

BACK TO PEACE!

WE had planned for a bigger and better "Lamphouse Annual" as soon as the war was over, but conditions beyond our control have prevented this for the 14th (1946) Edition. Paper is scarcer than ever and we have had to allow our printers to supply a lower grade than usual. This was the only alternative to discontinuing the "Annual" altogether. This publication uses nearly three tons of paper, and that's a lot of paper when there is a shortage.
We apologise for the quality of the paper and the late publishing date-both are entirely due to our printers-or, to be more correct, to our printers' unavoidable difficulties.
The Catalogue lists goods which we expect to be available during the currency of the Catalogue, but we expect many other lines which have been in short supply for some years to become available as the year progresses.
Many thanks for any orders you may have sent us during the past year, and we hope it will not be long now before you can again have the pre-war Lamphouse Mail Order Service. In the meantime we remind you of the Lamphouse Guarantee:
Any goods which are in any way unsuitable may be returned undamaged, within seven days from receipt, and your money will be refunded in full.
THE ELECTRIC LAMP HOUSE, Ltd., Wellington.

INDEX.

ACCUMULATORS 37, 47	Cells, Dry Page.
Adaptors, Electrical 12, 13	Cement 38 . 39
Adaptors, Speaker Extension ... 63	Chargers, Battery 8, 46
Aerial Eliminator 43	Chassis Bases 71
Aerial Equipment 41, 42, 43	Chassis Plugs and Sockets 60
Aerials, Motor Car 44	Chokes 55
Aeritrols 48	Circuit Book 83
Aeroplanes, Model 38	Clamps, Earth 43
Alligator Clips 70	Cleaners, Vacuum 32
Aluminium Solder 65	Cleat Insulators 41
Ammeters 8	Cleats, Aerial 42
Amplifiers 84, 85	Clips, Battery 70
Anchor Lugs 68	Clips, Cable 17, 43
Appliance Cords 18	Clips, Earth 43
Appliance Plugs 12	Clips, Fahnstock 68
Appliance Terminals 18	Clips, Grid Screen 70
Arrestors, Lightning 42	Clips, Shade 17
Audio Chokes 55	Clocks, Electric
Audio Transformers 66, 67	Coil Former 71
Atamax 38	Coils, Radio 50, 51, 52, 81, 82 Coils, Speaker Transformer
BAKELITE SHEET, ROD \& TUBE 71	Coil Terminal Bases 69
Banana Plugs 68	Condenser Couplers . ${ }^{\text {c......... } 71}$
Bases, Chassis 71	Condenser Extension Shafts . 3 . . 55
Batteries, Accumulators 47	Condensers, Radio 53, 54, 81
Batteries, "A," "B" and "C" . 45,47	Conduit Flanges is 15
Batteries, Motor Car 37	Connecting Wire 71, 72
Batteries, Torch 45	Connectors, Microphone 60
Battery Cable 72	Connectors, Wire ${ }^{\text {a }} 13$
Battery Clips 70	Cookers 33, 85
Battery Chargers 8, 46	Coppers, Electric 34
Battery Charger Spares 46	Cord Connectors 13
Battery Eliminators 46	Cords, Appliance 18
Battery Testers 59	Cords, Ceiling Switch 14
Battery Tonic "Tarmag" 47	Cords, Headphones 52
Battery Welders 35	Cords, Lighting Extension ${ }^{22}$
Beads, lnsulating 19	
Bed Lamps 28, 29, 33, 87	Couplers, Condenser 71
Bed Warmers 34	Crocodile Clips 70
Bells and Bell Materials 11	Crystal Parts 52
Bicycle Lamps 20	Crystal Sets 52
Blocks, Wood 15	Cycle Lamp Bulbs 10
Blocks, Era 13, 15	Cycle Lamps 20
Bobbins, Jug 18	Cycle Lamp Batteries 45
Bowls, Mixing 19	
Bolts and Nuts 69	
Books 83	
Boxes, Tool 78	Detectors, Crystal 52
Bowls, Mixer 19	Dial Brackel Fittings 56.57
Brackets, Lamp 17	Dial Knobs 55,57
	Dial Lamps 10, 56, 57
Brushes, Carbon	Dial Plates 56, 81
Buckles, (Cable Clips) 17	Dial Escutcheons ${ }^{\text {D }}$. ${ }^{\text {d }}$
Bulbs, Motor Car 36, 37	Diaphrams, Phone ${ }^{\text {Dials }} 52$
Bulbs, Charger 46	Distributor Suppressors 61
Button lnsulators 41	Distributor Suppressors ${ }_{\text {Dry }}$
Buzzers, Electric 11	D.S.C. Wire 72
CABLES (all types) (See "Wire")	EAR CAPS, Telephone 52
Cable Clips 17	Earth Clips 43
Cabtyre Flex 15	Earth Tubes 43
Cans, I.F. 63	Earth Wires 43
Carbon Brushes 19	Ebonite Rod and Tube 71
Carbons for Health Lamps 19	Egg lnsulators 41
Car (Motor) Aerials 44	Electric Bed Comfort (Warmers) 34
Carpet Sweepers 32	Electric Bells and Buzzers I1
Casein Glue 38	Electric Clocks 8
"C" Batteries 43	Electric Coppers 34
Ceiling Flanges 17	Electric Lamps 9, 10, 81
Ceiling Roses 15	Electric Motors 45
Ceiling Switches 14	Electric Radiators 86

INDEX-Continued.

THE LAMPHOUSE, 11 Manners Street, Wellington, C.1.
THE LAMPHOUSE, 11 Manners Street, Wellington, C.1.

INDEX-Continued.

Magnets Page ${ }_{35}$	Page
Magnets Mastless Aerials ${ }^{\text {M }}$. 42	RADIATOR ELEMENTS
Medical Lamps 190	Radiators, Electric
Meters 8, 59, 81	Radio Batteries
Meter Push Switches	Radio Coils
Meter Fuses 59	Radio Frequency Chokes
Meter Rectifiers 59	Radio Instruction Course 83
Mica Condensers 53	Radio Sets, Crystal
Microphone Connectors 60	Radio Sets, Electric 79, 80
Microphone Cable	Range Elements 19
Microphones 78	Range Fuses
Microphone Transformers	Range Spares
Milliammeters 8,	Range Wiring Wire
Miralite Reflectors 25	Ranges, Electric
Mixer Bowls	Rectifiers (for Chargers)
Modulation Transformers 82	Rectifiers, Meter
Morse Keys 58	Red Diamond Crystal Detectors. 52
Morse Practice Sets 58	Reflectors 21, 22, 25
Motor Car Aerials 44	Resin Cored Solder 65
Motor Car Batteries 37	Resistors, Fixed 61, 81
Motor Car Cables 16	Resistors, Variable 60, 61
Motor Car Fuses 36	Rheostats
Motor Car Lamps 36,37	Rod, Insulating
Motor Car Radio Suppressors . . . 61	Rods, Threaded
Motor Cycle Batteries 37	Rubber Grommets
Motor Filters 49	Rubber Solution
Motors, Electric 8, 35	
Motors, Sewing Machine	SCREEN GRID CLIPS
	Screws 69
NEON INDICATORS 10	Screw Eyes (Galvanised) 42
Nipples . 17	Screw Eyes (Insulated)- 14
Notennas 43	Sets Kit $\cdots \quad 77,89$ to $106,110,112$,
OlL, Lubricating	Sets, Radio 79, 80
Opal Shades 22	Sewing Machine
Output Transformers 66, 67, 82	Shackle lnsula
	Shade Holders and Cips 21 to 27
PADDING CONDENSERS 54	Shielded Wire 71, 72
PADDING CONDENSERS 54	Shielded Braid 66
Panel Lamps 10	Shields, Valve and Coil ${ }^{\text {a }}$
	Silvering Liquid (Electroshine) . 38
ment Lamp Shades . $\quad 23,24,25$	Sockets, Banana ${ }^{68}$
aste, Soldering 6 , 65	Sockets, Lamp 12, 71
Pear Pushes (Bell) 11	Sockets, Valve and Material ... 65
Perculator Elements …........ 20	
Permanent Waving Outfit and	Soldering Lugs 67, 68
Spares 31	Spaghetti Tubing 71
Phone Cords 52	Spark Plug Suppressors 61
Phone Cord Tips 70	Speaker Cord Tips 70
	Speaker Extension Adaptors
Phone Plugs ${ }_{\text {Phones, Head }}$.............................. 52	Speaker Cables
Plastic Wood	Speaker Plugs 60, 62
Plates, Aerial-Earth 41	Speakers ${ }_{\text {Speaker }}$ Transformers 66,67
Plates, Dial 56, 81	Speaker Transformers 42
Plugs and Sockets, Chassis ... 60	Springs, Carbon Brush 19
Plugs, Banana 68	Staples $11,42,43$
Plugs, Electric 12, 13, 14	Step-down Transformers 66, 67
Plugs, Phone 62	Stupka 38
Plugs, Speaker 60, 62	Surprise Packets 81
Pointer Knobs ${ }^{\text {K }}$	Suppressors 61
Poker Work Machines and Spares 33	Supremacy Game 40
Portable Set Aerials 43	Sweepers, Carpet
Portable Set Coils ${ }_{\text {Prentiometers }} \begin{aligned} & \text { P1 } \\ & \text { Poter }\end{aligned}$	Switches, Electric $14,15,20$
Power Transformers 66, 66, 67	Switches, Knife 64
Prods, Test 59	Switches, Motor Car
Pulleys, Galvanised 42	Switches, Radio
Pulleys, Motor 35	
Push-back Wire 72	TABLE LAMPS 28, 29, 33, 83
Pushes, Bell 11	Tank Heaters 33
Putty . 38	Tape, Insulating

THE LAMPHOUSE, 11 Manners Street, Wellington, C.1.

INDEX-Continued.

Tarmag Page ${ }_{47}$	Valves (Tubes) … 73, 74, 75, 76, 77
Terminal Base, Coil 69	Valve Shields 63
Terminals, Appliance 18	Valve Sockets 62
Terminals, Radio 67, 68, 69, 70	Valve Testing Transformer
Terminal Strips 68,69	Variable Condensers 54
Testing Equipment 59	Vibrators, Radio 46
Test Prods 59	Vibrator Transformers 66
Threaded Rods 69	Voltage Reducers 66, 67
Tilters, Shade 17	Volt Meters 8, 59
Tip Jacks 70	Volume Controls 60
Toaster Spares 18, 19, 20, 39	
Toaster Trays 39	WALL BRACKETS 17, 28, 87
Tone Controls (Potentiometers).. 60	Wall Plugs \|2, 13, 14
Tool Boxes 78	Warmers, Bed 34
Torches . 20	Washers 69
Torch Batteries 45	Water Heaters 33. 34
Torch Lamps 10	Watertight Fittings 87
Torch Lamp Holder 71	Wave Change Switches 64
Toys and Games 38, 40	Wavers, Hair, and Spares 31
Transformers, Audio 66, 67	Wave Traps 48
Transformers, Bell II	Welders, Electric 35
Transformers, Filament ${ }^{\text {a }}$, 66	Welder Electrodes and Spares .. 35
Transformers, 1.F. 50, 51, 82	Well Glass Fittings 87
Transformers, Microphone 82	Winchargers 46
Transformers, Modulation 82	Wire, Aerial 41
Transformers, Power66, 67	Wire, Bell 11
Transformers, Speaker 66, 67, 82	Wire, Connecting 71, 72
Transformers, Stepdown 66, 67	Wire, D.C.C. 72
Transformers, Vibrator 66	Wire, D.S.C. 72
Traps, Wave 48	Wire, Earth 43
Trays, Toaster 39	Wire, Enamelled 72
Trickle Chargers	Wire, Flexible 15, 16, 71, 72
Trimmer Condensers 54	Wire, Fuse 15
Tubes, Earth 43	Wire, Lead-in 41, 44
Tubes, Lead-in ${ }^{42}$	Wireless Jug Elements 18
Tubes (Valves) . . . 73, 74, 75, 76, 77	Wire Microphone 71
Tubing Insulating 71	Wire, Motor-Car 16
Tubiag, Spaghetti ${ }^{1}$	Wire, Pushback 72
Tubular Condensers 53	Wire, Range Wiring 16
Tuners, Radio 48	Wire, Tinned Earth 43
Tuning Indicators 58	Wire, Transmission Cable 44
Tungar Bulbs 46	Wire, V.I.R. 16
URNS, Electric	Wood Blocks 15 . 39
	Wood Screws 69
VACUUM CLEANERS 32	Workshop Flex 15

LAMPHOUSE LAY-BY SERVICE

The Lamphouse Lay-by is means of obtaining your requirements with easy payments but at no extra cost.
Many goods are in short supply, and if you see an article you want it is advisable to secure it at once, as it may not be
available later, or when the next shipment available later, or when the next shipment arrives the
advanced. All you have to do is to pay a deposit
and tell us you want to buy it under the and tell us you want to buy it under the
Lamphouse Lay-by plan. It costs you no more und you can complete the pur hase at any time convenient to yourself oy maxing payments of any amount
once a fortnight. Here are the only conditions which we make covering goods sold on lay-by:-

1. All goods under this system are sold at our cash prices.
2. A payment must be made at least once may be forfeited without notice.
3. Goods must be fully paid for within four months.
4. No goods will be euchanged and par contents cannot be taken from parcels
5. Deposits, cannot be refunded or transferred.

THE LAMPHOUSE, 11 Manners Street, Wellington, C.1.

CONTENTS

SPECIAL FEATURES

RADIO STATION LOG, containing the Wave Length, Power, and the best time to listen (N.Z.
time) of New Zealand, Australian and American Broadcast Stations and the world's Short Wave Stations.
N.Z and Australian B. Pag. North American Page.
175 World's Short Wave 176 Indian B.C. 185
RADIOTRON VALVE CHARTIncludes characteristics a nd base connections for most types
of American Valves

AMATEUR TRANSMITTERS' LOG Complete Log of all Amateur Transmitters in N.Z. (to April, 946). Including Call Sign and

LOOK BEFORE YOU LEAP--I] lustrated guide to valve set construction

USEFUL HINTS

Fixing Loose Valve Sockets Making Wing Nuts
Use for old Pliers
Copying Diagrams
Cord Connector
Useful Hints-Continued
Increasing Condenser Capacity .. 116
Cutting Aluminim
189

CIRCUITS

Wavetrap
Superhet Five
Outdoor Portable
World Wide Five
RF Tuning Unit
Dry Cell Two
Pry Cell Swo
Tiny Two
Code Oscillator 96
97
Rahob Single
Crystal Sets
Popular One
Hiker's One
Supergainer Amplifier 110
Battery Superette
Versatile 4.W Amplifier

THE HOME CONSTRUCTOR

 Soldering
CONSTRUCTIONAL ARTICLES

Crystal Sets 100

Popular One
Popular One104

Supergainer Amplifier
104

Battery Superette 112
98 . Versatile 4-Watt Amplifier 114
Octal Hikers Amplifier 127
Universal Set Testing Meter 186
Signal Generator 188

FACTS AND FIGURES

World Time Chart
Radiotron Valve Chart 129
Valve Equivalent Chart 148
Valve Equivalent Chart 148
Wire Tables 149
Wire Tables ……............... 14
Short Wave Coil Data 162

Page 191

GENERAL INFORMATION

PRICES:-The prices in this Catalogue should be taken as an indication only. Prices are fluctuating rapidly and all orders will be executed at the prices ruling at the date of supply.

TEREMS OF BUSINESS.-Our terms are cash with order. We buy for cash and sell for cash, that's why our prices are lower. If it is desired we will hold deposit account for future purchases eposit account for future purchases, therw with the roods due will be re

HOW TO ORDER.-Order forms are always available for your convenience. t is only necessary to quote the cata ogue number and
dering, such as
CATALOGUE NUMBERS.-The first etter (T) of the number is for our refer ace. The balance of the catalogue number will always remain the same for the same article.

FREIGHT.-We pay freight on all retail orders over fl value. Please include sufficient cash for postage on small orders.

GUARANTEE.-Any goods that prove in any way unsuitable may be re turned undamaged within seven days from receipt and your monsy will be re funded in full.
REFERENCE-Our Bankers are the National Bank of New Zealand, Ltd. Courtenay Place, Wellington.
COMPLAINTS-Please specially address all letters containing complaints tc, to "The Director"

RETURNS.-Should it be necessary to return goods, always put in a slip of paper with your name and address. When eturning goods for credit or exchange, tate invoice number in covering letter o ensure prompt attention

TELEGRAMS.-Address telegrams to "Lamphouse," Wellington.

REMITTANCES. - Enclose cheque, pound notes, postal ncte, or money order to the full amount of your order. If you send coin or bank notes, be sure to register the letter. Make cheques and postal notes payable to the Electric Lamp House, Ltd.. and keep numbers for reference.
DELIVERY-We endeavour to main tain a same day dispatch service. This is not always possible as at times goods have to be specially procured, and at is exceptional rushes take place. It is very seldom, however, that an order is held for mor receipt.
SUBSTITUTES.-Owing to the present difficulty of obtaining supplies wa suggest that you indicate on your order with similar you wish us co substitute goods ordered being out of stock.

LAY-BY.-See page 5.
POSTAL ADDRESS.-All orders and general correspondence should be addressed to-

THE ELECTRIC LAMPHOUSE LTD.

11 MANNERS STREET
WELLINGTON, C.1.
Telephones 43-015 and 43-016

> A SUGGESTION.-As it is much easier for us to make a refund along with your receipt than for you to get stamps or postal notes to remit a smal balance that may be left owing when your receipt is sent, would it not save you inconvenience if you were always to send ample cash to allow for freight, etc? We will refund the difference, or place it to your credit, according to your instructions. Do as hundreds of our customers do, send a blank cheque, which we will fill in when we have totalled your order. You can write across the top of the cheque "Not to exceed $\mathfrak{f 5}$ "-or $\mathfrak{£ 1 0}$, or $\mathfrak{f} 20$, as the case may be.

The LAMPHOUSE 1946 © CATALOGUE 1947

Limited quantities of the following Meters Just plug in and forget and correct time is are available from stock. All flush panel yours always. Current consumption is practimounting. Order early!
Cat. No.
TM800-Triplett $0-5$ amp. Square 3in. A.C. Meters
TM801-Triplett $0-5 \mathrm{amp}$. Round 3in. A.C. Meters.
TM802-Simpson 0-3 amp. Square 21 in. D.C. Meters.
TM803-Burlington 0-25 M.A. Sq. 3in. D.C. Meters.
TM804-Burlington 0-50 M.A. Sq.
3in. D.C. Meters.
TM806-Simpson' 0 - 10 Volt Square
$2 \frac{1}{2 i n}$. A.C. Meters.
TM807-Simpson 0-15 Volt 21 in .
Square A.C. Meters.
TM808-Electro-Tec 0-1 amp. Rnd.
TM809- Burlington
Square 3 in. D.C. Meters.
TM810-Triplett 0-1 amp. 3in.
Square R.F. Thermo Ammeters
TM811-Triplett $0-1.5$ amp. 3 in.

TM812-Simpson 0-2 amp. 33in.

PALEC M.A. METERS

Cat. No.
TM805-Palec $0-1000$ M.A. 3 yin. round Meters. Special purchase of a large quantity enables us to sell them not at EACH
true value $x 3 / 10 /-$, but at $31 /=$ EACH

TRICKLE CHARGERS
Never be stuck with a run down radio or car battery. These Chargers simply plug into a 230 Volt light socket or wall plug, and are then connected to your battery. Incorporates 4 dry meta x isin.
Cat. No. TA607, $\frac{3}{} \mathrm{amp} . \operatorname{e} / / 10 /=$

DX (LONG DISTANCE RECEPTION)
Readers who are interested in DX-ing should contact Arthur T. Cushen, 212 Earn Street, Invercargill, who will be only too pleased to send them a sample of a monthly bult the benefit of DXers.

TINK ELECTRIC CLOCKS
Just plug in and forget and correct is practically nil. Slow speed, silent-ruming mona cally nil. Life!

ROSANNA MODEL

SEWING MACHINE MOTORS

TO ARRIVE SHORTLY-230 Volt Sewing Machine Motors, with variable foot control. chimes. Complete with flex and special Lamp. Cat. No. TM663
£9/17'6

OSRAM ELECTRIC LAMPS

OSRAM STANDARD VACUUM OSRAM GAS-FILLED CLEAR

 BULBS.Clear and Frosted. 240v.

Low intensity, small
consumption lanıps for passages, halls, etc., or where it is necesamp burning over long period.
Cat. No. TL201Cat. No. Tl 202 each Cat. No. TL202-

OSRAM GAS-FILLED GLOBES.

Clear or Pearl.

 a large amonnt of where
Work is done, or where work under artificial light for long periods is necessary. Frosted just sufficiently not to impair the efficiency of the Lamp, but to keep the sharp glare from the Offices, etc. Standard Bayonet Base.
TL215- 40 watt TL216- 60 watt L217-75 at $2 / 3$... at TL217-75 watt at $3 / 3$. TL218-100 watt at 4/- each TL219-150 watt . . . at 7/- n at 10/3

> The same type as outlined above but using
the Edison Screw (E/S) Standard screw base:
> TL600- 15 watt
> TL601- 25 watt
> TL602- 40 watt
> TL603-60 watt
> TL604- 75 watt
> TL606-150 watt
> TL607-200 watt
> TL608- 300 watt
> 6/1

BULBS.

Special G.E.S. large Screw Base.
TL211- 300 wat
14/6
TL212- 500 watt
20/9
$33 / 3$

LAMPS FOR HOUSE LIGHTING PLANTS.

Low voltage globes with Standard bayonet cap base. Used mainly for house lighting pypes can be used from a car battery for tent fighting, or in conjunction with windelrarger installations.
6 VOLTS.
Cat. No. TL500-10 watt . . . $2 / 7$ each Cat. No. TL501-is watt $2 / 7$ each Cat. No. TL502-25 watt 2/7 each Cat. No. TL503-40 watt $2 / 7$ each
12 VOLTS.
Cat. No. TL504-10 watt . . . $2 / 7$ each
Cat. No. TL505-15 watt .. 2/7 each Cat. No. TL506--25 watt . . $2 / 7$ each Cat. No. TL507-40 watt 2/7 each Cat. No. TL511-60 watt 3/4 each 25 VOLTS.
Cat No. TL550-15 watt . 2/5 each Cat. No. TL551-25 watt $2 / 5$ each Cat. No. TL552-40 watt $2 / 2$ each Cat. No. TL553-60 watt 2/3 each
32 VOLTS.
Cat. No. TL560-15 watt . . . 2/5 each
Cat. No. TL561-25 watt 2/5 each
Cat. No. TL562-40 watt 2/2 each Cat. No. TL563-60 watt $2 / 3$ each
50 VOLTS.
Cat. No. TL570-15 watt 2/5 each
Cat. No. TL571-25 watt 2/5 each
Cat. No. TL572-40 watt $2 / 2$ each
Cat. No. TL573-60 watt 2/3 each

THE LAMPHOUSE

MANNERS STREET, WELLINGTON

OSRAM GAS-FILLED 110 VOLT LAMPS.
Low voltage globes as used on ships. Several districts not converted to the 240 volt supply
still use this voltage. Availab.le in B/C or E/S Base. 110 VOLTS
Cat. No. TL580- 15 watt Cat. No. TLS81- 25 watt Cat. No. TL582- 40 watt Cat. No. TL583- 60 watt Cat. No. TL584-75 watt Cat. No. TL585-100 watt Cat. No. TL586-150. watt Cat. No. TL587-200 watt 110 VOLTS. Special G.E.S. Base Cat. No. TL588- 300 watt Cat. No. TL589- 500 watt Cat. No. TL590- 1000 watt

PANEL LAMPS

 RADIO PANEL LAMPS. Tubular Type, screw base.Cat. No. TL119-2 volt, .05 amp. (special low consumption for
battery sets) Cat. No. TL120- 2.5 volt $1 / 4$ each Cat. No. TL121- 3.8 volt $1 / 4$ each Cat. No. TL122-6 volt $1 / 4$ each
$\underset{\text { screw }}{\operatorname{TL} 124} \frac{-}{\text { base, }}$ bulb TL123volt, with small Bayonet Base .. 1/4 eac Cat. No. TL118-2 volt Battery Set theype with small bayonet base. L300-6 volt. with S/C large Bayonet base for Columbus and similar sets
TORCH LAMPS. STANDARD TYPES. BEST QUALITY.
Cat. No. TL100-1.4 voltsCat. No. TL103-4 volts Cat. No. TL112-Focus 2.5 volt Cat. No. TL113-Focus 3.5 volts Cat. No. TL109-Focis 6 volts. Cat. No. (L99-2.5 volts, pre-Focu Cat. No. TL1 $1-6$ volt 3 watt Cycle Dynamo Lamps $\quad \cdots$ Cat. No. TL2-6 volt 1.8 watt

PIGMY (PILOT LAMPS).

 C 15 Watt. Small size Bulb. Cat. No. TL200 2/2 each
OSRAM FLUORESCENT LAMPS AND REFLECTORS

F16938 Channel, Choke and Condenser-
Choke and Condenser Box £9/11/9
240 Volt 5 Ft 80 watt OSRAM $18^{\prime \prime}{ }^{\text {each }}$ SRAM Fluorescent

Can also be supplied with Trough Reflector. Can also be supplied with Trough Reflector.

Osram Fluorescent Lamps for:-
Low Surface Brightness.
High Lighting Efficiency
Cool Burning Efficiency
Natural Daylight Colour.
The 50 watt OSRAM Fluorescent Lamp produces approximately as much light as a 200 W . Tungsten Filament Lamp.
Trough, Reflector, Choke and Condenser

BELLS AND BELL MATERIAL

BAKELITE PEAR PUSHES

Beill Pear Push for cord suspension. Attractively cord suspension. Attractively fin-
ished in moulded bakelite. The plunger is of polished bone.
Cat. No. TG335

BELL TRANSFORMERS

Belf Transformers for 230 -volt supply. Out put $3 / 5 / 8$ volts. Moulded into an attractiv.

Cat. No. TG337
$14 / 9$ each

BELL WIRE

Best Quality British Bell Wire. Well insulated. No. TW114-1/20 S.W.G. $2^{\text {D. Yard }}$
Cat. No. TW113-1/22 S.W.G. 20. yard

BELL STAPLES

INSULATED STAPLES Make a Neat Job!

Insulated Staples for tacking up bell wire. Cat. No. TS118 3 $\frac{1}{2}$ D. doz. (2/3 pack of 100)

THE LAMPHOUSE, 11 Manners Street, Wellington, C.1.

ADAPTORS - HOLDERS - PLUGS

ADAPTORS

For end of cords to fit into light socket for extensions, etc
Cat. No. TG210 1/- each

2-LIGHT ADAPTORS
Two-light Bakelite Adaptors. Cat. No. TG218

LAMPHOLDERS

 CORDGRIP TYPE.TG52-With
G53 wir $\quad . \quad 6 / 6$
TG53-With switch, $6 / 6$
BATTEN TYPE TG54 WiPPE-TG56-Withourt 3/5

Cat. No. TG58 - With switch, without ANGLE TYPE BATTEN HOLDERSCat. No. TG65
THREADED TYPE-
Cat. No. TG59-3in. Bakelite type Cat. No. TG60- $\frac{1}{2}$ in. metal type Cat. No. TG61- Vin. light metal $\quad . \quad 2 / 3$ Cat. No. TG62-Fin. conduit thread type 2/11 Cat. No. TG63-in. bakelite type
Cat. No. TG64-in. with switch
E.S. HOLDERS
C.S. HOLDERS- No. TG68-Batten type

Cat. No. TG69-Cordgrip type
Cat. No. TG70-Goliath screw type

WALL PLUG CAPS.

2 Pin "Tee" TG85
2 Pin Parallel TG84
3 Pin Side Entry TG89
Top Entry 3-pin. cap.
G99-Rubber covered 3-Pin Plug $1 /=$
Tops
covered 3-Pin Plug 1°

$$
\begin{aligned}
& \begin{array}{ll}
\text { Car. No. } \\
\text { TG50-With skirt } & \text { Each } \\
1 / 9
\end{array} \\
& \text { TG50-With skirt } 1 / / 9
\end{aligned}
$$

ADAPTORS, MINIATURE

These are simitar to TG210, but fit miniature lamp holders. They are standard size for use on motor cars.

Cat. No.
Each.
rG211-Single coritact
$1 / 4$ 1'4

WALL PLUGS AND BASES.

3 Pin. Cat. No TG 89/96

Tee Pin.
Cat. No. TG 85/86-
$3^{\prime 3}$

WALL BASES.

TITEGRIP $10 / 15 \mathrm{amp}$ PLUG BASES. Cat. No. TG96

TITEGRIP "TEE" 2-pin PLUG bASES.
Cat. No. TG86
$2^{\prime} 3^{\text {cac }}$

PLUG CUBE
Triple Plug Cube with parallel pins. Enables 3 separate leads to be taken from one point.
Cat. No. TG102-
$10^{\text {D. each }}$

APPLIANCE PLUGS

Fit practically all types irons, toasters and Cat. No. TG112 //a ea.

Type with earth strip (for 3-wire (fex). Cat. No. TG113 $1 / 6$ ach

CONNECTORS. ETC.

PLUGS, DOUBLE THREE-PIN

A reful plug where it is desired to take two leads from one three-pin socket. The plug
illust ated is fitted to the appliance or radio cord. A standarci 3 -pin plug cap can then be nse ated into the top of it
Cr: No. TG100
2\%

CONVERSION ADAPTORS

These Conversion Adaptors will be found useful to the general public, besides appliance salesman, etc. They enable a tadio set with a three-pin plug to be used from a two-pin socket

Cat. No. Fits into.	Takes.	Price.
TG500-3-pin	2-pin Te	
TG501-3-pin	2-pin Prll.	3/7
TG502-3-pin	Lamp Sock.	3/6
TG503-2-pin Tee	2-pin Prll.	1.
TG504-2-pin Tee	3-pin	3/11
TG505-2-pin Tee	Lamp Sock	2/10
TG506-2-pin Paralle!	3-pin	4/-
TG507-2-pin Parallel	2-pin T	
TG508-2-pin Parallel	Lamp Sock.	2/11
TG509-Lamp Sock.		
TG510-Lamp Sock.	2-pin	
Adaptor	2-pin Prll.	3/7
TGS11-Lamp Sock. Adaptor		4/2

CONNECTORS FOR A.C. MAINS

This two-piece Connector gets over the difficulty of joining two power leads, etc. Made of best bakelite, they are strong and easy to

LAMPHOUSE 2-WAY
ADAPTORS
Enables two appliances with 3 -pin plugs

Cat. No. TG103 6/ each
Similar to above but for two pin (Tee) pho Cat. No. TG104 $8 / 9$

CONNECTORS-2-WIRE BLOCK
Porcelain Insulated Con nector for joining wires, netc.
Cat. No. TG29-Single
Wire.
Cat. No. TG28-Two Wire .. $0^{\text {D. each }}$
Cat. No. TG27-Three wire $1 / 3$ each
CONNECTORS FOR A.C. LEADS

Cord Connectors for joining three-wire cord. Moulded in bakelite. Titegrip. N.Z.-made. Cat. No. TG25/90-Complete .. S/mea.
Cat. No. TG25-Body only
2/- ca.
1/=

ELECTRICAL SWITCHES

SWITCHES-INSULATED ELECTRIC

Cat. No. TG123-5-amp., 1-way Cat. No. TG124-10-amp., 1-way Cat. No. TG125-15-amp., 1-way Cat. No. TG121-5-amp., 2-way Cat. No. TG122-10-amp., 2-way

METAL COVER TYPE, Ox. Copper FinishCat. No. TG134-10-amp., 1-way 2/6

CEILING SWITCHES.

best quality.
Cat. No. TG127-1-way
Cat. No. TG128-2-way

7/6

$9 / 6$

FLUSH SWITCHES AND PLUGS

SWITCHES ONLY
Cat. No. TG169-5amp. Brown Cat. No. TG171- 5-amp. Ivory Cat. No. TG172-10-amp. Brown Cat. No. TG173-10-amp, Ivory
 Cat. No. TG174-5-amp. Brown, 2-way $3 / 3$ Cat. No. TG175-5-amp. Ivory, 2-way 3/6

PLUG BASES ONLY.
Cat. No. TG177-3-pin Brown Bases . . 2/4 Cat. No. TG178-3-pin Ivory Bases .. 2/9

PLATES FOR SWITCHES AND PLUGS. Cat. No TG186-Ivory Bakelite, Classic type, for \quad.. $1 / 6$ TG187-Ivory Bakelite, Classic type, for $3 / 6$ TG188-Ivory. Bakelite, Classic type, for TG189-Ivory Bakelite, Classic type, for TG194-Ivory Bakelite, Classic type, for $2 / 3$ TG195-Brown Bakelite, for 1 switch, $1 / 6$ TG196-Brown Bakelite, for 2 switches, TG197-Browa Fancy

2d. each TG197-Brown Fancy Screws ... 2d. each TG198-Ivory Fancy Screws TG190-Single Gang Boxes TG191-Donble Gang Eoxes . $1 / 8$ TG192-Triple Gang Boxes

INSULATED SCREW EYES.

The wiring regulations state that all flexible cords running along walls and ceilings must be eye every 12 inches. Well, here they are:Cat. No. TS421 .. 5D. each

ELECTRICAL SUNDRIES

FUSES, ELECTRIC RANGE \mid FUSES FOR SWITCHBOARDS,

2-picce Fise Blocks.
Cat. No. TG160-5-amp Cat. No. TG161-10-amp. $\quad 2^{/ 7} 7^{\text {each }}$

TABLE LAMP SWITCH

Small Push Button Switch for mounting in the base Single hole mounting. Cat. No. TG117-

$$
3^{\prime} 9 \text { each }
$$

WOOD BLOCKS

Round and rectangular Wood Blocks for mounting switches, ceiling plates, etc. Carefully made and well finished. Recessed.
(Made in N.Z.)

WORKSHOP FLEX $23 / 0076$ Flex: Heavily insultated and proCat. No. TW96-2-wire...... $1 / 4$ yd. Cat. No. TW95-3-wire \ldots.... $110^{\text {yd }}$
$2 / 7$ each
ETC

MEND YOUR FUSE

TG46-s amp., on card 2d. each TG47-10 amp., on card TG350-3 amp. (Alb. reels) TG351- 5 amp. (3 lb . reels) G352-10 amp. (1 llb . reels) G35 25 amp. (itb reels)

CEILING ROSES

Bakelite Ceiling Roses for electric light pendants. at. No. TG32
$1 / 6^{\text {each }}$

FLANGES

Metal Conduit Flanges to fit $\%$ in. Conduit. Cat. No. TN1 w/male thread .. 4D. each Cat. No. TN2 w/female thread 4D. each

ERA BLOCKS
Cat. No. TG78-Era Blocks, with connectors

WIRES - CABLES

For 230 -volt supply. Handy for extending ights, etc. 23/.0076.
Twin Twisted Cotton-covered Eng. Rubber, Cat. No. TW 70

Ditto P.V.C. InsulatedCat. No. TW 165

$$
\begin{aligned}
& 10^{\text {D. yard }} \\
& /=\text { yard }
\end{aligned}
$$

WIRES, V.I.R. CABLE

Cat. No.	Yard. 100 yard coil.	
TW		
TW7- $1 / .044$	$(1 / 18)$	4d.
TW78- $7 / .029(7 / 21)$	$8 d$.	
TW79- $3 / .036$	$(3 / 20)$	$6 d$.
TW80- $7 / .036$	$(7 / 20)$	9 d.
TW81- $7 / .044$	$(7 / 18)$	$1 / 1$

TRU-RIP FLEX

Thin Phecover Flex. Two wite laid lat. Handy for wiring Table Lamps, etc. Cat. No. TWI72 $10 \frac{1}{2}$ D. yard

WIRES, HEATING

23/.0076 Rubber-insulated Asbestos-covered, heating flexible. Covered over all with a glazed cotton braid.
Cat. No. TW66-2-wire
Cat. No. TW67-3-wire
Cat. No. TW71-40/0076, 2-wite
Cat. No. TW72-40/0076, 3-wire
Cat. No. TW73-70/0076, 3-wite

RANGE WIRING WIRE

Asbestos-covered Wire for internal wiring of places subject to heat. 3/.036. Cat. No. TW85 $1 / 8$ yard 1

WIRE, FLEXIBLE.

Two and three-wire. 23/.0076 P.V.C. Flexible, for extensions, appliances, etc. Each core is P.V.C. insulated braided overall. Cat. No. TW90-2-wire $1 / m^{\text {yard }}$ Cat. No. TW169-3-wire $1 / 6$ yard

Cat. No. TW300 2.75 M.M. Single$3^{\text {D. per ft. }}$
Cat. No. TW301 4 M.M. Single- D. per ft.

Twin Cable under one cover, specifications as above. Cat. No. TW302 5 D. per ft

Rubber-covered Ignition Cable, multiple covers of high-grade Rubber. 7 M.M.
Cat. No. TW303

CHAIN SETS - FITTING ACCESSORIES

WALL BRACKETS

Ptain plated 9in. Wall Brackets, complete with Lamp-holder. Cat. No. TF800
$8 / 6$ each
As above, but better quality-
$13 / 9$

SHADE CLIPS.

Carı be attached to any Lampshade. By using this Clip an ordinary lampshade can be con-
verted to fit a reading
lamp without the usual lamp without
Just clips straight on
to the globe
$6^{\text {D. each }}$
Cat. No. TF381
Cat. No. TF381 ..
SHADE HOLDER

Shade Holders for table
lamps.
Hinged in the centre so
thate the shade can be
titted.
Cat. No. TG36

Simaitar to the above, but
chrome plated.
Cat. No: TG37

NIPPLES

 ting eable lamps, ete.
dard Lin. lampholders.

Cat. No. TG200-6 $6^{\text {D. each }}$

SHADE HOLDERS

For fixing Shades to table lamps. Non aduntable type.
$2 / 3$ each
CABLE CLIPS, BUCKLES.
Cat. No. TGS14
1d. each 10 d doz

GALLERIES FOR LAMP SHADES

1/3 each

Cat. No. TF351-Ditto, 31 in . Cat. No. TF352-Ditto, 41 in. Cat. No. TF356-Ditto, 41in. whit . $4 /$.

METAL GAILERIES AS Oxidised Copper.
Cat. No. TF353-23in.
Cat. No. TF354-31in.
Cat. No. TF355-44in.
Cat. No. TF379-Ditto, with hook
TF355-44in. $\quad 4 / 9$
with hook .. 6/.
Cat. No. TF357ROME FINISH
Cat. No. TF358-31in
Cat No TE359 41 .
CHROME CEILING GALLERIES. Cat. No. TF360-31in.

BLACK INSULATING TAPE

Has many uses, such as binding hocke sticks, axes, etc., besides being an excellent means of insulating. 2oz. rolls.
Cat. No. TS237

- roli

Cat. No. TS236A-5yd. rolls
$11^{\text {D. roll }}$
Cat. No. TS238-8 oz. rolls . . 2/9 r

ELECTRICAL REPLACEMENT PARTS

STANDARD PARTS
Will fit or can be adapted to many brands of appliances.

ELECTRIC IRON ELEMENTS

The Element in the iron is the part that does all the work and practically the only part that
goes wrong. These Elements are specially congoes wrong. These Elements are specially con-
structed for long service, and will fit all standard makes of itons.
Fitall Type Iron Elements
Cat. No. TE508
Iton Elements, 110 v
Cat. No. TE504

$$
4 / 6
$$

$8^{\prime} 8^{\text {each }}$

APPLIANCE TERMINALS就亩

Appliarce Terminals, for fiting in the back onts. Cat. No. TE400 $\cdots \cdots \cdots \quad 8^{\text {D. each }}$
nuthen

13
Complete Jug Elements, consisting Cat. No. TES60

THE "WIRELESS" JUG ELEMENT

Cannot burn out! This Element is made on an entirely new and patented principle. Having no element wire, cannot burn out. Easy to fit Car. No. TES17 A G/ each

SPEEDEE JUG ELEMENTS
For Speedee Enamelled Jugs.
Cat. No. TE5 16
$9 / 6$ each

RUBBER RINGS

For fixing Elements in metal jugs, such as peedee, Ultimate, etc.
Cat. No. TE500

APPLIANCE CORDS

Cords for electrical appliances, irons, toasters, jugs, etc., etc. Fitted with ance plug on one end and a wall pling o the other end.

Cat. No
TE800-Cord with 2-pin parallel Cap TE801-With two-pin tee cap
TE803-With three-pin cap
TE803-With three-pin cap
TE802- With lamp socket adaptor $5 / 6$
(Note.-The above are fitted with 6 feet
bevt cord. Extra long cords can be supplied.

ELEMENTS AND SPARES

Spane Parts for all makes of Appliances are
stocked (when available). Send us your enstocked (when available). Send us your enquiries or orders.

RADIATOR ELEMENTS

 SPIRAL WINDINGS.Spiral Element Windings for re-winding Radiator Elements, etc. Made of best Britio esistance wire.
TB509-230 volt, 600 watt
TBS10- 230 volt, 750 watt
TES 11 - 230 volt, 1000 watt

RADIATOR ELEMENTS

Large tile, $9 \frac{3}{2} \times 3$ 3, 1000 watts. Complete.
Cat. No. TES

9/1
$8 / 1$
-2 2-
Pencil Rod Elements, 1000 watts, 10 in Komfee Boand.

Ditto, 12 in., 1000 watts.
$12 / 6$
Cat. No. TES21
12'6
PORCELAIN ELEMENT BARS

Round Porcelain Bars for Radiator Elements, etc. Unwound.
Cat. No. TESO2
$4 / 3$ each

ELEMENT FORMERS

CONE TYPE Heavy parcelain cone i yp pe radiator formers. Height
4 in., diameter 2 in . Wide recess to take standard 1000 watt wire element. No base or supports provide d. Porcelain drilled at both bottom attaching of spiral.
Cat. No. TE506-
5/3

RANGE ELEMENTS

Electric Range Hot Plates. Elements that will fit all makes of ranges. Speedee to fit any make of range, din. to 112 im . drameter. 175 watts.
Cat. No. TE550
38/6
Ditto, Gin. to 8in. diameter, 900 $32 /=$

CARBONS FOR HEALTH LAMPS

Spare Carbons for Pifco and other Arc type Health and Suntan Lamps.

4/ ${ }^{\text {pair }}$
ULTIMATE OVEN ELEMENTS

FOR RANGETTES

Cat. No. TE527 £1/5/1 HOTPLATES FOR RANGETTES
Cat. No. TE550-Ultimate 6 in.
Cat. No
N $1 / 8 / 2$
$£ 1 / 13 / 7$ Cat. No. TE523-1000 watt, 10in. x इin. Pencil type Radiator Elements $\quad .8 /$

DORMEYER

Spare Bowls, Clear Glass, for Dormeyer Electric
Cat. No. TE833-Large
Cat. No. TE834-Small
KNIGHT CLEANER SPARES
Cat. No. TE238-Carbon Brushes

1/-

ULTIMATE RADIATOR

 ELEMENT10in. Element, 1000 watt, with fixing screws.
Cat. No. TES $23 \quad \ldots \quad 8^{\prime}$

OXFORD ELEMENT

के
93in. Replacement Element, 1000 watt.
Cst. No. TE512. $/ 8$ ear

INSULATING BEADS

Fishline white Insulating Beads. Suitable for insulating elements, lead-ins, grillers,
irons, soldering irons, etc, rons, soldering irons, etc
Cat. No. TE410
$2^{\text {D. dozen }}$

CYCLE LAMP

British made Cyele Lamp, with fixing bracket. Moulded back. Switch on top. Complete with bulb.
Cat. No. TT802-Complete with Bulb ${ }_{\text {Battery }}^{\text {and }}$
"MANDAW," CYCLE LAMPS
Black sprayed case to take standard cycle battery Rigidly constructed, with strong clip for quick attachment to cycle. Refector 23 in . diameter. English make.
TT805-Complete with Bulb and

$$
\text { Battery } \cdots \ldots \ldots \ldots \ldots5^{\prime}=\text { each }
$$

PIFCO TORCHES

STANDARD SIZE ENGLISH TORCHES Ribbed design, nickel-plated body with black top and bottom caps. Two position switch,
 (ERO50).
Cat. No. TT818a-Complete with globe and batteries $\%$
baby size english torches Similar to above, except smaller size. 5 jin. 1 lin. diameter Takes two baby Cells.

Cat. No. TT817a-Complete with globe and

TOASTER ELEMENTS

"EVEN-GLO" ELEMENTS
There's an "EVEN-GLO" ELEMENT to fit every make of Toaster. Made with good quality mica and English Nichrome Ribbon, these elements are a first grade production. If you are not too sure as to what make of element your toaster takes, forward us the old one and we will make a new one to pattern. Cat. No. TE1003-Speedee Type .. 9/11 ea. Cat. No. TE1004-Hotpoint Type. . 10/6 ea. Cat. No. TE1006-Hi-Speed Type.. $9 / 6$ ea C No 1007 -Magnet Type Cat. No. TE1008-Hecla Type 11/- ea. $10 / 6$ ea Cat. No. TE1010 - Westinghouse Type 10/6 еа

Cat. No. TE1011-Effesca
9/6 еа Cat. No. TE1012--Servex 9/6 ea Cat. No. TE1013-Ultimate 10/6 ea Cat. No. TE1014-Majestic Type 10/6 ea Cat. No. TE1015-Monarch Type ${ }_{(2)}{ }^{\text {Soo }}$ Strip)

10/6 еа

KETTLE STRIPS

Cat. No. TE1030-Hecla Kettle Strips 8/6 ea Most kettles are fitted with two of these
strips and several are fitted strips and several are fitted with three.
percolator elements
Cat. No. TE1040-Elements to fit Universal sype Coffee Percolators
$8^{\prime} 8^{\text {each }}$

BOWL FIRE ELEMENTS

"FITZALL" BOWL
FIRE ELEMENTS This type of Element can be adapted
to numerous makes of Bow1 Fire Radiators. Radiators with elements using the plug-in or screw-in base
slight adaption take shight adaption take
this type of element. Distance between screw holes on legs
of former 1 ix in.
750 of former
watt spiral.
Cat. No. TEsO5

$$
8^{\prime} 6
$$

3-HEAT SWITCH.

Flush Range Switch, suitable for Neeco and
 flush switches.
Complete with
lock nut and black pointer knob.
Cat. No. TG513-
$15 /{ }^{\text {each }}$

COOLICON SHADES

Coolicon Shades are ideal or all lighting, whether in the home, warehouse or factory. Four Types are available, as follows:-

THE GREEN COOLICON
This shade is made of sheet steel, vitreous enamelled green outside and white inside, with an open type gallery incorporated, allowing some light to pass upwards to illuminate the ceiling.
9in. Size-Takes 40/60 watt lamp. Cat. No. TF1006

11in. Size-Takes 75/100 watt lamp.
Cat. No. TF1008
10'9

THE WHITE COOLICON
This type is made of plastic and mounted on
special gallery so arranged that it is not affected by the heat of the lamp. It will not discolour and is practically unbreakable.

9in. Type-TTakes $40 / 75$ watt globe
Cat. No. TF1056
11 in Type-Takes 100/150 watt globe. Cat. No. TF1058

8'9

All the Coolicons outlined above have a $1 \frac{1}{1} \mathrm{in}$. hole gallery, for mounting on any shade carhole gallery, for

BENJAMIN REFLECTORS

Benjamin Local Lighting Reflectors are recommended for the lighting of areas where the work in hand requires increased illumination or where obstructions make other lighting insufficient.

These shades are made of heavy gauge sheet steel, crysteel porcelain enamel; white inside and geen outside. Standard 1 fin, hole for easy attachment to ordinary lamp holder.

The types available are as follows:-
EXTENSIVE REFLECTOR, $6 \underline{1} \mathrm{in}$. diameter, takes $60 / 75$ watt lamp
Cat. No. TF8347

HORIZONTAL REFLECTOR, $6 \frac{1}{2} \mathrm{in}$. (as illustrated), takes 15/75 watt lamp. Cat. No. TF8329

EXTENSIVE REFLECTOR, $7 \frac{1}{2} \mathrm{in}$. diameter. Takes 100 watt lamp.
Cat. No. TF8367

INTENSIVE REFLECTOR, $7 \frac{1}{2} \mathrm{in}$. diameter. Takes 100 watt lamp.
Cat. No. TF8368
12/9

OPAL SHADES. bakelite type.

Moulded in New Zealand, these bakelite hades take the place of the old glass opal plain white and pastel tints.
White-Cat. No. TF5 60
Tinted-Cat. No. TF561
1/6 $1 / 9$ each

BEAUTIFUL SHADES

Attractive translucent Bakefite Lamp Shades in the following colours: Pink, Manve, White, Green, Blue, Yellow. Size 7in. diameter, Sin.

Cat. No. TF562
$2 /$ each

"CLIP ON" LAMPSHADES.

Made of translucent bakelite, these shades are fitted with a wire clip which clamps direct adjustable table lamps, etc. Available in most popular colours. Diam. 53 in .
Cat. No. TF255
216

BAKELITE SHADES

Cat. No. TF6614 Kin. high, 5ith. diam.-Blue
$1 / 9^{\text {each }}$

Lighting EXTENSION CORDS. Kead in Comfort!

For taking the light where you want it. Ten feet long and supplied with an insulated shock. proof lampholder. Extra long lengths can be
made up at $1 /-$ yard extra.
Cat. No. TESI
6/8
Cat. No. TE52 (with switch holder) $1 / 8$
R.L.M. REFLECTORS

Steel Reflectors, enamelled green outside, white inside.
Cat. No. TF925-12 in.
$22^{\prime} 6$
Cat. No. TF926-14 in
27/6

MODERN LAMPSHADES

Here we list modern Lamp Shades matufactured from the latest translucent parchments. All Shades listed are washable and can be supplied in the following colours: Rose, Tango (Orange),
Rust (Orange-Brown), Gold, Green, Bhue, Clover (Mauve).

Bright Hall Lamp Shade. For halls, passages, etc. Size $10 \mathrm{in} . \times 14 \mathrm{in}$.
Cas. No. TF605
$12 / 6$ each

A dignified Shade in the lower-priced class
Diam. 12in., height $7 \frac{1}{2} \mathrm{in}$.

One of our most popular models. Diam. 14 in height 7in.
Cat. No. TF603

Attractive Decorated Shade, with fringe. Diam 14in., overall depth $14 \frac{1}{2} \mathrm{in}$.. fringe siil

Diam. 18in. This modern Shade will enhance the appearance of any rooxa.

Cat. No. TF626

$$
28 / 6
$$

$6 /=$ each $/$ Cat. No. TF600
23/- each

 Cat. No. TF622

Another large Shade suitable either for hanging or for floor standard. Diam. $22 \mathrm{in} ., \mathrm{dept}$
fringe 6 in .

$$
\begin{aligned}
& \text { Cat. No. TF624 } \\
& 45 /=
\end{aligned}
$$

Large Shade for big Large
room or for Ploor Lamp. Made from best washable parch-
ment. Diam.
24in., ment. Diam. $24 i n .$,
depth
$12 \mathrm{inn} .$,
pluas in all listed colours. Car. No. TF623-45/-

"ENSIGN" MIRALITES

REFLECTORS.

sor economical lighting for windows, stores and home. Special arrangement of mirrors in and home. Special arrangement of mirrors in
these reflectors enables you to obtain up to these reflectors enables you to obtain up
$33-1 / 3$ per cent. more light. Miralites for ord inary lampholders. No special fittings required

Angle window lighting reflector. The top of Angle window lighting reflector. The top of
this type is angled enabling the refector to be placed in front of a window so that the light will be reflected directly on the goods diss
played in the window. For lamps 75 to 150 played in the window.
watts. Size $11 \mathrm{in}. \times 5 \mathrm{in}$. Cat. No. TF251

Straight top type. For use directly above special displays. Over machines, desks, etc.; anywhere where a direct intensive light is re-
quired for lamp $75-150$ watts. Size 11×5 in. Cat. No. TF252 20/- each

Straight top type distribution of tight is required, such as in stores, shops and in the home, etc. Supplied in wo sizes

TP254-13 $\times 13$ in. ($75-100 \mathrm{w}$. lamp) $21^{\prime}=$

Shape 7 7.-Bottom diam 5 Sin.; Top diam.,
Cat. No. TZ7P_Plain (Hole) .. 3/6 ea Cat. No. TZ7D-Decorated (Hole) 4/3 ea Cat. No. TZ7AP-Plain (Clip) 3/6 ea Cat. No. TZ7AD-Decorated (Clip)-

Shape 8. - Bottom 10in.; Top, Gin.; Height, 7Min. Large Square, Leather thonged.
Cat. No. TZ8P-
(Hole) 10/6 ea. Cat. No. TZ8D12/6 еа.

Low-priced attractive Lamphshades, Parchment with wire frames. in hustrations give
shape, but decorations are in numerous designs. shape, but decorations are in numerous Gilable are: Pink, Blue, Green, Brown, Orange, Yellow and Red.
Types marked "hole" are for standard hanging lights, while types marked "clip" are for Lamps, etc.
Shape 1.-Bottom diam., 10in.: Tob diam. Sin.; Height, 7in. "Standard Empire. Cat. No. TZ1P-Plain (Hole) 3/11 ea Cat. No. TZID-Decorated (Hole)Cat. No. TZ1AP_Plain (Clip) 3/11 ea Cat. No. TZ1AD-Decorated (Clip)-

Shape 3.-Bottom diam., 8in.; Top diam. 4 in.
Height, Gin. "Small Empire."
Cat. No. TZ3P--Plain (Hole)
3/9 еа.
Cat. No. TZ3D-Decorated (Hole)
4/6 еа.
Cat. No. TZ3AP-Plain (Clip) 3/9 еа. Cat. No. TZ3AD-Decorated (Clip) 4/6 ea.

Shape 4.-Bottom diam., $6 \frac{1}{3}$ in.; Top Diam., 2gin.; Height, $5 \frac{1}{2} \mathrm{in}$. (Midget Empire).

Cat. No. TZ4P-_Plain (Hole) Cu. No. TZ4D-Decorated (Hole $3 / 11$ ea Cet. No. TZ4AP—Plain (Clip) .. 2/11 ea. Cac. No. TZ4AD-Decorated (Clip) 3/6 ea

Shape 6.-Bottom diam., 14in.; Top diam. 6in.; Cat. No. TZ6PCat. No TZ6DDecorated (Hole 9/=

Cat. No. TZ6AP-
Plain
(Clip)
$7 / 6$ Cat. No. TZ6AD-

9/=

BETTER LIGHTS

BEDSIDE LAMP, for standing on table at bedside, of for decorative reading lamp. Mounted on polished rimu base. Diam. of base 7in. Supplied complete with 3 yards flexible cord Cat. No. TF901 ..

WALL LAMP, supplied with 3 yards flexible cord. Polished wood base, 5 iin, diam. Bracket
extends 9 in. Bakelite shade. Switch mounted Cat No. TF902

WALL LAMP.

plete with switch, shade, cord and lamp. Cat. No. TF910-

BED LAMP.

Modern and attractive Bedroom Lamp. Can be hung on bed-rail or screwed to wall. Wood
base and sides. Parchment shade. Length 11 in., diameter of shade 33 in

Cat. No. TF907
$27 / 6{ }^{\text {each }}$

AEROPLANE LAMP

Black wood base 6in. diam. Glass Ball 6in. diam. Plane mounted on chrome support. Supplied complete with
Cat. No. TF903
67/6 each

PRICES ARE SUBJECT TO ALTERATION All prices in this book must be regarded as an indication only-all orders will be executed at ruling prices.

FLOOR LAMPS

Turned in New Zealand from New Zealand Height to base of Lampholder, 61 in ; diameter of base, $11 \frac{1}{2} \mathrm{in}$. Supplied com. lete with with switch and shade holder.
The Lamp Shades are NOT included in the
Refer to pages 23 and 24 for suitable
Cat No TF920
No. TF920 c5/19/6
Cat. No. TF919-(Unfinished) f3/ $1 /=$
Not mounted, polished or stained.

THE PERLUX "CLAMPLITE"

A really handy Reading Lamp which will clip on to the bed rail or will stand on a table. The shade is on a swivel and may be turned up or down. Finished in mortled colours. Complete with switch, Lampholder, hade and globe, with approx. 6 feet fex
Moulded in plastic.
Cat. No. TE53 2/ 6
Cat. No. TE53n-Complete with adaptor or

THE LAMPHOUSE, 11 Manners Street, Wellington, C.1.

Making Ironing a Pleasure

Have more time for leisure

USE AN "IRONETTE" ELECTRIC IRONER

With the "Ironette" any woman can easily cut one or two hours off her usual ironing time; can iron from 50 to 200 lbs. of laundy each week without the least bit of fatigue.
"Jou, like thousands of other housewives, can dispense with the ironing "Iay "Lame" back, sore feet, and that "all in" feeling, by investing in an "Ironette."

And here are 5 features of the "Housewife's Delight."

1. It irons everything-sheets, shirts, ruffled curtains, cottons, silks, woollens, etc.
2. It's portable-weighs ouly 25 pounds and plugs into an ordinary Hotpoint
3. It's Safe ; Easy to Operate, and occupies only a small space.
4. It's Economical-Uses the same amount of electricity as the ordinary household iron.
5. Each "Ironette" is covered by a 12 months guarantee.

Now is the opportunity to make "IRONING DAY an "EASY DAY"
With the "IRONE'T"IE."
Cat. No. TE851
£29 =/=

The home will be cleaner, freer from dust. The enormous suction power of the "Knight" extracts every particle of dust, grit, fluff, animal hairs, etc., from carpets, uphol-
stered furniture, bookcases, stairs, cupboards, stered
etc.
Don't be a slave-let the "Knight" do the work. Send for one today. Can be used both on AC or DC 230 -volt supply.

TRY IT AT OUR RISK!

ELECTRIC CLEANER

Electric cleaning is now within the reach of every home. The "Knight" is a thoroughly efficient, high-grade cleaner-a marvel of beauty, simplicity and SAFETY-yet you get it at about half the usual cost bec
modern buying and selling policy.

We impart direct from the factory in England, so as to cut out all intermediate charges and profits. We are proud of this approximately $£ 14$, because we know of similar makes of deaners that sell for nearly twice
as much.

COMPLETE EPUIPMENT INCLUDES:7in. Oval Brush; $8 \frac{1}{2} \mathrm{in}$. Nozzle; "Nosie Parker"; Curved and Straight Extension Tubes; 5ft. 6in. Covered Flexible Metallic Hose; 15 ft . Flexible
Heavily Braided Cord, with plug and. switch Heavily Braided Cord, with plug and. switch
connections.

SUPPLIES DUE AUGUST, 1946 : PRICE, APPROX \& 4

HOMES CLEANER WITH LESS LABOUR.
No pushing, pulling, or lifting of heavy urniture, no stooping, no climbing, straining or back-breaking beating, no taking down o or back-breaking beatung, no wha "KNIGHT"
draperies oo curtains if you own a
ELECTRIC CLEANER.

FAIRY CARPET SWEEPERS (Not Electric)

From and to end of New Zealand come glowing accounts of the "Fairy" (the first New Zealand made Carpet Sweeper) that's lightening housework for hundreds and hundreds of women throughout the country. The "Fairy" is appropri Carpets, rugs, linoleum, even stained floors can all be cleaned quickly, thoroughly and easily with this new light-weight that's the test of a really good sweeper.

The SELF-CLEANING RRUSH.This big new "Fairy" feature eliminates for ever the old method of laberious cleaning of the sweeper brush by hand. As the brush revolves it is automatically combed falling into the pan, which is emptied in the usual way each day.

Let us send you a "KNIGHT" ELECTRIC CLEANER-try it out in your own home, and if you are not satisfied in every way we will refund your money in full, including return delivery charges. Our guarantee is your assurance of fullest protection. You can' lose.

Supplies available about August.
Cat. No. TE200. - PRICE ABOUT \& 4

Cat. No. TU139
52/3

ATLAS RANGETTES

Modern Rangettes which will plug in to any heating point. Finished in finest cream enamel Complete with 6 ft . Flex and 3 -pin Plug.

TABLE LAMP

Table Lamp with back base (wood). Chrome tray and stem. Complete with 3yds. Flex, Cat. No. TF923 adaptor
Cat. No. TF923

35/-

THE "HOMECRAFT"
ELECTRIC POKER MACHINE

For use from standard 230 -volt light socket or power point. Point gets very hot and hy changing leads on to different terminals heat Metar box measures 3 iin . $x 3 \mathrm{in}$. $x 4 \frac{1}{4} \mathrm{in}$. The introduction of the Homecraft Poket Machine will undoubtedly advance this art in New Zealand. By using this machine the artist can concentrate all his or her attention on the pokerwork itself, as, when the heat is reguremains at the same heat. This enables the work to be executed at great speed. Homecraft Machines are perfectly safe in use.
Cat. No. TE90
70\%
Cat. No. TE91--Spare Points \cdot 4 $^{\text {D. each }}$
TE92-Spare Handles, with Points $1 / /^{\text {eaw. }}$

COYLROD WATER HEATERS (1) $\rightarrow 2 \rightarrow 2 \rightarrow 0$

Tauk Heaters for permanent installation ian tanks, water cylinders, etc. Cat. No. TE540-750 watt f/ $/ 6 /$ each Cat. No. TE541-1000 watt f $/ / 6^{\prime}$. each Cat. No. TE547-1500 watt

Brass Flanges for fixing above Cat. No. TE543

82/5/ - eact

NO STOKING with THIS Copper!

NO SMOKE!
NO WOOD CHOPPING!
NO STOKING!
NO CLEANING FIREPLACES!
Just plug into a hotpoint. Quick, clean and economical. The ideal means of electric washing. Copper is supported in a robust outer iron casing as illustrated. Filled with water and
clothes takes approximately 1 hour to boil at summer temperatures, in winter a little longer. The 2,500 watts heating element is housed in special circulating chamber under the copper, which ensures maximum efficiency, quick heating and fast, continuous movement of water right
through the clothes as though worked by a motor-driven pump. By this means the clothes are washed quicker and cleaner than in a washing machine. Circulating chamber well lagged for greatest efficiency. Standard finish, dark green, special colours to order. Electric coppers
save the cost of a chimney; save the cost of a chimney; they are quicker, 12 gallons. Height, 29in. Diam., 19in.
Cat. No. TE64
£14/19'6

MONARCH BED WARMER

This new electrical device dispenses with the old-fashioned hot-water bottle. To heat it you simply connect it to the power supply and leave it for three minutes. It is then disconunder the bed clothes for a number of hours. May be taken in your motor-car to add comfort to travelling, or to the pictures as a foot warmer. Inexpensive to run, and, of course, invaluable in the sick room. It is extremely
handy for people working at desks, tables, etc., handy for people working at desks, tables, etc.
who suffer from cold feet. Cost about 1 d per week for current. Can be bought with out plug or cord or complete. (The house hold iron or toaster cord set will fit the Mon arch Bed Warmer)

Cat. Nc. TE82--Monarch Bed Warmer $28 / 6$
Cat. No. TE82A-Monarch Red Warmer, with 3 -pin Plug and Cord Set .. $34 / 6$

ELECTRIC URNS

Plated Electric Urns for use in Factories, Schools, Shops, etc. New Zealand made.

Cat. No. TE2039-1 gallon $\mathrm{C} \mathrm{F}^{\prime} \mathrm{I}^{\prime}=$
Cat. No. TE2040-2 gallon Cat. No. TE2041-3 gallon $55 / 17 / 6$
57/3/6
Cat. No. TE2042-4 gallon

ELECTRIC MOTORS

(All 230 Volt 50 cycle)
Phase Motors, 1425 RPM. Split Cat. No. TM671

Cat. No. TM671	£6
	5/.
	$£ 15$

MAGNETS

Strong Magnets removed from old meters. picking up nails, screws, pins, etc, etc., for youngster will find dozens of other uses. Every Cat. No. TU4

6D. each
PULLEYS FOR MOTORS, ETC.

Cast Aluminium Pulleys, 4in. diam. for "V" Cat. No. TM700 for 1 in the Cat. No. TM701 for gin. shaft $7 / 9$ each Cat. No. TM702 for Sin. shaft $/ / 9$ eac Cat. No. TM703-2in. diam., for $\frac{1}{2} \mathrm{in}$. shaft.

ENSIGN BATTERY WELDER

A Welding, Brazing and Soldering Tool, which will save you time and money. Works
from any 6 or 12 Volt storage battery, providing instant, concentrated, even heat. frocan do all your own soldering, brazing and welding with this indispensable tool.
Rugged construction. Battery leads are specially heavy flexible conductors giving maximum transfer of power to the Welder.
The Ensign Welder is especially applicable for Auto repairs (mudguards, radiators, etc.) also for light inside work. For the farm it is invainable for mending buckers, cans and bight farm implements. Battery firms use them fot for battery repairs on the roadside. The Radio man finds them invaluable for quick soldering.
Supplied complete with electrodes, flux and位,
Cat. No. TE8

52/6

SPARES FOR WELDERS

Carbon Electrodes-Cat. No. TE9
Brass Electrodes-Cat. No. TE13
Steel Electrodes-Cat. No. TE14
packets Flux-Cat. No. TE15

K.W.H. COUNTERS

An exceedingly useful unit, which can be put to a variety of usea by the average experimenter. Can be adapted to count turns when winding coils, chokes, transformers, etc. Will register up to 9,999 9-10th and down to $1-10$ th of turn. These units have been removed from electricity measuring meters and can be adapted by the experimenter or engineer to do any counting job.

Cat. No. TU140
$2 / 6$ cach

MOTOR CAR LAMPS

We can supply Lamps for any type of car, vicluding types with special caps, and if you are in doubt about the type to order, send sample.

6/8 VOLT SINGLE CONTACT SINGLE FILAMENT LAMPS
Cat. No. Power. Watiage. Location. Price

TL300	6	5	Tail	$1 / 5$
TL302	15	12	Stop	$2 / 4$
TL303	21	20	Head	$2 / 4$

TL303	21	20	Head	$2 / 4$
TL304	32	25	Head	$2 / 4$

$\begin{array}{llll}\text { TL. } 305 & 50 & 35 & \text { Head }\end{array}$

6/8 VOLT DOUBLE CONTACT SINGLE FILAMENT LAMPS

	Candle	Equivalent		
Cat. No.	Power.	Watage.	Location.	P
TL306	6	5	Tail	
TL308	15	12	Stop	$2 /$
TL309	21	20	Head	2
TL310	32	25	Head	2
TL311	50	35	Head	

®2/16 VOLT SINGLE FILAMENT SINGLE CONTACT LAMPS.

| | Candle | Equivalent
 Cat. No. | Power.
 Wattage. | Location. |
| :--- | :---: | :---: | :--- | :---: | Prir

12/16 VOLT SINGLE FILAMENT DOUBLE CONTACT LAMPS.
Candle Equivalent
Cat. No. Power. Wattage. Location
65 Tail
TL315A
TL316A
TL318
Tail
Stop
Heal
Head
Head
Head

6/8 VOLT DOUBLE FILAMENT HEAD LAMPS WITH STANDARD DOUBLE CONTACT CAP.

Cat. No.	Caindle Power.	Equivalent Wattage.	Price
TL319	$21 / 3$ (Ford)	$20 / 3$	$2 / 9$
TL320	$32 / 6$	$25 / 5$	$2 / 9$
TL321	$21 / 21$	$20 / 20$	$3 / 6$
TL322	$32 / 32$	$25 / 25$	$3 / 6$
TL323	$50 / 50$	$35 / 35$	$3 / 6$

12/16 VOLT DOUBLE FILAMENT HEAD LAMP WITH STANDARD DOUBLE CONTACT CAP.

Cat. No.	Candle Power.	Equivalent Wattage.	Price
TL327	$21 / 3$	$20 / 3$	$2 / 9$
TL328	$32 / 6$	$25 / 5$	$2 / 9$
TL329	$21 / 21$	$20 / 20$	$3 / 6$
TL330	$32 / 32$	$25 / 25$	$3 / 6$
TL331	$50 / 50$	$35 / 35$	$3 / 6$

6/8 VOLT LAMPS WITH SPECIAL CAPS. at. No. Location. Wattage. Cap. Prise $\begin{array}{llll}\text { TL350 } & \text { Had } & 25 / 25 \text { Prefocus } 836 & 4 / 10\end{array}$

Cat. No. TS167-5 amp.
C

MOTOR CAR FUSES

- x

> 12/16 VOLT LAMPS WITH SPECIAL CAPS. at. No. Locstion. Wattage. Cap. Price TL373 Head 25/25 Prefocus $836 \quad 4 / 10$ TL374 Head 35/35 Prefocus 836 . $4 / 10$

Price
15 $2 / 4$

Cat. No
$\left.\begin{array}{r}\text { TS168-1 } 10 \text { amp. } \\ \text { TS169-20 amp. }\end{array}\right\}$
$4^{\text {D. each }}$

MOTOR CAR LAMPS AND BATTERIES

A-Ignition Indicator Min. Screw.

B-Trafficator.
C-Ignition Indicator Min. Bayonet Cap.
APECIAL INTERIOR LAMPS, ETC., $6 / 8$ Volts.

TL335-Traficat

TL338-Ignitior Indicator
TL339-Ignition Indicator
Size. MI.M.
$\because \quad 38 \times 7 \frac{1}{2}$
$\because \quad 33 \times 15$
$\vdots \quad 32 \times 15$

SPECIAL INTERIOR LAMPS, ETC., 12/16 Volts.

Oxford Motor Car bATTERIES

Solidly built months' unconaunonal guarantee. plates built in N.Z. for N.Z.

Thick Plate C Long Life Guaranteed.

Cat. No.

TA40-6-volt, 9 -plate. Width 7in. x
length 7in. x beight 9 in
TA41-6in. x beight 9in... ..
TA41-6-volt, 11 -plate. English.
7in. x 712in, x 9in.
TA42-6-volt, 11 -plate. Squat. 7in.

TA43-6-volt, 13 -plate. 7in. x 910 in.
\times 9in.
TA44-6-volt, 13 -plate. Squat. 7in.
$x 91 \mathrm{in}$. $x 71 \mathrm{in}$.
TA45-6-volt, 15 -plate. 7in. x 10 gin.
TA46-6-volt,
$\times 15$-plate. Squat. Zin.
. 7 in
Price 23/10/11 53/19/6 £3/19/6

44/17/11 \&4/17/11

TA47-6-volt, 17-plate. 7 in $\times 1112$
x 9in.

$$
\begin{aligned}
& 12 \mathrm{in} . x \text { 9in. } \\
& \text { TAS0-12-volt. } \\
& 11 \text {-plate. }
\end{aligned}
$$

$$
\begin{aligned}
& 11 \text { in. x 9in. } \quad . . \\
& \text { TA51-12-volt } 9 \text {-plate, 7in. } \times 12 \text { inin. }
\end{aligned}
$$

$$
\text { TA52-12-volt, } 11 \text {-plate. 7in. } \times
$$

$$
\text { TAS3-12-volt, } 11 \text {-plate. Squat. 7in. }
$$

TA54-6-volt, 7-plate. Motor Cycle.

$$
\begin{aligned}
& \text { TA54-6-volt, 7-plate. Motor Cycle. } \\
& 32 \mathrm{in} . \times 4 \frac{12}{2} \mathrm{in}, \times 6 \frac{1}{2} \mathrm{in} .
\end{aligned}
$$

32in. x 4Zin. x $6 \frac{1}{2} \mathrm{in}$.
\&2/1/8

Cat

The ideal INSPECTION LAMP' for wordshops, garages, factories, etc. Take the light where you want it most. Wood handle, strong wire protective frame. Fitted with bakelite
shockproof lampholder.
t. No. TE95

25

STUCKA PHENONIC CEMENT

For repairing Wood, China, Bakelite, Glass, in fact, Stucka will atick anything which can be mended. Can also be used as insulating varnish, for doping coils, etc.

Cat. No. TU160 .

3-IN-ONE" OIL

"3-in-One" works miracles in brightening dull furniture and woodwork. A few drops on any soft cloth wrung out in water give you a dusting and polishing cloth that not only polishes but atso cleans and prot
Cat. No. TU151-
Contents 3az., in bettle
$1 / 10^{\frac{1}{2}}$

LIQUID CASEIN GLUE"ATAGLUE"

Waterproof. A high-class, ready to use, casein liquid glue. Ataglu eliminates loss of rime preparing hot glues. Does not stain. Cat. No. TU157 Tin $1 / 11 \frac{1}{2}$

[^0]

Ready for use, simply by mixing with water. Dries rock hard without shrinking. Easy to apply, and can be used on wood, plaster stone, and sin
or varnished. Cat. No. TU163
TU165-Large size (160z) $1 / 8$ per tin

MOULDED AEROPLANES

These are moulded from Bakelite to drawings issued by the Aeronautical Production Dept., R.N.Z.A.F., and are produced to reach recognition of friendly and enemy aircraft.
Excellent toy, or a useful decoration.
Kittyhawk SS/F Model. Mottled Bakelit Cat. No. TU6 $2 /$ each

"ATAMAX"

Efficient cleaner for Gas and Electric Stoves. Removes old grease with speed and ease,
though the grease has been on for years. Cat. No. TU164

210
"KITCHEN TIDY"

The modern version of a small hygienic rub bish bin. Outside metal container. Sprayed either cream or blue. A handy sized galvanslips inside this container and can be removed and emptied at frequent intervals. Just press the metal lever as illustrated and the lid swinga
open. The housewife's delight. So open. The housewife's delight. So attractive, with and "KITCHEN TIDY." Hour kitchen tidy diameter 91 in .

221

HACK-SAW BLADES

 best quality.Cat. Ne. TUYpo.
$6^{\text {D. each }}$

RUBBER SOLUTION

Rubber Solution, packed in collapsible tubes, Will stick anything made of cubber. Cat. No. TU158

1/- tube

TOASTER TRAYS

Made of Moulded Bakelite in following colours: Red, Cream, Black, Green. For standing under toasters to catch crumbs, etc. (overall) 10^{3} in. x in.
Cat. No. TE761 $3 / 9$
Special Trays (drilled) for Speedee Hostess
Cat. N
Ditto for Speedee Tiffen Toasters.
Cat. No. TE759 $7 / 6$

PLASTIC WOOD

The perfect moulding material. A plastic material which is easily worked. A high-class ters, Joiners, Painters, Mechanics, Farmers and Householders. Hardens very rapidly, and like wood, can be cut, sawn, planed, filed, nailed or screwed. It can be varnished,
stained, painted or polished. Grease-proof, waterproof and weather-proof.
Cat. No. TU166
$3^{\prime} 6$
Direct attack operations with Infantry divisions, Tank squadrons, Plane formations and Battle Fleets in the van. Consolidate with Forts, Aerodromes, Fortified Lines, etc., in this fasc naring and sensatinnal game of Supremacy. Your name mightn't be Eisenhower or Montgomery but you, too, can organise and control masses of military material. Reveal your ability as a front-line strategist. Spend pleasant evenings packed full of excitement and thrills with your "Supremacy." For 2 to 7 players. View the lighter side of war over a Supremacy Board. Anyone can learn to play in a few minutes.
Board. Anyone can learn to play in
Order your set now and invite your friends over to play the game, no one can resist. Complete with all equipment and printed instructions. Cat. No. TU500

$$
19^{\prime} 6 \text { Post free }
$$

Obtainable from

THE ELECTRIC LAMPHOUSE Ltd.

11 MANNERS STREET, WELLINGTON, C.1.
Recognised Dealers who have not already obtained supplies should write at once for our terms.

AERIAL EQUIPMENT

PULLEYS-GALVANISED

TA412

TA413
1 in. Galvanised Pulleys for halyards, etc. Cat. No. TA412 $11^{\text {D. each }}$

NON-JAM RULLEYS
These pulleys are specially constructed so that the guy wire cannot jam. Heavily galvanised. Cat. No. TA413

1/9

LEAD-INS, EBONITE

Lead-ins are used for putting through the wall. Consists of brass rod insulated with ebonite. Diameter in.
Cat. No.
TA402-Ebonite Lead-in, 9 in. long ..
TA404-9in. x 3in. diameter, heavy Ebonite Lead-in

Galvanised iron cleats for securing
halyard ropes. Cat. No. TA4 414 13 en

STAPLES
Coppered Staples (not insulated), for fastening earth wires, etc. Cat. No. TS119- $2^{\text {D. doz. }}$

GALVANISED SCREW EYES

Cat, No. TA411-Galvan ised Screw Eyes 4D. ea.

LIGHTNING ARRESTORS
 astatm
 $$
\begin{aligned} & \text { American type. Glaze } \\ & \text { porcelain with terminals. } \\ & \text { Cat. No. TA429 //6 } \end{aligned}
$$

An indoor spring type aerial that will stretch out to about 12 feet across an ordinary rooth,
and will remain in its spiral form. Made frome pure copper wire Cat. No. TA285 $3^{/ 3}{ }^{\text {each }}$

MASTLESS AERIAL

A neat, compact Aerial designed for use in crowded
areas, where it is impracticareas, where it is impracticzontral type Aerial. Ideal
for flat dwellers, etc. Comfor flat dwellers, etc. Com-
prised of several 12 gauge prised of several 12 gauge The heavy service insulator can be simply attached to any firm structure. The Mastless Aerial can be erected in a space of Cat. No. TA296

19

HOUSE INSULATOR

Used for insulating electrical equipmern from the house. Very solidly constructed; has a screw of 2 in . length and the porcelain por tion measures 3 in. x $2 \frac{1}{2} \mathrm{in}$.
Cat. No. TA327
$2 / 4 \mathrm{cac}$

EARTH CLAMPS

Heavy brass type, N.Z. made. Will ensure Cne No. TA436-
fin. water pipe size will fit pipes up to lin. outide diampert).
Cat. No. TA43jy in. water No. TA437- each in. water pipe size will fit pipes up to lin. outside diam-

Cat. No. TA438-Iin. water pipe size (will fit pipe up to $1 \frac{1}{2} \mathrm{in}$. outside diameter)-1/3 ea.

Coppered Earth Tube. When hammered into the ground will make a good earth connection. Prowite. 27in. long.
Cat. No. TA433
$3^{\prime 2}{ }^{\text {each }}$
WIRE, TINNED EARTH

Wi/.029 Bare Tinned Copper Earth or A erial Cat. No. TA264- Per foot D. D

THE NOTENNA AERIAL ELIMINATOR

Equally successful on both broadcast and shortwaves. Replaces aerials of all types. Very rompact size. No lightning arrestor required Reduces taise, interference and man-made arth terminals on your set and to earth wire Money back if you are not more than satisfied. Dimensions 4in. $x 2$ in. x more than satisfied. Cut. No. TA310
$8 / 5$

INSULATED STAPLES
Makes a Neat Job!

Insulated Staples are used by all who wish to make a neat job. The fibre insulation in these staples protects the wire and guards
against loss of signal strength. British made Cat. No. TSi18 21 D. doz.
(2/3 packet of 100)

AERIAL FOR PORTABLES

Loop Aerial for portable receivers, matched for standard Ensign Coils and fitted with when required. Physical dimensions 8in aeria Cat. No. TA300

12/=

LOOP AERIALS

High efficiency Loop Aerials, suitable for Totally high gain portable receivers. Directional. for easy connectiont with external leads $5^{\frac{2}{2}} \mathrm{in}$.
Cat. No. TA301.
23/6

3-PIECE AUTO RADIO AERIALS

Well-made, gủatanteed rust-proof Aerials, brass fittings, with fibre washers and bakelite accessories, for side mounting. Chromium plated. Aerial full out opens to 6 ft .; 2-piece section, 4 ft .; closed, 27 in . A finished scticte.

Cat. No. TA702
$50 \%=$ each

TRANSMISSION CABLE Thin Twisted Transmission Cable (Lead-is Wire) for double doublet and similar aerial systems.

Standard Flexible 2-Core Wire, rubbercovered and covered over all in a Waterproot
Braid. Flexible and long-lasting. Cat. No. TW87 $6^{\text {D. per yard. }}$

KNIFE SWITCHES

Single Pole Double Throw Aerial-Earth Switches. Bakelite base. British. Cat. No. TS490 , 19

MAIL ALL ORDERS TO THE ELECTRIC LAMPHOUSE, Ltd., 11 MANNERS ST., WELLINGTON, C1.

THE LAMPHOUSE INSTRUCTION COURSE

This 48-page attractively covered booklet has been compiled from courses in previous Lamphouse publications, completely revised, and printed for those Rahobs who having taken up Radio as a Hobby, would like to gain knowledge on Radio fundamentals and theory. We do not boast it as being a complete course as used in Radio Colleges or such, but simply a foundation study written in the language beginner understands.

Now available-
Cat. No. TBIOI-Priced at $2^{\prime} 6^{\text {ea. }}$ Postage Id. extra.

LAMPHOUSE CIRCUIT BOOK

Contains 80 pages, with about 200 different circuits. This book has been prepared in response to hundreds of inquiries which we receive for a publication containing a comprehensive range of Radio circuits. All the circuits have already appeared in various numbers of the Lamphouse Annual or the "Radiogram," and no claim is made that the book contains now circuits.
Radio enthusiasts will find the book Radio enthusiasts will find the book of great use for reference pure given, there being no constructional details. The circuits include Electric Fences, Power Packs, S.W. Converters, Wave Traps, Testing Equipment, Code Oscillators, Aérial Systems, Amplifiers, Crystal Sets, and Electric and fiers, Crystal Sets, and Electriction.
Battery Sets of every descripter

Cat. No. TBloo.
PRICE $2 / 6$ Postage Id.

DRY BATTERIES

FAMOUS EVEREADY BRAND OF BATTERIES NOW MANUFACTURED IN N.Z.

RADIO BATTERIES

"A" BATTERIES
nets VOLT "A" BATTERY (x250)-For home

14 VOLT "A" BATTERY (741)-For port
nble sets. Size $4 \frac{1}{2} \times 2$ 星 $\times 5 \frac{1}{2}$. Weight 31 b . 2 oz

YVEREADY TYPE (742)-11 volt A Battery for use with Portable Receivers. Dimension

$6^{\prime}=$
GVOLT "HOTSHOT" IGNITION BAT Cat. No. TR3 (1461)-Size 7a $\times 1083 \times 23$.
$2^{x} 7^{\prime} 6$ each
1d-VOLT IGNITION OR BELL BATTERY
No. 6 type Dry Cell.
Hound.
Size
$6 \frac{1}{2}$ Cat. No. TB40

3:10 each

BIAS or "C" BATTERIES

-VOLT "C" Battery (773)-Size 3tin Ilu. * $5 \frac{1}{i n}$. Tapped at $11,3,4 \frac{1}{2}, 6,9$ volts. Cat. No. TB51 $\cdots \cdots \cdots \cdots \cdot 4 / 10^{\text {each }}$
4AVOLT "C" Battery (711)-Size 33in. x

"B" BATTERIES

45-VOLTS SUPERDYNE (770)-Large nize "B"Batteries. Size $7 \frac{8}{8} \times 4 \frac{3}{3} \times 8 \frac{1}{3}$. Weight 11等lbs. Tapped at 22π volts.
Cat. No. TB42
$28 / 9$ each

BATTERIES (772).
45-VOLTS Medium Duty "B" BATTBRYES
 Cat. No. TB43
£1/1/9
45-VOLTS Light Duty "B" BATTERIES(762). As used in portable Receivers, etc
 Cat. No. TB44 $6^{\prime / 3}$ each

BATTERIES

45 Volts Portable MINI-PACK "B", Batteries (C123). Used extensively in Portable Radios Height 3 Recivers widng Miniature valves. Sixe 111bs Screw Terminals.
Cat. No. TB45
$24 / 6^{\text {aach }}$
108 Volt Portable "B" Battery (C29). Used with "Vidor" Portable Receivers. Tapped with
 $6 \frac{1}{2} 1 \mathrm{bs}$.
Cat. No. TB49-
$42 /$ each

Mail all orders to the Electric Lamphouse Ltd., 11 Manners St., Wellington.

OXFORD RADIO BATTERIES

OXFORD NON-SUL-
PHATING SPECIAL
TYPE RADIO BATTERIES

Batteries are supplied dry unless specially requested otherwise. They can alio be no extra cost, but freight is payable by pur-

OLD BATTERIES MADE LIKE NEW!
" TAR-MAG "
Battery Tonic
WORKS LIKE MAGİC

WHAT "TAR-MAG" DOES

TAR-MAC dissolves the gradual deposit of Basic Sulphate of Lead crystals which impregnate the active paste material on the plates, thus prevent-
ing the electrolyte contacting with it, with the result the battery ceases to function although ere is still plenty of life and usefulness.
TAR-MAC dissolves the crystals and enables the to function as new.
TAR-MAG will bring your old battery up to full 50 per cent. For Better
TAR-MAG.
 the cells is a liquid which is simply poured into mplete with instructions.

Cat. No. TA70-Charge for 6-volt Battery
Cat, No. TA70A-Charge for 12 -volt Battery

AIDS TO BETTER RECEPTION

Uned to separate stations which interfere or overlap each other., Gives sharper tuning to all size Receivers from Crystal Sets onwards.. Will stations.
Components mounted on a 4 in : $x 3 \mathrm{lin}$. wooden baseboard. Front panel of light bakewith every set.
Cat. No. TF504 Price /7/6

ENSIGN 3 IN 1 TUNERS.

AERLAL TUNER WAVE TRAP ATRRIAL ELIMINATOR

Depending on the manner it is connected his useful piece of apparatus serves any of he above functions. Operates on any make or model of radio receiver, greatly enhancing me periormance. As an aerial tuner it wil wave trap it will prevent interference between tations and improve selectivity. As an aerial eliminator it makes an outdoor aerial unnecessary. The tuner can also be used as the uning coil of a crystal or other small set, fitted by anyone in a few minutes. Size 5 in. long $x 21 \mathrm{in}$. high and 13 in . wide

Cat. No. TC300
$4 / 6$

FIVE GOOD REASONS why you will want an

"AERITROL"

FOR MARVELLOUSLY IMPROVEO RECEPTION.
1-It will separate interfering stations. 2-It will reduce noise level and interference.
3-It will increase volume of wesk stations.
4-It will eliminate outdool and indoor aerials. Acting as a perfect aeris) eliminator.
5-It controls volume from powerful local stations.
Installed in a few minutes without Tools!
TRY IT AT OUR RISK
A safe scientific device which uses no electricity and costs nothing to run, and works on all types of receivers, old or new, battery or electric. Increases olume equivalent to adding an extra fanish. Full directions with each.

Send for an "ATERITROL" today, try it in your own home for 7 days. If at the end of that time you are not thoroughly satisfied with it, return it, and we will return your money in full.
Cat. No. TAI-Price only
33/6

These useful Units have two distinct purposes. 1. To stop interference entering the A.C. Main 2. To stop interference coming over the Mains from entering the Receiver.
The best place to stop interference is at its source and if you have a small motor or other Appliance which causes interference in your own or anyone's else's Radio, it may be successfully cured
by installing an Ensign Filter. The Filter is plugged in to the Power Point and the offending appliance plugged in to the Fiftes no other installation is required. It can be used on any appliance not exceeding 750 watts. Should it be impracticable to stop the trouble Receiver.
must decide whether the man-made static, which is proving so troublesome, is being picked up by the aerial or is coming over the power lines or both. A good test is to tune the set to a point where the noise is particularly bad and the and attach it to the earth terminal, but do not remove the earth wire. The effect will be to reduce the noise level, but if the man-made static continues to be very severe you will at once know that at least portion of the interference is coming over the A.C. power mains, and you will at least need an Ensign Line Filter before you can overcome the trouble. On the other hand, if the noise is entirely the aerial and some form of noise-reducing aerial will be required. Designed for use with electrically operated tadio receivers. Simply fits between the receiver and the wall plag. It will definitely stop all man-made static entering chrongh either A.C. or D.C. Mains.
Cat. No. TA298
21"6

Heavy Duty Motor Filters, 5 amp.,
CAT. No. TF501 $45 /=$ each

ENSIGN COILS, IRON CORE TYPE Wound in 1 İin. Adjustable Pquare by 1 Permeability Litz cast. No. TC301-Aerial $12 / 6$
 Suitable Oscillator Coils for above
core) Cat. No. TC306-465 K.C.

UNSHIELDED TYPES
Air Core Litz Wound Broadcast Bin. Former Cat. No. TC310-Aerial Bandpass Cat. No. TC311-Aerial Cat. No. TC313-O scill Cat. No. TC314-Oscillator, ${ }_{4} 175 \mathrm{~K}$ K.C. $9 / 6$
$9 / 6$.

ENSIGN SHORT WAVE COILS Unshielded, wound on $\mathbf{3 i n}$. Formers, 19/50 Cat. No Cat. No. TC321-Aeria Cat. No. TC322-465 K.C. Oscillator in 5 -valve receivers. Consists of unit for use oscillator sections and has a coverage on short wave from $19 / 50$ meters and broadcast 550 to 1500 K.C. for use with Plessy Type K. 1842 11. Condenset and 6 K 8 Convertor Tube. Price includes all coils, wave change switch
already assembled, padders, by-pass condensers and trimmers. Air tested and aligned. Full instructions.
Cat. No. TC350
£6'10'
Dual Wave, assembled similar to the above, but containing Aetial R.F. and Oscillator Sec Cat. No. TC351
$£ 10$
ENSIGN TRIPLE WAVE UNIT Similar to above, containing Aerial R.F. and
Oscillator sections, Cat. No. TC352 £12

ECONOMY COILS

While retaining a reasonably halkh quality, these Coils are
very low in price and are suitvery low in price and are suit-
able for those constructors not wilhing to use the higher priced lines. All Coils are wax impregnated and tested and are recommended for use with a
.000385 MFD . Condenser.

BROADCAST UNSHIELDED Car. No. TC553-Midget Aerial Cart. No. TC555-Midget R.F.

3/10
465 K.C. 3/10 ea.

R.F. UNITS

This is a double wave unit covering the stand ard broadeast most trpes of pentagrid convertors will operate satistactority, and in the R.F. stage standard pentodes will give good results. Individual Trimmers are fitted to each coil allowing for an accurate alignment. Used with an intermediate frequency
proximately
460 K.C.
Complete
with
3 -gank proximately
Condenser.
Cat. No. $\mathrm{TC}_{3} 30$
£ $7^{7} 3^{\prime} 6$

"ENSIGN" PORTABLE COIL

 KIT.Cut. No. TC556-Aerial 6/11 ea.
Cat. No. TC558-R.F.

ENSIGN INTERMEDIATE FREQUENCY TRANSFORMERS

ENSIGN I.F. TRANSFORMERS have been carefully designed by experts to give maximum results. Types suitable for midget, commercial or high fidelity receivers are available. These factors allow the experimenter and home constructor more scope than before when designing a receiver.

Cat. No. TC340-Iron Core, Litz wound in 18in. square by $3 \frac{1}{2} \mathrm{in}$. high cata, 465 K.C. 16 \% coch

Cat. No. TC341—Air Core Ditto .. $13 / 6$
Cat. No. TC342-Ditto Solid Wound
11/6

PRICE ALTERATIONS

The prices in this book must be regarded as an indication only, and are subject to alteration without notice.

Cat. No. TC558-R.F. Cat. No. TC557-Oscillator

SHORTWAVE UNSHIELDED METERS
Cat. No. TC550-Aerial.
Cat. No. TCS52-R.F.
Cat. No. TC551-Oscillator

$$
\begin{aligned}
& 2 / 7 \text { ea. } \\
& 2 / 7 \text { ea. }
\end{aligned}
$$

$$
\begin{aligned}
& 2 / 7 \\
& 2 / 7 \text { ea. }
\end{aligned}
$$

ECONOMY I.F.

TRANSFORMERS

${ }^{4} 465 \mathrm{K.C}$. I.F. Iron-cored Transformers, is
Cat. No.

OXFORD T.R.F. COILS.

These Coils have
bean developed for
constructors wanting
low-priced yet well.
made T.R.F. Coils.
Wound with enamelled
wire on bakelite
former 1 lin. diam.
Cat. No.
[C530-Aerial 3/3
TC531-R.F. 3/3
TC532-R.F. 3/9
With Reaction.

HIKER'S ONE COILS Ready wound coils for the famous Hiker's Cat. No. TC362
$3 / 9$ each
BUY UNDER THE LAMPHOUSE GUARANTEE

Special Coil Kit for portable sets. Consists of "Ensign" Loop Aerial, 8in. x 8in. (matched
to standard "Ensign" coils. and fitted with primary winding for use with outdoor aerial when required); Midget Oscillator Coil; 2 "Ensign" Midget I.F. Transformers and Padder. Cat. No. TC449

DETECTORS, RED DIAMOND IMA
Red Diamond Detectors are the semi-per manent type. Can be adjusted by moving the
plunger. Sensitive, and give good results. Cat. No. TC254
Spare Pairs of Crystals for Red Diamond Cat. No. TC252

ECONOMY CRYSTAL SET

A very simple and inexpensively designed but efficient Crystal Set, comprising a multitapped Coil and Catswhisker type Crystal weoden baseboard. With Fahnstock Clips on instruction enclosed with eacin trice doea not include Headphones.
Cat. No. TC290

OXFORD CRYSTAL DETECTOR

All brass Detector mounted on ebonite base, Supplied complete with crystal and cats-
whisker. Cat. No. TC253

$4 / 11$ each

CORDS, HEADPHONE
Headphone Cords, 4 lugs one end, 2 tips Cat. No. TC203

COILS-CRYSTAL SET

Coils for Crystal Sets. Consist of 70 turns, 24-gauge D.C.C. Wire on 3 in. diam. bakelite former. Tapped every tenth turn. Cat. No. TC266

4\% = ack

Limited Stocks of Genuine Brandes $\mathbf{2 0 0 0}$ ohas matched Plones are now available. Cat. No. TC242

25/6 pair
Spare Caps-TC288 $3 / 6$ each
Spare Diaphragms-TC289 $1 / 3^{\text {each }}$

CRYSTALS

-600^{2}
Hertzite Crystals, packed in boxes, complete with weezers and catswhiskers Cat 1/4
$1 / 4$

CONDENSERS

FIXED CONDENSERS
TUBULAR CONDENSERS Non-Inductive Condensers with wire ends.
Cat. No.
Cat. No. 05 mfd
TC673-. 05 mfd.
TC674-. 1 mfd.
TC676- 25 mfd.
TC676-. 25 mfd.
TC678- 5 mfd .
600 VOLT WORKING.
Cat. No.
TC700-
0001
TC700-. 0001
TC702-. 00025
TC703-.0003
TC704-. 0005
TC705-. 001
TC706-. 002
TC708-. 004
TC709-. 005
TC710-. 006
TC710-.006
TC712-.02

TC713-. 05
TC714-.

TC715-. 25
TC717-1 mfd.
HIGH VOLTAGE
CONDENSERS
MICA CONDENSERS
Cat. No. TC573 . 0005 1.2 K.V.
Cat. No. TC630 .0005, 1800 volts,
Cat. No. TC631 $\begin{aligned} & .002,1800 \text { volts, } \\ & \text { Test Mica } \ldots . .\end{aligned}$
Cat. No. TC632 $\begin{gathered}\text {.005, } 1800 \text { volts, } \\ \text { Test Mica }\end{gathered} \quad 5 /=$ eа
Cat. No. TC633 ; 011800 volts, Test Mica

GENERATOR CONDENSERS

Special Condensers for noise suppression on motor car radio installations, etc. .5 mfd . Metal
case. No. TC637
4/- each

JUST ARRIVED!

Fiesh stocks of Mallory 8×8 M.F.D. Elecmolytic Condensers, upright mounting in Aluminium Cans, 450 volts working.
Cat. No. TC580

MICA FIXED CONDENSERS

$$
\begin{aligned}
& \text { TC692-.00005 } \\
& \text { TC679-.0001 } \\
& \text { TC679A-.00015 } \\
& \text { TC680-.0002 } \\
& \text { TC680A-.00025 } \\
& \text { TC681-.0003 } \\
& \text { TC682-.0005 } \\
& \text { TC683-.001 } \\
& \text { TC683A-.0015 } \\
& \text { TC684-.002 } \\
& \text { TC685-.003 } \\
& \text { TC691-.004 } \\
& \text { TC686-.005 } \\
& \text { TC687-.006 } \\
& \text { TC688-.01 }
\end{aligned}
$$

Each

ELECTROLYTIC CONDENSERS

ELECTROLYTIC CONDENSERS IN ROUND CARDBOARD CONTAINERS.

Tubular Type-Dry.

Cat.
TC56
TC56
TC5
TC57
TC55
TC5
TC5
TC5
TC5
TC5
TC565-16 mfd.

				$5 / 6$
		\cdots	\cdots	

	\therefore	\therefore	$3 / 6$

TC572- 10 mfd ., 50 volt
TC566-12 v .500 mid .
TC578- 32 mfd ., 250 volt
TC579- 8 mfd.

Cases

ELECTPOLYTIC CONDENSERS IN
SQUARE CARDBOARD CONTAINERS.

Cat. No.

Each
Cat. No. 1
TC563-8 $8 \times 8 \mathrm{mfd}$.

PLESSEY GANGED CONDENSERS.
British-made reliable Condensers will match $\mathrm{up}_{\text {shaf }}$ with Ensign and Exti-clockwise rotation. Capacity Kits.. 000375 in. Supplied complete with trimmers.
Cat. No. TC922-2-gang
14/-
Cat. No. TC923-3-gang
16'6

PADDERS AND TRIMMERS

ENSIGN CONDENSERS.

SPECIAL SHORT WAVE TYPB $.00015-$ Cat. No. TC913 .. 12/3 each

MIDGET VARIABLE
CONDENSERS

Very compact Condenisers for constructing small receivers, wave traps, and other apparatus.
Solid
dielectric Solid dielectric ype.
shafi.
mens.
Onerall diam.
dimensions, 1 IVin. x ${ }^{1} \mathrm{sin}$ in. x din. thick. Shaft assembly
lin. long.
TC918, . 0003 -

$$
7 \text { '6 }
$$

MIDGET CONDENSERS. R.C.S. Midget Condensers with high voltage trolitul C. Non end plates, single beating type ax. Cap. Min. Cap. Plates. Price. TC809 Mmfd. 10 Mmfd. 3
TC810 Mmfd. 25 Mmfd.3.5
TC811. Mmfd. 50 Mmfd. 4
TC812 Mmfd. 100 Mmfd .

ENSIGN MIDGET CONDENSERS.

Ploral Knob, mahogany colour.
Cat. No. TD1311 D each

Round Knob, lin. diam., walnut finish.
Cat. No. TD15.
1/= each
1.F. CHOKES.
2.5 M.H. Pye Wound (4. pye) Chokes, wound on overbought this line and are therefore prepared to sell hem at a greatly reduced rice. Usually 4/6 each
Citr. No. TC47
1/9

L.F. CHOKES

30 hy. 50 M.A. Filter Chokes. Cat. Nó. TC141

30 by. 100 M.A. ditto.
Cat. No. TC142
23 $=$

KNOBS

The Knobs illustrated are new designs on bnkelite, with hole for lin. shaft. Best make, with brass inset.

Octagon Knob.
Cat. No. TD8 $8^{\text {D. each }}$

Cat. No. TB1

H. H_{6}

Cat. No. Max. Cap. Min. Cap. Plates. Price. TC814 Mmfd. 10 Mmfd. $3 \quad 2 \quad 9 / 3$ 1 C815 Mmfd. 25 Mmfd.3.5 4 10/3 $\begin{array}{lllrr}\text { TC816 } & \text { Mmid. } 50 & \text { Mmfd. } & 7 & 11 / 9 \\ \text { TC817 } & \text { Mmfd. } 100 & \text { Mmfd. } 6 & 14 & 14 /-\end{array}$

Midget Variable Condensers, 15 plate. Ideal Cat. No. TC912 . 000065 mmfd

Cross Knob. Cat. No. TD7. 9D. each

CHOKES - KNOBS

CHOKES
H.F. CHOKES Homeycomb wo und
H.F. Chokes. $10 \mathrm{M} . \mathrm{H}$. Cat. No. TC140 1/9

Fancy Knob, maho-

$11^{\text {D. each }}$

BAKELITE POINTER KNOBS
of pointer. centre

$$
\text { Cat. No. TD46-21in. } / 6 \text { each }
$$

Cat. No. TD45-1 1in. 1/= each

EXTENSION SHAFTS FOR CONDENSERS

Tuning Condensers in short-wave receivers Tuning Condensers in short-wave receivers
should often be placed some distance from the panel to minimise hand capacity effects. These extension shafts will fit all makes of condensers, having lin. diameter shafts. Fitted with lin. shaft for knob or dial, and complete with panel

Cat. No. TS142
$4^{\prime} 6^{\text {each }}$

TROJAN DIALS

"Trojan" Slide Rule Type Dial. Attractive lass scale for edge lighting. Dual Wave, size 7in. by 4 in., for anti-clockwise rotation. Let tering in Green colour, scale Yellow, and background Black. Bin. Bushing. Complete with Escutcheon.
Cat. No. TD101

BROADCAST DIALS

Simall Broadcast Dials; ideal for Portables and small receivers. Marked in Kilo Cycles $550-1600$. Station markings also given. Let tering in green colouring and scale in red. Bin. Bushing for Condenser. Bracket for Dial Lamp. Size $3 \frac{1}{1} \mathrm{in}$. by 2 in . For Clock wise Rotation.
Cat. No. TD103 16^{\prime} each

DIAL ACCESSORIES

PILOT Light BRACKET

Red ruby jewel. Two ugs insulated from bracket. Jewel fits into
$7-16$ in. panel hole. Cat. No. TD500 $2^{\prime} 6^{\text {each }}$

LAMP HOLDERS FOR DIALS

With clip style bracket, made to cli
Cat. No. TD504-
$9^{\text {D. each }}$
As above, but without clip-TD506 $5^{\text {D. each }}$
OIAL LAMP HOLDERS similar to above, but to take miniature bayouet type Dial Lamps. Cat. No. TD505 $7^{\text {D. each }}$

ESCUTCHEONS

A.-Oval shape. Black bakelite. Outside Casurements $8:$
$2^{\prime} 6$
(Glasses for above TD201, 1/3 each)

Round Black Bakeite. Ontside diam. 5 in. Inside 4 in.

Cat. No. TD206-
$2^{\prime} 6^{\text {aech }}$

> Square Brown Bake Mite. Measurements: Outside $5 \frac{1}{\text { inin. }} \times 5 \frac{1}{2} \mathrm{in}$. Inside $4 \frac{1}{2} \mathrm{in} . \times 4 \frac{2}{2} \mathrm{in}$. Cat. No. TD214$2 / 3$ aech

ESCUTCHEON Square Brown Bakelite type, with Octagonal pening. Overall driven. $4 \frac{3}{4} \mathrm{in}$. 4 isin Opening is 3 lin.
\qquad

ESCUTCHEON

Dial Escutcheon for disc drive dials. Maxi mum Eats 114 wide by 11 in high Size of hole, $\frac{7}{3}$ in. $x \quad 11 / 16 \mathrm{in}$. Flotentine bronze fituish.
$1 /=$ each

METAL MAGIC EYE ESCUTCHEONS.

 ments 21in. x 13
in. Finished
Florentine bronze.
Cat. No. TS226:
1'6

INSTRUMENT KNOB.

Brack Moulded Instrument Knob, fits in. shaft. Metal inset. (Knobs are slightly damged.) Fixed by grub screw. Diam. 2in. Cat. No. TD5
$2 / 6$

SUBSTITUTES.- Owing to the present difficult of obtaining supplies we suggest that you indicate on your order whether or not you wish us to substitute with similar articles in the event of the goods ordered being out of stock.

Morse Keys at Half Usual Prices\&

ULTIMATE MORSE KEY

Heavy brass arm and bridge. Fine adjustment of spacing and tension provided. Wooden
knob, and finger rest flange, ensuring comfortknob, and finger rest flange, ensuring comfortfinished in varnish. Measures 6 in. Jong, 3 in wide, 3 in high (overall).
Cat. No. TH111-Were $17 / 8$ Now $8 / 10$
MORSE PRACTICE SETS

British-made Morse Practice Set has Morst Code embossed on base. Stroke of key can be are provided so that the Set can be used in conjunction with another set. Containing Key and Buzzer on One Base. Light Pattern. Meas aremeats 4 sin. long, $2 \frac{5}{\text { sing. wide }}$, hin. high. Cat. No. TH110 819 each

BUZZAGRAPH

A compact key, buzzer and battery combination practice set. Fits into the pocket. Uses high note buzzer, which is adjustable by means
of wing screw. Key section incorporates adjustof wing screw. Key section incorporates adjustable pring tension and adjustable movement.
Complete with two Standard torch cells. The Morse code is included transfer, as shown in the illustration. Unit measures 5 in . x 3 in . x lin. deep. The ideal
unit for Morse unit for Morse practice. Cat. No. TH3-Were 25/6 Now $12 / 9$

PRACTICE KEYS
Low-priced practice Keys. Good movements. Steel fittings.
Cat. No. TH4- Were 13/6 Now 6/9

HEAVY MORSE KEYS

Measure Gin. x 3in. Heavy cast base; silver Measure Gin. X 3in. Heavy cast base; silver
contacts, chrome-plated arm. Adjusting screw. Cat. No. TH5-Were 25\%. Now $12 / 6$

MAGIC EYE ASSEMBLY

For 6 -prong Tubes. An easy method of adapting a Magic Eye or Electron Ray Tube to any standard radio receiver having a.v.c., or any Frequency Modulated receiver. Also used extensively for installing Magic Eyes as indicators in test instruments such as signal tracers, condenser testers, etc

The metal encased socket is completely wired with a 5 -wire colour-coded cable 22in. in length. The necessary 1 -megohm target-to plate resistor is concealed and protected by th socket's metal shell.
Complete set of parts, without valve.
Cat. No. TS495

BUY UNDER THE LAMPHOUSE GUARANTEE

TEST YOUR BATTERIES

Telsen Double Range Voltmeter in meat bake ite case. Every battery owner should have
one of these one of these
0 to 180 volts.
Cat. No. TM101

TRIPLE RANGE MODEL

Ranges, $0 / 9$ Volts, $0 / 180$ Volts, $0 / 30$ M.A Pocket Type Meters in Bakelite case. Mad Cat. No. TM6

METER FUSES

Spare Tubular Fuses for Pifco and other Cat. No. TM50 $9^{0 .}$.

TEST PRODS

Polished ebonite handles and complete with
loxible leads. loxible leads.
Cat. No. TM1

Midget Ball HYDROMETERS

6 - of en

These are accurate and the acid is tested by means of three coloured balls. The condition of the accumulator is shown instantly by the Wny the three balls of different specific gravities
and colours sink or float, indicating fully churged, half charged, and discharged. (British.) Cnt. No. TM302

HYDROMETERS

English Guidor brand. Patent guide in glas container prevents float from sliding and give an instantaneous dead beat reading. Float i protakage. Glass parts protected by breve best quality rubber parts at each end to prevent breakage.
Cat. No. TM303

pare Floats-Cat. No. TM304

0-1 M.A. METERS

0-1 M.A. Moving Coil D/C Meters. 1000 ohms per volt. Internal resistance 60 ohms. THREE TYPES Outsid (U.S.A.), 2交in. Round Scale, $3 \frac{2}{2} \mathrm{in}$. Cat. No. TM15
$52 / 101$
PALEC (Australian), 2弪in. Roand Scale, 3i in.
 BURLINGTON (U.S.A.), Square Case, 3in. x Cat. No. TM17 £4/15/=

METER RECTIFIERS

Westinghouse Dry Rectifiers for 0/1 M.A. Cat. No. TM13

SUBSTITUTES. - Owing to the present difficulty of obtaining supplies we suggest that you indicate on your order whether or not you wish us to substitute with similar articles in the event of the goods ordered being out of stock.

POTENTIOMETERS-Carbon

CHASSIS PLUGS \& SOCKETS

Miniature 3-pin type. Socket mounts on to Chassis. Extremely useful unit for connecting
external units such as microphones, pickups, \& $c_{\text {. }}$ Cat. No. TP270
$1 / 3$ pai

Cat. No.	Ohms.	
${ }_{\text {TP4 }}$ 46-	1,000 2,000	
TP48-	5,000	
TP49-	10,000	ALL
${ }_{\text {TP5 }}^{\text {TP5 }}$	25,000 50,000	$4 / 6^{\text {EACH }}$
TP52-	100,000	
TP53-	250,000	
TP54-	500,000	
TP55-	1 megohm	

POTENTIOMETER with Switch

R.C.S. WIRE - WOUND POTENTIOMETERS

Made from moulded bakelite with brass pindles. Nickel-silver contacting ring ensures smooth action, $\mathbf{1} \mathrm{in}$. diameter shaft.

Cat. No. TP30A- 400 ohim, 50 M.A. . $6 / 9$ Cat. No. TP31A- 1000 ohm, 35 M.A. . $6 / 9$ Cat. No. TP32A-2500 ohm, 30 M.A. . . 6/9

Cat. No. TP33A-5000 ohm, 30 M.A. . . 6/9 Cat. No. TP24A-10,000 ohm, 20 M.A. 6/9

BULGIN POTENTIOMETERS

Best English Wire-wound Potentiometers.

Cat. No. TP39-500 ohms 9/6 ea

RESISTORS - POTENTIOMETERS

COLOUR CODED RESISTORS

Conservatively rated at 1 watt. They will
thad up to 50 per cent. overload without in ury. Colour coded to the R.M.A. standard. They are accurate to within 5 per cent. of
linted values, which remain constant whether in the or in stock. Perfectly noiseless and complotely free from hand capacity effects. All one

MOTOR RADIO SUPPRESSORS

Spark Plug Type (top illustration). A sturdy or which meets the most exacting demands or plos supession.

Distributor Type-Cat. No. TR228
The above suppressors will not affect power or petrol consumption of your engine.

WIRE-WOUND RESISTORS

Well-known I.R.C. brand Resistors

					Ea
TR20,	20	ohm	2w. centre	tayped	3/6
TR21,	50	ohm	2w. centre	tapped	6
TR22,	100	ohm,	2w. centre	e tapped	3/6
TR30,	200	ohm	10-watt	Resistors	14
TB31,	250	olim	10-watt	Resistors	3/4
TR32,	300	ohm	10-watt	Resistors	/4
T833,	400	obm	10-watt	Resistors	3/4
TR34,	500	ohm	10 -watt	Resistors	/4
TR35,		ohm	10-watt	Resistor	3/4
36	1,00	0	m 10 watt	Res	3/

200 OHM RESISTORS

Special purchase of 200 ohm 150 M.A Wire-wound Resistors enables us to sell them Cat. No. TR7A
$1 / 6^{\circ}$
R.C.S. RHEOSTATS

R.C.S Rheostats, made from moulded akelite Rheostats, made tin. diam. shaft Nickel-silver contacting ring ensures smooth action.
Cat. No. TR507-6 ohm 25 amp.
Cat. No. TR508- 10 ohm .25 amp .
Cat. No. TR509- 20 ohm .25 mmp
Cat. No. TR509- 30 ohm .25 amp .
6/9
$6 / 9 \mathrm{ea}$
$6 / 9 \mathrm{ea}$
6/9 ea.

VALVE SOCKETS

WAFER SOCKETS

Ruggedly constructed.

SIDE-CONTACT CHASSIS

VALVE-HOLDERS.

> 8-CONTACT.

Moulded bakelite chassis valve holders for Moulded bakelite chassis valve holders for
the side-contact valves. Fitted with eight
leaf contacts and integral solder tags. Very leaf contacts and integral solder tags.
efficient and reliable contact is made with valves of the type concerned. Cat. No. TS638
$1 / 7$

AMPHENOL VALVE SOCKETS

Amphenol Valve Sockets, complete with metal mounting plates.
Cat. No. TS614-4-pin
Cat. No. TS615-5-pin
Cat. No. TS616-6-pin
Cat. No. TS617-7-pin
Cat. No. TS619-8-pin 8d. each 8d. each 8d. each

BASEBOARD MOUNTING VALVE SOCKETS

Amphenol Sockets mounted on raised metal shield to enable the sockets to be screwed on wooden baseboards, etc.

Cat. No. TS620-4-pin 2/6ea.
Cat No. TS621-5.pin
Cat. No. TS624-8-pin Octal

STEATITE SOCKETS

Made from entirely new dielectric, ultra low loss, phospha bronze silver-plated contacts.
Steatite Sockets are particularly recommended for high frequency work and where high temperatures are encountered. Ideal for Transmitters and Amplifiers and other apparatus in
excess of 20 watts.

Cat. No. TS641-4-pin
Cat. No. TS642-5-pin 3/6
Cat. No. TS643-6-pin
Cat. No. TS645-8-pin

BULGIN PHONE PLUGS

A Jack Plug with nickel-plated contacts. Easily wired and provided with internal cord grips. Black bul and inerpensive plu desiga on ric. A useful and inexpensive plug.
Cat No TP268

ROLA SPEAKERS

Prices as at $1 / 6 / 46$.

Stocks of Speakers are still bad, bat the Factory anticipate letting us have better deliveries during the currency of this Catalogue. We will always endeavour to procure your requirements should we be unable to supply from stock.

Electro-Dynamic.

$\begin{aligned} & \dot{8} \\ & \dot{Z} \\ & \dot{U} \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \text { B } \\ & \text { D } \\ & \dot{D} \end{aligned}$							\%	
TS921	F-12	121in.	1 in.	2.3 ohms	8 watts	12 lbs .	42	18	3
TS922	K-8	8 in.	1 in.	2.3 ohms	8 watts	12 lbs .	42	11	0
TS923	F-5B	68 in .	2 in .	3.7 ohms	6 watts	3 lb .	42	1	6
TS924	F-4	5 in .	3 in .	3.7 ohms	6 watts	a lb.	22	1	6
			Per	anent \mathbf{N}	net.				
TS926	12-20	12 亿̂in.	1 in .	2.3 ohma	-	-	43	10	8
TS927	8-20	8 in .	1 in.	2.3 ohms	-	-	63	2	3
TS928	$6-8$	6 in.	3 in .	3.7 ohms	-	-	12	2	5
TS929	$5-8$	5 in.	3 n .	3.7 ohms	-	-	22	2	5

ENSIGN SPEAKER EXTENSION ADAPTORS.

Extension Speaker Adaptors. The problem of fitting an extension speaker has been solved! has been solved! All you do is remove the output valve, plug in the adaptor, then put
back the valve on back the valve on top of the adaptor. The adaptor can also be used as a tone improver.
Can be used in conjunction with all P.M. upeakers which have output tranisformers fitted.

Cat. No. TS780-4-pin
Cat. No. TS781-5-pin
Cat. No. TS782-6-pin
Cat. No. TS783-Octal

GOAT VALVE SHIELDS

Form fitting Valve Shields? complete with split ring and base mounting clips.

Cat. No. TS20-
1/= complete

I.F: CAN

Single piece 1.F. Can,
 All necessary holes provided.
Cat. No. TS25-
$1 / 9^{\text {each }}$

SWITCHES

METER PUSH OR PUSH SWITCH

Designed for one-hole fixing to panels be tween $1 / 16 \mathrm{in}$. and $7 / 32$ in. thick. With highly polished nickel-plated
coloured insulation plunger.
Silver-contacts make sure and trouble-free contact. With termainal screws, one pole live to bush. Rating:
1 amp. at 10 volts or 100 mA at 100 volts. Cat. No. TS482

WAVE CHANGE SWITCH

6 pole 2 position Wave Change Switches. Cat. No. TS 470
$6^{\prime} 6{ }^{\text {acal }}$

RADIO SWITCH

10 Contact Rotary Switch, for Tapping Coils, etc. Com
each 6/9

Lamphouse Annual

This Catalogue contains particulars of goods which we expect to have in stock during the 1946/7 Radio season. There are times when certain lines will be out of stock. When ordering, please advise whether you wish us to substitute with the nearest goods available, or, not.

ROTARY RADIO SWITCHES
Rated 230 volt, 2 amp.
These are the rotating type of switches and are upplied with lin. shaft, so that a knob can be controls on the set. One hole fixing. Switch mount-
ed in hermetically sealed ed in hermetically seanted cases, perfectly reeliable contact, durable cor truction.

PUSH PULL

 SWITCHES.Reliable Push Pull Bat tery Switches for motor cars, or Radio, Single Hole Fixing.

Telsen (4 point D.P. On/Off) Switches fo panel mounting.
Cat. No. TS 438

MINIATURE SWITCHES

Here's a handy little swirch suitable for radio and motor-car
Positive acrict.
work. Positive
foriahed $\begin{gathered}\text { action. } \\ \text { (nickel }\end{gathered} \begin{gathered}\text { Nicely } \\ \text { plated). }\end{gathered}$ ritio (ated) Britioh made.
$2 / 3$

As above, with coloured bakelite coverTG118A
$2 / 3$

BULGIN TOGGLE SWITCHES

Cat. No. TS443-S.P. Change-over Cat. No. TS444-D.P. Change-over
"Speédee" SOLDERING IRONS

Consumes 100 watts-mo more than a small
Hght bulb. Indispensable to the handy man in light bulb. Indispensable to the handy man in Cut
Cut. No. TS406 . .
spare Elements for above-

Cat, No. TS407
Mare Copper Bits-
Can. No. TS403

Resin Core Solder is recommended for the home constructor. It looks like wire and is the necessity for using flux or spirits of salts, ac.
Instructions for Using:

1. The joints to be soldered should be horoughly cleaned and free from acid or grease. plate" should parts (nickel or chromium) the to be made
. Heat the soldering iron just enough so melt the solder. "Tin" the copper bit by first lining lightily and then rubbing with the cored hould extend about half-an-inch from the coat of the bit and completely round it.
2. Heat again for working, but not to red
3. Apply the bit and the cored solder to the rork, rabbing the bit well down to tranamit ollfer and joint should come into confact Thaultaneously.
There is no necessity to clean the joints after much as to obviate this. Cat. No. TS411-
Small Reel, about 27 inches
Cat. No. TS413-11b. reel
$7{ }^{\text {D. acach }}$
716

SOLDER 34/66
Full size sticks.
Cat. No. TS418
1/6

SOLDERING PASTE

Morton's Super Soldering Paste. An ideal paste for use instead of flux or resin. Can bo used on all metals except aluminium. Cat. No. TS423-2 oz. tins

Cat. No. TS424-4 oz, tins

"Speedee" HEAVY DUTY IRONS
 Designed for commercial use requiring a foavy iron for long periods. Weight, 31 Ib . Cat. No. TS 396
 Spare Elements for above

ALUMINIUM SOLDER

For repairs in aluminium ware and die cast metals. No soldering iron or fux necessary, Full instructions supplied with each stick. Cat. No. TS420-Small stick, $5 \mathrm{in} . \times 1 \mathrm{in}, 1 / 8$

SOLON ELECTRIC SOLDERING IRONS

Improved Bit.-The Bit is of tinned copper of to be done in a narrow space. It is designed to provide the maximum working of heat at the Working end with of due to radiation, as the heating elemaent is totally enclosed in the bit.
Constant Heat. - Four minues "to heat up and SOLON Empire Model continuous use if required.
Flexible Lead. - Six reet of Tough Rubber heathed 3-core Flex.
Cat. No. TS410-Solon dering Iron $25 / 3$

FILAMENT TRANSFORMERS.
Cat. No. TT632-6.3 volts 2 amp... 25/=

SPECIAL TRANSFORMER.

In response to many enquiries we. have now available a special transformer for valve testers, experimenters, etc. It has a 230 -volt primary and secondary tappings of 2 amps., as foilows6.3 volts, 7.5 volts, 12.5 volts, 25 volts and 30 volts.
Cat. No. TT616
47'6

ENSIGN REPLACEMENT TRANSFORMERS.

Made from the hest stalloy steel and wire and undes strict supervision these transformers are ideal for replacement, et
TT714-Single Pentode
TT715_-Push Pull Pentode
TT716-Single Triode
TT717-Push Pull Triode

ENSIGN SPEAKER TRANS-

 FORMER COILS.Will fit practically all types of Speaker ransformers, thus doing away with the mecessity of replacing the complete transformer. Cat. No. TT'730-Single Pentode Cat. No. TT731-Single Triode . Cat. No. TT732-P.P. Pentode Cat. No. TT733-P.P. Triode $6 / 10$ 76 7'6 7'6

ENSIGN AUDIO TRANSFORMER.

Vacuum Sealed InterWound on Transformer. core using best quality core using best quality flexible leads to ensure higher efficiency. Ratio 3 to 1. Size, 21 ins. high, 3ins. wide and 2 ins . deep.
Cat. ${ }^{\text {No. TT606- }}$

$$
16^{\prime}=\text { each }
$$

VOLTAGE REDUCER. "OXFORD."

Manufactured from the first grade material. 150 volt, 25 M.A. 6 volt.
Cat. No. TT625
22'6

SHIELDED BRAID

Metal screening tubing for slipping over insulated wires, etc. For shielding. In many modern A.C. circuits it is essential ta, screen grid and plate leads to prevent pick-up on these leads. Flexible.

Cat. No. TW163-sin. | D. ff. |
| :--- |
| Cat. No. TW164- $3 / 16 \mathrm{in} . \ldots .$. |
| 4D. ft. |

ELECTRIC HIKERS' TRANSFORMER

Power Transformers wound especially for use with the "Electric Hikers" and "Eaglet Two" Kitsets.

Cat. No. TT670

THE LAMPHOUSE, 11 Manners Street, Wellington, C.1.

TRANSFORMERS

POWER TRANSFORMERS

The following types are available:230 VOLT PRIMARIES. Secondary Windings: $350 / 350$ Volts 60 | M.A.; 5 Volt $2 \mathrm{amp} . ;$ | |
| :--- | :--- |
| Cat. No. TT650 | .3 Volt 2 amp. | 33/3

6. $385 / 385$ Volts 100 M.A.; 5 Volt 2 amp.; Cat. No. TT651

37/6
$400 / 400$ Volts 150 M.A.; 5 Volt 3 amp.; Cit. No. TT652

Volt $50 / 350$ Volt 60 M.A.; 5 Volt 2 amp.; 2.5 Cat. No. TT 653

33/3 ech
$385 / 385$ Volts 100 M.A.; 5 Volt 2 amp.; Cit. No. 10 amp .

37/6 ${ }^{\text {each }}$
CLASS B TRANSFORMERS.
Class B Interstage Transformers, for Batter ots, etc. Heavy robust job. Offered at special low price owing to our having made a fortunate
purchase. purchase.
ant. No. TT605
12/- each

UPRIGHT MOUNTING

TRANSFORMERS
385/385 volts 100 M.A.; 5 volt, 2 amp. 6.3 volt, 4 amp.
it. No. TT651A
$43^{\prime}{ }^{\text {en }}$

PRICES

The prices in this Catalogue whould be taken as an indication only. Prices are still fluctuating rnpidly and all orders will be executed at the prices ruling at the date of supply.

UNIVERSAL OUTPUT TRANSFORMERS.

These Transformers have been designed to meet the needs of engineers, experimenters, and servicemen, for a single unit so constructed as to provide the correct inupedance matching be-
tween various types of Audio Output Tubes in a single Push-Pull, Parallel, or Class B Circuit, and any Dynamic Speaker. Full instructions are given with each Transformer.
Cat. No. TT602
17 '6 ach

STEPDOWN TRANSFORMER

$\begin{aligned} & \text { Stepdown from } \\ & \text { 60-80 watts. }\end{aligned}$
$\begin{array}{llllll} & 30 & \text { to } & 110 & \text { volts. Rating } \\ \text { Cat. No. TT } 622 & \ldots & \ldots & \cdots & 35 / 6\end{array}$
Larger or special stepdown transformers can bble. able.

TERMINALS

Wood screw pattern, with Cat. No. TT6 G. each

Cat. No. TT5-Large Brass Battery Terminal Spades $2^{\text {D. each }}$

TERMINALS

SOLDERING LUGS．
4 B．A．Double Ended Soldering Lugs
（tinned）．
Cat．No．TT7 $3^{\text {D．do }}$

PEAR－SHAPED LUGS
Small，hin．long， $5 / 32 \mathrm{in}$ ． Cat．No．TT2 $3^{\text {D．doz．}}$

Large，3in．long，5／32in． Cat．No．TT3 $3^{\text {D．doz．}}$

DROP－SHAPED LUGS

in．long， $7 / 32 \mathrm{in}$ ．hole．
Car．No．TT4 $3^{\text {D．doz．}}$

DALTON

TERMINALS
Insulated cype supplied in ither red or black．Spring rip makes easy connection or disconnection．Special de－ sign so that when fitted they are insulated from mental Cat．No．TT10 Each g^{D}

SMALL INSULATED

TERMINALS， 4 B．A．

The illustration is approximately full
size．These ter size．These ter－
minals fill the want of many who seek a small，in expensive type The heads are re－
movable and have movable and have indications，in two colours，red and black．
Cat．No．TT31
each 10^{D}

FAHNSTOCK CLIPS

N．P．on spring brass． Size 喜旸．x lin
Cat．No．TT41 $2^{\text {D．ea．}}$

TERMINAL STRIPS

Terminal Screws mounted on insulated stripn Cat．No．TT27 $7^{\text {D．end }}$

ANCHORING STRIPS

Used for supporting condensers，resistom etc．，above earth or chassis．Fixed by bol．
through centre hole． Cat．No．TT34 ．．．．．．．．．．．．3 $\frac{1}{2}$ D．ad

TERMINAL STRIPS

Bakelite Terminal Strips， $1 \frac{1}{8}$ in．long by $\frac{7}{3}$ ． wide，1／16in．thick．Three holes provided for mounting terminals，etc．Handy little innalo－ tion pieces．
Cat．No．TT503
Cat．No．TT504（with two holes）

BANANA PLUGS AND SOCKETS Banana Plugs and Sockets have all sorts of uses，such
as for aerial and earth con－ nections，coil tapping，batien connections，etc．
Cat．No．TT23－Banana Plugs only $11^{\text {D．}}$ Cat．No．TT24－Sockets for above $1 /$ ，eacll Insulated．

SPADE ANCHOR LUGS Steel cadmium plated for mouns． ing coils，condensers，shield cans， 6 thread．Hole in flat etc．，6－32 thread．Hole in flat portion fits $9 / 64 \mathrm{in}$ ．diameter and $6 / 32$ screws Cat．No．TT40

1 D．

RADIO HARDWARE

SELF－TAPPING SCREWS

For mounting compo
cadio chassis，etc．${ }^{\text {Gin．}}$
Gauge．
Cat．No．TT420 5 D． $4 / 9$ per gross

WOOD SCREWS．
Counter－sunk heads．Gimlet points． All sizes can be supplied．The following Bright Mild Steel．
Cat．No．Size． TT470－sin．x 1 TT471－1in．$\times 2$ TT472－各in．$\times 5$ TT473－gin．$\times 3$ TT474－腮in．$\times 6$ rT475－gin．$\times 4$

RUBBER GROMMETS

Made of good quality black vulcanised rubber．For fitting in holes in chasis，etc．，to insulate and protect cables．

Ditto to fit $\frac{3}{2}$ h hole．Inside iameter fin．
Cat．No．TS244

INSULATING WASHERS

Insulating Washers for in

 sulating potentiometers andother components from metal panels，etc．gin．diam．metal diam．hole x $1-16 \mathrm{in}$ ．thick． Cat．No．TS230－Fibre．

$$
6^{\text {D. dozen }}
$$

Ditto，Iin．x gin．x 1／16in．
Cat．No．TS231－
Fibre $\ldots \ldots 6^{\text {D．dozen }}$

RODS，THREADED－BRASS

Threaded Rod is useful for many odd jobs， bin．lengths，each with lour nuts．
Cat．No．TS213－5／32 ．．．．8． $8^{\text {D．each }}$

COIL TERMINAL BASE

Uaed for finishing Coil Windings and for connecting to the wiring of the Set．Provided with 4 lug Terminals．Mounting holes $1 \frac{1}{2} \mathrm{in}$ ．
apart．
（Centres．） （Centres．） \qquad

THICK RUBBER WASHERS

Dimensions：
Diameter 11－16 in．；diameter of hole，đin．；thickness lin．

Cat．No．TS143－
1D．asch；GD．doven

RADIO HARDWARE

SPEAKER CORD TIPS

Nickel－plated tips for speaker and＇phone cords．Cat．No．TT28 ．．．．．．．．3D．each

SOLDERLESS＇PHONE TIPS

A Phone Tip that does not need any solder．Especially constructed so that the
wire makes a good connection withour the

PHONE TIP JACKS

Jacke to take Phone Tips．Have insulated top． Cat．No．TJ20
$1 / 1^{\text {each }}$

TWIN TIP JACK UNITS

A strong spring firmly
 Jacks fit any standard＇phone tip． Cat．No．TJ8
$7^{\text {D．each }}$

CLIPS，SCREEN GRID For attaching leads to the top of screen grid valves，etc． Cat．No．TC23 ．．D．each
Cat．No．TC24－ Grid Caps metal valves $1^{\text {D．}}$

UNIVERSAL BATTERY CLIPS

British made，these Clips have good strong springs that make a sure contact．
Cat．No．TC20－5 amp．（Pee Wee） Cat．No．TC21－10／25 amps． Cat．No．TC22－50 amp．． Cat．No．TC22A－30 amp

INSULATED CROCODILE

 CLIPS\qquad

Insulated Crocodile Clip．Useful servicemen，experimenters，etc．，when dealing insulator to grip sleeve and screw．Nickel－ plated．Red and black insulated．
$1 / 7^{\text {cach }}$
ALLIGATOR CLIP

Here＇s a Handy Clip for coil and battery connections．The strong spring good connection．
Cat．No．TC19
$8^{\text {D．}}$

MINIATURE SCREW HOLDERS

FORMER

This Former Tube lor coil winding has properties，the surface heing made of pure

Cat. No.

TF80－ 1 in. dia．， 6 in ．lengths
TF81－11in．dia．，Gin．lengths 1P81A－ 1 1in．dia．，3in．lengths
TF83－ $\begin{gathered}13 \text { inin．dia．，6in．lengths } \\ \text {（valve base size）}\end{gathered}$
（valve base size）
HP86－ 2 in．dia．，6in．lengths

PANICA RADIO PANELS

Panica Radio Panelling is practically inde structible．It has high insulating properties，is non－hydroscopic，and has great tensile strength and drilled，has a high polished black mirror finish on both sides，suitable for panels of tus．The sizes given below are approximate， Cat．No．TPS11－83in．$\times 6$ Sin．$\times 1 / 16 \mathrm{in}$ ．3／－ Cat．No．TP512－113in．$\times 63 \mathrm{in} . \times 1 / 16 \mathrm{in} .4 /$ Cat．No．TP518－118in．x 6itin，$\times 3 / 16 \mathrm{in}$ ．12／－

BAKELITE SHEETS

Thin Bakelite Sheets for all insulating pur pos
Cat．No．TP530－12in．$\times 12 \mathrm{in}$ ．$\times 1 / 64 \mathrm{in}$ ． $1 /-$ Cat．No．TP531－6in．x 6in．$\times 1 / 64 \mathrm{in} . . .6 \mathrm{~d}$ ． Cat．No．TP534－6in．$\times 3 \frac{1}{2} \mathrm{in} . \times 1 / 64 \mathrm{in} . \quad 4 \mathrm{~d}$ ．

INSULATING MATERIAL

$$
\text { Cat. No. TS150-Rod } 12 \mathrm{in} \text {. long } x
$$

$$
\begin{aligned}
& \text { Cat. No. } \\
& \text { TF'9- } \frac{1}{2} \text { in. diam. } 1 \text { for Mingo } 1 \text { (an. lengths }
\end{aligned}
$$

(for Midget Coils).

1887－2立in．dia．，6in．lengths Radio Sets，test instruments and other appara－ ut eh priso supphed will at size stated． Cat．No．TP150－5！in．$\times 6$ in．$\times 1 / 16$ in．2／ Cat．No．TP513－57in．$\times 62 \mathrm{in} . \times \frac{1}{1 i n}$. Cat．No．TPS14－8sin．$\times 6 \frac{1}{3} \mathrm{in}$ ．$\times \frac{1}{8} \mathrm{in}$ ．．．6／ Cat．No．TP515－11tin．x 63in．x 各in．．．8／ Cat．No．TPS16－5\＄in．x 6Tin．x 3／16in．6／ Cat．No．TPSIク－83in．＊63in．x $3 / 16 \mathrm{in} .9 /-$ Cat．No．TP532－12in．x／12in．x $1 / 32 \mathrm{in} .2 / 10$ Cat．No．TP533－6in．x 6in．$x 1 / 32$ in．10d． Cat．No．TP535－6in．x 31in．x 1／32in．6d

Ebonite Rod and Tube．

 Cat．No．TS152－Rod 12 in ．x 2 in． Cat．No．TS153－Rod，6in．x zin Cat．No．TS154－Tube 12in．$x \frac{2}{2} \mathrm{in}$ ． Cat．No．TS155－Tube，6in．x in．．． $1 / 6$ Cat．No．TS155－Tube，Gin．x

RADIO WIRES

MICROPHONE CABLE
Insulated and shielded Microphone Cable for
connecting Pickups，Microphones， connecting Pickups，Microphones，Speakers，
Cat．No．TW160－Single ．．． $1 / 3 \mathrm{ft}$ ．
Cat．No．TW162－Twin ．．．．．1／3 ft．
THIN FLEXIBLE WIRE
10／．010 PVC．Insulated Fifex，suitable for battery connections，indoor aerials and for any other purpose requiring a light thin stranded insulated flexible wire
Cat．No．TW159－Single $\quad 1 \frac{1}{2} \mathrm{D}$ ．ft．
Cat．No．TW168－Twin Twisted
31 D．ft．
RAVINE SINGLE WIRE
Similar to above，with a Cotton Braid over
the PVC．Insulation．

Cit．No TS1 Co．NS2 1 mil，length Cat．No．TS $3-3$ mil．， 1 yd．length Cat．No．TS4－ 4 mil．， 1 yd．lengths Cat．No．TS5－ 6 mil．， 1 yd．lengths

BATTERY SET CHASSIS

Battery Set Chassis，size 15in．x 7in．x 21in．，
frilled and cut for Gang Condenser and Dial （mounted off centre）． 10 Valve and coil， holes already punched．
Cat．No．TC1003
6＇6
eac

41 d.

 5d． 6d． 8d． No．TS5－ 6 mil．， 1 yd．lengths ．． $1 /-$ Cat．No．TW161－Single
3

SPAGHETTI INSULATING TUBING

\qquad

RADIO WIRE

WIRES, ENAMELLED.

Only the Best British Wires stocked. Prices per reel.
When in stock supplied at ruling prices.

WHRES, D.S.C.
S.W.G.

Rib. Reels 16-Cat. No TVV14 18-Cat. No. TW15 20-Cat. No. TW16 22-Cat. No. TW17 24-Cat. No. TW18 26-Cat. No. TW19 28-Cat. No. TW 20 30-Cat. No. TW/21 32-Cat. No. TW22 34-Cat. No. TW 23 36 -Cat. No. TW24

WIRES, D.C.C.
S.W.G.

11b. Reels.
$20-$ Cat. No. TW25 22-Cat. No. TW 26 24-Cat. No. TW27 26-CT No TW28 26-Cat. No. Tw 28 28-Cat. No. TW 29 30-Cat. No. TW30 32-Cat. No. TW31 34-Cat. No. TW 32 36-Cat. No. TW33

11b. Reelb. Cat. No. TW4 4 Cat. No. TW 48 Cat. No. TW4 49 Cat. No. TW 50 Cat. No. TWSI Cat. No. TW5 Cat. No. TW53 Cat. No. TW54 Cat. No. TW55 Cat. No. TW56 Cat. No. TW5 7

SPEAKER EXTENSION CABLE

Twin Twisted Flexible Cable for Extenmon Speakers snd similar apparatus contained in ver all Water Proof Braid Cat. No. TW87
$6^{\text {D. per m }}$

AMERICAN TYPES

If it's Valves you requirewhy, the Lamphouse, of course, Radiotron, Tungsol, Raytheon, Kenrad, Philips, Brimar, etc. Owing to the import restrictions we can not guarantee supplies of all types in all brands, and suggest you state 1 st and 2nd preference of brand on your orders.

Type.	Price.
6B6G	11/6
$6 \mathrm{B7}$	11/3
61375	11/-
638	13/2
6B8G	11/9
6 C 5	9/10
6C5G	10/-
$6 \mathrm{C6}$	9/-
6C8G	12/-
6D6	9/3
6D8G	12/7
6E5	12/4
6 F 5	10/10
6F5G	$9 / 4$,
6F5GT	9/6
6F6	9/6
6F6G	9/-
6F6GT	10/8
6 F 7	13/2
6F8G	11/10
6G6G	12/8
6G8G	14/-
6H6	9/-
6H6G	8/6
6 J 5	9/5
6J5G	9/3
6J5GT	9/3
6 J 7	10/11
6J7G	9/11
6J7GT	9/11
6J8G	12/2
6 K 6G	9/6
6K6G/GT	10/-
$6 \mathrm{K7}$	10/6
6K7G	9/5
$6 \mathrm{K7} 7 \mathrm{~T}$	9/11
6 K 8	12/5
6K8G	13/6
6L5G	9/6
6L6	16/11
6L6G	14/6
6 L 7	12/5
6L.7G	11/6
6N6G	18/-

Type.	Price.	Type.	Price.	Type.	Price.
6 N 7	12/5	10	19/6	35A5	13/-
6N7G	11/6	12A5	14/-	35 A5LT	13/-
6N7GT	11/11	12A7	14/4	35L6GT/G	10/2
6P5G	9/4.	12A8GT	10/-	$35 \mathrm{Z3}$	13/6
6Q7	11/4,	12B8GT	13/9	35Z4G'T	9/6
6Q7G	9/5	12 C 8	12/11	35 Z 5	13/-
6Q7GT	9/10	12F5GT	10/3	35Z5GT	9/8
6R7..	11/6	12J5GT	9/9	35 Z 5 LT	13/-
6R7G	10/4	12J7GT	10/-		9/5
6S7	12/-	12K7GT	9/6	37	9/4
6S7G	11/10	12 K 8	13/-	38	9/-
$6 \mathrm{SA7}$	9/6	12Q7GT	9/9	39/44	9/2
6SC7	11/-	12SA7	10/6	41	8/10
6SF5	9/9	12 SC 7	10/6	42	8/10
6SF7		12SF5	9/6	43	9/4
6SJ7	9/9	12SJ7	9/8	45	7/2
6 SK 7	9/6	12 SK 7	9/6	45 Z GGT	9/6
6SN7-GT	12/-	12SQ7	9/6	46	11/3
$6 \mathrm{SQ}^{7}$	10/6	12SR7	-	47	9/11
6 T 5	16/-	$12 \mathrm{Z3}$	9/6	48	21/-
6T7G	12/1	15	16/4	49	10/2
6SR7	11/-	19	10/6		
6U5/6G5	12/-	20	19/-	50L6GT	11/5
6U7G ..	9/10	24.A	9/5	53	13/-
6 V 6	13/5	25A6	13/10	55	9/6
6V6G	10/6	25A6G	13/10	56	6/5
6V6GT	10/-	25A6GT	10/9	57	$8 / 11$
6V6GT/G	10/-	25 A7G	13/6	58	8/10
6W7G ...	12/6	25 A 7 GT	12/6		
$6 \mathrm{X} 5$	12/5	25B6G	12/6	70L7GT	15/6
6X5G	10/6	25B8GT	13/6	71 A	8/9
6X5GT	10/6	25L6	12/6	75	8/9
6X5GT/G	10/10	25L 6G	10/-	76	6/4.
6Y6G	13/6	25L6GT	10/3	77	9/5
$6 \mathrm{Z7G}$	13/6	25L6GT/G	10/5		9/3
67Y5G	13/-	25 Y 5 ...	19/6		11/2
7A5	13/-	2575	8/9	80	5/6
7 76	13/-	25 Z 6	11/11	81	18/3
7 A 7 LM	13/-	2576G	9/6	82	10/6
7 A 8	13/-	25Z6GT	9/6	83	10/-
$7 \mathrm{B4}$	13/-	25Z6GT/G	10/-	83 V	13/8
7B5LT	13/-	$26 . . .$.	6/2	84/6Z4	9/2
7B7	13/-	27	6/2	85 ...	9/-
7B6LM	13/-	30	6/11	85 AS	16/-
$7 \mathrm{B8LM}$	13/-	31	7/6	89	9/5
7 C 5 LT	13/-	32	11/9	112A	9/6
7 C 6	13/-	33	11/7	302	13/6
7 C 7	13/-	34	11/6	117Z6GT	15/-
7Y4..	13/-	35	9/3	117Z5GT/G	15/-

PRICES ARE SUBJECT TO ALTERATION

All prices in this book must be regarded as an indication only-all orders will be executed at ruling prices.
THE ELECTRIC LAMPHOUSE LIMITED. 11 MANNERS STRREET, WELLINGTON, C.1.

MULLARD VALVES

Type.	Base.	Price.	Type.	Base.	Price.
AC044	A	16/6	Pen4VA	M	12/11
AZ1	P	10/8	Pen428	M	14/3
AZ31	K	10/8	PMIHF	A	12/3
CBLI	P	13/-	PM12M	A	12/3
CCH35	K	16/6	PMI4	A	16/6
CL33	K	13/-	PM2A	A	10/6
CY1	R	13/-	PM2B	M	14/4
CY31K	K	13/-	PM22A	0	14/10
DW2	A	12/9	PM24	A	18/4
DW4/350	A	12/9	PM24M	0	15/11
DW4/500	A	12/9	PM2DX	A	10/1
EAB1-EB4	P	12/6	PM2HL	A	11/8
EBC3	P	12/9	SP13C	M	12/-
EBC33	K	13/-	SP4.	O/M	16/6
EBF1-EBF\%	P	12/6	S4VB (A)	0	14/4
EBF2	P	12/6	TDD13C	M	13/10
EBF32	K	13/-	TDD2A	0	14/4
EBL1	P	15/2	TDD4	M	12/9
EBL31	K	15/2	TH21C	M	20/-
EB4	P	12/6	TH30C	M	18/4
ECH2	P	16/6	TH4	M	13/-
ECH3	P	16/6	TH4B	M	16/6
ECH35	K	16/6	URIC	0	12/3
EF39	K	13/-	UR3C	M	11/8
EF5-EF9	P	13/-	VP13C	M	14/7
EF6	P	12/9	VP2	M	14/7
EF8	P	13/-	VP2B	M	
EF9\%	P	13/-	VP4	M/O	$14 / 4$ $12 / 3$
EK2	P	15/11	VP4A	M/	12/9
EK3	P	16/6	1W4/350	A	10/8
EL. 2	P	12/3	IW4/500	A	11/8
EL3	P	12/9	1561	A	12/9
EL33	\underline{K}	13/-	164V	0	14/4
EL35	K	14/9	1821	A	12/9
EM1-EM4	P	14/7	2D4A	O	10/1
EM8	P	12/-	2 D 4 B	M	10/6
EM4	P	14/7	354 V	0	14/9
FC2	M	16/6	904 V	0	14/\%
FC2A	M	16/6			
FC4	M	15/5	Definition of Bases.		
KBEC1-TDD2A	0	14/4			
KF3-VP2B	M	13/10	A $=4$-pin English.		
KK2-FC2A	M	16/6	$\mathrm{K}=$ Octal.		
$\mathrm{KI}_{\text {PenA4 }}$	P	$14 / 10$ $12 / 3$	$\mathrm{M}=7$-pin English.		
Pen36C	M	14/4.	$0=5-$ pin English.		
Pen4idD	M	14/4	$\mathbf{P}=$ Side Contact.		

MARCONI (H.M.V.) VALVES

Type.	Price.	Type.	Price.	Type.	Price.
D41	8/3	MH41	16/-	VMS4	12/8
DSB	16/6	MHL4	13/3	VMS4B	13/3
DPT	16/6	MPT4	13/3	VS2	17/7
DH63	12/1	MKT4	13/3	VS24	12/1
DH42	16/6	MS4	13/9	W21	18/3
DH	12/1	MS4B	15/5	W42	13/9
D63	8/3	MSP4	16/-	X21	16/6
DSB	16/6	MU12	12/8	X 22	17/7
HL21	$9 / 4$	MU14	13/3	X41	14./10
HL2	8/3	MX40	16/-	X42	16/-
DH23	13/3	PX4	13/3	X63	15/6
HD21	16/6	PX25	19/10	X64	18/3
KT2 (PT2)..	11/-	QP21	19/3	X65	15/5
KT41 (N41)	12/8	S23	13/3	Y63	14/4
KT42	13/3	T165	15/5	W63	11/-
KT63	11/-	U12/14	9/11	KT31	14/4
KT66	15/5	U50	7/9	U30	13/3
KTW61	11/-	U52	14/4	Z 63	11/-
KTW63	11/-	VDS	17/1	HD	13/3
KTZ63	11/-	VDSB	17/7	KT61	11/-
MHD4 M 4	13/3	VMP4K	13/3	E13	
MH4	14/4	VMP4G	11/7	HD24 (HD22)	-

WHAT A THRILL!

Yes, its a real thrill for a boy to build his own Radio. And really, it's nos details with every. Kitset, and any boy capable of using a soldering iron would have no diffi culty in assembling any one of the Kits listed elow.
All Kits less Headphones.
TK2004-Improved "Hiker's One," with that teries

TK2005-"Popular One" (Midget Serles) with Batteries .. P2/7/6 Post Ynee
TK2006-"Oxford" Crystal Set Kir 17/6 Pathen s.

MAIL ALL ORDERS TO
the electric lamphouse limited. 11 ManNers street, WEllington, c.i.

SAVE TIME AND TEMPER!

TELSEN MIKE

Suitable for the experimenter and home amusement. Fitted in a bakelite case containing all the terminals necessary and
special matching special matching transformer. Only requires a 41 voit battery to energise it. Com. plete with full instructions.

Cat. No. TM511
19% ach

- Is the same as the above, but mike is suspended from circular frame as illustrated. Cat. No. TM510
$24 / 3$ each

IMPORTANT!

All prices in this Catalogue are an indication of value only. All orders will be executed at prices ruling at time of supply.

Enjoy REAL

 ReproductionListen to "PACEMAKER" RADIO for two minutes, and MARVEL! You won't believe it's radio, because, for the first time, you will be listening to REAL REPRODUC-TION-just as if the actual performance was taking place in your very home.

Cat. No. TR929

£19/12'6

We feel we have a right to be excited about this new 1946 Pacemaker 5, and you'll be excited too, because there's never been a more beautiful cabinet design, never so much real performing ability or so many fine and practical features at so low a price. Here's our Value Leader for 1946 -a real gem of a radio, whose looks, quality and price can't be beat anywhere.

Powerful reception-you'll find this new Pacemaker 5 one of the strongest radio performers of its size. Covers the broadcast band; brings in all stations with uncanny ease and precision.
"All these features"-Has full-acting A.V.C. to prevent fading and so keep volume uniform on all stations. Develops amazing 2 watts output seldom possible in a set of this size. Uses the latest type of fine fidelity 5in. A.M. Dynamic Speaker.

The Pacemaker 5 is quality built; uses only the finest standard parts throughout for the most dependable radio results.

Dimensions: $14 \frac{\mathrm{in}}{} \times 8 \frac{1}{2} \mathrm{in}$. $\times 8 \frac{1}{2} \mathrm{in}$.
"Tone Comes First"-And you'll hear a striking difference the moment you first listen to the-Pacemaker 5. We set out to bring you the clearest toned table model Radio that could be built-and we've succeeded! You'll get a real listening thrill on every programme you surce.

SPECIAL OFFERINGS

GOODS ON THIS PAGE CANNOT BE REPEATED AFTER PRESENT STOCKS

Features SPREAD BAND TUNING
Here's a superb new tuning feature that
A.V.C.-There's full acting A.V.C., increases tuning ease on the short-wave dial Providee 20 times more space between dia calibration, glving each foreign band a wide tubing range. Makes locals. S-P-R-E-A-D-S out the tuning area on the dial so that you can't miss the stations.
RUBBER - FLOATED
GANG TUNING CONDENSER gives sharper tuning BIG SLIDE RULE DIAL with spinner for quick travel ncross dial.
BASS TREBLE TONE CONTROL emphasises bass or treble as desired.
WAVE BAND INDICATOR Indicates what band you are operating on.
MAGIC EYE-Makes tuning accurate, also makes possible tuning in stations without inter-station noises,
the volume control to of position and tuning by eye only.

Every NOTEWORTHY 1946 FEATURE for greater efficieney io incorporated in the Ensign 7.
PULL WORLD-WIDE COVERAGE.-Enjoy everything that's broad cast in the world today, direct. Five full tuning bands give you com. plete coverage of the world's most important stations. Each is easy to tune, and the following ranges are covered:-

Regular broadcast band, $550-1600 \mathrm{KC}$
Short-wave inter band, $6-19$ MC. Spread band tuning for the following short-wave bands:-
15.10 to $15.50 \mathrm{MC} ; 11.65$ to $12.30 \mathrm{MC} ; 9.475$ to 9.80 MC . Vaive Combination:-6VG R.F Amplifier, 6XSGT Rectifier, QU G.1., 2 d 6 U5 Tuning Indicator.
Size of Cabinet, which is finished in rich veneers:-24 $\times 13 \times 11$. Cat. No. TR930

The Passport to True Radio Enjoyment

DUAL WAVE COIL KITS
Dual Wave Band Pass Coils, consisting of Aerial and Oscillator 175 K.C. Coils in 22 in.
$\times 4$ in. Aluminium Cans. Suitable for 6 or 6 As Converter. Short Wave range $16-50$ metres. Cat. No. TC488
$5 /=$ set

HIGH QUALITY RESISTORS

Order early and obtain a supply of these really good Resistors Wire ends Carbon type.

3 watt type.

MANSBRIDGE TYPE

 CONDENSERS(Block Type.)
German make. 500 V. D.C. Test

Cat. No. TC694	$.25 \mathrm{mfd} . . .$. . . 2
Cad. each	
Cat. No. TC695	.5 mfd.

LOW VOLTAGE LAMPS

Special purchase of 6 and 12 volt Electric Lamps with standard bayonet cap. These lamps have had their caps converted from the motor-car size to standard bayonet cap. This adapation makes them look a little rough, but they are bran in use.
Cat. No. TL489-6 volt 17 c.p. . $1 / \mathrm{m}^{\text {each }}$
Cat. No. TL $509-12$ volt 24 c.p.... $/ / 6^{\text {each }}$

METERS.

DE JUR MILLIAMP METERS-Moving Coil Reconditioned $0 / 3$ milliamps. 2in. scale. Flush mounting.
Meters in first-class conditionCat. No. TM11

Meters with case slightly datmaged, but other wise in first-class conditionCat. No. TM11A $1 / 18 /=$

TUNING SCALE PLATES

Tuning Scale Plates, 6in. x 21 in . Brown plate with white markings. $\frac{5}{8}$ in. Control holes. Cat. No. TD34

4/.

LAMPHOUSE GUARANTEE

Any goods which prove in any way unsuitable may be returned in good order within seven days and your money will be refunded in full.

SPECIAL PURCHASE The stock of goods on

 limited and orders will not be able this page is strictly stocks are sold.
SHORT WAVE AERIAL RECEIVING COILS

 COMPONENTS USED IN THE ARMY ZC1 TRANSCEIVERS. USED BUT TESTED AND FOUND IN GOOD WORKING ORDER.Wound on $\frac{1}{2}$ in. diam. former. Fitted on to mounting terminal base. Lug connections. Shielded in can.
Cat. No. TX229
Coils as above, unshielded.
Cat. No. TX230
$2^{\prime} 6$ ea.
$2^{\prime}=$ ea.

OSCILLATOR COILS

$465 \mathrm{~K} . \mathrm{C}$. Air Core shielded in $1 \frac{1}{\mathrm{t}} \mathrm{in}$. square can.
Cat. No. TX240
Cat. No. TX259-Unshielded
2 '6
$2^{\prime}=$ -

R.F. INTERSTAGE RECEIVER COILS

Mounted in $1 \frac{1}{1} \mathrm{in}$. square cans. Cat. No. TX231

$2 / 6^{\text {ea }}$

R.F. Coils as above, unshielded Cat. No. TX232 $2^{\prime}=$ ea.

I.F. TRANSFORMERS

465 K.C. Iron Core Type in cans, complete with Trimmers. Cat. No. TX238
$7^{1} 6$

I.F. TRANSFORMERS-

465 K.C. Iron Core type in cans, complete with slug type Trimmers. Cat. No. TX242
$7^{\prime 6}$
Shielded driver tuning coils. Cat. No. TX252 2/6

SHIELDED MASTER OSCILLATOR TUNING COILS Unshielded
Cat. No. TX257
$2^{\prime}=$ ea.

UNSHIELDED POWER
Cat. No. TX258 $2 /=$ ea. As above, but less link coupling coil. (at. No. TX260 $1 / 6$ ea.

BEAT FREQUENCY

OSCILLATOR COILS
For use with 465 I.F. Transformers 5% Tolerance with . 0001 and .0005 Mfd . 5% Tolerance Mica Condensers. Cat. No. TX244
$4^{\prime} 6^{\text {ea. }}$

MODULATION

TRANSFORMER

Suitable for plate modulation (choke type). Secondary winding designed to provide side tone for Headphones for checking transmission.
Cat. No. TX233
$7 / 6^{\text {ea. }}$

OUTPUT TRANSFORMER

For matching to Headphones to 400 ollm lines, also suitable for use as Audio Coupling Choke
Cat. No. TX235

MICROPHONE

TRANSFORMER
For Carbon Microphones.
Cat. No. TX234
6^{\prime}

LAMPHOUSE RADIO CIRCUIT BOOK

A N 80-page booklet containing nearly 200 A different Circuits. Circuits of all types, from Crystal Sets to a 26 Valve De Luxe Receiver. Amplifiers, power packs, electric fence units, testing equipment, short-ware converters, wave traps, oscillators, aerial systems - in short, a Circuit to meet every requirement.

Schematic diagrams only are given and not constructional details. No claim is made that this book contains any new Circuits all having previously been published in Lamphouse Annuals or Radiograms.
Enthusiasts, whether beginners or experienced servicemen, will find this book invaluable as a reference medium. Your Radio Iibrary will not be complete without a copy.

Cat. No. TB100-Radio Circuit Book.
Priced at $2 / 6$. Postage 1d. extra.

LAMPHOUSE INSTRUCTION COURSE

THIS 48-page, attractively covered booklet contains a simple yet most thorough Radio course. Compiled from previous Lamphouse publications, revised and rewritten in simple everyday language, for those enthusiasts starting out in Radio as a hobby or a career. Devoid of any deep technical terms as used by Radio veterans. Just a straight-out study in basic radio principles and theory. Questions set and answers given on each chapter.

Cat. No. TB101-Instruction Course, Price 2/6.
Postage 1d. extra.

LAMPHOUSE DATA BOOK

A96-PAGE BOOKLET containing a veritable goldmine of both Radio and Electrical Data. Facts, figures, tables and charts gathered from various Radio and Electrical textbooks and manuals, and placed between two covers to form the handiest reference guide an experimenter or serviceman could wish for BE SURE AND GET YOUR COPY.
Cat. No. TB103-Lamphouse Data Book
3'6

Postage, etc., 2d.

VICTORY SENIOR AMPLIFIER

Features include DUAL. CHANNEL MIKE and GRAMOPHONE INPUT

POLARIZED CONNECTIONS. BEAM POWER OUTPUT FULL-TONE CONTROL. BALANCED PHASE INVERTER.

A high-quality low-cost Amplifier intended for installations where moderate coverage is required. Suitable for Dance Halls, Public Meetings and small Outdoor gatherings. Comes complete, ready to connect up quickly and easily. Has Pre-Amp Stage.

Full 10w. output with remarkably true Tonal Fidelity. Variable Tone Control is provided to accentuate bass or treble as desired and to aid in compensating for varying accoustical conditions. Each Amplifier is carefully tested before despatch to make sure of perfect operation when it reaches you.

> LATEST CIRCUIT-6 VALVES.

Latest valves used: One 5Z4, one 6F8G, two 6N7, two 6V6G.
Suitable Speaker for the above Amplifier is Rola Model F. 121000 ohm (Extra).
Cat. No. TR852
£13'12'6
Cat. No. TR853-As above, but with Pre-Amp. Stage

THE
 NEECO

 PLUG-IN ELECTRIC TABLE COOKERNo wonder it's so much in demand. It Grills, Boils, Toasts, Bakes in fact, pro vides the benefits of electric cooking for week-elad bach, and at a minimum of current consumption.

PLUGS IN TO A HOTPOINT

Will accommodate two or three small pots on the boiling plate on top-and, at the same time make toast or grill chops, steak, etc., in the oven griller below. The oven is quite capacious, and even the simpler forms of baking can be done successfully.

DIMENSIONS:

Height (overall) 112 inches.

FEATURES:

BOILING PLATE.-The griller-boiler ele- for use when boiling or baking are provided. ment is of the open spiral type, heating the
boiler plate above and allowing of grilling below. As its consumption on high heat is only 1700 watts, it is particularly economical in nas.
OVEN AND GRILLER.-The oven is fitted with an interior lining with louvres which for grilling pan or toaster rack, and also allows of a full circulation of heat to all parts of the oven. Six adjustments of grilling or baking height are possible, and a baking dish
with griller rack and a nickel-plated reflector Plates may be warmed in the lower part of then SWITCH - A self-indicating switch with "High," "Low," and "Mediunn" positions, is fitted.
CORD. 5 ft . 6 in . of three-core insulated asbestos protected cord is provided ready for attaching to plug.
FINISH.-The finish is vitreous enamel in side and out. Standard colour is mottled grey. SUPPLIES EXPECTED SHORTLY.

VICTORY JUNIOR AMPLIFIERS

Features include Mike and Gramophone
Feedback, 5 watt output.
A small Amplifier which will give astounding reproduction. Compact and attractive,
auitable for Velocity, Crystal and Dynamic suitable for Velocity, Crystal and Dynamic
Microphones, continuously Variable Tone ConMicrophones, continuously Variable Tone Con-
trol. Whide range frequ
TECHNICAL SPECIFICATIONS
Peak Output, 8 watts; Rated Output, 5 watts; Input, Microphone and Gramophone; GramoTone Control; Output Impedance, 5,000 ohms
to Speaker Transformer.
HERE IT IS! New Zealand's Mitncle Amplifier Value!
Cat. No. TR851. (Speaker Extra) Price f8/19/6
P.A. equipment the Lowest price high-gait Amplifier available on the market to-day, its competition-defying price indicates no compromise in quality.

VARIABLE TONE CONTROL.
Control is provided for compensation of acoustics when using in various locations. An ideal Amplifier for offices, Stock Rooms, Cafe-
terias, and Restaurants, Factories, Window Demonstrations, Meetings, and Small Orchestras, etc.
The Victory Amplifier offers for the first time an intermediate Power Amplifier with every feature usually found in units selling at double the price. Splendid for use in Meeting Halls, Office Systems; Night Clubs, Auction Rooms,

EXPECTED SOON

Cat. No. TE850

Cat. No. TE858

- At the time of going to press all types of Electric Fires are out of stock, but supplies are expected during the currency of this Catalogue.
- Send us your enquiries.

A permit is required for each Fire purchased.

ADDITIONS TO LAMPHOUSE LINES

Chrome Wall or Table Lamps

BEDSIDE

 LAMPChrome plated Lamp which will stand on dressing table or hang on the wall. Attractive parchment shade can be adjusted so that you can get the light just where you want it. On-off switch in base. Supplied complete with 9 feet flexible cord. A really nice wall or table lamp..

Complete with shade, cord, adaptor and lamp.
Cat. No. TrF21 $52 / 6{ }^{\text {aa }}$

Well-Glass Fittings

Watertight fittings for outside lighting. Cat. No. TE842-60 watt size. Complete 16/

Cat. No. TE841-100 watt size. Complete 21/=
Similar to above, but with enamelled reflector. Cat. No. TE857-100 watt size. Complete 25/=
Spare Glasses-
Cat. No. TE844-60 watt size $3 / 4$
Cat. No. TE843-100 watt size $7 /=$

SOLDERING

The correct angle to hold the iron is flat to the work.

Every home constructor knows, or is thus prevented from melting the solder should know, that to ensure noiseless and raising the parts to the soldering and consistent radio reception it is advis- temperature. Overheating can be preable to solder all joints and connections:

Connectious screwed together often become loose and cause erratic performance or noise; another point usually overlooked is that after a time oxidisation occurs under locking down nuts and what was originally a good connection develops into a high resistance joint.
There is only one method of making a perfect, soldered joint. The pieces of metal to be soldered must be raised to used. It is most important to keep the used. It is most important to keep the paradoxes-the soldering "iron" is not paradoxes-the soldering iron but a copper!)-at the correct temperature. An "iron" too cold or too hot will not solder properly-if at all.

Temperature.

The correct temperature of the copper tip is indicated by the condition of the by the an experienced solderer knows the "㮴"" it makes when brought into montact with the soldering flux and sol der just when soldering fux and soleached Only a little proctice is needed to acquire this knowledge needed

If the tip is overheating, there will be a tendency for the tin to burn off. That is, instead of the tinning on the copper tip remaining bright, it will become discoloured and burn away, permitting the form a heat-insulating crust. The heat

Clean Metal.

The metals to be soldered must be bright and clean, free from grease, dirt or oxide and preferably tinned (coated part pure tin or solder). Nickel-plated nickel does not readily to solder because with the solder or "alloy" with it tro-plated tin parts are not so satisfector as those that have been hot dip-tinned because the solder tends to alloy onls with the plating which frequently flakes off. There ure many cadmium plated parts on the market which solder readily.

The Flux.

The flux should be selected to suit the job. For all fine elretrical connections, resin (pronounced "rosin") is by far the best. It has no corrosive action at any time after the joint has been made. It is non-poisonous; it can be used in lump, powder form, or dissolved in alcohol. For powder form, or dissolved in alcohol. For convenience, resin-core solder, a hollow
wire filled with resin in the proper proportion to the solder, is used extensively Never apply resin-core solder to any part of the copper tip except at the point of contact between the tip and the work. Resin quickly loses its fluxing action after it is heated. For this reason never pick up resin-core solder with the iron and then apply to the work.
Acid flux may cause considerable trouble if used stronger than necessary. Cats away the soldering copper, and soldered joints. The brighter and cleaner the metals, the weaker should be the acid flux. The more diluted the acid flux, without being too weak, the better
Solder is an alloy of tin and lead and should be free from impurities. It is well to use only solder made by a reputable manufacturer. The most comwhich is half tin and half lead.

All the KIT SETS illustrated are now available from stock. Every Lamphouse Kit Set is supplied complete to the last nut and bolt, together with a ready-drilled chassis. Novices are advised not to attempt to build complicated sets, unless they are able to read the schematic diagram given.

All Kits are supplied with detailed duplicated constructional details, but should there be any small difficulty you are unable to overcome, The Lamphouse Mail Service Dept. will always be at your service to help you out.

"WIRELESS WEEKLY" WAVE TRAP

A simply constructed unit for sepurating interfering stations. Can be rating interfering stations. Can be assembled in a short space of time and is worth its weight in gold to
anyone who has experienced the trouble of having stations "over-ride" each other.

PARTS LIST FOR THE WIRELESS WEEKLY" WAVE TRAP.

One Baseboard.
One Bakelite Panel
One . 0005 mfd . Variable Condenser.
One 2in. Instrument Knob.
Two Terminals.
One 2tin. x 3in. Coil Former.
Ion. 22 Gauge Wire.

One Pkt. Push-back Wire.
Solder Lugs, Wood Screws.
Complete; Kit of Parts (as listed above). Catalogue No. TK2017

THE "SUPERHET FIVE"

As the name implies, this Receiver is a straight-out Superhet circuit, devoid of all "frills" and snags. There are hundreds of N.Z. who want N.Z. who want to make Broadcast yet powerfu to them we heartily and commend we heartily re Superhet 5. In designing Superhet 5 . In designing climinated all fancy touches such as short waves, A.V.C., etc, all of which may be plain sail ing for an experienced Multi Valve Set conMulti Valve Set con deep water for the novice.

It's just a 5 Valve Kit of conventional design, Which will bring in all the usual N.Z. \& Australian Stations with | without previons radio constructional exgood tonal quality and Speaker strength. perience. Try your hand first on a One However, we don't wish to make it or Two Valver, then step up to this Resound too easy and to ask a beginner to ceiver and you should be able to take it commence on a receiver of this nature in your stride.

PARTS LIST FOR STRAIGHT SUPERHET FIVE"
One Chassis.
One Padder.
Six Valve Sockets.
Two 8 mfd . Electrolytics.
Two 10,000 ohm Wire-wound Potentio
meters.
One 60 M.A. Transformer
One Aerial, one Oscillator Coil (Shielded)
Dne 2-Gang Condenser
Two I.F. Transformers.
Eleven One-watt Resistors.

Parts List for Straight Superhet Five-Continued.

Three pairs Goat Shields.
One Dial.
I'wo .0001 Mica Condensers. One . 00025 Mica Condenser. One . 05 Tubular Condenser. One . 01 Tubular Condenser. Four .1 Tubular Condensers. One 25 Tubular Condenser. Three Knobs.

I'wo yds, Flex.
Sundries, Push-back Wire, Nuts \& Bolts, Solder Lugs, Terminals.

Complete Kit of Parts (as listed above) can so. тк 2 ma $£ 10^{\prime} \mathbf{1 5}^{\prime}$ -
(Without Speaker).

THE "OUTDOOR PORTABLE"

The ideal Receiver for picknickers, week-enders or travellers, or auyone re quiring a light, portable self-contained radio. This set is probably one of the best 3 -valve Portables we have described. Using $1.4 v$. tubes, it is very economical to run, and the results obtained ar excellent. Each Kit is supplied with an enclosed type Loop Aerial (as il lustrated).

PARTS LIST FOR THE OUTDOOR PORTABLE

One Chassis, One Dial
One each 1D8GT, 1N5GT 147GT One D.P.S.1. Switch.
One each 1D8GT, 1N5GT, 1A7GT Two pkts. Elook-up Wire.
Valves.
One Loon Aerial.
Two Tron Core I.F. Transformers One Padder.
One Oscillator Coil, Shielded.
One 2-Gang Condenser.
One 500,000 ohm Potentiometer.
Three Octal Valve Sockets.
Three . 0001 mfd . Mica Condensers
One . 0005 mfd . Mica Condenser. One . 005 mfd . Tubular Condenser One . 05 mfd . Tubular Condenser. Two . 01 mfd . Tubular Condenser. One . 02 mfd . Tubular Condenser. Seven Resistors.

One and a-half doz. Nuts and Bolts.
Two Knobs.
Two 45v. Portable Batteries
One $1 \frac{1}{2} v$. A Battery.
Complete Kit of Parts, as listed above. Cat. No. TK:2014 (Without Speaker)

Without Batteries and Speaker Cat. No. T'K2014A £8/2/6

"WORLD WIDE DUAL WAVE FIVE"

If you have constructed an A.O. set of any description, then we feel sure that the "World Wide Five" Dual Waver will present no "snags." Just because it is a dual wave receiver it does not mean that it is difficult to build. On the contrary, this set is quite simple and can be depended upon to give complete satisfaction. It is an up-to-date circuit using octal-based valves and incorporates the use of a magic eye. The Dual-Wave Coil Box is supplied ready wired, so ther are no worries in this respect. The performance of this set cumpares well with the standard of any commercial receiver in its class.

PARTS LIST FOR THE "WORLD WIDE FIVE."

One Chassis.
One each $6 A 8 G, 6 G 8 G, 6 J 7 G, 6 V 6 G T$, 5Y3G valves.
One 100 ma . 6.3v. Power Transformer.
One Ensign D/Wave Tuning Unit
One 2 Gang Condenser.
One Dial.
Twelve Resistors, One watt.
One 200 ohm 10 watt Resistor.
One 250 ohm 10 watt Resistor.
One 300 ohm 10 watt Resistor.
Twe 1000 obm 10 watt Resistors.
One 500,000 ohm Potentiometer.

One 25,000 ohm Wire Wound Potentiometer.
Four .0001 mfd . Mica Condensers. One .02 mfd. Tubular Condenser. Three .05 mfd . Tubular Condensers. Three .1 mfd . Tubular Condensers. One .25 mfd . Tubular Condens One .5 mfd. Tubular Condenser. Two 8 mfd , Electrolytic Condensers Three 25 mfd. 25 -volt Electrolytics. Six Valve Sockets
Three pairs Goat Valve Shields. Two Terminal
l'arts List for the World Wide Five-Continued.
Sundries, including Nuts and Bolts, Sol- Cat. No. TK2019A
der Lugs, Push Back Wire, Grid
Clips, Power Flex, etc., etc.
Complete Kit of Parts (as listed above). Cat. No. TK2019
£13/17/6
(Without Speaker)
Kit as above, plus material for Magie
One 6U5/6G5 Vaive.
One Magic Eye Assembly.
Three Resistors.
One . 02 Tubular Condenser.

One Chassis.
One Dial.
One Aerial, 2 R.F. Cnils (Shielded). One 3 Gang Condenser.
Wight Resistors.
One 5000 ohm Potentiometer. One 8 mfd . Tubular Electrolytic. One .5 mfd . Tubular Condenser. Two .1 mfd. Tubular Condensers. One .05 mfd . Tuhular Condenser. Two 0002 mfd . Mica Condensers. One .0005 mfd . Mica Condenser. Four Valve Sockets.
T.R.F. UNIT PARTS LIST

A T.R.F. TUNING UNIT

This Tuner has been designed for the music lover who has an amplifier for his favourite recordings. The finest radio reception possible from both local and distant stations can be obtained by using this Tuner in conjunction with a good quality Amplifier such as the "Versatile 4 Watt" Amplifier described elsewhere in this issue.

Two 6D6 Valves, 1 6C6 Valve. Or
Two 6K7 Valves, 16.17 Valve.
Three pairs Goat Shields.
Three Terminals.
Two Knobs.
Sundries, including Hook-up Wire, Nuts and Bolts, Grid Clips, 5 -wire Cable, Solder Lugs.
Complete Kit of Parts (as listed above). Cat. No. TK2016
£5'19/6

THE "DRY CELL TWO"

Yet another good 2-valve Battery Receiver, economical to operate and a real powerful station-getter. The 1N5G is used as the detector, and the 1A5G as the pentode output valve. Neat and compact, the "Dry Cell Two" could conveniently be built into a portable cabinet of small dimensions.

"DRY CELL TWO" PARTS LIST.

One Chassis.
One each 1N5G, 1A5G Valves.
One 3-plate Midget Variable Condenser. One .0005 mfd. Single Gang Condenser. One Oxford Coil.
One Small Broadcast Dial.
One Audio Transformer.
Two Octal Valve Sockets.
One R.F. Choke.
Two Twin Tip Jacks.
One .25 mfd . Tubular Condenser.
One .0002 mfd. Mica Condenser.
One 1 meg. Resistor.
Two Knobs.
One yod. 5 -wire Battery Cable.

One pkt. Pushback Wire.
Sundries, including Nuts and Bolts, Grid Clip, Solder Lugs, etc.
Cat. No. TK2023
£5'2/6
Complete Kit of Parts, with Batteries. Cat. No. TK2023A .田/2/5
One 108v. B Battery (tapped)
One 4t v. C Battery
One 1 $1 \frac{1}{2} v$. Dry Cell.

This Receiver incorporates a favourite T.R.E. Circuit which has many desirable features; perhaps the most outstanding being an extremely mellow tone and the ease with which the final lining up may be carried out. Can be as sembled by any amateur radio constructor in an evening, and is extremely free from "snags" and complications. Satisfied users of the Popular Skysweeper advise that results compare favourably with factory-built machines.
Main N.Z. and Australian Stations at good speaker strength.

PARTS LIST FOR THE "POPULAR SKY SWEEPER KIT""

One Chassis.
One each 6D6, 6C6, 42, 80 Valves.
One $60 \mathrm{M} . \mathrm{A} .6 .3 \mathrm{~V}$. Power Transformer. One Oxford T.R.F. Aerial Coil.
Hive Valve Sirk.
Five Valve Sockets.
One 2 Gung Condenser.
Two 10,000 ohm Wire Wound Potentio
Two 10,000 ohm Wire Wound Potentio-
raeters
Two 8 mfd. Dry Electrolytic Condensers. One Dial.
Five .1 mfi. Tubular Condensers. One . 07 mfd. Tubular Condenser. One . 01 mfd . Tubular Condenser.

THE "TINY TWO"

A Receiver intended primarily for beginners; easy to construct and giving superb performance. Using two 1.4 volt Valves, this set is cayable of bringing in the mai. N.Z. Stations at Speaker Strength. The 1N5G is used as the R.E. Amplifier and the 1D8GT which is a Dual Purpose tube is used as both a Deterlly put alve. biterally speakthe performance of g the performance of tried and tested circuit which we can heartily which we can heartily re commend.

One Chassis.
One each 1N5GT, 1D8GT Valves.
One 2 Gang Condenser.
One . 0001 mfd. Midget Variable Condenser.
One Aerial, 1 R.F. with Reaction Coils. One Broadcast Dial.
One 3-1. Audio Transformer
One S.P.S.T. Toggle Switch.
One R.F. Choke.
Two Resistors.
One . 0001 mfd. Mica Condenser.
One . 00025 mfd. Mica Condenser
One .1 mfd . Tubular Condenser.
"TINY TWO" RECEIVER
Three Valve Sockets.
Two Terminals
One 6-pin Plug
Three Knobs.
Sundries, Nuts and Bolts, Hook-up Wire, Solder Lugs.
Complet e Kit of Parts (as above) Cat. No. TK2012 $5 / \sqrt{5} / \sqrt{2}$
Cat. No. TK2012A-Complete with Batteries..............

THE "OXFORD" MORSE CODE OSCILLATOR

The Morse Code is one of the first things to learn if you have umbitions to become a radio operator or "Ham." The short-wave fan will also get much more fun from his set if he can understand dot dash messages flashing all over the world.
The "Oxford Oscillator" can be constructed within an hour by even a beginner. There's hours of constructive fun and enjoyment in learning the "Code" on this unit.

PRICE LIST FOR THE "OXFORD MORSE CODE OSCILLATOR"

One Baseboard.

One Bakelite Panel
Two Terminals.
One 30 ohm Rheostat
One 30 Valve and Socket
One Audio Transformer.
Two Fahnstock Clips.
One 9v. Battery
Hook-up Wire, Knob, Solder Lugs, Screws, etc.
Complete Kit of Parts (as listed Cat No TK2015
(Without Key)
36/6

THE 'RAHOB'SINGLE'

Here is a good single valve Battery Receiver using a 1.4 volt valve, and which will get excellent reception from a wide range of stations. The 1 N 5 G Tube used is a low drain high gain pentode which will operate from a single Torch which will operate from a single Torch
Cell for the filament current, and a Cell for the flament current, and a
single 45 Volt Battery for the " B " supsingle 45 Volt Battery for the " B " sup-
ply. For those who want a small Portable Receiver for tramping, etc., will find that they can mount the parts of this set in a very compact space. A cigar box would make an excellent case and would hold all the parts with ease. However, with the standard Kit of Parts a baseboard and wooden panel similar to that used for the Hiker's One is supplied.
The fame coil as used for the Hiker
The same coil as used for the Hiker's changing their circuit to the Rahob One is quite suitable, and owners of a
Hiker's should have little difficulty ingle. The Coil and Tuning Condenser

THE "RAHOB SINGLE" PAR'S LIST.

One Baseboard
One Panel.
One 1N5G Valve and Octal Baseboard Socket.

One . 0005 Single Gang Condenser.
One 50,000 ohm Potentiometer. One S.P.S.T. Switch. Eight Fahnstock Clips

The Rahob Single Parts List-Continued.
Two . 00025 mfd . Mica Condensers. \mid Complete Kit of Parts (as above).
One 2 meg. Resistor.

Two Knobs.

Coil Former and Wire.
Sundries including Hook-up Wire, Solder
Lugs, Screws, Clip, etc., etc.
Cat. No. TK2022
With Batteries.

THE OCTAL HIKER'S

 ONE" VALVE AMPLIFIERDescription given on Page 127. COMPLETE KIT OF PARTS. Cat. No. TK2010

WING NUTS

When I have found a small winged nut is required in a radio, etc., and haven't one small enough, I get a bolt

that is the size required and I solder a piece of very stiff wire on to the top of it. To fix the wire firmily, widen the over the top of it. I think it is original, as I haven't seen it done before.Rahob 14168.

FIXING LOOSE VALVE SOCKETS

Here is a tip that I hope many other Rahobs will use. When valve becomes loose in its socket and is liable to twist away the wires inside, a few drops of sealing wax will soon remedy the matter. -Rahob 8662.

R.F. CHOKES AS INDUCTANCE COILS

(Reprinted with kind permission of "Radio Craft.")
Since their introduction several years ago, I have found many uses for the popular R.F. chokes of about 2.5 mh
inductance, wonnd in four pies inductance, wonnd in four pies on indeed quite versatile, and with very slight alteration lend themselves to use as inductance coils in a variety of applications. Especially do I find them useful as I.F. transformers and coupling impedances in ultra-compact receivers, or auywhere I wish to keep size at a minimum. Also they are ideal for use in electron coupled circuits for beat oscillators in fact, they are more useful to me as basic coil foundations than they
are as R.F. chokes. are as R.F. chokes.
Several diagrams herewith show some of the many circuits in which I use these coils, together with the data on what
alterations are necessary to adapt the chokes to these specific circuits. A table of the various frequency ranges, and the capacities necessary to tune to their specific frequencies is also given In cases where there are two or more choices of capacity-inductance combination, it is better practice to select the combination having the higher inductance, as the use of higher inductance and lower capacity to tune to a given frequency usually results in higher efficiency.
The constructor or experimenter who decides to experiment with these flexibue little coils will find, as I have, that they are very handy to have around when you wanll size and can't foil of extremely want at the can't find just what you these chokes, sup condensers Besides, these chokes, and condensers to thive transformer on the market any S. H^{\prime} :

$$
\mathrm{c}
$$

Since the "four-pi" choke as a whole has an inductance of 2.5 millihenries, pach individual section, or "pie," has an inductance of 0.625 M.H. Two pies, therefore, would have an inductarice cf 2 times 0.625 or 1.25 M .H. ; three jips an inductance of 1.875 M.H.'
An inductance of 0.625 M.H. (one pie) tanes to $850-375$ kilucycles, with a condenser of 58-325 micro-microfarads.
An inductance of $1.25 \mathrm{M} . \mathrm{H}$. (2 pies) tunes to 875-325 kilocycles with $27-180$ mmf.
An inductance of $1.875 \mathrm{~m} . \mathrm{h}$. (3 pies) tunes to 1250-425 kilocycles with a $7-80$ mmf. condenser. A large condenser rould be used to extend this range.
The above values were chosen especi nlly for working around 465 kilocycles.

TUNED IMDEDANCE WITH REGENERATION

THE EVER-POPULAR CRYSTAL SET

Though progress is being made rapidly in the radio world there will always be place for the Crystal Set, that reliable "for a song." "for a song."

The "OXFORD" CRYSTAL SET de scribed below may be constructed with ease by any schoolboy.

Though there may be one or two multivalve receivers in the household, the crystal set is still practicable, for whil mother and father may not wish to listen to the "big radio, junior can al ways dash away and listen to his sur on the members of the family.
However, this set is not recommended for use further than 30 to 40 miles away from a strong station. There have been instances where crystal sets have brought in stations up to 200 miles away and sometimes even overseas, but

"OXFORD" CRYSTAL SET PARTS

One Crystal Detector
One Variable Condenser, .00035 mfd. or .0005 mfd .
One $3 \frac{1}{2} \mathrm{in}$. $x 2 \mathrm{in}$, or $3 \frac{1}{2} \mathrm{in}$. $x 2 \frac{1}{2} \mathrm{in}$. Coil Former
Two Coil Feet
One oz. 24 gauge S.C.C. or D.C.C. Wire
One Baseboard
One Panel
Four F'ahnstock Clips
One Crocodile clip
Screws, Solder, Lugs, Nuts and Bolts, Etc.

COMPLETE KIT OF PARTS Cat. No. UK2006
this must be considered an exception to and not the general rule.
80 turns should be wound. If $2 \frac{1 i n}{}$ former, 60 turns, both using 24 gauge D.C.C. wire with tappings at every 8th turn. Do not try to rush the coil winding, as a neat job is imperative. It is a tedious undertaking, but you will be well repaid for your time and trouble. On completion of the coil attach the feet and screw to the baseboard. Now screw the front bakelite panel to the baseboard and mount the crystal de tector. The variable condenser should now be fastened to the front panel. At the top of the panel on either edge fix twormals for the terminals for the Aerial and the nections. At the bottom of the pane mount two further terminals for the phones.
The mounting of the components is now completed.
Wire the set as follows:-
Wire from the top of the coil winding to the fixed plates of the condenser, thence on to the crystal detector. Brom the other terminal of the crystal detector wire to one phone terminal. Connect the bottom of the coil to the moving plates of the condenser, and then on to the Carth terminal. The remaining phone terminal is also wired to Earth. On to a piece of push-back or similas: wiring connect an alligator or bulldog clip, the other end of this wire going to
the Acrial terminal. Screw-the knob on
to the shaft of the variable condenser, and that's all there is to it. The set is

AERIAL SYSTEM

There is a saying in radio circles that receiver can only be as good as the Rerial allows it to be. This is correct with ordinary receivers, and even more so in the case of crystals, where the Aerial and Earth govern 90 per cent. of the reception. The ideal aerial should be approximately 75 ft long and 40 ft high. While it is not advisable to make it any longer, because of stations overriding one another, the height may be ncreased as much as possible; the higher the better.
The Earth could be a copper pipe driven into the ground or else an earth clip attached to a water pipe.
Remember, the better the Aerial and Earth the better the reception.

CONSTRUCTIONAL DETAILS
The first project should be to wind the coil. This is done on either 2 in . or $2 \frac{1}{2} \mathrm{in}$.

bakelite former. If 2 in . former is used finished and you can boast that you have built yourself a Radio.

THE CRYSTAL
Should the occasion arise for you to remove the crystal from the Detector, do so with a pair of tweezers. Never is a wise plan to periodically clean the crystal with a little petrol, removing grease and dust.

OPERATION

Connect the Aerial and Earth leads and the phones to their respective terminals. Select a tapping on the coil by means of the Alligator clip and tune the just the catswhisker on the detector for the best results.

HEADPHONES

While one does not feel inclined to pay a big price for a good pair of headphones for such a low cost set, we would like to stress the point that if superior quality phones are used, the better the tonal quality and volume will be. However, the set will certainly operate with a pair of cheap headphones, providing the resistances of the phones is not less than 2000 ohms rating.

SIX UNUSUAL CRYSTAL SET CIRCUITS

THE POPULAR "ONE"

(By C. V. CRIGHTON)
In response to numerous requests for a reat and compact receiver; we present "The Popular One," the little fellow with a big heart. Simple circuit -brilliant performance. Easy to build and gives exceptionally good results. Uses a miniature tube. It's small, and may in fact be carried in the average size coat pocket.

CONSTRUCTION

In building this small receiver our first thought was for a small pocket size set, yet big enough to allow for neal wiring yet big enoug
The size of the cabinet, $5 \frac{1}{2}$ in. x $4 \frac{\pi}{6} \mathrm{in}$. x $2 \frac{7}{4} \mathrm{in}$. deep, was constructed of 5 -ply wood round the sides and the front and back of 3 -ply. A coat of stain adds to the appearance.
First mark the position of the holes to take the shafts of the condenser and potentiometer. The condenser mounted at the bottom in the corner and the pot. opposite. Make sure the holes are at the same height and distance from the edge of the cabinet. The aerial and earth terminals can be mounted at the top, one in each corner. In the centre the switch is mounted and above this the twin tip jack is screwed into position. This completes the front of the set.
Next we do a little soldering, and here' we might mention that the best results in soldering are achieved by applying a little soldering paste to the joint, then with resin core solder and soldering iron complete the joint. All wiring should be as short as possible.

Solder two wires to the earth terminal, one going to the moving plate terminal Gin. long is left to other being about $A+B$ - battery connections later.

Wire the .00005 mica condenser from aerial terminal to fixed plates of condenser. Wire from centre contact on pot. to one phone terminal. Nolder wire to other phone terminal, laving 6in. for onnecting to $\mathrm{B}+9 \mathrm{v}$. later.
Wire the .002 mica condenser from centre contact on pot. to moving plate terminal of condenser.
Next comes the mounting of the valve socket. Mark the position of the holes for mounting the socket on the side of the cabinet. Make sure there is ample

room for the valve without touching "ther components. Before mounting socket, solder wires to socket connections, leaving ample length of wires to connect to the various components.

Mount the socket and solder the leads in their respective positions. \mathbf{F} - (1) to switch; $P(2$ or 6) and G2 (4) connected together to left lug on Potentiometer. $\mathbf{F}+(7)$ left to connect to the "A" Battery later. Place 2 meg Resistor and .00025 Mfd. Mica Condenser side by side and twist the pigtails of these together and run the soldering iron along them. Connect one end to G1 (3) on valve socket and the other end to the fixed plate terminal of the variable condenser.

Mount the coil in a convenient position beside the valve, being secured to the cabinet by a strip of metal passed through the hole in the former and bolted at cither end. Make sure the lugs of the coil do not touch the switch or any other component. The colour code of the coil is as follows:-

White: Top of first winding.
Red : Bottom of first winding.
Green: Bottom of second winding.
Black: Top of second winding
Wire from white lug to centre lug of pot.
Wire from red lug to left lug of pot. Wire from green lug to fixed plates of condenser.
Wire from black lug to moving plates of condenser.
This completes the wiring of the set Next the wiring up of the batteries. The six pen-lite cells are connected in 935 Everies to make a neat 9 -volt pack. A 935 Eveready cell used as an "A".Battery is strapped to the " B " Battery. their respective terminals. A small piece of cardboard placed around the batteries avoids any part of the set shorting the cells. The wiring is now finished all but the checking. Put the knobs on the two shafts protruding from the front of the set. Plug the phones in the twin tip jack; connect the aerial to the aerial terminal and earth to earth terminal.

PARTS LIST

1 1S4 valve.
1 Midget valve socket.
1.00035 mica spaced condenser.

2 Small pointer knobs.
1 Twin tip jack.
12 meg. $\frac{1}{2}$ watt resistor.
15000 ohm volume control.
1 Switch.
1 only .00025 mica condenser.
1.002 condenser.

1. 00005 mica condenser.

1 Midget R.F. coil.
6 Penlite cells.
1 112 v. unit cell.
2 Fahnstock clips.
3 ft. Pushback wire.
8 Nuts and bolts.

COMPLETE KIT OF PARTS Cat. No. UK2005 .. 47/6 Post Free

KIT SETS

Send us a list of the components you require for your next Receiver, Amplifier or Tuner and we will be only too pleased to quote you on the individual items or in Kit Set form. If unable to send a parts list, just supply us with the circuit diagram and we will do the rest. This is another Lamphouse Service and places you under no obligation to us whatever.

THE "IMPROVED HIKER'S ONE " RECEIVER

Still as Popular as it was in 1939

This set has stood the test of time and there are now thousands of "Hikers" Sets" in use throughout the Dominion. Practically the only failures have been due to bad and untidy workmanship. When making your set be meat, particularly with the coil and soldering. Attention to these points and success will be yours.
In country districts (away from powerful local stations) reception of all the main New Zealand stations and many Australians can be had in the evenings; whilst your nearest YA station will come in during daylight even in summer, and all this without the need of a large and expensive " B " Battery.
CONSTRUCIIONAL DETAILS
First, screw the panel to the baseboard. Then slide the condenser up to the panel and mark the position for the hole to take the shaft. Now mark panel in the same relative position for the potentiometer. Make both of these holes large enough to take the threaded bush on the condenser and the potentio-
meter. You can now mount these two, fastening them to the panel by means of me mounting nuts provided. Now making sure that the for the phones, tuning sure that the one nearest the tuning condenser does not touch the the panel.
Next, drill seven holes through Next, drill seven holes through the
baseboard and mount the Fahnstock

Clips. Looking at the back of the set, mark these clips from left to right as follows:- $\mathbf{B}+9 \mathrm{~V}, \mathrm{~B}+1 \frac{1}{2} \mathrm{~V}, \mathrm{~B}-, \mathrm{A}+$ A-, I A. Screw down the valve socket behind the condenser.

Now the coil. It is essential that a neat job be made of this, otherwise tuning will be erratic and oscillation awkMUST be in the same direction angs spaced $\frac{1}{8} i n$. apart. Make a small hole等in. away from one end of the former and pass the wire through this twice, looping it the last time and leaving about 6in. to connect up the A terminal afterwards. Wind on closely and neatly 35 turns, finishing the end off by passing the wire through two small holes in the former spaced about $\frac{1}{8}$ in. apart and leavOne about Gin. of wire for connecting up. two more small holes and commence the next winding of 100 turns, finishing off the same as the first winding. The third winding is put on the same way $\frac{1}{8}$ in, below the second winding and has 40 turns. You should now have about $\frac{1}{2} \mathrm{in}$. former left below this winding to which the coil feet are attached. Do not mount the coil yet, but commence the wiring. All joints should be sol-dered-and not with liquid solder or spirits of flux-use resin core solder for

Wire from tuning condenser frame to F+ clip on valve socket and on to clip marked B-, on to At and thence to 1. The bottom of both the first and second coils are now also wired to \mathbf{E}. Bottom of third coil to P connection on valve socket. Wire from left lug of potenthameter also to P on valve socket. Note that right lug on potentiometer is not used. Top of first coil to clip marked A. Top tuning condenser. Place resistor and remaining . 0001 condenser resistor and and twist together the pigtails by side, and run the soldering iron along them Connect one side of this along them. G connection on valve socket other side to fixed plate terminal tuning condenser.

The wiring is now finished, all but the checking. It is important to check burning out as a mistake might mean on the two the valve. Put the knobs front of the phones to the phone terminals. connect the aerial (which good one) and the which must be a must be good) to the clips marked A and E respectively.

BATTERY CONNECTIONS
Clip A- goes to side terminal on No. 6 that parts to be soldered are
clean, preferably sand-papered clean. The following is a complete wiring list:-
All wires should be laid flat on the baseboard and be as short as possible. Neatness here will count a lot. Wire from the A.clip to one side of the Switch on the potentiometer. Wire from the other side of to F- on valve socket Wire from centre socket. on potentiometer to nearest phone terminal. Wire from the top of the third winding on coil to centre contact of the potentiometer
One side of .0001 mica condenser to frame of tuning condenser - (the coil should now be mounted) and the other side also to the centre contact of potentiometer. Wire other phone terminal to clip marked $B+9 V$. Wire S on valve socket to terminal marked $\mathrm{B}+1 \frac{1}{2} \mathrm{~V}$. When using Octal based valves (105GT and 1Q5GT) an improvement is effected by using 9 volts on the 1 $\frac{1}{2}$ volt lead from valve socket instead of the $1 \frac{1}{2}$ volts as stipulated.

UNOER SOCKET VIEW.
NC shown on 105 GT and 1 C 5 GT Valves $=$ No Connection.

Clip $A+$ goes to the centre terminal on Clip Bo. 6 Cell. the C Battery.
Clip B+1, ${ }_{2}^{2}$ goes to the -6 volt socket on the \mathbf{C} Battery.
Clip $B+9 \vee$ goes to the + socket on the C Battery.

The last three conections may seem wrong, but you must remember a C Brong, but you must remember is usually used for giving negaBattery is usualiy used to valves, and consequently, marked with one + socket and tapped - sockets. Actually the -9 socket gives us - 0 V ; the $-7 \frac{1}{2} \mathrm{~V}$ socket gives gives us $+1 \frac{1}{2} V$, and the $+0 \nabla$ socket gives us $+9 \mathrm{~V}^{1 \frac{1}{2}}$ In operation it might be found necessary to increase $B+1 \frac{1}{2} V$ to $3 V$, or $4 \frac{1}{2} \mathrm{~V}$, to obtain satisfactory oscillation.

If this is so, move the connection from 71 V to -6 or $-4 \frac{1}{2}$ sockets.
OPFRATION
'Turn the volume control clockwise to the point just before the set goes into osccillation. Should you advance this control too fur, a whistle will be heard in the phones, which indicates the set is oscillating. To operate a set in this condition not only causes interference in nearby receiving sets, but is also an offence against the broadcasting regula tious.

In conclusion, may we wish you 365 days and nights of good reception with your "Hiker's One."

IMPROVED HIKER'S ONE

PARTS LIST

Two . 0001 mfd . Mica Condensers One 1 meg. Resistor
One Variable Single Gang Condenser, . 00035 or .0005 mfd .
One 500,000 Potentiometer with Switch
Nine Fahnstock Clips or Ter minals
One Valve, 49, 1Q5GT, 1C5GT
One Valve Socket
One 14 in. $x{ }^{1} \mathrm{i}$ in. Coil Former
1oz. 32 gauge Enamelled Wire
Two Coil Feet
14 Wood Screws
Two Nuts and Bolts
One Coil Pushback Wire
One Baseboard
One Panel
Two Knolos
One 12 V . Wry Cell
One 9v. C. Battery
COMPLETE KIT OF PARTS, with Octal Valve and Batteries
Cat. No. TK2004
£2'13'6

SAVE THE OLD PLIERS en you have trouble with th bending of long-nose and

pliers, making them useless for the purpose intended, grind off the noses.
Instead of having to discard them, you have a novel pair of diagonal cutting pliers.-"Radio Craft."

COPYING DIAGRAMS

When a large and complicated diagram must be copied, it requires a great deal of time and effort, even if oue uses tracing paper or carbon paper. Still worse, one is very apt to make mistakes or However
However, after a little experimenting, method. found a much easier, quicker tine to a wad of cotton or soft brush and spread it over the entire surface of the diagram. Next, I lay a clean sheet of white paper over the diagram sheet finally I rub this all over with a hard,

smooth object, such as the bowl of a spoon

Of course, the diagram appears on the white paper in reverse, but this is not msually much of a handicap. If you must have the diagram appear exactly as the original, simply repeat the process, recopying it from the paper.

JIFFY CONNECTOR

It seems that there are no end to use for the "old faithful" paper clip. I find that it serves excellently as a connector

where temporary test connections are to be made. While the drawing shows two phone tips held together with a paper clip, amost any connection may be made in a is well manner. Flexible wires, of course, as well as solid wires, may be joined tothem.

EMERGENCY PHONE JACKS

When doing experimental work using bread-board type mountings, I ran short of phone posts. However, I had some

old plugs of the type used for electric irons and toasters. I removed the clips rom these plugs and screwed them to the board, where they worked fine as phone jacks.

CIRCLE CUTTER
A cheap and effective circle cutter is an essential when building sets ou metal chassis or when cutting panels. The drawing herewith shows a cheap but highly effective cutter of this type,

which can be made from an old file. The file may be softened by annealing it in a gas stove. This is done by heating the file to cherry red, then allowing it to cool slowly. The end is then sawn and filed into the form shown in the illustration. After this, it is reheated to cherry red and plunged into cold water to temper a standard brace. If it does not fit securely it will wobble resulting in securely it wir wobble, resulting prove an aid to the experimenter.

HOME-MADE BONE CONDUCTOR
Having been so successful in convert ing my hearing-aid earpiece to bone conduction with improved volume and better tone for my particular hearing loss, I am taking this opportunity to pass the idea on to others who are hard of hearing.

To make this home-made bone conductor, simply take a single headphone (matched, of course, to the hearing aid) and serape off the enamel from the centre piece of iron or copper rod approximately $3-16$ th or $\frac{1}{4}$ inch in diameter by about $\frac{1}{2}$ inch in height so that it just protrudes above the earpiece cover, and can be set against the bone back of the ear.

A SIMPLE TONE-COMPENSATOR

 UNIT.(From "Radio and Hobbies," Sept. 1940) This little unit can be adapted to "boost receiver or ampligel circuits to bass notes "boost up" the bass notes. It is totally

different from a tone control, which makes a receiver "woolly" because of definite high note chopping. In this scheme the high notes are merely reduced in strength more than the lows, but they are not suppressed.
The idea of the variable resistor is to change the amount of high note cut at will. Thus with the resistor all out, about all you will hear are the bas notes. The over-all amplification of th udio section wil be reduced slightly The unit is suitable only for triode valves or medium lifor phat on triode amplifer in a radio set, or an audiou The bnit is simply connected circat. the plate the value th chassis The blocking condenser of 1 mfds. or more will prevent a short-circuit mids. or more will prevent a short-circuit flowing through the choke, so if you hava) a very good audio transformer, try using a very good audions.

BURNT FIELD COILS

Speaker freld coils and phonograph motor field coils that have their insulamotor badly charred and are loose through overheating from shorts, etc., but which have continuity of winding, can be repaired by placing the winding in a can of high melting point insulating pitch or compound. The same compound that transformers are sealed in. Boil the unit for about ten minutes, remove late each wire and will make the winding tight and safe again.

MAKING A BUG KEY

A home-made bug key which eliminates the machine shop, mechanical engineers, cranes, etc., which are usually required in the making of even the simplest homemade bug, is being used here at my home, and although it has a rather strange and startling appearance, it works quite decently and can be made in any wellsquipped kitchen or bathroom with very little struggle.

Briefly, the idea is to use a straight key set up on its right side with a couple of angles for the main part of the terminal and screw the vibrating spring on to the end of the arm. Thus in one swoop the tough question of bearings, main arm and one of the springs is disposed of.
The diagram gives all the necessary details. The universal clips used for weights are easily adjustable for various speeds. The light spring carrying the dot contact is a prong contact from a Benjamin spring socket. Almost any light spring would do here. The vibrator spring is a one-inch piece of half-inch corset stay, with one-quarter inch bent at t is brittle) and drilled or punched at the unbent end for the back adjustment screw on the key. It is clamped under the locknut on this screw. The screw is lock-nutted to the bent end of the vibrator spring; a hole snould be punched and the vibrating arm fastened securely. The rubber band balances the tension of spring near the dash contact no that the arm comes back to a middle mring ander a fock of dots. A light pring under the adjusting screw at the undoubtedly key would look less queer, andoubterly. The two sets of contacts should, of course, be connected in

It was necessary to solder over each of the contacts on the dash end, making a solder to solder contact, as the high resistance of whatever Signal uses in his contacts made the dashes sound different from the dots (which have a low resistance path) in my monitor. A piece of makes the dot knob.
The adjustments of the thing call for much cut-and-try. The rubber band, the dash spring and the set screw at the back of the key are adjusted for about one-eighth-inch swing on the dot side and one-sixteenth on the dash side, with enough tension on each spring to bring the bar back firmly to the middle posithe dot position, the contacts should touch with a slight tension on the should touch with a slight tension on the spring carry the pirt the home-made bugs have adjustments of many times there is been explained about this bug exept the use of the straight key, which really makes it simple matter any ham cam build it more glass arms.-A.RR.L. Handbook.

CONNECTING A PICK-UP OR MIKE

 TO YOUR RADIOConnecting a pick-up to your radio will give you endless joy from your own acords, and, if a microphene is also

and announcing your own programmes. Our circuit diagram shows the connections to be made. On most sets the detector valve is the shielded one witr the grid clip on top and which anema o the two or more valves which bave no can un top. Usually it will be one of the following numbers: $57,55,606$ $6 B 7,2 \mathrm{~B} 7,224,24 \mathrm{~A}, 6 \mathrm{~B} 8,75,6 \mathrm{Q}$.
The grid clip, to which a wire is connected, is removed, and in its place the wire from the volume control on the pick-up or mike is fitted-preferably by means of a small clip. The other wire rom the pick-up is connected to the chassis of the receiver, probably to the earth terminal will be simplest.

THE "SUPERGAINER" AMPLIFIER

(By Rahob 5851)

On paper it may seem that a pair of the resistor stops the maximum voltage 6A3's with back bias have an output of 15 watts. This, however, is very diffcult to obtain, but a useful output of over 10 watts may be expected with resistance capacity coupling.

The diagram of the Amplifier shows that a total of six tubes are employed which are as follows :-6B8, 6C6, 6N7, a pair of 6A3's and a 5Z3. Alternatives may be used in the following line up:- Type 6B7, 6J7, 6A6, 2A3's and 5U4G as Rectifier.

Given in the schematic diagram is also a set of 2.5 volt Tubes.

Since the 6B8 is a Duo-Diode Pentode, a Tuner may be added very simply by using these diodes for detection. In this manner a high quality local station receiver could be developed, thus the 6 B 8 is the logical choice for this posi$6 B 8$ is the logical choice for this posi-
tion. Next the 6 C 6 is utilised in the usual manner as a phase inverter, feeding the 6N7, which in turn drives the 6A3's in push pull. The rectifier used must be a $5 Z 3$ or a similar high power type. A type 80 would definitely be unsuitable.

FEDD BACK
Feed back is of a limited type and is developed from the voice coil, where the desired amount is fed back through a 25,000 ohm resistor. From here, through the $\frac{1}{2}$ meg. pot. on to the cathode of the 6U6. 'I'he condenser prevents any DC being fed on to the cathode, while
the resistor stops the maximum voltage
from being fed back. At full output a small amount of feed back is desired. It is very important to notice that th voice coil has polarity, and if this is not observed strong oscillations occur. The best idea is to put the amplifier into operation, earth one side of the voice coil, and apply feed back; if you have the wrong polarity the loud speaker will soon let you know.
There are two tone controls included in the circuit. One is the usual high note cut obtained from a .01 condenser connected to the plate of the 606 and to earth through a meg. pot. The other is a pot. she for vacus piouns and ghe layin old or worn be oliminated to a tecde scratch may this control.

The filter in the input section of the $6 B 8$ is to prevent any stray RF signals entering the tube, and all this wiring should be shielded. It is also important that the resistors in the plate and For best results they should be checked on a meter, and the one with the lower valur should be filed until both resistors are identical. This is necessary for corare identica. phase inversion. The 15,000 ohm
rect rect phase inversion. circuit of the 6 N 7
resistor in the plate cir resistor in the plate circuit of the 6 N 7
should be of the 3 watt variety, and should be of the 3 watt variety, and
this, with the 8 mfd. electrolytic condenser steadies the voltage across the driver plates.
,000 on to the output tubes: $5,000 \mathrm{ohm}$ grid stoppers prevent strong
parasitic oscillations, which are likely to be troublesome if which are likely omitted. Tone compensation across the 6A3's consists of a .05 mfd . Condenser ($600-1,000$ volt working) and a resistor of 4,000 ohms (approximately 1.3 times the load impedance of the tubes.
This arrangement keeps the load impedance reasonably constant, since, that when the frequency rises the impedance of the voice coil rises also, but at the same time the impedance of the condenser falls. Thus a fairly even balance is maintained with the use of this filter.
Another very important point in connection with the 6A3's is that the output transformer must provide the correct matching between the tubes and incorrect, tone and volume drop be uickly making the amplifior quite use quickly making the amplifier quite useor the 6A3's is used. The bias resistor has a 6.3 v . 3 amp . bulb in series with it o act as a pilot light and a HT fuse Normal operating current drawn through this bulb causes a faint glow.

SPEAKER

We recommend a Rola 12 in . P.M. Speaker mounted on a large baffle board 4ft. square for an excellent bass response. A 12 in . E.M. Speaker with a 1,000 ohm field would be used as an alternative by connecting the field place of the 800 ohm bias resistor.

With such a high gain it may be difficult to eliminate all the hum; however, this may be tracked down as follows.
On earthing the grid of the 6C6 the hum will probably disappear, and if so it is obvious that the hum is arising from the previous stage. This may be eliminated by connecting all the earthed points of the suspected valve to a point insulated from earth, and then probe around with a length of flexible wire until a neutral point is found. The volume control should be earthed in this manner.

CHASSIS

The chassis, which is made of heavy kauge tinned steel, measures $15 \times 7 \times 2 \frac{1}{2}$ inches. Although the general lay-out should be adhered to, the chassis may
be altered slightly to suit the larger components available to the constructor. It is advisable to keep the power leads away from the volume control and the in-put circuit. This is accomplished by putting the power-switch on the feedpack control.
With regard to the results, it will be found that this amplifier will give good reproduction and ample power for the gramophone enthusiast, while it might also serve for a small dance hall or public address amplifier.

THE "SUPER-GAINER" AMPLIFIER

One Chassis
One 6B8 or 6B7 Valve
One 6C6 or 6J7 Valve
One 6N7 or 6A6 Valve
Two 6A3 or 2A3 Valves
One 573 or 5U4G Valve
One 150 MA Power Transformer One 100 MA 30 h . Choke
One 50 MA 30 H Choke
Two 500,000 Volume Controls
Two 1 meg. Volume Controls
One Speaker Plug and Jack
Twenty Resistors
Seven Valve Sockets
Two 16 mfd. Electrolytics
One 8 mfd . Electrolytic
One 4 mfd . Electrolytic
One 25 mfd . 25v. Electrolytic
Two .1 mfd. Tubular Condensers
Three .05 mfd . Túbular Condensers Two .01 mfd . Tubular Condensers Two .5 mfd. Tubular Condensers One .0001 mfd . Mica Condenser One 6v. Dial Lamp
One 800 ohm 10 watt Resistor Four Knobs
Sundries, Power Flux, Fook-up Wire, Solder, Lugs, etc.

SELECTIVITY

A pre-set Condenser in the aerial leadin will be found helpful when two stations on approximately the same wave-length are interfering with each other. In some cases it will not only allow the stations to be separated, but by careful adjustment of the condenser the reception is londer than without it. This dingrum shows how to connect

THE "BATTERY SUPERETTE"
 (By "Starlight")

The Superette is, as its name tries to imply, a small superheterodyne-small in cost as well as in design.
By glancing at Circuit A, you will note that a 1 d tube carries out the role used as a prid-leak type second detector
The audio stage, using a 1Q5 pentode, may be built as shown, or transformer coupled to give a slight increase in gain. built, and their construction is relatively simple. Each former is 1 in . in diameter and 1 in. long. The aerial coil consists of 105 turns of 36g. D.s.C. wire, the finding starting from about sin. away from the top of the former. 100 thas occupy about lin. Winding space, thus leaving inin. excess former at he bot as Blows ande these are of such size as to shown, and these are of such size as to give a clearance of cuassis of the winding thus is approximately fin away from the chassis. The A-E winding is made as depicted-on A- Winding is made as depicted-on earth ond secondary winding at the secondary by a layer of paper.
The oscillator coil is of similar construction, but the winding starts $\frac{f}{4}$ in.
from the top of the former. Seventy turns of the same gange wire occupy about $21 / 32$ in. of winding space, thus

leaving a piece of former $19 / 32 \mathrm{in}$. bure. Brackets are mounted as before. The 10 turn plate coil is wound in identical fashion to the $\mathrm{A}-\mathrm{E}$ winding on the other stecued with coil dope

The coils have to be shielded, more particularly the oscillator coil, and care must be taken not to use small diameter cans, otherwise extra turns may have to be added to the windings as colp high tion. They also should he pione 2 gin. diameter and sions of shict cans bother

Sketch C shows a lay-out suitable for the receiver.

New Design for lay-out.

Suitable coil cans may be made from baking powder or similar tins, and once enamelled they suceessfully disguise their origin.
Regeneration may be incorporated by winding 80 turus (approx.) of wire (jumble wound) on the I.F. transformer former. close to the appropriate winding and controlling regeneration by any of the recognised potentiometer methods. This is not as hard as it
The 375 mmfd. padder need not be of this precise value. For example, a 0003 fixed mica condenser paralleled with a trimmer condenser can replace the 375 mmfd. component. If this is the case, you may have to undertake a little "hit and miss" procedure to get a suitable combination.
The R.F. choke in the IN5 plate lead is not critical as regards value. A $10 \mathrm{~m} . \mathrm{h}$. unit is suitable.
The grid leak of condenser in oscillator circuit are returned to earth through the grid coil
The alignment of the completed receiver is fairly simple. Fqr preference, phones are inserted in the detector plate lead.
If a spare single section variable condenser any value between 350 and 500 mmfd. is available, the easiest way to line up is to temporarily disconnect the oscillator section of the regular two-gang tuning condenser and substitute the spare. By rotating the main and temporuyy condensers a signal will be picked
up. Tonal quality will be poor due to
impedance mis-match. By identification of B.C. stations near the $1,500 \mathrm{kc}$. and $550 \mathrm{k} . \mathrm{c}$. ends of the broadcast band, the band can be approximately centred on the aerial (regular) tuning condenser by adjusting the paralleled trimmer, or, in a very extreme case, by adding or reThis is turns from the 100 tarn been tampered with-that is, the trimmers have not been needlessly altered The windings should be at their factory setting or tuned to approximately the same frequency.
If the necessary equipment is not available, a station on about $670 \mathrm{k.c}$. is avaned in. If the I.F. transformer was tuned to 465 kc . the oscillator will be operating on 1135 kc . (670 plus 465). A second receiver tuned to a station operseting ou 1130 kc . will produce a 5000 cycle bcat. or at least cause it to be set up foviding some of the 1135 oscillator yoltare finds its way into the aerial allong with the 1130 ke B.C. signal. Thi: along with the 11a0ke B.C. signal. This is accomplished by arranging the aerial lead of the second receiver near to the oscillator variable condenser leads. If of heat note is heard, a slight movement of the substitute oscilator condenser (leaving the main ganged a condenser
alone) should produce one. A beat note akone) shonld produce one. A loeat note 1130ke., but in this example the oscillator condeuser sctting should be on the H.F. side of zero beat. The setting giving the 5000 cycle note is estimated, which is near enough for practical purposes.
Leaving the tuning condensers untouched, the I.F. trimmers are adjusted until the 670ke. statiou is tuned in perfectly, thus completing the tuning of the I.F. transformer.

Next we have to track the oscillator section of the tuning condenser with the derial condenser. Still using the substi tute condenser, tune in a station near to $1500 \mathrm{k} . \mathrm{c}$. Tune the aerial condenser as true as possible and take plenty of time Remove the substitute condenser and reconmect the leads to the oscillator sec tion of the tuning condenser, making sure not to disturb the setting of the gang condenser. By adjusting the trimmer associated with the oscillator section, the station should be perfectly tuned in Next substitute the spare condenser and tune in a station at the 550 kc . end o the band. Again remove and re-connect the regular condenser, taking care not to disturb its setting. Now adjust the padder, thus tuning in the station ex actly. Repeat the procedure at th 1500 k.c. end of the band, as a larg change in the capacity of the padde will have some effect on the alignment a that end.

It will be found that alignment at the centiod the band will in atmont ganged condensers are in alignment at
both ends of the band. The outer rotor |serviceman will take this load off your plates may be slightly bent to take care shoulders at a nominal charge-and posof any slight deviations, as appropriate sibly do a more precise job. Lining up to either condenser section.
simple, but if you frocess it relatively by ear can be done fairly accurately, but it is realised that the use of the correct instruments makes a better job.

PARTS LIST FOR THE "SUPERETTE."

One Chassis.
One each 1A7GT, 1N5GT, 1Q5GT Valves: One .000385 mfd . 2 gang Condenser.
One $465 \mathrm{~K} . \mathrm{C}$. Iron Core I.F. Transformer. One Trimamer.
One Dial.
Three Octal Wafer Sockets.
One .0001 mfd . Mica Condenser.
Two .0002 mfd . Mica Condensers.
One .00025 mfd. Mica Condenser. One . 02 mfd . Tubular Condenser. Two .1 mfd. Tubular Condensers. Four One Watt Resistors.
One 1 megohm Volume Control.
One R.F. Choke.
One S.P. S.T. Switch.
One 1in. x 6in. Coil Former.
One Twin Tip Jack.
Two Knobs.
Sundries-Including Hook-up Wire, Grid Cap, Coil Wire, Nuts and Bolts, Solder Lugs.

Complete Kit of Parts (as listed above) Cat. No. TK2020-Without Speaker
f5/19/6
Cat. No. TK2020A-Kit as above. Com plete with Batteries, without Speaker
£ $7^{\prime} 18$ '6

THE VERSATILE 4-WATT AMPLIFIER
(Rahob !055.)

This small amplifier uses a minimum of parts, and this will appeal to most constructors.
It utilises a GSJ7 tube coupled to a 6F6 pentode in the usual manner, and a cuit. Either is incorporated in the cirspeaker may be used, and in the fir case, the filter. choke needs to have an
inductance of anything between ten and thirty henries. If an electro-dynamic speaker is used, the field winding is used as a choke in the usual way, no other choke being required.
The two electro's in the cathode circnits are of 25 volt rating, and all other condensers, excluding the electrolytics,
are 400 v . w. types. The electrolytics

are 450 . w. components. All fixed resistors, unless otherwise specified, are rated at 1 watt
The amplifier is built up on a small chassis measuring 12 in . v 8 in . $x 2 i n$. deep, which leaves ample room to incor porate either an additional tube or push pull output at a later date.

It is essential that the input circuit including the connecting grid lead there to, be adequately shielded.

PARTS LIST FOIR "VERSATILE 4 WATT" AMPLIFIER.

Ore Chassis.
One each 6SJ7; 80, 6F6 Valves.
One 6.360 m.a. Power Transformer.
Two 8 mfd. Electrolytics.
One 16 mfd . Electrolytic.
Four Amplienol Valve Sockets.
One S.P.S. TI. Toggle Switches.
One each 500,000 ohm. and 10,000 ohm Potentiometers.
One 25 mfd . 25 volt Electrolytic Condenser.
One 10 mfd . Electrolytic Condenser. Two 05 mfd . Tubular Condensers.
One .01 mfd . Tubular Condenser. One 25,000 ohm. 25 watt Resistor. One 400 ohm $2 / 10$ watt Resistor. Four 1 watt Resistors.
Two Indicator Plates and Pointer Knobs. Two Terminals.
Sundries-Flex, Push-back wire, Grid Wire, Solder Lugs, Nuts and Bolts, etc.
Complete Kit of Parts (as listed above) Cat. No. TK2018
[7/9/6
Without Speaker.

WORLD TIME CHART

When it is MIDNIGHT in New Zea- 1.00 p.m.-Brazzaville, Belgian Cougo, land, the local times are listed in the Tunisia, Italy, Switzerland, Germany,
following countries and cities. Where Swedeu, Norway, Denmark. following countries and cities. Where summer time is at present being observed this is marked with an asterisk and is an hour added on to the time shown unless otherwise stated.
MIDNIGITT-New Zealand, Fiji.
11 p.m.-New Caledonia.
10 p.m. - New Guinea, Queensland, N.S.W., Victoria, Tasmania. (including
9.30 o.m.-South Australia 9.30 p.m.-South Australia (includin
Broken Hill), Northern Territory. Broken Hill), Northern Territory.
8.00 p.m.-Japan, Formosa.
8.00 p.m. - "Philippines, Western Aus-
tralia, Coastal China (Shanghai), Manchukuo.
7.30 p.m.-Borneo, Java, Singapore
7.00 p.m.-Central China (Chungking), Thai, Indo-China
6.30 p.m.-Burma.
5.30 p.m.-Indian Standard, Ceylon.
3.30 p.m.-Iran
3.00 p.m.-Iraq, Zanzibar, Madagascar.
2.30 p.m.- Kenya ($\frac{1}{2}$ hour).
2.00 p.m. - "Moscow, South Africa, Rhodesia, Egypt, Syria, Turkey, Greece, Finland.

Swedeu, Norway, Denmark.
12 Noon-G.M.T., Spain, *Holland * France, *Belgium, *Algeria, *Tangier (2 hours).
11.00 a.m.-Iceland, Canary Islands. 10.00 a.m.-Azores.
9.00 a.m.-Argentina, Brazil, Uruguay.
8.00 a.m.-Atlantic Time (Canada), Bolivia, Chile, Cuba, Paraguay, Puerto Rico.
7.30 a.m.-Venezuela.
7.00 a.m.-Gastern Standard Time (Connecticut, Delaware, Florida, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, North Carolina, Ohio, Pennsylvania, Rhode Island, South Carolina, Vermont. Virginia, West Virsinia, Michigan), Colombia, Dominica, Haiti, Ecuador, Pallama, Peru, Toronto.
6.00 a.m. Centrol Standard Time (Alabama, Arkansas, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Georgia, Minnesota, Mississippi, Missouri, Nebraska, North Dakota, Okla-
homa, South Dakota, Tennessee, Texas, Wisconsin), Costa Rica, El Salvador Guatemala, Honduras, Mexico, Nicaragua, Winnipeg.
5.00 a.m.-Mountain Standard Time Arizona, Colorado, Idaho, Montana, gary.

HIGH FREQUENCY BUZZER.

The sketch below illustrates the construction of a high-frequency buzzer made out of a single earpiece from a pair of 'phones.

The 'phone is mounted vertically on to a heavy bracket, a contact point being soldered on to the diaphragm. On to another bracket in front of the head

phone there is also a second contact point, while a third, in which there is a bolt to adjust the pitch of the binzaer, is directly behind. The buzzer nust be very firm for best results.

TONE CONTROL FOR "HIKER'S

 ONE"Here is a simple yet very effective variablified Hiker's or similar with an an old dodge but or similar set. It is some Rahobs. Put a variable resistance in series with a fixed condenser across the speaker terminals. The resistance

may be anything from $\frac{1}{4}$ to $\frac{1}{2} \mathrm{meg}$. and the condenser can be anything from an to .1 mfd. Try this and you will be will give. - Rahob 8107 variation in tone it
4.00 a.m.--Pacific Standard Time (California, Nevada, Oregon, Washington), Vancouver, Baja California*, Alaska
(Ketchikan).
3.00 a.m.-*Alaska (Junean).
2.30 a.m.-Hawaii
2.00 a.m.-*Alaska (Fairbanks).

A GOOD CONTACT MIKE

A single headphone makes a very good contact mike. This is a mike that is placed on the body of a string instruthrough your phone oscillator or amplifier.
A phone in which the magnet has become quite weak is the best. If the notes do not come through, cut washers from thin writing paper. Place them between the diaphragm and shell one at a time. The object is to increase the space between the diaphragm and the armature. Next glue a piece of felt or flannel with a hole in the centre to the ear piece of the phone. Mount the mike on the bass side of the tail piece, just behind the bridge, using scotch tape to make it secure. Plug it into the input of your phone amplifier and you are ready to go places.

CONDENSER TESTER

Here is another use for the magic eye tube. The circuit shows how to tes paper condensers with it. When con-

close momentarily until the condenser is charged. This charging takes from a fraction of a second to a few seconds, depending on the capacity of the con-denser.-Rahob A530.

INCREASING CONDENSER
CAPACITY
To increase the capacity of a Variable Condenser, cut out a number of pieces of mica the same size is the rotor plates of the condenser, and glue one plate. Doing this increases both the minimum and the maximum capacity.-

AMATEUR TRANSMITTERS LOG

An up-to-date log containing the name, address and call sign of every "Ham" Station operating in New Zealand.

AUCKLAND DISTRICT

Call Sign. Name and Address.
LiAA-Edwards, C.N., 26 Meola Road, Point Chevalier, W.3.
AB-Waite, S. G., 57 Anaac Street, Takapuna, Auckland, N.2.
1AF-Penny, V, G. M., 29 Faulder Avenue, Westmere, Auckland, S. 1.
1AG-Pope, C. R. W. L., 30 Sixth Avenue, Tauranga.
1AJ——Brown, A. J. C., 12 Northall Road, New Lynn, Auckland.
1 AL-Bartrum, R. G., 158 King Street, Cambridge.
AO-White, R. G., 5 Gilgit Road, Epsom, Auckland.
AS-McRae, I. H., 24-26 Hellaby's Bldg., 27 Queen Street, Auckland
1AU-Walker, E. M., Norwood Road, Bayswater, Auckland, N.3.
AV-Reardon, F. C., 85 Paice Ave., Sandringham, S.W. 1
AX-Orbell, R. J., 41 Paunui Street, St. Heliers Bay, Auckland.
AY-Henry, A. E. J., Portland, North Auckland.
AZ-Sherson, J. R., 10 Radnor St., Hamilton.
1BB-Sunting, A. B., 45 Monte Le Grande Road, Mt. Eden Bach 1BD-Wadbam, W. H., 22 Sefton Ave., Grey Lynn, Auckland, W. 2 1 BE -McKay, E. K. 19 Martin Ave., Remuera, Auckland.
1BH-Hudson, A. H., 121 Arney Road, Remuera.
1BL—Cosgrave, P. G. M.- ${ }^{1}$ Paunui Street, St. Helier's Bay, Auckland.
BM-Palmer, P. R., 102 Hillsborough Road, Mt. Roskil
1BP-Surman, J. D-, Temata, Hamilton.
1BR-Sweetman, T. C.n 25 Shelbourne St, Grey Lynn, Auckland.
1BT-Moore, R. J., 5 Springfield Street, Auckland.
1BT-Moore, R. J., 5 Springfield Street, Auckland
1CB-Nobes, J., Mangapiko Street, Te Awamutu
1CD-Baxendale, J., Cnr. Terry and Whitney Sts., Blockhouse Bay, Auckland, S.W. 3.
1CE-Sargent, T. A., 71 Perry Road, Mt. Eden, Auckland
1 CG -Hutchinson, B. R., Waikino.
1CK—Boyd, H. A., 13 Budock Road, Auckland, S.E.5.
1 CK -Salt, G. McB., 44 Pukeora Avenue, Auckland, S.E.
${ }_{1} C O-L e e$, W. L. E., Goodiellow Street, Te Awamutu
1CR-Hunter, W. E.; Awhitu 16 Joan Street, Point Chevalier
1 CS Williams, J. H., 60 Lake, Road, Devonport, Auckland.
CV-Wood, L. H., George Street, Te Aroha.
1CW-Dick, M. L. C., 14 Hutchison Avenue, New Lynn, Auckland.
1CZ—Pohnson, W. A., 37 Wynyard Road, Mt. Eden.
1DA-Quigg, L.' G., Takutai Avenue, Bucklands Beach.
1DB-Dugmore, F. $\mathbf{R y g}_{\text {g }} 16$ Briarley Street, Tauranga:-
1DC-Townsend, $\mathrm{R} . \mathrm{G} ., 79$ Kiwi Road, Pt. Chevalien, W.
1DD-Fownsend, R. G., 79 Kiwi Road, Pt. Chevalier, W.3. 20 Rowan Road, Tbree Kings, Auckland, S.E.3.
1DE-Adshead, G. O., 22 Taylor Street, Avondale, Auckland, S.W. 3 .
1DF-Gordon, 'P. P., 1287 Great North Road, Point Chevalier, W.3.
1DH-McDonald, T.' C., 17 Casey's Avenue, Claudelands, Hamilton.
1DI-Lindegreen, G. S., 3 Calgary Street, Sandringham, Auckland.
1DJ-Fielder; A., 24 Fairlands Avenue, Avondale, Auckland.
1DM-Cottam, S. L., 102 Grange Road, Mt. Eden, Auckland
1DN-Appleyard, C. B., 10 Folkes Street, New Lynn, Auckland, S.W.4.
1DO-Harvey, G. F., 23 Ayr Street Parnell, Auckland, C.4.
1DQ-Warden, C., 25 Maxwell Avenue, Grey Lynn, Auckland.
1DS-Day, H. F. W., 1449 Great North Road, Avond
1DU-Parkinson, J. H., Tirohanga, Opotiki.
1DV-Gibbs, S. B., Great South Road, Manurewa.
1DW-McNamara, F. R. S., 20 Cambria Avenue, Mt. Roskill, S.2.
1DY-Crickett, J. L., Thames Street, Morrinsville.
1DZ-Elliot, H. N.,' ${ }^{71}$ Selbourne St., Grey Lynn.
1FD-Davidson, J. F., Victoria Avenue, Waiuku.
1FE-Wood, A. F., 96 Peachgrove Road, Claudelands, Hamilton. 1FF-Gifford, A. B., Sloane Street, Te Awamutu.

```
Call Slgn. Name and Address.
    1FH-Cross, C. T., 19 First Avenue, Tauranga.
    1FI-Goodwill, C. S., Jellicoe Stree Te Puke.
    1FL-Wark, A. J., 123 Hinemoa Street, Rotorua.
    1FN-Duthie, D. A., Great North Road, Henderson, Auckland
    1FR-Andrews, F. R. W., House 31, R.N.Z.A.F. Station, Whenuapai.
    1FS-Martin, F. J., 60 McFarlane Street, Hamiton East.
    1FT-Walding, N. N., c/o. 362 Karangahap
    1FX—Carpenter, S., 161 Queen Street Northi.
    1 FZ-Coates, K. J., 2 Blomfield Spa, Takapuna, Auckland.
    1GA-Dervan, M. E., 34 Devonport Road, Tauranga.
    1GD-Tucker, S. A., 38 Clifton Road, Herne Bay.
    1 GE -Benson, G. S., 39 Henley Road, Mt. Eden, Auckland
    1GF-Fish, J. F., 19 Lake Road, Devonport, Auckland.
    1GI-Smerden, A. D., 7 Pencarrow Avenue, Epsom, S.E.3.
    1GK-O'Hara, A. D., 63 Meadowbank, Road, Remuera, S.E.2.
    1 GP-Marriman, E., 50 Naroto, Te Awamutu.
    1 GP -Merriman, E., 50 Nelson Street, Auckland
    1 GU -McLaughlin, J., Borwood Road, Matamata
    1GV-Spackman, B. C. W., 34 Seabrook Avenue, New Lynn, Auckland, S.W. 4
    1GW-Ross, P. R., Arapuni.
    1GX-Hawthorne, F. L., 10 King Edward Street, Auckland.
    \(1 \mathrm{GY}-\mathrm{Glassey}, \mathrm{R}. \mathrm{B.}\),76 St. Luke's Road, Mt. Albert, S.W.1.
1 GZ Amos, A. M., 1 Castor Bay Road, Castor Bay, Auckland.
    1HA-Miller, R, C., 7 Arawa Street, New Lynn, Auckland, S.W. 4
    1HF-Fitton, E. L., Victoria Street, Pukekohe.
    \(1 \mathrm{HH}-\) Smith, A. E., 42 Endeavour Street, Auckland, S.W.3
    1HI-Douglas, M., Manly, Whangaparaoa.
    1HJ-Snow, A, N. H., 18 Wallace Street, Whanga
1HM-Wyman, R. S., Pahinui Rpad, Papatoetoe.
    1HN-Philip, R. F., 24 Rata Street, New Lynn, Auckland, S.W.4.
    1HO-Jarman, A. W., 53 Disraeli Street, Epsom, Auckland. W. 5 .
    1HQ-Batty, H. W., 61 Hinemoa Street, Birkenhead, Auckland, N. 5
    1 HR-Goodwin, L. W., 57 Grey Street, Hamilton.
    1HV-Bettany, A. W., 7 Beale Street, Hamilton East.
    1 HW-Evans, G., 51 Wallace Road, Papatoetoe.
    1HY-Brown, D., 9 Clarke Street, Waihi.
    111B-Betty, G. A., R.N.Z.A.F. Station, Whenuapai.
    IID-Grown, E. E. A., Maniatutu Road, Te Puke.
    1IH-Fleming, J., 4 Pupuke Road, Birkenhead, Auckland
    11I-Skinner, H. R. G., 35 Aliford Avenue, Ellerslie, Auckland.
```



```
    110 -Pearce, R. M., 27 Epsom Avenue, Epsom, Auckiand, S.E.3.
    1IS-Calander, H. J., 8 Baurne Street, Mt. Eden, Auckland.
    1IT-Hayman, G.'L., 113 Great South Road, Remuera, Auckland.
    11 V —Scott, I. E., Newington Road, Henderson.
    11Z-McDonald, J.'P., 23 . Williamson Street, Cambridge.
    1JB-Piesse, G. F., 29 Benson Road, Remuera, Auckland.
    JD-Colmore-Williams, D. C., 10 Cameron Street Whand.
    1JE—Gaukrodger, H. W., Tirarau Street, Dargaville. Whangarei.
    1JJ-Smith, J. R. 34 Kingsland Avenue, Kingsland, Auckland
    1JJ-Tatton, L. A., 17 Grove Road, Mt. Albert, Auckland.
    1JL-Lockie, A. A., 100 Bowen Street. Thames. Grey Lynn.
    1JM-Acton, F., 32 Hinemoa Street, Hamilton.
    1JN-Walker, W., 5 Manning Street, Hamilton.
    1JO-Henry, H., P.W.D. Sub-station, Penrose.
    1JQ-Allen, A. E., 39 Fairlands Avenue, Avondale, S.W. 3
    1JR-Adams, N. A., 21 Maidstone Street, Grey Lymn, Auckland.
    1JV-Bunn, M. W. W., 21 Hanene Street, St. Helier's, Auckland, E. 1
    1JW-Tonson, A. E., 67 Sussex Street, Grey Lynn, Auckland, W.2.
    1JX-Hayward, C. A., Campbex R Road, Judea, Tauranga.
1 IY-Dooyle, E. A. L., 23 Mangere Road, Otahuhu, S.E. 7.
    1JY-Doyle, E. A. L., 23 Mangere Road, Otahuhu, S.E. 7 .
1JZ-Robertson, Cuckland. S. L., 39 Wallace Street, Herne Bay, Aus.
1KA-Kay, R. MacD.
    1 KA -Kay, R. MacD., 13 Kitenui Avenue, Mt. Albert, Auckland.
    1 KB -Thomson, D. D.; 17 Byron Avenue, Takapuna, Auckland.
    1KE-Lockie, L. W., 31 Bond Street, New Lynn, Auckland.
    1 KG -Needham, R. CB., West Street, Pukekohn.
    1K1-Johnson, J., Kaingaroa Forest, via Rotoruangarei.
```


Call Sign. Name and Address.
2DW-Hughes, W. J. T., 25 Cobden Street, Gisborne.
2DX—Patchett, G. P., 42 Beachville Crescent, Nelson.
2FA-Gutler, G. B., 46 Winter Street, Gisborne.
2FB-Butlier, G. B., 46 Winter Street, Gisborne.
2FE-Falkner, B. A., 49 Karina Terrace, Palmerston North.
2FF-Hands, C. T. C. 229 Gladstone Road, Gisborne.
2FH-Fitzgerald, T. M. F., 12A Victoria Street, Hawera
2FI-Knight, A. A., Montreal Road, Nelson.
2FL-Parsons, John, 25 Guy Avenue, Palmerston North. 2FP—Hoare, P. R., 56 Nottingham Street, Karori, W.3. 2FQ-Addison, R.'H., 56 Larikaka Street, Ngaio
2FS-Wastney, G. C., 118 Karori Road, Wellington, W. 3. 2FT-Lane, F. J. K., 8 Karaka Street, Palmerston North. 2FV-McCann, J. E., Merton Street, Trentham. 2FW-Blake, Mrs. M. H. A., 91 A Beauchamp Street, Karori, W.3. 2FX-Blake, R. G. F., 91A Beauchamp Street, Karori, W. 3. 2FZ-Dickson, L. R., 2 YH Transmitter, Opapa, Hawke's Bay. 2GC-Grainger, R. E., 70 Mitchell Street, Brooklyn, Wellington. 2GH—Attewell, B. E., 785 Childers Road, Gisborne. Wellington. 2GL-Gabriel, M. T., 239A The Terrace, Wellington, C.1.
2GM-King, G. T., 9 Clyde Street, Island Bay, S.2.
2GN-Humphrey, E. H., Queen Street, Levin.
2GP-Fownes, F. G., 14 Antico Street, Wellingtongton.
2GS-Green, H. E.'H., Clifford Road, Johnsonville. 2GX-White, J. McD., Patutahi, Gisborne.
2GZ-McKenzie, A. J., Kaihoka Road, Collingwood.
2HA-McCabe, H. C. C., 42 Adams Terrace, Wellington.
2HO-Hunt, P. W., Jocelyn Crescent, Pinehaven, Silverstream.
2HL-Hill, C. P., 115 Creswick Terrace, Wellington, W.2. 2HO-White, L., Ladies' Mile, Eltham.
2HR-Stevens, W. A. W., 19 Morrissey. Street, Hawera.
2HS——Bradfield, A. G. S., 70 Te Awe Awe Street, Palmerston North.
2HV—Bennett, A. K., 13 French Street, New Plymouth.
2IC-Austin, E. S., 51 Brecon Road, Stratford.
2ID-Frame, A. F., R.N.Z.A.F., Rongotai.
2IG-Jackson, W.'L., 52 Nuffield Avenue, Napier.
211 -Bird, A. W., 20 Worksop Road, Masterton
210-Cassey, R., 40 Rangiora Avenue, Wellington
ZIR-Thevenard, C. M. H., Sandon Road, Feilding
2IS-Borman, C. A., 95 Adelaide Street, Petone.
2IU-Purdy, R. G., 17 Akatea Street, Berhampore, Wellington
2IV-Purdy, R. G., ${ }^{17}$ Akatea Street, Berhampore, Weling 2IW-Cockburn, I. L., 48 Jellicoe Street, Wanganui.
2IX-Parker, C. H. Hukanui.
2IY-Gorman, W. D., 27 Kenwyn Terrace, Newtown, S.1.
2IZ-Trimmer, C. W., 26 Aurora Street, Petone.
2JA-Chisholmm, D. H., 16 King's Avenue, Wanganui.
2IC-Way, C. J., 9 Manchester Street, Feilding.
$2 J D-G r i f f i n, ~ W . G ., 30$ Grey Street, Gisborne.
2JF-Guilliard, B. H., 4 Barraud Street, Dannevirke.
2JG-Anderson, G. A., 10 Cargill Street, Karori, Wellington.
2JJ-Newman, J. E., 149 Hardy Street, Nelson.
2JL-Prime, D. R.,' Taoroa Road, Taihape.
2JM-Moore, J. A., 7 Courtenay Place, Wellington, C. 2
2JN-Down, A. R., 35 Cubbaballa Street, Marton. 2JO-Souper, T. N., (M/s.), 32 The Terrace, Wellington, C.1. 2.JT-Hutana, H. T., Porangahau. 2JU-Fanthorpe, J. K. L., 7 Mamari Street, Kilbirnie, Wellington. 2JV-Crawford, C. R. H., Fort Kelburn, Ngahauranga. 2JY-Hutan, H. T., Waipawa.
2KZ-Dawson, A. H., Mangaroa, Wellington. Island Bay, Wellington. 2KC-Moess, C. R., R.D., Sanson. 2KE—Smith, W. A. D., Garage, Urenui.
2 KF -Gould, A. G. de T., 164 Tasman Street, Nelson. 2KG-Sharland, K. O., 11 Cleveland Road, Nelson. 2KH-Bennett, V. H., 440 Church Street, Palmerston North. 2KJ-Pettifer, M. F., 99 Shakespeare Road, Napier. 2KM-Robertson, G. A., Bay View, Napier.
Call Sign. Name and Address
2KN-Millward, H. P., 12 Tulloch Street, St. John's Hill, Wan
2KO-Davison, S. C., 329 The Parade, Island Bay, Wellington.
2KP-Henskie, F. J., c/o. N.Z. Railways, Blenheim
2KQ-Spiers, M. E., Murphy's Road, Springlands, Blenheim.
${ }_{2}$ 2KR-Cole, K. R., 64 Duncan Terrace, Kilbirnie, E. 3 .
${ }^{2 K U}$ Wurness, J. Shard, T, 93 Keiss Street, Blabar Road, Miramar, Wellington.
2KV-Ward, T. W., Rugby Stret, Inglewood
2KX-Wickstead, C. G., 2 Witako Street, Lower Hutt.
2KY-Barch, J. R., Cnr, Central Terrace and Cuba Street, Lower Hutt.
2KZ-Partelow, A. L., Nae Nae Road, Lower Hutt. Lower Hutt
$2 L A B$ Slack, E. J., 8 Raymond Terrace, Waterlioo, Lower Hu
2LD-Westwood, E. N., 26 Ropata Crescent, Lower Hutt.

2LG-Pierce, S. W., 34 Ranui Crescent, Khandallah.
2L. Guthrie, W. A., 93 Courtenay Street, New Pl
2LH-Muariand, R. T., 242 Nile Street, Nelson.
2LK-Dance, W. E., 2 Muller Road, Blenheim.
2LO-Leatham, W.G., 16 Penrose Street, Lower Hutt.
2LW-McLennan, H.C.S., 28 Rangiora Avenue, Kaiwarrawarra
2LX-Motion, R., 276 Queen's Drive, Ly yall Bay, Wellington.
$2 L Z$ Irvine, E., 45 Halifax Stret, Nelson.
2MA-Hight, \mathbf{P}. D., 2 Milton Street, Nelson.
2MC-Lawson, S. C. ${ }^{2}$, 13 "Binham Street, Wellington, C. 2 .
2Mr-O'Leary; B. J., Waikupa Road, Okoia, Wanganui.
2MG-Harvey, P. R., 16 Meremere Avenue, Palmerston North.
2MK-Parsons, C. B., Stansall Avenue, Tahuna, Nelson.
2ML-Castles, C. R., 1 Buick Street, Petone.
2MM-Adcock, H. F., Railway Road, Masterton.
2Mr-Powell, W. H., Raetihi Road, Ohakune.
2MP-Powell, W. H., Raetihi Road, Ohakune.
2MS-Thomasen, L. H., River Road, Rewa, Feilding.
${ }_{2 M W}^{2 M}$ Bell, S. M., Moroa, Greytown.
2MW-Wiggens, $^{2 M}$ F. Sellens, F. W., 8 Gerse Street, Wanganui.

2NA-Shanks, J. M., Karori Transmitting Station, Air D
2NC-Henderson, J., 97 Wilton Road, Wadestown, N. 2.
2ND-White, J. T, High Street, Bulls.
${ }_{2 N G}^{2 N H}$ Bates, L. C., 208 Hardy Street, Nelson.
2NH Briffault, H. L., 53 Centennial Crescent, Gisborne
2NJ—Ross, H. D., 38 Miro Street, Palmerston North.
2NK—Smith, G. C. T., Hydro, Kaitawa, Wairoa.
aNL-Reeves, G. T., 6 Hollands Crescent, Nae Nae, Lower Hutt.
2NO-McLaughlin, J., 93 Waddington Drive, Nae Nae, Lower Hutt.
2NP-King, A., 5 Huia Street, Petone.
2NQ-Fairbrother, E. H., 132 Wellesley Road, Napier
2NQ-Fairbrother, E. H., 132 Wellesley Road, Napier.
2NS-Douehe, W. P., 22 Elizabeth Street, Moera, Lower Hutt.
2NT-Suton, C. H., Hill Street, Richmond.
2NV-Stallard, E. H., Motueka.
2NW-Lesueur, A. I., 35 Richmond Avenue, Karori, W. 3.
2NY-Mace, W. G., 199 Barnard Street, Wellington, N.2.
2NZ-Turner, C. H., 40 Bankok Crescent, Ngaio, Wellington.
2OF-Story, R. B. E., Wellington Street, Picton.
20G-Lough, E. B., 55 Cavendish Square, Wellington, E. 5.
20I-Hansen, I. P., Sutherland Road, Manaia.
20J-Inge, W. J., 359 Botanical Road, Palmerston North.
zON-Lowe, J. M., 47 Majoribanks," Belmont, Lower Hutt
20P-Seambary, G. E., 48 Derwent Street, Island Bay, Wellington.
20U-Parminter, J. D., McLean Street, Wairoa, Hawke's Bay
20 V -Petrie, L. G., 127 Coromandel Street, Wellington.
20W-Forbes, W.'D., 28 Strathmore Avenue, Seatoun.
2PA-Leete, J. B., 11 Liverpool Street, Miramar, Wellington
2PB-McLaren, H. B., 206 Colingwood Street, Nelson.
2PC-Mitchell, G. W., 160 Waiwhetu Road, Lower Hutt.
2PF-King, T., 126 Russell Street, Gisborne.
2PF-King, T., 126 Russell Street, Gisborne.
2PI-Treleaven, A. R., 10 Manawaroa Street, Palmerston North.
Road, Wellington.
2PO-Tout, R. E., Rocks Road, Nelson.
2PP-Sinclair, J. D. J., 224 Nile Street, Nelson.
2PR—Angelini, L., Main Road, Pahiatua. 182 Crawford Road
2PR-Nalder, R., 182 Crawford Road, Gisborne.
2PX-Taylor, M. F. W., 10 Monro Street. Seatoun, Wellington, E. 6

CHRISTCHURCH DISTRICT

3AA-Anderson, D. W., 105 Office Road, Christchurch. 3AB-Evans, L. C., 60 Wainoni Road, Christchurch 3AC-Broom, F. E., c/o. Aeradio Station, Harewood, Christchurch. 3AH-Courtis, H. B., 69 Grey Road, Timaru. 3AJ-Service, W. J., Clyde Road, Fendalton, Christchurch. 3AK-Lane, S. W., 21 Bridle Path, Lyttelton,
3AM-Kirk, R. E., 181 Richmond Terrace, New Brighton, E.3. 3AN-Bitossi, F. D., 10 Empson Road, Sockburn, Christchurch 3AP-Tomlinson, H. C., Motunau, R.M.D. Cheviot, Canterbury 3AU-Byrne, J. L., 659 Gloucester Street, Christchur 3AV-Wills, S. P., 44 Firth Street, Cobden, Greymouth. 3AY-Mills, H. O., Davie Street, Kaiapoi.
3AZ-Stanton, R. T. Hawarden, Canterbury- 193 Ashgrove Terrace, Christchurch, S.2. 3BC-Harrison, J. (M/s.), "Pinaki, R.D. Cheviot. 3BH-Bowman, G. R. B., 18 Wild Street, Hokitika. 3BJ-Hunter, L. Co, 86 Springfield Road, Christchurch. 3BM-Cook, D., 176 Knowles Street, St. Albans, Christchurch. 3BN-Marks, S., 161 Kilmore Street, Christchurch. 3BO-Zanders, F. H., 7 Dublin Street, Lyttelton. 3BR-Savage, V., 70 Wildberry Street, Woolston, Christchurch. 3BO-Griffiths, C. E., Tramway Street, Ross 3BV-Schaef, L. M., Bridge Street, Greymouth 3BW-O'Connel, F. A., 218A Kilmore Street, Christchurch 3BX-Jones, T. R., Maungati, Timaru.
3BY-Whiteley, F., 15 Lonsdale Street, New Brigbton. 3BZ-Jackson, W. H., Esplanade, Kaikoura.
3CC-Hughes, C. A., 28 Thomas Street, Linwood, Christchurch 3CD-Elliott, J. Bor 25 Frankleigh Street, Spreydon, Christchurch
 3CG-Brown, H. P. V., 10 Merivale Lane, Christchurch. 3CH—McKnight, S. G. J., 326 Barrington Street, Christchurch. 3CL-Shipley, E. G., 51 Fitzgerald Avenue, Christchurch. 3CP-Parton, C. W. 78 Diamond Ad, Christchurch 3CS-Downer, W. H. H., 4 Heathfield Avenue, Fend Christchurch 3CU Cleveland, L. 29 Tika Street, Riccarton, Christchurch. 3CY-Gilligan, H. S. J., P.o. Box 2, Hinds.
3CY-Hughes, W., 196 Hastings Street, Waltham, S.1.
3CZ-Rose, F. L., 119 Salisbury Strete, Christchurch.
3DD -Lemin, A., 52 Milton Road, Greymouth.
3DB-Reynolds, W. A., 84 Fitzherbert Street, Hokitika
3DH-McBride, A. W., 1., Flat 12 "Commodore," Hereford Street, Christchurch. 3DQ-Goldsbrough, R. F., 224 Lincoln Road, Christchurch.

Call Sign. Name and Address
3DR-Hullett, E. W., 43 Te Awa Kura Ter, St. Andrew's Hill, Sumner, Christchurch 3DU-Warquhar, A. J., Mt. Hutt R.D., Rakaia.
3DZ-Wison, V. J., 33 Roseberry Street, Christchurch
3FA-Wilson, R. H., 48 Hinau Street, Riccarton, Christchurch
3FB-Freeman, J. F, 164 Aldwins Road, Christchurch, E.1.
3FE-Guthrie, M. W., 172 Papanui Road, Christchurch.
3FG-Wickham, L. M., 20 Carrick Street, Christchurch.
3FH-Mail, L. C., Wilson Street, Geraldine.
3FK-Hephurn, L. D., 152 Peterborough Street, Christchurch.
3FP-Reid, J. A. M., c/o. N.Z. Railways, Heathcote, Christchurch.
3FR-Hamlin, J. H., 344 Selwyn Street, Christchurch, S.W. 1.
3FV-McCracken" ${ }^{44}$ Nichols Street, Shirley.
3FX-Brown, N. W., 20 Sydney Street, Spreyanui, Christchurch.
3FZ-Gledhill, A. F., 43 Severn Street, Spreydon, Christchurch.
3GA-Gale, W. T., 113 Pevern Street, St. Albans, Christchurch
3GB-Pratt, E, 3 Acland Avenue, Avonside, Christchurch
3GC-Perry, W. J., Weld Street, Hokitika
3GJ-McCaul, W. G., 37 . Searells Road, Papanui, Christchurch.
3GL-Keast, T. J., William Street, Lincoln.
3GM-Andrews, R. A., 30 Cowlishaw Street, Christchurch
3GN-Dacombe, A. N., 47 Puriri Street, Riccarton, Christchurch 3GR-Rowe, R. H., Puaha, Little River.
3GT-Sumner, A. H., 143 Bright Street, Cobden, Greymouth.
3GU-Keys, J. R. 60 Huxley Street, Sydenham, Christchurch.
3GV-Edwards, W. G., 50 Domain Terrace, Spreydon, Christchurch.
3HA-Arnold, H. F., 165 Knowles Street, Christchurch, N.1. 3HA-Arnold, H. F., 165 Knowles Street, Christchurch, N. 1
3HM-Evans, C. E., Long Creek, Kaikoura.
3HP-Hildebrand, D. E., Seddon Terrace, Runanga
3HQ-Rodda, C. A., 71 Springfield Road, Christchurch, N. 1
3HS Kempthorne, J. H., 140 Esplanade, Sumner.
3HT-Grey, R. B, 25 Hagley Street, Riccarton, Christchurch.
3HX-Perkins, H. 607 Ferry Road Christchurch
3HY-Watkins, E. C. K., 122 River Road, New Brighton.
3IA-Langrope, S. J., Lavaud Street, Akaroa
3IC-McCulloch, A. G. 38 Retreat Road, Avonside, Chilstchurch
3ID-Pettigrew, W. L., Mill Street, Westport. Temuka.
3IF-Higgins, H. E., 56 Alexandra Street, Greymouth.
31G-Buchanan, D. W., Peel Forest, Rangitata R.D., Geraldine
31H-French, G. H., Room 29, Officers' Mess, R.N.Z.A.F. Station, Wigram
3IR-Benson, A. F., 12 Breens Road, Harewood, Christchurch.
3IS-Soanes, G. A., 245 Westminster Street, Christchurch, N. 1
3IM-Summerfield, H. J. D., 63 Rockwood Avenue, North Beach, Christchurch.
3IV-Danrell, R. A., 152 Hamilton Avenue, Fendalton, Christchurch.
3IW-Maddren, G. R. H., 11 Merlewood Avenue, Cashmere, Christchurch
3IX-Morris, R. A., 53 Gloucester Street, Christchurch.
31Y-Vickery, K., 45 Fuller Street, Kaiapoi
3JA-Rowe, H. J., Clontary House, Pleasant Point
3.JB-Burtenshaw, J. W., 54 Heaton Street, Christchurch.
3.DD-Lyes, A. E., 514 Madras Street, St. Albans, W.1.

3JE-Duffield, K., 467 Tuam Street, Christchurch
3JF-Henderson, H. P., 57 Lindsay Street, St. Albans, Christchurch
3JJ-L.owry, T. N., 9 Gwynfa Avenue, Cashmere, Christchurch.
3JLM-Purton, A., Alexander Street, Greymouth.
3.JN-Ashley, D. H., Princes Street, Waimate.

3JO-Johnstone, M. O., 3 Hereford'Street, Timaru.
3JP-Langley, E, W, 711 Worcester Street, Christchurch.
a.e-Pruden, H. C. L., 131 Tancred Street, Christchurch, E. 1.

3JW-Anderson, R. A., 262 Lincoln Road, Christchurch.
3JX-Rowlands, T. E., "Ruthin," R.M.D., Kaiapoi.
3KA-Macer, J., 77 Corson Avenue, Christchurch.
3KE-Marp, V. E. E., 31 Gayhurst Road, Christchurch, N.E.1.
3 KF -Pettitt, E. R., High School, Methven.
$\mathbf{3 K G}$-Millard, \mathbf{H}. W., 352 Gloucester Street, Christchurch
3KH-Reed, F. V., 1 'Tika Street, Riccarton, Christchurch.
3KL-Knight, H.'T., Main Street, Oxford, North Canterbury. 3KM-Woodfield, R. T., Horrelville, Rangiora.
${ }_{3 K}{ }^{3 K}$ R-Mason, W. W. L., Temuka. 48 Matipo Street, Riccarton, Christchurch
3KS-Downer, W. H. H., 4 Heathfield Avenue, Fendalton, N.W.
3KV-Duxbury, T. A., 176 Idris Road, Bryndwr, Christchurch.
3KX_Heslop, G. W., 4 Mere Mere Street, Timaru.
3LA-Gardner, H. F., 35 Alpha Avenue, Papanui, Christchurch.
Call Sigu. Name and Address.
3LB Hamilton, W. W . 61 Cambridge Terrace, Christchurch.
3LC-Diedrichs, G. H., Evans Creek, South Westland.
3LD-Hunt, S., 158 Travis Road, Burwood, Christchur
3LD-Hunt, S., 158 Travis Road, Burwood, Christchurch.
3LE-Baird, W. C., Goodrich Road, Springston South.
3LF-Cameron, R. H. T., "Amber Jowns," Waihao Downs, Waimate
3LH-Shave, P. G., Cnr. Hayhurst and High Streets, Temuka.
3L.I-Wainwright, W. J., c/o. 3 Preston Street, Timaru,

DUNEDIN DISTRICT

4AB-Cibb, L., 144 Forbury Road, St. Clair, Dunedin. 4 AE -Robinson, R. E,, 3 Chatham Avenue, Dalmore, Dunedin. 4AI-Shown, K. E., 32 Rawhiti Street, Dunedin, E. 1 4AI-Shore, K. H., 22 Helena Street, Dunedin.
4AK-Ghiel, W. L., 243 Macandrew Road, Dunedin.
4AM-Earland, F. P., Omakau, Otago Central.
4AN Breen, A. I, 68 Pine Hil Terrace, Dunedin.
4AO-Shrimpton, H. N., c/o. National Broadcasting Service, Highcliffe, Dunedia
4AP-Stroud, L. R., 46 Skibo Street, Kew, Dunedin, S.W. 1 .
4AQ-Edgar, G. T., 120 Pine Hill Road, Dunedin, N.E.1.
AS-Morris, C. C., 787 George Street, Dunedin.
4AU-Genkin, G. D., 30 Oldham Street, Gore.
4AX-Halcrow, L. A., 175 Musselburgh Rise, Andersons Bay, Dunedin
4AY-Budd, L. W., 11 Angus Street, Mornington, Dunedin, W.1.
48B-Smith, J. G., ${ }^{7}$ Crosby Strect, Dunedin.
4BC-Ferris, J. L., Manuherikia Road, Alexandria.
4BE—Shepherd, N. H., 13 Scott Street, St. Kilda, Dunedin, S.2.
4BF-Smith, L. K., 24 Mitchell Street, Invercargill.
4BG-Marshall, W., 11 A Carr Street, North East Valley, Dunedin
BJ-Cankeron, E. P., 16 Onslow Street, St. Clair, S.W.1.
4BK-McDonald, N. M., 19 Bouverie Stret, Dunedin, N.E.1.
4BN-Middlemiss, T. C', 6 Philip Street, Kensington, Dunedin.
4BO-Miller, E. D. N., Puysegur Point Lighthouse, via Riverton
4BP-Collett, W. G., 9 Albert Street, Dunedin.
4BR-Thompson, H. G., c/o. F. Birch, Carlyle Street, Mataura
4BS Burnby, L. A., Waikaka Valley, Gore.
4BV-McConnell, J. R., 73 Banks Street, Invercargill.
4BW-Hawes, S. C., 11 Park Street, Dunedin.
4CB-Callander, H. A., 163 Main Street, Gore.
4CF-McLaren, A. D., 32 Melbourne Street, South Dunedin.
4Ct Cameron, M. E. (M/s.), 102 Princes Street, Dunedin.
4 CN -Peterson, A. McN., 22 Aotea Street, Andersons Bay, Dunedin
${ }_{4} \mathrm{CP}$ - Erocker, A. ${ }^{\text {In }}$. 261 Thames Street, Oamaru.
4CU-McEwan, D. McG. R., 20 Mitchell Street, Invercargill.
4DA-Warren, B. C., 784 George Street, Dunedin, N. 1 .
4DC-Multolland, G. C., 48 Peter Street, Caversham, Dunedin
4DG-Gilchrist, N. C., Brookfield, Waiareka
4DK-Hunter, S. T., 40 Ramrig Street, Invercargill.
4DL-Leslie, A. J., 8 Stanley Street, Mornington, Dunedin, W.1.
4DN-Sharp, J. R., 41 Greenhill Avenue, Wakari, N.W.2.
4DP-Grant, J., Otekaike, (8,K. R.D, Oamaru).
4DR-Mutch, J. W., Awarua Radio, Private Bag, Invercargill
4DU-Stiglish, C. A., 42 Argyle Street, Mornington, Dunedin W.
4FA-Niles, T. H., 16 Merchiston Street, Andersons Bay, E. 12 W. 1
4FF-Nishet, A. J., 5 Greenock Street, Dunedin, N.W.2.
4FH-Freeman, C.'H., Janefield, Mosgiel.
4FK-Ellis, C. A., 319 Herbert Street, Invercargill.
4FN-Egan, M. A. (Mrs.), 152 Keith Street, Dunedin.
4FO-Hudson, S. T., 4 Merlin Street, Roslyn, Dunedin.
4FR-Howard, J. G., "Airlie," Ravensbourne, Dunedin.
4FU-Thomson, G. B., The Highlands, Riverton.
4GA-Frame, A. F., 10 Gilfillan Street, Dunedin
4GB-Chapman, Miss M., Rosebank, Balclutha.
4GC-Hayward, A. S., James Street, Balclutha.

Call Sign. Name and Address.
4GF-Borthwick, G., 17 Grove Street, Dunedin.
4GI-Burnhy, J. C., Waikaka R.D., Gore.
4GK-Kitto, R. G., 5 Anzac Street, Gore.
4GM-Jackson, A. D. D., Orangapai, Waipiata.
4GR-Earland, Mrs. M., Omakau, Otago Central.
4GT-Skinner, L. C., 10 Borthwick Street, Mornington, Dunedin.
4GW-Staite, W. G., 165 George Street, Invercargill.
4GX-Sutton, H., 63 Dublin Street, Invercargill.
4GX-Sutton, H., 63 Dublin Street, Invercargill.
4GZ-Applegath, G., Radio 4 YZ , Dacre, Invercargill.
4HA-Greene, R. S., 219 Bay View Road, St. Clair, Dumedin.
4HB-Greene, R. S., 219 Bay View Road, St. Clair,
4HD-Findlater, J. L. L., Lynn Street, Balclutha.
4HG-Murray, G. A., 102 Avenal Street, Invercargill.
4HF-Hazlett, F., 5 Robertson Stret, Invercargili.
4HL-Bevin, ${ }^{4}$. E.,. 9 Tyne Street, Roslyn, Dune
4HR-Ward, W. G., S., Test Street, Street, Dunedin, N. 1
4HS-Throp, G. M. R., 8 Lynwood Avenue, Dunedin.
4HT-Johnson, W. B., 7 Bridger Street, Dunedin.
4HU—Nutsford, E. J., 173 Eitrick Street, Invercargill.
4 HV -Hancock, E. J., Awarua Radio, Invercargill.
4HX-Tibbles, W. J., 48 Young Street, St. Kilda, Dunedin.
"OCTAL HIKER'S" AMPLIFIER

In response to many requests we are publishing the circuit of a Single Valve Amplifier using an Octal type valve. This amplifier may be used in con junction with any of the Hikers' Series Sets, or for amplifying a crystal set or other small receivers
The input to the amplifier is simply connected to the headphone terminals of the Hiker's or crystal set, etc. A $3: 1$ andio transformer is shown in the diagram, but $a \frac{1}{2}: 1$ or $5: 1$ Trans former would do equally as well
To obtain satisfactory results it is recommended. that 18 volts be used on the plate of the valve, although the amp lifier may work on a lower voltage Using the $22 \frac{1}{2}$ volt tapping of a 45 volt B battery would be quite satisfactory.

PARTS LIST FOR "OCTAT

HIKER'S" AMPLIFIEP

One 1C5GT or 1Q5GT Vaive

One Octal Baseboard Socket
One Audio Transformer
Seven Fahnstock Clips
One Baseboard
Twelve Wood Screws
Hook-up Wire
Solder Lugs
One No. 6 Dry Cell
Two 9-volt C Batterios

COMPLETE KIT OF PAKTS, as Cat. No. TK2010

Radiotrons for Reception

FOR sensitivity to weak signals. distortionless amplification and clarity of speaker output use "Radiotrons." The crucial tests of active service conditions have proved the reliability of these Tubes. Now with peace. you can re-valve your radio with

RADIOTRONS
 "The Valve with a Reputation"

RADIOTRON VALVE CHART

This RADIOTRON VALVE CHARACTERISTIC CHART is published by kind permission of the Amalgamated Wireless Valve Co. Pty. Ltd., of Sydney, Australia.

The following pages represent a complete chart of all RADIOTRON VALVES.

The N.Z. Radio Hobbies Club and the Lamphouse wish to express their appreciation of the Amalgamated Wireless Valve Co. Pty. Ltd.. of Sydney, in allowing the reproduction of this Chart to be published in the Annual.

$\begin{aligned} & \text { 号 } \\ & \stackrel{y}{0} \end{aligned}$	\％	念	$\left\|\begin{array}{l} 9 \\ \frac{0}{2} \\ \frac{1}{6} \end{array}\right\|$	合	$\left\|\begin{array}{l} \mathbf{0} \\ \stackrel{0}{2} \end{array}\right\|$	$$	迢	$\left\|\begin{array}{c} \substack{0 \\ \stackrel{i}{\infty} \\ \hline} \end{array}\right\|$	夏	$$	ভí	$\stackrel{y}{\hat{i}}$	No	$\stackrel{\square}{6}$	${ }_{0}$	$\frac{5}{4}$	「	$\stackrel{4}{4}$
	x_{2}^{20}		$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \substack{4 \\ \\ \hline} \end{array}$															
${ }_{0}$	$\stackrel{\cong}{i}$	$\stackrel{\circ}{0}$	$\stackrel{\infty}{\circ}$	$\stackrel{3}{\circ}$	\cdots	${ }^{\text {m }}$	$\stackrel{m}{\circ}$	\％	¢ ${ }^{\circ}$	\％	이	$⿳ 亠 丷 冖 ⿱ 丶 万 仒$	\％	\％	？	\％	？	$\stackrel{\square}{\circ}$
$\%$	\％	${ }_{6}^{\circ}$	\％	\％		\％	$\stackrel{3}{0}$	$\stackrel{?}{6}$	¢ \quad ¢	？	？	$\stackrel{\check{\circ}}{0}$	$\begin{gathered} 6 \\ 6 \end{gathered}$	$\hat{\circ}$	？	\cdots	\cdots	\cdots
I	I	I	I	ェ	I	＝	x	x	I 1	I	I	\pm	\pm	I 1	ェ	ェ	I	I
$\begin{aligned} & \text { Ë } \\ & \hline 0 \end{aligned}$	${ }_{5}$	\％	9	R	$\left.\begin{array}{\|c} \vec{~} \\ \dot{~} \end{array} \right\rvert\,$	它	z	$\underset{\substack{\mathrm{e}}}{\overrightarrow{2}}$	¢	$\underset{\sim}{x}$	$\stackrel{\stackrel{\rightharpoonup}{\tilde{j}}}{0}$	๕	\％	2	※	x	\％	\％
®	ロ	\％	\bigcirc	＝	\％	\％	$\bar{\square}$	－	－ड		®		\％	B	\％	2	\％	8
																		（ex
$\stackrel{\text { ! }}{\stackrel{1}{\omega}}$	$\stackrel{0}{6}$	会	$\begin{aligned} & 0 \\ & \\ & \\ & \hline 0 \end{aligned}$	¢	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\stackrel{y}{6}$	－	$\begin{aligned} & \stackrel{9}{\dot{1}} \\ & \stackrel{1}{5} \end{aligned}$	O	\％	$\begin{aligned} & \text { © } \\ & \stackrel{y}{6} \end{aligned}$	妾	令	¢	気	$\stackrel{5}{\circ}$	－	＋

号	＾	8		\bar{m} a			\pm			\％	幺		豆	$\%$			
誩言家咅					\because			\because	\because	1	11%			1			
					\％					1	\|			1			
	O0，					\％${ }^{\circ}$	¢ิ รั		\％	$8 \text { 踽 }$	en						
	50\％			Co	\％	8\％	ธั โి	亳	莒荡	gex			\％\％	${ }^{\circ} 8$			
					0		Bigizisi					y_{0}^{6}	号同感				
营窇気	\％\％				$\stackrel{\ddot{\tilde{\sim}}}{ }$	～0．	¢0．	$0{ }_{0}$			2	品	\|rin	\％			
	11	景		$\|\dot{\circ} \dot{\circ \dot{b} \dot{b}}\| 1$	$\stackrel{\circ}{\circ}$	\bigcirc	\bigcirc				1		\because				管
宮言言	11	$\stackrel{\square}{4}$		$1 \div \div 0$	－	¢00	\％	\bigcirc	－	戓々ッロ	1	$\mid \text { \| } 80$	22	1			¢
					\dot{B}		耍	\because			10		$\bar{\circ}$				
葡言え	\％${ }^{\circ}$			运易家	－	号号	：						2\％	苟䓂			
		总												¢			管
1	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{\circ}$		\％${ }_{\circ}^{\circ}$	$\stackrel{\square}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{\square}{\square}$	\bigcirc	$\stackrel{\square}{\square}$	\％	\％	$\%$	：	¢			\％
	～	$\stackrel{\circ}{\sim}$		\bigcirc	$\stackrel{\circ}{\text {－}}$	$\stackrel{\square}{i}$	$:$	$\stackrel{\circ}{\dot{1}}$	$\dot{\dot{x}} \dot{\dot{B}}$	\％	\％	：	\％	$\stackrel{\square}{i}$			\％
\div	\pm	－	－	\cdots	\checkmark	${ }_{\text {S }}$	－	x x	$\pm \times$	\pm	x	x	x	${ }_{\text {¢ }}^{\text {¢ }}$			x
\％	＊	9		\bigcirc	\％	\％	\pm	管	管笭	※	ธ	．	\％	\bigcirc			：
	）${ }^{\text {：}}$	\％	\％	5	\％	－	－	53	3.	：	：	\％	\％	\％			\％
垃																	
茞	ה	8			¢	\pm	\％			$\%$	$\stackrel{\square}{\infty}$	\％	产	\％			\％

[^1]
SUPPLEMENTARY GENERAL TYPES

RADIOTRON SOCKET CONNECTIONS

(\%)

Gos-Type Tub:

\because

 (0) O-

O-

 (o4): OKLE:
 (1ii) 0_{0}°

擎	3ַ3		鮕三		\％゚き\％	\％			ごき	震
swimria smitino	चनल	－नద	पह⿵冂卄	नलक्ष	可の可	¢ の可	らいの	の『Ш	あいら	श्रक्ष ${ }^{\text {a }}$
	9\％営	易呂号	䜌交	จิ⿳士口䒑⿰幺幺心y	㐫㐫免		試気			\％ $\begin{gathered}\text { \％}\end{gathered}$
（SILM）Indino newod			N	－	8	\％\％${ }_{\text {¢\％}}$	0	－	¢	\％
		．	$\stackrel{8}{8}$		－			（1）		$\stackrel{8}{8}$
mour		\％8		気家	8	8	$\stackrel{\square}{\sim}$	\％		
	\％is	2888	8 8		8,		\％	B্户ু⿰亻	$\begin{aligned} & 6 \\ & 08 \\ & 0 \\ & 0 \end{aligned}$	8
		$88{ }^{8} 8$ 98	$\begin{aligned} & 88 \\ & 88 \\ & 08 \\ & 8 \end{aligned}$	 					$\begin{aligned} & \text { Bi8\% } \\ & \text { 888: } \end{aligned}$	\％
1namane sind		－7¢	\％¢		¢¢000 ¢ ¢			－000	～n枵发	\because
394170̇A 3ind	\＆\％\％	¿\＆\％	\％	品品㗇嵒	989		89\％⿳⺈⿴囗⿰丨丨⿹勹冫中⿰入入	藘采	絽言	8
	${ }_{0}^{0.0}$	？	$\stackrel{\circ}{\circ}$		¢	NّM	$\stackrel{\square}{-}$	¢	～ois	¢
	\＆ษロ	\％	呂	\％碞亩	8 80．0．	蹾	8	888	碐骂	7
govilon are	$\stackrel{\sim}{8}$	000．	－ 0	MNव․al	Mmos	¢	000	wcom	$\stackrel{n}{\text {－}}$	\cdots
siba msyank miva	\sim							$\stackrel{\square}{\square}$	－${ }^{\text {a }}$	g．
	$\stackrel{7}{\square}$								䃄品	8
	言		－	$\stackrel{4}{8}$				笭	8	$\stackrel{8}{8}$
	\％		\％	家	$\stackrel{\square}{3}$			\％	8	\％
	288	9	［	\％${ }_{\text {䈍 }}$	88	器	\％	\％	\＄8	\＆
	8.8	8989	］${ }^{\text {\％}}$	880		号 88	颔㮲	\％	敋	8
Lwseyme injurit	㛯安	8\％	セッ？	－	\％¢ ¢ ¢	？	¢¢̣？	mprom	¢¢0¢	－\％
3991700 Lu3nvois	－	－${ }_{\text {Pio }}$	${ }^{80}$	\％¢\％	Ming	\％\％\％\％		M0\％	¢n¢	88
\＄7dodns memavirs	888	－8\％	92\％	989	929	429	229	2\％2	299	49
3000149 3ant	吅运	沄䐴	限妥				医朢臣	${ }^{\text {툳툴 }}$		
䁘	3̇3		気気		枵意	\％枵	颔愛	登	等	

	虽	2®き	\＃	号会
	9maxto 3wl 1 mm	\％8\％	\％ 8	\％${ }^{\text {\％}}$
	not 123 xNDO 3sva，		笭薥	感受
	（suvu）Indico yswod	¢	¢ฺ̣	ه ${ }^{\text {¢ }}$
		8\％	$\begin{aligned} & 88 \\ & .8 .8 \\ & 0.0 \end{aligned}$	¢
	wolutitulidy	皆		
			\％${ }^{\text {\％}}$	咢哭
			$\begin{aligned} & \text { 8888 } \\ & \text { 888 } \\ & \text { \$80 } \end{aligned}$	
	mistan zivid	－		${ }^{4}$
	3strios zand	¢3\％${ }^{\circ}$	2\％®	\＆\％
	Inevaro nizoos		－	㫨
	Fownem inswos	¢ٌ¢\％	¢̛\％	¢\％
		000	－	～
		4		\％
		\％	窓发	Sisi in
			ce	
		¢0\％	¢゙8\％	¢ٌ
		888	¢̊\％	¢8
		\％¢ \％		¢\％\％\％
	Ferston Lmaw	ざロ	－0	－
	47 deas Lrantuy	888	8	8%
	300040 3314	辟言	$\overrightarrow{\underline{2}}$	号
	凂	ジぎき	\because	茄

（id）

VALVE EQUIVALENT CHART

* Socket change necessary.

All metal tubes are interchangeable with glass or G.T. tubes of the same type. . $6 \mathrm{~K} 7=6 \mathrm{~K} 7 \mathrm{G}=6 \mathrm{~K} 7 \mathrm{GT}$.

A number of these equivalents are not intended for use in A.C.-D.C. sets due to ifference in filament consumption

Type.	Equivalents.	Type.	Equivalents.
1A4P	1D5G*	30	1H4G**
1 A 6	1C6 1D7G*	31	
${ }_{185 / 25 S}$		32 33	184P
$1 \mathrm{C4}$	1M5G**	34	1 A 4
108	1 A 6107 G *	35	24A
1D4	1L5G*	36	${ }^{6 \mathrm{C} 6 *}{ }^{\text {* }}{ }^{\text {* }}$
$1{ }^{156}$	115G**	37	76 66G* 41*
1F6	1176**********)	38 39	${ }_{6}^{6 \mathrm{D} 66^{*}}{ }^{\text {a }}$
$1 \mathrm{1K5}$	1K4*********	41	426 K 6 G *
1K6	1K7G*	42	$41.6 \mathrm{F6G*}{ }^{\text {4 }}$ KT88*
IV	6Z3	43	${ }^{25 L 6} 6^{*}{ }^{25 B 6}{ }^{*}$
$2 \mathrm{~A}{ }^{\text {A }}$	45	45 46	${ }_{\text {2A3 }}$
${ }^{246}$	${ }_{5}^{55} 4 \mathrm{G}$	47	
5W4		49	1C5G* 1Q5G*
$5 \mathrm{Z3}$	5Z4* 5W4** 80	55	2 A 6
${ }^{574}$		56 57	${ }^{27}{ }^{\text {A }}$ *
6A6	${ }_{6}^{6 \mathrm{NA} 7}{ }^{*}{ }^{*} \quad 79$	58	35^{*}
647	6A8*	59	47*
6 6A8	6A7* 6J8G	75	85
6 B 5	6N6**	76	37
${ }_{688}^{687}$	${ }_{6}^{6 B 8}{ }^{*}$	78	${ }_{6}^{606}$
${ }_{608}^{688}$	${ }_{655}^{6 B 7}{ }^{60}$	78	${ }_{6}^{6} \mathrm{Ab}^{6}{ }^{*}$
606	${ }_{77}{ }^{60}{ }^{\text {3 }}$	80	${ }^{5173 G * * ~} 5$ W4*
6_{655}^{605}	${ }_{6} 78$ 39/44*	${ }_{83}^{83}$	$5 \mathrm{Z3}$
${ }_{6}^{6} 5$	${ }_{6 S F 5}^{605}$	83 V	80 674
$0 \mathrm{OF}_{6}$	6K6 6V6G KT63	85	75
6177	${ }^{6 P 7}{ }^{\text {6 }}$ *		
$6 \mathrm{G5}$ $6 \mathrm{H6}$		1A5G	1T5G 1C5G
$6 \mathrm{CH}^{6}$	${ }_{6 \mathrm{C} 5}^{\mathrm{D} 3}{ }^{\text {a }}$ 76*	1 C 5 G	1T5G 1A5G
6.67	$6 \mathrm{C6}{ }^{*} \quad 77^{*}$	$1 \mathrm{C7G}$	1C6*
6K7	$6 \mathrm{D6}^{*}{ }^{\text {7 }}$	1D5GP	1A4P*
${ }_{6}^{6 \mathrm{~K} 8} 8$	${ }^{648}$	1D7G	$1 \mathrm{~A} 6^{*}$
6L6	KT66	${ }_{1} 1$ 1F5G ${ }^{\text {che }}$	
6 N 7		IF5GV	1F6*
607	6R7 6T7G	1G4G	1E4G
$6 \mathrm{6R7}$		${ }^{\text {IG4GG }}$	${ }_{30 *}^{33 *}$
${ }_{6}^{657}$	6D6* 6 65 6U5	$1{ }^{1 H 4 G}$	${ }^{30} 1 \mathrm{~B} 5 / 25 \mathrm{~S}^{*}$
6 U 5	${ }_{6 G 5}^{6 G 5}$	1J6G	19*
${ }_{6}^{676}$	$6^{676} 6 \mathrm{~K} 6 \mathrm{G}$	1N5G	1D5G
${ }_{19}^{6 \times 5}$		5U4G	${ }_{83 \mathrm{~V}}{ }^{\text {T* }}$ * $5 \mathrm{Y} 4 \mathrm{G}^{*}$
20	${ }_{31} 1{ }^{\text {a }}$	5X4G	5U4G* 5Z3*
24 A	35/51	5Y3G	${ }_{5}^{5 \mathrm{Y} 4 \mathrm{GG}^{*}}$
${ }_{25 \mathrm{~L}}^{25}$	43*	5Y4G	${ }_{643}{ }^{\text {S }}$,
25 Y 5	${ }_{25 \mathrm{Z}}^{25 \mathrm{G}}{ }^{\text {a }}$	6B6G	${ }_{75}{ }^{\text {6 }}$ - 6 Q 7 G
$25 \mathrm{Z5}$	25 Y 5	${ }_{6}^{6 C 8 G}$	6F8G
${ }_{27}^{25 Z 6}$	${ }_{56}{ }^{257}{ }^{\text {\% }}$. ${ }_{\text {6 }}^{\text {6F8G }}$	${ }^{648 G G ~ 6 A 7 *}$

Type.	Equivalents.	Type.	Equivalents.	
${ }_{\text {OG8G }}^{\text {OGOG }}$	6K6G 41*	${ }_{6}^{6 P 5 G}$	76**	
6.18G	${ }_{6} 6 \mathrm{~K} 8 \mathrm{G}$	6T7G 6 UV 9	${ }_{6}^{6076}$	${ }^{75}{ }^{\text {6\% }} 7 \mathrm{G}$
${ }_{6 K 5 G}$	${ }^{\text {BF5G }}$	6W7G	6J7G	$6 \mathrm{C} 6^{*}$
6K6G 6L5G		${ }_{\text {6F6G }}^{\text {6Z7G }}$	6V6G	${ }^{6846 G}$
${ }_{6}^{6 L 5 G}$		6Z7G	6N7G	6A6*

WIRE TABLES

B.E.S.A. STANDARD SIZES OF ANNEALED COPPER WIRE.

LOOK BEFORE YOU LEAP

(By RAHOB A450)

AND HOW TO LEAP!

N designing a complete radio set, the individual components are all accurately calculated to suit the completed circuit. This involves an extensive knowledge of mathematics and radio engineering which would be well beyond the average home constructor. However, this does not prevent the amateur from carrying out experiments with ideas culled from the circuits produced by engineers, and the following article covers design as carried on by that vast army of radio enthusiasts who make construction their hobby.

Practically in every case, the young anstruction of his first semplates the off by looking for a circuit in a magazine or book, and bothering about little else except the first cost and an itcue else that it will give good results.
Both these considerations are highly important, but the two alone are not ittle extra cost in the first pht, and a possible to save money in the long run and thus make quicker progress.
Let me make it clear how this can be brought about.
We will take the case of a young radio enthusiast who, for no reason at cording to an almost unbroken tradision he grabs a few magazines and peruses them, or tears off to a local serviceman in search of a circuit, usually a threevalver for a start.

Having acquired one which he is assured is capable of receiving Australia at midday, etc., he commences operations. A three-valve circuit-oh yes-a chassis valves I'll get a 60 mil. trannie." And so it goes on.
When he comes to build his second set, he possibly looks a little harder for a circuit to suit him, but he ends up nume one valve, one condenser, and his original set. It stands to reason that if he had been able to use nearly all these parts in his second set it would have cost him less. He would have got on much better if he had spent more time over his first circuit, Not only in seeing that his condenser, valves but also in choosing the tiniest little resistor and condenser so that it can be used again if possible.
This is not an attack on the circuits published in the radio magazines-possibly if one looked long enough one would find one to suit. But how much more satisfactory it would be if the individual could design his own circuits hand (or adapt circuits to suit one's own
lesign). No doubt many are gasping at the thought. Fancy designing ones own circuits! It isn't very hard at all. Once and a bit of practice, it is, in fact, a and a bit
The first thing that must be borne in mind is that each radio circuit containing more than one valve is not just one circuit that must be put together just like that and no other way. Each circuit is built up of a number of separate circuits and each of these can be largely interchanged from one complete circuit to another.
The only ways in which the separate circuits of a receiver are interdependent is that each gets its input from the preceding stage, the R.F. circuits get their A.V.C. Voltage from the detector, and all are hooked up to the power supply. An R.F. amplifier will practically always be identical with that shown in Fig. 1.

The coil labelled "in" is either an aerial coil or a plate coil from a previous stage. All condensers except Cc and the tuning condenser are about .05 mfd . L is either an RFC (for choke coupling) or the primary of an R.F. coil, in which case Oc is not used. Ce is about .00025
mfd.

If no AVC is used, the wire marked for this purpose is earthed, and C1, of course, omitted.
R1 can be determined by an easy calculation.

In Fig. 2, the most commonly used os shown. C1 as before is about .05 mfd . R1 should be

50,000 unless otherwise specified. $\mathbf{C} 2$ is .0001 or .00005 mfd . R 2 is calculated. So much for the individual circuits
for the time being.
Back to the radio activities of George James. George, you may remember, was choosing his chassis and decided on one to fit his first circuit. Either he didn't think or else he likes a lot of work.
Probably the former. His first chassis should have been made a fair bit bigger should have been made a fair bit bigger
than his first set demanded. This may than his first set demanded. This may all, isn't chassis making one of the drudgeries of radio making one of the drudgeries of radio construction?
A better idea (in my opinion) than making one large chassis is to make three smaller ones-one for the power
sune for the audio section and supply, one for the audio section and
one for the receiver itself.

Here
Here are some of the advantages of having the power supply separate :-

1. It is possible to eliminate a traces of hum from the output.
2. The power pack can be used to operate other pieces of equipment such as various items of test equipment and
ow-power transmitters.
3. Experimental sets can be built and perated by it.
The audio may be kept separate for
4. It rese ras:-
5. It can be used to amplify the output from experimental sets.
6. Later on, when it develops into quite a substantial piece of hi/fi equipment, it can be used as an amplifier quite separate from the receiver.
The design of the power pack will now be considered.
The mistake many people make in is to choose a trans portion of the radio is to choose a transformer, which, after a while, has to be consigned to the junk
box because of more than 60 or 80 inability to deliver may be considered fair enough if it were
not for the fact that most radio en thusiasts acquire in time a considerable interest in hi/fi audio equipment. In view of this, it is wise to allow about 100 ma. for the audio section when desiguing the power pack, even if you have been accustomed to thinking of audio amplifiers in terms of only one or two valves. On top of that there will be something under 50 ma. taken by the radio itself. So it would be best to build the unit so that it will deliver $t 150$ ma., a transformer rated at this current being used.

The circuit of the power pack is shown in Fig. 3. I could be a speaker field, but the fault with this plan is that the speaker has to be changed every now and then. Take for example a standard 8 -inch type. It has a 2000 ohm field which is rated at 8 watts. With the load drawing 40 ma., the voltage drop across the field is (by Ohm's law) $.04 \times 2000=80$ volts, and the power consumed by it is thus $80 \times .04=3.2$ watts. This is a bit weak compared to the required 8 watts. With the load drawing 65 ma., the power consumed is 8.45 watts. It would not be wise to use a greater load than this, so another speaker would have to be purchased. Since the average enthusiast is not prepared to buy a new speaser every year or so this plan is not so good. The thing to do is to use a filter choke in stead. A permag. speaker would then be employed. If an electro should happen to be on hand it could be enerin sed by putting it across the \mathbf{B} voltage in series with a suitably chosen resistance, as shown in the circuit. If an 8 watt field is used, the current passing through it should be about 65 ma. Assuming the B voltage is 250 , the resistance of the field and R3' would be 250

$$
\frac{-0}{.065}=4000 \text { ohms (roughly). }
$$

So using a 2000 ohm F.C., R3 would be 2000Ω and should be rated at 10 watts.
This method uses up a lot of current, but there will be current to spare until a big audio set up is built. When such a set up is used a better speaker than the ordinary commercial variety is called for. This type could be a permag. which of course would not use any cur-
rent for field excitation. Should it be desired to use an electro dynamic type while a big load was hooked up to the pack, a transformer with a higher rating than 150 ma . would be chosen.
Even with full rectifier and transformer data on hand, it is practically impossible to estimate what the voltage between rectifier filament and if scoondary centretap will be at a can use voltloads. If the constructor can use a volthe will have no tronble at all. However, if such an instrument is not available for use, things are made more difficult. I think the best idea would be to take the finished power pack to a serviceman, and ask him to test the voltage between $B+1$ (on the circuit diagram) and HV secondary centretap, with various resistances connected between these two points. These resistances should be chosen so that (assuming the output voltage is equal to the rated voltage of the transformers) they will draw $40-60$ 80 up to 150 ma . These currents would be only approximate, but the true current conld easily be found (by Ohm's law) when the voltage is measured. graph would then be drawn plotting ontput voltage against current drawn. The voltage between $B+1$ and HV secondary centretap at any current could then be

Since filter referring to the graph.
Since filter chokes have very low transformer (roughly) can be impressed on the plates of the output valves So on the plates of the output valves. So requirements The use of a 400 V type would make the power pack more versatile, but 380 should be sufficient in most cases. Where a higher voltage than 250 is used in the output voltage two $B+$ voltages will have to be pro-vided-a high one for the audio, and 250 for the radio itself. If a small audio set up is used, only 250 volts output is required. In the former case, R 2 and C 3 are ineluded in the circuit; in the latter case they are omitted. The voltage between $B+1$ and earth can be varied by adjusting R1, which is a variable type since its resistance has to be altered each time the load is changed.

Here are a few examples on the calculation of R1.

1. With the load (including speaker field, if used, and voltage divider) drawing 40 ma. 250 volts output is requircd. Voltage between rect. fil. and HV centretap is 400 . Voltage drop required is therefore 150 . R1 therefore equals (by Ohm's law)

$$
\begin{array}{r}
150 \\
\hline
\end{array}
$$

$$
=3800 \Omega \text { (approx.) }
$$

2. With loarl drawing 70 ma .250 V ontput required. Voltage between rect. fil. and HV centretap is 395 . Volt drop required is 145 .

$$
R 1 \doteq \frac{145}{.07}=2100 \Omega
$$

3. With load drawing 130 ma . 300 V output required. Voltage between rect. is and HV centretap is 388 . Volt drop

$$
\therefore R 1=\frac{88}{.13}=700 \text { ohms }
$$

The best arrangement for $\mathbf{R 1}$ would be to use a variable 2000Ω resistor (rated at at least 00 watts) and put a with it when a higher value than this is needed.

The best way to adjust the resistance is to use a voltmeter, but if one of these is not available for use, a calculation like those above must be carried out. R2, when needed, should also be an adjustable type. It can be adjusted by means of a voltmeter or else its resistance can be calculated. Here are some examples:-

1. $B+1=300 \mathrm{~V} \quad \mathrm{~B}+2=250 \mathrm{~V}$. drawn by load drop $=50 \mathrm{~V}$. Current if used and voltage divider) $=30 \mathrm{ma}$.

$$
R 2=\frac{50}{.03}=1700 \Omega
$$

2. $13+1=350 \mathrm{~V}$. $B+2=250$. There volt drop $=100 \mathrm{~V}$. Current drawn by load $=50 \mathrm{ma}$.

$$
\mathbf{R} 2=\frac{100}{.05}=2000 \Omega
$$

All figures in the above calculations are given to the nearest hundred.
The screen voltage for the receiver can be tapped off the voltage divider
$(B+3)$. The position of the tan is best adjusted with a voltmeter. The load must be connected while the adjustment is made. If it is not possible to get hold of a meter, and the equipment cannot be taken into a serviceman's establishment, the only thing to do is to tan the voltage off in mroportion. This however, is a very inaccurate method.
C1, C2, and C3 should have capacities of at least 8 mfd ., and should be rated at at least 500 V , preferably higher. The ructifier valve can be a $5 \mathrm{~T} 4,5 \mathrm{~V} 4$ $5 \mathrm{U4}$, or 5Z3. An 80 , $5 \mathrm{Y} 3-\mathrm{G}$, etc., would be quite suitable providing the set is not over 9 valves. It would be run a little over rating at full power pack load, but they would "take it" for a fair while. The 5V4 is definitely preferred.

Make sure the transformer used is adequately equipped in the way of filament windings. This is important. Two $6.3 \mathrm{v}-3 \mathrm{amps}$. windings should be sufficient, but an extra $2.5 \mathrm{v} .-5 \mathrm{amp}$. winding should not be sniffed at. Be sure to earth either the centretap or one side of the filament windings (except where direct heater valves are used).

If for some reason you do not wish to build a power pack exactly as described here, I think enough angles of the subject have been discussed for you to be able to design one for yourself. receiver.
For a start, this will invariably consist of one valve. If radio valves didn't decrease in efficiency as they grow older, the best plan would be to choose a valve which could be used in a subsequent pash pull set up. However, as they do, the original output valve would probdeal of unbalance in a cause quite a by the time the constructor is thinking of such things. So the best idea is to choose a valve that has a hirh gain. The one that comes to mind at once is the EL3. This is undoubtedly the best that could be used. A pentode or beam nower tube such as a 6 F 6 or 6 V 6 , is the best in the American types.

The circuit for a one-valve andio set up is shown in Fig. 4.
C can be anything from .1 to .01 mfd . .1 will give better bass response. The grid "stopper" labelled 30,000 is usually employed when an ELS output valve is used. It is not at all critical in value. R is found by calculation-for an ELS it is 150 ohms; and for type $6 \mathrm{~F} 6,420$ ohms.

Although for the first one or two sets there will not be much power for the speaker to handle, in subsequent set ups it will be called upon to do more work. So it is not much use getting a four or five-inch speaker to start with. If you are the son of a millionaire you could get a G12PM or something for a start. If you are not the son of a millionaire, you will be well rewarded if you get an

The first addition to this section is that of a preamplificr. This is cither a $6.7,606,77$, etc., or else the pentode
section of a $6 B 8-G$. section of a 6B8-G. This will be discussed later. It's circuit is shown in An. SA. R1 and 12 can be calculated. An improvement in tone can be effected athode bypass condenser omiting the cathode bypass condenser. 25 can be The $1+$ veltage should be 250 or 300 volts. If the supply voltage to the audio is greater than this a dropping resistor and by-pass condenser should be included as in Fig. 5B.
To operate two valves in push pull it is necessary to get magnitude but oppo180° out of phase with 180 out of phase with each other) which are applied to the two control grids of the output valves. the metho whelf that of using transformer or upling transformer coupling the secondary beins centre tapped with the two ends going to the t wo grids

Fig. 5 B.
(Fig. 6). However, transformers suitable for the job are very expensive and therefore not used extensively. The most

sound and practical method of obtaining the two signals is by use of a phase splitter, shown in Fig. 7. The signals provided the plate and cathode exactly (labelled 1 which is a cood all-round value) are exaretly equal (get them
$6 J 5,6 C 5$ etc

tested). Resistor \mathbf{R} is found by dividing twice the resistance of the plate resistor by the amplification factor of the valve by the amplification factor of the valve
used. A triode must be used, or else a pentode (such as the 6.57) connected as 657 so connected (screen factor of a connected to plate) is 20 . connected to plate) is 20.
Double of giving pood results invers are 7 phase splitter is foolproof. The Fig. 7 phase splitter is foolproof.
In some amplifiers, the two signals are amplified by push-pull drivers before being fed to the output valves.
$6 \mathrm{~J} 5,6 \mathrm{~J} 7 \mathrm{ee}$

Fig. 8 shows suitable circuits. When such drivers are used, the phase splitter would come in the first stage in most cases, in which case the circuit would cases, in which case the circ
be like that shown in Fig. 9.
When building the output stage it is as well to have a meter on hand to check voltages and currents. With the correct bias, the valves may be drawing considerably over the rated current. In this case the bias may have to be imcreased in order to avoid overload of the power pack, if it is being ruu near its full load.

If the plate currents of the two pushpull valves are found to be widely different (write to Ripley if they are justing the same), some means of adneet the cathodes (or filament centre taps) together, and bias them by means of a variable resistor (make sure it will take the current) of a sensible resistance. Adjust this to approximately the correct value. Switch the amplifier on and adjust the resistor until the total plate current for the two valves is approximately correct. Without altering its setting remove the resistor and measure the resistance of the part that was in the circuit.

The next step is to arrange a set up like that in Fig. 10. R3 should be fee we have just measured or a little less and R1 and R2 together should be four times the remainder. Should $R 1+R 2$ equal a standard potentiometer resistance or do so fairly closely, they can be sistance. Otherwise R2 will be the stansistance. Otherwise R2 will be the standard pot having the next lowest resistance and R1 will be chosen to make the value up to the one we calculated. To adjust the pot, turn the power on and fix it so that the plate currents are
equal.

If you should wish to keep this control, mount it somewhere where it cannot measure the resistance between the Otherwise of R 2 and each cathode and the rotor fixed resistances.

The circuits for resistance coupled output triodes and pentodes in push pull are shown in Figs. 11 and 12

Since it only allowed 100 ma . for the audio, the power pack described previously coald not work a radio and an amplifier using 6L6's at the one time. Should you desire to do so you could design a power pack accordingly. As long as the valves other than the output valves do not draw too much current the pack described would supply enough current for such an amplifier if a radio was not worked at the same time.
Lower power pentodes like 6V6's should satisfy the needs of the deafest enthusiast. Remember that an ordinary superhet only delivers about 3 watts Theoretically, pentode output valves with inverse feedback are just as rood

as triodes, but practically, the triodes give out better sound
Special amplifiers like direct coupled and cathode follower amplifiers will not be discussed here.
The layout of amplifiers is fairly straight forward, a "stage by stage" proto the amplifier should be shielded right up to the grid of the first valve. In the early stages of the amplifier, make sure that the filament wires are not placed so that they could cause trouble in the so that they could cause trouble in the way of hum pick-up.

INVCRSE HEEDBACK
Quite noticeable improvements in tonal quality can be brought about, when using pentode output valves, by the application of inverse feedback. That is, a signal from a later stage of an amplifier is fed to an earlier stage, so as to reduce the overall volume, but to improve fidelity by which. There are several both for small and large set-ups.

A well-known fecdback circuit is shown in Fig. 13. V1 is the preamplifier and V2 the output valve. The values shown are not critical.
GUTPUT

The circuit shown in Fig. 14 does not require any extra parts, but involves interference with the secondary of the speaker trannie and the use of two extra wires on the speaker lead. This scheme also does not lend itself to a commonly used system of jack. switching to earphones.

Fig. 15 shows a popular feedback circuit for a three-stage amplifier. " R " is calculated to give correct voltage on the screen of the first valve. For a 6.J7 it is 1.5 meg . 30,000 is a fairly safe value for R2.
Omitting the by-pass condenser from the cathode circuit of the preamplifier is also a method of introducing negative feedback.

TONE CONTROLS.
Tone controls are often included in radios so that the individual can alter the nature of the sound to suit himself. The only common type of control is one Thich cuts off the high frequency sound with varying degrees of efficiency.
Perhaps a more important use for uch a control is that it can be used to cat down noise considerably, since most atatic is in the high frequencies.

The tone control can consist of a variable resistor and condenser in series, connected (preferably) across the output connected (preferably) across the output be desired to earth the rotor of the pot., between the plate of the output valve can be connected between the used they

of the output valves as shown in Fis. 17. The attenuation effect will be greater when there is less resistance in the circuit. The tone control could bo made more efficient by fixing it so that when, turned to the high resistance end, the condenser and resistor are switched out of circuit. How this can be accomplished depends on the mechanical construction of the resistor used. Perhaps a good all-round method would be to with a coating of Insuvarn.

This is by no means a complete treatise on the subject of amplifiers, but putting together a really first-class iob with the information given.
Where tolerances in resistances and capacities are indicated, better results. may be obtained by experimenting with the values.

This part of the radio gives a very large scope for experimenting. If amplifiers interest you, read all the literature on the subject that you can lay your hands on.
Now we come to the receiver proper. In practically all cases, this section is a one-valve circuit for a start. A regenerSeveral circuits are shown in Figs 18-

20. Let us consider each component carefully and see if we can choose it to be of the greatest use later.

First the valve. Usually a 657 or 65 C 6 is chosen. Perhaps we could to better When such a valve is finished with as of first, the only job left for it is that of first audio. Now, a frst as we is asing (I hope) an DL3 output valve.

How ahout a 6B8-G? Here we have two diodes as well as the pentode and thus more scope for experimenting. However, we can get a good R.F. pentode with two diodes attached, so it is not such a great advantage to have them on this valve. If the diodes were used as detector in a subsequent superhet, the pentode section would be used as 1st audio. It would be better to keep all think this plan is so good.

Perhaps the best plan would be to use a converter valve. The only valve of this type at all suitable for the job of detector cum amplifier is the $6.58-\mathrm{G}$, and
various circuits have been designed around it. However as it is not in tended for the job, it is not the best that could be used. It is recommended because its use enables quicker progress,
According to "Radio and Hobbies" According to Radio and Ho (i.e zero bias) the output from the trinde is somewhat distorted, and, al triode is somew suitable for phones wouldn't pound so hot when amplified for a speaker If bias is employed, the output is $r e a s$ but since the in jector grid is also at a negative poten tial to cathode the pentode section does not operate as well, Well there it is. You can try the set-up with or without bias and see if you can get satisfaction Fiven if it means operating the valve disregarding the triode section com pletely, I think this valve is the best choice. A cricuit of a resistanc coupled Class A triode is illustrated.

So much for the valve. As was men tioned before, that is not the only con sideration.
The coil presents no difficulty. Use either factory-made or home-made coils. Coil winding data has been published so often that it is not deemed necessar here. Remember that when an R.F. stage is inded its coll must be of the same type as that used with the detec tor. If a factory-made reinartz conl is used, it will be necessary to use choke eompling when an R.H. stage is rader This is becanse the end of primary and secondary, which are earthed normally are joined together inside, and the pri mary possibly isn't suitable for putting in the plate circuit any way.
Only the first one or perhaps two sete will require a single gang condenser, so the best plan would be to get a two gang or, if possible, a three gang for a start and thus save the expense of the single gang.

C1 can be anything between .0001 and 0005 . Usually 00025 mfd is chosen This can be used in future circuits as an R.F. by-pass condenser. One meg seems to be a good atl-round value for grid leak. If this value is chosen it likely that it will fit into some other subsequent circuit. C 2 is in the vicinity of 25 mfd . R 2 is usually 250,000 ohms Sometimes it is replaced by a choke of about 50 henries. This has low resist ance but high impedance to audios.
Regeneration can be controlled by varying the screen voltage by means of a voltage divider system or by using variable reaction condenser. The former method is preferred. If it is used the reaction condenser (R.C.) should have capacity of about .0001 mfd . R3 would best be chosen so that it would come in useful in a later set. The potentiometer the set is most likely to want is 2 meg. type which could be used as an audio vol. control. So one of this resist
ance would be best. Although only is all currents would flow through it, it is as well to get a pot. with a fairly of the an ordinary intended only for work as likely to burn audio volume control are cation to burn out at the slightest provo ation.
If the variable reaction condenser control is used, the screen voltage should be adjusted by means of a wire wound oltage divider. Otherwise R3 could be two 20,000 ohm resistors in series, the sreen voltage being taken from their junction.

So much for the detector circuit
First addition to this section of the radio will be that of an R.F. amplifier. The circuit of this was discassed earlier. o far as the valve type goes, it is the wisest plan to pick one with a very high transconductance. One of the best nvailable is the Philips EBF2. It is nuch better than any of the American types. It also has the advantage of waving a pair of diodes in the envelope with the pentode.

If we are using a converter valve as a detector and an EBH2 as R.F., we can count the set-up into a super without getting any more valves. A converter circuit is shown in Fig. 2 and was discussed carlier. The pentode section of the EBF2 remains in the same circuit as before, except that the R.F. coils are replaced by 1.F. trannies and AVC is appliea.

The circuit is as shown in Fig. 21. The amplifier, detector and AVC circuits do not in any way interfere with each other. Delayed AVC is used. With this system the signals are not affected unless they have an intensity greater than the voltage across the cathode resistors.
Since diode detection is employed, the audio will be practically distortion free. R11, R2, R3 can be somewhere around
$\frac{1}{2}$ meg. ; $\mathrm{C} 8, \mathrm{C1}, \mathrm{C} 2, \mathrm{C} 3$ are about .05 mfd.; C 4 is .0005 or thereabouts, and C5 and C7.0001.
R4 determines the amount of AVO action. Usually it is one meg. If the AVC action is too strong, try reducing its value; if it is too weak make it larger. R5 is . 5 , and R7 is. 1 meg. R6 is calculated.
A 6G8-G or 6B8-G could be used instead of the EBF 2 G in this set-up, but to the marked detriment of the output. The intermediate frequency could be either 465 Ke or 175 Kc . The latter frequency isn't used much now, because of double spotting and the necessity of providing extra pre-selector stages. With ectivity will and diode detection, the selquirements of the not be up to the reby later incorporating an infinite impedance detector and variable selectivity, the receiver will be all that could be desired

from the point of view of selectivity and also tonal quality (provided distortion is not introduced after the detector stage) Altogether I think $465 \mathrm{Kcs}$. is the better IF.
This infiuite impedance detector I mentioned is shown in Fg .22.
As you see, the output is taken from the cathode circuit. This detector does not load the tuned circuit to which it is connected, and thus makes the set fa more selective. It also gives a less dis torted output than the diode.

The valve used is a general purpose triode, such as the 6J5 or 6C5. C1 can be around . 00025 and C2 .05 mfd . R1 ohms, and R 3 about 25,000 .

RF
AMPLIFIER

AVO voltage can be taken from the plate of the IF amplifier, and the diodes of this valve can be used as AVC diode (Fig. 23). Perhaps a better method would be to take the AVC signal from the plate circuit of the detector, as in a circuit recently shown in the "Australasian Radio World." This plan makes us ot the $A Y C$ signal and thus to get a of this arrancement is shown in Fir 24 The and the plate resistor is about .25 mfd.

Getting back to where we were while ago. If our two-valve T.R.F. set up should happen to be an EBE2 as RE and a 6J7 as detector, a converter valve will have to be added to turn the set into a superhet. The 6J7 will be transferred to the audio section as preamplifier. Since the converter does not have to work as anything but a converter,
the characteristics we are looking for are those that indicate good operation as such. Philips have about the best best for in the ECH35. (The 6A8 6 gives better preformance on short waves).
The main additions to the set as it tands now are those of extra R.F. and .F. amplifiers. Each time an R.F. amp on the tuning condenser. There is little point in adding more than one stage of R.F., so a three gang condenser would be a fairly good buy for a start. When adding extra R.F. and I.F. stages, me dium gain valves like 6D6 or 6K? should be used. Having more than two I.F. stages and one R.I. would be simply asking for trouble in the way of instability.

On a superhet, C.W. morse signals come in with a sort of harsh "burp." lator is built on to the set. The "burp" may be considered good enough by many, but if it is not, a beat oscillator must be used. This oscillator generates a frequency 400 or so cycles different to the I.F. If the signal and the output from this oscillator are "mixed" at the detector, the resultant frequency is the differ-

ence between these two frequencies. The ence between these two frequencies. The 27 . It is the Hartley circuit, which is most commonly used for this purpose. like the 6J5 or $6 \mathrm{C5}$. purpose triode the the 6J5 or GC5. The wire going
from the oscillator is twisted around the lead to the diode plate of the detector. This gives enough coupling. All of this wire (except the twisted part) should be shielded. Take care to keep all of the oscillator well shielded. The coil or transformer itself should be available ready for the job. If they were not already on the transformer, C2 would be . 00025 , and R1 one or two megs. C1 is about .01. R2 should be, about $75,000 \Omega$.

A useful addition to any set is that of a tuning indicator. The most common of these is the "magic eye" using an "electron ray tube." The circuit shown in Fig. 28 can be adapted to any set using A.V.C. A suitable valve for the job is t. $6 \mathrm{U} 5 / 6 \mathrm{G5}$.

Where several RF and IF valves are used, coupling between their plate circuits and their screen grid circuits is overcome by by-passing the plates and overcome by by-passing the plates and The screens will not give any trouble when they are by-passed simply as in When they are by-passed simply as in
Fig. 29. Separate dropping resistors are not necessary. C is about .1 mfd. for I.F.'s and .01 for R.F.'s. Fig. 30 shows
how the plates should be dealt with L is the primary of any R.F. coil or tors R should be chosen so that the voltage drop across each is about tey volts. The B+ voltage could then be adjusted to 260.

VARIABLE SELECTIVITY
Unfortunately, high fidelity and high selectivity are never synonymous. The effect of having high selectivity is to cut down the high frequencies. A superhet with two I.F. stages and one or two R.F. stages would have very poor high frequency response unless some method of decreasing the selectivity was provided, while if an infinite impedance detecto were used with such a large set-up, the highs would be practically choked out of existence.

The best schemes for varying the selectivity of a receiver unfortunately involve the use of special intermedates, and doubt if any of these are at presen tralia.
tralia

One type has an adjusting screw which varies the distance between the primary and the secondary-the further apart they are the greater the selectivity wo other types have a third winaing is the botto end "botem" and of the is connected to the "bottom" end of the secondary, the chat ofown in Fir. 31 The trimmer shown would probabily be he trimer the The but it was not b should be such capacity as to tune it should be sug to the intermedinte the third winding to the intermediate requency. If the enned to n thing winde the THT the simplest method hould the to connect a variable resistor of abbut 5000Ω across it. (Fig. 32:)

If none of these types are available (or the prices are a bit fancy) the best plan in regard to the intermediates is to get only medium efficiency types. With a small set-up using diode detection, the selectivity wouldn't be so hot, but this could be overcome by switching to an infinite impedance detector. Then, when the selce the becane too hig with this
detector, the diode could be resorted to.
Besiacs thase using she seliv. s, the only system for your write fan recoss one or two of we IW, suitable arrongement is the 1.F.R. A suitable arrangement is (the minimum value of the combined re sistance) depends quite bit on the selectivify of the set Values suggested are 30,000 ohms, 50,000 ohms, and 100,000 ohms. R2 could be about anelualf or one meg. The bottom end of R2 should be covered with a layer of Insuvarn, so that, for maximum selecInsuvarn, so that, for maximum selecout of circuit.
no the resistors would be better left out of circuit.

LAY-OUT OF THE RECEIVER In the first receivers built, lay-out is of minor importance. By this I don't mean that you can just make a hash of the job with tangled wires and haphazardly placed components and then expect A1 performance. The matter just isn't critical. The main thing is to make sure that (assuming you are using ${ }^{a}$ much smaller chassis than you need) you don't cut the chassis about so that when you come to larger sets you'd wish you hadn't.

A "stage by stage" procedure is the usual thing and seems to me the best plan. With a TRF set, leads to a wave change switch (if desired) can go anywhere without trouble, and so the layout is not thus complicated. But even with the simplest superhet, it is as well o keep such wires as short as possible and away from other stages. Since it is the first stages of the receiver that are connected to the wave change switch, and the wave change switch is situated at the front of the receiver, it follows that the early stages of the receiver wil also. The same goes for any other controls.
A fair bit of practice is necessary in designing good lay-outs. With big sets, unless the stages are fairly well isolated
the set is liable to give trouble in the should be shielded．Preferably，it should way of instability and oscillation．Such be led into the audio section by means trouble may be effectively overcome by increasing the bias on the I．F．ampli－ fers．If it is not，the only thing to do apart is to re－designing the whole lay－ out，is to use a lot of shielding under circuit from－preferably to shield each circuit from every other one．Wires then pass through holes drilled in the shielding．Little need be said about the shietual wiring．Little need be said about the the heavy filament wires around the edge of the chassis，and work outwards from the centre of the chassis with the $13+$ wires．Otherwise it is just a mat－ ter of commonserwise it is just a mat－ ter of commonsense．
All valves on this chassis should be chielded，as should be the first valve on the audio chassis．The metal sprayed， or metal types，of course，do not require shields．
Now a few general－remarks．
Always make sure that the voltage and wattage ratings of the condensers and resistors are sufficiently high．A good plan is to calculate the voltage or wattage the component has to take， multiply by $1 \frac{1}{2}$ ，and use a component of the next highest rating（unless the value found is only a little above standard rating）．
The filament leads should be made as short as possible and should be made of the heaviest wire available．The tector to the input of the audio amplifier of a banana plug．Remember that all shields must be earthed．
If the idea of considering a circuit as being made up of a number of aepa－ rate circuits is new to you，or you have been hazy on the matter，you would do well to practise separating any existing
circuits you can find into their different parts before trying any designing．The main thing to consider when designing is to make sure that all the parts used can be used again if possible．For example，when you have a small super－ het you may wish to switch to infinite impedance detection to get greater selec－ tivity．Then when further stages have been added，making the set selective enough with diode detection，the value used for the inf．imp．detector can be switched over to the audio as a phase splitter or something．
Erasped when you think you have grasped the art of designing your own circuits，don＇t look the other way and sniff when you see other circuits．Look and if they contain any unusual or in－ teresting features，make a note of them mental or otherwise．
Even if you could fly straight into superhet for your first set，without any financial worries，start off with smaller jobs．There＇s nothing like a bit of ex jorience．

As I mentioned before，an important thing is to read as much radio literature as you can－both practical and theoreti－

SHORT－WAVE COIL DATA

H．VERNON WHEATLEY

Coil data over a comprehensive range connect the coil to the other components is a very handy thing to have，and this in the receiver will alter the range o rable covers most eventualities．
In the first column you will note that It gives the popular sizes．In deciding the tuning range，one must have some idea as to the maximum and minimum capacity of the tuning condenser，for coverage of the coil you select．The lower the minimum capacity of any tun－ ing condenser，the greater the actual tuning range of any L / C combination the range extending on the lower end of the wavelength．
In noting the tables you will observe that for all combinations a minimum capacity of 30 mmfs ．has been selected for the computation of the highest tun－ sble frequency（lowest wavelength）．This
value was chosen becanse it is fairly average．The actual wiring needed to
the coil slightiy，but this may be safel is only minute，you do not the range worry about it with ther not have to neither do you have to with this table The table is easy to follow，and her is an example．We have a lin．former， some 18 S．W．G．wire，and a .00015 mfd ． We plan to wind a coil whim capacity． to 18 metres．Looking at the will tune find in the former column the table we 18 S W G former column for lin．using 18 S．W．G．and moving along to the that with a winding of 51 torns .00015 over a width of half on spaced at 101 of hali an inch，which is have a coil capable of tuning from 8.75 to 19.5 metres．Similarly but wing 0001 mfd ．condenser，the range will be
from 8.75 to 16 metres．Using a .00035 When correctly spaced，they are cem－ mfd．condenser，the range covered will be from 8.75 to 30 metres．
The table gives sizes for secondary windings．
To calculate aerial turns，the following rule should be adhered to ：－
10 metres up to 25 metres－ 3 turns close－wound
25 metres to 50 metres－ 5 turns close wound．
50 metres to 100 metres－ 7 turns close－wound．
The number of turns are irrespective of size of former，and are wound 1 in ．to tin．away the secondary，dependin upun the degree of coupling desired used．
The same applies to reaction windings also．A general guide as to the number of turns is：
10 to 15 metres－2 turns close－wound． 15 to 40 metres－ 3 turns close－wound 40 to 100 metres－ 7 turns close－wound
If regeneration fails to materialise， move winding closer to the secondary， add turns or increase $B+$ detector voltage．Should regeneration be uncon－
trollable，move reaction winding away trom the move reaction winding away from the secondary，remove turns or re

SHORTWAVE COIL DATA TABLE

Dia．of Former	8．w．G．	T．per $1^{\prime \prime}$ Snaced One Din．of Dia．of s．w．G．	$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Turns. } \end{gathered}$	$\begin{gathered} \text { Length } \\ \text { of } \\ \text { Winding. } \end{gathered}$	Range .0001		Min．Cap． 30 mmfd $\begin{array}{ll}.00015 & .00035 \\ \text { Max．} & \text { Max．}\end{array}$	
$\frac{1}{2}{ }^{\prime \prime}$	18	$10 \frac{1}{2}$	514	$\frac{1}{\frac{1}{2}}$	5	9	11	16
$\frac{1}{}{ }^{\prime \prime}$	18	$10 \frac{1}{2}$	$10 \frac{1}{2}$	1＂	7.5	13.5	17	26
年＂	18	$10 \frac{1}{2}$	$5 \frac{1}{4}$	$\frac{1}{2 \prime \prime}$	6.75	12.5	15.5	24.5
3＂	18	10를	101	$1^{\prime \prime}$	11	20	24.5	37
$8^{\prime \prime}$	18	$10 \frac{1}{2}$	54	$\frac{1}{2}{ }^{\prime \prime}$	8	14.5	17.5	26.5
1 1＂	18	$10 \frac{1}{2}$	$5{ }^{4}$	${ }^{\frac{1}{2}}$	8.75	16	19.5	30
$1^{\prime \prime}$	18	102	$10 \frac{1}{2}$	$1^{\prime \prime}$	14	25.5	31	47
$1^{\prime \prime}$	18	$10 \frac{1}{2}$	153	$1{ }^{\prime \prime}{ }^{\prime \prime}$	18	33.5	40	62
$13^{\prime \prime}$	18	$10 \frac{1}{2}$	$5 \frac{1}{4}$	1＂	10.5	19	23.5	36
$1{ }^{1 / \prime}$	18	$10 \frac{1}{2}$	$7{ }_{8}^{7}$	年	14.5	26	31.5	49.5
$1{ }^{1 / \prime \prime}$	18	102	$10 \frac{1}{2}$	$1^{\prime \prime}$	17	31.5	38.5	58
$11^{\prime \prime}$	18	$10 \frac{1}{2}$	$15 \frac{3}{3}$	$1{ }^{1 / \prime}$	23	42	50	73
$11_{2}^{\prime \prime}$	18	$10 \frac{1}{2}$	10를	$1^{\prime \prime}$	20	36	44	67
$1^{11^{\prime \prime}}{ }^{\prime \prime}$	18	102	153	$1 \frac{1}{\underline{\prime \prime}}$	26.5	48	58	90
1年＂	20	14	7	$\frac{1}{2}{ }^{\prime \prime}$	14	25.5	31	47
14＂	20	14	14	$1^{\prime \prime}$	23	42	51	74
$1{ }^{\prime \prime}$	20	14	21	$1 \frac{1}{1 / \prime}$	30	55	67	103
12＊	20	14	7	${ }^{\frac{1}{2}}$	16	29	35.5	54
1起＂＇	20	14	14	$1^{\prime \prime}$	26.5	48	59	90
12＂＇	20	14	21	$1{ }^{1 \prime \prime}$	35	63	78	120
$1{ }^{\prime \prime}$	22	18	9	$\frac{1}{2}$	18	33	40	61
$1{ }_{\text {1 }}^{\text {k }}$	22	18	131	3＂1	25	45	55	82
1等＂	22	18	18	1 ＂	30	53	65	100
$11^{\prime \prime \prime}$	22	18	27	$1{ }^{\frac{1}{2}}{ }^{\prime \prime}$	39	70	85	135
1年＂	22	18	9	$\frac{1}{2 \prime \prime}$	20	36.5	46	70
$1{ }^{1 \frac{1}{1 \prime \prime}}$	$\stackrel{22}{22}$	18	$13 \frac{18}{2}$	亨＂＇	28	51	62	96
1－ 1	22	18	18	$1^{\prime \prime}$	34	62	76	115
1／ 1	22	18	－ 27	$1{ }^{1 \prime \prime}$	45	83	100	150
1年＂	24	221	114	衰＂	22	41	50	76
1年＂	24	$22 \frac{1}{2}$	167	3＂	31	55	68	105
	24	$22 \cdot 1$	$22 \frac{1}{2}$	1 ＂＇	36.5	65.5	80	125
1高＂	24 24	$22 \frac{1}{2}$	28	$1^{1+1}{ }^{1 / 1}$	43	78	95	147
	24	$22{ }_{2}^{2}$	33 ${ }^{\text {a }}$		48.5 26	88	107	165
$1{ }^{1}$	24	$22 \frac{1}{2}$	16\％	年＂	35	63	57 78	88 120
$1{ }^{\prime \prime}$	24	$22 \frac{1}{2}$	$22 \frac{1}{2}$	$1^{\prime \prime}$	43	78	94	145
$1^{\frac{1}{2}}{ }^{\prime \prime}$	24	$22 \frac{1}{2}$	28	$1 \frac{1}{4}{ }^{\prime \prime}$	50	91	110	170
$1{ }^{\prime \prime}$	24	22.	333	$1{ }^{\prime \prime}$	56.5	103	125	192

SHORT WAVE STATIONS OF THE WORLD

Complete list of all short wave stations, in operation, or which may become active in the future. Stations marked with an asterisk are not active at present, but news of these will be found in the "Girdling the Globe" pages of the "Radiogram" when they ake the air, or when the frequencies are taken into operation again. Compiled by your DX Adviser, Arthur T. Cushen, 212 Earn Street, Invercargill.

ALL TIMES NEW ZEALAND DAYLIGHT SAVING TIMES.

Call. and Location.	Frequenc Kilo. cycles.	Power in Watts.	Schedule, Slogan, English New Periods, etc.
*TG3-Guatamala City, Guat.	2320	300	"Radio Morse."
*ZQ1-Kingston, Jamaica	2330	200	
HOA-Panama City, Panama	2340	300	"La Voz de la Democracia."
WWV-Washington, D.C. Keijo, Chosen	2500	1,000	Frequency check station.
Keijo, Chosen Souel, Korea	2510		American recordings, 12.30 a.m
* GRC-London, England	2880	50,000	English News, 10.05
*YDA-Batavia, Java	3030	10,000	
HDZ-Riobamba, Ecuador	3228	250	"La Voz del Chimborazo."
VUC2-Calcutta, India	3305	10,000	News, 1 a.m.
YV1RO-Trujillo, Venezuela	3310	2,000	"Radio Trujillo," 10 a.m.-2.30 p.m.
VUD3-Delhi, India	3335	10,000	News, ${ }^{1}$ a.m.
*Teheran, Iran	3340	2,000	"Radio Teheran."
YV1RT-Mombay, India . ${ }^{\text {a }}$ - ${ }^{\text {a }}$	3365	10,000	
YV5RY-Caracas, Venezuela	3370 3380	1,000.	"La Voz de la Fe," 10.30 a.m.-3.30 p.m.
YV4RK-Maracay, Venezuela	3390	2,000	"Radio Maracay," 11 a.m. $3.30 \mathrm{p} . \mathrm{m}$.
Colombo, Ceylon	3395	700	12.30-4.00 a.
YV5RW-Caracas, Venezuela	3400	1,100	"Radio Tropical," 11 a.m.-3.30 p.m.
	3420 3420 3430	600	"La Voz de la Sierra," to $3.30 \mathrm{p} . \mathrm{m}$.
*LRS-Buenos Aires, Argentina	3420 3430	300	
*VUM2-Madras, India ..	3435	10,000	
YV1RU-Maracaibo, Venez.	3440	1,000	"Radio Maracaibo," to 2.30 p.ma
Johannesburg, South Africa	3450		
YV7RB-Cumana, Venezuela	3450	500	"Radio Sucre," 9.30 a.m.-2.30 p.an.
YV4RP-Valencia, Venezuela	3460	1,000	"Radio Valencia," 1-3.30 p.m.
HVC-Bagdad, Iraq	3478	5,000	
XZZ-Rangoon, Burma	$\begin{aligned} & 3480 \\ & 3488 \end{aligned}$	$\begin{array}{r} 900 \\ \mathbf{1 , 2 0 0} \end{array}$	"Radio Puerto Cabello," to $2.20 \mathrm{p} . \mathrm{m}$.
CR7AB-Lourenco Marques, Mozambique	3490	1,200	8.30 p.m.-11 p.m.
YV3RS-Barquisimeto, Ve	3490	4,000	"Radiodifusora Occidental."
VUD2-Delhi, India	3495	10,000	News, 1 a.m.
YV5RX-Caracas, Ven.	3500	1,500	"La Voz de la Patria," 2.30 p-m.
YV6RC-Barcelona, Ven.	3510	1,000	"Emisoras Unidas," 11 a.m.-3.30 p.m.
YV5RS-Caracas, Venezuela	3525	2,000.	"Radio Libertador," 10 a.ne.-3.30 p.m.
HCK-Quito, Ecuador YV5RD-Caracas, Venezu	3529 3570	300 500	"Radio
*HCT-Guayaquil, Ecuador	3571	2,000	Radio Cultura, noon-2.5s p.m.
*HCVT-Ambato, Ecuador	3708	250	"La Vo
*HCQRX - Quito, Ecuador	3710	300	"Radio Qưit
HC1IM-Ibarra, Ecuador	4020	300	"La Voz de Imbabura," noes-3 p.m.
Ponta Delgada, Azores	4040	1,000	"Radio National," 8-9 a
CJB-Quito, Ecuador	4105	200	"La Voz de los Andea," 11 a.m. 3.30 p.m.
HCGE-Quito, Ecuador	4108	200	
HC1AO-Cuenca, Ecuador	4200	200	"La Voz de Tomebamba."
HC2AK-Port-au-Prince, Haiti	4600	750	10 a.m.-2. 30 p.m.;
ZQI-Kingston, Jamaica	4650 4700	1,000 200	"Radio Ecuador," 11 a.tm.-4.30 p.m
HC2ET-Quayaquil, Ecuador	4720	300	"Radio El Telegralo," 10.30 a.m. $4.30 \mathrm{p} . \mathrm{m}$.
YV1RV-Maracaibo, Ven.	4750	300	"Ecos del Zulia," 11 a.m.-2.30 p.m
YV5RV-La Guaira, Venezuela	4760	1,000	"Emisora Vargas," 11 a.m.-2.30 p.m.
YV1RY-Coro, Venezuela	4770	300	"Radio Coro," 9 a.m.-3.10 p.m.
HJGB-Bucaramanga, Colomíbia	4775	1,500	"Radio Santander," 11 a.m.-2.45 p.m.
	4777	5,000	
V4RO-Valencia, Venezuela	4780	300	"La Voz de Carabobo," 9.30 a.m. 2.30 p.m.
* HJAB-Barranquilla, Colombia	4785	1,000	"La Voz de Barranquilla."
YV6RU-Ciudad Bolivar, Ven.	4790	1,000	"Ecis del Orinoco," 10.30 a .ms.-2.30 p.m.
HUB-San Salvador, El. Salv.	4795 4795	750 300	"Ecos de la Montana," 16.30 a.m.-
		300	

Call and Location.	Frequen Kilocycles	y Power in Watts.	Schedule, Slogan, English News Periods, etc.
OAX4P Ha Ana, El Sal	5980		9
OAX4P-Huancayo, Peru	5980	250	"Radio Huancayo
*WNRX-Nuenos Aires, Argentina	5985	5,000	"Radio Splendid," 10 a.m.-3 p.
*HI3U-Santiago, D.R. .	5985	50,000	
Andorra, Andorra	5997	200	"La Voz del Comercio."
PRI3-Belo Horizonte, Brazil	6000	5,000	"Radio Andorra," 10 ,p-m.-10.30 a.m.
ZFY-Georgetown, Br. Guiana	6000.	1,000	"Voice of Guiana,"
*ZOY-Accra, Gold Coast	6000	5,000	
VE9A1-Edmonton, Canada	6005		
CFCX-Montreal, Canada	6005	75	Midnight, 3.15 p.m. ${ }^{\text {chem }}$
MPsK-Colon, Panama	6005	250	"La Voz de la Vict
	6007		
CJCX-Johannesburg, Sth. Africa	6007	5,000	3-4 a.m.
CE601-Antofagasta, Chi	6010	1,000 5,000	11.55 p.m. 4 p.m. ${ }^{\text {chen }}$,
OLR2A-Prague, Czechoslovakia	6010	30,000	"La Voz del Norte," 2-4 p.m.
GRB-London, England .. .	6010	50,00	
VUC2-Calcutta, India	6010	10,000	ean Service.
OUX4-Delhi, India	6010	10,000	
PRA8-Recife, Brazil	6010	2,000	"Radio Victoria."
P P (38-Recife, Brazil	6012	5,000	'Radio Club Pernambuco."
JLR-Tokio (A.F.R.N.)	6015	200	"La Voz del Comercio."
XEOI-Mexico City, Mexi	6015	50,000	Forces programme to 9 p.m.
HJCX-Bogota, Colombia	6018	$\begin{array}{r} 1,000 \\ 750 \end{array}$	"Radio Mil," to 6 p.m. and later. "La Voz de Colombia,"
*CP41-Sucre, Bolivia	6020	250	4 p.m.
Luxembourg, Luxembourg	6020	250	Radio Charcas."
XEUW-Vera Cruz, Mexico	6020	250	Midnight-5.45 p.m.
HILJ-San Pedro de Macoris, D	6025	250	10.35 a.m.-1.30 p.m.
CFFVP-Calgary, ${ }^{\text {1RF }}$	6025		4.30-7.40 a.m. ${ }^{\text {a }}$.
OLR2B-Prague, Czechoslovak	6030	100	12.30 a.m.-6 p.m., News 5 p.m.
XEKW-Morelia, Mexico ${ }^{\text {CRIA }}$ - ${ }^{\text {a }}$	6030	500	
CR7AA-Lourenco Marques, Mozambique	6030	300	Eco de Michoacan" to 4 p.m.
HP5B-Panama City, Panama	6030	150	"Radio Miramar" 11 a.m.-1 p.m
GWS-London, England	6035	20,000	
OAX6B-Arequipa, Peru	6035	50,000	"Ruropean Service.
CXA3O-Montevideo, Uruguay	6035	800	"Radio Nacional," 10 a.m.
*KZIB-Manila, Philipp	6040	50,000	"Voice of America in Nth. Africa."
COBF-Havana, Cuba	6040	1,000	
WRUA-Boston, U.S.A.	604	$\begin{array}{r} 1,000 \\ 20,000 \end{array}$	To South America, 1.30-6 p.m.
Rangoon, Burma	6045	7,500	4.15-5 p.m., 12.15-1 a.m., news, 4.30
*CE604-Santiago, Chile . . XETW-Tampico, Mexico	6045	-	Relays.m.
GSA-London, England	6050	50,000	
* HP5F-Colon, Panama.	6050	500	"La Voz de Colon."
*OAX6A-Arequipa, Peru	6050	250	"Radio
HJFA-Pereira, Colombia	6055	750	"La Voz de Pereira;" 11.30 a.m.-3.20
*CP47-Cochabamba, Bolivia	6060		
*OXY-Skemlebak, Denmark	6060	6,000	
*KNBA-San Francisco, Calif.	6060	50,000	
WCBEL-San Francisco, Calif.	6060	50,000	News, 10, 11 p.m.
* VUD3-Delhi, India U.S.A.	6060	50,000	To South America, 11.30 a.m.-6
*LRS1-Buenos Aires, Argentina	6065	5,000	
* TIWS-Punterenas, Costa Rica	6065	5,000 500	"Radio Splendid."
*SBO-Stockholm, Sweden	606	12,000	
Tetuan, Spanish Morocco	6067	1,500	"Radio Tetuan," 7.30-8 p.
CFRX-Toronto Canada	6068	6.000	"Radio Electrica."
GRR-London, England	6070	50,000	From $10.45 \mathrm{p.m}$.
* CXA3-Montevideo, Uruguay	6075	1,000 1,000	GFP to 3.30 p.m.
CKFX-Vancouver, Canada	6080	10	2 am -6.45
-WLWK-Cincinnati, Ohio	6080	50,000	
* AFN-Munich, Germany	6080	50,000	4.55-8.45 p.m., 5.30 a.m.-1 p.m.
* VUM2-Madras, India.	6084	3,000	
LRY-1-Buenos Air	6085	10,000	
ZNS-Nassau, Bahamas	6090	25,000	"Radio Belgrano," from 10.45 p.m.
* CKOB-Sackville, N.B., Canada	6090	50,000	15 a.m., 9 a.m.-2.05 p.m.
Radio Luxembourg, Luxembourg	6090	50,00	nglish, 7.00-8.00

Call and Location. F	Frequenc Kilocycles.	Power in Watts.	Schedule, Slogan, English News Periods, etc.
FW-Montreal, Canada	6090	7,500	12.30 a.m.-4.30 p.m.
*ZBW2-Hongkong, China	6090	2,500	
*GWM-London, England *XEBF-Jalapa, Mexico	6090	50,000 $\mathbf{2 5 0}$	"La Amiga del Hoga
*KGEI-San Francisco, Calif.	6090	50,000	Lu Amiga del
ZYB7-Sao Paulo, Brazil	6095	5,000	"Radiodidusoar Sao Paulo," to 3 p.m.
Singapore, Malaya	6095	25,000	10.30-11.45 p.m., midnight-3.30 a.m., News 2.30.
*ZHJ-Penang, Malaya *VUD7-Delhi, India	$\begin{aligned} & 6045 \\ & 6100 \end{aligned}$	$\begin{array}{r} 1,000 \\ 100,000 \end{array}$	"All India Radio."
*KZRH-Manila, Philippines	6100	1,000	
*KROJ-Los Angeles, Calif.	6100	15,000	
*WNRX-New York, U.S.A.	6100	50,000	
Warsaw, Poland XRRA Peiping, China	6100		News, 8 a.m.
XRRA-Peiping, China PRE9-Fortaloza, Brazil	6103		10.30 p.m. 4 a.m. "Ceara Radio Club."
PRE9-Fortaloza, Brazil	6105	2,500	"La Voz Amiga," 9 a.m.-3.30 p.m.
CP2-La Paz, Bolivia	6110	5,000	"Radio Nac. de Bolivia."
YUA-Belgrade, Yugoslavia	6110	10,000	
GSL-London, Eugland	6110	50,000	2.15-4.45 p.m. to North America.
*KZRC-Cebu City, Philippines	6110	1,000	
*OLR2C-Prague, Czechoslovakia	6115	30,000	
LRX1-Buedos Aires, Argentina	6120	10,000	2.45 a.m.-1.05 p.m.
VQ7LO-Nairobi, Kenya	6114	1,500	2.45-7 a.m., news $6.15 \mathrm{a} . \mathrm{m}$.
*OIX1-Helsinkt, Finland	6120	10,000	From 9 p.m. News on the hour
WOOW-New York, U.S.A.	6120	100,000 50,000	5-8.15
HP5H-Panama City, Panama	6122	600	"La Voz de
HI1G Ciudad Trujillo, Dom. Rep.	6125	150	"Radio la Opinion," 10.30 p.m.-1.3
GWA-London, England	6125	50,000	European Service.
OAX7A-Cuzco, Peru	6128	250	"Radio Cuzco."
CHNX-Halifax, Canada	6130	500	11 p.m.-3.15 p.m.
COCD Havana, Cuba	6130	1,000	"La Voz del Aire," 2 a.m.-5 p.m.
XEUZ-Mexico City, Mexico	6130	1,000	8 a.m.-5.20 p.m;
* CP30 Santa Cruz, Bolivia	6135	250	"Radio Florida."
*Punta Arenas, Chile VPD2-Suva, Fiji	$\begin{aligned} & 6135 \\ & 6135 \end{aligned}$		
AFN-Milan, Italy (U.S. Army)	6135	50,000	Heard 7 a.m.
Jerusalem, Palestine	6135	50,000	"Sharq el Adna."
XGOY-Chungking, China	6140	35,000	News, 2 a.m.
*WRUA-Boston, Mass., U.S.A..	6140	50,000	
*SP48-Warsaw, Poland	6140	5,000	
HJDE-Medellin, Colombia	6145	5,000	"La Voz de Antioquia," 9 a.m.-3.30
VLR2-Melbourne, Aust.	6150	2,000	0 a.m., 7.30 p.m.-1.3
CKRO-Winnipeg, Man., Canada	6150	2,000	
TIRH-San Jose, Costa Rica	6150		"Radio El Mundo," 3.30-5 p.m.
YSPB-San Salvador, El. Salv.	6150	350	
GRW-London, England	6150	50,000	3.55-6.00
${ }^{*}$ VUB2-Bombay, India	6150	10,000	"All India Radio."
CE615-Santiago, Chile	6155	3,000	"La Cooperative "Vitalicia," 4 p.m.
EQB-Teherean, Iran	6155	14,000	"Radio Teheran."
CS2WD-Lisbon, Portugal	6155	300	$9.30 \mathrm{a} . \mathrm{m} .-1 \mathrm{p} . \mathrm{m}$.
CP39-Cochabamba, Bolivia	6160	250	"Radio el Mundo."
*CHAC-Sackville, N.B., Canada	6160	50,000	
CBRX-Vancouver, Canada	6160	150	11 p.m.-8 p.m., relays CBR.
HJCD-Bogota, Colombia	6160	5,000	"Emisora Nueva Granada," 11 p.m.3.30 p.m.
Radio Kuala Lumpur, Malaya	6160		BBC Nows, 1 a.m.
TILS-San Jose, Costa Rica	6165	1,000	"Radiodifusora Para Ti."
HER3-Berne, Switzerland	6165	25,000	6-8 a.m.
GWK-London, England	6165	50,000	
HHCM-Port-au-Prince, Haiti	6167	+100	"N.B.C.," 10 p.m.-1.30 a.m., 10 a.m. 2 p.m.
*WCRC-New York, U.S.A.	6170	50,000	
XA21-Montevideo. Uruguay *OLR2D--Prague, Czechoslovakia	6170 6170	100 30,000	"Radio Felix," 11 a.m.-2 p.m.
Durban, South Africa	6170	30,000	
*CP37-Oruro, Bolivia .	6170	100	"Radio Oruro."
KNBA-San Francisco, Calif.	6170	50,000	
*YVKB-Caracas. Venezuela	6172	10,000	"Radiodifusora Nacional."
H19T-Puerto Plata, Dom. Rep.	6175	200	"Broadcasting Tropical."
XEXA-Mexico City, Mexico	6175	1,000	"Radio Gobernacion," 1 a.m.-6 p.m
LRM-Mendoza, Argentina	6180	10,000	"Radio Aconcagua," 10.30 p.m.-4 p.m.
*VLW5-Perth, West. Australia	6180	2,000	
*TIRCC-San Jose, Costa Rica	6180	300	"Accion Catolica."
GRO-London, England	6180	50,0^0	6.30-8.30 p.m. to Europe.
HIL-Cindad Trujillo, Dom. Rep.	6187	2"0	10.15 a.m.-12.40 p.m.
HNE-Bagdad, Iraq .	6188	5,000	

Call and Location.	Frequency Kilo- Power in cycles. Watts.		Schedule, Slogan, English News Periods, etc.
*Saigon, Indo	6190	2,000	
VUD7-Delhi, India	6190	100,000	3.50-6.15 a.m.
WNRE-New York, U.S	6190	50,000	
GRN-London, England	6195	50,000	5-10.15 p.m.
HIST-Bogota, Colombia		10,000	"Radiodifusora Nacional," 3.30 p.m.
YV6RD-Ciudad Bolivar, Venez. *ZYC7-Rio de Janeiro, Brazil	$\begin{aligned} & 6200 \\ & 6200 \end{aligned}$	$\begin{array}{r} 1,000 \\ 25,000 \end{array}$	"La Voz de Guyana," to 4 wr.m.
CP5-La Paz, Bolivia ..	6205	250	"Radio Illimani," 10.15 a.m.-2.45 p.m.
Noumea, New Caledonia	6208	80	7.30-9, 9..30-10 p.m.
OAX1A Chiclayo, Peru HSFB-Manizales, Colombia	6210	300 4,500	"Radin Delcar" (now on 7120).
TG2 Guatemala City, Guatemala	- 6225	+300	"Radio Manizales, 10 a.m.-3.35 p.m.
HRD2-La Caiba, Honduras	6235	200	"La Voz de Atlantida," to 3 p.m.
HJCF-Bogota, Colombia	6240	750	"La Voz de Bogota," 10 a.mu.-4.10 p.m.
HI1N-Ciudad Trujillo, Dom. Rep.	. 6245	1,000	"Broadcast Nac.", 9 a.m.-3.25 p.m.
YSR-San Salvador, El. Salvador	6270	1,000	"La Voz de EI Salvador," to
* YNXW-Managua, Nicaragua	6275		"Radio America" (see 7070).
ZPA1-Asuncion, Paraguay	$\begin{gathered} 6276 \\ 6280 \end{gathered}$	2,500	"Radio Nac. de Paraguay, ${ }^{\text {co }} 4$ p.m.
HCJB-Quito, Ecuador	6280	1,000	
HI12-Ciudad Trujillo, Dom. Rep.	. 6310	400	"Broadcasting Nac.j" 9 a.m.-2.40 p.m.
COCW-Havana, Cuba	6325	1,000	"Cadena Rojo," 11 p.m.-3 p.m.
OAX6E-Arequipa, Peru	6333	3,000	"Radio Continental," 11 a.m.-s
HE12-Berne, Switzerland	6345	25,000	5.26-6.40 p.m., 6-10.15 a.m.
COKQ-Santiago, Cuba	6345		
HI1X-Ciudad Truillo, Dom. Rep.	. 6350	1,000	10.45 p.m.-11.30 p.m., 10.30 a.m.-2.15
HRP1-Sao Pedro, Sula, Dom. Rep.	. 6351	250	11 p.m.- 12.30 a.m., 11.30 a.m.-3.30 p.m.
OAX4H-Lim	6368	1,000	"Radio Mu
WLWS-Cincinnati, Oh	6370	75,000	
CSX-Lisbon, Portugal	6370	10,000	8.30 a.m.-noon.
H198-Santiago, Dom.	6390	250	10 a.m. $1.40 \mathrm{p.m}$.
TGQA-Quezaltenango, Guafemala	a 6405	300	1-6 p.m. Sundays.
OAX4G-Lima, Peru	6410	300	"Radio Lima," 1-6 p.m. Sundays.
COHI-Santa Clara, Cuba	6450	300	"RHC-Cadena Azul," midnight-6.02
GWB-Guatemala, Guatemala	6460	1,000	"La Voz de Guatem
H12T-Monsenor Nouel, Dom. Rep.	6480	250	9.10 a.m.-3.40 p.m. 1230-3 p. "Radio Central."
${ }^{\text {K }}$ YNBH-Managua, Nicaragıa	6547		"Radio Panamerican" (see 7007)
TG3-Guatemala City, Guatemala	- 6620	300	"Radio Morse," 11 a.m.-6 p.m. Sun-
HIT-Ciudad Trujillo, Dom. Rep.	6630	200	"El Hit del Aire," to 2.40
Jaffa, Palertine	6710		6.30-9
ZLT7-Wellington, N.Z.	6715	5,000	9.30-9.40 p.m
PMH-Bandoeng, Ja	6720	1,500	10.30 p.m.-2.30 a.m
* ZNR2-Aden, Aden	6760	880	
YNPS-Managua, Nicaragua	6765	800	"La Voz de Nicaragua," wo a.m.-5 p.m.
Singapore, Malaya	770		News, 2 a.m.
CP49-La Paz, Bolivia	6770	00	"Radio Municipal," 10.20 a.m.-2 p.m.
Jerusalem, Palestine	6790		Tests. 6.30-9 a.m.
YNOW-Managua, Nicaragua	6850	1,000	"La Voz de la America Central."
YNQW-Managua, Nicaragua	6917		"La Voz de Victoria," 6 a.m.-4 p.m. $7.15-7.30$ p.m., 6.45-9.25 a.m.
FogA -Papeete, Tahiti	6980	200	"Radio Club de Tahiti," 3.30-4.30 p.m.
YNBO-Boaco, Nicaragua	6985	30	"La Voz de Boaco," 11 a.m.-3 p.m.
HC1VT-Ambato, Ecuador	7000		1-3 p.m.
YNBH-Managua, Nicaragua	7008	-	"Radio Panamerica," 11 a.m.-3.20 p.m.
XPSA-Kweiyang, China	7010		News, 1 a.m.
Pontas Delgada, Azores	7017	,000	"Radio Sport," 6 a.m.-3 p.m.
YSI-San Salvador, El. Salvador	7040		6 a.m. 4 p.m.
TGOA-Guatemala City, Guate.	7045		"La Voz de las America."
ZOY-Accra, Gold Coast	7050	5,000	4-8 a.m., news 6 a.
HC2CM-Guayaquil, Ecuador	7055	250	"Radiodifusora lman," noon-4. 15 p.m.
YNXW-Managua, Nicaragua	7070		"Radio America," $10.30 \mathrm{a.m.-2} \mathrm{p} . \mathrm{m}$.
GRS-London, England	7075	50,000	4-8.30 p.m., News 6, 8 p.m.
YISKG-Bagdad, Iraq	7090		Native programme, 1 a.m.
GRM-London, England	7120	50,000	Pacific Service, 6-8.45 p.m.
Hargeisha, Br. Somaliland	7125	400	"Radio Somali," 2.30-3.30 8.m.
HC4FA-Portoviejo, Ecuador	7140	100	"La Voz de Manabi," 11.45 p.m.3.30 p.m.
YNFP-Managua, Nicaragua	7140	100	"La Voz del Tropico," noon-3.15 p.m.
GRT-London, England	7150	50,000	European Service.
XGOY-Chungking, Cbina	7153	35,000	$11.35 \mathrm{p.m} .3 .40$ a.m.; news 2, 3 a.m.
HC1BF-Quito, Ecuador	7160	500	"Radio Commercial," 11.45 p.m.-4 p.m.
TGNA-Guatemala City, Guate.	7170		"La Viz de Libertad," 10 a.m.-3.15

Frequency cycles. Watts. Kilo- Power in			Schedule, Slogan, English News Periods, etc.
GRK-London, England	7185	50,000	European S
JCPA-Jerusalem, Palestine	7190	250	3.30-5.30 a.m. ${ }^{\text {a }}$.
HClAC-Quito, Ecuador	7200	200	"La Voz de-la Democracia," to 4.1 p.m.
GWL-London, England	7205	50,000	North American service, 1.15-2 p.m.
FGY-Dakar, French West Africa	7210		6.45-9.25 a.m.
VUD10-Delhi, India H18Z-Santiago de los Caballero	$\begin{aligned} & 7210 \\ & 7212 \end{aligned}$	100,000	12.30-5.30 a.m., News, D.R. to 4 p.m. Sundays.
VLQ2-Brisbane, Aust.	7215	10,000	7.30 p.m.-1.30 a.m.
JCKW-Jerusalem, Palestine	7220	7,500	Signs 8 a.m.,
Singapore, Malaya	7220	25,000	10.30 p.m.-3.30 a.m., news 2.30 a.m.
GSW-London, England	O	50,000	G.F.P., 6-8.30 p.m., news 6, 7, 8 p.m.
KWIX-San Francisco, Calif.	72	50,000	$8.45 \mathrm{p} . \mathrm{m} .-1.45 \mathrm{a} . \mathrm{m}$., news on the hour.
KWID-San Francisco, Calif.	7230	100,000	
VLQ-Brisbane, Aust.	7240	10,000	8 a.m.-noon.
VUD8-Delhi, India	7240	7,500	2 a.m.-6.30 a.m., news 2.45
GWI-London, England	7250	50,000	
KGEI-San Francisco, Calif.	7250	50,000	
KGEX-San Francisco, Calif.	7250	100,000	9 p.m.-2.45 a.m., news on the hour.
WRUA-Boston, Mass.	7250	50,000	Latin American
ZU-Skamlebak, Denmark	7260	5,000	4.35-7 a.m.
GSU-London, England	7260	50,000	9.15 a.m.-4
VUD5-Delhi, India	7270	100,000	11 p.m.-midnig
GWN-London, England	7280	50,000	European serv
VLC8-Shepparton, Aust.	72	50,000	News 12.30
VUD3-Delhi, India	7290	10,000	$10.30 \mathrm{p} . \mathrm{m} .-\mathrm{mi}$
ZOY-Accra, Gold Coast	7300	5,000	Signs 6 a.m.
TGOA-Guatemala City, Guatemala	7303 7312	,000	${ }_{\text {cha Voz de }}$-5.30
GRJ-London, England	7320	50,000	G.F.P., 4-5 p.
YNWW-Granada, Nicarag	7325		"Radio Sport" (see 7020)
HC2DC-Guayaquil, Ecuado	50	50	11 a.m.-4.45 p.m.
HET3-Berne, Switzerland	7360	25,000	
HEK3-Berne, Switzerland	7380	25,000	1.30-3 p.m., News 1.45 ,p.m.
YNFT-Granada, Nicaragua	7500	-500	"La Voz de la Sultana," 10 a.
Macao, Portuguese Chin	7530		9.30 p.m.-1 a.m.
WNRE-New York, U.S.A.	7565	50,000	5-8.15 p.m., AF
KNBA-San Francisco	7565	50,000	$9 \mathrm{p.m.2.45}$ a.m. ${ }^{\text {a }} 11 \mathrm{a} . \mathrm{m} .4$
KCBA-San Francisco, Calif.	7575	50,000 300	"La Voz de Leon," 11 a.m.-4
YNLAT-Granada, Nicar YNDC-Leon, Nicaragua	$\begin{aligned} & 7615 \\ & 7660 \end{aligned}$	300 200	$\begin{aligned} & 10 \text { a.m. }-3.15 \text { p.m. } \\ & 9 \text { p.m.-2.45 a.m. } \end{aligned}$
KNBX-San Francis	7805	200,000	10 p.m.-4 a.m.
WOOC-New York,	7805	50,000	5-8.16 p.m.
WBOS-Boston, Mass	7805	50,000	
${ }^{*}$ WLWS-Cincinnati, Ohio,	7832	75 mo	
ZAA-Tirana, Albania	7850	3,000	Signs 7.40 a.m.
SUX-Cairo, Egypt	7860	10,000	5-9 a.m., News 6, 7
PSL-Rio de Janiero, Brazil FXE-Beirut, Syria	$\begin{aligned} & 7935 \\ & 8020 \end{aligned}$	$\begin{array}{r} 12,000 \\ 3,000 \end{array}$	$10-11 \mathrm{a} \cdot \mathrm{m}$. Signs $9.10 \mathrm{a} . \mathrm{m}$.
* CNR-Rabat, Morocco	8035	12,000	adio
*EPF-Teheran, Iran	8110	14,000	
AFN-Munich, Germany	8565	50,000	10 p.m. 4 -
COCJK-Camaguey, Cz	86	1,000	
COCO-Havana, Cuba	8700	2,000	"Radio America," midnight-4.30
COCQ-Havana, Cuba FGA-Dakar, Senegal	8825 8840	5,000 300	10.30 p.m.-5. 15 p.m.
FGA-Dakar, Senegal COKG-Santiago, Cuba		$\begin{array}{r} 300 \\ 2,400 \end{array}$	"Cadena Orlental de Radio," 11
THA2-Algiers, Algeria	8960	10,000	
$\mathrm{COBZ}-\mathrm{Havana}$,	9026	250	"Radio Salas,
CNR3-Rabat, Morocco	9095	25,000	5-8 p.m., 6-10
PJC1-Willemstad, Curacao	9105	3,000	10-10.30 a.m.
*HAT4-Budapest, Hungary	9125	20,000	
Biakpapan, Borneo	9125	125	English, 12.3
HEF4-Berne, Switzerland	9185		1.30-3 p.m., news 1.45 p.m. "Radio la Opinion," 9.30 a.m.-3.30 p.m.
HizG-Ciudad Trujillo, Dom. Rep.	$\begin{aligned} & 9210 \\ & 9220 \end{aligned}$	275	"Radio la Opinion," 9.30 a.m
Bucharest, Romania	9250	2,000	
COBQ-Havana, Cuba	9235		-
COCX-Havana, Cuba	9270	1,000	"Casa Levin," mi
WVLC-Manila, Philippi	9295	5,000	9 p.m. on
LRS-Buenos Aires, Argentina	9317	17,000	"Radio Splendid," midnight-4 p.m.
Andorra, Andorra	9330		Was 5-10.30 a.m. "Radio International," 11 a.m.-5 p.m
HBL-Geneva, Switzerland	9345	20,000	6-8 a.m.
HC1BS-Quito, Ecuador	9355	250	"Radio
COBC-Havana, Cuba	9362	1,000	Radio Progreso," midnight-4 p.m.
Madirld. Spain	9370	50,000	"Radio Nat.- de Espania," 3-8.30 a.b
Leopoldville, Belgian Congo	9380	50,000	4-8 p.m., 7-9 a.m

Call and Location. F	Frequenc Kilocycles.	y Power in Watts.	Schedule, Slogan, English News Periods, etc.
GRI-London, England	410	50,000	Latin American service, 11 a.m.-3.30
Belgrade, Yugoslavia	9425	10,000	p.m. 5-8 p.m., French news, 7 p.m.
			"Radio La Plata," 2-4.45 a.m., 8-10 a.m.
COCH-Havana, Cuba Brazzaville, Fr. Eq. Africa	9440 9440	1,000 50,000	"Radio O'Shea," 11 p.m.-" 6 p.m.
*OAX 4 W-Lima, Peru	9440	1,500	4 a.m.-1 p.m., News 6.45, 8.45
*LRY-Buenos AiAres, Argentina	9455	25,000	Irregular, opens 10.45 p.m.
TAP-Ankara, Turkey	9465	20,000	English, Mondays $8.30 \mathrm{a} . \mathrm{m}$. News,
CR6RA-Luanda, Angola	9470	250	
CP38-La Paz, Bolivia .-	9480	250	"Radio Nat. de Bolivia."
*VONG-St. John, Newfoundland Moscow USS.	9480	300.	
*GWF-London, England	9480 9490	50,000	
KNBI-San Francisco, Calif.	9480	50,000	7-8.45 p.m., 9 p.m.-2.45
WCBX-New York, U.S.A.	9490	50,000	7-8.45
XEWW-Mexico City, Mexico	9500	10,000	"La Voz de America Latina," 12.30
OIX2-Helsinki, Finland	9500	15,000	5-5.45 a.m., 12.15-12.45 p.m.
*OAX6D-Arequipa, Peru	9500	300	"Radio Continental"
*OLR3B-Prague, Czzechoslovakia	a 9504	30,000	
*YUC-Belgrade, Yugoslavia	9507	10,000	
GSB-London, England	9510	50,000	G.F.P. 4-9 p.m., News 6, 7, 8 p.
OZF-Skemlebak, Denmark	9518	6,000	4.35-7 a.m.
Paris, France ${ }^{\text {V }}$	9520	100,000	News 2.30, 3.30 p.m.
VLW7-Perth, Australia	9520	2,000	10.30 p.m.-3.30 a.m.
CWW-Hongkong	9520	2,500	9.30 p.m. $1.30 \mathrm{a} . \mathrm{m}$.
GWJ-London, England WGEO-Schnectady, U.	9525	50,000	European Service.
* LKC-Oslo, Norway	$\begin{aligned} & 9530 \\ & 9530 \end{aligned}$	100,000 5,000	10 a.m.-4 p.m. to South America
*VPD2-Suva, Fiji	9535	4,000	
SBU-Stockholm, Sweden	9535	12,000	0 a
*HER4-Berne, Switzerland	953	25,000	
VLR2-Melbourne, Aust.	9540	2,000	8-9.10 a.m., 7.30 p.m.-1.30 a.m.
VLC5-Shepparton, Aust.	9540	50,000	
Paris, France ${ }^{\text {LKJ }}$ - ${ }^{\text {aslo }}$	9540	100,000	6-6.15, 6.30-6.45 p.m.
* Algiers, Algeria ${ }^{\text {a }}$.	9540	5,000	Heard 7 p.m.
VE9AI-Edmonton, Canada	9540	50,0	10.15 p.m
XEFT-Vera Cruz, Mexico	9540	250	
*OLR3A-Prague, Czechoslovakia	9550	30,000	(Now on 6010).
GWB-London, England	955	50,000	European service.
KGEI-San Francisco, Calif.	9550	50,000	9 p.m.-3.45 a.m.
*WGEO-Schenectady, U.S.A.	9550	100,000	
Singapore, Malaya	9555	25,000	From 10.30 p.m.
Paris, France	9558	100,000	6-6.15 p.m., 6.30-6.45 p.m., etc,
XeTT-Mexico City, Mexico	9558	500	Midnight-6.45
OAX4T-Lima, Peru	9562	10,000	"Radio Nac. del Peru."
KWWID-San Francisco, Calif.	9570	100,000	9 p.m.-2.45 a.m.
WWRUA-San Francisco, Calif.	9570	50,000	
WRUA-Boston, Mass, U.S.A.	9570	50,000	9.30-11 a.m.
CSC-London, England.	9580	50,000	Eastern Broadcasts 4.30 p.m.
*VLR-3-Melbourne, Aust.	9580		8.45 p.m.-1.30 a.m.
PCJ-Hilversum, Holland	9580	60,00	7-8 a
VUD4-Delhi, India	9590	10,000	News $11 \mathrm{a} . \mathrm{m}$
WLWO-Cincinnati, Ohio, U.S.A.	. 9590	75,000	To South America, signs 5.15
GRY-London, England	9600	50,000	African Service, news $8.45 \mathrm{a} . \mathrm{m} . ; 6 \mathrm{p.m}$.
CE960-Santiago, Chile	9603	1,000	'Radio La Americana," noon-4 p.m.
XEYU-Mexico City, Panama	9605	250	dio Univ. Nacional," 2-5 p.m.
* Alsiers, Algeria City, Panama	9605	380	La Voz de Panama," 10 a.m.-3.30 p.na.
CYC8-Rio de Janiero, Brazil	9610	50,000	
*CHLS-Sackville, N.B., Canada	9610	25,000	"Radio Tamoio," 9 a.m.-4.30 p.m.
*LLG-Oslo, Norway ${ }^{\text {che }}$.	9610	50,000	
Parls, France	9613	100,000	To Britain
VLC6-Shepparton, Aust	9615	150,000	9-11.45 p.m. to Asi
XERQ-Mexico City, Mexico	9615	, 500	Radio Continental," heard $6 \mathrm{p} . \mathrm{m}$.
Addis Ababa, Ethiopia	9617	1,000	2-4.45 a.m.
CxA6-Montevideo, Uruguay	9623	3,000	8.30 a.m.-2 p.m.
CWO-London, England	9625	50,000	Latin Service, 11 a.m.-3.30 p.m.
CKFLO-Montreal, Canada	9630	7,500	12.30 a.m. $5.05 \mathrm{p} . \mathrm{m}$.
VUD7-Delhi, India	9630	50.000	Naurc. 9.45 a a.m.
XEBT-Mexico City, Mexico	9635	1,000	"Radio Pan-Americana," 1.45
Milan, Italy			7-11 ${ }^{5} \mathrm{p} . \mathrm{m}$.
CXA8-Colonia, Uruguay	9640		4-6 a.m., 9 a.m.-2 p.m. (s
LRY-Buenos Aires, Argentina		$10,000$	$10.11 \mathrm{p} . \mathrm{m}$. . "Radio Belgrano."

Call and Location.	reque Kilo cycl	cy Power in Watts.	Schedule, Slogan, English News Periods, etc.
*CHMD Sackville, N	9640	50	Pacific Service, 6-10 p.m. "Radiodifusora Nacional," 5-9 a.m.
*COX-Havana, Cuba	964	5,	
GVZ-London, England YVKC-Caracas, Venezuela	$\begin{aligned} & 9640 \\ & 9640 \end{aligned}$	50,000 10,000	
XGOY-Chungking, China	$\begin{aligned} & 9640 \\ & 9645 \end{aligned}$	$\begin{aligned} & 10,000 \\ & 35,000 \end{aligned}$	
*LLH-Osio, No	9640	5,000	
*KRHO-Honolulu	9650	100,000	
WCBN-New Yoin	9650 9650	50,000 2,000	A.F.R.S. Broadcasts, 8 a
LRX-Buenos Aires, A	9660	7,500	"Radio el Mundo," 10.30 p.m.-2 a.m., 9 a.m. -4 p.m.
W	660	10,000	
GWP-London, England	9660	50,000	News $6.15 \mathrm{a} . \mathrm{m}$. "Nac. Broadcasting Co.," 10 p.m.-1.30 a.m.
HVJ-Vatican City, Vat	966	25,000	
HHBM-Port-au-Prince, Haiti	9660	1,000	
LR3C-Prague, Czech	670		
NBL-New York, U.S.	9670	50,000	10.45 p.im.-12.45
WRCA-New York, U.S.	9670	50,000	Noon-3.30 p.m. to South Amerl
GWT-London, England	9675	50,000	G.F.P. news 6 p.m., European service, 7 p.m.
LG8-Melbourne,	9680		
VLC2-Shepparton, Aust.	9680	50,000	7.30-8.45 p.m. to Japan. "Radio Panamericana," midnight-5.45 p.m.
XEQQ-Mexico City, Mexico	9680	1,000	
VLW6-Perth, Aust.	9680	2,000	"Radio Teheran," 5-7.30 a.m., news, $6.30 \mathrm{a} . \mathrm{m}$.
EQC-Teheran, Iran	9680	14,000	
VUD6--Delhi, India	9680	10,000	10 p.m.-2 a.m., 3-5 a.m. "Radio del Estado." Pacific Service, 6-10 p.m. "Radiodifusora Nacional," 10 a.m.$4.30 \mathrm{p} . \mathrm{m}$.
*LRA1-Buenos Aires, Argentina	9683	7,000	
GRX-London, England	9690	50,000	
HJCAB-Bogota, Colombia	9690	2,500	
XUZE-Taihoka, Taiwan	9695	10,000	12.30-2.15 a.m., news 2 a.m. 11.30 a.m.-6 p.m. to South America. 7-9.45 p.m., 10 p.m.-5 a.m.
WRUS-Boston, Mass., U.S.A.	9700	50,000	
KCBR-San Francisco, Calif.	9700	200,000	
Fort-de-France, Martinique		1,500	"Radio Martinique," 2 a.m.-1 p.m.
OAX4K-Lima, Peru	9712	250	7.55-9 a.m. "Radio Goicochea," 11 a.m.-3 p.m. "Radio Nacional," 8.10 a.m.-2.30 p.m. 11.00 p.m. -4 p.m., opens and signs in English.
PRL7-Rio de Janiero, Brazil	9720	50,000	
CE970-Valparaiso,	9728	1,000	
XGOA-Chungking, China	9730	4,000	10.30 p.m.-3.15 a.m. News 2 a.m. "Emissora Nacional," noon-1 p.m. 5 a.m.-4.45 p.m., News $4.30 \mathrm{p} . \mathrm{m}$. from BBC.
CSW7-Lisbon, Portu	9740	10,000	
Leopoldville, Belgian Congo	9748	50,000	
WLWR1-Cincinnati, Ohio, U	9750	175,000	AFRS programme 10 a.m.-noon. 4-6 p.m. United Network. 3 a.m.-6 p.m., signs in Engltsh. 11.30 p.m.-5.35 a.m., News 12.30, 2 a.m.
KCBF-San Francisco, Calif.	9750	50,000	
TGWA-Guatemala City, Guata.	9780	10,000	
XGOY-Chungking, Chin		35,000	
OAX5C-Ica, Peru	9810	150	"Radio Universal," 10.30 a.m.-5 p.m. North American Service, 9.15 a.m. 2.45 p.m.
London, England		50,000	
COBL-Havana, Cuba	833	1,000	"Radio Cadena Suaritos," 12.15 a.m.5.45 p.m.
KWIX-San Francisco, GRU-London, England	9855	50,000 50,000	$\begin{array}{ll} 7.15-8.30 & \text { p.m. to N.Z. } \\ \text { G.F.P., } 8 & \text { a.m. } \end{array}$
HCJB-Quito, Ecuador			
CE1173-Santiago, Chile	11735		To 3.30 p.m. in English. Heard 9.30 p.m.
WWV-Washington, D.C., U.S.A.	10,000	10,000	Frequency check station. 5.30-8.37 a.m., News 7, 8 a.m. 11 p.m.-7.30 a.m., 11 a.m.-3 p.m. 10.11 a.m. irregular.
SUV-Cairo, Egypt	10055	10,000	
HH3W-Port-au-Prince, Haiti	10135	125	
PSH-Rio de Janiero, Brazil	10220	12,000	
XGAP-Peiping, China	10260		4.45-7 p.m., News 6.30 p.m.
Moscow, U.S.S.R.	10		
ZIK2-Belize, Br. Honduras	10600	200	
VQ7LO-Nairobi, Kenya	10730	1,500	$\begin{aligned} & 2.00-2.15 \text { a.m., } 4-5.48 \text { a.m. } \\ & 2.45-4 \mathrm{a} . \mathrm{m} . \\ & 4.00-10.05 \mathrm{a} . \mathrm{m} ., \text { News } 5.45 \text { a.m. } \\ & 6.30-9 \mathrm{a} . \mathrm{m} . \\ & 7-8 \text { a.m., closes with clock chime. } \end{aligned}$
SDB2-Stockholm, Sweden	10780	10,000	
CSW6-Lisbon, Portugal	11040	10,000	
Ponta Delgada, Azores	11090	1,000	
*WCBN-New York, U.S.A.	11145	50,000	
*HBO-Geneva, Switzerland	11402	20,000	
Moscow, U.S.S.R.	11630		News 6.30, 11.15, 11.45 p.m. Midnight-3 a.m., News 2 a.m. 5.00-7.15 a.m., $7.30-9$ a.m., News, 7 a.m.
XTPA-Canton, Chin	11650	1,000	
ngland		50,000	
HVJ-Vatican City, Vatican	11688	25,000	

Frequenc
Kilo. 9640 50,000 640 10,000 $9640 \quad 5,000$ $9650 \quad 50,000$ $\begin{array}{ll}9650 & 2,000 \\ 7,500\end{array}$

10,000 50,000
 50,000 25,000

30,000 $\begin{array}{ll}670 & 50,000 \\ 570 & 50,000\end{array}$
$\begin{array}{ll}670 & \mathbf{5 0 , 0 0 0} \\ \mathbf{5 0 , 0 0 0}\end{array}$
10,000
1,000

0
0.30 a.m

Radio del Estado."
Pacific Service, 6-10p.m." 10 a.m.
"Radiodifusora Nacional,"
2.30-2.15 a.m., news 2 a.m.
-9.45 p.m., 10 p.m. $\mathbf{~ t o}$ ath America.
"Radio Martinique" 2 m-1
7.55-9 a.m.
"Radio Goicochea," 11 a.m.-3 p.m.
"Radio Nacional," 8.10 a.m.-2. 30 p
11.00 p.m. -4 p.m., opens and signs in
10.30 p.m.-3.15 a.m. News 2 a.m.

5 a.m.-4.45 p.m., News $4.30 \mathrm{p} . \mathrm{m}$. from
AFRS programme 10 a.m.-noon.
4-6 p.m. United Network. 11.30 p.m. -5.35 a.m News $12.30,2$
"Radio Universal," 10.30 a.m.-5 p.m.
Nortis p.m.
"Radio Cadena Suaritos," 12.15 a.m.
7.15-8.30 p.m. to N.Z.
G.F.P., 8 p.m. in English.

Heard 9.30 p.m.
Frequency check station.
11 p.m. 7.30 a.m., 11 a.m. 3 p.m
2.00-15 a.m 4-5.48 m.
2.45-4 a.m.
4.00-10.05 a.m., News

7-8 a.m., closes with clock chime.

News 6.30, 11.15 , 11.45 p.m.
5.00-7.15 a.m., $7.30-9$ a.m., News, 7

Fridays, 8.30-8.45 a.m.

Call and Location.	Frequenc Kilocycles.	cy Power in Watts.	Schedule, Slogan, English News Periods, etc.
ORA-Shanghai, China	11695		
HP5A-Panama City, Panama	11695	1,000	"Radio Teatre Estrella," to 4
*CE1170-Santiago, Chile	11700	1,000	"Radio Bulnes."
GVW-London, England	11700	50,000	G.F.P. 4-10 p.m. News 6, 7, 8 p.m.
*CKXA-Santreal, Canada	11705	50,500	
SBP-Stockholm, Sweden	11705	12,000	1-2 p.m. to North America.
VLC3-Melbourne, Aust.	11710	10,000	5-10-5.45 p.m., 6-6.40 p.m.
WLWK-Cincinnati, Ohio, U.S.A.	. 11710	50,000	Closes 5.15 p.m. to South Ame
*VUD3-Delhi, India	11710	10,000	
HEI5-Bangkok, Thailand	11715	10,000	
	11715	25,000	8-9.30 p.m., Tuesdays to N.Z.
Dakar, Fr. West Africa . . OTT-Leopoldville, Belgian Congo	$\begin{array}{r} 11715 \\ 0 \quad 11720 \end{array}$	50,000	"Radio Dakar," 12.15-12.45 a.m. 10.30 p.m.-12.30 a.m.
PRL8-Rio de Janiero, Brazil .	. 11720	50,000	For Britain, news
CHOL-Sackville, N.B., Camada	11720	50,000	$8.30 \mathrm{am} .-\mathrm{noon}$. News $9.45 \mathrm{a} . \mathrm{m}$
CKRX-Winnipeg, Canada	11720	2,000	3 a.m.-6 p.m., Sundays 7 p.m.
GVV-London, England	11730	50,000	
Paris, France	11730	100,000	4.15-9 a.m.
*EQE-Teheran, Iran	11730	14,000	"Radio Teberan."
KGEX-San Francisco, Calif.	11730	100,000	7.8 .45 p.m. to South Pacific.
WRUL-Boston, Mass, U.S	$\begin{aligned} & 11730 \\ & 11730 \end{aligned}$	20,000	Spanish progr
KGEX-San Francisco, Ca	11730	100,000	3.15-5.00 a.m.
Singapore, Malaya	11735	25,000	8.45-10.45 p.m., English news 9 p.m.
XGOL-Yungan, China	9995	200	11.30 p.m.-4.05 p.m., relays CE106.
*LKQ-Oslo, Norway	11735	5,000	
YUE-Belgrade, Yugoslavia	11735	10,000	
CR6RC-Luanda, Angola	11735	500	"Radio Club Angola,", 7-8.30 a.m.
HVJ-Vatican City	11740	25,000	"R.H.C. Cadona Azul," 11 p.m.-5 p.m.
CE1174-Santiago, Chile	11740	25,000	Messages 7 p.m., irregular.
GSD-London, England	11750	50,000	5.30 p.m.-8 p.m., 9 p.m.-9 a.
Komsomolstr, U.S.S.R.	11750	50,000	11.40 p.m. 1.15 a.m.
LR8-Melbourne, Aust.	11760	2,000	
VUD7-Delhi, India	11760	100,000	30 p.m.-midnight.
Alviers, Algeria	11765	50,000	11 p.m.-6.30 a.m.
3-Sao Paulo, Brazil	11765	5,000	"Radiodifusora Sao Paulo," 1-4.30
GVU-London; England	11770	50,000	
KCBR-San Francisco, Callf.	11770	200,000	AFRS broadcasts to 6
VLA4-Shepparton, Aust.	11770	100,000	RS broadca
HEI6-Berne, Switzerland	11775	25,000	
Saigon, Indo-China	11778	12,000	-4 a.m., News 10.30 p.m., 2.4
G-Panama City, Panama	11780	600	
* XENN-Mexico City, Mexico	11780	500	"Radiomundial."
OIX3-Helsinki, Finland	11780	15,000	
VUD5-Delhi, India	11790	100,000	News 9.30 p.m.
WRUS-Boston, Mass, U.S.A.	11790	50,000	11 p.m. 11 a.m. to Europe.
KNBA-San Francisco, Calif.	11790	1,000	5-6.45 p.m., 7-8.45 p.m.
KNBX-San Francisco, Calif.	11790	200,000	4.15-8.30 a.m.
CWHH-London, Endand	11800	50,000	"Radio Soc. Nac. de Agricultura."
OWH-London, England	11800	50,000	European service.
* OZOJ Colombo, Ceylon	11805	6,000	
* WIW Colombo, Ceylon ${ }^{\text {a }}$ - ${ }^{\text {a }}$	11810	75,000	
WLWL1-Cincinnati, Ohio, U.S.A.	11810	75,000	6-10.45 a.m. to Europe.
WGEA-Schenectady, U.S.A.	11810	100,000	To Europe, 11
GSN-London, England	11820		6.00-10.00 p.m.
XEBR-Hermosillo, Mexico	11820		"Radiodifosora de Sonora,"
WCRC-New York, U.S.A.	11830	50,000	11 p.m.-3.30 a.m., 5-9.30 a.m.,
SEAC-Colombo, Ceylon	11830	100,000	1.30-4.00 a.m., ''Radio
VLW3-Perth. Aust.	11830	2,000	3.30-10.15 p.m.
Moscow, U.S.S.R.	11830	50,000	News $6.30 \mathrm{p} . \mathrm{m}$.
VUD6-Delhi, India	11830	10,000	3.30-10 p.m.
XA19-Montevideo, Uruguay	11835	1,500	"Radio E.l Spectador," 11 p.m. 3 p.m.
* GWO-Shepparton, Aust:	11840	50,000	5.15-4.45 p.m.
*WQ-London, England	11840	50,000	
Paris. France	11840	100,000	
CXA8-Colonia, Uruguay	11840	3,000	
WGEA-Schnectady, U.S.A.	11847	100,000	11 p.m.-8.45 a.m., 9 a.m.-3.30
Rangoon. Burma	11855	7,500	News, $12.45 \mathrm{a} . \mathrm{m}$.
Singapore. Malaya	11855	25,000	
XMHA-Shanghai, Chinq	11860	1,000	News, 10.45
CE1185-Santiago, Chile	11860	3,500	"Radio El Mercurio," midnight-3.3
GSE-Landon, England ZPA3-Asuncion, Paraguay	$\begin{aligned} & 11860 \\ & 11863 \end{aligned}$	$\begin{array}{r} 50,000 \\ 1,000 \end{array}$	European scrvice. "Radio Teleco," 9.55 a.m.-2.05 p.m

RAHOB AUSTRALASIAN BROADCAST LOG
Compiled by ARTHUR T. CUSHEN, 212 Earn Street, Invercargill, Short Wave Editor
Location and Call.
Call.
Kilo- Power in
Cumnock, N.S.W.-2CR Wellington, N.Z.-2YA Horsham, Vic. 3 WV Hobart, Tas. 7 ZL Sydney, N.S.W.-2FC Townsville, Qic.--4AN Crystal Brook, S.A.-5CK Auckland, N.Z.-1YA
Dubbo, N.S.W.-2DU Burnie, Tas-7BU .Corowa, N.S.W. 2 CO Queenstown, Tas.-70T Queenstown, Tas.-
Invercargill, N.Z.
Perth WZ Lawrence, N.S.W.-2NR Kelso, Tas.-7NT - ${ }^{\text {Christchurch, N.Z.-3Y }}$ Kalgoorlie, W.A.-6GF Sydney, N.S.W.-2BL Napiey, N.Z. -2 YH
Dalby, $\mathrm{Q} .-4 \mathrm{QS}$ Melbourne, Vic. 3 SO Katoomba, N.S.W. -2 K Townsville, Q.-4 Broken Hill, N.S.W.-2BH Perth, W.A.-6WN
New Plymouth, N.Z.-2YB Murray Heights, S.A. $5 R \mathrm{SM}$
Mewcastle, N.S.W.-2NA. Newcastle, N.S.W. $-2 N$.
Geraldton, W.A. 6 GN Sale, Vic.-3GI Wellington, N.Z. -2 YC Toowoomba, Q - 4 GR Hobart, Tas-7HO Sdney, N.S.W.-2GB Warragul, Vic.-3UL Warthick, Q.-4WK Perth, W.A.-6PR
Adelaide, S.A. 5 AN Adelaide, S.A. 5 AN Lismore, N.S.W.-2LM Rocishampton, Q.-4RK Suva, Fiji-ZJV
Nelson, N.Z. $2 Y N$ Nelson, N.Z. 2 YN Conma, N.S.W.-2XI Charleville, Q.- 4 VL L Greymouth, N.Z.-3ZR Brisbane, Q.-4QR
Sydney, N.S.W. Sydney, N.S.W 2 Z
Adelaide, S.A-5D Aendigo, Vic.-3BO Ayr, Q.-4AY
Kempsey, N.S.W-2KM Gisborne, N.Z.-2Z.J Northam, W.A. GAM Orange, N.S.W.-2GZ Cairns, Q.-4CA - 4 ME Maryborough, Q.-4ME Hamilton, Vic.-3HA Sydney, N.S.W.-2KY Melbourne, Vic.-3DB
Canberra, F.T.-2CA
Canada
*GVS-London, England

ARMED FORCES STATIONS IN THE PACIFIC AREA

Stations operating for Troop entertainment by the American and Australian authori ties as listed by Arthur T. Cushen, 212 Earn Street, Invercargill. DX Adviser to the

Call and Location

NORTH AMERICAN BROADCAST STATIONS

Complete list of stations in United States and Canada with main Mexican and Cuban stations. Stations listed are in operation, except where preceded by an asterisk, which means construction permit only has been granted. Where stations are to change frequency the present frequency is also shown. American stations are listed in four Times. Midnight EST is 5 p.m. in New Zealand, while 6 p.m. in N.Z. is midnight CST, 7 p.m. in N.Z. is midnight MST and 8 p.m. N.Z. time is midnight PST, all these
days being following one in New Zealand. Copyright for the Radio Hobbies Club by days being following one in New Zealand. Copyright for the Radio Hobbies Club by
Arthur T. Cushen, 212 Earn, Street, Invercargill, to whom enquiries concerning the
Logs printed in this "Annual" can be addressed.

Call and Location.	Power in Watts. Zone.		Call and Location.	Power in Watts	
540 Kilocycles-			Call and Location.		
CBK-Watrous, Sask.	50,000	M	WGAN-Portland, Me.	5,000	E
550 Kilocycles-			WIND-Chicago, Ill.	5,000	C
CFNB-Frederict	5,000	E	WIS-Solumbia, S.C.	5,000	E
* CHLN-Three Rivers, Que.	1,000	E	WQAM-Miami, Fla.	5,000	E
KFYR-Bismarck, N.	5,000	C			
KOAC-Corvallis, Ore.	1,000	P	570 Kilocycles-		
KSD-St. Louis, Mo.	1,000	M	CMHI-Santa Clara,	15,000	E
KTSA-San Antonio, Tex.	1,000	C	KMKR-Fort Worth, Tex.	5,000	
WDEV-Waterbury,	1,000	E	KUTA-Salt Lake City, Ut.	5,000	
WGR-Buffalo, N.Y.	1,000	E	KVI-Tacoma, Wash.	5,000	P
WKRC-Cincinnati, Ohio	1,000	E	WKBN-Youngstown, Ohio	5,000	
WSVA-Harrissonburg, Va.	1,000	E	WMAM-Marinette, Wis. .	5,000	${ }_{\text {c }}$
560 Kilocycles-			WMCA-New York, N.	5,000	
CBRA-Revel	1,000	P	WSAR-Yan	5,000	
CJKL-Kirkland Lake, On	5,000	E	WWNC-Asheville, N.C.	5,000 1,000	E
KFDM-Beaumont, Texas	1,000	C			
KPLZ-Denver, Colo.	5,000	M	580 Kilocycles-		
KSFO-San Francisco, Cal.	1,000	P	CJFX-Antigonish, N.S.	5,000	
KWTO-Springfield, Mo.	5,000	C	CKPR-Ft. William,	1,000	E
WFIL-Philadelphia, Pa.	1,000	E	CKUA-Edmonton, Atla.	1,000	M

Call and Location. 960 Kilocycles Continued.	Power in Watts. Zone.		Call and Location.	Power in Watts.	
KROW-Oakland, Cal.	1,000	P	KRLD-Dallas, Texas	50,000	C
WBRC--Birmingham,	5,000	C	KWJJ-Portland, Ore.	1,000	
WDBJ-Roanoke, Va.	5,000	E	WCAZ-Carthage, Ill.	250	C
WELI-New Haven,	1,000	E	WTIC-Hartford, Conn.	50,000	E
SBT-Scuth Bend, Ind.	1,000				
970 Kilocycles-			1090 Kilocycles-		
KOIN-Portland,	5,000	P	KEVR-Seattle,	10,000 5,000	$\stackrel{P}{P}$
WAAT-Newark, N.J	1,000	E	WBAL-Baltimore, Md.	0,000	E
WAVE-Louisville, K	5,000	C	XERB-Tijuana, Mex.		P
CSH-Portland,	5,000	E	ERB-Tjuana, Mex.		
DAY-Fargo,	5,000	C	1100 Kilocycles-		
WFLA-Tampa, Fla	5,000 5,000	$\stackrel{+}{C}$			
WHA-Madison, Wis. WICA-Ashtabula, Ohio	$\begin{aligned} & \mathbf{5 , 0 0 0} \\ & \mathbf{1 , 0 0 0} \end{aligned}$	E	WJBS-San Francisco, Cleveland, Ohio .	50,000	E
980 Kilocycles-			1110 Kilocycles		
CBV-Quebec,	1,000	E	KFAB-Omaha, Nebr	50,000	C
KRM-Regina, Sa	1,000	M	KXLA-Pasadena, Calif	10,000	
CKWX-Vancouv	5,000	${ }_{P}^{\text {P }}$	WBT-Charlotte, N.C.	50,000	E
KFWB-Los Angeles,	5,000 5,000	$\stackrel{\mathrm{P}}{\mathrm{C}}$	WMBI-Chicago, Ill.	5,000	C
WGBG Greensboro,	1,000	E	XEFO-Mexico City, D.F.	5,000	C
WRC-Washingto	5,000	E			
SIX-Nashville, ${ }^{\text {TRY-Troy, N.Y. }}$	5,000 1,000	C	KMOX-St. Louis,		c
TRY-Troy, N.Y.					
990 Kilocycles-			1130 Kilocycles-		
CKY-Winnipeg,	15,000	C	CBR-Vancouver, B.C.	5,000	
WIBC-Philadel	10,000	E	KWKH-Shreveport, La	50,000	C
KNOX-Knoxville,	10,000	C	WCAR-Pontiac, Mich.	1,000	
WPRA-Mayaguez, P.	1,000	A	WDGY-Minneapolis, Mi	5000	
XECL-Mexicali, B.C.	5,000		ew	,000	
1000 Kilocycles-			1140 Kilocycles		
KOMO-Seattle,			KGDM-Stockton, Callf.	5,000	
(*50,000)	5,000	P	KSOO-Sioux Falls, S.D	5,000	
WCFL-Chicago, III.	10,000 10,000	$\stackrel{C}{C}$	WRVA-Richmond, Va.		
1010 Kilocycles-			1150 Kilocycles-		
			*CHLP-Montreal, Que.	1,000	
CJBC-Toronto, Ont.	5,00	E	CHSJ-St. John, N.B.		
CFCN-Calgary, Alta.	10,000	$\underset{\text { E }}{\text { E }}$	CKOC-Hamilton, On	$\begin{aligned} & 5,000 \\ & 1,000 \end{aligned}$	
	$10,000$	E	KFSG-Los Angeles, Ca	1,000	
KLRA-Little Rock, Ark.	50,000	C	KRKD-Los Angeles,	1,000	
			KRSC-Seattle, Wash	1,000	
1020 Kilocycles-			KSAL-Salina, Kansas		
KDKA-Pittsburgh, Pa.	50,000	E	KSWO-Lawton, Oklo.		
KFVD-Los Angeles, Cal.	5,000	P	WCOP-Boston, Mass.	500	
1030 Kilocycles-			WDEL-Wilmingt	5,000	
			WISN-Milwaukee, Wi	5,000	
KWBU-Corpus Christi, Tex.	. 50,000		WJBO-Baton Rouge, La	5,000	
WBZ-Boston, Mass.	50,000	E	WKPA-New Kensington,	250	
WBZA-Boston, Mass.	1,000	E	WTAW-College Stati	1,000	
1040 Kilocycles-			1160 Kilocycles-		
WHO-Des Moines, Iawa	50,00	C	KSL-Salt Lake City, Utah WJJD-Chicago, III.	$\begin{aligned} & 50,000 \\ & 20,000 \end{aligned}$	$\stackrel{\mathrm{M}}{\mathrm{C}}$
1050 Kilocycles- 1170 Kilocycles-					
CFGP-Grand Prairi	1,000		1170 Kilocycles-		
WDZ-Tuscola, III. N	50,000	E	KVOO-Tulsa, Okla.	$50,000$	C
WHN-New York, N.Y.	$\begin{array}{r} 50,000 \\ 250 \end{array}$	E	WWVA-Wheeling, W.Va.	$50,000$	
WEAG-Monn Arbor, ${ }^{\text {Werry, }}$	150,000	${ }_{\text {c }}$	1180 Kilocycles-		
1060 Kilocycles-			*KOB - Albuquerque, N.M.(770)WHAM—Rochester, N.Y. \quad.	: 50,000	
CJOC-Lethbridge, Altas	1,000	M		. 50,000	
KYW-Philadelphia,	50,000	C	WLDS-Jacksonvill	250	
XEST-Mexico City, Mex.	50,000				
1070 Kilocycles-			1190 Kilocycles-		
CBA--Sackville, N.B.	50,000	E	KEX-Portland, Ore.	1,000	
HOK-Sarnia, Ont.	1,000		WOWO-Fort Wayne, Ind.	10,000	
FBl-Wichita, Kansas	- $\begin{array}{r}1,000 \\ 50,000\end{array}$				
NX-Los Angeles, Cal.	50,000 5,000	$\stackrel{\mathrm{P}}{\mathbf{C}}$	1200 Kilocycles-		
WAPI--Birmingham, Ala. WIBC-Indianapolis, Ind.	$\mathbf{5 , 0 0 0}$ $\mathbf{5 , 0 0 0}$		WOAI-San Antonio, Texas	50,000	

	Power in Watte,		Call and Location.	Power in Watts.	
1210 Kilocycles-					
WCAU-Philadelphia, Pa. 5	50,000	E		250	c
			WHLN-Harlan, Ky	250	E
1220 Kilocy			WHOP-Hopkinsville, K	250	C
CKCW-Moncton, N.B.			WHTB-Telledaga, Ala.	250	C
(1400)	5,000	A	WIBX-Utica, N.	250	E
CJRL-Kenora, Ont.	1,000	c	WIL-St. Louis, Mo.	250	C
WGAR-Cleveland, Ohio	5,000	E	WITE-Asheville, N.C.	250	E
WGNY-Newburgh, N.Y. . .	1,000	E	WITH-Baltimore, Md.	250	C
WVCX-Sitkaj, Alaska .. XEB-Mexico City, Mex	20,000		WJBC-Bloomington, Ill.	$\begin{array}{r} 250 \\ 250 \end{array}$	C
	20,000	C	WJEF-Grand Rapids, Mich.	250	
1230 Kilocycles			WJNO-West Palm Beach,		
CFAR-Flin Fl	250	C	WJOB-Hammond,	250	C
CFPA-Port Arthur, On	250	E	WJRD-Tuscaloosa, Ala.	250	C
CJCJ-Calgary, Alta.	250	M	WKBO-Harrisburg, Pa.	250	E
*CJEM-Edmonston, N.B.			WKVM-Arecibo, P'R.	250	A
		A	WLoF-Orlando, Fla.	250	E
CKNW-New Westminster, B.C.	C. 250	P	WLOG-Logan, W.V	250	
CKPG-Prince George, B.C.	250	P	WLVA	250	E
CKSF-Cornwall, Ont.	250	E	WMFR-High Point, N.C.		
CKVD-Val d'Or, Que.	250	E	WMOB-Mobile, Ala.	250	c
KADA-Ada, Okla.	250	C	WMPC-Lapeer, Mich.	250	E
KAST-Astoria, Or	250	P	WOCB-West Yarmouth,	250	L
KBTM-Jonesboro, Ark.	250	C		250	
KCMC-Texarkana, Tex	250	C	WOLS-Florence, S.	250	E
KCRS-Midland, Tex	250	C	WPUV-Pulaski, Vas.	250	E
KELO-Sioux Falls, S.D.	250	C	WRBL-Columbus, Ca.	250	E
KFDA-Amarillo, Texas	250	C	WSKB-McComb, Mis	250	C
KFIO-Spokane, Wash.	250	P	WSOO-Sault St. Marie, Mich	250	E
KFJB-Marshalltown, Lowa	250	C	WTHT-Hartford, Con	250	E
KFFXN-Las Vegas, N.M.	250	M	WTOL-Toledo, Ohio	250	E
KGAK-Nampa, Idah	250	M	-Marietta, Ga.	250	c
KGEK-Stirling, Colo.	250	C	1240 Kilocycles-		
KGFJ-Los Angeles, Cal.	250	${ }^{\text {P }}$	CBH-Halifax, N.S.	100	A
KGHI-Little Rock, Ark.	250	C	CFPR-Prince Rupert,	50	
KHAS-Hastings, Neb	250	C	CJCS-Stratford,	250	
KHBC-Hilo, Hawaii	250		CKCH-Hull, Que.	250	
KMLB-Munroe, La.	250		CKLN-Nelson, B.C.	250	
KNOE-Monroe, La. (1450)	250	C	CKPA-Port Alberii, B.C	250	E
KODL-The Dalles, Ore.	250		*-Osbawa, Ont.	100	E
KOOS-Coos Bay, Ore.	250	P	KANS-Wichita, Kansas	250	
KPHO-Phoenix, Ariz	250	M	KASA-Elk City, Okla.	250	
KPOW-Powell, Wyo.	250	M	KAVE-Carsbad, N. Mex.	250	M
KRIH-Midland, Texas	250	C	KBIZ-Ottumwa, Iowa	250	c
KSUN-Lowell, Ariz.	250	M	*KCOK-Turale, Iowa	250	P
KTHT-Houston, Texas	250	C	*KCOW-Ellensburg, Wash.	250	P
KVCV-Redding, Cal.	250	P	KDLR-Devil's Lake, N.D.	250	C
KVEC-San Luis Obispo, C	250	P	KDON-Monterey, Cal.	250	
KVNU-Logan, Utah	250	M	KFBC-Cheyenne,	250	
KWG Stockton, Cal.	250	P	KFJI-Klamath Falls	250	P
KWNO-Winona, Minn.	250	C	KFOR-Lincoln, Neb	250	C
KWTX-Waco, Texas	250	C	KFXM-San Bernardino, Cal.	250	P
KXO-El Centro, Cal.	250	P	KGBS-Harlington. Texas	250	C
KYSM-Mankato, Minn.	250	C	KGY-Olympia, Wash.	250	P
WAIM-Anderson, S.C	250	E	KHBG-Okmulgee, Okla	250	C
WA.JR-Morgantown, W.Va.	250	E	KICA-Clovis, N. Mex.	2150	M
WAYX-Waycrosse, Ga	250	E	KICD-Spencer, Iowa	100	
WBBZ-Ponca City, Okla.	250	C	KIUL-Garden City, Kansas	250	M
WBHP-Huntsville, Ala.	250	C	KMAC-San Antonio, Texas	250	c
WBLA-Dalton, Ga.	250	C	KOCA-Kilgore, Texas	250	C
WBOC-Salisbury, Md.	250	E	KODY-North Platte, Nbr.	250	C
WBOW-Terre Haute, Ind.	250	C	KoVo-Provo, Utah .	250	M
WCAT-Rapid City, S.D.	250	M	KPFA-Helena, Mont.	250	M
WCBT-Roanoke Rapids, N.C.	250	E	KPPC-Pasadena, Callf.	250	P
WCED-Du Bois, Pen	250	E	KROY-Sacramento, Calif	250	P
WCLO-Janesville, Wis.	250	C	KVSO-Ardmore, Okla	250	C
WCMA - Corinth, Miss.	250	C	KWAT-Watertown, S.D.	250	C
WCOL-Columbus, Ohio	250	E	KWIL-Albany, Ore.	250	P
WCPO-Cincinnati, Ohio	250	E	KWJB-Globe, Ariz.	250	M
WDLP-Panama City, Fla.	250	E	K WLC-Decorah, Iowa	250	C
WDSM-Superior, Wis.	250	C	KWOS-Jefferson City, Mo.	250	C
WENY-Elmira, N.Y.	250	E	KWRC-Pendleton, Ore.	250	P
WERC-Erie, Pa.	250	E	KXOX-Sweetwater, Texas	250	c
WESX-Salem, Mass.	250	E	KYUM-Yuma, Ariz.	250	M
WFAS-White Plains, N.Y	250	E	WATN-Watertown, N.Y	250	E
WFFTC-Kinston, N.C.	50	E	WATT-Cadillac, Mich.	250	E
WFVA-Fredericksburg, Va.			WBAX-Wilkes-Barre,	100	E
(1290)	250	E	WBEJ-Elizabethton, Tenn	250	C

	Power in Watts.		Call and Location.		
Call and Location. 1240 Kilocycles-Continued.			1280 Kilocycles - KFOX-Long Beach, Calif.		P
WBIR-Knoxville, Tenn. WBML-Macon, Ga. WCHV-Charlottesville, Va .	250	C		1,000.	\mathbf{P}
	250		WDSU-New Orleans, La.	5,000	C
	250	E	WGBF-Evansville, Ind.	1,000	C
WCOU-Lewiston, Me.	250	E	WHBI-Newark, N.J. ${ }^{\text {W }}$,	1,000	E
WCOV-Montgomery,	250	C		1,000	
WCRW-Chicago, Ill.	250	${ }_{C}^{C}$	WKST-New Castle, Pa. .	250	
WEBQ-Harris burg,	250	C	WOV-New York, N.Y.	5,000	E
WFOY-St. Augustine,	250		WTCN-Minneapolis, Minn. *-Trinidad, Col.		
WGAC-Augusta, Ga.	250	E			
WGBE-Freeport, N.Y	250		1290 Kilocycles-		
WGCM-Gulfport, Miss	250	C			
WGGA-Gainesville, Ga.	250	E	KGVO-Missoula, Mo	1,000	M
WGRM-Greenwood, Mis	250	C	KHSL-Chico, Calif	5,000	C
HHAL-Greenfield, Mas	250		KOIL-Omaha, Nebr.	1,000	c
WHBU-Anderson, Ind	250	C	KRGV-Weslaco, Texas Ails.	6,000	
IBU-Paynette,	250	c	*KVOA-Tucson, Ariz. .	1,000	
IINK-Fort Mye	250	E		000	E
INN-Louisville,	250	C	WHKY-Dayton,	1,000	
WJBY-Gadsden, Ala	250	C	WHLD-Niagara Falls, N.Y.	1,000	
WJEJ-Hagerstown,	250	E	WNBF-Binghampton, N. \dot{Y}.	-	
WJIM-Lansing, Mich.	250	E			E
JMC-Rice	250				
WJNC-Jackso	250		1300 Kilocycles-		
JRM-Elkins,	250		KGLO-Mason City,	5,000	
WJTN-Jamest	250			5,000	
WKOK-Sunbury,	250		*KROP-Brawley, Calif. .	1,000	
LAG-La Gran	25		KVOR-Colorado Springs,		
MFG-Lima, Ohio	250	C	KVET-Austin, Texas	1,000	
MFT-Florence, Ala.	250			5,000	
WMIS-Natchez, Miss.	250		WFBR-Baltimore, Md	1,000	
WMOX-Meridian, Mis	250	C	WOOD-Grand Rapids, Mich. *-Austin, Texas	5,000	E
VOCB-West				1,000	
			1310 Kilocycles-		
OMI-Manitowoc,	5				
PAX-Thomasvilie,	250		CKCO-Ottawa, Ont.	1,000	
WRAL-Raleigh, N.C.	250		B-Great Falls. Mont.	5,000	
WSBC-Chicago,	250			1,000	
WSLS-Roanoke,	250		WCAM-Camden, N.J.	500	
SNJ-Bridge	250	E	WCAP-Ashbury Park, N.J.	500	
SNY-Schen	250	E	WDOD-Chattanooga, Tenn.	5,000	
WSOC-Charlotte, N.C	250			5,000	
WSSV-Petersbu	250		WISH-Indianapolis, Ind. .	1,000	
WTAX-Springfield, III.	250			1,000	
			WRR-Dallas, Texas	5,000	
1250 Kilocycles- WTNJ-Trenton, N.J. . 500					
CKSE-St. Boniface, Man	250		1320 Kilocycles-		
KFKU-Lawrence, Kan	1,000	C	KDYL -Salt Lal		
KPAC-Port Arthur, Texas	1,000		KXYZ-Houston, Texas		C
KTMS-Santa Barbara,	1,000			1,000	
KWSC-Puliman, Wa	5,000		WEBC-Duluth, Minn. ${ }_{\text {WJAS }}$ Pittsburgh. Pa.	5,000	
WCAE-Pittsb	5,000			000	
VIAE-Tampa, Fla.	5,000			250	
WREN-Lawrence, Ka	1,000	E	WNBZ-Saranac Lake, N.Y.	100	
WTMA-Charleston,	1,000		WNEL-San Juan, P. Rico		
1260 Kilocycles-			1330 Kilocycles-		
CFRN-Edmont			KALE-Portland, Ore. KFAC-Los Angeles, Cal.	5,000	
KFGO-Boone, Iowa	250			1,000 $\mathbf{5 , 0 0 0}$	
KGBX-Springfield,	5,000		KFH-Wichita, Kansas	1,000	
KGGM-Albuquerque, N.M	1,000	M	WBBR-Brooklyn, N.Y.	5,000	
KYA-San Francisco, Cal.	1,000		WFRC-Creenville. S.C.	5,000	
WFBM-Indianapolis,	5,000		WFIN-Findlay, Ohio	1,000	
WNAC-Boston, Ma	5,000		WHAZ-Tros', N.Y. WHBL-Sheboyran, Wisc.	1,000	
WOL-Washington,				250	
70 Kilocycles-			WLOL-Minneapolis, Minn.	1,000	C
			340 Kilocycles		
IZ-Fort	5,000		CHAD-Amos, Que. CHOV-Prmbroke. Ont. CHWK-Chilliwack, B.C. CJLS-Yarmouth, N.S. CJOB-Winnipeg, Man. CKCV-Quebes, Que. CKFI-Port Francis, Ont.	250	
KraCU-Mandan, N.	500			250	
TFI-Twin Falls, Idaho	1,000			100	P
BF-Rock Island, 111	5,000			250	A
n	5.000			250	
WSPR-Springfield, M	5,000 5,000			250	E

Call and Location. 1340 Kilocycles-Continued.	Power in		Call and Location. 1340 Kilocycles-Continued.	Power Watts.	Zone.
KAND-Corsicana, Texas	250	C	WNHC-New Haven, Conn.	250	E
KBND-Bend, Ore.	250	P	WRAW-Reading, Pa	250	E
KCKN-Kansas City, Kansas	250		WRH1-Rock Hili, S.C.	250	E
KCMJ-Palm Springs, Calif.	250	P	WSAJ-Grove City, Pa.	250	E
KCRA-Sacramento, Calif.	250	P	WSA V-Savannah, Ga.	250	E
KFRE-Fresno, Cal.	250	P	WSOY-Decatur, Ill.	250	C
KGYEZ-Kabbock, Texas	250	C	WSTV-Steubenville, Ohic	250	E
KGFW-Kearney, Nebr.	250	$\stackrel{C}{C}$	WTAL-Tallahassee, Fla.	250	E
KHMO-Hannibal, Mont.	250	C	WTRC-Elkhart, In	250	C
KHUB-Watsonville, Calif.	250	P	WWPG-Palm Beach, Fla.	250	E
	250	$\underset{\mathrm{C}}{\mathrm{M}}$	1350 Kilocycles-		
KOME-Tulsa, Okla. ..	250	C	CHGB-Ste. Anne de la Po-		
KPDN-Pampa, Texas	250	C	catiere, Que. .. .	1,000	E
KPKW-Pasco, Wash.	250	P	KGHF-Pueblo, Colo	1,500	M
KRBA-Lufkin, Texas	250	C	KID-Idaho Falls, Idaho	500	M
KR.JF-Miles City, Mont.	250	M	KRNT-Des Moines, Iowa	5,000	C
KROC-Rochester, Minn.	250	C	WSRO-Santa Rosa, Calif.	1,000	
KROS-Clinton, Iowa	250	C	WORK-York, ${ }^{\text {a }}$ a.	1,000	E
KSIL-Silver City, N.M.	250	M	WSMB-New Orleans, La.	5,000	C
KSUB-Cedar City, Utah	250	M			
KUIN-Grant's Pass, Ore.	250	P	1360 Kilocycles-		
KVIC-Victoria, Texas K VOL-Lafayette, La.	250	C	KGB-San Diego, Calif.	1,000	P
KVOX-Moorhead, Min	250	$\stackrel{C}{C}$	KRIS-Tacoma,	5,000	
KVSF-Santa Fe , N.M.	250	M	KSCJ-Sioux City,	1,000	
KWFC-Hot Springs, Ark.	250	C	WDRC-Hartford, Conn.	5,000	E
KWLM-Willmar, Minn.	250	C	WKAT-Miami Beach, Fla.	1,000	E
KWOC-Poplar Bluff, Mo.	250	C	WSAI-Cincinnati, Ohio..	5,000	E
KXRO-Aberdene, Wash.	250	P	WTAQ-Green Bay, Wis.	5,000	E
WALL-Winston-Salem, N.C.	250	E	WPPA-Pottsville, Pa.	500	E
WAML-Laurel, Miss	250	${ }_{\text {c }}$	1370 Kilocycles-		
WBAC-Cleveland, Tenn.	250	C	俍		
WBRE-Wilkes-Barre,	250	E	-Dawson City, B.C	1,000	P
WBRK-Pittsfield, Mas	250	E	KFRO-Longview, Texas	1,000	C
WBRW-Welch, W.V.	250	E	KGIR-Butte, Mont.	1,000	
WCEI-Columbus,	250	C	KGNO-Dodge City, Kansas	5,250	C
	250	C	WCOA-Pensacola, Fla.	500	C
WDAK-Columbus, Ga.	250	C	WFEA-Manchester, N.H.	5,000	E
WDMJ-Marquette, Mic	250	${ }_{C}^{C}$	WPAB-Ponce, Puerto Rica	1,000	A
WEBR-Buffalo, New Yo	250		WSAY-Rochester, N.Y	1,000 5,000	E
WEIM-Fitchburg, Mass.	250	E	WSPD-Toledo, Oh	5,000	E
WEMP-Milwaukee, Wis	250	C	1380 Kilocy cles-		
WENT-Gloversville, N.Y.	250	E	CKPC-Brantford, Ont.		
WFEBL-Royal Oak, Mich.	250	E	KBWD-Brownwood, Texas	1,500	C
WFEB-Sylacauga, Ala.	250	${ }_{\text {E }}^{\text {E }}$	KIDO-Boise, Idaho	1,000	M
WFHR-Wisconsin Rapids,	250	C	KOTA-Rapid City, S.D.	5,000	M
Wis. .			KWKM-EI Paso, Texas	500	M
WFIG-Sumter, S.C.	250	E	WAWZ-Zarephath, N.	1,000	C
WGAA-Cedartown, Ga.	250	E	WBNX-New York, N.Y	1,000	E
WGAU-Athens, Ga	250	E	WMBG-Richmond, Var.	5,000	E
WGH-Newport News, Va.	250	E	WSYB-Rutland, Vt.	1,000	E
WGTM-Wilson N:	250	E	WTSP-St. Petersburg, Fla.	500	E
WHAT-Philadelphia, Pa.	250	E	1390 Kilocycles-		
WINX-Washington, D.C.	250	E	KCRC-Enid, Okla.		
WIZE-Springfield, Ohio	250	E	KGER-Long Beach, Calif.	5,000	P
WJPF-Herrin, Ill.	250	C	KLPM-Minot, N.D.	1,000	C.
WJPR-Greenville, Miss.	250	C	KSLM-Salem, Ore.	1,000	P
WJOL-Florence, Ala.	250	C	WCSC-Charleston, S.C.	1,000	E
WKEY-Covington, V	250	C	WFBL-Syracuse, N.Y.	5,000	E
*WKRM-Columbia, Tenn.	250	${ }_{\text {E }}$	WGES-Chicago, 111.	5,000	C
*WKUL-Cullman, Ala.	250	${ }_{C}^{C}$	WTJS-Jackson, Tenn.	1,000	E
*WKRZ-Oil City, Pa.	250	E	1400 Kilocycles-		
WLAK-Lakeland, Fla.	250	E	CJSO-Sorel, Qud.		
WLAV-Grand Rapids, Mich.	250	E	CKRN-Rouyn, Que	250	E
WLBJ-Municie, Ind.	250	C	KELD-E1 Dorado, Ark.	250	C
WLNH-Laconia, N.H. Ky.	250	C	KENO-Las Vegas, Nevada	250	P
WMBO-Auburn, N.Y	250	E	KFPW-Fort Smith, Ark.	250	C
WMFF-Plattsburg, N.Y.	250	${ }_{\text {E }}$	KFVV--Cape Girarde. ${ }^{\text {M }}$ -	250	C
WMLT-Dublin, Ga.	250	E	KGVL-Cape Girardeau, Mo.	250	C
MSA-Massena; N.Y.	250	E	KGFL-Roswell, N.M.	250	C
WNBH-New Bedford, Mass.	250	E	KGKL-San Angelo, Texas	250	M
Ashville, N.C.,	250	E	KHON-Honolulu. Hawaii	250	

Call and Location.	Power in Watts. Zone.		Call and Location.	Pownar ine Watts. Zone.	
1490 Kilocycles-Continued.			1520 Kilocycles- KOMA-Oklahoma City,		
WKAY-Glasgow, Ky. WKBB-Dubuque, Iowa	250	$\underset{\mathbf{C}}{\mathbf{C}}$	KOMA-Oklahoma Okla.	50,003	C
WKBV-Richmond, Ind.	250	C	WKBW--Buffalo, N.Y.	50,000	
WKBZ-Muskegon, Mich.	250	E			
WKIX-Columbia, S.C.	250	E			
WKNY-Kingston, N.Y.	250	E	1530 Kilocycles-		
WKRO-Cairo, Ill.	250	C	KFBK-Sacramento, Calif.	10,000	P
WLAT-Conway, S.C. WMGR-Bainbridge, Ga.	250	$\stackrel{\text { E }}{ }$	WCKY-Cincinnati, Ohio		
WMJM-Cordele, Ga.	250	E			
WMOG-Brunswick, Ga.	250	E	1540 Kilocycles		
WMRC-Greenville, S.C.	250	E	KXEL-Waterloo, Iowa	50,000	C
WMRF-Lewistown, Pa.	250	E			
WNLC-New London, Con	250	E	1550 Kilocycles--		
WOLF-Syracuse, N'Y.	250	E	CKTB-St. Catherines, Ont.	1,000	\%
WOMI-Owensboro, Ky.	250	C	XERG-Tijuana, Mex.	2,000	
WOPl-Bristol, Tenn.	250	C			
WOSH-Oshkosh, Wis.	250	$\stackrel{C}{C}$	1560 Kilocycles-		
WRID-West Point, Ga.	250	C	KPMC-Bakersfield, Calif.	1,000	P
WROW-Athens, Tenn.	250	C	WQXR-New York, N.Y.	10,000	
WSAP-Portsmouth, Va.	250	E			
WSTP-Salisbury, N.C.	250	E	1570 Kilocycles-		
MC-Ocala, Fla. WTMV-E. St. Louis, Ill.	250	E	CFPL-London, Ont.	5,000	E
*WTWS Clearfield, Pa.	250	E			
*WTVL-Waterville, Maine	250	E	1580 Kilocycles-		
WWSW-Pittsburgh, P	250	${ }_{\text {E }}$	CBJ-Chicoutimi, Que.	1,000	E
*-Mrawley, Cal.	250 250	P			
Marietta, Ohio	250	E	1590 Kilocycles-		
1500 Kilocycles-			WAKR-Akron, Ohio	5,000	
KSTP-St. Paul, Minn.			WALB-Albany, Ga. Coni.	1,000	$\underset{\text { E }}{ }$
WTOP-Washington, D.C.	50,000	E	WBRY-Waterbury, Conn. XEMC-Mexico City, Mex.	$\begin{aligned} & 1,000 \\ & 5,000 \end{aligned}$	
1510 Kllocycles-					
			1600 Kilocy cles-		
WLAC-Nashville, Tenn.	50,000	C	WKWF-Key West, Fla.	500	E
6WMEX-Boston, Mass.	5,000	\mathbf{E}	WWRL-Woodside, N.Y.	250	

INDIAN BROADCAST STATIONS

Indian stations provide a good signal in the winter, with B.B.C. news at 3 a.m., previous to which local news is heard. This list is compiled by our DX Adviser, Arthur T. Cushen, 212 Earn Street, Invercargill.

Location and Call.	Kilo. cycles.	Power in watts.	ocation and Call.	Kilo. cycles.	Power in watts.
Peshawar-VUP	629	10,000	Aurangabad	940	500
Travandrum-VUR	658	5,000	Lucknow-VUW	1,022	,000
Colombo, Ceylon- ZOH	700	5,000	Lahore VUL	1,086	5,000
Hyderabad-VUV	730	5,000	Dacca-VUY	1,167	5,000
Trichinopoly-VUT	758	5,000	Bombay-VUB		
Calcutta-VUC	810	1,500	[Madras-VUM	1,420	
Delhi-VUD	886	20,000			

HINTS AND KINKS

(1) Cardboard round a No. 6 Cell made by cutting down wafer sockets and makes a good Crystal Set Coil Former fitting them into old valve bases. Be after the cell is worn out. careful to get the connections cor
(2) A large ratchet screwdriver is plate to plate, grid to grid, etc., etc. quite a good tool for boring holes in wooden panels. from printed instructions, be careful to
(3) Adaptors for testing Enclish bose from printed instructions, be carefu th
note the direction of winding, as if this (3) Adaptors for testing English base is not as indicated you may fail to ge valves in American sockets can easily be reaction.

HOW TO BUILD A UNIVERSAL SET-TESTING METER
 (By JOHN T. WILCOX)

Editor's Note.-The following article Meters capable of measuring voltage, appeared in a number of that well- current and resistance constitute perknown journal, "Popular Mechanics." haps the most important part of the The Tester appealed to us as one that radio experimenter's equipment, enabling would be of interest to many of our him to check his own construction and readers, and we are therefore repeating wiring, locate defective parts, and track

the description here. The illustrations down circuit troubles. If separate have been copied from the original meters were required for these various article and they may be slightiy diferent types of measurements the cost would Kit Sets; for instance, the Meter would Fortunately, however, it is possible to be a standard Palec round meter in use a single standard 0 to 1 mas milliam place of the square one shown in the meter together with a few semi-precision illustration. Price of Kit Sets does not resistors and switches to serve all of include engraving on the panel or metal these purposes. cabinet.

Completed Tester

Under Panel

The home-made meter unit illustrated meets all requirements and provides the following d.c. measurement ranges: 0-1 and $0-100$ milliamperes for current measurements; voltage- $0-10, \quad 0-100, \quad 0-500$
and $0-1,000$ volts; resistance $-0-500$ and $0-100,000$ ohms.

All parts, as specified and detailed in Fig. 1, cost about $£ 5$, and this includes the 7 in . by 9 in . Bakelite panel The case is a standard 7 in . by 9 in . by 2 in . sheetstecl chassis. The semi-precision fixed resistors are 1-watt carbon types supported by their own leads and the wiring. The multi-range meter scale, metershunt resistor, toggle switches, push-
button switch, fuse and holder are all button switch, fuse and holder are all included in the kit of parts.

The fuse introduces a little additional resistance in the circuit and this will cause inaccuracies in reading certain
ranges. To avoid this the safety pushbutton switch (SW3) is provided; when depressed, the fuse is shortcircuited and accurate readings thus obtrined. Diagrams A, B, C, D and D in Fig. 2 clearly show the connections employed for making all tests. In every "ase one test lead is connected to the "common" binding post, the other lead being connected to the binding post marke with the desired range. To "lo ohms" switch is placed in the "on" position and the "ohms adjuster" knob varied until the pointer on the meter rests at the extreme richt end of the scale. For high-resistance measurements a similar preliminary adjustment must be made. To do this the "common" terminal is temporarily connected directly to the $100000-\mathrm{ohm}$ terminal and the to the 100,000 -ohm terminal and the cause inaccuracies in reading certain knob is adjusted as before.

PARTS LIST FOR
THE "UNIVERSAL SET-TESTING METER."

One 0-1 MA Palec Meter One 7×9 Bakelite Panel Eight Terminals
One Meter Push Switch Two S.P.S.T. Toggle One Fitches Holder
One 60 MA Fuse
One 60 Ma Fuse
One 100 MA Shunt
One 1000 olim Wire-wound
Potentiometer
One Pointer Knob
One $4 \frac{1}{2}$-volt Battery
Five 1-watt Resistore
Five 1-watt Resistora
One Packet Pushback Wire One Dozen Solder Lugs 13 Dozen Nuts and Bolts COMPLETE KIT OF
PARTS, as listed above. Cat. No. TK2011 fE/5/m

A novel panel finish may be obtained by first painting the chassis with whatever colour of paint one fancies, and ever colour of paint one fancies, and evenly aud let dry. Then another coat of paint is applied over the sand. Use fine paint is applied over the sand. Use fine
sand, and when this is spread on evenly sand, and when this is spread on evenly it makes the job look protessional. It Salt works very well, too, but may whiten if it gets wet.-Rahob 7581.

Carbon from a torch battery makes a rood welder if fastened to a piece of heavy cable and worked from a car battery. Rnhob 7474.

SEALING WAX MAKES ELECTRTC PLUGS SAFE

Short circuits often result because of the common practice of pulling electric fixture plugs out of the wall sockets by the cord. Strands of wire loosen bit by bit, eventually short, and blow the fuses. Tighten up the screws in the plug, then pour in melted sealing wax untll all wires are covered. The wax will anchor the cord securely and double the life of the extension cord.-Rahob 9124.

A SIGNAL GENERATOR

(By VERNON WHEATLEY)

A signal generator is a handy device |superhets and TRF receivers, and also to possess, but unfortunately a really gives harmonics down to 20 metres for first-clase precision instrument is beyond calibrating home-built receivers from the the means of the average experimenter. Here, then, is one which costs no more to build than the average two-tube receiver, and whilst it is not guaranteed to bo of sub-standard accuracy, it will at least be accurate enough for the majority of experimenters, or servicemen provision is made for switching out both starting off in business. The device is condensers, the builder will find that in

mensions shown in sketch B. A general idea of the layout is shown also, and the completed job is installed in a metal case (metal bottom, as well, don't forget), with a hinged lid to effect coil changes. The metal partition shown is sufficiently large to effectively separate the two sections of the instrument, as the power supply must be sereened off from the generator itself. The metal case should only be high enough to clear the top of the highest component used by about, say, half an inch. The output terminal may be mounted in any other convenient position shown, providing the connecting lead thereto is properly shielded.
or he generator provides a modulated or unmodulated signal for lining up
and rotate the tuning condenser. During the process you will hear a sharp whistling sound in the receiver. By selecting various broadcast stations the ", you can plot a chart on a sheet of graph paper for everyday reference. The dial readings of the oscillator are noted horizontally and the vertical aspect notes Kc / s. read from your receiver dial. Thus you are able to note known fre quencies against your oscillator Jial readings. Charts may be made for each coil.
Coil No. 3 tunes from $550 \mathrm{Kc} / \mathrm{s}$. to about $400 \mathrm{Kc} / \mathrm{s}$., thas covering the standard IF frequency. The ground shield of the output lead should always be grounded to the earth terminal of the receiver being tested.
To line tuning condensers, tane about to the H.F. end of the band, cut off switch SWA or SWB (either or both, as required) to give a modulated signal, and adjust the condensers to give a maximum output with the tonal signal.
To adjust I.F. stages, set the generator to $456 \mathrm{Kc} / \mathrm{s}$. (or the appropriate fre quency) and line up by direct grid conections.
To calibrate short-wave receivers, the generator is tuned to broadcast stations of known frequency, and then the harmonics are picked up on the short-wave bands.
If possible (and this is the best plan) calibrate the generator against a stan dard service instrument.
The nower supply, you will observe does not require to be a particularly robust job. Any supply will do, so long as about 100 to 150 volts D.C. (adjusted by the wire-wound pot.) are de livered to the oscillator tube, with, of course, necessary provision for a modulated tone when needed. Even an auto transformer or half-wave rectification
will do. The main idea is to have the source of supply deliver the mecresary Br of Pure Direct Current witive of uninterrupted D.C.
It has been necessary to add a second $25,000 \mathrm{ohm}$ wire-wound potentiometer in the circuit to replace the voltage divider, which is at present unprocurable.

SIGNAL GENERATOR PARTE LIST

One 6 K 7 Valve
One 80 Valve
One . 00035 mfd. Single Gang Condenser
One 10030 h . Choke
Three S.P.S.T. Toggle Switches
One 60 ma .6 .3 v . Power Transformer
Two 25,000 ohm Wire-wound Potentiometers
Two 8mfd. Dry Electrolyticy
Three $3 \frac{1}{4} \mathrm{in}$. x $1 \frac{1}{1} \mathrm{in}$. Coil Former (with 4 pin mounting bases)
Three Valve Sockets
$\frac{1}{1} \mathrm{lb}$. 28 or 30 gauge Wire
One . 0002 mfd . Tubular Condenzer
One .05 mfd . Tubular Condenser
One .0001 mfd . Mica Condenser
Two Resistors
Two Knobs
2 ft . Bonding Braid
One Pkt. Push Back Wire Sundries, Nuts and Bolts, Bte.

COMPLETE KIT OF PARTS, as above, without base board or metal container

Cat. No. TK2007 \qquad \&6/7/6

CUTTING ROUND HOLES IN ALUMINIUM

Experimenters usually find it very fashion and then reverse the panel and difficalt to cut a neat round hole in an aluminium chassis. This can be overcome by the following :-
"Obtain a pair of carpenter's or machinist's heavy duty dividers and with one side drill a hole through the chassis until the point just shows. With this as the centre swivel adjust tbe dividers of the radius of the cutting and scribe out a circle. Make numerous cuts after this
nake several cuts on the other side Place this over a vice, having opened the jaws a little bit larger than the diameter already scribed and strike the insid of the circle several times with the round end of a ball peen hammer. Reverse the chassis and repeat the operation. Do this until you have lost all confidence in this method and then hit two or three times more and the cntting will drop out leaving a fine smooth hole."

HAYMAN'S INFRA RED MEDICAL LAMPS

As supplied to the Auckland Hospital Board and many other hospitals throughout New Zealand. These Lamps allow you to obtain exactly the same Infra Red Treatment as given in many of the leading hospitals. Specially designed for use in Hospital Massage Departments, Surgeries, Clinics, Convalescent. Homes, Institutions, and in private homes.

SPECIAL FEATURES INCORPORATED ARE:
Infra Red Radiating Element, emitting genuine Infra Red Rays, specially designed for heavy
duty performance and long life; tested and proved by medical experts.

Non-luminous type Element.

Special brightly polished reflector to give the right focus of tays to location under treatment.
Switch on bowl to control the Element without disconnection of Wall Plug or Light Socket.
Strong, quick-fixing swivel joints which hold the radiator down firmly in any desired position,
vertical or horizontal, with a very wide range of movement.
Strong, heavy cast base prevents standard from falling over. Attractively finished in bright nickel-plating, and wrinkle-finish baked enamel. Infra Red Ray treatment is recommended for Rheumatism, Sciatica, Nominia, Chilblains, Boils, Septic Sores, Toothache, Earache, Spraing, In and lacerations. Ask your Doctor.
TREATMENT: Apply the Rays to the bare skin, keeping the bowl about 18 inches away, or according to the sensitiveness of the skin of the should never be allowed to be so close as to be unbearably hot. The Lamp should be adjusted to surit individual requirements.
Duration of treatment should be according to medical advice, but 20 to 30 minutes is usually long enough for the first treatment, 2 or 3 times daily, according to the ailment and theasure of relief received. Longer treatments can be given when accustomed to the Rays.
Before commencing treatmade comfortable in a bed or chair so as not to be
weary during the petiod of weary dur
treatment.
treatment.
Supple cord. complete- with
Spare Elements are available
TE87- $2 ?$ each
TABLE TYPE
Cat. No. TE86 £8/5' FLOOR TYPE Cat. No. TE85 £12'10'

THE

LAMPHOUSE
11 manners St., WELLINGTON.

HEALTH FROM THE POWER POINT

Infra Red Therapy

(Copyright-All rights reserved.)
Refore purchasing an Infra Red Outflt we strongly advise you to CONSULT YOUR DOCTOR.

After many years experience with The value of these rays is well known by Infra Red Lamps we are able to give a all medical practitioners, and most hosshort account of the use and benefits pitals are now equipped with some form which can be derived from this health- of Infra Red apparatus.
giving Home Treatment, and our experience is amply supported by the many sufferers who have had reat relief from pain after using the Infra Red treatpain a

This article does not suggest that Home Treatment by Infra Red Therapy can or should take the place of your can or should take che place to consult your Doctor, as he will know how beneficial Infra Red Treatment is, and so will be able to supervise the treatment your Lamp for your particular complaint.

Very many common complaints are due firstly to the neglect of the simple rules of health-good plain food, fresh air and exercise, abundant sleep-and secondly to over indulgences, especially overto over indulgences, especially over-
eating; and unless the primary cause is eating; and unless the primary cause is
removed and bad health habits are corremoved a permanent cure cannot be effected in spite of Infra Red treatment or anything splse.
On the other hand, observance of these simple rules and regular Infra Red treatment to relieve pain and congeation will quickly restore to you that healthy joy of living so often envied in others.

WHATM ARE INFRA RED RAYS?

Energy is often transmitted by means of rays of a particular wave-length, and the whole series of energy rays is known as the Spectrum. A small part of the Spectrum is visible-ordinary light-and is known as the visible spectrum. This means that a certain range of energy wavelengths stimulates the eye and we are conscions of "light."

Now let us start at light-visible wave lengths. As we pass to shorter and shorter wave-lengths we enter the realm of Ultra Violet Light, invisible to the human eye and very irritating to the human skin if the exposure is prolonged. Still shorter wave-lengths are known as X-rays, which are used for deep photography. Beyond these the wave-lengths are infinitely sinall and are now being investigated by Physicists.

If we go back to visible light and increase the wave-length we come to Infra Red Rays, the subject of this article. These energy waves are also invisible. Infra Red gradually merges into the various types of Wireless Waves, which, of course, have still greater wave-lengths, so we bee that Infra Red Rays are a furm of Encrgy emanations which have great penetrating power insofar as the human tissues are concerned-much more penetrating than Ultra Violet Rays lying on the other side of the visible Spectrum. In this penetrating power of Infra Red Rays lies the secret of its health-giving properties.

Here we have the means of applying heat to energy tissues, whether superficial or deep, with no danger of burning, providing instructions are followed. But before this aspect can be discussed a few facts regarding the circulation must be mentioned.

The circulation of the blood is concerned with several vital functions. dmong these are the supplying of food and oxygen to the tissues for the purpose of maintenance and repair. Removal of waste, including the products of tissue activity and tissue injury and protection against bacterial invasion. It follows then that the better the blood supply is to any part of the body the greater are the possibilities of tissue health. For example, a deep-seated bruise requires two things--a plentiful supply of repair materials and a rapid removal of the darasged tissue. Both depend upon a healthy blood supply to the affected part. Inflammation is the natural reaction of the system in an attempt to bring this about.
It is well-known that the application of heat assists and increases the circulation and the Infra Red Lamp is a convenient and efficient means of heat therapy. Properly used it is a useful adjunct to medical treatment prescribed by your Doctor. Local application is easily and
accurately controlled so that there is no danger of burns or accidents; and the relief from pain and the general assistance in restoring and maintaining health is beneficial to both body and mind. You will thus see that Infra Red Treatment is but the application of natural Health principles.

INSTRUCTIONS FOR USING YOUR INFRA RED LAMP

Connect to your electric light socket or wall plug and your Lamp is ready for use in 10 minutes. The Lamp is equally suitable for use by patieuts themselves or by an aasistant. After the first treatment the patient can tell whether the treatment is going to be successful. If this is so it can be considered highly possible that the Lamp will assist considerably in a complete cure even though the ailment is deep-seated and of long standing.

The Lamp should be placed or held about 10 in . to 12 in . from the part being treated, or as close as can comfortably be borne. You should aim at treating about 10 square inches of the body surface. While Infra Red Rays are quite harmless and can be applied in longer periods, it is advisable to restrict treatments at first to twenty minutes, twice daily. You can lengthen the time of application according to the benefits and effects obtained.

The penetrating power of Infra Red Rays is such that deep-seated muscular complaints and congestions can be easily and conveniently treated. We cannot emphasise too strongly, however, the necessity for regular treatment at regular intervals so as to gain the maximal benefit. Endeavour to maintain this regularity, arranging a time at your own convenience so as to undergo treatment at the same time each day for several days without interraption or variation.

LAMPHOUSE ANNUAL SUPPLEMENTS

During this coming season we will be publishing periodically ILLUSTRATBD SUPPLE. MENTS, which will be posted free of charge to anyone interested. All those who were in the N.Z. Radio Hobbies Club need not fill in the form below as their names are already on out Mailing List.

[^0]: Cat. No. TU1
 $2 / 3$ bottle.

[^1]: NOTE.-GT types not included in this Chart have electrical characteristics identical with equivalent .G types.

