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2 
o 
THE purpose of this book is to provide a fairly complete treatment 
of the theory and practice of loud speakers. The contents have been 
divided deliberately into two almost equal parts, Chapters I to XII 
being devoted to theory, whilst practical work is dealt with in 
Chapters XIII to XX. By separating theory and practice, those who 
have not had a mathematical training and whose work is mainly 
connected with testing and design, can turn to the chapters on 
practical work, whilst the mathematical reader will be able to read 

a- the theory, unhampered by the inclusion of practical details with 
T.) 

which he may not be well acquainted. There are others who will 
desire to be familiar with both theory and practice, but to whom the 
theory, which on the whole is not elementary, may present difficul-
ties. These readers will have to supplement their study by acquiring 
a knowledge of Bessel functions. To this end the author has written 
a book on Bessel functions and spherical harmonics for engineers, in 
which the theory and its applications to acoustical and electrical 
engineering are explained in a simple manner. 
Throughout the present volume free use has been made of published 

• work on the subject, and the author has endeavoured to evolve the 
t‘l 
• theory in logical sequence, and to give its practical applications. 

New material has been added in places, whilst that which is of long 
standing has been recast to conform with the rest of the subject-
matter. The treatment is as rigorous as possible, but of such a nature 
as will appeal to engineers. Owing to space limitations, it has been 
necessary to abbreviate both the analytical and descriptive work 
occasionally, but the reference list will aid those desiring to probe 

o the subject more deeply. 
The author has been very fortunate in securing the help of several 

• friends. Dr. C. G. Lamb has read most of the manuscript and the 
13) 

proofs of Chapters I to XV. Mr. A. G. Warren has read the manu-
script of published papers and the proofs of Chapters I to XV, whilst 
Dr. S. Goldstein has read the manuscript of Chapters II and XI. The 
author has great pleasure in acknowledging the valuable criticisms 
and suggestions made by these gentlemen. Mr. G. A. V. Sowter was 
associated with the author in a large amount of experimental work, 
when many hours were spent persuading conical shells to divulge their 
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vibrational secrets (Chapter XVIII). The author takes this oppor-

tunity of expressing his appreciation of Mr. Sowter's co-operation. 

Best thanks are due to Messrs. L. B. Ault (B.T.-H. Co.), A. B. 

Howe (B.B.C.), H. L. Kirke (B.B.C.), H. Midgley (Midgley-Harmer), 

L. H. Paddle (Igranic Co.), and S. S. A. Watkins (Western Electric 

Co.) for information on certain topics mentioned in the reference list: 

also to various Editors for permission to use subject-matter and 

diagrams from the following publications: Annalen der Physik (Figs. 

42, 43, 44), Bell Technical Journal (Figs. 82, 100, 104, 115, 117, 121), 

British Broadcasting Corporation (Fig. 120), Journal Acoustical 

Society America (Figs. 101, 122, 163, 164), Journal American Institute 

Electrical Engineers, Journal Franklin Institute (Figs. 62, 157), 

Journal Society Motion Picture Engineers (Figs. 161, 162), Philo-
sophical Magazine (Figs. 13, 15, 16, 19-24, 53, 53 A, 54, 74, 96, 113, 

124-6, 129-31, 139, 142, 148, 165), Proceedings Institute Radio 

Engineers (Figs. 84, 85, 116, 118, 119), Proceedings Physical Society 

London (Figs. 110, 132-7), Proceedings Royal Society London (Fig. 

39), Siemens-Zeitschrift (Figs. 80, 81), Wireless Engineer (Figs. 36, 

140, 141, 143), Wireless World (Figs. 77, 87, 88, 92, 114, 150, 162 A). 

The Editors of the Philosophical Magazine, Siemens-Zeitschrift, Wire-

less Engineer, Wireless World, and the Council of the Physical Society 

generously loaned blocks for the above mentioned diagrams. 

Drs. H. Backhaus, W. L. Barrow, L. G. Bostwick, W. Hâhnle, 

H. Neumann, H. Olson, E. Spenke, H. Stenzel, M. J. O. Strutt, Prof. 

R. D. Fay, Messrs. D. A. Oliver, L. J. Sivian, H. Vogt, and J. Wein-

berger very kindly supplied copies of their scientific papers and corre-

sponded on various topics concerning them. These have all been of 

great service and it is hoped that, in treating the subject, full justice 

has been done not only to their work, but to that of others whose 

names are given in the references. The compilation thereof was 

greatly facilitated by a list of continental publications for which the 

author is much indebted to Messrs. Siemens of Berlin. 

LONDON, N. W. M. 

February 1934. 
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SYMBOLS 

THE list of symbols used herein is based upon the recommendations of the 
International Electrotechnical Commission. At first sight the list appears to 
be very formidable, but by systematic use no difficulty should be encountered. 
The great variety of symbols is due to the inclusion of three different sets of 
quantities in the analysis, namely, electrical, mechanical, and acoustical. To 
differentiate succinctly between electrical and mechanical quantities, the 
former are represented in general by capitals and the latter by small letters.* 
The main exception is that of 'power', which is convertible from electrical to 
mechanical form and vice versa. Since p is used for sound pressure, the power 
is represented throughout by P. This does not lead to any confusion of thought, 
as will be evident on perusal of the text. Acoustical quantities being of a 
mechanical nature are represented also by small letters. They bear the sub-
script a, e.g. x„ the acoustical reactance. It has been necessary to supplement 
standard letters by others in heavy type. The purely mathematical symbols 
follow standard practice. It is a moot point whether i or j should be chosen 
to represent ,j( —1). Electrical engineers use the latter, since i generally signifies 
the instantaneous value of a current. Since electrical quantities in general are 
shown by capital letters, i has been used to signify 'the imaginary' in con-
formity with works on pure and applied mathematics. There is a lack of 
standardization in the nomenclature of Bessel functions which is often quite 
confusing. This is especially the case if /0 is written for Jo, Yo for Ko, or when 
the order of the function is shown as an 'index'. The symbols adopted herein 
are those used by Gray, Mathews, and MacRobert [213] in their Treatise on 
Bessel Functions; also by Watson [221] in his Theory of Bessel Functions, as 
indicated by the reference numbers allotted to the symbols in question. 
Throughout the text the root mean square values of all quantities varying 

cyclically are used, unless otherwise stated or implied. In differential or 
circuital equations, the implication of instantaneous values will be readily 
discerned. In other publications the strength of a sound source S is usually 
expressed in terms of the maximum displacement or velocity. In this book 
S refers to the r.m.s. strength of the source, which is more convenient for 
practical purposes. If the symbols are taken to signify maximum values, 
formulae for power must be divided by 2. 

a; a, radius, mathematical constant; absorption coefficient. 
radius < a, mathematical constant or variable, breadth. 
velocity of sound in free air, about 3.43 x 104 cm. sec. -1 for 
room conditions. c = %/(ypo/po) = AKIP0). 

d; db. distance between sound sources, or between electrodes in 
speaker; decibels. 

e; e base of Napierian logarithms; sound energy density. 
f; f,; f total force, total pressure on area; space factor; force per 

unit area. 
mathematical symbol. 

* There are several unimportant exceptions, e.g. S, T. V, p, K, 11, where it would 
be unwise to depart from well-established usage. 
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k; k1 phase constant w/c 2ar/A; constant as in Jo(ki x). 
1; 1, length, mathematical symbol; length of air gap in magnet. 
tn; m„; im, total mass, mathematical symbol; effective mass; mass of 

coil and its former. 
ve„ ; rn1 mass of coil alone; mass of coil-former alone. 
; in,; m, accession to inertia; natural mass; equivalent mass. 

turns on a coil, mathematical symbol. 
root mean square excess or sound pressure during wave 

transmission. 
p„ static fluid pressure. 

total pressure during wave transmission (p+po). 
inertia or reactive component of sound pressure on a surface. 

P. acoustic or resistive „ I, 

Young's modulus of elasticity. 
; r radius, distance of spatial point from vibrator; mechanical 

resistance per unit area. 
acoustical resistance of horn, conduit, tube, or the like. 

r, mechanical resistance due to sound radiation. 
PP „ inherent loss in vacuo. 

effective mechanical resistance due to radiation plus loss. 
response = 20 logy, p„I(E 1 4R), where pw, is the average 

pressure (see p. 289). 
8 ; s mechanical stiffness or constraint; condensation of medium. 

time, thickness. 
radial velocity of spherical vibrator, velocity of particles 

during passage of a sound wave. 
u,„ up etc. harmonic components of radial curface velocity of spherical 

vibrator. 
tt; y, velocity of vibrator, air-particle velocity; radial velocity of 

propagation in diaphragm. 
air-particle velocity parallel to z-axis. 

z;; coordinate, radius of circle; effective mechanical reactance 
(com.). 

mechanical reactance per unit area. 
acoustical reactance of horn, tube, or the like. 
coordinate. 

z; z coordinate, ka where a is radius of vibrator; mechanical 
impedance per unit area. 

acoustical impedance of horn, tube, or the like. 
effective mechanical impedance in air (r,-F 

z, lf ff in vacuo. 
cycles per second. 

A; A, area; constant. 
B; B, magnetic flux density; flux density in air-gap of magnet. 
C'; C electromechanical conversion factor; motional capacitance; 

capacitance. 
D; D, mathematical operator dldt; constant. 
E electromotive force, potential difference. 



SYMBOLS 

F; ,Fi(a, p, y, x2) magnetomotive force; the hypergeometric function, namely, 

G; G1; G2 

1 -I- 43x2 -I-  1M+ i)X41-.... 
2! y(y+ 1) 

Ji(z) ; [,.11.(21 ; Hi(2z) 

sin z 
G3 = 

where z = ka. 

magnetic field strength. 
H,; H1 Struve's function of zero order [221] ; of unit order. 
/; I alternating or direct current; moment of inertia. 
/0; /2 modified Bessel function of the first kind of zero order [213] ; 

of unit order. 
; J1 Bessel's function of the first kind of zero order [213] ; of 

unit order. 
Ko modified Bessel function of the second kind of zero order 

[213] ; of unit order. 
L; L, inductance; inductance of speaker with driving agent 

stationary. 
inductance of speaker with driving agent moving freely. 

L„,; L., motional inductance during vibration in air (L1—L0) ; same 
in vacuo (4,—L0). 

power radiated as sound; propagation coefficient of cable. 
power radiated from both sides of a rigid disk in an infinite 

rigid plane when ka < 0.5. 
Legendre's function of order n [217], i = cos O. 
quantity o£ electricity. 
electrical resistance, distance from spatial point to vibrator. 

Ro electrical resistance of speaker with driving agent stationary. 
R, electrical resistance of speaker with driving agent moving 

freely. 
electrical motional resistance in air (R1—R0). 

R, PP PP pp due to sound radiation. 
R, PP PP „ mechanical loss in air. 
R, PP PP PP „ loss in vacuo. 

Internal or anode resistance of thermionic valve. 
S; S, So magnetic reluctance; strength of simple sound source 

= Ux surface area. 
Si; S„(p,) strength of double sound source; spherical harmonic. 
T; T. kinetic energy of vibrating system in air; same in vacuo. 

root mean square radial velocity of vibrating surface. 
V; V potential energy of deformation; volume. 

energy. 
Yo; Y1 Bessel's function of the second kind of zero order [221] ; of 

unit order. 
electrical impedance (R-PicoL) = (R+iX). 

Zo of speaker when driving agent is sta-
tionary. 

Z1 electrical impedance of speaker when driving agent is 
moving freely. 
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electrical motional impedance in air (Z1—Z0). 
Z. 

Œ (Alpha) 
fi (Beta) 
y (Gamma) 
8; 0 (Delta) 
e (Epsilon) 
Z. (Zeta) 

n (Eta) 
O (Theta) 
pc (Kappa) 
A (Lambda) 
11; pi (mu) 

v (Nu) 
C; Co (Xi) 

É 
ir (Pi) 
er 
po (Rho) 

PI 
Po 
a (Sigma) 
T; T (Tau) 

e (Phi) 
eo, e., etc-
, 
x (Chi) 
0 (Psi) 
co (Omega) 

r (Gamma) 
à (Delta) 
0„ (Theta) 
A (Lambda) 
E. (Xi) 

II (Pi) 

I (Sigma) 
T (Upsilon) 

Pf ff „  in vacuo. 

decay factor in e-'; V(k2—P2/4) in horn theory. 
flaring index of exponential horn; mathematical symbol. 
ratio of specific heats of air, mathematical symbol. 
mathematical symbol; partial differential. 
mathematical symbol. 
frequency correction factor [f.(ika)IF.(ika)] in spherical 

harmonic analysis. For f. and F. see Chap. II. 
efficiency. 
angle in spherical harmonic analysis. 
dielectric coefficient; coefficient of cubical elasticity. 
wave-length of sound. 
magnetic permeability, cos 0 in spherical harmonic analysis, 

amplification factor of valve; effective magnetic per-
meability. 

mathematical symbol. 
displacement; central displacement, e — eoei.t. 
axial velocity and acceleration in harmonic motion. 
circle constant. 
mathematical symbol. 
normal density of air, about 1.22x 10' gm. cm.-3 under 
room conditions. 

density of air during wave propagation (variable); density 
of material. 

specific resistance of conductor material; mass per unit area. 
density of material. 
Poisson's ratio < 1. 
total radial tension of membrane; radial tension per unit 

length. 
(velocity potential, —00/0x =-- u the particle velocity. 
angular distance from axis of symmetry in sound-distri-

bution problems. 
harmonics of velocity potential in spherical harmonic 

analysis. 
variable parameter, ratio of two quantities. 
angle of longitude in spherical coordinates. 
apical angle of cone. 
2ir x frequency, pulsatance or circular frequency. 

mathematical symbol representing the Gamma function. 
dilatation of medium. 

frequency correction factor 11F.(ika) in spherical harmonic 
analysis. 

mathematical symbol. 

„ signifying 'sum of'. 
PS f 

_ 
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.1) (Phi) total magnetic flux; total sound flux (not sound-energy 
flux). 

I (Omega) solid angle =- (area of portion of spherical surface)/r2, 
where r is the radius. 

a2 a2 a2 
172 Laplace's operator 'Nabla squared' = 

Mathematical Signs 

• is approximately equal to. e is not equal to. 
is the analogue of. / divided by. 

> is greater than. >- is not greater than. 
< is less than. •zr is not less than. 

is much greater than. < is much less than. 
• is equal to or greater than. is equal to or less than. 
Œ varies as; is proportional to. co infinity, infinitely great. 

tends to, approaches. 
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DEFINITIONS 

THE following list of definitions is given to avoid any ambiguity in 
the various terms used throughout the text. Those marked with an 
asterisk are based upon the standardization reports of the Acoustical 

Society of America.t 

1. Bar. A pressure of one dyne per square centimetre. This is taken 

as the unit of pressure. 

2. Static pressure (po). The pressure in a fluid medium in the 

absence of sound waves (bar). Normal atmospheric pressure is nearly 
106 bars, this being the force in dynes due to a mercury column 
76 cm. high and 1 cm.2 in cross-section at 0° C. 

*3. Sound pressure (p). The root mean square value of the ex-

cess pressure above or below po over a complete cycle of a steady 
wave (bar). 

*4. Sound energy flux or power (P). The mean value over one 
cycle of the steady power or energy flow per second in a direction 
normal to any specified area (erg sec. -1; 107 erg sec. -1 -= 1 watt). 

In a progressive or expansive wave travelling with velocity c, the 
energy flux passing perpendicularly through an area A is 

P =-- p2Alpoc p2A/42. 

where Po= 1.22 x 10-3 gm. cm. -3 and c = 3.43 x 104 cm. sec. -1, for 
room conditions at 18° C. and 106 bars. 

*5. Sound energy density (e). The sound energy per unit volume 
p2 poc2 (ergs cm. -3). 

6. Interference. The partial or complete annulment or reinforce-
ment of two or more sound waves of the same frequency having diffe-

rent or identical phases at any spatial point. 

7. Diffraction. The change in the direction of propagation due to 

the bending of sound waves round an obstacle. 

*8. Nodes. Points, lines, or surfaces of a vibrating system which are 
at rest (zero amplitude). In a fluid there are pressure nodes and 
velocity nodes. At a pressure node the velocity is a maximum and 

vice versa. 
t J.A.S.A. 2 (1931), 312; 5 (1933), 109. 
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*9. Antinodes. Points, lines or surfaces having maximum ampli-

tude. In a fluid pressure nodes are velocity antinodes, and vice versa. 

*10. Partial nodes. Points, lines or surfaces having a minimum 

amplitude. All practical nodal systems fall into this category owing 
to radiation and transmission losses which imply motion at the nodes 
to replenish the waste. 

11. Coefficient of reflection. The ratio of the power reflected from 
a surface to that impinging upon it. 

*12. Coefficient of absorption (a.). Unity minus the coefficient of 
reflection, this being the ratio of the power absorbed by a surface to 
that impinging upon it. 

*13. Reverberation. The persistence of sound in an enclosure due 

to repeated reflections after extinction of the source. 

*14. Reverberation time. The time required for the average energy 
density, initially in a steady state, to fall to 10-6 its original value 
(60 decibels) after extinction of the source. The decay curve may take 
any form. 

*15. Intensity level. The number of decibels (definition 46) above 
an arbitrary reference-level of 2x 10-6 bar, the latter correspond-

ing to a power of 10-'6 watt cm. -2 approximately. If p is the sound 

pressure, the intensity level is very nearly (74+20 log„p) decibels. 

16. Threshold of audibility. The minimum sound pressure in the 

ear canal due to a sine wave of prescribed frequency, which causes a 
sensation of tone in an absolutely silent place. Curves are usually 

given for the average ear. Sometimes the definition is applied to 

complex sounds. The sound pressure at the threshold is often expres-
sed in decibels below some prescribed datum level. 

17. Sensation level. The difference between the intensity level 
and the threshold of audibility for the average ear (decibels). 

*18. Loudness. The subjective quality of a sound which governs 
the magnitude of the sensation felt by a normal ear. It is usually 
specified as the intensity level of a 1,000 ,  note which causes the 
same sensation. 
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19. Masking. The increase in the threshold of audibility due to the 

presence of one or more auxiliary frequencies (decibels). 

20. Resistance of medium. The ratio of the excess pressure to the 
in phase component of the particle velocity in a steady progressive 

wave. Under this condition p = Po cv, so the resistance of the medium 
is p/v = poc. When the mechanical impedance per unit area of a 

vibrator is entirely resistive of value po c, the resistance of the medium 
in which it vibrates is said to be matched. 

21. Sound flux. The integral of elemental areas and the correspond-

ing particle velocities in the direction of the normal taken over an 
imaginary surface in the path of a sound wave, i.e. if v dA. When the 

velocity is constant over the surface and normal to all parts thereof, 
the flux is the product velocity-area, vA. This must not be confused 

with sound energy flux (power). 

22. Baffle. A structure or acoustic barrier which completely or 
partially prevents interference of sound waves from different parts 
of a vibrator which move in antiphase. In a rigorous sense this 

includes a horn. The commonest type of baffle is a flat board, the 
diaphragm or vibrator being in a hole at the centre. An infinite rigid 

plane is adopted in analytical work, this giving perfect screening, 

but cutting off one side of the vibrator (see Fig. 18 A). 

*23. Acoustical impedance (za). The complex quotient of the pres-

sure, assumed constant over an imaginary surface, and the sound 
flux through the surface. This gives z. = plAv. When either p or y 
or both vary over the surface, z0 is found by summing the acoustical 

admittances (see 26) over the surface, and then taking the reciprocal. 

Thus za = 1/2VÁ= liff (11')) dA (acoustical ohm).1-

n=1 Pn 

*24. Acoustical resistance (r.). The real part of the acoustical 

impedance (acoustical ohm). It is associated with the dissipation 

of energy. 

*25. Acoustical reactance (x.). The imaginaryitart of the acous-
tical impedance (acoustical ohm). It is a wattless component and 

prevents the pressure and particle velocity being in phase. 

t p and y must be in absolute units to obtain dyne sec. cm.-3. 
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26. Acoustical admittance (1/za). The reciprocal of the acoustical 
impedance (acoustical mho.) 

27. Impedance per unit area (z). The complex quotient of the 

pressure and the particle velocity in a direction normal thereto (p/v). 

When applied to a vibrator the radial velocity of the surface is 
intended. 

28. Simulating impedance. When the impedance per unit area 
of a sound source or the like cannot be found by rigorous methods, it 

is necessary to replace the source by a massless vibrator whose impe-
dance per unit area can be evaluated. For example, the mouth of 

a horn might be replaced by a sphere one-half of which pulsates 
radially, whilst the other half is quiescent. 

29. Accession to inertia (mi). The additional mass or inertia of a. 
vibrator due to the reciprocating flow of fluid in its neighbourhood. 

*30. Mechanical impedance (ze). The complex quotient of the 

driving force and the velocity it creates in the same direction at its 
point of application.t (Mechanical ohm or dyne cm.--1 sec.) 

*31. Mechanical resistance (r5). The real part of the mechanical 

impedance. It is associated with dissipation of the energy supplied 
by the driver. (Mechanical ohm.) 

*32. Mechanical reactance (;). The imaginary part of the mechani-
cal impedance associated with a wattless component due to a mass 
or to fluid inertia. It causes the driving force to be out of phase with 
the velocity. (Mechanical ohm.) 

33. Effective mass (me). The quotient of the mechanical reactance 

at the driving point and the pulsatance cu. It can be positive (mass), 

zero (resonance), or negative (stiffness). Curves showing the rela-
tionship between effective mass and frequency depend upon the posi-

tion of the point of application of the driving force and its direction 
relative to some axis of the vibrator. For example, the effective mass 

of a centrally driven disk depends upon the direction of the drive 
relative to the axis. A different result is obtained if the drive is 
applied at some point between the centre and the edge. Accordingly, 

there is an infinite number of me-frequency curves for disks, cones, and 

t The difference between acoustical and mechanical impedance must not be con-
fused. In the one case waves travel in some form of conduit or channel which impedes. 
their progress. The greater the area the smaller the impedance. In the mechanical form 
something is being driven, so the greater the area driving the medium the greater the 
impedance opposing motion. 
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the like. Unless otherwise stated a central axial drive is intended. 
(Gramme). 

34. Equivalent mass (mg). The rigid mass which, when it moves 
with the same velocity as the point of maximum amplitude of a 
vibrator, has the same kinetic energy as the whole vibrator. (Gramme) 

35. Stiffness (8). The static force required to cause a linear displace-
ment of 1 unit (cm.), if the stressed structure were truly elastic over 
this range. In practice it is the slope of the force-displacement curve 

usually referred to the linear portion. (Dyne cm.-1 .) 

36. Compliance (1/8). The reciprocal of the stiffness. 

37. Dynamic deformation curve. The shape of a vibrator during 
vibration. In a rigorous sense the deformation refers to a 'surface'. 
When the vibrator is symmetrical about an axis, the dynamic 
deformation curve is the shape of a section by an axial plane. 

38. Electrical motional impedance (Zm). The difference in 
electrical impedance of a sound reproducer or the like when the driving 
element is free and when it is fixed. It can be measured in a fluid or 
in vacuo. (Ohm.) Z. = 

39. Motional inductance (L.). The difference in inductance of a 
sound reproducer or the like when the driving agent is free and fixed. 
(Henry.) 

40. Motional capacitance(Cm). The capacitance concomitant with 
motion of the driving element of a sound reproducer due to its 
association with an electromagnetic or an electrostatic field. Its value 
can be found from the motional inductance since C. = — 1/(024. 
(Farad.) 

41. Electrical motional resistance (R.). The difference in electri-
cal resistance of a sound reproducer or the like when the driving agent 
is free and when it is fixed. It includes the influence of mechanical 
loss and sound radiation. (Ohm.) 

42. Electrical radiation resistance (R,.). That portion of the 
electrical motional resistance due to the radiation of sound. (Ohm.) 

43. Electromechanical conversion factor (C2). A factor used to 
convert an electrical quantity into its mechanical equivalent, and vice 
versa. In a moving-coil system; Z„, -= C2 (Chap. VII), this being the 
square of the product of the length of wire and the mean magnetic flux 
density in the air-gap of the magnet (2a-rnB0)2 in absolute electro-
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magnetic units. C is also the mechanical force on the coil per unit 
current (abs.): or the e.m.f. induced in the coil per unit axial velocity. 
(See Chap. VII.) 

44. Transient wave-form. A species of wave-form which never 
attains the steady or continuous periodic state. A growth or 'start' 
transient occurs when an e.m.f. is applied to a reactive circuit, whilst 
a decay or 'stop' transient occurs when the current is interrupted by 
breaking the circuit. Effects of a similar nature occur with mechani-
cal vibrators. 

45. Electrical and mechanical analogues 

In the design of sound-reproducing apparatus and in the solution of 
various problems in the domain of acoustics it is often of material 
assistance to conduct the analysis in electrical terms and then trans-
form to the mechanical ones. The necessary electrical quantities and 
their mechanical analogues are tabulated below: 

Electrical. 

Voltage E 
Current I 
Quantity Q 
Resistance R 
Reactance X 
Impedance Z 
Inductance L 
Capacitance C 
1/Capacitance 1/C 

Z -= R-F iteL 
= R±i.1 

Z2 = R2+(coL-11wC)2 
E = IZ 
P = I2.R 

= (E21Z2)1? 

Mechanical. 

Force f (dynes) 
Velocity u, y, É (cm. sec. -1) 
Displacement e (cm.) 
Resistance r (dyne sec. cm. -1) 
Reactance x (dyne sec. cm.-1) 
Impedance z (dyne sec. cm.-1) 
Mass m (gm.) 
Compliance 1/8 (cm. dyne-1) 
Stiffness 8 (dyne cm. -1) 

z = r-Ficom 
= r-Fix 

za 7.2± (wm-81,42 

f = vz = cob = Éz 
P v2r =-- cu2e2r = 

(fzizz)r. 

The electrical quantities are preferably expressed in absolute 
electromagnetic units, but they can be, and often are, expressed in 
the practical or derived units volt, ampere, etc. Under the latter 

régime care must be exercised in transcribing from the electrical to 
the mechanical system, particularly when the two systems are inter-
connected. For example, in a hornless moving-coil speaker the 
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motional capacitance due to the coil vibrating in the magnetic field is 

m/C2, where m is the total mass and C2 the electromechanical 
conversion factor (see definition 43). If m = 25 gin. and C2 = 1012, 
the value of C,„ is 2.5 x 10-12 absolute electromagnetic units. Since 

1 farad is 10-9 absolute e.m. units, the capacity is 2.5 x 103 micro-
farads. 

46. The decibel 

The unit of sound pressure is 1 dyne cm.-2, which is about 10-6 the 
normal atmospheric pressure. Since the perceived intensity of sound 
is a relative thing, a unit is required which gives some conception of 
comparative loudness. Experimental measurements pertaining to the 

human ear indicate that variation in the perceived loudness of sound 

follows a logarithmic law approximately. If a pure note of 500 is 

sounded at a certain audible intensity (dynes cm.-2), it is heard by 
an observer at a definite loudness level. To increase the loudness 

level by a perceptible amount the acoustic power P must be aug-

mented q) times, where y can be determined by experiment. If the 

first loudness level is / and the second m/, the power densities in a 
room are P and qcP. Starting with m/ and q)P as a new datum, let 
the loudness level again be augmented by m/. The two quantities 
are now 2m/ and cp(e) = q)2P respectively. The power corres-

ponding to an n-fold increase in loudness level at m units a step is 

evidently Pt, = Pe. Thus, taking logarithms, the number of degrees 

increase in loudness level corresponding to P, is 

n — logio(PJP)  
• log10 

For convenience y is taken as 10, so n = logio(PJP). The unit so 
obtained is termed the 'bel' after Graham Bell the inventor of the 

telephone. This being too large for most practical purposes it is 

customary to use the deci-bel. Thus n = 10 loglo(PJP) decibels. 
The bel or the decibel is devoid of dimensions since it is the logarithm 

of a power ratio. 
To put the preceding into more concrete form suppose we take an 

example. In loud speakers the power output for specified conditions 
varies with the frequency. If at 1,500 P = 15 milliwatts, whilst at 

2,000 P = 60 milliwatts, the level at the latter frequency is then 

10101;10(60/15) = 6 decibels above that at 1,500 At any frequency 

a minimum variation in level is required before it can be detected by 
ear. The change in loudness level depends upon both intensity level 

and frequency. A common average figure is from 2 to 3 decibels, i.e. 
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a power ratio of 1.6 to 2. At frequencies below 200 , more than this 
is required, but it depends upon circumstances, e.g. the presence of 
other tones. 

47. Analytical substitute for conical shell 

The acoustical behaviour of a conical shell with or without a baffle 
(definition 22) has not yielded to analytical treatment yet. In pro-
blems associated with (a) sound pressure on vibrating surfaces, (1)) 
power radiated at low frequencies, (c) spatial distribution and the 
like, it is convenient to replace the cone by a rigid circular disk 

vibrating in a rigid plane of infinite extent. The latter combination 
can be treated analytically. This is also a useful artifice in deriving 
the theory of coil-driven diaphragms. A cone with a finite baffle can 
be represented approximately at low frequencies by two spherical 
caps vibrating in the same direction at opposite ends of a diameter. 
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PRINCIPLES OF SOUND PROPAGATION 

1. Introduction 

When a body of any shape whatsoever vibrates harmonically in a 
fluid of infinite extent, longitudinal waves are propagated outwards 
at the frequency of vibration. During wave transmission the fluid, 

in contiguous half wave-lengths, is condensed and rarefied cyclically. 
From an analytical viewpoint these states are identical except in 

regard to sign. From hydrostatical principles we know that if an 
excess (-1- or — ) pressure occurs at any point in a fluid, it is felt 

everywhere, i.e. it spreads out so to speak in every direction, just as 
a gas expands to fill a vessel into which it discharges. Consequently 
the excess pressure due to longitudinal waves caused by a vibrating 

body is transmitted in all directions. If we imagine a very small 
radially-pulsating sphere situated in the fluid, its pulsations spread 
out spherically and affect the whole space occupied by the fluid. The 
power transmitted through any concentric spherical surface is con-
stant, and since the superficial area is 4irr2 the power per unit surface 
varies as 1 /r2. When r is large enough, the power is so small that 

the vibrations are undetectable. Expressed analytically the excess 
pressure at an infinite distance is evanescent. 
During the passage of waves past any point in the fluid, the particles 

of which we conceive it to be constituted are in vibration. The greater 
the amplitude the larger the excess pressure. The particles are 
assumed to move to and fro along the direction of the wave. 
We can commence with elementary physical facts pertaining to a 

fluid. If these are expressed in analytical form, it is possible to make 

calculations relating to the propagation of sound waves from vibrating 
bodies of different shapes. First of all we have to establish a form of 
stress-strain relationship. During wave transmission the density 

varies due to fluctuation in pressure. If po is the density in the 

undisturbed state and p the value at any epoch during transmission, 

the ratio 
P— Po = 8P s 

Po Po 

is termed the condensation. From this we have 

P = Pe-Fs). (1) 
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It should be observed that Sp is not necessarily infinitesimal. In 

many propagation problems it is finite although only a small fraction 
of po. The change in density is accompanied by a corresponding 
alteration in volume, so we get 

V— V,', 817 

Vo — 

the dilatation or change in volume per unit volume. 

Thus V =-- Vo(1+3,). (2) 

In any gas pV =- poVo, which by aid of (1) and (2) gives 

(1±s)(11-3,) = 1. (3) 

Provided s and 3, < 1, (3) gives s = —A which means that the 

characteristic of the medium for small variations in density and 
volume is sensibly linear. 

In a fluid under pressure we can write 

stress 8 V 
— -= volumetric strain ' 

VO 
where K is the bulk modttlus or coefficient of cubical elasticity. Now 
stress is force per unit area = Sp, so we have 

(4) 

Vo 8P 
K — — 

8 V (5) 

where 8p is not necessarily infinitesimal. Since the gas law is of the 
form p Vn = const., to secure constancy of K, Sp must be a very small 
proportion of the steady pressure to which the fluid is subjected. But 
Sp = p—pc„ so the total pressure is 

P -=. p o ± Ks. 

Using the value of s from (1), we can write 

p =- po+K(±f— 1). 
Po (7) 

Formulae (6) and (7) are applicable, for a constant value of K, 
when the variation in density and, therefore, the value of s, is small 

enough to preserve a linear characteristic, i.e. the working arc of the 
pressure-volume curve of the gas is small enough to be regarded as a 
straight line. In a rigorous sense an infinitesimal amplitude is implied. 

2. Plane sound waves of infinitesimal amplitude 

Since the bulk modulus of an incompressible fluid is infinitely large, 

so also is the velocity of propagation, provided the density is finite. 

(6) 
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Consequently, the excess pressure due to vibration in the fluid is felt 
everywhere instantaneously. We know from experiments relating 
to Boyle's law or from various common devices, e.g. cycre or car 
tyre pumps, that air is readily compressed. This precludes the 
possibility of high velocities of propagation. If the velocity were 
thirty times its normal value, the well-known focusing of sound 
radiation from loud speakers would not occur in the audible frequency 
range. 
A hypothetical train of plane waves is one which extends indefi-

nitely in both directions, its front being plane, and its velocity 

Po P1 Pei Pi. 

--->. 

Direction of propagation 

4--
To origin 

—> 6x 

—> 

(Displacer',' 

Po Pi 

Fla. I 

constant. Expansion does not occur, and in the absence of dissipation 
its amplitude is maintained at a definite value. In practical acoustics, 
where sources are relatively small, plane waves in a rigorous sense do 

not exist. But over restricted distances there are cases where the 
propagation is approximately plane, although the pressure decreases 
with increasing distance, e.g. p œ 1/r 

Referring to Fig. 1, consider a plane Po Po perpendicular to the 
paper situated at a distance x from a hypothetical source of plane 
waves. The air particles oscillate normal to PoPo, which is their 
mean position. At the instant depicted in the diagram the particles 
originally at PoPo, are shown at Po' Po', which is distant e from Poe,. 
They are travelling towards the left. The particles initially at 114 

are now at 
The distance Po Pi, originally 8x, is now Po' P; = 8x+8x(0e149x), 

where 8/ax is the rate at which e changes with distance x. Since 
there is no lateral expansion, the mass of fluid per unit area between 
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the planes PoPi is the same as that between PA, its density p 
must be less than its undisturbed value Po. 

be 
Thus p(1 , po8x, so p 

bx 

this being known as the equation of continuity. Considering the 
forces acting on unit area of the plane, we have 

force = mass x acceleration 

Sp = —po Sx wsas!, 

1 bp 02e 

Po Ox = Ots • 

If ' ae 82e E - , 
Ox Ox2 

then from (8) 

SO 

P = po/(1+) or = Po/P, 

From (10) and (11) 

Op 
=  Po , • 

(1+ex)2 

1 Op = (12 
— çx • 

pod= po 

(8) 

(9)* 

(12) 

Multiplying both sides of (12) by Op/Op we obtain 

Op (A2 Op . 
(13) 

Po Ox ‘Poi 49P e; 

Equating (9) and (13) we get 

a2e ( ap 
(14) ,9t2 p o  ap aX2 . 

This equation is valid for any amplitude whatever be the relationship 
between pressure and volume, e.g. p V -= const., p VY = const. 
From (7) by partial differentiation, Op/bp = Klpo, whilst in (14) 

P = po when the pressure variation is infinitesimal. Thus from (14) 
we obtain, under the latter condition [216],t 

82e _ 2 a2e (15) 
at2 e bx2' 

where e2 = Klpo. 

* Since p = p+po, bp = bp and the latter has been used frequently in what 
follows. 
t All numbers in square brackets denote the reference list at the end of the book. 
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The complete solution of (15) is 

e = h(v)--1-12(z) 
= 11(x—ct)+fe+a), (16) 

where fl and f2 are arbitrary functions of x and t. 
Formula (16) gives the displacement of a particle, at any time t, 

whose undisturbed distance from the origin is x. Obviously the 
dimensions of et are the same as those of x, which implies that c is 
a velocity. Taking the term fi(x—et), if t increases by t1 and x by ct2 

we get h [x+cti—c(t+ti)] = mx—c€) so that e is unaltered. Hence 
fl(x—ct) represents a wave travelling in the positive direction of x 

with velocity c. Similarly f2(x+ ct) represents a wave travelling in the 
reverse direction. With the latter we are not immediately concerned, 

so that for our particular purpose the solution of (15) is e — ct). 

This represents the form of the disturbance at the source. If the 
latter is harmonic, we can write the particle displacement from its 

central position at x as 

e = eocos(kx—wt) = eocos(wt—kx). (17) 

At any time t the wave form is given by e = eocos(kx—ce), where 
-= wt, so the wave-length A = 27T/k. Since the velocity c =Xf, it 

follows that k = (»lc = 27r/X. 

Differentiating (17) twice we get 

and 

,e 
—k2e.cos(kx_wt) 

a2e —0,2eocos(kx—.1). 
It follows from (18) and (19) that 

a2e 2 a2e 
at2 = e axe 

(18) 

(19) 

(20) 

Thus (15) is reproduced, as it always will be, whatever function is 
employed to represent the wave form.* 

3. Three-dimensional sound waves of infinitesimal amplitude 

Consider a very small parallelepiped or box of volume 8x8y8z at 
some point in a fluid (Fig. 2), through which longitudinal waves are 

travelling. The fluid in the parallelepiped is in motion. Sometimes it 
is rarefied, at others condensed. Consequently the density varies, and 

* This explains in a concrete way, the meaning of 'arbitrary function'. 



14 PRINCIPLES OF SOUND PROPAGATION [II. 3 

since the volume is unaltered, its mass changes cyclically. There are 

two variables, (1) the density, (2) the particle velocity. The coordi-
nates of the point A on the parallelepiped being x, y, z with reference 
to some suitable origin 0, let the particle velocities parallel to the 
three axes be u, v, w, respectively. The foundation of an analytical 
relationship between the quantities involved is the constancy of 
volume 8x3y3z. The mass of fluid lost per unit time at any epoch is 

the product of volume and change in density per unit time. Thus the 
rate of mass change of the volume 8x8y8z is 

bp i , , , 
— — ',L, ai...MI, (21) 

Ot 

where the negative sign indicates decrease of density with time. 

w 

A a 

5x 
E  ,._.... Velocity components 

) v 
H 6s G x/ 

u. 

/ 
X FIG. 2 

Y 

Now consider the fluid flow into and out of the faces of the paral-

lelepiped. Owing to change in density and velocity over the length 
8x, the amount entering ABCD differs from that leaving EFGH. 

The mass flow per second at ABCD into the parallelepiped is the 
product of area, particle velocity, and density, namely, 

SySz(pu). (22) 

If the rate of change of velocity-density with distance is b(pu)lax, the 

change in mass per second per unit area in the length Sx is 'JP') u. 
bx 

Thus the mass flow per second through EFGH out of the paral-
lelepiped becomes 

Sez(pu)d-'91Pu—)(8x8y8z). (23) 
bx 

The difference between (22) and (23), namely, '9(: )(6x3y3z) is the 
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difference in the mass of fluid entering and leaving the parallelepiped 
in the direction of the x-axis. Similarly the variations along the 

y- and z-axes are a(Pu) (8x8y3z) and a—(Ple (8x8y8z), respectively. Thus 
Oz 

by addition the total mass flowing out of the parallelepiped per 

second is 1a(u) 0(Pv) a(Pw)i 8 8 8 
L az + ay ± az j( x z)- 

Since this is equal to the rate of decrease of mass within the parallele-

piped, using (21), we have 

ra(Pu) + 0(Pv) +  O(Pw)1(8x8y8z) (8x8y8z). 
L Ox by Oz J 01 

Hence a(e) O(Pv) a(Pw) OP = — -à-t-- (25) Ox Oy Os 

The relationship in (25) is known as the equation of continuity 

[219]. In this equation there are no restrictions regarding the ampli-

tude of the sound waves. When the latter is infinitesimal, we have 

from (1) by differentiation, ei = po-Faut, and in (25) p =po, so 

e(P14) = po—au. Thus for infinitesimal amplitudes (25) can be written 
Ox 69x 

Ou Ov aw Os 
Ox ay bz 

this being another form of the equation of continuity which we shall 

require later on. ( —4.1 is the flux change per unit vol., see def. 21.) 

(24) 

(26) 

4. Equations of motion 
The variation in pressure along the x-axis of the parallelepiped in 

bp 
Fig. 2 is —Ox ax, so the resultant force on the parallelepiped in the 

bp 
direction of x is — b—x (8x0y8z). The mass of fluid subjected to this 

pressure is p(8x8y8z), the acceleration parallel to the x-axis being 

bulbt provided the particle velocity is small.* 
Since force =- mass x acceleration, we have 

Ou (27) 

with similar expressions for the y- and z-axes. 

• When u is not small, i.e. for finite amplitudes, the acceleration is ieat-+Uk9U. 
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From (6) by differentiation = K a-S provided s is small enough 
ax 

for K to be constant. Substituting this value in (27) and putting 

p =po, we get 

bu K bs _c2es = 1 bp 
at pc, Fx po 

since Klpo = c2 for infinitesimal amplitudes. The expressions involv-
ing y and z are similar to (28). 

(28) 

5. Velocity potential (4.) 

Before going further it is necessary to introduce a new function 

termed the velocity potential. It was first introduced into hydro-
dynamical problems over a century ago by Lagrange. By definition 
we have bc/5 

u =-- (29) 
ax 

where 95 is the velocity potential and u is the particle velocity parallel 
to the x-axis. The expressions for the velocity components y and w 
are similar. An electrical illustration may clarify the situation. 

Consider the flow of current in a purely resistive conductor. If the 
resistance per unit length is R, the resistance of a length ax is R ax, 
the voltage drop due to a current / being 

Thus if R is unity 

aE = —Rlax. 

bE 
ax' 

so that on comparison with (29), I is equivalent to the particle 
velocity and E to the velocity potential. A formula of type (29) is 
valid, i.e. a velocity potential exists, when viscosity and heat con-

duction are neglected, and the motion is assumed to be started by 
mechanical forces having a potential energy function [216]. 

6. Pressure at any point in fluid 

ap au ack 
From (28) — = o— , p and from (29) u = — — , 

ax ax 

so 
bp a2k  

P°axat =  Pcrà; Vai) • 
(30) 
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bcf, 
Integrating (30) we get p = Po— const.* When the fluid is in a 

quiescent state we can put IrS = i9O, so that ack/at = 0 and p = po the 

ack 
normal atmospheric pressure. Hence p = po —Ot ±po and the excess 

pressure 
P = Po= • ot 

(31) 

This is an important relationship which is valid for infinitesimal 

amplitudes. 

7. The equation for 95 

From (28) and (30) c2î' s- =. —a 1, and by integration, 
et 

c2s const.,t 

as 1 a2f:k 
whence (32) 

at c2 at2 

Since u -= y = —4/ay and w = —Haz, we have from 

(26) and (32) 
(924, + a24, (321 _ a2,/, [ = 

(32a) ax2 by2 .9z2 e2 at2 

1 492q!, 

724' = 
or 

a2 a2 a2 

V 2 = 

aX2 by2 

The condition expressed in (33) must be satisfied at every point in 

a fluid through which sound waves are transmitted [219]. If the 

differentials in y and z are omitted from the left-hand side of equation 

(32 a), we obtain a2A a2(k 
e 2 (34) 

at2 ax2' 

which is identical with (15) excepting that e is replaced by #. Thus 
(34) represents the condition to be satisfied in plane wave propaga-

tion. 

For sinusoidal motion 95 = (1)1 cos wt and a2#/at2 = —to24). 

• Strictly this should be p =po +fitH-const., but in the present instance 

a function independent of x is not required. 
t See footnote to § 6. 

where 
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Substituting this in (33) we get 

.924, a2e 024, k2 o 

ex2 bya az2 + — (35) 

Written in Laplacian notation (35) becomes 

(V2d-k2)# = 0, (36) 

and this is the condition to be satisfied everywhere in the fluid when 
the pressure variations are infinitesimal and harmonic. 

8. Solution of (V2-1-k2)# = 0 for spherical vibrations 

The simplest vibrations with which we can deal pertain to a sphere. 
By varying its radius or making it vibrate in different ways, a con-

siderable amount of information can be obtained which is of service 
in the design and operation of loud speakers. Since we are concerned 
with surface vibrations only, it is now necessary to deduce an expres-
sion for the velocity potential at any point in the fluid, due to vibra-
tion of the sphere. Consider Fig.3 where the source is a sphere of 

radius a whose centre is O. Let P, be an arbitrary point, on an outer 
concentric spherical surface of radius r, whose rectangular coordinates 
with respect to the centre as origin are x, y, z. Then we have to 

determine e to satisfy (36). The first step is to transform to spherical 
coordinates, namely r, O, x, where x = r sin 0 cos x, y = r sin O sin x, 
z --= r cos (see Fig. 3). If we proceed on analytical lines to effect the 
transformation from rectangular to polar coordinates, the work will 
be tedious and protracted. It is simpler to establish the required con-

dition regarding ab initio, from purely physical considerations. 
In Fig. 4 ABCD is an elemental area SA on a spherical surface, the 

particle velocity normal thereto being vn. The 'flux', or volume of 

fluid flowing per unit time through SA is vn SA = —824(0(k/69n) from 
(29), where n is written to signify that the direction is along the normal 

to the surface. Since we established (36) on the basis that p =po, we 
now regard the variation in density across an elemental volume to be 
negligible. The variables are, therefore, the particle velocity —ben 

and the area SA, both of which alter progressively as the fluid passes 

from one area SA (ABCD) to another SA, (EFGH, Fig. 4). The 
difference in flux entering SA and that leaving SA,, in the direction 
of the normal, is the product of length and flux change per unit length, 

= — r-SA)Sn. We have now to apply this formula to the 
en en 
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'Pole 

Y 

745-tor 

Xi 
•Pole 

FIG. 3. Diagram illustrating spherical polar coordinates. 

ON = PiNi= r sin ; OM = x = r sin 0 cos x ; MN -= y = r sin 0 sin x ; 
ON, -= PIN = z = r cos O ; OP, = r = radius of sphere; 8 = angle 
ZOP, ; x = longitude. The area shown black is r sin O dx . r de = 
r2 sin O dOdx. Elementary zonal area = 2irr sin O . r dO = — 2nr2 cliz; 

COB O. 

FIG. 4 

elemental volume ABCDEFGH of Fig. 4. Taking the flux change 
across this volume in three mutually perpendicular directions we 

have for ABCD, EFGH: 

SA = r2sin0 808x, 
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SO &Di — — ( r2sin 0 803x)8r, (37) — 

where 8r is now written for 8n. 

For DCGH, ABFE: 

SA = r sin() Sr 8x, bn = r 00, 

so 84,2= —  r sin 0 8r 8x)80; (38) 
re0 

and for BCGF, ADHE: 

SA = r8r80, On = r sin 0 bx, 

so (  84) r 8r 80)8x. (39) 
ex \r sin 0 bx 

Adding (37), (38), (39) and dividing by the elemental volume 

r2sin 0 808x 8r, 

we get 

'[ 1r2\ 1  a pet, ; pà _L 1 (8256\1 

- 72LFr \ br) I sin 0 00‘ao sin20 Vx2f] 

this being the flux change per unit volume. From (32 a) and (35) 

1 b2a6 
= —k2,k 

for harmonic motion, so that on expansion of the first term in (40) we 

obtain 
b2,1, 

r2 + 2r +  1  8 (sin ) sin20 19` +  1  (192 ) ±k2r2qi -= 0, (41) 
0r2 br sin 0 490 e0 13)(2 

which is a well-known differential equation [217] of spherical har-

monics.* This equation is merely (33) expressed in spherical coor-

dinates, and any sinusoidal value of yh at a point in the fluid must 

satisfy it. To simplify (41) we can consider the case where ck is 

symmetrical about the polar axis ZOZ' and does not vary with x. 

Then 024,/0x2 = 0 and (41) degenerates to 

r zr + sin e ao sin + 02e, al, 1 b( . „ail) lc = 0. (42) 

(40) 

This equation is applicable when the vibration of a sphere is radial 

or axial. Its solution [217] involves zonal surface harmonics, or as 

they are usually designated, after their discoverer, Legendre functions. 

These functions are denoted by 4(0, where n signifies the order 

* From a physical viewpoint a spherical harmonic represents a sphere deformed in 
a certain way. It has nothing to do with frequency. 
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and p. ----- cos() (Fig. 3). In the solution, 4(14) is associated with a 
complex constant, so that instead of using Pn(p.) alone, we have 

Stai4) = e1 PM, where S(jL) stands for a spherical harmonic of 
order n and ci is of the form x+ iy .* 
The value of # which satisfies (42) can be expressed as a series, or 

harmonic expansion, each term of which is separately a solution. 
Thus if en is proportional to the zonal harmonic of order n, the 
solution of (42) can be written [217] 

= (43) 

The orders of the harmonics which appear in any particular 

expansion are solely dependent upon the radial velocity of the 
spherical surface, i.e. its dynamic deformation curve (see definition 

37). The solution of (42) [219] for order n is 

1 1 
ión = —rSn(12.)elfn(z)± -r&Wen( —z), (44) 

where z* = ikr, r == distance of point from centre of sphere, and 

.f(z) = 1+ n(n+1)z-1+ (n-1)...(n+ 2) z-2-1- ±  . . 12.3..2nz -*. (45) 
n 2.4.6...2n 

The first term in (44) refers to sound propagated outwards from the 
vibrating sphere, whilst the second represents radiation inwards. 
With the latter we are not concerned, so this radiation will be 

regarded as completely absorbed. Thus for our particular purpose 
OD 

the solution of (42) is Iç6, where 

s en —  n elfn(z). (46) 

In this formula the spherical harmonic Sa(ji) determines the influence 

of the angle O in Fig. 3 upon the value of en. 
The solution of (42) can also be given in terms of Bessel functions 

whose order is half an odd integer, i.e. ±(n-q), but the above form 
is more suitable for our purpose. 

9. Relationship between # and radial velocity of surface 

The particle velocity due to the nth harmonic at a point distant 
r from the centre of the sphere is from (29) and (46) 

r - = — , vn -07 =- 

* These symbols must not be confused with the cartesian coordinates, x, y, z. 

(47) 
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Remembering that S„(/L) is independent of r and that z = ikr, we get, 

on differentiating the bracketed quantity, 

ee'n SinCu_)e z{(11-z)f,„(z)—ei(z)}, (48) 
ar rz 

where A(z) =- — • (49) 
ez 

Denoting the bracketed quantity in (48) by I(z) 

açbn sn(ii)e-z v 7.2 F.(z „= ). (50) 

By virtue of the imaginary in e-z and F„(z), the particle velocity is 

complex and appears in the form x±iy. At the surface —5#/br 

is equal to the radial velocity of the sphere, and it can be represented 

by an harmonic expansion. Thus if u is the radial velocity at any 

point on the sphere, we have 

U = (51) 

which is akin to (43). In (51) u„ is proportional to the zonal harmonic 

of order n. Since u„ = y„ at the surface of the sphere where r = a, 

we have from (50) 
(4 • • u„ = 1— e-'"F„(tka), (52) 
a2 

and, therefore, 
a2u eika 

Sh(11) = Fnaka) 

where a is the radius of the sphere. 

Substituting the value of S„(1.4 from (53) in (46) we get * 

a2 ima_r)u = Mar) 

Y'n  "F„(ika)' 

this being the velocity potential due to the nth harmonic at a distance 

r from the centre of the sphere. At the surface, r = a and (54) 

reduces to 
171 = au,, s,,, (55) 

where C = fn(iica), which is a factor depending upon the frequency 
n F.(ika) 

of vibration and the order of the harmonic. Several of the functions 

f. and F. are given in Tables [219] 1 and 2. 

(53) 

(54) 

* When r is very great f.(ikr) = 1. 
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TABLE 1 

1 
F.(ikr) = x-FiY; F.(ykr)I2 xl+Ys 

o 

1 
2 
3 

1 
2 
4 — Wee 
7-60/ers 

kr 
kr-2/kr 
kr —9/kr 
kr —27 Ikr+ 60/Icars 

TABLE 2 

f„(ikr)=-x'-i-iy'. When kr is very great f„(ikr)=-1. 

0 1.0 
1 1.0 
2 1 — 3/ers 
3 1-15/kIrs 

o 

—1Ikr 
—3/kr 
—81kr+15/ers 

From the preceding analysis it is clear that if u is the radial velocity 
of the sphere, it must be expressed as an harmonic expansion, so that 

on multiplication of each component by the appropriate factor 
[see (55)] and subsequent substitution in (42) the result is zero; that 

is to say, the condition (V2+ k2) = 0 is satisfied for each individual 
harmonic. 

Since the radial amplitude at any point of the spherical surface is 

proportional to the radial velocity u, it follows that if the zonal 
harmonics are plotted with respect to p. or O and added, the result 
represents the dynamic deformation curve to some scale. 

10. Formulae for zonal spherical harmonics (Legendre func-
tions or polynomials) 

TABLE 3 

Formula Order 

1 

• = 
P, = 4(311' —1) 

P3 = i(5ita-3») 
• = t(35'-3O+3) 
P, -= 11(6312 — 70p.3-1- 15µ) 
and so on. 

IL = COS 

Zeroth 
Unit 
Second 
Third 
Fourth 
Fifth 
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Polynomials of higher orders can be found by aid of the recurrence 
formula 

Pn+t(F) (2n+i)iIPAL)—  n+ 1 

Harmonics of two orders are plotted in Fig. 5 A. The zeroth order 
corresponds to radial action of the sphere as a whole, since the 

(a) 

P. io 
o o Jett 

(b) 
:etrleg"tude po(Fi) P, (iL) 

Fm. 5 A and 

deformation is identical every-
where. Unit order yields a cosine 
curve and signifies that the axial 
velocity is constant, whilst the 
radial velocity varies as it = cos O. 
Odd harmonics contain odd powers 
of IL, and even harmonics even 
powers of 1.t. Thus vibration of the 
sphere which is symmetrical about 
the equatorial plane (Fig. 3) entails 
even harmonics only. On the other 
hand, vibration of the sphere which 
is identical directionally in the two 
hemispheres, e.g. axial motions as a 

whole, is associated exclusively with odd harmonics. Deformation of 
the surface corresponding to the sum of the zeroth and unit harmonics 
is portrayed in Fig. 5B, this being Po(1.4+PI(11.). 

11. Expansion of radial velocity in zonal spherical harmonics 

From (51) we have the radial velocity at any point on the sphere 

u = 

where un -= A, ¡,(z), A. being a constant to be determined. Thus 
we get 

u = Ao Po(P.)-FAIPt(iz)-1- •••±An Pn(iL)± ••• • (56) 

To find the nth coefficient A. we proceed as with Fourier's series, 
i.e. multiply both sides of (56) by r(1.4.) diL and integrate. Since 
O varies from 0 to ir over the spherical surface, cos O = p has limits 
±1. Now +1 

f P.(11)1104 = 
-1 

when nx n (compare the Fourier case). If nt = n the above integral 

is 1/(u++), 80  

f uPn(11) 4. = An f [Pn(F)P d» = An n++ -1 
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+1 

or = (n+ ¡) f uP„(1.4 (57) 

Thus the nth harmonic in the expansion of the radial velocity is 

+1 

un = (u±i)Pt(i-t) f uPnoL)d. (58) 

When the sphere is deformed over a portion of its surface only, 

the integral in (58) must be split up. If one hemisphere is quiescent, 

un= (I/A- )r4 f d (59) 

We are now in a position to solve any problem relating to the 

vibration of a sphere which involves zonal surface harmonics. 

12. Small spherical source. (Point source) 

From (54) the velocity potential due to the harmonic of order zero 

which pertains to a radially pulsating sphere is 

a2p-ik(r-a)u fo(ik) = r  
r Fdika)' 

since u = u, = U. The value of ck in (60) is the solution to (41) when 

the motion of the spherical surface is independent of O and x. We 

then have 
17.2 -a-re -F k241 = 0. 

(60) 

(60 a)* 

From Table 2 fdikr) =. 1, and since a is very small Fdilca) = 1. 

Thus (60) can be written 

a2U e-imr-a) 
= (61) 

where U is the root mean square radial velocity of the surface pulsating 

harmonically. Now the area of the vibrating surface is 4na2, whilst 

the flux or amount of fluid passing outwards per second is 4/ra2U --- S, 

this velocity-area being known as the strength of the source. 

A ie-ie B * The solution of (60a) is e — ien' The first term represents a diverg-

ing wave and the second a converging wave. For our purpose, therefore, 91 — A lee', 

a 
A1 being found from the condition that the surface velocity U = (— e) . By 
taking ka <1, (61) is reproduced. 



26 PRINCIPLES OF SOUND PROPAGATION [II. 12 

From this relationship a2 r--- S/4eU, which on substitution in 

(61) yields s e = —e-ikfr-a). (62) 
4er 

When a is evanescent, a so-called 'point source' is obtained and 

then Se-ik* 
e — (63) 

47rr 

The particle velocity at a point distant r is, from (29) and (63), 

y =- — —ar .= —47re-'kr -r ± r-2], (64) 

S j(k2 1 
or taking the modulus Iv l = (65) 

this being the root mean square value. 

From (31) p .--- Po /9t. To determine .9cf,/bt the time factor eiwi 

must be introduced, so we write (63) in the form 

Se-i(icr-'01) 
4 , (66) er 

which is tacitly understood to hold in all our work. 

Differentiating (66) with respect to t and then omitting the time 

factor, we obtain 
P = ¡Po toe, (67) 

ipowS e-ikr. 
i.e. P — (67 a) 

47rr 

13. Power radiated by simple source 

The power passing radially through unit area on the surface of a 

sphere of radius r, whose centre is that of the source, is the pro-

duct of pressure (67 a) and the component of the velocity in phase 

therewith (force x distance per sec.). The required velocity is the 

S ik 
term — — from (64), the distance phase factor e-ikr being omitted. 

4ir r 

Thus the power per unit area is po a.,2s2/16,,.2,.2c, since k =-- wk. The 

area of the spherical surface through which the radiation passes 

being 4er2, the total power radiated is 

„ 0,2S2 
p _ ro . 

47rc 
(68) 
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Writing S = UA =- 47ra2cueo, where eo is the r.m.s. amplitude, by 
aid of (68) we obtain 

4epo a4w4e,!, 
P — (69) 

and this is the power radiated by a radially pulsating sphere of 

radius a provided ka .-<..._ 0.25. 

14. Deductions from foregoing analysis 

From (64) it is seen that the particle velocity consists of two parts in 

S ik . 
time quadrature. Neglecting the factor e-ikr, the part . m phase 

47r r 

with the pressure, whilst S/47rr2 is in quadrature. Near the source 

90 10 

BO 

.T60 

.F. 

40 

o 

(an'.) 

1 

P•We 

Phase of pressure 

0? 
a 

41,2hase I 

kmre(Wattless) A 

13= tan 'DM 

2 4 6 
Values of kr 

FIG. 6. Diagram illustrating relationship 
between the pressure and particle velocity 

in a spherical wave near the source. 

08 

0.6 

04 

02 

10 

the wattless component S/47r-r2 preponderates since r2 r/k, the 

pressure and velocity being well out of phase. The angle between 

p and y is clearly O = tan-1( l/kr), and the power factor is 

1  1  
cos 0 = cos (tan-' 177-.)— .N/{ 1 ( 1 /k2r2)} • 

Curves illustrating this are given in Fig. 6. When O is small, 

a 1 
u — = — 

kr 27rr' 

or r = A/27r8. Now cos 0 = 0.984 when O = 100, so that r = 9A/1T2, 

which means that for all practical purposes the pressure and particle 
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velocity are in phase one wave-length from the source. In evaluating 
the sound radiated by vibrators of various kinds, use is made of the 
fact that the pressure and particle velocity are in phase at a great 

distance from the source. In (64) by choosing r large enough, the first 
term can be made to swamp the second. Then omitting i, y = kS/4yr 
p = pocaS/4-er, and since k = colc it follows that p = po cv When p and 
vare in phase. If vis the in-phase part of the velocity, the relationship 

is valid up to the source. Although the pressure and particle velocity 
fall out of phase as the source is approached, the power remains 

constant. From (67 a) and (68) we find that P = 4rrr2p2/po e, so that 
by placing a pressure-measuring device (a microphone) within a 

wave-length of the source, p, and therefore the power, can be found. 
For accurate results the microphone must be sufficiently small to 
leave the sound-field undisturbed. Also the distribution of radiation 
must be uniform, i.e. the source must be small compared with the 

wave-length (see Chap. V, § 1). The velocity component S/47rr2 from 
(64) is associated with a flow of fluid chiefly in the neighbourhood of 
the source. It is entirely wattless and merely adds to the inertia of 
the source, thereby reducing the driving force available for doing 

useful work. 
In a rigorous sense the results in this section apply to a pulsating 

sphere when the wave-length is large compared with its radius a. 
The distance r is measured from the centre of the sphere and cannot 

be less than a. The analysis, however, can be used for a disk or a 
conical diaphragm provided À > a and r 10a. 

15. Extension of 'tiny source' concept 

So long as the dimensions of a vibrator are small compared with the 

wave-length, it can be regarded as a point source* except in its 
immediate neighbourhood. This follows from the fact that the radia-
tion due to any elemental area on the surface, assumed to act alone, 

is propagated uniformly into infinite space. Since the difference in 

distances from a remote point Pi to any two elemental areas on the 
vibrator is small compared with the wave-length, all pressures arrive 

* It is well to realize that this is merely a mathematical artifice. If the strength 
of the source S -= UA is to remain finite, though very small, then since A 0, 
U—> oo, which would have disastrous consequences in practice! The point source is, 
therefore, applicable to infinitesimal amplitudes only. In considering a flat diaphragm 
or a conical diaphragm of radius a as a point source, formulae (63), (64), (67 a), and 

Fig. 6 are only applicable when r 10a. 
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at P1 in substantially the same phase. Thus interference does not 
occur, and the point source concept is permissible. Formula (68) is 
valid provided S represents the product of superficial area and radial 

velocity, the latter being constant in the cases considered hitherto. 
When u is variable, we have dS = u dA as an elemental source, 

so the strength of the whole source is S = if u dA. For example, in 
the case of a sphere one-half of which is quiescent, the other vibrating 

axially, u = U cos 0 from 0 to 1T and zero from 17T to ir (Fig. 20), so 
we get 

S = 27ra2U f cos 0 sin 0 dO 
o 

= Tra2U = IUA = uka2we,, (70) 

where eo is the r.m.s. amplitude, we, = U, and A is the superficial 
area of the hemisphere. From (68) and (70) the power radiated by 
the hemisphere is 

p = pirreiwieto 
4e 

(71) 

If the radiation from one side of a rigid disk or a conical shell of 

radius a is suppressed, S = Tra2U = Tra2cue, provided of course A > a. 
The power radiated is therefore identical with that from an axially 
vibrating hemisphere as in (71). For radial vibration of the hemi-
sphere the effective area is 2Tra2, so S = 2ra2(.0e0 and 

P — p o  77440i4e: 

(72) 

this being one-quarter the power radiated if the whole sphere were in 
action radially. [Compare with (69) where S has double the value 
given by (72).] 
As a final example, take the case of two hemispheres vibrating in 

opposition at each end of a spherical diameter. The strength of the 

source is obviously double that of one hemisphere in (71), and the 
power four times as much, since from (68) P varies as 52, The result 
is therefore identical with (72) as might be anticipated, since the 
effective areas are equal. The preceding formulae for P are valid at 
low frequencies where the propagation is spherical. At higher fre-

quencies the propagation departs from the spherical type and the 
formulae are no longer valid. It is then necessary to use spherical 

harmonic analysis as shown in Chapter VI. 
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16. Influence of solid angle 

Hitherto we have confined our attention to radiation into spherical 

space, i.e. in all directions. Choosing the source as origin the solid 

angle into which it discharges is 47r. Imagine a small rigid circular 

disk vibrating axially in an equal aperture in an infinite rigid plane.* 
The solid angle into which each side of the disk radiates sound is 

27r. If S is now identical with that for one aide of the disk without 
the plane, the particle velocity is doubled since diffusion from the 
side in question takes place into one-half of infinite space. Hence the 

pressure is doubled also, which is evident from (64) and (67 a) when 
4rr is replaced by 27r. At a great distance from the disk, where 

p and y are in phase, the power per unit area is quadrupled. But since 

the integration now extends over a hemisphere, the total power 
radiated by one side of the disk is not quadrupled but doubled. The 
influence of the plane, therefore, is to double both the rate of working 

and the total pressure on the source due to radiation. It is shown in 
the preceding section that the power from one side of a rigid disk 

Po radiating into infinite space is ro °. From above it follows that 
4c 

the power radiated from one side when the disk vibrates in an 

infinite plane, where = 27r, is 
p p o  ,a4 . 

(72 a) 
2c 

The power from both sides is, therefore, 

p = 
p o  Tra4w 4eg 

(73) 

provided A a. These results are of prime importance in the design 

of hornless speakers with large baffles. 

From (63) the velocity potential at a distance r from a simple source 
radiating into infinite space is 91, = Se-ikr/47rr. Introducing the 
infinite plane close to the source halves the solid angle, so 

Se-ikr 
(1, 

2er • 
(74) 

Applying this to a vibrating area A forming part of the plane, we 

have from the previous section, S =-- ffudA, and from (74) 

1 f f ne-ikrdA. (75) 
27r .1 r 

This is to be regarded as an infinite baffle (see definition 22). 
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In (75) u is the radial velocity of the element which varies in general 
according to the location of dA on the vibrating surface. In this case 
it is normal to the plane. From (29) u = —been, where n is written 

for x. Substituting this value of u in (75), we obtain the very impor-

tant formula = _I ire:fie-is'? 
dA. (76) 

27r art r 

The preceding integral gives the velocity potential at a distance r due 

to the combined effect of elemental areas dA, vibrating with normal 

velocity u = ben on one side of an infinite plane. The motion 
being harmonic, then u = — ben --- we. Formula (76) is the basis 

of all analyses pertaining to the distribution of sound radiation 

from flat surfaces vibrating in an infinite rigid plane. 
In general when the solid angle is reduced below 4r to a value fi, we 

have for a simple source Se-a"' 
e _ (77) 

ûr 

from which it follows that the particle velocity and the pressure are 

both increased in the ratio 47r/il The power per unit area on a distant 
surface of radius r is 161T2/Q2 of its value for diffusion into the whole 
of infinite space. Since the area intercepted by the solid angle is 

. 16n2 ûr2 
Ûr2 the power is increased in the ratio — — . Thus from (71) 

47rr2 

the power radiated by a small disk vibrating axially with velocity 

oleo near the apex of a conical horn of infinite length and solid angle 

û is 4.77.po wa4c04a p o  ir2a40,4e: p o  co2S 2 

(78) a 4e = fie fle 

Formula (78) is valid when 10 ali11, where a is the radius of the 

disk which fits the small end of the cone perfectly. As a diminishes 
the pressure on the disk increases, the phase angle between the pres-

sure and surface velocity decreases so the power factor rises.* In fact 
the arrangement becomes increasingly efficient. A greater amount 
of useful work is done and the fluid flow associated with inertia pres-

sure decreases with reduction in the solid angle Si Finally, when fi -+0 
the formula fails and other means have to be adopted te find the power 
from a rigid disk at one end of an infinite cylindrical tube. It is clear, 

however, that since the pressure and velocity are in phase, the inertia 

• Since the size of disk is fixed, its distance from the apex of the cone increases 
with decrease in û. Thus cos0 = cos[tan-i(l/kr)] steadily approaches unity. For 
practical purposes we can imagine the small end of the cone to be removed. 
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component is evanescent. Thus the impedance of an infinite cylindri-
cal tube is a pure resistance, whether or not its diameter is small 
compared with the wave-length (1/ = A /r2, so in (12) Chap. X put 
r = co). 
The preceding formulae embodying û are only applicable when the 

cone extends to infinity For example they could not be used for a 
conical diaphragm 5 cm. radius at the small end of a conical horn 
180 cm. long. Here the power transmitted by the diaphragm at low 
frequencies is reflected at the mouth of the horn. The strength of 
the reflected wave increases with fall in frequency. It is in antiphase 
with the transmitted wave, so the low-frequency output steadily 
decays due to neutralization. Above a certain frequency the influence 
of reflection is unimportant as shown in Chapter X on Horns. 

17. Double source 

When a small circular disk vibrates axially in free fluid, the pressure 
at any point therein consists of two components, one from the front, 
the other from the rear. These components are in opposite phase at 
the disk or at any two points symmetrically situated respecting 
its plane, and the vibrator is known as a double source. Moreover, 
any diaphragm vibrating in free fluid without a baffle (see definition 
22), or with a finite baffle at low frequencies, is regarded as a double 
source. The shape of the diaphragm is immaterial. If in the baineless 
state the size of the diaphragm is evanescent, a double point source is 
obtained. This is another delightful mathematical fiction. Since 
every point in the fluid is equidistant from both sides of the source, 
the net pressure is zero unless the amplitude of the disk is infinite! 

Consider two equal simple sources -FS,—S of opposite phase 
distant 2d from each other (Fig. 7 A). From (63) the velocity potential 
at Pi due to the first is 

=  47,r2 

and to the second 47rri • 

The net velocity potential due to the two sources is thus (r > d) L) 
S —ik(r—d cos fh e--ilc(r+d cos el 

47, r —d cos 0 r±d cos 19 

Se-ikr  
27r(r2 —d2 0°820) {d cos O cos(kd cos 0)+ir sin(1,:d cos 0)}. (79) 
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- iS sin(kd cos 0)e-ikr 
# • 27rr 

Since sin « = « when ot = kd cos 0 is small, (80) reduces to 

4 = i(2Sd)k cos 0 e-ikr ,  (81) 
4.1rr 

When d < r, (80) 

provided kd < 0.5 and r > d. 
Neglecting the imaginary i, and apart from the factor cos 0, we see 

on comparison of (81) and (63) that (2 Sdk) = Sd can be regarded as 

(b) 

PI 

Pro. 7e and B 

the strength of the source. Cos 0 designates the spatial distribution of 
the sound radiated as shown in Fig. 7 B. Care must be exercised to 
interpret the strength of a double source correctly. Sa increases with 
increase in d because larger separation entails reduced interference 
from the oppositely vibrating simple sources. In practice the strength 
of a double source does not increase indefinitely with increase in d, 
since (81) is only applicable when kd < 0.5 and d < r. This aspect 
of the subject is discussed in detail in sections 20 and 21. In formula 

(79) when ¡cd is sufficiently small, cos(kd cos 03) = 1, and 

sin(kd cos 0) .-* kd cos O. 

If d is small also, r2» d2cos29 quite near the source, and (79) 

reduces to _ s cos o e-ikr d- (1 . 
,k d 4irrk r tk). .(82) 
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The component Sd cos 0/4 7r7.2k is associated with flow of the fluid in 

the neighbourhood of the source (see definition 29), whilst 

iSd cos 0 
(82a) 

47rr 

is associated with the radiation of sound. The inertia component 

being dependent upon 1 /r 2 falls away rapidly with increase in distance 
from the source. 

18. Power from double source 

At a great distance from a double source, if kd < 0.5 we have 

from (81) d iS k cos 0 e-ikr 
(t,  

47rr 

From (29) the particle velocity at a distance r is 

sd k cos 0 e-ikr (i (83) 
V --- —  — —  

br 47r r2 r 

and from (31) the pressure 
Ott, 

= Po—at 

powSdk cos 0 e-ikr 
(84) 

47rr 

the time factor eicol being inserted before differentiation and removed 

afterwards. The power passing through unit area on the surface of 

a sphere of radius r whose centre is the source, is the product of 

pressure and the velocity in phase therewith. From (83) the velocity is 

—Sd1c2 cos 0 

4er 

whilst the pressure is given by (84). Thus the power per unit area 

AP =- pow4Sâcos2 0 116e2r2c3 . To find the total power radiated by the 

double source, this expression must be integrated over the whole 

spherical surface of radius r. Referring to Fig. 3, the power passing 

through a zonal surface of radius PiN, = r sin 0 is dP = AP 2er2 sin O dO , 

so the total power i7r 

Po 
f 

P — " d cos20 d(cos 0) 
47rc3 

o 
p o  alS (22  

12/Tc3 
provided kd < 0.5. 

(85) 
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Formula (85) is applicable to a disk or a conical diaphragm 
vibrating in a finite baffle at low frequencies where the propagation 
(not the distribution) is spherical. If the baffle is circular of radius 

d, this being several times the diameter of the diaphragm, 

Sd = 2Sdk = 27ra2dco2eolc* 

Owing, however, to the conditions differing from those of two 
separate sources in free fluid, d must be replaced by an effective 

value. As shown in § 21 this is found by experiment to be about 

0.7d which gives strength of the double source Sa as 1.4vd42(.02e0/c. 
Inserting this value of Sd in (85) we find that the power from a baffled 

diaphragm is given approximately by 
p irpo dzow ee: 

6c3 

This shows that at any low frequency the power increases as the 

square of the size of the baffle, provided the amplitude of vibration is 
constant. In practice if the driving force is invariable in magnitude, 

increase in d is accompanied by a decrease in amplitude due to 
enhanced radiation and inertia pressure on the diaphragm, i.e. the 

mechanical impedance increases (see definition 30). 
Apart from the reduction in amplitude cited above, (86) must be 

interpreted with caution, since the power tends to infinity as d co 
which is impossible. It has been stipulated that kd < 0-5, but (86) can 

be extended up to kd = irr without serious practical error. If 

d -= 90 cm. its effective value is 0.7 x 90 -= 63 cm. and the upper 
frequency limit of (86) is 100 At this frequency halving the 

radius of the baffle to 45 cm. results in a reduction in power to 1, 

i.e. 6 decibels, which could easily be detected by ear. When kd > 7T 

the analysis in § 21 must be used. 

(kd < 0.5). (86) 

19. Vibrator without baffle 

When the radius of the baffle is comparable with that of the dia-

phragm the above analysis is invalid. We have defined the strength of 

a double source as Sd = 2Sdk, where S represents the strength of a 
single source and 2d is the distance between the two sources of oppo-

site phase. This can also be expressed by the integral ff v2dk dA = Sd 
where dA represents two elemental areas (each dA) at the extremities 

of a line of length 2d. For example, dA might be like portions at each 

end of a chord parallel to the polar axis of an axially vibrating sphere. 

e is the r.m.s. value; also in section 19. 
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It follows that Sd is in the nature of a velocity-area. At frequencies 

where the wave propagation is spherical, it can be shown [215] that 

k cos 0 e-ikr 
# =  i [(I 7 + 1 wel  4irr , (87) 

Po 
where V is the volume of the solid and mi is the accession to inertia, 
i.e. the added mass due to the fluid (see definition 29, and Chap. III). 

Comparison with the formula (82 a) shows that the strength of the 

source is now sa = (17 -1- 11kcueo. Using (85) the power radiated by 
Po 

a vibrator acting as a double source is 

P = Po weeó (v+  mir (88) 
12/r 3 ‘ pot • 

For an axially vibrating sphere of radius a, milt), = feas (Chap. III, 
Table 4, when ka < 0-5), whilst V = tire Substituting these values 
in (88) the power is 

p. = _... Po Ira3c63weet. (89) 

Formula (89) is identical with no. 3 in Chapter VI, Table 9 (ka < 0-5) 
found by another method. For a circular disk of radius a, mi/po = g a3 
(Chap. III, § 4, method 2), whilst V = 0. Thus from (88) the power 
radiated is 

p = 16 poaewee 

d 27/r c8 • 
(90) 

The influence of shape is seen by taking the ratio of the power from 

a sphere to that from a disk of equal radius executing the same axial 
amplitude. Thus from (89) and (90) 

p„ =- 9r2 . 5-6 
Pd 16 -_ ='__ --. 

1 

The superiority of the sphere is due to reduced interference of the 
radiation from the two hemispheres vibrating in opposite phase, since 
the distance from pole to pole of the sphere is ra whereas that for the 
disk from centre to centre is only 2a. Also the radial velocity of the 

sphere falls off towards the equator, whilst that of a disk is constant, 
so the interference is greater in the latter case. 

20. Flat baffle* 

When a rigid circular disk vibrates axially, the air on each side of it 
is alternately compressed and rarefied. If the air at the front is corn-

* See definition 22. 
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pressed, that at the rear is rarefied, so there is a pressure difference 
between the two. Consider any point P in Fig. 7A, in the plane of 
a baffleless disk at 0, vibrating along the axis /COI. Radiation 
reaching P2 from both sides of the disk consists of two components 
of equal magnitude, one being positive, the other negative, so the 
pressure on the plane is zero everywhere. At P1 the radiation is partly 
positive and partly negative, but 11 is nearer one side of the disk 
than the other, so complete neutralization does not occur (see Fig. 7 s 

at an angle O where 4i e 0). 
If the disk is associated with a concentric coplanar rigid plane 

several times its own diameter, the length of the air-path between 
the two sides is increased. The greater the diameter of the plane, the 
smaller the interference between the radiation from the two sides of 
the disk. In practice the plane is simulated by a flat baffle board. As 

we shall show later, there is a limit beyond which increase in diameter 
of the baffle is ineffective in augmenting the power. 
To assess the magnitude of the interference at P1 it is essential 

to consider the wave-length of the vibrations. If the waves are 
long compared with the diameter of the disk, radiation from the 
back and front of the disk reaches points like P1 almost in anti-
phase unless a baffle is used. If the distance from the rear to P1 
is augmented by a baffle, the phase angle decreases and the out-
put increases. Rise in frequency entails reduction in A, so with 
a baffle of fixed dimensions the consequent diminution in phase 
angle is accompanied by enhanced output. At high frequencies, 
where A is comparable with the diameter of the disk, the radiation 
is projected from each face of the disk in the form of a beam 
(Chap. V) and the influence of a baffle in increasing the output is 
negligible. 

It is hardly feasible to treat either a flat disk or a conical shell in 
a flat baffle by rigorous analytical methods. The interference between 
front and rear is serious at low frequencies only, and with a fiat baffle 
the air distance between the two faces is the chief item. On this 
understanding the problem can be readily treated by a simple artifice. 
At low frequencies the sound distribution from one side of the disk 
acting alone is spherical, and at a great distance the disk can be 
regarded as a small source. Thus the double source concept of 17 

can be applied. 
From (80) the velocity potential at a distant point P1 due to the 
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double source is 4, = IS sin(kd cos 0), where e-ikr has been dropped. 
27e 

But from (67) the pressure p =ipow4) which on substitution of 95 
from above gives 

p f IP'S sin (kd cos 0), (r» d) (91) 
27rr 

the negative sign being omitted. 

When kd cos 0 =- ¡(2n —1)e, n being a positive integer, the pressure 

is a maximum, whilst for kd cos O = ne it is zero. Corresponding 

to any angle O (except .77.) there are series of zero and maximum 

values of pressure as either the frequency or the distance between 

the sources, or both, is increased. This is of paramount importance in 

testing loud speakers with finite baffles, either in 'dead' rooms or in 

the open air. If the microphone is stationed at any angle O with the 

axis of the speaker, there are one or more frequencies throughout the 

acoustical register where the above effect is experienced. On the axis 

cos 0 = 1, so the conditions for maxima and zeros are kd ¡- (2n— 1)7r 

and kd = ne, respectively. In practice with a flat baffle conditions 

are not absolutely those postulated above, and the zero is replaced 

by a minimum. These points are exemplified in Fig. 118 which repre-
sents an actual outdoor test. The minimum occurs at 460 and the 

maximum at 230 The influence of baffle size is also shown in 

the same diagram. Below 200 there is an almost constant difference 

of 7 decibels between the curves for baffles 4 ft. and 2 ft. 6 in. square, 

respectively. At 460 the smaller baffle gives the greater output. 

Thus if one listens on the axis to a 460 note whilst the size of the 

baffle is gradually increased, a point is reached when the loudness is 
a minimum. 

The distribution of radiation for various values of kd is shown in 
Fig. 8, where it is seen that a baffled double source has definite 

directional characteristics. At very low frequencies the polar curve 
is two circles. As the frequency rises, interference occurs on the axis 

and for kd = 7r the pressure is evanescent. It is instructive to com-

pare these curves with those for an axially vibrating sphere [156 a]. 

The latter is a double source without a baffle, and the distribution 

is represented by two circles. The influence of a baffle, therefore, is 

to modify the interference between the two sides of the diaphragm 

in such a manner that the spatial distribution is altered profoundly, 

a series of maxima and zeros occurring on the axis. 



(39) 

21. Power radiated 

From Chap. VI, § 1, formula (2), we have 

P 4ir= -r f p2sin dB. 
Pc 
o 

3(kdre) 

/ \ 
/ •1 
I 
I 

_ - —1- _ • _ •— • 
% 1 ‘ \ /1 

.., 4(kt>i•o) 
• • 

S 

Using formula (91) for p we obtain 

s i" 
p Pow2 —2 sin2(kd cos 0) d(kd cos 0) 

ITC kd 
o 

le 

pow2S2 f 
[1 — cos(2kd cos On d(kd cos 0) 

27rc kd 

p o  w2S2 sin 2kci 

2irc 2kd 
(92) 

provided r cl. The expression in brackets is plotted in Fig. 9, the 

curve being somewhat similar in appearance to that of 

G I [1_ Ji(2ka)1 
ka J 

shown in Fig. 17. Apart from the first maximum, which exceeds 

unity, the power radiated does not increase with increase in the 
separation of the sources beyond 2d = A. The power oscillates about 
a value equal to that radiated by one side of a rigid disk in an infinite 

baffle at low frequencies when the propagation is spherical, S being 
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identical in both cases (disk and simple source). The ultimate result 
of using a large baffle is in effect to shut off one-half of the loud 

speaker. This approximates to the case of an infinite flat baffle. 
But we must not fall into the error of assuming that the two cases 

are identical in all respects, for the distribution of radiation with the 
finite baffle is focused, whereas with an infinite baffle it is uniform 
in all directions, provided ka <. 0-5, a being the diaphragm radius. 

These results are applicable to radiation into free space when the 
distance r from the centre of the diaphragm is large compared with 

2 o 

1.2 

04 

l I I 
s RI. I. ,slrekle 2 s;riAll 

' 
. 

s.(i _u2dka) 
1 
• / , 

e' 

e 
e 

e' 

2 3 4 
Values of 2kd 

FIG. 9 
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the length of the side of the baffle (if square). In an ordinary room 
conditions are modified due to reflection and to standing waves. Con-

sequently the power radiated and the sound distribution will differ 
from that obtained above. 

If we assume 2d to represent the distance round the baffle from 
centre to centre of the diaphragm, we have to find 2d in ternis of 
the length of the side of the baffle. From Fig. 118 with a baffle 4 ft. 

square the output decays below 200 whilst with a baffle 2 ft. 6 in. 
square the turning-point is 300 

The corresponding values of p are 2.8 ft. and 1.86 ft., respectively. 
Neglecting the baffle being square instead of circular, the 4 ft. baffle 
corresponds to 2d = 2-8 ft. and the 2 ft. 6 in. baffle to 2d ---- 1.86 ft. 
On the average, therefore, it appears that between 200 and 300 

the equivalent separation of two simple sources is about 0.7 times 
the side of the baffle. From a practical viewpoint the difference in 
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loudness-level, when 2d or 2.84 is taken as the side of the baffle, is 
not very serious at low frequencies. Thus, where economy is desirable, 
a satisfactory working rule is to make the side of a square baffle not 

less than one-hall of the lowest wave-length to be adequately repro-
duced. When it is desired to reach 50 adequately, a hole in the 
wall is the best solution. The speaker then does double duty and 
serves two rooms at once, although this may not always be desirable. 
If the radiation from the rear of the diaphragm is discharged into 

an enclosure of small volume, care must be exercised to avoid 

resonances. 
Reverting to (92), when 2kd <1, as it will be at very low fre-

quencies, sin 2kd 
1— 2k2d2 

2/cd • 3 

and the power radiated is 
p pow4S2d 2 

(93) 
37rc3 

which is identical with (85), since Sa= 2Sdk. Assuming d is much 

greater than the radius of the diaphragm, the power at a given fre-

quency increases as the square of the side of the baffle, provided the 
diaphragm amplitude is constant. In practice, owing to the finite 

size of the diaphragm it may increase more rapidly than this for 
small baffles, which seems to be borne out by Fig. 118. The ratio 

of the squares of the baffle-sides in Fig. 118 is 2.56, whereas the 

power ratio is 5. 
Although (93) is inapplicable when d = a, it then reduces to the 

formula for the power radiated by an axially vibrating sphere of 
radius a provided S = 7ra2cogo, and ka < 1. 

22. Influence of infinite baffle on power radiated [12113] when 

driving force is constant 

Hitherto we have considered the effect of increasing the size of baffle 
when the diaphragm amplitude is maintained constant. We now 

proceed to examine the increase in power when the force is constant 

and the baffle is made infinite. 
At low frequencies the power radiated from a rigid disk without 

a baffle is, from (90), 
16 poaeco2e0'2 

P' 
27e e3 

• 

(94) 
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and from both sides with an infinite baffle it is [from (72)] 

p 7rpo agg 

C 
(95) 

We have now to express P' and P in terms of a constant driving 

force f. Assuming the acoustic load to be negligible, we can write 
= rnee,= mew 4 so that 

r=   

° come cotql+g)' 

where me = tn-Fm'i and /3' =-- mn/m;. 

Thus f  2 without the baffle, 
wam'i2(1-1-fl')2 

(96) 

f 2  and tei= cozni¡(1-1-p)2 with the baffle. (97) 

Inserting the values of È'02 and a in (94), (95), and remembering that 
mi for an infinite baffle at low frequencies* [3 a] is 2,/4, we obtain 
the ratio 

P 2771.2 1 \ 2 (1 -Fps\ 2 
(98) P 64 ‘raj ‘1-F/3/ 

provided ka < 0-5. Taking a --= 10 cm. radius, f = 50 es,, f3 = 3-4, 

/3' = 1-7 the ratio in (98) is 130/1. Thus the use of an infinite baffle 
at 50 would raise the level 21 decibels. From a practical view-
point this must be interpreted in the proper manner. Since the 

radiation from one side of the disk is excluded by the baffle, the 
power diffused in, say, a 'dead' room would only be one-half that 
given by the formula. The above ratio would be 65/1 and the intensity-
level 18 decibels above that for the baffleless disk in the centre of 
the dead room. Here again it must be recognized that although the 

general power-level is raised 18 decibels, the distribution from the 
baffleless disk is focused and concentrated on the axis. Moreover, at 

an axial point, say 8 to 10 radii distant from the disk, the influence 
of the baffle would be less than that computed above. 

When the driving force is fixed [121 b], we can also compare an 
unbaffled axially vibrating sphere with the baffled rigid disk. Thus, 

p 37r 1 \ 211+138\2 
P. =  8 Vcaf ‘11-flf 

* See p. 57 just prior to Method 2. 

(99) 
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/38 = mass of sphere ms 
mi of sphere 

and Ps is the power radiated by the sphere. 
Assuming the natural masses of the disk and sphere to be equal, 

the result in (99) is several times less than that in (98). At high 
frequencies, when ka is large (> 3), considerable focusing occurs, the 

wave propagation is sensibly plane, and the influence of a baffle is 
comparatively slight. Taking the above ratio under this condition 

we find P 3 /mi.\ 2/1 +A, \ 2 3 /mi.+ m.) 3 
(100) 

2 Mi I kl+P I —2' 

where 

provided m. = m„ and ka > 3.0, since mi. and mi then tend to zero. 
The ratio in (100) is about 1 per cent. of the value deduced from (99) 

at 50 

23. Acoustical images 

The use of optical and electrical images is so familiar that extension 

of the principle to acoustics is almost 
self-evident. Suppose we have a 
simple source situated in front of 

and close to a very extensive flat 
wall whose absorption coefficient is 
zero, as shown in Fig. 10. The effect - 

+s d 0 d +s 
of reflection can be simulated by Image Source 

50 U 
an image source of identical phase 
and strength situated on the per-

pendicular and distant d from the 
wall. The analytical procedure is 
very simple. The velocity potential 

at any point distant r from a simple source is, by (63), irk -= Se/47rr. 
Thus the velocity potential at P, due to the source and its image 

is (Fig. 10) S e—ikr2 
= — — . (101) 

47r r2 1 

When both 7., and r2> d, (101) can be written 

Se-ikr (eika cos e 6-41tdcos0) 
4irr 

- - cos(lcd cos 0), (102) 
27rr 

Hard Flat wall 

Fla. 10 
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the distance phase factor e-iler having been dropped. Since 4. varies 

with 0, it is clear that the wall, so to speak, endows the source 
with directional properties. When kd cos O = E2n+ 1)7r the pressure 
vanishes, whilst for kd cos O = err it is a maximum, n being any 

positive integer. As the source approaches the wall the directional 

characteristic fades away until when d = 0, ç = S/27rr, which is 
double the velocity potential due to a simple source in the open. 
This follows from the fact that the source discharges into a solid 
angle of 2n instead of 4ir, the open-space value. 

In modern acoustical problems associated with reflection in damped 

enclosures, there is appreciable absorption at the boundaries. The 
strength of v.p. due to the image source then becomes (1 —ct,)i 
Se-i2r/47rr for a single flat wall, where a, is the absorption coefficient 
of the wall (see definition 12). Then we have. 

Se-er 4,= (103) 

where b --- (1—a8). 

S 
Thus = 4—er{(1+b2)+2b cos(2kd cos . (104) 

If a, = 0, (104) reduces to (102), whilst if ct, = 1, complete absorption 
occurs and e has its free-space value S/4Trr. 

24. Power radiated by simple source near flat wall 

From formula (2), Chap. VI, this is 
in" 

P = 2-71.2 I p2sin dB, 
Po C 

o 

the radiation being into one-half of infinite space, i.e. one side of 
the wall. Since p = ipowçb, we obtain, on substitution from (102) 
in the above formula, 

P = — P9-5°2S2 f cos2(kd cos 0) d(kd cos 0) 
27rc(kd) 

0 
po cu2S2 
4-irc— [COS 0 ± sin(2kd cos 0)1 for 

2/cd Jo 

po cu2S2 2kfil 
47T0 [1 + s 2/cd (105) 
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When the wall is absent d = oo and P = pocusS214ire, which is identi-
cal with the radiation from a simple source in free space. If the 
source is very near the wall,* P = pow2S2 /2irc, hence the output is 
doubled. This latter value is identical with the output from one side 
of a rigid disk in an infinite plane when the propagation is spherical, 

See (72a) § 16 with S = ea2(.240. 

25. Reflection from wall when baffle is used 

The use of one wall of a room, having a hole for the speaker, thereby 
constituting in effect an infinite baffle, is generally frowned upon in 
domestic circles. Consequently, when a baffle is employed, the speaker 

is placed near a wall indis-
criminately. The wall reflects 
the waves (of opposite sign) 
from the rear of the dia-
phragm to the front, so the 

so \ 
power output and the spatial 4.-- le" \ 
distribution are modified ac- zd zd 

cordingly. If the speaker is Image Image c of ia ray.' 

set across a corner, with the 
baffle near the two walls, a 
resonant cavity is formed, and 
the output over a certain frequency range may be augmented, 
whereas over another range it may be reduced owing to reflection. 
As the speaker is withdrawn from the corner, its lower register 
appears to decay due to reduction in resonance. Provided attention 

is confined to a large flat wall in free space, and the baffle is of 
moderate size, the problem is amenable to analytical treatment by 
aid of the principle of acoustical images (§ 23). The equivalent 
arrangement of simple sources is shown schematically in Fig. 11. 
When r 4d-1- 2x the velocity potential at P1 is 

Hard Flat wall 

—S 
Front of 
diaphragm 

Flo. 11 

fe—ik(r —x cos 0)+ e-tilc(r+x cos 0)._ e—ikr—(2d-Ex)cos O e-i kfr +(2d x)c os C#1} 
477r (106) 
Se- ikr 

COS 2—  COB MZ), 
2777 

(107) 

where z --= kx cos() and m =-- {1+ (2d/x)), O being the angular distance 

sin 2kd 
d —+ 0, eo  — 1. 

2d 
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from P, to the intersection of the wall and the line of sources. The 

radiation characteristic can be plotted from (107), and a repre-

sentative example is given in Fig. 12, curve 2. For comparison the 

characteristic without the wall is shown in curve 1. 

(I) sin z 
no wall) 

_ 

Wall position 

; (2) cos z- cos 4 z 
(wall) 

f=izs— 

FIG. 12. Curves showing effect of wall in modifying 
the low-frequency sound distribution from a loud 

speaker with a flat baffle. 

sinz = sin(kd cos 8) + kd cos 0 ; for cos z — cos 4z, see (107). 

26. Power radiated using baffle near flat wall 

Proceeding on the same lines as in § 21, the power radiated is 

ic. 

p — Pow2S2 f (cos2z — 2 cos z cos mz ± coemz) dz, (108) 
27rc(kx) 

o 
d(kx cos()) dz 

since —sin 0 dO — 
kx — kx' 

and the limits of 0 are 0 to Pr, the wall reducing the solid angle 

to 27r. 

Integrating (108) and inserting the limits, we find 

- pui2S2 f _1_ sin 2kx_j_ sin 2k(x-F2d) {sin 2kd _L  sin 2k(d+x)11 

- '--- 4Trc 12-r 2kx -r 2k(x±2d) 2 1_ 2kd m  2k(d+x) _I j • 

(109) 

When the baffle is removed and d -= 0 as a consequence, the power 

is zero, owing to complete interference, since we postulate small 

sources. If x -= co, the speaker is well removed from the wall, and 

p == pu.)2S2 f 1 sin 2kd1 
(110) 

27rc 1 2kd r 

which is identical with (92), § 21, as we should expect. If x is small 
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compared with d, 

p PCO2 S 2  I 3 _L 1 sin 4kd 2 sin 2Iccl 
27,c 12 2 4/cd 2/cd I • (111) 

The influence of the wall in the proximity of the speaker is found 

on comparison of (110) and (111), which is exhibited in Fig. 9. 
The maximum effect of the wall occurs when 2/cd = 4-18, the power 

then being 1-63 times its free-space value. At lower frequencies 
a point is reached when wall reflection becomes injurious due to 
enhanced interference between the two sides of the diaphragm. The 

analysis shows that the influence of a wall is to augment the lower 

register for wave-lengths less than 2.ad, provided the speaker is near 
enough, but not sufficiently close to introduce effects beyond the 

scope of the hypothesis on which the formula is based. 
Since {1— (sin 2kd/2kd)) is substantially unity when 2/cd > 7T, it 

follows that the influence of the wall is then represented by 

r3+itsin4ledi 2 (sin 2  

12 2 4kd J 2/cd 

In an ordinary room, owing to reflection, the above results will 

be modified. 

27. Mechanical impedance of spherical vibrators 

On the assumption that the vibrator is devoid of mass, we can 

establish a formula for the mechanical impedance per unit area of 
vibrating surface [121 b]. By definition 27, 

pressure  = p 
z 

radial velocity u 

Thus z (Po+Pi+•••±Pn) (112) 
u 

where po,..., p, are the pressures due to the various harmonics. From 

(55) and the relationship p. = ipo Cuck„ we obtain 

p. = ipo cualt,Z,= ipoCZU,L. 

Thus the mechanical impedance per unit area is 

z —   (113) 
u 

only those harmonics which occur in the expansion of the radial 

velocity u being chosen. 
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(a) Radially pulsating sphere. Here u -= uo =-- U = a constant, 

and to = (1—izld-z2)' so the impedance per unit area is 

z = 

0„C   
' " 1 + z 2 1 ±z2f 
( Z2 ± 2Z \ 

(114) 

where z =-- ka. The real component of z is the acoustic radiation 

resistance per unit area, whilst the imaginary part is associated with 
the accession to inertia (see definition 29). At high frequencies, when 

ka is sufficiently large, the inertia component is negligible and the 
impedance is 

z = poc. (115) 

The physical interpretation of (115) is that the impedance of the 
sphere is equal to that of the medium (see definition 20). 

(b) Radially pulsating hemisphere. Here 240 = ¡U; ui = 
(1-1; 24-z2—iz3 _ 
1-1-z2 4+ , as found from Tables 1, 2. Substi-

tuting z4 these values in (113) we obtain, for the spherical harmonics of 

zero and unit orders, 

z = Pet(z2) z2  -1-2 \4-1-zq Z4 \ Z  \+1. 22±z3 1). (116) 
2 ( 1± ee 21".  

To attain a more accurate result when z is large, additional harmonics 
are required. It is seen from (116) that z varies with p., and at the 
pole (Fig. 3), where IA, = 1, z exceeds poe the resistance of the medium 

(definition 20) when z is large. The value of z from (116) is then 
approximately ¡Po e. At the equator ih = 0 and z = boe. Inclusion 

of higher harmonics would reduce z at the pole but not at the 
equator, since p. is then zero. On the average the value of z over 
the surface approximates to the value poc when z is large and higher 
harmonics are incorporated. Formulae (114) and (116) will be 

required to provide the values of simulating terminal impedances for 
horns of finite length in Chapter X (see definition 28). 
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FLUID PRESSURE ON VIBRATORS: ACCESSION 
TO INERTIA 

1. Pressure at any point on rigid disk* vibrating in an infinite 

rigid plane [3 la] 

The velocity potential at a point P (Fig. 13) due to an elemental area 

dA vibrating axially with harmonic motion is, from (76), Chap. II, 

FIG. 13 

1 e-ikR 

dd, = R_ dA; (1) 

2irwhere R is the distance from P to dA, and Éo = —been. is the 

velocity of dA normal to the plane. From (31) Chap. II, 

ay6 . , 
P Po—at = tpoamp, 

the time factor ei" being inserted before and removed after differen-

tiation. Thus from (1) 
2; dp = p0 ,40 e-ikR 

dA. 
27r R 

(2) 

To determine the pressure at any point on a vibrating rigid disk 

forming part of the plane, we have to apply formula (2) over the 
entire surface of the disk. Referring to Fig. 13, the pressure at P due 

to the elemental area R dRd0 is 

--acR 
d jP° *)É e p =- - R R dRdO. 

27r  

* See definition 47. 

(3) 
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The total pressure at P due to the whole disk is, therefore 
R, 

P - — iP°Ce° f dO f ke-ikR dR, 
TT 

0 0 

(4) 

since k = co/c. 

The evaluation [3 b] of this integral is too extensive to be included 
here, so the result alone is given. 

The pressure at any point distant x from the centre (b = xla) of the 
disk is 

P = (acoustic+inertia component in quadrature) 
r 2 Z4 Z6 Z3 Z6 

= POCeOillfg2 - ggg - •••]+ i[Zgl - g3+e5 - •••]} , (5) 

where [3 b] 

g2 = 1 

g4 = 1+2b2 
g6 = 1 + 6b2+ 3b4 

9,8 = 1+12b2+18b4+4b6 
92. = 2F 1[ —1), —r; 1; b2] 

= F(—¡,-¡,1,b2) 

g3 = 

g, = -¡,1, b2)+ 5b2F(— , , 2, b2)+164-b4F( -- I, 1, 3, b2) 

g, = F(—Î,¡,1,b2)-P31b2F(—e, b2)+_ipb4F(_e, b2)+ 

±,106,(—¡,¡, 4, b2) 

g, 1, b2)+ 18b2F(— ¡', 2, b2) +1;rb4F( 3, b2) + 

+12kb4F( 4, b2)±fio8F( ¡-, 5, b2) 

The total pressure at any point on the disk consists of two com-
ponents in quadrature • (a) the load 

component, associated with sound 
radiation, in phase with the velo-

Pi city of the disk, (b) the inertia com-
ponent, associated with the flow of 
fluid in the neighbourhood of the 

FIG 14 disk, in phase quadrature with the 
.  

velocity. The vector diagram illus-
trating these relationships is shown in Fig. 14. If the disk were 
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massless its impedance per unit area at any point of radius x = ba 
would be 

z = -7- = Po c1{-2! g2 — —4! 94+ —6! g6 'el +  i [Zgl — — 93+ — g5 • • • 
P 22 Z4 26 23 25 

4 3! 5! 

= re-Fixe. 

2. Variation in pressure over the surface of rigid disk 

From (5) the acoustic pressure at any radius x is 

Pa + Po cÉ0(12- 4e-4i(1+2b2)+16(1+6b2+3b4)— 

z8 
__(1+12b2+18b4-1-4b15+ 

8! 

510 
+-10! (1+20 b2+60b4+40b6+5b8)}, 

1) (6) 

(7) 

where b = xla. 
The portion of the series given in (7) can be used to evaluate pa for 

values of z (= ka) < 2-0.* For greater values of ka additional terms 

must be incorporated to secure accuracy [see 3 b]. 
The acoustic pressure variation over the surface for several values 

of z is portrayed graphically in Fig. 15. At low frequencies the pres-
sure is constant, but the edge pressure diminishes relatively as ka 

increases. Beyond a certain point the central pressure decays and 

ultimately vanishes when ka = 27r or co/27r = 3,400 , for a disk 

10 cm. radius. Above this frequency it oscillates between zero and a 

constant maximum. 

The inertia component of the pressure calculated from the imagin-
ary part of (5) is also plotted in Fig. 15. At the centre it is about three 
times the acoustic pressure when ka = 0.5, but falls away towards 
the edge. As ka increases, the acoustic pressure rises more rapidly 

than the inertia pressure, whilst at ka = 2.0 it is appreciably the 

greater of the two. 
The total pressure ,/(74-1-p) = p and its phase angle 01 with the 

axial velocity are also shown in Fig. 16. Even at low frequencies the 
total pressure is not constant and falls towards the edge. To preserve 

constant pressure at small values of ka, the velocity of the disk when 

* When ka = 2.0 the error using only 5 terms is about 1 per cent. In acoustical 

work this is negligible. 
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flexible would have to increase with the radius ultimately becoming 
infinite at the edge. In fact for ka < 0.5 the velocity must vary as 
/(a2_ x2)k to preserve uniform pressure over the surface. 

3. Total acoustic pressure on one side of rigid disk 

This is found by integrating the acoustic pressure given by (5) over 
the surface of the disk. Thus the total acoustic pressure or force 

tI 5 

• 

1 
11.0 

Acoustic 

-"•••...»• Inertia 

......- -----P -2 è.o --. ..-

,e•--....... •-..,„„. 

....!

..7... •..„ 
.... 6 • •, 
//  ‘./. 

4.----1 ......)-- ........... 

bi,..- 0.5 . ...,.. \ \ .%* / / *4) 
\ \ 

1.,,  \ \ 
.  

•••• , ...... `4,.. 
\ ..... 

I 0 
Edge 

05 i.0 
Edge 

Fie. 15. Curves showing acoustic and inertia pressure on the surface 
of a rigid disk vibrating in an infinite baffle, for various values of ka. 

associated with sound radiation is [3 b] 

a 

27r f pax dx = 2ira2 f pab db, 
0 o 

where pa is given by (5). Substituting for pa in the integrand above 
we obtain 

z6 fa= 27,a2poco f [5b— 

o 

— —z5(b+12b3 +18b5 + 4b7)+...] db 
8! 
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Z2 24 ..L. 5Z6 21z8i_ 1 
= 2ea2p0 Cço[2.2! 4! 2.6! 2.8! 1-1 

A [(2z)2 (2z)4 (2z)8 (2z)8 1 

Poo li 2.4 2.42.6 + 2.42.62.8 2.42.62.82.10 *1 

o 
Edge 

= c4 A[1— j1z1=pociAGi, 

01.5 

Centr-e 

Valuee of b-% 

01-5 1.0 

Edge 

FIG. 16. Curves showing the total pressure and the phase angle 
between it and .,he axial velocity of the rigid disk of Fig. 15. 

(8) 

where G1 = ./,(2z)] . 

The function G, is plotted in Fig. 17 [219]. 

This is identical with the value obtained by the late Lord Rayleigh 
[219] using an entirely different but less direct method. The inertia 

component of the pressure is found in like manner as shown in § 4 

below. 
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4. Accession to inertia (mi) 

The vibration of a body in a fluid is accompanied by two salient 

effects, (a) sound waves are propagated outwards, (b) a cyclically 

varying flow of fluid occurs in the neighbourhood of the body. To 
maintain this flow the driving force must include an inertia or watt-
less component. If u is the normal velocity of an elemental surface 

area, the kinetic energy of the fluid associated therewith [216] is 

dT = 111.2 dm, where mi is termed the ̀ accession to inertia' [219]. The 
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influence of this reactive component in the driving force is to increase 
the phase angle between the total pressure and the surface velocity, 

and, therefore, to reduce the power factor. 
If the body is a flexible circular disk centrally driven, the mass of 

fluid disturbed reduces the frequencies of the vibrational modes. The 
fundamental symmetrical centre-moving mode (one nodal circle) of 
a free edge aluminium disk, 10 cm. radius, 0.055 cm. thick occurs at 

120 , in air, but at 21.8 in water. In the latter case the accession 
to inertia is ten times the natural mass of the disk, whereas in air it is 

only 1/800 of this value. 
Consider the vibration of a rigid circular disk along the axis X'ai as 

shown in Fig. 18 A. At an adequately high frequency the wave-length 
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is less than the radius of the disk. Owing to interference in the 
space beyond the disk, the radiation is propagated in beam formation 
(Chap. V, § 1). For simplicity imagine the beam to be a coaxial right 
cylinder of equal radius to the disk. There can then be no local flow 
of fluid in the vicinity of the disk. The air in contact with the disk is 

set in vibration, but it moves axially and does not spread out, i.e. there 

is no divergence from the source. Thus the inertia pressure on the 
disk is zero. The other pressure component being in phase with the 

(a) 

Infinite rigid plane 

X' 0   X 

Ri9Urcula 

(b) 

FIG. 18 A and re 

spherical surFace 

velocity is associated entirely with sound radiation. Similar reason-
ing applies to a disk vibrating at one end of a very long cylindrical 

tube of the same radius, provided reflection from the open end is 
negligible. 

One case which invariably presents a little difficulty is that of a 
radially vibrating sphere. Owing to spherical symmetry, there appears 

to be no divergence of radiation from any particular part of the 

surface. Moreover, it seems to follow that local flow is absent and the 

accession to inertia is zero. It is easy to show the fallacy of this 
argument. Imagine AB (Fig. 18 B) to be a tiny portion of a radially 

pulsating sphere. This area controls the radiation within that part of 



56 FLUID PRESSURE ON VIBRATORS [III. 4 

the solid angle 8i2 situated beyond the precincts of the sphere. In 
the absence of divergence, the radiation would be confined to the 
cylinder ABCD. In practice, however, the radiation diverges to fill 
the solid angle ABEF, so there must be local flow, and it follows that 
a radially pulsating sphere is not devoid of accession to inertia. 
There are two analytical methods of deriving mi for both of which 

a knowledge of the inertia component of the pressure (or the velocity 
potential) at any point on the surface is essential. If the normal 
velocity is identical everywhere, the total pressure, and hence m, is 
found by integrating over the surface. When the velocity is variable, 
the kinetic energy associated with each element must be integrated 
over the surface, and the result divided by half the square of the 
velocity of some selected point. This gives mi in terms of the velocity 
of the point chosen. 

It is usual to select the driving point, so that the reactance due to 
mi can be treated in the usual way. When, however, the edge velocity 
exceeds that at the centre, the former should be chosen. 
Method 1. To illustrate the first method we shall find mi for a rigid 

circular disk vibrating in an infinite rigid plane. From (5) the inertia 
pressure at any point on the disk is, omitting the imaginary i, 

z3 z5 
= Po cÉofrgi — îigs + 95.. -) • (9) 

The inertia pressure on an annulus of radius x and radial width dx 
is errpix dx, so that the total inertia pressure on one face of the 
disk is a 

2/t f pi x dx = 27Ta2 f pib db, (10) 

since b = xla. 

To integrate the hypergeometric functions g1, g3, etc., the following 
integrals are required: 

f2Fi(a, p, y, b2)b2Y-' db = —2y 2r P, y+ 1, 1), 
o 

where y =-- 1, 2, 3, etc. 

f fl, 1, b2)b3 db = P, 2, 1)— i2Fi(a, fi, 3, 1)}, 
o 

f 2Fi(a, /3, 2, b2)b5 db = {2F 1(a, fi, 3, 1)— hFi(ce, 13, 4, 1)}. 
11 
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Having integrated (10) in terms of the hypergeometric functions on 
the right-hand side of (11), it is necessary to evaluate these by aid of 
Gauss's formula 

r(y)r(y —a —13) . 
2F1(a, /3, y, 1) —   (12) 

r(Y— ce)r(Y — P) 

The total inertia pressure on one side of the disk is then found 
to be [3 b] 

f. POCÈOPZ)3 (245 _L  (22)7  
" k2 12.3 12.32.5 12.32.52.7 ...) 

• 22 (22)3 (22)5  
= 42 ( 2z 12.32.5+ 12.32.52.7 (13) 

The series within the brackets is ir111(2z)/4z, where H1 is Struve's 

function of unit order. Since mass = force/acceleration = fi/a40, the 
accession to inertia 

_Pocil 111(2z) G — 
CO 2 it) 

(14) 

where* G2 = 141(22)/2 and (14) applies to one side of the disk only. 
At low frequencies when the infinite plane is removed, formula (14) 
gives nzi for both sides of the disk, i.e. the infinite plane doubles mi. 
The function G2 [3 b, 219] is plotted in Fig. 17. 

Method 2. To illustrate the second method [1, 4] involving the 
kinetic energy of the fluid, we choose a flexible circular disk vibrating 
in an infinite rigid plane. For a disk whose dynamic deformation 
curve (definition 37) ist e e (1— 0 2), the inertia pressure at any 

point thereon can be shown to be [4] 

= iPocoÉmaxa{(1-942F1(— 1, 1, b2)-47),Fi(-1, 1, b2)), (15) 

provided the propagation is substantially spherical, i.e. Ica 0.5. 

The maximum kinetic energy of the fluid associated with an elemental 
area dA moving with normal velocity Éma,, is [216] 

dT = ¡porkiÉmax dA, (16) 

where sh is the inertia component of the velocity potential at the 
surface of the disk. Now from (31), Chap. II, p = po beat, so intro-
ducing the time factor eiwg and removing it after differentiation, 

pi = ¡Po *4i or=- - . (17) 
Po w 

* Alternatively mi = irpoas(Hi(2z)/z2} = mass of a cylinder of air of radius a and 
height a{111(2z)/z2}. 
t In this section maximum values of the cyclically varying quantities and h are 

implied. 
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Insetting the value of ei from (17) in (16) we obtain 

dT — ipi dA 
2«, 

The kinetic energy associated with an annulus of radius x and width 
dx is —iwpiex d,x = —i7ra2pieb db, since b = x/a. Thus using the 
value of pi from (15) the kinetic energy of the fluid associated with 

infinite rigid planes 

c - eat 
'Centre 
stationary 

Fro. 19. Diagram showing various forms of dynamic de-

formation curve of the type e C0(1—cpx2/a2). 

\_I 

negative 

one side of the disk is 

\ 

§ 

\‘‘ 

D 
cp>o<1 cp Mern'brane Cp >I 

T = 7rpo f [(1 —cp)F1+ eF2] (1 — cpb2)b db. (18) 

o 
The upper limit of integration in (18) is 1, since this is the value of 

b when x = a; also 1i = F(—¡,¡,1,b2), and F, b2). 
Performing the integration in (18) by aid of the integrals in (11) 

and using Gauss's formula (12) to reduce the hypergeometric 
functions, we finally obtain [4] 

T = Poa3enax(1—e+AP2). (19) 

In terms of the central velocity T = Pnia., so the accession to 

inertia is = a3(1—e+eie 

for one side of the disk only. 
By allotting certain values to y, the value of mi for various dyna-

mic deformation curves shown in Fig. 19 can be found. For a rigid 

(20) 
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disk y = 0, so m = Po a3, which is identical with the value found 
from (14) when z 0-5 (spherical propagation). When y = 2, the 
disk vibrates with a nodal circle whose radius is x = a/V2. The value 
of mi is then aPo a3 which is approximately 8-6 per cent. that of a rigid 
disk. The very large reduction in mi is due to the two equal areas on 

either side of the nodal circle vibrating in antiphase. By differen-
tiating (19) with respect to y the kinetic energy is found to be a 

minimum when y = 1-96. This is substantially the case of the nodal 
circle at x = a/V2. When 9, = 1 we obtain a first approximation to 

a membrane in its gravest mode. Here mi for one side is 0-813po a3 or 
about 0-305 that for a rigid disk. If p > 2 the edge amplitude exceeds 
that at the centre. The edge velocity is É (y-1), so that in terms 

of this velocity 8  po as  
vs, = 3 (cp- 1)2 (1 HP+ Age ) . (21) 

If in the expression é = Émax(1 —02) we make p — co but keep 
y finite, the case of a centre-stationary mode of vibration is 

obtained and (21) reduces to 

mj = ti'poa3 (22) 

expressed in terms of the edge velocity. 
A slight modification of the preceding method can be applied to the 

case of a free-edge disk with a nodal diameter. In terms of the 
maximum edge velocity, rai for one side is Apo a3 which is precisely 

à that for a rigid disk. 

5. Vibrators without a baffle [3 c] 

In practical speaker problems we are usually concerned with conical 
diaphragms. So far the conical shell has not yielded its secrets to the 
analyst, and it is, therefore, necessary to compromise. When a very 

large baffle is employed, formula (14) can be used. In the absence of 
a baffle and in cases where the loud speaker operates in a small 

cabinet, the problem must be attacked from a different standpoint. 
The only geometrical solid which lends itself readily to analytical 

treatment, and at the same time can be used as an approximation, is 
the sphere. By aid of spherical harmonic analysis the accession to 
inertia for various types of vibration (see Fig. 20) can be found 

[3 c] and some typical results are given in Table 4. The total accession 
to inertia is the sum of that due to the various harmonics in the 
expansion of the radial velocity. In general, two or three harmonics 
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give an adequately accurate result at low frequencies. Each harmonic 

component is associated with a frequency correction factor. That for 

ue(p).0 cos e 

o e 

-ueo9 
ugup) 

o e 

4.1 iZ Pole 

yz•I4 Z 
.9+0 

o CQuATOR 

P.0 

Flo. 20 

(a) Sphere vibrating axially. 

Radial velocity u = U 

(b) One hemisphere vibrating axially, the other 
quiescent. 

u -= (Ili from 0 to le, and u = 0 from i7t to e. 

(c) Two hemispheres vibrating axially in opposition. 

u = Uµ from 0 to ¡Tr, and u -= — LTµ from ie to ir. 

2+ k2a2 h 
a sphere vibrating axially [3 e, 219] is —   has been 

4+00' w—c— 

plotted in Fig. 21. It has a maximum value of 0.6 when ka is 0.91. 
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TABLE 4 

10 12 

025 

02 

E; 

015 

01 

0-05 

Accession to inertia of various vibrators [3c, 4] 

Type of vibrator 
Dynamic deformation 

curve 

1. Free-edge disk, with nodal 
diameter, in infinite rigid 
plane. 

2. Sphere vibrating radially. 

3. Sphere vibrating axially. 

4. Two hemispheres vibrating 
in opposition along their 
common axis. 

5. One hemisphere quiescent, 
the other vibrating radially. 

6. One hemisphere quiescent, 
the other vibrating axially. 

7. Sphere with n nodal circles 
passing through the poles. 

e = e._ co. a 
a 

a = radius 

u = U 

ti = Uu= U COB 0 

u =-- U coo O from 
o =- 0 to ¡se 

ti — U COB from 
O = ¡rr to IT 

U from O ---
to ¡IT 

u = 0 from O = 477 
tO IT 

u = U cos O from 
O = O to IT 

u = 0 from O = 41T 
tO 77 

u= U sin"0 sin nx 

Accession to inertia mi 

hp,, a' when ka < 0.5, n > 0. 

4rrpo 
  4 &Co, 1-Fea* 1rpo 

(+k24+k:a/ torp0a3zir. 

1.1/rpo as when ka < 0.5 

1.41/Tpo as when ka < 0.5 

0•44rpo a3 when ka < 0.5 

2.-E1 n! ) 

when ka < 0-5, n > O. 
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For a sphere 10 cm. radius, 0.91 corresponds to a frequency of 490 ,---,. 

As a first approximation this factor can be applied to rigid disks and 
conical shells for the same values of ka, when there is no baffle or 

when the latter is quite small compared with the wave-length. The 
value of mi is found by multiplying the value for an infinite flat 

baffle by C„, i.e. m = 2pocAG,C„/(0. 
To simulate the effect of a large baffle two spherical caps at each 

end of a diameter can be taken, both vibrating in the same direction. 
More than three harmonics will be required for accuracy. 



IV 

VIBRATIONAL MODES* 

1. Circular disks 

Imagine a free-edge homogeneous loss-free circular disk in vacua 
driven centrally by an harmonic force. Since there is neither radia-
tion nor transmission loss, the impedance at the driving point is 

wholly reactive. If the radial velocity of propagation is very high, so 

that the ratio ertv,./co is always very large, the time taken for energy 
to be transmitted from the centre to the edge will be small compared 
with the duration of a quarter cycle. Thus the disk behaves substan-

tially as a rigid structure and in a practical sense it moves as a whole. 
For these conditions to be manifested at 3,000 •-•-,, a disk 10 cm. 

radius would have to be very thick and, therefore, unduly heavy. 
The amplitude and the sound radiation in air would be minute. 

In practical acoustics this condition does not occur, the radial 

velocity is relatively low and the disk does not move as a whole. 
Thus there is a progressive phase shift along any radius. The inherent 
forces are due to inertia and elasticity. The waves propagated 
radially outwards are of an elastic nature and suffer reflection at the 

edge, there being no energy lass in the ideal case. Starting at zero 
frequency the effective mass (see definition 33) of the disk as pre-

sented to the driving mechanism is obviously its natural mass. As 
co/27T increases, a point is reached when the reflected wave arrives at 

the centre in antiphase with the transmitted wave. Since no loss 
occurs, these waves are equal but opposite, and the disk vibrates 
with its centre stationary. The driving force 

f -=-- me w2e0 or me = fico2e0, 

and since e, = 0 at the centre, the effective mass is infinite. The 

effective mass of a centrally-driven free-edge homogeneous circular 
disk at any frequency is given by [38] 

4ept f  B  
me — 

14 121-1-0•116B+C)' 
(1) 

4 12w2p(1—a2) 
where p = density of material; k _  

a = radius; 

* Only the symmetrical modes of disks, cones, etc., are considered here. 

st2 
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a2 CI —a1 c2  I = thickness (uniform); = 
A c2(bid-d1)—ci(b2-Fd2) 

a2 

a2(bi ±c/1)— (b2+ c/2) ; 

c2(b1+611)—ci(b2±d2) 

2(1  J (kia)—Jo(kia);b1 = YI(kla) 
kia 1 

b2 = 2(k117 )Yi(k,a)—Yo(kia); e1 = 11(kia); d1 =-- —1C,(kla) 

C2 = I,(kla); d, = Ko(kla). 

Using formula (1) the 

Frequency 

32 64 128 iv 

.1,(kia) 

curves of Fig. 22 for a centrally driven 

aluminium disk 10 cm. radius, 0.0185 

cm. thick were computed [38]. Starting 

at zero frequency where m, and m are 

identical, the former is almost constant up 

to k,a = 1.2. Thereafter it rises rapidly 

until at kia = 1.9 it becomes infinite 
when the first centre-stationary mode 

occurs. An approximate analogy to this 

mode can be drawn from the impedance 

2 4 6 of a resistanceless parallel LC circuit 

[35 b]. The effective inductance is 

L/(1—w2LC). It increases from 

L at zero frequency to infinity at 

w2LC = 1, where the 'centre-stationary' 

condition is simulated. In passing through the point 

w2LC = 1 or w = V(11LC), 

the phase changes abruptly by 180°, i.e. it reverses. This also occurs 

in the disk case of Fig. 22 where me = +oo. The reactance at the 

driving point is then of an elastic nature, but infinite in magnitude, 
i.e. the effective dynamical stiffness is infinite and the compliance 

zero. Beyond this frequency me (now negative) increases until at 

approximately k1a = 3.0 it is zero. The direct and reflected waves 

annul each other on a circle whose radius is 0.68a. This circle is 

therefore nodal and the portions of the disk on either side move in 

antiphase. Under these circumstances the elastic and inertia forces 

over the disk annihilate each other. Moreover, the effective mass is 

evanescent, and with a finite driving force the amplitude would tend 

ki a 

Fm. 22. Effective mass curves 
of centrally driven free-edge 
aluminium disk, 10 cm. radius, 

0-0185 cm. thick. 
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to be infinite! In practice, where vibration occurs in air, the impe-
dance is purely resistive. The amplitude is finite owing to radiation 

and transmission loss, whilst the frequencies of the vibrational modes 

are reduced due to fluid inertia. 
It is of interest to consider a simple way of ascertaining the radius 

of the first nodal circle on a free edge centrally driven disk of constant 
or variable thickness. Assume the dynamic deformation curve to be 

of the type e — eo( 1—cpx2/a2), where y is a variable parameter. The 
condition to be fulfilled is that the integral of the momentum over 

the disk shall vanish, i.e. there must 

be as much negative as positive mo-

mentum. Thus 

a 
1 mv =-- 274 f  0, 

a 

x2 

0 

(2) 

where pi is the mass per unit area and 

&(1 —yx2/a2) is the axial velocity at a 
radius x. For a uniform disk pi is 
constant and we find the value 
y = 2. At the nodal radius e — 0, 
so 1—(2x2/a2) = 0 or x = alV2, 

which is a fair approximation to the 

exact value 0-68a. 
Reverting to Fig. 22, as (»lea rises beyond the point where me -= 0, 

the latter increases and the former cycle of events is repeated ad in-
finitum. The second frequency for which me .-- oo corresponds to 
one nodal circle and stationary centre (point circle), whilst the second 
frequency where me -= 0 gives two nodal circles of radii 0-39a and 

0.84a. So long as the disk is homogeneous, the values of 1c1 a corre-
sponding to the centre-stationary and centre-moving modes of 
vibration are independent of size and material. The shape of the 

aluminium disk at various frequencies is illustrated in Fig. 23. 

These configurations hold for any disk provided the values of 1c1 a 

are identical. 
Curves of like nature are obtained when the centre of the disk is 

removed and the resulting annulus is driven at its inner edge. When 

the outer edge of a centrally driven disk or an annulus is clamped, 

the driving mechanism is immobile at zero frequency, so the effective 

kia-z 1(18..6 k a-ro 
178~ 1980 ,-19.8 --. 

FIG. 23. Dynamic deformation 
curves of disk in Fig. 22 at 
various frequencies. 
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mass is negatively infinite. The curves take the form [38] illustrated 
in Fig. 22 from kl a ---- 1.9 upwards. 

2. Flexible reeds 

The same arguments are applicable to flexible reeds [38] under 
various terminal or boundary conditions. For a simple cantilever reed 

clamped at one end and driven harmonically at the other [114 c] 

1 cosh k21 cos k21  
m (3) 

k, (sinh k, loos k21— cosh k,1 sin k21)' 

where kl = pi w2/qI; Pi = mass per unit length; I the moment of 
bd3 

inertia of a rectangular section = —12 ; / =- free length. 

The effective mass curves are identical in form with those for a 
clamped-edge disk. 

When the reed is free at one end but clamped and driven at the 

other [38], pi /cosh k,1 sin k, 1+ sinh k, /cos k2/) 
(4) 

k,k 1+ cosh k, / cos k2/ 

The curves for this case correspond to those of Fig. 22 for a free 
edge disk. 

3. Conical shells 
The results in the preceding section indicate in a broad sense what is 
to be expected when conical and other shells, symmetrical about 

a polar axis, are driven. At the same time it must be recognized 

that these 'driven' frequencies, where modes occur, correspond 
to the natural frequencies when the vibrator is impulsed in vacuo. 
Whereas disks lend themselves so readily to mathematical analysis, 
conical shells have so far been recalcitrant to the inquisition of the 

mathematician. It is impossible, therefore, to present hypothetical 
curves exhibiting the effective mass of a conical shell driven in vacuo. 

In a subsequent chapter, however, it will be shown that curves of 
a somewhat similar nature to those for disks have been obtained 

empirically, using conical shells. The vibrational frequencies are not 

separated by wide frequency intervals as in the case of the equivalent 
flat disk. Fortunately for purposes of sound reproduction they occur 
in cluster formation (see Chap. XVIII). 

4. Reed-driven circular disks 
When a cantilever or other class of reed is used to drive a circular 

disk the system is complex and its vibrational frequencies differ from 
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those of either constituent [114 a, c]. If md and inr represent, respec-

tively, the effective mass of the disk and reed referred to their junction 
point, the centre-moving vibrational frequencies of the combination 

occur when the effective mass at the driving point vanishes, i.e. 
md+m, = O. The frequencies in question are, therefore, found by 

adding the expressions for md and m,., as given above, and solving 

for w. Preferably they are found graphically by plotting the disk 
and reed curves using the same axes and invert ng the ordinates of 
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Fm. 24. Effective mass-frequency curves for finding 

vibrational frequencies of a reed-driven disk. 

one, e.g. the reed curve. The points of intersection P1, P,, etc. are the 

roots of md+m, = O. 
The condition for stationary centre modes is md±m„ = co. This 
is satisfied at any asymptote of md or m,.. These statements are 
illustrated graphically in Fig. 24. The second asymptote for the reed 

occurs at the same frequency as m, = 0 for the disk and a stationary-

centre mode ensues. 
Provided the first frequency of the combination is well below the 

first mode of the reed for which m, = 0, the system can be treated 
as a disk driven by a simple helical spring. If 8 is the stiffness of 

the reed at its point of attachment to the disk, under the above 
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condition 8 =- cu2(nze+ mo), where me is the effective mass of the disk 

to which is added a small portion mo for the reed.* By plotting 
me = «8/(02) — mo}, the point of intersection with the disk curve gives 
the fundamental vibrational frequency of the combination. 

5. Reed-driven conical shells 

If the effective mass curves of the shell could be computed, the treat-
ment would be similar to that for reed-driven disks. As this cannot be 
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3000 

done, the procedure is to determine me for the shell experimentally, as 
shown in Chapter XVI. The cone should have its usual complement 

of nuts and connecting rod for attachment to the reed. There are 
two principal cases to be considered, (a) reed frequency low, (b) reed 
frequency high. In Fig. 25 curve 1 is for a conical shell, whilst 
2 and 3 relate respectively to reeds having fundamental frequencies 
of 300 and 3,000 Owing to diaphragm transmission loss, the 
me curve is akin to a damped sine wave oscillation. Even at low 

frequencies the effective mass is not outstandingly high. Conse-
quently the 3,000 reed curve does not intersect the diaphragm 

curve at low frequencies but passes above it. This entails a reduced 

* If cu0/2ir is the fundamental reed frequency when unloaded, mo 

2500 
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amplitude at the frequency where, but for the absence of loss, inter-
section would occur. The effective mass on the reed is the difference 
in the ordinates of curves (i) and (3). At 100 , it is very large indeed, 
so the amplitude and, therefore, the sound output are insignificant. 
As aer rises the effective mass falls until from 650 to 1,000 r•-• it is 
relatively small. A minimum value occurs between these frequencies. 
The mechanical impedance is also a minimum somewhere within this 

range. Thus re/ze has a maximum value; so also has the output. 
Considered on a decibel basis the output will be fairly constant over 
the above range. The two curves intersect at F and P3 and these 

points correspond to vibrational modes where the output will be 
greatest. The 3,000 reed curve intersects the curve for another 
diaphragm, a portion of which is shown dotted. In this case there 
will be vibrational modes at P4 and P,. 

The low-frequency reed curve (2) intersects the diaphragm curve 
(1) at about 50 where a prominent mode occurs. If the remainder 
of the reed curves are plotted as in Fig. 24, there may be intersec-

tions at higher frequencies. In all cases the combined impedance 
is solely resistive where the curves intersect, i.e. it is re = Z. 

6. Centring devices 

In hornless moving-coil speakers it is customary to provide a centring 
device to preserve axial motion of the coil, thereby eliminating wobble 
and ultimate damage due to the coil rubbing on the magnet. This 

device takes various forms, some of which are shown in Fig. 26. 
Although the theoretical me curves might be difficult to determine 

rigorously by analytical methods, it is easy to see that the principles 
enunciated above and illustrated graphically are applicable here. The 
lowest frequency of a conical diaphragm on a centring device depends 
upon the stiffness of the latter. For good reproduction it should be 

less than 30 Up to 200 , a hornless speaker diaphragm can be 
taken to move as a whole, so me= mnd-mi. Suppose the curves of 
Fig. 22 represent me of the centring device driven at its point of 

attachment to the coil, there being no loss. If the effective mass of 
the diaphragm is set off below the horizontal axis, the vibrational 
frequencies correspond to the points of intersection of the two sets 
of curves. In practice loss occurs and the fundamental vibration 

is the most powerful. It must not be assumed, however, without 

experimental evidence that because the fundamental is inaudible, 



(a) 

70 VIBRATIONAL MODES [IV. 6 

the higher modes of the combination in the lower register are not of 

importance. 

Limb of device bolted 
to ring with spacing 
washers between 

Outer securing ring 

Hole for bolting 
ring to magnet 

Moving coil 

(b) 

(c) 

FIG. 26. Diagram illustrating three centring devices for moving-
coil loud speakers. 

7. Flexible annular surround 

Consider the system shown diagrammatically in Fig. 27 A. The 

conical shell is supported on an annular surround and the driving 
coil has no centring device. There are three principal low frequencies 
of vibration [114 a]: (a) the diaphragm vibrates axially as a whole on 
the surround, the system being akin to a mass and helical spring, (b) 

the diaphragm vibrates transversely (side to side) under the surround 
constraint, this being a form of wobble, (c) the surround itself vibrates 
as an annular membrane. The problem before us is to determine 

each frequency. The only case which presents difficulty is (b). To 
bring the whole problem within the scope of simple analysis the 
following artifice is adopted. 

In Fig. 27 B m is a rigid rectangular block representing the dia-
phragm, whilst the annular surround is simulated by rectangular 

membranes above and below the block. Provided m„ is much greater 
than the mass of the two membranes 

8 
w1 = j me (5) 
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where me = mn-Frai; s = axial stiffness. By considering torsional 

oscillation about the axis XX' 
38 (6) 

the accession to inertia being negligible for this mode of vibration. 

Thus (0 2 — /3 (nin+ M i) =__ 

?Yin 

where to = mi/mn. 

(a) 

Annular 
membrane 

Flo. 27. Diagrams illustrating three forms of oscillation 
in a moving-coil system. 

(7) 

Knowing col for the conical diaphragm on its surround, also the 
values of mn and mi (7) is used to calculate the frequency of 
the wobble. In general it is about twice the frequency obtained 

from (5). 
The fundamental frequency of the surround vibrating as an 

annular membrane can be estimated approximately by supposing it 

to act in the same manner as a stretched string [114 a]. Then 

= IT 
inreg 

(8) 
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where 
me„ = effective mass of surround including mi; 

r = total radial tension at inner circumference 

/ = radial width of surround. 

From Fig. 27 B we have, for small displacements, 

Axial force = Tx = se, 
se 

or T = 8/, 

X 

which on substitution in (8) yields 

(03 .= 
M es 

[IV. 7 

2ebT; 

(9) 

Although this result is adequate for most practical requirements 
below 200 ,--, the method is not rigorous. The complete solution is 

given in a later section, where it is shown that in hornless speakers 

the higher modes follow the sequence 2, 3, 4, etc. Thus if the funda-

mental is found from (9) the overtones are obtained by multiplication. 

In practice, the radial tension is not always constant round the peri-

phery of the membrane. This broadens the fundamental resonance 
band and mitigates its severity. 

The ratio of the surround frequency to that of the diaphragm 

moving axially on the surround is from (5) and (9) 

(03 

(01 M e, 
(10) 

where m, is the effective mass of the diaphragm and a portion of the 

surround including the appropriate accession to inertia. 

The addition of a centring device eliminates the wobble or renders 

it innocuous. The main axial frequency is now increased due to the 

additional constraint. If the centring device imposes a constraint 

8, the new frequency of the diaphragm is 

1 18+81. 
co' = 

27risi me 

403 

ime8(8+81)' 

m, 8  

provided the diaphragm vibrates as a rigid structure, 8 and 81 being 

of the same order of magnitude. When this is not so, the procedure 

is that given in § 13. 

also (12) 
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8. Air chamber due to re-entrant cone 

When a conical diaphragm has a re-entrant cone at the vertex, as 
shown in Fig. 28 A, and there is little clearance between the coil and 

centre pin of the magnet, the air-chamber so formed may cause 
resonance. The electrical analogue of the mechanical system is 

shown in Fig. 28B. The inductance simulates the effective mass of 

the diaphragm with respect to the chamber, the condenser represents 

Air leakage paths 

L s diaphragm 

Input 

Fie. 28 A and B 

Volume under 
compression and 
expansion 

(a) 

Re Leakage 

(b) 

the compliance or reciprocal of the chamber stiffness, whilst the 
resistance is equivalent to the effect of air leakage between coil and 

magnet. 
Neglecting the influence of leakage, the vibrational frequency is 

/ 1 / 8 
LC 41 me• 

We have now to find 8 the chamber stiffness in the absence of air 

leakage. 
Using the adiabatic gas law pVY = const. we have on differentiating 

both sides with respect to the displacement e, 

.9V  — [PV7] = YPVY-1— -1-1" O—p = 0. Oî 

(13) 

(14) 
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Multiplying by A/VY, where A is the circular area within the coil-

former, we get ypA eV A bp 
(15) 

V be =- be • 

The quantity on the right in (15) represents the force per unit dis-

placement, i.e. 8. The negative sign signifies that the pressure in the 

chamber increases as e decreases, i.e. the slope of the dynamical 

characteristic is negative. Now the change in volume is W = A be, 

which on substitution in the left side of (15) gives 

8 

yA 2p0  

(16) 

since po is the normal atmospheric pressure.  

e A  

From (13) and (16) w v   (17) 

This formula is unsuitable for finding the frequency due to the re-

entrant cone, since me varies with frequency as shown in Chapter XVI, 

so we have to resort to a graphical procedure. The effective 

mass-frequency curve of the diaphragm is obtained experimentally 

with the re-entrant cone decapitated to render it innocuous, i.e. 

8 = 0: me = 8/(02 is plotted using the same coordinate axes. The 

points where the curves intersect give the vibrational frequencies. 

Taking a numerical example with practical values, let A = 20 cm.2, 

V = 40 cm.3, po =106 dynes cm. -2, we obtain 8 _= 1-41 x 107 dynes 

1-4 x 107 
cm. -1. Thus me —  2 from which the data in Table 5 were 

co 

compiled. 
TABLE 5 

Effective mass Resonant frequency 

(^-') 

140 
35 
0-35 
0-085 

50 
100 

1,000 
2,000 

Consider the effective mass curve (2) of Fig. 111. If the data in 

Table 5 were plotted-ea the same coordinate axes, the curves would 

intersect just above 100 and again above 1,500 ,—. The magni-

tude of the acoustical effect in both cases depends upon the air 

leakage. At 100 ,— the leak is much greater than that above 1,500 
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Consequently unless the clearance is small the low resonance will 
be insignificant. At the higher frequencies it is sometimes quite pro-
minent as shown in curve 1, Fig. 136. This graphical procedure is 
approximate since the stiffness of the chamber may, in turn, influence 

the effective mass of the diaphragm. 

9. Composite vibration of coil, coil former,* and diaphragm 

This trio constitutes a complex vibrational system whose properties 

it is now proposed to examine analytically. In a rigorous sense the 
mechanical system is represented by the analogous electrical circuit 
of Fig. 29A. The driving coil is replaced by a fixed inductance at the 

Input 

Le coil former 

Input 

FIG. 29A and B 

Uniform transmission 
line former 

LeE Me 

Lea Diaphragm 
per se 

(a) 

(b) 

sending end of a short uniform transmission line representing the 

cylindrical former, the termination being an effective inductance 
which can be positive, negative, or zero, thereby simulating the 
effective mass of the diaphragm as presented to the coil former. This 

circuit can easily be analysed by aid of well-known electrical trans-
mission line formulae. The coil former in practice is very short, the 
transmission timellV(q1p) being of the order 10-6 to 10-5 sec., so the 

application of transmission formulae to such a simple problem would 
be like using a steam-hammer to crack a nut. An approximately 

analogous circuit is sketched in Fig. 29 B in which -h. the mass of the 
free length of the former is added to that of the coil. If we imagine 

* This is the neck or unwound portion of the cylindrical former between coil and 

diaphragm. 
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the alternator to be short-circuited, the natural frequency of the 
remainder is 

j(LL-ELL.) 01, 
(18) 

since the inductance of L and Le in parallel is LLel(L+ Le). Trans-
forming (18) to its mechanical analogue, we get 

jr-Fm;\ 
(19) 

merit; /8' 

where 8 --= stiffness of coil former == qA11, A = section, 1 ---- length, 

=-- mass of coil ++ mass of free length of former, 

tn; = effective mass due solely to diaphragm. 

When the effective mass is infinite we have from (19), dividing above 
and below by ,,i(m), 

= i/(8/mc). (19 a) 

This gives the fundamental frequency of the coil on the unwound 
length of the coil former when the diaphragm end is immobile, and 
will be recognized as a simple mass and helical spring formula. 

Reverting to (19), since m ; varies with frequency, an indeterminate 
condition obtains, and as it stands the formula is useless for finding 

the natural modes of the system. By transposition (19) can be 
written 

{(w2mc/8) — 1} •(20) 

For a specified coil and former (20) gives the effective mass of the 

diaphragm required for resonance at any selected value of cu. Con-

sequently if ?Tr; from (20) and tn; for the diaphragm (usually found by 
experiment) are plotted using the same coordinate axes, the points of 
intersection satisfy (20). Thus the abscissae of these points give the 
vibrational frequencies of the system. For an average case 8 is of the 
order le to 1010 dynes cm.-1, whilst rez, varies from 2-5 to 6-5 gm. 
which means that up to at least 2,000 * m0. Thus for 

resonance to occur between 0 and 2,000 the effective diaphragm 
mass must be negative and numerically equal to that of the coil plus 
one-third of the free former length. 

The graph of (20) is shown by the full line curve in Fig. 30. The 
effective mass is infinite when w2inc/8-1 = 0 or w = V(8/m,), which 

is identical with (19a) if the diaphragm end of the former is fixed. 
The dotted line curve in Fig. 30 represents the effective mass of a 
diaphragm, apart from that of the coil and former, which was sub-
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tracted. The intersections with the full line curve give the vibrational 

modes of the system. The effective mass of the diaphragm is quite 
small beyond 3,500 and there are no vibrational modes at higher 

audible frequencies, since the curves do not intersect. It follows, 
therefore, that if the vibrational frequency of the coil on the former, 

when the diaphragm end is clamped, is adequately high, there is no 
combined longitudinal oscillation of the system during sound repro-

duction. 
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Before leaving this subject it is of interest to note that if the 
connexion between the former and diaphragm be of a flexible nature, 

the asymptote in Fig. 30 will occur at say 1,500 Thus up to 

1,400 the reproduction will be fairly normal resonance probably 
occurring in the neighbourhood of 1,500 (according to the effective 

mass curve of the diaphragm). Above 1,500 the full line curve lies 
well above the diaphragm curve, so the combined effective mass is 

large. Consequently the amplitude is appreciably reduced and the 

upper register lost. It is easy to corroborate this by experiment. 
In the solution of vibrational problems under review two salient 

methods are employed, (a) electrical analogue, (6) effective mass. 
Where the structure can be analysed into simple mass and stiffness 
components, or into an equivalent transmission line where the waves 

are longitudinal, the electrical analogue is probably the simpler 
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process. But where the vibrations are flexural, as in a disk or reed, 
or transverse as in a membrane, the procedure is inapplicable and it 

is necessary to rely upon the effective mass method. Examples illus-

trating the procedure in loud speaker design are given hereafter. 

10. Annular membrane loaded statically at inner radius 

Before treating the vibrational aspect of the subject it is well to 
deal with the mechanical and geometrical properties of a statically 

loaded membrane. A practical arrangement encountered in certain 
hornless speakers is illustrated in Fig. 31. A membrane or a cloth cone 

Fm. 31. Diagram illustrating forces on circular mem-
brane. F is applied to a small metal attachment. 

formed from a circular sector is held securely between two outer 
clamping rings and centrally loaded on a small central circle. A disk 
immediately assumes the shape of Fig. 31, whilst a cone of 90° apical 
angle preserves a straight slant side. On treatment with a solution 
of celluloid in acetone or other suitable solvent, the astringent 

influence of the dope causes the cone to assume the form of Fig. 31. 
When dry the shape is maintained on removal of the load. 

To treat the problem analytically we shall deal with a perfectly 

elastic homogeneous circular membrane loaded as above. 

From Fig. 31 
f de _ (Tx , 

27-txx 
(21) 

where eirxr is the total horizontal radial tension on the ring of 

radius x. 
From (21) 

f (1:±A1' 2irr 1 

so =- f log — +A1 . (22) 
2irs ex  
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At the clamped edge x = a and e= 0, so the shape of the membrane 
is given by f a e --  log - . (23) 

27rr 

If the centre is clamped to a metal disk, radius b, its displacement is 

f , a eo =-_ 
Zer 

(24) 

11. Symmetrical modes of circular membrane in vacuo [215] 

Referring to Fig. 31, consider an annulus of radius x and radial width 

dz. The force acting vertically is 

[ 5e 
— „, — harpy— 

bx 

and for stability eis must be equal to the accelerational force 
—27Tx dx e, where pi is the mass of the membrane per unit area. 

Thus equating these two forces we obtain 

or .. e 
pix ax2 ax 

(25) 

for harmonic motion. 
The differential equation of the dynamical system, in the absence 

of radial modes of vibration, is, therefore, 

d2e 1 de .2p,e 
cr-x2+ cu+ =°. (26) 

Writing kï = co2pi/e, and inserting this value in (26), we obtain 

d2e , 1 de -i_k2e O. (27) 

The solution to this equation involves two kinds of Bessel functions 
both of zero order. ThuE 

C =_-- A,J0(klx)+Bly.(klx). (27 a) 

When x = 0, 170 = —oo, which does not fit our requirements, since 

e must be finite, so B, = O. 
Thus AiJo(kix) (28) 

is the desired solution. To find A1 suppose the central amplitude of a 
steady oscillation in the absence of resistive loss to be e.. Then 
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C — C. when x =- 0, and since J0(0) = 1, A1 = eo. Thus the dynamic 
deformation curve for the ideal loss-free state is given by the equation 

C -- 4.4(k,.). (29) 

This curve is plotted in Fig. 32, the origin representing the centre of 

the diaphragm. At the clamped edge x = a and C -= 0, so Jo(ki a) --- 0 

is a condition which must always be fulfilled. In the absence of a 
driving force, the diaphragm can vibrate only in one or more of 

its natural modes. These correspond to the values of k1 a for which 
J0(k, a) = 0, i.e. to the roots of the latter. We assume that the mem-
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Fla. 32. Bessel functions of the first kind of zero and unit orders. 
In reading diagram replace x by k1x. 

brane is caused to vibrate in one of its natural modes by an external 
agency. It is then left to continue the harmonic vibration with 
constant amplitude. At the first vibrational mode Jo(kia) = 0 and 

(see Fig. 32) kia 4 0.7667T -= 2.4, 

so the dynamic deformation is given, to a scale where the central 

amplitude is eo, by the curve from kl x -= 0 to kia = 0.766e. For 
the second mode k1 a --> 1-757e so the shape includes the portion 
between this value and the origin. Thus the value k, x = 0.7661T now 
corresponds to the first nodal circle, since at the corresponding radius 

C -- O. The radius is therefore 10.757766a — 0.436a. The higher modes 
.  

can be treated in like manner. Beyond the first, there is an almost 
constant difference of ir between consecutive roots. As a first approxi-
mation the nth root is obtained from (4. a)n = 7r(n —0.244). To test 

this let n = 5; then ka -= 4.756/r, whereas the more accurate [213] 
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value is 4.75277r. The approximate formula is sufficiently accurate 

for practical purposes. 

12. Annular membrane in vacuo 

For the free vibrations the membrane is clamped at its outer and 

inner radii a, b. The boundary conditions being e = 0 at x = a, 
and at x = b, we have on substitution in (27 a) 

A „Jo(kia)± Bil'o(k,a) = 0 (30) 

Ai<10(kib)+ 1314(k, b) =- 0. (31) 

For these equations to form a consistent system, the condition written 

determinantally is 
Jo(k,a) 17,„(ki a) 

Jo(k,b) Yo(k,b) 

from which, on expansion, we get 

= 0, (32) 

..10(kia)Yo(k,b)—Jo(k,b)Y0(k,a) = 0. (33) 

The vibrational frequencies are found on solution of this equation 

for k, as follows [213, 213 b]. 

The sth root of Jo(yy)Y0(y)—J,,(y)Y0(yy) = 0, y > 1, is given by 

42)(2+22)3 
Y tr+  t-3 (34) 

7:17 zcr5 
where 

87r - 1 100(cp3— 1) — 34336(cp5-- 1) 
1:17 P = 8cp q = 3(89)3(cp —1)' r 

5(84))5(?-1) 

alb, <py = k,a, y = k,b, s = number of root (1, 2, 3, etc.). By 

way of example let alb = 15/12 = 1.25, a value suitable for the 

surround of a hornless speaker. To find the first root of (33) we have 

477, p = —0.1, q -= 0.127, r = —0.84. From (34) it is clear that 

the first root is substantially k„ b = 477, the higher roots being 877, 
1277, and so on. If the frequency of the fundamental mode is 120 

(see Fig. 126), the higher values are 240 360 etc. Consequently 

in speakers where the width of the annular surround (a —b) is a small 

fraction of the minor radius b, the vibrational modes follow the 

sequence of the first n natural numbers. 

We have now to determine the dynamic deformation curve of the 
annulus. Since it is clamped at both boundaries (a, b) an arbitrary 

radius x0 must be selected and given an amplitude, say eo. The 
necessary boundary conditions are e = 0 at x = a and x = b; also 



82 VIBRATIONAL MODES [IV. 12 

e eo at x = x„. Substituting these quantities in (27 a) we obtain 

e _ eor  Jo(k. x)Yo(ki a)—Jo(ki a)lro(ki x)  
zo)lro(ki a) —./0(ki aPro(ki xo)i' (35) 

where x b, x, > b < a. 

13. Effective mass of annulus driven axially at inner radius 

When the annulus is driven harmonically at its inner radius by a 

diaphragm, as in the hornless moving-coil speaker, in the absence 
of loss the impedance at the driving ring is wme, where me is the 

effective mass. This can be positive, negative, or zero, according as 
the reaction is due to inertia, compliance (elasticity), or is evanescent. 

The latter condition corresponds to a vibrational mode of the driven 
annulus and the central amplitude increases without limit,* since the 
inertia and elastic forces over the membrane balance out. From (21) 
the axial force at any radius is f = —27rev(deldx). To ascertain E, the 
conditions are e = 0 when x =- a, and e = 4 when x = b. Inserting 
these in (27 a) the expression for the amplitude is 

e Vo(kix)Y0(lcia)—Jo(kia)Y0(1c1x)1 
(36) 

blJoi b)Y0(ki 10(lcia)Y0(1c,b) j• 

Performing the differentiation deldx and inserting the result in the 
above formula, we obtain 

J (k x)Y (k a)—J,(1cla)Y1(1c1x)1 
f 27reowcix[i 0 (37) 

Jo (1c, b)Y0(1c, a)— a)Y0(ki b) 

This force at a radius x is opposed by the accelerational component 
—w2eme. Equating this to (37) the effective mass at the inner radius 

b is 27,bpivi(ki b)Y0(ki a)—J0(1c, a)Y1(1c, b)1 
(38) 

= Ic1 Vo(ki b)Y0(ki a)—J0(4. a)170(4b)r 

since e = eo when x = b, and •r/a)2 = p1/14 
The natural vibrations occur when the denominator of (38) is zerot 

which makes me infinite, since the inner radius is then immobile. This 
corresponds to the centre-stationary modes of a disk. At the centre-

moving modes me vanishes, and when the driving mechanism is 

massless, b)170(ki a)—J0(ki a)Yi(kib) = 0. (39) 

The values of k1 are found on solution of (39). Thus the effective 
mass curves of a membrane are somewhat similar to those of a disk. 
(See curve 1, Fig. 33 for illustration.) 

* Provided the drieng mechanism is massless. t See also (33). 
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When the radius of the driving-ring vanishes, the effective mass can 
be found as a limiting case of (38). Thus when b is small. J1(kb) = 0, 

< ib 1, Y,(kib) —217Tkib, and Yo(k,b) * (2/7r) loge(kib). 
Substituting these values in (38) we find that when b --> 0, 

me -= O. 
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Fm. 33. Effective mass curves of annular membrane 
and conical diaphragm. The points of intersection give 
the vibrational frequencies of the combination. 

From a physical aspect this is seen readily from Fig. 31 and expres-

sion (23) where e -- .0 when x = O. The total horizontal tension at 
any section is 2exT. When x vanishes, so also does the tension, so 
there is no restraint and theoretically the driving force causes the 
extension to approach an infinite value. 

Annular membranes are used in hornless speakers to support the 
diaphragm at its periphery. Experimental evidence indicates that 

the effective mass of a rubber* annulus undergoes profound variation 
at the first vibrational mode (diaphragm all but stationary). Before 

* Leather is used in practice since rubber perishes. It cannot be regarded as 
'elastic'. 
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resonance it becomes highly positive and thereafter negative as shown 
in Fig. 33 and in Fig. 111, curve 2. This is in accordance with the 

theory given above. An approximate method of solving the problem of 

the diaphragm and its surround is given in § 7. We shall now deal with 
the matter more rigorously on the assumption that the membrane 

is not influenced by accession to inertia. Actually this is impossible 
unless the annulus is extremely heavy. Curve 1, Fig. 33 shows the 

effective mass of an annular surround driven at its inner radius. When 
k,a = 8.5, me = 0, so that the driven mass is that of the diaphragm 

only. At kia = 16, where in the present case w/2/T = 120 ,, the 
annulus executes its first vibrational mode with its inner radius 
stationary (see also Fig. 126). In practice two cases arise, (a) a 

centring device is used to prevent wobble as explained in § 6; (b) the 
air-gap in the magnet of a speaker is large enough for the centring 
device to be omitted, or the axial constraint it imposes is negligible 
compared with that due to the surround. Taking (a) first, if 8 is the 

stiffness of the centring device of negligible mass, the effective mass 
of the system, assuming the diaphragm to move as a whole, is 
me = 7118 The structure being rigid means that this is the 

value of me when the diaphragm is driven by the coil or from the 
inner ring of the surround. Consequently, if the effective mass 

tne = ma-8/w2 is plotted using the same coordinate axes as those for 
the membrane (inverted), the intersections represent the vibrational 
modes of the trio. This has been done in Fig. 33. P4 is the vibrational 

frequency with the centring device in the absence of the surround 
(30 ,), whilst P5 is the actual value (35 ,) with the surround. In 
practice there is transmission loss in and radiation from the mem-
brane. To illustrate this, the probable shape of the membrane curve 

is shown dotted. The diaphragm curve 2 cuts the latter in two points 
P6, P., close together, and these are associated with vibrational modes 

of the annulus per se, as shown in Figs. 125, 126. If s, the dynamical 

coefficient of the centring device, is replaced by that of a reed, the 
solution applies to a reed-driven cone with an annular surround (see 

Figs. 75B and 76). 
In the absence of a centring device the diaphragm curve is indicated 

by (3). Pi corresponds to vibration of the diaphragm as a whole on 
the surround, whilst 4, P, are associated with vibrational frequencies 
of the latter as an annular membrane. They correspond to the points 
in Fig. 126 where curve 2 intersects the static inductance curve 
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between 100 and 150 The ratio of the mean frequency of P2P, to 
that of 131 is about 7/1, which agrees quite well with the value found 
experimentally. The diaphragm mass of 22 gm. includes its own 

accession to inertia, but not that of the surround. If curve 3 is lowered 
bodily about 7 gin, the accession to inertia due to the surround is 

taken into account. It is then assumed that mi is the accession 

to inertia for a diaphragm whose radius is the mean value for the 
surround. Obviously the vibrational frequencies alter but little. 
A similar procedure can be used for curve 2. 

The difference between the present method and the simple pro-
cedure where the surround is treated as a pure constraint is due to 

inclusion of inertia effect which was ignored in the latter method. 
As the frequency rises, inertia becomes important owing to its inter-

action with the elastic property of the surround. For example when 
a = 8-5 the effective mass of the surround is zero. When ki a just 

exceeds 8-5, m8 is positive. This means that the mechanical impedance 

of the surround at its inner radius is not given by the simple formula 
me= 8/co. 

If the surround were devoid of mass, but retained its elasticity, the 
axial stiffness when driven from the inner radius would be from (24) 

8 = MO "=." 21T111°geîa • (40) 

Although the analysis has been used to illustrate the behaviour of 

large conical diaphragms having annular surrounds, it can also be 
applied to the moving-coil horn speaker of Chapter XX. In this 
case the damping is high and the vibrational modes are not marked. 
The effective mass can be measured as described in Chapter XVI. 

14. Membrane driven by constant force per unit area 

This case approximates to the electrostatic speaker shown in Fig. 59. 

Assuming loss-free conditions in vacuo the equation of motion is 
obtained by aid of § 11. The force relationship is 

inertia + elastic = driving 

ee  or (41) tee ae\ 
P1 Ot2—I'Vx2+; 794 f' 

where f = fc, eiwi per unit area. 

* The radial tension of the surround is not uniform, so there are two maxima 
instead of one as indicated in Fig. 33. 
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The motion being harmonic 82C/t2 = —w2e, hence (41) becomes 

— - = ex2 x Ox e 
(42) 

where 14 = (.02p1/-r. 

From § 11 the complementary function of (42) is e= A1J0(kix). To 
find a particular integral assume e =t(t), this being a function of t but 
not of x. Then 02e/Ox2 and 8C/øx are both zero. On substitution in 

(42) we obtain 

k(t) = or e(t)= (43) 

The complete solution of (42) for our immediate purpose is therefore 

e AiJo(kie) —  k—re• (44) 

At the clamped edge x = a, e = 0 which on substitution in (44) gives 
the constant 

A1 eJo(k,a). 
(44 a) 

Using this value of A1 in (44), the amplitude at any radius x is 

e f Vo(lcix) 11. (45) 

co2Vo(ki a) .1 

By plotting x and e the shape of the diaphragm can be obtained. At 
all vibrational modes the driving force causes the amplitude to be 
infinite—in theory—excepting at nodal circles and the clamped 

edge. If we imagine the driving force to be removed when the 
central amplitude is C., the shape of the diaphragm at a vibrational 
mode is given by e = e0J0(1c1x) and it remains unaltered as time 
progresses, provided no loss occurs. The frequencies of the modes 

and the radii of the nodal circles are identical with those in § 11. 
When Jo(ki. = Jo(lci a) in (45) the amplitude is zero and a nodal 

circle occurs although the frequency may not correspond to a vibra-
tional mode. Inspection of the curve for Jo shows that the necessary 
condition is that k1 a shall exceed the value corresponding to the first 

minimum of J0. Now Jo = —Jj. so the condition is that lcia exceeds 

the first zero of J1, i.e. 3-83. 
Since f = foei" the velocity at any point is 

v Oe if Vo(kix) 11. 

et Pi co Vo(ki a) J 
(46) 
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The impedance per unit area at any radius is 

Jo(ki a) 
Z = 

The effective mass per unit area 

m =- — PrIo(kia)  e = 
iü) JO(k1X) --Jo(kia) 

At a vibrational mode J0( a) = 0, so Ine is evanescent provided 

6 

4 

-6 

X 

-.....) 

le,a. 
clamped 

0 at 
edge---, 

r, 
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10 

circles 

(47) 

(48) 

Fm. 34. Effective mass curves of circular mem-
brane driven by a force uniformly distributed over 
its surface, me/p, is calculated from (48). 

the system is free from loss. The effective mass is infinite when 
Jo(k, x) = Jo(lci a). At frequencies below the first root of J,(k,a) 
this can only happen at the clamped edge, but as shown above, 

there is more than one value for which Jo(kix) -=- Jo(kla) provided 

k, a > 3.83. Effective mass curves are plotted in Fig. 34, ki a having 
the value 10 at the clamped edge. 

15. Narrow rectangular strip membrane 

This type of membrane is used in the electrostatic speaker described 

in Chapter IX, § 8 and Chapter XIII, § 11. Referring to Fig. 35, the 
membrane is supported at its sides, but not at its ends, so that there 

is no tension perpendicular to the paper. If T is the tension per unit 
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breadth, then from Fig. 35, or •c„ = — where •r„ is 
T 3x 

the vertical component of the tension. The rate of change of ,r„ is 

— T °-21 , and the change in this component is 
8x2 

X = 

,2e 
a T X. ax2 

X 2a 

in metal foil on 
upper side of dielectric 

Backplate 

Fie. 35. Diagram illustrating construction 
of electrostatic speaker. 

(49) 

The accelerational force on a rectangle of width bx and unit breadth is 

— 131. 0x et-2 • (50) 

For equilibrium we have from (49) and (50) 
,2e , 
ax2 = Tat2. 

For harmonic motion the solution* of (51) complying with the con-

dition e = 0 when x = 0 and 2a, is 
e _ 2a ( , . A co. cot+ Blain cot), (52) 

where (ne/2a)2 = co2pipr. 

* This means that the membrane executes one mode at a time. 

(51) 
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From (52) the natural frequencies of the membrane are given by 

where n = 1, 2, 3, etc. 

'7 IT 
CU 173., (53) 

16. Influence of accession to inertia in lowering frequency 

Hitherto the analysis has been based on vibration in vacuo. With 
heavy membranes, the accession to inertia in air is not very serious, 
but in certain cases with which we shall have to deal later, the funda-

mental frequency may be lowered about 50 per cent, or so [1, 4 1)1 
Cases of this nature cannot, in general, be solved by rigorous methods, 
and we are driven to approximations or to experimental determina-

tions. Assuming the dynamic deformation surface to be identical in 
air and in vacuo, the potential energy of the diaphragm is unaltered. 

Moreover, the kinetic energy alone is affected, and with it the fre-

quency of vibration. The latter being inversely proportional to the 
square root of the total equivalent mass (see definition 34) it follows 
that 

co 4/ nt«  1  
(55) 

mg+ il±mi/ma 

rag is the equivalent mass during vibration in vacuo, 

to/27r is the frequency in air, 

<or/ 2n. is the frequency in vacuo. 

The accession to inertia is determined as shown in § 4, Chap. III, but 

the analysis is very protracted unless the distribution of radiation is 
spherical. To evaluate m« we proceed as follows: taking a dynamic 

deformation curve of the type e= e,,(1 —cpx21a2), the kinetic energy 
of an annulus of radius x and width dx is Pi 2217x dx, so the kinetic 
energy of the whole membrane is 

where 

a 

Irehemax f [i-cp()2]x dx = ma(1—cp+icp2)i.e.... 
o  

(56) 

Thus tn« = m(1—p+ p2). When y = 1 we obtain an approximation 

to a membrane vibrating in its gravest mode. The equivalent mass 
is then m« =If If the membrane vibrates in an infinite flat 

baffle and the sound propagation is spherical, m = 1.6p0a3 (Chap. 

III). Thus mi/mq = 1.5p,a/pi. For a membrane of thin aluminium 
foil pi -= 4 x 10-3 gm. cm.-2, a = 20 cm. Taking po for air at 20° C. as 
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1-2x 10-3 gm. cm. -3 at normal pressure, mi/mg = 9. Thus the ratio 
wicut, = 4-- 0.32, which means that the accession to inertia causes 

a 68 per cent. reduction in the frequency of the gravest mode of the 
aluminium diaphragm. It is to be remarked that, so long as the 

sound distribution is uniform, this percentage is independent of the 
radial tension of the diaphragm, and, therefore, of the fundamental 
frequency. Taking mi with a small baffle at low frequencies to be one-

half the above value, we find co/cov = = 0-43. If the fundamental 
frequency in air were 130 that in vacuo would be about 300 ••••,. 

The calculations for higher vibrational modes are very complicated 
and need not be dealt with here. 

TABLE 5A 

Equivalent mass of various vibrators 

Type of vibrator 
Dynamic deformation 

curve of eection 

1. Circular membrane, radius a, in 
infinite baffle. 

2. Circular membrane, radius a, at 
vibrational mode in infinite baffle. 

3. Free-edge disk with nodal circle at 
r = a/cpi, in infinite baffle. 

4. Free-edge disk with stationary 
centre, in infinite baffle. 

5. Free-edge disk with p nodal dia-
meters, in infinite baffle. 

= ez.J•(Lix) 

= 

E = 
2 

= 

igo.:(xla)' °as PO 

Equivalent mass m, 

la,,[4(ki a) +4(ki a)] 

17. Influence of radiation and transmission loss on dynamic 

deformation surface 

Hitherto our remarks have been based on ideal conditions where 

radiation and transmission loss are negligible. The influence of 

these is particularly noticeable in tracing nodal figures with sand 
on centrally-driven thin disks. When the central amplitude is 
small, but sufficient to cause a slow motion of the sand over the sur-
face, the sand collects on a circle which appears to be at rest. If the 
amplitude is increased beyond a certain degree, the sand dances quite 

vigorously. During vibration without loss, the energy transmitted 

radially outwards from the centre is equal to that reflected inwards 
from the periphery. At a nodal position complete annulment occurs, 

provided the disk is homogeneous and adequately thin. 
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When loss occurs, the transmitted energy exceeds that reflected, 

there is a relative phase shift of the direct and reflected waves, and 
complete neutralization cannot occur. Hence in practice, in fluid or 
in vacuo, nodal lines in a rigorous sense are non-existent [107 a]. So-

called nodes are actually positions of minimum amplitude. In the 
ideal case parts of the disk on opposite sides of a nodal line move in 

antiphase. By measuring the maximum amplitude of the disk at 
different radii, the dynamic deformation surface can be found. This 
shape is preserved at all parts of a cycle of the driving force although 

the amplitude at any radius varies harmonically. Radiation and loss 
cause a phase difference between the maximum amplitude at various 

radii. Hence if measurements of the maximum amplitude are made, 
the shape of the disk cannot be obtained, since it changes progres-

sively throughout a cycle of the driving force. The shape at any epoch 
could be plotted if the phase were known at various radii. The nodal 
circles sweep from the centre to the periphery and back cyclically 
and are only nodal in a momentary sense. 

These remarks can be illustrated by reference to propagation of 

electric waves in a loaded cable earthed at the far end to simulate 

a free edge disk. The cable case is not strictly analogous to the disk. 
In the former the waves are longitudinal, whilst in the latter they 
are flexural and involve bending which has no electrical analogue. 

The current at a point in the cable corresponds to the amplitude of 
the disk at some radius. For unit input voltage and unit charac-
teristic impedance the current is 

— cosh P(1—x) 
I  

sinh PI 
(57) 

where P = propagation coefficient, t = length of cable, and x = dis-
tance from the sending end. 

Using well-known identities (57) can be written 

[cosh2c4/ — x) — sin2/3(/ — x )1+, 
(58) 

sinh2cd sin2ed 

where ix =-- attenuation coefficient, /3 -= 2n/X the wave-length co-
efficient, whilst the phase angle between voltage and current is 

tan-l[tanh 41— x)tan 13(1-x)]— tan-'[cosh cx/ tan fill 

Since the denominator of (58) is constant for any value of x, it can 



92 VIBRATIONAL MODES [IV. 17 

be omitted, so we consider the expression 

y = [cosha«(/ —x) — sin213(/ —x)]* (59) 

In Fig. 36A the horizontal broken line represents cosh2a(/—x) when 

there is neither resistance nor leakance (a .--- 0). Curve 2 corresponds 

to « > 0 when loss occurs, whilst curve 3 represents sin2fl(/—x), 13 
having an arbitrary value. The current distribution in the absence of 
loss in the cable is found by subtracting curves 1 and 3, the result 

being shown by the broken line in Fig. 36B. This corresponds to 

the amplitude of the disk at various radii. The diagram represents 
the maximum displacement, not the shape during vibration, since all 

displacements are shown positive. The phase from 7,12p to 3/r/ 2/3 is 

(b) 

[c
os

h'
 a
 (I
-x

)-
in

' 
(I 

-) 

Fia. 36. Diagrams illustrating the influence of transmission loss in 
transforming nodes into positions of minimum amplitude. / 27r/13. 

opposite to that from 0 to ir/ 213 and from 342p to 2/r/f3. Thus the 
current flows in opposite directions in these sections of the cable. 

The positions 1712p and 3/712/3 represent true nodes since there is no 
loss. The value of y (irrespective of phase which varies with x) when 
a > 0 is found by taking the difference between curves 2 and 3. This 
is shown by the full line curve of Fig. 36 B which, owing to phase shift 

of the current with x, is not an instantaneous picture of the cable 

current. Since loss occurs nodes are absent, so ir/ 2/3 and 342f3 are 

positions of minimum amplitude. 
Assuming the point corresponding to 37r/2P to be the centre of 

a vibrating disk and 2/r/P its edge, the curve between the two illus-
trates a centre-stationary vibrational mode. The curvature is of 
the wrong sign, but this is immaterial for our present purpose. In the 
loss-free case the central amplitude of the disk is zero, whilst the 

whole disk vibrates in phase, the amplitude increasing with the radius. 
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Loss necessitates central motion to replenish the energy dissipated. 
Thus the centre is a position of minimum amplitude. If the centre 
of the disk is represented by the point ir/fl and the edge by 27r/13, 
37r/2/3 represents a nodal circle when cx = 0, but a position of mini-
mum amplitude when ce > O. This corresponds to the first centre-
moving mode of vibration. With the point ir/219 for centre, the second 
centre-stationary mode is simulated, and so on. 

It is well to realize, therefore, that if the vibrational amplitude 
of a diaphragm under the action of a powerful driving force is 
measured at different radii, the plotted curve shows the maximum 

displacement, but owing to phase changes along the radius it does not 
represent the dynamic deformation surface at any epoch. 



V 

SPATIAL DISTRIBUTION OF SOUND FROM VIBRATING 
DIAPHRAGMS 

1. Rigid disk in infinite baffle* 

In Fig. 37A let D be a rigid circular disk vibrating axially in 
an infinite rigid plane. The radiation at P1 is the sum of that 
from all the elemental areas into which the disk can be divided. 

A 

(a) 

X 
Axis or disk 

D Rigid disk 

(I)) 

Flu. 37 A and B. Diagram illustrating analysis of sound distribution from 
a rigid disk in an infinite plane. e = QQN, x = QQ. 

Since P1 is nearer to A than to B, the radiation from B will be out of 
phase with that from A by an amount 2r(BC)/A, where BC is the 
difference in the two distances. At low frequencies, when BC is small 
compared with A, the phase difference is negligible and the radiation 
from all parts of the disk arrives at P1 almost simultaneously. Thus 
the distribution at a considerable distance from the disk is spherical in 
type, i.e. it is uniform, and the pressure everywhere on a hemispherical 
surface of radius r is identical. At high frequencies when BC is com-
parable with or even greater than A, there is at P1 a definite phase 
displacement of the radiation which arrives from various parts of 
the disk. In particular, if BC = IA, the radiation from A and B 
is in opposite phase, and almost complete annulment occurs. Under 
this condition interference of the radiation from the surface of the 
disk occurs in the surrounding space, and the sound is propagated 
in the form of a beam whose angular width decreases with increase 

See definition 47. 
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in the frequency of vibration [154 a]. The problem which confronts 
us, therefore, is to determine analytically the pressure in space at 
any frequency. The succeeding analysis is based upon the following 
hypotheses: 

1. The disk radiates into free fluid. 
2. The displacement is small and varies. 

3. The distance from the centre of the disk to spatial points, where 

the pressure is required, is large compared with the radius, e.g. ten or 

more times as large. Consequently the sound pencil from the disk to 
a distant point can be regarded as a series of parallel lines of different 

lengths. This condition prevails in practice, since for comfortable 
audition the listener is stationed at an appreciable distance from a 

loud speaker. 
From (2), Chap. III, the pressure at any point distant R from an 

elemental area dA vibrating with normal velocity is 
(»É e-ilcR 

dp —  ° ° dA 
IT R 

p o  e-ikR 
= — — dA, (1) 

2ir .R 

i being omitted since it is not required. To determine the pressure 

at .P, due to the whole disk, it is necessary to integrate (1) over its 
surface. From the geometry of Fig. 37 B we have 

= ON2-FP, N2-1- x2 —20N x cos° 

= r2d-x2-20N x cos O. 

Since ON = r sin cf., 
we get R2 = r2+ x2 2rx sine., cos 0 

x2 x . 
r2(1± —r2 — 2 —r sin # cos 0). 

Since by hypothesis x2/r2 < 1, we obtain 

R = r (1 — -x sin # cos 0) = r—x sin cos O. (2) 

Inserting this value of R in (1), the pressure at Pi due to the whole 

disk is a 27r 

= P rroeo fx dx sin eC08e) dO (3) 

o o 
since dA = x dxdO and, so far as the influence of distance on the 
pressure amplitude is concerned, R r. In the exponential index, 
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4096", 

60° 

90° 

9cf 

30° 

00 Disk 0 5 cm. radius 

0° 256", 

Disk - io cm. radius 

0° 

60° 

90° 

90° 

FIG. 39. Curves showing distribution of sound pressure 
from vibrating rigid disks of radii 5 cm. and 10 cm. at fre-
quencies of 256 and 4,096 The curves are applicable 
at distances from the disks equal to or greater than ten 
radii, i.e. r 10a. The disks vibrate in an infinite plane. 

[V. 1 

2. Axial pressure near rigid disk 

In deriving a formula for the pressure near the disk we must dispense 

with the assumption of parallel rays of sound used in § 1 and treat 

the problem rigorously. From (1) the pressure at a point Pi on the 

axis, due to an annulus of radius x and width dx, is (Fig. 40) 

dp = po& e-Rik-R x dx. 

Since r2-Fx2 = R2, 2x dx = 2R dR, 

R‘ 
=__ Po ëo e—ikR dB, and so 

= (P o  'Ë o iik)(U-1:kreikR1) , 

-=- (2p,&,1k)e-iik(Ri+r) sin ¡k( R, —r). (8) 



V. 2] AXIAL PRESSURE NEAR RIGID DISK 

Apart from phase, the scalar pressure is [150, 155a] 

2poë . 
pII — , sin ¡Ic(R1—r)1. 

Formula (9) indicates that when sin ¡k (R1—r) = 0, i.e. 

R1—r = 27rn/k, 

the pressure vanishes, and there is an isolated nodal point. 
k = 27r A the condition for a nodal point can be written R1—r 

Infinite rigid plane 

Rigid disk 

FIG. 40. 
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(9) 

Since 

where n is a positive integer. Taking a = 10 cm. radius, co/27r = 
4,096 at normal temperature and pressure A = 8.25 cm. and there 
is only one node which occurs 1.93 cm. from the disk. When the fre-
quency is 8,192 there are two nodes which occur at distances of 

1.93 and 10 cm., respectively, from the disk. In general the node most 
remote from the disk occurs when n = 1. These results are of great 

importance when axial air pressure measurements are made with a 
condenser microphone. If the microphone is too near the disk—or 

more usually a conical diaphragm or the mouth of a horn—variations 
in the readings will occur at high frequencies due to interference. 

Such measurements near the source do not indicate truly the per-
formance of the device at large distances where listeners are usually 

stationed. 
The minimum distance for the microphone can be calculated from 

the preceding analysis. The node farthest from the disk occurs 

when R1 —r = A and, therefore the condition to be satisfied is that 
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R1—r < A. By aid of Fig. 40 this can be expressed as follows: 

,,/(r2d-a2)—r < A, 

2.2±a2 < A2+2»±r2, 

a2 
or 

or a2a) irc 
r > — --, 

47TC (4) 

(10) 

where r is always positive. 

For practical purposes the second term in (10) can be ignored, so 
the condition is r > a2c0/477e. It will be realized that when r satisfies 
this condition the microphone may be just past the node, where a 
certain degree of interference exists. To ensure complete freedom 
from interference, it is safe to use r > a2c0/27rc as a working condition. 

3. Rigid rectangular plate in infinite baffle 

This case is of importance, since it is represented approximately in 
practice by the Blatthaller loud speaker described in Chapter XIII, 
§ 7. Referring to Fig. 41, the line OP, has direction cosines cos «, 

cosy with the x- and z-axes, respectively. The projection of a point 
in the rectangle (lying in the xz-plane where y = 0) on the line OP„, 

is then zoos «±z cosy, where « and y are the angles made by OP, 

with the x- and z-axes, respectively. Thus since OP, and QP, are 
substantially parallel, we have 

R = r — (x coa ce-i-z cos y). (11) 

From (1) the pressure at P, due to an elemental area dxdz is 

dp — Po ïo e—iler—(xcos oi-Frooay» dxdz, (12) 
27rr 

since r = R so far as distance is concerned. Removing the distance 
phase factor e, the pressure at P, due to the whole rectangle 
whose sides are 2a and 2b is [159a] 

p = P2. üe"o f earecostx dx f eikzcosy dz (13) 

—a —b 

2A, 4, ab [sin zil [sin z2] 
= 3 

In. 51 z2 

where zi -=-- Ica cos a and z2 = kb cos y. 

(14) 
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It is convenient to express z1 and z, in terms of co-latitude 9 and 

longitude x. From Fig. 41 we have 

cos a = sin 0 cos x and cosy =-- cos O. 

Thus (14) becomes 

P 
2po 4 ab rsin(ka sin 0 cos x)1 pd. (kb cos 0)1 = (15) 

er L kasin 0 cos x ji. kb cos 0 f 

FIG. 41. Diagram illustrating analysis of sound 
distribution from a rigid rectangular plate vibrating 
in an infinite plane. The projection of Q on 0/31 is 
OS ----- x cos ot-Fx cos y. r > longer side of plate. 

In the yz-plane x =-- 0, x ---= 

2po L a,b sin(kb sin cp)  
rr kb sing) ' 

where y -= tir—O. 
Likewise in the xy-plane 0 = ¡r and 

2p, L ab sin(ka sin id) 
P — er ka sine ' 

(16) 

(17) 

where e --- (kw—x). 
The function G3 — ein(ka sin 9” is identical with 

ka sine 

(2kairsin #)+.4(ka sin id), (18) 
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where is Bessel's function of order ¡. It is plotted in Fig. 38 

alongside that of the curve for ji(ka sin which represents the dis-
ka sin 4) 

tribution for a rigid disk. The focusing of the radiation from the 
rectangle in the xy-plane, for equal values of ka, is greater than 
that of the rigid disk. It is specially interesting to note that the 
distribution from the rectangle in the xy-plane, or from a square in 
the yz- and xy-planes, is identical with that from a flexible circular 
disk of radius a, whose dynamic deformation curve takes the form 

e  a  e (see Table 7). The maximum radius vector of the sub-
V(a2—x2) 

sidiary loop for the rectangle or the flexible disk is 18 per cent. of 
the axial pressure. This exceeds that for the rigid disk, as will be 
seen from Fig. 38. Referring to the rectangle, it will be evident that 
the greater a the smaller is the angular width of the sound beam. 
Thus at high frequencies where focusing occurs, the angle of the 
beam will be smaller for the long than for the short side of the rect-
angle. If we imagine a plane containing the y-axis to be rotated 
from the zy position, the angle of the beam in the plane will gradually 
decrease until a minimum is attained in the xy position. From a 
physical viewpoint this variation in focusing is easily understood, 
since the narrower the vibrator the smaller is the phase difference 
in the radiation from its elements at any point in the axial plane 
parallel to the narrow edge. 

4. Circular membrane at symmetrical vibrational modes 

In previous problems the velocity has been constant over the 
vibrator, whereas for a vibrating membrane it varies from the centre 
to the clamped edge. Consequently the distribution of radiation will 
differ from that for a rigid disk of equal radius. The following assump-
tions are required in addition to those in § 1: 

1. Neither the acoustic loading (resistance +reactance) nor the 
transmission loss in the material of the diaphragm causes an altera-
tion in its shape. 

2. Portions of the membrane moving in the same direction at any 
instant are in phase, whilst on either side of a nodal line they are in 
antiphase. 

The dynamic deformation curve of a circular membrane at a vibra-
tional mode is, from Chapter IV, § 11, e =eo.mk,x). From (4), 
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neglecting e-ikr, 
a 2/r 

P ea? f xj0(ki x) dx f eikzeinecos0 do. 

The first integral is 27,-.10(kx sin #), so (19) becomes 

p = P°L  f Jo(k, x)J0(kx sin e)x dx 
o 

— P° 4 (  a lcf—k2sin24. ){1ci Jo(ka sin #g(lci a) — 
r 

(19) 

—k sin #.10(lcia)J1(ka sin e» [213]. (20) 

At a vibrational mode J0(1c, a) = 0, so (20) reduces to 

p — e0(  ki a )J (ka sin (k)Ji(lci. a). (21) 
r 14—k2sin2# ° 

When 4 > k2sin295 (21) becomes 
Po ëo a2tJi(ki a)\J (ka sin 4,), 

P (22) 
r a I ° 

— °(ka sin e), (23) 
r  

= po a2Ji(ki a) 
where Y 

a 

An annular membrane can be treated in a similar manner (see 

Table 7). 

5. Axial pressure at vibrational modes 

On the axis sin 4> = 0 and (22) becomes 
powioa2rIcla) l• P 

(23 a) 

The axial pressure obviously has zeros corresponding to those 
of ilj(kla). In practice, however, the shape of the diaphragm differs 

from that assumed in obtaining (22), since the nodal lines are actually 

positions of minimum amplitude (see Chap. IV, § 17). The zeros may 
be obliterated in consequence of this. In the hypothetical case they 

occur when Icla 3.83, 7.01, 10.17, 13.3, 16.47, 19.6, etc. [213] 
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6. Free-edge disk with n nodal diameters [156c] 

From the geometry of Fig. 42 using spherical coordinates we have 
1.1 = QN2+ pi N2 

= x2±r2cos2,/,— 2rx sin cos(0—x)-i-r2sin24, 

r2-2rx sin ¢, cos(0—x), since x2 < r2 ; 

so r1 = r—x sin 95 cos(0 — x). 

Fla. 42. OP, = r; OQ = x (radius of annulus 
as in Fig. 37s). 

Let the dynamic deformation curve be of the type e = E0(x a)nsin n,0 
From (4) the pressure at a distant point is 

a 2/7 

P = f n ix dx f sin nOeikx.inecoo-x) do, (24) 
27rr a 

where the factor e-ike has been omitted. 

Expressing the first integral as a series of products of Bessel and 
circular functions, we have [213] 

a 27r 

p 27rran f xn+1 dx f sin nO[J0(z)+ 2 in14.(z)cos m(0— x)] de, 
m=1 

(25) 
where z = kx sinyb. 

Integrating the products of the circular functions in (25) we obtain 
a 

p P°° Sin nX f xn+1J.(kx sin 4.) dx, (26) 
ran 

o 

thé other terms vanishing, since f sin nO cos m(0— x) = 0 unless m = n. 
o 

The sign and occurrence of the imaginary depends upon n, but it 
does not affect the scalar value of p. 
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Integrating (26) by parts we find that the pressure [156 e] is 

Po L a2 sm. nxJ,i(ka sin (k) P — . (27) 
r ka singe, 

Here we no longer have the simple condition of symmetry about 
the polar axis which characterizes preceding examples. To visualize 
the spatial distribution we consider the pressure at a point situated 

in a plane containing the axis of symmetry. When the plane con-

FIG. 43. (a) Sound distribution from free edge disk a = 10 cm. 
radius vibrating with one (curve I) and with two (curve 2) nodal 

diameters at 4,096 ,---. or Ica -= 7-56. 
(b) Distribution from 10 cm. disk with 1, 2, and 4 (curve 3) 

nodal diameters at low frequencies when ka < 0-5. 
The distribution is that on a plane midway between two con-

tiguous diameters, when r > 10a, and the disks vibrate in an 

infinite plane. 

tains a nodal diameter, any point in it is symmetrically situated with 
reference to equal and oppositely vibrating areas. Consequently the 
pressure at any point on the plane is zero. Since this plane contains 

the axis, it follows that the pressure vanishes there also. If we choose 
any non-axial point in the plane and imagine the latter to rotate 
about the axis, the pressure thereat gradually increases in accordance 

with a sine law, attaining a maximum value midway between con-
secutive nodal diameters. As rotation of the plane is continued the 

pressure dies away according to the same law. Thus with n nodal 
diameters there would be 2m maxima and an equal number of zeros 
during one complete revolution of the plane. The distribution of 
radiation with one and two diameters on a median plane is exhibited 
in curves 1 and 2, Fig. 43 A, where ka = 7-56 and wi2ir = 4,096 ,--..,. 

At low frequencies when ka -‹.., 0-5 the curves for one, two, and four 

diameters are shown in Fig. 43 B. 
Formulae for the spatial distribution in various additional cases 
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are given in Table 7. Dynamic deformation curves have been 
assumed which are in close accord with the shape corresponding to 
different vibrational modes in vacuo. The general case of a flexible 
disk is given without approximation, but the arithmetical labour 
involved in plotting the polar curve is quite formidable. 
The distribution of radiation from a circular disk having nodal 

circles at various radii is illustrated in Fig. 44, comparison being 

Fm. 44. Diagram showing sound pressure distribution at 4,096 

(1) Rigid disk of radius a = 10 cm. in infinite plane (scale full size). 
(2) Flexible disk with nodal circle at x = a/2 (twice full size). 
(3) PP PP PP X = alV2 (twice full size). 
(4) PP PP 9P PP X = a/1-25 (full size). 
The disks vibrate in an infinite plane and the distribution is that 

when r 10a. 

made with that from a rigid disk of the same outer radius. When the 
radius of the nodal circle is r =- a/V2 the axial pressure vanishes 
owing to interference of the two equal areas on either side of the circle 
vibrating in antiphase. 

7. Vibrators without a baffle or with a finite baffle 

To gain an approximate idea of the sound distribution from dia-
phragms without a baffle [156 a], it is necessary to substitute a 
sphere vibrating in various ways. This involves spherical harmonic 
analysis an account of which is given in Chapter II. From (54) 
Chap. II, the velocity potential at a distance r from the centre of a 
sphere due to the nth harmonic, is 

a2 ik(a-r)u Mikr)  r e (28) 



TABLE 7 

Spatial sound distribution for various radiators in infinite rigid plane 

z -= ka sin .;!.; zi = kb sin i6; p = po Ï091/r, excepting (20); a = radius of vibrator. 

Type of vibrator Dynamic deformation curve 91 = Radiation characteristic 

1. Rigid disk. 

2. Free-edge disk [156c]. 

3. Rigid annular ring, radii 
a, b; central hole fitted 
with rigid disk [156c]. 

4. Rigid elliptical disk, axes 
2a, 2b [1611 

5. Clamped-edge disk in 
grávest mode [156c]. 

6. Clamped-edge disk 
[156 c] with one nodal 
circle at r = a/cpi. 

7. Clamped-edge disk with 
stationary centre [156c]. 

8. Free-edge disk with two 
nodal circles [156e]. 

9. Free-edge disk [156c] 
with n nodal diameters 
and one nodal circle at 

/in+2 r = a— . 
n+ 4 

e = es' 

E = tot1—(9x2las)). 

E = to. 

= is. 

e = 

e = eou — (x2 ja2)}211— (c x2 1 a”). 

= e°{1—(ela'»x2laa. 

= C0{1— (cp, xl/a9){1—(91x2/a1)). For 
a homogeneous disk without nodal dia-
meters 9, = 6.58, cps = 1,353, giving 
nodal radii 0,39a and 0.86a. 

E = Eo{1— ((Pe las))(x lesin 
cp = (2,1;1142). 

Ois the angle between radius x and 0°. 

In neighbourhood of disk, see [151]. 

Ji(z) J2(z) 

bsJifzi) 

, where zo = kti(a2cos2a+ bkoszt3), a, /3 being angles between 
zo 

radius vector and axes in plane of disk. 

sal . 

a' [8(1 — cp)V -I- 489 e}. 
8a1 r..rm 6Ji(z) 

—  
Ji(z) J2(z) 

Js(z)1 
+8qh 92 - sj• 

2a, einnx I 4+1(z) +(n+ 4) .7..+,(z)1 
(n+2)1 z r 
X is the angle between axial plane containing point, and a nodal 
diameter. 



TABLE 7 (continued) 

Type of vibrator Dynamic deformation curve 91 = Radiation characteristic 
10. Free-edge disk with sta-

tionary centre [156e]. 

11. Free-edge disk with 
[156e] stationary centre 
and nodal circle at 
r = aI. 

12. Flexible disk. 

13. Circular membrane at 
gravest mode [158 e]. 

14. General case of circular 
membrane at a vibra-
tional mode, where 

J„(k,a) = 0, 

n = number of nodal 
diameters. 

E = Edxlar• 

Ç = 
= 

= Co {a/V(a2—x1)}. 

E =Co{1— (x,/a2)}. 

= Cs x)sin ne 

= Co Jn(kix)eogne 
See (9) for definitions of O and x. 

as [J1(z) 24z)1 

z za .r 

[ .11(z) + 4,12(2,) i2 J3(:)] . 

sinz /77\i 

z = ji(z). 

a, [2 4z)-1 z, J. 

  isin nX Jn(z),In i(k I a) 
k'sin'e lees nx 

where kl É k sin 



15. Annular membrane 
clamped at outer radius 
and driven by rigid disk 
at the inner radius. 

16. Rectangular membrane. 

17. Annular membrane-
clamped at inner and 
outer edges. No centre 
hole. 

18. Spherical shell with n 
nodal circles passing 
through the poles (no 
infinite plane) [156 a]. 

t t r  Yo(ki a) — Jo(kia) Yo(kix) 1 
b) Yo(ki a) — .1Q(k, a) Yo(ki b)J 

Radiation from disk is suppressed. 

C = C{1—(x/b» on one side of centre. 
= F (x lb)} on other „ 

- rJo x)Yo(kia)_Jo(1a)Ys(1x)  1 

Jo(lci %)YRI a) — Jo(ki a)Yo(kixi).1' 
where el is the displacement at an arbi-
trary radius xl. 

u = U sing sin nx 

= radial velocity. 

x = longitude. 

  aJo(z)[Jo(ki a)li(ki a) —Yotici ageci a)] — 
b2 1 J (z)  — —5J0(zi)[J0(ki b)lri(kib)—Yo(k,b)ji(k,b)]1 

z Jo(ki a)Yo(kz b)— Jo(kib)Yo(ki 

kle k sin 4). 

For this and additional eases see [161]. 

k1  [ aJo(z)[J0(ki a)Yi(lci a) — Yo(ki a)Ji(ki a)] — 1 

kt — 'AWN. t —b./0(zi)[Jo(ki b)Yi(leib)-17,(k,b)Ji(kib)]1  

Jo(ki a)Yezzi.)— Jo(kiri)Yez a) 

where ki k sin #. 

sin"0 sin ax. 
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At a great distance fn(ikr) = 1, so (28) can be written 

Y a2 eik(0_,) = ci2 = u. s. eik(a_r), 
(29) 'n r 17.(ika) r 

where En = 11F„(ika). 

The pressure due to this harmonic is 

-= ¡Po coSlin 
2 

P°a'a u 
r nn' 

(30) 

where eik(a-r) has been omitted since it is constant at a given value 
of r. 

Although E-len can be written in the form xn+ iy. it must not be 

inferred that the pressure and the particle velocity at a great dis-

tance from the source are out of phase. The physical meaning of (30) 

is that the sound pressure at a great distance is out of phase with 

the radial velocity of the surface of the sphere. 

To find the total pressure at the spatial point under consideration, 
we have to determine the harmonic components u1, etc., in the 

expansion of the radial velocity u = uo-i-u1±...+un. Then the 
pressure is given by 

P Pod-Pi+ • ±Pn+ ••• 

Pe°a2 {(uoxo+u,x1±2t2x2+ •••)+i(uoYol-ulY 1+ • • .» 

Po wet2 (A+iB). 

The scalar value of the pressure is, therefore, 
,,z2 

— P° —  (A 2+ B 2), 

(31) 

(32) 

(33) 

where A 

and B 

To facilitate evaluation of I J, a series of values of xi, and yn, 
corresponding to the range Ica = 0 to 10, is given in Table 8. 
When the vibration of the sphere is symmetrical about the polar 

axis ZOZ' (Fig. 3), the nth component of the radial velocity is 

un = (n+4.)PM f uPnCa.) (34) 

the limits of integration depending upon the distribution of the radial 

velocity over the surface [156 a]. 
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TABLE 8 

111 

ka r., si 

0 

s. X i s. I 2.1 Ye Ys Ys I Ye Y. I Ys 

0 1.0 0 0 0 0 0 0 0 0 

0.5 0.8 +0.125 -0.024 -0.001 -0.4 40.22 +0.0135 -0.0018 

1.0 0-5 +0.2 -0.056 -0.0133 +0.001 -0.5 +0.2 +0-00 -0.0085 -0.0015 

2-0 0-2 -0.1 +0.188 -01 -0.4 -0.2 +0.268 -0.05 

3-0 0.1 -0.082 +0.33 +0.0234 -0.3 -0.246 0 -0.265 

4.0 0.059 -0.054 40.2 -0.235 -0.216 -0.1 

5.0 0.038 -0.366 +0.16 +0-217 -0.192 -0.183 -0.128 -0.0038 

10.0 0.01 -0.01 +044 +0.0077 +0.1 +0.108 -0.1 -0.1 -0.1 -0.041 +0.0101 

8. One hemisphere vibrating radially, the other quiescent 

In this case the radial velocity u = U from IL = +1 to 0, and it is 
zero from ik *- 0 to -I (see Fig. 20). Proceeding on the above lines 

we ultimately find 

A * UH-xol-tizxl-â(5113-31.4x3+,1A(6311.5-70F31-15µ.)x5), (35) 

B * Uayo+ tityl-jg(51.0-3/./.)y3-Fg6(63/2,5-701.0+151)y5). (36) 

Using Table 8 the distribution of radiation can be calculated for 

various values of ka [156 a]. 
Polar curves for ka --= 2.0 and 
10.0 are plotted in Fig. 45. 

This case is of interest in con-
nexion with an exponential 

horn, where a radially pul-
sating hemisphere is used as a 

simulating impedance. 

9. Sphere with latitudinal 
nodal circles 

The preceding principles are 
applicable to any dynamic de-

formation curve of the spherical 
surface. It may be desired to 

approximate to the distribution 
from a radiator, itself analy-
tically intractable, by using a 

sphere with one or more nodal 
circles coaxial with the polar 

axis. Let the radial velocity be 
u = U{1 (qea2)} =__ u( 

Fm. 45. Sound pressure distribution 
from radially vibrating hemisphere, the 
other hemisphere being quiescent. The 
hemisphere vibrates in free fluid and 

r 10a. 

1- cp sin20) -= U{1- q)(1 -112)). (37) 
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If p = 2 there are two nodal circles, one in each hemisphere, at 
O = le and tir, i.e. p,= ±1H2 since u = (211.2-1). 

10. Cone with finite baffle 

An approximation to this case at low frequencies, when the cone 
moves rigidly, can be obtained by using two spherical caps at the 

extremities of a spherical diameter, the direction of vibration being 
the same in both cases. The distance from pole to pole on the sphere 

is made equal to the distance from centre to centre round the flat 
baffle, assumed to be circular. The radius of the spherical cap is equal 
that at the base of the cone. 

11. Distribution from a group of radiators 

In public address systems, whether for open air or cinema work, 
it is always necessary to use more than one loud speaker. The pro-
blem which confronts us is to find the resulting sound field when 
the distribution from each radiator and its position relative to the 

remainder is known. We have already seen that when the surface 
dimensions of a radiator are small compared with the wave-length, 

spherical propagation ensues. When several rigid disks are placed in 
juxtaposition, so that their surfaces are coplanar or nearly so, the area 

is increased and focusing starts at a lower frequency than it does 
from an individual radiator. Although the angle of the sound beam 

is less for n radiators than it is for one, the ultimate area covered 
is larger. The angle and the area are augmented by arranging the 
polar axes of the radiators as normals of a convex surface. For 
example, they might be arranged on the surface of a portion of a 
cylinder or a spherical cap. 

Neglecting the alteration in output from any radiator due to the 

presence of the remainder, suppose we take the simple case of n 
identical radiators on a straight line, the separation between con-
tiguous units being constant. If the radiators are rigid disks set in 

an infinite baffle, all moving simultaneously in the same direction, 
the radiation from each is given by formula (6). To determine 
the resultant pressure at any point the contributions from all the 

radiators must be summed, due regard being paid to phase. At a 
great distance from the group the maximum pressure due to each 
unit is almost the same. From Fig. 46, assuming the sound rays 

from P1 to each unit to be parallel, the distances are, respectively, 
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0, d cos 0 , 2d cos (n— 1)d cos, corresponding to the phase angles 

0, kd cos 8, 2kd cos ,... (n—l)kd cos O. 

The pressure due to So is proportional to G cos wt, S1 to G cos(cut+ a) 

and So_i. to G cos[wt+ (n— 1)a], where 

G Ji(ka sin(k) 
and a = kd cos 0. 

ka sm 
n-1 

The total pressure at P1 is therefore dependent upon G cos(cot na). 
O 

d So d So d S, d So 
So - SI=So 

FIG. 46. Illustrating linear arrangement of five 
rigid disks vibrating in the same phase in an 
infinite plane. 

By the well-known addition formula for cosines in arithmetica 

progression, we obtain [161] 

p= d„a2G r sin ¡nail cos[wt ¡ (n — 1)a]. (38) 
[ sin ¡a 

At any particular frequency the group is equivalent to a single rigid 
disk whose amplitude of vibration is sin ¡na/sin ¡a that of any indi-

vidual member. This quantity of course varies with frequency, so 
that a single radiator cannot be used to simulate a group in ordinary 

practice. 
The characteristic of a group of five disks at low frequencies where 

G is constant is illustrated in Fig. 47. As foreshadowed in the argu-

ment given above, the additional vibrating area causes focusing 
to commence at a frequency lower than that for a single radiator. 

At higher frequencies, if the radiators are well spaced, it is obvious 
that they will not interfere seriously with one another since each 
has a narrow beam of its own. The radiation characteristic [161] is 

from (38), = G sin ¡na/sin ¡a. (39) 

When the radiators touch externally and the radius al is made to 



114 SPATIAL DISTRIBUTION OF SOUND [V. 11 

vanish whilst their number increases so that 2nal is the length of the 
group, the system degenerates into a line. The radiation can then 
be regarded as that from a cylinder of very small radius vibrating 

J (ht., sin #) 
normal to its axis. Now G — and when al --> 0, G = 

kai sinS6 
Also a = ¡cd cos 0 = 2kai cos 0, which in the limit gives 

sin ¡na = sin(knai cos 0) = sin(ka cos 0), 

5 

j<— 50 cm 50 cm. 50cm —1(-50cm,-4 

Frequency =2 I 6^, 

Fla. 47. Distribution of sound pres-
sure at a relatively great distance 
from the five disks in Fm. 46. 

Fia. 48. OM is in the line of sources. 

where a = nai, this being half the length of the line. Since ¡a ---> 0, 

sin ¡a --> ¡a and (39) becomes 91 — sin(ka cos 0). If each radiator is 
kalcos 0 

chosen to give 1/n the total radiation, the characteristic becomes 

sin(ka cos 0) sin(ka cos 0) 
—  =-_  (40) 

knai cos 0 ka cos 0 • 

Putting --= 
e sin(ka sin #) = sin z G3. 

# Pr—e, It should be 

observed, however, that the latter formula applies solely to radiation 
in a plane containing the line. In any other plane it is different; for 
example in one perpendicular to the paper and bisecting the line, the 
characteristic is obviously a circle. In Fig. 48, 0 is the angle between 
OP]. and OM, so cos a -= sing!, cost and the radiation characteristic 

becomes 91 — sin(ka sin # cos x). The preceding case corresponds to 
(ka sin ,¢ cos x) 

x = 4ir giving 91 ---- sin z/z = 1, since z = 0. The distribution is, 
therefore, uniform as stated. 



VI 

ACOUSTIC POWER RADIATED FROM VIBRATING 
SURFACES 

1. Methods of evaluating power 

There are two principal methods of evaluating the power radiated 
from a vibrating surface: (1) by integrating the product of the 
acoustic or resistive component of the pressure and the normal 
velocity over the surface; (2) by integrating the product of the pres-
sure and velocity in space at a great distance from the radiator. The 
choice of method depends upon circumstances. Determination of the 
pressure distribution over a vibrating surface is usually a protracted 
process (see Chap. III), and the analytical expressions are very 
lengthy. At a vibrational mode, the driving force is in phase with 
the surface velocity. In certain cases an approximate estimate of 
the power can then be obtained on the assumption that the driving 
force is proportional to the velocity, provided the dynamic deforma-
tion curve and r,., the resistance per unit area, are known (§ 3). In 
general, however, the second method is easier to apply than the 
first. At a great distance from a vibrating surface, the pressure and 
the particle velocity are in phase. If the spatial pressure distribution 
is known, the power radiated from the vibrator can usually be deter-

mined by analysis. A knowledge of the pressure distribution over 
the surface is then immaterial. 

2. Plane surfaces vibrating in an infinite flat baffle 

At a great distance r from a vibrator imagine a concentric hemi-
spherical surface, on one side of the plane, across which the power is 
transmitted. If p is the sound pressure and y the particle velocity, 
the power passing through unit area is pv, since at a great distance 
p and vare in phase. Now from Chap. II, § 14, p -= pocv, so y = plpoc 
and the power per unit area is p2Ipo c. For an elementary area dA we 
have dP = (p2/pc) dA. Accordingly, the power transmitted through 
the hemispherical surface is 

f f p2 dA. (1) 
Poe J J 

From Fig. 3 the elementary zonal area on the sphere is seen to be 
dA = eirr2sin 4, de, where yl.) is written for O. Thus the power radiated 
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from both sides of the vibrating surface is 
hr 

= "1'2 f 
Po e 

o 

To determine P it is merely necessary to insert the value of p2 in (2) 
and integrate. In general our problems relate to flexible surfaces 

where variations in velocity and phase occur. To obtain analytical 
expressions for P, the dynamic deformation curve of the surface in 

a fluid is assumed to be identical with that of a loss-free structure 

in vacuo. As we showed in Chap. IV, § 17, this cannot be true in 
practice, since loss converts the nodal lines into positions of minimum 
amplitude. Consequently formulae obtained on the above hypothesis 

must be regarded as approximate. Nevertheless they are decidedly 
better than nothing at all, and serve as a useful guide in the design of 
modern loud-speaking apparatus. 
The premier example which springs to mind is that of a rigid disk. 

It so happens that this particular vibrator has been studied in detail 
and the surface pressure is known (Chap. III), so the power is found 
quite simply, as shown in Chap. VIII, § 2. We shall, therefore, choose 

another case. 

(2) 

3. Membrane at symmetrical modes of vibration 

From (23) Chap. V the pressure at any point far distant from the 

centre is 
p = —r 4,(kasini6), (3) 

provided kî > k2 2, which entails a low fundamental frequency. 

Incorporating the pressure from (3) in (2) we obtain 

P —  4nT2  (ka sin #)4(ka sin e) cick. (4) 
p,c(ka) 

o 

To evaluate this integral the following formula [221] is required: 

2m)!  
14(e) = ( 1 )m m!(2n m)!(n ±m ,)!2(ie)2(h+m), (5) 

ra--o 
where n is a positive integer. Applying this formula to the integrand 

of (4) we get 

P = ( 1)In (2m-1)(2m-3)...1  41TT2 (ka)2m f sin2m+i,i (6) b 
Po e 2m(m!)3  
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i 1T 2inin! 

f sin 2M +1,6 d ..._ (2m+ i)(2m-1)...1, 

o 
Since (7) 

we ultimately find that the power radiated from both sides of the 
membrane at a vibrational mode is, 

P = (—m 
4irT2  1)  1  (karm 
Poe ni0 (m!)2(2m+ 1) 

_ 4P{J1(lci a)] 2(1- (ka)2 + (kar (kar 1 +...i kia 1!2 3 2!2 5 3!2 7 

(8) 

(9) 

4pvivel all 2  — ka i ki a J2,+,(2ka)i, (9 a) . _I L r-o 
p 

where P — r n °a4,04 '° — pocA(ka)2eg, this being the power radiated 
c 

from both sides of a rigid disk vibrating in an infinite baffle when 
ka < 0-5. 
In the membrane type of electrostatic speaker, described in 

Chapters IX and XIII, the driving force, which is distributed over 
the surface, causes a central amplitude eo. Before the power can be 
calculated from (9) the value of eo must be found. At a vibrational 
mode the effective mass vanishes (Chap. IV), the driving force being 

then in phase with the velocity of the membrane. The velocity is 
y =-- É0 .4(4 x) and the driving force per unit area for both sides is f, 

its surface distribution being assumed uniform throughout, i.e. the 

perforations in the fixed electrodes are ignored. The power radiated 
from both sides of an elementary ring of radius x and width dx is, 

therefore, 27714.10(kix)x dx. Accordingly the power radiated by the 

whole membrane is, a 

P = 2rreo 5 Jo(ki x)x dx 
o 

= 2e0A {Ji(kkilcial , 

where A = ira2, the area of one side. 
Thus the central velocity 

• P r  lci a  1 

b° = 2fAbli(kia)r 

(10) 

Substituting the value of to from (11) in (9) the power, expressed 
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in terms of the driving force, is 

f2A   1  
P = (12) 

Po el (lcar (ka)4 (kei)6 (ka)8 ). 
p 3-r V25 3!2 7 • • • 

When ka > 1.4 the series in the denominator of (12) is substantially 
unity, so the formula degenerates to 

f2A * 

Po e 

This surprisingly simple expression shows that, under the specified 

conditions, the power is the same at all vibrational modes, provided 

ka > 1.4. 
At modes above the fundamental, the membrane exhibits nodal 

lines on each side of which it moves in phase opposition. If, therefore, 
the driving force is in phase with the velocity on one side of a nodal 

line, it is in antiphase with that on the other. Consequently, for the 
power to be invariable, the central velocity must increase with 

rise in frequency. That this is true can be seen from (11), since 
r  k1 a  

increases with rise in frequency. 
P i(k,a) 

(13) 

4. Free-edge disk with n nodal diameters [121a] 

From (27), Chap. V, the sound pressure is given by 

p Po arqo{sin 71 Vn+i(x)11 . 
-L x jj 

Here dA is r2sin i dqS dx (Fig. 3, substituting e for 0), so using (1) we 
get the power radiated from both sides as 

he nr 

2p0a441 f J 1(x). 
P 8111 d#fsin2nX dX 

C X2 
o o 

2/) f 44-1(e) sin# d#, 
X2 

o 

since the first integral is IT. 

(14) 

* This can also be written P = (M)2 mean square of total force. In an electrical 
po cA mechanical resistance 

circuit at resonance we have the analogous formula P -= 
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By aid of formula (5) and the substitution x -- ka sin 4. in (14), we 
obtain 

OD 

(2n-1-2m+2)! m+2)! 
= 2P (-1)mml(2n-l-m+2)!{(n-l-m+1)!}222(n+na-m (k )2(n-f-m) x 

m-o 

x f Sin2(n+m)+14. d. 

Using (7) this ultimately becomes 

1  (ka) 2(7t +m)) 
P = P( (-1)m nivn ±m 2)qn + ± 1) 

m=o 

(n+IP)(ka)2 [J2.+2(2ka) + 2 ±*. J2n+2,.„(2ka)]. 
r=0 

When ka < 0-5, P is given to an adequate degree of accuracy by 
the first term of the series, i.e. when m = O. For one nodal diameter 

n = 1 and the power [121 a] 

p p(kar (16) 
48 

when ka = 0.5. 

Expressed alternatively, for equal output the amplitude at the edge 

of the disk is V192 * 14 times that of a rigid disk. For two nodal 
diameters when ka = 0.5, which corresponds to a frequency of 270 
for a disk 10 cm. radius, 

P — 
34,560. 

This happens to be identical with the output from a disk of equal 
radius vibrating with a nodal circle at r = a/112, provided the edge 
amplitude with a nodal diameter is the same as the central amplitude 

with a nodal circle. The ratio of the power in (16) to that in (17) is 

180/1, which demonstrates the rapid decay in output with increase 
in the number of nodal diameters at low frequencies, the edge amplitude 
being constant. It is of practical interest to compare this result with 
experimental observations on a conical paper shell (Chap. XVIII, 

curve 1, Fig. 125). As the number of nodal diameters increases the 
output decays, slowly at first, but as the frequency rises beyond a 
certain point, the output fades rapidly. The large output is due to 
the seam of the cone which introduces asymmetry therefore reducing 

the interference in space. 

(17) 
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5. Free-edge disk with one nodal circle 

For a dynamic deformation curve e e 0(1— 2x2/a2) the radius of the 

nodal circle is x = a/V2. Using the preceding analytical methods 

and formula 2, Table 7, it is easy to show that [121 a] the power 

radiated is 

1 2 3 3.4 
P = 131-1-2 (kar — (kar + 51.8! (ka)8...) (18) 3!6! 4!7! 

pÇ  1 , J3(2ka)ri 2 1 6J4(2ka)  

13(ka)2+  (ka)3 I, (Ica)2_l (Mr 

When ka 0-5, 

If ka = 0-5, we obtain 

PP(ka)4 — P(ka)4 
2,160 • 

P — 
34,560' 

which illustrates the enormous acoustic short-circuit effect due to the 
oppositely vibrating inner and outer portions of the disk. If the 
radius of the nodal circle is 0.68a, which is the correct value for free 
symmetrical vibrations, P = P/770. Thus a 45-fold increase in P is 

obtained by reducing the nodal radius 3.8 per cent., providecl the ampli-

tude is equal in both cases. In the absence of inherent mechanical 
loss, the power for constant driving force when x = a/V2, exceeds 
that when x = 0.68a, since at resonance P =f21r,. and r,. is smaller 

in the former case. 
In practice owing to inherent mechanical loss this conclusion may 

be invalid. When ka > 2 the interference is much reduced, and 
with x = aK2 and ka = 4, the power radiated for constant amplitude 

is P = P/4.4. 

(18a) 

(19) 

(20) 

6. Power from flexible and rigid disks driven by equal forces 

[121 a] 

Hitherto our comparisons have been confined mainly to equal ampli-

tudes. In practice, since the effective mass vanishes at a symmetrical 
vibrational mode, the mechanical impedance is much reduced and 
the amplitude under a given driving force correspondingly increased. 
It is proposed to compare the power radiated by bafileless rigid and 
flexible disks, having the same natural mass, being driven by equal 

forces. The driving agent is a moving coil as used in hornless speakers. 
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For a certain aluminium disk, a = 10 cm., and the frequency corre-
sponding to one nodal circle is 120 (ka = 0-23) [114 c]. When 
alternating current in the moving coil is provided by a thermionic 
valve in the usual way, the driving force is equal in both cases 
provided the currents are the same. It follows that the power ratio 

is that of the electrical motional resistances Rml.R. For the rigid 

16  e..u. 
disk from Chap. II, § 19, formula (90), P' — 27 poco4(to) so the 

/r c8 

mechanical radiation resistance is rr ' — 16 p0aetel. From Chapter VII 
27/r c3 

/1. C2  r' C2 . 
the electrical motional resistance is Rnz ' — (1.;2 42) w2m? since 

r:. < com. Now for a rigid baffleless disk as above* ni.; = 58-5 gm. 
and from Chap. XVI, Table 21, C2 = 2+104]. Using these data 

we find that Ro , is 2-1 x 10-6 ohms which is extraordinarily small, 
being in fact 1/300 of the value with an infinite baffle. By experi-
ment Rm was found to be 39-5 ohms [114 c] so the power ratio 
flexible disk R 39.5  

m =-_ rigid disk Rm' 2-1 x 10-6 — 1-88 x 106 which is colossal. 

In practice where a step-down transformer is used between the coil 
and valve circuits, the alternating current falls to a very low value due 

to increased resistance at the resonance frequency of the flexible disk. 
Taking the valve resistance as 1,600 ohms, transformer ratio 40/1, the 

resistance in the valve circuit at resonance is equivalent to about 
40 x (40)6 == 6-4 x 104 ohms. The current is therefore reduced in the 
. 3 200 1 

robot 6-4'x 104 -= 20, so the power ratio at resonance is only 1/400 the 

value computed above. Thus RmIRm' = 4-7 x 103 so that the output 
from the flexible disk is 37 decibels above that for the rigid disk when 
both are driven off the same power valve using equal signal vol-
tages. At 1,850 the corresponding values are 2,600/1 for constant 
current, and 370/1 with the valve circuit. In assessing these ratios 

at 1,850 the power from a baffleless disk is assumed equal to 
that from both sides of a rigid disk in an infinite baffle when the 

radiation is highly focused from both sides (see Chap. II, § 22, and 
Chap. V, § 1). 

* mo = 55 gm. including disk and coil; mi = 3.5 gm. without the baffle this being 
half the value in an infinite baffle (see § 4, method 1, Chap. III). 
t The static resistance of the coil Ro 1 ohm, so that in the valve circuit it 

becomes 1,600 ohms, making a total of 3,200 ohms. 
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7. Spherical radiators without a baffle* 

As yet the bafileless conical shell has defied the methods of modern 

analysis. In certain instances approximate results can be obtained 
by substituting the case of a sphere vibrating in various ways. The 
present section is included with this in view. The radiated power will 
be determined by integrating the pressure and particle velocity over 
a concentric spherical surface at a great distance, where the pressure 

and particle velocity are in phase. If the sound pressure due to the 
nth spherical harmonic is p., and the particle velocity v., the power 

transmitted through unit area of a spherical surface of radius R is 

p,, y,, po c, since p. = po ci Y.. The total power is the integral over 

the spherical surface. Thus P =- —1 J. f dA where p. is the root 
Po c 

mean square pressure. Since dA = —271-7.2 dp. (see Fig. 3) it follows 
that the power associated with the nth harmonic is [121 b] 

+1 
2711.2 

P. = 
Po c 

(21) 

--1 

If the pressure at any point on the distant spherical surface is ex-

pressed as a series of harmonic terms, the integral of the square of this 

series, taken over the surface, is equal to that of the sum of the 
squares of separate terms. This follows from the fact that 

+i 
Pn(Pem(1.4) dIL 

-1 

is zero excepting when m = n, which is similar to the case of Fourier's 

series applied to an electrical circuit. Thus in finding the power 
radiated by a vibrating sphere, it is merely necessary to add the 
contributions from each spherical harmonic. 
From (54), Chap. II, the velocity potential due to the nth harmonic, 

at a great distance r from the centre of the sphere, is 

= (a2 —r )u. ei". 

The pressure due to this harmonic 

Pa = po() = ipo a2cuu. E.,„/r (22) 

* For a cone with a finite baffle the suggestion in Chap. V, § 10, applies. 
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where the time factor ciag has been dropped. The radial velocity of the 
surface due to the nth harmonic can be written 

un= I70, where u = Uf(h), U 

and (a) 
+1 

en = (it+ i)Pn(it) f f(it)Pn(1.&) 
-1 

(23) 

(b) en = (2n+ 1)P(j) f f(141)a(11,) 644 (24) 
o 

the respective fields of application being defined below. 
Formula (23) is applicable when the two hemispheres have identical 

motions in the same direction, whilst (24) applies when the motions 
are equal but opposite. If one hemisphere alone is operative, (24) 
must be halved. From expressions (21), (22) and the above value of 
u., we find that the power associated with the nth spherical harmonic 

is given [121 b] by +1 
P. -= 2PEZ. f (25) 

-1 

1 1  
where E2 — (ika (Table 1) is a correction factor de-

n IF.)12 x2+y2 

pendent upon the distribution of radiation in space. The integration 

in (25) extends over the entire surface of the sphere, since each har-
monic is concerned with the complete sphere. 

8. Sphere vibrating radially 

Since the dynamic deformation curve is identical in all directions, we 
are concerned solely with the zonal harmonic of order zero. The 

value of 00 in (23) is, therefore, unity and 

P0= 4PE't. 

1 1  
But from Table 1 E ° —  so E2  and 

1 k 2a 2 

PO 1+ k2o2* 
4P (26) 

This result is usually derived in connexion with a spherical source 
whose size is small compared with the wave-length under considera-

tion. Moreover, the correction term 1/(1 -1-k2a2) does not then appear 
except in the form unity, i.e. when ka = 0 or is quite small. 



47ra2po c[(1 +13)2+ k2a2] • 

Provided /3 = mn/mi is small compared with unity, i.e. the accession 
to inertia is much greater than the natural mass of the shell, the 
power is constant at all frequencies. Thus we have the ideal hypo-
thetical acoustic reproducer. In general this condition will be much 

more easily obtained in water than in air, owing to the low density 

of the latter. When f3 is not negligible compared with unity, it follows 
from the preceding formulae that, for constant power output, the 

driving force must vary as {(1-113)2±k2a2}k At low frequencies 
1 + k2a2 

when k2a2 < 1, /3 is constant, so also is the output for a given driving 

force. This conclusion applies equally to any rigid body vibrating in 
an infinite baffle when the sound distribution is spherical. 

F oc 
1 i±k2a2 

( 124 ) 

9. Sphere vibrating radially, driven by constant radial force 
per unit area 

In treating this problem we shall assume me (definition 33), apart 
from mi (definition 29), to be constant at all frequencies, i.e. there are 
no resonances. The mechanical resistance (definition 31) r,. is found 
from the relationship P. r,. a. Thus from (26) 

4P k2a2  r = 4.77.a2 , (27) 
(1+ k2a 2)eg ru 1+ k2a21. 

The effective mass me =- mi+m„ 

mi( 1+P), where fl 
mi 

4Tra3p0  = 
From (2), Table 4, Chap. III, m2, = 

1+ k2a2 cuka • 

Thus m =-- 
calca 

The power radiated is 

P =- r74 

(28) 

(29) 

f being the total driving force on the surface. 

Since ze= V(rel-co2t4) and f is constant, it follows from (29) 

that Pc(  rr Substituting the value of me from (28) and of 
r;.-1-(02m: • 

t. from (27), when the driving force is constant, we obtain 

(30) 



VI. 9] SPHERE VIBRATING RADIALLY 125 

In our spherical vibrator if f is constant, we see from (29) that 
1  1 

the amplitude eo varies as aize = coV(re.--Eco2m:)• Inserting the values 
1+ k2a2 

of r,. and m6 in this formula we find that e 0 cc w2V{(14- p)2 kaa2}, and 

since by hypothesis 13 < 1, 

e. oc V(1 k2a2) (31) 
072 

At low frequencies, when Ica is small, eo cc 11(02, whilst at high 
frequencies, where ka is large, eo cc 11(0, which indicates the greater 
influence of the in-phase acoustic force at higher frequencies. 

Proceeding on similar lines it can be shown that, when an axially 

vibrating sphere is driven by a constant force, the power 

k2(4 Owl)  
P cc {(1-1-p)2(2±k2a2)2+00}. (32) 

When Ica is small the power 
k2 tü2 

P oc (1±/3)2 cc c2(1±/3)2. (33) 

Thus as zero frequency is approached the power is evanescent 

due to interference of radiation from the two hemispheres which 
constitute a double source. It is important to observe that this 

acoustic short-circuit effect increases with decrease in frequency, 
whilst the accession to inertia remains unaltered. Whereas the power 

is governed by spatial interference due to phase relationships, the 

accession to inertia depends upon the flow of fluid associated with the 
motion, and obviously this can never vanish. At high frequencies 

when ka is large, (30) reduces to 1/47ra2p, c and the power is constant 
provided ka (1+13). 

10. Two hemispheres vibrating oppositely along the common 

axis 

The axial velocities of the two hemispheres being U and —U it 

follows that the radial velocities are given by u = UM, where 

f(s) =IÀ from 1 to 0 and from 0 to —1, Fig. 20c. Owing to 
symmetry of the motion about an equatorial plane, the expansion 
of u contains even harmonics only. Hence we use formula (24), for 

the integrand of (25). Thus 

øo = f -= 
o 
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and e 2 = Pee— i) f itt(314.2-1) 4 

= 
higher harmonics not being of material importance. Then we have 

PO = 2'4 ill — (1±k2a2)' (34) 

this being one-quarter the power radiated by a sphere pulsating 
radially throughout. 

+1 
2PE: f ift6(9µ4— 6µ2± 1) d» 

-1 

klas  
ihaP(81-1-9k2a2-2k4a4-1-k60). (35) 

When ka 0.5 the power radiated is due almost entirely to P0. 

If the driving force is constant and the acoustic (resistive) com-
ponent is negligible compared with that due to inertia, the power 
radiated at low frequencies is 

provided ka < 0-5. 

The power is constant and independent of frequency. This is in 
striking contrast with the result in the previous section when the 
two hemispheres moved in the same direction. The difference is due 

to the absence of interference, since the hemispheres in the present 
case cause pressure changes of like sign. 
A fact of unusual interest is the equality in low frequency radiation 

(ka < 0.5) from (a) two oppositely vibrating hemispheres, (b) both 

sides of a rigid disk in an infinite baffle, (c) a radially pulsating hemi-
sphere, provided the velocities and radii are equal in all cases. From 
this we deduce that if a loud speaker is situated in the centre of a 
room, a baffle is unnecessary if two diaphragms are actuated axially 

in opposition. Since an infinite baffle excludes one-half of the total 
radiation, the output from the differential scheme is twice that from 

one side of the disk. It is also double that from a single diaphragm in 
a finite baffle. The above rests on the assumption that the radiation 
from the inner faces of the diaphragms is suitably dealt with, i.e. that 

it can be absorbed, although this is a difficult matter at low fre-

quencies. A design embodying these features is shown schematically 

p  2 , =_-  f (36) 
wa2p0 c( 1 -1-fl)2. 
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in Fig. 49. The diaphragms are attached to opposite sides of the 
axis of the coil, which is rotatable as in a moving-coil ammeter. The 
principle can be extended to a polyhedron so that the axes of the 
diaphragms lie in intersecting planes, thereby approximating to a 

spherical source emitting sound equally along all its radii [89]. 
When comparison of output is based on constant driving force, the 

advantage of a multi-diaphragm system is offset by the additional 
inertia. The only gain, therefore, is the elimination of the baffle. 

Fm. 49. Diagram illustrating multi-diaphragm moving-coil loud speaker. 

Additional formulae for the power radiated from vibrators of various 

types are given in Table 9. 

11. Comparison of power radiated by various vibrators at low 

frequencies 

When ka < 0-5, r > 10 a and the entire surface vibrates in the same 
phase, the radiator, whatever be its shape, can be regarded as a 
simple source.* Under this condition the power radiated from 

a sphere is comparable with that from a rigid disk of the same 
radius (which can be simulated by a conical shell moving as a whole). 

The power varies as (uA):(0210, where u is the radial velocity normal 

to the surface, and (uA)a is the effective velocity-area. Data for 

various vibrators are given in Table 10. The comparison is based 
upon (uA):111, since w is the same for all. For a hemisphere vibrating 
axially, the other hemisphere being quiescent, the radial velocity is 

u = Up, = U cos O (Fig. 20). To find the effective velocity-area, it 
is necessary to integrate over the surface of the hemisphere. Thus 

* A sphere vibrating axially is therefore excluded, since the radial velocities in the 
two hemispheres are in opposite phase, i.e. it is a double source. 
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Power radiated by various vibrators 

Since P = r„ (»se:, the effective mechanical resistance is r = Pituseg, in terms of a driving force whose velocity is cote 
and can be found from the table. 

Type of vibrator 
Dynamic 

deformation curve 

1. Rigid annular ring radii a and b in 
infinite rigid plane. Hole fitted 
with stationary rigid disk. 

2. Clamped-edge disk in gravest 
mode, with infinite plane [121 a]. 

3. Spherical shell vibrating axially 
[121 b]. 

4. Spherical shell vibrating axially 
and driven by constant force 
[121 b]. 

5. One hemisphere vibrating radially, 
the other quiescent [121 b]. 

Power radiated as sound 

e = e.. 

u --- U cos 0 (radial 
velocity). 

u =-- U cos O (radial 
velocity). 

u -= U from O 
to ¡Tr. 

u = 0 from 0 = ¡e tO 
71. (radial velocity). 

2Po Ció (Act Gia+ Ab{Gib i> (-1)m F[—m, — (m+ 1), 2, bs/as] 
(2m+ 2)! (ka)son -1-1), —0 

I J (2ka)1 r J,(2kb)1 
where Gla = 11— ka .1; Gib = I. kb r 

A„, A0 = area of outer and inner circles respectively. Both sides of ring are 
included. 

32PHk33!65! 45r.77!(ka)s+ 5-7!9! etc.), 

where P = po win' lc. 

p . 4f Icsas  

5 ere/ 

31csas(4-1-ksas)  
47raspo c{(1 -H3)2(2 + /e'er+ Icsas)/2, 

where f = constant force, 13 = 

p i  1  + 3( 4 Pat  
(approximately). 

(1 +leas 4 1-1c1/444)) 



6. One hemisphere vibrating axially, 
the other quiescent [121 b]. 

7. Spherical shell with n nodal circles 
passing through poles [121 b]. 

8. Group of rigid disks. 

9. Rigid elliptical disk in infinite 
rigid plane. 

10. Rigid rectangular plate in infinite 
rigid plane. 

u = U cos O from 
O = 0 to ir 

u = 0 from O = ¡ir 
te 77 

(radial velocity). 

u = U shine sin nx 
(radial velocity). 

e = eo. 
e = e.. 

e = e.. 

1 13 /4 k2k4a2a4) ...}. 

P (4(1 - k2a2) + + 

r P. 
1.3...(2n+1) e, 

For E.! see Table 1, Chapter II, when r = a. 

See [122]. 

See [122]. 

See [122]. 



130 ACOUSTIC POWER FROM VIBRATING SURFACES [VI. 11 

the velocity-area for a zonal ring in co-latitude O is 2r Ua2cos O sin O do, 
and the total for the hemisphere is found on integration of this 
between the limits 0 and air which gives Urct2 = UA, where A is 

half the superficial area. The effective velocity-area is obviously half 
that of a radially pulsating hemisphere, but equal to that of one side 
of a rigid disk or a conical shell vibrating axially in an infinite plane. 
The comparison in Table 10 is made on the basis of radiation from 

one side of a rigid disk in an infinite plane, since in practice this is all 
that would be available in an enclosed space. 

TABLE 10 

Comparison of low-frequency power from variou8 vibraier8 having equal 
radial velocities (U) 

ka 0-5; A = ire; diffusion into free space or 'dead' room. For the infinite baffle 
condition, the wall in which the vibrator oscillates must be non-absorbent. 

Vibrational ayetem 

Effective 
velocity 
area 
(uA). 

Solid 
angle 
û (UA )/û 

Power 
ratio to 

rigid disk 
Actual 
power 

Sphere radially. 4 UA 41, 4( UA )2//r 8 4P 
Hemisphere radially in infinite 

plane (baffle.). 
2UA 2ff 2WArlir 4 2P 

One hemisphere radially with- 
out infinite plane; the other 
quiescent. 

2UA ts (UA)' /,r 2 P 

One hemisphere axially with- 
out infinite plane; the other 
quiescent. 

UA 41r (UA)1/4x It IP 

Two hemispheres in opposition. 2UA 47r (UA)2/7r 2 P 
One side of rigid disk or other 

flat surface of equal area in 
infinite plane (baffle). 

UA 2ir (UA)1/2x 1 iP 

One side of rigid disk without 
plane, the other side screened. 

Rigid disk or conical diaphragm 
in finite baffle. 

UA 477. (UA)'/4,r i 

1 
(approx.) 

IP 

iP 
(approx.) 



VII 

THEORY OF MOVING-COIL PRINCIPLE 

1. Analysis 

Initially the treatment is based upon the following hypotheses [79 b]: 

(a) The diaphragm and driving coil behave dynamically as a rigid 
structure. 

(b) For generality a linear axial elastic constraint 8 is included. 
This might be a centring device for the coil, an annular surround 
for the diaphragm or both of these. 

(e) The resistive force due to sound radiation and mechanical 
losses is proportional to the axial velocity È. 

(d) There is neither mutual inductance nor mutual capacity 
between the coil and the magnet, i.e. only the static magnetic field 
is taken into account. 

(e) The radial magnetic field is uniform throughout the travel of 
the coil and is undistorted by the current. 

(f) The alternating current driving the coil is supplied by a valve 
and a perfect transformer having neither loss, leakage, nor capacity, 
with unity ratio, Fig. 51 A. The transformer prevents the valve feed 

current from passing through the coil, thereby avoiding a permanent 
deflexion. The signal voltage applied to the valve grid is Eg, and the 
magnification factor 11,, so the equivalent voltage in the anode circuit 
is tiE, = E, as shown in the equivalent circuits in Fig. 51B, c, D, B, 
which are discussed later. 

Consider the mechanical forces acting on the coil. We have 
reactive+resistive+ constraint = driving force, or symbolically, 

mD2E+reDed-se --= CI, (1) 

where m = natural mass of diaphragm, coil, etc. + accession to 
inertia, 

C = force per unit current = e.m.f. per unit velocity (see 
definition 43). 

Consider the electrical forces in the circuit: 

reactive+resistive+motional (induced) = driving, or symbolically, 

LDI-1-RI+CDe = E, (2) 
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where L =- total inductance in the coil circuit, coil at rest, 
R = total resistance in the coil circuit, coil at rest. 

E = Ema. sin cut. 

In solving (1) and (2) for the steady state we can write D = icu. 

Thus (1) becomes 
—mw2e-Pirecoe+.9e = CI, 

and (2) becomes icuLI-FRI-FiCcue = E. 

CI  
From (3) e = (s_..2)+icore" 

Substituting the value of e from (5) in (4) we obtain 
C2  

E 1{R+icuL+ 
red-i(cum--.9141• 

From (6) the electrical impedance of the complete circuit is 

Z =—E = R-FicoL+cdre—i(con2-8/41 
r:+(com—s/o)2 

(3) 

(4) 

(5) 

(6) 

(7) 

or Z = (Rd -Rm)-Picu(L-FL,,,). (8) 

R, L are the respective resistance and inductance in circuit when the 
coil is stationary and include all additional apparatus. 
The quantities Rm and Lm are called the motional electrical resis-

tance and the motional electrical inductance respectively. They 
can be combined into the motional electrical impedance, thus 
Zm = Bm+icoLm. 
From (7) we obtain 

re Ca  R 
n-1--(cum-8142 

where ze = V{re+(wm—.9142} is the mechanical impedance, 

and the mechanical power factor cos 0 = re/ze (see Fig. 50). 

Also L (.9/(02—m)C2 
,,, 4 

C 28i1120 (1- C0820)C2 

8 - W2M 8 - W2M • 

(9) 

(10) 

(12) 

(13) 
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The motional inductance can be positive, negative, or zero accord-
ing to the relative interaction of mass and constraint. Below the 
mechanical resonance frequency Lm is positive, at resonance, where 
s -- mc02, it is zero, whilst above resonance it is negative. If desired the 
negative condition can be regarded as a condenser effect and treated 

1  
accordingly. Thus/ Cm = co2Lm, and since Lm is negative, Cm has 

a positive sign numerically. Both Rm 
and Lm are attributable to the back 
e.m.f. induced in the coil due to 
motion in the magnetic field. The 
phase of the coil velocity, and there-
fore of the induced e.m.f., relative to 
the driving force (current) obviously 
depends upon the mechanical im 
pedance. It follows that Em and 
Lm, being dependent upon the back 
e.m.f., are related to the mechanical 
impedance. 
The motional electrical capacity is 

6, ____  1  _ (m —8/(.02)  
0,24 C2(1 — cos20). (14) ..  

The circuital current is 

E  E  
I -= — = 

Z [(R+ Rm) -F(.02(L-F Lm)21* 

_  E 
[(Rd- Rm)2+ {co I, — (1 I cue m)}2fr 

The relationship between the mechanical quantities is shown 
vectorially in Fig. 50. 

à— cum) 

Phase oF axial 
velocity 

Phase of axial 
velocity 

— ei) 

Pbes 

ofo,cps>ii 

(b) 

Fm. 50. Diagrams illustrating 
mechanical impedance of moving. 
coil system. Read clockwise. 

From (11) and (13) coLm .  (  re  ) tan20. But from Fig. 50 
R. .9 Icoto —m 

re 
— cot 0, so coLmIRm = tan O. It follows that if the vector 

(s/w — tom) 
diagram of the motional electrical impedance is drawn, the mechanical 
power factor cos 0 corresponds to the motional electrical power 
factor cos° = Rml Z m. On physical grounds this is obvious, since 
the mechanical and electrical resistances and reactances must corre-
spond, respectively. 
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Now from above cos O = = - - Ln, so cos20 = re R ". Inserting this 
r R 

; Z. ;Z. 

zeZ.=- C2 (16) value in (11) we obtain 

giving a concise relationship between the electrical and mechanical 
systems. Electromechanical coupling exists in virtue of the magnetic 

field, and C2 can be regarded as the electromechanical conversion 
factor (see definition 43). 
From (10) and (16) the mechanical resistance is 

C2Rm 
re = Z;,i ' 

and from (12) and (16) the effective mass (see definition 33) 

C2L  
me = m —8/(02 = — m 

Zen ' 

When s = 0 the system is devoid of mechanical resonance. This 
condition is approached in practice when the frequency on the 
annular surround and centring device is well below audibility, e.g. 
< 20 es". The stiffness 8 is then the sum of the individual axial 

stiffnesses of the surround and the centring device. Thus (9) becomes 

R _ re C2 re C2 

and (14) reduces to 

= 
r-1-(0297i2 z: ' 

c„ _ m 

"' C2' 

(17) 

(18) 

(19) 

(20) 

since, in general, for a large diaphragm without a horn 00820 < 1. The 

series and parallel equivalent circuits are now as shown in Fig. 51 D, B. 

The above formulae can be used to determine the total impedance of 

a loud speaker per se, the value being [(Bo+ Rm)2±{caL0— (1/ctem )12p. 
From Fig. 51D it is seen that the static inductance Lo and motional 

capacitance Cm constitute a resonant system. If the total circuital 
resistance is sufficiently low, damped oscillations will occur in the 

absence of mechanical constraint. in practice the resistance is much 
too high for this to happen, and with a steady applied e.m.f. the 
resonant frequency is inconspicuous. 

Hitherto we have considered the various motional impedances to be 

in series, as shown in Fig. 51B. Using a well-known transformation 
the motional impedance can be represented by a parallel circuit as 

shown in Fig. 51c. The analytical expressions for the three corn-
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VII. 1] EQUIVALENT DIAGRAMS 

ponents are now very simple: thus 

C2 C2 
l?m == =-- — I 8 1 

re 
and = 

C2 

135 

(21) 

The circuit of Fig. 51 c is the parallel electrical equivalent of the 

moving-coil system. Moreover, if the coil system were replaced by 

(a) 

Perfect transformer 4 

Coil and disk 

E 11E9 

FIG. 51. 

(a) Valve circuit for coil driven disk. 
(b) Circuit equivalent to (a), series arrangement. 

(c) Circuit equivalent to (a), parallel arrangement. 

(d) Circuit equivalent to (a), series arrangement, 8 = O. 

(e) Circuit equivalent to (a), parallel arrangement, 8 = O. 

this circuit, the voltage, current, phase, and power would be identical 

in both cases. When m and re are constant, the three quantities in 

(21) are independent of frequency and the equivalent circuit is 

applicable to transients. 
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If an harmonic e.m.f. of constant maximum 1.44 is applied to the 

circuit of Fig. 51 c the current is reduced to a fraction of its normal 
value when its frequency is equal to the resonant frequency of the 
system. Under this condition the impedance of the equivalent circuit 

is very high, and the current-frequency curve has a deep crevasse. 
This is shown distinctly in the experimental curve of Fig. 149. 

2. Extension of the analysis to flexible diaphragms 

By considering only the forces operating at the driving point, the 

foregoing analysis can be extended to include any form of mechanical 
impedance. Just as any electrical circuit, however complex, can be 

resolved into an effective resistance and an effective inductance in 
series, so also can a mechanism at the driving point be regarded as an 
effective mechanical resistance in series with an effective mass. The 
latter can be positive, negative, or zero according to circumstances. 
(See definition 33.) 
The concept of effective mass at the driving point is of inestimable 

value in the investigation and physical interpretation of vibrational 
problems. If we are presented with a mysterious box having two 
external terminals, said to harbour inert electrical circuits, its per-
formance under steady conditions can be predicted by aid of an 

A.C. bridge. Measurement reveals that it has an effective resistance 
and an effective inductance at all frequencies. These are the only 

quantities required to calculate the steady current in any known 
circuit to which the box may be connected. The contents of the box 

may be simple or complicated, but they are of no importance except 
in the case of transients. The same can be said of any mechanical 
system whose driving point is under dynamical examination. Sym-

bolically the mechanical impedance ze = re+icome, where me is now 
the effective mass. It is of paramount importance that me be not 
confused with m4, the equivalent mass. (See definition 34.) It so 
happens that in the special case of a rigid structure vibrating in vacuo, 
the natural, effective, and equivalent masses are identical. 

From what precedes there should be no difficulty in realizing that 
the foregoing analysis is valid for any mechanical system whatsoever, 
provided attention is paid to the driving point alone. This happens 

in practice, since the mechanical reactions are measured at the 
driving coil. 

It is evident from (9) and (18) that (m—s/w2) is the effective 
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mass of a rigid diaphragm with constraint. Knowing L. and Z. 
from A.C. measurements, me -= (m—.91012) can be calculated using 
(18), so the value of 8 can be found. This case occurs in loud speakers 
where 8 is due to the combined effect of centring device and surround.* 
The resonance frequency is, of course, to = N/(.9/m). Below this point 
me is negative, and above it is positive. 

In general we have from (17) the effective mechanical resistance 

C2R. re — (22) 
Zen ' 

C2Lm 
me — (23) 

Zen ' 

where Z. =-: [Ren-i-co2Le„r. Thus both quantities can be found by 
electrical measurements of motional resistance and motional in-
ductance. 

These results are valid for the steady state only. If a diaphragm 

is subjected to an impulse, all its natural frequencies are excited. 
The higher the individual frequency the greater the damping. 
As time progresses after the shock, the higher modes are quickly 
extinguished, finally leaving only the fundamental (see Fig. 140). 
Consequently the shape, the resistance, the accession to inertia, 
and, therefore, the effective mass of the diaphragm, referred to the 
coil, change progressively from the beginning of the motion. Thus, if 
me were used in equation (1) in place of m, the analysis would be 
invalid. In practice, provided the principal vibrations are separated 
by wide frequency intervals, they can be studied independently within 
certain limits. 

and from (18) the effective mass 

3. Predetermination of coil current 

Having tentatively settled the general design of the vibrational sys-
tem of a loud speaker, it is a wise policy to calculate the coil current 
over the frequency range to be covered. To do so it is necessary to 
know the static and motional components of the coil impedance, i.e. 
(Ro+ R.) and (L0+4), together with the valve resistance Ra. The 
static values can only be found accurately by experiments on similar 
models, since calculation ab initio is rather hazardous owing to the 
influence of the iron of the magnet. With the aid of Table 36 an 

* In a horn speaker having a small diaphragm the surround and centring device 
is usually one unit. 
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approximation can be obtained in certain cases. The motional values 
can be calculated only on the assumption that the system moves as 

a rigid structure, unless the effective resistance and effective mass 

are available from previous experimental data. Since ze zei = C2 we 
have from (22) and (23) 

Came 
L. = — —4 — , 

C2re 
1:47, = , 

where ze = ,I(r-4,214); and as we assumed re and me to be known, 

the electrical motional impedance can be computed. 
To determine re and me in certain cases, for example the horn type 

speaker of Fig. 82 A, it is essential to proceed as shown in Chapter XX. 
The analogous electrical circuit is drawn and then resolved into the 
form 14-1-icu4, after which Re and 4 are transformed to their 
mechanical analogues re and me. The latter are then used in 

formulae (24) and (25). 
In all the preceding work for simplicity the various electrical 

quantities have been referred directly to the anode circuit of the 
power valve. There ought, however, to be no difficulty in applying 

the analysis to the secondary circuit of a step-down transformer. 

If ni/n.2 is the ratio of the turns, we have the new values for the 

anode circuit of the valve as pn2yR„„ (122)24 and (--2) C,n. * 
ni 

2 

4. Transients t 

A study of the equivalent diagrams provides interesting information 
[79 b]. We have already indicated the possibility of oscillation in the 
absence of constraint in Fig. 51D, so we pass on to discuss Fig. 51E. If 
we imagine a battery to be switched in circuit to replace the alternator, 
a voltage is applied to the circuit rising instantly from zero to E. 

We can assume this to last a very short time before being switched 

off. The impulse so obtained can be resolved into a spectrum of fre-
quencies, infinite in number, from zero upwards. The low frequencies 

are impeded by C;„, although part are by-passed by 4. The high 
frequencies are by-passed by C.;„ but impeded by Lo. Thus there is a 
definite relative phase shift of the high and low frequency components 

of the impulse. The attenuation of the former by Lo reduces the rate of 

rise of the coil current, and the impulse is rounded, i.e. the steepness 

• R„„ L„„ C„, refer to secondary circuit. t Definition 44. 

(24) 

(25) 
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of the wave front is curbed. From a physical viewpoint the charging 
current to C is represented by acceleration of the mechanical 
system.* The by-passing influence of R,, represents the damping due 
to sound radiation and mechanical loss. As the velocity increases so 
also does the back e.m.f., due to the coil moving in the magnetic field. 
Thus the charging current taken by C;,,, and, therefore, the coil current 
and velocity increase exponentially to their final values. 
When the battery voltage E is suddenly removed and replaced by 

a short circuit, the electromagnetic energy +L, /2 and the electrostatic 
energy V2 have both to be dissipated. The system is consequently 
not dead-beat and the tail of the transient is drawn out instead 
of being vertical. Interpreted physically the kinetic energy of the 
mechanical system is expended in keeping it in motion against the 
opposing influence of air resistance and electromagnetic damping. 
This is represented by discharge of C.' through R.' and the remainder 
of the circuit. The case where s e 0 can be considered in like manner 
by aid of Fig. 51e. There is only one possible oscillation frequency, 
and this depends upon the various circuital coefficients. In general 
the .L' C';„ combination predominates, and the frequency is given by 
co = V (11 L' C.) = 4,/(8/m), this being the value for the mechanical 
system. Unless the influence of radiation, frictional loss, and electro-
magnetic damping is large enough, damped oscillations will accom-
pany each transient, as shown in Fig. 140. In a hornless speaker it is 
usual to rely upon electromagnetic damping at low frequencies. For 
this purpose the magnetic field should be strong, and the natural 
frequency on open circuit below audibility. In a horn moving-coil 
speaker the radiation resistance is large, so the natural oscillations 
are highly damped as shown in Fig. 144 B. 

5. Measurement of inherent mechanical loss 

In every vibrating structure there is a certain amount of loss in 
addition to that associated with the radiation of sound. Apart from 
air friction between the coil and magnet, also eddies and skin friction 
at the diaphragm, this can be found by auxiliary measurements 

in vacuo [41]. 

Let /i/ =-- electrical motional resistance due to inherent loss in air, 

rt, = mechanical resistance due to inherent loss in. vacuo. 

* This is not an electrical analogue where current is equivalent to velocity. 
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When the diaphragm vibrates in air, neglecting additional loss 
we have 

whilst in vacuo rv =--

From (26) and (27) we obtain 

and met, = — - . (30) 

The accession to inertia is, therefore, 

mi = mea —me° = C2 ( L 
4 Zen (31) 
L  

or alternatively C2Lm 4, tzn,\ 2 _ 1j. (32) 
Zen IL„AZej 

In the above procedure it is tacitly assumed that the shape of the 
dynamic deformation curve of the diaphragm is identical in air and in 

vacuo. Where hornless speakers are concerned, the motional resistance 

and inductance at higher frequencies are each the difference of two 
relatively large and nearly equal quantities. An error of 1 per cent. 
in either entails a large error in the difference between them, so great 
care and judgement must be exercised in using this method and in 

interpreting the results. This is discussed in detail in Chap. XVI, § 3. 

c2R, 
zen' 
c2.Rv 
ze, 

(t2 14. 

(26) 

(27) 

(28) 

It is important to realize that .1?,. is not (R.— R„) and that Ri R. 
This is due to the fact that the power loss in air differs from that 

in vacuo owing to the increased axial velocity of the coil in the 

latter case, arising from reduction in mechanical impedance due to 
removal of the load. By virtue of the relationship between; and 
Zm (ze Zm = C2), and since y cc 1/ze for a given force, it follows that 

Zni/Z„ is the ratio of the velocity in vacuo to that in air. Whence 

the electrical motional resistance due to loss is Re(Zni/Ze)2. 
From these measurements the accession to inertia can also be 

determined. Let L., L„ be the motional inductance in air and in 
vacuo, respectively, and mea, mee the effective mass in air and in vacuo, 
respectively. 

Then from (23) c2.4. 
mea zen (29) 

C2L„ 
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For horn speakers, where the resistive component is an appreciable 
proportion of the mechanical impedance, the method should be of 
real value. Owing to removal of the resistive component in vacuo, 
the testing current must be kept within bounds to prevent excessive 
diaphragm amplitude. The effective mass-frequency curves, which 
can be plotted from the above type of measurement, are of great 
utility in studying the vibrational characteristics of the system, 
provided the mechanical loss is insufficient to mask the influence of 
elasticity and inertia. 

6. Influence of magnetic field strength 

This can be examined by aid of the formulae deduced in the previous 
sections. The square of the flux density in the gap, it appears in 
the electromechanical conversion factor C2 (see definition 43). From 
(10) and (11) we see that the motional resistance increases directly as 
C2 and therefore as Be. Thus when the coil current is constant at all 
frequencies the power increases as Be. 

In hornless speakers the current at low frequencies is reduced by in-
crease in Bg, since from (14) and (20) the motional capacitance varies 
inversely as Be. This is not usually serious in practice, since it helps 
to offset the resonance due to the surround and centring device. If 
a high resistance valve is used, the current is not materially influenced. 
The magnetic field introduces damping owing to the back e.m.f. 

induced in the coil due to its motion. This is useful in hastening the 
decay of the motion or in rendering the natural oscillations of the 
system aperiodic, but to do so the field must be intense. 

7. Output circuits 

The circuit between the power valve and the speaker may take various 
forms, which are illustrated in Figs. 52 and 147, the equivalent dia-
grams being appended in each case. The choke-condenser output of 
Fig. 147 A is used with so-called high-resistance coils. When L and C 

(.0 1 j-1— 
are sufficiently large so that the frequency — = - is below 

27r 2err LC 
audibility, the equivalent circuit takes the form in 147 B. Otherwise 
the circuit is that of 147 D. Fig. 52 A illustrates a simple transformer 
circuit, the primary winding having n1 turns and the secondary n2. 
Owing to leakage of the magnetic flux between the windings, an 
inductance must be added in series with the coil. To obtain the 



142 THEORY OF MOVING-COIL PRINCIPLE [VII. 7 

equivalent resistance and inductance (the leakage inductance is /4) in 

the anode circuit, the secondary values are multiplied by (ni/n2)2. 
The equivalent capacity is found by dividing the secondary capacity 

ll 

Speaker 

(c) 

E2E9 

FIG. 52. 4R, 

(a) Transformer coupled speaker with equivalent circuit. 
(b) Choke-condenser-transformer coupled speaker with equivalent circuit. 
(c) Push-pull arrangement of transformer coupled speaker with equivalent 

circuit. 

a 

R, 

by (ni/n2)2. In the equivalent circuit of Fig. 52 A, Li represents the 
primary inductance of the transformer, and Ri its resistance. To 
prevent the anode feed current polarizing the transformer core, 
thereby lowering its inductance, the choke-condenser feed of Fig. 52 B, 
or the push-pull arrangement of Fig. 52 c can be used. 
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HORNLESS SPEAKER SIMULATED BY COIL-DRIVEN 
RIGID DISK 

1. HAVING found the analytical relationships between the electrical 
and mechanical systems, if we know the mechanical impedance 
re-Fiume, the power radiated by the vibrating system can then be 
calculated [77, 78, 79, 81]. To bring the problem within the scope 
of analysis we assume the diaphragm to be represented by a rigid 
circular disk vibrating in an equal aperture in an infinite rigid plane. 
The reaction on the disk consists of two components, (a) a load com-
ponent in phase with the velocity, (b) an inertia component in 
quadrature with the velocity. The latter is due to the disk causing 
vibration of a mass of fluid in its neighbourhood. The kinetic energy 
of this fluid is T=Pni y2, where y is the axial velocity of the disk, 
and mi the additional mass due to the fluid. The vector diagram for 
the acoustical portion of the system is shown in Fig. 14. The total 
force on the disk is the vector sum of the acoustic, or resistive, and 
inertia components, as shown in Chapter III. 
Thus for both sides of the disk 

=-- 2pocA{Gid-iG,}4 (1) 

= (rrd-ix)4 = (rr-Ficoms)4, (I a) 
where 

J (2ka) 
— 1  ka , 

G —  - H,(2ka) 
2  ka 

rr = radiation resistance* =-- 2pocAG,, 

(2z) 
mi = accession to inertia — 2pocA G2 --277301 lz2 1 

A = ra2, where a is the radius of the disk. 

Curves of the functions G1, G2 are plotted in Fig. 17. Using the 
expansion of J1(2ka) the function G, can be written 

z2 z4 z4  
= 1.2 1.22.3' 1.22.32.4 .." (2) 

where ka = z. 

4' Since there is no inherent mechanical loss r, replaces r4. The acoustic resistance 
per unit area varies with the radius (see Chap. III), so r,IA = 2pocGi is a mean value. 
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At low frequencies when z is small, i.e. 0.5, 

G1 z2. (3) 

As z increases so also does G1, due to decrease in the term J1(2z)/z. 

When z = 1.9, G1 = 1, and as z increases G1 ultimately oscillates 
about this value, as shown in Fig. 17. Interpreted physically, when 

the frequency or the radius of the disk is large enough to violate the 
relationship G1 = z2/2 appreciably, interference of the radiation 

from various parts of the disk occurs in space, i.e. there is a departure 

from spherical wave propagation. As the frequency or the radius is 

increased still more, focusing of the sound due to interference gradu-
ally becomes more pronounced until G1 = 1 (ka = 1.9), after which 
the acoustic pressure on the disk oscillates about a constant value. 

Under this condition wave propagation at a great distance from the 
disk is sensibly plane. An important fact is that under this condition 

the mean resistance over the disk due to sound radiation is Poe per 

unit area. This being identical with the resistance of the medium 
per unit area, it follows that for values of ka 1.9 the medium is 
matched.* 

For a disk 10 cm. radius, focusing in air at normal temperature 
and pressure commences approximately at 250 ,--,, whereas for a 
5 cm. disk the corresponding frequency is 500 As shown in 

Fig. 55, the power radiated is not affected until a much higher fre-
quency is reached. In water, where the velocity of sound is some 
four times greater than in air, these values would be increased to 
1,000 and 2,000 respectively. 

By expanding 111(2ka) we obtain 

Hi (2z) 4I(2z) (2z)3 (2z) 5 4) 
G 2 = 

7T 112.3 12.32.5 + 12.32.52.7 ( 

At low frequencies when z < 0.43 the value of G 2 for most purposes 
is given with adequate approximation by the first term of the series. 
Thus we can write 

8z 
G2r -. (5) 

37r 

The accession to inertia is m = 2po cA G,/co, and it gradually 

decreases as z increases beyond the value 0.43. This is due to inter-
ference which entails a reduction in the mass of fluid in motion. For 
a disk 10 cm. radius, mit = 7.0 gm. at 50 but only 2.4 gm. at 

* See definition 20. t When z < 0.43, in, = (16/3)poce. 
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1,000 r.d. For a disk 2 cm. radius, mi is almost constant up to 1,000 
At frequencies where the sound radiation is highly focused and the 
angle of the principal sound beam is small, the wave propagation is 
nearly plane, so mi is negligible compared with the mass of the disk. 

2. Power radiated as sound 

The power radiated as sound from both sides of the disk is 

P = v2r, (see (45), Chap. I) 

= co2e8[2po cAG1] 

-= 2p0 cAco2n 

When ka .< 0.5, G1 = k2a2/2, so (6) becomes 
p p o  ira4cdieg 

• 

(6) 

(7) 

This is a formula we shall use frequently in power problems. At 
high frequencies when ka 1.9, G1 = 1, so (6) becomes 

P = 2pocA.co2e8. (8) 

We have now to find eo in terms of the driving force f. Since r,. is 
usually small compared with the effective mass of the disk (which 
includes the mass of the driving coil and mi), the mechanical impe-
dance is substantially 

ze = come = co(md-Pme+mi). (9) 

Now the driving force f = vze =- coeoze, so 

= (10) .2m.' 
Substituting the value of e. from (10) in (6) the power radiated is 

2pocA (f G 
.2 ma/ 

When ka < 0.5 (11) becomes 

and when ka 1.9 

p o  „at f2 
P —  

C Im J 

p 2pocA (fa)2 
CO2 M 

(12) 

(13) 

where mi. = md-Fme since mi —> 0. 
From (12) it is evident that, so long as f is constant at low fre-

quencies, the power radiated remains unaltered even at sub-audible 
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values. This is explained by the increase in amplitude, since elf> 
latter varies inversely as the square of the frequency. 
At high frequencies, when ka 1-9, the power decreases inversely 

as the square of the frequency, although the radiation resistance r,. is 
constant. This is due to the amplitude varying inversely as the 
frequency. Thus if the driving force, and therefore the coil current, 
were constant at all audible frequencies, the output from the lower 
would far exceed that from the upper register. It follows that a rigid 
disk 10 cm. radius would be useless as an agent for obtaining satis-
factory sound reproduction from 40 to 10,000 As we shall see 
later (Chap. XII, § 1), however, the reproduction is substantially 
perfect on the axis at a distance of 10 or more radii, provided the 
dimensions of the detecting device are small compared with the short-
est sound wave to be reproduced. The above analysis gives some idea 
of the results to be obtained from a hornless system with 'inertia' 
control. 

3. Numerical illustration of analytical expressions 

The ultimate performance of the device under consideration depends, 
amongst other things, upon the current in the moving coil. To deter-
mine this, it is necessary to know nre cos 9, Cm, and Br. These quantities 

TABLE 11 

Radius of disk = 5 cm. Mass of disk = 2.5 gm. Mass of coil = 5 gm. 

f. 
Frequency 
(cycles per 
second) 

m,,. 
Effective 
mass (gm.) 

cos 0. 
Acoustic 
power 
factor 

C.. 
Motional 
capacity 

(microfarad) 

R,. 
Electrical 
radiation 
resistance 
(ohms) 

50 8-36 2-8 x 10-3 0-33 26 
100 8-36 5-7 0-33 26 
200 8-36 11-4 0-33 26 
500 8-3 28-5 0-33 26 

1,000 8-16 52 0-33 25 
2,000 7-82 69 0-31 17-5 
4,000 7-53 36 0-3 4-8 
8,000 7-5 18 0-3 1-2 

have been calculated for three disks of different sizes, namely, 5 cm., 
10 cm., and 15 cm. radius, respectively. Moreover, the influence of 
the size of the disk can be seen. The results have been tabulated and 
are given in Tables 11, 12, and 13. 
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The variation in effective mass is more pronounced the greater the 
diameter of the disk. In each case the mass decreases with rise in 
frequency, as explained previously. The acoustic power factor, and 
therefore the total sound pressure on the disk, increases with the 
diameter. In each of the three cases the power factor attains a 

TABLE 12 

Radius of disk -= 10 cm. Mass of disk = 10 gm. 

R,. 

f. cos O. C„,. Electrical 
Frequency me Acoustic Motional radiation 
(cycles per Effective power capacity resistance 
second) mass (gm.) factor (microfarad) (ohms) 

50 22 1.8 x 10-2 0.88 66 
100 22 3.8 0.88 66 
200 22 7.2 0.88 68 
500 20.2 17 0.81 69 

1,000 17.4 25 0.7 58 
2,000 15.2 14 0.61 18 
4,000 15 7 0.6 4.5 
8,000 15 3.5 0.6 1.1 

TABLE 13 

Radius of disk = 15 cm. Mass of disk = 22.5 gm. 

R,. 

f. cos 0. C,.. Electrical 
Frequency m. Acoustic Motional radiation 
(cycles per Effective power capacity resistance 
second) mass (gm.) factor (microfarad) (ohms) 

50 50.7 3-77 x 10-2 2.0 59 
100 50.7 7.2 • 2.0 57 
200 49.5 14.5 2.0 58 
500 40.4 32 1-66 59 

1,000 29.3 35 1.14 46 
2,000 27.5 17.1 1.1 12 
4,000 27.5 8.7 1.1 1.3 
8,000 27-5 4.4 1.1 0.3 

maximum value. This is explained by a consideration of the velocity 
of the disk and the interference at various frequencies. 
Assuming the axial driving force and the effective mass to be 

constant, the power is constant if ka < 0.5. The acoustic pressure 
is power/velocity; and since velocity oc 1/(0, the pressure increases 
with frequency, provided the wave propagation is spherical. But 
a point is reached when the propagation deviates from the spherical 
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type and gradually assumes that of plane waves. Moreover, as the fre-
quency increases from 50 cycles upwards, a turning-point is reached, 

due to interference, where the total acoustic pressure on the disk 
decreases, whilst the mass reactance increases with rise in frequency. 

The motional capacitance,which exists by virtue of the back e.m.f. 

induced in the coil due to its motion in the magnetic field, increases 
with the mass (and radius) of the disk. This is explained by the re-

duced axial motion and therefore lower velocity of the larger disk, 

which generates a smaller back e.m.f. In each case the motional 
capacity decreases with rise in frequency, owing to the reduction in 

the accession to inertia of the disk. 
So long as the wave propagation is spherical, the electrical radiation 

resistance Br is substantially constant. When, hdwever, interference 
commences, 1Br decreases, until at 8,000 , it is a small fraction of its 

value at 50 ,. From the tabular values it is seen that over the range 
50 to 2,000 cycles the greatest output is obtained from a disk 10 cm. 
radius. Above 2,000 cycles the output is greatest from the smallest 
disk, viz., 5 cm. radius. If the mass of a disk driven by a constant 
axial force varies as the square of the radius, the radiation over a 
given band of frequencies increases with decrease in the size of the 
disk. At the higher frequencies this must be so, since the interfer-
ence effect is less prominent with small disks than with large ones, 
whilst at low frequencies the accession to inertia is less. Now this is 

not in keeping with the results just quoted. The apparent paradox 
can readily be explained if we consider the effect of the coil. Its mass 

is a much greater proportion of the total mass with a small than with 

a large diaphragm. Hence the acoustic power factor and the output 
of the small diaphragm are reduced accordingly. Moreover, in the 

present system there is a certain radius of disk for which the acoustic 
output over a definite frequency band is a maximum. 

4. Current in the moving coil 

The coil current at any frequency is controlled by the impedance of 
the coil in motion, together with Ra, the internal alternating current 
resistance of the valve. The latter has been allotted a value of 4,000 
ohms.* The impedance of the coil in motion depends upon four 
factors, namely: (1) the effective resistance at rest, (2) the electrical 

radiation resistance, (3) the effective inductance at rest, (4) the 

* This is decidedly high for a triode, but it serves to illustrate the analytical work. 
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motional capacity. Items (1) and (3) have been ascertained by bridge 

measurements (Table 36), whilst (2) and (4) have been calculated 
from the formulae developed herein. 

30 

0= biuk 5 cm radius. 
0. +, 10cm. ,, 
CT. 15cm " 

Peak Ve{tan., charge on anode ef valve e :40 
(5) 

32 54 213 256 512 toze 20413 4O3:5 01102 
frequeny (gyeIpis per second). 

FIG. 53. Curves showing current in moving coil at various 

frequencies. 

Details of Coil and Magnetic Field 

Mean radius of coil • r = 2-5 cm. 
Number of turns ▪ n = ion. 
Mass of coil . = 5 gm. 

Mean strength of radial magnetic field. Bg =-- 104 c.g.s. units. 

C = J2irrnB9 
1158x 108. 

Internal resistance of valve • • It ---- 4 x 103 ohms. 

Using the formula I == {(Rod-Brd-R.)2±(cuL0-11wC„,)2}k and pos-

tulating a peak sine-wave voltage change of 140 volts on the anode 
of the valve, the coil current has been calculated for three disks at 
frequencies varying from 50 to 8,000 cycles per second. The results 

are shown graphically in Fig. 53. At low frequencies the larger the 
diaphragm the larger the current. This is due to the lesser amplitude 
and velocity of the larger disk by virtue of its greater inertia. Thus 

the back e.m.f. induced by the motion of the coil in the magnetic 
field decreases as the radius of the disk increases. At the higher 
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frequencies, although the induced e.m.f. is negligible, the coil current 
is curbed due to increase in the effective resistance (iron loss) and 
reactance of the coil. Moreover, the coil current at these frequencies 
is approximately the same for all three disks. 

5. Reactance of moving coil 

cuL( 1 The reactance of the coil, namely o— j, varies from a negative 
coCm 

10,000 

ele = Disk 3 cm radius 
(g) 10 cm 

= " 15 cm. • 
A,B,C, are electromechanical resehancea. 

5,000 

ti 

m" -5,0 0 0 

-10,000 3z 
64 128 256 512 1024 2048 

Frequency (cycles, per second). 
4096 81.92 

Fia. 53A. Curves showing reactance of moving coil at 
various frequencies. 

value through zero to a positive value, the latter being due to its 

inductance. The negative reactance at low frequencies exists by 
virtue of the large back e.m.f. induced in the moving coil. Since 
the smaller the disk the larger the amplitude, and therefore the axial 
velocity, the low-frequency reactance of the 5 cm. disk is greater than 
that of the other two. When the reactance is zero, coLo = lictem, and 
this occurs at the electromechanical resonance frequency. The greater 
the effective mass of the disk and coil the lower the electromechanical 
resonance frequency. These points are shown by the reactance curves 
of Fig. 53 A. At frequencies above or below the resonance point, the 
current 'lags' or 'leads' on the impressed e.m.f. E = ¡LE, of Fig. 51 D. 
The further the frequency from resonance the greater the `wattless' 
component of the current. 



(151) 

6. Axial pressure 

It is shown in Chapter V that the axial pressure at distances exceed-
ing a certain number of diameters from the disk is independent of the 
frequency, so long as the acceleration of the disk is constant and w/272 
is not too high. This necessitates constant driving force and constant 
effective mass throughout the frequency range under consideration. 

In our particular case both of these factors are variable. The deviation 

0 = Disk 5 cen. radiu5 

e
.• , .0 Cr. • • (coil current variable). 
s • . 10 cen. • (coil current constant). 

= • • 15 crn. • • 

l  
Fressure Reduction due to 

Acceo6ion to inertia 

'0- - 
/ 

4  -c] 

'e .9 

Ceo 

31 1;4 128 156 511 1024 2048 4096 8191. 
Frequency (cycles per eecond). 

Fie. 54. Curves showing axial pressure 10 metres from 
disks at various frequencies. 

from constant pressure is seen from the curves, Fig. 54. Curves 1, 2, 

and 4 indicate the pressure variation for the three disks when the 
current and effective mass vary with the frequency. The pressure 

caused by the 5 cm. disk is relatively small, due to the influence 
of the mass of the coil, as explained previously. At the lower 

frequencies, there is little difference between the pressures caused 
by the 10 cm. and 15 cm. disks, but the pressure is greater for the 
15 cm. disk at the higher frequencies, although the total energy 
output is less due to increased mass reactance. 
Curve 3 indicates the pressure variation for the 10 cm. disk when 

the driving force is constant. The smaller pressure at frequencies 
below 2,000 cycles is due to the greater effective mass caused by 

'accession to inertia'. In each case the oscillations in the curves at the 
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higher frequencies due to oscillation in the function G1 have been 
disregarded. 

7. Power radiated as sound 

The power radiated as sound from the three disks is shown in 
Fig. 55. The vertical scale is a logarithmic one, since the sensi-
tivity of the ear progresses in a logarithmic manner. The output 

Zero level 

o   

-5 

ID 

0 Disk 5cm. radius 

is •• 
20 

-25 

-30   
64 128 256 5 2 1024 2048 4096 8192 

Freluency fr.) 

Fla. 55. Curves showing power level at various frequencies. 

from the two larger disks is appreciably greater than that from 
the 5 cm. disk over the frequency range 50 to 1,000 cycles. There-
after the output from the larger disks falls off rapidly, until at 
the higher frequencies it is very small for all three disks. This is due 
to the mass reactance come which reduces the amplitude of vibration, 
thereby causing the axial velocity to decrease inversely as the fre-
quency and the sound output inversely as the square of the frequency, 
when/is constant. Consequently the smaller the mass of the system, 
for a disk of given radius, the greater the upper frequency output. 
This can be seen from (13). In a massless system the power would 
increase with rise in frequency owing to a gradual reduction in 
and a corresponding increase in the radiation resistance. For a disk 
10 cm. radius, it is seen from Table 12 that mi is negligible above 
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2,000 so the mechanical impedance at higher frequencies is sub-
stantially ze = re = 2p0 cA GI. Apart from the oscillation in G1, as 
shown in Fig. 17, re = 2p0 cA, the medium is matched (definition 20), 
and the sound power f2/2po cA is then independent of frequency. 
Owing to vibrational modes in the upper register, the effective 

mass of a conical diaphragm is quite small, so the massless condition 
is approached. Above a certain frequency, however, the output 

decays rapidly due to transmission loss and mass reactance of the coil. 

8. Performance of reed-driven rigid disk 

By aid of the analysis in Chapter VII the performance of a reed-
driven rigid circular disk vibrating in an infinite flat baffle can be 
computed. It is assumed that the reed is elastically controlled and 
operates like a simple helical spring. The analysis is applicable to a 
cantilever reed so long as the frequency is well below the fundamental 
resonance of the reed alone [96 a]. 
Owing to the neutralization of inertia by the reed stiffness, the 

acoustic power factor, radiation resistance, power output, and axial 
pressure at the resonance frequency of the combination far exceed the 
values for a coil-driven rigid disk at any frequency. The bulk of the 
energy is concentrated over a comparatively narrow frequency band. 
It follows that a rigid disk driven by an elastic reed is useless for 
loud-speaker work. In practice, however, reed-driven speakers give 
tolerably good results over a limited frequency range. The reason 
is that the 'break-up' of the diaphragm acts in such a way that a 
fairly uniform output is obtained over a definite frequency range [96 a]. 

9. Optimum mass of moving coil 

(a) Hornless speaker. It is natural to anticipate that under given 
conditions there is a certain coil mass for which the output is a 
maximum. When X1, the total electrical reactance of the coil in 
motion, is small compared with R. the valve resistance, the condition 
for maximum distortionless output is (Ro+ = cpRo, where y is 
a constant determined from the valve characteristics. For a triode 
it usually lies between 2 and 3. We have, therefore, to choose a coil 
which gives the maximum output when this condition is satisfied. 
The power radiated as sound is 

P = 1412 = R E2• 
z2 (14) 
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From (19), Chap. VII, 
.1? = c2 = re Bî),12 

(15) 
ni 4 Ze 

and of this (which includes inherent mechanical loss) the portion 

due to sound radiation is 
r B2/2 Rr r  

Ze 
(15 a) 

where 4 = 4+(02(m;-1-nic)2; m = m4-1-mi and m; is the effective 

mass of the diaphragm alone in vacuo. The electrical impedance 

when the coil vibrates is Z = ,V{(R04-Rin+Ra)2+X}. Since 

Rm (Ro+Ra) in a hornless speaker, and by hypothesis X, can 
be disregarded, we have Z (14+ Ra). Thus the optimum condition 

is R0 cpRa and we obtain 

Z = (9+1).Ra. (16) 

Substituting the values of Z and Rr from (16) and (15 a) in (14) 
the power radiated is 

E2B2rr /2 p g  
(cp+1)2.1%4 

K12 

(me'+nic) 
where K =- E24r,.1(cp+1)21%. 

But R o m — o lA • so c — . 2 

/2 ___ Rome, 
Pi P2 

where pi= specific resistance of wire of coil, 

p2= density of wire of coil. 

Since R0 = cpRa we have from (18) 

/2 = PRam  
c• 

Pi P2 

Substituting the value of /2 from (19) in (17) with K1= K12Imc 

K1me 

(17) 

(18) 

(19) 

p 
/1-F(.02(nCe+m,)2' 

(20) 

where m; includes coil former, coil insulation, diaphragm and acces-

sion to inertia, i.e. everything but the wire on the coil. 

The maximum value of P for varying coil mass is found by 
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differentiating (20) and equating to zero. Thus the required condi-
tion is 

conic = V(11-1-cemen) = zd 

or 
zd 

me = --sfire+ceme) = (21) 

which being interpreted means that the coil reactance is equal to the 
diaphragm impedance. It should be noticed that the analysis is 
valid whether the diaphragm moves as a rigid structure or not, 
provided there are no violent fluctuations in mechanical impedance 
which introduce appreciable electrical reactance. For ordinary horn-
less speakers the analysis is valid from about 120 up to 2,000 
after which frequency the inductive reactance becomes important. If 
the latter is incorporated in the equations by substituting Lo = h1 m,, 
the analysis becomes unduly complicated and loses practical interest. 
Owing to variation in re and m'e throughout the audible register, the 
optimum mass varies with frequency. Some data pertaining to this 
aspect of the problem are presented in Table 14. 

TABLE 14 

Showing optimum coil mass at various frequencies 

Frequency. 
,---., 

150 
1,800 

Effective maze 
of diaphragm, 
coil-former, etc. 

"I; (gm.) 

Mechanical 
revietance. 

r, (mech. ohms) 

Optimum 
coil mast:. 
m. (gm.) 

22 
—7 

negligible 
9.8x 10' 

22 
11 

At low frequencies, where the diaphragm moves as a whole, the 

optimum coil mass is equal to that of the diaphragm. As the frequency 
rises the impedance of the latter falls, so also does the optimum coil 
mass. For a rigid disk the optimum coil mass would be the natural 
mass of the disk plus mi the accession to inertia. Beyond the fre-
quency where ka = 0-43 it would decrease with fall in mi. 
In any hornless speaker the coil mass must lie between definite 

limits for good tonal balance over the frequency range to be covered. 
A heavy coil reduces the amplitude at high frequencies and the upper 
register is curbed. On the other hand, a very light coil means that 

the op.timum condition probably occurs in the neighbourhood of the 
cone resonances, which are then unduly enhanced. The result is 
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aurally distressing, being reminiscent of juvenile paper-and-comb 

orchestras. 
(b) Horn speaker. In a hornless speaker the radiation resistance 

is a much smaller proportion of the static coil resistance than in a 
horn speaker. It was, therefore, neglected in (a) above, but will now 
be taken into consideration. Formula (17) stands unaltered but we 
have to find a new value for /2. The optimum condition is that 
R0+ R„, = pit. Inserting the value of R0 from (18) and that of R,. 

from (15a) we have 
parr 13: P2) „„Ba. 

Substituting the value of /2 from (22) in (17) we get 

(22) 

P —  K 2 (23) 

klinc-fkire±£02(n4-Fmcri' 

where k1 = r,.B: and k2 = pip2. By differentiation the optimum 

condition is found to be 
wine = •NAII-Pw22ne) (24) 

which is identical with the previous case. 
There are several practical points worthy of mention in connexion 

with this analysis. No restriction has been placed on the number of 
turns, the radius, or the length of the coil. A tacit assumption is 
made that the iron loss increases or decreases proportionately to 
coil resistance, i.e. it is equivalent to the specific resistance pi, being 
greater than its normal value, but constant. This, however, is not 
of much importance. In a horn speaker the effective mass of the 
system, apart from the coil, depends upon the surround and the 
throat-chamber stiffness. The effective resistance is also affected 
by the latter. To find re and ???.; the procedure is that outlined in 
Chapter XX. 77.4 = me—m, where m, is given by (5) in Chapter XX. 

Since the mechanical impedance V(r:+w2m 2), apart from the coil, 
varies with frequency, the optimum coil mass varies also. If the 
optimum coil could be used throughout the frequency range, we should 
have m, = ere/42--Eme'2}. Data bearing on this topic are set forth 
in Table 15, these being computed from Chap. XX, § 2. 
The coil mass increases rapidly with fall in frequency. The large 

negative effective mass 7)7; at 100 is due mainly to the surround 

constraint. At zero frequency it is infinitely negative (see Chap. IV). 
Above about 1,000 the negative value of m; is associated with the 
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chamber stiffness (see Chap. XX or Chap. IV, § 8). For uniformity 

of output from 100 to 4,000 the actual coil mass is less than 
a gramme, i.e. about the optimum value at 2,000 If the optimum 
were chosen as say 3.23 gm., as it would be at 500 the upper 

register would be appreciably attenuated. Hence, as in the case of 
the hornless speaker, the coil mass must be chosen carefully for good 
tonal balance. 

TABLE 15 

Showing optimum coil Ma&ft for horn speaker 

Mechanical Effective mase of Optimum 
Frequency. resistance. diaphragm alone, coil maes. 

,----, r. (mech.. ohms) ne. (gm.) (gm.) 

100 104 —16.7 23.1 
200 104 —3.8 8.8 
500 104 —0.44 3-2 

1,000 104 —0.12 1.6 
2,000 9.6x le 0 0.8 

In Chap. XX, § 3, it is of interest to observe that the coil mass is 

chosen from the relationship me = 2r/w, where we/ 27T is the upper 

cut-off frequency. On the basis that the coil reactance is equal to 

the diaphragm impedance, we should have come -= re or me = re/w. 
Thus the coil mass would steadily increase with fall in frequency. 

The formula me = 2relwa gives a coil where the optimum condition 
occurs at we/e, but this is outside the range covered. 
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ELECTROSTATIC SPEAKERS 

1. General principles 

The essential components of a simple electrostatic speaker are shown 
diagfammatically in Fig. 56A. One plate P1 is fixed, the other plate 

(a) 

Movable plate P, 

ixed plate P, 
E (compres.sion due to 

1_  _polarizing voltage) 

(de) 
/////////J/ 1/ /1/, A/z/zrri, 

(b) (c) 

Fm. 58. E -= µE, 

(a) Schematic arrangement of electrostatic speaker. 
(b) Valve circuit diagram of electrostatic speaker, the grid voltage being E,. 
(c) Equivalent diagram of electrostatic speaker. The impressed voltage is 

E = FE,. C,, is the motional capacity and Co the static capacity when 
the dielectric thickness is (d— e). In §§ 3, 5, speaker signal voltage 

(us cf: R2). 

P 2 being movable and therefore responsible for sound radiation. 1.f 
a steady D.C. voltage was applied between the plates, the attractive 
force would cause P. to approach P1 and ultimately stay there unless 
prevented from doing so. This action follows from the law of inverse 
squares, namely f cc Eld2. It is imperative, therefore, to introduce 
some form of elastic constraint between P1 and i'. For analytical 
purposes it is immaterial how this is effected, so long as the force-
displacement law is known. To make the analysis tractable we 
must perforce deal with linear differential equations. Thus the force-

displacement law should be linear. Accordingly we postulate a thin 
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dielectric substance in which the law of compression is f = sz, where 
x is the displacement in the direction of f. 

If an alternating voltage be applied across P1.4, then since the 
attraction is independent of polarity, the diaphragm moves towards 
the plate during each half cycle. The relationships are indicated in 
Fig. 57 A, where curve 2 corresponds to the acoustic output. It can 

(a) 

(b) 
K,  

(d-E) , y,zez 

o 

E 18 \ 

1 \ 
1 Asymptote 
1 E = d 

d, — 

Fla. 57. 

(a) Diagram illustrating electromechanical rectification in electrostatic 
speaker, when used without a polarizing voltage. 

(b) Illustrating condition for stability in electrostatic speaker. 

be resolved by Fourier's theorem into an infinite series of frequencies. 
The sine wave input is, therefore, reproduced with an infinite retinue 
of harmonics, and electromechanical rectification ensues. If a polariz-
ing voltage, large in comparison with the signal voltage, is superposed 

thereon, the action of the device undergoes a remarkable trans-
formation. The steady voltage causes the dielectric to be compressed 
by an amount e. The signal voltage causes a fractional variation in 
the compression according to an harmonic law. When the signal 
voltage is additive, the dielectric is compressed ed-à€, whilst at the 
middle of the next half cycle it is compressed —LIE. The force varies 
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as 1/d2, but if AE is a small fraction of the dielectric thickness, the 
variation with distance can be disregarded and the action is linear. 
Thus, if the dielectric is massless, the device reduces mechanically to 
an harmonically driven mass on a simple coil spring. The diaphragm 
is the mass, the dielectric provides the spring effect, whilst the 
alternating electric force does the driving. Under such conditions 
the acoustic output will be a replica of the voltage input, provided 
the amplitude of vibration is minute. 
The effect of the polarizing voltage is twofold, (1) it minimizes 

rectification, (2) it enhances the sensitivity enormously. The latter 
effect is readily shown by analysis as follows: 

The force per unit area f oc (E0-1-E)2 (1) 

where E,== polarizing voltage 

and E = signal voltage on speaker. 

Expanding (1) f oc 4+2E0 E±E2- (2) 

In tue absence of E, the force due to the signal cc E2. With polari-
zation the force due to the signal cc 2E0 E, (3) 
where E2 is neglected, since E is assumed small in comparison with 
E0. Thus the polarizing voltage increases the driving force in the 
ratio 2E0 E/E2 = 2E0/E, so the pcwer is augmented (4EVE2)fold. 
If E = E0/10 the output is increased 400 times. A like effect obtains 
in telephone receivers with magnetic reeds or diaphragms, due to 
polarization by the permanent magnet. The fact that a telephone 
characteristic is non-linear accounts for sound reproduction from 
radio broadcasting when 'phones are used direct in the aerial circuit. 
We can now examine the problem in greater detail [23]. Suppose 

the signal voltage consists of two sine waves of different frequencies, 
so that E = El cos CO1 t+ E, cos w2 t. The total voltage impressed on 
the speaker is E0+ E1 cos w1 t+ E2 cos CO2 t, and the force 

f oc[E0+ Eicos wit+E2cos co2t]s. (4) 

Expanding (4) and using the identities cos20 = (1+ cos 20)/2; 
2 cos 0 cos # = cos(0-1-#)±cos(0-0, we obtain 

f oc Et,±¡Eî-FgH-

+2Eo(Eicosaeltd-E2 coo W2 0+ 
+1(Ef. cos 2% t-F4cos2w2t)+, 
▪ E1E2[cos(cui-Fc02)t± cos(wl—w2)t] 

steady inaudible 
signal 
double frequencies 
sum and difference 

frequencies. (5) 
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The output contains four alien frequencies whose individual powers 
depend upon the square of the ratio of signal to polarizing voltage. 

Let E1 -=- E 2 = 4/4, then the power ratio of each double frequency 
to the signal is (E1/4E0)2 -=  and for the sum and difference 

frequencies it is à. Expressed in decibels the signal is 24 db. 

above each double frequency and 18 db. above each difference 
frequency. On the whole, therefore, we see that the law of attraction 
f cc (voltage/distance)2 inhibits large amplitude and sensitivity. In 
practice, to avoid creation of alien frequencies of appreciable mag-

nitude, it is imperative to operate over a limited portion of the 
characteristic where the arc of the curve is substantially linear. 

The compression of the dielectric due to the polarizing voltage 

E, is E. If the unstrained thickness is d, the distance between the 

plates is d—E (Fig. 56 A). The total attractive force is 

where 

and 

KAE,2 KA 
f,— fie(d—e)2 —877. Cî' 

E0b 

b = 11(d—E). 

The capacity of the condenser is 

KAb 
C,— 

so (6) can be written 

(6) 

(7) 

f _2irE C _  
KA — KA' (8) 

where Q0 = E,C, the total charge on the plates. During operation 

the charge varies, so 277•Q¿ 
ft = KA (9) 

where Qi = (Q0-1-Q), and Q = charge due to signal voltage. 
Using (6) and replacing E, by E0-1-E, when 4 > E2 and dî e2 

d—E), it can be shown that the driving force 

approximately. To avoid distortion f must be proportional to E the 

signal voltage, so EIE, eid„. If the largest permissible value of 
E/E, is 1, that of eid, probably lies between h and This reveals 

a serious amplitude (e) limitation in a system operating according to 
the law f oc E2/eq. A large vibrating area is required therefore to 
obtain appreciable low-frequency sound output. 
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2. Limitation of voltage 

When a constant unidirectional voltage E0 is applied to the plates, 
the condition of equilibrium is, force due to E0 = constraint due to 
dielectric, or KA.Eg 

87r(d—e)2 — se. (10) 

To investigate the condition of stability it is convenient to plot 
KA E2 1  

8ir (d—e)2 and y2 =8e as shown in Fig. 57 B. Curve 1 is 

wholly above the straight line 112 = se, so (10) is not satisfied and the 
system is unstable. Curve 2 cuts the line in two points B and D, 
the former representing the desired condition of stability. The point 
D would be reached if sufficient external force were applied to the 
movable plate to reach d1. If the voltage were now increased slightly, 
instability would ensue. Obviously d1 represents the ultimate ampli-
tude limit due to the signal. From the above it follows that the con-
dition for stability is that the rate of change of force with distance 
must be less than the coefficient of stiffness, i.e. ay2/0£ > by2/0£ or 

8 > KA41{4e(d—e)3}. This argument is applicable where the rela-
tionship between elastic force and distance holds, for values of (d—e), 
right down to zero when the plates touch. With a thin sheet-rubber 
dielectric a point is reached after which compression substantially 
ceases and instability is prevented. Since the force-displacement 
relationship is then non-linear, the output contains alien frequencies. 

3. Equations of motion 

Considering the forces acting on the diaphragm we have 

reactive-Fresistive +constraint = driving force, 

or, symbolically, 
2/r 

meD2e-FreDe+.9(e+E). 7K.1. (Q0-1- Q)2. (11) 

Equation (11) is not linear in Q, since it contains a term in Q2. 
Consequently its solution involves a Fourier expansion. Now 

(Q0+ = Q8+2Q0Q+Q2 
and when Q <Q0 the last term can be dropped, and the equation 
becomes 

me D2e+reDe+8(e+E) = (Q8+ 2490 Q). (12) 
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From (8) and (10) the steady force due to E0 is ae =- (2rIKA)Q8, so 

(12) becomes moD2e+roDe--1-8e = C1Q, (13) 

where C1 = 4/7Q0/KA = 41), from (6) and (8).* It is important to 

notice that C1 is the alternating force per unit quantity of electricity. 
This compares with C, the force per unit current in Chapter VII. 
Since Q = lID = Ilia), it follows that the equivalence of electro-
magnetic and electrostatic systems under steady conditions is ex-

pressed by the formula CV(.02 es C. 
Considering the circuital e.m.f.s, we have 

motional-Freactive+resistive = driving. 

Thus +BDQI =- (14) 

or (9d— E0)+ BDQ = E,t (14a) 

where C = Co(1+ (d—e e)) — co(i+be), (15) 
Qg = Q0+ Q E0C0+EC01V(1+co2CU.R2), (15 a) 

E,—Q01C0(1+be) is the e.m.f. due to capacity change arising from 

motion of the armature and Q/C0(1-1-be) is the e.m.f. to send the 
current through the condenser, i.e. the reactive component. From 

(14a) and (15a) 
RDQ+  Q°±Q  — E0+E. (16) 

Co(l+be) 

Since C occurs in the denominator of the second term in (16) the 
equation is unsuitable. If, however, e is small compared with 1/b, i.e. 

< 1, (16) can be written 
RDQ + 02o+ (2) (1—be) = 

Co Co 

or  E = .RDQ —Cie, (17) 

where (Q0/00) be = c,e is the back e.m.f. due to motion of the dia-
phragm which causes a variation in capacity. The term Qbe/Co is 
neglected since Q is small compared with Q0. 

We have now to solve (13) and (17). From the former we obtain 

e —  Q (18) 
meD2-FroD+8 

* CiC = force per unit signal voltage on speaker. t Impressed voltage (Fig. 56c). 
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Substituting the value of e from (18) in (17), writing Q = I'D and 
D = ic0 for the steady state, we get 

E =FR— i  C 'lw2 }I. 
L cog rel-i(onne—s/(0) 

From (19) the electrical impedance of the complete circuit is 

E  Z = = R— i , (CYcosgre—i(come—.91c0)] — 
cog, r:±(corne-8142 

or Z = (B±Rm)+1(04,-.--6-,10). 

(19) 

(20) 

(21) 

In this formula R and C, are the total circuital resistance and 

capacity, respectively, in the absence of vibration. The motional 

electrical resistance 
= (Cn re C2) re   = (22) 

‘c.02/11+ (wine-8/(42 w2 

and the motional electrical inductance 

Lm (8/0 ) — me (23) 
0,2 

where the mechanical impedance a, (wm,—.9/42}. The above 

can also be expressed as a motional capacity, thus 
1 0)2) me (8/0„2) 

Cm — - - (24) 
£02Lm (cf (1— cos2o)' 

where the mechanical power factor cos O =--- re/ze. The circuital current 
is 

I — E =  (25) 
Z {(R+Rm)2+ (£.0.Lm— 1/wCorp • 

These formulae are identical with those given in Chapter VII for the 
moving-coil loud speaker excepting that (g/£.02) is written in place 

of C2. 

From (16), Chap. VII, the relationship between the electrical and 
mechanical systems in the present instance is obviously 

Zm = (26) 
(02 

Thus 

and 

Cî) Rm 
re ---- 

(w 2 Zen ' 

mm--88//ww2 = — —5 -.2fL 2 . ( 

(27) 

(28) 

The preceding electrical quantities pertain to a series arrangement 
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of the circuit. For the parallel arrangement of Fig. 51 o we have from 

(19), Chap. VII, substituting C/02 for C2 

(1_1 I; '  d =-- (--)m (29) n 0.,2)8 an Cî 

for steady conditions. 

4. Magnitude of motional capacity 

To obtain an approximate estimate of C. take the following data: 

Circular diaphragm in infinite baffle . a = 20 cm., A = 1,257 cm.2 

Thickness of rubber dielectric . . d -= 5 x 10-2 cm. 

Mass per unit area of diaphragm and 
dielectric . = 5 x 10-2 gm. cm.-2 

Young's modulus of dielectric . q ==. 5x 109 dynes cm. -2 

Then since stress. — q — f 1, the force per unit compression is 
strain e A 

f Aq 
8 _-= - = e d (30) 

where d replaces L. 
From these data 8 = 1.26 x 1014 dynes cm.-1 for the whole area. 

Turning to (24), the formula for C., we have to find the effective 
mass of the diaphragm per se. This is a complex problem, since the 
amplitude at any point in the dielectric increases from the fixed plate 

to the armature. For the moment it will be taken as one-half the 

natural mass. This gives a value 31.4 gm. to which must be added 
the accession to inertia mi. Below 125 it is gpa3 for one side, this 
being 28 gm. The total mass is therefore 31.4+28 = 59.4 gm. At 
100 8/w2 is 3.13 x 108, so that tn, is completely swamped. This 
occurs throughout the audible register. It is easy to show that re is 

also insignificant, so that cos20 < 1 and we can write 

8 
= (31) 

Now C1 = Eob, so with E0 = 500 volts and b -= 11(d — e) = 25 we 

obtain 126x 1014 
C m  - (1.25 x 1012)2 1018 = 8 x 104 microfarads,* 

which shows that the back e.m.f. due to motion of the armature can 

• Note conversion of volts to absolute electromagnetic units. 
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be neglected. This follows since C. > Co the latter being much less 
than a microfarad. Consequently the speaker can be treated as a 

rigid disk 20 cm. radius with axial constraint s. The driving force 

at any frequency depends upon the relative impedance of the power 
valve and speaker, also upon the type of output circuit. 

5. Performance 

From (22) since both re and tome «co the mechanical impe-
dance -÷ 8/co, and 

Referring to Fig. 56e the power radiated is PA., where 

E  E coCoE  
I = — 

Z V(R2+11£02C8) -= V(1±£026111,)' 

since both Br and 1/04. < R. 

(32) 

(33) 

aere Thus P = I2R, — E2C1  82(i+ co2c1 (34) 

From (13) the driving force is f = CiQ = EC oCil(l+co2CURV • , so 

p = f2152\2re = pre. 
(35) 

k81 
If cu2C,2,R 1, E = const., 

p = E2 ) re. (36) C; 

Accordingly the output is constant provided re is independent of 
frequency. For a rigid disk 20 cm. radius in an infinite baffle, re rises 
gradually up to 500 , after which it is substantially constant. Thus 

the power is invariable down to 500 after which it decays. Below 

125 , it varies inversely as the square of the frequency. If, however, 
the radius of the plate is increased to such a value that the wave 
propagation remains sensibly plane down to 100 the output will 

be constant. To secure this condition the radius a 4= 100 cm., so the 
diaphragm will be about 7 feet diameter. 

Reverting to our 20 cm. diaphragm, if we assume (02q, 1 at 
500 ,, Rais of the order 109 ohms which suggests the use of a pentode. 
The radiation resistance R = re Cy82 x 10-9 = 5 x 10-9 ohms and so 
the output is totally inadequate to be of any practical value. As we 
shall see later this is due to the enormous magnitude of 8, the stiffness, 
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which prevents an adequate amplitude being obtained. If Rawere a 
triode of 1,600 ohms resistance, then co2Ct Ra2 < 1, and above 500 

f is constant, so 
p a ,2rf2 8 
= • 

Plf2increases as the square of the frequency above 500 ,-, and decreases 
as the fourth power below 125 Here again the output is too small 

for practical requirements. The power can be levelled up to some 
extent by aid of an auxiliary choke or an autotransformer as shown in 

Sisnal 

Si9nal 

(a) 

(b) 

AutotransFormer 

Speaker 

Fro. 58. Valve circuit diagrams of electrostatic 
speaker. 

(37) 

Fig. 58A, B. In both cases resonance is obtained at a certain frequency, 

and thereafter the inductance in circuit reduces the voltage on the 

speaker as the frequency rises (see § 11, Chap. XIII). 

6. Effective mass of dielectric 

As a point of interest, before passing on to the next section, we pause 

to consider the mechanical action of the dielectric by a more rigorous 
method than that adopted previously. Neglecting lateral expansion 

and contraction, the dielectric within its elastic limit can be likened 
to an extremely stumpy bar fixed at one end and acted upon at the 

free end by an harmonic force. This again can be simulated by a 
short electric cable with one end free, a driving e.m.f. being applied 
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to the other. The sending end impedance is 

Z =- Z 0 coth Pl, (38) 

where Z0 = surge impedance of infinite cable 

C); 

P = propagation coefficient = icoOLC), both of these values 
implying zero loss; 

L, C = inductance and capacity per unit length respectively 

and 1= length of cable. 

Thus Z = Al \CI \ —ficoth[iw1V(LC)] = li-fi--cot[colV(LC)]. (39) 
C/ 

Translating (39) into its mechanical analogue, we have 

ze= —iN/(mns)cot (w,tn--21.8 ) , (40) 

since L mnld; C 1I8d; d = 1; mn = natural mass of whole 
dielectric; 8 = total stiffness. 

At low frequencies c4(ma/8) < 1 and (40) can be written 

4(15n8)  — is/w. (41) 
wentn/8) 

In the absence of loss ze= iwm; so the effective mass of the system at 
the driving surface is 8 

tn ;(42) 

which is identical with the value we used above. Obviously the 

effective mass is negatively infinite at zero frequency. From (40) it 
is seen that ze vanishes when co,f(m0/8) = lir(2n-F 1), since resonance 

occurs due to the wave reflected from the fixed plate. For the case 
treated previously where 

8 .= 1.26 x 1014 and m. ÷- 63 gm. 

the first vibrational mode (n = 0) occurs at co = K(8/m), namely, 

3.5 x 105 which is much too high to obtain a reasonable output 
from an electrostatic speaker. The rising characteristic is explained, 
therefore, by the fact that up to 3.5 x 105 rs, the system operates on 

the lower side of the resonance curve. Thus the arrangement is akin 
to working a short-wave radio circuit at medium wave-lengths—the 
signal strength is conspicuous by its absence. 
From formula (40) it is seen that a family of effective mass curves 

similar to those of a vibrating reed are obtained (Chap. IV). The 
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essential difference is that in the present case (which holds equally 
for a short bar driven at its free end), the motion is longitudinal, 

whereas in the reed it is flexural. 
The preceding analysis of effective mass is valid only in the ideal 

loss-free case in vacuo. In air it would be essential to introduce 
resistance and accession to inertia. This, however, would upset the 
simplicity of our present argument and will not be studied here. 

7. Effect of reducing the stiffness (s) 

We have already seen that working below the fundamental resonance 
frequency of the system entails a rising characteristic. Also that a 
very high resonance frequency means correspondingly low sensi-

tivity. To reduce 8 and retain the present mechanical system, the 
dielectric thickness must be increased. Since this also lessens the 

sensitivity such procedure is impracticable. Instead of squeezing 
a laminar dielectric, suppose the mechanical construction to be such 
that a reasonable length is in direct tension. The stiffness will then 
be reduced enormously. An arrangement of this nature is described 

and illustrated in Chap. XIII, § 11. It is clear that the sagging portion 
in each channel or depression is a vibrator of the stretched membrane 

type investigated analytically in Chap. IV, § 15. The fundamental 
frequency can be much lower than that in the previous type of 

speaker. It can be varied by altering the size of the depressions 
or by increasing the tension. If the fundamental were 100 then 

owing to close intervals between the modes of the membrane, a large 
number of modes would occur up to 5,000 Assuming adequate 
damping, there is no apparent reason why the resonances should be 
distressing. There is a secondary source of stiffness and loss due to 
the presence of the hollows and perforations in the back plate. During 

vibration the air between the membrane and the plate is alternately 
compressed and rarefied. At low frequencies it escapes readily by 
the perforations thereby introducing a mechanical impedance which 

subdues the resonances. As the frequency rises the pneumatic 

stiffness of the air-pocket becomes of importance, since the air does 

not escape so easily. This will modify the behaviour of the system. 

8. Circular membrane type [30 b, 31, 32] 

This is shown diagrammatically in Fig. 59 and described in Chap. XIII, 
§ 12, to which reference should be made. For analytical purposes the 
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diaphragm is equivalent to a membrane devoid of inherent stiffness. 

Assuming for simplicity that the distances between the membrane 

and either fixed electrode (grid) is constant at all radii, the forces 
per unit area on the two sides during operation are, respectively, 

proportional [26] to (4+ El2) 2 and (7'2)2, where E, is the 
d_e d+ 

polarizing voltage and E the signal voltage across the grids. The 

Central position ' 
oF diaphragm—i 

Diaphragm oF 
aluminium foil 
in radial tension 

Fixed perforated 
electrode 

Id, 

1 
1 ---> g r---

: 1 
, 1,500 volts I 

I 

---.Transformer 

rifMnif`  ef) To valve circuit 
Fia. 59. Diagrammatic views of stretched membrane 

electrostatic speaker. 

resultant force on the membrane varies as the difference between 
these quantities, so 

4E2 E 
f oc  ° [ed_Hd2+e2) (43) 

(d2_e2)2 2E01 

the term in E2 being neglected since E,> E. Let h =-- e/d and (43) 
becomes [30 b] 

f cc , 44 rh+,1±,„ 1 
• (44) 

d2(1—h2)21_ ‘ / 2E0j  

To obtain a linear relationship between f and E, the conditions are 

(a), E(1-1-h2)/2E0> h, or approximately El2E0> e/d, since h2 < 1; 

(b) 1 > h2, as implied in (a), so d > e. Condition (a) means that the 
signal voltage must be an appreciably greater proportion of the 
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polárizing voltage than the amplitude is of the distance between the 
membrane and either grid. If the maximum value of E/2E0 is taken 
as -I, e should not exceed d/20 say. The ratio E/2E0 must itself be 
limited to avoid the introduction of serious alien frequencies due to 
mechanical rectification as shown in § 1. Using the above restrictions 
in (44) we obtain the linear relationship 

f oc 2E°E  (45) 
d2 

The foregoing rests on the assumption that the membrane moves 
with equal amplitude throughout, the force being uniformly distributed 
over its surface. Practical conditions differ in several respects: (a) the 
membrane is curved during vibration; (h) the distance between it and 
the grids increases from the edge inwards to allow adequate clearance 
at the centre; (c) the driving force is not uniformly distributed over 
the surface, since the grids have slots or perforations through which 
the sound can escape. Since the apparatus is too complex for rigor-
ous treatment, it will be replaced by a suitable model. Accordingly 
we take two uniformly spaced flat grids having circular perforations 
of small radius, the membrane being symmetrically situated between 
them. The perforations are to be ignored and the force per unit area 
assumed constant on both sides of the membrane. The sound radia-

tion will be regarded as that from a diaphragm open at both sides 
operating in an infinite baffle in free air. Owing to focusing of the 
radiation the baffle is unnecessary above a frequency of 500 for a 
membrane of radius a = 20 cm. The shape of the diaphragm during 
vibration depends upon the distribution of pressure over its surface 
and vice versa so that neither can be readily evaluated. As a first 
approximation the shape of the diaphragm in vacuo will be used at 
resonant frequencies, as shown in Chap. VI, § 3 where the power 

radiated from the membrane is determined. 

9. Power at non-resonant frequencies 

Although the shape might be taken as at (45) Chap. IV, f is not in 
phase with the velocity, since the mechanical impedance per unit 
area is now of the form ze = re-Ficane. Difficulty is encountered with 
the pressure distribution over the surface, so the problem will be 
treated in a simpler manner. The experimental work on disks and 
conical shells described in Chapter XVI indicates that above the first 
mode, variations in me are curbed considerably due to losses. With 
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a very light membrane there is no reason to doubt the validity of this 

statement. Accordingly above 500 (ka > 1.9) the membrane will 

be simulated by a rigid circular disk of equal mass and radius in an 
infinite flat baffle. The power radiated from both sides is 

P= erJ = rAT yr,. 

or 

128 256 5 2 1024 2048 40% 8192 

Frequency cycles per second 

Fla. 60. Comparison of measured (curve 2) and cal-
culated (curve 1) output curves of stretched mem-
brane electrostatic speaker. 

(46) 

where 4 = 4+.2(5+m)2, 5 gm. being the diaphragm mass. Since 
ka > 1.9, the mechanical resistance r,. = 2pocA, whilst 

2pocA G2 
— 3 

as shown in Chapter III. Performing the requisite calculations for a 
diaphragm 20 cm. radius, the ratio P/f2 is plotted in Fig. 60, curve 1.* 
Apart from the maximum at 1,000 it is fairly constant up to 

2,000 after which it decays with rise in frequency. The lack of 

pronounced variation in P/f2 from 500 to 2,000 is due to r,. being 

large in comparison with the mass reactance. At higher frequencies 
the latter becomes of greater importance, so the amplitude, and there-

fore the output, is reduced. Curve 2 of Fig. 60, arranged to be at zero 
level with curve 1, at 1,000 illustrates the output from an actual 

P P  
• If =  used, the curve is the same shape; f and E assumed constant. 

f' (fA)8 
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speaker. Naturally owing to vibrational modes it shows greater 

fluctuations than curve 1, but the general trend is of the same char-
acter. Above 3,000 , curve 2 decays more rapidly than curve 1, 
since in the latter case no allowance was made for (a) mechanical loss 
which increases with frequency; (b) reduction in voltage across the 

speaker due to fall in reactance relative to the remainder of the 

output circuit, as shown in Fig. 85. 

10. Comparison of power at resonant and non-resonant fre-

quencies 

When ka > 1.9 the power ratio for constant driving force is that of 
formulae (13), Chap. VI, and (46) above. Thus 

z2 e 24 
CP — — e 

Po cArr re 
(47) 

since 2pcA -= r,.. 

Substituting the value of 4 from the previous section in (47) we 
obtain 0,2 

y = 2{1+ —re (5+mi)2]. (48) 

From 500 to 1,000 , y is nearly 2, and increases with rise in 
frequency, owing to the influence of mass reactance. At the gravest 

mode (130 ,) ka -+ 0.5 and P is 4.3 times its value when ka > 1.4. 

Thus y is 8.6, but in practice the electrodes are specially shaped 

to cause large damping at the centre of the diaphragm, so the 
output at 130 , is of the same order as that at higher modes, 

as shown in curve 2, Fig. 60. It is, of course, to be expected that 

the output at resonant frequencies exceeds that at intervening 
points. 

11. Axial pressure 

On the axis 4, -= 0, so from (23 a) Chap. V the pressure in free air or 

in a 'dead' room is y _ 13(04, a2refi(ki a)1 
(49) 

r [ kia j 

and has zeros corresponding to the roots of JI(Icia), i.e. kla -= 3.83, 

7.01, 10.17, etc. the frequencies in vacuo being approximately 490, 

900, 1,300 ,. In an ordinary room, apart from standing wave effects, 
the axial zeros would be obliterated by reflection. From Chap. VI, 
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§ 3 the axial velocity at a resonant frequency is 

e0 — p 
2fAA' (50) 

where A — Vi(k1 al . 
L lcia j 

Substitutmg this value of 4 in (49) the axial pressure is 
___ pcoP 

P — 2irrf (51) 

since A = ira2. 

The result in (51) shows that when P and f are invariable, the 

axial pressure at a definite distance increases directly with the 
frequency of the vibrational mode. Owing to losses, the diaphragm 

shape is modified and the axial pressure will not increase so rapidly 
as (51) indicates. Above a certain point it will decrease due to increase 
in frictional losses. 

12. Influence of accession to inertia 

As shown in Chapter IV, the diaphragm mass is so small that the funda-

mental mode is reduced from 310 ,--, (its value in vacuo) to 130 ,--, in 
air, due to accession to inertia which is about 1.5 times the mass of the 

diaphragm. The frequencies of the higher modes in vacuo can be 
determined from the roots of Jo(ki a). From Chapter IV the first root 

k1 a = 2.4 corresponds to 310 ,-..,, so the remainder found by simple 

proportion are 710, 1,110, 1,520, 1,930 ,-...,, and so on at intervals of 

approximately 400 ,--,. Accordingly at higher frequencies there are 
several modes per octave. 

13. Numerical example [30 b] 

If E is the signal voltage applied to the outer grids, as shown in Fig. 
59, the force on the diaphragm, neglecting perforations, is 

E.E0A  
f - , 47rd2 

d being the (uniform) distance between the membrane and either 

grid Taking a = 20 cm., d = 1.2 mm., E = 300 volts, E, = 1,500 
volts, the total force driving the membrane is 2.25 x 104 dynes. In 

a good hornless moving-coil speaker the force for ¡ this voltage varia-
tion on the power valve would be about nine times as great. For 
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the electrostatic speaker at 130 formula (13), Chap. VI, gives 

4.3f2  
P — — 0.01 watt. 

Po e21-

Also from (50) the central amplitude is 0.11 mm. This amplitude at 
130 corresponds to the use of an infinite baffle, but without grid 
damping of the membrane. In practice the power is about à of the 
above value and the corresponding amplitude is 0.05 mm. It is im-
portant to notice that if the separation d were reduced from 1.2 to 
0.5 mm. the increased driving force would cause an amplitude of 
0-3 mm. It might be thought that the criterfon EdI2E0e> 1 of 
§ 8 is violated, thereby introducing alien frequencies in the output. 

It must be remembered, however, that in practice the membrane is 
curved, whereas the above criterion refers to equal amplitude through-
out. For equal power in the latter case, the amplitudes corresponding 
to d = 1-2 mm. and 0.5 mm. are, respectively, 0.024 mm. and 0.14 mm., 
so EdI2E0e = 5 and 0.36. The first figure is satisfactory, but the 

second involves serious distortion. Owing to increase in driving force 
with decrease in d, the amplitude is increased. Thus Ed12E0e 
decreases, and there is a minimum permissible value of d, however 
small the signal voltage may be, if distortion is to be avoided. Hence 
the greater the sensitivity or force per unit signal voltage, the smaller 
the permissible amplitude and power output before serious distortion 

occurs. In practice the radiation, inherent losses and grid damping 
are adequate to make the nodal circles positions of minimum ampli-
tude. Consequently the shape of the diaphragm alters progressively 
throughout a cycle, so the minimum d and maximum e are best found 
experimentally. Obviously owing to inequality of e over the mem-
brane, the central value can exceed that found from the distortion 

criterion. 
The above argument and numerical data reveal the limitation of 

the electrostatic speaker dependent upon the square law /cc (Eld)2. 

It is not generally realized that the restriction of signal voltage is of 
less importance than that of amplitude. For large power output the 
obvious escape from this dilemma is to augment the area in vibration 

by using a plurality of units. 
According to (50) since P If is constant for uniform output at 

vibrational modes t oc r lcia  1 = 1 
(52) 

° coR(ki coA. 
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At the first mode kia = 2-4, A =--- 0-217, whilst at the fifth mode 

with four nodal circles ki a =- 14-93, A -= 0-0138. Assuming mi at the 

latter mode to be negligible, the frequency is 1,930 and eo is 6 per 
cent. greater than its value at 130 which is taken to be 0-05 mm. 
This is associated with enhanced spatial interference due to oppo-

sitely vibrating annuli on either side of a nodal circle, so the central 
amplitude must be adjusted accordingly to give compensation, 
thereby preserving constant output. If the membrane moved as a 

whole, eo « 1/(.0 at higher frequencies where ka 1-9. 



X 

THEORY OF HORNS 

1. Fundamental equation 

On the assumptions given below, the theory of sound propagation in 

a horn can be established. The consequences of the assumptions will 

(a) 

Area A— 

Throat area Ao 

(b) 

Wave Front 
assumed plane 

FIG. 61. 

Wave Front 
spherical 

be discussed later. The analysis is admittedly approximate because 

rigorous methods have not been developed yet. In any case they 
would introduce real analytical difficulties. In the long run one might 

be compelled to present the solution as a series of special cases all 
requiring considerable arithmetical labour before a satisfactory result 

is obtained. Meanwhile a good deal of useful information for design 
purposes can be derived from an analysis, which, although approxi-
mate, has been of signal service in the design of modern loud-speaking 
apparatus. 

Consider the arrangement shown in Fig. 61 A where 8x is a short 
axial length included between two parallel planes normal thereto. 
The volume of this element is A 8x, where A, the cross-sectional area, 

is given as an arbitrary function of x. Using the method of Chapter II 
for infinitesimal amplitudes, we see that the change in the mass of 
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fluid per unit time, in this constant volume, due to condensations and 

rarefactions concomitant with the passage of sound waves is 

e(PA) — 
- at ' 

8x being invariable with time. The difference in the mass of fluid 

entering one plane and leaving the other in unit time is pa(uA) 8x, 
ax 

this being p times the change in 'velocity-area'. 

By virtue of the continuity of the fluid these two quantities must 
be equal, so 

a(uA) a(pA) . 
P ex = at (1) 

Expanding both sides of (1) we get 

A2e ) = (2) 

From (29), Chap. II, u = — from (1) and (32) =, = 1a2g  • 

at c2 at2' 
and for infinitesimal amplitudes p = po, whilst aAlet = 0, since the 
area at any value of x is independent of time. Using these sub-
stitutions in (2) we obtain 

492 ri mia# a2# n 
ax2±[À x = (3) 

a log A 1 aA 
Since 

= A ex 
(3) can be written [67] 

a2e a(log A) 1 e2e, 0 
bx2 ± be ax c2 bt2 (4) 

this being the fundamental horn equation for infinitesimal amplitudes. 

If the motion is simple harmonic, we can write e = e, cos at, which 
gives a2e/bt2 = —w2e. Substituting this value in (4) and remem-
bering that k = tole, we find that 

d2.1, d(log A) dx,6 
k24. =-- 

dx ' (5) 

which is the most convenient form of the horn equation. To deter-
mine the propagation of sound waves in any horn, we take the 
algebraic function A which represents its cross-section at various 

distances from the throat, differentiate its logarithm, insert the result 
in (5), and solve as a differential equation of the second order. 
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Before considering particular cases it is well to examine the hypo-
theses upon which (5) is based. These are as follows: 

1. The shell of the horn is rigid and its inner surface smooth. 
2. As in other problems herein the motion of the fluid is irrota-

tional. 
3. To avoid reflection and interference the axis of the horn is 

linear (no bends) ; also the length of the horn is infinite. 
4. The fluid is inviscid and there is an absence of friction between 

it and the inner surface of the horn. 
5. The pressure variations are infinitesimal. 
6. The pressure is uniform over the wave front (assumed to be 

plane)* as it travels along the expanding section of the horn. 
The assumption of irrotational motion of the fluid particles has 

been taken for granted so often that it seems idle to specify it now. 
But those who have extinguished matches by draughts in the neigh-
bourhood of horns or free-edge conical diaphragms, where the ampli-
tude is large at low frequencies, will realize that appreciable rotatory 
motion can occur. Along the inner surface of a horn, where rapid 
change of curvature exists, there is a likelihood of eddies and 
rotatory motion. At the junction with the throat chamber careful 
design is required to reduce eddies. No experimental evidence exists 
regarding either eddies or the influence of viscosity and skin friction 
on the inner surface. It seems logical to argue that the smoother the 
surface, the smaller the curvature and its rate of change, the less 
will be the rotatory motion and frictional loss within the horn. At 
the mouth it is difficult to avoid vortices when the output is large. 
The assumption of infinitesimal pressure amplitude is seriously 

violated in the neighbourhood of the diaphragm at the throat, where 
it may approach 104 dynes t cm.-2. This condition obtains in public 
address systems for picture theatres or the like. It is treated in 
Chap. XI, § 9. 
The equality of pressure over a plane wave front perpendicular 

to the axis is hardly in keeping with one's notions of physical pro-
cesses. If the area A is that of the curved wave front, over which 
the sound pressure is assumed to be constant, this difficulty is sur-
mounted. Since the plane and curved wave fronts are almost equal 
in area, it is unlikely that the assumption of a plane front introduces 

* See last paragraph in this section. 
t Normal atmospheric pressure is approximately 10 dynes cm.-* 
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discrepancies of appreciable magnitude in the theory of infinite horns. 

In a conical horn the ratio of the plane and curved wave front areas 
is constant, so the analysis is valid in either case. 

2. Conical horn 

The cross-sectional area at any axial distance x from the throat is 

A = fl(x+x0)2, where x0 is the distance of the throat from the vertex 
(fictitious), and f1 is the solid angle of the cone Fig. 61 B. 

We have d(log A) = d 
—dx — {log12+ 2 log (x x0)) 

dx 

2  
x+x0. 

Substituting this in (5) the horn equation to be solved is 

d2e  2  4+= 0, (6) 
dx2 + (x+xo)dx 

which is identical in form with (60 a) of Chapter II, where the vibra-
tions of a radially pulsating sphere were in question. This is to be 

expected, since we are now treating spherical propagation in a solid 

angle S-1 of infinite extent. The complete solution of (6) is 
= A1 e-ile(x+xo) B i e(zi-xo) 

Xd-X0 X+ Xci (7) 

A1 and B1 being arbitrary constants. The first term in (7) represents 
a divergent wave emanating from the throat of the horn (due to a 

vibrating diaphragm) and travelling in the positive direction of x. 

The second term represents a convergent wave travelling towards the 

throat in the negative direction of x. We shall confine our attention 
to the condition where the divergent wave alone exists, which 

implies that the constant B1= 0. The velocity potential at any 
cross-section distant x from the throat of the horn is, therefore, 

e-ikr 
— Ai  (8) 

where r = x±x0. 

From (29), Chap. II, the particle velocity is 

Or 

Al(-1 +ik)e-iler, (9) 
r r 
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and from (31), Chap. II, the pressure 

P = Po—at 
e-ixr 

= - r (10) 

where the time factor eiüe is introduced before differentiation and 
removed afterwards. The acoustical impedance at any point x along 
the horn is (see definition 23) 

P  ipoco   z _ipoc  kr  _ =  " (11) 
Av A{(1/r)-Fild A \l±ikrr 

which on rationalization of the denominator yields 

z 
po c ilc2r2+ ikr\ 

(12) a A k 1±k2r2 f• 

Thus the acoustical resistance is 

poet k2r2  
13 

— A ‘1-1-kar2f ( ) 

and the acoustical reactance is 

Pet  Icr  — (14) 
A ‘11-k2r2). 

Formulae (13) and (14) are identical with the values obtainable from 
(114), Chap. II, for a radially pulsating sphere of radius r. 
The phase angle between the total pressure and the particle velo-

city is evidently 
O = tan-I—ea 

ra 
1 

= tan-1 —, (15) 

which implies that p and y fall into phase with (a) increase in distance 
from the source, (b) increase in frequency, or with both of these. 
This agrees with our results in connexion with simple sources in 
Chapter II. 
When the source is one side of a diaphragm of area Ao fitting 

closely to the small end of the horn, the accession to inertia is 
cA k2x2 

—  u and the radiation resistance is r,. — P° ° °. When 
11-k2xr 1-1-k2x,1 

k2x8 » 1, rai is negligible, whilst r,. = pocAo, which is identical with the 
value for plane waves or for a radially pulsating sphere under identi-
cal conditions, as we should expect. The radiation resistance per unit 
area is po e, which is identical with that of the medium (see definition 
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20). The velocity of propagation in the horn is obviously identical 
with that of waves in free fluid, that is, c. 

3. Exponential horn [58] 

Here the area at a cross-section distant x from the throat is 
A .---- A0d3z, where 13 governs the rate of expansion of internal area 
or flaring of the horn. d(logA)Idx -= p, so equation (5) becomes 

d2#4.134 + k2# = 0. 
dx2 dx 

This is a linear equation of the second order with constant coefficients 

and its solution depends upon the relative values of p and k2. The 

normal case for our purpose is when k2 > 1/32, and then 

# =- Ai eAlx+Blèl e, 
where A1 and A, are roots of the auxiliary equation 

x2±p±k2 =_ 0. 

Thus A2) — Ai — — iP±iec2- 1/92). 

(16) 

(17) 

(18) 

Since we are concerned with the transmitted wave only, then, as in 
(7), B1 -= 0, and the solution we require is 

# -= Aie/3)x, (19) 
where a = V(k2-02). 

Proceeding on the same lines as in § 2, 

briS 
(20) y = — = Aied-i cle)e-af3+icox 

bx 

P = Po—ot = elliPoeve-(3/3+iix)x (21) 

za — P —  iPoae   Pocu(a+iifi)  
Av A(W-Fix) A(.2+02) - 

Since „F if, __ kz, the acoustical impedance is 
za = P2ei{i(12)  • • 13 (22) 

4k + s 2k)'  
and is inversely proportional to A. The acoustical resistance is 

r Po e i j(1— P2 (23) 
a = A 4k2)' 

and the acoustical reactance 

_ Poc P 
Xa — —A—. e. (24) 
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If the source is one side of a diaphragm of area Ao fitting closely at 

the throat of the horn, the mechanical resistance is 

rr = Po cAo (1— w), 

and the accession to inertia mi = pocA,(1912kw). The phase angle 
between pressure and particle velocity, namely, 

o = tan--1  1312k 
— (f32/4k2)} 

is constant throughout the length of the horn, as also is the power 
factor 0°80 = ,,/{1—(f32/4k2)). This expression for cos 0 follows from 
the fact that the vector triangle has sides 1,13/2k, and „,./{1— (p/40)}. 

Moreover, when le f32, as it will be at high frequencies, cos 0 = 1. 
The impedance per unit area is then purely resistive and equal to 
that of the medium, namely, poc (see definition 20). If le = ¡f32, the 
resistance is zero and the reactance per unit area becomes poc. The 
power is then zero and the horn is said to 'cut-off'. The critical or 

cut-off frequency is given by the relationship wo = ¡Pc, so the fre-

quency is fic/4/r. 
When le < 1p2 the solution to (16) is q!, = Ale-0+4x, where 
= ,j(02-1c2). Then the acoustical impedance 

z ilx0  iPo cf P /f P2 _i\) P  
e — AV A(0-Fcti) A t2k \4k2 J 

and is wholly reactive, since only the inertia component exists. In 
the limit, when w -> 0, zo is evanescent. 

Introducing the time factor into (19), we have e= Ai e—o-Fied.+iad, 
the real part of which is 

ye, = Al e-e3xcos(wt—ca) 

---- A1 e-iPxcos(oix—ut). (26) 

With a vibrating sphere or in a conical horn reduction in e with 
increase in x, due to expansion of the wave front, is determined by the 
factor 1/z, whereas in the present case we have the exponential 

decay factor e-eie. Comparing (26) with (17) in Chapter II, we see 
that ec k, so the velocity of propagationealong the horn is 

(25) 

e' v(kz—ifiz) ,,/{1_(p2/4/c2)} •(27) 

As the cut-off frequency is approached, fi'/4k' -> 1, the velocity 
increases rapidly and ultimately [according to (27)] becomes infinite! 

* Phase velocity when w > we. 
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It is hardly necessary to comment upon this theoretical deduction. 
In partial extenuation it may be stated that, in finite horns, the 

phase velocity in the neighbourhood of the critical frequency 
(calculated from the combined influence of the transmitted and 
reflected waves) is found to be much greater than c (see § 8). 

4. Bessel horns [56] 

When the expansion curve of the horn takes the form A = Ao(x+xen 
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FIG. 62. Curves showing relationship between throat resistance and 
frequency for Bessel horns of various orders. x signifies x+ x0. 

the solution of (5) involves Bessel functions. This type of horn is, 
therefore, associated with Bessel's name. The conical horn, where 
m = 2, is a particular case in which Bessel functions of fractional 
order can be represented by circular functions. This holds for all 
even values of m. The response at low frequencies increases with 
increase in the flaring index m, as shown in Fig. 62. The physical 
reason is that as m increases, the phase angle between the pressure 
and particle velocity at the throat gradually decreases, due to the 
expansion of the wave front taking place more slowly. For horns 
of the same length it can be shown that, when the respective throat 
and mouth areas are equal, an exponential horn is geometrically 
identical with a horn of the type A = A(x+x0)7n, where m tends to 
infinity. Apart from frictional and viscous loss, the exponential 
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horn is better than any type of Bessel horn where m is finite [164 b, 
17713]. 

5. Power in horns of infinite length 

(a) Conical horn. The particle velocity at any point distant r from 
the fictitious vertex is, by (9), 

r • (28) 

where r = x-i-x0. At the throat x = 0, r = xo, and y = y0. Sub-
stituting these values in (28) we find that 

A1 ,1 4--ikx oékx.. (29) 
1k24, 

Using this value of A1 in (10) and omitting the exponential factor, 
the pressure per unit area is 

ti+kxo  
p =p, coy, x,kl±k24 

The power at the throat area being the product of velocity and 
total in-phase force is 

(30) 

p p0c1104k24 
(31) 

1+ k2x8 • 

Taking the strength of the source as A.0 vo = So (Chap. II, § 12) we 

have pocS2(  k2xU 
p ___. o (32) 

Ao ld-k2x8 • 

If is the solid angle of the horn, the cross-sectional area at a 
distance x0 from the fictitious vertex is 04 approximately. When 
a is small the error is negligible. Thus (32) can be written 

pocSU k2  
r — (33) 

If û = 27, and x0 --> 0 we have the case of an infinite baffle, and the 
power is then p P o  co2S8 P o  „a4w 4e8 

27re 2e 

which is identical with formula (72 a) in Chapter II for the radia-
tion from one side of a rigid disk of radius a when the sound distri-
bution is spherical, i.e. ka < 0.5. Formula (31) can also be written 

(34) 

2, P = pocAoco k2x, 2a ld-k2x8f• (35) 
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When x„ --> co, A0 --> co, the vibrating surface becomes an infinite 

rigid plane and the power radiated from one side is 

P .-= pocA0c024, (36) 

which is identical in form with (8) in Chapter VIII for plane wave 
propagation from a rigid disk. 

From (33) it is clear that when the strength of the source S, is 
fixed, e.g. a diaphragm of given radius executing a definite amplitude, 
the power increases as the diaphragm loading is augmented by 

reduction of the solid angle of the conical horn. 

(b) Exponential horn. The particle velocity at the throat of the horn, 
where x .--- 0, is y .--- v0. Inserting these values in (20), rationalizing 
and using 0,2 _= (k2— 1 p ,32), we get 

A1 = v° ( — ia). k2 (37) 

Inserting this value of A1 in (21), the pressure per unit area is 

The power is 

P = l'' ' ' )(a-Fig). k 

pv0A 0 = po CA0 Vgj(1 —  4—%), 

the real part of (38) being used. Since S, --= A0v0, we obtain 

p _ PoACoStA1(1_ 1:2). 

(38) 

(39) 

(40) 

For equal diaphragm amplitudes and throat areas at any given 

frequency (identical source strengths), the relative power from 

conical and exponential horns depends upon the quantities ( k2x°  \  
ic24 1+ 

and ,/{1— (/32/4k2)} [see (32) and (40)]. These are plotted in Fig. 63 

(for a certain value of x„), from which the superiority of the ex-
ponential horn is immediately apparent. This can be explained by 
the fact that in the latter the particle velocity and pressure are in 
much closer phase relationship at low frequencies than in a conical 
horn. The slow exponential flaring near the throat is, therefore, of 
great advantage compared with the relatively rapid expansion of the 

conical type which permits, or rather invokes, considerable circulation 
of fluid near the source. This motion, being associated with an inertia 
or wattless component, curbs the diaphragm amplitude and prevents 
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matching of the horn impedance with that of the medium (see defini-
tion 20). In the above comparison, if the value of x, in the conical 
horn is made sufficiently large, the diaphragm diameter being con-
stant, the solid angle is reduced correspondingly. At low frequencies 
the factor k24/(1-1-k24) is sensibly unity and the two infinite horns 
(conical and exponential) are equally efficient above the cut-off 
frequency. In practice, however, this does not hold for horns of 
finite length. If the cut-off frequency is 50 the conical horn is 
some 30 times longer than the exponential horn, the initial and final 
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FIG. 63. Curves showing gain of exponential over 
conical horn under certain conditions. 
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openings being equal in both cases. Consequently the cost of the 
conical horn would be prohibitive. 

If a diaphragm is considered to radiate into one-half of infinite 
space through a close-fitting hole in an infinite flat baffle, the im-
pedance of the medium is matched when ka > 1.9 (definition 20, 
Chap. VIII, § 1). With a diaphragm 1 cm. radius matching does not 

occur until the frequency is 104 A horn enables this condition to 
occur below 100 rsi. Its function is, therefore, to make the impedance 
at its mouth equal to that of the external medium at as low a 

frequency as possible. Since the propagation above 104, is sub-
stantially a plane-wave type, the horn can be removed without 
serious change in output, provided the diaphragm is the same size 
as the horn throat.* In general this is not so, and for a definite 

* In the above theory we have assumed that the diaphragm is the same size as 
the horn throat. 

2048 
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diaphragm amplitude the horn increases the power output in the 

ratio (Ad/A0)2, provided the particle velocity is in phase with the 
pressure. 

If the mass of the diaphragm and the surround stiffness were both 
extremely small, the diaphragm area A d could be equal to that of 
the horn throat Ao. Since this condition cannot be realized in 
practice, a throat chamber is required to obtain an acoustical trans-
former effect. The diaphragm impedance is then matched to that 
of the horn over a wide frequency band (see Chap. XX). 

6. Exponential horn of finite length 

Hitherto we have dealt with horns of infinite length where the trans-
mitted wave alone exists. When the axial length of the horn is finite, 
as it must be in practice, propagation from the mouth calls for con-
sideration. At low frequencies the outgoing wave encounters a region 
of lower pressure at the mouth. The velocity of the particles in the 
wave front suddenly increases, thereby causing a local fall in pressure. 
By virtue of the continuity of the medium the layer immediately 
behind the wave front is also affected, so its velocity increases with 

accompanying pressure drop. This process is maintained right back 
to the source (throat). Thus a backwards travelling or reflected wave 
is created and interferes with the transmitted wave. The interference 
depends upon the impedance at the mouth. If the final opening is 
small, at low frequencies the reflected wave is of such magnitude and 
phase as to reduce seriously the transmitted wave and, therefore, the 
power radiated as sound. In fact the sudden release of pressure at 
the mouth, where it can diffuse in all directions, introduces a marked 
discontinuity, unless the impedance of the horn termination is com-
parable with that of the medium. 

To ascertain the influence of the mouth diameter and reflection 
thereat is a problem which—at the moment—has not been solved 
by rigorous methods. The impedance at any point in the opening is 

the complex quotient of the pressure and the particle velocity normal 
to the wave front at the point in question. The resistance and 
reactance components per unit area, into which this complex quotient 
can be resolved, will, for simplicity, be taken as those at the corre-
sponding section of an infinite horn. Their values from (23), (24) are 
r = pocV{1— (2/4k2)} and x -=p cfek. The ratio reactance to re-
sistance is y/V(1 —y2), where y --- /3/2k, and it is plotted in Fig. 64, 
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curve 1. For one side of a massless rigid disk in an infinite rigid plane 

we have, from Chap. VIII, § 1, r = pocAG, and 

x = pocA1-11(2z)lz = po cA G2, 

these being the total values over the disk. As shown in Fig. 15, 

they are not constant but vary from the centre to the edge. Taking 

x I-1(2z) G, - 1  — — we obtain the mean value over the surface. This 
r zG,(2z) G1 
is portrayed in Fig. 64, curve 2, the abscissa being chosen to give 

an intersection with curve 1 in the neighbourhood of ka = 2 or 
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Fm. 64. Curves showing pi/pi, = x/r (the ratio of 
reactance to resistance per unit area) in an exponential 
horn (1), and also at the surfaces of massless vibrators 

(2), (3), (4). 

1312k = 0.5, where the ordinates of the two curves are almost equal. 

From Fig. 64 the product (13I2k)ka at the intersection gives a = 1.92/fl. 
For values of k corresponding to the range ka = 1.25 to 2.0, it will then 

be found that the mean impedance per unit area of the disk is equal 
to the impedance (assumed constant) at a cross-section of the horn of 

equal radius. Within these limits the disk will simulate the horn if the 

latter discharges into semi-infinite space, and the reflected wave does 
not upset the hypothetical conditions for the terminal impedance in 

respect to the transmitted wave. Outside these limits the resistance 
and reactance components for the disk differ from those for the horn, 
the inertia component of the latter exceeding that of the former. 
When ka = 2.0 the mean resistive component over the rigid disk 

is equal to the resistance of the medium po c, although at the centre 

of the disk it is greater and at the edge less than Po c. Assuming the 
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efficiency of transfer at the horn mouth to be adequate under this 
condition, we find that a = 2/k = Abr. This gives a rough estimate of 
the radius of the horn opening when co/2e = c/X is the lowest fre-
quency to be adequately reproduced. The cut-off frequency is given 
by /3 --= 2k and from above a = 1•92//3 A/2/r. It appears, therefore, 
that the radius of the opening should lie between X/ir and A/27r, i.e. 
from to the wave-length of the lowest note, to be satisfactorily 
reproduced. When ka = 2.0 the pressure on the infinite rigid plane 
is 0.6 that on the axis of the horn, provided the distance r > a. This 
means that the plane increases the output from the horn when 
ka = 2, and modifies the sound distribution compared with that 
which occurs in its absence. In general, horns do not flare into walls, 
so we must seek other means of investigating the problem. 
As a first approximation to the conditions to be satisfied at the 

mouth of the horn: (a) the ratio of the mean values per unit area of 
the resistive and reactive components of the simulating impedance 
(see definition 28) should tally with that for an infinite horn; (b) the 
medium should be matched resistively at the same frequency by both 
horn and simulating impedance. The ratio in (a) can be calculated 
for the two cases, but the matching frequency of a finite horn can 
only be accurately determined by empirical methods. 
The simulating impedances it is intended to discuss are, (a) a 

radially vibrating sphere [58], (b) a radially vibrating hemisphere 
[121 b], the other hemisphere being quiescent. It is important to 
notice that the sphere is not to be used as a substitute for the horn 
opening. The idea is that the mean impedance per unit area of mass-
less vibrators of the above type is used to replace that of the horn 
which is unknown. To simulate the horn termination identically, not 
only the impedance but the spatial distribution of radiation would 
have to be reproduced. In the latter respect a pulsating sphere is 
ruled out, since the distribution therefrom is uniform; a hemisphere 
is better, and, in fact, tolerably good up to a certain value of ka, 
beyond which the focusing of the horn is the greater. 
The impedance per unit area of a radially vibrating sphere is, from 

(114), Chap. II, 
[ 22 iZ 

z = poe - + - -= rd-ix. (41) 
1 d-z2 1-1-z2 

The components r and x are plotted for various values of ka in Fig. 65, 
curves 1 and 2, whilst x/r is shown in curve 3, Fig. 64. From curve 1, 
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Fig. 65, it is seen that when ka =-- 2 the resistive component is 0.8 

that of the medium, whilst from ka --= 0.8 to 2 the ratio x/r is in 
close agreement with the values for the horn over the range fl/2k = 0.8 

to 0.5.* Thus we have a fairly good basis of comparison. 
The impedance per unit area of a radially pulsating hemisphere is, 

from (116), Chap. II, 

Z2 
= ii2OCW+//4 24 )+4( Z ) (22 +11L 4±z4 ), (42) 

4±Z4 1-Fz2  

where = cos 0, as in Fig. 3. The first and third terms correspond 
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Fla. 65. Curves showing resistance and reactance of 
(a) a pulsating sphere, (b) a pulsating hemisphere (the 
other hemisphere being quiescent) for various values of ka. 

to a radially pulsating sphere [see (41)], whilst the second and fourth 
terms pertain to an axially vibrating sphere. The combination of 

these vibrations involving spherical zonal harmonics of zeroth and 
unit orders gives a first approximation to a pulsating hemisphere. 

To attain greater accuracy additional harmonics (3, 5, etc.) are 
required, but these would make the analysis unduly protracted. 
Owing to the presence of » in (42), z varies with O. By integrating 

the impedance over the area of the active hemisphere and dividing 
by that area, a mean value of z is obtained. From Fig. 3 the area 
of an annular zone is 27ra2sin O dO, and the integral required is 

OIT 

277a2 J sin° cos O do, since II. = cos O. The value of this is 7ra2, and 
o 

* Observe the reversal of order. The comparison is over corresponding ranges 
of ka and 6/2k. 
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since the area of the hemisphere is 2ya2, the mean is ¡. The mean 

value of the impedance per unit area over the hemisphere is, therefore, 

ft z2  \ 31 e z  
z=iPociii+z2)+44+4-11A1+.2)-4‘4+z4 hi (43) 

The quantities r and x are plotted in Fig. 65, curves 3 and 4, whilst 

x/r is shown in Fig. 64, curve 4. At low values of z = ka the resistive 

component is less than that for a complete sphere, since the vibrating 
area in the latter case is twice that in (43). As ka increases, the 

resistance r in both cases approaches that of the medium asympto-

tically (see definition 20). The slower growth in r for the hemisphere 
is due, in part, to the reduced area, but also to the absence of har-

monics of higher order in (43). The ratio x/r is greater than that for 
the sphere or the horn, i.e. the power factor of either of the two latter 
exceeds that of the hemisphere. 

7. Formula incorporating simulating impedance 

To determine the result of using any form of simulating impedance 
(see definition 28) at the opening of the horn, it is essential to deduce 

a formula in which impedances can be combined. Since p = za Ay, 
the pressure (assumed uniform over the orifice) in the transmitted 
wave is, from (22), 

Pi = Po evini, 
where Ill = V{1 — (j92/4k2)} i/312k; 

BO V1 -  (44) 
Po cni.. 

P2 = — Po cvs 112; 

Ps  
80 V2 - (45) 

PoC112' 

where 112 = V{1—(13214k2)}—ifek, the minus sign signifying that c is 
negative, owing to reversal of the direction of wave motion. If p and 
v are, respectively, the pressure and particle velocity in the radiated 
w.ave [58], 

P = P1-1-P2 (46) 
and y (47) 

The terminal impedance per unit area (assumed uniform over the 
horn mouth) is 

z -1--.232 (48) 
V1-- V2 • 

For the reflected wave 
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From expressions (44) to (48) and the identity flj2 = 1 the ratio 
of the pressure in the radiated wave to the original pressure (in an 

infinite horn) is found to be 

P = Pi+Pa _z(111-1-11 2) 
PiPi zr11-1-po c 

2z,/{1— (132/ 4k2)} (50) 
= 4,,/{1 — (p2/4k2))+ (if3/ 2k)] + po c. 

(i) Sphere 

(2) Hems here 

1.0 20 30 
Values oF ka. 

FIG. 66. 

40 5-0 

(49) 

By inserting the value of z from the formula for the simulating 
impedance in (50) the ratio of the pressure in the radiated wave to 
that transmitted in the absence of reflection is determined. This 
ratio can be converted to decibels if desired. By choosing values of 
/3 and k, the influence of the radius of the horn opening can be ascer-

tained by aid of (50). 
In Fig. 66 two curves are given corresponding to /3 -= 0.02, 

f = 75 •••-• (fl12k = 1/i/2), the terminal impedances being a radially 
vibrating sphere (curve 1), and a radially vibrating hemisphere 
(curve 2). For the former the ratio plpi attains a steady value sooner 
than for the latter. This is to be expected, since z in one case exceeds 
that in the other, and the impedance change at the mouth is lessened. 

It seems reasonable to believe that the hemisphere is the more repre-
sentative of the two owing to its shape and smaller surface. The 
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area is twice the plane area of the orifice. A reduction in the radius 

of the hemisphere would be equivalent to increasing ka in Fig. 66. 
For example, if it were alV2, the abscissae require multiplication by 

12, so the new value for ka =-- 2.0 is 2.828. The proper choice of radius 
can only be determined by means of experimental methods. 
Both curves in Fig. 66 attain maximum values which are rela-

tively inconspicuous. There is little difference between the curves 

when ka .-- 1, so this can be regarded as a turning-point. Thus, if 
the lowest frequency is reproduced at a level not more than 2.5 deci-
bels below normal, ka must not be less than unity. Putting ka =-- 1 
we get a =-- 427r, or the radius of the opening should not be less than 

one-sixth of the length of the longest wave to be reproduced. At 

75 , this means that a ---- 75 cm., i.e. the diameter is 5 feet and the 
axial length 15 feet, provided the throat radius is 1 cm. If the radially 
pulsating hemisphere were to be replaced by one of radius alV2 as 
mentioned above, the radius of the final opening of the horn would 
be 54/2 4-- 7 feet. 

A different set of curves will be obtained for each value of k, but 
the maxima always occur at the same value of ka. As k increases 
Vp.— (/32/4k2)} ---> 1, 1312k --> 0, and expression (50) approaches asymp-

totically the value P ___  2z  
(51) 

Pi z+Poc• 
For large values of ka, i.e. at high frequencies, z tends to the value 
po e for both sphere and hemisphere, provided harmonics of higher 

orders are used in (43). Thus the ratio plpi approaches unity and the 
system is devoid of reflection. 

8. Influence of terminal reflection on throat impedance 

The influence of reflection at the mouth of a horn is embodied in 

(50). The reflected wave travels up the horn and ultimately reaches 
the throat. The pressure at any point within the horn is the vector 
sum of those due to the transmitted and the reflected waves. It 

differs, therefore, from that in a horn of infinite length. Modification 
in the throat impedance due to the reflected wave can be determined 
as shown below [49]. 
The complete solution to the exponential horn equation is given in 

(17), and contains two arbitrary constants. When k2 > 1.132, we have 

e -- e-03e(Cicos ca +Di sin ca), (52) 

where a =- 
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The particle velocity 

a<k 
v = --

ax 

= e-ii92{6Va sin Œx + P cos ŒX)—D1(Œ cos ocx— ¡/3 sin «X)} 

= ke-iPx{CI sin (ax + 0) —DI cos(ocx+0)}, (53) 

where 0 = tan-113/2«. The pressure at the mouth from (52) is 

p2 = ipoc42 = ipocoe-ii3x2(Ci cos otx2+ DI sin ax2), (54) 

where x2 is the distance of the mouth from the throat. The impedance 

per unit area at the mouth is, from (53) and (54), 

P2 •  (01 cos 1:2X2+ D1 sin cix2) 
Z2 = — spoc{C . 

V2 2 6111(0/X2+ 0)—Di COS(Ca2+ 0)} . 

Transposing (55) we obtain 

z2sin(ccx2+ 0)— ipoc cos ax2 
C1 —  z2cos(cxx2+ 0)+ipo c sin oix2. 

At the throat x2 = 0, sin° = fl/2k, cos 0 = al k, so, from (55), 

iPo aeCi ¡Pow  Z — 07) 

° ifica— c‘Di 

Substituting in (57) for Dilei from (56), the throat impedance per 

unit area is 
ipow{z2cos(ax2+0)+ipoc sin ce..x,} 

Zo =- 
Z2{CX sin(ax2+0)-1P cos(ax2+0)}—ipoc{cx cos ax2+ ¡Pain cc%} 

(55) 

poc{z2cos(ax2+0)+ipoc sin oix,) 

{po c cos(cxx2— 0)-1- iz2sin ŒX2) 

= (rod-ix„). 

When 0 is small enough to be neglected 

po CZ2 

ro = po C [ 2 / 2 c2_ z2lcos2=21 
22-1- ‘130 2/ 

(56) 

(58) 

(59) 

(60) 

[ (4c2—esin 2=2  
and P°c x° = 2{4+ (p8c2— 4)cos204x2}1. (61) 

The above condition respecting 0 is ensured when k> ¡fl, i.e. well 

beyond the cut-off point where the pressure and particle velocity are 

almost in phase. The value of z2 at the horn mouth is taken to be 
that of a pulsating hemisphere (§ 6). When the reactive component 
of z2 is small z2 poc, and the throat impedance is pocAo which is 
wholly resistive. This is to be expected since the condition z3 = poc 
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at the mouth means that the horn impedance matches that of the 
medium and there is no reflected wave. 

Relative phase in degrees 

o 

Relative pressure amplitude 

Relative phase in degrees 

0 270 180 90 

25 30 35 40 50 
20 

5 

Relative pressure amplitude 

FIG. 67. Relative pressure and its phase in exponential horn 173 cm. long; 
mouth diameter 72 cm., j3 0.046. o.)/27 = 120 (top) and 800 ,--, (bottom). 

9. Velocity of propagation in finite exponential horn 

In a plane progressive wave (Chap. II, § 2) the particle displacement 
e = eocos(cot—kx), where kx = O is the phase angle at a distance x 
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from the source. If the propagation velocity varies with x, so also 

does k. Then we have O 4 k d,x. When O is plotted against x, the 
o 

slope dOldx -= k. In a finite horn, near its cut-off point especially, 
the issue is complicated by the reflected wave. If, however, the pro-

pagation is regarded as unidirectional, an effective or composite 
velocity can be found. It is to be clearly understood that this is not 

necessarily the velocity in the absence of reflection. From the data 
[57] of Fig. 67 curves can be plotted showing O at various distances 

from the horn throat. Since the pressure variations are small, the 

possiblity of change of wave form is negligible* and the phase velocity 
at any abscissa is e' = calk. The value of /3, the flaring index, is 0.046, 

so from the formula co/27r = /3c/47r, the cut-off frequency for an 
infinite horn is 120 ,. This is also the frequency used during the 

experiments. At the throat c' is 25 times c, whilst just within the 
mouth it is 6c, and 40 cm. beyond c' = 2c. The high throat velocity 
is to be expected from the theory of infinite horns given above. 
At 800 ,, where the influence of reflection is relatively small, c' is 

fairly uniform down the horn, being 5x 104 cm. sec.-1 compared 
witht 3.8 x 104 cm. sec. -1 for an infinite horn. Just beyond the mouth 

it is 39x 104 cm. sec.-1. 

* See Chapter XI. t Using formula (27). 
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SOUND WAVES OF FINITE AMPLITUDE 

1. Introduction 

It is stated in Chapter II that the theory of sound is based upon 
infinitesimal pressure amplitudes. In modern sound-reproducing 
apparatus, and in all musical instruments capable of generating large 
sound pressure (orchestra and pedal organ), the amplitudes at the 
source are anything but infinitesimal. The pressure used in fog-horns 

FIG. 68. Curve showing wave form distortion due 
to large sound pressure amplitude. 

and sirens is colossal from the viewpoint of simple theory, whilst 
that at the throat of a powerful public address horn-type speaker may 
reach a value of 2 x 104 dynes cm .-2, i.e. -h the normal atmospheric 
pressure (see § 9). Since a sound pressure of 5 dynes cm.-2 on the 
ear-drum is quite loud, the great strength of the above source will 
be realized. 
At any instant during the propagation of a plane sound wave of 

finite amplitude, the density of the medium varies from a maximum 
at a crest to a minimum at a trough. The velocity of propagation 
gradually decreases from the crests to the troughs, so the former 
steadily gain on the latter. The result of this is shown in Fig. 68, 
which indicates a profound alteration in wave form. The process 
continues until the wave-slope becomes vertical and a discontinuity 
or abrupt change in the smooth passage of the wave is presumed to 
occur. Beyond this point the previous mathematical analysis ceases 
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to have any physical significance. No experimental evidence exists 
relating to discontinuities associated with steady wave motion. There 
is, however, much information regarding sound impulses due to pro-
jectiles [223]. Measurements on pulses due to explosions, the pressure 
being released from a tube open at one end, disclose velocities vary-
ing from 1.2 x 105 cm. sec.-1 near the tube to the normal value of 

3.43 x 104 cm. sec.-1 at some distance therefrom [53]. 
Mathematical analyses, relating to finite amplitudes, have so far 

been restricted to the case of plane waves [52, 54, 55, 216, 219]. Since 
there is no expansion during the progress of a plane wave, the change 

in type is much more marked than it is in an expansive wave emitted 
by a large conical diaphragm or from a horn. Provided the pressure 
at the throat of a horn does not exceed a certain value, expansion 

of the wave will prevent discontinuity, but not change in type. The 
fact that no serious change in type with public address systems has 
been reported indicates that, with the throat pressures used at 
present, the output does not contain harmonics of any relative 

importance. 
The complete mathematical analysis associated with sound waves 

of finite amplitude is much too detailed for inclusion here. We shall 

show (see [229]) how the differential equation for a horn of any cross-
section is obtained, using the assumptions in Chapter X, excepting 

that relating to infinitesimal amplitudes. 

2. Sound waves of finite amplitude in a horn 

In Fig. 69 consider a stratum lying between two parallel* planes per-
pendicular to the axis of the horn. Its undisturbed thickness at x is 
dx, and its cross-sectional area A = Aoy5(x), where i6(x) is a function 
of x, the distance from the throat. At any instant during the passage 

of a sound wave, particles originally at x are at x+e. The thickness 
of the stratum is now d,x+(belbx)d,x = dx(1-1-e). If we write z = x+ 
then z' = azIax = (1+e,), so the new thickness is z'dx and the corre-
sponding area AdS(x+e) = Aeli(z). Since the mass of the lamina 
remains constant, by equating masses we get 

Po dx 2109‘(x) =p dx z'Aock(z) 

p 1 
or - (1) 

Po Xz 
where x = 

* See the last paragraph of § 1, Chap. X, regarding a plane wave front. 
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By differentiating (1) we obtain 

1 bp z" x' 

Po )21- x2z, 

where z" =- b2z/bx2 = b2e/bx2 = e, and x' =- ax/ax. 
For adiabatic working p = p0(plpo)Y, 

so 
y-1 

I9P Y1)4 2 -)Y -- 

'9P Po \Po/ (Po) 
e2 

(Xe )Y-1. 

Wave Front 
plane 

Throat area A0 

Area A•A01)(x) 

Area A=A01)(x+g) 

eL—dx (i+g) 
-1 

E-m 

(3) 

Flo. 69. e is the particle displacement. 
Multiplying both sides of (2) by bp/bp from (3), we obtain 

A .13e ... of  e x (4) 
Po ex 1(zie +1 Xv + Wee ±ii• 

The difference in total pressure on the two sides of the lamina is* 
—(eplex) dx A„ ez). This is equal to the product of the laminar mass 
and the axial acceleration, so 

bp 
— dx A0 (z) =-- poM o 95(x) dx 

or 

where = (92e/bt2. 
Equating (4) and (5), we get 

z' X' (2')Y+1XY-1 za+ 
C2 

This is the horn equation for finite amplitudes. 
ep  

* Since the abscissa is (x+e) the pressure difference is   (ix(' + e,) Aoez). 
ae bp 

Now e(x+e)=ex-l-ax— = ex(1-1-e), so the pressure difference is —, dx A° ez) 
ex dx ' 

1 bp 

po ex x (5) 

(6) 
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3. Plane waves of finite amplitude 

Since the wave-front is assumed to be plane, the analysis is rigorous 
for plane waves. In this case ç(x) is constant, so x =-- 1 and x' =-- O. 
Thus (6) becomes 

 e. 
c2 

Since z" = e" and z' 1+e, (7) can be written 

e2  

which is a well-known equation for plane waves of finite amplitude 
[216, 219]. For infinitesimal amplitude e, <1, so 

fr e 
c2 

which is identical with expression (15), Chap. II. 

4. Spherical waves of finite amplitude 

The analysis in § 2 is exact for spherical wave propagation from 
a radially pulsating sphere or in a conical horn. In either case the 
area of the spherical wave-front is given by A = ax2, where 1 is the 
solid angle. The area of the plane wave-front in a conical horn is 
A -= A1 x2, where A1 is a constant and x is the distance from the 
vertex. Thus the formulae for plane and spherical wave-fronts differ 
only in the coefficients S2 and A1, so the analysis is valid in both 
cases. 
The value of x is 

so 

rr=(ii-Yx-42) x2 
>c, --. 2 te:_f\ 2e(r _ 

‘x x21 ‘x2 x3) 

(7) 

(8) 

(9) 

(10) 

For finite amplitudes (6) is to be solved, using these values of x 
and x'. In the case of infinitesimal amplitudes the problem is best 
solved by the method of Chapter X, using the velocity potential. 

5. Exponential horn 

In this case A -= A0e13x, so ex) ---- efix and ç6(z) = eP(x+e). Thus 
X = 41)(z)4(x) = ese and x' = feefie. Accordingly for finite ampli-
tudes (6) becomes 

64y-iw 
eff+peci+e) — 2 (i+e)rfq. 
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For infinitesimal amplitudes e tends to zero, e, < 1, and (11) de-
generates to , e es+pe 0 . e2 (12) 

For harmonic motion = --w2e, so (12) becomes 

0, (13) 

which is identical in form with (16) of Chapter X. 

6. Particle velocity 

In deriving equation (1) attention is concentrated on a particle 
whose displacement from its undisturbed abscissa x at any instant 

is C. This is the method adopted by Lagrange [216] and equation 
(6) is exact. Care must be exercised in interpreting 0e/at. It repre-
sents the velocity of a particle of varying abscissa xi-e. It is not 
the velocity at the point x, but that at a variable abscissa x-Fe. The 

particle velocity at x, i.e. the velocity with which the particle passes 
aE bu 

through this point, is u =— _e_. If in the second-order term u is 
be bx 

taken as eat, to the second degree of approximation 

e2e 
u. at axat. (14) 

7. Sound pressure 

The solution of equation (11) is obtained for C, whereas in practice 
the sound pressure pi is required. Now from Chapter II e2 = ypolpo, 

8° Po = Po c2/Y• 
Also 

Pi = (P — Po) =  

Y Po 

by substitution from above. But for adiabatic changes 

= = (lv Po Po X'z' 

(15) 

(16) 

from (1). Substituting for p/po from (16) in (15), we obtain the excess 
pressure 

Pi -- c2(  1  1). 
Y (Xe)Y 

(17) 

Now x and z' can be expressed in terms of e and its derivatives. 
Thus, if the value of e from (11) is used, the sound pressure at any 
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point on the axis of the horn can be found. The value of pi from 
(17) is the excess pressure at the point x+e. Following the procedure 

in § 6, the excess pressure at abscissa x is p = pl—e(aplax). 

8. Boundary condition 

In solving (11) we imagine the action at the horn throat to be 
due to a rigid diaphragm of area A0* whose motion is defined by 

e emax cos wt. The velocity of the diaphragm is u = --wem  sin wt. 
The sound pressure on the diaphragm, due to the fundamental, is 

P = —pocwei.sin(cut—.), where a is the phase angle between pres-
sure and velocity. The power delivered to the horn is the mean value 
of the product pAou over a complete cycle of the diaphragm motion. 

This is boca)2e2„:„.. A, cos a, where cos a is the power factor. As the 
wave travels along the horn it changes in type, and harmonics are 

created. Since there is no dissipation the power must be constant, 
the amount due to the fundamental frequency being reduced by that 

associated with he harmonics. 

9. Magnitude of sound pressure at throat of horn 

The simplest procedure is to consider the power delivered to the 
throat above the cut-off frequency of the horn, where the pressure 
and particle velocity are in phase for sinusoidal motion. The radia-

tion resistance at the throat is r,. = p0cA0 (Chap. X), and the power 
radiated is P --= é2max. Thus the particle velocity Émax = V(2P lrr). 

Since pmaxAo = rrÉmax, we obtain 

pmax (2Pn.)1210 --= (2p0cP1210) (18) 

by substitution from above. Now p0c 42, A0 = ira, and if we 
make P = 1 watt (107 ergs sec.-1 ), the throat pressure per watt 

radiated is 
1.64 x 104/a, dyne cm.-2. (19) 

Taking a, = 4 cm. (see Chap. XX), the maximum throat pressure 

is 44 x 103 dyne cm.-2, or about th part of an atmosphere. The 
particle amplitude is, from above, 

1 j(2P\ 390 
emax =--- — (20) 

co r, wa, 

0.3 cm. at 50 ,--,, 

which corresponds to a maximum velocity of 94 cm. sec.--1. 

* In a rigorous sense, to fit the horn, the area of the diaphragm would have to 
follow the law A --- Ao ex from x = —en= to 
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TRANSIENTS [7913] 

1. 011R theory hitherto has been concerned solely with the steady 
state. A loud speaker with a good steady-state response curve can 
usually be guaranteed to reproduce transients well. We have now 
to inquire into the theory of the process and make comparison 
between hypothetical and actual cases. First of all assume we have 
a coil-driven rigid disk as in Chapter VII, the disk being set in an 
infinite flat baffle, the coupling between valve and coil to be a perfect 
transformer. Suppose the coil current is a replica in magnitude and 
time-displacement of the e.m.f. representing the transient as applied 
to the grid of the valve. Also let the disk be so small that the acces-
sion to inertia is either constant or negligible over the important 
frequency range occupied by the transient. The force on the disk, 
and therefore its acceleration, is a replica of the e.m.f. applied to the 
grid, provided the acoustic resistance is small compared with the mass 
reactance, i.e. the control is largely due to inertia. But in Chapter V 
[§ 1, formula (7)] it was proved that the axial pressure, at a point 

far enough away from the disk, varies directly as the acceleration 
of the disk. Hence, under these conditions, the acoustic reproduction 

of the transient will be perfect, provided the pressure variations at 
the said point are in phase with the acceleration of the disk. This 
is substantially correct when the frequency is small compared with 
the product of sound velocity and axial distance. If this condition 

is violated, there will be a phase shift of the higher frequency com-
ponents of the impulse, thereby altering its shape and introducing 

distortion. Moreover, the higher the component frequencies of the 
transient, the greater must be the distance from the disk to obtain 
distortionkss reproduction. 

The conditions postulated above can be treated by reference to 
equations (1) and (2), Chapter VII. If the transient is represented by 
E = x(t), the current will be proportional thereto, provided LDI and 
CD e are small compared with R. This means that L and C must 
be insignificant in comparison with R. The coil current then takes 
the form I -= Alx(t). Inserting this value in (1) we obtain 

mD2e+re De-F8e = CA3 X(t). 
Since the sound pressure at a distant point depends upon the accelera-
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tion D2e, it follows that for faithful reproduction re and 8 should be 
evanescent. In other words, the influence of the electrical inductance 
and the factor C, together with the mechanical stiffness 8 and radia-
tion resistance, must be subservient to m. Thus inertia is destined 
to be the controlling factor. Under this condition transients will be 

reproduced on the axis with little distortion. 
Let us consider the three coil-driven rigid disks 5 cm., 10 cm., and 

15 cm. radius treated in Chapter VIII: the effective mass varies with 
frequency. Under circumstances where applied grid voltage and coil 
current are linearly related, there will be a relatively reduced accelera-
tion corresponding to the low-frequency components of the transient. 
Thus the axial pressure of these components will be reduced relative 
to those at high frequencies, thereby introducing distortion. In 
practice the coil current for a given grid voltage depends upon the 
impedance of the complete anode circuit. The current, as in Fig. 53, 
varies appreciably with frequency, a maximum occurring at electro-
mechanical resonance. On either side of this point, the component 
sine wave oscillations, into which the transient can be analysed, are 
reduced in magnitude and altered in phase. Moreover, distortion 

occurs throughout the frequency range. By keeping the time-con-
stant of the circuit as low as possible, the distortion of the components 
at the upper end of the frequency range can be reduced. 
By combining the influence of variation in effective mass with that 

due to electrical impedance, the resulting distortion of the transient 
can be obtained. The effective mass and the driving force, for a given 
signal e.m.f., both vary with frequency, so that the acceleration and, 
therefore, the axial pressure do likewise. The precise degree of dis-

tortion depends, of course, upon the shape of the transient, i.e. upon 
the relative magnitudes and phases of the components in its spectrum. 

So far we have dealt solely with transients occurring on the axis 
of the disk. If we choose a remote point well away from the axis we 
are faced with evanescence of the higher frequencies due to interfer-
ence (Chap. V, § 1). Moreover, this must be added to the preceding 
sources of distortion. In this discussion we tacitly assume that the 
instrument used for detection does not disturb the sound field, i.e. 
the pressure distribution in the medium. At frequencies of the order 
104 , the wave-length is 3.4 cm. and the human body alters the 
distribution materially, the sound being intensified at the head due 
to reflection; with a microphone the pressure is doubled. 
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2. Initial part of transient of the form e-aisin cot 

Whatever its shape, a transient can be expressed mathematically by 

a Fourier integral. It consists of an infinite spectrum of frequencies 
ranging from zero upwards. Not only are the amplitudes of the com-

ponent frequencies important but also their phases. In an acoustic 

impulse which rises very rapidly to its maximum value, the higher fre-
quency components of its spectrum are of paramount importance. If 
the higher frequencies are curbed, due to inductance in the electrical 
portion of the reproducing circuit, the initial sharpness of the impulse 

is reduced. A Fourier integral is somewhat cumbersome for our 
present purpose, so we shall take a type of transient where this pro-
cedure is not needed. For general purposes a transient of the type 

e-c'sin cot is suitable for analytical treatment. First of all we shall 
take an approximation, and treat the matter rigorously afterwards. 

The first term of the series for sin cot is we, so we can take the form 

te-ca as a first approximation and apply it to the case of a coil-driven 
rigid disk (Chap. VII). In incorporating this transient in the analysis 
of Chapter VII, the driving e.m.f. E is to be replaced by E0 te-e. If 

the natural frequency of the system is well below audibility, the term 
involving the constraint 8 can be neglected. The third-order differen-
tial equation ultimately obtained embodies not only the mechanical 
forces, but also the influence of electrical circuit damping. 

Considering the mechanical and electrical forces associated with 
the system, as in Chapter VII, we have 

mD2e± re De = C/, (1) 

LDI+RI+CDe = Eote-cd. (2) 

From (1) I = (mD2e-FreDe)1C, which on substitution in (2) gives 

(D3-1-13D2-1-yD)e = Ote-cd, (3) 

(r R±C2). n Et, C 
where fi =- (l"' e +.mI. ); y =- e mL mL ' , 

L  
To find the complementary function of (3) we put 

[D(D2±/3D-Fy)]e = 0, 

so De = 0 or e . ei; also 
(D2-1-13D+y)e = 0, 

to which there are three forms of solution, according as the motion 
of the system when left to itself is aperiodic, critical, or oscillatory. 

In general the circuital resistance is too high to permit oscillation due 
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to the influence of the magnetic field (see Chap. VII), so the solution 
is given for the aperiodic state. Consequently, when O = 0, (3) is 
satisfied by e = Ai (4) 

this being the complementary function. A1 and B1 are arbitrary 
constants to be determined later on. The indices A1, A, are given by 

— P±V(P2— 4Y) 
A2f 2 (5) 

To obtain a particular solution of (3) we obviously assume 
e= t)e. Substituting this in (3) and conducting the 
requisite analytical operations we ultimately get 

and 

where 

D1= 
Œ(Œ2 cip + ) 

= 

O 

— 3a2-2a/3-1-y 
2 tri_ • 

The complete solution of equation (3) is, therefore, 

e = (8) 
The applied e.m.f. being Eote-cd, it follows that when t = 0 the 

system is quiescent. Hence the velocity De = 0, and the accelera-
tion D2e = 0, these being conditions with which the solution must 
comply. From (8), by differentiation and the substitution cpDi = 

we obtain 

De = A1 Al ekt+ B1 A2 eA21-1-D2 e-e[(1—Cp) —ad] (9) 

and D2e -= Ai 4 exit+ eA. LEA ce-cd[(q)— 2)+4. (10) 

Inserting the conditions De = 0, D2e = 0, t = 0 in (9) and (10), we 
get A.1 4+ ./31 Di(cp — 1), (11) 

Ai Al +Bi D,c42—y). (12) 

Solving these simultaneous equations, we find that 

i 
Al D  — {.(2—cp)+A8(1-9)} (13) 

4—x2 
, (14) 

D 
and B1Al = —  I (a(2— (P)+Ai(1— (P)} (15) 

'2 

= Dix. (16) 
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Substituting (14) and (16) in (10), we get 

D2e 
= ibeA's-i-xeA21-Ecie-e[(9-2)+04. 

Since the axial pressure depends upon the acceleration and D1 is 
constant, (17) represents the complete solution of the problem. In 

(17) the original transient is proportional to ete-cd, whilst the re-

200 

SO 

2 5 x o're-'"' (ori9inal) 

2.5x,ovioottvw..47.044,75,-..t_ 795csooq 

(Reproduction) 

10-' 2x104 3x10-3 4x104 5X Ot 6x104 

t (time in seconds) 

FIG. 70. Diagram showing reproduction of the 
transient E = 2.5 x 105te' on the axis of a coil-
driven rigid disk, freely suspended in an infinite 
flat baffle. 

(17) 

mender ekeAiii-xeAsi-Fa(cp-2)e-ca is proportional to the difference 
between the reproduced and the original wave forms. 

We will now give some typical examples. To determine the in-

fluence of the first quarter-cycle and part of the second quarter-cycle 
of a sine wave, the exponent a is made four times the frequency, 

since the maximum value of te-al occurs when t = 1/a . For example, 

to investigate a frequency of 125 we put CC = 500. To avoid com-
plication, the power valve has a choke-condenser output (Fig. 105) 

with L and C very large, so that the natural frequency is well below 
audibility. Transients reproduced by a coil-driven rigid disk 10 cm. 
radius freely suspended in an infinite baffle, as perceived at a great 

axial distance therefrom, are plotted in Figs. 70, 71. The basic fre-
quencies are 125 and 5,000 , corresponding to a = 500 and 
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2 x 104. Variation in the electrical and mechanical quantities with 
frequency has been taken into account. 
At 125 the reproduced pressure rises less rapidly than the original, 

attains a maximum more quickly, and then decays after the manner 
of an oscillatory circuit with large damping. This apparent 'elastic' 

effect is due to the magnetic field which, as shown in Chapter VII, 

7)00' 

Gx10' 

5x10' 

4x1O' 

5x10, 

r?, 2x10' 

10 

o 

4 z Ws te-i'ee (orisinal) 

4 elOate "et411.342 x104C4."'"et-11211e1"4-1•23x104i 
(Reproduction) 

MOO' 5x10 7.5x10 10 125x10 15x1 

t (time in seconds) 

no. 71. Showing reproduction of the transient 
4 x lete-" 1°.i by a coil-driven rigid disk in an infinite 
flat baffle. 

is capable, when strong enough, of creating an oscillatory condition. 

The negative value beyond the abscissa 4.4 x 10-3 must not be mis-
interpreted. It does not necessarily signify that the coil is then on 
the negative side of its equilibrium position, because Fig. 70 refers 
solely to acceleration, not to amplitude. The zero means that the 

coil has attained the maximum distance from its origin and then 
commences to return. Between t = 6 x 10-3 and 9 x 10-3 the motion 

changes direction, and the coil drifts outwards again. In fact, the 

circumstances are closely allied to those in a fluxmeter, where the 
maximum deflexion is a measure of the total flux interlinkage. If 
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the control were evanescent, the meter coil would arrive at a cer-

tain position and stay there. The transient E0 te-cd signifies that a 
definite quantity of electricity is discharged through the system. In 

a fluxmeter R and re are negligible, whereas in the coil-disk com-

bination they are not. The accurate measurement of flux depends 
upon inertia control and electromagnetic damping, whereas when the 

natural frequency of the system is well below audibility faithful sound 
reproduction involves inertia control alone. On the other hand, if 

the natural frequency is high, the conditions are akin to those in an 
oscillograph. Transients are accurately reproduced when the damp-

ing is critical and the frequencies of the main sine-wave components 
are well below that of the undamped oscillograph. These conditions 
are not suitable in a speaker, since the sensitivity would be much 
too low. 

The ultimate position of the coil and disk is easily found from the 
preceding analysis. If e --- 0 when t = 0, then from (8) 

— [2414-Bi.+Ci]• (18) 

Using (7), (13), and (15) we get 

_ k2(2- 9))+ce(1—(P)(4+4)±(PAIA21. (19) 
ce4 

Again from (8) when t = ce, since all the exponents are negative, 

e = so the final resting-place of the coil is determined by (19). In 
general e will not be zero, so that for loud-speaker reproduction, in the 
absence of elastic constraint, a radial field of great axial length is 
required! To curb the spatial flights of the coil, it is imperative to 

apply elastic control in the form of a centring device, an annular 
surround, or both of these. Then the reproduced wave form is modi-
fied. The equations for this case are 

mD2e+reDe+se = C/, (20) 

= Eote-cd, (21) 
giving ultimately 

(D3--F-PID2+YID+81)e= eite-e• 
The complementary function of (22) is of the form 

e = eke+ BleAs+Ciehi, 

whilst the particular integral is e -- (D1+ E me-ad . The former can 
only be found in suitable form if numerical values are introduced. 

The three arbitrary constants are obtained from the conditions: 

(22) 
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(1) t 0, e 0; (2) t 0, De 0; t = 0, D2e = 0. The complemen-

tary function in the solution may involve (a) a damped sine wave 
superposed on a decay curve, (b) only a decay curve. In case (a) A1, A2 

are imaginary, whilst A, is negative. For (b) A1, A2, A3 are all real. 
Obviously the resulting reproduction of the transient depends upon 
the relationships between the circuital coefficients. If the comple-
mentary function is of an oscillatory nature, the natural period of 
the system, plus an additional aperiodic curve, is superposed on the 
wave form te-cd. The arithmetical work associated with this case is 

quite straightforward and is left to the reader. The results obtained 
in practice from systems having more than one degree of freedom 

are portrayed in Figs. 140, 142, 143, 144. Even if the damping, 
due to the magnetic field, is adequate to ensure the aperiodic 

state, it appears, from above, that in general the magnetic field 
and acoustic damping cause distortion in an ideal system where 
inertia control alone is the desideratum. In a practical system 
there is no doubt that suppression of the periodic state results in 
improved reproduction. 

From Figs. 70, 71 it is seen that in the reproduced version the 
steepness of the wave fronts of both high and low frequency transients 
are reduced, that of the former more than that of the latter. From 

a practical viewpoint too much attention must not be paid to the 

initial kick, since it takes the ear about 0.1 sec. to appreciate the pitch 
of a sound. The chief point concerning the majority of transients is 
the higher frequency components following the kick. If the system 
reproduces these adequately, the ear will doubtless be satisfied, pro-
vided the original wave form following the kick is not travestied too 

seriously. 

3. Complete transient of the type e-cdsin cot 

When the axial constraint is feeble and the transient takes the form 

E, e-cdsin cut, equation (3) can be written 

(D3 - f3D2 yD)e = Oe-cdsin cot. (23) 

As before, the complementary function is A1 eke+ B1 eAti-i-ei. To 
find a particular integral, assume e = e-cd(Ci sin cut+Di cos cut). Then 

CI and DI are obtained on solution of the simultaneous equations: 

= 

CI Y2+4 z2 -= O )' 
(24) 
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where -= _20«,02(cx-1)+13(œ2-0)_yœ, 

Y2 = — C°(Œ2— (e2)-2CePW +VW, 

= 0)(Œ2+0)2)(x —1) + 243co — yco , 
z2 = zu,i2(Œ _ 1) + p(,2+ 0,2)— VŒ. 

Accordingly the complete solution of (23) is 

C B16.Aii+e-cd(c, sin wt +D1 cos cut) + (25) 

Differentiating (25), the velocity is 

De = B1 eAti+ 

e—cd[(C1 co —D1 a)cos cut— (C1 ad-DI w)sin cot], (26) 

and the acceleration 

D2e =Ai 4 eAit + B1 4 eA.11-
±e-ad[{C,(ce2—co2)+2D1cao}sin cut+{Di(a2—w2)-2C1aw}cos cot]. (27) 

The values of C1 and D1 having been found from (24) they are 
inserted in (26) and (27). These two equations are then solved, subject 

to the conditions e = 0, De = 0, D2e = 0 at t = 0, as before. The 
solution yields el, A1, B1 and is therefore complete. To determine 
the reproduced version of the original transient E e-cdsin tot is then 

merely a matter of arithmetic, which is left to the reader. Care must 
be exercised to avoid confusion between a and co. The former can 

now be made independent of co, whereas in the previous transient, 
te-cd, it was written a =- 4co/27r for convenience. 

This analysis would be applicable to the moving-coil horn type 
speaker of Chapter XX (method 1) if the chamber stiffness were 

absent. A rigorous solution for this case entails undue complication 
and will not be given. An oscillogram illustrating the effect of a 
severe electrical impulse in a horn speaker is reproduced in Fig. 144. 

The natural vibrations of the system are delineated clearly, so that 
they will accompany the acoustic output of transients. 
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DRIVING MECHANISMS 

1. THERE are three principal types of driving mechanisms for loud 
speakers, (a) a flexible reed of magnetic material or its equivalent 
situated in a magnetic field which is varied by the signal current; (b) a 
coil or a zigzag strip, carrying the signal current, situated in a strong 
magnetic field; (c) a diaphragm forming the movable plate of a con-
denser, the other plate being fixed. A steady or polarizing voltage is 

Reed 

Pole Face 

Reed 

1  

Pole piece 

 Coil 

—Bridge piece 

Magnetic flux 

Fm. 72. Schematic diagram of cantilever 
reed movement. 

applied to the two plates and the signal voltage superposed thereon. 
There are other methods of actuating diaphragms, using crystals of 
Rochelle salts, which have been developed recently (Chap. XIX, § 1, 
Chap. XX, § 16). Of all methods the moving-coil is the best [183 a]. 

2. Cantilever reed type 

This class of drive includes various designs, the simplest of which is 
shown diagrammatically in Fig. 72. The U-shaped permanent magnet 
sends flux through a bridge-piece of laminated stampings, on each 
side of which is wound a fine wire coil usually of 600 to 1,500 ohms 
resistance. The centre of the bridge is arched and has an air-gap 
above which the reed is poised. By means of a screw the distance 
between the reed and the pole-piece can be varied. The cone 
diaphragm is attached to a point on the reed, usually near the centre 
of the air-gap. Whea alternating current flows in the coils the 
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magnetic field through the reed fluctuates in strength accordingly, 

and the reed vibrates in response thereto. 

By virtue of the inverse square law, as the reed approaches the 

pole-piece the magnetic force increases rapidly. The reverse occurs 
when the reed moves away. To obtain sensitivity the adjustment 
screw is operated until the reed is very close to the pole-piece. When 

it gets within a certain distance, the magnetic pull overcomes the 
mechanical stiffness of the reed and a click is heard as the reed flops 

on to the pole face. There is consequently a minimum working 
distance which increases with the amplitude of vibration. Owing 

to the inverse square law, the relationship between deflexion and 

F = 75 r‘, 

FIG. 73. Record of acoustic output from reed-driven conical diaphragm 
when the amplitude of the reed exceeds the limit of linearity. Curve (a) = input 
to windings; curve (f3) acoustic output from diaphragm. 

current is not linear. Thus with a sine wave input of moderate 

amount, the radiated sound contains alien frequencies. These 
increase with the amplitude of the reed and are, therefore, most 
noticeable when reproducing low frequencies. The oscillogram [96 a] 

of Fig. 73 illustrates this point. Within definite amplitude limits this 
defect can be overcome by suitably adjusting the position of the reed 

with reference to the pole-pieces as illustrated in Fig. 74. 
The force between the reed and pole-piece, though not quite uni-

formly distributed over the lower face of the former, can be considered 
to act at the centre of magnetic force [96 a]. Taken as a single force it 
causes the same deflexion when acting at the centre of magnetic 

force as when distributed over the reed. When a direct current flows 
in the coils the reed is bent towards the pole face and x, is nearer 

thereto than x1. The attractive force on the reed is therefore greater 
at x, than at x1 and the centre of magnetic force shifts outwards along 

the reed causing an increase in the moment 11f. If this increases more 
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rapidly than /s, where 8 is the stiffness, instability results and the 
mechanism is rendered inoperative by the reed flopping on the pole-

piece. 
In Fig. 74 c the point A is slightly lower than the plane of the pole 

face whereas in Fig. 74B it is higher. Also the reed is inclined at an 

angle above this plane instead of below 
(a) 

it as in Fig. 74B. The reed approaches 

the poles due to increase in coil current 

and the attraction is greatest at x1, this 
point being nearer to the poles than 
x2. Thus the centre of magnetic force 

moves towards the support and its 
leverage is reduced as the reed deflex-
ion and the current increase. By find-
ing the correct setting for the reed, 

linear proportionality between current 

and deflexion can be secured over a Centre line 

limited range. It is also possible by 
a suitable mechanism to swing the 
reed about a definite axis such that its 

distance from the pole face can be pro-
perly adjusted for varicus amplitudes. 
In this case instability is substantially 
abolished. To obtain the best results, 
it is imperative that the apparatus 

should be made to a high degree of no. 74. Diagrams illustrating 

accuracy so that there is no backlash. method of obtaining a linear 
characteristic The magnetic pull on the reed is pro- in cantilever reed 
driv 

portional to B2 where B is the flux e. 
density. If B is not uniform the force depends upon the sum of all 

the elemental forces acting on the reed over its working face, i.e. 
f oc f B2 dA. For simplicity we shall assume that B is uniform. When 

A.C. flows, B fluctuates between B+SB and B—SB, where 8B is the 
small change in density. The increase in force due to the current 
during a positive half-cycle is proportional to 

(B+8B)2—B2 g2+2BSB +5132—B2 

*2B 8B, 

where 8B2 is neglected since it is usually small compared with 

(6) 

(c) 
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2B SB. Obviously the force decreases by the same amount during 
the negative half-cycle. Alien frequencies are created when SB (coil 

current sinusoidal) is comparable with B, since the term SB2 entails 
a double frequency. When the input is large and contains a plurality 

of tones, the non-linear characteristic causes sum and difference and 

other alien tones to be created. The low-frequency vibrations of 
relatively large amplitude cause the high-frequency vibrations to be 
modulated. A simple illustration of this is given in Chap. IX, § 1, 
formulae (4) and (5). 

(a) (I)) 

FIG. 75. 

Baffle 

Flexible annular 
surround 

leto18"diameter 

The working force on the reed, for a given coil current, depends 

upon B and, therefore, on the strength of the permanent magnet. 
This cannot be increased indefinitely owing to rise in reluctance and 
ultimate saturation of the pole-piece. Under this condition, although 
B increases, SB decreases and B 813 is less than its value with a weaker 

magnet. This is due to the bridge-piece and reed being operated above 

the knee of the magnetization curve. The change SB depends upon 
the incremental permeability, and this decreases with increase in B. 

The greater static force also necessitates a larger minimum gap to 

prevent instability. Thus the value of B is again decreased due to 
the greater reluctance of the longer gap. 

The reed is usually associated with a fairly large conical paper 

diaphragm supported in a suitable manner at its periphery. The 

method of connecting the two is important. To avoid loss of high 
notes, a short rigid bar with conical nuts or the like, as shown in 

Fig. 75 A, is recommended [218]. This should be as light as possible 
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consistent with the requisite rigidity, since large mass curbs the 
amplitude at high frequencies where the effective mass of the cone 
itself is quite small. 
At any instant during vibration, pressure waves on each side of the 

cone are of opposite sign. The pressure at any spatial point is due to 
radiation from both sides of the diaphragm. Moreover, interference 
occurs and it is necessary to minimize this by using a baffle to shield 
the two sides of the diaphragm from each other's influence. In Fig. 
75 B a flat baffle is indicated since this gives good quality for domestic 
purposes. Cabinets are generally used for convenience, however, since 
the radio apparatus can be housed therein. These contribute their 
quota of resonance especially if the sides are fairly flexible. Coloration 
is quite marked when the speaker is situated near a wall, especially 
at a corner, or in association with other furniture forming a partial 
enclosure. This effect, however, is not very noticeable unless the 
speaker itself has a good lower register. 
A so-called directional baffle [12,13] (Chap. XX) can be used. 

This increases the loading on the diaphragm, thereby permitting a 
reduction in its size. The scheme is hardly suitable for domestic 
speakers owing to the large dimensions of the baffle. 

3. Inductor dynamic mechanism 

The driving mechanism known by this name is shown schematically 
[190] in Fig. 76. Two square rods of soft iron are connected and held 
in position between the pole-pieces of two U-shaped magnets by 
flexible reeds .R.R. The system is symmetrical about the centre line. 
The magnets are arranged so that the polarity of the pole-pieces is 
that shown in the diagram. By itself each iron bar would normally 
move inwards, but in conjunction with the reeds and connecting rod a 
balanced system is formed. Coils of wire are wound round alternate 
limbs of the pole-pieces. During operation the magnetic field in the 
air-gap at one side is strengthened, whilst at the other it is weakened. 
This is obtained by suitable coil connexions. Thus during one half-
cycle one bar moves into a stronger field and the other into a weaker 
field, the position being reversed in the next half-cycle. The mechanism 
oscillates, therefore, at the same frequency as the current. The paper 
cone, complete to the vertex, is secured to the connecting rod by the 
usual conical nuts. It is supported at its periphery by a leather 
surround. The lowest natural frequency of the system depends upon 
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three things, (a) the effective mass of the whole diaphragm plus the 
driving mechanism; (b) the combined stiffness of the reeds and the 
surround; (c) the strength of the magnetic field. In the absence of 

coil current, a definite force is required to overcome the stiffness of 
the reeds and surround together with the magnetic attraction. If the 
relationship between magnetic pull and displacement is linear of the 
form ,f, - 8,z, and if that for the mechanical part of the system is 
also linear, say12 = 82 x, we have fr-Ef2 = f = x(81+82) --= 8x, where 
8 is the combined stiffness of the system. Treating the arrangement 

as a mass on a simple coil spring, the lowest natural frequency is 
to = V(8/me), where me is the effective 

N mass of the diaphragm including the 
accession to inertia mi (Chap. III). 

j As a first approximation, below 
100 , me is the sum of the natural 
mass and mi. The stiffness is ad-
justed to make the natural fre-
quency about 70 ,. To determine 

the frequencies of the higher vibra-
tional modes of the system, it is 

.. 
necessary to have recourse to ex-
perimental methods. 

As in certain other speakers, 
the upper register is due mainly 

to vibrational modes of the cone. 
To avoid reduction of output in this region the mass of the driving 

mechanism should be small. The remarks concerning baffles and the 
like apply equally to this case. There is a definite tendency for the 
lower register to be accentuated unless the mechanism is adequately 
damped. A representative inductor speaker is illustrated photo-
graphically in Fig. 77 [190]. 

ab 
, s 
, 

Fro. 76. 

4. Balanced armature mechanism 

This form of reed movement is shown diagrammatically [218] in 

Fig. 78. The flat stiff reed is kept in its equilibrium position between 
two pole-pieces NS associated with a powerful permanent magnet. 

The operating coils encompass the reed and reside within the U-shaped 
pole-pieces. During idle periods the magnetic flux passes directly 
from N to S at each side as indicated. When current flows in the coils 



Flo. 77. Inductor dynamic loud speaker. 
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the reed is magnetized and attracted alternately to each side. In 
the absence of constraint, if the reed were given a slight motion 
towards one side, it would move on to the pole-piece, since in the 
central position it is in unstable equilibrium. It is necessary, there-
fore, to introduce some form of elastic control. Either the reed is 
mounted on a torsional member or it is associated with some form of 
cantilever or other spring. The natural frequency, in the absence of 
the cone, etc., may be about 2,000 ,--s. The movement is attached to 
a paper cone as shown schematically in Fig. 75 B. Owing to increase 
in magnetic force as the reed approaches the pole-pieces, the relation-

Flexible suspension 

Melees 
s 

Pivot 

Fia. 78. Diagram illustrating balanced 
armature reed movement. 

ship between current and deflexion is not linear for amplitudes of the 

order required to radiate middle or low frequencies at the proper 
strength. The output when large tends to be tinged with alien fre-

quencies, since the current-displacement curve is linear over a small 

region only. It has an advantage over the simple 'uncorrected' canti-
lever type, since the characteristic is symmetrical and the linear 
amplitude range greater. 

5. Moving-coil hornless speaker 

The principle involved in this type of driving mechanism is illustrated 
[87] in Fig. 79. A permanent magnet or an electromagnet is used to 

create a radial flux in a circular gap of short radial length. The circu-
lar coil of wire is held concentrically in the gap by aid of a centring 
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device. When a current passes through the coil, it is impelled axially 
either one way or the other, according to the direction of the current. 
It will be noticed that the radial field is everywhere at right angles to 
the coil, and therefore to the current sheet therein. Consequently the 
motive force due to the interaction of the two magnetic fields is at 
right angles to both the radial field and the plane of the wire, i.e. in 
an axial direction. 

If the coil current is constant at all frequencies, it might be inferred 
that the driving force is invariable. Owing to losses in the iron core 

Coil former 

Field winding Eatpoe9rl cone thick 

Moving coil 

Annular surround 

7 ol0"diameter 

Baffle 

Arrows indicate 
magnetic field 

Flo. 79. General arrangement of moving-coil hornless speaker. 

of the magnet there is a phase difference between the alternating 
current in the moving coil and the flux it produces. In fact the 
current can be resolved into a magnetizing component and a loss 
component in quadrature. The magnetizing component is from 
0.9 to 0.95 of the total current, but its value depends upon the type 
and material of the magnet and the frequency of the current in 
the moving coil. Except for this, which from an acoustical view-
point is not very serious, the force is proportional to the current 
—within limits—and independent of frequency. This seems to put 
the hall-mark of perfection on the coil drive, apart from any idiosyn-
crasies introduced by the diaphragm. Owing, however, to variation in 
the radial field along the axis of the coil (Chap. XIV) and to the large 
amplitudes necessitated at low frequencies, care must be exercised in 
design and operation to avoid the creation of alien frequencies. 



XIII. 5] MOVING-COIL HORNLESS SPEAKER 221 

The coil is usually associated with a conical paper diaphragm sup-
ported annularly at its edge. In commercial speakers the annulus is 
frequently some type of leather. It should be elastic over a reason-
able diaphragm amplitude, i.e. the relationship between force and 

axial constraint should be linear over the working range. In many 
cases this does not hold, and the low-frequency amplitude is restricted, 

with consequent flattening of the wave form, thereby introducing 
alien frequencies. These may occur in a part of the audible spectrum 

where the ear is highly sensitive [211]. To ensure absence of wobble, 
centring of the coil in relation to the magnet pin is imperative. 
Various forms of centring device are illustrated in Fig. 26. This com-

ponent must also have a linear force-displacement characteristic over 
the normal working amplitude. The annular surround and the 

centring device, together with the diaphragm, form a low-frequency 
resonating system. In many moving-coil speakers low-frequency 

resonance is used to obtain an adequate bass output in order to 

balance that in the upper register due to the cone resonances. As in 
other species of hornless speaker, a baffle is required to reduce the 
interference or short-circuit effect due to sound waves of opposite 
sign from the two sides of the diaphragm. For household purposes 

flat baffles give better quality than a cabinet full of radio gear. A 
properly designed box baffle with absorbent material arranged as 
shown in Fig. 120 is a very good solution of the problem [180], but 

there must be no radio gear to impede the sound waves. Since the 
lower register in this type of speaker is much more powerful than in 

reed types, cabinet resonances must be carefully avoided. 
By using a directional baffle (which is really another name for a 

horn), the resistive load on the diaphragm and, therefore, the effi-
ciency can be increased to several times the value with a flat baffle. 

A speaker of this type is described in Chapter XX. 

6. Moving-coil membrane speaker 

In another type of speaker the moving coil is attached eccentrically 

(1.6 cm. out of centre) to a stretched circular membrane of aluminium 
foil 26 cm. in diameter* and 0-002 cm. thick. The foil is kept taut by 
two clamping rings, these being held between two felt rings in an 
outer metal framework. The system is one having a large number of 

* The diameter and thickness can be varied according to the frequency range to 
be covered by an individual speaker. 
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resonances or vibrational modes in the audible frequency range, the 

lowest being in the neighbourhood of 100 There are several modes 
per octave in the upper register, but none is unduly prominent. The 

focusing or beam effect at the upper frequencies (see Chap. V) is 
much less marked than that obtained with a conical diaphragm. In 

fact up to 4,000 the distribution is fairly uniform. From the view-
point of rigid disk theory this is equivalent to a reduction in the radius 
with increase in frequency [90 a]. 

By making simple assumptions, e.g. that the drive is concentric 
instead of eccentric, an approximate theory of the speaker can be 

deduced by aid of Chap. IV, § 13, Chap. V, § 4, item 16, Table 7, and 
Chap. VI. The theory of the membrane type electrostatic speaker, 
driven uniformly over the whole surface, will serve as a useful guide 

(Chap. IX, § 8). The sound distribution can be calculated from for-
mula 16, Table 7. This formula is based upon the shape of the mem-
brane in vacuo. An alteration occurs during vibration in air, so it is 
advisable, before coming to any definite conclusion, that the sound 
distribution found experimentally should be compared with that 
obtained by calculation. 

7. Blatthaller speaker 

In the moving-coil speaker with a conical diaphragm the force is 
applied to a narrow annulus near the vertex of the cone. At high 
frequencies the system does not behave as a rigid structure, and there 
is a phase difference between the velocity at the coil and that further 

down the cone. When it is desired to radiate appreciable acoustic 
power, a diaphragm of large superficial area is required. If a circular 

moving coil and a very large cone were used, the above phase effect 
would be injurious to good reproduction. By distributing the driving 

force over the surface of the diaphragm, the frequency at which the 
phase difference becomes serious can be elevated considerably. This 
principle is illustrated in Fig. 80 [12, 13, 203, 204]. A large corrugated 

duralumin plate, or several smaller plates side by side, is covered 

with low resistance copper conductor in zigzag fashion. The con-
ductor is situated in a strong magnetic field (2 x 104 lines cm.-2) 
normal to its length and parallel to the plane of the diaphragm. To 

reduce leakage, which tends to be large in a magnetic system of 
this configuration, the field coils are situated directly round the 
air-gap, i.e. the latter is at the centre of the coil as illustrated in 
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Fig. 80. This blots out a portion of the sound radiation, but is not 
so serious as might be imagined, because the air gets squeezed out 

transversely. Such magnet design is much more effective than that 
where the coils are free of the diaphragm altogether. The air-gap and 
flux density between adjacent pole faces is such that the force per unit 

area amounts to as much as 20 Kg. With an input power of 800 [13 b] 

watts to the diaphragm conductor, the sound output is said to be 
200 watts, giving an efficiency of 25 per cent. This high value can 

Masnet coils 

Corrugated aluminium 
/diaphragm 

Conductor 

<--I—Magnet 

  • 

FIG. 80. Arrangement of magnet and diaphragm in Blatthaller 
speaker. 

only be realized in a flat baffle system by aid of an intense magnetic 
field, a conductor of low resistance and a large radiating surface of 

small mass (Fig. 81). Assuming the diaphragm to be equivalent to 
a rigid circular disk 50 cm. radius, the external medium is matched 

resistively from 200 ,,, upwards (definition 20 and Chap. VIII). As 
we have already shown in Chap. V, § 3, owing to focusing there is a 

dearth of higher frequencies outside a relatively narrow central sound 
beam. Moreover, unless resonance occurs at higher frequencies, the 
radiated power for constant input will fall with rising frequency. 

By appropriate orientation, several units can be used to cover a wide 

angle. 

8. Riffel speaker 

This instrument is somewhat similar to the Blatthaller, but differs 
constructionally. It consists of a long straight conductor in the air-

gap of a powerful electromagnet dissipating about 200 watts. The 

conductor is fixed to the bottom of a V-groove at the centre of 
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a corrugated rectangular aluminium diaphragm and lies along its 

length. The transverse rectangular corrugations extend almost to 
the long edges which are clamped and act as hinges. During operation 
the conductor moves parallel to itself, and the V-groove permits the 

diaphragm to bend so that there is but little mechanical constraint, 
i.e. the fundamental frequency is very low. Although this type of 
speaker gives good quality it is too inefficient to be used for commercial 
purposes. The diaphragm is usually set in a large flat baffle. 

9. Horn loud speaker 

In general this type of speaker is actuated by a moving coil driving a 
small diaphragm within the coil [9, 18], as shown in Fig. 82 A.* The 

coil and diaphragm is attached to a flexible annulus whose outer edge 
is securely clamped to an electromagnet. The natural frequency of 

the combination on the annulus depends upon the frequency range 
of the loud speaker. For the range 60 to 4,500 ,...., it is usually about 

400 P., in vacuo with the coil circuit open [18]. The diaphragm is 
shaped to spherical curvature to give rigidity, t so that it moves as 
a whole over a wide frequency band. It breaks up at higher fre-

quencies and assists in keeping the output fairly constant above 

2,000 ,. The obstruction H, apart from reducing the throat area 
and thereby increasing the air particle velocity, acts as a phase 
equalizer. The clearance between the diaphragm and H gradually 

increases with the radius. Thus during vibration the velocity of the 

air particles most remote from the throat of the horn is increased. 
This ensures that up to quite high frequencies the pressure from all 
parts of the diaphragm arrives at the horn throat in substantially 
the same phase. Another device for accomplishing the same purpose 
is shown in Fig. 163. 

In the unit illustrated in Fig. 82 B the coil is a single layer of alu-
minium ribbon [18] 1•5x 10-2 in. wide 2 x 10-3 in. thick wound on 
edge. The 50 turns are held together by a film of insulating lacquer 

2 x 10-2 in. thick, the coil being baked after winding. This type of 
coil is self supporting and 90 per cent, of it is metal. It can be 
made accurately to specified dimensions, thus permitting small 

clearances between it and the pole-pieces. This is of material assist-

* Special high-frequency horn speakers are described in Chap. XX, § 18. 
t Some idea of the enormous increase in rigidity when diaphragms are conical 

willbe gleaned from Chap. XVIII, § 21. 



(b) 

Fia. 81. Photograph of large Blatthaller speaker showing field 
coils and corrugated duralumin diaphragm [13 b]. 

(a) 

Diaphragm 
Al. alloy 

Annular surround 

Field winding 

Pia. 82. (a) General arrangement of small diaphragm type 
moving-coil horn speaker; (b) coil of aluminium tape (on edge), 
2 in. diam., 0-015 in. wide, 0-002 in. thick, insulating lacquer 
0-0002 in. thick [18]. 
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ance in obtaining the high flux density of 20,000 in the air-gap, and 
in the dissipation of heat via the electromagnet. The influence of 
radiation from the black outer surface of the latter is very marked. 
For an input of 10 watts the temperature rise of the coil is 64° C. 
in the magnet and 116° C. out of it. As shown in Fig. 82 A, the back of 
the magnet is flared to avoid tube resonance. This cavity is usually 
loosely packed with absorbent material. The efficiency of a receiver 
of this type with a suitably designed exponential horn is 30 per cent. 
over a wide frequency range. This aspect of the subject is discussed 
in Chapter XV. 

10. Use of lever mechanism for altering amplitude 

In all types of drive discussed hitherto there is a definite amplitude 
limitation beyond which alien frequencies become serious. The 
maximum permissible amplitude depends upon the driving mechan-
ism. It is much greater for a moving coil than for a stiff cantilever 

reed whose natural frequency exceeds 2,000 ,--,. The greatest ampli-
tudes are required at low frequencies, and it is now proposed to see 

what happens when a simple mechanical transformer, i.e. a lever, 
is used. At first sight it may appear that a definite advantage will 
be gained by using a small movement for the driving mechanism and 
a large one for the diaphragm. The scheme is illustrated diagram-
matically in Fig. 83 the lever ratio being 12111 = n. To simplify the 
analysis the lever will be regarded as a massless ratio-arm. The 

resistance at A is r2 and the reactance come, where r2 is due to 
mechanical loss in the cone and sound radiation, whilst me is the 
effective mass of the cone together with its attachments. At B the 
resistance is n2r2 and the reactance co(n2me-Fme), where me is the mass 

of the driving coil and its attachments. If the driving force is f, the 
coil velocity is 

_   
V{n411+ (02(n2med-272c)2}. 

The power radiated as sound is .t/ eye, where re is the resistance at 
A due to sound radiation. Thus the sound power is 

P — 
n44-Eco2(n2med-me)2. 

At any particular frequency the power is a maximum when 

z  wine coil reactance  n  
co2mD diaphragm impedance' 
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this being analogous to the case of an electrical transformer. Measure-

ments of r2 and me (Chap. XVI) reveal variation in both quantities 
throughout the frequency range. The diaphragm impedance attains 

a maximum at low frequencies, after which it fluctuates and becomes 

small in the neighbourhood of the vibrational modes. Thus no 
optimum lever ratio exists for a wide band of frequencies. At low 

frequencies r2 < come, so n = V(me/me). Now me me, so that n 
should be less than unity. This entirely defeats our proposal to reduce 
the coil amplitude and, in fact, actually increases it. At high fre-
quencies where me is small the lever ratio exceeds unity. It follows, 

n-

Cone 

f (coil) 

FIG. 83. Diagram illustrating lever principle 
applied to hornless loud-speaker mechanism. 

therefore, that the use of a lever ratio exceeding unity will reduce the 
lower frequencies at the expense of the upper, and this is corroborated 
by experiment. In fact, variation in lever ratio constitutes a form of 

tone control. With any type of driving unit there is a certain lever 
ratio which gives the best result over a specified frequency range. Its 

value can be found experimentally. In a cantilever reed drive the 
ratio is less than unity. This gives the middle frequencies a better 
chance to reveal themselves. 

11. Rectangular membrane condenser speaker 

A cross-section of a portion of the instrument is given in Fig. 84A. 

a is a rigid corrugated plate [23, 28, 29] with perforations whilst b is 
a special rubber type dielectric about 1-2 x 10-2 cm. thick, the outer 
surface of which is coated with beaten metal leaf about 2 x 10-4 cm. 
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thick. The speaker is made up in 8" x 12" units of this type. The 
longitudinal corrugations are 3 x 10-3 cm. deep and F9 cm. between 
adjacent crests. The working polarizing voltage varies between 500 

and 600, this high value being essential to produce pure tones with 
a moderate signal voltage and reasonable efficiency. If the voltage 

is too high, the dielectric is drawn tightly against the fixed plate, 
thereby restricting the amplitude and the output. During operation 

the rubber, so to speak, rolls down the depressions in the fixed plate. 

(a) 

(h) 
0.5 menohm 

lio V. 
A.C. 

Input 

C•5 me9ohrn 

Condenser 
speaker 

FIG. 84. 

(a) Cross-section of electrostatic speaker [28, 29]. 
(b) Biasing unit for electrostatic speaker. 

It is thereby in direct tension, which is very different from com-
pression between two flat surfaces as in Fig. 56 A. This action occurs 
to an extent when the polarizing voltage is high and the rubber is 

drawn to fit the curvature of the fixed plate. The direct tensile action 
enables a greater amplitude to be obtained for a given signal strength. 
Response curves taken with constant input voltage indicate general 

flatness from 100 , to 1,000 after which there is a strong rising 
characteristic to a maximum at about 5,000 Thereafter the curve 

drops slowly, but the output is considerable at 104 [23]. The curve 

is said to be singularly free from irregularities. Two types of output 
circuit are shown diagrammatically in Figs. 56, 84 B. The voltage 
across the speaker gradually decreases with rise in frequency owing 
to fall in its impedance. Typical curves for various values of Ra C0 
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combinations are given in Fig. 85.* By automatically reducing the 

signal voltage in this manner—due to increased RaI drop in the 

valve—the rising characteristic of the speaker can be offset as de-
scribed in Chapter IX. A suitable value of Rag for a unit 8 x 12 in. 

is 6-5 x 10-5, where Ra is in ohms and Co in farads. For a 24-section 

speaker R. 00 = F8 x 10-4, this larger value being required, since the 
focusing of the radiation is greater than with a single section. The 
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Fla. 85. Voltage division between valve and condenser. EJE 
is the fraction of the applied voltage across the condenser. 

angle of the high-frequency t beam is about 15° on each side of 

the normal to the armature [23]. As in other classes of speaker a 
baffle is used. 

12. Circular membrane condenser speaker 

The arrangement is shown diagrammatically in Fig. 59. where the very 
thin diaphragm of aluminium alloy [31, 32, 33] under radial tension is 
symmetrically situated between two grid-like electrodes (see Fig. 86). 
The perforations in the electrodes permit sound radiation. A polarizing 

or steady direct voltage of 1,500 is applied between each fixed 
electrode and the diaphragm, so that it is pulled equally in both 
axial directions being therefore in static equilibrium. Signal voltages 

up to a maximum of about 400 are applied across the fixed electrodes. 
This causes the potential difference on one side to fall and on the 

other to rise by the same amount. Thus the attraction on one side is 

* R. is the power-valve resistance and Co the capacity of the speaker. 
t Precise frequency unknown. 



FIG. 86. Photograph of electrode of stretched membrane electrostatic 
speaker [31, 32]. 

Fig. 88. External leakage flux distribution in electromagnet 
with full excitation. 
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reduced whilst on the other it is increased, so the diaphragm oscillates 
with the alternating current. The arrangement although dependent 
solely upon attraction can be regarded from an analytical viewpoint 
as 'push-pull'. Actually of course it is a differential action. As with 
other speakers a baffle is necessary to reduce interference between the 

front and rear of the diaphragm. 
The diaphragm is in reality a radially tensioned membrane 38 cm. 

diameter, its mass per unit area being 4 x 10-3 gm. This corresponds 
to a thickness of 1.5 x 10-3 cm. (0.6 mil) and a density of about 2.7 gm. 
cm. -3. The distance between the diaphragm and the electrodes 
gradually increases from the edge to the centre since the amplitude 

of vibration is greatest there. 
The electrodes are made of bakelite and coated with an electrically 

conducting colloidal carbon mixture. This layer is then covered with 

an insulating material having a nitro-cellulose base and containing 

mineral products. It is thickest at the edges of the electrodes, the 
disruptive strength being 2,000 volts A.C. As would be expected from 
theoretical considerations (Chap. IV, § 14) the diaphragm exhibits 

vibrational modes which can be demonstrated in the usual way by 
aid of fine sand. The disposition of the sand indicates that there is 
an appreciable amount of damping of the diaphragm. If the damping 

were small the sand would form a thin line at the edge and at a 
nodal circle. The influence of loss on the shape of the diaphragm* is 
discussed in Chap. IV, § 17. From Fig. 86 it is seen that the ribs of 
the electrodes are broadened at certain places to increase the damping 
and subdue the lower vibrational modes, since they are the most 
powerful. The first vibrational mode occurs about 130 It is much 
lower than the value in vacuo owing to accession to inertia as described 

in Chap. IV, § 16. In a moving-coil speaker the large back e.m.f., 
induced in the coil when the diaphragm resonates on the surround, 
is accompanied by a large decrease in operating current (Fig. 149). 

A similar but less pronounced effect occurs when a diaphragm re-

sonates in an electrostatic field. 
The output circuit from the power valve can either be a resistance-

capacity, choke-capacity, or a transformer type, as shown in Fig. 59. 

It appears that the voltage across the speaker should fall with fre-

quency, as in Fig. 85, to avoid accentuation of the higher frequen-
cies [32]. The theory of this speaker is given in Chap. IX, § 8. 

* During vibration, i.e. the dynamic deformation surface (see definition 37). 



XIV 

MAGNETS 

1. A conventional design of electromagnet for hornless moving-coil 
loud speakers is illustrated diagrammatically in Fig. 87. The magnetic 

flux passes from the central pole to the outer pole ring, or vice versa, 

..... 
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Fm. 87. Dimensional drawing of a typical e eetromagnet as used for the 
measurement of flux density. 

according to the so-called polarity, i.e. North or South. Part of the 
flux traverses the air-gap and is disposed radially. This is the useful 

or working flux. The remainder 'leaks' out of the gap and follows 

the dotted paths within and without the magnet. Fig. 88 is a photo-
graph of leakage flux taken by placing a piece of sensitive paper in 
front of the magnet, sprinkling iron fillings on it and exposing to 
sunlight. Full field strength was employed and the flux paths near 

the magnet have not been reproduced in the figure, since the 
attractive force was strong enough to overcome the friction between 

the filings and the sensitive paper. Moreover, all the filings within a 

certain area were drawn to the magnet and can be seen adhering to 
the pole-pieces. 
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There are two principal methods of measuring flux in the air-gap of 
a magnet: (1) by weighing, (2) by fluxmeter or ballistic galvanometer 
using a search coil. Before embarking upon a description of these 
methods, it is well to examine the nature of the system upon which it 
desired to make measurements. If the central and outer pole-pieces 
are truly concentric and the constructional materials magnetically 
homogeneous, the radial field will be symmetrical about the polar 
axis of the magnet. Consider a plane passing through the longitu-
dinal centre of the gap. In the event of symmetry on each side of 
this plane the magnetic field will be symmetrical, but not necessarily 
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•  

F (weight) 

Fla. 89. Lever arrangement for flux measurements. 

the same at various distances from the plane, owing to leakage from 
the inner and outer pole cheeks. The design of Fig. 87 is asymmetrical 
since the magnet is wholly on one side. It follows that the leakage 
will be different at each end of the gap. This, however, does not have 
a serious effect on the flux distribution in the gap. Since the air-gap 
is in parallel with the leakage paths, the reluctance is modified, and 
the radial field strength is substantially uniform over only a fraction 
of the axial length. 
Coming now to methods of measuring the gap flux, No. 1 is quite 

simple but not conducive to high accuracy unless precautions are 
taken. It does, however, have the merit of measuring the field under 
conditions more closely allied to practice than No. 2. The schematic 
diagram in Fig. 89 illustrates the basic principle. The coil is attached 
to a lever mechanism and the force upon it, due to a given current, 
is balanced by a weight. The force in dynes is 27rrnB, I, I being in 
absolute units. Thus B0 can be calculated. The essential difference 
between the above condition and that in practice is twofold; (a) the 
coil is in vibration, (b) the current is alternating which may influence 
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the distribution. However, the field can be measured with a speaker 

coil carrying a steady current of the order of magnitude used in 

practice. This current will undoubtedly modify the field distribution, 

but the modification is not likely to be serious with a powerful 
electromagnet. 

In the second method the undisturbed distribution of field is 
obtained by aid of a search coil [100 a, b]. The flux measured is that 
interlinked with the coil and passing through the area encompassed 

FIG. 90. Diagrammatic sketch of differential search coil. The leads from the 
coils are flexed and brought out through the handle. They may be taken to 
terminals or to a switch which enables coils to be used separately or any pair 
connected in opposition. Great accuracy accrues when the axial length of the 
coils is as small as possible. This is due to the flux density not being uniform. 

by it. The magnetic field in Fig. 87 passes radially through the surface 

of the coil, but to complete the magnetic circuit it must go down the 
central pole in an axial direction. Consequently the flux passes 
through the area encompassed by the coil. This flux is the sum of the 

active gap flux plus the external leakage. In measuring the former 
it is essential to eliminate the latter from the meter reading. 

Two narrow low-resistance coils A, B, identical in all respects, and 

separated by the axial length of the gap, are shown diagrammatically 
in Fig. 90. The external leakage and the working flux pass through 
B, but only the leakage flux through A. If these coils are connected 
in opposition and joined to a fluxmeter or to a ballistic galvanometer, 
double the flux interlinkage (line-turns) is obtained on reversing the 

field current of an electromagnet. In this way the total useful gap 
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flux can be found for various degrees of magnetization. By winding 
A and B on a former and either inserting it in or withdrawing it from 
the magnet, the gap flux is obtained. The scheme just described is 
known as the differential coil method [100 a]. 

If coil B is used alone and drawn from one end of the gap to the 

other, the whole gap flux is cut. Consequently the fluxmeter or bal-
listic galvanometer measures the flux-interlinkage. Both methods per-
mit the rapid testing of either permanent magnets or electromagnets 

in a factory. The axial distribution of flux is of importance in con-

sidering the production of alien tones caused by large low-frequency 
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FIG. 91. Diagram illustrating method of 
measuring flux at any point along the axis 
of a speaker magnet. 

amplitudes. To determine this the foregoing methods can be modi-
fied slightly. By constructing a former with a number of closely 

spaced coils, each pair can be used in turn to determine the flux in the 
intervening space. This also applies to measurement of leakage flux 
within and without the magnet. The field current can be reversed or 
the former withdrawn from the magnet. As an alternative a single 

coil can be used. By means of a micrometer screw [100 b, 104], it can 
be inserted at various distances inside or outside the magnet. When 
the coil is withdrawn or inserted, it cuts all the flux between its 

initial and final positions. The flux-displacement curve so obtained 

takes the form illustrated in Fig. 91. The ordinate anywhere repre-

sents the total flux cut up to that point (abscissa). The flux density 
can be determined either directly from the reading or by aid of the 

curve. If 8x represents a small axial displacement, the area through 
which the flux passes radially is 27Tr8x, where r is the mean coil radius. 
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The total flux passing through this area is 80. Thus the flux density 

at the midpoint of 8x is 80/27rr ax = /32. In the limit when 8x, 81:1) 
are infinitesimal, the flux density is 

B 
1 c/(1)  slope of curve  

=-_- 
g 2er dx mean circumference of coil * 

The two curves illustrated in Fig. 92 were obtained in this way. The 

flux obtained by withdrawing a single coil from the position C, Fig. 87, 
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exceeds appreciably that on withdrawal of a differential coil whose 
axial length is that of the gap. This shows that a considerable propor-

tion of flux 'leaks' and does not enter the annular air-gap. The per-
centage leakage, however, is not an absolute criterion of the efficacy 

of the magnet. The proportion of the total m.m.f. acting at the gap is 

the important item. In the ideal case, i.e. with a magnet of infinite 

permeability, all the m.m.f. would be expended at the gap. Under this 

condition the m.m.f. is Balg = 1.257n/, where nl is the total ampere 

turns and 1, the radial length of the gap. Data are given in Table 16 
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showing, (a) the gap flux density 13 calculated from this formula, 

(b) that obtained by experiment. The ratio of the two (b la) represents 
the proportion of the total ampere-turns spent on the gap. The re-

mainder is wasted on the reluctance of the magnet and in creating 
leakage. The leakage and main magnet paths are in parallel, and for 
this reason the large relative value of the leakage flux must not be 
regarded too seriously. Owing to decrease in permeability of the 
magnet with increase in flux density, the m.m.f. expended thereon 

increases also. This is illustrated by the data [100 a] in Table 16. 

TABLE 16 

Dimensions of gap: f, -= 0.238 cm., axial length 0-95 cm, mean diameter 5 cm. 

Total ampere 
turns on 
magnet 

1,000 
2,000 
3,000 

Gap flux linee cm.* 

Theoretical 

(a) 

Actual 
(6) 

5,280 
10,580 
15,840 

4,600 
8,600 

10,600 

Percentage 
Ratio 1,b la) 

87 
82 
67 

It should be noted that the leakage flux is not the difference 
between columns (2) and (3). 
With 3,000 ampere-turns the proportion of total magnetomotive 

force at the gap is less the shorter the latter. This is due to the greater 

flux density which is associated with lower permeability of the 

magnetic material. 
The influence of reduction in the radial length of the gap is exhibited 

in Fig. 93. The gap density is increased some 25 per cent, by a corre-

sponding air-gap reduction from 0-32 to 0-238 cm. A further decrease 
to 0-16 cm. would give a density of about 12,000 compared with 8,000 
for 0-32 cm. The number of ampere-turns is 2,650, entailing a watt loss 
of 33. The futility of cast iron for loud speaker magnet construction 
is clearly indicated by curve 3, Fig. 93, and column 4, Table 17. This 
is due to the low permeability of the material. 

TABLE 17 

Total ampere 
turne on 
magnet 

Percentage of total ampere-turne used on air-gap 

Steel magnet 
0-32 cm. gap 

1,000 
2,000 
3,000 

86 
84 
73 

Steel magnet 
0.238 cm. gap 

87 
82 
67 

Cast iron magnet 
0.278 cm. gap 

40 
35 
29 
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2. Permanent magnets 

The methods of flux measurement are identical with those for electro-

magnets except that there is no field winding through which the 
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current can be reversed. In general, however, this method would 

not be used for an electromagnet. There are two main classes of 

magnet steel, (a) with a percentage of tungsten, (b) with a percentage 

of cobalt. The cobalt content varies up to 35 per cent. Since cobalt 

is an expensive metal, a 35 per cent. steel must be used in moderation 

where economy is concerned. The object to be attained is to produce 

a magnet of suitable strength and dimensions at a reasonable price. 

With this end in view it is customary to employ magnet steel con-

taining from 9 to 15 per cent of cobalt, although 35 per cent. is used 

in certain cases. The leakage in a permanent magnet is usually higher 

than that in an electromagnet working under similar conditions, i.e. 

gap density, area, and length. To obtain densities of the same order 

4,000 
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as those cited in connexion with electromagnets would necessitate 
a large, heavy, and relatively costly permanent magnet. An approxi-

mate outline of the factors governing the design of permanent magnets 
is given below. 

The (B, H) quadrant of a typical 9 per cent. cobalt magnet steel is 
shown in Fig. 94, curve 1. This represents the relationship between 
the flux density and the demagnetizing or negative value of H in a 

uniform ring of magnet steel having no air-gap. As soon as an air-

gap is introduced, conditions are changed. Point Br.m on the curve is 
obtained by highly magnetizing 
an endless test piece and then 
removing the magnetization. To 

obtain the quadrantal curve the 
magnetization is reversed until 
the value 1-1,, known as the 

coercive force, is reached. In 
practical magnets demagnetiza-
tion is caused by surface polarity 

incident to the presence of an 
air-gap, but it never reaches so 

far as the point He. 

There is a certain point on the 
quadrant where the product of 

the ordinate and abscissa BH is 

a xle 

6 x10' 

4x10' 

xle 

0 
-200 -ISO -100 -SO 

lits.s. units 

FIG. 94. Hysteresis quadrant and BH 
curve for 15 per cent. cobalt magnet 
steel. 
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a maximum, and this gives the 
optimum working condition. The energy obtainable with a magnet 
used for loud speakers, moving-coil ammeters, voltmeters, and the 
like is then a maximum for a given volume of metal. As shown in § 5 
the power obtainable from a loud speaker is 

P = KieVufe, (1) 

K = constant. Assuming ideal conditions, where leakage is absent, the 

flux density in the magnet is identical with that in the gap, provided 

the cross-sectional areas are equal and the magnet uniform. When 
the area of the magnet exceeds that of the gap the density in the 
magnet is Be Ae 

B„,— or Bm A,,, = BgAg. (2) 

In practice leakage occurs along the magnet, so H varies throughout 

the length. Since there is no applied m.m.f., Ba /9 — f H„, dim must 
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be zero, i.e. the gap flux is maintained in virtue of the retentiveness 

of the steel. As a first approximation the variation in H along the 
u. 

magnet may be neglected, so we can replace f H. dim by Hm l.. Thus 
o 

in the hypothetical case of zero leakage, Bc,l, = Hm 1m. Alternatively, 
suppose a toroidal magnet of length lm is uniformly wound with n 

turns of wire. The demagnetizing m.m.f. due to a current 1 is 
1.257 nl = H.1.. If the magnet is now at the same point as it is 

with an air-gap, the magnetic potential for the gap is equal to the 
demagnetizing m.m.f. or 

B9lc, = Hm l„,. (3) 

From (2) and (3) 13i, /9A, --- BmHm l,,,A. 

or 417c, = B,,,H„,V„„ 

which with the aid of (1) gives 

P =- (B.H.) f„K. 
8ir 

(4) 

Thus for given power the volume of the magnet 

1  
V cc (5) 
m B„,H,,, 

since fs and K are fixed for any specific design. Thus the volume of 
the magnet is a minimum when B.H. is a maximum. A curve of 

BH against H is shown in Fig. 94, and the optimum working point 
is where BH has its maximum value. Using the subscript 'op' to 

signify optimum values for the magnet, we have, from (3), 

B l 
1. _ a a (6) 
P H,,c, 

Bc, and lc, are settled initially, whilst H., is the value obtained from 
the curve where B.Hm is a maximum. In this way the length of the 

magnet can be determined for the ideal case of zero leakage. 

From (2) B A 
A _....  a a, (7) 

°P BOP 

where B., is obtained from Fig. 94. This completes the design of the 
magnet so far as calculation is concerned. 

We saw in § 1 that considerable leakage occurs in electromagnets 

and this applies even more acutely to permanent magnets. The 
percentage leakage varies with the shape and design of the magnet, 

but is usually from 50 to 60 per cent., i.e. the total flux is from 2 to 
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2.5 times the gap flux. Consequently in practical design this must 
be taken into account. 

3. Effect of non-uniform axial distribution of gap flux 

The force on the moving coil carrying a current / is C/. At low 
frequencies, if the amplitude is large, the coil moves out of the gap an 
appreciable distance. In so doing the mean flux density associated 

with it decreases, and the driving force is no longer proportional to 
the current. Consequently the acoustic output contains alien fre-
quencies. If these are of sufficient amplitude and occur in the range 

500 to 3,000 where the ear is most sensitive [211], the reproduction 

will be unpleasant. To radiate 0.125 watt in free air at 50 from a 
diaphragm 10 cm. radius necessitates an amplitude of 0.65 cm.* Thus 
a coil used in the magnet of Fig. 87 moves well into the leakage field 
and distortion occurs. Another effect of the leakage field is described 

in § 6. Owing to reduction in radial field outside the gap the coil 
tends to move progressively into the weaker portion and a form of 

rectification occurs. Distortion is absent provided the product of 

mean flux density and turns is constant throughout the travel of the 
coil. This happens if the field is uniform and remains so despite the 

coil current. For large low-frequency output an axial gap length 
appreciably in excess of the coil length, or vice versa, is implied. The 

former necessitates a larger and more costly magnet. To ensure 
uniformity the pole-pieces can be shaped as shown [192] in Fig. 95. 

The inner and outer pole-pieces are chamfered at each end of the air-
gap whilst the coil length exceeds the width of the parallel portion and 

preferably the whole gap. The flux is concentrated chiefly in the 
narrow parallel portion. Even though distortion of the weaker field 

in the chamfered part ensues, due to coil current, the flux inter-

linkage will be substantially constant. Whilst such a scheme is 

satisfactory for moderate acoustic output, it is preferable to use a 
special loud speaker for large low-frequency output or to adopt the 
horn or directional baffle type (Chap. XX). 

4. Flux density considerations in electromagnet 

In designing a loud speaker magnet it is customary to commence by 

specifying the dimensions of the gap and the mean flux-density 
required therein. Allowing for leakage, by aid of experimental 

• This applies to one side of the diaphragm in a very large bailie. 
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data, and knowing approximately the total flux at various parts of 
the circuit (from tests on similar designs), the cross-section of metal 

required can be allocated. When, however, we are confronted with a 

magnet and have no knowledge of the flux density therein, it is rather 
difficult to make accurate calculations. This is due to variation in per-

meability with flux density, and to the unknown value of the leakage. 

We are aware by measurement that the total flux in Fig. 87 near the 
base of the centre pin is about 3.1 x 105 lines, whilst that in the gap 

Speech coil at rest 

FIG. 95. Diagram showing speaker magnet with cham-
fered poles and coil longer than the air gap. The flux 
distribution is for zero coil current. 

is 1.86 x 105 lines for a certain magnetization. Unless the leakage 
is measured by search coils placed in various positions within and 

without the magnet, it cannot be known to any degree of accuracy. 
It can be calculated approximately, but this is a protracted process 

which we will not attempt here. 

In the absence of leakage the total flux is constant throughout the 
magnetic circuit. On this basis, with the aid of well-known formulae 

and a permeability curve of the steel, the reluctances of the various 

portions of the circuit in Fig. 87, for a total flux IV = 3.1 x 105 lines, 
were calculated to be as follows: 

Air-gap Si = 1.07 x 10-2; centre pin S2 ---= 4 x 10-2; annular base 

83 = 4 x 10-5; outer shell 84 = 1.76 x 10'; outer pole ring 
S, = 3.3 x 10-e. The total reluctance is 1.5 x 10-2, necessitating 3,750 
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ampere turns, which, in the absence of leakage, yields a gap density 

of 2 x 104 lines cm. -2 Comparing this with the actual case we find 
that 3,000 ampere turns gives a gap density of only 12,500, which 

emphasizes the importance of leakage and magnetic reluctance. The 
centre pin accounts for nearly 30 per cent. of the whole reluctance and 
the leakage therefrom is appreciable. Owing to crowding of the flux at 

the junction of the pin and the base this portion works at low per-

meability. It is reasonable to suppose that the design of Fig. 87 could 
be improved (a) by using a pin of material of higher permeability at 
large flux densities or one of ordinary material of greater cross-
section, this being reduced to the diameter in the gap by a 30° 
chamfer;* (b) increasing the thickness of the base and using a generous 
fillet between the pin and the base; (c) increasing the thickness of the 
outer pole ring and tapering it down slowly to the air-gap. The 

reluctance associated with the base and the pole ring is not con-
spicuous in the preceding calculations, since the assumed permeability 

curve was for good steel. In practice the reluctance may be im-
portant according to the magnetic quality of the metal. In case (a) 

it is feasible to use cobalt iron (not steel) for the outer end of the pin, 
where the diameter is reduced. Provided the price was not prohibi-

tive this metal could also be used for the inner portion of the outer 
pole ring. To minimize the influence of axial non-uniformity of the mag-

netic field in the air-gap, the centre pin may be extended outside the 
outer pole ring, whilst the latter can be chamfered as shown in Fig. 95. 

5. The output criterion of the magnet [101] 

To obtain the quantity upon which the output from any given electro-
magnet or permanent magnet depends, it is necessary to deduce the 

acoustic power in terms of the flux density and the dimensions of 
the air-gap. 

The acoustical power is 

P = .44, (8) 

where 12 is the coil current. For any given type of diaphragm, by 
(25), Chap. VII, 

Rr = zuC2, (9) 

where To• is a parameter dependent upon the diaphragm and the 
frequency. The current is governed by the coil impedance and the 

power valve resistance Ra. The former varies throughout the audible 

• See Fig. 79. 
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register. At electromechanical resonance, where the coil reactance 

vanishes, the impedance is purely resistive. For maximum dis-

tortionless output the condition is R1 = yR„, where y depends upon 
the valve characteristics, but usually lies between 2 and 3. The ratio 

of the transformer n1/n2 = V(R11 R2). For maximum output R1, and 
therefore the anode current (A .c.), is constant for a given grid voltage. 

Thus .. :2 .. 4,1(72R1), 
e K i 

or == -.R2 -= £-2 (10) 

since both .4 and R1 are constant. 

Now R2 = 
where R, = copper resistance of coil, 

= electrical resistance due to iron loss, 

Rd = electrical resistance due to diaphragm loss, 

R,. = electrical radiation resistance due to sound. 

The iron and diaphragm losses introduce unknown quantities, so they 

will be omitted, and we shall write 

R2 = R+ R,.. 
From (8), (10), (11) the acoustic output 

p K1 Rr  

.R,. 

or 
1 

1+(1/x)' 
(12) 

where x = RrIRc. 
Formula (12) gives a curve of the type illustrated in Fig. 96. When 

x = 0, R,. = 0, P -= 0 and there is no radiation (in vacuo). The 
output depends upon* x, and it will be regarded as the criterion of the 

system. The D.C. resistance of the coil is Rc = where t = 2nrn, 

A =- cross-section = big f „In 

total copper section 
- section of gap — 

Substituting above for Z and A we obtain 

R 2/rrn2pi (13) 
c big f, • 

* This is not to be interpreted as 'directly proportional to' x. 

space factor. 
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Thus from (9) and (13) 
R,. To.C2bluf, 

x (14) 
277-rn2pi 

Substituting C = 27r7.7tB, in (14) we obtain 

x = r[2erbljf. 13à' -=- 12: 13 1;f8, (15) 
Pi Pi 

where T;,', is the volume of the annular air-gap. So far as the magnet is 

K, 

2r 

Limb 
Central 

LSMilfsc, 

Asymptote 

1 0 20 40 

Fm. 96. 

1  
Curve illustrating the expression P  = or 

1-I-(1/x) 1-F(1/x)' 

and diagram showing dimensions of air-gap of magnet. 

concerned the criterion is 4 Vg /8' this being 87r times the magnetic 
energy in the volume occupied by the metal of the coil. Thus the 

criterion can be expressed as 4 x volume of copper = 4 V. 
In specifying a magnet, it is obvious that a statement of the flux 

density by itself has no value, since the gap dimensions are left out of 
account. Also a statement of Be T7,, is meaningless, for of two magnets 

with equal values of Be V, the air-gap of one might be inadequate to 
accommodate a suitable coil. This is where the space factor becomes 
important. With a gap of 0.16 cm., f, has a value of from 0.4 to 0.5, 
whereas for a 0.08 cm. gap f. varies from 0.2 to 0-3. Consequently 
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the energy output from the smaller air-gap is less than that from the 

larger. 
The problem can be viewed from another angle. With an air-gap 

of 0.16 cm., we could accommodate 50 turns of wire having a re-

sistance R,, whereas in the more restricted space available with a 
0-08 cm. gap, the diameter of the wire would be much smaller and its 
resistance appreciably in excess of It. Thus the dead loss in the latter 
case would exceed that in the former, with a corresponding reduction 

in current and, therefore, in sound output. 
It follows that the specification of a magnet should be accompanied 

by the quantity Be V, and the gap dimensions, so that f„ can be 

computed. 
By hypothesis the /4 V,f„, criterion applies when the coil reactance 

is zero. If the best magnet is selected on the Be V, basis, it will 
fulfil the optimum condition in the lower register of an actual repro-

ducer where iron and diaphragm loss occur. The output in the upper 
register is influenced by the mass, diameter, etc. of the coil, but no 

definite relationship has been established analytically. Moreover, it 
is out of the question to incorporate this in the preceding analysis. 
A point of interest arises when economical considerations are 

waived. Assume we have a magnet with /, =-- 0.96 cm., the remaining 
quantities being equal to that of another magnet with l, = 0.16 cm. 
From the above criterion the output with the former magnet would 

appreciably exceed that from the latter. The ratio of the outputs is not 

1  
0.96 f since P oz 1-F(11x), and it is not proportional to 417f,, since 

the latter varies as x. With a 0.96 cm. gap a coil of 50 turns can have 
a very low resistance indeed, but the reactance will be unaltered. 
Thus the increased output will only be felt over a limited band of 
frequencies where the copper loss is an important fraction of the 

impedance. At the same time the large mass of the coil *—unless 

aluminium were used—would restrict the amplitude causing a 
reduction in the output, particularly at the higher frequencies. More-
over, a gap of this length is of no practical value. If 41717f. remains 

constant, an increase in radius of the coil is accompanied by a larger 
output. The inductive and motional capacitive reactances both 

* This statement is made on general grounds where hornless or horn speakers are 
concerned. If only a limited low-frequency register is to be covered, a heavy coil 
can be used. 
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increase proportionately to the square of the radius, so that the 
increase in output is again limited to a definite frequency band, 
unless the current is constant at all frequencies. Under the latter con-
dition the internal resistance of the valve is so high that there is little 
damping of the natural oscillations, which assume undue prominence. 

The preceding argument shows that the quantity 4 V. =-- Bp; 
must be used with discretion. 

We are now in a: position to deal with the factor 4 Vg/87T which is 
sometimes cited by manufacturers as a criterion. As we have seen 

above, the output from a loud speaker is only proportional to 4 17„ 
when the radiation resistance is small compared with the copper 

resistance. This is approximately true for a number of reproducers 
where the resonances are relatively weak. But it is inapplicable to 

a moving-coil reproducer of the horn variety where the radiation 
resistance is 0.3 that of the total resistance. Also we have shown by 
preceding examples that B Vg has to be used in conjunction with 
other information connected with the reproducer. Moreover, it 
should be clear that 4 Vg/87,- does not tell the whole story by any 
means, and that details of the air-gap are a necessary adjunct. 

6. Rectification due to leakage field of magnet: Mathieu 's 
equation [229] 

In any circular type of magnet used for loud speakers it is obvious 

that the radial field must diminish rapidly, as a leakage field, outside 

the air-gap. At low frequencies the amplitude of the diaphragm may 
be so large that the coil moves well into the leakage field. The force 
exerted upon it, arising from the mutual influence of the current and 

magnetic field, is then a function of the distance of the coil from its 

central position.* With a moving-coil speaker having very weak axial 
constraint, the diaphragm moves out of the magnet at low frequencies 

when the amplitude is large [100 a, 101, 185]. A considerable axial 
force is required to restore the diaphragm to its normal position, and 

on removal of this force the diaphragm darts outwards again. Clearly 
there is a unidirectional displacement, and the action simulates recti-

fication. In fact it has been designated electromechanical rectification. 

To explain the effect it is preferable to consider a simple hypo-
thetical case. Fig. 97 A represents a circular coil situated in a radial 

* Unless the axial length of the coil exceeds that of the gap as in Fig. 95, so that 
the total flux embraced is the same for all working positions of the coil. 
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magnetic field whose strength varies linearly from the point 0 (com-
pare this with the leakage field on the left in Fig. 92). The coil is 
fed with alternating current of constant r.m.s. value from a high 
resistance source. If A is the extreme position of the coil at any 
specified epoch, assume the current to have its maximum value Imax. 
The coil is then momentarily at rest with maximum force urging 
it in the direction x1. It moves with increasing velocity until B is 
reached, when the current and the driving force are zero. At B the 
kinetic energy Iniv2 is a maximum. The coil passes B and ultimately 

(b) 

10 cos 0.1cot 

Axial distance e, 
I 
s I 

FIG. 97. Diagram illustrating electromechanical 
rectification effect due to a coil moving in a non-
uniform radial magnetic field (Mathieu equation). 

stops when the work done upon it is ¡mv2. Since the field gradually 
decreases to the left of B, the velocity at C is not zero when the 
current is —Imax. Consequently the coil moves beyond C and stops 
at D where the current is —I, this being less (arithmetically) than 
—Imax. The coil now returns in the direction x2, the current and 
magnetic field being less than at A. The accelerational period is 
reduced to PQ which is a fraction of RS. Clearly the coil cannot 
reach A, and in the long run it experiences an axial displacement in 
the direction x1. In the case of a loud speaker the action is due to 
the leakage field. Since the value of the radial field is greater within 
than without the magnet, the coil moves outwards. If, however, the 
equilibrium position, in the absence of driving current, is brought 
further within the magnet, the coil will move inwards when supplied 
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with A.C. Owing to the small travel due to proximity of the magnet 
spool, it usually bounces off and wends its way outwards, unless the 
system is specially designed to avoid this. 
The mathematical analysis of the above phenomenon is illuminating 

and involves a form of Mathieu equation [80 b]. Being of considerable 
practical importance the analysis is given in full. 

Let k' = e = slope of line in Fig. 97 A, 
then C = 27enB = 2ernk'e. 

Neglecting mechanical loss and radiation and assuming absence of 
axial constraint, the differential equation of the system moving in 

a linear radial field is 

d2e 
nte d—t2+ CI cos cot = 0. (16) 

Writing wt = z and substituting in (16) we obtain 

d2e ge .08 z 0, (17) 
dz2 

where q = 2ernk' I co2me. 
This differential equation is a particular case of a Mathieu type 

whose canonical form can be written as 

d2e 
d—z2+ (a-kg cos z)e = 0. (18) 

In our case the parameter a is zero. To solve (17) assume [222] 

e 
no= 

(19) 

Substituting (19) in (17) and equating like powers of e to zero, we 
obtain the recurrence relationship 

— 2an(ii,±n)2+q(an_d-an+1) --- 0, (20) 

or a 2(tc+n)2 (an_i an+i) = 0, (20 a) 

from which the coefficients an can be determined in terms of an, 
and q Eliminating coefficients from the system of equations repre-

sented by (20 a), we get the infinite determinant; 
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= 0. 

— q 1 — q 0 0 0 
2(p.-2)2 2(2.-2)2 

0 — q  
2(,u.-1)2 

o o 

1 — q 0 
2(µ.-1)2 

21,2 

o 

ii 
—q  

(214.-1- 1)2 

—q 
21,2 

1 

o o o o 
2(1.4+ 2)2 

• 

o 

o 

—q 
2(,u+ 1)2 

• 
Taking the first three columns and rows about the origin as an 

approximation, we get the sextic equation 

2116_ 41,4+1,2(2— q2)—q2 = 0. (21) 

Putting q =*, this being a reasonable practical value when the 
frequency of the coil current is 50 (21) becomes 

5V-100/£4+4911.2-1 = 0. (22) 

The roots of (22) are = ±1.1, ±0.89, and ±0•16. From the 

recurrence relationship in (20) we obtain the three equations 

—2(µ,-1)2a_i±qa,-1-0 = 

qa_i-2µ,2a0-Fqai = O , (23) 

0±qao— 1)2ai = 

the two zero terms being present since only a third order determinant 
is involved. 

Solving (23) for a_j_ and al in terms of ao and using the six values of 
et from (22), we obtain the results in Table 18. 

TABLE 18 

IL 

1-1 10a 0.023a0 
—1.1 0-023a0 10ao 

0-89 083a0 0.028a, 
—O•89 0.028a0 0.83a0 
0-18 0,142a0 0.074a0 

—0.18 0.074a0 0-142,a0 

Total 11.097ao 11.097ao 
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The approximate solution of equation (17) is, therefore, 

e = ao(100 Ito+ elle+ 0.023eniz+ 
+0-023e-2•liz 6-Ilia+ 10e-0 liz + 

+0.03e-0.1liz+e0•89iz+ 0.020e1•89iz+ 

+0.028e-1•89iz+ e-0•89iz+ 0.03e0•11iz+ 

0•142e-084iz+e016iz+ 0.074elluz+ 

+0.074e-1•16iz+e-0 16iz+ 0-142e° mi). (24) 

When t = 0, z = 0 and C = Co. Inserting these values of e and z 
in (24) we find that 

Thus 

Co  a =  . 
° 28.2 

(25) 

e (20 cos 0.1z+1.66 cos 0.11z+2 cos 0.16z+0.282 cos 0.84z+ 
28.2 

+2 cos 0.89z+ 2 cos 1.1z+ 0.148 cos 1.16z+ 0.056 cos 1-89 a+ 

+ 0.046 cos 2.1z). (26) 

From (26) it is evident there are 9 components whose frequencies 

differ from that of the driving current. The actual values are found 

on multiplying 0.1, 0.11, etc. by the frequency, i.e. 50 in this particular 

case. The relative importance of any component depends upon the 

magnitude of its coefficient. Neglecting those with small coefficients 

we find that the coil displacement is given approximately by 

C —  eo (io cos o•hot + cos 0.16cot + cos 0.89cot + cos 1. lcot). (27) 
14.1 

The chief feature of (27) is the reduction in frequency of the main 

component to one-tenth that of the driving current.* The amplitude 

is, however, ten times that of the other three components. A rough 

idea of the curve represented by (27) is shown in Fig. 97 B. The 

coil reaches the position e --- 0 just before the quarter-cycle of the 
(0.1co/2e)th component. Since the magnetic field is absent to the left 

of the origin (e = 0), the coil then experiences no force due to the 
alternating current in it. Once this position is reached the coil cannot 

return and in absence of mechanical resistance it moves on with 

constant horizontal velocity. In this way the electromechanical 

rectification effect can be explained. If the field were negative, to the 

• The smaller the driving current the lower are the component frequencies and 
the longer the time taken by the coil to come out of the magnet. 
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left of the origin, the motion of the coil would be periodic and it would 
return. The main frequency, however, would be one-tenth that of the 
driving current. 

The complete solution of equation (17) contains an infinite number 
of alien frequencies which may mar the reproduced sound if the low-
frequency amplitude is too large. 
In equation (18) suppose q == 0, then the alternating current in the 

coil is zero. The parameter a can be either positive or negative. In 

the former case, provided the magnetic field is negative behind the 

Liet suspension 

(Radial) B 

FIG. 98. Illustrating arrangement for demonstrating the 
stability and instability conditions in a Mathieu equation. 

origin, we have (z .-- .4, 

= u, 
dz2 

so e — Al cos(irciz+e), (28) 

the motion being periodic and stable. When a is negative 
du 
— ae =- 0, so e . A1 cosh Via ± B, sinh Vèiz, 

dz2 (29) 

and the amplitude increases in one direction without limit as time 
progresses, there being no oscillation. These conditions correspond 
to a steady direct current in the coil. According to its direction it 
promotes oscillation (a positive) or causes the coil to move into the 
denser part of the field (a negative). A practical arrangement to 
demonstrate these effects is shown schematically in Fig. 98. It is 
interesting to note that oscillation is caused by a steady unidirectional 
current in the absence of mechanical constraint. 
The physical condition corresponding to a positive value of a can 
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also be obtained if the coil is suspended, as shown in Fig. 98, there 

being an axial elastic constraint acting towards the origin. Using 
the mechanical constraint or the direct current, or both, to make a 

positive, the passage of sinusoidal alternating current through the 
coil gives physical conditions represented by the canonical form of 

Mathieu's equation (18). The solution is periodic, according to the 

relative values of a and q. 

7. Influence of flux variation within the air-gap [185 la] 

When the outer pole ring of the magnet is quite narrow the axial 

variation in flux density within the gap may be appreciable. Assuming 
the distribution to follow some definite law, it is possible to show that 
the output, even at small amplitudes, contains alien frequencies. 

The force on the coil per unit current is 

C =--

16-1-E 
Bol  

b 
--ab-e) 

where 1 is the total length of wire uniformly spaced on the coil, b the 
axial gap width, and e the distance of the coil from its central position. 
Assuming the axial distribution of flux to be 130 =-- B—pe2, where 

is a constant, the above integral gives C = C1—p/2, where 

= Bl—cp/b2/12. In practice, where the surround and centring 
device impose an axial stiffness or constraint, the differential equa-

tion of motion, neglecting radiation and loss, is 

d2e 
me fp -Esç = (C1-9,/e2)I cos cot. (30) 

Putting cot = z, (30) becomes 

d2e —dz2+ (cte2 —b)cos z ce -= 0, 

where 

pn , Ici 8 ilao\ , 2 
; and c = = 

w2m,' co2me; co2m, \ co / 

co, corresponding to the fundamental frequency of the diaphragm on 
the axial constraint. (31) is a non-linear equation whose solution 

comprises an infinite number of terms having different frequencies. 
To reduce distortion, the construction shown in Fig. 95 may be 
adopted. Then C will be almost constant throughout the travel of 

the coil. 

(31) 
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8. Effect of complex driving force 

Hitherto our analyses have been based upon sinusoidal driving forces. 
In practice the wave form of the driving force is complex. The 
influence of electro-mechanical rectification is to introduce not only 

alien frequencies due to each separate frequency, but sum and 

difference frequencies in addition. If the rectification effect is 
eliminated by the artifice described in § 3, the influence of non-
linearity of the axial constraint will, in general, be responsible for 
the creation of additional frequencies together with sum and differ-

ence frequencies. In both cases this can be regarded as a modulation 

effect where the large low-frequency amplitude causes the higher 
frequencies to be rectified on a non-linear characteristic. A simple 
analysis, relating to a condenser speaker working on a parabolic 

characteristic (f oc E2) is given in Chap. IX, § 1, (4) and (5). The 
coefficients of the alien frequencies are called modulation products. 
Under either of the above conditions it is possible to create fre-
quencies lower than any of those supplied to the grid of the power 
valve, i.e. sub-frequencies. 

It is found in certain speakers that the motions of the coil and 
diaphragm, for a given forward and reverse direct current, are dif-

ferent [163 a]. This is due to, (a) the coil not being centrally placed 
in the air-gap; (b) the magnetic field being asymmetrical about the 
axial centre of the gap; (c) asymmetrical restoring force due to the 
centring device and surround. The reproduction under these con-
ditions will be tinged with alien frequencies. 



XV 

EFFICIENCY 

1. THERE are a variety of ways in which the efficiency of a loud 
speaker can be defined, and care must be exercised to avoid con-
fusion. The most important definitions relate to, (a) acoustic effi-
ciency, (b) absolute efficiency; but there are others which we shall 
not discuss. We are not here concerned with the efficiency based on 
the power supplied to the valve from the high-tension source. The 

efficiency obtained using (a) is that mainly required in practical 

design (see Chap. XX). In (b) and (c) the valve is regarded as an 
A.C. supply source of resistance R., and the efficiencies obtained must 

be interpreted with this in mind. See [48] for a critique on efficiency. 
(a) The acoustic efficiency 

power radiated as sound  

power input to driving agent 

I2R, R,  Rr  
= PR' = = RR ' 

where R. is the motional resistance including mechanical losses.* In 

the ideal case the entire resistance is due to radiation and na = 1. 
Since na is a power ratio, it can be expressed in decibels below zero-
level, so 

10 log10 na 10 log14* decibels. (2) 

The acoustic efficiency varies with frequency according to the type 
of loud speaker. For instance, in a moving-coil horn speaker designed 

to cut off at 60 ,, the efficiency rises sharply to a definite value 

which is well maintained up to 3,000-4,000 ,, after which it falls 
away. 

(b) Absolute efficiency for optimum output with a given power valve. 

Since a loud speaker is associated with a thermionic power valve, the 

latter must be taken into account in an estimate of efficiency [125, 
130]. If R. is the A.C. valve resistance and R the radiation resistance 
of the ideal loud speaker in series therewith, the power radiated for 
a given grid swing is a maximum when R„ = R. The efficiency is 

then 50 per cent. This is easily proved as follows: Let E = impressed 

(1) 

• As a first approximation 7h, = R„.1(Ro- F R„) provided the mechanical loss < R,. 



254 EFFICIENCY [XV. 1 

e.m.f., I = circuit current: then I = El(Rd-Ra) and the power 
radiated as sound is 

ER  
P -=- I2R — (3) 

(R±Ra)2' 

If we take dP1c1R and equate to zero, (Ra+R)2-2R(Rad-.R)= 0, 
from which it is found that Ra= R. Inserting this value in (3) the 

power radiated is E2 

and this is the maximum obtainable from the valve for a definite 
grid swing. 

When an actual speaker is connected in the valve circuit, the 
radiation resistance is only a fraction of R, whilst the reactance 
causes a reduction in current, particularly at high frequencies. The 
acoustic power is 

/24 [Al2.R , (5) 

where Zf= (Ra Ri)2±w2M. All quantities are referred to the 

anode circuit of the valve. If a transformer is used its losses may or 
may not be included in those of the speaker. As it is an integral part 
of the apparatus the losses should be included. To do so it is essential 
to measure R1 and L1 on the valve side of the transformer. When 
the latter is excluded, the requisite values of R1, L, are found by 
direct measurement on the speaker, the results then being multiplied 
by the square of the turns-ratio of the transformer. 
The absolute efficiency for a given power valve is defined as 

acoustic output with actual speaker in circuit 
nab — acoustic output with ideal speaker in circuit • 

From (4) and (5) we obtain 

nab — = 

since R = Ra. 

Converting (6) to decibels, 

4.RR,. 41?„4. 

(4) 

(6) 

1010g10 nab = 1010g104R. î (7) Z 

In the ideal case Zi= 2Ra, Rr= Ra and the decibel-level is zero. 
From (6) and (7) it is seen that nab varies with change in Ra. To 

ensure a definite basis of comparison it is essential that Ra be fixed, 
since it determines the circuit condition. 
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(c) Absolute efficiency based on distortionless output. The maximum 
distortionless output is obtained when the load resistance is y times 

that of the valve; p is a parameter found from the valve charac-
teristics. Its value is from 2 to 3 for a triode and from to for 
a pentode. The absolute efficiency for a given grid voltage swing 

exceeds that in § 2. The maximum possible output, before the curved 
portions of the valve characteristics are encroached upon, is now 
greater, since the permissible grid swing exceeds that when R = Ra 
and y = 1. 

In the case of the ideal speaker the total circuital resistance for 

maximum output is R±Ra = Ra(cp+ 1), and the power radiated 
E2Ra, E2 

P I2pRa —   (8) 
Rá(cp+1)2 (p+1)2 Ra 

For the actual speaker the acoustic power is 
E2R, 

/2./t, —   (9) 
4 

From (8) and (9) 
4+1)2 R,Ra 

nab (10) 
4 • 

When p = 1 formula (10) reduces to (6). Expressed in decibels, we 
have 

10 log na' b = 10 log10 (P 1)2 R,Ra (11) 
cP e • 

The absolute efficiency as defined above complies with conditions 
frequently observed in practice. As in the preceding section, the valve 

resistance must be specified to put the results on a comparative basis. 
(d) Mechanical efficiency. This aspect of the subject has received 

scant attention. 

fimo mechanical input at driving agent 
acoustic output 

=" lit • 

2. Measurement of efficiency 

To obtain the acoustic efficiency na = .R,./Ri the measured values of 
R,. and R1 are required. These can be found as described in Chap. 

XVI, §§ 2, 3. Now from Chap. VII, § 5, 

R, = R.— = R.—(A1- 2 R,„ 
Zt, 

(12) 
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so that the efficiency is 

/la 
__.[R.—(Z.14)2R„] 

(13) 

The results set forth in Table 19 for a hornless speaker with baffle 
4 ft. square were obtained by aid of a vacuum chamber and an A.C. 

bridge [41]. The transformer was not included in the measurements. 
Up to 1,500 the mechanical loss was not serious, but thereafter 

it became of importance and increased with rise in frequency. It 
follows that useful information regarding efficiency can be obtained 
below 1,500 without a vacuum chamber. The efficiency must then 
be regarded as a gross or apparent value where nap =-- R././?1, the 
mechanical loss being included in R.. Data pertaining to such tests 
are given in [44] Table 20. The speaker in question has a strong 
magnetic field and a diaphragm whose dimensions are as stated. It 
is considerably more efficient than either of the cases cited in Table 19. 
This is largely due to the intense field. For comparison the efficiéncy 
of a rigid disk of equal radius in an infinite baffle, driven by the same 
system, is given. At low frequencies it is about I that of the speaker, 
whilst above 1,000 it decays rapidly due to mass reactance 
(Chap VIII). The comparison must be clearly understood. Since an 

infinite baffle shuts off half the sound, from a practical viewpoint the 

efficiency of the rigid disk is only one-half the values given in 
Table 20. 

TABLE 19 

Efficiency of commercial speaker using 90° paper cones 7.5 

and 15 cm. radius. Other conditions unknown 

Frequency 

Acoustic efficiency 
n. per cent. 

,•••• 7.5 cm. 15 cm. 

400 4.5 
800 6.8 
800 4.2 

1,000 4.0 
1,200 4.6 
1,600 2.8 
2,800 6.01 
3,200 2.8 

7.5 
7.3 
9.0 
6.0 
2.8 
7.0 • Region of cone 
6.0 

re80118.110013. 
2-0 } 

The acoustic efficiency and radiation resistance are only criteria 

of output when the current is constant at all frequencies. To obtain 
the actual output it is necessary to multiply R. by the square of the 
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TABLE 20 

Showing apparent efficiency of coil-driven conical diaphragm 
with rubber 8urround at varicm8 freguen,cie8 

13, = 1.1 x i0 lines cm.-1, radius of diaphragm 12.2 cm., width of surround 1.8 cm., 
thickness of paper 2.1 X 10-2 cm., n = 1,200 turna, = 90°, m. = 4-7 gm. 

Apparent radiation retrietance 
(R.) ohms Apparent efficiency n  per cent. 

Rigid disk 
(both sides) 

Frequency Cone in baffle Rigid disk in 
6 ft. square infinite baffle Cone 

300 336 79 16.1 
500 348 83 15.9 

1,000 396 59 18.3 
2,000 192 15.6 7.9 
3,000 394 7.1 12.6 

4.3 
4.3 

not calculated 
0.69 
0.26 

Disk Mcm radius 

20 lay„K() 

128 256 512 1024 2048 4096 8192 
Frequency (e.) 

Fie. 99. Curve showing variation in axial sound 
pressure with frequency, due to a rigid disk 10 cm. 
radius vibrating in an infinite flat baffle, when the 
sound power is constant. 

current, i.e. E2/e. If the power radiated by a rigid disk were con-
stant at all frequencies, the axial pressure would increase considerably 

with rise in frequency above 1,000 This follows immediately from 

the beam or focusing effect (Chap. V). Assuming the axial power-
level to be zero at 300 where the distribution is uniform in all 

directions, its value at other frequencies for constant output is plotted 
in Fig. .99. Up to 3,000 there is no serious discrepancy between 
the axial output of the cone and that of Fig. 99. Above 4,000 the 
cone output decays rapidly. Below 4,000 the radiation from the 

conical diaphragm reckoned on a decibel basis is fairly uniform when 
the listener is suitably situated in an ordinary room. On the axis the 

upper register is rather powerful. 
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3. Horn speaker 

Bridge measurements of a similar character to those in § 2 can be 
made with horn type moving-coil speakers. The efficiency of these 

instruments is higher than that of the hornless type, and the mechani-
cal loss is a smaller proportion of the total power. Consequently the 

apparent efficiency gives a fairly accurate idea of the performance to 

be expected in practice. Curve 1 of Fig. 100 shows the efficiency of 
a unit of the type [50] illustrated in Fig. 82 A. To test the unit it was 

connected to a uniform tube 50 feet long, whose cross-section was 

Lo
ss

 -
 De
ci

be
ls

 

o 

10 3 

2° Ln 6, o r. u. -.1Cotte5 I 

Frequency 

Fla. 100. Curves showing efficiency of moving-coil horn speaker of Fig. 82A 
at various frequencies, measured with a long tube of uniform bore, in place of 
horn. 

identical with that of the throat. The acouatical impedance at the 
throat is a resistance of value po clA (not po cA which is the mechanical 

impedance*), being in the case under review about 17 c.g.s. units. 
To avoid reflection at the far end of the tube the acoustic termination 

should have this value. It was simulated by using a number of short 
narrow slits having an impedance of about za = 17-14.16 x 10-4co 

c.g.s. units. At low frequencies, where co is small, za = 17 since the 
inertia component is negligible. At the higher frequencies, although 

the latter is relatively important, there is considerable attenuation 
in the tube, so that the energy reflected back to the throat due to 
improper matching at the far end is small. By using a vacuum 

chamber the mechanical loss could be obtained, but the input would 
have to be restricted owing to removal of the load. 

The method used to compare the actual and apparent efficiencies 
was an acoustical one. The power delivered by the diaphragm to the 

• See definitions 23, 30. 
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tube, when the pressure and particle velocity are in phase, is 
p2 p2/1 p2 
— .-.-- — = — 

ra Po e 17 
for the present case. To measure the pressure in the neighbourhood 
of the throat it is necessary to use a condenser microphone in such 
a manner that the operating conditions are unchanged by its presence. 

Accordingly an annular slit was provided on the side of the tube a 

short way from the diaphragm of the speaker. The acoustical impe-
dance of this was fifteen times greater than that of the tube, so that 
propagation along the latter was undisturbed. This is analogous to 

using a high series resistance with a voltmeter, so that little power 
is drawn from the test circuit. The slit communicated with a con-

denser microphone via a conical-shaped chamber. The combination 
was calibrated, and the tube pressure read directly on an ammeter 

connected in the output circuit of the microphone amplifier. 
The efficiency obtained in this way [50] is given in curve 2, Fig. 100. 

Comparison with curve 1 shows that the mechanical loss in the system 
is a small proportion of the electrical input. Above 1,500 ,---, the 
efficiency exceeds that to be expected from theoretical conditions, on 
the assumption that the diaphragm acts as a rigid structure (curve 3). 
It appears, therefore, that the upper register is dependent upon re-

sonances, as in other types of speaker. These are doubtless due to 
vibrational modes of the diaphragm. Information on this matter 

could be obtained from effective mass curves taken in vacuo (Chap. 
XVI, §§ 5, 6). Over a wide frequency band the efficiency is 50 per 
cent., which is of unquestionable advantage for public address or 

entertainment purposes. In commercial production and use, where 
an exponential horn is employed, the efficiency over the same fre-

quency band is about 30 per cent. It is of importance to indicate that 

with efficiencies of this order, even in the absence of mechanical loss, 
the output at a resonant frequency cannot exceed three times the 
normal output. This statement is made on the assumption that 

the normal output applies to the frequency range where diaphragm 
resonances are not responsible for the high efficiency of 30 per cent. 

4. Measurement of absolute efficiency 

In decibels this is 10 log10 4I?a R r, as shown in § 1 (b), so that measure-

ments have to be made to find .14, R1, and L1. For a horn speaker, 
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where the mechanical loss is relatively small, R = R., so that the 

essential data are obtained from measurements with the driving agent 

free and stationary. The result of tests on a horn type moving-coil 
speaker, covering a range from 3,000 to 12,000 is illustrated [39] 

in Fig. 101. If it is desired to express these results in the form given 
in § 1 (c), it is merely necessary to raise the level throughout by 
1 decibel, i.e. 10(logio 5— logic, 4). This is based on the value ep = 2.5. 

Then (cp+1)2/cp = 5, whereas in § 1 (b) it is only 4. The difference is 
of no practical importance. 

; 5 

-10 

e  15 

- 20 
3000 4000 5000 6000 7000 0000 9000 10000 11000 12000 

FREQUENCY 

Fra. 101. Efficiency of high-frequency horn speaker relative to the ideal 
as determined from motional impedance measurements. 

5. Direct measurement of radiated power 

Instead of finding the radiation resistance R. by bridge measure-

ments, it can be determined from acoustical measurements. If a 
'dead' room of fairly large dimensions is used, two conditions can be 

obtained: (a) the speaker (if of the hornless type) can be tested with 
its baffle in position, this being equivalent to a free air condition 
where the instrument is a double source; (b) the speaker may be flush 

with one of the highly absorbent walls where the free air condition 
is simulated, one side of the speaker being screened. If it is desired 
to approximate to an infinite baffle, the wall in which the speaker is 
set should be large, flat, non-absorbent, and non-resonant. The baffle 

condition can only be obtained when the pressure is doubled in the 
plane of the diaphragm. 

Owing to local variation in curvature of the diaphragm surface and 
to the seam,* the radiation has not circular symmetry about the polar 

axis. Nevertheless for practical purposes it will be assumed that the 
degree of asymmetry is small. If a series of pressure measurements 

is taken by aid of a calibrated microphone, at a distance not less than 

12 radii from the speaker [140], for various angles in a horizontal 
plane containing the axis, the polar curve is obtained. From Chap. VI, 

§ 1, the power radiated as sound is P = (1/p, c) ff p2 dA, where p2 is 
* This does not apply to moulded seamless cones. 
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the mean square pressure. When the speaker is set in one wall, the 
integration is to be extended over a hemisphere whose radius is that 
of the microphone from the speaker. To do this it is customary to 

adopt a graphical method as shown in Fig. 102, where the polar curve 
OMM is given for constant input current, although it can be given 

for constant voltage to the grid of the power valve. The latter pro-
cedure, however, limits the curve to a particular valve resistance. 

The polar radii of this curve represent pressure, but since p2 is 
required it is necessary to square each radius vector. This gives the 

d (R cos f)=-R sin cinlf 

D 

0 01 

Fia. 102. This diagram is used to represent (1)p, the sound pressure 
at various angles with the axis of a loud speaker (curve OMM) ; (2) p2 
(curve ONY); (3) the cross-section of a hemisphere of radius R. If the 
area A = OiNiDY1 is measured by a planimeter in cm.2, 

P = 2rR2pLA I poc(01 Y1)2 ergs sec.-2, 

where pa, is the r.m.s. axial pressure and 01 Y1 is in cm. The formula in 

2irRA . 
the text is P = , which agrees with the foregoing when the appro-

po c 

priate scale factors are used. 

curve ONB which corresponds to p2 on a hemisphere of radius R, 
when the pressure and particle velocity are in phase. Taking the 

elemental annulus at A, its area is .2e(AB)R d# ,--- 27rR2sin # (14. The 

power passing through it is (27TR2/po c)p2sin# dtk, where p2 is the 
mean square pressure. The total output is the summation of this 

lit 
over the hemisphere, namely, (2e.R2/po c) f p2sin 0 4. Draw a verti-

o 
cal line 01 Y1 and project the point A horizontally across; set off 
AIN]. =--- ON = p2. The curve 01 NID is obtained in this way. Now 
the vertical ordinate at A1 is evidently R cos #, and therefore the 

elemental strip is d(R cos #) = — R sin # cl#. Thus, neglecting the 
lit 

negative sign, the area OINIDY1 is Rf p2sin# 61# and the power 
O 
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is therefore 27T/i/po c times this area. The latter can readily be found 
by aid of a planimeter. To convert the power to watts it is merely 
necessary to multiply by 10-7. 

Difficulties are often encountered at low frequencies due to inade-

quate absorption, thus permitting standing waves to arise. Under 
such conditions it is preferable to make measurements out-of-doors 
[11, 135]. If the speaker is buried in the ground with the diaphragm 

flush to the surface, the infinite baffle condition is simulated. Care 
must be taken to ensure that the reaction on the lower side does 

not influence the results. Unless adequate precautions are observed, 
an added stiffness will accrue due to the subterranean chamber, 
thereby influencing the lower register. 

6. Linearity tests 

Throughout a sound-reproducing system it is imperative that the 

action of each component should be linear [96 a]. Thus when a sine 
wave is applied at the transmitter it should be radiated—excluding 
any distortion due to the medium—as a sine wave at the reproducer. 

In this respect it is of the utmost importance to know whether the 
deformation and general behaviour of diaphragms and their asso-

ciated components under the action of vibrational forces is linear. 
There are several ways in which tests can be conducted: 

(a) The reproducer is arranged in a 'dead' room and a record taken 
of the axial sound pressure with steadily increasing input, at a series 

of frequencies. By aid of an oscillograph the output wave form can 
be seen. The graph of input versus output at any particular fre-
quency should be a straight line. If it curls over with increase in 
input, non-linear action is present. This is not an infallible test unless 
the wave form is always sinusoidal. 

(b) The output can be taken to an electrical harmonic analyser and 
the power in the various components of the wave form ascertained. 
The output limit for a definite degree of distortion can then be found. 

(c) The input and output wave forms can be magnified and applied, 
respectively, to two pairs of control plates of a cathode ray [86] 
oscillograph. The resulting figure can either be photographed or a 

note made when distortion reaches the permissible limit. In the 
absence of distortion the figure is either a straight line or an ellipse. 

A record from a hornless moving-coil speaker showing flattening 
of the wave form due to a surround of inadequate elastic properties 
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and to the external leakage field (Chap. XIV) is given in Fig. 103. 
With a pseudo-elastic surround acting symmetrically about the equi-
librium position of the coil, the positive and negative half-waves 

would be identical. Since they are not, the influence of variation in 
the magnetic field beyond the air-gap is in evidence. This, of course, 
only asserts itself when the amplitude is large at low frequencies. So 
far as reed-driven speakers are concerned, it is impossible to avoid 
harmonics at low frequencies with a diaphragm of reasonable dia-
meter unless the natural frequency of the reed is fairly low. Under 
this condition the upper register is usually weak, except on the axis 

of the diaphragm (Chap. VIII). Since in all classes of speaker the 

Input 
Time 

oc 

....."'".._.--....-

Output 

FIG. 103. Oscillograph records illustrating non-linear 

characteristic of hornless moving-coil speaker. 

amplitude decreases with rise in frequency, the tests for harmonic-
creating propensities should be conducted with large amplitudes 

at low frequencies. Nevertheless it is necessary to conduct tests 
throughout the audible range as rattling may occur at certain 

frequencies. 
The second method of test, using an harmonic analyser, is illus-

trated by the curves of Fig. 104 for a horn type moving-coil speaker 
at [18] 60 rs.,. With an input of 2-5 watts the harmonic content in 
the output is 1 per cent. The output of the fundamental is 0-5 watt 
and the harmonic content is 20 decibels below that of the funda-

mental. Although this is a wide margin, it must be interpreted 

with care. The ear is much more sensitive to higher harmonics 
than to the fundamental, but the latter tends to mask the former 

by raising the threshold of audibility. Consequently, if the har-
monic content were only 10 decibels below the fundamental, a 

definite degree of impurity would probably ensue, but this depends 
upon the intensity-level. It may seem strange that the sound-



284 EFFICIENCY [XV. 8 

output in Fig. 104 rises more slowly than the input power, since 

for absence of distortion the relationship should be linear. The 
explanation is that the coil temperature rises with increase in 

input, so for a given watt loss 

.7  A the current is lower. This diffi-

culty is surmounted by plotting 
the input current against the 

output. 

FUNDAMENTAL 

HARMONICS 

7. Endurance tests 

Although a loud speaker may 

be capable of handling large in-

put, it is necessary to know 
what power can be supplied in-
definitely for a given temperature 

rise of the operating coils. In a 
test of this nature the cooling 
effect of the air must be taken 

B into account. Owing to the 
°O 3 4 5 greater velocity at low fre-

POWER INPUT-WATTS 
quencies, the input for a given 

FIG. 104. Power output at 60 •-•••,. 
temperature rise may alter with 

fall in frequency. Moreover, it is preferable to choose a mean 

value of 500 in order to make the test really stringent. This 
will be an appropriate test for the low-frequency load capacity. 

Since in practice the current is greatest at low frequencies, the 
range above 500 does not call for serious consideration. Thus 

a test to the limit at 500 e, ought to give an adequate idea of 
the power-handling capabilities of the instrument. If any doubts 
exist it is a simple matter to conduct the test at lower fre-
quencies. 

The coil temperature can be found approximately by bridge 
measurements of D.C. resistance. If the normal value is known, the 
rise can be calculated by taking the per cent, increase in resistance 

per 1°C. By aid of a change-over switch the endurance test can 
be momentarily interrupted to ascertain the temperature. A more 

accurate way is to remove the coil from the magnet and obtain a 
resistance/temperature curve, so that by measuring the former in 
situ, the latter can be read from the chart. 
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8. Strength test 

For a given input the coil excursions at 50 , cause stresses in the 
centring device and surround of a moving-coil speaker much in excess 
of those at 500 ,, owing to the greater amplitude in the former case. 

It is advisable, therefore, to conduct a strength test at the lowest 
frequency to be adequately reproduced, the input being sufficient to 
give the desired information. Many hornless speakers capable of 

large output at 500 , will fail at 50 ,, owing to weakness of the 
centring device. Long before rupture occurs there will probably be 

non-linear action of the centring device and surround, thereby intro-
ducing alien frequencies. 



XVI 

ELECTRICAL IMPEDANCE MEASUREMENTS 

1. WHEN the impedance alone is required, apart from its resistive 
and reactive components, the simplest procedure is to apply a voltage 

of variable frequency to the grid of the power valve and make direct 

measurements of current through the speaker and the voltage across 
its terminals. The arrangement is shown diagrammatically in Fig. 

105. A Moulin or other high-impedance type voltmeter E must be 

FIG. 105. Simple circuit for approximate impedance 
measurements of speaker. 

used. Measurements on a hornless moving-coil speaker are illustrated 

[113 a] in Fig. 106. The sudden rise in impedance at 50 is due to 

resonance of the diaphragm as a whole on the surround, whilst the 
upward trend above 300 is caused by inductive reactance. Peculi-
arities due to diaphragm performance above 300 have been 
omitted. The current through the speaker and power valve varies 

with frequency in a manner akin to that shown in Fig. 149. 

2. The most accurate method of measurement is by aid of some type 

of alternating current bridge. Experience seems to indicate that a 

bridge of the mutual inductance type illustrated in Fig. 107 A, B will 
give the greatest accuracy [91, 96 b]. This method, of course, enables 

the resistive and reactive components to be found separately, the 
latter being in the guise of an effective inductance which may be 
positive, zero, or negative. The two latter conditions represent reso-
nance and capacity effects, respectively. 

The average variable mutual standard inductance is usually de-
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signed for currents of a milliampere or so. Consequently, if tests are 

to be conducted at current values corresponding to those which 
obtain in practice, the apparatus must be specially designed to avoid 
overheating. Under these circumstances a preliminary test must be 

made to discover the current through the speaker at various fre-
quencies to give a certain loudness-level at a specified frequency, when 
constant voltage is applied to the grid of the power valve. During 

bridge tests this value of current is used in the speaker. Such pro-
cedure necessitates a powerful source, since a good deal of current is 

drained off by the bridge, whilst 40 - 
the auxiliary resistances cause a 

drop in voltage. The only reason 
for using currents identical with .1%, -c 30 

those in practice is to allow for 
the variation in resistance and 0. É % 

fr% 
zgi 

inductance due to the magnetic %. 
material in the driving unit. A 

rough test is adequate to show 43 10 
whether variation in resistance t 
and inductance with current is ' 1 1  

serious. If it is not, there is no 32 614 Itt 256 512 1024 2048 4096 I 

reason to be fastidious, so the Frequency N) 

measurements can be made with FIG. 106. Impedance-frequency curve 
of hornless moving-coil speaker mea-

standard apparatus. Naturally sured with apparatus of Fig. 105. 
the tests are conducted with the 
speaker in a ̀dead' room, so that no sound reaches the observer, 

whilst room reaction and microphone effect is eliminated. The latter 
is very disturbing at low frequencies when a visual detector is used. 

When the measurements are not conducted to determine the vibra-
tional characteristics of the speaker, but are required for general pur-
poses, the output power transformer should be included. 
The necessity for constructing and wiring up the bridge to reduce 

all stray inductive and capacity effects to a minimum cannot be too 
strongly emphasized. Everything must be suitably screened, but not 
in such a way that the value of the standard mutual inductance 
alters due to eddy currents induced in the screen. In fact, it would 

be preferable to use an astatic type of mutual inductance if this was 
available. The input to and output from the bridge must be asso-

ciated with transformers whose windings are electrostatically screened 
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Source applied 
through iereened 
and balanced 
transformer 

Variable mutual 
standard 

M" 

Vacuum 
thermocouple 

FIG. 107e. Heaviside equal ratio bridge for use up to L = 0.22 henry. 

L = 2(M' —M.") 31" = leads reading with X short-circuited. 
111' = reading with X. R" = PO Of 9 9 

R = R' —R". R' = reading with X. 

X unknown 
imped nce 

Screened and 
balanced 
transforme 

A.C. 
SOUrCe 

• Electrostatic 
screen between 
windings 

Variable mutual 
standard 

CurrYeiirsuring 

Fixed resistance 
R4 

Balancing 
inductance 

L'a 

Fia. 107B. Heaviside unequal ratio bridge for L > 0.22 henry. 

R 2 = 9R3 or 99R3 according to balancing inductance; R4 is approximately 1/9 
or 1/99 that of R. 

L (R2+1(M" M ') Cs+1, 
R3 Rs 

See Fig. 107A. 

and balanced. Also an external transformer screen of some high per-
meability magnetic alloy is required. The out-of-balance currents 

should be amplified by a suitable valve amplifier, and then filtered to 
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sift out any harmonics generated in the speaker, before being passed 

on to the detector. All leads must be screened, including those to 
the telephone, and the screens efficiently earthed. Success in measure-
ments of this type at frequencies above 1,000 , depends almost 
entirely upon the efficacy of the screening and earthing arrangements, 
although care must be exercised regarding impurities in the mutual 
inductance due to stray inductance and self-capacity. 

The methods of detection can be visual or aural according to the 
frequency. Below 300 , a good vibration galvanometer serves the 

purpose, and being highly selective there is no necessity to incor-
porate a filter. When, however, the frequency falls below 100 the 
measurements require considerable patience and skill, especially if 
there are any sharp resonances of the type illustrated in Fig. 125, 

curve 1. As an alternative to the vibration galvanometer the out-of-
balance voltage can be rectified in the usual way, but it ought to be 
filtered first. The zero reading of an instrument in the anode circuit 
of a valve detector indicates balance. For frequencies exceeding 

300 ,--,, two pairs of telephones having resonances at 800 and 2,500 , 
can be employed, the latter doing service up to 4,000 ,. Beyond 
this frequency either a heterodyne or some form of visual detector 
should be used. 

For investigating certain scientific aspects of the loud-speaker 
problem, the above method has proved valuable. Other bridges, 
whilst being adequate for certain purposes, have failed to reveal the 
idiosyncrasies of the speaker. They are, however, of value for 

ordinary test purposes. A simple direct bridge can be used where 
inductance (or capacity) and resistance in one arm are varied until 

each equals its counterpart in the speaker. The balance is checked 

by a screened and balanced differential transformer and a visual 
detector is used. 
Whatever method is employed errors will arise above 1,000 , 

unless all auxiliary resistances are free from self-inductive and self-

capacity effects, whilst inductances must be free from the latter. 

3. Speaker measurements. General considerations 

When the driving mechanism is free to operate in the usual way, the 

effective resistance R1 and the effective inductance L1 can be deter-
mined to a high degree of accuracy. If the mechanism is restrained 
and cannot move, the static values R0 and L0 are found. Then the 
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respective differences are due to the motion of the coil or reed, which-

ever is used. Thus the motional resistance .R. -= Ri.—Ro and the 

motional inductance L. =--- L1—Lo. R. includes sound radiation, 
mechanical losses, and a variable part due to the iron of the magnet 
whether permanent or energized. When the radiation resistance is 
a small fraction of Ri, the quantities RI, R0 are nearly equal. Under 
this condition great care is required in obtaining and interpreting 
the results. This applies particularly when measurements are made 

in vacuo to find the actual radiation resistance due to sound. Impor-
tant features associated with these measurements are discussed below. 
In hornless speakers .11m is usually a small fraction of R0, and it is 

not easy to determine its value accurately from readings with the 
coil free and stationary, for the following reasons [96 b]: 

1. It is almost impossible to have the coil in the same mean position 
for free and for fixed measurements unless the latter are obtained by 
fixing the coil rigidly by aid of paraffin wax. This is particularly the 
case at the higher frequencies, as shown by the lead-block experiment 

in Chap. XVIII, § 20. An amplitude of a few microns corresponds 
to a loud sound at 3,000 ,. By aid of paraffin wax the sound can 
be eliminated entirely. 

2. If the free and fixed measurements are made separately, it is 

necessary that the temperature of the coil should be identical in 
each case. The temperature of the electromagnet gradually rises with 

time owing to heating of the magnet coil,* unless the current is 

maintained till the temperature is steady. 
The temperature coefficient of copper is 0.4 per cent, per degree 

Centigrade. A variation in temperature of 15° C. can easily occur, 
with a consequent rise of 6 per cent. in the resistance of the coil. 

Thus, if R1 were measured at 20° C., at the beginning of a day and 
R0 at 35° C. at the end of the day, the value of R0 would be 6 per 
cent. high. Under this condition low-frequency tests on a diaphragm 
with reinforced edge (where Ri.— R, is small) would reveal a negative 
sound output, since Ri.— R0 is less than 6 per cent. The stationary 
and free measurements must be taken at close time intervals after 
the magnet has attained a steady temperature. Temperature con-

stancy can be checked by means of a D.C. bridge. 

3. The iron loss varies according as the coil is free or stationary, 

* This difficulty disappears when a permanent magnet is used. 
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and when the output is small this usually results in R. being negative 
at frequencies of the order 4,000 upwards. 

If possible no attempt should be made to fix the coil by mechanical 
means. With an electromagnet of low remanence, the fixed condition 

is simulated by short-circuiting the winding of the magnet on itself. 
The error incurred in R0 due to variation in iron loss, with and with-

out the field, is about 1 per cent. For any particular type of magnet 
tests should be made to discover whether L0 is the same when the 
coil is fixed with the field on, and when free, the field winding being 

closed on itself. Obviously this procedure is inapplicable to reed-type 
speakers. In this case the only safe way is to take measurements of 

R1, meanwhile keeping a check on the coil temperature and the 
testing current. Without altering the adjustment, molten paraffin 
wax is used to fix the reed, the measurements then being repeated. 
In this class of speaker, however, the variation in iron loss is often 
sufficient to vitiate the results, so the experimenter must be discreet 

in making deductions as to performance. The method is clearly 
satisfactory for making impedance measurements of R1 and L1 alone, 

so that the operating current in a valve circuit can be computed. 
Assuming actual fixation of the coil, we can consider a case where 

(R1—R0) -= R. is only 2 per cent. of R0. To obtain R. to an accuracy 
of 1 per cent. it is necessary to measure R1 and R0 to ± 1/200 of 2 per 
cent.—i.e. 1 part in 10,000. Apart from the first two sources of error 

enumerated above, the variation in iron loss entirely precludes any 
hope of attaining this degree of accuracy. When the diaphragm loss 
is added as a further complication, the difficulty of measuring the 

actual sound output from a reproducer of low efficiency by electrical 
means is evident. 
These remarks apply mainly to hornless speakers whose efficiency 

is, in general, below 10 per cent. With horn or directional baffle 

moving-coil units, the efficiency ranges from 20 to 40 per cent., so 
that R. is a goodly proportion of R0. One of the chief points in 
testing these speakers is to avoid temperature variation of the moving 
coil. 

4. Effective mass 

This is defined in Chap. I, p. 4, and has been discussed in Chapter IV. 
As an introduction to the practical aspect of the situation, the ideal 
case of a rigid mass vibrating on a massless helical spring will be 



272 ELECTRICAL IMPEDANCE MEASUREMENTS [XVI. 4 

treated. The simplest procedure is to use the electrical analogue in 
Fig. 108. The mass is driven by an alternating force f causing a velo-

city y, the corresponding electrical quantities being E and I. The 

electrical impedance is ElI = Z -= {coL—(1/wC)}, which can be 
written (04, where L, is the effective inductance. Analogously we 
have the mechanical impedance ze = come = {cont— (8/4}, so the 
effective mass is Me = fm—(8/c02)). Taking m = 20 gm. and s the 

stiffness of the spring as 2 x 106 dynes cm.-1 the effective mass varies, 

as shown in Fig. 109. Starting at a negatively infinite value, the 
effective mass rapidly rises, until when m = 8/w2 or co = V(8/m) reso-

nance occurs and m6 is zero, i.e. the mechanical impedance then 

Frictionless 
surface 

Fia. 108. The diagram on the left is the electrical analogue of the 
mechanical system on the right. 8 is assumed to be massless. 

vanishes. This happens at a frequency of 50 As w/2,7 increases, the 

effective mass approaches asymptotically the value of the rigid mass. 
This elementary example corresponds closely to a hornless coil-

driven speaker at low frequencies. m represents the total mass of the 
diaphragm, including the accession to inertia, whilst 8 is the elastic 
constraint due to the centring device and surround. In general the 
vibrating structures with which we are concerned do not behave as 
rigid masses. By invoking the effective mass concept, the structure 
becomes virtually a rigid mass of value rn6 at the driving-point. The 

idea only applies, of course, to the steady state. 

As a second illustration of the effective-mass principle, suppose we 
take the case of a horn type moving-coil speaker in Chap. XX, § 2. 
The mass is that of the coil and diaphragm, whilst the stiffness is 
due to the annular surround and throat chamber, the mechanical 

radiation resistance being associated with the latter. From formula 
(5), Chap. XX, § 2, the effective mass is 

81  8.72 
-= M 2 0)2;2 +81, 

this being shown graphically in Fig. 152. The curve is similar in 
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nature to the more elementary example of Fig. 109. If r = co the 
loss disappears and the value of me = m-4(81+82)/0,1, which gives 
a curve identical in form with that of Fig. 109. The effective mass 
is not influenced when the resistance is in series, but profound modi-

fications may occur when it is in parallel with either mass or stiffness. 
For example, in the above formula, if si = 0 and r is very small, 

m, and is therefore independent of frequency. Another example 

30 

20 

20 

-30 

I Asymptote 

Natural 
mass 
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4, 
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FIG. 109. Curve illustrating effective mass of mechanical 
system in Fig. 108 at various frequencies. 

occurs in Fig. 111, where me of a conical diaphragm is reduced to 
a low value at higher frequencies owing to transmission loss. 

5. Measurement of effective mass 

In a moving-coil system the effective mass referred to the driving-
point, i.e. the coil, is, from Chapter VII, m, = —C24/4„ where 
Zen = R+(.024„ and m5 refers to the complete vibrating structure. 

Thus, if a coil is attached to some specific point on a structure by 
a very stiff spider, the effective mass can be found by taking 
measurements of R. and L. with an A.C. bridge. Since re = C2R„,/e„ 
the mechanical resistance is found in the same way. Knowing C2, 

the values of me and re are calculable. In a moving-coil speaker the 
coil is fixed solidly to the diaphragm, so that no difficulty is en-

countered respecting mechanical coupling. The same principle can 
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be extended to reed-driven cones, since the formulae are valid then 

(Chap. VII). Here difficulties arise due to the iron, as described in 

§ 3, and the method is not satisfactory. The effective mass of the 
reed alone can be measured up to its resonant frequency and some-
what beyond it, but the accuracy dwindles at higher frequencies 

owing to the behaviour of the iron. 

6. Coil-driven circular aluminium disk 

A coil 2.5 cm. mean radius wound on a paper tube having a free 
length of 2.5 cm. was securely fixed coaxially to an aluminium disk 

[35 b] 10 cm. radius and 0.055 cm. thick. The coil was situated in 
the radial magnetic field of a circular electromagnet and the disk 

suspended freely by several thin elastic threads, the axial frequency 
in the absence of the field being about 3 ,--,. Bridge measurements 
of the inductance and resistance of the coil, free and stationary, were 
taken over a certain frequency band. Some of the observed and 
deduced data are given in Table 21, whilst a curve showing the 

effective mass is plotted in Fig. 110. 

TABLE 21 

Showing data for computing the effective mass of an aluminium disk 

Radius of disk, 10 cm. Thickness, 5.5 x 10-2 cm. Mass, 47 gm. Mass of coil, former, 
adhesive and connecting wires, 7.8 gm. Mean radius of coil, 2.5 cm. D.C. resistance 
of coil without leads, 0.95 ohm. Accession to inertia at zero frequency, 3.5 gm. 
O1 = 2 x 102. No baffle. 

Fre- 
quency 

(,--') 

L., 
motional 
inductance 
(henry) 

motional 
resistance 
(ohms) 

effective 
mass 

(gm.) Remarks 

0 — — +58-3 Natural mass (47+7-8) plus ac-
cession to inertia (3-5). 

60 —6.5 x 10-4 10-2 +218 First centre-stationary mode at 
69 ,---,. 

75 +7-1 X 10-4 3 x 10 -2 —127 
100 +4-2 x 10-4 7 x 10-2 —113 
120 +10-2 23.3 —3.2 x 10-1 First centre-moving mode. One 

120.6 0 39.5 0 circle of minimum amplitude 
at 120.6 ,----,. 

125 —7-2 x 10-2 6.3 x 10-1 + 4.5 
150 —1.45 x 10-3 4 x 10-2 +15.4 
200 —4-5 x 10' 6 x 10-2 +27-5 

Starting from zero frequency, where limiting motion is assumed, 
me is the sum of the natural mass (disk plus coil) and mi the accession 
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to inertia. Since no baffle was used throughout the experiments, mi 
in the neighbourhood of zero frequency is half the value with an 
infinite baffle [3 a]. The first centre-stationary mode occurs in the 
neighbourhood of 69 (A), and the first centre-moving mode at 
120-6 (B). Near the centre-stationary mode me attains a positive 
maximum and then falls to a negative minimum. The amplitude of 

the motion is a minimum when m, = 0, since the effective mechanical 
resistance and impedance are then maxima. 

I I 

200 400, 
Freguency(,•—) 

D 800 

Fm. 110. Curve showing variation with frequency 
in effective mass of coil-driven free edge aluminium 
disk loom, radius. A,first centre-stationary mode; 
B, first centre-moving mode; C, second centre-

stationary mode; D, second centre-moving mode. 

The arithmetical value at the maximum is much in excess of the 

natural mass of the disk and coil. Rising from the negative maximum 
the effective mass becomes zero in the neighbourhood of the first 
centre-moving symmetrical mode at 120-6 Thereafter it increases, 

but near 260 there is a minimum value due to some irregularity. 

The second centre-stationary mode occurs at 410 (C). The second 
centre-moving mode occurs at 484 (D). The third centre-moving 

mode, which should occur in the neighbourhood of 1,100 ,---,, is absent. 
Considered as a separate vibrator, the portion of the disk within the 

coil has a mode near that of the outer annulus. Moreover, mutual 
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interference suppressed both modes. When allowance is made for the 
coil mass and the portion of the disk within the coil, the frequencies 

of the modes determined experimentally are in close accord with those 
found by calculation [38]. From the shape of the curve of Fig. 110 
and the known behaviour of a flat disk, it is possible to throw light 

on the more complicated action of conical diaphragms used for loud 
speakers by examination of their effective mass curves. 

7. Loud-speaker diaphragms 

The results of measurements on two conical loud-speaker diaphragms, 

(1) with the edge reinforced by a narrow annulus of presspahn to 

prevent radial modes; (2) with an annular rubber surround, are por-

trayed graphically in Fig. 111. Further details are set forth in 
Table 22 [35 a, b]. 

TABLE 22 

Data for conical coil-driven loud-speaker diaphragm 

Radius at periphery of paper cone with reinforced 
edge (curve 1) . . . . . . 

Radius at periphery of paper cone with rubber sur-
round (curve 2) . . . 

Radial width of rubber surround 
Apical angle of both cones . . . . 
Natural frequency of reinforced edge cone on elastic 

threads without magnetic field . . . 
Natural frequency of cone as a whole on rubber 
surround without magnetic field . 

Baffle . 

12.2 cm. 

12.2 cm. 
1.8 cm. 
90° 

Leas than 3 es, 

About 30 
6 ft. square 

In case (1), starting from zero frequency, where me is the natural 

mass plus the accession to inertia, the value gradually increases due 
to increase in the latter* up to 200 Thereafter the rise is chiefly 
concerned with the elastic and inertia forces of the diaphragm struc-

ture, the action being similar to that of the aluminium disk in the 
last section. The maximum at Bit is similar to the case of the disk 

in Fig. 110, where a centre-stationary mode is approached. Beyond 

B1 the curve drops rapidly as in the disk case. In the present instance 
this is due in part to the air-column vibrations (Chap. XVIII, § 15), 
which increase the motional resistance R„, and reduce Le, to some 
extent. The rise after 1,000 p•., is caused by the presspahn annulus 

* At zero frequency (limiting motion) in, with a 6-ft. baffle is half its value with 
an infinite baffle [3 a]. As the frequency rises the baffling becomes more effective 
and tn, increases. 
t The dimple at 300 is due to the seam of the cone. 
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at the edge executing a vibrational mode, the inner circumference 

being relatively at rest, i.e. a stationary-centre type. Just above 
1,500 , m, is negative. If the curve were continued it would cross 
the axis at about 2,000 where the main centre-moving symmetrical 
mode occurs. Beyond this the effective mass is quite small. 

Curve 2 relates to a diaphragm similar to that of curve 1, but 
mounted on an annular rubber surround.* The fundamental mode 
of the latter as an annular membrane introduces a condition at A2 of 

To me .94 qm 
60 at - Z10 ,0 

40 

20 
5 0 1000 1500 z000 

Frequenry (cycles per second) 

FIG. 111. Curves showing effective mass of coil-driven conical paper dia-
phragms 12.2 cm. radius, apical angle 90°. 

(1) Edge of diaphragm reinforced by narrow presspahn ring to suppress radial 
modes. 

(2) Edge of diaphragm bent over and supported by rubber annulus. 
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the same nature as a centre-stationary mode. The underlying theory 
is given in Chap. IV, § 12. The remainder of the curve can be 
explained in the same manner as curve 1. Above 800 , there are 

two undulations due to resonance of the membrane and the bent-over 
portion at the edge of the diaphragm to which it is attached. 

Similar results have been obtained with thin aluminium cones of 
the type discussed in Chap. XVIII, § 17. 

Hitherto our attention has been confuted to symmetrical modes of 
vibration since the changes in effective mass far exceed those at a 
radial mode. In fact, unless the diaphragm is abnormally asym-

* At zero frequency, owing to the surround elasticity, no, = —co (see Fig. 33). 
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metrical about the polar axis, due to the seam or to bad construction, 
the variation in me at a radial mode is quite insignificant. From 
theoretical considerations this must be so, because contiguous identi-
cal radial sectors, having equal and opposite motions, do not affect 
the driving-point impedance. With some diaphragms there is a varia-

tion in m„ but it is of no importance dynamically. The main item 
is enhanced radiation resistance due to asymmetry caused by the 

seam (Fig. 125, curve 1). 
In all the preceding cone cases the mass of the coil and its former 

is included in that of the diaphragm. Below 1,400 ,—, the coil can 
probably be regarded merely as an added mass, but above 1,400 
the vibrationnal characteristics of the diaphragm depend upon the 
coil mass (Chap. XVIII). To obtain m'e, the effective mass due to 

the diaphragm alone, it is merely necessary to subtract the mass of 
the coil and its former. This can be done on the diagrams by shifting 
the horizontal axis upwards by an amount me. The value of m'e so 
obtained is the contribution due solely to the diaphragm when it 
is driven under specified conditions. It is not the effective mass of 
the diaphragm as an isolated structure. 

8. Cones complete to the vertex 

It was mentioned in a previous section that satisfactory effective 
mass curves cannot be obtained with reed-driven cones by measuring 
L. and .R.. To obviate this difficulty a coil-drive system of the form 
illustrated in Fig. 112 is used. The air-gap in the magnet should be 

fairly large, centring being accomplished by elastic threads, so that 
the natural frequency of the system is very low. To get the effective 
mass of the cone per se, that of the driving mechanism must be 
subtracted. The latter should be tested by itself to ensure constancy 
over the frequency range. If some form of centring device is used in 
preference to the elastic suspension, which is admittedly somewhat 
delicate, care must be taken to ensure that it has only one vibra-
tional frequency which is well below audibility. It must be remem-
bered that the majority of such devices have more than one mode 
of vibration (see Chap. IV). 
A second method of determining me is to attach the cone to a 

tunable vibrator, e.g. a rod clamped at both ends and magnetically 
driven, and, by the method of beats or by observing the amplitude, 

to find the fundamental frequency of the loaded vibrator [36]. The 
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cone is then removed and replaced by a mass mg to give the same 
resonant frequency. Several rods may be needed to cover a wide 
frequency band. When mg is negative the cone raises the vibrational 
frequency of the rod. The procedure is therefore to load the latter 

with an additional mass. Having found the vibrational frequency 
with the cone, the latter is removed together with an amount me, so 
that the resonance occurs at the same frequency as before. In place 
of a rod any other suitable vibrator can be used, e.g. a stretched wire 

or tape of magnetic material whose tension can be varied [36]. It is 

important that the tape be driven to make the cone vibrate along its 

Cone under test 

Metal spider or cone 

Coil 

FIG. 112. Illustrating attachment of cone to 
driving mechanism for finding the effective mass 
at various frequencies. 

axis without wobble or sideways motion. The effective mass of a 
conical shell is quite different if driven axially and at 90° thereto, 
since it is relatively supple in the latter case. 

9. Measurement of accession to inertia (mi) 

(a) If the effective mass me is measured in air and in vacuo by any 
of the preceding methods, and if the diaphragm is assumed to pre-

serve the same shape in both cases, the difference in the two values, 
namely, mea—me„ = mi. 

(b) At low frequencies when Rni is negligible and the diaphragm 
moves as a whole, we have, from (18) Chap. VII, 

8 C2  
(mnd-mi) -= m — (.02 co2L. 

Or CO2(L2 —M)(4-4). (1) 
CO  
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In vacuo under the above conditions 

8 C2 = «,2(72_ tn.) (4_ LO). (2) 

From (1) and (2) 

(m—ma) (m  8 )(4,— .40). 
n 0)2 L i_L (3) 

If the diaphragm is suspended so that the fundamental frequency 

due to 8, i.e. co = V(8/M), is well below audibility, the term 8/(42 can 

be omitted. Formula (3) then becomes [2 b] 

(L„—L1 

In neither case is a knowledge of C2 essential. The advantage of 

the method is that structural changes in the conical diaphragm of a 
moving-coil speaker are unnecessary. When the resonance frequency, 
due to the surround, occurs in the audible range, formula (3) must 

be used.* 
(c) When a vacuum is not available and the diaphragm moves as 

a whole, we have from (1) for measurement in air, 

(4) 

C2 = w 2(12__ in)(LI_Lo). (5) 
co2 

If the diaphragm is removed, and the coilt is suspended by fine 

threads so as to have a very low axial frequency of vibration, 

C2 =-- co2mc(L0—.4), (6) 

since 8,/(02 is negligible. Equating (5) and (6) we obtain 

mi mc(4— 8 

L 

since m = ma+mi. When 8/0 for the diaphragm is negligible, 

— mc(  „ —ran. 

(7) 

(8) 

10. Experimental results 

Using method (c) a series of experiments was conducted on a dia-

phragm whose dimensions are shown in Fig. 113. 
Measurements of L1 and Lo were made using the bridge method 

of § 2 in conjunction with a powerful oscillator and a sensitive vibra-

a When an inductance bridge is not available, the method described in reference 
[34 b] can be adopted. 
-I. The use of a similar coil obviates removal of that from the diaphragm. 
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tion galvanometer. The coil-stationary condition was adequately 
simulated by short-circuiting the magnet winding on itself, since the 
metal was soft iron of low remanence. The coil was, therefore, always 
in the same mean position. 
The value of L1 is zero at the electromechanical resonance fre-

quency, and below this it is nega-
tive, owing to the capacity action 
associated with the motional back 

e.m.f. 
The experimental data are set 

forth in Table 24 [2 b]. There is a 

fair agreement between the cal-
culated and experimental values 

of mi at 200 and 150 ,-sd. In this 

respect it should be noted that the 

calculated results refer to a fiat 
241fan. 

disk in an infinite baffle, whereas d 

those obtained by experiment per- Mole 

tain to a conical diaphragm with a 
finite baffle. Strictly, therefore, the 

Elastic 
support 

baffle receseed 
teteke3 suoeort, 

ihreadeat ITO 

4 Large comparison is not between theory Holes syronetriealee Rode/length d 
Airgsp•Oetuo. &emoted 

and practice for a rigid disk, but 
between two dissimilar shapes (cone 

and disk) to show the existing re-

semblance. So far as could be 

discerned stroboscopically, the dia-
phragm moved as a whole at the 

test frequencies. The value of mi 
is down at 100 since the size of Fro. 113. Illustrating arrangement 

of diaphragm used for the determine-
the baffle was inadequate to pre- tion of mo the accession to inertia. 

vent appreciable interference be- The presspahn reinforcement pre-
tween the back and front of the vents radial modes. Angle of cone 

diaphragm. As the frequency is 90°. 

reduced below 100 ,---,, mi slowly decreases when the baffle is only 
6 feet square. Readings were also obtained without the baffle. At 
25 mi was about one-half its value at 200 ,--,. This is in accord 

with the rigid disk theory, where mi is halved on removal of the 
infinite baffle [3 a]. In the latter condition the shape of the diaphragm 
has a definite effect. For a rigid disk mi = pa3, and for an axially 

Reinforcement to 
prevent Radial Modes 

es 
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vibrating sphere mi =-- Irpa3, so the ratio disk to sphere is 4/7r. A 

double cone would doubtless give a value of mi approaching that 
for a sphere of like radius. 

TABLE 23 

Illustrating the method of finding mc(Lo— Lc) of expression (6) 
The effect of the bridge leads cancels out. Turns on coil = 40 of 28 s.w.g. about 

2-5 cm. mean radius. Effective mass of coil, leads, and suspension, m, = 7-5 gm. 

L.. 
Lo. 

Inductance of 
Inductance of 
coil in motion 

f. 
Frequency 

coil at rest, 
including 

without diaphragm, 
including m.(Lo— L„) 

(cycles per bridge leads bridge leads (gram-
second) (microhenrys) (microhenrys) microhenrys) 

100 +324 —6•624x 1o8 5.21 x 104 
150 +310 —2.776 x 104 2.31 x 104 
200 + 302 —1.398 x 103 1.275 x 104 

TABLE 24 

Data illustrating computation of mi 

Effective mass of coil, diaphragm, leads, etc. = 25 gm. Baffle 6 feet square. 

Lo. 
L1. 

Inductance of 
md. 

Accession to inertia (gm.) 
Inductance of coil in motion 

f. coil at rest, with diaphragm, Experiment Calculation 
Frequency including including using assuming 
(cycles per bridge leads bridge leads baffle infinite 
second) (microhenrys) (microhenrys) 6 ft. square baffle 

100 +324 —1,208 9 12 
150 +310 —315 12 12 
200 +302 —34 13 12 

11. Effect of adding a mass to a diaphragm 

Experiments were performed to find the mass of a 10-gm. weight 

added to a diaphragm [2 b], computed from values of L, and Lo, 
using a formula given hereafter [formula (11)]. When attached with 
adhesive on top of the cone half-way down the slant side, the 
measured mass at 80 was zero. Stroboscopic examination revealed 

that the mass pitched, tossed, and rolled like a ship on an angry 
sea. The diaphragm simulated the sea, and its dynamical state was 

so perturbed that the portion in the immediate vicinity of the mass 

'broke up'. Thus the mass had no electrical counterpart in the 
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measurement of L1. A like result was obtained with the mass 
attached to the centre of a paper disk glued across the mouth of the 
cone. When situated at the stiff outer edge or near the coil, the 
measured value agreed quite well with the actual value. These 
experiments show how easy it is to make a diaphragm break up 
locally at a frequency well below that of the main symmetrical mode 

of vibration (about 2,000 ,). Under this condition no reliance can 

be placed on measurements of mass. 
From (5), when s is negligible, the total mass 

C2  
m — (9) 

co2(4— L1). 
When a mass m1 is added, and m is the same as above, 

C2  
=-- (10) 

w2 (L0—L 2) 

L 2 being the inductance with the coil in motion. Eliminating C2/w2 
from (9) and (10) ( 

7111 - 
L—Lij. 

L0— L 

12. Measurement of C2 

This quantity is defined statically* as (2771w/30)2, so that it can be 

found from measurements of Bg as described in Chapter XIV. The 
weighing method has the merit of being allied to practical conditions, 

but the current is direct. With A.C. there are two effects which 

modify C2, (a) hysteresis and eddy-current losses in the magnet, 
(b) deformation of the radial field due to the coil current. The in-
fluence of (a) is to cause a phase change between total coil current 
and that which corresponds to the operative mechanical force. The 
latter is CI 0°80, where O is the angle between the two currents. 

The value of cos O varies according to the type of magnet and the 

radial length of the gap, but is usually from 0.9 to FO. 
C can also be measured at various frequencies by suspending a coil 

of known mass in the correct position in the air-gap, using a very 

weak constraint. Then from (6) we have 

c2 = w2mc  ' 
(12) 

since R„,c is negligible with no diaphragm. The results up to about 

2,000 are likely to be fairly accurate, and they are measured under 

* Definition 43. 
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conditions closely allied to practical requirements. Beyond this fre-

quency trouble may be experienced with the iron, as described else-
where (§ 3). 

If the axial amplitude (emax) of the coil is measured by optical 
means, then Force == C cos 0/max =-- w2e x me, so 

cv2 . C cos 0 — emaxme (13) 
/ x 

13. Measurement of the axial stiffness 8 

When C is known, calculable axial forces can be applied to the coil 

by means of direct current. Measurement of the displacement by 
optical means, e.g. a cathetometer, enables the force-deflexion charac-

teristic to be plotted. 8 à the slope thereof. For large deflexions 
the characteristic will be curved, due to variation in C as the coil 
emerges from the magnet and, in some cases, to non-linearity of the 
constraint. The deflexion is limited, since neither the centring device 
nor the surround will stretch beyond a certain amount. As an alter-
native, the deflexional forces can be produced by weights or a stiff-
ness meter can be used [188]. Care must be taken to ensure that the 
forces are applied directly to the coil, but not to the diaphragm. 
The stiffness coefficient can also be found dynamically. If the 

resonance frequency of the diaphragm on the constraint is found by 
any suitable method (see Chap. XIX, § 2), then 8 =-- coà me, where me 
is the natural mass plus the accession to inertia. The former is found 
by weighing and the latter by a calculation; or m6 can be measured 

directly as shown in § 5. When the resonance frequency is found 

without a baffle, and it occurs below 100 •-•-,, mi -- gpa a3 for dia-

phragms up to about 14 cm. radius. To incorporate the influence of 
the surround a can be taken as its mean radius. 



XVII 

RESPONSE CURVES 

1. THERE are various ways of regarding response. Suppose a micro-

phone is situated at a certain point in the same enclosure as a loud 
speaker. If the grid of the power valve is supplied with constant 

voltage at all frequencies, the output from the microphone amplifier 
represents the performance of the speaker under certain conditions. 

With a condenser microphone which registers sound pressure, the 
square of the readings is a measure of the power at the position of 
the microphone. Owing to reflection within the enclosure, the energy 

distribution is quite different from that in free air, unless the damping 
due to absorbent material on the walls is very great. This condition 

is difficult to obtain at low frequencies. Due to focusing of the radia-
tion, the results vary according to the position of the microphone 
relative to the axis of the speaker. There are the following variable 
factors: (1) size of enclosure, (2) mean absorption coefficient of 
enclosure, (3) relative position of speaker in enclosure, (4) distance 

of microphone from speaker, (5) relative angular position of the axes 
of these two. Considering these items in actual usage, where room 

characteristics, loud-speaker location, and listener's position are very 
diverse, it seems that acoustical test conditions are seldom likely to 
be simulated. It is necessary, therefore, to conduct tests under con-
ditions from which the maximum amount of information regarding 
speaker performance is likely to be obtained. Tests are invariably con-
ducted in a damped enclosure, and the higher the damping the better. 

2. Minimum microphone distance 

In Chap. V, § 2, it is shown that when a rigid disk vibrates in an 

infinite baffle, nodal points occur on the axis at high frequencies. As 
a working rule it was stipulated that to avoid the nodal regions, the 
distance of the microphone from the speaker should exceed wa2/27e. 

Although this formula only applies rigorously to a rigid circular disk 

in an infinite plane, it can also be used for conical diaphragms and 

horns, where a is to be regarded as an equivalent radius. 

3. Axial pressure 

Axial measurements made with an inductor speaker in a 'dead' room, 
the diaphragm being set in one wall, gave the curve [141] of Fig. 114. 
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The free-space infinite baffle condition is simulated if the wall housing 
the diaphragm is non-absorbent. An absorbent wall introduces free-

space conditions (solid angle 47T), where one side of the speaker is 

screened. Owing to focusing, the axial pressure curve is not a criterion 

of the performance to be expected in an average room. In fact, apart 
from transients, if the output is constant over a definite frequency 

band, the influence of reflection in an ordinary room is to make the 

distribution much more uniform. Thus by placing the speaker in 
a suitable position a pleasing result can be obtained, provided the 

room is not too small. In general, if an axial pressure curve in a 

+16 

+12 

+4 

O 

12 

16 

2020 50 100 200 500 1.000 2,000 
Frequency- cycles per second 

FIG. 114. Response of inductor dynamic speaker when measured 
on its axis with the microphone at a distance of 60 cm. The 
current to the speaker was kept at the constant value of 5 mA. 
(Zero on decibel scale refers to 5.5 dynes per sq. cm.) 

5.000 10,000 

`dead' room shows a fairly uniform characteristic, the upper fre-
quencies are usually weak except on the axis, and in an average room 
the reproduction sounds woolly and inert. Assuming the diaphragm 
to be simulated by a rigid disk, the axial pressure curve for constant 

output is shown in Fig. 99. In practice, as shown in § 13, the effective 
radius of the disk decreases with rise in frequency. This introduces 

a modification in the axial pressure curve. 
To overcome the objection to axial pressure curves several courses 

can be pursued, two of which will be described. Assuming the radia-

tion to have circular symmetry about the polar axis, measurements 
of the pressure are taken at a suitable distance from the speaker at 

various angles # with the axis. The angle 4, is varied from 0 to +90°, 

or, if the symmetry is satisfactory, only from 0 to 90°. If the speaker 
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is set in a non-absorbent wall, the infinite baffle condition is approxi-
mated when the remainder of the enclosure is highly absorbent. By 
integrating the square of the pressure over a hemispherical surface 
whose radius is the microphone distance from the speaker, the power 
output on one side of the diaphragm can be found at any frequency. 

If the speaker is set in an absorbent wall, the conditions are those of 
infinite space as described above. This procedure is laborious and 
necessitates a large number of readings to cover a wide frequency 

band. The same experiments can be performed if the speaker is set 
in the ground out-of-doors where the infinite baffle condition is well 

simulated [45, 135]. Care must be exercised to exclude radiation 

from the back of the speaker. Any form of absorbent enclosure used 

for this purpose must not introduce resonance. 
In general, to reduce reflection and standing-wave effects at the 

microphone to a small pressure value compared with the direct radia-

tion, a very large room with much absorbent material is required. 

This is commensurate with high expenditure which may not always 
be commercially justifiable. When, in the interests of economy, com-
paratively small rooms are used, it is difficult to eliminate standing-
wave effects at the lowest frequencies. Under this condition the 

open-air test is advocated. 

4. Warble tone [124] 

Sometimes the test frequency w0/21r is varied ±w0/21T cycles per 

second (A being a small fraction) at a definite rate, say ten to fifteen 

times per second, to reduce the influence of standing waves. This is 

known as a warble tone. It is not proposed to analyse the procedure 

mathematically, but some comments will be made below for practical 
guidance. To ensure freedom from errors at the low frequencies a 

large testing-room is required, and ¿w0/27r must be a small fraction 
of co/27r, so that the test substantially pertains to conditions at the 
main frequency [124]. At low frequencies a resonance peak may only 

last a few cycles, so that with Ac00/27r = 100 it could easily be 

obliterated. There is also the variation in absorption of the room 
with frequency to be considered. Referring to Fig. 10, Chap. II, one 
of the critical factors is / =-- S'Pi—SPI, the difference in length of the 
image and direct rays. For a partial node to occur at the microphone, 

Awde c//, so the proportionate frequency change is 

Acoo/coo Ire/wo/ = 421. 
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If Z is constant the proportionate change increases with increase in 

wave-length, i.e. at low frequencies. As indicated above, this change 
must be within definite limits to obtain representative results. The 
maximum permissible value of Z depends upon the room dimensions; 

the larger the room the greater Z. The largest value is obtained for a 
given room when the speaker and microphone are centrally situated, 
the distance between them being the minimum, a2c0/27e (Chap. V, § 2). 
The optimum position can be located by a little elementary geo-
metry. Good results are obtained if 1 3A, where A is the lowest 
test frequency. On the whole the warble tone should be used with 

discretion. In general a pure tone is preferable for test purposes, 
but there must be complete assurance that standing-wave phenomena 
have been reduced to an insignificant order of importance. There 
are well-known means of discovering whether a test room is ade-
quately damped, and these should always be used in the first place 

to determine the properties of the room throughout the entire fre-
quency range. 

5. Orbital method 

Another method of test is to rotate the microphone in a circle whose 
centre is on the speaker axis, but whose plane is at 45° thereto [125 a]. 

The diameter of the circle should exceed half a wave-length of the 
lowest test frequency, so that difficulties are not experienced with 

standing waves. A sluggish thermoammeter is used to measure the 

output from the amplifier following the condenser microphone. Thus 
an average of the square of the sound pressure, and therefore of the 
energy density, is obtained over a large area. Assuming listeners to 
be seated within the solid angle subtended at the speaker by the 
orbit, the test gives an approximate indication of the performance 

to be expected. This method is useful in cases where the floor and 

wall absorption in the test room is insufficient to simulate free-air 
conditions closely. The influence of standing waves is averaged out 

and the tests can be conducted very rapidly compared with that in 
Chap. XV, § 5, which involves integration over a hemisphere. 

6. Definition of 'Response' 

The average energy density (see definition 5) in a room where a loud 
speaker is emitting sound at a constant rate is [210] e =- 4PIcActs, 

where P is the power radiated and a3 the mean absorption coefficient 
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(see § 14). This can also be written [215] e—  Poea 1V f 5 f p2 dV , 

where V is the volume of the room. From these two formulae we 

obtain [125 a] 
ID -  4V Actos cjj j f f r 2, 2 dv, 

p  
(1) 

where p is the root mean square pressure measured at every point in 

the room. Now 

ifffP2 dV V 

is the mean, or average of the pressure squared throughout the room 

and will be written pew. Thus the formula in (1) becomes 

Aa 2 K 2 (2) 
4po c 4 

where K1.--- AaJpoc. If the speaker resistance in action is Ri. -= R0+ R„„ 

the maximum sound power for a given voltage swing on the grid of 
the power valve is obtained when the valve resistance is equal to that 

of the speaker transferred to the anode circuit by the transformer. 
The power is then, with a perfect speaker of radiation resistance R, 
P --= E2/4R [Chap. XV, § 1 (b)]. Hence the absolute efficiency is 

[Chap. XV, § 1 (b)] 
„ _ KiPetv (3) 
uab (E2/B) 

The orbital method gives 4 7, not for the whole room, but for a 

representative part of it. The coefficient K1, together with the room 

dimensions, influence the spatial distribution and the level at any 
prescribed distance from the speaker. If, however, it is agreed to 

specify the conditions of test in each case, the ratio pe,v/(E2/.R) is 

defined as the 'response' of the speaker—under the specified con-
ditions.* It is customary, as in all acoustical work, to express the 

'response' in decibels, so we have [125 a, 130] 

1.. = 201ogio . Pav (4) 
E1VR 

This is an index of the absolute efficiency throughout the microphone 

orbit for the given conditions of test. These should be stated on the 
test schedule as follows: (1) room dimensions, (2) nature of absorbent 
material on surfaces and mean coefficient of absorption, (3) method 

* This is the definition adopted by the Institute of Radio Engineers based on 
reference [125 a], and is used when the orbital or other methods of test are employed. 
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of test, e.g. orbital, axial, etc., (4) size of baffle, if used, or position of 
speaker in wall or otherwise, (5) resistance of power valve. 

7. Testing apparatus 

A schematic diagram of the apparatus is shown in Fig. 115. The 
speaker and the condenser microphone, whose complete calibration 
curve is known, are suitably situated in a damped enclosure or out-
side in free air, according to test conditions [125 a, 130]. The output 
voltage of the oscillator, when open-circuited or connected to the 
attenuator, is adjusted to some suitable value as indicated by the 
valve voltmeter. Alternatively the adjustment can be made to obtain 

VARIABLE LAUD SPEAKER 
TRANSFORMER UNDER TEST 

I w e/. VARIABLE 
IMPEDANCE 

500 OUTPUT 
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FIG. 115. Schematic circuit of loud-speaker response measurmg system. 

a suitable current in the speaker. This should be sufficient to cause 
a sound pressure at the microphone well above the level of any 
extraneous noise., The oscillator is then connected to the speaker and 
the control on the amplifier B manipulated until a mid-scale reading 
is obtained on the sluggish thermoammeter, as a result of sound 
waves from the loud speaker acting on the microphone. The oscillator 
is now switched from the speaker to the input of the attenuator, and 
the latter adjusted until the mid-scale reading is again obtained. The 
attenuator reading in decibels is an index of the relative performance 
of the speaker at the test frequency, provided the microphone calibra-
tion is constant. If this is not so, the variation in level from some 
selected frequency must be added to or subtracted from the attenua-
tor readings, according to the calibration-curve data. Alternatively, 
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if the datum-level is found for each reading, as shown hereafter, the 

same thing is accomplished. 
To fix the datum-level, the open circuit voltage of the oscillator 

is made equal* to the square root of its output impedance, so that 
=1. Then from the calibration curve of the microphone the 

output voltage corresponding to a r.m.s. sound pressure of one dyne 
cm.-2 (one bar) on the diaphragm is known. Amplifier B is set to 
give its mid-scale reading under this condition. The oscillator is then 
connected to the attenuator and the latter varied until the mid-scale 
reading is again attained. This setting of the attenuator is the decibel 

datum from which the response curves can be plotted. 

8. Features of the orbital method 

It is unnecessary to calibrate the oscillator output or the B amplifier 
The low pass filter ensures that all harmonics are excluded from the 
readings, so tests are made on the fundamental frequency alone. 
The filter can be altered to cover a wider range as the frequency 
rises without affecting the calibration, provided the B amplifier is 
adjusted to preserve mid-scale or any other constant reading. If the 
filter is not used, the output wave form must be checked by a cathode 
ray or other oscillograph, or by other suitable means. 

If the speaker under test is not overloaded and its characteristic 
power input-current curve is linear, the response is independent of 

variation in oscillator voltage, since any change affects the speaker 
current and the attenuator equally. It is important, however, to 
keep the microphone polarizing voltage constant to prevent variation 

in sensitivity. The voltage should be equal to that used during the 

calibration test of the instrument. 

9. Automatic operation 
The whole of the foregoing procedure can be done automatically if 
desired. It is preferable to equalize the microphone and its amplifier 
to obtain uniform voltage output at all frequencies for constant sound 
pressure on the diaphragm. If this is not done, the record must be 
corrected accordingly. When the microphone is kept stationary the 
frequency range can be swept through by aid of a constant output 
beat-oscillator, consisting of a weak oscillator of constant high fre-
quency and a strong variable one. The condenser of the latter unit 

* Numerically. 
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is varied to cover the necessary range. Its vanes are shaped to 

give a logarithmic frequency scale, or this result may be obtained by 
a driving cam. If the same motor is used to drive the condenser and 

the record paper, variations in speed are immaterial. The filter can 
be altered at intervals by contacts on the condenser driving-gear 

operating either direct or through relays. The output from the 

amplifier B is taken to a linear rectifier and thence to a linear 
recording mechanism, which need not be photographic. In a scheme 
of this nature a record can be taken in about three minutes. Specially 
prepared record paper 'corrected' for the microphone calibration can 

Curve A - Damped room, rotating mic ophone, mean distance 10' on axis. 
B - Outdoori,microphone on axis 0' From speaker. 
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Fla. 116. Comparison of indoor and outdoor response measurements on 

moving-coil hornless speaker. 
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be used if desired. Alternatively the record can be corrected by a 
special geometrical appliance [169]. 

10. Experimental data 

As a typical example suppose we examine Fig. 116. The dotted 

curve refers to the rotating-microphone method used in a room whose 

reverberation time (see definition 14) at 512 was 10-1 sec. [142]. 
The orbit of the microphone was at 45° to the speaker axis and 8 feet 
in diameter, thereby entailing a low-frequency limit of 70 , for 

a representative orbital mean value. The average microphone dis-
tance was 10 feet. At 50 there is a definite peak, which is 
attributed to the standing-wave pattern in the room where the 
distance between maxima is about 12 feet, this being 50 per cent. 
greater than the orbit. As the frequency rises above 50 , there are 
the usual fluctuations in response, associated with vibrational modes 

of the system, which are generally most prominent in the 2,000 
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region. The symmetrical modes prevail here as shown in Chapter 

XVIII. Compared with the full-line outdoor curve, the absorption 
of the room above 2,000 appears to have reduced the resonances 

5 decibels, which corresponds to a power ratio of 3/1. Actually this 
is not the case since the apparent decay is attributed to two causes: 

(a) focusing of the radiation in the neighbourhood of the axis at high 
frequencies, (b) reduction in room absorption at lower frequencies. 

In connexion with (a), the wide orbit of the microphone means that 
it enters the weaker portion of the sound field, so the average value 
of p2 is less than that on the axis. Consequently any curve taken 
by the orbital method is more representative than one taken on the 

axis with a stationary microphone. Herein lies the efficacy of the 
method. The full-line outdoor curve refers to axial pressure, and due 
to cone resonances the curve rises 10 decibels above its level at 800 

11. Interference on axis 

The dip in the full-line curve of Fig. 116 at 460 •••••., is of considerable 

interest. It is due to interference of the radiation from the front and 
rear of the baffle which was 4 feet square [142]. At any axial point 
the sound pressure is the resultant of these two. When the two sides 
of the diaphragm are regarded as simple sources of opposite phase, 

there is a minimum on the axis when 2kd = 2nn, where 2d -= d1 is 

the equivalent distance between the sources (Chap. II). At any 
axial point 11, far distant from the diaphragm, the relative phase 
of the radiation from the two sides depends approximately upon the 

radius of a circular baffle, so this is d,. From above the condition for 
minima is d1 =- 2d = 2ne/k = nX or ai = 2nnc/di, whilst for maxima 
2kd = (2n -1)IT or co = (2n —1)n-c/di. Taking n = 1 and d1=2 feet, 

the minimum should occur at about 570 whereas it actually occurs 

at 460 Since the baffle is square and sound waves bend round 
it with a definite radius of curvature, the equivalent distance d1 is 
increased to 2.44 feet, i.e. about 20 per cent. The influence of the 

square baffling and the cornering of the waves is therefore appreciable. 
The next minimum is 920 and it will be seen that a dip occurs in 

this neighbourhood. At higher frequencies the focusing of the radia-
tion on each side of the baffle is pronounced, so the front-to-rear 

interference substantially vanishes. 
The first maximum occurs at 230 although it does not show up 

appreciably on the curve. Other maxima occur at 690 and at 
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1,150 ,--,. Obviously these effects average out in the orbital method 

of test. In § 5 we saw that the microphone distance should exceed 

a2a)/27rc. The consequence of violating this test canon is illustrated 
in Fig. 117 [125 a], which shows two response curves for a moving-

coil horn speaker of the type in Fig. 82 A. The full-line curve refers 
to a microphone stationed only 2 inches from the plane of the horn 

mouth. The crevasses at 750 and at higher frequencies are due 
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no. 117. Response-frequency characteristics of moving-coil speaker with 
115 cycle cut-off exponential horn. Measured outdoors 2 inches from plane of 

horn mouth with centre of condenser microphone diaphragm on horn axis and 
13 inches from axis. 

to interference of radiation from various parts of the opening. With 

a rigid disk and baffle system the pressure would vanish instead of 

being a minimum (Chap. V, § 2). 

12. Influence of baffle dimensions 

(a) Flat baffle. The influence of reducing the size of the baffle from 

4 ft. to 2 ft. 6 in. square is illustrated in Fig. 118 [142], both curves 

being taken in free air 35 feet above the ground. The reduction in 

level below 300 with the smaller baffle is very marked and bears 

* Power level. 
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out the analysis in Chapter II. With this baffle, serious interference 

occurs on the axis. At 400 there is a maximum, whilst a minimum 
occurs at 800 Below 200 the vertical distance between the 
curves for the two baffles remains almost constant. This is in accord 

with the theory in Chapter II. At very low frequencies the curves 

will approach and ultimately intersect at the origin. 
(b) Box baffle. As shown in Chapter II the function of a baffle is 

to screen the two sides of a diaphragm from each other, thereby 

reducing interference. A large flat baffle not only does this, but it 

Curve A - 48"x48" baffle 
B - 30"X 30« 

measured on the axis at a distance of i01 

20 

o 

o 

".2- io 

2 0   
30 SO 100 500 1000 5000 

Frequency cycles per second 

FIG. 118. Outdoor response curves of moving-coil speaker with flat baffles 
of different sizes 

increases the solid angle into which each side discharges (Chap. II). 

This enhances the acoustic loading. Flat baffles are not very suitable 
for domestic reproducers, so it is customary to use a cabinet which 
can be regarded as a box baffle. For equal distances between the 
two sides of the diaphragm (round the baffle), the box type is inferior 
to the flat baffle and invariably introduces resonances, particularly 

if it is located near a wall. Comparison curves of flat and box baffles 
giving equal distance separation between the sides of the diaphragm 

are shown in Fig. 119.* The various points enumerated above are 

clearly emphasized in these curves. The solid angle at the back of 

the diaphragm is increased considerably, and that at the front de-
creased accordingly. These opposite effects do not compensate, owing 

in part to the box acting as a stumpy horn of constant section. 
Reflection from the back of the box (mouth of the horn) causes loss 

at very low frequencies and introduces resonances in the middle 

• [142]. 
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register. By constructing the rear of the box in the form of a short 
logarithmic horn these defects can be obviated to some extent. In 

particular, if the box is lined with absorbent material to give an 

exponential contour, the reproduction is much improved due to 
damping of the resonances. From the theory of horns in Chapter X 

it is evident that the loading on the rear of the diaphragm increases 

above the cut-off frequency of the exponential baffle. If the dimen-
sions are known this frequency is easily found. Assuming it to be 

200 the register above this will be reinforced at the rear, so that 

Curve A- 48"x48" Flat baffle 
- 26"x 26", x a baffle 

C 13"x 13ex 20' •• 

20 

30 30 50 100 SOO 1000 

Frequency in cycles per second 

FIG. 119. Response of moving-coil speaker in three different baffles having 
equal circulation path lengths. 

if the upper register at the front is rather powerful when a flat baffle 
is used, the box baffle will give a better tonal balance. The upper 
register from the rear will be reduced due to absorption. On the 

whole, therefore, there is every reason to believe that the use of an 
absorbent box baffle will yield good reproduction, and this is borne 
out in practice. A design embodying these principles is shown pic-
torially in Fig. 120 [180]. 

5000 10000 

13. Polar curves 

These curves are got with the same apparatus as that required for 
response tests excepting that the microphone is not rotated. It is 
placed at various angles with the polar axis of the speaker, at a 

distance well beyond that where nodal points occur (Chap. V, § 2), 
usually in a horizontal plane containing this axis. Tests on a horn 

speaker having a 115 cut-off [125 a] are shown in Fig. 121, the 
microphone being 12 feet from the mouth of the horn. Owing to 
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the large opening focusing begins quite early in the frequency range. 
To obtain a reasonable amount of sound above 4,000 it is neces-
sary for a listener to be tolerably near the axis of the horn. On the 
other hand, owing to room reflection, the distribution of sound under 

ordinary listening conditions is such that levelling up occurs, and the 
characteristic tends to the form obtained by the orbital method. 

This is valid for steady sounds. Unless a listener is near the axis 
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and book 
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Wooden box 

FIG. 120. Illustrating exponential box-baffle with 
absorbent lining. 

transients will be weak, since the steady state is never reached, and 
the room absorption increases with the frequency which reduces the 

`attack'. 
Numerous radiation characteristics of a 90° conical diaphragm 

15 cm. radius at various frequencies [135] are shown in Fig. 122. The 
rear of the cone was surrounded by a large box, this being buried in 
the ground to simulate the infinite baffle condition. Up to 600 the 

distribution is tolerably uniform over a hemispherical surface. This is 
to be expected, since the diameter of the cone is then about one-half 
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the wave-length. Beyond this point focusing sets in and gradually 

increases up to 3,000 beyond which frequency it remains fairly 

constant. The radiation at 1,300 is more acutely focused than that 

Fla. 121. Polar curves showing response (expressed relative to the axis 
response) of moving-coil speaker with 115 cycle cut-off exponential horn at 
various angles from horn axis and 12 feet from the mouth. 
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Fie. 122. Radiation characteristics of cone in infinite baffle 
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at 2,000 and this can doubtless be explained on the score of one 

or more nodal circles. From Fig. 44 it will be seen that a nodal circle 

accentuates the focusing propensities of a disk. The constancy of 

beam angle above 3,000 ,-, is due to three things: (a) conical shape, 

(6) nodal circles, (c) transmission loss in the diaphragm which reduces 

the amplitude towards the edge, thereby giving the effect of a smaller 

radius. Apart from diaphragm loss the general shape of the charac-
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teristic is modified at higher frequencies due to the conical shape. 

The peripheral portions are nearer to any particular spatial point 
than they would be in the case of a vibrating disk, and this entails 
a different phase in the two cases. Also the cone acts as a short horn or 
intensifier to high-frequency radiation from its vertex, whilst at about 

800 to 1,000 ,-, the air-column resonances occur (Chap. XVIII, § 15). 
By aid of Fig. 38 the radius of the equivalent rigid disk can be cal-

culated for the cone, the procedure being as follows: Selecting 2,000 
the experimental value of G = Ji(z)/z = 0.155 when (k = 30°. From 

(a) (b) 
1200 ,u 3000 ••••• 

Pia. 123. Polar curves showing distribution from Blatthaller 
Speaker. (1) diaphragm 18 x 25 cm., (2) diaphragm 53 x 53 cm. 
(a) is for 1200 and (b) for 3000 

the curve of Fig. 38 the theoretical value of z = ka sin e when 
G ---- 0.155 is 2.6. Thus ka sin cf. = 2.6; so a = 14 cm. A similar cal-
culation for ib = 20° makes a = 12.6 cm. These computations show 
that the cone does not exactly simulate a rigid disk, but the similarity 

is adequate for all practical purposes, provided a suitable radius is 
found. Applying the same procedure at 4,000 ,-,, a = 9.4 cm. at 30° 
and 9.1 cm. at 20°, showing that the radius of the equivalent rigid disk 

decreases progressively with rise in frequency due largely to trans-
mission loss. In this way the focusing at higher frequencies is curbed. 
The polar diagram for a corrugated duralumin diaphragm com-

prising a rectangle 18 x 25 cm. is shown in Fig. 123 A, whilst in 

Fig. 123B the enhanced focusing, due to increase in size to 53 x 53 cm., 
is shown clearly [144 b]. In the latter case the main beam is only 
10° on either side of the axis, whilst at 1,200 ,--, it is 20°, but the 

side loops are larger than those at 3,000 ,--,. These diaphragms are 
used in the Blatthaller speaker described in Chapter XIII. 

14. Room effects in loud-speaker reproduction 

The response curves in §§ 10, 11, were taken under conditions entirely 
different from those under which the loud speaker is used in practice. 
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In a ̀dead' room where reflection is almost absent, except perhaps 

at the lowest frequencies, the condition of outdoor listening is 
adequately simulated. An auditor situated 5 or 10 metres from the 

speaker at 70° to its axis will in general hear little or none of the 

upper register. Seated on the axis this register will be overpowering 
if the total output from the speaker (integrated over a solid angle 4/r) 

is the same throughout the audio-frequency range for constant input 
volts to the power valve. In an average room, owing to reflection, 

the 70° position would, in some cases, be the more satisfactory of the 
two, but this depends upon the response of the speaker and the ab-
sorption of the room under consideration. Owing to (1) the lack of 
appreciable absorption in an ordinary room at low frequencies, 

(2) standing-wave phenomena associated with reflection and room 
resonance, the notes of the lower register build up to an intensity 
greater than that of the upper register which suffers more attenua-
tion. Although at certain parts of the room the sound pressure is 
much in excess of the free-air condition, at others it may be in defect 

[129]. Experiment shows that in small rooms these phenomena are 
pronounced. It is possible for a condition to occur whereby low 

frequencies are not audible comparatively near the speaker, but are 
violently accentuated at a certain location; for example, near the 
opposite corner of the room. This may, of course, be due in part to 

the speaker acting as a double source of sound (Chap. II). In this 
respect reference should be made to Fig. 12 where the distribution 
of radiation from a speaker with a flat baffle, in the proximity of 

a large reflecting wall, is shown for free-air conditions. 

As yet it has not been possible to specify tests which, if conducted 

in 'dead' rooms, will give an accurate idea of loud-speaker perform-
ance under average domestic conditions. The best approximation is 

to take a comprehensive frequency characteristic, including polar 
diagrams, in a room typical of the average where a speaker is likely 

to be used. The specification of such a room is one upon which con-
siderable controversy is likely to arise. Rooms are like people; there 
are no two of them alike! Nevertheless it ought to be possible to 

define what a standard test room should be, so that from the speaker 
characteristics obtained therein a fair conception of performance in 

the home is assured. To realize in practice the reproducing qualities 
of a speaker taken under such conditions, it is necessary that full 

scope for sound-mixing by aid of reverberation in the listening-room 
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be given. But the reverberation should not be sufficient to modify 

the reproduced sounds to any serious extent. The optimum acoustic 
conditions in the listening-room must, of necessity, be a compromise 

between these two requirements. 
Experiment indicates that too small a room is unsatisfactory from 

the viewpoint of proper listening. The smallest room should have 

a floor-space not less than 150 square feet. It should contain a 

reasonable amount of sound-absorbing material, but should not 
approximate to an acoustically 'dead' room [129]. An average ab-
sorption of from 20 to 25 per cent. over the whole surface appears 
to give the best results. Symbolically this can be stated as follows: 

1/ Anasn A asi-1-442 a82+213a83±...+Amasm n=0 a„ -= --- 
m Aid-A2+A34-...+Ant 
Î An 

it•=0 

-- 0.2 to 0.25, (5) 

where Am, asm are the area of one portion of the room and its absorp-
tion coefficient, respectively. This quotient and the reverberation 
time should be independent of frequency as far as possible. It is 

important also that structural features such as walls and ceilings, as 
well as articles of furniture, should be sensibly free from resonance 
and 'boom'. 
Apropos of these suggestions some simple calculations may be of 

value. To deal with these it is convenient to introduce a little ele-
mentary theory. When a simple source of sound functions steadily 
in a room of surface area A, whose average absorption coefficient is 
428, the mean energy density (see definition 5) of the sound throughout 
the room can be shown to be [210] 

4P  
e — cAa.. (6) 

If the power radiated by the source is P, that absorbed by the walls 

is Pa., leaving P(1—a.) to be reflected. Taking the collected initial 
reflections from all the room surfaces, and considering this as the 
output from a subsidiary generator or source, the average reflected 

energy density is 4P(1—as) 
es — 

cAas 

Assuming the primary source to be a simple one, radiating equally 

(7) 
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in all directions, the direct sound energy density at a point distant 

r from the source is 

The ratio 

is, therefore, 

4,..1.2c • 

energy density due to reflection  

energy density due to direct radiation 

— e,, = 167,r2(1 —a„) 

(8) 

(8) ea Act, 

or, in decibels, 1010g y = 10 logu, 167e2(1 — a.)  (10) 

If the room dimensions, in feet, are 18 x 14 x 10, its total superficial 
area is 1,144 square feet. As an average distance from the source, 

for listening purposes, one can select 8 feet. When a.= 0-25, as 
suggested above, the reflected sound is 9-26 db. above the level of the 

direct sound, and this is a considerable amount. This order of magni-
tude is to be expected at low frequencies. At the higher frequencies, 
if the absorption coefficient is 0-5, the difference in level is 4-5 db. 
which is preferable. It is clear, therefore, that in any ordinary room 

the reflected energy due to a source radiating uniformly in all direc-
tions swamps that coming direct from the source. Now the radiation 

from speakers is decidedly directional at the upper frequencies, owing 
to the focusing effect explained in Chapter V. If, therefore, a listener 
sits on the axis of a hornless moving-coil speaker at a distance of 
8 feet, the difference in level between the direct and reflected energy, 
at the higher frequencies, will be much less than that indicated by 
formula (10). Assuming that the sound source is either the mouth 
of a horn or only one side of a diaphragm, it is possible to obtain an 

approximate estimate of the difference in level, provided the polar 
distribution curve of the speaker in free air, or its equivalent, is known. 

If P, the power radiated, is also known, the sound pressure p can 
be found at any angular and linear distance from the horn or dia-
phragm. Thus the direct energy density ed = p21p0c2 is known, and 

we obtain 
10 log y = 10 log10 4p0c2P(1—a9) 

p2cAa„ 

4p0„ 10log ) 10  pm;cP(1—a  , (11) =  

where the formula applies to the particular direction and distance 
for which p is given. 
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If the beam plays on a heavy curtain or other highly absorbent 
material, the ratio at high frequencies found from (11) will be too large. 
The majority of speakers for domestic purposes are in effect double 

sources (Chap. II). The radiation from the back of the diaphragm 
is reflected from the wall in opposite phase from that at the front, 

and an already complicated situation becomes somewhat chaotic. In 
general the major proportion of the upper register issues from the 
concave side of the diaphragm, so the chief difficulty in regard to 
reflection pertains to the long waves in the lower register. Working 

on an elaboration of the principles set forth in Chapter II, it might 
be possible to derive a rough analytical expression for the difference 

in level. It is felt, however, that the plurality of conditions impels 
one to empirical methods of investigation. 

Reinforcement arising from reflection means that the amplitude of 
vibration of a diaphragm to give a definite loudness level is much 

less than that for 'free-air' or `dead'-room conditions (Chap. XIX). 
This is fortunate since, with a good speaker, a level of 70 to 80db. 
above the threshold of audibility can be secured without introducing 
serious alien frequencies due to motion of the moving coil into the 

leakage field of the magnet (Chap. XIV). A level of this order is 
usually considered to be adequate for comfortable audition under 
normal circumstances. 

Hitherto our remarks have been concerned solely with the steady 

state. What applies then does not necessarily hold for transients. 
Seated on the axis of a reproducer in an average room, the lower 
frequencies in a transient will not be heard to the same extent as in 

the steady state, so the transient will sound sharper. On the other 
hand, if conditions for steady-state listening are adjusted to the 

optimum at an angle of, say, 60° from the axis of a highly directional 
speaker, transients will be rather flat due to a lack of upper fre-
quencies. At the same time a modification will occur due to the low 
velocity of propagation in the diaphragm (Appendix). Also, apart 

from the acoustic conditions of the room, there may be appreciable 
distortion due to the resonances of the speaker (Chap. XVIII). It 
follows, therefore, since speech and music depend so much upon the 

transient state for interpretational and characteristic qualities, that 

the problem degenerates into more of a Chinese puzzle than ever. 

In settling the optimum acoustical listening conditions, cognizance 

must be taken of both the transient and steady states. 
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MEASUREMENT OF VIBRATIONAL FREQUENCIES 
OF CONICAL SHELLS 

1. THERE are two salient types of vibration pertaining to conical 
shells: (a) radial modes, as in a bell, (b) symmetrical modes, as in 
a disk. These are illustrated in Fig. 124. Radial modes are associated 
with bending, whilst symmetrical modes depend upon bending and 
extension. So far as the vibrational modes of cylindrical and spherical 

3 
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2 Nodal Circles. 

FIG. 124. Showing shape of homogeneous loss-free conical shell when 
executing certain modes of vibration in vacuo. (1) First radial mode; 
(2) second radial mode; (3) first centre-moving symmetrical mode; (4) second 
centre-moving symmetrical mode. The sketches are purely diagrammatic. 

shells are concerned, one has only to turn to the works of applied 
mathematicians to find an answer. The symmetrical vibrational 
modes of conical shells are secrets closely guarded from the mathe-
matician, only to be discovered by the experimental methods of 
the acoustical engineer. To an extent this is unfortunate, since the 

apparatus is costly and the time vastly in excess of that required 
for a mere computation. Although a general empirical formula has 
not been devised, the information given herein is adequate to predict 
the main symmetrical vibrational frequency band of conical shells 
used in the design of hornless moving-coil loud speakers. 

2. Radial modes 
When a free-edge conical shell is driven axially at low frequencies 
there are a large number of modes of vibration* of the form illustrated 
* An axial motion is superposed on that of the alternate sectors moving in opposite 

directions. 
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in Fig. 124 (1 and 2), and these are associated with bending. The 

fundamental frequency of a homogeneous seamless conical shell is 
characterized by 4 radial nodes, the next by 6, then 8, and so on.* 
When the diaphragm has a seam a considerable degree of asymmetry 
is introduced and at times it is possible to obtain 2 radial nodes 

[114 a, b]. 
There are various ways of measuring these nodal frequencies, the 

principal of which are: (a) stroboscopically [114 a, b], (b) A.C. bridge. 
For merely obtaining the frequency values, without reference to the 
sound output, (a) is rapid and simple. The diaphragm is illuminated 
during vibration by an intermittent light source whose frequency is 

slightly less than, or greater than, that of the driving current. This 

can conveniently be effected by a number of neon lamps driven 
independently, or by a slotted circular disk illuminated from behind 
and rotated by a variable speed motor. Owing to interference con-

comitant with oppositely vibrating contiguous sectors, there is little 
sound when the nodal pattern is fairly regular, provided the input 

current is pure. With a seam irregularities are introduced, and the 
acoustic output is enhanced. It is quite easy to see the nodal pattern 
stroboscopically, and no difficulty is experienced in picking out the 
various modes of vibration. By using a free-edge coil-driven cone of 

moderate dimensions, it is possible to obtain a peripheral amplitude 
of 1 cm. The aerial eddy currents at the edge are strong enough to 

extinguish a lighted match, and the nodal points can be explored 
with a gas flame passed round the edge. Under such conditions the 

nodal points and the shape of the diaphragm during vibration are 
actually visible without intermittent illumination. Further, the aerial 

eddies enable exploration to be effected by an 'acoustic compass'. 
A very light single-bladed paper or pith propeller is suspended axially 

by a delicate thread. The centre is placed above the edge of the 
vibrating diaphragm and the propeller carried round slowly. At a 

node the compass sets itself along the basal radius of the cone, whilst 
at an antinode it is tangential to the cone. During the passage 

between two nodes the compass turns through 180°. 
Although the sound output corresponding to the impressed fre-

quency may be very small, the vibration is usually accompanied by 

appreciable noise due to bending of the paper. It is quite easy to 

* In a large number of commercial speakers the cones are moulded and seamless, 
the surround being an integral part of the diaphragm. 
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get several vibrational modes by aid of an audio-frequency amplifier, 

a pick-up, and gramophone frequency records of 40 to 100 The 
appropriate frequencies can be found by varying the turntable speed. 

The behaviour of two conical free-edge paper shells of different 
thicknesses is exemplified by the data given in Tables 25, 26. 

TABLE 25 [114 a] 

Showing radial modes of a free-edge cone driven by a circular coil 
Radius of coil --- 2.5 cm. ; projected radius of diaphragm = 12.2 cm. ; 

apical angle (plane) = 90° ; thickness of paper = 0.014 cm. 

Drive 
frequency 

Number of 
radial nodes 

Frequency 
from curve 

Number of 
radial nodes 

Frequency 
ratio to 

fundamental 

36.5 4 37 4 1 
43 6 50 6 1.35 
52 8 
60 10 
75 8 69 8 1.86 
95 10 92 10 2.48 
118 12 120 12 3.24 
150 14 150 14 4.06 
190 16 190 16 5.13 
225 18 230 18 6.22 

TABLE 26 [11413] 

Showing frequencies of radial modes of a free-edge cone 
driven by a circular coil 

a = 12.2 cm. ; t = 2.1 x 10-2 cm.; n = 1,000 turns; 0 = 90'; rre = 4.7 gm. 

Drive frequency 
(cycles per second) 
t = 2-1 x 10-, cm. 

Number of radial 
nodes (from curve) 
t =- 2-1 x 10-2 cm. 

Frequency ratio to fundamental 

t = 2.1 x 10-2 cm. t = 1.4 x 10-4 cm. 

55 4 1.0 1.0 
76 6 1.38 1.35 

101 8 1.84 1.86 
133 10 2.42 2.48 
170 12 3.1 3.24 
220 14 4.0 4.06 
285 16 5.2 5.13 
332 18 6.05 6.22 

The conical shells used during the experiments were constructed 

in the well-known manner with a seam or overlap 0.65 cm. wide. As 
indicated previously, this mars the symmetry and introduces irregu-

larities in the nodal figures. For example, in Table 25 it will be seen 
that there are 8 and 10 radial nodes at two different frequencies. 



XVIII. 2] RADIAL MODES 307 

The same phenomenon was obtained for the cone in Table 26, but 
the results have been omitted. To obtain the frequencies for a sub-
stantially symmetrical cone, the experimental results were plotted 

and a mean curve drawn through them. These mean values are set 
forth in the last three columns of Tables 25 and 26. From columns 
3 and 4 of the latter table the frequency ratios of various modes to 

the fundamental are seen to be alike for cones which only differ in 
thickness. In fact the ratio of the basic frequencies 55/36.5 -= 1.51, 
which is the same as that of the thicknesses. This indicates that 

the radial vibrations are associated chiefly with pure bending, as 
in the case of a cantilever reed or a disk, where (.0/271. varies directly 

as the thickness. The sector frequency is half that of the drive. 
By increasing the rigidity at the edge of the cone, e.g. turning it 

over and glueing it to a presspahn ring or a rubber annulus, the edge 
is so stiff that large forces are required to cause perceptible bending. 

Consequently the radial modes are substantially suppressed although 
there is a tendency for perturbations to occur between the edge and 
the apex. 

3. Bridge measurements of radial modes 

When it is desired to secure data relating to the strength of the 
resonances, a bridge method is of service [11413] (Chap. XVI, § 2). 
It is of great assistance if the nodal frequencies are primarily located 
by stroboscopic means, since they are very sharp and easily missed 

in bridge work unless great care is exercised. A representative curve 
is plotted in Fig. 125, curve 1. To locate the resonances readings had 
to be taken to 0.05 cycle per second, since such a narrow frequency 

band is covered—about 6 cycles. Commencing at 50 ,---, each peak 
corresponds to a radial mode. Beyond 135 ,--, the magnitude abates 

rapidly, whilst above 250 •-•., these modes are comparatively inno-
cuous. As explained previously, the irregularity of the nodal sequence 
is due to asymmetry arising from the seam of the cone. 

Curve 2, Fig. 125, shows the effect of reinforcing the edge with 

a narrow ring of presspahn. As explained above, bending is sup-
pressed and the radial modes are well-nigh extinguished. A slight 
resonance occurs at 250 e-s, which on stroboscopic examination was 

seen to be caused by the seam. The latter tended to remain at rest, 
whilst the thinner and more pliant portions of the diaphragm on 

either side moved in opposition. 
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4. Effect of annular surround 

When the edge of the diaphragm is bent over and supported by an 
annular rubber membrane or surround, radial modes suffer extinc-

tion, but a very powerful resonance is introduced due to the mem-
brane acting as an auxiliary diaphragm [114 a,13] (Chap. IV, § 12). 

This is illustrated in striking fashion by curve 3, Fig. 125, where an 

enormous increase in output occurs over the range 200 to 300 
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Fia. 125. Apparent radiation resistance R,, corresponding to conical dia-
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(1) Edge free showing resonances due to radial modes. 
(2) Edge reinforced with narrow ring of presspahn which suppresses radial 

modes. 
(3) Edge supported by rubber surround, this acting as an annular membrane. 

250 300 

Below 200 the output exceeds that for a reinforced edge. This 
particular example illustrates precisely what must not be done in 
speaker design. The radial tension of the surround is excessive, the 

vibrational frequency much too high, and the range covered is too 

narrow. Fig. 126 has been reproduced to demonstrate that with 

reduction in radial tension a wider proportionate frequency range is 
covered. The resonance frequency of the surround as an annular 
membrane is 129.5 whilst the frequency of the diaphragm, as 

a whole, on the surround is 18.7 (not shown). In Chap. IV, § 7, 
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formula (10), it is shown that the ratio of these frequencies is 
7r(me/mes)k. Using the above experimental results, we obtain 7/1, and 
this is in reasonable agreement with the value found from the formula. 
In Fig. 126, owing partly to inequality of radial tension around 

the periphery of the cone, also to the fact that the effective mass 
curves of the diaphragm and surround intersect in two points near 

together (Fig. 33), more than one peak is visible, so the resonance 
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(1) Apparent radiation resistance corresponding to lower register of conical 
diaphragm 12 cm. radius with rubber surround 2 cm. wide. The resonance 
of the surround occurs at 129-5 cycles per second. Turns on moving 
coil = 1200. 

(2) L1 = inductance of coil in motion. Owing to resonance of the surround 
there are five frequencies at which L1 = 0. The electromechanical reson-
ance of the system apart from the elastic effect of the surround, occurs 
at about 200 cycles per second. 

(3) Lo =-- inductance of coil at rest. 

band is broadened. The main peak appears to be very prominent, 

but from an acoustic aspect it is not so serious as suggested by the 

diagram. The output ratio at 129-5 to that on the flat portion of 
the curve above 150 is 4/1, i.e. 6 decibels, which is not very 
important at 129-5 owing to inherent insensitivity of the ear in 
this region. 
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As shown in Chap. IV, § 12, the higher modes of vibration of the 

rubber annulus in vacuo follow the sequence 2, 3, 4, etc. In our case 

the fundamental frequency is lowered due to accession to inertia, so 
the higher modes cannot be found accurately by simple arithmetic. 

The higher modes of the annulus prevent the output-level from falling, 
as it would with a reinforced edge alone. 

5. Comparison of the three 'edge' conditions 

We are now in a position to compare the three cases: (a) free edge, 
(b) reinforced edge, (c) supported edge. From an inspection of the 
curves one can see that the reinforced edge will give reproduction 
with an attenuated lower register. Obviously this is of little value 

in commercial apparatus. The free edge appears to have a fairly 
good lower register. This is to an extent deceptive, since the musical 
register is not continuous but consists of a series of notes at definite 
frequency intervals. Some of these notes fall in the valleys of the 
curve, and on broadcast reproduction the bass register is not so 
powerful as one might expect. In the reproduction of percussion 
instruments like the piano the bass is weak, since the radial modes 
are rendered aperiodic by the damping due to the magnetic field. 

The bass register is fully restored in the case of the rubber sur-
round, provided the natural frequency is not too high. A value below 
129.5 cycles would doubtless be better, but the reproduction from 
this diaphragm is very pleasant indeed. With the surround frequency 

at 250 cycles the bass register appears to be good in certain cases, 
but is quite lacking in others. Also there is a ̀boom' with speech. 
The 129.5-cycle resonance is rendered aperiodic by the magnetic 

field, whilst the 250-cycle resonance is oscillatory. Moreover, the 

surround resonance should not occur above a certain frequency. 

In some practical reproducers where the diaphragm resonates on 

a surround (other than rubber—e.g. leather) or on a centring device 
between 50 and 150 cycles, there appears to be a powerful lower 

register. This, however, is located round the resonance frequency, 
and is decidedly objectionable. 

6. Stresses in a conical shell 

(a) Statical. The simple statical case, where a vertical force f acts 

at the minor radius of a conical frustum seated on a smooth hori-
zontal plane, is selected for consideration (Fig. 127). When the plane 
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apical angle # --> 180° the cone degenerates into an annulus and the 
stresses are due to bending and shear.* When tir = 0, the minor radius 
remaining constant, a cylinder is obtained and the stress is purely 
compressive—excluding any long-strut buckling effect. Between 
these two extremes the stresses are entirely different. The force 
acting at any horizontal section can be resolved vertically and hori-

zontally. The vertical component causes compression, bending, and 

shear, whilst the horizontal component simulates the fluid pressure 

¡ 
f F 

AF5hearing 
action 

p, Compressive stress 

rstress 

Circumferential 
or hoop stress 

pu (simulates fluid 
pressure) 

FIG. 127. Illustrating stresses in a statically loaded conical shell. 

in a boiler. It causes a circumferential or hoop stress which varies 
with the distance from the vertex. The variation in this stress intro-

duces bending and shear. The cone, therefore, undergoes a vertical 
displacement and a circumferential distension, ultimately assuming 
a curved shape of the type suggested by Fig. 127. Obviously the 

relative magnitudes of the stresses depend, for a cone of given major 
radius, upon the apical angle 

(b) Dynamical. From Fig. 127 it will be clear that when a free-

edge conical shell is driven, either on a frustum or from the vertex, 
the principal stresses are still bending and extension, the latter im-

plying positive and negative values. When the vibrations of a shell 

are mainly associated with one or other of these stresses, it is usually 

* Assuming the annulus to be unsupported except at the edge. 
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possible to determine the modes of vibration analytically. The ana-

lysis, however, becomes very formidable when both types of stress 
are of primary importance, as in the case of a conical shell of moderate 
thickness executing symmetrical modes. 

Considering the radial modes only, it is evident from Fig. 124 that 

the deformation of the shell does not involve appreciable extension 

or contraction of the surface midway between the inside and outside.* 
Practical experience shows that it is very easy to press a shell inwards 

at the periphery. The operation is clearly one associated with bending 

alone, since any extension of the middle surface would require con-

Radial (a) 
node 

Ra 
node 

Fia.128. Diagram illustrating (a) flexural (bending) and 
(b) radial (extensional) vibrations of a circular ring. 

siderable force to produce it. This becomes very evident if we 
attempt to 'stretch' a piece of paper. 

The problem of the symmetrical modes of a conical shell can be 

approached by aid of two limiting cases, namely, a disk, when 

= 180°, and a cylinder, when 0 = 0. For a disk or a ring the vibra-
tional frequency (0/2ir cc tla2, where t is the thickness and a the radius 

(Fig. 128A). The action is then entirely one of bending with its 
accompanying shear. In considering a cylinder,t we take the purely 
radial vibrations concomitant with extension of the middle surface 

(Fig. 128 B). The vibrational frequency (c0/27 cc 1/a) is independent 
of thickness, since an increase in t causes a corresponding gain in 

stiffness. Nów we have seen in (a) that the stresses in a conical shell 

are bending and extensional or circumferential. Thus a formula for 

the vibrational frequencies of a shell complete to the vertex will 
naturally have the form co/2n. cc in, a-na, where n1 < 1 and n, > 1. 

Since n1, n2 vary with t, a, 0, and b (the minor radius) the formula 

* [I 18b, 118e]. f A hollow cylinder or ring. t If it is small. 

(b) 
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ultimately takes the form 

= KJ( q  tect,b,4%-e(a,b,t4), 
2ir p ( 1 — a2) 

where 4) and e are functions of a, b, t, and e. In practice the issue 
is complicated by three essential conditions. Firstly, the radius of the 
driving coil for any class of speaker is fixed; secondly, there is the 

mass of this coil; thirdly, there is the former on which the coil is 
wound and the degree of stiffness it imposes at the minor radius of 

the cone. If the coil former is several times the thickness of the cone, 
the extensional deformation at the joint will be reduced appreciably.* 

Thus we are concerned not merely with the case of a conical 
shell, but with a more complicated structure due to the addition of 
a driving coil. In the experimental work described below, the coil 
formers were of the same order of thickness as the paper cones, so 

that considerable alteration in frequency would not be expected from 
this source. Greater variation arises from the mass of the coil, but 

its influence can be determined by extrapolation. These disturbing 
factors modify the indices n1 and n2. Apart from coil mass, etc., the 
influence of keeping b constant, instead of letting it increase or de-
crease proportionately with a, is to make n, < 1. As the major radius 
a is increased the frequency decreases slowly, owing to the great 

stiffness near the apex. 
With the aid of experimental data we now propose to show that 

both bending and circumferential stresses are of importance in loud-
speaker diaphragms and other moderately thick conical shells. It is 

a well-known mechanical principle, applicable to the vibrations of, 

say, a cone driven from the vertex or on a frustum, that the dynamic 

deformation curve is such as to make the potential energy associated 
with the deformation a minimum [219]. Now the potential energy V 

is divisible into two parts associated with bending and extension, 
respectively. In each case it is proportional to the square of the 
deflexion or extension, i.e. 82 or x2. For bending V cc t3, whilst for 
extension V cc t. Thus the total potential energy of the shell can be 

expressed in the form V = A1 tx2 (bending±extension). The 
kinetic energy of the shell depends upon t, since this controls the 

mass when the other dimensions are fixed. If we write T = D1 tw2, 

* As the extension is small in any case, it is doubtful whether the coil former has 
any serious influence except as regards bending action. 
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then, since the two energies must he equal, it follows that 

co / V /A t282+ x2 

4 D t 4 
When the cone is extremely thin it will bend readily, but will stoutly 

resist being stretched circumferentially, especially in the vicinity 
of the vertex, where the perimeter is small. Thus the term Be2 

will be insignificant compared with A 082. This follows from the 
fact that the absence of appreciable extension implies small potential 
energy of deformation. Consequently the vibrational frequency is 

co = Ni(A i.t282/A) or co cc t. Thus the frequency decreases without 

limit with the thickness of the shell, the action being almost entirely 
associated with bending. 

Beyond a certain value of t (increasing) the term Bi. tx2 becomes 
of importance, because the resistance of the shell to bending is 
relatively large and 82 diminishes accordingly. Thus the frequency 

will rise but slowly as t increases. If the term A1082 were negligible 
compared with 131 tx2, the frequency would be independent of the 

thickness. In practice, however, this is not the case, since the fre-
quency increases with thickness in the loud-speaker diaphragms 
tested. For given radii a, b and material, co a Ph, where n1 lies 

between 0.2 and 0.5 according to conditions. The index n, decreases 
with increase in thickness. It is evident, therefore, that the bending 
action in speaker diaphragms cannot be ignored. For a number of 

shells treated experimentally, the vibrational frequency correspond-

ing to one nodal circle happens to be given approximately by 

m lq, 

a Al p 

where m = cot b. This means that the frequency is m times that 
of the purely radial mode of a cylindrical ring whose radius is 
that at the base of the shell. As a case in point take a glass cone 
where a = 12-7 cm., t = 1.65 x 10-1 cm., & -= 107°, m = 0-74, 
.N/(q/p) = 5 x 105 cm. sec. -1 The value of the frequency calculated 
as above is 4,630 ,, whilst the empirical value is 4,500 In the 
case of a 90° aluminium cone a = 19 cm., the values are 4,260 and 
4,400 ,, respectively. In the latter case the frequency of a cylindrical 

ring, having the same radius as the truncated end of the cone, i.e. 
b = 2.5 cm., is 4,260 x 19/2-5 = 3•24x 104 Consequently, if the 
vibration were purely radial, the frequency of the conical shell would 
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be appreciably in excess of the observed value, owing to the large 
potential energy in the neighbourhood of the minor radius. Thus we 
again confirm that bending cannot be ignored [115 a]. 

To illustrate the transition from disk to cone, we made use of the 
purely radial vibrations of a cylindrical ring. When the cylinder is 

of adequate length there are longitudinal vibrations at higher fre-

quencies with corresponding nodal positions. These may be of im-
portance in a large cone of small apical angle. As mentioned later 

on in connexion with an experiment involving a long paper tube, the 
extension and contraction on either side of a nodal circle is accom-

panied by radial contraction and expansion in virtue of Poisson's 
ratio effect. It is clear, therefore, that the mechanical and acoustical 

conditions associated with the vibration of conical shells are extremely 

complex. 

7. Sub -harmonics [117 a] 

In testing diaphragms [112, 118 a], it is sometimes found that radial 
modes occur at half the frequency of the driving force. This effect 
can be illustrated by Melde's famous experiment. A light horizontal 

string is fixed at one end, the other being attached to one prong of a 

massive tuning-fork. When the fork vibrates along the direction of 
the string the latter is set into transverse vibration, its frequency 

being half that of the fork [219]. 
In a mechanical system, having one degree of freedom and a 

constraint of the form 8 -,-- 8o(1 +cce), where e is the displacement, 
driven by a force f =f, cos wt, it can be shown under certain con-

ditions that the system contains the frequencies (.0/4/T, Icohr, tc0/7r.... 
The first of these is a sub-harmonie of half-frequency. In a cone 
there is more than one degree of freedom, so that it is possible to have 

frequencies ¡, 1... that of the driving force. If the cone has a vibra-
tional mode at w/ 41T it will be revealed when certain conditions are 

fulfilled (117 a]. 
To obtain sub-frequencies with a cone, the amplitude of vibration 

must exceed a certain value. The sub-harmonic of half-frequency is 

the most powerful, those of lower frequencies being unimportant 

unless the amplitude is unduly large. Small moulded conical dia-
phragms are prone to the production of harmonics of hall-frequency, 

when the input is large. The harmonics seem to occur at the sym-
metrical vibrational modes of the cone. Since the amplitude is then 
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abnormal, the effect of a non-linear characteristic due to the centring 

device and surround, or to the diaphragm itself, will be prominent. 
The sub-harmonics can be suppressed by glueing a piece of felt to 
some suitable part of the cone [112a]. 

8. Investigation of symmetrical modes by A.C. bridge 

By employing an A.C. bridge R. can be measured. If a vacuum 
chamber is available the mechanical loss can be found and thence 

the electrical resistance due to sound radiation (Chap. VII), provided 
the resistive loss due to the iron does not differ seriously* for the 
free and fixed conditions of the coil. For the present tests a vacuum 

chamber was not used, so that the resistance values include losses 
and are therefore 'apparent'. Nevertheless they are a useful guide 

to the behaviour of the diaphragm. The result of measurements on 
a large flat cone [11413] eis -= 160° of stiff Whatman paper is shown 

in Fig. 129, curve 1. A small resonance occurs at 350 this being 
accompanied by a nodal circle and numerous radial nodes. The main 

resonance occurs at 664 ,---,. It is accompanied by two nodal circles 
and radial nodes. There are two other resonances at 590 and 620 

The resonance at 950 is accompanied by three nodal circles and 
radial nodes. 

Although the term circular nodes has been used, it merely signifies 
the form of the figure with a symmetric homogeneous conical shell. 

The actual dust figures were quite irregular and not always con-

tinuous. This is clearly due to asymmetry and heterogeneity of the 

paper. The amplitude of the diaphragm a short distance from the 
coil exceeded that of the latter. At certain frequencies an annulus, 

midway between the coil and the periphery, moved relatively little. 

Some idea of the relative motion of various parts of the cone, 

particularly above 500 can be obtained by using a stethoscope 
to explore the surface. A better arrangement is a small microphone 

alone or fitted with a tube or a short horn of small mouth area. 
The inductance of the coil in motion is plotted in Fig. 129, curve 2. 

The variations in this case are an excellent guide to the behaviour 

* See Chap. XVI, § 3. 
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of the diaphragm. The points of inflexion in the curve occur approxi-
mately at the corresponding resonance frequencies. Curve 2 crosses 
the static inductance curve 3 at the resonance frequency of 664 cycles, 
which indicates that the dynamic condition is devoid of mass—i.e. 
me the effective mass of the system is zero. Below 664 cycles per 

second L1 > Lo and m, is negative, whilst above 664 cycles per second 
L, > L1 and me is positive. me is also positive below 240 cycles per 
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Fa. 129. 
(1) Apparent radiation resistance R„, for large fiat cone (a = 16.7 cm., 

= 160°), showing the main symmetrical mode at Q = 664 cycles per 
second. 

(2) L1 --- inductance of coil in motion. Variations in inductance correspond 
to changes in the effective mass of the dynamical system. This curve cuts 
the static inductance curve at f = 664 cycles, showing that the effective 
mass is zero at the main centre-moving symmetrical mode. 

(3) Le = inductance of coil when fixed (see Table 36 for values). 

second, at which frequency the first centre-stationary mode occurs— 
not shown in diagram. 
A list of some of the modes is given in Table 27. 
As in other paper cones with seams the radial nodes viewed strobo-

scopically were irregular, and the same pattern occurred at more than 
one frequency. The radial modes at low frequencies were accom-

panied by considerable noise due to bending of the stiff paper. This 
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TABLE 27 

Showing frequencies of various modes of free-edge coil-driven 

conical diaphragm 
See top of Fig. 129; thickness of paper t = 5 x 10-* cm.; 

n = 40 turns 28 s.w.g.; e= 160'; m = 7.84 gm. 
Total natural mass of diaphragm m. = 48 gm. 

Drive frequency 

(cYcle8 Per 
second) Nodal pattern 

Apparent radiation 
resistance (ohms) 

49.2 
71 
97 

Intermediate 
350 
664 
800 
950 

Four radii. 
Six radii. 
Eight mail. 
Not observed. 
One circle and radial nodes. 
Two circles and radial nodes. 
Not observed. 
Three circles and radial nodes. 

1.22 
0.193 
0-142 

Not observed. 
0.128 
1.46 
0.92 
0.48 

resembled a well-known stage effect used for simulating violent 
storms. By aid of a microphone the output from the diaphragm 

under such conditions was recorded with the result depicted in 
Fig. 130. On the low-frequency wave (49.2 ,•-•,) a high-frequency 
ripple of large amplitude is superposed. The frequency of the ripple 

is identical with the main centre-moving symmetrical mode of the 
cone (900 to 1,000 It is higher than that shown in Fig. 129 since 
a coil of smaller mass was used in the experiments associated with 
the oscillographic record. This radial mode was evidently sufficiently 
vigorous to impulse the diaphragm, causing it to oscillate at its main 
symmetrical frequency. These experiments show that the main radial 

modes pertain to the lower frequencies, whilst the symmetrical ones 
occur higher up the scale. With a disk the radial and symmetrical 
modes are interlaced, so to speak. As the angle of the cone increases, 

the frequencies of the cone increase more rapidly than those of the 

disk. If, however, the material is very thick, this conclusion does 
not apply. Beyond a certain thickness the frequency of the sym-
metrical modes increases very slowly due to the influence of hoop 

stress, whereas the radial modes increase more rapidly since w CX t.* 
Thus in a chime bell the two types of vibration occur at about the 
same frequency. 
Coming now to shells of the type used for hornless loud speakers, 

* This relationship is assumed for thin shells, but it does not appear to agree with 
experimental results [118 b, 118 c]. 
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the results of tests on a diaphragm under two different edge condi-
tions are shown in Fig. 131 [11414' The first resonances in the neigh-

1 

Fla. 130. Record of acoustic output from the diaphragm of Fig. 129 when 
driven at its first radial mode, namely 49.2 cycles per second by a steady current 
in the coil (heavy sine wave). Impulsing due to asymmetry of motion causes 
oscillations of the same frequency as the main centre-moving symmetrical 
mode to be superposed on the 49.2 cycle radiation. 
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FIG. 131. Apparent radiation resistance corresponding to upper register of 
conical diaphragm, 12 cm. radius, = 90°, t =-- 2-1 x 10-' cm., m. = 7.8 gm., 
with (1) reinforced edge, (2) free edge. 

4000 

bourhood of 1,000 are due to the air-column vibrations, whilst 

those at 2,000 are the symmetrical modes of the conical shell. 

It is clear that with a light paper cone the air-column vibrations 
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are of importance compared with those of the shell itself. Apart 

from the peak beyond 2,000 there is little difference between the 

free-edge and reinforced-edge conditions. The influence of a rubber 

surround at the mouth is to lower the frequency of the air-column 
vibrations without materially affecting the output. The large peak 

which occurs at 2,450 , must not be taken too seriously. It is impos-
sible to conduct tests on the same diaphragm with free, reinforced, 

and supported edge simultaneously. Secular changes occur during 
the time taken to make the necessary alterations. In each case the 

curves are characterized by a serrated profile in the resonant region. 
By taking closer frequency intervals the number of serrations would 
be increased enormously. The serrations are due to local perturba-

tions arising from small dimples on the surface, asymmetry caused 
by the seam, and to heterogeneity of the paper. 

9. Investigation of symmetrical modes by microphone (115a) 

When an annular disk is driven quite symmetrically by a circular 
coil, the nodal figures corresponding to the centre-moving modes are 
concentric circles. With an annulus having inner and outer radii of 
2.5 and 12.2 cm., respectively, the ratios of the first three modes are 

roughly 1 : 4 : 9, provided the mass of the driving coil is negligible. 
In a practical case the latter condition would only be realized approxi-

mately, the corresponding ratio being 1 :p : q, where p < 4 and q < 9. 
Owing to the different nature of the stresses in a disk and in a 

conical shell, the nodal ratios of the one bear no resemblance to those 
of the other. Accurate inferences cannot be made regarding these 

ratios from experiments on paper cones, owing to four pertinent 
factors: (i) heterogeneity, (ii) internal transmission loss, (iii) radiation 
loss, and (iv) low density of paper. By taking a heavy conical cast 

glass shade, illuminating results can be obtained. Fig. 132 shows three 
resonances of an ordinary glass lampshade. These were obtained in 

a large highly-damped room with a special microphone situated on 
the axis of the shade at a distance of about 180 cm. To avoid the 

influence of standing waves, the tone supplied to the driving coil was 
varied ±50 , continuously throughout the range of frequencies. 
The resonances were so sharp that the frequencies could be deter-
mined readily by ear, although the output curve was recorded 

automatically. At each frequency the nodal figures were found, 
and data relating thereto are given in Table 28. 
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TABLE 28 

Data for annealed glass cone 
Major radius a of shell = 12-7 cm.; ---- 107'; radius of driving coil = 2.5 cm.; 
minor radius b 1.4 cm.; thickness t 1.65 x 10-, cm. Mass rn. of driving 

coil = 4 gm. 

Nodal pattern 
Radii of nodal 

circles 
Frequency 

One circle 
Two circles 
Three circles 

0.8a 
0.6a, 0.92a 

0.44a, 0.78a, 0-95a 

4,500 
5,700 
7,500 
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FIG. 132. 

(a) Axial air-pressure curve for free-edge conical glass shell corrected for micro-
phone characteristic. a = 12-7 cm., b = 1-4 cm., radius of coil 2-5 cm., 

1-65 x 10-1 cm., = 107°, m„ = 4 gm. 
(b) Axial air-pressure curve for free-edge spun conical aluminium shell corrected 

for microphone characteristic. a = 19 cm., b 2-5 cm., t = 4-5 x 10-2 cm., 
= 90°, m„ = 6 gm. 

Although nodal circles are specified, neither was the drive suf-

ficiently symmetrical nor was the cone sufficiently homogeneous to 

obtain perfect circles. Whereas the first mode is by far the most 

powerful with an annular disk, it is the second which stands out 

here. There may have been modes above 7,500 ,--,, but the apparatus 

did not permit investigation beyond 9,000 

Experiments have also been conducted with aluminium cones, and 

some of the results are portrayed in Figs. 132 B, 133A, B. There are 
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more than three peaks, but as the two thick aluminium cones were 
spun whilst the thin one had a seam, the homogeneity cannot be 
expected to be as good as that of annealed-cast glass. It should 

also be observed that here the second peak is by no means the 
maximum. 

As a matter of interest and comparison, curve 1 of Fig. 134 shows 

the behaviour of a typical paper cone. The preliminary notch on the 
curve at 1,700 ,--, is an indication of the first mode. There are signs 
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(b) Axial air-pressure 
(seccotined). 

a = 10.9cm., b = 

(a) (h) 
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Fla. 133. 

curve for free-edge spun conical aluminium shell as in 
8 x 10-2 cm. m, = 6 gm. 

curve for free-edge conical aluminium shell with seam 

2.5 cm., t = 7.5 x i0 cm., # = 90°, m. = 1.3 gm. 

of others, whilst the main mode is fairly clearly shown. But the 
modes of paper and aluminium cones do not stand out in the same 

conspicuous manner as those of the glass shade. This applies parti-
cularly in the case of paper when a light driving coil is used. 
The occurrence of the modes in cluster formation, as compared 

with the segregation that obtains in the case of a disk, is very 
striking. This is due to the different nature of the two vibrational 

systems. When the frequencies of the various modes cannot be 
definitely allocated, we shall refer to the frequency corresponding to 
the greatest output. At frequencies exceeding that of the main mode 

the output falls away, due mainly to transmission loss. 
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In a number of the curves the uncorrected microphone readings 
have been given, which tend to exaggerate the output from 2,000 to 
5,000 owing to pressure doubling (reflection), and resonance due 

to the cavity at the front of the microphone. This is immaterial since 

the object of the experiments was to locate vibrational frequencies 
and to ascertain the general influence of apical angle, coil mass, etc. 

950 1700 I 23001 3000 I 6000 
2000 2500 4000 

Frequency 

FIG. 134. 

Curve 1. Axial air-pressure curve for free-edge conical paper shell un-
corrected for microphone characteristic. 

a = 12 cm., b -= 2.5 cm., t = 2-1 x 10'2 cm., ek = 90°, m. = 7.8 gm. 

Curve 2. As for curve 1, but m. 2.7 gm. The reduced coil-mass results in 
increased and more uniform output above 2,300 

Where the profile lacks peaks, as shown in Fig. 134, curve 2, the 

impulse method outlined in a later section is used. 

10. Influence of thickness of shell on acoustic-output curve 

When a curve delineating the acoustic output is taken on the axis 
of a coil-driven conical shell of given radii and apical angle, the profile 
depends upon the thickness and mass of the diaphragm. The general 

effect is clearly exhibited in Figs. 132, 133, and 134, which we shall 
now analyse. The curve for the thick heavy glass shade consists of 

three precipitous peaks separated by deep valleys. Owing to the great 
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mass of the cone the general output-level is small and it is only at 

resonant points, where the mass is offset by elasticity, that the out-
put is readily audible. The thickest of the three aluminium shells 
shows the influence of considerable mass, but the valleys are shal-

lower than those of the glass shade. Decrease in thickness is accom-
panied by a greater general output-level and the perceptible rising of 

the valleys towards the peaks. Finally, with a paper cone, especially 

when the mass of the driving coil is small (Fig. 134, curve 2), the 
valleys and peaks coincide. Nothing is left to indicate the symmetri-
cal modes except a boldly-rounded contour. The reduced coil and 

shell masses yield a greater amplitude between peaks, whilst the fric-

tional damping and acoustic loading reduce the peaks. Although not 
fully understood hitherto, the combined influence of these factors has 
been invaluable in the operation of modern acoustic apparatus. And 
so empiricism has been justified. 

11. Influence of coil-mass on acoustic output and frequency 
of vibration 

The mass of the coil affects (i) the mechanical impedance, (ii) the 

amplitude of vibration, (iii) the profile of the response curve, and 
(iv) the frequency of vibration. 

Referred to the driving point, the mechanical impedance at a fre-
quency co/27-r is re+icome, where re is the mechanical resistance and 

me the effective mass of the complete structure which may be positive, 
negative, or zero. Since the coil can be considered as a rigid structure 
when vibrating axially, me can be written me= m+ m, where m; 
refers to the shell and me to the coil. The value of 7/4 is a small 
proportion of the natural mass in the nodal region, so that the im-

pedance is reduced appreciably when a coil of small mass is used. 

It follows that for any given driving force the amplitude of vibration, 
and therefore the output, increases. In fact, to preserve a good 
balance between the upper and lower registers, the mass of the coil 

must lie within prescribed limits. The latter are, of course, deter-
mined experimentally and depend to an extent upon the taste of the 
listener. If the mean frequency of the main nodal group is too low, 

the reproduction is woolly and lacks interpretational qualities. When 
it is too high we are wafted back to our juvenile days of playing tunes 
with paper and a comb. For any particular diaphragm there is a 

certain coil-mass giving maximum output. The mass, however, 



XVIII. 11] COIL-MASS AND ACOUSTIC OUTPUT 325 

varies with frequency owing to inconstancy of the diaphragm 
impedance (see Chap. VIII, § 9). 
The profound influence of coil-mass on the profile of the axial 

pressure curve, and therefore upon the frequency characteristic, is 
displayed in Fig. 134. Whereas in curve 1 of Fig. 134, with a 7-8-gm. 
coil, the notches and peaks are an indication of 'modes', the same 
cannot be said of curve 2, where the coil-mass is 2-7 gm. The increased 

amplitude, sound-radiation, and transmission loss concomitant with 

8-, 

2000 2500 3000 3500 
Frequency (c...,) 

Fia. 135. Curve showing influence of coil-mass on frequency of 
main symmetrical mode of cone used for Fig. 134. 

reduced mass-reactance culminates in a substantially uniform output-

level over a certain frequency band. In fact, from the viewpoint of 
axial pressure, there is a good mechanical band-pass-filter effect. 
So far as the influence of mass on the frequency of vibration is 

concerned, we cannot derive much inspiration from circular disks, 

since the vibrational conditions are dissimilar. One usually associates 
added mass with a reduction in frequency, especially when the mass 
does not contribute to the stiffness of the vibrator. Since the modes 

of vibration are partly extensional, the influence of mass is less 
prominent than it would be under a bending régime. 
To illustrate this feature a series of experiments was performed on 

a coil-driven shell, the frequency of the combination being determined 
for various coil-masses. Variation in mass was effected by the simple 
expedient of removing turns from the coil until a practical limit 

was reached. The results are shown graphically in Fig. 135. By 
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extending the curve until it intersects the horizontal axis, the fre-

quency for a coil of zero mass is obtained. Owing to the stiffness 

imposed by the cylindrical paper former, this value may be on the 

high side. The frequency does not alter seriously with reduction in 
coil-mass until the latter is quite small. 

In the ideal case of a lossfree disk driven in vacuo where the coil 
does not contribute any stiffness, the influence of variations in coil-

mass can be found from an effective mass-frequency curve by the 
simple expedient of shifting the frequency axis to the point where 

m =- mc, mc being the coil-mass. Owing, however, to variation in 
acoustic loading and transmission loss with frequency, this artifice 
cannot be applied accurately to paper cones. This should be evident 
from Fig. 134, which shows the influence of variation in coil-mass— 

the shape of the curve being altered completely if a light coil is 
used. 

12. Influence of major radius on vibrational frequency 

When the radius of the driving coil is fixed, the main vibrational 
frequency for given conditions obviously decreases with increase in 
the major radius, i.e. at the mouth or base of the shell. The rate of 
decrease depends, amongst other things, upon the mass of the coil. 

Some experimental data bearing upon the frequency variation are 
given in Table 29. 

TABLE 29 

Showing variation in main frequency of cone with major radius 

Material 
Thickness 
t (cm.) 

Major 
radixes 
a (cm.) 

Miner 
radius 
b (cm.) 

Mass of 
coil 

m. (gm.) 

Main 
frequency 

^-' 

Paper 2.1 x 10-2 12 2.5 7.8 2,300 
9 0 SI 7.5 2.5 7.8 2,900 
9 P. PP 5.0 2.5 7.8 3,600 

Taking logarithms of a and co/27r it is found on plotting that the fre-

quency is approximately 7.9 x 103/ Va. It must be realized, however, 
that the heavy driving coil, whose mass exceeded that of either of 
the two smaller cones, caused an appreciable reduction in frequency. 

13. Influence of shell thickness on main frequency [11413] 

As stated previously, bending is predominant in an extremely thin 

shell, and, as in the case of a disk, the main vibrational frequency 
depends in part on the thickness. Thus one might anticipate 
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a relationship of the form co = lc, tni. Increase in thickness will be 
accompanied by a steady drop in ni, since the circumferential stress 
becomes of increasing importance. Data concerning this matter are 
set forth in Table 30, the apical angles of all the cones tested being 90°. 

TABLE 30 

Apical angle e, = 90°. 

Material 

Major 
radius 
a (cm.) 

Minor 
radius 
b (cm.) 

Mass of 
coil 

m. (9m.) 

Thickness 
t (cm.) 

Main 
frequency 

,-..., 

Aluminium 19 2.5 6 4.5x 10-4 5,400 

PP 19 2.5 6 8x 10 -I 6,000 
Paper 12 2.5 1.7 2.1 x 10-2 2,900 

9 > 12 2.5 1.7 4 x 10-2 3,300 

14. Influence of apical angle on frequency of vibration 

The rise in frequency with reduction in ik is quite rapid from 180° to 
100°. Beyond this the rise is curbed, whilst below 90° c0/2n falls away 

very slowly indeed. The general appearance of the air-pressure curves 

for various angles is shown in Figs. 134, 136, 137, where the resonances 

are in the neighbourhood of 2,000 ,. 

The relative power-output throughout the frequency range is not 
given by the ordinates of the axial air-pressure curves. This is due 

to (i) the microphone characteristic not being uniform, (ii) the current 

through the driving unit not being constant, since constant voltage 
wa5. applied to the grid of the power valve, (iii) the spatial distribu-

tion of sound not being spherical, (iv) variation in interference on 
the axis according to the number of nodal circles, i.e. the dynamic 

deformation curve of the shell. This is immaterial since the problem 

of the moment concerns the frequencies of vibration. In curve 2 of 
Fig. 134, where the frequency is indeterminate, an impulse method 

is used. 
It has already been shown that when fir is 90° the main frequency 

is clearly defined with a heavy coil, but loses definition when a light 

coil is used, Fig. 134. As the angle decreases, the definition is much 
improved, as will be seen from Fig. 136, for ifi =- 60°. Two curves are 

given, one of which (curve 1) applies when there is a re-entrant cone 

at the minor radius. An auxiliary resonance is introduced at 1,900 e..., 

and the main peak is shifted to 2,300 ,-,. In curve 2 there is a series of 
minor resonances at 7,000 ,--... (See Chap. IV, § 8 for re-entrant cone.) 
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f 

700 190I 2300 31.50 1000 
1̂100 

Frequency 

Fm. 136. Axial air-pressure curves, for free-edge conical paper shell with 0 
equal to 60°, other dimensions as for Fig. 134, curve 1. Curve 1, with re-entrant 
cone 2.5 cm. in radius at apex. Curve 2, without re-entrant cone. The reso-
nance at 700 is due to the air column within the cone. 

vt, 

3i0 • 2000 2300 

Frequency 
4300 

Fm. 137. Axial air-pressure curves for free-edge conical paper shell with 
a = 12 cm., b = 2.5 cm., t = 2.1 x 10' cm., 0 = 30°. Curve 1, m. = 4.4 gm. 
Curve 2, m. = 2.7 gm. The resonance at 350 is due to the air column within 
the cone. 

The change caused by alteration in coil-mass is indicated in Fig. 137, 
where 0 -= 30°. The main frequency is raised and the output en-

hanced, also the mode before the main peak becomes more prominent. 
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The acuteness of the main peak is in striking contrast with Fig. 134, 
where ip = 90°. Moreover, a 90° cone is better suited for a loud 
speaker than one of 30°. It is inferred that, owing to the small 
angularity of a 30° cone, bending is of less importance relatively, and 
the corresponding transmission loss is smaller. 
When the angle becomes appreciably greater than 90°, the main 

modes occur at too low a frequency to be of much value for loud-
speaker work. It so happens, therefore, that for general reproduction 
an angle about midway between a disk and a cylinder gives the best 
results. 
The slow change in frequency with reduction in ft below 90° arouses 

curiosity regarding its ultimate value when tis approaches zero and 
the axial length tends to infinity. When a certain angle is reached, 

the cone becomes long enough for relatively important longitudinal 

vibrations to occur. It might be thought that the acoustic energy 

associated with such vibrations is very small. This is undoubtedly 
true, but the extension and compression of the shell give rise to an 

important auxiliary effect. By virtue of lateral expansion and con-

traction (Poisson's ratio effect) the cone vibrates radially and this 
augments the general output. Tests on a paper cylinder revealed 

resonance. So far as could be ascertained by ear, a large portion of 
the sound was generated in this manner (see Fig. 128 B). 

15. Air-column vibrations 

In investigating the vibrational modes of conical shells the frequency 

of a certain group was found to be dependent solely on the axial 
length and major radius [116]. The material of the shell and its 
thickness had a relatively insignificant effect. These vibrations are 

due to the air column within the cone, which is closed at the minor 
radius by the magnet. Conditions differ from that of, say, a tuning-

fork held at the mouth of a resonator, for in the cone case the reso-
nator is its own source by virtue of its vibration. Experimental data 

pertaining to air-column vibrations in cones of different materials 
are set forth in Table 31. 
An empirical formula for the main frequency is w/27r = c12(11-ka), 

where e is the velocity of sound in free air, Z the axial length of cone 

plus part of coil former, a the major radius, and k the end-correction 

coefficient, which varies between 0-6 and 0.8. 
The form of the air-pressure curve in the vicinity of the resonance 



330 VIBRATIONAL FREQUENCIES OF CONICAL SHELLS [XVIII. 15 

TABLE 31 

Showing air-column vibratione in conical shells 

Main 
Major Minor Apical air-column 

Thickness radius radius angle frequency 
Material t (cm.) a (cm.) b (cm.) degrees (,--...) 

Paper 2.1 x 10-2 12.2 2.5 30° 350 
PP PP 12.2 2.5 80° 700 
PP PP 12.2 2.5 90° 900 

Aluminium 8 x 10-S 19 2.5 90° 570 
Glass 1435 x 10-4 12.7 2.5 107° 1,100 

is of interest, and typical examples are given in Figs. 1134, 136, 137. 

The column resonances occur above the main nodal group when 0 is 
135° and the air column is short. For a standard-size paper cone the 
column resonance is portrayed in Fig. 131 at 900 ,--,. The output is 
then quite large, being about 50 per cent. of that at the main nodal 
frequency which occurs just above 2,000 ,---,. With heavy cones, e.g. of 
thick aluminium or glass, the amplitude of vibration is reduced con-
siderably owing to large mass-reactance, and the column vibrations 
are of little importance in comparison with the symmetrical modes 
of the shell itself. 

16. Criterion of suitability of materials for speaker dia - 
phragms 

We have seen that the resonance group in paper cones 12 cm. radius 
or thereabouts covers a frequency band from 2,000 to 4,000 ,---,, after 
which the output decays rapidly. Since metal is stiffer than paper, 

it might be thought that a thin cone thereof would elevate the fre-
quency of the resonance band and give a better upper register. To 

obtain some knowledge of the main resonance frequency to be 
expected, it is necessary to consider the mechanical properties of 
materials. In formulae associated with the natural oscillations of 

vibrators, Young's elastic modulus q is encountered, together with 
Poisson's ratio a (< 1). For example, the frequency of the purely 

radial vibrations of a circular ring of rectangular section is given by 

2  1  
(Fig. 128 n) ct, == 

a V(1— a2).1qp (1). 

The frequencies of the purely flexural modes of the ring are given by 

n(n2-1) t  1  lq 
(Fig. 128A) CO - (2) 

V (n2 +1) V3ae 4(1— cr2) 4 p' 
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where n = 2, 3,.... Now Poisson's ratio varies from about 0.2 to 0.4, 

according to the material, so that ail a first approximation V(1--(72) 
can be taken as unity. 

As we have already seen, the frequency of a conical shell does not 
increase directly as the thickness. For a given radius and apical 
angle it depends upon tn., where n1 is governed by the thickness and 

the coil-mass. For average loud-speaker diaphragms n1 varies from 
about 0-2 to 0.4. Under this condition the frequency is given by 

co cc Ph jg. (3) 

Now t pa/p, where pi is the mass per unit area and p the density. 
Substituting this value of t in (3), we find that 

w cc pl1/2 / 1÷2. • 
P 

In comparing the frequencies obtainable from shells of different 
materials, when pi is fixed, the value of n1 will doubtless vary if there 
is a wide difference in thickness, e.g. very thin aluminium and paper, 
where the density ratio is about 4: 1. This, however, depends upon 

the thickness of the aluminium. Where n1 and the mass per unit 
area are identical for two shells of different materials, the frequency 
criterion is V(q/p1+2n.). On this basis we can compare the frequencies 

of paper and aluminium shells of equal radius, apical angle, and mass, 
driven by identical moving coils. Data are given in Table 32. 

TABLE 32 

ni = 0-2 in both cases, this being an experimental value based on paper shells. 

(4) 

Material 

Paper 
Aluminium 

Thickness 
(cm.) 

Density 
gm. cm. -3 

4 
dynes 
CM. -"' 

Criterion 
l g 
4 pH-2% 

Frequency ratio 

Calcula- 
tion 

Experi-
ment 

2.0 
3 x 10 -8 
7-5 x 10-8 

0-88 
2-7 

1-9 x 1010 
7.2 x 10" 

184x 10' 
4-22 x 10' 

2.3 
) 

The agreement between theory and practice is quite good when it 
is realized that n1 for the aluminium shell should exceed 0.2. This 
value was obtained with paper some four times the thickness of the 
aluminium. Formula (4) can obviously be also used to compare the 
shell masses when the vibrational frequencies are identical. 

It is of interest to remark that for a disk, where n1 -=- 1, the 

criterion is ..,/(q/p3). Thus a material with the largest V(qlps) gives the 

disk of smallest mass for a given frequency and radius. The velocity 
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of sound in a uniform bar of material V(q1p) is only a criterion when 

both thickness and radius are constant. This is not of much practical 
importance here. 

17. Sheet-metal cones 

Cones have been constructed of aluminium sheet 2-5 x 10-3 cm. and 

7-5 x 10-3 cm. thick. In the thinner of the two bending was pre-
dominant, and the resonance band much too low [114 b, 115 a]. 

Heavy transients caused loud crinkling sounds and 'break-up' of the 

diaphragm was visible to the naked eye. The thicker cone had a much 
more powerful upper register, the crinkling being absent. Speech was 
clear-cut and sharp, but there was no marked shrillness when repro-

ducing sibilants, e.g. the letter 's' did not whistle. A lack of body 

was evident which suggested a defective response between 200 and 
3,500 ,--,. A curve relating to this diaphragm is shown in Fig. 133 B. 
The air-column resonances occur about 800 to 900 but the sym-
metrical modes with coils of 4-7 and 1-3 gm. lie between 4,000-5,300 

and 5,200-7,200 respectively. Here again the influence of coil-
mass in lowering the output and the frequency is evident. These 
resonance bands are much too high for comfortable audition. The 

response curve shows that aluminium is not a suitable material for 
hornless speaker cones. So far as experimental evidence goes, the 
best results are obtained with paper cones of low density and suitable 
transmission loss.* Their resonance bands are widert and more highly 
damped than those of aluminium, whilst a fairly uniform level (in 

decibels) is maintained up to about 4,000 In order to increase 

the width of the frequency band, the surface of the cone is sometimes 
circularly corrugated. Typical examples of plain and corrugated 

paper cones, having identical dimensions, are shown in Fig. 138, which 
represent axial-pressure curves corrected for the microphone. Both 
cones were mounted on annular leather surrounds. The mass of the 

coil was 3-45 gm., the paper thickness 1-5 x 10-2 cm., the apical angle 
105°, and the major radius 10 cm. [126]. 

18. Vibrational frequencies by impulse method 
When a structure is impulsed it executes various natural modes of 

oscillation which ultimately die out due to losses [113 b, 114 a, c]. If 
* By using bakelized paper 5 mils thick, the upper register can be extended beyond 

4,000 The mass of the cone is approximately the same as that of a cone of 
untreated paper twice the thickness. 
t i.e. the symmetrical vibrational modes cover a wider frequency band. 
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a diaphragm is situated in a heavily-damped enclosure with a suitable 
microphone, its acoustic output wave form, when impulsed, can be 
obtained. This gives useful information relating to the vibrational 
frequencies which are likely to be of importance in loud-speaker 
operation. For conducting tests of this nature the circuital arrange-
ment of Fig. 139 is employed. A relay vibrating about ten to twenty 

, 
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Fla. 138. Axial response curves of plain and corrugated paper cones [126]. 
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Reproducer: Microphone. Resistance-Capacity Recorder 
Amplifier 

Fla. 139. Apparatus for obtaining acoustic output from a speaker electrically 
impulsed. 

times per second is used to short-circuit a high inductionless resistance 
R. In this way the grid bias on the valve V is altered and the anode 

current suddenly increases or decreases, the wave form being a series 
of Morse dots. Thus the loud-speaker current varies in like manner 
and severe impulsing occurs. The microphone, which should be one 

of the well-known types with a substantially flat response charac-
teristic, is usually situated on the axis of the speaker, or other 
apparatus under test,* and its output is suitably amplified and con-
trolled by an attenuator before being passed on to an oscillograph 

* For example, a microphone could be tested if necessary. For this to be effective 
the search microphone must be aperiodic. 
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for delineation of the wave form photographically. Two oscillograph 
vibrators are used, one for the actual record, the other for the time 
base. The above method is invaluable in cases where the profile of 

the axial pressure or motional resistance curves are merely rounded 
and lack peaks indicative of vibrational modes (see Fig. 134, curve 2). 

A number of records of different diaphragms are reproduced in Figs. 
140, 142, 143, which show oscillations not suppressed by the magnetic 

field and mechanical losses. 
The complex oscillation of Fig. 140 pertains to a hornless speaker. 

There are two low-frequency components of 33 and 190 superposed 
on a 2,000 , oscillation. The 33 oscillation is that of the dia-

phragm as a whole, on the surround, whilst the 190 one is the 

gravest mode of the surround acting as an annular membrane. After 
removal of the latter the record takes the form of Fig. 141. The 
low-frequency oscillations have vanished, but the 2,000 , oscillation, 

due to the main symmetrical mode of the shell, remains. A very 
strong magnetic field would be required to suppress this mode. These 

records were taken with the microphone on the axis. When it is 
placed at an angular distance therewith the effect is quite different 

owing to focusing and to the velocity of sound-propagation in the 

diaphragm being less than that of sound in air. The set of records 
in Fig. 142 illustrates the influence of axial and angular distance 
upon the transient wave form. Increase in axial distance reduces the 
oscillations, due to the main mode, which follow the first peak. This 
is doubtless due to a reduction in the standing-wave effect between 

microphone and speaker, since it is not established until after the 

peak occurs. The diaphragm, 12.2 cm. radius, 90° apical angle, was 
mounted on an annular rubber surround whose gravest mode was 
129-5 , (Fig. 126). The mode cannot be traced on the record and this 

is a condition to be fulfilled for good reproduction. The resonance of 
the diaphragm as a whole on the surround, at 18.7 is completely 

extinguished. The aperiodic state is shown by the high-frequency 
oscillation superposed on a decay curve. This represents the dia-

phragm being forced back to its equilibrium position by the surround, 
but restrained from oscillation by the magnetic field. It is in great 

contrast with Fig. 140, where both of the surround oscillations occur. 
A record for the aluminium cone [115 c] of Fig. 133B shows that 

the oscillation is not a simple damped sine wave since more than one 
mode is present. The frequency is variable initially but settles down 



Fia. 140. Impulse record of hornless moving. 
coil loud speaker with annular rubber surround. 
The coil of 40 turns was transformer coupled to the 
valve. B, = 7,000 lines cm. -2, i.e. about 0.8 full 
strength. Microphone on speaker axis. 

FIG. 141. As in Fig. 140 but with rubber surround 
removed. 
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FIG. 143. Impulse record of coil-driven annealed conical 
glass lamp shade. Microphone on axis at a distance of 187 cm. 
from the cone. 



(b) As at (a) but microphone 70 cm. from 
mouth of cone. 

(a) Impulse record of conical diaphragm 
used for test data of Fig. 126, taken with 
microphone on axis at 23 cm. from mouth 
of cone. The symmetrical mode recorded is 
2,600 . 

loco r...) 

'A A A ft. A 
(c) As at (a) but microphone 25 cm. (d) As at (a) but microphone 28 cm. in front 

away from axis, of cone, and 40 cm. away from axis. 

FIG. 142 
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ultimately to the main mode. A record for the thick glass cone of 

Fig. 132 is shown in Fig. 143 [115 cl. The acoustic output was so small 
that considerable amplification had to be employed. The preliminary 

kick at Pis interesting and is due to induction between the driving coil 
and the microphone* leads. The start of the acoustic record is Q, so the 

distance PQ represents to the timing wave scale the time taken for 

sound to travel from the diaphragm to the microphone. The oscillation 
which commences at Q is small but persistent, due to low decrement. 

It never actually dies away before break and a faint trace is visible 
between P and Q. The record is superposed on a low-frequency oscilla-

(a). FIG. 144 (6). 

FIG. 144(a). Impulse record of driving mechanism of Fig. 82. (a) without horn. 

144(b). As at Fig. 144(a), but with straight exponential horn 4 ft. 8 in. 
long. The damping effect of the horn is evident. 

tion due to the resistance-capacity and transformer couplings between 

the valves of the microphone amplifier and the oscillograph. The 

velocity of sound can be calculated from this record, using the follow-

ing data: Timing wave = 2,000 r•-,; microphone at 187 cm. on axis; 
time interval 11/2,000 sec., giving e = 34x 104 cm. sec. --1. 
With hornless speakers the damping is relatively small. At low 

frequencies the magnetic damping is the main factor, whilst at high 
frequencies transmission loss assists. In horn speakers the damping 
due to the resistive loading is high, so that one would expect the 

natural oscillations of the system to be more profoundly damped. 
That this inference is borne out in practice will be seen from Fig. 144, 
showing the damping influence of the horn. 

* Absent from foregoing records, because experimental arrangement was different. 
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These examples demonstrate the utility of the impulse method for 
studying the natural oscillations of a diaphragm. Owing to irregu-
larity in some of the records it is almost impossible to determine the 
frequencies of any but the more powerful oscillations. Broadly speak-
ing it is possible to ascertain the main symmetrical mode and to find 
whether that due to the surround, or the diaphragm on the surround, 
is rendered aperiodic by the magnetic field. The behaviour of dia-
phragms under less violent conditions can be studied by suddenly 
applying or switching off a steady sine wave. Oscillograms obtained 

1 11 lllllllllll 111111 lllllllllll 

256 19,000 gauss 

Ti 111f Il Il I I 1 1 

1,910 4,000 gauss 1,910 19,000 gauss 

Fm. 145. Acoustical output when a steady sine wave is applied to the 
Blatthaller speaker. The influence of a strong magnetic field in hastening the 
'attack' is shown clearly. 

from the Blatthaller speaker (Chap. XIII) under these conditions are 
shown in Figs. 145, 146. 
In taking impulse records care must be exercised to ensure that 

oscillations or aperiodic effects, due to transformers or choke-con-
denser combinations, are not superposed upon those of the diaphragm 
in such a way as to mask the wave form to be recorded. It is hardly 
necessary to remark that the above procedure can be applied to any 
vibrating system by attaching a moving coil in a suitable position. 

19. Damping of low-frequency oscillations in moving-coil 

speaker [115b] 

The problem before us is to examine the conditions under which the 
motion of the diaphragm, as a whole, on the annular surround, or 
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centring device, or both, is oscillatory or aperiodic. An output circuit 

for high-resistance coils is shown in Fig. 147 A. For simplicity L and 

256 4,000 gauss 256 19,000 gauss 

1,910 4,000 gauss 1,910 19,000 gauss 

FIG. 146. Acoustical output of Blatthaller speaker when a steady sine wave 

input is interrupted suddenly. The damping influence of a strong magnetic 
field in hastening the decay of the oscillation is shown clearly. 

(a) 

E 

(C) 
(d) 

Cn, 

FIG. 147. 

(a) Power valve and speaker with choke-condenser output circuit. 
(b), (c), (d) Circuits equivalent to (a) under conditions specified in the text. 

C are assumed to be very large, e.g. 100 henrys, 50 iLF giving a 
natural frequency of about 2 If the speaker is represented by its 
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equivalent circuit* the diagram of Fig. 147 B is obtained. It is impor-
tant to realize that this is not the electrinal analogue of the mechanical 

system, for here L,a compliance, whilst Cm' E mass, which is the 

reverse of the usual conditions. Below 100 , the reactance of Lo and 

the damping of R are negligible, so the circuit ultimately reduces 
to the form illustrated in Fig. 147 c. The differential equation for 

this circuit is 
(D2+  ,1  D+ -= 0, 

C„, R L' C' 

1  

where E is the p.d. across C. The well-known condition for 

aperiodicity is 

or 

(5) 

1 1  
4 C;,2, R2 >  

> 4C R2. (6) 

From Chapter VII we have L' = C2/3 and C = m/C2, where 
8 -= axial stiffness due to surround and centring device, 
m = equivalent mass in vacuo plus accession to inertia = mo+m,. 

At low frequencies mo =t.natural mass, so in = mn+mi. Substituting 

the values of Lim, Cu' , in (6), we get, for aperiodicity, 

C2 > 2,/(.3mR2). (7) 

When the coil circuit is open co = .N/(s/m), which on substitution for 

in (7) yields C2 > 2comR. (9) 

Thus aperiodicity is obtained only when the field strength exceeds 
a certain value. Expression (8) can also be written 

C2 < 
2cum 

which means that for a given speaker 1? must be less than a certain 

amount, namely, C2/2wm. It may happen, however, that this con-
dition cannot be fulfilled. For example, from Fig. 147 c the smallest 
value of 11 occurs when the coil is short-circuited on itself, i.e. Ea= 0. 

If &exceeds C2/2com, the motion cannot be aperiodic. The latter state 
is more readily secured by a low than by a high value of 3. This 
means that the natural frequency of the diaphragm, on open circuit, 

should be low and the power valve should have a low resistance. 
Let C2 = 1.2x 107, Ro = 1,400 ohms, Ra = 2,600 ohms, frequency 
of diaphragm t 50 m = 24 gm. Then we get 2comR = 6 ± 107, 

* Chap. VII, § 1. t On the surround and centring device. 

(9) 



XVIII. 19] DAMPING OF LOW-FREQUENCY OSCILLATIONS 339 

which exceeds C2, so the motion is oscillatory. Aperioclicity could 
be obtained by reducing 8 to give a diaphragm frequency of 10 
This is quite a typical illustration, and in general the motion is oscilla-
tory when the frequency occurs in the audible range. 

When —1 .1-1- is within the audible range* there are two oscillatory 
LC 

circuits, and a variety of conditions is possible. These are as follows: 

(a) two distinct damped oscillations, (b) a damped oscillation super-
posed on an aperiodic decay curve, (c) an aperiodie decay curve due 
to the two circuits. The prevailing condition depends upon the damp-
ing of the circuits LC and L C. An approximate representation 
of the arrangement is shown in Fig. 147 D, this being applicable to 

low frequencies. Since the two circuits are directly coupled, the 

behaviour of one is modified by the presence of the other [115 b]. In 

general, the damping is insufficient to cause aperiodicity, and there 

are two oscillations whose frequencies are different from those of the 
circuits alone. Consequently the lower register is reproduced with 
a 'boom'. 

20. Longitudinal oscillation of coil former 

A coil of known mass is wound on a test former several times longer 

than that commonly used in speaker construction. A number of 

equally spaced longitudinal cuts is made round the end. The strips 

so obtained are bent over and glued to a large cylindrical lead block 
weighing 6 Kg. or more, whose gravest mode is supersonic. A speaker 

magnet is placed with its axis vertical and the block arranged to 

accommodate the coil in its customary position in the field. Measure-
ments of motional resistance are made in the usual way. Data for 
a 40-turn coil are portrayed in Fig. 148 [114 b]. The motional resis-
tance is normal up to 4,000 and it is caused partly by variation 

in iron loss for the free and stationary conditions (see Chap. XVI, § 3). 
Beyond this the coil amplitude increases rapidly, and at 4,600 
a powerful longitudinal resonance of the coil on its former occurs. 

As a check, the frequency can be calculated from the coefficients of 
the system: 

Mean radius of cylindrical former a -= 2.5 cm. 

„ thickness „ t •=. 2.1 x 10-2 cm. 

* Fig. 147 D. 
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Axial length of cylindrical former Z = 2 cm. 

Density of paper former p = 0.66 gm. cm.-3 

Mass of coil alone Inc= 6.8 gm. 

Young's modulus q = 3.4 x 10" dynes cm.-2 

The above value of q exceeds that for paper in its normal state. In 
baking the varnish on the coil, the coil former is also put in the oven, 

08  

E 
-g 06 

E 
ce 

rt 

1.11 

0 4 

O. 2 

ro 
C. 

\  
01000 2000 3000 4000 6000 6000 

Frequency - cycles per second 

Fla. 148. Apparent radiation resistance of coil of 40 turns 28 s.w.g., whose paper. 
tube former was securely fixed to a heavy lead block in place of a diaphragm. 

and this elevates q from 50 to 80 per cent. according to the state 
of the paper. Using the preceding data we find A = 0.33 cm.2, 

= 0.45 gm., so the effective coil mass mc+¡mt = 7 gm. Using 
formula (19 a), Chap. IV, since 8 -= qA11, we find c0/27T = 4,500 
which is in good agreement with the experimental value. The length 

of former used here is about three times that for normal speaker 
construction. In the latter case therefore c0/271. = 4,50043 = 7,800 
As shown in Chapter IV a frequency of this order is desirable. 

21. Stiffness of a conical shell 

When a mechanical system simulates a simple loaded massless helical 
spring, the dynamical and statical stiffness coefficients are identical. 

The former is defined as 8 = cu2m, where m is the mass. Where 
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flexible disks or conical shells are concerned, the dynamical and 

statical stiffness coefficients are no longer identical, owing to the 
totally different physical conditions in the two cases. Since it is 
impracticable to define the stiffness of a conical shell on the above 

simple lines, other means must be sought to convey the idea of stiff-
ness. It is proposed to find the thickness of the homogeneous disk 

of equal radius, whose first centre-moving symmetrical mode occurs 

at the same frequency as that of the conical shell of like material. 
This must be regarded as purely illustrative, since the stresses in the 

two cases are of a totally different nature. The following data apply 
to a free-edge conical diaphragm: 

Thickness of paper 

Radius of cone 

Apical angle 

First symmetrical mode 

Second I> 

= 5 x 10-2 cm. 

= 16.7 cm. 

= 160° 

including coil-mass of = 350 ,) 
= 664 7.8 gm. which lowered 

frequencies. 

The frequency of the first symmetrical mode of a paper disk (one 
nodal circle) in vacuo, without the coil, is 22 Since w t, the disk 
whose first symmetrical mode is 350 has a thickness* 

(350/22) x 5 x 10-2 = 0.8 cm., 

and its mass is about 15 times that of the cone. The equivalent disk 

is therefore 350/22 = 16 times as thick as the cone. If the vibrational 

frequency of the cone were found in vacuo without the coil, this ratio 
would be appreciably larger. A second example of a diaphragm 
having a smaller apical angle is given below. 

Thickness of paper t = 21 x 10-2 cm. 

Radius of cone a = 12 cm. 

Apical angle # = 90° 

Young's modulus q = 1.9 x 1010 dynes cm. -2 

First symmetrical mode without coil = 3,200 

The first mode of a paper disk of equal radius in vacuo is 11 

Thus the thickness of the equivalent disk is 

(3,200/11) x 2.1 x 10-2 = 6.1 cm. 

• For the sake of illustration it is assumed that w cc t whatever the thickness, but 
this is not rigorous. 
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This is 180 times the mass of the cone and nearly 300 times as thick. 

These calculations demonstrate the enormous increase in stiffness due 
to conicality. 



XIX 

DESIGN CONSIDERATIONS IN HORNLESS 
MOVING-COIL SPEAKERS 

1. TRESE instruments cannot be designed in the same precise way 
as horn-type speakers (Chap. XX). The design is usually determined 
largely by trial and error. A critical musical perception is an asset 
for this purpose. The experimental data in Chapter XVIII, together 
with the theory in Chapter VIII, will be found to be of service in 
design work. In many speakers the lower register predominates to 
the detriment of speech reproduction, which is accompanied by an 

unpleasant boom. To avoid this the frequency of the diaphragm on 

its axial constraint should be well below audibility, and the centring 

device must have small mass. The magnetic field ought to be much 
more intense than that in the average speaker, and for this purpose 

permanent magnets are of little use. There are four main resonances, 
namely, (1) that cited above, (2) the surround vibrating as an annular 

membrane, (3) the air column within the cone, (4) the symmetrical 
modes of the cone. In some speakers the surround is a loose ring of 
cloth, so that (2) will then be absent. When (2) is present the funda-

mental should occur preferably between 100 and 140 ,--,. With a cone 

12 cm. radius the air-column resonances occur from 800 to 1,000 
and help to fill up the gap between the high and the low frequencies. 
If a cone 7 cm. radius were chosen, its symmetrical modes would 
commence at a much higher frequency than with a cone 12 cm. 
radius. With a driving coil whose mass is 2.5 gm. the output might 

be unduly powerful above 3,000 ,--,, thereby causing the letter 's' to 
whistle. The frequency range properly covered by a single diaphragm 

is limited. An average value for a diaphragm 12 cm. radius is from 

70 to 4,000 To extend the range another speaker must be em-
ployed. In so doing it is essential to use an output circuit of the type 

illustrated in Fig. 164, where each speaker is fed with current per-
taining to its own frequency range only. This obviates waste. Parti-
cular care is required to avoid noticeable resonances in the higher 

frequency speaker units. A powerful magnetic field is desirable 

to damp resonances and give adequate output. To get the best 
results, the mass of the driving coil has to be chosen carefully (see 
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Chap. XVIII, § 11). Inductive reactance of the coil is an important 

factor. Unless it is sufficiently small, the working current is reduced 
appreciably. 

There are no published data on the design and performance of high-
frequency moving-coil units per se. A brief description of a wide-
range hornless speaker (80 to 10,000 , ) is given in Chap. XX, § 16, 
and further details will be found in [90 b]. 

Instead of using a moving coil the diaphragm can be driven by two 
crystals of Rochelle salt (sodium potassium tartrate) linked up to 

give an amplified motion. Two plates of crystal are cut in relation to 
their axes so that one tends to dilate and the other to contract (and 
vice versa) when an e.m.f. is applied to the crystals via electrodes of 
metal foil. The plates are cemented together and clamped so that 
only one corner can move, the motion being perpendicular to the 
planes of the electrodes. The action is similar to that in bimetallic 
strips used in recording thermometers and thermal relays. The 

drive is fixed to the free corner of the crystal unit and is connected 
to the diaphragm by a lever mechanism to amplify the motion, 

thereby enabling the mechanical impedances to be matched (see 
Chap. XIII, § 10). Although this drive is most suitable for high-

frequency speakers, units have been constructed for reproducing the 
lower and middle registers [164c, 208 a]. 
The question of baffles above 4,000 , is of little moment, but it 

is convenient to mount the high-frequency units in the same baffle 

as the main unit. The electrical connexions are preferably such that, 

when supplied with a sine-wave current, all diaphragms move simul-
taneously in the same direction. Since the radii of the upper fre-
quency diaphragms is smaller than that of the main unit, focusing 

of the sound is less pronounced above 4,000 , than it would be with 
a single unit (Chap. V, § 1). 

2. Coil current at low-frequency resonance [80d] 

This can be obtained using the circuit of Fig. 149A, when a constant 
sine-wave voltage of varying frequency is applied to the power valve. 

The current-frequency curve of Fig. 149 has a crevasse at the resonant 
point, owing to the enormous increase in electrical motional resistance 
[113 a]. If the current is also measured at the resonant frequency, 
with the speaker coil fixed, the motional electrical resistance (includes 
loss) can be computed. 
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Let E2, E2' be the voltages on the secondary of the transformer when 
the coil is free and fixed, respectively, as measured with a Moullin 
voltmeter, and 12, .4 be the corresponding currents; then 

B. E 2 _Ei\ 
‘.I2 

0-3 

Rd-1500 ohms 

Ra =600 
Resonance &diaphragm ohms 
on leather surround-

I ti 
ISO 

5000 ohms 

50 75 100 
Frequency—cycles per second 

200 

(1) 

FIG. 149. Showing crevasse in current-frequency curve of hornless moving. 
coil speaker at resonance frequency of the diaphragm on its leather surround. 
The signal voltage applied to the grid of the power valve was constant 
throughout. 

approximately, since the reactance is relatively small in both cases. 

In Fig. 149 R. 50 ohms, and since the transformer ratio is 10: 1, 
the corresponding anode circuit load is 5,000 ohms. The valve 

resistance is 600 ohms, whilst the total coil resistance referred to the 

anode circuit is .R1 = 1,500+5,000 = 6,500 ohms. Thus the circuit 

resistance increases from a nominal value of 2,100 ohms to 7,100 

ohms at resonance, thereby causing the current to fall in the ratio 

2,100/7,100 = 0.3/1. It follows that the output is only its value 
with a constant current, e.g. with a pentode valve of high internal 
resistance. Thus the resonance can be curbed appreciably by using 

a power valve of low resistance. 
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3. Increase in amplitude at resonance [80 d] 

From Chapter VII the electrical radiation resistance due to a rigid 

diaphragm resonating on its axial constraint is 

C 2 
(2) 

In the absence of axial constraint the mechanical impedance is almost 
wholly reactive, since the radiation resistance re is relatively small. 

Then the electrical radiation resistance 

From (2) and (3) 

C  R, 2r 
r to 2m : 

B r e°2712: 

re. 

(3) 

(4) 

this being the power ratio of a resonant to a non-resonant system 

when the coil current is constant. The amplitude magnification is 
comeIrr, this being analogous to w.LIR for a tuning coil. Using the 

value of re from (2) in this formula, we obtain the amplitude magni-
fication at resonance, namely, 

e 
= came l?,  2— • (5) 

Incorporating the reduced value of current at resonance when a 
triode is used, (5) becomes 

tome R, I, 
C2 (6) 

Using the data* C2 = 3.6 x 1013, Br = 5 x 101°, me = 20 gm., 1211, 
0.3, w/271. = 75 we obtain p. = 4. Care must be exercised in 

practice to keep the amplitude within the linear portion of the force-
displacement characteristic of the diaphragm constraint. When this 

condition is violated the wave form is flattened as shown in Fig. 103, 

and powerful alien tones may be created. This, in combination with 
the rectification effect discussed in Chapter XIV, limits the amount 

of power which can be radiated at low frequencies. 

4. Power output at resonance [80 d] 

The total power (radiation +loss) is le R.. If E is the anode voltage 
change, the primary current at low frequencies is substantially 

* Given in absolute electromagnetic units. To convert CI and R,. to practical units 
multiply by Hrs. 
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E/total resistance. The total anode circuit resistance at resonance 
is* Ra+ normal optimum load resistance cp+ 2 = 3.5R.±,p2Rm, 

where 2-5Ra is the normal load and y the transformer ratio. Thus 

= cpE/(3.5Rad-cp2R,a) and the power 
E22R 

R, , - . 
n (3.5Ra+ cpsRm)2 (7) 

By differentiating (7) with respect to R„„ the condition for maximum 

power is found to be 3.5R 
R a ai — 

2 

Using the data in § 2 (8) gives R. = 21 ohms. Actually R. was 
50 ohms, so the power at resonance was not a maximum. If the 
mechanical resistance rr is constant, then from (2), in the absence 

of loss, Bm decreases with reduction in C2. Thus in the present case 

the power at resonance, and therefore the amplitude, would increase 
if the magnetic field strength was reduced. Although this condition 
should be avoided, it is quite prevalent in commercial apparatus, 

doubtless in the interests of economy. 
The advantages of an intense magnetic field are: 
1. With any given triode the stronger the field the greater the 

reduction in current at resonance. A corresponding reduction in 

amplitude and output ensues. 
2. The electromagnetic damping is enhanced, thereby reducing the 

growth and decay periods. This provides a better 'attack', whilst 
natural oscillations of the diaphragm are more heavily damped. 

3. The general output is augmented and the relative power due 

to resonances reduced. 

(8) 

5. Relationship between amplitude and loudness level [80d] 

To bring the problem within the purview of simple analysis we shall 
choose a speaker diaphragm 10 cm. radius operating in a hard wall, 
the remainder of the enclosure being 'dead'. The results apply to 

pure tones only. In practice, sounds are complex and masking effects 

play an important role. 
The sound-distribution at distances exceeding 200 cm. is uniform 

provided the radius of the diaphragm is small compared with the 
wave-length. If the power radiated from one side of the diaphragm 

is P ergs sec.-1, that passing through one square centimetre on the 

* Away from resonance 91/?„, is negligible compared with 2.5R.. 
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surface of a hemisphere of radius r is P/27Fr2 = P1. Also, from Chap. 

VI, § 2, P1= p2Ipoc, and from (72a), Chap. II, 

p irPo a4c04erna. 
(9) 4c 

Equating the two values of P1 and substituting for P from (9), we 
obtain the r.m.s. sound pressure, 

Po a2W2ernax . (10) 
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Fie. 150. `Isobels' or curves of equal loudness level [80d] for 

pure tones propagated as plane or spherical waves in air. 

The datum-level of sound intensity is taken as 10-9 ergs cm.-2 sec.-1, 

this corresponding closely to a r.m.s. pressure of 2 x 10-4 dyne cm.-2 

under normal conditions at 18° C. Using (10) and the formula in 

definition 15, the level above the datum is 

db. -= 74+20 log„P9a2 in" . (11) 
2N/2r 

Takingma = 0.1 cm., r = 500 cm., cu/27r = 64 db. = +77. x  
Using the curves of Fig. 150, the corresponding loudness-level is 

60 db., which is on the low side. If the diaphragm were set in the 
centre of a wall in an average room, the intensity would be some 

10db. higher due to reflection. This gives 87 above the datum and 

corresponds to a loudness of 80db., which is ample for domestic 
purposes. 
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DESIGN OF HORN TYPE MOVING-COIL SPEAKERS 

1. THERE are two salient methods of approaching the present pro-
blem, both of which will be considered in detail and the results 
compared [71, 76]. As in the design of various forms of mechanism 
associated with vibrations, recourse is had to the electrical analogue 
of the mechanical system. In a resistanceless low-pass filter the 
attenuation over a wide frequency band is zero, but increases rapidly 
beyond the cut-off point. The object in speaker design is to simulate 
this as closely as possible. A very sharp cut-off is not imperative, 

since difficulty might be experienced in connecting the speakers for 
different frequency ranges and ensuring a smooth overall response 
curve. Where only one speaker is used, a sharp cut-off should be 
avoided, since it affects the reproduction adversely. 

2. Method 1 [76] 

The type of unit to be considered is illustrated in Fig. 82 A and the 
electrical analogue of the mechanical system is shown schemati-
cally in Fig. 151 A. The diaphragm (assumed to behave as a rigid 
structure) is represented by an inductance LI, whilst the surround 
compliance is represented by a condenser C1. The compliance of the 
air chamber between the diaphragm and the horn throat is repre-
sented by C2, whilst M stands for the pneumatic transformer action 
due to the diaphragm being of greater diameter than the throat, 
Fig. 151 c. Obviously the ratio of the air velocity at the throat to 
that in contact with the diaphragm is Ad/A°. This, therefore, is the 
transformer ratio. The resistance R2 simulates the throat resistance 
po cA 0. In placing R 2 across the secondary of the transformer we 
have tacitly assumed that the throat impedance of the horn is wholly 
resistive. As the cut-off frequency of the horn is approached, the 
reactance, due to the particle velocity and pressure being out of 
phase, increases, and if incorporated would be in series with R 2. It 

is quite adequate for our purpose, however, if we confine the analysis 
to frequencies above the horn cut-off, where the phase angle is small. 
At high frequencies, where the wave-length is comparable with the 
diaphragm radius, interference and reduction in output ensue, unless 
the design is specifically arranged to avoid this. Moreover, it is 
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assumed that arrangements of the type illustrated in Figs. 82 A, 163 

are employed in both methods of design, so that the pressure from 

all parts of the diaphragm arrives at the throat in substantially the 

same phase. Even so there is a reactive component, but it will be 
neglected. 

It is analytically inconvenient to have the transformer, so it and 

R2 are replaced by R = (Adl A0)2R2, as in ordinary electrical problems 

(a) 

(b) 

(t) 
Area of' 
diaphragm 

I/ Re Rza' pot Ao 

RE poCA0(k)° 

Exponentekergc 

Throat area Ao. 
Throat Throat resistance pocA. 
chamber 

Fla. 151. (a), (b). Electrical analogue of mechanical 
system illustrated in (c). In the design given in the 
text it is assumed that the impedance at the back of 
the diaphragm is negligible. When this is inadmissible 
it may be necessary to connect a condenser C3 shunted 
by a resistance Ra between E and LI. If the radia-
tion at higher frequencies is appreciable an additional 
series resistance is required. (See § 12 and Fig. 158.) 

[62], Fig. 151 B. We have to select the various circuital coefficients 
so that the power dissipated in R, i.e. that radiated as sound, will be 
fairly constant over a wide frequency band. To secure this condition 
the inductance L1 must be small, i.e. the coil and diaphragm must 

be very light, but commensurate with the duty to be performed. The 
fundamental frequency of the system is that of the coil and dia-

phragm on the annular surround. As a guide this can be taken 
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as the geometric mean of the upper and lower cut-off frequencies, 
i.e. WO = ,,/(04 wc). Taking 4124r = 50 , and coc/277. = 4,000 ,, the 
natural frequency in vacuo should be of the order V(2 x 108) = 446 ,. 

Assume it to be 400 , and the coil and diaphragm mass 1 gm. The 
stiffness of the surround 81= wömd= 64X 108 dynes cm.-1 To 

secure a good upper register C2 must be quite small so that it reso-
nates with Ll at a fairly high frequency. This necessitates a large 

chamber stiffness which in turn will restrict the diaphragm amplitude 

and therefore the low-frequency output. Neglecting R for the time 

being, the high-frequency cut-off is w, -= V(1/Li C2) ,,/(82/md), since 
the impedance of CI is negligible above 1,000 ,. In practice it is 
necessary to make R relatively low, and this prevents the cut-off 
being sharp. There is no sudden change in the diaphragm impedance, 
and the attenuation beyond the cut-off frequency increases very 

gradually. If wc/27, = 4,000 ,, then from the above formula 
82 = 6.4 x 108 dynes cm. --1 It is now necessary to ascertain how 

much clearance this figure leaves for the diaphragm excursion. From 

formula (16), Chap. IV, 82 = yAâpo/V, which in the present instance 
gives V = 2.2 x 10-84. Taking the effective diaphragm radius as 

3 cm., the chamber volume V is 1.8 cm.3 The clearance depends 
upon the geometrical form of the throat chamber and diaphragm. 

As a practical guide we shall assume the permissible amplitude max 
to be one-half the depth* of the chamber if it were cylindrical. In the 

present case ema. = 1.8/187r = 3.2 x 10-2 cm. According to the data 
in Table 33, § 15, the radiation at 200 with a throat radius of 
0.85 cm. and an amplitude of 3.2 x 10-2 cm., could be as much as 
1 watt. Below this frequency the output, with constant diaphragm 

amplitude, would decay as 1/co2, so at 60 it would be 0.09 watt, 
assuming, of course, that the cut-off point of the horn resides below 

this. The requirements of a public-address system would not then be 

met if it was intended to reproduce very low frequencies. To obtain 
greater output in this neighbourhood, the volume of the throat 

chamber must be augmented. Doubling the depth permits double 

amplitude and quadruple power, so at 60 we should get 0.36 watt. 
This means half the chamber stiffness and the upper cut-off fre-
quency is halved. The former is now 82 = 1.6 x Ho dynes cm.-1 and 
the latter 2,000 
We now proceed to predict the performance to be expected from 

* This is probably a conservative allowance. 
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the two cases treated above, i.e. cut-offs at 2,000 and 4,000 ,---,, on 

the basis of constant driving force throughout the frequency range. 

To accomplish this object it is necessary to determine the mechanical 

impedance of the system, as presented to the driving force on the 

moving coil, in the form ze =- r el-icon? e. First of all we deal with 
the electrical analogue. The electrical impedance can be found either 

by aid of Kirchhoff's circuital law or by the simple method of admit-

tances. Choosing the latter way, the admittance of C, R is (Fig. 151 n) 

1 1 1 -1-icte 2 R 
- — + ioi C 2 =- 

«—z R R . 

R(1—iwC,R) 
Thus Z 2 — 

1 -1--(.02Ce R2 . (1) 

The total circuital impedance is, therefore, 

R -=   i( 1 co i0C2R2  \ Z (2) 1 ±,02q R2+ L, ex , 1 +,,,2ce R2i• 

Transforming (2) to mechanical quantities, we have 

4 r ¡ { ( si 8 2 r2 ] 

(3) ze =-- 2 + CV M a 
82+ (e2r2 w 2) 4± w 2r2 • 

Thus the effective mechanical resistance opposing the driving force 

on the coil is 2 

82 r  
re — 2 (4) 

82+0,2r2' 
and the effective mass is 

(md 81) (  82r2  . (5) 
0,2 4_4 ,272) me —  

In (5) the portion within the first bracket is the effective mass of the 

diaphragm and the surround, whilst the second quantity is that of 

the throat chamber as modified by the horn. The effective motional 

mechanical resistance re must not be confused with r the resistance 

shunting 82. The two are different, since one refers to a series and 

the other to a shunt connexion. The difference is a matter of the 

phase and magnitude of the velocity. From (4) and (5) it is possible 

to plot curves showing re and me, provided r is known. Assuming a 

throat radius of 0.85 cm., the resistance is p0cAo =- 95 dynes cm. -4 

sec. --1 Allowing for transformer action, r = 95(Ad/Ao)2 =- 145x 104 
mechanical ohms. The requisite curves are plotted in Fig. 152. The 
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power radiated is P = ( flze)2re, and if f is constant, 

P oc . (6) 

This is portrayed graphically at various frequencies in Fig. 153 to 
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Fie. 152. Effective resistance and effective mass curves for 
diaphragm of horn type moving-coil speaker. 

For (1) 8, =--- 6-4 x 108 dyne cm.-1: for (2) 82 = 1.6 x 108 dyne cm." 

o 

15 128 256 5 2 1024 2048 io96 
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Fie. 153. Curves showing influence of throat chamber stiffness 
on performance of horn type moving-coil speaker. 

For (1), 82 = 6.4 x 108 dyne cm.' ; theoretical cut-off 4,000 ; 
for (2), .92 =--- 1-6 x 108 dyne cm. -:1 ; theoretical cut-off 2,000 •-•••• 

a logarithmic scale of ordinates. It is clear that the speaker with the 
stiffer throat-chamber and higher cut-off frequency has the better 

upper register of the two (curve 1). 
It is now advisable to test the assumption of constant driving force 
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corresponding to equal input to the power valve at all frequencies. 

To do this we commence by calculating the electrical impedance of 
the secondary circuit of the transformer connecting the power valve 

to the speaker. At the resonance of the diaphragm on its &mound 
(400 ,--,), the mechanical impedance is substantially re. From formula 
(2), Chap. XIX, the electrical motional resistance,* assuming absence 

of loss, Br= C2/re. The mean air-gap flux density of the magnet Bg 
can be taken as 2 X 104, whilst the length of aluminium ribbon on the 

coil is 760 cm., giving a value of C2 = (B01)2 = 23x 105 practical 
units (abs. units x 10-°). Since re = 145x 104, R,. - 16 ohms. The 
coil resistance being 15 ohms gives a sum of 31 ohms, to which must 
be added the influence of the valve and the secondary of the trans-

former. Choosing equality of valve and speaker resistances, the total 

effective secondary value is about 60 ohms. The electrical inductance 
of the coil is important at high frequencies only. Taking its value as 

8-4 x 10-4 henrys t as based on Table 36, the reactance at 4,000, is 
about 20 ohms. It is easy to show that the motional reactance coL,„ 
is negligible throughout the frequency range. Thus the impedance of 

the secondary circuit and, therefore, the driving current will be sub-
stantially constant at all frequencies, provided the coil resistance does 

not increase with rise in frequency. From Table 36 we see that the 
resistance does increase, so that the output will decay to an extent 

in the upper register. In general this is not serious up to 4,500 ,--..,. 

The efficiency ri = 41(4+4) = It =- 0-52, which is a high value 
attributable to the special coil construction (Fig. 82) and the intense 
magnetic field. 

Horn. If the cut-off frequency is 60 ,----,, from Chapter X, I312k = 1, 
so 13 = 0-022. According to Chap. X, § 6, the radius of the final 
opening should be about p - 140 cm. Since the horn curve is 
A =- A 0 eat, 1 = (4-6//3)logio a/ao = 460 cm. or approximately 15 feet. 

3. Method 2 [71] 

The mechanical construction of the driving mechanism differs from 
that in the previous method and is illustrated schematically in 
Fig. 154. The driving coil is connected to the diaphragm by a spider 

of appropriate stiffness, whilst in vacuo the fundamental frequency 
* At resonance Ref = RI' 
t The coil considered here is the same diameter as that cited in Table 38, but is 

one-third the length and has only 50 turns. The air-gap is smaller here, which means 
increased iron loss and inductance. 
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of the diaphragm on the annular surround is below audibility. The 
electrical analogue is given in Fig. 155 A. L1 represents the mass of 
the coil and its former with the spider; the compliance of the latter 

is given by condenser C1. The throat-chamber compliance is equi-
valent to C2, whilst L 2 simulates the mass of the diaphragm assumed 

Annular surround 

Spoke 

FIG. 154. Illustrating diaphragm and coil construction for horn type 
speaker (method 2 in text). See caption to Fig. 151 regarding the impedance at 
the back of the diaphragm. 

(a) 

cl 
C> 
C.> Gt)17. pc, c A,, 

Mu. 155. Electrical ana ogue of diaphragm air-chamber and horn, in moving.. 
coil speaker (method 2 in text). 

to vibrate as a rigid structure. The coupling transformer due to the 

throat chamber, shown in Fig. 155 B, is omitted, so R represents the 
mechanical resistance on the diaphragm due to radiation. The com-

pliance of the annular surround, which would be represented by a 
condenser in series with LI, as in Fig. 151, is so large that its influence 
can be neglected. The network in Fig. 155 A, which simulates the 
mechanism of the speaker, is of the 1¡ section type with mid-shunt 
termination. The surge impedance of an infinite network of this type 
over a wide frequency range is a resistance of value R = V(LA). 
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As the cut-off point is approached, a reactive component appears 
which causes a reduction in the diaphragm velocity. In the present 

case, if the above surge impedance is assumed, the attenuation up to 

80 per cent, of the upper cut-off point will be substantially uniform, 

provided L1 = L2 and 1 = 26'2. For simplicity we shall assume 
that the horn functions above its cut-off point, where the phase angle 
between pressure and particle velocity is small enough for the power 
factor cos 0 to be taken as unity. 

First of all we shall examine the circuit of Fig. 155A analytically 
and derive an expression for the radiated power /2R in terms of the 
circuital coefficients. Using Kirchhoff's principle, that the sum of 
the p.d.s round a closed circuit vanishes, together with the condi-
tions Li. = L2, C1 = 2C2, we have for the first circuit: 

ico L — E; (7) 
caul 

for the second circuit: 
2/14 

;0; = o, (8) 

the positive sign prefixed to the third term signifying that the p.d. 

is now taken in the opposite direction from that indicated in the 
second term of (7); for the third circuit: 

2iI 
= 0; (9) 

coui, 
and for the currents: 

/1 = 12+13 and /3 = (10) 

We have to determine the power I2.R from (7), (8), (9), and (10). 

The plan adopted is to eliminate each current in turn, starting with 
and ending up with I in terms of E and the circuital coefficients. 

Substituting from (10) for 1.1. in (7), we have 

=- E; (11) 

so i/2(a).L1 — j i(üL, E, 

or (y2-1)+i(0.4. /3 E, (12) 
wG 

where y2 = «,24 CI. Substituting in (12) for i/2/wCI from (8), 

2e4(Y2— 1) • 14.04(y2-2)/3 = E. (13) 
czei 
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, 
From (9), =- —IR, and from (9), (10), 4 =wCj  211. 

Inserting these values in (13) we find, on separation of the real and 
imaginary parts, together with the substitution y = coLdR, that 

//i{(y4-2y2+1)—iy(y2-2)) = E. (14) 

( 

08 02 04 06 
Values of' ('Ywc) 

Fra. 156. Curve illustrating perform-
ance of horn speaker designed according 
to method 2 (see text). The abscissae are 
fractions of the upper cut-off frequency 
aid2e. 

Thus the power supplied to the horn is 

E2  1  
PR — 

R {(41,-2Y2+ 1)2+y2(Y2-2)9 
E2  1  

or P — (15) 
(1+0— Y6±iY8). 

Now y2 = 0)2.4 01 and the upper frequency cut-off of the network is 

given approximately by (4 --- 4IL1C1, so y2 = 4(04(04)2. Writing 
w/coc =p in (15) and transforming to mechanical quantities, we 

obtain the power [71] 
10--y 1  

P   (16) 
r,. 1.1-1-16cp4-64cpe+64cp81. 

The quantity in brackets specifies the performance, provided the 
driving force and throat resistance are constant. Since this pertains 
in the analysis, the output is represented by the bracketed quantity, 
which is plotted on a decibel basis in Fig. 156. The output-level 
-is practically unaltered up to 80 per cent. of the upper cut-off 

frequency. 
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4. Details of design 

To make comparison with the design considered in method 1, the 

salient dimensions are unaltered. The output is to be maintained 
constant up to 4,000 ,, which entails a theoretical cut-off at 5,000 
We have co, = 2.,/(81mc). Since m, -= 0.5 gm., we get 8 = 125X 108 

dynes cm.-1 If there are six spokes to the spider, the stiffness of 
each is approximately 2.1 x 107 dynes cm.-1 For flat spokes (on the 
assumption of a free end cantilever) the deflexion x = fl313qI, so 

the stiffness 8 =- flx = 3q1/13. For a rectangular section I = b13/12, 
so the thickness t = 41(481qb). Assuming / = 0.7 cm., b = 0.15 cm., 

q for aluminium, 7.2 x 1011 dynes cm.-2, the thickness is t -= 0.064 cm. 

From formula (16), Chap. IV, the stiffness of the throat chamber, 
when closed at the horn, is (writing 28 for 8) 28 -= yAâpolV. Using 

the preceding value of 8 and taking the effective radius of the dia-
phragm as 3 cm. (as in method 1), the chamber volume V = 4.5 cm.3 
The height of a cylindrical chamber is 4.5/9/r = 0.16 cm. and the 
maximum permissible amplitude 0.08 cm. The terminal resistance 

of the network, this being the mechanical resistance at the dia-
phragm, is from Fig. 155 A* r,. = V(md8) = 8,000 dynes cm.-1 sec.-1 

This is about one-half the value in the previous design, so that for 
given output the amplitude will be nearly V2 times greater. Now 

r,. = pocAo(Ad121.0)2, so the throat area A, = po cA dlrr --= 4.25 cm.2, 
corresponding to a radius a, -= 1.16 cm., which exceeds that in the 
other design by 36 per cent. 

5. Comparison with method 1 

For comparison with the first method we have agreed to use dia-

phragms of identical mass and radius. The construction, however, 
must be modified to incorporate the spider. The total coil mass, 
including former and spider, is 0-5 gm., 0.11 gm. of this being due 

to the latter. Adding 0.09 gm. for fixing the coil of the spider, 0.3 gm. 

is left for the conductor whose length is reduced in the ratio 3 : 5 
compared with method 1. Thus C2 is now 23x 105x& = 83X 104 
in practical units. 

From Chapter VII, the electrical motional resistance R. = n.C214. 
Since the input impedance; = rr the formula becomes 

C2 8.3 x 104 
Bm =_-_   —. 10 ohms. 

r,. 8,000 • 

* md = 
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The coil resistance in the first method is 15 ohms, so it is now 
X 15 = 9 ohms. Consequently the acoustic efficiency n = = 0.53 
which to all intents and purposes is identical with the value found 
previously by method 1. In both of these designs it is of importance 

to notice that the back e.m.f. induced due to motion of the coil in 
the magnetic field is very small compared with that in a hornless 

speaker. This is due to the smaller amplitude in the horn speaker 
required to radiate a given power (see Table 33). Thus the motional 
capacity is small enough to be disregarded in comparison with the 
motional resistance. Owing to the greater chamber volume the pre-

sent design is capable of greater output at very low frequencies than 

that of method 1. The power delivered to the horn is P = to2e2B,.. 
Now the maximum permissible amplitudes vary directly as the 

chamber volumes, since the diaphragms are of equal radius. Thus 

the power ratio of the designs is 

P2 /V2\ 2rr2 (4.5)2 8 x 103 3.4 

VI) 1.45x 104 • 

or 5.3 db. at the lowest frequencies. In method 2 the permissible 
amplitude is (from above) 0.08 cm., which with r,. = 8,000 gives the 

ultimate power as P 2.5 x 10-6(02. At 100 es, this means a maxi-
mum output of 1 watt and at 60 one of 0.36 watt, which is ample 

for a single speaker covering a wide frequency band. For picture-
theatre work it is customary to specify a maximum output at the 

lower cut-off frequency. Under this condition the above design pro-
cedure would have to be more or less reversed. It could, of course, 

be used as a basis and the essential modifications made to ensure 

adequate low-frequency output. 

6. Horn 

The only essential difference between the data in the two cases is 
that (to is now 1.16 cm., which gives a length of 14 feet as compared 

with 15 feet found previously. 

7. High frequencies 
The two designs show a different behaviour at the upper frequencies, 

provided the diaphragm is rigid in each case. The input impedance 
in 1 is partly resistive, and partly reactive due to the coil mass. At 

higher frequencies the latter component curbs the diaphragm velocity 
and reduces the output as shown in Fig. 153. In practice, however, 



380 HORN TYPE MOVING-COIL SPEAKERS [XX. 7 

resonances come to the rescue and the output is maintained up to 
4,500 ,-..,, as shown in Fig. 100. The origin of these resonances is most 
likely in the diaphragm. Its spherical shape does not give such high 

rigidity as that of a cone, and nodal circles are likely to occur near 
the axis. We ought to mention, however, that the reactance com-

ponent due to the air can be represented by an inductance in series 
with R in Fig. 151 B. This gives a parallel oscillatory circuit, but it 
may be too heavily damped for resonance to have an appreciable 
effect on the speaker performance. The input impedance in method 2 

is wholly resistive up to a higher frequency than in method 1. Thus 

the output is maintained fairly uniform up to a higher frequency, but 
the cut-off is sharper. In practice resonances doubtless contribute 
their quota and off-set the influence of frictional loss at the horn 
throat. 

8. Factors controlling the efficiency* 

Since coc = 2,/(8/mc) and r,. = i/(8m,), we have r,. = (cocnic). Now 

R,,, = C2/r,. = 2C2/wcm„ where nt, includes the coil, conductor in-
sulation, former, and spider. Let rn, = pm, where in; is the mass of 
the conductor alone. We have nzu = pa IA, SO 

2C2 
R = 
m aic<PP2 121. 

Also the conductor resistance 

RC = 1-):114-, 

where pi can include the influence of iron loss in 
the value C2 = (BA2, with the aid of (17) and 

[71] is 1  1  

n — 1±(RcIRm) = 1+11x' 

where • 
Bm (Pwc P1 P2 

(17) 

(18) 

the magnet. Using 
(18), the efficiency 

(19) 

For a given upper cut-off frequency the efficiency increases with x, as 
shown in Fig. 96. As might be expected, the flux density should be 
as large as possible for high efficiency. The product of specific resis-

tance and density (p1pa) is to be as small as practicable. Here alumi-

nium scores over copper, since pips for the former is half its value for 

the latter. When Bu and Pi Pa are fixed, the efficiency increases with 

• §§ 8, 9, 10 refer to method 2. 
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rise in the upper cut-off frequency. Now we = 2,/(8/me), so that if the 

stiffness is constant, m decreases with rise in cue. There is, however, 
a limit, since m is the diaphragm mass of fixed diameter. Its thick-
ness cannot be reduced a great deal, since the resonance frequency 
would be quite low, thereby modifying the performance. Also with 
a diaphragm of inadequate rigidity, the speaker might be prone to 

rattling with large low-frequency input. y is an important factor and 
its value should be as near unity as possible. This can only be accom-
plished by adopting a special form of coil design, e.g. strip wound on 
edge, as shown in Fig. 82B. There is, of course, the problem of 

attaching the coil to the spider, and this is where the second design 
is at a disadvantage compared with the first, since the inactive mass 
of material is a goodly proportion of the coil mass. 

9. Relationship between power and throat area [71] 

From formula (16), Chap. IV, and Fig. 155A, the chamber stiffness is 

28 (20) — 72412° — WC?,., 
V 

since we = 2,1(eltnc) and r,. = 
The mechanical resistance at the diaphragm is 

Po 8Ael (21) 

from which it follows that 

yAopo 33x 104210 (22) 
— Po caic — toe • 

Thus for a given throat area and upper cut-off frequency the volume 
of the air chamber is constant. The permissible displacement, being 
one-half of the height of the equivalent cylindrical chamber, is 

V/2Ad = emax. But P =¡w2elairr, so that from above 
P = 600A0(12 watts. (23) 

For a given throat area, the output increases with decrease in the 
cut-off frequency, since this permits a larger chamber volume and 

greater amplitude. Alternatively, if co, is fixed, a large throat area 
is required to deliver considerable power. There is, however, a limit 
beyond which trouble with the diaphragm arises due to increase in 

diameter and thickness. 
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10. Upper limit of throat area (A0) [71] 

From § 8* r,.= Ecocind) = pocAVA(, from (21), so 

0 = 2p0cAâ 844 
(24)• md coc Md Ca, 

For any given shape of diaphragm md i P2 A d where tcr1 is to  
a constant. Thus 

210 — urs Ad (25) 
tcuc 

where er2 = 841zo-1p2. When the fundamental frequency of the dia-

phragm is fixed, A d can be found in terms of coc for any specific shape. 
Thus the largest permissible throat area can be determined. To 

secure rigidity the diaphragm must be either conical, spherical, or 
some such form as shown in Fig. 82 A. The relationship between Ad 
and t is then not of the simple form which pertains to a disk, and 
may have to be found experimentally. This will be realized by refer-
ence to Chapter XVIII, where it is shown that the influence of cir-

cumferential or hoop stress is of prime importance when the thickness 
exceeds a certain amount. 

11. Experimental data on horns 

Some data obtained with exponential horns and modifications thereof 
are shown graphically t in Fig. 157 [68]. These horns were driven by 

an electrical unit actuated by a power valve to whose grid a con-
stant input voltage was supplied. It is seen that the power from 
a horn 16 in. long begins to fall rapidly below 360 To extend the 

range down to 120 a horn 4.5 times as long is required. Even so, 
the power with such a horn at 120 is slightly less than it is with 
a shorter one at 360 The length of the horn increases more rapidly 
than the cut-off frequency decreases, e.g. 4.5 > 360/120. This bears 
out the theory in Chapter X that the radius of the opening must 

increase with the wave-length. The rate of expansion being fixed, it 
follows that the horn-length increases with the wave-length. There 

is little necessity to comment on the shapes of the curves above 

500 except to mention that they are typical of the results obtained 
from moving-coil horn-type speakers. There is a fairly sharp cut-off 
about 5,000 in all cases, but in all probability it is mainly due to 

* m, = m, by hypothesis, where m, is the mass of the diaphragm alone. 
t A vertical scale is not given since it is absent in the original. It is not clear 

whether the output was measured on the axis or integrated over a hemisphere. 
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interference in the throat chamber, when A is comparable with the 

diameter of the diaphragm 
When a cylindrical section 12 in. long is inserted half-way along 

a horn 7 feet long, the transmitted wave is suddenly unable to 
expand. Part of its energy is diverted backwards, i.e. it is reflected 
with consequent loss in output [68]. The result is to raise the cut-off 
frequency from 100 to 140 and to cause a reduction in output up 

to approximately 450 It is only fair to remark, however, that 
the aural effect would be almost negligible. The influence of a 12-in. 

/ 
I 

le—Straight horn 16" long 
32" long 

r— I 

72" long 

1 1 1. 1 I_ I 

i 00 2 3 5 1,000 2 3 5 10,000 

Frequency ("v) 

Fla. 157. Curves illustrating performance of straight 
exponential horns of different lengths. 

parallel section at the throat is to reduce the output from 450 to 
200 and to lower the cut-off frequency by 10 

12. Directional baffle speaker, i.e. large diaphragm with horn 

The arrangement is shown diagrammatically in Fig. 158A. The dia-

phragm radius is of the order 7 cm., the assembly being akin to the 
ordinary moving-coil speaker excepting that a wide horn is used to 
increase the efficiency [11, 15]. It also increases the directional pro-
perties. The sound from the rear of the diaphragm is suppressed by 

an absorbent cabinet. The absorption at low frequencies is small 
compared with that at high frequencies, where the absorption coeffi-
cient is substantially unity. In investigating the design, the first step 

is to determine the electrical analogue of the mechanical system. It 

is not easy to assess the effective mass of the coil and diaphragm, 
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owing to the variotis vibrational modes which occur throughout the 
acoustic register. From Fig. 111, for a cone with an annular surround, 
the effective mass is seen to be very variable, particularly in the 
neighbourhood of resonances. If the effective-mass curve of the dia-
phragm, under the conditions indicated in Fig. 158 A, is known, the 

Magnet. 

(b) 

 ftrepp_OwtHI  

(a) 

Directional baffle 

Absorbent material 

R.' PocAok,AdY I 

c, 

peA. 

Flo. 158. 

(a) Schematic arrangement of directional baffle speaker. In some cases the 
sides of the box are perforated. 

(b) Electrical analogue of the mechanical system in (a). The effect of radia-
tion from the back of the cone can be included in RI, but it is preferable to use 
a separate series-resistance R1 (not shown) between C1R1, and C,. 
The separation of the diaphragm and the front of the air chamber is 0-32 cm. 

value of the inductance in the analogous electrical circuit of Fig. 158 B 
is calculable. This, however, is not permissible in the present case, 
since we start ab initio. All we can do, therefore, is to substitute 
some form of diaphragm amenable to calculation in order to establish 
the design. Moreover, we select a rigid disk on the assumption that 
the magnet does not interfere seriously with the sound radiation 
from the rear. 
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The mass is the sum of coil, diaphragm, and accession to inertia, 

i.e. me = me+m„±mi. If we confine our attention to the frequency 
register above the horn cut-off, where the particle velocity and pres-

sure are substantially in phase, mi on the horn side of the diaphragm 
is negligible. On the cabinet side the low-frequency condition differs 
from that of radiation into one-half of infinite space, and the acces-
sion to inertia is thereby modified. Its value depends upon the form 

and size of the box, together with the absorption coefficient. As a 

first approximation we shall take mi to be the value calculated from 
formula (14), Chap. III. Thus me is found, so the analogous electrical 
quantity L1 can be determined. The elastic effect of the air in the 

box can be ascertained by aid of formula (16), Chap. IV. Since 
ypo = poc2, the analogous capacity C1 V1/4 po c2 = 1/8k, where VI 
is the volume of the box and Ad the effective area of the diaphragm 
(ira2). Owing to absorption of sound within the box, this condenser 

is to be shunted by a resistance R1 which decreases as the absorption 

increases. When the latter is zero R1 is obviously infinite. 
There is also the resistance R2 due to radiation from the back of 

the diaphragm. This can be treated as a series resistance between 

C1 and C2 in Figs. 158B, c (not shown). As a first approximation 
the mechanical resistance can be calculated from the formula in 

Chap. VIII, § 1, viz. re = Po cAGI. It varies with frequency* in a 
manner similar to that of the dotted curve G1 of Fig. 17. 

The elastic effect of the annular surround is represented by a series 
condenser C2, since the box and surround constraints are additive, 
both opposing axial motion of the diaphragm. Allowance can be 
made for sound radiation and increased mass due to the surround 

by supposing the diameter of the diaphragm to be augmented by 
an appropriate amount. This completes the diagram for the rear 

portion. 
In front of the diaphragm there is the stiffness of the throat chamber 

and the resistance imposed by the horn. These are in parallel since 
the horn acts as a leak on the chamber. From above, 

C V 1  po c2 — 8 

where V is the volume between the diaphragm of effective area 
A d and the throat entrance. Above the horn cut-off frequency the 

* LI, RI, and Ra vary with frequency. 
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throat resistance is approximately 9.0 = po cA 0. The resistance across 

C exceeds this owing to the transformer action of the chamber. If A d 

refers to the diaphragm, we have r = ro(AdIA0)2, and the electrical 

value R follows immediately. The value of Ad depends upon the 
load required on the diaphragm, and also the interference at higher 
frequencies where the wave-length approaches the diaphragm dia-

meter. The complete electrical analogue of the mechanical system, 
as shown in Fig. 158, has now been determined. 

In designing the speaker [15], the magnitudes of the various com-
ponents in Fig. 158 B must be chosen to give a relatively uniform 
response over as wide a frequency band as possible. Some design 

data may be of assistance in this direction. A reasonable throat dia-

meter* for a cone 7 cm. radius is about 11 cm. If the cut-off frequency 
is 50 the flaring index p= 2k =-- 2007r/(3.4 x Ms), which amounts 
to 1-84 X 10-2 (Chap. X). The radius at the horn-opening must be 
about kA to ¡A, i.e. the final radius is of the order 130 cm. Since the 
area at any axial distance is A -= A0 de, we have 

4.6 a 
= 346 cm. 

P ao 
or 11.5 feet. 

The resistance at the throat r, = po c/10 = 4 X 103 mechanical 

ohms, so at the diaphragm r,. = 4 x 103(7/5.5)4 --= 105x 104 mecha-
nical ohms. At the back of the diaphragm r,. steadily rises from 
a low value at 50 , to 6,500 mechanical ohms at 1,500 above 
which it is substantially constant apart from cone resonances. This 

resistance reduces the diaphragm amplitude and, therefore, the 
output on the horn side. 

Chamber stiffness 
1 ,2 A 2 

PO  
8 — — 9.3 X le dynes cm.-1 

V 

The value of C2 is best calculated from the natural frequency of the 
diaphragm on the surround in absence of the horn, box, and electro-

magnetic damping. Taking the natural frequency as 30 ,, the coeffi-

cient of restitution or stiffness is 

82 = (02111, 

.-_-- 2.9 x 105 dynes cm. -1, 

* In practice the throat is square, 4 in. X 4 in., whilst the conical diaphragm is 3 in. 
radius. 
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where me = 8 gm. So far as the box is concerned /4 can be omitted 
for simplicity, since the stiffness 

1 /Jo c5Aâ 
—   2.6 x 105 dynes cm. -1 

is relatively so small. Thus we are concerned with (1) mass of 
diaphragm, (2) stiffness of surround, (3) stiffness of air chamber, 
(4) resistive load on diaphragm. The low-frequency cut-off of the 
mechanism is substantially that of me and 82, i.e. 30 The actual 
cut-off acoustically is settled by the horn. Apart from diaphragm 

40 

30 

20 

; • • 

— Theory 
  Motional impedance measurements 
xx xx Microphone measurements 

I  I I I  

50 102. 2 3 4 5 103 2 3 4 5 6 7 8 104 

Frequency (.'•,) 

FIG. 159. Efficiency curve of directional baffle speaker. The radiation from 
the back of the cone is included in all cases. Owing to focusing of the radiation 
at higher frequencies (see Fig. 160), the response curve taken on, or at a small 
angular distance from, the axis is fairly constant up to 5,500 •••-,. The lower 
register can be extended down to 60 "•••• by using a baffle 10 ft. long and 
6 ft. X 6 ft. at the mouth. 

resonances, which augment the upper register and tend to preserve 

uniformity of output, the upper cut-off is due to me and to 8. Thus 

= ,I(alme), so the frequency is 600 ,••••,. Actually the cut-off is obli-
terated by the shunting effect of R, but the output in the upper register 

slowly decays. The efficiency found by measurement of motional 

resistance in air (R.), and by microphone measurements on a certain 
speaker in the open air (Chap. XV), is shown in Fig. 159 [15]. The 

output declines above 300 ,•••••.. It would decay more rapidly above 
2,000 if the diaphragm behaved as a rigid structure. As in other 
types of speaker, resonances are required to boost the output at higher 
frequencies. The power above 5,000 is attenuated due mainly to 

mass reactance. Owing to the large horn-opening (58 in. X 43 in.) 
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there is a strong directional effect over the whole frequency band, as 

shown by the polar diagrams of Fig. 160. The focusing in a central 

plane orthogonal to the long axis of the baffle mouth is more uniform 

over the frequency range from 400 ,-- upwards than that in the central 
plane containing this axis. This is due to the sound pressure steadily 
falling away towards the edge with increase in frequency [11]. The 
effect is equivalent to a reduction in the linear dimensions of the 

radiator, so the focusing increases less rapidly than that for a rigid 
diaphragm. The axial pressure at a distance of 20 feet from the 
speaker is substantially constant from 100 to 5,000 Instruments 

30 20 10 

15 

(a) 
60 

30 20 I 0* 0 20 

45 45 45 

60 

Long axis 58" Short axis 43" 

FIG. 160. Polar radiation characteristics of directional baffle speaker (a) in 

plane containing long axis of baffle mouth, (b) in plane containing short axis 

of baffle mouth. 

of this type are used in cinemas where large acoustic power is 
required. An output of from 1 to 2 watts can be obtained. 

13. Speakers for picture theatres [7, 11] 

(a) There are three salient types of speaker used in this class of work, 

all of which operate on the moving-coil principle. They are (1) horn 
type, (2) directional baffle, (3) flat baffle type.* Class (2) is in reality 

a special form of (3) in which the baffle is replaced by a stumpy 

exponential horn to increase the resistive load on the diaphragm. 
The latter is usually about 7 cm. radius as compared with 2-5 cm. 
for class (1). The salient characteristics are as follows: 

(b) Efficiency. On the average the efficiency of the horn type is of 

the same order as that of the directional baffle speaker. The latter 
is from 6 to 9 decibels higher than a single cone in a flat baffle. 

(c) Radiation distribution characteristics. Each type exhibits focus-

• This type is introduced for comparison. It is now used chiefly to give large 
output at low frequencies. See § 16. Under this condition the possibility of sub-
harmonics, Chap. XVIII, § 7, must not be overlooked. 
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ing at higher frequencies. For (1) and (2) an angle of 20° on each 

side of the axis of symmetry is covered at 4,000 ,--,. The width of 

the beam increases with fall in frequency. This gives satisfactory 

results in small theatres, but in large ones, two or more speakers must 

be suitably situated* and directed specifically to cover a greater 

angle. The distribution from a single cone unit in a flat baffle is less 

focused than that in types (1) and (2). 

(d) Respon,se characteristics. Typical curves taken on the axes of 

types (1) and 2) are shown in Fig. 161. Although axial curves are 
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type loudspeaker. 
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FIG. 161. Relative frequency response characteristics of two speakers [11]. 

10000 

an imperfect index of performance, these two are comparable, since 

the horn opening was of the same order of size as that of the direc-

tional baffle, namely, 5 ft. x 3 ft. The latter type covers a somewhat 

wider range and is better at low frequencies. Type (3) gives a curve 

which is somewhat similar to that of the directional baffle type 

excepting that its level is several decibels lower. In certain cases the 

upper and lower frequencies may be relatively more powerful for a 

flat than a directional baffle, but as this depends upon design, no 

hard and fast rules can be recommended. 

(e) Input power capacity. The input is limited either by the per-

missible temperature rise of the coil or the restriction of axial ampli-

* The speakers are usually located at the centre of the screen to obtain the correct 
acoustic illusion. 
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tude. To obtain a reasonable response up to 4,500 ,, all classes of 

speaker must have coils of small mass, and the temperature problem 
is much the same in each case. On the average a maximum input of 

from 4 to 6 watts can be handled, but in certain cases this can be 
exceeded. As regards axial amplitude, this is limited chiefly by 
clearance in the throat chamber in types (1) and (2), but no difficulty 

arises for average purposes. For the above input to type (3), diffi-

culty may arise at low frequencies owing to excessive amplitude. 

14. Sound power required in theatres 

Picture theatres are usually designed to have suitable acoustical pro-

perties, and damping material is added where it is required, so that 
the sound power is properly distributed throughout the audience. 
From measurements on a large number of theatres of different sizes, 
it is possible to establish data from which the maximum sound power 
to be delivered by the speakers can be calculated. A curve of this 
nature is plotted in Fig. 162 [7]. Over a large range it is substantially 
linear. Since the power is greatest at low frequencies, this curve can 

be interpreted to mean that for a theatre of 4 x 1o5 cubic feet with 
a seating capacity of 2,000 persons, the speakers must be capable of 
delivering just over 2 watts at, say, 80 .--...* If the efficiency of the 

speakers is 25 per cent., the undistorted output of the amplifier must 
be at least 8 watts. Speakers of types (1) and (2) can take an input 

of about 6 watts, so that two would be required. Suitable orientation 
would give a good distribution characteristic. 

In the flat baffle type the resistive loading is small, a large ampli-
tude being required to radiate 2 watts. From Table 33, for a dia-

phragm 10 cm. radius, the amplitude at 80 ,---, is found to be 0-7 cm., 

which approximates to the axial length of the air-gap. An amplitude 

of this magnitude would introduce distortion due to two causes, 
(a) inadequate stretch of the annular surround and centring device, 
(b) variation in the value of the force factor, due to the coil moving 
out of the gap into the weaker leakage field (Chap. XIV). If the axial 

amplitude is limited to 0-15 cm., the power radiated at 80 ,--, from 
a diaphragm 12-5 cm. radius cannot exceed 0-23 watt. For the above 
theatre nine speakers would be required. It ought to be noted that 

this result is independent of efficiency. If the speakers are designed 

to cope with greater amplitudes, say 0-2 cm., the requisite number 

• In some eases the power is taken as 2 watts per 1,000 persons. 
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Fm. 162. Acoustic power required in theatres of various sizes. 

Fm. 162 A. Diagrams illustrating wide 
range type of hornless moving-coil speaker. 
The coil is split, and the two portions 
joined together by a compliant link. 

5.0 

is reduced to five. Assuming the efficiency to be 6 per cent., the 

maximum input to each speaker, for a radiation of 0-23 watt, is 
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nearly 4 watts, and this is permissible. For an amplitude of 0.2 cm. 

the input is about 7 watts, which can be handled in a good design. 

The amplifier must be capable of delivering an undistorted output 

34 watts, which is over four times that for types (1) and (2). On 
a cost basis it is necessary to contrast two speakers of types (1) or 

(2) and an amplifier to deliver 8 to 10 watts, with seven speakers of 
type (3) plus an amplifier to deliver 34 watts. Obviously the first 

proposition is the more economical of the two. 
If the low-frequency limit were raised to 100 the number of 

speakers of type (3) could not be decreased, whilst lowering the limit 

to 60 would entail a larger number to deliver the maximum power 
at that frequency. 

The low-frequency power can be obtained with smaller amplitudes 
if the size of the diaphragm is augmented. This reduces the number 
of speakers to give low-frequency power, but additional units are 
required for the upper frequencies. So far as type (1) is concerned, 
if large low-frequency power is to be radiated, several driving units 

can be coupled to a large horn, the external connexions being such 
that all units move in phase. To preserve an adequate response down 
to 50 necessitates a very large horn, and preferably a special low-

frequency driving unit. This is not only costly but the horn occupies 
a large space. In general the choice of speaker lies between the horn 
and the directional baffle types. On the whole there is little in it. 

The flat baffle speaker is too inefficient for this class of work. It is 
useful, however, where a restricted range of very low frequencies is 

required, e.g. 46 to 300 since large diaphragms can be used. The 
range above 300 can be supplied by one or more horn units. 

In common with other branches of applied science the design and 
installation of apparatus for sound reproduction is decided not only 
on technical points, but by experience and general economical con-

siderations. These latter can only be learned by direct contact with 
the real thing. 

15. Amplitude to radiate 1 watt at various frequencies 

The amplitude of a driving mechanism to radiate a definite power 

depends upon the frequency and the acoustic loading on the dia-
phragm, i.e. upon the type of speaker. 

(a) Flat baffle type. The maximum available power from this type 
of speaker at low frequencies is shown, in Chapter II, to be equal to 
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that from one side of a rigid disk in an infinite baffle, the other con-

ditions being identical. At high frequencies the radiation is focused, 
and that from the rear can be excluded. Consequently our conputa-
tions will be based upon the power from one side of a rigid disk in an 
infinite baffle. Using formula (6), Chap. VIII and putting 6. = 

v§e0, we obtain 
where A = 7ra2. 

If P = 107 ergs per sec. and poc -= 42, (26) transposes to 

386  
enlax acoN/Gi. (27) 

At low frequencies, when ka < 0.5, G1 = ¡k2a2. Thus eino. Œ 1/0,2 

and the amplitude is very large indeed, as shown in Table 33 for 
a disk 10 cm. radius. 

(b) Horn type. The following hypotheses will be used to simplify 
the calculations: (i) the speaker operates sensibly above the horn 
cut-off frequency, the pressure and particle velocity being in phase, 

(ii) the pressure from all parts of the diaphragm reaches the horn 
throat in the same phase, (iii) the diaphragm moves as a rigid struc-
ture. The impedance of the throat is, by (i), wholly resistive, its value 
being p0cAo, where A 0 is the throat area. The load on the diaphragm 
is po cAo(Ad/A0)2, so the power 

p PocAâto2e2max 
2A0 

where Ad = area of diaphragm. Inserting 
(28) we obtain 

P = iPocAco2e2max 

386a  
emax ad2 to°' 

(26) 

(28) 

P = 107, poc =- 42 in 

(29) 

where cto, ad are the respective radii. 

Taking ao = 0.85 cm., ad = 3.0 cm. a series of values of emax is 
given in Table 33, so that they can be compared directly with those 
for the rigid disk 10 cm. radius in an infinite baffle. To facilitate this 
the ratio of the amplitudes is given in column 4. At 50 the ampli-
tude of the disk is 15.9 times that of the diaphragm of the horn 
speaker. Neither of these cases would occur in practice, since eo 
exceeds the permissible displacement of the surround. Consequently 

larger diaphragms or a plurality of units is required. From 1,000 
onwards the ratio is constant, which signifies that the mean resistance 

of the rigid disk matches that of the medium. Thus it is pc, cA, and 
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the amplitude in both cases varies inversely as the frequency. Ana-

lytically, from (26) and (27) the ratio 

disk,, ed  ,72 
is p= = 

horn aao 

For given radii y depends upon 

(30) 

1 1 

VG1=  1—(Ji(2ka)lka}• 

At frequencies where ka > 1-9, G1 is substantially unity (Chap. VIII), 
so (30) reduces to edieh— aVaa,. If the diaphragm and throat radii 

are identical ad = a0, and the above becomes a0/a. Thus the influence 

of reduction in throat area is to lower the amplitude for the horn in the 
ratio 4/4 i.e. the square of the transformation ratio, as might be 

expected. When a --- a, ---, ad the amplitude is identical in both cases. 
The diaphragm amplitude in a directional baffle type of speaker is 

computed in the same manner as that for the horn. In either case, if 
operation occurs near the cut-off frequency, the requisite amplitude, 

for an output of 1 watt, exceeds that obtained from the preceding 

formulae. 
TABLE 33 

Showing amplitude of rigid disk (a = 10 cm.) and diaphragm 

(ad = 3 cm.) of horn speaker to radiate 1 watt at 
various frequencies from one side. 

Diaphragm Amplitude (cm.) 
Frequency   Ratio 

Horn eh Diek Ed fileb 
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introducing the basic principle of the mechanical filter, the range 
in a single speaker may be extended up to 10,000 ,. A design em-

bodying this principle is shown diagrammatically in Fig. 162 A [90 b]. 
The coil is divided into two portions separated by a compliance in 
the form of a circular corrugation. The diaphragm is also broken up 

into sections separated by compliances of like nature. The electrical 

analogue of the mechanical system comprises inductances in series 
and condensers in shunt, as in a low-pass filter (Fig. 155). The 
electrical impedance of the complete coil is maintained fairly uniform 

by connecting a condenser across one-half of it to by-pass the current 

above 1,000 ,---,. The compliant link in the coil is such that beyond 
this frequency there is little motion of the shunted half. Thus the 
effective mass of the coil is reduced at higher frequencies and the 
sound output is maintained substantially constant* over a much 
wider frequency range than in speakers of ordinary design. 
With horn speakers large low-frequency output can only be ob-

tained by having relatively large diaphragms and throat-chamber 

clearances, which reduce the high-frequency output. To cover a wide 

frequency range more than one speaker can be used. In a certain 
public-address system two horn-type speakers and two or more horn-

less speakers with a large baffle are used to cover the range 40 to 
10,000 ,--, or more [18 a]. The latter speakers reproduce frequencies 

from 40 to 300 ,---,, the first horn speaker (12-ft. horn) reproduces the 

range 300 to 3,000 ‘---,, and the second horn speaker, described below, 
extends the range to 10,000 ••••-, or even higher, according to require-
ments. The speakers are connected to the power valves by a filter 

arrangement whereby each unit is supplied with current correspond-
ing to its own range only. The input is such that equality of output 
from the hornless and first horn speakers occurs at 300 ,-,, and for 
the two horn speakers at 3,000 ,. A combination of this type is 

used for noiseless wide frequency range films and for hill and dale 
gramophone records. In the latter a power range approaching that 
of a full orchestra (60 to 70 db.) can be obtained, whilst the playing-

time of a record 12 in. diameter is fifteen minutes. 

In designing a speaker to cover the audible range above 3,000 ,---,, 
use is made of Fig. 151 B, whereby the diaphragm mass, its natural 

frequency on the annular surround, and also the throat chamber 

stiffness can be settled. The diaphragm area must be kept within 

* See Chap. XVIII, S 11, for influence of coil roass. 
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bounds to avoid: interference within the air chamber, due to the 
wave-length being comparable with the diameter. The fundamental 
frequency of the diaphragm on the surround must exceed 4,000 
whilst that of the mass and the stiffness due to the air chamber and 

surround combined should fall below the upper frequency limit. 
A sectional diagram, showing the construction of a speaker [6] 

designed on these lines, is given in Fig. 163. The diaphragm, of 

duralumin 5 x 10-2 cm. thick, is a hollow spherical cap 1.25 cm. radius 
whose curvature provides the requisite rigidity. The self-supporting 

coil is of aluminium ribbon (see Fig. 82) wound edgewise, being 

HORN 
•THROAT 

MOVING 
COII. 

AIR CHAMBER 
conoi dal block 

'DIAPHRAGM 

FIG. 163. Sectional diagram showing the diaphragm, air chamber, and horn 
construction of speaker for reproducing frequencies above 3,000 In the 
design data given in the text it is assumed that the influence of the air chamber 
between the diaphragm and the centre pole can be neglected. When this is not 
so, an additional condenser C3 shunted by a resistance R 3 must be included 
between E and L1 (see CI Ri in Fig. 158, also § 12). 

attached to the diaphragm at the annular surround. The total mass 
of the diaphragm structure is only 0.16 gm., which, with the surround 
stiffness of 2.8 x1o8 dynes cm.-2, yields a natural frequency of 6,600 , 
(equivalent to resonance of LI and C1 of Fig. 151 B). The separation 

between the air-chamber and the diaphragm is 2.5 x 10-2 cm. entailing 
a stiffness of 3.5 x 1o8 dynes em. -1 This separation is sufficient to 

permit an adequate amplitude at the lowest frequency to be repro-

duced. If the power and the radiation resistance are constant, so 

x— also is the diaphragm velocity. Thus ema = Klco, so the amplitude 
varies inversely with the frequency. Referring to Fig. 151 B, if R is 

very large the resonance frequency of the diaphragm with the sur-
round and air-chamber stiffness (L with CI+ C 2 in series) is 

CO 1 /M2'8+3'5)108) 

= 27-r 4 0-16 
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The horn throat is annular, its area being 0.19 cm.2 Its diameter 

just exceeds half that of the diaphragm, so the air pressure from the 

remotest parts of the chamber reaches the throat in the same phase. 

The wave-length at 104 ,---, is 3.4 cm., and since the greatest distance 
from any point on the diaphragm (2.5 cm. diameter) is only about 

0.6 cm., i.e. nearly three half-wave-lengths, interference is not serious. 

An exponential horn about 12 cm. long, having a flaring index fl 

(Chap X) to give a 2,000 cut-off, is used. The resistive termina-
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tion po — = — 5,300 mechanical ohms. Within the horn 

eAo 0.19 

there is a conoidal block designed to give the requisite gradation in 

area according to the law A = Aoefie (Chap. X). As explained above, 

the opening is annular instead of being circular, thereby avoiding 

interference. To extend the range beyond 104 more than one 

annular gap could be used with a type of block to correspond. The 

magnetic field strength is 18,000 lines cm. -2, thereby providing high 
damping. 

A complete response curve of high- and low-frequency loud-speaker 

units is shown in Fig. 164. The low-frequency unit was used with 
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a 60 , cut-off horn, the high-frequency speaker being suspended in 

the horn opening. The electrical coupling network was such that 

frequency ranges of 60 to 3,000 and 3,000 , upwards were covered 

by the two units, respectively. By restricting the frequencies to their 
respective speakers, the power is used most economically, whilst the 

large low-frequency currents which would cause damage to the high-

frequency unit, owing to excessive amplitude, are relegated to their 
proper channel. The arrangement of Fig. 164 is such that Li by-
passes the low frequencies, whilst C1 obstructs them; C2 by-passes 

the high frequencies. The arrangement permits two transformers to 
be used. Thus 272 can have a primary inductance adequate for low 
frequencies, whilst for T1 it can be reduced considerably. This is of 

importance, since the leakage inductance is also reduced, and the 
high-frequency reactance does not curb the high-frequency currents 
appreciably. 

The interpretational qualities in speech and music reside in the 
upper frequencies [211], and it is not possible to obtain naturalness 

unless the range extends to F2 x 104 This applies particularly to 
severe transients such as hand-clapping, footsteps, jingling of coins 

or keys, rustling of paper, etc. There is no difficulty in calculating 
the natural frequency of a coin, assumed to be a homogeneous free-
edge circular disk. For example, the fundamental mode of a half-
penny (2.54 cm. diameter) is about 12,000 ,. Consequently it is 
quite easy to understand why the higher frequencies are indispensable 
if coin-jingling is to be reproduced. The overtones of orchestral 
instruments of various kinds extend well up to 104 Even the 
flute, usually cited as an emblem of acoustical purity, requires quite 
an extensive range. One of the reasons why the reproduced version 
of the human voice sounds unnatural from the average loud speaker 

is due to the absence of frequencies above 5,000 To any musician 

with a faculty for discrimination, a musical range which does not 

extend beyond 4,000 to 5,000 , is definitely lacking in brilliance and 
naturalness. Absence of the upper register is aggravated to an extent 

by accentuation of the lower register by speaker resonances, and, in 
the average room, by low absorption. When the upper register is 

inserted, it must be carefully adjusted in loudness to match the lower 
register. The tolerance is not very great and it is easy to cause 

harshness. 
Since the horn aperture in the high-frequency unit is quite small 
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(about 2.5 cm. radius), the radiation is distributed more uniformly 
than that from a single speaker with a large opening [12513]. This 
is a great advantage, because it avoids concentration of the sound 
field and enables the number of speakers required for a definite area 
to be reduced. On the basis of a rigid disk the focusing would only 
be appreciable above 8,000 and this entails quite a wide beam 
angle over a fair frequency range. 

In a recent development of the high-frequency horn speaker four 
Rochelle crystal units are used as a diaphragm. These units are con-
structed as described in Chap. XIX, § 1, the four free corners being at 
the centre of the diaphragm. The response characteristic rises rapidly 
above 1,200 By including a choke in the primary circuit of the 

output transformer the current and, therefore, the voltage across 
the secondary terminals can be reduced with rise in frequency. The 

crystal is connected across the secondary winding and the applied 
voltage is such that the output from 2,000 or 3,000 upwards is 

fairly uniform. The upper frequency cut-off point depends upon the 
design [164 c]. 

The nearer the reproducer reaches perfection, the more it reveals 
imperfections in the input.* Since gramophone reproduction is all 

scratch noise above 5,000 s, the use of an auxiliary speaker would 

be injurious and obviously impossible. In broadcast programmes, 
induction, valve, and other noises, which are imperceptible in a sys-

tem inadequate to reproduce above 4,500 rsd, would assume undue 
proportions if the range were extended to 12,000 Consequently, 
to realize the full benefits obtainable by extending the upper register, 
the noise-level of the input in the studio and in the transmitting and 
receiving apparatus—not to mention the ether—must be very low 

indeed. In other words, a radical improvement of this nature at the 

receiver must. be accompanied by a reduction in noise-level in the 
remainder of the system. Such an arrangement would clearly be of 
use only in local station work. But the listener need not be per-

turbed. So long as an insatiable appetite—not entirely of his own 
creation—exists for turning knobs to bring in a plethora of foreign 
stations, accompanied by the mutterings and mumblings of an over-

wrought ether, the designer has no choice but to cut off everything 
above 5,000 

• This paragraph was applicable when the manuscript was prepared in 1933. 
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1. Young 's modulus (q) and the velocity of sound in paper 

V(q/P) 
Any formula for vibrational frequencies includes ,%/(q/p), the velocity 
of longitudinal (sound) waves in a uniform bar of material. It is 
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FIG. 165. Load-extension curves for paper 
strips, width 2.54 cm., length 50 cm., thick-
ness (1) = 4 x 10-2 cm., (2) = 1.5 x 10-2 cm., 
(3) = 2.1 x 10-' cm., (4) = 2.3 x 10-2 cm. 

usually found in company with 1/V(1— a2), where a is Poisson's ratio 
expressed <1. As shown in Chap. XVIII, § 16, 1R(1—a2) is fre-

quently assumed to be unity. Under this condition we are left with 
V(q1p), which is sufficiently accurate for our requirements. This ratio 
can be measured in several ways, two of which will now be discussed: 

(1) q can be found as in stress-strain tests by observing the extension 
corresponding to given loads [184], the density being obtained from 
mass-volume measurements, (2) V(q/p) can be measured directly by 

a vibrational method, using a rectangular strip of paper [191]. 
The curves of Fig. 165 show load-extension readings for various 

grades of paper [184]. These were selected from a large number of 
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test data. In certain instances the load-extension relationship was 
linear, within prescribed limits. Curve 1 illustrates a typical case 
where linearity occurs. By testing more than one sample of paper 
g was found to vary. The load-extension curve was not always linear, 
whilst in certain cases the paper stretched abnormally, as shown in 
curve 2. On the other hand a different batch of paper sheets showed 
uniformity and gave linear characteristics. The tests are summarized 
in Table 34. 

TABLE 34 

Showing g and eglp) for paper 

Type of 
paper 

Thickness 
(cm.) 

Mass per 
unit area 
(gm. cm.-1) 

Derueity 

p 
(ym. cret. -3) 

q 
(dynes cm.-') 

AqIP) 
(cm. sec. -1) 

A 1.5 x 10-2 1-0 x 10-I 8.7 x 10-1 2.0 x 101° 143 x 104 
B 24 x 10-s 14x10-' 8.8 x 10-1 1.9 x 1010 1.7 x 105 
C 4.0 x 10-2 2-5 x 10-1 8.0 x 10-1 1.9 x 10,0 1.78 x le 
D 2.3 x 10-2 1.8 x 10-I '1.8 x 10-1 4-8 x 1010 2.1 x 105 

The test specimen did not always return to its original length after 
removal of the load. Accurate observation, however, reveals that 
this phenomenon occurs, to an extent, even in the best steel; in fact 
there is no material which is truly elastic. It is only to be expected 
that paper will be inferior to steel in this respect. Owing to variation 

in g and in p, a paper cone will not behave as an isotropic homo-
geneous shell, so that irregularities in its nodal figures are to be 
expected. Constancy of eglp) is not an acid test of homogeneity, 
since both g and p may vary in equal proportion in the same direction. 
If a faulty piece of paper were used in a speaker delivering large out-
put, there would be alien frequencies owing to curvature of the 
stress-strain characteristic. 

When paper is baked in an oven for several hours at, say, 110° C., 
the value of g is elevated appreciably [96 b]. For example, the normal 
g for one grade of paper is 19x 10" dynes cm.-2, whilst after baking 
it rose to 3.4 x 10" dynes cm. -2 As a corollary it is seen that g varies 
with the sample and the humidity or moisture content. Consequently 

the data given herein must only be regarded as average values in-
dicative of the order of magnitude to be expected. In making 
accurate calculations pertaining to a definite class of paper, it is pre-

ferable to measure V(q/p) at the time of the experiment rather than 
extract it from physical tables. 
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In the vibrational method [191] a rectangular strip of paper is 
securely clamped to the free end of an electromagnetically-operated 
vibrating reed. The resonance frequency of the paper strip is obtained 
by varying the frequency of the supply current driving the reed until 
maximum amplitude occurs. Then NI(q1p) = 0.9811/4 ,11. The results 
obtained in this way are in close agreement with those found by 
direct static measurement. Although in loud-speaker apparatus high 
accuracy in the measurement of ,/(q/p) is immaterial, it is interesting 
to compare the two methods. Owing to variation in thickness and 
to surface irregularities it is not possible to get the true value of t. 
An error of 5 per cent. in the value of t entails the same error in 
NI(q1p) by the vibrational method. 

Statically we have 

Ig .= / stress  = It fl 1\ . l  fl  
Alp 4/ p strain /s/ ‘btx pij 4 pibx' 

where b is the breadth of the paper, 1 the length, pi the mass per unit 
area, and x the extension. If the mass of the whole test-piece is 
measured, the mean pi is found, so that the accuracy depends chiefly 
on the measurement of extension, which presents no serious diffi-
culties. It appears, therefore, that the only variant in the static case 
is 11Alpi, so that on the whole one method is about as accurate as 
the other. 

In Chap. XVIII, § 6, it is shown that during vibration conical shells 
used in speaker construction are subjected to both bending and exten-
sional stresses. The latter is a hoop or circumferential type. Thus 
a mean value of .N1(q1p) found by the two methods outlined above may 
possibly be nearer the mark than either alone.* In a vibrational 
method the stress varies from zero at the neutral axis to a maximum 
at the upper and lower surfaces, being positive on one side of the 
axis and negative on the other. In the extensional method it is wholly 
positive. Any departure from the elastic state is revealed by the 
latter method, but not by the former, where it is completely camou-
flaged. Hence, for safety, the extensional method is to be preferred. 

2. Radial velocity of propagation in conical diaphragm 

In a conical shell the energy is propagated from the vertex, not only 
as a result of bending, but of circumferential distension and contrac-

* It is shown in Chap. XVIII, § 16, that (g/p) is not the criterion by which the 
suitability of a material for vibrational purposes is to be judged. 
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tion. This compound effect is different from purely longitudinal 
waves in a uniform bar of the material, the velocity being greater in 
the latter instance. As in a disk the velocity is greater in the neigh-

bourhood of the most rigid portion, i.e. the vertex. To obtain data 
relating to the velocity in a paper cone, measurements were made 
during the course of some experiments on dust figures. The apical 
angle of the cone (148°) and the surface roughness were adequate to 

prevent the lycopodium powder sliding off the nodal lines. A series 
of rings was formed lying between a circle 10 cm. radius and the 
periphery 22 cm. radius. The distance between the rings represents 
half a wave-length. It was not quite constant, but a mean value has 
been taken. The data so obtained are set forth in Table 35. 

TABLE 35 

Showing radial velocity in conical diaphragm [96 a, 183] 
5 x 10-2 cm. thick 

Frequency 
,--, 

Wave-length 
A (cm.) 

Radial velocity 
v,. = Af (cm. sec.-1) 

1,800* 
2,000 
2,900 

4.4 
3.8 
3.0 

7.0x 103 
78x 108 
8-7 x le 

Near the apex the velocity exceeds the values in the table. The 
radial velocity in the outer part of the diaphragm is roughly ¡ that 

of sound in air and about à that of sound in a straight bar of the 
material. It increases with rise in frequency approximately in ac-

cordance with the relationship v,. cc col, which also holds near the 
outer edge of a homogeneous circular disk [38, 96 a]. This increase 

is reminiscent of a telephone cable where the higher frequencies 
travel more quickly, but are more highly attenuated than the lower 

frequencies. 
Since sound travels more rapidly through the air than it does in 

the cone, radiation from the vertex at 1,600 r--, reaches a distant 

point on the axis about 5 cycles sooner than that from the periphery. 
This, of course, only concerns the transient state, since phase is 

immaterial for steady motion. 
By aid of data in Chap. XVIII, Fig. 132 A, the velocity of propaga-

tion in a glass cone can be computed. Taking the case of two nodal 

* Accompanied at this frequency by radial nodes. 
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circles v,. =-- 5.7 x 104 cm. sec.-4 at 5,700 which exceeds the velocity 

of sound in air. It is, however, only that of longitudinal waves in 
a glass rod. In the above case the vibrational frequency was reduced 

somewhat due to the mass of the coil. Otherwise v,. would have been 
greater than 5.7 x 104 cm. .sec. -1, but at a higher frequency. 

3. TABLE 36 [96 b] 

Showing static inductance Lo, static resistance Ro, and effective 
permeability ite with 40-turn and 1,000-turn coils in magnet FIG. 87. 

Air-gap -= 0.32 cm.; coil temp. = 20° C.; inductance of 40-turn coil in air --
1.32 x 10-4 henry; 1,000-turn coil = 8.3 x 10-2 henry; D.C. resistance of 40-turn 
coil = 0.95 ohm (no leads) ; 1,000-turn coil = 1,257 ohms. 

Mean radius of coil = 2.5 cm. 

Axial length of coil = 0.95 cm. 

Lo. 
Added 

Inductance of coil with Ro. resistance ge 
Frequency 
(cycles per 

field winding short- 
circuited (henry) 

Re..rietww, 

(ohms) 

due to iron 

(ohms) 

Effective permeability 
of electromagnet 

40 turner 1,000 turns 40 turns 1,000 turna second) 1,000 turna 1,000 turner 

50 3.22 x 10-4 2.21 x 10-1 1,388 131 2.44 2.66 
100 3.0 x 10-4 2-1 x 10-1 1,395 138 2.28 2.53 
150 2.86 x 10-4 198x 10-1 1,403 146 2.16 2.38 
200 2-78 x 10-4 14,1 X 10-1 1,412 155 2.1 2.3 
500 2.48 x 10-4 1.65 x 10-1 1,460 203 1.88 1.99 

1,000 2.22 x 10-6 149 x 10-1 1,570 313 1.68 1.8 
2,000 2.06 x 10-4 1.34 x 10-1 1,800 543 1.56 1.61 
3,000 1.94 x 10-4 1.25 x 10-1 2,200 943 1.47 1.51 
4,000 1.8 x 10-4 1.19 x 10-4 2,750 1,493 1.36 1.43 
5,000 1.7 x 10-4 142 x 10-1 3,500 2,243 1.29 1.35 

The inductances of the coils out of the magnet are almost exactly 
proportional to the squares of the number of turns. Since the mag-

netizing force on the iron is greater with 1,000 than with 40 turns, 
the inductance per turn of the former exceeds that of the latter. The 

air-core ratio is 628 :1-it should be 625:1 for the inductance to vary 

absolutely as n2-whilst in the magnet it varies from 687 :1 at 50 

cycles to 659:1 at 5,000 cycles. The variation in effective permeability 
is obviously identical. The ratio of the resistances due to iron loss, 
however, is greater than that for the inductances, since the former 
depends upon Br, x > 1, whilst the latter depends upon B1, the 
flux in the pole piece due to A.C. in the coil. 

The results in Table 36 were obtained when the flux density in 
the pole tips was very low. When B is 104 lines cm. --2, the coil being 
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cemented to the centre pole, there is an alteration of 1 per cent. in 
Ro. If the poles were saturated the change in R, might be greater 

than this. 

4. TABLE 37 

Frequency 
,..., 

Pulaatance 
co k = culc 

50 314.2 9.26 x 10-3 

100 628.4 1.85 x 1O-

200 1,257 3-7 x 10-2 

300 1,885 5.55 x 10 -2 

400 2,514 7.4 x 1O-

500 3,142 9.26x 10-2 

600 3,770 1.11 x 10-1 

700 4,399 1.3x 10-1 

800 5,028 1.48 x 10-1 

900 5,655 1.67x 10-1 

1,000 6,284 1.85 x 10-4 

c = 3.43 x 104 cm. sec.-1 



REFERENCES 

ABBREVIATIONS 

1. A .E.G.M . A. E. G. Mitteilungen. 
2. A.P. Annalen der Physik. 
3. B.T.J. Bell System Technical Journal. 
4. C.J.R. Canadian Journal of Research. 
5. E.N.T. Elektrische Nachrichten-Technik. 
6. E.T.Z. Elektrotechnische Zeitschrift. 
7. E.u.M. Elektrotechnik u. Maschinenbau. 
8. G.E.R.A. General Electric Review, America. 
9. J.A.I.E.E. Journal American Institute Electrical Engineers. 

10. J.A.S.A. Journal Acoustical Society, America. 
11. J.F.I. Journal Franklin Institute, America. 
12. J.I.E.E. Journal Institution Electrical Engineers, London. 
13. J.I.E.E.J. Journal Institution Electrical Engineers, Japan. 
14. J.S.I. Journal Scientific Instruments, London. 
15. J.S.M.P.E. Journal Society Motion Picture Engineers, America. 
16. P.I.R.E. Proceedings Institute Radio Engineers, America. 
17. P.M. Philosophical Magazine, London. 
18. P.R. Physical Review, America. 
19. P.P.S.L. Proceedings Physical Society, London. 
20. P.R.S.L. Proceedings Royal Society, London. 
21. P.Z. Physikalische Zeitschrift. 
22. S.Z. Siemens Zeitschrift. 
23. W.E. Wireless Engineer and Experimental Wireless, London. 
24. W. V.S.K. Wissenschaftliche Vereentlichungen aus dem Siemens-

Konzern. 
25. W. W.R.R. Wireless World and Radio Review, London. 
26. Z. f.H. Zeitschrift für Hochfrequenztechnik. 
27. Z.T.P. Zeitschrift für technische Physik. 

(A) SCIENTIFIC PAPERS 

Accession to Inertia 

1. Lamb, H. P.R.S.L. A. 98, 205, 1920. 
2. McLachlan, N. W. and Sowter, G. A. V. P.M. (a) 11, 1, 1931; (b) 11, 

1137, 1931 ; (c) 12, 771, 1931. 
3. McLachlan, N. W. (a) J.I.E.E. 69, 612, 1931; (b) P.M. 14, 1012, 1932; 

(c) P.M. 15, 443, 1933. 
4. — (a) P.P.S.L. 44, 546, 1932; (b) J.A.S.A. 5, 167, 1933. 
5. Strutt, M. J. 0. W.E. 9, 143, 1932. 

Cinema and Public Address Speakers 

6. Bostwick, L. G. J.A.S.A. 2, 242, 1930. 
7. - and Blattner, D. G. J.S.M.P.E. 14, 161, 1930. 
8. Graf, H. Z.T.P. 10, 334, 1929. 
9. Hanna, C. R. J.A.I.E.E. 47, 607, 1928. 

10. Kellogg, E. W. J.A.S.A. 3, 94, 1931. 



REFERENCES 387 

11. Malter, L. J.S.M.P.E. 14, 611, 1930. 
12. Neumann, H. Z.T.P. 11, 548, 1929. 
13.   (a) W. V.S.K. 9, 226, 1930; (b)S.Z. 10, 562, 1930. 
14. - and Trendelenberg, F. Z.f.H. 37, 149, 1931. 
15. Olson, H. F. J.A.S.A. 2, 485, 1931. 
16. Trendelenberg, F. S.Z. 7, 141, 1927. 
17. - E.T.Z. 48, 1685, 1927. 
18. Wente, E. C. and Thuras, A. L. B.T.J. 7, 140, 1928. 
18a. Watkins, S. S. A. Data given to author regarding new Western Electric 

Co. installations. 
19. Wigge, H. A.E.G.M. H. 1, 34, 1931. 
20.   S.Z. 11, 163, 1931. 
21. Zwikker, C. E.u.M. 48, 936, 1930. 

Condenser or Electrostatic Speakers 

22. Edelman, P. E. P.I.R.E. 19, 256, 1931. 
23. Greaves, V. F., Kranz, F. W. and Crozier, W. D. P.I.R.E. 17, 1142, 1929. 
24. Green, G. P.M. 2, 497, 1926. 
25.  P.M. 7, 115, 1929. 
26. Hahnle, W. W.V.S.K. 11, 1, 1932. 

27. Hanna, C. R. J.A.S.A. 2, 150, 1931. 
28. Kyle, C. U.S. Patent, 1,644,387. 
29. - U.S. Patent, 1,746,540. 
30. McLachlan, N. W. (a) British Pat. 206,601 (1922); (b) J.A.S.A. 5, 167, 

1933. 
31. Vogt, H. E.T.Z. 52, 1402, 1931. 
32.   Z.T.P. 12, 632, 1931. 
33.   Technical data sent to author, 31/12/1932. 

Effective Ma88 

34. McLachlan, N. W. and Sowter, G. A. V. P.M. (a) 11, 1, 1931; (b) 12, 
771, 1931. 

35. McLachlan, N. W. (a) W.W.R.R. 29, 166, 1931; (b) P.P.S.L. 44, 88, 
1932. 

36. Strutt, M. J. O. W.E. 9, 143, 1932. 
37. - A.P. 10, 244, 1931. 

38. Warren, A. G. P.M. 9, 881, 1930. 

Efficiency 

39. Bostwick, L. G. J.A.S.A. 2, 242, 1930. 
40.  and Blattner, D. G. J.S.M.P.E. 14, 161, 1930. 
41. Cook, E. D. G.E.R.A. 33, 505, 1930. 
42. Graf, H. Z.T.P. 10, 334, 1929. 
43. Hanna, C. R. J.A.I.E.E. 47, 607, 1928. 
44. McLachlan, N. W. and Sowter, G. A. V. P.M. 12, 771, 1931. 
45. Malter, L. J.S.M.P.E. 14, 611, 1930. 
46. Neumann, H. Z.T.P. 11, 548, 1929. 
47. - W.V.S.K. 9, 226, 1930. 
48. Oliver, D.A. W.E. 7, 653, 1930. 
49. Olson, H. F. J.A.S.A. 2, 485, 1931. 
50. Wente, E. C. and Thuras, A. L. B.T.J. 7, 140, 1928. 



388 REFERENCES 

Finite Pressure Amplitude of Sound 

51. Earnshaw, S. Phil. Trans. Roy. Soc. 150, 133, 1860. 

52. Fay, R. D. J.A.S.A. 3, 222, 1931. 
53. Payman, W., Robinson, H., and Shepherd, W. C. F. Safety of Mines 

Research Board Nos. 18, 19, 1926. 
54. Rayleigh, Lord. P.R.S.L. A. 84, 247, 1910. 
55. Taylor, G. L P.R.S.L. A. 84, 371, 1910. 

Horns 

56. Ballantine, S. J.F.I. 203, 85, 1927. 
56a. Goldsmith, A. N. and Minton, J. P. P.I.R.E. 12, 423, 1924. 
57. Hall, W. M. J.A.S.A. 3, 552, 1932. 
58. Hanna, C. R. and Slepian, J. J.A.I.E.E.. 43, 250, 1924. 
59. Hoersch, V. A. P.R. 25, 218, 1925. 
60. — P.R. 25, 225, 1925. 
61. Kellogg, E. W. G.E.R.A. 27, 556, 1924. 
62. Maxfield, J. P. and Harrison, H. C. J.A.I.E.E. 45, 243, 1926. 
63. Stenzel, H. A.E.G.M. H. 5, 310, 1931. 
64. — Z.T.P. 12, 621, 1931. 
65. Stewart, G. W. P.R. 16, 313, 1920. 
66. — P.R. 25, 230, 1925. 
67. Webster, A. G. Proc. Nat. Acad. Sc. Washington, 5, 275, 1919. 
68. Williams, S. J.F.I. 202, 413, 1926. 

Horn Type Moving-Coil Speakers 

69. Bostwick, L. G. J.A.S.A. 2, 242, 1930. 
70. — and Blattner, D. G. J.S.M.P.E. 14, 161, 1930. 
71. Hanna, C. R. J.A.I.E.E. 47, 607, 1928. 
72. — J.A.S.A. 2, 150, 1931. 
73. Malter, L. J.S.M.P.E. 14, 611, 1930. 
74. Olson, H. F. (a) J.A.S.A. 2, 485, 1931; (b) J.S.M.P.E. May 1932. 
75. Stenzel, H. A.E.G.M. H. 5, 310, 1931. 
76. Wente, E. C. and Thuras, A. L. B.T.J. 7, 140, 1928. 

Hornless Moving-Coil Speakers (Theory) 

77. Cosens, C. R. W.E. 6, 353, 1929. 
78. Heinle, W. W.V.S.K. 10, 73, 1931. 
78a. — W.V.S.K. 11, 1, 1932. 
79. McLachlan, N. W. (a) W.W.R.R. 20, 372, 1927; (b) P.M. 7, 1011, 1929; 
80. — W.E. (a) 9, 151, 1932; (b) 9, 573, 1932; (c) P.M. 10, 204, 1933; 

(d) W.E. 10, 375, 1933. 
81. Riegger, H. W.V.S.K. 3, 67, 1924. 
82. Schweikert, G. Z.f. Fernm. 9, 1, 1928. 

Hornless Moving-Coil Speakers (Practice) 

83. Bedford, A. V. J.A.S.A. 2, 251, 1930. 
84. Benecke, H. F. O. A.E.G.M. H. 9, 588, 1929. 
85. Fischer, F. A. and Lichte, H. A.E.G.M. H. 1, 25, 1929. 
86. Kellogg, E. W. and Rice, C. W. J.A.I.E.E. 44, 982, 1925. 
87. Lodge, O. J. British Patent 9712 of 1898. 



REFERENCES 380 

88. McLachlan, N. W. W.W.R.R. (a) 17, 604, 1925; (b) 20, 440, 1927. 
89. — British Patents, 270,412 and 271,021 (1926). 
90. — W.E. 3, 152, 1926. 
90a. Midgley, H. British Patents, 332,272; 14509/32; 14395/33. 
90b. Olson, H. F. P.I.R.E. 22, 33, 1934. 

Impedance Measurements 

91. Bligh, N. R. and Clarke, H. M. W.E. 5, 491, 1928. 
92. Clarke, H. M. W.E. 6, 380, 1929. 
93. Cook, E. D. G.E.R.A. 33, 505, 1930. 
94. Kurokawa, K. and Hirota, T. J.I.E.E.J. 458, 1049, 1926. 
95. — J.I.E.E.J. 469, 865, 1927. 
96. McLachlan, N. W. and Sowter, G. A. V. P.M. (a) 11, 1, 1931; (b) 12, 

771, 1931. 
97. Nakai, S. J.I.E.E.J. 474, 26, 1928. 
98. Oliver, D. A. W.W.R.R. 29, 579, 1931. 

Magnets and Flux Measurements 

99. Ja.sse, E. E.u.M. 50, 617, 1932. 
100. McLachlan, N. W. W.W.R.R. (a) 27, 600, 1930; (b) 28, 492 and 521, 

1931. 
101. — P.M. 13, 115, 1932. 
102. Neumann, H. Z.T.P. 11, 548, 1929. 
103. — W.V.S.K. 9, 228, 1930. 
104. Webb, C. E. W.E. 9, 67, 1932. 

Nodal Lines 

105. Benecke, H. F. O. Z.T.P. 13, 481, 1932. 
106. McLachlan, N. W. W.W.R.R. (a) 25, 33 and 62, 1929; (b) 28, 479 and 

514, 1931. 
107. — (a) W.E. 8, 540, 1931. (b) P.P.S.L. 44, 408, 1932. 
108. — and Sowter, G. A. V. P.M. (a) 11, 1, 1931; (b) 12, 771, 1931. 

109. Strutt, M. J. O. W.E. 8, 238, 1931. 
110. Vogt, H. E.T.Z. 52, 1402, 1931. 
111. Warren, A. G. W.E. 8, 313, 1931. 

Oscillations of Dierks, Conical Sheller, Speakers, Impulse Records, Transients 

112. Benecke, H. F. O. W.E. 10 , 257, 1933. 
112a. British Thomson-Houston Co. (England). Technical data sent to 

author 7/1/1933; also on 30/11/1933. 
113. McLachlan, N. W. W.W.R.R. (a) 23, 154 and 729, 1928; (b) 24, 346 and 

385, 1929; (e) 28, 479 and 514, 1931; (d) 29, 169 and 193, 1931. 
114. — and Sowter, G. A. V. P.M. (a) 11, 1, 1931; (b) 12, 771, 1931; 

(c) 13, 115, 1932. 
115. McLachlan, N. W. (a) P.P.S.L. 44, 408, 1932; W.E. (b) 9, 559, 1932; 

(c) 9, 626, 1932. 
116. — Nature, 129, 202, 1932. 
117. Neumann, H. Z.T.P. 12, 627, 1931. 
117a. Pedersen, P. 0. W.E. 10, 313, 1933; see reference given therein. 
118. Spenke, E. W.V.S.K. 10, 128, 1931. 
118a. Strafford. F. R. W. W.E. 10, 141, 1933. 



390 REFERENCES 

118b. Strutt, M. J. O. A.P. 17, 729, 1933. 
118c. Urk, A. T. van, and Hut, G. B. A.P. 17, 915, 1933. 
119. Warren, A. G. P.M. 9, 881, 1930. 

Power Radiated from Vibrators (Theory) 

120. Backhaus, H. A.P. 5, 1, 1930. 
120a. Fischer, F. A. E.N.T. 10, 19, 1933. 
121. McLachlan, N. W. (a) A.P. 15, 440, 1932; (b) P.M. 15, 443, 1933. 
122. Stenzel, H. A.P. 11, 947, 1930. 
122a. Strutt, M. J. 0. P.M. 7, 537, 1929. 

Response Curves, Acoustic and Sound Field Meœurements 

123. Backhaus, H. A.P. 5, 1, 1930. 
124. Barrow, W. L. J.A.S.A. 3, 562, 1932. 
125. Bostwick, L. G. (a) B.T.J. 8, 135, 1929; (b)J.A.S.A. 2, 242, 1930. 
126. B. T.-H. Co. (England). Technical data sent to author, 7/1/1933. 
127. Garton, C. G. and Lucas, G. S. W.E. 6, 62, 1929. 
128. Gerlach, E. Z.T.P. 8, 515, 1927. 
129. Howe, A. B. and Kirke, H. L. Letter to author, 12/12/1932. 
130. Institute Radio Engineers. Standardization Report, 1931. 
131. Kellogg, E. W. and Rice, C. W. J.A.I.E.E. 44, 982, 1925. 
132. — J.A.S.A. 2, 157, 1930. 
133. — J.A.S.A. 4, 56, 1932. 
134. McLachlan, N. W. P.P.S.L. 44, 408, 1932. 
135. Malter, L. and Wolff, I. J.A.S.A. 2, 201, 1930. 
136. Meyer, E. Z.T.P. '7, 612, 1926. 
137. — E.N.T. (a) 3, 290, 1926; (b) 4, 203, 1927. 
138. — and Grützmacher, M. E.N.T. 4, 88, 1927. 
139. — Z.T.P. 10, 306, 1929. 
140. Oliver, D. A. W.E. (a)7, 653, 1930; (b) 10, 420, 1933. 
141. — W.W.R.R. 29, 579, 1931. 
142. Olney, B. P.I.R.E. 19, 1113, 1931. 
143. Olson, H. F. J.A.S.A. 2, 485, 1931. 
144. Trendelenberg, F. (a) W.V.S.K. 4, 200, 1925; (b) E.T.Z. 48, 1685, 

1927. 
145. Vogt, H. E.T.Z. 52, 1402, 1931. 
146. — Z.T.P. 12, 832, 1931. 
147. — Technical data sent to author, 31/12/1932. 
148. Wolff, I. and Ringel, A. P.I.R.E. 15, 363, 1927. 
149. Wolff, I. P.I.R.E. 16, 1729, 1928. 

Spatial Sound Distribution from Vibrators 

150. Backhaus, H. and Trendelenberg, F. Z.T.P. 7, 130, 1926. 
151. — A.P. 5, 1, 1930. 
152. Fischer, F. A. E.N.T. 10, 19, 1933. 
153. Lindsay, R. B. P.R. 32, 515, 1928. 
154. McLachlan, N. W. W.W.R.R. (a) 20, 345 and 440, 1927; (b) 21, 357, 

1927. 
155. — (a) P.R.S.L. A. 122, 604, 1929; (b)P.P.S.L. 44, 540, 1932. 
156. — P.M. (a) 14, 747, 1932; (b) 14, 1012, 1932; (c) A.P. 15, 422, 1932. 
157. Malter, L. and Wolff, I. J.A.S.A. 2, 201, 1930. 



REFERENCES 391 

157a. Oliver, D. A. W.E. 10, 420, 1933. 
158. Ruedy, R. C.J.R. 5, 149, 1931. 
159. Stenzel, H. E.N.T. (a) 4, 239, 1927; (b) 6, 165, 1929; (c) 7, 90, 1930. 
160. — Z.T.P. 10, 569, 1929. 
161. — A.P. 11, 947, 1930. 
162. Strutt, M. J. O. A.P. 11, 129, 1931. 

Miscellaneous 

163. Aigner, F. Z.T.P. 13, 218, 1932. Power output from final stage. 
163a. Amsel, O. Z.T.P. 14, 202, 1933. Measurement of driving forces. 
164. Ballantine, S. (a) P.I.R.E. 17, 929, 1929. Reciprocity in electromagnetic 

systems; (b) J.F.I. 1927. Theory of horns; (c) P.I.R.E. Oct. 1933. 

Piezo-Electric L. S. 
165. Barrow, W. L. A.P. 11, 147, 1931. The Warble Tone. 
166. Benecke, H. F. O. A.E.G.M. H. 8, 506, 1928. L. S. Survey. 
166a. — A.E.G.M. H. 8, 459, 1931. L. S. Survey. 
167. Binder, W. P.Z. 23, 85, 1932. L. F. amplitude measurement on cone. 
168. Brenzinger, M. and Dessauer, F. P.Z. 29, 654, 1929. Direct control of 

air by electric oscillations. 
169. Brittain, F. H. J.S.I. 9, 169, 1932. Template for correcting response 

CUTV08. 

169a. Flanders, P. B. B.T.J. 11, 402, 1932. Measurement of acoustic im-

pedance. 
170. Fleischmann, L. Naturw. 16, 795, 1928. Tone production by points at 

high A.c. potentials. 
170a. Fletcher, H. and Munson, W. A. J.A.S.A. 5, 82, 1933. Loudness, its 

definition, measurement, and calculation. 
171. Forstmann, A. H.T. u. Elektroakustik, 39, 11, 1932. Mechanical and 

electrical equivalents. 
172., Gerdien, H. Telef. Zeit. 43, 28, 1926. Distortionless reproduction. 
173. Gerlach, E. Filmtechnik, 6, 947, 1930. L. S. development. 
174. — Nachrichtentechnik, 1, 165, 1931. Some L. S. problems. 
175. Geuter. A.E.G.M. H. 8, 467, 1931. Mass production of L. S. 
176. Htilnle, W. W. V .S.K. 11, 1, 1932. Electrical and mechanical equivalents. 
177. Hanna, C. R. (a) P.I.R.E. 13, 437, 1925. Design of reed drive mechan-

ism. (b) J.F.I. 1927. Theory of horns. 
178. Harbottle, H. R. J.I.E.E. 71, 605, 1932. Telephone Measurements. 
179. Hickendraht, H. and Lehmann, W. Helvetica Physica Acta, 4, 359, 1931. 

Electroacoustical investigations. 
180. Howe, A. B. British Patent 378,286. Exponential box baffle. 
181. Irons, E. J. P.M. 7, 873, 1929. Conical and other resonators. 

182. — P.M. 9, 346, 1930. Conical and other resonators. 
183. McLachlan, N. W. W.W.R.R. 26, 586, 1930. Radial velocity in conical 

diaphragm. 
183a. — World Radio, July 28 to Dec. 8, 1933. Twenty articles on L. S. 

Performance and Design. 
184. — P.M. 13, 115, 1932. Young's Modulus and .‘,1(qip) for paper. 
185. — W.E. (a) 9, 329, 1932; (b) 10, 204, 1933. Electromechanical recti-

fication. 
186. Meyer, E. E.N.T. 4, 509, 1927. Non-linear distortion. 



392 REFERENCES 

187. Neumann, H. S.Z. 10, 562, 1930. Large Blatthaller speaker. 
188. Oliver, D.A. J.S.I. 7, 318, 1930. Stiffness meter. 
189. — Nature, 128, 268, 1931. L.S. curves and loudness. 
190. — W.W.R.R. 29, 579, 1931. Inductor dynamic speaker. 
191. P.M. 14, 318, 1932. .s/(q/p) for paper. 

192. Paddle, L. H. Technical data sent to author, 14/2/1933. Reducing dis-
tortion due to non-uniform magnetic field in moving-coil speaker. 

193. Riegger, H. Z.T.P. 5, 577, 1924. Distortionless reproduction. 
194. Ruedy, R. C.J.R. 5, 297, 1931. Longitudinal and radial oscillation of 

rods. 

195. Schilgen, F. and Starkloff, C. E.T.Z. 52, 1589, 1931. L. S. installation 
for public address purposes. 

196. Schottky, W. P.Z. 25, 672, 1924. General principles. 
197. — Z.T.P. 5, 574, 1924. General principles. 
198. — E.N.T. 2, 157, 1925. L. S. theory (Blatthaller). 

199. Sivian, L. J., Dunn, H. K., and White, S. D. J.A.S.A. 2, 330, 1931. 
Spectra of musical instruments. 

199a. Sivian, L. J. and White, S. D. J.A.S.A. 4, 288, 1933. Minimum 
audible sound fields. 

200. Snow, W. B. J.A.S.A. 3, 155, 1931. Frequency range of musical instru-
ments. 

201. Strutt, M. JO. W.E. 8, 238, 1931. Measurement of diaphragm amplitude. 
202. Trendelenberg, F. W. V.S.K. 4, 200, 1925. General survey of L. S. 
203. — S.Z. 7, 141, 1927. Blatthaller speaker. 
204. — E.T.Z. 48, 1685, 1927. Blatthaller speaker. 
205. — Z.f.H. 32, 131, 1928. Electroacoustical investigations. 
206. Warren, A. G. P.P.S.L. 40, 296, 1928. Sound pressure and particle 

velocity at an orifice. 
206a. — W.E. 8, 313, 1931. Amplitude measuring apparatus. 

207. Wigge, H. Z.f.H. 37, 16, 1931. Distortionless supply from output 
transformer. 

208. Wilms, F. E.N.T. 9, 68, 1932. Sound transmission with wide frequency 
range. 

208a. W. W.R.R. 34, 5, 1934. Piezo-Electric L. S. 

(B) BOOKS 

209. Beattie, R. T. Hearing in Man and Animals. 
210. Crandall, I. Vibrating Systems and Sound. 
211. Fletcher, H. Speech and Hearing. 

212. Geiger, H. and Scheel, K. Handbuch der Physik 8, Akustik. 
213. Gray, A., Mathews, G. B., and MacRobert, T. M. Treatise on Reuel 

Functions. 
213a. Hughes, L. E. C. Engineering Acoustics. 
213b. Jahnke and Emde. Funktioncntafeln. 
214. Kennelly, A. E. Electrical Vibration Instruments. 
215. Lamb, H. Dynamical Theory of Sound. 
216. — Hydrodynamics. 
217. MacRobert, T. M. Spherical Harmonics. 
218. McLachlan, N. W. Wireless Loud Speakers. 

218a. —  Bessel Functions for Engineers. 2d. ed., 1955. 



REFERENCES 393 

219. Rayleigh, Lord. Theory of Sound 1 and 2. 
220. Stewart, G. W. and Lindsay, R. B. Acoustics. 
221. Watson, G. N. Theory of Hemel Functions. 
221a. West, W. Acoustical Engineering. 
222. Whittaker, E. T. and Watson, G. N. Modern Analyais. 
222a. Wilson, P. and Webb, G. Modern Gramophones and Electrical Repro-

ducers. 
223. Wood, A. B. Sound. 

ADDITIONAL REFERENCES 

224. Sato, K. Japanese Journal of Physics, 5, 103, 1929. Sound field of a 
conical horn. 

225. Barnes, E. J. W.E. 7, 248, 1930; 7, 301, 1930. Measurement of loud 
speaker performance. 

226. Cohen, B. S. and Paul, R. W. W.E. 7, 421, 1930. Hornless moving-coil 
loud speaker with Balsa wood diaphragm. 

227. Stenzel, H. Handbuch der Experimentalphysik, 17/2, 254, 1933. Laut-
sprecher. 

228. Goldman, S. J.A.S.A. 5, 181, 1934. Measurement of directional charac-
teristics of horns. 

229. McLachlan, N. W. Theory and application of Mathieu Functions, 1947. 
230. McLachlan, N. W. Ordinary Nonlinear Differential Equations in Engi-

neering and Physical Sciences, 2nd, ed., 1956. See list of references 
therein. 



INDEX 

absorption coefficient, 2, 44, 288, 301. 
accession to inertia, 4, 54. 
- - of conical diaphragm, 282. 
- - frequency correction factor, 60, 61. 
- - of flexible disk, 58. 
- - of rigid disk, 57. 
- - measurement of, 279. 
- - reduction of vibrational frequency 
due to, 89. 

- - of various vibrators, 61. 
acoustical admittance, 4. 
- image, 43. 
- impedance, 3. 
- mho, 4. 
- ohm, 3. 
- reactance, 3, 181, 182. 
- resistance, 3, 181, 182. 
- transformer-ratio, 349. 
air-chamber, horn speaker, 350, 355, 365. 
- hornless speaker, 73. 
- stiffness, 73. 
amplitude, finite sound pressure, 198. 
- and loudness, relationship, 347. 
- to radiate 1 watt, 372. 
analogue, electrical, 350, 355, 364. 
annular membrane or surround, 70, 81. 
- - stiffness, 85. 
- - vibrational modes, 81. 
antinode, definition, 2. 
audibility, threshold of, 2. 

baffle, definition, 3. 
- box, 297. 
- disk without baffle, 36. 
- effect on sound distribution, 38. 
- fiat, 36. 
- increase in power due to, 35, 41. 
- infinite, 3, 8, 30. 
- influence on accession to inertia, 57, 

62, 281. 
- spherical vibrators without, 122. 
bakelite cones, 332. 
balanced armature mechanism, 218. 
bar, definition, 1. 
bending, potential energy of, 313. 
Bessel functions, 21, 39, 53, 64, 79-87, 

98, 101-9,116-20, 173-75, 184 
- - zeros of, 80. 
Blatthaller speaker, 222. 
boundary conditions, circular membrane, 

79. 
- - annular membrane, 81. 

boundary conditions, theory of horns, 203. 
bridge measurements, 286. 

C I, measurement of, 283. 
cantilever reed mechanism, 213. 
centring devices, 69. 
cinema speakers, 368. 
circuit, equivalent electrical, 135, 142, 

337. 
- output or power, 135, 142, 337. 
clearance in throat chamber, 351, 358, 

364. 
coercive force of magnet, 237. 
coil-driven circular membrane, 221. 
- free-edge disk, 274. 
compliance, 5. 
condensation of medium, 9. 
condenser speakers, description, 226, 229. 
- - circular membrane, 169. 
- - motional capacity, 164, 165. 
- - performance of, 166, 171. 
- - rectangular membrane, 87, 169. 
- - theory of, 158. 
cone, re-entrant, 73. 
conical diaphragm, air-column vibra-

tions, 329. 
- - bridge measurements, 307, 316. 
- - criterion of constructional material, 

330. 
- - damping of oscillations, 338. 
- - edge condition, 310. 
- - effective mass, 276. 
- - impulse records, 332. 
- - influence of apical angle, 327. 
- - influence of coil mass, 324. 
- - influence of thickness, 323, 326. 
- - nodal lines on, 304. 
- - oscillation of coil-former, 339. 
- - radial modes, 304. 
- - stiffness, 340. 
- - stresses in, 310. 
- - symmetrical modes, 304, 316-29. 
criterion of magnet, 241. 
cubical elasticity, coefficient of, 10. 
current in moving coil, 137, 266, 345. 

decibel, definition, 7. 
diffraction of sound waves, 1. 
dilatation of medium, 10. 
disk, flexible, 63. 
- effective mass, 63. 
- power radiated by, 118-21. 
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disk, sound distribution from, 104, 106. 
- vibrational modes, 63. 
- rigid, 8, 30, 49, 94, 143. 
- - power radiated by, 145. 
- - pressure at any point on, 49. 
- - sound distribution from, 94. 
- - total pressure on, 143. 
distortion, moving-coil speaker, 263. 
- reed speaker, 214. 
divergent waves, in horn, 180. 
- - spherical, 21. 
double sound source, 32. 
- - power from, 34. 
driving mechanisms, 213. 
- - balanced armature, 218. 
- - Blatthaller, 222. 
- - cantilever reed, 213. 
- - condenser speakers, 226, 228. 
- - directional-baffle speaker, 221. 
- - horn speaker, 224. 
- - hornless moving coil, 219. 
- - inductor dynamic, 217. 
- - lever mechanism, 225. 
- - moving-coil membrane, 221. 
- - Rifle', 223. 
dynamic deformation curve, definition, 5. 
- - of circular membrane, 80. 

effective mass, definition, 4. 
- - of annular membrane, 82. 
- - of conical diaphragm, 276. 
- - of dielectric in condenser speaker, 

167. 
- - of flat reed, 63. 
- - of flexible disk, 63. 
- - of free-edge disk, 274. 
- - of mass and helical spring, 271. 
- - of rigid disk, 146, 147. 
- - measurement of, 273. 
efficiency, absolute, 253, 255. 
- acoustical, 253. 
- mechanical, 255. 
- measurement of, 255, 259. 
- of directional-baffle speaker, 367. 
- of hornless speaker, 256, 257. 
- of horn speaker, 258. 
electrical analogue of mechanical sys-

tem, 350, 355, 364. 
electrical and mechanical equivalents, 6. 
electrical equivalent diagram, 337. 
electrical impedance, measurement of, 

266. 
electromechanical conversion factor, 5. 
- rectification, 159, 239, 245. 
- resonance, 134, 150. 
electrostatic force, 158-61. 

endurance test, 264. 
energy, kinetic, 89. 
equivalent mass, definition, 5. 
- - of membrane, 89, 90. 
- - of disk, 90. 
extension, potential energy of, 313. 
extensional vibrational modes, 312. 

fluid pressure on vibrators, 49. 
- - on membrane, 59. 
- - on rigid disk, 49. 
flux, magnetic, 230. 
- measurement of, 231. 
- sound, 3. 
frequency range, hornless speaker, 343, 

374. 
- - horn speaker, 374. 
- - of reproduction, 374. 
functions, Bessel, 21, 39, 53, 64, 79-87, 

96, 101-9, 184. 
- hypergeometric, 50, 56, 57. 
- Struve, 57, 143, 189. 

Gauss's theorem, 57. 

harmonics, in speaker output, 264. 
- zonal spherical, 20. 
hemisphere, vibrating radially, 48, 61, 

123. 
- - axially, 48, 60, 61, 128. 
- sound distribution from, Ill. 
high-frequency speakers, 374. 
horns, acoustical impedance, 181, 182. 
-  Bessel type, 184. 
- characteristic curves, 187. 
- conical, 180. 
- damping of oscillations in, 335. 
- design of, 354, 359, 366. 
- experimental data, 362. 
- exponential, 182. 
- finite sound amplitude in, 199. 
- power delivered to, 185. 
- reflection at mouth, 188, 194. 
- simulating impedance, 190. 
- speaker design, 349. 
- theory of, 177. 
- throat chamber, 350. 351, 376. 
- throat impedance, 181, 183. 
- throat pressure, 203. 
- velocity of sound in, 182, 183, 196. 
hysteresis quadrant, 237. 

image, acoustical, 43. 
impedance, acoustical, 3. 
- electrical, 6, 132. 
- mechanical, 4. 
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impedance, motional, 5. 
- of long tube, 32. 
- of moving coil, 134. 
- measurement of, 266. 
- per unit area, 4. 
- of spherical vibrator, 47. 
impulse records, conical diaphragm, 334. 
- - glass cone, 335. 
- - horn speaker, 335. 
inductor dynamic speaker, 217. 

inertia, accession to, 4. 
- measurement of, 279. 
- component of surface pressure, 10, 

13-18, 179. 
infinitesimal pressure amplitude, 13-18, 

178. 
inherent mechanical loss, measurement 

of, 139. 
intensity level, definition, 2. 
interference, definition, 1. 
- spatial, 94, 221. 
iron loss due to magnet, 220, 270, 271, 

384. 
isobels, curves of equal loudness level, 348. 

kinetic energy, flexible disk, 89. 
membrane, 89. 

Legendre polynomials, 20, 32. 
lever mechanism for speakers, 225. 
linearity test, 262. 
loudness, definition, 2. 
- curves of equal, 348. 
low-frequency resonance, 70, 345. 
- - in condenser speaker, 174. 
- - in moving-coil speaker, 70. 

magnets, electro- and permanent, 230. 
- axial flux distribution, 234, 239. 
- design of, 237. 
- electromechanical rectification, 239, 

245. 
- flux measurements, 231. 
- leakage, 232, 234. 
- optimum working point, 237. 
- output criterion, 241. 
- of minimum volume, 238. 
masking of sound, definition, 3. 
mass, effective, 4. 
- equivalent, 5. 
matching resistance of medium, 3. 
Mathieu equation, 245, 250. 
mechanical, efficiency, 255. 
- equivalent, 6. 
- impedance, 4. 
- reactance, 4. 

mechanical resistance, 4. 
membrane, annular, 81. 
- - effective mass, 82. 
- - in hornless speaker, 70. 
- - sound distribution from, 104. 
- - vibrational modes, 81. 
- circular, 78, 79, 85, 87. 
- - axial sound pressure, 103. 
- - effective masa, 87. 
- - power radiated by, 117. 
- - spatial sound distribution from, 103. 
- - vibrational frequencies, 79. 
- rectangular strip, 87. 
microphone, minimum distance from 

speaker, 285. 
modulation products, 160, 252. 
motional capacity of spei,ker, 133, 164, 

165. 
- impedance of speaker, 132, 164. 
- inductance of speaker, 132, 164. 
- resistance of speaker, 132, 164. 
moving-coil principle, description, 219. 
- -- theory, 131. 
moving coil, current in, 344. 
- - optimum mass, 153. 
- - reactance, 132. 
- - resistance, 132. 
- - speaker, design, 343, 349. 
- - - L.F. resonances, 70. 
- - - H.F. resonances, 316-36. 
- - - damping of oscillations, 336. 
- - - impulse records, 334. 
- - - relationship between amplitude 
and loudness, 347. 

multi-diaphragm speaker, 127. 

naturalness in reproduction, 378. 
neon lamp stroboscope, 305. 
nodal circles, on cones, 304, 316-22. 
- - on disks, 64. 
- - on membranes, 80. 
nodal radii on cones, 304-7. 
non-linear characteristic of speaker, 158, 

214, 239, 263. 

orbital method of response measure-
ment, 288. 

oscillations of conical diaphragms, 334. 
- of hora speaker, 335. 
- of surround, 71, 81, 277. 

partial nodes, 2. 
particle velocity, 11, 14, 16, 202. 
permeability of magnet, 384. 
plane sound waves, 10. 
point sound source, 25. 
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polar curves of sound distribution, 98, 
105, 298. 

polarizing voltage on speaker, 159. 
potential energy of deformation, 313. 
power radiated by simple source, 26. 
- - by double source, 34. 
- - by flexible disk, 118-21. 
- - by hemisphere, 125-30. 
- - by rigid disk, 30, 145. 
- - by sphere, 123. 
- measurement of sound, 258, 200. 
- electrical input, 253. 
pressure, on vibrating surface, 49. 
- acoustic, 50, 52. 
- inertia, 57. 
- infinitesimal sound, 10, 13-18, 178, 

179. 
- finite sound, 198. 
- at horn throat, 203. 
- at any point in fluid, 18. 
propagation of sound, theory, 9. 

radial modes of vibration, 304. 
- nodes, 305. 
- velocity in diaphragm, 382. 
reactance, acoustical, 3, 181, 182. 
- of moving coil, 134, 150. 
- mechanical, 4. 
rectangular membrane speaker, 169, 228. 
- plate, sound distribution from, 100. 
rectification, electromechanical, 159, 

239, 245. 
reflection, coefficient of, 2. 
reproduction above 5,000 374. 
resistance, acoustical, 3, 181, 182. 
- mechanical, 4. 
- motional, 5. 
- of moving coil, 134. 
- of medium, 3. 
resonance of diaphragm on surround, 70, 

308, 345. 
- of surround, 70, 81, 308. 
response, definition, 289. 
- orbital method, 288. 
- automatic record, 291. 
- experimental data, 292. 
- polar curves, 296. 
reverberation, definition, 2. 
- time, 2. 
Riffel speaker, 223. 
rigid disk, analysis of coil-driven, 143. 
- - axial pressure, 151. 
- - constant power from, 257. 
- - power from, 145, 152. 
- - amplitude to radiate 1 watt, 372. 
- - pressure on, 49, 143. 

rigid disk, reed driven, 153. 
Rochelle salt speakers, 344, 379. 
room effects in reproduction, 299. 

sensation level, 2. 
simulating impedance, 4. 
solid angle definition, xii. 
- - influence of, 30. 
sound distribution from vibrators, 94. 
- - from group of radiators, 112. 
sound energy density, 1, 301. 
- - flux, 1. 
- finite amplitude of, 198. 
- power for cinemas, 370. 
- pressure, 3. 
- propagation, 9. 
- waves, 3-dimensional, 13. 
source, simple, 25. 
- double, 32. 
- strength of, 25, 33. 
speakers for cinemas, 368. 
spherical harmonics, equation of, 20. 
- - zonal, 20. 
- vibrators, 47, 106. 
- waves, 13. 
static pressure, 1. 
stiffness, definition, 5. 
- measurement of, 284. 
- meter, 284. 
strength test of speaker, 265. 
stresses in conical shell, 310. 
stroboscope, in studying nodal figures, 

305. 
Struve's function, 57, 143, 189. 
sub-harmonics, 315. 
surround, of conical diaphragm, 70, 81, 

277, 308. 

theory of sound propagation, 9. 
thickness of paper, effect on diaphragm 

behaviour, 323, 328. 
throat chamber of horn speaker, 350, 

351, 376. 
- - pressure in, 203. 
- - stiffness of, 351, 353, 358, 365. 
throat of horn, resistance of, 181, 183. 
- - impedance of, 181, 183. 
threshold of audibility, 2. 
transient, definition, 6. 
- theory, 204. 
transmission loas in diaphragm, 90. 

valve circuits for speakers, 135, 142, 158, 
167, 170, 227. 

velocity of sound, in air, 1. 
- - in diaphragm, 382. 
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velocity of sound, in paper, 380. 
velocity, particle, 3, 11, 14, 16, 202, 

203. 
— potential, 16, 21, 57, 106, 122, 178. 
vibrational frequencies of conical dia-
phragms, 304. 

— — of simular membrane, 81. 
— — of circular membrane, 79. 

vibrational frequencies of flexible disk, 
83. 

— — of flexible reed, 66. 
volume of throat chamber, 351, 358, 

361. 

warble tone, 287. 

Young's modulus for paper, 380. 
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This classic work has been widely adopted as a standard text by 

universities throughout the country, and is used considerably by 

graduate engineers. Clearly written and readable, it presents a con-

sistent and systematic treatment of the field of electromagnetics. 
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real order, definite integrals, asymptotic expansion, circular membranes, Bessel's solution 
to Kepler's problem, much more. "Clear . . . useful not only to students of physics and 
engineering, but to mathematical students in general," Nature. 226 problemy Short tables 
of Bessel functions. 27 figures. x + 135pp. 53/8 x 8. S462 Paperbound $1.35 

DIFFERENTIAL EQUATIONS, F. R. Moulton. Detailed, rigorous exposition of all non-elemen-
tary processes of solving ordinary differential equations. Chapters on practical problems; 
more advanced than problems usually given as illustrations. Includes analytic differential 
equations; variations of a parameter; integrals of differential equations; analytic implicit 
functions; problems of elliptic motion; sine-amplitude functions; deviation of formal bodies; 
Cauchy-Lipshitz process; linear differential equations with periodic coefficients; much more. 
Historical notes. 10 figures. 222 problems. xv + 395pp. 53/8 x 8. S451 Paperbound $2.00 

PARTIAL DIFFERENTIAL EQUATIONS OF MATHEMATICAL PHYSICS, A. G. Webster. Valuable 
sections on elasticity, compression theory, potential theory, theory of sound, heat conduc-
tion, wave propagation, vibration theory. Contents include: deduction of differential equa-
tions, vibrations, normal functions, Fourier's series. Cauchy's method, boundary problems, 
method of Riemann-Volterra, spherical, cylindrical, ellipsoidal harmonics, applications, etc. 
97 figures. vii + 440pp. 51/2  x 8. S263 Paperbound $2.00 

ORDINARY DIFFERENTIAL EQUATIONS, E. L. Ince. A most compendious analysis in real and 
complex domains. Existence and nature of solutions, continuous transformation groups, 
solutions in an infinite form, definite integrals, algebraic theory. Sturmian theory, boundary 
problems, existence theorems, 1st order, higher order, etc. "Deserves highest praise, a 
notable addition to mathematical literature," Bulletin, Amer. Math. Soc. Historical appendix. 
18 figures. viii + 558pp. 53/8 x 8. S349 Paperbound $2.55 

ASYMPTOTIC EXPANSIONS, A. Erdélyi. Only modern work available in English; unabridged 
reproduction of monograph prepared for Office of Naval Research. Discusses various proce-
dures for asymptotic evaluation of integrals containing a large parameter; solutions of 
ordinary linear differential equations. vi + 108pp. 53/8 x 8. S318 Paperbound $1.35 

LECTURES ON CAUCHY'S PROBLEM, J. Hadamard. Based on lectures given at Columbia, Rome, 
discusses work of Riemann, Kirchhoff, Volterra, and author's own research on hyperbolic 
case in linear partial differential equations. Extends spherical cylindrical waves to apply 
to all (normal) hyperbolic equations. Partial contents: Cauchy's problem, fundamental for-
mula, equations with odd number, with even number of independent variables; method of 
descent. 32 figures. iii + 316pp. 5Y8 x 8. S105 Paperbound $1.75 



CATALOGUE OF 

NUMBER THEORY 

INTRODUCTION TO THE THEORY OF NUMBERS, L. E. Dickson. Thorough, comprehensive, witn 
adequate coverage of classical literature. Not beyond beginners. Chapters on divisibility, 
congruences, quadratic residues and reciprocity, Diophantine equations, etc. Full treatment 
of binary quadratic forms without usual restriction to integral coefficients. Covers infinitude 
of primes, Fermat's theorem, Legendre's symbol, automorphs, Recent theorems of Thue, 
Siegal, much more. Much material not readily available elsewhere. 239 problems. 1 figure. 
viii + 183pp. 53/8 x 8. S342 Paperbound 51.65 

ELEMENTS OF NUMBER THEORY, I. M. Vinogradov. Detailed 1st course for persons without 
advanced mathematics; 95% of this book can be understood by readers who have gone 
no farther than high school algebra. Partial contents: divisibility theory, important number 
theoretical functions, congruences, primitive roots and indices, etc. Solutions to problems, 
exercises. Tables of primes, indices, etc. Covers almost every essential formula in ele-
mentary number theory! "Welcome addition . . . reads smoothly," Bull, of the Amer. Math. 
Soc. 233 problems. 104 exercises. viii + 227pp. 53/e x 8. S259 Paperbound $1.60 

PROBABILITY THEORY AND INFORMATION THEORY 

SELECTED PAPERS ON NOISE AND STOCHASTIC PROCESSES, edited by Prof. Nelson Wax, U. of 
Illinois. 6 basic papers for those whose work involves noise characteristics. Chandrasekhar, 
Uhlenback and Ornstein, Uhlenbeck and Ming, Rice, Doob. Included is Kac's Chauvenet-
Prize winning "Random Walk." Extensive bibliography lists 200 articles, through 1953. 21 
figures. 337pp. 61/4  x 91/4 . S262 Paperbound $2.35 

• 
A PHILOSOPHICAL ESSAY ON PROBABILITIES, Marquis de Laplace. This famous essay explains 
without recourse to mathematics the principle of probability, and the application of prob-
abiilty to games of chance, natural philosophy, astronomy, many other fields. Translated 
from 6th French edition by F. W. Truscott, F. L. Emory. Intro. by E. T. Bell. 204pp. 53/8 x 8. 

S166 Paperbound $1.25 

MATHEMATICAL FOUNDATIONS OF INFORMATION THEORY, A. I. Khinchin. For mathematicians, 
statisticians, physicists, cyberneticists, communications engineers, a complete, exact intro-
duction to relatively new field. Entropy as a measure of a finite scheme, applications to 
coding theory, study of sources, channels and codes, detailed proofs of both Shannon 
theorems for any ergodic source and any stationary channel with finite memory, much more. 
"Presents for the first time rigorous proofs of certain fundamental theorems . . . quite 
complete . . . amazing expository ability," American Math. Monthly. vii + 120pp. 5% x 8. 

S434 Paperbound ;1.35 

VECTOR AND TENSOR ANALYSIS AND MATRIX THEORY 

VECTOR AND TENSOR ANALYSIS, G. E. Hay. One of clearest introductions to increasingly 
important subject. Start with simple definitions, finish with sure mastery of oriented 
Cartesian vectors, Christoffel symbols, solenoidal tensors. Complete breakdown of plane, 
solid, analytical, differential geometry. Separate chapters on application. All fundamental 
formulae listed, demonstrated. 195 problems. 66 figures. viii + 193pp. 53/8 x 8. 

5109 Paperbound $1.75 

APPLICATIONS OF TENSOR ANALYSIS, A. J. McConnell. Excellent text for applying tensor 
methods to such familiar subjects as dynamics, electricity, elasticity, hydrodynamics. Ex-
plains fundamental ideas and notation of tensor theory, geometrical treatment of tensor 
algebra, theory of differentiation of tensors, and a wealth of practical material. "The 
variety of fields treated and the presence of extremely numerous examples make this 
volume worth much more than its low price," Alluminlo. Formerly titled "Applications of the 
Absolute Differential Calculus." 43 illustrations. 685 problems. xii + 381pp. 

S373 Paperbound $1.85 

VECTOR AND TENSOR ANALYSIS, A. P. Wills. Covers entire field, from dyads to non-Euclidean 
manifolds (especially detailed), absolute differentiation, the Riemann-Christoffel and Ricci-
Einstein tensors, calculation of Gaussian curvature of a surface. Illustrations from electrical 
engineering, relativity theory, astro-physics, quantum mechanics. Presupposes only working 
knowledge of calculus. Intended for physicists, engineers, mathematicians. 44 diagrams. 
114 problems. xxxii + 285pp. 53/a x 8 S454 Paperbound $1.75 
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DOVER SCIENCE BOOKS 

PHYSICS, ENGINEERING 

MECHANICS, DYNAMICS, THERMODYNAMICS, ELASTICITY 

MATHEMATICAL ANALYSIS OF ELECTRICAL AND OPTICAL WAVE-MOTION, H. Bateman. By one 
of century's most distinguished mathematical physicists, a practical introduction to develop-
ments of Maxwell's electromagnetic theory which directly concern the solution of partial 
differential equation of wave motion. Methods of solving wave-equation, polar-cylindrical 
coordinates, diffraction, transformation of coordinates, homogeneous solutions, electromag-
netic fields with moving singularities, etc. 168pp. 53/e x 8. S14 Paperbound $1.60 

THERMODYNAMICS, Enrico Fermi. Unabridged reproduction of 1937 edition. Remarkable for 
clarity, organization; requires no knowledge of advanced math beyond calculus, only familiar-
ity with fundamentals of thermometry, calorimetry. Partial Contents: Thermodynamic sys-
• tems, 1st and 2nd laws, potentials; Entropy, phase rule; Reversible electric cells; Gaseous 
reactions: Van't Hoff reaction box, principle of LeChateller; Thermodynamics of dilute 
solutions: osmotic, vapor pressures; boiling, freezing point; Entropy constant. 25 problems. 
24 illustrations. x + 160pp. 53/e x 8. S361 Paperbound $1.75 

FOUNDATIONS OF POTENTIAL THEORY, O. D. Kellogg. Based on courses given at Harvard, 
suitable for both advanced and beginning mathematicians, Proofs rigorous, much material 
here not generally available elsewhere. Partial contents: gravity, fields of force, divergence 
theorem, properties of Newtonian potentials at points of free space, potentials as solutions 
of LaPlace's equation, harmonic functions, electrostatics, electric images, logarithmic po-
tential, etc. ix + 384pp. 53/8 x 8. S144 Paperbound $1.98 

DIALOGUES CONCERNING TWO NEW SCIENCES, Galileo Galllei. Classic of experimental scierIce, 
mechanics, engineering, as enjoyable as it is important. Characterized by author as "superior 
to everything else of mine." Offers a lively exposition of dynamics, elasticity, sound, ballistics, 
strength of materials, scientific method. Translated by H. Grew, A. de Salvio. 126 diagrams. 
xxi + 288pp. 53/8 x 8. S99 Paperbound $1.65 

THEORETICAL MECHANICS; AN INTRODUCTION TO MATHEMATICAL PHYSICS, J. S. Ames, F. D. 
Murnaghan. A mathematically rigorous development for advanced students, with constant 
practical applications. Used in hundreds of advanced courses. Unusually thorough coverage 
of gyroscopic baryscopic material, detailed analyses of Corilis acceleration, applications of 
Lagrange's equations, motion of double pendulum, Hamilton-Jacobi partial differential equa-
tions, group velocity, dispersion, etc. Special relativity included. 159 problems. 44 figures. 
ix + 462pp. à3/4  x 8. S461 Paperbound $2.00 

STATICS AND THE DYNAMICS OF A PARTICLE, W. D. MacMillan. This is Part One of "Theoret-
ical Mechanics." For over 3 decades a self-contained, extremely comprehensive advanced 
undergraduate text in mathematical physics, physics, astronomy, deeper foundations of 
engineering. Early sections require only a knowledge of geometry; later, a working knowledge 
of calculus. Hundreds of basic problems including projectiles to moon, harmonic motion, 
ballistics, transmission of power, stress and strain, elasticity, astronomical problems. 340 
practice problems, many fully worked out examples. 200 figures. xvii + 430pp. 53/8 x 8. 

S467 Paperbound $2.00 

THE THEORY OF THE POTENTIAL, W. D. MacMillan. This is Part Two of "Theoretical Mechan-
ics." Comprehensive, well-balanced presentation, serving both as introduction and reference 
with regard to specific problems, for physicists and mathematicians. Assumes no prior 
knowledge of integral relations, all math is developed as needed. Includes: Attraction of 
Finite Bodies; Newtonian Potential Function; Vector Fields, Green and Gauss Theorems; 
Two-later Surfaces; Spherical Harmonics; etc. "The great number of particular cases . . . 
should make the book valuable to geo-physicists and others actively engaged in practical 
applications of the potential theory," Review of Scientific Instruments. xii + 469pp. 53/4  x 8. 

S486 Paperbound $2.25 

DYNAMICS OF A SYSTEM OF RIGID BODIES (Advanced Section), E. J. Routh. Revised 6th edi-
tion of a classic reference aid. Partial contents: moving axes, relative motion, oscillations 
about equilibrium, motion. Motion of a body under no forces, any forces. Nature of motion 
given by linear equations and conditions of stability. Free, forced vibrations, constants of 
integration, calculus of finite differences, variations, procession and mutation, motion of 
the moon, motion of string, chain, membranes. 64 figures. 498pp. 53/8 x 8. 

S229 Paperbound $2.35 

THE DYNAMICS OF PARTICLES AND OF RIGID, ELASTIC, AND FLUID BODIES: BEING LECTURES 
ON MATHEMATICAL PHYSICS, A. G. Webster. Reissuing of classic fills need for comprehensive 
work on dynamics. Covers wide range in unusually great depth, applying ordinary, partial 
differential equations. Partial contents: laws of motion, methods applicable to systems of 
all sorts; oscillation, resonance, cyclic systems; dynamics of rigid bodies; potential theory; 
stress and strain; gyrostatics; wave, vortex motion; kinematics of a point; Lagrange's equa-
tions; Hamilton's principle; vectors; deformable bodies; much more not easily found to-
gether in one volume. Unabridged reprinting of 2nd edition. 20 pages on differential 
equations, higher analysis. 203 illustrations. xi + 588pp. 53/8 x 8. S522 Paperbound $2.35 
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CATALOGUE OF 

PRINCIPLES OF MECHANICS, Heinrich Hertz. A classic of great interest in logic of science. 
Last work by great 19th century physicist, created new system of mechanics based upon 
space, time, mass; returns to axiomatic analysis, understanding of formal, structural 
aspects of science, taking into account logic, observation, a priori elements. Of great 
historical importance to Poincaré, Carnap, Einstein, Milne. 20 page introduction by R. S. 
Cohen, Wesleyan U., analyzes implications of Hertz's thought and logic of science. 13 page 
introduction by Helmholtz. xlii + 274pp. 57/8 x 8. S316 Clothbound $3.50 

S317 Paperbound $1.75 

MATHEMATICAL FOUNDATIONS OF STATISTICAL MECHANICS, A. I. Khincnin. A thoroughly 
up-to-date introduction, offering a precise and mathematically rigorous formulation of the 
problems of statistical mechanics. Provides analytical tools to replace many commonly 
used cumbersome concepts and devices. Partial contents: Geometry, kinematics of phase 
space; ergodic problem; theory of probability; central limit theorem; ideal monatomic gas; 
foundation of thermodynamics; dispersion, distribution of sum functions; etc. "Excellent 
introduction . . . clear, concise, rigorous," Quarterly of Applied Mathematics. viii + 179pp. 
53/8 x 8. S146 Clothbound $2.95 

S147 Paperbound $1.35 

MECHANICS OF THE GYROSCOPE, THE DYNAMICS OF ROTATION, R. F. Delmet, Prof. of Me-
chanical Engineering, Stevens Inst. of Tech. Elementary, general treatment of dynamics of 
rotation, with special application of gyroscopic phenomena. No knowledge of vectors 
needed. Velocity of a moving curve, acceleration to a point, general equations of motion, 
gyroscopic horizon, free gyro, motion of discs, the damped gyro, 103 similar topics. Exer-
cises. 75 figures. 208pp. 53/e x 8. S66 Paperbound $1.65 

MECHANICS VIA THE CALCULUS, P. W. Norris, W. S. Legge. Wide coverage, from linear motion 
to vector analysis; equations determining motion, linear methods, compounding of simple 
harmonic motions, Newton's laws of motion, Hooke's law, the simple pendulum, motion of 
a particle in 1 plane, centers of gravity, virtual work, friction, kinetic energy of rotating 
bodies, equilibrium of strings, hydrostatics, sheering stresses, elasticity, etc. Many worked-
out examples. 550 problems. 3rd revised edition. xii + 367pp. S207 Clothbound $3.95 

A TREATISE ON THE MATHEMATICAL THEORY OF ELASTICITY, A. E. H. Love. An indispensable 
reference work for engineers, mathematicians, physicists, the most complete, authoritative 
treatment of classical elasticity in one volume. Proceeds from elementary notions of exten-
sion to types of strain, cubical dilatation, general theory of strains. Covers relation between 
mathematical theory of elasticity and technical mechanics; equilibrium of isotropic elastic 
solids and aelotropic solid bodies; nature of force transmission, Volterra's theory of 
dislocations; theory of elastic spheres in relation to tidal, rotational, gravitational effects 
on earth; general theory of bending; deformation of curved plates; buckling effects; much 
more. "The standard treatise on elasticity," American Math. Monthly. 4th revised edition. 
76 figures. xviii + 643pp. 61/4  x 91/4 . S174 Paperbound $2.95 

NUCLEAR PHYSICS, QUANTUM THEORY, RELATIVITY 

MESON PHYSICS, R. E. Marshak. Presents basic theory, and results of experiments with em-
phasis on theoretical significance. Phenomena Involving mesons as virtual transitions 
avoided, eliminating some of least satisfactory predictions of meson theory. Includes pro-
duction study of w mesons at nonrelativistic nucleon energies contracts between ir and u, 
mesons, phenomena associated with nuclear interaction of ir mesons, etc. Presents early 
evidence for new classes of particles, indicates theoretical difficulties created by discovery 
of heavy mesons and hyperons. viii + 378pp. 53/8 X 8. S500 Paperbound $1.95 

THE FUNDAMENTAL PRINCIPLES OF QUANTUM MECHANICS, WITH ELEMENTARY APPLICATIONS, 
E. C. Keinble. Inductive presentation, for graduate student, specialists in other branches of 
physics. Apparatus necessary beyond differential equations and advanced calculus developed 
as needed. Though general exposition of principles, hundreds of individual problems fully 
treated. "Excellent book . . . of great value to every student . . . rigorous and detailed 
mathematical discussion . .. has succeeded in keeping his presentation clear and under-
standable," Dr. Linus Pauling, J. of American Chemical Society. Appendices: calculus of 
variations, math. notes, etc. 611pp. 51/4  x 83/e. T472 Paperbound $2.95 

WAVE PROPAGATION IN PERIODIC STRUCTURES, L. Brillouin. General method, application to 
different problems: pure physics—scattering of X-rays in crystals, thermal vibration in 
crystal lattices, electronic motion in metals; problems in electrical engineering. Partial 
contents: elastic waves along 1-dimensional lattices of point masses. Propagation of waves 
along 1-dimensional lattices. Energy flow. 2, 3 dimensional lattices. Mathieu's equation. 
Matrices and propagation of waves along an electric line. Continuous electric lines. 131 
illustrations. xii + 253pp. 5% x 8. S34 Paperbound $1.85 
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DOVER SCIENCE BOOKS 

THEORY OF ELECTRONS AND ITS APPLICATION TO THE PHENOMENA OF LIGHT AND RADIANT 
HEAT, H. Lorentz. Lectures delivered at Columbia Univ., by Nobel laureate. Unabridged, form 
historical coverage of theory of free electrons, motion, absorption of heat, Zeeman effect, 
optical phenomena in moving bodies, etc. 109 pages notes explain more advanced sec-
tions. 9 figures. 352pp. 51/4  x 8. S173 Paperbound $1.85 

SELECTED PAPERS ON QUANTUM ELECTRODYNAMICS, edited by J. Schwinger. Facsimiles of 
papers which established quantum electrodynamics; beginning to present position as part 
of larger theory. First book publication in any language of collected papers of Bethe, Bloch, 
Dirac, Dyson, Fermi, Feynman, Heisenberg, Kusch, Lamb, Oppenheimer, Pauli, Schwinger, 
Tomonoga, Weisskopf, Wigner, etc. 34 papers: 29 in English, 1 in French, 3 in German, 
1 in Italian. Historical commentary by editor. xvii + 423pp. 61/2  x 91/4 . 

S444 Paperbound $2.45 

FOUNDATIONS OF NUCLEAR PHYSICS, edited 6y R. T. Beyer. 13 of the most important papers 
on nuclear physics reproduced in facsimile in the original languages; the papers most often 
cited in footnotes, bibliographies. Anderson, Curie, Joliot, Chadwick, Fermi, Lawrence, Cock-
roft, Hahn, Yukawa. Unparalleled bibliography: 122 double columned pages, over 4,000 
articles, books, classified. 57 figures. 288pp. 61/4  x 91/4 . S19 Paperbound $1.75 

THE THEORY OF GROUPS AND QUANTUM MECHANICS, H. Weyl. Schroedinger's wave equation, 
de Broglie's waves of a particle, Jordon-Hoelder theorem, Lie's continuous groups of trans-
formations, Pauli exclusion principle, quantization of Mawell-Dirac field equations, etc. 
Unitary geometry, quantum theory, groups, application of groups to quantum mechanics, 
symmetry permutation group, algebra of symmetric transformations, etc. 2nd revised edi-
tion. xxii + 422pp. 51/4  x 8. S268 Clothbound $4.50 

S269 Paperbound 81.95 

PHYSICAL PRINCIPLES OF THE QUANTUM THEORY, Werner Heisenberg. Nobel laureate dis-
cusses quantum theory; his own work, Compton, Schroedinger, Wilson, Einstein, many 
others. For physicists, chemists, not specialists in quantum theory. Only elementary formulae 
considered in text; mathematical appendix for specialists. Profound without sacrificing 
clarity. Translated by C. Eckart, F. Hoyt. 18 figures. 192pp. 53/a x 8. 

S113 Paperbound $1.25 

INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT, Albert Einstein. Reprints 
from rare European journals, translated into English. 5 basic papers, including Elementary 
Theory of the Brownian Movement, written at request of Lorentz to provide a simple 
explanation. Translated by A. D. Cowper. Annotated, edited by R. Fürth. 33pp. of notes 
elucidate, give history of previous investigations. 62 footnotes. 124pp. 51/4  x 8. 

S304 Paperbound $1.25 

THE PRINCIPLE OF RELATIVITY, E. Einstein, H. Lorentz, M. Minkowski, H. Weyl. The 11 basic 
papers that founded the general and special theories of relativity, translatqd into English. 
2 papers by Lorentz on the Michelson experiment, electromagnetic phenomena. Minkowski's 
"Space and Time," and Weyl's "Gravitation and Electricity." 7 epoch-making papers by Ein-
stein: "Electromagnetics of Moving Bodies," "Influence of Gravitation in Propagation of 
Light," "Cosmological Considerations," "General Theory," 3 others. 7 diagrams. Special 
notes by A. Sommerfeld. 224pp. 51/4  x 8. S93 Paperbound $1.75 

STATISTICS 

ELEMENTARY STATISTICS, WITH APPLICATIONS IN MEDICINE AND THE BIOLOGICAL SCIENCES, 
F. E. Craton. Based primarily on biological sciences, but can be used by anyone desiring 
introduction to statistics. Assumes no prior acquaintance, requires only modest knowledge 
of math. All basic formulas carefully explained, illustrated; all necessary reference tables 
Included. From basic terms and concepts, proceeds to frequency distribution, linear, non-
linear, multiple correlation, etc. Contains concrete examples from medicine, biology. 101 
charts. 57 tables. 14 appendices. Iv + 376pp. 53/8 x 8. S506 Paperbound $1.95 

ANALYSIS AND DESIGN OF EXPERIMENTS, H. B. Mann. Offers method for grasping analysis of 
variance, variance design quickly. Partial contents: Chi-square distribution, analysis of 
variance distribution, matrices, quadratic forms, likelihood ration tests, test of linear 
hypotheses, power of analysis, Galois fields, non-orthogonal data, interblock estimates, etc. 
15pp. of useful tables. x + 195pp. 5 x 73/8. S180 Paperbound $1.45 

FREQUENCY CURVES AND CORRELATION, W. P. Elderton. 4th revised edition of standard 
work on classical statistics. Practical, one of few books constantly referred to for clear 
presentation of basic material. Partial contents: Frequency Distributions; Pearsons Fre-
quency Curves; Theoretical Distributions; Standard Errors; Correlation Ratio-Contingency; 
Corrections for Moments, Beta, Gamma Functions; etc. Key to terms, symbols. 25 examples. 
40 tables. 16 figures. xi + 272pp. 51/4  x 81/4 . Clothbound 81.48 
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CATALOGUE OF 

HYDRODYNAMICS, ETC. 

HYDRODYNAMICS, Horace Lamb. Standard reference work on dynamics of liquids and gases. 
Fundamental theorems, equations, methods, solutions, background for classical hydrody-
namics. Chapters: Equations of Motion, Integration of Equations in Special Gases, Vortex 
Motion, Tidal Waves, Rotating Masses of Liquids, etc. Excellently planned, arranged, Clear, 
lucid presentation. 6th enlarged, revised edition. Over 900 footnotes, mostly bibliograph-
ical. 119 figures. xv + 738pp. 61/8 x 91/4. S256 Paperbound $2.95 

HYDRODYNAMICS, A STUDY OF LOGIC, FACT, AND SIMILITUDE, Garrett Birkhoff. A stimulating 
application of pure mathematics to an applied problem. Emphasis is on correlation of 
theory and deduction with experiment. Examines recently discovered paradoxes, theory of 
modelling and dimensional analysis, paradox and error in flows and free boundary theory. 
Classical theory of virtual mass derived from homogenous spaces; group theory applied 
to fluid mechanics. 20 figures, 3 plates. xiii + 186pp. 53/8 x 8. S22 Paperbound $1.85 

HYDRODYNAMICS, H. Dryden, F. Murhaghan, H. Bateman. Published by National Research 
Council, 1932. Complete coverage of classical hydrodynamics, encyclopedic in quality. 
Partial contents: physics of fluids, motion, turbulent flow, compressible fluids, motion in 
1, 2, 3 dimensions; laminar motion, resistance of motion through viscous fluid, eddy 
viscosity, discharge of gases, flow past obstacles, etc. Over 2900-item bibliography. 23 
figures. 634pp. 53/8 x 8. S303 Paperbound $2.75 

ACOUSTICS AND OPTICS 

PRINCIPLES OF PHYSICAL OPTICS, Ernst Mach. Classical examination of propagation of light, 
color, polarization, etc. Historical, philosophical treatment unequalled for breadth and 
readability. Contents: Rectilinear propagation, reflection, refraction, dioptrics, composition 
of light, periodicity, theory of interference, polarization, mathematical representation of 
properties, etc, 279 illustrations. 10 portraits. 324pp. 53/8 x 8. S170 Paperbound $1.75 

THE THEORY OF SOUND, Lord Rayleigh. Written by Nobel laureate, classical methods here 
will cover most vibrating systems likely to be encountered in practice. Complete coverage 
of experimental, mathematical aspects. Partial contents: Harmonic motions, lateral vibra-
tions of bars, curved plates or shells, applications of Laplace's functions to acoustical 
problems, fluid friction, etc. First low-priced edition of this great reference-study work. 
Historical introduction by R. B. Lindsay. 1040pp. 97 figures. 53/8 x 8. 

S292, S293, Two volume set, paperbound $4.00 

THEORY OF VIBRATIONS, N. W. McLachlan. Based on exceptionally successful graduate 
course, Brown University. Discusses linear systems having 1 degree of freedom, forced 
vibrations of simple linear systems, vibration of flexible strings, transverse vibrations of 
bars and tubes, of circular plate, sound waves of finite amplitude, etc. 99 diagrams. 160pp. 
53/e x 8. S190 Paperbound $1.35 

APPLIED OPTICS AND OPTICAL DESIGN, A. E. Conrady. Thorough systematic presentation of 
physical and mathematical aspects, limited mostly to "real optics." Stresses practical 
problem of maximum aberration permissible without affecting performance. Ordinary ray 
tracing methods; complete theory ray tracing methods, primary aberrations; enough higher 
aberration to design telescopes, low powered microscopes, photographic equipment. Covers 
fundamental equations, extra-axial image points, transverse chromatic aberration, angular 
magnification, similar topics. Tables of functions of N. Over 150 diagrams. x + 518pp. 
53/8 x 85/8. S366 Paperbound $2.98 

RAYLEIGH'S PRINCIPLE AND ITS APPLICATIONS TO ENGINEERING, G. Temple, W. Dickley. 
Rayleigh's principle developed to provide upper, lower estimates of true value of funda-
mental period of vibrating system, or condition of stability of elastic system. Examples, 
rigorous proofs. Partial contents: Energy method of discussing vibrations, stability. Per-
turbation theory, whirling of uniform shafts. Proof, accuracy, successive approximations, 
applications of Rayleigh's theory. Numerical, graphical methods. Ritz's method. 22 figures. 
ix + 156pp. 53/8 x 8. S307 Paperbound $1.50 

OPTICKS, Sir Isaac Newton. In its discussion of light, reflection, color, refraction, theories 
of wave and corpuscular theories of light, this work is packed with scores of insights and 
discoveries. In its precise and practical discussions of construction of optical apparatus, 
contemporary understanding of phenomena, it is truly fascinating to modern scientists. 
Foreword by Albert Einstein. Preface by I. B. Cohen, Harvard. 7 pages of portraits, facsimile 
pages, letters, etc. cxvi + 414pp. 53/8 x 8. S205 Paperbound $2.00 
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DOVER SCIENCE BOOKS 

ON THE SENSATIONS OF TONE, Hermann Helmholtz. Using acoustical physics, physiology, 
experiment, history of music, covers entire gamut of musical tone: relation of music 
science to acoustics, physical vs. physiological acoustics, vibration, resonance, tonality, 
progression of parts, etc. 33 appendixes on various aspects of sound, physics, acoustics, 
music, etc. Translated by A. J. Ellis. New introduction by H. Margenáu, Yale. 68 figures. 43 
musical passages analyzed. Over 100 tables. xix + 576pp. x 91/4. 

S114 Clothbound $4.95 

ELECTROMAGNETICS, ENGINEERING, TECHNOLOGY 

INTRODUCTION TO RELAXATION METHODS, F. S. Shaw. Describes almost all manipulative re-
sources of value in solution of differential equations. Treatment is mathematical rather 
than physical. Extends general computational process to include almost all branches of 
applied math and physics. Approximate numerical methods are demonstrated, although high 
accuracy is obtainable without undue expenditure of time. 48pp. of tables for computing 
irregular star first and second derivatives, irregular star coefficients for second order 
equations, for fourth order equations. "Useful. . . . exposition is clear, simple . . . no 
previous acquaintance with numerical methods is assumed," Science Progress. 253 dia-
grams. 72 tables. 400pp. 53/e x 8. S244 Paperbound $2.45 

THE ELECTROMAGNETIC FIELD, M. Mason, W. Weaver. Used constantly by graduate engineers. 
Vector methods exclusively; detailed treatment of electrostatics, expansion methods, with 
tables converting any quantity into absolute electromagnetic, absolute electrostatic, prac-
tical units. Discrete charges, ponderable bodies. Maxwell field equations, etc. 416pp. 
53/e x 8. S185 Paperbound $2.00 

ELASTICITY, PLASTICITY AND STRUCTURE OF MATTER, R. Houwink. Standard treatise on 
rheological aspects of different technically important solids: crystals, resins, textiles, rubber, 
clay, etc. Investigates general laws for deformations; determines divergences. Covers gen-
eral physical and mathematical aspects of plasticity, elasticity, viscosity. Detailed examina-
tion of deformations, internal structure of matter in relation to elastic, plastic behaviour, 
formation of solid matter from a fluid, etc. Treats glass, asphalt, balata, proteins, baker's 
dough, others. 2nd revised, enlarged edition. Extensive revised bibliography in over 500 
footnotes. 214 figures. xvii + 368pp. 6 x 91/4 . S385 Paperbound $2.45 

DESIGN AND USE OF INSTRUMENTS AND ACCURATE MECHANISM, T. N. Whitehead. For the 
instrument designer, engineer; how to combine necessary mathematical abstractions with 
independent observations of actual facts. Partial contents: instruments and their parts, 
theory of errors, systematic errors, probability, short period errors, erratic errors, design 
precision, kinematic, semikinematic design, stiffness, planning of an instrument, human 
factor, etc. 85 photos, diagrams. xii + 288pp. 53/e x 8. S270 Paperbound $1.95 

APPLIED HYDRO- AND AEROMECHANICS, L. Prandtl, O. G. 
methods valuable to engineers. Flow in pipes, boundary 
tions, turbulent flow, boundary layer determining drag 
"Will be welcomed by all students of aerodynamics," 
Engineering Society Monograph, 1934. Index. 226 figures. 
flow patterns. xvi + 311pp. 53/8 x 8. 

Tietjens. Presents, for most part, 
layers, airfoil theory, entry condi-
from pressure and velocity, etc. 
Nature. Unabridged, unaltered. An 
28 photographic plates illustrating 

S375 Paperbound $1.95 

FUNDAMENTALS OF HYDRO- AND AEROMECHANICS, L. Prandtl, O. G. Tietjens. Standard work, 
based on Prandtl's lectures at Goettingen. Wherever possible hydrodynamics theory is 
referred to practical considerations in hydraulics, unifying theory and experience. Presenta-
tion extremely clear. Though primarily physical, proofs are rigorous and use vector analysis 
to a great extent. An Engineering Society Monograph, 1934. "Still recommended as an 
excellent introduction to this area," Physikalische Blâtter. 186 figures. xvi + 270pp. 
53/e x 8. S374 Paperbound $1.85 

GASEOUS CONDUCTORS: THEORY AND ENGINEERING APPLICATIONS, J. D. Cobine. Indispensable 
text, reference, to gaseous conduction phenomena, with engineering viewpoint prevailing 
throughout. Studies kinetic theory of gases, ionization, emission phenomena; gas breakdown, 
spark characteristics, glow, discharges; engineering applications in circuit interrupters, recti-
fiers, etc. Detailed treatment of high pressure arcs (Suits); low pressure arcs (Langmuir, 
Tonks). Much more. "Well organized, clear, straightforward," Tonks, Review of Scientific 
Instruments. 83 practice problems. Over 600 figures. 58 tables. xx + 606pp. 
51/4  x 8. S442 Paperbound $2.75 

PHOTOELASTICITY: PRINCIPLES AND METHODS, H. T. lesson, F. C. Harris. For engineer, spe-
cific problems of stress analysis. Latest time-saving methods of checking calculations in 
2-dimensional design problems, new techniques for stresses in 3 dimensions, lucid descrip-
tion of optical systems used in practical photoelectricity. Useful suggestions, hints based 
on on-the-job experience included. Partial contents: strain, stress-strain relations, circular 
disc under thrust along diameter, rectangular block with square hold under vertical thrust, 
simply supported rectangular beam under central concentrated load, etc. Theory held to 
minimum, no advanced mathematical training needed. 164 illustrations. viii + 184pp. 
61/4  x 91/4 . S137 Clothbound $3.75 
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MICROWAVE TRANSMISSION DESIGN DATA, T. Moreno. Originally classified, now rewritten, 
enlarged (14 new chapters) under auspices of Sperry Corp. Of immediate value or reference 
use to radio engineers, systems designers, applied physicists, etc. Ordinary transmission 
line theory; attenuation; parameters of coaxial lines; flexible cables; tuneable wave guide 
impedance transformers; effects of temperature, humidity; much more. "Packed with informa-
tion . . . theoretical discussions are directly related to practical questions," U. of Royal 
Naval Scientific Service. Tables of dielectrics, flexible cable, etc. ix + 248pp. x 8. 

S549 Paperbound $1.50 

THE THEORY OF THE PROPERTIES OF METALS AND ALLOYS, H. F. Mott, H. Jones. Quantum 
methods develop mathematical models showing interrelationship of fundamental chemical 
phenomena wtih crystal structure, electrical, optical properties, etc. Examines electron 
motion in applied field, cohesion, heat capacity, refraction, noble metals, transition and 
di-valent metals, etc. "Exposition is as clear . . . mathematical treatment as simple and 
reliable as we have become used to expect of . . . Prof. Mott," Nature. 138 figures. xiii + 
320pp. 5% x 8. S456 Paperbound $1.85 

THE MEASUREMENT OF POWER SPECTRA FROM THE POINT OF VIEW OF COMMUNICATIONS 
ENGINEERING, R. B. Blackman, J. W. Tukey. Pathfinding work reprinted from "Bell System 
Technical Journal." Various ways of getting practically useful answers in power spectra 
measurement, using results from both transmission and statistical estimation theory. Treats: 
Autocovariance, Functions and Power Spectra, Distortion, Heterodyne Filtering, Smoothing, 
Decimation Procedures, Transversal Filtering, much more. Appendix reviews fundamental 
Fourier techniques. Index of notation. Glossary of terms. 24 figures. 12 tables. 192pp. 
5% x 8%. S507 Paperbound $1.85 

TREATISE ON ELECTRICITY AND MAGNETISM, James Clerk Maxwell. For more than 80 years 
a seemingly inexhaustible source of leads for physicists, mathematicians, engineers. Total 
of 1082pp. on such topics as Measurement of Quantities, Electrostatics, Elementary Mathe-
matical Theory of Electricity, Electrical Work and Energy in a System of Conductors, Gen-
eral Theorems, Theory of Electrical Images, Electrolysis, Conduction, Polarization, Dielectrics, 
Resistance, much more. "The greatest mathematical physicist since Newton," Sir James 
Jeans. 3rd edition. 107 figures, 21 plates. 1082pp. 5% x 8. • S186 Clothbound $4.95 

CHEMISTRY AND PHYSICAL CHEMISTRY 

THE PHASE RULE AND ITS APPLICATIONS, Alexander Findlay. Covers chemical phenomena of 
1 to 4 multiple component systems, the "standard work on the subject" (Nature). Completely 
revised, brouet up to date by A. N. Campbell, N. O. Smith. New material on binary, tertiary 
liquid equilibria, solid solutions in ternary systems, quinary systems of salts, water, etc. 
Completely revised to triangular coordinates in ternary systems, clarified graphic representa-
tion, solid models, etc. 9th revised edition. 236 figures. 505 footnotes, mostly bibliographic. 
xii + 449pp. 5% x 8. S92 Paperbound $2.45 

DYNAMICAL THEORY OF GASES, James Jeans. Divided into mathematical, physical chapters for 
convenience of those not expert in mathematics. Discusses mathematical theory of gas 
in steady state, thermodynamics, Bolzmann, Maxwell, kinetic theory, quantum theory, expo-
nentlals, etc. "One of the classics of scientific writing . . . as lucid and comprehensive 
an exposition of the kinetic theory as has ever been written," J. of Institute of Engineers. 
4th enlarged edition, with new material on quantum theory, quantum dynamics, etc. 28 figures. 
444pp. 61/4  x 9%. S136 Paperbound $2.45 

POLAR MOLECULES, Pieter Debye. Nobel laureate offers complete guide to fundamental 
electrostatic field relations, polarizability, molecular structure. Partial contents: electric 
intensity, displacement, force, polarization by orientation, molar polarization, molar refrac-
tion, halogen-hydrides, polar liquids, ionic saturation, dielectric constant, etc. Special 
chapter considers quantum theory. "Clear and concise . . . coordination of experimental 
results with theory will be readily appreciated," Electronics Industries. 172pp. 5% x 8. 

S63 Clothbound $3.50 
S64 Paperbound $1.50 

ATOMIC SPECTRA AND ATOMIC STRUCTURE, G. Herzberg. Excellent general survey for chem-
ists, physicists specializing in other fields. Partial contents: simplest line spectra, elements 
of atomic theory; multiple structure of line spectra, electron spin; building-up principle, 
periodic system of elements; finer details of atomic spectra; hyperfine structure of spectral 
lines; some experimental results and applications. 80 figures. 20 tables. xiii + 257pp. 
53/a x 8. S115 Paperbound $1.95 

TREATISE ON THERMODYNAMICS, Max Planck. Classic based on his original papers. Brilliant 
concepts of Nobel laureate make no assumptions regarding nature of heat, rejects earlier 
approaches of Helmholtz, Maxwell, to offer uniform point of view for entire field. Seminal 
work by founder of quantum theory, deducing new physical, chemical laws. A standard 
text, an excellent introduction to field for students with knowledge of elementary chemistry, 
physics, calculus. 3rd English edition. xvi + 297pp. 5% x 8. S219 Paperbound $1.75 
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KINETIC THEORY OF LIQUIDS, J. Frenkel. Regards kinetic theory of liquids as generalization, 
extension of theory of solid bodies, covers all types of arrangements of solids; thermal 
displacements of atoms; interstitial atoms, ions; orientational, rotational motion of mole-
cules; transition between states of matter. Mathematical theory developed close to physical 
subject matter. "Discussed in a simple yet deeply penetrating fashion . . . will serve as 
seeds for a great many basic and applied developments in chemistry," J. of the Amer. 
Chemical Soc. 216 bibliographical footnotes. 55 figures. xi + 485pp. 53/8 x 8. 

S94 Clothbound $3.95 
S95 Paperbound $2.45 

ASTRONOMY 

OUT OF THE SKY, H. H. Nininger. Non-technical, comprehensive introduction to "meteoritics" 
—science concerned with arrival of matter from outer space. By one of world's experts 
on meteorites, this book defines meteors and meteorites; studies fireball clusters and 
processions, meteorite composition, size, distribution, showers, explosions, origins, much 
more. viii + 336pp. 53/8 x 8. T519 Paperbound $1.85 

AN INTRODUCTION TO THE STUDY OF STELLAR STRUCTURE, S. Chandrasekhar. Outstanding 
treatise on stellar dynamics by one of greatest astro-physicists. Examines relationship be-
tween loss of energy, mass, and radius of stars in steady state. Discusses thermodynamic 
laws from Caratheodory's axiomatic standpoint; adiabatic, polytropic laws; work of Ritter, 
Emden, Kelvin, etc.; Stroemgren envelopes as starter for theory of gaseous stars; Gibbs 
statistical mechanics (quantum); degenerate stellar configuration, theory of white dwarfs; 
etc. "Highest level of scientific merit," Bulletin. Amer. Math. Soc. 33 figures. 509pp. 
53/a x 8. S413 Paperbound $2.75 

LES MÉTHODES NOVELLES DE LA MÉCANIQUE CÉLESTE, H. Poincaré. Complete French text 
of one of Poincaré's most important works. Revolutionized celestial mechanics: first use of 
integral invariants, first major application of linear differential equations, study of periodic 
orbits, lunar motion and Jupiter's satellites, three body problem, and many other important 
topics. "Started a new era . . . so extremely modern that even today few have mastered 
his weapons," E. T. Bell. 3 volumes. Total 1282pp. 61/4  x 91/4 . 

Vol. 1 S401 Paperbound $2.75 
Vol. 2 S402 Paperbound $2.75 
Vol. 3 S403 Paperbound $2.75 

The set $7.50 

THE REALM OF THE NEBULAE, E. Hubble. One of the great astronomers of our time presents 
his concept of "island universes," and describes its effect on astronomy. Covers velocity-
distance relation; classification, nature, distances, general field of nebulae; cosmological 
theories; nebulae in the neighborhood of the Milky way; etc. 39 photos, including velocity-
distance relations shown by spectrum comparison. "One of the most progressive lines 
of astronomical research," The Times, London. New Introduction by A. Sandage. 55 illustra-
tions. xxiv + 201pp. 53/8 x 8. S455 Paperbound $1.50 

HOW TO MAKE A TELESCOPE, Jean Texereau. Design, build an f/6 or f/8 Newtonian type 
reflecting telescope, with altazimuth Couder mounting, suitable for planetary, lunar, and 
stellar observation. Covers every operation step-by-step, every piece of equipment. Dis-
cusses basic principles of geometric and physical optics (unnecessary to construction), 
comparative merits of reflectors, refractors. A thorough discussion of eyepieces, finders, 
grinding, installation, testing, etc. 241 figures, 38 photos, show almost. every operation 
and tool. Potential errors are anticipated. Foreword by A. Couder. Sources of supply. xiii 
+ 191pp. 61/4  x 10. T464 Clothbound $3.50 

BIOLOGICAL SCIENCES 

THE BIOLOGY OF THE AMPHIBIA, G. K. Noble, Late Curator of Herpetology at Am. Mus. of 
Nat. Hist. Probably most used text on amphibia, most comprehensive, clear, detailed. 19 
chapters, 85 page supplement: development; heredity; life history; speciation; adaptation; 
sex, integument, respiratory, circulatory, digestive, muscular, nervous systems; instinct, 
intelligence, habits, economic value classification, environment relationships, etc. "Nothing 
comparable to it:' C. H. Pope, curator of Amphibia, Chicago Mus. of Nat. Hist. 1047 item 
bibliography. 174 illustrations. 600pp. 53/8 x 8. S206 Paperbound $2.98 

THE ORIGIN OF LIFE, A. I. Oporto. A classic of biology. This is the first modern statement 
of theory of gradual evolution of life from nitrocarbon compounds. A brand-new evaluation 
of Oparin's theory in light of later research, by Dr. S. Margulis, University of Nebraska. 
xxv + 270pp. 53/8 x 8. S213 Paperbound $1.75 
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THE BIOLOGY OF THE LABORATORY MOUSE, edited by G. D. Snell. Prepared in 1941 by staff 
of Roscoe B. Jackson Memorial Laboratory, still the standard treatise on the mouse, 
assembling enormous amount of material for which otherwise you spend hours of research. 
Embryology, reproduction, histology, • spontaneous neoplasms, gene and chromosomes muta-
tions, genetics of spontaneous tumor formations, of tumor transplantation, endocrine secre-
tion and tumor formation, milk influence and tumor formation, inbred, hybrid animals, 
parasites, infectious diseases, care and recording. "A wealth of information of vital con-
cern. . . . recommended to all who could use a book on such a subject," Nature. Classified 
bibliography of 1122 items. 172 figures, including 128 photos. ix + 497pp. 61/2  x 91/2 . 

S248 Clothbound $6.00 

THE TRAVELS OF WILLIAM BARTRAM, edited by Mark Van Doran. Famous source-book of 
American anthropology, natural history, geography, is record kept by Bartram in 1770's on 
travels through wilderness of Florida, Georgia, Carolinas. Containing accurate, beautiful 
descriptions of Indians, settlers, fauna, flora, it is one of firest pieces of Americana 
ever written. 13 original illustrations. 448pp. 53/8 x 8. T13 Paperbound $2.00 

BEHAVIOUR AND SOCIAL LIFE OF THE HONEYBEE, Ronald Ribbands. Outstanding scientific 
study; a compendium of practically everything known of social life of honeybee. Stresses 
behaviour of individual bees in field, hive. Extends von Frisch's experiments on communi-
cation among bees. Covers perception of temperature, gravity, distance, vibration; sound 
production; glands; structural differences; wax production; temperature regulation; recogni-
tion, communication; drifting, mating behaviour, other highly interesting topics. "This 
valuable work is sure of a cordial reception by laymen, beekeepers and scientists," Prof. 
Karl von Frisch, Brit. J. of Animal Behaviour. Bibliography of 690 references. 127 diagrams, 
graphs, sections of bee anatomy, fine photographs. 352pp. S410 Clothbound $4.50 

ELEMENTS OF MATHEMATICAL BIOLOGY, A. J. LoUca. Pioneer classic, 1st major attempt to 
apply modern mathematical techniques on large scale to phenomena of biology, biochem-
istry, psychology, ecology, similar life sciences. Partial contents: Statistical meaning of 
irreversibility; Evolution as redistribution; Equations of kinetics of evolving systems; Chem-
ical, inter-species equilibrium; parameters of state; Energy transformers of nature, etc. 
Can be read with profit by even those having no advanced math; unsurpassed as study-
reference. Formerly titled "Elements of Physical Biology." 72 figures. xxx + 460pp. 53/8 x 8. 

S346 Paperbound $2.45 

TREES OF THE EASTERN AND CENTRAL UNITED STATES AND CANADA, W. M. Harlow. Serious 
middle-level text covering more than 140 native trees, important escapes, with informa-
tion on general appearance, growth habit, leaf forms, flowers, fruit, bark, commercial use, 
distribution, habitat, woodlore, etc. Keys within text enable you to locate various species 
easily, to know which have edible fruit, much more useful, interesting information. "Well 
illustrated to make identification very easy," Standard Cat. for Public Libraries. Over 600 
photographs, figures. xiii + 288pp. 55/8 x 61/2 . T395 Paperbound $1.35 

FRUIT KEY AND TWIG KEY TO TREES AND SHRUBS (Fruit key to Northeastern Trees, Twig key 
to Deciduous Woody Plants of Eastern North America), W. M. Harlow. Only guides with photo-
graphs of every twig, fruit described. Especially valuable to novice. Fruit key (both deciduous 
trees, evergreens) has introduction on seeding, organs involved, types, habits. Twig key 
introduction treats growth, morphology. In keys proper, identification is almost automatic. 
Exceptional work, widely used in university courses, especially useful for identification in 
winter, or from fruit or seed only. Over 350 photos, up to 3 times natural size. Index of 
common, scientific names, in each key. xvii + 125pp. 55/8 x 83/e. 1511 Paperbound $1.25 

INSECT LIFE AND INSECT NATURAL HISTORY, S. W. Frost. Unusual for emphasizing habits, social 
life, ecological relations of insects rather than more academic aspects of classification, 
morphology. Prof. Frost's enthusiasm and knowledge are everywhere evident as he discusses 
insect associations, specialized habits like leaf-rolling, leaf mining, case-making, the gall 
insects, boring insects, etc. Examines matters not usually covered in general works: insects 
as human food; insect music, musicians; insect response to radio waves; use of insects in 
art, literature. "Distinctly different, possesses an individuality all its own," Journal of 
Forestry. Over 700 illustrations. Extensive bibliography. x + 524pp. 53/8 x 8. 

T519 Paperbound $2.49 

A WAY OF LIFE, AND OTHER SELECTED WRITINGS, Sir William Osier. Physician, humanist, 
Osier discusses brilliantly Thomas Browne, Gui Patin, Robert Burton, Michael Servetus, 
William Beaumont, Laennec. Includes such favorite writing as title essay, "The Old Human-
ities and the New Science," "Books and Men," "The Student Life," 6 more of his best 
discussions of philosophy, literature, religion. "The sweep of his mind and interests em-
braced every phase of human activity," G. L. Keynes. 5 photographs. Introduction by G. L. 
Keynes, M.D., F.R.C.S. xx + 278pp. 53/s x 8. 1488 Paperbound $1.50 

THE GENETICAL THEORY OF NATURAL SELECTION, R. A. Fisher. 2nd revised edition of vital 
reviewing of Darwin's Selection Theory in terms of particulate inheritance, by one of 
greatest authorities on experimental, theoretical genetics. Theory stated in mathematical 
form. Special features of particulate inheritance are examined: evolution of dominance, main-
tenance of specific variability, mimicry, sexual selection, etc. 5 chapters on man's special 
circumstances as a social animal. 16 photographs. X + 310pp. 53/8 x 8. 

S466 Paperbound $1.85 
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THE AUTOBIOGRAPHY OF CHARLES DARWIN, AND SELECTED LETTERS, edited by Francis 
Darwin. Darwin's own record of early life; historic voyage aboard "Beagle;" furore surround-
ing evolution, his replies; reminiscences of his son. Letters to Henslow, LyeII, Hooker, 
Huxley, Wallace, Kingsley, etc., and thoughts on religion, vivisection. We see how he revo-
lutionized geology with concepts of ocean subsidence; how his great books on variation 
of plants and animals, primitive man, expression of emotion among primates, plant fertiliza-
tion, carnivorous plants, protective coloration, etc., came into being. 365pp. 53/e x 8. 

T479 Paperbound $1.65 

ANIMALS IN MOTION, Eadweard Muybridge. Largest, most comprehensive selection of Muy-
bridge's famous action photos of animals, from his "Animal Locomotion." 3919 high-speed 
shots of 34 different animals, birds, in 123 types of action; horses, mules, oxen, pigs, 
goats, camels, elephants, dogs, cats guanacos, sloths, lions, tigers, jaguars, raccoons, 
baboons, deer, elk, gnus, kangaroos, many others, walking, running, flying, leaping. Horse 
alone in over 40 ways. Photos taken against ruled backgrounds; most actions taken from 
3 angles at once: 90°, 60°, rear. Most plates original size. Of considerable interest to 
scientists as biology classic, records of actual facts of natural history, physiology. "Really 
marvelous series of plates," Nature. "Monumental work," Waldemar Kaempffert. Edited by 
L. S. Brown, 74 page introduction on mechanics of motion. 340pp. of plates. 3919 photo-
graphs. 416pp. Deluxe binding, paper. (Weight: 41/2 lbs.) 71/a x 103/e. 

T203 Clothbound $10.00 

THE HUMAN FIGURE IN MOTION, Eadweard Muybridge. New edition of great classic in history 
of science and photography, largest selection ever made from original Muybridge photos of 
human action: 4789 photographs, illustrating 163 types of motion: walking, running, lifting, 
etc. in time-exposure sequence photos at speeds up to 1/6000th of a second. Men, women, 
children, mostly undraped, showing bone, muscle positions against ruled backgrounds, 
mostly taken at 3 angles at once. Not only was this a great work of photography, acclaimed 
by contemporary critics as work of genius, but it was also a great 19th century landmark 
in biological research. Historical introduction by Prof. Robert Taft, U. of Kansas. Plates 
original size, full of detail. Over 500 action strips. 407pp. 73/4 x 10%. Deluxe edition. 

7204 Clothbound $10.00 

AN INTRODUCTION TO THE STUDY OF EXPERIMENTAL MEDICINE, Claude Bernard. 90-year old 
classic of medical science, only major work of Bernard available in English, records his 
efforts to transform physiology into exact science. Principles of scientific research illus-
trated by specified case histories from his work; roles of chance, error, preliminary false 
conclusion, in leading eventually to scientific truth; use of hypothesis. Much of modern 
application of mathematics to biology rests on foundation set down here. "The presentation 
is polished . . . reading is easy," Revue des questions scientifiques. New foreword by Prof. 
I. B. Cohen, Harvard U. xxv + 266pp. 53/e x 8. 1400 Paperbound $1.50 

STUDIES ON THE STRUCTURE AND DEVELOPMENT OF VERTEBRATES, E. S. Goodrich. Definitive 
study by greatest modern comparative anatomist. Exhaustive morphological, phylogenetic 
expositions of skeleton, fins, limbs, skeletal visceral arches, labial cartilages, visceral 
clefts, gills, vascular, respiratory, excretory, periphal nervous systems, etc., from fish to 
higher mammals. "For many a day this will certainly be the standard textbook on Vertebrate 
Morphology in the English language," Journal of Anatomy. 754 illustrations. 69 page bio-
graphical study by C. C. Hardy. Bibliography of 1186 references. Two volumes, total 906pp. 
53/e x 8. Two vol. set S449, 450 Paperbound $5.00 

EARTH SCIENCES 

THE EVOLUTION OF IGNEOUS BOOKS, N. L. Bowen. Invaluable serious introduction applies 
techniques of physics, chemistry to explain igneous rock diversity in terms of chemical 
composition, fractional crystallization. Discusses liquid immiscibility in silicate magmas, 
crystal sorting, liquid lines of descent, fractional resorption of complex minerals, petrogen, 
etc. Of prime importance to geologists, mining engineers; physicists, chemists working with 
high temperature, pressures. "Most important," Times, London. 263 bibliographic notes. 
82 figures. xviii + 334pp. 53/e x 8. S311 Paperbound $1.85 

GEOGRAPHICAL ESSAYS, M. Davis. Modern geography, geomorphology rest on fundamental 
work of this scientist. 26 famous essays present most important theories, field researches. 
Partial contents: Geographical Cycle; Plains of Marine, Subaerial Denudation; The Peneplain; 
Rivers, Valleys of Pennsylvania; Outline of Cape Cod; Sculpture of Mountains by Glaciers; 
etc. "Long the leader and guide," Economic Geography. "Part of the very texture of geog-
raphy .. . models of clear thought," Geographic Review. 130 figures. vi + 777pp. 53/8 x 8. 

S383 Paperbound $2.95 

URANIUM PROSPECTING, H. L. Barnes. For immediate practical use, professional geologist 
considers uranium ores, geological occurrences, field conditions, all aspects of highly 
profitable occupation. "Helpful information . . . easy-to-use, easy-to-find style," Geotimes. 
x 117pp. 53/e x 8. 1309 Paperbound $1.00 

11 



CATALOGUE OF 

DE RE METALLICA, Georgius Agricola. 400 year old classic translated, annotated by former 
President Herbert Hoover. 1st scientific study of mineralogy, mining, for over 200 years 
after its appearance in 1556 the standard treatise. 12 books, exhaustively annotated, discuss 
history of mining, selection of sites, types of deposits, making pits, shafts, ventilating, 
pumps, crushing machinery; assaying, smelting, refining metals; also salt alum, nitre, glass 
making. Definitive edition, with all 289 16th century woodcuts of original. Biographical, 
historical introductions. Bibliography, survey of ancient authors. Indexes. A fascinating book 
for anyone interested in art, history of science, geology, etc. Deluxe Edition. 289 illustra-
tions. 672pp. 63/4 x 10. Library cloth. S6 Clothbound $10.00 

INTERNAL CONSTITUTION OF THE EARTH, edited by Deno Gutenberg. Prepared for National 
Research Council, this is a complete, thorough coverage of earth origins, continent forma-
tion, nature and behaviour of earth's core, petrology of crust, cooling forces in core, 
seismic and earthquake material, gravity, elastic constants, strain characteristics, similar 
topics. "One is filled with admiration . . . a high standard . . . there is no reader who 
will not learn something from this book," London, Edinburgh, Dublin, Philosophic Magazine. 
Largest Bibliography in print: 1127 classified items. Table of constants. 43 diagrams. 
439pp. 61/4  x 91/4. S414 Paperbound' $2.45 

THE BIRTH AND DEVELOPMENT OF THE GEOLOGICAL SCIENCES, F. D. Adams. Most thorough 
history of earth sciences ever written. Geological thought from earliest times to end of 
19th century, covering over 300 early thinkers and systems; fossils and their explanation, 
vulcanists vs. neptunists, figured stones and paleontology, generation of stones, dozens of 
similar topics. 91 illustrations, including Medieval, Renaissance woodcuts, etc. 632 footnotes, 
mostly bibliographical. 511pp. 53/8 x 8. 15 Paperbound $2.00 

HYDROLOGY, edited by O. E. Meinzer, prepared for the National Research Council. Detailed, 
complete reference library on precipitation, evaporation, snow, snow surveying, glaciers, 
lakes, infiltration, soil moisture, ground water, runoff, drought, physical changes produced 
by water hydrology of limestone terranes, etc. Practical in application, especially valuable 
for engineers. 24 experts have created "the most up-to-date, most complete treatment of 
the subject," Am. Assoc. of Petroleum Geologists. 165 illustrations. xi -i- 712pp. 61/4  x 91/4 . 

S191 Paperbound $2.95 

LANGUAGE AND TRAVEL AIDS FOR SCIENTISTS 

SAY IT language phrase books 

"SAY IT" in the foreign language of your choice! We have sold over 1/42 million copies of 
these popular, useful language books. They will not make you an expert linguist overnight, 
but they do cover most practical matters of everyday life abroad. 

Over 1000 useful phrases, expressions, additional variants, substitutions. 

Modern! Useful! Hundreds of phrases not available in other texts: "Nylon," "air-condi• 
tioned," etc. 

The ONLY inexpensive phrase book completely indexed. Everything is available at a flip 
of your finger, ready to use. 

Prepared by native linguists, travel experts. 

Based on years of travel experience abroad. 

May be used by itself, or to supplement any other text or course. Provides a living ele-
ment. Used by many colleges, institutions: Hunter College; Barnard College; Army Ordinance 
School, Aberdeen; etc. 

Available, 1 book per language: 
Danish (T818) 75e 
Dutch (T817) 75e 
English (for German-speaking people) (T801) 60e 
English (for Italian-speaking people) (1816) 60e 
English (for Spanish-speaking people) (1802) 60e 
Esperanto (T820) 750 
French (T803) 60e 
German (1804) 60e 
Modern Greek (1813) 75e 
Hebrew (T805) 60C 
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Italian (T806) 60e 
Japanese (1807) 75e 
Norwegian (T814) 75e 
Russian (1810) 75e 
Spanish (T811) 60e 
Turkish (T821) 75e 
Yiddish (T815) 75e 
Swedish (1812) 75e 
Polish (1808) 75e 
Portuguese (1809) 75C 



DOVER SCIENCE BOOKS 

MONEY CONVERTER AND TIPPING GUIDE FOR EUROPEAN TRAVEL, C. Vomacka. Purse-size hand-
book crammed with information on currency regulations, tipping for every European country, 
including Israel, Turkey, Czechoslovakia, Rumania, Egypt, Russia, Poland. Telephone, postal 
rates; duty-free imports, passports, visas, health certificates; foreign clothing sizes; weather 
tables. What, when to tip. 5th year of publication. 128pp. 3½ x 5%. 1260 Paperbound 60d 

NEW RUSSIAN-ENGLISH AND ENGLISH-RUSSIAN DICTIONARY, M. A. O'Brien. Unusually com-
prehensive guide to reading, speaking, writing Russian, for both advanced, beginning stu-
dents. Over 70,000 entries in new orthography, full information on accentuation, grammatical 
classifications. Shades of meaning, idiomatic uses, colloquialisms, tables of irregular verbs 
for both languages. Individual entries indicate stems, transitiveness, perfective, imper-
fective aspects, conjugation, sound changes, accent, etc. Includes pronunciation instruction. 
Used at Harvard, Yale, Cornell, etc. 738pp. 5% x 8. 1208 Paperbound $ 2.00 

PHRASE AND SENTENCE DICTIONARY OF SPOKEN RUSSIAN, English-Russian, Russian-English. 
Based on phrases, complete sentences, not isolated words—recognized as one of best 
methods of learning idiomatic speech. Over 11,500 entries, indexed by single words, over 
32,000 English, Russian sentences, phrases, in immediately useable form. Shows accent 
changes in conjugation, declension; irregular forms listed both alphabetically, under main 
form of word. 15,000 word introduction covers Russian sounds, writing, grammar, syntax. 
15 page appendix of geographical names, money, important signs, given names, foods, 
special Soviet terms, etc. Originally published as U.S. Gov't Manual TM 30-944. iv -I- 573pp. 
5% x 8. 1496 Paperbound $2.75 

PHRASE AND SENTENCE DICTIONARY OF SPOKEN SPANISH, Spanish-English, English-Spanish. 
Compiled from spoken Spanish, based on phrases, complete sentences rather than isolated 
words—not an ordinary dictionary. Over 16,000 entries indexed under single words, both 
Castilian, Latin-American. Language in immediately useable form. 25 page introduction 
provides rapid survey of sounds, grammar, syntax, full consideration of irregular verbs. 
Especially apt in modern treatment of phrases, structure. 17 page glossary gives translations 
of geographical names, money values, numbers, national holidays, important street signs, 
useful expressions of high frequency, plus unique 7 page glossary of Spanish, Spanish-
American foods. Originally published as U.S. Gov't Manual TM 30-900. iv 1- 513pp. 5% x 8%. 

1495 Paperbound $1.75 

SAY IT CORRECTLY language record sets 

The best inexpensive pronunciation aids on the market. Spoken by native lingtiists asso-
ciated with major American universities, each record contains: 

14 minutes of speech-12 minutes of normal, relatively slow speech, 2 minutes of 
normal conversational speed. 

120 basic phrases, sentences, covering nearly every aspect of everyday life, travel— 
introducing yourself, travel in autos, buses, taxis, etc., walking, sightseeing, hotels, 
restaurants, money, shopping, etc. 

32 page booklet containing everything on record plus English translations easy-to-follow 
phonetic guide. 

Clear, high-fidelity recordings. 

Unique bracketing systems, selection of basic sentences enabling you to expand use of 
SAY IT CORRECTLY records with a dictionary, to fit thousands of additional situations. 

Use this record to supplement any course or text. All sounds in each language illustrated 
perfectly—imitate speaker in pause which follows each foreign phrase in slow section, 
and be amazed at increased ease, accuracy of pronounciation. Available, one language per 
record for 

French Spanish German 
Italian Dutch Modern Greek 
Japanese Russian Portuguese 
Polish Swedish Hebrew 
English (for German-speaking people) English (for Spanish-speaking people) 

7" (33 1/3 rpm) record, album, booklet. $1.00 each. 

SPEAK MY LANGUAGE: SPANISH FOR YOUNG BEGINNERS, M. Ahlman, Z. Gilbert. Records pro-
vide one of the best, most entertaining methods of introducing a foreign language to 
children. Within framework of train trip from Portugal to Spain, an English-speaking child 
is introduced to Spanish by native companion. (Adapted from successful radio program of 
N.Y. State Educational Department.) A dozen different categories of expressions, including 
greeting, numbers, time, weather, food, clothes, family members, etc. Drill is combined 
with poetry and contextual use. Authentic background music. Accompanying book enables 
a reader to follow records, includes vocabulary of over 350 recorded expressions. Two 
10" 33 1/3 records, total of 40 minutes. Book. 40 illustrations. 69pp. 5% x 10%. 

1890 The set $4.95 
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CATALOGUE OF 

LISTEN & LEARN language record sets 

LISTEN & LEARN is the only extensive language record course designed especially to meet 
your travel and everyday needs. Separate sets for each language, each containing three 33 1/3 
rpm long-playing records-1 1/2 hours of recorded speech by eminent native speakers 
who are professors at Columbia, New York U., Queens College. 

Check the following features found only in LISTEN & LEARN: 

Dual language recording. 812 selected phrases, sentences, over 3200 words, spoken first 
in English, then foreign equivalent. Pause after each foreign phrase allows time to 
repeat expression. 

128-page manual (196 page for Russian)—everything on records, plus simple transcrip-
tion. Indexed for convenience. Only set on the market completely indexed. 

Practical. No time wasted on material you can find in any grammar. No dead words. 
Covers central core material with phrase approach. Ideal for person with limited time. 
Living, modern expressions, not found in other courses. Hygienic products, modern 
equipment, shopping, "air-conditioned," etc. Everything is immediately useable. 

High-fidelity recording, equal in clarity to any costing up to $6 per record. 

"Excellent . . . impress me as being among the very best on the market," Prof. Mario 
Pei, Dept. of Romance Languages, Columbia U. "Inexpensive and well done .. ideal 
present," Chicago Sunday Tribune. "More genuinely helpful than anything of its kind," 
Sidney Clark, well-known author of "All the Best" travel books. 

UNCONDITIONAL GUARANTEE, Try LISTEN & LEARN, then return it within 10 days for full 
refund, if you are not satisfied. It is guaranteed after you actually use it. 

6 modern languages—FRENCH, SPANISH, GERMAN, ITALIAN, RUSSIAN, or JAPANESE *—one 
language to each set of 3 records (33 1/3 rpm). 128 page manual. Album. 

Spanish the set $4.95 German the set $4.95 Japanese` the set $5.95 
French the set $4.95 Italian the set $4.95 Russian the set $5.95 

* Available Oct. 1959. 

TRÜBNER COLLOQUIAL SERIES 

These unusual books are members of the famous Trübner series of colloquial manuals. They 
have been written to provide adults with a sound colloquial knowledge of a foreign lan-
guage, and are suited for either class use or self-study. Each book is a complete course in 
itself, with progressive, easy to follow lessons. Phonetics, grammar, and syntax are covered, 
while hundreds of phrases and idioms, reading texts, exercises, and vocabulary are included. 
These books are unusual in being neither skimpy nor overdetailed in grammatical matters, 
and in presenting up-to-date, colloquial, and practical phrase material. Bilingual presentation 
is stressed, to make thorough self-study easier for the reader. 

COLLOQUIAL HINDUSTANI, A. H. Harley, formerly Nizam's Reader in Urdu, U. of London. 30 
pages on phonetics and scripts (devanagari & Arabic-Persian) are followed by 29 lessons, 
including material on English and Arabic-Persian influences. Key to all exercises. Vocabufary. 
5 x 71/2 . 147pp. Clothbound $1.75 

COLLOQUIAL ARABIC, DeLacy O'Leary. Foremost Islamic scholar covers language of Egypt, 
Syria, Palestine, & Northern Arabia. Extremely clear coverage of complex Arabic verbs & noun 
plurals; also cultural aspects of language. Vocabulary. xviii -I- 192pp. 5 x 71/2 . 

Clothbound $1.75 

COLLOQUIAL GERMAN, P. F. During. Intensive thorough coverage of grammar in easily-followed 
form. Excellent for brush-up, with hundreds of colloquial phrases. 34 pages of bilingual 
texts. 224pp. 5 x 71/2 . Clothbound $1.75 

COLLOQUIAL SPANISH, W. R. Patterson. Castilian grammar and colloquial language, loaded 
with bilingual phrases and colloquialisms. Excellent for review or self-study. 164pp. 5 x 71/2 . 

Clothbound $1.75 

COLLOQUIAL FRENCH, W. R. Patterson. 16th revised edition of this extremely popular manual. 
Grammar explained with model clarity, and hundreds of useful expressions and phrases; 
exercises, reading texts, etc. Appendixes of new and useful words and phrases. 223pp. 
5 x 71/2 . Clothbound $1.75 
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DOVER SCIENCE BOOKS 

COLLOQUIAL PERSIAN, L. P. Elwell-Sutton. Best introduction to modern Persian, with 90 page 
grammatical section followed by conversations, 35 page vocabulary. 139pp. Clothbound $1.75 

COLLOQUIAL CZECH, J. Schwarz, former headmaster of Lingua Institute, Prague. Full easily 
followed coverage of grammar, hundreds of immediately useable phrases, texts. Perhaps the 
best Czech grammar in print. "An absolutely successful textbook," JOURNAL OF CZECHO-
SLOVAK FORCES IN GREAT BRITAIN. 252pp. 5 x 71/2 . Clothbound $2.50 

COLLOQUIAL RUMANIAN, G. Nandris, Professor of University of London. Extremely thorough 
coverage of phonetics, grammar, syntax; also included 70 page reader, and 70 page vocabulary. 
Probably the best grammar for this increasingly important language. 340pp. 5 x 71/2. 

Clothbound $2.50 

COLLOQUIAL ITALIAN, A. L. Hayward. Excellent self-study course in grammar, vocabulary, 
idioms, and reading. Easy progressive lessons will give a good working knowledge of Italian 
in the shortest possible time. 5 x 71/2. Clothbound $1.75 

MISCELLANEOUS 

TREASURY OF THE WORLD'S COINS, Fred Reinfeld. Finest general introduction to numis-
matics; non-technical, thorough, always fascinating. Coins of Greece, Rome, modern coun-
tries of every continent, primitive societies, such oddities as 200-lb stone money of Yap, 
nail coinage of New England; all mirror man's economy, customs, religion, politics, philos-
ophy, art. Entertaining, absorbing study; novel view of history. Over 750 illustrations. 
Table of value of coins illustrated. List of U.S. coin clubs. 224pp. 61/2 x 91/4. 

1433 Paperbound $1.75 

ILLUSIONS AND DELUSIONS OF THE SUPERNATURAL AND THE OCCULT, D. H. Rawcliffe. Ra-
tionally examines hundreds of persistent delusions including witchcraft, trances, mental 
healing, peyotl, poltergeists, stigmata, lycanthropy, live burial, auras, Indian rope trick, 
spiritualism, dowsing, telepathy, ghosts, ESP, etc. Explains, exposes mental, physical de-
ceptions involved, making this not only an exposé of supernatural phenomena, but a valuable 
exposition of characteristic types of abnormal psychology. Originally "The Psychology of 
the Occult." Introduction by Julian Huxley. 14 illustrations. 551pp. 53/8 x 8. 

1503 Paperbound $2.00 

HOAXES, C. D. MacDougall. Shows how art, science, history, journalism can be perverted 
for private purposes. Hours of delightful entertainment, a work of scholarly value, often 
shocking. Examines nonsense news, Cardiff giant, Shakespeare forgeries, Loch Ness monster, 
biblical frauds, political schemes, literary hoaxers like Chatterton, Ossian, disumbrationist 
school of painting, lady in black at Valentino's tomb, over 250 others. Will probably reveal 
truth about few things you've believed, will help you spot more easily the editorial 
"gander" or planted publicity release. "A stupendous collection . . . and shrewd analysis," 
New Yorker. New revised edition. 54 photographs. 320pp. 53/8 x 8. T465 Paperbound $1.75 

YOGA: A SCIENTIFIC EVALUATION, Kovoor T. Behanan. Book that for first time gave Western 
readers a sane, scientific explanation, analysis of yoga. Author draws on laboratory 
experiments, personal records of year as disciple of yoga, to investigate yoga psychology, 
physiology, "supernatural" phenomena, ability to plumb deepest human powers. In this 
study under auspices of Yale University Institute of Human Relations, strictest principles 
of physiological, psychological inquiry are followed. Foreword by W. A. Miles, Yale University. 
17 photographs. xx 270pp. 53/8 x 8. T505 Paperbound $1.65 

Write for free catalogs! 
Indicate your field of interest. Dover publishes books on physics, earth 
sciences, mathematics, engineering, chemistry, astronomy, anthropol-
ogy, biology, psychology, philosophy, religion, history, literature, math-
ematical recreations, languages, crafts, art, graphic arts, etc. 

Science B 

• Write to Dept. catr 
Dover Publications, Inc. 
180 Varick St., N. Y. 14, N. Y. 
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