can be added to the arm having the standard so that losses can be added artificially to give the standard arm the same losses as appear in the "unknown" arm. Such resistances can be calibrated to give the energy factor or Q of the unknown inductor.

If such a resistance is connected in series with the standard condenser then the bridge is known as a Hay's Bridge and resistor can be calibrated to read values of Q in excess of 10 .

For values of Q less than 10, a resistor is connected in parallel with the standard condenser and this circuit is known as a Maxwell's Bridge.

Two resistances will be required and fortunately one of the resistors used in the capacity bridge may be used for the Maxwell Bridge. The switch for these resistors may be marked LDQ and LQ.

In the LDQ position, the $D Q$ resistor will have a useful range of 160 to 16,000 ohms, and dial controlling
this resistor being calibrated 0 to 10 . 0 equals 0 ohms, and 10 equals 16,000 ohms.

Now if the switch is in the LQ position, then a new variable resistor of $0-165$ ohms is connected in series with the standard condenser to make the Hay Bridge. The dial for this resistor is calibrated 0 to 10 .

The various bridges so far discussed can be made into a single instrument which will measure resistance from 0.01 ohm to 1 megohm; capacitance from 10 pF . to $100 \mu \mathrm{~F}$.; with two ranges of power factor $0-0.1$ and $0-1$; and inductance from 10 microhenries to 100 henries, with two ranges of $Q, 0-10$ and $0-1,000$ respectively.

The audio frequency must be 1,000 Hz .

The bridge just described is basically similar to the very popular General Radio type 650A Impedance Bridge.

As mentioned earlier, stray capacitance in the audio frequency source and the detector may prevent complete nulls being obtained. In professionally made bridges, specially balanced and shielded transformers are used between the audio frequency source and the bridge, also between the bridge and the detector to remove the effects of such stray capacities.

Fig. 12.

Wheatstone Bridges such as these described find considerable use in radio work and the student should become completely familiar with the theory and if possible practice of these bridges.

S1-2 pole, 7 position switch, 2 banks.
S2-4 pole, 5 position switch, 4 banks.
Switches preferably ceramic.
All fixed resistances, high stability, $\pm 1 \%$.
C-R-L-0-10,000 or $0-11,000$ ohms linear w.w. rheostat or potentiometer used as a rheostat. This should be the largest diameter it is possible to obtain. To be fitted with $6^{\prime \prime}$ dial as described in the text.
D-0-1,600 ohms linear w.w. rheostat.
Q-0-170 ohms linear w.w. rheostat.
DQ-0-16,000 ohms linear w.w. rheostat.
If these values are not available, rheostats with slightly larger maximum values can be shunted with suitable fixed resistors to obtain the desired values.

TABLE 1

The seven positions of switch S1 (Fig. 12) should be marked as follows. These markings become the multiplying factors to be applied to the particular calibration marking of the C-R-L dial when a null has been obtained.
Sw. Sl

Postn.	C	R	L
1	$10 \mu \mathrm{~F}$.	0.1Ω	$100 \mu \mathrm{H}$.
2	$1 \mu \mu \mathrm{~F}$.	1	Ω
3	$0.1 \mu \mathrm{~F}$.	10Ω	10 mH.
4	$0.01 \mu \mathrm{~m}$.	100Ω	100 mH.
5	$0.001 \mu \mathrm{~F}$.	$1,000 \Omega$	1 H.
8	$0.0001 \mu \mathrm{~F}$.	$10,000 \Omega$	10 H.
7	-	$100,000 \Omega$	-

Exampe.-Assume that when measuring some resistances that $S 1$ is set to position 5 (marked 1,000 ohms) and that a null is found in the C-R-L dial at 7 , then $7 \times 1,000=7,000$ ohms. If the null was found at 0.7 on the C-R-L dial, then the unknown resistance would be 700 ohms $(0.7 \times 1,000)$.

Caution.-Due to the tolerances of $\pm 1 \%$ used in the fixed resistances it
sistance and capacitance and 15% for inductance.

Precision laboratory bridges will do much better than this and will be corresponding more expensive to manufacture.

TABLE 2
Calibration of the C-R-L dial for the C-R-L rheostat. The rheostat must be not less than 10,000 ohms at maximum resistance and should be not more than 11,000 ohms.

The overall accuracy of the bridge will depend on the accuracy with which the C-R-L rheostat can be calibrated. The dial should be at least $6^{\prime \prime}$ in diameter and can be made from a piece of $1 / 8^{\prime \prime}$ flat brass plate, turned to a 6° diameter disc in a lathe, and fitted with a large skirt knob.

There are three ways of making the calibration. The first is to use a high quality ohmmeter. The second is to use another bridge, and the third method is to connect the rheostat in series with a 6 volt battery and an $0-1 \mathrm{~mA}$. meter with shunts to 1 ampere. Measurements of the current flowing in the rheostat are made for various settings of the rheostat and the resistance calculated from Ohms Law.

As it may be difficult to determine the internal resistance of the battery, this should be ignored.
Calibration of the C-R-L Dial

Resist. of \quad\begin{tabular}{c}
Resial

Rheostat

in Ohms

\quad Dial

Resist. of

Rheostat

in Ohms
\end{tabular}

Intermediate points can be determined from this table.

This switch is marked as follows:

$\mathrm{D}=\mathrm{R} \omega \mathrm{C}$	C		R	L		$\mathrm{Q}=\frac{\omega \mathrm{L}}{\mathrm{R}}$
	D	DQ		DQ	Q	Dial
Multiplier	0.01	0.1		1	100	Multiplier

The calibration for the D, Q and $D Q$ rheostats can be determined in the formulae given earlier.
may be found that slightly different values may be obtained for the unknown resistor when adjacent switch positions are used, i.e. assume that the unknown is 1,000 ohms. With $S 1$ on position 5, the C-R-L dial should read $1(1,000 \times 1=1,000)$. If S1 position 4 is used then a reading of 10 should be obtained on the C-R-L dial. 100×10 $=1,000$, but due to the tolerances mentioned above, balance may not be the same although it will be close to it. Commercially manufactured bridges of this type can have accuracies of 1% for resistance and capacitance in the intermediate multiplier ranges and 2% for inductance. However, at the low and high multiplier ranges the accuracies may be only within 5% for re-

2

ERRATA

"The Nature of Matter," Lecture No. 1, Jan. 1970, "A.R." The centre and right hand drawings on page 9 should each have a dot in the outer circle. Also, on page 10, the symbol for Lithium should be Li and for Silicon Si .
"Electric Current and Ohms Law," Lectures 2 and 3, Feb. "A.R.," page 10: In the working out of the example in col. $3, \ldots+\frac{R 4}{1}$ should be $\ldots+\frac{1}{\mathrm{R} 4}$

AMATEUR FREQUENCIES:

USE THEM OR LOSE THEM!

LOW DRIFT CRYSTALS

\&

1.6 Mc. to 10 Mc .,

0.005\% Tolerance, \$5
\%
10 Mc . to 18 Mc .,
0.005\% Tolerance, \$6
~
Regrinds \$3
THESE PRICES ARE SUBJECT TO SALES TAX

SPECIAL CRYSTALS: PRICES ON APPLICATION

MAXWELL HOWOEN

15 CLAREMONT CRES., CANTERBURY, VIC., 3126

Phone 83-5090

S.W.R. Indicators-Trick or Treat?

COL HARVEY,* VKIAU

Abstract

Over the years, experiments with Yagis and Quads have occasionally shown inconsistencies between S.W.R. Bridge readings and maximum radiation as shown by a Field Strength Meter. Although some of these effects can be blamed on feedline radiation, others remain unexplained other than as some inadequacy in the design or location of the s.w.r. meter. Discussion on the air shows that despite such anomalies (which few seem to be aware of) the s.w.r. meter is well regarded by many Amateurs and thought to be incapable of providing misleading information.

The following practical results show that the instrument can confuse and mislead, and that it might be wise to hedge one's bets on the infallibility of assumptions based primarily on s.w.r. readings.

Take the case of a three element plumber's delight on 21 MHz . built to A.R.R.L. formulae except that all elements were intentionally lengthened 5 inches. It was gamma fed, with the s.w.r. bridge at the transmitter end of a 66-loot length of co-ax. A frequency versus s.w.r. run gave the following results:-

21200	KHz.	S.W.R.	2.4
21300	$"$	$"$	2.0
21400	$"$	$"$	1.6
21500	$"$	$"$.	1.2

The inference one is entitled to make is that the s.w.r. would drop to a very low value outside the high end of the band, i.e. the array is too short. Let us now lengthen all elements 4 inches. A frequency versus s.w.r. run now gave the following result:-

21000	KHz.	S.W.R.	1.6
21200	$"$	$"$	1.3
21300	$"$	$"$	1.0
21350	$"$	$"$	1.1
21400	$"$	$"$	1.2
21500	",	$"$	1.5

One would now conclude that the array is tuned and properly matched at 21300 KHz . But is it? Results show only fair forward gain, poor directivity and negligible front-to-back ratio. Despite this, the s.w.r. meter says that the array is just fine!

On the basis that a change in interelement spacing to the optimum values for maximum forward gain might improve matters, and on the assumption that the element lengths were now fairly right, the reflector was moved slightly (to 0.25 wavelength spacing). Result:-

21000	KHz.	S.W.R.	3.2
21100	$"$	$"$	3.0
21200	$"$	$"$	2.9
21300	$"$	$"$	2.6
21400	$"$	$"$	2.3
21500	$"$	$"$	1.8

[^30]Could it be that a small change in inter-element spacing had so seriously detuned the beam that it was now resonating well outside the high edge of the band? Surely, with all elements already 9 inches longer than the formulae it couldn't possibly be true that another 7 or more inches was needed to bring the beam back into the band? If the s.w.r. meter indications were right, then the formulae were about 10% out-a fairly unlikely proposition. Something else must be wrong.

Perhaps the four half wavelengths feeder wasn't 75 ohms? Terminating the feeder with 52 ohms gave an s.w.r. of 1.4. Terminating with 75 ohms gave an s.w.r. of 1. The feeder was 75 ohms all right. At this point an interesting observation was made. If the s.w.r. bridge was set to the 52 ohm position and an s.w.r. versus frequency run repeated, instead of the result in Table 3 , the readings became:-

21000	KHz.	S.W.R.	2.3
21100	$"$	$"$	2.4
21200	$"$	$"$	2.5
21300	$"$	$"$	2.7
21400	$"$	$"$	2.7
21500	$"$	$"$	3.8

Compare Tables 3 and 4. Table 4 suggests that the beam is outside the low end of the band, Table 3 outside the high end! Obviously the shape of an s.w.r. curve doesn't necessarily indicate anything useful.

If anything is to be made of s.w.r. readings it is obviously imperative to start with an almost flat line of a known impedance. Measurements showed that the 66 ft . length of co-ax. was in good condition with only 2 db . loss (see A.R.R.L. Antenna Handbook, page 85). It gave a fair resonance dip on the g.d.o. at 21 MHz . (and a very good dip near 14 MHz .- presumably the free space resonant point of the outer shield). With 75 ohms at the far end, s.w.r. was 1:1.

Now to check out the balun. The traditional formula for a co-ax. balun is $462 \div \mathrm{F}_{\text {мII: }} \times$ Velocity Factor. Assuming 66% for the velocity factor, the length of the balun should be about 15 feet. However, at this length, the g.d.o. showed resonance well above 21 MHz., and it was necessary to add about 3 feet to the co-ax. to reach the correct length for 21 MHz.! Apparently the velocity factor of this particular cable
was well above the traditional 66%. The evidence of the g.d.o. seems conclusive, as the observed dip moved smoothly from 26 MHz , to 21 MHz . as the length was increased.
The stage had now been reached where either 75 ohms at the end of the co-ax. feeder, or 300 ohms across the $4: 1$ balun resulted in an s.w.r. of $1: 1$. With the feed arrangements proven, the antenna was set up to the lengths required. Using the A.R.R.L. Antenna Handbook, it is possible to select the exact formulae appropriate to the inter-element spacing to be used. With an arbitrary setting on the gamma bars, the first s.w.r. run of the rearranged array resulted in:-

21000	KHz.	S.W.R.	1.0
21100	$"$	$"$	1.0
21200	$"$	$"$	1.1
21300	$"$	$"$	1.3
21400	$"$	$"$	1.7
21500	$"$	$"$	2.2

It was difficult to resist the temptation to shorten the antenna elements and so raise the frequency at which the s.w.r. would drop to 1:1. Instead, attention was directed only to the gamma match. The effect of two values of series capacitance was as follows:-

Series Capacitor

F KHz.	47 pF.	28 pF.$$	
21000	S.W.R.	1.1	S.W.R. 1.4
21100	$"$	1.1	$"$
21200	$"$	1.1	$"$
21300	$"$	1.1	$"$
21400	$"$	1.3	$"$
21500	$"$	1.4	$"$
		1.0	

The impedance bridge applied to the end of the co-ax. now showed a good non-reactive type dip at 21200, and read about 70 ohms. Best of all, on-the-air checks showed a significant improvement over the initial condition when despite a low s.w.r., the antenna element lengths were all wrong. According to one on-the-air report the half power points were plus and minus 20 degrees, and the front-to-back ratio 25 db . This is too good to be true, as 12 db . seems more likely.

The s.w.r. bridge is now left in circuit partly as an aid to tuning for maximum output, but mainly as a way (Continued on Page 15)

Design Data for Short and Medium Length Yagi-Uda Arrays

INTRODUCTION

The Yagi-Uda array is a popular method of obtaining directional properties in an antenna. From a constructional viewpoint, particularly simple is the uniform array in which the directors are equally spaced and of the same length. Less simple is the solution to the equation which predicts what the performance of a given array is likely to be. The data presented here have been obtained using an I.B.M. 7090 computer to solve the performance equations for a range of geometrical parameters likely to be of practical significance.

THEORY

There are presently two ways in which the operation of Yagi-Uda arrays can be viewed. One view is to regard the radiation pattern as being the result of the interference between the radiation from the driven element and the travelling wave in the array; the analysis by this method for short arrays is very difficult.

The classical approach develops the radiation pattern from the interaction of the radiation from the driven element and a number of short circuited dipoles. It is easier to write down the equations describing the performance in this case. In fact, if Z is the mutual impedance between some given direction element and the driven element, I is the (complex) ratio of the currents between these two elements, and Y, X, W . . . are the mutual impedances between the chosen directors and each of the other parasitic elements, for this director-
$\mathrm{Z}=\mathrm{YI}+\mathrm{XI}+\mathrm{WI}+\ldots$.
There are as many equations of this type as there are parasitic elements, and the whole set must be solved simultaneously. The mechanics of doing this is fairly standard computer work once expressions for the values of Z, Y, X, W. . . can be found.

PRESENTATION

All the data presented have been made non-dimensional with respect to wavelength, so figures for spacing, conductor diameter and element lengths are fractions of a wavelength. Reference to Table 1 shows that the following parameters are available:

No. of elements in the array: 3-10.
Spacing of elements: $0.15,0.20,0.25,0.30$.
Conductor diameter: $0.0025,0.005,0.01,0.02$.
Given any combination of these quantities, the entry in Table 1 gives the element lengths and resulting radiation pattern for maximum gain and a purely resistive feed impedance.

- The original of thls article was a paper published in Electrical Engineering Transactions, Vol. EE2, No. 1, of March 1966. The precis we have below was prepared by Dr. D. R. Blackman, of Monasi University. We extend our grateful thanks to the Author of the original paper, Mr. H. E. Green. M.E., of the Weapons Research Establishment, and to the Institution of Engineers. Sydney, pub lishers of Electrical Engineering Transactions, for their permission to publish this precis and associated tables.

fig. 1.-Typical Curve of Gain against Number of Elements for Uniform Yagl Array.

STACKED ARRAYS

As is to be expected, the benefit from each succeeding element added to an array decreases. A curve of Gain against Number of Elements is shown in Figure 1; this curve is characteristic of most arrays of the Yagi type. If more gain is wanted than can be obtained with, say, 5 elements, better performance can be more easily obtained by stacking arrays.

If the calculations leading to the results in Table 1 are not to be invalidated, sufficient distance must be left between arrays to preclude interaction between the elements in the separate arrays.

For arrays with the elements coplanar, a centre to centre spacing of not less than 0.75 wavelengths is sug-
gested and for arrays with the elements parallel to spacing of not less than 1.0 wavelength.

PERFORMANCE OF ARRAYS DESIGNED USING TABLE 1

A number of experiments were performed to verify the predictions made in Table 1. The frequency used in these tests was 2.4 GHz . The agreement between theory and experiment was very satisfactory; for more details the reader is referred to the original paper. From a design point of view, these experimental antennae resonate at frequencies $\mathbf{1 - 2 \%}$ below the calculated value. In practice, therefore, some slight trimming of elements may be necessary.
The same satisfactory agreement was not obtained with the predicted values of input impedance. The sensitivity of the input impedance of the Yagi is quite notorious, so this lack of close agreement is perhaps not surprising. Moderate mismatching appears to have little effect on the radiation pattern, and in practice the final matching would be made with the aid of a s.w.r. bridge anyway.

In the case when a metallic centre support is used some correction to the lengths of the elements is necessary. A suggested figure is to lengthen elements by $0.75 \times$ diameter of the support; this will tend to give elements which are too long and may consequently need trimming.

Table 1 is shown on page 14 and is continued on page 15.

WORLD'S FIRST COLOUR T.V. TELEPHONE UNVEILED

The world's first colour t.v. telephone has been developed by Tokyo Shibaura Electric Company (Toshiba).
It will be displayed at Expo '70 by the Nippon Telegraph and Telephone Public Corporation.
The device consists of an ordinary telephone for conversation plus a $12^{\prime \prime}$ colour picture tube in the centre, with a television camera and a $3^{\prime \prime}$ black-and-white monitor tube arranged on it.
The moment the telephone receiver is lifted by the person called, the image of his bust appears on the $12^{\prime \prime}$ colour t.v. screen, while the caller can see his own image on the monitor screen.
If the self-view button is pressed, the called speaker's image is replaced with the caller's, enabling him to monitor his own image as viewed at the other end of the wire.
The trial-manufactured set is fairly large, says the Company, 52 centimeters high, 57 centimeters wide and 47 centimeters deep. But Toshiba claims that it can be reduced to about two-thirds by using integrated circuits and smaller picture tubes.

Tabulation of the Characteristica of Uniform Yagi Arrays.

No. of elements	Spacing	Conductor diameter	Lengths			Grain (db.)	$\begin{aligned} & \text { Frunt } \\ & \text { to } \\ & \text { back } \\ & \text { ratio } \\ & \text { (db.) } \end{aligned}$	Resistance (ohms)	Polar diagram										
										H Plan					E Plane				
			Reflec tor	Driven element	Directurs				$\begin{aligned} & 3 \mathrm{db} . \\ & \mathbf{B W} \end{aligned}$	1st Null		1 st Side lobe		$\begin{aligned} & 3 \mathrm{db} . \\ & 8 \mathrm{~W} \end{aligned}$	1st Null		18t Side lobe		
										Pusition	Level	Position	Level		Position	Level	Position	Level	
3	0.15	0.0025	0.4931	0.4738	0.4764		9.4	7.8	3.1	68°	$71.5{ }^{\circ}$	-12.1	96°	9.9	52°	90°	-40.0	116.5°	-22.0
	0.20		0.4883	0.4659	0.4693	9.8	6.7	7.8	68	70.5	-19.2			52	89.5	-40.0	115	-23.0	
			0.4812	0.4594	0.4597	9.5	5.7	18.1	72		-40.0	99.5	-13.0	55	75.5	-40.0	81.5	-38.3	
	0.30		0.4764	0.4543	0.4502	8.8	4.7	36.0	80	78	-17.1	98	-13.1	58	90	-40.0	115.5	-24.6	
4	0.15		0.4883	0.4655	0.4597		8.3 14.4	19.2	71 59	74	-16.9 -10.9	98	-12.7 $-\quad .9$	54	90	-40.0	112.5	-26.1 -22.2	
	0.20 0.25		0.5026 0.4907	0.4765 0.4679	0.4693 0.4621	10.2	14.4 13.5	13.3	59 56	62 57	-10.9 -16.4	83 80.5	$-\quad 9.5$ -10.4	48	90	-40.0 -23.3	121 67	-22.2 -22.6	
	0.30		0.4788	0.4585	0.4550	11.1	7.5	21.5	56	55	-10.4 -40.0	78.5	- 9.9	46	55.5	- 40.0	69	-22.2	
5	0.15		0.5074	0.4802	0.4621	10.2	16.7	14.1	64	66.5	- 14.0	95	-10.4	50	90	-40.0	122	-21.0	
	0.20		0.4883	0.4664	0.4573	11.2	12.1	14.6	56	56	- 15.2	77.5	-10.4	46	60	-21.7	64.5	-21.6	
	0.25		0.4812	0.4579	0.4502	11.1	7.6	35.3	56	54	-40.0	77	- 9.5	46	54.5	-40.0	68	-21.2	
	0.30		0.4835	0.4664	0.4573	12.2	18.6	21.2			-17.6	65	-- 8.8			-21.5			
6	0.15		0.4955	0.4707	0.4526	11.0	15.7	13.7	58	59.5	-14.5	81.5	-11.1	48	90	-40.0	125	-24.6	
	0.20		0.4835	0.4630	0.4454	11.3	8.8	35.4	55	54.5	-26.7	76.5	-10.2	46	55	-31.9	67.5	-21.8	
	0.25		0.4859	0.4662	0.4526 0.4454	12.3	17.4	21.5	46	46.5	-18.3	65.5	-9.3	42	47	-22.4	59.5	-17.5	
	0.30		0.4764	0.4560			7.2	42.1	48	45	-27.4	64	-8.4	42	45	-31.8	59	-16.2	
7					0.4454	11.4	9.3	22.5			-16.4	75	- 10.5			-22.3		-21.3	
	0.20		0.4931	0.4696	0.4502	12.1	21.1	19.9	48	47	-15.9	67	-9.2 $-\quad 9$	42	48.5	-20.1	59.5	-17.5	
	0.25		0.4788	0.4604	0.4431	12.1	8.5	40.5	46	45	- 39.7	${ }_{56}^{63.5}$	- 9.0	42	45.	-40.0	59	-16.7	
	0.30		0.4788	0.1611	0.4478		13.3	29.3	40	39	-24.1	56	- 8.6	37	39.5	-26.6	53	-14.5	
8	0.15		0.4931	0.4794		11.5 12.4	13.6 112	28.2 29.3		${ }_{4}^{51}$	- 16.4	72.5	$\begin{array}{r}\text { P } \\ -9.0 \\ \hline\end{array}$	44	52	-21.3		-19.1	
	0.20		0.4859	0.4627 0.4637	0.4407 0.4478	12.4	11.2 15.7	29.3 24.6	46 10	45.5 39	-22.8	64 55	P 9.5 -85	42	46	-26.5	59.5	-17.3 -14.1	
	0.30		0.4812	0.4667	0.4526	13.2	30.4	26.6	34	33	-13.4	48	- 8.5	32	39 33	-20.1 -15.4	45	-11.3	
9	0.15		0.4931	0.4715	0.4407	12.1	25.0	17.5	48	47.5	-16.0	67	-9.7	42	49.5	- 20.4	60.5	-18.2	
	0.20		0.4907	0.4721	0.4478	12.7	24.3	22.3	40	39.5	- 13.6	56	- 8.0	36	40.5	--16.5	52	-13.8	
	0.25		0.4788	0.4628	0.4407	12.9	9.2	45.8	40	38	-27.3	54	-8.5	36	38	-29.3	51.5	-13.9	
	0.30		0.4764	0.4579	0.4407	13.4	9.9	39.3	37	35	-35.1.	49.5	-8.3	34	35	-36.0	47.5	-12.9	
10	0.15		0.4907	0.4664	0.4335	12.5	13.4	22.9	46	46	- 19.5	64.5	- 9.7	42	46.5	-23.2	59.5	-17.6	
	0.20		0.4859	0.4648	0.4383	13.2	15.4	25.5	40	39.5	-19.4	55.5	- 9.0	37	40	-22.3	52.5	-14.8	
	0.25		0.4812	0.4654	0.4407	13.7	20.0	29.2	37	35.5	-21.0	50	-8.7	34	36	-23.2	47.5	-13.4	
	0.30		0.4788	0.4624	0.4454	14.1	18.8	31.1	32	31	-17.4	44	- 7.7	30	31	-19.1	42.5	-11.3	
3	0.15	0.0050	0.4912	0.4689	0.4723	9.4	7.6	2.9	68	70.5	- 12.2	96	- 9.8	52	90	-40.0	117	-22.0	
	0.20		0.4865	0.4603	0.4629	9.8	7.2	7.9	69	72	- 19.0	99.5	-11.5	53	90	-40.0	115.5	-23.3	
	0.25		0.4794	0.4530	0.4510	9.5	6.5	18.4	74	76	-40.0	100.5	-13.8	56	84	-40.0	113	-25.9	
	0.30		0.4747	0.4469	0.4416	8.7	5.1	35.7	81	78.5	-16.2	99	-13.0	59	89.5	-40.0	114.5	-24.9	
4	0.15		0.4865	0.4593	0.4534	9.7	8.4	19.0	70	74	-17.1	98.5	-12.6	54	90	-40.0	115	-24.7	
	0.20		0.5030	0.4741	0.4629		15.9		61	64.5	-12.3	88.5	-10.2	49	90	-40.0	123.5	-21.2	
	0.25		0.4865	0.4626	0.4558	11.2	13.7	12.7	56	57	-16.0	79.5	- 10.6	46	60.5	-22.8	66.5	-22.5	
	0.30		0.1747	0.4530	0.4463	11.1	8.4	21.7	57	57	-40.0	79	-10.5	48	57	-40.0	69.5	-23.2	
5	0.15		0.5054	0.4764	0.4558	10.2	17.0	13.3	64	67	- 13.8	94.5	- 10.6	50	90	-40.0	123	-21.0	
	0.20		0.4865	0.4616	0.4487	11.2	13.3	14.7		57.5	-16.2		-11.0				66.		
	0.25		0.4770	0.4514	0.4416	11.1	7.6	33.1	56	55	-37.9	77	-9.7	47	55	-40.0	68.5	-21.4	
	0.30		0.4817	0.4589	0.4510	12.2	15.4	18.4	44	44	-16.6	64.5	- 8.5	40	45	-20.3	58	-16.1	
6	0.15		0.4912	0.4652	0.4463	11.0	15.3				- 13.5								
	0.20		0.4817	0.4565	0.4369	11.3	9.0	34.7	56	54.	-27.4	76.5	-10.1	46	55	-32.4	68.	-21.7	
	0.25		0.4811	0.4589	0.4633	12.3	15.0	19.4	46	45.5	-16.9	64.5	- 9.0	40	46	-20.8	58.5	-16.8	
	0.30		0.4723	0.4487	0.4369	11.7	7.2	40.4	48	45	-27.4	64	- 8.4	42	45	-31.9	59	-16.1	
7	0.15		0.4865	0.4606	0.4322	11.4	11.2	20.5	56	56.5	-19.7	78	-11.2	47	58	-25.8	68	-23.4	
			0.44848	0.4631	0.4440							65	- 9.0	40	47.5	- 18.4	58		
	0.25		0.4770	0.4535	0.4345	12.1	88	40.2	46	45	-38.5	63.5	-8.9	42	45	-40.0	59	-16.5	
	0.30		0.4747	0.4550	0.4392	13.0	13.6	28.3	40	40	-24.6	56	- 8.7	37	40	-27.3	53	-14.5	
8	0.15		0.4936	0.4756	0.4392	11.5	15.1	23.4	50	50	- 15.0	71.5	- 8.8	44	52	-19.8	62.5	-18.5	
	0.20		0.4817	0.4565	0.4322	12.4	10.8	27.8	46	45	-22.0	63.5	-9.5	41	46	- 25.5		-17.2	
	0.25 0.30		0.4817 0.479 .4	0.4576 0.4627	0.4392 0.4440	13.1 13.2	16.1 26.0	24.2 29.3	30	39.5 33.5	-17.8 -14.6	55.5 48.5	-8.5	36 32	39 34	-20.5 -16.7	52 46	-14.2 -11.7	
9	0.15		0.4912	0.4663	0.4322	12.1	24.5	16.5	48	47.5	-15.7	66.5			49	-20.1		-18.1	
	0.20		0.4888	0.4673	0.4392	12.7	23.8	22.0	40	39.5	-13.9	56.5	-8.1	36	40	-16.8	52.5	-13.9	
	0.25		0.4747	0.4557	0.4298	12.8	9.2	42.3	40	39 35	-31.5	54.5	-8.7	37	39	- 33.8	51.5	-14.2	
	0.30		0.1747	0.4507	0.4322	13.3	10.1	39.0	37	35	-35.3	49.5	-8.2	34	35	- 36.2	47.5	-12.8	
10	0.15		0.4865	0.4613	0.4227	12.5	13.5	20.7	46	46	- 20.0	64.5	-10.0	42	47	-23.7	60	-18.0	
	0.20		0.4811	0.4581	0.4298	13.2	14.7	24.8	40	39	-18.8	55	-8.9	36	39	-21.4	52	-14.6	
	0.25		0.4817	0.4559 0.4563	0.4345 0.4369	13.8 14.0	15.5	37.1	36	34	-17.2	48.5 43.5	-8.1	33	34	-19.2	46.5	-12.4	
	0.30		0.4770	0.4563	0.4369	14.0	18.8	30.5	32	31	-17.4	43.5	- 7.7	30	31	-19.1	42.5	-11.3	
3	0.15	0.0100	0.4896	0.4624	0.4640	9.4	8.5	3.1	70	74.5	- 12.1	96.5	-10.6	54	90	- 40.0	117.5	-225	
	0.20		0.4826	0.4518	0.4516	9.8	7.2	7.5	69	72	-19.0	99.5	-11.5	53	90	-40.0	115	-23.4	
	0.25		0.4733	0.4426	0.4430	9.5	5.9	16.5	72	74.5	-40.0	100	-13.0	55	76	-40.0	82	-38.7	
	0.30		0.4663	0.4358	0.4313	8.7	4.7	32.2	79	77.5	-16.9	98	-13.1	58	90	-40.0	112.5	-25.6	
4	0.15		0.4826	0.4510	0.4430	9.8	8.4	17.4	71	74.5	-17.3	98.5	- 12.7	54	90	- 40.0	114.5	-25.0	
	0.20		0.4989	0.4685	0.4546	10.2	16.7	11.0	61	64.5	-12.4	88.5	-10.5	50		-40.0	126.5	-20.8	
	0.25		0.4826	0.4530	0.4476	11.2	12.0	10.6	54	55.5	-15.1	78	-9.8	46	58.5	-21.4	64.5	-21.1	
	0.30		0.4710	0.4424	0.4360	11.1	8.3	20.4	56	56	- 40.0	79.5	-10.1	48	56.5	-40.0	69.5	-22.7	
5											- 12.9								
	0.20		0.4850	0.4529	0.4383	11.2	13.2	14.2	56	57.5	-16.4	79	-10.9	47	60.5	-23.2	66.5	-22.8	
	0.25		0.4710	0.4419	0.4290	11.1	7.6	30.4	56	55	-40.0	77	- 9.9	48	55	-40.0	68	-21.7	
	0.30		0.4756	0.4511	0.4407	12.2	16.8	18.1	44	45	-16.9	65	-8.7	40	45.5	-20.6	58.5	-16.5	
6	0.15		0.4896	0.4584	0.4337	11.0	16.5	12.1	58	60	- 14.5	80.5	-11.4			-40.0	127		
	0.20		0.4756	0.4485	0.4267	11.3	8.6	34.0	54	54	-24.7	76	- 9.9	46	54	-29.5	67.5	-21.2	
	0.25		0.4803	0.4495	0.4360	12.3	14.3	17.9	46	45	-16.5	64	- 8.9	40	46	-20.3	58	-21.2	
	0.30		0.4780	0.4636	0.4430	11.9	13.9	29.8	38	37	-12.0	55.5	- 6.6	35	38	-14.6	50.5	-12.1	

TABLE I.-(contd.)

No of elements	Spacing	Sunáucior diameter	Lengths			Gajn (db.)	$\begin{gathered} \text { Front } \\ \text { to } \\ \text { back } \\ \text { racio } \\ \text { (db.) } \end{gathered}$	Resistance (ohms)	Polar diagram									
						$\begin{aligned} & 3 \mathrm{db} . \\ & \mathrm{BW} . \end{aligned}$			H Plane				E Plane					
			Reflector	Driven element	$\begin{gathered} \text { Direc- } \\ \text { tors } \end{gathered}$				19t	Vuld	$18 t$ Sid	lobe		1st	Null	1 bt Sid	lobe	
									Position	Leved	Position	Level	BW	Position	Level	Position	Level	
7	0.15 0.20 0.25 0.30	0.0100	0.4826 0.4873 0.4710 0.4710	0.4522 0.4561 0.4441 0.4432	0.4197 0.4313 0.4220 0.4290	11.4 12.1 12.1 13.0	11.1 20.9 8.6 12.0	19.4 17.4 37.7 25.8	56 47 46 40	56.5° 47 45 39	-19.6 -15.4 -36.3 -22.2	77.5 68 63 55	-11.2 $-\quad 9.3$ -8.9 -8.4	47° 42 42 36	$58{ }^{\circ}$ 48 45 39	-25.6 -19.5 -38.9 -24.7	$\begin{aligned} & 68^{\circ} \\ & 59.5 \\ & 59 \\ & 52.2 \end{aligned}$	$\begin{aligned} & -23.2 \\ & -17.4 \\ & -16.4 \\ & -14.0 \end{aligned}$
8	0.15 0.20 0.25 0.30		0.4943 0.4780 0.4780 0.4756	0.4692 0.4477 0.4491 0.4529	0.4290 0.4173 0.4267 0.4337	11.5 12.4 13.1 13.2	16.3 11.4 16.9 28.1	20.2 25.7 23.2 25.3	50 46 40 34	49.5 46 39 33	+14.2 +24.1 -18.4 +13.7	71 64 55.5 48	$\begin{array}{r}-8.7 \\ -9.7 \\ -8.6 \\ \hline-7.2\end{array}$	44 42 36 32	52 46 39.5 33	-19.0 -27.3 -21.0 -15.7	61 60 52.5 45.5	$\begin{aligned} & -18.0 \\ & -17.5 \\ & -14.3 \\ & -11.3 \end{aligned}$
y	0.15 0.20 0.25 0.30		0.4873 0.4873 0.4686 0.4663	0.4593 0.4605 0.4468 0.4397	0.4173 0.4267 0.4173 0.4197	12.4 12.7 12.9 13.4	16.9 23.0 9.1 9.4	13.5 21.9 41.2 35.7	$\begin{aligned} & 48 \\ & 40 \\ & 40 \\ & 36 \end{aligned}$	50 40 38 35	- 19.2 -14.4 -28.0 -29.2	67.5 56.5 54.5 49	11.8 -8.2 -8.5 -8.2	42 37 36 34	51 40.5 38.5 31	-23.8 -17.2 -29.5 - -31.2	62 52.5 52 47.5	$\begin{aligned} & -20.7 \\ & -14.1 \\ & -14.0 \\ & -12.6 \end{aligned}$
10	0.15 0.20 0.25 0.30		0.4826 0.4803 0.4756 0.4710	0.4527 0.4500 0.4493 0.4468	0.4103 0.4150 0.4197 0.4243	12.5 13.2 13.7 14.2	12.9 15.5 18.4 18.3	19.9 23.4 26.6 28.0	46 40 36 32	46 40 35 31	18.9 +19.9 +19.9 -16.8	64 55.5 49.5 44	9.8 $\cdots 9.1$ ~ 8.5 $\times \quad 7.7$	42 37 34 30	46.5 40 35 31	-22.5 -22.6 -21.9 -18.4	59 52.5 47.5 42.5	-17.6 -14.8 -13.0 -11.2
3	0.15 0.20 0.25 0.30	0.0200	0.4840 0.4749 0.4657 0.4566	0.4502 0.4384 0.4263 0.4181	0.4543 0.4406 0.4269 0.4132	9.4 9.8 9.5 8.7	7.9 7.2 6.0 4.6	2.6 6.9 15.0 28.9	68 69 73 79	71 72 74 77	12.4 18.5 39.9 16.8	97 99 100 98	$\begin{array}{r}\text { (10.0 } \\ +11.6 \\ +12.9 \\ \hline 12.8\end{array}$	53 54 56 58	90 90 76 90	-40.0 -40.0 -40.0 -40.0	116.5 114.5 82 113	-22.3 -23.8 -38.8 -25.3
4	0.15 0.20 0.25 0.30		0.4771 0.4977 0.4771 0.4612	0.4368 0.4555 0.4411 0.4247	0.4269 0.4429 0.4315 0.4201	9.8 10.3 11.2 11.1	8.6 15.3 13.6 7.4	16.0 7.8 10.9 17.4	70 59 56 56	74.5 62 57 55	17.8 10.9 -16.0 -40.0	99 81.5 79.5 78	12.7 -9.9 -10.5 $-\quad 9.7$	54 48 46 46	90 90 60.5 55.5	-40.0 -40.0 -22.6 -40.0	115 124 66 68.5	-24.8 -21.9 -22.3 -21.8
5	0.15 0.20 0.25 0.30		0.5023 0.4794 0.4634 0.4680	0.4587 0.4384 0.4252 0.4362	0.4338 0.4224 0.4109 0.4246	10.2 11.2 11.1 12.2	16.5 12.6 7.6 15.6	9.3 12.6 28.2 15.7	62 56 56 44	66 56.5 55 44	12.4 16.0 38.0 16.5	89 78 77 64	10.7 10.6 $\cdots \quad 9.7$ $-\quad 8.6$	50 46 48 40	90 60 55 45	-40.0 -22.5 -40.0 -20.1	122.5 66 68 58	-21.7 -22.2 -21.3 -16.1
6	0.15 0.20 0.25 0.30		0.4863 0.4680 0.4726 0.4749	0.4459 0.4336 0.4360 0.4430	0.4155 0.4064 0.4178 0.4292	11.0 11.3 12.3 11.9	16.4 8.7 14.9 20.5	11.1 30.4 16.5 15.5	$\begin{aligned} & 58 \\ & 54 \\ & 46 \\ & 36 \end{aligned}$	60 54 45 34.5	14.9 25.4 16.9 .9 .4	81 76 64 51.5	1114 -10.0 -960 $-\quad 6.0$	48 46 40 34	90 54 46 36	40.0 -29.8 -20.6 -11.7	126 67.5 58.5 46.5	-23.9 -21.3 -16.7 -10.6
7	0.15 0.20 0.25 0.30		0.4771 0.4817 0.4612 0.4612	0.4381 0.4428 0.4286 0.4290	0.3995 0.4132 0.4018 0.4087	11.4 12.2 12.1 13.0	11.1 20.2 8.5 12.9	17.9 15.5 34.3 23.8	56 46 46 40	56 46.5 45 39	19.7 15.1 32.9 23.7	77.5 65.5 63 55.5	11.1 $-\quad 9.3$ -8.9 $-\quad 8.6$	47 42 42 36	57.5 48 45 39	-25.4 -19.2 -36.0 -25.9	68 59 59 53	$\begin{array}{r} -23.0 \\ -17.2 \\ -16.3 \\ -14.2 \end{array}$
8	0.15 0.20 0.25 0.30		0.4886 0.4703 0.4703 0.4657	0.4589 0.4325 0.4352 0.4392	0.4109 0.3972 0.4064 0.4155	11.5 124 13.1 13.2	16.7 11.0 17.3 29.9	17.1 23.7 21.3 22.9	50 46 40 34	49 45 39 33	13.9 -22.6 18.8 13.4	70.5 63.5 55.5 47.5	(8.9 $-\quad 9.6$ $\times \quad 8.7$ $\cdots \quad 7.2$	44 42 36 32	52.5 46 40 33.5	-18.6 -25.9 -21.4 $\cdots 15.3$	60.5 59.5 52.5 45.5	-17.9 -17.2 -14.4 -11.3
9	0.15 0.20 0.25 0.30		0.4840 0.4817 0.4612 0.4566	$\begin{aligned} & 0.4459 \\ & 0.4491 \\ & 0.4330 \\ & 0.4237 \end{aligned}$	$\begin{aligned} & 0.3995 \\ & 0.4064 \\ & 0.3972 \\ & 0.3972 \end{aligned}$	12.2 12.7 12.9 13.4	22.7 22.5 9.3 9.8	13.9 20.5 38.5 32.0	$\begin{aligned} & 48 \\ & 40 \\ & 40 \\ & 37 \end{aligned}$	47.5 40 38 35	15.4 14.8 26.7 33.5	66 57 54 49.5	P 9.7 $-\quad 8.3$ $-\quad 8.4$ $-\quad 8.3$	42 37 36 34	49 41 38 35	-19.6 -17.6 -28.4 -34.2	59.5 53 51 47.5	-17.8 -14.2 -13.8 -12.7
10	0.15 0.20 0.25 0.30		0.4771 0.4726 0.4680 0.4657	0.4393 0.4358 0.4330 0.4311	0.3858 0.3927 0.3995 0.4041	12.5 13.2 138 14.2	13.4 15.4 17.5 18.1	17.7 21.0 23.2 25.8	46 40 36 32	46 40 34.5 31	20.2 19.9 17.9 -16.9	64.5 55.5 48.5 44	$\begin{array}{r} -\quad 10.0 \\ -\quad 9.1 \\ \therefore \quad 8.3 \\ -\quad 7.7 \end{array}$	42 37 33 30	47 40 35 31	-23.7 -22.5 -20.0 -18.5	59.5 52.5 47 42	-17.9 -14.8 -12.6 -11.2

S.W.R. INDICATORS

(Continued from Page 12)
of knowing if some mechanical fault has developed in the feeder. A short across the far end of the feeder will show only about 2:1.

GULDE LINES

On the basis of this project, the following guide lines seem relevant:-

- Element Spacing. - Go for wide spacing, reflector at least 0.2 wavelength, director 0.25 wavelength. This can replace the 2 db . loss inherent in co-ax. feedline.
- Driven Element.-There is a great temptation to set it to resonance using a radiated signal and a diode meter combination across intended feed point. Don't do it! For gamma feed, the radiator needs to be a little short.
- Reflector.-Too much enthusiasm for front-to-back ratio will reduce forward gain slightly. But even the best front-to-back ratio will
only cost you about 3 db . in forward gain. In VK it's usually best to go for maximum forward gain.
- Gamma Bar.-Increasing the spacing of the bar from the radiator raises the impedance range of the bar. Also. shortening the radiator will raise the antenna feed point impedance. Since a lot of work will be needed to optimise the options available, it's better to rely on the formulae for radiator length, fiddling only the gamma match for maximum radiated signal. Don't forget to provide some series capacity to offset the inductive reactance of the gamma bar.
- Design Frequency. - Design and tune up on a frequency 100 KHz . lower than the spot you wish to operate on most. The array will increase in frequency when raised above ground to its intended operating height.
- Test Equipment. - Use a simple Antenna Bridge, a G.D.O., and a remote indicating Field Strength Meter, initially. Rely on these, rather than a S.W.R. Bridge.

TECHNICAL ARTICLES

Readers are requested to submit articles for publication In "A.R.," in particular constructional articles, photographs of stations and gear, together with articles sultable for beginners, are required.

Manuscripts should preferably be typewritten but if handwritten please double space the writing, Drawings will be done by "A.R." staff.

Photographs will be returned if the sender's name and address is shown on the back of each photograph submitted.

Please address all articles to:
EDITOR "A.R.,"
P.O. BOX 36,

EAST MELBOURNE.
VICTORIA, 3002

The Wireless Institute of Australia-Federal Executive REPORT TO FEDERAL COUNCIL (1970)

Gentlemen

It is my pleasure to present the report on behalf of the Federal Executive on its activittes subsequent to the 1969 Federal Convention. Whilst our financial year now ends on the 31 st December. this report deals with th
activities of the Federal Executive to date.

To present this report gives me particular pleasure for two reasons. Firstly, i believe that 1 can report to you that the last year has been one of the most successiul and productive in the history of our Federal organIsation. Sccondly, successful year just passed is a fitting start for 1970, the year that marks of Australla. and il have every reason to believe that 1970 will be a year more successful lieve that 1970 will be a year more successful
than the year just passed. In my mind there is no doubt that an active and effective organisation must continue to attract new members, and cqually, our organisation cannot hope to be active and effectlve without the wholehearted support of the Australian Amateur population. I now turn to particular topics.

- 1969 N.Z.A.R.T. BI-CENTENARY CONFERENCE AT GISBORNE

The Federal Council resolved, at the 1969 Federal Convention, to accept the invitation of N.Z.A.R.T. to be represented at thla most important Conference. and it was my privilege to represent you there. 1 was invited to
address the Conference, which I did. on Sataddress the Conference, which I did. on Sat-
urday. 31st May. A copy of this address was reproduced in "Break-In". the officlal journal of N.Z.A.R.T.. as well as in our own journal, "Amateur Radio". After my return on 20 th June. 1989. I reported in detail to the Federal that this visit produced resulted in a frank and helpful exchange of views and. I belleve. a far better understanding between the two organisations. More tingibly, it also resulted in the exchange of pubilications between N.Z.A.R.T. and the W.I.A. By February 1970 we were sending 83 coples of "Amateur Radio" to our New Zealand subscribers. N.Z.A.R.T. for its members. The personal contacts initiated for its members. The personal contacts initiated by this visit have continued, ${ }^{\text {as }}$ I have been
able to keed fairly regular ${ }^{\text {"skeds" on } 20}$ able to keed fairly regular "Skeds" on 20
metres with the N.ZA.R.T. President. Bill Hamer. 2L2CD. May I. In this report, once again record my deep appreciation for the hospitallty and kindness that I received from
the New Zealand Amateurs whilat I was in the New Zeal

Onc matter that is to be ralsed at this Fedcral Convention is the possibility of altering the rules for the Remembrance Day Contest to the rules for the Remembrance Day Contest oo enable the New Zealand Amateurs to participate. I believe that a lavourable decision by
the Fedcral Council on this matter would be the Fedcral Council on this mater would be Amateurs. so many of whom expressed to me regret that they were unable to participite in this. the premier Contest in our part of the worid. Their participation can only serve to bring our two Socleties even closer together. which I believe is in the interests of both organlsations.

- REPRESENTATION

At the 1869 Federal Convention. the Federal Counsll expressed the view that closer personal confact between the Federal Executive and the Divisions was desirable. I have taken every opportunlty that has been open to me to pursue this policy. as I believe that without continuing personal contact our netivities in the Fedcral sphere can be seen so easily as something remote and distant from our membershlp. In the course of my journey home from New ZeaCouncillor of the New South Wales Division. and the President of the New South Wales and the President of the New South wales
Division. On Friday. 18th July. I attended a Council meeting of the South Australlan Division in Adelaide. and on the following day ision in Adelaide. and on the following day of the Federal Councllior for that Division. On 4 ih October I attended and opened the joint Convention held in Albury by the adjacent Victorian and New South Wales Zones. On 17th October. In the course of a visit to Sydney. I conferred with the Councll of the
New South Wales Division, and on the follow-
ing day conferred with the Federal Repeater Secretariat.
On Friday. 28th November. I addressed a General Meeting of the Queensland Division in Brisbane, and on the following Monday ilst Decemberi i met the Councll of that Division. On 4th March, 1970, 1 addressed a General Meeting of the Victorian Division. The total Meeting of the Victorian Division. The to the cost to the Institute of these visits to the Divisions has amounted to approximately $\$ 160$.
I believe that n continuing personal contact between the Executive and the Divisions throughout the year is of fundamental importance. It is too easy for the Federal Executive to be seen as seven faceless men, remote from the everyday life of Amateur Radio. What our Federal Organisation is doing is of basic importance to all Amateurs. Our Federal body represents all Amateurs everywhere, and an understanding of these activities can only come from personal contact.
In addition. I have now ncquired a far face each Division that peculiar problems that quite convinced that many of the conficts and misunderstandings of the past would have been avoided had personal contact been possible at those times. 1 believe that it is in the interest of our organisation for the future that this contac continues.

To the Federal Councillors, to the Presidents, to the Councils, and to the members of those Divisions that I was able to visit in the last year. may I express my appreciation of their
hospitallty, patience and courtesy. hospitality, patience and courtesy.

- THE YEAR AHEAD

A considerable amount of time and effort has been devoted to planning for 1970. The Australlan Tourist Commisaion provided, free of charge. 100.000 blank QSL cards for distribution to Australian Amateurs through the Divisions. That number. large as it wns. was merely the start. for a further 112,000 cards were printed, using the plates prepared for the Australlan Tourist Commission. the printing of which was paid for by individual members. To the Australinn Tourist Commission, 1 extend our heartfelt thanks for their most generous gesture in providing so many Amateurs with such attractive cards.
The rules of the Cook Bi-Centenary Award were published in August "Amateur Radio". and a handsome Certificate has been produced and was featured on the front cover of the rules of this Award were clrculated to over rules of this Award were circulated to over
seventy overseas socleties and publications. A thousand coples of the Cook Bl-Centenary thousand copies of the Cook Bi-Centenary Award Certificate have becn printed. It is our will prove to be quite insufficient and it seems that this is quite likely. In addition, from $18 t$ January, 1970, to the end of 1970. Australian Amateurs are permitted to use the alternative prefix "AX". and the use of this prefix is an
integral part of the rules of the Cook Biintegral part of
Centenary Award.

The success of the Award and the "AX" prefix became immediately obvious on ist January, 1970. I think we have all been surprised at the very real interest that has been created-indeed I think it can be said that other single thing for many years.
The rules of the Cook Award have been the subject of some discussion. They have been tallored to provide an award attractive to overseas Amateurs. Various suggestions have been made to add spectalised sections to the Award. Executive has accepted the advice of the Awards Mannger that such sections would merely complicate the rules to serve a very small minority at the expense of sacrificing basic simplicity. A v.h.f. section does seem. however, to be required. though because of the diversity of views as to how the rules for such an award should be framed, the formulation of the rules for such an award has presented considerable difficulty. The matter has been and the Awards Manager, and will be decided and the Awards Manager, and will be decided The role to be played by Divisions in 1970 is indeed important and once again I urge all Divisions to plan their activities for this year. bearing in mind the special significance of this year for Amateur Radio, particularly
highighting the G0th Anniversary of our highlighting
organisation.

- CONFERENCE FOR SPACE TELECOMMUNICATIONS

As you know. a World Administrative Radio Communications Conference for Space Telecommunications has been set down to open In Gencva in June 1971. The significance of this Conference cannot be underestimated and on its own Initiative. Federal Executive has prepired and circulated a confidential and comprehensive report to Federal Council. It
will be the task of the 1970 Federal Conventio:! will be the task of the 1970 Federal Convention
to formulate the Institute's policy in relation to the 1971 Conference.
The report prepared by Federal Executive was the product of a week-end in November When various dersons were conauled. in addi ton. a considerable body of materlal has been annexed to the report to assiat the Federal Council in reaching a view. Federal Executive has suggested a policy for consideration by Federal Councll as a tangible starting point in its considerations. This matter has occupled II very considerable part of the Executive's time during the past few months, sometimes to the detriment of other matters, but 1 think the Importance of this Conference has more than Justined the time that has been devoted to it. Whilst June 1971 may seem to be a long way in the future now. there is no alternative to carly preparedness.
I would like to thank the Federal Councillors of those Divisions that submitted material,
to the members of the Federal Executive who assisted in preparing the report, the Federa Repeater Secretariat. the W.I.A. Project Australis, and the very many other people who gave of their time to offer their views and expertise to the Executive.

- "AMATEUR RADIO"

Whilst the Institute's publications will be the subject of a separate report from the Editor, Mr. Ken Pincott iwho is now a member of the Federal Executivel, 1 would like to observe in pnssing. how many people have commented to me on the greatly improved standard that has been attalned by our magazine during the past year. The additional funds oblained through the last price increase have been utdised to excellent advantage, and I am sure that pressing to Ken and to the Publications Compressing to Ken and to the Publicntions Com-
mittee our congratulations on a job well done.

It is gratifying to be able to report that for the first time this year, articles published in "Amateur Radio": are being reprinted by other "CQ Mngazine" and the journal of the Dutch Amateur Radio Society.
"Amateur Radio" is the only direct means of communication the Executive has to our Australia-wide membership. I have attempted.
in writing "Federal Comment', to deal with tangible subjects of current cóncern. I have never realised how hard it is to write "Federal Comment". though this vear I suspect the task has been made a little easier because there have been so many topics eminently sultable have biling sobouty topics eminenily sulkable for writing about. I have been heartened by "Federal Comment." and are prepared to press their views on the matters there raised.

- MEMBERSHIP

The following table has been complled based on membership figures as at 30th December 1969:-

VK2	1933	1061	55:	480	1521
VK3	1838	920	50r:	276	1198
VK4					
VK. VK9	694	350	51 \%	148	489
inc. VK8	748	410	55:	240	650
VK6	462	282	$61{ }^{\circ} \mathrm{c}$	88	370
VK7	229	146	64?:	114	260
Totals	5904	3189	54\%\%	1326	4495

Whilst it is to be expected that the smaller Divisions are able to attract a higher percentage of membership from their total licensees. the percentage of membership in Victoria and Queensland is disappointing. Certainly Queens-
land faces difficulties of immense distance and land faces difficulties of immense distance and
a population spread over a thousand miles. On a population spread over a thousand miles. On the other hand, no such excuse is available to Victoria and I regard the Victorian figures as frankly disappointing. It is obvious that the assisted by the large Associate membership and here again the Victorian figures compare
unfavourably with the New South Wales figures.
Our total percentage of full members as against total licensees of 54r: is obviously capable of improvement. On the other hand these figures compare favourably with most overseas societies. It is interesting to note, for example. that N.Z.A.R.T. attracts only a 49% membership. I can see no reason why we should not this to the consideration of Divisional Councils.

- FEDERAL CONSTITUTION

Following the resolution of the Federsl Councll to change the financial year of the Institute to the calendar year to enable the easler preparation of accounts for the Federal
Convention, the necessary amendment to the Federal Constitution was passed, all Divisions voting in favour of the amendment.

- PROPOSED NEW FEDERAL CONSTITUTION

As you will recall, the last outstanding matter that concerned the Divisions in relation to the Memorandum and Articles of Association of the proposed Federal Company, were those Articles making provision for a postal referenda of all members throughout Australia on the request of two Divisions, notwithstanding a decision of a majority of Divisions. For legal reasons, the inclusion of these provisions was
impossible in Victoria, and Federal Council at impossible in Victoria, and Federal Council at
the 1968 Convention resolved to ascertain the 1968 Convention resolved to ascertain
whether a different attitude would be adopted by the appropriate authorities in New South Wales. I believe that the New South Wales Division has been ndvised that a similar atti-
tude would be adopted in that State. The tude would be adopted in that State. The Federal body would be incorporated omitting these provisions if this occurred. I have asked attitude in the circumstances now existing and I am awaiting their reply. I am very hopeful New South Wales Division has considered the matter, incorporation will be able to be proceeded with without further delay. Then what is left to be done is of a machinery nature only and the speed of incorporation will be dependent entirely on how quickly the Divisions are able to formally execute the documents at a meeting of their Councll.

The incorporation of the Federal Company, with the subsequent transfer of the Institute's publications to the Federal body will place, in the forthcoming year if it occurs, a heavy
additional load on the Federal Executive. In additional load on the Federal Executive. In
particular, it will impose a heavy load on the Federal Treasurer and the Treasurer of the Victorian Division, as the arrangements that
must be made will be largely of a technical must be made $w i$
accounting nature.

- I.T.U. FUND

The following nmounts were to be contributed by each of the Divisions to establish this fund:

At this time. a total of $\$ 6.738 .97$ Is held in the fund with all of the Dlvisions except the New South Wales Division having attained their quota Of its target of $\$ 2,600$, the N.S.W. D1
iston has pald to Federal Executive $\$ 1,659$.

- I.A.R.U. REGION III.

During the year. the Interim Constitution of the I.A.R.U. Region III. Association was signed on behalf of Japanese Amateur Radio League. The Philippines Amateur Radio Association, the New Zealand Amateur Radio Transmitters. and the Wireless Institute of Australia. and
thus this organisation came into formal being.

No communications were received, however, from Robert W Denniston, the President of I.A.R.U. The Region III. Association is the subject of a separate report from the Region III. Director. Mr. John Battrick, and apart from recording the achievement of our alm it formally creating an organisation withi
III., I leave this matter to his report.

LIAISON WITH AUSTRALIAN POST OFFICE

Throughout this year. our relationships with the Central Administration of the Postmaster General's Depariment have been cordial in Federal Executive's would like to record the Federal Executive's Appreciation of the assist ance it has received from those officers responService; in particular. Mr. E. J. Wilkinson the Assistant Director-General iRadiol, and Mr. Charles Carroll, who, until his retirement towards the end of 1869, was the Controller, Radio Branch. At the annual dinner of the
Victorian Division, I presented Mr. Carroll Victorian Division, I presented Mr. Carroll with a handsome desk set to record the Insti-
tute's appreciation of his assistance during his tute's appreciation of his assistance during his years in office. I am sure that the close relacontinue with his successor. Mr. Young, who was previously Superintendent Radio for New
South Wales.

The retirement of Mr. Carroll resulted in some delays as Mr. Young did not take office in his new appointment untll early this year.

One matter that has caused considerable concern is the question of repeaters. In 1968 an agreement was reached with the Depart-
ment on this question. but the matter has ment on this question. but the matter has been reviewed by the Central Administration. They have been reluctant to licence repeaters to the basis on which they should be licensed. The Executive has continued to try and reach satisfactory finality on this matter and I am hopeful that this will soon be achieved. It is unfortunate that this has occurred as it has resulted in some rather unfair criticism of the Repeater Secretarlat. We intend to confer with Mr. Younc just prior to the Federal Convention and I am hopeful that we will be able
to report further to the Federal Councll then.

The question of metering points ralsed by the South Australian Division has been satisfactorily resolved, as have a number of other minor points.
1 am also very pleased to report to you that the Department is very consclous of the hardship caused by the delays in the marking of examination papers for Amateur Proficlency Certificates and have streamlined their procedures. They have indicated that they are anxious to be advised of unreasonable delays and I am sure that every effort will be made to ensure that delays will be kept to a minito ens.
Another matter that was successfully concluded was the Institutc's suggestion that VK9 call signs should be allocated according to ments have already been published.
The question of utllisation of W.I.C.E.N. organisations for other than emergency purDepartment is Adamont that activities such as the assistance of charitable organisations should not take place on Amateur bands.

Preparation for the World Administration Radio Communications Conference for Space Telecommunications, on which I have reported sions with the Department. Under the present heading 1 would simply observe that the Assistant Director General IRadio) has Indicated that it is his wish that the fullest possible consultation with the Amateur Service should consultation with the Amateur Service should take place. I believe ithat the sort of con-
sultation contemplated is in the best interests of all concerned.

- ILLEGAL OPERATION

The 1969 Federal Convention discussed the apparently illesal oderation by some persons in the 27 MHz . so-called "citizen band". During the year it appeared instead of decreasing. operation was increasing instead of decreasing. and a conference was held with representatives of the Department early this year. Whilst these frequencles are not allocated to the Amateur Service, the identification of thene by the general public is a with Amateurs by the general public is a matter of legitimate concern. in belleve that stamp out this sort of operation. which serves only to bring the law into ill repute and is causing friction amongst Amateurs.

COMMITTEE TO ASSIST FEDERAL EXECUTIVE

At the 1969 Federal Convention the Federal Counclllor for the N.S.W. Division indicated that his Division was anxious to render assistance in the Federal sphere. The Federal Executive considered this offer and suggested to that Division that a committee be formed to assist the Federal Executive by undertaking specific tasks referred to it by Federal Execulive. The first task referred to this committee relating to the speclfication of standards for solld state television recelvers sold in Ausralla, with the view to the adoption of standards to determine the minimum susceptibility
to cross modulation. The report and recomto cross modulation. The report and recom-
mendations of this committee. comprised of members of the N.S.W. Division, will be clrculated to Federal Councll. I would like to thank those members of the N.S.W. Division who are glving their time to assist the Federal Execuve in this manner.
The basis on which a permanent committee to assist the Federal Executive should be ap-
pointed has been discussed with the N.S.W. Division Councll, it being suggested by Federal Executive that such a committee could be appointed on a basis similar to the appointment of the Federal Redeater Secretariat. However. 1 am advised that this matter is still recelving consideration. I belleve that the basis sukgested by Federal Executive is a of the Division concerned and also recognises the Federal nature of such an actlvity.

I also believe that a permanent committee available to assist the Executive on specific asks will be very useful and indeed the ex-
tension of this princlple into other Divisions ension of this princlple into other Divisions
would seem to be worthwhile. From time to would seem to be worthwhile. From time to can undertake specific tasks which both reduces the work load on the Executive and enables the involvement of more people in our Federal sphere

- W.I.A. PROJECT AUSTRALIS

During the year. to the Institute's great beneft. the Project Australis Group became an integral part of the Wireless Institute of
Australia. I believe the loyal support of the Australia. I believe the loyal support of the
members of this group has resulted in much members of this group has resulted in much favourable publicity for Amateur Radio generAustralis Oscar 5 satellite on 23rd January, 1970. It is unnecessary to report to you in
detail now on the launch or the subsequent successful operation of the satellite, for this has been covered in detail elsewhere. It is, however. appropriate to mention the co-operation the Institute recelved from the Postmaster General's Department, the Overseas Telecommunications Commission, and the Australsan Broadcasting Commlssion which enabled VK2WI and VK3WI to broadcast the launch. Both broadcasts were highly effective and those responsible are to be congratulated.
In this report it is simply necessary for me o record our appreciation of the assistance and support we have recelved from the leaders
of the group. in particular Mr. Richard Tonkin. of the group. in particular Mr. Richard
Mr . Owen Mace and Mr. Les Jenkins.
It should be remembered that in accepting the group as a part of the Institute, we have also accepted a great responslbllity for the
future, for now the Federal Council must future, for now the Federal Council must determine how the next satellite is to be financed. The plans for Australis-Oscar 6 are
well in hand and the Federal Executive has made a grant of $\$ 200$ of lits funds to the groud to enable the construction of a working prototype of the next satellite for presentation at this Convention.
One of the Amateur bands which would in Australial is the $420-450 \mathrm{MHz}$. allocation. The utilisation of these frequencies for sophisticated and useful experiments, such as Amateur satellites. is one of the best justifications for the retention of these frequencies. In any of activity-which is in the interests of Amateur Radio as a whole, is one of the inescapable responsibilities of our organisation.

FED. REPEATER SECRETARIAT

During the year it became necessary to define with some precision the basis upon which the in particular to define the relationship between the Division from which it was appointed and the Federal Executive.
As a result of my discussions with the N.S.W. Division on 17th November. 1988, the following duties of the Secretariat were de-fined:-
(a) To Inform and advise Federal Councli, through the Federal Executive, on all matters pertinent to the use of Repeater/
Translator stations in the Amateur Service.
(b) To provide assistance for the Federal Executlue in lialsing with the P.M.G's referred to the committee
(c) To recommend the use of specific frequencies within the authorised bands for such services.
(d) To formulate standards for the location. design and installation of such stations in order to simplify application by interested Amateurs to the licensing authorities for permission to use these facllities.
(e) To liaise with Divisional Repeater/ Translator committees and advise on all matters related to the use of such Re-
(f) To undertake such other tasks as are

In addition, the following mechanics of the appointment of the Secretariat and the definition of its responsibilities were spelt out.
"Federal Executive shall call upon that Division to nominate members for the Secretarlat. such members to be appointed by the Federal Executive annually. Federal Executive may re-constitute the Secretariat at any time at re-constitute the Secretariat at any time at
its discretion, or if requested to do so by the Division providing the members of the Secretarint. The Federal Executive will appoint a chairman of the Secretariat who may be appointed a co-opted member of the Executive
in accordance with Clause 28 of the Federal in accordance

Motions to this effect were passed by the Councll of the N.S.W. Division and the Federal Executive. Mr. Tim Mills was appointed a coepted officer and chairman of the Federal Re-
peater Secretariat. Mr. Ian McKenzie has peater Secretarlat. Mr. Ian McKenzie has remained a member of the Federal Repeater
Secretarlat. In October 1969, Mr. Chris Jones resigned so that he could become a member of the N.S.W. Division Repeater Committee and was replaced by Mr. John Rufus. VK2ZJQ. I would like to record the Executive's appreciation of Chris' enthuslasm and valuable work on the Federal Repeater Secretariat.

- V.H.F. PROGRESS

During the year progress has continued on the v.h.f. bands, and the following contacts
are notable achievements in this part of the nre notabl
spectrum:

On 1296 MHz . VK2BDN worked VK2ZAC over a distance of 149 miles, a band record. On 576 MHz . VK5ZZJL worked VK5QZ over $\stackrel{\text { A distance }}{\mathrm{MH}} \mathrm{M}$. VK3ATN worked VK7WF. On the 2 MHz. VK3ATN worked VK7WF. On the 2
metre band. for the first time, the continent has been spanned each way, with
VK3AOT, VK3AMK and VK3ATN, and VK3AOT, VK3AMK and VK3ATN, and

- INTRUDER WATCH

The Federal Intruder Watch Co-ordinator. Dr. David Wardlaw, has devoted a considerable effort this year in attempting to create an active Intruder Watch organisation. As will be seen irom his report. the response that has been received has been very poor indeed. This many active Amateurs would be prepared to many active Amateurs would be prepared to
asslst in this activity. which I regard as being assist in this activity. which I regard as being
a very important aspect of our preservation a very important aspect of our preservation
of our frequencies. Nonetheless. the lack of of our frequencies. Nonetheless. the lack of response raises the question for Federal Council
as to whether the continued effort in this regard as to whether the continued effort in this regard
is justified. for there seems to me to be little is justified. for there seems to me to be little point in devoting a great deal of energy
activity which is achieving very little.

- HOW TO BECOME A RADIO AMATEUR

At long last and after many delays, this is With the printers and we expect it whecome available it will be distributed to the Divisions. This is one task that I am sure Executive is glad to see the end of. I am also sure that glad to see the end of. i am also sure that

- FEDERAL EXECUTIVE

Retween April 1969 and February 1970, the Federal Executive held 13 meetings. The attendance at those meeting was as follows:

	Owen		(Resigned after Fed. Convention)	
P.	Williams 12		
J.	Eattrick 1		
G.	Pither 11		
D.	Rankin	10		
D.	Wardlaw			
A.	Seedsman 4	1 Resigned June	18891
K.	Connelly 3	(Resigned Nov.	19691
W.	Roper 4	IAppointed Nov.	19881
\mathbf{K}	Pincott 7	(Appointed June	1889

- WORKLOAD OF FEDERAL EXECUTIVE

During the past year, the Federal Executive has become increasingly concerned at the inordinate workload that is borne by a limited number of people, in Darticular. by the Editor of "Amateur Radio" and by the Federal Secre tary. As each year goes by. the responsibility borne by the Federal Executive is increased: even though the workload has been spread and the responsibilities shared as far as is practical. the workload imposed on the Federal Secretary is quite unreasonable. It is impossible to spread this workload indefinitely, Without losing continuity, and in fact devoting more time to the instruction and co-ordination between the varlous persons undertaking the task. In my view, the need for a full time paid manager is no longer acute, but absol-
utely essential for the continued operation of utely essential for the continued operation of
our Federal body at its present level of activity.

So far as the magazine is concerned, it is not in the long term interests of our Organisation that it should be dependent on a person such as our present his leisure hours to o devote so many or his leisure hours to the management of the magazine, and here again. he is performing a task that must be performed by one person alone. This problem has reached critical proportions, as it is no longer fair nor reasonable to expect volunteers to make such great sacrifices of their time and energies. A pald manager must inevitably result in substantial subscription increases throughout Aus tralia. The alternative is to simply abandon our Federal Organisation to the limbo of things to be done when time permits.

- CONCLUSION

In reviewing the activities of the past year. I am acutely conscious of all those many people to whom our thanks must be recorded. Because of business commitments. David Ran kin has been able to devote less time to Institute activities than he would have wished He has, however, carried out his responsibilitics as Federal Activities Officer with his usua efficiency. In addition, as Federal Vice-Presi dent. I have much valued his advice and assist ance during the year. David's experience and common sense have been of great personal assistance to me.

I have already referred to the enormous workload undertaken by the Federal Secretary. Peter Williams and I have been in almost con stant communication throughout the year. have discovered that the work of the Federal Secretary that is seen by the Federal Council is only the tip of the iceberg. Peter has de voted endless hours to the Institute, and if you agree with me that the past year has been successful. a substantial portion of the credit for that success must lie with him. Despite an ever Increasing workload. Kevin Connelly carried on as Federal Treasurer until near the end of 1969 when the post was handed over to Mr. Bill Roper. Kevin never wanted to be Federal Treasurer-yet he undertook the task and has kept our books in order during the past year. We are delighted to be joined by Bill Roper, who brings with him both enthuslasm and experience.

I have already acknowledged the work of David Wardlaw as Intruder Watch Co-ordinator. David. through his experience, particularly in the United Kingdom, is a valuable member of the Executive, when discussing matters of an international nature. and I have valued his advice throughout the year.
During the year, Alf Seedsman resigned, and was replaced by. Ken Pincott, the Editor of "Amateur Radio". On behalf of Executive and the Federal Council. I would like to extend
our thanks to Alf for the work that he did our thanks to Alf for the work that he did for the Federal Executive during the years he served on it.
No more experienced or active member could be found than in Ken Pincott, and his presence on Federal Executive has brought the publications much closer.

Geo Pither has undertaken a variety of tasks during the year and to him 1 extend my personal thanks for his unfailing support.

In acknowledging the assistance of the varous people who have contributed to our Organisation during the past year, there is one former Federal President. Mr Max Hull I have personally much valued his guidance and nave personaliy much valued his guidance and 1 have always been able to call on him for 1 have always been able to call on him tor
assistance where necessary. In addition, the compilation of the Minutes of the 1969 Federal Convention, in itself a monumental task, was shared between Max and the Federal Secretary, Peter Williams.
When all seemed lost. so far as writing in history of the Institute for publication in "Amateur Radio" during 1870 was concerned, Max stepped Into the breach and undertook the task. On reading the results of his research. I suspect that he did not realise the enormity of the task. To Max I express the thanks of the Federal Executive, and also my personal thanks.

Finally, though again on a personal note, I would also like to express my appreciation to each member of the Federal Councll for his support during the year. As I stated at the outset of this report. I belleve the year past has been successful beyond expectation. believe that we may look forward to the future with some confidence, for I am sure that our Organisation will continue to grow and prosper. so long as it has the support of our members generally. This support is dependent upon the members knowing and accepting what we are about. This is in turn dependent on all our members being constantly informed on those matters that are of a Federal concern. One great difficulty that faces the Federal Executive is that so many matters that involve expenditure of considerable times are not either capable of, or suitable for, reporifing in detall. The continued support of the Federal Councllors and through them, the Divisional Councils, is essential.

Because, at a national level, our organisation is a Federation, and therefore necessarlly complex. the risk of remoteness is very real. We cannot sfford to be remote-we need the support of every Amateur in Australia.
I belleve we can justify that support.

Michael J. Owen,
Federal President, W.I.A.

HELP WANTED

The Publications Committee is in urgent need of extra manpower. Our present Secretary (Bill Roper) has joined Federal Executive as Treasurer, and wishes to relinquish his position with this Committee. This job entails two or three evenings per month, depending on how much work results from our monthly meetings. Although not necessary, it would be convenient if a replacement could be found who resides in one of the eastern suburbs of Melbourne.

We are also seeking somebody to assist with magazine and book reviews. Syd Clark does the job now and it is becoming a bit too much for one man to read them all and do the review. Syd would prefer that his assistant live in the Heidelberg-Rosanna area.

Amongst the overseas magazines we receive are the journals of our kindred Societies in Italy, Spain, Belgium, France, Germany, Holland, Norway, Sweden and South Africa. We will be happy to make these available to anybody who can read these languages if in return they will do a brief review of the contents for us.

Interested persons are asked to contact the Administrative Secretary of the Victorian Division, W.I.A., 478 Victoria Parade, East Melbourne, or phone 41-3535 and indicate in what way they can assist us. Mrs. Bellairs will pass the details on to the committee member concerned, who will in turn contact you.

Sub-Editor: DON GRANTLEY

P.O. Box 222. Penrith. N.S.W.. 2750
(All times in GMT)
Again we have had a very profitable month, due to rather good conditions, and a couple
of inore than interesting expeditions. TigCI from Cocos Is. Whs the first to appear, and despite evident problems with the raln, it
would seem that ihey had a successful operawould sem that they had a successiul opera-
tion. They were due to come on the atr from tion. They were due to come on the air from comments by some of the DX gang. they had not appeared by Feb. 26. QSLs for the operation go to TI2CMF with SAE plus IRC's.
The second operation of interest this month 21 to Feb. 27. I did not hear them. however from comments on the air it would seem that the operation whs a success. The QSL information is shown in Geoff Watts DX News
Sheet as K4MQG for lhe W/VE chaps only, Sheet as KinQQ their case a SASE is a must for the W Burcau will not be used. however for the rest of the world. the QSLs are to go direct to
MP4BHH. Box 155 . Manama, Bahrain Is., with SAE and the usual IRC. This has been a costly
trip so 1 belfeve. and the SAE will keep costs down.
FOBCY has been QRV from Nukuhiva, Marquesas Is. since Jan. 18. Jean is the operator and he has been raported here quite frequently. i assume it only counts as French Oceania
in our lists, however the actual locale is around in our lists, however the actual locsle is around
140 deg. west and near enough to 8 south of the equator. FOBAA will make a visit there later this year.
GM3FSV/A and GM3OGJ/A operation on
Feb. $6 / 8$ was from Kinross and is of particular interest through being the most difficult of the Countles to work.
Egypt is not in the Amateur Radio news very often these days, but there is regular
nctivity from thit country, the latest of interest beinR "Moty" SUIMA, who is now on in this country at around 1700 z . QTH is Box For the Island hunters, there is regular activity from the Marianas by KG6SM whose manager is W2CTN, and KG6SY whose cards So direct to him

An enquiry or two this month from chaps who have heard the RA prefxes on 10 mx . RA3AZY 9CBK and SICC are three mentioned
by Geoff Watts as active, and they are all Russian VHF stations, operating on 10 metres
and above. Likewise the UK prefixes are also and abov
Russians.

From the VP areas there has been quite a host of stations. VP2MY is QRV from Mon-
serrat until March 1. QSL to his home address serrat until March 1. QSL to his home address
WB2EBG. VP2LX from St. Lucla. QSL to GB2EBP. VP2KM ". Ken'" from St. Kits. QSL
to VE3EUU. VPSGM on Caicos until April then to VE3EUU. VP5GM on Caicos untll April then
home as G3WOV where his QSLs should be heme Vs GTH. Tom. Where also on Caicos. says QSL
sent.
to WASGFS. Finally, VPBJT from the Antarcto WASGFS. Finally. VPBJT from the Antarc-
tica is on 80 metres quite regularly at around 04002 . Which is of litile use to us here, but he is on other frequencies as well, and his man
ager VEIASJ provides a rapid QSL return.

VU2ITU and VUoITU were in operation froin Jan. 21 to Feb. 11 from C.C.I.R. Conference in
New Delhi. All $Q S L s$ to $4 U 1 I T U$. International New Delhi. All QSLs to AUIITU. Interna

The activity around the New Zealand area still continues. Barry ZMIBN/A due to return home at the time of writing and the country status of this one is still to be thrashed out.
It is over the required 240 miles from the point It is over the required 240 miles from the point
of administration. ZM3PO/C still active, and of administration. ZM3PO/C still active, And
his manager George ZLSAFZ has a new batch of cards for him. On the Kermadecs. Roy ZMIAAT/K still continues. And he now listens daily on 51.50 . Several VK/ZL stations have been heard but to date none have been wor
His listening time on this band is 0900 z . ZKIMN has been active from Manihiki since Jan. 28 on 80 metres CW only, but expects to have SSB gear operative on all band
Harold AXOLD gets on the air when the opportunity arises. but expects to uplift his activity soon. His manlarer 2M2AFZ has a they will be pleased to stand-by for anybody needing Macquarie. with ZD9EM jolning in on occasions from Tristan da Cunha. On Monday. Wednesday and
Fridny. 1030 to 1200 , and 1500 to 1800 z . Tues-
day. Thursday and Saturday. 1030 to 1100, 1545 to 1800. and
3.5 7. 14200 to 14150 , and 14250 to 270 . He is looking for contacts in this part of the world. is looking for contacts in this part of the world. is Archie ZD5R, who is active on all five bands and QSLs via his QTH, Box 99. Mbabane, SWaziland. Other activity from there is by ZD5M. mainly on 10 metre CW. 2D5B mostly
20 SSB. ZD5X is on CW only but on all bands. 20 SSB. 2D5X is on CW only but on all bands.
whilst ZDST and ZDSV are active on very rare occasions.
ZS2MI is well under way with his SSB operation from Marion Island and was causing the bir pile-ups for some days. He expects to be on 15 with this mode shortly. QSL to
ZSGLW. One report yHys he moves 5 KHz . up after each QSO. and listens 240 to 250 .
The cyll ZD9BP was Issued to Andy HP9FC/MM who visited Tristan da Cunha late in Jan. Whilst the research vessel Vema was in Tristan waters. QSL to VEIASJ.
5H3KJ/A and 5H3LV/A were due to come on from Latham Is. on Feb. 28 to Mar. 2. The location of this one is and 20 metres. QSLs operation mainly on 15 and 20 metres. QSLs
KC4USP Prom Palmer Arch snys QSL to K2BPP: KC6YA on from Yap Is., QSL to R. and KS6DH from American Samoa often on 3507 CW at about $12^{n} \mathrm{~N}_{\mathrm{z}}$. says QSL him to the Dept. of Eciuction. Pago Pago.
We are always nen commital about operation are too persistent to ignore. DL7FT and DJ7VY plan operation from that part of the world from May 15 to May 22; if not. it will be during the two weeks following Sept. 19. This lecting": staige. and will be held unless there is any further "pollitical delay". CRBAI, still very active. again makes the
cquest re his QSLs that they go to him. Luis request re his QSLs that they go to him. Luis guese Timor. endorsen ViA Darwin. Aust. They arrive contents.
often
FKO operation Feb. 12 to 14 by ex-TTBAM FK8BO operation Feb. 12 to 14 by ex-TTBAM
counts only Hs FK8 for D.X.C.C. but sedarate counts only hs FK8 for D.X.C.C., but separate
for D.U.F. award. His QSLs to Thomas Savelli. Box 28. Noumer. New Caledonia.
KZ5NR is at his new location for the next two years, using an inverted Vee on 40 and 80 . with a threc el. beam on the other bands. His operations include 3595 or 3865 . 0300 to 0500 , 7505 or 7205 from 0100-0400. QSL to WAgPZU. Activity has bcen reported from the Sudan, when ST2SA worked into the U.S.A. on 3507
at 04002 . He is Dr. Sid Ahmed Abrahim. Box 125. Mendal Hospital. Sudan.

Tim SVOWY is active from Levkas in the Ionian Is. and should be there for a year. He will shortly have a SB200 into a Quad.
but for the present is most likely to be found but for the present is most likely to be
around 14015 CW . QSL to SVO Bureau.

Activity continues from French Somaliland. with FL8MB on 14208 working from a list
prepared by 723AB. also FL8RC often on 15 CW. the Intter's address being Claude Ribouti. B. P. 372, Djibouti. TFAI.

Our VK3 OSL Manager. Eric Trebllcock. advises that WB2UKP is QSL Manager for BV2A only for QSOs made after 1st Nov..
1868, all prior to that go direct to BV2A. Also 1868. all prior to that go direct to BV2A. Also
Eric says that all QSLs for VK9RY go to the VK9 Bureau and not to VK3. Finally, exVK3AAM cards go to G6XJ. Eric continues ro amaze me with his activity. The list of DX to cope with the VK3 Bureau and sundry other activity as well.
Of possible interest, some of the DX heard here is Gs.iFF/MM In the South China Sea: Sicily: Mac ZSILK, with a fantastic signal on 20 SSB at around 20002. says QSL to Box 443. Somerset West. South Africa. KR6RH coming in 559 on 80 metres a few nights ago at $1000 z$ With no takers. Ed JSW WUH operating from
Spitzbergen Is. whuss. whilst not DX, is of special interest. he operates from the U.S. Senate and issues a very attractive certificate for the QSO. He goes to ARS W3USS. U.S. African stations have been pouring in here at around 19002 on 20 metres. particularly from Kigali. with a 40 db . over 8 sisnal a couple of Kigali, with a 40 db . over 8 signal a couple of
weeks ago. Leo can be reached via the I.S.W.L. also.

NEW PREFIXES

CW was a special prefix used by the UrugUayan stations during last year's "CQ" Contest. stations in Jupan. OI was a specinl issue to a Finland station for the last Scout Jamboree. gis was used by zambia to commemorate their 5th year of independence. CS and Cu were to be used by the CTI gang during the last ". CQ " $\mathrm{W} . \mathrm{W}$. Contest. CTI gang during the last

AWARDS

Rome Centenary Award.-For working Rome stations in 1970. VK stations, in fact all countries other than Europe. need 8 points, each QSO counting as one point except for those made on Sept. 30. which count as three points.
GCR llst plus 8 I.R.C's to A.R.I., Box 361 . GCR IIst plus ${ }^{8}$ I.R.C's to A.R.I. Box ${ }^{361 .}$
Rome. Italy, by Mar. 31. 1971 . Avallable to S.w.1's also.

ZM Award.-There has been quite a lot of enquiries coming to me as to whether this
award is avallable to S.w.l's. In actual fact it is and Charles Thorpe of VKs was amongst the earliest recipients.
Mayflower Award.-To commemnrate the
350th annlversary of the sailing from Plymouth of the Pilgrim Fathers for America. All proft from this awurd goes to the fund for providing Amateur Radio equlpment for the Cheshire Homes. Oversess stations need to Work fiye
stations in the city of Plymouth. all QSLs from Jan. 1 this year. Alyo avallable to S.w.l's. the cost being 8/6 sterling. made pilyable to and check list to GSVUC. Fillace Park. Horrabridge. Yelverton. Devon. PL20-7TE. England. South American Award.-Thls awiard requires QSLs from CE. CP, CX. FY, HC, HK. LU, OA. QYLS PZ. YV. ZP, CX. FY, HC, HK. The alplication, together with QSLs plus one dollar U.S. to HC1TH. Box 583 . Quito. Ecuador.
S.W.L. Club Activity of Idkerberse by the for working \boldsymbol{H} number of stations in Lien W Providence of Dalccarlla. Sweden. The require 15 stations. Class B 10 stations. Class C 6 stations, and Class $D 3$ stations. hase to be worked after Aug. 15. 1987. on any band or
mode. Fee is one dollar or 10 IRCs for the mode. Fee is one dollar or 10 IRCs for the basic nward. seals for higher classes need two more 1RCs. Applications to Awards Manager.
Box 209. S-780 24 Idkerberget. Sweden. To Box 209. S-780 24 Idkerber
SWLs on a heard basis also.
Manltoba Centenary Award.- Five points per VE4 station per band per mode usling 1970 QSOs only. 100 points needed,
L.A.C.A. Award.-This is quite a simple one which you can obtaln from Boys Life Radio Scouts of America New Brunswick NJ. 08900 . N.J.. U.S.A. All you need is one card from ench U.S. call area olle to zero. no charge and is nvallable to SWLs also.
On the subject of Awrids. quite often one comes along which we don't happen to hear about. so if you hapden to come across any have the detalls. also their avallability to SWLs.

CONGRATULATIONS

Whilst this item has no direct bearing on the purpose of this page. that is to provide DX Information. it will be of interest to many Amateurs and SWLs allike. Many of us started
to have an interest in Radio through the excellent articles written by Art Cushen in the earlier days of the magazine "Electronics Australla'. Art is totally sightless. but despite others in the radio field, and has spent much time doing welfare work for the blind. For his services to radio, broadcasting. journalism and blind wellare. Art was awarded the M.B.E. in the New Year's honour list, and I would like to add a word of congratulations to hint cn behalf of ine many w.i.A. members whe
On the subject of the aforementioned magazine, recently I had cause to reply to one of their queries from a newcomer to the radio fraternity on the subject of identifications for SWLs. My reply recelved a full "appearance" In one of their feature columns. and shority
Hfter its release i was inundated with letters Hfter its release 1 was inundated with letters
from young and not so young chaps who wanted trom young and not so young chaps who wanted
to know more about the various aspects of Amateur Radio. These chaps were from a group outside the reach of the Y.R.S. nnd Radio Clubs, and 1 have done my best to
assist them, however there is apparently a vast untapped reservoir of interested persons who could be recruited. I will be following up ihis lead at once. but I would like to hear from to assist any enquiries to whom are prepared them. Judging by the lack of activity on the DX bands. desplte the AX prenx. We should follow hoty on the trall of any chance we follow hotly on the numbers.

MORE QTHs

3VBAL_Fred Powell, A.I.D. Mission, U.S. Em-SA1TK-Box 3363 . Tripoli, Libya.
5A4TE-Box 6327. Tripoll.
SB4ES-Amateur Radio Club. The English 5L2F-C/o. Radio Station ELWA. Monrovia. Liberla.
(Continued on Page 24)

Overseas

Magazine $R_{\text {eview }}$

Compiled by Syd Clark, VK3ASC

"HAM RADIO"

November 1906-
What's this we hear about op. Amps. by wB2EGZ. The title just about describes the author's intentions. Describes Operational Ampliniers, what they do and how they are used. 17 plus pages text, photos and diagrams.
A Fixed Tuned Receiver for WWV. W6GXN. A relatively simple transistor/IC circult for reception of WWV on your favourite frequency $-15 \mathrm{MHz}$
A Maltiband Lonc-Wire Antenna, W3FQJ. Some 300 feet all told. No traps, some jumpers.
One More Electronic Keyer, VE7BFK. ICs and other solid state components in a solid constructional article.
Antennas and Captore Area, K6MIO. Some theory you may not have seen elsewhere.
Increased Sideband Suppression for the HT3\%, W3CM. None of 'em are perfect. If you own one this could be for you.
K6HIJ. Gain is stated to be 24 db ave Antenna, K6HIJ. Gain is stated to be 24 db . at 3335 MHz . A Tone Modnlated Sirnal Generator for Two and SIx Metres. WABOIK. Crystal locked, too. Solid state two transistor.

B1g Beam for Six Metres, W4ERO. Colinear. Repalr Bench. Tuning Up SSB Transmitiers. The good oil.

October 19615-

Hot Carrier Diode Converter for Two Metres, K8CJU. Something new and complete instructions. too.
A Practical Discussion on Product Detector Operation, VE3GFN. One for all the sidebanders.

Hot Carrier Dlode Nolse Blanker W4KE. HP's baby seems to be finding its way into more and more equipment. HP even have light emitting diodes at $\$ 5$ or $\$ 6$ plus tax.

Low Cost Integrated Cirenit for Amateur Equipment, WA7KRE. Simple new consumer ICs should appeal to the home builder who is looking for superior performance with less complexity.
Improving the F.M. Repeater Transmitter for Amatear Use, W6GDO. These simple modifica tions increase circuit Q and provide improved performance through lower receiver de-sensitisation.
Construction of Hich Frequency Diversity Antennas. W2WLR. Complete details on build ing new designs described previously in "H.R." magazine. IThere are three varieties of diversity operation: space diversity, frequency diversity and polarisation diversity.-Ed.)

Solid State Exclier for 432 MHz., WiOOP. Here's a solid state exciter that converts 20 mW . of two metre drive to 32 watts on 432 MHz.

Calculated Received Power in a Radio Communications Link, WIEZT. A detailed analysis of just what happens to the hard-earned watts from your transmitter
An Automatic Two-Way DX Beacon for VHF KV4FU/K6EDX. Simple method of ensuring that you will be there during band openings.
High Linearity Voltage Controlled Crystal Osclliator, WB6IOM.

"HAM TIPS"

This month I have for review a number of issues of R.C.A. Ham Tips kindly supplied by A.W.A. Ltd.

Vol. 26, No. 3: RF "Sample Box" for 'Scope Monitoring of Amateri Transmitter Ontpat. by W2GQK.
Vol. 26 No. 4: A Solid State AM Transmitter for Two Metre Operation. WB2EGZ.

Vol. 27. No. 2: A VFO Calibrator, W2YM.
Vol. 27 No. 3: Using the MOSFET as a Pro duct Detector and AGC Gate, W3KDT
Vol. 28 No. 1: R.C.A. Sllicon Power Plastic Transistors in a Rezulated DC-to-DC Converter WB2EGZ. 2 . Andio Control System SSB, W2YM.

"RADIO COMMUNICATION"

December 11001-

The Integrated Clircuit Approach to AGC. G3PDM. Some very interesting ideas. Good for those with access to a transistor farm.
The GHARV Two Watt Two Metre Transistor Transmitier, G8ARV. G6SDB/T. Diagrams and pictures.
Technical Toples, G3VA. G3PDM high stability FET Vackar oscillator, continuously variable bandwidth filters, monitoring drive voltages, rang me at the office please call again.)
Aerials and Planning Permission, G3JAG. Could help some VKs.
A Bistable for Relay Control, G3XGP.
Band Pass Filters, G6JP.
Reflections on aridge. G8ON. The SWR bridge is not an "island"
Changing to Metric in the U.K., E. Chicken, M.I.E.R.E. The differences between the Metric and Imperial systems are discussed and the Metric system is shown to have numerous advantages. This will be of interest to Australian Amateurs also because Australia is also committed to "metrication" in the long term. With the change to Metric measure will come many alterations in dimensions of various proning shaft instance the familar 6 become 6 mm ., some 0.010 inch smaller.

"RADIO ZS"

November 1964-
Portable Extending Radio Mast. ZS6ET. Five sections of square section tubing 18 s.w.g. 10.044 Inch which telescope one Into the other. Top section is $1 / 2$ inch. The whole ends up about 24 ft . tall with two sets of nylon or similar guys. 17 s.w.g. tubing will telescope if bought in $1 / 8$ inch rises.
160 Metre DF Recelver, ZS2PD. To hunt that 160 metre hidden tx.
Two Valve Complete SSB Transmitter, by zS2PX. 12AU7 and 6V6 in a phasing rig for one band.
A Method of Eyalating Slide Rule Answers. ZSIMM. For the mathematically inclined.

PREDICTION! CHARTS FOR APRIL 1970

Sub-Editor: ERIC JAMIESON, VKSLP
Forreston. South Australia, 5233.

AMATEUR BAND BEACONS

| VK4 | 144.390 | VK4VV, 107m. W. of Brisbane. | |
| :--- | ---: | :--- | :--- | :--- |
| VK5 | 53.000 | VK5VF, Mount Lofty. | |
| | 144.800 | VK5VF, Mount Lofty. | |
| VK6 | 52.006 | VK6VF. Tuart Hill. | |
| | 144.500 | VK6VE. Mount Barker (Albany) | |
| | 145.000 | VK6VF, Tuart Hill. | |
| | 435.000 | VK6VF | |
| | 52.900 | VK6TS, Carnarvon. | |
| VK7 | 144.900 | VK7VF, Devonport. | |
| ZL3 | 145.000 | ZL3VHF. Christchurch. | |
| JA | 51.995 | JA1IGY, Japan. | |

As far as I can ascertain the above list is correct. If there is something wrong with this isting would you please tell me now? Sorry I
missed VK6VF on 145.000 last month. Note that ZL3VHF is on the same frequency, but interference seems unlikely! Anyway, you can
always turn your beam to null out the offending beacon

Southern Australia, in general, has returned to some sort of normality following the gigantic 144 MHz opening extending from Albany in VK6 to Melbourne and possibly further east early in February. Bernie VK6KJ must have
worked an enormous number of 2 metre stations, maybe I can have the number for next tions, maybe I can have the number for next
issue. Many operators worked Bernle over issue. Many operators worked Bernle over and over again. Another six stations worked VK3NN at Yanac. quite a long way inland. Since then there have been a number of times Since then there have been a number of that
that the beacon VKGVE has been heard, probably the best being early on the morning of 25th Feb. by Colin VK5ZKR in Mt. Gambier, who reported signals to $S 9$.
Word has been received that the output of VK7VF is down quite a lot, but no doubt will has been heard of the progress on the construction of the beacon supposedly to be erected in VK3, nor any moves in VK2 to establish one so far.
U.H.F. RECORDS

Records are only made to be broken by others. I suppose. but they have certainly been tumbling lately. Firstly though, I want it known to a few ears that the contacts by
Bernie VKBKJ into Melbourne do not constitute a 144 MHz . record. They certainly do for VK to VK contacts, but Hughie VK5BC still holds the overall record by working into ZL2 several years ago, but VK to VK will need something akin to Bernle working someone in VK4 to for the future now that VKt have their beacon running. However, back to the discussion on
 record has been broken, but only by a few miles, so those checking the distances will need to be pretty sure of themselves. The contact was between Tony VK5ZDY at Stirling Peter VK3ZYO at South Oakleigh, not far from Melbourne. The distance is reputed to be from Melbourne. The distance is reputed to be
410 miles. Whether this finally settles to be the record or not. It certainly is a very fine 1 effort by these two gentlemen and with signals with a big thrill. The outcome is awalted with interest
The prize winning plums of course must go been made and broken. Ron VK3AKC at Geelong and Wilf VK7WS at Burnie have been keeping skeds for four or five months and their efforts were rewarded on th Feb. too two-way contacts were made at 2000 hours EST. Reports were VK7WF 449 and Ron 549 , the distance being 223 miles, shack to shack. The next day. 5th Feb., at 1745 EST they exchanged phone signals at S9. Later, the same Wilf with reports: VK3ZKB 1×7, VK7WF x 5. Kevin is at Nunawading, about 21 miles further north than Geelong, making a distance of about 250 miles, and thus snatching the record of a few hours' duration from Ron. Such is the luck of the game of course. but congratulations are due all round, and Ron has the consolation that through his continued
band, In excess of that earlier made in VK4 Following are a few brief details of equipmen used, kindly supplied by Peter VK3ZYO.
VK7WF: Varactor type MA4060 tripler from 144 to 432 MHz ., followed by 3CX100AS valve tripler to 1296 MHz ., using the R.S.G.B. strip line design. The 2 metre exciter is an s.s.b job with carrier reinserted. The rx line-up is a crystal diode mixer to a FES i.f. amplife
VK3AKC: Radial cavity tripler 2C39BA, running 3 watts output, with both the 432 MHz driver and the 1296 MHz . ripier being modu lated. Seven-foot dish with slot fed dipole about 40 feet high, 1N3ER diode mixer to 144 MHz. 1.f.

VK3ZKB: Solid state equipment to 144 MHz . then MA4060 varactor to 432 , giving about 20 watts, then into a u.h.f. iransistor base-collector Junction as a varactor, with about 3 watts MH2. first i.f., 2.4 MHz . 2nd i.f. Four-foot dish about 30 feet high.

Another long haul contact on 432 MHz was between Ray VK3ATN at Birchip and Wilf VK7WF on 5th Feb. This was at first reported in various on-air conversations as being a new
record, but checking has revealed that this is record, but checking has revealed that this is
not so, the distance being about 370 miles not so, the distance being about 370 miles, ticipants would be well pleased.
Bob VK3AOT sends a very newsy letter, and some excerps are quite interesting. His cara van trip to Mt. Buninyong during Jan. netted him 420 contacts for elght days operalion on 52, 144 and 432 MHz . Filled with the joy of that period, he went out to Mt. Buffalo for the John Moyle National Field Day week-end. And what a week-end! A last-minute change of cars meant he could only take low power equipment with him, due to weight problems. These were not his only problems? First blow out. These fixed, Bob was blinded by the sun gaing up the mountain and crashed into ditch damaging the car but worse still, wreck ing his 32 element 432 MHz . colinear. Finally they made it, 15 hours after leaving Melbourne for a distance of 150 miles . They called their heads off for 15 contacts only, leaving for home heads of for 15 contacts only, leaving for home them to get only 6 miles in the first hour. them to get only 6 miles in the first hour. in crash! Finally got to within 15 miles of home and another puncture, this time towed to garage, home at 0100 . All this would be just about enough to kill anyone's enthusiasm but Bob indicates he expects to 80 to
Buninyong over Easter with 52 , 144,432 and 1296 MHz . gear. Best contacts irom Mt. Buffalo were to AXIACA/1, the Canberra Radio Club on Mt. Ginini, and VK2ZKP/2 on Mt. Canobolis. Bob reports VKIACA worked Ron VK3AKC at Geelong and Geoff VK3AMK at Frankston, and a couple of others for distances of some 300 miles over mountains. And on the Sunday morning of the N.F.D., Lance VK2ZKP/2 worked AX3AWI/3 on Mt. Blue, a distance of about 450 miles. A good effort.
Interested to note a comment in the VK6 V.h.f. Group News Bulletin that the John Moyle N.F.D. created virtually ho v.h. inter est in that State, principaliy because 52 the opened to the eastern States. General opinion indicated that from their viewpoint, the N.F.D. was limited to the h.f. bands.
The contribution from VK5 for this year's N.F.D. would not be very great I am thinking While the Eastern States were basking in good While the Eastern States were basking in good ditions, producing contacts over many hundreds of miles, the weather in S.A. was foul to say the least. On the Saturday century heat conditions prevalled, culminating in the hottest day on the Sunday for 12 months, with the mercury around 105 degrees for hours on end. John VKSQZ and myself went out on to Mt . Gawler, some 15 miles north-enst of Adelaide for the Fleld Day. All the gear was mounted In a caravan and we were operational on all bands from 160 metres to 432 MHz . Due to the hot weather, v.h.f. conditions just did not exist to allow contacts other than local and we ran up the poorest score ior years on these bands. I am sorry to have to admit it, but with us, we would have twiddled for most of the period! We finally packed it in on the Sunday after sweltering in the caraVan for hours, before 0900 it was above 100 degrees, reaching 112 degrees at 1030 . When got almost red hot around 1200 we went home Undaunted, however, we will try again next Ross AX4RO writes indicating quite a lot of interest hy himseli and the rownsville Amateur Radio Club in the suggested message handing of a few months ago. It appears the Townsville Club are probably able to look
after the gap which exists in that state by
manning a station at Bowen to get the message to Townsville and then on to Cairns. There is stil one gap around Mackay which needs to bea and 1 am looking ior some help in thisone able to operate some 2 metre equipment in thnt area. Having achieved this, then I think the message can get under way. There then seems to be very little reason why a signal cannot travel from VKS at least to northern VK4 and back again in a short period of time. I am currently looking into the matter of trying to bring the VK6s into it. More details as soon as possible.

AUSTRALIS OSCAR G
The 144 MHz . beacon on Oscar 5 has finally gone into silence after operating so efficiently or several weeks, and giving more Amateurs the thrill of hearing a signal irom space than any former orbiting package has done. The signal was so strong on occasions that with even rapid tuning of the band would make anyone stop and isten. The depth of modulaion on the beacon was excellent and it is a reat pity the 29.450 MHz . beacon is not workng so well. All in all, however, a triumph of and I feel sure I speak for the Amateur fraernity when I say "A job well done". These notes need not go further at this stage on this matter as I am sure a full report of the performance of Oscar 5 will appear in "A.R." from he pens of those more intimately concerned. DX on 6 metres has now subsided except for on occasional opening, but this has certainly been compensated for by 144 MHz . Colin VKEZKR in Mt. Gambier writes that the boys down there have been right amongst the DX. dding that he had worked during February , 3,5 and 7, while Ray VK3ATN went week-end as well. Amateurs in the various southern States will be interested to know quite an upsurge in 432 MHz actlvity is likely oon from Mt. Gambier Colin VKSZKR is lready on and now Chris VKSZFA is operating on s.s.b. with a QQE06/40 mixer. Col VK5CJ and David VK5ZOO are both building converters and Eric VK3ZTN at Hamilton showing quite a lot of interest. For antennas, the 32 n for a lot of arnay by a currently coming using it. Colin says the path between Tony VKSZDY at Stirling and himself seems to have shortened since erecting one himself, signals being considerably improved over the original 16 element phased array. Anyway, there may be no one left on v.h.f. In Mt. Gambier soon when we hear all the Z call chaps down there are swotting Morse and hoping to sit for the I. examination later this year!

Before cloging here is the thought month. nonth: "It is not true that women want great deal. A woman is quite content with very little. if that very little is precisely what she wants; if not. then nothing is enough." Hope everyone has a real "ball" with DX over te Easter week-end

73. Eric VK5LP. The Voice in the Hills.

MEET THE OTHER MAN

Meet Eddie Penikis, 8/11 Northbourne Flats, Canberra City, VKIVP, formerly VK2AVP and VK9VP. Eddie has been known to hundreds of 6 metre operators for years and has ceralnly done much to keep Canberra on the adio map, so much so that he is a Lifc Member of the Canberra Radio Society. First icensed in 1952 , edde operates on 52 . 144. many operating modes. His home station's details are as follows. briefly: 52, on c.w./a.m./ s.s.b. I.m.. runing a el. yagi 45 feet high. Transistorised con-
verter with SE5020 in front end. On this band, Continued on Page 24)

Eddie Penikis, VKIVP

Correspondence

Any opinion expressed under this heading is the Individual opinion of the writer and does not neccssarily coincido with that of the Publishers.

INTFRFERENCE FHOM RADAR-TYPE PULSES

Editor "A.R.." Dear Sir.

For some time past radar type pulses have been heard intermittently but loudly across the h.f. spectrum. At times the pulses exceed 59 and on the 15 and 20 metre bands are often heard simultaneously in Australia and Eurode. The format of these "clicks" is a short train of sharp pulses apparently of high power repeated at short intervals and followed by clearly recognisable echoes.

On occasions the resultant composite interference is so persistent and strong that even s.s.b. valce communication is interrupted. iNarrow band communications are not so seriously affected.)

On the night of 12th February when this noise was particularly persistent. I tape recorded a 15 -minute sample showing how the pulses affected Amateur operation on the 15 metre band. This has been passed to the District Radio Inspector together with a formal request that something be done to minimise this type of emission.

The "signal" apparently originates in the Central Pacific and is sald to bc part of an exotic (American) ionospheric prediction system. which although attracting unfavourable comment from several sources, scems destined to continue unless the level of protest rises considerably.

Would members who are concerned about the selfish type of use of the h.f. spectrum in Region 3 please lodge an appropriate protest with elther their local R.I.. their W.I.A. Counclllor and/or the A.R.R.L.?
-Col Harvey, VKIAU.
| Better still. refer it to your Intruder Watch Co-ordinator.-Ed.]

ALSTRALIA-AND CAPTAIN COOK Editor "A.R.," Dear Sir.

I refer to VKIJG's opinion expressed on page 26 of "A.R." Mar. 1970, in which he makes an rwful "boob." in my opinion, by saying that he hears "nonsense on the ali"" in relation to the Australian call signs, and then offers his version of what the "so-called" nonsense should become.

I refer Mr. Gcorge to the Radio Regulations, Gencer 1988. page 234. Regulstion 772/21if) which, in relation to call signs, reads as follows:
'Amateur and experimental stations-onc or two letters and a single digit other more than three letters'
and

- 773 12 However, the prohlbition of the use of the digits 0 and 1 does not apply to amateur stations".
To the writer and, I hope, to all average, clear thinking readers. the aforesilid regula tions clearly scts out the Amateur Radio call sign position.

Insofar as VKIJG is concerned, I feel it's a case of the boot being on the other foot, with "all this nonsense on the alr" belng applicable to Mr. Genrige if he introduces the word "Australia" into preceding his call sign. -Eric Trebllcock, AX-L3042.

"SIT AND THINK"

Editer "A.R.." Dear Sir,
I wish to offer my sincere congratulations to those responsible in the Wircless Institute of Australia for the Inauguration of the Cook Bi-Centenary Award. In line with other seg ments of our Australian community, we cer-

CHANGE OF ADDRESS

W.I.A. members are requested to promptly notify any change of address to their Divisional Secretary -not direct to "Amateur Radio".
tainly have something to celebrate and I think the majority of Amateurs will support the W.I.A. in a magnificent effort to create sreater interest in our young country by communicaion with Radio Amateurs throughout the world
Monltoring the 20 metre band since the beginning of January this year, I have noticed a welcome increase in c.w. and s.s.b. activity and from comments on the air it would appear that the AX Award has contributed to a large degree to this increased activity.
However, as the English mathematician, Sir Isaac Newton, stated in 1700, "To every action there is an equal and opposite reaction', I now refer to an international incident monitored recently on the 20 metre band:
Scene 1: American Amateur: "Say OM, you are using the VK prefix, how about the $A X$ prefix to give me another contact?'
Australian Amateur: "Sorry OM, I don't alter my call sign for anybody."
Scene 2: American Amateur in a long QSO with a VKS over the long path. American asks for an AX prefix. Australian Amateur disoppears.
Scene 3: A VK2 character, well known for his sales abllity, stated on the 40 metre band: "Captain Cook did not discover the East coast of Australia and I will not use the AX prefix."
Scene 4: Have a listen to the VK2 characters who work a dally net on 7.1 MHz ., particulariy at 9 a.m. after they have had a bad night and try to get an AX prefix out of them.

I conclude by suggesting that there are a number in our ranks who should sit and think. and having sat in contemplation, thank the good Lord that they are part of a young country built on a heritage of courage and endeavour.
I awalt their reply
-Wal E. Salmon, VK2SA.

> RADIO TELETYPE INTERFERENCE Editor "A.R.," Dear Sir,
> From conversation with other Amateurs it appears to me that a lot of r.t.t.y. Amateurband interference is blamed on Amateurs. Those who may be interested in the encroachment on the Amateur bands should note that, in my experience anyhow, Amateur r.t.t.y. operstors transmit Just outside the phone bands in the c.w. section only lover a narrow section at thatl.
> It is a very simple matter to determine if the r.t.t.y. operator is an Amateur as QSOs are of the same form as phone QSOs. of comparatively short duration, and also the Amateur finishes each over with his call sign in c. W .

> So be happy in the knowledge that the r.t.t.y. QRM spoiling the bands, 20 metres especially, is not caused by your fellow Amateurs.

-Peter H. Brown, VK4PJ.

OBITUARY

VINCBNT JEFFS, VK\&VJ
The VK4 Division recently suffered a severe loss in the passing. aged 58 years, of Vince Jefis. VKiVJ, an extremely popular member. who was comparatively recently elected a Life Member for his recentiy elected a Life
services to the Division.

Vince, who passed away while in hospital, had some two years ago retired from business because of ill health and, while in hospltal on that occasion had the misfortune to lose his wife.

To son and married daughter, VK4 members extend their sympathy.

Vince, licensed in 1931, was one of the earliest experimenters on s.s.b. and in the use of transistors. He willingly passed on his knowledge.

His interest in field days. Scouting, conventions, etc.. was evinced by his full participation, while he operated VK4WI for a time and as a capable telegraphist he handled Morse sessions.

Vince. well spoken and with a fine sense of humour, will be missed for many days.

CONTEST CALENDAR

Until 19th April: I.A.R.C. Propagation Research Contest iPhonel.
11th/12th April: "CQ" W.W. WPX S.s.b. Contest 15th/16th August: Remembrance Day Contest.
3rd/4th October: VK/ZL/Oceania DX Contest, Phone Section.
10ih/11th October: VK/ZL/Oceania DX Contest, C.w. Section.

10th/11th October: R.S.G.B. 28 MHz . Phone 24th/25th October: R.S.G.B. 7 MHz . DX Contest (C.w.).
7th/8th November: R.S.G.B. 7 MHz . DX Contest (Phone).
5th Dec.. 1970, to 11th Jan.. 1971: Ross A. Hull V.h.f. Memorial Contest.

WIRELESS INSTITUTE OF AUSTRALIA FEDERAL EXECUTIVE

The Institute can now offer annual subscriptions to following Amateur Journals:
\star "OST"—Associate membership and renewals, \$6.40.
\star R.S.G.B. "Radio Communication" (ex "The Bulletin") is only sent with membership of Society. $\mathbf{\$ 5 . 5 0}$. Send for application form.
\star "CQ" Magazine, \$5.70; Three Years, \$13.50.

* "73" Magazine, \$5.50; Three Years, \$11.50.
\star "Ham" Magazine, \$5.50; Three Years, \$11.50.
R.S.G.B., A.R.R.L., "CQ" and "73" Publications available.

Send remittance to Federal Executive, C/o. P.O. Box 36.
East Melbourne, Vic., 3002.
Receipt of your first issue will serve as acknowledgment of your sub. Allow six weeks for delivery.

FEDERAL AWARDS
COOK BI-CBNTENART AWARD
The following additional stations have qualified for the Award:

Cert. No.	Call	Cert. No.	Call
41	KG4AL	73	AX4XJ
42	AX5EJ	74	ZM3AAA
43	AX8RO	75	2M3TC
44	AX3HL	76	W5QKZ
45	AX7KW	77	ZM1QW
46	AX3ZE	78	VQ8CR
47	UB5WE	79	AX4HA
48	XW8CS	80	AX4DV
48	AX6WT	81	OH2BAD
50	AX9BS	82	VS6AM
51	KA9MF	83	KP4CL
52	UA9BE	84	ZM2BGV
53	HRIWSG	85	KG4AS
54	CPIGN	86	HRIKAS
55	LA8JI	87	AXSEF
56	ZM2GJ	88	KH6IU
57	ZS5PG	89	G3UXN
58	ZLIAMN	80	ZM2LJ
59	AX2EK	91	AX6RU
60	AX7BJ	82	W6RU
61	AX4VX	93	W1AA
62	W3ATO	94	K6GKU
63	AX7DK	85	DLIMM
64	AX2XT	96	HSIABA
65	AX4WY	97	WA5SMM
66	AX8KA	98	AX3GA
67	2M3HN	99	AX2KK
68	A ${ }^{\text {20, }}$ Q	100	ZLSVX
69	KP4AST	101	2LANH
70	G3VPI	102	AX3EF
71	AX2PF	103	DJ5DA
72	JHIEXV		

VK3 S.W.L. GROUP

REG18TRKED 8.W.L. NUMBERS

Due to the fact that the Short Wave Listener Groud have been without a Secretary for some time, records have got into arrears. We are happy to announce that the position has now been flled and we want to rectify any anomalfes that could exist.
Would all members who have applled for an S.w.l. number and have not as yet recelved it, please communicate direct with the Secretary. who will then answer by return mall.

Please contact:

Mr. E. Milton.
21 King Willinm Street.
Reservoir. Vic., 3073; or Phone 47-1376.

Swan Electronics Service Co.
Accrealted Distributor for
Swan, Hallicrafters, etc., Receivers and Transmitters
Specialised Service on all Swan Transceivers
14 Glebe st., edgecliff, N.8.W., 2027. Ph. 32-5485
REPAIRS TO RECEIVERS, TRANSMITTERS
Constructing and testing: xtal conv., any frequency; O5-ors, R9-ers, and transistorised equipment.

ECCLESTON ELECTRONICS
146a Cotham Rd., Kew, Vic. Ph. 80-3777

CAPTAIN COOK BI-CENTENARY CELEBRATIONS, 1970

Expedition to Cape Hicks

During April 1970 representatives of the Victorian Division of the Wireless Institute of Australia will be operating an Amateur Radio Station at Cape Hicks, the first point of the Australian coastline sighted by Captain Cook in 1770. The Amateur Radio Station, using the call sign AX3AWI/Portable, will contact Australian and overseas Amateur Stations during the three-day period of operation.

DETAILS

Date: 18th, 19th and 20th April, 1970.
Call Sign: AX3AWI/Portable.
Location: Cape Hicks, Victoria, Australia.
Bands: 15, 20, 40, 80 and 160 metres, also v.h.f.
Times: 0200 GMT $18 / 4 / 70$ to 0200 GMT 20/4/70.
QSL and Awards-A special certifcate and QSL card will be issuedapplications via VK QSL Bureau, or direct to address below.
Further information can be obtained by contacting Russell Kelly. AX3AG, Divisional Secretary, W.I.A. Vic. Div., P.O. Box 36, East Melbourne, Vic., 3002.

W.I.A. D.X.C.C.

Listed below are the highest twelve members in each section. Position in the list is determined by the first number shown. The first number represents the participant's total countries less any credits given for deleted countries. The second number shown represents the total D.X.C.C. credits given, including deleted countries. Where totals are the same, listings will be alphabetical by call sign.

Credits for new members and those whose totals have been amended are also shown.

PRONR			
VK5MS	316/340	VK5AB	297/314
VK6RU	313/338	VK4KS	289/304
VK3AHO	311/326	VK4FJ	285/305
VK4HR	309/328	VK4TY	284/288
VK2JZ	307/325	VK2APK	277/283
VK6MK	303/323	VK3TL	271/277
New Members:			
105	VK6		
108	VK3	Z 103	
107	VK5		
VK3AMK	211/211	VK4RF	180/160
VK5BB	190/193		
C.W.			
VK3AHQ	301/315	VK3YL	272/289
VK2QL	300/323	VK3XB	270/287
VK4FJ	290/315	VK3ARX	269/278
VK4HR	287/309	VK6RU	288/289
VK2AGH	282/296	VK3NC	263/286
VK2APK	274/282	VK4TY	259/272
$\begin{aligned} & \text { Amendment: } \\ & \text { VK4RF } 146 / 158 \end{aligned}$			
OPBN			
VK6RU	314/339	VK6MK	304/324
VK4HR	313/338	VK2EO	302/325
VK2AGH	312/332	VK4FJ	297/322
VK2VN	308/325	VK2APK	284/305
VK4SD	306/321	VK3ARX	292/301
VK4TY	306/321	VK4KS	290/309
Cert. No. New Member: 122 Call CK5EF $101 / 100$			

SILENT KEYS

It is with deep regret that we record the passing of -

VK3KX—Ronald Tandy L-3324-Jeff Van Loon VK4VJ-Vincent Jeffs

HAMADS

Minimum $\$ 1$ for forty words. Extra words, 3 cents each.
hamads will not be published unless ACCOMPANIED BY REMITTANCE.
Advertisements under this heading will be accepted only from Amateurs and S.w.I's. The Publishars reserve the right to reject any advertising which. n their opinion, is of a commercial nature. Copy must be received at P.O. 36, East Meliboume, Vic.. 3002 , by 5 th of the month and remittance muat accampany the advertisement.

AD704 Comm./Nav. Recvr.. 108 to 136 MHz. . tpiple conversion. modular construction. Approximately 90 channels installed (20 crystals) of a maximum of 560 (3d crystals). 400 Hz . a.c. power supply but easily converted to external power supply. $\$ 40$. Phone 93-1638 (Melbourne).

FOR SALE: A.W.A. AMT150 Transmitter including power supply and spares. In excellent condition and complete with original transport case, 840 .
Also BCil47 Receiver Including iransiormer and aerlal. $1.5-30 \mathrm{MHz}$.. in good working order, $\$ 40$. Contact B. den Hertog. 41 Arcadia Road, Glebe Point. N.S.W., 2037.

FOR SALE: FR50 Receiver, six Ham bands only, plus WWV. perfect order with 12 v . transistor sup. ply. S150 o.n.o. One Palec Valve Tester with built in Multimeter, S15. One S.W.R. Meter. 75 ohms, S15. 62 Set, poor working condition and appear.
ance. with extra kit of valves, $\$ 25$ o.n.o. Call ance, with extra kit of valves, $\$ 25$ o.n.o. Call
Sunday or write. VK3ZZV, G. Fella, 8 Hilton St.. Glenroy. Vic.. 3046.

FOR SALE: Galaxy 3. S.s.b. Transceiver, complete with matching power supply and speaker, crystal callbrator and vox. \$325. Phone $560-0645$ (Melb.).

FOR SALE: Galaxy 5 Transceiver, perfect condition, with mic., vox. a.t.u., power supply, handbook, \$420. Phone Melb. 82-7308. VK3ZZX, 4/24 Auburn Gr., Hawthorn, Vic.

FOR SALE: General Coverage Communications Rx AR8 front end, double conversion, 18 valves. BFO. prod. det., S meter. enclosure incomplete. Photographs avallable. S70 o.n.O. WIA-L3377. T. Hambling. 88 Bayviow St., Williamstown, Vic., 3016. Phone 397-6773 (Melb.).

FOR SALE: Hallicrafter SX101, Mk. 2, Ham-band $\begin{array}{llll}\mathrm{Rx}, & 160-10 \text { melres. Switched SBs, xtal Cal.i. } 0.5 \\ \mathrm{KHz} \text { c wal Excellent performer, VK4FD. C. B. }\end{array}$ Steggink, 38 Moncrieff St., Bundaberg. Old., 4670.

FOR SALE: VK3APC Transistorised Amateur Band Recelver, 12v. d.c.. "S" meter. 3.5 Kc . marker (no xtal), professionally built; had little use. \$55. M. Batt. Rokewood Junction. Vic.. 3351.

FOR SALE: Yeesu Musen FR1008 Receiver and FL100B Transmitter, in mint condition. Switch on ix puts them in transceive and has extras such as WWV. xtal callbrator. FM detector, CW filter and extra xtals. Glft at SA5O. VK5AS. 39 Tapleys Hill Road. North Glenelg. S.A., 5045.

FOR SALE: $33-\mathrm{ft}$. Tilt-over Rotating Mast. Constructed of $21 / 2$ inch steam pipe. Very solid and has extension to 45 feet. $\$ 10$. Also brand new palr of GJS6B valves. $\$ 6.00$. E. Blackmore, 30 Breen Ave., Kyabram, Vic.. 3620.

WANTED: Approx. 15 KVA. Diesel Alternator for overhaul and installation at Mission Station. Write VK3ZAU. P.O. Box 71. Drysdale. Vic.. 3222.

Every month

45,000,000
 ELNA

Electrolytic Capacitors are wired into quality equipment throughout the world . . . proof that ELNA Capacitors are fully accepted and wanted by manufacturers everywhere.

NEW! 1970 CATALOGUE now avallable

SOANAR ELECTRONICS

PTY. LTD.
A \& R-Soanar Group Company
VIC. 30-32 Lexton Rd., Box Hill. 89.7323. N.S.W.: 82 Cartion Cres.. Summer Hill.

OLD.: R. A. Venn Pty. Lid.. Valley. 51-5421
S.A. Scott Thompson Pty. Lid.. Adelaide.
W.A: Everett Acjency Ply. Lid., West Leederville. 8-4137.
SOLE AUSTRALIAN AGENTS
 Also Hy-Gain 18AVO, 14AVQ, TH/3.

ANTENNAS
$\$ 53$ plus tax
". "

S37 ..

115 plus tax
TA32Jr Tri-Band
TA31Jr Tri-Band
ONICS
W.F.S. ELECTRONIC SUPPLY CO.

12 Bowden Street, North Parramatta, N.S.W., 2151. Phone 630-1621 also SWAN ELECTRONIC SERVICE, 14 Glebe Street, Edgecliff. N.S.W., 2027

Available from your Division or usual supplier

AUSTRALIAN RADIO AMATEUR CALL BOOK
 1969-70 EDITION

Price 75c

K.W. ELECTRONICS KW2000B TRANSEEIVER

COVERS 10 TO 160 METRES

\star Six-band operation.
\star Lift-up inspection lid
\star Two-speed V.F.D. tuning.
\star Mechanical Filter provides passband for SSB.
\star No external antenna switching required
\star Independent transmit and receive frequencies or true transceive operation.
$\star 180$ Watts P.E.P.
\star Matching AC power supply with built-in speaker.
\star Side Tone Monitor for CW.
\star Crystal controlled Receiver first mixer.
\star Output Impedance adjustable.

* Easy to install in a vehicle for mobile operation.
* Lightweight. attractive, robust and efficient.

Write for Technical Leaflet
sole aumatien neget SIDEBAND RADIO
73 COLE STREET, ELWOOD, VIC., 3184
Phone 96-1877

EDDYSTONE H.F. Communications Receivers

Model
 "940"

 "940"}The Eddystone " 940 " is a general purpose communications receiver covering from 480 KHz . to 30 MHz . in five overlapping ranges. It is suitable for the reception of CW, AM and SSB signals, and by reason of the two RF and two IF stages incorporated, a high performance is secured throughout the frequency ranges.
Amateur Net Price: $\mathbf{\$ 5 4 0 . 8 8}+25 \%$ S.T.
"EC1O" Transistorised

RUGGED - COMPACT - LIGHT!
Designed for Commercial and Amateur use
General purpose coverage- 550 KHz . to 30 MHz .

Amateur Net Price: $\$ 179.40$ plus $\mathbf{2 5 \%}$ Sales Tax

FEATURES-

- Adequate bandspread, correct degree of selectivity for the various modes of signal, ease of tuning SSB signals, and frequency stability.
- Continuously variable selectivity in the 100 KHz . second IF stages, crystal filter can be switched in to give an extremely narrow band for CW.
- Mode switch selects either upper or lower sideband.
- Large S meter, each division 6 db . change of level.
- Image rejection better than 50 db . at highest frequency and proportionally greater at lower frequencies.

FEATURES-

- Cascode type 1st RF amplifier stage.
- Separate RF and AF gain controls.
- Three selectivity positions-broad 10 KHz ., narrow 4 KHz ., crystal filter 400 Hz . (with panel-operated phasing control).
- Panel-mounted carrier level meter.
- Separate detectors for AM and for CW/SSB.
- Efficient Noise Limiter.
- Gear-driven slow motion drive and vernier scale.
- Image rejection: At 1 MHz .40 db ., at 8 MHz .75 db ., at 20 MHz 40 db .
- Push-pull audio output stage.

Model "EA12"

The Eddystone "EA12" is a model specially designed for use by Amateur Radio operators and covering the six major Amateur bands from 1.8 MHz . to 28 MHz . It possesses an exceedingly good electrical performance and will produce first-class results with all modes of signals.

Amateur Net Price: $\$ 563.12$ plus 25% Sales Tax

608 Collins St., Melbourne, Vic., 300034 Wolya Way, Balga, Perth, W.A, 6061
Phone 61-2464
64 Alfred St., Milsons Pt., N.S.W., 2051
Phone 929-8066

Phone 49.4919
L. E. Boughen \& Co., 30 Grimes St.

Auchenflower, Qld., 4066. Phone 7-4097

The World's Most Versatile Circuit Building System!

SIZES: $1 / 8^{\prime \prime}$ and $1 / 16^{\prime \prime}$ WIDTHS
Length: 100 ft . roll, 5 ft . card
IDEAL FOR PROTOTYPE AND PRODUCTION
CONSTRUCTION
USEFUL FOR WIRING REPAIRS

* NO DRILLING * FAST * NO MESS

Available from all Leading Radio Houses

Marketed by-

ZEPHYR PRODUCTS PTY. LTD.

70 BATESFORD RD., CHADSTONE, VIC., 3148
Telephone 56-7231

MANUFACTURERS OF RADIO AND ELECTRICAL EQUIPMENT AND COMPONENTS

Modern SSB by Yaesu! from Bail Electronic Services

transceiver model FTDX-400 Latest version with all improvements, including crank handle high ratio VFO tuning control. Also has provision for power take-off and RF drive to enable use of FTV-650
six metre transverter. External VFO, FVDX-400, is available for split freq. operation. COMPARE THE FEATURES:
\star Five bands, including full coverage on 10 metres. \star Six-pole crystal lattice filter, 2.3 Kc . bandwidth.

VFO dial readout of 1 Kc.
Dial forward reading all bands.
Provision for external VFO for split frequency operation, switch
selectable for transmitting or receiving.
\qquad
\qquad
\qquad
\qquad
are
matching speaker SP-400, Ext. VFO FVDX-400, 500 cycle CW filter kit, SWR meters, co-ax. switches, 50 ohm
RG-BU and RG-58AU cable, Amphenol type co-ax. connectors. Solari 24 -hour digital clocks. Also avalable, matching and RG-58AU cable. Amphenol type co-ax. connectors. Solari 24 -hour digital clocks.

GUSTOMER SERVICE

RAPAR

V.T. VOLTMETER

Model MV-21 is a general purpose Vacuum Tube Voltmeter which will measure AC and DC voltages, resistance and decibels.

Trade Price $\$ 53$ plus 15% s.t.

SPECIFICATIONS

Measuring Ranges:
DC Volts: 0 to $1.5,5,15,50,150$ and $1,500 \mathrm{~V}$.
AC Volts: 0 to $1.5,5,15,50,150,500,1,500 \mathrm{~V}$. r.m.s. 0 to 14, 42, 140, 420, 1,400 and 4,200V. p.p. 0 to $1.5,5,15$ and 30 V . r.m.s. in R.F.
Resistance: At Centre Scale-
10, 100, 1K, 10K, 100K, 1 M and 10 M Ohms.
Power Level: $\mathbf{- 2 0}$ to 250 D.B.M. in two ranges.

Accuracy:
DC Volts: Better than $\pm 3 \%$ of rated value.
AC Volts: .. ., $\pm 3 \%$.
Resistance: ., ., $\pm 3 \%$ of centre scale value.
D.B.M.: $\quad, \quad, \quad \pm 4 \%$ d.b.m. at 0 d.b.m.

Input Impedance:
DC Volt Ranges: 11 megohms +3 pF . in parallel.
AC Volt Ranges: 5 megohms +70 pF . in parallel. ${ }^{*}$
or 5 megohms +25 pF . in parallel.
or 1 megohm +4 pF . in parallel \ddagger
${ }^{*}$ On R.M.S. and P.P. Range and used with Multiprobe.
\div On R.M.S. and P.P. Range and direct coupling.
\ddagger On R.F. Range and used with Multiprobe.
Frequency Response:
R.M.S. 20 Hz . to 5 MHz . within $\pm 1 \mathrm{db}$.
P.P. 20 Hz , to 5 MHz . within $\pm 1 \mathrm{db}$.
R.F. 5 KHz . to 200 MHz . within $\pm 1 \mathrm{db}$.

Dimensions and Weight:
$101 / 4^{\prime \prime} \times 57 / 8^{\prime \prime} \times 4.5 / 16^{\prime \prime}$
5.5 lbs. approx.

MELBOURNE'S WHOLESALE HOUSE

562 Spencer St., Melbourne, Vic., 3000. Phone 329-7888, Orders $\mathbf{3 0 - 2 2 2 4}$ City Depot: 157 Elizabeth Street, Melbourne, Vic., 3000. Phone 67-2699 Southern Depot: 1103 Dandenong Rd., East Malvern, Vic., 3145. Ph. 211-6921

amateur

Vol. 38, No. 5
MAY, 1970
Registered at G.P.O.. Melbourne, for transmission by posi as a periodical

Price 30 Cents

BRAND NEW SPEAKERS					
$21 / 2 \mathrm{inch}$	8 ohms	Price	\$1.75	Postage	20c
3 inch	8 ohms	.	52.00	..	20 C
4 inch	8 ohms	"	\$2. 25	"	20c
4 luch	15 ohms	'	\$2.25	"	20 c
3DX	8 ohms	.,	53.95	..	20 c
3DX	15 ohins	'	S3.95	-	20c
6 A7	8 ohms	.	S5.50	.	40c
6A7	15 ohms	-	S5.50	-	40 c
8 A7	8 ohms	..	S7. 20	-	40c
8A7	15 olims	-	S7. 20	*	40c
12A9	8 ohms	,	S18.75	-	50c
12A9	15 ohms	..	S18.75	"	50c
Nett Price					

NEW STEREO HEADPHONES

Large rubber earpiece. Frequency range 100 to 1500 cycles. 8 ohms impedance

Price 56.75 post 30 c

LT91 RECTIFIER

20 Volt 2 Amp.
Price 81.50 post 10c

TE-16A TRANSISTORISED TEST OSCILLATOR

Frequency range: 400 Kc . to 30 Mc . in five bands. Modulated $800 \mathrm{c} / \mathrm{s}$. sine wave. Modulation: 30 p.c. approx. Output imp.: Low impedance. Dimen sions: $57 / 8 \times 57 / 8 \times 35 / 8 \mathrm{in}$. Weight: 1.5 ib .

Price S24 tax paid, post 75c
"NIKKA" 1 WATT TRANSCEIVERSP.M.G. approved. Solid state, 14 transistors, circuitnc. r.t. stage. 27.240 Mc . (provision for two channels). Range boost circult. Up to 10 miles inopen country or water. Buzzer type call system.Squelch control. Complete with leather carryingcase.
Price S175.00 Pair
NEW A.W.A. T.V. TUNER
Model 49806. Uses 6 UB and 6BQ7A
Price $\$ 5.50$ postage 50c

PACK OF RESISTORS

100 Resistors of $1 / 2$ and 1 watt rating. Price $\$ 1.75$ post 20c

FIVE-CORE CABLE

$5 \times 5 / 0076$. Ideal for Intercoms.. Telephones, etc New. 100 yd. rolls. $\$ 17$ (postage 75c). or 20c yd

NEW VALVES

183GI (DY30)	$\begin{array}{r} \mathrm{S} 1.45 \\ 50 \mathrm{c} \end{array}$	$\begin{array}{ll} \text { 6DT6 } & \text {.. } \\ \text { 6Dx8 } & \text {.. } \end{array}$ \$1.65
104 75c	6EA8	81.55
1 F5	31.00	6ES6	S1. 80
$1 \mathrm{H5}$	750	6ES8	S1.80
1 K 5	50 c	6F6G	S1.25
	50 c	6G8G	\$2.50
11450 c , or	or Ω	6GV8	81.70
	S1.00	6 G	S1.70
ILNS	50 c	6H6GT 20c, or	12 for \$2
1M5	S0c	6HG5	\$1.50
145	- 50 c	6 HSB	S1.50
105	50 c	6J5GT	\$1.00
185	31.80	61675 c . o	for 82
1 S 2 (DL86)	\$1.45	6 l 7 G 50 C , or	5 for 5
1S4	\$1.00	6 6BG	53.00
1 S 5	\$1.70	$6 \mathrm{K6}$	31.00
	\$1.00	6 K 7	$50=$
1×2 A/B	\$1.90	6K8GT	\$1.25
	81.20	6K8 Metal	\$2.00
	\$100	$6 \mathrm{KV8}$	S1.75
	\$1.70	6L6G	
SAR4. GZ34	\$2.45	$6 \mathrm{L7}$	0 c
5AS4	81.30	6M5	S1.35
574	\$2.00	6N3	
	\$1.75	6N7 30c,	for 52
SU4GB	\$1.30		\$1.40
5V4 (GZ32)	S1.50	607	52.50
SY3GT	S1.20	6 R 3	\$1.55
	S1.50	6 S 2	\$1.85
6A8G	32.00	6SA7GT	
AB7	S1.0]	6SC7	150
SAC7 50c. or 5	for S2	6SF5	75 c
AD8	S1.35	6SF7	
6AE8 (X79)	S3.50	$6 \mathrm{SH7} 50 \mathrm{c}$. or	S2
6AG5 20c. or 12	12 for	6SJ7 75c. or	3 for S\%
AG7	. 51.25	6SL7GT	\$1.25
J5	75 c	6SN7GT	S1.00
AKS (EF95)	\$2.55	6SO7GT \$2.10
AL3	31.55	$6 \mathrm{SS7}$	
ALS	5	6U4G	0
6 AM5 75c. or	for 8	6U7G 75c, or	3 for \$2
AM6 75c, or 3	3 for 52	6U8/A	81.55
AN7/A	\$1.55	6V4	\$1.45
AOS	\$1.30	6V6GT	
6AR7GT	81.80	6X2	S1
AU4GT/A	31.50	6×4	
	81.30	6X5GT	
6AV6	\$1.20	6 Y 9	
6 AX4	81.50	$7 \mathrm{7A}$	82
686	82.00	7C5	
旺	\$3.00	7 F 6	for 52
A6	81.40		
E6	\$1.40	7W7 50c, or	5 for \$2
68 HS	$\$ 1.35$	9 AB	1.90
6BK8 (EF86)	\$2.00	948	
6818	\$1.50	$12 \mathrm{A6} 50 \mathrm{c}$, or	5 for 5
M8	\$1.60	$12 \mathrm{AH7}$	0
305 (EL84)	81.50	$12 \mathrm{Al7} 50 \mathrm{c}$, or	5 for 25
6806GTB/6CU6	5.50	12AU6	81.50
6807A	\$1.50	12AU7	1.45
$68 \mathrm{V7}$	81.35	12AV6	75
68×6	S1.35	$12 \mathrm{AX7}$ (ECL83)	1.60
68 Y 7	81.95	12 BE 6	-
$6 \mathrm{C4} 50 \mathrm{c}$. or 5	or 82	12BY7/	S1.75
	\$1.00	12C8	
6CA4	\$1.10	1215	
6CA7/EL34	\$3.00	12SA7GT	. 00
6CB6	\$1.40	12SC7	
6CD6	S4.50	12SH7	
6 col	S1.50	$12 \mathrm{SK7}$	50 c
6 CH 6 $\mathbf{\$ 2} 20$	12SN7GT	$\$ 1.00$
6CK5	\$2.00	$12 \mathrm{SR7} 50 \mathrm{c}$, or	5 for \$2
6CK6	\$1.40	6A8	52.00
6CM5	\$2. 20	3516	S1.00
O6	\$2. 20	19	S0c
08	\$1.40	30.	
6CS6	\$1.30	42	50
6CW4 (Nuvista)	52.75		50 c
60C6	$\$ 2.40$	58	
6 CCB	\$1	80	$\$ 1.5$
6D06A	\$2.20	100TH	5
6DC6B $\$ 2.65$	807	
6DS8	81.80	808	

TRIO COMM. RECEIVER MODEL 9R-59DE

Four-band lecelver covering 550 Kc to 30 Mc continuous. and electrical bandspread on 10, 15. 20. 40 and 80 metres. 8 valves plus 7 diode circult. 4/8 ohm output and phone jack. SSB-CW. ANL, varlable BFO, S meter, sep. bandspread dlal, I.f. 455 kc ., audio output 1.5 w ., variable AF and AF gain controls, $115 ; 250 v$. AC malns. Beautifully designed. Size: $7 \times 15 \times 10 \mathrm{In}$. With Instruction manual and service data PAICE 5175 Inc. sales tax
Speaker to suit, type SPSD. S15 inc. tax.
BENDIX BC-221 FREQ. METER
125 Kc. 1020 Mc.. Including a.c. power supply, crystals, callbration book, etc.
F.O.R. Price S49.50, packing 75c

REALISTIC DX-150 SOLID STATE COMMUNICATIONS RECEIVER

Features: 260v. a.c. or $12 v$. d.c. operation. 30 transistors and diodes. 535 Kc . to 30 Mc . In four bands. Bandspread tuning. "S'" meter, a.m./c.w./ bands. Bandspread tuning, S meter, a.m./c.w./ $141 / 8 \times 91 / 4 \times 61 / 2 \mathrm{in}$. Pollshed metal osnel, smali internal speaker F.
F.O.R. Price S229.50

Matching extemal speaker $\mathcal{E} 13.30$ extra

No. 62 TRANSCEIVERS

Wireless Set No. 62 Mk. 2 (Pye). Frequency range 1.6 to 10 Mc in two bands. in-bullt 12 v genemotor power supply. Clean condition. Fully air tested on transmit and recelve.
F.O.R. Price $\mathbf{\$ 4 9 . 5 0}$ inc. circult diagram

WESTON LM-300 MOBILE
 TAXI RADIO

Low Band a.m. 60 Kc. bandwldti, 70.80 Mc . Crysal channel locked. single channel. In-bullt transistor power supply, 12v. operation. sult country laxi service or conversion to ham bands, inc. microphone and cradle.
F.O.R. Price S45. Packing 50c

as new and alr tested

LAFAYETTE 5W. C.B. TWO-WAY

 RADIO*Model HE-20, fully translstorlsed, solid state. 13 ranslstors. 10 dlodes. 27.240 Mc. Provision for 23 channels, crystal channel locked. push-pull audio modulator. 455 Kc . mechanical filter, spotting swith for accurate reception, i.v.i. trap, 230v. a.c. and 12v. (positive or negative ground). In-bullt p.a. amplifier. Ideal for fixed base station or emergency mobile, including microphone and mobile cradle. Fibreglass helical aerlal 4 ft . high, cowl mount. 'Subject to P.M.G approved licence.
F.O.R. Price $\$ 169.50$ tax paid
for mobile use $\mathbb{S} 16.50$ extra.
WIRE WOUND POTENTIOMETERS
50 watts. 200 ohms. Price 53.00 .

RADIO SUPPLIERS 323 ELIZABETH STREET, MELBOURNE, VIC., 3000

Phones: 67-7329, 67-4286 All Mail to be addressed to above address
We sell and recommend Leader Test Equipment, Ploneer Stereo Equipment and Speakers, Hitachi Radio Valves and Transistor Radius. Kew Brand Meters. A. \& R. Transformers and Transistor Power Supplies, Ducon Condensers, Welwyn Resistors, etc.

MAY, 1970
Vol. 38, No. 5

Publishers:

VICTORIAN DIVISION W.I.A.
Reg. Oftice: 478 Victorla Parade, East Mal-
bourne, VIc., 3002.

Editor:

K. E. PINCOTT

VK3AFJ

Assistant Editor:

E. C. Manifold VK3EM

Publications Committee:
Ken GIIlesple VK3GK
Peter Ramsay VK3ZWN
W. E. J. Roper (Secretary) VK3ARZ

Cliculation-
Jack Kelly VK3AFD
Draughlsman:-
Clem Allan VK3ZIV
John Blanch VK3ZOL
John Whitehead VK3YAC

Enquiries:
Mrs. BELLAIRS. Phone 41-3535, 478 VIctorla
Parade, East Melbourne, VIc., 3002 . Hours: 10 a.m. to 3 p.m. only.

Advertising Representatives:
australian mediaserv
21 Smith St., Fitzroy, Vic., 3065. Tel. 41-4962.
P.O. Box 108, Fitzroy. VIc., 3065.

Advertisement materlal should be sent direct to the printers by the first of each month.
Hamads should be addressed to the Editor.

Printers:

"RICHMOND CHRONICLE," Phone 42-2418.
Shakespeare Street, Rlchmond, VIc., 3121.

t

All matters pertaining to "A.R." other than advertising and subscriptions, should be addressed to:

THE EDITOR.
'AMATEUR RADIO."
P.O. BOX 36.

EAST MELBOURNE, VIC., 3002.

> Members of the W.I.A. should refer all enquirles regarding dellvery of "A.R.: direct to theilr Divialonal Secretary and not to "A.A." diract. Two montha' notice is required before a change of malling address can be effected. Readers of mailing address can be effected. Readers should note that any change in the address of their transmitting station must, by P.M.G. regulatlon, be notified to the P.M.G.: In the State of residence; in addition, A.R. should
also be notified. A convenlent form is proalso be notified. A convy
vided in the "Call Book". also be notified. A convenlent form is provided In the "Call Book.

CONTENTS

Page

Technical Articles:-

Australis Oscar 5 Interim Report 8 8
AO-5 Experiment Results
Construction Details of a Two Element Cubical Quad with One-Loop Triband Elements 19
How to Use R.F. Power Transistors 10
Modifying the Yaesu Musen FR-100B Receiver 6
W.I.A. Federal Executive:-
Cook Bi-Centenary Award (V.h.f.-U.h.f. Section) 28
Federal Comment: The 34th Federal Convention 5
Repeaters 22
Slow Scan T.V. Permitted 22
General:-

Awards	23
Correspondence	\ldots	\ldots	...		28
Definite Sunspot Numbers for 1969	\ldots	20
DX	25
Federal Awards	\ldots	\ldots	28
Missing Persons	28
New Call Signs	27
Overseas Magazine Review	\ldots	26
Prediction Charts for May 1970	\ldots		29
Standards Association of Australia			23
VHF				24

Contests:-

Contest Calendar 27
Ross Hull Memorial V.h.f. Contest. 1969-70 Results 20
VK-ZL-Oceania DX Contest, 1970 21
YL International SSBers QSO Party 20

COVER STORY

Our front cover this month shows the up-dated version of the Stolle aerial rotator, with its automatic remote control unit. Full details of this newly developed transistorised rotator may be obtained from the Sole Australian distributor, R. H. Cunningham Pty. Ltd., 608 Collins Street, Melbourne. Vic., 3000.

new 3-500Z offers high power gain, less circuitry.

EIMAC's new $3-500 \mathrm{Z}$ is a compact, heavy-duty power trlode with 500 W plate dissipation, designed for operation In zero-bias Class B r-f or audio amplifiers. The tube can be used as a cathode driven (grounded grid) linear amplifier where low distortion, high plate dissipation and great thermal anode reserve are desired. The $3-500 \mathrm{Z}$ may be operated at plate potentials up to 3000 Vdc , and eliminates expensive, bulky screen and bias supplies. The $3-500 Z$ will replace EIMAC's $3-400 Z$ where additional plate dissipation or greater reserve is desired. Forcedair requirement is approximately equal to that of the $3-400 \mathrm{Z}$, and a blower capacity of only 13 cfm at a back pressure of 0.2 inch is satisfactory for a single tube. The 3-500Z's zero-single plate current is somewhat higher than that of the $3-400 \mathrm{Z}$. When used as a replacement for the latter tube, the $3-500 \mathrm{Z}$'s zero-signal plate current can be reduced by addition of a simple zener diode in the cathode return. This technique is particularly suggested If plate potentials over 3000 Vdc are contemplated, or if the tube is used in equipment that is power supply limited.

3-5002 TYPICAL OPERATION*
(Minimum Distortion Products at 1 kW PEP Input)
DC Plate Voltage................................... 2500 V
Zero-Sig DC Plate Current** 130 mA
Single-Tone DC Plate Current 400 mA
Single-Tone DC Grid Current 120 mA
Two-Tone DC Plate Current...................... 280 mA
Two-Tone DC Grid Current 70 mA
Peak Envelope Useful Output Power 500 W
Resonant Load Impedance 3450 ohms Intermodulation Distortion Products -33 dB
*Measured data from a single tube
*'Approximate

varian PTY LTD

electron tube and device group
38 oxley street/crows nast/n5w 2065/43 0673 679 springualo road/north springvale / vic $3391 / 5606211$
339 coronation drive / toowong / aueensland 13277
10 stirling highway/nedlands/wa 6009/86 8930

SIDEBAND ELECTRONICS ENGINEERING

Prices listed below are net, cash Springwood, N.S.W., sales tax included. All equipment is fully imported directly from the various factories in Japan, the U.S.A., and the U.K.; no local assembly or elsewhere away from the factories, except for the FT-200 Power Supply-Speaker units; they are a physical copy of the Yaesu supply, but of my own design and I maintain that I can make a better heavy duty supply in co-operation with the Australian transformer manufacturers, for genuine 230/ $240 / 250$ volts AC, than any of the imported supplies.
All equipment is sold under standard factory backed warranty, which is ONE YEAR for YAESU-MUSEN, with expert after-sales service, based on 20 years of SSB experience. Yaesu-Musen units come complete with all plugs and power cables and English manuals, checked, tested and where required, adjusted or modified before shipment.
YAESU-MUSEN-
FT-DX-400 De Luxe Transceiver $\$ 525$
FT-DX-100 AC/DC Transceiver, solld state, Stock Clearance-Now Only! $\$ 500$
FL-DX-400 Transmitter $\$ 350$
FR-DX-400 Recelver $\$ 375$
FR-DX-400-SDX De Luxe Receiver, with all access-ories-CW filter. FM filter and FM discrimina-tor, 2 and 6 metre converters built-in$\$ 475$
FT-200 Transceiver with 230/240/250V. AC Power Supply-Speaker unit, heavy duty design $\$ 410$
FL-DX-2000 Linear Amplifler $\$ 225$
6 metre solid state Converters, FC-6 $\$ 25$
FF-30-DX Low-pass Co-ax. Line TVI Filters $\$ 15$
SWAN-
SW350C Transceiver with AC Power Supply-$\$ 550$
Speaker unit
SW350C Transceiver with Swan 14-230 AC/DC power supply $\$ 600$
GALAXY-
GT-550 Transceiver with AC power supply-speaker unit \$725
Galaxy External VFO 8125
GONSET-
2 metre SSB/AM/CW Transceivers, 144 to 148MHz . continuous range, VFO controlled, with115V. AC power supply-speaker unit attached,solid state design$\$ 350$
J-BEAM-
TRIPLE THREE full size 3 element 10-15-20 metre Yagi Beam, with 52 ohm balun, 18 ft . boom, 35 ft . longest reflector element $\$ 180$
HY-GAIN-
HY-OUAD Tri-band C$\$ 130$
TH3JR Tri-band 3 element Junlor, 10-15-20 metre Yagi Beam $\$ 110$
BN-86 Balun $\$ 20$
14AVO 10 to 40 metre Vertical $\$ 45$
18AVO 10 to 80 metre Vertical \$75
MOSLEY-
TA33JR 3 element trl-band Junior Beam $\$ 95$
NEWTRONICS-
4-BTV 10 to 40 metre Vertical $\$ 55$
Same with 80 metre top-loading coil $\$ 70$
MOBILE WHIPS-WEBSTER Bandspanner, 10 to 80 metre continuallyadjustable
$\$ 55$
MARK HW-40 40 metre Helical Whip $\$ 20$
MARK HW-3 10/15/20 metre tri-band Helical Whip $\$ 35$
Swivel Mount and Spring for Mobile Whlps $\$ 10$

ROTATORS-

CDR HAM-M heavy duty Rotators, with 230 V . indicator-control unit, for up to 2"' masts $\$ 165$
8-conductor Control Cable for Rotators per yard 75c

ANTENNA NOISE BRIDGE-

OMEGA TE-7-01 Bridge, May delivery S25
CRYSTALS-

FT- 241 Series. Channels 0-79, box of 80 Crystals, 375 to 515 KHz ., with a 400 and 500 KHz . one included$\$ 15$

Individual FT-241 Crystals from 25 c to $\$ 2$ for 455 KHz .
Sets of six matched FT-241 Crystals, including two USB/LSB carrier-VFO Crystals:-
From 400 to 450 KHz \$5 to $\$ 10$ From 460 to 500 KHz \$10 to \$5

FILTERS-

KOKUSAI Mechanical Filters, 2700 or 500 Hertz CW bandpass filters, miniature size, with inputoutput transformers

530
Yaesu Musen FT-DX-400 CW 500 Hertz Filter Kit .. S35

12V. DC SUPPLIES-

ACITRON extra heavy duty Mobile Supplies \$110
Several good used DC Supplies available, $\$ 30$ to $\$ 80$
CO-AXIAL CABLE-
52 and 75 ohm $3 / 16^{\prime \prime}$ diameter per yard 25 c
52 ohm $3 / 8^{\prime \prime}$ diameter, any length per yard 50 c
Connectors. Amphenol type PL-259 male $\$ 1.25$

BALUNS-

Exact duplicate of Hy-Gain BN-86, excellent local product
812.50
S.W.R. METER-

Calibrated Output Meter, three ranges, 1-100 and 0-500 Watts and S.W.R.

835
TRANSFORMERS, ETC.-
Made by NATIONAL Co., Kingsgrove, N.S.W., brand new. still in stock:

U60/325 60 mA., 325-0-325V., 5 V . and 6 V . filaments $\$ 1.25$
U60/385 60 mA ., $385-0-385 \mathrm{~V}$., 5 V . and 6 V . filaments $\$ 1.25$
$\mathrm{U} 80 / 38580 \mathrm{~mA}$., $385-0-385 \mathrm{~V}$., 5,6 and 6 V . filaments $\$ 1.50$
E30/80 80 mA ., 30 Henry Chokes
$\$ 1.00$
F15/150 150 mA ., 15 Henry Chokes … $\$ 1.00$
9716240 to 240 V . 75W. Isolation Transformers $\$ 1.00$
Various Transistor Output Transformers, 85, 375
and 245 ohms to 3.5 ohms
$\$ 0.50$
Valve Output T'formers, 10,000 to 3.5 and 15 ohms $\$ 1.00$
Neon Ballast Chokes, 15W. 240V. $\$ 0.25$

Sideband Electronics Engineering

HY-GAIN AMATEUR ANTENNAS

Fully Imported from U.S.A.

COMPREHENSIVE RANGE TO SUIT MOST REQUIREMENTS
H.f. BEAMS: TH6DXX, TH3Jr, TH3Mk3 and HyQuad Tribanders for 10, 15 and 20 m .; 204BA, 203BA Monobanders for 20 m .
TRAP VERTICALS: 18AVQ (80-10 m.), 14AVO (4010 m .) and 12AVQ ($20-10 \mathrm{~m}$.).
ACCESSORIES: LA-1 co-ax. lightning arrestor. $\mathrm{BN}-86$ balun, Cl centre insulators \& El end insulators for doublets.
HEAVY DUTY ROTATOR: Emotator Model 1100M available for H.F. beams.
H.F. MOBILE WHIPS: New "Hamcat" Whips and associated fittings.
V.H.F. ANTENNAS: Beams-66B six elem. 6 m. , DB-62 duo-bander for 6 and 2 m. ; 23B, 28B and 215B (3,8 and 15 elem. 2 m . beams). Also Ground Planes, Mobile Whips and Halos.

BAIL ELECTRONIC SERVICES, 60 Shannon St., Box Hill North, Vic., 3129. Ph. 89-2213
N.S.W. Rep.: A. J. ("SANDY') BRUCESMITH, 11 Ruby Street, Mosman, N.S.W., 2088. Telephone $969-8342$ South Aust. Rep.: FARMERS RADIO PTY. LTD., 257 Angas Street, Adelaide, S.A., 5000. Telephone 23 -1268

BRIGHT STAR CRYSTALS

FOR ACCURACY, STABILITY, ACtIVItY AND OUTPUT
SPECIAL OFFER-
STANDARD AMATEUR CRYSTALS
style hcou holder, freouency range 6 to is Mhz. $\begin{array}{ll}\mathbf{0 . 0 1 \%} & \$ 4.25\end{array}$
0.005% S5.50
Prices include Sales Tax and Postage

COMMERCIAL CRYSTALS

IN HC6U HOLDER. 0.005% TOLERANCE. FREOUENCY RANGE 6 TO 15 MHz . $\$ 6.00$ plus Sales Tax and Postage

Write for list of other tolerances and frequencies available. COMPREHENSIVE PRICE LIST NOW AVAILABLE-WRITE FOR YOUR COPY
New Zealand Representatives: Messrs. Carrell \& Carrell, Box 2102, Auckland Contractors to Federal and State Government Departments

BRIGHT STAR RADIO

LOT 6, EILEEN ROAD, CLAYTON, VIC., 3168
Phone 546-5076
With the co-operation of our overseas associates our crystal manufacturing methods are the latest

DURALUMIN ALUMINIUM ALLOY TUBING

IDEAL FOR BEAM AERIALS AND T.V.
\star LIGHT \star STRONG
\star NON-CORROSIVE
Stocks now available for Inmediate Delivery
ALL DIAMETERS - $1 / 4^{\prime \prime}$ TO $3^{\prime \prime}$
Price List on Request
STOCKISTS OF SHEETS-
ALL SIZES AND GAUGES
GUNNERSEN ALLEN METALS
PTY. LTD.
SALMON STREET,
PORT MELB'NE, VIC. Phone 64-3351 (10 lines) T'grams: "Metals" Melb.
HANSON ROAD.
WINGFIELD, S.A.
Phone 45-6021 (4, lines)
T'grams: "Metals" Adel.

FEDERAL COMMENT

THE 34th FEDERAL CONVENTION

The 34th Federal Convention of the Wireless Institute of Australia held in Adelaide at Easter was significant both in the decisions that were made and also in the new concept of our organisation that seems to have emerged.

Let me first refer to some of the more important matters discussed, and first amongst those was the question of the 1971 I.T.U. Space Frequency Conference. The Federal Council formulated a detailed policy in relation to that Conference. Fundamental to that policy was the view that the v.h.f. and higher Amateur frequency bands that could conceivably come under attack as a result of the conference should be preserved for the Amateur Service. The Federal Council recognised the importance of the $420-450 \mathrm{MHz}$. allocation for Amateur satellite use and this is one of the bands in respect of which concern has been expressed.

Les Jenkins, Project Manager of the W.I.A. Project Australis Group, flew to Adelaide to address the Federal Council. He explained the Group's proposals for Australis-Oscar B, the "follow up" project to Australis-Oscar 5. He brought with him a working design model of the package which will be basically a repeater from the $144-148 \mathrm{MHz}$. band to the $420-450 \mathrm{MHz}$. band. The Federal Council unanimously expressed its congratulations to the group on their achievement in relation to AustralisOscar 5 and resolved to support the group's current project.

This decision was indeed significant, for whilst the previous project was basically a University Society project, Australis-Oscar B will be basically an Amateur project.

Many will be disappointed with the result of the voting on Novice licensing. The Federal Executive raised the issue seeking a clear expression of policy in relation to this contentious matter. The Divisions divided equally on the matter and the chair, after ruling that the current policy of the W.I.A. was not
to advocate a Novice licence, exercised a casting vote to maintain the status quo as required by the Institute's Rules of Procedure.

However, the door is still not closed, for it was decided by the Federal Council that the Federal Executive should seek reasoned submissions, valid for the current decade, supporting Novice licensing for circulation to the Divisions with a view to the Federal Council again undertaking a review of its policy in relation to this matter.

As was anticipated in the last "Federal Comment", the W.I.A. Intruder Watch was reviewed. It was the clear view of the Federal Council that this activity should be continued as a most important part of the Institute's primary function of protecting Amateur bands.

A report from the I.A.R.U. Region III. Director, John Battrick, was adopted and a number of matters relating to the Region were agreed to. It was decided that the Region III. Conference, forshadowed at the 1968 Inaugural Congress, should be held as soon as possible and before the 1971 Space Services Conference. The New South Wales Division Federal Councillor told the Council of his recent trip to India, Thailand, Hong Kong and Singapore.

Two matters - one initiated by the Victorian Division and the other by the Federal Executive - raised questions of fundamental importance. The Victorian Division suggested that certain routine Divisional functions such as the collection of subscriptions, maintenance of membership and circulation lists and the like could be economically centralised and transferred to an E.D.P. or similar system. The Executive suggested the engagement of a permanent Federal Manager. It was decided that both these matters should be considered together and the Executive has been instructed to prepare a detailed report.

I think the significance of these matters was not so much in the decisions
made, but in the acceptance of the principle that the W.I.A. cannot continue to operate on its present limited budget and almost total reliance on voluntary effort. It must plan now for the future and on the basis that it has the capacity to deal with not only the problems of today but also the problems of tomorrow. One felt that it was accepted that in order to remain effective, the Institute must be prepared to rely far more than it has in the past on new techniques and permanent staff. It is no longer a small club of hobbyists and the techniques and finances appropriate to that sort of organisation are just not appropriate to the Institute today. I agree with the delegate who said that as the Institute enters its sixtieth year we must seek a "new look" organisation.

The Convention also gave the opportunity for most Federal Councillors and Federal Executive members to meet for the first time the new Controller, Regularity and Licensing Sub-Section, Mr. H. S. Young. He succeeds Mr. Charles Carroll and comes from New South Wales where he was Superintendent, Radio, for that State.

He came from Melbourne to attend the Dinner on Saturday night, a gesture much appreciated. Also present at the Dinner was the Senior Vice-President of the A.R.R.L., Wayland Groves.

All those attending the Convention paid glowing tribute to the South Australian Division for the manner in which the Convention was organised, particular tribute being paid to the South Australian Federal Councillor, Geoff Taylor.

Looking back on the 34th Federal Convention, it is my view that it was one of the most tangibly useful Conventions in recent years. Time may prove the 1970 Federal Convention to be one of the most important ever when the Institute took the first steps to moving in a new direction.

[^31]
Modifying the Yaesu Musen FR-100B Receiver

R. D. CHAMPNESS,* VK3UG

THESE receivers are quite good as they stand in my opinion. It is because I find this receiver so satisfactory that I decided I would endeavour to make this good receiver even better. I have now incorporated 160 and 11 metres as well as fitting an n.b.f.m. detector and limiter. I have done one or two other minor modifications to do with the v.f.o. and S meter.

WARM-UP DRIFT

I will start with the minor modifications and then on to the more elaborate ones. An overseas Amateur suggested this first one and his claim seems to be substantiated. Wire a resistor of about 270 to 470 ohms in series with the cathode lead of the oscillator section of the v.f.o. valve. The resistor and L20 are then in series and the coil tap comes off the junction of these two components. This seems to reduce the drift of the v.f.o. during warm-up.

S METER

Another modification, which won't impress the chaps who like to give S9 plus plus plus readings on the S meter, is to de-sensitise it. To do this, put a 6.8 K ohm resistor in place of the series meter resistor R44 (a 1 K ohm resistor). Like most S meters. the Yaesu Musen is optimistic, even with this modification although it is much more realistic, and most ranges give a reading of S 9 corresponding to $100 \mu \mathrm{~V}$. I was lucky enough some time back to have access to an accurate signal generator and so I made a chart up so if necessary, I can give relatively accurate strength readings.

AUDIO

A simple way to reduce the high overall audio gain and to improve the audio quality is to remove the cathode by-pass capacitor on the 6AQ5 audio output valve. The distortion at 1 watt output is 4% and the frequency response is -3 dB . at 200 Hz . and 4,500 Hz . with 0 dB . at $1,000 \mathrm{~Hz}$. reference. This is only the audio response and does not include the various filters.

SWITCH-ON SURGE

To reduce the switch-on surge and so allow a smaller fuse, a CZ9A thermistor was wired in series with one of the 240 a.c. leads. I can now use a $\frac{1}{2}$ amp. fuse.

F.M. LIMITER AND DISCRIMINATOR

The FR-100B has provision for an f.m. limiter and discriminator, but, unfortunately, these don't seem to be available. The one 1 am about to describe is. I feel, slightly cheaper and they are all Australian parts.

To accommodate this section, the power supply filter choke was moved to the top of the chassis, between the 12AU7 and the 455 KHz . i.f. transformer near the power transformer. By doing this, much more space under the chassis was available for the f.m. system.

The 7 -pin valve socket is mounted in the hole provided, but the discriminator transformer which I used was much smaller than the intended Yaesu

EXTRA I.F. STAGE

I found on the lower bands that the i.f. system in the f.m. mode seemed to lack gain, the S meter would read several points lower on f.m. than on a.m. This I concluded was due to mismatching in the coupling system between the 6BE6 converter and the 6BA6 first i.f. I tried various coupling methods with partial success, but eventually concluded that an additional if. stage was nceded.

unit. I made up a small plate for the transformer to sit on and then bolted this to the mounting holes of the original Yaesu transformer. The transformer I used was a type used in a Pye Victor MVF529 f.m. transceiver. The part number is 087-000-183. Possibly other makes could suit, but remember it must be 455 KHz .30 KHz . channel unit.

Having mounted the valve socket and transformer, the signal input and output sources must be located. The input to the 6AM6 comes via a 20 pF . from the plate circuit of the last i.f. amplifier -a 6BA6. This capacitor is actually already wired to a tag strip, ready for you to extend to the grid of the 6AM6. The output line is in the corner on a 3-lug tag strip near the discriminator transformer. Incidentally, the red pin of the discriminator transformer is the plate lead, and by continuity measurements, the other leads can be ascertained. This is a perfectly standard limiter-discriminator.

The resistor values should be adhered to but the screen and plate by-passes are not all that critical. The value of the 0.47 meg. resistor may need to be altered slightly to obtain a same level of audio from a signal deviated 3 KHz . compared to an a.m. signal modulated 100%.

To check how well the f.m. system eperates, should you have an f.m. carphone with 4 MHz . transmitter crystals, tune to the 7th harmonic in the 28 MHz . band and listen to the 3 KHz . deviated audio, it sounds very nice. You will have to couple a wire close to one of the multipliers about the envelope. This is also a good way of checking your f.m. transmitter.

Much to many solid state merchants' amazement, I imagine, I used an MPF102 FET in an i.f. amplifier. The FET amplifier was wired into the circuit in only the f.m. position. The i.f. transformer is an old small A.W.A. battery receiver i.f.
The input of the amplifier goes to position 6 of $S 2 A$ and the output to position 6 of S2C, removing the bridging wire between these two contacts. The amplifier provides a reasonable amount of gain and the selectivity of the complete i.f. strip in the f.m. condition is about $\pm 10 \mathrm{KHz}$., so at least 7 or 8 KHz . deviation should be quite okay through this unit.

The FET amplifier was built on a piece of veroboard about $1^{\prime \prime}$ square and the transformer was mounted alongside the mechanical flter. The value of the source resistor may need to be experimented with to get optimum gain. The supply voltage is taken from a small voltage doubler off the filament line.

ALIGNMENT

The alignment of the discriminator is a bit different from the f.m. carphones that most of us seem to have,
so here is the alignment data. Adjust secondary top core of the discriminator for zero reading on the meter at the junction of the 47 K and 470 K resistors. Make sure that on adjusting core each side of zero, reading goes positive one way and negative the other. A $50 \mu \mathrm{~A}$. meter will be satisfactory.

Detune to negative or positive side 20 $\mu \mathrm{A}$. and screw in primary core (bottom core) until reading dips slightly. Readjust for zero reading and check that on shifting either side of 455 KHz . that meter alternates. If it does not seem very symmetrical, try adjusting again but take the secondary core in the direction giving opposite polarity to your original setting.
per instructions in the Yaesu manual. The performance is quite fair, although there is a slight spurious response possibly due to the crystal being on half the required output frequency.

The modifications for 160 metres are much more difficult to accomplish as three coils need to be wound and mounted and some alterations are necessary to the switching for 80 and 40 metres.

The simplest part to do is the fitting up of the crystal oscillator. A crystal of $7,453.5 \mathrm{KHz}$. is needed and is fitted into the position for Band C. I used Band C as it is the nearest to the 80 metrc position seeing as the switch can go full circle. The Band C coil had to

Modifications to r.f. and aerlal colls for operation on $160-80.40$ metres. The switch position between 160 and 80 is the position on the switch where the common terminal of the switch contacts no other terminal, l.e. this occurs when the switch indicator dot is at 6 o'clock.

On doing this modification and fitting 160 metres I found that at about 1825 KHz . there was ferocious hash at about S7. I eventually traced this to the limiter, which acts as a class C stage and was generating harmonics, the 4 th being in the middle of 160 metres. To overcome this, I had to switch off the limiter when it was not required.

I was not particularly keen to belt a hole in the front panel to accommodate this switch and there was not any spare lugs on the mode switch. On examination of the noise limiter switch I found that it consisted of two sections paralleled. I freed one section of the switch of its a.n.l. duties and wired it to the h.t. supply for the limiter. With the a.n.l. off, the limiter has h.t. applied. My reasoning going as follows: that on f.m. the f.m. limiter will take care of all noise, I hope, and on a.m. in many cases the noise limiter is pretty nearly always required.

EXTENDING RANGE

I decided to fit 11 metres and 160 metres to the receiver and this is how it was done. On Band A I fitted 11 metres. A crystal of $16,425.6 \mathrm{KHz}$. was fitted to the appropriate socket, the appropriate oscillator coil wired in and the aerial and r.f. coils also wired as
be rewound with 20 turns wire about $24 \mathrm{~B} . \& \mathrm{~S}$. and resonated with 100 pF . to tune $7 \frac{1}{2} \mathrm{MHz}$.

The 160 metre coils are wound on $\}^{\prime \prime}$ or $5 / 16^{\prime \prime}$ diameter slugged formers with 70 turns of $38 \mathrm{~B} . \& \mathrm{~S}$. enamelled wire wound over ${ }_{2}^{1 \prime \prime}$. I wound these two coils a bit higgle-piggle, but the cores will tune out any variation in inductance. The aerial coil primary consists of 10 turns about 24 gauge wire wound on at the cold end of the sec-
ondary. I fitted these coils in the bulkhead between the coil switching sections and the section housing the filter choke and filter capacitors.

One word of warning. Do take out all low frequency crystals in the set otherwise you may be unlucky like me and damage a couple beyond repair with the vibration of hole drilling and filing. Be warned!

The actual wiring alterations are perhaps better understood by studying the actual final circuit and comparing it with the original. In the original Yaesu circuit, switch S1 should progress from left to right as S1A, S1B, S1C, but in fact on the diagram it is shown as A-C-B.

Capacitor C2 is removed from its original position and paralleled with C3, and likewise C11 is removed and paralleled with C12. One additional 50 pF . capacitor for each section is now required in addition to the two coils. That is all the extra parts needed.

The wiring as I said will become evident on studying the circuit. Both 80 and 40 metres will need some realignment after this modification. The preselector is set at about position 1 on 160 metres and the coil cores are peaked for maximum response at 1500 KHz . The trimmers are peaked at 2.1 MHz . after peaking the preselector. The tuning range of the 160 metre coils is from 1.5 MHz , to 2.1 MHz ., and the red dial calibrations give the tuned frequency.

Broadcast stations come in quite well between 1500 and 1600 KHz . The University of the Air is quite good on 1750 KHz . On the front panel of the receiver I have marked in red paint Band C with the numerals 160 and Band A the numerals 11 in black. This helps to identify the band, and it does not look unsightly if done neatly. The re-sale value of your receiver will not be spoilt by these modifications because the re-sale value of radio equipment is not high anyway, so why not make your equipment do what you want it to do.

I'll get an aerial up for 160 metres as soon as circumstances permit and put my 130 watt a.m. rig to some use. I hope these modifications are of interest, and some use to others.

AUSTRALIS OSCAR 5 INTERIM REPORT

By OWEN MACE

Australis OSCAR 5 is now silent, its batteries discharged after a working life of six weeks. The work of collecting and processing the thousands of reports from Amateurs around the world begins. Before the last report on AO5 is written, many hours of computer time will have been used in processing the data received from Amateurs. Concurrently with this work, the next Australis satellite is being planned and designed.

AO5 was launched at 1131 GMT on 23rd January, 1970, in what could only be described as a flawless, text book launch. One hour later, Australis separated from the Delta second stage and its two transmitters switched on. 5R8AS reported hearing the v.h.f. beacon a few minutes later as the satellite came into range of his Malagasy Republic QTH. Minutes later as AO5 passed over Europe, DJ4ZCA and DL30 J heard the 10 metre beacon. In the following few orbits, Australis was heard by Amateurs in the U.K., U.S., New Zealand and, of course, Australia.

The response of U.S. Amateurs, especially, is staggering. Many thousands of reports have been received by the project to date. Some tracked every orbit in range throughout the life of AO5; some reported extraordinary antipodal propagation effects, and one even correlated the horizon sensor signals with cloud formations derived from weather satellite pictures, during the later part of the v.h.f. transmitter's life. The patience of one brave soul is attested by this log entry:
"On orbit 181/182, I could hear the 10 metre signal just about all the way around the world. I heard it for 95 of the 115 minute orbit, from very faint to fairly strong signal strengths."-WA4JID.
WA2KSB heard the 29 MHz . transmitter commanded off during orbit 61 on 28th January.

At the Project Australis headquarters station (VK3AVF), teams were organised to track the two high elevation passes each morning and afternoon. This vigil was maintained until the v.h.f. beacon ceased transmissions during orbit 280 on Saturday, 14th February, after $3 \frac{1}{2}$ weeks of highly successful operation.

The magnetic attitude stabilisation system (M.A.S.S.) worked very well also. The satellite was soon locked to the earth's magnetic field by the m.a.s.s. magnet. So accurate was this tracking that, by 10 th February, the signal strength of the v.h.f. beacon was appreciably lower as the satellite was south of the city, than when it was north. This was caused by the transmitting antenna becoming unfavourably directed by the earth's field as the satellite moved. Future designs will undoubtedly allow for this unplanned tracking accuracy!

The accompanying article by Jan King describes some of the preliminary results from Australis. In the ensuing months Project Australis will be analysing all the reports received in considerable detail to determine the effectiveness of the design procedures in order to incorporate modificaions to the next satellite. Any reports are welcomed, so, if you have not already sent in your reception reports and station resume, please do so. The address is:

Project Australis (Telemetry),
C/o. Melbourne University Astronautrical Society,
Union House,
University of Melbourne,
Parkville, Victoria, 3052.

NEXT AUSTRALIS-OSCAR B

Work is proceeding with the design and testing of the next Australis. It is envisaged that there will be six main sub-systems; the main experiment, the repeater. While other groups, notably DJ4ZCA, are in favour of linear translators, it is strongly felt by the Australis group that the next step ought to be a hard-limiting f.m. system. Thus Project Australis is working towards a multi-channel, channelised f.m. repeater. The plan is to use one receiver to mix to some convenient i.f. stage, split to several separated i.f. filters and detect down to base band. Then each demodulated signal can then be used to frequency modulate its own carrier which is amplified and radiated. This system allows a number of advantages in that signal processing of the baseband is possible (e.g. speech compressing and a.l.c.) as well as removing doppler shift from the up-going signal. It is presently planned to use about six channels, receiving on 2 metres and transmitting on 432 MHz .

Telemetry System.-It is hoped that a 60 -channel telemetry system will be accommodated on the next satellite. Its output will be in the form of teletype signals impressed on one of the repeater transmit channels and operated on command.

Command System. - A 35-channel command system will be incorporated to allow switching of receivers and transmit channels. This will allow great flexibility and will allow failed subsystems to be removed from the repeater system.
M.A.S.S.-It is possible that a magnetic system similar to that carried by AO5 will be incorporated, although a gravity gradient stabilisation has been mooted by Amsat.

AMATEUR FREQUENCIES:

ONLY THE STRONG GO ON-
SO SHOULD A LOT MORE
AMATEURS!

Power Supply.-A 6-watt solar powered battery is under investigation by Amsat, who will be responsible for the power supply.
Package.-This is the responsibility of Amsat.
The design is for a lifetime of one year, to 85% confidence. It is anticipated that a prototype of the system will be flown on a balloon from Mildura in the near future, and interested Amateurs are asked to listen to their W.I.A. broadcasts for further details.

LOW DRIFT CRYSTALS

 4 1.6 Mc. to 10 Mc ., 0.005% Tolerance, \$5 $*$ 10 Mc . to 18 Mc ., 0.005% Tolerance, $\$ 6$ *Regrinds \$3
these prices are subject TO SALES TAX

SPECIAL CRYSTALS:
PRICES
ON APPLICATION

MaXWELL HOWOEN

15 CLAREMONT CRES., CANTERBURY, VIC., 3126
Phone 83-5090

AO-5 EXPERIMENT RESULTS

By JAN A. KING, K8VTR, Project Manager

The long wait to put Australis Oscar 5 into orbit and the months of hard work to plan, construct, and qualify the satellite have been rewarded by a multitude of useful scientific and engineering information received from Amateurs around the world.

In the rather short lifetime of the 2 metre transmitter (23 days) a number of firsts were achieved by the tiny spacecraft. Several hundred telemetry coding forms and associated reports have been received to date by Amsat, with reports still coming in at a somewhat slower rate. Several hundred more reports were sent to Project Australis where data is being analysed.

This article reports on the operation of the various experiments separately, although they are all somewhat related to one another.

THERMAL BEHAVIOUR
 \section*{OF AO-5}

The temperature of AO-5 at ejection from the second stage of the Delta vehicle was $20^{\circ} \mathrm{C}$. despite its proximity to a very hot engine and a very cold nitrogen gas jet during launch. The temperature, however, began to rise during orbits 1 through 10 , and then stabilised internally at $43^{\circ} \mathrm{C} . \pm 3^{\circ} \mathrm{C}$., where it remained for the duration of the satellite's useful life. This temperature is fairly high, although it does not exceed the maximum design temperature of $45^{\circ} \mathrm{C}$. The effects of this higher temperature were, unfortunately, all adverse. Battery lifetime was somewhat shortened during the initial phase of discharge; but worse than this, the 144.05 MHz . beacon power dropped off faster with decreasing supply voltage due to the decreased efflciency of the r.f. power output transistor.

External temperature measurements were higher in sunlight and cooler during eclipse periods as observed by many reporting stations. As the spacecraft entered the dark portion of the orbit, the skin temperature dropped from its $55^{\circ} \mathrm{C}$. average to about $42^{\circ} \mathrm{C}$. The internal temperature, however, remained fairly constant, dropping only 2 to 3 degrees during the entire eclipse period. Our thanks to WOPGP, K2SS and others for their data in this area.

The spin rate about the X -axis in later orbits became quite slow so that the skin sensor located on the Z surface showed changes in temperature as parts of the satellite rotated in and out of its own shadow. This data was most useful in determining the roll rate about the stabilised axis. W5CAY reported this data for many orbits between 100 and 250. Skin temperature data indicated a spin period of 7 to 8 minutes about the X -axis.

POWER SYSTEM

The spacecraft battery voltage decreased with time very nearly as predicted by pre-launch testing of individual cells. It is felt that the actual voltage dropped off slightly faster than
the predicted curve for two reasons. First, the higher temperature accelerated the voltage producing reaction in the batteries. Second, an additional 16 mA . of current was drawn by the batteries; this may have been caused by the failure of the 10 metre modulator which was observed during the third orbit.

M.A.S.S. AND THE
 HORIZON SENSORS

Possibly the best operating system on board the spacecraft was not electronic at all. The magnetic attitude stabilisation system worked better than some of us had anticipated. Early reports indicated that nulls occurred in the 2 metre signal about once every 15 seconds, making decoding very difficult. The horizon sensors, which were found to be more sensitive than anticipated, changed wildly as they encountered the carth or its atmosphere. By the third day the spin rate had definitely decreased and by orbit 100 the stations in the Washington D.C. area reported that the signal fades on 2 metres did not occur during an entire pass of 15 or 20 minutes.

Activity on the horizon sensors had been greatly reduced, particularly the X-axis sensor. This effect was not entirely expected and can only be attributed to the effective hysteresis damping of the ferrite rods included in the satellite. The effectiveness of these rods was measured at the Goddard Space Flight Centre magnetic test facility and was observed to be very small compared to the strength of the magnet itself. There is question in my mind why they seemed to work so well in space! W5CAY and WOGCH have both shown data to support a roll period about the X -axis of 7.5 minutes.

If you were listening to data on channels 2,4 and 6 , and thought the satellite had cracked a transistor or two, please be advised that all was well. The sensitivity of the sensors allowed the spacecraft to detect the brightness of the earth's atmosphere. The sensors thus slid from a lower to a higher tone as the AO-5 acquired the atmosphere and then the earth. During later orbits when the spin was reduced the variations in sensor frequency were attributable to variations in local cloud cover brightness. (How about that-an Amateur weather satellite!) If a fast discriminator was used to code telemetry, a very fine cloud structure could be revealed during periods of adequate signal strength.

COMMAND

During the first five days of operation the spacecraft was not successfully commanded despite several attempts by both Australian and U.S. stations. AO-5 was successfully commanded to turn off its 10 metre beacon on orbit 61 by station "Tango", WA1IOX, of the Talcott Mountain U.h.f. Society, which is a member club of Amsat. This is believed to be the first time an

Amateur satellite was commanded successfully, and Bill Dunkerley, WA2INB, has the distinction to be the first to accomplish this.
The Project Australis group was successful in issuing three more successful commands when the satellite next passed into their range. The power used by the Australians was approximately 20,000 watts effective radiated power (e.r.p.). From that time commands became easier to execute. The original schedule was then kept with week-end operation only on 10 metres until the 2 metre beacon reached end of life. At that time the 10 metre transmitter was turned on continuously. The last commands were sent using only 5 kw . e.r.p. and were executed with no difficulty. The change in apparent sensitivity to command is also attributed to the effective stabilisation of the satellite.

PROPAGATION EXPERIMENT

Despite the unexpected failure of the 10 metre modulation on orbit 3, many useful results were obtained from the 10 metre carrier. The carrier was detected by many Amateurs after the 2 metre signal deteriorated and until 10th March, 1970, when AO-5 officially became space junk item number 1970008B. The lifetime of this beacon was coincident with several interesting ionospheric events including high activity in the polar regions, a solar event, and most interestingly, a major solar eclipse. All data pertaining to this experiment has not yet been evaluated, but a brief summary of the available results follows:
(1) The most commonly observed 10 metre effect was a rapid fading occurring as fast as once every 2 seconds, but more typically once in 5 seconds. This was probably caused by Faraday rotation of the plane of polarisation of the signal.
(2) The 10 metre signal was usually acquired 1 to 2 minutes prior to the 2 metre signal and was lost several minutes after 2 metre LOS; this sometimes occurred as much as 20 minutes later than predicted (on ascending nodes). This is thought to be due to ionospheric skip propagation.
(3) Antipodal reception, while still not predictable, is definitely a real phenomenon. Several reports of such reception have been received. In some instances two signals were reported, one from the spacecraft as it was going away and one as it was heading toward the observer. The signals were appropriately Doppler shifted. On the day of the solar eclipse antipodal reception was reported by three stations on the East coast of the U.S. at approximately the same time.
(4) In general, it should be possible to correlate many of the reports with the state of the ionosphere. Reports are currently being studied.
I hope everyone who participated in the AO-5 programme found it to be an interesting and worthwhile experience.

HOW TO USE R.F. POWER TRANSISTORS*

A guide to the practical use of r.f. power transistors in Amateur Radio equipment, including circuit design, matching networks and construction

fall franson, waikre

EVER since transistors were announced many years ago, Amateurs have been interested in using them in all types of equipment. Though the advantages of transistors have made them popular for all electronic applications, transistors are especially suitable for portable equipment. Transistors, with their high efficiencies, small size, low heat dissipation, low voltage operation and high reliability, are ideal for portable gear: Many low-power transistor transmitters have appeared in Amateur magazines, and every circuit of this type that has appeared has attracted considerable attention. Unfortunately though, many of the transistors used in these transmitters are really not ideal for this use, since they are switching transistors or low-power amplifiers that don't perform very well in r.f. power service. Higher power transmitters using r.f. power transistors have rarely been described, and most of the circuits that have appeared really couldn't be considered very practical for most Amateur use.

Old r.f. power transistors suffer from four major faults that have limited their usefulness; low gain, limited power output, high cost, and perhaps most discouraging, susceptibility to destruction due to mismatch or detuning. This last was especially bad in mobile applications where parking too close to a vertical pipe or having your antenna touch a tree could blow out an expensive power transistor if you happencd to be transmitting at the time. Various complex schemes were developed to prevent this from happening, but most were not completely satisfactory Fortunately, new transistors overcome most of these faults.

As you probably realise, the market for transistors in Amateur equipment is miniscule compared to the market in the mobile communications equipment used in police cars, ambulances, taxicabs, and so forth, not to mention the transmitters used in aircraft and military equipment. However, the Amateur benefits from the improvements that result from developing new transistors for these applications. Because these markets are large and growing, transistor manufacturers have

[^32]been developing highly improved transistors for these uses.

These new power transistors have higher gain and higher power output than earlier devices (up to 100 watts in one transistor at 175 MHz .). They are also rugged and can withstand detuning and mismatching that would destroy earlier devices. Their cost is reasonable for the applications they are intended for. While prices are still high compared to vacuum tutes which can supply the same power, the advantages of transistors have made them the overwhelming choice in new applications. Very little new commu ications equipment for mobile use is presently being designed with vacuum tubes.

For applications that require high efficiency, small size, and high reliability transistors are used even when they are quite a bit more expensive than equivalent types. For instance, in aerospace communications, literally dozens of transistors are used in parallel in some applications to obtain very high output.
In spite of this, transistors are not replacing vacuum tubes in all applications. The Amateur operator who wants to put out 2,000 watts is not likely to use transistors except in the driver stages where the transistor can make a very compact and efficient assembly.

At the present time, low-power transistors are quite reasonable. For higher power a few devices are now becoming available on the surplus market. Most of them are not modern transistors, and suffer from many of the faults that I mentioned before, particularly failure due to mismatching or detuning. Nevertheless, they are quite useful in many applications and are a very good way to get your feet wet in r.f. power before you take on a more expensive project.

For that matter, dedicated Amateurs have never had any real problems in obtaining components for their projects. The serious Amateur who wants to build a high power transistor transmitter can likely get the transistor he needs one way or another, just as he has been able to obtain expensive varactors for microwave use. And even though the transistors are relatively expensive, they are quite reasonable when you consider their advantages; using transistors that operate directly
from a car battery, for example, eliminates the need for a relatively expensive, space-consuming inverter.
The principles outlined in this article apply equally well to small transistors used in 1 and 2-watt transmitters and to the large transistors that are necessary to get 100 watts or more of r.f. power output. The same design principles are used in all of these applications. The numbers will change, of course, and sometimes the networks used for coupling between the transistors will also change due to the differences in impedance levels. However, if you learn how to design a low-power transmitter you can apply the same principles when higher-power transistors become available to you.

Fig. 1.-Comparison of collector current vs. collector-emitter voltage in conventional and resistor-stabilised transistors [balanced-emitter transistors).

CHARACTERISTICS OF R.F. POWER TRANSISTORS

Modern r.f. power transistors are made of many individual small transistors in parallel. These transistors are formed at the same time in the manufacturing process. The small transistors are then connected in parallel with aluminium metal that is deposited on the surface of the silicon chip. Each of the small transistors handles relatively little power, hence, can be rather small in size. This is an advantage in high-frequency use.

A further development of this type of construction is the balanced-emitter: transistor. Here a small resistor is placed in series with the emitters of the small transistors that are connected in parallel to form the whole transistor.

Fig. 2 shows a typical balanced-emi:ter transistor. It is the Motorola 2N5637 which can supply an output of 20 watts at 450 MHz . This transistor consists of 220 transistors in parallel, and is stabilised by 220 small thin-film Nichrom resistors. This device, which is more complex than most ICs, is 50 by 100 mils. (0.05 by 0.1 inch) in size. You'll notice that the 2 N 5637 is made of ten cells. Similar cells are used in other transistors; the 2 N5636, which is often used as the driver for the 2 N 5637 , consists of six cells and can provide 7.5 watts. The $2 N 5635$ contains two cells and can put out about 2.5 watts.

The reason for this complex construction is that it improves ruggedness. If one small transistor in the large chip starts drawing more current than another one because of some small difference in its construction, the current through it would increase. Then the voltage across the small resistor would increase, increasing the emitter-base voltage. This reduces the amount of current that this individual transistor draws. In other words, it is a selfstabilising operation. No single transistor can draw an excessive amount of current. This protects the transistor from secondary breakdown and permits it to stabilise itself in the event of severe load mismatch or circuit detuning.

Since these small emitter resistors are in parallel, their equivalent resistance is very small and does not result in significant degeneration or loss of gain. On the other hand, if a conventional, older type of power transistor is used with emitter-resistor protection, a resistor large enough to have any significant effect on the ruggedness of the transistor circuit would cause considerable loss of gain and output.

The greatest advantage of balancedemitter transistors is their ruggedness. A balanced-emitter transistor can stand an infinite v.s.w.r. for a short time in a.m. service, for example. You can also tune one of these transistors without having it blow out, as often happens with older transistors.

Another result of this construction is shown in the $I_{c} / V_{c: r}$ curve shown in Fig. 1. Here the collector currents of two transistors with similar output capability are compared. One is a balanc-ed-emitter transistor, the 2N5642. The other is a more conventional transistor, the 2N3632. The 2N3632 contains two chips in parallel in one package, but no emitter stabilising resistors are included in this transistor. You'll notice that as the voltage increases in the balanced-emitter transistor, the current increases proportionately. This shows the excellent linearity which would make it ideal for amplitude modulation or linear amplification. The 2N3632 has a negative resistance region when increasing the voltage results in lower current. This negative resistance region would result in very poor upward modulation, of course, and high distortion in amplifer service.

While most silicon transistors, particularly power transistors, are NPN devices, PNP r.f. power transistors are also made by Motorola. One, the MM4023, is a balanced-emitter transistor capable of 40 watts output at 175 MHz . The lower-power 2N5160 is a close PNP match of the popular 2 N3866 and can be used in complementary service (see Fig. 3).

Table 1 summarises a number of r.f. power transistors, both conventional and balanced-emitter types. The conventional ones are suitable for low power stages, for drivers, and where they will not be subjected to load mismatch or detuning. Some of these transistors are also becoming available at relatively low prices in surplus. However, only balanced-emitter tran-
sistors are recommended for use where they will be modulated, where any significant power is being handled, or for feeding an antenna. Fig. 4 gives test circuits for some of the transistors. Many of these circuits can be adapted for use in the Amateur bands.

TYPES OF OPERATION

Amateurs are interested in r.f. power transistors for four modes of operation: c.w., f.m., a.m. and s.s.b. The simplest of all of these is c.w. operation. Keyed c.w. can be used in portable operation where the maximum range is desired. There's no question that this operation provides you the best range for a given power. A continuous signal can also be used for driving varactor multipliers or vacuum tubes. F.m. operation is the

Fig. 2.-The geometry of a Motorola bal-anced-emitter (resistor stablised) translstor, the 2N5637. which is capable of 20 watts ooutput (minimum) at 400 MHz . The 2 N 5637 is composed of 220 Individual small translstors connected in parallel, each emitter. This construction provides excellent safo area and reslatance to demege from detuning or high v.s.w.r.

Type	Supply voitage (c.w. service)	$\begin{gathered} \text { Gain } \\ \text { (min. db.) } \end{gathered}$	$\begin{gathered} \text { Pour } \\ \text { (min. W.) } \end{gathered}$	$\begin{gathered} @ f \\ (\mathrm{MHz} .) \end{gathered}$	Case	Siniyle Ouantity Cost
2N3866	28	10	1	400	TO-39	SUS2.25
2N3375	28	8.8	7.5	100	TO-60	10.80
2N3553	28	10	2.5	175	T0-39	4.37
2N3632	28	5.9	13.5	175	TO-60	12.75
2N4072	13.6	10	1/4	175	TO-18	2.25
2N4073	13.6	10	1/2	175	TO-5	2.70
2N4427	12	10	1	175	TO-39	2.15
2N5160*	28	8	1	400	T0-39	6.75
2N5161*	28	8.75	7.5	175	T0.60	18.75
2N5162* \dagger	28	6	30	175	TO-60	27.00
2N5635 \dagger	28	6.2	2.5	400	144B	7.50
2N5636 \dagger	28	5.7	7.5	400	144B	22.80
2N5637 \dagger	28	4.6	2	400	145A	57.50
2N5641 \dagger	28	8.4	7	175	144B	6.40
2N5642 \dagger	28	8.2	20	175	145A	21.30
2N5643 \dagger	28	7.6	40	175	145A	40.40
$\begin{aligned} & \text { 2N5644 } \dagger \\ & \text { 2N5645 } \end{aligned}$	$\begin{aligned} & 12.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 7 \\ & 6 \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	$\begin{aligned} & 470 \\ & 470 \end{aligned}$	$\begin{aligned} & \text { 145A-01 } \\ & \text { 145A } \end{aligned}$	$\begin{aligned} & 11.80 \\ & 15.50 \end{aligned}$
2N5646†	12.5	4.7	12	470	145A	29.20
2N5589 \dagger	13.6	8.2	3	175	144B	6.10
2N5590†	13.6	5.2	10	175	145A	14.40
2N5591 \dagger MM1552 \dagger	$\begin{aligned} & 13.6 \\ & 27 \end{aligned}$	4.4 7.8	$\begin{aligned} & 25 \\ & 75 \end{aligned}$	$\begin{aligned} & 175 \\ & 150 \end{aligned}$	$\begin{aligned} & \text { 145A } \\ & 145 C \end{aligned}$	$\begin{aligned} & 25.20 \\ & 67.50 \end{aligned}$
MM4018* \dagger	12.5	10	1/2	175	TO-39	2.20
MM4019* \dagger	28	10	2.5	175	TO-39	6.50
MM4020* \dagger	12.5	11.5	3.5	175	208-1	8.05
MM4021* \dagger	12.5	7.0	15	175	208-1	19.50
MM4022* \dagger	12.5	5.5	25	175	208-1	30.00
MM4023 ${ }^{\text {¢ }}$	12.5	5.4	40	175	208-1	49.40

Table 1.-Typical r.f. powe transistors.

Fig. 3. -300 MHz . com plemientary r.f. Dower amplifier using an NPiv 2N3866 and PNP 2N5160 transistors.

same as c.w. as far as a transistor is concerned. The deviation used in any type of Amateur or commercial commercial work is so small that it appears as a constant signal to the transistor.
In either c.w. or f.m. operation the transistor can be operated at a supply voltage of slightly less than the collector-emitter breakdown voltage (BV crio). For example, the 2N5641 series of transistors has a minimum $\mathrm{BV}_{(\cdot \mathrm{k})}$ of 35 volts and it is quite suitable for use at 28 volts for f.m. or c.w. operation. Likewise, transistors with an 18-volt BVaro can be used with the automobile supply, which is roughly 13.5 volts. Because you can operate relatively close to the breakdown voltage, you can get maximum power output from a transistor in c.w. or f.m. operation.

Incidentally, the collector voltage of a transistor rises to roughly twice the supply voltage during the cycle. This would seem to exceed the transistor ratings, but this is not true because the radio-frequency breakdown voltage is considerably higher than the d.c. voltage breakdown. It is very close to the highest maximum rating normally given on a transistor data sheet, the BV.r.x.t The BV res is 65 volts for the 2 N 5641 series.

Operation of a transistor at 28 volts requires an inverter if it is used in a car. This inverter can be relatively simple-even an zutotransformer that provides voltage doubling. However, this partly negates one of the great advantages of using transistors: the fact that they can be operated directly from the 13.6 volt supply voltage. These 28 -volt transistors are quite useful in fixed-station operation, but they are more often used in a.m. service. A transistor operated at its maximum c.w. output, say 40 watts for the 2 N 5643 , must be given some type of protection in case of extended detuning or mismatch. The transistor can survive a short fault but not a continuous one.

Transistors are available for operation from a car battery of 13.5 volts. They are quite similar to the highervoltage devices but are optimised for maximum output at the lower voltage, and have lower breakdown voltages. They also have lower gain at the lower voltages. For example, the 2 N 5591 has an output of 25 watts at 175 MHz . when operated directly from a 13.5 v . supply. Its power gain at this level is only 4.4 db . minimum, which is rela-

[^33]tively low. The 2N5642, which has roughly the same output, 20 watts at 175 MHz ., has a gain of 8.2 db . when it is operated at 28 volts. Berause of this lower gain, more stages are generally required for the same power level with low-voltage power supplies.

AMPLITUDE MODULATION

Amplitude modulation with transistors is usually a rather messy proposition. Frequency modulation is much more satisfactory, and Amateurs are using f.m. more and more in v.h.f. mobile communications. However, a.m. is widely used commercially in aircraft transmitters and by the military. The aircraft transmitters operate between 108 and 136 MHz ., and the military use a.m. between 108 and 152, and between 225 and 400 MHz . For this reason, many transistors have been developed for a.m. use in these frequency ranges. The carrier output of a transistor in a.m. service is very low compared to

Fig. 4.-Test circuits used for typical p.f. power trensistors.

13.5 volts, and has a breakdown voltage of about 65 volts.

In a.m. service, because the transistor is operated at relatively low carrier output, it can withstand infinite v.s.w.r. and detuning for a considerable period of time if mounted on an adequate heat sink.

SINGLE SIDEBAND

Single sideband with transistors is still relatively unfamiliar to most users. Transistors have been used for single sideband for some time, particularly by the military, but not too much information is available on this type of operation. A rule of thumb is that a transistor provides fairly low distortion at a peak envelope power output roughly equal to the c.w. r.m.s. output. As an example, the 2N5643, which can put out 40 watts of c.w., can provide 40 watts p.e.p. of sideband with relatively low distortion.

Balanced-emitter transistors are ideal for single sideband because of their excellent linearity. At the present time an inexpensive transistor can provide about 8 to 10 watts p.e.p. s.s.b., making it quite suitable for use alone or to drive an efficient transmitting tetrode tube such as the 4CX1000. This is not enough output, of course, to drive a grounded-grid tube like the popular $3-1000 \mathrm{Z}$.

Table 2 summarises the required voltage ratings of transistors used at 13.5 volts and 28 volts in all popular modes.

READING DATA SHEETS

An important part of using r.f. power transistors is understanding their data sheets. Data sheets on any power transistor or for that matter, any semiconductor, are available from the manufacturer of the device. \ddagger Most. of the data sheet is quite straightforward and though different manufacturers use different formats, similar information is available from most data shects. One of the first things that you should remember when you are looking at a data sheet is that there are different types of values given. Some are actual maximum ratings. These are the absolute limits to which a transistor should be subjected. Other values are characteristics which describe the actual performance of the transistor.

In the maximum ratings there is no problem about interpreting them; they are quite obvious. However, the characteristics can be typical values, or they can be minimum or maximum values. The manufacturer chooses the value to give him a reasonable yield of saleable devices. At the same time, most of the transistors that he produces exceed the minimum ratings, sometimes by quite a bit. For this reason, typical values are often given on data sheets. These typical values include all of the curves, except one or two such as the safe operating area curve and temperature deratings.

Typical values are very useful in design; however, it is better to design with the minimum values to be on the safe side and insure that your design

[^34]works properly. The data sheet clearly differentiates between typical and minimum values.

Among the curves which provide typical values are those giving impedances, where it is not practical to give a range. In this case, many transistors are measured, and an average value is put on the curves. These values can vary a bit in individual transistors, but the numbers indicated are usually quite close and satisfactory for circuit design.

One of the first ratings or characteristics that you are concerned about is the breakdown voltage of the transistor as discussed in the section on classes of operation. Many different breakdown voltages are provided on data sheets. The most significant one for r.1. use is the $B V_{\text {cus. If this is not pro- }}$ vided, the BVcoo is usually numerically about the same. Half of this value gives you the maximum rating for c.w. or i.m. use; one-quarter of it for a.m. use, as shown in Table 2.

It is interesting to notice the tradeoffs that accompany a higher breakdown voltage in a given family of transistors. A higher breakdown voltage indicates a lower output capacitance of Cor. This, of course, can simplify design at high frequencies considerably by reducing the amount of parallel output capacitance. An unfortunate result of higher breakdown voltage is higher d.c. and r.f. saturation voltages.

	13.5v. Supply $\mathrm{BV}_{\mathrm{ces}} \mathrm{BV} \mathrm{cko}^{\text {co }}$			
c.w.	30	15	60	30
f.m.	30	15	60	30
a.m. (t'former modulation)	60	30	120	60
a.m. (series modulation)	30	15	60	30
s.s.b. (linear application)	30	15	60	30

Table 2.-Minimum $B V_{\text {ces }}$ and $B V_{\text {cso }}$ for transistors used in various modes of operation at 13.5 and 28 volts. Values for a.m. assume 100% modulation.

The reason this is important is that the actual output from a transistor is dependent on the collector voltage swing, or difference between the collector supply voltage and the saturation voltage.

For example, though d.c. saturation voltages are rarely given, for r.f. power devices they typically run around 1.5 to 2 volts for high voltage (28 v .) transistors, and a little bit lower for low voltage ones. However, the r.f. saturation voltage is usually about 1.3 times higher and this reduces your power output. As you can see, if you operate a transistor with a high breakdown voltage at a low voltage, you reduce your voltage swing considerably because the high rf. saturation voltage will remain roughly the same. Thus, a high breakdown voltage results in a lower maximum saturated power output. But as discussed before, a high breakdown voltage is a necessity for amplitude modulation, and so we have to live with the high saturation voltage that accompanies it. This is another good reason to use f.m. rather than a.m.

Incidentally, at high operating voltages, gain is higher than at lower voltages, partly because the higher operating voltage reduces both output and feedback capacitance.

One parameter that is of relatively little importance is the maximum collector current (Ic asx). Though a safe operating area graph often lists the maximum permissible simultaneous voltage and current for the transistor, these values are usually d.c. or lowfrequency ones and are not very relevant at 100 MHz . or so. Transistors aren't often operated near their maximum collector current, anyway, whether they are low-frequency or high-frequency devices.

A vital parameter in a high-power amplifier is the maximum power dissipation. The maximum power dissipation of a transistor is the difference between the input and the output: P_{v} $=P_{\text {in if }}+P_{\text {in de }}-P_{\text {out. }}$ For example, if you have 1 watt of r.f. input and 10 watts of d.c. input (a total of 11 watts input) and 5 watts output, the dissipation is 11 minus 5 , or 6 watts. If you're using a relatively large transistor it may be able to handle this with very little extra heat sinking; however, it is important that sufficient heat sink be provided if necessary.
D.c. current gain or $h_{\text {Pe, }}$ is relatively important in many applications, but its significance in r.f. power transistors is probably not what you think. A high $h_{p s}$ indicates a high f_{T} and hence a high power gain at frequencies below the I_{T}. Nevertheless, high $\mathrm{h}_{5 \mathrm{E}}$ is not desirable in most r.f. power transistors: it results in lower maximum saturated power output, higher intermodulation distortion in single sideband use, greater change in d.c. gain with changing current and, perhaps most important, d.c. and low-frequency instability.

The lower d.c. stability means that it is relatively hard to stabilise the bias of the transistor in class B or $A B$ operation for s.s.b. The a.c. instability can lead to low-frequency oscillation because the transistor has so much gain at these frequencies in comparison with the gain at the very high frequencies at which you want it to operate.

It follows that a high f_{r} is not necessarily an advantage. The hio (smallsignal a.c. current gain) and f_{r} are intimately related, since f_{T} is equal to $h_{\text {fo }}$ times the frequency at which $h_{f 0}$ is measured. High $\mathbf{f}_{\mathbf{T}}$ means higher output resistance in a transistor. Higher resistance can simplify matching requirements in some cases but the high f_{r} also means a lower input resistance at a given power output. All in all, it is not really a very good indication of a transistor's performance in power amplifying service.
The important numbers for you to look for in an r.f. power transistor are its functional tests. R.f. power transistors undergo tests for gain, power output, and in some cases, efficiency, at given frequencies. This is a rather time-consuming, and hence, expensive, operation for the manufacturer and one of the reasons that r.f. power transistors are more expensive than low frequency ones. However, it insures that the transistors are suitable for highfrequency operation.

The functional test can be given in a number of different ways; probably the most obvious one is a minimum power output for a given power input at a given frequency. A more common test furnishes the amount of input required for a given output. Power gains are usually given at the same frequency at which the power outputs are measured. Minimum and typical values are often given. The minimum is what you should design with; the typical is what you can hope for.

If you do a little bit of figuring, you will find that most power transistors have much lower gain than vacuum tubes you are familiar with. Therefore, more transistors than tubes are required to obtain a given power level in most cases. This is not necessarily true at relatively low frequencies: a power transistor can have very high gain at 50 MHz ., for example, if it is designed for use at 400 MHz . Power gain in-
ferences between these values. If you use the small-signal impedances to design a transmitter, it won't work properly. Some manufacturers still do not give large-signal impedances, complicating the task of the designer considerably, because he must spend a great deal of time in empirical work. Incidentally, Motorola pioneered in providing large-signal impedances, and they are provided on almost all Motorola r.f. power transistor data sheets.

Three different large-signal impedances are provided: the input capacitance (C_{15}), input resistance ($\mathrm{R}_{1 \times}$), and output capacitance ($\mathrm{C}_{\mathrm{N} / \mathrm{T}}$). The output resistance (Row) can be figured from the supply voltage and output power of the specific circuit you are using, and that will be discussed in more detail further along. Incidentally, the output capacitance is roughly twice the low frequency $C_{\text {in }}$ in case this is not given.

New ivictorola balancec-

 emitier transistors in a ceramic strip.line package provide up is 20 watts output at 400 MHz (2N5637), 40 watts at i75 MHz. with a 28-volt supply (2 N 561^{\wedge}). or 25 watts at 175 MHz . with a 13.5 -volt supaly (2N5591). Also avail. able are new transistors that are suitable as drivers for those devices or as lower-power amplitiers.creases about 6 db . per octave, and this can mean that you have much higher gain at lower frequencies.
However, it is not necessarily desirable to use a 400 MHz . transistor at 50 MHz . If you have excessive gain you are likely to have instability. In general, about 15 db . is the maximum gain you should expect to get out of an r.f. power transistor and have it remain stable. More than this and you are likely to be bothered by instability that could be hard to eliminate. In general, you should use r.f. power transistors only in the ranges that are indicated on the data sheet. For example, if output powers and impedances are given for a transistor between 100 MHz . and 400 MHz ., you could use it anywhere within that range and probably just a little bit above or below it. However, it would be best not to use this transistor at 30 MHz . or below.
A relatively recent development in r.f. power transistor data sheets is the inclusion of large-signal impedances. Previous to this only small-signal impedances were given: a 20 w . transisto: might be characterised in a circuit in which it was actually just a low-level amplifier. However, when transistors are operated at high power levels, their characteristics are quite different from those at low power levels.
Table 3 lists the high and low-level impedances for the 2 N 3948 transistor at 300 MHz . You can see the vast dif-

PACKAGING

The packaging for an r.f. power transistor is vitally important. For large power outputs, specialised packages that provide minimum lead inductance are required. Though the TO-39 package is widely used for low-power transistors such as the 2 N 3866 and the 2N3553, it is not suitable for powers over a few watts. The next step up is similar to the TO-39 except it provides solid terminals instead of wire leads and uses a stud for mounting (TO-60). Examples are the 2N3375 and 2 N 3632 . These packages are shown in Fig. 5.

A much better package is the stripline opposed-emitter case, which is used in one form or another by most manufacturers. This type of package provides an isolated stud for mounting. This stud may be mounted directly on a heat sink without insulating washers. Four ribbon leads are provided; two emitter leads, a collector lead and a base lead. The two emitter leads are betwcen the collector and the base leadis providing excellent isolation, and the fact that there are two of them makes it easy to provide a very low impedance ground. A wide ribbon is used for high power levels and a smaller one for lower power levels. The Motorola stripline package is ceramic; some of the others are plastic. The most popular package is only $3 / 8$ inch in diameter, yet can put out over 40 watts of power.

CIRCUIT DESIGN

Amateurs are fortunate in at least one respect when it comes to r.f. power transistors: most Amateur circuits are narrow band, unlike the wideband transmitters required in commercial and military a.m. service. In broadband circuits, considerable gain often has to be sacrificed to obtain the wide band. However, Amateurs can use the transistors in narrow-band service and obtain the performance specified on data sheets without any great problem.

The first problem that a transmitter designer must solve is the frequency at which he will generate his signal, and at what level any frequency multiplication, if that is needed, will be performed. General commercial practice seems to obtain a low-level signal at the output frequency, then perform all the power amplification at this frequency. There are a number of reasons for this: one is that in many commercial applications a frequency synthesizer is used, and its output can conveniently be at the output frequency.

There are two different ways thet impedance dala can be presented: in the parallel form, which is given 0.1 most Motorola data sheets, or in the series representation. A parallel form would be, for example, 6 ohms resist.. ance in parallel with 30 pF . capacitance. The series form would be the familiar expression using j, such as 25 - j 8 ohms. There are advantages to using either form; some networks are easiel to design with the series representation, and some with parallel. It is relatively easy to switch from one to another. Later on in the discussion of network design I will indicate when you use the series and when you use the parallel form, and how you change from one to the other.

		Class A Small-Signal Amplifier $V_{\mathrm{cr}}=15 \mathrm{v}$. d.c. $\mathrm{I}_{\mathrm{c}}=80 \mathrm{~mA}$.					Class C Power Amplifier $V_{\mathrm{ct}}=13.6 \mathrm{v}$. d. $\mathrm{P}_{\mathrm{o}}=1 \mathrm{Watt}$		
Input resistance		9	ohms	38		hms
Input capacitance or inductance		\ldots		$2 \mu \mathrm{~F}$.	..."	\ldots	21		F.
Transistor output resistance		\ldots	199	ohms	\ldots	92		hms
Output capacitance	4.6	pF.	5.0		F.
Power gain	12.4	dB.	8.2		B.

[^35]Another reason is that it is easier to design an amplifier stage than a multiplier. The information required for designing an amplifier can be obtained very readily from a data sheet, while that for designing a multiplier often must be obtained by cut and try. For this reason, it is usually best to plan on having a few milliwatts, say 20 to 100, at the output frequency and amplifying from there. All of the multiplication that is needed can then be done at a low level.

The next problem is whether to use a low-frequency crystal and multiply up, or to use a higher frequency crystal. A low-frequency crystal is usually necessary in f.m. applications where you need to use a relatively low fre-
power output you want, taking into account the power supply that is available, and work backwards from this. As a practical example, a simple transmitter for two metres will be developed in the rest of this article. This transmitter will also be used to explain simple network design.

Suppose we would like to obtain about 10 watts of c.w. or f.m. on two metres to drive a fixed station amplifier. A 28 -volt supply will provide the highest output. A good transistor choice would be the 2 N 5641 . It has a minimum power output of 7 watts at 175 MHz . according to Table 1. Referring to the data sheet, it can be seen that its output at 145 MHz . would be much closer to 10 watts. This transistor costs

Fig. 5.-Typical packages for r.f. power transistors: from left to right: TO-39. case 144B, case 145A, and case 145C. The ${ }^{145 C}$ case is a $1 / 2$ inch case: the others are ${ }^{3} 8$ inch.
quency and multiply by a fairly high number to get enough deviation for f.m. However, for a.m. or c.w., it is usually best to use as high a frequency as is practical. Since very little power output is needed, you can use an overtone crystal and just multiply a few times. For instance, for two metre output, a 72 MHz . overtone crystal oscillator can provide a few milliwatts which then can be doubled. This is usually the simplest approach; more important, this high-frequency signal generation reduces the number of harmonics and sub-harmonics that you have to contend with. It is relatively difficult to eliminate frequencies every 8 MHz . across the band, but easy to suppress ones that are 72 MHz . from the desired frequency.

This discussion, of course, has been assuming that you are using crystal control. If you use a variable-frequency oscillator, you'll have some other problems. Then your best bet is to use the heterodyne method so that your v.f.o. operates at a relatively low frequency and beats against a relatively highfrequency crystal oscillator. For single sideband, of course, this is a necessity.

TRANSISTOR SELECTION

Choosing transistors for use in a transmitter can be an interesting task. In many cases, you really have very little choice. You may have a few transistors of a given type, or you may be limited in the amount you can spend for transistors. In this case, your choice will be relatively limited. And considerably simplified, for that matter. In other cases, you will have to decide the
\$US6.40 in single quantity, a reasonable price for a transistor of this output. Table 4 summarises the most important characteristics of this transistor at 145 MHz .; the values were simply taken from the appropriate graphs on the data sheet.
At this frequency, the 2 N 5641 has an output of 9 watts for an input of 0.5 watt. To be on the safe side, we can use the 2 N 3866 as a driver. It has an output of 1 watt at 145 MHz . with only 20 milliwatts of input, a gain of about 17 db . This high gain is safe in this low-level stage, and should not cause any problems. A block diagram of the transmitter is shown in Fig. 6.

The 20 mW . of drive can be supplied by a small-signal transistor, such as a plastic-encapsulated MPS3563, an excellent transistor for this use, costing only $\$ \mathrm{US} 0.44$.

For high power levels, paralleled transistors might be needed. If this is done, some type of equalising network must be provided to insure that both transistors receive the same drive. It is usually very difficult to use pushpull because of the problems in getting balanced drive. However, it should be remembered when considering this that only about 3 db . is gained by using another transistor in parallel. It might be easier to use a larger or better antenna or lower loss lead-in to get this gain in transmitted output.

The transistors discussed in this article generally operate in class C. In usual transistor practice, this means they are operating without any bias except that provided by the signal, without respect to the angle of conduction. Class C amplifiers give excellent efficiency and high power output. They are also self-protecting: if you remove the drive from a class C amplifier, it cuts itself off and does not draw current.

Slightly more gain can be obtained from class $A, A B$ or B amplifiers, but only at the expense of higher dissipation and smaller output. These other classes of operation can provide linear operation: hence they can be used for amplifying s.s.b. or a.m. A class \mathbf{C} amplifier can be used only for amplifying c.w. or f.m.

Normally a class C amplifier has a choke or r.f. coil connected directly between the base and emitter (ground), but sometimes a small resistor is connected in series with the base choke. This improves efficiency slightly at the expense of gain and output. This higher efficiency is normally not required except in battery operation or where there might be problems with heat and the higher efficiency would reduce the power dissipation.

Transistor r.f. power amplifiers are usually not neutralised. Neutralisation of a transistor is difficult because its capacitances vary greatly with applied voltages. Almost the only type of neutralisation that is used is emitter tuning. Here a small capacitor is connected from the emitter to ground and tuned for maximum output. A small choke can be placed in the emitter lead, or, at the highest frequencies the emitter lead can provide sufficient inductance by itself.

This emitter tuning can provide higher output and higher power gain, but possibly at the expense of instability. Emitter tuning is a narrow-band tech-

Table 4.-Characteristics of 2 N 5641 and 2 N 3866 at 145 MHz . and 28 Volts.
nique and not suitable for most commercial use. Amateurs can use it because it is not too difficult to tune up one transistor for maximum power output. However, more conservative design does not accept emitter tuning.

Grounded-emitter operation is almost universal in r.f. power design. The grounded-base configuration is less stable, and adjustments for grounded-base amplifiers are more critical. If neutralisation is required, it is very difficult to implement. Grounded-base amplification might be desirable in some applications, but grounded-emitter stages are usually much more satisfactory. In fact, transistors such as those in the strip-line opposed-emitter package have two emitter leads which are connected directly to ground. These transistors would not be very convenient for grounded-base operation.

In some r.f. power transistors, the emitter is internally grounded to the stud which helps reduce emitter inductance when the chassis is the r.f. ground. However, where the transistor is placed through a hole in a circuit board, the two emitter leads can provide shorter ground paths than an emitter connected to the stud.

MATCHING NETWORKS

Matching networks are used at the input and output of a power amplifier and between transistor stages. These matching networks serve two functions: impedance transformation and frequency selection. They provide an impedance transformation between the source and input, between the output load and load, and between stages. If a transistor had exactly 50 ohms input impedance or output impedance, the network could be very simple, simply a large capacitor. However, in practice the impedances are usually quite different from 50 ohms. In high-power transistors, the input impedance is often less than 1 ohm, and the output impedance only slightly larger.

The matching network also discrirninates against unwanted frequencies. A simple network usually cannot provide sufficient discrimination, and it is always desirable to use an antenna filter with any type of transmitter that you connect to an antenna.

Transformer or loop coupling is rarely used in transistor r.f. power amplifiers. This type of coupling is hard to adjust for maximum power output and maximum power transfer, particularly at higher frequencies. Instead, simple T networks and L networks are commonly used. Pi networks are rarely used in transistor stages because they often result in impractical component values, such as 0.5 pF . capacitance or 20 nH .§ inductance, whereas other networks give practical values that can be used in a transmitter.

Tuned lines and co-axial cavities provide high efficiencies and frequency discrimination, but they are very bulky at v.h.f. and are rarely used for this reason. In the u.h.f. region, circuits are often built with strip-line techniques. These copper lines deposited on ceramic

[^36]
(A) Input or output matching network.

1. Convert the parallel form of impedance to series form if needed.
2. Select a O_{1}. (usually 5 to 10; see text).
3. Compute:
$B=R_{1}\left(1+O_{L}{ }^{2}\right)$
$A=\nabla\left(B \div R_{L}\right)-1$
4. Then
$X_{r:}=A R_{1}$,
$X_{c_{1}}=B \div\left(Q_{\mathrm{L}}-A\right)$

(B) Interstage matching network. This network is useful when Ro is greater than Ri (which is almost always true).
5. Select a $Q_{1 .}$.
6. Compute $A=R i\left(1+O_{1 .}{ }^{2}\right)$
7. Then $X_{L}=O_{1}$. Ri.

$$
\begin{aligned}
& X_{c i}=X_{c o} \sqrt[2]{\left(A \div R_{0}\right)-1} \\
& X_{c: 2}=A \div\left[O_{1}-\left(\sqrt[2]{\left.A R_{0} \div X_{(01}\right)}\right]\right.
\end{aligned}
$$

Table 5.-Matching networks.
or high-frequency circuit board give excellent results and are used in many commercial and military applications.

SELECTING Q

An important part of any r.f. network design is choosing the loaded Q. A loaded Q between 4 and 12 provides a good compromise between various considerations. It provides convenient values with most networks, sufficient harmonic attenuation, good efficiency and smooth tuning. The loaded Q, incidentally, is quite different from the unloaded Q of the components. The loaded Q is dependent on the reactance of the components and the output resistance of the transistor. On the other hand, the unloaded Q is determined by the \dot{Q} of the coils or capacitors and is far higher.

The efflciency of a network depends on the ratio of unloaded Q to loaded Q. Low loaded Q provides easy tuning and high efficiency, but it also provides poor harmonic attenuation. Very high loaded Qs provide excellent attenuation of harmonics but result in critical tuning and high circulating currents which usually result in poor efficiency with practical coils and capacitors. Since an output filter must be considered a necessity in modern operation, the actual value of Q is not critical.

NETWORK DESIGN

The next step is designing the required matching networks. There are a number of approaches to this problem. Perhaps the easiest is using an admittance chart but it is a little involved for this discussion. Another convenient one is the Motorola application note, "Matching Network Designs with Computer Solutions," by Frank Davis.' This application note is very easy to use; you simply figure out what kind of network you want to use, which is dependent largely on the values you have to match, and look up the proper values in a table.

I highly recommend that you get a copy of this note if you are going to be doing any transmitter designing. The
note includes tables for designing with a number of different types of networks. However, this note is not necessary for circuit design; it can be solved with simple mathematics.
The most commonly used networks are shown in Table 5 with the formulae that are used for solving them. Some of these networks are shown with solutions for a 50 -ohm load or source; others are suitable for matching any impedance to any other impedance within certain limitations. Be sure to take note of these limitations: some output networks are only suitable for matching impedances below 50 ohms to 50 ohms; others can be used only for impedances above 50 ohms; still others can be used for matching a wide range of values to 50 ohms.
A point to notice is that some of these networks call for a series representation of the transistor representation. The equations used for converting from series to parallel and from parallel to series are given in Table 6.

(A) To convert a series representation of impedance to a parallel combination of resistance and reactance:
$R_{r}=R_{s}\left[1+\left(X_{x} \div R_{x}\right)^{2}\right]$
$X_{1}=R_{1} \div\left(X_{x} \div R_{x}\right)$
(B) To convert a parallel combination to its series equivalent:
$R_{s}=R_{r} \div\left[1+\left(R_{r} \div X_{r}\right)^{2}\right]$
$X_{x}=R_{n}\left(R_{r} \div X_{r}\right)$
where R_{r} is the parallel resistance, R_{x} is the series resistance, X_{8} is the series reactance, and X_{r} is the parallel reactance.
$X=2 \pi f L$ for inductance
$X=1 \div 2 \mathrm{xfC}$ for capacitance
Table 6.-Series-parallel conversion.

Often in a solution of one of these networks the component values that are obtained are not very practical. If this happens another type of network will have to be chosen. In some cases it may be necessary to use two networks in series to obtain a practical impedance transformation.

You may have noticed in Table 4 that the values of the collector resistance for the two transistors were not given. These values are best computed from the power output of the stage and the supply voltage:

$$
\mathrm{R}_{\mathrm{L}^{\prime}}^{\prime}=\frac{\left(\mathrm{V}_{\mathrm{cc}}\right)^{2}}{2 \mathrm{Po}_{\mathrm{o}}}
$$

where $R_{\mathrm{r}^{\prime}}$ ' is the output resistance of the transistor, Vre is the supply voltage, and P_{0} is the power output.

This is an approximation and does not account for the r.f. saturation voltage, but it is accurate enough for design. With this formula it is easy to figure the output resistance of the two transistors: for the $2 \mathrm{~N} 3866, \mathrm{Rr}^{\prime}=28^{2}$ $\therefore(2 \times 1)=390 \mathrm{ohms}$; for the 2 N 5641 , $\mathrm{R}_{\mathrm{r}}{ }^{\prime}=28^{2} \div(2 \times 9)=44$ ohms.

The next step is to determine what types of network should be used to match the input to the driver transistors, the driver transistor to the output transistor, and the output transistor to the load.

Referring to Table 5, it appears that the most suitable network to match the output impedance of the 2 N 5641 to the 50 -ohm load is the one shown in Table 5 A . The same network is also useful as an input network. Note that to compute this network the transistor output impedance should be in series form rather than the parallel form given on most of the data sheets and in Table 4. Use the equations given in Table 6B to convert from parallel to series representation. Incidentally, the reactances here can be figured most easily from a reactance rule such as the Shure rule, or from a table.

Now let's go through the whole design procedure using the steps listed in Table 5A:-
(1) Convert the parallel form to series (see Table 6B):

$$
R_{s}=\frac{R_{r}}{1+\left(R_{1} \div X_{P}\right)^{2}}
$$

To use this formula we need to find X_{1}, the reactance of a 22 pF . capacitance at 145 MHz .

$$
\begin{aligned}
\mathrm{X}_{\mathrm{l}} & =\frac{1}{2 \pi \mathrm{fC}} \\
& =\frac{1}{2 \pi\left(145 \times 10^{6}\right)\left(22 \times 10^{-12}\right)} \\
& =50 \text { ohms. }
\end{aligned}
$$

This can also be found with a reactance slide rule or table.

Therefore,

$$
\begin{aligned}
R_{s}= & \frac{44}{1}+(44 \div 50)^{2}
\end{aligned}=25 \text { ohms }, ~\left(X_{1}\right) .
$$

(2) Let $\mathrm{Q}_{1 .}=5$. This will provide adequate harmonic attenuation and practical component values.

Fig. 7.-This 9-watt transmitter for 145 MHz . Illustrates circuit design. In practice. variable capacitors would be used, of course.

(3) With $\mathrm{R}_{\mathrm{s}}=25$ ohms and $\mathrm{X}_{\mathrm{co}}=$ 22 ohms by step 1, calculate:

$$
\begin{aligned}
\mathrm{B} & =\mathrm{R}_{11}\left(1+\mathrm{Q}_{1}{ }^{2}\right) \\
& =25\left(1+5^{2}\right) \\
& =650 \\
\mathrm{~A} & =\sqrt[2]{\left(\mathrm{B} \div \mathrm{R}_{\mathrm{I} .}\right)-1} \\
& =\sqrt[2]{(650-50)-1} \\
& =3.5
\end{aligned}
$$

(4) Then,

$$
\mathbf{X}_{\mathbf{1}}=\mathbf{Q}_{\mathbf{1} \cdot} \mathbf{R}_{\mathbf{1}}+\mathbf{X}_{\mathbf{c}}
$$

and $L=300 \mathrm{nH}$. by a reactance chart or by $X \div 2 \pi f$

$$
=\mathrm{AR}_{\mathrm{i}}=(3.5) 50=175 \mathrm{ohms}
$$

and $\mathrm{C}_{2}=6.4 \mathrm{pF}$. (by a reactance chart or rule)

$$
\begin{aligned}
X_{\cdot 1} & =B \div\left(Q_{1}-A\right) \\
& =650 \div(5-3.5) \\
& =430 \mathrm{ohms} \\
\text { and } C_{2} & =2.5 \mathrm{pF} .
\end{aligned}
$$

Similar computations are performed for the input and interstage networks. A Q of 5 is also useful here. The complete circuit of the transmitter is shown in Fig. 7.

Once you have determined the proper inductance values for the transmitter coils you must obtain the coils. For low-frequency circuits commercially available inductors can often be used. However, for most v.h.f. use you must wind your own. Most radio handbooks give instructions for this simple operation. Use large wire sizes for lowest losses and be sure to check the inductance with a dip meter and known capacitor.

Other transmitters designed with similar networks are shown in Fig. 8 and Fig. 9. They illustrate the capabilities of modern r.f. power transistors.

AMPLITUDE MODULATION

If you are building an a.m. transmitter the modulation system is quite important. Low level modulation is not recommended because it is inefficient. There are two major methods of high level modulation of an a.m. transmitter, transformer modulation and series modulation. Series modulation requires
a supply voltage of twice the voltage required for the transmitter; an audio frequency power transistor in series with the supply to the output stage of the transmitter operates as a variable resistance modulating the transistor output of the transmitter. This method does not use any transformers, but it requires twice the supply voltage that is needed for transformer coupling.

Transformer coupling is more conventional but it is usually difficult to find a suitable modulation transformer. Since relatively high current passes through the windings, a special transformer must be made in cases where the power levels are over a watt or two. You also have to be careful in transformer coupling so you don't apply tou much supply voltage to the r.f. power transistor.

It is usually necessary to modulate not only the output stage in a transistor transmitter but also the driver, and in some cases previous stages. This can be done by applying full modulation to the output, partial modulation to the driver, and only upward modulation to the pre-driver, as shown in Fig. 10. The diodes limit the modulation applied to the pre-driver stage to upward modulation.

Modulating all these stages is necessary because the gain of a power transistor is low enough that there is significant feedthrough from earlier stages. For example, a transistor with 10 watts of output may have another watt contributed by the driver stage. If this stage is not modulated it will limit the maximum possible percentage of modulation.

THERMAL DESIGN

An important part of the design of high power transistor transmitters is its thermal aspects, or determining what size heat sink should be used to prevent the device from getting too hot and destroying itself. For relatively low power transmitters this is not a great problem, and connecting the stud to a metal chassis is adequate for powers below about 15 to 20 watts. For higher powered transmitters, more attention should be paid to this topic. Thermal design at r.f. is similar to that

Fig. 8. -30 -watt 175 MHz . transmitter uses PNP transistors (Irom Motorola Application Note AN.48i),
at lower frequencies. However, the heat sink must also provide a good path for r.f. in some types of construction. Provision may also have to be made to dissipate considerable extra heat during periods of mismatch or detuning.

PRACTICAL CONSTRUCTION

An important part of building a transistor transmitter, particularly for the v.h.f. range, is using very short leads. The fact that wide ribbon leads are provided for the transistors indicates the importance of this fact. The emitter leads in particular should be as short and direct as possible. An emitter resistor should not be used with bal-anced-emitter transistors since this is already provided internally. For some other types of transistors where insufficient protection is provided against load mismatch a small emitter resistor may be used. However, this resistor will reduce both power gain and power output.

By-passing is critical in a high power transistor transmitter due to the very low impedances involved. The best approach to by-passing power leads is multiple capacitors. A good technique is to use a feedthrough capacitor with other capacitors in parallel with it. For example, a 1000 pF . feedthrough with a $0.1 \mu \mathrm{~F}$. disc ceramic capacitor and a $10 \mu \mathrm{~F}$. electrolytic capacitor in parallel helps assure good by-passing. (But don't use too much capacitance if you are applying audio for modulation).

A good material for the chassis of a transmitter is copper or brass plate, or copper-clad printed circuit board. If printed circuit board is used, be sure that an adequate heat sink is provided for the transistors. With these materials, components can be soldered directly to the chassis, assuring good grounds.

The input of each transistor should be isolated from its output as much as possible; in some cases, a shield may even be necessary where high gains are used.
The chokes used in a transistor transmitter should not have high Q; low Q chokes help avoid many problems. If a high Q choke is used in the base lead, for example, the transistor can take off at lower frequencies. Ferritecore chokes are excellent in many cases. Ferroxcube VK-200 chokes are often recommended. Another approach is to use a couple of ferrite beads in series with another choke or even in series with just a small resistor or a piece of wire. In most cases, some experimentation is necessary to determine the best kind of choke. It is often a good idea to put a small resistor (10 ohms or so) in parallel with the base choke.

The coils and capacitors that are used in the collector circuit should be suitable for the high circulating currents. Don't forget that in a transistor transmitter currents are often many amperes and even a very small d.c. resistance can cause high losses.

One other problem with any type of v.h.f. equipment, and one that is not well recognised by many Amateurs, is the fact that resistors and capacitors have different values at high frequencies than they do at the frequencies where they are measured. For example, a 100 pF . silver mica capacitor can have a much higher capacitance at 2 metres. Unfortunately, most Amateurs do not have facilities for measuring capacitance accurately at high frequencies.

If you have access to a good v.h.f. bridge or a slotted line you can determine the actual value of a capacitor at the frequency of interest. Lacking this, you may be able to use air variables; their capacitance varies much less than silver mica and ceramic capacitors.
 Fig. 10.-Modulation system providing full modulo the driver outy amplifier, partial modulation predriver, and constant B plus to the pre-amplifier (from Motorola Application Note AN-481).

In most cases it is possible to avoid resistors in places in the circuit where they are subjected to r.f. This can be accomplished by careful circuit design.

One other important consideration in transmitter construction is the use of a low-pass filter in the antenna lead, or even better, a bandpass filter. This is necessary in vacuum tube transmitters to avoid interference with t.v. sets and other communications. It is even more important in a transistor transmitter where the circuits tend to have lower Q.

ADJUSTMENTS

A few hints for testing a transistor transmitter: rule number one is not to apply any power to a stage unless it is properly loaded. This means a dummy load suitable for the power level you

-AFC - FERPOXCLEE VK.200 igus
Fig. 9.- $\mathbf{2 5}$ watt 175 MHz . transmitter designed for a 12.5 volt power supply (from Motorola AN-495).
are using. Light bulbs are not satisfactory; a Heathkit Cantenna, lossy coax cable or other good 50 -ohm load are.

It is also a good idea to reduce power when you first tune up a transmitter; half voltage is enough. Adjust the tuned stages to approximate resonance if it is practical, since applying drive to a transistor without tuning its output circuit can cause problems. Probably no damage will result, though, if collector voltage is not applied to the transistor. The very low impedance of the base circuit makes it very difficult to develop enough voltage across it to blow out anything.
The usual way to tune a c.w. transmitter is to adjust it for maximum output with a wattmeter or dummy load and field strength meter. A better way is to look at the output on an oscilloscope. This can be done either with a direct connection to the plates of the oscilloscope, or with a mixer that will transform the high output frequency down to a frequency where your scope is usable. The mixer for this application does not need to be very complex. It is sometimes possible to use a receiver in this way if you are sure you are not overloading it.

It is a good idea to listen to the transmitter on your receiver at the output frequency. This will let you hear if any weird oscillation shows up. However, to have realistic results make sure that your receiver is not overloaded. A typical multiconversion v.h.f. receiving system is very susceptible to overloading and all sorts of images. A simple diode detector and amplifier is probably more satisfactory for this application than your high gain, lownoise converter.

Adjusting an amplitude modulated transmitter is more difficult. Here you should tune for maximum upward modulation and least distortion, rather than simply maximum power output. The two rarely correspond. Here again, looking at the signal on a scope and listening to it are imperative.

Linear amplification is the most difficult of all. Here you should tune for minimum distortion. A scope is necessary; a spectrum analyser is very useful if you can get one. If you are not careful with a linear amplifier, particularly in single sideband service, you may end up with a very high distortion and many spurious outputs.

In adjusting a transistor transmitter it is a good idea to use a regulated power supply, at least for initial adjustments. Most transistors are very sensitive to changes in supply voltage and you will get inconsistent results if your power supply voltage varies much.

CONCLUSIONS

This article has described the present state of r.f. power transistors and how they can be used in Amateur equipment. It has not gone into great depth in any subject; however, the list of references provide more information on the design and use of r.f. power transistors. Although r.f. power transistors are still relatively expensive, they are practical and should be carefully considered for use in your transmitting equipment.

Continued on Page 231

Construction Details of a Two Element Cubical Quad with One-Loop Triband Elements

HANS F. RUCKERT,* VK2AOU

IT has been shown many times that there is not much difference in performance between a full size three element Yagi 65 feet high and a two element Cubical Quad at the same position. Today most Yagi beams are of more or less shortened triband form (W3DZZ versions), and cannot always be placed as high as 65 feet. It is, therefore, not surprising that in many cases the Quad appears to perform better than Yagis, especially as the Quad c'oes not seem to mind if only 30 feet high, something a Yagi does not like.
My regular DX-sked partners and I still try to find a logical explanation why the one-loop Quad goes so well even on 20 metres, in spite of a 20% shortening of the loop wire, causing a 30% area reduction (a 50% reduction in wind resistance and a substantial weight reduction). The usual triband Quad with its three-wire loops per element seems to be no better than this single loop with 20% shortened wire on 20 metres. On 15 and 10 metres, we can expect more gain due to the extended and nearly doubled wire length respectively. This is not a "mini Quad" on these bands.

VK2AOU's Mono-Loop Triband 2 Element Cuad. Boom, cross-arm and support construction on a TR-44 rotor.

THE PRINCIPLE

The original idea goes back to 1958 ("A.R.," May and June, 1958) and background information was published in "A.R.," April 1968, September 1968 and December 1969. Each element consists of two triband dipoles bent at right angles in the middle, where the L-C tuning units are inserted. These dipoles are connected at the ends (sides of loop) to form the Quad loop.

The triband tuning is achieved by placing two parallel tuned circuits in series and also in series with the Quad loop at the upper and lower loop corner. These tuned circuits are not tuned to the Amateur bands or operating frequency of the aerial, and this is in contrast to the method developed by Pichitino and by W3DZZ, where the
parallel tuned circuits are traps at the operating frequencies.

In our case the lumped L and C of the tuning components and the distributed L and C of the wire loop combine to give three resonances, which can be placed on Amateur band frequencies like $14.15,21.3$ and 28.6 MHz . The hairpin inductors and the ceramic transmitter type capacitors (double cup types, pieces of RG8U co-axial cable may also be used) are low loss tuned circuits, capable of handling several times the power we can use. The formerly used open wire coils of experimental Quad tuners were replaced by the hairpins to facilitate reproduceability.

FIG. 1. TRLBAND CUBICAL QUAD ANTENNA WITH SINGLE WIRE LOOPS.

With the main Quad wire disconnected from the tuned circuits we find, with the g.d.o., the following resonances:

L1-Cl		15.8 MHz		
L3-C3	18		
L2-C2	26.9		
L4-C4			31		

The total wire length of the Quad loop plus the four hairpin loops (per element) are about as long as one wavelength would be, of the longest wave the aerial is to be designed for. The reflector is tuned to 5% lower frequencies to obtain maximum gain. Fine tuning for lowest reverse radiation may be carried out if a small loss in forward gain is acceptable.

TUNING:

Satisfactory results can be expected if dimensions shown on the diagram are copied, especially the hairpin lengths to within 2 inches and the capacitors to within 2 pF . If the elements are checked lying horizontally about 5 feet above ground, a 3% lower frequency should be used, to compensate for the change in tuning due to

VK2AOU's Mono-Loop Triband 2 Element Ouad. Hairpin loops (L). enclosed capacitors and ferrite feeder transformer. Radiator at front. reflector is behind.
the reduced capacity to ground when the Quad element is later placed upright on the Quad corner. This goes for the six resonances, e.g. three for the radiator and three for the reflector.

Fine tuning can be carried out in the following way:

14 MHz : Quad wire loop length, or L3 (L1 refl.).
21 MHz : L4 (L2 refl.), or C3 (C1 refl.).
28 MHz : C4 (C2 refl.).
The radiator is tuned to the operating frequency by checking with the transmitter the frequency which results in the lowest s.w.r. In this way the resonance frequency can be found, regardless of the s.w.r. magnitude. The refector is tuned to 5% lower frequencies or if desired to give lowest reverse radiation, which can be checked with
a small dipole, GE-diode and milliammeter, placed behind the Quad reflctor (can be quite close).

An s.w.r. of below 1.5:1 should be obtainable on all three bands near the resonance, and a value of $2: 1$ will most likely not be exceeded at the band ends. An s.w.r. of $1.5: 1$ is not causing any losses of consequence with 100 feet of RG8U co-axial cable.

BUILDING MATERIAL

Compare with letters shown on the diagram:

A-Bakelite strip $4^{\prime \prime} \times \frac{1}{2 \prime \prime} \times \frac{1^{\prime \prime}}{}$.
B-Polystyrene $\left.3^{\prime \prime} \times \frac{1^{\prime \prime}}{\prime \prime} \times\right\}^{\prime \prime}$.
D-Shortening wires, 14 s.w.g. copper. C1 56 pF., C2 26 pF ., C3 53 pF ., C4 23 pF . Ceramic double cup transmitting capacitors or open ended pieces of RG8U co-axial cable.
E-Q2 Ferrite rod (loop stick type), $\frac{1}{2}$ " diam., about $3^{\prime \prime}$ long, or Ferrite aerial balun transformer.
F-Co-axial cable, RG8U, any length.
G-Hard aluminium tubing, 12 feet of $7 / 8^{\prime \prime}$ o.d., $1 / 16^{\prime \prime}$ wall.
H -Hard aluminium tubing, 4 feet of 8" o.d., $1 / 16^{\prime \prime}$ wall. The horizontally placed tube sections of G and H may be insulated with tape from each other at the junction, if they are half wavelength long.
I—PVC tubing $\mathrm{a}^{\prime \prime}$ i.d., $10^{\text {" }}$ long (heated up at one end, flattened, cooled and drilled, to hold later the Quad wire, etc.).
K—Boom, 8 feet long, $2^{\prime \prime}$ o.d., $1 / 8^{\prime \prime}$ wall, hard aluminium.
L-Total wire length of hairpin loops (before folding up): $\mathrm{L1} 5^{\prime} 9^{\prime \prime}$, L2 4' 4", L3 $4^{\prime} 9^{\prime \prime}$, L4 $3^{\prime \prime} 6^{\prime \prime}$. Fold to $2^{\prime \prime}$ width, 14 s.w.g. copper wire. $2^{\prime \prime}$ of wire may have to be added for connecting and soldering. Check Quad and tuning element resonances with a g.d.o. near the rounded and closed end of the hairpin loops.
M-14 s.w.g. copper wire, 14 feet per Quad loop side (plus wire for connecting and soldering).
N -2 99 turns bifilar wound insulated $16 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. copper wire. 9 turns primary coil goes to the co-axial feeder connector, and the other winding, with also 9 turns, goes between the two tuned circuits at the lower corner of the driven radiator element. The coils are tightly wound on the rod.

ASSEMBLY

The tubing " G " is clamped to the boom with pipe to pipe (U bolts, backing plate, etc.) assemblies.

The hairpin loops are supported by $5^{\prime \prime}$ long PVC tubes which are clamped to the cross arms " H ".

The ceramic capacitors and the Ferrite transformer are covered by small plastic boxes, which have a breathing hole at the lowest end to help to avoid condensation in the containers.

All wire, loop and capacitor connections are carefully soldered together by
first cleaning the wires and pre-tinning each part for an inch length.

Cross arm length: G plus $2 \times \mathrm{H}$ plus $2 \times I$ equals 20 feet 2 inches.

If other Quad loop dimensions are desired (2,6 or 40 metre work), or if for 20,15 and 10 metres, or other sizes are wanted, one may select Quad loop lengths between $\frac{1}{2}$ and $1 \frac{1}{4}$ of the longest wavelength to be used (for 20 metre, 11 feet to 20 feet). Different hairpin loops and capacitors and different resonance frequencies for the tuning circuits will have to be found.

It is most likely possible to place the tuned circuits at the side corners of the Quad loop and use triple gamma matching of the feeder to the loop at the lower quad corner. (See "QST," Dec. 1969, WAOUDJ's Delta-Loop with VK2AOU tuning method for triband operation. A Delta-Loop is actually a triangular Quad.)

DEFINITE SUNSPOT NUMBERS

 FOR 1969

Yearly Mean equals 105.5.
Epoch of Sunspot Maximum, 1988.8
Highest Smoothed Sunspot Number, 111.
-Swlss Federal Observatory. Zurich.

Ross Hull Memorial V.h.f. Contest, 1969-70 Results

TROPHY WINNER
VK3AKC, R. Wilkinson
RESULTS TABLE
(Award Winners in bold type)

Call 8ign	fR-Hoar Score	j-Day	Sec-
VK1ZMR	145	495	B
VK1VP	130	306	B
VK2ASZ	401	987	B
AX2ZGX	265	437	B
AX2ZPC	129	253	B
AX2ZTQ	41	88	B
VK2HZ	37	60	B
VK2BDN	560		B
VK2ZRE	200		
VK3AKC	1051	3338	A
VK3AOT/P3	960	2250	B
VK3ZKB	482	1310	B
VK3ZYO	217	927	B
VK3AXV	262	758	B
AX3BBB/T		543	B
VK3ZKN	191	312	B
AX3ASV	115	241	B
AX3ZBB	208	127	B
VK3ZHU	1491		B
AX3ZCK	151		B
VK4ZZE	611	1858	B
AX4ZRS	357	982	B
VK4ZRS		98	B
VK4ZHS	47	87	B
AX4ZRC	9	20	B
AX5ZNN	150	350	B
VK5LP	131	302	B
VK6SS		386	B
VK7WF	330	1079	A
VK7ZAH	180	361	B
VK7AX	81	116	B
VK7PS	106	108	B
VK9BB/P9		320	B

Receiving Section
M. Batt, L3312, 675 points (7-days).
S. Ruediger, L5088, 803 points (7-days).

YL INTERNATIONAL SSBers QSO PARTY

Beginning 0000 GMT. 16 th May, through to 2400 GMT. 17th May. 1970. Phone and c.w., in three categories inon-members are as welcome as membersi.
1, DK/WK teams. 2, YL/OM teams. 3, Single operator. Exchange RST, SSB number iff nonmember, name to replace number), State, and Country.

Trophies: 1, world high score, DX/WK teams, each partner. 2, world high score, YL/OM teams, each team. 3. world high score, single operator, combined c.w.-s.s.b.
Plaques: 1. 2nd and 3rd of No. 1 above. 2, 2nd and 3rd. No. 2 above. 3, 1st world high score. single op.. s.s.b. only. 4, lst world high score, single od., c.w. only.
Certificates: 1. 1 st . 2nd, 3rd, world high score. each continent. 2, 1st. 2nd. 3rd, each country, state. YL/OM team. 3. 1st. 2nd, 3rd, each country, state. single op. SSBer members and non-members score separately.
Frequencies: Plus or minus $5,10,15 \mathrm{KHz}$. as QRM dictates. Phone 14332. 21373. 28673. as QRM
7273 IDX 7090). C.w. 14070 . 21070. 28070, 7065. Logs: Submit to WOGNX. Woody Bennett. 8939 East 31st St., Kansas City. Missourl. 64120. 8939 East 31st St., Kansas City. Missouri, 64120.
U.S.A., no later ihan 30th June, 1970 . Data to include: GMT date and time. RST sent and include: GMT date and time, RST sent and
received. his state or country. SSBer No.. received, his state or country. SSBer No., Dartner's call, bands and modes of operation.
Logs must show six continuous hours of rest in each 24 hours of operation. To qualliy for the single operator world high combined trophy. logs must show at least six hours of operation in each mode-c.w. and s.s.b.
For further particulars contact Alf Chandler. VK3LC. 5136 High St., Glen Iris. VIc. Phone 50-2556.

VK-ZL-OCEANIA DX CONTEST, 1970

W.I.A. and N.Z.A.R.T., the National Amateur Radio Associations in Australia and New Zealand, invite world-wide participation in this year's VK-ZLOceania DX Contest.

Objects: For the world to contact VK, ZL and Oceania stations and vice versa. Note.-VK and ZL stations, irrespective of their locations, do not contact each other for Contest purposes except on 80 and 160 metres.

Dates: Phone-24 hours from 1000 GMT on Saturday, 3rd October, 1970, to 1000 GMT on Sunday, 4th October, 1970.
C.w.- 24 hours from 1000 GMT on Saturday, 10th October, 1970, to 1000 GMT on Sunday, 11th October, 1970.

RULES

1. There shall be three main sections to the Contest:
(a) Transmitting-Phone;
(b) Transmitting-C.w.;
(c) Receiving-Phone and C.w. combined.
2. The Contest is open to all licensed Amateur transmitting stations in any part of the world. No prior entry need be made.

Mobile Marine or other non-land based stations are not permitted to enter.
3. All Amateur frequency bands may be used, but no cross-band operation is permitted.

Note.-VK and ZL stations irrespective of their location do not contact each other for Contest purposes except on 80 and 160 metres, on which bands contacts between VK and ZL stations are encouraged.
4. Phone will be used during the first week-end and c.w. during the second week-end. Stations entering both sections must submit separate logs for each mode.
5. Only one contact per band is permitted with any one station for scoring purposes.
6. Only one licensed Amateur is permitted to operate any one station under the Owner's call sign. Should two or more operate any particular station, each will be considered a competitor, and must submit a separate log under his own call sign. (This is not applicable to overseas competitors.)
7. Entrants must operate within the terms of their licences.
8. Cyphers: Before points can be claimed for a contact, serial numbers must be exchanged and acknowledged. The serial number of five or six figures will be made up of the RS (telephony) or RST (telegraphy) report plus three figures which may begin with any number between 001 and 100 for the first contact and which will increase in value by one for each successive contact.

Example: If the number chosen for the first contact is 021 , then the second must be 022 followed by 023,024 , etc. After reaching 999, start again from 001.

9. Scoring:

(a) For Oceania Stations other than VK/ZL: 2 points for each contact on a specific band with VK/ZL stations; 1
point for each contact on a specific band with the rest of the world.
(b) For the rest of the world other than VK/ZL: 2 points for each contact on a specific band with VK/ZL stations; 1 point for each contact on a specific band with Oceania stations other than VK/ZL.
(c) For VK/ZL Stations: 5 points for each contact on a specific band and, in addition, for each new country worked on that band, bonus points on the following scale will be added:

(d) 80 Metre Segment: For 80 metre contacts between VK and ZL stations, each VK and ZL call area will be considered a "scoring area", with contact points and bonus points to be counted as for DX contacts.

Note.-Contacts between VK and ZL on 80 metres only.
(e) $\mathbf{1 6 0}$ Metre Segment: For 160 metres, contacts between VK/ZL, VK/VK, ZL/ZL and VK/ZL to the rest of the world: Each VK/ZL call area will be considered a "scoring area" with contact points and bonus points to be counted as for DX contacts [Rule 9(c)].

Note.-A contestant in a call area may claim points for contacts in the same call area for this 160 metre segment.

For this purpose the A.R.R.L. Countries List will be used with the exception that each call area of W / K, JA and UA will count as "countries" for scoring purposes as indicated above.
10. Logs: (i.) Overseas Stations-
(a) Logs to show in this order: Date, time in GMT, call sign of station contacted, band, serial number sent, serial number received, points. Underline each new VK/ZL call area contacted. A separate \log for each band must be submitted.
(b) Summary Sheet to show the call sign, name and address (block letters), details of station, and, for each band, QSO points for that band, VK/ZL call areas worked on that band.
"All-band" score will be total QSO points multiplied by sum of $\mathrm{VK} / \mathrm{ZL}$ call areas on all bands, while "singleband" scores will be that band QSO points multiplied by VK/ZL call areas worked on that band.

(ii.) VK/ZL Stations-

(a) Logs must show in this order: Date, time in GMT, call sign of station worked, band. serial number sent, serial number received, contact points, bonus points. Use a separate log for each band.
(b) Summary to show: Name and address in block letters, call sign, score for each band by adding contact and bonus points for that band, and "allband" score by adding the band scores together; details of station and power declaration that all rules and regulations have been observed.
11. The right is reserved to disqualify any entrant who, during the Contest, has not strictly observed regulations or who has consistently de-
parted from the accepted code of operating ethics.
12. The ruling of Federal Contest Manager, W.I.A., will be final.

13. Awards:

VK/ZL Stations: W.I.A. wil! award certificates as follows:-
(1) To the top scorer on each band irrespective of single-band or multiband operation and irrespective of call area, i.e. maximum of one award may be made for VK and ZL, for each band.
(2) To the top scorer in each VK and ZL call district, i.e. a maximum of 15 awards, 10 VK and 5 ZL awards may be made.

To be eligible for awards in either of the above mentioned categories, an operator must obtain at least 1,000 points or there must be at least three competing entries in the category.

Overseas Stations: Certificates will be awarded to each country (call area in $W / K, J A$ and $U A$) on the following basis:
(1) Top scorer using "all-bands" provided that at least three entries are received from the "country" or the contestant has scored 500 points or more.
(2) Other certificates may be awarded, to be determined by conditions and activity.
N.B.-There are separate awards for c.w. and phone.
14. Entries: All entries should be posted to Federal Contest Manager, W.I.A., Box N1002, G.P.O., Perth, Western Australia, 6001 , or N. Penfold, 388 Huntriss Road, Woodlands, Western Australia, 6018.

VK/ZL entries to be received by 31st December, 1970. Overseas entries to be received by 22nd January, 1971.

RECEIVING SECTION

1. The rules are the same as for the transmitting section, but no active transmitting station is permitted to enter this section.
2. The contest times and logging of stations on each band per week-end are as for that transmitting section except that the same station may be logged twice on any one band-once on phone and once on c.w.
3. To count for points, logs will take the same form as for transmitting, as follows: Date, time in GMT, call of station heard, call of the station he is working, RS(T) of the station heard, serial number sent by the station heard, band, points claimed. Scoring is on the same basis as for transmitting section and the summary should be similarly set out with the addition of the name of the S.w.l. Society in which membership is held if a member.
4. Overseas Stations may log only VK/ZL stations but VK receiving stations may log overseas stations and ZL stations, while ZL receiving stations may log overseas stations and VK stations.
5. Certificates will be awarded to the top scorer in each overseas scoring area and in each VK/ZL call area provided that at least three entries are received from that area or that the contestant has scored 500 points or more.

Following requests made to the Radio Branch, Postmaster-General's Department, the Wireless Institute, through Federal Executive, have been advised that slow scan t.v. (also known as narrow band t.v.) is now approved for use on all Amateur bands.

Identification must be made by call sign in visual form on the televised picture and by telegraphy when a telephony sound channel is also used.

For those unfamiliar with the techniques, a list of references is given at the end of this announcement for technical details.

In brief, slow scan t.v. is a system of picture transmission with a bandwidth not in excess of that occupied by an amplitude modulation single sideband voice transmission, and can permit simultaneous voice transmission provided the total bandwidth occupied does not exceed the bandwidth of a normal double sideband (voice) amplitude modulated transmission.

The necessary bandwidths for single and double sideband are considered to be 3 KHz . and 6 KHz . respectively.

Standards.-Amateurs are free to use any standards within the bandwidths listed, and as some U.S.A. operators have done extensive work, the following figures are given for guidance, especially if DX work is contemplated:

Sweep rates, 15 c.p.s. (60 c.p.s./1).
Vertical, 1/8 c.p.s.
Scanning lines, 120.
Aspect ratio, 1:1.
Scan director, left to right.
Vertical, top to bottom.
Sync. pulse duration:
Horizontal, 5 milliseconds.
Vertical, 30 milliseconds.
Sub-carrier frequencies:
Sync., 1200 c.p.s.
Black, 1500 c.p.s.
White, 2300 c.p.s.
Required transmission bandwidth, 1.0 to 2.5 KHz .

Slow scan t.v. is transmitted by frequency modulating a sub-carrier be-
tween the limits of 1500 c.p.s. (black) and 2300 c.p.s. (white). Vertical and horizontal synchronisation is maintained by transmitting short bursts of 1200 c.p.s. tone. Live scenes are transmitted as a series of "stills".
The output signal from the scanner is introduced into the audio section of the s.s.b. transmitter and is transmitted without a loss of picture detail in the conventional s.s.b.s.c. transmitter voice bandwidth.
In conclusion then:
(1) Slow scan t.v. is allowed on all available Amateur frequency bands, subject to identification requirements listed earlier.
(2) Single sideband or double sideband A5 emissions may be used and the bandwidth shall not exceed that of an A3 single sideband or double sideband signal respectively.
(3) Where A3 or A5 emissions are used, simultaneously on the same carrier frequency the total bandwidth shall not exceed that of an A3 double sideband emission.
(4) Standards within the bandwidth limits are at the discretion of the Amateur. However, those used by U.S. operators have been listed above, and serve as a guide.

REFERENCES

Articles giving theory and practical information are as follows:
"CQ" July, August, 1969, "Slow Scan T.V.," by Don C. Miller, W9NTP.
"QST" August, September, 1958, p. 31, C. McDonald, "Narrow Band Image Transmission System".
"QST" March, 1969, p. 45, C. McDonald, "Slow Scan Monitor".
"QST" September, 1966, p. 38, C. McDonald, "Twenty Metre Slow Scan T.V. Tests".
"QST" June, July, August, 1965, "Vidicon Slow Scan Camera".
"73" October, 1967. "Slow Scan Picture Converter".
"73" July 1967, "Slow Scan Monitor".

REPEATERS

In answer to a request for clarification on repeater operation, the Controller, Radio, P.M.G. Department, has provided the following information which, where conditions for such operation are met, will allow repeaters to be established.

Reference should be made to October 1968 "A.R." which carried the requirements for repeater operation.

The additional points are as follows:
(1) Licences for u.h.f. repeater translators may be issued to responsible groups such as the W.I.A.
(2) The group will be required to nominate a suitably qualified person or persons willing to accept the responsibility for the operation of the station.
(3) All repeaters must incorporate facilities for the automatic identification of all emissions.

Discussion with the Controller has indicated that identification can be
made using c.w., and in the case of an Institute sponsored repeater, the call sign VK2AWI/R1, for example, would be acceptable. This would not however preclude the use of VK2AWI for other Amateur activities. If more than one repeater is established by any Division, the same call with the sufflx R2, R3, etc., can be employed.

It is important that the transmissions from repeaters be readily identifiable in the event of interference or other malfunction, hence the necessity for some form of identification.

Applications for repeaters should, ideally be co-ordinated within a Division and requests and/or proposals should be made through Divisional repeater committees. The responsibility for Australia-wide co-ordination is in the hands of the Federal Repeater Secretariat.

Hy-Q ELECTRONICS

Australia's largest independent crystal manufacturers

EXTEND THEIR PRODUCT RANGE TO INCLUDE

- Fundamental and overtone crystals from 1 MHz . to 125 MHz .
- 10.7 MHz . crystal filters for $25 \& 30 \mathrm{KHz}$. systems.

SEND FOR FULL DETAILS IF YOU HAVE NOT ALREADY RECEIVED THEM

$H y-Q$ Electronics

Hy-Q ELECTRONICS PTY. LTD.
10-12 Rosella street, P.O. BOX 256 ,

FRANKSTON, VICTORIA 3199.
Telephone 783-9611. Area Code 03. Cables: Hyque Melbourne
Telex: 31630

STANDARDS ASSOCIATION OF AUSTRALIA

We have arranged with the Standards Association of Australia to reprint items from their monthly information sheet which may be of interest to ouic readers. At the same time, we arranged that we receive copies of any press releases which may be of interest.

The Standards Association welcomed our approach and expressed the opinion that through the medium of "Amateur Radio," they would reach a number of people interested in standards in the electronic field, who otherwis? would not be aware of the work being done in this field.

The Standards Association of Australia offices are located at the following addresses:-
N.S.W.: 80 Arthur Street, North Sydney, 2060. Phone 929-6022. Also at 14 Watt Street, Newcastle, 2300. Phone 2-2477.

Vic.: 191 Royal Parade, Parkville, 3052. Phone 34-9321.

QId.: 447 Upper Edward Street, Brisbane, 4000. Phone 2-8815.
S.A.: 11 Bagot Street, North Adelaide, 5006. Phone 67-1757
W.A.: 10 Hooper Street, West Perth, 6005. Phone 21-7763.

Tas.: 18 Elizabeth Street, Hobart, 7000. Phone 34-5412.

NEW DRAFT STANDARD

1526-The Reliability of Electronic Equipment and Components. Part II.Reliability Concepts

This draft forms one part of a comprehensive standard on the reliability of electronic equipment and components. This part is intended to provide guidance to manufacturers and purchasers alike, on the basic concepts inherent in the establishment of reliability of equipment or component parts. Although written in particular for the field of electronics, it will obviously have a much wider application. Latest date for comment is 30th June, 1970.

NEW WORK STARTED

Radio Interference
 Measuring Apparatus

Work has commenced on the preparation of a standard for radio interference measuring apparatus for the frequency range 0.015 MHz . to 1000 MHz ., covering quasi-peak. peak and sine wave measuring instruments. BS727 is being used as the basis for committee drafting.

Symbols for

Semiconductor Devices

As part of work on graphical symbols of electronic components, consideration is being given to the preparation of standard symbols for semiconductor devices. The work of I.E.C. is being taken into account.

AMATEUR FREQUENCIES:
USE THEM OR LOSE THEM!

S.A.A. COMMITTEE ACTIVITIES

Radio Interference

(Committee No. TE/3)
This committee met recently in Sydney, immediately preceding a symposium on radio interference held at the University of New South Wales. Members agreed that a draft Australian standard be circulated for public review, based on BS727, and specifying quasi-peak and sine wave measuring instruments. The instruments to be used in the measurement of particular types of interference will then be specified in the relevant standard. There was some discussion of future work and members agreed that this be coilcentrated on setting limits of interference with priority being given to radio and t.v. reception, and the revision of AS C321-1959.

Semiconductors

(Committee No. TE/12)
This committee met in Adelaide in February. It completed an initial review of work that had been in abeyance when the committee had been reconstituted, including revision of Docs. 1054, 1012, 1013, 1014, 1015, 1122 and 1123. Three of these drafts have now passed the stage of postal ballot and will be published, while the other drafts have yet to go to postal ballot. The committee expects that this group of standards will provide a comprehensive basic set for semiconductor devices covering such aspects as terminology, dimensions, basic parameters and physical properties to be measured and catalogued.

Graphical Symbols

(Committee No. TE/13)
This committee is continuing its preparation of a range of graphical symbols for use primarily in the electronics industry. Comment received on Doc. 1461, Letter Symbols to be Used in Electrical Technology, has been examined and a new draft, incorporating minor amendments is to proceed to postal ballot. A draft standard for semiconductor devices, compatible with I.E.C. Recommendations in this field was examined and is to be submitted for public review.

Radio Communication

(Committee No. TE/14)
This committee met recently in Sydney and has formed three sub-committees to handle various aspects of the programme of work agreed at the first meeting. One sub-committee is to deal with radio and t.v. reception, another with radio and t.v. transmission, and the third with radio and t.v. aerials. This last task will include a revision of AS CC8-1962, Construction and Installation of Radio and T.V. Receiving Aerials.

The committee asked that the work of this committee be made widely known and that all interested bodies be requested to indicate those aspects of radio communication in relation to which standardisation is considered feasible.

R.F POWER TRANSISTORS

(Continued from Page 18)

RYPRRENCES

1. Frank Davis, "Matching Network Designs with Computer Solutions." Motorola Applicaion Note AN-287, Motorola Semiconductor Products, Inc., Box 20924, Phoenix, Arizona, 85036.
2. Roy Hejhall. "Systemising R.F. Power Amplifier Design." Motorola Application Note AN-282. Motorola Semiconductor Products. Inc., Box 20924. Phoenix. Arizona, 85036.
3. R.C.A. Sllicon Power Circults Manual. Radio Corporation of America, Electronic Components and Devices, Harrison. New Jersey.
4. John G. Tatum. "V.H.F./U.H.F. Power Transistor Amplifier Design," Application Note AN-1-1. 1.T.T. Semiconductors, 3301 Electronics Way, West Palm Beach. Florida, 33407.
5. Frank Davis. "A so-Watt 175 MHz . Power Amplifier using PNP Transistors," Motorola Application Note AN-477.
G. Dick Brubaker. "A braadband 4-Watt Aircraft Transmitter," Motorola Application Craft Transm
6. Roy Hejhall, "A $25-$ Watt 175 MHz . Transmitter for 12.5 Volt Operation." Motorala Application Note AN-503.
7. Dick Brubaker, "A 13-Watt A.M. Aircraft Transmitter." Motorola Application Note AN-507.

ELNA LITERATURE

A four-page leaflet on Elna electrolytic capacitors featuring the new stock range for 1970 is now available from Soanar Electronics Pty. Ltd.

The leaflet contains full details of both physical and electrical characteristics of the Elna range, with a list of Australian distributors.

In addition, there are brochures available to readers on "Greencap" and "Ceramic" capacitors, from Soanar head office at 30 Lexton Rd., Box Hill, Vic., or from their interstate representatives.

TRANSISTOR TEST SUPPLY

Latest addition to the range of test equipment at Radio Parts Pty. Ltd. is a new transistor test supply which is illustrated on the back cover of this month's "A.R." This low priced unit will meet the needs of many Amateurs involved in solid state circuitry; further details may be obtained from the instrument department of Radio Parts Pty. Ltd., 562 Spencer St., Melbourne, Vic.

H

AWARDS

Monitor Award.-This is the first award made available by the I.S.W.L. to non-members. cost is five shillings sterling. claim forms can be obtained from Clifi Tooke. 6 Chelmer Ave.. Ravleigh, Essex. England. The award is avallable to any Amateur or S.w.l. Who qualify by having proof of contact or hearing 25 league members. Stickers are provided for each additional 25 members. and endorsements are available for any band or mode. I have giver you the calls of the $D X$ and some W members in the QSL section. and will complete this next month. Any 25 of those Ifsted wilt qualify for the award and most of these chaps will identify themselves in QSO. Stations on the list will be valid unill slst Dec. this year, when a new list will be published.

NNI Award.-This one is a very fine award according to Ernle Luff if8 years young on Good Friday 1 and to qualify you need to hear or contact HK3AFB, VK. RQ. AJV. HC and UA. QSLs not required. but these six stations must have your QSL before you claim. No cost. send to custodian. HK3AFB. Berx 11392. Bogut: 2. Colombia, South America.

Sub-Editor: ERIC JAMIESON, VK5LP Forreston. South Australla, 5233.

AMATELR-BAND BEACONS

VK4 144.390 VK4VV, 107 m . W. of Brisbane.
VK5 53.000 VKSVF. Mount Lofty
VK6 $\begin{aligned} & 144.800 \\ & 52.006 \text { VKSGVF, Mount Lofty } \\ & \text { VKG }\end{aligned}$
52.900 VK6TS. Carnarvon
144.500 VK6VE. Mount Barker (Albany).
145.000 VK6VF, Tuart Hill.
145.000 VK6VF. Tuart Hill.

VK7 144.900 VK7VF. Devonport
ZLS 145.000 ZLJVHF, Christchurch
No comments have come to hand re the listing of beacons last month, so can only assume no corrections are needed. The list is repeated above. Following my recent comments on lack of beacons in VK2, I have re ceived a letter from Tim VK2ZTM, who is Chairman of the Federal Redeater Secretarlat. and 1 take the liberty of quoting:

There are plans in hand to include beacon or similar type transmitters in the equipment re-bulld of the Divisional Station VK2WI at Dural. It is planned to have 6 und 2 metre
units as stralght beacons which will double units as stralght beacons which will double
as stand-by transmitters for broadcast purposes. On 432 and 1296 MHz . the beacons will also serve as the main broadcast transmitters. equipment to be installed will be a.m. and f.m. net gear on 6; a.m. tunable repeater and f.m. net on 2 metres. On 432 MHz . there will be a t.v. transmitter to which one can bring
a camera. This, together with link and other equipment to our Atchison St. system and h.i transmitters on 160,80 and 40 metres, will make the re-build a major effort."
This is very welcome news, and when completed will fill a long standing gap. I am
sure 1 voice the thoughts of the VK v.h.f. fraternity when I say good luck with all your efforts VK2. but make the 2 metre beacon top priority! Now VK3. What are you doing in this field? There have been rumours of a beacon on 2 metres but that's about all. And on 2 metres at least will be very welcome news, you are beautifully situated distance-
wise to Adelalde. Melbourne and Brisbane, so what about it? Once we have somc beacons running in all States, that will be one platform can take down!
Thanks to Ron VKIZRO, of Howrah, near Hobart, for some interesting news while oper uting portable ithat's the boy! from Mt. Wellington 14.166 feet on 15th March. On 2
metres Ron worked Col AX5CJ and AX5ZKR, metres Ron worked Col AX5CJ and AX5ZKR, being S9 both wilys. Also worked were AX$3 Z P A$. AX3ZKN. AX3ZDW and AX3ZBB. Ten other stations heard. An interesting feature
of these contacts wis that Ron used all solid slate equipment. the transmitter having a 2N 3866 in the final running with an output of less than 1 watt!!! Antenna, 5 element Yagi. 432 MHz was also tried with success. Using
0 QQE02/6 in the final running 9 watts input

SOUTH-EAST RADIO GROUP OF SOUTH AUST. ANNUAL CONVENTION

will be held over the weak-end
SAT., SUN. and MON. 13th, 14th and 15th JUNE, '70
V.h.f. events will include fox hunts. transmitter hunts, scrambles, plus other novelty events.
Hotel and Motel accommodation can ie of S2.00 per person REGISTRATION FEE 59.00
All correspondence regarding registration to: VK5ZKR. Colin Hutchesson. Yahl, via Mt. Gambler, S A

Ron was able to make two-way communication with Colisn AXSZKR in Mt. Gambler with reports of 5 and 5 . On first calculations, this
looks to be a distance of about 470 milles looks to be a distance of about 470 milles. which if correct will easily eclipse the former of 405 miles. Peter AX3ZPA also came to the 432 party and he and Ron exchanged signals S9 and S8 both ways. So, it just goes to show what the combination of good conditions and location will achieve, and we hope this will not be Ron's only explolt in this field.
A brief message from Lance VK4ZAZ came when he dropped an SO signal into VKS on 8ih March. reporting that JAs have been avallable at his location regulariy each day since VK4 February, and working mainly northern Brisbane, and across to VK6FR in Broome So it seems that until this continent Broome. is washed a thousand miles further of ours those in southern VK will have to b tent with listening to the exploits of our tent with listening to the exploits of our northern neighbours. 52 MEz . W.A.S. Award hat Lance has added a further additional country to his list which now stands at 9 . A very fine effort.
Due to postal holdup. a letter arrived too late from Eddie VKIVP with some detalls of with VKIACA (The Canberra Radio Society) for portable operation. Best contact was first time into Melbourne on 2 metres to Geoff VK3AMK. Only contact on 432 MHz. was to Small wonder, see last issue's V.h.f. Notes for detalls of weather conditions!!
Eddle raises an issue and I would like to hear from readers on it so your thoughts can be passed on to the approprlate people. This refers to the proposed Worked All-Bands 1969 Federal Convention. Do you think that section which could be devoted to v.h.f. and higher bands should be limited 20 you know who work only on v.hif. by choice. Should they be excluded? For the purposes of the sward, the 432 and 578 MHz bands may be lumped together. Do you think this is a kood idea? Sure. 576 is a temporary allocation. but it may be a long time before it is needed for something else. In the meantime, should it receive separate recognition? The award cannot satisly everyone, particularly on v.h.f.. but do you think there should be one never-
theless? Your early comments would be appreciated.
I note the South East Radio Group in Mt. Gambier is hard at work on preparations for their forthcoming Convention during the June holiday week-end, 13 th and 14th. Such news comes from The Critter of the Crater or very "sneaky" hidden transmitter hunts are planned " "cunning" fox hunts. and if you want planned, cunning fox hunts. and if you want oin in the YL scramble! There's always a barbeque on the Saturday night. followed by a jumble sale and guest speaker. and most of those present really fast themselves in readiness for the tremendous spread served by the S.E.R.G. ladies on the
country-style food and stacks of it! The S.E.R.G boys will assist you by booking acFurther information from Colin VKSZKR. Further information from Colin VKSZKR.
There should be more c.w. on the v.h.f. of Kevin VKSOA all pass the exam These are the various Limited licensees in Mt. Gambicr making a joint effort to broaden their interests. As long as we don't lose them from v.h.f., the rest of us approve of their action!

I am pleased to be able to number amongst my "fans" one Samson Voron. an S.w.I. of wick Boys' High S.w.l. and Amateur Radio Club. Samson sent me a very good photograph of his reception of Channel 1 in Port Pirie. S.A., and also extensive details of reception of sound and video from many Australian t.v. stations, plus quite a few from New Zealand including the low power translators, all recelved on a standard t.v. set with under-roof antenna. He is also a keen 6 metre listener and mentions quite a few call signs monitored. I hope the Radio Club will continue to be a success and from it will
Did many of you tumble to the fact that the cause of excessive nolse on the v.h.l. bands due to a solar flare? He around 1000 hours was due to a for some time. which is the normal pattern of events for these disturbances.

FROM THE PAST

Everyone seems to be Jumping on this bandwaron during thls year of celebrations.: How-
years ago. "U.h.f. DX Records, two-way work 56 Mc.: WIEYM-W6DNS. July 22. 1938, 2,500 miles. 112 Mc. 163 m miles. 224 Mc .: W1AIY-W1KLJ. 7. 1939. ${ }^{160}$ miles. 224 Mc.: fillaiY-wikLJ 200 miles on 112 Mc . was being considered Distances have grown a lot since those days of course. When equipment was largely super regenerative.
News from interstate is scarce this month, so why waste space for the sake of talking. so the notes wlll finish now. The thought for the month: "Life is like an onion: you pee wep. Untll nexi month 73. Eric VK5LP...Th Volce in the Hills'

MEET THE OTRER MAN

In an effort to keep this segment alive I am forced this month to seek help from another VK5 due to non return of requested informa tion irom interstate participants. It appears requesting now to have the prepared pro forma or six simultanmally in the hope in of five will come to infor each issue creased, but there seems no other way.
John Hackworth. VK5QZ iformerly VK SZJHI, lives at 34 Oaklands Road. Somerton Park, 7 miles south-west of Adelaide, not very far above sea level. which is about $1 / 2$ miles away. First licensed in 1981, John has cer tainly since then made his presence felt in v.h.f. and u.h.f. matters. and now has equipment on $52,144,432,576$ and 1296 MHz . He operates mainly on s.s.b. on 52 and 144 MHz . but can be heard occasionally with re-inserted carrier a.m. 100 watts p.e.p. on both bands ensures a nice signal, one which is probably as easy to resolve as any I have heard Both bands use a QQE06/40 in the final, 6 metres to a 4 element Yng 20 feet high; 2 metres, 10 element Yagi 35 feet high. Transistor converters are used for reception into various home-brew tuneable i.f. systems.
John operates about 30 watts input of a.m on 432 from a QQEO3/20 to a 16 element phased array up 38 feet. with a 5QZ speclal FET
converter. The 432 equipment, as well as 576 converter. The 432 equipment, as well as 576 . is orientated transistors wherever, and full use is made of transistors wherever pos MHz. equipment is very simllar to 482, with another $3 / 20$, modified $5 Q Z$ converter, and 32 array. The 1296 equipmen so $1 a r$ is limited to transmi4060 tripler to give about a watt out. The antenna at present is an $8 / 8$ skeleton slot.

For call areas worked, John has to his credit on 52: VKs 1 , to 9 inclusive, and 2L1. 2 and 3.
On 144: VK3, 5 and 6 : and 432: VK3 and 5. On 144: VK3. 5 and 6 : and 432: VK3 and 5. Probably one of his more favoured bands is 576 MHz., where with the held of Treva set on 28/12/69 with a two-wastraian recoith Graham VK5ZJL over a distance of almose 200 miles. John has no immediate plans to so if challenged for the record by anyone else
John is a member of the W.I.A. and is Secretary of the VK5 V.h.f. Group, a task which he carries out well. A dedicaled infir. man, h.f. operation, and his future plans revolve around becoming fully operational on 1296 and probably higher frequency bands; increas-
ing his abillty to operate portable by the ing his ability to operate portable by the

There are probably a couple of things by which John will be remembered, most importantly, the $5 Q Z 432 \mathrm{MHz}$. converter. This was designed originally by John, and having proved its worth, was adopted by the VKS V.h.f. Group as a project. Manyting satisfactorily The de sign is attractive because it is simple, easy to construct, and most important, it really works. The converter lends itself very readily to conversion to 576 MHz . with equally good results, so it is a very versatile instrument The other point we can remember about John is his ability to design equipment. improvisc where necessary, and sometimes produce the most outlandlsh looking piece of gear which actually works. Ask anyone about the FET voltmeter he brought to a v.h.f. members equipment night, just thrown together and carried in a shoe box-and it worked!

Finally, John is very keen on portable opera tion and in this I have found a frm friend We have been out together several times and I look forward to many more occasions, hoping or the day when we may "crack the oyster and shift one of the existing records up some more miles in the u
John's photograph appeared in March "AmA has declined appearing agaln so soon.

D X
Sub-Editor: DON GRANTLEY
P.O. Box 222. Penrith. N.S.W.. 2750 (All times in GMT)

Every band has its own special enthusiasts and none are more keen than those of our number who specialise on ten metres, regardor listeners. Thus. when this band finally or isteners. Thus. When this band finally burst into life late in March. there was much rejoicing. On 21 st March at 2058z. Maurie Cox
in Melbourne logged signals ranging from in Melbourne logked signals ranging from Ko W_{1} Kind W2. At 21302 the W s from the East coast were pounding in, and at 0514 that afternoon. The band was stin wide open to go. ZS JA and ZL. To show that this was no fuke. ditions were prevaliting. Over the Easter weekend. Mac Hilliard in a Sydney suburb noted an exceptionally rood opening with 912, ZE2.
OD5. ZSS. SM7 and SM6 being to the fore. Concentrating on the c.w. segment over Easter. I noticed quite a lot of strong signals from the Russians. also W4. however my receiver is virtually useless on 10 metres. How long these conditions will hold up is anybody's Ruess., and maybe by the time this fasue of A.R." reaches you the band will be flat again.
But how about some VK activity up there? Maybe there are quite a rew chaps working this frequency and are not audible here. Whatever the situation it would be very pleasing over Easter to have a welcome reply from VK

To summarise band conditions in general, 15 metres is still very good from early morning to quite late in the day. 20 metres provides most of the really good DX, with some good
signals coming in on 40 , and reports of $W 2 s$ on 80 s.s.b

Jack VK3AXQ. writing from Tatura in Vic. has worked some excellent DX on 20 using a FT-DX- 100 with a 20 metre dipole up only 12
feet. Using both modes. Jack hooked EA4. leet. Using both modes. Jack hooked EA4
9N1. WB2. AX9. ZS5. PJ2. 1R0. DL3. HB9
 VSG. AXO. EAS. VU. VR2, 4 Si, G6. HR1. CT1. OH2. UG6. CT2 and about twenty more.
BYIPK still continues from China, often on 14028 c. W. at around 0100z. His QSL address is Box thist in response to several queries about it. but I hasten to say that you will be swamped with all the prodaranda they ever wrote. Activity from the Isle of Man is reported from GD3GMK who says QSL via Jeff GW-
3NWV. also GDSAPJ has been logged quite 3NWV, also GDSAPJ has been lo
regularly at this QTH on 20 c.w.

JWTUH has been bringing down some dogpiles on 20 of late. and is also reported on Erling Oyan. N-9173. NY-Aaleshund, Svalbard, Norway

American K prefixes in the Pacific to be heard and worked at the moment are KC6RS KJ6BZ from Johnston is. KSAAZ on 14057 from Swan Is.. W9FIUKS4 was on from Seranna Bank, whilst KG4DS has been providing some action from Guantanamo Bay in Cuba On 28519
SUBIMA is reported from several parts of the world as being regularly active on 14230 at around 0400z. His QSL Address is Box 840 ,

Two interesting stations showed up on 28th Feb. for 24 hours. They were $5 \mathrm{H} 3 \mathrm{LV} / \mathrm{A}$ and SH3KJ/A. the former on 20 metres, QSL to They were operating from Latham Is., the smallest of the Zanzibar group

Y12AB from Irag is worth a glance. Although he is rare. there is no dogpile on him. and you may find him on 7 MHz . at midnlghi $\begin{array}{llll}\text { GMT } \\ \mathrm{MHz} \text {. at } 1400 \mathrm{z} \text {. } 28 & \mathrm{MHz} \text {. at } 09002 \text {. } 3.5 \mathrm{MHz} \text {. at }\end{array}$ 05002 . and he will try 1.6 at 20452 . but if nothing doing there will QSY to 14 MHz .

We have had at last some activity from JY. SVOWI/JY made a short appearance. also
SVOWMM/JY. both being approved for DX credits. By far the most interesting operation is by a station calling himsell simply JYi. And who is more qualificd to call himself JYI than the King of Jordan. King Hussein. who is the operstor concerned. He has been oper-
ating at around 14302 from 18002 to $1830 z$. He has a fast QSL service. and I understand that the actual card. which me:isures $f \times 4$ inches. is a benuty.

Mentioned earlier about the good band conditions we have been experiencing of late, and it is of interest to note the sunspot count. It would seem that the rate of decline has siowed down, for in September last the confimed number was 81, the November confirmation was 88 . confrmations for bet. but forecasts for March. April and as yet, but forecasts 9 or March.
May are 81.80 and 79 respectively
Roy 2MiAAT/K on Raoul Is. is very active on all bands with his $1,000 \mathrm{ft}$. leg vee beam on Europe. When more wire arrives, he plans he commenced operations from this QTH, Roy has had almost 20,000 contacts, and manager
George ZM2AFZ has the QSL chores up to
Barry ZMIBN/A has now returned home from Snares, and is again active from home QTH on 80 metres. During his stay he made some all QSLs to 15 th March.
Lester 2M3PO/C is still active on the adverised requencies. but operating schedules are governed by his work commitments. ©Sitle slower than the others due to printing a iffictie sles.
Nell VR1Q. In the Gllbert and Ellice group. will be shorily going QRT and returning to Australla after a short stop in New Zealand. His QSL manager is WA3ATP but George ZM2AFZ is holding his logs to joth Sept. last should anybody need a QSL. His address is George Studd. 48 Nuffeld Ave.. Napier. N.Z.
and an I.R.C. would be appreciated for direct and an
Another from Gcorge is AXOLD on Macquarie is. Operator, Harold. is not very actlve at $0745 z$ Thursdays on 14112. Anybody wanting a contact with Harold, just break in after the log exchange is completed.
Brian VR4EZ, over in the Solomons. is back on the alr after a three months break. and commercial equipment. operating $M M$ and $/ P$ in the course of his duties. You may QSL him to manager W2CTN or direct to P.O. Box 9 . Honlara. Guadalcanal, Br. Solomon is. Brian will QSL correct s.w.I. reports, but he prefers via the manager. and like all DX stations. would appreciate the courtesy of an I.R.C. i have often heard criticm. of alan who ask for an I.R.C. or S.A.S.E. but as Brian points out. he has handled up to 140 QSOs in one night when the dogpiles were heavy, and up
to 60 in one sitting. Return postage on an operation like this can be expensive, and I should imagine quite annoying when the mail brings forth a pile of valueless and unwanted s.w.i. reports. Don't get me wrong chaps. I'm not saying that all s.w.l. reports are unwanted or valueless. but let's face it, a popular DX certainly doesn't need a card from a listener o tell him how he is getting out. It is amazing the number of cards which find their way into my box for outward despatch. some of these come from all parts of the world and if 1 didn't have a moral obligation to send them pleasure. Many don't have three of the basic facts on them.
Enough of the complaints and on to beutiful signal into this country. at present from Rarasignal into this country, at present irom Raraorator. he will QSY to Manihiki as ZKiMJ. erator. he WM7. QSL manager for all times is Ed KH6GLU. who is well known as net control Ed KH6GLU. Who the Pacific DX net. I did, however, get my QSL direct from him at Box 90. Raratonga. Cook Is.
Jeff VK9LB is still active from Norfolk Is. and can be found on Sundays at $0615 z 14185$ s.s.b. and on 21390 s.s.b. at 10302 . He has been heard in the U.S.A. on 28553 s.s.b. at 22412. QSL address: J.
A note re LXIBW the only genuine one is the s.s.b. operation: the c.w. is phoney. His dally, 7085 s.s.b. at the week-ends from 08002. and hopes to be on 80 metres from mid May. QSL to W3HNK
On Marilnique. FM7WN has a sked with his ager prepares a list 21254 at 22002 dally. Manto contact the FM7.

PY7AWD/0 is operating from Fernando de Noronha. and hopes to be there until Decem ber. He is QRV 14150 and 250 from 2000-2359z also Sundays from 1600z. QSL direct to Carlos
Alberto de Araujo. Box 2. Fernando de NorAlbert
onha.
We are sorry to learn of the death of W4ECI Everett C. Atkerson, who passed away as the result of a heart attack on 7th March. A tod ine operator himself, he is possibly better remembered as the QSL manamer for the cearly
DXeditions of Gus W4BPD and Don Miller

W9WNV. and trips sponsored by the World Radio Propagation Study Assn.
SVO operation is not so rare these days, but is sometimes difficult to know exactly where SVOWDD of Crete iOSL to WA3HUPI are Ike svow of Crete iqSL to Wh 14245 and at 17302. or 21295 from 18002. QSL to Isaac Murphey, U.S. Embassy-VOAR. A.P.O.. New York. 09223 . or via Box 68 . Rhodes for SVOWU.
There is some reported activity by ZM7AF from Nukunono Is. In the Tokelaus group. This chap operates a.m. only and cannot copy either c.w. or s.s.b. For what it is worth, he is
crystal controlled on 7060 and 7160 . crystal controlled on 7060 and 7160.
VE1ASJ. Andy. Box 31 . St. John. New Brunswick. Canada, is manager for KG4DO. HP9FC/
MM. HR2GK. HR1KAS. VP7NF and VPBJT. Also listed is HQ2RK which you may take or

leave

VO2AW has been re-issued to another operator. and any cards for him should go to the VO2 QSL Bureau. Box 232. Goose Bay. Labrador. Canada. Cards for the previous operator 'Don Welling1 who went QRT in July 1968. should go direct to him as VEIACU.
There has been a change in the call signs for the many Russian club stations, which now three letters after the prefix. regardless of whether they are clubs or not. however the latter will use the UK preflx regardless of location. which is determined by the first letter after the numeral. For example. the old UP2KAA now becomes UK2PAA. UO5KAA would be UK5OAA. etc. UKOA and UKOB were special club stations in the U.S.S.R., operating in December last.

Q8L INFORMATION

The following stations can be reached via the I.S.W.L. QSL Bureau, Eric Chilvers. I VE3S FAW GBPGB, GLSG. GNP: VEBS AP
MN. WU. AKP. AKR. AWJ: VE7s CE. SE.
 VP5RS. VP7CC, VQ8AD, VU2DK, W1BB. WIIP. W1ETP, WAIFHU. WN1LOS, WIVKZ, W2CP WA2BVU. WB2CKS. W2CVW. WA2DHT W2EQS. W2FLK. WB2FNT. W2HTI. WB2IGM, YASRG. YNITAT. YSIJL. ZB2AV. ZD5X ZD8CC. ZFIES. ZLIHW, 1TZ. IAPZ: ZPSDD. 4X4CY. 5H3LV. 6O1WF. \&R1P. 9G1HM. פJ2BC. 9M4LP. 9V1PJ. 9X5AA. There are a large
number of Ws which I will give you in a number of Ws which i will give you in a a note of these calls, as there 18 a very good award based on them

SOME QTH\&

ET3ZU-Box 378. Asmara. Ethiopn
FR7ZU-J. Qullet. 6 ave de la Gare. St. Andre. Reunion Is.
ISIVEA-C.P. 25. Cagliari. Sardenga. Italy. 8713 McNair Drive. Alexandria. Va. E-Box 176. Arabian Gulf
PY7PO-CP341. Recife. Pernambuco, Brazil
TJIAT-Claude Deltiel. B.P. 173. Garoua. Cam UAgVH/JT1-Box 639. Ulan Bator, Mongolia UA9VH/JT1-Box 63s. Ulan Bator, Mongolia.
VP2EQ-Royal Signals A.R.C. B.F.P.O. 643. VR4EJ-P. Butler, C/O. B.S.I. Broadcasting Sin. VUODK-Box
VUODK-Box 104. Poona. India
YAISG-Steve Garwood, USAID. American Comm. Sch. Lashkargah. American YA2HWI/1-Box 638. Kabul
YBIAK-Box 288. Bandung. Indonesia
WB4ICJ-Kennedy Space Centre A.R.S.. Bnx 21073. Kennedy Centre. Florida, U.S.A.
ZD7SD-W. Stevens. P.O. Jamestown. St. ZS3HF-Helena.
9U5DL-BP 92. Bujumbura. Burundi. Africa 9Y4VS-Box 1169. Port of Spain. South Amer-
5L2D ica. EL2DI-Richard Miller. Box 98. Monrovia. Liberia

TOP BAND ACTIVITY

Tucked away in a corner of Monltor for January is the report of contast between G3IGW VN OK 1837 KHz. and VKSKO on 1802 339. The time was 2047z to 2053z, and the date was during the second week in December. Very nice work.
Acknowledgment of copy to George ZM2AFZ. Brian VR4EZ. Jack AX3AXQ. Barry AZ5BS. Ernie Luff. Maurie Cox. Maurie Batt. George Allen. Muc Hilliard. Stew. Foster of the I.S.W.L. "Monitor." Geoff Watts $\mathbf{D X}$ News Sheel. allid Long Is. DX Axkn. 73 for now. Don.

Overseas
 Magazine Review

Compiled by Syd Clark, VK3ASC

"BREAK-IN"

January-February 1870_

Anstralls Osear 5 . IInformation reprinted rom NiliA. Newaleter.
Obiervations from Anstralis Osear 5. K8VTR. Reprinted from "A.R." Dec
Solid State Circila for 8.8.B., ZL2BDB, Part One. Transcelver design considerations and development of the circuitry.

Diode Amplitude Stablliaed V.F.O., ZLAIO. Using parts from disposals sources such as a capacitor from a Command set and a ceramic
former from what looks like a piece of A.W.A. former from what looks like a piece of A. W.A. gear. Bert has produced a V.f.
a constant output of 250 mV .

The Qulet Spectram of 1990, ZL2AZ. A serles of historical reminiscences by Tom Clarkson.

Janmary 1070-

"CQ"

Seqping Up The Old Recelver, W6HPH. A great deal can be done to up-grade the pre-
1960 receiver to meet today's standards. Part 1960 receiver to meet today's standards. Part
1 of this article deals mainly with the design 1 of this article deals mainly with the design
philosophy of "QRP operation" wherein low philosophy of "QRP operation" wherein low
power consumption advantages are realised Dower consumption advantages are re
without the disadvantages of transistors.

Radio Row-Japanese Siyle, W4UW. There is an old adage "birds of a feather flock tois an old adage great cities it appears that to some extent this is true for businesses of a particular type appear often to concentrate in a fairly well defined area. Akihabara in Tokyo is the place where the Japanese find haps one should say the full gamut of consumer haps one should say the full gamut of consumer electrical products. including electronics. Amateurs who visit Japan should not fall to visit this fascinating place. Amateur equipment will not be found on display in the larger stores although some of them have a corner devoted to things Amatcur. Look in the back streets
nearby for the real gems in shops about 10 nearby for the
or 15 feet wide.
Field Effect Transiaters, GW3NJY. Part 2 of this two-part series covers FET characteristics, biasing. circuit configurations, dual gate FETs and FET applications.
An 8 Meter for the 8BsA, OZ6LI. Self descriptive. It is good to see papers by foreign Amateurs appearing in the U.S. magazines.
Perhaps this is one way of buying a U.S. made Perhaps this is
piece of gear?
Recelver signal Handling Capabilisies, by W2AEF. The most difficult recelver criteria to explain or comprehend is the ability to frequency.
Three Bands, One Boom: Another Approaob. WIGT. A 3 element Yagi for 14, 2 element Quad for 21 and 28 MHz . in a single compact Nsembly.
Neutralisation, W81ZH. It is still necessary to neutralise if you want n stable amplifie
and who doesn't. Do not tempt the R.I.

'THAM RADIO"

February $1070-$
girip Line Amplliter/Tiplpler for ist/452 MMs. K2RIW. Using a 4CX250B, this professional looking design should be able to perform efficiently.
Phase Modviated Transmitter for Two Metres. W6AJF. An interesting design featuring solid state devices, narrow bandwidth, low power consumption.
W6GXnivey of 8olld State Pawer 8applies. W6GXN. Regulated Dower is a must for today's new circuits. This report deals with some new devices and their applications
Inoreaging the Rellabllity of Warning Lights,
W3NK Equipment warning lights must be W3NK. Equipment warning lights must be
rellable. The author indicates that reducing the applied voltage by about 25 per cent. increases the lifetime by about 20 times.
Baild Yovi Own Tilt-Over Antenna Mant, W6KRT. Made from tubular steel, this 30 ft . mast. Which is stated to be suitable for a TA33 Jr. istated to weigh 20 lb .1 , should also suit a lightweight triband Quad, uses two lengths of $1 \frac{1}{2}$ Inch water pipe and some oddments of other sizes. Full stress analysis is given to-
gether with complete pnrts lists. IScrew angether with complete parts lists. iScrew an-
chors by Langers nre available irom F. \& J.

Siegers Products. Ferntree Gully, Vic.) A practical design which can probabiy be im tubing instead of water pipe.
A Different Approach to Amplitade Modulaton, WASSNZ. With regulated power supplles required It is a simple thing to modulate the r.f. amplifer Dower supply.
Antenna 8yatems for ho and 40 Metrea, by K6KA. Some interesting ideas for efficient broadband antennas for the lower frequency bands.

Quick Band Change from Slx to Two Metres, KOVQY. If you operate both bands and require rapid changeover. this scheme will permit you to make it almost instantaneous.

"HAM TIPS"

This R.C.A. booklet is avallable in Australia from Messrs. A.W.A. Ltd.

December 1068-

A Single Gate MO8FET Pre-amplifier for the Two Metre Band, W2OKO.
November 1900-
A Precialon Three Mode Veltage Callbrator WB2EGZ. For calibrating v.t.v.m's and oscilloscopes.

"CQTV"

November 1000-
Published by the British Amateur Television Club. This issue contains:
A SImple gync. Prise Generator, GW6JGA/T ine 100
A Simple Video Precesing Unit, GW6JGA/T This small publication caters for the need of the Television Amateur.

MULLARD "OUTLOOK"

Sometimes your reviewer is asked to look over magazines which are "ol interest to Amateurs" but which are not "Amateur magazines". Because the input is likely to increase to unmanageable proportions. both for the reviewer and the publisher of "A.R.." I have been reluctant to offer review of other electronic journals.

Over the years Mullard Lid. could probably be classed as well disposed towards Amateurs and therefore thls month I propose to say a few words about their "Outlook," Australian edition for Sept.-Oct. and Nov.-Dec. Anyone in the electronics industry interested in receiving "Outlook" on a regular basis should contact his closest Mullard office.

The issues to hand detall the latest electronic devices on offer from Mullard and contain informative technical articles on Colour Tele vision Part 7 of "A Solid State Colour Tele vision Receiver". Electronics in Domestic Ap pliances Part 3. "Simple Speed Control and Lamp Dimmer Circuits". Light Units in SI The subject here is the standardisation of in ternational units. Spark Gaps for Protection of Radio Recelvers. The final article deals with a Power Supply with Overland Protection for 20/40W. Amplifier.

On page 63 of the Sept.-Oct. issue is described a new numerical indicator tube. the "Pandicon" ZM1200 14 decade type with only 27 connec The Truly nn "integrated" indicator

The Nov.-Dec. issue deals with such subjects as BRY38 Silicon Controlled Switch as a Relaxation Oscillator, Magnetic Units in SI, Economical Multivibrator and Monostable CIrcuit using FC gates. A number of new pro ducts are announced, one which could be of great interest to v.h.f./u.h.f. enthusiasts. is titled BLY53A Power Transistor in 470 MHz . Moblle Telephone Transmitters (output power is six watts).

Jan.-Feb. 1071_

Digital Integrated Circult Applications Part 2. Reversible decade counter with minimum number of TrL packs. Mullard Pot Core substitation. The latest gen on Vinkors
Junction Field Effect Tranalatorg, Their gtructore and Operation. The how and why of FET operation.

"QST"

Janvary 1070-
Etched Circilt Boards. W1CER. Tells how to make them at home.
Tranaisior Modole for 8.8.B. Tranaceivers. ON5FE. A complete i.f. and audio syätem. The KVG 8 MHz. filter is used. IAvallable from a distributor in N.S.W.I A.f. output is 2.5 watts for a 50 uV . 9 MHz . input. R.f. out $12 v$. $\mathrm{p}-\mathrm{p}$. Rigged Two Metre Repeater Antenna, by WIHDQ.

Talk Trangistors, Part 3. The semiconductor dinde. By R. E. Stoffels.

Inatant Frequency Change Tranacelving with the SB-301 and SB-401. WA8MHO. The author conducts his readers through the drill to modify this combination permitting switch selection of two transceive frequencies.
A Co-axial Band Checker. WilCP. An absorption type wavemeter which is connected into the co-axial line and designed to be as much a part of the transmission system as an 3. W.r. meter.

Antennas for Eighty Metre DX, K2RBT/6.
Especinlly for the farmers. Allued for the rarmers.
Alived A-星16 Recelver. A tuncable i.f. type This covers all Amateur segments between 3.5 and 30 MHz . It is sold in Australia under the TRIO label.

Australia Oscar i. When to listen by WAIIUO and WA2INB. Frequencies are 29.450 and and WA2IN
144.050 MHz .

Febriary 1970-

Historical articles of interest to the whole fraternity appear in the literature from time to time. In this issue of "QST" the front cover is devoted to "Old Timers" admiring a display of historic pieces of radio equipment at a recent convention of the Antique Wireless Association. It is perhaps a great plty that much of the equipment designed, bullt and has completely disappeared.

Equipment Madification for the Bilind, WOGS. Although the proper kind of equipment is essential, there is more to helping the sightless Amateur than supplying just the electrical necessities. Article devoted to "Tuning and Operating Procedure"
A ginrdy Eighty Foot Magt, VE7BRK. The mast described here has withstood winds of typhoon velocity without damage. Included in the article is a discussion of a method of accurate antenna matching. All in 2 inch pipe.
How to Wind Your Own Power Trangformer, WIICP. One way of keeping costs down. If adapting this article for use on 50 Hz .. be sure and make allowance for the lower fre-
quency. quency.
Long Delayed Echo, W6QYT and others. A report on long delayed echoes (LDEs) by way of n sequel to the author's article in May 1969. (Reprinted in "A.R.," Feb. 1970.) Forty plus reports have been received and detalls are tabulated.
Another Look at Yoar Recelver and its S Meter. W4PPB. A useful device which is often misused or its readings misinterpreted.
Let'a Talk Transistora, Part 4. The Transistor, by Robert E. Stoflels.
Bome Hints on Pash Pall 482 MHz . Power Ampllferi, W1HDQ.
Equipment Review. Lafayette HA- 800 receiver. Since these are on sale in Australia, some VKs and ZLs will probably be interested.

"RADIO COMMUNICATION"

Janaary 1970-
Where T.V.I. Is a Problem, Build Thia Top
Band to Ten s.S.B. Transmitier, GBHVA. A valve job using a 7360 balanced modulator and 9 MHz. fiter. The output stage uses a pair of $5 B / 254 \mathrm{M}$ valves imade by S.T.C., these have characterisilcs similar to the 807 but they are in a smaller envelopel. Power output is stated as 180 w. p.e.p.
A Transiator 8.8.B. Tranamitter for Top Band, G3UFW. QRP about $5 w$. peak input.
Beam Recovery, GSGH. Describes a unit for removing and erecting the beam onto the top of a fixed triangular lattice mast.
Technical Topics, G3VA. This is a feature of "Radio Communication" which is always read with great interest. Pat Hawker culls chrough all the literature available to him and comments on any matters which appear to be of interest to Amateurs. This month he covers the history of the sixties, briefly, discussiss "Thyristor Power Supplies," "Salety First." "Transistor Mixers," "Hot Carrier Diode Pro-
duct Detector" (using the HP2800 series which duct Detector' iusing the HP2800 series which
sell for about $\$ 1.20$ eachi. Pnt concludes with "Components of the Seventies' and a note about G2BW who has been using a 2PL Special Aerial described in "TT" July 1988.

"RADIO 2S"

Janaary 1070-
Jomboree on the Alr. ZS6XK. The South African National Organiser tells of the way they organised matters and the results achieved during the annual "Scout Co-operation Weekend" in 1969.

English seems to be giving way to Afrikaans in "Radio ZS" and so it is becoming more difficult for people like yuur reviewer to understand.

"SHORT WAVE MAGAZINE"

One Man Porty Fool Mast and Beam Assembly, 9HIR/G3WNZ. Another method of supporting the "Antenna Farm". This assembly is hinged at the base in a simple manner and makes use of the eaves of the house to provide a suitable location for two of the guys which are taken through a common double pulley for ease in hoisting and lowering. The rotator is fitted half way up the mast.

Economical A.M. Phone on Two Metres. GSYUA. A QQVCb;40 r.f. amplifler which is series gate modulated. is described

Versatile A.T.U. for Top Band, G3UGK. A multi-match device for any type of aerial.

Investigatiog V.H.F. Propagation Effects. by R. Ham. Amateur installation for observation on tropospheric anomalies. sporadic E. aurora and solar flares.

"73"

Jandary 1Hzo-
Single Sidetand AM-FM Modulation System. W2BSP. Using easily available nlters.

The Transceiver Companion, WBAJZ Does everything but change the baby.

A simple Bench Power Sopply, ZL2AMJ. For those readers with simple benches.
Slow Scan Colour Transmission, W. Tarr and W4UMF. See cover of "73" for lllustration of results.
Fascinating Fandamentals - Volta and His PIles, W2FEZ.

The Manuseript Game, K6MVH. Another construction article fushed out.

Bage-Trned Centre L.oaded Antenna, W2EEY. Vertical antennas are not baslcally bad.

Quazar QRP do Metre D.S.B. Transmitter, WASWWN. Solid state to boot.

Simple Compact Six Metre Bandpass Filter. WASSWD/6. Cuts down your channel 2 DX. Low Cost Electronics: Japan'a F.M. Invaslon. K6MVH. F.m. changes from surplus to imMoblle C.w.. K6RA. On the freeways, no less!

Extra Class Licence Course. Part XII., Staff. Semiconductors. Lnst chance to learn this.
A Preamplifier for Ten Metre Band, by WA3HMN. Also works on C.B.. but don't tell anyone.

Proper L'se of Silicon Rectifier Dlodes, K3DPJ and WA3ACL. Diode poppers, arise and stamp out this stuff the sCXIunti into a Iamp K3QKO. Excellent application for your sparc tubes.

Facsimile and the Radio Amateur, K6GKX Are you missing out on FAX fun?

Tunable Solld State I.F., K1CLL. $28-30 \mathrm{MHz}$. i.f. for use with u.h.f. converters.

February 1:171-

Fascinating Fundamentals. The Terrible Jar at Leyden. W2FEZ

1月 Inch Dipole on 1 İ Metres. K9LGH. February fool article? Heh! Heh! iA shortened Joystick. 1

High Performance Converier for Six, by WA9HES. "73" drags its heels into the 70 s with a tube.

From Breadboard to Prlated Circtil_The Easy Way, KIAOB. And it is easy for once. The Camper: Moblle and
En-radio-lying the $V W$ bus.
So You Think Yoi Have Tranbles? WIEMV Cutting blind Amateur's antennas for fun. Frequency Synthesis - The Madern Way W2EUP. Speclal book-length feature for f.m fiends.
W6Zcoding and Decoding In F.M. Repeaters How to Visit Foreign Covitrles, W2NSD Using Amateur Radio to make travel funnier.

The DX-3.s Revisited. W2AOO. Exciting de velopment for chirp haters.
Panoramic Recelver for V.h.F.. 11SLO. For two metre busy-bodies.
Varlable Impedance Moblle Mount, WIEMV Out. damned reactance!
Lossy Transmission Lines, KHEIJ/1. A shorty short.
Extra Class Study Course. Part 13. R.t.t.s. f.s.k., filters, etc. "'73" Stiff.
New Linear ICs for the Ham, WA4KRE New Linear ICs for th
Cheap. new. hot-have fun.
Cheap. new, hot-have fun. If You Don't Watch The Glop WIII Get Yor
out! W2ELU. Watch out!
The Micromitter. WA3GGH. The world's cheapest rig.
A Simple IC Q-Multiplier. W2EEY. Makes he c.w. band ten times wider.
Quick Stop and Reveralng Action for Antenna Rotors, PY2AUC. Whipping the antenna whip. !Probsbly better described as dynamic braking. 1 IAll the : ibowe comments are "73's".)

NEW CALL SIGNS

DECEMBER 1969
VKIDH—Deakin High School Radio Club, Kent VK2SH-D.. Deakin. ${ }^{\text {Gill. }}{ }^{2600}$. Churchill St., South KK2A Tamworth. 2340.
VK2AAD-N. C. Drummond. Station: 63 Hign St., Wauchope. 2446: Postal: P.O. Box 7. Wauchope. 2446.
VK2AAL_J. C. Bennett, 6 Highview Ave., Greenacre. 2190.
VK2AAY-P. G Broughton, Sylvan Ave., East Lindfield. 2070
VK2ACJ-W. W. Ellis. Menzies Hotel. Sydney. 2000.

VK2ANI-U. N. Flerz. 3/2 Lindsay Ave., Summer Hill. 2130.
VK2ANX-J. \mathbf{W}. Rothenbury. 20 Atkins Rd. Ermington. 2115
VK2ARX-W. M. C. Quinlan, 152 Sherbrook Rd. Asquith. 2078.
VK2ASE-A. A. Smith. 12 Vincent St., Baulkham Hills. 2153.
VK2AZA-K. E. C. Glilon. 552 Mowbray Rd. Vk2BAD-A. Davis. 25,i19 Charles St., Quean-VK2BWM-w. ${ }^{\text {beyan. }} \mathbf{~ M}$. Groves, 21 Allamble Rd. vK2ZAJ-W Castlecove. 2069 . Gummerson, 13 Hindmarsh Rd.. Liverpool. 2170 . Flinders St Wase Wagen, 2650. Wark vk2zCS-M. G. Williams, Lot 60, Knox Rd.. VK2ZEP-P. J. Smith. 35 Princess St., Brighton vk2ZEX-C. G. Woolston. 21 Eulabah Ave., K22FG-Darlwood, 2206.
-K22FG-D. J. Upton. Station: 42 Esk Ave. Charlestown. 2290; Postal: 7/23 Unara St., Campsie. 2194.
VK2ZHE-H. D. Lundell. Station: 23 Tacking Point. Pt. Macquarie. 2444: Postal: R.M.B., 23 Tacking Point. Pt. Macquarie 2444.

VK2ZIK-A. F. Sara. 20 Khartoom Ave., Gor-VK2ZJO-J. F. Barker. s1 Beale St.. Georges VK2ZLF-L. ${ }^{\text {Hill. }} \mathbf{W}$. ${ }^{2198 .}$ Doolan. 130 Rae Cres., Kotara South. 2288
VK2ZPY-P. J. Larkin. 10 Herbert St.. Rock-VK2ZSB-R. K. Kraham. 13/818 Victoria Rd., Ryde. 2112 . ${ }^{2}$ O. Castle. 45 O'Keefe Cres., East-VK2ZSC-S. W. Castle. 45 O'Keefe Cres., East VK2ZSI-R. R. IWasenko, 3 Rosedale St.. Canley K27 Heights. 2166.
KK2ZSO-G. R. Johns. Flat 5. "Cahill Court." VK3AV $\underset{\text { RA0. }}{\text { H. Leskie. }} 15$ Cecll St.. Horsham. VK3AJG-W. M. Nicholson, Lot 1470, 8 GisVk3ale elle Crt. Karingal. J. Burden, 6 Glendale St.. Surrey Hills. 3127.
VKIA WL-R. V. Reid. 17 Norman St.. East Doncaster. 3109
VK3BA U-I. C. Beulke. 228 11th St.. Mildura. 3550
$A V-F$
vK3YAV-FF. Ekan. 17 Carson St., Kew. 3101.
VK3YAZ-P. R. Johnstone, 65 Karnat Rd.. VK3YBD-B. Cockran. \& Service Rd., Moe. VK3YBS-W. L. Sides. Lot 11, Mackintosh Rd.. VK3YCA-F. V. Hughes. 6 James St.. Morwell, VK3YCA-F
VK3
VKO Bentlelgh. 3165.
VK3YCQ-K. E. Purchase, Lot 1. Canterbury Rd.. Bayswater. 3153.
vK3YCS ${ }_{3606}$. J. Rice, 54 Playne St.. Heathcote. VK4HG-H. J. Hicks, C/o. Overseas Telecommunications Station VII.. Thursday Island. 4875.
VK4YT-N. J. Watling. Hiblscus Lane, Holloways Beach. via Cairns. 4870.
VKAZAC-A. R. Rettke. 52 Mayhew St.. Sher-VKAZIB-1. Wood. 4075.
han's Beach. 4870 . Christensen St. Mac-VKAZPU-P. S. McWhinney, 222 Victoria Ave., Margnte. 4019.
VK5AS-G. J. Hambling. 39 Tapleys Hill Rd.. VK5DI-R. G. R. Dobson. 16 Howden Rd., VK5ZIJ-I. J. Crawiord. 31 Nimitz Rd., ElizaVK6APMJ. Past, Marks (Bro.). Aquinas College VKKRD-B. F. J. Davis. 29 Amherst St., Mid-

VK6BX-D. V. Hambleton, 116 Astley St. VK6FTT-F. T. Tuffin. 38 Elmwood Ave., WoodVK6KQ lands. $\underset{\text { Enstern Hwy. }}{\text { Sims. }}$ Shell Roadhouse. Great VK6KY/T-G. D. Oge. 50 Milton St., Mi. Haw-VK6LI-W. F. ${ }^{6}$.
P.O. Box 22. Exmouth, 6707. VK6PG-A. J. Gibbs, 11 Grant Pl.. Bentley. VK6PR/T-R. T. Fisher. 48 Purslowe St., Glen-VK6PX-P. V. V. West. 255 Fulham St., Clover-VKBVE-V.h.f. Group of W.A.. Station: Mt. Barker Hill: Postal C/O. T. C. Berg. 23 Beach St.. Bicton, 6157.
VK6ZB-B. Taylor, 233 Preston Point Rd.. VK6CIB-K. M. Moore, Station: Portable: Postal: 40 Collingwood St., Dianella.
VK6ZDM-C. ${ }^{6062}$. Rurton. Flat 12. 18 Raymond
VK6ZGB-R. A. Rodgers. 21 Lilian Ave., AppleVK6ZGWross. ${ }^{\mathbf{W}}-\mathbf{K 1 5 3 .}$. Chipper. 20 Bindaring Pde.. Cottesloe, 6011 .
VK7JA-J. P. Agnew, "Waverley." Oatlands, VK7KM-K. G. McCraken, 29 Esplanade, Montague Bay.
VK7ZPA-P. M. Cox.
7 VK8CP-1. P. Cork, Flat 2, 1323 Casuarina Dr., VK8GT-G. R. Thompson, 2 Hablett Cres. VK8KA-K. J.Assender. 2 Lampe St., Fannle Bry. $\mathbf{5 7 9 0}$.

CANCELLATIONS

VKIDA-A. Davis. Now VK2BAD.
VK2SS-T. Ivins. Transfered to T.P.N.G
VK2AYD-D. G Taylor. Transterred to Vic.
VK2ZGB-J. C. Benneti. Nou VK2AAL
VK2ZHB-B. Hobbs. Not renewed.
VK2ZPU-P. S. McWhinney. Now VK4ZPU.
VK2ZWQ-W. M. C. Quinlan. Now VK2ARX
VK3AV-J. L. A. Martin. Deceased.
VK3AAX-F. Rogers. Not renewed.
VK3ALN-A. S. W. Taylor. Not renewed VK3AMY-W R. McLaughilin. Transferred to VK3ASN-K
VK3ASN-K. J. Assender. Now VK8KA
VK3AQU-R. H Leskie. Now VKJAV.
VK3BAI-R. E. Maricle. Not renewed.
VK3YAI-P. R. Johnstone. Now VK3YAZ
VK3YBI-I. C. Beulke. Now VK3BAU.
VK3ZDD-R. V. Reid. Now VK3AWL.
VK3ZHG-G. R. Hovey. Transferred io A.C.T.
VK3ZRG/T-R. G. Thomas. Now VK3BAS/T.
VK51R-G. R. Thompson. Now VK8GT.
VKSRC-J. Rellly. Not renewed.
VK5ZBG-G. J. Hambling. Now VKsAS.
VKSZDG~J. E. S. Day. Transferred to Vic.
VK6AU-I. A. E. G. Norman. Not renewed.
VK6DG-D. R. Garratt. Transferred to Vic.
VK6KM-K. M. Moore. Now VKBCIB.
VK6LD-L A. Dancey. Transferred to Qld.
VK6WV/T-Western Video \& Transmission VK6ZAG-J. P. Marks (Bro.). Now VKbAP VK6ZBT-B. Taylor. Now VK6ZB.
VK62DF-R. T. Fisher. Now VKBPR T.
VK6ZDQ-M. E. Zile. Not renewed.
VK6ZZDW-D. J. Wauchope. Not renewed.
VKBZES-S. J. Sands Not renewed.
VK6ZEU-P. V. West. Now VK6PX.
VKGZGO/T-G. D. OgR. Now VK6KY VG
VK7NB-N. Bolland. Transferred to T.P.N.G.
VK7ZBA-J. P. Agnew. Now VKiJA.
VK7ZHH-H. F. Hutchinson. Not renewed.

CONTEST CALENDAR

16th 17 th May: Sangster Shleld. 3.5 MHz . only 4th/sth July: Memorial Contest. 3.5 MHz . only 15th/16th August: Remembrance Day Contest 3rd/4th October: VK/ZL/Oceania DX Contest.
Phone $10 \mathrm{~h} / 11$ Oh October: VK/ZL/Oceanin DX Contest. C.w.
10th/11th October: R.S.G.B. 28 MHz . Phone Contest.
24th/25th October: R.S.G.B. 7 MHz. DX Con7th ath November: R.S.G.B. 7 MHz . DX Contest. Phone.
-D. H. Rankin, F.E.

Correspondence

Any oplnion expressed under this heading is the Individual opinion of the writer and does not necessarlly coincide with that of the Publishers.

REPLY TO "SIT AND THINK"

Editor "A.R.," Dear Sir.
I must comment on n letter published in April "A.R." headed "Sit and Think'"
Scene 1 and Scene 3 need more thought on the part of the writer of the letter.
Re Scene 1: How can altering a call sign in a contact already established give "another contact"?
Re Scene 3: Capt. Cook certainly did NOT discover the East Coast of Australia, it had been discovered decades before Cook's voyage. What Cook did was to produce the first charts of any accuracy.
I, also, don't use the $A X$ prefix unless asked to use it. which I then do, amused that the operator at the other end gets any satisfaction that I did-it takes all sorts!!!
-Keith McCarthy, VK9AR.

FEDERAL AWARDS

COOK BI-CENTENARY AWARD
The following additional stations have qualiAed for the award:-

Cert. No.	Call	Cert. No.	Call	Cert No.	Call
104	AX2AIA	131	OA4QZ	157	ZMIAZN
105	2S5FF	132	ZM3BK	158	JA6JDP
106	ZM3RS	133	G3YNC	159	ZM3BV
107	AX3SM	134	G6LK	160	W3HQU
108	W3GHD	135	CTIUA	161	ZS5LB
1 C 9	DJ8YQ	136	KA2ZD	162	W6HUR
110	2M4CA	137	AX7GC	163	VE3BWY
111	KA2QW	138	AX9KY	164	VE3EWY
112	7Z3AB	139	4X4KM	165	AX5HY
113	G3AMM	140	W4BSB	166	W9FD
114	9Y4PL	141	VU2BEO	167	AX3PY
115	YV5AK	142	XE11X	168	HC2SO
116	CPIHW	143	AX3PR	169	AX5LC
117	W6AC	144	F2MA	170	G2SB
118	WA5TYX	145	AX7LZ	171	G3NOF
119	W8ZOK	146	ZMIUR	172	9V1PM
120	ZM2AYI	147	G2CCD	173	WAOVZF
121	AX4VC	148	ZL3ADF	174	G6RC
122	CE5DF	149	PJ2CW	175	VP7CG
123	AX3ARV	150	AX3JM	176	ZM2BCX
124	ZM1DD	151	AX6HJ	177	PY3APH
125	OA4J	152	ZM1BGV	178	AX5NB
126	AX2AHH	153	W2NHZ	179	AX3SO
127	AX2ABZ	154	G6TA	180	AX2AFI
128	VR1V	155	K2BJB	181	AX3BCN
129	AX4BG	156	AX3APU	182	AX4ZW
130	VE3OI			183	AX3ADO

W.I.A. V.H.F.C.C.

Cert.	Confirmations No.				Call	52 MHz. 144 MHz

D.X.C.C

OJO-Market Reef. This new D.X.C.C. country has been on the bands recently with several expeditions providing plenty of contacts. Cards for OJO are being received and credited as a new country. Full detalls will be given as soon as possible

REPAIRS TO RECEIVERS, TRANSMITTERS
Constructing and testing: xtal conv.
any frequency; O5-ars, R9-ars, and translstorised equipment.

ECCLESTON ELECTRONICS
146a Cotham Rd., Kew, Vic. Ph. 80-3777

Swan Electronics Service Co. Accreditad Dlatributor for
 Swan. Hallicrafters, etc., Receivers and Transmitters
 Specialised Service on all Swan Transcelvers

14 Glebe sr., EDGECLIFF, N.S.W., 2027. Ph. 32-5485
 \title{
Cook Bi-Centenary Award
}
 \title{
Cook Bi-Centenary Award
}
(V.H.F.U.H.F. SECTION)

The following rules were adopted at the Federal Convention of the Wireless Institute of Australia held in Adelaide over Easter. They are an addition to the rules already published and are intended to encourage participation by v.h.f.-u.h.f. operators.

Correspondence from the following people is acknowledged with thanks; their comments and suggestions have been incorporated, where possible, in the final rules:
P. Healy, VK2APQ, Federal Councillor, N.S.W. Division.
G. Taylor, VK5TY, Federal Councillor, South Aus. Division.
T. A. Lane, VK4ZAL.
C. Maude, VK3ZCK.

Townsville Amateur Radio Club.
E. C. Jamieson, VK5LP.

AWARD RULES

Operation.-Only Australian Amateur Stations using the special AX prefix may be worked for the purpose of this award. Contacts may be made on any v.h.f. or u.h.f. band or mode available to Australian Amateur Stations. Cross band operation will not be permitted. No contacts made with ship or aircraft stations in Australian Territories will be eligible, but land mobile or portable stations may be contacted provided the location of the station worked, at the time of the contact, is clearly indicated.

Operators at all times must operate within the terms of their station licence. All contacts must be made during the period 1st January to 31st December, 1970, inclusive. Contestants may work each station once only per band during this period for the purposes of this award. If a station is worked on more than one band, each additional band worked may be counted as a separate contact for award purposes.

Application may be made for one certificate only, either h.f. bands or v.h.f.-u.h.f., but not both sections.

Requirements.-Stations must contact 100 different (except as above where a station is worked on more than one band) Australian Amateur Stations using the AX prefix during the specified period.

Applications. - Stations applying for the award are not to forward QSL cards, but instead should submit a list of the stations worked (in order of Call Areas) plus the following details of each contact: Date, Time (GMT), Band, Mode, Report. This list, certified by two other licensed Amateurs, plus a statement to the effect that they have sighted the log entries of the applicant, should be sent to:

Awards Manager, W.I.A.,
P.O. Box 67,

East Melbourne,
Vic., Australia, 3002.
All applications are to be received at the above address no later than 31st December, 1971, as no further entries will be accepted after that date. Certificates will be forwarded, free of charge, by surface mail.

MISSING PERSONS

The R.S.G.B. has asked if we can locate two ex G3s who migrated to Australia some years ago:

Mr. Edward Mitchell, G3GZW/A/P, of 18 Southcote Cres., Essex, and

Mr. David Hooper, G3ICU, of Caseldene Rd., Harlesden, London.
Any information would be appreciated by their mutual friend, Mr. J. O'Connor, of Ipswich, Suffolk, or direct to Federal Secretary, P.O. Box 98, East Melbourne, Vic., 3002.

HAMADS

Minimum 81 for forty words.
Extra words, 3 cents each.
HAMADS WILL NOT BE PUBLISHED UNLESS ACCOMPANIED BY REMITTANCE.

Advertisements under thls heading will be acceptad only from Amateurs and S.w.l's. The Publiahers reserve the right to reject any advertising which, in their opinion, is of a commerclal natura. Copy must be recelved at P.O. 36. East Melbounne. Vic., 3002, by 5 th of the month and remittance musat accompany the advertisement.

COMPLETE STATION from earth peg to antenna Swan 500C as brand new. This place laboratory selected from Swan factory. Complete with latest D10A Astatic Mike. vox unit and power supply. S.w.r. bridge, over 100 ft co-ax. cable with connectors, etc. 50 ft . 2-section crank-up tower. Ham M Rotator and control box. THGDX 6 el . triband beam with spacial wind defiectors on traps. Phone (Melb.) 57.4486 . A.H. 24.2043.

EXCHANGE: FTDX-400 Serles 2. In excellent condition for FIDX-100. Must also be In excellent condition. VK5XV. 21 Dudley Cres.. Marino, S.A., 5049. Phone 96-3136.

FOR SALE: BC221, rough, needs cal.. S20: BC433F Compass Rec.. less controls, \$15; Sig. Gen., 300 1000 meg.. varlable pulse freq.. width, delay, $\$ 50$ AR7 Rec.. needs work. $\$ 40$; six butterfly capacitors new. So each; Fil. Tranny, 6.3v. at 10 amps.. s8: "Marconi" V.T.V.M.. \$15. 64 O'Grady St., Älbert Park. Vic.. 3206.

FOR SALE: Complete 20 metre Beam Installation -3 el . on 42 ft . windmill tower, including prop pitch motor. selsyns and indicator unit. and ali co-ax., cables. etc. VK3LW. Phone 45.2141 (Melb.) co-ax.: cables. etc.
except 9 h.16th May.

FOR 8ALE: 1 Geloso 222TR Transmitter, first class condx complete with Inst. Book. Price 575 VK2MW. M. C. Darby, "Tothra." Spring Rldge. N.S.W.. 2416.

SELL OR SWAP: Rack mounted a.m. transmitter, separate stages. In alum. boxes. Also $6 v$. car radlo and gen. motor plus other gear. VK2OB 20 Catherine St., Kotara. N.S.W., 2288.
S.S.B. ADAPTOR: Heathkit SB-10 with handbook and spare sat of valves. Designed for uge with Apache but will convert any a.m. transmitter to s.s.b. Has d.s.b., u.s.b., l.s.b.. vox. etc. Five 10 Regent Street. Pennington. S.A.. 5013 . Phone 42477.

WANTED: Eddystone 504. 680. 680X. 750 or similar general coverage receiver. Also want 14AVO Vert Glen Waverley. Vic., 3150 . Phone 560.9215.

WANTED: One of the following $1 / \mathrm{kw}$. O.G. Spark Transmitters: Marconl types 241C. 341, 35. 550 355. 355F: Radio Communication Co. types PS17. T20, T24. T22. T29, or similar small home-brew equipment. Also quenched plate gap dischargers: high voltage mica condensers sucn as Admiralty pattom 5001 with rating 0.0044 uF. 20.000 volt test A. F. Fisher. VK3BAO, 241 Royal Pde.. Parkville

WANTED: Telescoplc. Tower to about 35 ft., also
FIIOD Transceiver. Price. condition and detalls
please to G. Glder. 20 Grandviow Rd.. Box HIII South. Vic.. 3128. Phone 288-2024.

24.02
G.M.

(Prediction Charts by courtesy of lonospheric Prediction Servics)

The World's Most Versatile Circuit Building System!

SIZES: $1 / 8^{\prime \prime}$ and $1 / 16^{\prime \prime}$ WIDTHS
Length: 100 ft . roll, 5 ft . card
IDEAL FOR PROTOTYPE AND PRODUCTION CONSTRUCTION

USEFUL FOR WIRING REPAIRS

* NO dRILLing
* FAST
^ NO MESS
Available from all Leading Radio Houses
Marketed by-

ZEPHYR PRODUCTS PTY. LTD.

70 BATESFORD RD., CHADSTONE, VIC., 3148
Telephone 56-7231

COMMUNICATIONS RECEIVER

- 4 BANDS COVERING 540 Kcs. TO 30 Mcs.
- TVYO MEIDHANICAL FILTERS ENSIIRE MAXIMUM SELEC. TIVITY.
- PRODUCT DETECTOR FOR S.S.B. RECEPTION.
- AUTOMATIC NOISE LIMITER.

PR|CE: FOR/FOA
 SPREAD DIALS FOR ACCURATE TUNING

- CALIBRATED ELECTRICAL BANDSPREAD.
- "S" METER AND B.F.O.
- 2 MICROVOLTS SENSITIVITY FOR 10 dB S/N RATIO.

CONSULT YOUR LOCAL RADIO DEALER, OR mall this coupon todaly specifications on Trio equipment.

(A unit of Jacoby Mitchell Holdings Ltd.) 376 EASTERN VALLEY WAY, ROSEVILLE, N.S.W. Cables and Telegraphic Address: WESTELEC

K.W. ELECTRONICS KW ATLANTA TRANSCEIVER

* BUILT-IN NOISE LIMITER
$\star 500$ WATTS P.E.P. INPUT
\star BUILT-IN 100 KHz . CRYSTAL CALIBRATOR
\star FULL P.T.T. OPERATION
\star AUTOMATIC LINEARITY CONTROL
* CALIBRATED "S" METER \star GRID BLOCK KEYING
\star UPPER AND LOWER SIDEBAND SELECTION BY PANEL SWITCH
\star STEEP SLOPE CRYSTAL FILTER, 5.2 MHz .
\star MATCHING A.C. POWER SUPPLY UNIT WITH BUILT-IN SPEAKER
\star FULL COVERAGE ALL BANDS, 3.5 to 30 MHz . \star SSB, AM, CW
Write for Technical Leaflet
sote avaratim Aesen: SIDEBAND RADIO
73 COLE STREET, ELWOOD, VIC., 3184
Phone 96-1877

Automatic Aerial Rotator

NEW ... UNRIVALLED AERIAL ROTATING SYSTEM!

Immediate Delivery from Stock

Complete with direction control unit - fully synchronised balanced bridge circuit.

- Rugged-water tight.
- Hollow shaft, $11 / 2^{\prime \prime}$ diam.
- Loading: 112 lbs. (max.)
- Rotation angle: 360 deg.
- Permanently lubricated.
- Speed: 1 r.p.m.
- Magnetic disc brake.
- 240v. AC (60w.); drive 42v.

Sole Australian Agents:

Victoria:
608 COLLINS ST., MELBOURNE, 3000.

Phone 61-2464
New South Wales
64 ALFRED ST., MILSONS POINT, 2061.

Phone 929-8066
Western Australla:
34 WOLYA WAY, BALGA, PERTH 6061.

Phone 49.4919
Queensland:
L. E. BOUGHEN \& CO.

30 GRIMES ST., AUCHENFLOWER, 4066.

Phone 7-4097

complete the following sequence of numbers

$659,664109,94418,324$

Of course you immediately recognized a geometric progression and by now will have pencilled
in 3054. Because we introduced our 2N3055 last month we thought this would be a logical
way to introduce our 2 N 3054 this month.

2N3054 is a general purpose NPN power
transistor, manufactured by the new patented Fairchild Bi-mesar process. 2 N3054 is an ideal driver for the 2 N3055.

Available for immediate delivery.

EA!RDPILO
AUBTRALIA PTV. LTO

COMMUNICATIONS CAREER TRANEES WANTED

The Department of Civil Aviation wants men aged at least 18 and under 36 years having previous telecommunications experience to undertake conversion training for positions of Communications Officer.
Communications Officers are responsible for the operation of Aeronautical Broadcast Services and a variety of Aeronautical Fixed Telecommunications channels linking Flight Service and Air Traffic Control units, and as such they make a vital contribution to the high safety standards of Australian civil aviation.
Opportunities exist for further training and advancement as Flight Service Officer.
Applicants must be British subjects (by birth or naturalisation) and be medically fit. A good level of secondary education is desirable. A minimum of two years related experience in telecommunications fields is necessary together with proficiency in machine and wireless telegraphy. Ability to communicate fluently and clearly in English is essential.

For further information contact -
Recruitment Officer.
Department of Civil Aviation, Aviation House,
188 Queen Street
Melbourne, VIC. 3000
Telephone 620131

(4)ECONOMICAL SSB! FT- 200 FIVE-BAND TRANSCEIVER

A superb quality, low cost, versatile transceiver. Covers $80-10 \mathrm{mx}$, tuning range 500 Kc . each band. On 10 mx , crystal supplied for $\mathbf{2 8 . 5 - 2 9} \mathrm{Mc}$. (Crystals available optional extra for full 10 mx coverage.) SSB, CW, AM; with a speech peak input of 300 w . Transistorised VFO, voltage regulator, and calibrator. 16 valves, 12 diodes, 6 transistors. PA two 6JS6A pentodes. ALC, AGC, ANL, PTT and VOX. Calibrated metering for PA cathode current, relative power output, and receiver S units. Offset tuning $\pm 5 \mathrm{Kc}$. Uses a 9 Mc . crystal filter with bandwidth of 2.3 Kc . at - 6 db . Selectable sidebands, carrier suppression better than - 40 db . Sideband suppression better than -50 db .
Fixed channel facility optional extra, useful for net operation, skeds, etc.

Operates from conservatively rated separate 230 volt 50 c.p.s. AC power supply, FP-200, which includes built-in speaker. A 12 volt DC power supply, DC-200, is also available. Transceiver incorporates power take-off and low level R.F. drive outlets suitable for transverters.

Cabinet finished in communication grey lacquer. Panel, etched, satin finish aluminium.

Price, FT-200, $\$ 345$ inc. S.T.
Imported Yaesu matching Power Supplies:
FP-200 \$85 including Sales Tax
DC-200 \$118
New shipment! Ample stocks for immadiate delivery.

Other well known Yaesu Models: FTDX-100 Transistorised Transceiver, FTDX-400 Transceiver, FLDX-2000 Linear Amplifier, FLDX-400 Transmitter, FRDX-400 Receiver, FR-50 Receiver, FTV-650 6 Metre Transverter, FF-30DX Low Pass Filter, 600 c.p.s. CW Mech. Filter for FRDX-400, 600 c.p.s. CW Crystal Filter for FTDX-400. Also: SWR Meters, Co-ax. Switches, F.S. Meters, Co-ax. Conn., Hy-Gain (U.S.A.) Beams.
All sets checked before despatch. After-sales service, spares availability, 90 -day warranty. All Yaesu sets sold by us are complete with plugs, power cables and English language instruction manual. Prices and specifications subject to change.
Sole Australian Agent:

BAIL ELECTRONIC SERVICES
 60 Shannon St., Box Hill North, Vic., $3129 . \quad$ Phone 89-2213

TRANSISTOR TEST SUPPLY

Incorporating-
1 Volt Meter
1 Current Meter
2 Transistors
7 Diodes

Voltage variable- 2 to 20 volts D.C.
Current switched- 0.20 mA . and 0.200 mA .
Current Meter-overload protected (diode). Low ripple output.
Size: $51 / 2^{\prime \prime} \times 4^{\prime \prime} \times 31 / 2^{\prime \prime}$. Weight: $21 / 4 \mathrm{lbs}$.
Price $\$ 32$ + sales tax

MELBOURNE'S WHOLESALE HOUSE
562 Spencer St., Melbourne, Vic., 3000. Phone 329-7888, Orders 30-2224
City Depot: 157 Elizabeth Street. Melbourne, Vic., 3000. Phone 67-2699
Southern Depot: 1103 Dandenong Rd., East Malvern, Vic., 3145. Ph. 211-6921

Vol. 38, No. 6
JUNE, 1970
Registered at G.9.O.. Melbourne. for transmission by posi as a periodical Price 30 Cents

TE-16A TRANSISTORISED TEST OSCILLATOR

Frequency range: 400 Kc . to 30 Mc . In five bands. Modulated $800 \mathrm{c} / \mathrm{s}$. sine wave. Modulation: 30 p.c. approx. Output Imp.: Low impedance. Dimen sions: $57 / 8 \times 57 / 8 \times 35 / 8 \mathrm{in}$. Welght: 1.5 ib .

Price $\$ 24$ tax paid, post 75c

LT91 RECTIFIER

20 Volt 2 Amp.
Price 51.50 post 10 c

NEW STEREO HEADPHONES

Large rubber earpiece. Frequency range 100 to 1500 cycles. 8 ohms impedance.

Price 56.75 post 30 c

BRAND		NEN	SPEAKERS		
21/2 inch	8 ohms	Price	\$1.75	Postage	20c
3 inch	8 ohms	-	52.00	"	20c
4 inch	8 ohms	.	S2. 25	"	20 c
4 inch	15 ohms	"	\$2. 25	..	20 c
30X	8 ohms	..	\$3.95	..	20 c
3DX	15 ohms	.	S3.95	..	20 c
6A7	8 ohms	"	S5.50	-	40 c
6 A7	15 ohms	-	\$5 50	. ${ }^{\text {a }}$	40c
8A7	8 ohms	.,	S7.20	..	40 c
8 A7	15 ohms	"	S7.20	"	40 c
12A9	8 ohms	"	S18.75	..	50 C
12A9	15 ohms	.	S18.75	*	50c
		tt Pric			

"NIKKA" 1 WATt transceivers

PM.G. approved. Solid state. 14 transistors. circuit inc. r.t. slage. 27240 Mc . (provision for two channels). Range boost circuit. Up 1010 miles in open country or water. Buzzer iype call system. open country or water. Buzzer type cali system. Squel
case.

Price $\mathbf{S 1 7 5 . 0 0}$ Pair

NEW A.W.A. T.V. TUNER
Model 49806. Uses $6 U 8$ and 6BO7A.
Price 85.50 postage 50 c

PACK OF RESISTORS
100 Resistors of $1 / 2$ and 1 watt rating.
Price $\$ 1.75$ post 20 c

FIVE-CORE CABLE

$5 \times 5 / 0076$. |deal for Intercoms.. Telephones, etc. New. 100 yd. rolls. S17 (postage 75c), or 20 c yd.

NEW VALVES

AS NEW AND AIR TE8TED

LAFAYETTE 5W. C.B. TWO-WAY RADIO*

Modal HE-20, fully transistorised, solid state, 13 transistors. 10 diodes. 27.240 Mc . Provision for 23 channels, crystal channel locked, push-pull audio modulator. 455 Kc nechanical filter, spotting switch for accurate reception, t.v.i. trap, 230v. a.c. and $12 v$. (positive or negative ground), in-bullt p.a amplifier. Ideal for fixed base station or emergency mobile, including microphone and moblle cradle. Fibreglass helical verial 4 ft. high, cowl mount. -Subject to P.M.G. approved IIcence.
F.O.R. Price $\mathbf{S 1 6 9 . 5 0}$ tax paid
lor moblle use $\$ 16.50$ extra.
BENDIX BC-221 FREQ. METER
125 Kc. to 20 Mc .. Including a.c. power supply. crystals, callbration book, etc.
F.O.R. Price \$49.50, packing 75c

REALISTIC DX-150 SOLID STATE COMMUNICATIONS RECEIVER
Features: 240v. a.c. or 12v. d.c. operation. 30 transistors and diodes. 535 Kc. to 30 Mc . In four bands. Bandspread tuning. "S"' meter. a.m./c.w./ s.s.b. Product detector tor s.s.b. Compact size. $141 / 8 \times 91 / 4 \times 61 / 2$ in. Polished metal panel. small internal speaker.

F.O.R. Price S229.50

Matching external speaker $£ 13.30$ extra.

TRIO COMM. RECEIVER MODEL 9R-59DE

Four-band receiver covering 550 Kc . to 30 Mc continuous, and electrical bandspread on 10, 15, 20. 40 and 80 meties. 8 valves plus 7 diode circuit. $4 / 8 \mathrm{ohm}$ output and phone jack. SSB.CW. ANL. variable BFO, S meter, sep. bandspread dial, i.f. 455 kc. audio output 1.5 w ., variable RF and AF gain controls. $115,250 \mathrm{v}$. AC mains. Beautifully designed. Size: $7 \times 15 \times 10$ in. With instruction designed. Size: $7 \times 15 \times$
manual and service data.

PRICE S175 inc. sales tax
Epoaker to sult, type SP5D. S15 Inc. tax.

No. 62 TRANSCEIVERS

Wireless Set No. 62 Mk. 2 (Pye). Frequency range 1.6 to 10 Mc in iwo bands. in-built 12 v . genemotor power supply. Clean condition. Fully air tested on transmit and receive.
F.O.R. Price $\$ 49.50$ inc. circuit diagram

WESTON LM-300 MOBILE TAXI RADIO

Low Band a.m1. 60 Kc. bandwidth, 70-80 Mc. Crystal channel locked, single channel. In-built transistor power supply. 12v. operation. sult country taxl service or conversion to Ham bands, Inc microphone and cradle.
F.O.R. Price S45. Packing 50c

WIRE WOUND POTENTIOMETERS
50 watts, 200 olims. Price \$3.00.

HAM RADIO SUPPLIERS 323 ELIZABETH STREET, MELBOURNE, VIC., 3000
 Phones: 67-7329, 67-4286 All Mail to be addressed to above address

We sell and recommend Leader Test Equipment, Pioneer Steren Equipment and Speakers, Hitachi Radio Valves and Transistor Radius. Kew Brand Meters, A. \& R. Transformers and Transistor Power Supplies. Ducon Condensers, Welwyn Resistors, etc.

Journal of the wireless institute of australia. founded 1910

Publishers:

VICTORIAN DIVISION W.I.A.
Reg. Office: 478 VIctorla Parade, Eaat Melbourne. Vic.. 3002.

Editor:

K. E. PINCOTT VK3AFJ

Asslstant Editor:

E. C. Manlfold VKzem

Publications Committee:
Kon GIIlespic VK3aK
Peter Remsay VK3ZWN
W. E. J. Roper VK3ARZ
Circulation-
Jack Kelly VK3AFD
Draughtamen:-
Clem Allan Vk3ZIV
John Blanch VK3ZOL
John Whitehead VK3YAC

Enquiries:

Mrs. BeLLAIRS, Phone 41-3535, 478 Victorla
Parade. East Molboume. VIc., 3002. Houra: 10 a.m. to 3 p.m. arly.

Advertising Representatives:

AUSTRALIAN MEDIASERV
21 Smith St., Fitzroy, VIc., 3065. Tel. 41-4962. P.O. Box 108. Fltzroy, VIc., 3065.

Advertisement materlal should be sent direct to the printers by the first of each month.
Hamads should be addressed to the Editor.

Printers:

"RICHMOND CHRONICLE." Phone 42-2419.
Shakespeare Street. Alchmond. Vic., 3121.

All matters pertaining to "A.A." other than advartising and subscriptions. should be addressed to:
THE EDITOR,
"AMATEUR RADIO."
P.O. BOX 36 .
EAST MELBOURNE, VIC.. 3002.

Members of the W.I.A. ahould refer all engulrlea regarding dellvery of "A.R." dlrect to thelp Divisional Secretary and not to "A.R." diract. Two months' notice la required before a change of malling aduress can be effected. Readers should note that any change in the address of their transmitting station must. by P.M.G. regulation, be notifled to the P.M.G. In the State of residence; In addition, "A.R." should also be notified. A convenlent form li provided In the "Call Book".

CONTENTS

Technical Articles:-

An Integrated Circuit F.M. I.F. Strip 13
A Solid State Amateur S.S.B. Recelver, Part Three 9
Count and Display at \$6 per Decade 7
On the Concentration of Ferric Chloride 15
The World with a Trlangle, Part Three 11

General:-

Contests:-

Contest Calendar	$\ldots .$.	$\ldots .$.	\ldots.	$\ldots .$.	...	$\ldots .$.	19
VK-ZL-Oceania DX Contest.	1969	Results	\ldots.	\ldots.	\ldots.	\ldots.	16		
VK2 Mid-Winter V.H.F.-U.H.F. Contest	1970	\ldots.	\ldots.	\ldots.	21				

COVER STORY

Our front cover this month depicts the VFO section of a Solid State SSB Amateur Receiver designed by Messrs. Tobin and Clift of Falrchild. The receiver is the subject of an article which is currently being published in serles form in "A.R."

COMMUNICATIONS Career tranives wanted

The Department of Civil Aviation wants men aged at least 18 and under 36 years having previous telecommunications experience to undertake conversion training for positions of Communications Officer.
Communications Officers are responsible for the operation of Aeronautical Broadcast Services and a variety of Aeronautical Fixed Telecommunications channels linking Flight Service and Air Traffic Control units, and as such they make a vital contribution to the high safety standards of Australian civil aviation.
Opportunities exist for further training and advancement as Flight Service Officer.
Applicants must be British subjects (by birth or naturalisation) and be medically fit. A good level of secondary education is desirable. A minimum of two years related experience in telecommunications fields is necessary together with proficiency in machine and wireless telegraphy. Ability to communicate fluently and clearly in English is essential.

For further information contact -
Recruitment Officer,
Department of Civil Aviation, Aviation House,
188 Queen Street,
Melbourne, VIC. 3000
Tclephone 620131

SIDEBAND ELECTRONICS ENGINEERING

All prices quoted are for equipment available ex stock, net, cash Springwood, N.S.W., sales tax included in every case, but subject to alteration without prior notice. Price increases are expected soon for antennas, none yet for YAESU MUSEN equipment, which is sold with factory backed one-year warranty. All Yaesu Musen units come complete with all plugs and power cables and English manuals, checked, tested and where required adjusted or modified before shipment.
More accessories of Japanese origin will become available in the near future, as hand-held 100 mW . and 1 Watt $27-28 \mathrm{MHz}$. Walkie-Talkie Transceivers, SWR-Power Meters, Field Strength Meters, etc. Any suggestions for the addition of particular gear from Japan will be considered in our negotiations with manufacturers over there.
YAESU-MUSEN-FT.DX-100 AC/DC Solid State Transceiver, as longas the supply lasts, now only$\$ 500$
FT-DX-400 De Luxe Transceivers, AC power sup- plies built-in $\$ 525$
FL-DX-400 Transmitter $\$ 350$
FR-DX-400 Receiver. \$375
FR-DX-400 Receiver, super de luxe model, withall available accessories-CW filter, FM filterand FM discriminator, 2 and 6 mx convertersFT-200 economy Transceiver with AC power sup-ply-speaker unit for $230 / 240 / 250 \mathrm{~V}$. of heavyduty design
FL-DX-2000 Linear Amplifier, built-in AC supplyand SWR Meter
6 and 2 Metre Solid State Converters, as used inthe FR-DX-400 super de luxe receiver$\$ 475$
FF-30-DX Low Pass Co-ax. Line Filters $\$ 15$500 Hz . CW Filters for use in the latest type
FT-DX-400 Transceivers \$35
SWAN-
SW350C Transceiver with AC supply-speaker unit $\$ 550$SW350C Transceiver with Swan 14-230 AC/DCpower supply unit$\$ 600$
GALAXY-
GT-550 Transceiver with AC supply-speaker unit $\$ 725$
Galaxy External VFO \$125
HY.GAIN-
Hy-Quad Tri-band Cubical Ouad, 10-15-20 metres.
one co-ax. feedline $\$ 130$
TH3JR Tri-band 3 El. Junior Yagi Beam $\$ 110$
14AVO 10 to 40 metre Vertical $\$ 45$
18AVO 10 to 80 metre Vertical S75
mosley-
TA33JR 3 El. Tri-band Junior Yagi Beam $\$ 100$
NEWTRONICS-
4-BTV 10 to 40 metre Vertical $\$ 60$
Same with 80 metre top-loading coil $\$ 80$
MOBILE WHIPS-Webster Bandspanner 10 to 80 m . centre-loaded$\$ 55$
continually adjustable Mark HW-40 40 metre Helical Whip $\$ 20$
Mark HW-3 10-15-20 Tri-band Helical Whip \$35
Swivel mount and spring for Mobile Whips \$10
ROTATORS-CDR HAM-M Heavy Duty Rotator, with 230V. in-dicator-control unit, for up to $2^{\prime \prime}$ masts S165

ANTENNA NOISE BRIDGE-

OMEGA TE-7.01 Bridge, for the serious antenna experimenter, gives resonance and Impedance in one operation \$25
CRYSTALS-

FT-241 Serles. Channels 0 to 79, boxes of 80 crystals. 375 to 515 KHz ., including a 400 and 500 KHz. crystal
Individual FT-241 Crystals, depending on frequency, from 25 cents to $\$ 2$ per crystal.
Sets of six matched Filter Crystals, Includ. two USB/LSB carrier-vfo crystals, from $\$ 5$ to $\$ 10$. depending on frequency range required.
12V. DC SUPPLIES-
ACITRON extra heavy duty Mobile Supplies $\$ 110$

CO-AX. CABLES-

52 and 75 ohm $3 / 16^{\prime \prime}$ diam. per yard $\$ 0.25$
52 ohm 3/8" diam. per yard $\$ 0.50$
Connectors, Amphenol type:
PL-259 male
. $\$ 1.25$
SO-239 female $\$ 1.00$

BALUNS-

Exact electrical duplicate of the Hy-Gain BN-86, local product $\$ 12.50$

SWR POWER METER-

Calibrated output meter, three ranges, SWR 1 to 100 Watt and 1 to 500 Watt, not a dummy load! $\$ 35$
SUNDRIES-
VFO vernier mechanism, with knob and dial, as used in the FT-DX-400 Transceivers
Plate circuit RF Choke, as used in the FL-DX-2000 Linears
$\$ 10$
KOKUSAI Mechanical Filters, clearance sale, 500 Hz . or 2700 Hz . pass bands 820
TRANSFORMERS-
Made by NATIONAL Co. of Kingsgrove, N.S.W.
Limited numbers still in stock of:
U60/325 325-0-325V. 60 mA ., 5 and 6 V . fil. $\$ 1.25$
U60/385 385-0-385V. 60 mA . 5 and 6V. fil. \$1.25 U80/385 $385 \cdot 0-385 \mathrm{~V}$. $80 \mathrm{~mA} .5,6$ and 6 V . fil. $\$ 1.50$ U20/130 6.3V. 1 A.. 130 V . 30 mA . VTVM, etc., type $\$ 0.75$ 9158 6.3V. 1.5A., 240 V . 50 mA $\$ 0.75$ Various Transistor Output Transformers \$0.50
Valve Output Transf., 10.000 to 3.5 and 15 ohm .. $\$ 1.00$ Chokes: $30 \mathrm{H} .80 \mathrm{~mA} ., 15 \mathrm{H} .150 \mathrm{~mA} ., 15 \mathrm{H} .175 \mathrm{~mA}$.
$30 \mathrm{H} .60 \mathrm{mA}$. ., $20 \mathrm{H} .60 \mathrm{mA}$. ., $12 \mathrm{H} .200 \mathrm{~mA} . ~ \$ 1.00$ 10282 38V. 12V. 10V., 2.5A. tapped secondary \$1.50 11348 9V. 5A. $\$ 1.50$

Main specifications of Rotator:
Electric power source: 230V. AC. 50/60 Hertz.
Torque: $400 \mathrm{Kg} / \mathrm{cm}$.
Time for one revolution: 60 secands, approx Brake system: Electro-magnotic double plungor
Brake power: $5,000 \mathrm{Kg} / \mathrm{cm}$.
Vertical load: Dead welght. 500 Kg :; nominal load
Mast diameter: $1 \frac{1}{4}$ to $2 \frac{1}{2}$ Inches.
Welght: 16 lb., approx
Control cable: Seven conductors.
Approx. slzes: helght. $133 / 4$ in.; base diam.. 51/4 In.: rotaflon diam., $71 / 2$ in.
Specifications and Prlces subject to change.
AUSTRALIAN AGENT:

BEAM ROTATOR EMOTATOR MODEL 1100 M

YOU CAN CONTROL THE DIRECTION OF YOUR BEAM ANTENNA FROM YOUR OPERATING POSITION

The heavy duty model 1100 M features rugged cast aluminium construction, stainless steel bolts, nuts and washers. Bearing design with 90 -ball bearing provides high vertical carrying capacity, and resistance to bending pressures due to unbalanced weight, wind, etc. Limit switches prevent over-run. Positive braking with solenoid operated double plunger, operates when drive paddle is released. Steel gears transmit drive from a fractional horse-power motor.

The 1100 M can be mounted on a fixed tubular mast if an additional clamp assembly is bolted to the base. Otherwise, the rotator is base mounted on a flat plate fixed to the top of the mast or tower. Six mounting holes are provided. The antenna boom is supported on a short vertical tube held by the top clamp assembly. Clamp assemblies are of sturdy construction and clamp blocks are reversible for small or large tube within the range $1 \frac{1}{4^{\prime \prime}}$ to $2 \frac{1}{4} 4^{\prime \prime}$ diameter. U bolts are stainless steel 9 mm . diam.

The Indicator-Control Box is attractively finished in grey, with large illuminated meter, indicator lights, power switch, and "Left-Right" controls. Transformer is within Control Box. Control Box size: $51 / 2^{\prime \prime} \times 83 / 8^{\prime \prime} \times 4$ " ; weight $81 / 2 \mathrm{lbs}$.

1100 M with Indicator-Control Box and bottom mast clamp. \$165.00.
1100M with Indicator-Control Box (less bottom mast clamp), \$148.50.
Special 7 -conductor Cable for $1100 \mathrm{M}, 60$ cents per yard.
All prices include Sales Tax. Freight is extra.

```
N.S.W. Rep.: A. J. ("SANDY") BRUCESMITH, 11 Ruby Streat, Mosman, N.S.W., 2088. Telephone 969-8342 South Aust. Rep.: FARMERS RADIO PTY. LTD., 257 Angas Street, Adelalde, S.A., 5000. Telephone 23-1268
```


BRIGHT STAR CRYSTALS

FOR ACCURACY, STABILITY, ACTIVITY AND OUTPUT

SPECIAL OFFER-

STANDARD AMATEUR CRYSTALS
STYLE HC6U HOLDER, FREQUENCY RANGE 6 TO 15 MHz .

$$
\begin{array}{ll}
0.01 \% & \$ 4.25 \\
0.005 \% & \$ 5.50
\end{array}
$$

Prices include Sales Tax and Postage

COMMERCIAL CRYSTALS

IN HC6U HOLDER, 0.005% TOLERANCE, FREQUENCY RANGE 6 TO 15 MHz . $\$ 6.00$ plus Sales Tax and Postage
Write for list of other tolerances and frequencies available. COMPREHENSIVE PRICE LIST NOW AVAILABLE-WRITE FOR YOUR COPY
New Zealand Representatives: Messrs. Carrell \& Carrell, Box 2102, Auckland Contractors to Federal and State Government Departments

BRIGHT STAR RADIO

LOT 6, EILEEN ROAD, CLAYTON, VIC., 3168 Phone 546-5076
With the co-operation of our overseas associates our crystal manufacturing methods are the latest

DURALUMIN ALUMINIUM ALLOY TUBING

IDEAL FOR BEAM AERIALS AND T.V.

\star LIGHT \star STRONG

 \star NON-CORROSIVEStocks now available for Immediate Delivery

ALL DIAMETERS - $1 / 4^{\prime \prime}$ TO $3^{\prime \prime}$

Price List on Request
STOCKISTS OF SHEETS-
ALL SIZES AND GAUGES
GUNNERSEN ALLEN METALS
PTY. LTD.
SALMON STREET,
PORT MELB'NE, VIC.
Phone 64.3351 (10 lines) T'grams: "Metals" Melb.
HANSON ROAD.
WINGFIELD, S.A.
Phone 45-6021 (4 lines)
T'grams: "Matals" Adel.

WIRELESS INSTITUTE OF AUSTRALIA-FEDERAL EXECUTIVE

AMATEUR JOURNALS

The Institute can now offer annual subscriptions and publications put out by following Amateur Journals (Send remittance to Federal Executive Publications Dept., C/o. P.O. Box 67, East Melbourne, Vic., 3002)
\star A.R.R.L.-"OST"—Associate membership and renewals $\$ 6.40$
\star R.S.G.B.-"RADIO COMMUNICATION" (ex "The Bulletin")—membership only and renewals $\$ 5.50$
\star "CO" MAGAZINE—One year's subscription $\$ 5.70$

* "CO" MAGAZINE-Three years' subscription $\$ 13.50$
* "73" MAGAZINE-One year's subscription $\$ 5.50$
* "73" MAGAZINE—Three years' subscription $\$ 11.50$
* "HAM RADIO" MAGAZINE-A new American magazine put out by Jim Fisk, W1DTY (ex " 73 ") —one year's subscription $\$ 5.50$
* "HAM RADIO" MAGAZINE—Three years' subscription $\$ 11.50$
AMATEUR PUBLICATIONS
A.R.R.L., R.S.G.B., "CQ" and "73" publications also available as hereunder(Remittances and orders to be sent to Divisional Secretaries or direct toF.E. Publications Dept., C/o. P.O. Box 67, East Melbourne, Vic., 3002)
A.R.R.L. PUBLICATIONS
Radio Amateur's Handbook, 1970, paper cov. $\$ 5.95$
The Mobile Manual for Radio Amateurs $\$ 3.20$
Single Sideband for the Radio Amateur $\$ 3.30$
A.R.R.L. Antenna Book $\$ 3.30$
The Radio Amateur's V.H.F. Manual $\$ 3.30$
Understanding Amateur Radio $\$ 3.30$
Hints and Kinks for the Radio Amateur $\$ 1.60$
A Course in Radio Fundamentals $\$ 1.60$
How to Become a Radio Amateur $\$ 1.30$
The Radio Amateur's License Manual $\$ 1.30$
Learning the Radiotelegraph Code 75c
Radio Amateur's Operating Manual $\$ 2.00$
Calculators, Type "A" or "B" $\$ 1.50$
R.S.G.B. PUBLICATIONS
Communications Handbook, 4th edition $\$ 8.50$
Amateur Radio Circuits $\$ 1.50$
A.R. Techniques $\$ 1.75$
Sideband Equipment 55c
Radio Data Reference Books $\$ 1.75$
Guide to A.R. 90c
Morse Code for R.A. 25c
Service Valve \& Semiconductor Equivalents 70c
World at Their Finger Tips $\$ 1.75$
R.A. Exam. Manual $75 c$
V.H.F.-U.H.F. Manual $\$ 3.00$
"CQ" PUBLICATIONS
Antenna Round-up, No. 1 $\$ 3.70$
"CQ" Anthology, No. 1 $\$ 1.80$
"CO" Anthology, No. 2 $\$ 3.00$
V.H.F. for the Radio Amateur $\$ 3.40$
Electronic Circuits Handbook, No. 1 $\$ 2.90$
Electronic Circuits Handbook, No. 2 $\$ 2.90$
New R.T.T.Y. Handbook $\$ 3.50$
Shop and Shack Short Cuts $\$ 3.80$
Now Sideband Handbook $\$ 2.60$
Surplus Schematics $\$ 2.20$
Surplus Conversion Handbook $\$ 2.90$
New Mobile Handbook $\$ 2.60$
The Ham's Interpreter $\$ 2.50$
The Amateur Radio DX Handbook $\$ 4.70$
"73" PUBLICATIONS
The DX Handbook $\$ 2.90$
Diode Circuit Handbook $\$ 1.10$
Transistor Circuit Handbook $\$ 1.10$
The V.H.F. Antenna Book $\$ 2.90$
Parametric Amplifiers $\$ 2.90$
A.T.V. Anthology $\$ 2.90$
Co-Ax. Manual $\$ 2.90$

FEDERAL COMMENT

Because we so often refer to our own Division as "The Institute' in order to draw a distinction between our Division and our Federal organisation, many of us sometimes refer to the Federal body as the "Federal Executive".

Recently I heard the President of a Division on a Sunday morning broadcast refer to the advantage that the "Federal Executive" would receive as a result of the transfer of the Institute's publication activities from a Victorian Divisional responsibility to a "Federal Executive" responsibility. Of course, he didn't really mean that the "Federal Exectuive" as such would receive any advantage at all. He meant that the Wireless Institute of Australia would receive an advantage, and this is merely another way of saying that all the Divisions would receive an advantage.

The Federal Executive is exactly what its name implies-it is "the Execu-tive"-not some sort of club within a club. It is a group elected to carry out a defined task-in exactly the same way as at a Divisional level the Divisional Council is elected to carry out a defined task. A trivial point? We don't think so. It is a form of verbal shorthand that if used, often describes a fundamental truth. The Federal body is not the Executive, but all the Divisions banded together for their mutual beneft.

Another example of the same sort of "wrong labelling" that comes to my mind is that at times at Federal Con-
ventions a distinction has attempted to be drawn between "Executive" money and "Divisional" money. The only thing that is different is the source of the money; some coming from Executive activities such as the distribution of overseas publications (which one supposes is no more than a means of subsidising the Divisions) and some of it coming from Divisional per capita payments. If that is what the label means, then it is accurate. If it is taken to mean that some money is "ours" and some is "yours", then it is a misleading label. All the money is the Divisions'-and therefore it is all "yours" as a member of a Division.

We of the Executive do not wish to be thought of as some sort of rather exclusive and remote "club". We do not want to be faceless men. If we are, then we are failing in our task. If our Federal affairs are remote and intangible, then members can hardly be blamed for questioning the worth of the expenditure of part of their subscriptions on the expenses associated with our Federal body. If all the advantages are said to accrue to a small group of people in Melbourne, then an attitude that is at least questioning, can surely be justified.

No-the "Executive" does not get the benefit-the "Institute" does. We do not talk of "the Council" when we mean a Division. Let us say "Institute" when we mean our Federal organisation, and "Division" when we mean a Division.
M. J. Owen. VK3KI.

Federal President. W.I.A.

COUNT AND DISPLAY AT \$6 PER DECADE

ROBERT H. BLACK,* M.D., VK2QZ

Who wants to count and, anyhow, why do you want to count and what do you want to count?

ABOUT a quarter of a century ago my young hopeful, then four years old, demanded a large sheet of paper and a pencil. He then proceeded indusiriously: I. II. III., etc., heading towards the infinite. I asked him what this was all about and he just gave me a brief look and carried on. Later he forsook the Romans and learnt about the Arabs; nowadays he dreams up plots for big black boxes.

Having estabilshed the necessity to count, the next question which naturally occurs is how much does it cost? Well, we have ten fingers, and I've always thought it rather a wonderful coincidence that man evolved in this way so that he was able to count up to ten on his digits. Some people evolved in a different way and they count up to five twice to get to ten, but they get there just the same. Fingers are free but these days events happen more quickly than you can count on your fingers and the total score with fingers is only applicable to things like the number of dollars you have in your pocket.

So you go to the market; why build something if you can buy it? You find that there are counters for sale-you can even buy one wrapped up in a radio receiver-but you need a government research grant to finance the deal. So it looks as though you have to build one; after all, integrated circuits have resulted in a tremendous lowering of costs and your labour is free.

- 2 Yerton Avenue, Hunters Hill, N.S.W., 2110.

You can spend quite an interesting time in the fantasy world of integrated circuits: decade counters, decoders, drivers, nixie tubes and so on. You do a few sums and the best you can say is that something might be possible at "a very modest cost" (Rowe, 1970). Modesty translated into quantitative terms still makes me blush.

A cost "breakthrough" in counting and digital readout was the description applied to a method described by Lancaster (1968). This used a variation of counting un to five twice to make ten. It used some integrated circuits, some transistors, and torch bulbs to display the figures. The cost per decade was $\$ 12$ in the United States. Well, depending how modest you are, you might settle for that. But there's always that niggling thought that transistors are extremely cheap when you buy them on computer boards-about 7.5 cents each with all the diodes, capacitors and resistors free. They are even cheaper in Market St., San Fran-cisco-ten boards for $\$ 1$.

With these thoughts in mind a circuit was evolved (Fig. 1) and it was found to work. The cost is less than I was quoted for a 5 volt numerical read-out valve by itself, no counting.

A counting circuit used in the control of a model railway by Goodes (1969) forms the five-counting part of the circuit presented here. The odd-even technique and the lamp read-out was derived from Lancaster (1968) with
some reference to Kench (1967) and Brown and Gunther (1969).

Negative pulses of appropriate size and shape are fed to a bistable (Q1, Q2) which switches on either Q8 or Q9 depending upon whether odd or even numbers have been counted. Every alternate input pulse results in an output pulse from the bistable being fed to the quinary ring counter Q3-Q7 in which all transistors except one are conducting at any one time. The nonconducting transistor provides bias to allow its lamp driver to conduct and light up its two lamps in turn-first the one supplied by the Even bus and then by the Odd bus.

Thus Q3 counts and displays 0 and 1, then because of the bias arrangement Q4 becomes the next non-conducting transistor and it counts and displays 2 and 3 and so on. The negative-going pulse which occurs when $Q 7$ switches on at the end of the count of 9 is used as the input for the next decade. A negative pulse will re-set both the binary and quinary to display a count of 0 . The photograph (Fig. 2) shows a suitable arrangement of the parts on a $5^{\prime \prime} \times 3^{\prime \prime}$ phenolic board and the circuit has been drawn to correspond with this layout.

Five such decades have been constructed and no great difficulty has been experienced in getting them to count up to 100 KHz . You do tend to get tired of drilling holes! I have not used printed circuits-these are much

FIG. 1. DECADE COUNTER AND LAMP DISPLAY.
L0.L9: 6V. 20 mA.. type T5GS. $01-7$ and 010-14: type 083. CB and 09: zype 086 with heat sinks. Rx and Dy: see text. Diodes: green equals cathode. 47 K reslstors probably will require some variation in value
too complex for me and, no doubt, the cost would go up.

A few items in the circuit need some comment. The resistor (Rx) and diode (Dy) found their way into the circuit when initial attempts to count at 100,000 KHz . were unsuccessful-I take it that they act as pulse conditioners. The resistors in the base leads of the lampdriver bases are shown as 47 K , but this value will require adjustment according to the characteristics of the individual transistor. A value of 47 K was found suitable for those 083 transistors with a β of 100 , a higher value of β will call for a higher value of resistor. Selection of transistors with the help of a transistor tester is thus a worthwhile procedure.

Some time is required to juggle with some of these resistors and their associated transistors to arrive at a condition where the required lamp lights up and its partner glows only faintly. But with careful adjustment there is no ambiguity in the count. When pro-

The two 15 K resistors in the leads to the bases of the 086 transistors are minis and are mounted underneath the board.

The costing has been arrived at as follows:

$$
\begin{aligned}
& 14 \text { transistors at } 7.5 \mathrm{c} \text { each } \$ 1.05 \\
& 34 \text { resistors (} 20 \times 10 \mathrm{~K}, 5 \times 47 \mathrm{~K} \text {, } \\
& 5 \times I K, 2 \times 3.3 \mathrm{~K} \text {, and } 2 \times \\
& 8.2 \mathrm{~K} \text {) at } 4 \mathrm{c} \text { each } \\
& 10 \text { lamps }
\end{aligned}
$$

Also to be bought are $1 \times 680 \mathrm{pF}$. and $2 \times 33 \mathrm{pF}$. capacitors and possibly two 300 ohm resistors and two mini 15K resistors, although these come on some boards. The diodes and the remaining capacitors and resistors come along with the transistors. Actually, the costing may be somewhat spurious; you buy the boards in selected batches of ten and you will end up with a lot of 680 ohm and other resistors and some

Fig. 2-Decade Counter, 5×3 inches (photo 95 per cent. of size).
$56 \mu \mathrm{H}$. inductors and so on, as well as some 071, 034, 033 transistors, but these will, no doubt, find application in things like Schmitt trigger, gating and monostable circuits. An R-C bridge is useful for sorting out the capacitors which are colour-coded.

Then, too, you have to think about timing the duration of the count. There's a very handy device described by Weisburg (1968) in "Wireless World" which generates pulses at 100 KHz ., 10 $\mathrm{KHz}_{\text {. }}, 1 \mathrm{KHz}$., 100 Hz . and 10 Hz ., starting with a 100 KHz . crystal which I have found very useful.

Of course, you'll get caught in the long run. If you want to count megacycles you will have to pay more for the fast-counting stages, but you don't have to display these. This note was not written to present the ultimate in counters-it certainly is not that-but it was felt that the home-brewers and tinkers may be able to develop something which will be within the reach of most Amateurs. Thinking it over, I may be quite out of date-nowadays some Amateurs spend almost as much on their gear as I do on a new car.
Oh, what do you count? Do you remember when you discovered the grid dipper? You wondered how you had managed to get on without it. Apart from counting and frequency measurement, you can measure voltage, resistance, capacitance and so on. There are interesting things called unijunctions which come in handy. The counter becomes part of the equipment on the bench, even on the operating table.

Thanks are due to Dr. Bruce McMillan who provided the photographs.

REPERENCES

Brown, R., and Gunther, R. L., 1989. Transistors on computer circuit boards. "Ameteur Radio." 37. No. 8. 11 .
Goodes, P.: 1969. Model railway logic systems -1. "Practical Electronics." 5, No. 3. p. 652.

Kench, E. J. (Ed.), 1867. Electronic counting. London; Mullard.
Lancaster, D., 1868. Low-cost counting unit. "Popular Electronics," 28. No. 2. 27.
Rowe. J., 1970 . A low-cost 200 KHz. digital frequency meter. "Electronics Australia." 31. No. 12. 62 .

Weisbure.. K-v. 1868 . Decade irequency standard. '.Wireless World," 74, No. 1382, 165.
perly adjusted the read-out lamps are by no means lit to full brilliance. At a slow counting rate the partner of the lamp indicating at the time will be seen to glow faintly, the others do not.

The lamps are rated at 6 volts at 20 mA., Type T5GS printed circuit liliput telephone filament lamps (available from E. S. Rubin \& Co. Pty. Ltd.), and are mounted in a row 0-9 on a separate board measuring $5^{\prime \prime} \times{ }_{4}^{3 \prime \prime}$, together with the two 300 ohm resistors (Fig. 3). The life expectancy of these lamps is longer than an Amateur should spend on his hobby. The odd-even switching transistors are Type 086 with cog-wheei heat-sinks which come with them on the computer boards. They run slightly warm to the touch but will get hot if the lamps are too bright. The leads between lamps and transistors are anchored to both boards. If you don't do this, you'll lose some transistor pins. Each decade complete with its lamps draws about 125 mA . at a regulated 12 volts.

Fig. 3.-Lamps which indicate counts of 0.9 mounted on a separate board.

A SOLID STATE AMATEUR S.S.B. RECEIVER

PART THREE

B. G. CLIFT and A. E. TOBIN*

This article describes the design concepts, circuit operation and construction of the variable frequency oscillator covering the nominal range of 5 to 5.5 MHz . This provides the basic tuning function for the receiver on all bands of operation.

The fundamental problem with the design of any communications equipment covering a specified variable frequency range is that of frequency stability. Since the v.f.o. is the major contributing factor to the stability criteria of this receiver, the design of this section is extremely important and we must emphasise that care be taken in the construction and adherence to the circuit details which follow. Since single sideband reception is the major objective, it is desirable that the v.f.o. stability approach that of a crystal oscillator. This is only achieved by firstly taking all standard precautions and then carefully selecting suitable temperature compensating components.

In any linear oscillator where stability is important, two main design objectives must be realised. Firstly, we must isolate as much as possible the trequency determining components from the active device. This is enhanced by keeping the impedances around the transistor low compared to the dynamic impedance of the tank circuit. Secondly, we must provide a low impedance take off point so that loading the oscillator will have negligible effect on frequency. Often it is difficult to achieve both a low output impedance and a usable output level, so the use of an isolation or buffer amplifier is required.

CIRCUIT DESCRIPTION

The circuit configuration used is that of a Colpitts Oscillator. This was chosen because it is relatively simple to provide low impedance terminations for the active device. Hence the effects of device impedance variations with temperature and supply voltage are kept to a minimum. The transistor used

[^37]in this position is an SE3005, which is a relatively new device to the Australian market and offers slight advantages over the SE3001 or SE3002. It has a higher f_{T}, a lower feedback capacitance and also guarantees a differential collector to base capacitance of 0.15 pF . maximum (at 1 MHz ., Vc: 5 to 10 v .).

However, either device may be used to achieve the same order of stability.

Temperature compensation is provided with the coupling capacitor between the tank circuit and the base of the SE3005. The actual value used here is about 609 pF . and is made up of 390 pF . silver mica, 39 pF . silver

mica, and 180 pF . N750 dise ceramic. The $0.01 \mu \mathrm{~F}$. between base and emitter is a Ducon mylar type DMA612. The other two capacitors in the oscillator with exception of rail by-pass and tuning capacitor are silver mica. The $0.0022 \mu \mathrm{~F}$. is the low impedance take off point for the buffer amplifier and can, in fact, be larger, provided the summed capacitance of the 0.001 and $0.0022 \mu \mathrm{~F}$. remains approximately constant.

The buffer amplifier stage uses a: SE5025 and is very lizhtly coupled io the oscillator via a 3 pF . silver mica. It has a tuned collector which provides some reduction in harmonic content and allows a low impedance coupling to a terminated 50 ohm co-axial cable. The 50 ohm termination is important so
that the Q of the tuned circuit is recuced from $\$ 5$ to approximately 8 . The output level variction over the tuning rance is approximately 10 per cent. and shculd be of no real concern.

It is imporiant theit the oscillator operate directly from the +9 volt regulated rail and not from a zener regulated supply. This is because the uA723 used in the power supply has a very good temperature stabilised reference-to use a zener would only result in the deterioration of the rail regulation because of temperature variations.

The v.f.o. is entirely housed in a 42 " $x 3!" x 2^{\prime \prime}$ Eddystone die-cast box. All components are mounted directly onto the lid of the box to enable easy access to circuitry. A solderable ground plane was formed by simply placing a sheet of brass on the lid before mounting the components.

Angle brackets were made up for the gang so that it could be mounted with the shaft approximately central to the depth of the box. The brackets are isolated electrically from the frame of the gang by $4^{\prime \prime}$ tapped plastic standoffs.

The coil was wound on a piece of grooved ceramic former from the normal radiator element. This was mounted on $\mathbf{1}_{2}^{\prime \prime}$ standoffs via polystyrene plugs which were inserted into each end of the former. This method is fairly clumsy and an alternative method may be found. However, the method used does provide adequate mechanical rigidity which is the most important consideration. The coil should be mounted as closely as possible to the centre, but no less than $\frac{1}{2}^{\prime \prime}$ from the sides of the box, otherwise the Q will be seriously affected.

Other components of the circuit are mounted on a piece of matrix board which is again held via three standoffs from the box lid. All ground connections are made via one braided earth strap from the gang centre shaft to one point on the lid ground plane. A brass earth strap is also used on the matrix board to provide effective earthing of circuit components (see photograph).

PERFORMANCE

1.-Supply: +9 volts regulated.
2.-Frequency range: $4.970-5.530 \mathrm{MHz}$. (30 KHz. overlap).
3.-Output level: 800 mW . p.p. $\pm 5 \%$ into 50 ohms.
4.-Temperature stability: -64 cycles with $20^{\circ} \mathrm{C}$. change in ambient (approx. 1 part in $10^{\prime \prime}$).
5.-Warm up: negligible.
6.-Output isolation: +80 cycles from 50 ohm termination to S/C (cable length 24").
7.-Supply rejection: 22.4 cycles per 100 mV . change in rail voltage.
Note.-The mixers and crystal oscillators will now be discussed in Part 4. These were previously promised for l’art 3.

5 oday's sophisticated communications equipment calls for crystals that meet the most exacting standards of the art.
Standards that were acceptable a few years ago cannot meet the requirements of design engineers today.
Today's tight tolerances demand quartz blanks with precision selected angles of cut, and Hy-O use X-ray diffraction equipment to determine this most important factor.
Long term stability is assured by close engineering control of all processing in an air-conditioned environment. The blanks are then checked to determine the frequency change over the temperature range.
The crystal is then precision calibrated to frequency using a crystal impedance meter which simulates the manufacturer's oscillator specifications.
Hy-Q crystals are custom manufactured to meet all these exacting requirements.
It is for these reasons that Hy-Q crystals have been readily accepted as a standard by the Communications Industry and why we can guarantee them against defective material and workmanship or any deterioration in performance when they are used in equipment for which they were specifically made.

Australia's largest independent crystal manufacturers.

AGENTS:
NSW: General Equipments Piy. Ltd.. Artarmon. Phone: 4392705.
SA: General Equipments Pty, Ltd. Norwood. Phone: 634844
WA: Associated Electranic Services Pty. Lid Morley. Phone: 763858.

10-12 Rosella Street.
P.O. BOX 256.

Frankston. Victoria, 3199.
Talephone 7839611.
Area Code 03
Cables: Hyque Melbourne. Telex 31630.

NT: Combined Electronics Pty. Ltd. Darwin. Phone: 6681.
TAS: Hobart Radio Clinic. Hobart. Phone: 343884
QLD: Douglas Electronics Pty. Ltd.. 322 Old Cleveland Rd
Coorparoo. Phone: 978222

THE WORLD WITH A TRIANGLE

PART THREE

[Part One appeared in "Amateur Radio, October, 1968; Part Two, April, 1969.-Ed.]

How many have tried to get directivity and gain from an antenna on 40 metres? If we decide to use a simple dipole the answer is orientation to get whatever we can in the desired direction. If we prefer a vertical, all that is left to do is to concentrate on lowering the radiation angle which is no mean feat in the majority of cases.

In the latter part of 1968 the author took a look at the facilities available for the construction of a two element directional antenna for 40 metres. If you are interested in the installation of a high tower and the purchase of a commerical 40 metre beam, don't read any more of this article.

The Author, VK2SA.
The reader might now refer to the triangular configuration Fig. 1 of April 1969 "Amateur Radio" (page 10). It will be seen that there is space available between the two 20 metre quads for the installation of an additional antenna. Thought was then given to the construction of a two element fixed array for 40 metres and it was decided to experiment with two driven loops with a phasing section to permit reversal of direction. Two loops were constructed, the top and bottom sections being 35 feet, and the vertical sections 30 feet, and when hoisted in the air the average distance apart of the horizontal top sections was approximately one-quarter wave. The bottom sections of the loops are brought closer together than one-quarter wave for convenience in feeding the array and are 12 feet from ground.

Consideration was then given to the method of feeding the loops and it was decided to use the same system as adopted for the 20 metre quads, namely, tapped loading coils and 300 ohm open t.v. line. Two coils of 23 turns wound on 11" plastic tubing and tapped at 10 turns were constructed and inserted in

[^38]the southern corner of each loop. A g.d.o. check indicated a resonance of approximately 7.6 MHz . in each loop. Small tuning condensers were then mounted in metal waterproof boxes and mounted on wooden supports below the loading coils in each loop and both loops were then tuned to 7 MHz .

A phasing delay stub consisting of 34 feet of open wire 300 ohm t.v. line was then constructed by winding the t.v. line over a flat masonite board 2 feet by 15 inches. The stub was then mounted on the wall of a fibrolite shed continued on page 15 ,

Fig. 1.-VK2SA s 10 Metre Loops.

Loop delay stub, 34 feet.

Fig. 2 -VK2SA's 40 Metre Driven Loops.
Note.-Drawing shows incorrect number of turns on coils Coils should be mare of 23 turns. tapped at 10 turns

VISIT TO POINT HICKS

Thirteen members of the Victorian Division made the 310 -mile trip from Melbourne to place the first part of the Australian coast sighted by Captain Cook on the Amateur bands as a part of the Captain Cook Bicentenary celebrations.

All bands from 1.8 MHz . to 432 MHz . were operative at some time over the 18th to 20 th April, something approach-
the same city, so that our host was able to talk back there. He showed plenty of interest in that QSO as well as other contacts.
Those who made the trip enjoyed the formal ceremony, and the start of the yacht race to Botany Bay, and would like to thank all those who gave us contacts as this was what the expedition was about. We were pleased to
obtain a couple of contacts from Whitty, in Yorkshire, as this was the home port of the collier which was to become famous as H.M. Bark Endeavour.

QSL and certificates will be forwarded to all stations who contacted AX3AWI/Portable at Point Hicks.

We certainly hope we will have the opportunity to work you all again from our home QTHs.

ing 1,000 QSOs resulted. As one would expect, almost all of these were on the h.f. bands. Ideal conditions existed for both radio and weather.

Good results were obtained from all h.f. equipment. 1.8 MHz . and 14 MHz . were located on a site in view of the lighthouse, and the pressure on 14 MHz . was so great at times that the operators had to leave off for a while to let the QRM settle.

Although only six watts r.f. was available for $1.8 \mathrm{MHz} ., \mathrm{AX} 2, \mathrm{AX} 3$ and AX5 stations were worked.
3.5 and 7 MHz . site was on the eastern side of the Cape and splendid results were obtained at all times. The 40 metre call-back after the broadcast was taken from here and went for over an hour.

It was attractive enough for a local in the form of a snake to pay us a visit at this stage and the tent was quickly vacated by personnel, but despite a thorough search he managed to get away.

Despite the inverted vee antenna, a G was worked on sideband on this band as well as other DX on 7 MHz .
$21 / 28 \mathrm{MHz}$.: A beam was used on 21 MHz . and a whip for 28 MHz , and again good results. The site was actually on the beach on the eastern side.
V.h.f. was at the 14 MHz . site, but only limited results were obtained, mainly with the Swinburne College Radio Club who were active from National Parks in the area.

We were made welcome by the lighthouse keeper who hailed from Belfast and we were able to raise a GI from

SOLID STATE EXPENSIVE?

COMMELEC INDUSTRIES breaks the price barrier with a range of high performance low-cost kits
I.C. F.M. I.F. AMPLIFIER and DEMODULATOR KIT-see "A.R." June 1970. Frequency: 455 KHz . (nom.); Sensitivity: 12 uV , for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ (dev. 5 KHz ., f. mod. 1 KHz .), 40 uV . for hard limiting. Recovered Audio: 100 mV . average for hard limiting; Supply Voltage: 8 V . to 15 V . d.c., positive or negative earth; Bandwidth: 16 KHz . with optional ceramic filter or determined by external filters; Dimensions: $4 \mathrm{~cm} . \times 8 \mathrm{~cm}$. fibre glass P.C. board. Complete kit less filter: $\$ 9.80$; Wired and tested: $\mathbf{\$ 1 2 . 8 0}$. Ceramic Filter CFP455E: $\$ 16.00$.
I.C. ONE-WATT AUDIO AMPLIFIER KIT-see "A.R." July 1970. Power output: 1W R.M.S. Into 8 ohms; Sensitivity: Adjustable from 14 mV . to 200 mV . R.M.S, for full output; Frequency Response: $160 \mathrm{~Hz} .-4.5 \mathrm{KHz}$. or $160 \mathrm{~Hz}=13 \mathrm{KHz}$.; Design Supply Voltage: 12V. D.C. (positive or negative earth); Operating Voltage Range: 6-13.5V. D.C.; Input Impedance: $8-35 \mathrm{~K}$ ohm; Dimensions: $4 \mathrm{~cm} \times 8$ cm fibre glass P.C. board. Complete kit (less speaker): \$8.40; Wired and tested: $\$ 11.40$.
144 MHz , to 432 MHz . VARACTOR TRIPLER KIT.-Input: up to 40 W . at 144 MHz . Output: up to 30 W . at 432 MHz ., depending on diode used; Size: rectangular box $11 \times 7.5 \times 3.2 \mathrm{~cm}$. when assembled. Complete kit including metalwork bent and cut to size and ready for soldering, excluding diode: $\$ 5.80$. 2N3632 transistor (unbranded) will give 13.5 W . output when used as an amplifier on 144 MHz . or 10 W . output at 33% efficiency when used as a varactor tripler from 144 MHz . to 432 MHz : $\mathbf{\$ 7 . 0 0}$.

All prices include sales tax and postage.

COMMELEC INDUSTRIES

P.O. Box 1, Kew, Vic., 3101. Phone (a.h.) 80-2957, 277-8295 (STD Code: 03) N.S.W. Rep.: J. W. Rufus, 9 Bridge Road, Homebush, N.S.W., 2140. Phone (a.h.) 76.7133

An Integrated Circuit F.M. I.F. Strip

J. REYNOLDS,* VK3ZMU

Abstract

The f.m. i.f. strip described was designed as an add-on unit to enable reception of frequency modulated signals on existing receivers without this facility as standard

THE last few years have seen a remarkable growth in the popularity of f.m. on the v.h.f. and u.h.f. bands. While this is largely due to the ready availability of commercial transceivers suitable for Amateur conversion, a realisation of the technical and practical advantages has also contributed.

While f.m. can be better than a.m. or s.s.b. above a certain threshold input signal-to-noise ratio, it is doubtful if this is a real advantage for Amateur purposes since we are generally more concerned with receiving weak signals than achieving a very high recovered signal-to-noise ratio. Potential for noise

Amplitude modulated systems such as s.s.b. and double sideband a.m. impose stringent requirements on system linearity. Complex gain control circuits are necessary to prevent overmodulation or intermodulation splatter due to the wide range of signal strengths encountered.

These requirements do not exist for a frequency modulation system. Indeed best performance is achieved if the signals are hard limited, resulting in constant amplitude signals from the limiters. Interference is less troublesome since the stronger signal prevails for a difference in signal strengths of greater than about 3 dB .

FIG. 1 - F.M.IF-AMPLIFIER 8 DEMODULATOR CIRCUIT.

AUSTRALIS-OSCAR 6 SATELLITE

One of the best reasons for being able to receive t.m. is the future launch of Australis-Oscar 6. This is expected to be a hard limiting multi-channel f.m. repeater system. If all goes as planned the satellite will allow international Amateur communication on the v.h.f.u.h.f. bands.

THE CIRCUIT

The circuit diagram (Fig. 1) shows a source follower (MPF102) followed by a high gain i.f. amplifier and f.m. discriminator. The high gain amplifier and discriminator are contained in the one integrated circuit, an AWM1306.

Signal input, taken from a suitable point after the mixer, is coupled to the gate of the source follower via a 0.02 $\mu \mathrm{F}$. ceramic capacitor. The high value gate resistor (470 K ohm) ensures that the f.m. i.f. strip does not disturb the normal operation of the receiver by detuning or damping tuned circuits.
The source resistor of the source follower stage is such as to give an output impedance of about 1.5 K ohm, a suitable value for matching into the !ollowing filter or integrated circuit (sce later).

The circuit of the IC is given in Fig. 2. The AWM1306, made in Ausiralia by A.W.A., is by far the best amplifier-discriminator available today. Reference to Fig. 2 shows that the
and interference improvement is a definite advantage but the practical advantages are probably more important. These include being able to run transistors and valves at their maximum ratings and being able to multiply to harmonically related bands without distortion. Only simple modulators are required, reducing the cost of equipment.
F.m. is by far the most suitable mode for use with active repeaters and translators. Repeaters demodulate the received signal to baseband and remodulate the transmitter with this demodulated signal. Translators use a heterodync or multiplier system to change frequency between input and output.

FIG. 2 - SCHEMATIC OF AWM1306

FIG. 3 - F.M. IF-AMPLIFIER \& DEMODULATOR CHARACTERISTICS (SIGNAL)

AWM1306 consists of a cascade of two common emitter stages followed by a differential amplifier, emitter follower, differential amplifier and second emitter follower. I.f. output is taken via lead 1 from the emitter follower stage to lead 3, the input of the discriminator section. Push-pull audio output is taken from pins 5 and 6 or single ended output from either. L1/Cl is a normal i.f.t. resonant at the i.f. frequency. The 22 K ohm resistor across $\mathrm{L} 1 / \mathrm{C} 1$ broadens the frequency response of the discriminator.

Audio output of approximately 100 mW . r.m.s. is coupled via a $0.1 \mu \mathrm{~F}$. capacitor to the 25 K ohm potentiometer. If required, this pot. may be used to set the level of output of the f.m. demodulator so that it is equal to that from other detectors in the receiver.

FILTERS

Provision has been made on the circuit board for a Murata ceramic
block filter, type CFP455E. These filters provide a 6 dB . bandwidth of 16 KHz . and a shape factor of 2 ($6 / 50 \mathrm{~dB}$.). An i.f. bandwidth of 16 KHz . is adequate for most f.m. transmissions.

If it is desired to use the existing filter circuitry of a receiver the ceramic filter may be replaced by a $0.02 \mu \mathrm{~F}$. capacitor: Fig. 5 shows the possible connecting points in a typical receiver. Point A should be used with the ceramic filter or when maximum bandwidth is required. Points B, C and D can be used depending on the degree of selectivity required.

The bandwidth of a narrow band f.m. signal is equal to that of an a.m. sigual, so that existing filters in an a.m. receiver are suitable. However for wideband f.m. it will be

MIXER
difficult to achieve the necessary compromise between bandwidth and interference rejection. It is for this application that the ceramic block filter was developed.

When used with valve receivers it is essential that any coupling to a valve anode be via a 33 K ohm resistor. This is necessary to prevent capacitor charging current destroying the field effect transistor. If the $0.02 \mu \mathrm{~F} .50 \mathrm{v}$. coupling capacitor specified in Fig. 1 is used an additional capacitor of no more than $0.002 \mu \mathrm{~F}$. and of adequate voltage rating must be used in series. This is to reduce the d.c. voltage across the 0.02 $\mu \mathrm{F}$. capacitor to below its voltage rating.

CONSTRUCTION

The i.f. strip is constructed on a 4 $\mathrm{cm} . \times 8 \mathrm{~cm}$. fibre glass printed circuit board containing the whole of circuit 1 including filter. Connections to the board are made via small pins. Provision has been made for either positive or negative earth as determined by two straps. D.c. output may be taken from pin 6 for automatic frequency control or reception of f.s.k. signals.

PERFORMANCE

Fig. 3 shows the variation of output signal-to-noise ratio with input voltage at the gate of the FET. Fig. 4 shows the variation of audio output with input voltage for various supply voltages.

FIG.5-TYPICAL CONNECTION POINTS

FIG. 4 - F.M. IF-AMPLIFIER \& DEMODULATOR CHARACTERISTICS(AUDIO).

Typical performance figures are:
Nominal operating voltage: 12v.
Sensitivity ($\mathrm{f}=455 \mathrm{KHz}$, dev. $=5 \mathrm{KHz} . . \mathrm{f}_{\mathrm{s}}=1 \mathrm{KHz}$.): $12 \mu \mathrm{~V}$. for $10 \mathrm{~dB} . \mathrm{S} / \mathrm{N}$.
Full limiting: $40 \mu \mathrm{~V}$.
Audio output at full limiting: 105 mV .
Audio distortion:
($400 \mu \mathrm{~V}$. input) 3%.
(10 mV . input) 2.5%.
Operating voltage range: $8-15 \mathrm{v}$.
Useful frequency range: up to 2 MHz .

Alignnent

Adjust L1 for best audio quality or for zero volts d.c. between leads 5 and 6 with a strong signal at the desired frequency applied. Set the output level potentiometer as required.

On the Concentration of Ferric Chloride

Information for Etching Printed Circuit Boards

MORTON P. DAVIS,* VK3ANG

The following information is presented for the benefit of the increasing number of Amateurs who are etching their own printed circuit boards using ferric chloride.

A table is given, showing the basic data, and examples of the necessary calculations are provided.

1	2	3	4
A\% by weight	H\% by weight	S.G.	W gm/litri
20.00	33.33	1.1838	52.9
22.00	36.66	1.2043	60.5
24.00	39.99	1.2254	68.6
26.00	43.33	1.2473	76.9
28.00	46.66	1.2699	85.5
30.00	49.99	1.2934	94.5
32.00	53.32	1.3176	103.8
34.00	56.66	1.3426	113.7
36.00	59.99	1.3681	124.2
38.00	63.32	1.3941	135.4
40.00	66.66	1.4200	147.7

A\% = Anhydrous compound weight e.g. grams solute per 100 grams of solution.
$\mathrm{H} \%=$ hydrated compound weight per cent.
S.G. = specific gravity of solution at $20^{\circ} \mathrm{C}$.
$\mathrm{W}=$ water displaced by anhydrous solute, grams/litre.
$1 \mathrm{lb} .=453.6 \mathrm{gm}$.
1 litre $=1.76$ pints.
Example of Calculations for Hydrated
Ferric Chloride ($\mathrm{Fe} \mathrm{Cl}_{\mathrm{J}} .6 \mathrm{H}_{2} \mathrm{O}$).
Required S.G. $=1.38$.
By linear interpolation in columns 2 and 3 , an S.G. of 1.38 requires a value of $\mathrm{H} \%=61.51 \%$.
The weight of 1 litre of solution of S.G. $=1.38$ is 1380 gm.
61.51% of $1380 \mathrm{gm} .=850 \mathrm{gm}$.
Therefore, take 850 gm . of hydrated ferric chloride and make up to 1 litre,
or 500 gm . made up to 588 ml .
or 500 gm . made up to 1.03 pints.
Example of Calculations for Anhydrous Ferric Chloride ($\mathrm{Fe} \mathrm{Cl}:$:

Required S.G. $=1.38$.
(a) By linear interpolation in columns 1 and 3, an S.G. of 1.38 requires a value of $\mathrm{A} \%=36.92 \%$.
The weight of 1 litre of solution of S.G. $=1.38$ is 1380 gm .
36.92% of 1380 gm . $=509 \mathrm{gm}$.
Thercfore, take 509 gm . of anhydrous ferric chloric and make up to 1 litre,
or 500 gm . made up to 982 ml .
(b) By using the values of W in column 4 we can now calculate how much water must be added to any weight of solute to produce the required specific gravity.
By linear interpolation in columns 1, 3 and 4, an S.G. of 1.38 requires a value of $\mathrm{A} \%=36.92 \%$, as above, which leads to a value for $W=$ 129.4 gm ./litre.

Therefore, to produce 1 litre of solution of S.G. $=1.38$, take 509 gm. of anhydrous ferric chloride and add 870.6 ml . of water,
or to 500 gm . add 855 ml . of water. This is approximately 1 lb . of anhydrous ferric chloride added to $1 \frac{1}{2}$ pints of water.
The range of specific gravity of solution suitable for efficient etching is 1.32 to 1.40 , with an optimum value of 1.38 , and if heated, the temperature should not exceed $130^{\circ} \mathrm{F}$.
I acknowledge the assistance given by Mr. W. Mare, of the Cancer Institute, Melbourne.

ELNA CAPACITORS

Reduced prices have been announced covering a wide range of Elna electrolytic capacitors. Distributed in Australia solely by Soanar Electronics Pty. Ltd., the Elna range includes "Greencap" and "Ceramic" capacitors, brochures for which are available on request from Soanar head office, 30-32 Lexton Rd., Box Hill, Vic., 3128.

TECHNICAL ARTICLES

Readers are requested to submit articles for publication in "A.R.," in particular constructional articles, photographs of stations and gear, together with articles suitable for beginners, are required.

Manuscripts should preferably be typewritten but if handwritten please double space the writing.; Drawings will be done by "A.R." staff.

Photographs will be returned if the sender's name and address is shown on the back of each photo graph submitted.

Please address all articles to:
EDITOR "A.R.,"
P.O. BOX 36,

EAST MELBOURNE,
VICTORIA, 3002

WORLD WITH A TRIANGLE
 icontinued from page lli

midway between the two loop coils. A double throw double pole switch was installed in the shed and two ten foot 300 ohm feed lines installed to connect the loop coils to the phasing stub. Sixty fect of 300 ohm open wire line from the centre contacts of the d.p.d.t. switch to the shack transmitter completed the installation.

A point which I emphasise is the method of tuning the two loops which must not be checked by the g.d.o. with any feed line connected to the loop loading coils.

With regards to results, on 40 metres, I have made a record in the log of all comments regarding my signal, both on c.w. and s.s.b., and remarks like "You are the best signal on the band at present" and "Your signals are the best cuer from 2SA" are common. Tests have been carried out with the United States and VK6 and VK5, and reports of $2 S$ units change on reversal of the phasing switch have been frequent. A report of 589 on c.w. was given by HP1IE and SSB7 from HS3AL.

If you decide to try the antenna and put it up higher than mine, the results should be fantastic.

FEEDBACK

Re the article "A Hub or Tri-band Spider Quads," "A.R.," March 1970, p. 12-15. One point that was not made clear in this article is that "Spider Quads" must be "boxed" to increase the rigidity of the structure and to make it look as elegant as possible.

Boxing is achieved by connecting a number of the points, at which the loops are connected to the spreaders, together by means of non-conducting line such as 100 lb . breaking strain nylon fishing line, or a suitable woven line. These lines should run horizontally between the tie points and if the loops are attached directly to the spreaders will be identical to the desired spacing.-VK3ASC.

$\dot{3}$

BAIL ELECTRONIC SERVICES S.A. AGENT

Yaesu sole agent in Australia, Bail Electronic Services, have appointed Farmers Radio Pty. Ltd., 257 Angas St., Adelaide, as their S.A. representative; telephone 23-1268. Max Farmer (VK5GF) was one of the earliest manufacturers of two-way radio in South Australia, and has developed special p.a. equipment for use in tourist buses. Farmers' appointment, coupled with N.S.W. rep. Sandy Brucesmith, now gives three-State coverage for Bail Electronic Services.

EDDYSTONE BROCHURES

Technical brochures with full specifications of the range of Eddystone v.h.f.-u.h.f. communications receivers are now available from the sole Australian agent: R. H. Cunningham Pty. Lit., 608 Collins St., Melbourne, 3000.

VK-ZL-OCEANIA DX CONTEST, 1969 RESULTS

Our thanks to all who helped make this part of the Cook Bicentenary Celebrations the success it was. Everyone who subinitted a log will receive a momento. Certificate and trophy winners will receive their awards direct while others will receive a "Participation Card" via QSL Bureaux.
While the greatest number ever of logs was received, more were expected from North America and Europe. It is disappointing that in spite of special direct publicity to DX Clubs, not one entry for this section was received. A reasonable critical comment in overseas logs was "Where were the ZL4 stattions?"

While there are numerous exceptions, in general the easiest logs to check came from Japan with U.S.S.R. as runner-up. Many logs had to be rescored as results will show but in general, logs were good.

In these results you will find the calls of many of the world's premier contest operators as prize winners, but the awards were structured in an endeavour to make provision for everyone. I hope we have been able to strike a balance to the satisfaction of all.
-Jock ZL2GX.

Call sign	AUSTRALIA					
	$\begin{aligned} & \text { C.w } \\ & \text { wo } \end{aligned}$	v. Se	ection £0	1π	10	Total
VKIGD		875	3455	1600	-	5930
VK2APK	155	1760	8565	7115	4405	22000
VK2EO.	520	1450	4410	5950	5945	18275
VK2VN	215	1305	2675	4745	4065	14005
VK2QL	-	675	1290	1630	3875	7470
VK2HW			2420	-	-	2420
VK2GW		2290		-	-	2280
VK3KD		-	4915	1090	2105	8110
VK3AXK .-				8050		8050
VK3APN .-	380	2910	2900	-		8180
\checkmark V3X	180				5965	6155
-K3HE ..			2720	220		3740
VK3OP	220	1555		-	-	1775
VK3RJ	565		-		485	1050
VK4FH	-	-	5155	5385	4635	15175
VK4VX			-	10090	-	10090
VK4UA	-	-	6300	-		8300
VK4XJ					5425	5425
VKAEZ	-	-	4165	-	-	4185
VK4NQ	-	-	3375	-		3375
VK4GU			3365	-		3385
VK4SF			1155	-		1155
VK4RF	Chec					
VK5.MY	-	520	2520	800	2780	6700
VKSNO	-	5170	5		-	5170
VK5BS	-	-	245			245
VK6HJ	-	-	8730	2365	4280	13375
VK6CW	-		3915	-		3915
VK7GK	680	1345	6050	2880	28an	13815
VK7CH	-	-	5930	665		6595
VK8HA		720	2750	5870	3550	128: J
VK9KS			1425			1425
	Phon	ne S	Sectio			
Call sign	*II	10	30	$1:$	10	Total
VKIGD	-	-	3330	-	155	3485
VK2KM	510	3450	11610	6610	5460	27820
VK2APK	545	2155	10510	5640	4485	23335
VK2XT		495	9640	8140	4510	22785
VK2SG	-	-	12725			12725
VK2WD				3035	2680	5725
VK2AKV	430	55	1415	650	2655	5205
VK2ASZ	220	103	1330	1115	215	2885
VK2ABC			2920	-	-	2920
VK2BNK	510	-	2160	-	-	2670
VK2EB			2350	-	-	2350
VK2NS	805		-	-	-	805
VK3AMK	535	-	6990	1980	3425	12930
VKSVK			7290	2805	1345	11440
VK3xB	800				7335	8235
VK3ARX			7615		-	7615
VK3QV	-		-		5910	3910
VKIS	-	-	-	488.5		4885

VK3ASQ	-	*	190	55	1510	750	855	3360
VK3BCL	-		655	-	-	-	-	655
VK3ASV			210	-	55	-	-	263
VK4KS			-	-	13575	3780	-	17355
VK4LT	435	-	6345	3175	4710	14665
VK4SD			--	-	11620	-	-	11620
VK4VX		.	-	-	--	-	7755	7755
VK4SF	. .-	..			7735		-	7735
VK4EQ	350	55	2085	3030	2085	7615
VK4XY	- -	.	-	-	-	2785	3280	6065
VK4DO	.. .-	..	-	-	5100	-	-	5100
VK4TZ	-	-	-	3540	-	-	3540
VK4GU	\% .	-	-	-	2260	-	-	2260
VK4BG	-	-	2103	-	-	2105
VK4UA	-	-	2000	-	-	2000
VK4QA	Ch					
VK5FO	- -	+	-	525	7040	3235	2910	13710
VK5WP	- ${ }^{\text {a }}$.	-	-	3735	4010	3880	11735
VKSZZ	. .	.	-	-	-	1635	-	1635
VK52X	..	-	--	-	1020	-	-	1020
VK6CT			370	-	2995	4035	7010	14410
VK6CW		..	430	1135	5965	2005	3230	12785
VK7GK	\cdots	.	660	1055	11670	4365	3930	21680
VK7AZ	.	..	-	325	10790	4975	1395	17485
VK7JV		.	-	-	4005	4025	2805	10835
VK7日M	.. .		725		-	-	-	725
VK8CM	-	-	1800	2480	1180	5750
VK8AZ	.. .-				1100			1100
VK9RY	- .		535	-	230	4350	1575	6690
VK9KS					3040	2340	-	5385
VK9XI			-	-	770	2280	1005	4055
VK9KY			-	-	3085		-	3085
VK9DR ..	.		-	-	305	770	-	1075

Individual Band Scores
Pbone

S.w.I. Medallion won by WIA-L6021.

NEW ZEALAND
C.w. Section

Call Sien		\% 11	411	III	1.1	10	Total
2LIAJU		55	2420	9925	8305	4475	25180
ZLIAH		55	1705	6890	7880	3450	20080
2LIIL		-	55	8380	7185	3595	19185
ZLIHV	.	-	530	7460	3585	2920	14475
ZLIAMO		-	-	3010	9305	-	12315
ZLIHW		-	-	0820	1580	3645	12053
ZLITZ		-	-	7245	1195	2565	11005
ZLIAFW		-		3865	4275	2715	10855
ZLIAIZ		135	1025	49A5	1680	2375	10180
ZLIBDN		-	-	5705	-	-	5705
ZLINX		-	-	3385	-	-	3385
ZLIIB		-	-	1785	110	1365	3260
ZLIQW		-	-	450	-	-	450
ZLIRD		Check Check					
ZLIFE							
ZL2CD		100	1995	5385	5985	3060	16535
ZL2GX		110	1890	7400	4225	-	13565
ZL2BCO			650	8850	2540	55	13090
ZL2OM			-	10220			10220
ZL2LB	-	Check					
ZL3GQ		645	3350	10280	6555	5435	$2626 \bar{\square}$
ZL31S		--	-		-	5145	5145
ZL3CP		-	-	3945	-	-	3945

| ZL4OP | | | Check |
| :--- | :--- | :--- | :--- | :--- |
| ZL4GA | .. | Check | |
| ZL4GR | .. | . | Check |

Phone Section

Call Sign			m	111	30	1.5	10	Total
ZLIHW	.		-	-	6875	2020	4690	13985
ZLIAXB				-	13380	-		13880
ZLIAKY	.		595	590	3310	1430	3820	9845
ZLIAIZ	.		540	840	3340	1815	2445	8980
ZLITZ	..		-	-	835		-	8350
ZLIAWF	\cdots		-		2895	5435	-	8275
ZLIAGO	..		-	4345	-	-	-	4345
ZLINX	..		-	-	285.5	1180	-	3845
ZLIAFQ	.		-	-	9815	-	-	3815
ZLIBDW	..		-	-	1565	1905	-	3470
ZLIQW			-	-	-	2240	-	2240
ZLIBHO	.		985	-	-	-	-	985
ZLIRD		Ch					
ZL2ACP	..			-	8365	5040	\cdots	13405
ZL2GX	..		640	1400	5993	3185	-	11220
ZL2AVY			-	-	-	4730	-	4780
2L2OM	..		-	-	2120	-	-	2120
ZL2AY1	.		149	-	690	880	-	2085
2L2AWH	.,		265	\sim	-	-	-	$12 \mathrm{G5}$
2L2GJ	.		030	-	-	-	-	1030
2L2AOP	.		015	-	-	-	-	1015
ZL2CD			735	-	-	-	-	735
ZL2DM ..	.		665		-	-	-	665
ZL2BCX	.		Che	ck				
ZL.AATE	.		Che	ck				
2L2QK	..		Che	ck				
ZL3NS	..			-	10870	-	-	10870
ZL3IS	..		-	-		-	5115	5115
ZLABO	.		-	-	5190	-	-	5190
ZLANX	.		1075	-	-	-	-	1075
ZLANH	..		335	-	-	-	-	335
ZL4OP			Che	ck				

OVERSEAS

C.w. Section

Note.-Multi-od. stations indicated by IK। after call sign

Evrope									
DM2BJD	.	.		4264	HA5KFZ		"		715
DM2AND		3048	HA5DA			..	312
DM4YEL		..		848	HASKDW				44
DM3SBM	.	..		272	HA5FH ..	.			7
DM2BEK	..	.		72	IIASE				1515
DM2ATL	.			2	PAOWAC				Check
DM2ATD		*		Check	PA0??				Check
DM2CHM				Check	LA1K				1309
DM30C		..		Check	LA5HE				123
DM3XUE				Check	LA9YF				48
DL7AA				5120	LA1H ${ }^{\text {IK }}$	K)			3100
DL7HU	.			3550	OK2RZ				3672
DJ6RX				3302	OK2QX				1080
DJ5QK	.	.		4	OK1STU				45 U
DLIRE		Check	OK2BIP				288
DJOTA	.	.		Check	OK2BCI				270
EA 2IA				160	OK1AFN				192
EA2HR	.	.		32	OK1DLM				186
F9DW		72	OK1TA				120
F8TQ	.	..		70	OK3CFL				144
GSRP				2244	OK3CIR				135
GSWP	.	..		1408	OK2SFS		.		125
G3VW	.	..		180	OKIKYS		-		120
GC5AGA				311	OK3UI.				84
GM3CFS	*	*		4 SO	CK3C: ${ }^{\text {c }}$				72

Report from Secretariat, I.A.R.U. Region 3 Association, to the Federal Council, W.I.A.

Gentlemen.

Last year, at Canberra Convention. I reported as Federal President on the activities of the Institute, the Executive. and the Secretariat in attempting to formulate an Interim Constitution acceptable to the Directorate of the Region
3 Organisation. It was stated that the draft constitution brought to the surface some widely divergent vlews from other countries, resulting in o series of amendments which were incorInstitute at Canberra, through motlon 1989/4.2 approved the I.A.R.U. Interim Constitution, and since that lime the Interim Constitution has Japan. Philippines and New Zealand. The Secretariat determined that as a result of this approval, the I.A.R.U. Region 3 Assoclation formally came into existence on ist July, 1969 . stitute agreed to call a meeting with the alm of forming an organisation. until the time the organisation was formalised.

During this period, the work of Federal VicePresident. David Rankin, VK3QV, was invaluuble and the Interim Secretariat benefited greatly from his advice on International mat-
ters. As you will know, he decllned to accept ters. As you will know, he decllned to accept of work. and the exisencies of his office in
the institute. The I.A.R.U. Region 3 Association is indebted to him
The Association is also greatly indebted to
the W.I.A. Federal President and Secretariat member. Michael Owen, VK3KI. The bulk of the detalled and arduous work connected with terim Constitution fell to him. It is to his credit that a set of rules acceptrble to four countries of widely different legal and soclal
backgrounds could be drafted. circulated. amended, re-circulated and finally approved in what I believe is a relatively short time considering the difficulties oi communication within the
Having therefore formally come into existence. the Secretarlat consisting of Messrs. P.
Williams. VK3IZ; M. Owen. VK3KI; D. WardWilliams. VK3IZ; M. Owen, VK3KI; D. Ward-
law. VK3ADW; M. Hull. VK3ZS: commenced formal meetings and started to keep formal minutes for circulation to the Directorate. The Secretariat prepared a 23 -pake statement in
July-its first month of operation-and malled July-its first month of operation-and malled
thls to: IIA.R.U. Hdq.. Region 1 Division, Reg-
ion 2.I.R.C. J.A.R.L.N.Z.A.R.T. P.A.R.S. ion 2. I.A.R.C., J.A.R.L. N.Z.A.R.T.. P.A.R.S.
W.I A. and the secretaries of Amateur Radio societies in Malaysla. Burma. Ceylon, Hong Kong, India. Korea, Nepal. Thailand. Singapore.
Indonesla. Pakistan, New Caledonia. Fiji. Okinawa. This materlal was also sent to representative Amaleur Radio operators in
Iran. Afghanistan, Lans, Western Samoa. A point of contact in China, Cambodia and Taiwan was not known to the Secretariat.
This material, which was also forwarded to Federal Councillors, contalned: A record of discussions in Sydney: a statement from the Sydney Congress: a statement of the I.T.U.
Conference agend; ; copy of the Interim Conference agendn; a copy of the interimg
Constitution; a four-page explanatory covering letter. and a questionnaire. The Secretariat
felt that this material would bring all societies felt that this material would bring all societies
up to date. and explain the nature of the organup to date. and explain the nature of the organ-
isation which had been formed to assist in isation which had been formed to assist in
the advancement of Amateur Radio in the Region.
At the second meeting of the Secretariat. called for Scptember 1968. it was resolved to not call a further meeting until replies to the circular material had been received. We anticipated some questionnaires returned, and at
least some acknowledsment from the 24 socleleast some acknowledgment from the 24 socie-
ties contacted. We regret to report that the response is disappointing. and we have from time to time wondered whether the material has actually passed through the respective mail-
ing systems. Acknowledgment has recently ing systems. Acknowledgment has recently New Zealand. Western Samoa: so we have oresumed that the moterial has left Australia. 1 wish to state what I see as the greatest barrier to success of the I.AR.U. Region 3
Assoclation. We must. I belleve. establish firm Assoclation. We must. I belleve. establish firm contact with a person or persons in region. Material sent in a printed iries of the region. Material sent in a printary form to a P.O. Box number or to the Secretaryof ${ }^{\text {H }}$ Soclety seems not to be the way to maintain effective thaison, and seems. Many ways ineffective way to maintain contact. Many ways
to improve communications and liaison suggest to improve

1. Personal contact this can be of several forms the best, and I feel the most effective would be for some person from the Secretariat
to actually go to these countries and search to actually go to these countries and search
out a person connected with the Amateur

Soclety and request that he canvass support for the Assoclation. and be the known point of contact. This would be cosily if it did not good investment if it did achicve better liaison god neslish ficctlid acommuncation and establish the intlatlve in suting the the Institute took the initiative in getting the Assoto take the initiative in kcuping it mirborne.

An alternatlve is perhaps in call a conference of Region 3 Socleties to be held centrally In South East Asia to which representatives from nearby countries could travel. This would have the added advantage that the forthcoming
I.T.U. Conference could form the crystallising infuence to such a Conference, and that such a Conference could have wider publicity valuc than a "whistle-stop" tour. Perhaps it is necessary for both activities to be considered.
In summary. I believe that personal contact must be established and malntainted even seems to be less costly. and less effective.
2. Radio contart. This seems obvious to a group of communicators who are equipped to maintain cominunication by radio throughout the Region. It is a matter that the Secretariat will give attention to almost immediately. Comments have becn passed to the Secretariat about the use of the well-cstablished "Sca-Net". on 20 metres each evening. Over the past two years 1 have feli loth to use this somewhat private net for Region 3 Association purposes. without invitation. Pernaps this is being too sunsitlve. and this avenue should be explored further The very useful skeds I held in the
past with WIIKE of A.RR.L. and G2BVN of past with W1IKE of A.RR.L. and G2BVN of of these Skeds with Reglonal representatives do much to improve halson. The Secretarlat is examining this aspect at the moment.

Notwithstanding the difficulties of communication, much inforinal and formal correspond and I.A.R.U. Headquarters. and between the and I.A.R.U. Headquarters, and between the to time betweell the Sccretariat and other countries. especially the Dircctors. of recent months. When an upsurge of activity has been apparent, most of the correspondence has been foncerned with the fecretary-General recelves communications from overseas in his capacity is a Region 3 officer, and the Federal Secretar:of the W.I.A. receives communications from both organisations that the same person holds these offices, and while the function of the Federal Secretary of WI.A. is 10 be overseas liaison officer. he should be closely connected to the Region 3 Secretariat while Australia
is providing the perionnel. Other countries have scemingly a similar view, As the overseas lialson officers are the Region 3 Directors fo: J.A.R.L and N.Z.A.R.T. While Australia provides the Sceretariat 1 believe that the officer he is designatedever he is. and by whitever he is
In material sent out recently to the Directors. the Secretariat requested policy determinations on several matters. before the Institute for determination in Adebefore the institute for determination in Aderefer to:ional conference this year. You will recall that ional conference this year. was scheduled for the next plenay in Tokyo. but the calling of an I.T.U Conference in that yerr has altercd opinions.
and we have asked the Directorate for some and we
guldance.
2. Item regarding the formulation of a
regional policy regarding the 1971 I.TU. Conregional policy regarding the 1971 I.T.U. Con-
ference. This has been phrased in a positive way for the Adelalde Convention on the assumption that A regional poliscy should be determined. Japan and New Zealand have indicated that their Societies are at present
holding study groups and the like in order io determine their own policy, and will communicate with the Secretarint in the near future. 3. Item t.l regriding the proposed "Gencral Director. These have been modelled on I.T.U. Conference lines. and having studied them !n detail. I believe they represent a fair set of rules of procedure should we on future or at any time. I commend them 10 you for adoption so that the W.I.A. vote on the N.Z.A.R.T. proposal can be forwarded to During the debates on these ltems. I propose to put the views of the Secretariat on these
hrough the Secretariat convey the views of theng. It is perhaps fortuitous the Region i.A.R.U. Region 3 Association has formally come into existence at precisely the same time as the Amateur Service is faced with a posmajor objectives of the Association is the preservation of frequencies. and with tha objective In view. the Secretariat hopes for
perhaps more spectacular achievements in the perhaps more
wish finally to report on some administraive and Internal matters. You will have noticed from the minutes of the Secretariat that a bank account has been opened and the
first of the three W.I.A. contributions has been first of the three W.I.A. contributions has beell
paid to the Secretariat. The J.A.R.L. has ndicated that they wish to remit the sum of 500.000 Yen before the end of March. and they have been invoiced for this amount by the Secretary-General.
You will have noticed from the correspondence that the Secretariat has decided to adopt Region 2. With the map of Region 3 as a dificrent centreplece. The Secretariat is in
vestigating the matter of having some station ary printed, and it has been suggested tha organisation pe that of an international metric standard size.
Some correspondence has been initiated be
ween the Secretarlat and Mr. Pierce Healy $V K 2 A P Q$. In relation to the publication of a Editor. The bulletation will his rppointment be half of the Region by the Secretariat and prepared on behalf of the Secretariat by the o the Secretariat from other countries for inclusion In a bulletin to date, but we hope and expect this to improve as our channels of communlcation inprove.
Both the Federal Secretary and I have raised the matter of the position of W.I.A. Director
in relation to the annual Convention. This was an aspect which we overlooked in Canberra, but which i hope will be discussed in
Adelalde. I have endenvoured to keep you up to date with Regional matters by sending you any clrcular material sent out to the
Region. and will continue to do so in my capacity as Region 3 Director-this is one ol the advantages of being the chairman of the
Secretariat, it is a simple matter to obtaln Secretariat, it is a
extra coples for you.
In conclusion, whilst the past year could no: nevertheless is one of significant achievement, and above all. A firm base has been laid on believe surely. Over the past six months we have walted for the countries in the Region the result of this approach has been disappointing. I believe the Institute, throush its Director has to Inlitate in a positive way, and that this initiative has to be channeled through the Secretariat to stimulate the Rexion to achleve Secretariat to stimulate the Reßion to achieve
the objectives for which the I.A.R.U. Region 3 Association was formed. You have appolnted a highly-quallified and competent group to the ecretariat. Who have all worked very hard during the past is months since the Institute
first suggested the setting up of a Region 3 organisation.
Looking at the matter from the point of vieu. of the Institute. I conslder that the Region every possible way by the Institute. In the long term, the phllosophy of Amnteur Radin must be established within those countries Which are as yet not only not members of the
Region 3 organisalion but are not even Amateur orientated. The means by which this can be achieved may be a matter of debate. no doubt offer one means of demonstrating to the world at large that the Regional organisation is a viable Amateur organisation. The lang term achievement of our ultimate aims organisation is prepared to exhibit.
Finally, but not least by any means. both the Institule and the Region owe ${ }^{\text {H }}$ debt of
gratitude to Peter VK3IZ. who has not onlybeen A hard-working Secretary-General in : formal capacity, but who for many yearssince at least the Hobart Convention-has done evervthing he could to foster this organisation.
i hope he retains this very special interest in the IARB. Region 3 Association for many years to come. it has. I belleve. the potenti:il for great things-dependent on the enthusiasn of itc afficers and your rontinued support
(Slgned) J. Battrick.

Sub-Editor: DON GRANTLEY
PO. Box 222. Penrith. N.S.W., 2750
(All times in GMT)

There seems t:, h: a slight dropping ofl ai the excellent conditions whill we experienced there is plenty of good DX to be found and worked at all hours of the dity. Sunspot activity is reported (1) be on the decline. With the ity is repurted to Le oll the decline. With the in hand is 88 for list November.
John 2L2BA11 will be doink it tour of duty with the Navy at Seato Hq. in Bankok and has been allocated the call of HS1ACS. Full
detalls of his activities will be made available detalls of his ac
it a later diate.
Nell VRIQ was due to so QRT from Tarawa at the time of writins. and will return permancully to Austrilia. QSLs can be hald for his VRIQ activity from WA3ATP.
News from George 2L2AFZ ie the stitions for which he is mathager is as follow's: Lester ZM3PO C returns io 2 L on 14th Mas, his logs to 7th April have been received. Roy ZMbands as well as listening for the th.f. אank. New antenily system will shorly have him using a vee beam on Arrica as well as a tribander nin 20 . is and in. Iarod AX0LD re-
mains as active as pusible. and Gcorge reports. mitile delay in log clearances.
The life of a QSL manager is not always an easy one. Hnd 2L2AFZ tells $u s$ that he handles between 75 and $10 n$ letlers every day. most of which are actioned and back in the mail on the same day is they are received. With a turnover like ihis. it is very inconvellient when some operators farl to include such vital information as GMT or the correct call sign. making the manager scant throush the los seeking out the correct entry. We must keed it in mind also. that most manakers perform these task in their own time and at their own expense.
I have "o reports to hand of any 1.8 activity a bit of activityonth. hower there is autc coming in froin Europe and U.S.A. between 0300 and 0700 . which of course is around sunset in ZL. At the other end of the ranke. Steve Ruedig April and once asain I have the tapes here to prove it
Steve flso sends a very impressive list of stations heard. and supplics a tape recording of each one. This is a great help to me. for it gives an accurate Indication of how the DX is coming in and provides vital information for some of the overseas news sheets. Thanks Steve for the trouble you take
Hugh AXOHM. who gave us all another chance to fet Heard Is. during his period of activity there, has now returned to his home QTH. alter going QRT on 3rd April Hugh inade 2,000 contacts during his stay there and will be having his QSL chores undertaken by sellt to WA6EAM will be forwarded to the new manacer

We still have reports of solid contacts from King Hussein operating as JYl. usually around 18002. however of late another one appeared using the call JY1APG who was reported Hs being a technician at JY1. This wils dispelled by Kins Hussein in a letter to Geoft Watts DX News Sheet, in which he disclaimed any knowledsc of the JYIAPG operator. Further conedfc of the JYIAPG operator. Further cont lusion has bech added by the report that JY1
was operated by well known editor W2NSD:I was operated breen. during the latter part of April.

Further to y recent report of probable activity from Clipperton Is.. Dick F2QQ. Mike F5HN Ron F5QQ and WB2VAE plan a seven-dav c.ub./s.s.b. operatlon from that QTH during
July. His FONH llecnce is endorsed for ClipJuly. His FONH licence is endorsed for Clip-
perton oderalion and is valid for three months. perton operation and is valid for three months.
It is understond that weather conditions make It is understand that weather conditions inake to travel by seaplanc
The call sign situation in respect to the UK stations has finally been resolved. and here is the official sidemient on them. UK1 Europe. UK2BAP are Lithuanla UK2F Eurode. UK2G:G Latvia, UK2R/T Estoilia. UK3/4 Europe. UKS Ukraine except UK5O which is Moldovia UKG A-E-H-I-J-L-P.U-W-X-Y all Europe. UKGC D/K Azerbaijan, UKGF OUVGcorgla. UK6G Armenin. UK7 Kirakh. UK8 A-C-D-G-F-I-L-O-T-U and Z are Uzbek. UK8H is Turkoman, UK8J and R Tadzhik, UK\&M alld N Klrahiz. whilst

ST'2SA has been. and is. active on 14021 at about 15007. and 21045 at 2000 A All QSLs musi go direcl to Dr. Sid Ahmed Ibranim. Bnx 125 thedini Hosplan for a QSL. which sounds bit steep to me.
A well plamed operation from Avps Is. was due to tiake the air oiver the werk-end of 2nd May by a sroup of YV operators using thedr owin cills Y VO or the group call of YVOAI QSI: for the lytter to W2GHK, or in individu:t stations at their hoine QTH.

The call sign WE4SUN, which appeared recently. was used by the Solar Eclipse Stud fiation, Georgia Southern College Radio Club It is valid only for prefix hunters, and QSL git W4DQD.

From the Pacific aran the following stations rate a mention: KCGCP. Ray Buocher, Koror. Palau Islands. West Carolines, is actlve reglifarly on around 1427n. KG6SY, from Marianas is often in the Pacific Inter. Is. net on 14230 at $14311 z$ Munday. Wednesday and Fridays. also In Mitronesia Net 14335 on the other three work days nt 0800z. Chuck KJ6CF, Box 114. AP.O. San Franciseo. California. 9r3LJ. is active dilily excepl Tuesday and Friday. Usually MHz. at nonlz. QSL to W5HM
From the Mariantas another opelator ln Fred KG6SM. QTH Salpan is normally on 14285 at 3002 and his QSL manager is W2CTN. Stil we have KA1B becoming active from Mareus Is irom 2nd Julv to 8th usins teil fittenn and s. is by KA9RC Finglly, KRGTA on $14 n 36$ usually round $1300 z$, op is Frank, who says QSL via he Bureau
Thit OI prefix which has been heard and worked here during the last few weeks is quite in order, it is a special Finland allocation for "Centennia-l" celebrations. OISNY and OI3TY are two stations reported in date.
Recently I reported that GDSAPJ hidd besir heard and worked here in Australia. EnQSL hddress however oll sood authority we crn saly QSL to F2QQ, callt give vou his address dis it is not lin my book
Recent activity from Malta has bcen quite extensive, however an item of interest is quoted 11 its entirety from the Lons Is. DX Assm. Sulcime AHIUSA. We losced her jun3a KHz cw at $1500 z$ She said OSL via "l 2 Kin KHz with pirste stainpld on it.. back from Molta
Whil Mirste stamped on 501 Harcor
Phil Miller. 501 Harcourt Drive, Elmira. N.Y. 14904. US.A. is QSL mannger for Israll station 4X4AE "Rafi". Phil will send the QSLs on
with pleasure. but requests an IRC for non With pleasure
W/K stations
1 understand that WASREU and K3RRY hase sent equipment over to enable further activity Irom Manlhiki. Nuie and Tokelaus. I do not know the story on this operation or who the operator fs. although I have anl idea it is
ZKIAJ however QSLs via Ed do Youns. KH6GLU
Other operation from the G countries at the YNC'P who were QRL from the following GM conntles over the period precedinf this weekardinc 21st Moray. 23rd Perth 24ith Arcoll 25th-26th Bute. 27th Avr, 28th Wiאtown. 29th Dumphries 30th Peebles. ist May Selkirk and and Mas Berwick QSL to home QTHs GMILQI P had completed a similar jaunt during the previous fortilight
GC3UML operited from Guernsey April 8 o 13. QSL to G3UML with s.as.e. or IRC for direct reply. GD5AEL Enes via DJ9HW.
GD6UW soes via W2GHK, whilst GD3GMH is quite active. Finally, GB2DX goes via G3JOC.
It is reported that ON4TJ. who is inanager for ONGAF has now recovered after a long illness during which time he was unable tir QSL. However if ans Amateur or S.w.l. would are in send him a sccond card he will now be pleased in reply
The trip to ZA as proposed by DL7FT his nuw been postponed due to lack of funds, as hope for inis rare one, as anonther ray of ope form the one, as DJous hopes to visit relatives on vacition. He is formerly to visit
The DX-pedition of the month bulletln is now out and there are quitc a number ef points which need emphasis, containced therein. They are a very busy group and one who conding hunt for that elusive contact or QSL.
Thes are not complaining. but there are some points we can assist them with. first of all it and chsential that all cards should use Gint. This is easy to overlook. Contest stations ar! Thised to be very carplul of llene dind datc and ilso requested io entir thelr reventiod contest
lumber. S.w.l's are advised where possible 10 shou serial numbers where received.
It is helpful to show the call sign of the station being QSLed On the back of the envelode ind if you want a quick return and have more than one contact, use separate cnvelopes for ench card. However, if you have a large rumber of cards, they would prefer you in use the Bureau. They QSL every card received so there is no dinger of not getting a reply longer. via the Bureau

Flatlly sume short items of heneral informa tion froms their bulletin. Cirds for DJ6QT IIMOL and 4 MIA from the "CQ" Contest of Oct. 25 and 28 phnne week-end are beine handed. Logs for CRSSP between 1968 ept. 11 1967, and Dec. 21. 1967. Feb. 25. 1868, to Apri 6. 1968, and since thate for the period of Aug. 18 to 22 rave recontly been received. Logs for Bryai VP8JV. Sth Georgia, are now being handled and will cover one Delcte ZD9BM and CN8GE from the currell list. GDSPBD, Peter, is another newcomer. deleting other justice to this bulletin. without illybody who wants their necessary sheet. write to DX-Pedition of the Month News Sheet. Box 17316, Ralcigh. Nth Month 27609 US. A enclosing incion, Nih velope iaddressedi and an IRC.

Many thanks to Geoff VK2BGP, examincr of the correspondence section of the Y.R.S. $f(1)$ a lengthy reply to my SOS for issistance in write or call in alt work for information.

MANAGBRS
AC3PT JJan. 70i-via W1FLS
CR3KD is sb,
CR3KD iss.b.1-WA4PXP.

FB8XX-F2MO.	HS5ABD-W6DQX
FB8YY-F9MS.	PJ8AA-W2BBK.
HS4ABJ-K4WHK.	PJBKH-W2DV.
HS4ABV-WSPJR.	PJBPM-W21VP.

HS4ABV-WSPJR.
HSAADJ-WA2VTL.
PJBPM-W2DV.

AWARDR-The Gisborne Award

This is available to Amiteurs and S.w.l's alike. ill sou need are QSLs from two stations in Gisborne, N.Z. since 1st January. 1889. Jock ZI.2GX is custodian of the award, send him the log intormation plus three IRCs.
I am rumning a llitle late with the notes this thonth. due to a slight delay in overscas mails thus I will have to cut them short here. Agait my thallks to all who have writtcll, and acknowledse copy from George ZM2AFZ, Genf Watts DX News Sheet. Monitor, Long Is. DX Assn.. DX-Pedition of the Month. Stcte Ruediger. Miac Hilliard. Ernie Luff. Chas Thorpe and VK2BGP

A note to hand here from Neville VK3ACN to the effect that Edsar GSBID will be oper ating as FORT/FC from May \bar{y} to 30 on all binds and modes. but mainly $20_{i} 40$ s.s.b. with
QSL manager Jinck W2CTN 73 нnd Rood DX de Don Grantley

CONTEST CALENDAR

4th/5ih Julv: New Zealand Memorial Contes 3.5 MHz ontyl.

15th/16th August: Remembrance Day Contest. 3rdi4th October: VK-ZL-Oceania DX Contes Phone: 10th 11th October: VK-ZL-Oceania DX Contest 10th/1th Oc. O.tober: R.S.G.B. 28 MHz. Phone Contest.
24th 25th October: R.SGB. 7 MHz . DX Contes 7th/8th November: R.SG.B. 7 MHz DX Contes Sth Dec. 1970, to 11th Jan. 1971: Ross A. Hul v.h.f. Memorial Contest.

SUBSCRIPTIONS DUE

All members of the W.I.A. are reminded that annual subscriptions are now due and should be paid promptly to their Divisional Secre tary. Non financial members will not receive a copy of "A.R.." and back copies may not be available upon request. To preserve continuity of your files of "A.R."" please pay your annual subscription now

Sub-EdItor: ERIC JAMIESON, VK5LP Forreston, South Australia, 5233. Closing date for copy 30 th of month.

AMATEUR BAND BEACONS

VK4 144.390 VK4VV. 107 m . W. of Brisbane
VK5 53.000 VK5VF, Mount Lofty
VK6 142.800 VKSVF, Mount Lofty
52.006 VK6VF, Tuart Hill.
52.900 VK6TS.
52.800 VK6TS. Carnarvon.
144.500 VKBVE. Mt. Barker.
145.000 VKGVF, Tuart Hill.
435.000 VKBVF ion by arrangementl

VK7 144.900 VK7VF. Devonport.
ZL3 145.000 ZL3VHF, Christchurch.
50.091 WB6KAP, U.S.A

The beacon list is gradually growing in length. Another is added this monith as the result of a message from Doug VK8KK in Darwin that WB6KAP on 50.091 MHz. has been heard by
Ross VK4RO and Peter VK4ZPL on 28th April Ross VK4RO and Peter VK4ZPL on $28 t h$ April
at 1230 E.S.T. No QSO resulted, but skeds are now being maintained around 1100 E.S.T. daily on 28.625 MHz . in an effort to make it two way on 6 metres. So, once again. 6 metres can offer a surprise for anyone.

Talking of 6 metre surprises, VKs and VK3 received a very pleasant one on 25 th April when an extended opening to Japan was available for about five hours, commencing around
1530. At times the band was an utter bedlam. and those on the air found the going a hit tougher than expected. However, some stations were able to notch up scores to about 25 JAs in VK5 were the following districts: JAO. JAl. JA2. JA3, JA4. JA6. JA7, JH1 and JH3. News from Bob VK3AOT indicates similar districts available in his State, plus some JR signals. The to S9 with considerable QSB. Bob also mentioned the path being open to VK4 to midnight, similar to VKS. where Gordon VKcontacts around 2330 , to 59 .

Many missed the excellent opening to Japan through not expecting anything like this to happen. Some were at football, others doing
housework. gardening. etc. I was working, and housework. gardening. etc. I was working, and
so the sad story goes on! However, I think so the sad story goes on! However. I think was heard to complain he could not make any headway working the JAs as his nearest Amateur neighbour not far away was blocking him out. and 1 guess vice versa in turn. There is an obvious simple solution to such a problem. Any two or more Amateurs must know such problems exist with even local working, and
particularly with Australian DX, when you are particularly with Australian DX, when you are
living close together. Prior arrangements must be worked out by the parties concerned that while one station transmits. the other remains off the alr. As soon as he finishes the QSO which would not be long for DX working, he
stays off until his neighbour has finished. By such rotation of contacts, quite a number of stations can be worked in a short space of time, much better than working nothing at all.
So get on with it. any in this situation, and work out a destiny for yourself and your neighbours, it's too late when the DX is coming through
And still on the DX. congratulations to Ron Memorial V.h. Contest with a commendable meven-dny score of 3,338 points, a dally average of almost 480 points. The overall response to the Contest is very disappolnting to anyone With a genuine interest in no comment when contest Commitree made no comment when Australia of 33 stations was all the comment Australia of 33 stations was all the comment
that was needed! Two logs from VKs, one of them mine. Small wonder i feel like hiding my head in shame. I have been hammering for a long time for a better deal for v.h.f. operators in the Remembrince Day Contest.
but if the Ross Hull results is any guide to but if the Ross Hull results is any guide to perhaps Limited licensees in particular, then the ground is being cut from under my feet. making it considerably harder to galn any worthwhile improvement. Therefore. 1 think the deplorable lack of interest in the Ross Hull Contest should be the subject of discussion at
V.h.f. Group meetings in all Divisions of the W.i.A. to see what is wrong. If you have any answers or suggestions, let me have them soon.
I am pleased to note that Bob VK3AOT has been appointed Publicity Officer of the VK3 V.h.f. Group, and the following should be of
Leneral interest. Alan VK2ZEO in Deniliquin
has been working regularly into Melbourne o. 432 MHz . Imore details awaitedi. The distance is about 160 miles. so there should be oppor tunitles for VK3s to add another State for 432 Bob also advises from a letter from Col VK8CM that the Darwin Amateur Radio Club is installing 6 and 2 metre beacons, the proposed fre quency on 6 being 52.200 MHz . with 50 watts out of this information in the way of the beacons being actually operational. I shall be glad to incordorate them in the list at the head of this page. Further. Bob mentions just about all the bugs have been ironed out of call sign before being able to proceed. So it looks like VK3 will surely have something operational in 1870, leaving only VK2 to fill that final gap.
A letter from Brian VK3BBB on the subject of the proposed "Worked All Bands Award be called "Worked All Bands Avallable Award" - chus overcoming the Bands And of the Award ion of bands available to Z calls. The idea is ion of bands available to Z calls. The idea is guite good. and worthy of further thought, Z calls to work HH bands between say 52 and orer limit likely particioantsl, while those pper Full calls would lug 160 to 10 mtres inclusive workable? what lus 160 to 10 mires o you think? Ass we the the abina com ments and traft rules made avalial sugges ion, and the drat rules provision or A C last eonvention. "reasonable upper limit" completely nullifes the original idea behind the award of uncourag ing operation in the u.h.f. bands.-Ed.
I note with interest preparations are well under way for the South East Radio Groups week-end, 13th and 14 th June, and that the Group now have their own Club call sign ol VK5SR. Which will be used as the official staion for the Convention. The programme as lways looks very interesting and I don't think you would be disappointed if you went alon the true country-style hopsitality will lons be remembered. The Club station will operate on 144.100 MHz . a.m.. Channel A and B f.m. and 52.525 MHz . $\mathrm{I} . \mathrm{m}$

E.M.R. DE LUXE:

Project Moonray. Herc's a real winner for world-wide 432 MHz . DXI The antenna consists of a 100 feet square parabolic refiector which is built on the ground and points straight up The reflector is galvanised screening with one nch holes with a shape accuracy of plus minus one hali inch. The primary feed is supported on a trolley and is driven by a clock montrolled motor which gives moon tracking for two hours. The feed trolley track is suo ported on another trolley which gives contru in declination
The gain and beamwidth for various frequencles, as measured by radio astronomy techniques, is as follows: Polarisa- Beam Xmtr

Freq.	Gain	tion	Width	Powe
144.032	31.	dB.	Circular	4.8 deg.
220.001	34.5 dB.	Circular	3.1 deg.	700 w

The receivers are mounted in the feed trol leys and have noise ngures "consistent with the frequencies". $144 \mathrm{MHz}, 2 \mathrm{~dB}$.: 220 MHz 5 dB : 432 MHz . 1 dB
1296 MHz . is in the works and although not ready has the following specs.: 1296.00 MHz. gain 49 dB.. linear polarisation, 0.55 deg bean width and receiver noise figure 0.7 dB . WIFZJ-KP4 at Aricebo. Puerto Rlco. And dis Sam had worked SM7BAE, K6MYC, WIMX and K2CBA. The first two contacts were "particularly pleasing" for Sam. He heard them in contact, QSY'ed to lrequency and his "CQ" rought the results.
My thanks to "Break In" magazine for this nformation which was originally listed in

Imik MRy. ACTIVITY IN VKs

From Neil AX4ZT comes some interesting news about 1296 MHz . activity in VK4. Activ YE returned to England late last year. How ever. Tom AX4NO in six months bullt a complete 1296 station, and together with AX4ZT complete 1296 station, and together with AX4d/s tance of two milles, but multipath propagation caused this to be abandoned. On 11th April contact betiveen the two stations was made contact betiveen the 17 mo stations was made over a distance of.f.m. 559 c c.w. contacts ensued both ways. and RS S2/3 reports with modulation. AX4ZT/2 was on Round Mountaln 15300 ft.1 in N.S.W. and AX4NO/4 on The 15300 fit. 20 in N.S.W. and AX4NO/4 on The
latter moved further north to Belthorpe 11800 ft.1. 12 miles N.E. of Kllroy. and on Sunday. 12th April. c.w. contact was made over a
distance of 248.45 miles, reports irom AX4ZT distance of 248.45 miles, reports from AX4ZT being 559 , and AX4NO 439. This distance is
very close to the recent VK3ZKB-VK7WF very close to the recent VK3ZKB-VKN․ contact. Both paths are very rugged, having
to cross Mt. Barney in the Great Dividing Range at an altitude of approx. 4500 ft . No help from the weather due to an extensive low pressure system and considerable wind over the length of the paths. Signals on 1286 over both paths were steadier than those on 144 MHz., the liaison $\mathrm{frequency}$.
The equipment used: AX4NO- 1298 MHz . onverter with 8.3 dB nolse fgure. as described in Jan. 1970 "A.R.," fed to Yacsu s.s.b. recelver 144 MHz คดE03/12 144 MHz . QQE03/12. about 9 w . nutput. to 10 MA4060 144/432 tripler feeding a 432/1296 BAYBB tripler, both of R.S.G.B. design. Output on 12962.5 w . Antenna 8 ft . diameter F/D $0 . B^{3}$ parabola built in sections for transport. fed
with home-made co-ax. and linearly polarised with home-made co-ax.
AX4ZT used the Jan. 1970 converter with n.f. of 8.4 dB. this was improved from the diode coupling loopl. fed Into Heathkit SB300 s.s.b. receiver. Solid state transmitter 2N3632 final with 10 w . output to 10 el . 144 MHz . beam or MA4060 144/432 tripler into BAYB6 432/1296 R.S.G.B. tripler and $3 w$. output. Antenna 10 it. diameter $F / D \quad 0.6 \quad 10$ section demountable oarabola with hame-made low loss co-ax faed ing a simple dipole with half wave circular reflector. Both dishes constructed from plywoud and fy screen mesh and were 10 it pigh total of approx 900 , and wile ware covere by both parties to complete these two contacts.
Congratulations to both gentlemen for an outstanding effort over rough country. Claim have been lodged for the VK4/VK2 records but at the moment the Australian record posi tion is obscure. Many thanks. Neil AX4ZT. fo supplying such adequate information. I fee this is the type of news which is read wit interest all over the continent.

TOWNSVILLE SKED TIMES
Your attention is drawn to a slight alteration to the sked times used by the Townsuille Ama teur Radio Club members. The v.h.f. section of the Club have two sked times on Sundas one commencing at $8.30 \mathrm{a} . \mathrm{m}$. and the second commencing at 11 a.m. The frequency used is 53032 a.m. net. Thanks to VK4ZRS isec retary for above information.

MEET THE OTRER MAN

Wilf Emmett, VK7WF. formerly VK7ZAQ hails from Burnie. Tas., at a location 200 fee view ser 180 degrees wilf first air in 1959, at that time living in Hobart. and using 6 and 2 metre gear. All this was left in Hobart with his brother Reg. now VK7KK ex-VK7ZAOI, when Wilf moved to Burnie in 1966. to a "lousy QTH!" from where oderntion
was only worthwhile on 2 metres. Subse was only worthwhile on 2 metres. Subsehim to construct equipment for 432 and 1296 MHz., with results known to all.

Wilf VKTWF
Wilf is an Industrial chemist, but can find enough time to be operational on 52, 144, 432 and 1296 MHz . On 52 MHz he runs s.s.b./c. \mathbf{w} 400 w . p.e.p. to two 6 KDBEs . 3 element yagi 15 feet high. into a VK3 FET converter. 144 MHz
geir also runs on s.s.b. and c.w. 120 w . p.e.p. geir
using also runs on s.s.b. and c.w.. 120 w . P.e.D.
QQ $06 / 40$ to a 10 el. yagi 20 ft. high using a QQE06/40 to a 10 el. yagi 20 ft. high.
and another VK3 FET converter. 432 uscs a.m. $/ \mathrm{c} . \mathrm{w}$. with either 150 w . and a $4 \times 150 \mathrm{~A}$ or a varactor tripler. 11 el . yagl 10 ft . high verter with crystill inixer. The tunalile i.f.

Is a Yaesu FRDX400 ht 28 MHz . On 1298 MHz . Wiff uses a solid state converter with crystal mixer. 28 MHz . i.f.. 3 CX 100 AS tripler from 432 to 1288 which is driven from varactor tripler, $15 w$. indut. to the $3 C \times 100 A 5$. Antenna 41 . home-brew dish with dipole feed.
For s.s.b. purposes Wilf uses a home-brew h.f. Dhasing rig on 14 MHz . With transverters. His antenna systems are rather low. but he points out that this is due to a combination of factors: Living in rented premises. lensth of stay in Burnie unknown. excellent QTH anywiny, nnd lack of time to lift them higher due to 432 and 1296 MHz . building programme.

Wilf has worked all States from VK1 to VKg inclusive ${ }^{\text {and }} \mathrm{ZL1} .2$ and 3 on 52 MHz . and
VK2. 3, 4. 5 and 7 on 144 MHz On 492 the VK2. 3. 4. 5 and 7 on 144 MHz On 432 the
areas are Gcelong. Birchip and Melbourne in areas are Geelong. Birchip and Melbourne in MK3. and a scratchy contact to mistact areas on 1296 MHz . He holds a certificate for Worked All States on 50 MHz ., and was the VK7 Ross Hull Contest winner in 1962/3. 'I note in May 1970 ․A.R.." Wilf won the VK7 Ross Hull Award for 1969/70.1

During former years. Wilf was Secretary of the VK7 V.h.f Group and Vice-President. North West Zone in 1968. Looking to the future, he has his eyes on contacts to Adelaide area on chance he hopes to set there.
In the photograph depicting Wilf's gear, from left to right we see the 432 varactor tripler/ filter and 1296 tripler are in little boxes, rack contains 2 and 6 metre transverters, 2 metre linear. the 6 metre linear normally mounts in the space at the botiom of rack, then s.s.b. exciter. and FRDX400 recelver on right. The 432 final rests on the foor

So there's a man to keep an eye and ear upon. he's got the gear. and the location. most of the remainder is up to you at the other end.

VK7WF-see text for outline of equipment.

GENERAL NEWS

Of some note to those in other States is that interest in repeaters is growing in VK5. experimental equipment has been built and expted. The last meeting of the group was held tested. The last meeting of the group was held
with 14 nembers present and Garry VK5ZK was elected co-ordinator of the group.

Dous VK8KK. in Darwin. sent me a letter Which just missed out on the closing date for copy last month. However, much of the information in the letter is of general interest. He reports first trans-equatorial openings to Japan frim Darwin occurred on 19th February this venr and lasting from 1930 to midnight. TE signals get up to over S 8 most evenings. but a m. signals are very hard to copy even with 100% modulation. He notes with interest
 TE oceasionally. from 1330 to midnight, whilst TE oceasionnlly. from those living in Calrns. Rockhampton nnd Cartho: rvon are simllarly treated David VK8AU in Tennant Creek gets F2 about sundown, folTennant Creek gets F2 about sundown, followed by mastly f2 with TE
platy of varlety in the north.

Doug and David hare been kcepling regulai: ekeds on 6 metres with WGABN. WBGNML Hnd WB.JRA from 0810 to 1100 E.STT. on Saturdays and Sundiys, confrming they are there on 28.633 MHz . nt 1100 hrs . So far nothing has been heard although the Ws are running 600w. output to stacked 9 el. Yagis! Most Ws use 50.1 to 50.125 as their DX channel. In NeW Orlean: there is now a bercon, K5AG1. beain300 w . or 800 w . on demand.
The . As have bcell working KX6HK on 52.2 a.m. in the Marshall is. but Doug had not worked him ht time of writing. DU1FH reports there is little DX activity in the Philippines as most of the low: ils are now thed up in a net frequency.

Thank you Doug for your letter, the information is very helpful, and gives us down here just a little idea of what you must be enjoying in the north.

Finally. very pleased to receive my QSL card from Bernle VK6KJ confirming 144 MHz contact with him during Feb. And I guess there will be many others just as pleased to recelve theirs. some 66 others in fact!
Will those kind enough to send me copy for inclusion in "AR." please ensure it arrives here by 30 th of the month at the very latest. a day or two carlier would be preferable.

Anything beyond the 30th inevitably must be eff a month. and frequently the news is then outdated. Your co-operation is gratefully sought.
That's all the news for this month, nothing received from VK2 or 6. Always pleased to
hear from anyone. The thnught for the month: "Dogs are much like people. Usually only one in a groud is barking at something in par ticular: the others are barking at him."
Until next month, 73. Eric VK5LP, "The Voice in the Hills.

VK2 MID-WINTER V.H.F.U.H.F. CONTEST 1970

The Contest Committee of the VK2 V.h.f./T.v Group invites all Amateurs and S.w.l's with v.h.f. and/or u.h.f. equipment to participate held during the Qinter Contest. held during the Queen's Birthday week-end to all States and ZL. welcoming distant QSOs.

Date/Duration.-Contest starts Sat., 13/6/70 1400 hrs. IE.A.S.T.I and finishes on Mon 15/6/70 1200 hrs ., with rest periods.

The operating times are:
Sat. $13 / 6 / 70-1400 \mathrm{hrs}$. to 2200 hrs .18 hrs .1 Sun. $14 / 6 / 70-0800 \mathrm{hrs}$ to 1100 hrs 13 hrs 1 Mön. $15 / 6 / 70-0800 \mathrm{hrs}$ hrs. to 1200 hrs hrs. $14 \mathrm{hrs.1}$
There are two time divisions for which entries may be submitted: Division "T" for the Total, or overall contest duration. and Division " S " for the best scoring six consecutive contest hours which may. if desired. be broken by one of the rest periods; e.g. from 2000 hrs. Sat. night to closing at 2200 hrs. then from 0800 hrs. on Sun. morning to 1100 hrs., and 1200 hrs . to 1300 hrs . is accepted as six consecutive contest nours.
Entries may be submitted for either Division "T" 'Totall or Division " S " iSix Hoursi, or both of these, but the winner of Division "T. ".
will no: be eligible to also win Division "S". may enter are:

Class H-Home Station.
Class M-Moblle Station
Class P-Portable ifieldi Station.
Class S.w.l.-Listener. Home Station
A station may enter in more than one class If satisfying the conditions. e.g. he could work if satisiying the conditions. e.g. he could work

One scoring contact per station is allowed in every one "clock hour" for cach band a station can work. One contact per clock hour means one QSO between, say, 1300 hrs. and 1400 hrs . It is not necessary to wait al full hour to have second scoring QSO with the same station on the same band. e.e. "A" works "B" at 1259 hrs.; they may then work again any time 1259 hrs.; they may then work again any time
from 1300 to 1359 hrs., and their following QSO is between 1400 and 1459 hrs ., and son.
A mobile station may work the same station A mobile station may work the same station reased his distance from that station by more reased his distance from that station by more Serial Niles.
Serial Numbers must be exchanged as usual before points may be claimed for a contact. The hve or six dinit serial number be the RS reporits RST for lelegraphy hollowed by hree digits starting as shown below and inreasing by one for each successive contact:

For all 6 metre QSOs
For all 2 metre QSOs
For all 420 MHz . QSOs
start at 601
start at 201 start at 401
For all other tincl. t.v.) start at 001.
Note that the numbers for Net QSOs are to be in the same sequence of numbers as for the whole band
Entries should be sent $t o$ reach the Secretary. Vh.f./T.v. Group. Wireless Institute Centre, 14 Atchison Street. Crows Nest. N.S.W., 2065, by Friday ilight. 17th July, 1970.
The committee would appreclate all comments on the contest and all entries even if you work only one station. Any enquiries can be sent to Bill O'Donnell. VK2Z.BU. 41 High St.. Willoughby. N.S.W.. 2068, or in business hours phene 40-5955 iSydney STD 02I. If any station intends operating in the field the committee wouid appreciate notice of the station's location so that all concerned can be notified.

TABLE OF INCENTIVE RATINGS AND MULTIPLIERS

Rating for Amateur t.v. black and whitel is viden band rating $x 2$ Category	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\square} \\ & \text { ñ } \end{aligned}$		awor : Junl ${ }^{2} \mathbf{Z H N}$ btl pue zs			ग!qOW/IIOd :วコN (8Et) 'யu OL							$\begin{aligned} & \text { U } \\ & \underset{O}{2} \\ & \text { I } \\ & \ddot{N} \\ & \text { N } \\ & \text { N } \end{aligned}$	
6 and 2 mx Nets: Home/Port./Mobile	1	2	4	5	4	5	10	11	16	17	20	21	23	24
52 and 144 MHz . Tunable: Home	3	4	6	7	6	7	12	13	18	19	22	23	25	2;
52 and 144 MHz . Tunable: Port./Mob.	4	5	7	8	7	8	13	14	19	20	23	24	26	27
70 cm .1438 , Nets: Home	3	4	6	7	6	7	12	13	18	19	22	23	25	2 C
$70 \mathrm{~cm} .1438)$ Nets: Port./Mobile	4	5	7	8	7	8	13	14	19	20	23	24	26	27
420 and 576 MHz .: Home	8	10	12	13	12	13	18	18	24	25	28	28	31	32
420 and 576 MHz .: Port./Mobilc	10	11	13	14	13	14	19	20	25	26	29	30	32	33
1215 MHz.: Home	15	16	18	18	18	19	24	25	30	31	34	35	37	38
1215 MHz.: Port./Mobile	18	17	18	20	19	20	25	26	11	32	35	36	33	39
2.3 to 10 GHz .: Home	18	20	22	23	22	23	28	29	34	35	38	39	41	42
2.3 to 10 GHz .: Port./Mobile	20	21	23	24	23	24	29	30	35	38	39	40	42	43
21 GHz: Home	22	29	25	26	25	26	31	32	37	38	41	42	44	45
21 GHz.: Port./Mobile	23	24	26	27	26	27	32	33	38	39	42	43	45	46

To find the Multipller for a contact. ADD the ratings of the two stations. OR: In the above chart. select the horizontal row curresponding to the cateaory of one of the stations. Then select the
vertical column for the category of the other station. The Multiplier for that palr of stations is vertical column for the category of the other station. The Multiplier for that palr of stations is the number shown it the Intersection of these two liones.

NEW CALL SIGNS

JANUARY 1970

VKIKO-R. K. Westbrook, 9 Haines St., Curtin,

 VKIZHG-G. R. Hovey, Station: University House, Acton, 2801; Postal: P.O. Box 4, VK2Gs-N. J. Stewart, 131 Bradfield Rd., VK2JG-N. S. Hill, 14/749 Pittwater Rd., Dee Why, 2099.VK2OA-School of Applied Electricity. Sydney Technical College. Harris St., Ultimo. VK2QA $-\frac{\mathrm{N}}{2007 .} \mathrm{M}$. Doyle, 43 Pine St., Randwick, VK2BCD-L D. Chrisholm, 86 Raglan St.. MK2BFE-F. Ellesmere. 80 Pringle Ave., Bel-VK2BGG-J. G. Griffiths, 10 Anne St., Wau-VK2BKR-j. T. Kalopedis, 24 Walton St., BlakeVK2BLW—K. J. Watson, 6 Porter Ave., East Maitland, 2323.
VK2BSE-Australian Boy Scouts Assoclation, 1st Epding Group. Station: 6 Essex St., Epping. 2121: Postal: P.O. Box 83 , Epping. 2121.
VK2ZMG-A. S. Mitchell, "Arrawatta," Inver-VK2ZQJ-R. ${ }^{\text {ell. }} \mathbf{2 3 6 0}$ Kraham, 13/818 Victoria Rd.. Ryde. 2112.
VK2ZQR-R. C. Quick, Flat 4, 17 Kenrick St. VK2ZYL-B. J. Lacey,
vK3CD-A. Camphell-Drury, 10 Colchester Dr. East Doncaster. 3109.
VK3VJ-A. W. Adams. 46 Margate Cres., Glen VK3BAF-J. E. Kerr. 71 Wattle Gr., Spring-VK3BAV-R. M. Bruce. (Recorded as VK3BAU in June-September List).

Vk3bBG-R. A. Jones. 18 Morley Crt., KarVKsbingal. Bretislav, 48 Pennell Ave., St. Albans. 3021 . VK3BBN-R. P. Vize. 11 Mossman Dr., Heidel-VK3BBP-H. J. Morere, 4 Plunket St., Brigh-VK3BBQ-R.A.E.M.E. Training Centre Amateur Radio Club, R.A.E.M.E. Training Cent Radio Bandiana. 3694.
Vк3BCC-J. L. Veale, 21 French St., Mt. Wav-VK3BCE-M. E. Mo
Brighton East. 3187. VK3BCK-I. C. Alger, 65 Vears Rd., Burwood. VK3BCR-H. G. Austin. Quantong. Horsham VK3BCX-G ${ }^{3400}$. R. Mintern, Kanumbra, 3715. VKIBRF-P. Schereck, 11 Waverley St., Sand-VK3YAI-P. \quad Yingham, \mathbf{Y} Harris, 1312 Centre Rd., Clay-VK3YAJ-L. ${ }^{\text {G18. }}$ G. Milne, 7 Alexander Ave.. VK3YBK-Gington, Jollife, 20 Ludbrook Ave., VK3YBO-R H. Wales, Samarle Roadside, vla VKЗYBP-Tenalla, 3872 .
VK3YBP-T. J. Robinson, 52 Warrandyte Rd. VK3YBQ-W. A. Wright, 16 Lincoln Dr., Chel-VK3YBR-R. N. Wall, 31 Hutton St., DandeVK3YBUーP. 3175.
VK3YBU-P. J. Cohen, 15 Cambro Rd., North Clayton. 3168. Strathmore. 3041
VK3YBW-C. B. Wallace, 22 Norwood Rd. VK3YBX-D. M. Hunt. ${ }^{341}$ Waterdale Rd. Heidelberg West. ${ }^{3081 .}$. Princes H'way,$~$
 vK3YCD Karingal. ${ }_{\text {3199 }}$. Emery, 5 Carmel Crt.,

VK3YCG-C. D. Beeforth. 10 Haig St., Morn-vK3YCH-M, C. Loxton, 5 Goldthorne Ave. East Kew, 3102
VK3yCI-A. J. Jeffrey, 43 Millewa Ave., Chad-vK3YCN-R. N. Elms. 18 Heritage Dr., Spring VK3YCR-H Vale. 3171.
VK3YCR-H. De Jons. 8 Collier Ave., Upwey VK3YCT-1. R. Johnston. Flat 9. 796 Warriga VK3YCU-W. Lakleigh, Riis, ${ }^{3166 \text { Golf Rd., South Oak }}$ leigh, 3167 .
VK3YCV-D. J. Bainbridge, Midland Motel, Mooroopna, 3629 . 22 Grace St., Laver VK3YCX-P. A. McGIII, 22 Grace St., Laver-VK3ZFB-D. J. Bruce, 3 Shadwell St., Chelten VK3ZQC-N. K. Langmald, 3 Narralan Ave. VK4FQ-A. B. Foster. 6 Warren Crt., Aitkenvale. 4814.
VK4LP-E. Hanham, Station: 12 Burton St. Booval. 4304: Postal: C/o. Officers' Mess VK4MS-W. R. McLaughlin. Unit 2, Lucile Crt VK4R 1 Sunrise Bud.. Surfers Paradise, 4217 KK4RJ-R. J. Hoare, 16 Wendover St., Grovely VK4UF-D. J. Fisher, 311 Ingham Rd., Gar-VK4YF-S. L. Fittell, 78 Channon St., Gympie. VK4ZAG J. C. E. D'Alton. 30 Bayliss St., VK5JE-J. E. R. Dunkley, 9 Elva Ave., Pooraka VK5NZ/T-E. T. Schoell, 33 Avenue Rd., High VK5QH - R. L. Mayfield. 35 Astrid Ave., Warra-VK5SO-C. ${ }^{\text {dal. Williams, } 22}$ Laidlaw St., Henley VK5ZFP-A. T. ${ }^{\text {Beach }} 5$
UK53F elg North, 5045 . VK5ZFS-R. E. Warnett. 18 Cudmore St. Somerton Park, 5044.
(continued on page 231

PREDICTION CHARTS FOR JUNE 1970

(Predictlon Charts by courtesy of Ionospheric Prediction Service)

	EST,	00	02	04	05	08	10

IOHANNESBURG

MONTREAL SR

TOXYO

NAIROBI

MONTREAL LR

WILKES

0 Magazine $R_{\text {eview }}$

Compiled by Syd Clark, VK3ASC

February lifill

"CQ"
Meters. A Photorraphic Expose, W9PRH. Words and music of D'Arsonval.
Souping up the Old Recelver. Phrt 2, by WBHPH. More mods. to the old standard. National HRO. Applicable to a number oi other receivers and should work with the Australian AR7.

The Simplesi TR Switch, WA日CKP. Two back-to-back diodes
UEA Sheet Metal Drill for Thin Materials. by of a triancular causes the Such beof a triangular or pentagonal hole. Such behaviour is prevented by' using special poimts of the type recommended by this huthor. IA.
simpler method still is to buy a $" P$. \&: N." simpler method still is to buy a "P. \& N.
wood drill set $1 / 4 /-1_{2}$ " by $1 / 16$ h's, and Frost Encineering Co. make a special type drill for Endineering
The Callfarnian Kilowatt Syndrome. Syluia Margolis. Humorous story of R.S G.B experiences with Bob Lane. WAGZ1Q/G5AAM, who served in U.K. with U.S.A.F
Delayed Switching for Translstar Recelvers. VU2JN. Preventing front-end transistor burn out in an elegant manner
A Swept Audio Osclliator. VE7BRK. The sweeper is a very handy tool be it for a.f. or r.f. use.

A De Lnxe imbas Converter. VU2JN. Solld state seems to have solld advantages.
Recelver Signal Mandling Capabllitles. W2AEF. Part 2 of a very informative article on the Aner points of recelver design
Review. Drake TRIs. W2AEF. Sideband for the ardent six metre man.

"OHM"-The Oriental Ham Magazine

 Febraary 110111VSGHK at the Festival. The story of hou Ham Radio was shown to many who had never seen ${ }^{\text {a station in operation. At the Festival }}$
of Hong Kong. 1869 Population 4 million. Amateur population 37
Harts AGM. The story of activities at the Hong Kong Ainateur Radio Transmitting Society annual general meeting. by Bob Flinkbelner.

Linear Amplifiers. KR6JT. A theoretical discussion of the various types. Advantages and disadvantages of each type are discussed.
The Name of the Game. HS3DR. A humorous dissertation of cycles versus Hertz
Banned Lista; What and Why. HS3AL. Seems that some of the so called "Ham activity" Amateurs.

"RADIO COMMUNICATION"

February lifil

Top Band to Ten Transmitter, G3HVA A transmitter which takes the practice of t.v.i. suppression about as far as it is possible and describes a transmitter. using valves, which is as r.f. tight as can be achieved. Some very ingenious harmonic monitoring and suppression techniques are discussed
A Self Contained Linear Amplifier for 1 NI MHz., G6JP. A straight forward practical design using a $4 C X 250 B$ or similar tube.
Two Metre MOSFET Converter,
G3HBW. Some comments enlarging upon the remedies Some comments enlarging upon the remedies to various troubles encountered by builders of
a unit described in the June jg6s issue of A unit described in the

Eavesdropping on "Elghty". Anonymous, Written in somewhat satirical vein. This is an article for complacent members and nonmembers of national societies.
Technical Topics. G3VA. Pat Hawker this month discusses his usual wide range of subjects. Variable bandwidth filters. s.s.b. generdtion with CA3020 LIC. static protection. Colpitts overtone oscillator. low voltage square wave generator. frequency divider oscillator and ultrasonic cleanling. These are then followed by a resume of the characteristics of the new Marconi H2900 series high-performance recelver and fllally slow scan DX i.v.

"RADIO RIVISTA"

"Radio Rivista" is in attractively printed monthly "Hym" journal from the Italian A.R.I. Italian Radio-Technical Assoclationl. It corresponds in make-up and content to our own "Amateur Radio"

Articles and comment come from Amateurs living in all parts of lialy and the advertisements display the well known American and English Amateur rigs. as well as those of Italian manufacture.

Altogether a lively. go-ahead Amateur magarine with plenty of information of interest to Amateurs generally.

January 1970-

A very sood article from IIZV describing the design and construction of a very sound final amplifier using two 813 s in grounded grid. Well worth looking up if you are seeking a Well worth looking up if you are seeking a
good design for a final. as the circuit diagrams. good design for a final. as the circuit diagrams. clear, even if one cannot read technical Italian.
From IIGU and IIMY comes a full description of their equipment for receiving satelliteproduced photographs of the earth's surface. It Rives due credit to "QST" authors K2RNF and W4MKM, whose articles it supplements.
Reminiscences from IIAS, notes on measure ments of antenna impedance and other snippets are worthwhile
(Review by VK3AHRI

"RADIO ZS"

February 111 ill
The PI Coupler. $2 S 5 H F$. An old subject which is still of vital interest to the active Amateur

Joe. VK4AT. Reprinted from "A.R.," December 1968. Joe gets around.
Instant VFO, ZL2AMJ. Reprinted from "Rreak-In". The familiar Clap circuit in a new guise using a FET oscillator and another
as a source follower for isolation. Should be useful to VKs.

"SHORTWAVE MAGAZINE"

Febraary 1970-

Design and construction of a Low Pass Filter. G6HL. -60 dB . or better on all frequencies above 40 MHz . with a 100 dB . deep null at about 45 MHz .
The Linear Amplifier Stage in 8.S.B. Working. G3KFE. Using t.v. line output valves. cooling and ventilation. loading and full output. 6DQ5. 6GB5 IPL500I, 6GE5. 6HF5. 6JS6. 6KDG and 6LQ6 are discussed.
Another Top Band Aerial Layout. G3NPB. Fitting the
Explaining Binary Codes, G3UGK. Straight and binary coded decimal.
VFO Control on Two Metres. G3YUA. Discussing a practical design.

Solfd State Crystal Switching, G3YUA
High Impedance R.F. Probe, GW3FJT.
MW Car Radio as I.F./A.F. Amplifier, G8BQH For a two meire converter.
Annther Break-In System
Another Break-In System, G3TIE. The obJects of the system are set out and then H
practical solution is proposed using diodes and practical solution is proposed using diodes and
two relays. Reasons for choosing the devices which are employed are given

"THE INDIAN RADIO AMATEUR"

 December 1969-Sushil's 1868 Special, VU2KX. A c.w./s.s.b. ransmitter for four bands is described. Filter on 8 MHz . and v.f.o. covering $6-7 \mathrm{MHz}$. Uses valves.
For the Juniors. The Electrical Circult. D.C. VU2CZ. A DArt of I.R.A's course in fundamentals.
Then follows A directory of "Indigenous Components". A listing of the components made by seven Indian firms in various parts of the country.

"V.H.F. COMMUNICATIONS"

February 1970-

This publication. which is well known to many of the v.h.i./u.h.f. fraternity, is published by DJ3QC at Erlangen. W. Germany. For distribution throughout English speaking countries. an English language edition is published each month and it is this version which is avallable to vKs. The stated objects of the publisher is to cater for the needs of Radio Amateurs "espectally covering v.h.f., u.h.f. and microwaves ${ }_{37}$ Our copy. by courtesy of Paul B. Jackson. 37 Minkara Rd.. Bayview. N.
A. S.S.B. Transceiver with Silicon Transisto , DL6HA. Part 1 of a series. The? 144 MHz . converter with dual gate MOSFET mixer.
DJ9JT PTh expression Perhaps a more appropriate English or that is what the author is talking about This type of antenna is useful for a number of experiments including satellite work.
Is F.M. Advantageous on the V.H.F./U.H.F. Bands? DJ4BG. Pro and con arguments in favour of the various operating modes avallable in Amateurs.

Frequency Modulation of Crystal-Controlled Osclliators by use of Resistor Dlodes. DM2AWD No moving parts.
Narrow Band Frequency Modulation of OverLone Crystal Oscllators, OE6TH.
A 48 MHz VPO for lif MHz Transmititers DJ3MY. A simply constructed device which permits the 144 MHz man to wander across the band at will.
Callbratlon Spectrum Generator for Two Metres, DL3XW. A valve type unit providing spectra at 1.00 MHz . intervals for use on the 144 MHz . band.
Modification of the nJyZR noll $5 W$. S.S.B. Transmitter, DJ8XR. One Amateur suggests improvements to another's design.
Metresallbration Specirom Generator for Two Metres, DL3XW and DJ4BG. A transistorised version of the valve thing, providing signals at 1 MHz intervals up through the v.h.f. bands Simple Compact P.A. Stages for Two Meires DJ4RX. Some up-to-date theory
An I.F. Diplexer for wh-su MHz., DJgJT. This device was designed to enable a number of receivers to be connected to ${ }^{H}$ single v.h. 1 converter. It provides six isolated outputs
Cascode I.F. Stages, DJ4BG. Annther use for the R.C.A. CA3005 and CA3028 integrated circuits.

Technical articles in "V.H.F. Communicalions" are well written and concise with clear diagrams and photographs. Australlan Ama teurs should find much to interest them in this journal and gain from a study of the articles.
A great deal of information is packed into its A great deal of inf
sixty octavo pages.

NEW CALL SIGNS

(continued from page 221

VK6JV-J. Vogel. 816 Koombana St.. Port Hed
VK6PM-D. P. Murphy, 142 Broun Ave., Em-
VK6CIC-W bleton, $\mathbf{E 0 6 2}$ Dixon. Station: Portable: Postal: C/o. Omicers' Mess. R.A.A.F. Pearce, 6084.
VK6ZDW-D. J. Wauchope. 68 Murchison St. Shenton Park, 6008.
VK7ZD $\underset{\text { Lower }}{\mathbf{J} \text {. Kelly-Hart, }} 838$ Sandy Bay Rd.

CANCELLATIONS

VK1SW-S. D. Wheeler. Deceased.
VK2EE-J. L. Llewellyn. Not renewed
VK2EJ-H. T. Nonn. Not renewed.
VK2JG School of Applied Electricity. Now VK2NO-D. G. Hallam. Transferred to T.P. VK2OA-N. S. Hill. Now VK2JG.
VK2AIY-P. B. Parry. Transferred to Vic.
VK2ALF-W L. Harriss. Not rencwed
VK2AVV-Penrith High School Radio Club. Nat VK2AZI-B. D. Wonds. Not renewed.
VK2BAX-B. L. Nielsen. Not renewed.
VK2BHG-M. A. Harrison. Not renewed
VK2BPC-P. J. Corbett. Not renewed. VK2ZBM/T-B. G. Broinhead. Not ren
VK2ZCO-B. J. Hibberd. Not renewed. VK2ZFN-N. Fiori. Not renewed
VK2ZKJ-J. T. Kalopedis. Now VK2BKR
VK2ZKW-K. J. Watson. Now VK2BLW.
VK2ZN.J-N. J. Parmods. Not renewed.
VK2ZOH-O. L. Holmwood. Not renewed.
VK2ZPZ-W. Frost. Not renewed.
VK2ZQC-G. V. Cooley. Not renewed.
VK2ZSB-R. K. Graham. Now VK2ZQJ
VK2ZTG-K. W. Close. Not renewed.
VK3AMC-J. McDonald. Transferred to Qld
VK3AOU-J. A. Bocll. Not renewed.
VK3APL-A. Campbell-Drury. Now VK3CD
VK3AZZ-R.W. J. Gray. Transferred to N.G.
VK3ZVJ-J. E. Brown-Sarre. Transferred to VK3ZZJ-E. Westerman. Not renewed.
VK4AX-H. R. Denby. Not renewed.
VK4FB-F. S. Beech. Not renewed.
VK4GM-A. F. Jacobsen. Transferred to W.A VK4PF-F. R. Parker. Not runewed
VK4QP-J. R. Godson. Transferred to S.A.
VK4WL-W. Rnbertson. Transferred to N.S.W.
VK4ZHO—R. J. Hoare. Now VK4RJ.
VK5EI-W J. Groth. Transierred to T.P.N.G
VK5EW-W. E. Dixan. Now VKBCIC.
VK5IH-E Hanhum. Now VK4IP
VK5KS-R. A. Sedunary. Transferred to Qld
VK5ZBL-R. L. Mayfield. Nou VK5QH.
VKSZJD-J. E. R. Dunkley. Now VK5JE.
VK5ZTS/T-E. T. Schoell. Now VK5NZ/T.
VK6KN-R. W. Jones. Transferred to S. A.
VK6CIA-J T. Kelly-H:Irt. Transferred to T: VK7HW-H. Westerhof Not rencwed.
VK7PA-A. F. Allen. Deceased.

VK ACTIVITY ON 160 METRES, CHECKED IN VK6

The following table is an analysis of VK calls heard on 160 metres for 1968 and 1969 , showing monthly figures. The number of dally checks in 1968 was 256, and in 1969 was 333. All calls were counted once only on any one date.

1968
Activity on 89 days
VK2 VK3 VK4 VK5 VK6 VK7 VK9

	0	0	0	0	0	0	0
Jan.	0	0	0	1	0	0	0
Feb.	0	0	0	0	0	0	1
Mar.	0	2	0	0	0	4	0
Apr.	0	14	0	3	0	0	3
May.	0	3	0	1	10	3	0
Jun.	0	1	0	4	13	1	0
Jul.	1	3	0	13	3	1	0
Aug.	0	8	0	3	0	0	0
Sep.	0	27	0	5	6	0	0
Oct.	0	12	0	1	9	1	0
Nov.	0	2	0	0	6	0	0
Dec.	0	1	0	0	4	0	0
Totals	1	73	0	$\mathbf{3 1}$	$\mathbf{5 1}$	10	1
				1968			

Activity on 102 days
VK2 VKs VK4 VK5 VK8 VK7 VK9

Jan.	0	9	0	5	0	0	0
Feb.	0	1	0	3	0	0	0
Mar.	0	0	3	0	0	0	0
Apr.	0	14	0	2	6	1	0
May.	0	9	0	1	4	1	0
Jun.	2	11	0	2	0	0	0
Jul.	0	4	0	1	0	1	0
Aug.	1	17	1	10	4	1	0
Sep.	1	38	0	16	19	0	0
Oct.	0	19	0	4	7	0	0
Nov.	0	0	0	0	2	0	0
Dec.	0	0	0	0	10	0	0
Totals	4	122	4	$\mathbf{4 4}$	52	4	0

The following separate calls were logged in the above:

W.I.A. D.X.C.C.

Listed below are the highest iwelve members in each section. Position in the list is determined by the first number shown. The first number represents the participant's total countries less any credits given for deleted countries. The second number shown represents the total D.X.C.C. credits given. íncluding deleted countries. Where totals are the same, listings will be alphabetical by call sign.

Credits for new members and those whose totals have been amended are also shown.

PHONE

VK5MS	$316 / 340$	VK5AB	$297 / 314$
VK6RU	$314 / 339$	VK4KS	$293 / 308$
VK3AHO	311328	VK4FJ	$287 / 307$
VKK4HR	$310 / 329$	VK4TY	$284 / 288$
VK2JZ	$307 / 325$	VK2APK	$277 / 283$
VK6MK	$303 / 323$	VKSTL	$271 / 277$

Amendments:			
VK3ZE	244/247	VK3W	201/202
VK4UC	217/217	VK3SM	190/193
VK3AMK	216/216	VK4RF	169/169
C.w.			
VK3AHQ	301/315	VK2APK	274/282
VK2QL	300/323	VK3NC	274/300
VK4FJ	290/315	VK3xB	270/287
VK4HR	287/309	VK3ARX	270/279
VK2AGH	282/296	VK6RU	266/289
VK3YL	275/292	VK4TY	259/272
endmen			

	OPEN		
VK6RU	$315 / 340$	VK6MK	$304 / 324$
VK4HR	$314 / 339$	VK2EO	$302 / 325$
VK2AGH	$312 / 332$	VK4FJ	298323
VK2VN	$308 / 325$	VK3ARX	$295 / 304$
VK4SD	$306 / 321$	VK2APK	$294 / 305$
VK4TY	$308 / 321$	VK4KS	$294 / 313$

Cert. No.

123 \begin{tabular}{c}
New Member:

VKall

VKAF

\quad

Total

100
\end{tabular}

	Amen	n19:	
VK3NC	275/298	VK4RF	219/231
VK4UC	258/259	VK3HE	136/137

1968: VK2BGH: VK3s ABR. ACH, APE. APN. ATN, ED, GK, GU, NW, RJ, RZ. TB, XB, XJ: VK5s BS, KO. LG, RÓ; VK6s AI, CW, 12. NK, ZW: VK7MZ: VK9GN
1969: VK2s AKL, BF; VK3s ABR. ACA. ACH, AFV, AKN, AMA, AML. APA. APN. AQ. ARL, ATM, ATN, AUJ, AXK. AYI, AZU. CV. GU. KF, KS, NW. RJ. TB, XB; VK4AH: VK5s BS. FM, GL, JQ. KG. KO. LP, RO: VK6s AI. CW. NK. 2W: VK7MZ
-George Allen, WIA-L6042.

MUNICH OLYMPIC DIPLOMA (M.O.D.)

The D.A.R.C. "Ortsverbands" of the Olympic City of 1972 invite all Radio Amateurs of the world to participate in the Amateur Radio friendship activity of the Olympic Games 1972. The Munich Olympic Diploma is established for this purpose. The requirements are:

1. All contacts with stations in Munich, from lst January. 1870, 0000 GMT, to 2400 GMT of the day of the official closing of the Olympic Games 1972. will count for the award.
2. For the purpose of this award, all sta2. For the purpose "Do this C-09. C-11. C-12. $\mathrm{C}-13$, C-18 or $\mathrm{C}-30$ are considered as Munich stations.
3. Contacts with Munich stations are credited the following points
German participants, Phone 2 pts., C.w. 4 pts.
Other Europeans, according to WAE list: Phone 4 Dts., C.w. 8 pis
Participants outside Europe: Phone 6 pts., C.w. 12 Dts.

The same station may be worked once per band and once der calendar year for the award.
4. The M.O.D. will be issued separately for c.w., phone and mixed. Operation of the award is possible on any single band and this will be endorsed accordingly. At least the following minimum points are required for each class:

Class I. (Gold), 250 points.
Class II. ISilveri. 200 points.
Class III. (Bronze). 100 points.
5. Contacts may be made on $180.80,40,20$, 15 and 10 metre bands.
6. The M.OD. Is avallable also to S.w.l's as above.
7. Special requirements are Issued separately for the Munich stations.
8. Fees: U.S. $\$ 1.00$. DM 4, or 10 IRCs.
9. Address for the appilication: Engelbert Misera, DJ8ZU, $\mathbf{D 8}$ Munich 13, West Germany. Keuslinstr. 6.
Only a list of the QSO details is required. This list must have been checked against the recelved QSL cards, and certified by two other licensed Amateurs. The QSLs may be called in for inspection by the Award Custodian. QSLs to the Munich stations worked must also have been received in Munich before the issue of the award.

AUSTRALIAN V.H.F./U.H.F.

 RECORDS50/52 MHz.
144 MHz:
${ }^{\circ} 432 \mathrm{MHz}$.
576 MHz .
${ }^{4} 1286 \mathrm{MHz}$.
2300 MHz.
3300 MHz
VK3ALZ to XE1FU, 1/5/59, 8418 VK5BC to 2L2HP. 23/12/65, 1957 miles. miles.
VK3ALZ to VK5ZDR. 28/5/66. VK5ZJL/5 to VK5QZ/5. 28/12/69. 195 miles. VKSZKB to VK7WF. 6/2/70, 22 s miles.
VK3XA to VK3ANW, 18/2/50, 9.0 mlles. VK3ZGT to VK3ZDQ/3, 14/12/63, 63.5 mlles.

Augiralian E.M.E. Recard
144 MHz .: VKSATN to K2MWA/2, 28/11/68. 10.417 miles.

Australian A.T.V. Record
432 MHz .: 16/2/69, 93 mile
\& N.B.-The records shown for 432 and 1296 MHz. are currently subject to superior claims which are being processed. Results will be published when avallable.

PROVISIONAL SUNSPOT NUMBERS

FRBRUARY 1970
Dependent on observations at Zurich Observatory and its stations in Locarno and Arosa.

Day			R	Day			R
1	154	15	115
2	\ldots	120	16	139
3	79	17	142
4	68	18	\cdots	143
5	77	18	120
6-..	100	20	\ldots	125
7-..	107	21	128
8	97	22	125
9	123	23	164
10	133	24	166
11	175	25	173
12	153	28	143
13	145	27	\ldots	150
14	124	28	146
Mean equals							

Predictions of the Smoothed Monthly Sunspot Numbers

March 94	June	90
Aprll 93	July	88
May 91	August 87	

-Swiss Federal Observatory. Zurich.

K.W. ELECTRONICS KW2OOOB TRANSCEIVER

COVERS 10 TO 160 METRES

\star Six-band operation.
\star Lift-up inspection lid
\star Two-speed V.F.D. tuning.
\star Mechanical Filter provides passband for SSB.

* No external antenna switching required.
\star Independent transmit and receive frequencies or true transcelve operation.
$\star 180$ Watts P.E.P.
\star Matching AC power supply with built-In speaker.
\star Side Tone Monitor for CW.
\star Crystal controlled Receiver first mixer.
* Output Impedance adjustable.
* Easy to install in a vehicle for moblle operation.
\star Lightweight, attractive, robust and efficient.

Write for Technical Leaflet
sad aumate neme SIDEBAND RADIO
73 COLE STREET, ELWOOD, VIC., 3184
Phone 96-1877

VK3 ADVISORY COMMITTEE
The Victorian Advisory Committee for the ensuing 12 months is comprised of:Mr. N. Storch
Mr. F. O'Dwyer
Mr. R. A. C. Anderson
Mr. L. Jackson
Mr. M. Davis.

W.I.A. QUEENSLAND DIVISION

STATE CONVENTION

will be held on
13th and 14th JUNE, 1970
SANDGATE, QLD.
The venue for the Convention is the R.S.L. Memorial Club Hall, in Keogh Street.
Registration Fees: Amateurs and Listeners. $\$ 3.50$; XYLs and Friends, \$2.50; Children (under 12), $\$ 1.50$. The fee will include Saturday night dinner and entertainment. Registrations may be sent to the Convention Organiser. Mr. Bill Flannery, VK4XO, 71 Wishart Rd., Mt. Gravatt, Brisbane, Old., 4122.

432 MHz . CONVERTERS

VK5 V.H.F. Group design

2 FETs, 3 transistors, single conversion, less crystal. Available in kit form complete with instructions. So popular in VK5 that only a few left
Only \$13 from
BOX 1234K, G.P.O., ADELAIDE, S.A., 5001

QUAD COMPONENTS

See March "A.R.," p. 15. Hub \$15, p.p. \$1. Canes. set of $8, \$ 12$. Complete kit $\$ 40$. freight fwd. S. T. CLARK

26 Bellevua Ave., Rosanna, Vic., 3084 Phone 45-3002

Swan Electronics Service Co.
Accredited Distributor for
Swan, Hallicrafters, etc., Receivers and Transmitters
Specialised Service on all Swan Transceivers
14 GLEBE ST., EDGECLIFF, N.S.W., 2027. Ph. 32.5465

REPAIRS TO RECEIVERS, TRANSMITTERS

Constructing and testing: xtal conv. any frequency; Q5-ers, R9-ers, and transistorised equipment.
ECCLESTON ELECTRONICS
146a Cotham Rd., Kew, Vic. Ph. 80-3777

FEDERAL AWARDS

COOK BI-CENTENARY AWAED

The following additional stations have qualified for the Award:-

Addition to the Australian DX Century Club Countries List:

OJO-Market Reef.
Contacts made on or after $27 / 12 / 69$ may be counted for D.X.C.C. purposes.

Market Reef is an island located exactly on the boundary line between Finland and Sweden and directly opposite the Aland Islands.

URUNGA CONVENTION

The 22nd Radio Convention was held at Urunga over the Easter week-end, with an attendance of about one hundred. It was mos gratifying to the organisers that so many did attend this Convention as the founder and originator of the Urunga Convention, Crie Retallick, VK2XO, had passed away during the year. Discussions with his son and daughter indicated that they wished to see the Conven tion continued, and this year it was called the Crief Retallick Memorial Year.

There were three 144 transmitter hunts and a 7 MHz . hunt, with the usual Urunga Scramble A trade display was arranged and VK2AHH took along his Hammond orsan to provide entertainment.

HAMADS

Minimum $\mathbf{\$ 1}$ for forty words. Extra words, 3 cents each.
HAMADS WILL NOT BE PUBLISHED UNLESS ACCOMPANIED BY REMITTANCE.
Advertisements undor this heading will be accepted only from Amateurs and S.w.l's. The Publlshers reserve the right to reject any advertising which in their opinion. Is of a commercial nature. Copy must be recelved at P.O. ${ }^{36}$, East hielbourne. becompany the advertisement.

EXCHANGE: Creed Teleprinters for moder Communications Receiver. One Model 7 Page Printer one Model 470 Tape Printer and Sender; one Mode 7 Page Printer for wrecking: one home-brew term inal unit; rolls of tape and paper. Ring Leo Fowler VK3ZGF, 25-3968 (Melb.).

FOR SALE: AR88D Receiver, product detector, handbook. spare tubes, excellent condition, being used on 6 and 2 metres at present, will crate and freight anywhere, $\$ 100$. HIIco Universal Modulation Trans. former with chart. $\$ 10$. VK4ZJT, 23 Esplanade. Pialba. Old., 4655.

FOR SALE: Drake 2B, 80-40-20.15 and full 10 mx band, 60 ohm co-ax. cable 66 ft.. speaker, head phones with rubber shells, handbook, and two extra xtals, $\mathbf{\$ 2 5 0}$. Sec. Code Practice 3-way Oscilla tor (Model 150), $\$ 10$. Junker Key (open), $\$ 10$ Tech Tradiper Model TE15, 0.44 to 280 MHz ., $\$ 20$, Electric Clock 12 -hour digital, $\$ 15$. W. Meier. 3 Oxford Street, Oakleigh, Vic.

FOR SALE: Galaxy 3 Transceiver, excellent performer, good condition, complete with matching power supply and speaker, crystal calibrator and
y. $0 . x$. handbook. $\$ 310$ or reasonable near offer.

FOR SALE: Hallicrafters SR-400 Transceiver with USB-LSB-CW, 200 Hz . CW filter, VOX, PTT, receiver increment tuning, 100 KHz . calibrator, noise blanker etc. Drake 2C Receiver, 3.5 - 30 MHz ., Ham bands plus broadcast bands, speaker, noise limiter, 0 multiplier 100 KHz , calibrator. Hallicrafter VFO . very stable, $3.5-144 \mathrm{MHz}$. Eico Tx, 90 w ., $3.5 \cdot 30$ $\mathrm{MHz}, 100 \mathrm{KHz}$, Callbrator. Saba, transistor radio ment is as new, guarantee, working, come and see. H. Schoning, G.P.O. 392 , Sydney, N.S.W. 2001. Phone 602-0333 Ext. 318.

FOR SALE: Heathkit SB100 Transceiver with power supply, handbook and Kyoritsu SWR meter, $\$ 350$ casn, no offers. 9 Faunce Crescent, O'Connor A.C.T., 2601.

FOR SALE: Lafayette Model HA500 Receiver with manual. near new. \$175. Geloso Transmitter, G222-TR, $\$ 100$. Lafayette Transistor Analyzer, KT223 \$20-Multimeter, Model 200 H , $\mathrm{S10}$. Kyoristu SWR Meter, Model K-109, s20. Mansel TO-3A S12 Box istorised fest Oscilator, Model 10 .3A. S12. Box 9 Fitzpatrick St., Waroona, W.A.

FOR SALE: No. 10 Crystal Calibrator, as new, with A.C. p.s. built in similar case to No. 10 . $\$ 10$. p.S.) output $50.100 \cdot 1000 \mathrm{KHz}$.i $\$ 12$. Slgnal Generator,' Type 1.130, 100-150 MHzz., with in-bullt a.c. p.s., \$10. Byer Disc Recorder, Type R33, 33-45-78 r.p.m., with recording amp., playback, p.u. level meter, three sapphire cutting stylll (2 micro. 1 std.] and altemative cutting direction gears, $\$ 40$. Collaro "Studio" 3-speed Tape Deck: in original carton new, unused, \$25. "Glydon valve tuning SBL8. \$4. TV Power Transformer, 280.0-280 $\times 250$ mA.. two 6.3v. at 4 amp., one 5 v . at 3 amp., new, unused, heavy duty type, S6. Valve, CV788 (832], suit 522 tx, new $\mathrm{S2}$. Crystals: 455 KHz . Filter Crystal (1), RC Aus. $\$ 2$. 7350 KHz . Type CR1A.AR (5ach: 7450 kHz . Type CR1A.AR (5) 50 c each. 50 c above suitable for converter service. Phone (Melb.) 58-7745. E. Manifold, VK3EM.

FOR SALE: Much modified 522 Transceiver, complete with power supply, front panel finished in grey hammertone, Rx has FET pre-amp., b.f.o., n.l..) meter, tuning range 144 to 145.3 MHz . Tx modulator 6 V 6 s p.p. to 832 final. P.t.t. operation. Price $\$ 80$ or nearest olfer. Contact VK3YBO. R. Wales. Samaria Roadside, via Benalla, Vic., 3672.

FOR SALE. Yaesu FT-DX-100 with speaker and Hamcat Mobile Whip. Perfect condition and under guarantee. $\$ 500$. Star Communications Recelver with matching speaker, cost S470, sell S260. lan with matching speaker, cost
Ampt, VK3BBA, Stanhope, Vic., 3623. Phone 205 amp time.

WANTED: A Communications $R x$ covering approx. 500 KHz , to 30 MHz . Suitable for SWL. Write with particulars to John Douglass (AX3YC), 4 Brodle St.. Bendigo, Vic.. 3550.

WANTED: Command Transmitter and Receiver in good condition. Also Creed or Teletype Tape good condition. Also Creed or Teletype Tape perforator, Fred Ryan,
berra, A.C.T., 2600 . Phone $47-9886$.

WANTED: Following Geloso components: Amateur Band Receiver Front-End, Type 2620A; Pi Coupler, Type N4/113: 32/1415 pF. Tuning Capacitor. Type N771: 23/209 pF. Tuning Capacitor Type N774; VFO, Type Nd/105. Malcolm Sinclair. VK28WS. 52 Fourth Ave-, Willoughby. N.S.W., 2068. Telephone [Sydney) 95-2362.

WANTED: One of the following $1 / 4 \mathrm{kw}$. O.G. Spark Transmitters: Marconi types 241C. 341, 369. 558, 355, 355F; Radio Communication Co. types PS17. equipment. Also quenched plate gap dischargers: high voltage mica condengers such as Admiralty high voltage mica condengers such as Admiralty
pattern 5001 with rating 0.0044 uF. 20,000 volt test. R. F. Fisher, VKЭBAO, 241 Royal Pde.. Parkulle. Victoria, 3052.

WANTED: Single or Dual Channel Continuous Chart Recorder. Min. Chart width 3 Inches, with Chart speed of about 1 Inch/hour. Will consider almost speed of about ${ }^{\text {anything. VK6DS, } 6 \text { Chrysostom St. Trlggs, W.A., }}$ anyth
6020.

WANTED: 20 Mx SSB/CW Monoband Transceiveror Duobander. Electronic Keyer and SWR Unit. Also Pre-1935 gear. parts or complete units. Write Al Shawsmith. VK4SS. 35 Whynot St., West End. Brisbane, Old. Phone 4-6526.

VHF-UHF Communication Receivers...

by

Fully transistorised, the EDDYSTONE Models 990R and 990S are extremely versatile single-conversion receivers suitable for communication or laboratory use

AVAILABLE EX STOCK

MODEL 990R
Frequency coverage:
Range $1-130-240 \mathrm{MHz}$.
Range 2-75-130 MHz.
Range $3-46-76 \mathrm{MHz}$.
Range $4-27-46 \mathrm{MHz}$.
Sensitivity: $5 \mu \mathrm{~V}$. for 10 dB . S / N (AM mode 30 KHz . B/W).
Stability: 1 part in $10^{5} /{ }^{\circ} \mathrm{C}$. (free running).
1 part in $10^{\circ} \%^{\circ} \mathrm{C}$. (crystal con. trolled].
Intermadiate frequency: 10.7 MHz .
Selectivity: Wide- 200 KHz .
Narrow- 30 KHz . (crystal filter).
Alternative crystal filters can be
fitted to special order.
Deviation acceptance: 75 KHz ,
Crystal calibrator: 10 MHz . markers.

MODEL 990S
Frequency coverage:
Range $1-470.870 \mathrm{MHz}$.
Range 2-230.510 MHz.
Sensitivity:
AM: $5 \mu \mathrm{~V}$. for 10 dB . S / N (1 MHz . B / W).
FM: $4 \mu \mathrm{~V}$. for $10 \mathrm{~dB} . \mathrm{S} / \mathrm{N}$
(1 MHz . B / W).
Stability: Better than 1 part in $10^{5} /{ }^{\circ} \mathrm{C}$.
Intermedlate frequency: 36.5 MHz . $A M$ and $F M$.
Selectivity: 1 MHz . and 6 MHz . AM; 1 MHz . FM.
Deviation acceptance: 250 KHz .
Crystal callbrator: 50 MHz . markers.

LOW ORIFT CRYSAALS

\& 1.6 Mc. to 10 Mc., 0.005% Tolerance, \$5

10 Mc. to 18 Mc.,

 0005\% Tolerance, \$6
Regrinds \$3

THESE PRICES ARE SUBJECT TO SALES TAX

SPECIAL CRYSTALS: PRICES
ON APPLICATION

MAXMELL HOWDEN

15 CLAREMONT CRES., CANTERBURY, VIC., 3126

Phone 83-5090

Victoria: 608 COLLINS STREET, MELBOURNE, 3000.
Phone 61-2464
New South Wales: 63 ALFRED STREET, MILSONS POINT, 2061. Phone 929.8066 Western Australla: 34 WOLYA WAY, BALGA, PERTH, 6061 . Phone 49.4919 Q'land: L. E. BOUGHEN \& CO., 30 Grimes St., Auchenflower, 4066. Phone 7-4097

POST COUPON for 990R-S Technical Brochure

Name. \qquad
Address \qquad

This is the BIG performance set that obsoletes tube receivers... a professionallooking set that appeals to amateurs and short wave listeners alike. The DX 150 gives long-range, world-wide realistic reception on 4 bands, including Broadcast. Fully transistorised-all solid state-no warmup delays; the $D X 150$ will run on dry cells if current fails or is not available; will operate from a car's cigarette lighter or any 12 V DC service. A 240 V AC power supply is also built in. Over 30 semi-conductors-product detector for $\mathrm{SSB} / \mathrm{CW}$, plus fast and slow AVC-variable pitch BFO-illuminated electrical bandspread, fully calibrated for amateur bands-cascade RF stage-ANL for RF and AFzener stabilised-OTL audio-illuminated " S " meter-built-in monitor speaker plus front panel jack for external (optional) matching speaker.

CONSULT YOUR LOCAL RADIO DEALER, OR MAIL THIS COUPON toclely
Please forward free illustrated liferature and specrfications on Realistic.
Name

Realistic Performance Realistic Price $\$ 229.50$

 Attractive silver extruded front panel, solid metal knobs, grey metal cabinet, size $14 \frac{1}{1 \prime} \times 9 \frac{1}{4} \times 6 \frac{1}{2}$ ".
(A unit of Jacoby Mitchell Holdings Lid.) 376 EASTERN VALLEY WAY, ROSEVILLE, 2069 ; Cables and Telegraphic Address: 'WESTELEC,'

Every month

45,000,000

EL_N/A

Electrolytic Capacitors are wired into quality equipment throughout the world ... proof that ELNA Capacitors are fully accepted and wanted by manufacturers everywhere.

New! 1970 Catalogue

NOW AVAILABLE

SOANAR
 ELECTRONICS

PTY. LTD.
A \& R-Soanar Group Company
VIC.: 30-32 Lexton Rd., Box Hill. 89-7323. N.S.W.: 82 Carlton Cres., Summer Hill. 798-6999.
QLD.: R. A. Venn Pty. Ltd., Valley. 51-5421.
W.A.: Everett Agency Pty. Ltd., West Leederville. 8-4137.

SOLE AUSTRALIAN AGENTS

BAIL ELECTRONIC SERVICES wwom

* FLDX-400 TRANSMITTER
* FRDX-400 RECEIVER
* FTV-650 6 Mx TRANSVERTER

SOLE AUSTRALIAN AGENTS FOR

S.S.B. EQUIPMENT
\star FLDX-2000 LINEAR AMPLIFIER
\star FL-2000B LINEAR AMPLIFIER
\star FF-50DX L.P. FILTER
\star FT-101, FT-200 and FTDX-400 TRANSCEIVERS
\star FVDX-400 VFO, SP-50 and SP-400 SPEAKERS
\star YD. 844 P.t.T. DESK MICROPHONE
\star SPARE PARTS AND SERVICE FACILItIES
Accessory Items:
S.W.R. Meters, Field Strength Meters, P.T.T. Mikes, Co-ax. Connectors, Co-Ax. Cable, Co-Ax. Switches. Hy-Gain (U.S.A.) H.F. and V.H.F. Antennas. Emotator Antenna Rotators.
Write for details:-

Katsumi Electronic Keyers and Speech Compressors.
Solari 24-Hour Digital Clocks.
Heathkit Amateur Equipment (Vic. only)

BAIL ELECTRONIC SERVICES

60 Shannon St., Box Hill North, Vic., 3129. Ph. 89-2213
N.S.W. Rep.: A. J. ("SANDY") BRUCESMITH, 11 Ruby Street, Mosman, N.S.W., 2088. Telephone 969-8342

South Aust. Rep.: FARMERS RADIO PTY. LTD., 257 Angas Street, Adelaide, S.A., 5000. Telephone 23-1268

The World's Most Versatile Circuit Building System!

SIZES: $1 / 8^{\prime \prime}$ and $1 / 16^{\prime \prime}$ WIDTHS
Length: 100 ft . roll, 5 ft . card
IDEAL FOR PROTOTYPE AND PRODUCTION CONSTRUCTION

USEFUL FOR WIRING REPAIRS

* NO DRILLING * FAST \quad NO MESS

Available from all Leading Radio Houses Marketed by-
ZEPHYR PRODUCTS PTY. LTD.
70 BATESFORD RD., CHADSTONE, VIC., 3148
Telephone 56-7231

MANUFACTURERS OF RADIO AND ELECTRICAL EOUIPMENT AND COMPONENTS

Aswithered-an marayine io thi

This widely-read magazine from England offers the do-it-yourself enthusiast an amazing variety of advanced ideas. The April issue has just arrived read about miniature converters for cars and boats, coherent pulsed radar, demo switching circuits.
These are just a few of the live-wire features in the issue Practical Electronics now on sale.

PRACTICAL ELECTRONICS

- keeps you way out ahead.

 At all newsagents and bookstalls

The latest in furnishing trends are the "Rapar" Modular HI-FI Stereo Record Players which are designed to fit into your bookshelf and enhance your decor. These four-piece matched units are fully imported and have the latest type record changer. which will operate for two hours or more without being attended. These systems are ideal for background music, and have sufficient volume for the swingiest party . . frequency response is fantastic.
"RAPAR" modular kits range from $\$ 109.00$ complete.

PARTS

LTD

MELBOURNE'S WHOLESALE HOUSE
562 Spencer St., Melbourne, Vic., 3000. Phone 329-7888, Orders 30-2224 City Depot: 157 Elizabeth Street, Melbourne, Vic., 3000. Phone 67-2699 Southern Depot: 1103 Dandenong Rd., East Malvern, Vic., 3145. Ph. 211-6921

amateur
 Vol. 38, No. 7 JULY, 1970
 Registared at G.P.O.. Malbourne for Price 30 Cents

TE-16A TRANSISTORISED TEST OSCILLATOR
Frequency range: 400 Kc . to 30 Mc . In five bands. Modulated $800 \mathrm{c} / \mathrm{s}$ sine wave. Modulation: 30 p.c. opprox. Output imp.: Low impedence. Dimen. sions: $57 / 8 \times 57 / 8 \times 3$ in. Weight: 1.5 ib .

Price S24 tax paid, post 75c

LT91 RECTIFIER

20 Volt 2 Amp.
Price $\mathbf{S 1 . 5 0}$ post 10c

NEW STEREO HEADPHONES

Large rubber earplece. Frequency range 100 to 1500 cycles. 8 ohms impedance.

Price $\$ 6.75$ post 30c

BRAND		NEW	SPEAKERS		
21/2 inch	8 ohms	Price	\$1.75	Postage	20 c
3 inch	8 ohms	-	S2.00	-	20 c
4 Inch	8 ohms	"	\$2.25	"	20 C
4 inch	15 ohms	.	\$2.25	..	20 c
3DX	8 ohms	-	53.95	"	20 c
3DX	15 ohms	.	S3.95	*	20 C
6A7	8 ohms	..	S5.50	"	40 c
6 67	15 ohms	-	S5.50	..	40 c
8A7	8 ohms	-	57.20	-'	40 c
8A7	15 ohms	-	\$7.20	. ${ }^{\text {a }}$	40 C
12A9	8 ohms	"	\$18.75	.-	50 C
12A9	15 ohms	.	\$18.75	"	50 c
		tt Pric			

"NIKKA" 1 WATT TRANSCEIVERS
P.M.G. approved. Solid state, 14 translstors, circuit inc. r.f. stage. 27.240 Mc . (provision for two channels). Range boost circuit. $U p$ io 10 miles in open country or water. Buzzer type call system. Squelch control. Completo with leather carrying case.

Price $\$ 175.00$ Palr
NEW A.W.A. T.V. TUNER
Model 49806. Uses 648 and 6B07A
Price 55.50 postage 50c

PACK OF RESISTORS

100 Resistors of $1 / 2$ and 1 watt rating. Price $\$ 1.75$ post 20c

FIVE-CORE CABLE

5×5 SOIG. Ideal for Intercoms.. Telephones, etc New. 100 yd. rolls, $\$ 17$ (postage 75 c), or 20 c yd.

NEW VALVES

AS NEW AND AIR TESTED

LAFAYETTE 5W. C.B. TWO.WAY RADIO*

Model HE-20. fully iransistorised, solid state, 13 transistors. 10 diodes. 27.240 Mc. Provision for 23 channels, crystol channel locked, push-pull audlo modulator, 455 Kc . mechanical filter, spotting switch for accurate reception, i.v.i. trap, 2300 . a.c and 12 v . (positive or negative ground), in-bullt pa. amplitier. Idaal for fixed base station or amargoncy moblle. including microphone and moblle cradle. Fibreglass helical aerial 4 ft . high, cowl mount. 'Subject to P.M.G. approved Ilcence.
F.O.R. Price $\$ 169.50$ tax paid
for mobile use $\$ \$ 16.50$ extra
BENDIX BC-221 FREQ. METER
125 Kc . to 20 Mc .. including a.c. power supply. crystals. calibration book, etc.
F.O.R. Price \$49.50, packing 75c

REALISTIC DX-150 SOLID STATE COMMUNICATIONS RECEIVER

Features: 240 v . a.c. or 12 v . d.c. operation. 30 transistors and dlodes 535 Kc . to 30 Mc . In four bands. Bandspread tuning. S meter, e.m./c.w./ s.s.b. Product detector tor s.s.b. Compact size. $141 / 8 \times 91 / 4 \times 61 / 2 \mathrm{in}$. Polished metal panel. small Internal speaker
F.O.R. Price $\mathbf{\$ 2 2 9 . 5 0}$

Matching external speaker $\mathbb{£ 1 3 . 3 0 \text { extra. }}$

TRIO COMM. RECEIVER MODEL 9R-59DE

Four-band receiver covering 550 Kc . io 30 Mc . continuous, and electrical bandspread on 10. 15 , 20. 40 and 80 metres 8 valves plus 7 diode circuit. $4 / 8 \mathrm{ohm}$ output and phnne jack. SSB.CW. ANL. varioble BFO. S metcr, scp. baidspread dial. i.i. varlable BFO. S metcr, scp. baidspread dial. i.f.
455 kc ., audio output 1.5 w .. variable RF and AF 45 J kc.. audio output 1.5 W .. variable RF and AF
gain controls. $115,250 \mathrm{v}$. AC mains. Beautifully gain controls. des igned. $7 \times 15 \times 10$ in. With instruction designed. Size: $7 \times 15 \times 10 \mathrm{in}$. With instruction manual and service data.

PRICE S175 inc. sales tax
Speaker to sult, typo SPSD. $\$ 15$ Inc. tax.

No. 62 TRANSCEIVERS

Wireless Set No. 62 Mk. 2 (Pye). Froquency range 1.6 to 10 Mc . in two bands. |n-bullt 12 v . genemotor powier supply. Clean condition. Fully air tested on transmit and recelve.
F.O.R. Price $\$ 49.50$ inc. circuit diagram

WESTON LM-300 MOBILE TAXI RADIO

Low 8and a.m. 60 Kc . bandwidth. 70.80 Mc . Crystal channal locked. single channel. In-built transistor power supply. 12v. operation, suit country taxi service or conversion to Ham bands, inc. microphone and cradle.
F.O.R. Price S45. Packing 50c

WIRE WOUND POTENTIOMETERS
50 watts. 200 ohms. Price $\$ 3.00$.

HAM RADIO SUPPLIERS 323 ELIZABETH STREET, MELBOURNE, VIC., 3000
 Phones: 67-7329, 67-4286 All Mail to be addressed to above address

We sell and recommend Leader Test Equipment. Pioneer Steren Equipment and Speakers. Hitachi Radio Valves and Transistor Radius. Kew Brand Meters, A. \& R. Transformers and Transistor Power Supplies. Ducon Condensers. Welwyn Resistors, etc.

Publishers:
VICTORIAN DIVISION W.I.A.
Reg. Office: 478 Victoria Parade. East Mol. bourne. VIc.. 3002.

Editor:

K. E. PINCOTT- VK3AFJ

Assistant Editor:
E. C. Manifold VK3EM

Publications Committee:
Ken Glllesple -.. VK3GK
Harold Hepburn (Secretary) VK3AFO
Peter Ramsay VK3ZWN
W. E. J. Roper VK3ARZ

Circulation-
Jack Kally VKaAFD
Draughternen:-
Clem Allan Vk3ziv
John Blanch VK3ZQL
John Whitehead VK3YAC

Enquiries:

Mrs. BELLAIRS. Phone 41-3535, 478 Victorla Parade, East Melbourne. Vlc., 3002 . Hours: 10 日.m. to 3 p.m. only.

Advertising Representatives:

TECHNICAL NEWS PUBLICATIONS
21 Smith St., Fitzroy, Vic., 3065. Tel. 41-4962.
P.O. Box 108, Fitzroy, Vic., 3065.

Advertisement materlal should be sent direct to the printers by the first of each month.

Hamads should be addressed to the Editor.

Printers:
'"AICHMOND CHRONICLE." Phone 42.2419.
Shakespeare Street. Rlchmond, VIc., 3121.

All matters pertaining to "A.R." other than advertising and subscriptions. should be addressed to:

THE EDITOR.
"AMATEUR RADIO,"
P.O. BOX 36 , EAST MELBOURNE. VIC., 3002.

[^39]
CONTENTS

General:-

Contests:-

Contest Calendar 27
Remembrance Day Contest, 1970 22
1970 John Moyle Memorial National Field Day Results 21

COVER STORY

An artist's impression of the type of satellite that OSCAR 6 will probably be. The surface of the package is covered with solar cells, which should give the satellite an active life of at least one year.

CW－PHONE？

TWO USEFUL ACCESSORIES，EACH APPLICABLE TO APPROPRIATE MODE，FROM KATSUMI OF JAPAN

ELECTRONIC KEYER

KATSUMI MODEL EK－26

Features：

－ 11 transistors and 12 diodes solid state electronic keyer．
－Variable speed key capable of 8 to 60 w．p．m．，semi or fully automatic．
－Fully digital－dot－dash ratio，always perfect，and space adjustment．
－Relay or transistor switch output option．（Tr．switch：max．110v．， 100 mA ．Relay：max． 700 v ．， 500 mA ．）
－Built－in break－in OSO（VOX．CW）terminal．
－Built－in monitor－oscillator and phone jack．
－Choice of power supplies： $230 \mathrm{v} .50-60 \mathrm{~Hz}$ ．AC．or $6 \mathrm{v} . \times 2 \mathrm{DC}$ ．
－Small in size： 140 （w．）$\times 70$（h．）$\times 190$（d．）mm．Weight： 3 lb .12 oz ．

PHONE－ MIC COMPRESSOR

KATSUMI MODEL MC－22

Specifications：

Compression level： 26 dB ．（ 1 KHz ．）with meter （compression level variable）． Output voltage： 50 mV ．max．at input 3 mV ． Mic．impedance： $10-100 \mathrm{~K}$ ohms switchable． Frequency response： $300.5 .000 \mathrm{~Hz} . \pm 2 \mathrm{~dB}$ ． S / N ratio：more than－ 50 dB ．
Transistors used： 4 transistors and 2 diodes． Power source：Battery type 216 or 006P（9v．）． Power consumption： 2 mA ．max．
Dimensions： 120 （w．）$\times 70$（h．）$\times 80$（d．）mm． Weight： 1 lb .502 ．Accessories：Jack and plug．

BAIL ELECTRONIC SERVICES
 60 SHANNON ST．，BOX HILL NORTH， VIC．， 3129.
 Phone 89－2213

N．S．W．Rep．：MOSMAN RADIO SERVICES， 11 Ruby Street，Mosman，N．S．W．，2088．Telephone 969－8342

South Aust．Rep．：FARMERS RADIO PTY．LTD．， 257 Angas Street，Adelaide，S．A．，5000．Telephone 23－1268

SIDEBAND ELECTRONICS ENGINEERING

 uals，checked tested and where required adjusted or modified before shipment．Postage．transportation and insurance charges are extra．

YAESU MUBEN－
FJ．DX－100 AC／DC Transceivers．stock sold out FT．DX． 400 De Luxe Transcelvers．AC power supplies bullt In ．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 525$
FL－DX－400 Transmitter．built－in supply ．．．．$\$ 350$ $\begin{array}{llllll}\text { FL－DX－400 Transmitter．built－In supply } & . . . & \mathbf{\$ 3 5 0} \\ \text { FR－DX－400 De Luxe Receiver } & \ldots . . & . . . & . . . & . . . & \$ 375\end{array}$ FR－DX－400 De Luxe Receiver ．．．．．．．．．．．．．． 8375
FR－DX－400 Super De Luxe model Receiver，with all available accessories， 500 Hz ．CW flter FM filter and FM discriminator． 2 and 6 mx solid state Converters ．．．．．．．．．．．．．．．．．．．．$\$ 475$
FT－ 200 economy Transceiver．with AC power supply－speaker unlt for 230／240／250V．AC，of extra heavy duty design ．．．．．．．ili．．．．．．．．．．．$\$ 410$ FL－DX－2000 Linear Amplitier．buili－In AC supply and SWR meter
used
6 and 2 metre solid state Converters．as used in the FR－DX－400 super de luxe Recelver．$\$ 25$ FF－30－DX low pass co－ax．Ine Filter ．．．．．．．．\＆ 15 500 Hz ．CW Filters，for use in the latest type
 400 Transcelvers ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．S\＄0

SWAN

SW3 unlt ．．S550
SW350C Transceiver with SWAN 14－230 AC／DC power supply unit ．．．．．．．．．．．．．．．．．．．．．．．． 8600

GALAXY－
FT－550 Transcelver with AC supply－speaker unlt ．． 8725
Galaxy External VFO ．．．．．．．．．．．．．．．．．．．．．．．．．．．．S125

HY－GAIN－

Hy－Quad Tri－band Cubical Ouad．10－15－20 metres． one co－8x．feed line ．．．．．．．．．．．．．．．．．．．．．．．．\＄130 TH6DXX Tri－band Senior Beam.... ．．．．....
TH3JR Tri．band Junior Beam ．．．．$\ldots . . ⿻ 上 丨 ~ \$ 120$ 14AVO 10 to 40 metre Four－band Vertical．．．．S52 18AVO 10 to 80 metre Flve－band Vertical ．．$S 85$ MOSLEY－
TA33JR Tri－band Junlor Beam ．．．．．．．．．．．．．．．．\＄100
NEWTRONICS－
4．BTV 10 to 40 metre Four－band Vertical ．．$\$ 60$
Same as 4－BTV with 80 mx top－loading coil．S80
MOBILE WHIPS－
Webster Bandspanner． 10 to 80 metres．centre． loaded continually adjustable
MARK HW． 4040 metre Helical Whip ．．．．．．．．\＄20
MARK HW－3 10－15－20 Tri－band Helical Whip．\＄3j
Swivel mount and spring for Mobile Whips．\＄10 ROTATORS－
CDR HAM－M heavy duty Rotator，with 230 V ． Indicator－Control Unit，up to 2 in masts．S165 ANTENNA NOISE BRIDGE－
OMEGA TE－7．01 Bridge．for the serious antenna experlmenter．gives resonance and impedance In one operation ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 25$ 12V．DX SUPPLIES－
ACITRON extre heavy duty mobile supplies．\＄110 Yaesu Musen 12V．DC supplies for Ff．200．\＄110 BALUN8－
Exact electrical duplicate of the Hy－Gain BN． 86 ． local product ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\＄12．50

CAYSTALS－
FT－241 Series，channels 0 to 79．boxes of 60 crystals， 375 of 515 KHz ．．including a 400 and 500 KHz crystal … ．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 15$ Individual FT－241 Crystals．depending on fre quency．from 25 cents to 52 per crystal．
Sets of six matched FT－241 Filter Crystals Incl．iwo USB／LSB carrier－v．f．o．crystals，from SS to S10 per set．depending on frequency range required．

SUNDRIES－

VFO vernier mechanism．with knob and dial． as used in the FT－DX－400 Transceivers ．．．． 310 Plate circuit RF Chokes，as used in the FL．DX． 2000 Linears ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 2.50$ KOKUSAI Mechanical filters．clearance sale． 500 Hz ．of 2700 Hz ．pass bands

TRAN8FORMERS－

Made by NATIONAL CO．of KIngsgrove．N．S．W Limited number stll｜in stock．types：
U60／325 325．0．325V． 60 mA .5 and 6 V ． 111 S 125 U60／385 385．0．385V． 60 mA ． 5 and 6 V ．fil．．\＄1．25 $\mathrm{U} 80 / 385 \mathrm{385} \cdot 0 \cdot 385 \mathrm{~V} .80 \mathrm{~mA} .5 .68 \mathrm{GV}$ ． fi
9158 6V． 1.5 A ． 240 V .50 mA
240 240V isolation iransf．．．．．．．．．． 80.75
年 Various Transistor Output Transformers ．．．．S0．50 Valve Output Transf．．single－ended． 10.000 ohms to 3.5 and 15 ohm secondaries ．．．．．．．．．．．．S1．00 Chokes： $30 \mathrm{H} .80 \mathrm{~mA} .15 \mathrm{H} .150 \mathrm{~mA} ., 15 \mathrm{H} .175$ $\mathrm{mA} 30 \mathrm{H} .60 \mathrm{~mA} ., 20 \mathrm{H} .60 \mathrm{~mA} ., 12 \mathrm{H} .200 \mathrm{~mA}$ ． S1．00 each．

SIDEBAND ELECTRONICS ENGINEERING Propietor：ARIE bles

P．O．BOX 23，SPRINGWOOD，N．S．W．， 2777
Telephone（STD 047）Springwood 511－394

communications CAREER TRAINEES WANTED

The Department of Clvil Aviation wants men aged at least 18 and under 36 years having previous telecommunications experience to undertake conversion training for positions of Communications Officer.
Communications Officers are responsible for the operation of Aeronautical Broadcast Services and a variety of Aeronautical Fixed Telecommunications channels IInking Flight Service and Air Traffic Control units, and as such they make a vital contribution to the high safety standards of Australian civil aviation.
Opportunities exist for further training and advancement as Flight Service Officer.
Applicants must be British sublects (by birth or naturalisation) and be medically fit. A good level of secondary education is desirable. A minimum of two years related experience in telecommunications fields is necessary together with proficiency in machine and wireless telegraphy. Ability to communicate fluently and clearly in English is essential.
For further Information contact -
Recruitment Officer,
Department of Civil Aviation, Aviation House, 188 Queen Street, Melbourne, VIC. 3000 Telephone 620131

W.I.A's Preliminary Comments on the 1971 Space Frequency Conference

Previous Federal Comments and the last Annual Report of the Federal Executive have referred to the 1971 World Administrative Radio Conference relating to space services.

The Federal Executive, on behalf of the Federal Council, has now submitted to the Australian Administration the preliminary comments of the W.I.A. in relation to the forthcoming Conference.

Having regard to what I consider to be the importance of this initial statement, this Federal Comment is devoted to the full text of it.
-Michael J. Owen. VK3KI.

1. WIRELESS INSTITUTE OF AUSTRALIA

The Wircless Institute of Australia IW.I.A.I is the single body representing Amateur Ser Amateur licensees in Australia are members The W.I.A. is a member of the International Amateur Radio Union II.A.R.U.I, a world-wide Radio Socleties in 83 countries and administratlons throughout the world. Through this toons throughout the world. Through this organisation the W.I.A. is a ware of the views relating to the forthcoming World Administrative Radio Conference in many countrips. In addition. the W.I.A. has been responsible for the inauguration of an association of National Amateur Radio Societles within Region ${ }^{3}$ under the auspices of I.A.R.U. At present the W.I.A.

In addition. it is directly interested in the utilisation of Amateur bands for space purposes, Australis Group. the group responsible for designing and constructing the Amateur Satellite Australis OSCAR 5.

2. RADIO AMATEURS AND

The following extracts from Docket No. 18294 submitted jointly to the Federal Communicatlons Commission on 29th April. 1970. by the American Radio Relay League iA.R.R.L.I and the Radio Amatcur Satellite Corporation IA.M. S. A. T. 1 are of interest in the present context

Rale in the development of space exploration and communication. In recent years. two tion and communication, In recent years, iwo cated Radio Amateurs, working in their spare cated Radio Amateurs. working in their spare
time and without compensation other than the time and without compensation other than the personal pleasure that comes from making coniributions to society, have made most significant
contributions to the development of the space contributions to the development of the space
techniaues and experience. . The first was
 Project OSCAR Inc-OSCAR means Orgitite Carying Amateur Radio-organised in 1860 by Amateurs on the West Coast of the United States. The second. A.M.S.A.T., was organised early in 1969 by Amateurs engaged in space rescarch and development in the to foster world-wide Radio Amateur participa tion in space experiments and in so doing. bring about improved communications for Amateurs and other services alike
"Many of A.M.S.A.T's members have extensive experience in space telecommunications technolory and its membership now includes international aspect of countries. Radio space activities was empasised just three months ago activities was empasised just three months ago
when A.M.S.A.T.. in co-operation with the National Aeronautics and Space Administration IN.A.S.A.I. arranged for the testing and launch iN.A.S.A.I. arrangen for the testing and launch
of an Amateur satellite designed and constructof an Amateur satellite designed and constructed by a group of Radio Amateurs in Australia. Australis OSCAR 5 was placed in orbit in
January 1970. . A.M.S.A.T. is now plannin天 January 1970 . A. A.M.S.A.T. is now planning
more advanced Amateur satellites. and has also more advanced Amateur satellites. and has also
submilted a propnsal to N.A.S.A. to provide submitted a propnsal to N.A.S.A. to provide two communications experiments to be carried
on the ATS-G Applications Technology SatelIIte.

Amateur satellite work has been typlifed by a wide variety of confgurations of small
and relatively unsophisticated ground stations. and relatively unsophisticated ground stations,
such as are operated by Amateurs around the world. This approach has made Amateur sutel lite work al iruly international venture in
keeping with the United Nations General Assembly Resolution 1721 IXVII Part D and 1802 IXVIII Part IV paragraph 3. Which expresses the belief that communications satellites should be organised on a global basis.
discriminatory access for all nations.
discriminatory access for all nations"."
In Austrulia the encouragement given to the Amateur Service by the World Administrative Radio Conference IW.A.RC.) for the utilisation of space techniques is of special significance. for at present the W.I.A. Project Australis provides one of the very few opportunties for Australlans to participate in the use
of space for communications. It should oo of space for communications. It should oc second Australian designed and bullt satelifte to "fy". And the first to be constructed primarily of Australian components.
Accordingly. the W.I.A. most strongly urges that it is in the national interest to encourage he development of the Amateur Radio Service. particularly in space.
As is pointed out by A.R.R.L. and A.M.S.A.T. Amateur Radio is far more than hobbyists talking amonsst themselves; it is a direct road to self-sustaining communications systems without warticular significance in Australia.

3. THE AMATEUR SERVICE

FREQUENCY REQUIREMENTS

The W.I.A. recognises the pressures on the frequency spectrum caused by the evergrowing requirements of all services. In the context of the Amateur Service, the density of use in terms of numbers of actual stations operating regularly for even irregularly, within a specific allocation is no measure of the importance of the allocation to the service-at least in the v.h.f. and higher bands, for, at these frequencies experiments using broad frequency spec-
trum are regularly used. IFor example. Amatrum are regularly used. 'For example. Amateur t.v. is a feature of Amateur activity.l
Almost necessarily, in many cases these are group activities and in the Institute's view should be encouraged.
The utilisation of bands higher than 144-148 MHz . for space communications will undoubtedby Amateurs generally.
This incentive to use higher frequencies will in turn be encouraged by the increasing avallability of sultable low cost components for us? by Amateurs at these higher Prequencies.
Whilst the W.I.A. does not seek any increase in the existins allocations. it does not believe curtallment of these allocations.

4. SPACE USAGE BY THE
 AMATEUR SERVICE

Footnote 284A of the Radio Regulations 1868 states: "In the band $144-146 \mathrm{Mc} / \mathrm{s}$., artificial satellites may be used by the Amateur Service."
In the W.I.A's view the concept of the Amateur Service is certainly broad enough to include such use. The definition of the service adopted by the Regulations certainly does not imply any restriction on this sort of use. However. the existence of the footnote has been thought to imply th
In fact Australis OSCAR 5 transmitted on n requency of 29.450 MHz . ${ }^{\circ}$ OSCAR 4 transmitted on a frequency of 431.935 MHz . These transmissions were permitted under Regulation 155
which permits the use of any frequency if the Which permits the use of any irequency in the use does not result in interierence. frequencics therefore, precedent for the use of irequencies
outside the band $144-146 \mathrm{MHz}$. for Amateur outside the
satellite use
The following bands are exclusively allocated o the Amateur Service on a world-wide basis: $7.0-7.1 \mathrm{MHz} . \quad 14.0-14.35 \mathrm{MHz} .{ }^{2}$ 21.0-21.45 MHz. 28.0-29.7 MHz.. $144.0-148.0 \mathrm{MHz}$

The Radio Regulations of the I.TU. provide for shared use by Amateurs of other bands throughout the spectrum from 1.8 MHz . to 22.0 GHz.
In relation to the exclusive bands. Amateurs have the potential of interfering only with other Amateurs. Most of the exclusive allocatons are at lower frequencies. Even though cles are well known for terrestrial communication, only limited experiments have been conducted at these frequencles using transconducted at these frequencles using trans-
mitters in space. Satellites operating at thesn erequencles will provide a valuable tool for further research into ionospheric ducting, ab-
sorption, antipodal propagation. long delay sorption. antipodal propagation. long delay
echnes. etc. The Amateur Service. with hun-
dreds of thousands of experienced Radio operators in every part of the world is particularly well equipped to gather this sort of informa tion. The results of this type of investigation are. of course. of universal significance.
By jolnt Docket No. 18294, the A.R.R.L. and
AM.S.A.T. have commented to the Federal Communications Commission

With respect to the exclusive world-wid Amateur bands. A.R.R.L. and A.M.S.A.T. urge that no limitailun be imposed by the forth coming W.A.R.C. for space operations. Such policy will provide each administration with the greatest possible fexibility to encourage or imit Ainateur use and development.
The W.I.A. adopis this suggestion and com
5. THE PROBLEM OF SHARED BANDS

Certain terrestrial experiments isuch as moon bounce on the 70 centimetre band and higher allocations utilising high poweri and certain fixed installations such as beacons and re peaters and communications through satellites cou!/d conceivably present special problems in shared bands. Interference from normal Ama teur terrestrial use, even using broad band techniques for point to point communication present no special problem, as in fact inter ference from the Amatcur Service has not presented difficulties in the past and can in any event be easily controlled.
Up-link communications from an Amateur station transmitiling to a satellite in the Ama ceur Service should, the W.I.A. contends. be Amaieur band regardiess of whether it is nhared. providing the terrestria the Regulations of the country in which it is located
However. in relation to the utilisation of the existing shared bands for down-links and the other special requirements of the Amateur Service mentioned above which. it is admitted could concelvably present special problems the W.I.A. contends that these problems would be removed, if within the shared bands. an exclusive allocation was granted to the Ama teur Service. Such a course would seem to offer the best solution to the Amateur Service: requirements of wide spectrum for ordinary use. which is easily controlled. and its require ments for specialised experiments that appear to inherently present administrations with a problem of possible interference with other services having higher priority. In making this suggestion and in relatton to the Institute's ddilional proposal for space usage on shared bands, it should be pointed out the the pos ibility of interference from Amateur satellite is, in fact. remote.
OSCAR 4. launched on 21 st December, 1985 into n highly elliptical. 26 degrees synchronous Rnstink 431035 MHz perats of inerfere no known eports of interference to the radio-location it
It should also be borne in mind that it is unlikely that the terrestrial antennas used in the radio-location and radio navigation services would be almed at an Amateur satellite. Thess antennas are generally of the scanning or rotating type, the main lobe of which would be. at worst. only briefly exposed to satellite energ.y: the narrow beamwidths of these antennas also tend to minimise the exposure time.
Having regard to the glready envisaged utilisation of Amateur satellites for television experiments an exclusive allocation at 70 centimetres of 10 MHz . would appear to be essential. The W.l.A. accordingly airongly recemwillin the Amatevr Service's shared bands

6. AN ADDITIONAL PROPOSAL

Even if the forgoing primary submission of the W.I.A. finds favour, it is considered that an additional utllisation of shared bands should be permitted for space communications, though it is recognised that reasonable means must be provided to provide compliance with the priortites applicable to each band should harm ful interference occur. The feasibility of reliable telecommanding a shift in carrier fre quency. a reduction in power or a change in the type of emission as well as the ceasing of emission altogether was demonstrated by the Australis OSCAR 5 experiments in Jan uary and February 1970. The transmitter in the ten metre band wis turned on and of to nperate on a rexulir week-end schedule

Continued on Pake 251

An Integrated Circuit One Watt Audio Amplifier

J. REYNOLDS,* VK3ZMU

Abstract

The amplifier described will deliver one watt r.m.s. audio power into a capacitively coupled 8 ohm speaker, using a 12 v . supply. Maximum power to a 16 ohm speaker is approximately one half watt at 12 v . supply, or one watt at 16 v . The frequency response may be made very wide for hi-fi use or tailored for communication purposes. Gain of the amplifier is adjustable so that full output may be obtained for input voltages in the range 15 mV . to $\mathbf{2 0 0} \mathrm{mV}$. r.m.s.

The input circuit uses a common emitter CR coupled transistor amplifier with negative feedback. This is coupled to a Motorola integrated circuit type MC1454G which raises the power level to one watt. Because of the small value electrolytic capacitors required, capability of 12 v . operation and gain adjustment facility, this circuit has proved to be more useful in many Amateur applications than circuits using the less expensive TAA300.

THE CIRCUIT

Fig. 1 shows the circuit of the complete amplifier. Audio input is coupled to the base of the transistor amplifier through C1, a $0.22 \mu \mathrm{~F}$. polyester capacitor. A.c. negative feedback results from R4 and the unbypassed portion of VR1 in the emitter circuit. By varying the unbypassed portion of VR1, gain can be controlled without disturbing the d.c. bias conditions. R4 is necessary to maintain a high input impedance.

For the ME1001 transistor, the input impedance is about 8 K ohms with VR1 fully bypassed and about 35 K ohms with no bypassing. A high input impedance is necessary because C 1 , in series with the input impedance of the stage, forms a high pass filter and thus determines low frequency response. Also, if the emitter was fully bypassed, a high impedance driving source would be required to reduce distortion due to non-linearity of the transfer conductance. This is an undesirable restriction.

The gain of the stage may be varied between 1 and 12 by adjustment of VR1. The amplified signal is capacitively coupled from the collector load resistor $(2.7 \mathrm{~K}$ ohms) to the input of the integrated circuit. C 4 and R3 (in parallel with the input impedance of the 1C) form a low pass filter and thus determine the high frequency response of the amplifier. The input impedance of the IC is approximately 10 K ohms. With C 4 equal to $0.02 \mu \mathrm{~F}$., a bandwidth of 4 KHz . is obtained. This may be increased to 13 KHz . by reducing C 4 to $0.002 \mu \mathrm{~F}$.

The circuit of the IC is shown in Fig. 2. The gain of the IC is controlled and stabilised against temperature and component variations by a conventional method adopted with differential input operational amplifiers. With these amplifiers the differential (emitter coupled) transistors act in antiphase, that is, one inverts the input and the other is non inverting. The gain of the op.
amp. will stabilise when the inverting and non-inverting inputs are of equal magnitude.

If one input is fed with the signal and the other is connected to the output via a voltage divider of, say, $10: 1$, the input voltages will not be equal until the output voltage is 10 times the input voltage. Thus by fixing one resistor in the divider and varying the other the amplifier gain can be varied.

In the MC1454G these resistors are internal. The fixed resistor connected to the output is 10 K ohms and goes to the non-inverting input. From the noninverting input there is a selection of shunting resistors to a.c. ground. By varying the combination of resistors by-passed, the gain of the IC can be adjusted to the discrete values of 10 , 18 or 36. In this design a gain of 18
was selected as the best compromise between gain and distortion.
The output stage is two Darlington pairs in conventional configuration. Output power is capacitively coupled to a speaker via C9, a $100 \mu \mathrm{~F} .16$ v.w. electrolytic capacitor. The value of $\mathbf{C} 9$ also effects the low frequency response of the amplifier, however with the value of CI specified, the effect of C1 predominates.

The transistors in this integrated circuit exhibit considerable gain up to v.h.f To avoid v.h.f. instability, CR stabilising networks ($0.04 \mu \mathrm{~F}$. in series with 10 ohms) are connected from pins 9 and 10 to ground. C10 shown in the circuit diagram acts as a reservoir capacitor to supply the peak current demands of the amplifier. This is only necessary when the amplifier is used

2N3564, ME100I
MCI454G (BOTTOM VIEWS)
\#1 Used only for positive earth.
\# 2 Used only for negative earth.

* Depends on gain option used:-
$A_{v}=10:$ pins 2,4 open \& $C 6$ to pin 5 .
$A_{y}=18:$ pins 2,5 open \& $C 6$ to pin 4 .
$A_{v}=36$! pin2 to pin $5 \& C 6$ to pin 4 .

FIG.1-I.C. AUDIO AMPLIFIER CIRCUIT.

R1-100K ohms.
R2-47K ohms.
R3-2.7K ohms
R4- 120 ohms.
R5, R6- 10 ohms.
VRi- 2 K ohms.
Ci-0.22 $\mu \mathrm{F}$.
C2-50 $\mu \mathrm{F} ., 10$ V.w.

C3-5 $\mu F_{\text {. }} 25$ V.W.
C4-see text.
C5- 39 pF .
C6-50 $\mu \mathrm{F} .{ }^{\mathbf{C l}} 10$ У.w.
C7, C8-0.04 $\mu \mathrm{F}$.
CQ- $100 \mu \mathrm{~F}$.
C10- $100 \cdot 1,000 \mu \mathrm{~F}$. (if required)
with a poorly regulated power supply or flat battery. Provision for this capacitor has not been made on the printed circuit board.

PERFORMANCE

Fig. 4 shows the measured frequency response of the amplifier. The effect of gain adjustment on the low frequency response can be seen. The high frequency response falls at 20 dB . per decade. The slope of this roll-off can be increased to 40 dB . per decade by connecting a suitable capacitor from pin 6 to ground. Suggested values are $0.01 \mu \mathrm{~F}$. for a bandwidth of 3.5 KHz . and $0.002 \mu \mathrm{~F}$. for a bandwidth of 13 KHz .
Fig. 3 shows total harmonic distortion plotted against power output.

Typical performance figures are:
Nominal supply voltage: 12 v .
Bandwidth:
$120 \mathrm{~Hz} .-13 \mathrm{KHz}$. (min. gain, C4 $0.005 \mu \mathrm{~F}$.)
$170 \mathrm{~Hz} .-13 \mathrm{KHz}$.
(max. gain, C4 $0.005 \mu \mathrm{~F}$.)
$160 \mathrm{~Hz} .-4.5 \mathrm{KHz}$.
(max. gain, C4 $0.02 \mu \mathrm{~F}$.)
Sensitivity: 14 mV . r.m.s. input required to produce 1w. r.m.s. output power into an 8 -ohm speaker.
Distortion: less than 0.8% between 60 mW . and 0.8 W .; less than 2% between zero and 1 W .
Operating supply voltage: 6-13.5v. (more than 100 mW ., 8 ohms); $7-16 \mathrm{v}$. (more than 100 mW ., 16 ohms).
Zero signal current drain: less than 20 mA .
Input impedance: 8 K ohms (max. gain); 35K ohms (min. gain).
Maximum power output: 1.2 W . (with heat sink).

CONSTRUCTION

The circuit is constructed on a 4 cm . $\times 8 \mathrm{~cm}$. flbre glass orinted circuit board. VR1 is a miniature pre-set potentiometer. Provision has been made for either positive or negative earth, as selected by straps.

DIDDLY DAH DIT

Further experience with the IC Keyer described recently in "A.R." shows that insufficient filtering in an a.c. to d.c. supply has the effect of distorting the leading edge of the timing pulses. Hum, together with poor power supply regulaticn causes occasional errors at the start of a dash sequence, making the first dash sometimes appear as a dot! Providing the at-rest d.c. supply voltage is at least 3 volts, a drop of i volt is not likely to cause any problem. A simple zener regulated supply capable of 80 mA . is therefore satisfactory. Providing a large value capacitor is used after a dropping resistor, there is no reason why a smallish resistor cannot be used in the supply line to "trim" the d.c. supply to the design centre value of $3 \frac{1}{3}$ volts.
There have been some reports of r.f. on the keying line causing a continuous key-down condition. This can be minimised by using r.f. chokes in the keying lines; by normal shielding and bypass procedures; and by modification of the keyer to add a 1 uF . tantalum $3 \frac{1}{2}$ volt working capacitor between the base of the transistor switch and chassis. This will also serve (with the 1 K feed resistor) to integrate the switching pulses to sawtooth shape, which seems to provide a slightly more acceptable keying characteristic. The capacitor should not be less than 0.5 uF . if hum spikes on the keying pulses are to be eliminated.

Contrary to some opinions, the keyer does produce dashes which are selfcompleting, but not all dots are self completing. The first and last dots in a dot sequence can be shortened by premature paddle movement-not so the dashes. Recognition of this feature helps to know how to handle the paddle so as to send error-free (almost) auto Morse. By increasing the resistance of the speed control potentiometer the "speed" can be lowered and the self completing dash feature demonstrated.
Having tried both breadboard and printed board construction, it is clear that the printed board method is by far the best. If anyone needs a board, similar to the one used by "QST," I can probably arrange supply of a commercially made board at cost on request. At last quote, $\$ 1$ plus postage.
-Col Harvey, VK1AU

FIG. 7 - SCHE MATIC OF MC1454G AUDIO I.C.

FIG. 3-I.C. AUDIO AMPLIFIER: DISTORTION.

FIG. $4-$ I.C. AUOIO AMPLIFIER:FREQUENCY RESPONSE,

Modifications to the FL200B Yaesu Musen Transmitter

R. D. CHAMPNESS,* VK3UG

Since obtaining this transmitter about $31 / 2$ years ago the author has learnt much about the art of SSB and in particular about this particular variety of transmitter. The modifications described are a mixture of necessities and personal choices.

THE lay-out of the audio input from the microphone socket to the grid of the microphone pre-amplifier is quite poor. The mic. socket is right alongside the mains on-off switch and the whole of the audio input lead of about 4 inches is unshielded. In my transmitter this resulted in hum modulation of my signal. To overcome this, the lead was shielded and a shield tube was made out of tinplate to go completely over the mic. socket, which cured this fault.

It is most disconcerting on vox operation to hear the relays clanking in and out, and as well, it meant that the vox had to be desensitised as the noise of the relays operating caused the transmitter to cut in and out of operation. To overcome this fault I rubbermounted the two relays. The one in the p.a. cage I mounted on a grommet which fitted into an enlarged hole in the side of the cage. For the relay on the rear apron of the chassis, I cut small rubber washers which were fitted on both sides of the chassis wall. The original screw would not fit (too short) so a couple of nuts were soldered to the relay and some longer screws used to mount the relay. By doing this, the noise of relays was considerably reduced, so making vox operation easier.

I had much trouble on c.w. with the key contacts fouling up. This was so bad that I had to clean the contacts after every QSO, and boy that should not be necessary, and is a sign of rather pzor design. The reason for this poor performance lies in the fact that when the key is depressed it shorts out some of the grid blocking bias system, which is a very effective method of keying, but the key in this case directly shorts out C43, C58, C67 and C98, which means the key discharges these capacitors in microseconds from a voltage of about -120 volts to zero. This adds up to $0.065 \mu \mathrm{~F}$.

To reduce this sparking and fouling of the key contacts two 1 K resistors are fitted in series with the capacitors in a particular way. One resistor is fitted in the vertical line at the extreme right of the circuit and the other is fitted in the bias line immediately above the caption "V8 12BY7A" on the circuit. By inserting these two resistors the operation of the keying circuit is unaffected but the peak keying current across the key contacts is reduced to 300 mA . and continuous key down current is 8 mA . The value of these resistors is not critical but I would not go below the value I used.

I fitted these resistors, one on the tag strip by the p.a. tube bases, there is a
spare lug. The white wire is the lead that is cut to fit the resistor. The other resistor is fitted near the 6CB6 V7. Once again there is a spare lug. There are three white wires with blue traces. The one coming from the centre part of the transmitter chassis is broken to fit the resistor.

I had trouble with vox and keying circuit giving unreliable operation and traced this to R31, a 1 watt 50 K resistor. This resistor had succumbed to its overload so two 82 K ohm 1 watt resistors in parallel were fitted, making this section much more reliable. The 50 K , or 47 K as it was marked, was dissipating nearly two watts. Bad design I feel.

Should you ever burn out a 6BM8 voltage regulator consider fitting a 6GV8 as it has a much higher heater-cathode rating. The 6BM8 has only 100 volts
rating and in the voltage regulator it has 150 volts between these two elements. See my article on voltage regulators in "A.R.," Dec. 1969.

Much to my surprise, one day I observed the 12BY7A driver glowing red hot. I immediately thought that something was wrong and started to delve into the works, but on going through the valve voltage chart I found all voltages to be normal. However, when I checked the ratings of the valve I found that in this circuit it is being overrun by about 60%. The screen voltage, for instance, is 280 volts, whereas data on the valve indicates a maximum of 190 volts. I did quite a bit of experimenting about this stage, but found that it worked best with the circuit as is. The valves must be rugged as I haven't blown one yet. I can't say I am happy with the valve being overrun like this, but it seems to keep going quite okay.

This transmitter has rather limited coverage of 10 metres, only going from 27.9 to 29.1 MHz . To overcome this I have thought of fitting an extra switch to bring in other crystals when the band switch gets to position 10B. The 10A position could be used for the 11 me:re (26.96 to 27.23 MHz .) band. As cer accompanying diagram, at least a nother two h.f. bands would be achieved with little problem. The switch could be fitted on the front panel in much the same way as done for the

S2 will now read: $80-40-20-15-11-10$. SX1 will read 10A, 10B, 10C, 100 , so covering all 10 metres. In the plate circuit of V6A [GAW8A) the wiring would be altered as for S2b and SX2, but the tuned circuits would tune for 11 metres 32.4 MHz .. 10 metres C 34.4 MHz . and 10 metres 0 35 MHz .

FT200. I have not done this particular mod., but am thinking about doing it.

The tuning of the rig on 80 metres in particular, to me, was unsatisfactory; the loading capacitor was at maximum capacity and yet the loading capacitor seemed to need more capacity. I took off the bottom cover of the cage and found I could fit an extra loading capacitor to the 80 metre circuit. I fitted an extra 330 pF . to the contact shown on switch S2F nearest the bridged 10 metre tank coil contacts on the circuit, or if you observe looking down into the upturned chassis, the contact to solder to is the one second from the bottom on the side of the wafer nearest the centre of the transmitter chassis.

I also found it desirable to shift the 80 and 40 metre tank coil tappings. I shifted the 80 metre tapping along 4 turns, giving more inductance, and the 40 metre one 2 turns to give more inductance. The loading of the transmitter is now more satisfactory and the r.f. output, particularly on 80 metres, is greatly improved.

Whenever I switched the unit on the transformer would make a bit of a protest as the electrolytic capacitors were charged up. To overcome this, I fitted a CZI1A thermistor in series with the transformer. The transformer protest ceased, the diodes had less peak current to handle, and the fuse was able to be reduced to 2 amps . very comfortably instead of the 3 amps. originally. It should be possible to run even as light as 1.5 amps.

There are a couple of circuit drawing errors I have found and these I have shown in corrected form in a couple of small diagrams. One concerns the balanced mixer V2 and the other the plate circuit of V6A. There are a few minor differences in various FL200 circuits, so some of the things I have drawn to your attention may not even be in your set, or some of the mods., for all I know, may be in the set. Thus it is best that you peruse your set before doing anything to it.

I have fitted three other traps to the transmitter in addition to the ones already fitted. In the plate circuit of the 6BA6 9 MHz . i.f. amplifier, I fitted

traps to reduce the crystal oscillator frequencies of 8546.5 KHz . and 9453.5 KHz . I'm not really sure how effective these have proved to be as I have not a general coverage receiver to check the suppression of these frequencies in the i.f. amplifier. These can show up as spots 453.5 KHz . away from the desired output frequency of the transmitter.

I was troubled with spurious spots on 7 MHz . and I know for a fact mine is not the only one like this. What I did was to fit a 6.8 MHz . trap in series with LT3 and by careful tuning using a receiver tuned to 6.8 MHz . I was able to reduce this particular spot. This one is caused by the second harmonic of the 3.4 MHz . crystal oscillator on 40 metres. Fred VK3YS suggested this particular trap.

The traps are tuned to the following frequencies: LT1 6.8 MHz ., LT2 9 MHz ., LT3 9 MHz . LT3 is not mentioned in the alignment data of the transmitter
called Rolls Royce of s.s.b. gear, the Collins, can beat them on this score. I purposely have not given data on the coils used in the traps but suggest you follow the general style of the existing traps in the unit.

I felt that the transmitter was not complete without some additional metering, such as the screen voltage, screen current of the final, a.l.c. operation, and p.a. h.t. voltage. A tx monitor, as I called it, was built which consisted of a 5 -position switch, a few resistors and a 1 mA . meter. The actual construction and circuit details can be seen in "A.R.," Dec. 1969, in the article "Sideband the Expensive Way (How to avoid it)". The miniature 5 -pin socket was mounted on the rear apron of the chassis alongside the bias pot where the extension a.c. socket was mounted.

In conclusion, I might comment that I have learnt a great deal about sideband from working on this and one or

at all. I found that the method outlined in the alignment data did not give very accurate alignment of the traps and I did them the following way. On 14 MHz. I tuned up the transmitter on 14.250. I then ran it on net with full carrier inserted and tuned my receiver to 14.150 . You will then find a small carrier which can be nulled out by adjustment of LT2 and LT3. LT3 is under the chassis.

The 9 MHz . i.f. is heterodyned with a 10.4 MHz . crystal to give 19.4 MHz . which is then heterodyned with, say, the v.f.o. at 5.15 MHz . to give 19.4 5.15, giving 14.250. But the weak 9 MHz. signal in the plate circuit can also beat with 5.15 MHz . and give $9+5.15$ $=14.15 \mathrm{MHz}$. So it can be seen why these traps are in there.

To adjust the 6.8 MHz . traps get hold of a receiver than can tune 6.8 MHz . and set the transmitter up on 40 and then tune in the net position of the transmitter LTl for least 6.8 MHz . signal in the receiver. Also, if you fit the additional 6.8 MHz . trap I fitted, adjust this for minimum signal. The rest of the transmitter tuning is more or less as per book.

I would suggest that the balanced modulator be tuned up listening on a receiver to the transmitted frequency. There will be a small whistle if the balanced modulator is not quite balanced. Adjust the trimmer and pot alternatively for minimum whistle. It should be possible to virtually eliminate the carrier altogether and all you will be left with will be some mushy 50 and 100 cycle sounds and their harmonics.

The Yaesu Musen transmitters are renowned for their excellent carrier suppression. I doubt that even the so-
two other sideband rigs and in general have found it most educational. The modifications I have done won't upset your re-sale value as there is very little sign of anything having been done to the set, certainly nothing externally, although no sensible modification should cause any deterioration in the value of the rig, possibly the reverse. Do not throw the old cliche at me that "to do any alterations to a rig would spoil the re-sale of it". The re-sale of any rig is not high, so why not have it working as it should, and better, then you won't want to sell it.

Have fun with the rig, I have. It is not perfect, but then what rig is, and if it was, we wouldn't learn very much about it because nothing would go wrong, and Murphy's Law has not been disproved yet!!!

Did You Forget to Shout Yourself a Xmas Box?

if so, don't worry

EVERY DAY IS FATHER'S DAY

(at least that's what my XYL says)
So you still have an excuse to shout yourself a present.

Send \$2.35 to-
Federal Subscription Manager. W.I.A.,
P.O. Box 67,

East Melbourne, Vic., 3002,
for your subscription to-
"BREAK-IN"
Official Journal of N.Z.A.R.T.

THE "M.C.M." OR MOVING COIL METER

K. A. KIMBERLEY,* VK2PY

To most radio enthusiasts the ubiquitous moving coil meter (M.C.M.) is a standard item around the workshop. Useful as it is, some of us tend to accept it at face value without ever wondering how or why it works. The purpose of this article is not to engage in a erudite discussion but rather to present the basic principles as simply as possible

THE operating principle of all meters is fundamentally similar in that the quantity to be measured is converted into a mechanical force capable of moving an indicating system.

There are many types of meters manufactured, each with its own special characteristics, thus making some types more suitable for some applications than others. Some that come to mind are:-
(1) Moving coil (M.C.M.).
(2) Moving iron.
(3) Electrostatic.
(4) Hot wire, etc.

However, for this article I will confine myself to the moving coil meter as it is the most commonly used type in tre electronics game.

Some of us know it as the "D'Arsonval" and it consists essentially of a coil of wire suspended within the field of a permanent magnet. An indicator attached to the coil points to a numbered scale.

Direct current, on passing through the coil, produces a flux field which acts with that of the magnet to produce a physical movement. As will be explained later, this movement is proportional to the current flow, hence the scale may be directly calibrated in terms of current, etc.

So much for the intro., now to detail the various parts of the M.C.M.

MAGNET AND POLE PIECES

Pre-war meters, as well as today's cheaper types, used a conventional hardened steel horseshoe magnet. These were reasonably satisfactory due to the care taken in the aging process.

As one would expect, WW2 saw the invention and development of many exotic alloys. One such was "Alnico" which contains aluminium, nickel, cobalt, steel and copper. Alnico has some exceptional magnetic properties, among which are:
(1) Magnetic susceptibility (π_{x}).
(2) High retentivity (B_{H}).
(3) High coercive force (H_{c}).

The above refer to the amount of magnetism resulting from a given input and the ability to retain it over a long period under normal conditions.

Mechanically it is a hard brittle crystalline metal and is extremely difficult to machine, and for this reason alnico is generally cast. Finishing is normally confined to grinding.

Iron pole pieces are attached to the magnet and are so shaped as to leave a circular air gap in which the coil is suspended. A soft iron core is fitted

[^40]into the centre of the gap, leaving a cylindrical space in which the coil moves on its axis.
The magnetic lines of force are now radial to the centre of the soft iron core. Ideally all of the lines of force should be of the same length and hence the field would be of uniform intensity. However, this is not always so and is caused by the cylindrical walls not being perfectly co-axial. Imperfections such as high and/or low spots will also distort the field.
The aberations mentioned above are the major causes of scale non-linearity.
A slotted triangular shaped piece of ferrous metal is sometimes fitted across portion of the air gap to provide a means of adjusting the flux density. This is called a magnetic shunt and is used to adjust the final sensitivity of the meter movement. It may also be used as a means to compensate for magnet aging

COIL

In a practical meter this consists of many turns of fine copper wire wound on a lightweight former. For a given magnet assembly the number of turns governs the sensitivity in terms of current and hence voltage.
That is, the $1 \mathrm{~mA} .-100$ ohm milliammeter, which is probably one of the most commonly used meters in Australia, would need, as per Ohm's Law, 0.1 v . (100 mV .) for full scale deflection (f.s.d.).

Now if we double the number of turns, then 0.5 mA . will be required for f.s.d. Now the d.c. resistance will then be increased to more than double (that sounds Irish, but nevertheless is truc). However, let us assume that the resistance has been in fact doubled, we will find that 0.1 v . will still be required for f.s.d.
Keeping the original number of turns but increasing the diameter of the wire so that the resistance now is 50 ohms, gives a $1 \mathrm{~mA} .-50 \mathrm{ohm}$ movement which corresponds to a 50 mV . f.s.d. The 1 mA .50 mV . meter will in some applications give a higher reading than, say, a 100 microamp. 1,000 ohm meter. Strange isn't it.

Whilst discussing the coil it should be mentioned that the coil former can be made to influence the meter characteristics. Nowdays aluminium is generally used and so arranged that it may or may not form a closed loop. The closed loop principle is used to dampen the movement of the coil, thus preventing overswing and oscillation of the pointer. Obviously this effect is caused by the well known "Eddy Current" phenomenon.

As the coil is normally wound with copper, its temperature co-efficient of resistance will be positive (p.t.c.). This would be of little consequence if the meter shunts were also of copper. However, this would be rather impractical. In past years coils were sometimes wound with copper to give a sensitivity of say 20 mV . f.s.d. and then the copper resistance "swamped" by adding a zero temp. co-efficient wire wound resistor to give an overall f.s.d. of 100 mV . Thus reducing the final t.c. to 20% of copper.

Modern practice uses a n.t.c. resistor (thermistor) and may be so arranged as to completely cancel out the p.t.c. of the copper coil.

THE SUSPENSION SYSTEM

The two most common types are:(1) The pivot and bearing,
(2) Taut band.

In the first type mentioned a hardened steel pin (pivot pin) is attached to the centre of the top and bottom horizontals of the coil. This assembly is then fitted into a housing containing jewelled bearings. These bearings may either be glass or sapphire (etc.), depending upon the ultimate meter quality required (a la watches).

Whilst the bearings are only tightened to a pressure of a few inch-pounds, the actual force applied to the pivot pins is quite considerable. This accounts for the seemingly high rate of wear in the cheaper class of meter.

A top and bottom coiled hair spring completes the above suspension system.

In the taut band system a fine flexible wire is attached to the coil where the pivot pin would normally be. These wires are then anchored and tensioned so that the coil is mounted in the desired position.

As the taut band contributes little in the way of friction, it is almost universally used in galvanometers and high class instruments.

In both systems the hair spring or torsion wire (taut band) perform the same functions:-
(1) Current connections to the coil.
(2) Provides a counter force against which the rotational force acts.
(3) Supplies the return force to reset the meter to zero.

THE INDICATOR

Many systems are used to provide the analogue readout from meters, the more common being:-
(1) Pointer,
(2) Light beam,
(3) Vane.

The pointer is usually of a light nonferrous material (aluminium, etc.) and may be either a spade end or knife edge configuration. The spade end type of pointer is normally used on the more robust and/or single scale meters, whilst the knife edge variety are used on the multi-scaled meter.

The use of a mirror reflector behind the pointer helps to eliminate the parallex error, and consequently is a standard feature on the better class of instrument.

Naturally a longer pointer produces greater resolution than a shorter one, hence it is wise to use the largest sized meter possible. However, a limit is reached when mechanical and weight problems make any further increase in size uneconomic.

The "light beam system" overcomes these problems and works as follows:-

A small mirror, or prism, is attached to the coil system. A light source is beamed at it via a lens system and the reflection is focussed onto a scale some distance away.

In some very special applications, distance in the order of tens of feet are used. Where space is at a premium a second mirror is introduced, thus forming a reflex system. Sensitivities of 10 picoamperes per mm . for 1 metre throw are typical.

Vane type indicators are used for special applications such as industrial controllers, recorders, speedos, etc. The vane is usually a quadrant of lightweight material and is sometimes connected to the coil system via a gear arrangement. As this quadrant is moved it either covers or uncovers the activating system which may be air, light, magnetism or electrical.

COUNTER WEIGHTS

These are usually fitted to the lower end of the indicator and are used for balancing purposes. This feature enables the meter to be used in any position without impairing its accuracy

unduly. Cushioned stops are used to prevent excessive overtravel.

Whilst the foregoing just about concludes the basic discussion on the principle of meter construction, a few further words are required covering useages.

THE CURRENT METER

The "D'Arsonval" meter may be used to measure such parameters as voltage, capacitance, inductance, etc. However as it is basically a current operated device, my initial discussion will be on the ammeter.

Figs. 1 and 2 show the elevation and plan view, respectively, of a rectangular
run, to purchase a quality meter having the highest possible sensitivity. Shunts for other f.s.d. may be arranged as required.
A shunt, as the name implies, diverts some of the current around the meter, thus extending its range. The resistance required is found:

$$
\mathrm{R}_{\text {nhext }}=\frac{\mathrm{R}_{\mathrm{B}}}{(\mathrm{~N}-1)}
$$

where R_{11} is the meter resistance and N the desired extension factor.

Note the voltage drop across the combination will equal the mV . f.s.d. of the meter and hence provides one with an alternative method of calculating $\mathrm{Remext}^{\text {sint }}$

Total Load $=$ R1 + R2

$$
\begin{aligned}
& =10 \mathrm{Ks}{ }^{\top}+10 \mathrm{~K} \Omega \\
& =20 \mathrm{~K} \Omega \\
\therefore \mathrm{E} I & =0.5 \mathrm{~mA} . \\
\therefore \dot{\mathrm{E}} 1 & =5.0 \mathrm{~V} . \\
\text { and } \mathrm{E} 2 & =5.0 \mathrm{~V} .
\end{aligned}
$$

$$
=15 \mathrm{~K} \Omega
$$

FIG. 5.

Total Load $=R_{1}+\left(\frac{R 2 \times R \mathrm{~m}}{\mathrm{R} 2+\mathrm{Rm}}\right)$

$$
=10 K \Omega+5 K \Omega
$$

FIG. 4.
$\begin{aligned} & \text { now }=0.666 \\ & \text { ER1 }\end{aligned}=6.66 \mathrm{~V}$.
and $E R 2=3.33 \mathrm{~V}$.
Error $=33 \%$
Total Load $=R 1+\left(\frac{R 2 \times R m}{R 2+8 m}\right)$
$=10 \mathrm{~K} \Omega+9.523 \mathrm{~K} \Omega$
$=19.523 \mathrm{KI}$
$\therefore 1=0.51 \mathrm{~mA}$.
$\mathrm{E}_{\mathrm{R} 1}=5.1 \mathrm{~V}$
and E R2 $=4.9 \mathrm{~V}$.
Error $=2 \%$
coil mounted vertically in a uniform magnetic flux field. The fux is horizontal and goes from left to right.

Suppose it has a strength of H lines per sq. cm., the coil N turns and the current through it I amperes.

In the vertical side of the coil there are N conductors of h cm . length carrying I amperes at 90° to the flux H lines per cm. square.

Therefore the force F on each side of the coil:

$$
F(\text { dynes })=\frac{\mathrm{HNIh}}{10}
$$

The plan view shows the direction of these forces which form a couple. Now if e cm . is the distance between the lines of action, the torque will then be equal to Fe .

As H, N and h are fixed in the "force" formula, it may be re-written KI. It was stated earlier that the springs provide a counter force against which " F " acts to move the coil. This counter force is proportional to the deflection angle θ and the spring friction S. When the coil comes to rest the counter force:

$$
\begin{aligned}
& \mathrm{S} \theta=\mathrm{KI} \\
& \therefore \mathrm{I}=\frac{\mathrm{S} \theta}{\mathrm{~K}}
\end{aligned}
$$

Hence the deflection is proportional to the current and of course linear.

Meters are manufactured in a wide range of sensitivities and grades. It is usually more economical, in the lons

The meter resistance may be ascertained by several means, some of which are listed:-
(1) From technical specifications.
(2) Direct measurement by bridge, ohmmeter, etc.
(3) Substitution methods.

If using method 2, ensure that the test potential is such as to cause the meter under test to deflect backwards. This avoids the damaging mechanical shock when the pointer bangs hard over against the stop. The danger of burning out the coil is remote, particularly if the measurement is done quickly.

DIRECT VOLTMETER

The addition of a suitable series resistor enables the "D'Arsonval" meter to measure direct voltage. This resistor is selected so that when the desired full scale voltage is reached the total current through the combination is equal to the basic meter sensitivity. The series resistor is generally known as a range multiplier.

The meter, whilst still performing its original function of measuring current flow, is now calibrated in terms of voltage. The resistance required for a given f.s.d. is calculated using Ohm's Law.

Suppose the meter movement is 1 mA .100 mV . f.s.d. type and the re-
quired voltage range is 10.0 volts, then multiplier resistor

$$
\begin{aligned}
\mathrm{R} & =\mathrm{E} \div \mathrm{I} \\
& =10 \div 0.001 \\
& =10,000 \text { ohms }
\end{aligned}
$$

Of course, for low voltage multipliers, the meter resistance should be subtracted otherwise an error will be introduced.

When designing voltmeters for use over about 250 volts, it is wise to ensure that both the voltage and power ratings of the multiplier are not exceeded. Voltage co-efficients cause non linear scales whilst excessive power dissipation may permanently damage the resistor.

Sometimes it is easier to classify a metre as so many ohms per volt. The meter in the above example requires 10 Kg , hence $10 \mathrm{~K} \Omega \div 10 \mathrm{v}=1,000$ ohms for each volt. Similarly, a meter of $50 \mu \mathrm{~A}$. would be 20,000 ohms per volt.

A moving coil meter requires current for its operation, which of course must be supplied from the circuit under test. As a result, the voltage reading cbtained is not correct and the error is caused by the added meter current flowing through the source impedance of the circuit under test. This effect may be reduced to a negligible level by using say a $50 \mu \mathrm{~A}$. (20,000 o.p.v.) meter rather than a 1 mA . (1,000 o.p.v.) type. See Figs. 3, 4 and 5.

ALTERNATING CURRENT

The basic movement may measure a.c. provided a suitable bridge rectifier is used with it. Because of threshold voltage and/or forward non linear resistance effects, it is not normal practice to use shunts when extending the alternating current ranges.

The current transformer, as shown in Fig. 6, is used to extend the basic range. It is possible, but not usual, to extend the range downwards, i.e. more sensitive.

FIG.6. CURRENT TRANSFORMER.

The current transformer may be made with a multitudinous number of turns ratios and is thus very useful. However it introduces problems of its own, such as poor frequency response, added circuit resistance, bulk, cost and worst of all, danger from the possible high voltage across the secondary if it becomes open circuit.

ALTERNATING VOLTAGE

Fig. 7 configuration is used to measure alternating voltage. However the D.C.I. through the meter is proportional to the average rather than the R.M.S. voltage. That is,
D.C.I. $=$ R.M.S. $\times 1.414 \times 0.636$ $=0.9$ R.M.S.

Obviously the above result must be taken into account when calculating the multiplier resistance.

Example: Alternating voltage range desired, 0-1,000. Basic metre movement 0-1 mA.

$$
\begin{aligned}
\therefore \text { Multiplier } R & =1000 \times 0.9 \div 0.001 \\
& =900,000 \text { ohms }
\end{aligned}
$$

The above multiplier is 10% lower than that required for direct voltage. Hence for accurate work two sets of multipliers would be required if the same meter was to be used to measure both alternating and direct voltages.

A subterfuge which the author uses is to shunt the meter, on direct voltage, so that the f.s.d. requirement is raised by 10%. On alternating voltage the shunt is switched out of circuit, thus enabling the same multiplier to be used for both conditions.

FIG.7. ALTERNATING VOLTAGE.

All of the above assumes that sine waves only are being measured. If steady tone signals (square, triangular waves, etc.) are to be measured then the values of 1.414 and 0.636 would have to be changed accordingly.

As the average and R.M.S. values are constantly changing in speech and music, it should be obvious that moving coil plus reciifier instruments are not really suitable for the measurements of this type.

One final word, note that on low voltages threshold and rectifier voltage
drop effects interfere with the scale accuracy and linearity, etc.

Well chaps that about wraps it up for now. I hope you found the article interesting enough even though most of the information presented was rather basic. However, basics are often overlooked, resulting in misleading measurements and thus false conclusions.

3
 Sook Review

RADIO AMATEUR'S HANDBOOK

It's that time of the year again. The tlme to review yet another edition of the book commonly known as the A.R.R.L. Handbook. This time it is the forty-seventh edition of the book which has been published continuously since 1926 and has distributed more than four million copies. But now for the big question. Is this edition of the handbook worth buying?
If you are a newcomer to Amateur Radio. or are even slightly interested, and you do not have a recent copy of this handbook. read no further: Just go straight out and buy A copy. It does not cover everything pertaining to Amateur Radio and it does not always cover those items included in the fullest detall, but it comes closer to doing so than any other book available at a reasonable price. For those of you whose copy is a few years old. you also should buy this issue.
Considerable revision has taken place in both the theory and construction sections and experimenters will be delighted not only at the increased coverage of the theory side of semiconductor electronics. but also at the very large Increase in the number of solid state constructlon projects in both h.f. and v.h.f. fields. And. of course. the greatly expanded tables of the latest transistor and diode specifications.
The Portable/Mobile and Antenna chapters have been completely re-written and updated. For the frst time treatment has been given to v.h.f. repeater stations and to satellite communications. All in all, a very good edition of the A.R.R.L. Handbook to have in your bookcnse or workshop. The only major criticism would be one that unfortunately npplies to most publications from the U.S.A. and that Is the use of many components in the construction projects which nre described by little more than their catalogue numbers. whicn necdless to say. do not apply in Australin.

Published by the American Radio Relay League Review copy supplied by the A.R.R.L. Avallable from the W.I.A. F.E. Publications Department. P.O. Box 67. East Melbourne. Vic.. 3002. Price $\$ 5.95$.

RADIO MECHANICS

(FOR PORT OF SYDNEY)

THE MARITIME SERVICES BOARD OF N.S.W.

QUALIFICATIONS: Applicants must be qualified tradesmen with experience in modern transmitters/receivers and be capable of assisting in the development of specialised equipment including the construction and modification of prototype models. The successful applicant will also be engaged on installation. maintenance and testing of radio equipment and electronic navigation aids. Solid State Circuitry experience is a necessity.
WAGE: $\$ 69.95$ per week. Fares over $\$ 1.00$ and other allowances.
CONDITIONS: Sydney based: four weeks annual leave. Applicants must be prepared to work overtime if required. Occasional call outs to the North and South Coast are covered by appropriate allowances.

Particulars and Interview:

SENIOR ELECTRICAL ENGINEER, Phone 2-0545 Ext. 422 office hours
H. B. CADELL. Secretary.

Construction of Low Loss Co-axial Cable

H. N. SANDFORD,* VK4ZT

It is convenient to use rigid co-axial cable to support feeds in parabolas used on 1296 MHz . and higher

THE difficulty and expense in obtaining suitable low loss co-axial cable prompted the investigation into methods of construction using locally available materials. It was found uneconomical to purchase short lengths of rigid co-ax. as the cost of the associated connectors would be several times that of the cable alone. For example, a 20 ft . length of $7 / 8^{\prime \prime}$ diameter rigid co-ax. is about $\$ 70$ and fitted with flanges both ends $\$ 90$. Flanged adaptors with type N connectors are about $\$ 27$ each, so the total cost of a 20 ft . length with type N connectors would be about $\$ 144$ or just over double that of a standard length of co-ax. alone. These figures were taken from an American catalogue and, of course, are for high quality components suitable for use to 3 GHz . As a matter of interest, the attenuation of this co-ax. at 1300 MHz . is about 1.6 dB. $/ 100 \mathrm{ft} .$, rising to about $3 \mathrm{~dB} . / 100$ ft . at 3.3 GHz .

COPPER CO-AX.
 CONSTRUCTION

The first method investigated employed copper pipe available from plumbing suppliers. At the time I could only obtain $3 / 4^{\prime \prime}$ o.d. x 20 gauge and $1 / 4^{\prime \prime}$ o.d. $x 20$ gauge tubing for the inner conductor. The theoretical impedances and cost (these will only be an indication due to fluctuation in copper prices) for a few combinations are as follows:-

Outer I.D.	Inner O.D.	2c	SWR	Approx Cost
$3^{\prime \prime} \times 20 \mathrm{~g}$.	$\mathrm{f}^{\prime \prime} \times 20 \mathrm{~g}$.	59.5	1.18	70c
$3^{\prime \prime} \times 20 \mathrm{~g}$.	$5 / 16^{\prime \prime} \times 20 \mathrm{~g}$.	46.2	1.08	75 c
3" $\times 18 \mathrm{~g}$.	f" x 20g.	55.8	1.15	83 c
	$1^{\prime \prime} \times 20 \mathrm{~g}$.	54.0	1.08	\$1.03

of the centre so as to remove $\frac{1}{4}^{\prime \prime}$ from the body. Withdraw the inner conductor and cut exactly in half. The Teflon insert may now be cut off flush with body so when the inner pin is refitted there will be $1 / 8^{\prime \prime}$ protruding from each cut portion of the connector. If a lathe is available, the outer may be parted off.
Prepare the inner copper tubing conductor of the co-ax. by cutting ${ }^{\prime \prime}$ shorter than the desired length of the outer a" pipe. Plug the ends of the inner tube with a neat fitting piece of brass or the shoulders may be filed off a sinall brass nut. Solder the plug into
tubes as cutters. Polystyrene will, of course, require drilling and cutting.

Slide the spacers onto the inner concuctor at the desired spacing. If care is taken, these will be a tight fit on the inner. The outer edge of the spacers should now be filed down slightly so as to slide neatly inside the outer lube without binding.

The two pins should now be soldered into the ends of the inner conductor, taking care to fit the Teflon spacer from the connector beforehand.

The inner surface of the outer tube should te tinned for approximately $\mathbf{1 m}^{\prime \prime}$ in at each end. Solder the body portion with approximately $1 / 8^{\prime \prime}$ of the connector extending into one end of the outer tube. Depending on the sauge of the outer tube, it may be necessary to fit a $1 / 8^{\prime \prime}$ wide strip of shim brass between the body of the connector and the tube, before soldering. 16 gauge tube should provide a neat fit.

Slide the inner conductor carefully into the outer conductor, taking care not to move the spacers. Push right home so the Teflon spacer and pin fit correctly into the end socket already fitted. The other connector body is finally soldered into position, completing the assembly of the co-ax. Use only

Fig. 2.-Assembly of Type N Connector to Copper Co-ax.
20g. $-0.678^{\prime \prime}$
18g. - 0.654"
16 g . - 0.627"
All of the above s.w.r's were acceptable for the project as the mismatch loss would be negligible. Various methods may be used to cope with the mismatches or the system could be designed around the nominal impedances. In any case, much of the cheaper flexible solid dielectric co-ax. cable available is no better than this. Type N female connectors were fitted at each end. The cheapest method found was to use a type N female to female connector (UG29B/U, commonly referred to as a "bullet"), cutting the connector in half to provide a transition at each end of the co-ax. It also provides a convenient support for the inner conductor. See Fig. 1.

Carefully cut the body of the connector in two places $1 / 8^{\prime \prime}$ either side

[^41]the ends of the tube and drill out for a neat fit on the centre pin of the connector.

Teflon washers are fitted on the inner conductor at 3 to 5 ft . intervals to support the inner conductor centrally. These may be cut from $1 / 16^{\prime \prime}$ Teflon sheet. The sheet is available from Bearing Suppliers and is very expensive, but the small amount required should cost less than $\$ 1$. Polystyrene or Polythene would also be suitable.
Teflon or Polythene is best cut using a short piece of either tubing. With a pair of dividers, lightly scribe two circles with diameters of the o.d. of the inner and the i.d. of the outer. File or turn about a 60° angle on the outer end of the n" tube to make a sharp edge on the inside circumference. With the $\}^{\prime \prime}$ tube, run a $3 / 8^{\prime \prime}$. drill into the end until a sharp edge is produced on the outside circumference. Place the Teflon or Polythene on a smooth hard piece of wood. The washer may now be cut with a sharp blow using the two
sufficient heat to solder, and it is a wise precaution to tilt the end being soldered down slightly to prevent any solder running back into the co-ax. The complete assembly is shown in Fig. 2.

PERFORMANCE

The reflection co-efficient of a 6 ft . length of this co-ax. was measured using a Hewlett-Packard 1415A Time Domain Reflectometer. The characteristic impedance was measured at 57.5 ohms, which is slightly lower than calculated and may be due to tolerance of the tubing used. This gives an s.w.r. of 1.15. A copy of the TDR trace is shown in Fig. 3.
The two pronounced dips are due to the capacitive reactance of the two Teflon spacers but only amount to a reflection co-efficient of approximately 2%. It is possible to compensate by cutting a groove in the inner conductor, but in view of the small reflection obtained, this was considered unneces-
sary. The irregularities in the line are no worse than those observed on a piece of good quality flexible co-ax. The TDR response extends to 2.3 GHz ., so this method of construction is probably suitable for narrow band work to at least 3.3 GHz . and possibly higher. Attempts to measure the loss were unsuccessful as this appeared to be less than 0.1 dB . at 1296 MHz .

Fig. 3.-TDR Response of Copper Line with Type N Connectors.

ALUMINIUM CO-AX.

CONSTRUCTION

Tom Norris, \uparrow VK4NO, used aluminium tubing and BNC connectors on a similar project. The outer tube consisted of $1^{\prime \prime}$ o.d. $\times 18 \mathrm{~g}$., and the inner $3 / 8^{\prime \prime}$ o.d. x 18g. Tapered sections were machined to match the co-ax. dimensions to the BNC connectors. The calculated impedance of this line is 52.6 ohms and the measured impedance using the TDR was 52.8 ohms. The nominal dimensions of the tubing were within $0.001^{\prime \prime}$.

Slightly different techniques are reruired due to the connectors and materials used.
where $\mathrm{D}=$ i.d. of the outer, $\mathrm{d}=\mathrm{o} . \mathrm{d}$. of the inner, and Zc is the characteristic impedance.

Taper the inner section from this calculated value up to the o.d. of the inner aluminium conductor. A neat hole is bored to fit the BNC pin. The other end is turned to be a neat fit in the inner conductor. The brass section may be tinned to reduce the possibility of electrolytic action. If desired, the tapered section may be a heat shrink fit in the inner, or may be pinned. Assembly is straight-forward.

Fit the tapered sections to the inner conductor after determining the correct length. Solder the pin and Teflon from the modified connector to one end of the inner. Fit one of the outer tapered blocks into one end of outer tube. Slide the inner into the outer tube so the inner protrudes through the end block. Solder the unmodified connector to this end of the inner, then mount the connector flange with fixing screws tapped into the block. The other end block may now be fitted. Finally, the body of the remaining connector is screwed into place. If desired, both connectors may be modified to remove the inner pin and Teflon block for easier fitting.

BNC THREADED CHASSIS MOUNTING CONNECTOR

A suggested method of mounting is shown in Fig. 5. The outer tapered aluminium block and the inner tapered brass section is of the same construction as detailed in the preceding section.

BNC FLANGED CHASSIS MOUNTING CONNECTOR

Refer to Fig. 4 for details of this construction. A slight modification is required to one connector to allow for easier assembly. This involves removing the swaging that retains the Teflon and centre pin.

The outer block is made of aluminium $1^{\prime \prime}$ long and turned to fit neatly in the outer tube. The inner hole is arranged to fit over the Teflon at the rear of the connector. This will depend on the particular connector used. The inside taper is linear from this hole that fits the connector to nothing at the inner diameter of the outside tube. The inner tapered section is made of brass and the starting diameter of the inner at the rear of the connector may be calculated from the normal formula, Zc $=138 \log (D \div d)$, which for 50 ohm co-ax. transposes to

$$
\mathrm{d}=0.4409 \times \mathrm{D}
$$

[^42]Both connectors are modified by removing the swaged retaining section to allow removal of the centre pin and Teflon block for ease of assembly.

The connector may be mounted with an adaptor block tapped to take the connector ($3 / 8^{\prime \prime} \times 32$ threads per inch). The normal mounting nut may be used as a locking nut. The adaptor block is attached to the outer aluminium tapered block with tapped mounting screws.

An alternative method would be to solder the mounting nut to a piece of,

Fig. 5-Assembly of BNG Threaded Ghassis Mounting Connector
(Other details and dimensions as Fig. 4.)
say, 16 gauge brass plate, and screw this to the outer aluminium tapered block-in effect, converting the connector to a flange mounting or, if desired, the connector body could be soldered directly to the plate. The cost of 1 ft . of this co-ax. is in the order of 34 cents.

PERFORMANCE

A copy of the TDR trace of a 6 ft . length of aluminium co-ax. is shown in Fig. 6. The Teflon spacers are evident and the larger transition steps at each end are caused by the BNC connectors which are not as good at these frequencies as the type N connectors. Some of the discontinuity, however, was introduced by the BNC to type N adaptors used at either end for measurement.

In any case, the steps due to the connectors do not exceed 3 to 4%, and should be satisfactory for use to several GHz . The loss was too low to measure with methods available, being less than 0.1 dB . The measured impedance of 52.8 ohms gives an SWR of 1.056 .

WEATHERPROOFING

The copper co-ax. should be suitable for outside use, as it is completely sealed by the waterproof type \mathbf{N} connectors.

The cheaper aluminium co-ax. would be more difficult to seal, but probably could be done by sealing the joints with suitable paint. A better method would be to fit O-rings in grooves around the outer tapered block. It would only then be necessary to seal the connector to the block with paint. Alternatively, dry air may be blown into the co-ax. under a slight pressure and allowed to leak out around the joints, thus preventing the ingress of moisture.

JOINING LONG LENGTHS

It is a relatively simple matter to join 18 ft . or 20 ft . stock lengths of tube to produce long low-loss runs. A neat fitting inner plug similar to the end of the inner tapered section can be used to join the inner conductor. The outer copper tube may be joined by sweating a neat fitting outer tube over the butt joint. The aluminium outer presents a more difficult problem, but could be joined using a neat fitting sleeve locked in place with lock screws tapped into the sleeve. An O-ring in a groove at each end of the sleeve could be used to provide weather proofing or possibly a smear of "Araldite" or similar adhesive at each end of the sleeve would be satisfactory.

IContinued on Pange 151

THE EFFECTIVE VALUE OF AN ALTERNATING CURRENT

LECTURE NO. 5

C. A. CULLINAN,* VK3AXU

Some knowledge of Calculus is desirable for this Lecture

A direct current d.c.) of electricity is a steady current travelling with time in one direction only, i.e. it is either Positive or Negative and remains such until some action is taken to alter its value or stop it entirely.

An alternating current (a.c.) of elcctricity is not steady but continually rises, falls and reverses itself, twice becoming zero and twice rising to a maximum, but in opposite directions in one complete cycle of changes.

In a simple alternating current gencrator, termed an alternator, let us assume that we have two magnets arranged opposite each other, one North and one South with a single loop of wire arranged so that it can be rotated between them.

Also, let us assume for a moment that the two magnets are vertical and that the loop of wire is horizontal.

Let us connect a centre zero ammeter in series with the loop of wire, then start to rotate the loop in a clock-wise direction.

Due to the phenomenom of Induction it will be found that as the loop approaches each of the magnets as it turns 90°, then the ammeter will show that an electric current is flowing in the loop. This will reach a maximum when the loop has turned 90°, i.e. its plane is in the same plane as that of the magnets.

However, as the loop is rotated further the current flowing in the ammeter will decrease and become zero when the loop is at 180°.

Now as the loop continues to rotate the current in the ammeter will be seen to rise, but in the opposite direction until a maximum is reached at 270°. With further rotation the current will fall and zero is reached at 360°. Thus the current twice becomes zero at $0 / 360^{\circ}$ and 180°, and twice becomes a maximum (of opposite polarity) at 90° and 270°. One complete rotation is known as one cycle. The loop of wire is known as an armature. If the armature is rotated at 3,000 revolutions per minute, then it will rotate 50 times each second. $3,000 \div 60=50$.

Therefore we would say that the number of cycles per second is 50 . This is known as the frequency of the alternating current.

If speed is 3,600 r.p.m. then the frequency is 60 cycles per second, or if speed is 6,000 r.p.m. then the frequency is 100 cycles per second.

From this it will be seen that the frequency of an alternating current is the number of cycles which occur in each second of time.

If the armature is rotated quickly the zero centre ammeter will not be able to follow the rapid alternations of current and its use in this explanation is more hypothetical than practical.

- Continuing the series of lectures by C. A. Cullinan, VK3AXU. at Broadcast Station 3CS for students studying for a P.M.G. Radio Operator's Certificate.

It must be realised that the loop of wire can only be rotated during a finite period of time. If it ceases rotation then there cannot be any current flow as the property of induction will cease too. In our simple alternator the magnets may be permanent magnets or electo-magnets having a constant magnetic field produced by supplying the electro-magnets with Direct Current. Also no matter how fast the loop is rotated it must take some amount of time to complete one revolution or cycle. In actual practice there are limits to the maximum speed of rotation that can be achieved.
where ($2 \pi \mathrm{f} t$) is the phase angle of the cycle and is known as θ,
therefore $\mathrm{i}=\mathrm{I} \sin \theta$.
In one complete cycle $A=360^{\circ}$ and the graph of this equation is shown in Fig. 1.

The curve $O A B C D$ is repeated for each individual cycle and I is the height of the maximum current. The ordinate at any point can be shown as P and the instantaneous current corresponding to any phase θ is i.

It will be seen that the loop O A B is exactly equal in shape but opposite to the loop BCD, therefore the current generates exactly the same amount of power in the positive half of the cycle as it does in the negative half.

Therefore the effective current is the same for each half of the cycle, thus the same for each complete cycle as long as the current continues to flow.

Let us then calculate the effective value of the current for the half cycle O A B.

6. 360° for 1 complete cycle.

Because of the time taken to make each revolution. the maximum current in one direction, say positive. is then followed by the maximum current in the opposite direction, but because of the time difference between the two maxima neither will cancel the other.

Thus it becomes possible to display the rotation of a single cycle of the loop or armature as a circle.
Now this circle can be transferred into a graph, having time shown horizontally and the amplitude of the current shown vertically and the resulting curve will be the well known Sine curve, i.e. let us roll the circle along a straight line and plot the resulting curve (see above diagram).
We desire to find the "effective" or cquivalent steady current when the maximum value of one cycle is known.

In an a.c. circuit the power is not proportional to the current itself (since this varies as can be seen from the sine curve), but to the square of the current flowing in a resistance R.

Thus Power $=\mathrm{Ri}^{2}$.
Let I be the maximum value of current for the cycle and i the instantaneous value at any time t, and f the frequency in cycles per second.

Then i is given by the formula:

As mentioned before, at any instant when the phase is θ, then the current is i as shown at P.

We have already said that Power $=\mathrm{Ri}^{2}$, also that $\mathrm{I}=\sin \theta$. Therefore the power generated per second of time $=\mathrm{Ri}^{2}$.

$$
\begin{aligned}
& =R(I \sin \theta)^{2} \\
& =R I^{2} \sin ^{2} \theta .
\end{aligned}
$$

The average value of this power for all values of A over the entire cycle of 360° is the same as would be generated by the equivalent or effective current, where Ie represents the equivalent or cffective current, then the power generated by it is Rie^{2} and this must be equal to the average of RI^{2} $\sin ^{2} \theta$ over the cycle or half cycle.

In order to find the average value of any quantity over a certain range we integrate it over that range (or sum up all its values over that range) and divide by the total range.

Now the Integral (or sum) over half a cycle $\left(0-180^{\circ}\right)=0$ to π, is

and therefore the average as stated above is

$$
\int_{\ln }^{\pi}
$$

The average of this expression for the varying power is therefore,

$$
\int_{0}^{\pi} \frac{\left(\mathrm{RI}^{2} \sin ^{2} \theta\right) \mathrm{d} \theta}{\pi}
$$

The $d \theta$ means the difference or differential or part of the angle A, and as $R=I$ are constants, this becomes,

$$
\frac{\mathrm{RI}^{2}}{\pi} \int_{0}^{\pi} \sin ^{2} \theta \mathrm{~d} \theta
$$

as stated previously, this is equal to RIe ${ }^{2}$, hence.

$$
\mathrm{RIe}^{2}=\frac{\mathrm{RI}^{2}}{\pi} \int_{\int_{0}^{\pi} \sin ^{2} \theta \mathrm{~d} \theta}
$$

Divide by R

$$
=\mathrm{Ie}^{2}=\frac{\mathrm{I}^{2}}{\pi} \int_{0}^{\pi} \sin ^{2} \theta \mathrm{~d} \theta,
$$

and to determine the value of the effective current Ie, we must integrate $\int \sin ^{2} \theta \mathrm{~d} \theta$.

To do this we use the trigonometrical relationship $\cos 2 \theta=1-2 \sin ^{2} \theta$.
Therefore $\sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta)$ therefore $\int \sin ^{2} \theta \mathrm{~d} \theta$

$$
\begin{aligned}
& =\frac{1}{2} \int(1-\cos 2 \theta) \mathrm{d} \theta \\
& =\frac{1}{2} \int \mathrm{~d} \theta-\frac{1}{2} \cos 2 \theta \mathrm{~d} \theta \\
& =\frac{1}{2} \theta-\frac{1}{2} \int \cos 2 \theta \mathrm{~d} \theta
\end{aligned}
$$

Now $\frac{1}{2} \int \cos 2 \theta d \theta$

$$
=\$ \int 2 \cos 2 \theta \mathrm{~d} \theta
$$

$$
=\frac{1}{4} \int \cos 2 \theta \cdot 2 d \theta
$$

$$
=d \int \cos 2 \theta \cdot d(2 \theta)=\frac{1}{4} \sin 2 \theta
$$

Hence $\int \sin ^{2} \theta$ d 0

$$
\begin{aligned}
& =\frac{1}{2} \theta-\frac{1}{2} \sin 2 \theta \\
& =\frac{1}{2}\left(\theta-\frac{1}{2} \sin 2 \theta\right) .
\end{aligned}
$$

Remember earlier we showed that

$$
\mathrm{Ie}^{2}=\frac{\mathrm{I}^{2}}{\pi} \int_{0}^{\pi} \sin ^{2} \theta \mathrm{~d} \theta
$$

therefore Ie^{2}

$$
\begin{aligned}
& =\frac{\mathrm{I}^{2}}{2 \pi}\left[\theta-\frac{1}{2} \sin 2\right. \\
& =\frac{\mathrm{I}^{2}}{2 \pi}\left[\begin{array}{ll}
\left(\pi-\frac{1}{2}\right. & \sin 2 \pi \\
\left(0-\frac{1}{2}\right) & \sin 0)
\end{array}\right] \\
& =\frac{\mathrm{I}^{2}}{2 \pi}=\left(\pi-\frac{1}{2} \sin 360^{\circ}\right) \\
& =\frac{\mathrm{I}^{2}}{2 \pi}(\pi)
\end{aligned}
$$

therefore $\mathrm{Ie}^{2}=\frac{\mathrm{I}^{2}}{2}$
therefore $I e=\frac{I}{\sqrt[2]{2}}=0.7071$.
Thus the effective value of an alternating current is 0.707 of the maximum current.

Similarly the effective voltage in an a.c. current $\mathrm{Ee}=0.707 \mathrm{E}$, where E is the maximum voltage in the cycle.

Ordinary a.c. voltmeters and ammeters indicate the effective value. (There are special meters which read the peak voltage.)

Thus when reading the voltage or current in an a.c. circuit it must be remembered that this will be the effective value (except where the peak reading meters are used).

Therefore if the effective or average value is known, the peak voltage or current can be calculated readily.

Ie or $\mathrm{Ee}=0.707 \mathrm{I}$ or E
therefore Peak value $=1 \div 0.707$

$$
=1.41
$$

The discussion above has assumed that the a.c. current is the same for both halves of the cycle.

However, this is not true with audiofrequency currents and voltages as found in music and speech.

Therefore the Australian Broadcasting Control Board implies, by regulation, that the difference between the average power as read by a Vu meter and the peak power will be 8 decibels.

Thus in Australia this figure must be used, although other counties may use a different value.

Vu meters used in studios and on professional tape recorders read the average or effective value, whereas the peak reading meters used on some recorders read the peak value. This must be remembered when testing such machines.

When testing a tape recorder with a sine wave, or a broadcasting system, it is necessary to test at normal level and at 8 decibels above this.

In a transmitter the maximum level is that which produces 100% modulation of a sine wave, referred to 1,000
cycles per second. Then the average value of a test signal is set 8 db . below this figure, i.e. 40% modulation.
When dealing with a.c. power systems, a.c. motors and the like, it should be remembered that voltages are quoted on the average figure.
Insulation, valve and solid state devices must be considered in the light of the peak value plus a margin for safety.
Thus a power transformer designed to give 300 volts a.c., each side of a centre-tap, will give 300 volts average or 600 volts across the whole winding. However, the peak or maximum voltage will be $600 \times 1.41=846$ volts.

PROVISIONAL SUNSPOT NUMBERS

APRIL 1970

Dependent on observations at Zurich Observatory and Its stations in Locarno and Arosa.

Day			R	Day			R
1		112	16	92
2	\ldots	94	17	82
3	121	18	\cdots	68
4	116	19	67
5	120	20	65
6	115	21	64
7		123	22	57
8	\ldots	147	23	\ldots	67
9	172	24	\ldots	90
10		.	188	25	93
11	183	26	81
12	163	27	\ldots	88
13			141	28	-		106
14	.		124	28		112
15		106	30		116
			ean	109			

Construction of Low Loss Co-axial Cable
 (Continued from Page 13)

A more complex locking arrangement using a gland at each end could also be devised, but would require considerable machining.

RELATIVE COSTS

These are estimated for 18 ft . lengths and provided only as a guide (Table 1).

An allowance has been made for miscellaneous items, Teflon, etc. It will be seen that aluminium construction is the cheaper, unfortunately involving more effort.

CONCLUSION

It has been shown that satisfactory low-loss rigid co-axial cable can be
manufactured at relatively low cost. While the initial cost of the copper co-ax. is higher, only hand tools are required in the construction and is suitable for all weather use. The aluminium co-ax. construction is cheaper and lighter, but more complex, requiring the use of a small lathe and is also more difficult to weatherproof.

It has also been demonstrated that measured values agree closely with calculated values, thus allowing the design to proceed with confidence, especially when measuring equipment is not available.

Fig. 7.-Joint for Aluminium Co-ax.
For Copper, inner and outer may be sweated.

Material	Outer	Inner	Cost/ft.	Connector Cost	Zc	Total Cost
Copper	$3 \prime \prime \times 20 \mathrm{~g}$.	$4^{\prime \prime} \times 20 \mathrm{~g}$.	70c	Type N \$2.50	58 ohms	\$16.00
Copper	7' $\times 16 \mathrm{~g}$.	$4^{\prime \prime} \times 20 \mathrm{~g}$.	\$1.03	Type N \$2.50	54 ohms	\$22.00
Aluminium	$1^{\prime \prime} \times 18 \mathrm{~g}$.	$8^{\prime \prime} \times 18 \mathrm{~g}$.	34c	BNC \$2.25	53 ohms	\$9.00

Table 1.-Estimated cost for 18 ft . lengths of co-ax.

Fairchild is bursting at the seams

withthelatest series74ic's

We've got tons of them - on the shelf-right now. The latest Series 74 i.c's are manufactured at Fairchild in Croydon, Victoria. So you're sure of immediate delivery. Local manufacture means a consistently large stock. And engineering backup. Fairchild engineers are bursting to give you advice and information. When designing in any Series 74 i.c's a phone call will connect you with a Fairchild engineer and you will receive immediate assistance.
The Fairchild Series 74 range
There is an initial range of 25 devices. We have a stock
of 30,000 on our shelves, for immediate delivery. Every month, more devices will be added to the range. Just watch our range grow!
And prices? Competilive.
You can't afford to go past Fairchild.
Fairchild is closer to you.
We're really bursting at the seams, but, we are doing something about it. Currently, construction of plant extensions that will double our floor space.

Fairchild Australia Pty.Ltd.
World leaders in the technology and manufacture of Silicon semiconductor devices.
All this - only a phone call to Fairchild - at Melbourne 723 4131. Sydney 4397508 Brisbane 97 8222, Adelaide 377723 Auckland, N.Z., 579307

"Where Have All Those Good Hams Gone?"

Not a bad question, not such an uncommon one. Especially if you live in certain areas of our VK 4 land.. Why don't you hear as much of old pro's such as Mick VK4ZAA, Dane VK4ZAX or Tom VK4ZAL, just to think of a few. I have no doubt much the same is asked of many Amateurs in VK3 land.

The answer is simply given, but not as easily understood. The answerChannel 0.

We, in many areas, particularly VK3 and VK4, certainly know why we are not heard of so often these days. But can any of us give a good sound reason why this has come about.

The practical explanation is simple. Suddenly you have a transmitter only 250 kilocycles away from the bottom of your band. Effective radiated power: 100 kilowatts vision, 20 kilowatts sound. Bad enough, even discouraging!

But combine the complex, varying pulse nature of the vestigal video modulation with a frequency modulated intercarrier, and the result just has to be heard to be believed.

So we tried filters, we tried low cross-modulation converters, we tried a lot. And results were sometimes good. However, it was not good for long. Old t.v.i. himself soon showed. Back to the old drawing board. High pass filters, 52 megacycle oscillators, shielding and just about everything else too! But those t.v. sets just don't cut off response at 52 megacycles.

So "t.v.i. reigns, even though transmissions are clean, stable, and in most cases, on quite low power. Officially the verdict is, and we must abide by it, NO 6 metre transmission during Channel 0 programming.

This gives us no evening transmissions at all, unless, at least, after 2300 E.A.S.T. Mornings are available week days and Saturdays to 0900 or so, and Sunday, if lucky, to 1100 hours.

As mentioned earlier, this answers "why" to some questions, but what is the reason.

Possibly one reason is that most of us, myself included, did not realise just how bad things were going to be, when that 2 megacycles of our 6 metre band slipped away.

Another reason, certainly, must be the disappointing lack of consideration which must have been shown towards our Amateur Services, of present and past, by persons in control of frequency allocation.

But whatever the reason, the damage is done. "Fifty to Fifty-two" is gone for good. So have a lot of the old 6 metre Amateurs. Whether we can place any blame on ourselves or others for allowing these circumstances to arise is not at question anymore. It is too late.

But, please chaps, never let it happen again. Once part of any Amateur band is gone, it is gone for good.

And, sadly enough, on 6 metres, a lot more than 2 megacycles have gone. So have too many good friendships which we looked forward to renewing every DX season.
-J. D. Bisgrove, VK4ZJB/T.

oday's sophisticated communications equipment calls for crystals that meet the most exacting standards of the art.
Standards that were acceptable a few years ago cannot meet the requirements of design engineers today. Today's tight tolerances demand quartz blanks with precision selected angles of cut, and Hy-Q use X-ray diffraction equipment to determine this most important factor.
Long term stability is assured by close engineering control of all processing in an air-conditioned environment. The blanks are then checked to determine the frequency change over the temperature range.
The crystal is then precision calibrated to frequency using a crystal impedance meter which simulates the manufacturer's oscillator specifications.
Hy-Q crystals are custom manufactured to meet all these exacting requirements.
It is for these reasons that Hy-Q crystals have been readily accepted as a standard by the Communications Industry and why we can guarantee them against defective material and workmanship or any deterioration in performance when they are used in equipment for which they were specifically made.

Australia's largest independent crystal manufacturers.

 Write for details.10-12 Rosella Street.
Electronics Pty. Ltd.
P.O. BOX 256. Frankston, Victoria. 3199 Telephone 7839611. Area Code 03. Cables: Hyque Melbourne. Telex 31630.

AGENTS:

NSW: General Equipments Pty, Ltd., Artarmon. Phone: 4392705.
SA: General Equipments Pit. Ltd.. Norwood. Phone: 634844
WA: Associated Electronic
Associated Electron

Services Pty. Lid.,
Morley.
Phone:
6858.

NT: Combined Electronics Pty. Lid. Darwin. Phone: 6681
Hobart Radio Clinic.
Hobart. Phone: 343884
QLD: Douglas Electronics Pty. Ltd. 322 Old Cleveland Rd
Coorparoo. Phone: 978222

OSCAR 6-THE AUSTRALIAN "BIT"
 LES JENKINS** VK3ZBJ

The OSCAR 6 satellite will, it is hoped, be launched into orbit about the middle of next year. The orbit path will probably be similar to that followed by AUSTRALIS OSCAR 5, a near-polar orbit at a height of about 1,000 miles. This would allow Amateurs in Japan to contact their fellows in eastern Australia and would make trans-Tasman Amateur communications on v.h.f. a regular and reliable fact. Similarly, trans-Atlantic contacts on v.h.f. will
become almost routine.

OSCAR 6 will carry two independent communications systems; transponder A (built in Australia) and transponder B (built in Germany). The two transponders are completely different in their operation, so it is important that intending users become acquainted with their operation and with the equipment that will be required to use them. The following description of the VK portion of the payload will enable intending users to prepare themselves well in advance of the launch, so that maximum use may be made of the satellite.

SYSTEM OUTLINE

The basic concept is that of a repeater system. Signals are received by the satellite in the 2 metre band, demodulated and the recovered audio used to modulate the downlink transmitter, which radiates in the 75 cm . band. Several channels are available, each with its own separate receiver i.f. system and transmitter. The inputs for the i.f. amplifiers are derived from a common primary converter.

As the incoming signal is demodulated, it will be obvious that only one mode can be accommodated. The one chosen is f.m., with the specifications being compatible with currently used f.m. "Carphone" type equipment.

Two other sub-systems will be pro-vided-a multi-channel digital command system and a multi-channel telemetry system. These will be shared by all systems on board the spacecraft and will enable either communications transponder to be activated alternately, as well as providing for corrective measures to be exercised in the event of failure of certain spacecraft functions.

The telemetry system will provide some 60 channels, shared by both transponders, the output of which will be r.t.t.y. This will be compatible with normal 850 Hz . shift, 45.5 Baud systems. The downlink frequency for the telemetry, as well as the modulation mode, will depend on which transponder is activated.

CHOICE OF INPUT-OUTPUT BANDS

Some readers may question the choice of input-output frequencies. The choice is based on the following considerations:

1. Elimination of Mutual Interference. If the uplink band is 75 cm. ., then the output from the downlink in the 2 metre band would have harmonics falling in the bandpass of the receiver
input circuits. Even if these arc well down in amplitude, say, - 50 dB ., they are still quite large signals and may produce undesirable responses and "birdies" in the receiver system. More importantly, they can de-sensitise the receiver, thus requiring more ground station power to acquire the satellite.

It may be argued that these faults can be rectified by the use of suitable filters and choice of prequencies. However, it scems an unnecessary hardship to impose on the satellite builder if a simpler solution is available.

The case of the wholly "inband" system (i.e. 2 metre/2 metre, or 75 $\mathrm{cm} . / 75 \mathrm{~cm}$.) is discarded for the above reasons, and this is supported by experience with ground-based systems. Such operation in the 75 cm . bands is Yeasable. However, this band is restricted in certain geographical regions and this, on a world basis, poses some problems.
The 2 metre input/ 75 cm . output system has several advantages. In the first place, it is possible to generate 432 MHz . output without producing spurious signals in the 2 metre band. This is accomplished in the VK system by generating at 13.5 MHz . and "doubling all the way". The resulting system allows antenna confgurations and subsystem layouts within the satellite to be arranged without regard to inputoutput coupling.

This coupling between antennae on a small spacecraft is extremely tight if antennae for the same band are used.

AO5, for instance, suflered extreme crosstalk between the input and output antennae; so much so, that 10 kW . e.r.p. was required to exercise command! The demonstration model of OSCAR 6 has its antennae intermingled, with no measureable degradation in receiver sensitivity.
2. Ground Equipment. From the user's point of view, the ground equipment requirement is the most important aspect of satellite operations. In this respect there is not much difference between systems, with "inband" techniques requiring only one antenna being the most favorable. The most effective use of power, both on the ground and in the spacecraft, favors 75 cm . for the uplink and 2 metres for the downlink. High gain antennae for 75 cm . are small and easily mounted and the larger capture area of 2 metre antennae requires less downlink power for the same result. The higher path loss on 75 cm . is more easily made up with both higher power output and high gain antennae on the ground, whilst lower path loss on 2 metres means less transmitter power required in the satellite.

This argument is certainly in favor of the opposite system. However, when the ground requirements are presented the reader will see that things are not quite so bad after all. Those who tracked AOS will remember how good a signal they received, and this from 100 mW . of output power. It follows that 100 mW . on ihe ground into a

SUPPORT PROJECT AUSTRALIS!

LIMITED SUPPLY OF-

GREAT CIRCLE BEARING MAPS 60c Post Free

Printed on heavy paper $20^{\prime \prime} \times 30^{\prime \prime}$, Great Circle Map $16^{\prime \prime}$ diameter. Invaluable for all DXers and S.w.l's. Bearings around circumference allow precise beam headings to be made.
ALL MONEY TO GO TO "W.I.A. PROJECT AUSTRALIS"
Cheques, etc., to W.I.A., P.O. Box 67, East Melbourne, Vic., 3002
WRITE NOW, WHILE STOCKS LAST

[^43]receiving antenna would reach the satellite just as well. If a standard f.m. mobile unit with, say, 10 watts of carrier output is used, then the signal into the satellite will be 20 dB . higher than the signal received from AO5. When one takes into account the fact that the receiver in the satellite is an f.m. unit, it follows that a very solid, noise-free signal can be put into it for a very small amount of power on the ground. Let us do some simple arithmetic and see what this all means in terms of output power.

The satellite receivers have the following characteristics:-

Input frequency: $144-146 \mathrm{MHz}$.
I.f. bandwidth (-40 dB .): 50 KHz .

Input noise figure: 0.8 dB .
6 dB . quieting: 0.07 microvolt (50 ohm).
20 dB. quieting: 0.18 microvolt (-124 dbm.).
To a first approximation, we can calculate the path loss as:-
$L=37+20 \log F+20 \log D$
where F is frequency in MHz .
D is distance in miles.
If we put $F=150 \mathrm{MHz}$.

$$
\text { then } \begin{aligned}
\mathrm{D} & =2,000 \text { miles, } \\
& =153+87+66 \mathrm{~dB} .
\end{aligned}
$$

Assuming a radiated power of 1 watt or +30 dbm ., then the signal at the input to the receiver $=+30-153$, or -123 dbm .

This, of course, takes no account of antennae gains, feeder losses, etc., and assumes best case for antenna coupling between ground and satellite. However, it is clear that 1 watt will give something like 20 dB . of quieting in the satellite receiver. An increase of 20 dB., i.e. 10 watts into a 10 dB . gain antenna, would increase this input to almost 2 microvolts, which gives full quieting in the receivers and then some! In fact, mobile stations should be able to put an adequate signal up to the satellite. However, they may have some difficulty in hearing the downlink and this brings up the question of receiving equipment.

Before discussing the ground requirements for receiving the 75 cm . downlink transmissions, a few words on the satellite transmitters would be in order. The transmitters consist of a frequency modulated crystal oscillator at 13.5 MHz ., multiplying up to 216 MHz . at a power level of 1.5 watts. This is passed to a varactor doubler, producing 1 watt output at 432 MHz . Assuming that a total of five channels are used, including the telemetry downlink, this requires a total output of 5 watts which, at an overall efficiency of 33% d.c. to r.f., means a d.c. input power of 15 watts is required for the transmitters only. As only 6 watts of charging power is available from the satellite's solar cells, this seriously limits the operating time of the system. However, as the transmitters draw no current in the absence of an input signal, the duty cycle will depend on the number of stations using the satellite during an orbit. As much of the time the satellite will be over areas of the world where there are no stations active, the situation is not quite so bad as first appears.

Assuming all the power generated is radiated, then one can calculate the
received signal as for the uplink, plugging in the values for 432 MHz .

This gives:-

$$
\begin{aligned}
& \text { Inis gives: }-37+20 \log \mathrm{~F}+20 \log \mathrm{D} \\
& \mathrm{~L}=37+66+52.7 \\
&=155.7 \\
&= \\
&=\text { approximately } 158 \mathrm{~dB} . \\
& \text { If } 1 \text { watt }=+30 \mathrm{dbm} .
\end{aligned}
$$

then $\operatorname{Pr}=+30-158=-128 \mathrm{dbm}$.
This corresponds to about 0.1 microvolt in 50 ohms at the terminals of a dipole, assuming the dipole to have unity gain. If a low noise (3-4 dB.) mast head amplifier is used, then an input of 0.1 microvolt will result. It is emphasised that these figures are a first approximation only and are best case. However, if an antenna gain of 10 dB . is available, this will boost the input to 0.7 microvolt, which should make a reasonable impression on a good quality f.m. receiver. It is unfortunate that high gain antennae yield narrow beamwidths, as this requires the antenna to track the satellite at all times. The higher the gain, the more accurate tracking must be.

Summarising these results, it is evident that the receiving requirements far outweigh the transmitting side.
However, on the credit side, being an f.m. system, the capture threshold
is quite well defined, and once the signal exceeds this value, then the S / N ratio climbs rapidly.

Up to this point, nothing has been mentioned about Doppler shift on the signals. The uplink on 2 metres will have a maximum excursion of approximately 3.6 KHz . An a.f.c. loop in the receivers will automatically correct for this for each channel, providing the input signal is within 10 KHz . of the nominal centre frequency for the channel.

The downlink Doppler will be in the ordsr of 11 KHz . maximum, and will require the receiving station to provide a.f.c. on his own receiver. Suitable circuits for this will be published in a later article.
This, then, summarises the f.m. system. With well-equipped stations, "press to talk" QSOs should be possible for most of the time that the satellite is "visible" between two ground stations. If all gces as planned, Amateurs throughout the world will have the unique opportunity to assess the suitability of all modes of communication by using both satellite transponders.
[An artist's impression of the type of ::atellite that OSCAR 6 will probably be is featured on the front cover of this issue.-Ed.]

K.W. ELECTRONICS KW ATLANTA TRANSCEIVER

* BUILT-IN NOISE LIMITER

\star BUILT-IN 100 KHz . CRYSTAL CALIBRATOR * FULL P.T.T. OPERATION
$\star 500$ WATTS P.E.P. INPUT
* CALIBRATED "S" METER
\star AUTOMATIC LINEARITY CONTROL
\star GRID BLOCK KEYING
\star UPPER AND LOWER SIDEBAND SELECTION BY PANEL SWITCH \star STEEP SLOPE CRYSTAL FILTER, 5.2 MHz .
\star MATCHING A.C. POWER SUPPLY UNIT WITH BUILT.IN SPEAKER
\star FULL COVERAGE ALL BANDS, 3.5 to 30 MHz . \quad SSB, AM, CW
Write for Technical Leaflet
sala numatian aext: SIDEBAND RADIO
73 COLE STREET, ELWOOD, VIC., 3184
Phone 96-1877
choose the best-It costs no more

O. T. LEMPRIERE \& CO. LTD. Head Office: 31-41 Bowden St., Alexandrla, N.S.W., 2085 and at Malbaume - Belabene - Adalalde - Perth - Newcasila

1970 John Moyle Memorial National Field Day Results

Certificate winners are indicated in bold type.

24-HOUR DIVISION				
Section A:				
AX3ZAZ/P2			154	points
AX3DY/P	...	\cdots	1463	,
AX3BBR/P	714	"
VK3AOT/P	73	"
VK4ZDR/P		268	-
AX5ZE/P	568	"
VK5ZFE/P			118	,
VK5ZBT/P			128	"

Section B:
No entry.
Section C:
No entry.
Section D:

Section E:
AX3KS
AX
AXB
AX8KA

Section F :
L3383-C. McLachlan 1625 points L3308-A. Cox L3312-M. Batt L3-D. Harrison L3042-E. Trebilcock L4335-M. Joyce. 740 535 " 535 " 270 LA33E-M Joyce $\quad 510$ L4104-K. Cunningham 510
315 L5113-L. Earle (Mrs.) 1518 L5096-T. Hannaford .. 1357
Check Legs:

AX3QV, AX9DR, and VK7RY.

COMMENTS

The Field Day results this year showed a slight upward trend in the number of logs entered. However, the actual number of operators and assistants of multi-operator stations jumped to much higher figures than ever before. It would appear from checking the logs thai the trend was towards greater group efforts from club stations.

From the logs, comments received indicated that the single operators would prefer the contest held on days that do not clash with the A.R.R.L. Contest, while the multi-operator stations are content to let the dates coincide.
VK5LP and VK5QZ are worthy F.D. operators. Conditions in the caravan at 1600 ft . in the Mt. Gawler area were such that temperatures reached 112° in the van at 10.30 a.m., and at noon the transistor heat sinks were too hot to touch, so rather than ruin the transistors, they closed down. However, they are undaunted, and will be out again next year. L2849 stated in his log that he had never heard a poorer contest, and what will the F.C.M. do for improvement?
Eric Trebilcock weighs in with the very pertinent comments "that it should be mandatory for S.w.l's to log the serial numbers received-it's a farce as it is now."
Our Region Three W.I.A. Director condescended (or just "conned") to write out the logs for VK3AWI/P this year, but had a problem with the 20 metre logs: "they" lost them!
For the operation of AX3APC/P, VK3AKJ writes: "Two teams were entered by the Moorabbin Club for the 1970 N.F.D. One team operated under the call sign VK3XK/P and the other under the Club call sign of VK3APC/P. In addition at least six other Club members were Portable for all or part of the week-end.
"The Club station was situated at Mount Blackwood, some 50 miles north west of Melbourne in the Pentland Hills. The site had all the advantage of being some $2,000 \mathrm{ft}$. above sea level with a first class v.h.f. aspect of Melbourne and Geelong, and an excellent take-off for the short path to the States on h.f. However, the site was a comparatively small one since the 'plateau' on the hill top was surrounded by sharp drops on all sides and the useable part was not more than 70 yards square. There was, not unexpectedly, some mutual interference beiween equipment.
"The comparatively small operating crew, some of whom were new to field day activity, had been in training for some weeks beforehand, especially in regard to the setting up of masts and antennas. This prior activity paid off, and probably for the first time, nothing was forgotten, everyone got there on time, all gear and tents, etc., went up on schedule and without even the slightest problem.
"The self-congratulation on this side of things just had to be short lived! It was!
"Around 0300 K on the Sunday morning a near gale blew up and continued for over four hours. The 80 metre antenna literally blew away, the 15 metre quad was completely wrecked and the 20 metre beam lost one half of its reflector. No tents actually blew down, but only because of some very prompt rigging action by those affected.
"After a couple of hours 'make-do-and-mend', the site was operational again with makeshift antennas on 80, 15 and 10 metres and the 20 metre monster operating as a two element device.
"As always, a close watch was kept on the progress of other friendly rivals in the field to see how numbers compared. The conclusion was drawn at the end of the day that the result was going to be very open since at least three teams (including VK3APC?) appeared to be fairly close together in total number of contacts.
"The general concensus of opinion at the end of the Contest was that next year our engineering has to improve and some better technique be found to wring numbers out of overseas 'clients'.
"Perhaps the Contest Committee would consider the cossibility of relaxing the requirement of a serial number from other than VK stations, especially if our Contest again coincides wit! the A.R.R.L. Contest."

AX1ACA/P writes that the VK2 Field Day and the National Field Day clash caused some confusion. Operation via repeaters was also mentioned and also that the Rules should state whether or not repeater operations should be allowed for contest working.

AX4GT suggests improving the Contest by awarding a certificate for top scorers in each section of all call areas.

Harold Burtoff, on behalf of his group, writes how they did enjoy the Contest, and on the high percentage of young people in their group. He throws out a challenge to all and sundry, backing his group against all stations in next year's Contest. They had fourteen people involved, eight of whom were under 18 years of age.

Results this year have been published later than usual due to other magazine commitments. Also please note that the dates for next year's Contest are 13th and 14th February, 1971.

In conclusion, thanks to all who participated and submitted logs, and congratulations to the award winners.

-Nell Penfold.

Federal Contest Maninger, for Firleral Contest Commiltere.

REMEMBRANCE DAY CONTEST, 1970

A perpetual trophy is awarded annually for competition between Divisions. It is inscribed with the names of those who made the supreme sacrifice, and so perpetuates their memory throughout Amateur Radio in Australia.

The name of the winning Division: each year is also inscribed on the trophy and in addition, the winning Division will receive a suitably inscribed Certificate.

Objects

Amateurs in each Call Area, including Australian Mandated Territories and Australian Antarctica will endeavour to contact Amateurs in other Call Areas on all bands. Amateurs may endeavour to contact any other Amateurs on the authorised bands above 52 MHz . (i.e. intrastate contacts will be permitted in the v.h.f./u.h.f. bands for scoring purposes.

Contest Date

0800 hrs. GMT Saturday. 15th August, 1970, to 0759 hrs. GMT Sunday, 16th August, 1970.

All Amateur Stations are requested to observe 15 minutes' silence before the commencement of the contest on the Saturday afternoon. An appropriate broadcast will be relayed from all Divisional Stations during this period.

RULES

1. There shall be four sections to the Contest:-
(a) Transmitting Phone.
(b) Transmitting C.w.
(c) Transmitting Open.
(d) Receiving Open.
2. All Australian Amateurs may enter the Contest whether their stations are fixed, portable or mobile. Members and nonmembers will be eligible for awards.
3. All authorised Amateur bands may be used and cross-mode operation is permitted. Cross-band operation is not permitted.
4. Amateurs may operate on both Phene and C.w. during the Contest, i.e., Phone to Phone or C.w. to C.w. or Phone to C.w. However only one entry may be submitted for sections (a) to (c) in 1.

An open \log will be one in which points are claimed for both phone and c.w. transmissions. Refer to Rule 11 concerning Log entries.
5. For Scoring, only one contact per station per band is allowed. However, a second scoring contact can be made on the same band using the alternate mode. Arranged schedules for contacts on the other bands are prohibited.
6. Multi-operator stations are not permitted. Although log keepers are permitted, only the licensed operator is : llowed to make contact under his own tall sign. Should two or more wish io operate any particular station, each
operating, then the word "log" followed by their own call sign, e.g., "CQ Remembrance Day from VK4BBB log VK4BAA."
C.w.: Substitute operators will call "CQ RD de" followed by the group call sign comprising the call of the station they are operating, an oblique stroke and their own call, eg., "CQ RD de VK4BBB/VK4BAA."

Contestants receiving signals from a substitute operator will qualify for points by recording the call sign oi the substitute operator only.
7. Entrants must operate within the terms of their licences.
8. Cyphers-Before points may be claimed for a contact, serial numbers must be exchanged and acknowledged. The serial number of five or six figures will be made up of the RS (telephony) or RST (c.w.) reports plus three figures, that will increase in value by one for each successive contact.

If any contestant reaches 999 he will start again with 001.
9. Entries must be set out as shown in the example, using ONLY ONE SIDE of the paper and wherever possible standard W.I.A. Log Sheets should be used. Entries must be clearly marked "Remembrance Day Contest 1970" and must be postriarked not later than 6th September, 1970. Address them to "Federal Contest Manager, W.I.A., G.P.O. Box N1002, Perth, 6001, West. Aust.: Late entries will be disqualified.
10. Scoring will be based on the table shown.

SCORING TABLE
 To

		$\ggg \ggg \ggg>$									
	VK0	-	6	6	6	6	6	6	6	6	6
	VK1	6	-	1	1	2	3	5	4	6	5
	VK2	6	3	-	1	2	3	5	4	6	5
	VK3	6	4	1	-	2	1	4	3		5
回	VK4	6	3	1	2	-	3	6	5		3
这	VK5	6	5	2	1	3	-	4	3	3	6
	VK6	6	6	2	1	4	2	-	3	5	6
	VK7	6	5	1	1	3	2	5	-	5	6
	VK8	6	5	1	1	2	3	6	4	-	3
	VK9	6	5	1	2	3	4	5	6	1	-

Note.-Read table from left to right for points for the various call areas.

In addition, all intrastate contacts on 52 MHz . and above are worth 1 point each per band.

Portable Operation: Log scores of operators working outside their own Call Area will be credited to that Call

EXAMPLE OF TRANSMITTING LOG

Date/ Time G.M.T.	Band	Emission and Power	Cnill Sorkned	RST No. Sent	RST No. Received	Points Claim.

Note--Standard W.I.A. Log Sheets may be used to follow above form.

EXAMPLE OF RECEIVING LOG (VICTORIAN S.W.L.)

$\begin{aligned} & \text { Date/ } \\ & \text { Time } \\ & \text { G.M.T. } \end{aligned}$	Band	Emission	$\begin{aligned} & \text { Call } \\ & \text { Sign } \\ & \text { Heard } \end{aligned}$	RST No. Sent	RST No. Received	Station Called	Polnts Claim.
- Aug. 70							
150810	7 Mc .	A3 (a)	VK5PS	58002	-	VKGRU	1
				59007		VK7EJ	4
$\begin{array}{ll}15 & 1035 \\ 15 & 1040\end{array}$	$52 .$.		VK4ZAZ	56010	-	VKS3ZDR	2
$15 \quad 1040$	"		VK3ALZ	59025		VK3QV	1

[^44]Area in which operation takes place, e.g. VK5ZP/2. His score counts towards N.S.W. total points score.
11. All logs shall be set as in the example shown and in addition will carry a front sheet showing the following information:-
Name
Address
$\ldots . a i m e d ~ S i g n ~ S c o r e . ~$

No. of Contacts

Declaration: I hereby certify that I have operated in accordance with the Rules and spirit of the Contest.

Signed

Date.
All contacts made during the Contest must be shown in the log submitted (see Rule 4). If an invalid contact is made it must be shown but no score claimed.

Entrants in the Open Sections must show c.w. and phone contacts in numerical sequence.
12. The Federal Contest Manager has the right to disqualify any entrant who, during the Contest, has not observed the regulations or who has consistently departed from the accepted code of operating ethics. The Federal Contest Manager also has the right to disallow any illegible, incomplete or incorrectly set-out logs.
13. The ruling of the Federal Contest Manager of the W.I.A. is final and no disputes will be discussed.

Awards

Certificates will be awarded to the top scoring stations in Sections (a) to (c) of Rule 1 above, in each Call Area, and will include top scorer in each Section of each Call Area operating exclusively on 52 MHz . and above. VK1, VK8, VK9 and VK0 will count as separate areas for awards. There will be no outright winner for Australia. Further Certificates may be awarded at the discretion of the Federal Contest Manager.
The Division to which the Trophy will be awarded shall be determined in the following way.

To the average of the top six logs shall be added a bonus arrived at by adding to this average the ratio of logs entered to the number of State Licensees (including Limited Licensees), multiplied by the total points from all entries in Sections (a), (b) and (c) of Rule 1.

Average of top six logs + $\left\{\begin{array}{l}\frac{\text { Logs Entered }}{\begin{array}{l}\text { State Licensees } \\ \text { includ. Z Calls }\end{array}} \times \begin{array}{l}\text { Total Pts. from } \\ \text { all Entrants in } \\ \text { Sect. (a) (b) (c) }\end{array}\end{array}\right\}$
VK1 scores will be included with VK2, VK8 with VK5, and VK0 with VK7. Also, VK9 logs and score will be added to the Division which is geographically the closest.

Acceptable logs for all Sections shall show at least five valid contacts.

The trophy shall be forwarded to the winning Division in its container and will be held by that Division for the specified period.

RECEIVING SECTION (Section D)

1. This section is open to all Short Wave Listeners in Australia, but no active transmitting station may enter.
2. Contest times and loggings of stations on each band are as for transmitting.
3. All logs shall be set out as shown in the example. The scoring table to be used is the same as tha: used for transmitting entrants and points must be claimed on the basis of the State in which the receiving station is located. A sample is given to clarify the position.

It is not sufficient to \log a station calling CQ-the number he passes in a contact must be logged.

It is not permissible to \log a station in the same call area as the receiving station on the m.f. and h.f. bands 1.8-

30 MHz ., but on bands 52 MHz . and above such stations may be logged, once only per band, for one point. See example given.
4. A station heard may be logged once on phone and once on c.w. for each band.
5. Club receiving stations may enter for the Receiving Section of the Contest, but will not be eligible for the single operator award. However, if sufficient entries are received a special award may be given to the top receiving station in Australia. All operators must sign the Declaration.

Awards

Certificates will be awarded to the highest scorers in each call area. Further Certificates may be awarded at the discretion of the Federal Contest Manager.

THE W.I.A. TIE

At the Federal Conference in Adelaide last Easter it was decided to obtain a tie which could be worn by members of the Institute. A design was proposed at the meeting and after consultation with the tie makers it is now ready for production. The illustration shows the general conception. Two ties will be available, one in navy blue and

the other in deep red or maroon, and the material will be washable terrylene. Each will have a single small W.I.A. badge with the map in white and the detail in red.

Colour photographs and colour slides showing the samples in full colour are being circulated to all centres and orders are awaited. We feel sure that the tie will be well received because
it is a very handsome tie and will do justice to almost any suit.

Sales will be on the basis of cash with order, and ties will only be ordered after the money has been received at W.I.A. headquarters. The price to members will be about $\$ 2.50$ and the delivery time will be about five months. Division Secretaries are requested to get their orders in quickly so that the first batch can be ordered without delay.

FEDERAL PRESIDENT OVERSEAS

The Federal President of the W.l.A., Mr. Michal Owen, VK3KI. left on 19th June for a world tour which is expected to last six weeks. Whilst overseas he will be visiting Amateur Socleties for discussion with their officlals and arrangements have been made for him to meet officers in Philippines. Hong Kong. Japan. India and Thailard.
His tour will include U.S.A., England and Europe. It is hoped that talks with A.R.R.I. and I.A.R.U. officials in these countries will provide information on I.T.U./I.A.R.U. affairs that will assist the Institute and Region 3 organisation in their Space Conference proposals.
Although part of Michael's trip will be concerned with business, the primary aim in many ways is essentially Amateur/I,T.U. orientated. Federal Council have agreed that part of the expense should be borne from I.T.U. funds and the Region 3 organisation has also made a contribution of $\$ 300$ with additional assistance from "A.R."
Federal Council and Executive are looking forward to frequent taped reports on his encounters. which will be published in "A.R."
-

BECKET FESTIVAL
 STATION, GB2CF

7. Old Fold.

Chestfield.
Whitstable, Kent, England
Secretary. W.I.A..
Dear Sir.
We should be very grateful if it could be brought to the attention of Radio Amateurs in Australla of the Becket Festival Station, GB2CF, netive from Canterbury, England, from 19th no 26 th July inclusive.
This station will form part of the Becket Festival. and QSOs. which will be QSLed with a suitable eard. will be most welcome.
QSOs with stations in towns in Australif called Canterbury or any of the following local towns and villages which surround our city would be most welcome.
Ash, Aylsham, Bckesbourne, Bridge, Chilham. Chartham. Faversham, Eltham. Herne Bay. Herne. Ickham, Kingston. Littlebourne. Patrixbourne. Sturry, Selling. Stelling. wye. Wingham, and Wickhambreux.

Yours sincerely
-D. L. Smith. G8CUC.
Acting in co-operiation with
G3LCK. G3XDV, G3XWQ'

NEW CALL SIGNS

FEBRUARY 1970

VKIEB-E. F. Bacon. 7 Bonney St.. Alnsley. VKIZVG-G. A. Cohen, 39 Quandong St.. VK2EM-School of Applied Elect., Sydney
 VK2GR-A. B. Mason, 18 Queens Rd., Asquith, VK21O-R. E. Durrant, 12 Harper St., North VK2OA-W. J. Lark, s Cosimo St., Toongabbie, VK2AJZ-C. E. Haycock, 17 Ivanhoe St., Mar-VK2ATW-T. E. Whitield, $1 / 41$ Rosa St., Oat-VK2BJS-j. ${ }^{2223 .}$
VK2BJS-J. B. Stacy, Station: Panorama Rd., Calala. 2340; Postal: R.M.B. 822C, Pan orama Rd.. Calala, 2340.
VK2BLA-W. L. Laird, 83 Kentucky St., Armi-VK2BSL-K. ${ }^{\text {dale. }}{ }^{2350 .}$ New Lambton Heights, 2305 .
VK2BWL-W. Robertson, 80 Albany St., Coffs VK2ZIT-S. Rarbour. 2450 . 5 (137 Cowper VK22PZ-W. Frost. ${ }^{\text {G8 }}$ Goulburn St., Cremorne. 2090. VK22YR-D. L. Dwyer, 3/26 Brittain Cres.. Hillsdale. 2036.
VKJADX-F. W. Heeps. 392 Bridge Rd., RichVK3AUE_R. C. Grelg, Station: "Reta Park," Ringwood Rd., South Warrandyte; Postal: 80 Montego Key, Novato, Californin. U.S.A., 94847
VK3BBS-W. T. R. Ward, 220 Cardigan St., VK3BBT-D. G. Taylor, 3 Elsa Crt., Eltham. VK3BBU-P. B. Parry. 12 Milverton St., Moonee VK3BEV Ponds, 3039.
VK3BBV-J. T. Cunningham, 11 Catherine Pde. VK3BCF-C. F. Bicknell, 13 Roland Ave., Strnthmore, 3041.

VK3BCO-G. J. Cohen. 10 Lemon Gr.. Nun-VK3BDA-D. V. Hambletoin. 28 Jacqueline Rd.. vKзBKK-K. H. King. 15 Stonehaven Cres., VK3YAC-S. J. Whiters.
Glen Waverley, 3150 . 285 Gallaghers Rd., Glen Waverley, 3150.
huntly, 3183 . 10 Lyons St., Glen-VK3ZFZ-C. L. Lane. Fussell St. South, Bal-VK3LZE-W. D. Powis. 17 Barlyn Rd., Mt. Waverley, 3148.
VK4YS-R. A. Sedunary, Riverside Caravan VK4ZKV-R. North Rockhampton. 4701. South VK4ZKV-R. H. Kyle. 17 Allden Ave.. Southport. 4215.
VK5LV-J. R. Godson, 4 Falrlle St., Ottoway. VK5SY-D. M. Smothers, Travelodge. Motel. VK52LL-L. G. Douglas. 123 Flinders Tce., Port VK5zZA-B. J. Lenny, 14 Garlick Rd., Elizabeth Park. 5113 .
VK6BK-G. P. Anderson. 16 Stone St.. May-VK6DE-A. ${ }^{\text {lands. }} \mathbf{W}$. 0 . Storm. 289 The Boulevard. VK6KR-K. Eeach, Reves, 14 Pontlac Ave., Clover-
 VKBWB-A. F. Siss.
St. South Apt. 3, Lot 5, Scott VKBCID-i Wouth Perth, And Station: Portable: Postal: 772 Glenhuntly Rd., South Caulfeld. Vic.. 3162.
VK6ZAG-G. E. Watts, Station: O.T.C.(A) Res. 2. Browns Range, Carnarvon, 6701: VK7HP-H. Poxon. 9 Elma Rd.. Sandy Bay, VK8zCE-R. J. Sieber. 28 Lindsay Ave., Alice VK9AC-T. Ivins. Station: Lot 1. Section 108 VK9AC-T. TVins. Station. Lot 1. Section 108 Posts and Telegraphs Training College. VK9DZ-M. J. Groth, Station: Martyr's Memorial School, Popondetta, P.: Postal: P.O. Box 35, Popondetta, P

VK9GA--N. Spulding. Station: Section 9. Allot ment 1. Kavieng. N.G.: Postal: C/o VK9HS-Sistion: Tutt Bryants Auto Port. Malaguna Rd.. Rabaul. N.G.; Postal: C/o. Airfast Charter. P.O. Box 401, Rabaul. VKgNS N.G.
VKANS-R. S. Sleeth, Station: Nortolk Island. 2899: Postal: Box 223, Norfolk Island 2898.

VK9VT-V. T. Freeh (Rev.I. Catholic Mission. Lemakol, Kavieng. N.G.
VKow F-W. Frost. Station: Port Moresby, P. Postal: P.O. Box 3155. Port Moresby. P.

CANCELLATIONS

VK1TO-R. K Westbrook. Now VK1KO. VK1Z00-J. A. Gardner. Transferred to Qld VK2AM-L. D. Cuffe. Not renewed.
VK2GE-M. E. Ditson. Transferred to W A VK2OA-School of Applied Electricity. Now VK2SO VK2EM.
VK2SO-W. F. Nobles. Not renewed
VK2ALK-iV. J. Lark. Now VK2OA
VK2ZEG-W. L. Lalrd. Now VK2BI
VK22FQ-J. E. Andersen. Transferred to Tas VK2ZHW-G. E Watts. Now VK6ZAG. VK2ZKC-K M. Cunningham. Now VK2BSL VK22PO-C. L. Scally. Transferred to T.P.N.G VK3FF-D. B. Sprow. Not renewed.
VK3AJV-R. E. Durrant. Now VK2IO
VK3ACB-E. O. Orien. Decensed.
VK3AUU-D. T. Tanner. Transferred to S.A VKSYAK-S. J. Whitehend. Now VK3YAC. VK3ZKH-G J. Cohen Now VK3BCO.
VK3ZMS-I. M Bywaters. Not renewed.
VK3ZPC--P. M. Cohn. Transferred to N.S.W VK3ZUO-W. G. Raynor. Transferred to N.S.W VK4VJ-V. Jefis. Deceased.
VK4ZDB-S. R. Brooks. Not renewed VK5ZCE-R. J. Sleber. Now VK8ZCE
VKBAZ-B. A. Cook. Transferred to Vic.
VK6CH-I. C. Hulse. Transferred to S.
VK6DT-R. D. Trickett. Transferred to Vic.
VK6VH-L. W. Hoobin. Now VK6CID
VKBZAJ-G Drage. Not renewed.
VK6ZBG-C. H. Baker. Deceased.
VK6ZDL-R. G. Lukín. Not renewed.
VK6ZLM-L. K. McPherson. Transferred
VKBRO-R S. Gurr. Not renewed.
VK9ZAW-A. J Watson. Not renewed
VK9ZAW-A. J. Watson. Not renewed.

PREDICTION CHARTS FOR JULY 1970

EST, $\infty, 02,04,06$ LONDON SR $, 06,10,12,14,16,18,20,22,24$

RIO DE JANEIRO

calro

LONDON IA
${ }^{\text {EST }}, 00,02,04,05,08,10,12,14,16,18,20,27,24$

SAN FRANCISCO

(Prediction Charts by courtesy of Ionospheric Prediction Service)

MONTREAL SR

NAIROBI

MONTREAL LR
EST, $00,02,09,06,06,10,12,14,16,18,20,27,24$

OVERSEAS AWARDS

ORIENT AWARD

From 1st January. 1970, the Orient Award became available to Amateurs throughout the world. The award will be made to licensed Amateurs who obtain the required number of points by making two-way contact with stations as specified in the Orient Award Countries List. The rules for the award are as follows:

1. The award is issued in three Classes. Class I.. Class II. and Class III. Each class will be igsued to the applicant according to the number of points contained in his application. These points will be calculated according to the table in paragraph 4. The minimum points the table in paragraph 4. Thed for qualification are:
Class I.: Orlent Stations, 150 pts.; others, 120
Class II.: Orient Stations, 100 pts.; others, 80
Class $\begin{gathered}\text { III.: } \\ \text { pts. } \\ \text { Orient Stations, } 75 \\ \text { pts.: others, } 60\end{gathered}$
"Orient Stations" are those located in countries which appear in the Orient Award Countries List isee furtheri.
2. Endorsements for the award are issued in three categories:
(a) Two-way c.w.
(b) Two-way phone
(c) Mixed.
3. Applications for the award must contain proof of two-way contact. In the case of Class II. or III. applications, the proof may consist of a check list signed by two officers of the applicant's local or national society. Applications for class 1 . must consist of efompanied by sufficient postage and must be accompanied by sufficient postage
for their return. Official application forms are for their return. Officia
4. Points are to be calculated as follows:

For contacts on 28,21 and 14 MHz ., 1 point per contact:
For contacts on 7 MHz ., 2 points per contact.
For contacts on $3.5 \mathrm{MHz} ., 3$ points per contact.
An applicant who contacts a station on five bands will receive a bonus of 5 points, in addition to the points earned for the individual contacts.
5. Applicants may claim only one station in
each country on each band for points towards each country on each band for points towards the award.
6. Only contacts with fixed or mobile land stations will count towards the award.
7. Only contacts made after 1st January, 1970. will count towards the award.
8. Only contacts with stations acceptable be acceptable for the Orient Award.
9. Applicants must Include 10 IRCs or US $\$ 1$ when applying for Class II. or Class III. award, or 50 IRCs or US $\$ 5$ when applying for Class 1 . award and these should be sent to Awards Manager. P.O. Box 16321. Hong Kong.

Reciplents of Class II. and Class III. awards will recelve an attractive certificate suitable for framing. The Class I. award will be a teakwood and bronze plaque. hand engraved.

Special Note: The first station to recelve the Class 1. Orlent Award will recelve a special plaque. lacquered, with pearl inlay. handplaque, lacquered, with peari inlay, hand-
makers.
Orient Award Countries List:

WINNIPEG DX CLUB AWARD

In honour of the Centennial of the Province of Manitoba, the Winnipeg DX Club is pleased to announce a new award of lasting value to Amateurs throughout the world.

The award consists of a personalised presentation case contalning a genuine new Canadian Silver Dollar issued by the Royal Canadian Mint in honour of Manitoba's Centennial. The award will be malled to all successiui applicants.
All contacts must be made after January 1, 1970, and the following rules apply:

1. A total of 31 contacts are required, representing five from each of the continents of Africa, Asla, Europe, North America, South America, Oceanla and one contact from any Antarctic station. The I.A.R.U. continental boundaries apply
2. The contacts from each continent may be from different countries on that continent but the five North American contacts must be with members of the Winnipeg DX Club.
3. Contacts can be made on any band or mode, but a station can only be counted once.
4. QSL cards must be in the applicant's possession, but need not be submitted if a verified list of same is sent.
5. Amateurs throughout the world are elfgible. Canadian. American and Mexican ap plicunts must be a member of DXCC and must submit the number and date of their DXCC certificate. Amateurs in other parts of the world do not have to be members of DXCC 6. The cost of the award is 15 IRCs. If IRCs are not available in a darticular country, the applicant may send mint stamps of that country to an equivalent value.
6. Members of the Winnigeg $D X$ Club are VEAS: AA, AE, AS, BJ, CJ, IM, MP, TJ, RP, SA, SD. SK. XJ, ZX.
7. Award Cuslodian is VE4AE, 22 Sweetwood Bay, Winnipeg 17, Manitoba, Canada.

MANITOBA CENTENNIAL (1870-1970) AWARD

The Amateur Radio League of Manltoba will present certificate awards to Amateurs submitting proof of the requisite contacts with Amateur Radio stations in Manltoba.
Roles: All contacts must be made after 31st December, 1869. Contestants must accumulate 100 Doints. W / K. XE and VE stations recelve two points per contact. All other stations receive five polnts per contact.
A contact consists of exchanging signal reports. Contacts may be made on each band and may be made on different modes on each band. Cross-mode contacts are not allowed.
Two different members of the Amateur Radio League of Manitoba will be designated "Bonns Hams" each month. Contacts with these stations will be worth double points.
QSL cards are not required. Contestants should send a copy of their log and two IRCs to Mr. J. N. Knowles, VEAJK, P.O. Box 365 . Carman. Manltoba, Canada.

GCR (General Certificate Rule)

When an award states "GCR" the following applies to that award. Any officer of a recoginsed A.R.C./Society, any officlal or gv't with Notary Public authority, any two licensed Amateurs at higher level licences or any CHCer may GCR that he has sighted listed QSLs in applicant's possession. Sponsor still reserves right to request one, a few or all be sent as proof if doubt exists.

FEEDBACK

COBRA AWARD
City of Baltimore Radio Award by City of Baltimore Radio Assoclation. Work 25 stations in metropolitan area with at least 10 of them members of the COBRA.
DX stations outside North America and south of Panama need work only 15/7; contacts after May 1961. GCR list, log data, and 50c iU.S. or equiv. I. AOMB/M to W3LE. Louis Bremer. land. 21234, U.S.A.
Ask W3 stations if they ire a member of COBRA.

W.I.A. COMMENTS ON SPACE FREQUENCY CONFERENCE

(Continued from Page 4)

The W.I.A. Project Australis Groud is planning f further satellite in co-operation with the A.M.S.A.T. Group and redundant command systems are planned to control the transmitter power. to select transmitter frequencies and to switch the transmitter off when not in use. A copy of the "General Speclfication" ${ }^{\text {" }}$ is annexed and is Illustrative of the advanced nature of current Amateur space experiments. it should be pointed out that most satellites are designed for low orblt and therefore their coverage is limited. Again. reference is made fact caused, referred to above.
Accordingly, the w.I.A. recommends the following as a footnote or recommendation for the Radio Regulations:
'Satellites in the Amateur Service may transmit in a shared band if n reliable means is provided to control emissions so as to prevent interference to stations of a primary service in the band.".
If adopted as a footnote to one or more shared bands, the provision would read as follows:
"Satellites in the Amateur Service may transmit in this band if a reliable means is provided to control emissions so as to prevent interference to stations of a primary service in this band.'

7. THE BAND 21-22 GHz.

It has been sugsested that the band 21-22 GHz. be abandoned in favour of an allocation of $24-24.5 \mathrm{GHz}$. where the Amateur Service would be a secondary allocation. In support of this proposal it has been suggested that components are at present easy to obtain on the alternative allocation.
It is the view of the W.I.A. that the serious experimenter can overcome this difficulty and it is further the view of the W.I.A. that the existing exclusive allocation should be preserved for the Amateur Service in preference to the allocation of a shared band. bringing with it at least the possibility of harmful interference.
In addition, It is noted that at present this is the upper limit of band allocations to the Amateur Service, at least as far as Australla is concerned. In the U.S.A. no limitation is
The W.I.A. suggests that a simllar position should apply in Australia. or alternatively, on a world-wide basis, allocations should be made to the Amateur Service at frequencles above 22 GHz .

CONCLUSIONS

The W.I.A. contends that it is in the national Interest that the Amateur Service should be encouraged as much as possible in the matters under discussion and that this is best achleved by imposing a minimum of regulations and reatrictions upon the operation of Amateur Radio satellites.
The W.I.A. suggests that space usage by the Amateur Service should be permitted on any erequency exclusively allocated to the Amateur Service, and that on shared bands. Amateur space usage should be permitted. provided that adequate telecommand facilities are avallable to avold interference with services having higher priorities, should it occur.
In addition the W.I.A. recommends the retention for the Service of the existing $21-22 \mathbf{G H z}$. exclusive allocation. and that the right be granted to the Amateur Service to use frequencles higher than 22 GHz .

AUSTRALIAN 432 AND 1296 MHz . RECORDS

 As announced in last month's "AmateurRadio." the then current records for 432 and 1206 MHz . were subject to superior claims. The results of these claims are now avallable and the new Australian records are as follows: 43 M MHz.:
AX7ZRO/7 to AX5ZKR, 15/3/70, 482 miles. 1:2la MRz.
AX4NO/4 to AX4ZT/4, 12/4/70, 250 miles. -D. H. Rankin. Federal Executive.

[^45]
VHF

Sub-Editor: EAIG JAMIESON. VKSLP Forroston. South Australla, 5233 Closing date for copy 30th of month.

AMATELR BAND BEACONS

VK4	144.390	VK4VV. 107 m . W. of Brisbane.
VK5	53.000	VK5VF, Mount Lofty.
	144.800	VK5VF, Mount Lofty.
VK6	52.006	VK6VF. Tuart Hill.
	52.900	VK6TS, Carnarvon.
	144.500	VK6VE, Mt. Barker.
	145.000	VK6VF, Tuart Hill.
	435.000	VK6VF, con by arrangementi.
VK7	144.900	VK7VF, Devonport.
ZL3	145.000	ZL3VHF, Christchurch.
JA	51.995	JAIIGY. Japan.
W	50.091	WB6KAP. U.S.A

A couple of items on the subject of beacons are noted in the May issue of the Western Australian V.h.f. Group News Bulletin, firstly that at the Group's April meeting It was decided to sell the Mount Barker Beacon to the Southern Electronics Group-in the absence of other information we could surely assume this is a group of interested Amateurs in the Albany or near areas, and who will keep the beacon running. The second liem is that the Perth TTuart Hilli beacons were off the air from 20th April, with a proposal to re-instate them at the QTH of Tony VK6ZK. I hope the VK6: will keep me informed of any moves of the beacons so the list may be kept current. Thes have been listed complete this month.

Six metres continues to provide a lot of interest in the northern areas of this continent Fnd whilst some of the following news is a bit old. it is still interesting to read, I am indebted to Doug VK8KK in Darwin for the following: During April VKGVV/4 worked DU1MM in the Philippines on 52.120 MHz . Good work. Brian. Doug said he missed this one as he was incide watching the wrestling on Indonesian TV!!! On 22nd March. JA2AYM worked VSGBF 1 Hong Kongi on about 50.100 . so that's an mrea we haven't thought much about before. Stan W6ABN reported in April the first trans-equatorial 50 MHz . DX to South America for the season. Aoparently there are many keen 6 metre operators up and down the West Coast of U.S.A. really keen to get into South America. ZKiAA is a regular to KH6. and the same station was very happy to work KSAGI recently! I would be too! Doug reports a number of stations being heard on back-scatter. Tonv VK5ZDY being one, quite a considerable distance for such propagation. Thanks Doug for your interest, and I pass on your hint: "Wathh 6 meires each evening from sun-down to $130 c z$. 52 MHz . and above for the JAs"

While still on 6 metre DX. Bob VKZASZ provides an interetins run down of VK2 activ ity during the equinox'al pariod. He reports that John VKgiL nprrites 53032 AM, froin Mindne. VK9GA is another on 6 metres, while nx-VK2ZEN and VK2ZPO 152525 make the VK9 scene a more favoured area for the coming DX season. Going back to the JA opening, on 25th April, reporter in June issue. Bob sas's the first indications af something to come was the Ru-sian t.v. whinh anpeared on 49.759 MHz . abnut 12 nn EST. followed bv ZLI t.v. He then worked Bart VK5VL and noticed beam direction had no effert. At 1330 JAIIGY beacon appenred, then VK4s at S9 plus with JAs in background. Between 1400 and 1815 Bob worked 58 . TAs from all districts, and heard JAs working VK1. 2. 3, 4 and 7. ZL t.v., Russian t.v. nond JAliGY remained in constant S8 through :nd he could hear the JAs concentrating on that State. Bob reported the skip appeared to move from IAI in Eastern Japan slowly to JA6 in the West with each area booming In in turn, and remarked it was most unusuak to his log Bob could see a build up in checking his log, Bob collld see a build up in the pati10 different occasions at good strength during March and occasions at good strength during Mod Russian $t . v$. on 49.759 was heard 12 times iod Russian t.v. on 49.75 g was heard 12 times, and on no 20 of thrm in an opening on 13 h . April. Thank you Bob, that has brought everyone up to date on your area.
Two metres seems to have been relatively' quiet if the absence of news from most areas is any gulde. Did note that Tony VK5ZDY had a 5×9 contact with Wilf VK7WF at 2300 EST on 23rd Mav. a good effort. Seemed to be too cold for everyone else to be in their slbatks though.

Did hear a whisper on the air that some long distance workings had taken place in VK4 during May on 432 and/or 1296 MHz . My efforts to get anything further on this have met with no response.

MEET THE OTHER MAN

Bob Lear, VK2ASZ, of 179 Rusden Road, Blaxiand, first commenced Amateur operations in 1955, and has since left his mark on v.h.f. activity. He works as a v.h.f. 2-way radio service techniciain, but has branched out into ther fields as well. He has held a Private Pilot's Licence for 15 years, and occasionally goes 146 MHz . acronautical! Last year he comoleted 4 years training for Flight Navigator iseems to be a terror for punishment?!. Marred, with two children, Bob has certainly put a lot of effort into his Amateur operating, both v.h.f. and h.f.
He runs 100 watts on 6 metres using parallel 6146 s to a $6 / 6$ antenna 55 ft . high, 829 B modulator, $6 E S 8$ cascode converter. His 144 MHz . zear also runs 100 watts of a.m. to a QQE06/40 10 over 10 slot antenna 50 ft . high E88CC cascode converter, modulator push-pull 6DQ6s. cascode converter, modulator push-pull 6DQbs. Stio0 Hallicrafters 30 watts of m provides nice signal on 432 using a am. provides a nice signal on 432, using a QQE03/20 to an 11 element yagi, 50 it. high. Converter uses C88 Itwo stages of grounded arid to a 1 N2 crystal mixer, fed into the 6 metre converter. Also operates 80 through 10 metres with a Drake TR3 s.s.b. machine.
Areas worked on 6 metres include VKI to 9 inclusive. ZL1 to 4 inc.. JAl to 9. JAO. Willis Is. VK91 and Papua iVK9I. On 144 MHz. VK1 and 2. ZL1. 2 and 3 , and VKI and 2 on 432 MHz . He has also operated on $10,000 \mathrm{MHz}$. frr a short while. He originally held the 144 MHz. Australian record for three years from 31/12/61 for his contact with ZL3AQ; he has certificates for 50 MHz . W.A.S., V.H.F.C.C. 50. V.H.F.C.C. 144. A.J.D., several Ross Hull Conest Certificates, and recently claimed D.X.C.C. and W.A.C. for h.f. contacts.
He is a member of the W.I.A. and during 1958 and 59 was Secretary and V.h.f. Scribe for the VK2 V.h.f. Group. His plans for the future include building equipment for 1296 television experiments, and will soon be trans-
mitting pictures on 432. He will be trying very hard to work ZL4 on 144 MHz . in 197475. and also New Zealind on 432 at the same period. His location is Blaxiand, 45 miles west of Sydney, in the lower Blue Mountains. 850 teet above sea level.

Bob also mentions that he has arranged facilities so he can take out his whole station portable, and has often done so for v.h.f. fleld days and national field day. During the past several years he has tried various mountain tops over much of N.S.W.. from Mt. Ebor 300 miles to the north. to Snowy Mountains in the south. These latter he has given away as they are too cold. He still runs 100 watts portable to big beams. but the overall results for long distance working have been disappointing. IThis invariably seems to be the case with all of us on mountain tops.-5LP.1 Bob does operate on net frequencies, but would like to see many operators on such frequencles try the DX to be had on other portions of the band'i. He throws in a final comment, that although he does a lot of work with solid state cquipinent, he is far from convinced that valves have been replaced by transistors for serious v.h.f. work!?

STOP PRESS

What is probibly the first ever f metre contact between VK and VS was made on 2nd June by VKBKK and VSGDA. More details will be included in the v.h.f. notes next month

VK5s are reminded of their Intra-state Contest scheduled for Sunday. 26th July. The VK5 Contest Committee has studied last year's results closely, and amended the rules where desirable. Full details have been published in the "South Australian Journal". but briefly vou are reminded that one of the aims of the contest is to bring the v.h.f. and h.f. operator closer together by giving incentives for cross band working between the two sets of bands.

None of my usual scribes have written this month so news is a bit scarce. However, the Editor will appreciate this after the big twopage spread list month! We will close with the thought for the month: Men may be convinced, but they cannot be pleased. agalns ${ }^{\dagger}$ their will. Until next month. 73. Eric VK5LP. The Voice in the Hills.

(A unit of Jacoby Mïtchell Holdings Lid.) 376 EASTERN VALLEY way, ROSEVILLE, N SW Address Cables and Telegraphic Address: WESTELEC. Cables and Phone: 401212

Sub-Editor: DON GRANTLEY
P.O. Box 222, Penrlth. N.S.W., 2750
(All times in GMT)

Again we have a gradual decline in conditions, although there have been some fantastic op 2 nings on 20 metres. Although the higher frequencies have slackened off. there is a gradual upiwing on 40 . if you can battle
the interference. also on 80 . Sunspot forecast for June and july is 84 and 82 , and at the ${ }_{113}$ flme of writin

There have been some good operations over the May DEriod, most important could well be and DL2RL. QSLs for these stations RO their home addresses. Other good ones were by G3BID, QSLs to whose manager is VESODX. Box 717. Postal Wtation "Q". Toronto 7. Ontario.

GB2CF is the call of the station used for the Becket Festlval at Canterbury during the perlod 19th to 26th July inclusive. I understand a special QSL

Similarly. GB3FON will be the call of the station covering the Festival of Nottingham which runs from 11 th to 26th July. Frequencies for the latter are 1920, 3760, 7060, 14280, 21360 and 28660 . An attractive Robin Hood Emblem
QSL is to be sent to all stations confirming QSL is to be sent to all statio
contact with the Festival station.

I have mentioned the activity of King Hussein JY1 quite regularly over the past three operation is worthy of more than a passing glance. Hussein dislikes the dog-piles which have plagued his activities and I reported last month that well known scribe war order to clear the air a little. It has since order to crear the air a litte. It has since been reported that made a three-week visit checking into have made a three-week visit checking into to go and assist from 18 th May.
KH6 should have included full by KM6DG/ KH6 should have included full QSL informa-
tion which is Box 100, F.P.O., San Francisco, tion which is Box 100, F.P.O., San Francisco,
Callfornia. 88614.
Evidently ine wrong zidcode was issued in a previous bulletin.

Once again Thor Heyerdahl has set out on a cross Atlantic voyage, this time in "RA 11 ".
He is equipped with radio gear, and when power is available he will be on using the call LI2B. He has been heard in the U.K. working call of LASKG for traffic purposes. The irequency in use was 14214 s.s.b., and the time of operation 10102 .
TCO is a special prefix being used by stations in Istanbul over the last week-end in All QSOs will be confimed by a special QSL. and there is an award available for working hive Istanbul stations between $1800 z$ on 28 th
May, and 1800z. 31st May. All bands and May, and 18002 . 31st May. All bands and
modes, and a station can be counted again if modes, and a station can be counted again if
worked on another band. Logs to T.R.A.C. worked on another band. Logs to T.R.A.C. Box 699. Karakoy, Istanbul, Turkey. by isth
July. The stations ellglble are TCOAE. AV. DS EA. HY, IB, KT, MT, NC, NF, OR, QR. VG W4BPD pected to leave New York on 18th May, arriv ing in Kenya the next day. His FOVP licence t.as apparently been endorsed for operation on most if not all French possessions. so he could turn up anywhere at any time. His frequencies are 3500/05. 7000/05 and so on in the c.w. segments of all bands, and on S.s.b. he is ex
pected to use 3790 to 3800 , $7060 / 7070$, $14100 / 105$ 21245/21250, 28490/500. All QSLs now go to W2MZV.
John VS5JK was due back home to G-land on 2sth May, and asks that all requests for QSKPRV.

ODeration by several IT1 stations from June 26-29 will be from Favignana Is. using the speclal prefixes IF and IU, and
assistance to prefx hunters only.
Unusual prefixes seem to be the fashion of late. some are exotic DX, others are valld 25 prefixes only. Whilst many are purely and simply plrates. An interesting one came to light early in May calling himself Alpha Uniform 9
Victor Love, and was worked by Alex VK2ZA. Victor Love. and was worked by Alex VK2ZA.
and noted by Morrle VK2VN. The call sigil and noted by Morrle VK2VN. The call signl
was correct beyond any doubt. the date was was correct beyond any doubt. the date was
ligh May on 20 metres. but the question is who was he? I admit this month 1 sm a
little out of touch with the bands, and I have not got the latcst DX news out from overseas as yet, these may have the answer. if not QRM prevented copy of any detalls from the transmitting station
There is still plenty of activity from East Pakistan, Mohd AP5CP has a regular sked with K7ABV on $14030 \mathrm{c} . \mathrm{w}$. at 1430 . and is often on around 1430 . It is understood that AP5HQ will assist in the arranging of skeds for the former. He ca
at about 0100 z .

Further on the activity of ST2SA, who, being In a difficult zone, is eagerly sought after. His normal frequencles are about 14020, 21030 and 28040 with operating periods between 1400 0300 and 0400 . QSLs may be sent vla WASREU John ZB2BO will be active from Gibraltar untll the end of September, QRV all band including 160 metres. He is often heard on 15 metres around
required. A line to him . J. Patrick. Flat $\quad \mathrm{g}$. Sandpits, Gibraltar, should do the trick. John also oderates the club station ZB2A. Another station. ZB2BY, is also active. QSL to GW3DIX Ell is the special prefix allocated to Exhibi tion Stations in that country. and two recently active were EIIDMF from the Dundalk Festi-
val untll 24th May, and EIOAO. although not on exhlbition week-end in May from Bere Is. by the Lim erick Radio Club. EISBX will handle QSL chores for this operation.
From Fred VK2PF comes news that Bob VE3EWY was planning a DX-pedition to DomInica. St. Lucia and St. Vincent. spending four or five days at each location. The entire opera will be over by the time you read this. Calls were expected to be VP2DWY. VP2LWY and QSLs and QSLs go to Bob's home address. Sept. 1987 and Jan 1989 have been unavailable to date. however they are now in the hands of manager W2GHK who will process them.

17th May was world communications day. Dioiru with 4Unitu. For their contacts on DLOT that day a special QSL was to have been issued Also as a further © Flatholm 1s. and GW3VKL/P from Lavernock Point operated specially to remember Mar When the frst
When the first effort of Marconi is mentioned. I never fall to think of a conversation I once had with one of our old timers, an Amateur of long standing back in the States On asking me my call sign. I replied in my most apologetic voice that I was only an have conducted his experiments without listener at the other end, and despite the opinions of some, a genuine S.w.l. has his place In the Amateur field.

PY7AWD/0 from Fernando de Noranha is $0030-0100$ working to a list compiled by PY4AP and WB9BWV. His normal frequency is is near as possible to 14250, but there have been reports of him on 7003 and 14030 c.w. QSL to Carlos Alberto de Araujo. Box 2. Fernando de Noranha, Brazil
There is a change of operator reported for Gough Is., Paul was due to leave in mid-May. and Sandy manager will be ZS2RM, Box 5181 . Pt. Elizabeth. C.P., Sth. Africa.
Republic of Guinea should be represented by 3X1SJ who was due for fiwo-month Jaun from mid-April. He is ON5SJ, Jean-Claude Mauritania is still represented by 5T5BG who operates mainly c.w.. and although it is a little early in the day for us. he is QRV
3515 or 7015 at 0530 . The other operator 5T5AD 3515 or 7015 at 0533 . The other operator 5T5AD couple of months. Both were due to operate ITU station on 16th May
Mention of San Marino earlier in this page reminds me that somebody recently queried the operation of M1B. Geoff Watts in his bulletin of May 12 gives a full run down on Mario's activity which is sufficiently interesting skeds with IIAA. IIZIN, IIZJG on 14315 s.s.b. dally at 1300-1400. He skeds QSL manager 1400. If conditions poor he will QSY anday 28575 at 1415, if 28 is on the blink he then returns to 21280 at 1700 . IIZIN and IIZJG MC the net. Mario is sometimes on 14300-305 s.s.b. Monday, Wednesday or Friday at 1900-1930 in net with Wednesday or Friday

A newle for the prefix hunters is WS6DI. a novice from American Samos. who operates on 21177, usually around 2150. His QSL address Anx Lenin Centenary Exhibition Station who has been coming in on around 14273 ground 2000 QSL to Box 298, Warsaw, Polind.

If you happened to come across 3A2ARM during the aforementioned World Telecommunications Day. your QSL can be obtained from The first 300 QSLs received were to recelve special Monaco stamps on their return envelopes.
If you are missing a QSL from VK9LB who went QRT at the beginning of April. try Jeff Liebgold. C/o. Barry Research, 934 East Meadow Drive. Palo Alto. Californa. U.S.A
For five band DXCC hunters. ZS6BT is often to be found on $21005 \mathrm{c} . \mathrm{w}$. at 1800 and will QSY to the other bands on request. Some may argue that this would not be possible at this ings on both 15 and 10 of late. so it may be a reality. In any case, a letter to E . Cook. 32 Grove Rd.. Gardens. Johannesburg. may get you a sked, and this is also the address for his very rapid QSL
-J Rosyth Rd and XYL Jean 9VIPS, now at to the DX gang. and will be looking for contacts in that field. He is Jim Smith ex G3HSR Some further clarification on U.S.S.R. bases s available from the Long Is. DXA. UPOL are North Pole drifting stations in Zone 40, UA 1KAD Alexade I. Franz Josef Land, Zone 40: UAIKAE/1 Mirny, Antarctica, $/ 2$ Oiaza Base. /3 Plonlerskaja Base. /4 Komosomolskaja Base. 29 and 30 , whilst UAOY is in Tannu-Tuva, Zone 23.
The mystery surrounding the inclusion of ially finalised, and nce credits has been offic Reef is an addition to the Australian DXCC list. Contacts after Dec. 27. 1969. are valid. Some of the stations active from EP land
are Alf EP2TW. who works mainly 10. 15 and 20 s.s.b.. but shortly will have gear for 80

AWARDS

TA Ten Diploma.- This award is yours if you have worked ten TA stations. As in the special istanbul sward, you can claim again
for each station heard on another band. Licensed stations are TAIAV. CEM. DS, HY IB. KT. MGP, MT, NC, NF, OR, QR, RF, RT
SK, VG. VY, WR, TA2AC, AE. BK, CD, EA
EM, FK, FM, QR, SC, TA3AR. AY, OZ, RK and TAOA. GCR list plus 10 IRCs to T.R.A.C. Box 699. Karakoy. Istanbul, Turkey

Prihram Award-For working or hearing 15 to December 31, 1970 . The award is iree. You need log extract and QSLs, mailed by You need log extract and QSLs, mailed by Necas. Prazska 26, Pribram LI. Your three will be amongst the following: OKIAAZ, ADV FBG, FBL, FBS, FVS, HL. KNG, KPB, OFA, RG. XC, YR. OLIALO, OLIALY, OLIALZ and OL4ANI/P
Ravenna Award.-A simple one, work Rav-
enna stations IIBIR. CHW, CIK, SMN, STD and TLK, and send your QSLs to IISMN, Box 6. Ravenna. Italy.

WARIP (Provinces) and WAEIC (Countles). Issued by I.R.T.S. Region 1 Awards Committee, lin B. The provinces award for working or hearing four stations in Leinster. four in Munster, one in Connacht. and one in Ulster. The hearing 26 counties, class two requires hearing 26 counties, class, and class three eight counties. Ulster counties are Cavan, Donegal, Monaghan. Leincounties are Cavan, Donegalies: Carlow. Dublin. Likkenny, Laois, Lensprd Suth Mesth Ofley Westmeath Longiord, Louth. Meath, Ofiley, Westmeath way. Leitrim, Mayo, Roscommon. Sligo. Munway. Leitrim, Mayo, Roscommon. Sligo. Mun-
ster consists of Clare. Cork, Kerry, Limerick Tipperary, Waterford. Your GCR list. plus $8 /-$ sterling, or 10 IRCs, is required and en
dorsement is avallable for all modes or bsnds dorsement is avallable
73 de Don WIA-L2022.

CONTEST CALENDAR

4th/5th July: New Zealand Memorial Contes 3.5 MHz only). 15th/16th August: Remembrance Day Contest. 3rd/4th October: VK/ZL/Oceania DX Contest 10th/11th October: VK/ZL/Oceania DX Contest 10th/11th October: R.S.G.B. 28 MHz. Phone 24th/25th October: R.S.G.B. 7 MHz . DX Con7th/8th November: R.S.G.B. 7 MHz . DX Con5th Dec. ${ }^{70}$ to 11 th Jan. 71 : Ross A. Hull V.h.t. Memorial Contest.
-D. H. Rankin. Federal Executive.

0 $m_{0, m}$

Compiled by Syd Clark, VK3ASC

March 1970-

"BREAK-IN"

8oldd State Circuits for S.8.B., ZL2BDB. Part 2 of an article by J. W. Herbert of the Central Institute of Technology. Petone
Squelch Unit for the Southand Branch Transcelver, ZL3VP. A description of a simple, solid state squelch unit.
A modified t.v. tuner makes Converters, ZLIBAU. A modified t.v. tuner makes a handy v.h.f.
converter which covers a number of bands. converter which covers a number of bands.
The writer has seen designs using older style The writer has seen designs using older style
tuners, which covered frequencies right down to about 80 metres.

"CQ TV"

No. 60-
After Glow. Discusses various types of phosphor which are available and the advantages

ATV Demonstration at Harwell-
SSTV. A note on the equipment used by Prof. Franco Fanti, IlCLF. of Bologna, Italy. Main object is to solicit contacts with others similarly equipped.
Vidicon Blanking Generator. Describes a small unit for flyback blanking.

"CQ"

March 10j0-
Safe and Sound Tower installation, Part 1, A Homebrew All Solld State Communications Receiver, WORWH. Tunable i.f. on 2.953-3.155 $\mathbf{M H z}$. working into mechanical filters on 453 $\mathbf{K H z}$. Front-end converters are crystal controlled. Reviews the Heatbkit HG-10B V.P.O. W2AEF. Uses a 6CH8 and OB2 regulator.
A Pre-Amplliter for Tube-Type Transcelvers, W2EEY. Take your choice of 6EH7 and 12BZ6 to add front-end selectivity and gain to transcelvers in need.
The Invisible Ham, WOGHX. A fantasy indicating what might be accomplished by a very smart Amateur with plenty of "dough". Automation gone wild!
driven tuning systems Tuning. W2EEY. Motor acltance diodes and lamp-photocell modules. aciance diodes and lamp-photocell modules. circuits are included from several transcelver units Aboat Microphones. W2FEZ. A useful article which will inform the novice and refresh the memories of others.
K3STU. A boxed Variac with metering Supply, An A.M. High Powered Amplifer, W4CJL An A.M. High Powered Amplifier. W4CJL. Operating on 80 and 40 and usin
$4-1000 \mathrm{As}$ in the "Doherty" circuit.

Solld Staie U.F Regenerative Receiver W6JTT. One transistor and one IC.

Aprll 1970-
An All Band sCX1m0A Super Cathode Driven Amplifer, W7GVL. There is always something new to work on.

A Simple D.C. to D.C. Converter, K4PZW The i.v. Ayback transformer core finds its way Into Amateur Radio to supply voltages for a transcelver. Will the copiests please tell me why he broke one leg?

Notes on Transistorised Tranacelver Construc Hon, VE7BRK. Larry calls upon some com merclal experience to make some suggestions for use in Amateur Radio.
Short and sw.T.T.Y. Control Layout, WOPHY Short and sweet switching system.
A Cheap and Clean Scope Cart, Jim Ashe. Taking mahommet to the mountain!
Saps . . A Submerged Antenna Propagation System for Enhancing
V.h.fe ond Sound Tower Installation, Part 2 Safe and sonnd Tower Installation, Part 2 .
W2NZ. Finishing of the job that was begun last month.
last month. ${ }^{\text {CQ }}$ Reviews: Ten-Tee Power Mite Solld State Transcelvers, W2AEF. Simple and cheap but they work. Anyone for QRP c.w.?
WAKAE. F.F. Quadrature Phase Amplifier, by Improving the $\mathbf{s x}-101 \mathrm{~A}$ for DX Performance, w7VW. Making a good receiver better.

"HAM RADIO"

March 1070
Broodband Donble-Balanced Modulator, by WA6NCT. Practical construction details of a hot-carrier diode mixer that covers the range 200 KHz . to 250 MHz
Compact Dual Band Antennas, W6SAl. SImple but effective antenna systems for city-lot dimensions or portable use.
Tunable Peal-Noteh Audie Pilter, John H. Schultz. Solid state circults featuring the twin-T network-useful in test equipment or for improving receiver selectivity.
Further Automation for Typewriter Type
Electronle Keys, W6PRO. A bufer storage unit is described which increases the versatility of Co Homebrew Five-Rand Llvear Ampllifer, by time proven 811As. A pair of these tubes operating with B plus of 1500 volts is about the right power input to meet the VK licensing requirements.
A New Approach to Equipment Rack Construction. KiEUJ. Here's a low cost rack that can be easily built to accept any panel width. iI belleve the material used in this job is obtalnable in Australia under the name of obtainable Jn Australia under the name or

8olid state Radio Dlrection Finder. WBJTT D.F. principles are detalled and various methods are described. (Will this bring the ix hunt back?)
A Power Amplifer for 1290 MHz., W2CCY Dual planar triodes in a half-wave resonant
cavity provide 100 watts output with 10 dB . cavity provid
power gain.
power gain.
Two Metres, W Solld State Tranamitier for provise. plus salvaged t.v. parts, resulted in this little bomb.
Economical Beam for Ten Metres, WIFPF Improving the "Wonderbar" antenna for effec tive DX work.
MHz Stable Small-Signal Source for 144 and 43 MHz., KBJC. This simple circuit features varlable frequency and amplitude control of a reference signal for v.h.l. converter adjustments.
Regenerative Detectors and a Wideband Amplffer, W8YFB. Easy projects to acquaint you with transistor circuits, with hints on detergood advice on Dower supply design.

April 1070-

It is perhaps unusual to begin a review by discussing an advertisement, but on page 6 of this issue Swan announce a new 16 crystal
 dB . bandpass of 3.475 KHz ., 120 dB .. bandpass of 4.9 KHz and an ultimate rejection exceeding
140 dB . Price is quoted as $\$ 95$ (in U.S.A.) to 140 dB . Price is quoted as $\$ 95$ (In U.S.A.) to Swan users only. Some filterl
Operatlonal Power Supply, WA2IKL. Regulated d.c. supply, low-frequency amplifer, current amplifier, with bipolar output-these are just a few uses for this unit.
A Simple Speech Pracessor for S.S.B., K6PHT. Using a FET input stage and four bipolar transistors, this speech processor is stated to increase the effective speech level by about 10 dB. whilst maintaining distortion at a low level. simple but effective instrument that can be built in just a few hours.
Catalina Wireless 1002. W6BLZ. Another glimpse into the early days of Radio by an old timer who knew older timers

Variable Bandpass Andio Pilter, G. B. Jordan. One solution to the receiver selectivity problem is this RC feedback system featuring variable bandwidth to less than 50 Hz .
R.F. Power Amplifier for 422 MHz ., K6JC. 100 watts input on c.w. and 65 watts on a.m. to a 5894. Featuring resonant line tank circuits and class C or AB1 operation.
Improving Overload Response In the Colling 73A-f. WBZO. Simple modifications provide 13 dB. higher signal handling capability in this fine recelver.
An easily bullt instrument with many uses around your station. Diglial Clock. K4AIS. With nixle readout.

A Low Power Dummy Load and R.P. Wattmeter. W2OLU. An accurate and reliable test instrument which is low in cost. Uses an old theremocouple r.f. ammeter callbrated in watts nto 50 ohms
How to Use a Sweep Generator. Larry Allen takes the newcomer to the repair bench and shows him how.
An All Band Ten dB. Power Attengator, by KiCCL. This device can be used as a trans mitter interstage buffer or for Isolation when making antenna v.s.w.r. adjustments.
V.S.W.R.Alarm Clrcalte, W2EEY. Here are some additions you can make to your v.s.w.r. meter to give aural or visual warnings of v.s.w.r. changes.

"QST"

March 1970-
An Englneer'a Ham Band Receiver, DL6WD. An all solld state design for the experlenced constructor. The h.f. local oscllator uses a frequency synthesis technique. Single converslon design using KVG 9 MHz . filters.
High Versus Low Antennas, KGYNB. Compares the performance of identical antennas mounted side by side at different heights. Experimental evidence is given to support the case for Increased antenna height for better results.
A Simple Safety Featare for Crank-up Tow ers. KH6IJ. Preventing winch pawl slid.
Packaged QRP for S.s and \boldsymbol{f} MHz., WICER. Transmitter $2 w$. from $12 v .$. receiver a few mA. Peak current 600 mA . All solid state.
The K\&GGI yso MHz. Kilowati Amplifer. K4GGI. H.F. efficiency at the top end of the v.h.f. range.

A Two Element 15 Metre Gead for the Novlice. WN9BJC. Spreaders are combination of aluminium and plastic water pipe
A Co-axial 8 witich with all Unused Contacts to Gionnd wIICP Let's Talk Translstors.
Circuits, Robert E. Stoffels.
Circuits, Robert E. Stofiels.
A Trap Filter Deplexer for 2 Metre Repent era, WiHDQ. Keeping transmitter power out of the recelver.

April 1271-
The Mainline ST-8 R.T.T.Y. Demodvlator, W6FFC. Two versions are actually described. The ST-3 for 850 Hz . shift and the ST-4 for 170 Hz . Small and solid state
A Recelver Matcher and Pre-Amplifier, by WIICP. An FEY pre-amplifier for those whose receivers
and gain.

Improved 2π Metre Portable Performance for - Moblle Station. W3HTF attaches 60 ft . of wire to his mobile whip below the loading coll and improves his distant signals thereby. The far end is thrown over a convenient tree. fels continues with his topic "transistor circels continues operation"
cuit operation"
A Practlcal Solation to an Impractical Problem. W5LQH. How to erect a 40 ft . tower and a liuge beam. In limited space, without getting off the ground. Which is the harder, digging a 33 ft. well. or climbing a tower?
Bullding a Skinnler Linear, WiCER. Describes a grounded grid linear using an Amperex 6LF6 40-watt plate dissipation colour t.v. line scan pentode. (Philips cannot supply thece in Australia.
Clamping Dlodes for C.W. Break-in, W7B7. A dozen diodes and the doovers done.

Rclay Switching for Increaing Redeiver sensitivity and Transmitier Outpat from the Heath HW-17A, WIHDQ. Thanks for the review, Ed
Using the Yaesu Musen PTVASO Six Metre Transverter with the 8/Line, KHBIJ. Mr. Collins may not like it. but Fred will not object. WiKLK. There appears to be more to this subject than a simple "dip and load".
Radiation Patterns of Vee Dipoles over Perfect Ground. K4GSX. For the academic.

"RADIO COMMUNICATION"

March lilf(- Ropes and Rigging for Amateurg, G3JMG Michael Gale (truly a stormy type) is a Board of Trade certificated yachtmaster (Ocean) and he knows his ropes. Every Amateur needs a basic understanding of this subject so that his aerials will be long-standing.

Recelving Amatenr T.V. Trangmigsions, by G6ACU/T and G3PYB. How to get started using a standard t.v. recelver. Multi-standard operation is discussed. V.h.f./U.h.f.
A Faellity lor the Top Band to Ten S.S.B.
Tranomiter. G3HVA. Tranamitter. G3HVA.
The G38EC
The G38EC Tone Polser, G3SEC/Z86TC. Designed to be used for the adjustment of lincar amplifiers or for chasing t.v.i.
Tcchnical Toplcs, G3VA. Pat Hawker covers his usual wide range of subjects. This issue is devoted mainly to linear integrated circuits and their uses.

"RADIO ZS"

March 1020—
This issue deals principally with the Annual General Meeting held at a place called Kroonstad. There is a short article by ZSAIO, titled
"Imprave That Recelver R.F. stage" which de"Improve That Recelver R.F. Stage". Which de-
scribes a cascode circuit using a E188CC. scribes a cascode circuit using a E188CC.
ZS4UH describes a tri-band Quad, in Afrikaans.

SHORT-WAVE MAGAZINE"

March 1y70-
Transmitter H.T. Supplifes, G3OGR. Circuitry and design considerations. Ratings and choice
of values. Valve and solid state circuits are covered.
TR2002
Conversion for Two Metrea, GaBUS. A useful transmitter/receiver combination combination which can easily be converted to two metre operation and make3 an excellent "stand-by" unit.
Calcratation Simplied. G3PEQ. Could be of considerable held to candidates for A.O.C.P.
D.C./D.C. Power Supplits for Moblle. GSSRY. D.C./D.C. Power Sup
Two inverter circuits.

VK/ZL Cruise, H.M.S. London, G3JFF/MM. Readers of "A.R." will remember that Mike Matthews, Chlef Radio Supervisor in H.M.S. London visited Melbourne and
tralian cities during January 1870.
Aprli 1971-
A Monltor for T.V.I.. GBHL A device for continuously checking the transmitter during operation.
Some Useful Circuits for Your Notebook. $\begin{array}{cc}\text { Some } \\ \text { ZSSHF: } & 0-15 \text { volts. regulated p.s.ur at } 1 \text { amp. } \\ \text { res }\end{array}$ ZLIUI: Audio Peak Limiter for A.M./S.S.B. 2L2ALC: Two-Tone Test Oscillator. GM8APX: Wide Band Signal Injector.
The New Marconi H2go0. Sophisticated professional receiver covering the frequency range 1.5-30.1 MHz.

Getting Out on Top Band, G3VLX. Even if you have a small back yard, you can still
 up some surplus valves to run ten watts input up some surplus valves oo run ten watts input on 160 and pr
scribed above.
Transistor Bug Key, G3PVH.
Simple FET Voltmeter, Staff.

"THE AUSTRALIAN E.E.B."

Over a number of years the name of R. L Gunther kept cropping up in relation to various Amateur matters in Tasmania and also in respect of a small, newsy and informative pub-
lication known as "The Australlan E.E.B." lication known as "The Australian E.E.B."
iElectronics Experimenter's Buletin!.
OccoElectronics Experimenter's Buletini. Occa-
sionally I saw a copy of the publication and slonally I saw a copy of the publication and
had the opportunity of examining its contents. During the latter part of April I happened to be visiting VK7 on business and had the good fortune to meet Dr. Leo Gunther at the Hobart Technical conlege. Arrangements have now been made for copies of "The Australian certaln that the Amateur who is experimentally minded will find much to interest him in ally minded win.

February 1970-

Pbotophones for the Amateur. VK5DZ. Deats with short distance communication using modulated light
Forther Notes on High Quallty Recelver Deslen, K. A. Harding VK21. Describes the design and operating principles of the Plessey PRis5, solid state. Reneral purpose, communications receiver. Frequency range 60 KHz . to 30.1 MHz .
Review. R.L.G. reviews the contents of "73 Diode and Long Wire Antennas."
Regulated L.T. Power Supply Design. VK7RG. Part lid basic emitter-follower confguration
Basic design detalls, curves, etc., are given.

March 1970-

A Nice HI-FI Amplifier 8 ystem. Part 1, A
Whittingham VK2). Uses a unit of commerclai design available from Philips, Mullard or Falrchild and capable of an output of about $3 \mathbf{w}$. A Versathe Transisiorised Ignition System, L. E. Thomas iVK61. Most Amateurs are car owners.
Transformer Rejuvenation. H. Bracken, VKhad stored under your house may need some attention before they are put back into service.
8CR Two-Period Timer. E. Kershaw (VK3). A useful load switching device.
Regriated Low Voliage Power Supply De-
sign. Part 2, R.L.G. Takes you on from where the subject left of last month. More curves. diagrams and elaboration.

[^46]Dants of a Morris 1100 I once saw, soon after thelr release by B.M.C.. with the sign in the rear window. "Transistorised Rolls Royce". Speed Control. R.L.G. and G.R.J. More on a simellar subject.
R.T. Regriated Power Supply Design, Part 3, R.L.G. Battery makers beware
eor for V.H.F. I N Kallam iVency Comparawill for V.H.F., I. N. Kallam IVK3I. Where One of the things I like about "E.E.B." is its uninhibited approach to things. Much good advise on electronics and general topics of interest to the modern Radio Amateur.
Obtainable from "The Australian E.E.B.,"
P.O. Box 177. Sandy Bay. Tasmania, 7005. Price P.O. Box 177. Sandy Bay. Tasmania, 7005. Price
25c copy. ${ }^{1}$ year \$1. 3 years \$2. (eight issues yearly).

"73"

March 1u71-
Exira Services from Your Grid Dip Oscilla tor, WA4UZM. Like checking crystals, tuning f.m. receivers and such.

Reverse Current Charging. K8YUC. Turns out you really can re-charge fashlight batter-
ies. iA good technique, if it works. Triers les. 'A good technique, if it works. Triers
please report.'.
A Poor Man's Frequency Meter. W6YAN. A Poor Man's Frequeney Meter.
Combines surplus from two services.

Professional PCs from Roll-Yoar Own Negs. K6MVH. Eliminates drafting. Camera work and dark room entirely.
How I Read the RO:s Handbook and Fonnd Happiness, Johnston. Instant profundity. A Look at Amateor F.M. Siandards, WB6DJT Or. how do we get out of this mess.
An Inexpenslue R.F. Wattmeter, WBAMYL. Surplus meter for those too cheap to buy a regular wattmeter.
Surplas F.M. Units, W2ACM Osclllator for Surples F.M. Units, W2ACM. Drive people crazy on lot more l.m. channels with this.
Add Spotiling to Your V.F.O., K8BYO. If your v.l.o. is unspotted.
Towards an Ideal Solid State I.P. for Amatears. K1CLL. Closing in on the state of the art with Bill Hoisington.
Ham Exchange, WA2ELA. Visiting foreign Super sixer. WA3AQS. Heath wouldn't recognise it. $\begin{gathered}\text { Bob, Boh, Bobbin' Along. K1YSD. Special }\end{gathered}$ pril feature artin
The Did Light. VE3ECU. A grid-dip meter with no grid and no metre. Scanning Receiver. Staff. Snazzy. \mathbf{C}. Monlior, WB2GQY. Using a 886 audio module, you cheapskates. to Sorplus Buying. The Logical Approach to Sorplas Baying.
Jim Kyle. Here's your key to fun with those surplus logic circuits
Converiling the Sonetwoy to aw. F.M. Rig. WiBYX. Two metres. why not have some fun with this one.
Easy Dlode Testing. K4JK. Checking out those bargain diodes.
Tarning the AN/GRC-I Into a Novice RIf. W\&JTT. $2-12$ MHz. transmitter-recelver. if it does not work. check c.t. of rx h.t. supply. -VK3ASC.
Exira Class Siady Course, Part 14, Staff Measurements.
V.H.F.-F.M. and Yoo. K9STH. Part of our Aprll 1970-
The banner headline proclaims this a "Spectal F.M. Repeater Issue"

A Nolse Blanker Tbat Works, W8RHR. As opposed to that crummy one on Brand X Which doesn't work. Can be added to your present receiver easily. 'On D. 18 the author acknowledges that he pinched the circuit from
R. D. Drake.) R. hot Drake.)

This is not an Adril Fool article. WA6NCT Examining F.M. Repeater Operation, WB6DJT History of repeaters. A.R.R.L. involvement and legal problems
A Repeater Controller, WA4YND. Tone generator, limer. identifer, the lot.

Understanding the Carrier Operator Repeater, K6MVH. Some of them take a good deal of understanding

Evalnation: Standard Metre F.M. 1N-Channel Recelver. W6QGN. Okay.
W2EUP. Why have a puny signal wo Metres can have a mediocre signal. signal when you How Do Fam Siores Decide Their Trade-in Figures. W2CFP. 8200 for your S38?
Berylifa. the Lethal Refractory, WB2PAP Worse than cyclamates.
Getting Your Extra Class Licence. Part 15, Staff. Spurious radiation is covered.
A Work Session on the Wichlta Repeater.
WODKU. II invthirig can Ro wrong

Inexpensive Semiconductors for the Ham, WATKRE. Glant Motorola ad that we pald for. Renovaing Surplus Meters, WAOABI. Making new scales. callbrating, etc.
A Blas Regulalor for Linears, Zl2ANG. Simple gadget that makes class B practical.
ZL2BnB Periormance 1.P. and A.G.C. Syatem. Single Sideband on the All-Wave Radio, wicsD. One transistor b.f.o. and no connections.
Vacuum Tube Load Box. Jim Ashe. Invaluable for testing power supplies. IDuring 1953 a similar device using 6L6s was bullt for use at the Army Apprentices School, Baicombe. Victoria. It was only designed to pass a current of about 150 mA . Had 807 s been used. the current could have been run up to 200 mA . at about 750 volts. A much more versatile device for testing power supplies with current outputs up to about 1 amp. can be constructed using four series strings of $240 / 250$ volt lamps which can be connected in parallel by sultable switches with a unit similar to that described for fine adjustment between steps. -VK3ASC.)
Repeater Dlrectory, Staff. Special feature glving detalls of the U.S. repeater locations. requencies. etc.
A Word Abont Regeaters, WB2AEB. A special featurette.
The Fine Points of F.M. Operation, WB2AEB. Getting on frequency and other fine points. How to Megger Your Antenna. W2EEY. It's not too dirty.

S.A.A. REPORTS

SAFETY OF TELECOMMUNICATIONS EQUIPMENT ITE/1)

A working group met in April to complete the detalls of a revision of AS C159-1959 Ap. A revised draft is now being issued for review. with specifc comment being sought on certain sections of the draft that cannot yet be resolved. For example, the problem of applying the usual insulation and high voltage tests to
equipment containing solid-state circuitry is felt to require a new approach.
RADIO INTERFERENCE (TE/3)
At the April meeting of this committee, the of acceptable limits for local osclllator radiation from television receivers. The problems of measurement, of manufacturing within limits, and of affording the protection required by other services, were found to be very considerable but compromise proposals will be incorable but compromise proposals will be incorporated in A draft to be issued for public review and furiher investigations will proceed in the meantime. The concept of "immanity" as applies to i.v. receivers was discussed at ed to study a method of measurement.
RADIO COMMUNICATION (TE/14)
This committee at its last meeting broke up into three sub-committees dealing respectively with radio reception. radio transmission, and aerials, and the sub-committee meetings proceeded simultaneously. A joint meeting was then held at which progress in the specific sections was reported. and guidance was given regarding further work at the sub-committee level.
(Reprinted from the Standards Association of Australia May 1970 Monthly Information Sheet.)

is

PROVISIONAL SUNSPOT NUMBERS MARCH 1870
Dependent on observations at Zurich Observatory and its stations in Locarno and Arosa.

Day			R	Day			R
1	134	16	48
2	126	17	29
3	113	18	\ldots	41
4	101	19	48
5	107	20	93
6	100	21	115
7	\cdots	108	22	122
8	-	116	23	...-	131
9	---		118	24	140
10	*...	123	25	142
11	\cdots	100	26	\ldots	122
12	+-.	-..	84	27	\ldots	\ldots	115
13	104	28	\ldots	110
14-.	84	29	103
15	-	65	30	111

March 1970 Mean equals 101.7.
Smnothed Mean for Sept. 1969: 105.8. Swiss Ferd. Observitory, Zurich.

SILENT KEY

It is with deep regret that we record the passing of-

VK3AW-L. G. McCluskey.

COOK BI-CENTENARY AWARD

The following additional stations have quall

KITS

FM IF 8TRIP (ref. "A.R." June '70). \$9.80. Wired and tested. \$12.80.
CFPASSE CERAMIC FILTER, optional for above. 16 KHz . bandwidih, $\$ 16.00$. IW. IC AUDIO AMP. (ref. "A.R." July '70)) 8.40 . Wired and tested. $\$ 11.40$.

VARACTOR MULTIPLIER KIT, 144 to $\mathbf{4 3 2}$ MHz.. diode not supplied, 85.80 .
2N3622 TRANSISTOR (unbranded). May be used as v.h.f. amp or prices include sales tax and posiage
All prices include sales tax and posta
COMMELEC INDUSTRIES

P.O. Box 1, Kew. Vic., 3101

Phone (a.h.) $80-2957$ or 277-8295 N.S.W. Rep.: J. W. Rufus. 9 Bridge Road. Homebush, 2140. Phone (a.h.) 76.7133

REPAIRS TO RECEIVERS, TRANSMITTERS
Constructing and testing: xtal conv., any fraquency; O5-ers, R9-ars, and transistorised equipment.
ECCLESTON ELECTRONICS

146a Cotham Rd., Kaw, Vic. Ph. 80-3777

Swan Electronics Service Co.
 Accredited Digtributor for
 Swan, Hallicrafters, etc., Receivers and Transmitters
 Speclallsed Service on all Swan Transcelvers
 14 GLEBE 8t., EDGECLIFF, N.s.W., 2027. Ph. 32-5465

Correspondence

Any opinion expressed under this heading is the Individual opinlon of the writer and does not necessarily coincide with that of the Publishers.

COOK BI-CENTENARY AWARD

Editor "A.R.." Dear SIr.
For the 100 per cent. c.w. operator the first requirement-three AX1 contacts-is a knockout blow. No need to read further. The AX prefix is appropriate-Brasspounders are AX-Ed. Little wonder that so many c.W. stations arc using VK in 1970. It is much easier to QSO the 50 ZM stations for the Award. Forget any hopes of AX1 c.w. in 1970 R.D. test. Not ons:
VK1 c.w. station submitted a log in the 1989 R.D. Mention is made of the specini significance of 1970 and the W.I.A. Anniversary. The W.I.A cut its teeth on c.w. and for almost 20 years ifter, so why make it impossible. or so it appears for c.w. operators to obtain an AX Appears for c.w. operators to obtain an AX
nward? It will be of interest to ascertain hosv many 100 per cent. c.w. operators obtain this uward. Arch Hewitt VK5XK

C.W. REQUIREMENTS

Editor "A.R.," Dear Sir.
Recent correspondence in "A.R." concerning the $c . w$. requirements for the Amateur Licence raised lots of interesting points and afforded me both much amusement and sad reflection on the calibre of the arguments put forward for its abolltion.
The blunt truth is that c..w. is a withholding snag. It cannot be instantly overcome or resd up in an evening or two from a book. It requires patience and application which are presently abhorred in this age of Instant Gratification. I'm surprised that no one has yet come forward to say that the theory exam. Is mental ability, or pave not time. opportunit But that will no doubt come when c.w. has been abolished. The polnt that is missed is that the Amateur Licence requirements are no different from those for any other profession. trade or even a driving licence. There is a theory exam. to test the applicant's inowledge and then a practical test for his ablity
Most of us know how a sideboard is made but you have to have made a real job of one before you start to call yourself a cabinetnaker. A medical student may be a wizard on blood. bones and nerves but he will never become a docior while he puts the stethoscope up his nose instead of in his ears! Likewise the c.w. test is the only practical way the authorities have of ascertaining whether we are remotely competent to be let loose on the world wide communication frequencies. It could not be replaced by submitting a piece for admission to a craftsmen's quild. That would be more irksome than learning c.w.
What will be the outcome? Well. If the What will be the outcome? Well. if the
abolitionists scream. howl and bang their heels abolitionists scream. howl and bang their heels no doubt eventually give in, and relax even urther the present absymal level of requirement. But I hope they impose instead a time limit so that this "self training" business is aken seriousiy for a change.
So VK3ZJC has a good chance of seeing his desires fulfilled before too long whether we old fogies like it or not. But before he congratulates himself he might first ponder on just what he stands to lose. besides his own self-respect in falling to achieve that which others found no great irouble. Morse may seem to him archaic but I suspect that by his standards most other worthwhile abilities are too. It's like learning to play the plano instead of buying a record player. It's not the easiest cholce, requires plenty of effort and practice and rew ever reach concert standard. Bu once a modest skill is achieved it remains for that surely is the main purpose of pursuing any hobby.
-L. J. Smith, VK6LJ

NO REQUE8T FOR INCREA8E IN
 \section*{U.8. PRONR BANDB}

The American Radio Relay League. Inc. Newington, Conn., U.S.A.. 08111 Federal Secretary. W.I.A. Dear Sir.
Last year we reported to you that our Board of Directors would be discussing possible expansion of U.S. phone bands at its annual meeting this year, and requested your comments on how such an expansion might affect Amateur Radio in your country
We much appreclated the assistance siven by your reply, and I wanted you to know that vour comments were given consideritioll by
our President, our Planning Committee, and by the cntire Board of Directors.
At its annual meeting on 1st May, 1870, the League's Board of Directors decided NOT to petition the Federal Communications Commission for an increase in U.S. phone band at this time.
Agiln. thanks for vour co-operation. 73,
-WILVQ. General Manager.

HAMADS

Minimum $\$ 1$ for forty words.

Exira words, 3 cents each.

hamads will not be published unless ACCOMPANIED BY REMITTANCE.
Adverisements under this heading will be accepted only Irom Amateura and S.w.l's. The Publishers reserve the right to reject any advertising which. In their opinion. is of a commercial natura. Copy must be recolved at P.O. 38, East Molbouma. accompany the advertsament.

APACHE Transmitter HeathkIt TX-1 with handbook S150: Heathxit OM3 5 inch CRO. S60: G4ZU commercial 3 element triband beam. 560 : 1674 Base Station on 52.525 MHz . FM, $\$ 50$: Pye of Cambrldge Base Station on 53.1 MHz . AM 100w.. 560 : 146 MHz . FM 1674 land line Base with remote control. etc., S60; thres good QOV06/40s, \$5 each. All
units in excellent condition. VKSAZ. 10 Regent units in excellent condition. VK5AZ
St., Pennington. S.A., 5013. Ph. 42477.
FOR SALE: Hallicrafters HT37 Transmitter, SX111 Receiver. A1 condition, both $240 v$ a c.. $80 / 10 \mathrm{mx}$ S.S. A.M.. etc. S345. John Walker. VK2G.A 216 Memorial Ave., Ettalong Geach. N.S.W.. 2257 Phone Gosford 41.3659
FOR SALE: Lafayette Model HA500 Recalver with manual. near new. Si75. Geloso Transmitter. G222.TR. \$100 Lafayette Transistor Analyzer. KT223. \$20. Multimeter, Model 200H, S10. Kyoriatu SWi Meter. Model K-109. \$20. Sansel MInlature Tran. sistorised Test Oscillator. Model TO-3A. \$12. Box assorted Valves and Valve Tester, S10. Muhleisen. 9 Fitzpatrick St., Waroons, W.A.

FOR SALE: Prop. Plich Motar. pair Selsyns. welded wave gulde boom. Dural tubing, azi. map. all VK2äML. 139 Bruce St.. Brighton Le Sands. N.S.W.. 2216. Phone 59.6636.

FOR SALE: Table Top flve-band A.M.. C.W.. F.M. Commercial Tx, 95 watts $0 / \mathrm{p}$.. all bands $80 \cdot 10$. Self contained power supply. Photo on request. Module type chassis. (Power supply voltages ideal for running most s.s.b. rigs.) Screened parallel 807 s $\begin{array}{llllll}\text { p.a. Would make } & \text { idea } & \text { D.S.B. rig. Stable V.F.O. } \\ \text { Complete unit } 24 & x \quad 12 & x \quad 18 & \text { Inches. As new. }\end{array}$ Complete unit $24 \quad x \quad 12 \times 18$ Inches. As new.
Inquiries: VK3XD. Glenpark Rd.. Eltham North. Inquiries: VK3XD. Glenpar
Vic.. 3095. Phone $439-9862$

HAVE YOU lost interest in the constructlon of the Project-Solid State Transceiver, "A.A.." November ' 68 through September '69? If so. I ani Interested in boards, components. and chassis.
etc. Send price and details to 26 Elizabeth St.. etc. Send price and detai
Tea Tree Gully. S.A., 5091.
WANTED: AD740 Receiver Type 2635 Handbooin. Control Box. Mounting Base and Crystals. Prices $t 0$ D. Williams. 83 St. Pauls Rd.. Sorrento. Vic.. 3943. Phone 42028.

WANTED: Information on History of Amateur Servica: also on early experiments in Amataur Radio origin of W.I.A. Phillip RIce (VK3YCS). 54 Playne St., Heathcote. VIC.. 3606

WANTED: One of the following $1 / 4 \mathrm{kw}$ O.G. Spark Transmitters: Marconl types 241C. 341. 369. 558. 355. 355F: Radio Communication Co types PS17. T20. T24. T22, T29, or simllar small home-brew equipment. Also quenched plate qap dischargers:
high voltage mica condensers such as Admiralty pattern 5001 with rating 0.0044 UF. 20.000 volt test. R. F. Flsher. VK3BAO. 241 Royal Pde.. Parkville. Victoria. 3052

WANTED TO BUY: Receiver type SX28. HRO. BC342 or 348 . R1155. Eddystone 750 or similar receiver in any condition. Also converter covering 20 through
10 metres. 6 metre band. Josef Kllmes. OK1AKW. 10 metres. 6 metre band. Josef Klimes. OK1AK
17 McFarlane St.. Glenelg North. SA.. 5045.
YAESU MUSEN FR100B Recelver In new condition with many extras. such as F.M. detector, WWV. xials. $\$ 250$. VK5AS. 3Ω Tapleys Hill Rel.. North Glenelg. S.A., 5045

BAIL ELECTRONIC SERVICES
 AMATEUR EOUIPMENT SPECIALISTS

\star FLDX-400 TRANSMITTER
\star FRDX-400 RECEIVER
\star FTV-650 6 Mx TRANSVERTER

SOLE AUSTRALIAN AGENTS FOR

S.S.B. EQUIPMENT
\star FLDX-2000 LINEAR AMPLIFIER
\star FL-2000B LINEAR AMPLIFIER
\star FF-50DX L.P. FILTER
\star FT-101, FT- 200 and FTDX-400 TRANSCEIVERS
\star FVDX-400 VFO, SP-50 and SP-400 SPEAKERS
\star YD-844 P.t.T. DESK MICROPHONE
\star YaESU SPARE PARTS AND SERVICE FACILITIES

Accessory Items:
S.W.R. Meters, Field Strength Meters, P.T.T. Mikes, Co-ax. Connectors, Co-Ax. Cable, Co-Ax. Switches. Hy-Gain (U.S.A.) H.F. and V.H.F. Antennas. Emotator Antenna Rotators.

Katsumi Electronic Keyers and Speech Compressors. Solari 24-Hour Digital Clocks.
Heathkit Amateur Equipment (Vic. only)
Johnson Matchbox Antenna Tuners

Write for details:-

BAIL ELECTRONIC SERVICES
60 Shannon St., Box Hill North, Vic., 3129. Ph. 89-2213
N.S.W. Rep.: MOSMAN RADIO SERVICES, 11 Ruby Street, Mosman, N.S.W., 2088. Telephone 969-8342 South Aust. Rep.: FARMERS RADIO PTY. LTD., 257 Angas Street, Adelaide, S.A., 5000. Telephone 23-1268

DURALUMIN ALUMINIUM ALLOY TUBING

IDEAL FOR BEAM AERIALS AND T.V.
\star LIGHT $\quad \star$ STRONG
\star NON-CORROSIVE
Stocks now available for Immediate Delivery
ALL DIAMETERS - $1 / 4^{\prime \prime}$ TO $3^{\prime \prime}$
Price List on Request
STOCKISTS OF SHEETS-
ALL SIZES AND GAUGES
GUNNERSEN ALLEN METALS
PTY. LTD.
SALMON STREET,
PORT MELB'NE, VIC.
Phone 64.3351 (10. linea)
T'grams: "Metals" Melb.
HANSON ROAD, WINGFIELD, S.A. Phone 45-E021 (4. lines) T'orams: "Metals" Adel.

BRIGHT STAR CRYSTALS

FOR ACCURACY, STABILITY, ACTIVITY AND OUTPUT
SPECIAL OFFER-
STANDARD AMATEUR CRYSTALS
STYLE HCGU HOLDER, FREOUENCY RANGE 6 TO 15 MHz .
0.01% \$4.25
0.005% \$5.50
Prices Include Sales Tax and Postage

COMMERCIAL CRYSTALS

in hceu holder, 0.005\% tolerance, frequency range 6 to 15 MHz . $\$ 6.00$ plus Sales Tax and Postage
Write for list of other tolerances and frequencies available.
COMPREHENSIVE PRICE LIST NOW AVAILABLE-WRITE FOR YOUR COPY
New Zealand Representatives: Messrs. Carrell \& Carrell, Box 2102, Auckland Contractors to Federal and State Government Departments

BRIGHT STAR RADIO

LOT 6, EILEEN ROAD, CLAYTON, VIC., 3168
Phone 546-5076
With the co-operation of our overseas assoclates our crystal manufacturing methods are the latest

VHF-UHF Communication Receivers

by

Fully transistorised, the EDDYSTONE Models 990R and 990S are extremely versatile single-conversion receivers suitable for communication or laboratory use available ex stock

MODEL 990R
Frequency coverage:
Range 1-130-240 MHz.
Range 2-75-130 MHz.
Range $3-46-76 \mathrm{MHz}$.
Range 4-27-46 MHz.
Sensitivity: $5 \mu \mathrm{~V}$. for 10 dB . S / N (AM mode 30 KHz . B / W).
Stability: 1 part in $10^{5} /{ }^{\circ} \mathrm{C}$. (free running).
1 part in $10^{\circ} /{ }^{\circ} \mathrm{C}$. (crystal controlled).
Intermediate frequency: 10.7 MHz .
Selectivity: Wide- 200 KHz .
Narrow- 30 KHz . (crystal filter).
Alternative crystal filters can be fitted to special order.
Deviation acceptance: 75 KHz .
Crystal calibrator: 10 MHz . markers.

MODEL 990S
Frequency coverage:
Range $1-470-870 \mathrm{MHz}$.
Range 2-230-510 MHz.
Sensitivity:
AM: $5 \mu \mathrm{~V}$. for $10 \mathrm{~dB} . \mathrm{S} / \mathrm{N}$ (1 MHz. B/W).
FM: $4 \mu \mathrm{~V}$. for 10 dB . S / N (1 MHz. B/W).
Stability: Better than 1 part in $10^{\mathrm{s}} /{ }^{\circ} \mathrm{C}$. Intermediate frequency: 36.5 MHz . AM and FM .

Selectivity: 1 MHz . and 6 MHz . AM ; 1 MHz. FM.
Deviation acceptance: 250 KHz .
Crystal calibrator: 50 MHz . markers.

LOW DRIFT CRYSTALS

\pm
1.6 Mc . to 10 Mc ., 0.005% Tolerance, $\$ 5$安
10 Mc . to 18 Mc .,
0.005% Tolerance, $\$ 6$ $\$$
Regrinds \$3
THESE PRICES ARE SUBJECT TO SALES TAX

SPECIAL CRYSTALS: PRICES
 ON APPLICATION

MAXWELL HOWDEN

15 CLAREMONT CRES., CANTERBURY, VIC., 3126

Phone 83-5090

Victoria: 608 COLLINS STREET, MELBOURNE, 3000.
Phone 61-2464
New South Wales: 63 ALFRED STREET, MILSONS POINT, 2061. Phone 929-8066 Western Australia: 34 WOLYA WAY, BALGA, PERTH, 6061 . Phone 49-4919 Q'land: L. E. BOUGHEN \& CO., 30 Grimes St., Auchenflower, 4066. Phone 7-4097

POST COUPON for 990R-S Technical Brochure

Name \qquad
Address

LOG BOOK

IS NOW AVAILABLE
Larger, spiral-bound pages with more writing space. Price 75c each
plus 17 Cents Post and Wrapping Obtainable from your Divisional Secretary, or W.IA., P.O. Box 36, East 'Melbourne, Vic., 3002

HY-GAIN AMATEUR ANTENNAS

Fully Imported from U.S.A.

COMPREHENSIVE RANGE TO SUIT MOST REQUIREMENTS

H.F. BEAMS: TH6DXX, TH3Jr, TH3Mk3 and HyOuad Tribanders for 10,15 and 20 m.; 204BA, 203BA Monobanders for 20 m .
TRAP VERTICALS: 18AVO ($80-10 \mathrm{~m}$.) , 14AVQ ($40-$ 10 m .) and 12AVQ ($20-10 \mathrm{~m}$.).
H.F. MOBILE WHIPS: New "Hamcat" Whips and associated fittings.
V.H.F. ANTENNAS: Beams-66B six elem. 6 m ., DB-62 duo-bander for 6 and 2 m. ; 23B, 28B and 215B (3, 8 and 15 elem. 2 m . beams). Also Ground Planes, Mobile Whips and Halos.

ACCESSORIES: LA-1 co-ax. lightning arrestor. $\mathrm{BN}-86$ balun, Cl centre insulators \& EI end insulators for doublets. HEAVY DUTY ROTATOR: Emotator Model 1100 M available for H.F. beams.

The World's Most Versatile Circuit Building System!

SIZES: $1 / 8^{\prime \prime}$ and $1 / 16^{\prime \prime}$ WIDTHS
Length: 100 ft . roll, 5 ft . card
IDEAL FOR PROTOTYPE AND PRODUCTION CONSTRUCTION

USEFUL FOR WIRING REPAIRS

* NO DRILLING \quad FAST \quad NO mess

Available from all Leading Radio Houses
Marketed by-
ZEPHYR PRODUCTS PTY. LTD.
70 BATESFORD RD., CHADSTONE, VIC., 3148
Telephone 56.7231

MANUFACTURERS OF RADIO
AND ELECTRICAL EQUIPMENT AND COMPONENTS

Introducing the latest in 4-Piece 'RAPAR' Stereo Record Players

Ideal for Modular Wall Units. Small Rooms, etc.

Illustrated . . . 4-piece wall unit complete, $\mathbf{S 3 5 0 . 0 0}$
Featuring the "RAPAR" Stereo Amplifier Model KS400 with Radio Tuner.
Other 4-piece units from $\$ 110.00$.

MELBOURNE'S WHOLESALE HOUSE

562 Spencer St., Melbourne, Vic., 3000. Phone 329-7888, Orders 30-2224 City Depot: 157 Elizabeth Street, Melbourne, Vic., 3000. Phone 67-2699 Southern Depot: 1103 Dandenong Rd., East Malvern, Vic., 3145. Ph. 211-6921

Frcter

Vol. 38, No. 8 Aúlūsis, 1970

Danieracan at G.P.O.. Melbourne for transmission by posi as a periodical Price 30 Cents

CRYSTALS

CITIZENS BAND and MODEL RADIO CONTROL FREOUENCY CRYSTALS
HC18 Miniature, $1 / 4$ Inch spacing.

26.540	MHz .	26.995	MHz .	27.240	
26.590	MHz.	27.045	MHz.	27.245	M ${ }^{\text {Hz} \text {. }}$
26.640	MHz .	27.095	MHz.	27.425	MHz.
26.690	MHz.	27.145	MHz	27.740	MHz
26.785	MHz .	27.195	MHz.	27.785	M
26.790	MHz .			27.880	MHz

PRICE S3.50 EACH
AMATEUR CRYSTALS
UHF Band - 144 MHz . FM
HC6 Holders. $1 / 2$ Inch spacing.

Channel A Channel A	Transmit Receive	$\begin{array}{r} 4.051 .55 \\ 10.275 .35 \end{array}$	$\begin{aligned} & \mathrm{KHz} . \\ & \mathbf{K H z} . \end{aligned}$
Channel B Channel B	Transmit Receive	$\begin{gathered} 4.055 .5 \\ 10.285 .71 \end{gathered}$	$\begin{aligned} & \mathrm{KHz} . \\ & \mathrm{KHz} . \end{aligned}$
Channel Channel C	Transmit Receive	$\begin{array}{r} 4.059 .61 \\ 10.296 .14 \end{array}$	$\mathrm{KHz} .$
Channel 4 Channel 4	Transmit Recelve	$\begin{array}{r} 4.066 .66 \\ 10.278 .57 \end{array}$	$\begin{aligned} & \mathrm{KHz} . \\ & \mathrm{KHz} . \end{aligned}$
Channel 1 Charinel 1	Transmit Recelve	$\begin{array}{r} 4.058 .33 \\ 10.257 .14 \end{array}$	KHz. KHz.
PRICE 55.50 EACH			

VIDEO PEAKING CHOKES
MINIATURE PIGTAILS, IRONCORE
$15 \mathrm{uH} .22 \mathrm{uH}, 27 \mathrm{uH} .33 \mathrm{uH} .39 \mathrm{uH}, 47 \mathrm{uH}$. 56 uH. 68 uH. 82 uH. 100 uH. 120 uH. 150 uH . 180 uH. 220 uH. 270 uH. 330 uH. 390 uH, 470 uH . 560 uH . Price 40 c . Postage 10c.

VERNIER DIALS
Ratio 0 to 1 Reduction, Scaled 0-10.
Type T $501 \quad 11 / 2$ inch diameter
Type $T 5022$ inch diameter
LOW PASS FILTERS
A "Cabena" Low Pass Filter will ilx TVI. Cut-off frequency, 30 MHz .; attenuation at 65 MHz , better
 than 30 dB.: insertion 03s, negligible.
50.72 ohms. Price 511.50 . Postage 10 c.

FIVE-CORE CABLE

$5 \times 5 / 0076$. Ideal íor intercoms.. Telephories, etc. New. 100 yd. rolls, $\$ 17$ (postage 75c), or 2 jc yd.

WIRE WOUND POTENTIOMETERS
53 wàts. 200 ohms. Price $\mathbf{5 3 . 0 0}$.

SOLID STATE STEREO AMPLIFIER
0 watts r.m.s. per channel. Input for magnetic. crystal and ceramic type microphone. P.V. cartridges, tape recorder input and output, tuner input. stereo headphone jack. Reduced io $\$ 65$, post $\$ 1.20$.

STEREO HEADPHONES

Professional quality (well known brand). Large earpads, standard stereo plug. 6 ft. lead. Price \$5.75. Postage 50c.

C-Type Compact CASSETTE TAPES
Well known make 〔suit all popular brands of Cassette Recorders). In plastic storage case.
C-60 60 minutes
C-90 93 minutes
BRAND NEW SPEAKERS

30 X	8 ohms	Nett	Price	\$3.95	Postage	20c
3DX	15 ohms	*	*	\$3.95	*	20c
6 A7	8 ohms	*	**	55.59	*	40c
6A7	15 ohms	**	-	\$5.50	.	40\%
8 A7	3 ohms		..	57.20	*	40c
OA7	15 ohms	**	"	57.23	*	40c
12CMX	8 ohms	..	'	S10.75	..	50c
12CMX	15 ohms	*	' ${ }$	\$10.75	*	50 c

DELCO TRANSISTORS

Type 2N441
Type 2N278
Price S2.40. Postage 10c Type 2N301 Price S5.05. Postagy 10: Price $\mathbf{5 2 . 5 0}$. Postage 10.,

LT91 RECTIFIER
 20 Volt 2 Amp.

Price $\mathbf{\$ 1 . 5 5}$. Postage 10 c

TE-16A TRANSISTORISED TEST OSCILLATOR

Freguenzy range: 400 KHz . to 33 MHz . In iive bands. Modulated 800 Hz . sine wave. Modulation 30% approx. $57 / \mathrm{m} \times 57 / 8 \times 3 \mathrm{sh}$ inches. Weight 1.5 lbs . Price $\$ 24$ tax paid. Postage 75 c .

AUTO CAR AERIALS

Hirschmann, type 300 N . side mounting, new. Price $\$ 4.50$. Postage 20c.

SIGNAL INJECTOR

Model SE250B. Price $\$ 7.00$. Postage 20c.

INSTRUMENT CASE

Sloping front panel. Plastic case, metal front panel. $71 / 4 \times 41 / 4 \times 5$ inches. Suitable for radio. test equ!pment. projects. etc. Price $\$ 3.50$ inc. tax. Postage 10 c .

PACK OF RESISTORS

100 Resistors of $1 / 2$ and 1 watt rating.
Price $\$ 1.75$. Postage 20 c .

RECORDING TAPE

Well known make in sealod boxes. Bargain Priced, Fully Guaranteed.
3 Inch Reols-

Empty Reels (unboxed)-

4 inch 40c
7 inch
"NIKKA" 1-WATT TRANSCEIVERS
P.M.G. approved. Solid State 14 -transistor circuit including RF stage. 27.240 MHz . (provision for two channels). Range bjost clrcuit. Up to 10 miles in open country or water. Buzzer type call system. in open country or water. Buzzer type call system.
Squelch control. Complate with leather carrying Squelch control, Comp
case. Price S165 pair.

HIGH IMPEDANGE HEADPHONES

New. Price S2.35. Posiage 20c.

LOW IMPEDANCE HEADPHONES

8 ohms. Price $\$ 2.50$. Postage 20c.

MINIATURE SPEAKERS

21/4 inch	8 ohm V.C.	Price	\$1.50	Postage	20c
21/2 inch	$6 \mathrm{ohm} \mathrm{V.C}$.		\$1.75		20
$23 / 4$ inch	8 ohm V.C.		\$2.00		20c
3 inch	8 ohm V.C.	-	\$2.25	,	20
4 inch	$8 \mathrm{ohm} \mathrm{V.C}$.		$\$ 8.50$		20

NO. 62 TRANSCEIVERS
Wireless Set No. 62 Mk. 2 (Pye). Frequency range 1.6 to 10 MHz . in two bands. In-built 12-volt genemotci nower supply. Clean condition. Fully air tested on transmit and receive. F.O.R. Price $\$ 49.59$

NEW A.W.A. T.V. TUNER
Model 49806. Uses 6U8 and 6BO7A. Price $\mathbf{5} 5.50$. Postage 50 C .

haM
 RADIO SUPPLIERS 323 elizabeth street, melbourne, vic., 3000

Phones: 67-7329, 67-4286 All Mail to be addressed to above address
We sell and recommend Leader Test Equipment, Pioneer Steres Equipment and Speakers, Hitachi Radio Valves and Transistor Radios, Kew Brand Meters, A. \& R. Transformers and Transistor Power Supplies, Ducon Condensers, Welwyn Resistors, etc.

JOURNAL OF THE WIRELESS INSTITUTE OF AUSTRALIA. FOUNDED 1910

AUGUST, 1970
Vol. 38, No. 8

Publishers:

VICTORIAN DIVISION W.I.A.
Reg. Office: 478 Victorla Parade. East Melbourne. Vic.. 3002.

Editor:

K. E. PINCOTT VK3AFJ

Assistant Editor:

E. C. Manlfold VK3EM

Publications Committee:
Ken Glllesple Vk
Harold Hepburn (Secretary) Vk3aFO
Peter Ramsay Vk3ZWN
W. E. J. Roper Vk3arz
culation
Jack Kelly Vk3AFD
Draughtsmen:-
Clem Allan Vk3ziV
John Blanch Vk3ZOL
ohn Whitehead

Enquiries:

Mrs. BELLAIRS. Phone 41-3535, 478 Victorla
Parade. East Melbourne. VIc., 3002. Hours: 10 a.m. to 3 p.m. only.

Advertising Representatives:

technical news publications
21 Smith St., Fitzroy, VIc., 3065 . Tel. 41-4962. P.O. Box 108, Flizroy, VIc., 3065.

Advertisement materlal should be sent direct to the printers by the first of each month.
Hamads should be addressed to the Editor.

Printers:
"RICHMOND CHRONICLE," Phone 42-2419.
Shakespeare Street, RIchmond, VIC., 3121.

All matters pertaining to "A.R." other than advertising and subscriptlons. should be addressed to:

THE EDITOR,
"AMATEUR RADIO."
P.O. BOX 36.

EAST MELBOURNE, VIC., 3002.

Members of the W.I.A. should refer all engulrles regarding dellvery of "A.R.' direct to their Dlvisional Secretary and not to "A.R." direct. Two months' notice is required before a change of malling address can be effected. Readers should note that any change In the address of their transmitting station must, by P.M.G. regulation. be notified to the P.M.G. In the State of residence; In addition. "A.R." should also be notifled. A convenlent form is provided In the "Call Book".

CONTENTS

60th Anniversary of the W.I.A.:-
A Highlight of Amateur History 7
An Outline of Early Radio 13
Federal Comment: 60th Anniversary of the Wireless Institute of Australia 5
The History of Amateur Radio and the Wireless Institute of Australia 6
Wireless Institute Publications 10
Technical Articles:-
Calculation Simplified 24
Low-Cost Co-axial Relay Construction 20
Low-Cost Solid State Power Supply for Carphones and Pye Reporters 25
Series A.C. Circuit 22
Solid State Device Patent Application in 1925 21
General:-
Australis News 23
Cook Bi-Centenary Award 30
Correspondence 21
Draft Revision of Specification for Electronic Sound and Vision Equipment 19
DX 27
New Call Signs 26
Obituary 24
Overseas Magazine Review 28
Prediction Charts for August 1970 26
Radio Doctoring in the 20's 13
Silent Key 30
VHF 29
VK5 Sunday Broadcasts 29
W.I.A. D.X.C.C. 9
2nd World R.t.t.y. Championship 30
Contests:-
Contest Calendar19

COVER STORY

A very brief History of Experimental Radio in Australia from Spark to S.S.B. Transceivers, undreamed of in the beginning of Wireless Communication. Further information on page 13.

SIDEBAND ELECTRONICS ENGINEERING

Towards the time this advertisement shows up in print I shall have returned from a business trip to JAPAN. Apart from a look at EXPO, I shall have had a chance to finalise negotiations for supplies of different equipment than carried so far.

One of the contacts is MIDLAND International, an American firm for electronics supplies and manufacture, based in the U.S.A. but with roots in Japan. From now on I shall distribute their MIDLAND products on an exclusive basis for all of Australia. Some of their units, soon available, are:-

MIDLAND Model 13-710 11-transistor, 3-channel, call signal Transceivers. Transmitter: crystal controlled, 1-watt final Input power. Recelver: superheterodyne system, crystal controlled. One set of crystals supplied for 27,240 KHz. operation. P.M.G. approved for operation on that frequency UNDER LICENCE. Size: $81 / 4^{\prime \prime} \times 31 / 4^{\prime \prime}$ $\times{ }^{3 / 4 / 4} .60^{\prime \prime}$ telescoping antenna, weight 2 lbs . Audio call signal, perfect for CW operation, audio squelch control, battery level meter, earphone piece, carrier case and strap. Supplied with eight penlite cell batteries, only $\$ 37.50$ per unit.

MIDLAND SWR-Power output meter, with two 100 microamp. meters, reading power and SWR simultaneously, 2 kw . power rating, \$20.

MIDLAND Field Strength Meter, with whip, five ranges covering 1 to 400 MHz ., $\$ 10$.

MIDLAND PTT Dynamic Mobile Microphone, 50K ohms impedance, with coiled cord and $1 / 4^{\prime \prime}$ plug, $\$ 8$.

More MIDLAND accessories to be announced soon, in addition to all the items advertised regularly every month since earlier this year.

SIDEBAND ELECTRONICS ENGINEERING
 Proprietor: ARIE BLES

P.O. BOX 23, SPRINGWOOD, N.S.W., 2777

Telephone (not a Sydney exchange numberl): Springwood (STD 047) 511-394.

Here is the solution to all-band working in a limited space

THE G8KW TRAP-TUNED ALL-BAND KIT

PRICE

FEATURES-

- 75 ohm co-axial feed or twin flat transmission line.
\$18.40
(tax paid)
aVailable
ex stock
- Only 108 feet long.
- Operates on six bands.
- Reasonable SWR on all bands.
- Simple to erect.
- No "cut and try" necessary.
- Kit includes two fully weather-proofed pro-tuned high O trap coils resonant at 7.1 MHz . and ceramic
- Full instructions with each kit.

DURALUMIN ALUMINIUM ALLOY TUBING
IDEAL FOR BEAM AERIALS AND T.V.
\star LIGHT $\quad \star$ STRONG \star NON-CORROSIVE
Stocks now available for Immediate Delivery
ALL DIAMETERS - $1 / 4^{\prime \prime}$ TO $3^{n \prime}$
Price List on Request
stockists of sheets-
ALL SIZES AND GAUGES

GUNNERSEN ALLEN METALS

PTY. LTD.
SALMON STREET, PORT MELB'NE, VIC. Phone 64-3351 (10, lines) T'ramm: "Metals" Moli.
HANSON ROAD,
WINGFIELD, S.A.
Phone 45-8021 (4, lines)
T'grams: "Metals" Adel.

COMMUNICATIONS CAREER tranners wanted

The Department of Civil Aviation wants men aged at least 18 and under 36 years having previous telecommunications experience to undertake conversion training for positions of Communications Officer.
Communications Officers are responsible for the operation of Aeronautical Broadcast Services and a variety of Aeronautical Fixed Telecommunications channels linking Flight Service and Air Traffic Control units, and as such they make a vital contribution to the high safety standards of Australian civil aviation.
Opportunities exist for further training and advancement as Flight Service Officer.
Applicants must be British subjects (by birth or naturalisation) and be medically fit. A good level of secondary education is desirable. A minimum of two years related experience in telecommunications fields is necessary together with proficiency in machine and wireless telegraphy. Ability to communicate fluently and clearly in English is essential.

For further information contact -
Recruitment Officer,
Department of Civil Aviation, Aviation House,
188 Queen Street,
Melbourne, ViC. 3000
Telephone 620131

Main specifications of Rotator: Electric power source: 230V. AC. 50/60 Hertz. Torque: $400 \mathrm{Kg} / \mathrm{cm}$.
Time for one revolution: 60 seconds, approx. Brake system: Electro-magnetic double plungor lock-in.
Brake power: $5,000 \mathrm{Kg} / \mathrm{cm}$
Vertical load: Dead weight, 500 Kg : nominal load, 70 Kg .
Mast diameter: $1 / / 4$ to $21 / 2$ inches
Weight: $16 \mathrm{lb} .$, approx.
Control cable: Seven conductors
Approx. sizes: helght, 133 in in.; base diam., $51 / 4 \mathrm{in}$. rotation diam., $7 \frac{1}{2}$ in.
Specifications and Prices subject to change.
AUSTRALIAN AGENT:

BEAM ROTATOR EMOTATOR MODEL 1100M

YOU CAN CONTROL THE DIRECTION OF YOUR BEAM ANTENNA FROM YOUR OPERATING POSITION

The heavy duty model 1100 M features rugged cast aluminium construction, stainless steel bolts, nuts and washers. Bearing design with 90 -ball bearing provides high vertical carrying capacity, and resistance to bending pressures due to unbalanced weight, wind, etc. Limit switches prevent over-run. Positive braking with solenoid operated double plunger, operates when drive paddle is released. Steel gears transmit drive from a fractional horse-power motor.

The 1100 M can be mounted on a fixed tubular mast if an additional clamp assembly is bolted to the base. Otherwise, the rotator is base mounted on a flat plate fixed to the top of the mast or tower. Six mounting holes are provided. The antenna boom is supported on a short vertical tube held by the top clamp assembly. Clamp assemblies are of sturdy construction and clamp blocks are reversible for small or large tube within the range $11 / 4^{\prime \prime}$ to $2 \frac{1}{4} 4^{\prime \prime}$ diameter. U bolts are stainless steel 9 mm . diam.

The Indicator-Control Box is attractively finished in grey, with large illuminated meter, indicator lights, power switch, and "Left-Right" controls. Transformer is within Control Box. Control Box size: $51 / 2^{\prime \prime} \times 83 / 8^{\prime \prime} \times 4^{\prime \prime}$; weight $81 / 2 \mathrm{lbs}$. 1100 M with Indicator-Control Box and bottom mast clamp, \$165.00.
1100 M with Indicator-Control Box (less bottom mast clamp), \$148.50.
Special 7 -conductor Cable for 1100 M , 60 cents per yard.
All prices include Sales Tax. Freight is extra.

BAIL ELECTRONIC SERVICES

60 SHANNON ST., BOX HILL NORTH, VIC., 3129.

Phone 89-2213
N.S.W. Rep.: MOSMAN RADIO SERVICES, P.O. Box 56, Mascot, N.S.W., 2020. South Aust. Rep.: FARMERS RADIO PTY. LTD., 257 Angas St., Adelaide, S.A., 5000. Western Aust. Rep.: H. R. PRIDE, 26 Lockhart Street, Como, W.A., 6152.

Telephone 67-1650
Telephone 23-1268
Telephone $60-4379$

BIG THINGS in SMALL TRANSFORMERS

Today, with the emphasis on smaller components our own lamination and heattreatment section can cater for your special needs for small transformers. Consult us also for all small TRIMAX power or audio transformer requirements. The Transformer above is a typical example of a specially developed low-level TRIMAX unit in a Mu-metal case. Overall size is only 1装" diameter by $1 \frac{1}{4}^{\prime \prime}$ deep.

60th Anniversary of the Wireless Institute of Australia

At the beginnings of Amateur Radio, Australia was a leader. This year we in the Wireless Institute of Australia celebrate the 60th Anniversary of an organised Amateur Radio Society in this country. Our beginnings predate those of both the Radio Society of Great Britain (founded 1913) and the American Radio Relay League (founded 1914), two of the most respected names in Amateur Radio. Australia thus was the first.

To celebrate this auspicious occasion a series of historical articles are being published in this magazine. The first, by Mr. G. Maxwell Hull, VK3ZS, a former Federal President, appeared in the March issue. In this Special Historical Issue old photographs and advertisements are reproduced together with a history of publications within Amateur bodies of Australia compiled by the Editor, Mr. Ken Pincott, VK3AFJ. These historical articles are commended to all Amateurs but in particular to the younger members of the fraternity -we have a history in respect of which we can be justifiably proud, but which demands of us today and those Amateurs to come in the future a high degree of achievements to match those of our forebears. Further articles of an historical nature will be featured throughout the year and there will be appeals from time to time for information to fll voids.
"Old Timers" particularly are urged to heed these appeals and contact their Division's Federal Councillor or the Federal Historical Officer if they are in a position to supply information, books, equipment, etc., that will help to complete the documentation of the Institute's history.

Australian Amateurs retained their leading status after W.W.I. in the 1920's with history making contacts between the Antipodes and England. The names of Charles Maclurcan (A2CM) and Max Howden (A3BQ) will forever be associated with these feats. Other names that arose in the 20 's to become noteworthy later on included Ross Hull (A3JU) of "QST" and Ross Hull Contest fame, and Howard Kingsley Love (A3BM) who was responsible for the W.W.II. receiver type AR7.

In the more recent history of Amateur Radio, Australians have remained in the forefront of achievements. In 1966, Ray Naughton (VK3ATN), of Birchip, Victoria, proved conclusively that it was possible by using "moonbounce techniques" to communicate on an international scale on 144 MHz . He used relatively low power and by existing standards a comparatively unsophisticated antenna system and there-
by confounded the critics who said that it could not be done. His contacts with the East coast of the U.S.A. remained the world record for E.M.E. work for some years. Of even more recent times was the resounding success of Australis Oscar 5, a satellite package designed and built by young Australians. This was the fifth Amateur satellite ever to be launched and the first one not built within the U.S.A.

Time does not stand still and to be successful neither can the Wireless Institute. Sixty years ago Australian Amateurs recognised the need for a formal organisation to represent their interests. Today this organisation is still successfully representing their interests. The introduction of such privileges as the use of r.t.t.y., slow scan t.v. and terrestial repeaters has occurred because of representations by the W.I.A.

The Institute proposed the optional use of the AX prefix in lieu of VK to celebrate the Cook Bi-Centenary celebrations during 1970. The officers of the Postmaster-General's Department acquiesced and no one can deny the success of this publicity throughout the world of Amateur Radio. Contacts seem to come easier and faster this year and the Institute's QSL Bureau managers are being more overworked than ever before.

The Institute's Cook Award is unique in that it is the first "limited time" award offered by the W.I.A. and already more than 475 certificates have been issued to Amateurs in 60 different coun-tries-surely an impressive testimonial to the Award's acceptance and popularity.

On the administrative front the Institute is not found to be lacking either. For the first time in its long history the W.I.A. has sent its Federal President overseas in an official capacity. Mr. Michael Owen (VK3KI) is visiting the J.A.R.L., A.R.R.L., R.S.G.B., A.R.S.I., I.T.U. and others with a view to cementing relationship between these bodies and the Institute. In particular, he will concentrate on the International aspects of frequency allocations in the v.h.f.-u.h.f. part of the spectrum. With the advent of satellite beacons and translators, these frequencies can no langer be considered a national assetthey become international. The Federal Council of the W.I.A. is aware of this shift in emphasis and already much work has been done in setting down proposals for efficient use. An outline of this work appeared in the Federal Comment of July "Amateur Radio"highly recommended reading for all Amateurs interested in the future of their service.

In 1901 H. W. Jenvy made W / T contact from Queenscliff, Victoria, to H.M.S. St. George and H.M.S. Juno over a distance of some 20 miles. Later that same year, Mr. Hallam, assisted by "Pop" Medhurst (later to become VK7AH) in Tasmania, worked the same two British warships over distances up to 30 miles.
In 1970 Amateur stations in Geelong and Melbourne, Victoria, worked across Bass Strait to VK7WF Burnie, a distance of over 220 miles on 1298 MHz .

Thus over a period of some 70 years in the same general geographic area we have seen a remarkable increase in both the distance over which we can communicate and the frequency used for such communication.

What changes can we, therefore, expect to see take place in the next 60 to 70 years? Fortunately, no doubt, no one can be sure of what the future holds for us, but some pointers are already apparent. The integrated circuit is just starting to appear in Amateur equipment-no doubt this penetration will increase with subsequent dramatic decrease in equipment size and this may mean a growth in interest in such pursuits as fox hunts, fleld days, "mountain topping" and mobile operation. The s.s.b. mode of communication should expand onto the v.h.f. bands in the same way as it has spread on the h.l. bands during the last decade.

The next Australian built satellite is intended to be an active repeater. This will open up all manner of new and exciting avenues of v.h.f.-u.h.f. communication. From there, on an international scale, we may proceed to a system of Amateur satellites in synchronous orbit. Project Moonray, already more than a pipe dream in the U.S.A., offers the possibility of easy "moonbounce" contacts. Laser beam techniques may be the means of communication on even higher frequencies than are at present contemplated. No one with any imagination can say that the future does not hold in store some exciting and stimulating work for the Amateur experimenter and operator alike.

No doubt the next 60 years will see much, if not more, change in the modus operandi of Amateur Radio than has occurred in the previous 60 . Let us make sure that this potential can be realised by banding together to resist attacks on our frequency allocations and other privileges-by allowing the W.I.A. to be able to say in all truth that it represents the interests of Amateurs in Australia-in 1970 and in 2030.
-D. H. RANKIN, AXSQV,
Federal Vice-President.

The History of Amateur Radio and The Wireless Institute of Australia

In the March 1970 issue of "A.R." we published the first part of what we had hoped would be a series under the heading used above. The task has proved to be a far more formidable undertaking than was anticipated. As a result of the March issue, a considerable amount of information has been forthcoming, and this has involved much reading and cross-checking. The much of material has, whilst filling many flood of material has, whilst filing many of information available to produce a complete and accurate story.

To illustrate the problem, since the first article was published, the firs minute book of The Amateur Wireless Society of Victoria has come into our possession. Before reading any further is suggested that column three, page 24 of the March issue be re-read and compared with the following points extracted from the minute book, and newspaper clippings included therein.

The first minutes are of a public meeting held on $30 / 11 / 1911$, to which is appended a clipping from "The Argus" of $1 / 12 / 1911$, which reads:

WIRELESS TELEGRAPHY SOCIETY

"Influenced by the desire of a number of young men who are keenly interested in wireless telegraphy to meet others like-minded, Mr. P. H. M'Elroy, of Swanston Street, convened a meeting, which was held in the Esperanto-hall, Elizabeth Street, last night. There were 50 enthusiasts present, who formed themselves into the Amateur Wireless Society of Victoria. Several of the young men stated that they had installed wireless stations on a small scale at their homes.
"Office bearers were elected as follows: President, Mr. M. A. Ryan; Treasurer, Mr. P.'H. M'Elroy; Committee, Messrs. Davenport, Mitchell, Roberts, Cole, Bennie and M'Laughlin. The Secretary is Mr. F. E. Moore, 39 Lisson-grove, Haw thorn."

The name of "Davenport" appears to be incorrectly spelt, not only in the press report but at various times in the press report but at various times in the minute book. It appears as Davenport, Devonport and Devenport, the las spelling would appear to be correct At the same time, there is apparently a further error in the press as the minutes of the meeting have beer amended to list a Mr. McClelland as a
committee member, who was appointed committee mem

Vice-President.
The only meeting listed as having been held on the premises of P. H. McElroy was a committee meeting on the
$6 / 12 / 11$. The first general meeting was held on $13 / 12 / 11$ at Esperanto Hall, al general meetings after that date were held at Oxford Chambers.

To jump forward somewhat, we quote the following from the minute book:
"Extraordinary Council meeting of the Amateur Wireless Society of Victoria held at Mr. O'Shannessy's residence on Thursday, 10th April, 1913.
"This meeting was called for the purpose of considering the advisability of changing the name of the Society, and a motion was moved, seconded and carried unanimously as follows:
"'That in the opinion of the Council it is expedient and in the best interests of the Society to change its name, and that it be recommended to the general meeting to be held on 1st May, 1913, that the name be altered immediately to "Wireless Institute of Victoria"." "

The minutes of the general meeting of 1st May, 1913, show that the recommendation was placed before the meeting and carried unanimously. Nowhere in the minutes is there any mention of the existence of two societies, of any disbandment of a club, or any desire to join with another club. This does not mean that some other club or society did not exist; indeed, there is
some scanty evidence that another
organisation did exist, but of which more evidence is required.

The lead is to be found in the minutes of the Amateur Wireless Society of Victoria, committee meeting of 19/12/11 when various designs for the Society's "crest" were discussed. Mr. Devenport submitted a design (the original drawing is pasted in the minutes) similar to that in column 2, page 24, March "A.R." but the wording reads "The Victorian Amateur Wireless Club". The Secretary was instructed to have a zinc block prepared embracing the features of Mr . Devenport's design. Either the Secretary worked with remarkable speed or Xmas holidays were unknown (we suspect the latter) as a printer's proof of the finished block is with the minutes. The wording has been changed to "The Amateur Wireless Society of Victoria" in full, the last three words being upside down, and not as on the medal reproduced in "A.R?"

Strange to say, there is no record in the minutes of the production of this badge for the Amateur Wireless Society. The first time a badge is mentioned is in the minutes of the general meeting of the Wireless Institute of 1st June, 1913, when members were advised that in future it would be necessary to "shew" badges or cards at the door. What this badge comprised is not known, and remains a matter for conjecture.
(Continued on Page 12)

MANAGEMENT COMMITTEE. COUNCIL OF WIRELESS INSIITUTE OF AUSTRALIA SYDNEY TOWN HALL 1923
 Front Row: 1. W. Hannam: 2, -; 3. E. T. Flak; 4. C. D. Maclurcan: 5. Hurst; 6. J. H. A. Pike

PHOTOGRAPH IDENTIFIED

Editor "A.R.," Dear Sir,
It was my pleasure to receive copies of your August issue from two friends, both directing my attention to page 6. The page 6 picture was actually that of the Exhibition Committee of the (Radio) Wireless Exhibition organised under the auspices of the Wireless Institute, N.S.W. It was not the management committee of the Institute.

Those in the picture: No. 9 was Sid Colville and front row No. 2 was Mr. Hungerford, of Western Electric (now S.T.C.).
I was Treasurer of the W.I.A. (N.S.W.) at the time and suggested the Exhibition, and undertook to organise the industry to support it, which was done with success and the W.I.A. finished up with over $£ 800$ net profit, pretty good for a first effort.

During the 60 years oi W.I.A. activity it has proved its worth to the nation and to thousands as a pleasurable hobby.

With best wishes for every success to A.R.

From Letters to the Editor the following month of September making a correction to the the photograph caption.

A Highlight of Amateur History

One sunny but cool late July day I was standing on the main pier at the Port of Melbourne on Port Phillip Bay. With me were my brother and mother and father. Around us buzzed a cacophony of human voices as a great mass of people surged along the pier; some hurrying as though they knew where they were heading; others standing hesitatingly as if uncertain; but all in a mood of excitement.

Above us on both sides of the pier towered great, massive grey steel superstructures, looking more grey in the shadows and lighter where the sun filtered between the roofing above the milling people. The air was permeated with laughter and giggles, cat-calls and whilstles, and typical Australian idioms as children became separated from parents, husbands from wives, and girls together, sometimes with boys, vigorously pursued their paths through the mass of people to get a better view.

Dotted all over the metal superstructures were men clad in white, some high up on the sky line and some halfway down; some leaning with chin on hands staring at the crowd below and some moving like seeming irregular white dots from one part to another. It was all very bewildering! I was only nine years of age! What I was observing was Victoria's greeting to some of the 45,000 men of the United States Fleet under the command of Admiral R. E. Coontz of the U.S. Navy. The year was 1925! Half the Fleet was at Port Melbourne and the other half in Sydney Harbour. This was history in itself because it was the first (and I believe the only time) that the Fleet of the United States of America ever visited Australia.

It was to be more than 30 years before I was awakened to the significance of my childhood memories of this great armada of ships. One of those anchored at Station Pier, Port Melbourne, was the Flagship of the FleetU.S.S. Seattle. On board the Seattle was an Amateur Radio operator who was in fact enacting an event which historically had such far reaching results as to be worthy of recording as one of the greatest highlights of Amateur Radio. His name was Lieutenant Fred H. Schnell, U.S.N.R.F., traffic manager of the Amateur Radio Relay League, contributor of many "firsts" in the development of Amateur Radio circuitry published in "QST" magazine and subsequently used by Amateurs all over the world, and commended for the value of his work to the United States Navy.

The U.S. Fleet was on a six months' cruise of Australia and New Zealand, ending when it finally dropped anchor at San Diego on 26 th September, 1925. Lieutenant Schnell-a Navy Reservistwas in charge of short-wave communication from station NRRL on board the

> This Is not one of the series of official historical articles to be publlshed in this magazine. It Is, however, an extract from the historical files put in story form for the anniversary issue of "Amateur Radio".
> The files are not yet chronologically complete although information is being received from many sources. If readers have any old magazines, books, newspaper cuttings, minute books.any old records at all-the Institute would appreciate receiving them. on loan or otherwise. They will be safely kept and returned If required.
> Our history is something we should all cherish and it is already very latel
flagship Seattle. His assignment was to carry out tests in the use of high frequencies for the Fleet's long distance communication. In this he was so successful that on many occasions during the six months NRRL maintained regular communication at extreme distances, often being the sole contact between the Fleet and land, and daily outperforming standard naval equipment of the day using twenty times its power.

What an achievement for an Amateur station! His accomplishments earned him an official letter of appreciation from the Admiral of the Fleet commending him for his tireless labour and the effectiveness of his work, and expressing the Navy's appreciation of the importance of the readiness of the Radio Amateur organisation and its
willingness to be of service in the national interest. The 1,000 messages per month of official navy traffic and over 200 per month of Amateur traffic was proof itself.

AUSTRALIAN CMLEBRATIONS

The U.S. Fleet did not arrive unannounced. From the Amateur viewpoint the arrival was well advertised for many Australian Amateurs had already worked NRRL and Lieutenant Schnell was to be "feted around the town" in typical Amateur fashion. When the Seattle tied up at Station Pier, Port Melbourne, on 20th July, 1925, he was met by two Victorian Amateurs who themselves were to make history-Ross A. Hull, A3JU, and H. Kingsley Love, A3BM-who were accompanied by several other A3s. \dagger

Kingsley Love was, at this time, editor, and Ross Hull associate editor of a magazine titled "Experimental Radio and Broadcast News", an excellent publication devoted to the practical design and construction of wireless apparatus for experimenters and including the "doings" of licensed Amateurs in Australia. It commenced publication in August 1924 and was the "Official Organ of the Wireless Institute-Victorian Division". After

[^47]

THE A.R.R.L. AND THE W.I.A. JOIN HANDS
EXECUTIVE OF VICTORIAN DIVISION OF W.I.A. AND LIEUTENANT F. H. SCHNELL
Back row (left to right): E. H. Cox, A3BD, Treasurer; B. Jermyn Masters, A3LM. Hon. Secretary; Max Howden. A3BO, Third Vice.President; R. P. Whalley. A3JZ, Second Vice-President.
Front row: Lloutenant F. H. Schnell, 1MO-1XW: H. Kingsley Love. A3BM. President: Ross A. Mull, A3JU, $\begin{gathered}\text { (Reprinted from }{ }^{\text {First }} \text { Vice-President. }\end{gathered}$ First Vice-President.
six months of publication, Ross Hull became its managing editor and Kingsley Love its managing director. This arrangement prevailed until September 1925.

With the October 1925 issue the title had been shortened to "Radio Broadcast," now printed in Sydney, and known as the "Official Organ of the Wireless Institute of Australia" with Ross Hull as its sole managing editor, Kingsley Love having apparently disassociated himself from the publication. Hull, however, remained only two months before moving away from editorial work, having been made an Associate Member of the Institute of Radio Engineers (America). B. Jermyn Masters, A3LM, became secretary and editor, with a combined December 1925/January 1926 issue again printed in Melbourne. This issue was still published as the official organ of the W.I.A., but the following issue (February 1926) was not so captioned and appears to have been the last issue under the editorship of B. J. Masters. The publication also appeared to have moved away from the strictly Amateur experimenting field.

The interesting thing about the three aforementioned gentlemen was their prominence in Institute affairs at the time Lieutenant Schnell met them on Station Pier. Kingsley Love was President of the Victorian Division and Ross Hull First Vice-President. Amongst the greeting party also was Jermyn Masters who at this time was listed in one of the early call books as A3WI, Wireless Instituite of Australia (Victorian Division), Ashburton. The Ashbur-
ton station was housed in a small brick building owned by the Division and had just been completed at the time of the U.S. Fleet's visit to Australia. It was later disposed of, probably for financial reasons, but received quite a deal of publicity, its picture being published in various magazines including the January 1926 issue of "QST" in which Lieutenant Schnell wrote a long and interesting report of his cruise with station NRRL, and the hospitality bestowed upon him, and other radio operators on the Seattle, by the Australian Amateurs.
Following a visit to the Little Collins Street office of "Radio Broadcast," Lieutenant Schnell reported:
"It was a duplicate of what I saw when I first went to Hartford some five years ago (A.R.R.L. Headquarters). A little unimposing office on the fifth floor of an office building in Little Collins Street, Melbourne, the office of "Radio Broadcast" (Australian) edited by Ross A. Hull. A stenographer, bookkeeper, circulation manager and what-not seemed to be a Miss Mycroft. Another young lady in the outer office was the only other assistant. I mention this only because I hope Australian "Radio Broadcast" will prosper as did "QST" and I hope Hull will have an office as large and with as many employees as we have at A.R.R.L. Headquarters now. I have seen A.R.R.L. Headquarters grow out of a dinky little two-room office on the fifth floor of the Waverly Building. If Hull could have seen this
with me, he would be encouraged as I am. Amateur Radio in Australia is bound to prosper."
Amateur Radio did prosper, but "Radio Broadcast" magazine did not. Ross Hull became editor of "Wireless Weekly" later on, the forerunner of "Radio and Hobbies," now known as "Electronics Australia".

At a later date again, he joined the staff of "QST" and eventually became its editor until his demise in 1935 by electrocution whilst experimenting with Amateur Television.

At this time in the mid 20 s the visit of Lieutenant Schnell with the U.S. Fleet was, as far as Australian Amateurs were concerned, effectively a meeting with the A.R.R.L. for the first time. The present day Amateur has to realise that in these days Australia was very isolated from the progress of wireless overseas. Most of the technical information came from "QST" in America. The majority of components used by both Amateurs and manufacturers were also of American origin and were not always easily obtainable.

It was, therefore, a great day for Australians to actually meet and talk with American Amateurs and to participate in the important high frequency tests conducted by Lieutenant Schnell aboard the Seattle with station NRRL. The Victorian and New South Wales Amateurs who were privileged to share with him some of the jubilation of the success of his mission demonstrated it by giving he and his fellow crew members an official dinner that was never forgotten by those who attended. The Melbourne dinner, illustrated herein,

Gathering at the 1925 Melbourne dinner tendered to Lleutenant F. H. Schnell, of the A.R.R.L.
shows (right-front centre of those standing): Lieutenant Schnell (wearing glasses) standing next to Kingsley Love (President of the Victorian Division) and to the left kehind Love is Max Howden, A3BQ (Third Vice-President). Also present was E. H. Cox, A2BD (Treasurer of the Division) and R. P. Walley, A3JZ (Second Vice-President of the Division). Another illustration shows the Executive of the Victorian Division with Leutenant F. H. Schnell, 1MO-1XW-later operating as W4CF, the call he still holds.

Whilst the Seattle was berthed in Melbourne, Schnell visited Sydney where the same exciting welcome was extended to him. His main host was Charles D. Maclurcan, A2CM, a member of the board of directors of the famous Hotel Wentworth, owned by his family, the story of which forged a link in Australia's history. Maclurcan was a skilled engineer and one of the "pioneer operators" of Amateur experimenting in Australia together with his young friend and ally, Jack Davis, A2DS, who made Amateur history at the age of 17 years. The episodes of the pioneers is the subject of another story however.

W.I.A. D.X.C.C.

Listed below are the highest twelve members in cach section. Position in the list is determined by the first number shown. The first number represents the participant's total countrics less any credits glven for deleted countries. The second number shown represents the total D.X.C.C. credits given, includins deleted countries. Where totals are the
same, listings will be alphabetical by same, list
Credits for new members and those whose totals have been amended are also shown.

PHONE			
VK5MS	$316 / 340$	VK5AB	$297 / 314$
VKGRU	$314 / 339$	VK4KS	$295 / 310$
VK3AHO	$311 / 326$	VK4FJ	$287 / 307$
VK4HR	$311 / 330$	VK4TY	$284 / 288$
VK2JZ	$308 / 326$	VK2APK	$281 / 287$
VK6MK	$303 / 323$	VKSTL	$271 / 277$
	Amendments:		
VK3ZE	$253 / 253$	VK3SM	$192 / 195$
VK2SG	$248 / 250$	VK4RF	$175 / 175$
VK3VK	$234 / 234$	VK2AHH	$169 / 179$
VK4DO	$230 / 242$	VK9KY	$122 / 122$
VK4UC	$224 / 224$	VK3JM	$119 / 119$
VKSAMK	$218 / 218$		

Cert. No 110	New Mem VK7JV	mber:	
C.W.			
VK3AHQ	301/315	VK3YL	276/293
VK2QL	300/323	VK3NC	274/300
VK4FJ	290/315	VK3XB	270/287
VK4HR	289/311	VK3ARX	270/279
VK2AGH	282/296	VK6RU	266/289
VK2APK	280/288	VK4TY	258/272
Amendments:			
VK4DO	192/209	VK2SG	139/143
VK4UC	173/174	VK2AHH	131/139
VK4RF	161/173		
OPEN			
VK4HR	315/340	VK6MK	304/324
VK6RU	315/340	VK2EO	302/325
VK2AGH	312/332	VK2APK	298/309
VK2VN	308/326	VK4FJ	298/323
VK4SD	306/321	VK4KS	298/315
VK4TY	306/321	VK3ARX	285/304
Amendments:			
VK2SG	282/288	VK4RF	226/238
VK4UC	264/265	VK2AHH	194/208
VK4DO	247/265		
New Members:			
Cert. No.	Call	Tota	
124	VK9KY	123/1	
125	VK4JI	100/1	

Lieutenant Schnell spoke highly of the hospitality extended to him in Sydney, as he did of the Melbourne hospitality, whilst addressing the gathering at the two official dinners given in his honour.

"COUNTRY OF COLD TOOBS"

Schnell had noted the "cool" operation of the vales in Australian transmitters compared with the "red anode" operation by American Amateurs. Ross Hull had replied to his comment on one occasion by saying, "This is the country of cold toobs". This saying stuck and throughout his stay Schnell commented on the efficiency of Australian transmitters running so "cold" compared with the American way of "crowding 4,000 volts into a lone 5 -watter".

After countless Hamfests, the Seattle sailed on 6th August, 1925, on its home voyage with the Fleet. The cruise, the meeting with the A.R.R.L. traffic manager, the huge \log of stations worked all over the world was the talk of Amateurs for a long time after. As the editor of "Radio Broadcast" said in the front page of the September 1925 issue:
"The visit of Lieutenant F. H. Schnell and his radio crewmen to this country of ours-the land of cold "toobs"-wa:i described in all its detail in the daily press and it is not our intention to go over it all again. There are just a few thoughts, however, that we must express.
"It is our desire, in the first place, to record for the Amateurs of Australia, our sincerest thanks to the U.S. Navy and the American Radio Relay League for having made the trip possible. It was surely the finest bit of work they ever accomplished.
"If these two organisations could only realise the stimulus they have indirectly given to our experimenters, well, we think they would send out a fleet with a bunch of 'Hams' say once a month.
"They have given us the 'kick' we wanted. They have shown us by their profound enthusiasm, their sincerity and good Pellowship, that in Amateur Radio we have a brotherhood that has no equal. They have shown us that in Amateur Radio we have the finest game in the whole wide world.
"The land of cold 'toobs' will never forget you, OMs."

Lieutenant Fred Schnell went back to managing traffic for the A.R.R.L. and conducting many more experiments for the benefit of Amateurs all over the world. In "QST" for January 1970, one could only be saddened to read the following:-
"Many readers will be distressed to learn that Fred Schnell, W4CF, formerly traffic manager of the A.R.R.L. and remembered for his many 'firsts' in Amateur Radio, including the first twoway contact across the Atlantic and the famous cruise of NRRL to Australia in 1925, proving the value of short waves to the U.S. Navy, has suffered a series of long illnesses and is now living at the Grovemont Convalescent Home, 210 West 21st Ave., Bradenton, Fla., 33505. Fred would sure appreciate cards or QSLs from his many friends."

It was men of the calibre of Lieutenand Fred Schnell who, whilst serving their country, forged the strong links of Amateur Radio around the worldlinks which have grown stronger with the years.

During his visit, Fred Schnell was made an Honorary Life Member of the Wireless Institute of Australia and it is confirmed that he has regularly received "Amateur Radio" magazine.

On behalf of Australian Amateurs and the W.I.A. we extend him hearty good wishes and that he has been spared to hear from his many friends. Perhaps some of the remaining VK old timers who recall the history written herein may put pen to paper and give Fred a bit of the same "kick" he gave Australian Amateurs so many years ago.
-G. Maxwell Hull, VK3ZS.

LOW DRIFT CRYSTALS

 \rightarrow 1.6 Mc . to 10 Mc ., 0.005% Tolerance, $\$ 5$ * 10 Mc . to 18 Mc ., 0.005% Tolerance, \$6 \sharp
Regrinds \$3

these prices are subject

 tO SALES TAX
SPECIAL CRYSTALS: PRICES ON APPLICATION

MAXWELL HOWDEN

15 CLAREMONT CRES., CANTERBURY,

VIC., 3126
Phone 83-5090

Wireless Institute Publications

Any attempt to produce a history of publications of the Institute from its inception is, due to lack of information at this time, a very sketchy project. There is abundant evidence that the attempts were at the best only spasmodic, and largely undertaken as Divisional projects. In the hope that somebody will help fill in the gaps in our knowledge, an attempt will now be made to outline what little information we have.

The first concern appears to have been the production of lists of "Wireless Calls", and the early lists included a number of calls other than Amateurs, mainly ship and shore stations. The first list of which we have any knowledge (indeed a copy is still in existence) was produced on 12th March, 1912, by the Wireless Institute of New South Wales. It listed 38 ship stations, 3 land stations and 32 Amateur stations. The Amateur stations were all located in New South Wales. The interest in the land stations is the DX character of two of them, namely Macquarie Island and Adelieland. The third land station listed was the South Head Signal Station.

At some subsequent period the owner of the list made a number of amendments and additions. A further 35 ship stations, 1 land station and 17 Amateur stations were added. The amendments were made to Amateur call signs, but there is no record of the period of time over which the alterations and additions were made, but from the different inks and pencils used, it must have been over a fair length of time.

For our next known reference we must move on to the 31st January, 1913, when it is recorded in the minutes of the Victorian Division Committee: "That it was decided that a list of licensed Amateurs, with calls, kindly procured by Mr. Long, was to be duplicated and sold to members at 6d. each." The minutes of the general meeting of 3rd February record: "At this meeting a list of all the licensed Amateurs of Victoria with call letters was brought forward for sale and a great many lists were sold." On 21st February: "It was decided to have duplicated 50 copies of 'supplimentary' list of licensed wireless calls." Neither of these lists are known to have survived.

On 1st April, 1913, it was suggested that the authorities be asked to supply the Institute with names and addresses of licensees as licences were granted, and this was arranged with the Director of Radio Telegraphy, Mr. Balsillie, a few days later. A report on the matter can be found in "The Argus" of 4th April.

The minutes of the 27 th inst. (month and year not recorded, but May 1913 can be deduced) have a badly worded minute which reads "It was decided not to print any lists of calls pending a
publication of an up to date list as per resolution of International Radio Convention, in conjunction with the New South Wales Institute."

It would appear (erroneously) that the list was forthcoming very soon after as it is recorded on the 1 st August "members were informed that the new book of calls issued conjointly with the N.S.W. Institute was printed and on a shew of hands the number required was taken for ordering." From subsequent minutes it would seem the "book of calls" had not been printed, but that the project was still in the discussion stage, and indeed the minutes of 12 th September refer to the "forthcoming publication". A fortnight later it was "decided to leave the publication of the book of calls in the hands of Messrs. Cole and Witt."
It would appear that the project did not go smoothly as on 30th October, "The meeting was informed that the book of calls would go to print immediately upon receipt of amended list of experimenters from the P.M.G's Department." There is no further reference to the project until 7th April, 1914, when "Mr. Cole informed Council that the call book had gone to print". At the same meeting it was decided that the price to members be fixed at 2/per copy. The minutes of the subsequent Council meeting are undated, but they record that 150 copies of the call book had been sold. The final reference we have to this publication is in the minutes of the Council meeting of 14th August, 1914, when it is recorded that the greater part of 100 book of calls were on hand and it was decided to give Coles Book Arcade and P. H. McElroy the opportunity of disposing of them.

Fortunately, copies of this call book have survived, and we list hereunder the full list of "Experimenters Calls" from the book, which was published under the title "Wireless in Australiq".

EXPERIMENTERS CALLS

 1914NEW SOUTH WALES

$\begin{aligned} & \mathbf{X A A} \mathbf{~ X A B . ~} \\ & \mathbf{X A B} . \end{aligned}$	Y. Nelson, McMahon's Pol s. Arnold, Ashfield.
AC-V.	Sulli
$\times \mathrm{AD}-\mathrm{H}$	W. Draegar. Red
XAE-S.	G. Jeffes, Central Bankstown.
XAF-N	C. Foster. Roze
XAG-H	we Choy, Sydr
XAH-S	J. Sainty, Sydney.
AI	ng
XAJ	
XAM-J	Morris, Had
XAQ-C.	F. Sykes, Redr
XAR-A.	Miatt. North
XAV-C	${ }_{\text {R }}$ A. Pilgrim. Hurlstone Par
XAY-A.	Cameron. Ar
XAZ-R.	Evans.
XBB	Sand
XBD-P.	Crook. Cofi's Harbour Jetty.
XBE-T.	Martin, Sydn
XBH-H.	McCormack,
C.	Bar
X8O-W	Hudson, Du
XBP	W. Bonwill.
	$\underset{\mathrm{w}}{ }$

$\begin{aligned} & \text { XABQ-W. } \\ & \text { XABR-E. } \end{aligned}$	Zech, Annandale. A. Bruce, Artarmon.	KNT-C. Hazard, Brighton. XNU-J. R. McConnell, Canterbury.
XABS-C.	McDonell, Ashfield.	XNV-M. L. Robertson, South Yarra.
XABU-H.	Knight. Newtown	XNX-R. Horne, Kensingion
XABY-N.	E. Husband, North Sydney	XNY-T. Cour
XACA-G.	U. H. Taylor, Glebe Point.	XOA-H. J. Wales, Elsternwick
XACC-R.	Monty. Surry Hills.	XOE-H. H. Blackman, East Malvern.
$\mathbf{X A C F}-\mathrm{H}$.	E. Simpson. Randwick.	XOF-W. H. Bruce, East Malvern.
XACl-Rev	v. Father O'Reilly, Bathurst.	XOG-G. A. Sollleux. Camberwell.
XACJ-R.	P. Whitburn, Leichhardt.	XO1-C. S. Pugh Preston.
XACK-Th	Emith Premier Business Col-	XOL-V. Way. West Brunswick.
	Sydney.	XOO-L. Birchall, Richmond.
XACQ-K.	Fremlin. Newtown.	XOQ-R. Chugg, South Yarra.
XACU-H.	K. Bannister, Pymble.	XOR-C. Reay, Middle Brighton.
XACW-E.	Turner, Jnr.. Mosman.	XOS-R. P. Bruce, Flemin
XACX-G.	P. Junk, Sans Souci.	XOT - . M. L. Cromble, Malvern.
XACY-E.	Robinson. Marrickulle	XOU-C. Taylor, West Melbourne.
$\mathbf{X A C Z}-\mathrm{H}$.	Curtis, Bondi.	XOZ-C. H. Swanton. Kew.
XADA-W.	L. Gall. Paddington.	
XADC-G.	C. Hook. Kogarah.	XPD-L. C. Geiley. Mantern.
XADD-H.	Way. Sydney.	XPF-Jas. H. Wilken Kilsyth.
XADE-G.	Pickering. Waver	
XADF-C.	S. Mackay, Cofis Harbour Jetty.	
XADK-W	ireless Institute of New South les. Sydney.	XPI-Jas. McNalr, Brunswick Weat.
XADL-A.	R. Butler. Belmore.	XPJ-Wireless Institute of Victoria, Mel-
XADN-J.	C. Humphries, Muswellbrook.	
XADW-F.	B. Cooke, Sydney.	XPO-H. J. Taylor. Warracknabeal.
XADX-P.	W. Darch, Croydon.	XPP-W. Ming. Melbourne.
XADY-E.	G. Crichton, Waverley.	XPR-G. Flanagan Ascot Vale.
XADZ-C.	B. Burchell, Summer Hill.	XPS-W. C. H. Hodges, Malvern.
XAEA-J.	G. Watt. Croydon.	XPU-H. C. de Creapigny, Middle Brighton.
XAEB-A.	Smith. Canterbury.	XPV-L. L. Dredge. South Preston.
XAEC-C.	Rowe, Burwood.	XPW-H. S. Kennedy Coburg.
XAED-A.	Gregory, Bellevue HIII.	XPZ-S. Newman, Canterbury.
XAEE-H.	S. Maxwell. Paddington.	XJAA-C G B. Colquhoun South Yarra.
XAEF-A.	Volkerts. Leichhardt.	XJAB-C. M. Urquhart. Albert Park.
XAEG-H.	Tuson, North Coast.	XJAC-B. C . L Harvey, Port Melbou
XAEH-Am	malgamated Wireless (Australasia)	XJAD-C. J. Brown. Melbourne ICh. of E.
XAEI-E.	d. Sydney.	ammar School).
XAEJ-B.		XJAF-C. R. Smith, Caulfield.
XAEK-A.	B. Cochrane, Longueville.	XJAH-G. H. Stillman, Brighton.
XAEL-P.	G. Stephens, Balmain.	XJAJ-A. Crook, Castlemaine North.
		XJAI-A Mott Moonee Ponds
	VICTORIA	XJAM-H. A. Stewart, Williams
XJA-C. D	Deutgen, Camberwell.	XJAQ-R. M. Firminger, North Melbourne.
XJB-L. A	. Fontaine, Prahran.	XJAS-N. Harrison, Hawthorn.
XJC-G. \mathbf{S}	. A. Gaylard, Canterbury.	XJAT-R. W. McKellar, Toorak.
XJD-J. L	Mathews, Richmond.	XJAU-F. Topping, Croxton.
XJE-A. E	. Pell, Malvern.	XJAV-T. F. Gibbon, Ke
XJF-H. V	Heinecke, Brighton.	XJAX-F. P. O'Dea, Ascot Vale.
XJG-A.	c. Frazer. Camberwell.	XJAZ-C. McCracken, Armadale.
XJH-V.	Barnes, East Brunswick.	XJBA-W. Jameson, Albert Park.
$\mathbf{X J I}-\mathrm{F}$. \mathbf{W}	. D. Gowers, Seymour.	XJBD-E. C. Nicoll, St. Kilda.
XJJ-R. Br	ryson. Richmond.	XJBF-J. H. R. Butler, Brighton Beach.
$\mathbf{X J K}-\mathbf{W}$. F	Fisher, Middle Park.	XJBH-W. D. Brookes, South Yarra.
XJL-E. H	. Brasch, Hawksburn.	XJBI-A. Brown, Abbotsfo
XJM-R. P	Payne. Armadale.	XJBM-L. Latham. East Camberwell.
XJN-C. H	Ham. Melbourn	XJBN-E. Scott, Elsternwick.
XJO-W. F .	R. Armstrong, St. Kilda.	
XJP-H. ${ }^{\text {d }}$. Billings. Brighton Beach.	XJBU-H. Thompson, Albert Park.
XJQ-w.	T. Appleton. Malvern.	XJBY- ${ }^{\text {a }}$ Mathieson, st Kilda
XJR-F. J.	W. Derham. Malvern.	XJCA-E. G. Holder, Hawthorn.
XJS-J. St	tickland. Hawthorn.	XJCB-L. Smith, East Malvern.
XJT-T. P	Hekford, Malvern.	XJCC-G. H. Henley. Clayton.
XJU-W.	V. Nicholls, Korumburra.	XJCD-J. C. F. Burrows, Kew.
XJW-C.	W. Jamieson, St. Kilda.	XJCG-L. Roche, Hawthom.
$\mathbf{X J X}-\mathrm{B}$. J	J. Mullett, Upper Pakenham.	XJCL J. B. Arnold, Moonee Ponds.
XKA-G.	F. Lloyd, Brunswlck.	XJCM-W. E. Sanson, Warrnambool.
XKB-E.	L. Reynoldson, Strathmerton.	XJCN-W. K. Davenport, St. Kilda.
XKC-R.	S. Wilson. East Malvern.	XJCO-C. R. Dodson. Fairfield.
XKD-C.	F. Cooper. East Melbourne.	XJCP-R. Mitchell, Royal Park.
XKG-D.	Hodges, Essendon.	XJCS-J. Mathews. Sunshine.
XKI-W. J	J. Miller. Croxton.	XJCT-V. Myers, Melbourne.
XKJ-L.	Osburne. Terang.	XJCU-A. B. Corkill, Moonee Ponds.
XKK-V.	Nightingall. Elwood	XJCV-R. Field. Kew.
XKN-E. H	Hasselbach. Surrey Hills.	XJCW-J. Welch, Murrumbeena.
XKW-W.	K. Witt, St. Kilda.	XJCX-C. Bannlater. Brighton.
XKZ-C. E	E. Holland. South Yar	XJCY-C. Semmena, East St. Kuda.
XLA-W.	Aitken, Jnr., Elsternwick.	XJCZ-H. E. Taylor, Camberwell South.
XLB-R. ${ }^{\text {M }}$	M. Dalton, Auburn.	XJDA-C. Forshaw, Elwood.
XLC-A.	Horbury, Bendigo.	XJDB-K. Francle, Coburg.
XLD-C. H	Hiam, Jnr., Balaclava.	XJDC-C. т. B. Knell, Windsor.
XLF-R. ${ }^{\text {B }}$	B. Ashe. Middle Brighton.	XJDD-H. M. Shannon. Brunswick.
XLG-T. J	J. Entwisle. Camperdown.	XJDE-I. Hughes, Kew.
XLK-A. R	R. Goode. Moonee Ponds.	XJDF-Captain William Clarkson, Toorak.
XLL-O. R	Rheuben. South Melbourne.	XJDG-J. A. Campbell. Toorak.
XLM-R.	Irwin. Canterbury.	XJDH-E. G. Offen, Middle Park.
XLN-R.	Rees. Canterbury.	XJDi-A. Stocks, Surrey Hills.
KLO-C.	W. Donne. St. Kilda	XJDJ-F. G. Catheart. Canterbury.
XLP-A.	A. C. Miller, St. Kilda.	XJDK-T. Cummins. East St. Kilda.
XLX-H.	W. Maddick, Elsternwick.	XJDL-A. McKay. Hawthorn.
XMB-R.	H. Owen, West Melbourne	XJDM-J. Fitchett. Balwyn.
$\mathbf{X M C - F . ~}{ }^{\text {c }}$	G. McClelland, East Melbourne.	XJDN-F. S. Barnett, North Willamstown.
XMI-J. S	Saban. Auburn.	XJDO-A. C. Smith, Matlock.
XMJ-J. K	K. Twycross, Abbotsford	XJDP-G. G. Robb, Croxton.
XML-E.	B. Parker, East St. Kilda.	XJDQ-C. Crowther. Canterbury.
XMO-C.	Whitelaw. Rosedale.	XJDR-W. L. Leunig. Jnr., Sale.
XMQ-H.	C. Trumble. Midde Brighton.	XJDS-A. H. Morris, Sale.
XMS-W.	Bishod. Queenscliff.	XJDT-G. K Allen, Coburg.
XMT-H.	E. Dangerfield, Malvern.	XJDU-C. S. C. Hughes, East Melbourne.
$\mathbf{X M U}-\mathbf{M}$.	Israel, St. Kilda.	XJDV-T. A. Crerar. Hexham.
XMV-C.	C. H. Ellis, Auburn.	XJDX-G. Strutt, Elwood.
XMW-R.	W. Allen, Beulah Rall.	XJDY-L. A. Adamson, Melbourne (Wealey
XNE-E. F	F. W. Goodwin. Essendon.	Collegel.
XNF-A.	M. Wright. Brighton.	XJDZ-S. G. Robinson. South Yarra.
XNH-W.	S. Tregear, Kensington.	XJEA-A. McGregor, Armadale.
XNJ-N. A	A. James. Homebush.	XJEB-J. Hesketh, Kew.
XNM-A.	E. Pritchard, Moonee Ponds.	XJEC-B. Coutts. Camberwell.
$\begin{aligned} & \text { XNO-J. } \\ & \text { XNO-A. } \end{aligned}$	Boyd. Jnr.. Elsternwick. Wellman, Kensington.	XJED-H. MacKinolty. Korumburra. XJEE-A. P. Scott. East Malvern.

XABS-E. A. Bruce. Artarmon
XABU-H. Knight, Newtown
XABY-N. E. Husband. North Sydney
XACA-G. U. H. Taylor, Glebe Point
XACC-R. Monty. Surry Hills.
XACF-H. E. Simpson. Randwick.
XACl-Rev. Father O'Reilly, Bathurst
XACK-The Smith Premier Business Col-
XACQ-K. Fremlin. Newtown.
XACW-E. Turner. Jnr.. Mosman
XACX-G. P. Junk, Sans Soucl.
XACZ-H. Curtis, Bondi.
XADA-W. L. Gall. Padidington
XADD-H. Way. Sydney.
XADE-G. Pickering. Waverley
KADK-Wireless Institute of New South
XADL-A. R. Butler. Belmore
XADN-J. C. Humphries, Muswellbrook
XADW-F. B. Cooke, Sydney.
XADX-P. W. Darch, Croydon.
$\mathbf{X A D Y}-\mathbf{E}$. G. Crichton, Waverley
XADZ-C. B. Burchell, Summer Hill.
XAEB . G. Watt. Croydon.
XAEC-A. Rowe, Burwood
XAED-A. Gregory, Bellevue Hill.
XAEF-H. S. Maxweli. Paddington
XAEG-H. Tuson, North Cosst.
A-H-Amalnamated Wireless (Australasia
d., Sydney
XAEJ-B. Makin. West Kogarah.
XAEK-A. B. Cochrane. Longueville.
VICTORIA
XJA-C. Deutgen, Camberwel
XJB-L. A. Fontaine, Prahran.
XJD-J. L. Matthews, Richmond.
XJF-H. V. Heinecke. Brighton.
XJH-V. Barnes, East Brunswick
XJI-F. W. D. Gowers, Seymour.
XJJ-R. Bryson. Richmond.
XJK-W. Fisher. Middle Park.
XJM-E. H. Brasch, Hawksburn.
XJN-C. Ham, Melbourne.
XJO-W. R. Armstrong, St. Kilda.
XJP-H. D. Billings, Brighton Beach.
J. W. Derham. Malvern.
Stickland. Hawthorn.
Pickiord, Malvern.
W. Nicholls, Korumburra
J. Mullett, Upper Pakenham.
I. Reynoldsonswick.
S. Wilson. East Malvern.
iodges, Essendon.
J. Miller. Croxton.
Nightingall. Elwood
Hasselbach. Surrey Hills.
K. Witt, St. Kilda.
Aitken, Jnr., Elsternwlck
M. Dalton, Auburn
Horbury, Bendigo.
A. Middle Briohton
J. Entwisle. Camperdown
Goode. Moonee Ponds.
Rheuben, South Melbourne
Rrwin. Canterbury
w. Donne, St. Kilds
W. Donne, St. Kilda.
w. Maddick, Elsternwick.
H. Owen, West Melbourne
Saban, Auburn
K. Twycross, A bbotsford
B. Parker. East St. Kilda
Whitelaw. Rosedale.
C. Trumble. Middle Brighton.
Bishop. Queenscliff.
XMT-H. E. Dangerfield. Malvern
XMU-M. Israel, St. Kilda.
XMV-C. C. H. Ellis, Auburn.
XNE-E. F. W. Goodwln, Essendon.
XNF-A. M. Wright, Brighton.
XNH-W. S. Tregear, Kensington.
XNM-A. E. Pritchard. Moonee Ponds.
XNO-J. Boyd, Jnr.. Elsternwic
XNQ-A. Wellman, Kensington.

XNT-C. Hazard Brighton
XNV-M L Robereson. South Yars
XNX-R. Horne, Kensington.
XNY-T. Court, Jnr., Malvern.
XNY-T. Court, Jnr., Maivern.
XOE-H. H. Blackman, East Malvern.
XOF-W. H. Bruce, East Malvern.
XOG G. A. Sollleux. Camberwell.
XOI-C. S. Pugh. Preston.
XOO-L. Birchall. Richmondick.
$\mathbf{X O Q}-\mathrm{R}$. Chuge. South Yarr
XOR-C. Reay, Middle Brighton.
XOS-R. P. Bruce, Flemington.
XOU-C. Taylor, West Melbourne.
XOZ-C. H. Swanton. Kew.
XPB-R. L. George, Mont Albert.
XPD-C. C. Balley. Malvern.
XPG-A. H. Wain. South Yarra.
XPH-A. Holst. Caulfield.
XPJ-Wireless Institute of Victoria, Mel-
XPL-O. E. Rawson, Richmond.
XPO-H. J. Taylor, Warracknabeal.
XPP-W. Ming, Melbourne.
XPR-W. C. H. Hodges, Malvern.
XPU-H. C. de Crespigny. Middle Brighton.
XPV-L. L. Dredge, South Preston
XPZ-S. Newman, Canterbury.
XJAA-C. G. B. Colquhoun, South Yarra.
XJAB-C. M. Urquhart, Albert Park.
XJAD-B. J. L. Harvey, Port Melbourne.
XJAF-C R Smith
XJAH-G. H. Stillman, Brighton
XJAK J. Rafferty Hawthorn North
XJAL-A. Mott. Moonee Ponds
XJAQ-R. M. Firminger, North Melbourne.
XJAS-N. Harrison, Hawthorn.
XJAU-F. Topping, Croxton.
XJAV-T. F. Gibbon. Kew.
XJAX-F.P. O'Dea, Ascot Vale.
XJBA-W. Jameson. Albert Park.
XJBD-E. C. Nicoll, St. Kilda.
NBF-J. H. R. Butler, Brighton Beach.
XJBI-A. Brown. Abbotsford.
XJBN-E. Scott, Elsternwick.
XJBP-C. A. Smith. Middle Brighton.
XJBY-J. Mathieson, St. Kilda.
XJCB-L. Smith. East Malvern.
XJCC-G. H. Henley. Clayton.
XJCL J. Boche. Hawthorn.
XJCM-W. E. Sanson, Warrnambool
XJCO-C. R. Dodson. Fairfeld.
XJCP-R. Mitchell, Royal Park
XJCS-J. Matthews. Sunshine.
XJCU-A. B. Corkill. Moonee Ponds.
XJCW-J. Welch. Murrumbeena.
XJCX-C. Banniater. Brighton.
XJCY-C. Semmens, East St. Kuda.
XJDA-C. E. Taylor, Camberwell South
XJDB-K. Francls, Coburg.
XJDC-C. T. B. Knell. Windsor.
XJDF-Captain William Clarkson, Toorak.
XJDG-J. A. Campbell. Toorak.
XJDI-A. Stocks, Surrey Hills.
XJDJ-F. G. Cathcart. Canterbury.
XJDI-A McKay Hawthorn Mida
XJDM $\quad J$ Fitchett. Balwyn.
XJDN-F. S. Barnett, North Willamstown.
XJDO-A. C. Smith, Matlock
XJDQ-C. Crowther, Canterbury.
XJDS-A. H. Morris. Sale.
XJDU-C. S. C. Hughes. East Melbourne.
XJDV-T. A. Crerar. Hexham.
XJDY-L. A. Adamson, Melbourne (Wealey Collegel.
XJEA—S. G. Robinson. South Yarra.
XJEA-A. McGregor, Armadale.
XJEC-B. Coutts, Camberwell.
XJEE-A. P. Scott. East Malvern.

XJEF-D. Fitzgerald. Collingwood XJEG-H. A. Gatfield. South Yarra.
XJEG-H. A. Gatfield. South
XJEI-E. Robinson, Caulfield.
XJEJ-E. Mustard, North Fitiroy.
XJEK—J. H. Beyer, Armadale.
XJEL-T. G. Foord, Gardiner.

QUEENBLAND

XQA-M. J. G. Brims, Mareeba.
XQB-L. Freeman, Rockhampton.
XQD-H. A. Shepherd, Rockhampton
XQD-H. A. Shepherd, Rockhampton
XQF-S. V. Colville, South Brisbane.
XQF-S. V. Colvile, South Bris
$\mathbf{X Q H}-\mathrm{H}$. B. Rockwell, Wynnum
XQI-W. H. Hannam, Stamford.
XQI-W. H. Hannam, Stamford
XQK-C. Wicks, South Brisbane.

gOUTE AUBTRALIA

XVB-L. Jones, Hawthorn.
XVC-V. Alderman. Glenelg.
XVD-A. H. H. Evans, Mile End.
XVD-A. H. H. Evans, Mile End.
XVE-J. J. McLaughlan. Semaphore.
XVE-J. J. McLaughlan. Semaphore.
XVF-O. W. Judd, North Norwood.
XVG-C. E. Ames, Torrensville.
XVH-S. F. Howe, Exeter.
XVI-L. P. Anderson, Largs Bay.
XVJ-C. M. Reld. Hyde Park.
XVJ-C. M. Reld, Hyde Park.
XVK-P. Stapleton, Mt. Gambier.
XVK-P. Stapleton, Mt. Gambie
XVN-E. R. Stanton, Enfield.
XVN-E. R. Stanton, Enfield.
XVO-N. C. McClelland, Franklin Harbour
XVP-W. Magain, Ldwardstown.
XVR-A. Longstaff. Alberton.
XVS-A. A. Cotton, Glanville.
XVT-C. J. Othen, Glanville. \quad Waterhouse. North Adelaide.
XVX-H. Clark, Kent Town.
XVY-A. H. Balley. Unley.

```
            WE8TERN AUSTRALIA
XYB-J. S. Fitzmaurice. Perth.
XYD-P. Kennedy, Perth.
XYE-A. E. Dewar, Kalgoorlie
XYK-W. E. Coxon, Maylands
XYN-F. C. Read, Perth.
XYR-H. G. H. Irving, West Perth.
XYV-W. B. Garner, Perth.
XYX-A. Sibly. North Perth.
XYAD-S. C. Ambler. West Perth.
XYAF-T. W. Sampson, Boulder.
XYAG-w. E. Mill. Burbanks.
XYAH-W. E. Collins, Cannington.
TABMANIA
XZA-A. G. Dixon, Wynyard.
XZA-A. G. Dixon, Wyn
XZC-M. Harvey, Hobart.
XZC-M. Harvey, Hobart.
XZE-R. James, via Hobart.
XZH-W. P. Hallam, Hobart.
XZJ-V. Batchler, Hobart.
XZO-W. O. Dufiy, Hobart.
XZP-R. S. Dawson. Hobart.
XZQ-H. D. Mansfield, Burnie
```

It is recorded that the cost of a fullpage advertisement was $£ 2$ and full pages were taken by The Lawrence \& Hanson Electrical Co. Ltd., Maclurcan \& Lane, Marconi-Telefunken Schools of Radiotelegraphy, and Warburton Franki Melb. Ltd.

During the early 1920's recourse must be made to various commercial publications for details of Amateur and Experimental Calls. Many of these magazines have survived and make interesting reading. An interesting list appeared in the "Illustrated Tasmanian Mail" of 7th February, 1924, which list includes those licensed for both receiving and transmitting. This list, which was forwarded by Lon Jensen, VK7LJ, was accompanied by a letter from Lon which reads in part: "If I remember correctly, licences at about 1923 were issued for crystal or valve receivers and I think that is the reason for the letters ' C ' or ' V ' against the names towards the end of the list. I do not know the source of the list published in the 'Illustrated Tasmanian Mail' on 7th Feb., 1924, but it seems suspect in some instances. For example, both Len Crooks (VK7BQ) and Bob O'May (VK7OM), I think, had a receiving licence
before me-yet they are shown towards the end of the list."

Lon's comment is equally applicable to other lists still in existence and errors and discrepancies between lists of nearly identical dates have been noted. Lon also sent a copy of a list of Tasmanian transmitters as in 1927 and states "the source of this list is not known but it seems correct." Perhaps here we can add to Lon's knowledge a little.

We have a printed notice of the general meeting of the W.I.A., N.S.W. Division, for 16th February, 1927, which includes the following: "Tasmanian Division has published a complete book of Australian Call Signs; price 1/-. N.S.W. members could obtain a copy by forwarding a postal note for $1 / 4$, which sum included postage."

An interesting publication appeared late in 1924, when the "Sydney Evening News" published their Wireless Handbook. To detail the full contents of its 128 pages is beyond the scope of these notes, sufficient to say it appears to cover most aspects of wireless at the time. Our main interest in it at this time is the fact that it lists The Amateur Transmitting Stations of Australia. The definition of "Amateur" must have been somewhat elastic at the time as the list includes 13 call signs allocated to commercial organisations. Again the list must be a little suspect as there exist discrepancies with other lists published about the same time.

The writer knows of no other call books produced until after the war, when the P.M.G's Department published such a book before the Institute negotiated for the rights to the publication in 1954.

The idea of an Institute magazine does not appear to have been discussed until the 14 th July, 1914 , when it is recorded: "An interesting suggestion for the advancement of the Institute was put forward by an applicant for membership, Mr. H. Maddick, and was favourably received by a majority of members present. The suggestion was to the effect that a newspaper be published at intervals to be decided upon by the Institute. Mr. Maddick offered his services as Hon. Editor, and told of promises he had received from various people of matters for publication. After some discussion it was decided to leave the matter of making enquiries into the details of the scheme and expenditure connected therewith to Mr . Maddick, a report to be furnished at the next general meeting."

There is no mention in the subsequent minutes of the fate of the proposal, but no doubt the fact that the war in Europe commenced early in August had something to do with the failure of the project to become a reality. It is strange there is no reference to the matter being abandoned or even discussed at the next general meeting, although a report was to be submitted.

Perhaps there is somebody somewhere who can carry on from this point
-K. E. Pincott.

The History of Amateur Radio and the W.I.A.

(Continued from Page (b)

From the records it would appear that without any preliminary discussion, the general meeting of 1st August, 1913, was asked to forward to the Secretary "designs for a new badge". The minutes of the subsequent Council meeting are un-dated, but they appear to be some time during the same month, when
wish to retain, I make a plea that you will at least make it available for photocopying for the official records.

I would also wish to echo the plea made by the Federal Historian several years ag, that secretaries take more care in the preparation of their minutes, and incluce more detail. Going through our old minute book, it is realised that much important material (as far as history is concerned) is omitted, and there is now little or no hope of it being traced.
-K. E. Pincott.

GROUP OF REPRESENTATIVES AT WIRELESS AND ELECTRIGAL EXHIBITION. SYDNEY TOWN HALL. DEC. 1923
it is recorded that there was some discussion on the new badge. The badge is next mentioned in the Council minutes of 12th September, 1913, where it is recorded: "The business of the meeting was chiefly dealing with ... and the adoption of badge design for stamping."

There are no details of the design until the general meeting of 1st October, when the minutes record: "A design for a badge was voted for and the design selected was of distinctive appearance with a sireak of lightning flashing through a cut-out section of the metal. The name, Wireless Institute of Virtoria completes the design." (See page 24, March "A.R.") Tre outcome was that the Council at their meeting on 15 th October decided "that 50 medals should be purchased at the rate of $£ 5 / 10 / 0$ for 50 , and that the selling price to members be fixed at $3 /$ - each." Very little time must have been lost on this project, as the minutes of the Annual General Meeting, held on the 20th October, 1913 (possibly the most extensive in the book) record: "At the rlose of the meeting ... and the Hon. Treasurer sold several badges at 3/each."

In concluding these brief notes, I wish it to be clearly understood that I am in no way critising the material provided by Mr. Hull, indeed I hope to see much more from him. What I do hope is that the importance of gathering every available piece of written material and making it available to the Federal Historian is realised. Should you have any such material you

POWER SUPPLY MODULES

RECTIFIER-FILTER, Type PS003. Comprises silicon brldge rectifier and capacitor Input silicon bridge rectifier and capacitor input
filter. with $4 \mathrm{~cm} . \times 8 \mathrm{~cm}$. fibre glass $P . C$. filter. With $4 \mathrm{~cm} . \times 8 \mathrm{~cm}$. fibre glass P.C.
board. Nax. input: 17 v . r.m.s., max. output: 25 v . d.c.. max. load current: 2a. Kit $\mathbf{\$ 3 . 7 5}$; wired and tested [W. \& T.] \$4.25.
FOSITIUE VOLTAGE REGULATOR, Type RE004. U.aregulated input voltage, 22v. d.c. max.: Regulated output voltage: preset or external adjusiment between 4.5 v . and 3.5 v . less th3ı input voltage; Max. Load current, 200 mA . with internal foldback current limiting, or $10-200 \mathrm{~mA}$. with external pot. for current limiting: Regulation (at 12v. output): $0-200$ mA . 1.5 mV . or 1.5 mV . per volt input change. Kit \$9.85. W. \& T. S11.90.

NET CRYSTALS

143.030 MHz : 4055.56 (tx). 10285.71 (rx). Translator Ch. A: 4066.67 (tx). 10278.55 (rx). These crystals are suitable for Vinten MTR13 and A.W.A. equipment. Immediate delivery $\$ 4.85$ cach.

OTHER KITS

F.M.: I.F. Strip (455 KHz), \$9.80: W. \& T., Si2.80.
C:P. 455 E Ceramic Filter (16 KHz . b.w.). $\$ 16.00$.
1w. IC Audio Amp.. $\$ 8.40$ W. \& T., $\$ 11.40$ Varactor Multiplier Kit, $\$ 5.80$. 2N36~2 Transistor-Varactor, $\$ 7.00$.

All prices include sales tax and postage.

COMMELEC INDUSTRIES

P.O. BOX 1, KEW, VIC. 3101

Phone (a.h.) 80-2957 or 277-8295 N.S.W. Rep.: J. W. Rufus, 9 Bridge Road. Homebush, $2140 . \quad$ Phong (a.h.) 76-7133.

An Outline of Early Radio

1860-1895-FOUNDATIONS LAID FOR ELECTRO-MAGNETIC WAVE COMMUNICATION

Without the pioneer work of the early experimenters and physicists there would be no Amateur Radio, at least as we know it, so we must make a start with them. This dissertation will in no way take the place of the Historical Development of Radio Communication by J. R. Cox, VK6NJ, in "A.R." Dec. 1964-June 1965, or the History of the Institute that Max Hull, VK3ZS, is compiling. There must be some duplication but it will be as little as possible and only in order to keep this outline as coherent as my ability allows.

Things must start with Maxwell, who theorised that electromagnetic waves were possible. Then came Hertz, who in his investigations on induction produced and detected them. Other people added their contribution and one of the products of this was the Branley Coherer which consisted of a glass tube loosely filled with filings which presented a high resistance to the passage of d.c. until placed in the field of Hertzian waves when the particles would cohere and offer a low resistance, allowing current to flow. When the waves ceased, the tube had to be shaken in order for the particles to separate and attain their high resistance once again.

POPOV'S CIRCUIT FOR DETECTING LIGHTNing at a distance.

HERTZIAN WAVE COMMUNICATION ESTABLISHED

It was at this stage when the two independent people developed almost identical receivers for electromagnetic wave detection. On one side of the continent A. S. Popov made the simple coherer a more sensitive device and automatically restored it by using an electric bell to signal whenever a wave passed through the coherer and on its return stroke the tapper gave the coherer a nudge, separating the par-ticles so that they would instantly be ready for the next wave.

This apparatus, illustrated in diagramatic form in this text, was demonstrated at a meeting of the St. Petersburg Physical Society on 7th May, 1895. It was designed to record lightning discharges at a distance and was connerted to a lightning conductor and
earth and would register atmospheric discharges at distances of up to 20 miles. It was described in the Society's journal as a lightning recorder and was in fact connected to a Siemens Morse telegraphic tape recorder when in use.

Popov did not think of it for communication at this stage as he thought that the spark coil with which he tested it would have to be far more powerful or else that a sufficiently strong source of oscillations must be discovered for this to be of much use.

It was not until Marconi and his patent application became known that Popov started thinking about communication again and then did do sorne good work including a self restoring coherer using microphonic contacts and a telephone receiver to receive the oscillations and with this was able to conduct some marine rescue work.

Marconi, who really started the whole communication by means of wireless, was an extremely careful and meticulous worker with the vision to see what he required. First he took Branly's coherer and instead of the great clumsy tube he used a small bore tube and put in two small silver plugs about a mm. apart with filings between them and evacuated the tube. By using filings of 95% nickel plus 5% of silver filings ground as fine as dust, he made an extremely sensitive detector. He improved on this even more by making the plugs with bevelled faces instead of square and by lashing the unit to a small holder of bone, he could adjust the amount of filings between the faces of the gap by rotating the coherer in the lashings so that the space to be filled by the filings was slightly greater or less as was required for the maximum sensitivity.

He also discovered that a maximum of one mA. must be the limit through the coherer. The diagram shows this type. For de-cohering, he used a gentle tapper operated by a relay and supplied with a great many adjustments so that the required de-cohering movement only was made and there were not any sparks to operate the device unnecessarily. Finally, the thing that set this apart as a communicating instrument more than anything else was the fact that Marconi used aerial and earth systems on both the transmitter and the receiver. Popov, of course, had used an aerial (lightning rod) and earth on the receiver, but not attached them to his spark coil so that its radius of transmission was pitifully short.

It was with apparatus such as Marconi's that the Australian experimenters worked the warships "St. George" and "Juno", escorting the Duke and Duchess of Cornwall and York in S.S. "Ophir" in April 1901. More detail of this and photos of equipment used will follow under a separate heading.

The upper left drawing on the cover of this issue shows the apparatus used by Marconi in his British demonstrations and formed the basis of his application for a patent. The first for wireless telegraphy, of which part of the drawings are shown in the text. This was Pat. No. 12,039 of 2nd June, 1896, and bore the title "Improvements in Transmitting Electrical Impulses and Signals and in Apparatus therefore".

Marconi set to work on increasing the distance and reliability of wireless and invented and improved gear to a great extent. His Transatlantic experiments proved a great success in showing what the theorists thought impossible; in fact, that signals could be transmitted around the world. There was some dissention in the fact that they were not recorded by ink tape like tree usual practice, but this was due to the fact that he was using an Italian Navy self-restoring coherer and an earphone for this series of tests. The Castelli coherer used iron plugs with a clean drop of mercury between them in a 3 mm . internal diam. glass tube.

The two next important things were the introduction of tuning coils, Pat. No. 7777 of 26 th April, 1900, and the invention of the magnetic recorder. This last (top centre of cover) became the standard detector up until about 1910, although they were still used after that date. It worked on the principle of hysterisis in iron due to a changing r.agnetic field. Primarily the instrument consists of a band of stranded
soft iron wire moving by a clockwork drive around two pulleys. In moving, the wire passes through two coils concentrically wound and placed close to two permanent magnets. The aerial and earth, or a tuner coil, is connected to one coil and a pair of earphones (low resistance) to the other. Any wireless signal or train of pulses changes the hysterisis curve of the moving wire and induces a signal in the phones. In actual fact, the detector was supplied with a duplicate set of coils and magnets on the rear side of the unit and could be connected to the same tuner or another and two frequencies could be copied on the one machine.

Different experimenters had different views on the polarity of the magnets. If like poles were together the set-up resulted in a slight hissing or breathing sound when the band was moving. If the magnets were re-arranged so that the band met a N pole then two S poles, with the remaining N pole well clear of the coil, then the hissing sound was absent and the detector not quite so sensitive. Some experimenters liked the breathing sound which showed that the gear was working, while others thought that the sound masked signals. There was not much to choose and it came to personal preference. Commercial units of this type were built having a built-in tuner and some were made in England for the express purpose of receiving time signals radiated from the Eiffel Tower each hour.

ENTRY OF THERMIONICS

Possibly the next significant events were the development of the diode and triode. The diagrams in this text are taken from patent papers of the period and show the respective dates and Patent No's. Controversy still rages on whether De Forest inserted a grid in Flemming's diode or independently developed it from first principles, and I will not enter into that one here. Sufficient to say, that the diode was used with existing tuners as were crystal detectors which were found also to have directional conducting properties.

The sets using the diode were supplied with two diodes so that when the filament went in one, the other one could be switched in with very little lost time. As they were rather fragile units and not more efficient than the magnetic detector, they did not get a great deal of use. As they were fitted with a bayonet base for the filament,
crystal detectors were made that could be plugged in when no more valves were available and the set would remain working.
As far as the triode was concerned, it did not get much use outside of a few American experimenters and suffered the same trouble with short life cathodes. In actual fact, they were built with two filaments so the tube could still be cised when one burnt out.

The triode as a detector was only slightly more efficient than the electrolytic type and about the same as a crystal. Up to 1910 there were only about 200 to 300 a year turned out, indicating that crystal and other means were preferable to an expensive shortlived device. It was not until 1912 that it was found that it could be used as an amplifier, but its μ was very low. Valves of any description didn't really get off the ground until the war years when tremendous strides were made and numbers of valves were produced.

Below the magnetic detector and shown on circuit A is a loose coupler crystal receiver that had a lot of use in various forms, both pre- and postWW1. It was used for a tuner and fed a number of different detectors, including valves. Owing to the great variety of taps available the device covered an extremely wide frequency range. The circuit B was a simple crystal set, but added to it was a buzzer which was operated while finding the most sensitive point of the cat's whisker on the crystal and thus determined that the set was working and at its best.
C was the Marconi wide range tuner used in conjunction with all types of detectors. A double pole switch was used for either general listening or searching and then thrown to the other position for fine tuning and maximum selectivity. Range 1, 80-150 metres; K1, K 2 and K 3 had additional fixed C placed in series with each, and P1 set on a low tapping. Range 2, 150-1600 metres, circuit as shown. Range 3, 1600-2000 metres, fixed parallel C addcd to K2 and K3 and tap towards centre of P1. Range 4, 2000-2600 metres, more parallel C added to K 2 and K 3 , maximum tap on $P 1$.
D is a spark coil and ball gap transmitter producing highly damped waves of a rough nature. Often they soundes like atmospherics when detected on a crystal set. This is similar to the later ones used by Marconi and were used as emergency marine transmitters until the early thirties.

E is a later spark transmitter and many Amateurs in this country used something very similar. This is vi!tually the same as the transmitter on the top right of the cover. It operated from 110 v . a.c. lines and the synchror-ous motor rotated the wheel gap. The wheel had a series of studs and ear:h stud would just reach the discharger as the a.c. reached its peak value and produced a musical note depending on the frequency of the power supply. The fixed stud had air-cooled fins mounted on it because it operated for every discharge, while the rotating studs conducted only once per revolution, giving them time to cool. The cover transmitter also has a quenched spark gap which could be used and was really efficient and gave a musical note. Like all these transmitters, they were very broad and could be heard a long way either side of their fundamental.

POST WORLD WAR I. YEARS

While there were spark transmitters used post-WW1, valves tecame plentiful in receiving types, but relatively scarce in power transmitting types; not that this stopped the resourceful Amateur. Incidentally, there did come on the disposals market small spark outfirs that were definitely obsolete as far as the Defence Department was concerned. Originally built for aircraft, they were not particularly comforting to use with their vicious spark amongst the petrol vapour which seemed to emanate from everywhere in the aircraft.

Circuit F was a c.w. transmitter using a triode valve. Most transmitters wert: virtually the same. Some had many valves in parallel to provide sufficient power. For large valves and power, high tension was supplied by motor generator instead of battery banks. This was the only way to get sufficiently high d.c.; rectifiers for converting a.c. voltages were not a going thing then.

The first start made in this direction was an electrolytic rectifier and many were the directions given in the popular papers for making them; messy and al! that they were. Later came the dry plate rectifiers and also mercury vapour tubes.

THE C.W. RECEPTION PROBLEM

The c.w. transmitter produced keyed continuous waves (many people today think c.w. is synonymous with Morse Code) and crystal sets had trouble receiving this mode as a rule, so i.c.w. was produced by inserting a choppec wheel at point X in the grid circuit. Occasionally they were placed in the plate supply, but this was then required to handle larger currents and voltages. The chopper was an insulated wheel with brass segments on the periphery. When mounted on the shaft of the m.g. set, it used two brushes touching the segments and intermittently closing the grid circuit, thus producing a note in simple receivers (interrupted continuous waves).

Another method was modulated con:tinuous waves (m.c.w.) and was simply produced by feeding raw a.c. of 200 to 1,000 cycles on the plate. Until very recently some marine l.f. transmitters still used this method, particularly on
their emergency transmitters, although then often they modulated the grid via a small audio oscillator.

Circuit G was a tikker type receiver for receiving keyed c.w. Two types, one using a wheel not unlike a chopper and with a crystal in series with it, and the other (illustrated) used a slipping contact on a metal disc. Both had a small battery motor to drive them (and how they prevented picking up their own armature noise I will never know). With the disc, while disc and the contact had low resistance, the condenser across the phones started to charge in the presence of a signal and as the contact slipped the condenser would discharge through the phones. The make, slip, make, would make the signal audible, but owing to the random nature of the set up, it gave rather a poor note.

Circuit H was the next answer in that a heterodyne was made between a local oscillator and the incoming signal Before a valve was used in this situation, a special earphone with a second coil fed from a tiny high frequency alternator, whose speed could be varied, gave the required beat note.

MORE EFFICIENT RECEIVERS
Circuit I made the most use possible from an expensive valve. It is an early reflex model which is first a tuned r.f. amp. feeding a crystal set detector whose output was transformer coupled back to the grid of the valve which then amplified the audio signal and passed it to the phones.
J is the circuit of the famous Reinartz receiver, a regenerative set devised about 10 years after Armstrong first developed a feedback receiver. This, with its spider-web coils was possibly the most efficient of its type. The cover receiver on the left, under Marconi's, is a similar type but with a couple of audio stages following it. These could have the output taken from each stage, the respective jack automatically removing the potential from the following valve when the phones were plugged in.

To the right of this receiver is a typical high power rig of the early 1920s which put out quite a reasonable signal. It is interesting to note thet these transmitters, partly because of their method of supplying h.t., each had
an individual sound by which they could be identified. Radio items of 1924 mention that so and so had a locust note (if locusts buzz), such and such had a semi-liquid note, while others had a liquid note. One had a liquid note, almost like water, but bubbly, and "plomps" up and down. Notes like ducks quacking (early s.s.b.?) and not very stable. Rough notes were also mentioned.
As these were all master oscillator types, when the rig was keyed, the h.t. tended to drop, so frequency was not too stable. One method to overcome this was to introduce more h.t. into the line when it was keyed. Sometimes this consisted of a resistance which was shorted out by an auxiliary contact. Others used an auxiliary transformer with a small winding in series with the main transformer that was only energised under key-down conditions. In fact all sorts of dodges were used to keep those volts steady.

BROADCASTING ERA

Between 1920 and 1930 were the years of broadcasting and experimenting, and everyone had to have a share of some

L. DE FOREST

SPACE TELEGRAPHY
afflicatwon Pilct danss ise7

J.a fleming's thermionic valite PAT. N8 24, 850 NOV IS 1904.

Data sheet issued with each transformer purchased in the early days.

Philips ${ }^{\text {m Miniwatt" Triode A } 306}$

FILAMENT VOLTAOE $\ldots, y_{f}=1.7-3.3$ VOLTS
FILAMENT CURRENT. . . . $i_{f}=$ abe 0.06 AMPERE
plate voltaoe $\omega_{n}==0-100$ VOLTS
SATURATION CURRENT . . 4 , e 10 MILIIAMPERES
APIPLIFICATION FACTOR $R=6$

GENERAL

The Philips ..Miniwatt" triode A 306 is a high vacuum receiving valve, specially designed for use as a L. F. amplifier, but it may also be used as a detector. It is designed to be worked from 3 cells of 15 volts in series: in this case a filament rheostat of at leas! 30 ohms should be connected in series with the filament This trlade having an exceptionally low filament current (abt. 0.06 Λ) the battery is very slowly discharged.

The employment of too high a filament voltage, will shorten the life of the valve and may destroy its emitting power.

A filament voltage higher than is absolutely necessary for Rood results, should be strictly avoided and the filament rheostal kept inserted as far as possible.

One should not attempt to judge the proper adjustment of the resistance by the relative incandescense of the filament.

Some results can be obtained with our tupe A 100 . only one single cell of 15 volts being necessary.

DETECTOR

When this triode is used as a detector, the grid should be connected to the positive side of the filament by means of a grid leak resistance of 0,3 to 3 megohms (0,3 to 3 millions of ohms) or better still between the grid and the slider contact of a potentiometer, shunted across the fllament. An anode voltage of 20 to 40 volts will be sufficient to procure satisfactory results.

Important I Do not overcharge the GlamentI Protect your valves by uaint Philipsillament mafety fuse.

Above and helow: Examples of early valve data sheets issued with each valve purchased.

$v,=$ filament voliade
$i=$ filament current
$\mathbf{v}_{\mathbf{a}}$ - plate voltade
$y_{z}=$ gild voliase
$\mathbf{i}_{\mathbf{1}}$ - saiurailion ruttent
$\boldsymbol{R}=$ amplificalion factor

AMPLIFILR

The action of this valve is sufficienfly puwerfol to wark a lond speaker of small size ant at the same tunc ensure umplificafiont u'inhout distorfion. Though it is nat passible to prescrihe any definite rules. we would recommend the use of this value as the thirl in a three-valve set. and in a foursalve set the emplayment of these triodes as third and faurth valves. In a low frequency amplifier they should be placed as first and second valves. The use of a sultable grid blas is an absolute necessity: for adequatefunctioning this should be of:
$3-41 / 2$ valts at an nnode voltage of 60 volts.
$41 / 3-6$ volts at an anode
voltane of 80 volts.
$6-9$ volts at an anode
voltage of 100 volts.

The positive side of the grid-bias battery used in this case should be connected to the negalive side of the filament.

The properties of this triode arc demonstrated in the characteristic curves shown here.

The triade A 306 is provided with the standard four pin Philips cap (type A 32) it can be supplied on application with any of the plication with any
other usual caps.

O- gird conlact pin
$F=$ Glament contact pin
$p=$ plaie contact pin

Thla valve han haan carcialty teated hafort leaviat the Ineiory.

VK3EM'a shack in the 30's.
kind. Apart from the technical publications like "Wireless Weekly" and the British "Wireless World," every newspaper ran at least a weekly page on wireless doings with circuits, photos and advertisements from all the firms you can possibly name, including some most unlikely ones. It was at this stage when there were two different types of people, experimenters and amateurs. The former were licensed, while the latter were not and mostly built receivers, though there was the occasional pirate even then.

The greatest complaint from both broadcast listeners (mostly amateurs, although by this time a lot of professional and commercial receivers were available) and experimenters was the re-radiation of the regenerative detectors used in their oscillating condition and the QRM was so bad that many bands could not be worked and many a concert or record evening was spoilt entirely by the heterodynes whistling all over the place. Letters to the press and journals of the day had a lot to say about it and while the experimenters got a lot of undue blame, the concensus of opinion was that it was the amateurs who did not know how to operate their receivers properly. The P.M.G. did state on all licences of the time that receivers must not be used in an oscillating condition.

Some people pressed for the enforcement of a regulation that all sets should have an isolating stage, but did not get very far because it was hard to prevent these from "taking off". At this time the superhet was taking hold in U.S.A. and U.K., but in the Australian "Experimental Radio and Broadcast News" an article was written saying that they had no future(!). So much for early thoughts, prophets have been confounded many times.

BETWEEN MID 20's AND 30's

The pattern for the next ten years settled for most licensed Amateurs as a t.r.f. receiver and a m.o.p.a. transmitter, and all the while experimenting
with aerials, DX and reaching higher and higher frequencies. A few of the forward ones tried superhet receivers. Crystal control was also the thing of this period, and made for stable signals. Most blokes ground their own crystals and even made their own holders. Those who were interested in lapidary also found and cut their own quartz, but they were few and obviously dedicated.

Going back to the heydays of the 20 s , phone operation also came of age and most phone operators also played music and had live recitals. The "Listener In", while publishing the programmes of " A " class (National) and " B " class (Commercial) stations, also carried the programmes of Sunday Experimental stations. Amongst these were: 3 BZ Caulfield, 249.9 metres, 50 watts; 3CE, East Richmond, 219 metres, 9 watts; 3EF Elwood, 241.8 metres, 15 watts; 3TM Glenferrie (wavelength and power unlisted); 3RI, Melbourne, 230.6 metres, 10 watts; 5WS Adelaide, 245.8 metres, 10 watts.

Another feature of this era was that whenever a valve or transformer, etc.,
was purchased, there was supplied with it full details of its connections, application and usually a circuit or two in which it could be used. A reduced facsimile of the Philips A306 is shown in this text. Radiotron did something similar, also including a circuit. The page showing circuits of an audio transformer is one of four pages of data accompanying the said transformer. Frequency response and frequencies of piano and voices were also illustrated. How hard it is these days to get information on any product!

Passing into the thirties, the photo of VK3EM's shack is typical of the period. The transmitter was a 171 crystal oscillator and a 210 p.a. to a series tuned Zepp on 7 MHz ., which worked plenty of DX . The receiver was a t.r.f. -a 22 as r.f. amp., B415 regen. det., and a B406 audio. The box at the left hand end was a Loften-White audic. amp. which served for reproducing records or whatever (hi-fi, yet!). The shielded heterodyne wavemeter used a UX199. Alongside the Morse key is a home constructed semi-auto key which helped the c.w. immensely.

The lower left hand picture on the cover will be recognised by many. While the Americans used these prior to WW2, we did not see much of them until they came on the disposals market post-war. The wartime design was generally much the same as this one, whose tube line up was 6D6 1st r.f., 6D6 2nd r.f., 6C6 1st det., 6C6 h.f. ose, 6D6 1st i.f., 6D6 2nd if., 6B7 diode, 2nd det., a.v.c., 1 st audio, and a 42 2nd audio. A 6C6 was the c.w. oscillator. There was a crystal filter with phasing control which could be switched in or out.

The final cover instrument is one of the latest in transceivers. Amateur Radio is quite sophisticated these days and looks, feels and operates like something out of this world; particularly for those who grew up with the more primitive gear. This one is typical of many, being single sideband, selectable as to which, and making use of semiconductors and valves as appropriate to produce some 200 watts p.e.p.
(Continued on Page 19)

F. W. ("Pop") Madhurat's early equipment.

RADIO DOCTORING IN THE 20's

A. J. C. THOMPSON, VK4AT

"A.R." recently took our thoughts back to the early days of Radio. It reminded me of the conditions existing in the outback when radio first brought joy to a musically starved population. Having been presented with a homebrew radio of about 20 knobs, sundry bits and pieces, and also about a year's supply of past Wireless Weeklies, it was not surprising that I was soon up to my neck in this new pastime.

When the first "Wireless's" arrived logether with their voracious appetites for batteries, it was to me that their owners turned when trouble descended upon them. These mighty monsters were always operated at full throttle. The social-standing of the proud owners were thus portrayed to all and sundry whose QTHs happened to be within a half mile or so of these sets.

Terminals were preferred to solder in these times, so this loud braying soon shook a lew loose. In such circumstances the sudden silence, with its social implications, was regarded by the once proud owner as a national disaster. When the heart-breaking news was conveyed to me it was regarded as a case of extreme urgency. Off I would go armed with all the necessary toolsa screwdriver, a pair of pliers, a pair of earphones, a general purpose valve and two wet fingers to test the B battery. Arrived there, I would apply the screwdriver with diligence and off would come the sundry bits necessary to expose the "innards". There would be a gasp of astonishment at this stage, but when I carried those precious "innards" over to the table there would just about be heart-failure all around in case 1 tripped.

My elevation to the position of Radio Doctor (Buckshee) was made possible by having physics, maths, chemistry and kindred suitable subjects consistently rammed down my reluctant neck for some years. I knew much more about Radio 40 years ago than I do now.

Of interest perhaps is the fact that at one stage my pride and joy was the 5th edition of the A.R.R.L. Handbook. My next (to get my "ticket") was the 39th edition dated 1962 . In spite of all the mental arithmetic that this sparks off, I can assure all that I have not yet reached the "Poor Old Dad, he's had it" stage.

But to revert to the "good old days" -although not exactly the "horse and buggy" days, it didn't take much rain to put the "Tin Lizzies" (then prevalent) in the shed and then it was back to the GGs once more. On one occasion I left the old Model T at home and set off to alleviate the grief on a distant cattle station. Their particular "pride and joy", with much trembling and sundry squeaks, had become obviously defunct, thus putting quite a dint in their social standing. I rode a quiet old stockhorse, taking the old cattle dog

[^48]along too, just for company. On the station property itself I had to pass very close to the temporary camp of an old contract laborer. I paused for the customary few words as he prepared both his tea and also the salt leg of mutton. This latter was to be Loiled during the night for his breakfast.

Now, at that period of so-called civilisation thermostats and time switches were unknown but these backward inhabitants had a very good substitute for them. Both the high and the low in the social scale all had one thing in common. That was the "Galley". This consisted of two forked sticks set in the ground. These supported a pole across them adorned with many sizes of fencing wire hooks. These were used to keep a kerosene tin of water at any desired height above the fire. Permanent residents had this contraption enclosed on three sides with the addition of 1 low sloping roof. The advantage of this "Galley" was that, with good judgment in the selection of suitable lozs, this arrangement would heat, cook and probably cool the salt meat in the water without any further attention. Best of all there was no wood chopping required. In the present case the old chap would drop the meat in the tin and fish it out cooked at breakfast time.

I continued on to the homestead in ample time for the evening meal, and the fixing of the "Wireless". All the radio stations had to close down before a belated supper was served. This was standard procedure. It would be necesary otherwise to use a tyre lever to prise the owner off his knobs once he got his hands on them. Consequently, it was after midnight before I whistled up my reluctant dog and settled myself comfortably in the saddle for a "snooze" on the long journey home.

On this occasion the old horse played me false. He was thirsty. He turned off the road and went to a dam. Being sleepy, I didn't notice which side he turned off on. In addition, as the tracks from the dam led off in all directions, I couldn't even find the track back to the road. This was serious as, if daylight came and I was still lost in the station's horse paddock, then I would never hear the end of it. Fortunately, the old dog signalled his distress well back on what I knew would be my back-track 80 I lost no time in locating him. I dismounted to see what the trouble was and discovered that he was trying to carry the camper's half-cooked leg of mutton by the cool bone end. His reluctance to follow me from the house was due to his guard duty after the theft, as he waited for a chance to get his teeth into the hot part. I sat down on a convenient log, with the disputed meat in my possession, to think things over.

This was what I got for being good hearted and fixing a man's wireless set. True, I was no longer lost, but this
was worse. The sight of the old gentleman's leg of mutton being carried around by my dog was no great surprise to me. He'd learned the art of abstracting meat out of hot water in a very hard school when still a pup. He had practiced his art at my QTH too. I had acquired him from a nearby cattle station. The family there consisted of many boys, each of which oufned one or more dogs. As they only "killed" once a week, this tribe of dogs lived luxuriously for the first couple of days, but had a hard life for the remainder of it. This situation was relieved at times by the dispatch of a younger member of the household to the wallaby trap for much needed supplies. The "Boss" had decreed that only cooked meat of this nature could be used to alleviate the distress in the dog colony.

Soon the old kerosene tins full of water and good cheer for the hounds would be on the fire. From then on, the while tribe of dogs would sit in a circle round the fire, every nose pointed expectantly toward the tins. It was a grand sight to see! The old dog occupied the best seat downward where the aroma was sweetest. The more favoured of his harem were allowed sniffis too. I used to wonder why the lesser members of the tribe were not tailed off downwind too, but each time they tried it the aroma of the old dog spoiled everything.

When the wind shifted it was nice to see the look of bliss suddenly appearing on the face of a minor dog. The unhaupy old dog would then punish the dog on his right and take his place, hopefully raising his nose with keen snifis. In the course of a couple of hours the water level would fall and the fire be reduced to coals. The circle of dogs would gradually come closer to the tins, with the excitement rising with each inward move. Finally the old dog would attempt to guard the tins and punish the more venturesome at the same time. This manoeuvre always ended with a lesser dog dashing in, seizing a protruding part and pulling it out. Then the real brawl was on. The successful ones that got their teeth into the hot meat made more noise than those just being punished. This was the standard signal at the house that the "brew" was ready. If nobody was home, then the ensuing iree-for-all could be heard for hours and for miles.

I realised, however, that brooding over the prowess of my dog in abstracting hot meat wasn't mending the situation. I knew that when breakfast came I would be suspect No. 1. According to my reckoning I had three courses open to me:-
(1) I could accept the suspicion, ignore everything, and go home.
(2) Be honest and tell the sufferer.
(3) Sneak the mutton back in to the tin.

The drawback to No. 1 proposition was that it would be necessary to separate the old dog from his meat and keep him quiet all the time as he suffered this indignity. This I could do by carrying the meat myself, but it was very likely that the old chap would have discovered his loss by this time and be awake. I felt sure that I would be very uncomfortable if I had his hot mutton hidden in my shirt and at the same time had to listen to his moans over the loss of it.

No. 2 had its drawbacks too. Rousing the old gentleman up at 1 a.m. to tell him that my dog had just eaten his breakfast was a course that didn't appeal to me at all.

No. 3, the last alternative, had some merit. It depended for success on the present conditions of the meat and my ability to return it undetected.

A trip back to the dam, a few matches and a sharp knife soon returned the meat to an "as was" condition, but it definitely had lost some of its lustre. Getting it back into the tin was now a problem. Sneaking up on foot to do the job wouldn't get any co-operation from a disappointed dog. I could also ride closely past, pause a moment and drop it in. But if I missed and it fell in the dirt, then I would have to dismount to get it before the old dog.

Under the circumstances the old chap would be sure to poke his head out to see why I had stopped. Standing by his empty tin holding the cold end of his leg of mutton would not give me that air of aplomb and assurance that I felt would be necessary if I was to put up a convincing tale about putting it back-not pinching it. I could just imagine the old chap telling the tale "Such a well-known young lad too. You'd think butter wouldn't melt in his mouth, yet he must have been eyeing me bit of mutton off all the time. And what a weak excuse he give, too, when I copped him." "Just putting it back," says he.
"He wouldn't put it back after his dog had dragged it all round the pad-dock-or would he?"

I had to consider his feelings too. It was one thing to lie in bed at 2 a.m. gloating over a spicy tale, but it would be quite a different thing at breakfast time. As he hacked off a few hunks to go with his damper and treacle, his thoughts would go like this: "Fancy that young scalawag nearly pinching me good mutton. Said his dog dragged it round the paddock-Now I come to look closely that bit looks quite ragged -could be overcooked though-looks like a bit of grass on that edge-but it could have blown in the tin with the wind."

He would vote for a few mouthfuls of damper while he thought things out. Later on he would convince himself that the mutton was edible. The repeat performance would go like this. He would advance on the discarded meat with a determined step and an observ-

AMATEUR FREQUENCIES:

USE THEM OR LOSE THEM!
ant eye and mutter to himself: "Must be getting soft in the head to be put off me meat by the tale of that kid. Now just where are the teeth marks in it? That is where I just stuck my fork in it and those holes are where the fork went in when I lifted it out-or did I lift it out as usual by the bone end? Now are those fork holes or fang holes?"

Even at dinner time those questions would still not be answered. Was he to eat good meat or the dog's feed? Even after all these years I still wonder if I did the right thing that night. Nobody could possibly blame me for giving up radio for over 30 years after it had led me into such a scrape.

For the benefit of the younger readers let me take a look and see how much of this belongs to the "Fairytale" class. Actually "getting lost" belonged to a different time. The theft of the mutton did occur, but it was in the daytime. The dog belonged to the tribe which was accurately described at one of their feeding periods. The sufferers were road-workers on an outback road, and I do hope that the two gentlemen who ate that mutton are not readers of this masazine.

Draft Revision of Specification for Electronic Sound and Vision Equipment

The Standards Association of Australia is seeking comment on a draft revision of Australian Standard C1591959 Ap., S.A.A. Approval and Test specification for electronic sound and vision equipment, issued for public review as Doc. 1562.

Doc. 1562 incorporates technical advances which have occurred in the electronics industry, particularly in television receivers. It establishes essential requirements and minimum safety standards for the purpose of preventing injury to persons and/or damage to property by electronic equipment and materials used for the reception of radio and television broadcasts or for the amplifying, recording and reproducing of sound and vision.

The draft is to become one of the series of "approval and test" specifications issued under Part II. of the S.A.A. Wiring Rules, which contain conditions which must be met to secure approva! for the sale and use of electrical equipment in Australia.

Copies of Docs. 1562 may be obtained, without charge, from the various offices of the Standards Association of Australia in all capital cities and Newcastle.

Comment on the provisions of the draft is invited from persons and organisations experienced in the field of electronics, and such comment should reach the head office of the Association, 80 Arthur St., North Sydney, N.S.W., 2060, or any branch office, not later than 31st August, 1970.

An Outline of Early Radio
 iContinued from Page 171

FOST SCRIPT: AUSTRALIAN COMMUNICATION WITH ROYALTY 1901

Now as a post mortem, I must return to the pioneers. Until the W.I.A. was formed, and he then joined, F. W. ("Pop") Medhurst was one of our early experimenters who had the old spark call of XFM, but in 1914 was listed as XZD.

Max Hull's history relates how the Victorian team worked the 1901 Royal Tour warships, so 1 will mention the equipment used by the Tasmanian team of Messrs. W. P. Hallam and F. W. Medhurst, W.T. engineers for the P.M.G. Department. This was similar to that used in Victoria, and is shown removed from its location and re-assembled especially for the photograph, which was originally printed on blue-print paper (used in drawing offices in the past for making copies of traced drawings).

The station was constructed at One Tree Point at the Long Beach light known as "Blinking Billie" where" operating was continuous and very highly commended by the officers concerned. The equipment consisted of two spark coil transmitters of $12^{\prime \prime}$ and 14" respectively, with adjustable bras. balls spark gaps and tuned with a tapped inductance, power being derived from Plante accumulator.

The receiver was a coherer detector with nickel and iron filings in glass tube with two silver disc electrodes, one in either end. These detectors were also duplicated so that the filings could be replaced as required, for in use oxidisation was rapid, necessitating frequent changing.

For decohering, an electric bell was used as a rapper in one case while the cther was mounted on the armature of a sounder relay which operated a Siemens Morse recorder. Testing coherers for activity was done with a miniature Whimshurst machine whose spark discharge was registered on an active coherer by placing its spark gap close to the receiver aerial. The aerial was vertical end fed using a plate immersed in the river as an earth. Ninety feet of scaffold poles lashed together wers crected as a support pole.
The set up was operated from a low roofed room normally used for oil storage and much concern was felt about making it presentable when the visitors expressed a desire to see this so wonderful land station.
-Ken Gillespie, VK3GK.

CONTEST CALENDAR

15th/16th August: Remembrance Day Contest. 3rd/4th October: VK-ZL-Oceania DX Contest 'phonel.
10th/11th October: VK-ZL-Oceania DX Contest 10th/11th October: R.S.G.B. 28 MHz . Phone Contest.
24th,25th October: R.S.G.B. 7 MHz . DX Contest ic.w.t.
7th/8th November: R.S.G.B. 7 MHz . DX Con14th/15th November
14th/15th November: R.S.G.B. 1.8 MHz . Contest. Sth Dec., 1970, to llth Jan.. 1971: Ross A. Hull V.h.f. Memorial Contest.

13th/14th Feb.i 1971: John Moyle: Memori:1 Nitional Field Divy Contest.
-D. H. Rankin, F.E.

LOW-COST

 CO-AXIAL RELAY CONSTRUCTION

 CO-AXIAL RELAY CONSTRUCTION}

C. K. MAUDE,* VK3ZCK

Relays of the type to be described have been used by the author up to 450 MHz . and by other Amateurs up to 1300 MHz . with no noticeable loss in transmitted power.

The isolation between the moving contact and the unused contact is better than 40 dB . at two metres.

The design shown does not incorporate a solenoid activator as a suitable commercial unit does not seem to be available on the local market, and therefore I have left that portion to the constructors' own ideas. The solenoids used by the author are disposals ones re-wound to 12 volts and modified so that the activating arm moves the plunger.

The drawings shown give details for all the co-axial connectors in common use in Australia. Details are given for the following: SO239, BNC, Belling Lee, Type N and Type C.

The impedance of these relays can be made to suit either 50,60 or 75 ohm co-axial cable. Although for normal usages, a relay of 60 ohms will give an acceptable match to both 50 and 75 ohm systems.

MATERIALS

Aluminium bar, $1^{\prime \prime} \times 1^{\prime \prime}, 3^{\prime \prime}$ long.
Phosphor bronze strip, $0.015^{\prime \prime}$ thick, and about $3^{\prime \prime}$ long.
A small piece of silver about $1 / 16^{\prime \prime}$ thick (a pre 1950 "zac" will do).
A piece of 16 s.w.g. aluminium and $1 \mathrm{~g}^{\prime \prime}$ of polystyrene rod (a plastic knitting needle will do).
A supply of 6 BA screws and three co-axial connectors.

CONSTRUCTION

Mark out and drill the aluminium bar to suit the connectors to be used. Then drill a 8 mm . ($5 / 16^{\prime \prime}$) hole through the centre of the aluminium bar, and a 5 mm . ($3 / 16^{\prime \prime}$) through one pair of sides as shown in the drawing. See Figs 1, $3 \mathrm{~A}, 3 \mathrm{~B}$, and 3 C .

LEAF

The moving leaf is made from $0.015^{\prime \prime}$ thick phosphor bronze strip, $2-1 / 8^{\prime \prime}$ long. The width is dependent on the impedance required. For 50 ohms, cut to $0.258^{\prime \prime}$ in width; 60 ohms, $0.232^{\prime \prime}$; and 75 ohms, $0.182^{\prime \prime}$.

The contacts are made from two pieces of silver, $3 / 16^{\prime \prime}$ diameter, and are soldered on one end of the bronze strip, filed smooth and polished. The fixed end of the leaf is soldered to the end connector so that the silver contacts are square on to the side connectors. (See Figs. 2A and 2B.)

The contacts on the side connectors are made of silver and are of the same size as the ones on the leaf, and are soldered to the connectors so that the total distance from the back of the mounting plate to the contact side of - 2 Clarendon St., Avondale Heights, Vic., 3034.
the silver button is $13 / 32^{\prime \prime}$, the contact is filed round and flat and then polished. (See Fig. 4.)

Note.-When using Belling Lee connectors be sure to re-inforce the central pin with a pea size bead of Araldite, otherwise the central pin has the habit of moving. (See Fig. 5.)

When all other holes are drilled, drill four holes in the end " B " and in the aluminium plate and assemble the relay placing the aluminium plate on end " B " as a cover.

REFERENCES

R.S.G.B. Bulletin, June 1965. U.K.W. Berichte, March 1963. R.s.G.B. V.h.f./U.h.f. Manual.

FIG. 3. CONNECTOR DIMENSIONS.

Solid State Device Patent Application in 1925

On 22nd October, 1925, Dr. Julius Edgar Lilienfeld filed an application with the Canadian authorities for a patent headed "Method and Apparatus for Controlling Electric Currents". A similar application was lodged in the U.S.A. on 8th October, 1926. The patent, number $1,745,175$ was granted in U.S.A. on 1st January, 1930.

The patent states: "The invention relates to a methey of and apparatus for controlling the flow of electric current between two terminals of an electrically conducting solid by establishing a third potential between said terminals; and is particularly adaptable to the amplification of oscillating currents such as prevail, for example, in radio communication." The preamble goes on to explain that the device has for its object to dispense entirely with thermionic devices.

The suggested construction is that a base member of suitable insulating material, such as glass, be used, and on the upper surface a pair of conducting members, such as a coating of platinum, gold, silver or copper, be provided over the glass surface by one of the well known methods, the two conducting members to be located as closely as possible to each other, and substantially midway of the same is provided
an electrode member of minimum dimensions to reduce capacity. This electrode member should preferably consist of aluminium foil approximately $0.0004^{\prime \prime}$ thick.

The surface of the device is coated with a compound having the property of acting with the foil electrode as an element of uni-directional conductivity. The thickness of the coating is minute and of such a degree that the electrical conductivity there through would be influenced by applying thereto a suitable electrostatic force.

The patent goes on to outline suggested compounds and how they may be applied, the theory behind the device and suggested uses to which it may be put. The patent includes a sectional view of the device (reproduced herewith) and suggested circuitry in which the device may be used. The complete patent covers three foolscap pages, far too long for reproducing in full, but from the foregoing it is easy to see the for-runner of our present day solid state devices. Whether or not devices of this type were ever produced we do not know, although we can envisage problems in the manufacture of the foil in 1930 , and the use of precious metals would add considerably to the cost, not that the metals used today are cheap.

Since writing the foregoing, a copy of "Spectrum," published by Auckland V.h.f. Group Inc., has come to hand. This publication has a small item, which
we take the liberty of quoting in full. It sums up the matter far better than anything further we can write.
"Dr. Julius Edgar Lilienfeld applied for patents on solid state device on 22nd October, 1925, and 8th October, 1926. The patent, U.S. No. $1,745,175$, was granted on 8th January, 1930, for what is now known as a NPN transistor. Dr. Lilienfeld was also granted patents No. $1,877,140$ and $1,900,018$ on 11 th September, 1932, and 7th March, 1933, respectively, for two developments, one being an NPPN device. He also worked on the use of PN junctions as variable capacitors."

~

FAIRCHILD'S 7400 TTL SERIES LOCALLY PRODUCED

Fairchild has entered the market as a major supplier of 7400 series integrated circuits. For its first penetration into this general purpose TTL market, Fairchild is offering 24 ceramic Dual-in-Line products at prices that are competitive.
In function and pin configuration, the Fairchild Series 74' circuits are exactly equivalent to existing 7400 's and can be plugged into sockets without system or interchangeability problems. They are identical electrically and have the same parameter distributions.

This series consists of 17 gates, six flip-flops, and a BCD to decimal decoder/driver (the 7441). Included in the series are the 7408 quad 2 -input AND gate, and the 7411 triple 3 -input AND gate, which are the only AND gates offered at regular speeds by a major 74' supplier.
These circuits will be followed by a succession of 74 ' MSI elements.
The Fairchild devices, which operate in a temperature range of $0^{\circ} \mathrm{C}$. to $70^{\circ} \mathrm{C}$., offer ceramic reliability at plastic prices.

it

Any opinion expressed under this heading is ths individual opinlon of the writer and does not neeessarily coincide with that of the Publishers.

APPEAL FOR MORSE KEYS

Editor 'A.R.." Dear Sir,
In the course of my work I have been asked by n number of people how they can learn Morse Code for various P.M.G. licences.
It is no trouble in regard to the recelving, as AX2WI transmits Morse at a variety of as AXeeds. every night, to my knowledge. The speeds, every night, to my trouble comes when they ask where they can locate any commercial source of Morse keys. the standard P.M.G. style I refer to. I would appreciate it if anyone could inform me of either a source of secondhand keys or of new ones. If you know the prices of them this would be appreciated too in the case of secondhand ones.
These keys are not for me but for a number of chaps who wish to go for the Morse ticket in various exams. Can you help them?
-Rodney Champness, AX3UG.
Co-axial Relay (see article on opposite page)

SERIES A.C. CIRCUIT

A Typical Examination Question in A.C. Theory is Answered in Detail

LECTURE NO. 6

QUESTION

A series circuit consists of a resistance of 25 ohms, an inductance of 0.15 H . and a capacitance of $100 \mu \mathrm{~F}$. Power is supplied to this circuit at 500 volts 50 cycles per second (50 Hz .).

FIND

(a) The voltage across the resistances.
(b) The voltage across the inductance.
(c) The voltage across the capacitance.
(d) The total power taken by the circuit.
(e) The useful power used in the circuit.
(f) The current flowing in the circuit.

The questions are typical of those frequently asked in examinations, therefore it is proposed to analyse the circuit in considerable detail to obtain the answers, because a complete knowledge of such a circuit is vitally important in understanding basic A.C. theory.

Comment: The various portions of the question have been deliberately placed out of the correct sequence required to obtain the answers. This is done to make matters more difficult for the examination candidate and to help the examiner obtain a better assessment of the candidate's ability.

For an a.c. circuit, Ohms Law may be written:-

$$
\text { Current }=\frac{\text { Voltage }}{\text { Impedance }}
$$

where impedance is the a.c. resistance.
Now, in order to answer parts a, b, c, d, and e of the question, it is necessary to solve f, i.e. find the current flowing in the circuit.

Since the impressed voltage and the frequency are stated, it will be necessary to determine the impedance of the circuit from the stated values of resistance, inductance and capacity.

Basically this is done by using the Theorem of Pythagorus, which states that in a right angled triangle the square of the hypotenuse is equal to the sum of the squares of the other two sides, i.e.

$$
\text { Hypotenuse }^{2}=(a+b)^{2}
$$

where a and b are the other two sides.
This equation can be transposed to find the length of the hypotenuse when the lengths of the other two sides are known and becomes:-
Length of Hypotenuse $=\sqrt[2]{(a+b)^{2}}$
Now one of the properties of an inductance is that it tends to retard the flow of an a.c. current and can be considered to be a resistance and this is known as Inductive Reactance or XL, and mathematically is always a positive quantity.

[^49]> - Continuing the series of lectures by C. A. Cullinan, VK3AXU, at Broadcast Station 3CS for students studying for a P.M.G. Radio Operator's Certificate.

A capacitance also exhibits the property of reactance known as Capacitive Reactance or XC and mathematically it is always negative.

In radio work the letter J is often used to indicate reactance. In this context the letter J has nothing to do with the letter J used in mathematics.
Inductive Reactance is derived from the formula:-

$$
\mathrm{XL}=2 \pi f \mathrm{~L} \text { ohms }
$$

where f is the frequency in cycles per second, and L is the inductance in henries.
Capacitive Reactance is derived from the formula:-

$$
X C=1 \div 2 \pi f C
$$

where 1 is in cycles per second, and C is in farads.

A circuit or an inductance has the property of inductance when there is an electromotive force set up in it due to a change of current through it.

A circuit has an inductance of one henry when a change of current of 1 ampere per second induces an electromotive force of 1 volt.

A circuit or capacitance has a value of one farad when a change of 1 volt per second produces a current of 1 ampere.

As the farad is a very large unit, it is usual to convert the farad into micro-farads, one micro-farad being 1 millionth of a farad.
A capacitance of 1 farad occurs when a difference of voltage produces a change of 1 coulomb.

The impedance of an a.c. circuit is the equivalent of the hypotenuse in the Theorem of Pythagorus and the formula is stated:-
Impedance $(Z)=\sqrt[2]{R^{2}+(X L-X C)^{2}}$
If the circuit contains only resistance and inductance, formula becomes:-

$$
Z=\sqrt[2]{R^{2}+X L^{2}}
$$

and if it only contains resistance and capacity, is then

$$
\mathbf{Z}=\sqrt[2]{\mathbf{R}^{2}+(-\mathbf{X C})^{2}}
$$

It must be remembered that all components used in a.c. circuit will have some ohmic resistance which may be the R in the above formulae.

The next step is to determine the reactance of the inductance and of the capacitance.

C. A. CULLINAN,* VK3AXU

```
XL=2\pifL
    =2\pi\times50\times0.15
    =2 }\times3.1416\times50\times0.1
    = 3.1416 }\times1
    =47.12 ohms to 2 decimal places.
XC=1\div2\pifC
    =1\div[2\pi\times50\times(100\div106)]
    =1,000,000 \div (2\pi 人 50 < 100)
    =31.83 ohms to 2 decimal places.
```

Now that we know the reactance, we can determine the impedance.

$$
\begin{aligned}
\mathbf{Z} & =\sqrt[2]{\mathbf{R}^{2}+(\mathrm{XL}-\mathbf{X C})^{2}} \\
& =\sqrt[2]{25^{2}+(47.12-31.83)^{2}} \\
& =\sqrt[2]{25^{2}+15.29^{2}} \\
& =\sqrt[2]{625+233.78} \\
& =\sqrt[2]{858.78}
\end{aligned}
$$

Therefore
$\mathrm{Z}=29.3$ ohms.
Current $=$ Volts \div Impedance

$$
=500 \div 29.3
$$

Answer to (f):
$=17.06$ amperes.
We may now determine the voltage drop across each of the components.

From Ohms Law, $E=C \times R$.
Therefore question (a) resolves into:

$$
\begin{aligned}
\mathbf{E} & =17.06 \times 25 \\
& =426.5 \text { volts }
\end{aligned}
$$

Therefore question (b):

$$
\begin{aligned}
\mathbf{E} & =17.06 \times 47.12 \\
& =803.86 \text { volts }
\end{aligned}
$$

Therefore question (c):

$$
\begin{aligned}
\mathrm{E} & =17.06 \times 31.83 \\
& =543.0 \text { volts. }
\end{aligned}
$$

Comment: An examination of the above answers shows a curious situation in that the voltage drop across the two reactances are each greater than the impressed voltage. This can happen, and in design work it is necessary to take such voltages into consideration.

Although not asked for in the question, let us check our calculations, remembering that we took them only to two decimal places.

Once again we base our calculations on the Theorem of Pythagorus.

Impressed voltage $=$
$\sqrt[2]{\text { ohm. drop }}{ }^{2}+$ (induct. dr. - cap. dr.) ${ }^{2}$
(In above equation the abbreviations are ohmic drop, inductive drop and capacitive drop respectively.)

$$
\begin{aligned}
& =\sqrt[2]{426.5^{2}+(803.86-543.0)^{2}} \\
& =\sqrt[2]{426.5^{2}+260.86^{2}} \\
& =\sqrt[2]{181,902.25+68,047.94} \\
& =\sqrt[2]{249,950.19} \\
& =499.94 \text { volts. }
\end{aligned}
$$

The slight discrepancy between the actual impressed voltage and the above proof is due to taking the various results only to two decimal places, also r was taken only to four decimal places.

The student should calculate all the above to at least four decimal places.

Question (d). Find the total power taken by the circuit.

Comment: Power may be expressed by two formulae:

$$
\begin{aligned}
& P=\text { volts } \times \text { amperes } \\
& P=\text { current }^{2} \times \text { impedance. }
\end{aligned}
$$

Let us use the first formula. Therefore

$$
\begin{aligned}
P & =500 \times 17.06 \\
& =8,530 \text { watts }
\end{aligned}
$$

Now we check with the second formula. Therefore

$$
\begin{aligned}
P & =17.06^{2} \times 29.3 \\
& =8,527.57 \text { watts. }
\end{aligned}
$$

Again the discrepancy is due to taking results to two decimal places.

Answer to (d): 8,530 watts.
Question (e). Find the useful power used in the circuit.

Comment: In a perfect a.c. generator the current and the voltage will be exactly in step, or as more commonly expressed, they will be exactly in Phase. A good knowledge of the meaning of Phase is essential for an understanding of a.c. theory.

Reverting to a simple a.c. generator, we know that the current rises from zero to maximum in one direction, drops to zero, rises to maximum in the opposite direction, then drops to zero again to complete one complete cycle. In a perfect generator the current and voltage will both be exactly in phase, that is each rises and falls identically to the other, although the amplitudes may be greatly different.

Such a generator is said to have Unity Power Factor as all the power produced by it can be used.

Now if a.c. power is fed into a load which is a pure resistance, then all the power flowing into the load will produce work.

However, if the load also contains reactance, then not all the power flowing into the load will produce useful work.

A familiar object is an electric toaster using a flat element made of resistance wire wound on thin mica. Such an element has very little reactance and even at broadcast frequencies the inductance is so low that toaster elements can be used as artificial aerials. True, they may get very hot in spots, but I have used them quite satisfactorily at powers up to 2,000 watts. Such elements exhibit very close to unity power factor.

Another familiar object is an ordinary electric radiator bar. This consists of a length of resistance wire wound in the form of a coil on a ceramic rod. Such an element has considerable inductance and it is useless as an artificial
aerial at radio frequencies unless the reactance is "tuned out". Even at power line frequencies, there is a little reactance so the power factor is less than unity and not quite all the power flowing in the element produces work.

In an a.c. circuit an inductance tends to retard the flow of current or cause it to lag behind the voltage so that the voltage and current are no longer exactly in phase.

On the other hand a capacitance will cause the current to lead the voltages, again changing the phase.

When a load is connected to any power supply authorities system, the power taken by the load is measured by a watt-hour meter and this is the power you pay for, so if the load is a pure resistance you get full work for all the power you have bought. But, if the load contains reactance, you do not get useful power from all you bought, because what is termed "power factor" is less than unity.

Question (e) requires us to find the true power in the circuit, that is, the power which is producing work.

To do this we must find the Power Factor of the circuit because the Power Factor is the ratio of the True Power to the Apparent Power.

Mathematically Power Factor is the Cosine of the angle of lag or lead of the current.

To obtain Power Factor it is necessary, firstly, to find the tangent of the angle of lag or lead, that is:-

$$
\operatorname{Tan} \theta=\frac{\text { Reactance }}{\text { Resistance }}
$$

We have found already that the values of the two reactances are XL $=47.12$ ohms and $\mathrm{XC}=31.83$ ohms. We add these algebraically to obtain the nett reactance.

$$
\begin{aligned}
& 47.12-31.83 \\
& =15.29 \text { ohms. }
\end{aligned}
$$

Therefore $\operatorname{Tan} \theta=15.29 \div 25$

$$
\begin{aligned}
& =0.6 \\
& =31^{\circ} \text { (from tables). }
\end{aligned}
$$

Secondly, find the cosine of this angle. $\operatorname{Cos} 31^{\circ}=0.86$ (from tables).
We have already found that the power being measured by a watt-hour meter (apparent power) $=8,530$ watts. We can now complete the answer to question (e), the useful power in the circuit, that is the power which produces work.

$$
\begin{aligned}
& \text { True Power }= \\
& \quad \begin{array}{l}
\text { Apparent Power } \times \text { Power Factor } \\
=8,530 \times 0.86 \\
=7,335.8 \text { watts. }
\end{array}
\end{aligned}
$$

Comment: The importance of using equipment with a power factor as close to unity as possible can be seen from this example where it will be noticed that 194.2 watts of power are paid for but not used. The majority of public power supply authorities give a reduction in rates when a large user includes power factor correction equipment in his plant since the closer the public demand is to unity power factor the less "useless" power has to be generated.

ANSWERS

The answers to the questions are:-
(a) 426.5 volts
(b) 803.86 volts
(c) 543.0 volts
(d) 8,530 watts
(e) $7,335.8$ watts
(f) 17.06 amperes.

Observation: The current through a series circuit is the same through each element of the circuit.

The voltage across each element may differ considerably.

The closer the power factor is to unity, the more efficient will be the circuit.

AUSTRALIS NEWS

BALLOON TEST FOR TRANSLATOR
It is hoped to fly a one-channel version of the AO-B satellite translator system on a balloon to be launched from Mildura during August.

The hard-limiting translator will have an input on Channel B (146.00 MHz .) and output on 432.17 MHz . Power output will be in the order of 2 watts and deviation will be $\pm 25 \mathrm{KHz}$. From a height of 105,000 feet, the balloonborne translator should be in range of southern VK2, VK3 and eastern VK5 for about five hours, following a dawn launch.

It is hoped that this will be the first of a series of such flights, leading up to the launching of the AO-B satellite late next year. All suitably equipped Amateurs are welcome to communicate through the balloon package.

Approximate launch dates will be announced on Divisional broadcasts and those wanting further information should contact Kevin Bond, VK3ZKB, 61 O'Shannessy St., Nunawading, Vic., 3131.

MANAGER VISITS U.S.A.

Les Jenkins, VK3ZBJ, the AO-B Project Manager, will travel to the U.S. in early August for detailed discussions with A.M.S.A.T. on the construction of the AO-B fight unit.

Les will sort out with A.M.S.A.T. the many design details involved in building the satellite and he will see what opportunities exist for further VK participation in Amateur Radio space activities.

RADIO PARTS EXTENDS

Additions to Radio Parts' Melbourne warehouse have provided over 18,000 sq. ft. of extra showroom and store space, in addition to approx. 12,000 sq. ft . of car parking on the roof of the new building.
The test equipment and instrument section has been enlarged so that a larger selection of transmitting gear and receivers can be displayed.

CHANGE OF PHONE NO.

Communications aerial manufacturer Belling \& Lee (Australia) Pty. Ltd. have a new phone number in Melbourne. It is 729-0621 which may lee dialled direct within the metropolitan area.

CALCULATION SIMPLIFIED

FOR F, L AND C

A. T. CAMPBELL, G3PEQ

[For many people, formulae can be very off-putting. Those who revel in the purity of mathematics may raise an eyebrow as they read this articlebut it is common-sense, and should make things a lot easier for many others while, as our contributor shows, giving answers near-enough for all practical purposes.-Ed.]

$$
f=\frac{1}{2} \frac{1}{\pi \sqrt[2]{L C}}
$$

This equation, fundamental in radio, is often considered a nuisance to solve. If a large number of accurate solutions is required this is true, even if logarithms are used, although if less accuracy is acceptable the nomogram (abac) offers a quick and easy way of obtaining the answers. But for practical purposes, where absolute accuracy is not necessary, the equation can easily be solved in the head by the method which follows.

The expression π occurs in the denominator. If you are working with a g.d.o., the scale of which is not likely to be less than 5% in error, and are using 20% tolerance capacitors, then it is ridiculous to say $\pi=3.14159$: Call $\pi 3$ and the arithmetic is at once reduced, and any error resulting is likely to be less than the errors arising from coil-winding.

The equation then reduces to

$$
f=\frac{1}{6 \sqrt[2]{L C}}
$$

If in addition we are working in $\mu \mathrm{H}$., pF . and MHz . the equation becomes:

$$
f=\frac{1,000}{6 \sqrt[2]{L C}}
$$

and we are able from this to evolve the following simple rules for obtaining f :
(a) Multiply the values of the inductance and capacity together;
(b) Take the square root of the answer;
(c) Divide this into 1,000 ;
(d) Divide the result by 6 and the answer is the frequency in MHz., near enough.
Do all calculations mentally, approximating where convenient.

Example 1:

What is the frequency of a circuit in which L is $10 \mu \mathrm{H}$. and C is 100 pF .? Answer:

$$
\begin{aligned}
& \mathrm{LC}=10 \times 100=1,000 \\
& \because \mathrm{LC} \text { is about } 30 \\
& 1,000 \div 30 \text { is about } 30 \\
& \mathrm{f}=30 \div 6=5 \mathrm{MHz} .
\end{aligned}
$$

[^50] Merch. 1970.

Example 2:
L is $3.5 \mu \mathrm{H}$. and C is 27 pF .
Answer:

$$
\begin{aligned}
& \mathrm{LC}=3.5 \times 27=94 \text { (approx.) } \\
& \sqrt[2]{\mathrm{L} \mathrm{C}} \text { is about } 10 \\
& 1,000 \div 10=100 \\
& \mathrm{f}=100 \div 6 \text {, about } 17 \mathrm{MHz} .
\end{aligned}
$$

If you are having difficulty in extracting those square roots in your head, you can be shown in a minute how to do it. Meanwhile, the mathematical types, with table books at hand, might note that quite an accurate answer can be obtained as follows:
(a) Multiply the values of the inductance and capacitance together;
(b) Look up their square root;
(c) Look up the reciprocal of this;
(d) Multiply the reciprocal by 1,000;
(e) Divide by 6.

Because we assumed the value of π to be 3 , this result will be about 5% too high; if you correct for this, you will be very near indeed to the correct value of f.

Those Square Roots

Now to the mental calculation of square roots. In the first place, do not be afraid of continually approximating; as a rule, the errors caused by approximating will eventually nearly cancel out. In Example 1 we said $\sqrt[2]{1,000}$ is "about 30 ". Actually, it is 31.6 ; and we said $1,000 \div 30$ is "about 30 " whilst it is really 33.3 . The result we obtained, however, 5 MHz ., is exactly right!
First, the square roots of numbers up to 100. We all know the square of the first ten numbers. Just take the nearest

Inductance, Capacitance and Fr				Frequency
LC		LC	1	
8000 .. 1.8	MHz .	100	.. 15.9	MHz .
7000 .. 1.9	.'		.. 16.3	.
6000 .. 2.0	.	90	.. 16.8	"
5000 .. 2.2	-		.. 17.3	,
4000 .. 2.5	.		.. 17.8	.
3000 .. 3.0	-		.. 18.4	.
2000 .. 3.6 19.0	-
1000 .. 5.0 19.7	-
900 .. 5.3	.		.. 20.5	-
800 .. 5.6	-		.. 21.5	-
700 .. 6.2	-		.. 22.5	-
$600 . .6 .5$.		.. 23.7	-
$500 . .7 .1$	-		.. 25.1	..
400 .. 8.3	.		.. 26.9	-
300 .. 9.2	"		.. 29.1	.
200 .. 11.3 31.8	,

Table 1.

Amateur Bands f, L and			
\dagger	LC	f	C
1.8	7818	14	29
	.. 2067	21	57
	517		32

square and give its root as the required value. If you aim at greater accuracy than this-and it is sufficient-then you can obtain the squares of all num-bers-and-a-half by multiplying the number by the succeeding one and adding $\frac{1}{4}$:

$$
\begin{aligned}
& 1 \frac{1}{2}=(1 \times 2)+\ddagger=2 \downarrow \\
& 2 \frac{1}{2}=(2 \times 3)+\frac{1}{3}=6 \frac{1}{4} \\
& 3 \frac{1}{2}=(3 \times 4)+\frac{1}{2}=12 \frac{1}{4} \\
& \left.8 \frac{1}{2}^{2}=(8 \times 9)+\frac{1}{2}=72\right\}
\end{aligned}
$$

and so on.
When a number contains more ihan two figures, proceed as follows, using 43259 and 6573 as examples:
(a) Divide the number into pairs of figures from the right:-4-32-59; 65-73;
(b) Find the nearest square root of the last figure or figures on the left: $2 ; 8$;
(c) Add a zero for each pair of succeeding figures: 200; 80.
By the use of Table 1, even the small amount of calculation involved so far can be avoided-just multiply L and C together as previously and look up the required frequency in the table. The table can also be used in reverse. For example: What inductance is required to resonate with 100 pF . at 3.6 MHz .? From the table, LC for 3.6 MHz . is 2,000 , therefore $L=2,000 \div 100=$ $20 \mu \mathrm{H}$.

If you are interested only in the Amateur h.f. bands, then Table 2, for which the writer is indebted to G3SZW, will give you all you require.

A \& R-SOANAR S.A. OFFICE

A new branch office for the expanding A \& R-Soanar Electronics Group was opened at 470 Morphett St., Adelaide, on 1st July. Under the management of Mr. David Scott, who was formerly S.A. manager Plessey-Ducon, the new office includes warehouse facilities fur the full range of $A \& R$ electronic equipment and transformers in addition to the Soanar electronics components agency lines, Elna, Piher, Sato and I.T.'T. Mr. Scott will be available to customers for technical assistance, and may be contacted on 51-6981.

OBITUARY

ROBERT W. ROSE, VKEAQR
We regret that we have to record the passing of nother old-timer from the ranlis of Amateur Radio. in the person of R. W. IBobl Rose, VK2AQR. Whose death occurred suddenly on lith May last in hospital at Gosford.
Bob received his Ainateur ticket in Brisbsne in 1929, and. untll hs transferred to New South Wales in 1950, operated mainly in the lown of Longreach. firstly under the call of VK4RR and later as VK4RQ.

On arriving in New South Wales, he was given the call VK2AQR and operated from Warragamba, West Wallsend, and finally from Avoca Beach. During his finaliy irom Avoca Beach. During his 3.5 MHz . bands only, and was a foundation member of a well known net. "The Goon Show".
To Mrs. Mabs Rose and three sons (Barry. Trevor and Lindsay) we extend sincere sympathy on behalf of all members of the Amateur Radio fraternity.

Table 2.

Low-Cost Solid State Power Supply for Carphones and Pye Reporters

C. K. MAUDE,* VK3ZCK

The unit described is made from readily available cheap components, which many Amateurs will have in their spare part trays and those boxes of bits that have been saved as they might come in handy for something.

The power supply is a d.c./d.c. converter operating from 12 volts at a frequency of about 3 KHz ., and is powered by a pair of general purpose type power transistors. The prototype was tried with both NPN and PNP germanium and silicon transistors and all seemed to work satisfactorily. A prototype of this unit was built some five years ago by the writer and has only failed once when a dry joint came apart.

The advantage of this circuit is the wide range of component variations that can be used.

The main points to watch are:-

1. The ratio of primary to feedback turns be between 2.5 and 3.5:1.
2. The ratio of $R 1$ to $R 2$ be between 35 and 50:1.
3. The transistors should be similar but need not be matched pairs.
4. Use good quality urethane or nylon insulated wire in preference to the more common enamel.

FIG. 1. CIRCUIT DIAGRAM.
Typical values of $\begin{aligned} & R 1\end{aligned}$ and R^{20} (ohms)

Note.-When using NPN transistors. reverse the battery supply and 100 uF . capacitor.

COMPONENTS

1 pair of Ferrite U cores from an old t.v. e.h.t. transformer, making sure that the cross sectional area is not less than $1.5 \mathrm{sq} . \mathrm{cm}$.
1 pair of suitable pcwer transistors, e.g. OC26, OC28, OC35, NKT404, 2N301, 2N174, 2N3055, ctc.
1 heat sink of at lest 18 square inches, finned and blackened, or two smaller ones can be used if they are firmly affixed to the transceiver chassis.
2 ten-watt resistors, R1 between 1.5 and 50 ohms, and R2 between 40 and 560 ohms, see note 1 above.

[^51]Sufficient 16 s.w.g., 20 s.w.g. and 26 s.w.g. wire.

Before winding the transformer, establish the type of rectification used in the present power supply in-built in the unit, and wind the secondary so that the diodes and filtering can be used.

CONSTRUCTION

First remove the old windings from the Ferrite core by cutting through them with a hacksaw and peeling them off, then place the core on the edge of the work bench such that the joins are along the edge. Put one hand firmly on the half on the bench and with a brisk stroke hit the other half with the palm of your hand, this should break it clean through the join. Clean off any old resin that remains on the core, any that is on the mating ends should be carefully rubbed off using fine emery paper.

Next make a paper tube using three or four layers of thick brown paper that will be a loose fit on the ends of the core and of length that just fits across the open end when the core is assembled.

Now cut two dises of thick ($1 / 8^{\prime \prime}$) card one and a half inches diameter, and in the centre of each scribe a circle whose diameter is that of the core plus twice the thickness of the cardbjard discs, and cut this circle into eight segments, see Fig. 2.

Push one of these discs over each core and assemble with the paper tube between the core and the segments (see Fig. 3). Now wind four turns of thick brown paper over the bobbin, gluing continuously with a shellac cement. Allow to dry for half an hour and remove the cores and shellac from the whole bobbin and allow to dry ovei: night.

Drill two $1 / 8^{\prime \prime}$ holes in one side of the bobbin, the first near the centre, the other $1 / 4^{\prime \prime}$ away $1 / 8^{\prime \prime}$ up from the centre. Through the first hole poke a

FIG. 3. FORMER ASSEMBLY.

4" length of cambric sleeving and thread two ends of 16 s.w.g. through until about one and half inches protrude.

Wind on two 20 turns bifilar, this winding will extend across the bobbin and back, now poke the remaining ends through the second hole in the bobbin and slide a $4^{\prime \prime}$ length of sleeving over these wires as was done at the start. Bind this winding with the adhesive tape marketed for this purpose or you can use ordinary masking tape as used by spray painters. Do not use plastic insulation tape or cellotape as these melt when they get warm.

Drill another hole in the bobbin on the opposite side slightly above the primary winding and poke a length of sleeving through. Using the 26 s.w.g. wire, wind on sufficient turns for the secondary voltage using the table below.

| Type of
 Rectifer | D.C. Volts
 Required | No. of
 Turns | Volts
 per Turns |
| :--- | :---: | :---: | :---: | :---: |
| Voltage Doubler | 260 | 190 | 1.4 |
| Bridge | 200 | 290 | 0.7 |
| Full Wave | 150 | 2×300 | 0.5 |

Other d.c. voltages can be calculated from these figures to suit your needs.

After winding on the required number of turns, drill another hole in the bobbin and terminate the wire as before.

The feedback winding is wound last and it is suggested that a few extra turns be wound on and the excess be removed until oscillation ceases, then rewind with two turns more than the number at which oscillation ceased. The calculated number of turns for the feedback winding is 2×6, but start with 2×7. Terminate these windings as before, assemble the transformer and test by adjusting the feedback winding as described. When oscillation is satisfactory, bind the transformer with tape and re-assemble, using the brackets and screws used on the original.

The models built by the author have been for 20,25 and 30 watts and no sign of overheating or transistor damage has occurred.

Remember, when mounting the transistors, to use the proper mounting hardware including the insulating washers.

REFERENCES

Minjwatt Digest. Vol. 2. No. 1. Oct. 1962: Vol. 2. No. 2. Nov. 1962.

Mullard Outlook (reprint): Transistorised Inverters and D.C. Converters.
"CQ" April 1970: Simple D.C. Converters.

NEW CALL SIGNS

MARCH 1970

VKIEG-J. E. Gerber, 9/5 Northbourne Flats,

 VK1ZPC Turner. ${ }^{2601 .}$Creek. Trand Station: Honeysuckle Box 468. Manuka. 2603. VK2AIK-R. White. 2/4 Phillip St., Petersham, VK2AZY-B A. Taylor. 6 Uralba PI., Dundas, VK2BBL-F. Divorio. Station: 3 Bronte Pl., Winston Hills. 2153: Postal: P.O. Box VK2BDC-D. A. Clift. 152 Rusden Rd., Blax-VK2BFB-F. ${ }^{\text {land. }}{ }^{2774}$. Crum. $27 / 14$ Blues Pt. Rd., Mc-VK2BLZ-L. L. G. Meek, 47 Turner Rd., BerVK2BPH—P. 2081.
VK2BPH-P. Halpin. 19 Morton St., Wollstone-
 Rd.. Neutral Bay, 2089.
VK2ZIU-I.
Binnie.
36
Tallwood Ave., EastVK2ZJY ${ }^{\text {Wood. }}$ R Roberts, "North Lynn," Bullawa Creek. Narrabri, 2390.
VK2ZLQ-C. L. Teo, 34 Shaw St., Petersham, VK2ZMV-M. H. Adnams, Station: C/o. L. H. J. Johnston, 8M Peg: Sturt H'way,
Trentham Clifis: Postal: P.O. Box 246, Mildura, Vic., 3500.
VK2ZUO-W. G. Rayner, 110 Cardinal Ave., VKэнG-H. W. Gilbert. 1 Rosebe
VK3HG-H. W. Gilbert, 1 Roseberry St.. Hawthorn. 3122.
VK3JX-H. E. Michell. 3 Strahan St., Hamilton.
 VK3AYU-R. P. Vize, 11 Mossman Dr., Heidelberg. 3084 .
VK3bille, 36 Price St., Essendon.
3040 . J. W. VK3BDC

VK3BDJ-D. J. Bainbridge. Midland Motel. VK3BEG-E. W. Gibson, 56 Narracan Ave., vK3YCW-A. S. White, 195 Bambra Rd., Caul-VK3YCY-S. Routh. Brooks. 6 Edgar Crt., Ferntree VK4EU-D. M. West. 197 Kamerunga Rd., VK4FR-G. R. Flodine, "Clover Fields." Lahey's VK4KN Rd. Tamborine Mountains. 4270 . Cohen, Flat 2. 44 Alpha St., VK4KN-G. J. Cohen, Flat 2. 44 Aloha St.,
VK4ZQ-R. M. O'Malley, 24 Rachael St., Moor-VK4ZQ-R. M.O'Malley, 24 Rachael St., Moor-VK4ZIT-1. L. Tinney, 19 Fifth Ave., St. Lucla, VK4ZOO-J. A. Gardner, Sims Esplanade. Yor-VK5QJ-J. C. Hulse, C/o. Adelalde Bible In-VK5QK-K. Bartusek, 36 Wattlebury Rd., Lower VK5ZPR-P. RIt R. ${ }^{5082}$ Banks, 9 Sixth St., Leigh VK6GV-J. B. Wilcox, Flat 9. Alexander Cr VK8GV 31 Herdsman Pde., Wembley, 6014.
VKBHA-H. W. Wood, Station: Caversham; VKer Postal: P.O. Box 175, Midland. 6056.
VK6LO-L. Jessod. 17 Victoria St., South Perth,
VK6PK/T-P. C. Kloppenburg. 11 Brown St., VK6ZAI-P. J. Croft. Flat 201, 53 The Ssplan-VK6ZAS-G. South Perth. Ryan. 72 Clieveden St., North VK7CY-D. J. ${ }^{6006 .}$
ton. 7250 . 40 David St., LauncesVK7KG K. F. Gosling. 7 Barkers Crossing. VK7SR-S. L. Radford, Station: Pat's River. Flinders Island, 7255 : Postal: P.O. Box 82. Whitemark. Flinders Island. 7255.

VK7ZCH-C. H. HockInk. 20 Banawarra Rd., VK7ZFO-J. E. Andersen, Station: Georgetown, 7253 : Postal: P.O. Box 179 , Georgetown. 7253.
VK8AU-D. D. Tanner, Noble's Nob Mine. Ten-

CANCELLATIONS

VK1ZWP-W. B. Pywell. Not renewed. VK2BR-W. H. L. Brooke (Rev.). Deceased. VK2JJ-J. L. Jones. Transferred to Qld. VK2ABL W A. Easterlingerred Transferred to S.A. VK2BFI-J. Ginsberg. Not renewed. VK2ZDE-D. A. Clift. Now VK2BDC. VK2ZEQ-J. E. Clark. Not renewed.
VK2ZFJ-J. F. Kennedy. Not renewed. VK2ZPZ-W. Frost. Not renewed. VK2ZZI-D. W. Friend. Not renewed.
VK3JX-J. F. Sydow Deceased.
VK3AEM-H. E. Michell. Now VK3JX
VK3ANL-Morwell High School. Not renewed. VK3AYN-H.W. Gllbert. Now VK3HG.
VK3BBN-R P. VIze. Now VKSAYU. VK3ZJG/T-G. J. Merrill. Transferred to VKızSK-R. J. Wyllie. Now VK3BBZ.
Vk4IJ-J. A. Bowden. Transferred to N.S.W.
VK4KC-G. J. Griffiths. Transferred to N.S.W.
VK4YZ-W. H. M. Hoyle. Transferred to Vic.
VK4ZCW-C. W. Brooke. Transferred to N.S.W.
VK4ZRF-G. R. Flodine. Now VK4FR.
VK4ZRM-R. M. O'Malley. Now VK4ZQ.
VK4ZWC-W. E. G. Cockburn. Transferred to
VK5IC-D. H. Watkins. Transfetred to N.S.W.
VKSJT-J. Kilgarlff. Not renewed.
VK5JT-M - P . R. Parise. Not renewed
VKSZZAK-P. R. Parise. Not renewed.
VKSZZDD-K. Bartusek. Now VKSQK.
VK5ZFW-A. S White. Now VK3YCW.
VK6ZEA-L. Jessop. Now VK6LO.
VKGZGK/T-P. C. Klopdenburg. Now VK-VK6ZGN-J. B. Wilcox. Now VK6GV.
VKTDL-Deloraine High School Radio Club. Not renewed.
VK7ZCY-D. J. Bradley. Now VK7CY.
VKIZLR-S. L. Radford. Now VK7SR.
VK8AF-J. Sisson. Not renewed.
VK9HR-R. J. Hester. Transferred to S.A.
VK9KC-C. M. Hayes. Transferred to W.A.
VKOKD-K. E. Beman.
VKOMI-W. J. Grudfield
VKORM-R. McLean.

PREDICTION CHARTS FOR AUGUST 1970

IONDON SR

(20,

san francisco
(Prediction Charts by courtesy of lonospherlc Prediction Service)

JOMANEESBURG

MONTREAL SR.
${ }^{5551} 0^{00}, 02,04,06,08,10,12,14,16,18,20,27,24$

tokyo

MONTREAL LR.

wilxes

Sub-Editor: DON GRANILEY

P.O. Box 222. Penrith, N.S.W., 2750 (All times in GMT)

Again there has been a general tapering off from the good conditions we have been experiencing, and apart from the interest created by Gus, tinere has been litte of ound and September are 85 and 83 . the latest confirmation tember are 85 and 83 , the latest confirmation
to hand being of March with 101, including a mid-month lull.
As I mentioned. Gus Browning is creating most of the DX interest this month and much has been written and spoken over the alr
about his current jaunt. For the information about his current jaunt. For the information
of those chaps who have been chasing the of those chaps who have been chasing the
newies. here is the list of calls which he has newies. here is the list of calls which he has
and will have used: FHOVP will be Comoro. FROVP/J Juan de Nova. FROVP/E Europa, FROVP/BI Bassa de India, FROVP/G Glorlosa, FROVP/T from Tromelin. A series will be
used with the VQ9/A call, and they are $/ \mathbf{A} / \mathbf{A}$ used with the VQ9/A call, and they are /A/A
Aldabra. /F Farquhar, /D Desreches, VQ8CP/A Aldabra. /F Farquhar, /D Desreches, VQ8CP/A
Algalea. VQ9/A/C Chagos, ACOA/GR Geyser Reef, AC9/A/BR Blenhelm Reef.
Roy ZMIAAT/K has indicated that he will be returning to the mainland about the end accommodate all who need the Kermadecs accommodate all who need the
VKOLD is still active from Macquarie Is. In between his commercial commitments. Conditions to this locality are not rellable for modate any additions to the list on 14250 on modate any additio
Thursdays at 10002.

All contacts made with Barry ZMIBN/A from Snares will be acknowledged, and about another 200 QSLs will see this project completed.
Recently there has been some consternation
20 by the operation of a station signing on 20 by the operation of a station signing himself 3 L 2 A and giving a ZL as his QSL
manager. Now 1 am not sure whether the QTH manager. Now I am not sure whether the QTH
which he gives as Hudson Rock is some modern teenage dance. or an old-time tofiee. but it seems very unlikely that it is the location of a genuine DX station. Nothin
officially at the time of writing.
Galapagos Is. has become known to most of us as a wild life haven. due to the excellent us. as documentaries by H.R.H. Prince Phillip. t.v. documentaries by H.R.H. Prince Phate is however closer the fact that HC8GS is active from that location and has a sked on Tuesdays at midnight G.M.T. on $142 \cdot 20$ with K3RLY, and breakers are welcome.
SVKWTZL contacts are being catered for by SVZWT. TT8AF and TR8DG using 14265 Sun-
days from 0600. TT8AF asks for his QSLs to days from 0800. TT8AF asks for his QSLs to C/o. J. Fremont. Box 444, Fi. Lamy Chad. Whist the other two RO to W4SPX. Paul R.
Swanitz, 1722 Dorris Dr.. Orlando, Fla., 32801 .

Information to hand from Syd VK2SG in respect to the operation of Ken VK9KY. from that location as from 18th August. however cards for the operation will continue to be handled by Syd until all are answered. All cards whichered. howicver there has been a bittle delay with cards received via the Bureau, nnd cards which have been received with only and I.R.C. have been returned via the Bureau. one I.R.C. have been returned via the Bureau. thus these could be delayed somewhat. Trom date Ken has and countries astill outstanding. This is good going. because it must be reThis is good Roing. because it must be remer six weeks due to a burned out power transfor six weeks due to a burned out power trans-
former. I endorse Syd's remarks to the effect that Ken has given the boys a gond spin. considering he has had to do his normal work as well. nevertheless ${ }^{1}$ would like to add a
word of thanks to Syd for his handling of the word of thanks to Syd for his handling of the
QSL chores. This is no light task. and Syd QSL chores. This is no ight efask. And commended for his eforts. Further aperation from the location by VK9KY's relief is possible.
It has not been my policy to include long lists of stations worked or heard, however there are occasions when an outstanding log comes to hand. and often this comes from
S.w.l. Steve Ruediger, over in VK5. The following stations have been logged and recorded. the tape being on the recorder in the shack as I write these notes: ZFIGC. VPSNB, 8R1J.
8P6AZ. HR2WTA. LI2B. 7Q7LZ. CRTFR. CN8HL. MP4BHH. VP7NA. FB8YY. OJODX. CO-
2LM and PJ2CC. These are the pick of the crop. there ate many others. The 7Q7 and CR7 were on ten metres, others on 20 .

Two stations presently active from West Pakistan are AP2MR who has been working AP2KS is very active, and QSLs go to K6TWT.
Canary Is. is represented at the moment by EABGZ and EABHA. The former, a YL, is usually on 21159 or 14287 and her QTH is Christina Labin. Box 21, Icod. Tererife, whilst DLICF is the manager for EABHA QSOs after: 17th Feb., 1960.
Arch GCSAJE has returned to the States and asks that all outstanding QSLs go to his Rushton Rd.. Sth Lyon. Michigan, 48178, U.S.A.
The operation from Mongolia by UA9VH/JT1 still continues, usually on 14200 or thereabouts. and QSLs are requested by the usual address
for stations in that country-Box 639, Ulan for stations in that country-Box 639, Ulan
Bator. Mongolia. If you have diffculty with Bator. Mongolia. If you have difficulty with
your returns. try Box 88, Moscow, it works your return
guite often.
The operation from Market Reef, the latest addition to the DX list, has been completed with over 13,500 QSOs being held. As well as
the call sign OHODX, the call OHOAM/MM was the call sign OHODX, the call OHOAM/MM was calls go to OH2BH. Angervoite 8-B-17. Helsinki, Finland.
Jack C21JW due to leave Nauru on $25 t h$ June and asks that any outstanding QSLs be sent to his home address which is R. J. Wirth, 22 Berry St., Cronulla. N.S.W.. 2230. Welcome home Jack. and thanks for a very fine job.
CEOZK has been quite active over recent weeks, however despite comments that he is on Juan Fernandez Is., he is in actual fact QSLs to be sent to him at Box 3016, Valparaiso, Chile.

CR8 is represented mostly by Luis CR8AI and CR8A.J. the latter is on c.w. 14050 in the late evening local time, and his address for all QSLs is Horat
The call DXOPAR in operation during the period of 3rd July to 5th July is a special oderation by DUIPAR ops. during the anniversary of the Philippines Republic celebrations. Valid for PX hunters only.
Guadeloupe is represented at the moment by several stations, among them are FG7AC, operator Claude FGADC. QSL to BP411 Pointe-dePitre, Guadeloupe. FWI. FGTTG is also well to the fore on 10 metres, also on 40 using $\mathrm{c} . \mathrm{w}$.
most times. His name is Gerard and QSLs go to W5OB.
It is reported in the 23rd June issue of Geoff Watts DX News-sheet that the planned trip the end of the year
There should bee a station calling himself 1TISEZ/IU appearing from 6ith July to 6th Sept.. he is quite genuine and is operating from Ustica Is
W4VPD/KS4 was due for a one-week operation from Swan Is. from 1st July using 200 w . all bands, and the himself at home QTH. which is Enos L. Shere. Jnr., 8254 SW 37th Sit., Miami. Fla., 33i55, and enclose an I.R.C.
Tr8AAF is working from a list compiled by W4SPX. but to make life a little more hectic from that QTH. Gus expects to operate from YAiR September using the call
21010 and $14020 \mathrm{c} w$ the air on 4th June uilnc 21010 and $14020 \mathrm{c} . \mathrm{W}$. He is Roger G3SXW and has frequent skeds with his OSL managar
GSTXF. $1900 z$ is a gond time to look for him.
CRAAK is still quite frequently on the air snd has reported on 20 . 15 and 10 metres. working into Europe. His manager is CTiBH: the VS6 band is reported to have a starting date of 1st August.
JDIABH, Ogasawara Is. Iformerly Bobin Is.I on all bands and expects to be stationed at the Chichi-Jima weather station for a perlod n! Kne year
KA
from Minami Toroshima, formerly Marcus Is., should be active from July 2-8. with a group of operators headed by the KA9RC gang, They cannot operate on 40 or 80 bechuse in Loran interference. however they will more than make up with their activity on the other
three bands. Round the clock operation wil! be the order of the day and QSLs should go to WA8NZH with s.a.e. plus I.R.C. Donations towards the cost are not being soliclited and towards the cost are not being soll be accepted.
will not bers, there will be a jaunt
For the prefix hunter For the prefix hunters, there will be a jaunt
to the Central African area using an ORS to the Central African area using an OR5
prefix for 10 months. From the ORS QTH, thev hope to visit and operate from 5H3. 5 T5. 5ZA 9Q5. 9US and 9X5. ONSTO. Box 33 Brugge 8000. Belgium, is making the arrangements. From the Antarctic area Tom KC4AAD (manager KTYMG।, KC4USM and KC4USV tboth managed by K2BPP1 are the most active. The latter QSL manager is Dave Porter. Mounlainside Rd., Mendam, N.J., 07945, U.S.A.

Thor Heyerdahl continues across the Atlantic In his raft "RA 2 ". and has been making some contacts on the 20 metre band. I heard one of his ransmissions on the tape sent to me tionally good in the circumstances. No SSL tionally good in the circumstances. No QSL Information is to hand. but for the previous LA5KG Box 150 Slependen Norway with to LAJKG, Box LASKG is involved with this effort, the same arrangements probably still apply.
Three odd prefixes which escaped me earlier in the year were HO. used in Panama from Feb. 20 to March 14 to celebrate the XI Pan Amejor contests in Salvador: We4sun prenx for major contests in Salvador; WEASUN was a tions of the eclipse of the sun.

The following stations can be added to the I.S.W.L. list of calls eligible for inclusion in the "Monitor" award: K9WJU, G3HQU. WAEP2DA, FGRO, K2RAR, G3XZS. TF2BT, FGLT, OY3B and IIKRV.
A note to hand re ON6AF. He is managed by ON4TJ. who has been out of action for quite a period due to illness, but he is now okay and now able to catch up with the ON6AF suggested that you send a second QSL and he will be pleased to reply. This applies to
Amateur QSLs and S.w.1. reports alike.

VP5NB in the Turks and Calcos group has been very active recently and puts a very finc signal into this country. He has a QSL manager. WA5GFS. Box 482. Chickasha, Okla. 73018, U.S.A

QTH SECTION

CR8AI-C.P. 60, Dili. Portuguese Timor, via
FL8RC-Claude Ribault, Box 372. Djibouti, Fr Somaliland
HT1FP-ADto 82. Manngua, Nicaragua
KG6SY-Box 209L, Capitol Hill, Salpan, Mar-KL7GRF-Route 1, Box 142B, Ketchikan, Alaska, 89901.

ON4TJ-Georges Thys. 61 Breughellaan, De PY7A WD/PY0-Box 842, Recife. Pernambuco. SUIMA-Box 840, Cairo, Egypt, U.A.R
ZD5B-Box 255, M'babane, Swazlland, Africa. ZD5R-Box 59. M'babane. Swaziland, Africa. 5T5BG-BP. 538, Nouakchott. Mauretania, 9J2NC-Box 124, Lusaka, Zambia, Africa. 9K2BF-Box 1083. Kuwalt. Arabian Gulf.

Q8L MANAGERS
AC3PT-WIFLS
CR3KD-WA4PXP
FB8YY-F2MO
FB8YY-F8MS
GB2DX-G3JOC
GB2DX-G3JOC
HS4ABV-W5PJR
HS4ADJ-WA2VTL
HS5ABD-W6DQX
HS5ABD-W6DQX
KG6SM-W2CTN
KG6SM-W2CTM
KJ6BZ-W0EJP
OK5FIS-OK3BHU

The above by

AWARDS

Worked Gotland Award z1.-You need 21 llowed. Score is based cross band contacia or SL1 stations from 1st July, 1870. and scor ing table is 5 points for 80 metres. 4 poinis for 43.3 polnts for 20 . 15 and 10 . GCR $113 t$. plus one dolar ${ }^{\text {Manager. Box 461. S-62104, Visby 4. Swedzn. }}$
Rlihlmaki inn Award.-To gain this award. DX stations need only work seven OIS stationc during 1970. There is no fee and GCR list foes to Rlihimaen Kolmoset r.y.. Nuorisotalo, Murtokatu 3. Riihimaki.
be issued next year.

Q8L Manager of the Month.-This is nit al! award in the Reneral sense of the word. Scotts
QSL service WAsUHR. Scott Frelle, 1510 LynnQSL service. WASUHR. Scott Frelle. 1510 Lynn-
view. Houston. Texas. 77055. intend to pword view. Houston. Texas. 77055. Intend to Aw ard in the form of an engraved golden microphour on a walnut base to the top nwarded QSL manager of that month. He can be situaleत anywhere in the world. Send your nomination to Scott. Include the manager's name and call sign and your reason for nominating him.
That about winds it up for this month. i3 for now. de Don L2022

Overseas
 Magazine Review

Compiled by Syd Clark, VK3ASC

Abstract

"AUSTRALIAN E.E.B. May 1970- Complementary Symmetry Amplifiers. Part 1, N. O. Kallam. An analysis of the Fairchild $3 w$. simplified amplifier. R.T. Regulated Power Supply Desien. Part 4. A Nice Mi-Fi Sysiem, Part 2. A. Whittinghan, olplicrs are eftective selectivity improving devices whether they are used at i.f. or at r.f. R.f. operating devices have been increasing in popularity for some time as they add selectivity ahead of the first mixer ity whead of the first mixer. Review copy from the publishers of E.E.B., R.O. Box 177, Sandy Bay, Tas., 7005 .

"BREAK-IN"

May 1970
ZL3VIF, 145.0 MIIz., Chrlstehurch Branch V.H.F. Bcacon. 2L3RW. Describes the v.h.f. beacon installed at Christchurch. It is a valve job with an output of 20 watts.
A Ilelical Moblle Whip for All Bands. ZL3RW. $10,15,20,40$ and 80 meires. It does not change bands automatically.
Otago Branch Project. SIngle Sideband Ex-
citer. 0 MHz. Phasligg Type, ZLALV. A solid state design using components which can be expected to be obtainable in VK. R.C.A. IC's CA3020A, CA3028A and CA3051 are used.

May 1070

"CQ"

A No Compromisc, Five-Band, Two-Blement Qaad. W4DQU. Describes n two-element design using bamboo poles and equal electrical sDycing on all bands from two metres to 20 metres. The hub is made up of 44 pieces of softwood glued together with Weldwood glue. 75 chm twin lead is used to feed all five loops in parallel and tuning stubs are not used. Loops sre attached to poles by running them
through coppci wire eyes which are fixed to through coppe: wire eye the poles by whippings.
A 94 -Hour Clock for the Shack, K3AAY. Describes a method of dividing malns frequency by two and using a conventional clock with new markings on the face. The hour hand
takes 24 hours to rotate one full turn and the takes 24 hours to rotate one
Upgrading the Heathkit SB-10 Sideband Adapinterest you.
Anterest ${ }^{\text {No Modification" }} 6$ Metre Transmitier Converter. K2BLA. A method of modilying some of the older ipre-s.s.b.1 transmitters for a.m. use on v.h.f. is described.
a.mplit Frequency Operallon with the Heathelt IIW-100, WA3JYI. If you have an HW-100 and wish to operate split frequency, this is your meat. ${ }^{\text {CQ ". Reviews the Yacsu Musen FTDXinul }}$ Transcelver, W2AEF. These transceivers have not yet been seen on the Australlan market. They are basically FTDX400 with increased transmitter input and probably some other
minor mods. The reviewer seemed to like the minor mods. The re
unit he had for test. Il Antenna, WBGNV/4. A stacked folded dipole for six
Late Oscar Ners. W3ASK. Meters, K3STU,
Callbrate Your Own D.C. Meter Part 1. Describes a low cost system of accurately callbrating d.c. meters.
A High Current. Low Voltage. Triac Controlled Power Supply, W5MMI. 0-24 d.c. at 40 amps or $0-12 v$ at 80 amps. Control is on the primary.
Have You Mumhle-Itls, WB2OYF. We have "Strine". I think I'd need to be a Yank to understand this.
10 Metre Anomalons Propagation with Ans-tralls-Osear 5 , WA2QMC. While the majority of Australls Oscar 5 reception reports were of a relatively predictable nature, some of usual results. These "anomalies. produced wide new areas for speculation and investigation among Amatcur space enthusiasts. This article describes one tracking group's observations.

"MULLARD OUTLOOK"

Vol 13. March/April 1970

Mallard Vinkors to I.E.C. Standards.
Four New High-Q Varactor Diodes for use in X -band).
New SMW Gann Oselllator.

Highlights of Faraday Lecture-Sell-oat in Four Caplal Cities. 13,000 persons attended the lecture series which was delivered by Mr. E T. Emms, head of Mullard. Central Applications Laboratory, U.K. It went with n swing.
Digital Integrated Circuits. Bistable Ifipfopi stages.
$\underset{\text { Mullard }}{\text { Improved }}$ Lamp Dimmer Circilt. Astronomy.

"QST"

May 1970- Two Metre QRP Mountaln Topper. by W7HCV. A solld state transceiver for 144 . by Quad for Eighty Metres, K3JH. If you have a tower over 104 ft . high and some spare 70 ft . booms around. there is no reason why you should not duplicate this.

The IC-TT Generator, WIKLK Commercial integrated circuit kits are used in this easy 10 build two tone generator. Oscilloscope patterns obtained from the generator are included.
Some Tips on Solld state V.F.O. Design WICER. Here are a few practical suggestions on basic design. showing how to lessen harmonic output. improve stability and increase the r.m.s. output.
A Solld State Selectorold. WIICP. A transimilar cember 1966 " QST
A Light Welght 10 and 15 Metre Beam with Five Elements on Each Band, W5KTR. Staten to be better than a linear. If used with a linear, adds more dB
Let's Talk Trannistors, Part 7. Transistor blasing circults. R. E. Stoffels. The effect of blas voltage and power dissipation within the transistor on the stability of an amplifier is tiscussed.
Recent Equipment. Under this heading the following new items are reviewed: Communications Assoclates Inc. CF-8 FSK Converter Keyer., by K1PLP; and Heath IP-28 Resulated D.C. Supply, by w 1 KLK

An RC-Active Audio Filter for C.w., WizOI Here is the rundown on RC-active filter design W7ZOI gives the basic design Information for this type of audio filter and provides pritctical
data for building a highly selective c.w. Alter.

"RADIO COMMUNICATION"

A Droitwich-Locked Frcquency Riandard. by GM3TFY. Droitwich, operating on 200 KHz . supplies a signal which is eminently sultable for this purpose. if you live in the U.K. or in parts of Eurode where the station is ausible. Living with silicon. GSPDM. A survey of linear integrated circuits and their applications. Technical Topics, G3VA. Home-bult recelvers. SIC electronic voltmeter, positive and negative supply, solid state regulated supply aerialte cupreme u.h.f. array. triband ver and h.f. facsimile are the subjects discussed by this author.

May 1970-

Direct Consersion Recelver for is $\mathbf{M H z}$. C. F. Dorey. BRSi6458. There has been con siderable interest generated overseas in direct conversion or homodyne reccivers which convert directly from the band in use to audio. Sensitivity can be made as good as a super-
het without major complications. Dirent conhet without major complications. Dirent con-
version receivers suffer from two major dlsversion receivers suffer from two major dis-
advantages and they are lack of selectivlty and advantages and they are lack of selectivity and
the audio image. Desplte these. they are quite useable for reception of s.s.b. signals
Put a Tranalstor in Your Cathode, G3SBA If you wish to modify a low-band taxiphonc for 144 MHz . operation an extra starc may be necessary in the multiplier chain. If this is so. use a transistor oscillator and obtain power from an amplifier tube cathode.
Transistorising D.C. to D.C. Conzerters, by GM8CFL and GM3UDL. The nuthors describe means of modifying those vibrator circuits so that transistors can be uscd.
The F.M., Sysiem, VK4ZFD. Reprint from December "A.R."
Technical Topics. G3VA. Pat Hawiker considers that the introduction of linenr integrated circuits has again put recelver design and collAmateurs. Other subjects covered. SIC audin filters, SIC a.v.c., etc.

R.C.A. "HAM TIPS"

December 1909
A Magnetic-Tape Keying syatem for Code Recording and Transmission, W2YM. With this gadget you can easily record Morse Code on magnetic tape and later use it elther at recorded specd or speeded up or slowed down to key a transmitter or for code practice.

January 1970-
Ham-Band Charts
Complete listing of F.C.C. Two) K3QAX.
allocntions and authorined emisslons from 3.5 to 450 MHz . Should be of particular interes to the Dxer who should check local regs before practicing what is preached.

"SHORT WAVE MAGAZINE"

May $1!9 t 0-\quad$ Transcelver for Two Metres. G3ZCZ Transistorised low power $t x / r x$ for portable cperation.
simple S.w.R. Bricige. G3KHC. A design for acrial matching.
Adjasting for Resonance. The practical approach. A method of adjusting a G5RV io tune to the right portion of each band is described.
Construction of on Outside Shack, G3LXD. $6 \times 8 \times 7$ ft. high or twice this size. Inex
pensive and cheap to heat during the winter.
N.B.F.M. with tee Hw-ro. G3NBU. Modification to avoid t.v.i.

'V.H.F. COMMUNICATOR"

May 1!3f:-
A S.S.B. Transceiver with Silicon Translstor Complement, Part 2. The g MHz. Transceiver LOHA.
Stable Reierence Voltages. DKIPN If you use varactor tuning you will need a stable low current source. Also used in regulated power supplies.
A Universal V.h.f.-U.M.F. Transmitter fir A.M. and F.M. DL3WR. 1.7 w . out of transistors at 145 Mi Hz . 1 w . at 432 and 0.5 w . at 1296. Varactor multiplicrs are used above 145 MHz
Fleld Effect Translistors in the 28/14s MHz Transvericr, DJOZZ. P.D. FET circuit allows better performance with lower intermodulation products.
D Digital Discriminator Acessory for P.mp.
Demodulation, DJ4BG. Something new for the Demorulation, DJ4BG. Something new for the v.h.f'er to try.

SImple Compact P.A. Stages for Two Metres, DJ4RX. Part 2. A p.a. stage with t.elical inner conductor.
Cheap Varactor Dlodes for the $\mathbf{7 n} \mathrm{cm}$. Transmiltier using an ECBlill Tabe, DKIPN. Cheap tuning diodes can be used as varactor multi
plicrs at this frequency if you are choosey
 S.S.B. Converter With Interrated is Circaits,
DJ9ZR 005, DJ2VN. Even the best is capable of some improvemenis.
Review copy of "V.H.F. Communications" from Paul B. Jackson. 37 Minkara Rd.. Bayview N.S.W., 2104.

"73"

May ${ }^{\cdot 1070}$. ${ }^{\text {Com }}$
'73" Comments on F.C.C's Proposed Repeater Rules, Starf. Pasishes hs proposed could be What Kic.
What W'Ill Become of C.W.? WSTOM. What became of the passenger pigeon?
F.M.-A.M. Transmitter-Recelver Allgner, by
W3JKL. Two transistors, any band W3JKL. Two transistors, any band h.i. or V.h.f. Simple, useful.
i/8 wavelength Verticals, WAONGV. Twice as sood as a quarter wave.
The Intelligent Use of Trio Metres F.M. KIZJH It is possible.
Plus 10 dB., W2OLU. The October ' 68 article was better illusirated.
A Ram Style Burglar Alarm for the Car, K2JLD. First luke two sticks of dynamite. Power Supplles from Surplus Components, WB6BIH. Cheapskates power supply manual.
R.P., Rlviera Stsle, K9BDJ. Quieting Buick's uper nolse generatur
Kcep Com Cool In KPO Cans, G3KPO. Cheader than blowing your cool.
Towards the Idcal Solid State IF., KICLI Part 2-filter, converter. a.v.c. State of the art for v.h.f. Electronics, W9KXJ. Cold solde Epoxies for Electronics,
Joints become respectable at last. conducting Epoxy that can carry current.I
FET Pre-Amplliners for V.H.F. Operation.
WA4WDK. 20 dB . gain equals 100 times power.
Postage Stainp Transmitter for Slx, KiCLL Shades of Dick Tracy
Getting Your Bxtra Class Lieence, Part 16, Staff. R.f. power amps.
The ${ }^{2 \pi}$-Mininute Moblle Nolse Limiter. W7SOH If you build it right, it may last even longer mergency. CD or SDS use.
A Mobile C.W. Transmliter. W6BLZ. Gives a driver something to do with his two free hands.
An F.M. "Best Roy," WA7EMM. You have I.m. editor and f.m. articles.

Sclence Fairs and Sclence Edacatlon
By the sclence editor of Radio Today
By the science editor of Radio Today.
Try Bigger Knobs for Better Operating Per-
formance. WB2ICV Tiny knobs cramp your formance. WB2ICV. Tiny knobs cramp your
style .. and fingers. style . . . and fingers.
Note.-Remarks are " 73 's"

VHF
Sub-Editor: ERIC JAMIESON, VKSLP Forreston, South Australia, 5233.
Closing date for copy 30th of month.

AMATECR BAND BEACONS

VK4	144.390	VK4VV, 107m, W. of Brisbane.
VK5	53.000	VK5VF, Mount Lofty.
	144.800	VK5VF, Mount Lofty.
VK6	52.006	VK6VF, Tuart Hill.
	52.900	VK6TS. Carnarvon.
	144.500	VK6VE, Mount Barker.
	145.000	VK6VF, Tuart Hill.
	435.000	VK6VF Ion by arrangement).
VK7	144.900	VK7VF, Devonport.
ZL3	145.000	ZL3VHF, Chrlstchurch.
JA	51.995	JA1IGY, Japan.
W	50.091	WB6KAP, U.S.A.

Further to the stop press item in the last Issue re the contact between Doug. VK8KK and Geoff. VS6DA in Hong Kons on 2nd June, 1970. at 2145 E.S.T. via transequatorial scatter. VS6DA used an FTV650 to a 5 -element beam. both stations were on s.s.b. with exchanged slanals of 5×9. Doug. operated on 52.110 MHz and Geoff. on 50.110 , split frequency working being necessary as the VS6 allocation is from 50.500 to 51.500 MHz . The stop press item mentioned this may well have been the first VK to VS6 contact, but investigation has proved this not to be so, and I am indebted VS6CJ was heard by him on 30th March. 1958 and was subsequently worked by VK6HK early in April. Nevertheless, it's a contact all of us would like to make and Doug. will be the envy of many. That now brings to 14 countries Doug. has worked on 6 metres, a very outstanding effort indeed.

While still in the north. I was pleased to receive a letter from David VK8AU in Tennant Creek. He reports his location is Nobles Noio. which is about 120 feet above the surrounding countryside. 1,100 feet a.s.l. He is using on 6 metres an FTV650 transverter to HA14 Heathkit Linear, giving about 200 watts p.e.p. An FET converter, and the antenna is a 27 foot lons 9 element Swan ype Yagi, and is able io hear Doug. VKBKK's signal from Darwin occasionally on c.w. land vice-versar using forward scatter techniques, the path distance is 540 miles. On 2 metres, David has an MR3A car-phone and crystals for Channels A. B and He has a FET converter and is currantly building two stacked 14 element 18 foot long Swan type Yagis, vertically polarised. Contact should be possible with mobile stations up to 70 miles to the south and about 30 miles to 70 miles to the south and about 30 miles to the east and north, and would welcome somen anyone travelling advance information from anyone thaveling

David's letter was written about the middie way the JA signals had largely disappeared way the JA signals had largely disappeared for the time being or were very weak. Some t.v. video/sound is ocasionally heard on 50 MHz. The June holiday week-end produced VK2 and VK5 contacts, w
And on the subject of the June hollday week-end, mention must be made of the bith Annual South East Radio Group Convention held at Mi. Gambier, which as usual was a very happy period for those who made the journey, and were treated to real country-styie operating with their own call sign, VK5SR About 70 Amateurs attended plus many wivos, harmonics and girl-friends. Prizes for the large prosramme were very evenly distributed. 10 programme were very evenily distributed, went to VK3 and 9 to VK5. One new even was for the best piece of home-constructed gear, and some excellent equipment was displayed. The prize went to VK3ZKB for his excellent 1296 Mhz. Rear. The Group were very fortunate in having friendly weather as side events to be conducted without hindrance.

A point of interest was that early In the afternoon of the Sunday, a brief opening occurred to VK2 when VK2ZHE on $52.525 \mathrm{f} . \mathrm{m}$. net was worked by Tony VK5ZDY using his moblle equipment and quarter wave whip. Signals were not good, but considering his car was sheltering behind a building and the opening was only brief, this was not unexpected. The VK2 no doubt got a shock to find there were others queuing up to work him. but conditions did not allow more than about four contacts to be made
The Sundiay evening highlight of course was the tremendous country-style spread given by
the ladies, it's worth going just for that! The chairman of the S.E.R.G.. Dale VK5ZER, pro chairman of the S.E.R.G.. Dale VK5ZER, pro posed attendance. A week-end to be recommended
From Peter VK2ZPC comes a very up to date statistical return for the VK2 V.h.f./U.h.f. Sum mer Field Day, run concurrently with the John Moyle National Field Day on 7th and 8th Feb. This is an excellently presented return and one hopes the just rewards for such an effort will be forthcoming. Far too lengthy for inclusion here, but a few points therefrom AXIACA/P, the club station of the Canberra Radio Soclety, was top scorer with 11,075 pts. 10,297 of which were scored on 144 MHz ., a very fine effort indeed, and Indicates much forward planning. Peter VK2ZKP/P won the 6-hour division with 4,447 pts., which is excellent work, too. I also note there was an overall increase of 39 per cent. in participation compared with the usual mid-winter event for sure the weather would not be so bleak on some of those mountains-but come to VK5 for the searing temperatures for F.D. operation!1. I note also with great interest the use of $10^{\circ} \mathbf{G H z}$. successfully by VK2ZNC/P who was running 25 mW . of r.f. to an 8 inch parabola, 40 feet high! Good work, but the report does not say who the other station was in the two-way contact. Peter VK2ZKP/P, near Orange, reported hearing the m.c.w. beacon Vrange, reported hearing the m.c.W. V , eacon. VK4VV, for about two hours on

I have been looking over a quite nice Newsletter prepared by the Geelong Amateur Rad!o and T.V. Club, and which I "stole" whilst at the S.E.R.G. Convention. Although principally
forgive me for mentioning his letter here. And while on the subject of letters, various Publicity Officers have been appointed by different rganisations in other States-or so I have been told In some of the earlier correspondence. but nothing for two months from any of them: Il leave it at that?
shall have to leave the notes at this period for this month. The 'flu has really caught up with me at last for over a week now, and with a splitting headache I cannot stand the noise of the typewriter much longer. Please forgive me, we shall have "Meet the Other Man" again next month, the present copy will hold over till then.
Closing with the thought for the month: "Sheepish: The way one feels with the wool pulc VKSLP The Voice in the Hills. Erlc VKSLP. The Voice in the Hills.

VK5 SUNDAY BROADCASTS

The Sunday morning relay of AX5WI, preriously on a frequency of 7146 KHz ., is now relayed on a frequency of 7125 KHz .
The broadcast which originates on a frequency of 1815 KHz . at 0900 hours C.S.T. each unday morning, is also relayed on the following frequencies and bands:-

3625 KHz .-Adelaide
14195 KHz .-Adelalde
52 MHz . Band-Adelaide.
144 MHz . Band-Adelaide.
144 MHz . Band-Mt. Gambier.
144 MHz . Band-Darwin

Bob Lear, VK2ASZ (see "Meet the Other Man" in last month's V.h.f. Notes)
of local interest. I did manage to twist someone's arm to have my name put on their mail ing list for future issues. Apparently very keen. they meet each week on a Friday night in the clubrooms, Storrer St., East Geelong. I note a paragraph of interest that a new radio club has been formed in Mildura with Noel club has been formed in Mildura with Noe VK3AGF as the President. 1 am sure all rearers of Amateur in their new venture.

Roger VK2ZRH sends a short note which certainly shows how well favoured the eastern States were for 6 metre DX during the March to May period. He writes that F2 was observes every week-end during April, peaking 1300 to 1400 E.S.T., and on no less than 14 occasions elther the t.v. sound on 49.750 MHz . from the north or JA signals were heard or worked So maybe VKs was just lucky to have one good opening to JA anyway. He reports ZL t.v. very scarce but did peak to S 9 on 16 th May. Thank you for the letter Roger, it arrived just too late for last month.

I note with interest that Keith VK5ZKG is to have a period in the Antarctic area for 12 months. No or any details of possible transmitting.
ime, or any details of possible transmitting.
I have recelved many letters since starting this page, glving me encouragement, but I think the most encouraging has come from Frank VK3OF, who formerly wrote the page ing the diffulties besetting anyone who steps into these ventures. Frank has really made it worthwhile for me, and I am sure he will

VK3 ANNUAL V.H.F. CONVENTION

V.H.F. ENTHUSIASTS OF ALL STATES ARE CORDIALLY INVITED TO ATTEND THIS CONVENTION WHICH WILL BE HELD IN

MELBOURNE

OVER THE WEEK-END OF

10th \& 11th OCTOBER, '70

Programme includes lectures by prominent workers in v.h.f. and microwave, u.h.f. equipment demonstrations and competitions
of interest to everybody.
For details send s.a.s.e. to-
V.H.F. GROUP

VICTORIAN DIV., W.I.A.
EAST MELBOURNE, VIC., 3002.
Inexpensive lamily accommodation can be

SILENT KEY

It is with deep regret that we record the passing of -

VK2AQR-Robert W. Rose.

COOK BI-CENTENARY AWARD

The following additional stations have quallfied for the Award:-

Cert No.	Call	Cert. No.	Call	Cert. No.	Call
371	A X2ZA	403	JAIBIN	435	WIEJE
372	G3XQC	404	W3HNK	438	VEIJX
373	AXSWW	405	ZMIAWF	437	WSOVU
274	W A6ESB	406	F2MO	438	KIRAW
375	ZS5JM	407	WA5LMG	438	PAOMOD
378	AX4QV	408	W9ZTD	440	WB6OYJ
377	JHIBAY	409	W7ULC	441	AX4YB
578	A X9KA	410	SMOCCE	442	G3WNT
379	VU2VAE	411	ZE1BP	443	KaVIR
380	WAONTC	412	AX2BCL	444	AX2BGJ
381	AX8JL	413	ZLIAUA	445	G3LDI
E82	W1JFG	414	AX2BTM	446	G3MPN
383	WAIKYW	415	118GJ	447	K4IEP
384	AX6AI	416	W6YRA	448	W5HAK
385	WA9EAQ	417	WIAIQ	449	G3VQA
386	AX2ADN	418	VE7WJ	450	AX3RV
387	VE6APU	419	WA5ZGI	451	LU8DJX
388	VE3EVU	420	K7RDH	452	WAOUAV
389	W8YGR	421	G3JMB	453	WAOCPX
390	VE3BMB	422	ZM1AOV	454	W5PW
391	PZIDF	423	VEIIE	455	W4EJM
392	WB2QVP	424	WB2MOI	458	HTIHSM
583	G5AOP	425	AX3UV	457	ZM1ACG
594	W8SET	428	G3J2T	458	G5ZA
395	AX3BAF	427	AX3BEB	459	DJ5FS
± 96	AXSCT	428	W9DE	460	K2PXX
397	OKSEJE	429	W7YKN	461	YV7AV
398	VESEWQ	430	ZL2CH	462	G3CSE
399	WA3HDU/Ms	431	AX2AXK	463	A $\times 2$ AEB
400	GM3VAR	432	GC2FMV	464	AX2AHR
401	W2CTL	433	WA8SAM	465	ZS6BEP
402	JA3DGC	434	G3SGH	468	G3UXH

Wireless Institute of Australia Victorian Division

 A.O.C.P. CLASScommences
MONDAY, 7th SEPT., 1970
Theory is held on Tuesday evenings, and Morse and Regulations on Thursday evenings, 8 to 10 p.m.

Persons desirous of being enrolled should communicate with Secretary. W.IA., Victorian Division, P.O. Box 36. East Melbourne, Vic., 3002. (Phone 41-3535, 10 a.m. to 3 p.m.)

V.K. ELECTRONICS

63 HAROLD ST., DIANELLA, W.A., 6062
Service to Transceivers, Recelvers, Transmitters, Antennae, etc.

Phone 76-2319

REPAIRS TO RECEIVERS, TRANSMITTERS

Constructing and testing: xtal conv.,
any frequency: O5-ers, R9-ers, and transistorlsed equipment.
ECCLESTON ELECTRONICS
146a Cotham Rd., Kew, Vic. Ph. $80-3777$

2nd WORLD R.T.T.Y. CHAMPIONSHIP

The object of this Award is as follows:-

1. To promote greater interest for the r.t.t.y'er 2. To increase the competitve spirit durin . The course of the contests held in one during . To make ovailabe an Award to the Radio 3. To make who has anmordito his radio to operate ritit.y. during a perlod of one year.

At the present time, the contests which count towards this Award are as follows:-

1970 B.A.R.T.G. Spring R.t.t.y. Contest.
1970 D.A.R.C. R.t.t.y. W.A.E. Contest
10th World-Wide R.t.t.y. DX Sweepstakes.
1970 Alex Volta R.t.i.y. Contest.
1971 Glant R.t.t.y. Flash Contest.
The committees of B.A.R.T.G.. the Alex Volta and the Glant R.t.t.y. Flash Contest wish to thank the committees of the D.A.R.C. and C.A.R.T.G. Societies for their pirmiasion to make use of their own contesi scores in arriving at the final scoring for the "World Champion of R.i.t.y.: It is hoped that other Sociejoin in this idea to increase interest in the R.i.t.y. mode for Radio Amateurs.

In order to arrive at the final score and to decide the winner, the following points systein will be used for each contest: 30 points to the winner, 25 points for 2nd place, 22 points for 3rd place, 20 points for th place. 18 points for sth place. 17 points for 6 th place, 16 points
or 7th place . . . 1 point for 22nd place and all other entranits will be credited with one point.
for scores (out of a possible five) will be four scores lout of a
used for each operator.
In order to take part in this Award, it is not necessary for entrants to send in a claim as the entries of all competitors will automatically be included.
The 1970 Championship will start with the 1970 B.A.R.T.G. Contest and finish with the 1971 Glant Flash Contest.

The 1870 Werld Champlan of R.t.i.y. will ecelve a plaque and prizes will be awarded or the leading positions in the final score The Italian Magazine "CQ Elettronica" will make avallable the Awards for each year.
It will be the responsibility of the British Amateur Radio Teleprinter Group to nominate the uirner for the year 1810 and this Soclety will notify the "CQ Eletironica" Magazine of the results in order that the Awards can be made.

1970 B.A.R.T.G. CONTEST RESULTS

Only two Australian stations are listed in the esults of this contest which were issued on loth June. First placing went to IIKG. second to ON4CK. third to SM4CMG, and lourth to VK2FZ. The only other Australian station listed is AX3DM who finished in 41 st position.
VK2FZ had 146 contacts on five bands, worked 25 countries for a score of 135.072. whilst AX3DM had 25 contacts on two bands, worked 14 countries for a score of 18,758.

HAMADS

Minimum 81 for forty words. Extra words, 3 cents each.
HAMADS WILL NOT BE PUBLISHED UNLESS ACCOMPANIED BY REMITTANCE.
Advertisements under this heading will be accepted only from Amateurs and S.w.I's. The Publishera reserve the right to reject any advertising which. In thair opinion, is of a commercial nature. Copy must be recelved at P.O. 38 , East Melboume.
Vic., 3002 , by 5 th of the month and remitrance muat accompany the advertisement.

COLLINS S Lline: 32S-1. 75S2, 31284 control and wattmater. SM3 mic. and a.c. power aupply: par. fact. $\$ 1150$. Spectrum Analysar Panadaptor made by Panoramic Radio. plus or minus 100 KHz . scan but variable; high resolution with log llnear or exp. display. accepts 455 KHz . Input. $\$ 300$ MA10 2 metre f.m. tu.rx. 2 channels with 8146 final. a.c. power and xtals. $\$ 100$. Pago Printar Kleinschmidt ITAA/TG. current model. 10 hours use, with apare power supply. S350. Creed Typing Reperforator and Tape Dlatributor. \$160. Teletype Model 14 Tape Distributor. sync. motor with spare governed motor, $\$ 80$. Hy-Gain TH4 Triband. SHO. Components for linear comprising two only 4/250A with sockets. band switch. power and III. transformer with 240 uF. 450 volt electros., see A.A.A.L. H'book 1968. pages $200-204, \$ 120$. Profer offer for complete station but Individual items sold if persons submit firm offers for all above. Write only. All letters answered. P.O. Box 98 . Eltham. Vic.. 3054.
FOR SALE: AM $\mathrm{TX}_{\mathrm{X}} \mathbf{7 5}$ watts, relays, etc., 809 final. 807 p.p. AB2 mod., all stages sep. metered. twin mike input. 10 meg. FInal 813. p.s. 750×750.866 metored, 3 months use. VFO, 14 meg. very stable. sep. p.s. $387 \times$ Mir., original. valves: 1007H. coliect. many components free with above. VK. 2AML. G. J. Boyd. 139 Bruce St.. Brighton Le Sands. N.S.W., 2216. Phone 59.6636.

FOA 8ALE: Antiference 50 foot self supporting steel Tower, S50. Yaesu FVSO VFO, S27. Yaesu Type F s.e.b. Generator, E20. Both new. S. Day. 35 Moun .. Clon Waverley, Vic.. 3iso. Phone
FOR 8ALE: At only a fraction of coat, a partially All matal work protosslonally complated. spill unior All matan work protessionally fliter: partially wajed 35 on Now Galaxy 6.pole 9 Nartialy wired, carrier xtals: much less than Imported price. S45. Carrier xtals: much less than imported price. 45.
Imported Astatic nolse-cancalling Ceramic Mic. In p.t.t. case with expanding cord. new In carton. 815 . 2 matre a.m. "Communicator" Transcelvar with s.c. p.s.u.. mic., xtal on 144.45 MHz ., $\mathcal{S O}$ o.n.o.
 Wavarley. Vic., 3150. Phone 232.9492.

FOR SALE: Drake RAB Recalver, new in carton with handbook and original accessorias. SAS0 or near offer. VK2ABW. E. Baker, 5 Boyce St., Ryde N.S.W., 2112. Phone Sydney 88-1101.

FOR SALE: Gonset 144 MHz . SSB Transceiver with clip-on 110 volt a.c. supply and matching PTT microphone in as.new condition with instruction book. S180. Ian McCosker, P.O. Box 299, Moree, N.S.W., 2400. Phone Maree 522060

FOR 8ALE: Lafayatte Modal HA500 Recalvar with nanual, near new. \$175. Geloso Tranamitter. G222. TR. S100. Lafayatte Transistor Analyzar. KT223 20. Multimeter. Modal 200H, \$10. Kyorlstu SWR Meter, Model K.109, 820. Sansel Miniatura Tran sistoriaed Tast Osclilator. Model TO.3A. \$12. Box assorted Valvas and Valve Taster. S10. Muhleisen,
9 Fitmatrick St.. Waroona, W.A.

FOR SALE: Sanyo Recsiver, Model 15 H .860 , solld state, as now. in certon. FM/AM, seven bands: $50-350 \mathrm{KHz} . . \quad 520-1605 \mathrm{KHz}$., 2.3-5.1 MHz .. 5.95 .7 .3 MHz., $9.5-12.0$ MHz., $15.1 \cdot 17.9$ MHz., $87-108$ MHz.
Cost 8100 , Sell 575 . Phone $467-2131$ (Melb., Vic.).

FOR 8ALE: Star SR600 Receiver In mint condition, with Inatruction manual, triple converalon with cryatal callbrator. S150 or reasonable offer. Phone 5.6642. VK3FU, 10 laaballa St.. Moorabbln. VIc.. 3189.

SELL: Five-band Machanical Filter SSB Transmitter. custom bullt. perfect condition: see it In operation. antenna only required: 90 watts PEP. USB, LSB. ALC. VOX, S150. Phasing rig. pair 1்25s, 20 and 80 metres. asally modified for is metres, s50. no power supply. Circuits and data provided both units. Many new high quality components, no reasonable offor refused. Send s.a.e. for Ilst. J. Jonasson. VK3ND, 2 Roberts Ave., Castlemalne. Vic., 3450. Telephone 72-1543.

WANTED: All-band Verical, praferably with 80 mx : will buy or exchange for Chore Horae 12 volt 300 watt Petrol Electric Charging Sat. VK5ZE. 20 Blen-

WANTED: Frequency Meter BC221 serles. Prefcr a.c. Dower supply and modulate facility. Must be accurate and In good condition. C. Relalnger. phone 546-6367, work 654-4300.

WANTED: One of the following $1 / 1 \mathrm{kw}$. O.G. Spark Tranamitters: Marconl types 241C. 341, 369. 558 . Tranamitiors: Marconi types 24iC. 341, 368. 558 . 355. 355F: Radlo Communicatlon Co. types PS17.
T20. T24. T22. T29. or similar small home-brew equipment. Also quenched plate gap dischargers: high voltage mica condensers such as Admiraliy high voliage mica condensers such as Admiralty
pattern 5001 with rating 0.0044 uF. 20.000 volt test. R. F. Flsher, VK3BAO. 241 Royal Pde.. Parkulle. Rictorla, 3052.

WANTED 10 sELL: Tower. 75 foot. self supporing. riangular. disassambled into four sactlons, ready or Installation. Sell S45 or nearest offer. WII exchange for 35 foot guyed lattice t.v. tower.
Phone 56.5925 Melbourne area. VK3ZKT.

Automatic Aerial Rotator

NEW ...UNRIVALLED AERIAL ROTATING SYSTEM!

Immediate Delivery from Stock

Complete with direction control unit - fully synchronised balanced bridge circuit.

- Rugged-water tight.
- Hollow shaft, $11 / 2^{\prime \prime}$ diam.
- Loading: 112 lbs. (max.)
- Rotation angle: 360 deg.
- Permanently lubricated.
- Speed: 1 r.p.m.
- Magnetic disc brake.
- 240v. AC (60w.); drive 42v.

Sole Australian Agents:

Victoria:
608 COLLINS ST., MELBOURNE,
3000.

Phone 61-2464
Now South Wales:
64 ALFRED ST., MILSONS POINT,
2061.

Phone 929-8066
Western Australla:
34 WOLYA WAY, BALGA, PERTH,

6061.

Phone 49.4919
Queensland:
L. E. BOUGHEN \& CO.,

30 GRIMES ST., AUCHENFLOWER, 4066.

Phone 7-4097

K.W. ELECTRONICS KW2000B TRANSEEIVER

COVERS 10 TO 160 METRES
\star Six-band operation.
\star Lift-up inspection lid
\star Two-speed V.F.D. tuning.
\star Mechanical Filter provides passband for SSB.
\star No external antenna switching required.

* Independent transmit and receive frequencies or true transceive operation.
$\star 180$ Watts P.E.P.
\star Matching AC power supply with built-in speaker.
* Side Tone Monitor for CW.
* Crystal controlled Receiver first mixer.
* Output Impedance adjustable.
* Easy to install in a vehicle for mobile operation.
\star Lightweight, attractive, robust and efficient.

Write for Technical Leaflet
sole Asstatalan Agen: SIDEBAND RADIO
73 COLE STREET, ELWOOD, VIC., 3184
Phone 96-1877

Only $\$ 2.35$ for a subscription to-

"BREAK-IN"
OFFICIAL JOURNAL OF N.Z.A.R.T.

Send a cheque to theFederal Subscription Manager, W.I.A., P.O. Box 67, East Melbourne, Vic., 3002

BRIGHT STAR CRYSTALS

FOR ACCURACY, STABILITY, ACTIVITY AND OUTPUT

SPECIAL OFFER-

STANDARD AMATEUR CRYSTALS
STYLE HC6U HOLDER. FREQUENCY RANGE 6 TO 15 MHz .

$$
\begin{array}{ll}
0.01 \% & S 4.25 \\
0.005 \% & \$ 5.50
\end{array}
$$

Prices include Sales Tax and Postage

COMMERCIAL CRYSTALS

IN HC6U HOLDER, 0.005% TOLERANCE, FREQUENCY RANGE 6 TO 15 MHz . $\mathbf{\$ 6 . 0 0}$ plus Sales Tax and Postage
Write for list of other tolerances and frequencies available. COMPREHENSIVE PRICE LIST NOW AVAILABLE-WRITE FOR YOUR COPY
New Zealand Representatives: Messrs. Carrell \& Carrell, Box 2102, Auckland Contractors to Federal and State Government Departments

BRIGHT STAR RADIO

LOT 6, EILEEN ROAD, CLAYTON, VIC., 3168
Phone 546-5076
With the co-operation of our overseas associates our crystal manufacturing methods are the latest

This is the BIG performance set that obsoletes tube receivers ... a professional looking set that appeals to amateurs and short wave listeners alike. The DX 150 gives long-range, world-wide realistic reception on 4 bands, including Broadcast. Fully transistorised-all solid state-no warmup delays; the DX 150 will sun on dry cells if current fails or is not available; will operate from a car's cigarette lighter or any 12 V DC service. A 240 V AC power supply is also built in. Over 30 seml-conductors-product detector for SSB/CW, plus fast and slow AVC-variable pitch BFO-illuminated electrical bandspread, fully calibrated for amateur bands-cascade RF stage-ANL for RF and AFzener stabilised-0TL audio-illuminated " S " meter-bullt-in monitor speaker plus front panel jack for external (optional) matching speaker.
CONSULT YOUR LOCAL RADIO DEALER, OR mail this coupon todaly
Please forward free illustrated literature and specifications on Realistic.

Name

\qquad

Realistic Performance Realistic Price
\$229-50

Attractive silver extruded front panel, solid metal knobs, grey metal cabinet, size $141^{\prime \prime} \times 9 \frac{1}{\prime \prime}^{\prime \prime} \times 6 \frac{1}{2}$ ".

(A unit of Jacoby Mitchell Holdings Lid.) 376 EASTERN VALLEY WAY, ROSEVILLE. 2069. Cables and Telegraphic Address: 'WESTELEC,'

Every month
45,000,000

Electrolytic Capacitors are wired into quality equipment throughout the world . . . proof that ELNA Capacitors are fully accepted and wanted by manufacturers everywhere.

Catalogue now available

SOANAR
 ELECTRONICS

PTY. LTD.
A \& R-Soanar Group Company
VIC.: 30-32 Lexton Rd., Box HIII. 89-7323 N.S.W.: 82 Cariton Cres.. Summer Hill. 798-6999.
S.A.: A \& R-Soanar Group. 470 Morphett St., Adelaide. 51-6981.
OLD.: R. A. Venn Pty. Ltd., Valley. 51-5421.
W.A.: Everett Agency Pty. Ltd., West Leederville. B-4137.
SOLE AUSTRALIAN AGENTS

BAIL EEETRONIC SERVICES ."emame SPECIALISTS

* FLDX-400 TRANSMITTER
* FRDX-400 RECEIVER
\star FTV-650 6 Mx TRANSVERTER

SOLE AUSTRALIAN AGENTS FOR

S.S.B. EQUIPMENT
\star FLDX-2000 LINEAR AMPLIFIER
\star FL-2000B LINEAR AMPLIFIER
\star FF.50DX L.P. FILTER
\star FT-101, FT-200 and FTDX-400 TRANSCEIVERS
\star FVDX-400 VFO, SP-50 and SP-400 SPEAKERS
\star YD-844 P.T.T. DESK MICROPHONE
\star YAESU SPARE PARTS AND SERVICE FACILITIES

Accessory Items:
S.W.R. Meters, Field Strength Meters, P.T.T. Mikes, Co-ax. Connectors, Co-Ax. Cable, Co-Ax. Switches. Hy-Gain (U.S.A.) H.F. and V.H.F. Antennas. Emotator Antenna Rotators.

Katsumi Electronic Keyers and Speech Compressors. Solari 24-Hour Digital Clocks.
Heathkit Amateur Equipment (Vic. only) Johnson Matchbox Antenna Tuners

Write for details:-

BAIL ELECTRONIC SERVICES
60 Shannon St., Box Hill North, Vic., 3129. Ph. 89-2213
N.S.W. Rep.: MOSMAN RADIO SERVICES, P.O. Box 56, Mascot, N.S.W., 2020. Telephone 67-1650 South Aust. Rep.: FARMERS RADIO PTY. LTD., 257 Angas St., Adelaide, S.A., 5000. Telephone 23-1268 Western Aust. Rep.: H. R. PRIDE, 26 Lockhart Street. Como, W.A., 6152. Telephone 60-4379

The World's Most Versatile Circuit Building System!

SIZES: $1 / 8^{\prime \prime}$ and $1 / 16^{\prime \prime}$ WIDTHS
Length: 100 ft. roll, 5 ft . card
IDEAL FOR PROTOTYPE AND PRODUCTION CONSTRUCTION

USEFUL FOR WIRING REPAIRS

* NO DRILLING * FAST * NO MESS

Available from all Leading Radio Houses
Marketed by-
ZEPHYR PRODUCTS PTY. LTD.
70 BATESFORD RD., CHADSTONE, VIC., 3148
Telephone 56-7231

MANUFACTURERS OF RADIO
AND ELECTRICAL EOUIPMENT AND COMPONENTS

NEWSLETTER

Write or Phone

for our New Semiconductor short form Catalogue, incorporating devices from:

TEXAS INSTRUMENTS
FAIRCHILD
PHILIPS
ANODEON
MULLARD
DELCO
R.C.A.
S.T.C.

SIEMENS
GENERAL ELECTRIC
INTERNATIONAL RECTIFIERS

NATIONAL SEMICONDUCTORS

RADIO
 PARTS

 LTD.

MELBOURNE'S WHOLESALE HOUSE
562 Spencer St., Melbourne, Vic., 3000. Phone 329-7888, Orders 30-2224 City Depot: 157 Elizabeth Street. Melbourne, Vic., 3000. Phone 67-2699 Southern Depot: 1103 Dandenong Rd., East Malvern, Vic., 3145. Ph. 211-6921

CRYSTALS

CITIZENS BAND and MODEL RADIO CONTROL FREOUENCY CRYSTALS
HC18 Miniature. $1 / 4$ Inch spacing

26.540	M	26.995	MH2.	27.240	
26.590	MHz.	27.045	MHz	27.245	MHz
26.640	MH2	27.095	MHz.	27.425	MHz
26.690	MHz .	27.145	MHz .	27.740	MHz
26.785	MHz.	27.195	MHz	27.785	MHz
26.790	MHz			27880	M

PAICE S3. 50 EACH
amateur Chystals
VHF Band - 144 MHz. FM HC6 Holders. $1 / 2$ Inch spacing

Channel Channel	A	Transmit Recelve	$\begin{array}{r} 4.051 .55 \\ 10.275 .35 \end{array}$	$\begin{aligned} & \mathrm{KHz} . \\ & \mathrm{KHz} . \end{aligned}$
Channel Channel	B	Transmit Receive	$\begin{gathered} 4.055 .5 \\ 10.285 .71 \end{gathered}$	$\begin{aligned} & \mathrm{KHz} . \\ & \mathbf{K H z} . \end{aligned}$
Channel Channel	C	Transmit Receive	$\begin{array}{r} 4.059 .61 \\ 10.296 .14 \end{array}$	KHz KHz.
Channel Channel	4	Transmit Recelve	$\begin{array}{r} 4.066 .66 \\ 10.278 .57 \end{array}$	KHz KHz .
Channel Charinel	1	Transmit Receive	$\begin{array}{r} 4.058 .33 \\ 10.257 .14 \end{array}$	KHz KHz .

PRICE S5.50 EACH
MAAKER CRYSTALS
 S. 500 KHz. Marker $\$ 5.50$ COMMERCIAL FREQUENCY CRYSTALS HC6 Holders, $1 / 2$ inch spacing.

2.182 KHz .	2,637 KHz.	4,535 KHz.
2.524 KHz .	2.739 KHz.	6,280 KHz.
2.603 KHz .	2.979 KHz.	6,735 KHz.
	4.095 KHz .	
	CE 53.50 EA	

VIDEO PEAKING CHOKES
MINIATURE PIGTAILS, IRONCORE
$15 \mathrm{uH}, 22 \mathrm{uH}, 27 \mathrm{uH}, 33 \mathrm{uH}, 39 \mathrm{uH}, 47 \mathrm{uH}$. 56 uH', 68 uH' 82 uH' 100 uH' $120 \mathrm{uH}, 150 \mathrm{uH}$, $180 \mathrm{uH}, 220$ uH. $270 \mathrm{uH},. 330 \mathrm{uH}$..390 uH. 470 uH . 560 uH . Price 40 c . Postage 10 c .

VERNIER DIALS

Ratio 8 to 1 Reduction. Scaled 0-10.
Type T $501 \mathbf{1}^{1 / 2}$ Inch dlameter $\$ 2.00$
Type 15022 inch diameter
Type 15033 inch diameter

LOW PASS FILTERS

A "Cabena". Low Pass Fllter will $\{1 \times$ TVI. Cut-off irequency. 30 MHz .: attenuation at 60 MHz . better than 30 dB .: insertion loss. negligible. Impedance 50.72 ohms. Price S11.50. Postage 10c.

FIVE-CORE CABLE
$5 \times 5 / 0076$. Ideal for Intercoms., Telephones. etc. New. 100 yd. rolls. 517 (postage 75 c). or 20 c yd.

WIRE WOUND POTENTIOMETERS

50 watts, 200 ohms. Price $\$ 3.00$.

SOLID STATE STEREO AMPLIFIER
8 watts r.m.s. per channel. Input for magnetic crystal and ceramic type microphone. P.V. cari ridges. tape recorder input and output. tuner input stereo headphone lack. Raduced to SGS, post \$1.20

STEREO HEADPHONES

Professional quallty (well known brand). Large earpads, standard atereo plug. 6 ft . lead. Price ©.75. Postage 50c.

C-Type Compact CASSETTE TAPES
Well known make (suit all popular brands of Cassette Recorders). In plastic storage case.
C-60 60 minutes $\$ 1.20$
C-90 90 minutes \$1.95

	BRAND	EM		EAK	$R S$	
3DX	8 ohms	Natt	Price	$\mathbf{5 3 . 9 5}$	Postage	20c
3DX	15 ohms	.	-	53.95	*	C
6 A7	8 ohms	"	\cdots	S5.50	.	40c
6 67	15 ohms	.,	\bullet	S5.50	${ }^{\prime}$	40C
8A7	8 ohms	-	\cdots	57.20	.	40 c
8 A7	15 ohms	-	-	57.20	*	
12CMX	8 ohms	.	.,	\$10.75	**	
12CMX	15 ohms	-	-	S10.75	*	. 5

DELCO TRANSISTORS

Type	2N441				Price	\$2.40.	Postage
Type	2N278	Price	96.00.	Postage
Type	2N301				Prlce	8.50 .	Postage

LT91 RECTIFIER
 20 Volt 2 Amp.
 Price \$1.50. Postage 10c

TE-16A TRANSISTORISED
 TEST OSCILLATOR

Frequency range: 400 KHz io 30 MHz . In five bands Modulated 80 J Hz . sine wave. Modulation 30% approx. 5\% $\times 57 / \times 35 / 8$ Inches. Welght 1.5 lbs Price S2A tax pald, Postage 75c.

AUTO CAR AERIALS

Hirschmann, type 300 N . side mour:ing. new. Price SA.50. Postage 20c.

SIGNAL INJECTOR
Model SE250B. Price $\$ 7.00$. Postage 20c

INSTRUMENT CASE

Sloping front panel. Plastic case, metal front panel. $71 / 4 \times 41 / 4 \times 5$ Inches. Sultable for radio test equipment. projects, etc. Prlce $\$ 3.50$ inc. tax. Postage 10c.

PACK OF RESISTORS

100 Resistors of $1 / 2$ and 1 watt rating Price S1.75. Postage 20c.

TAA300 INTEGRATED CIRCUIT

1 Watt Audio Amplifier
The TAA300 is a monolithic integrated circult for use as a complete a.f. amplifier. With a supply voltage of $9 \mathrm{v} .$. outputs of up io iw. are obtalnable Into a load impedance of 8 ohms. A voltage range of 4.5 to 9 volts coupled with very low crossover distortion and low current drain (8 mA.) makes this circult ideal for battery operation. TAA300 Integrated Circuit. $\mathbf{5 3 . 0 0}$

Postage 10c
TRANSISTORS AND DIODES

OC71	75c	AF114	80 c
OC44	90 c	AFilg	80 c
OC45	90c	BC108	70 c
AC125	898	BC109	80 c
AC128	80c	BF115	80c
BA100	30 c	OASO	30 c
OA91	20 c	OA95	30 c

A.C. ADAPTOR-BATTERY SAVER

Type PSG4-240 volts to 6 or 9 volts. $300 \mathrm{~mA} . \$ 12.50$ Type PS62-240 volts to 6 or 9 volts, $100 \mathrm{~mA} . \$ 8.50$ Postage 30c

SOLDERING IRONS

ADCOLA M70 $1 / 8$ inch tip. 240 volt $\$ 8.00$ ADCOLA M64 3/16 Inch tip. 240 volt $\$ 8.40$ SCOPE 4 volts AC/DC. 100 watts $\$ 6.40$ MINISCOPE $\Omega_{6.00}$ SCOPE De Luxe 87.00 Postage 20c

SOLDERING IRON TRANSFORMER
240 volts/3.3 Volts, 100 V!A $\$ 6.40$ Postage 40c

ERSIN SOLDER

Five-Core. 60/40 $\$ 2.50$ Five-Core. 40/60 $\$ 2.20$
Solder Pack, 42 inches Postage 20c

MICROPHONE CABLE

Type 15P1/24. E3748, 1/16 Inch dlam. Price 15c yard, or 100 yds. $\$ 14.00$

STEP-DOWN TRANSFORMERS

Type $5506-240$ volts to 115 volts. 20 watts $\$ 12.00$ Type 5578-240 volts to 115 volts. 40 watts $\$ 12.50$ Type 2164-240 volts to 115 volts. 100 watts $\$ 16.30$ Type 216G-240 volts to 115 volts. 250 watts $\$ 32.00$ Postage 51

MINIATURE SPEAKERS

HAM RADIO SUPPLIERS 323 ELIZABETH STREET, MELBOURNE, VIC., 3000
 Phones: 67-7329, 67-4286 All Mail to be addressed to above address

Our Disposals Store at 104 HIGHETT ST., RICHMOND (Phone 42.8136) is open Mondays to Fridays, 10.30 a.m. to 5.0 p.m. and on Saturdays to midday.

We sell and recommend Leader Test Equipment, Pioneer Stereo Equipment and Speakers. Hitachl Radio Valves and Transistor Radios. Kew Brand Meters, A. \& R. Transformers and Translstor Power Supplies. Ducon Condensers, Welwyn Resistors, etc.

SEPTEMBER, 1970
Vol. 38, No. 9

Publishers: VICTORIAN DIVISION W.I.A.
Reg. Office: 478 VIctorla Parade. East Molbourne. VIc., 3002.

Editor:

K. E. PINCOTT VK3AFJ

Assistant Editor:
E. C. Manlfold VK3EM

Publications Committee:

Enquirles:

Mrs. BELLAIRS. Phono 41-3535. 478 Victoria Parade. Elat Melboume. Vic.. 3002 . Houre: 10 a.m. to 3 p.m. only.

Advertising Representatives:

technical news publications
21 Smith St., Fitzroy, Vic., 3065. Tol. 41-4902. P.O. Box 108, Fitzoy. Vic., 3085.

Advertisement material should be sent direct to the printers by the first of each month.

Hamads should be addressed to the Editor.

Ppinters:

"RICHMOND CHRONICLE," Phone 42-2419.
Shakespeare Street. Richmond. VIc., 3121.

All matters pertaining to "A.R." other than advertising and subscriptions. should be addressed to:

THE EDITOR.
"AMATEUR RADIO."
P.O. BOX 38 .

EAST MELBOURNE, VIC., 3002.

[^52]
CONTENTS

Technical Articles:-

Home-Brew Five-Band LInear Amplifier Measurement of R.T.T.Y. Frequencles							
							7
Paddle-Your Own							12
Parallel A.C. Circults			...				10
Piano Type Frequency Meter						11
Reading the Prediction Charts		15
5/8th Wavelength Verticals							

General:-

| Graphical Symbols for | use in Electrotechnology—Draft | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Standard | | |

Morse Tape Service 14
New Call Signs 17
New Equipment 12
Overseas Magazine Revlew 18
Prediction Charts for September 1970 15
Project Australis 21
South-West Area Bi-Centenary Certificate 16
VHF 19
Wagga Wagga Centenary and South-West Area Convention 16
W.A.V.K.C.A. Award 21
W.I.A. D.X.C.C. (S.W.L.) 19
W.I.A. 52 MHz W.A.S. Award 21

Worked All VK Call Areas (W.A.V.K.C.A.) Award Rules 17

Contests:-

| Contest Calendar $\ldots . .$. | ... | \ldots. | | | | | | 21 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wagga Centenary Trophy | | | | | ... | | 16 | |

COVER STORY

Our cover this month shows the latest in sub-miniature sockets and plugs. Manufactured by Oxley Developments Co. Ltd., U.K., they are designed for printed circuit board applications and employ a patented cone-lock principle to ensure reliable fixing of the socket tube, and the insulating bush in the mounting frame. Our Illustration is by courtesy of R. H. Cunningham Pty. Ltd., who are the Australian agents for Oxley.

HY-GAIN AMATEUR ANTENNAS

Fully Imported from U.S.A.

COMPREHENSIVE RANGE TO SUIT MOST REQUIREMENTS

H.F. BEAMS: TH6DXX, TH3Jr, TH3Mk3 and HyQuad Tribanders for 10,15 and $20 \mathrm{~m} . ; 204 \mathrm{BA}$, 203BA Monobanders for 20 m .
TRAP VERTICALS: 18AVQ (80.10 m .), 14AVQ ($40-$ 10 m.) and 12AVQ (20.10 m.).
ACCESSORIES: LA-1 co-ax. lightning arrestor. $\mathrm{BN}-86$ balun, Cl centre insulH.F. MOBILE WHIPS: New "Hamcat" Whips and associated fittings. ators \& El end insulators for doublets.
V.H.F. ANTENNAS: Beams-66B six elem. 6 m ., HEAVY DUTY ROTATOR: Emotator Model 1100M available for H.F. DB-62 duo-bander for 6 and $2 \mathrm{~m} . ; 23 \mathrm{~B}, 28 \mathrm{~B}$ and 215B (3,8 and 15 elem. 2 m . beams). Also Ground Planes, Mobile Whips and Halos.
BAIL ELECTRONIC SERVICES, 60 Shannon St., Box Hill North, Vic., 3129. Ph. 89-2213

N.S.W. Rep.: MOSMAN RADIO SERVICES, P.O. Box 56. Mascot, N.S.W., 2020. Telephone 67-1650 South Aust. Rep.: FARMERS RADIO PTY. LTD., 257 Angas St., Adelaide, S.A., 5000. Telephone 23-1268 Western Aust. Rep.: H. R. PR|DE, 26 Lockhart Street, Como, W.A., 6152.
Telephone 60-4379

SIDEBAND ELECTRONICS ENGINEERING

Prices below, subject to alteration without prior notice, are all for equlpment, directly Imported from the varlous factories. in stock all the time, no use to advertise otherwlse:

YaEsU Musen

FT-101 latest AC/DC all-band Transceiver, one demo. model available FT-DX-400 de luxe Transceiver, 500w. PEP, AC supply built In 8525 FL-DX-400 Transmitter, 300w. PEP. AC supply built in $\$ 350$ Fr-DX-400 de luxe Receiver, 160 to 10 metre Ham bands $\$ 375$ FR-DX-400 super de luxe model Recelver with all the available accessories built in, 500 Hz . CW filter, FM filter and FM discriminator and 2 and 6 metre solid state Converters FT-200 econamy Transceiver, with extra heavy duty AC power supply-speaker unit for 230-240-250v. adjustable FL-DX-2000 Linear Amplifier, built-in AC supply and SWR meter FL-2000B Linear Amplifier
6 or 2 mx solid state converters. 10 mx output, as used in the FR-DX-400 super de luxe Receiver
 FV-DX-400 External VFO for the FT-DXe atest FT-DX-400 Iransceiver SWAN
SW350C Transcelver with AC supply-speaker unit S5SO SW350C with Swan 14-230 AC/DC power supply unit $\$ 800$

14AVO 10 to 40 mx four-band Vertical. 1 KW AM $\ldots .$.
18AVO 10 to 80 mx five-band Verticai, 1 KW AM".. \qquad
$\$ 410$
$\begin{array}{r}8410 \\ \$ 225 \\ \hline\end{array}$

MOSLEY
TA33JR tri-band $\mathbf{1 0 - 1 5 - 2 0} \mathbf{m x}$ junior Beam, 600w. PEP $\$ 105$ NEWTRONIC8
4-BTV 10 to 40 mx four-band Vertical, \$60; with 80 mx top-loading coll, $\$ 80$ CAYSTALS FT- 1241 series, chan. 0 -79, full box from 375 to $515 \mathrm{KHz} . \mathbf{\$ 1 5}$ Individual channels, 20 c to $\$ 2$, depending on frequency.

MOBILE WHIP8

WEBSTER Bandspanner, 10-80 mx centre-loaded, continually adjust. MARK HW-40 Helical Whip for 40 mx s20; HW-3 10-15-20 Helical Swivel Mount and Spring for flat surface mounting The Pair $\mathbf{S 1 0}$ ROTATORS
CDR Ham-M heavy duty Rotator with Indicator-control unit, for up to 2 Inch masts, the proven Amateur Rotator since 1955 $\$ 165$ Elaht conductor cable for same, per Yard 60c ANTENNA NOISE BHIDGE
OMEGA TE-7-01 BrIdge, for the serious entenna experimenter, gives resonance AND Impedance in one operation
BALUNS, exact elect. duplicate of the Hy-Galn BN-88, locally made $\mathbf{\$ 1 2 . 5 0}$
FILTERS: KOKUSAI Mechanical Type, 500 Hz . CW pass band
MIDLAND Products
27 MHz . ONE WATT hand-held Transceivers, three channels avail. able, tone call signal for CW operation, battery voltage meter, audlo equelch, with batteries, carrying case ana strap, earplece. P.M.G. approwed type, with crystals for 27.240 MHz . operation

SW under P.M.G. Iicence per unit $\$ 37.50$ WR and Power Meter, with two meters to read forward and reflected waves simultaneously, 52 ohm Impedance, 2 kw . power $\mathbf{\$ 2 0}$ Field Strength Meter, S-band 1 to 300 MHz ., telascop. whip. earpiace $\$ 10$ Mobile type PTT Dynamic Microphone, colled cord, plug, high imped. More MIDLAND Products expected, desk microphones, with and without built-in pre-amplitiers, co-ax. connectors.
CO-AX CABLE: All 52 ohm type. prices per foot, any lengths:
3/16 Inch dlam. Type RG-58-U, 10c; 3/8 Inch dlam. type RG-8-U, 20c 3/8 Inch dlam. type RG-214-U, silvered shield and Inn. conduct., 30 c TRANSFORMERS: Still certain types of NATIONAL Transformers and Chokes In stock at give-away prices, ask for list and literature and plctures of all the above goodies. Sales tax Included in all prices but postage, freight, insurance or registration are extras!!

EIMAC's new family of outstanding power tetrodes offers 13 impressive features:

(1) High linearity. 3d order products -40 dB or better.
(2) Low input capacitance. Typically, 45 pF .
(3) Over 600 watts measured output at 865 MHz .
(4) Very high gain-bandwidth product. Over 125 MHz .
(5) Low grid interception in linear amplifier service.
(6) Low drive. Typically 40 volts for class $\mathrm{AB}-1$ service. Easily driven at 150 MHz with 5 watt solid state device.
(7) Plate dissipation up to 800 watts. Both air and liquid cooling available.
(8) Coaxial base adapter available.
(9) Shock-resistant design for rugged service.
(10) 20 kW pulse output at 430 MHz .
(11) Very low cathode lead inductance.
(12) 5 -pin base adapted for heat-sink cooling.
(13) High grid and screen dissipation ratings.
The unique $4 C \times 600$ family is an exciting result of EIMAC's CAD (computer-aideddesign) program for ceramic/metal tetrodes. Closely controlled parameters permit intermodulation distortion limits to be included as a defining tube characteristic, establishing new criteria of performance.

EIMAC's advanced segmented cathode and electron focussing combine with an unusually high figure of merit in this family, providing you with tubes useful in widely diversified services: linear amplification,
high reliability aircraft-to-ground communication, wideband distributed amplifier service in airborne ECM gear, and r-f pulse application.

Another example of EIMAC's ability to provide tomorrow's tube today! Here are the numbers to prove it:

$\begin{aligned} & \text { IUBE } \\ & \text { TYPE } \end{aligned}$	$\begin{aligned} & \text { FIL } \\ & \text { volts } \end{aligned}$	$\left.\left\lvert\, \begin{array}{c} \text { RATED } \\ \text { TO: } \\ \text { (MHZ) } \end{array}\right.\right]$	BASE	COOLING	MAX. Plate Yolts	RATINGS Plate Amperes	TYPICAL POWER OUIPUT $(150 \mathrm{MHz})$	$\begin{aligned} & \text { USEFUL } \\ & \text { FDR: } \end{aligned}$
$4 \mathrm{CXE008}$	6.0	890	S.PINSPEC.	Air	3000	0.6	750w	FIDEEAND
4CX600F	26.5							AMPLIFIER SERVICE
4CW8008	6.0	890	$\begin{aligned} & \text { 5.PIN } \\ & \text { SPEC. } \end{aligned}$	Liquid	3000	0.6	750w	WIDEBAND
4CW800F	26.5							AMPLIFIER SERVICE
$4 \mathrm{Cx6003}$	6.0	150	$\begin{aligned} & \text { OCTAL } \\ & \text { SPEC. } \end{aligned}$	Air	3000	0.6	750W	CLASS AB LINEAR SERVICE
8809								

More? Our Application Engineering Department's ability to design tube into circuit means less engineering time for you. For all-around capability, talk to EIMAC. For circuit and application information on these new power tetrodes, write to Varian for our new, free application bulletin No. 14, Using the 4CX600 Family Tetrodes.

varian PTY LTD

electron tube and device group
38 Oxley Street, Crows Nest, N.S.W., 2065. Phone 43-0673.
679 Springvale Road, Nth. Springvale, Vic., 3171. Phone 560-6211.
Suite 1, 339 Coronation Drive, Toowong, Qld., 4066. Phone 71-3277
10 Stirling Highway, Nedlands, W.A., 6009. Phone 86-7493.

KITS

IC FM IF STRIP \& DISCRIM. (ref. "A.R." June '70), $455 \mathrm{KHz} ., 40 \mu \mathrm{~V}$. for full limiting. KIt 89.80 ; wired and tested (W. \& T.) $\$ 12.80$.
CFP455E BLOCK CERAMIC FILTER. Optional for above, 16 KHz . bandwidth, \$16.00.
IC 1W. AUDIO AMP. (ref. "A.R." July '70), 15 mV . input min. for 1 watt RMS out. 12 volts, 8 ohms. Kit 88.40; W. \& T. \$11.40.
VARACTOR MULTIPLIER KIT (less diode). 144 to 432 MHz ., up to 40 W . input. $\$ 5.80$.
2N3632 TRANSISTOR (unbranded). May be used as v.h.f. amp. or varactor. \$7.00.
BRIDGE RECTIFIER \& FILTER, PS003. Input 17V. RMS max., output 25 V . d.c. at 2 Amps max. Kit $\$ 3.75$; W. \& T. 84.75.
IC POS. VOLTAGE REGULATOR. RE004. Output 4.5 to 18 V . d.c. at 200 mA . Current limiting-provision for ext. adjust - 10 to 200 mA . Regulation: Load- 0.02% max.; Line0.02% max. per volt of input change. Kit S9.85; W. \& T. \$11.90.
All Kit P.C. boards are $4 \times 8 \mathrm{~cm}$. fibreglass. Prices include sales tax and postage.
COMMELEC INDUSTRIES
P.O. BOX 1, KEW, VIC., 3101 Phone (a.h.) 80.2957 or 277-8295 N.S.W. Rep.: J. W. Rufus, 9 Bridge Road. N.S.W. Rep.: d. W. Rufus, 9 Bridge Road.
Homebush, 2140 .

HAND-CARVED CALL LETTER PLAQUES

In solld Philippine Monkey Pod Wood. A unique gift for yourself-or others!
Price, parcel post paid, A\$9.75 plus local tax of approx. A\$4
Allow 3 months for delivery. You pay local tax. Send postal money order or bank draft for A\$9.75 to:-

REPUBLIC CRYSTAL LABS

Exporter of Philippine Handicrafts
P.O. Box 46, Makati Comm. Center, D-708, RIZAL, PHILIPPINES

If you need special Plaques with business names or family names, send us
a sketch of your needs and we will quote post paid. Cut-out letters of wood for wall painting also available.
Plaque lengths: 5 letters 20", 6 letters 22"; letters about $5^{\prime \prime}$ high; width 8"; thickness 1 ".

Only $\$ 2.35$ for a subscription to-

OFFICIAL JOURNAL OF NZ.A.R.T.
Send a cheque to the-
Federal Subscription Manager, W.I.A., P.O. Box 67, East Melbourne, Vic., 3002

DURALUMIN ALUMINIUM ALLOY TUBING

IDEAL FOR BEAM AERIALS AND T.V.

\star LIGHT $\quad \star$ STRONG \star NON-CORROSIVE
Stocks now available for Immediate Delivery

ALL DIAMETERS - 1/4" TO 3"
Price Llst on Request
STOCKISTS OF SHEETS-
ALL SIZES AND GAUGES

GUNNERSEN ALLEN METALS

PTY. LTD.
SALMON STREET, PORT MELB'NE, VIC. Phone 64-3351 (10 IInes) T'grams: "Metals" Melb
HANSON ROAD, WINGFIELD, S.A. Phone 45.6021 (4. Ilnes) T'grams: "Metals" Adel.

BRIGHT STAR CRYSTALS

FOR ACCURACY, STABILITY, ACTIVITY AND OUTPUT
SPECIAL OFFER-
STANDARD AMATEUR CRYSTALS
STYLE HC6U HOLDER, FREQUENCY RANGE 6 TO 15 MHz .
$0.01 \% \quad \$ 4.25$
$0.005 \% \$ 5.50$
Prices include Sales Tax and Postage
COMMERCIAL CRYSTALS
IN HC6U HOLDER, 0.005% TOLERANCE, FREQUENCY RANGE 6 TO 15 MHz . $\mathbf{\$ 6 . 0 0}$ plus Sales Tax and Postage
Write for list of other tolerances and frequencies available.
COMPREHENSIVE PRICE LIST NOW AVAILABLE-WRITE FOR YOUR COPY
New Zealand Representatives: Messrs. Carrell \& Carrell, Box 2102, Auckland Contractors to Federal and State Government Departments

BRIGHT STAR RADIO

LOT 6, EILEEN ROAD, CLAYTON, VIC., 3168
Phone 546-5076
With the co-operation of our overseas associates our crystal manufacturing methods are the latest

* Stocktake Sale *
- Swan 350C Transceiver $\$ 413.85$
- Swan SW400 Transceiver 405.00
- Swan TV2 Transverter 290.40
- Swan A.C. Power Supply-Speaker 85.00
- Hallicrafters SX101A Receiver 250.00
- Hallicrafters HT37 Transmitter 140.00
- Pierce Simpson Marine Transceiver, 80 watts 350.00
- Pierce Simpson, 40 watts 189.00
- Swan VX2 Vox Unit 39.25
- Swan C.W. Filter 32.00
- Duke 5 Transceiver 399.75
- Hallicrafters CB5 45.00
- Swan 420 V.F.O. 140.00- C.D.R. Rotator 45.00
- Pierce Simpson Depth Sounder 99.00
- Jackson Transmitter Condenser, 300 pF. 5.00
- " " 100 pF. 4.50
- Swan Carrier Switch and Trimmer 85c
- Jackson Trimmers, Ceramic 1.25
- Swan Drive Drums 1.25
- B. \& W. Plate Chokes (Linear) 3.75
- B. \& W. Filament Chokes (Ferite, G.G.) 7.50
- B. \& W. Phase Shift Network 4.50
- Dow Key Pre-Amps. 4.50
- Electronic TR Switches 5.20
- Dow Key Co-ax. Switches 6.25
- Dow Key Relay Coils 1.25
- Coil Stock, B. \& W. 80c
- Hansen S.W.R. Bridges 12.00
- LED Two-Tone Oscillators 16.00
- Dipole Centre Insulators 85
- Swan 350 pF. Load Capacitors 3.50
- Polar Ceramic Air Trimmers 95 c
- Transmitter Crystals 2.10
- 100 KHz. Crystals (Cal.) 4.50
- Marine Radio Crystals 2.50
- Alternator Diodes, 50 Amp. 2.75
- OC35 Transistors 4.37
- 10 Volt Zener Diodes 1.70
- PL259 Co-ax. Connectors 80c
- 3-contact Mike Connectors (screw type) 80 c
- Bay Roy all weather Co-ax. Relay 16.00
- English Sceptor Depth Sounder 29.00
* Stocktake Sale- Swan Sideband Selector Kit$\$ 16.00$
- Swan Mobile Mounting Kit 12.00
- Swan Bal. Mod. Transformer 1.28
- Crystal Mechanical Filter 8.00
- ADY26 Transistors, 35 Amp. 4.37
- Jones Plugs, 12-pin, Swan 80c
- Jones Sockets 80c
- 2N1522 Transistors 4.25
- 2N1518 Transistors 4.25
- Sigma Relays 2.05
- 10K Push-Pull Switch Pots 80 c
- Jabel 4-pole Switch 50c
- Hammarlund HFA-140 Condenser 1.25
- B. \& W. Co-ax. Switches 6.50
- TS12/40 Transformer 1.68
- 3-contact Jack Plugs 80c
- 3-contact Socket 75c
- 5 watt 4.7 ohm Resistors 18c
- Swan 350 Main Tuning Knob, Metal 80c
- Swan Main Tuning Knob 25 c
- 0-50 Micro. Amp. Meter 4.50
- Swan Meters, all Models 12.75
- 21ZA Mobile Mike (Ceramic, P.T.T.) 12.00
- Swan 240V. A.C. Power Supply Transf. 15.00
- RG10 O Multiplier 26.00
- CR45 Receiver 35.00
- RG8U Cable yd. 52 c
- RG58U Cable yd. 24c
- TA31 Junior Beam 33.00
- TA32 Junior Beam 38.00
- TA31 and 32 Conversion Kits 33.00
- Hy-Gain 2 Metre Beam 30.50
- Swantenna Mobile, All Band 72.00
- Hallicrafters SX146 Receiver 334.00
- GOTHAM FULL SIZE BEAMS:
Y203 20 Metre 3 Element 45.00
Y153 15 Metre 3 Element 31.00
Y104 10 Metre 4 Element 37.00
Y69 6 Metre 9 Element 59.00
Y212 2 Metre 12 Element 53.00
Triband Quad 70.00
- SWAN HORNET:
TB750-3 Triband, 1.5 KW 146.00

FEDERAL COMMENT:

THE AMATEUR'S CODE

Over the years, the A.R.R.L. Handbook has made a feature of the Amateur's Code, and I can recall previous editorials in this magazine on the same subject. The code is, or should be, known to all Amateurs, and it is left to the individual to decide whether or not he follows it as his conscience may dictate, as on most points it is within his own control.

There is, however, one point where circumstances are such that outside influences can affect his thinking. This point is the fifth in the code, namely: "The Amateur is Balanced . . . Radio is his hobby. He never allows it to interfere with any of the duties he owes to his home, his job, his school, or his community."

After close on 20 years in association with W.I.A. affairs, I am firmly convinced that in all spheres, both on a Divisional and Federal level, the average Amateur expects far more than can be reasonably expected from those who bear office in the Institute. What the cost must be either in cash or time. irrespective of whether the officebearer is an employee or self employed, does not bear thinking about, but however it is calculated, the fact remains that the office-bearer, whoever it may be, is neglecting some other facet of his life.

Whilst it is admitted that some selfsacrifice is expected when nominating
for office, very few realise just what they are committing themselves to do. The Federal Executive was well aware of the problem when they submitted a proposal to the Federal Council last Easter that a full-time paid Secretary/ Manager was required to handle the routine work of the Federal body, and the longer it was left the worse the position would become, until such time that the work of the Federal body would grind to a halt due to sheer complete over load.

Although not completely rejected, little or no useful discussion eventuated, the crux of the matter being that members could not afford the expense of such an employee of the Institute. It was left to Federal Executive to formulate a policy for future consideration, thus effectively increasing the work load on that body.

I now submit that it is time for the members of the W.I.A. to do something concrete to help their office-bearers to recover their balance, firstly by undertaking some of the work to be done within their Divisions, and, secondly, by being prepared to meet the costs required to maintain a worthwhile and responsible Institute.

Remember, we are discussing not a suburban tennis club but THE WIRELESS INSTITUTE OF AUSTRALIA.

MEASUREMENT OF R.T.T.Y. FREQUENCIES

DR. K. M. KELLY,* VK4MJ

During the past few months, the writer has become interested in r.t.t.y. and has been constructing a demodulator. During this exercise it became necessary to provide some method of obtaining accurately measured frequencies, preferably in the form of a good sinewave. It seemed that the answer would be to construct a simple tunable audio oscillator, with sufficient tuning range to cover the commonly used r.t.t.y. frequencies, and accordingly this was commenced.

Ever tried to do this? It quickly became apparent that there were various catches. An oscillator which gives a good waveform tends to have low output, and cannot be tuned over a useful range without great variations in output. An oscillator which gives good output without much variation over the tuning range usually suffers in waveform. Finally, most oscillators which, in fact, do come up to the mark are relatively complicated to make, and then their calibration is not accurate enough unless considerable trouble is taken.

After a grand search of the literature, and much experiment, I discovered a little talked about oscillator, the "Twin-T", ${ }^{1}$ which proved to be very tame, and also simple to construct. The circuit as published in "QST" is reproduced here (Fig. 1) and was found to work well, with a frequency range of $2: 1$ easily obtained. A valve version was then constructed, and found to work equally well.

In Fig. 2 is shown the final article, which tunes from 350 to 550 cycles. The output transformer is actually a small modulation transformer, arranged to drive a neon lamp to strobe the teleprinter when adjusting the speed of the machine, and is not essential in any way to the argument which follows.

[^53]Enquiry from the local electric supply authority reveals that the maximum deviation in the frequency of the 50 cycle mains under ordinary conditions is ± 0.1 cycle, which, if used for calibration, will give a maximum error of 6 cycles at 2975 cycles, which is the highest frequency we are interested in ineasuring for r.t.t.y.

CALBRRATION

The oscillator is allowed to warm up and the output is connected to the "external timebase" of an oscilloscope. A signal from the 50 cycle mains is connected to the vertical amplifier of the c.r.o. The fine adjustment pot. is set at mid point, and the main fre-
frequency also commonly used of 1275 comes with a $3: 1$ figure, and the shift frequency of 850 gives a $2: 1$ figure.
The fine adjustment pot. is used to make the figures stand still for easy counting, but if a good reduction drive is included on the main pot., the fine one may be omitted.
On the Creed teleprinter, the neon output will give a correct strobe on the governor wheel for 50 bauds at 425 cycles, but for 45.5 bauds the frequency would need to be adjusted to 386.45 cycles. There is no Lissajou figure for this frequency, but a figure of the ratio $23: 3$ gives 383.3 cycles, which is pretty close, with an error of less than 1%.

quency control of the oscillator is swept until a Lissajou figure is obtained. These will indicate the multiples of 50 cycles and can be identified quite easily, by reference to the pretty pictures in the A.R.R.L. Handbook.

Now we must find the frequency in which we have the most interest- 425 cycles. The Lissajou figure for this will be the one for $(50 \div 2) \times 17$. In other words, there will be 17 peaks on the sides of the scope, and two peaks on the top or bottom.

Having now set the oscillator to 425 cycles, the input from the 50 cycle mains can now be removed, and the output of another audio oscillator (or the beat note from the station recelver) is substituted. Using the 425 cycle timebase, simple Lissajou figures for 2125 (5:1), and 2975 (7:1) can be measured with extreme accuracy. Note also that the centre frequency of 2550 (6:1) may be obtained. The alternate

PROVISIONAL SUNSPOT NUMBERS

MAY 19%

Dependent on observations at Zurich Observatory and its stations in Locarno and Arosa.

Day			R	Day			R
1	128	16	164
2	\ldots	120	17	\ldots	172
3	124	18	176
4	121	18	178
5	\cdots	115	20	\ldots	148
6	\cdots	117	21	\ldots	159
7	100	22	127
8	88	23	108
9	91	24	124
10	119	25	112
11	197	28	127
12			148	27		128
13	151	28	108
14			148	29			120
15			162	30	\ldots	.	118
				31			129
Mean equals 131.1.							
Smoothed			Mean	Nov.	1969:		105.0.

Home-Brew Five-Band Linear Amplifier*

A CONSERVATIVELY DESIGNED CIRCUIT USING TIME-PROVEN 811-As

HARRY R. HYDER, WTIV

1T is customary to preface a construction article with a few remarks about why the author decided to build rather than buy the equipment described. In my case, there's only one reason why I build radio equipment: I enjoy it.

I don't enjoy hole drilling or coil winding any more than an artist enjoys mixing paint or cleaning brushes. My satisfaction comes from creating something unique from my own mind and hands.

I read the construction articles in "Ham Radio" and other magazines every month, but I've never built equipment that exactly duplicates a published description. What I look for is not something to copy, but rather the construction hints and ideas that I can adapt to my own requirements.

This article is presented in that spirit. You may not wish to copy this linear amplifier, but you could do worse. Perhaps you'll find something you can use in your next construction project.

CIRCUIT DESCRIPTION

Parallel 811 As are used in a grounded grid circuit (Fig. 1). In terms of watts-per-dollar of tube cost, the 811A must head the list. Some Amateurs complain of a short life for these tubes when operated at I.C.A.S. ratings as these are; however, I find it's easier to buy a couple of inexpensive tubes frequently rather than a single expensive tube occasionally.

The cathode circuit has a matching network to transform the 50 ohm input to approximately 150 ohms required by the tubes. A cathode matching network is often dispensed with, but it has its virtues. A 3:1 mismatch is frequently beyond the capability of some exciters. If the exciter doesn't have some power to spare, it may not be possible to drive the amplifier to full output without the network. With the matching network, the transmission line is "cold" and may be of any reasonable length. Some writers have reported that the matching network also improves amplifier linearity. Therefore, since it's simple and requires no tuning, it's cheap insurance.

[^54]The network is an L configuration on 80,40 and 20 metres, changing to a pi network on 10 and 15 metres. The high effective cathode-to-ground capacitance, consisting of tube and wiring capacitance plus the distributed capacitance of the filament choke, precludes the use of an L network on the two higher frequency bands. The tapped 20,40 and 80 metre cathode inductance is in the circuit at all times. On 10 and 15 metres, small self-supporting air-wound coils are connected in parallel with it. This is merely a switching convenience.
The plate tank coil is a roller-type inductor for the low frequency bands, with a series-connected small coil for 10 metres. The variable inductor permits adjustment for optimum Q on all frequencies.
The plate tank capacitor is from a BC375 tuning unit. Its original capacitance range was 23 to 140 pF . I wanted to reduce minimum tank capacitance on the high frequency bands to lower the loaded Q and increase efficiency. I carefully split the stator with a fine saw. Only one of the sections is used on the high frequency bands, reducing the minimum tank capacitance by about

12 pF . This decreases the loaded Q on 10 metres from 26 to 20 , and on 15 metres from 19 to 15 . The photos show the switching arrangements to cut in the second section. The contacts are from an old relay, and the solenoid is a 115 v . a.c. unit I happened to have in my junk box. The solenoid is controlled by a front-panel switch.

The loading capacitor is a five-gang 420 pF . per section unit that came from an MN26 radio compass. Two sections in parallel are used on the higher frequencies; the remaining three are cut in by a relay controlled by the tank capacitor switch. The capacitor is available from Barry Electronics.

At 1500 volts, 811 As require about 4.5 volts bias, which is supplied by a 4.7 volt zener in the filament return. This is less expensive and more reliable than a bias supply, and has a very low impedance. A 100 volt zener is also in the filament return, with a small amount of d.c. current bled through it. This provides full cut-off bias. It can be cut out by a front panel switch, or by external relay contacts.

The plate-current meter is also in the filament return, but reads plate current only; not total cathode current.

Bottom view of the Linear Amplifier. Note lead dress and method of securing cables.

Left.-Circuit details and com. ponent layout of input section. Attention to detall results in a professional appearance.

Right-Detail of the amplifier tank circuit. The small coll in the binding posts is the 10 metre inductor.

The grid-current meter is in the d.c. grid return.

The high-voltage bleeder consists of four 150K ohm 2 -watt resistors in series, since it is not good practice to put more than about 500 volts across a single 2 -watt resistor. I like redundant bleeders; should the one in the power supply open, the one in the amplifier will discharge the filter capacitors in a few seconds. A neon lamp indicates high voltage on the amplifier.

CONSTRUCTION

The chassis is aluminium, $10 \times 17 \times$ 3 inches. The 811As are mounted on a $4 \times 6 \times 1 \frac{1}{2}$ inch aluminium chassis upside down. I made these chassis sides and the meter shields from pieces bought in a scrap-metal yard.

The cover shield is cane-pattern sheet aluminium from a "do-it-yourself" department of a hardware store. This material is rather fimsy, so I stiffened

Fig. 1,-Schematic of the 811A Grounded-Grid Linear Amplifier. Matching section in cathode circuit provides a $3: 1$ transformation ratio, assuring adequate drive from most exciters.

B1-Cooling fan (Japanese import; see photo). CisA. B-Variable 2 section, 65 pF . per section, 0.07 inch spacing.

C19- 5 section, 420 pF . per section. KI-See text.
K2-Relay. d.p.s.t., 10A. contacts, 117 v . a.c. coll. L1-7 ${ }^{1 / 2}$ turns, $11 / 2$ inch diameter, 2 inches long, tapped 3 rd and 5 th turns. Approximately 4.5 uH . total inductance, tapped at 2.4 uH . and 1.2 uH .

L2--9 turns of number 14. \%/8 inch l.d., approximately 0.8 uH .
LJ-12 turns of number 14, 5/8 inch l.d., approxi mately 1.0 uH .

L4. L5-3 turns of number 14, 5/8 Inch 1.d., wound around R12 and R13 (see photo).
L6- 8 turns of $1 / 8$ Inch copper tubing. $3 / 4$ Inch l.d., 2 inches long.
L7-Inductor, variable, 18 uH . maximum (E.F. Johnson 229-202)
R2. R4-Adjust for correct reading of M1 and M2. RFC1, RFC2 4.7 uH . pigtail.
RFC3- $90 \quad \mathrm{uH}$.: 500 mA . (B. \& W.).
RFC4- 2.5 mH ., pie wound.
RFC5-Filament choke (B. \& W. FC-15).
SW1-2-gang rotary, 2 poles, 5 position.
SW2, SW4-S.p.s.t. toggle switch.
T1-Filament transformer, 117 v . primary, 6.3v. 10a. secondary, c.t. (Triad F-21A).
it and improved the r.f. shielding with $\frac{1}{2} \times 1 / 16$ inch aluminium strips on the outside. The $\frac{1}{2} \times \frac{1}{2} \times 1 / 16$ inch aluminium angle stock that holds the shield assembly was also obtained in the scrap metal yard, but the same material is sold as trim in most hardware stores.

WIRING

All power and control wiring should be installed first. Plan the wiring so that when the individual wires are joined into cables, the cables will run parallel to the main chassis dimensions. Strip each wire and tin it at both ends before placing it into the chassis. Leave a generous "service loop" when determining length; this makes parts replacement easy.

Lacing the cables adds a lot to the appearance. Flat nylon ties are good Start at the cable centre and work toward the ends, bringing out individual wires as required.

Conductors in low level r.f. circuits consist of bare tinned bus bar. Output circuits are brass or copper strip about 0.02 inch thick. These strips should be secured with screws and nuts rather than solder. For appearance, sand the strips and spray them with clear lacquer.

THE PANEL

I prefer grey wrinkle to all other finishes. I purchase a blank panel with a black-wrinkle finish, complete all drilling, then spray it with "machine grey" lacquer. Several light coats are better than one heavy coat; the lacquer adheres better, and there's less tendency for the lacquer to fill in the original black finish. This makes for color standardisation, because no two greywrinkle panels are of the same hue, even from the same manufacturer's lot.

Another finish, used on my amplifier, requires nothing but a wire brush. Clamp the piece to a flat surface and make straight, even strokes with the brush. It produces a beautiful grained finish.

Whatever finish you use, handle the pieces with cloth gloves-fingerprints really stand out. Dust off the pieces and give them a couple of light coats of :lear lacquer. Surfaces to be joined should be masked to obtain good electrical contact.
(Continued on Page 14)

PARALLEL A.C. CIRCUITS

A Typical Examination Question in A.C. Theory is answered in detail

LECTURE NO. 7

C. A. CULLINAN,* VK3AXU

Parallel a.c. circuits arc very widely used in radio work and it is essential to understand such circuits thoroughly.

In a great number of cases parallel a.c. circuits include series circuits within themselves and it was for this reason that series a.c. circuits were dealt with firstly.

Parallel a.c. circuits can be extremely complex so we will make this lecture a relatively simple question and work out the answers.

QUESTION

A parallel a.c. circuit consists of three branches-A, B and C.
Branch A consists of an inductance of 1 henry in series with a resistance of 100 ohms.

Branch B consists of a pure resistance of 50 ohms.
Branch C consists of a resistance of 10 ohms in series with a capacitance of $10 \mu \mathrm{~F}$.

The impressed voltage is 400 and the frequency is 50 c.p.s. (Hz.).

1. Find the individual branch impedances $\mathrm{Za}, \mathrm{Zb}, \mathbf{Z c}$.
2. Find the individual branch currents Ia, Ib, Ic.
3. Find the impedance Z of the circuit.
4. Find the total current flowing in the circuit.
5. Find the apparent power in the circuit.
6. Find the power factor.
7. Find the true power.

Comment.-The circuit will appear like this-

Question 1:

Branch A is a series a.c. circuit containing an inductance and a resistance. From our previous lecture on a.c. circuits we remember that the formula for series impedance is:
$Z=\sqrt[2]{R^{2}+\text { Reactance }^{2}}$
Therefore
$\mathbf{Z a}=\sqrt[3]{100^{2}+\mathbf{X L}^{2}}$
$=\sqrt[2]{100^{2}+(2 \pi \mathrm{fL})^{2}}$
$=\sqrt[2]{100^{2}+(2 \times 3.1416 \times 50 \times 1)^{2}}$
$=\sqrt[2]{10,000+98,699}$
$=\sqrt[2]{108,699}$
$=329.6$ ohms.
$\mathbf{Z b}=50$ ohms.

- g Adrian Street. Colac, Vic., 3250.
- Continuing the series of lectures by C. A. Cullinan, VK3AXU, at Broadcast Station 3CS for students studying for a P.M.G. Radio Operator's Certificate.

$$
\begin{aligned}
\mathrm{Zc} & =\sqrt[2]{\mathrm{R}^{2}+(\mathrm{XC})^{2}} \\
& =\sqrt{10^{2}+\left(\frac{1,000,000}{2 \pi \times 50 \times 10}\right)^{2}} \\
& =318.3 \text { ohms. }
\end{aligned}
$$

Question 2:

Find the currents in each branch.
Ohms Law for a.c. is: $\mathbf{C}=\mathbf{E} \div \mathbf{Z}$.
For Branch A we have
$C=400 \div 329.6$

$$
=1.213 \text { amperes. }
$$

Branch B we have
$C=400 \div 50$
$=8$ amperes.
Branch C we have

$$
\begin{aligned}
& =400 \div 318.3 \\
& =1.254 \text { ampere }
\end{aligned}
$$

Question 3:

Comment.-The impedance of the circuit can be found most readily from Ohms Law.

Impedance $=$ Voltage \div Current.
However we do not know the total current and must work out section 4 of the question before we can answer section 3.

Question 4:

Comment. - Branch A contains aln inductance and a resistance, so from our previous discussions of series a.c. circuits we know that Branch A will have a positive sign, also that Branch C, being capacitively reactive will have a negative sign.

The total current will be

$$
I \text { total }=\sqrt[2]{\mathrm{Ib}^{2}+(\mathrm{Ia}-\mathrm{Ic})^{2}}
$$

Please Note: It is common practice to interchange the letter C and I for current, particularly amongst oldtimers.

$$
\begin{aligned}
& =\sqrt[\pi]{8^{2}+(1.213-1.254)^{2}} \\
& =\sqrt[\approx]{8^{2}+(-0.041)^{2}} \\
& =\sqrt[\pi]{64+0.000181} \\
& =8.00
\end{aligned}
$$

As the impedance of Branches A and C are almost equal but of opposite signs, they almost cancel each other, so have virtually no effect on the circuit. For practical purposes in this circuit the small nett amount of current need not be considered.
For the question, the components in Branches A and C were selected to bring about this result as a demonstration.
Therefore the answer to section 4 of the question is:
$\begin{aligned} \text { I total } & =\sqrt[\sim]{64} \\ & =8 \text { amperes } .\end{aligned}$
Comment.-We are now in a position to answer section 3 of the question.

As stated earlier,
Impedance $=$ Voltage \div Current
$=400 \div 8$
Answer-

$$
=50 \text { ohms }
$$

Question 5:
The apparent power

$$
\begin{aligned}
& =E \times I \\
& =400 \times 8 \\
& =3,200 \text { watts. }
\end{aligned}
$$

Question 6:

Comment.-The true power in a circuit is that available for work (heating, lighting, power for machinery, etc.).

$=E \times I \times(R \div Z)$ watts,
ratio ($R \div Z$) in a right angled triangle is called the cosine of an angle or $\cos \theta$ or power factor.

Therefore Power
$=\mathrm{E} \times \mathrm{I} \times \cos \theta$ watts.
However, in this particular circuit we have determined in answer to question section 3 that the impedance is the same as the resistance, therefore the power factor is unity.

Answer to Question 6: Power factor is unity.
Question 7:
Answer.-As the power factor is unity, then the true power is the same as the apparent power.

True Power

$$
\begin{aligned}
& =\text { Apparent Power } \times \mathrm{PF} \\
& =3,200 \times 1 \\
& =3,200 \text { watts. }
\end{aligned}
$$

ANSWERS

1. Branch Impedance

$$
\begin{aligned}
& \mathbf{A}=329.6 \text { ohms } \\
& \mathbf{B}=50 \text { ohms } \\
& \mathbf{C}=318.3 \text { ohms. }
\end{aligned}
$$

2. Current in Branch
$\mathrm{A}=1.213$ amperes
$\mathrm{B}=8$ amperes
$\mathrm{C}=1.254$ amperes.
3. Impedance of the circuit $=50$ ohms.
4. Total Current flowing in the circuit $=8$ amperes.
5. Apparent Power in the circuit $=3,200$ watts.
6. Power Factor of the circuit
$=$ Unity.
7. True Power in the circuit
$=3,200$ watts.

OBSERVATION

The impressed voltage is the same across each of the branches.
The current in the various branches need not be the same, but may differ considerably.

PIANO TYPE FREQUENCY METER

C. RENTON;' AX4CR

R^{2}ECENTLY I made my debut into the ranks of the "Donald Duck" brigade by constructing a 40 metre single sidebander, my junk box supplying a large proportion of the parts required, especially an old U.S. Army transmitter tuning unit which supplied the aluminium front panel, most of the remainder of the cabinet, the v.f.o. band spread condenser with its dial and reduction gear, and the final tank condenser and coil.

As I knew very little about sideband techniques when I started the above project, I desire to gratefully acknowledge the very valuable assistance given to me by Jack AX4SF, who, besides assembling portion of the gear, did the etching and checking of the crystals and alignment and testing of the finished transmitter.

Having got this transmitter on the air and having a second army transmitter tuning unit on my hands, I feit the urge to "have a go" at making another sidebander to present to a certain young Ham who was having difficulty in getting long distance contacts with his Command a.m. gear. Not wishing to impose further on the time and good nature of Jack, I decided to try to carry out this second project single handed without the use of special instruments such as Jack had.

The diagram utilised for the above transmitter is somewhat similar to that of the 5 watt one as described in "A.R." January 1967, with, however, a further stage to increase the output, i.e. a 6 DQ 5 in the case of No. 1 transmitter and two 807s in parallel for the second one, which was arranged for 20 metres.

A 6AU6 and half a 12AT7 were utilised in the audio stage, the other half of the 12AT7 being the carrier oscillator valve. The balanced modulator includes two diode rectifiers ex computer boards. The main components of the crystal filter circuit are four FT'243 crystals and a biflar wound coil on an annular toroid former. The output of the filter feeds into a 6BA6 amplifier, this being followed by a 6BE6 mixer stage, 12BY7 driver and a final stage as mentioned above.
The v.f.o. has only one 6AU6 valve with the output frequency a multiple of the input one.

The tone oscillator was constructed as a separate item, a tone injection point being provided on the transmitter front panel.

The crystals utilised in the carrier oscillator and crystal filter stages were the low-priced FT243 type such as have been obtainable from the W.I.A. Store at Crow's Nest. The particular ones utilised for the second transmitter were branded 4950 KHz . (those for the first transmitter being 4995 KHz .).

[^55]
USING THE PIANO

Not being in possession of a frequency meter, I decided to try utilising the household piano to check the frequencies of the crystals as I etched them, or, to be more exact, to compare the frequencies since, of course, no note on the piano quite reaches the megacycle level!

Having some time ago also tried my hand at a spot of piano tuning, I had acquired a list of frequencies corresponding to the 85 notes of the piano keyboard.

For the etching of the crystals I purchased a 52 cent bottle of a proprietary preparation which is utilised for removing rust stains from garments and which is labelled as containing approximately 10% hydrofluoric acid (incidentally, having to sign the chemist's poison register).

The bottle is plastic, as the fluoride would attack glass (and human skin) and the fluid must be handled with care.
I poured some into a cut-down plastic pill container, the latter being in a large diameter plastic lid in case of spillage. A spring type plastic clothes peg was utilised as tongs to grip opposite edges of the crystal during etching.

The crystal was immersed in the solution for only a carefully timed few seconds at first to observe the rate of frequency change, the crystal being quickly rinsed in water to stop the action after each etching.

By use of a simple crystal oscillator (similar to one described in connection with an article re grinding and etching of crystals in "R.T.H." October 1963) and the communications receiver, a preliminary check revealed which of the crystals would be nearest in frequency to one another for pairing, i.e. two pairs required, with a fifth one chosen for the carrier crystal.

The station receiver was switched on some time beforehand to prevent possibility of frequency drift during the tests, the b.f.o. being on.

Two crystals were then matched for the lower pair of the filter by alternately etching the slightly lower frequency one and checking with the beat note of its mate on the receiver, care being taken that such beat notes were on the same side of zero beat.

With both crystals etched to the one beat note, the note was adjusted to coincide with a low note on the piano. In my case (from memory) the note chosen was No. 30 piano key, which was listed as having a frequency of 146.83 cycles per second.

It had been recommended that the upper pair of filter crystals be etched 1800 cycles per second above the frequency of the lower pair.

The nearest note to provide that difference in frequencies was No. 75 key, shown as having a frequency of 1975.533 cycles per second. (1975 - 146 $=1829$.)

The two higher frequency crystals were then carefully etched a little at a time until the beat note on the receiver corresponded as nearly as possible with the note of piano key No. 75.

Incidentally, it did not matter that the old piano was not quite tuned up to "concert pitch," as the difference between frequencies was my only concern in this instance.

The carrier oscillator crystal, which had been on very near the frequency of the lower crystal pair, was then loaded by rubbing solder (about $\frac{1}{4}^{\prime \prime}$ diameter) on one side of the crystal to lower its frequency.
The correct procedure, I understand, is to place the carrier frequency at 20 dB . down on the lower slope or skirt of the filter crystal pass band, but not having the equipment to plot the passband (e.g. v.t.v.m. and r.f. probe) it was a matter of trial and (perhaps) error.

A 3-30 pF. Philips trimmer across the carrier oscillator crystal permits a slight adjustment of the frequency if required after assembly.
Jack invited me to bring the s.s.b. generator portion of the transmitter to his shack after I had completed it and his tests indicated that the crystals were satisfactory as regards pairing and frequency spacing, and that this frontend portion which included carrier oscillator, balanced modulator, crystal filter, 6BA6 amplifier and the audio portion should be okay.

The other stages of the second transmitter still await final adjustment and checking.

As a beginner, I was interested to learn that each individual stage of an s.s.b. transmitter may be tested by means of the communications receiver (only), this being useful if one stage becomes suspect. Thus, in the case of my 40 metre transmitter good signals were obtained on the receiver at the following positions, approximate frequencies being shown:

(a) Input to v.f.o.	\ldots	\ldots.	\ldots	4	MHz
(b) Output of v.f.o.	\ldots	\ldots.	\ldots	12	$"$
(c) Output of carrier osc.	\ldots	5	$"$		
(d) Output of mixer	\ldots.	\ldots	7	$"$	
(e) Output of 12 BY 7	driver	7	"		

(d) and (e) also, of course, constitute checks of the audio stage.

FEEDBACK

The author of "Low-Cost Solid State Power Supply for Carphones and Pye Reporters," August 1970 "A.R.," advises that R1 and R2 (Fig. 1) should be transposed.
Also, if the unit is slow in starting under load, put $0.1 \mu \mathrm{~F} .100 \mathrm{v}$. capacitor from collector to base in each transistoi.

PADDLE-YOUR OWN

COL HARVEY,* VKIAU

The Eddystone Tear Drop Style Model 689 Semi-Auto Key, although apparently not popular as a "bug", can easily be modified to become a reliable paddle for use with an automatic keyer. An important feature is that it can also house (and shield) the solid state keyer described in "A.R." recently.

Modification is simple and involves drilling only one hole in the base plate to re-position the dot contact assembly (Fig. 1a). Modification involves:

- Removing the dot contact terminal.
- Removing the two small screws and the retainer plate which secure the spring steel dot weight assembly to the paddle.
- Removing the dot spring from the dot shaft.
- Discarding the dot buffer, the dot weights, shaft and spring.
In the centre of the channel underneath the keyer base, about ${ }_{2}^{\prime \prime \prime}$ from the trunnion which carries the dot travel stop, drill a clearance hole for the dot contact assembly. Make sure the contact assembly is clear of the trunnion and insulated from the base (Fig. 1a).

- 16 Leane St., Hughes, A.C.T., 2605.

Figs 1 b and 1 c show how to fit the topmost small screw, then the retainer plate, to the inboard end of the main assembly. Slip the end of the dot contact under the retainer plate so that the bottom screw goes through the holes in both the plate and spring contact. Adjust the position of the spring so that it can strike the re-positioned dot contact (Fig. 1b). Tighten both screws.

If two triangular slots are now fled into the front of the trunnions, near the top (Fig. 2) it will be possible to fit a matrix board or printed circuit board $3^{\prime \prime \prime} \times 14^{\prime \prime}$ in the space previously occupied by the dot weights (Fig. 3). A small U shaped clip bolted into an existing threaded hole in the base secures the front of the board, which is slid into place sideways.

A few moments work connecting dot and dash contacts to the matrix board, adjusting contacts and stops, and you are ready for practice-lots of it!

CHANGE OF ADDRESS

W.I.A. members are requested to promptly notify any change of address to their Divisional Secretary -not direct to "Amateur Radio".

SUPPORT PROJECT AUSTRALIS!

LIMITED SUPPLY OF-

 GREAT CIRCLE BEARING MAPS 60c Post FreePrinted on heavy paper $20^{\prime \prime} \times 30^{\prime \prime}$, Great Circle Map $16^{\prime \prime}$ diameter. Invaluable for all DXers and S.w.l's. Bearings around circumference allow precise beam headings to be made.
ALL MONEY TO GO TO "W.I.A. PROJECT AUSTRALIS"
Cheques, etc., to W.I.A., P.O. Box 67, East Melbourne, Vic., 3002
WRITE NOW. WHILE STOCKS LAST

WEATHER PROOF MICROPHONE

Designed specifically for marine purposes, a range of weatherproof microphones branded "Vitavox" is now available in Australia.

Type B60 series microphones are completely enclosed in a rubber case and will withstand heavy handling and total immersion in water.

They are convenient to hold in a gloved hand, and a non-locking, "press-to-talk" switch, which has relay circuit contacts fitted, can be operated through the rubber case.

A cast aluminium-alloy stowage housing is made available to provide protection for the microphone when not in use.

A technical data leaflet giving full electrical characteristics is available on request from the sole Australian agents, R. H. Cunningham Pty. Ltd., 608 Collins St., Melbourne, Vic., 3000.

ELECTRONIC KEYER

The "Ele-Key" electronic keyer will provide automatic precision code at speeds from 8 to 60 words per minute. A solid state unit, the EK26 contains 11 transistors and 12 diodes, and has a built-in, monitor oscillator and phone: jack and is fitted with a break-in QSO (vox-c.w.) terminal. Speeds are variable and can be operated semi or fully automatically.

Available in a choice of power supplies: 230 a.c. or $6 \mathrm{v} . x 2$ d.c.; total weight 3 lb .12 oz . Price $\$ 75$ including sales tax. Further information from the Australian distributors: Bail Electronics Services, 60 Shannon St., Box Hill North, Vic., 3129.

HY-Q CRYSTALS

A new range of crystals designatet the "Delta" Line, has been released by Hy-Q Electronics. They will be available in the frequency ranges of 4 to 105 MHz . (type QC6) and 10 to 105 MHz . (type QC18) and are capable of maintaining frequency over a temperature range of $+5^{\circ} \mathrm{C}$. to $+55^{\circ} \mathrm{C}$. within ± 5 parts per million (5 Hz . in every MHz.).

Full details are available from $\mathrm{Hy}-\mathrm{Q}$ Electronics Pty. Ltd., 10-12 Rosella St., Frankston, Vic., 3199.

5/8th WAVELENGTH VERTICALS'

R. L. CRAWSHAW, WAONGV

MANY articles, manuals and even full-length books are devoted to antennas in general and as specifically applicable to the Amateur Radio service. Unfortunately, one of the most effective simple antennas for both local ground wave and long haul DX communications on the higher frequency bands is almost invariably conspicuous by its absence. Consequently, few Amateurs are familiar with the characteristics, design, or construction of the $5 / 8$ wavelength vertical antenna.

It will be immediately apparent to most Amateurs that the $5 / 8$ wavelength vertical antenna will provide an omnidirectional radiation pattern and a vertical polarised signal. And the antenna itself will be $2 \frac{1}{2}$ times as tall as the more familiar $1 / 4$ wavelength vertical or groundplane. What will not be so obvious, to the uninitiated, is the even lower angle of vertical radiation, the gain obtainable and an additional improvement in reception due to increased capture area over the conventional $1 / 4$ wavelength antenna.

Fig. 1-Low-angle radlation increases as antenna length increases up to 5 , wavelength.

These characteristics have made the $5 / 8$, wavelength antenna very popular in the land mobile services and in Amateur 2 metre f.m. operations where omnidirectional vertically polarised ground-wave communications with low power mobile stations are desired on a full-time basis.

Vertical antennas, almost invariably of the $1 / 4$ wavelength variety, have been widely employed in the Amateur Radio service for DX communications where their low angle of radiation (assuming an adequate ground system) has proved very effective. Since the polarisation of radio signals is generally rotated significantly in the process of reflection, cross-polarisation losses are seldom a consideration in sky-wave communications.

Unfortunately, the additional advantages of the $5 / 8$ wavelength antenna

[^56]have seldom been employed for normal Amateur communications. True, a 150 ft . vertical for 75 metres or 80 ft . for 40 metres is beyond the facilities of most Amateurs. However, a 30 ft . antenna for 15 metres is well within Amateur capability, and 50 ft . (20 metres) is within the realm of reason.

THEORY OF OPERATION

As a short grounded vertical antenna is increased in length, the radiation lobe narrows, increases in tensity, and the angle of max. radiation lowers toward the horizon. As the length exceeds half wavelength, a secondary lobe of radiation at high vertical angles develops; but the low-angle radiation continues to increase until a height of $5 / 8$ wavelength is reached (Fig. 1). With no equalising factor, as the length is increased beyond $5 / 8$ wavelength, the high-angle radiation increases and the low-angle radiation decreases.

Fig. 2. $5 / 8$ wavelength vertical base-loaded to $3 / 4$ wavelength with serles Inductance.

Since the $5 / 8$ wavelength antenna is non-resonant, it presents highly reactive load impedance unsuitable for direct feeding. At least three basic methods are available to transform this impedance to a 50 ohm non-reactive feedpoint.

Probably the simplest method is the use of a small series inductance as shown schematically in Fig. 2. The inductance can be considered as base loading the antenna to $3 / 4$ wavelength (with no change in the radiation pattern). This is a resonant length which will present a feedpoint resistance of approximately 50 ohms, a very close match to RG-8/U or RG-58/U co-axial cable. Adjustments to the loading coil should provide an s.w.r. of less than 1.2:1.

In the groundplane configuration, some additional improvement in s.w.r. can be obtained by dropping the radials. Approximately 30° below the horizontal will be about optimum with a resulting s.w.r. of less than 1.1:1. This configuration has the advantage in simplicity and ease of construction and tuning. It will also be relatively broadbanded when fabricated of materials of adequate stiength.

The second feed method utilises a parallel-resonant circuit tuned to the operational frequency with the feedpoint tapped at a low impedance point on the coil, as shown in Fig. 3. This arrangement may be considered as providing high impedance feed to the base, of the radiating element and a
direct ground connection to minimise ignition noise and provide a degree of lightning protection. Co-axial feedpoint tap adjustments in conjunction with minor tuning changes can provide nearly a $1: 1$ s.w.r. at the operating frequency.

Fig. 3.-5/8 wavalength vertical using parallel tuned circuit feed.

The tap point and tuning adjustment interact slightly and initial adjustments are slightly more time-consuming. However, the coil-capacitor combination can be grid-dipped to the approximate frequency on the bench so that only minor touch-up is required.
This configuration has the additional advantages of providing a very low s.w.r. without decoupling-radial droop or when mounted on a mobile installation. It will not normally be quite as broadbanded as the first.
A third method of feeding is through the familiar gamma match, as shown in Fig. 4. Here the radiator itself is grounded and the feedline is tapped onto the radiator through a series capacitance. This arrangement also provides a direct ground connection for

Fig. 4.-5/8 wavelength grounded vertical with gavelength grounded
minimisation of ignition noise and a reasonable degree of lightning protection. Feedpoint tap variations combined with series capacitor adjustments can provide nearly a $1.0: 1$ s.w.r. at the operating frequency.

This configuration is particularly adaptable to feeding existing grounded towers as ground system of heavy radials will be required.

DESIGN

The $5 / 8$ wavelength vertical radiator should be reasonably close to a full $5 / 8$ wavelength at the desired frequency but should preferably be no longer. iContinued next page)

Consequently, the decoupling radials should be a $5 / 8$ wavelength at the high end of the band of operation. Conversely, the decoupling radials should be a minimum of $1 / 4$ wavelength at the low end of the operating band. The following formulae are based on reasonable velocity factors for materials probably available in Amateur construction and should prove adequate for preliminary design purposes.

Radiator length (inches) $=7020 \div \mathrm{P}$ in MHz ., or
Radiator length (feet) $=585 \div f$ in MHz .
Decoupling radial length (inches) $=2880 \div f$ in MHz., or
Decoupling radial !ength (feet) $=240 \div f$ in MHz .
Using these dimensions, the coupling circuit can then be selected to resonate or provide minimum s.w.r. at the desired operating frequency. Though theoretically any coil or coil-capacitor combination which can be resonated at the desired frequency would work, it is important that good tank-circuit design principles and full weather protection be considered to minimise circuit losses and provide for maximum energy transfer. In general, this implies that all coils be space-wound with large wire or tubing and that length-to-diameter ratios be less than 4:1 (and preferably 2:1). Capacitors should be high quality, ceramic insulated or wide air-spaced variables for ease of circuit adjustment and reasonable power handling capability.

The co-axial feed tap point will vary with different constructional methods and materials, and the optimum point must be determined experimentally for each installation. It will invariably be quite close to the ground end of the coil, varying from approximately 1 turn on 2 metres to possibly 3 or 4 turns on 20 metres.

CONSTRUCTION

While this is not intended as a "hardware" style construction article, a few approaches possibly worthy of further consideration have been accumulated.

Conventional t.v. masting or aluminium tubing is readily available, rugged and inexpensive, although insulation and installation are more difficult than with some other materials.

Of course, the surplus whip antenna segments and their matching insulators are relatively inexpensive, free standing to heights approaching 20 feet; they are relatively light in weight and are available from numerous sources.

Insulated (or even grounded) antenna towers should make effective radiators for the lower frequency bands, providing an adequate ground radial system is incorporated.

On 2 metres or even 6 metres, a fibre-glass fishing pole covered with shield braid from RG-8/U and RG-58/U makes an ideal radiator. Of course, $1 / 8$ inch welding rod works adequately on 2 metres or higher bands also.

Although this antenna will probably not complete with a good beam or quad at optimum elevations above ground, it is a very effective antenna, readily and economically fabricated with minimum facilities.

HOME-BREW FIVE-BAND LINEAR AMPLIFIER
 (Continued from Page 9)

ACCESSORIES

The fluted knobs and nickel-silver dial may look old fashioned, but I like them. They're still available commercially. The dial pointer was lost years ago, so I made one from a scrap of plastic. The pinch drive provides just enough drag to keep the tuning capacitor from getting out of adjustment.
The metres, are surplus items. Their sensitivity wasn't what I wanted, but this was corrected using standard techniques. ${ }^{1}$

The roller-coil dial is home-made. I bought a 3 -digit counter from a surplus dealer for a dollar. The mitre gears were obtained from a standard right-angle drive. I cut the escutcheon from $1 / 8$ inch thick sheet aluminium. It is finished in black-wrinkle lacquer. A possible source of wrinkle finishes in spray cans is your neighbourhood Speed Shop; the hot-rod set seems to favour these finishes nowadays.

DECALS

You'll want to label your controls and other accessories. I prefer the watertype decals to the dry transfer labels because mistakes are easier to correct. With the latter, you're committed to a position on the panel, and it is difficult to remove dry transfers without ruining the finish. After you have positioned the decals, spray them with clear lacquer.

A FINAL WORD

If this is one of your first major construction projects, and you have made a few mistakes in mechanical work, all is not lost. Most goois can be remedied. Extra holes can be occupied with screws and solder lugs, as if this is what you intended all along. Or you can strip the finish and fill the hole with auto-body solder, then refinish the panel. This takes a few hours of extra work, but it reflects your pride in a job well done.

[^57]FED. PRESIDENT'S TOUR
The Federal President, Michael Owen, VK3KI, has returned from his overseas tour which covered discussion on matters affecting the 1971 Space Frequency Conference, I.A.R.U., and Region III.

Subsequent issues will cover the points of interest to members in his discussions with Amateur Societies in the Far East, U.S.A. and Europe.

The following letter was received from the Secretary of the I.A.R.U. Region I. Division:

Secretary, W.I.A.

Although writing on I.A.R.U. notepaper, I am also speaking for the R.S.G.B.

It is felt by the Council, and particularly by those persons who had the opportunity to meet Michael, that the visit of your President was a most valuable opportunity to discuss many matters of mutual interest. We feel that the W.I.A. are to be congratulated on their foresight in persuading theiiPresident to make the arduous journey.

As you know, he had the opportunity of meeting the leader of the U.K. delegation to the Space Conference. As a final development, the Ministry of P. \& T. have now given me a brief wording of the proposal to be made at the W.A.R.C. I enclose a copy of this for your information.

Yours sincerely,
R. F. Stevens, G2BVN.

MORSE TAPE SERVICE

There is a Morse Tape Service available to anyone whether a member of the W.I.A. or not from the VK2 Division of the W.I.A. The cost of the service is 30 cents per tape and the loan period is set at two months. There is also a charge of 15 cents for tape overdue beyond the two-month period. Payment of either amount is preferred by either stamps or postal notes made out in favour of the W.I.A. N.S.W. Division.

To save time when applying it would be appreciated if the following information could be supplied in the application:
(1) Name of tape recorder.
(2) Number of tracks.
(3) Maximum size of tape spool used.
(4) Speeds at which it plays.
(5) Which tape shown in the list below that you require. It is normal for only one tape to be supplied at a time.
The majority of the tapes available are on 5" spools, two-track at a speed of 37 i.p.s. There are also some tapes on $3^{\prime \prime}$ spools at 3_{4}^{3} i.p.s. and 1_{8}^{7} i.p.s.

The tapes available from the service are:

Special for beginners (50 minutes).
No. 1: $\frac{1}{2}$ hr. 5 w.p.m., $\frac{1}{2}$ hr. 6 w.p.m.
No. 2: " 7
$\begin{array}{lllllll}\text { No. 2: } & \text { No. } & 10 & " & " & 11 & " \\ \text { No. 4: } & ", & 12 & " & " & 14 & " \\ \text { No. 5: } & " & 15 & " & " & 18 & "\end{array}$
$\begin{array}{lllllll}\text { No. 5: } & " & 15 & " & " & 18 & " \\ \text { No. 6: } & ", & 18 & " & & & \end{array}$
No. 6: " 18
No. 7: ", 20 ",
For the supply of tapes or for furthe: information contact the Morse Tape Supervisor, Max Francis, VK2BMK, 93 Kingdon St., Scone, N.S.W., 2337.

READING THE PREDICTION CHARTS

To use these charts, ability to read a graph is the basic requirement. The curve marked M is the maximum useable frequency and in normal propagation, communication by a frequency above the MUF curve is not possible between Canberra and the location shown at the top of the graph. Similarly, the curve marked A is the absorption limiting frequency and frequencies below that line are completely absorbed.

If, for example, the area between the MUF and ALF curve covers 28. 21,14 and $7 \mathrm{MHz}_{\text {, }}$ communication will be possible on all four bands, but signals will become weaker as the frequency decreases and could be below the noise level in a particular area on 7 MHz .

Should the ALF curve cross and become higher in frequency than the MUF curve, then no communication is possible by means of F layer reflection.

Anomalous propagation does occur, but a number of factors can cause this to happen, and at times, prove predictions to be wrong.

To permanently expect to operate at the MUF is "dangerous living" and we use what is known as the optimum working frequency, OWF, which is 15% below the MUF. The F layer never
remains constant and varies from day to day, which means if you operate right on the MUF curve you will have times when, due to the MUF falling below the predicted frequency, the band is closed. Similarly, the band could open when not predicted. This is why it is best to use the OWF in working as against the MUF.

To give you an example of reading the chart, I will use the September '70 chart of the long path, Canberra to Montreal.

At 0001 GMT or Z time, the ALF curve passes through 12 MHz ., which means as 7 MHz . is below that curve, 7 MHz . is completely absorbed. The MUF curve at the same time is 22 MHz . which means any frequency above 22 MHz . is unuseable, so between the MUF and ALF curve at that time it will show 21 and 14 MHz . to be open.

The MUF curve continuously drops until by $0100 \mathrm{z}, 21 \mathrm{MHz}$. has closed, leaving 14 MHz . as the only workable band. At 0530 z the MUF curve crosses the 14 MHz . line, which then means 14 MHz . is closed, so that there is no Amateur frequency open to Montreal by long route.

In the meantime the ALF has increased in frequency until at 0700 z , it passes through 14 MHz ., so even if the MUF curve was above 14 MHz ., that band would not be open and this actually does take place at almost 0900 z , when the MUF curve goes above 14 MHz. but the ALF curve remains above 14 MHz . until 1500 z . So with the MUF curve above and the ALF below 14 MHz ., that band will be open at 1500 z . However, it again closes at almost 1700 z when the MUF curve goes below 14 MHz . and it stays closed until 2300 z .

So summing up, 21 MHz . is open 2200 z to almost 0100 z and 14 MHz .2100 z to 0530 z and 1500 to 1700 z . If the ALF were to drop 1 MHz . at 2130 z , then 7 MHz . would open briefy. Similarly, if the MUF were to rise a little over 1 MHz . at 1100 z , then 21 MHz . would have a brief opening.

Always remember, the F layer never remains constant, so the MUF can change daily. So can the ALF, but to a far less degree.

If you are able to borrow a copy of "A.R." for January 1967, further information can be obtained from a much more extensive article on this subject.
-F. T. Hine, VK2QL.

PREDICTION CHARTS FOR SEPTEMBER 1970

(Prediction Charts by courtesy of lonospheric Prediction Service)

Naga Naga Centenary and South-West Area Convention

This Convention will be held over the EightHour Week-end: Saturday, Bsd October; sanday, th October; and Monday, lib October. The location will be in the Wagga City area.
Procramme.-Saturday: Arrival and registraion, tours of city, Centenary Show IWagga Show Socletyl. Strangers will be met and directed to the registration centre. Net iredirected to the regiswill be; 40 mx mil 710 KHz . quenches for Mobiles will be; $40 \mathrm{mx}-1410 \mathrm{KHz}$. (FM) (all day Saturday).
Saturday night: Dinner to commence at 7 pam. Slides afterwards for those interested. p.m. Slides afterwards for those interested.
Sunday: 9 arm., meet at Bolton Park in TarSunday: 9 adm., meet at Bolton Park in Tar-
cutty $S t$. Guides from there on to site. 10 atm., cutty St . Guides from there on to site. 10 am., welcome and ragchew. 11 a.m., hidden transmither hunt on 146 MHz . FM. Novelty competi-
lions for YRs, XXL and Harmonics scavenger trons for YLs, XYLs and Harmonics (scavenger hunts, etc.). 12.30 p.m., Barbecue (big one). 1.30 p.m. varied novelty events for all, events for S.w.i's. 2 p.m., 40 mx all-band scramble, 2 mx all-band scramble (148 MHz .); separate prizes for 40 and 2 mx . 2.30 p.m. pedestrian hunts of varied nature on 2 mx FM for all ranks $(146 \mathrm{MHz}$.). 3.15 p.m., fox hunt on 2 Tx FM (146 MHz). $4.30 \mathrm{p} . \mathrm{m} .$, presentation of prizes, results of competitions. 7.30 p.m., austion at hall 110 per cent. for organisation, bring all your unwanteds). Get-together and other entertainment for others.

Monday: 10 am., meet at Tarcutta St. again for a visit to varied but interesting organisatons in Wagga. To end up at a picnic barbecue, ions in Naga. To end pale to leave from

Accommodation.-The Naga District Radio Club has motel accommodation tentatively booked, which can be, under difficulty, held up to the 12 th Sept., after that we cannot guarantee accommodation as the Wagga Cendenary Show will be on the same weekend. So please book early.

Bookings can be made through the Club Secretary, L. A. McKenzie, VK2ZLU, 106 Ash mont Ave., Ashmont, Wagga, 2850. The deposit required is two dollars per person per night. Confirmation will be given by return mail. The motto for accommodation is "be early and all will be right.'

WAGGA CENTENARY TROPHY

Radio Amateurs throughout the Commonwealth of Australia are invited to compete for a suitably inscribed trophy donated by the Lord Mayor and the Wages City Council, as a part of the Wagga Wagga City Celebrations. for the 100 years of local government.
The trophy will be awarded to the station who works the most call signs of Wagga Amathurs, during a period of nine days commencing 12th September, 1870, at 0001 hours A.E.S.T and finishing 20 th September, 1970, at 2359 hours A.E.S.T

RULES

1. Bands used will be 80,40 and 20 metres. 2. Modes: AM, SSB or CW.
2. Station who works the highest number of Wagga contacts is declared the winner.
3. Any call sign in Wagga can only be worked once in one 24-hour period (0001-2400). 6. A call sign can be worked in the same 24-hour period on another band.
4. Signal report and contact number is require to be exchanged and recorded in log sheets, e.g. 59001
5. Log sheets have to be submitted so as to be in the hands of the Secretary of the Naga District Radio Club by 26 th September, 1970. No late entries will be accepted
6. The winner will be announced at the Wagga Centenary South-West Zone Convention Dinner and also in the N.S.W. Bulletin.

COMMUNICATIONS RECEIVER

- 4 BANDS COVERING 540 Kcs. TO 30 Mas.
- TWO MECHANICAL FILTERS ENSURE MAXIMUM SELECt. TIVITY.
- PRODUCT DETECTOR FOR S.S.B. RECEPTION.
- AUTOMATIC NOISE LIMITER.

PRICE: FQR/FOA SYDNEY: $\$ 175.00$

CONSULT YOUR LOCAL RADIO DEALER, OR
MAIL THIS COUPON

Please forward free illustrated literature and specifications on Trio equipment.
(A unit of Jacoby Mitchell Holdings Ltd.) Name.

Address
376 EASTERN VALLEY WAY, ROSEVILLE, N.S.W.
Cables and Telegraphic Address: 'WESTELEC
Cables and Sydney. Phone: 401212

SOUTH-WEST AREA
 BI CENTENARY CERTIFICATE

An attractive certificate will be issued by seven or more stations in the South-West Area (Area 5).

1. The contact can be on any band or any mode.
2. The stations worked can be any part of the South-West Area.
3. Commences on 15th August. 1870, at 0001 hours A.E.S.T. and finishes on 5th October, 1970 the last day of the Centenary Convention at Naga!.
For those who are not sure. these towns and their environs are in the South-West Area:
Wagga Wagga, Albury, Griffith, Narrandera, Leeton, Tumult. Tumbarumba. Batlow. Deniliquin, Remora, and Grong Grong.
4. Show all particulars on the log sheets and submit them to the Secretary of the Wags: District Radio Club. 106 Ashmont Ave., Ashmont. Wagga, 2650.
S.w.l's are invited to submit log sheets for contacts heard, with at least one station in the South-West Area, per contact. Seven conacts are required also.

TECHNICAL ARTICLES

Readers are requested to submit articles for publication in "A.R." in particular constructional artidles, photographs of stations and gear, together with articles suitable for beginners, are required.

GRAPHICAL SYMBOLS FOR USE IN ELECTROTECHNOLOGYDRAFT STANDARD

The Standards Association of Australia is seeking comment on draft Australian standard graphical symbols for use in electrotechnology, applying in particular to semiconductor devices. The draft is issued for public review as Doc. 1579.
The draft is based on an International Electrotechnical Commission recommendation for symbols, and the terminology is consistent with the International Electrotechnical Vocabulary. This will facilitate the exchange of information on equipment using semiconductor devices.
Doc. 1579 applies to graphical symbols for use in circuit diagrams. It establishes a number of basic elements and demonstrates a method of combining these elements to produce complete devices. Symbols may be combined to produce more complex or more descriptive symbols. or both. The primciples governing the combining of these various symbols are specified.

Qualifying symbols indicating a specia function or property essential for operation of the circuit containing the device are defined and examples given of their use. Reference designations are shown for discrete devices.

Copies of Doc. 1579 may be obtained, without charge, from the various offices of the Standards Association of Australia in all capital cities and Newcastle.

Comment on the provisions of the draft is invited from persons or organisations experienced in the application of such symbols in their field of work. Such comment should reach the head office of the Association, 80 Arthur St., North Sydney, N.S.W., 2060, or any branch office, not later than 30th Septemper, 1970.

WORKED ALL VK CALL AREAS (W.A.V.K.C.A.) AWARD

objects

1.1 This Alward. to be known as the W.A.V.K. C.A. Award. is offered by the Wireless Institute of Australia as tangible evidence of the proficiency of overseas Amateurs in making contacts with the various cal areas of the Commonwealth of Australia.
1.2 The Award may be clalmed by any Amateur in the world who is a member of an amliated Society of the I.A.R.U.. but no Australian Amateur will be eligible.

REQUIREMBNTS

2.1 A handsome Certificate will be awarded to any applicant who makes contacts with Australian Amuteur Stations in the areas number of contacts required in each area is also shown.

OPERATION

3.1 Contacts between overseas stations and Australlan stations must have been made on or after the 1st January, 1946.
3.2 Contacts may be made using any authorised frequency band or type of emission permitted to Australian Amateurs, but cross band contacts will not be allowed.
3.3 No contacts made with ship or aircraft stations in Australian territories will be eligible, but land-mobile or portable stations may be contacted provided the on the confirmation.

VERIPICATIONS

4.1 The applicant must submit documentary proof. in the form of QSL cards or other contacts have taken place. Such verifica-
tions must show the date and time of contact, type of emission and frequency used, signal reporty and location (in the of the stations contacted.
4.2 Verifications must be submitted exactly as received, and forged or altered evidence may result in the disquallification of the station concerned.
4.3 A list, in accordance with the details required in Rule 4.1. must be submitted with the application for the Award.

APPlications

5.1 All claims for the W.A.V.K.C.A. Award must be made by the submission of the confirmations (Rule 2.1), together with the list .'Rule 4.31, direct to "Awards Manager." P.O. Box 67. East Melbourne,
Victoria. 3002. Australia. Sufficient InterVictoria. 3002. Australia. Sufficient International Reply Coupons must be enclosed to cover return postage of the confirmations to the applicant.
5.2 Where a reciprocal agreement exists between the W.I.A. and the applicant's Society, the appointed officer of that Soclety will carry out the check, and if correct. will forward a written application for the Award on behalf of the applicant. together with the list (Rule 4.3).
5.3 Applications will be examined by the Awards Manager. who will arrange for the Award to be forwarded either direct or through the applicant's Society. The Awards Manager's decision on the application and interpretation of these Rules will be final and binding.
5.4 Notwithstanding anything in the Rules to the contrary, the Federal Councll of the W.I.A. reservics the right to amend these Rules as necessary.

APPENDIX		
Territory	든	¢
Australlan Antarctica Heard Island Macquarle Island ,	VKO	1
Australian Capital Territory	VK1	1
Lord Howe Island State of New South Wales ..	VK2	3
State of Victoria	VK3	3
State of Queensland , Thursday Island ,' Willis Island	VK4	3
State of South Australia	VKS	3
State of Western Australla	VK8	3
$\left.\begin{array}{l}\text { Flinders Island } \\ \text { King Island } \\ \text { State of Tasmania }\end{array}\right\}$	VK7	3
Northern Territory	VK8	1
Admiralty Islands Bougainville Island Christmas Island Cocos Islands		
Nauru (VK9 only) New Guinea New Ireland Norfolk Island Papua Territory	VKs	1

Note.-In Areas above, where more than one confirmation is required, contacts may be made with any or all of the Territories listed in brackets.

NEW CALL SIGNS

APRIL 1970
VK2GE-M. G. Datson, 75 Terry Rd., East- VK2ABL wood. ${ }^{2122}$ A. Eastering. 279 Forest Rd.. Kirrawee, 2232.

VK2ALM-V. J. McKerchar, 42 Alanas Ave., Dundas. 2117.
VK2BAY \quad. A. Bowgen, 31 Oakland Ave., Windang. 2503.
VK2BJH-G. J. Griffiths, Station: Bellimboopini, via Kempsey; Postal: 21 Neville Everson St., Kempsey. 2440
VK2ZJH-G. J. Merrill, 6 Bungowen Ave., VK2ZVJ-J. E. Brown-Sarre, Silver City H'way. Burong3, 2648.

VK3FP-C. Reisinger, 68 Noble St., Noble Park, VK3UO-J. C. Chippendall, 29 Waverley Pde., VKC Pascoe Vale, 3044.
VK3AEF-J. M. Bywaters, 30 Queen St., Nhill VK3AHO-W. R. Hempel, 9 James St., Kya-VK3AKI-K. ${ }_{\mathbf{H}}{ }^{\text {bram }}$
VK3B Moorabbin, 3189 VK3BBY-Shepparton South Technical School Radio Club. Wilmot Rd., Shepparton, 3630.

VK3BCG-Camberwell Grammar Radio and Electronics Club, 55 Mont Albert Rd.. Canterbury. 3126.
VK3BCP-R. M. Trott, 137 Bignell Rd., East VK3BCT-R. D. Trickelt, 8 Yinnar St., Broad-VK3BCY-W. H. M. Hoyle, 45 Turana St., Doncaster, 3108.
Firfid Garratt 30 McGregor St., VK3BDL_A. Moode. 92 Mont Albert Rd., VK3BDS-R. H. Wills. 3
VKJbDS-R. H. 3124, 3 Westbourne Gr., Cani-VK3BDV-H. J. Hook. 145 Miller St., North VK3BGB-W. Fitzroy. G. Bnird, 23 Landale St., Box VK3YAO-Gill. ${ }^{3128 .}$. Piasne, Flat 10, 85 Cleeland St. Dandenning. 3175 .
VK3YBI-H. N. Ronchetti. 4 Finlayson Cres., VK3YCI-R.J. J. Whitin Mitch:am, 3132.

VK3YCL_J. E. S. Day, 35 Mount St., Glen VKsYCM-B. F. Sunderland, 2 Grafton St., VK3YDA-A. Cobs. Conrad. \& Allambee Ave., VK3YDB-G. N. Long. Eyre Rd., Mt. Dande-VK3YDC-R
VK3YDC-R. J. Paynting. Flat 10, 39 Somerset St. Richmond, 3121.
VK3YDM-M. J. Dawkins, 74 Springvale Rd.. Nunawading, 3131.
VK3YDS-G. J. Payne. 97 Ringwood St., Ring-VK3YDX-C. Pandolio, 35 Clifton St., Rich-VK3YEF-M. R. Hammer, 285 Bay Rd., Cheltenham. R . Ham.
teng.
VKsZHX-H. E. Jones. 2 Laird St., Croydon, VK3ZRL-R ${ }^{3136 .}$. Wash. Gleneuse St., Point Lonsdale. 3225.
VK3ZTI-P. D. McKenzie, 10 Homer Ave. Croydon, 3136.

VK4CS-J. McDonald, Flat 1. Tallaringa. 8 James St., Currumbin Beach. 4223.
VK4DT J. H. Ginsberg. Eton Private Hotel VK4LQAJ. L. Jones, 24 Leslie St., Toowoomba, VK4LY-L. A. Dancey. 8 Warren Crt. Aitkenvale, 4814.
VKSAZ-B. T. Parker, 10 Regent St., PenningVK5LL ton, G. Douglas, 123 Flinders Tce., Port VK5PK-P Kugusta, 5700 Kwart, B The Grove, Dulwich. VK5SI-W. O. B. Wilson. C/o. R. Sedunary. Campbell Ave.. Crafers. 5152.
VKsZES-E. L. Smith. Flat 2, 11 Hawson Pl.. VK5ZHE-H. Dittlofi, 22 Port
VK5ZRF-A. R. Holker, 80 Mainwaring Cres., VK5Z2I-D. W. Friend. 84 Northgate St., Unley Park, 5081.
VK6CK-C. M. Hayes. 42 Brentwood Ave., VKERW-R. J. Watson

Postal: Watson, Station: Mingenew. 6522; Postal: C/o. Casuarina Enterprises Pty. Lid.. P.O. Box 87. Mingenew, 6522.
VK6SR-Southern Electronics Group. Blue Waters. The Esplanade. Little Grove, Alhany. 6330 .

VK6ZAQ-A. M. Gath. Station: Cuballing, 6311; vK6ZAY-C. F. Muller. ${ }^{29}$ Cuballing. Gladstone Rd. VK6ZGN-R. E. Good. 237 Gloucester St. Victoria Park, 6100
VK6ZGV-M. B. Harris, 4 Hough Rd., Atta-VK6ZGX-J. A. Cunningham, 13 Boronia Cres. City Beach. 6015.

VK7LH-L. R. Hiller, 143 Gunn St., Devonport. VK7MK-Kings Meadows High School Radio Club, Guy St., Launceston, 7250.
VK8KN-R. W. H. B. Jones, Station: Portable; Postal: 14 Brown St., Alice Springs, VK8ZQ-R. R R. J. Sieber, 28 Lindsay Ave., Alice
Springs, 5750 .
VK9JG-R. J. Gray, Boundary Rd., Lae, N.G. VK9JJ-J. J. Schafer (Rev.I, Station: Bundralis Manus Island: Postal: Catholic Mission. Bundralls P.O., Lorengau, Manus Island.

CANCELLATIONS

VKIBX-M. C. Hooper. Transferred to Vic.
VK2AXG-Kinmn High School Radio Club. Not
VK2BCG-A. Cruickshank. Not renewed. VK2BJJ-J. $P_{\text {. Meehan. Not renewed. }}$
VK2BPH-P. Halpin. Not renewed.
VK2BRW-w. R. Beveridge. Not renewed.
VK3CH-A. G. Nunn. Not renewed. VK3VU-J. C. Chippindall. Now VK3UO.
VK3AEF-Eighth Footscray Boy Scouts' Amateur Radio Club. Not renewed. VK3AEM-H. E. Michell. Now VK3JX. VK3AYK-K. F. Price. Not renewed. VK3BKK-K. H. King. Now VK3AKI. VK3ZAK-A. Kav-Kravchenko. Not renewed VK3ZCJ-G. G. Baker. Transferred to N.T VK3ZOD-G. N. Pnyne. Now VK3YAO. VK3ZRR-C. Reisinger. Now VK3FP. VK3ZUK-B. K. Freer. Not renewed. VK3ZXR-J. E. Rising. Not renewed. VK3ZYY-A. M. Goode. Now VK3BDL. VK4WG-W. G. G. Clayton. Not renewed. VK5DQ-K. J. Horan. Transferred to Vic. VK5ZKO-B. T. Parker. Now VK5AZ. VK5ZLL-L. G. Douglas. Now VK5LL.
VKBZAT-B. J. Jacobs. Not renewed. VKяZCE-R. J Sieber. Now VKr7, Q.

Overseas $M_{\text {agazine }} R_{\text {ouiew }}$
 Complled by Syd Clark. VK3ASC

June 1870-
 "BREAK-IN"
 Digilal Frequency Counter. ZL2BGP. Part 1 This article describes the theory of operation of frequency counters and describes the con struction of a unit suited to Amateur uses which is composed almost entirely of integrated ciris com cuits.
 cult
 Did Ynu Get That Coantry Confirmed. 2M 2AFZ. For those people who send more cards than they receive.
 A ZL In JA. ZM2CD. Describes the exper iences of the N.Z.A.R.T. President in Japan.
 Single sideband Bxciter i Mrs. Phasing Type ZLALV. Part 2. Continues the descripition of this equipment. Circuits, parts lists, board layouts, etc.
 Decibels, ZL2NK. Many newcomers to Electronics find it hard to understand Bels and Decibels. Mr. K. G. Johnson explains.

"CQ T.V."

May 1970-
Published by the British Amateur Television Club. A Madern Vision Mixer, by G8ARV and G6SDB/T.
Noteboot No. d, An IC Timing Generator for 8low Scan.

How Lo Make Youraelf a Cheap and Cheerfol Delay Line, GBSDB/T and GBARV. Australlan Amateurs interested in i.v. experiments may Wish to become members of the B.A.T.C.̈ats, England.

"OHM" The Oriental Ham Magazine April 1970-

As a rule this publication does not seek to outdo "QST." "CQ." "73." or other U.S. magazines in technical content. In fact there arc often no technical articles at all. It is published in Hong Kong. 'The writer has visited Hong in Hong Kong. 'The writer has visited Hong Kong twice during 1968 for nbout an hour each
time and can only describe the landing of the time and can only describe the landing of the alrcraft at Kai Tak as "Breathtaking ing. those
hills appeur to be very close to the wing tips!) hills appear to be very close to the wing tipsil The publishers of "Ohm" can usually be relied upon for some interesting news from their area and this month "Return to Corregidor" is described. Students of history will remember that the last stand of the American Far Enstern Forces was made at Corregidor in 1942 and that General Douglas Macarthur escaped to Australla by P.T. boat and strongly influenced the conduct of the war against the Japancse.

"QST"

June 1970-
A Digital Marae Code Measage Generator. K1plp. Described by the author as a c.v. identifier or contest $\cdot 2$ 2nd op." Push a bution and the box automatically sends CQ plus your call. plus the standby K. in absolutely perfect code. Or it can be set up to send a complete contest exchange or for a repeater identifier. Cost. In the U.S.A.. less than $\$ 55$

Bullding a simple Two-Band V.F.O.. WICER. Describes in a follow-up article to the v.f.n. deaign article that appeared in last month's -.QST.: a solid state v.i.o. for 3.5 or 7 MHz .

How to Handle Hi-FI Interference. WIICP New problems take the place of old and as "hi-fi" equlpment spreads across the countryside more and more Amateurs can expect to receive complaints from neighbours who have purchased expensive audio equipment. There is no single solution to the problem and some of the techniques for curing interference are described.
The Partable/Moblle Microphone. WIKLK. This article reviews the basics of microphones, contains information on adapting millitary surplus noise-cancelling microphones for Amateur use and shows how to construct carbon and use and shows how to consiruct carbon and telephone elements.

Let'a Talk Tranalators. Part 8, Odds and Ends A closer look at power dissipation. leakage current and current amplification

A 1110 Mablle Whip. WA2HMM. By using a shunt circuit resonant circuit at the top of the six metre element it is effectively isolnted frum
the ten metre section during six metre operation. A similar technique can be used on other bands if desired, mechanical problems will be a little harder.
V.h.f. Moblle Whips, WIHDQ. Take some PL259 plugs, some transistor radio or car radio whips and a few odds and ends and your new moblle antenna can soon be completed
Slow Scan T.V. Viewing Adaptor for Oaclliosopes. W7FEN. This article describes a simple adaptor to convert popular oacilloscopes to slow scan monitors.

A Benas to the Pablic, W3KMV/W4GKAI. Statements that our hobby must operate in the public interest to justify its existence are no: new to Amateurs. We've been providing public service communications, keeping technically alert and contributing towards advances for many years.
Field Day Verticals Veraus Yegin, W6ISQ. A humourous article with some pros and cons of one of the old arguments.

"RADIO ZS"

April 1470-
A Versatile Monitar. ZSIMM. A useful gadget for mensuring field strength or indicating when a transmitter fa on alr by means of a moving coll meter.
Introduction to and Theory of Hall Effeet. 2S5D. This effect was discovered by E. H. Hall at John Hopkins University in the U.S.A. in 1879. Due to the lack of suitable materiala in 1879. Whe to the lack of sultable materials from which to obtain useable voltages. its application had to await the development of suitable semiconductor materials for it to gain Wide acceptance in scienticicentircles. used for the measurement of magnelic mostly
Simple Half Pawer Circuit. 2SSHF. Place a silicon diode across a single pole switch in series with your resistive load and the r.m.s. power is halved when the switch is open Very useful for maintaining a soldering iron hot without overheating.
What About the Recelver, 2S5D. A humorous story about receiver ailments and particularly bout Miller Effect.
SImple "No Holes" Moblle Movat. VKsASC. Reprinted from "A.R."
New Approach to Multi-bend Beam Dealgn, G2HCG. ${ }^{\text {Apprint from "S.W. Mag." }}$
These Goed Old Days, 2SSJC. Spark bit (not ransistorised
The Bug Blter a Naftical Type, ZSi002. One or the S.w.l's.

May 1490-

C.F.C.-What Daes It 8tand For. ZS1ACD/ CHC201. The Certificate Hunters' Club members will already know all about it.
The I.V.8. Power 8apply, ZS5HF. The author claims that a power supply for an s.s.b. rig requiring say 300 mA . Deak can be bullt fro:n transformer capable of about 25 per cent of that power. i.e. 75 mA . continuous. If the same power supply is to be used for a transcelver It may need to be rated a little more iberally and 14 you want to use it for something like r.t.t.y. then the power supply will need a continuous rating which is much nearer unity.
Lasding Made Lasy, 2S6ACK. Describes methods of making it easy to properly load a transmitter. Certain simple tuning alds are described.

Wireless Institute of Australia

Victorian Division

A.O.C.P. CLASS

commences

MONDAY, 7th SEPT., 1970
Theary is held on Monday evenings from 8 to 10 p.m.
Persons desirous of being enrolled should communicate with Secretary, W.I.A., Victorian Division, P.O. Box 36. East Melbourne. Vic., 3002. (Phone 41-3535, 10 a.m. to 3 p.m.)

How 1 Became a Bam. ZS5FD. Different people are introduced to the hobby in different waya. Belng hooked on Ham Radio is like some of the other drugs about. only much less dangerous.
"THE AUSTRALIAN E.E.B.
Apparently certaln incorrect information was published in a recent issue of "A.R." and we have been asked by Dr. R. I. Gunther, VK7RG. to publish the following statement:
Unfortunately there was a slight mis-print in the recent Review in "A.R.: ${ }^{\text {as }}$ Since January in the recent Review in A.R. Since january 1970 our three-year subscription rate has been
$\$ 2.90$ iplus $5 c$ if by chequei. Since our subscription rate just barely covera costs inot scripuion rate just barely covera costs not including promotion! 1 . it could hardly be posa three-year subscription.

"THE INDIAN RADIO AMATEUR"

Febriary 1970-
IC Keyer, VU2JN. Detailed information is given to enable the construction of an IC keyer in a small metal or plastic box. The paddle is not described.
Practically all of the balance of this issue is devoted to matters discussed at the XIIth Plenary Assembly of the International Radio Consultative Committee iC.C.I.R.I. A meeting at New Delhi and which commenced on Wednesday. 21st January, 1970.

"73" Magazine

Jowe 1970-
A Practical DDRR Antenna, W6WYQ. Expensive. difficult to bulld. mediocre antenna. V.F.O. Circuls, KOHVK. In case you are tired of cryatal control.
The Low Noise Antenaa, WB6JNI. High noise you're looking for?
Experimental Remote 8.W.R. Indicater, by W2EEY. Experimental means we think it might work.
The Litile Wender, Mark Il., W5zBC. ProvIng again that almost anything will radiate. C.W. Can Be Fin (with the Ord DK-1). Staff. If you know the code.
Two Recelvers From One Antenna, WAbUFW. Without suckout.
Factorg In Co-axial Cable Losg. W8KXJ. Like temperature and frequency.
Improving Trap Vertical Ancenasg, W2EEY. By adding an element.
Meaguring Incident and Refiected R.F., VE7BS. It'a the difference that counts.

Qevernment Surplus, 8traight frem the Horae's Mouth, WABANW. Hay, hayl
QRP, WA3JBN. 40 metre with 40 mW . Derby,
Gronid Support for the Powder Puef Der Gromid support for the Powder Pan Derby.
W7ZC. Public service and politiclans. W8MEV. Co-ax. Adaptor V.B.F. to B.N.C. For 75c.
The $81 y$ Beam, ZLATAH. 22 elements on 2 metres. IHas been published In "Break-In".)
Three Unrelated Artales, WA6CPP. InstallIng the Swan 250-C Noise Silencer, Measuring R.F. Output. Useful Cable Clamps.

Quarter Wave Top Laaded Mablle Antenna, W5AZE. For twenty metres.
W4KAE. 9 dB. Torward geine Clrenlar Qaad, by W4KAE. 9 dB. forward gain.

The AKs, ZL2ASJ. For 10.15 and 20 metres. "Published previously in "Break-in".
""78" Tests the Grindig 8alellice Receiver. Staff. Tunes in c.W.is.s.b.. f.m..etc.
De-R.F. Yoyr V.T.V.M.. WAOFPJ. Works better.
Geting Your Exira Class Licence. Staff. Part XVII. Conclusion. Now go.
"73" SPECIAL, CO-AX. HANDBOOK
Part 1.-Co-axial Cables. The different kinds of cables, their properties, and why they are made that way.
Part 2.-Co-axial Connectors. A fantastically large variety of conncctors are organised into useable lists. Descriptions, drawings and asuseable lists. Desc.

Part 3.-Co-axial Accessories. Descriptions of switches, S.W.R. bridges, attenuators, dummy loads. etc. Very complete.
Part 4.-Co-axial applications. Frosting on the cake.
A reasonably comprehensive survey of types of cable and fittings which can be expected to interest the Radio Amateur. Unfortunately the publishers did not see fit to include Information of types of cables and fittings developed In Britain or on the continent of Europe. Nor do they acknowledge that Andrew and Phelps Dadge use European patents and procesises in the manuficture of their products.

Sub-Editor: ERIC JAMIESON, VKSLP Forreston, South Australla, 5233.
Closing date for copy 30 th of month. All Times in E.S.T.

AMATEUR BAND BEACONS

VK4	144.380	VK4VV. 107m. W. of B
VK5	53.000	VKSVF. Mt. Lofty.
	144.800	VK5VF, Mt. Lofty.
VKG	52.006	VK6VF. Tuart Hill.
	52.900	VKBTS, Carnarvon.
	144.500	VK6VE, Mt. Barker.
	145.000	VK6VF, Tuart Hill.
	435.000	VK6VF (on by arrangement).
VK7	144.900	VK7VF. Devonport.
2L3	143.000	2L3VHF. Christchurch.
JA	51.995	JAIIGY. Japan. WB6KAP US

The contsct between Doug VK8KK and VS6DA recently has caused quite a number to look back through log books, bringing back memories of the tremendous vienzaz in pock hampton advises the other Hong Kong station mentioned. VS6CJ, was worked mostly by Townsville stations, but heard by Lance and Bob VK4NG, and worked by VK4ZBE. However. all who have mentioned prior workings add their congratulations to Doug for his effort. Lance
KX6HK, wo who was recelving him
5 KX6HK, who was recelving him 5×8 in April,
but was mostly drowned out by JA transceivers but was mostly drowned out by JA transceivers
and a 2 -way contact was not quite made. Howand a 2-way contact was not quite made. Howfor VK signals, running 70 watts, mostiy c.w. and working in our part of the band. KX6AF was worked in VK4 in 1958, so this is not a new one, but mighty good to have nevertheless! Thanks for the news Lance.

Passing now Into the Eastern Zone of Victorla, I am Indebted to George AX3ASV for a short note of actlvity there, where quite a bit of emphasis is being placed on Amateur t.v. construction. The minor winter Es solarise season save the Zone one opening to AX4 on 11th July when AX4ZZE was worked by AX3YBD. AX3YAT and AX3ASV on 53.032 MHz. The opening lasted for only three quarters of an hour around 1600 , so the old adage still applles! The Zone net on the above frequency beams west every Sunday morning.

The VK5 V.h.t. Group will conduct thelr Annual V.h.f. Field Day on Sunday, 27th Sep0730 . 0730 to 1130 and 1330 to 1630 . The same stations may be contacted during the second period Scoring will be between portable to portable.

VK3 ANNUAL V.H.F. CONVENTION

V.H.F ENTHUSIASTS OF ALL STATES ARE CORDIALLY INVITED TO ATTEND THIS CONVENTION WHICH WILL BE HELD IN

MELBOURNE

OVER THE WEEK.END OF
10th \& 11th OCTOBER,'70
Programme includes lectures by prominent workers in v.h.f. and microwave equipment.
and competitions of interest to everybody.
Registration Fees: Amateurs and Listeners S2.50; Saturday night dinner. $\$ 2.00$ per adul and $\$ 1.00$ per chlld. Please register by Monday. 21st September.
For detalls send sa.s.e to-
V.H.F. GROUP

VICTORIAN DIV., W.I.A.,
P. 1 BOX 36

EAST MELBOUUNE, VIC., 3002.
Inexpensive family accommodation can be arranged.
or portable to fixed. Crossband operation is permitted, and contacts across the border to VK3 or any other States will be welcomed. The winners of the last two Field Days, Bob VK5ZDX and Wally VK5ZWW have again ssued a challenge to all comers and it appears ssued a challenge to all comers, and or two quarters, so the Field Day may be very ineresting.
I do note with great interest that the first Field Day for the season in VK3 will be run on the same day as the VKs Field Day namely. Sunday, 27th September, but between the hours of 1100 and 1600 . So the second section of the VKS operations will coincide with the VK3 operation. Maybe some of the interested VK3s will be avallable to test their equipment early in the morning on 144 or 432 MHz , and give the VK5s that added incentive to look across the border. The second VK3 Field Day will be on Sunday. 1st November
A letter from Bob AX3AOT advises the above information, and he mentions quite a ot of work is being devoted to preparations or the forthcoming VK3 V.h.f. Convention on 10th and 11th October. when it is anticipated equipment will be on display for all bands rom 52 MHz . to 2900 MHz . I note nmongst other things in the varied programme that there will be a 144 MHz . transmitter efficiency contest Igetting those portable transmitters ready for the Field Day?), a 432 MHz . antenna gain contest, and a novel one for the ladies. " "radio throwing contest". I have one here in the district 1 regularly repair which I would be glad to give to someone to throw!!
Bob further reports activity near him is slack at the moment. accentuated by quite a lot of constructional activity, in which he is in dulging himself, even to including 578 MHz rom the "grapevine news" Bob passes on it certainly will pay us in VKS to do some mountain topping over the Christmas holiday period, it could be very interesting indeed!
Thanks to the Geelong Amateur Radio-T.v. Club for another copy of their Newsletter They are certainly an actlve body, meeting every Friday night At the Club Rooms. Storrer must surely be hard pressed at times to come up with something fresh in the way of lec ures, etc. I note the Club is going ahead with the construction of the second g aliead with dditionsl Club room I note the inclusion in the current issue of their Technical Topics in 4 cualing with four types of vertical antennas 4. dealing with four tybes of vertical antennas 65 db and gain of 9 db .
A comparatively new area for permanent contacts has recently been opened up by the transfer to Port Lincoln on the west coas of S.A. of Peter VK5ZPG. who operates on 144.600 using a 8 element beam about 20 feet high at present and who can be worked even through the daylight hours in Adelaide with signals to S9, a distance of about 150 miles If you refer to your maps you will see Port Lincoln is mostly a water path to Mt. Genmbier and Warrnambool. should be pretty good even to Geelong. and real good to VK7. Peter is keen, so it's up to you chaps who live in the good path direction
Colin VK5ZKR in Mt. Gambier reports every hing quiet down there while the majority of he Limited licence population study hard for he Morse examination in August. We wish them well, and hope that when they have passed, they will add c.w. facllitles to their v.h.f. equipment. rather than turn it aside for h.f. operating only! 432 MHz . looks like lively band in Mt. Gambier this summer with David VK5ZOO, Trevor VK5ZTN. Dale VK5ZER, Colin VK5ZKR and Chris VK5ZFA all opera ional Chris has gone a step further and is using v.f.o. control on 432 MHz s.s.b with QQE06/40 mixer, other stages to come later
The S.A. V.h.f. Group station AX5AWI, has ertuinly been getting around a bit. and making tseli known. It Wis taken down to the S.E.R.G Convention at MIt. Gambier in June and then it the end of July operated in the VK5 Intra state Contest. fielding transmitters and receivers on all bands between 160 metres and 432 MH nclusive, from the QTH of Wally VK5ZWW n a shack 6 feet square and inree operators. It should again be operating in the VK5 Field Day on 27 th SeDtember. The station was first icensed as VK5ZWI, but the Group felt this call rather restricted its activities, hence the linter application for a change.

As news this month is a bit scarce due to the usual winter activity. it is probably of Interest to pass on to you something most will not remember Reading through an October 1947 "QST" recently, I noted that the first 50 MHz. contact between Australla and the Hawalian Islands took place on 27th August that year between Clarence VK5KL at Darwin and
W7ACS/KH6 Pearl Harbour This contact also W7ACS/KH6 Pearl Harbour. This contact also set new record for the 50 MHz band, taking.
the distime to 5.350 miles. VKSKL used 2
co-axial fed three element beam. running 100 watts to a pair of 834s. In the same issue was word of a new home station record for 144 MHz . working, between VEIQZ and W1OSQ for a distance of 520 miles. Distances have certainly lengthened since those days, but you wir note the period was the maxima That's it of the sunspot cycle two cycles ago the Other Man** when I eventually get some replies from those to whom I have written Thought for the month: "Despite jets, missiles tho ghth nothing holiday " Till 73 Erlc VKSIP The voice in the Hills.

SIX MBTRE TESTS FROM GREENLAND

Amnteurs using the 50 MHz . band are asked to look for OX5AP. Thule, Greeland, who is making five-minute transmissions on the hour from 2200 to 0200 GMT dally. These trans missions are on 50.15 MHz . and will continue through this year, except for the period of 5th August to 14th August. He will llsten for 6 metre signals in the five minutes after each test. OXSAP is available for 14 MHz . schedules between 2100 and 1100 GMT. Please report any reception or two-way communication on 80 MHz. band to the A.R.R.L.
(Officlal Bulletin No. 281 from A.R.R.L. Hdq. July 16, 1970, to all Radio Amateurs.

W.I.A. D.X.C.C. (S.W.L.)

Listed below are details relating to those Australian Short Wave Listeners to whom this certificate has been uwarded:-

Cert.		Nall	Date No.
Came	Awarded		
1	L3042	Eric Trebilcock	$1 / 11 / 65$
2	L2022	Don Grantley	$29 / 12 / 65$
3	L3211	Warwick Smith	$31 / 5 / 66$
4	L4018	Chas. Thorpe	$11 / 7 / 66$
5	L5080	Ernle Lufi	$25 / 1 / 67$
6	L3229	Bob Halligan	$18 / 11 / 67$
7	L6021	Peter Drew	$31 / 1 / 68$
8	L2283	Bob MacIntosh	$19 / 4 / 69$
9	L5088	Steve Reudiger	$7 / 6 / 69$
10	L3185	Brian Hannan	$27 / 6 / 69$
11	L3312	Maurice Batt	$6 / 12 / 69$
12	L3309	Bob Hanel	$30 / 6 / 70$

Eric Trebllcock
S.w.l. Awards Mgr., W.I.A

FREQUENCIES OF VK6WI

VK6WI broadcasts can be heard at 9.30 a.m. W.A.S.T. on Sundays on the following frequencies:

3.600	$\mathrm{MHz} .-\mathrm{SSB}$
7.082	$\mathrm{MHz} .-\mathrm{AM}$
14.1	$\mathrm{MHz} . — S S B$
52.4	$\mathrm{MHz} .-\mathrm{AM}$
52.656	MHz .—FM
144.26	$\mathrm{MHz} .-\mathrm{AM}$

VICTORIAN DIVISION W.I.A. MIDLAND ZONE HF and VHF RALLY

SUNDAY, 1st NOVEMBER, '70 to be held at LAKE EPPALOCK

in the

BENDIGO POWER BOAT CLUB ROOMS
Programme includes HF and VHF Scrambles 2 mx Fox Hunt. 2 mx and 80 mx Tx Hunts Trade Displays, and competitions for all the famlly. B.Y.O. eats, Barbecue and Picnic facilities available.

Further detalls from the W.I.A. Broadcasts or Zone Secretary, BIII Clark VK3FY High St., Kangaroo Flat. 3555

Sub-Editor: DON GRANTLEY
P.O. Box 222, Penrlth, N.S.W., 2750
(All ilmes in GMT)

Here in N.S.W. we are experiencing some of the best weather we have had for months, no rain, and nice fine days have no doubt contributed to the large number of VK2 stations on the bands working DX . There is plenty to I note several good openings on all bands from ten metres right down to 80 , and have heard
reports of some good openings on ten very reports of some good
Still the best by far is 20 metres, with many of the rare ones being heard at this QTH, particularly in the evenings. Late afternoon and ings on 40 metres. with prefixes such as PJ,
FG7, CT2, EAB, PY0, TR8, VP2, XW8, 9V1, CRS and many others being heard and worked.
George ZL2AFZ passes on some interesting F80L. I could do no better than to quote George's notes, which will appear in "Breakhas been generally accepted that the DX season on 80 finishes for the season which is normally ist Sept., through to 30th Mar., for both c.w. and s.s.b. Athol ZM3FZ has been in QSO with they still continue to QSO each day at 0445 through to the shortest day here (2 L). The object now is to continue through the supobject now is to continue through the sup3502. and reports so far are 449 both ways. Athol watches closely on 80 and reports that Athen watches closely on 80 and repors a deed red sunset here when we have a deed red sunset here Athol would be pleased to hear from anyone with would be pleased to hear from anyone
similar interests in respect to me metres. madecs, and is anxious to make as many contacts as Dossible before he returns to ZL. He will be pleased to sked anyone and George
$\mathrm{ZM2AFZ}$ will be pleased to pass any requests ZM2AFZ will be pleased to pass
on during his daily log exchange.
George, as you know, handles the QSL chores for Harold AXOLD and says that there may be some delays in clearing the QSLs for, although they have many skeds, propagation conditions are such that conditions deteriorate so quickly
that no really effective clearance of logs can that no really effe
1 was pleased to receive a note plus bulletin from Stew W1BB who is hale and hearty after a long spell in hospital. Stew reports a first ever contact on 180 metres between K5TFG in Louisiana and EIgJ, HB9CM and G2PL back on 21 st March. Then W4BRB trotted off to included GM, G. EI, PJ, KV4. HR2, VE, W and VP2. Stew says that activity in the States on 160 has increased to the point where there is talk of the A.R.R.L. running a separate contest for that band. On the other side of the
Atlantic. the G land stations report the best season ever.
Seaseration from ZK1, ZK2 and ZM7, Manihiki, Niue, and Tokelaus respectively, should be well under way. Two rigs supplied by K3RLY and WA5REU Were in Auckland at the beginJuly. They will be moving about quite a bit, so it is suggested that it may be advisable to soep a lookout on the Pacific area whenever possible. Detalls even at this late date, 31st possible. Details even at this late date, sinJuly, are a litile sketchy, however those inAnother completed operation with very conflcting reports was the OH2BH/ZA operation
on Fridny, 10th July. They did operate from on Fridny, 10 th July. They did operate from Albania for 12 hours, after which their rig was
taken away. According to the very reliable taken away. According to the very reliable Geoff Watts
returned on
17th July returned on 17th July and they left Aibania with documented proof of their oderation for
the A.R.R.L. It is understood that they may the A.R.R.L. It is understood that they may operate from there again provided that sur-
ficient notice is given. If you were one of the ficient notice is given. If you were one of the fortunat
Not so assuring are the reports of the ZAIC operation on 5th. July. This one came on with the proverblal great song and dance and many QSOs were made. But despite all the fuss. there is no evidence that this was a lesitimate operation. and until proof is forthcoming, it must be treated phoney, or a well planned hoax. Detalls are being worked out in New Delhi
by Larry K2IXP. for oderation by VU2IXP by Larry K2IXP. for oderation by VU2IXP
from the Laccadives. There are some points to be worked out, but this one could crop up any tlme between now and September.

Bouvet Is., under its new prefix 3Y, is due for three months operation from October by ZSBANT. Watch your DX news bulletins for further information on this one.
There are several operations in the planning stages, none of these are guaranteed to occur, out they are very strong possibilities. CEO in by 5 V 2 WT . 9 Ka a jauntion from Kuwey Saudl Arabla by MP4BHH in October Kuwalt/
ST2SA is on the alr using c.w. and will be on s.s.b. When he completes building a recently donated kit. He operates 0330 to $0430 z$ on 14021,14040 and 14080 . Also c.w. on 21033 on Saturdays between 1930-21002. I understand K4MZU takes a list on 14200 at 03002, and you can work him cross mode.
HBOAJH operated from 26 th July to 1st Aug. from Lechenstein on all bands. QSLs for this operation go to HB9AJH, Paum de Graffi Rue erland.
K5QHS/KS4 operated from Swan 1s. for the first week of July, together with W4VPD/KS4. first week of July, together with wint ine process, however they continued to have a successful operation. QSLs go to Box 588, Stutt gart, Ark 72160 U.S.A., the call book address being incorrect.
From Comoro Is. comes the news that Yvon FP8CY has been staying with FH8CE and using the call FHBCY. He returned home on 3rd July, but will be back on Comoro in october, F8CY.

The QSLs for the very short operation held on Wallis Is. by Thomas FK8BO under the cal address, which is Thomas Savelli, Box 28, Noumea, New Caledonia.
I have refrained from writing too much about the present jaunt by Gus Browning for one reason, and that is because he moves around so fast that he is usually a couple of jumps ahead of the news sheets. He has had his share of bad luck this time, he was forced to
return to FH8 after the incoming tide took two return to
drums of fuel out, however he was back in drums of fuel out, however he was back in action from Geyser Bank, signing ACOA very
soon and by 25 th July had made 6,000 QSOs soon and by 25 th July had made 6,000 QSOs
from there. Following this, he ran into some from there. Following this, he ran into some severe storms at sea, during which time he
got little sleep and was forced to tie himself got little sleep and was forced to tie himsel
into his bunk. Despite this, plus the fact that into his bunk. Despite thls, plus the fact ial he had to send flares to a passing tanker forquhar Is. signing VQ9/A/F. There his generator packed up and he was forced to hire another. Next step was for Blenheim Reef and Chagos, where he arrived on the former on 18th July, operating as AC9A/BR, where he planned to remain for a week before salling over to Chagos for two days. From there he was due to go to Aldabra before reaching the FR7 area.
The Long Is. DX Assn. News Sheet makes a request re the QSL manager for Gus Browning. W2MZV not MZB as appeared in some sheets. W2MZV not MZB as appeared in some sheets. W2MZV is Herman Bohning. Box 102, Yonkers Nhould be drafted to the World Wide Radio should be drafted to the

I note an item in Geoff Watts DX News Sheet to the effect that VK/ZL operators are complaining that they are not having any QSOs as $0500-08002$ is the only time we can hear the Indian Ocean, at this time of the year. Personally I have not heard a sign of Gus over word from VK6 on the subject?

A recent station which raised the DX eycbrows was 4 N 2 CI , he is still on the alr at time of writing and is operating from Cleve Is., around the Adriatic. His QSIs go to YUIBCD.
JDIABO on Minaml Toroshima, formerly Marcus is. will work once a week until September to a list complled by JAIKSO, JAIUQP. JA2PJC or JAOCUV/1. The JA station will give the date of the next appearance by the Marcus station, who hopes to be on the three higher bands. QSL to JA1BA. The other cancelled.
Despite internal troubles in Jordan. JY1 is and has been appearing He is working to a list complled by WA2CPQ and WA2URS. It is believed that JY2/3/4, etc. will appear on the scene shortly

Bob VESEWY is doing fine with his DXpedition in the West Indies. In company with Gary VEsGCO. he operated from July 14-18 from Trinidad. July 20-24 from St. Lucia, July 25-29 from St. Vincent. July
and August $1-2$ from Tobago.
QSL
to Bob's and August $1-2$ from Tobago. QSL to Bobs from Dominica at this QTH near the end of their stay working into ZL , and strangely he was about the only signal on the band.

Some more for the preflx hunters. HU2 was a special prefix used by El Salvador (YS)
stations during the WPX Contest. SXODX was spectal station operated by SVIDB irom a mountaln north of Athens in March. TC2SC was a special call used by TA2SC during the WPX Contest, whlle XQ3ZN was CE3ZN under the spectal call for the same event. Brazil really went to town in this contest using $Z V$ $\mathbf{Z W}, \mathbf{Z X}, \mathbf{Z Y}$ and $\mathbf{Z Z}$, and if you want a QSL from any of these, send yours to the corresponding PY call sign. Colombla, not to be prefix during the Contest.
A note in "Monitor" from Boles W9VZP, pointing out that he is not the QSL manager or HL9KH, although he did handle cards for Don Miner when he operated the station from Nov. 1982 to Dec. 1983. Since then the call has been issued to the Osin Amateur Radio Club, and QSLs should go to Director of Ama-
teur Operations, HQ US Forces, Korea, APO San Francisco CA 96301 U.S.A.
IZIAJ and IZOAJ were the calls used by IIAJ during his vacation to Ponza in mid May. Amateur QSLs should go to VESACD, while
S.w.l. redorts will be handled by IIAJ direct.

UWOIE, whose signals pound in here on 15 and 20 metres, is situated in Aslatic Russia Zone 19. Usually heard on 21302 s.s.b.

All Amateurs who followed the voyage of Thor Heyerdahl in his reed-boat "RA 2" across the Atlantic, were pleased to hear of his sale arrival in Barbados a few weeks ago. Quite a number of contacts were made with Amateur stations during the voyage.
FK8KAA has been dutting a bumper signal out of late. Although a little rough around the edges, his c.w. signal is getting out very well, and is on nearly every evening around 0700 Caledonia. handle is Francois.

Another station noted quite regularly in the late evenings is YB1BC with a very good c.w.
signal on 20 metres. Says QSL to Box 288, Bansignal on 20 metres. S.
dung, Indonesla Rep.

For the /MM hunters, or mobile award chasG3JFF/MM. WB8FBT/MM and W4EWS/MM have been amongst the regulars heard at about 10002 , L7LRA/MM often appears on 40 metres working a groud of /MMs.

CR8AJ will be going QRT and returning to Lisbon on 30th July. Outstanding QSLs should go to Horatio Goncalves Torres, Dus Luis Cam oes, Vila Sobral 10, Laranjelro. Portugal
ITISEZ/IF. Silvano. has been reported on $2 C$ s.s.b. in the evenings. He is QRV from Favignann Is. in the Egadi group. QSLs to go to Silvano Amenta, Box 143, Palermo. Sicily.
Some KG6 information to hand, firstly KL7DTH/KG6 wants his QSLs sent to Charles L. Wareham. C/O. R.C.A. Global Communications Inc.. Box EH. Agana, Guam, 96810. KGBSY is on from the Marlanas and asks for
QSLs to Box 209, Capltol Hill, Salpan, Marlana Is.. 96950.
Two stations have been active from San Marino recently, they are MIB whose QSL manager is WA3HUP for all stations other than U.S. His manager for U.S. stations is WA9HYS. The other is MII. whose cards should go to IIBNZ.
Sheet of 14 th July to the effect that EAg News was incorporated into Morocco on 30th June and ceased to be a separate D.X.C.C. country presume.

QTH SECTION

CR4BC-C.P. 36, Sao Vicente, Cape Verde Is. CR6FR-C.P. Ti Cabinda, Angola, West Africa CTIWA-C.P. 446. Porto. Portuga
CX8BBS-Apto 934, Montevideo, Uruguay.
ET3ZU-Box 379, Asmara, Ethiopa.
FRTZW-Box 793, St. Denis. Reunion Is. OD5EJ-Box 8148. Beirut. Lebanon.
TF2WKI-Box 21. U.S. Navy Stn.,

York, 09571 U.S.A.
YB2AG-Box 88, Samerang. Java, Indonesia.
YB3DC-Box 27, Surabaja, Java, Indonesia.
My thanks this month to George Sturdd ZM2AFZ. Long Is. DX Assn., Geoff Watts DX "Monitor." Stew WiBB, and Bernard Hughes of G-land. 73 for the present, and how about some news from the VK gang?-Don L2022.

AMATEUR FREQUENCIES:

ONLY THE STRONG GO ONSO SHOULD A LOT MORE AMATEURS!

FEDERAL AWARDS

W.A.V.K.C.A. AWARD

The following Amateurs have recelved this Award during the period $1 / 7 / 69$ to $30 / 8 / 70$:

Cer		Cert.		Cert	
No.	Call	No.	Call	No.	Call
371	W8GUZ	383	WA2FQG	406	HRIWSG
372	VS6AL	389	JA1HHM	407	W6HUR
373	G3TXF	390	VS6FX	408	9J2GJ
374	HB9NL	391	JAIDFQ	409	JA2AYC
375	FR7ZG	392	VE4ZX	410	VO1CU
376	JA4SZ	393	UA0JU	411	JA8GR
377	G3XBR	394	W6ESI	412	JA4FM
378	wbiujo	-95	YAIHD	413	JA6YG
378	WBZC	396	WB6DXU	414	2L2FA
380	DL8VF	397	JA5LI	415	VE3OI
381	ZLIBDW	388	ZL3QN	416	WBYRA
382	OE2EGL	388	JA2AYX	417	UQ2AN
383	CR8AI	400	HB9AHA	418	UAOKJA
384	8P6AZ	431	JA11Z	419	ZLIBDN
385	G3VYF	402	CR712	420	JA8SW
388	ZLIAFQ	403	DJIVS	421	JAIRWU
387	CT1BH	404	JA7QJ/1	122	JA1AAT
		405	JAIGTF		

COOK BI-CENTENARY AWARD

The following additional stations have quallfied for the Award:

Cert.		Cert.		Cert.	
No.	-	No.	all		Call
467	G3VOF	496	G3OLY	525	OK1BY
468	WISWD	497	JA1HVS	526	AX2LT
469	WAsw ${ }^{\text {L }}$	488	W6ISQ	527	AX2BPN
470	ZM2MY	499	DK2FX	528	AX4PX
471	W2CVY	500	VEIAI	529	K4IUV
472	W2BBK	501	AX3ZJ	530	K3RPY
473	ZS50A	502	AX3TV/M	531	W2TGN
474	W3DJZ	503	ZMIAKY	532	WIAGA
475	VE5PB	504	WA8PYL	533	ZMIBIN
476	2M1AFQ	505	PA0HBO	534	W8BQV
477	G4JZ	508	ZM2AWH	535	AX7EB
478	VE3LH	507	W9GJG	538	WA7DRP
479	AX2UV	508	VE3AVR	537	PAOALO
480	ZM1BDW	509	VE3BYN	538	W8PQD
481	G2NH	510	VE3GGU	538	KL7GJM
482	W4HNO	511	AX2AJY	540	ZM3SL
483	AX6VK	512	OE2EGL	541	VE3DAY
484	WAOVJO	513	W3MP	542	W4BA
485	4S7DA	514	K5PAW	543	W4CYC
488	G8GP	515	MP4BEA	544	ZM1AIW
487	W2PPG	516	VE3CZC	545	UW9PT
488	DL9DE	517	AX4UL	546	UG6AW
489	ZM1A1D	518	W7VSE	547	UWOIE
490	W0wo	518	I1FO	548	ZM1BCH
491	K1NJE	520	I1RC	549	VESEA
492	WIAXA	321	ZM4KM	550	AX3JS
493	W6KWO	322	VE3EOX	351	WA2KSA
494	W50U	523	VEICV	552	W0WVO
495	K4NE	524	DM2AUO	553	ZM1AJU

CONTEST CALENDAR

3rd/4th October: VK-ZL-Oceania DX Contest 10th/11th October: VK-ZL-Oceania DX Contest 10th/11th Oc.w.). R.S.G.B. 28 MHz . Phone Contest.
24th/25th October: R.S.G.B. 7 MHz. DX Contest 7th/8th $\begin{aligned} & \text { (c.w.). } \\ & \text { November }\end{aligned}$ R.S.G.B. 7 MHz . DX Contest (Dhone).
14th/15th November: R.S.G.B. 1.8 MHz . Contest. 5th Dec. 1970 to 11th Jan. 1971: Ross A. Huli 13th/14th Feb.: 1971: John Moyle Memorial National Field Day Contest.
-D. H. Rankin, F.E.

REPAIRS TO RECEIVERS, TRANSMITTERS
 Constructing and testing: xtal conv., any frequency; 05-ers, R9-ers, and transistorlsed equipment.
 ECCLESTON ELECTRONICS

146a Cotham Rd., Kew, Vic. Ph. 80-3777

V.K. ELECTRONICS

63 HAROLD ST., DIANELLA. W.A., 6062
Service to Transceivers, Recelvers, Transmitters, Antennae, etc.

Phone 76-2319

Correspondence

Any opinion expressed under this heading is the incividual opinion of the writer and does not necessarily coincide with that of the Publlshers.

"IMPRE8SED BY THE KINDNESS AND GBNEROSITY'

Editor "A.R.," Dear Sir,
May I through the pages of "Amateur Radio" be permitted to thank all the many Australlan Amateurs who have made my two recent vislts to parts of your country so enjoyable.
I first visited Australia last November in the Far East Flagship. H.M.S. "London," when we spent a week each in Hobart and Melbourne and two weeks in Sydney. This year the Flag ship H.M.S. "Blake" paid visits to Adelaide and Sydney. Where we had the honour of being present for the Cook Bi-Centennial celebrations with H.M. The Queen.
During both visits I have been impressed by the kindness and generosity of the "VK gang" and have enjoyed the hospitality of many homes and rigs. The contacts 1 have made tacts over the air whilst I have been travelling around the Far East.
To list all those who contributed to making my visits so memorable would fill a log book but may I record the following Amateur call signs and names who will always remain uppermost in my memory

VKs 2BJL, 2BPN, 2VN, 3XB, 3KS, 3CDR, 5RG. 5DS. 5FM. 7GC. 7DK, 7KJ and 7AZ. Also S.w.i's Eric Trebilcock and Keith Hatch.

To them, and many more, once again my thanks for presenting Australia and her Deople in such good light. 1 hope to renew the acquaintances from time to time through Amateur Radio.
73 es DX to all, de Mike.
-G3JFF/MM; ex VS1HU, 9M2MA, VR1M, VR2EA, YJ1MA, ZB2AM, etc.

Chef Radio Supervisor M. J. Mathews. B.F.M.O. Singapore

"BERIES A.C. CIRCUIT"

Editor "A.R.," Dear Sir,
Herewith a few comments on Mr. Cullinan's article, "Series A.C. Circuit" ("A.R." Aus. 1970), some statements in which could be misleading.

1. Impedance is not a.c. resistance. Impedance is the combined opposition to current flow of resistance and reactance. A.c. resistance is d.c. resistance plus the added effects of eddy currents, hysteresis and skin effect.
2. Pythagoras states:

Hypotenuse ${ }^{2}$ equals (side a) ${ }^{2}$ plus (slde bia not.

Hypotenuse ${ }^{2}$ equals (side a plus side b) ${ }^{2}$
There is quite a difference!
3. I (lower casel is an imaginary number, way in radio theory without worrying about this fellow.
4. The product of volts and amperes in a reactive circult gives apparent power only. This, it would seem, is what the question calls "total Dower" So Mr. Cullinan's calculations are in order here, but the 8,530 are voltamperes, not watts.
5. Phase depends on the load, not on the generator. A generator delivers a voltage. The type of load that voltage is connected to determines whether the current will lead, lag, or be in phase with the voliage.
6. You pay for true power used. but not for reactive power. The supply authorities require the consumer to keep the power factor as near unity as dosslble, as otherwise a given amount of power requires more current, which is not paid for, but which nevertheless represents I-R losses in the transmission lines and for which the supply people have to pay. Out of phase current however does no work for you, as it is not backed up by voltage.
7. Since the power factor was not specifically asked for in this problem, the true oower could more readily have been calculated from P equals $I \& R$, equals $17.06 \times 17.06 \times 25$, equals 7273 watts.

A point of interest here is that nelther the inductance nor the capacitance dissipates power: any heating of these components is due to their a.c. resistance.

PROJECT AUSTRALIS

The Institute and Project Australis is most appreciative of a donation of $\$ 200$ recently received from the Commonwealth Banking Corporation.

This donation will be applied of course to the present project and we hope that the members and even non members of the Institute will be moved to make contributions to a project which users in a new era of communication available to the Amateur Service.

HAMADS

Minimum $\$ 1$ for forty words.
Extra words, 3 cents each.
hamads will not be published unless accompanied by remittance.
Advertigements under this heading will be accepted only from Amateurs and S.w.I's. The Publishers reserve the right to reject any advertising which. in the ir opinion, is of a commercial nature. Copy must be received at P.O. 38 , East Melboume, Vic., 3002, by 5 th of the month and remittance must accompany the adverilsement.

FOA SALE: Air Dux Colls, large selection going ot half our cost to clear stocks. Type DC11 Crystals at 25 cents each. large range, large stock. Send at 25 cents each. arge range, large stock. Send Store, Box 851J, G.P.O.. Hobart, Tas., 7001.

FOR SALE: Galaxy V Mark 3 Transceiver, as new. 5370 . Don't mlss thls bargaln. VK5OD, 3 Hay St.. Kadina, S.A., 5554.

FOR SALE: Star 700A, full set crystals for Amateur and gen. coverage. $\$ 300$. $93-6909$ (Melb.).

FOR SALE: Vinten BTR8R VHF Base Receiver in good condition. \$55. Ph. 89-4997 (Melbourne area).

FOA 8ALE: Yaesu FR50 with spkr., S140. Heathkit Mohican: GCiU rx $\$ 100$. Commercial 2 mx Con. verter with FET pre-amp. and 69.5 MHz . xtal, $\$ 25$. Pr. Selsyns, 35. VK3ZNN, V. McDonald, 272A O'Heas Rd., Pascoe Vale. Vic., 3044.

JOHNSON Viking Courier, excellent condition, 500 watt p.e.p. linear, self contalned power supply,
$\$ 125$. K. Lowe. 24 Phipps Cr., Diamond Creek,

SELL: Elco 753 s.s.b. irl-band Transcelver, excellent condition. less power supply. \$200. Also Yaesu Musen Fiso s.s.b. Transmitter with FV50 VFO (five bands), $\$ 160$. VK4HV. R. Thorn, 349 Margaret St., Toowoomba. Old. Phone 22227.

SELL: 400w. p.e.p. LInear Amplifler, bandswitched 80, 40. 20 mx. pr. 8118 in g.g.. needs 60 w . p.e.p. dive. Complete in table-top cablnet with separate h.v. p.s.u., S65. Telephone $787-2318$ (Melb.) during evenings.

WANTED: AVO Characteristic Valve Tester in good condition, pay cash, urgent. Mr. T. Long. Phone $630-7291$. 日.h. $36-2463$ (Melb.). Pascoe Sale Sth., Vic.

WANTED: One of the following i/i kw. O.G. Spark Transmitters: Marconi types 241 C . 341,369 . 558. 355. 355F: Radio Communication Co. types PS17. T20, T24. T22, T29, or similar small hoine-brew equipment. Also quenched plate gap dischargers: high voltage mica condensers such as Admiralty pattern 5001 with rating 0.0044 uF, 20.000 volt test.
A. Fisher VKJBAO, 241 Royal Pde.. Parkville. F. Fisher. VKjBAO, 241 Royal Pde., Parkville. victorla, 3052.

WANTED TO BUY: Transistorised c.w. Tx for 24 volts d.c. supply for 40.20 metres. xtal or v.f.o. Also Type 3 Mk . 11 and 707 valves. Contact either Jules VK7ZD phone 52.905 (Tas.) or Rex VK2AIK phone 560-8247 (Sydney).

WANTED TO BUY: 5-band s.s.b. Transceiver, prefer Yaesu FT200. FTDX.400 or late model Swan or Galaxy. Must be good and have handbook. Also H/D Rotator and Beain. All replies answered. VK7AR. PO. Box 90. Devonport. Tas.

K.W. ELECTRONICS KW ATLANTA TRANSCEIVER

* BUILT-IN NOISE LIMITER
* BUILT-IN 100 KHz . CRYSTAL CALIBRATOR
\star FULL P.T.T. OPERATION
\star AUTOMATIC LINEARITY CONTROL
* UPPER AND LOWER SIDEBAND SELECTION BY PANEL SWITCH
* STEEP SLOPE CRYSTAL FILTER, 5.2 MHz .
* MATCHING A.C. POWER SUPPLY UNIT WITH BUILT-IN SPEAKER
\star FULL COVERAGE ALL BANDS, 3.5 to 30 MHz . \quad SSB, AM, CW
Write for Technical Leaflet
Solo Austallen Agem: SIDEBAND RADIO
73 COLE STREET, ELWOOD, VIC., 3184
Phone 96-1877

WIRELESS INSTITUTE OF AUSTRALIA-FEDERAL EXECUTIVE AMATEUR JOURNALS

The Institute can now offer annual subscriptions to following Amateur Journals:
\star "OST"—Associate membership and renewals, \$6.40.
\star R.S.G.B. "Radio Communication" (ex "The Bulletin") is only sent with membership of Society, $\$ 5.50$. Send for application form.

* "CQ" Magazine, \$5.70; Three Years, \$13.50.
\star "73" Magazine, \$5.50; Three Years, \$11.50.
t "Ham Radio" Magazine, \$5.50; Three Years, \$11.50.
R.S.G.B., A.R.R.L., " CO " and " 73 " Publications also available.

Send remittance to F.E. Publications Dept., C/o. P.O. Box 67, East Melbourne, Vic., 3002

Receipt of your flrst issue will serve as acknowiedgment of your sub. Allow slx weaks for delivery.

LOW DRIFT CRYSTALS

\#
1.6 Mc. to 10 Mc., 0.005\% Tolerance, \$5 म

10 Mc . to 18 Mc ., 0.005\% Tolerance, \$6 *

Regrinds \$3
THESE PRICES ARE SUBJECT TO SALES TAX

SPECIAL CRYSTALS: PRICES
ON APPLICATION

MAXWELL HOWDEN

15 CLAREMONT CRES., CANTERBURY, VIC., 3126

Phone 83-5090

LOG BOOK

AVAILABLE IN TWO TYPESVERTICAL OR HORIZONTAL
Larger, spiral-bound pages with more writing space.

Price 75 c each
plus 17 Cents Post and Wrapping Obtainable from your Divisional Secretary or W.I.A., P.O. Box 36 , East Neibourne

BAIL ELECTRONIC SERVICES

* FLDX-400 TRANSMITTER
* FRDX-400 RECEIVER
\star FTV-650 6 Mx TRANSVERTER

SOLE AUSTRALIAN AGENTS FOR

S.S.B. EQUIPMENT
\star FLDX-2000 LINEAR AMPLIFIER
\star FL-2000B LINEAR AMPLIFIER
\star FF-50DX L.P. FILTER
\star FT-101, FT-200 and FTDX-400 TRANSCEIVERS
\star FVDX-400 VFO, SP-50 and SP-400 SPEAKERS

* YD-844 P.T.T. DESK MICROPHONE
\star YAESU SPARE PARTS AND SERVICE FACILITIES

Accessory Items:
S.W.R. Meters, Field Strength Meters, P.T.T. Mikes,

Co-ax. Connectors, Co-Ax. Cable, Co-Ax. Switches.
Hy-Gain (U.S.A.) H.F. and V.H.F. Antennas.
Emotator Antenna Rotators.
Write for details:-

BAIL ELECTRONIC SERVICES

60 Shannon St., Box Hill North, Vic., 3129. Ph. 89-2213
N.S.W. Rep.: MOSMAN RADIO SERVICES, P.O. Box 56, Mascot, N.S.W., 2020. Telephone 67-1650 South Aust. Rep.: FARMERS RADIO PTY. LTD., 257 Angas St., Adelaide, S.A., 5000. Telephone 23-1268 Western Aust. Rep.: H. R. PRIDE, 26 Lockhart Street, Como, W.A., 6152. Telephone 60-4379

The World's Most Versatile Circuit Building System!

SIZES: $1 / 8^{\prime}$ and $1 / 16^{\prime \prime}$ WIDTHS
Length: 100 ft. roll, 5 ft. card
IDEAL FOR PROTOTYPE AND PRODUCTION CONSTRUCTION

USEFUL FOR WIRING REPAIRS

* NO DRILLING \quad FAST \quad NO MESS

Available from all Leading Radio Houses
Marketed by-

ZEPHYR PRODUCTS PTY. LTD.

70 BATESFORD RD., CHADSTONE, VIC., 3148
Telephone 56-7231

MANUFACTURERS OF RADIO AND ELECTRICAL EQUIPMENT AND COMPONENTS

Type 2010
Ideal for H.F. and U.H.F. Transmitting Beams
Amateur Nett Price:
$\$ 54.33$ (sales tax included) POST FREE
EX STOCK NOW

Gtalle automatic ANTENNA ROTATOR

THE DRIVE UNIT consisting of:

- Watertight cast housing.
- Hollow shaft to take a revolving aerial mast up to $1 \frac{1}{2 \prime \prime}$ diameter with double clamping arrangement.
- Bracket for support mast up to 2" diameter.
- High carrying capacity - maximum load 112 lbs.
- Motor shaft bearing lubricated for life.
- Rotating angle of 360° - limited by a stop at the end of rotation.
- Speed of rotation: 1 revolution $=60$ seconds.
- Magnetic disc brake and self-restraining worm gear drive hold the aerial in the predetermined direction.
- Torque approximately 100 ft ./lbs.

CONTROL UNIT

- Actively styled moulded case.
- Position setting made electronically by rotating the selector knob to the desired direction.
- Operation of unit signalled by indicator lamp.
- Power supply: 220 to 240 volts selectively.
- Motor voltage: 42 volts maximum.
- Power input: 60 watts.
- Control lead: five-core.

DOW-KEY HIGH PERFORMANCE S.P.D.T. CO-AXIAL RELAYS

The Dow-Key DK60 series of co-axial relays are ruggedly built and individually inspected for complete dependability. Because of the quality and adaptability of the relays, they are now being used in a multitude of applications - including military, industrial, the amateur field, etc.

STANDARD RELAYS WITH TYPE U.H.F. CONNECTORS INCLUDE:

DK60-S.P.D.T. R.F. switch \$22.77
DK60-G-S.P.D.T. R.F. switch with special "isolation" connector in deenergised position DK60-2C-S.P.D.T. R.F. switch with D.P.D.T. auxiliary contacts DK60-G2C-S.P.D.T. R.F. switch with D.P.D.T. auxiliary contacts and special
"isolation" connector in deenergised position $\$ 26.76$
sales tax included -- ex stock now - post free

SPECIFICATIONS
R.F. RATINGS: 1 kW. power rating to 500 MHz .
COIL RATINGS: 6, $12,24,28$ Volts D.C. V.S.W.R.: Less than $1.15: 1$ from 0 to 500 MHz. (50 ohm load).

Available from

VIC. 608 COLLINS STREET, MELBOURNE, 3000. Phone 61-2464
N.S.W. 64 ALFRED STREET, MILSONS POINT, 2061. Phone 929-8066

QLD. L. E. BOUGHEN \& CO., 30 GRIMES ST., AUCHENFLOWER. 4066. Ph, 7-4097
W.A. 34 WOLYA WAY, BALGA, 6061. Phone $49-4919$

NEWSGTTER

Write or Phone

for our New Semiconductor short form Catalogue, incorporating devices from:

TEXAS INSTRUMENTS

FAIRCHILD
PHILIPS
ANODEON
MULLARD
DELCO
R.C.A.
S.T.C.

SIEMENS
GENERAL ELECTRIC
INTERNATIONAL RECTIFIERS
NATIONAL SEMICONDUCTORS

MODEL BWD509A
One of the many high quality BWD Oscilloscopes available from our test equipment dept.

MELBOURNE'S WHOLESALE HOUSE
562 Spencer St., Melbourne, Vic., 3000. Phone 329-7888, Orders 30-2224
City Depot: 157 Elizabeth Street, Melbourne, Vic., 3000. Phone 67-2699 Southern Depot: 1103 Dandenong Rd., East Malvern, Vic., 3145. Ph. 211-6921

[^58]
amateur

 radioVol. 38, No. 10
OCTOBER, 1970
Fegistered at G.P.O.. Malbourne, for transmission by post as a periodical

Price 30 Cents

LAFAYETTE TRANSISTORISED COMMUNICATIONS RECEIVER

Five Bands: 150 to 400 KHz .550 to 1600 KHz . 1.6 to 4.8 MHz ., 4.8 to 14.6 MHz ., 10.5 to 30 MHz . Operates from $220-240$ v a.c. and 12v. d.c. (negative operates from $220-240$, a.c. ands. 7 diodes and 1 ground). 10 transistors. 2 ress, 7 diodes and zener diode. Ywo mechanical firters for exceptional selectivity. Huge edge inous electrical bandspread with S meter. Continuous elecirical bandspread through ontir bands 80 to
limiter with o.v.c. Receiving modes: AM-CW-SSB PAICE S199.50 includ. sales tax

PLUGS AND SOCKETS

CRYSTALS

CITIZENS BAND and MODEL RADIO CONTROL FGEQUENCY CRYSTALS
HC18 Minlature, $1 / 4$ inch spacing.

26.540 MHz .	26.995 MHz .	27.240 MHz
26.590 MHz .	27.045 MHz .	27.245 MHz
26.640 MHz .	27.095 MHz .	27.425 MHz .
26.690 MHz .	27.145 MHz .	27.740 MHz .
26.785 MHz .	27.195 MHz .	27.785 MHz .
26.790 MHz .		27.880 MHz .
	PRICE \$3.50 EACH	

AMATEUR CRYSTALS
VHF Band - 144 MHz. FM
HC6 Holders, $1 / 2$ inch spacing.

SOLID STATE STEREO AMPLIFIER 8 watts r.m.s. per channal. Input for magnetic. Crystal and ceramic type microphone. P.V. cart ridges. tape recorder input and output. iuner input, stereo neadphone jack. Reduced to S65, post \$1.20.

STEREO HEADPHONES

Professional quallity (well known brand). Large earpads, standard stereo plug, 6 ft . lead. Price 56.75 . Postage 50 c .

C-Type Compact CASSETTE TAPES

Well known make (suit all popular brands of Cassette Recorders). In plastic storage case.
C.60 60 minutes Si. 20

C-90 90 minutes $\$ 1.95$

BRAND		SPEAKERS				
3DX	8 ohms	Nett	Price	S3.96	Postage	20c
3DX	15 ohms	"	-	S3.95	"	20c
6A7	8 ohms	"	\cdots	\$5.50	.	40c
6 A7	15 ohms	"	-	\$5.50	"	40c
8 A7	8 ohms	"	-	S7 20	'	40c
8A7	15 ohms	-	"	S7. 20	.,	40c
12CMX	8 ohms	.	.	510.75	.	50c
12CMX	15 ohms	**	,	\$10.75	.	50 C

DELCO TRANSISTORS

Type 2N441
Type 2N278
Price S2.40. Postage 10c
Type 2N301A Price 56.00. Postage 10c Price 57.40. Postage 10C

LT91 RECTIFIER

20 Volt 2 Amp.
Price \$1.50. Postage 10c.

TE-16A TRANSISTORISED TEST OSCILLATOR

Frequency range: 400 KHz . to 30 MHz . in tive bands. Modulated 800 Hz . sine wave. Modulation 30% aporox $57 / 6 \times 57 / 8 \times 3 \frac{3 / 9}{}$ inches. Welght 1.5 lbs Price $\$ 24$ tax paid. Postage 75c.

AUTO CAR AERIALS

Hirschmann, type 350 N , side mounting, new. Prica S4.50. Postage 20c.

SIGNAL INJECTOR
Model SE250B. Price $\$ 7.00$. Postage 20 c .

INSTRUMENT CASE

Sloping front panal. Plastic case, metal front panel. $71 / 4 \times 41 / 4 \times 5$ inches. Sultable for radio. test equipment, projects, etc. Price $\$ 3.50$ Inc. tax. Postage 10c.

PACK OF RESISTORS

100 Resistors of $1 / 2$ and 1 watt rating. Price S1.75. Postage 20c.

TAA300 INTEGFATED CIRCUIT

1 Watt Audio Amplifier

The TAA300 is a monolithic Integrated circult for use as a complete a.f. amplifier. With a supply voltage of $9 v .$. outputs of up to iw are obtainable Into a load impedance of 8 ohms. A voltage range of 4.5 to 9 volts coupled with very low crossover distortion and low current drain (8 mA .) makes this circuit ideal for battery operation.

TAA300 Integrated Circult, $\$ 3.00$ Postage 10c

TRANSISTORS AND DIODES			
0 O 71	75c	AF114	$80 c$
OC44	90c	AF116	80c
OC45	90c	BC108	70c
AC125	80 c	BC109	80 c
AC128	80 c	BF115	80 c
BA100	30c	OA90	30 c
0 O91	20c	OA95	30 c

A.C. ADAPTOR-BATTERY SAVER

Type PS64-240 voits to 6 or 9 volts. 300 mA . $\$ 12.5$) Type PS62- 240 volts to 6 or 9 volts. 100 mA . 88.50 Postage 30C

SOLDERING IRONS

ADCOLA M70 $1 / 8$ inch tip. 240 volt $\$ 8.00$ ADCOLA M64 3/16 inch tip, 240 volt $\$ 8.40$ SCOPE 4 volts AC/DC, 100 watts $\$ 6.40$ MINISCOPE 56.00 SCOPE De Luxe 87.00 Postage 20c
SOLDERING IRON TRANSFORMER
240 volts/3.3 Volts, 100 V/A 86.40 Postage 40 C

ERSIN SOLDER

Five-Core, 60/40
$\$ 2.50$
Flve-Core, 40/60 $\$ 2.20$ Solder Pack, 42 inches 18 c Postage 20c

MICROPHONE CABLE

Type 15P1/24, E3748, $1 / 16$ Inch dlam.
Price 15c yard, or 100 yds. $\$ 14.00$

STEP-DOWN TRANSFORMERS

Type 5506-240 volts to 115 volts, 20 watts $\$ 12.00$ Type 5578-240 volts to 115 volts, 40 watts $\mathbf{S 1 2 . 5 0}$ Type 2164-240 volts to 115 volts, 100 watts $\$ 16.30$ Type 2166-240 volts to 115 volts, 250 watts $\$ 32.00$ Postage $\$ 1$

MINIATURE SPEAKERS

21/4 Inch	8 ohm V.C.	Price	\$1.50	Postage	c
$21 / 2$ Inch	8 ohm V.C.		\$1.75		20 C
23/4 Inch	$8 \mathrm{ohm} \mathrm{V.C}$.		\$2.00	*	20
3 Inch	$8 \mathrm{ohm} \mathrm{V.C}$.	.	32.25	..	20
4 Inch	8 ohm V.C.		S2.50		200

HAM
 RADIO SUPPLIERS323 elizabeth street, melbourne, vic. 3000
 Phones: 67-7329, 67-4286 All Mail to be addressed to above address

Our Disposals Store at 104 HIGHETT ST., RICHMOND (Phone 42.8136) is open Mondays to Fridays, 10.30 a.m. to 5.0 p.m., and on Saturdays to midday.

We sell and recommend Leader Test Equipment, Pioneer Stereo Equipment and Speakers. Hitachi Radio Valves and Transistor Radios. Kew Brand Meters. A. \& R. Transformers and Transistor Power Supplies, Ducon Condensers. Welwyn Resistors, etc.

Enquiries:

Mrs. BELLAIRS, Phons 41-3535, 478 Victorla Parade, East Melbourme, Vic., 3002 . Houra: 10 a.m. to 3 p.m. only.

Advertising Representatives:

TECHNICAL NEWS PUBLICATIONS
21 Smith St., Fitzroy, Vic., 3065. Tel. 41-4982. P.O. Box 108, Fitzroy. Vic., 3085.

Advertisement material should be sent direct to the printers by the first of each monath.

Hamads should be sddressed to the Editor.

Printers:

"RICHMOND CHRONICLE," Phonc 42-2A19.
Shakespare Street. RIchmond, Vic.. 3121.

All matters pertaining to "A.R." other than advertiaing and subacriptions, should be addressed to:

> THE EDITOR.
> "AMATEUR RADIO."
> P.O. BOX 36 ,
> EAST MELBOURNE, VIC.. 3002.

[^59]
CONTENTS

Technical Articles:-

A Heterodyne Transmitter for Six Metres 14
Another Idea for Rotating Beams 9
Keying Monitor and Band Edge Marker 13
Modificatlons to VK3 432 MHz . FET Converter for Operation
on 576 MHz 11
Putting the Decades to Work: A Low-Cost Counter 7
Resonance 8

General:-

Contests:-

$$
\begin{array}{llllllllll}
\text { Contest Calendar } & \ldots . & . . . & \ldots . & \ldots . . & \ldots . & \ldots . & . . . & . . . & 15 \\
\text { "CQ" W.W. DX Contest } & . . . & \ldots . . & \ldots . . & \ldots . & \ldots . . & . . . & \ldots . & 15
\end{array}
$$

COVER STORY

This month we depict the latest plece of equipment made avallable through Ball Electronic Services, Australian agents for Yaesu Musen Co. Ltd. Japan. It is the Yaesu FT-101 solid-state transceiver, designed particularly for mobile use, but will be found Ideal for flxed or base operation. It ranges from 80 down to 10 metres, operates from in-built power source, either 12 volts d.c., or 100, 117, 200, 220, 240 volts a.c., and weighs only 30 lbs. A four-page, technical brochure is avallable on request.

This is the BIG performance set that obsoletes tube receivers . . a professionallooking set that appeals to amateurs and short wave listeners alike. The DX 150 gives long-range, world-wide realistic reception on 4 bands, including Broadcast. Fully transistorised-all solid state-no warmup delays; the DX 150 will run on dry cells if current fails or is not available; will operate from a car's cigarette lighter or any 12 V DC service. A 240 V AC power supply is also built in. Over 30 semi-conductors-product detector for SSB/CW, plus fast and slow AVC-variable pitch BFO-illuminated electrical bandspread, fully calibrated for amateur bands-cascade RF stage-ANL for RF and AFzener stabilised-OTL audio-illuminated " S " meter-built-in monitor speaker plus front panel jack for external (optional) matching speaker.

Realistic Performance
 Realistic Price
 \$229.50

Attractive silver extruded front panel, solid metal knobs, grey metal cabinet, size $141^{\prime \prime} \times 91^{\prime \prime} \times 6 \frac{1}{2}$.

CONSULT YOUR LOCAL RADIO DEALER, OR MAIL THIS COUPON

todely

Piease forward free illustrated titerature and specifications on Realistic.

Name

(A unit of Jacoby Mitchell Holdings Ltd.) 376 EASTERN VALLEY WAY, ROSEVILLE. 2069. Cables and Telegraphic Address: 'WESTELEC.'

Main specifications of Rotator:
Electric power source: 230V. AC, 50/60 Hert.
Torque: $400 \mathrm{Kg} / \mathrm{cm}$.
lime for one revolution: 60 seconds, spprox. Brake syatem: Electromagnetlc double plungor
Brake power: $5,000 \mathrm{Kg} / \mathrm{cm}$
Vertical load: Dead welght, $500 \mathrm{Kg}:$: nominal load, 70 Kg .
Mast diameter: $11 / 4$ to $21 / 2$ Inches.
Welght: 16 lb., approx.
Control cable: Seven conductors.
Approx, sizes: height, 131/4 in.; bese diam., $51 / 4$ |n. rotation diam., 74/2 in.
Speciflcatlona and Prices subject to change.
australian agent:

BEAM ROTATOR EMOTATOR MODEL 1100M

YOU CAN CONTROL THE DIRECTION OF YOUR BEAM ANTENNA FROM YOUR OPERATING POSITION

The heavy duty model 1100 M features rugged cast aluminium construction, stainless steel bolts, nuts and washers. Bearing design with 90 -ball bearing provides high vertical carrying capacity, and resiszance to bending pressures due to unbalanced weight, wind, etc. Limit switches prevent over-run. Positive braking with solenoid operated double plunger, operates when drive paddle is released. Steel gears transmit drive from a fractional horse-power motor.

The 1100 M can be mounted on a fixed tubular mast if an additional clamp assembly is bolted to the base. Otherwise, the rotator is base mounted on a flat plate fixed to the top of the mast or tower. Six mounting holes are provided. The antenna boom is supported on a short vertical tube held by the top clamp assembly. Clamp assemblies are of sturdy construction and clamp blocks are reversible for small or large tube within the range $11 / 4^{\prime \prime}$ to $21 / 4^{\prime \prime}$ diameter. U bolts are stainless steel 9 mm . diam.

The indicator-Control Box is attractively finished In grey, with large illuminated meter. Indicator lights, power switch, and "Left-Right" controls. Transformer is within Control Box. Control Box size: $51 / 2^{\prime \prime} \times 83 / 8^{\prime \prime} \times 4^{\prime \prime}$; weight $81 / 2 \mathrm{lbs}$. 1100M with Indicator-Control Box and bottom mast clamp, \$165.00. 1100 M with Indicator-Control Box (less bottom mast clamp], \$148.50.
Special 7 -conductor Cable for $1100 \mathrm{M}, 60$ cents per yard.
All prices include Sales Tax. Freight is extra.

The World's Most Versatile Circuit Building System!

SIZES: $1 / 8^{\prime \prime}$ and $1 / 16^{\prime \prime}$ WIDTHS
Length: 100 ft . roll, 5 ft. card
IDEAL FOR PROTOTYPE AND PRODUCTION CONSTRUCTION

USEFUL FOR WIRING REPAIRS

* NO DRILLING $\quad \star$ FASt \quad NO MESS

Available from all Leading Radio Houses
Marketed by-
ZEPHYR PRODUCTS PTY. LTD.
70 BATESFORD RD., CHADSTONE, VIC., 3149
Telephone 56-7231

MANUFACTURERS OF RADIO
AND ELECTRICAL EQUIPMENT
AND COMPONENTS

After Stocktaking - Surplus Stocks Below Cost

THE FOLLOWING COMPONENTS ARE SURPLUS TO OUR NORMAL REQUIREMENTS—ALL BRAND NEW

List No.	Audio Watts	Watts R.F. Input	Price (inc. Sales Tax)
UM0	10	10	S6.00
UM1	30	60	S8.00
UM2	60	120	S12.00

GELOSO V.F.O. 4/105

80, 40, 20, 15, 10A and 10B Metre Bands
It is designed to drive a 6146 (or 807) type tube, both in AM and CW operation, under any working condition, continuous (CCS) or intermittent (ICAS).

The high stability has been achieved by means of a beatfrequency oscillator. This equipment actually mixes the output signal of a quartz-crystal generator, with the output signal of a relatively low variable frequency generator. covering a 500 KHz . range on the $80,40,20$ and 15 metre bands, and a 1 MHz . range on the two 10 metre bands

Price: S11.50 (with sales tax)

WODEN-NU-METAL SHIELDED MICROPHONE TRANSFORMER

Type MT101
Single-hole mounting.
For moving coil microphones from 10 to 30 ohm impedance. Step-up ratio 50:1 overall.

Price: S3.50
(with sales tax)

DOW-KEY R.F. RELAY

S.P.D.T. with external D.P.D.T. contacts for receiver switching or muting. R.F. rating 1 kW . V.S.W.R less than 1.15:1 to 500 MHz . Coil voltage: 48 volts d.c.

Price reduced from S 24.00 to S 11.25 (with sales tax)

GELOSO T26 DYNAMIC MICROPHONE

 WITH PRESS-TO-TALK SWITCHAs used in GELOSO G681 Tape Recorder

Switch provides external contacts for relay operation. Ideal for S.S.B. Immediately adaptable to KW2000A and similar transceivers.

Price: S6.90 (with sales tax)

Available from

VIC.: 608 COLLINS STREET. MELBOURNE. 3000.
N.S.W.: 64 ALFRED STREET. MILSONS POINT. 2061

QLD.: L E. BOUGHEN \& CO., 30 GRIMES ST., AUCHENFLOWER. 4066.
Phone 7.4097
W.A.: 34 WOLYA WAY, BALGA, 6061. Phone $49-4919$

FEDERAL COMMENT

Abstract

The Amateur Service is probably hetter prepared for the 1971 Space Conference than for any previous World Administrative Radio Conference.

I have reached this conclusion after talking to the officers of National Amateur Radio Societies in many countries, including the R.S.G.B. and the A.R.R.L. Only in the course of my visit to England has the attitude of many Societies finally been expressed in words, by the formulation of a policy by the Region I. Division of I.A.R.U. I am suggesting to the Directors of the I.A.R.U. Region iII. Association that the same policy be adopted for our Region, and I would hope that it would be also adopted for Region II. If so, this would then be a global policy for all of the Member Societies of the I.A.R.U. This is in itself significant.

The more that one travels meeting Radio Amateurs throughout the world, the more one realises how much the problems of Amateur Radio are common to all countries. Certainly, attitudes on some matters differ; certainly, there must be room for different views, but in relation to those matters that are basic to our hobby the aims are common throughout the world. If these common aims can be expressed in like terms to each administration then the value of an international Amateur Radio organisation is put beyond argument.

This may all sound a little unrealthat is not so. Each member country of the International Telecommunications Union (the specialised agency of the United Nations that deals with the international allocation of frequencies and the formulation of international regulations) has one vote. Therefore the Amateurs in each country should, for their own protection, ensure that their administration is favourably disposed to Amateur Radio. But it must go further than this; merely to be favourably dis-posed-whilst it is good-is not enough. If the Amateur Societies of the world speak with one voice and seek the same objective, then a result favourable to the Amateur Service is far more likely.

The I.A.R.U. is the international organisation of National Amateur Radio Societies; by its constitution its administration is carried on by one societyThe Headquarters Society-at present the A.R.R.L. By virtue of its Constitution, the officers of the Headquarters Society take like offices in I.A.R.U. The W.I.A. strongly supports the I.A.R.U.,
so strongly in fact, that at times it seeks from the Headquarters even more than it is doing already. This is not a measure of our discontent, but an expression of our faith in the importance of the I.A.R.U.

In addition, Regional organisations have been formed in each of the three Regions. These organisations, whilst at the moment not formally recognised by the I.A.R.U. Constitution, have in fact become part of the I.A.R.U. organisation and are in the best position to deal with those matters of more local concernfor example, European v.h.f. band planning in Region I. In addition, these organisations are able to support the I.A.R.U. Headquarters in the encouragement of Amateur Radio in those countries where Amateur Radio at present is not strong. Through these Divisions of I.A.R.U., and through the I.A.R.U. has come the awareness of the need for a common aim which leads me to make my opening observation.

The Region III. organisation was formed on the initiative of the W.I.A. in Sydney at Easter 1968. It is now really only in embryonic form with the W.I.A. providing the Secretariat. I am however, completely convinced of one thing - the W.I.A. together with N.Z. A.R.T. and J.A.R.L. must be prepared to bear a heavy burden, both financially and in terms of time, to ensure that this Regional organisations is successful. The problems that face us are enormous. We have no close-knit geographically small area like Europe to provide a core around which such an organisation can grow, as was the case with the I.A.R.U. Region I. Division. We face problems of vast distance and diverse cultures throughout our Region, but these are the very things that make the success of our Regional organisation essential. Just as we must have a strong national body, we must also have a strong international body.

The problems presented by the 1971 Space Conference for the Amateur Service have certainly not yet been solved, and there is much work yet to be done both internationally and in Australia within our own national Amateur Radio society, but, if at the 1971 Conference the Amateur Service is successful in obtaining those privileges that it seeks and does not lose any of its existing privileges, then this will be in no small measure due to the co-operation and mutual understanding that exists between national Amateur Radio societies in many countries.

Putting the Decades to Work: A Low-Cost Counter

ROBERT H. BLACK,* M.D., VK2QZ

The avalanche of fan mail which followed publication of the description of a cheap counting and display decade \dagger has stimulated this description of five of these decades connected together as a $100 \mathrm{KHz} . / \mathrm{sec}$. counter.

One of the three letters which, in fact, were received referred to an error in the circuit of the decade: the diode conducting the negative reset pulse to the quinary part is shown the wrong way round. Another modification which has been found necessary consists of a change in the values of the 220 pF . reset capacitors: the one going to the binary part of the decade should be increased to 1000 pF . and the one to the quinary to 1500 pF . to achieve reliable reset.

The diagram shows how the decades are connected, the final one drives a bistable to give visual indication that all the decades have been run through in a given count. The details of the overflow bistable and indicator are shown in the circuit diagram. No comment is necessary on this except to draw attention to the necessity to adjust the base resistor in the lamp driver to give adequate, but not excessive,

[^60] †R. H. Black, "A.R." June 1870
illumination. You will find you have accumulated some type 071 transistors -they usually come along with the 086s.

Resetting of the counter and overflow indicator is achieved by means of a negative output pulse from a monostable which has a very short time delay. Why not a Schmitt trigger? Well, now I come to think of it, why not, indeed? I intended to use the delay time for count presentation but the size of the necessary capacitors got a bit out of hand. An alternative solution was found so the reset pulse generator remains a monostable. At the frequency of counting here the time delay has no
effect on the count. Reset can be achieved either manually or by means of an external pulse.

The power supply is routine. The rectifier diodes come with some of the computer boards. The power transistor RT931/122 is also from one of the boards-they come in pairs. The power transformer, electrolytic capacitors, zener diode and the AC128 will, unfortunately, consume a few dollars, but the total cost of the counter as such should be less than $\$ 40$ (see previous calculation and, incidentally, 5% and $\frac{1}{2}$ watt resistors are available at 3 cents each). If you are going to take a serious (continued on page 15)

RESET MONOSTABLE.

LECTURE NO. 8

Resonance may be defined as the natural period of vibration of matter. in its many forms from the smallest to the largest.

For instance, the natural period of vibration of the atom Caesium 133 is $9,192,631,770$ cycles, and on the other hand that of the Empire State Building is very low. In earthquake areas, skyscrapers are designed so that their frequency will not co-incide with the average period of shock-waves generated by earthquakes. This is done to reduce the earthquake damage to a minimum since physical objects can be vibrated to destruction if sufficient power is applied to them at their resonant frequency.

The classic example is the shattering of a wine glass by a musical note whose frequency is the same as that of the glass.

In radio work, electrical resonance plays a tremendously important part and may be defined as that condition which exists in series or parallel a.c. circuits when the inductive reactance (XL) and the capacitive reactance (XC) are equal so that they balance or cancel each other, and their nett effect on the circuit will be zero (i.e. their reactive effect is zero).

We have already learnt that an inductive reactance causes the current in an a.c. circuit to lag behind the voltage whilst a capacitive reactance causes the current to lead the voltage. Thus, when XL and XC have the same numerical value at a particular frequency, they cancel each other and any current flow will depend on the d.c. resistance which is present. It must be remembered that it is impossible to make any inductance or a capacitance which does not have some d.c. resistance.

Now let us remember some elementary mathematical expressions:

1. Any number multiplied by 0 (zero) $=0$.
2. Any number divided by 0 (zero) $=$ infinity ∞.
3. Any number to which 0 (zero) is added remains unchanged.
4. Any number from which 0 (zero) is subtracted remains unchanged.
Also let us refresh our memories of the formulae for reactance:

$$
\mathrm{XL}=2 \pi \mathrm{fL}
$$

and

$$
\mathrm{XC}=1 \div 2 \pi \mathrm{fC}
$$

where L and C are in Henries and Farads, respectively, and f is in cycles per second (Hz.).

An examination of these formulae shows that for any given value of L and C, as 2π is a common constant, then there will be only one value of f which will satisfy the equation XL $=X C$, and this frequency will be known as the resonant frequency for that particular value of L and C.

[^61]- Continuing the series of lectures by C. A. Cullinan, VK3AXU, at Broadcast Station 3CS for students studying for a P.M.G. Radio Operator's Certificate.

If L and C are in series, the circuit is termed as Series Resonant, and if they are in parallel then it is termed Parallel Resonant circuit. The resonant frequency can be determined by the formula:

$$
f(H z)=1 \div(2 \pi \sqrt[n]{L C})
$$

and L and C from:

$$
\begin{gathered}
\mathrm{L}(\text { Henries })=1 \div\left(4 \pi^{2} \mathrm{f}^{2} \mathrm{C}\right) \\
\text { and } \mathrm{C} \text { (Farads) }=1 \div\left(4 \pi^{2} \mathrm{f}^{2} \mathrm{~L}\right)
\end{gathered}
$$

As mentioned before, the farad is a very large unit and it is more usual to use one microfarad as a reference unit, this being one millionth of a farad. The formula of the resonant frequency of an a.c. circuit then becomes,

$$
f(\mathrm{~Hz} .)=1000 \div(2 \pi \sqrt[2]{\mathrm{L} C})
$$

where L is in henries and C is in microfarads.

It should be obvious, also, from these formulae that for any given frequency there are countless combinations of L and C that will produce resonance at that frequency, but that for a given combination of L and C there can only be ONE resonant frequency.

Question: Consider a circuit in which an inductive reactance of 100 ohms is connected in series with a capacitive reactance of 100 ohms and that the circuit has a series resistance of 10 ohms. Power is supplied to the circuit at a pressure of 100 volts.

1. Find the current flowing in the circuit.
2. Find the voltage across each reactance.
3. Find the voltage across the resistance.
4. Find the power factor of the circuit.
5. Find the power in the circuit.

Comment: This question is somewhat similar to that asked earlier in our discussion on series a.c. circuits with, however, one important difference.

The question states that the two reactances have the same numerical value, therefore the circuit is series resonant and it follows that it must have unity power factor. Thus we can answer section 4 of the question without having to do any calculations, also it follows that the two reactances, together, will not consume any power, thus only the resistance will consume power. From Ohms Law ($\mathrm{C}=\mathrm{E} \div \mathrm{R}$) we calculate that the current flowing in the circuit is 10 amperes and as the circuit has unity power factor, then

C. A. CULLINAN,* VK3AXU

the power will be 100 volts $\times 10$ amperes $=1,000$ watts, and the voltage across the resistance will be $\mathrm{E}=\mathbf{C} \times \mathrm{R}$ $=100$ volts.

Since each reactance is stated to be 100 ohms and current has been found to be 10 amperes, then the voltage across each reactance will be 100×10 $=1,000$ volts. It must be remembered that the voltage across XL will be positive and that across XC will bs negative, so that in the circuit they cancel each other.

Here then are the answers to the questions:

1. 10 amperes.
2. 1,000 volts.
3. 100 volts.
4. Power factor $=$ unity.
5. 1,000 watts.

Comment: We were not asked to find the impedance of the circuit because it should be obvious that the impedance will be the same as the resistance.

We can prove this by using the formula used to calculate the impedance of a series circuit:

$$
\begin{aligned}
\mathbf{Z} & =\sqrt[i]{\overline{\mathrm{R}}^{2}+(\mathrm{XL}-\mathrm{XC})^{2}} \\
& =\sqrt[2]{10^{2}+(100-100)^{2}} \\
& =\sqrt[v]{10^{2}+0} \\
& =10 \text { ohms. }
\end{aligned}
$$

Now let us examine some practical applications of series resonant circuits from the writer's own experience. For obvious reasons, frequencies have been changed.

Some time ago we were engaged in designing an impedance matching network to couple a co-axial transmission line to an aerial for single frequency operation.
Measurements of the aerial made with a radio-frequency bridge had shown that it had a resistance of 52 ohms and a positive reactance of 75 ohms at the operating frequency.

The impedance of the aerial is stated by the equation:

$$
\mathrm{Z}=50 \text { ohms }+\mathrm{J} 75
$$

The positive sign indicates that the aerial has an inductive reactance.
Now we learnt in discussing earlier the series a.c. circuit that maximum efficiency occurs when the circuit had unity power factor. Also discussing the question on series resonance in this lecture we found that a series circuit, when resonant, has unity power factor.
Now it would be possible to couple the co-axial cable to the aerial with the aerial impedance $\mathrm{Z}=52$ ohms + J75, but as the aerial would contain reactance the power factor would be less than unity so more power would have to flow into the aerial than was necessary.

Fortunately, we can "tune out" the reactance of an aerial by adding a (conlinued on page 101

ANOTHER IDEA FOR ROTATING BEAMS

KEITH F. HOFFMANN,* VK4KH

If you have a small back yard-want a rotary beam-then here is a different approach to the problem

Having obtained a prop. pitch motor and gear box to rotate the beams, the only feasible way of using it seemed to be that it would have to be mounted on an old mill tower, and the usual method adopted. This was out of the question as it would have taken up too much room in the already smallish back yard. Again, the thinking cap was put on and the idea "why not rotate the whole tower?" came to my mind. This is how I adapted the idea for my situation.
The basic components used are a galvanised 60 ft., three-section winch up tower, prop. pitch motor and gear box for rotation, and selsyn motors for remote direction indication. The tower in my case is a galvanised one which was originally used as a television survey mast on the back of a van. The two bottom sections are of triangular cross section, each section being 22 feet long. They telescope neatly inside of each other. The top section consists of a 21 ft . length of $2^{\prime \prime}$ diameter steel tubing which telescopes inside the other two sections. The general construction of the tower can be seen clearly in the photographs. Any person handy with a welder should have no difficulty constructing a similar tower.

FIG.I. GUY RING ASSEMBLY.
It is winched up and down by means of a small winch, which is built on to the tower, and $3 / 16^{\prime \prime}$ diameter steel rope. A ratchet is provided on the winch for the control of its operations. Its handle is also removable so people cannot bump into it and injure themselves. With the tower in the full-up position, the winch is locked by means of a $d^{\prime \prime}$ bolt.

The top section has a clamp made from t.v. aerial fittings fitted to it. Its purpose is to prevent the top section from coming down in case the rope should break and also that the strain can be taken off the rope when the tower is in the full-up position. Likewise, the two bottom sections are held together with the use of a small " D " clamp across two struts. This makes
the tower completely safe in case of rope breakages and children playing with the winch. The clamps are fitted after the sections are raised to the required height. No climbing is needed to do this as the job can be done while standing on the roof. The few extra minutes this takes is worthwhile for the peace of mind it gives that the tower will not telescope itself on its own accord.

The tower is held against the house by means of a bracket and a ring assembly around the bottom section of the tower. The bracket is coach-screwed to the facia. This serves to support the tower when it is being raised and lowered, and when it is in its nestled down position, which is about 22 feet high. This is a very convenient height in my case as it is shoulder height when standing on the roof. When fully raised it is supported by three guy wires, two going back to the roof and the other back to a nearby tankstand.

The rotatable guy ring is shown in Fig. 1. It consists of two t.v. guy rings, a pipe spacer $5^{\prime \prime}$ long and a t.v. mast clamp. The spacer is used to prevent the guy wires from fouling the clamp during rotation. Thimbles are used in the guy rings to prevent them from severing the guy wires.

The co-ax. cables are formed in a large loop over the guy ring so that they will bend sufficiently and have enough to prevent them from becoming tight as the guys push against them during rotation. T.v. mast straps are used to clamp the cables to the mast at points $18^{\prime \prime}$ above and $18^{\prime \prime}$ below the guy ring to form the loop. With this
method the tower can be rotated through 420 degrees without any problem. Where the cables are clamped to the mast and where the guy wires are likely to rub against them, they are protected by wrapping rubber around them. The rubber used in this case was $1_{4}^{\prime \prime}$ wide and is normally used for fitting between the glass and the frame in the assembly of aluminium framed windows. The cables are clamped at intervals down the mast and are secured in such a way that no deformation in the shape of the co-ax. takes place. The whole tower can be lowered to roof height in about four minutes, including unclamping.

The tower sits on a large double race ball bearing assembly (out of a tractor) which is clamped on top of a steel frame. All the weight is taken on this bearing and the frame. The mountings can be seen in the photographs and Fig. 2. The gear box is mounted underneath the top plate by means of three large bolts. An appropriate size coupling, which fits firmly through the bearing, drives from the bottom of the gear box to the bottom of the tower. A $5^{\prime \prime}$ diameter by ${ }_{2}^{1 \prime \prime}$ thick plate is bolted to the top of this coupling by means of three $7 / 16^{\prime \prime}$ recessed studs. The tower, with its locating pin, is then held onto this plate by means of another three $7 / 16^{\prime \prime}$ studs.

Any other suitable motor and gear box combination could be used to drive the tower as it takes very little to drive it. Wind loading on the antennas, which causes twist on the mast, should be
taken into consideration when choosing a suitable gear box. The drive gears may be stripped in the wind if these are not heavy enough.

The frame where the motor fits into is made from $1^{\prime \prime}$ round uprights crossbraced with $11^{\prime \prime} \times 3 / 16^{\prime \prime}$ flat steel. The top plate is $3 / 8^{\prime \prime}$ thick. The whole assembly is welded and galvanised. Dimensions are $16^{\prime \prime}$ wide, $12^{\prime \prime}$ deep, $20^{\prime \prime}$ high. Weather proofing is achieved by means of an aluminium cover which is not shown. The tower is also earthed via the frame to a 6 ft . earthing stake a few inches away from it.

The bottom section, which is almost identical to the top section, apart from the top plate, is concreted into the ground. The top section fits over the bottom section and is located by means of pins which fit firmly in the pipes and are welded to the top section. If the QTH has to be shifted you only have to make a new bottom piece and concrete it into the ground. The motor and gear box can be removed without having to do anything to the tower and is only a five-minute job.

The transmitter selsyn is mounted in such a way that it is driven directly by means of a fishing line "belt" from the tower gear box/coupling. A slotted adjustment is provided on the selsyn mount to tension the "belt". The electrical circuit of the selsyns and drive motor is shown in Fig. 3. The motor is run on 28 volts a.c. and appears to work satisfactorily, taking $1 \frac{1}{2}$ minutes for a revolution. Power is fed to the motors via a heavy duty multi-cored cable. At the moment the tower sup-

RESONANCE
 icontinued from page B ।

reactance of opposite sign in series with the aerial and this is what we did. So we connected a capacitive reactance of 75 ohms in series with the aerial.

Then the aerial impedance became:
Aerial $Z=\sqrt[2]{R^{2}+(X L-X C)^{2}}$

$$
=\sqrt{52^{2}}+(75-75)^{2}
$$

$$
=52 \text { ohms } \pm \mathrm{J} 0
$$

The aerial was now series resonant at the operating frequency, the power factor was unity and all the power fed to the aerial was used by the resistance of the aerial.
(In this discussion, dielectric losses in insulators and certain other losses have been ignored as they were of little consequence as the aerial was well designed.)
By making the aerial resonant so that the aerial became a pure resistance the design of the coupling network became simpler so that it was necessary only to match the a.c. resistance (impedance) of the co-axial cable to the resistance of the aerial.
The design of this network need not be considered at this stage.

Another practical application of a series resonant circuit concerned a fixed frequency transmitter. This transmitter produced an harmonic which was causing interference in the 7 megacycle (megahertz) Amateur band. The trans-
mitter was coupled to the aerial by means of a 600 ohms two-wire balanced transmission line.

To reduce this harmonic to negligible proportions an inductance and a capacitance were connected in series. This combination was then connected directly across the output of the transmitter. The capacitance was made adjustable and the series combination was tuned to series resonance at the harmonic frequency, with the transmitter in operation. The tuning was done by setting up a distance communications type receiver, tuned to the harmonic, telephone communication was maintained between the transmitter and receiver operators and the network was adjusted at the transmitter to give a minimum reading on the receiver signal strength meter indicating that series resonance had been obtained.

At the harmonic frequency the inductive and capacitive reactances were equal and as good quality components were used, this series resonant circuit was a virtual short circuit at this frequency, however at the fundamental frequency of the circuit was very high, so that the circuit had negligible effect.

In practice the arrangement proved completely satisfactory.

AMATEUR FREOUENCIES:

ONLY THE STRONG GO ON-SO
SHOULD A LOT MORE AMATEURS!
ports a three element tri-band beam and a 10 element 2 metre yagi. The assembly has been in operation 15 months at the time of writing and has been very satisfactory without any trouble. There is no reason why a telescopic t.v. mast could not be rotated in the same manner or even a length of water pipe. The ideas to further adapt the unit are almost unlimited.

Modifications to VK3 432 MHz. FET Converter for Operation on 576 MHz .

R. J. HALLIGAN,* VK3AOTIT

The VK3 V.H.F. Group 432 MHz . Converter, \dagger which is available in kit form, has proved to be an excellent performer on this band. The possibility of using this converter on 576 MHz . is obvious in view of the small increase in frequency involved. The modifications presented are simple and the measured performance on 576 MHz . very satisfactory.

OSCILLATOR-MULTIPLIER CHAIN

The original circuit used a bipolar transistor oscillator-doubler. The same basic circuit has been retained, however some changes were made to suppress tendencies towards parasitics with very active crystals. These effects were due to oscillation alternating between series and parallel modes.

The approach was empirical and the values, while being quite satisfactory in the author's converter, may not yet be optimum. The changes require no p.c.b. modifications. Only those values that have been altered are given on the circuit diagram-see Fig. 1a.

In the 432 MHz . converter, the oscilla-tor-doubler stage was followed by two further doubler stages. For 576 MHz . operation, the final doubler is changed

17-10 turns 30 B. \& S. enamel wire. close wound.

FIG.Ib.
L10-3 turns 26 B. \& S., $3 / 16$ inch I.d., spaced L11-1 turn 18 over. S .W. See Fig. 1 c .

111-1 turn $3 / 16$ Inch l.d. 18 S.W.G. T.C.W.
Fig. 1.-(a) Modified oscillator circuit.
(b) Modified clrcuit of fincuit. multiplier.
(c) Physical layout of final multiplier.
to a tripler, giving an overall multiplication of 12. Changes associated with the tripler circuit are shown in Figs. 1 b and 1c. No other changes to coil details are required in this section.

The appropriate crystal frequency can be calculated from one of the following formulae:

Single conversion: $\mathrm{X}=(576-$ I.F. $) \div 12$
Double conversion: $X=(576-$ I.F. $) \div 13$
where $X=$ crystal frequency in MHz .
I.F. $=$ final (tunable) intermediate frequency in $\mathbf{M H z}$.
When ordering crystals the circuit should be supplied to the manufacturer.

MIXER MULTIPLICATIONS

The only modification necessary involves shortening L4, Details are shown in Fig. 2.

Modifications to mixer input circult.

R.F. AMPLIFIER MODIFICATIONS

The modified amplifier circuit is shown in Fig. 3a. Output circuit changes are shown in Fig. 3b. Due to the reduced length of L3, it is necessary to re-locate the drain button bypass capacitor, C6.

Input and neutralising circuits require most changes. The input co-axial socket must be moved towards CI. Use is made of the area containing the input designation "IN". Heat the letters with a

soldering iron until the copper lifts. The letters may then be removed and a $1 / 16^{\prime \prime}$ hole drilled in the centre of this area. Drill $1 / 16^{\prime \prime}$ diam. holes either side of the centre hole and mount the co-axial socket. Further changes are shown in Fig. 3c. Note the re-location of the neutralising coil, L2.

PERFORMANCE

The converter was built up as a double conversion unit. Gain is similar to that observed for the original 432 MHz . circuit. Sensitivity was measured as being $0.1 \mu \mathrm{~V}$. at the input terminals for 6 dB. signal-to-noise ratio (a.m., 10 KHz . i.f. bandwidth, 100% modulation). A Hewlett-Packard u.h.f. signal generator type HP612A was used for this measurement. The test results correspond roughly to the minimum readable signal under normal operating conditions. No facilities were available for noise figure measurements.

FIG. 3a.
L1-See Fig. 3 c .
L2-3 turns. 22 S.W.G. enamel wire. See Fig. 3b. L3-See Fig. 3 b .

FIG. 3b.

Fig. 3.-[a] Modified r.f. amplifier circuit.
(b) Physical layout of amplifier output
(c) Physical layout of amplifier input.

CONCLUSIONS

The use of the VK3 V.h.f. Group 432 MHz . converter kit provides a ready means of receiving on 576 MHz . Varactor transmitters producing up to 20 watts of $\mathrm{f} . \mathrm{m} . / \mathrm{c} . \mathrm{w}$. or 6 watts of a.m. can be constructed in a few hours. Perhaps with the availability of these designs more Amateurs will explore the exciting world of u.h.f.

TECHNICAL ARTICLES

Readers are requested to submit articles for publication in "A.R.," in particular constructional articles, photographs of stations and gear, together with articles suitable for beginners, are required.

A.M.S.A.T. Hosts Distinguished Guests

A special meeting of the Radio Amateur Satellite Corporation (A.M.S.A.T.) held in Washington on 3rd July heard talks by Michael Owen, VK3KI, President of the Wireless Institute of Australia; R. A. Vanmuysen, ON4VY, Past President of the Belgium Amateur Society; Robert W. Deniston, W0DX, President of A.R.R.L.; A.R.R.L. Atlantic Division Director, Harry A. McConaghy, W3PEC.

The meeting also featured the presentation by Mr. Deniston of the League's 1969 Technical Merit Award to William L. Smith, W3GKP. The A.R.R.L. Board of Directors, at its 1970 meeting, conferred this award jointly on Mr. Smith and Paul M. Wilson, W4HHK, for their contributions to the art of moonbounce communication arising out of their e.m.e. experiments on the 2300 MHz . band.

Michael Owen, VK3KI, conveyed the thanks of W.I.A., Project Australis and Australian Amateurs generally to A.M. S.A.T., N.A.S.A. and the League for their various parts in the recent successful Australis Oscar 5 mission. He also expressed the anticipation for the next Amateur satellite which is felt in his country.

Jan King, W3GEY, Project Manager for A.M.S.A.T. Oscar-B (A-O-B), described progress on that satellite which will receive a regular Oscar designation once in orbit, hopefully about one and a half years from now. A-O-B, as presently planned, will contain two repeaters, both operating cross-band between the 144 MHz . and the 420 MHz .
band. One will be a broadband linear device similar to previous Oscar's, while the other will be a channelised f.m. repeater. Sophiscated command and telemetry provision will be included.

Jesse Wagner, K3GKB/WA2UYF, presented a discussion of some of the ionospheric propagation results noted at the N.A.S.T.A.R. station K2SS during the lifetime of Australis Oscar 5.

In addition to the guests already mentioned, the meeting was attended by A.M.S.A.T. members and others interested in the Amateur space programme from as far away as Richmond, Virginia and the New York City area.

VK3 WESTERN ZONE, W.I.A. ANNUAL CONVENTION

to be held at NHILL
on
SATURDAY AND SUNDAY, 24th and 25th OCTOBER, 1970
Saturday, 1400 onwards: Registration and rag-chew. official dinner. guest speaker, entertainment
Sunday, 1030: Tour of Little Desert National Park, barbecue lunch, meeting.
Hoiels, Motels, Carayan Park. Aerodrome.
Bookings with $\$ 2$ deposit to: Jim Bywaters VK3AEF, 30 Queen St.. NhllI. Vic.. 3418.

Nell Glanville. VK3AQD. President.
Bob Mitchell. VK3ARM. Secretary.

VK3KI talks back home to VK3ARD on 20 metres via the C.O.M.S.A.T. Club Station WABIGQ. Bob Deniston, WODX, on the phone, while Harry McConaghy. W3EPC. A.R.R.L. Ailantic Division Director, looks on.

Keying Monitor and Band Edge Marker

R. TORRINGTON,* VK3TJ

One thing that was missed when changing from a transmitter-receiver combination to a transceiver was the key thumps whereby one could monitor quiet bug sending.

A monitor using r.f. pick-up to activate the audio oscillator was first tried, but it was too critical in location even when an additional amplifier was added.

For those transceivers that do not provide a keying monitor, this unit may be useful. The transceiver concerned employs a keying circuit where - 50 volts appears across the key contacts with the key open and so this device makes use of this feature.

Q1 and Q2 form the oscillator for the audio tone while Q3 is an audio amplifier. Q4 and Q5 form the switch to activate the audio oscillator in sympathy with the keying. The values of the resistors and capacitors in the oscillator need not be exactly as shown, but happened to be on hand and produce a suitable audio tone. Practically any speaker transformer can be used. Only low audio output is required for monitoring purposes and losses with incorrect impedance transformers can be accommodated.

Q5 must have very low collectoremitter leakage otherwise the oscillator will be activated with low audio output in the key-up condition.

With key up, -50 volts is applied through a 1 megohm resistor to the base of Q4 and turns this transistor on. This condition turns Q5 off and so prevents the audio oscillator from operating.

As a guide, the voltages to be expected at the various parts of the circuit are shown. The unboxed figures are for key-up, while the boxed figures are for key-down conditions.

The current demand at 9 v . is 1.5 mA . for key-up and 6 mA . for key-down.

One advantage with this circuit arrangement is that if the transceiver is switched off, the loss of - 50 v . from the input activates the oscillator to remind one to switch the monitor off.

The unit is built into a box just large enough to take a 4 -inch speaker. In addition, a band edge marker was built into the same box. Sufficient radiation takes place to produce good signals with the box several feet from the transceiver. A 7000 KHz . crystal was used to provide a band edge marker for 7 and 14 MHz .

The one megohm input resistance to Q4 should be quite satisfactory for all transceivers where the voltage on the key is negative with respect to the chassis and less than 100 volts.

MOBILE RADIO TECHNICAN (Senior)

For the maintenance of V.H.F., F.M. and A.M. Radio-Telephone equipment. Ham Radio background useful but applicants MUST have had experience in the development or maintenance of mobile radio. Salary negotiable according to that experience.
For interview, after hours if necessary, ring Mr. Findlay on 807-1355.
FINDLAY COMMUNCATIONS
PTY. LTD.
2 POPE STREET, RYDE, N.S.W., 2112

- Thistle St., Pascoe Vale South, Vic., 3044

SOME DAY
Breathes there a man, with soul so dead, Who never to himself has said. I must never, never, throw this away. I'll find a use for it some day.
The rusty wire, the odd size nalls, The empty drums, the old fence ralls,

He stores them all with alr so gay
Positively sure they'll be used some day.
This shelf is piled with assorted screws,
And bits of leather for mending shoes.
The shoes have mildewed, furry and grey,
But never mind, they'll come in one day.)
If you add to this he's a Radio Ham,
Your plain old hoarder's an also ran.
The condensers, the valves, the old relays,
They'll all be used, one of these days.
The chassis, the wires, the technical data,
Transistors, connectors, all such dusty errata,
Can fll up the house, but still he will say.
I'll get it to work, one of these days.
If, as well, he reads, and hates to part,
With printed paper, you've made a good start, Toward screaming fits and hair so grey,
Toward screaming fits and hair so grey,
Whenever he says: "It'll be handy some day'.
With cameras. telescopes, books, rocks and maps, The stuf's piling up, it'll soon reach our laps; As the floor disappears, I'll soon be at bay, As the floor disappears, ${ }^{\text {Menaced by the things that will come in }}$ some day.

The future is grim, his son is the same,
With cars, trains, wire, nalls, stamps, blis of old games.
With angulshed clutching, he will also say,
You can't throw that out, l'll need it some day.
When mothers give counsel to daughters so young.
The praises of handymen loudly are sung.
For reasons obscure. they never do say, day'."
They say, get your man a hobby or two,
But what if the man with some hobbles gets you?
You will wish he had not, when again he does say.
I'll knock up some shelves for it all-some day.
No doubt there are others with menfolk like mine.
Resignation has grown, but at odd times I pine, For a man who could sometimes, cheerfully, say.
All this old Junk? Throw it away!
-S. Gillespie.
NEW N.Z.A.R.T. AWARD-5 $\times 5$
This Premier Award has been instituted to recolnise the increasing interest in five-band operation. The initial certificate can be ob-
oned five different bands, repeated with other stations in four different D.X.C.C. countries. Endorsements are avallable for ten D.X.C.C. countries mend then each further ten to one hundred when the ten avallable endorsements will have been won.
The award, which consists of a most attractive coloured picture ispecially selected as appropriate for this awardi. requires a certified liet of stations worked iwith essential QSO datal and a fee of $\$ 1$ which includes the issue of all endorsements after qualification.
Applications to N.Z.A.R.T. Awards Manager, ZL2GX, 132 Lyrton Road, Gisborne, New Zealand.
N.B.-Initial award requires five-band operation with five different D.X.C.C. countries. First endorsement alter a further five has been contacted (making a total of 10), the 20 endorsement requiring a further 10 and so on.

AWARDS

Malanje Centenary Award is issued for workIng CR6MG plus one other Malanje station on $\mathrm{c} . \mathrm{w}$. during the period Aug. 3 to Dec. ${ }^{31}, 1970$. on any band between 7 and 28 MHz . Other Malanje stations are CR6BY. CD, EP, GQ. GW. HQ. JY. KB, KZ. LC, LK, IN. MG and NS. Logs plus QSLs to L.A.R.A., Concurso Centenario de Malanje. Caixa Postal 86. Malanje. Angola, P.W.A. This one is nlso available to S.w.l's.
LX Award for working stations since Jan. 1 , 1951. GCR list including full log data plus 10 IRCs to LXIAJ. VK ops. would need 20 points, one point being awarded per LX station per band on 20.15 and 10 , with two points on 40 and 80 . A five-band QSO would count is 15 points. Not an easy one, but you have a lot of back log sheets to travel over.

O1. O2. O3-Any PNP transistors.
O4. O5-Type 034 (from computer boarda). O6-2N1935, 2N1224 or similar.

Xtal- 3500 or 7000 MHz ., depends on coverage of transceiver.

A Heterodyne Transmitter for Six Metres

PETER COLLINS,* AX3ZYO

Abstract

There may be some who will wonder why an Amateur living in a primary t.v. area with Channel 0 is interested in building a 6 metre rig, but those who have been able to work a few 6 metre openings will agree that 6 is definitely the fun v.h.f. band.

Although t.v.i cannot be eliminated, a rig can be designed that will allow operation at most times. Even though a high power rig may give "loudest signal on the band" reports, this may not go down very well with the neigh-bours-low power operation on the other hand will cut t.v.i. troubles to a minimum and allow a few contacts to be made during band openings at times when Channel 0 is in operation.

This rig has been designed so that the exciter as described can be modulated and used as a low power rig or as an exciter for a high power final which can be used during non-television hours.

For best stability heterodyning was chosen in preference to a conventional v.f.o., which uses a low frequency oscillator to obtain stability, and is then multiplied to the required frequency and at the same time multiplying the drift. Heterodyning is the sum or difference of the two signals and the stability of the output is essentially that of the combined oscillator.

CIRCUIT DESCRIPTION

The 12AT7 crystal oscillator uses a series resonant 18.777 MHz . crystal and is capacitively coupled into the mixer cathode.

The variable oscillator is a receiver: type circuit with the second half of the 12AT7 used as a cathode follower to

- 28 Taunton Avenue, South Oakleish, Vic., 3167.
provide isolation and is capacitively coupled into the mixer grid; the output of the oscillator is $2.331-4.331 \mathrm{MHz}$.

The mixer input coupling condensers are chosen in value to provide the correct level of injection for best output, and minimum output of spurious signals.

The mixer tube is a 6AK5 and the output is the difference of the two oscillators ($56.331-4.331 \mathrm{MHz}$.). It was decided to place the crystal/multiplier frequency above the desired frequency to avoid the possibility of interference from this signal; if the crystal oscillator was below the desired frequency it would be around $48-49 \mathrm{MHz}$. (depending on the v.f.o. frequency range chosen) and interference from this signal may result.

Link coupling from the mixer to the E180F r.f. amplifier was originally tried in an attempt to bandpass this circuit, but instability of the r.f. amplifier resulted and was subsequently changed to capacitive coupling, which eliminated this effect and still provided satisfactory operation. Both the E180F and 12BY7 r.f. amplifiers are quite conventional and employ capacitive coupling.

Two stages of amplification were tried in the original design, but it was necessary to run the stages beyond the correct ratings and the inclusion of another stage was necessary. A QQE03/12 was chosen, allowing the preceding stages to be throttled back yet maintain drive over a greater range.
The $3 / 12$ was chosen as it is internally neutralised and can provide the
necessary output required for low power operation; the output butterfly capacitor is of 522 origin.
A power supply is incorporated in the unit and supplies 150 v . regulated for the oscillators, 275 v . for the mixer and E180F r.f. amplifier, and the heater supply.
Netting is achieved by energising the relay (RLY) which connects h.t. to the crystal oscillator/multiplier, mixer and r.f. amplifier; the variable oscillator is operative at all times. In the transmit mode, 300 v , is supplied to the 12 BY 7 and 300 v . modulated to the $3 / 12$, the relay is also energised. These voltages are supplied from external supplies.
All wiring in the unit is run in screened cable and bypassed at both ends, external connections to the unit are decoupled with feed-through condensers and r.f. chokes in a pi network to prevent radiation from connecting cables.

ALIGNMENT

The first requirement is to ensure that the crystal oscillator/multiplier is adjusted to the correct harmonic, as checked with a wavemeter, then the variable oscillator should be checked to ensure that it covers the required range -the lowest frequency is set by the trimmer across Ll and the tuning range set by the condenser in series with the variable tuning condenser. The next step is to couple a wavemeter to the mixer anode coil and adjust for an output at 52 MHz . Output may also be obtained at the sum of the two oscilla-

FIG. 1. HETRODYNE TRANSMITTER CIRCUIT.
tors (60.66 MHz) and the correct frequency should be carefully chosen.

At this stage the output can be heard on a receiver and a search should be made to check on any spurious signals indicating over driving of the mixer, which can be corrected by reducing the value of coupling condenser from the oscillator; some experimenting of the values of the input condensers may be needed to ensure maximum output with a minimum of unwanted responses. The E180F is a high gain tube and the unwanted frequencies are not far down on the wanted one at this stage and it is necessary to ensure that this stage

L8-Air wound inductance (Wm. Willis No. 2-16) 12 turns centre tapped ($20 \mathrm{~g} .5 / 8^{\prime \prime}$ diam., 16 t.p.i.).
L9-Same as L8, 8 turns centre tapped.
L10-2 turn link, single strand p.v.c. hook-up wire around centre of L9.
L11-20 turns 28 B. \& S. enamelled, 3/8" slug tuned former.
L12-5 turns 26 B. \& S. enamelled, $3 / 8^{\prime \prime}$ slug tuned former, spaced 1 turn.
RFC1-1-7/16" winding length, 28 B . \& S. enamelled on $\lambda^{\prime \prime}$ former.
RFCs2-6-15 turns 26 B. \& S. enamelled, close wound on high value 1w. resistor.

FIG. 2. CHASSIS LAYOUT.
is also tuned to the correct frequency; it is not wise just to tune up for maximum drive to the subsequent stage without checking on the frequency that is being amplifed. The 12BY7 driver is tuned for maximum output at about 52.3 MHz .

No attempt was made to stagger tune the stages as the $3 / 12$ can be driven to $2-3 \mathrm{~mA}$. grid current across the range 52 to 53.4 MHz . The grid circuit of the $3 / 12$ resonates at 52.0 MHz . with the 3.3 pF . condensers shown in the circuit, but it would be wise to check this with a g.d.o. and make any adjustments necessary.

All that is required now is to connect the h.t. and a load to the final and adjust the stages for resonance.

The unit is housed in a U-shaped compartment $15^{\prime \prime}$ wide, $9^{\prime \prime}$ deep and $6^{\prime \prime}$ high, which is bolted to a 7" rack-panel, shielding is completed with top and bottom covers suitably drilled to provide ventilation, but maintain shielding, a divider is placed vertically down the centre of the compartment and two sub-chassis are used, one for the exciter and the other for the final and power supply.

The final amplifier used with this unit is a push-pull pair of 6146s and when required is connected to the exciter via a co-ax. jumper lead.

COIL DATA

L1-36 turns 26 B. \& S. enamelled on $3^{3 \prime \prime}$ former, spaced 1 turn.
L2- 32 turns 28^{\prime} B. \& S. enamelled, $\frac{1}{\prime \prime}^{\prime \prime}$ former.
L3-5 turns 26 B. \& S. enamelled, $3 / 8^{\prime \prime}$ former, slug tuned.
L4-6 turns 26 B. \& S. enamelled, $3 / 8^{\prime \prime}$ former, slug tuned, spaced 1 turn.
L5-6 turns 26 B. \& S. enamelled, $3 / 8^{\prime \prime}$ former, slug tuned. spaced 1 turn.
L6-2 turns link on cold end of L5, single strand hook-up wire.
L7-Same as L6 around centre of L8.

"CQ" W.W. DX CONTEST

PRECIS OF RULES

Bands: 1.8 to 28 MHz .
Exchange: RS/RST plus Zone.
Dates: Phone. Oct. 24/25: C.w.. Nov. 28/29. Time: 0000 GMT Saturday to 2400 GMT Sunday. for both week-ends.
Scoring: ial 3 points between stations on difierent continents; ibl 1 point between stations on the same continent but in differerit countries: icl Contacts between stations in the same country are permitted for Zone and/or Country multiplier but have no QSO point value.

Final score: ${ }^{\text {a }}$ I single band. Zones plus countries multiplied by QSO points; |b| all band. sum of Zones plus sum of Countries multiplied by total QSO points.
Competition: T'hree divisions-|al single operator. single band or all band; 'bl multl operator, single transmitter: (c) multi operator mult transmitters.

Logs: To "CQ" W.W. DX Contest, 14 Vanderventer Ave., Port Washington, Long Island, venter Ave.. Port
N.Y.. U.S.A.. 11050 .
N.Y.. U.S.A.. 11050 .
Detailed Rules in October 1970 "CQ".

AUSTRALIAN RESULTS 1969 W.W. CONTBST
C.W.-

	Band	Score	QSO	Zon.	Cnirs.
VK2BKM	All	871.884	1180	97	146
VK2GW	All	280,720	548	74	102
VK2APK	14	282,820	820	34	87
VK3RJ	28	13,230	108	18	24
VK3AXK	21	110.980	481	30	50
VK3XB	21	1.408	44	12	20
VK3QI	14	44.608	243	24	40
VK3OP	7	23.048	179	17	23
VK3APN	3.5	8.904	130	11	17
VK4FH	All	113.490	395	42	55
VK4SS	28	18,207	121	24	27
VK5FM	All	141,008	422	40	72
VKSNO	7	87.542	411	28	48
VK6HD	All	318.400	560	70	130
VK6RU	28	116.172	477	26	58
VK6AJ	14	85.804	324	29	62
VK7CH	All	43.014	142	49	58
Pbone-					
VK2WD	All	38.790	153	29	61
VK2APK	14	447.262	1030	36	115
VK2BNK	14	12.544	72	23	41
VK3XB	All	12.586	83	30	28
VK3SM	21	12,985	94	21	28
VK4FH	All	329.760	691	65	115
VK4DO	14	28.575	143	27	48
VK4NS	14	4.512	48	16	16
VK6RU	All	1.774.808	1895	105	223
VK9XI	All	89.053	283	51	58
VK9KS	All	110,691	311	54	93
VK2BKM/2					
IL. H. Is. 1	All	896.736	1336	80	161
VK9RY	All	43.660	286	22	37

A LOW-COST COUNTER
 icontinued from page 71

interest in counting, an effective a.c. line filter is suggested. An 086 can be used in place of the AC128.

The unit thus far described has been mounted on a breadboard and panel. It is illustrated in the photographs, which show the general layout. This unit was built separately as a counter with a reset facility and will reliably count 4 volt negative pulses at a repetition frequency of some hundreds of thousands per second.
Counting is fun-the run of the count through the lamps is very soothing to
watch. On the other hand, it's like having a microamp. meter: you can measure current in microamps. but you can do a lot more with the meter if you make up the auxiliary apparatus. A future article will describe a control unit which permits frequency measurement up to $1 \mathrm{MHz} . / \mathrm{sec}$., again using parts from computer boards.

My thanks are due to Dr. B. McMillan for the photographs and Mr. D. Cato for the panel decoration.

REFERENCBS

Black. R. H.. 1970. Count and Display at 86 per decade. "Amateur Radio." 38. No. 6. 7.
Cleary, J. F. IEd.I. 1984. Transistor Manual. 7th Ed.. Syracuse. N.Y., General Electric Co.

THE GROWTH OF RADIO COMM. IN AUSTRALIA

The following figures recently released by the P.M.G. Department are of interest. These figures are the annual returns showing the total of all stations authorised in Australia and Territories as at 30th June, 1970:

Increase during

Category		Increase during Year ended June 30
Land	10,845	1,579
Fixed	5,601	309
Mobile	113,184	16,565
Amateur	6,238	375
Total	135,868	18,828

It is also interesting to note the following:-

53,551 base, mobile and fixed stations operate between 70 and 85 MHz .
29,238 base, mobile and fixed stations operate between 148 and 174 MHz .
865 base, mobile and fixed stations operate between 450 and 520 MHz .
You are cordially invited to speculate as to the further development of Radio Communications in Australia!
-W.I.A. Federal Secretary.

13th JAMBOREE-ON-THE-AIR

The 13th Jamboree-on-the-Air will be held over the week-end of 17 th and 18th October, 1970 . Starting time will be 0001 G.M.T. on Saturday, the 17 th, and the event will terminate at 2359 G.M.T. on Sunday, the 18th. Stations may, of course, operate for any period of time within these limits.
It is suggested that the official World Scout Frequencies listed below be used as calling frequencies only (i.e. for initial contacts only). After contact has been made, the stations concerned should move away (QSY) to continue their conversations.
80-75 Metre band:
3,590 c.w., 3,740 phone, 3,940
U.S.A. phone.

40 Metre band:
7,030 c.w., 7,090 phone, 7,290
U.S.A. phone.

20 Metre band:
14,090 c.w., 14,290 phone.
15 Metre band:
21,140 c.w., 21,360 phone.
10 Metre band:
28,190 c.w., 28,990 phone.
COOK BI-CENTENARY AWARD
V.H.F./U.H.F. SECTION

The following stations have qualified for the Award:

$$
\begin{array}{cl}
\text { Cerı. No. } & \text { Call } \\
1 & \text { AX3ZNJ } \\
2 & A X 5 Z B T
\end{array}
$$

Here's the solution to all-band working in a limited space-

G8KW TRAP-TUNED ALL-BAND KIT

Kit comprises two fully weatherproofed pretuned high O trap coils resonant at 7.1 MHz ., and largo ceramic "T" centre insulator.
Price $\mathbf{\$ 1 8 . 4 0}$ (tax paid)

FEATURES-

75 ohm co-axial feed or twin flat trans. mission line

- Only 108 feet long
- Operates on six bands.
- Reasonable SWR on all bands.
- Simple to erect.
- No "cut and try" necessary,
- Full Instructions with each kit

WILLIAM WILLIS

\& CO. PTY. LTD.
Electranic and Radio Equipment Supplies
77 Canterbury Road, Canterbury, Vic., 3126 Phone 836-0707

PREDICTION CHARTS FOR OCTOBER 1970

(Prediction Charts by courtesy of lonospheric Prediction Service)

NEW CALL SIGNS

MAY 1970

VKIJT-J. E. Townsend, 43 Lambrigg St., Far-VKIMF-M. ${ }^{\text {rer. }}{ }^{2607}$. Foster, 65 A'Beckett St., Watson, 2602.

VK2IE-R.C. Richards. 288 Main Rd., Thirroul, VK2NA $\frac{2515}{2137}$. Choy. 40 Castlereagh St., Concord, VK2XI $\underset{2550}{2137 .} \mathbf{J}$. Fleming. 52 Belmore St.. Bega, 2550.

VK2AAM-M. J. Hardy. 6 Juliet St.. Charlestown. 2290.
VK2AIX-F. L. Jamison. Jnr.. Unit 4A. Thornton Pl., 21 Thornton St., Darling Point. 2027.

VK2ATM-A. T. Monck. 27 Park St., Pt. Mac-VK2ZDE-R. A. Day. 37 Ranclaud St., Booragul, 2284.

VK2ZGB-B. C. Tucker, 4/9 Robwald Ave., Mangerton. 2500.
VK2ZII-I. W. Pietsch, 7/8 Hazelbank Rd., Woll-VK2ZSB-S. T. Mudge, 32 Willarong Rd.. Mt. VK2ZYC-G Colah, 2078.
bank, 2170 .
VK3EE-F. V. Hughes. 6 James St., Morwell. VK3KR-P ${ }^{3840 .}$. Bennie. 96 Stawell St., Sale, VK3UV-L. E. Martin, 28 Leura St., Murrum-VK3AEA-R. J. Caldwell. 57 Station St., Belgrave. 3160 .
VK3AYL_G. R. Boyle, 37 Shakespeare Ave.,
VK3BADreston, C. ${ }^{3072}$. ${ }^{30}$ Baker, 22 McMillan St., Clay-
VK3BCI-I. ${ }_{\text {ton }}{ }^{3168 .}$. Beulke. 228 Eleventh St., Mil-
VK3BCU_N. ${ }^{\text {dura }}$ P. Muscat, 46 Jackson St., NidVK3BCV drie. ${ }^{3042}$. Cassidy, 8 Brooke Dr., Altona, VK3BDD-D. Vlassopoulos, 2 Sandgate Ave., Glen Waverley, 3150.
VK3BDM-R. W. Kilgour, 7 Chingford St., VK3BDN-R G Hard
VK3BDN-R. G. Harding, 5 Marroo St., Don-VK3BDY-G. Butterw
VK3YD lamarine, 3043. VK3YDD-W. Yunker, 4/50 Lillimur Rd., Or-VK3YDE-L. ${ }^{\text {mond. }}$.
Auburn, 3122 R., Auburn, 3122
thorn, 3123.
VK3YDJ-J. A. Gleeson, 29 Manuka St., South Oakleigh. 3167.
VK3YDK-S. King. 1 Kalmla Ave., Mt. Waver-VK3YDL-L. ${ }^{3149 .}$
Carnegie, 3163 .
VK3YDN~J. F. Bear. 38 Wilfred Rd., East Ivanhoe, 3079.
VK3YDO-A. R. Atkins. 29 Flinders St., East Kellor. 3042.
VK3YDR-N. R. Darragh. 15 Royston St., East VK3Zhforn. A. Wright, 10 Culshaw Ave., Clay-
VK3ZII-W. H. H. Lane. 4 Edith Ave., Nunnwad-VK3ZQP-i. ${ }_{\text {Ing }}^{\text {I }}$ A. Kcenan. 15 Grout St., Hampton. VK3ZYF-P. T. Cossins. 14 Coleman Rd., Wan-VK3ZZA-J. A. Frost. 26 Stanley Gr., Canterbury, 3126.
VK4HY-H. H. Varnes, 3 Leeson St., BundavKion berg. 4670.
VK4OE-O. A. Johnstone, 92 Albert St., IngleVK4YC Wood. 4387. Colleg Technical College. Station: College Park Rd., Yeronga. 4104; Postal: P.O. Box 45. Yeronga. 4104.

VK4ZCM-S. B. McGregor, 114 Maln Rd., ClonVK4ZCS_C. P. Stubbs. 19 Bradford St., Edge Hill. Cairns, 4970
VK4ZDY-R. J. Hicks, 70 Primrose St., Sher-VK4ZEB-I. E. Blinnie. 21 General St., Hendra, VK4ZLK-L. C. Kelso. 46 Gavegan St.. North VK4ZWF-W. A. Hamilton, Police Station, Neil VK4ZYX-N. M. Turner, 12 Market St., Indoornopiliy. $40 f 8$.
VK5IG-R. J. Hester, Stition: 46 Lambeff St. Ceduna: Postal: C/o. O.T.C. Control Station. Ceduna, 5690.

VK5AWI-Wireless Institute of Australia IS.A. Division! V.h.f. Group. C/o. J. A. Hackworth, 34 Oaklands Rd.. Somerton Park, 5044.

VK5ZBH-M. R. Haskard, 64 Malvern Ave., Malvern, 5061
VK6FI-A. N. MacTaggart, Station: Meekatharra; Postal: P.O. Box 74, Meekatharra, 6642.

VK6NA-B. Noseda IRev. Fr.I. Kalumburu Mission, via Wyndham, 6740.
VK6RZ-A. L. Mansfield. Station: U.S. Navcommsta, Exmouth; Postal: P.O. Box 22. Exmouth, 8707

VK6TA-K. A. Thomas, 12 Beresford Ave., Geraldton. 6530.
VK8JM-J. P. Meehan. Box 1. Connellan Mess, Alice Springs, 5750.
VKazCJ-G. G. Baker, Flat 2, Mowbay Flats, Cr. Bennett and McMinn Sts., Darwin 5790.

CANCELLATIONS

VK1EB-E. F. Bacon. Transferred to Qld. VK1NC-J. Blalock. Not renewed. VK1ZOL-M. G. Foster. Now VKIMF.
VK2ACW-C. O'Connor. Not renewed.
VK2AQG-R. J. Fleming. Now VK2xi.
VK2ASC-J. F. Scougall. Transferred to S.A.
VK2BLH-J. Bays. Transterred to Vic.
VK2BTM-A. T. Monck. Now VK2ATM.
VK2BXK-Rockdale Youth Radio Club. Not

VK2ZAI renewed

VK2ZAI-R.A. Isaac. Transferred to Qld
VK2ZJI-J. F. Davis. Transferred to Vic
VK2ZQD-R. L. Davis. Not renewed.
VK3AMZ-W. E. Sadler. Not renewed
VK3ASE-L. E. Martin. Now VK3UV.
VK3BAU-I. C. Beulke. Now VK3BCI.
VK3BCN-C. V. Nelson. Not renewed.
VK3YCA-F. V. Hughes.
VK4MX/T-J. R. Martin. Not renewed.
VK4ZVH-H. V. Hunt. Not renewed.
VK4ZVN-V. G. Novotny. Not renewed.
Crawiord. Not ren
VK5HG-H. M. Cooper. Not renewed.
VK5LM-R. W. Langford. Deceased.
VKSPR-K. W. Kilsby. Not renewed
VK5WY-J. F. Westley. Transferred to Vic VK5ZWI-Wireless Institute of Australia IS.A Divisioni V.h.f. Group. Now VK5AWI.
VK6ZDG-B. Noseda 1 Rev. Fr.I. Now VKGNA. VK6ZEG-R. W. Godley. Transferred to Vic.

CORRBCTION

The P.M.G. Department, Radio Branch, have notified that a mistake appeared in their copy of the January 1970 Call Signs. Which were published in June "A.R." The correct call sign
of A. J. Jeffrey is VK3YCJ.

OBITUARY

July was a bad month for VK6 Division because we lost two old timers from our ranks.

CLARRIE COOKE, VKGCP
Firstly, Clarrie Cooke, VKOCP, a Life Member of this Division. He first came on the air in the early 1930 s using a pair of 46 s . His equipment was truly home through to r.l. chokes. Like other prewar Amateurs, he was "rock bound" and a keen c.w. exponent. Clarrie's only departure from home brewing was the purparture irom home brewing was the pur-
chase of an RAiofA recelver, which he chase of an RAinued to use until going off the afr. continued to use until going off the ani. rig and two element beam that he was rig and two element beam that he was
well soucht after by DX stations from all werts oought after by world.
parts

LOU STAGG. VKBLU

The second silent key was L. Stage. VK6LU. Lou's favourite band was 40 metres. With 15 metres running a close second. A very keen c.w. operator. he often used to remark that "it opens up. new worlds. it's like an.other ling on phone Nevertheless. he was quite active ond for the last twelve or so used a couple of bits of JA equipment to good advantage. A friendly fellow who called a spade a spade, Lou was not afraid called a spat on his feet at a meeting or elsewhere to present his point of view.
The VK6 Division is surely the poorer with the passing of these twn gentlemen from the Amateur ranks.

New Equipment

SPEECH COMPRESSOR

A speech compressor, designed for amateur and professional use, which can be used on any type of transmitter, to boost the power of s.s.b. operation, or lift a.m. transmitter modulation, is now available. Designated Model MC22 , the unit is fully transistorised and functions from type 216 or 9 v . battery. A built-in audio oscillator provides a signal to adjust s.s.b. transmitters. Price including sales tax is $\$ 28$. Further information from Bail Electronic Services, 60 Shannon St., Box Hill North, Vic., 3129.

SEMICONDUCTOR CATALOGUE

A catalogue of semiconductor devices available in Australia has just been released by Radio Parts in Melbourne. It contains 20 pages of compactly printed technical data including functions and prices of semiconductors from Fairchild, Texas, Anodeon, and Miniwatt. Copies may be obtained by written request to Radio Parts, 562 Spencer Street, Melbourne, Vic., or branches at 157 Elizabeth St., Melbourne, or 1103 Dandenong Rd., East Malvern, Vic.

VK3 ANNUAL V.H.F. CONVENTION

V.h.f. ENTHUSIASTS OF ALL STATES ARE CORDIALLY INVITED TO ATTEND THIS CONVENTION WHICH WILL BE HELD IN

MELBOURNE

OVER THE WEEK.END OF
10th \& 11th OCTOBER, '70
Programme includes lectures by prominent workers in v.h.f. and microwave equipment, and competitions of interest to everybody.
Registration Fees: Amateurs and Listeners. S2.50: Saturday night dinner. $\$ 2.00$ per adul and Si. 00 per child. Please register by Monday, 21st September.

For details send s.a.s.e. to-
V.H.F. GROUP.

VICTORIAN DIV., W.I.A.
P.O. BOX 36 .

EAST MELBOURNE, VIC., 3002.
Inexpensive family accommodation can be arranged.

Extracts from "The Calendar" of International Amateur Radio Union

SPACE CONFERENCE

With less than one year untll the start of the I.T.U. World Administrative Radio Conference on Space Telecommunications, the need for nccelerated Amateur preparatory efforts is
acute. The Conference, to be held in Geneva beginning 7th June, 1971, will examine the frequencies allocated to the Amateur Service with regard to the use of space communications techniques. No significant change in Irequency is the international authority for the Amateur Service to use its allocations for space communications purposes.
There currently exists a footnote to the Radio Regulations apecifically authorising transmissions from artificial satellites in the world-wide two metre band. Some administrations take ONLY in this band. If Amateur satellite transmissions remain limited to $144-146 \mathrm{MHz}$. the development of Amateur space communications techniques will be unduly constralned. Thus
it is an objective of organised Amateur Radio to seek greater freedom for the use of space techniques.
The need for permissive regulations for Amateur space work is felt, perhaps. the greatest In countries having a significant level of Amathere is little or no participation in space communication activities, the importance of space allocations may member socleties have expressed the view that since they currently have no Amateur space activity, it is not necessary with their government.

Even though a country may have no Amateur space activity: preparation for the Space Conference should not be minimised for two maln reasons: First. each member society by urging
its government to support the Amateur's posiits government to support the Amateuris posi-
tion at the conference, will greatly aid the Amateur Service world-wide by galning addltional favourable conference votes. Second, by insuring a favourable governmental position for space activities, member societles will allow for the future development of space activities
in their countries. This step of planning for in their countries. This step of planning for
the future of Amateur Radio should not be the future
overlooked.

Initial indications are that the Amateurs request for more permissive space communicalact, even countries whose attitude toward the Amateur Service is described as being lavourable have expressed serlous reservations to Amateur space operations. Unfortunately, many nations feel that Amateur satellites should be permitted to operate only in exclusive worldMHz bands). The reason behind this view is to protect other services from interference in bands shared with Amateurs or allocated only on a regional basis
In order to obviate such a Irequency restriction. A.R.R.L., Joining with the Radio Amateur Satellite Corporation (A.M.S.A.T.) has proposed that we be allowed to operate satellites in all Amateur assignments, consistent with the radio
regulations of the respective administrations, regulations of the respective administrations,
provided that an adequate means. such as provided that an adequate means, such as
ground control, is provided to prevent harmiul ground control, is provided io prevent indeed, to interference to other services, and ind it is felt terrestrial Amateur communications. It is felt demonstrated that Amateurs are capable of
controlling a satellite by ground command, and that through this technique, harmful interference to other communications can be effectively alleviated.

This. then, is the essence of the story which should be communicated to the licensing authorities of all I.A.R.U. member socleties.

The following are preliminary views of various administrations which have been brough to the attention of I.A.R.U. Headquarters:
Algerin: Supports the cause of Radio Amateurs. Canada: The Amateur Service might be permitted to use space techniques only in those portions of the bands allocated exclusively to the Amateur Service on world-wide basis.
Denmark: The use of satellite technology by Amateurs should be restricted to fre quency bands which, in all three I.T.U. regions, have been allocated exclusively to Radio Amateurs.
France: Allow Amateurs the use of space techniques only in the bands reserved for the
Germany: Space communication techniques may be used in all exclusive Amateur alloca-
tions. If the allocation is not uniform in all regions, satellites can only be permitted if they do not cause interference to other services in the remaining regions.
Greece: One hundred per cent. pro Ham Radio. Kawalt: Same as U.S.
Netherlands: No objection to apply the present ootnote No. 284A to all bands allocater to the Amateur Service on a world-wide and exclusive basis.

Niearagua: Will support the points of view in favour of Amateurs.

Poringal: Inconvenient to permit Amateur use of space techniques. Should such use be authorised, it should be limited to bands with the exclusion of stationary satellites.
Sandi Arabia: Same as France.
Sench Africa: Same as U.S.

1970 SUMMARY OF ANNUAL REPORTS

Sweden: Supports Amateur satellite operations in exclusive Amateur bands with the exception of the use of geostationary satelities.
United Kingdom: Amatcur space communication may be allowed in exclusive Amateur allocations. However, the U.K. is agreeable to spase communications in shared allocations at 432 and 1226 MHz . provided that there are safekuards and that the onus of avolding interference lies with the stations of the Amateur Service. The snfeguards discussed included the provision of telecommand facilities and the possibility of a limitation of the power flux density at the earth's surface.
United States: Space communication techniques may be used by the Amateur Service on mall allocations within the limitations imall allocalions within the limitations illposed
tions.
What is there to be done? Each I.A.R.U. society should. if not already accomplished. inform its licensing authority of the needs of the Amateur Service for the forthcoming conference. This is a very important sted since the views of administrations will be determined prior to the actual conference in Geneva. I.A.R.U. Headquarters will offer assistance, where appropriate. to member societies in preparing their presentations about the space conference to telecommunication officials. Please heep us advised of your efforts. and let us know whenever we can be of assistance

I.A.R.U. REGAINS I.T.U. OBSERVER STATUS

For many years, I.A.R.U. has been on \boldsymbol{d} llst of organisations permitted to send observers to International Telecommunication Union conferences without financial contributions to expenses of the meetings. At the I.T.U. convention held in Montreux in 1965 . there was adopten a Resolution No. 16 which instructed the Administrative Council of I.T.U. to review the list of international organisations exempt from all contributions. This resolution was adopted because it was felt that the number of international organlsations who were permitted to participate in I.T.U. meetings without making any financial contribution had grown too large.
This instruction was carried out by the Administrative Councll in 1966, when it reduced $b y$ half the number of exempt organisations. The International Amateur Radio Union was one of those removed from the list.

Recently, IA.R.U. Headquarters, with the assistance of a number of member societies. requested re-consideration by the Administrative Council of our status is an observer organ-
isation at international conferences. We arc isation at international conferences. We arc happy to report that this request has been approved. and the observer status of I.A.R.U. has been re-instated on the list of those exempt from financial contributions. IIt is interesting to note that the resolution for exemption wax moved by the Aostralian Delegate.-Fed. Sec.l

FREQUENCY MANAGEMENT

SEMINAR

Biennially the International Frequency Registration Board of the International Telecom munication Union holds a frequency management seminar at its headquarters in Geneva Switzerland. This year's seminar is to be held from 7th to 18th September, and as in past years I.A.R.U. Headquarters will be represented by WIIKE

The Frequen ey Management Seminar is aimed at assisting administrations, particularly in the developing countries, more efficiently to manage their use of the radio frequency spectrum. Thus, a good opportunity is provided for representatives of the Amateur Service to mee with telecommunications delegates from other countries for the purpose of increasing the hwareness of the values of the Amateur Radio Service.

1970 SUMIMARY OF

ANNUAL REPORTS

The accompanying table presents a summary of the information provided in your 1870 an nual reports. Where an annual report was no recelved for 1970, information from the lates report recelved is provided.

REGION II. MEETING

Fifteen national Amateur organisations of North and South America, represented by twenty-two delegates and observers, participated in the 1970 triennial Conference of the Union Interamericana de Radio-aficionadosI.A.R.U. Region II., May 18-22. in Jamaica. The host society was the Jamaican Amateur Radio Association: during the week, a conference station with the special call 6YOUIR was in operation and made hundreds of contacts. In opening remarks, I.A.R.U. President, WODX. emphasised the importance of Amateur preparation for the 1971 World Administrative Radio Conference on Space. He pointed out that in the same manner that organised radio has protected its h.f. assignments in the past. interests in the higher frequency and their use interests in the higher
with space techniques.
The Caribbean Emergency Net has been a major accomplishment of the Region II. organisation. This operation functions under the expert guidance of XEIAX and 6Y5EM. It was cover portions of South America.
Slight amendments were made in the "gentlemen's agreement" plan for use of frequencies. This basic band plan now provides that interna and $3790-3800 \mathrm{KHz}$. be used only for use 14090-14100, and that 14190-200 as well as 21240-21250 should be reserved for DX work.

A contest sponsored by the Region II. organisation has been attempted for the past two years. But. because interest was small. It has been decided to discontinue the actlvity and

K.W. ELECTRONICS
 KW2000B TRANSCEIVER

COVERS 10 TO 160 METRES

\star Six-band operation.
\star Lift-up inspection lid
\star Two-speed V.F.D. tuning.

* Mechanical Filter provides passband for SSB.
* No external antenna switching required.
\star Independent transmit and receive frequencies or true transceive operation.
* 180 Watts P.E.P
\star Matching AC power supply with built-in speaker.
\star Side Tone Monitor for CW.
\star Crystal controlled Receiver first mixer.
\star Output Impedance adjustable.
* Easy to install in a vehicle for mobile operation.
\star Lightweight, attractive, robust and efficient.

Write for Technical Leaflet
sole ausmatas ageat: SIDEBAND RADIO
73 COLE STREET, ELWOOD, VIC., 3184
Phone 96-1877
study a possible niternative event to promote general Amateur interest in work of the region. Finally. It was agreed to accept the proposal of the Radio Club de Chile to hold the 1973 Conference in that country

EARTHQUAKE IN PERU

OA4A. the headquarters station of the Radio Club of Peru, performed outstanding service during June. handling emergency communications traffic resulting from the massive earth quake which devastated portions of Peru on May 31. 1970. OA4A was operated around the clock, largely on 7100 KHz ., working other OA stations who were able to relay traffic from the areas of need.
This operation was obscrved first-hand by a representative of I.A.R.U. Headquarters. as a member of the Andean Rellef Mission. group of mountain cllmbers and doctors who group of mountain cllmbers and doctors who. organised under the auspices of the American Alpine Club wiew to Peru in order to rendel assistance. Wirke set up OA3H in n remote mountain area which had been hard hit. and handled a considerable amount of traffic be-
tween his group and Peruvian officials in Anta tween his group and Peruvian officials In Anta and Lima. thanks to the excellent assistance
provided by OA4A. The Radio Club of Peru provided by OAAA. The Radio Club of Peru
is to be congratulated for having organised this emergency communications activity in the finest tradition of the Amateur Service.

I.T.U. ANNOUNCES
 CONFERENCE DATES

The Administrative Councll of the International Telecommunication Union has plans for rolding the following conferences: The World Administrative Conference for space telecom munications scheduled to begin 7th June. 1971. The I.T.U. Plenipotentiary Conference will be held in Geneva, starting 14th September. 1973. And, the next World Administrative Radio Conference for maritime services will be held early in 1974. At the present time, no conference dealing with allocations throughout the h.f. spectrum has yet been scheduled.

今

GOING TO WASHINGTON?

The Foundation for Amateur Radio, Inc., a non-profit institution devoted to advancing the interests of Amateur Radio with its headquarters in Washington, D.C., announces the establishment by it of a Hospitality Committee with the objective of providing visiting foreign licensed Radio Amateurs with an opportunity to meet some of our local active Amateurs and, if desired, visit a local Amateur Station.

Any visiting foreign Amateur can get in touch with the Hospitality Group by calling (202) 893-8383. It will be appreciated if calls are made during the hours from 0800 to 2000 daily.

Arrangements can be made to greet the foreign visitor and to give him an introduction to our capital city as well as to Amateur Radio U.S. style.

\%

WM. WILLIS MOVES

Established over 115 years ago, one of Melbourne's oldest firms, Wm. Willis $\&$ Co. Pty. Ltd., moved recently to 77 Canterbury Road, Canterbury, 3126. The new location will provide easy parking facilities and better service for customers. Manager Mr. Max Hull advised "A.R." that a change in the merchandising policy of the company was to develop a trend to fast and efficient mail-order despatch, and a general distribution of a special range of equipment and components of interest to Amateurs, in addition to its well known operation of manufacturing special components for the communications industry. The new telephone number is 836-0707, where Mr. Max Hull may be contacted during trading hours.

O
 verseas
 $M_{\text {agazine }}$
 Review
 Complled by Syd Clark, VK3ASC

July 1!50-

"BREAK-IN"

N.Z.A.R.T. Conference, Dunedin 1970. ZL4PG. According to the report every one enjoyed themselves.

A Two-Terminal Oscillator. ZL2AMJ. Two FETs in the eqluvalent of the old twin triodscathode coupled circult. A very handy type of oscillater. Add your tulied circuit and you are "on frequency"

Some Observations of Mobile Antennas, by ZL2VN. VKs who are preparing themselves for some summer mobile operation should be interested. You cannot fit and forget a mobile whip. It must be tuned for optimum results.

Digital Frequency Counter. Part 2. ZL2BGP A four-diglt counter using ICs. There is no reason for an Amatcur to require more than four diglts as he can display $\mathrm{MHz}^{2} \mathrm{KHz}$ or
Hz . as the need arises, knowing what is offHz.
scale.

Otago Branch Project. S.s.B. Exclter, i/ MHz. Phasing Type, Part 3. ZLALV.

"CQ"

June 11970-
Model Control hy Radio, W2SI. This two-Dait article covers the history of radio control systems of models and the present day controls. tems of models and the present day controis.
Much of the enrly work done in the area was Much of the enrly work done in the area was hecoinplished by Amateurs as the control system was operated in the old 5 metre band. Part 1 covers history and development and Part ${ }^{2}$
will cover present day techniques and equipwill c.

The Two-Gallon Cavity, W3EAG. Hailed as the cure for slx metre t.v.1. This article appears to be one which will be hailed by those who like to operate on six in Melbourne and Brisbane. The masic potion is two paint cans two connectors, two juice cans and one small capacitor.
C.w. Spotting with the KwM-2, WB4JSV. Seems that someone has found a way of improving one of the best. The best today can slways be bettered tomorrow.
The ARC-500 LInear. WASUTP. He uses the case nind the roller coil and fits in power supply. threc 6JE6s and a pl network and tha thing ihen runs 500 watts input

An Blghty Metre Dipole, WB2GQY. This Lo metre dipole can fit in sixty five feet of space and will aiso load on 40. 20. 15 and 10 metres Seems like an Indian nylon rope trick to me.
Variable A.f. Bandwidth for the HW-l00, WGZOL. Good c.w. mod
Transistor Reverse Palarlty Protection, Ronald L. Ives. The diode is a handy switching device.

A Recelver Audio Compressor. WICEJ. A lazy man's gain control.
Convert S.W.R. Into Watts, K8ZVR. Or turning the s.w.r. meter into a "thruline" watmeter.

Improved Performance from the No. 10 Set. W6JTT. The huthor converted a Number 18 Mark II. He claims excellent results on three bands.
Alired Vall, the man hehind the Morse Code K2EEK. It would appear that many of the storles which now appear in the history books are heavily slanted in favour of those who held the power and are not necessarlly correct.

This writer asserts that Morse managed 10 operate an Indicator at a distance. but it was not until Vall happened along that he could send messages

Could the IIcensing syatem be used to Im prove the Overall Performance of U.S. Ama teurs. K4IIF. Obviously the title says what it means. I wollder though, whether the stop.s

Calibrate Your Own D.C. Meters. K3STU. Part 2. Part 1 discussed the theory of the potentiometer and volt bnx. Part 2 covers the principles of the Standard Resistor, the collstruction lechniques for all three unlts and their applleation.
"CQ:" Review the Heathkit SB-?
Amplifier. W2AEF. If you are thinking of buying one you will be interested if you have one you will want to read it in see if you agree.

Surplus. The AN/PRC-10. Now some of the tuansistorised units are appearing on the surplus mirket.

July/August 1970-
The very heading will give W2NSD/1 a thrill. So "CQ" have dropped to 11 issues Instead of 12.

Transistorised Commanications Recelver with DIgleal Frequency Read-out. PY2EIC. Froin 1965 a receiver building programme commenced and some twenty-elght have been built. No. 28 is described.
Solid State Carrent Regulators, W4NVK. For those who need regulated volenges.
Something for Nothing C.W. Filter. W6HPH. Tune the primaries of two output transformers after removing the laminations from both of them and couple them electicically and you have a filter.
A Ten and Fifteen Metre Interlaced Beam. WAAXE. The title tells you
Understanding Skin Ffiect, W4NVK. The cause and the results oi skin effect. The coverare is non-mathematical and is ideal for novices, beginners of all types from 15.
Model Contiol by Radio, W2SI. Part 2. Now the thing is proportional control. This allow: precise control of the model and eliminates a lot of the violent actions which used to be inherent in model operation.
"CQ" Revlews the Hallicrafters SX-1: Recelver, W2AEF. Seems that even in these enlightened days much of the communications; equipment made still uses those old lashioned. unreliable, hent producing valves.
A Two Metre Cavity Fliter. W6QLB. This guy was not satisfed with one co-axial element. he had to put three trough lines in cascade.

"OHM," The Oriental Ham Magazine

This issue carries an exciting story about the search and rescue operation on behalf of the yacht "Exodus" 96 ft . long and carrying Jens Jensen. W4AMG/MM and his wire Keiko. Hams, Navy and R.A.F. were involved in the Gan area for 48 hours before the yycht was located and fuel supplied.
All-India Convention. A report on the activities in India and the manner in which the Indian Government is encouraging Amateur activity.
Mars in Asla. VS6DR. The story of the U.S. Military Affiliated Radio Service in operation in the Orient.

Tribute to a Veteran. Story of FLiHR.
Ham Profie, VS6EK.
Lincompex, VS6DD. A speech compressor is described which claims to have all the ndvantages and none of the disadvantinges of the others.
"QST"
July 1071-
WRIK Five-Band Rotary Ream Antenna, by W8JK. Professor Kraus has taken one of his classic designs and by putting two vertically polarised units together, made it into an allband antenna.

The 70 Commoniactor, WIKLK. Updating a popular v.h.f. trariscelver.

A silicon Diode P.I.V. Checker. WA4DID. A simple device which enables you to check sur-
plus diodes for P.I.V. up to 2 kV . The thing plus diodes for P.I.V. up to 2 KV . The thing that puzzles me is winy the designer didnt usce a Varise on the input. Perhaps b
Power Line Interference. W4USQ. This art ic!e reviews the causes and characteristics of power lifie noise.
The Ulimate Tranamatch, WhCP. From 80 throush 10 metres, co-ax. or balanced line, it matters not. this unit will match it.
Let's Talk Transistors. Part 9. Operating ransistor circuits by R. E. Stoffels. Some practical audio amplifier circults and a fipoop are studied from the standpoint of overall c.ircuit operation

Eclipse Experiment-1!iil, W1JF. What happens to radio signals during an eclipse?
The solld Sate Recelver. WolyH. Design problems and their solutions for high performince.
Sonte Bantes of solid State Design. WICER A practical introduction to the three-legged devices.

3

DARWIN RADIO CLUB

With only a small membership-about 25nnd therefore limited funds. this club has done wonders. It has its own premises at Lee Point in the old Fortress Area and is proud of bein:s what is probably the onlv radio club in the world is probably the onlv radio club in the world nuarded by two six-inch Const Defence guns. Years of unrelenting battle with offichaldom was necessary to secure the lease and have the 240 voits a.c. connected: diso much work to clean out the mess left by vandals, paint the interior and install work benches There is much more to be done-dismantling old gear and salvaging components, etc., and working becs are being organised.
The first meeting at Lee Point was held on 3rd August at the Clubroom-it turncri out 10 be unconstitutional as that dny was a holiday In Darwin, but much useful discussion took place. A fortnight before. the Clubroom had been "christened" with a very pleasant barbecue for members and their wives and the official call VK8DA used for many QSOs. Basll VK8BB loaned his Trio transceiver and a makeshift 20 metre dipole showed what a good location it is.

The meeting was slightly disturbed by car loads of lovers driving into the clearing and glaring balefully at the members before movind off. It is located slap bans in the middle of one of Darwin's favourite Tail Light Alleys.

The club is almost ready to go with a solid state 52 MHz . beacon designed and built by the members. A small but enthusiastic bunch and any Amateurs visiting Darwin on the firs and any Amateurs visiting Darwin on the first Monday of the month will receive a warm welcome. Just don't get lost on the tracks out to Lee Point. You may never be found again Phone Basil Brodrick. VK8BB. VKerK Anderson VKiHA: or Doug McArthur. VK8KK, they wil glve directions.

HAND-CARVED CALL LETTER PLAQUES

In solid Philippine Monkey Pod Wood. A unique gift for yourself-or others!
Price, parcel post paid, AS9.75 plus local tax of approx. AS4
Allow 3 months for delivery. You pay local tax. Send postal money order or bank draft for AS9.75 to:-
REPUBLIC CRYSTAL LABS
Exporter of Philippine Handicrafts
P.O. Box 46, Makati Comm. Center, D-708, RIZAL, PHILIPPINES

If you need special Plaques with business names or family names, send us a sketch of your needs and we will quote post paid. Cut-out letters of wood for wall painting also available.
Plaque lengths: 5 letters 20", 6 letters 22"; letters about $5^{\prime \prime}$ high; width 8"; thickness $1^{\prime \prime}$.

Sub-Editor: DON GRANTLEY
P.O. Box 222. Penrith, N.S.W., 2750 (All times in GMT)

Once again a varled range of conditions for the month. wilth soine of the best being found
on 20 metres over the last few days of Auguit. Latest sunspot forecast is 87 for September and 85 for October. with 109 for April be!ng the Intest confirmation.
A further comment re the stallinn glving the call ZM7CA, Rivink ZL2ACI als his QSL manZL2ACI disclaims any assosintion whatsocver in the matter and is mosit anxinus that the DX fraternity ive advised accordingly
Regularly information comes to hand here about some new club or DX association. And were I In delve into the workings of them pll, 1 would never ge! this page completed. HowIfeel warrants some little coverage. It is the International DX Asscelation, a body whose sole objective is in furnish Amateur equipment to anyone contemplating a DX-pedition. They have bsen instrumental so far in having rigs sent to many rare epots such as OH2BH/ZA.
ST2SA. ZKiMN. ZK2AF and ZM7. Officers are WASREU. W3DJZ. K3RLY and PY2PE. A sub. of two dollars U.S. Io B. Kellain, 6536 Allview whom I presume is K3RLY. Will make vou a net on 14218 at $2330 z$ dally.

A fine year of operating by Peter ZM3GQ has resulted in him receiving his five-band
D.X.C.C. from the A.R.R.L.. He leaves ZL
 spent in London

My thanks to Don AX3AKN for a very welcomeluded of QSL information which will be out at the present moment. but sill manages to put in in appearance on 21 and 28 c.w..
also 1.8 c. w.. where he has hald several contiacts into the U.S.A.

I understand that the African DX net has recently been activated with WB6UDC And
K8ZFI as net control pending the re-erection K8ZFI as net control oending the re-erection of W4SPZ's antenna. The Lond Is. DX Asisn. bulletin mentions the fact that $5 \times 5 \mathrm{MP}$ whs !n
the first list of operstions, and XT2. TT8 and TY2 stations will be in later nets. There is no further information in relation to time and frequency for the net. and I would apprecinte anv word on this. The 5 X5MP station, by the wis.
is Sverre, a YL, and her QSLs an to the home is Sverre. a
QTH LABML

The operation from Andorra by C3ICY with elght ops wns due 1 rom Aug. 13 to 31 QSLs for this effort gn to DL2LK. Wilfred Ahy
Haupstr 30. D-3401. Holtensen, Germany

There have been some vague stories about the planned operation from CEnK and CEOZ but the reliable Geoff Watts DX News Sheet
states that CE3ZN Joaquin will join with Gus W4BPD in November working four days on San Felix. followed by six days from Juan Jernandez.
 17302 on 21248 KHz .. listening 21283/290. A list
is taken a little carlier by CR6CA. QSLs to is taken a little carlier by
Box 97. Sao Tome. P.W.A.

Recent operation by CRAAK. operator Res. stand Reg, who is on to CTIBH, I underhas permits who is on a tour of the oriellt. has permits for operation the Laccadives. Res is VE7IG.

At last somebody had had the foresight to organise the FBBWW. XX. YY and $2 Z$ boys.
They are now in a net every diy at 2330 f from Aug. 17. With lists being mide up on 14218 at $2200-2230$ for contacts ithe following evening.
FB8YY is heard regularly here at around 1000 z FB8YY is heard regularly here at around 1000 z

From Comoro Is. we note that FH8CD has returned to France for the next iwn months,
however FH8CY who is ex-TGRGL, is holding the fort. and appearing quite often on 21225 at 17002 . Little use for us at that time 1 guess.

Martinlque has long slnce ceased to be a catch and can be found on 21293 at 17002 on schedule with W4OPM Tuesday or Wediesday each week. Once agaln. a bit early for VK. to go via DLSRI. whose address is Pierre Guannet. 1 Berlin 52. Cite Bertherollle 44/2. Kurt-
Schumaker Dinmin. Germanly. Recent operation by fiwhis), fom from
wallis Island. has been rather prollfie. He is
often oll 14187 or thereabouts at $0600 z$ or later nnd he QSL via FK8BO, Box 28, Noumea. New Cilledonia.
GC3UJE. who has beell operating this month and who has beell heard in this country at around 03002. Is operating from Guernsey. His name is Brian and QSLs for him go to G3UJE on Saturday's at $2000-2100 \mathrm{z}$ on 14170 . This will give informatio: on future operntions by the JD1 stations and as many as possible will be in the net. Mont of these chaps ask for QSLs to go via the J.A.R.L
KH6GLU. Ed de Young. well known ns net controller of the Pacific DX net, now has a Waipio Hewall. 98786. He is also QSL man ager for ZK1AJ. FWaDY. VR3DY, KR6AP. ZKIMN. KX6BK and SWIAF
The recent operation to Swan Is. by K5QHS home address. Box 588 Sture to go to his U.S.A. The other operation by W4VPD terminated in a hurry when the final blew The following stations are active from the MP4 call areas. From Bahrain. MP4BHK and BIJ. from Qatar we have MP4QBK, his manAger is W4MQG. whilst from Trucial Oman
There secms to be a lot of criticism on the current operation by Gus Browning. both over the air and in the news shects. Personhlly ?
does not affect me in the slightest. and if Gus doesn't stick to a tight schedule. that's his business and there must be a good reason for it. He is giving a good service to a lot of people and if one has to hunt around the banda
looking for him should imagine it would add a little interest to what has degenerated into a too well orgnnised affalr

We still have a number of VR stations active. Bob VR1L Is on from Ocean Is., QSL to WBNJU KP6AL Was expected to appear from VR3 Fanning Is. for a cew days. while VR4CG is
s.til holding the forl from the Solomons. His iddress is Box 310. Honiara. Solomon Is. VR2SA :ddress is Box 310. Honiara. Solomon Is. VR2SA QRV Sept. ${ }^{6}$ to 10 was a special Scout station mons is VR4BC. Box 332 . Honiara.

Current operation from Cayman ls.. due th QSOs. This is the Jaunt by K9QFZ and K9RJP, who were hoping for five-band operat!on. They nsk for QSLs to Melvin Lehman or SAE and IRC. The other two operations were K2OLS using the call ZFIAA. and ZFIGC operation, whose QSLs go to VEAXN
L.I.D.X.A. bulletin states that ZS2MI on Marion Is has shut down with equipment trouble and estlmates that there will be no
further activity from there untll May of next The new prefixes for the Mauritlus area arc 3B6 Algalea, 3B7 St. Brandon. 3B8 Mauritius 3B9 Rodriquez. 3B7DA on St. Brandon is active and QSLs go in Meteorology Station Mauritius while 3BBCZ is active from Mauritius.
The station signing FK8KAA with a resoundCG002 is the Club station and is on the alr dally in fuct from 0800 z to 10002 , although I often hear him earlier. His frequency is 14040 and address is Box 28. Noumer.

There is once again some activity from the Pelngic Is. two separate operations, the firs whilst whilst the other group signing ILILCK were ITIGAI. ITIJT and IILCK from Lampeduse from Aug. 29 to Sept. 1. Thelr QSLs go to ITIGAI. Box 13. Noto. Sicily. The same group go to Pantelleria from Sept. 2 to 7
King Hussien is still with us, usually around the 17002 to 18002 period. hows Muna, has now appeared on the scene having been reported in the YL s.s.b. net 14332 at 2300 .

Look for LXIBW every week-end until the end of October on all bands. There is no QSL info to hand. but 1 heard him at 07002 on 20
s.s.b. recently. During the week-end of Sept. 3 to 7 he will be sigiling FOYT.

MIB is still on the air and has n regular days oll 21380 when QSL manager Mary WA3HUP MCs the operation. I have heard several seports that QSLs have not been forthcoming.

The recent operation by Bob and Gary from . 300 OSO 6.300 QSOs in the log. The QSLing is going to arrangements be observed. VP2DAJ. VP2LY VP2SN and 9Y4RK contacts RO to VE3EWY Whilst those for VP2DAE. VP2LC/P. VP2SM SAE and IRC for each contact.

A particular request for those sending nut Hest. Box 2950. Luandia. Angola. P.W.A.. but iblease do unt put any call sign on the envelone

A few more words about recent and projected operation from Albania. Firstly. the OH2BH/ZA trip held recently has now beent finalised, and the A.R.R.L. have okayed it. Over 800 contacts were made with 52 countries
in the $81 / 2$-hour operation. and spectal cards in the $81 / 2$-hour operation, and special card. have been printed. Yours should go in here next June, meanwhile DLIFT and VY hold reciprocal licences OEIZLC and ZLA and were trying to make arrangements to who was heard on July io was allegedly pirate.
Once ngain:, there are more new prefixes sbout than one could shake the proverbial ick nt. ^ glance lhrough followine 4N2KP Koloced Is.. $4 N 2 L O$ was Lopud Is., QSL is YU2NEG. UA4LM recently used the call U.1L or some nbscurc reason. IL and IP have been FMO. ITISEZ/IU was from Usica, ind is valid as PX only. F2UM, A was on from Belle Ile wherever that may be. F8BC/CN counts CNO for prefix hunters. HG10OUA/E, the Lenin ble from regiois indicited by operating port - HA Burenu KPOEB is the Nebraskn Stilc Fair, QSL to WOYOY. The 5J and 5K stations were HKs under a contest preflx Still they ome PA6 and PA9 were QRV mid July from en Helder Naval Base special QSI via the uro, whilst PA9TK goes to DJ6TK.
Still on prefixes. OI9SUF from Aug. 5-8 was rom a Scout camp in Lapland, QSL to elther the OH buro or OH2BHU, Bob Ahinas. Perna, Finland. The final one is OB. several of these Peru's 148th an an stations to commemorate Maybe there is still another. yes, 4 MOA from Los Monges, where that one is I don't know other than that it is in South America.
Prior to the recent $D X$-peditions. 144 of the vorid's top DX men submitted lists of their orwarded. there has been activity from Albanl: which is 3rd on the most wanted list, Palmyra Which is 3rd on the most wanted list, Palmyra 26th. Voltiac Rep. 36 th, Gevser Bank 39 in, Ser 5lst. The most wanted ten were in order of need, Clipperton, Marla YI. AC4 and $8 \mathbf{Z 5}$.

Finally, I have a few notes here for the S.w.l's. Firstly, Jock White has malled me over thrce awards for the S.w.l. section of
the last VK-ZL Contest. They are for the VK2i4/ and 5 winne:s. Steve Ruediger and myself collected the VK2 and VKS section re spectively, but the VK4 winner was B. C. Clark,
LAlt4. and if that good fellow would forward LA144. and If that good fellow would forward
me his address I will mail his certificate on me his
Another ltem of very definite interest. but mainly to S.w.l's. is an item in Monitor re stations. Rainer Kramer. DL7LV, is the QSL manager for S.w.l's only for the followink Rainer Kramer, 1 Berlin 48, Alt-Lichtenrade Rainer Kramer, 1 Best Germany. DLOTE, DLOTEA. DL7Fr 53. West Germany. DLOTE, DL0TEA. DL7Fr.
DL7LV, DL7LVA. DL7NB, EA6AR. EA6AS. EA6BG. EA6BH. EA6BJ. F9UC/FC. HB0LL
HSICB, HS3RB, KH6GQW, KL7EBK. KR6JT. KZ5EK. M1FT. OE7ZU1, OY2A. TA2AE, TF3ST XE2YP. XW8BP. XW8CN. 3A0CU. 3A2CN. 3A2U. 3A2EE. 3V8BZ and 4A2YP

Other QSL information will again have in
e held over until next month. However beore I close this page. there is one small point which 1 came across this week when looking around the bynds this week. It conserns any-
one who may own a Trio gR59DE receiver. This Is a keneral coverage ix. with bandspread on ocated on range C. and the bindspread dial is callbrated to match this range. However. 20 also appears on band D. which is the rang covering 15 and 10: 20 however is not intended ponding bandspread. Try selling vour bandponding bandspread. Try selting zero. vour selciotor on range D. and lou will find 20 metres at about 14250 on the main dial. You will then be able in use vour bandspread by turning it clockwise. and get far greater spread than on the normal positlon, as well as getting a far better performance irom the receiver. In a check a few minutes ago. I started to move the bandspread froin zero nt the start of the e.w. Nese the had not reached the American phone band Over double the bandspresd. Dlus a vastly Improved performance.
That's all for this month. thinks to Dan
XPAKN. Georke ZM2AFZ. Geoff Watts DX News Shecet. Lonk Is. DX Assn.. Monitor, plus ind good DX from Don L2022

Correspondence

Any opinion expressed under this hasding is the Individual opinion of the writer and does no
necessarily colncide with that of the Publishers.

SOMETHING TO CONTRIBUTE'

Editor "A.R.," Dear Sir

note with interest the concern belng shown by various sections of the Amateur fraternity at the possibility of us losing some more of Car" frequencies.
Can we honestly Justify the holding of four megahertz in the two metre band or thirty megahertz in the 70 cm . band, or even for that matter two megahertz in the six metre band. all the activity in any v.h.f. band could be accommodated in 500 kllohertz and the two metre f.m. activity could be restricted to spot frequencies. The remainder of the two metre moblle users who have a much better claim to the space. The same comments can be made about six metres

The 70 cm . band needs to be able to accommodate a couple of t.v. channels for those who wish to use this mode and at present there of the spectrum by other users. If I may quote from the International Radio Regulations, etc., as found in the handbook paragraph 55:-
"The licensee of an Amateur Station shall use his licensed equipment without pecunlary gain and solely for the purpose of investiga-
tion or research into, or instruction in, wireless tlon or res
telegraphy.

Assuming that the term "wireless telegraphy" can be interpreted in a somewhat broader sense, I would defy 90 Der cent. of the opera tors on any band at the present time, to justify their existence at all. From this point
of view, 40 metres is getting just about what of view, 40 metres is getting just about what it deserves and it is a pity that commercials table to do the same thing to twenty metres It isn't good enough any longer, just to get on the alr for the sake of enjoying oneself to demonstrate to the world at large that we do indeed have something worthwhile to con-tribute-sometimes I doubt it.

-David D. Tanner, VKBAU.

BETTER USE OF MOBILE SERVICE SPECTRUM

Editor "A.R.," Dear Sir.
1 would like to dissent with a line of urging in the editorials of Amateur Radio and manv, if not all, pubications in the fiere is high preslow the common theme that there is high presand if we don't use it we shall lose the space we have. This is exactly the theme 1 would
plant into these publications if 1 was a public plant into these publications if 1 was a public relations man trying to manoeuvre my intere
in acquiring this space for another purpose.

You seem to follow the tradition of use or lose and some alternative arguments must be presented for your consideration. We are in the situation of a person with property in the path of development and wish to retain th
erty. Wish alone will not be enough.

Conservation-a political watchword for the coming decades-is one plea that he can pu which will carry weight in political circles

Historic value-a brother of conservation, and again rising in strength as an argument in these days of asking: "Is the development worth the price?

Surely the conservation parallel is evident by comparison with land use. The freeways of moblle radio and the drive-in theatres of the television channels are obvious parallels. The of that area for its enjoyment as itself. conof that area for lis enjoyment as itself, con-
servation of the spectrum can be the provision servation of the spectrum can be the provision
of space for its enjoyment as itself, the Ama of space for its enjoyment as itself, the Ama-
teur bands being a National Park of the spectrum

The historic value angle has been persued in the past and is still as valid as ever, although probably less powerful politically

Another argument the "obstructor of 'progress' " can use is that his all is only a small
fraction of big brother's total; how about big brother improving his modus operand to not need the extra space. This argument needs to be put very subtly. preferably by insiders in big brothers camp. Let us look at what we
have and who wants it. There could not be an extra t.v. channel gained if we lost all the 50 and 144 MHz . bands, aeronautical services have their area, and only one strong pressure
s run in a fashion which is inherently wasteful of space, by a system comparable with party lines for telephone working
Here we are looking at big brother's space requirements and, noting that the pressure on moblle radio services is such that if our v.h.f. bands were fed to the mobile radio users they
would only last a few years before their preswould only last a few years before the
The answer would seem to be-find a method of solving the moblle services dilemma, and make it one that pleases the three princlpal parties. and the
The effectlve channel occupancy of mobile radio services is generally low, the inflexibility of one channel per service is the crux of the problem. Either time or frequency division multiplex of users under continuous control is the answer. The moblle radio spectrum could
be cut into. say, 50 channel slabs with each user, mobile to base or base to mobile, capturing a transmitter frequency slot or time slot for each contact.
The mobile unit would require that its rebe tuned to the allotted traffic slot automatically.
Back to the interested parties. Users would have less trouble with nuisance from other users. They would have to buy a new set, but with iCs the costs would not be excessive. life could be arranged.
Equipment manufacturers would welcome the extra market the scheme would bring-lots more extra users than if Amateur bands were usurped. There would be fewer crystal problems since the synthizers would be similar for any of the users in any block of spectrum.
Whilst questioning this scheme, it is as well Whilst questioning this scheme, it is as well
to note that a synthizer using only two inteto note that a synthizer using
grated circuits has been built.

The P.M.G. Department is a very important power in this proposition. I do not know their wishes, but they would have a Dowerful and long lasting series of decisions to make. Freusers, private ownership, or P.M.G. ownership of master stations? One format or many? These of master stations? One format or many? These and Amateurs (possibly in their professions) should be sowing the seeds now.
Summing up, more cogent arguments, better use of the mobile service spectrum and, stlll very important, get on those
of them, not just one channel.
-Tom Berg. VK6ZAF.
Reference.-Editorial: "Wasteland Revisited," Electronic Design, Vol. 14 . No. 25, November 8 , 1968, D.
it takes a reference to television spectrum use it "a vast wasteland" and a television executive's assessment of that statement as a "conservative estimate". Later it describes (Amer-
ican, but isn't ours largely American?) teleican, but isn't ours largely American?
vision signals as tele-
simblent, electronic air polution"

CAN WE APFORD NOT TO HAVE
 AN INSTITUTE

Editor "A.R.," Dear Sir.
Your editorial last month is commendable, and although my experience of Federal affairs has been limited in recent years, I have been, as an ex officio officer, in a intolerable situation.
I have no wish to amplify your remarks except to add that you sir. with due modesty. refrained from mentioning the EXTENT of the time that you and others expend in these honorary labours. However. I do wish to express concern at the fact that Federal Councllors appsor to be grossly conservative. or alternatively, unwilling to put the issues strongy to their respective Councils and members. tion and to sacrifice themselves a little appears at variance with the status achieved and the work done by Executive as described in the Presidential reports.
Amateur Radio in this country enjoys a status. a set of privileges. and operating conditions equal to or better than anything else in the world. They have becn achieved in the face a Federal Executive prepared to spend lons hours at much personal sacrifice. what keeps ours at much dersonan unimaginative Council is beyond me. but it does seem that they show a certain spirit lacking elsewhere.
of course the answer to the question you raise is money. and unpalatable as the thought is. It must be faced. The justification for extra
money is based on two clearly defined truths. money is based on two clearly defined truths.

1. The Institute has reached a stage of development where a lapse in the vigour of its activities cannot be tolerated. With commitments locally and internationally-Australis. I.T.U.. I.A.R.U., and Region 3-a relaxing of its
overseas societles, not to mention the Post Office.

With resignations, retirements or, what is worse, Just a plain lack of interest, such a decline may occur. My observation of up and coming youth shows a reluctance to become involved in Institute administration. To do so anyway would be to perpetuate an anomaly
within the context and conditions of this argument.

Sir, this is 1970: we must not wholly depend on the plonecring spirit of the nineteen twenties. We have a small population in a large country and whether we like it or not, our
progress is such that we must keep up with modern techniques.
If this Federal Council is not prepared to ask for and the members to give. an extra in Amateur Radio or the Institute.

Perhaps they might find it in a game of tennis.
-T. E. Straughair.

PHOTOGRAPH IDENTIFIED

Editor "A.R.," Dear Sir,
It was my pleasure to receive copies of your August issue from two friends, both directing my attention to page 6. The page 6 picture was actually that of the Exhibition Committee of the (Radlo) Wireless Exhibition organised under the auspices of the Wireless Institute. $N . S . W$. It was not the management committee of the Institute.
Those in the picture: No. 9 was Sid Colville and front row No. 2 was Mr. Hungerford, of Western Electric inow S.T.C.)
I was Treasurer of the W.I.A. (N.S.W.) at undertook to organise the industry to support it. which was done with success and the W.I.A. finished up with over $\& 800$ net proft, pretty zood for a first effort.
During the 60 years of W.I.A. activity it has sands as a pleasurable hobby.

With best wishes for every success to A.R.
-0. Mingay.

R.D. CONTEST

Editor "A.R.," Dear Sir,
Regarding the Remembrance Day Contest, I feel there should be more incentive for operators to use the c.w. mode, as compared to the
phone mode of operation, in both the c.w. and open sections.
More time is required using c.w. to complete a contact. And due to the small percentage of c. W. operators active in the contest, more time is used in finding contacts.
At present an operator who wishes to contribute as high a score as possible for his Division, in the time he has avallable for the contest, has more opportunity by using the "Transmitting Phone Section
Considering the Open Section, an operator Who uses the phone mode for the majority of operator who shares his time evenly with both modes.

Perhaps if a multiplier could be applied to scores obtained using the c.w. mode of operation, the percentage of A1 operators would not be so small.
I have included these comments with my log for the 1970 R.D. Contest, which has been returned to the Contest Manager, and thought that you may wish to publish them in "A.R."
-J. E. Loftus, VK3QK

PIN MONEY" FOR A SIDELINE

Editor "A.R.." Dear Sir.
On 6th August last on the 20 mx band a station in a common European country, but
using an odd prefix igood for WPX onlyi wis using an odd prefix
going thood for WPO going through the dog
In an hour he worked 40 or more stations like this: "RST QSI. His QSO routine went dit dit dah dit dah.: Simple arithmetic will show that if all those he worked do as $r 2-$ quested land the majority willl he would gross close to $21 / 2-3$ dollars per hour ithis allowing for the convergion loss of the IRC/dollar exchangel.
If he sends his own cards direct postage. then the ethics of the operation are reasonably in order. Should he, however, simply send his QSLs via the buro, then it might be assumed that his pro rata nett protit would be in the vicinity of $\$ 2$ per hour. This is not bad "pin money' for a sideline and for one that's not in their regular employment.
In the case of this station there could well be some particular valid reason for this QSL
ample because the sad truth is that too many don't understand the ethics of QSLing in the Amateur Service-or do not want to-and are simply out to exploit thelr call and make a
fast buck, i.e. petty shamateurism.
-Alan Shawsmith, VK4SS.

LECTURE ARTICLBS

Editor "A.R.," Dear Sir

As a reader of your publication "Amateur a series of articles designed to guide Amateurs in passing the P.M.G. Radio Operator's Cer1 refer firstly to Lecture No. 6 which appears in the now current August issue. for it was I must voice my disapproval at the way Mr. Cullinan describes the action of power in an a.c. page 23 following "Comment: In a perfect a.c. generator .. $:$ Mr. Cullinan says that the voltage and current are exactly in phase in the rent to fow at all, whether it be in-phase or any other phase angle to the generator voltage. there by necessity has to be some sort of load connected to complete the circuit. For the described criterion of in-phase voltage and current to exist with the periect generator, the
load must be resistive, i.e. have unity power lactor.
believe that in the case of a perfect a.c. generator the phase angle of the current is wnolly dependent on the power factor of the load. When any generator feeds any load, the resultant phase angle is a function of both the y \in nerator
pedance. situntion can exist where the generator is inductive for example and the load an equivalent capacity in series with a resistor. At a particular frequency, namely the resonant fre-
quency of the inductor and the capacitor, the two reactive terms can vectorially sum to zero and all the volt-amps. produced by the generator are dissipated in the load and hence unity power factor exists in the circuit. I consider of the meaning of Phase is essential for an understanding of a.c. theory": to be undoubtedly

Further on under the same heading "Comment". there is discussion of a watt-hour meter. Mr. Cullinan says that "the power taken by the load is measured by a watt-hour meter and is the power you pay for," and further on not get useful power from all you bought
These statements convey the impression to me that the watt-hour is not sensitive to power factor, and that it would show a reading if a to be connected to it.
It appears that Mr. Cullinan thinks a wattthis term is not necessarily misleading. the modern terminology of it is volt-amps. This is a figure calculated by multiplying the applied voltage by the current flowing. In fact a watthour meter does not necessarily measure vomimplies, the product of power (watts) and time thours). Power is calculated by the produet hours) Power is calculated by the produet power factor of the circult. As a matter of power factor of the circult. As a matter of interest. Watt-hour mero reading within prescribed defined limits when a specified load of zero power factor is
connected to it. connected to it.
All this means in short is that a consumer may connect a
consumes. say, 1,000 to his power outlet that consumes. say, 1,000 volt-amps., and if the
supply voltage is 250 volts, a current of 4 amps. will fow. If the load is a perfect capacitor, the consumer will not get charged for this
service since his watt-hour meter will not segister.
Noted under the next "Comment" in the article is the fact that "194.2 watts of power
(I think the writer means 1194.2 watis) are paid for but not used." I think my above discussion shows this not to be so. I stress again that the consumer does not get charged any extra for using cquipment that has a power is inherently more current flowing in the line supplying a load of low dower factor, there win be more voitage dropped in the line. If fact, lie. if the conductors from his power meter are not as low in resistance as they might be, the load, but in any case he will not be charged any more than the actual energy consumed in his circuit.

The next point in the article concerning the reduction in rates if H large consumer corrects his power factor. I feel is worth commenting on. I do not know this fact to be true but actually the power ilutharities who will lose
by supplying power to a consumer who has a ower factor that is not unity
Since for a given amount of power consumed there must be a line current flowing which. for the same power. will be a minimum only when the load has unity dower factor. As the dower factor decreases, the line current increases. which will inherently cause larger voltage drops In the transmission lines between the power station and the load. This voltage drop constitutes power lost in transit since the line impedance is mainly resistive at power frequencies. Thus the power authorities have to generate more power than they can actually ncurred in transit. It is obvious that these losses will depend upon the power factor of the load and they will be at a minimum only when the load has unity power factor. Thus it is not surprising that the power authorities who corrects his power factor towards unity This above explanation. I think clarifes Mr Cullinan's statement that "the closer the public demand is to unity power factor the less usedemand is to unity power factor the less usepower being that which is dissipated in the power lines.
notice Mr. Cullinan's statement on top of page 23 concerning accuracy. "The student should calculate all the above to at least four decimal places". I think he really means four significant figures since the ridiculous condi-
tion could exist where an answer may take tion could exist where an answer may take
the form, e.g. $8,527.5704$ watts. quite an unrealistic accuracy. A fundamental law says that the number of significant figures in an answer derived by the process of multiplicntion or division may never exceed the minimum number stated in the given data. A far more practical approach would be, e.g. 8.530 watts .e. three significant figures considering that the general maximum resolution of a slide rule is three significant figures and logarithms four significant fgures.
Accuracies better than above would normally mean a long-hand calculation which can be a waste of good time which is, in my exper tion. The accuracy of the glven data would have to be assumed to be at least four significant figures if the answer is to be stated to three significant figures, which is normal The above discussion is illustrated in the answer to part (e). Mr. Cullinan takes at least four steps of calculation to arrive at the answer which I will show is incorrect due to inaccur cies carried through the four steps.
My approach to this part of the question would be to determine the actual wattful power of the question that the current flowing is 01.07 amps. icorrect to 4 sig. figs.). The only element in the circuit which can dissipate power is the 25 ohm resistor which has the
17.07 amps. passing through it. Hence we can calculate the power in it as follows

Power equals current squared multiplied by resistance,
equals 17.07 squared multiplied by 25 .
equals 7278 watts 14 sig. figs.)
We can see a discrepancy of about 60 watts from Mr. Cullinan's answer. This method required only one mathematical manipulation to tions are carried through. By finding the phase tions are carried through. By finding the phase andins the cosine of the angle again trom trig finding the cosine of ine angle asain will show.

Power factor equals real or wattul power divided by reactive power.
equals 7276 divided by 8530,
equals 0.8530 is sig. figs. 1 .
We have a discrepancy of 0.007 in the cosine of the phase angle which is enough
to give a different magnitude of angle. The final result of Mr. Cullinan's calculation In this section is that the error in power is
approximately 0.83 !' high and the phase angle $1 . B^{\prime} / \mathrm{c}$ low.
The errors accumulated early in the calcula-
tlon when the phase angle was initially found from a tangent relationship. I agree with Mr Cullinan's figure of nett reactance of 15.28 it sig. figs. .1 but the valuc of tan phase angle
equals $0.8116 ~$
14
sig. figs.). From tangent tables uhase angle equals 31.47 degrees 14 sig figs Also from tables, cos 41.47 degrees equals 0.8529 14 sig . Rgs.l. Hence power equals 8530×0.8529. equals $7280 \quad 13$ sig. figs.I.
In the above problem, all intermediate answers had to be kept accurate to at least 4 sig. figs. so that the final answer be accurate to 3 sig. figs. Keeping the accuracies of angles and trig. functions to 4 sig. figs. Is quite a lot of bother but was quite necessary in this case
justifiably give the answer of 7280 watts.
Justifiably Rive he answer of 7335.8 watts appears to be found as a result of correcting an answer of tim phase angle to one signific:int figure. i.e tan phase angle equals 0.fi, vet the minswer is
expressed with 5 sig. figs. Note here also that

Mr. Cullinan's earlier requirement for 4 decimal places to be used in the impedance calculation
were obviously considered not warranted in were obviously considered n

I feel that by publishing answers to problems of this nature to accuracies that are quite in concistent with methods of computation avail able to the student, even when the inswers happen to be arithmetically correct to perhaps
5 sigs. figs., is often misleading. A case like this is when a student may spend much wasted time striving to arrive at the published answer to verify his technique when. for some obscure reason, that darticular method may only yleld an answer correct to
computation methods.

It is my opinion that the second hall of lec ture No. 6 is plagued with quite misleading at a rreat disadvantage in that he has to pass an examination which will be assessed by a persod in the P.M.G. whose basic ideas are such fallacies at such a basic level to a studen: coming to grips with these princlples for the Arst time will ultimately lead to failure. If per chance he scrapes through the ex
scored one more misguided Ham.

My sentiments concerning Lecture 6 promptnd me to browse over Lecture 5 . I wonder if Mr Cullinan has heard the term "root-mean
square." abbreviated "r.m.s."? At the end of square." abbreviated "r.m.s."? At the end of
the article, Mr. Cullinan says that "When dealink with a.c. power systems, a.c. motors and the like. it should be remembered that voltages are quoted on an average figure. It may be al interest. Mr. Cullinan, to know that the aver age value of any symmetrical voltage or cur-
rent waveform is strictly zero provided there is no d.c. off-set prosent. Its r.m.s. or effective value is, however. a factor of 0.7071 of its peak equivalent a.c. that will produce the same heating effect as the same magnitude of d.c. when each in turn is passed through or placed across a resistor.
The term "average value" is reserved for another application where it is defined as being refers to each half cycle in turn of n wave form and this average valuc is magnetic field as the same magnitude of d.e. when each in turn is passed through any suit the flux will change direction each half cycle.
This "nverage value" finds application particularly in rectifier type moving coll a.c.
meter. The waveform in this case is usually a full wave rectified version of the input waveform. The meter reads as though d.c. were being measured, being related to the deflection
by meter current id.c. componentI equals 0.636 x a.c. peak current. However. the meter multipliers and shunts are adjusted so that the scaln reads the actual r.m.s. value. For a pure sine wave the difrerence is about 11 is important to note that a moving coll rectifier ac. meter only reads of a pure sine wave. When measuring other types of waveforms, allowances must be made if the correct answer is to be found.
All waveforms have a ngure which will indicate the type of correction required it is called torm factor, and is the ratio of r.m.s. value to the average
the form factor is 1.11 .
I hope that my comments may assist in assessing the problem that exists in the two most recent lectures of this series of articles and that whether they are used in full or in cart for publication. may assist newcomers ies of electronics.
-G. N. Twining, VK5TE.

s)

1970 CATALOGUE OF BOOKS ISSUED BY TAB BOOKS

TAB Books, Blue Ridge Summit. Pa., 17214. U.S.A., publishers of the famed Gernsback
library books. has just released its spring 1970 catalogue. Describing over 125 current and fortheoming books. the illustrated 16 -page catalogue covers the iollowing subject area: Scheinatic/servicing manuals, broadcasting, basic technology. CATV. electric motors, electronic engineering. reference. television. radio and elecexperiment, test instruments and iransistors.
Among the new and forthcoming titles featured are: "How, to Repair Home and Auto
Air Conditioners." Small Applinnce Repalr Guide.". And "Magnavox Color T.v. Service Manual." The catalogue is avallable efree upon
request.

Sub-Editor: ERIC JAMIESON. VKSLP Forreston, South Australia, 5233. Closing date for copy 30 th of month. All Times in E.S.T

AMATEER BAND BEACONS

| VK4 | 144.390 | VK4VV. 107m. W. of Brisbane. |
| :--- | ---: | :--- | :--- |
| | 53.000 | VKSVF. Mount Lofty. |
| | 144.800 | VKSVF. Mount Lofty. |
| VK6 | 52.006 | VK6VF. Tuart Hill. |
| | 52.900 | VKGTS. Carnarvon. |
| | 144.500 | VK6VE. Mit. Barker. |
| | 145.000 | VK6VF. Tuart Hill. |
| | 435.000 | VK6VF. Ton by arrangementI. |
| VK7 | 144.900 | VK7VF. Devonport. |
| ZL3 | 145.000 | ZL3VHF. Christchurch. |
| JA | 51.995 | JA1IGY. Jipan. |
| W | 50.091 | WB6KAP. U.S.A. |

A letter has been received from B. Cubena. VK3BEC. of Kew. Vic.. advising he is at present constructing a transmitter for use as
a beacon on 590 MHz . Experiments are to be carricd out with an omni-directional antenna and he is interested in ascertaining the maxi mum distance of rellable reception. The beacni will use f.mn. and VK3BEC would be interested to hear from others in VK3 who would be prepared to wssist with experiments. So now over to VK3s.

While on the subject of beacons, one corres pondent has mentioned that work is proceeding on the proposed VK3 beicon, those in the sur tional for the current DX season. Also note that the VKG 2 metre beacon at Mt. Barker was heard at S3 in Geelong on 7th August betwee: before the beacon is hesrd in VK7. particularly around Burnle. I wonder how many around there and nearby Devonport monitor the frequencs of the VK6 beacon during periods when in the shack dolng other things besides in QSO? While we are talking about VK7. a letter has arrived from Winston VK7EM/T indicating he Is now operational with Amateur Television
transmissions on 426.060 MHz d.s.b. with Mm . transmissions on 426.060 MHz d.s.b. with f.m. sound 5.5 MHz. above and rier. Normal standards are used for line and
field frequencles and modulation Dolarity. but received plcture will not have interlacing The tx runs $30 w$. input to a QQE $03 / 20$. series modulnted with a 6CM5: vidicon cameria and elementary sync. pulse generator. Winston
would welcome reports from VK3 and VK⿹. would welcome reports from be interested to hear from anyone equipped to receive such transmissions with a view to arranging 2 metre a.m. skeds for use curing band openings.

Those of vou rushing in and purchasing crystals for Channel A f.m units might take heed from a comment in the latest issue of the Newsletter from the Geclong Amsteur Radio and T.V Club, and I quote: "A Step Forward: stations operating 2 metre f.m. are now using Channel B 1146 MHz., as their primary simplex frequency, and the now obsolete Ch. A
is used as their experimental frequency. This leaves only isolated operation on Ch. A in small areas, mainly victoria. It is hoped thesc areas will shorlly fall Into llne with what is now world-wide practice. Unquote. Goad! It
will save me some expense. thought I would have to include Ch. A in my unit one day in order to conform!

V.II.F. CONVENTION

The VK3s have gone to a lot of trouble 10 make their 7th Annual Convention a success on 10 th and llth October. Briefly. It is beink held in the Communlty Hall, Jukes Rd.. Faw k ner. oll the road to Sydney. Excellent trophies are being effered. The Convention starts at
1200 on 10 th and you can be lulked in on 53.032 MHz . and 144.5 MHz . on a.m. or 146 MHz . f.m. The address at 1400 hours by Les Jenkins. VK3ZB.J on "System Requirements for Operasomething warth hearing. There are fox huints. auction. scrambles. 432 MHz . Antenith galn comother things you arc asked 10 bring your best piece of home constructed cear. which must I favour very much in these days of so much commercial gear being used. and it is pleasing to see such an liem being included in most Amateur gatherings

VK3 is certainly koing all cut at present to enthuse ns miny operators as possible towards Field Dis. operation. Following is a list ot
current dates. aich being a Sundis. and oper-
ating times are between 1100 and 1600 hours. 1st November. 6th December. 3rd January, 14th and 11 th April. So there you have a wide choice. And if this sort of operstion does not satisly you. there is another cholce in 2 metre scrambles being held in VK3 each second Sunday of the month between $2 \mathrm{CL4}$ and 2115 . and a special invitation is extended to more country stitions to participate.

ANTARCTIC OPERATION

Following my paragraph last month nbnut Kelth VKSZKG going away down into the cold country. a Ictter has arrived from Keith with detalls which should be of interest to many. He will be leaving in December for a ${ }^{15}$
months' stay at Mawson Base and will be taking 8 metre gear with him. which includes a 4 element Yagi, his mobile rig and parts for a
line.ir using il $4,250 \mathrm{~A}$. Keith is currently studying c.w. and hopes to pass before Roing down there. This will enable him to have a 20 metre link! Although he expresses doubt about working back 10 Australia from so far away. nevertheless. it's worth trying. and the is months stay will give him two DX seasons in
which to make the cforts. One problem of course will be that if the bands really open up at any time. the stronger stations from difficult to find. The beacons in VKS and VK7 should be of some assistance for either 6 Cr 2 metre operation. Keith wlll be working with the Ionospheric Prediction Service, and helding in a small way this wordsi to produce the monthon Charts which appear regularly ene stalling a neu. Ionosonde built by the I.P.S. In Sydney. And this is the equipment which plots the reffecting lavers in the ionosphere teurs in New Zealand could well note that Kelth will be attempting to work long distances on 6 metres. Good luck to him!
David VK8AU at Tennant Creek reports the JAs are making their appearances hghin on metres and were avallable on no less the August. most signals being $F 2$ and between August, most signals beink F2 and between will be good months to watch the band. Doug VKRKK predicts 1971 should be a bumper vear for trans-equatorial communication and every possibility several new call areas to the north may be on 6 metres before long

METEOR SCATTER OPERATIONS

Last February it was 2 metres which stole the prizes for the big opening right across southern Australia from West to East. Now, 6 months later. 6 metres has come into dts wn with a slidden startling increase in interest er. Monday, 10th August. will be a date to cemember, for then David VK8AU at Tennant Creek worked VK8KK in Drrwin. VK5ZWW/5 located at Andamooks Opal Fields in central South Australia, and VKSZDX in Adelalde. As these operations open up a field scarcely touched by most. I propose going into the operations in more detail than generally would be the case, particularly as information on other matters still remains scarce.
Credit for the initiation of these operations must so to Wally VKSZWW, and the following has been prepared by him for A.R. The during Ausust 1970 was surveying. noodling and Ham Radio. 6 metre gear wns taken in case there were early TE openings to JA and he possibility of extended ground wave to Adelaide 1300 milesi through the high pressure continent this time of the vear. Skeds were arranged with Adelaide each night oll 52.010 MHz. at 2200 hours firom 4th August. I was to all south for five minutes and then listen for ive minutes, up to 2230 . Abridged results are s follows
4/8-Several bursts s.s.b. after 2200
S.s.b. and c.w. on 52100 2023-2032 iwas
VK8AU I, s.s.b. and carrier after 2200 C.W. On 521002030 to 2042 . Carrier and s.s.b. after 2200 ident. VK5ZDY and my call several times.
7/8-Equipment fallure iunexplained).
8/8-Copled VK5ZDX-VK5ZWW and VKS-ZDY-VKSZWW several times. Sent $3 / 3$ to
VK5ZDY As he was best. No report back.
9:8-Almost completed contact with VK8AU 2150-2159. Nothing from Adelaide. Be-
tweel 2223 and 2247 I sent VK8AU $3 / 3$ and recelved $4 / 4$ and then both confirmed these reports via meteor scatter, both stations on s.s.b. and 52010 KHz ilt has since benn reported one burst of VK5ZWW was heard by VK8KK in Darwin.l
10/11/12/8-Received reports $3 / 4,2 / 2$ and 3,3 from VK8AU and sent 3/4, 3/3 and $3 / 3$ VKSQZ from Adelaide, sent reports io each but no replies.
"Since being bnck in Adelalde VK8AU has been regularly copied via random metear scat-
ter. From whit 1 can gather the contact witl ter. From what I can gather the contact witl
David VK\&AU on gth is the first two-way s.s.b contact properly confirmed on the air via MS in Austrplja. It misy also be the nrst two-way of any kind. There have been many crosis bind contacts on forwird seatter and MS reported, but I have not heard of a two-way before. We were fortunate that the Perseids Shower was current during the tests.
'Techniques used were to identify This is not use phonetics or CQ. they are a waste of time.1 Then listen for five minutes. and If ${ }^{\text {a }}$ statioll is identified then repeat VK- you are -isuitible reporti for five minutes. Listen Higain for flve minutes for a report and confrmation. then confrm the report received for flve minutes VK- VK
$5 Z W$ roger $4 / 4^{\circ}$. It may be necessary to send your report for more than onc nue-minute your report for more than onc nve-minute period.itening perinds are accurate to within a couple of seconds and the frequency be within 300 cycles

In nin priticularly interested in keeping this going rnd would like to see it supported on a
nation-wlde basis. Anyone interested in skers nation-wide basis. Anyone interested in skers
should get in tounh with me direct and I will pass on current information. S.w.l. reports would be helpful. The next shower that lonks useful could be the Giacobinids around gith October. Gear used at Andsmooka: Basic unit,
FT-DX-100 at 28 MHz . Into home-brew transverter running 120 w . D.e.p. into QQE06. 40 and using a VK3 FET converter. 4 el. Yagi 15 ft . high, 240 volts a.c. from Honda E IV. 300 . Alsn many TU1s were used dur
-VK5ZWW, ex-ZL2TCW.

As the report of the above activity may siia the thoughts of others to give it a try some
further informntion which may be helpful Is here noted. David VK8AU states: "Contrary to normal Es propagation where the best distance is about 1.000 miles. metcor scatter from here ITennant Creek. N.T.I scems best In the 500 to 700 mile range, at 1100 is getting down the most useful meteors are comparatively low in the E layer. The next useful shower is due on 9 th October, then followed by the Orlonids 20th to 23rd October. The blggest one is the can usurlly be heard during non-shower periods but the equipment requirements become more stringent 100 watts at least preferably c.w. or s.s.b., and at least a 5 element Yagi aro c.w. or s.s.b., and at least a s element Yagi arn
required to make much impression. The ris here is almost 400 watts p.e.p. on s.s.b. and a
Swan type Yagi with 9 elements on a 27 ft. Swan

1 anyone wants to make skeds. please write direct or contact me on 3655 at 2200 . I am at present designing an automatic keyer using
digital techniques to enable me to send some digital techniques to enable me to send some
good $30 \mathrm{w} . \mathrm{p} . \mathrm{in}$. c.w. This seems to be the good $30 \mathrm{w} . \mathrm{p} . \mathrm{m}$. c.W. This seems to be the
most effective speed as the longer bursts are generally less than three seconds.

Regular skeds are running with VKSZWW and VK5ZDX from 2130 to 2230 most nights
with other irregular skeds with VK8KK We usually get enough signal to positively identify cach other, but not suffictent for a two-way QSO. Others are most welcome to listell. but please call ONLY in the 5 to 10 minute and
15 to 20 minutes. etc.. i.e. the alternative 5 15 to 20 minutes. etc.. l.e. the alternative 5
minute segments. We use 52.010 MHz ."VKAAU
Doug VK8KK has a small say on the matter and says it is good to at last see some of the boys in the South taking an interest in MS. s.s.b.! He is currently looking for some more antenna gain over and above his 9 element beam so the 540 miles path to VK8AU can be established on a regular basis. He says they are almost there and can "feel" signals all the couple of Swan 9 element Yigis!
Bob VK32DX is another to feature in these operations and has sent me many panges of information. photocopies of letters and teleAdelaide, etc. Too much for inclusion here. but as I am now attempting to promote interest in meteor scatter operation. some points from Bob may be of interest. On Sunday. 9th August. Bob received more than 14 bursts in
the first five min. period, some lasting for iwo seconds, and included portions of call signs, and mixture of c.w. and s.s.b. The second fiveminute listening period finally resulted in com-
plete ident "VK\&AU this is VK8AU", thereby indicating who the c.w. station had been. Bob was able to simultaneously hear both Wally VKSZWW 300 miles away and Divid VK8AU 1100 miles distant. with Divid mostly the stronger of the two
Conditlons on the next evening were better
and whale words and call signs were received and whole words and call signs were received
c.ver and over agaln, culminatting in two-wny continued on pilge 25,

VK3 V.H.F. PRE-AMPS.

Now available, a now Improved V.h.f. Pre. Amplifler featuring lower noise. higher gain. diode protection In case of reverse polarity TIS88/2N5245 fleld eifect uses the new

Avallable ex stock
S6.00 incl. postage ond packna
Order from: DISPOSALS COMMITTEE P.O. BOX 36 .

EAST MELBOURNE. VIC.. 3002.

Also evallable ex stock
432 MHz . Converters
$\$ 22.00$
$144 \mathbf{M H z}$. Converters $\$ 13.50$
Write to above address for complete price list for the above and other components.

COMING SHORTLY
A NEW SIX METRE CONVERTER AND A 1296 MHz . CONVERTER
For further details watch the Victorian Div. ision Disposals Committee advertisements In "Amateur Radio

CHANGE OF ADDRESS

WILLIAM WILLIS \& CO. PTY. LTD.

is now situated at
77 Canterbury Rd., Canterbury, Vic. Phone 836-0707
Correspondence: C/o. Post Offlce. Canterbury. 3126

V.K. ELECTRONICS

63 HAROLD ST., DIANELLA, W.A., 6062
Service to Transceivers, Receivers, Transmitters, Antennas, etc.

Phone 76-2319

REPAIRS TO RECEIVERS, TRANSMITTERS

Constructing and testing: xtal conv.

any frequency; 05-ers, R9-ers, and
translstorised equipment.
ECCLESTON ELECTRONICS
146a Cotham Rd., Kew. Vic. Ph. 80-3777

KITS

FM IF STRIP (ref. "A.R." June '70). S9.80. Wired and tested. $\mathbf{~} 12.80$.
CFPASSE CERAMIC FILTER, optional Ior above. 16 KHz . bandwidth. $\$ 16.00$
1W. IC AUDIO AMP. (ref. "A.R." July "70). S8.40. Wired and tested. S11.40.
VARACTOR MULTIPLIER KIT, 144 to 432 MHz.. diode not supplied. $\$ 5.80$.
$2 N 3632$ TRANSISTOR (unbranded). May be used as v.h.f. amp of varactor, \$7.00. 2A. max., S3.75. Wired and tested. S4.25. RE004 VOLTAGE REGULATOR, 4.5-18.5V. d.c. reg. max. $0.2 A$ max.. S9.85. Wired and
tested. Si1.90.

All prices include sales tax and postage.

COMMELEC INDUSTRIES

P.O. BOX 1, KEW, VIC., 3101 Phone (a.h.) 80.2957 or 277.8295
N.S.W. Rep.: J. W. Rufus, 9 Bridge Road Homebugh, 2140 . Phone (a.h.) 76.7133.

SILENT KEYS

It is with deep regret that we record the passing of-

VK2JZ-Alec Mather.
VK2LS-Lionel Todd.
VK6CP-Clarrie Cooke.
VK6LU-Lou Stagg.

VHF NOTES

icontinued from page 241
reports being exchanged 5×4 for the 1100 m:les. These have been confirmed by QSLs. Bonsiatulations in the course of constructing a high Bnb is now in the course of constructing a high power tinear for his s.s.b. exciter. and together
with thoughts of a 9 element beam on the with thoughts of a g element beam on the north looks like really getting into the fryy around the end of the year will be looking for stations 500 to 1200 miles distant to the north and west. To the east the Mt. Lofty Ranges present an obstacle, but may be worth considering anyway
So there you are chaps. Main requirements for worthwhile participation seem to be at least 100 watts of a.m.. preferably s.s.b. to :he legal limit. a 6 element or more antenna, ability to read out your frequency to $200-300$ cycles tunable $1 . f$., someone at the other end to keep
skeds with you. plenty of patience, and your just rewards may be quite surprising. If you can run to high power c.w. you may even do better. Good luck.
Dous is operational on 52 and 144 MHz ., and 432 MHz . receive only. On 52 MHz . he uses both s.s.b. and c.w.. running 200 watts p.e.p. to andir 6146 Bs with a 9 element wide spaced 136 ft . boom' Yagi up 55 feet. The converter uses an FET front end and 28 MHz . tunable if. On 144 MHz . he axain uses s.s.b. and c.w., but his work is severely limited by location. Antennn is a 12 -turn helix to 6 CW4 converter. A similar converter is used on 432 MHz . He also operates on the 146 MHz . $1 . \mathrm{m}$. net.
The areas worked on 52 MHz . read almost like the pages of a call book. being VK1. VK2. VKY. VK4. VK5. VK6. VK7, VK8. VK9 Papua, VKJ New Guinea counting as two countries, ZL1. ZL2. ZL3. ZL4. W6. VS6. HL9. 9M2. KW6. KG6. DU1. KJ6. KR6. KM6 and all JA districts! Total of 14 countries and on my calculations 34 call areas at least: A very outstanding efiort Doug. Fitted in with all this of course is some h.f. operating. with such things as FT-DX-400. and KWM-1. etc., on 80 to 10 metres. Looking to the future, Doug wants to continue looking for more countries on 52 MHz . and further scatter experiments.

Looks like I shall have to conclude these notes at this point. I hope as many of you as possible will write to me about doings ef general interest in your areas, this is the only way the page can be kept going satisfactorily. and with the coming $D X$ season hope to hear from many correspondents.
Thought for the month: "The easiest way to teach chlldren the value of money is to borrow I from them:" 73. Eric VKSLP, the Voice in the Hills.

HAMADS

Minimum S1 for forty words. Extra words, 3 cents each. hamads will not be published unless ACCOMPANIED BY REMITTANCE.

Advertisements under this heading will be accepted only from Amateurs and S.w.l's. The Publishers reserve the right to reject any advertising which, in their opinion, is of a commercial nature. Copy must be recelved at P.O. 36, East Melbourne Vic., 3002, by 5th of the month and remittance must accompany the advertisement.

FOR SALE: From the estate of Alex Mather, VK2JZ. ons of Australia's leading DX men. 1 Heathkit SB100 Transceiver with external VFO. power supply and handbook SACO. 1 professionally bult copy of Heathklt SB200 Linear. pair 5728 in inal. fuly metered. fan cooled. with in-bulit power supply S300. 1 professlonally built copy of the Swan 240 Transcelver with speaker and power supply, S201. band SSB Phasing Rig with VOX ALC and power band SSB Phasing Rig with SSBX Ahasing Rig with Linear (parallel 813s) and power supply. rack mounted and fan cooled. $\$ 300$. 140 ft . Antenna Tower prop. pitch motor rotator. 20 metre quad direction indicator, power supply, antenna tuning unit, 5 position co-axial antenna switch. low pass filter and SWR meter with all cables and co-ax. dismantle and ramove at own expense. S125 on.o 130 ft . crank-up Tower with 10 and 15 metre quads with all cables, co-ax. and antiference rotator and indicator. dismantle and remove at own expense Sio0 i SSB Modulation Monitor with externa SBP1 CRO tube and screen. S20 1 portable SSB Modulation Monitor with 1 Inch CRO tube. S15 150 ohm 50 watt Dummy Load with thermocouple ammeter. S15. 1 RF indicator fitted with Palec 50 UA. meter. S5. 1 Capacitor Checker. S 10. 5 MHz 2AVA Crystal Filter complete with matchilig USB/LSE carrier crystals. S8. Complete sets "A.A... "CO" and "OST" What offers? I Smiths Electric Clock. S10. 1 pair of Akai Headphones. S5. 1 Yaesu Musen Vernier Dial. 58 . P.A. Equipment: 220 watt Sound Columns. 600 ohm line. 520 each 1 A.W.A. 60 watt Amplifier. multiple tappings on
 output. SSO matifier. S20. A AW A. AC/DC Amplifier. 5 watts, S15. i A.W.A. AC/DC Amplifier. 10 watts 5 watts, S15. 1 A.W.A. AC/DC Amplifier. 10 watts S12. 215 watt 16 ohm Driver Units. S30 each.
5 Reslosound Driver Units. 10 watts, Including 600 5 Reslosound Driver Units. 10 watts, Including 600
ohm line to VC transformer. S 30 each. 1 Carbon

 Reflex Horn. S8. Sundry Microphones. Extension Cables. etc. Firm written offers only to Mrs. G Mather. 14 William St.. Singleton. NS.W

FOR SALE: HRO Recelver with pwr. sup. but no speaker. $\$ 80$ or offer. Bendix Frequency Meter LM-10 CRR74028 with modulate facility. calibration book and pwr. Sup.. $\$ 30$ or offer. Write VK3AXO. J. Dunne. P.O. Box 165 . Tatura, Vic., 3616

FOR SALE: Hy-Gain 4 element 6 meter Beam. S30; Dow-Key Co ex. Relay. 12v.. S10; Range of Eddy: stone Condensers: $4 \mathrm{C} \times 250 \mathrm{~B}$ and air socket. S20: A 8 R HI-Voltage Power Transformers and Chokes. all above new in boxes. Pye T.V. Camera with 28 lens, less vidicon. S48. Send for complete list of parts. S. Day. 35 Mount St., Glen Waverley. Vic. Phone 560.9436 after 5.30 p.m.

FOR SALE: W.F.S. 500 12v. Transistor Power Supply for Swan 350 or 500 Transceivers for operation of Swan or similar unit at fult power input ready to plug Into any Swan unit \$55. A.W A. MR10 F.M. Carphone for use as a base converted with xtals for Channel B but less power supply. write for Moree. N.S.W.. 2400 . Phone 52.2060 .

FOR SAI.E: 60 ft crank-up tilt over Tower. Guyed top section. self supporting if only used to 40 ft . Rd.. East Preston. Vic.. 3072 . Phone 478-3575.

KW2000 90 w . p.e.p. Top to Ten Transceiver. Offers to VKIBAE. F4; 10 Daley St.. Elwood. Vic.

SELL: 12.15 v . 300 w Petrol Electric Generating Set. S42: Transformers, 630v. 750 mA . (2), $\$ 5.50$ ea. $2,000 \mathrm{v}$. $500 \mathrm{~mA} . \mathrm{S} 10.50 .450 \mathrm{v} .250 \mathrm{~mA} .6 \mathrm{Vv}$. 3 a . $6.3 v .1 a \quad 5 v .3 a .54 .600 \mathrm{v} .250 \mathrm{~mA}$ S4. 50 ; U.H.F. Equipment. Vinten Base Station ($6 / 40$ final). un. converted. S32: Pye Base Station, converted 53.1 (less ix transport). S30: Pye Reporter Mk. IIIA.. converted 53.1. S12 (less crystels): Geloso 4/104 V.F.O Tuning Condenser and Trimmers. S 2.50 . C. James. VK5KA. 10 Broadway. Glenelg. S.A., 5045. Phone 95-2569.

WANTED: Collins 32 S 3 Transmitter. Details and price to VK32CC, 2 Kalmia Ave. Mt. Waverley. Vic.. 3149. Telephone 277.4798 (Melb.)

WANTED In good condition. 3 or 5 -band commer. cial S.S.B. Transceiver. trap vertical antenna 14AVO or similar. and semi-automatic key. Inspection in southern States early October. Prices and particu. lars to D. Macaulay. 25 Parkmore St., Boondall. Old., 4034.

WANTED TO BUY: AR7 Receiver In original condiion, can be less colls and power supply. "AmaAugust 1963. Colin Gracie, Cavendish Post Office. August 196
Vic.. 3408.

WANTED TO BUY: Star ST-700 Transmitter in any condition. Must have handbook. All replies answered S King. VK3YDK, 1 Kalmia Ave.. Mt. Waverley. Vic., 3149 Phone 669.2921 (b.h.). 277.4748 (a.h.)

SIDEBAND ELECTRONICS ENGINEERING

Prices below, subject to alteration without prior notice, are all for equipment, directly imported from the various factories, in stock all the time, no use to advertise otherwise:
YAESU MUSEN

FT-101 latest AC/DC all-band Transcalver. one demo. modal available. FT-DX. 400 de luxe Transceiver, 500w. PEP. AC supply built in $\mathbb{S} 25$ FL.DX FR.DX. 400 Transmitter. 300w. PEP, AC supply built in $\$ 350$ FR-DX. 400 super de luxe model Receiver with all the avaliable accessories built in. 500 Hz . CW filter. $F M$ filter and $F M$ discriminator and 2 and 6 metre solid state Converters FT- 200 economy Transceiver, with extra heavy duty AC power supply-speaker unit for $230 \cdot \mathbf{2 4 0}$-250v.. adjustable FL-DX-2000 Linear Amplifier. built-in AC supply and SWR meter FL-2000B Linear Amplifier
6 or $2 \mathrm{mx}_{\mathrm{x}}$ solid state Converters. 10 mx output. as used in the FR-DX 400 super de luxe Receiver
FF.30-DX Low Pass Co-ax. Line Filter
500 Hz CVY Fllter KIt SVO H2. CW Filter KIt. as used in the latest FT.DX. 400 Transcelver S35 FV-DX. 400 External VFO for the FT-DX- 400 and FT-DX- 100 Transcelver

SWAN

SW350C Transceiver with AC supply-speaker unit S550
SW350C with Swan 14.230 AC/DC power supply unit
S600

HY-GAIN

Hy-Quad, triband cubical Quad. $10-15.20 \mathrm{mx}$. one co-ax. feedfline 8130
TH6DXX tri-band senlor Beam. 10-15-20 mx. 1KW. AM S220
TH3NR tri-band Junlor Beam. $10 \cdot 15-20 \mathrm{mx}$. 600 w . PEP
14AVO 10 to 40 mx four-band Vertical. IKW AM $\$ 52$
18AVO 10 to 80 mx five-band Vertical. 1 KW AM 885
MOSLEY
TA33JR tri-band $\mathbf{1 0 - 1 5 . 2 0} \mathbf{m x}$ junior Beam. 600w. PEP 5105
NEWTRONICS
4.ETV 10 to 40 mx four-band Verical $\mathbf{\$ 6 0}$

CRYSTALS FT-241 series, chan. 0.79 . full box from 375 to 515 KHz S15 Individual channels, 20c to $\$ 2$, depending on frequency.

MOBILE WHIPS

WEBSTER Bandspanner. $10 \cdot 80 \mathrm{mx}$ centre-loaded, continually adjust. $\quad \mathrm{S} 55$
MARK HW.40 Helical Whip for 40 mx . 520 : HW-3 10-15-20 Helical. 535
Swivel Mount and Spring for flat surface mounting The Pair S10 ROTATORS
CDR Ham-M heavy duty Rotator with indicator-control unit, for up
Eight conduch masts. the proven Amateur Rotator since per Yard
Eight conductor cable for same. per Yard 60c
ANTENNA NOISE BAIDGE
OMEGA TE.7.01 Bridge. for the serious antenna experimenter, gives
BALUNS, exact elect. duallcate of the Hy-Gain BN-86, locally made
FILTEAS: KOKUSAI Mechanical Type, 500 Hz . CW pass band $\$ 20$
MIDLAND Products
27 MHz . ONE WATT handheld Transceivers, three channels avallable. tone call signal for CW operation, battery voltage moter. audio squelch, with batteries, carrying case and strap. earplece. P.M.G. approved rype, with crystals for 27.240 MHz . operation 3750

SWR and Power Meter. with two maters to read forward and reflected waves simultaneously. 52 ohm impedance. 2 kw . Dower $\$ 20$ Field Strength Meter, $\mathbf{5}$-band 1 to 300 MHz ., telescop. whip. earplece $\$ 10$ Moblle type PIT Dynamic Microphone. coiled cord, plug. high Imped.
More MIDLAND Products expected. desk microphones, with and without bullt-in pre-amplifiers. co-ax. connectors.
CO.AX CABLE: All 52 ohm type. prices per foot. any lengths $3 / 16$ inch diam. Type RG-58-U. 10 c ; $3 / 8$ inch diam. type RG-8-U. 202 3/8 inch diam. type RG-214-U, silvered shield and Inn. conduct., 3uc
TRANSFORMERS: Still certain types of NATIONAL Transformers and Chokes in stock at give-away prices, ask for list and literature and plctures of all the above goodies. Sales tax included in all prices but postage. freight. insurance or registration are extras!!

SIDEBAND ELECTRONICS ENGINEERING
 Proprietor: ARIE BLES

P.O. BOX 23, SPRINGWOOD, N.S.W., 2777

Telephone (STD 047) Springwood 511-394, not part of the Sydney telephone exchange. in the Blue Mountains 50 miles West of the Big Smoke.

DURALUMIN ALUMINIUM ALLOY TUBING

IDEAL FOR BEAM AERIALS AND T.V.

\star LIGHT
\star STRONG
\star NON-CORROSIVE
Stocks now available for Immediate Delivery
ALL DIAMETERS — $1 / 4^{\prime \prime}$ TO $3^{\prime \prime}$ Price List on Request STOCKISTS OF SHEETSALL SIZES AND GAUGES

GUNNERSEN ALLEN METALS

PTY. LTD.
SALMON STREET, PORT MELB'NE, VIC. Phone 64.3351 (10 lines) T'grams: "Metals" Melb.
HANSON ROAD. WINGFIELD, S.A. Phone 45-6021 (4 lines) T'grams: "Metals" Adel.

BRIGHT STAR CRYSTALS

FOR ACCURACY, STABILITY, ACTIVITY AND OUTPUT

SPECIAL OFFER-

STANDARD AMATEUR CRYSTALS

STYLE HC6U HOLDER, FREQUENCY RANGE 6 TO 15 MHz .
$0.01 \% \quad \$ 4.25$
$0.005 \% \$ 5.50$
Prices include Sales Tax and Postage

COMMERCIAL CRYSTALS

IN HC6U HOLDER, 0.005% TOLERANCE, FREQUENCY RANGE 6 TO 15 MHz . $\mathbf{S 6 . 0 0}$ plus Sales Tax and Postage

Write for list of other tolerances and frequencies available.
COMPREHENSIVE PRICE LIST NOW AVAILABLE-WRITE FOR YOUR COPY
New Zealand Representatives: Messrs. Carrell \& Carrell, Box 2102, Auckland Contractors to Federal and State Government Departments

BRIGHT STAR RADIO

LOT 6, EILEEN ROAD, CLAYTON, VIC., 3168
Phone 546-5076
With the co-operation of our overseas associates our crystal manufacturing methods are the latest

professional or amateur... chart your course to varian/eimac for dependable, high quality power tubes

Elunts ITY:	$\begin{aligned} & \text { CuSS OF } \\ & \text { OPEATIOM } \\ & \text { SEmCE } \end{aligned}$	TYPICAL OPERATION - SINGLE TUBE								
		a.c. PLIE YOUTME	D.C. PATE CIRRESMT (HAPERES)	D.C. SCleser YOLIME	D.C 5RID FLTME	NPPROR. And DANE POWER (whTS)	MPprox DC. SCREEN Cuprazit (AMPERSS)	APPROX DC. CRO CDRESMT (AMPERSS	Reption. max POWER DUTPUT (WATTS)	$\begin{aligned} & \text { FIUMENT } \\ & \text { WOLTS } \\ & \hline \text { MPERES } \end{aligned}$
3-4002	$\frac{\mathrm{B}}{\text { SSB }}$	3000	$\frac{.100}{.333^{23}}$	-	0	32	-	. 12	655	5.0 -14.5
$3-10002$	$\frac{B}{\text { SSB }}$	3000	$\frac{.240}{.670^{\text {2 }}}$	-	0	65	-	. 30	1360	7.5 21.3
$4 \mathrm{C} \times 250 \mathrm{~B}^{\prime \prime}$	AB1/SSB	2000	.1/.25 ${ }^{13}$	350	$-55^{(4)}$	0	0/.005 ${ }^{(1)}$	0	300	$-\frac{6.0}{2.5}$
	C/CW	2000	. 25	250	-90	2.9	. 019	. 026	390	
	C/AM	1500	. 20	250	-100	1.7	. 02	. 014	235	
4CX300A	AB1/SSB	2500* ${ }^{\text {\% }}$.1/.25 ${ }^{17}$	350	.-55 ${ }^{(1)}$	0	07.004	0	400	$-\frac{6.0}{2.5}$
	C/CW	2500*	. 25	250	-90	2.8	. 016	. 025	500	
	C/AM	1500	. 20	250	-100	1.7	. 02	. 014	235	
$4 \mathrm{CX1000A}$	AB1/SSB	3000	.25/.90 ${ }^{31}$	325	-6014	0	--.002/.035	0	1680	$\frac{6.0}{10.5}$
4-65A	AB1/SSB	3000	.015/.085 ${ }^{(1)}$	360	. $65{ }^{151}$	0	0/.006	0	130	$-\frac{6.0}{3.5}$
	C/CW	3000	. 112	250	-105	1.6	. 022	. 009	270	
	C/AM	2500	. 102	250	- $\mathbf{- 1 5 0}$	3.1	. 026	. 013	210	
4-125A	AB1/SSB	3000	.03/.105 ${ }^{31}$	510	$-95^{\text {\% }}$	0	0/.006	0	200	$\frac{5.0}{6.5}$
	B/SSB ${ }^{\text {4 }}$	3000	.02/.115	0	0	16	$0 / .03$	0\%.055	240	
	C/CW	3000	. 167	350	-150	2.5	. 03	. 009	375	
	C/AM	2500	. 152	350	-210	3.3	. 03	. 009	300	
4-250A	AB1/SSB	3000	.055/.21	600	-110^{37}	0	$0 / .012$	0	400	$\frac{5.0}{14.5}$
	C/CW	3000	. 345	500	-180	2.6	. 06	. 01	800	
	C/AM	3000	. 225	400	- 310	3.2	. 03	. 009	510	
4-400 A	AB1/SSB	3000	.09/30'4	810	-140^{31}	0	0/.018	0	500	$\frac{5.0}{14.5}$
	B/SSB ${ }^{(3 / 4)}$	3000	.07/.30 ${ }^{14}$	0	0	40	$0 / .055$	$0 / .10$	520	
	C/CW	3000	. 35	500	-220	6.1	. 046	. 019	800	
	C/AM	3000	. 275	500	-220	3.5	. 026	. 012	630	
4-1000A	AB1/SSB	4000	.17/.48 ${ }^{\text {י }}$	1000	$-130^{\text {a }}$	0	$0 / .04$	0	1130	$\frac{7.5}{21.0}$
	B/SSB:4	4000	.12/.67 ${ }^{31}$	0	0	105	$0 / .08$	$0 / .15$	1870	
	C/CW	4000	. 70	500	- -150	12	. 137	. 039	2100	
	C/AM	4000	. 60	500	-200	11	. 132	. 033	1910	
3CX100A5	C/CW:	800	. 08	-	-20	6	-	. 03	27	$\frac{6.3}{1.0^{-}}$
2C39A	C/ AM ${ }^{\prime \prime}$	600	. 065	-	-16	5	-	. 035	16	

(1) Ratings also apply to 4×2508. \quad (s) Adjust to give stated zero-signal plate current.
(2) Ratings apply to $4-250 \mathrm{~A}$ wilhin plate dissipation limitation
13. Zero signal and maximum signal dc current.
${ }^{* 1}$ For operation below 250 Mc only.
a) Grid and screen grounded. cathode driven.

Above you see popular Eimac tube types suitable for professional and ham transmitters. Remember this chart when you need a tube. And remember the name Eimac. It means power. Quality. Dependability. For Eimac has more know-how, more experience with power tubes than any other manufacturer. For further
information you are invited to contact our offices at the addresses shown below.

varian PTY LTD

electron tube and device group
38 oxley streel/crows nesi/nsw 2065/43 0673 679 springvaie rd/north springvale/vic $3171 / 5606211$ 339 coronalion drive/toowong/qld $4066 / 713277$
10 stirling highway/nedlands/wa $6009 / 666930$

T oday's sophisticated communications equipment calls for crystals that meet the most exacting standards of the art.
Standards that were acceptable a few years ago cannot meet the requirements of design engineers today. Today's tight tolerances demand quartz blanks with precision selected angles of cut, and Hy-Q use X-ray diffraction equipment to determine this most important factor.
Long term stability is assured by close engineering control of all processing in an air-conditioned environment. The blanks are then checked to determine the frequency change over the temperature range.
The crystal is then precision calibrated to frequency using a crystal impedance meter which simulates the manufacturer's oscillator specifications.
Hy-Q crystals are custom manufactured to meet all these exacting requirements.
It is for these reasons that Hy-Q crystals have been readily accepted as a standard by the Communications industry and why we can guarantee them against defective material and workmanship or any deterioration in performance when they are used in equipment for which they were specifically made.

Australia's largest independent crystal manufacturers.

 Write for details.
AGENTS:

NSW: General Equipments Piy. Ltd., Artarmon. Phone: 4392705.
SA: General Equipments Pty, Ltd, Norwood. Phone: 634844 .
WA: Associated Electronic Services Piv. Lid.. Morley. Phone: 763858.

10-12 Rosella Sireet.
P.O. BOX 256 ,

Frankston, Victorla, 3199.
Telephone 7839611
Area Code 03.
Cables: Hyque Melbourne. Telex 31630.

NT: Combined Electronics Pty. Lid., Darwin. Phone: 6681.
TAS: Hobart Radio Clinic, Hobart. Phone: 343884.
QLD: Douglas Electronics Piy. Lid., 322 Old Cleveland Rd Coorparoo. Phone: 978222.

every month 45,000,000

Electrolytic Capacitors are wired into quality equipment throughout the world . . . proof that ELNA capacitors are fully accepted and wanted by manufacturers everywhere.

Catalogue nowavailable
SOANAR ELECTRONICS Pty. Ltd.

VIC.: $\mathbf{3 0 . 3 2}$ Lexton Rd., Box Hill.
890238.

NSW: 82 Cariton Cr., Summer Hill 7986999
QLD: R. A. Venn Pty. Ltd., Valley. 515421 .
SA: A \& R - Soanar Group, 470 Morphett St., Adelaide. 516981
WA: Everett Agency Pty. Ltd., West Leederville. 84137.
Sole Australian Agents

(4)
ECONOMICAL SSB! FT-200 FIVE-BAND TRANSCEIVER

A superb quality, low cost, versatile transceiver. Covers $80-10 \mathrm{mx}$, tuning range 500 Kc . each band. On 10 mx , crystal supplied for 28.5-29 Mc. (Crystals available optional extra for full 10 mx coverage.) SSB, CW, AM; with a speech peak input of 300w. Transistorised VFO, voltage regulator, and calibrator. 16 valves, 12 diodes, 6 transistors. PA two 6JS6A pentodes. ALC, AGC, ANL, PTT and VOX. Calibrated metering for PA cathode current, relative power output, and receiver S units. Offset tuning $\pm 5 \mathrm{Kc}$. Uses a 9 Mc . crystal filter with bandwidth of 2.3 Kc . at -6 db. Selectable sidebands, carrier suppression better than - 40 db . Sideband suppression better than -50 db . Fixed channel facility optional extra, useful for net operation, skeds, etc.

Operates from conservatively rated separate 230 volt 50 c.p.s. AC power supply, FP-200, which includes built-in speaker. A 12 volt DC power supply, DC-200, is also available. Transceiver incorporates power take-off and low level R.F. drive outlets suitable for transverters.

Cabinet finished in communication grey lacquer. Panel, etched, satin finish aluminium.

Price, FT-200, $\$ 350$ inc. S.T.
Imported Yaesu matching Power Supplies:
FP-200 \$90 including Sales Tax
DC-200 \$120
New shipment! Ample stocks for immediate delivery.

Other well known Yaesu Models: FT-101 Transistorised Transceiver, FTDX-400 Transceiver, FL-2000B Linear Amplifier, FLDX-400 Transmitter, FRDX-400 Receiver, FTV-650 6 Metre Transverter, FF-50DX Low Pass Filter, 600 c.p.s. CW Mech. Filter for FRDX-400, 600 c.p.s. CW Crystal Filter for FTDX-400. Also: SWR Meters, Co-ax. Switches, F.S. Meters, Co-ax. Connectors, Hy-Gain (U.S.A.) Beams, Antenna Rotators, Electronic Keyers, Co-ax. Cable.
All setc checked before despatch. Alter-sales service, spares availability. 90.day warranty. All Yaesu sets sold by us are
complete with plugs. power cables and English language instructlon manual. Prices and specificatons subject to change.
Sole Australian Agent:

BAIL ELECTRONIC SERVICES

60 Shannon St., Box Hill North, Vic., 3129. Phone 89-2213
N.S.W. Rep.: MOSMAN RADIO SERVICES, P.O. Box 56, Mascot, N.S.W., 2020 . Telephone 67-1650

South Aust. Rep.: FARMERS RADIO PTY. LTD., 257 Angas St., Adelaide, S.A., 5000. Telephone 23-1268
Western Aust. Rep.: H. R. PRIDE, 26 Lockhart Street, Como, W.A., 6152.
Telephone $60-4379$

Available NOW! semiconductor catalogue

Write or phone for our New Semiconductor short form Catalogue, incorporating devices from:

TEXAS INSTRUMENTS
FAIRCHILD
PHILIPS
ANODEON
MULLARD
DELCO
R.C.A.
S.T.C.

SIEMENS
GENERAL ELECTRIC
INTERNATIONAL RECTIFIERS NATIONAL SEMICONDUCTORS

CALL IN AND SEE
the wide range of
R.F. AND OTHER TEST EQUIPMENT

562 Spencer St., Melbourne, Vic., 3000. Phone 329-7888, Orders 30-2224 City Depot: 157 Elizabeth Street, Melbourne, Vic., 3000. Phone 67-2699 Southern Depot: 1103 Dandenong Rd., East Malvern, Vic., 3145. Ph. 211-6921

amateur

 radioVol. 38, No. 11
NOVEMBER, 1970
Registered at G.P.O.. Melbourna, for ransmission by post as a pariodical

Price 30 Cents

PLUGS AND SOCKETS

CRYSTALS

AMATEUR CRYSTALS
YHF Band - 144 MHz . FM
HC6 Holders. $1 / 2$ Inch spacing.

PAICE $\$ 5.50$ EACH

MARKER CRYSTALS

COMMERCIAL FREOUENCY CRYSTALS
HC6 Holders, $1 / 2$ Inch spacing.

$2,182 \mathrm{KHz}$.	$2,637 \mathrm{KHz}$.	$\mathbf{4 , 5 3 5} \mathrm{KHz}$.
$2,524 \mathrm{KHz}$.	$2,739 \mathrm{KHz}$.	$\mathbf{6 , 2 8 0} \mathrm{KHz}$.
$2,603 \mathrm{KHz}$.	$2,979 \mathrm{KHz}$.	$6,735 \mathrm{KHz}$.
	$4,095 \mathrm{KHz}$.	
	PRICE SS.50 EACH	

LT91 RECTIFIER

20 Volt 2 Amp.
Price \$1.50. Postage 10c.

TE-16A TRANSISTORISED TEST OSCILLATOR

Frequency range: 400 KHz . to 30 MHz . In five bands. Modulated 800 Hz . sine wave. Modulation 30% approx. $57 / 8 \times 57 / 8 \times 35 / 8$ inches. Weight 1.5 lbs. Price \$24 tax paid. Postage 75c.

CHOICE OF MULTIMETERS

Model OL-64D Price S19.50, post 30c 20,000/OPV. DC Volts: $0.0 .25,1,10,50,250,500$ 1.000 V . at $20 \mathrm{~K} / \mathrm{OPV} .5 .000 \mathrm{~V}$ at $10 \mathrm{~K} / \mathrm{OPV}$. AC Volts: 0.10. $50,250,1.000 \mathrm{~V}$ at $8 \mathrm{~K} / \mathrm{OPV}$ DC Current: 50 UA., $1.50,500 \mathrm{~mA} ., 10 \mathrm{amps}$. Resistance: 0.4 K . $400 \mathrm{~K} .4 \mathrm{M}, 40 \mathrm{M}$ ohms. ds. Scale: Minus 20 to plus 36 ob . Capacitance: 250 pF . io 0.02 uF . Inductance: 0.5 .000 H . Slze: $53 / 4 \times 41 / 8 \times 13 / 4$ Inches

Model 200H Price S11.25, post 30c

 20.000 /OpV. UC Volts: 0.5. 25. 50. 250, 500, 2.500 V (2U.UOU/UHV). AC Volts: $0.15,50,100,500,1,000 \mathrm{~V}$ (110.000/UPV) DC CUirent: 50 UA.. 2.5. 250 mA Hesistance: 0.60 K . 6 M ohms (scale centre 300 ohms 30 K onnis). Capacitance: 10 DF .100 .001 uF and 0.001 uF . 100.1 uF . dy Scale: Minus 20 to plus 22 dB. Size: $41 / 2 \times 31 / 4 \times 11 / \mathrm{e}$ Inches.New Model US-100 Price S28.75, post 40c Mirror Scale. Overload protection. Shockproof Movement. Polarity Switch. DC Volis: $0.0 .25,1.25$. 10. $50.250,1.000 \mathrm{~V}$. (20K/UPV). AC Volts: $0-2.5,10$, 50. 250.1 .000 V . ($5 \mathrm{~K} / \mathrm{OPV}$). UC Current: 1, 25. 500 $\mathrm{mA} ., 10$ amps. AC Current: 10 amps. Resistance: 0.50 megonms (centre scaie 50). H $\times 1,10,100$. 1 K . 10K. dy. Scale: Minus 20 to plus 10, plus 22. plus 35. plus 50 dB .

Model C-1000 Price S6.50, post free Yocket Type. 1.000/OPV UL Volts: U.1U, 50. 250. 1.000 V . $11 \mathrm{~K} / \mathrm{OPV}$). AC Volts: $0-10,50,200,1,000 \mathrm{~V}$. (iK/OPV). DC Current: 0.100 mA . Resistance: U-150K ohms (3 K centre). iwo colour scale, Range Selector Swltch. Size: $31 / 2 \times 21 / 4 \times 1$ inch.
Model CT-500 Price \$14.95, post 30c 20,000/OPV. DC Volts: 0-2.j, 10, 50, 250, 500, 5,000V . (20K/UPV). AC Voits: O-IJ, $50,250,500,1.000 \mathrm{~V}$. (10K/OPV). AC Current: 5 UA... $5.50,500 \mathrm{~mA}$. Re. sistance: $0.12 \mathrm{~K}, 120 \mathrm{~K}, 1.2 \mathrm{M}, 12 \mathrm{M}$ ohms (scale centre sionti00, $6 \mathrm{~K}, 60 \mathrm{~K}$]. dB. Scaie: Minus 20 dB . to plus $\boldsymbol{6}^{2}$ dB. (5 ranges). Size: $51 / 2 \times 35 / 8 \times 13 / 4$ Inches.
Model CT-330 Price S16.75, post 30c $20,000 /$ OPV. DC Volts: $0.0 .6,6,30,120,600,1.2 \mathrm{~K}$. $3 \mathrm{~K}, 6 \mathrm{~K}$ volts. AC Volts: $0.6,30,120,600,1.2 \mathrm{~K}$ volts. (10K/OPV). $D C$ Current: 0.0 .06 . $6,60,600 \mathrm{~mA}$ hesistance: $0-6 \mathrm{~K}, 600 \mathrm{~K}, 6 \mathrm{M}, 60 \mathrm{M} .600 \mathrm{M}$ ohms (centre scale $30,3 \mathrm{~K}, 30 \mathrm{~K}, 300 \mathrm{~K}$ ohms), Capacitance. 50 uF . 100.01 uF . and 0.001 to 0.2 UF . dB. Scale: Minus 20 to plus 63 dB . Slze: $51 / 2 \times 35 / \mathrm{m} \times 13 / 4 \mathrm{In}$.

BRAND NEW SPEAKERS

3DX	8 ohms	Nett	Price	$\$ 3.95$	Postage	20c
3DX	15 ohms	$\$ 3.95$.	20c
6A7	8 ohms	..	.	$\$ 5.50$.	40 c
6A7	15 ohms	..	.	$\$ 5.50$.	40c
8A7	8 ohms	..	.	$\$ 7.20$.	40 c
8A7	15 ohms	..	.	$\$ 7.20$.	40 C
12CMX	8 ohms	..	.	$\$ 10.75$.	50 c
12CMX	15 ohms	$\$ 10.75$.	S0c

C-Type Compact CASSETTE TAPES

Well known make (sult all popular brands of Cassette Recorders). In plastic storage case.
C- 6060 minutes $\$ 1.20$
C-90 90 minutes \$1.95
SIGNAL INJECTOR
Model SE250B. Price \$7.00. Postage 20c.

STEREO HEADPHONES

Professional quallity (well known brand). Large aspads, standard stereo plug. 6 ft . lead. Price 56.75 . Postage 50c.

TAA300 INTEGRATED CIRCUIT
 1 Watt Audio Amplifier

The TAA3JJ is a monoiithic integrated circult for use as a complete a.f. amplifier. With a supply voltage of $9 t$.. outputs of up to $1 \mathbf{w}$. are obtainable into a load impedance of 8 ohms. A voltage range of 4.5 to 9 volts coupled with very low crossover distortion and low current drain (8 mA .) makes his clrcult ideal for battery operation.

TAA300 Integrated Circuit. $\mathbf{\$ 3 . 5 0}$ Postage 10c

A.C. ADAPTOR-BATTERY SAVER

Type PSG4-24J volts to 6 or 9 volts, 300 mA . S12.53 Type PS62-2AJ volts to 6 or 9 volts, 100 mA . $\$ 8.50$ Postage 30c

SOLDERING IRONS

ADCOLA M70 $1 / 8$ inch lip. 240 volt $\$ 8.00$

 ADCOLA M64 3/16 inch tip. 240 volt SCOPE 4 volts AC/DC. 100 watts MINISCOPESCOPE De Luxe

> Postage 20c

SOLDERING IRON TRANSFORMER
240 volts/3.3 Volts, 100 V/A S6.40 Postage 40C

> | ERSIN SOLDER | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Five-Core. $60 / 40$ | | | | | |
| 82.50 | | | | | |
| Flve-Core. $40 / 60$ | | | | | |
| 82.20 | | | | | |
| Solder Pack. $42 \begin{array}{c}\text { Inches } \\ \text { Postage } \\ \end{array}$.... | | | | | |
| 20c | | | | | |

MICROPHONE CABLE

Type 15P1/24, E3748, $1 / 16$ inch diam.
Price 15 c yard, or 100 yds. $\$ 14.00$

STEP-DOWN TRANSFORMERS

Type 5506-240 volts to 115 volts, 20 watts $\$ 12.00$ Type 5578-240 volts to 115 volts. 40 watts $\$ 12.50$ Type 2164-240 volts to 115 volts. 100 watts $\$ 16.30$ Type 2166-240 volts to 115 volts, 250 watts $\$ 22.00$ Postage $\$ 1$

haM

RADIO SUPPLIERS 323 ELIZABETH STREET, MELBOURNE, VIC., 3000

Phones: 67-7329, 67-4286 All Mail to be addressed to above address
Our Disposals Store at 104 HIGHETT ST., RICHMOND (Phone 42-8136) is open Mondays to Fridays, 10.30 a.m. to 5.0 p.m., and on Saturdays to midday.
We sell and recommend Leader Test Equipment, Ploneer Stereo Equipment and Speakers. Hitachi Radio Valves and Transistor Radios, Kew Brand Meters, A. \& R. Transformers and Transistor Power Supplies, Ducon Condensers. Welwyn Resistors, etc.

SIDEBAND ELECTRONICS ENGINEERING

Prices are on the increase everywhere and those for Amateur equipment are no exception. However, I am proud to announce that such is still not yet the case for all lines and models advertised at the prices in my October 1970 advertisement of this magazine. On the contrary, there are two price reductions:

YAESU MUSEN FT-200 TRANSCEIVER, complete with AC power supply-speaker unit in kit form. which kit includes a $\mathbf{S 2 5}$ extra heavy duty power transformer with $230-240-250$ volt taps, especlally made for me by A \& R Transformers Ltd. In Box Hill, Mullard and Ducon components, a metal case of the same size and color as the FP- 200 to match the transceiver, $5^{\prime \prime}$ speaker and explicit instructions with clrcuit diagram to build your own supply in one week-end and save money-the lot for only \$375. This special offer is valid only untll Christmas 1970.

The second price reduction is YAESU MUSEN FL-2000B AMPLIFIER, with Imported American CETRON 572-B valves, now only $\$ 350$.

Also: HY-GAIN TH6DXX with balun, CDR Ham-M rotator plus 50 yards 8 -cond. cable, one package $\$ 400$.
These prices and all others advertised last month are net Spilngwood, N.S.W., cash with order, sales tax included, transportation and insurance extra.

USED EQUIPMENT, one of each: YAESU MUSEN FT-200 Transceiver, with home-brew AC supply-speaker unit S300
HEATH HW-32 20-metre single band Transceiver, no supply S75

SIDEBAND ELECTRONICS ENGINEERING
 Proprietor: ARIE BLES

P.O. BOX 23, SPRINGWOOD, N.S.W., 2777

Telephone SPRINGWOOD (STD 047) 511-394, not part of the Sydney Exchange, Springwood is 50 miles west of Sydney in the foothills of the Blue Mountains.

BRIGHT STAR CRYSTALS

FOR ACCURACY, STABILITY, ACTIVITY AND OUTPUT

 SPECIAL OFFER-
STANDARD AMATEUR CRYSTALS

style hc6u holder, frequency range 6 to 15 MHz . 0.01% \$4.25 $0.005 \% \$ 5.50$
Prices include Sales Tax and Postage

COMMERCIAL CRYSTALS

in hC6u holder, 0.005% tolerance. frequency range 6 to 15 MHz . $\$ 6.00$ plus Sales Tax and Postage
Write for list of other tolerances and frequencies avallable. COMPREHENSIVE PRICE LIST NOW AVAILABLE-WRITE FOR YOUR COPY
New Zealand Representatives: Messrs. Carrell \& Carrell, Box 2102, Auckland Contractors to Federal and State Government Departments

BRIGHT STAR RADIO

LOT 6, EILEEN ROAD, CLAYTON, VIC., 3168
Phone 546-5076
With the co-operation of our overseas assoclates our crystal manufacturing methods are the latest

DURALUMIN ALUMINIUM ALLOY TUBING

IDEAL FOR BEAM AERIALS AND T.V.

\star LIGHT \star STRONG

 \star NON-CORROSIVEStocks now available for Immediate Delivery

ALL DIAMETERS - $1 / 4^{\prime \prime}$ TO 3"

 Price List on Request STOCKISTS OF SHEETSALL SIZES AND GAUGES
Standard extrusions for every purpose

Manufactured in Australia, these extrusions offer design engineers "off the shelf" heatsinks for most applications.

TYPE	STANDARD LENGTHS	FINISH
35 D	$2^{\prime \prime} 3^{\prime \prime} 4^{\prime \prime} 6^{\prime \prime}$	Anodised
45 D	$3^{\prime \prime} 4^{\prime \prime} 6^{\prime \prime}$	Anodised
55 D	$4^{\prime \prime} 6^{\prime \prime} 8^{\prime \prime}$	Anodised
65 D	$4^{\prime \prime} 6^{\prime \prime} 8^{\prime \prime}$	Plain

65D

For use with high power thyristors and silicon diodes under high peak current conditions.

45D

For use with medium power transistors, thyristors and silicon diodes. power transistors thyristors and silicon diodes.

AUSTRALIA'S FINEST ANTENNA VALUE

SWAN HORNET ANTENNAS ARE UNDOUBTEDLY THE BEST OUALITY CONSTRUCTION OF ANY ANTENNAS MADE. ALL MACHINED CASTINGS THROUGHOUT, AND UNBEATABLE PERFORMANCE dUE TO SPECIAL PATENTED TUNABLE TRAPS.

TRIBAND BEAMS

TB-4H 4 element heavy duty, 2 kw ., $\$ 225$ plus tax TB-3H 3 element heavy duty, 2 kw ., $\$ 166$ plus tax TB-3 3 element standard, $11 / 2 \mathrm{kw}$., $\$ 147$ plus tax TB-2 2 element standard, $11 / 2 \mathrm{kw}$., $\$ 118$ plus tax

VERTICAL

1040 4-band trap vertical, 2 kw ., $\$ 103$ plus tax Model 45 all-band whip, switchable.
Model 35 single-band whips, with changeable resonators for any band.

SINGLE BAND BEAMS, FULL SIZE, WIDE SPACED
Y203 14 MHz . 3 element $\$ 45.00$ plus tax
Y153 21 MHz . 3 element $\$ 31.00$ plus tax
Y104 28 MHz . 4 element $\$ 37.00$ plus tax
Y69 6 metre 9 element $\$ 59.00$ plus tax
Y212 2 metre 12 element $\$ 53.00$ plus tax
Triband Cubical Quad, 20-15-10, $\mathbf{\$ 7 0 . 0 0}$ plus tax
S.W.R. AND POWER INDICATORS

SE-405 Professional Model S.W.R. Indicator, Field Strength, Relative Power Output, $\mathbf{\$ 1 3 . 5 0}$ p. tax SE-406 S.W.R. Bridge, $\$ 7.73$ plus tax.
SE-900 100-25 KHz. Xtal Calibrator complete, self contained, attractive appearance, $\mathbf{\$ 2 2}$ plus tax.

Antenna broad-band Amplifiers, $2-30 \mathrm{MHz}$., Rotators, Co-axial Plugs, Co-axial Cable (52 or 70 ohm). Low-Pass Filters, Match Boxes. We can supply at short notice any make of antenna or accessory equipment.

WATCH OUR FUTURE ADS FOR TOP VALUE

W.F.S. ELECTRONIC SUPPLY CO.

12 BOWDEN STREET, NORTH PARRAMATTA, N.S.W., 2151
Phone 630-1621

TRIMAX for a complete transformer range!

HY-GAIN AMATEUR ANTENNAS

COMPREHENSIVE RANGE TO SUIT MOST REQUIREMENTS

Fully Imported from U.S.A.

ACCESSORIES: LA-1 co-ax. lightning arrestor. $\mathrm{BN}-86$ balun, Cl centre insulators \& El end insulators for doublets. HEAVY DUTY ROTATOR: Emotator Model 1100M available for H.F. beams.
H.F. BEAMS: TH6DXX, TH3Jr, TH3Mk3 and HyQuad Tribanders for 10,15 and 20 m .; 204BA. 203BA Monobanders for 20 m .
TRAP VERTICALS: 18AVQ ($80-10 \mathrm{~m}$.) , 14AVQ ($40-$ 10 m .) and 12AVQ ($20-10 \mathrm{~m}$.).
H.F. MOBILE WHIPS: New "Hamcat" Whips and associated fittings.
V.H.F. ANTENNAS: Beams-66B six elem. 6 m ., DB-62 duo-bander for 6 and $2 \mathrm{~m} . ; 23 \mathrm{~B}, 28 \mathrm{~B}$ and 215B (3, 8 and 15 elem. 2 m . beams). Also Ground Planes, Mobile Whips and Halos.

BAIL ELECTRONIC SERVICES, 60 Shannon St., Box Hill North, Vic., 3129. Ph. 89-2213
N.S.W. Rep.: StEPHEN KUHL, P.O. Box 56, Mascot, N.S.W., 2020. Telephone: Day 67-1650 (AH 37-5445)

South Aust. Rep.: FARMERS RADIO PTY. LTD., 25\% Angas St., Adelaide, S.A., 5000. Telephone 23.1268
Western Aust. Rep.: H. R. PRIDE, 26 Lockhart Street, Como, W.A., 6152.

COMMENT:

FEDERAL

If you are hungry, and cannot find work, or if you can and you will earn barely enough to feed yourself, and if you have never been to school-why should any hobby, let alone Amateur Radio interest you?

If you live in India and ycu are a Radio Amateur, you are literally "one in a million"-for in a population of 500 million people there are only some 450 licensed Amateurs.

Some of those 450 licensed Amateurs are by any standard well off. Most are not. Most are not active. They cannot compete with their equipment built with the components available to them, or with the s.s.b. stations of the rest of the world. Who works any a.m. stations on 20 metres these days? Of course components are not the only problem; I was repeatedly told while in India that hobbies are not in the blood of Indians-a hobby is an expression of a restless, seeking, Western society.
I.A.R.U. and we in our Regional organisation seek the development of Amateur Radio in countries like India. We seek to achieve this partly because we believe in what we do and we wish to share it, also partly because we believe that by contributing in some smal! way to the development of technology in countries like India we are doing something useful in the world around us, and partly for our own protection. It is the last point only that needs explanation.

India, to use it in the present context as an example, has, like us, one vote at International Telecommunications Union Conferences. Why should it vote to support Amateur Radio unless Amateur Radio is contributing something to its national life? The v.h.f. spectrum is a good illustration of the present development of our hobby in that country. In New Delhi I met an Amateur who is able to transmit and receive on 2 metres. There used to be two Americans and an Australian in New Delhi and together they formed a net on Sunday mornings. Now the two Americans and the Australian have left and the local Amateur awaits the appearance of someone else to talk to on 2 metres. Any frequency higher than 148 MHz . may as well not exist-in India you just cannot get the components to even try to make the equipment.

One in a million-that is the problem in India, and the problems of Amateur Radio in India are the problems of India. The two are inexorably intertwined. Is it even realistic to talk of National Amateur Radio Societies and
their international organisations rendering meaningful assistance? I do not believe that the solution lies in giving, for example, complete s.s.b. (and expensive) transceivers. This sort of charity obviously demonstrates that Amateur Radio is in fact a rich man's hobiy. It teaches nothing and achieves little. The long term solution must be through the education system-such as it is. In India, education is not compulsory. This involves persuading those responsible for education that Amateur Radio as part of say, Science in clubs and schools, is a valuable tool for developing the technology of India.

Some individual Amateurs have had and have used their presence in India to assist Amateur Radio. One examp!? is an Australian, Howard Ryder, VK3ZJY. During his stay in India as a technical specialist working with the Colombo Plan, he taught other Amateurs how to build their equipment from locally-available products. He was the Australian who started the 2 metre net I have referred to. I do not know whether he will ever realise the affection that those who he assisted have for him. Repeatedly I was asked to ask him to return, and to tell him that they need him.

Amateur Radio needs more peopie like Howard Ryder in places like India -people who are prepared to work amongst Indians and to know the back streets of Chandnichowk, people who do not spend all their time in foreig: lands at the bar of an intercontinental hotel.

There is room also for tangible assistance in the form of those components which are unavailable to India and which are essential to the production of equipment, such as s.s.b. transmitters.

A small boy who has never been to school and will never go to school, and who begs with head bowed while a taxi waits at a traffic light, will never be a Radio Amateur. But there are others who do attend school, who one day given the right training may become Radio Amateurs. It is these people that we must seek to influence. At the same time we lend encouragement to those who already are Amateurs to make sure that they persist with their hobby despite the difficulties that face them. Let us at the same time start at the top with those people who are capable of being Amateurs, and encourage them to become Amateurs and to encourage others to do likewise. Perhaps in our lifetime we may see in India "one in a quarter of a million".

MODERN MODULATION SYSTEMS

R. F. DANNECKER,* VK4ZFD

The purpose of this article is to acquaint Amateurs with modulation systems using other than sine waves and continuous signals. Pulse amplitude modulation (p.a.m.), pulse width modulation (p.w.m.), pulse position modulation (p.p.m.) and pulse code modulation (p.c.m.) are discussed, and reasons for their importance outlined

In classical modulation systems, e.g. those represented by a.m., s.s.b., f.m., a continuous message signal is transformed into a modulated transmitted signal which is also continuous (see Fig. 1). Modern modulation systems could be called discrete communication systems. in a discrete system the continuous message signal is transformed into a discontinuous modulated signal. The discontinuities can be of two forms, either discontinuities in amplitude or discontinuities in time.

As stated previously, the original signal can be recovered. This is done by passing the sampled signal through a low pass filter which cuts off at frequency f_{0} (see Fig. 5). If the sampling were at or greater than the nyquist rate, the original signal has been recovered exactly. If the sampling were at less than the nyquist rate, the distortion introduced by overlapping of the spectra cannot be removed.

This may seem of academic interest only since p.a.m. would appear to offer
no obvious advantage over classical modulation. In practice, because of the ease with which this form of modulation may be obtained, it is often the first step in a discrete modulation system. Other forms of modulation are obtained by electronic processing of the p.a.m. wave. One such form is shown in Fig. 6(b). In this form, the pulses are of constant height, but their widths are proportional to the signal ampli-

tudes at the sampling times. This form may be obtained from pulse amplitude modulation by passing through an amplitude to time converter. This second form of discontinuous modulated signal is known as pulse width modulation (p.w.m.).

If a p.w.m. wave were differentiated, the form shown in Fig. 6(c) would be obtained. The positive going pulse at the leading edge of each pulse contains no information and so could be removed, leaving the negative going pulses shown inverted in Fig. 6(d). In this form of modulation it is the position of the pulse which ultimately reflects the amplitude of the originating signal. This form is called pulse position modulation (p.p.m.).

FIG.5. EFFECT OF LOW PASS FILTERING ON FIG. 4
A fifth form of discrete modulation which requires more consideration than the previous types is obtained if we take each pulse height in a p.a.m.. wave and convert this amplitude into a binary number representing the height.
[The binary numbering system involves powers of 2 while the common system involves powers of 10, e.g. one hundred and sixty-five in the decimal system would be represented as:

$$
\begin{aligned}
& 1 \times 10^{3}+6 \times 10^{1}+5 \times 10^{11} \\
= & 1 \times 100+6 \times 10+5 \times 1 \\
= & 100+60+5 \\
= & 165
\end{aligned}
$$

in the binary system this would be represented as:
scnt the amplitude of the pulse, then the maximum number of possible different levels which can be distinguished will be $2^{5}(=32)$. Suppose the maximum voltage in the signal is say 3 ? volts; suppose also the amplitude of the actual signal at successive sampling times is as shown. Then the binary number (given in decimal form) closest to each amplitude will also be as show: in Table 1.

In fact the net effect of this finite number of quantisation levels is the same as if noise were added to the original signal. By analogy with this case, the error is referred to as the quantisation noise. Quantisation noise is an additive noise, similar to naturally occurring noise due to atmospherics, etc., in standard communications systems. However, just as the addition ef

$$
\begin{aligned}
& 1 \times 2^{\overline{5}}+0 \times 2^{n}+1 \times 2^{\bar{a}}+0 \times 2^{4}+0 \times 2^{3}+1 \times 2^{3}+0 \times 2^{1}+1 \times 2^{n} \\
& =1 \times 128+0 \times 64+1 \times 32+0 \times 16+0 \times 8+1 \times 4+0 \times 2+1 \times 1
\end{aligned}
$$

The advantage of the binary system from an electrical viewpoint is that a number can be represented as a sequence of ON or OFF states rather than by a sequence of 10 discrete levels as would be required for a decimal representation.]
Thus a pulse of height 13 volts might be represented by the number 01101 and a pulse of height 20 volts by the number 10100. A different form of modulation would then be obtained if instead of sending a single pulse in each nyquist interval, a sequence of say five pulses were to be sent during that time with each pulse being cither a one or a zero, so as to form the binary number representing the original sampled height in that nyquist interval. In this form the sample heights have been encoded into binary numbers and the form is referred to as pulse code modulation (p.c.m.).

It is necessary to limit the number of pulses in the sequence due to practical considerations. If we allow flve pulses in each nyquist interval to repre-
natural noise prevents the exact recovery of a signal, so the addition of quantisation noise also prevents an exact representation of the original message being obtained. Quite obviously the quantisation noise can be reduced by increasing the number of pulses in each sequence. This means that an improved signal will then occupy more bandwidth than previously.

It can be shown that the capacity of a communications system is given by:

$$
C=W \log _{2}(1+S N R)
$$

where $\mathrm{C}=$ capacity of system
$\mathrm{W}=$ bandwidth
SNR $=$ signal-to-noise ratio $=$ signal power
noise power
It is clearly seen that given the value of signal-to-noise ratio and bandwith W , the capacity C of the system is determined. Should this capacity not be suff.cient for some particular purpose (e.g. high speed data), then either the SNR must be increased by increasing the signal power which is transmitted, which may not be possible, or W must be increased. Increase of bandwidth W is sometimes the only means of increasing system capacity (e.g. spacecraft). There are a variety of ways used to increase W. (In classical modulation f.m. occupies more bandwidth than a.m.) In particular, conversion of the signal into any of the pulse modulated forms which we have considered will result in an increase, so that for a given noise level, the fidelity (readability) of systems employing this method is inherently better than would be obtained if the original signal were say amplitude modulated. This is one reason for the increasing modern use of these methods.
In practice the encoding of p.c.m. can be modified in a number of ways.

To properly decode a p.c.m. sequence (word), the receiver must know the position of the start of each word, or it may decode bits from two adjacent words. To overcome this, a few bits are added at the start of each word, which have a fixed waveform and can be easily recognised. These bits comprise the "synch code," and provide word synchronisation. The total number of bits per nyquist interval must then be greater than the number required to give the amplitude of the signal at that time. The complete sequence, synch bits plus information bits, is called a "frame". (See Fig. 7.)

FIG. 7. PULSE CODE MODULATED SIGNAL.
In cases where additive natural noise is present, errors in the received signal will occur, i.e. a 1 may be detected as an 0 or vice versa. This effect can be reduced if to the information and synch bits are added what are known as par-

Nyquist Interval	t 0	t 1	t 2	t 3	t 4	t 5	t 6	$\mathrm{t7}$
Actual Amplitude	20.0	19.1	16.5	12.8	3.2	7.7	14.9	6.4
Sample Amplitude	20	19	17	13	3	8	15	6
Error	0	-0.1	+0.5	+0.2	-0.2	+0.3	+0.1	-0.4

Table 1.
ity check bits. These check bits are calculated on the information bits, e.g. parity check bits are set at 0 if the checked information bits contain an even number of ones and are set to 1 if the information bits have an odd number of ones. If information bits are then altered during transmission, the even-odd correspondence with parity check digits will be altered. This should be detectable by comparing parity checks with information bits, and the bits in error can be corrected A code containing parity check bits in this way is an "error correcting code".

A further advantage arises in the use of a binary coding system in that the receiver has only to decide if an incoming signal is a 1 or a 0 rather than some particular level out of a large number of possible levels. The detector can be a simple level detector to give zero output if the incoming signal is below a certain level corresponding to a 0 and
to give an output if the incoming signal is above this level corresponding to a 1. Obviously such a system can be made very accurate even for low SNR and the process can be improved further by the use of optimum or Wiener filtering in the system.

In conclusion it should be pointed out that a practical p.c.m. system is quite complex and, at least for the present, is beyond the financial reach of most Amateurs. Much research is being carried out into p.c.m. and in the future its use will become increasingly widespread.

I should like to acknowledge the valuable assistance given in the preparation of this article by Dr. L. V. Skatterbol of the Department of Electrical Engineering, University of Queensland.

REFBRENCBS

Lath1, B. P.: "Communication Systems," Wiley, McMullen., C. W.: "Communication Theory Principles." Macmillan, N.Y.. 1988.
Harman. W. W.: "Principles of the Statistical Theory of Communication." McGrane Hill,
N.Y. 1863.

PROVISIONAL SUNSPOT NUMBERS

JULY 1070

Dependent on obscrvations at Zurich Observatory and its stations in Locarno and Arosa

Day			R	Day			R
			137	16	81
2	153	17	.-	58
3	155	18	56
4	.--	159	18	\cdots	...	82
5	165	20	82
6	161	21	120
7	125	22	..-	122
8	115	23	106
8	104	24	.-.	110
10	80	25	.-.	122
11	81	28	138
12	74	27	153
13	78	28	\cdots	146
14	68	29	153
15	61	30	:...	122
				31		108

Mean equals 112.5
Smoothed Mean for January 1870: 106.2 Predictions of the Smoothed Monthly

| August | 85 | November 89 |
| :--- | :--- | :--- | :--- |
| September | 93 | December 87 |
| October | 91 | January 85 |

-Swiss Federal Observatory, Zurich.

[^62]
PREDICTION CHARTS FOR NOVEMBER 1970

(Prediction Charta by courtesy of Ionospherlc Prediction Service)

LONDON S.R.
Esti00 on of of on 04

RIO DE JANEIRO

CAIRO

IONDON LR

SAN FRANCISCO

JOHANNESBURG

MONTREAL S.R

TOKYO

NAIROBI

MONTREAL LR

WILKES

THE REPAIR BENCH:*

 Doing Your Own Transistor Tests

 Doing Your Own Transistor Tests}
LARRY ALLEN

To hear some guys tell it, a transistor is the easiest thing in the world to test. But others don't agree. A transistor to them is still a mystery.

Well, the truth is, most transistors can be tested without complicated equipment, gimmicks, calculations, or formulae. To keep it simple, there are just two basic things you need to find out about a transistor: (1) Does it work at all? (2) How well?

TRANSISTOR PARAMETERS

That word "parameters" scares off a lot of Hams. It conjures up complicated graphs with bent lines and long formulae with Greek symbols and big and little letters. All the word actually refers to is conditions of operation.

One transistor manual lists 103 possible parameters. They're great for a transistor designer. But a lot fewer is plenty for testing on the repair bench. In fact, I won't even use the term "parameters". Instead, I'll just tell you about the voltages, currents and resistances that tell you how a transistor is doing.

I'll start with the diagram of a simpie transistor stage in Fig. 1. This is a grounded-emitter amplifier - probably the most common transistor stage in use today.

The transistor is NPN. Bias is forward when the basc is slightly positive with respect to emitter. The collector is "far" positive with respect to emitter.

A PNP transistor takes negative voltage on the base to forward bias the emitter-base junction. That's not necessarily a negative voltage to ground, but to emitter. The collector of a PNP operates "far" negative from the emitter.

WHICH WAY IS UP?

Some Hams I've talked to about transistors seem confused by operating voltages. One key to understanding is knowing how to describe the voltages.

For example, in Fig. 1 if the base voltage changes to 0.1 volt, it has obviously become less positive. That means less positive with respect to wherever you're measuring from, and for most measurements that is ground.

Look at the same voltage with respect to the emitter. As it's labelled on the diagram, the base is normally more

Fig. 1.-Common base transistor amplifier is popular in Amateur equipment.
-Reprinted from "Ham Ridio," July 1970.
positive than the emitter by about 0.3 volt. (The emitter is 0.15 volt, and the base is 0.45 volt; between the two is 0.3 volt, the base more positive than the emitter.)

Know what that means? "More negative" is exactly the same thing as "less positive". And "more positive" means the same as "less negative".

If the base voltage in Fig. 1 drops to 0.1 volt, the voltage relationship between base and emitter changes. The difierence is then 0.05 volt (0.15 minus 0.1 equals 0.05), but the base has become less positive than the emitter. That's the same as saying it is more negative than the emitter. The emitterto base bias has become 0.05 volt negative. (Call it emitter-base bias, not base-emitter bias. You want the emitter as the point of reference, so name it first.) An NPN transistor with the base negative is reverse-biased. Collector current can't flow.

This should make clear that, even ihough you measure voltages with your voltmeter common lead connected to ground, the important thing is the voltage between elements of the transistor. In most transistor stages, your chief interest is the voltage between emitter and base; of secondary interest is the voltage between emitter and collector.

Fig. 2--Changing polarity of power supply doesn't alter circuit arrangement or operation.

Suppose someone tells you the base voltage on one of these transistors has "gone up". What does that really mean? Usually he means the voltage is higher in the polarity shown on the schematic.

Consider the base voltage in Fig. 2. It appears "lower" than the emitter voltage. Its value is less. Measured to ground, the base voltage is less negative than the emitter voltage. The important thing is this: being less negative, ti:e base is more positive than the emitter. That provides forward bias for any NPN transistor.

If the base voltage goes up-that is, if it goes further negative with respect to ground, as the voltmeter measuresthe bias actually decreases. Say the meter measures - 9.4 volts. The base has become mor negative than it was. Looking from the standpoint of emitterbase bias, it tells you more if you say bias has become less positive. Forward bias is therefore reduced. Your voltmeter thus shows base voltage higher than before, but bias is less.

These are important relationships in transistor repair work. The simplest way to combat this seeming ambiguity is to quit using such vague notions as "up" and "down" for voltage measurements. Form the habit of thinking more negative or less negative, more positive or less positive.

TESTS THAT REVEAL

At the repair bench you are usually concerned with a transistor in some piece of equipment. Tests you can make without unsoldering the transistor are the handiest.

There are three ways to evaluate a transistor in that circumstance. Two additional tests can be made if you unsoldered one or two transistor connections.

Finally, two quick test procedures evaluate a transistor outside the circuit. They are especially handy if you have a batch of unidentified transistors you want to check out. Even these tests can tell you more about transistor quality than you might expect.

VOLTAGE MEASUREMENTS

Once you examine d.c. flow in transistor stages, you can figure out a lot from the voltages. If a voltage is wrong, deduction can tell you whether it's the transistor or something external.

Pretend the stage in Fig. 3 is giving you trouble. Your voltmeter tells you the base actually has -5 volts on it instead of the low -0.45 volt that's normal. Think out the possible causes.

Could be one of the base resistors is bad. But collector-base leakage in the transistor is far more likely. You can verify by disconnecting the base lead of the transistor. If voltage on the open base lead is still highly negative. the transistor junction is leaky.

Or, in the same stage, suppose the emitter measures - 0.9 volt. For some reason, more current than normal is flowing in the 52 -ohm resistor the emitter voltage is measured across. The transistor is probably drawing too much current.

But is that due to overbias or a transistor defect? If base voltage has remained about the same, the trouble is likely in the transistor. You see, -0.9 volt at the emitter, with only - 0.4 .5 volt at the base, constitutes reverse emitter-base bias for this PNP tran-

Fig. 3.-PNP iransistor in this basic amplifier works the same as NPN: only change Involves voltage polarities on the varlous elements
sistor. That would reduce current through the transistor, not increase it -unless the transistor happens to be defective. this kind of reasoning. Just remember which polarity of transistor you're dealing with and the likely effects of voltage changes. And don't forget to interpret voltage measurements in terms of their relation to each other and to the transistor itself.

The other two in-stage test ideas utilise a transistor's bias characteristic. For most transistors, zero and reverse bias cause zero collector current. A healthy forward bias assures significant collector current. These precepts of course apply only if the transistor is not defective. transistor operates with forward bias. You can determine that from the schematic. Remember, forward bias is basepositive for an NPN transistor and basenegative for a PNP.

Connect your voltmeter at one of the points shown in Fig. 4. Several possible connections are illustrated. If you need it, you can insert the 100 -ohm resistor;

(A)

Fig. 4.-Voltmeter connections in several amplifier stages for making bias-change operation tasts. Idea is to aliminate blas on stages that normally use forward blas and add it to those that don't. while watching the change in collector current. You can add a resistor if the collector circult doesn't have one.
its value won't bother the circuit much. Indirectly you are measuring collector current.

Notice the voltmeter reading. Then clip a shorting jumper between base and emitter. The voltmeter reading should drop to almost nothing. If it doesn't, the base isn't controlling collector current.

The second test is for stages where zero or reverse bias is normal. (The transistor may conduct, but probably during only a small portion of each signal cycle, leaving an average or d.c. bias that is zero or reverse.) The voltmeter connections are the same as in Fig. 4.

This time, instead of eliminating bias by shorting base to emitter, you apply a definite forward bias to base. Figure out from the schematic what would constitute forward bias for the transistor. Then somehow alter the bias to make it temporarily forward. The meter reading should take a definite move upward, signifying more collector current.

There are plenty of other examples of

The first test is for stages in which the

For instance, the NPN transistor in Fig. 4A has forward bias only when the base is more positive than the emitter. How do you make it more positive? One way is to reduce the value of the supply resistor, since it goes to a positive voltage source. Just bridge it with a low-enough resistance to make the base more positive than the emitter. If the transistor is working normally, the voltmeter shows more collector current.

In Fig. 4B the basic supply scheme is different. But the transistor is still NPN. Forward bias requires base to be more positive than emitter, same as always. But how can you make it that way? Just remember that more positive is the same as less negative. Bridge a lower resistance from base to ground, low enough to reduce the base voltage to a value less than at the emitter. Collector current goes up. If not, the transistor isn't responding as it should.

The transistor in Fig. 4C is PNP. Forward bias demands a base more negative (less positive) than the emitter. It should by now be easy for you to figure how to make this base less positive. When you do, the voltmeter should register higher collector current.

3

DETECTING ABNORMAL LEAKAGE

Those tests let you know a transistor can control its collector current. That's the key factor. But there's another factor that can keep a transistor stage from performing up to par. You need a way to check leakage.

Basically, it's easy. Your voltmeter and soldering gun are the only equipment you need.

The leakage that can most upset stage operation is from collector to base. The collector junction of an operating transistor has a high reverse bias. it that junction lets "carriers" through in the wrong direction, transistor gain is poor.

To measure collector-base leakage, disconnect only the base lead of the transistor. Clip the voltmeter common lead to the emitter. Set the voltmeter as if you were measuring collector voltage. Touch the other test lead to the free end of the base lead. Voltage
there should be almost non-existent. Unwanted leakage lets current across the junction to the meter.

TESTING OUT-OF-CIRCUIT

If you have a transistor tester, fine. With a good one you can test transistors in or out of the stage faster than with the tests I've outlined here. But if you don't have one, you may often need these procedures.

Tests outside the stage are popular with Hams. The basic instrument is your ohmmeter. There are two main purposes. One is identification. The other is evaluation.

Hams often pick up transistor "bargains". You met a handful of odd-lot transistors, often unmarked or marked in some way that means nothing to you. You may not even know which wires go to emitter, base, or collector. Here's how to settle these doubts.

An ohmmeter with 1.5 volts or less between the test leads is safest (measure with some other voltmeter). More voltage might pop a transistor junction. Also, notice which test lead has the positive voltage and which the negative; you'll need to know for these tests. Nowadays, it seems most ohmmeter batteries are connected with positive voltage on the common or black test lead.
Pick any two transistor wires. Clip the ohmmeter to them in first one direction and then the other. If you get no reading, try another pair, again measuring in both directions.

When you get a low ohms reading (150 or less), one of the ohmmeter leads is clipped to the base wire. The way most transistors are arranged, it is the wire in the middle.

But you can make sure. Leave one ohmmeter lead clipped to the wire you think goes to the base. Move the other lead to the remaining transistor wire. If the ohmmeter reading is again low, the lead you didn't move is definitely clipped to the base. If not, the one you moved was.

You can now identify the transistor type. When you get low readings to both other elements with the positive ohmmeter lead connected to the base, you are testing an NPN transistor. A PNP transistor gives low readings when the negative ohmmeter lead is clipped to the base.

You've identified the base, but you don't know which of the other two wires goes to the collector. There were clues in years past, but you can't trust the dots, stripes, and tabs on today's myriad of transistors. And basing diagrams aren't standard enough to help much either.

Start with the ohmmeter connected to show low resistance between the base and either of the other elements. You know which wire is base, so unclip that lead and move it to the other unidentified wire. The meter should read infinity, or open. If not, the transistor is defective.
Then click the range switch of your ohmmeter to higher scales until you see a slight downward meter deflection (something less than infinity). This usually happens on the RxioK or Rxi00K range. Next, reverse the two ohmmeter leads. The ohms reading will continued on page 161

An Outside Broadcast Amplifier

LECTURE NO. 9

C. A. CULLINAN,* VK3AXU

The original 3CS O.B. Amplifier No. 4 was manufactured in 1960 and after considerable work it could no longer meet the Australian Control Board's standards.

It was decided, therefore, that as part of our training programme that this amplifier would be dismantled and a new one built to take its place, the work to be done by our Cadet and to correspond with the appropriate part of the Marconi School course. The new amplifier would use as many components as possible from the old amplifier but would be different in mechanical construction and somewhat different in circuitry to avoid making a direct copy, as it was felt that little was to be gained in tuition in making a copy.

DESIGN AND NOTES

A single channel Outside Broadcast Amplifier to be built using valves and operated from the a.c. mains.

The amplifier must meet the Australian Broadcasting Control Board standards, and, where applicable, Australian Post Office specifications.

The only suitable output transformer, which was available, was an A. \& R. type OT2629 for which a manufacturer's test certificate was held (22/4/69), in respect of A.P.O. Specifications 1053 and 1054.

Details of this transformer are:
Primary Impedance: 7,000 or 5,000 ohms, single ended.
Secondary Impedance: 500, 250 or 125 ohms.
Power Rating: 5 watts.
Frequency Response: 50 Hz . to 30 $\mathrm{KHz} . \pm 2 \mathrm{~dB}$.

Output Valve

The output transformer is suitable for use with any valve requiring a plate load of 5,000 or 7,000 ohms, and taking a plate current of 50 mA . Thus the choice falls mainly between types EL84; 6BQ5, 6M5, 6GW8 or 6V6GT. As a large number of EL84s are used in studio equipment, this type was chosen as the output valve, with 160 ohm cathode bias resistor. A simple resistor of this value was not available so some calculations were made to determine which of two 3 watt w.w. resistors on hand would give the necessary value when used in parallel. The two resistors selected were 250 ohms and 450 ohms, which in parallel become 160.7 ohms.

Other Valves

In order to mect the specified noise figures it is essential that the other valves must be of very low noise type and for this reason EF86 valves were selected. This type was first available in Australia somewhere in late 1954 to 1955 . It is also known as $6 \mathrm{BK} 8 / \mathrm{Z} 729$, and was specifically designed for use in low level microphone or pick-up pre-amplifiers. It uses a 9 -pin minia-

[^63]- Continuing the series of lectures by C. A. Cullinan, VK3AXU, at Broadcast Station 3CS for students studying for a P.M.G. Radio Operator's Certificate.
ture base, has internal shields and a specially constructed heater-cathode system.

It is possible with proper design of equipment to reduce hum and noise voltages, referred to the control grid, to the order of $1.5 \mu \mathrm{~V}$. for hum and $2 \mu \mathrm{~V}$. for valve noise for an audio frequency bandwidth of 15 KHz .

In recent years an improved EF86 has made its appearance. For this valve, the previous mesh type anode (plate) has been replaced with a solid one. This gives additional shielding and reduces pick-up of external magnetic fields (hum) by as much as 6 dB .

It would appear that the EF86 is a later development of the valve type EF40.

For many years the designer has used EF86 valves as pentode audio frequency amplifiers with a plate load of 0.22 megohm, a screen resistor of 1 megohm, and a cathode resistor between 2,200 ohms and 3,000 ohms. With a cathode current not in excess of 1 mA . and cathode bias not less than 1.6 volts, excellent gain, low distortion and low noise have been achieved for a bandwidth of 15 KHz .

If they are available, the student is referred to the following publications for further details of the EF86/6BK8/ Z729 valve:

Radiotronics, Vol. 20, No. 6, June 1955.

Radiotronics, Vol. 22, No. 5, May 1957.

Mullard Circuits for Audio Amplifiers.
Philips Valve Data Handbook.
Calculations showed that with a microphone transformer having a turns ratio of $1: 44.7$ and a 6 dB . attenuator between the output transformer secondary and the amplifier output terminals, the specified gain of 80 dB . could be obtained by using two resistance coupled EF86 valves and an EL84 output valve, whilst applying considerable feedback over the last two stages.

Thus the amplifier portion of the design resolves itself into a three-stage amplifier, using EF86s in the first two stages with an EL84 in the output stage. Negative feedback to be used from the plate of the output valve to the cathode of the second valve.

Because the specifications state that the output of the amplifier is to be balanced and floating, it is not possible to use negative feedback from the secondary of the transformer. Also, the particular output transformer does not have a tertiary winding for feedback
purposes, therefore the feedback was taken from the plate (anode) of the output valve.

The input transformer is of the specially shielded type made for low level applications. The heavy shielding reduces hum pick-up as much as 40 dB . below that picked up by a similar, but unshielded transformer.

The gain control is located, electrically, between the first and second stages.

POWER SUPPLY

The specifications stipulate that silicon diodes are to be used as rectifiers in the power supply.
S.T.C. EM410 silicon diodes were used as they were in our stock of spare parts. These diodes have the following characteristics as abstracted from an S.T.C. I.T.T. Application Note:

Peak inverse voltage (p.i.v.), 1,000 volts.
Average rectified current at $85^{\circ} \mathrm{C}$., 0.5 amp .

Operating and storage temperature range, $-55^{\circ} \mathrm{C}$. to $+135^{\circ} \mathrm{C}$.
Voltage drop approx., 1.2 volts.
Consideration was given to the use of an Ironcore T5/102 power transformer which was available and was suitable. The following information was extracted from the maker's data sheet:
H.t. secondary voltage, 225-0-225. i.e. 225 volts each side of the centre tap.
H.t. secondary current, 50 mA .

Heaters, 6.3 volts at 2 amp .
An astatic shield is fitted between primary and secondaries to reduce capacitive coupling between these windings. In addition, it has an external eddy-current shield.

As the h.t. secondary has a centre tap, this means that a full wave rectifier circuit must be used.
Having selected the power transformer and the type of silicon diodes, it becomes necessary to determine how many diodes will be needed.
The term peak inverse voltage means the peak voltage that the rectifier can withstand in the reverse direction before it breaks down. This voltage includes both a.c. voltage and the d.c. output voltage.

Other terms used in place of peak inverse voltage are crest working reverse voltage (v.r.w.m.) and peak reverse voltage (p.r.v.). They all mean the same thing.

Now one of the characteristics of silicon diodes is that they are very liable to break down the moment the p.i.v. is exceeded. Some will be destroyed instantly, but others will recover if the excess is not too great.

Again from S.T.C.-I.T.T. Application Note, we take the information to enable us to determine the various voltages to be expected.

> P.i.v. $=3.14 \times$ volts out.
> V.r.m.s. $=1.11 \times$ volts out.
> Volts out $=$ volts r.m.s. $\div 1.11$.

Volts r.m.s. is the r.m.s. voltage from the h.t. centre tap to either high voltage end of the h.t. secondary winding.

Now let us do some calculations.
The a.c. r.m.s. voltage across one half of the h.t. secondary is 225 volts. Therefore the d.c. output voltage will be:

$$
225 \div 1.11=202.7 \text { volts }
$$

and the p.i.v. will be:

202.7×3.14

However, this is for a choke input filter, but when a large condenser is connected across the output of the filter and the power supply is switched on, the output voltage will be much higher until the filter input condenser becomes fully charged and the valves have warmed up.
At the instant of "switch on" there is practically no load on the power supply so the output voltage of the rectifer system soars considerably.

In this amplifier the measured d.c. output from the rectifier at "switch on" was 340 volts.

For safety, it is necessary to take this new voltage as the d.c. output voltage (when the amplifier is warmed up this voltage will drop to 250 v .).

Therefore the p.i.v. will be:

$$
340 \times 3.14
$$

$=1,067.6$ volts.
To allow for variations in a.c. mains voltages, also switching transients that may show up in the a.c. mains, it is desirable to add at least 25% to this value, i.e. $1,067.6+266.9=1,334.5$ volts.

The simplest way to accommodate this voltage is to put two diodes in series in each leg of the transformer. We selected EM410 diodes as they are rated at 1,000 pi.v.

When a large condenser is used at the input of the power supply filter it is necessary to protect the diodes from burning out due to excess current through them as the rectifiers start to charge the condenser.

To avoid this problem, it is necessary to use a transformer having sufficient impedance to restrict this current flow or to put resistance in series with each h.t. leg of the transformer.

In this design, the $80 \mu \mathrm{~F}$. condenser is not excessively large and the impedance of the power transformer keeps the current within the limits of the diodes.

One problem of putting diodes in series is that sometimes they will not share the voltage between them, therefore a 1 megohm 1 watt resistor is wired across each diode.

PRACTICAL NOTES

The lead from the microphone transformer to the grid of the first EF86 was made as short as possible and shielded with braid fitted loosely to reduce the capacity between the lead and the braid.

A piece of ${ }^{\prime \prime}$ "o.d. co-axial cable was used as the lead between the $0.022 \mu \mathrm{~F}$. coupling condenser and the top of the gain control, which was about $4^{\prime \prime}$ above the top of the chassis. The braid was earthed as close to the $0.022 \mu \mathrm{~F}$. con-
denser as practicable. The other end of the braid was connected to the "earthy" end of the gain control. The gain control was not earthed in any other manner.

The lead from the arm of the volume control to the grid of the second valve was also a piece of co-axial cable, with its braid earthed as close to the grid as possible. At its other end the braid was insulated so that it could not touch anything.

All these precautions were taken to reduce, as far as possible, frequency loss at the higher frequencies.
As part of tuition, the co-axial cable was replaced with tightly woven shielded wire. The frequency response at 10 KHz . immediately dropped to 5 dB . below that of 1 KHz .

Heater leads: The heater leads between the EF86s and the EL84 were twisted and shielded, also care was taken in the layout so that no heater lead passed near a grid pin in a valve socket.
Headphone Jack: This was insulated from the chassis to maintain a floating output as specified. Two 560 ohm resistors prevent a short circuit across the amplifier output should the headphones plug not be properly inserted.

Layout: An aluminium chassis was used to reduce hum transfer from the power transformer to the input transformer, as could happen with a steel chassis.
The power transformer was mounted in a rear corner of the chassis. The location of the output transformer was determined as follows:

After carefully insulating leads, a.c. power was fed to the power transformer to energise it.

Then a 7,000 ohm resistor was wired to the 7,000 primary of the output transformer and the 500 ohms secondary was connected to the A.W.A. Noise and Distortion Meter.

The 50 Hz . (hum) pick-up from the power transformer was measured with the N. \& D. meter, after which the transformer was moved over the surface of the chassis to locate the position of minimum hum.

The location of the microphone input transformer was determined in a similar manner, using the high impedance input to the N . \& D. meter connected to the transformer secondary, the primary being terminated with a 47 ohms 1 watt resistor.

Locating the transformers in this manner proved to be most successful as no hum can be detected in the completed amplifier.

The amplifier was fitted into a metal case, with carrying handles.
It is a matter of great satisfaction that the completed amplifier meets all the designed specifications and is a welcome addition to the station's O.B. equipment.

\leftrightarrow

SOLDERING IRONS

A range of corrosion resistive soldering irons in a variety of bit sizes and wattages for radio work is now available. Manufactured by Birko Electric Pty. Ltd., these soldering tools have a stainless steel casing, and are fitted with a no-heat transfer moulded handle. Power ratings for the 230 v . a.c. types ranges from 40 watts to 80 watts in the radio work purpose models, and 130 watts to 200 watts for the general and workshop heavy duty models. An instant heat model, with a finger touch heat control, operates from 3 to 6 volts d.c. or a.c. (through step-down transformer) will be found ideal for Amateur work.

A technical brochure is available on all models from Birko Electric Pty. Ltd. 26 Victoria Crescent, Abbotsford, Vic., or from electrical and radio wholesalers.
K.W. ELECTRONICS KW ATLANA TRANSCEVER

$\star 500$ WATTS P.E.P. INPUT

* CALIBRATED "S" METER \star GRID BLOCK KEYING
* AUTOMATIC LINEARITY CONTROL
* UPPER AND LOWER SIDEBAND SELECTION BY PANEL SWITCH
\star STEEP SLOPE CRYSTAL FILTER, 5.2 MHz .
\star MATCHING A.C. POWER SUPPLY UNIT WITH BUILT-IN SPEAKER
\star FULL COVERAGE ALL BANDS, 3.5 to 30 MHz . \star SSB, AM, CW
Write for Technical Leaflet

sole nematace amem: SIDEBAND RADIO
73 COLE STREET, ELWOOD, VIC., 3184
Phone 96-1877

ANTENNA FARMING

A. J. C. THOMPSON,* VK4AT

A 10 element lang type Yagi on 7 MHz.-a.m. at s.s.b. strength.

The reaction to the above circumstances have followed a fairly set pattern. Some were expected, some should have been expected, some were quite unexpected. From the reports received, the following are fairly representative:
(1) The fact that it is a.m.
(2) The unexpected strength.
(3) The good quality of the transmission (where the gear was capable of judging it).
(4) The way it bashed down the QRM.
(5) Its good effect on QSB.
(6) Its effect on the background noise level.

In addition to the above, the most interest was taken in:
(1) The number of elements used on 7 MHz . (10 or 13).
(2) The low height (20 feet poles).
(3) The use of steel wire.
(4) The valley QTH.
(5) Why such a scheme was attempted.
I will try and get things straight right here. This article cuts no new ground scientifically. It does deal with some theories, but only the practical application of them, that would not be found in text books or come to the notice of Radio Amateurs under normal circumstances. I am not an expert on any subject because I write about them, or because I can make such a row in the Southern States on 7 MHz . at night time. All these things came about because my QTH is in a very short valley completely surrounded by hills. 120 foot towers fail to bring in the t.v. channels from Brisbane, 100 miles distant. 7 MHz . is equally unco-operative, but 3.5 and 14 MHz . (also some other bands) appear to be much better.

It is evident then that sheer necessity is the driving force behind the construction of this antenna farm. Being an antenna farm, ease of construction is a must. Such construction means light-weight gear just as it does in industry. It also means low costs. Probable gain must be in proportion to both the work involved and the costs. This is a ratio-work and costs against gain. It sets the pattern at all times. An application of this ratio to the long type of Yagi will dampen a lot of enthusiasm. It means much work-low costsmuch gain and in addition an area or boom length in proportion (half an acre for 7 MHz . [0.9 acre for 13 elements], quarter of that for 14 , etc.). Interested persons will now only be:
(1) Those with adequate areas,
(2) Scouts Clubs, etc., with more enthusiasm than cash,
(3) V.h.f. where boom lengths cause no dismay.
Such a beam was constructed on Channel 4, necessity being the driving force on that occasion also. For the
benefit of those with little interest in Yagis, a little explanation is necessary. Maximum gain necessitates very critical tuning of the beam. This in turn means the use of gear beyond our reach. The same results can be obtained from book-values (with much less critical dimensions) by the use of more elements. For example, I spent months tuning up a 5 element Yagi and then found that I had the same spacing as those given in a text book.
For a practical explanation on the use of Yagis, I will take the position right here. Such a beam with 5 elements was already working quite well on 7 MHz . and I desired more gain. More elements meant two posts and two poles for each additional element. If I added an clement at 0.1 wavelength spacing, the gain was small and in addition it could easily upset the impedance, and so be less. In the alternative method, that of re-constructing the whole antenna at 0.35 wavelength spacing, the work-cost-gain ratio was also unfavourable. Either the gain had to increase or the work decrease. Such an unlikely event actually did occur with the published reports of this combined type of Yagi. In it (now called the Long Type Yagi) the high gain of the original Yagi was retained in the front end of five elements and, without upsetting the impedance values, the additional elements at 0.4 wavelength spacing were added. Two things made this possible:
(1) It was ascertained that it was not the number of directors used that gave the gain, but the boom length that they occupied, provided that the ratio space-lengthdiameter of el. was adhered to.
(2) At that distance and spacing, the additional elements did not upset the impedance of the driven element.

These circumstances made the ratio work-cost-gain very attractive. Construction on both 7 MHz . and Channel 4 were commenced. An additional characteristic was the fact that the back-tofront ratio increased with closer spaced elements, but wider spaced elements of this magnitude gave good signal side rejection. This latter characteristic looked good as an image rejector on Channel 4. Our very local t.v. translator put beautiful images on our sets corresponding to a mountain rock face plus five timbered high spots on the ridge opposite. With the aid of an iron rcof, suitably positioned, and this type of Yagi very good pictures resulted.
The antenna took only a couple of hours to construct. It was made from the plastic covered type of conduit (10 cents a foot) with No. 10 fencing wire inserted and soldered. This gave a very firm connection, and the elements could be bent at any angle. Joins of the conduit are easy with a 6 in . saw cut and a starter of another inch. This shows that quick, easily constructed beams for v.h.f. are possible for casual experi-
ments. Conduit is available in various lengths and diameters. The sag involved on the longer lengths are easily braced.
Now to return to the set-up here on 7 MHz . Steel wire of 14 or 16 gauge was used of the type used on fruit cases. The weight and strength was far beyond what was necessary, but it was available on this farm. Fence posts and poles were also available, but were also much heavier than was necessary. The insulators used were very light and efficient, being $\frac{1}{2}$ to 1 inch cut off 1 inch diameter water pipe of the polystyrene type. Higher grades may be better, but some are weather affected. Much relevant material will be found in a previous article ("A.R.," March 1970). Because of the scaling factor, experiments can be changed from one band to another, although "doubling up" too much runs foul of the fact that you are not scaling up the surroundings too.
In the previous article it was shown that on 14 MHz . the forward gain dropped sharply when the antenna was lowered from quarter to eighth wavelength height. This deduction was based on the fact that W land, on which it was aimed, decreased in strength, while the JAs came up. A perusal of many text books gave little information on this problem. Most of them stop at halr, but a few go to quarter wavelength height. By continuing a graph, it was assumed that the difference in the angle of radiation would be in the vicinity of $8-10^{\circ}$ for one-eighth and one-quarter wavelength heights. Against this assumption was the extraordinary behaviour of antennas at:
(1) Ground level,
(2) A few inches underground,
(3) Inside metal pipes, both open and closed,
(4) Wire in water.

If you want a headache just read about those things. One significant fact emerged. At zero height, much gain was lost, but the signal-to-noise ratio was more favourable. If then, the gain lost by reducing the wavelength height down to one-eighth could be recovered by adding more elements, then the signal would come up more than the QRM On such a band as 7 MHz ., this matte: is of major importance.

From my own experience, further experiments seemed to be futile, but a 5 element Yagi at one-eighth wavelength height on 7 MHz . had actually shown some gain. It was decided to change the experiments from 14 to ? MHz . and accept the loss due to the lower height, because the use of 20 ft . poles made the scheme a practical proposition. As previously mentioned, the adverse ratio work-cost-gain at oneeighth wavelength height prevented further advance. When the new type Yagi was investigated it was decided to put the extra five elements on in one big heap.

A glance at the sketches show that Fig. 1 Section A is just a typical type of 5 el. Yagi except that the reflector
spacing is 0.24 instead of 0.25 . That spacing was evolved using a double wire, spaced 6 inches, for the reflector. (Changing it to a single wire landed me in strife.) Section B of Fig. 1 represents the changed Yagi via the new type spacing of 0.4 wavelength, the joining director being at spacing 0.2 wavelength, but 0.4 for this also is in order.

Fig. 2 shows how the nearest two directors and the reflector were changed over to give a 4 element beam of enough gain for skeds in VK9 land (north). This 7 MHz . beam is on a compass bearing of S from a position approx. 70 nautical miles NW from Brisbane.
leaves many gaps that can be better probed by a practical organisation such as ours, but there is little encouragement for our new members when all awards go for DX, and quality is down in the doldrums. If we lift the quality of our transmission, then Amateur Radio will get a push-up instead of its customary push-down.

On 7 MHz . quality is useless unless it rides free of the QRM. It is here that beams become important because (1) of their effect on the signal-to-noise ratio, (2) their ability to restore the strength after other methods that were used to improve that ratio had reduced

Of interest at this point is that the two-wire reflector represented quite a different effect on the impedance of the driven element than a single wire, or of that wire plus 12 inches. The factors concerned are that a folded dipole, if altered to the shape of a quad, could not have a director or reflector of a single wire. In this case, I had added three more elements to the 10 mentioned, but the gain was well down until I reverted to the original double wire reflector of 5% longer than the threewire dipole.

From the above it is clear that the first five elements of the Yagi must be in order before the other elements are added. At this QTH the gain of the second group was far beyond that of the first group, but as explained previously, the QTH position absorbed the initial gain. The results were astonishing, especially at the other end where friends had spent years straining their ears in my direction. If I had any sense at all I would be sitting back enjoying the performance of this big beam. Instead of that, I exhibit my ignorance and show others how to equal in four days the results that took me four years to obtain.

As this article is aimed at helping (1) the bottom half, (2) the young, and (3) the inexperienced groups, much detail in construction work is necessary. It is hoped that the many problems mentioned will create a desire to solve them. It is quite clear that initially neither much money or knowledge is necessary for experimental work. For a genuine experimenter, assistance and sound technical advice is available at all times just by crying into the mike. Antenna design, progressing mathematically,
the signal strength, and (3) the beam effect being added to the receiving improvement. If we get right down to basic requirements then we must realise that the fellow at the other end is the judge, hence we should:
(1) Put out a good quality signal,
(2) Put that signal well above the QRM,
(3) Use a beam on our receiver to lift his signals up.
Although 10 elements are the basis for this article, another three were added later and an AX0 was worked on phone at R5 S6 almost immediately. At this stage, it is again emphasised that only ease of construction will make this antenna popular on 7 and 14 MHz . It is necessary to fully understand where the strain on the gear will be felt. Take a look at Fig. 3. A pole fastened to a post is similar to a long lever at B wî̀h the fulcrum at ground level, A, and moving the bottom of the post at C. Therefore ram the bottom well, also the top. Stones are useful. If using steel posts for a more permanent fixture, a wider board driven in on the inside gives a better support, but cement on the top of the ground is the best. Steel posts cost about 90 cents, 3×2 inch hardwood from demolished jobs is cheap and sound. These can be driven in with an axe, but in hard ground drive a crow-bar in first.

For experimental purposes, queer things have been tried. T. \& G. 4 -inch floor boards bolted together for the 20 ft . required have been in use for six months. Steel posts have given satisfactory service. The old type conduit is good and light. For the fixed portable -sections similar to tent poles can be joined, using either conduit or poly-
styrene piping for the joins and bamboo for the top section. If home-brew type is desired, suitable boards can be sawed by nailing to an upright 3×2 with the required edge protruding and the saw guided by the upright. Thin poles will have to have support from nylon string. Bricklayers' twisted nylon string has been used here for use on the elements. Small metal rings can act as pulleys for erecting the element wires and also for bracing the light poles.

With the pulley at its correct height, the minimum length of nylon string for raising the elements is such that you can reach both ends. Aligning the elements is tricky but it is quite easy if you use a plumb-bob (a big nut on some cotton). With the posts in position, work from the centres. Mark the centres of the elements with dark tape. Fasten to the centre peg and complete the element wiring for that approx. length to the end poles With the centre pegs all in line raise the elements themselves. (It is advisable to join the centres of the dipole and three directors together at the right distance with nylon string.) By holding the plumb-bob up at arms length all elements can be aligned with respect to their pegs. Another method that I use is to hang a white cord from the reflector centre then from the centre peg of the furthest element align that reflector cord with a mark on the opposite hill, then advance toward it, aligning each element. Small changes are easily made on fixed elements by ramming the posts on one side.

For the "portables" some experimenting has been done. These particular measurements are only approximate. They were taken without a tape by lowering the end. The dowel used was holding up the tenth element of a Yagi beam on 7 MHz . The wire in use was 16 gauge steel, the length being 70 ft . plus about 5 ft . folded back and with two light insulators. Only the slightest of bends was observed in the 18 ft . of $5 / 8$ inch dowel (two sections of 9 ft .). The type used was the kind popular for window curtains. 50 ft . of nylon string was also required. If you look at Fig. 4, it will show you how to get that dowel

EIG. 3. POLE BASE,
up without it making figure eights Fasten the nylon string to the top of the dowel and the wire of the element. It needs 24 ft . on each side to go to the pegs. With the dowel lying along the dotted line, follow it until the string to peg B and the element come tight. At this stage the top of the dowel will rise until the pull from the other peg (A) halts the rise. Now align the bottom for least bend in the dowel, which in this case came about 3 ft . towards the other end of the element, from the vertical position.

To join the two sections of dowel, look at Fig. 5. Again using polystyrene water pipe of 1 inch diam, cut off two sections 5 inches long. Leave A intact, cut down B for the full length and then fold it until it will slip inside A. Now take a 6 inch length this time and cut out a section 1 inch wide down the whole length (or such a width as will enable it to fit inside the second tube). The protruding $\frac{1}{2}$ inch at each end should have about five cuts f inch deep to let it expand for easier entry of the $5 / 8$ inch dowels.

We come now to "spacers". Polystyrene and its class have good qualities. They are light and being 1 inch in diam. (in this case) they get over the "twisting" habit of home-brew lines. If you look at Fig. 6 it will show how to hold these slipper things while you operate on them. Fig. 7 has the holes spaced at six times the diameter of the wire for 300 ohm use-note the exact way the cut enters the hole and the side on which the nick is made. This gives a flap that can be twisted sideways to let the wires be "clipped" on.

FIG. 5. DOWEL JOINERS.
If you were to extend this drawing to accommodate one more hole in the centre between the two that are already there, you would have the 3 element folded dipole that is used in this and the former beams. These spacers were strung through the centre holes for the centre wire, then spaced in a distance of a couple of feet, then the top and bottom wires were "clipped" on. Lack of space prevents me from explaining why they don't twist even after a couple of years and probably a hundred up and down trips. For your information, warm these things in the sun. They can then be cut quite easily.

Another problem is wire. Hold the coil in the left hand and after fastening one end, walk backwards peeling the coils off to the right, say five turns, then hold it in the right hand and peel off five turns on the other side. This cancels the twist.

Now to conclude. This work is not a one-man effort. Assistance has been given freely by all Amateurs called on. The main ones concerned have been

VK2BAI, of Sydney, the "Man Friday" who has spent four years (with only one break of a few months) giving band conditions, reports, etc., at 2100 hours or 2000 E.A.S.T. Also VK4LN, of Gympie, 20 miles distant, who shouldered the responsibility of keeping everything in order and also supervised the quality of the transmissions at all times. Theory and technical advice came also from VK4XR, of Gympie. The transmitter in use was a.m. with 120 watts.

Before closing I will draw your attention to a few points:
(1) The effect of wavelength height.
(2) The importance of the signal-tonoise ratio.
(3) The effect of this type of Yagi on that factor if extended to a useful limit of six wavelengths of boom length (two wavelengths used here).
(4) The signal side-rejection characteristic.
(5) The comparison of gain in the two sections of the 10 el . Yagi, which in my case was influenced by the valley QTH position.
(6) The fact that the same receiving station could issue one report using a receiver for a.m., another while using an s.s.b. transceiver, and a third using his guess meter. Poor old Prof. Einstein would have thought that all his efforts in writing of the need of a common "measuring stick" had been in vain.

FIG.6. PIPE HOLDER.

A little comment is necessary on the signal-to-noise ratio as it applies to both transmit and receive. I have assumed that an antenna with a good S to N ratio will act similarly on both transmit and receive. This is based on two factors, (1) the law of reciprocity (its application to beams was quoted in a previous article I think on Rhombics), (2) on a curious report received from VK2BAI where the QRM was bashed down generally, but one distant signal was still there and came up riding in on the beam. This does not necessarily mean that we broadcast our own QRM, that question should be split up into many components.

This completes this article, but in the construction field the principles of a few items should be fully understood. For home-brew lines, for example, take three pieces of the steel wire quoted and insert them in the water pipe as described and see how the cylinder construction effects both the twist facto:

FIG. 7. LINE SPACER.
and the distance apart required. For the 18 ft . dowel of $5 / 8$ inch diam. construction, use two pins and cotton plus a straw out of the millet broom to represent the antenna problem, and how to fix it so that the strain comes on the upright in the position where it stands it best. For the join of the two sections of dowel, 1 inch piping was used because it was available, but $\frac{7}{3}$ inch can be purchased, also suitable conduit.
No work has been done on wavelength heights below one-eighth. I trust that others will see the possibilities in this changed type of Yagi. If it does not suit our methods, then we might alter our methods to suit it. If we look at our award system then we can come to no other conclusion than to regard Amateur Radio as a play-toy, not an experimental group.

THE REPAIR BENCH
 (continued from page 11)

either go lower or return to the infinity end of the scale.

Connect the leads for the lower reading. Of course they are between emitter and collector. The negative ohmmeter lead is at the collector. This works for NPN or PNP. Put a spot of paint or fingernail polish by the collector wire so you can identify it thereafter.

LEAKAGE BY OHMMETER

The tests you've already made tell you if a transistor is leaky or shorted. It's just a matter of interpreting.
When you've established the two lowresistance readings from the base, notice the readings in the reverse directions. If they're under 10 K for either junction, there is too much leakage.
If you find low readings in both directions between any two leads, that junction is shorted. If a reading between two leads shows open both ways, even on the Rx100K scale, that junction is open.

A reading less than 10 K from collector to emitter, in either direction, indicates too much leakage.

> Two-atep method for identifylve a tpanslacor fype, and base, collector and emitter connections. You need only your ohmmeter, bit the transigtor ghould be ont of the eiperit.

OHMMETER TESTS

Step 1.-Find transistor lead that measures low R (150 ohms or less) to both other leads; that is the base lead.

If the ohmmeter
lead on the base goes to the
negative positive
end of your ohmmeter battery, the transistor is

PNP
NPN
Step 2.-Connect the ohmmeter for lowest R (above 10K) between the remaining transistor leads.
The negative ohmmeter lead identifies the collector.

ROSS HULL MEMORIAL VHF/UHF CONTEST, 1970-71

The Federal Contest Committee of the Wireless Institute of Australia invites all Australian and Overseas Amateurs and Short Wave Listeners to participate in this annual Contest which is held to perpetuate the memory of Ross Hull whose interest in v.h.f./u.h.f. did much to advance the art.

A Perpetual Trophy is awarded annually for competition between members of the W.I.A. in Australia and its Territories, inscribed with the name and life work of the man whom it honours. The name of the winning member of the W.I.A. each year is also inscribed on the Trophy. In addition, this member will receive a suitably inscribed certificate.

OBJECTS

Australian Amateurs will endeavour to contact as many other Amateurs in VK Call Areas and Foreign Call Areas under the following conditions.

DATE OF CONTEST

From 0001 hours E.A.S.T., 12 th December, 1970, to 2359 hours E.A.S.T., 24th January, 1971.

DURATION

Any seven calendar days within the dates mentioned above, not necessarily consecutive. These periods are to be at the operator's convenience. A calendar day is from 0001 hours E.A.S.T. to 2359 hours E.A.S.T.

RULES

1. There are two divisions, one of 48 hours duration, and one for seven days. In the seven-day division, there are three sections:-
(a) Transmitting, Open.
(b) Transmitting, Phone.
(c) Receiving, Open.
2. All Australian and Overseas Amateurs may enter for the Contest whether their stations are fixed, portable or mobile.
3. All Amateur v.h.f./u.h.f. bands may be used, but no cross-band operating is permitted. Operators are cautioned against operating transmitting equipment on more than one frequency at a time, particularly when passing cyphers. Cross-band operation to assist contest working is prohibited.

Such operation will be grounds for disqualification. Cross mode contacts will be permitted.
4. Amateurs may enter for any of the transmitting sections. The sevenday winner is not eligible for the 48hour award.
5. Only one contact per band per station is allowed each calendar day.
6. Only one licensed Amateur is permitted to operate any one station under the owner's call sign. Should two or more operate any particular station, each will be considered a contestant and must submit a separate log under his own call sign.
7. Entrants must operate within the terms of their licences.
8. Cyphers: Before points may be claimed for a contact, serial numbers must be exchanged. The serial numbers of five or six figures will be made up of the RS (telephony) or RST (c.w.) report plus three figures, commencing in the range 001 to 999 , for the first contact, and will then increase in value by one for each successive contact. When a contestant reaches 999 he will then commence again with 001.
9. Entries must be set out as shown in the example, using only one side of the paper. Entries must be post-marked not later than 8th February, 1971, and clearly marked "Ross Hull Contest" and addressed to Federal Contest Manager, Box N1002, G.P.O., Perth, W.A., 6001.
10. Scoring for all sections will be based on the attached table. Approx. distances to be shown in the log entry as shown in the example. Failure to make this entry will invalidate the particular claim. Operation via active repeaters or translators is not allowed for scoring purposes.
11. Logs: All logs shall be set out as in the example and in addition will carry a summary sheet showing the following information:
Name..$~ S i g i s i o n ~$
Claimed Score

SCORING TABLE

Distance In Miles	52Mc.1	$\begin{array}{r} 144 \\ M c . \\ 1 \end{array}$	$\begin{array}{r} 420 \\ \mathrm{Mc.} \\ 2 \end{array}$	576 Mc. Higher	
Up to 25 Miles				5	10
26 to 50	1	1	5	10	25
51 to 100	5	5	15	30	50
101 to 200	10	10	25	50	100
201 to 300	25	15	50	150	250
301 to 500	20	25	100	250	300
501 to 1000	10	35	200	300	35
1001 to 1500	15	100	250	350	400
1501 to 2500	25	125	300	450	500
2501 to 3500 ..	35	200	400	500	600
3501 to 5000 ..	50	300	450	550	650
5001 and over	100	400	500	60	700

Operating Dates (7 cal. days) Highest Score over a 48-hour period was
Operating period:

$$
\begin{aligned}
& \text { om } \\
& \text { tohrs. E.A.S.T. E.A.S. } \\
& \text { aration. } / \text {. } / 7
\end{aligned}
$$

Declaration: I hereby certify that I have operated in accordance with the conditions of my licence and abided by the Rules of the Contest.

Signed..
Date
12. Entrants not abiding by the Rules of this Contest will be disqualified.
13. The ruling of the Federal Contest Committee of the W.I.A. will be final. No dispute will be entered into.
14. Awards: Certificates will be awarded to the winners of each section in each VK and Overseas Call Area. The VK contestant who returns the highest score in the transmitting section and who is a financial member of the W.I.A., will have his name inscribed on the Trophy which will be held by his Division for the prescribed period. A Certificate will be awarded to the contestant who shall not be the Trophy winner, and who returns the highest scoring log covering a period of any 48 consecutive hours.

Also, Certificates will be awarded for operating in the Ross Hull Contest and breaking any Australian v.h.f./u.h.f. distance record.

RECEIVING SECTION

1. Short Wave Listeners in Australia and Overseas may enter for the Contest, but no transmitting station may enter.
2. Contest times and logging of stations on each band are as for the transmitting sections, however there is no 48 hour sub-section.
3. To count for points, logs will take the same form as for transmitting sections, but will omit the serial number received. Logs must show the call sign of the station heard (not the station worked), the serial number sent by it, and the call sign of the station being worked.

Scoring will be on the same basis as for transmitting stations, i.e. on the distance between the Listener's station and the station heard. Sce the examples given. It is not sufficient to log a station calling CQ.
4. A station heard may be logged only once per calendar day on each band for scoring purposes.
5. Awards: Certificates will be awarded to the highest scorer in VK and Overseas countries.

EXAMPLE OF TRANSMITIING LOG (Brisbane Station)
example of receiving log (Perth S.w.l.)

Date/TIme E.A.S.T.	Band Mc.	Emission Power	Call Sign	RST/No. Sent	RST/No. Rcud.	Dist. Miles	Polnts Clalm
$\begin{aligned} & \text { 24th Dec. } \\ & 01000 \\ & \text { E.A.S.T. } \end{aligned}$	52	A3(a)	VK7ZAI	59001	59004	1110	15
$\begin{aligned} & 0110 \\ & \text { E.A.S.T. } \end{aligned}$	52	A3(a)	VK4NG	58002	57051	330	20
E.A.S.T.	144	A3	VK5zï	56003	55043	890	35
$\begin{aligned} & 0235 \\ & \text { E.A.S.T. } \end{aligned}$	144	A3	vK3zJ0	45004	46021	850	35

Date/Time E.A.S.T.	Band Mc.	Call Heard	RST/No. Sent	Station Called	Dist. Miles	Points Claimed
$\begin{aligned} & \text { 2nd Jan. } \\ & 1000 \\ & \hline \end{aligned}$	52	VK5ZDX	59221	VK8KK	1330	15
$\begin{aligned} & \text { E.A.S.T. } \\ & 1025 \end{aligned}$	52	VK2ZCF	58195	VK6ZAA	2040	25
$\begin{aligned} & \text { E.A.S.T. } \\ & \text { E.A10.S.T. } \end{aligned}$	432	VK6ZDS/6	57061	VK6LK/6	60	15
$\begin{aligned} & \text { 3rd Jan. } \\ & 0500 \\ & \text { E.A.S.T. } \end{aligned}$	144	VK52HJ	44102	VK62CN	1330	100

QUEENSLAND WINS R.D.

From a previous three years of low percentage participation, VK4 jumped to 17%, to win this year's contest. While generally there was increase in State scores, only an increase of 2.3% participation was registered, Assisting VK7 this year was VKOLD's entry of 3,864 points, a magnificent effort of 644 contacts.
To Queensland go our congratulations and an invitation to all Divisions to increase their entries next R.D.
-Nell Penfold, F.C.M., for F.C.C.

DIVISIONAL TROPHY WINNER

 QUEENSLAND

Phone (continued)

QUEENSLAND

VK4ZQ	1239	Pts.	VK4QW		126	PL
4EQ	1141	\cdots	4EV		121	
4XY	1092	"	4QT		121	
4DZ	1018	\because	$4 E 2 / P 4$	-	120	-
4 TU	986	-	4FK ..		110	"
4FA/P	847	-	431		90	
4KH	824	"	4CW		81	"
412	814	"	4X2 ..		81	
4ES	801	\because	4SR ..		78	$\stackrel{ }{ }$
415	781	"	4RL ..		73	$\stackrel{ }{*}$
4LE	760	.	4TL ..		68	$\stackrel{ }{*}$
4VC	742	"	4RG ..		65	*
4UF	688	"	4GT ..		63	*
4AL	826	*	4NS ..		56	$\stackrel{ }{\prime \prime}$
4GI	593	.	4WY		54	"
4DJ	588	"	4PU		50	"
4PX ..	579	\ldots	4JM/P4		47	"
4QA	566	"	4XO ..		38	"
4FD	550	"	4FP ..		37	"
4MW	528	"	42BV		35	"
4NY	522	0	4JW.		28	$\stackrel{ }{*}$
4NQ ..	484	"	42KP		28	"
4LB	453	-	4VS		27	"
4HW	448	*	$4 Y B$		27	"
4GP ..	420	"	4GS	26	"
4RF ..	352	.	4ZDC	.	26	"
4UC ..	322	"	410		23	"
4FX	302	"	4ZAL ..		21	"
4AR	270	*	4QF		20	"
4NP	268	0	4RW		18	
4HB	258	${ }^{\prime}$	4KS		17	"
4XX	221	.	4ZRG ..		16	"
4DV	210	*	4XI		12	
4GG	210	"	4JJ/P4	-	11	
4RT	203	**	4ZRT ..		9	"
4 CZ	200	-	4CR ..	\cdot	7	"
4OF	188	\because	42P	7	"
4RO	184	*	4ZDG ..	+	7	*
4PJ	183	\because	4ZEA -		7	
42W	177	"	4ZTL ..	+	7	
4WT	171	"	4FZ..	.	6	"
4FF	166	${ }^{\prime \prime}$	EZFA		6	
4 DO	154	"	4PV	5	"
4AK	151	*	4ZR		5	
4NO	151	\because	4ZFF/T		5	"
4UG	147	\bullet	4ZRS ..		5	*
$4 \mathrm{LX} / \mathrm{P}$..	144	"				

C.w.						
VK4KX	454	Pts.	VK4ON		56	Pts.
4XW	380	"	42B	..	31	
4LV ..	334	\because	4FS	16	"
4XJ ..	72	0	4RZ	15	"
4KI	58	0				+
Open						
VK4LT	1145	Pts.	VK5CV/4	.	264	Pts.
4FH ..	815	*	4GZ	163	*
4UA	430	,	4BQ	17	.
4MY	301	"	4TC	14	-

SOUTH AUSTRALIA

Phone

VKSZK 1358	Pts.	VK5TJ 393	393 Pts
5QX 1297	.	SNT 37	378
SFT 11199	..	5LP 343	342
5BI 1147	.	5HM 33	338
5TY 1022	.	52D 33	332
5NN 964	-	5PH 31	314
5GV 949	.	5FL 30	306
5WV 861	$\stackrel{.}{\square}$	5FD 30	301
S2E 783	$\stackrel{ }{\square}$	5DJ 24	249
52Z/T 737	.	SEF 20	204
5UJ 706	.	5LQ 18	184
SPX 702	..	5US 179	179
SSU 602	.	5RI 16	169
SCY 547	..	52U 16	164
SST 543	\because	5GG 16	163
5GM 540	-	5W1 15	159
SMF 529		52Q 15	158
SRR 494		52 L	89
SGX 490	\cdots	SEN	86
SLN 488	"	$5 T \mathrm{U}$	81
SUK 478	.	SDO	80

NEW CALL SIGNS

JUNE 1970

VK1YR-Canberrn Y.M.C.A. Radio Club. Sta tion: Corroboree Park Youth Centre, Ainsley: Postal: 16 Bannister Gardens, Manuks, 2603.
VKIZPB-P. F. Bell, 39 Larakia St., Waramanga, 2611.
VKIZWG-W.' R. Godley. Station: 1 Gore St. Higkins: Postal: P.O. Box 15. Blamey Pl.. Campbell. 2601
VK2ADY-D. S Hunt. 28 Mathews St., West Tamworth. 2340°.
VK2ATY-L. W. A. Doolan. Station: Technical College. Newcastle: Postal: 130 Rac Cres., Kotara South. 2288.
VK2BHG-M. A. Harrison, 14 Market St., Rockdale. 2216.
VK2BRV-R. W. Allison, 98 Wardell Rd., Dul-
VK2ZHR-T. F. Laidler. 131 Tudor St., Hamil-
VK2ZHU-G
ville. 2300 .
VK2ZKI-B. R. Paterson, 30 Hyacinth St., As-
VK2ZNA-M. ${ }^{\text {quith }} \mathbf{2 0 7 8}$. Farrell, $4 / 183$ Hopetoun Ave. Vaucluse. 2030.
VK2ZQA-R. J. Irving, 7 Lena Pl., Merrylands, VK2ZS 2160 .
(${ }^{2144}$. J. Murray. 24 Mona St., Auburn VK2ZVK-V. H. Kaard, 53 Edna Ave., Merrylands, 2160.
VK3AFB-D. R. Riglar. 12 Palmerston Crt., VK3AZK-W. D. D. Harwood. 85 South Valley. RKd.. Highton. 3216.
VK3BDB-Geelonk Grammar School Radio Club. Geelong Grammar School, Corlo,
VK3BDE-LaTrobe University Physics Society, LaTrobe University. Bundoora, 3083.
VK3BDF-R. N. Fleld. 3 Mordon Crt., Nuna-vK3BDI-J. O. Willi.
Sandringham. 319i 25 Wentworth Ave. VK3BDO-E. A. King-Smith, 311 Centre Rd. VK3BDP-J. E. Falkner, 17 Burgess St., Haw-VK3BDW-J. J. Wiseman. 20 Austral Ave., VK3BET-E.E. E. Tilley, ${ }^{\text {Fentrent. }}{ }^{10}$ Tudor Crt., North VK3BFL/T-H. 3104.
VK3BFL/T-H. H. Chittock. 11 Lt. Myers St., VK3CCX-M. C. Hooper. Portable/Mobile.
VK3YCV-N. R. Laidlaw, 43 Churchill Ave., VK3YDG-ndigo. 3550.
VK3YDG-G. J. Gill, 18 Dorset Rd., Croydon,

VK3YDI-C. J. Jarvis, 9/105 Willesden Rd., Oakleigh. 3166. VK3YDP-T. J. Alder, 26 Gramatan Ave., Beaumaris. ${ }^{3193 .}$ VK3YDQ-G. R. $\underset{\text { Strathbogie, }}{2666 .}$ Vroland. "Carlscrona," VK3YDU-G. S. Pritchard, 32 Holland Rd.. Blackburn South. 3130.
VK3YDV-K. W. Forbes, 7 Rodney St., Mooraib-VK3YDY-K. B. Lewis, "Kanda," Boes Rd., Hastings. 3915 .
VK3YDZ $\underset{\text { C. }}{\text { C. Maloney. Belgonla, Jersey }}$ VK3ZBN-R. J. Beevers, 11 th St., Mildura, 3500. VK3ZDD-M. J. Dow. 106 Bayview St., WIIliamstown. 3016. Lot 10, Cousin Dr., Bayswater, 3153.
VK4NT-N. T. Casey, 33 Herberton St., Mare-VK4SZ-Sunshin.

Sunshine Coast Amateur Radio Club, Station: 3 Bambaroo Ave.. Nambour, 4560: Postal: C/o. Radio Station 4NA, P.O. Box 279. Namhour. 4560.

VK4ZJ-R. J. Webb, 151 Alderley St., Too-
VK4CEB_E. F. Bacon, Station: Mobile; Postal: C/o. Newmarket Gardens Caravan Park, 199 Ashgrove Rd., Ashgrove, 4060.
VK4ZBH-R. R. Hartwig, Bona Vista Ave., VK4ZBR-R. S. Best. 12 Ardoyne Rd., Corinda, VK4ZGZ/T-A. W. Reynolds, 159 The EsplanHKde. Cairns, 4870.
VK4ZIS-I. S. Graham. Station: Dakenbar Rd. Mt. Murchison; Postal: P.O. Box 507,
Biloela. 4715 .
VK4ZJA-C. J. Andrews, 151 Galley Rd., TarInga East. 4068.
VK4ZKP-K. R. Pollock, 50 Vernon St., Nundah. 4012 .
VK4ZRI-A. R. Woods, 22 Stanley St., Indooroopilly, 4068.
VK4ZSD-L. S. Dmitrieff, Station: Monto Rd. Thangool. 4716; Postal: P.O. Box 16, Thangool, 4716.
VKSQE_A. M. Parks, 10 Vine St., Morphett VK5SU-J. W. K. K. Adams. O.T.C. (A) Staff VKssw-Rarters, Lambeff St., Ceduna, 5690 . VK5SW-R. C. Norman, 6 The Parkway, Para-VK5X1-B. Hannaford, $2 / 10$ Broughton St. Glenside. ${ }^{5065}$.
VK5ZFX/T-P. \mathbf{E}. McMahon. 30 Creekview Dr., VKsZFXRwood Park. 5097. VK5ZPG-P. G. Whellum, 8 Coronation Pl. VK5ZWB-W. B. Ricketts, Station: Section 85, Hundred of Yadnarie; Postal: P.O. Box 70. Cleve. 5640.

VKszXD-J. J. Plechnick, 15 Brigalow Ave., Seacombe Gardens, 5047.
VK6AB/T-K. C. Bicknell, 48 Sanderson St.,
$\begin{gathered}\text { Lesmurdie, } 6076 .\end{gathered}$

VK6AZ-G. P. Clifton, 13 Morley Dr., Morley,
VKOEK-A. E. King. 4 Marloo Rd.. Green-VK8ZAT-R. A. Taylor, 118 Broome St., Highgate. 0000 .
P-K.
VK6ZEA-K. Kate. ${ }^{\text {GJ00. }}$ Gurlinson. Station: Portable: Postal: C/o. B.H.P. Exploration Party, P.M.B. Kalgoorlie. 6430 .

VK6ZEG-P. D. Morgan. 68 Clayton St., Bellevuc. 6056.
VK7AR-H. Young, 1 Madden Pl., Devonport. VK7IE-I. L. Eadie, 16A Stoke St., New Town, 7008. 1. Honke. 302 Nelson Rd.. Mt. Nelson, 7007.
VKaJS-J. F. Scougall, 13 Achilpa St., Alice VK8ZRM-R. ${ }_{\text {Springs. }}{ }^{5750}$.
VK9AG-A. Gar. ${ }^{5790}$. Nunn, Station: Walnguna Rd., Rabaul, N.G.; Postal: P.O. Box 119, Rabaul. N.G.
VK9AV $\underset{\text { Re }}{V}$ V. Avenell. St. Michael's Estate Kicta. Bougainville, N.G.

CANCELLATIONS

VK2AQF-J. H. L. Field Transferred to Vic.
VK2ATJ-L. P. Crowe. Not renewed.
VK2ZHR-P. Halpin. Not renewed.
VK2ZLF-L. W. A. Doolan. NOW VK2ATY.
VK2ZPB-P. F. Bell. Now VK1ZPB.
VKIDJ-J. L. Gleeson. Not renewed.
VK3EW-E. C. Wheeler. Deceased.
VK3GX-P. R. Gibson. Deceased.
VK3HV-H. P. J. Trutmann. Not renewed.
VK3HV-H. P. J. Trutmann. Not ren
VK3KX—R. Tandy. Deceased.
VK3NZ-D. E. Timms. Not renewed.
VK3NZ-D. E. Timms. Not renewed
VK3AHI-J. Vogel. Not renewed.
VK3ASY-O. W. Guy. Not renewed.
VK3AWX-S. Davies. Not renewed.
VK3AXT-J. W. K. Adams. Now VK5SU
VK3ZBE-J. A. Retchford. Not renewed.
VK3ZFQ-K. M. Cocking. Not renewed.
VK3ZIR-1. A. Rourke. Not renewed.
VK3ZKK-D. R. Riglar. Now VK3AFB.
VK3ZLA/T-H. H. Chittock. No wVK3BFL/T.
VK3ZLW-R. M. Stack. Not renewed.
VK3ZSR-A. C. Greening. Not renewed.
VK3ZTQ-C. Quain. Not renewed.
VK3ZYA-R. D. Young. Not renewed.
VK4VQ-E. V. Avenell. Now VKAAV.
VK4ZWJ-R. J. Webb. Now VK4ZJ.
VK5BZ-C. H. Baseby. Deceased.
VK5EN/T-A. R. E. Nitschke. Not renewed.
VK5ZWS-J. B. Sparrow. Deceased.
VK6ZCB/T-K. C. Bicknell. Now VK6AB/T. VK6ZDV-A. E. King. Now VK6EK.
VK7ZBH-H. Young. Now VKIAR.
VKIZED-I. L. Eadie. Now VK7IE. VK7ZEK-W. 1. Hooke. Now VKilH.
VK8XI-B. Hannaford. Now VK5XI.
VK9DS-B. W. Smeaton. Not renewed.
VK9TB-E. W. Bastow. Not renewed.

VK3 V.H.F. PRE-AMPS.

Now available, a new Improved V.h.f. PreAmplifier featuring lower nolse. higher galn. diode protection in case of reverse polarlty connection. This Pre-Amp. uses the new TIS88/2N5245 fleld effect transistor. Available ex stock
$\$ 6.00$ incl. postage and packing.
Order from: disposals committee
P.O. BOX 36 ,

EAST MELBOURNE.
VIC.. 3002.
Also avallable ex stock:
$432 \mathbf{M H z}$. Converters $\mathbf{5 2 2 . 0 0}$
144 MHz . Converters \$13.50
Write to above address for complete price list for the above and other components. COMING SHORTLY
A NEW SIX METRE CONVERTER
AND A 1296 MHz . CONVERTER
For further details watch the Victorian Division Disposals. Committee advertisements in "Amateur Radio"'

MAIIING OF QSL CARDS

Dear Sir,
Some time ago I decided to write to the P.M.G. Department on the question of postal charges and classification of QSL cards in unsealed envelopes for the purpose of direct QSL'ing.

I feel this may be of some interest to other Amateurs, who on occasions prefer to QSL direct, and who may have been in some doubt as to the relevant class and postal charges. This arose as I had received several cards in unsealed envelopes, marked " 2 nd class airmail" and on one occasion "printed matter only". Obviously there was a marked difference in postal charges.

Here then, is the reply from the P.M.G. Department.

-Peter P. Morrow, AX2BMP.

Postmaster-General's Dept., Sydney Mail Exchange, N.S.W., 2012 3rd Sept., 1970

Dear Mr. Morrow,

First, may I apologise for the delay in replying to your letter of 12 th August, 1970.

Following acceptance by the Universal Postal Union of a proposal designed to abolish commercial papers as a separate category, articles originally considered as commercial papers are now classified as letter post except the following, which may be transmitted at printed paper rates:
(a) Letter post items exchanged between pupils of schools provided they are sent through school principals;
(b) Pupils exercises in the original or with corrections;
(c) Manuscripts of works or for newspapers; and
(d) Musical scores or sheets of music in manuscript.
Consequently, there is no advantage in you sending your QSL cards in unsealed envelopes as they are not eligible for the cheaper rate of postage.

Postcards cannot be posted in an envelope or wrapper so there is no alternative here.

I cannot arbitrate, of course, upon the practices in other countries. However, Universal Postal Union ruling should impose similar treatment by all member countries.

Thank you for your interesting query and if you could arrange wider publicity for the official ruling, all to the good.

-J. Saunders, for Manager, Sydney Mail Exchange.

TECHNICAL ARTICLES

Readers are requested to submit articles for publication in "A.R.," in particular constructional articles, photographs of stations and gear. together with articles suitable for beginners. are required.

Overseas

$M_{\text {agazine }}$ Kouiew

Compiled by Syd Clark, VK3ASC

July 1920-

"HAM RADIO"

Inductively Taned Higb Frequency Tank Circults, WBSAI. High efficiency operation o parallel $3-1000 \mathrm{Zs}$ in the $14-54 \mathrm{MHz}$. region

A Versatile Solid State Recelver. WiPLJ. Tunable 1.1. on 80 metres with converters for the higher frequency bands.
Compact Frequency Counter, K4EEU. IC unit to count to 16 MHz . Lengthy and detailed artiele. Pictures and diagrams.
Low Drive Kllowati LInear for Two Metres, K6HHN. Uses a 5 CX1500A in a stripline circuit. Computer Procesilng Slow Soan Television Plctures, W4UMF.
New Look in Teleprinters, W8JTT. Seems that the old electro-mechanical machines are giving way to all electronic systems which are considerably faster.
A Solid State R.F. Signal Generator, VEsfP Describes a unit with attenuator covering the range 0.12 to 95 MHz .
Temperature Alarms for High Power AmpllGers, W2EEY. Since overheating is one of the first indications of a malfunction, such alarms will sound off or shut equipment down before serious damage occurs.
SCR Rezulated Power Supplies, W4GQC. The theory and practice.
Microwave Hybrids and Couplera for Amateur Uee, W2CTK. Describes how the s.h.f. boys can roll their own instead of paying lots of money for them.

Auguat 1070-

Interdigital Pre-amplifier and Combline Bandpasi Filter. W5KHT. High performance fiter-pre-amplifier for v.h.f. receivers that features low cross modulation, low noise and excellent unwanted signal rejection.
Practical VXO Design. K6BIJ. An interesting approach to frequency stability in oscillator círcuits.

Divide by Ten Frequency Scaler, K4EEU. Describes an accessory that will increase the range of your frequency counter by a factor of ten. With this unit and the counter deof ten. in "H.R.'" July 1870 you can count cycles to over 100 MHz .
Compriter Alded Circuit Analysis. KiORV. A powerful tool that eliminates trial and error in circuit design.

A Tanable Ardio Filter for C.W.. WAlJSM Using two Raytheon RM709 linear integrated operational amplifiers, the 3 dB . bandwidth is about 140 Hz .
A VFO for Solld State Tranamitiera, W3QBO If you are tired of being rockbound. here is a neat v.f.o. fenturing the Vackar oscillator. Uses two MPF102 FETs and an HEP55 bipolar transistor.

An Improved 8ix Metre Converter, K1BQT A new approach to v.h.f. converters using FETs and a tunable local oscillator.
Improving the Intelligibility of Communications Recelvers. WASRAQ. This author points out that sometimes the amplifier is belter than the reproducer and that improvements can be made simply by improving this fellow.
Quad Antenna Deaign Parameters, K6OPZ The performance one obtains from any antenna is almost always determined by the final adjustments made upon the unit. This author does not agree with all that has been written. Who is right?
Modnlar Modales, W9SEK. Mother and daughter printed circuit boards are used to increase IC counter circuit versatility.

"RADIO COMMUNICATION"

Jane 1070-

This month's issue of the journal of the Radio Society of Great Britain contains a number ni interesting articles.
A. Keger for GB3VHF, G3MNQ. An eleckeying relay. Ideal for keying beacon stations.
Decibels down the Drain. G8ON. This author points out that readings obtained on the usual type of s.w.r. meter are often optimistic and even though you may have a low s.w.r. It is orrely 1.1:1 or less.
A Quarter Wavelength Vertical Aerial, by G3SAA. The Britisher is often shid to be one Who hides his light under A bushel, or to put it another way. is self effacing. This Amateur hides his vertical alongside the brickwork of
his house.

Technical Topica, G3VA. Deals with "The Double Balanced Mixer. .All-T Mixers, Balanced FET converter," "All-Transistor Tranimitters" including some mention of VK7RG: Amateur Radio and The Ausiralian EEB, cathode modulation using transistors is also covered in some detall
Put a Transistor in Your Cathode (2). G3SBA continues his article on getting something for almost notining. Of course this technique has been used before to power the low power front-end stages of a communications recelver undergoing modification to solid state on a stage by stage bnsis.
T.V.I. Tips. G3JGO. For those plagued by the stuff.
Unfolding a Hopefal Futare, GSUM. Sixteenth V.h.f./U.h.f. Convention report.

July 1980-
A 160 M. LInear using High Voltage Transistors, G3UFW. Describes some of the possible tricks for increasing power to transistor rigs.
ricks ior increasing power to transistor rigs. Bands, G3ISZ.
Pat. Transiator in Your Cathode (3), G3SBA. A hybrid driver stage for an s.s.b. transmitter. Technical Topics, G3VA. This is a monthly eature conducted by Pat Hawker which provides a precis of a number of articles which hive appeared in the various journals, not necessarily Amateur. but which appears to be of nterest to a goodly number of the fraternity.
Osclliator Noise and Its Efrect on Recelver Performance, G3JGO. With a title like that, what else can one say?
Solld 8tate Modules, M. Converter, G3GGK and G3EDD. Noise factor better than 2 dB . Gain 35 dB . D.c. supply $12-18$ volts, i.f's avallble: 4-6 or 28-30 MHz.
The Decitel, G8BEO. The newcomer to electronics usually has difficulty in understanding the dB. It is explained here once again for those who need it.

"RADIO ZS"

June 1970-

A Parenthetical Falry Tale, WiJBQ.

Electronic Time Meter for the Darkroam, by ZSICA.

About Making S.w.l. Reports, ZSIRR
Six Metre Converaion of the B-tf Transmititer Recelver, ZSiIM. This unlt originally operated in the range $60-85 \mathrm{MHz}$. on three pre-set atcd in the range 60-85 M.
improvements for the FLIMOB S.S.B. Transmitter. ZSiCK. This author states that his unit was very unstable and he found it nearly impossible to improve the in-built v.f.o. Without major surgery. He therefore bullt an outboard v.f.o. and made certain other mods to improve the performance.
July 1070-
Some I.Inear Conalderations, ZS5HF. A discussion of what happens if a "linear" is not and how to make it so.
Q-Code. Tells you what these three letter groups menn.
The GSNUG Triband Single Feed Qued. Dimensloned sketches only.
All Hams Are Braggarts, ZSiACD. Perhaps e are all braggarts in certain directions.
F.H.C. The Flying Ham Club.

"73"

July 1970-
An Improved Method for the Transmisiton of Colour Information by Slow Scan Television. W4UMF. Those who are interested in colour i.v. should follow up on this one for them-
selves.

World-WIde I.T.U. Prefx/Call Ares List, WISWX. What can I say!
The Super Auto-Patch. K6MVH. When disaster strikes there is no substitute for rapid traffic handling. This facilitates person to person contact.
How to Build E Keyer rand retain your applinnce operator statusi. W9KXJ. VKs would probably find that 2000 type relays provided the necessary parts.
A Two-Channel Search and Lock for F.M. Recelvers, W3DTN. This simple gadget turns "two-channel rig into an automatic scanning twpe and provides the added capability of locking on a channel where retivity is sensed. A Look at Allied's Portable F.M. Recelvers, K日STH/5. These Japanese units were made for the moblle bands but one covers 2 metres. They are considered to be good value although not really hot
fin Milz. Mighty Mite. K9VXL. Maybe one should say the littlest transmitter.

Cheaper Six Metre Half Gallon, KiCll runs 500 watts to a pair of 811 As .

High Performance Power Supply asing all IC Regolator. KOECF/7. Move over voltage variation.
5H3KJ. Good isiand DX-pedilion, 5H3LV and 5H3KJ. Good hamming holiday.

VHF
Sub-Editor: ERIC JAMIESON, VKSLP
Forreston, South Australla, 5233.
Closing date for copy 30th of month All times in E.S.T.

AMATEUR BAND BEACONS

VK4 VK5	144.390 53.000	VK4VV. 107m. W. of Brisbane VK5VF Mt Lofty
	144.800	VK5VF, Me. Lofty.
VK6	52.006	VK6VF, Tuart Hill.
	52.900	VK6TS, Carnarvon.
	144.500	VK6VE, Mt. Barker.
	145.000	VK6VF, Tuart Hill.
	435.000	VK6VF ion by arrangement).
VK7	144.900	VK7VF. Devonport.
VK9	146.000	VK9XI. Christmas Island.
2L3	145.000	Zl3VHF. Christchurch.
JA	51.895	JAIIGY, Japan.
W	50.091	WB6KAP, U.S.A.

You will note there is a new addition to the beacon list. Per favour of the VK6 V.h.f. Group News Bulletin. advice is noted that VK9XI
operates on 146.000 MHz . as a c.w. beacon, this operates on 14 t .000 MHz . as a c. W. beacon, this
should surely be something for the VK8 boys should surely be something for be hoped there
to strive to hear and it is to be hop to strive to hear and it is to be hoped Chise mas Islands to make any of their efforts worth while.
An interesting letter this month from Kerry Adams. AXSSU, who is located at the O.T.C. Satellite Station, Seduna, on the far west coast
of S.A.. about 340 air miles from Adelaide. Of S.A.. about 340 air miles irn Adtation there are four Amateurs. two being keen on v.h.f.. set-up is an FT200 for h.f. to TH3JR at 40 feet. set-up is an FT200 for h.f. to TH3JR at
An FV650 is on order and in readiness the FT200 has been equipped with extra 10 metre crystals for tunable i.f. purposes. The 6 metre ment 2 metre beam is mounted at 48 feet. fed from an "old fasthful" 20 watt a.m. transmitter. Some problems have existed with high winds flapping the telescopic mast with all that weight up top. but Kerry is keenly looking forward to the forthcoming DX season. 2 metre opera-
ting frequencies are $144.200,144.400$ and 144.900 ting frequencies are 144.200 , 144.400 and 144.900
MHz ., the last being most used. IMight suggest you use one of the lower two for best results. most Amateurs' converters and beams are optimum in lower portion of band.- 5 LP , He also plans
from FT200
Kerry reports that on some warmer nights he has already run tone for hours on end with m.c.w. identification beamed on Adelaide on 2 metres with no results yet. However, by adjusting his convertcr to 136 MHz ., has been successful in recelving signals from many satelintes, so the receiving gear seems we into Adelaide may not be easy during 6 metres into Adelaide may not be easy during
the DX season except for very short skip. but interstate Amateurs might note that Kerry should be operating on 6 metres this summer. Former call sign VK3AXT for about 13 years. Thanks for the info OM.
Bob VK3AOT advises the bands have been quilet for some :Ime now, although Lou VK3ZYD has been having successful t.v. trans-
missions on 432 MHz ., using home-brew solid missions on 432 MHz . using home-brew solid
state t.v. camera. $2-1$ interlaced scanning, transstate t.v. camera. $2-1$ interlaced scanning, trans-
mitter grid modulated QQE06/40, receiver uses VK3 432 MHz . converter.
Bob passes on the sad news that a call from Phil VK2YS in Wagga, N.S.W.. Indicates virtually no activity on 2 metres a.m. In the western N.S.W. arca.

The VK3 Field Day on 27th Sept. attracted 7 portable stations on binds between 8 and 432 . but due to poor conditions no contacts were made wirh considerably more portable activity than usual. but again under quite foul conditions. Heavy and widespread rain fell over most of the likely operating arcas all dny on the Saturday ${ }^{26 t h 1}$. all night and on Sunday intermittent rain, fog
and generally shocking conditions. However. and generally shocking conditions. However.
there was a lot of fun and one group under the there was a lot of un and one group under the
call sign of VK5ZDX/5 was noted with more call sign of VK5ZDX/5 was noted with more
than 100 contucts for the day. a good score unthan 100 contucts for the day. agood score un-
der the conditions. John VK5QZ and myself did not ret under way untll the afternoon session. but ran up 40 contacts in 3 hours using
6 . 2 and 432 , so this will give some idea of 6. 2 and 432 , so this will give some idea of
the type of activity under such poor conditions.

The v.h.f. world now awaits with interest to see what becomes of activity in Mt. Gambier
following the successful passing of the last c.w.
examination by Colin VK5ZKR, Garry VK5ZGR and Chris VK5ZFA. Such happenings are an acid test for the degree of indoctrination of v.h.f. Interest. it would certainly be a tras edy for v.h.f. should they desert the bands: ye all.

MEET MR. MOONBOUNCE

The following is extracted from "Break-In," the official publication of N.Z.A.R.T., for which we thank them, the liem being of general interest to v.h.f. operators.

John Morgan. ZLIAZR, has been moonbouncing since Dec. 1964. His efforts have received international recognition and he is amongst the leaders of the exponents of this,
the rarest of all DX. John is certainly not 'resting on his laurels.' Indeed, he is presently cheduling Canada and France in the botiom 10 KHz . of two metres! Six years of patient and skliful effort have gone into his work
"At this time of writing, John has worked This must surely be some sort of record!) and the U.S.A. IIowal. KOMQS. He has been heard by VK3ATN, many Ws and VE7BQH, and on the local scenc, ZLiMO. But the most tantalising one is that he has had partial two-way contacts with Mike Staal, K6MYC, for three years without cuer making it a 'real' contact. Tenacity must pay off here.
'Here's two months of activity: May 1, 2, 14, 15 and 30. Schedules with SM7BAE and con good that John asked Kjell to go s.s.b. and was able to copy 52 .
"June 10: Sixth consecutive QSO with SM7BAE. Just missed with K6MYC. John was hearing him well, but Mike could not quite get a signal report from John. June 12: Same again with K6MYC, but this time John could not get the signal report. Heard VE7BQH quite well, but it looks as if he needs 1 or 2 dB. linear-needs a 160 element-Ed.l Quite a record, isn't it?"
iSubsequent to this being prepared, John advised David ZL4PG, "Break-In" V.h.f. Editor, of the following.)

Just a quick note to advise that the first N.Z.-California 2 metre contact has been achieved. Between 0300 and 0400 July 7, 1870 GMT,
KBMYC in San Jose. Californla, and I 12 L IAZRI made a two-way QSO on $144.004 / 5$ via Moonbounce. This contact gives me an enormous amount of pleasure because Mike has been great source of encouragement to me over the Dust few years in my MB efforts-also it marks the end of a marathon endurance effort because I first heard K6MYC in 1965/66 and he has heard me since 1967! We have another sked tomorrow and VETBQH is also taking part again for he was copying my signals pretty well during today's sked for about 20 minutes well during today's sked for about 20 minutes. o with a metre 1 may make the first N.Z. organised with F9FI and F8DO. but mutual moon time with France is pretty limited.'

The Station.-"The station at ZLIAZR consists of a transmitter primary frequency control f a MHz. FET crystal oscillator which is variable from 14.007 to 14.000 MHz . This is fed into a simple transverter and mixed with a 130 144.007 MHz About every four months the frequency has drifted up about 400 to 500 Hz .. and is then readjusted. Frequency varlation during a 2 -hour schedule is less than 30 Hz . The eransverter is run in a linear fashion to allow 14 MHz s.s.b. to be fed in if desired. The transverter output stage is a 5894 1QQE-
$08 / 40$ i throttled down to about 7 to 8 watts to $06 / 401$ throttled down to about 7 do watis to
drive the p.a.. which is a pair of 4CX250Rs, to drive the D.a.. which is a pair of 4CX250Rs, to
a kw. input iclass $C l$ less in class ABI operation.

As John says, it is very difficult to obtain perfect frequency stability when keying a large v.h.f. transmitter, but believe it or not. John keys the d.c. Ibatteryl supply lead to the 14 MHz. crystal oscillator only. He found this to be the only method which gave him perfectly
chirp-less keying. John mentions that a moment's thought will show that even a keying change of 15 to 20 Hz . during keying will put your signal right out of the bandpass of an your signal right out of the bandpass of an
audio filter. A chirp as small as this is not audio filter. A chirp as aticed in a 500 Hz . wide filter at normal b.f.o. pitch.

The ZLIAZR recelver tunable oscillator is an IGFET v.f.o. with a 7 KHz . tuning range range is from 144.000 to 144.007 at a bandspread of 1 KHz . to two inches of dial travel! Thls oscillator, based on a circuit appearing in 'RCA Ham tips some aft y years ago, is capable of of getting the temperature compensation right.
"John adds: 'However. the same could he said of any v.l.o.! I om sure that the circult used has little bearing on the stabllity obtainable unless one has the patience to perservere with the temperature characteristics of the gadget in your particular environment.
-Changing the subject somewhat. John continues: 'Here is a point you may find interesting. Careful measurement and recording of signals from SM7BAE show ground reflection. gain peaking here at an elevation of 4.5, 9 and 13.5 degrees with maximum gain occurring at 9 degrees elevation. Calculated minimum radiation angle for my low height array is 4 to 5 degrees. which, by happy coincidence, gives addition of direct and ground reflected signals at low multiples of this figure. There may be theoretical holes in this idea, but signal strengths from SM7BAE, recorded over the past year or two. agree dretty well. However, there have been times when good signals have been recelved 'al after local moonset by up to four minutes; 1 bl at elevation angles and bearings where my iron ronfed house is obstructing the antenna's view of the moon almost completely!
"John adds a final comment to those contemplating EME or MS work. I have found
during recent skeds that better weak signals results have been obtained since changing the i.1. bandwidth from 500 Hz . to $2-3 \mathrm{KHz}$. When used in conjunction with a narrow band tunable audio filter, the wider I.1. seems to glve a more even noise spectrum-apparently the
narrow 500 Hz . filter maintains a slight ringing tendency on nolse pulses and of course. the following audio filter magnifies the result to the stage where the theoretical signal-to-noise in practice
So there you have it. ZL1AZR is now reaping his just rewards for patience, skill and untiring effort, and so by doing, continues to show equipment capable of producing results undreamed of perhaps a decade or so ago. Congratulations.

NEW8 FROM TRE NORTR

Doug VK8KK in Darwin sends an interesting letter of happenings to the north of Australia. He reports conditions have been little short of excellent with five countries being available on 6 metres most nights. The 52 MHz . backup net on 14130 KHz . is working perfectly with everyone using this to great advantage. Those regularly heard being JA1LZK, JA1MRS, KAVKiRO, VK2ASZ. VKBAU. VK9DJ, VK8KK, KRBRS to name a few. Doug says there are Darwin to New Guinea on 6 metres, and such strong lonisation that it allows David VK8AU in Tennant Creek and Doug to work back
scatter for hours on end, and (21 worked Ros VK4RO at Ayr on 19th Sept. at 9 plus during the period of a forward scatter contact with VK8AU. Present procedure is to monltor 14130 . ask if anyone is listening seems to be a reply. and away they go
Doug wants it widely known that he and David will both have automatic keyers in operabelng Geminids on 13 th and 14th Dec. He would like as many stations as possible to come on about that time. October "A.R." sets out detalls in the v.h.f. notes of techniques to ald in making contacts. Study these.

Continuing with Doug's news, he reports that HL9WI runs his beacon on 50.100 MHz . up to about 1930 dally ${ }^{\text {and }}$ all day. then changes
frequency to 52.010 MHz . from then on. It is c.w. and s.s.b. and has a 15 second break-in period as announced. Doug would also like to KH6 prefixes to get on 6 metres. there are plenty of them but seemingly little interest

It is interesting to note the constancy with distance 540 miles, about 30 per cent. Q5 copy s.s.b./c.w.: 50 per cent. on noise or frustratingly unreadable, but surely detectable, and 20 per cent. below the nolse. And meteors add to his concluding note just seems to round off the situation of making us even more envious down here: On 28th Sept. he worked VK9GA iNoell in Kaviang. New Ireland. 5×9 with $2 \times$ s.s.b.. and VS6BF. New Inobit Hong Kong split frequency 50.1 to 52.1. with Bob running 1.5 watts. contact $2 \times \mathrm{c} . \mathrm{w} .!$ So down South we here may yet
have a good year. here's hoping.

And that's Just where these notes finish, there is no more news! whought for gift on a child. it would be that he should always be more That's a real gift!' 73. Eric VK5LP. the Voice in the Hills.

MEET THE OTHER MAN

Ross VK4RO
Meet Ross VK4RO, ex-VK4ZRV, of Ayr, 50 miles south of Townsville in North Queensland. First licensed in 1980, Ross operates in the 52 and 144 MHz . bands plus 10 through to 80 metres. On 52 MHz . he runs 400 watts p.e.p. 5.s.b. using a $3-400 \mathrm{Z}$ in the final to a 4 element Yagi up 70 feet. The converter and tunable i.f. together are an SB-110A Heathkit, and he has worked VK1, $2,3,4,5,8,7,8,9$ and $Z L 4$. (This is a surprise, most others have worked ZL1, 2 and 3 but no 4!) In addition he has worked all JA1 to JAO inclusive and KR6.

On 144 MHz . Ross runs 10 watts to a TT15 with a 10 element Yagi up 40 feet, with an R.T.V. \& H. converter to a KW77. He has not worked out of VK4 so far, and being about 9:30 to 1,000 miles from the maln centre of 2 metra activity, makes it hard to do very much. His location is 13 feet above sea level. However, when the occasion permits or conditions demand, Ross is able to go out portable and has a site about 10 miles south of Ayr 800 feet high. but the last 50 feet needs gear to be carried! Power is from a 300 watt a.c. alternator and uses the SB-110A equipment on 8 metres and 1936 transmitter and converter on 2 metres, 5 element beam for 8,10 element for 2 metres.

Ross is a member of the W.I.A., President of Townsville Radio Club for two years, and is an electrician by occupation. He has recently returned from a trip to Japan, Taiwan and Hong Kong with his brother Dale VK4ZDG and Peter VK4ZPL. They met about six JA1 6 metre operators and were glven a "royal" welcome. Thoughts for future activity include plans for 400 watts p.e.p. s.s.b. on 2 metres, then on to 2 metres i.m. moblle, and the distant future 432 MHz .

Doug VK8KK

Now we go to a fresh State and get some news from Doug. McArthur, of 9 Bulbul St. news from Doug. McArthur, the call sign of Ludmilla, Darwin, under the callesign of 1958, Doug has been a very keen v.h.f. type 1958, Doug has been a very keen v.h.f. type ever since. He was a former President of the VK5
shift supervising technician with the shift supervising technician with the Radio
Australla booster station took him to Darwin, Australla booster station took him to Darwin,
plenty of radio gear went with him or has been plenty of radio gear went with him or has been
sent up since. He made his presence known by sent up since. He made his presence known by
spending some time as President of the Darwin spending some time as President of the Darwin
Radio Club. His location is 400 feet above sea Radio Club. His location is 400 feet above sea level and he holds certificates for V.H.F.C.C. and W.A.V.K. awards obtained while in VK5. other interesting details re VK8KK were given in the V.h.f. Notes for October. Taken overall, Doug must lead a very busy life, so I am sure we all wish him well in the cause of Amateur Radio.

Geoff VS6DA
Geoff VSGDA photographed at his QTH in the New Territories of Hong Kong, holding a QSL from Doug VK8KK which records their 6 metre two-way-believed to be the first ever Hong Kong/Darwin-contact on 50 MHz .
The QSO took place on 2nd June, 1970, at 1145 GMT, and was perfect 5×9 copy at both ends. VS6DA's 6 metre gear is on the left of the photo and is the Yaesu FTV650, in conjunction with the FLDX400. The beam is a 5 element wide spaced by Maspro, whilst Doug uses a home-brew transverter into an FTDX400 with a 9 element Yagi.

Geoff lives permanently in Hong Kong and is a pilot for an airline based there. He files into Perth. W.A., from time to time and enjoys eyeballing with the VK6s. You will find him on 14.180 MHz . when he's not on duty, ready to try for more VK DX on 6 metres.

John VKBZCW with Geoff VSBDA
John VK8ZCW (on the left) with Geoff VSBDA at his QTH overlooking the sea in the New Territories of Hong Kong. The 6 metre antenna shown is the one used in the recent two-way QSO between Darwin (VK8KK) and Hons Kong. John was able to call on Geoff recently whilst vacationing in the Far East and dellver personally the 6 metre QSL card from VK8KK

COMMUNICATIONS RECEIVER

- 4 BANDS COVERING $540 \mathrm{Kcs}$. TO 30 Mcs .
- TWO MECHANICAL FILTERS ENSURE MAXIMUM SELECTIVITY.
- PRODUCT DETECTOR FOR S.S.B. RECEPTION.
- AUTOMATIC NOISE LIMITER.

PRICE: FOR/FOA SYDNEY: $\$ 175.00$

CONSULT YOUR LOCAL RADIO DEALER, OR mail this coupon todely
Please forward free illustrated literature and specifications on Trio equipment.

Name.
Aadress.
(A unit of Jacoby Mitchell Holdings Ltd.)
376 EASTERN VALLEY WAY, ROSEVILLE, N.S.W.
Cables and Telegraphic Address: 'WES'TELEC.
Cables and Telegraphic Address:
Sydney. Phone: 401212

- LARGE TUNING AND BANDSPREAD DIALS FOR ACCURATE TUNING.
- CALIBRATED ELECTRICAL BANDSPREAD.
- "S" METER AND B.F.D.
- 2 MICROVOLTS SENSITIVITY FOR 10 dB S/N RATIO.
\qquad

.....
 \qquad

\qquad

Sub-EdItor: DON GRANTLEY
P.O. Box 222, Penrith, N.S.W., 2750
(All ilmes in GMT)

Band conditions have appeared to be much better since the last notes, with some increased activity on 10. Sironk signals have been noted on all bands. With some interesting openings
at odd hours. Unfortunately in have no sunat odd hours. Unfortunately I

Recently under the awards section, I had an item in reference to the WASHUR "Golden Microphone Award," issued monthly to a selected manager. I am pleased to note that the award for September was won by our old friend George Studd. ZL2AFZ, who is well known in the DX field as manager for the recent opera-
tions from the ZL "countries'. Congratulations George.
George.
Roy
ZMIAAT/K
ing successlul period of operation, in which time he had made over 20,000 contacts.

George ZM2AFZ, who is manager for Harold AXOLD, advises that activity from there has been curtailed due to official commitments on the other side of the island. also there has been some delay in clearing logs due to bad conditions, and Harold's regular absence from the transmitting site. He is due to return tio New Zealand at the end of December, but will
make as many contacts as possible in the meanmake as many contacts as possible in the meanI note that Harold was back on the band yesterday (Sept. 28) putting a terrific signal into VK2.
ZLAJF/A is the call allocated to Bruce during his period os activity from Campbell Island. Frequencies are 29035, 14035, 21035, 7015 and 3535 c.w.. also 28550 , 14250 , 14215 , 21350, 7090 , 3680 and 3825 s.s.b., answer as directed. QSLs to ZL2AFZ. Also on Campbell Is. for a year and our good friend Jock ZL2GX will be handling his QSL chores.

Recent activity of AZ3ABW/LH, has QSL manager K2YLM, Earl Smith, 183 Broad St., Eatontown, N.J., 07724.
There has been a slight futter from AC3 and 5 this month. Larry K2IXP was expected to be on from AC5 during September, also from AC3, however the reports iare conficting. If you did work or hear him during Mhat perReg VETIG anticlpates being on from AC3Pr and $9 N 1 M M$ early in October.

Albanis is in the news again, two recent operations having been reported. When reports were all sorted out. it appeared that it was one actual operation, by DL7FT and DL7LV
using the call ZA2RPS. It took place from using the call ZA2RPS. It took place from and over 3,000 QSOs were made. QSL arrangements arc as follows: For two-way contacts, send cards to DL7FT. Frank Turek, Petunierweg 99 (1). Berlin 47, Germany, and for S.w.l's to DLILV. I would emphasise that during this period, several contacts were made with a atation signing DL7FT/ZA using c.w., however thls chap was a pirate.
The current crop of stations with $2 K$ calls is attracting a lot of intercst, and a few of them can be lound most evenings. One is ZKimA. Tuatal, who is resident at Manihiki and
spends quite a bit of time in net operation spends quite a bit of time in net operation
with other ZKs. He prefers to operate on 7060 with other ZKs. He prefers to operate on 2060
c.w., is not used to pilc-ups, has KH6SP for C.W., is not used to pile-ups, has KH6SP for
MC during such happenings, and has Ed KHMC during such happenings, and has Ed KH-
GGLU as QSL manager. ZKIAJ operated from 6GLU as QSL manager. ZKIAJ operated from
Manihiki for a period of iwo days, but had only a lew contacts, these being with PACNET members. Over on Nlue Wally ZK2AF is busy.
He is usually found in the Pacific Net. will be He is usually found in the Pacinc Net. Will be
there for a year. and suggests you QSL direct to him, W. Christie. C/O. Education Dept.,
Niue Is., Sth. Pacific, v/a N.Z. ZKIAA is on Niue Is., Sth. Pacific, iv
regularly from Cook Is.
F9JS. Jean-Charles Sacotte. 180 Avenue de Cholsy. 75 Paris 13. France, is the correct address for QSLs going to FBJS. C3IBD and C3IDJ who is WB6CAB and CIIDG whose cards C3ID who is WB6CAB and C3IDG whose cards go to G3CDK. WB6CAB had been active from
Jersey and Guernsey as GC5ASS for four days Jersey and Guernsey is GC5AS
prior to his Andorra operation.
Al CR5SP is active daily on 14175 s.s.b. working to a list taken by CR6LF every day be-
tween 0530 and 0700 . Also QRV on $21250-350$ s.s.b. every week-end. but the time given, s.s.b. every week-end. VK, QSL to Box 97. Sau Thome. Portuguese West Africa.

Edgar G3BID was due on from LX over the last wecks of Scpt. and as he also holds calls that he would show up from there expected has been quite a bit of activity from LX this year. LX2CQ in the WAE contest asked ior cards to DKIYK, LXJPTT is a PO station active on 80 and 40 metres only, whilst 1 note a very on 80 and 40 metres oniy, whilst
strong signal from LXIBJ recently on $20 \mathrm{c} . \mathrm{w}$. strong signal from LXIBJ recently
We must not forget the prefix hunters, and as usual there are a few in the news sheets inis month. CM3LN, is Box 6, San Antonio de Los Banos, Cuba. FOOTC QSLs via WOCTY, FOOTB goes via WBOFF. 4JICR goes to UA3CR, Box N88, Moscow. FPOCA goes to K2OLD. but like most of these odd prefixes, the news
sheets don't give a reason for their existence.
New members for the ISWL, contact with Whom will count for the Monitor Award are: DK2BI, DL4WJ. G8CWS. XE1AE, VEIQJ, WA-
 DLAQQ, VEJCDZ. WTQYA. QSLs for any oi the above can go to the ISWL Bureau, C/O. Eric
Chilvers, 1 Grove Rd., Lydney, GLisje Glos.. Eingland.
Kon 9GIGT has been active for some time now and puts a good signal into this country. His QSL info is Ron Hockey, International Labour Office, U.N. Development Programme.
Jack AX3AXQ, from down in Tatura, has been trying out his new s.s.b. rig and has some good contacts in the log. Some of his catches are VR5LT, Sundays about 08002 , QSL HSAADB on 14155 at 10002 , QSL to KOOKB; Hack YN2TJH. Box 18, Granada, Nicaragua; Jack YN2TJH, Box it, Granada, Nicaragua; Vic. UAIKAE down in the USSR Antarctica,
QSL to Box 88, Moscow. Jack also mentions the WAC 5/8 Award, for phone you need one confirmation from each continent, for c.w. you need three with 599 reports from each con-
tinent, except if on 40 or 80 . Send to Tom tinent, except if on 40 or 80 . Send to Tom
Harmon, WUIUB, 1629 Pleasantiview, Wichita 3, Kansas, with seven IRCs.
It is almost certain that Joaquin CE3ZN and Gus will have a trip to Sinn Felix and Juan ernandez during this coming Novermber. Deto hand 1 will pass them on for the broadcasts. jooquin makes a spectal request that all chaps who want a QSL from CEsAT send a self who want a QSL from CEisAT send a selt addressed envelope with the an IRC as well.
For over 20 years HC8 Galapagos has eluded me. May have another chance to get hold of this much publicised country at last, as there are three active stations there at the time of writing, according to the Long Island DX has been on 14220 at $0040 z$ looking for contacts, and says QSL to HK3WO.
Back to Tatura for a moment to note a letter from Tom AX3BBC who had been having a look at the DX whilst recovering from the 'Nu. Using a FT200 and dipole up 20 ft., he made some good contacts. among them MIB, QSL to WA3HUP, FOOTC on Tahiti 1QSL to EA and UC2BF. Tom also operates the Shepparton South High School Club station AXsBBY.
Whilst on the subject of letters received, a word of acknowledgment and thanks to Jock WXILF for tuking the trouble to drop me a AXILF for tuking the trouble to drop me a
note re the ZMAOL/A operation from Auckland notere
I would also like to acknowledge a tape from Steve Ruediger over in VK5, which gives portion of transmissions from stations in CO. HA, YO. TI, 9B8, VQ9A/F, CN8, VP2, GY5, APS, ZK2. AC3 and many others. Who said the bands are dead?
The locality of stations in the USSR are sometimes a little difficult to pinpoint, but I have here a list of their calls and assoclated zones, which may assist in the identification.

 stations arc UA9H O P U V Y Y A B O
Zone 19 are UAOC G E F I Z. Whilst the elusive Zone 23 stations all begin with UAOY. Substitute UKO and UKS into the Zones as shown
YBAAAJ puts a really fine signal into this QTH, usually around 1000z. He asks for QSLs o go to manager W7VRO, but i heard him in 99. Wewak. TPNG., as he visits there regularly. This is a better proposition for the VK as we This is a better proposition for the VK as we can get away with mail service.
There is not a lot of news to hand this month. so I will take the opportunity of glving some of those QTHs which I held over from last month. I will not list them in any order. from logs and letters.

SOME QTHs
EA5CV-Nr 10. Plaza de Pana, Cartegena, Spain. XW8CY-Box 25, Vientiane.
TG4SR-Box 20. Chimalbengo, Guatemala
YB1AN-Box 288 . Bandung. Indonesia.
WASKPL $/ H R 1-B o b . C / O$. U.S. Embas
WASKPL/HR1-Bob. C/o. U.S. Embassy. Tegucigalpa, Honduras.
KL7GRF-Rural Route 1. Box 142B. Ketichican. KX6HW-Box 141. APO San Francisco, 96555. U.S.A.

EA8GK-Box 860 . Las Palmas. Canary Is. KA9JC-VIa KA9MF. Box 558. FEARL Bureau APO San Francisco, 96525 , U.S.A.
EA8GZ-Cristina Labin, Casilla 2i. Icod, Tene-HC2SO-APTO 184. Guayaqull. Ecuador
HT1AJP-APTO 434. Managua, Nlearagua. JA3IVC-Masaml Okuda. 10 Tangonosho. Yam-KJ6BZ-Box 436 ato-Koriya, Nara. Japan.
Calli, 96305 .
KM6DQ/KH6-Box 100, FPO San Francisco Callf., 96614.
100. FPO San Francisco. MP4BIA-Box ${ }^{96618 .}$. Manama, Bahrain Is.
OA4RQ-APTO 438. Lima, Feru.
OABBS-APTO 700, Arequipa. Peru
OAOBC-APTO 1841. Lima, Peru.
OH2BH-Angervolte 8-B-17. Helsinki. Finland UA9VH/JTI-Box
VP2AN-Box 394 . Sis. Johns. Antigua, British Vp2MB West Indies.
VP2MB-Box 16. Plymouth, Monsterrat, BW1. VR4EE-Box 8, Honlara, Guadalcanal, Solomon WS6DI- Box ${ }^{788}$, Pago Pago, American Samoa. YKIAA-Box 35. Dam
YK1AA-Box 35, Damascus, Syria.
YV3VN-APTO 625. Barquisemento, Lara, Vene3 A2CN 2 2uela.
3Z0L-Box 298, We Jardin, Exotiquo, Monaco.
SH3KA-Rev. Ward Brax, Poland.
9J2RQ-Box 401, Ndola, Zambia.
6W8BA-Box 3013. Dakar. Senegul Republic.
6W8XX-Box 971. Dnkar. Senegal Republic.
7X2AL-B.P. 2, Alger. Algeria. Nth. Airlca.
8QAYL-Mrs. Somia Wickremashinge. Male Maldive Is.
9K2BF-Box 1083. Kuwalt. Arabian Gulf.
9G1GD-Box 22. Nsuta. Wassaw. Ghana.
9Y4PL-Box 1187. Port of Spain. Trinidad, Sth America
ex-5N2ABF and ABI-F. Inks. 1 Staples Way, 9NIRA Houston, Texas, 77027.
9J2NC-Box 124, Kathmandu, Nepal
HSOISB-Box 2008 . Bangkok.
A note here for Swl's. I have for the past couple of years handled the inward QSL_ for members or otherwise. This is not a blg job and it is no trouble to do it. However. it is often difficult to locate the addresses of some of the W.I.A. members ps we don't have a list to work from. If the following members would drop me a line with thelr correct address, plus a stamped envelope I will forward on cards Which 22342 hold 2949 and 5087 .
And so we come to the end of another month. My thanks to ZL2AFZ. Don AX3AKN, Jack AX3AXQ. Jock AX1LF. Tom AX3BBC. Geof Watts DX News Sheet, LIDXA. Stew Foster of Monitor for QTHs, and Steve Ruediger. Good DX and 73 de Don L2022.

PROVISIONAL SUNSPOT NUMBERS

JUNE 1970

Dependent on observations at Zurich Observatory and its stations in Locarno and Aross

Smoothed Mean for Dec. 1969: 105.6.
Predictions of the Smoothed Monthly

August	94	November 88
September	r 92	December 86

-Swiss Federal Observatory. Zurich.

COOK BI-CENTENARY AWARD
The following additional stations have quali-

COOK BI-CENTENARY AWARD
 V.H.F./U.H.F. SECTION

The following stations have qualifled for the Award:

Cert. No.	Call
1	AX3ZNJ
2	AX5ZBT
3	AX4ZAL

REPAIRS TO RECEIVERS, TRANSMITTERS
Constructing and testing: xtal conv-, any frequency; 05-ers, R9-ers, and transistorised equipment.
ECCLESTON ELECTRONICS
146a Cotham Rd., Kew, Vic. Ph. 80-3777

V.K. ELECTRONICS

63 HAROLD ST., DIANELLA, W.A., 6062
Service to Transceivers, Receivers,
Transmitters, Antennae, etc.
Phone 76-2319

Any opinion expressed under this heading is tho Indlvidual opinion of the writer and does no necessarily coincide with that of the Publishers.

TO MALTESE EMIGRANTS

3914 Casgraln Drive.
Windsor, Ontario, Canada.
Editor "A.R.," Dear Sir,
A large number of Maltese emigrants settled In Austrilia during the last 25 years. The Maltese Amateur Radio International Society is now being formed and is looking for Malt ese Amateurs in every part of the world. With a population of over 100.000 Maltese Australians 1 am sure that a number of these are eithe Hams or will be interested in knowing that the M.A.R.I.S. is now being formed.

I gm hoping that you will be able to help by glving us some space in your Federal mag-
azine "Amateur Radio" which goes to every affilated club in Australia and to about 4,000 Hams across the country.

We are planning to select the Directors in the early part of next year and we are hoping to have a Director from each continent. We are now setting up the by-laws, frequency institutes, etc. We also have a supply of three coloured QSL cards which will be avallable at a very reasonable cost to all members.
Thanking you in advance, and hoping that the response will be great, for further information. anyone can write to me at the above address.
-G. N. Muscat. Founder/Director (Licences are avallable to all naturalised migrants.-Ed. 1

W.I.A. D.X.C.C.

Listed below are the highest twelve members in each section. Position in the list is determined by the first num ber shown. The first number represents the partits iven for deleted countries any credits given for deleted countries. The second number shown represents the
total D.X.C.C. credits given, including deleted countries. Where totals are the deleted countries. listings will be alphabetical by call sign.

Credits for new members and those whose totals have been amended are also shown.

PEONE			
VK5MS	316/340	VK5AB	297/314
VK6RU	314/339	VK4FJ	287/307
VK4HR	313/332	VK4TY	284/288
VK3AHO	311/326	VK2APK	281/287
VK6MK	303/323	VK2AAK	272/277
VK4KS	300/315	VKSTL	271/277
Amendments:			
VK4UC	237/237	VK4RF	185/185
VK4PX	234/235	VK7LZ	177/184
VK3AMK	226/226	VK2AGH	113/124
	New Members:		
Cert. No.	Cal		tal
111	VKGK		/138
112	VK4F		/150
113	VK42		/104
113	VK2		/103

	C. W.		
VK3AHQ	$301 / 315$	VK3YL	$276 / 293$
VK2QL	$300 / 323$	VK3NC	$274 / 300$
VK4FJ	$290 / 315$	VK3XB	$270 / 287$
VK4HR	$289 / 311$	VK3ARX	$270 / 279$
VK2AGH	$282 / 296$	VK6RU	$268 / 289$
VK2APK	$280 / 288$	VK4TY	$259 / 272$
	Amendments:		
VK4RF	$165 / 177$	VK4PX	$106 / 110$

EN			
VK4HR	316/341	VK6MK	304/324
VK6RU	315/340	VK2EO	302/325
VK2AGH	314/334	VK4KS	301/325
VK2VN	308/326	VK2APK	298/309
VK4SD	306/321	VK4FJ	298/323
VK4TY	306/321	VK3ARX	297/306
Amendments:			
VK4UC	271/272	VK4RF	230/242
VK4PX	245/250	VK6HD	154/154
VK7LZ	238/259	VK3QV	121/121
Cert. No.	New Members:		
126	VK6		/112
127	VK6		151
128	VK4		/172
129	VK2		/112

MORE MISSING NAMES

Editor "A.R."" Dear Sir
The No. 4 person in the photograph is myself and I was owner and operator of station 2ED at Walton Crescent, Abbotsiord Point. N.S.W. wavelength 220 metres.
I belleve that No. 2 person in the front row was Mr. C. P. Bartholomew, he was President of the Wireless Institute of N.S.W., and also in Director of Amalgamated Wireless Australasia Ltd. as well as a Director of Beard Watson \& Co. Lid.
Suggest that No. 9 person in the back row was Sid Colville, of Colville \&e Moore Radio Supplies, Rowe Street, Sydncy.
-Harold R. Gregory.

CUNNINGHAM'S COMPONENTS CATALOGUE

A 74-page catalogue, profusely illustrated, of a wide range of components and equipment is now available from R. H. Cunningham Pty. Ltd. The catalogue has a handsome two-tone blue cover and is bound with a plastic spiral comb to give long life and enable it to be opened flat without impeding reading matter.
Items from well known makers such as Bulgin, Dow-Key, Eddystone, Geloso, Oxley, "Q" Max, Sennheiser, Snelgrove, Stolle, Sonnenschein and Vitavox are represented.

Enquiries for copies should be written on letterhead and directed to Mr. R. H. Cunningham, C/o. R. H. Cunningham Pty. Ltd., 608 Collins St., Melbourne, Vic., 3000.

HAMADS

Minimum S1 for forty words. Extra words, 3 cents each. hamads will not be published unless ACCOMPANIED BY REMITTANCE.

Advertisements under thla heading will be accepted only from Amateurs and S.w.l's. The Publishers reserve the right to reject any advertising which, In thoir opintion. is of a commercial nature. Copy Vic.. 3002, by Sth of the month and remitance must accompany the advertisement.

FOR SALE: A.W.A. MR3A Carphone. complete. Chan-
nel .'B'" Crystals. In good order. S40 or best offer.
Ring 47.3920 (Melbourne) Ring 47-3920 (Melbourne)
FOR 8ALE: Collaro 3-speed. 4-irack Tape Deck with pause control. etc.. takes 7 in. spools. Done 10 hrs. work. Plus mono version of 119 Tape Adaptor omp play-back presamp all switches and pluas. etc.. power supply, blas recording osclllator. 20 tested valves, 20 now capacitors (various values), \&55 the lot. D. K. Mann. "Mundaroo." Tunibar. umba. N.S.W., 2653.

FOR SALE: Heathkit "Apache" 5-band Transmitter plus SB10 Adaptor. $230 v . / 115 v$. irans.. and manuals, 62-6025 (bus.), 898-3190 (a.h.) (Melbourne)

FOR SALE: One Mark 3D Pya Reporter Carphone unconverted, but is G.C. suitable for conversion to 6 metre net. S20 o.n.o. One Mark 3A Pye Reportor Carphone, ccnverted to 53.032 MHz net. complete with xals. S27 on.o. OOEO6/40s. two off brand new. $\$ 7.20$ each. Ring Howard Anders. VK3AYV. 277-1207 A. H. (Melbourne)
JOHNSON Viking Courier, excellent condition. 500 watts p.e.p. Ilnear, self-contained power supply.
S125. K. Lowe. 24 Phlpp's Cr., Dlamond Creek. Vic.. 3089. Phone 438-1873

THREEINCH Service Cathode Ray Oscilloscope. Astor TVI. in excellent condition. DC coupled vert. amp., S40. VK3ZTH. 24 Stadey Cres.. Chadstone. VIc. Ph. 56 -3428. B.H. $541-3537$.

WANTED: The following components from Bendix Radio Compass Receivers Type MN-26: Transformers type T16 (A15C64): 24 volt band-change motor assemblies with leads: loop aerials type MN-20 Please state condition and price required.
O'Brien. Edgar Rd., San Remo. Vic., 3925. Ph. 107.

LOW DRIFT crystals

म

1.6 Mc. to 10 Mc ., 0.005\% Tolerance, \$5
$\$$
10 Mc . to 18 Mc ., 0.005% Tolerance, \$6 \pm

Regrinds \$3

THESE PRICES ARE SUBJECT

 TO SALES TAX
SPECIAL CRYSTALS: PRICES
 ON APPLICATION

MAXWELL HOWDEN

15 CLAREMONT CRES., CANTERBURY,
 VIC., 3126
 Phone 83-5090

ELECTRONIC KEYER

MODEL EK-26

Features:

- 11 transistors and 12 diodes solid state electronic keyer.
- Variable speed key capable of 8 to 60 w.p.m., semi or fully automatic.
- Fully digital-dot-dash ratio, always perfect, and space adjustment.
- Relay or transistor switch output option. (Tr. switch: max. 110v., 100 mA. Relay: max. $700 \mathrm{v} ., 500 \mathrm{~mA}$.
- Built-in break-in QSO (VOX-CW) terminal.
- Built-in monitor-oscillator and phone jack.
- Choice of power supplies: 230v. 50-60 Hz . AC, or $6 \mathrm{v} . \times 2 \mathrm{DC}$.
- Small in size: 140 [w.] x 70 (h.] x 190 (d.) mm. Weight: 3 lb .12 oz .

BAIL ELECTRONIC SERVICES

60 SHANNON ST., BOX HILL NTH., VIC., 3129.

Phone 89-2213

[^64]
MOBILE RADIO TECHNICAN

For the maintenance of V.H.F., F.M. and A.M. Radio-Telephone equipment. Ham Radio background useful but applicants MUST have had experience in the development or maintenance of mobile radio. Salary negotiable according to that experlence.

For interview, after hours if necessary, ring Mr. Findlay on 807-1355.

FINDLAY COMMUNICATIONS

PTY. LTD.
2 POPE STREET, RYDE, N.S.W., 2112

Here's the solution to all-band working in a limited space-

G8KW TRAP-TUNED
 ALL-BAND KIT

Kit comprises two fully weatherproofed pre-tuned high 0 trap coils resonant at 7.1 MHz ., and large ceramic " T " centre insulator.

Price 518.40 (tax paid)

FEATURES-
75 ohm co-axial feed or twin flat transmission line.

- Only 108 feet long.
- Operates on slx bands.
- Reasonable SWR on all bands.
- Simple to erect.
- No "cut and try" necessary.
- Full instructions with each kit.

WILLIAM WILLIS

\& CO. PTV. LTD.
Elactronic and Radlo Equipment Supplias
77 Canterbury Road,
Canterbury, Vic., 3126
Phone 836-0707

CHOOSE THE BEST-II. COSTS NO MORE

O. T. LEMPRIERE \& CO. LTD. Hated Office: 31-4i Bowden St, Aloxandria, N.8.W., 2015 and at Melboume - Brisbanc - Adelaide - Parth - Noweastile

EVERY DAY IS FATHER'S DAY
(at least that's what my XYL says)
So you still have an excuse to shout yourself a present.
Send \$2.35 to-
Federal Subscription Manager. W.I.A.,
P.O. Box 67,

East Melbourne. Vic., 3002.
for your subscription to-
"BREAK-IN"
Official Journal of N.Z.A.R.T.

not all quartz crystals are the same

Today's sophisticated communications equipment calls for crystals that meet the most exacting standards of the art.
Standards that were acceptable a few years ago cannot meet the requirements of design engineers today. Today's tight tolerances demand quartz blanks with precision selected angles of cut, and Hy-Q use X-ray diffraction equipment to determine this most important factor.
Long term stability is assured by close engineering control of all processing in an air-conditioned environment. The blanks are then checked to determine the frequency change over the temperature range.
The crystal is then precision calibrated to frequency using a crystal impedance meter which simulates the manufacturer's oscillator specifications.
Hy-O crystals are custom manufactured to meet all these exacting requirements.
It is for these reasons that Hy-Q crystals have been readily accepted as a standard by the Communications Industry and why we can guarantee them against defective material and workmanship or any deterioration in performance when they are used in equipment for which they were specifically made.

TRANSCEIVERS

INOUE IC700

Three unit, solid state exc., tx mix. dvr. and final. Sep. rx and tx filters, 9 MHz . single conversion, no birdies. Rx has cascode FET front-end. Has RIT, VOX, PTT, 1 KHz . readout, 1 uV. sens.. 7 Amateur segments, $3.5-29.7 \mathrm{MHz}$. plus 3 c.c. spots. 150 w. p.e.p. Special $\$ 400$ ONO.

TRIO TS500

Seven Amateur segments, 3.5-29 7 MHz . AM-SSB-CW-. 180w. p.e.p. Complete with AC PS and Sep. VFO Details "A.R." March '69, page 24. S470. ONO.

QUAD ANTENNAS

See "A.R." March 1970, p. 12-15, or write for reprint. HUBS \$15, p.p. \$1; BAMBOO SPREADERS, matched and trimmed, 14 ft . plus, $\$ 12 /$ set, f.fwd.: WIRE, 350 ft . $\times 0.064 \mathrm{ln}$. ($16 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. 14 a.w.g.J, HD Cu. \$7, p.p. \$1; KITS complete: HUB, SPREADERS, WIRE, INSULATORS, NYLON LINE, $\$ 40 \mathrm{f}$. fwd.

MOBILE ANTENNA COMPONENTS

Fibre glass blanks, bases, etc.

S. T. CLARK
P.O. BOX 45, ROSANNA,
Vic., 3084. Ph. 45-3002

LOG BOOK

AVAILABLE IN TWO TYPESVERTICAL OR HORIZONTAL

Larger, spiral-bound pages with more writing space.

Price 75c each
plus 22 Cents Post and Wrapping
Obtalnable from your Divislonal Secretary, or W.I.A., P.O. Box $\begin{aligned} & 36 \text {, East Melbourne, } \\ & \text { Vlc., } 3002\end{aligned}$

COMMUNICATIONS CAREER TRAINEES WANTED

The Department of Clvil Aviation wants men aged at least 18 and under 36 years having previous telecommunications experience to undertake conversion training for positions of Communications Officer.
Communications Officers are responsible for the operation of Aeronautical Broadcast Services and a variety of Aeronautical Fixed Telecommunications channels linking Flight Service and Air Traffic Control units, and as such they make a vital contribution to the high safety standards of Australian civil aviation.
Opportunities exist for further training and advancement as Flight Service Officer.
Applicants must be British subjects (by birth or naturalisation) and be medically fit. A good level of secondary education is desirable. A minimum of two years related experience in telecommunications fields is necessary together with proficiency in machine and wireless telegraphy. Ability to communicate fluently and clearly in English is essential.
For further information contact -
Recruitment Officer,
Department of Civil Aviation, Aviation House, 188 Queen Street, Melbourne, VIC. 3000 Telephone 620131

(4)
ECONOMICAL SSR!
FT-200 FIVE-BAND TRANSCEIVER

A superb quality, low cost, versatile transceiver. Covers $80-10 \mathrm{mx}$, tuning range 500 Kc . each band. On 10 mx , crystal supplied for $28.5-29 \mathrm{Mc}$. (Caystels available optional extra for full 10 mx coverage.) SSB, CW, AM; with a speech peak input of 300 w . Transistorised VFO, voltage regulator, and calibrator. 16 valves, 12 diodes, 6 transistors. PA two 6JS6A pentodes. ALC, AGC, ANL, PTT and VOX. Calibrated metering for PA cathode current, relative power output, and receiver S units. Offset tuning $\pm 5 \mathrm{Kc}$. Uses a 9 Mc . crystal filter with bandwidth of 2.3 Kc . at -6 db . Selectable sidebands, carrier suppression better than - 40 db . Sideband suppression better than -50 db .
Fixed channel facility optional extra, useful for net operation, skeds, etc.

Operates from conservatively rated separate 230 volt 50 c.p.s. AC power supply, FP-200, which includes built-in speaker. A 12 volt DC power supply, DC-200, is also available. Transceiver incorporates power take-off and low level R.F. drive outlets suitable for transverters.

Cabinet finished in communication grey lacquer.
Panel, etched, satin finish aluminium.
Price, FT-200, \$350 inc. S.T.

Other well known Yaesu Models: FT-101 Transistorised Transceiver, FTDX-400 Transceiver, FL-2000B Linear Amplifier, FLDX-400 Transmitter, FRDX-400 Receiver. FTV-650 6 Metre Transverter, FF-50DX Low Pass Filter, 600 c.p.s. CW Mech. Filter for FRDX 400 , 600 c.p.s. CW Crystal Filter for FTDX-400. Also: SWR Meters, Coax. Switches, Coax. Connectors. Hy-Gain (U.S.A.) Beams, Antenna Rotators. Electronic Meyers, Coax. Cable.
All sets checked before despatch. After.sales service. spares availability, 91-day warranty. All Yaesu sets sold by us are complete with plugs. power cables and English language instruction manual. Prices and specifications subject to change.
Sole Australian Agent:

BAIL ELECTRONIC SERVICES
 60 Shannon St., Box Hill North, Vic., 3129. Phone 89-2213

N.S.W. Rep.: STEPHEN KUHL, P.O. Box 56, Mascot?, N.S.W., 2020. Telephone: Day 67-1650 (AH 37-5445) South Aust. Rep.: FARMERS RADIO PTY. LTD., 257 Angas St., Adelaide, S.A., 5000. Telephone 23-1268 Western Aust. Rep.: H. R. PRIDE, 26 Lockhart Street, Como, W.A., 6152.

Telephone 60-4379

cUSTOMER SERVICE

'RAPAR' MICROPHONES

Select from the wide range to suit every application-at all our Branches

Illustrated is Model TW-205A, a ceramic insert type ideally suited for S.S.B. operation. Has built-in pre-amp. and volume control (enclosed battery operation), fingertouch, press-to-talk switch, and holding switch for continuous operation.

Price $\$ \mathbf{2 6 . 0 0}$

plus 15% Sales Tax

Model TW-201:
Non directional, with extremely high sensitivity over a broad pattern. Employs two separate inserts. On;'Off switch. $\$ 15.20$

Model TW-204A:
Non directional characteristics with wind shield fitted. On/OIf switch. $\$ 11.80$

Model TW-204B:
Uni-directional. On/Off switch.
$\mathbf{\$ 1 5 . 0 0}$
Model TW-207:
Cardioid with On/Off switch.
Professional mic. suitable for
vocal use.
$\mathbf{\$ 1 7 . 8 0}$
Model TW-208:
Cardioid.
$\$ 15.50$
Model TW209:
Cardioid with volume control.
On/Off switch.
$\$ 15.60$
All Prices plus 15\% Sales Tax

562 Spencer St., Melbourne, Vic., 3000. Phone 329-7888, Orders 30-2224 City Depot: 157 Elizabeth Street, Melbourne, Vic., 3000. Phone 67-2699 Southern Depot: 1103 Dandenong Rd., East Malvern, Vic., 3145. Ph. 211-6921

Merry Christmas and Happy New îjear to all our Clients

PLUGS AND SOCKETS

CRYSTALS

CItIzens band and MODEL RADIO CONTROL FREQUENCY CRYSTALS

DUAL METER S.W.R. BRIDGE

For V.S.W.R. measurement, this unit uses the dual bridge method of comparing simultaneously the power supplied io and reflected rom the antenna system. Specs.: impedance, 52 ohms: accuracy. plus or minus 5°; power loss. negligible: írey. range. 3 to 150 MHz . Price $\mathrm{S28}$.

CHRISTMAS SPECIAL!

1 WATT TRANSCEIVER

13 TRANSISTORS. 3-CHANNEL. AND CALL SYSTEM Range: up to $\mathbf{1 0}$ miles (depending on terrain. etc.). Frequency: 27.240 MHz. (P.M.G. approved). Freq. stability: plus or minus 0.005%. Transmitter: Crystal controlled. 1 watt. Receiver: Superheterodyne. crystal controlled. Antenna: 13 -section delescopic. Power source: Eight UM3 1.5 v . pen batt. Size: $81 / 4 \times 31 / 4 \times 13 / 4$ inches. Weight: 25025. Other features: Leather carrying case, battery level meter, squelch control. earphone jack. AC adaptor jack, etc.
Price $\$ 115$ a pair. Normal Price $\$ 165$
Single units available S59.50 each BE EARLY. limited stork available

No. 62 TRANSCEIVERS
Wireless Set No. 62 Mk. II. (Pye). Frequency range 1.6 io 10 MHz . in iwo bands, inbuilt 12 v . generator power supply. Clean condition. complete with headphones and handset mike.

$$
\begin{array}{ccc}
\text { Special } & \text { Price } \$ 39.00 \\
\text { Packing } & 75 c . & \text { F.O.R. }
\end{array}
$$

GENERAL COVERAGE COMMUNICATION RECEIVERS

in stock

TRIO 9R590/S valve type. 550 KHz . to 30 MHz . in four bands, bandspread tuning. SSB-AM-CW. Sits net.
TRIO MATCHING SPEAKER, 8 ohm V.C.. S13.59. REALISTIC DX -150, solid state, 550 KHz to 30 MHz.. stralghiline bandspread tuning. SSB-AMCW. G233 net.
LOUDSPEAKER in matching cabinet, 8 ohm V.C. S13.50.
LAFAYETTE HA-600, five-band, bandspread tuning. solid state. SSB-AM-CW. S199 net.
LAFAYETTE HA -800. solid state, as above but Ham Band Only, SSB-AM-CW, S199 net.

TE-16A TRANSISTORISED

 TEST OSCILLATORFrequency range: 400 KHz , to 30 MHz . in five bands. Modulated 800 Hz . sine wave. Modulation 30% approx. $5 \% 8 \times 5 \% \times 358$ Inches. Weight 1.5 lbs . Price 524 tax paid. Postage 75 c .

CRYSTAL CALIBRATOR No. 10
Nominal range: 500 KHz , io 30 MHz . 500 KHz xtal and $250 \mathrm{KHz} . / 530 \mathrm{KHz}$. BFO. Provides hetero dyne output in steps of 1 MHz . Dial driven by machine cut strip gears. calibrated in 2 KHz . div. Easily read io 2$\lrcorner 3$ cycles. Output "spiked" approx. 1 sec. in'e.vals. identifies beat note. Power re. quiremenis: 12 v . De at 0.3 amp ., 250 volts at is mA. This is a precision instrument. Complete with ciysial. Brand new.

```
Price $23.50
```


TAA300 INTEGRATED CIRCUIT

1 Watt Audio Amplifier
The TAA333 is a monolithic integrated circuit for use as a complete af. amplifier. With a supply voltage of 9 v . outputs of up to 1 w . are obtainable into a land impedance of 0 ohms. A voltage range of 4.5 to 9 volts coupled with very low crossover distortion and low current drain (8 mA.) makes this circuit ideal for battery operation.

TAR 30 Integrated Circuit, 53.50
Postage 10c

A.C. ADAPTOR-BATTERY SAVER Type PS 64-240 volts to 6 or 9 volts. 300 mA . $\$ 12.59$ Type PS 62-240 volts to 6 or 9 volts. 100 mA . $\mathbf{5 8 . 5 0}$ Postage 30c

SOLDERING IRONS

ADCOLA M70 $1 / 8$ inch tip. 240 volt $\$ 8.00$ ADCOLA M64 $3 / 16$ inch tip, 240 volt $\$ 8.40$ SCOPE 4 volts AC/DC, 100 watts S6.40 MINISCOPE \$6.00 SCOPE De Luxe $\$ 7.00$

Postage 20c
SOLDERING IRON TRANSFORMER
240 volts /3.3 Volts, 100 V/A $\$ 6.40$ Postage 40c

ERIN SOLDER

Five-Core. 60/40 $\$ 2.50$
Five-Core. 40/60 \$2.20
Solder Pack. 42 inches IBC Postage 20c

HAN

 RADIO SUPPLIERS

 RADIO SUPPLIERS 323 ELIZABETH STREET, MELBOURNE, VIC., 3000 323 ELIZABETH STREET, MELBOURNE, VIC., 3000
 Phones: 67-7329, 67-4286 All Mail to be addressed to above address

Our Disposals Store at 104 HIGHETT ST., RICHMOND (Phone 42-8136) is open Mondays to Fridays, 10.30 atm. to 5.0 p.m., and on Saturdays to midday.

We sell and recommend Leader Test Equipment. Pioneer Stereo Equipment and Speakers, Hitachi Radio Valves and Transistor Radios. Kew Brand Meters. A. \& R. Transformers and Transistor Power Supplies. Ducon Condensers. Welwyn Resistors, etc.
amateur radio
JOURNAL OF THE WIRELESS INSTITUTE OF AUSTRALIA. FOUNDED 1910

Publishers:
VICTORIAN DIVISION W.I.A.
Reg. Office: 478 VIctorla Parade, East Melbourne. VIc., 3002.

Editor:

K. E. PINCOTT VK3AFJ

Assistant Editor:
E. C. Manlfold VK3EM

Publications Committee:

Clrculation-
Jack Kelly- ..- VK3AFD
Draughtarsen:-
Clom Allan ... -.. VK3ZIV
John Blanch VK3ZQL
John Whitehead VK3YAC

Enquiries:
Mra. BellalRS, Phone 41-3535, 478 Victorla Parade. East Molbourne. VIc., 3002. Hours: 10 a.m. to 3 p.m. only.

Advertising Representatives:
TECHNICAL NEWS PUBLICATIONS
21 Smlth St., Fltzroy, Vlc., 3065. Tel, 41-4992. P.O. Box 108, Fitzroy, VIc., 3065.

Advertisement materlal should be sent direct to the printers by the first of each meonth.
Hamads should be addressed to the Edltor.

Printers:

"RICHMOND CHRONICLE," Phone 42-24t9.
Shakespeare Street, Rlchmond, Vic., 3121.

All matters pertaining to "A.R." other than advertising and subscriptions, should be addressed to:

THE EDITOR,
"AMATEUR RADIO."
P.O. BOX 36,

EAST MEBBOURNE, VIC.. 3002.
*

[^65]
CONTENTS

Technical Articles:-

| A Solid State Amateur S.S.B. Receiver, Part Four | ... | \ldots. | 7 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| Harmonics, Lecture No. 10A | \ldots. | $\ldots .$. | \ldots. | \ldots. | \ldots. | \ldots. | 10 |
| Signal Source for Carphone Receiver | Alignment | $\ldots .$. | \ldots. | 9 | | | |
| VK3 V.H.F. Group V.H.F. Pre-Amplifier, Mark | II. | \ldots. | \ldots. | 5 | | | |

General:-

Cook Bi-Centenary	Award	$\ldots .$.	\ldots.	\ldots.	\ldots.	\ldots.	\ldots.	8	
Correspondence	$\ldots .$.	\ldots	$\ldots .$.	\ldots.	\ldots.	\ldots.	\ldots.	\ldots.	24
DX	$\ldots .$.	$\ldots .$.	\ldots.	$\ldots .$.	\ldots.	\ldots.	\ldots.	\ldots.

Federal Comment: An Important Speech 4
Increase in Amateur Licence Fees 19
Index of "A.R." Technical Articles-1966-1970 16
Index to Volume 38-1970 28
New Call Signs 19
Overseas Magazine Review 23
Prediction Charts for December 1970 22
Racal Wins Fairchild Planar Award 18
Reciprocal Licensing 24
R.S.G.B. Sub. Increase 20
Silent Key 24
VHF 21
W.I.A. V.H.F.C.C. 8

Contests:-

Contest Calendar 22
Distance Table for Ross Hull V.H.F. Contest 9
John Moyle Memorial National Field Day Contest, 1971 13

COVER STORY

Our front cover this month shows what Is claimed to be the first commercially available, fully solid state, 100 watt linear high frequency amplifier in the world. The unit, manufactured by Racal (Aust.) Pty. Ltd., won the Fairchild Planar Award for 1970. Full story on page 18.

This is the BIG performance set that obsoletes tube receivers . . . a professionallooking set that appeals to amateurs and short wave listeners alike. The DX 150 gives long-range, world-wide realistic reception on 4 bands, including Broadcast. Fully transistorised-all solid state-no warmup delays; the DX 150 will run on dry cells if current fails or is not available; will operate from a car's cigarette lighter or any 12 V DC service. A 240 V AC power supply is also built in. Over 30 semi-conductors-product detector for SSB/CW. plus fast and slow AVC-Variable pitch BFO-illuminated electrical bandspread, fully calibrated for amateur bands-cas: cade RF stage-ANL for RF and AFzener stabilised-OTL audio-illuminated " S " meter-built-in monitor speaker plus front panel jack for external (optional) matching speaker.

CONSULT YOUR LOCAL RADIO DEALER, OR MAIL THIS COUPON

Realistic Performance Realistic Price \$229-50

Attractive silver extruded front panel, solld metal knobs, grey metal cabinet, size $14 \frac{1}{2}^{\prime \prime} \times 9 \frac{1}{4}^{\prime \prime} \times 6 \frac{1}{2}$.

(A unit of Jacoby Mitchell Holdings Ltd.) 376 EASTERN VALLEY WAY, ROSEVILLE, 2069 Cables and Telegraphic Address: WESTELEC,
every month 45,000,000

Electrolytic Capacitors are wired into quality equipment throughout the world . . . proof that ELNA capacitors are fully accepted and wanted by manufacturers everywhere.

Catalogue now available

SOANAR ELECTRONICS Pty.Ltd.

SAR

SALES OFFICES
VIC.: 30.32 Lexion Ad., Box Hill
NSW: 82 Carito
NSW 798 ci99 Cr., Summer Hill.
SA: 470 Mor
470 Morphelt SI. Rdelaide.
MTEPSTATE AGE
INTERSTATE AGENTS
OLD: A. A. Venn Ply. Lid.. Valley.
WA: Everett As
leederville. 84137 Ltd. West
Sole Australian Agents

SIDEBAND ELECTRONICS ENGINEERING

YAESU-MUSEN-FT-101 AC/DC all-band solid state Transceiver. expected around Xmas time, latest model, with PTT mike FT-DX 400 de luxe AC Transceiver, stllI only FT-200 all-band economy Transceiver, with AC supply-speaker unit in kit form, special package offer ...
$\$ 650$ ET-200 with assembled AC supply-speaker unit. only FL-DX-2000 Linear Ampllifier
FL-2000 Linear Amplifier with American import tubes 572 B … FL-DX-400 all-band Transmitter
FR-DX-400 de luxe Recelver
\$525
 6 and 2 mx converters. CW filter, FM filter and FM discriminator, factory built-in
FC-6 or FC-2 solld state converters FF-50-DX low pass co-ax. Ine filter, only
500 Hz . CW filter. Kokusal, as used In the FR-DX-400 SWAN-SW350C with Swan 14-230 AC/DC power supply...
HY-GAIN-Hy.Ouad, triband cubical quad, $\mathbf{1 0 . 1 5 - 2 0}$ metres, with gamma-match for one co-ax. feed-line, 1 kw . power TR3JR triband junior. $10 \cdot 15 \cdot 20$ metre beam
TH6DXX triband senior, 10-15-20 metre beam, six elements Special package deal: TH6DXX with balun. CDR Ham-M rotator and control unit with 50 yards 8 -cond. cable $14 A \mathrm{AO}$. 10 to 40 metre four-band vertical, 1 kw . \qquad \$105 NEWTRONICS-4-BTV 10 to 40 metre four-band vertical, 1 kw MOBILE WHIPS-WEBSTER Bandspanner, 10 to 80 mx centre-loaded, contInually adjustable
MAAK HW-40 helical whlp for 40 metres only
MARK HW-3 triband helical whip for 10-15-20 metres
Swivel mount for flat surface mounting. with spring
g KIngsgrove, N.S.W., Ilmited stock. 0/325 325-0-325 60 \$1.25; U60/385 385-0-385 60 mA .5 and 6 v . $\$ 1.25$; U80/385 $385-0-38580 \mathrm{~mA}$ 5 and 6 and 6 v . SI.50; $9158 \quad 0.240 \quad 50 \mathrm{~mA}$. 6v. 1.5a. S0.75; 9716 240-240 50 w . isolation transf. 0.75; varlous transistor output and Interstage transf $\$ 0.50$ each; chokes $30 \mathrm{H} .80 \mathrm{~mA} . .15 \mathrm{H} .150 \mathrm{~mA}$., $\$ 1.00$ each. Add enough for freight or postage, they are heavy!!!

ROTATORS-CDR Ham-M heavy duty rotator with Indicator-control unit, for up to 2 Inch masts, the proven rotator since $1955 \ldots .$. 8 -conductor control cable for same. per yard $\$ 0.60$ Note the special package offer with Hy-Galn TH6DXX.
ANTENNA NOISE BRIDGE-OMEGA TE-7-01 Bridge, for the serlous experimenter, glves resonance and impedance in one operation CRY8TALS-FT-241 channels $0-79$, full box of 80 xtals $375 / 515 \mathrm{KHz}$. $\$ 25$ Individual channel crystals, $\$ 0.20$ to $\$ 2.00$, depending on frequency required, 455 KHz , the dearest.
BALUN8-Exact electrical duplicate of the Hy-Gain EN-86 $\$ 12.50$ MIDLAND PRODUCTS-Type $13-710$ One Watt Transcelver, P.M.G. approved model for 27.240 KHz ., operation under special llcence. will accept 27 and 28 MHz . Amateur band crystals. 3 channels, with batteries, earphone, carrying case, audlo squelch control, battery voltage meter, complete, only … Type 23-1358 Field Strength Meter, with five ranges tunable from 1 to 300 MHz . with telescoplng whlp $1 .$. sensitive for low powers but good for 1 kw . max.. up to 175 MHZ. reads forward and reflected power simultan, 52 -ohm imped. Type 23-126 SWR Meter, standard 52 -ohm type, good for up to i kw., with telescoping whip to be used for field strength meter PTT Dynamic hand Microphone, steel case, 50K Impedance, with coiled cord and moblie clip
Ceramic table-type Microphone, with "...7Ti" bar S Same MIcrophone, bullt-In pre-amp. for up to 50 dB . amplification S2 Co-ax. Connectors. MIdland type PL-259 male, SO-239 female, with and without flange. PL-258 double female per connector, all each $\$ 0.75$ Co-ax. Inserts for the PL-259 for thinner than RG-8U co-ax. cable $\$ 0.20$ CO-AX. CABLES.-Type RGBU, $3 / 8$ inch diam., 52 -ohm per foot $\$ 0.20$ Type RG58U, $3 / 16$ Inch diam., 52 -ohm per foot S0.10 Type RG214U $3 / 8$ inch diam., 52 -ohm, silvered conductors. extra heavy braid, for VHF lower losses per foot $\$ 0.30$ All prices quoted net cash Springwood, N.S.W.. subject to alteration without prior notice; sales tax included in all cases; postage, frelgnt and Insurance not!

SIDEBAND ELECTRONICS ENGINEERING Proprecor: AREE BLEs

Telephone: Springwood (STD 047) 511-394, not part of the Sydney telephone exchange
P.O. BOX 23, SPRINGWOOD, N.S.W., 2777

AN IMPORTANT SPEECH

The Annual Dinner of the Wireless Institute of Australia, Victorian Division, was held on Wednesday, 28th October. Amongst the guests were Mr. E. J. Wilkinson, Assistant DirectorGeneral Radio, and Mr. H. Young, Controller, Radio Branch. Also present was Mr. Bob Booth, W3PS, the General Counsel of the American Radio Relay League.

The toast to the Institute was proposed by Mr. Wilkinson and his speech in proposing the toast is of general interest. Mr. Wilkinson commenced by referring to the fact that this was the sixtieth year of the Wireless Institute. He pointed out that 1970 was significant for other reasons. Firstly, Australis Oscar-5 had been launched in 1970 which he described as probably the most meritorious effort in the history of the technical side of the Wireless Institute. He congratulated those concerned on their achievement and wished them "Good luck with the next one."

Mr. Wilkinson also pointed out that 1970 is the year of the skirmishing and behind-the-scenes lobbying in preparation for the 1971 World Administrative Radio Conference on Space Communications. He said that the Wireless Institute of Australia is in the front rank fighting for Amateurs' rights, seeking new spectrum above 20 GHz . and protecting its "real estate" below that frequency. Significantly, Mr. Wilkinson said that he believed that the Institute is holding its own-"Its performance to date certainly measures up with the other efforts in this area that we have seen from the Australian Post Office side".

He said that the Australian Post Office was conferring with the various users of radio frequency and many of these would jump at some of the precious areas that are at present allocated to the Amateur Service. Mr. Wilkinson
said, quite bluntly, that one of the pressures on the Post Office was the claim by these other users that the Amateur Service was not using its allocations. Once again I quote from what Mr. Wilkinson said:
"We know you're doing your best to hold on to the areas that you already have and enjoy-would you please help by making use of them! You may have seen some of the statements about the number of signals on the air in the 144 MHz . band and the 432 MHz . band. If ever there was a time for the Australian Amateur to make plenty of use of these v.h.f., low u.h.f. and even the higher u.h.f. bands that adjoin some of the areas that are being used by the space people, then this is the year and this is the time."

Then Mr. Wilkinson referred to a matter that is of far reaching significance in Amateur circles. I propose again to quote his words, but before doing so, this matter requires some little explanation. The allocation 7-7.1 MHz . is allocated on a world-wide basis exclusively to the Amateur Service. In Region III. and Region I., the band $7.1-7.3 \mathrm{MHz}$. is allocated to the broadcasting service. In Region II. that area is allocated exclusively to the Amateur Service. Early this year the Institute made representations to our Administration to extend the Australian Amateur allocation (which is 7-7.1 MHz. exclusive and $7.1-7.15 \mathrm{MHz}$. shared) to 7.3 MHz., thus bringing our allocation in line with the allocations in the United States of America and other Region II. countries.

In the course of his speech, Mr. Wilkinson made the first public reference to this representation: "Dare I mention the 7 MHz . band which will probably be dear to a few people's hearts. It is perhaps strange that at
the time that the space frequencies are being talked about, there is a strong feeling in the Australian Post Office that we ought to do something about bringing Australia into line with Region II. in that precious $7.1-7.3 \mathrm{MHz}$. area. Let's hope we can do something. You know it's a Region III. problem, not just Australia, but it might be some comfort for you to know that the Australian Post Office at least is hoping that it can swing this deal and help you to get back on an equal footing with Region II."

No doubt Mr. Wilkinson's comments are guarded in the extreme. Personally, I attach great significance to them and I hope that we may look forward to a time in the not too distant future when the Australian Amateur Service is able to use the 40 metre band up to 7.3 MHz .

Mr. Wilkinson concluded by congratulating the office-bearers of the Wireless Institute of Australia. He said that it was a great help to the Post Office to be able to deal with a united body-a group of people who they know represent the interests of the whole Amateur fraternity. He said that it would be a hopeless situation if they had to try and deal with individuals or with groups who were not as united as the Wireless Institute is. He said: "It's a credit to the members and to the office-bearers that we are able to get well reasoned and well represented cases and discuss them frankly and openly and come to what we believe to be a reasonable decision."

I know that Mr. Wilkinson regarded what he said in his speech as being of special significance. It is because I share that view that I have taken the unusual course of quoting from his speech at some length.
-michael owen, vkski,
Federal President.

VK3 V.H.F. GROUP V.H.F. PRE-AMPLIFIER, MARK II.

This article has been essentially published to inform interested Amateurs of the changes in design and construction of the very successful v.h.f. pre-amplifier that originally appeared in "Amateur Radio" of July 1969. A great many enthusiasts have constructed this simple unit for operation within the Amateur bands, and more than a handful have been used in mobile radios by establishments outside the Amateur sphere of interest.

In response to suggestions by some interested Amateurs, we have undertaken to modify the old circuit and to include these in the new design. The suggestions were mainly concerned with protection of the semiconductor, however, as this required a change in the printed circuit design, we decided to examine the possibilities of further changes. By substituting a TIS88/ 2N5245 in place of the device originally used, we have now brought this unit into line with our two metre and 70 centimetre converters.

This device (TIS88) has been found to be totally reliable and exhibits more than enough desirable characteristics. Further, this would reduce the need to carry a wide range of semiconductor devices that essentially do the same operation.

Throughout these modifications, we have kept in the foreground of our consideration the basic requirements for the effort necessary in making changes mentioned above.

The design objectives of the preamplifier were:
(a) Best noise figure possible consistent with reasonable cost.
(b) Sufficient gain so that the system noise figure is determined by the pre-amplifier.

PERFORMANCE

Once again noise figures of better than 2 dB . have been obtained on both 2 and 6 metres. The gain on 2 metres is usually in excess of 18 dB . with gains of 22 dB . quite common. The gain on 6 metres, although not accurately measured, would as a function of the device parameters be slightly more.

DESCRIPTION

The pre-amplifier uses an TIS88/ 2N5245 JFET (Texas) in neutralised
common source configuration. Neutralisation is accomplished by adjustment of L2, which resonates with the drain to gate feedback capacitance to form a high impedance parallel tuned circuit at the operating frequency.
A supply of $6-15$ volts is required. The design voltage is 12 volts, at which it draws approximately 4 mA . Positive and negative supply rails are d.c. isolated from earth, allowing operation with either polarity earth. The input and output impedances are 50 ohms, although the mismatch of a $70-\mathrm{ohm}$ termination is negligible. The preamplifier may be left on during transmission periods. This will prevent changes in junction temperature detuning the pre-amplifier at switch-on.

VK 3 V.H.F. GROUP PREAMPLIFIER.

The pre-amplifier is constructed on a small ($2^{\prime \prime} \times 2^{\frac{1}{4}}$) glass epoxy board. All capacitances below $1,000 \mathrm{pF}$, are NPO disc ceramics. Above $1,000 \mathrm{pF}$., Hi-K disc ceramics are used. Resistors up to $\frac{1}{2}$ watt rating are suitable.

The coil formers used are Neosid Type A (single assembly) with F29 (v.h.f.) slugs. The bases usually provided have not been used, so as to maintain high unloaded tuned circuit Q. Instead, the boards are drilled 7/32" and the formers glued in. Coil details are given elsewhere.

APPLICATIONS

Use of the pre-amplifier will result in an improvement in noise figure over even the best valve type front ends, and most transistor and FET converters. In addition, the pre-amplifier may be employed to increase overall gain to a satisfactory level.

A great improvement will result when the pre-amplifier is used ahead of the front-end of a "carphone" Most "carphones" use a 6AK5 r.f. amplifier. The best noise figure that can be expected of this tube on 2 metres is 8 dB ., but a more likely figure is 11 dB . ${ }^{1}$ The improvement at 6 metres is less pronounced, but nevertheless worthwhile.
A word of warning is necessary in connection with "carphones". Some
"carphones" do not use an antenna change-over relay. Unless a changeover relay is installed the pre-amplifier will be damaged by excessive r.f. voltage. Installation of a change-over relay in these cases is recommended.

Similarly, the change-over relays used in a few higher power "car-phones"-mainly to 25 w . $3 / 20$ typehave inadequate isolation between contacts. Damage may be prevented by connection of back-to-back diodes from input socket to earth, on the copper side of the printed circuit board. Almost any small signal diode, such as the OA95, will be adequate. This addition results in only a slight decrease in performance.

CONSTRUCTION

The Neosid coil formers should be mounted first. File off the locating lands and glue the formers in place, making sure that the slugs will line up with the position of the cans. When the glue has hardened, the coils may be wound and the cans soldered in place, after which the remaining components may be mounted.

Ensure that all earth connections to the board are removed prior to soldering in the FET. Although no special handling precautions are necessary, for kest periormances the FET should be pressed down to within $1 / 8^{\prime \prime}$ of the board. For soldering, a Scope soldering iron with clean pointed instrument tip is suitable.

COIL DETAILS

Two Metres

$\mathrm{Cl}-3.3 \mathrm{pF}$.
C2-3.3 pF.
L1-input coil, 22 S.W.G. tinned copper wire, 5$\}$ turns tapped $\frac{a}{4}$ turn from cold end (cold end being that end closest to the board).
L2-neutralising coil, 30 or $32 \mathrm{~B} . \& \mathrm{~S}$. enamelled copper wire, 19 turns close wound on board end of the former.

L3-output coil, 22 S.W.G. tinned copper wire, $5 \frac{1}{2}$ turns tapped $1 \frac{3}{4}$ turns from cold end.

Six Metres

C1-10 pF.
C2-10 pF.
L1-input coil, 26 B. \& S. enamelled copper wire, 10 turns tapped $2 \frac{1}{3}$ turns from cold end of coil.
L2-neutralising coil, 32 B. \& S. enamelled copper wire, 46 turns close wound.
L3-output coil, 26 B. \& S. enamelled copper wire, $11 \frac{1}{2}$ turns tapped 3 turns from cold end of coil.

ALIGNMENT

With the pre-amplifier mounted in its final position, connect the supply voltage. Peak L1 and L3 for maximum gain (or in a "carphone" maximum limiter current on a weak signal), adjusting the neutralising coil (L2) where necessary to restore stability.
A number of kits will be made available by the Disposals Committee of the W.I.A. Vic. Div. Only one type of kit will be assembled, each kit containing two superfluous capacitors for the band not required. Kits will include all com-ponents-board, resistors, capacitors, FET, wire, sockets, etc. The cost will be $\$ 6.00$ including postage.

Enquiries should be addressed to:
"V.H.F. Pre-Amp.,"
W.I.A., Vic. Div.,
P.O. Box 36,

East Melbourne, Vic., 3002.
ACKNOWLEDGMENTS
We wish to acknowledge the original contribution to this project by the Projects Committee of the VK3 V.H.F. Group.

REFERENCRS

(1) Orr and Johnston: "V.H.F. Handbook".
(2) "The Real Meaning of Noise Figure," Kennedy. "Ham Radio." March 1969.
(3) "VK3 V.H.F. Group Two Metre Converter." "Amateur Radio," February 1969.
(4) Goodman: "Improved F.M. Operation," "Amateur Radio," April 1969.

CARBON POTS.

A range of high quality controls designed to suit consumer, amateur and professional electronics applications having standard Australian dimensions is now available. Branded Noble, these potentiometers are individually packed in a dust-free, sealed pack. Technical data sheets on stock types is available from the Australian agents: Soanar Electronics Pty. Ltd., 30-32 Lexton Rd, Box Hill, Vic., 3128.

PROVISIONAL SUNSPOT NUMBERS

AUGUST 1970

Dependent on observations at Zurich Observatory and its stations in Locarno and Arosa

Day			R	Day			R
1	77	16	100
2	68	17	99
3	64	18	108
4	...,	...	59	19	113
5	65	20	117
6	68	21	117
7	72	22	108
8	82	23	-...	..	101
8	76	24	116
10	71	25	106
11	75	26	114
12	73	27	91
13	92	28	101
14	94	29	114
15		108	30	120
				31	111

Smoothed Mean for Feb. 1970: 106.7.

SEPTEMBER 10\%0

Dependent on obseravtions at Zurich Observatory and its stations In Locarno and Arosa.

Day			R	Day			R
1	...)	.	98	16	88
2	\ldots	104	17	65
3	110	18	75
4	...	\ldots	111	18	98
5	..--	114	20	114
6	133	21	129
7		.	136	22	109
8	125	23	104
9	116	24	128
10	103	25	114
11	73	26	107
12	76	27	87
13		\ldots	73	28	85
14	...		78	29			81
15	-.	75	30	77
Mean equals 98							

Smoothed Mean for March 1970: 106.8.
Predictions of the Smoothed
Monthly Sunspot Numbers
October 94
November 92
December 90

TECHNICAL ARTICLES

Readers are requested to submit articles for publication in "A.R."" in particular constructional artlcles, photographs of stations and gear. together with articles suitable for beginners, are required.

Manuscripts should preferably be typewritten but if handwritten please double space the writing; Drawings will be done by "A.R." staff.

Please address all articles to: EDITOR "A.R.," P.O. BOX 36, EAST MELBOURNE, VICTORIA, 3002

A SOLID STATE AMATEUR S.S.B. RECEIVER

PART FOUR

B. G. CLIFT and A. E. TOBIN*

This article describes the design concepts, circuit operation and construction of the second mixer and its associated crystal oscillators.

In Part One of this series, mention was made of the bands to be covered, and we must point out than an error appeared in the specification for the frequency coverage of the 10 metre band. This should read $28.0-28.5 \mathrm{MHz}$. and $28.5-29.0 \mathrm{MHz}$. Obviously a continuous coverage of 1 MHz . is more useful if it is desired to cover the v.h.f. bands with a suitable converter.

Injection frequencies for the second mixer have been chosen carefully in order to minimise the effect of spurious responses generated by the beating of higher order harmonics producing difference frequencies which may lie within the receiver pass band. In addition, it was felt that the number of crystals required should be kept to a minimum in accordance with the overall design concept.

Table 1 shows the selected crystal oscillator frequencies used for the various bands and the output frequencies from the second mixer feeding the first mixer (refer to Fig. 1 in Part One).

The v.f.o. tuning capacitor is coupled to the dial assembly so that clockwise rotation of the tuning knob (and consequently left to right movement of the dial pointer) produces backward tuning of the v.f.o. This arrangement produces forward tuning on bands 1,2 , 5 and 6.

[^66]
CIRCUIT DESCRIPTION

The crystal oscillator and mixer 2 have been assembled on the one plug-in printed circuit board. All switching of crystais and tuned circuits associated with both sections is achieved using diodes.
The circuit configuration of the crystal oscillator is of the Colpitts type similar to that used in the v.f.o. The tank circuit is fixed tuned to 25 MHz . with a 33 pF . ceramic capacitor, the resonant frequency being reduced to 24.5 MHz . or 21.5 MHz . by switching additional shunt capacitance across the coil.
The coil is wound on a Neosid type "A" former and consists of a primary of 14 turns of 26 B . \& S. enamelled wire with a 3 -turn link wound over the low impedance end of the primary. The coil is fitted with a tuning slug and mounted in the normal Neosid can, but no cup or ring is used. Output from the oscillator is coupled directly into the second mixer via the 3 -turn link.

The diode switching of crystals and the tank circuit is performed using standard 1×12 switch wafers which are assembled on a clicker plate with the ball bearings and stop removed. The switch assembly is mounted at the rear of the turret tuner and connected to the tuner shaft via a small flexible coupling. Two wafer sections are required for switching the crystals and tuned circuits of both the crystal oscillator and the second mixer. An additional wafer is required for switching the v.f.o. output between the first and second mixers.

Although only three wafers are required for the receiver, it is worth considering the addition of a further three or four wafers and the use of a clicker plate with a longer shaft if it is contemplated adding an s.s.b. exciter at a later date. This would obviate the necessity of dismantling the front end for future modifications.

It should be pointed out at this stage that the turret tuner used is an early

Band No.	Coverage	Xtal Osc.	Mixer 2 Output	Mixer 1 Output	Tuning Mode
1*	3.5 - 4.0 MHz .		-	9.0 MHz .	Forward
2	7.0-7.5	21.5 MHz.	$16.0-16.5 \mathrm{MHz}$.	9.0	Forward
3*	14.0-14.5	-	-	9.0	Backward
4	21.0-21.5	25.0 MHz.	$30.0-30.5 \mathrm{MHz}$.	9.0	Backward
5	28.0-28.5	24.5	19.0-19.5	9.0	Forward
6	28.5-29.0 .	25.0 ,	19.5-20.0	9.0	Forward

Table 1.
For Bands 1 and 3. Mixer 2 is not used, the V.F.O. being coupled directly Into Mixer 1.

model Philips twelve channel tuner which has about $\Omega^{\prime \prime}$ of the main shaft protruding from the rear. Only six of the available twelve switch positions are used on account of the physical size of the coils used for the lower frequency bands.

It is, however, feasible to provide additional bands at the high frequency end if adjacent switch positions are used above 14 MHz . For example, a further 1 MHz . of the 10 metre band could be covered which would then provide a full 2 MHz . for this band. This would add to the complexity of the tuned circuit switching arrangements for the crystal oscillator and second mixer and 25.5 MHz . and 28.0 MHz . crystals wouId also be required. Nevertheless, this modification is quite feasible and could te added if desired.
The second mixer uses an AY1101 with a tuned collector circuit, the output being link coupled to the first mixer. The coil is wound on a Neosid type "A" former and consists of 12 turns of 26 B . \& S . enamelled wire with a 3 -turn link wound over the low impedance end. This coil is also fitted with a tuning slug and mounted in the normal can, but no cup or ring is used.

The tank circuit is tuned to $\mathbf{3 0 . 2 5}$ MHz . with a fixed 5.6 pF . ceramic capacitor. An additional 32.6 pF . is switched across the coil to retune the output to 19.5 MHz . for bands 5 and 6, and 51.7 pF . is used to retune the output to 16.25 MHz. for band 2. The final values used for these shunt capacitors may need slight adjustment, depending on individual layouts. No adjustment should, however, be made until the layout is complete and all switching diodes are installed. The diode selected for all switching functions is the AN2002. This was chosen for its very low capacitance which is typically less than 2 pF .

CONSTRUCTION

No special techniques have been used in the construction of this section. The printed circuit board used is a universal
type board which has supply rails feeding all three sections, the top section being plain copper which may be scribed with an engraving tool for r.f. circuitry if desired. However, it was frund subsequently that the "dotted" sections are quite suitable for the r.f. circuitry and are easier to use. Supplies of this board may be obtained from Colt Electronics, 61 Wise Ave., Seaford, Vic.

Fig. 2 shows a photograph of the completed board. On the top section is the crystal oscillator and on the lower section is the second mixer. Not shown are the two r.f. chokes associated with the output tuned circuit of the oscillator. These are mounted on the copper side of the board. The crystals used were $\mathrm{Hy}-\mathrm{Q}$ miniature typa K and these were soldered directly into the circuit. Output from the v.f.o. (via the switch) is coupled to the second mixer using a length of 50 ohm co-ax. which was soldered directly to the circuit.

Similarly, the second mixer output to the first mixer is also via a length of 50 ohm co-ax. soldered directly to the board. To facilitate removal of individual boards, miniature printed circuit type 50 ohm co-ax. sockets may be used instead. Lengths of 50 ohm co-ax. should then be made up with corresponding plugs at each end to interconnect the various r.f. modules.
R.f. chokes used are Aegis singlesection miniature $100 \mu \mathrm{H}$., but the value of inductance is not critical.

The next article will deal with the r.f. amplifier and first mixer, which are constructed on the turret.

TECHNICAL ARTICLES

Readers are requested to submit articles for publication in "A.R." in particular constructional articles, photographs of stations and gear, together with articles suitable for beginners, are required.

COOK BI-CENTENARY AWARD
The following additional stations have qualifed for the Award:

Cert. No.	Call	Cert No.	Call	Cert. No.	Call
757	I1YRK	801	WA4VJW	845	AX3WQ
758	W0GYM	862	PZ5RK	846	W1IDA
759	W1BPY	803	ZLIBHQ	847	I1FLN
780	W9CL	$8 \mathrm{C4}$	I1WRP	848	AX3ANO
761	JA1HBC	8 C 5	ZM1BFR	849	WA6VOX
702	SPGBZ	8L6	AX6JK	850	G3GGG
763	DK3SD	8.7	WA1JHQ	851	W9QPQ
764	AX3FJ	008	AX4KO	852	AX2IQ
765	DK2HY	809	G2BYI	853	W4DUP
766	W1BTU	810	K2SQM/	854	YV4WT
767	WA7CEN		VE1	855	W1MZB
768	AX2AYF	811	ZM3JU	856	G6UF
769	KIYZW	812	W5RW	857	W50B
770	AX4XY	813	VE3GHL	858	AX4MY
771	K7VZH	814	W2EV	859	VE6EO
772	IIVK	815	AX6KW	860	AX3SX
773	JR1BMU	816	AX3BAG	861	EABBK
774	W4ATD	817	W2GA	862	JA8ARA
775	ZL2ASM	818	AX4UA	863	DJ1CG
776	UAODG	819	G3VW	864	W1FLX
777	UB5FG	820	YV5DDF	865	W2WNW
778	UK6AAB	821	SP2AJO	866	G3CDE
779	UWOIX	822	WA9EZT	867	C2IGB
780	AX2AMU	823	JA1AAT	868	VE7BLO
781	WA5CBT	824	AX7UX	869	AX2KA
782	W8IHD	825	AX2BMP	870	AX3BDQ
783	KLTHDB	826	WA4YZI	871	AX3MJ
784	VE3AS	827	K7MCG	872	JAIOTE
785	AX3BET	828	ZL2BCJ	873	AX2BMB
788	AX2BAS	829	G3RUV	874	VE2WY
787	W4CZS	830	KP4DFX	875	WA\&YVQ
788	W4YOK	831	OK1TA	876	VR2EQ/M
789	AX2AGF	882	K0RTH	877	ZL4BG
790	VE3EGT	833	W1AX	878	SM6CWK
791	DL2VS	884	JH1HWN	879	K4MG
792	IIYV	835	K7DXJ	880	WA5KPL/
793	AX3ATP	836	VE3GLO		HR1
794	ZC4MT	837	F3EA	881	I1DVN
795	AX3ALM	838	GsWLX	882	ZS5WH
796	W2AJ	359	YT3EM	883	W5MAE
797	VE2ANS	840	DLIQT	884	ZLIBKE
798	WOMAN	841	G3LGN	885	K2DT
749	OK2DB	842	G3BRW	886	VS6AF
800	WA9SLD	843	G2DUP	887	W5YOR
		844	K3TUP		

V.H.F./U.II.F. SECTION

The following station has qualified for the Award:
Cert. No. 4-AX3AKR

W.I.A. V.H.F.C.C.

Cert. No.	New Member:		
		Confirmations	
	Call	$52 \mathrm{MH}$	$44 \mathrm{M}$
76	VK7DK	109	-
77	VK7DK	-	153
Amendment:			
44	VK3AMK	157	-
73	VK3AMK	-	109

Fig. 1.
Fig. 2.-Showing printed circuit layout.

A Signal Source for Carphone Receiver Alignment

RON HIGGINBOTHAM,* VK3RN

The May 1969 issue of the Eastern and Mountain District Radio Club journal contained details of an extremely useful little "black box" for the alignment of $\mathrm{f} . \mathrm{m}$. carphone receivers. Since it operated from a 12 v .10 mA. d.c. supply, it held obvious attractions as a device that could be used away from power sources other than a car battery as well as in the shack for "ground based" receivers.

Another attraction was the fact that it could provide a low level signal when required (rather than having someone come up and provide carrier for your adjustments and thus occupy a net fre-

Initial bias on the diode is obtained from the two 47 K resistors across the supply rail and initial frequency adjustment is made by means of the variable capacity across the diode. Note that it may be necessary with some diodes to vary the top bias resistor until centre frequency is obtained with the trimming capactior across the diode at half range.

On switching on the modulator the bias across the diode varies at an audio rate. This causes the capacity of the diode to change (also at an audio rate) and in turn the frequency of oscillation varies.

quency unnecessarily). Moreover, since the device could use the tx crystal from the set under adjustment, there was no need to buy new crystals for it.

Basically the circuit consisted of a crystal oscillator in the $2-15 \mathrm{MHz}$. range (which produced copious harmonics useful up to and beyond the 144 MHz . band) and a simple audio oscillator modulating the oscillator by means of a BA102 diode.

The circuit was originally developed by Ken VK3AKK and gave a "high" output for initial alignment and a "bow" output for final tweaking to optimum performance.

A Chinese (more or less!) copy was hooked up according to the original article, but did not modulate too well. In retrospect this failure was probably due to the very old crystal used and was no reflection on the circuit as such. However, at the time, this point was not appreciated and Les VK3ZBJ came to the rescue with some minor circuit changes which got the device going. The circuit used is shown in Fig. 1.

The audio side uses a ME1002 transistor as a phase shift oscillator and with the values shown gives about a 500 Hz . note. The crystal oscillator uses a TT (or 2 N) 3564 transistor and modulation is effected by the BA102 diode at the ground end of the crystal.

The high output is taken via a 10 pF . capacitor from the collector of the crystal oscillator. Originally it was suggested that a "low" output could be obtained from a second (unconnected) output socket located 1 (" away from the "high" output socket. In my case the coupling was not sufficient and was increased by the 1 pF . capacitor across the two sockets. This capacity can be varied to give a suitable "low" output. In my case this was 60 uA.

Two methods of construction have been used. One uses a printed circuit board and in the other system the components and transistors are mounted on tag strips which are attached to the lid of a small metal box.

In use this device has proven most useful. The only criticism is that the deviation is a little on the low side, but no doubt this could be improved by the use of a higher gain transistor in the audio oscillator, or an adjustment to the base bias. In use this slight lack of deviation has not proven any drawback.

It appears to go well with pretty well any modern crystal in the $2-15 \mathrm{MHz}$. range, but, as pointed out in the original article, older crystals such as the surplus DCll series might need a higher gain device such as the 2N3565 in the crystal oscillator. Crystals much below 2 MHz . need different circuitry, which rather rules out the circuit as a 455 KHz . test oscillator.

Besides its utility as a signal source for the alignment of the r.f. and 1st i.f. stages of any 2 or 6 metre carphone of any make, it can also be used to line up the second i.f. stages if they are on a frequency of 2 MHz . or higher. All that is needed is a crystal of the appropriate frequency.

CHANGE OF ADDRESS

W.I.A. members are requested to promptly notify any change of address to their Divisional Secretary -not direct to "Amateur Radio".

[^67]dISTANCE TABLE FOR ROSS HULL V.H.F. CONTEST

Sydney	DISTANCE TABLE FOR ROSS HULL V.h.f. CONTEST									
		Syd.		Bris.	Melb.	Hob.	Adel.	N.Z.	Dar.	Perth
		0	160	460	460	660	710	$\begin{aligned} & 1300 / \\ & 1500 \end{aligned}$	1950	2040
Canberra		160	0	600	290	530	670	1300/	1930	1940
Brisbane		460	600	0	860	1110	990	1500/	1790	2240
Melbourne		460	290	860	0	400	400	1500/	1930	1720
Hobart		660	530	1110	400	0	710	1300/	2280	1880
Adelaide		710	670	990	400	710	0	1900/	1620	1330
New Zealand		$\begin{aligned} & 1300 / \\ & 1500 \end{aligned}$	$\begin{aligned} & 1300 / \\ & 1500 \end{aligned}$	$\begin{aligned} & 1500 / \\ & 1700 \end{aligned}$	$\begin{aligned} & 1500 / \\ & 1700 / \end{aligned}$	$\begin{aligned} & 1300 / \\ & 1500 \end{aligned}$	$\begin{aligned} & 1900 / \\ & 2100 \end{aligned}$	0	2550	$\begin{aligned} & 3000 / \\ & 32000 \end{aligned}$
Darwin		1950	1930	1790	1930	2280	1620	2550	0	1650
Perth		2040	1940	2240	1720	1880	1330	$\begin{aligned} & 3000 / \\ & 3200 \end{aligned}$	1650	0

In our discussions on alternating current in Lectures 5, 6, 7 and 8 we have spoken of sine waves although at the end of Lecture 8 we did introduce the word harmonic.

Apart from this occasion we have assumed that the sine waves have been perfect, that is, if drawn, they would assume the shape of a perfectly drawn sine curve.

However it is very seldom, if ever, that man can produce a perfect sine wave. Admittedly there are sine wave generators which produce almost perfect sine waves. For instance our A.W.A. low distortion oscillator can produce waves which are within 99.9% of perfect and there are very expensive laboratory oscillators which can do even better.

A mechanical device which produces an almost perfect sine wave is a tuning fork.

Some sine wave generators may have as little as 0.001 of 1% distortion. Measurements made of the S.E.C. mains gave a distortion figure of 4%, whilst that of a diesel alternator plant was 10%.

HARMONICS OF MUSICAL INSTRUMENTS

Let us consider some common musical instruments such as a piano, harp and violin. Also let us assume that we have a tuning fork tuned to A440 cycles per second and that using this tuning fork as a reference we tune one of the strings of each instrument to A440. Then each of these strings is tuned to the same frequency, 440 c.p.s. However, if we strike the tuning fork, then play each instrument string we can differentiate between each instrument because each will have a distinctive sound of its own, so we can say "that's a piano" or "that's a harp" and so on.

This is because each string not only vibrates at its fundamental frequency but at a number of multiplies which are known as "harmonics". It is mainly the distribution of these harmonics in relation to the fundamental freauency that gives each instrument its distinctive tone.

This may be more readily understood by comparing the energy distribution given by three musical instruments when playing Middle $\mathrm{C}=256$ c.p.s. (In concert pitch, Middle $\mathrm{C}=273$ c.p.s., French Pitch $=261$ c.p.s., Scientific Pitch $=256$ c.p.s.)

[^68]
Energy in Percentage

Energy in Percentage			
	Flute	French Horn	Violin
Fundamental	13\%	2\%	60\%
2nd Harmonic	40\%	10\%	8\%
3rd Harmonic	10\%	50\%	20\%
4th Harmonic	20\%	15\%	10\%
5th Harmonic	5\%	5\%	2\%
6th Harmonic	2\%	2\%	0
Remainder	10\%	16\%	0
Total	100\%	100\%	100\%

From this table it can be seen, quite easily, that (for Middle C) the violin produces 60% of its total energy in its fundamental tone (also known as the 1st harmonic), and the next dominant tone is the third harmonic (256 and 768 c.p.s. respectively). However, the flute produces considerable energy at the second harmonic (512 c.p.s.) together with a considerabie amount of energy at the 4 th harmonic (1,024 c.p.s.), but the French horn generates half its energy at the 3 rd harmonic (768 c.p.s.) whilst the fundamental is only 2%.

It is only right to point out that the instrument is an extension of the player and the sounds produced by a particular player are dependant, not only on his skill, but the quality of the instrument and its acoustic surroundings. The difference between, say, a good violinist and a poor one (using the same violin) lies completely in the subtle harmonic differences of the fundamental notes, which each player produces. Also whilst a good violinist may be able to get better sound from a poor violin he can never get the same sound as from a good instrument.

Whilst dealing with musical instruments it should be pointed out that sound is the subjective result of vibrations in the air, and that such vibrations have a special appeal to our senses when these vibrations are in the form of a sine wave or consists of a number of sine waves which have frequencies related to each other in ratios of small whole numbers such as $1: 2,1: 3,1: 4,3: 4$, etc.

However, a sound will be discordant if there is no such simple relationship between the freauencies, and if there are a large number of such discords the sound becomes noise.

Referring back to the table for a violin for instance, it will be noticed that this instrument produces harmonics up to the sixth and that these all bear simple ratios.

RADIO HARMONICS

Now all this brings up a major point in audio frequency amplification and radio transmission (telephony).

We have seen that the three musical instruments mentioned in the table each produces a different sound although each is playing the same fundamental frequency, and that this difference in sound is what makes each instrument

C. A. CULLINAN: VK3AXU

different. This is true of all musical instruments and is also true of the human voice.

If we are to amplify or to transmit by electrical means music or speech it is essential that we do not change any of the sound of the instruments or the voice which makes the sound, because if we do so, then what we ultimately hear will not be a true reproduction of the original.

To do this it is necessary for us to pass the material through a linear system because if the system is not linear then it will generate additional harmonics which will "colour" the original material if they are strong enough in relation to the particular material, and the resulting sound may become unpleasant to the listener.

So far the discussion has been with frequencies in the audible range, but these remarks also apply to radin transmission where there may be two types of problems.

A radio transmitter generates what is known as a radio frequency wave and if the transmitter is being used for telephony then it is necessary to apply audio frequencies to the radio frequencies by one or more processes known as modulation.

The first problem is that the transmitter may generate harmonics at radio frequencies.

Usually in the interest of efficiency the transmitter will be operated in such a manner that it will generate harmonics and if these are radiated they can cause serious interference to other services.

There are some designs of transmitters where harmonics are deliberately generated, at a lower frequency than that feeding the aerial. This is usually done because it is easier to get good frequency stability at a low frequency than it is at a high one.

Well designed transmitters use considerable shielding, as well as specially tuned circuits or filters, to remove harmonics as far as practicable before they reach the aerial. It must be remembered that an aerial may be designed to resonate at one particular frequency of operation, but it too will radiate harmonics at harmonic frequencies if it is supplied with them, because of insufficient harmonic suppression within the transmitter and aerial coupling circuits.

By its very nature, the oscillator in a transmitter will generate some harmonics, and the following stages of amplification will amplify these if the intermediate tuned circuits cannot remove them, thus they may get through to the final radio frequency stage for further amplification. Therefore a skilful designer will reduce these harmonics to a minimum, nevertheless the final radio frequency amplifier may generate its own crop of harmonics.

The Australian Broadcasting Control Board in its Standards for Technical Operation of Medium Frequency Broad-
casting Stations, 2nd Edition, 18th June, 1968, specifies the maximum field strength of any single frequency spurious emission (no matter what the cause).

Generally the maximum harmonic field strength permitted is $1 \mathrm{mV} . / \mathrm{m}$. at one mile from the aerial (A.B.C.B. Standards 50). Alternatively, under the I.T.U. regulations (Geneva 1959) from 1st January, 1970, the mean power of any spurious emission supplied to the transmission line must be 40 dB . below the mean power of the fundamental without exceeding the power of 50 milliwatts. Note that this applies to the input to the transmission line, not to the aerial. In some circumstances the A.B.C.B. may require far lower spurious radiation.

We have stated already that harmonics radiated from aerial systems can cause harmful interference to other services. Let us take an example. Assume that two transmitting stations are close to each other, and that the general location is close to a busy capital city port. Let these hypothetical stations operate on 912.5 KHz . and 1315 KHz .

These frequencies have been chosen to avoid embarrassment to any Australian stations as none operate on them. Also, let us assume that the first station has a measured field strength at one mile of $1 \mathrm{mV} . / \mathrm{m}$. at the second harmonic. Some calculations produce a disturbing result, so let us do these calculations.

Station A:

Fundamental frequency, 912.5 KHz . Second harmonic (912.5 $\times 2$), 1825.0 KHz .

Station B:
Fundamental frequency, 1325 KHz .
Now there will be two new frequencies produced by the second harmonic of A and the fundamental of B, and these can be detected by receivers tuned to each of them over a distance of possibly 15 to 20 miles. These new frequencies have been produced through the phenomenon known as Beats.

These new frequencies will be the sum and difference frequency between the second harmonic of A and the fundamental of B, and will be 3150 KHz . and 500 KHz . respectively.

This latter is the International Distress Frequency and in the circumstances outlined, considerable interference could occur to distress calls. In this case the Administration would require station A to reduce its second harmonic to a level where there would not be interference on 500 KHz .

From all this, it can be seen that radio frequency harmonics generated in a transmitter, then radiated either directly from the transmitter itself, from the transmission line, or the aerial, can cause serious interference to other services, so they are unwelcome signals.

Secondly, during the process of applying audio frequencies to a transmitter, known as modulation, it is quite possible that additional audio frequency harmonics will be generated and these will show up as distortion of the original audio frequency wave forms. If the amplitude of these is great enough the resulting transmission will be harsh
and not a faithful reproduction of the original signals.

There are two fundamental types of modulation, known as Amplitude Modulation and Angle Modulation.

Amplitude modulation is a process in which the amplitude of a transmitter's carrier wave is varied by the impressed audio frequency wave. There are several methods of achieving this.

Angle modulation is a process in which the phase angle of the carrier is varied by the impressed audio frequency wave.

Phase Modulation and Frequency Modulation are particular forms of Angle Modulation.

WHY ARE HARMONICS GENERATED?

Now let us ask ourselves a question, then answer it.

In an electronic audio or radio frequency system why are harmonics generated? Answer: Because the system is not linear.

Let us take a look at the reason for this. If we set up a vacuum type rectifier valve and apply increasing voltage between the anode and cathode we can measure the current flow through the valve with an ammeter connected in series in the circuit, and on squared graph paper we can plot a curve showing the relationship between impressed voltage and current flow.

It will be found that at low voltages the curve is not a straight line, then as the voltage is increased the line will become virtually straight, however at some high voltage the line will again depart from its straight form to become curved. This is where the cathode runs out of emission. (The valve may flashover before this point is reached.) This is the elongated S of Fig. 1a. The general shape of the curve is the same for all high vacuum rectifiers although the slope may differ between different valve types. All of these remarks apply to a half-wave rectifier, and after all a full wave vacuum tube rectifier consists of two half-wave rectifiers in the same envelope.

An examination of this curve reveals that there is a linear relationship between applied voltage and the current passed over most of the curve, but at both ends there is a marked departure from the linear condition.

This curve is, also, a generalised curve for a valve amplifier valve hav-

ing sufficient bias to cut-off the plate current, and which runs out of cathode emission at the other end of its curve.

As an example, we may take the case of a class C stage of a plate modulated telephony transmitter. The class C amplifier operates with a very high grid bias, several times that needed for plate current cut-off. The a.c. modulating voltage adds or subtracts to the d.c. plate voltage so that at 100% positive modulation the peak plate voltage is double the d.c. plate voltage, whereas on the negative swing of the modulating voltage this subtracts from the d.c. plate voltage with the result that at this point it exactly cancels the d.c. plate voltage.

If the class C amplifier stage has been properly set-up, and an analysis is made of the resultant modulated wave at 100% modulation with, say, an audio frequency of $1,000 \mathrm{~Hz}$., then it will be observed that the wave is symmetrical, that is both positive and negative sides (peaks) are the same. This measurement can be done best when a sine wave is used for modulation, with a cathode-ray oscilloscope, or with an amplitude modulation monitor.

However, after some considerable time, it may be found that the positive and negative peaks are no longer the same, that is the wave is not symmetrical, also that there is serious harmonic distortion.

Although the d.c. plate current is still the same, assuming that there has not been any change in the adjustment of the transmitter, then it will be found that whilst the negative half of the modulating voltage can take the class C amplifier to 100% negative modulation, the positive modulating voltage cannot raise the amplifier to 100% positive modulation.

What has happened is that the class C amplifier valve has started to lose cathode emission and the loss can only ce detected when the plate voltage is swung high in a positive direction by the modulating voltage. The class C stage valve is then operating in the top curved position of the curve in Fig. la.

It is only proper to state that this is the loss of peak cathode emission. If the valve or valves causing the asymmetrical modulation are left in use the emission will drop to the stage where it becomes apparent due to lower than normal d.c. plate current.

It may not be clear from the diagram in Fig. la that the elongated S current is derived by applying various d.c. voltages to the valve.

If an a.c. voltage is applied then no part of the curve can be completely straight simply because there are no two successive points in a sine wave which make a straight line. Theoretically this can be taken to two consecutive electrons and is due to the fact that the angle of the current is continuously changing, whether we consider this change in single degrees, or say one millionth of a degree.

The sine curve of Fig. la when projected via the elongated S current curve produces the current curve Il of Fig. la.

The student should draw these curves to satisfy himself.

In Fig. la we have shown, too, a sine wave whose axis passes through
the current curve slightly to the right of the cut-off point. By extending the sine wave curve upwards, to where it intersects the current wave we can plot a graph or curve of the current which flows in the valve due to the excitation by the sine wave. As this wave proceeds from 0° to 45° in a negative direction the valve is driven to the cut-off point then past this position so no current can flow in the circuit.

It will be noticed that a small amount of current will flow betwcen 0° and aperoximately 45° since the cut-off point corresponds to approximately 45°.

From 45° to 90° the valve is driven past cut-off so no current can flow.

After 30° the exciting voltage starts to drop to zero at 180°. However when it reaches 135° it has come back to the cut-off point, so that from 135° to 180° a small amount of current may flow. It must be remembered that although the exciting wave is now in a conducting portion of the valve curve, the exciting voltage is, itself, falling to zero until at 180° there is no exciting voltage, hence no current.
As the exciting voltage (e) increases in a positive direction from 180° to 270°, the valve will conduct so that current flows in the valve.

This is shown in curve (I1) Fig. 1 a.
But it will be seen that as the exciting wave approaches 270° the current (II) does not increase in proportion and (I1) dces not regain its shape until after the exciting voltage has passed 270°.

Curve (II) between the lines marked "linear portion of curve" appears to ke a straight line on each side and can be considered linear, but the parts outside the linear portions are curved and it is operation in these regions that produce harmonics.

It will be noted, too, that the curve (II) is far from the same shape as the exciting voltage curve (e), in fact it is approximately only half of it.

This is the type of curve we get when a rectifier valve changes a.c. into d.c., when an amplifier, whether audio or radio frequency distorts or when a frequency multiplier is used in a transmitter to produce high frequency from a lower one by harmonic multiplication.

Now let us look at Fig. 1b. The elongated S curve is the same as that of Fig. 1a (as near as we could draw it and means exactly the same). But this curve is taken to represent an amplifier valve, not a rectifier.

An amount of negative bias has been applied to the grid of the valve so that its operating point is half way along the linear portion of the curve.

Now if an a.c. exciting voltage (E) is applied and its maximum negative and positive peaks do not pass beyond the limits of the linear portion of the curve, then the resultant curve (I2) will have an identical shape to the shape of the exciting voltage (E). Its amplitude may be greater or lesser depending on whether the valve has a gain greater than unity, but the shape will be similar, i.e. if (E) is a sinewave, then (I2) will be a sine-wave.

Now, if the exciting voltage E is increased in amplitude its negative and

- The frequencies of all the stations mentioned in this lecture were as stated at the time the lecture was written. However, with the passage of time, some station frequencies may change, therefore any Amateur wishing io calibrate equipment by using b.c. stations as frequency references should verify the frequency of each station beforehand. A list of stations may be obtained from the Australian Broadcasting Control Board, 373 Elizabeth Street, Melbourne, Vic., 300.
positive peaks will exceed the linear portion of the current curve and (12) will no longer be a sine-wave as its negative and positive peaks will be flatiened as shown in the half cycle (II) of Fig. 1a. Distortion will result as harmonics will be produced.

Also, if instead of altering the amplitude of the exciting voltage (E), the bias points (new axis) is moved, then again the resultant wave will not be symmetrical.

Notice should be taken in Fig. 1a and 1 lb that although the current curve is the same in both, amplitude of the exciting voltage (E) has been reduced to make it fit the linear portion of the current curve.

The student should draw these curves, also draw a larger sine-wave (E) and plot this when he will find that the peaks of the plotted current curve are flattened as has been stated.

To show how harmonics distort a pure sine-wave, Figs. 2 and 3 should be examined. In Fig. 2 the single cycle represents a sine-wave. Superimposed on this is a smaller amplitude wave of two cycles, this being the second harmonic of the sine-wave. Actually this is a co-sine-wave, that is one which reaches its maximum value 90 electrical degrees before a sine-wave would do so. However, it is important to realise that in Fig. 2 there are two cycles of the co-sine-wave and only one cycle of the sine-wave. A single

cycle co-sine-wave would be shown starting with maximum current of 0^{\prime}.

In order to illustrate the effect of a second harmonic on its fundamental (1st harmonic) the maximum amplilude of the second harmonic has been made about 37% of the fundamental, this teing the most that could be drawn in the space available.

A second harmonic of this magnituce will greatly modify the fundamental and normally such a harmonic wouid not be found in any form of electrical reprojuction unless the equipment is badly out of order. This statement does not apply to transmitters where frequency multiplication is used. Also, it does not apply to musical instruments (as already shown) including those using electrically generated tones.
The manner in which the second harmonic modifies the fundamental may be found by adding, algebrically, the amplitudes of the fundamental and the second harmonic at any given time (electrical degree), remembering that those parts of the curves above the axis are positive and those below are negative.
It will be observed that at 90° the maximum positive portion of the first cycle of the second harmonic will subtract from the maximum of the fundamental so that the amplitude of the latter is greatly reduced. However, the maximum positive portion of the second cycle of the harmonic adds to the maximum positive portion of the fundamental, thus increasing it.
This means that the original sinewave of Fig. 2 is no longer symmetrical, hence it is distorted.
The curves of Fig. 2 have been added together and produce the curve shown in Fig. 3. Note that the negative portion of the sine-wave of Fig. 2 has been greatly reduced in amplitude and that it has been grossly flattened. On the other hand, the amplitude of the positive half has been increased considerably, although its base line is the same, and its shape has changed a little too.
So this is what happens to a wave having a large second harmonic.

Actually its general shape in the positive direction closely resembles that of the current wave Il of Fig. 1 (the drawing scales are not the same) and this proves what we set out to prove, namely, that a rectifier can produce considerable harmonic distortion, as can a valve rectifier which is either wrongly biased or has too great an exciting voltage on its grid.

For simplicity, Figs. 2 and 3 do not show other harmonics, but the student can add these. For instance, three cycles of 3rd harmonic can be drawn in Fig. 2. The first cycle can start in a positive direction at 0° with maximum at 30°, maximum negative will be at 90° and so on. Again for simplicity this could be made, say 10° of the fundamental. Then Fig. 3 can be replotted using the figures or dimensions obtained by adding together the fundamental, 2 nd and 3rd harmonics when it will be seen that there are more changes in the overall shape of Fig. 3.
It is rather difficult to draw, graphically, and specially at low levels, any further harmonics.
ito be continued)

John Moyle Memorial National Field Day Contest, 1971

SATURDAY, 13th FEBRUARY, TO SUNDAY, 14th FEBRUARY, 1971

The Federal Contest Committee of the Wireless Institute of Australia invites all Australian Amateurs and Short Wave Listeners to participate in this Annual Contest, which is held to perpetuate the memory of John Moyle, whose efforts advanced the Amateur Radio Service.

There are two divisions of this Contest, one of 24 hours continuous duration, and one of 6 hours continuous duration. The six-hour period has been included to encourage the operator who is unable to participate for the full 24 -hour period. The 24 -hour continuous operation is to be chosen by operator from $26-$ hour period.

Operators using 25 watts or less input to the final stage will be considered for a certificate where his activity warrants its issue.

DATE

From 0600 GMT, 13th February, 1971, to 0800 GMT, 14th February, 1971.

OBJECTS

The operators of Portable and Mobile Stations within all VK Call Areas will endeavour to contact other Portable/ Mobile and Fixed Stations in VK Call Areas and Foreign Call Areas.

RULES

1. There are two divisions, one of six (6) hours, and one of twenty-four (24) hours duration. The six-hour period for operating may be chosen from any time during the Contest. but the six-hour period so chosen must be continuous. In each division, there are six sections:-
(a) Portable/Mobile Transmitting, Phone.
(b) Portable/Mobile Transmitting, C.w.
(c) Portable/Mobile Transmitting, Open.
(d) Portable/Mobile Transmitting, Multiple Operation, open only.
(e) Fixed Transmitting Stations working Portable/Mobile Stations, open only.
(f) Reception of Portable/Mobile Stations.
2. All Australian Amateurs are encouraged to take part. Operators will be limited to their licensed power. For Portable entries, power shall be derived from a self-contained and fully portable source.
(a) Portable/Mobile Stations shall not be situated in any occupied dwelling or kuilding. Portable/Mobile Stations may be moved from place to place during the Contest.

No apparatus shall be set up on the site earlier than 24 hours prior to the Contest.

All Amateur bands may be used, but no cross band operating is permitted. Cross made operation is permitted.

Entrants in Section (d) for Multiple Operator Stations can set up separate transmitters to work on different bands
at the same time. All such units of a Multiple Operator Station must be located within an area that can be encompassed by a circle not greater than half a mile diameter.

For each transmitter of a Multiple Operator Station a separate log shall be kept with serial numbers starting from 001, and increasing by one for each successive contact. All logs of a Multiple Operator Station shall be submitted by the operator under whose Call Sign the transmitters are working. No two transmitters of a Multiple Operator Station are permitted to operate on the same band at any time.
3. Amateurs may enter for any section.
4. One contact per station for phone to phone, also one for c.w. to c.w. per band is permitted. Cross mode operation will be accepted for scoring.
5. Entrants must operate within the terms of their licences and in particular observe the regulations with regards to portable operation.
6. For VK stations contacting VK stations, the exchange of serial numbers consisting of RS or RST report plus three figures commencing with 001 and increasing by one for each successive contact by the VK station shall be proof of contact. The exchange of $R S$ or RST reports only with non-VK stations shall be sufficient proof of contact for this contest.

7. Scoring-

(a) Portable/Mobile Stations:

For contacts with Portable/Mobile Stations outside entrant's Call Area 15 points
For contacts with Portable/Mobile Stations within entrant's Call Area 10 points
For contacts with Fixed Stations outside the entrant's Call Area 5 points
For contacts with Fixed Stations within the entrant's Call Area 2 points
(b) Fixed Stations:

For contacts with Portable/Mobile Statons outside entrant's Call Area 15 points For contacts with Portable/Mobile Stations within entrant's Call Area 10 points
Operation via active repeaters or translators is not allowed for scoring purposes.

$\begin{gathered} \hline \text { Date } \\ \text { TIme } \\ \text { (GMT) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Band } \\ & (m x) \end{aligned}$	Call Sign Heard	$\begin{aligned} & \hline \text { RST } \\ & \text { No. } \\ & \text { Sent } \\ & \hline \end{aligned}$	Station Worked	Pls. CIm.
13/2/71 060 GMT 0610	80	VK2AAH/P	59001	VK3ATL/P	15
	80	VK3ATL/P	59006	VK30V	10
0620	40	VK2AAH/P	599004	VK6VF/P	15
640	20	VK30V	59010	VKSOX/P	*
0900	20	VK40F/P	59030	VK4OX/P	15

- No clalm Fixed Station.

8. The following shall constitute Call Areas: VK1, VK2, VK3, VK4, VK5, VK6, VK7, VK8, VK9 and VK0.
9. All logs shall be set out under the following headings: Date/Time (G.M.T.), Band, Emission, Call Sign, RST/No. Sent, RST/No. Received, Points Claimed. Contacts must be listed in numerical order.

In addition, there shall be a front sheet showing the following informa-tion:-
Name \qquad Address.
Call Sign.
Section
Division.
(6-hour or 24-hour)
Points Claimed.
Call Sign of other op./s (if any) Location of Portable/Mobile Station. Fromhours tohours
A brief description of equipment used, and points claimed, followed by the declaration:
"I hereby certify that I have oper-
ated in accordance with the rules
and spirit of the Contest."
Signed.

................Date.

10. The right is reserved to disqualify any entrant who, during the Contest, has not observed the Regulations and the Rules of this Contest, or who has consistently departed from the accepted code of operating ethics.
11. The decision of the Federa! Contest Manager of the Wireless Institute of Australia is final and no disputes will be entered into.
12. Certificates will be awarded to the highest scorer of each section of each division. Additional certificates may be issued at the discretion of the F.C.C. The six-hour certificates cannot be won by a 24 -hour entrant.

13. Return of Logs:

All entries must be postmarked not later than 7 th March, 1971, and be clearly marked "John Moyle Memorial National Field Day Contest, 1971" and addressed to:

Federal Contest Manager, W.I.A., Box N1002, G.P.O.,
Perth, W.A., 6001.

RECEIVING SECTION

14. This section is open to all Short Wave Listeners in VK Call Areas. The Rules shall be the same as for the Transmitting Stations, but may omit the serial numbers received.
Logs must show the Call Sign of the Portable/Mobile Station heard, the serial number sent by it, and the Call Sign of the Station being worked.

Scoring will be on the same basis as for Transmitting Stations. It will not be sufficient to log a station calling CQ. A portable/mobile station may be logged once only for phone and once only for c.w. in each band.

Awards: Certificates will be awarded for the Highest Scorer in each Call Area, for the 6 -hour and the 24 -hour divisions.

Season's Greetings to all Readers

HY-GAIN AMATEUR ANTENNAS

Fully Imported
from U.S.A.

COMPREHENSIVE RANGE TO SUIT MOST REQUIREMENTS
V.H.F. MOBILE ANTENNAS

MW-150, roof mounting $1 / 4$ wave whip (108 thru 470 MHz .), \$6.00.
MAG-150, magnetic mount $1 / 4$ wave whip (108 thru 450 MHz .), includes 18 feet of RG58U and connector,

H.F. TRIBAND BEAMS

Hy-Quad, 2 element Quad, $\mathbf{\$ 1 3 0 . 0 0}$.
TH6DXX, 6 element trap Beam, $\$ 246$.
TH3Mk3, 3 element trap Beam, S193.75.
TH3Jr. 3 element trap Beam, $\mathbf{S 1 3 0}$.
H.F. MONOBANDERS

204BA, 4 element 20m. Beam, $\$ 190$. 203BA, 3 element 20 m . Beam, $\$ 150$.
153BA, 3 element 15m. Beam, $\$ 94$.

H.F. VERTICALS

14AVO, 10 m . thru 40 m . trap Vertical, 559.
18AVO, 10 m . thru 80 m . trap Vertical, $\$ 95$.
18V, 10 m . thru 80 m . base loaded Vertical, $\mathbf{\$ 3 6 . 5 0}$.
H.F. MOBILE WHIPS AND FITTINGS

HMM, mobile mast assembly, $\$ 19.50$.
MC Series coil and adjustable tip-rod assemblies:

$$
\begin{array}{ll}
\text { MC-75, } 80 \mathrm{~m} ., \$ 25.00 & \text { MC-20. } 20 \mathrm{~m} ., \text {, } \$ 18.75 \\
M C-40,40 \mathrm{~m} ., \$ 19.50 & \text { MC-10, } 10 \mathrm{~m} ., \mathrm{S} 14.50
\end{array}
$$

MC-15, 15m., $\$ 16.60$
BPR, bumper mount. $\mathbf{\$ 1 2 . 5 0}$.
BDYF, body mount. $\mathbf{\$ 9 . 0 0}$.
SPG heavy duty spring. \$12.50.
SPGM, light duty miniature spring, $\mathbf{\$ 6 . 0 0}$.
OD, quick disconnect accessory for mobile whips, \$6.00.
JMS, "Jiffy" body mount. \$9.00.
Also: Body mount co-ax. adaptors, gutter clips, whip foldover adaptors.
V.H.F. ANTENNAS

23, 3 element 2 m . Beam, $\$ 15$.
28. 8 element 2 m . Beam, $\$ 29.50$.

215, 15 element 2 m . Beam, $\$ 59$.
SGP-2, 2 m . ground-plane, $\mathbf{~} 12.50$.
GPG-2, 2 m . 5/8 wave ground-plane. $\$ 23$.
GP-50, 25 thru 54 MHz . ground-plane, $\mathbf{S 2 5}$.
\$22.50.
CRG-150. duo-band $6-2$ metre whip, $\mathbf{\$ 3 8 . 0 0}$. W72, stainless steel whip (40 thru 100 MHz .), $\$ 15.75$. HH6BK, 6 metre halo with mast and bumper mount, $\$ 34.50$. HH2BA, 2 metre centre mount halo, $\$ 12.50$. HMBA, telescoping mast for halo, $\mathbf{\$ 1 2 . 5 0}$.

HY-GAIN ACCESSORIES

BN-86, broad-band ferrite Balun, for beams and doublets, $\$ 22$. LA-1, Lighting Arrestor, for installation in standard 52 or 72 co-axial feedline, designed to Mil. specs., 537. El. End Insulators, for doublets, \$2 per pair. Cl . Centre Insulator, for doublets, $\mathbf{\$ 7 . 5 0}$.

OTHER ACCESSORIES

Digital Electric Clocks:
"Solari" (Italian), 24-hour, large figures, \$29.00. "Caslon" (Japanese), 12- and 24 -hour, $\$ 24.50$.
EK-26, Katsumi Electronic Keyer, $\$ 75.00$.
K-109, Kyoritsu dual impedance 52 and 75 ohm SWR meter, S21.00.
PS-750, PIC single-pole, 5-position co-axial line RF switch, \$21.50.
PS-751, PIC two-pole, 2-position co-axial line RF switch, \$16.50.
PS-752, PIC single-pole, 2-position co-axial line RF switcin, S15.50.
1100 M Emotator heavy duty antenna rotator, base mount, \$148.50; pipe mount, $\$ 165.00$.
7 -conductor cable, for rotator control, 60 cents $/ \mathrm{yd}$.
PTT Microphones, Taylor (U.S.A.) Car Compasses and Altimeters.
Co-axial Cable and Connectors also available.
All Prices include Sales Tax. Freight is extra.
Prices and specs. subject to change without notice. Immediate availability is dependent on stock position at time of order.

BALEEECTROMCERMCES $\begin{aligned} & \text { 60 SHANNON STREET, BOX HILL NORTH, } \\ & \text { VIC., } 3129 .\end{aligned}$

N.S.W. Rep.: STEPHEN KUHL, P.O. Box 56, Mascot, N.S.W., 2020. Telephone: Day 67-1650 (AH 37-5445) South Aust. Rep.: FARMERS RADIO PTY. LTD., 257 Angas St., Adelaide, S.A., 5000. Telephone 23-1268
Western Aust. Rep.: H. R. PRIDE, 26 Lockhart Street, Como, W.A., 6152. Telephone 60-4379

 For Best Value in SSB-Choose Yaesu from BAIL ELECTRONIC SERVICES

where your purchase includes after-sales service, spares availability, and Bail-backed 90-day warranty

FRDX-400 Receiver $160-2 \mathrm{mx}$, WWV, C.B.

FTDX-400 TRANSCEIVER: $80 / 10 \mathrm{mx}$, PA two x 6KD6, 560 w . peak input SSB, cholce of manual, PTT or VOX operation. Full coverage on 10 mx . offset tuning, callbrator. Includes PTT mic. \$595.
FTDX-560 TRANSCEIVER: Now avallable here, this model (as sold in U.S.A.] is similar to the FTDX-400, with a different panel layout. PA two $\times 6 \mathrm{KD6}, 560 \mathrm{w}$. peak input SSB. CW and SSB modes. Includes PTT mic. \$595.
FV-400 EXTERNAL VFO: For FTDX-400 and FTDX-560. \$98.
FT- 101 TRANSCEIVER: Successor to the famous FTDX-100. 80/10 mx, SSB, AM. CW. PA two x 6JS6A, 300w. peak Input SSB. Built-in dual AC/DC power supply. Low current drain, transistorised except for transmitter driver and PA. plug-in modules, I.F. noise blanker, FET receiver RF, clarifier, built-in speaker. Ideal for portable/mobile from 12 v . $D C$, or in the shack on AC. $\$ 675$.
FV-101 EXTERNAL VFO: Matching auxiliary VFO for the FT-101. \$98.
FT-200 TRANSCEIVER: $80 / 10 \mathrm{mx}$, PA two $\times 6 \mathrm{JS} 6 \mathrm{~A}, 300 \mathrm{w}$. peak input SSB. Manual, PTT or VOX control, offset tuning, calibrator. Operates from a separate power supply. \$350.
FP-200: Yaesu AC Power Supply for FT-200, in matching cabinet with in-built speaker. $\$ 90$.
DC-200: Yaesu 12v. DC Power Supply for FT-200, complete with special plug and cable. $\$ 120$.

FLDX-400 TRANSMITTER: $80 / 10 \mathrm{mx}$, PA two x 6JS6A, 300w. peak input SSB. Manual, PTT or VOX control. SSB, AM, CW. Adaptable to FSK for RTTY. Mechanlcal filter. \$395.
FRDX-400 RECEIVER: $160 / 10 \mathrm{mx}$. Mechanical filter, I.F. "T" notch rejection tuning, calibrator. Provision for installation of FET VHF converters, FM, and $600 \mathrm{c} / \mathrm{s}$. mechanical filter for CW. Can be coupled with the FLDX-400 for transceiving. $\$ 395$.
FL-2000B LINEAR AMPLIFIER: Tubes, two $\times 572 \mathrm{~B}$ triodes in G.G., twin fan cooled. Officially approved for Australia at $400 w$. p.e.p. output level. $\$ 375$.
FTV-650 SIX METRE TRANSVERTER: Converts 28 MHz . SSB to VHF, and includes receiving converter. Primarily designed for coupling with Yaesu models FL/FRDX-400. FT-DX-400, FTDX-560, FT-200, FT-101, with simple installation requirements. $\$ 160$.
FF-50DX three-section LOW PASS FILTER for TVI reduction. $\$ 22$.
SP-400 SPEAKER: to match FRDX-400. FTDX-400 and the FTDX-560.
SP- 101 SPEAKER: to match FT-101.
YD-844 DESK MICROPHONE: Yaesu De Luxe PTT Dynamic type with stand. Also has an auto-trip switch in base to activate PTT when mike is lifted from desk. \$38.
\star C.W.-Yaesu equipment is ideal for C.W. operation. Listen on the C.W. bands and judge for yourself.
\star Receiver resolution of S.S.B. signals is surprisingly easy.
\star With the exception of FT-200 and FTV-650, all sets feature built-in power supplies.
\star All sets are checked and tested before despatch, and three-core A.C. power cords are fitted.
All Prices include Sales Tax. Freight is extra.
Prices and specs. subject to change without notice.

VIC., 3129. Telephone 89-2213

N.S.W. Rep.: STEPHEN KUHL, P.O. Box 56, Mascot, N.S.W., 2020. Telephone: Day 67-1650 (AH 37-5445) South Aust. Rep.: FARMERS RADIO PTY. LTD., 257 Angas St., Adelaide, S.A., 5000. Telephone 23-1268 Western Aust. Rep.: H. R. PRIDE, 26 Lockhart Street, Como, W.A., $6152 . \quad$ Telephone 60-4379

INDEX OF "A.R." TECHNICAL ARTICLES-1966-1970

ANTENNAE, ETC.

Construction Details of a Two
Element Cubical Quad with
One-Loop Triband Elements May '70
"Corner" Antenna for 7 MHz . Apr.' 67
Design Data for Short and Medium Length Yagi-Uda Arrays
Design of a Three-Band Beam for 28,21 , and 14 MHz .
DJ4VM Multiband Quad
Expanded Lazy-H Antenna
Ferrite Balun
Further Data on Single Loop Triband Cubical Quad
Hub for Triband Spider Quads Errata
Indoor Pylon Slot Aerial for 145 MHz .
Long Quads for 144,432 , and 1296 MHz .
Matters Mobile
Moon Bounce
More on Single Loop, Triband
Cubical Quad Beam Element Multiband Double Dipole
New Field-Day V.H.F. Beam
One Way (Mobile Whip)
Parabolic Antenna
Rhombics and Chaos
Series Phased Array for 14 MHz.
See Tech. Corresp.: Series Phased Array for 14 MHz . Jan. ' 67 Author's Reply, Corresp. Feb. '67
Simple "No Holes" Mobile Mount Simpliffed Antenna Switching
for H.F. Bands Single Loop Triband Cubical Quad Element Feb. '70

Some Thoughts on ' V - V ' Beams for 14 and 21 MHz .
"Supergain" Antenna … … The "Reed Rhombus"-A Low Angle Antenna
.. Oct. '68
The World with a Triangle:
Part One
Oct. '68
Part Two
Apr. '69
Part Three
Jun. '70
ZE4JJ Special 3-Element Triband Beam

Jun. '69
5/8th Wavelength Verticals Sep.'70
AUDIO FREQUENCY EQUIPMENT
Economy Speech Compressor .. Apr. '69 Integrated Circuit One Watt Audio Amplifier

Jul. '70
Matters Mobile
Modification of BM3 Mike for Switch-to-Talk Operation Simple Silicon A.G.C. Circuit. Speech Compression for Exciters (S.S.B.)
Three-Transistor Audio Compressor
Transistor Sideband-Increase Your Talk Power
Useful Circuits using Computer
Board Transistors

Jan. '68
Sep. '67
Feb. '66
Dec. '67
Sep. '67
Apr. '68

Sep. '69

INDEX OF TECHNICAL ARTICLES

- Have you ever been looking for a technical article and could not recall what year it appeared? Just remember that "A.A." has published a five-year Index of Technical Articles each December for the years 1955, 1960, 1965 and now herewith 1970.

HINTS AND KINES

INSTRUMENTS

Accessory Package for Transceivers
Audio Clipper/Limiter for C.W./Phone Reception Mar.'66

Compact Multi-purpose Test Instrument
Count and Display at $\$ 6$ per Decade

Jun. '70
Errata
Jul. '70
Crystal Calibrator No. 10:
Conversion of
Modifications to use 3V. Filament Supply

Jul. '67
C.W. Clip.-Filter using FETs Jul. '69

Diddley Dah Dah Dah Dah Dit! Nov.'69
Diddley Dah Dit
Jul. '70
Electronic Keyer
Jun. '69
FET Conversion of Leader LSG11 Signal Generator Mar.' 70
FET Gate Dip Oscillator Jun. '69 See Tech. Corresp. Aug.' 69
FET Voltmeter Aug.'68
Frequency-Independent Directional Wattmeter, and an S.W.R. Meter

Nov.' 69
How is Your Dial Calibration? Dec. '66
Impedance Meter
Mar.' 67
Keying Monitor and Band Edge Marker

Oct. '70
Modifying the Palec Valve and Circuit Tester

Apr. '66
Monimatch Mark 3 and 4 Feb. 66
Paddle-Your Own Sep. '70
Putting the Decades to Work:
A Low-Cost Counter
Self Powered C.W. Monitor .
Signal Source for Carphone Receiver Alignment

Oct. '70
Jan. '66

Simple Multipurpose Square Wave Generator

Dec. '70
Sep. ' 68
Simple Step Attenuator Jan.'68
Simple Transistor Tester Dec. '60
Simple Two-Tone Test Generator

Sep. '67
S.W.R. Indicators - Fact or Fiction?

Jul. '68
S.W.R. Indicators - Trick or Treat?

Apr. '70
The "M.C.M." or Moving Coil Meter

Jul. '70
The Millimatch
Jan. '68
The Varimatcher

MISCELLANEOUS

Additional Time Signal from VNG, Lyndhurst
Amateur Television Activities in South Australia
An Introduction to the FET
Calculation Simplified
May '66

Circuit Boards from Odds and Ends

Nov.'69
Clcck Modification for 24-Hour Movement

Nov.'69
Commonsense Transistor Parameters

Jan. '70
Construction of Low Loss Coaxial Cable

Jul. '70
Conversion of Circuit Diagrams to Veroboard, Tagboard and Printed Circuit Layout

Dec. '69
Count and Display at $\$ 6$ per Decade

Jun. '70 Errata

Jul. '70
Currently Radiating Satellites Feb. '70
Field Effect Transistors Nov.'67
For the Mobile Operators Jan. '70
FT241 Crystals-Channel Nos.
0 to 79 and 270 to 375
Graphical Method for Locating Interfering Beat and Harmonic Frequencies

Feb. '70
History of Amateur Radio and the W.I.A., Part One
Interference to Television and
Radio Reception by Nearby Radio-Comm. Transmitters.
Lectures by VK3AXU:
No. 1-Nature of Matter
Jan. '70
No. 2-Electric Current
Feb. '70
No. 3-Ohm's Law
Feb. '70
Apr. '70
No. 4-Wheatstone Bridge .. Apr. '70
No. 5-Effective Value of an Alternating Current .. Jul. '70
No. 6-Series A.C. Circuit Aug.'70
No. 7-Parallel A.C. Circuits Sep. '70
No. 8-Resonance
Oct. '70
No. 9-An Outside Broadcast Amplifier
No. 10A-Harmonics
Lightning
Light Wave DX?
Nov.'70
Dec. '70
Apr. '68
Locally Available V.H.F. FETs Feb. '69
Long-Delayed Echoes-Radio's
"Flying Saucer" Effect
Feb. '70
Low-Cost Co-axial Relay Construction

Aug.' 70
Making Cabinets for HomeBuilt Gear

Jul. '69
Measurement of R.T.T.Y. Frequencies
Modern Modulation Systems
Moon Bounce
More About Morse
Sep. '70
Nov.'70
Jul. '69
Jan. '66
New Ideas on Amateur T.V.: Part One
Part Two
Apr. '69
May '69
On the Concentration of Ferric Chloride

Jun. '70
Overlay Transistors Feb. '66
Piano Type Frequency Meter Sep. '70

Project Australis:
Aust. First Orbiting Satellite
Experimental Results May'70
Hi-Bal.
Interim Report
It's in Orbit!
Orbits the Earth
Oscar "A"-Users' Guide:
Part One
Part Two
Oscar 6-The Aust. "Bit"
Propagation of Amateur Signals
Allied with Ionospheric Pre-
dictions
Errata
Jan. '67
Feb. '67
Futting the Decades to Work:
A Low-Cost Counter
Radio Automatic Teletype Made Easy
Radics of a Passing Era Oct. '69
Reading the Prediction Charts Sep. '70 Records:

Aust. 432 and 1296 MHz . .. Jul. ' 70
432 MHz . Amateur T.V.
1296 MHz .
Apr. '69
Jun. '69
Repeaters/Translators:
Repeaters
Technical Group Meeting
V.H.F. (p. 16)

May '70
Nov.'68
Sep. ' 68
R.T.T.Y. the Easy Way - or Driftitis Controlled
"Said the Spider in the Sky" Sep. '69
Silver Plating of V.H.F. Inductances
Single Sideband-Power Measurements
Slow Scan T.V. Permitted
Solid State Device Patent Application in 1925
Some Aspects of Radio Frequency Conductivity in Elec-tro-Deposited Silver

Nov.' 69
Some Low-Pass Filter Designs for Amateurs Apr. '66
Some Thoughts on 6 Mx T.V.I. Aug.' 66
Tech. Corresp.: Plating of Coils Jan.'70
The Fatal Current
The F.M. System
The "M.C.M." or Moving Coil Meter
The Repair Eench: Doing Your Own Transistor Tests
The Unijunction Transistor
Tinned Fused Wire - Fusing Current and Time Values
Transistor Amplifier Design:
Part One
Part Two
Part Three
Part Four
Part Five
Transistors on Computer Circuit Boards
Some Further Thoughts
T.V.I.-It can be EliminatedWell, Nearly Always
Using a Phase Comparator
V.H.F. Net Frequencies

When Are They Biting?
"Where have all those Good Hams gone?
60th Anniversary of W.I.A.: Federal Comment
Highlight of Amateur History Aug.'70
History of Amateur Radio and the W.I.A.
Outline of Early Radio
Wireless Institute Publications

May '68
May '70
Mar.' 70
Mar.'70
Feb. '68
Mar.'68
Jul. '70

Oct. '70
May '68
'6.

Sep. '69
Dec. '66
May '70
Aug.' 70

Feb. '66
Dec. '69
Jul. '70
Nov.'70
Mar.'38
Jan. '68
Sep. '65
Oct. '66
Nov.'66
Jul. ' 67
Aug.' 67
Aug.'69
Dec. '69
Aug.' 69
Apr. '68
May '66
Oct. '68
Jul. '70
Aug.'70

Aug.'70
Aug.'70
Aug.'70

POWER SUPPLIES

A.C. Supply for 122 Set May '67

See Additional Notes on Trans. Reg. Pow. Supplies Apr. '68
Handy D.C. Supply for the Bench also Tech. Corresp. plus Errata

Apr. '68
vering A.W.A. Low-Band
Carphone for 6 Mx Dec. ' 67
C.W. Clip./Filter using FETs Jul. '69

Detecting V.H.F. Signals Too Weak to be Heard
Experimental 100 MHz . Crystal Oscillator

May '66
Experimental 455 I.F. Strip Mar. 69
FET Pre-Amp. for 144 MHz . Sep.'66
Field Effect Transistors Nov.'67
Finding True Receiver Sensitivity

Jul. '69
General Coverage High Frequency Converter

Jan. '69
Getting Started on 6 Jun. '67
High Stability V.F.O. for Receiver or Transmitter

Nov.'66
How is Your Dial Calibration? Dec. '66
Improved F.M. Operation Apr. '69
Improvements to Swan 240 Transceiver

Nov.' 67
Improving Eddystone EC-10 as a Tunable I.F. for V.H.F. Converters
Improving the Signal-to-Noise Ratio of Receivers

Jun. '69

Interference to Television and Radio Reception by Nearby Radio-Comm. Transmitters

May '68

Nov.'66

Integrated Circuit F.M. I.F. Strip

Jun. '70
Integrated Circuit I.F. Strip .. Sep. 68
Integrated Circuit One Watt Audio Amplifier

Jul. '70
Keying Monitor and Band Edge Marker
Matters Mobile
Oct. '70
... Feb. '66

Modification to Trio 9R59DE Receiver

Oct. '67
Apr. '69
Modifications to VK3 432 MHz . Converter for Operation on 576 MHz .

Oct. '70
Modified "Q" Multiplier in HE80 Receiver

Oct. '67
Modifying Yaesu Musen FR100B Receiver

May '70
Noise Limiter for Mobile Use Jun. '66
Nuvistor Converters for 50, 144, 220 and 432 MHz . plus a Nuvistor Pre-Amp for 144 MHz . Jul. '66
Overtone Operation of Quartz Crystals:

> Part One

Part Two
Mar.' 67
May '67
See Tech. Corresp.: Transistor Overtone Xtal Osc. Mar.' 69
Pre-Amp. for 2 Mx F.M.
Mar.'66
Sideband: Ring Modulator-Detector

Jan. '68
Signal Source for Carphone Receiver Alignment

Dec. '70
Simple and Easy to Build Product Detector

Jul. '68
Simple and Effective Noise Limiter $\ldots \ldots$............................ Converter

Oct. '68
Simple Squelch Circuit Jan.' 67
Single Sideband on V.H.F. ... Mar.'67
Six and Two Cross-Band Duplex Mobile

Nov.'67
Solid State Amateur S.S.B. Receiver:
Part One
Part Two
Part Three Part Four
Solid State Coupling Methods
Solid State HF. Converters
Oct. '69
Mar.' 70
Jun. '70
Dec. '70
Feb. '6?
Solid State Modules:
Part One-For Valve Replacement in Com. Rx's.. Part Two-Transistorising a BC454
Solid State Transceiver:
Part One Errata to Part One
Part Two
Part Three
Errata to Part Three
Part Four
Part Five
Part Six
Part Seven
Part Eight
Part Nine
Part Ten
Sep. '67

Transistor Radio Noise Limiter Apr. '68 Transistorised Amateur Band Receiver:

T Aug.' 66
Part Two	Sep. '66
Part Three	
Part Four	Nov
Further Comments	Ma
Further Ideas	Jun
istorised B.F.O.	Apr

Jun. '67
Two-Unit Pye Base Station Conversion
Tunable I.F. for Converters .. Aug.'67 Useful Circuits using Computer Board Transistors
Using MR3 Carphone on AC. VK3ABP 6 Mx Converter Jun ' 67 VK3 V.H.F. Group V.H.F. PreAmplifier

Jul. '69
VK3 V.H.F. Group V.H.F. PreAmplifier, Mark II.
VK3 V.H.F. Group 2 Mx Converter
VK3 V.H.F. Group 6 Mx Converter
Errata
VK3 V.H.F. Group 6 Mx Con-verter-Untuned Output
W5OMX Com. Receiver
Your Pye Reporter - Tunable or Crystal Locked
40 Mx D.F. Rod with Transistor Pre-Amplifier
1296 MHz. Solid State Converter

TRANSMITTING

An A.M.-C.W. Exciter for 144 MHz .
A Printed Circuit Transistorised S.S.B. Generator
Articles on Transistor Tx's
A Semiconductor, V.H.F. Pow-
er Amp. using a Pi-Tank Circuit
Commonsense and Instabilities in Transistorised Tx's
Converting A.W.A. Low-Band Carphones for 6 Mx
Crystal Locked A.M.-C.W. Transmitter for 6 Mx Errata
"Das Softenboomer 160": A Low Cost Rig for 160 Mx .
Experimental 100 MHz . Crystal Oscillator
Field-Day Transmitter Errata
Getting Last Bit of Power from A.W.A. MR3 Carphone

Getting Started on 6
Heterodyne Tx for $6 \mathbf{M x}$
High Stability V.F.O. for Receiver or Transmitter
Home-Brew Five-Band Linear Amplifier
How to Use R.F. Power Transistors
Improved F.M. Operation
Improvements to Swan 240 Transceiver
Low Power 2 Mx S.S.B. Tx Matters Mobile
Measuring Power Input and
R.F. Power Output \qquad Aug.' 69
Jun. '68
Jul. '68
Mar.' 68
May '66
May '69
Aug.' 69
May ' 69
Jun. '67
Oct. '70
Nov.'66
Sep. '70
May '70
Apr. '69
Nov.' 67
Jan. '68
Feb. '66

Modifications to FL200B Yaesu
Musen Transmitter
Jul. '70
More Transistor Sideband Dec. '67
Overtone Operation of Quartz Crystals:

Part One
Mar.' 67
Part Two May '67
See Tech. Corresp.: Transistor Overtone Xtal Osc. Mar.'68
Putting the Geloso G222 on 160 Mx

Feb. '69
Errata (Tech. Corresp.) Apr. '69
Sideband:
Asymmetrical Crystal Filters May '68
Cathode Tuning and Matching Circuits
Ceramic Filters for S.S.B.
G2DAF Linear Amplifier
Linear Amplifiers
Linear Amplifiers (cont.)
Ring Modulator-Detector
Speech Compression for Exciters

Mar.' 67
Nov.'66
Sep. '66
Apr. '66
May '66
Jan. '68
ters Apr. '68
Variations on Cathode Drive Mar.'67
Sidebanding by a Greybeard for Greybeards
Sideband the Expensive Way (how to avoid it)

Aug.'68

Simple Silicon A.G.C. Circuit Sep. '67
Single Package Transmitter for 160 and 2 Mx

Jan. '66
Single Sideband on V.H.F. Mar.' 67
Six and Two Cross-Band Duplex Mobile

Nov.' 67
Small 150w. A.M.-C.W. Tx using a 6DQ5 Final
Solid State Transceiver:
Part One
Part Two
Part Three
Errata to Part Three
Part Four
Part Five
Part Six
Part Seven
Part Eight
Part Nine
Part Ten
. Aug.'68
Nov.' 68
Dec. '68
Dec. '68
Jan. '69
Mar.' 69
Feb. '69
Mar.' 69
Apr. '69
May ' 63
Jun. '69
Aug.'ó9
Sep. '69
Some Thoughts on 6 Mx T.V.I. Aug.' 68
S.S.B.-Power Measurements
S.S.B. Transmitter - An Amateur Engineering Project:

Part One
 Part Two

Part Three
Part Four

Some Notes from Author Apr. '69
Stability of Transistor V.F.O's Feb. '68
Table Top S.S.B. Transceiver
for 6 Mx
Errata
Tech. Corresp.: Transistor R.F. Power Amplifiers
The Coupled Tuned Circuit
R.F. Phase Shift Network

The Shoebox II Linear
"The Thing"-Transistorised:
Part One
Part Two
Part Three
Part Four
The 80 and 40 Mx "Transistor
Special"
Errata
See Tech. Corresp.: PADT50 Transistors

Sep. '68
Nov.'68
Sep. '67

See Corresp.: Equivalent for
PADT50 Transistor
Jan. '67
'

Transistor Sideband-C.W. Jul. '68
Transistor Sideband - Increase Your Talk Power

Sep. '67
Transistorised Sideband Feb. '67
Transistorised S.S.B. Generator

Sep. '66
Transistorised 2 Metre F.M. Transmitter

Dec. '67
Transverter for 21 or 28 MHz . Dec. '68
Two-Unit Pye Base Station Conversion

Jun. '66
Using Circuits using Computer Board Transistors

Sep. '69
Using MR3 Carphone on A.C. Mar.' 68
W8NMU Teeter Totter Tuners Dec. '69
2 Mx "Snowflake" Transistor Transmitter

Nov.'69
5 Watts S.S.B. - Home-Brew
without Hangover
Jan. '67
6/60 Special
May '66
300w. P.E.P. 2 Mx S.S.B. Tx .. Jul. '69 Errata

Sep. '69

RACAL WINS FAIRCHILD PLANAR AWARD WITH NEW POWER AMPLIFIER

The 1970 Fairchild Planar Award, presented annually for practical application of semiconductors in a unique concept or design, has been won by Racal (Aust.) Pty. Ltd., who entered a power amplifier which is used in their range of high quality, high frequency s.s.b. transceivers.

The award, a bronze plaque featuring an engraved micro-circuit design, was presented to Mr. John Jackson, Chief Engineer of Racal, by Mr. John Baldwin, General Manager of Fairchild (Aust.) Pty. Ltd., at a function at the Wentworth Hotel, Sydney, on November 11, 1970.
"We believe that this amplifier was the first commercially available fully solid state 100 watt linear high frequency amplifier in the world," said Mr. Jackson, accepting the award.

Transceivers incorporating the new technology are now exported worldwide. They are also used extensively in Australia, particularly for post office out-back radio stations.

Presenting the award, Mr. Baldwin said, "The enterprise shown by Racal engineers in designing and developing this range of transceivers, and in winning the Planar Award, is just further evidence of the potential we have in Australia. When we tackle challenges in the right way, we take our place among the world's leading technological nations."

A \& R-SOANAR GROUP APPOINTMENT

Mr. Barry T. Houston has joined the A \& R-Soanar Electronics Group, Box Hill, Vic., as a transformer design and development engineer, where he will te engaged on forward research and development activities.

Formerly Mr. Houston was a design engineer with L. M. Ericsson Pty. Ltd., Trimax Division, and Thorn Electrical Industries Piy. Ltd.

INCREASE IN AMATEUR LICENCE FEES

Following the increase of Amateur licence fees from $\$ 2$ per annum to $\$ 6$ per annum announced in the last Budget, the following telegram was sent by the Institute to the PostmasterGeneral:
"The Wireless Institute of Australia refers to the Wireless Telegraphy Regulations Bill and asks that licence fees increase to $\$ 8$ be following grounds-

1. The Amateur Sarvice deserves special consideration because of community interests served in disasters.
2. The Amateur Service educates and encourages technical expertise.
3. Amateurs have no recourse to claim licence fees as a tax deduction.
4. The Wireless Institute is the only organisation representing a licensed communication service. By co-ordinating individual requests and with active self-policing com-
mittees, your Department's costs assomittees,
ciated
with the administration and techciated with the administration
We urge favourable reconsideration of the proposed licence fee increase."
"As addendum to previous lettergram. many Amateur licensees are pensioners and should presently enjoy as holders of broadcast and television viewers' licences.
-Peter D. Williams, VK3IZ,
Federal Secretary.
The following is the PostmasterGeneral's reply to the Institute:

Postmaster-General.
Dear Mr. Williams,
I refer to your lettergram of 8 th October. 1870, concerning the proposed increase in licence fees for amateur radio stations.
The existing licence fee for all types of radio-communication stations has remained unchanged at $\$ 2$ per annum since 1924. In the years before 1850 when stations were few in number and primarily provided a medium for police) revenue did not match cosis, but the difference was not great enough to cause concern. Since 1850, however. developments in techniques have been such as to permit a large techniques have been such as radio communicascale expansion in the use of radion and other ficlds. There tion in the commercial and other ficlds. There
are now more than 135.000 licensed stations ni are now more than 135,000 licensed stations of rules designed to maintain the orderly development and conduct of services generally. At the same time the disparity between licence fee revenue and costs has continued to increasa to a point where it was essential to introduce measures to remedy the situation. It must also be kept in mind that money values have changed so that the fee of $\$ 2$ which has applied since 1924 is the equivalent of $\$ 7$ today

There have been developments in amateur radio corresponding to those referred to above. In 1924, for instance, there were only 335 licensed amateur transmitting stations using quite limited operating techniques. The number has now grown to 6,338 , comprising statlons using a far greater range of techniques than in earller years. Today, amatcur licensees are authorised to pursue experiments in the V.H.F.. U.H.F. and S.H.F. bands. to undertake television experiments and to employ single sideband and pulse transmissions. Amateur licensees, as you know, also now engage in experiments involving moon reflected signals and communication satellites.

In determining the new fee structure, which will apply to all radio services. account was taken of the fact that the costs assoclated with the licensing and survelliance of land and fixed stations are greater than those associated with stations in the mobile category and. as you probably are aware. the fee for the former will be $\$ 10$ and for the latter $\$ 6$ per annum.
Although the large majority of amateur stations more appropriately belons to the fixed tategory, it was decided that their confinement category, it was decided that their confinement to experimental and non-commercial activities warranted special consideration and
should be included in the $\$ 6$ category.

Although it is appreclated that the amateur service is self regulated to a large degree, my

Department is required, in return for this $\$ 6$ fee, to grant licences, issue and record cal signs, inspect stations, investigate complaints, arrange for reciprocal agreements with other countries. frequency measure and monitor transmissions as required and lialse with other Administrations and the International Teleradio matters senerally.

I can assure you that I am well aware of the part which amateur radio operators have played and are continuing to play in providing emergency communications during national emergencies. I also appreciate the encouragement given to the study of the radio art through
amateur radio activities. At the same time I amateur radio antivities. At the same time I
regret to advise that the Government cannot regret to advise that the Government cannot
continue to subsidise the administration of continue to subsidise the administration of amateur radio stations to the extent that way is not clear, therefore, to reduce the new fee of s6.
The Increased fees for licences will still not meet the discrepancy between revenue and costs and for this reason I am afraid it would not be possible to introduce concession fees for pensioner amateur station licensees, as requested. As you will appreciate. the grant requested. As you will appreciate,
of such a concession would make it most of such a concession would make it most
difficult reject claims by other amateur difficult to reject claims by other amateur
operators who may consider their situation operators who may consider

Yours sincerely,
Alan S. Hulme.
Postmaster-General.

NEW CALL SIGNS

JULY 1970

VK1BS-B. A. Stevens, 28 Adair St. Scullin. VK2AIL ${\underset{20}{2627}}_{26}^{\text {D. }}$ E. Law, 20 Bunarba Rd., Gymea, VK2AOW-R. J. Wirth, 22 Berry St., Cronulla, VK2AQD-J. J. Clarke, 476 Lane Lane, Broken VK2BIC-D. ${ }^{\text {Hill }}$ H. Watkins, 63 Beatrice St., BalvKewlah Heights, 2093. VK2BMB-R. A. Baich, 24 Dress Circle Rd., VK2BRN Avalon, 2107
UK2BRN-J. Wippo, 23 Judge St., Randwick. VK2ZIL $\frac{2031}{\mathrm{~K}}$ K. J. Hargreaves, 186 Marks Pt. Rd., VK2ZKM-G. L. May. 34 Walsh Ave., Marou-VK2ZPV-P. S. Vogel, 5 Wilson St., Maroubra, VK2ZQH-F. J. Chappell, 4 Gallod Ave., Parkes. 2870.
VK2ZWC-W. C. Coates, 66 Ferrier St., Lockhart. 2656.
VK3GM/T-T. G. Foster, 802 Sebastopol St., Ballarat, 3850
VK3JE-J. Bays, Station: 3 Allison Rd., Mount Eliza, 3930; Postal: P.O. Box 314, Clayton, \mathbf{L} Cunnington, 4 Eustace St., Wen-VK3VU-L. Cunnington, 4 Eustace St., Wen-VK3AEZ-J. McL. Vale, 965 Mt . Alexander VK3AQT-J. H. L. Field, 27 Reigate Rd., VK3BAO-R. J. Malcolm, Boisdale. 9860. VK3BDQ J. K. Horan, 34 Roberts St., Glen Waverley, 3150.
VK3BDU-H. H. E. Westerhof, Army Appren-VK4FV-F. Wh. Fowler, 10 Orestes Rd., Yer-VK4HQ-L. P. Crowe, 4 Orvieto Tce., Caloun-VK4KI-R. K. ${ }^{\text {dra }}$ Rutherford, 7 White St., Nerang. 4211.

VK4VA-V. F. Burman. 4 Mays Crt., Aitken-VK4XF-J. F. Russell, Station: Raintree Ave., Victoria Estate, 4850; Postal: C/o. P.O., Victoria Estate, 4850.
VK4YA-G. T. Adamson. 3 Maker St., Too-VK4YL-R. V. Bulman. 4/82 Apollo Rd., Bul-VK4YV-V. M. Rhys-Williams, Station: Little Ships Club, Dunwich, 4163; Postal: C/o. Post Office. Dunwich, 4163.
VK4ZAI-R. A. Isaac. 112 Auckland St., Glad-VK4ZLR-A. ${ }^{\text {stone, }} \mathbf{~ 4 6 8 0 . ~ L a n g m e a d , ~} 38$ Morrow Rd. VK4ZMJ-M. J. Joyce, 35 Prout St., Camp HIIl, 4152.
VK5EN/T-A. R. E. Nitschke, 3 Hall St., Cum-
 VKSVT/T-N. S. Schahinger, ${ }^{\mathbf{T}} \mathbf{7 7}$ The Grove, Lower Mitcham, 5062.
VK5ZDM-P. R. Messer, 15 Brigalow Ave., Blackwood. 5051.
VK5ZFC-D. A. Gassner, 59 Russell Tce., Wood-
VK5ZIG ville Park. 5011. VK5ZPA-P. Augusta, 5700 Reichelt. 38 Gray St., Kilkenny, 5009
VK6BQ-R. R. Davies, Falls Rd., Lesmurdie. VK6ML/T-Technical College Radio Club, Har-VK日VE-The Southern Eley, 6050. VK6VE-The Southern Electronics Group, Blue
WK6CIE-F. W. Fletcher, Albany. 6330.
Wtation: Portable; Postal: 53 Ives Park, RIngwood, England.

Drake, $1 / 4$.
Park. 6014.
VK7ZGD-G. de Groot, C/o. Hytten Hall, Univk8CW versity of Tasmania, Sandy Bay, 7005. VK8ZFH-G Alice Springs. 5750 . 34 Memorial Dr. VK8ZFH-G. L. Stephens, 8/1377 Sergisons Crt.

CANCELLATIONS

VK1BA-R. J. Mirdas. Not renewed
VK1BA-R. J. Mirdas. Not renewed.
VKIDD-D. R. L. Davles. Not renewed
VKIVB-V. F. Burman. Now VK4VA.
VKIZAV-D. R. Avdall. Not renewed.
VKIZJH-J. Hyne. Transferred to Vic.
VKIZJH-J. Hyne. Transferred to Vic
VKIZRN-R. W. Nash. Now VK3ZRL.
VK2BA-B. A. Chnpman. Deceased.
VK2OG-G. J. Menon. Deceased.
VK2QK-A. L. Manwarinc. Deceased. VK2ZW-S. U. Grimmett. Not renewed. VK2AQL-L. J. Lee. Deceased. VK2AQR-R. W. Rose. Deceased. VK2ARR-R. W. Rose. Deceased. VK2ARQ-A. A. Rayner. Deceased. VK2BAD-A. Davis. Transferred to A.C.T. VK2BAW-G. P. Viertelhausen. Not renewed. VK2BBS-B. A. Stevens. Now VK1BS. VK2BFO-B. E. Cloudesley. Not renewed VK2ZBR-B. H. Ridley. Not renewed. VK2ZDE-R. A. Day. Not renewed.
VK2ZDR-D. G. Hoskins. Not renewed.
VK2ZGC-J. J. Clarke. Now VK2AQD.
VK2ZNI-P. T. Nicholson. Not renewed.
VK2ZQA-R. J. lrving. Not renewed.
VK3LW-L. McD Stone. Transferred to N.S.W.
VK3VE-V. W. Harrison. Not renewed.
VK3YG-G. E. Smith. Transferred to A.C.T.
VK3ANA-P. W. Collee. Not renewed.
VK3AVZ-I. W. Brown. Not renewed.
VK3AZH-K. J. Horsfnil. Not renewed. VK3YAR-R. J. Malcolm. Now VK3BAO. VK3YBE/T-T. G. Foster. Now VK3GM/T VK4LU-P. H. Long. Transferred to W.A. VK4PL-W. C. Proposch. Deceased. VK4RM-R. E. McDermott. Not renewed. VK4VP-E. J. V. Willis. Now VK5VP. VK4ZKB-K. E. Ballantyne. Not renewed. VK4ZLO-L. A. Davies. Transferred to N.S.W. VK4ZTA-G. T. Adamson. Now VK4YA.
VK5BV-B. A. Wheeler. Transferred to W.A. VK5GT-R. J. Chamberlain. Not renewed. VKEOJ-B. G. Diw. Deceased.
VK5SO-C. F. Williams. Now VK8CW.
VK5XW-C. P. Shields. Deceased.
VK5ZG-L. A. France. Not renewed.
VK5ZAL-A. L. Purnell. Not renewed.
VK5ZAS/T-N. S. Schahinger. Now VK
VK5ZFH-R. L. Stephens. Now VK8ZFH.
VK5ZFH-C. L. Stephens. Now VK8ZFH.
$\begin{array}{lll}\text { VK5ZZI-D. W. Friend. Trinsferred to } \\ \text { VK5ZZZ-P. } & \text { C. Drewer. Not renewed. }\end{array}$
VK6AQ-G. R. Crews. Not renewed.
VK7KG-K. F. Gosling. Translerred to N.S.W. VK7RL-R. V. Bulman. Now VK4YL.
VK8ZBA-J. A. Cooper. Now VK8JC.

Sub-Editor: DON GRANTLEY

P.O. Box 222, Penrlth. N.S.W., 2750
(All times in GMT)
Increased postal charges are normally not to be assoclated with DX news as such, however they are of vital importance to the DX volume of outward QSLs. The increased cost of overseas surface mail to foreign countries by two cents to nine cents, and by a similar amount for Commonwealth countries to seven cents, was bad enough, but have you noticed tucked away in the centre of the new charges book, the slug on I.R.Cs.? They have jumped from what was a pretty steep cost up to 18 cents for I.R.C., and 7 cents for British Commonwealth Coupons.

There is little we can do about having this situation remedied, however there are some alternatives, firstly keep an eye on the DX news sheets ior cut-price coupons, secondly
make sure your coupons, which may come 11 from oversens, are not exchanged at the Pos OMice for a 9 c stamp. but passed on to some
DX man for the same cost. or do the obvious and buy them out of this country where they nre cheaper. This would apply to the operator who uses a lot of them. Or stick to the buread. News is scarce again this month, owing to some of the news sheets not coming in. However, I have had a fair response from our own chaps so I guess we will get by this time. From prominent VKS listener, Steve Ruediger. comes a very welcome tape with loads of DX on it. Some of the prefixes to grace this tape
 OH8, HKO, FR7/G and many others

Jack AX3AXQ, down in Tatura, is stlll active on 14 s.s.b.. worked amongst others, VR5LT, Norfolk Is., JA5BLZ/MM, LX2CQ, OE6MAG DLOOS, CTiPN and EAGBN. whilst a lot of good ix was heard. whill be listed with this month's list.

Letter to hand from John ZLIAH via Peter Nesbitt, with information on the Bay of Plenty cote. Comparable to some of those beautiful colour certificates which Jock ZL2GX goes to colour certificates which Jock ZL2GX goes full solour view of the area in plenty of detall. colour view of the area in plenty of to wark five stations in the Bay of plenty region, that five stations in the Bay of Potiki, Rotorun. Tauranga, and Whakatane countles and boroughs within these counties. Mobile stations also qualify. The five stations can be worked on any bands and you need check list showing station worked, iRCs dQSLs are not band plus 50c or eight IRCs (QSLs are not needed). The applications should go to John anga, N.Z.
Of interest to the top band gang is the latest screed from Stew W1BB. Firstly, the annual Trans-Pacific tests will be held on the following dates: Dec. 5 and 18, Jan. 2 and 16 , Feb. 6 and 20. Times are $1330-16002$ Saturdays. freguencies are 1907.5 to 1912.5 for JAs. 19572000 for W/VE West. 1800-1810 for W/VE EAst. ZLs will be on 1876. and VKs on $1802-1805 \mathrm{KHz}$. Call will be CQ DX Test in five-minute per-
iods, listening between calls with the $W / V E=$ stations leading off. On the same dates the JA to sunset tests will be held, but at 0730 also on the same dates be Europe tests are Whilst on the subject of top band, we have the A.R.R.L. 160 metre test coming up on 12th for each QSO with as many A.R.R.L. stations ns posslble and as many :ible, for which 5 points are Riven, plus multiand one covering all Dx contacts. A total of : 6 multipliers is possible. DX stations to for ihe highest score. Submit score-shect, ann ilphabetical list of stations worked before Mith St., Newington, Conn., 06111. U.S.A. first ever contact made when Gene VPGGN made contact on 160 metres with K2ANR on Sept. 29 last. Evidently there has been some outstanding DX on this band as is evidenced in a report
from S.w.1. George Allen in VKB to Stew W1RB. and published in his October bulletin. It would appear that quite a lot of good DX
has been worked from VK to W land, and also has been worked from VK to W land, and also
heard out here, however in typical manner, I have to get these things secondhand from an overseas news-sheet.

On to regular DX news, once again we have had a new operation from Jordan, this time body in this country working him, however if you have. and want a QSL. it should go to the French Embassy. Teheran. The actual operation was from Amman, Jordan.
The Ivory Coast is again in the news with an operation by Dan TU2CY. Box 921. Abidjan, Felix TU2BB, Box 298, Abidjan, and Jack TVreports of the latter in this country on 21 MHz . The 5N5 prefix used by several Nigerian stations recently was a special one to commemorate the anniversary of the founding of the
Republic. $5 N 5 A A F$ was one well to the fore, Republic. 5N5AAF was one well to the fore, W7VRO being his QSL manager.
Recent operation by AP2KS from East Pakistan was plagued with intericrence from all tained. and a successful job of control wis done by IIIJ and 4S7PB. QSL manager for this one was KSRLY, International DX Assn., Box 125. Simpsonville, Maryland, 21150.
The operation just completed from Lord Howe Is. by VK2APX (W6CR) and VK2BKM and WOCTN for the latier. Once again I have and wely on an overseas news-sheet for this information.
F6AXP/P currently active at the beginning of Nov. Was QRV from Ihe de Re, he asks for Qus to stations are active from the Sth. Shetland Is.. they are Rene CESAT and CESAZ. The former is on quite often on 14110 s.s.b. or Rnoul Romero V., Box 13630 . Santiago, Chile.
 3XTJ/P were active during the early part of October: on Oct. 10 from Sterlingshire, 11 th from Aberdeenshire, 12th to 15th Shetland Is.,
16th Clackmannanshire, and 17th from Rox16th Clinckmannanshire, and 17 th from Rox-
burghshire. QSLs can go either direct to the home stations, or via the R.S.G.B.
OK5KVG, active from Oct. 1 to 7 from Ham meeting in Sth. Bohemia, is valid as Kubovec, Zuolenska 521, Prachatice.
For the prefix hunters, still they come. DA is now being used by all foreign military stations in Gerefixes used by W3HNK and W3ZKH resp. during part of Oct. 5N5 was used by some 5N2 uperators during the last week in Sept. to Oct. 31. 916 was the expected prefix for $9 J 2$ stations during the $C Q$ contest to celebrate that country's 6th anniversary of independence. PJIAA used on Oct. 24-25 by Veronn ARC for some undisclosed reason. QSL for this one io Box the DA prefixes mentioned above, the cali Relrap was used at the Gatow R.A.F. open dny. QSL to G3XIN.
KC6RK is on Palau Is. in the West Carolines. and asks for his cards to be sent via Robert
J . Kennedy. U.S.C.T. Activities, Code 1, Box 76. F.P.O. San Francisco, Calif., 96637. KC6WS is also in the West Carolines, but on Yap Is. Oct. 18 to 25 by W3HNK and KV4EY under the calls PJ8AR. PJ8AR/FS7. VP2VY and possible under a VP2K call sign from St. Kitts. W3HNK will be handling the QSLs for all non-European stations. hls address is Joseph L. Arcure. Jr..
STSYL is once again active, and rogether with her OM 5T5AD has a sked with 4UIITU
daily at $0715 z$, and are looking for VK/ZL daily at 0715z, and are looking for VK/ZL
contacts vin the long path.
Bert GC2LU is still to be worked from Jersey, and can often be located around 14160 s.s.b. between 0700 and 08002 . His new address is
H. Chater, 106 Rouge Boullion, St. Heller. H. Cha

There has been a change in the QSL arranfements for CO2FA. formerly managed by XE-
$1 A E$. however that gentleman has logs to 1AE. however that gentleman has logs to
Sept. 1969 only, and suggests that all gince that date so direct to the operator at Box 6936. Havana.

Some DX bulletins have reported incorrect info in respect to $\mathrm{ZM} 3 \mathrm{PO} / \mathrm{C}$ and $\mathrm{ZM4OL} / \mathrm{A}$. The information as shown in Nov. "A.R." is correct. A note from ZL DX Editor, and prominent QSL manager. George ZM2AFZ in which he tells me that he has received five cards for
ZMIAAT/K which have neither call sign or address on them. Three of these are from $V \mathrm{Ks}$, the dates being Nov. 21. 1969, Dec. 24 , 1960. and Jan. 26. 1970. Probably some absent minded user of the special Cook Bi-Centenary of the three, then a second completed card to Genrge will do the trick.
The latest sunspot confirmation received by George was 131 for May, with the November prediction being 88 . Twelve months ago it was
105 . No wonder the bands are tending to flat105. No wonder the bands are tending to flat-
ten out somewhat. Yet they have their moten out somewhat. Yet they have their mo-
ments. over the contest week-end in Oct., 10
metres really came to life when countries like KRG, YB1. YV, XE, VS6, HC, PY, KZ5, KL7. UA, AP2, ZC4, DL, MP4, FB8, VP7, 6W8, EL2, many others were heard and worked both in on 10 , as my recelver is quite useless up there.

AWARDS

Asian DX Award.-Issued for working 30 Asian countries including JA since 30th July, 1952. G.C.R. list or QSLs plus 10 I.R.Cs to
J.A.R.L. Awards Manager. Box 377. Tokyo J.A.R.L. Awards Manager. Box 377 , Tokyo
Con Central. Japan. Any 30 countries from
listed by A.R.R.L. as Aslan will count.

MANAGER8
These are once again taken direct from letters and logs, and are not in any specific order:
AC3PT-K2MME
AXOKW-VK7KJ
DA1RS-WA3KFK
JD1ABO-JA1BA
JU2REG-JABADC
9M6AD K6ETN 9M8FMF-W1YRC FB8WW-F5QE
WF7ARW-W7DK
KJBCD-W5TJT
VP8IV-W3DJZ (new
ZD9BO-ZS2RM
ZK1MA-KH6GLU
HC8GS-W5GTW
KC4AAD-K7YMG
KC4USP-K2BPP

REGULAR SKRD8

The following stations have skeds as shown: FB8Z-14022 c.w. xtal. Fridays 1500 to 16002. with FB8WW.
HC8GS- 14130 s.s.b. dally at $2330 z$ with VEsig. MP4BHH takes list for FR7ZU/G at 02302 on HV3SJ- 14182 dally.
 KW6AA- 14205 Tues. and Wed \mathbf{T}. 2800 e each Sunday. ZKIMA. Manihiki, redorted QRV dally 141921950700 and 0800 , working to list C2IGB-14160/170 Mon., Tues. and Thurs., 0730 JY1-21367 1802.
$13671830 z$ dally with G3UML. Walt unt11
sked is completed before chasing a QSO.
A later issue of Geoff Watts DX News-sheet says that ZK1MA has AX3JW and ZM4NH compiling lists on alternate days for this area on 14195 at 0500z. So take your plck, he always seems to be on the air
One final piece of news just to hand, is that October has been given to VE3EUU.
Of necessity. I have to terminate this issue at this point. I will however be preparing notes for the January issue, but due to the in advance of the normal time. I would like to thank at this time all the chaps who have assisted me with this column over the past year. I hesitate to mention names in case I year. I hesitate to mention names in case to George Studd, of the N.Z.A.R.T. for his monthly notes, to Steve Ruediger for a well complled tape of loggings direct from his rx, Jack 3AXQ and Tom 3BBC down at Tatura,
Don 3AKN. Barry 5BS. Peter 3APN, Maurie Batt, Mac Hilliard, George Allen, Eric Trebilcock, the Long Is. DX Assn.. Geoff Watts, the boys from the I.S.W.L. in London, in particular Bernard Hughes, who regularly sends out a tape full of news, and the many others who have assisted along the line. To all who have assisted. my very sincere thanks, to all readers and helpers I wish the very best for the Festive Season, and may the following year be a very happy one for you all.
73 and good DX, de Don WIA-L2022.

R.S.G.B. SUB. INCREASE

As notified by R.S.G.B. communication of 27th October, 1970, the suivscription for a Corporate Member of the R.S.G.B. and for receiving their magazine "Radio Communication" will be raised to $\$ 8.80$ as from the list to be forwarded to R.S.G.B. for January 1971. This means that any subscriptions received by W.I.A. Federal Executive Publications Department after 6th December, 1970, will be at the new rate and members wishing to become memters of the R.S.G.B. are advised to get their applications in before that deadline date.
-Alf Chandler VK3LC.
Publications Manager.

\mathbf{v}
Sub-Editor: ERIC JAMIESON, VKSLP Forreston, South Australia, 5233.
Closing date for copy 30th of month All Times in E.S.T.

AMATEUR BAND BEACON8

VK1	144.390	VK4VV. 107 m . W. of Brisbane.
VK5	53.000	VK5VF, Mt. Lofty.
	144.800	VK5VF, Mt. Lofty.
VK8	52.006	VK6VF. Tuart Hill.
	52.930	vKGTS, Carnarvon.
	144.500	VK6VE, Mt. Barker.
	145.000	VKgVF, Tuart Hill.
	435.000	VK6VF ion by arrangement).
VK7	144.930	VK7VF, Devonport.
VKg	145.000	VK9XI, Christmas Island.
ZL3	145.000	2L3VHF, Christchurch.
JA	51.985	JAIIGY. Japan.
W	50.091	WB6KAP. U.S.A.
HL	50.160	HL9WI, South Korea

As the DX season is right upon us, I have included the ceacon being run by HL日WI, the 50.100 frequency is used all day and 1980 , then a frequency change to 52.010 MHz . for the evening. It is c.w. and s.s.b. and has n 15 -second break-in period.

From the VK6 V.h.f. Group News Bulletin comes news that Malaysian 19M21 operators are now licensed to work on 50 MHz ., so this is another direction to keep a watch on. Interesting to note also that JAs were worked in
Perth on 16th October.
The ViK6 Bulletin also advises that those inexperienced in selecting beam headings and wanting to Doint north for DX. should get up at dawn, stand with the right arm outs!retched at dawn, stand whe and pointing at the sun. While in this position, look straight ahead, that's north! When using this method be sure to do acter who used this method kept looking at his right hand, with the result that all he worked were VK2, VK3 and ZL!

A short letter from David VK8AU in Tennant Creek says there was a good peak to JA toward the end of Sept., but things have gorie a bit quiet in that region during Oct. On 8th
Oct. he worked Mike JAIMAS at 2230 on 6 metres. signals $4 \times$ S, running 10 mW . output. The signal was further reduced in power and was still detectable at 1 to 2 mW . s.s.b.! IThat's real economy.-SLP.1 HLOWI continues to be very popular, working him 11 times between
$22 / 9$ and $7 / 10$. His meteor scatter experiments with Doug VK8KK and Wally VK5ZWW are still continuing. Signals to Wally are senerally weak with some occasional good bursts. He reminds those interested in meteor showers that the Geminids occurring Dec. 8 to 14 should be quite good from 1930 to 0930. with a peak between Tennant Creak and Adelaide from 2200 to 2330 . Suggested techniques for this form of contact were outlined in Sept. 1970 "Amateur Radio".
With DX just around the corner, John VK4ZJB advises he will be operating on 53.200 MHz this seascn, running 150 watts to a 10
element wide spaced yagl! Suggests you tune element wide spaced yagl! Suggests you
that high. "where the t.v.1. drops off."
The Geclong Amateur Radio-T.V. Club will be operating portable during the DX season using the call sign AX3ATL/P from high locations in the Geelong area, using 6 and 2 mx . after the Sunday morning broadcasts. This station could provide some interesting short skip contacts to Adelaide. Sydney and
on 6 , and to plenty of places on 2 mx .

ROSS HULL CONTEST

Following representations made by the VK3 V.h.f. Group. through their Federal Councillor, regarding opening and closing dates of the Ross Hull Contest and subsequ nt submissions sideration to the fact that the early termination sideration to the fact that the early termination
in January deprived many of an opporunity of partisipating in this Contest during their of partisipating in this contest during their holiday period, whilst occurred early in Decemoften good openings occurred early in Decem-
ber it was decided to effect two changes for the $1870 / 71$ Ross Hull Contest. viz.

1. The starting date will be Saturday, 12th December.
2. The finishing datc will be Sunday. 24!h January. The overall effect of this is in lengthen the time in which contestants may select their log. Perhaps it would be timely for me, as V.h.f. Sub-Editor, to point out that generally there has been reasonable participation by v.h.f. operators, but a very unreason-
able dercentage of submission of Jogs to the

Contest Committee. I don't think anyone would dcubt that the Ross Hull Contest helps materally to keep the v.h.f. bands alive for several weeks, certainly during the period of maximuin DX openings. it helps to create interest across the Tasman in ZL land. For the 2 mx man, the fall off in sunspot numbers generally means an increase in activity on that band, and the contacts to $Z \mathrm{~L}$ will come again never fear. Who is going to be the first to take away the present record from Hughle VKSBC?

VKa V.H.F. CONVENTION

Looks as though the recent convention was uccessful, after being bolstered up by the VK5s, ten of whom attended. Noted with interest the results of the 432 MHz . Antenna gain contest, in which the 32 element extendedexpanded array of Peter VKSZYO took the honours with a gain of 16 dB. . closely followed by a similar one made by Bob VK3AOT with 15 dB. gain. The skeleton slots seemed to score poorly. I won't add further on the subject of convention as i understand this will be the subject of a separate article later.

SEPTEMBER 27

This was the date of a Field Day in VK3 and the annual V.h.f. Field Day in VKS. The winners in VK3 were SAUI and SAWV, who shared first place, both being portable at Mt.
Cowley, 80 miles s.w. of Melbourne. The VK5 Cowley, 80 miles s.w. of Melbourne. The VK5
winners were the combined efforts of Bob VK5ZDX and Wally VK5ZWW. who operated from Dingabledinga, 35 miles south of Adelaide. This was the third successive win for this team! Bob VK3AOT comments: "Due to lousy conditions no contacts were made with VK5s' As pointed out last month, the same applied in VK5.

PORTABLE OPRRATION

As other news is somewhat scarce this month. I propose devoting some space to inormation about a proposed portable operation Which should be of Australia-wide interest. be operating from Mi. Cowley. 80 miles s.w. be operating from Mt. Cowley, 8,200 miles s.w. Snturday. 19th Dec. to 11th Jan. 1971. Bands: 6 mx a.m./c.w., nominal 52.100 MHz., 150 w . to 4 el. yagi. 2 mx a.m./c.w. plus v.f.o.. nom.
144.050 .150 w .10 el . yagl. 432 MHz .: s.s.b. 432.282 20w. p.e.p. output to 15 el. yigi; f.m./c.w. $\begin{array}{llll}\text { v.f.o., nom. } 432.150, & 20 w & \text { output. } 576 \mathrm{MHz} \text {.: } \\ \text { f.m./c.w. v.f.o., nom } 576.200, ~ 20 w . ~ o u t p u t ~ t o ~\end{array}$
 nom. 1296.350 , $5 w$. output to $3-1 t$. dish. In addition, Ch. A, B, C and 4 f.m. 10 w .

Operating times: 0730 beaming Adelaide on 2 mx : 0800 on Albany, 2 mx ; 1430 on VK6 on 6 mx . 1900 on VK7 on 2 mx ; 2015 on Melbourne 6 mx : 1800 on Vr7 on 2 mx ; 201500 Melburne on $432 \mathrm{s.s.b}$. 2100 north on $2 \mathrm{mx}: 2300$ Adelaide
on 2 mx . There will be alternating periods calling $C Q$ and listening.

Bob would like to make skeds with interested stations with a view to attempting contacts on 576 MHz and 1296 MHz ., particularly In the Adelaide direction. He also advises that during very good 6 mx openings to VK4 other skeds will be abandoned and he will run an outomatic call sign sender on 144.050. with
frequent periods of listening on both 6 and 2 mx .

Bob wants it to be widely known that he will not be using his period of portable activity at Mt. Cowley to count as a score in the Ross Humbers to those wanting them. His main purpose is to stimulate interest in working on as many bands as possible and will go all out for long distance 2 mx contacts if the occasion permits, even having his eyes on David VK8AU in Tennant Creek.

MEET THE OTHER MAN

You might think it was co-incidence that following the information on the Mt. Cowley operation above. that this month Bob VK3AOT stould be featured. but this has been planned for some months following my being let into en early secret of planned operation over the DX senson! So there are no apologles. Bab Ave. Mt. Waverley feet in an area where stringent councll regula tions make it difficult for him to erect some of the antenna systems he would like hence his keen internst in portable operation He uils his keen interest in portable operation. He Wils first licensed in 1966 with the call sign VK3ZVV.
and operates on 52 . $144,432,576$ and 1296 MHz . On 52 MHz . he runs 150 w . to a pair of 829 B valves, using a 4 el. yagi up 50 ft., modes a.m./n.b.f.m./c.w. Similar modes are used on 144 MHz .. running 150 w . to a YL1060, and a 12 el. yagi up 45 feet. On 432 MHz .. he changes to s.s.b.. with $40 w$. p.e.p. to a $3 / 20$, antenna a 32 el. extended-expanded collinear, 32 ft . high. He uses VK3 V.h.f. Group FET convert ers on each of these bands for receiving. fed
into a 13-valve home-brew $r x$. On 576 MHz . he uses anothcr FET ITIS88, converter; a MA4C63A varactor quadrupler 10 a dipole an on 1296 MHz with a home-brew solld state converier with IN21E diode to 3 -ft. parabolic reflector atitenna. All of this equipment can be set up in a caravan for his portable operations and obla!ns power from a motor driven alternator
States worked to date on 52 MHz , are VKl
 MHz. VK3 only. He was the first VK3 to work VKG on 2 mx and this was during the big opening to VK6KJ on $2 / 2 / 70$. He also was the winner of the phone section of the 1969-70 Ross Hull Contest, and holds V.H.F.C.C. for both 6 and 2 mx . Bob is currently Publicity Officer for the ViS3 V.h.f. Group ia job which he does very well-5LPi and formerly had charge of sales of the Disposals Committee.
Looking to the future, Bob says his aim is to achieve Worked All States on 144 MHz ., to concentrate more on 1296 and 2300 MHz ., to attempt moonbounce on 432 (when able to move to an area more suited for antenna erec tion), and to continue to go out portable and provide a contact from that
interested from some other end!

And now a reminder that the AX prefix ends on 31st Dec. There are plenty of v.h.f. oderators looking for that 100 AX contacts. Due to the lateness of any form of participation in the Cook Bl-Centenary Award being made available to then. most of the DX from last scason was gone. The carly part of the forthcoming $D X$ scason will be their only opportunity to add to their score. I suggest as many unity to add to their score. I suggest as many $A X$ prefix untll the end of the year.

Bob VK3AOT

NTH. IIEMISPHERE PROPAGATION
From George VK3ASV comes some interesting information of propagation relating to the Northern Hemisphere. which experienced their best summer solarise sporadic \mathbf{E} season for 18 yerrs, with 5) $\mathbf{M H z}$. openings almost dally, beginniing at the end of April, being a record breaking Es season for the U.S. with 90 con secutive days open, and some multi-hop skid
on 6 mx . with many times the Es M.U.F. on $6 x$ with many times the Es M.U.F.
renching to 150 to 170 MHz .. thus giving the following 144 MHz . openings:
$10 / 5 / 70-$ W5 to $W 9,600 \mathrm{~m}$. path with rapid $16 / 5$-WS to W9. W3. up to 743 m . with $18 / 6-\mathrm{JA3}$ to JA8, up to 1300 km . for 60 mins. IM.U.F. 150 MHz .
28/6-W5 to W3. W8 for 40 mins.
1/7-U.S. Es opening on 144 MHz .
8/7-W5 to W6, $1300 \mathrm{~m} .$, nothing shorter than 1200 m .
11/7-W5 to W2 for 5 mins.
21/7-JA8 to JA4. 1563 km . for 25 mins.
25/7-JA6 to JA8. $1900 \mathrm{km.}$.25 mins. IMI.U.F $8 / 8$ Jéas to JA7 for 38 mins.
George continues. "This Northern Hemisphere season was quite a contrast to last year. which started very late May and with only six hop 6 mx openings but no 2 mx Es skips recorded. The first 2 mx Es openings ever
recorded tock place in June 1851 when WG recorded tock place in June 1951 when W6
worked ws over a 1400 m . path. This leads us to ponder here. do we follow the northern hemisphere, if so. we could be in for an excellent season, but Es being what it is, 'sporadic'. I belleve after studying Es over good and bad years between the two hemispheres. it scems to be there is no connection.
we neither lead or lag, however it is suggested we neither lead or lag, however it is suggested
all VK and $Z L$ stations try nnd set themselves up on 6 mx this summer. fixed and mobile, so if there gre some excellent openings, there may well be some on 2 mx as well." (continued on page 22)

VHF NOTES
 (continued from page 21)

George advises the Eastern Zone (Gippsland) v.h.l. boys have spent the winter constructing some very nice solid state gear for both v.h.f. and u.h.f. and generally upgrading their statlons. Stations in the area will be on the lookout for contacts on 144.180 and below from 1900 onwards. Also during periods of intense 6 mx openings look for Gippsland 2 mx statlons on 144.035 and 144.188 MHz . By next summer the Eastern Zone boys hove to have a $2 \mathbf{m x}$ beacon running. 'That's really good news.-5LPI 14 different stations will be active cn 6 mx from the Eastern Zone this season, and on 2 mx you might care to look for any of these: VKs 3ASV. 3YBY, 3ZNB, 3AXM, $3 Z X Q$. $3 Z Q C, 3 Z A B, 3 B B B, 3 D Y$ and $3 K R$, while those experimenting on 432 MHz . are 3ZQC. $3 Z X M$, $3 A S V$. 3YBI, $3 K R$, 3BB, $3 Y A X$ and $3 Z N B$.

Thank you George for filling in the gaps in the VK3 activity and this will now give tiose interested in short skip contacts plenty of opportunities.

Colin VKSDK iformerly VKSZKR) of Mt Gambier advises the South East Radio Group will be manning a portable expedition to "The Bluff," 14 miles west of Mt. Gambler, over the New Year holiday week-end, operating on

The station will be using the Club call sign VK5SR. Colln advises further information next month, and with the earlier publication of "A.R." for January, the information should get to readers ahead of the actual week-end involved.
Finally, the Festive Season draws near. I take this opportunity of wishing you all a very happy and prosperous Christmas and New Year period, with plenty of DX, and s.e.b. transcelvers in your Chrlstmas stockings. Many thanks to those who have helped these pages along during the year with notes and snippets of information. Please keep it coming. It's your page, let me hear from you.
Thought for the month: "A good many men still like to think of their wives as they do still theire to think oflected, but always there." That's all until next month 73, Eric VKBLP. The Voice in the Hills.

\&

CONTEST CALENDAR

-12th Dec., 1970 to 11th Jan., 1971: Ross A. Hull V.H.F. Memorial Contest.

13th/13th Feb.: John Moyle Memorial National Field Day Contest.

- N.B.-The dates initially published in the Contest Calendar have been altered to those shown above.

FM IF 8TRIP (ref. "A.R." June '70). 9.80 . Wired and tested, $\$ 12.60$.

CFP455E CERAMIC FILTER, optional for

 above. 18 KHz . bandwidth, \$16.00.1W. IC AUDIO AMP. (res. "A.R." July '70). 88.40 . Wired and tested, $\$ 11.40$.

VARACTOR MULTIPLIER KIT, 144 to 432 MHz., diode not supplied, \$5.80.
2N3632 TAANSISTOR (unbranded). May be used as v.h.f. amp. or varactor, 37.00.
P8003 RECTIFIER-FILTER KIT. 25V. d.c. Max. 2A. max., 83.75. Wired and tested. 84.25.
RE004 VOLTAGE REGULATOR, 4.5-18.5V. d.c. reg. max., 0.2A. max., 89.85 . Wired and tested, \$11.80.
All prices include sales tax and postage.
COMMELEC INDUSTRIES
P.O. BOX 1, KEW, VIC., 3101 Phone (a.h.) 80.2957 or 277.8295
N.S.W. Rep.: d. W. Rufus, 9 Bridge Road, Homebush, 2140

Overseas Magazine Review
 \author{ Compiled by Syd Clark，VK3ASC

}
Aggat 1090

＂BREAK－IN＂

The Redio Apprentice，ZL2ALC．This article is an explanation to the school－leaver of what is required of him should he wish to become a radio／t．v．serviceman．

Aale of Twe VFOs．ZL2AMJ．Designed to give the usual one－handed transceiver two

Aerial Gain，ZL2ACF．The meaning and meas－ rement of this parameter．
Clicalt Accessorles for the ZLEBDB 8olld State Transcelver，ZL2BDB．Vox，callbrator， three－watt audio output amplifier．
An Experimental Panoramic Recelver．2L－ 2AMJ．An aid to seeing where the others arc Mulupurpose
state versions of maltivibrator，ZL2ARP．Solid state versions of old friends．

September 1070－

＂CQ＂

Digital CQ and Meteor 8catter Data Genera－ ors，G3MNQ．Part 1 of a two－part article on the subject of digital techniques of generating
morse code．This article covers the basic morse code．This
1809 DX－pedition to Feard Island．W7ZFY，ex VKOWR．Most DX－Deditions seem to take place to palm fringed tropical islands．Here is one that went into the frcezer．

CQ＂Reviews the Drake TC－6 Six Metre Transmlting Converter，W2AEF．Running 300 watts input to three $6 \mathbf{j B 6 s}$ ．this transverter is designed to be driven by a low dower 14 MHz ． exciter．

Construeting Low－Loss Co－axial Transmisaion LIne，VK4ZT．This article also appeared in ．R．a short time ago．
cults，WA3e 8lide Rale to Determine L－C Cir－ cults．WA3GGH．A lesson in slip－stick working． Barry Tours Vlet MAR8 Stations，Don Dedera．
The story of the tour of Senator Bnrry Gold－ The story of the tour of
Motorising Your Crank－ap Tower，KH6IJ． way of saving breath and cracked knuckles．

Angnst 1970－
＂CQ TV＂
A Video Plas Sound Modalator，by A．Maurcr， HEITA．
Televiaion Camera Amplitier using the FET， Mullard Ltd．
Integrated Circuits，A．W．Critchley．Using digital integrated circuits for tv．puise gen－ eration circuits．
A Low Power Transmitter，GWBJGA／T．

＂OHM＂－The Oriental Ham Magazine

 July 1970－Dlvided We Fall，HS5ABD．The author cun－ siders that future allocations conferences could deprive active Amatcurs of their h．f．bands．
RSA to Watch 8pacecom．Meet Dealing with dent of the W．I．A．（Michael J．Owen）．
Mini Expo＇jo，JA3ER．Over 6，000 Amateurs Expo＇ 70 ，located in the San Francisco Davilion at the falr．

Power Sapplies，KRBJT．Reviews the var－ lous power supply circults．
sea Reacue．The follow up story to the rescue of Jens Jensen W4AMG／MM and wife Keiko．

＂QST＂

Anguat 1970－

A Complete Solld 8tate Portable for Forty Metres，W3KET．A portable／emergency c．w． in mind．Here is a suitable station in a small in mind．Here is a suita
Dackage at minimum cost．
Once More With QRP，WICER．This is a sec－ ond generation QRP＂machine＂，designed and bullt in answer to many requests for a v．f．o． controlled version of the transceiver described in March 1970 ＂QST＂．

MABAV Moblle Antenna．KiKLM．The Mob－ lle All Band Amateur V is the result of a search for high efficiency．We are sure this is a different antenna system．

Short Antennas for the Lower Frequencles， Part 1，WOJI．As operation on the lower fre quency bands increases，this article is timely． Part 1 reviews the characteristics of short an－ tennas and discusses means for tuning them．
A Different Way To Get On Fifty MRz．Side－ band，WIHDQ．
SOrer ${ }^{5}$ for 8ix．WB2GXF．Describes an easily built stacked 50 MHz ．array．
Up Daling the SP－600，W1KLK．Describes alterntions he made to an SP－600（Hammarlund） recciver to make it capable of recelving s．s．b． etc．Since this recelver is a later design than etc．Since this recelver is a later in Ausign thatia the AMRioo，which was made in Australi
The Operational Amplifier，WOTCU．Part 1 describes a device which is in quite common use amongst the pros．Use in Amateur gear is increasing．

September 19：0－

A solid State VOX，WIKIK．Here is an easy to build clrcult that is suitable as an outboard accessory．or it can be built into your next transmitter．
2．Short Antennas for Lower Frequencles，Part 2．WOJF．Trap construction and adjustment． New Apparatas，W1CP reviews that＂VK－ 3ASC＇＇Splder Quad Hub．
A Two Band Vertical for the Novice，by WN6MBP．An antenna which is ideal for the WN6MBP．An antenna which is ideal for the newcomer to Amateur
requires small space．

A QRP Console，W1CER．Combining low power s．w．r．meter with universal pl－section coupler．The speaker is also mounted in the console．
U．B．F．Directional Couplers，W2CQH and W2IMU．The ordinary＂Monimatch＂type in－ strument will not work satisfactorily at v．h．f．／ u．h．f．Here are special designs for these bands．

Aatomatic Amplliter Tuning，WBPHR．An electronic system for maintaining tank circuit resonance．state Contest Recelver，W2NH．All you need to win is a good tx and a location you need to win is a good tx and a location

with a four element beam on a 100 ft mast on top of a mountain．plus a great deal of applica－ | top |
| :--- |
| to |

C．w．Breat－In for the Colling 8／Line，K0AZJ and WOINH．The authors guarantee that this mod．will enhance the value of your Collins． 2．The Operational Amplifier，WAOTCU．Part 2．Some practical circuits．

＂RADIO COMMUNICATION＂

Auguat 1070

A New Approach to V．H．F．／U．R．F．Recelver Dealgn．G3NNG．All solld state，trough lines， and other modern techniques．
A Nolse Ilmiter for Transistorised Receivera． G3XGP．The title tells．

A Wide Range Cryatal Callbrator aging Inte－ grated Circuits，G3TDT．You＇ll have to read all of the words to know where the harmonics cease．

Modifications to the Self Contalined Linear

 Amplifier for 114 MFI．．G8JP．A 10 MHz．V．F．O．．G3MNQ．Especially de－ signed for those who do not like doublers after 5 MHz．V．f．o＇s．
Technical
G3VA．In this issue of this monthly feature．Pat Hawker discusses methods of preventing interference with hi－fi methods of preventing interierence with hilit equipment，a transistor microphone amplifer
cirult，factory bult synchrodyne transceiver， clrult，factory bullt synchrodyne transceiver，
silicon diodes，and a low power dummy load in silicon diodes，
a BNC plug．
a BNC plug．
T．V．I．Tips，G3JGO．Transistors，cross modu－ intion and cures are discussed．

＂SHORT WAVE MAGAZINE＂

July 19j0
Clean C．W．Keying．G6HL．The importance of good shape factor．How to achieve satis－ factory keying at reasonably high speeds with out causing clicks．The subject is discussed In detail and circults are shown for the $t x$ and a c．r．o．to test the tx．
Electronic Morse Code Generators．Part 2. Flip flop circuits and decode dividers．
QSY Down with a Crystal，G2QY．A method of reducing a crystal＇s frequency of oscillation hy loading with India ink is described．
Narrow Band Frequency Modulation，G3OGX． Using a BA102 varicap．Círcuit is simple and stralghtforward．
Moditication for the H．R．O．，P．Talbot．Cas－ code r．f．stage circult．
Mechanical Design for QRO V．H．F．Trans－ mitter，G3YUA．Guidance on the loyout and construction of a transmitter．

Ageat 19j0－

Tranamitier Oatpat Control Unit，GBHL．In－ corporating aerial changeover and switching． s．w．r．indicator and dummy load．

Notes on the Trio JR－inn．G3KFE．Describes 1.8 MHz ．mod．to this recelver．

Abont S．W．R．Indicators．VKiAU．Reprint of article Prom＂A．R．．＂April 1970 ．
Two Metre Transmitter In Kit Form，G8ATK P．C．B．design for a club project．
Electronic Morse Code Generators，G3MNQ Considerations of circuit design for a sender．

＂THE INDIAN RADIO AMATEUR＂

June 1リスに

Perhnps some of the readers of＂A．R．＂took particular note of an article stating that there is only about 45 j Radio Amateurs in India． Considering the small number of Amatcurs in that countiy．it is commendable that thev manage to publish a regular magazinc for the purpose of bringing news and notes to the local and overseas origin which appear to be of Interest to the VUs．

＂THE AUSTRALIAN E．E．B．＂

Aveast litin iVo． 6 No．61－
Articles Include C－D Ignition（Part 11：Auto Ignition Interference：Pseudo Hish Voltage Transistor：The Real Meaning of Radiation Resistance：Better Butter and Cake：Back to Front Voltape Regulator：Television Servicing IPart 21：FET Gate Dip Oscillator and Calibra－ tor：Improved Fire Lighter：Amateur versus Hams．Revlew copy from The Australlan E．E．B． P．O．Box 177，Sandy Bay．Tas．

＂VHF COMMUNICATIONS＂

Agenat 1971－

A 8．S．B．Transcelver with Silicon Tranalator Complement．DLGHA．Part 3．Describes the $9-14 \mathrm{MHz}$ ．transmit－recelve converter．the $\mathbf{1 4 - 1 4 4}^{14}$ MHz．transmit converter module with linear MMz．transmit converter module with 5 MHz ．v．l．o．and l．p．fiter．
Experiments with a Crystal Discriminator， DJ4BG．Crystal discriminaturs are used exten－ sively in commercial communications equip－ inent．
A．M．Universal V．H．F．－U．H．F．Transmilter for A．M．and F．M．，DL3WR．Continued from edition two．
Co－axial Low Pass Filters for V．h．F．and U．H．F．，DJ3QC．Hans describes the varlous types which can be made and how to make them．Dimensionsd orrwings are glven．
Electronically Stabilised Power Supply with D．C．－D．C．Converier，DJgZR．
A Simple Rotary Co－axial Joint．DC8OH．This joint is made from SO239 and PL259 parts with the nddition of a few steel balls and a spring．
Review copy from Paul B．Jackson， 37 Min－ kara Rd．，Bayview．N．S．W．， 2104

＂73＂

Aqguat 10i0－
Mount That Moblle Right．K4iPV．The rignt kind of mobile installation will result in big－ ker signals．ietter operitor sofety，and more fun in hamming on the road．
Amatear Wattmeter for SilRS，KiCLL．Com－ you Dower output from 10 mW ．to 5 W ．，over the range from 160 metres through 450 MHz ．

Conaummate Console，WB2FBF．How to in－ crease the empiency and enjoyment of your station by bullding a broadcast－style operating console．
An impedance Multiplier for the VOM，by K6DQB．How to build a handy integrated clrcuit device that turns your voltmeter into a VTVM．
Repeater Andio，Time Oat for Quality，by K6MVH．Methods for improved audio patching in l．m．repeaters，with circults for cathode and emitter followers．
ATV．Getting a Better Pletare．WAGBjV． Up－grading systems by using better antennas， feeders and converters
That Contest Craze，VK4SS．A lot can hap－ pen between the thought and the deed．
Log Periodic Designs for V．H．F．－U．IA．F．．by data for log antennas from 21 to 450 MHz ．
data for \log antennas from 21 to ${ }^{\text {and }}$ Mry Twam notation systems for a pastime that＇s growing in popularity．
V．H．F．A．M．Transmitter．Brubaker．Plans for
a minlature rig using low－cost transistors．
Raising Rhombic：W8DYF．Problems of putilng up one of thase big ones．
The IC－mitter，Goldsteln．Micromininturisa－ tion that gives a．m．or c．w．on 20 through 160 metres．
General Class Bindy Courae．Staff．Another chapter is a continuing technical series designed to help U．S．Hams up－grade their licences through improving their knowledge of theory．

Correspondence

Any opinion expressed under this heading is the individual opinion of the writer and does not necessarlly coincide with that of the Publishers.

At the time of sending in my application for he "Cook Award" I left out a letter which had written to accompany the list. but 1 omitted to enclose same.
While 1 am not yet in receipt of my Certificate. I do wish to state that this has been one of the most interesting awards that I have taken part in. I have been on the sick list for almost two years with a severe coronary and to quote the words of my Doctors. "This Cook Award has been your life saver, in giving you an objective to go for." It is on these grounds, that I wish to express my most sincere gratitude and also to your fellow Australian Hams. I consider. that you have all shown how Ham Radio should be conducted. the courtesy shown in every QSO without excepIon has been a great pleasure. How I wish it were possible to be able to make this known to all AX/VK Amateurs.
Again my most sincere thanks to you and all fellow Hams. I belleve it to be true what my Doctors have sald, you will therefore appreclate my deep sense of gratitude. I was not able to enclose any IRCs by virtue of my not having at pr
-Frederick J. E. Bolton, G3VTQ.
"MORE HOWARD RYDERS CAN HELP" Editor "A.R.," Dear SIr,
1 was very interested to read the Editorial in the November issue because I travelled through India, and many other countries, a few months ago and had llved in Africa for many years. I had the pleasure of mee
in Singapore for a brief moment.

The first paragraph of the Editorial sums up a basic truth that hobbles, in general, are allen to the mentality of many tribes and peoples even is some individuals happen to be sutficlently wealthy to induige in them. In Asla, however, the percentage of "have-nots" is vastly greater than here. In Africa, the percentage is even higher except in the south. Whilst education is a pre-requisite there stili remains an almost complete lack of selfmotivation.
In some ways India is a misleading example. Take such countries as YA, 7Q7. XW8, 5 H 3 and 9M6. How many cltizens of these couniries (i.e. "locals" as opposed in expatriates) are licensed as Radio Amateurs? In India most of the calls are held by locals. This is a question of degree and in no way detracts rom the force of the argument. The Editorial dealt with a country a the way ud the ladder Radio actlvities by locals in other less developed Radio actl
Amateur Radio needs more people like Howard Ryder everywhere. But without expatriates there would be a vacuum in many countries. A vacuum, not necessarily caused by a lack of operators or by a lack of gear. but caused by the official attitude towards the hobby. Such an attitude often is the expression of Ignorance and fear. Many of us in Africa did much to demonstrate the art of Amateur Radio to the local officials and even Ministers in the hope that the future of licensing might be assured. Unfortunately, locals can and do lose their offices, examples are VQ1. XZ2 and until recently YB.

V.K. ELECTRONICS

63 HAROLD ST., DIANELLA, W.A., 6062
Service to Transcelvars, Receivers, Transmitters, Antennae, etc.

Phone 76-2319

REPAIRS TO RECEIVERS, TRANSMITTERS
Constructing and testing: xtal conv.,
any frequency: O5-ers, R9-ers, and transistorised equipment.
ECCLESTON ELECTRONICS
146a Cotham Rd., Kew, Vic. Ph. 80-3777

If the local Ministers are advised by knowledgable and impartial expatriates the cause of Amateur Radio remains reasonably secure notwithstanding the high standards required by qualifying technical examinations normally be yond the scope of the keenest local aspiran for a licence. The expatriate establishment also puts in perspective the cries of doom from security wallahs. Sooner than later, however expatriate posts are locallsed. When this occurs the continuous interchange of visits with for elgn high ranking Amateurs at top levels elgn high ranking Amateurs at oing few axperiate Amoteurs depart without replace ment the iemptation to clamp down on licens ing is areat. For india
seriously confronted with balance of payments problems and the associated con trols over foreign exchange, there exists a need for the supply of components to the right people at a very modest price. Not iree ald convertible into golden beds or for lining the pockets of middle men, but aid in kind channelled through. perhaps. Amateur Radio organisations. An evening with the Madras Group convinced me of this. So many younksters were present who drooled at the sign of a modern transcelver. Amateur Radio Handbooks seemed to be avallable but any components with which to experiment were very scarce indeed. Any of these Amateur let loose at such a Junk sale as 1 saw re cently at the Adelaide W.I. would have gone mad.

For the other countrles lower down the rungs of the ladder, there seems to be little rea answer except time. A continuous succession of Howard Ryders can help. Getting at the local whilst he is in training overseas can help. Insuring that expatriates can always get licences, including reciprocal licences for visitors, can held provided the applicants are qualified of course. The removal of import prohibitions las distinct from import restrictions) on transmitting apparatus is a basic pre-requisite; the DIp. bag method of importation into some countries is the only mode open to the resident
Visits overseas by your President are very valuable in this Region of relatively sparse Amateur populations when viewed against the background of pressurisation by commercial and other interests for the allocation of spectrum space. I would suggest. however, that government authorities must accept much greater involvement with such visits. The creed of isolationism never dies and seldom pays dividends.

Life Vice-Pres., Radio Soc. of East Arrica KK5CIF VK3CIE YA1PBD GD3PBD, 7Q7PBD, VQIPBD, etc.

DARWIN RADIO CEUB AT EAST POINT

 Editor "A.R.," Dear Sir,Please accept my many apologies for the error I made in the article 1 wrote on the Darwin Radio Club. printed on page 20 of the Oetober 1970 issue.
I said that the Club premises were loacted at Lee Point. This is incorrect. The Club premises are located at East Point, repeat East Points. ID.C.A. have a receiving station int Lee Point-1 had been writing varlous letters mentioning this place and typed the name in error when writing of the Darwin Radio Club.)
East Point is the port war area and command 3 the entrance to Darwin Harbour. Lee Point on the other hand is north-west of East Point. I am very sorry for this error and have written direct to the President of the D.R.C. 'Basil Brodrick, VK8BBI with my probably tar this error. The Darwin boys will - Wrobably tar and Easterling. VK2ABL.
P.S.-Thanks for using the article

SHORT WAVE PROPAGATION COURSE
Editor "A.R.." Dear Sír
Some members may be interested to learn of a short wave propagation courje avallable at no charge by writing to:

Information Service,
Rodio Nederland,
P.O. Box 222 ,

Hilversum, Holland.
-Malcolm Sinclatr
AX2BMS, ZM2BAA.

SILENT KEY

It is with deep regret that we record the passing of-

VK3SV-James Howarth.

RECIPROCAL LICENSING

The Reciprocal Licensing Agreement between Australia and the United States of America is generally well known. In effect, this provides that an Australian Amateur temporarily resident in the United States of America may be granted a Reciprocal Licence for the period of his stay in the United States of America.

The basis of the U.S. arrangement is that the Australian licensee is permitted to use his own call sign and is expected to comply with the terms of his Australian licence whilst using it in America. It is, however, importart to make application for a Reciprocal Licence well before arrival in the United States. The processing of Reciprocal Licences can take between two to three months and there is just no way of shortening this period. Accordingly, Australian Amateurs intending to visit the United States are well advised to make application for a Reciprocal Licence at least three months before the time of their arrival. The Federal Executive is holding the appropriate forms of application and these will be given to members on application to the Federal Secretary.

HAMADS

Minimum S1 for forty words.
Extra words, 3 cents each.
HAMADS WILL NOT BE PUBLISHED UNLESS ACCOMPANIED BY REMITTANCE.
Advertisements under this heading will be accepted only from Amateurs and S.w.I's. The Publishers reserve the right to raject any advertialng which. in their opinion. Is of a commercial nature. Copy must be recelved at P.O. 38, Esest Melboume. Vic., 3002, by 5th of the month and remittence must accompany the advertisement.

FOR SALE: Compact 2 metre A.M. T/celver. s./ regen. with R.F. stage. 2 watts R.F. out. xtal on $144.45 \mathrm{MHz} .$. complete with xtal mic. A.C. P.S.U.. 5/8 wave grounoplane. S2S O.n.o. C.F. Networks arriar xtals new unused 1 KHz . bandwidth, MHz filter. 2.1 KHz . bandwidth. 4 -pole. with U.S.B. carrier xtal. ideal for V.H.F. S.S.B. rlg. $\$ 7.00$ o.n.o 48 Orchard St., Glen Waverley. Vic. Ph 232-9492.

FOR SALE: FTDX100 Transcelver with set unused valves. excellent condition, best offer. $35 \cdot \mathrm{ft}$. galvanised tower with hinged work platform, heary duty rotator with indicators. S 100 . Set fibre glass quad radials, new. best offer. VK3AHS. Talephone Melboume 550-2559.

FOR SALE: One 829B and socket. S3. Two new $6 / 40$ s and sockeis. S4 each. One new 6/40 less socket, S3. One 4/65A. S7. Two 4/250As and sockets, S10 each. One 4/250A less socket. S8. One Fil. Trans., $5 v .30 a . ~(f o r ~ p a i r ~ 4 / 250 s) . ~ S 10 . ~$ One Fil. Trans. 5v. 150. ffor single $4 / 250$). S5 One Pwr. Trans $425 v .150 \mathrm{~mA} . .3 \times 6.3 \mathrm{v}$.. $1 \times 5 \mathrm{x}$. 92-5960 (evenings. Melbourne)

FOR SALE: Pair factory matched Mullard 8236 valves (50 watt plate dissipation, replacement for 6DO5). unused. Very reasonable R. Vickery. VK4VX, 20 Inglis St., The Grange. Old., 4051.

WANTED: The following components from Bend:x Radio Composs Recalvers Type MN-26: Transiormars ype T16 (A15064): 24 volt band-change motor assemblies with leads: loop aerials type MN-20 Please state condition and price required. M O'Brien. Edgar Rd.. San Remo. Vic.. 3925. Ph. 107

WANTED: 5-band SIdeband Transcelver. 36 - ft . Telecoplc tower and Type 3 Mk. 2. Please advise condition and price. VK3AHG 20 Grandview Rd. Box HIll South. Vic.. 3128 . Phone 288-2024.

HAND-CARVED CALL LETTER PLAQUES

In solid Philippine Monkey Pod Wood. A unique glft for yourself—or others!
Price, parcel post paid, A\$9.75 plus local tax of approx. A\$4
Allow 3 months for delivery. You pay local tax. Send postal money order or bank draft for A89.75 to:-

REPUBLIC CRYSTAL LABS

Exporter of Philippine Handicrafts
P.O. Box 46, Makati Comm. Center, D-708, RIZAL, PHILIPPINES If you need special Plaques with business names or family names, send us a sketch of your needs and we will quote post paid. Cut-out letters of wood for wall painting also avallable.
Plaque lengths: 5 letters 20", 6 letters 22"; letters about $5^{\prime \prime}$ high; width 8"; thickness 1" $^{\prime \prime}$.

TWO-WAY RADIO
 TECHNICIAN (Senior)

Applications are invited from interested members of the Amateur Radio Fraternity who are desirous of settling in Wagga, N.S.W.
The position available will ultimataly involve both Sales and Service of a most interesting range of Business Electronics equipment.
Position permanent, vehicle supplied, superannuation, salary will be right.
Contact SID WARD, care of M. RAVA CO., WAGGA, 2650

EVERY DAY IS FATHER'S DAY

(at least that's what my XYL says) So you still have an excuse to shout yourself a present.
Send \$2.35 to-
Federal Subscription Manager, W.I.A.,
P.O. Box 67 .

East Melbourne, Vic., 3002,
for your subscription to-
"BREAK-IN"
Official Journal of N.Z.A.R.T.

K.W. ELECTRONICS KW2000B TRANSCEIVER

LOW DRIFT crystals

*

1.6 Mc . to 10 Mc ., 0.005% Tolerance, $\$ 5$

म
10 Mc . to 18 Mc ., 0.005% Tolerance, \$6 H

Regrinds \$3
THESE PRICES ARE SUBJECT TO SALES TAX

SPECIAL CRYSTALS: PRICES
 ON APPLICATION

MAXWELL HOWDEN

15 CLAREMONT CRES., CANTERBURY, VIC., 3126

Phone 83-5090

LOG BOOK

AVAILABLE IN TWO TYPESVERTICAL OR HORIZONTAL

Larger, spiral-bound pages with more writing space.

Price 75 c each
plus 22 Cents Post and Wrapping
Obtainable from your Divisional Secretary, or W.I.A., P.O. Box 36, East Melbourne, Vic., 3002

"WILLIS" AIR-WOUND INDUCTANCES

Take the hard work out of Coil Winding, use - "WILLIS" AIRWOUND INDUCTANCES

No.	Dia. Inch			B. \& W. Equiv.	Price
$1-08$	$1 / 2$	8	3	No. 3002	75c
1.16	$1 / 2$	16	3	No. 3003	75c
2.08	5/8	8	3	No. 3006	88c
2-16	5/8	16	3	No. 3007	88c
3-08	3/4	8	3	No. 3010	\$1.06
3-16	$3 / 4$	16	3	No. 3011	\$1.06
4.08	1	8	3	No. 3014	\$1.19
0-16	1	16	3	No. 3015	S1.19
5-08	$11 / 4$	8	4	No. 3018	\$1.32
5-16	11/4	16	4	No. 3019	\$1.32
8-10	2	10	4	No. 3907	\$1.91
Special Antenna All-Band Tuner Inductance (equlvalent to B. 8 W. No. 39077 inch)					
$7^{\prime \prime}$ length, 2" diam., 10 turns/inch, Price $\$ 3.30$					
References: A.R.R.L. Handbook. 1961: "OST," March, 1959; "Amateur Radio," Dec. 1959.					
WM. WILLIS \& CO. PTY. LTD.					
Manufacturers and Importers					
77 CANIERBURY ROAD, CANTERBURY,					

BRIGHT STAR CRYSTALS

FOR ACCURACY, STABILITY, ACTIVITY AND OUTPUT

SPECIAL OFFER-

STANDARD AMATEUR CRYSTALS
style hcgu holder. frequency range 6 to 15 MHz .

$$
\begin{array}{ll}
0.01 \% & \$ 4.25 \\
0.005 \% & \$ 5.50
\end{array}
$$

Prices include Sales Tax and Postage

COMMERCIAL CRYSTALS

in hC6U holder, 0.005% TOLERANCE, FREQUENCY RANGE 6 TO 15 MHz . $\$ 6.00$ plus Sales Tax and Postage
Write for list of other tolerances and frequencies available. COMPREHENSIVE PRICE LIST NOW AVAILABLE-WRITE FOR YOUR COPY New Zealand Representatives: Messrs. Carrell \& Carrell, Box 2102, Auckland Contractors to Federal and State Government Departments

BRIGHT STAR RADIO

LOT 6, EILEEN ROAD, CLAYTON, VIC., 3168
Phone 546-5076
With the co-operation of our overseas associates our crystal manufacturing methods are the latest

COPAL-CASLON DIGITAL ELECTRIC CLOCKS

CLEARLY VISIBLE FIGURES INSTANT READABILITY ACCURATE

CASLON 201
A desk/table model of graceful design. 12. and 24 -hour types. White. Charcoal Grey. Built-In neon lamp. $6.1 \times 3.5 \times 3.5 \mathrm{in}$. Price $\$ 16.95$

CASLON 401
A larger model wall clock awarded the Good Design Selectlon by the Japan Design Committee. Features larger filp cards. 12. and 24 -hour types. Charcoal Grey and Light Grey. Built-In neon lamp. $8.1 \times 3.6 \times 5.3 \mathrm{in}$.

Price $\mathbf{\$ 2 3 . 5 0}$

CASLON 601 and 602
A unique desk/table calendar model, combining utllity and beauty, recelving the Malnichi Industrlal Deslgn Award, Japan. Digltal flip cards advance date, day, hour and minute automatically. 12. and 24 -hour types. Anodlsed aluminium case houses bullt-in neon lamp, $601: 8.2 \times 4.0 \times 3.5$, in .: 602: $8.5 \times 4.0 \times 3.5 \mathrm{in}$.

Price $\mathbf{\$ 2 4 . 5 0}$

CASLON 701
The latest desk/table alarm model. 12- and 24-hour types. White, Charcoal Grey. Builtin neon lamp. $7 \times 4 \times 3.4 \mathrm{in}$.

Price $\mathbf{\$ 2 0 . 6 0}$
Casion Clocks come from the world's largest and most advanced producer of Digital Clocks and Movements
Post and Packlng (registered), \$1
Bail Electronic Services
60 SHANNON ST., BOX HILL NTH.
VIC., 3129
Phone 89-2213

XMAS SPECIALS - SANSEI EQUIPMENT

$100 \mathrm{KHz} . / 25 \mathrm{KHz}$. TRANSISTOR XTAL STANDARDS These units are fitted with 100 KHz . cal. xtal and 25 KHz . multivibrator, allowing either 100 KHz . or 25 KHz . check points. They are self contained and operate on a 9 v . transistor battery built in. Very smart appearance in small metal cabinet, grey finish. Price $\$ 22$ plus 15% tax.

MINIATURE S.W.R. BRIDGE

2 kw . capability, very smart appearance, size $3^{\prime \prime}$ $\times 13 / \mathbf{g}^{\prime \prime} \times 11 / 4^{\prime \prime}$. Std. PL259 fittings, grey with red and brush chrome finish. Price $\$ 7.73$ plus 15% tax.

ACCESSORIES

12-pin Jones' Plugs, 3-contact Jacks and Sockets, Strain type Insulators, Co-axial Connectors, Broad-band Pre-Amps., Antennas, etc.
XTALS IN HC6U HOLDERS
Crystals to 60 MHz . supplied at short notice, from $\$ 1.90$ to $\$ 3.75$ plus tax. Fundamental, 3rd overtone and 5th overtone. Commercial frequencies also available.

COMBINED S.W.R./F.S. METER
Combined S.W.R. Bridge and Field Strength Meter. Price $\$ 12.00$ plus tax.
100 KHz. CAL. XTALS
HC13U mounts, again available. Crazy Price of $\$ 5.75$ plus tax.

CERAMIC MIKES

Press-to-talk with coiled cords. 59 plus tax.
SWAN TV2 TWO METRE TRANSVERTER 250 watts PEP, 14 MHz . I.F. Price $\mathbf{\$ 2 2 5}$

VALVES AVAILABLE

The following tubes are ex stock, matched pairs if required. 6HF5 type are American G.E. Compactron, very reliable.
6HF5, 6KD6, 6JS6A, 6LQ6, 6DO5, 6146B, 12BOGTB, 807, 12BY7, 6GK6, 7360, 6JH8, 12BH7A, 12AT7. 12AU7, 12AX7, 6BY6, 6BZ6, 6BN8, 6BE6, 12BE6, 12BA6, 6BA6, 6BJ6, 6BJ7, 6EW6, 6DC6, 6GV8, 6CB6, 6BF6, 6BL8, and many other hard-to-get types.

W.F.S. ELECTRONIC SUPPLY CO.

12 BOWDEN STREET, NORTH PARRAMATTA, N.S.W., 2151
Phone 630-1621 also SWAN ELECTRONIC SERVICE, 14 Glebe Street, Edgecliffe, N.S.W.

CONTEST RULES AND RESULTS

National Field Day Contest:

Errata 1969 Results
1970 Results
1971 Rules
Remembrance Day Contest:
Errata 1969 Results
1970 Rules
1970 Results
Ross Hull V.H.F. Contest:
1969-70 Results
1970-71 Rules
Distance Table
VK-ZL-Oceania DX Contest: 1969 Results
1970 Rules
Feb. p. 21
Jul. p. 21
Dec. p. 13
Feb. p. 21
Jul. p. 22
Nov.p. 18
May p .20
Nov.p. 17
Dec. p. 9
Jun. p. 16
May p. 21
VK2 Mid-Wint. V.H.F./U.H.F.
Contest 1970 Rules Jun. p. 21
Wagga Centenary Trophy Sep. p. 16

INSTRUMENTS

Count and Display at $\$ 6$ per Decade
Errata
Diddley Dah Dit
FET Conversion of Leader LSG11 Signal Generator
Keying Monito
Edge Marker
Paddle-Your Own
Putting the Decades to Work: A Low-Cost Counter

Oct. p. 7
Signal Source for Carphone Receiver Alignment
S.W.R. Indicators - Trick or Treat?
The "M.C.M." or Moving Coil Meter

MISCELLANEOUS

A.M.S.A.T. Hosts Distinguished Guests
An Important Speech
Aust. DX Cent. Club Award
Aust. DXC.C Countries List Jan. p. 17
Aust V H F Cent Club Award Jan. p. 18
Aust VHF
Aust. V.H.F./U.H.F. Records Jun. p. 24
Aust. 432 and 1296 MHz . Re-
cords
Jul. p. 25

Australis News
Cook Bi-Centenary Award
VHF/UHF Section Ru
Draft Revision of Spec. for
Elect. Sound and Vision Equipment
Expedition to Cape Hicks Visit to Point Hicks
Extracts from "The Calendar" of I.A.R.U.
F.E.: Report to Federal Council (1970)
Going to Washington? Oct. p. 19
Graphical Symbols for use in
Electrotechnology - Draft Standard
Growth of Radio Comm. in Australia
Help Wanted
History of Amateur Radio and W.I.A., Part One

Increase in Amateur Licence Fees
Mailing of QSL Cards
Meet the Other Man
Morse Tape Service .
Overseas Study Course
Project Australis
Racal Wins Fairchild Planar Award
Radio Doctoring in the 20's
Reciprocal Licensing
Report from the Secretariat, I.A.R.U. Region 3 Ass., to Fed. Council, W.I.A.
R.S.G.B. Sub. Increase

Some Day
South-West Area Bi-Centenary Certificate
S Ass. of Aust. May p. 23
S.A.A. Reports Jul. p. 29

The W.I.A. Tie Jul. p. 23
VK3 National Parks Award .. Jan. p. 25
"Where have all those Good Hams gone?"
Worked All VK Call Areas Award Rules
60th Anniversary of W.I.A.: Federal Comment
Highlight of Amateur History
History of Amateur Radio and W.I.A. Outline of Early Radio
W.I. Publications

POWER SUPPLIES

Low-Cost Solid State Power Supply for Carphones and Pye Reporters
Errata

RECEIVING

Integrated Circuit F.M. I.F. Strip
Integrated Circuit One Watt Audio Amplifier Edge Marker Edge Marker
Modifications to VK3 432 MHz .
FET Conv. for Operation on
576 MHz .
Modifying Yaesu Musen FR100B Receiver
Signal Source for Carphone Receiver Alignment

Aug.p. 19
Apr. p. 25
Jun. p. 12
Oct. p. 18
.... Apr. p. 16

Sep. p. 16
Oct. p. 16
Apr. p. 18
... Sep. p. 16

Aug. p. 6

Aug.p. 25
Sep. p. 11

Jun. p. 13
Jul. p. 5
Oct. p. 13

Oct. p. 11
May p. 6
Aug.p. 23
Jan. p. 25
Solid State Amateur S.S.B.
Receiver:
Part Two
Part Three
Part Four
Solid State 432 MHz . Conv.
Mar.p. 16
Jun. p. 9
Dec. p. 7
VK3 V.H.F. Group V.H.F. Pre-
Amplifier, Mark II.
Dec. p. 5
1296 MHz. Solid State Conv. Jan. p. 21

TECHNICAL MISCELLANEOUS

Australis Project:
AO-5 Experiment Results .. May p. 9
Oscar 5 Interim Report May p. 8
Oscar 5: It's in Orbit! Mar. p. 8
Oscar 5 Orbits the Earth Mar. p. 7
Oscar 6-The Australian Bit Jul. p. 19
Calculation Simplied
Commonsense Transistor Parameters

Aug.p. 24
Construction of Low Loss Co-
axial Cable
Jan. p. 11
Dec. p. 19
Nov.p. 21
Nov.p. 23
Sep. p. 14
Mar.p. 30
Sep. p. 21
Dec. p. 18
Aug.p. 18
Dec. p. 24

Jun. p. 18
Dec. p. 20
Oct. p. 13
Count and Display at $\$ 6$ per
Decade
Jul. p. 12

Errata
Currently Radiating Satellites Feb p. 16
For the Mobile Operators ... Jan. p. 26
Graphical Method for Locat-
ing Interfering Beat and
Harmonic Frequencies
Feb. p. 14
Lectures by VK3AXU:
No. 1-Nature of Matter
No. 2-Electric Current
No. 3-Ohm's Law
Jan. p. 9 Errata to Nos. 1, 2, 3 Apr. p.l1
No. 4-Wheatstone Bridge .. Apr. p. 7
No. 5-Effective Value of an Altern. Current Jul. p. 14
No. 6-Series A.C. Circuit .. Aug.p. 22
No. 7-Parallel A.C. Circuits Sep. p. 10
No. 8-Resonance
No. 9-An Outside Broadcast Amplifier

Nov.p. 12
No. 10A-Harmonics Dec. p. 10
Long-Delayed Echoes, Radio's
"Flying Saucer" Effect
Construction ……
Feb. p. 6

Measurement of R.T.T.Y. Frequencies

Aug.p. 20
... Sep. p. 7
Modern Modulation Systems .. Nov. p. 7
On the Concentration of Ferric Chloride

Jun. p. 15
Piano Type Frequency Meter Sep. p. 11
Putting the Decades to Work:
A Low-Cost Counter
Oct. p. 7
Reading Prediction Charts .. Sep. p. 15
Repeaters
May p. 22
Slow Scan T.V. Permitted May p. 22
Solid State Device Patent Application in 1925

Aug.p. 21
Tech. Corres.: Plating of Coils Jan. p. 10
The Repair Bench: Doing Your
Own Transistor Tests
Nov.p. 10

TRANSMITTIING

Commonsense and Instabili-
ties in Transistorised Tx's .. Feb. p. 11
Heterodyne Tx for 6 Mx Oct. p. 14
Home-Brew Five-Band Linear Amplifier

Sep. p. 8
How to Use R.F. Power Tran-
sistors May p. 10
Modifications to FL200B Yaesu
Musen Transmitter

COMMUNGEMTORIS CAREBR TRANEES WANTED

The Department of Civil Aviation wants men aged at least 18 and under 36 years having previous telecommunications experience to undertake conversion training for positions of Communications Officer.
Communications Olficers are responsible for the operation of Aeronautical Broadcast Services and a variely of Aeronautical Fixed Telecommunications channels linking Flight Service and Air Traffic Control units, and as such they make a vital contribution to the high safety standards of Australian civil aviation.
Opportunities exist for further training and advancement as Flight Service Officer.
Applicants must be British subjects (by birth or naturalisation) and be medically fit. A good level of secondary education is desirable. A minimum of two years related experience in telecommunications fields is necessary together with proficiency in machine and wireless telegraphy, Ability to communicate fluently and clearly in English is essential.
For further Information contact -
Recruitment Olficer,
Department of Civil Aviation,
Aviation House,
188 Queen Street
Melbourne, VIC. 3000
Telephone 620131

Announcing Our Latest Production for 1971

425-page Catalogue showing trade-retail prices - fully illustrated

YOU GET MONTHLY FOR 2 YEARS (the life of the Catalogue)
\star regular price change advice
* NEW LINE ADVICE
\star MONTHLY CIRCULARS
\star NEW CLIP-IN PAGES
\star ONE DE-LUXE CATALOGUE

$\$ 12.50$
including postage for two years
(only $\$ 6.25$ per annum)
Please send your cheque with order to ensure early delivery. Your money back if not delighted.

CATALOGUE ONLY
Without Price Amendment Service, etc. \$3.00 including postage

FULL SUBSCRIPTION (2 years including monthly Price Amendment Service) S12.50 Additional copies: $\$ 3.00$ each

562 Spencer St., West Melbourne, Vic., 3003. Ph. 329-7888, Orders 30-2224 City Depot: 157 Elizabeth Street. Melbourne, Vic., 3000. Phone 67-2699 Southern Depot: 1103 Dandenong Rd., East Malvern, Vic., 3145. Ph. 211-6921

[^0]: -MICHAEL J. OWEN. VK3KI.

[^1]: - W.I.A. Victorian Division, P.O. Box 36. Eist Melbourne. Vic., 3002

[^2]: - A considerably amplifed version of an article printed originally in the Bulletin of the Tasmanian Division, W.I.A.. Feb. 1968.
 † 32 Waterworks Road. Dynnyrne, Tas.. 7005.

[^3]: 1. Well, hardly ever; see "EEB," Sept. 1968
[^4]: 2. See "EEB." Aukust und September, 1967. July 1968.
[^5]: 3. I appreciate that many Amateurs do not like algebrn, but i see no reason to be silly algebrn. but i see no reason to be silly
 about it. If you need a valve, you use a about it. If you need A valve, you use a
 valve and not a relay. If you need a formula. it sHves a page of babytalk.
 4. "Efficiency Trade-offs in R.F. Power Amplifiers." "EEB." May 1968. And R.C.A. "Silicon Power Circuits Manual." p. 116.
[^6]: 5. "A Two-Watt Six Metre Transmitter." K. M. Kelly. VK7LL, '•EEB.' Jan. 1989.
[^7]: 8. "Selected Overlay Transistors," "EEB," Sept. 1967. July and Oct. 1988. Costs versus performance evaluated. The transistors mentioned here glve high performance at relatively modest cost.
 9. "Transistorised Transmitter Design. Part VII." "EEB." Jan. 1969 R.C.A. "Silicon Power Circuits Manual." section "High Frequency Power Amplifiers". "Refercnce List for Transistor Transmitter Design." "EEB." April and May 1968 . "Commonsense and Instabilities in Transistorised Transmitters," R.L.G.. to appear soon in "Amateur Radio." By now you may well have gathered that 1 am an avid reader of "EEB". So are some 500 other people. Enquire: Box 177. Sandy Baty. Tasmania. 7005, Australia.
[^8]: 10."A Tuo Metre Snowfake Transistor Trans-

 Communication," Feb. 1969. p. 105; "Amateur
 Radio." Nov. 1969. p. 10.

[^9]:

[^10]: * Incidentally, the word is mobile NOT mobeel-unless, of course, you're a versateel type driving a meel a minute projecteel.

[^11]: Fourband recelver covering 550 Kc . $10 \quad 30 \mathrm{Mc}$. continuous. and electrical bandspread on 10. 15. 20. 40 and 80 metres. 8 valves plus 7 diode circuit. $4 / 8$ ohm output and phone jack. SSB-CW. ANL. variable BFO, S meter, sep bandspread dial, If. 455 kc .. audio output 1.5 w . variable $R F$ and $A F$ gain controls. $115: 250 \mathrm{v}$. AC mains. Beautifully designed. Size: $7 \times 15 \times 10$ in. With instruction manual anc service data.

 Speaker to suit. type SP5D. S15 inc. tax.

[^12]: Please forward free illustrated literature and specifications on Realistic.

 Name
 (A unit of Jacoby Mitchell Holdings Lid.) 376 EASTERN VALLEY WAY. ROSEVILLE, 2069. Cables and Telegraphic Address: 'WES'TELEC:
 Sydney. Phone: 401212 .

[^13]: " Reprinted from "QST." May 1969

[^14]: - 6 Adrian Street. Colac. Vic., 9250.

[^15]: - 32 Waterworks Road, Dynnyrne, Tan, 2005.

[^16]: - Resistance in series with the neutralising condenser to cancel out negative resistance feedbнck. See also Ref. 2.

[^17]: t But NEVER run h.t. directly from the mains. No matter what you see in the American inagazines. this is :l sure invitation to cratastrophe.

[^18]: "Coryra" Publications, P.O. Box 649. Canberra. A.C.T. 2601.

[^19]: - 76A Fifth Ave.. Shoalwater Bay, W.A., 6169.

[^20]: Phone 49-4919
 L. E. Boughen \& Co.. 30 Grimes St.,
 Auchenflower. Old., 4066. Phone 7-40؟7

[^21]: - Chairman, W.I.A.-Project Australis, 13 Nestan Drive, Ringwood, Vic., 3134 .

[^22]: - Advance copy received from the nuthor, and Advance copy received irom the author.
 to be published in "CQ." for March 1970. Space Comunicallons Editor. "CQ." 11307 Claral Strent, Sllver Spring. Md.. U.S.A., 20902.

[^23]: "C. H. Vermillion. "Constructing Inexpensive Automatic Picture-Transmission Ground Station." NASA Report SP-5078: 1988, avallable from NASA. Code UT. Washington, D.C., U.S.A., 20546 .

[^24]: - C/o. Bechtel Pacific Corporation Lid., Port Hedland, W.A., 6721.

[^25]: * Applications Laboratory, Fairchild Australia Pty. Ltd.. 420 Mt . Dandenong Road, Croydon, Vic., 3136.

[^26]: - Skyrings Creek, Pomona, Qld., 4588.

[^27]: - 22 Dryden Street, Canterbury, Vic., 3126.

[^28]: haM RADIO SUPPLIERS 323 ELIZABETH STREET, melbourne, VIC., 3000

 Phones: 67-7329, 67-4286 All Mail to be addressed to above address
 We sell and recommend Leader Test Equipment, Pioneer Stereo Equipment and Speakers, Hitachi Radio Valves and Transistor Radius. Kew Brand Meters, A. \& R. Transformers and Transistor Power Supplies. Ducon Condensers, Welwyn Resistors, etc.

[^29]: - E Adrian Street, Colac, Vic., 3280.

[^30]: - 18 Leane Street. Hughes, A.C.T., 2805.

[^31]: -MICHAEL J. OWEN. VK3KI. Federal President, W.I.A.

[^32]: - Reprinted from "Ham Radio Magazine," January. 1970.

[^33]: The BV...ss is usually numerically about equal to the $\mathrm{BV}_{\text {cno }}$.

[^34]: $\$$ Data Shects on any transistors mentioned in the text are avallable from Technical Information Centre. Matornla Semiconductor Products Inc.. Box 20924, Phoenlx, Arizona, 85036.

[^35]: Table 3 -Small and large-signal performance data for the 2 N 3948 at 300 MHz . show the inadequacy of using small-signal characterisation data for large-signal amplifier design. Resistance and reactance shown are parallel components. That is, the large-signal input impedance is 38 ohms in paralel with 21 pF., etc.

[^36]: 1 The nanohenry. abbrevlated nH .. is onethousandth of a microhenry, so 20 nH . equals 0.020 uH .

[^37]: * Applications Laboratory, Fairchild Australia Pty. Ltd.. 420 Mt. Dandenong Road, Croydon, Vic.. 3136.

[^38]: - 77 Flora Street, Kirmwee. N.S.W.. 2232.

[^39]: Members of the W.I.A. should refer all enaulrlea regarding dellvery of "A.R." direct to thelr Divisional Secretary and not to "A.R." direct. Two months' notice la required before a change of malling addreas can be effected. Readers should note that any change in the address of should note that any change in the address of their transmitting station must, by P.M.G. regulation, be notified to the P.M.G. In the
 State of residence: In additlon, "A.R. should State of residence: in addition. A.R. should
 aliso be notifed. A convenient form is proalso be notifed. A conv.
 vided in the "Call Book".

[^40]: 21 Nicol Strant. I.itkembin, N.S.W.. 2195.

[^41]: - Is lach Sirect. Tonwonmbil. Qld.. 4350

[^42]: : 210 Hume Street. Tonwoomba. Qld., 4350.

[^43]: - 54 Tennvinn St. Highett. Vic.. 3190.

[^44]: Note-Standard W.I.A. Log Sheets may be used to follow the above form

[^45]: The "General Specification" is too large and compl.

[^46]: April 1970-
 A Nice HI-Pi Amplifier System, Part 2. Putting a box around the bits.
 SCR Pulser. L. J. Yelland IVK3). If your pulse is weakening, try this.
 When Not To Interpret C.R.O. Curves (VK3
 Anon.1. Things are not always what thev Anon.1. Things are not always what they seem to be.
 Another Series Type Transistor Ignition. K H. Vieritz (VK4). To make your bomb a hot performer.
 The Legal Poaltion on Lifht Beam Commanleallons. Staff. Conclusion is "even a torch should be licensed". Monopoly gone mad!!! WIndscreen Wiper Deliy System, L. E. Thomas iVKG1, Some penple ate never satisfied. I wonder if this :uthor was one of the occu-

[^47]: "At this time the Australian prefix letter was later on.

[^48]: -Skyrings Creek. Pomona, Qld., 4568

[^49]: -6 Adrian Street, Colac, Vic.. 3250.

[^50]: - Reprinted Prom "The Short Wave Magazine,"

[^51]: - 2 Clarendon St.. Avondale Heights, Vic., 3034.

[^52]: Members of the W.I.A. should refer all enquir. les regarding dellvery of "A.R." direct to thels Divisional Secretary and not to "A.R." direct. Iwo months' notice is required before a change iwo months notice is required before Rearing address can be effectad. Readers of mailing address can be effectad. Readers should note that any change in the address of
 their transmitting station must, by P.M.G. thelr transmitting station must, by P.M.G.
 regulation. be notified to the P.M.G. In the regulatlon, be notlfied to the P.M.G. In the
 State of residence: in addition. "A.R." should also be notified. A convenlent form is provided In the "Call Book".

[^53]: - 285 Monaco St., Surfers Paradise. Qld., 4217. 1. "QST," Sept. 1969, p. 37.

[^54]: *Reprinted from "Ham Radio." March 1970.

[^55]: - 16 Wilson St., Booval, Qld., 4304.

[^56]: ' Reprinted rrom -73 Magazine," May 1970.

[^57]: 1 "The Radio Amateur's Handbook." 46th edition, 1969. American Radio Relay League, D. 528.

[^58]: OPEN SATURDAY MORIVIIVGS.

[^59]: Members of the W.IA. should rofer all enoulr. lea regarding dellvery of "A.R." direct to thoir Divisional Secretary and not to "A.R." direct. Two months' notice is required before change of malling address can be offected. Readera should note that any change in the address of thelr transmitting station must, by P.M.Q. regulation, be notified to the P.M.G. In the State of residence: in addition, "A.R.: should salate be notified. A conventent form is provided in the "Call Book".

[^60]: - 2 Yerton Avenue, Hunter's Hill, N.S.W., 2110.

[^61]: : 6 Adrian Street, Colac, Vic., 3250.

[^62]: AMATEUR FREQUENCIES:
 USE THEM OR LOSE THEM!

[^63]: -6 Adrian Strect, Colac, Vic., 3250.

[^64]: N.S.W. Rep.: STEPHEN KUHL, P.O. Box 56, Mascot 2020. Telephone: Day 67-1650 (AH 37-5445) South Aust. Rep.: FARMERS RADIO PTY. LTD., 257 Angas St., Adelalde, 5000. Tel. 23-1268 Western Aust. Rep.: H, R. PRIDE, 26 Lockhert St., Como, 6152.

 Telephone $60-4379$

[^65]: Members of the W.I.A. should refor all enquliles regarding dellvery of "A.R." dlrect to their Dlvialonal Secretary and not to "A.R." direct. Two months' notice ls required before a change Two months notice la required before a change of malilng address can be offected. Readers
 should note that any change in the address of should note that any change In the address of their tranamitting station must. by P.M.G. regulatlon, bs notlfled to the P.M.G. In the State of residance; In addlition, "A.A," should also be notifled. A convenlent form ls provided in the "Cell Book".

[^66]: Applications Laboratory, Falrchild Australia Pty. Itd.. 420 Mt . Dandenong Road, Croydon, Vic., 3136.

[^67]: - 43 Eleanor St., Ashburton, Vic., 3147.

[^68]: - 6 Adrian Street, Colac, Vic., 3250.

