Broadcasting & Cable's MARCH 1998 DECIDENCE AND LOGY MARCH 1998 Technology for the Digital Age

Set Composition & Control Software Evans & Sutherland will demonstrate its new Release 3.0 of FuseBox set composition and control software for the company's MindSet system. FuseBox is the first production-ready software program designed to compose, animate and control all aspects of virtual set production. And Release 3.0 will have twice the number of features and functions it had last year, including new ease-ofuse capabilities. Evans & Sutherland, 600 Komas Drive, Salt Lake City. UT 84108. More Information - Write In 131

Aspect Ratio Converters Will Be Introduced in U.S.

A new line of aspect ratio converters will be introduced in the U.S. by Axon Digital Design, Inc., a Dutch company that manufactures a broad line of digital signal converters, switchers and signal processing modules for broadcast facilities in Europe and the Far East. The principal new product is the 10 bit ARC 2000. The product line of two-way aspect ratio converters is designed for conversion from 4:3 to 16:9 and back, including pan scan, letterbox and pillarbox. **Axon Digital Design, Inc.**, One Rockefeller Plaza, Suite 1420, New York, NY 10020.

More Information - Write In 132

Wireless Video System

DTC Communications' DynaPIX will feature the new TRIAD Portable true diversity wireless video system that contains up to five receivers. Each receiver's output is simultaneously evaluated. A proprietary logic board switches to the best signal at the horizontal line rate, up to 15,725 times per second. This minimizes the effect of multipath and fades in the video output. An on-camera transmitter supports both Anton/Bauer and NP-1 battery mounting options. The transmitter is capable of transmitting one video channel, two audio channels, and LTC time code text window generator that is available as an option. PAL and NTSC versions are available. DTC Communications, Inc., 75 Northeastern Blvd., Nashua, NH 03062 More Information - Write In 133

NAB Next Stop On Digital Tour

IRTS panelists are enthusiastic about prospects of new medium

he "bottleneck" in digital TV will break at this year's National Association of Broadcasters convention in Las Vegas, according to Bruce Aflan, vice president-general manager of

Harris Corp.'s broadcast division, during a DTV panel sponsored by the International Radio and Television Society in New York. Allan was one of six panelists who dissected the new medium before several hundred industry witnesses.

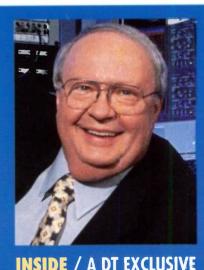
Moderator Don West, editor-in-chief of *Digital Television*, opened the session by saying: "There are as many different digital television media as there are people on this panel. The Advanced Television Systems Committee took nine years to produce what today looks like a camel, or is threatening to turn into one. The entire television industry is poised to start over in the digital realm—over 1.600 stations

wondering what to do. Will it be the topof-the-line HDTV, at 1080 lines interlace? Will it be 720 lines progressive? Or will as few as 480 lines progressive—the digital equivalent of 525 lines analog—pass muster? Will there be multiple signals? Will consumers cotton to 55-inch screens at roughly \$100 an inch? And will cable carry broadcasters' HDTV signals at all."

Harris's Allan said he expects analog TV sets to endure through the next decade, although consumers "will go with the new technology in the long run and it will win out." On that issue he also said: "If you show a significant difference in picture quality, consumers will step up

(continues on page 4)

Testing the HD in HDTV


By Mike Gardner Regional Sales Manager (Mid-Atlantic) Leitch Inc.

B efore the launch, the test. That's standard procedure for any new medium, and HDTV is no exception. Hence the Model HDTV Station Project, being conducted at WRC-TV Washington. That NBC-owned station is serving as a source of encoded digital television broadcast signals to assist equipment manufacturers in the development of new lines of professional and consumer electronic equipment.

Funding for the three-year project—an estimated \$6 million—is provided by 270 nationwide television-station members of the Association for Maximum Service Television (MSTV), by equipment manufacturers and by the Consumer Electronics Manufacturers Association (CEMA), a sector of the Electronic Industries Association.

On July 30, 1996, the model HDTV station project accomplished the first onair demonstration of the broadcast and reception of high-definition television, both live and taped. WRAL-HD Raleigh was the first to transmit HDTV signals but lacked a decoder to display them.

And on Aug. 6, before the ribbon-cutting ceremony of WHD-TV, the station broadcast a taped segment of "Lawrence of Arabia," a Columbia Pictures film supplied by Sony Pictures Entertainment. The movie was transmitted using 24 frames per second and progressive scanning in its original aspect ratio, and according to Allan S. Horlick, then president and general manager of WRC-TV, its *(continues on page 4)*

INSIDE / A DT EXCLUSIVE WITH JOE FLAHERTY, FATHER OF HDTV Page 8

Advances Digital Television and Video

N ot just digital video, advanced digital television and video (ADTV). The basic, video production tools, advanced beyond 525i for both the 1125i and 525p formats. We're developing basic production tools for 1998 and beyond. Welcome to the next generation of digital television. From Panasonic, the company with the most firsts in digital video.

[VTRs]

[CAMERAS]

[SWITCHERS]

[MONITORS

ADVANCED DIGITAL TELEVISION & VIDEO

World Radio History

TM

range of advanced studio monitors constitute a complete set of display tools for the production of Advanced Digital Television and Video.

> Panasonic 1125i studio cameras and 525p and 525i camcorders are essential members of the visionary ADTV family of products, offering an extensible, scaleable and affordable path to digital television.

TRs like the AJ-HD2000 and AJ-HD580/HDP500 combination offer state-of-the-art full bandwidth 10-bit digital video in the 1125i image format.

For more information on the latest Panasonic ADTV products, call: 1-800-528-8601 (Upon request enter product code 03)

NAB Show

Continued from page 1

and pay the premium."

In Allan's view, the next generation of chips will significantly reduce memory costs. "The electronics [costs] will drop fairly quickly," he said, adding that RCA is contemplating direct-view 34- and 38inch screen sets, to be produced after its first round of rear projection models, generally 50-inches or more.

Allan and others agreed that all formats will be represented in the early days of digital and HDTV, as the medium sorts itself out. The tension, of course, is between such spectrum-intensive formats as 1080i, which give the highest resolution, and such lower-end-of-the-line options as 480p, which afford multiple program opportunities.

"We don't believe in multicasting," said John Greene, vice president for digital operations at Capitol Broadcasting, whose WRAL-HD Raleigh was the first station to broadcast HDTV. "We believe in the best product delivered in a single channel." Greene believes that true HDTV will rule once people see it.

Greene said HDTV "absolutely works" with indoor bow-tie antennas or outdoor receiving equipment, based on Capitol's tests, and even marginal NTSC signals improve to clean digital ones with the switch.

Joe Flaherty, CBS's senior vice president for technology who is considered the father of HDTV, said "the technical quality of HDTV will become a critical factor in attracting the viewers," but said none of the existing display technologies are taking full advantage of the HDTV format. "The display is the weak link today, and a lot of money is being applied to correcting it." (For a full rendition of Flaherty's views on HDTV, see *Digital Television's* Q&A interview beginning on page 8.)

Flaherty expected a lot of digitized 480i in the short term, as stations already are so equipped for analog broadcasting. Prime time he expected to be in 1080i, relying on the 35 mm film production now prevalent

> EQUIPMENT MANUFACTURER

Chyron

in that period. He said CBS affiliates are ahead of the curve in ordering and installing digital TV equipment, and will typically be ahead of their FCC deadline.

Eddy Hartenstein, president of DirecTV, elaborated on his plans to provide two HDTV channels this fall, in time for the introduction of the new generation of TV sets in dealers' showrooms. He said it is "incumbent on us as a delivery platform to enable all formats and allow for on-the-fly switching" between them. "We wanted to have product available as soon as electronic consumer products were there," he said, to "break the chicken-and-egg cycle." Other panelists noted, and he conceded, that the HDTV opportunity was a major advantage for DBS over its cable rivals. Several commented that is was the threat of DBS's multiple channels that prompted cable to design its first generation of digital set-top boxes to carry more channels rather than a better, HDTV picture. Hartenstein said Thomson is committed to having \$400-\$600 HDTV set-top converters released 60 days after it introduces its HDTV sets.

Pete Mountanos, director of Microsoft's Digital Television Partners Program, said the compelling quality of 480p displays will have an important impact at NAB, and predicted that 480p will be a "very popular format." Challenged about the computer industry's 1997 pledge to have HDTV-capable personal computers in 1998, Mountanos said: "Frankly, we're still on target to deliver on that promise." He emphasized the need to make sure the platform was inexpensive, and would not add \$500 to the cost of PCs. "All this is not about pictures," he said. "It's about content."

Joel Brinkley, author of "Defining Vision: The Battle for the Future of Television" (and a Pulitzer Prize-winning reporter for the New York Times), said that the consumer would make the ultimate decision on HDTV, but that in the meantime all formats would be utilized at one time or another in the broadcast day. He said that cable was pursuing a non-HDTV strategy at the moment, and that it might have to pay the price.

SUBJECT TO CHANGE

ABC and Fox remain the only two of the top four TV networks not planning a top-of-the-line 1080i feed of high definition. Pre-NABconvention planning has ABC going for 720p as its HDTV format and 480p as its standard definition format. Fox appears to be opting simply for 480p—not an HDTV format—across the board. CBS and NBC are in the 1080i camp for prime time, with 480i for offpeak formats.

The first generation of digital sets will receive all 18 of the ATSC formats, but—for the most part—will display only 1080i and 480i. None plan to display 720p.

PERILS OF PIONEERING

WFAA-HD Dallas, the A.H. Belo station on the front ranks of HDTV, ran into a technological glitch with its first non-experimental transmissions when nearby Baylor Medical Center called to say that the digital broadcast was interfering with the signal used for cardiac monitors. The problem was not found to be life-threatening, according to the station, which says the spectrum that the hospital was using was so small that it was unregulated by the FCC. But the Baylor spectrum was located on the same channel 9 allocated for WFAA-HD, whose sister station, WFAA-TV, broadcasts in analog on channel 8. The station pulled the signal as soon as the problem was brought to its attention, but was planning to resume transmission after the hospital acquired new equipment, already purchased.

Testing HDTV

Continued from page 1

signal was free of snow, interference and electrical problems, with audio of compact disc quality. "This adds tremendous momentum toward HDTV's real-world introduction," said Margita White, president of MSTV.

In the 18 months following this early high-definition demo, WHD-TV sought and received experimental licenses to broadcast on Washington channels 27, 30 and 34. Using a Comark IOX series transmitter, WHD-TV has broadcast daily

DIGITAL VIDEO TEST/ SWITCHER EFFECTS GRAPHICS MEASUREMENT

1080

on channel 30. MSTV has converted a ENG van into a RF field test van, which has been gathering reception data from hundreds of sites throughout the Distriof Columbia, Virginia and Maryland WHD-TV also operates a second tranmitter, provided by Harris Corp. from i Sigma cd series, on channel 27. As the channel is immediately adjacent to analog channel 26 (also on air in Washington WHD-TV can field test adjacent channel interference.

Under the guidance of Bruce Mille now president of the Model HDTV Sta tion Project, several microwave, fiber an satellite projects are nearing completid in the first quarter of 1998. These projects will demonstrate solutions to STL/TSL and acquisition problem posed by the conversion to an all-digitatelevision system.

Leitch, a member of the WHD-TV project since the beginning, provided the wideband distribution amplifiers the allowed the station to begin converting it technical facility from "a laboratory to model HDTV station," according to Miller. "This shows great confidence to broadcasters in the near-term FCC ruling to support the Grand Alliance technical standard," said Kent Ewing, President to Leitch Inc.

Source material at WHD-TV is prima ily on videotape, HDD-1000, D6, D5 an D3 for previously compressed material Both full bandwidth HD at 1.5 Gb/s an 270 MB compressed signal level are bein considered as standards in future facilities Patch panels currently provide intercon nection with the Grand Alliance System The station also has a server with which t play sequences to air or transfer them t data tape for members to use in develop ing products. WHD-TV uses a Son HDC500 camera with a Canon HD52 lens in the studio. The 16x9 aspect ratio and precision focus ability offer new chal lenges to camera operators.

One From Column A, Two From Column B

CAMERAS

VTR/ SERVER

MONITORS

This is a partial list of digital broadcast equipment to be offered by major equipment vendors at the National Association of Broadcasters convention in Las Vegas, compiled by CBS Engineering.

Hewlett Packard 480 8 VSB 1080/480 1080/720/480 Hitachi Ikegami 1080 1080/480 1080/720/480 JVC 1080 1080 1080/480 Leader 1080/480 Leitch 1080 1080/480 Lucent 1080/720/480 1080 Mitsubishi 1080/720/480 1080 NEC 1080 1080/720/480 1080 **Nvision** 1080 Osaka 1080 Matsushita/Panasonic 1080 1080/720* 1080 1080/720/480 1080 Philips 1080 1080/720* 1080/720/480 1080/480 ShiboSoku 1080/480 Silicon Graphics 1080 1080 **Snell & Wilcox** 1080/720/480 1080 1080 1080 Sony 1080/480 1080 1080/480 1080/720/480 1080 1080 Technics 1080/720/480 Tektronix/Grass Valley 1080/720/480 1080 1080 1080/8 VSB 1080/480 Toshiba **Utah Scientific** 1080 xpermental, not a product

BROADCAST DTV EQUIPMENT

FORMAT

CONVERTER

1080/720/480

1080

The new Origin video computing platform. It's about time. It's about money.

SDI VCPRO[®]

MPEG2

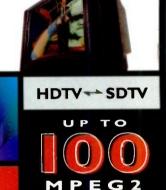
ON A

DVCPRO

Graphics

Origin200, Origin2000, and StudioCentral

Graphics logo


Graphics, and the Silicon

Introducing the Origin[™] video computing platform from Silicon Graphics. It's time you had everything you wanted, everything you needed and everything your competitors didn't want you to have in one, rack-mountable, digital broadcast platform.

Time will tell which digital video formats become the standards of our industry, so the Origin platform supports them all. From the biggest uncompressed formats to the most multi-

channel playout streams, from

www.sgi.com

HDTV to low bit-rate MPEG, run them all today.

IGIN

DEO COMPUTING PLATFORM

Time also changes everything, so we've given the Origin platform more scalability and flexibility than any dedicated box. Store months of on-line video, fast-network to any local desktop, run world-class applications, support standard automation systems and StudioCentral[™] asset management environment. Want advanced graphics? Origin will let you add it. That's power and flexibility.

When you're ready to see what the best system in the industry can do, visit us on the Web. But don't wait too long. Time is money and of the two, we can only make you more of the latter.

NDS has the DTV solution for every resolution.

The digital TV debate continues. But one thing is perfectly clear. Whether you're planning to use 480p, 720p or 1080i resolution, there's only one company to turn to for your DTV solution - NDS.

With our extensive range of contribution, distribution and ATSC products, NDS is your one stop shop for High Definition and Standard Definition encoding, multiplexing, modulation, splicing, ad insertion, conditional access and system control. Decades of digital experience and proven leadership in the design, manufacture and integration of digital television products make NDS the right choice to help you win with DTV.

> There are many resolutions, but only one company with the complete DTV solution. See it for yourself, at the NDS booth at NAB, April 6-9, S-2312, at the Sands Convention Center.

Bring the magazine wrapper, or a business card, and you'll be eligible to win one of 8 Zenith DVD2000 Video disc players.

NDS Americas Inc., 3501 Jamboree Road, Suite 200, Newport Beach, CA92660, USA Tel: -1 714 725 2554 Fax: +1 714 725 2554 www.ndsworld.com © 1998 Copyright NDS Ltd. All rights reserved.

More Information Circle 107

Joe Flaherty on... THE NUTS AND BOLTS OF PIXELS

If there weren't a Joe Flaherty television would have to invent one. CBS's senior vice president for technology has cornered the market on honors in his generation; the full list would fill most of a page in this magazine. He is without doubt the father of HDTV: no one else has worked longer or more effectively to best both the physics and the politics of this new medium. He is an engineer's engineer: Flaherty and his CBS colleagues have been involved with virtually every key advancement of the late 20th century. In the following interview with *Digital Television*, Flaherty brings readers up to speed on his pride and joy, and points out the path for the television medium to follow.

DT Vou have been the pivotal figure in creating this new medium, and motivating those in it, for the last 20 years. Are you on the lip of a tragedy or a triumph?

Flaherty \Box (Laughs) Well, actually, I think the basic work is done; it's a fait accompli. It's now a question of how long it takes people to decide to implement it. There are really two goals: one is to convert the country to digital television, and that much is absolutely assured. The analog world is dead, it will pass away. Those frequencies will pass away, on whatever schedule finally is determined. It's not going to be a quarter century; it will be less than that.

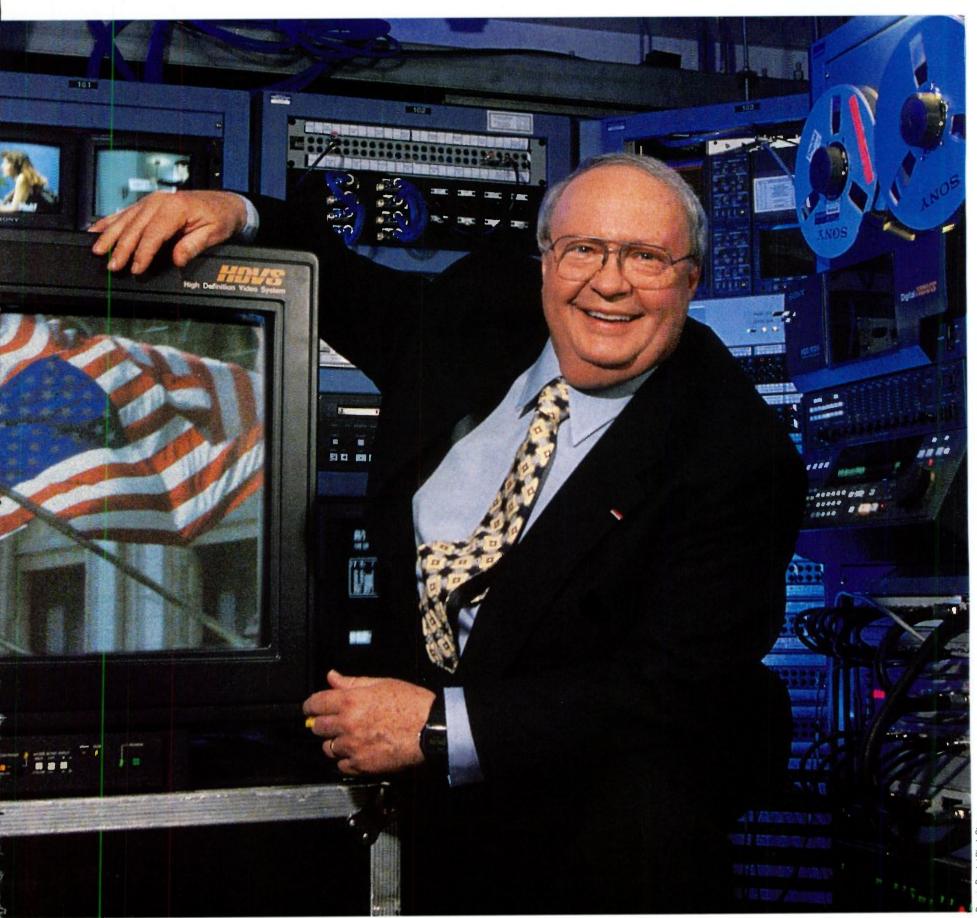
And, by the way, that's an enormous advantage. There's just so much flexibility in what you could do with digital technology. And to the extent that there will be a fusing of other digital technologies—computer, telephone, fax, and all that—with television, it's absolutely essential to have a digital television system. If we were to continue the way we were, the broadcasting world would be the last analog island in an all-digital sea.

The second goal is to improve the quality of the service. We have a world-class analog service today, but the digital services are better than that. All the various formats are better than that, due to the nature of the transmission bandwidth of the analog signal. So we are going to improve service. The question is, how much do we improve it? The 480-line systems are relatively minor improvements. The high-definition formats are a much better improvement. And the top of that line is the full 1,080-line, 1,920-pixel system, which today is interlaced for live pictures, but progressively scanned for film pictures. Within the next five to eight years it will be progressively scanned for all pictures. And that will happen sooner, rather than later, on the production side.

DT Why do we have to wait eight years?

Flaherty \Box Because we have to find a way to include the extra bits required for the progressive transmission in that 6 megahertz channel. We could do it tomorrow with a wider channel. As you know, that's 8 megahertz in Europe, 7 in Australia, but here it's 6. We don't yet have the technology to do that, but we will. But all of our film programs, which represent a significant part not only of prime time broadcasting, but a lot of cable and satellite transmission, where not only off-network programs are sold, but cinema films are sold. Those are all going to be full progressively scanned at the 1,080-line rate from the first day.

The question following on that is: How good is good? How high is up? What does it have to be? There's a tendency in humankind to think that what's here when they



entered the world is what the Lord planned in the Garde of Eden, and, therefore, there's something particularly sa cred about 480 lines. The fact is that Sarnoff went throug a whole series of line resolutions, trying to get the best h could. It started at 353 lines, which he called "high-defini tion," by the way. And it was, compared to the 40-line me chanical system. It then went to 405 in Europe and 525or 480 active lines—in this country.

You cannot accomplish more than you intend, and of intention was specifically stated by the ITU and th SMPTE and the technical community: to make the syste as good as 35-millimeter film in the cinema. That was th standard that people were used to—and, by the way which had been totally accepted by the public and by th creative community for at least 50 years. And that ha been accomplished.

So a 1.080-line system is not too good, it's just catchin up with where film has been for many years. And that is system accepted by the public as terrific. So we are finall catching up to that quality, and I believe that the public will accept that wholeheartedly.

DT Is there an engineering distinction between operating at 480, 720 or 1,080? Does it affect the costs within the broadcast plant?

program supplier. It's the first expense but it's the unavoidable one. If you don't want to lose the license, that DT Is that the \$2-million figure? Flaherty I Yes, assuming you don't have to rebuild the

tower, reinforcements and so on, which would be in addition to that. But, after that, it's sort of a marketplace, station-by-station decision: How soon do you need to originate local commercials in high-definition? How soon do you want to do local productions? Then you need cameras and switchers. And how soon do you do syndicated programming and need a tape machine?

you have to do.

That, of course, is expensive, because it means replacing what's already there. The cost itself can be paced along with the normal replacement schedule-I mean, this equipment doesn't last forever. If it's paced as much as possible with a normal replacement schedule, you only pay the incremental price between the 480i and the high-definition, and that increment is coming down dramatically-about 20% a year. Now, it won't get to zero, but it's reaching the point where it's maybe 20% to 25% more. By the time most stations really have to do that, there'll be a relatively minor penalty to pay. But, yes, that costs money to do.

World Radio History

DT Is anybody making the 720p equipment out there?

Flaherty INO, not today. Most people don't see the need for it. Because, while it's high-definition, it's several hundred thousand pixels per frame less than the 1,080-1,920. And the cost is about the same; the bandwidth required to transmit is the same. So there's probably little to choose from about that. So far, manufacturers are not building it.

Now, tape machines can be converted to do it-their bit boxes, as it were- and you can modify some tape ma chines to do that. But to make a camera means making a new CCD, with those specific pixels on it, and that's usually a two- to three-year design and manufacturing proposition. The 1,080, 2-million-pixel CCD already exists.

One of the factors that you have to look at is that we are not in this world as an isolated island, as some Americans would like to believe. There is a whole world out there, and in Europe there are no progressive-scanning standards in their standard. And in Asia, the de facto standard is 1,080-1,035 going to 1,080-interlaced. So, worldwide, the International Telecommunications Union has recommended the worldwide common image format for high-definition program production and programming be 1,080 lines by 1,920 pixels. Now there are still 50- and 60-hertz rates around the world, but at least we have a common

Flaherty I In the long term, I think the costs will pretty much equalize. In the short term, while new equipment is being designed and built, there is a difference-because, of course, every television station in the country is fully quipped with 480i. So, except for normal replacement, that's zero cost. In the digital world you have to buy a digal transmitter, antenna and transmission line, but you ould just digitize the present 480i and put it on the trans-mitter. So that wouldn't cost a great deal. On the other hand, 180p, for what relatively minor improvement it gives, is ardly worth the investment of replacing everything in the station that's already at that basic quality level, and then have to do it again when you go to high-definition.

DT But does 480p buy you access to the computer world?

haherty D Not really, because chips designed by IBM, and Snell & Wilcox, and now Intel, take whatever signal arrives at either the computer terminal or the television set and convert it to whatever system that device wants to display. And there's little, in the end, to choose from in that. Now, of course, at the station level, if you go to full highdefinition, the first sort of "pass-through," as it's been called, is just to have the transmitter, antenna and enough equipment to get somebody else's signal-a network or a

High-speed transfer

Compatible with Betacam SP and Betacam SX formats

News-friendly GUI

Congratulations, your newsroom is already up-to-speed on our new non-linear editor.

Anyone who's ever used a Sony "jog knob" or hit the mark-in/mark-out buttons is ready to edit on the new nonlinear DNE-1000. Which means your entire newsroom can immediately begin enjoying the efficiency and creativity of non-linear editing. So go ahead, add real-time transitions, import new footage at high-speed, or create multiple versions of a story. Experience all the ways the DNE-1000 brings new creative potential to your news programming. And since it operates as a stand-alone system or part of a

network, the DNE-1000 also provides an easy transition to a non-linear newsroom. For more information, call 1-800-635-SONY, ext. DNE or visit our website at www.sony.com/professional. And lead the way to a higher standard in news programming.

Comprehensive array of real-time effects

Multi-channel audic mixing

Server-based or stand-alone operation More Information Circle 114

SONY

image format—we don't have to interpolate horizontal or vertical pixels.

So this means, with the world market, the cost of 1,080-1,920 equipment is going to come down not only faster, but come down further, through mass marketing, and that is the format that will be acceptable worldwide for programming exchange.

So there are a lot of reasons to produce in that format. We mustn't confuse production and transmission. Production for any program that has an afterlife value should be made in the best possible standard, and the one acceptable worldwide, because from the highest quality you can always convert down to different transmission formats, but converting up is a much less satisfactory solution. You're generating artificial pixels.

So for most important production worldwide in electronics, to compete with the quality of 35-millimeter film, it will be 1,080-1,920. And that's just a fait accompli.

DT Is there any advantage or reason to go to 480, as opposed to 1,080, other than multiplexing or multicasting?

there's nothing left over when you do high definition.

DT • Well, we assume that, with further advancements in compression, you could have multiple high-definition signals.

 $Floherty \square$ Well, cable can do that the first day, because it has a signal-to-noise advantage over terrestrial television—enough to do more layers of bit transmission, as it were, and put more bits through that 6-megahertz channel. The throughput is better as a function of the signal-to-noise ratio. A wired system has less noise interference than a wireless system.

So, with the 256 QAM transmission system that cable plans to use, they can put two 1,080-line high-definition signals through a 6-megahertz channel. The answer is that we could do that too. The problem is going to be backward compatibility, because once you put some millions of television sets in the hands of the public, you have a constraint not to change the total system so that those sets don't work.

So, as we develop better compression schemes—or let me say achieve a better signal-to-noise ratio—we can do it,

"We mustn't confuse production and transmission. Production for any program that has an afterlife value should be made in the best possible standard, and the one acceptable worldwide, because from the highest quality you can always convert down to different transmission formats, but converting up is a much less satisfactory solution."

Flaherty I Well, of course, it is already 480i nationwide, so all the receivers are there to receive that in NTSC, and all the plants are equipped. So if you consider the first day that a station goes on the air with its digital signal, the majority of that day will be 480i, digitized. That will erode as more and more high-definition becomes available—maybe never to zero, but in different dayparts you will have highdefinition signals, local or network, and you will have 480. Those are going to be two very dominant numbers for a lot of years. The question is whether 480p and 720p will ever become more than curiosities. Only time will tell.

But, yes, in terms of multiplex, you can't transmit multiple high-definition programs with today's technology.

DT How far away are you from being able to do that?

Flaherty \Box Well, with film programs you can almost do it today, but for electronic programs it's kind of a Catch-22. You can't do it because we designed it not to be able to do it. When the FCC set up the advisory committee in 1987, the direction was: Study, test and recommend an advanced television system—which became a high-definition television system—for the United States. But we had to do it in a 6-megahertz channel.

Well, it started off with a number of experiments, but finally it was very definite by the FCC that it was to be high definition. So for eight years the entire system was dedicated to making the best high-definition system the world could make and fit into 6 megahertz.

Now, the technical miracle was that the engineers did it. They used up every bloody hertz in the 6-megahertz channel in order to make the world's best television highdefinition system. And so we filled the channel. So now but we have to do it with a backwards compatibility for those old receivers—what will then be old receivers. Otherwise you have to start with another whole new set of channels.

Now, there are people who say: Well, we'll take these new digital channels, and they'll be today's digits, and when NTSC goes off the air we'll take those back for the next level of digits, and we'll keep ping-ponging back and forth between two sets of frequencies. I don't think that's the idea the government had in trying to recapture those channels, but it is a possibility. However, if you do that, each time you have to replace the old television sets, as we're now planning to replace the NTSC television sets.

DT You can't just change a chip?

Flaherty \Box Yes, there are things you can do. The obvious one is: How do we improve the signal-to-noise ratio? Probably little can be done while NTSC is still on the air because a lot of the interference comes from NTSC. But when NTSC goes off the air, there's a possibility of raising power; there's even a greater possibility, as time goes on, of better front ends and receivers, with lower noise figures, that could buy us the required signal-to-noise ratio. That then allows you to put more bits in the channel. However, it does not avoid the backward-compatibility problem. I don't want to be the one to say it can't be done, because technology has a way of doing things that are impossible. But those are the constraints. You have to try and not obsolete the old receivers.

DT What are the major considerations in going forward in digital? We know that the broadcaster has a part of the

picture. We know that the consumer-electronics industry is going to play a part. We know that cable will play a part. Do we say that the computer world will also play a part? And are there other parts not yet thought of?

Flaherty \Box Well, the consumers themselves are going to pla a key part, because the digital receivers, with all the flexi bility that comes with them, will come at a higher price Now, it won't be the high price of the initial sets, but it's al ways going to be some percentage higher than the present day sets. I don't know if it's 10% or 20%—it's not 100%.

So the speed with which the public accepts, or fails to ac cept, these new devices is key to the whole thing. The broadcaster needs to put on the programs, and probably dig ital repeats of the same old programs and the same old quality isn't going to do it. There has to be some element of high-definition wide screen. You have to fill that new screen that you're trying to sell to the public. So there will have to be some significant programming motivation to buy the set

Now, on the consumer-equipment side, that industry is starting the whole country at GO—everybody has to buy a new television set. That's perhaps the business for the nex 20 years. That's the way the whole system runs. If we didn' have new cars every year we'd still be driving 1934 cars.

Cable has a key role to play. The public is used to multiple program choices. And when it comes to broadcasting, 60% to 70% of that audience receives its broadcast programs or cable. But in addition, it receives all the cable programs. And I don't think many new digital receivers would be sold that cannot receive those programs, even at better quality, pretty quick. I think that could doom the whole system.

DT But I understood that this system was supposed to be better in terms of reception, independent of a cable antenna.

Flaherty \Box That's true, except that so many people have either taken the antennas down, or never put them up in new houses, or they're up there, but the lead-in has fallen off and the antenna has rusted. But there has been a push to sell antennas, and I'm told that there have been more antennas sold in the last four or five years than have been sold since the early days of television. That may be due to the fact that people receiving cable-type programs from the satellite don't receive the terrestrial stations by satellite, be cause of the content that has to be supplied locally. As you know, terrestrial antennas are being integrated as part of the satellite-receiving antenna—so it's two lead-ins and two terminals for your TV set— but you can receive the terrestrial signal as well.

From the broadcasters' viewpoint, recapturing their own distribution, which they've largely lost, doesn't sound like a bad idea, because it eliminates a lot of to-ing and fro-ing with the cable industry, on must carry and like-to-carry and maybe-not-to-carry. Broadcasting lost 60% to 70% of its distribution and recapturing that in many, many areas amounts to antennas, and master antennas, in apartments, and so on, that were given up in favor of cable.

DT ■ But is cable actually able to pass a digital broadcast signal?

Flaherty \Box Yes, they certainly can pass it, in terms of capability of the cable itself. Some systems are more modern than others. Fiber systems have wider total bandwidth capability. It's a question of the capital investment.

DT 🔳 In what?

Flaherty \Box Actually in the cable, the headend, the line to the home. And the second piece is the set-top box or the cable-ready television set. Now, there is no cable-ready digital television set, and, as of today, there are no digital set-top boxes that will deliver all of the ATSC digital formats. But that's not a technical problem. That's an investment and capitalization problem. I think, for its own good, that cable's going to have to do that—the analog world is fading away. It's not going to happen in one day, but the government thinks it will happen in 2006. And maybe that will be 2010, or 2015, but it won't be 2050. It will happen, and you want it to happen.

Inevitably, when you have a digital system, it opens the possibility of an integration of data and computer graphics, and computer information, in the same box—both computer information on television sets and television pictures

The world's most advanced servers

Cliptiox

- All the bandwidth, for all the users, all the time.
- Non-compressed, compressed, or both.
- Integrated editing.
- The world's most advanced central server.

Cachebox

- Distributed networked operation.
- Cost effective DV compression.
- Dual system redundancy.
- The world's most flexible distributed server.

THE OWNER

CLIPBOX & CACHEBOX

Cas:

in partnership or stand-alone - the finest in server technology

Call our 24 hour Clipbox Hotline now: 1 800 218 0051 Ext. 778

Quantel Inc. 28 Thorndal Circle, Darien, CT 06820 Tel. + 1 203 656 3100 Fax: +1 203 656 3459 http://www.quantel.com

More Information Circle 111

on computer sets. That will come. How much of an attraction it is to the public depends on what's offered. Remember, it's not very profound to say that the public finally watches programs and not the technology. There's been a lot of interactive technology enabled and tested, and so far they've found no killer application.

But first you have to have the technology, you have to have the platform, and then the creative and business brains in the country have a pretty good track record of finding ways to make it attractive to the public. That hasn't happened yet, but it probably will.

DT ■ How ready are any of these elements—broadcast or consumer-electronics, cable, computer—to participate in delivering a system this fall?

Flaherty \Box Well, like most start-up things, not all these elements are moving at the same pace. The broadcasters, of course, who had a target to get on the air—this year,

next year, and the year after—are moving pretty quickly. The transmitters are readily available; the antennas are readily available. The problem on that side has been tower structures, and strengthening or building, and all the problems that go with that. But that part is pretty well ready.

Prime-time programming in this country has been produced in high-definition for 50 years. Most of that—up to 70%, 80%—is 35-millimeter film. It's already high-definition; Hollywood certainly knows how to do widescreen, so the programs can be made available within a year's notice, and that rollout can be the function of the market and the decisions of the producers.

So the CBS stations, certainly, are going to be ready. Programming can be ready when producers think it's the right time. But there aren't yet enough total systems with cameras and switchers, and recorders and all of that—that you can walk through the station and, for every piece that's there now, say I have a replacement piece. Some special-effects machines don't exist; not all the switchers that have the flexibility we have today exist. But the vendors are working on these. This is not invention. This is grunt-work engineering and marketing. It's probably a year behind where it needs to be, but it's coming.

On the receiver side, the early sets are going to be expensive. Somewhere between \$3,000 and infinity, but probably \$3,000 to \$6,000 is a reasonable number.

DT ■ But much larger sets than we're accustomed to now?

Flaherty \Box Yes. That's important. High definition comes into its own with a large picture. Remember, our present system started with 7-inch pictures, and every time we make the picture bigger, you see more warts on the system. And it's time to replace it. So one way to look at digital and high-definition, particularly—is a new platform that will support these bigger and bigger pictures. So the minute the quality is good enough to support the picture, guess what? The receiver makers make the big picture. So quite a few of them are 55-inch diagonals, with rear projection and vertical projector tubes, shooting into a mirror and reflecting onto a screen. That keeps the depth of the set only 18 inches or so, so that you don't have a giant coffin in the living room to make a picture. Some very innovative things are happening.

That's the good news. It is also slow; it's just rolling out; it's going to be expensive in the beginning—and the weak link in the whole system is the picture display. None of the picture displays—flat panels, kinescopes, projection systems—fully exercise the full high-definition quality. They're somewhere at 700 or 800 lines with 1,100 pixels across each line. This is where the masses of development money are going on the consumer side.

DT ■ You mean the initial high-definition sets will not be high definition?

Flaherty \Box That's right. They're certainly a lot better than they are today, but when you had a 480-line television system, it was inappropriate to try to design higher-quality displays. You don't want the display too much better than

the system, because you get artifacts. So now, with a much better system, massive research is going into better and bigger displays. And here it works in your favor, because the bigger the display, the easier it is to make it better physically, you have room to put the extra pixels. The smaller the picture, the harder it is to improve that quality.

DT But are you saying, in a worst-case scenario, that if you were to buy a \$6,000 set this fall, that that might be obsolete a year from now?

Flaherty \Box Well, it isn't obsolete to the extent that it still works. But, you'll remember, early color sets didn't have the quality of picture that they make today. Development never stops, and the receivers will get better and better over the next two or three years—not 10 years, but two or three years. So the set that you buy today is going to be a high-quality set—

"It's always been the broadcaster who put on the definitive signal to which the receiver is designed. That was true in color, it was true in black-and-white—and it's true now. If we don't opt to have the best quality, then there will never be the ultimate receivers."

certainly better than anything that's available at the normal NTSC. It's just that they will continue to get better and better.

DT But does it argue that you hold back until they do before you commit your money.

Flaherty \Box A lot of people do just that, with any new technology. The early adopters are people who are ready to take the risk to be the first ones with the best device—and, you know, I applaud them, because they're the ones who finally start new trends. But the CD didn't start overnight, either, and some of the early disks were not seen as reproducing as well as were expected by the audiophiles.

DT ■ Could this be used as an argument by those who are pushing for 720, as opposed to 1,080, as a transmission standard?

Flaherty \Box Well, you can always do that. But without the high-quality source, you'll never have the improvements. There has to be a chicken in this chicken-and-egg. It's always been the broadcaster who put on the definitive signal to which the receiver is designed. That was true in color, it was true in black-and-white—and it's true now. If we don't opt to have the best quality, then there will never be the ultimate receivers.

DT ■ You've said that the analog world is dead or dying, and that it is essentially an artifact of history. There are perhaps 200 million television sets in this country analog—each one of them seeming to work better by the day, and to last longer. And the stores are going to be filled with analog television sets at Christmas this year. Do you really think that analog will disappear?

Flaherty D It's not going to disappear overnight. The govern-

ment has thought that a nine-year overlap transition peric would be enough; some people believe it's 10 or 20 years. Th has happened a couple of times in this industry. In Europwhen the British went from 405 to 625 lines, they simulca both systems for 20 years—and, finally, the last 405-line so was retired into merciful oblivion and they shut off the service

Now, if it took 20 years—this was about 1964 or '65, i a vacuum-tube era—it can't take as long today. So it somewhere between the government's nine years and 2 years. But it's not just the quality, it's also the aspect ratio We're changing from a narrow screen to a wide screen. S when programs are made for a wide screen, and you se them on a narrow set, either the sides are going to be cu off or you have to see it as a letter box, with black on th top and bottom. And when you do that on a 480-lin system, you're losing probably 100 lines. The vertical res olution goes down quite dramatically. New sets will b built to give you that choice at home.

DT ■ How long do you think that broadcasters will be operating two stations? You have to have more people I take it, so there's a cost equation in there.

Flaherty \Box It will take the full transition period, but not necessarily more people. But there's certainly big power cost for two transmitters. And that's particularly true for UHF NTSC stations. That's a lot of power, and a lot of primary power—that's a very big bill. And then the general maintenance of the transmitter, and the antenna, and the transmission lines and all those things are expensive.

So I guess it's fair to say that it behooves broadcaster to work with the consumer equipment manufacturers to expedite this transition, because the extra cost is at the broadcaster level. And this changeover is inevitable anyway, so getting it behind you is probably worth doing.

DT Could it be advantageous to the broadcaster to keep both systems going?

Flaherty \Box Well, I guess it would be an advantage to keep both channels going —but someday the analog one would be another digital channel. That's not the present intention of the government, but if they regurgitate those channels and sell them, presumably broadcasters are among the potential buyers. You could double your capacity if that were a good business investment. But I don't know that it would help to keep the analog system going, once the public is

used to better pictures. It's only a question of time until the analog is no longer desirable, or certainly not as desirable. So probably it isn't a help at the end of a transition period to keep the analog going, but it probably would be an advantage to have a second channel. It wouldn't necessarily be true that those would be the same broadcasters. There could be quite a competition for that spectrum, which may or may not be in the public interest.

DT Are smaller stations at a disadvantage?

Flaherty \Box Yes. The cost to everybody is roughly the same, so as a percentage of growth revenues it's a much bigger percentage for a small station than it is for a large market station. For that reason, they may be slower to roll out the service, or slower to roll out the local high-definition portion of that service. In some sense that's true today. ENG equipment costs the same anywhere, so when you launch a news service in a small market it's percentagewise more expensive than in a big market. But there are a lot of very clever businessmen in those small markets, too, that have managed to make miracles happen, with far less than you'd think they ought to have at their command.

DT Well, having been almost single-handedly responsible for this revolution, what are you going to do to us next?

Flaherty (Laughs) Well, it was far from single-handed. There was an army of very creative people who made all this happen. It's like the story of the leader of the army who got in front and kept marching, because the army was going to march over him if he stopped. I think that's more my role in this development.

HP MediaStream Video Servers. Who knows what you'll end up broadcasting with them? When it comes to digital video, Hewlett-Packard offers something we think you'll find reassuring in the days, years and decades ahead: A future.

Our MediaStream family of broadcast servers have a six-year headstart on MPEG technologies, including MPEG 4:2:2. They also come with integrated RAID, capabilities like MPEG jog-shuttle and trim, and a fouryear track record of on-air reliability. And of course, they're the only servers on Earth (or anywhere else, for that matter) with HP's proven capabilities in computing, networking, and customer support.

To find out more, stop by booth #S5426 at NAB. And for a free white paper on HP's vision of the digital broadcast future, just call 1-800-452-4844, Ext. 5776, or visit our Web site at www.hp.com/go/broadcast.

©1998 Hewlett-Packard Co. TMVID812/DT

CONVERGENCE AT WORK

Intel charts own course in digital broadcasting

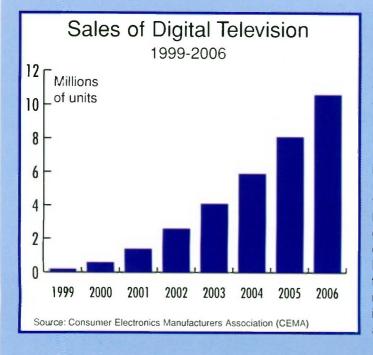
The complex partnerships that characterize the digital media business are, at once, territorial and functional: staking claims while launching R&D projects as people figure out what will play in Palo Alto. Intel Corp. has been actively down from a satellite, enhanced with text and rebroadcast to PCs on the low-power channels. But it's a relatively small step from testing such a concept to initiating regionalized commercial services that could make it a viable business.

Intel will be adding material to Intercast from Nickelodeon and Lifetime that can be accessed on PCs. It had been presenting NFL games from NBC. contemplating that for some time, and is, perhaps, the bestsituated of the Silicon Valley elite to execute a coherent strategy, in both the physical and metaphysical senses. In its own backyard, not far from Palo Alto, Intel will soon start sending digital PBS signals to four lowpower TV stations in Santa Clara, Calif.

For the moment, the objective of the test is strictly technical. Signals from San Francisco's KQED-TV and WETA-TV in Washington, D.C., will be pulled Moving into a business mode is something Intel has already taken a large step in doing through its Intercast venture with NBC. While Intel isn't saying just how many PC users have actually installed the \$100 tuner cards that enable the Intercast technology, the number will almost certainly grow as Intel attacks the chicken-and-egg problem of providing content to make the Intercast experience compelling.

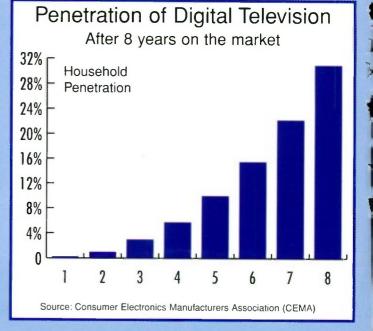
Intercast's programming profile will improve sometime this year when Nickelodeon and Lifetime start developing Intercast content to accompany some of its shows. PC users can presently access background about Jay Leno's guests on the Tonight Show, if they're watching on their high-end PC screens. During the past NFL regular season, viewers could use their Pentiums to push running game statistics on-screen as they followed the live game action from NBC's weekly national game telecasts in a window.

The Weather Channel presents surprisingly compelling content to the small band of Intercasters out there with animated weather satellite imagery that takes the usual TV weather graphics into another dimension. MTV has also developed content for Intercast, which offers a promising tact for the music programmer and for NBC with the Leno show: the opportunity to market artist recordings and merchandise to these early adoptors, and those who eventually follow them.


That's not to say there isn't very creative potential here. On Nickelodeon's NickVision Dumpsite, young users will be able to play games and access video content they can't catch on TV. It's that kind of hook that will motivate PC users to spring for the \$100 upgrade that will enable receipt of the Intercast signal through the vertical blanking interval. Of course, they've already dropped a few thousand on the high-end machine making this comingling of media possible.

But sports is bound to be a draw, for stat-hungry fans who prefer to divide their attention while they're watching the NBC NFL Game of the Week or NBA contests. The NBA struck a deal to develop content for the ne cross-medium early last year. B mid-year, Intel executives an predicting that compelling Inte cast content will begin to proli erate.

Meanwhile, Intel is workin on a reference design for P receiver cards with Zenith Electronics to accommodate thos signals it will retransmit in th Santa Clara data broadcastin test when things advance to th commercial stage. Market test are planned later this year.


That is, of course, the crucia question in all of the currer round of nascent digital ventures When does anyone start makin money with them? In the case of Intel, it can afford to nurture th seeds it's planted on the digita front while it cranks out chip with the kind of revenues that render big R&D expenditure relatively painless. Intel antici pates spending \$100 million o its various digital TV venture over the next two years. That includes the advent of a \$200 t \$250 board to translate DTV sig nals for PCs-whatever forma broadcasters choose to put then in. That turnaround, accom plished as it maintains its alliance with Microsoft Corp. and Com paq endorsing progressive scat as preferred technology, suggest the pragmatic bent that is putting Intel at the leading edge of the commercially plausible end o the digital spectrum.

"We are using all-format decoding," says Ron Whittier Intel senior vice president of its digital content group. "But we think if we build on progressiv scan, we'll build a business faster." And along with acceler ating chip speeds, that is, after all, the object of the exercise.

Two Ways of Looking at the Advent of DTV

The Consumer Electronics Manufacturers Association, whose members will bring digital television to the market this fall, has a vested interest in knowing how those products will be received. These two charts present its best reckoning, based on consumer research. At left: the sales predictions for digital TV sets from 1999 to 2006, beginning with 200,000 sets and progressing to 10.6 million. At right: the effect of digital television in terms of household penetration, from one-quarter of 1% to 31%. Ironically, many retailers expect the introduction of digital sets to spur sales of analog sets, as showrooms fill with the curious.

Comark's Advantage Is Digital.

COMARK invites you to view the future now. Our **Advantage** Transmitter with 100[%] digital 8-VSB Modulator is a new hallmark in broadcasting history. It's proof-positive of COMARK's commitment to deliver digital technology that revolutionizes the industry. "Advantage" is the heart and soul of COMARK's innovative family of products and services defining the digital age.

IOO* DIGITAL MODULATOR. Digital signal processing with the cleanest possible output. (SNR better than 33dB).

DIGITAL ADAPTIVE PRECORRECTION. Highest quality signal with the least effort.

NETWORKED SYSTEM CONTROL. Our flexible architecture gives you the information and control you need.

SCALABLE TRANSMITTER CONFIGURATIONS. 100% redundancy, a requirement in the digital world.

INTUITIVE GRAPHICAL USER INTERFACE (GUI). This places the entire system and related information at your fingertips.

COMARK QUALITY AND SUPPORT. The power of innovation and experience — COMARK pioneered high power UHF IOT transmitters.

To us, forcing analog into a digital world is not an option. Delivering 100[%] reliable digital services such as HDTV, multicasting and

data requires a technological partner capable of going beyond theory. COMARK Digital Services (CDS) is an experienced leader in complete digital television systems solutions.

For complete, detailed information and working specs, view our website: www.comarkcom.com.

Now you know why COMARK's Advantage is digital.

Comark Communications, Inc.: Tel: 1-413-569-0116 Fax: 1-413-569-0679 Comark Digital Services: Tel: 1-703-838-5655 Fax: 1-703-838-1687 © 1998 Comark Communications, Inc.

Visit Us At NAB 98. Booth #8313

More Information Circle 102 World Radio History

18 Digital Television MARCH 1998 **Product Review**

HDTV. IF Lenses

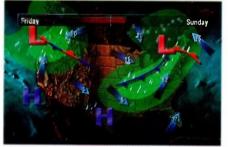
Canon Broadcast will exhibit a full range of breakthrough technologies, including a line of field-proven HDTV lenses; the first IFpro

lens with built-in 2X extender (YJ/YH 18X IRS), and a state of the art digital studio lens, the DIGI-SUPER21 (PJ1X7B). Specifically, the HDTV lenses include: HJ15X8B IRS/IAS standard zoom; HJ18X7.8B IRS/IAS long zoom; HJ9X5.5B IRS/IAS wide angle zoom; UJ20X7B HDTV studio, and the UJ65X9.5B HDTV field zoom. The YJ/YH 18X IRS, a 2X built-in extender version of the 18XIFpro lens, offers an 18-324 mm range of focal length when the extender is employed. Canon U.S.A., Inc., One Canon Plaza, Lake Success, NY 11042.

More Information - Write In 134

Post Production Products, DDRs, Virtual Set Systems

Among Accom's array of products for post production, broadcast, computer graphics and animation and virtual set production is its newest DDR line, APR,


the first DDR with PreRead, the company's exclusive non-destructive preread,

and the unique KeyTrack option for V+K or digital RGB recording. Also featured will be the WSD/2Xtreme, for streamlining the computer video I/O process, including 8- and 10-bit recording of up to 20 minutes. The Axess stills & clips store for broadcast graphics and the Axial 300 Un-Linear editor will be demonstrated, as will the ELSET line of virtual set products for SGI and NT platforms, showing the latest advances in technology. Accom, Inc., 1490 O'Brien Drive, Menlo Park, CA 94025

More Information - Write In 135

Weather Software

AccuWeather 's new software for the UltraGraphics ULTRA high-end weather workstation is the first package to allow combining of all forecast data and mapping data in the same 3D image. It enables

3D rendering and animation of all weather parameters as well as events such as sunrise, sunset, storm systems, etc. Mouse click for instant 2D to 3D conversions. The product produces dramatic fly-through, incorporating weather elements, local geography, and roads. Among the company's new offerings are synchronized audio, in which stations that receive weather video segments can have the video accompanied by a forecaster on a synched audio track, and an Internet feed for TV weather segments that eliminates the need for costly satellite delivery of weather program. AccuWeather, 619 West College Ave., State College, PA 16801.

More Information - Write In 136

WHITHER CABLE AND HDTV

Can current-generation analog and digital set-top boxes pass through **HDTV signals?**

Will advanced digital set-top boxes be able to pass through HDTV?

■ Will set-tops be able to convert all HDTV signals to analog NTSC signals?

First, current set-tops don't pass through HDTV signals, because HDTV was in the early developmental stages when those boxes were ordered.

Advanced digital set-tops will be able to pass through HDTV, even though there's no legal requirement for cable to do that. General Instrument's DCT-1000 box, of which Tele-Communications Inc. has ordered roughly 1 million, doesn't have HDTV signal pass-through capability. But TCI intends to move quickly to the DCT-5000, which will be able to pass through HDTV signals. But even then, HDTV pass-through capability may be more an option than a standard feature.

As for whether advanced set-tops will be able to convert HDTV signals to analog NTSC, the answer, for now, is no.

The cable industry's rationale is that processing power required to convert 720por-better HDTV signals is too costly and would hamstring the industry's ability to roll out advanced set-tops.

Another important issue is the interface with the TV.

For now, the interface of choice is the 1394 IEEE, or I-Link, interface (also called firewire). For the time being it will be an optional feature because of cost.

It's unclear how much additional cost that 1394 interface will add, \$10-\$15 perhaps, but cable operators want to ensure that only those people who really want the interface-namely, people with HDTV sets-pay for it. The 1394 interface would also be used as the set-top connection for other digital devices in the home, such as sound systems and DVD (digital versatile disk) players.

It's worth noting that while the 1394 interface has emerged as the leading candidate for that interface, maybe even the de facto standard, it's not the official standard, at least not yet.

World Radio History

Doppler Innovations

The latest options to Advanced Designs Corp.'s (ADC) DopRad 32 custom radar display will be demonstrated. And information on the technologically advanced Rockwell Collins Doppler weather radar and its two new high performance dish

antennas will be presented. Also offered is the Rockwell Collins Doppler radar, a fully coherent Doppler, which is extremely supportable: With no costly magnetron to maintain, stations can count on accurate, reliable and live depiction of the weather, including coherent mean radial Doppler velocity data which is extremely useful as a severe weather tool. Advanced Designs Corp., 1169 W. Second St., Bloomington, IN 47403.

More Information - Write In 137

Broadcast Audio **Networking Products**

The BCF256 Broadcast Communications Frame from Audio Processing Technology offers broadcast quality audio codex for direct dial ISDN and permanent links such as T1, E1, satellite and microwave. Features include: audio bandwidth to 22kHz; negligible coding delay; analog and digital I/O; integral 256kbits/s terminal adapter; ISDN, X.21, V.35 data interfaces. Also new is NXL256 Broadcast Network Transceiver with broadcast quality codec for audio networks via fixed digital links targeting applications such as STLs and permanent studio networks. It provides 6.8kHz mono through 15kHz stereo audio bandwidth; full duplex operation and automatic transmission backup. Audio Processing Technology Ltd. (APT), Edgewater Road, Belfast BT3 9JQ, Northern Ireland.

More Information - Write in 138

Dozen New Products: Cameras To Encoders

Thomson Broadcast Systems is offering a dozen new products among its varied lines. In new cameras, there is the 1707 Single Piece Digital Triax model designed for intensive use in all kinds of studio and outside broadcast applications, and 1557D digital studio camera with boards that are interchangeable with the 1657D. In servers, new is the NEXTORE model, a 2 or 4 channel product developed with Digital Equipment Corp. It is suited to production, post-production, or use as a cache for transmission. New in recording is the TTV 4075 P or N, an SX studio digital recorder/player with Betacam and Betacam SP compatible playback. Featured in contribution/digital satellite newsgath-

ering: contribution encoder/decoder, the

DBE 4100, built around a Thomso chipset, which incorporates the function of composite signal decoding, video con pression to MPEG-2 4:2:2P standard audio compression, multiplexing an scrambling of the components of a TV se vice (video, audio and data), as well as in terfacing with PDH or SDH telecom ne works using ATM technology. Also, Dig ital Satellite News Gathering system, use for satellite newsgathering (SNG). It i based around the new DBE 4100 SNG en coder, using the MPEG-2 4:2:2P standard And, ATM Multimedia encoder/decode The DBC 8720 encoder and 8721 decode allow video and audio signals to be carrie over contribution and distribution net works. They are based on the ETSI com pression standard (ETS300174) Thomson Broadcast Systems, 17 ru du Petit Albi, BP 8244/95801, Cergy Pontoise, cedex/France.

More Information - Write In 139

Editing, Finishing Systems, **Special Effects Software**

Avid is highlighting its 7.0 Media Com poser family of digital editing/finishing systems, used to produce broadcas

program content ranging from commercials to television shows, and Film Composer 24fps digital editing system for projects shot or finished on film. The company's products include Version 5.0 of Media Illusion, an integrated digital effects environment for paint, compositing, image manipulation and special effects. The company will also preview its upcoming release of Media Composer/Film Composer. For the news market, featured is Version 1.1 of AvidNews Newsroom Composing system that enables text, video and audio management on the journalist's desktop and can be seamlessly integrated with a station's existing product tion equipment. Avid Technology, Inc., One Metropolitan Park West, Tewksbury, MA 01876.

More Information - Write In 140

Digital Video Cable Upgrades

Clark Wire & Cable has upgraded its most popular lines of video cable. The CV7559CM, the RG6SD and the CV75SM are all now CM- or CMR-rated for assured reliability and safety. The company's new 500 Series Super Low Loss Video Snakes (CV7559CM) are bundled in 3, 4, 5, 6 and 8 channel video snakes. The 3, 4 and 5 configurations are color coded for RGB applications, while the 6 and 8 coax cables are color coded to the resistor code for use as

DIGITAL-S Acquisition

To get the most out of today's digital editing systems, you need to begin with the best raw footage possible. And that means shooting in 4:2:2. With DIGITAL-S, you get 4:2:2 color sampling with perceptually lossless compression. This produces an image that remains free of annoying artifacts that could build up through various steps in post production and digital distribution.

DIGITAL-S also offers superior chroma resolution, producing more well-defined colors, chroma keys and effects. In fact, all high-end systems, including the best non-linear editors, require 4:2:2 to achieve these benefits. The result is performance and quality that can stand up through each phase of digital video production. Shooting in a 4:1:1 DV format compromises your image, and you can't bring back the quality once it's lost.

Take your first step into high performance. Make it DIGITAL-S. For more information call:

1-800-JVC-5825 www.jvcpro.com

BR-D40

Dockable Recorder & KY-D29 DSP Camera – package under \$18,000 (with viewfinder, less lens) DY-700 Camcorder

under \$12,000

and 13:1 lens)

(with viewfinder

Every step

in video production

affects the next.

Your first is the

start with 4:2:2!

most critical -

20 Digital Television MARCH 1998 Product Review

video snakes. Clark Wire & Cable, 1355 Amour Blvd., Mundelein, IL 60060.

Digital Captioning Service

The closed captioning and subtitling service will present digital captioning. With its technology, when a closed captioned

program is created a digital encoder is used to encode the captioning information to line 21 on the videotape. This process ensures that there is no generation loss between the original master tape and the output captioned master, providing the original master is created on a digital format. **CaptionMax, Inc.**, North First Street, Minneapolis, MN 55401.

More Information - Write In 142

Integrated Management System for Broadcast TV

First launched for national networks and DBS multichannel operations, Columbine JDS' Paradigm Integrated Management System is now available for broadcast television operations. It is the first totally integrated management information system that electronically links all critical business processes of a television facility, including ad sales, programming, traffic, finance and master control automation. Because the program integrates business processes in a single relational database, orders can be instantly booked and scheduled and then

aired as planned, greatly improving efficiency, reducing make-goods, and providing greater control of the business. Plus, the Paradigm Traffix Module makes traffic information available in all functions and departments, providing flexibility in selling inventory. As stations transition to multichannel broadcast operations, the module eliminates the time consuming process of rekeying data at every phase of the advertising buying/ selling process. **Columbine JDS**, 1999 Broadway, Suite 4000, Denver, CO 80202.

More Information - Write In 143

Four New Video Server Packages

Highlighted will be Concurrent Computer Corp.'s four new MediaHawk Video Server packages, designed specifically to meet the interactive video-on-demand requirements of hospitality, residential entertainment, intranet and digital video management applications. The server incorporates the company's innovative system architecture and real-time operating system, providing scalable performance exceeding 1000 MPEG-2 digital video streams. It provides complete interactive control. Users are able to start, pause, rewind, fast forward search and fast backward search each digital stream independently with prompt and predictable

response times. These streams are delivered with no degradation to performance or video quality, regardless of the number concurrently supported. Variable Frame Size (VFS) technology, variable-bit-rate encoded data can be supported to deliver improved and consistent video quality and reduce content storage requirements and costs by an average of 40 percent. The packages are: H100 and H200 Hospitality System(s); R100, R200 and R1000 Residential Entertainment System(s); T100, T200 and T1000 Video Systems(s), and the D100 Digital Video Management Systems(s). Concurrent Computer Corp., 2101 W. Cypress Creek Road, Ft. Lauderdale, FL 33309.

More Information - Write In 144

HDTV Filters

Faraday Technology Ltd. has introduced a range of HDTV filters designed specifically to meet the filtering requirements laid down by SMPTE 274M. The new filter will allow users to assume the correct configuration in advance of the forthcoming introduction of HDTV in the U.S. The range covers pre and post configurations for analog component input and output interfaces. Each filter is housed in a 49 mm (l) x 28 mm (w) x 11 mm (h) plastic package. A screened metal case version is also available. **Faraday Technology Ltd.**, Croft Road Industrial Estate, Newcastle, Staffordshire 5T5 OQZ, England.

More Information - Write In 145

Editing System, Open Media Recorder

The Sabre Plus compact editing system will be complemented by Digital Audio Research's OMR8 Open Media Recorder, designed for digital dubbing applications, and the innovative TheatrePlay system—a multichannel sound-effects replay system that utilizes the OMR8 technology. Making its U.S. debut is the company's Genesis software platform that provides users with a new level of functionality across the spectrum of audio editing tasks. It provides audible audio editing features, including Slip, Trim and Slide, new Roll and Copy/Spot Over functions. Also making its first U.S. appearance is CDAdvance-a unique system for accessing CD material directly from DAR SoundStation or Sabre systems. This combines faster than real time transfer, with varispeed and scrub facilities, and gives users integrated access to CD-based effects from within a DAR workstation or network. Digital Audio Research Ltd., 2 Silverglade Business Park, Leatherhead Road, Chessington, Surrey KT9 2QL, England.

More Information - Write In 146

ATSC Encoding System For Digital Television

An MPEG-2 ATSC encoding system for the delivery of digital television globally will be highlighted by General Instrument Corp. Developed by the company's

Satellite Data Networks business unit, the system will compress and multiplex both standard definition TV (SDTV) and high definition (HDTV) signals in a single ATSC-compliant integrated encoding and transmissions system for DTV applications in terrestrial broadcast, satellite, microwave and fiber network transmission. The new DTV encoding system is backward compatible with GI's current standard definition MPEG-2 system that is widely deployed around the world. It provides a natural growth path for current users and a proven platform for new customers to launch high definition, standard definition, or a mix of both services. General Instrument Corp., 101 Tournament Drive, Horsham, PA 19044.

More Information - Write In 147

Fully Integrated Wireless Camera System

The STAR CAM (Stand Alone Totally Agile Rf CAMera) system for single and multicamera remotes integrates a multiband microwave video/audio link with a telemetry link providing full paint control for the camera, pan and tilt control, as well as the video/audio link controls. Each system is controlled from a dedicated ful size panel identical in form to those currently in use, making it operator friendly Additional features include simple and quick set up with two wire interconnect for a single unit; modular hub allowing up to ten controllers; ability to seamlessly add modules while on the air; ability to control numerous camera models in the manufacturer's line without reconfiguration; ability to select 2, 7 or 13 GHz microwave bands with a change of the antenna. **Global Microwave Systems, Inc.**, 4141 Avenida De La Plata, Oceanside, CA 92056.

More Information - Write In 148

ICE Product Supports Avid

The company's ICEfx system for superfast desktop special effects creation is supporting Avid Technology's Media Composer and Avid Xpress digital nonlinear editing systems, giving Avid editors access to brilliant, eye-catching filters and up to 20 times faster rendering speeds from within the Avid Effects Palette without having to exit Avid software. One of the first products to employ Avid's new (AVX) plug-in interface is the Avid Media Composer 7.0. **Integrated Computing Engines, Inc.** (ICE), 460 Totten Pond Road, Waltham, MA 02154.

More Information - Write In 149

25th Anniversary Catalog

Jameco Electronics has released its twenty-fifth anniversary catalog featuring

5,000 ICs, components, tools test equipment and computer products for OEMs, engineers, educators and service/repair, technicians. In addition to new memory chips, embedded development boards, tools, hobby kits and power supplies, the catalog's 270 new product additions include full lines from manufacturers such as Panamax, DTK Computer, Shaxon, Wavetek and Velleman. Jameco, 1355 Shoreway Road, Belmont, CA 94002.

More Information - Write In 150

Need More Product Info. Fill Out the Handy Reader Service Card.

DIGITAL TELEVISION SYSTEMS

"Harris created an all-digital facility that let us double saleable inventory, and they did it at a near-analog cost."

Robert Allbritton, Chief Operating Officer, Allbritton Communications

When Allbritton Communications wanted to reach two television markets from a single location, Harris incorporated a centrally located alldigital studio with microwave links to three transmitters over 100 miles apart, two remote news bureaus

and 3 additional microwave repeater sites. This solution enables Alabama's ABC 33/40 to blanket the state with city-grade signals.

"Harris' digital solution gives us multichannel capa-bilities which allow

us to offer four distinct channels to advertisers," Robert Allbritton notes. "Not only do we now have twice the product to sell; we have the ability to broadcast DTV as soon as we're ready. What's more, Harris designed and implemented our digital solution

faster than we ever thought possible – and at a cost only 10-15% greater than analog."

From an all-digital studio and C-/Kuband teleport facility...to a fleet of Harris ENG and SNG vehicles that proudly bear the ABC 33/40 logo, Harris met Allbritton's unique challenge with state-of-the-future technology.

Whether your needs call for digital-ready analog, or digital right now, call Harris today. We'll show you how digital is more of a practical reality than you may think.

7920 Kentucky Drive Florence, KY 41042 USA TEL: +1 606 282-4800 FAX: +1 606 283-2818

A new world of broadcast solutions

Systems: Electronic News Gathering — Fly-away Satellite — Mobile Production — Radio Studio — Satellite News Gathering Satellite Uplink — Television Production — Television Transmission — Terrestrial Microwave

22 Digital Television MARCH 1998 Product Review

HDTV Studio Camera, Imaging Applications

Among Hitachi Denshi America Ltd.'s Broadcast and Professional Division's product introductions are the SK-3000, a

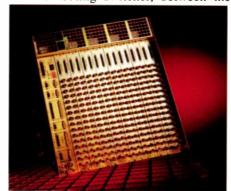
multistandard studio camera that provides simultaneous HDTV and NTSC outputs; a new low-cost, portable camera with a switchable 16:9/4:3 aspect ratio; the Eagle System, a remote observation system using Hitachi's new HV-D3 or HVC-10A CCD cameras; the SK-2700W, a 12-bit 16:9/4:3 switchable digital studio/field camera, and the SK-2060PW low-cost broadcast studio camera system. The SK-3000 conforms to today's NTSC standards and offers total compatibility for future ATSC digital broadcasting. The 1.5Gb/s digital output from the camera head is brought to the camera control unit via optical fiber cable, where it is digitally converted to the NTSC rate, in addition to the standard digital HDTV output. Hitachi Denshi America Ltd., 150 Crossways Park Drive, Woodbury, NY 11797.

More Information - Write In 151

File System And VDRs

The CentraVision File System (CVFS) overcomes the limitations of existing systems for working with large video and film files in shared environments. Today's standard file systems (such as NTFS) were designed for local storage and do not provide the functionality required for central storage and shared access. With CVFS, as soon as a workstation writes information it is immediately available across the entire network. The system also features implicit data converters, providing cross platform support for Windows NT, SGI and Mac. It supports IRIX 6.2, 6.3 and 6.4, Windows NT 4.x and soon MacOS 8.x. Other features include bandwidth management, generation sequence control and support for real time devices such as VDRs. In the VDR category, the company's CV6200 features familiar VTR-like control from the front panel, 8- and 10- bit support, and support for CCIR 601, 525 and 625 inputs and outputs as well as analog composite inputs; AES/EBU audio and analog audio inputs and outputs are also supported. MountainGate, 9393 Gateway Drive, Reno, NV 89511.

More Information - Write In 152


Full-Featured 3D, 8 Bit DVE

New from Pinnacle Broadcast Systems is the Alladin PRO, a single or dual channel fully featured 3D DVE with 8 bit 422 processing for 525 video systems. Each channel includes video and key. The product can be configured for either digital or analog input and outputs. It is an ideal match for the new DVC Pro format as well as other digital video formats. The system can begin as analog and be upgraded to digital. The control panel gives it the high end feel of an on-air DVE. And the Studio Tools option gives the system an array of professional features to create high quality programs. The Tools include a Deko character generator, Pinnacle Paint, and still store. Also demonstrated will be the BroadNet system, which enables the company's broadcast products to be networked together over both standard video and computer networks. Pinnacle Systems, 280 North Bernardo Ave., Mountain View, CA 94043.

More Information - Write In 153

Intermediate Routing Switcher Added to Line

MetaWave has added the MX64, an intermediate routing switcher, between the

MX32 and the MX256. This new router will accommodate future growth by providing a simple upgrade path to the full MX256. The Mx64 includes all the features and options of the MX series, including 360-Mbit compatibility for use with the latest HDTV technology and an option for fiber optic inputs. Designed for use in SDI installations where flexibility and expandability are expected, typical applications will be found in broadcast facilities, satellite uplink facilities, telecom applications and post production houses. The MX64 is housed in an 11 U chassis that will handle up to a 64x64 serial digital router along with redundant control cards and power supplies. Also new is the MXA256 routing switcher designed for use in large AES/EBU installations. It supports synchronous and asynchronous digital audio signals as well as analog audio. MetaWave Ltd., 11 Kingsclere Park. Kingsclere, Hampshire, RG20 4SW, UK.

More Information - Write In 154

Fluid Heads

The Miller Arrow 50 fluid head with rear control illumination now supports the industry's widest range of ENG, EFP and film camera configurations with an

extended 4-position counterbalance to complement its 7-position pan/tilt drag range. Regardless of choice in camera, tap or disk back, battery, lens, matte box, microphone or on-camera light configurations, the model's selectable counterbalance, 70mm offset sliding plate and extended drag range ensure optimum support for any camera payload from 15 to 50 pounds. **Miller Fluid Heads**, 30 Hotham Parade, Artarmon, Sydney, NSW 2064, Australia. **Miller Fluid Heads USA**, Inc., 216 Little Falls Road, Cedar Grove, NJ 07009.

More Information - Write In 155

Virtual Set, Sports, Advertising Products

Highlighted by Orad High-Tec Systems will be CyberSet O, a unique virtual sets solution based on pattern recognition that allows for camera and lens parameters to be measured in real time without mechanical or other sensors being attached; new CyberSet M, which delivers all the power and capabilities of the company's CyberSet O at only 50 percent of the cost and handles virtual sets composed of up to 12,500 polygons; CyberSet E, an entry level system (that can be upgraded to CyberSet O) for the SGI 02 workstation based on the same proven software and DVP hardware as the CyberSet. New CyberSet features include: shadow enhancement and foreground video manipulation; improved video delay factor; RealSet for inserting virtual elements in conventional productions; widescreen capabilities; software loader for soft image designed sets; improved user interface, and multipanel operation. Orad Hi-Tec Systems Ltd., PO Box 2177, Kfar Saba 44425, Israel.

More Information - Write In 156

Working Solutions For ATSC/HDTV

NDS will launch new products in areas such as: DTV/DTTV-ATSC/HDTV; MPEG-2 4:2:2 contribution, distribution and DSNG; Digital Conditional Access; program distribution for small and medium broadcasters, private networks and business TV, and data broadcasting. The company supports the most prevalent of the HDTV profiles — 480P, 720P, and 1080I. And it will demonstrate live, realtime transmission through the end-to-end

system that incorporates new products such as seamless MPEG splicing and the new 2U encoder range for both 4:2:0 and 4:2:2 transmission, as well as 8VSB modulation, 8PSK modulations for contribution and NDS Reflex statistical multiplexing. NDS, 1 Heathrow Blvd., 286 Bath Road, West Drayton, Middlesex, UB7 ODQ, UK.

More Information - Write In 157

Keyer-Switchers, Input Expander

New products highlighted by PSP Digital Ltd. will be a PVS-4 digital linear 4:4:4 keyer-switcher and a PVS-2 digital linear keyer-switcher. The PVS-4 A/B digital linear keyer is the only stand-alone product available that is capable of true 4:4:4 signal processing, making it ideally suited to the needs of telecine applications. It can be controlled under GVG emulation from a PC or workstation or it can be used with an optional control panel. The PVS-2, for autoconforming and graphics composition applications, is a 4:2:2 A/B model. For broadcast environments it has an optional control panel, making it suitable for presentation and master control applications. Also to be demonstrated is the PVE-32 input expander that allows up to sixteen 4:4:4: inputs on the PVS-4 and thirty-two 4:2:2 inputs on the PVS-2. PSP Digital, 6 Votec Centre, Hambridge Lane, Newbury, Berkshire, RG 14 5TN, UK.

More Information - Write In 158

Full-Featured Digital Mixer

Panasonic will highlight its fully featured DA7 8-bus digital mixer that comes at

a suggested retail price under \$5,000, making digital mixing accessible for the growing segment of digital music and video project studios, as well as the expanding number of those mixing for surround sound. Professional features in the 32 input, 8-bus, 6 aux product include 24

Don't Forget To Fill Out the

When everything

works together,

news travels fast.

SONY

It's good to know that the world has

standardized on MPEG-2 for transmission,

considering all the uncertain aspects of DTV.

You may also be pleased to know there are some good reasons for making

MPEG-2 your standard.

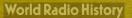
As an open standard, MPEG-2 can be applied to many applications in the

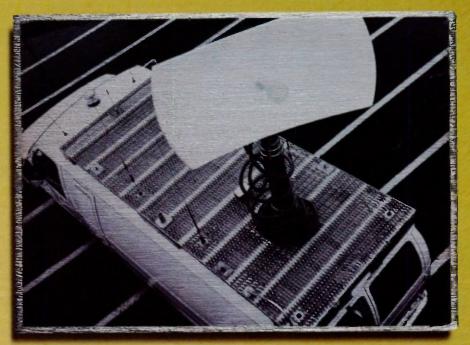
Why the MPEG-2 standard should be standard equipment.

broadcast chain. For example, using MPEG-2 for recording at high bit rates with a small

group of pictures (GOP) delivers maximum image quality and signal performance

for demanding, multi-generation editing requirements. Transmitting at low bit rates




and longer GOP is ideal for delivery to the

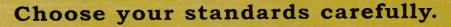
home. The MPEG-2 compression standard is

flexible and powerful enough to cover both,

ectronics lise. All rights reterved. Reproduction in whole in Such is probabiled. Sury ever are tradomates of Sont Feetures and specifications are sugged to change without solide.

and is scaleable to handle the demands of HDTV. MPEG-2 is unique in its ability to transcode over a broad spectrum of MPEG-2-compressed bit rates

and GOP formats without decoding to baseband. This minimizes the quality loss inherent in the decoding and re-encoding processes required when converting from different compression schemes, such as DV or motion JPEG, to MPEG-2 for transmission. MPEG-2 is extremely efficient, yielding high-quality images at very low data rates. This means cost effective storage on both linear and nonlinear media. Its scaleability also affords the transmission of contribution-quality material over DS-3, microwave, or satellite services, maximizing signal quality over the given bandwidth.


With all of its advantages, it's no wonder MPEG-2 technology is being integrated

into a wide range of products from many of the broadcast industry's leading

Call 1-800-635-SONY, ext. MPEG2

www.sony.com/professional

manufacturers worldwide. Of course, there's one manufacturer we'd like you to consider first.

SONY

Everything is here. The complete Betacam SX® system. The only digital ENG solution that employs the MPEG-2 compression standard from acquisition, through production, to delivery. The choice is clear. Especially when you

consider all the operational

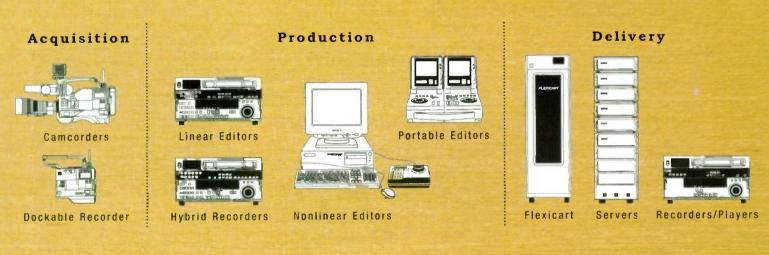
advantages of Betacam SX: high quality 4:2:2 digital component video, four audio channels, a low 18 Mb/s video data rate, and analog Betacam" playback capability. But there's more to the story.

New for 1998 is the DNW-A75 VTR. Adding to our extensive line of SX Hybrid Recorders and Players, the A75 offers frame-accurate video and audio insert editing on Betacam SX tape.

All the elements of a great news story.

It includes Preread technology, compressed digital output in either SDTI or MPEG ES formats, and the analog Betacam playback features of the legendary BVW-65. All for a list price of \$27,000. The Betacam SX acquisition products include a dockable recorder and a full-line of one-piece camcorders. Sony's camcorders are known for their ruggedness and reliability.

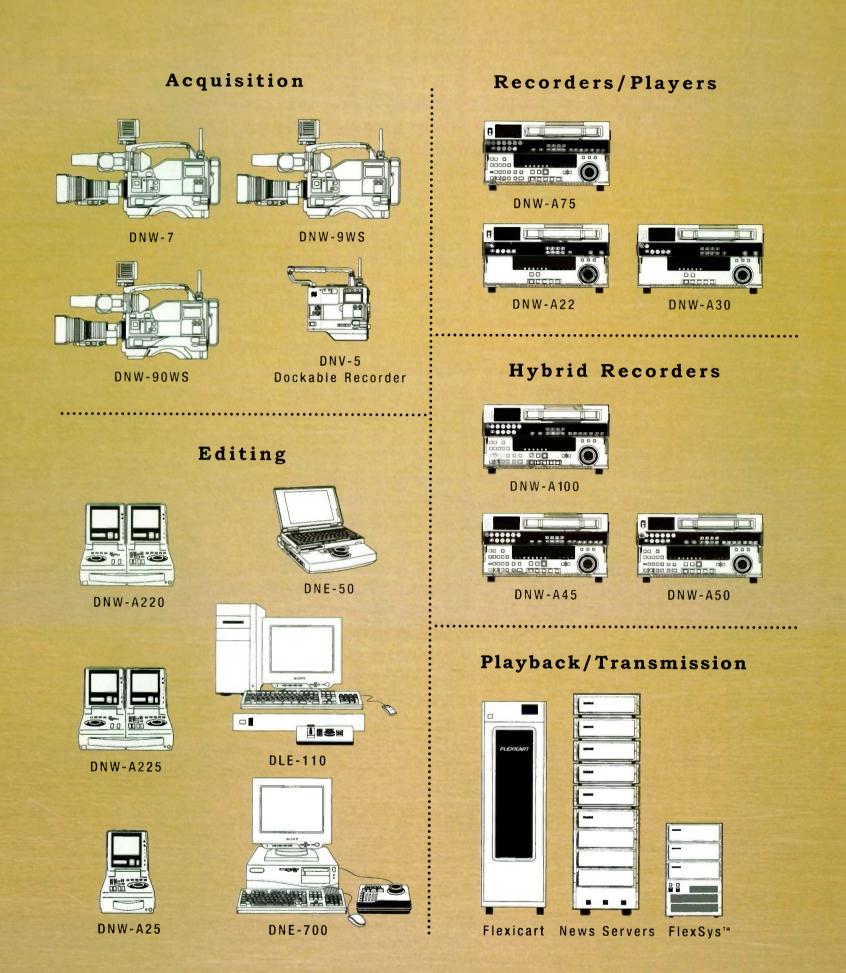
smaller and lighter in weight than analog Betacam camcorders. The line-up includes products supporting both 4:3 and true 16:9 aspects with IT or FIT imaging. New CCDs and DSP processing have significantly extended low light shooting capabilities, improved overall picture quality, and added important new operational aids, including set-up cards and the Good Shot Marker system.


1998 Sony Electropics fro. All lights review 1. Fep oduction in whole or part is prohibited. Sony, Betacam SX, Becacam, Good Shot Marker ResCache FlexSve the Sony logo and the DTV Feady Ligo are trademarks of Sony, Features and specthesting or subject to charge antious notice

In the news business, timing is everything. Sony delivers a variety of editing solutions to meet your business demands. The Betacam SX line includes portable editors and efficient nonlinear systems, as well as more traditional linear editing products. All support the SX Good Shot Marker system, streamlining the decision-making process from acquisition to editing. The SX portable editors weigh under 30 lbs, yet

include powerful features like DMC and studio-quality audio cuing

capabilities. The Betacam SX nonlinear editors provide many fime-saving features, including faster than real-time transfer from tape to disk. All of the SX editing sytems allow easy integration of analog Betacam material into your work.



Sony also offers a wide range of newsroom servers, including the READY NewsCache system. This affordable server system takes advantage of MPEG-2 4:2:2 P@ML compression technology to deliver high quality news playback with efficient disk storage. NewsCache integrates with many popular newsroom computer systems and can grow with your news operation.

When everything works together, news travels fast. That's the idea behind the Betacam SX format. From acquisition to transmission, the complete line of Betacam SX equipment is news-ready, road-worthy, and here now.

Choose your formats carefully.

SONY Call 1-800-635-SONY, ext. BetaSX www.sony.com/professional

Digital Television MARCH 1998 Product Review

bit I/O capability, surround sound mixing capabilities, dynamic and snapshot auomation and one function/one step screen layer operation. Back panel expansion slots enable increased console functionality, and four plug-in modules are available initially. One module enables up to 16 A to D converters for expanding analog source input capability, another ADAT/ODI format I/Os, another TDIF IOs and another AES/S/P DIF digital inputs. The rear panel offers a 1/4 inch jack for backtalk mic or for handling automated record functions. Also available is a Word Clock In and Out, a nine-pin socket for connection to external PRs and an RS-422/485 remote control port. Panasonic Broadcast & Television Systems Co., 6550 Katella Ave., Cypress, CA 90630.

More Information - Write In 159

Innovative Industrial DVD-Video Player

A new innovative industrial DVD-Video player—DVD-V7200—will be unveiled by Pioneer New Media Technologies.

It is designed to meet a wide range of business, industrial and educational applications, including corporate training, classroom education, public exhibits, instore displays, and kiosks. A highly interactive unit, the player offers users a dynamic presentation, display, marketing and training tool. It has a standard PS/2 mouse port that enables the selection of on screen buttons designed into programs. The player can also be used to play conventional CD-DA discs and full audio/video playback of video CDs. Dimensions are: 8 1/4" (w), x 4 11/16" (t) x 16 1/16" (d). Weight: 10 pounds 13 ounces. Pioneer New Media Technologies, Inc., 2265 E. 220th St., Long Beach, CA 90810.

More Information - Write In 160

Compression Technology

Scientific-Atlanta is supplying its fourth generation of digital video compression technology to programmers, broadcasters and service providers, and will conduct, via the DTV-ready PowerVu system, a live HDTV demonstration and show 4:2:2 profile @ ML support in the new PowerVu Compact Digital Encoder. DVBbased PC applications for Internet access, file transfer and data carousel applications into existing MPEG-2 commercial networks will be previewed. The SkyStation Controller earth station management system will be introduced, and enhancements to the PowerView Command Centre will also be shown. Scientific-Atlanta Co., 4356 Communications Dr., ATL 31T, PO Box 6850, Norcross, GA 30091.

More Information - Write 161

Real-Time DVE System

Charisma X-VTL will be demonstrated. Questech's new Visual TimeLine method makes effects creation intuitive, powerful and interactive; and, because Charisma X is a real time DVE, this makes the rehearsal and adjustment cycle more productive. Other highlights in the company's line up include: X-ray, a new dramatic lighting system for X-VTL DVE; QuiCK, a new high performance digital studio chromakeyer targeted at users of virtual sets, and composite decoders, encoders and synchronizers. **Questech Ltd.**, Eastheath Ave., Wokingham, Berkshire, RG41 2PP England.

More Information - Write In 162

Digital Production Switchers

The company's new line of three digital production switchers, called the Synergy Series, is designed for live news, live sports and live production. Over-theshoulder boxes, picture freezes, repositioning of keys, pushes and more are available with its Squeeze & Tease feature. Complex switcher and remote control operations are made simple through the Custom Control Hot Buttons. Additional features include Preview Overlay, 12 aux busses, up to 64 inputs, VTR control, external DVE integration, and redundant power. The series is packaged in a compact 11RU, 600 watt frame. The models are Synergy 4 (4 MLEs), Synergy 3 (3MLEs), and Synergy 2 (2 MLEs). Ross Video, 8 John St., Iroquois, Ont. KZE1K0, Canada.

More Information - Write In 163

Step-by-Step HDTV Approach

Quantel will unveil its step-by-step approach to HDTV. Also, existing systems in effects, editing, graphics, servers and networking will move forward across the board, with developments that extend the scope of what can be achieved; 1998 also sees the release of the first Java-enabled

Quantel systems. And the company will demonstrate the first applications from Java on its developers. Quantel, 28 Thomas Circle, Darien, CT 06820.

More Information - Write In 164

Over 10 Products Will Be Unveiled

Scitex Digital will unveil more than 10 products, including: 16:9 Aspect Ratio Support for DTV capability; Abekas QuickStore Presentation System for video audio, graphics and animations, with streamlined interface and simplified timeline that are ideal for building and running playlists and for creating storyboards;

World Radio History

Version 6 Software for Abekas Dveous DVE, a new effects creation method that applies oscillators to image parameters and provides more flexibility; Version 6 Software for Abekas Brutus DVE that provides OrbitalFX capabilities to the industry's only DVE with eight simultaneous video streams; Version 3.5 Software for Abekas 8150 Switcher that features support for lomega Jaz drive and enhanced control from edit controllers. Also, SPORT Software for Sphere Nonlinear Systems, for fast, easy creation of sports highlight packages; NT Codec for Sphere Systems, which delivers cross-platform support and instant playback for graphics, animations and footage created using Windows NT applications; TextFX PCI Board for MicroSphere System, which delivers real time title animations, including rolls, crawls and reveals; Version

2 Software for MicroSphere, which supports the TextFX board; Version 2 Software for StrataSphere, which delivers optimized performance, high-speed compositing and title border extrusions. **Scitex Digital Video**, 101 Galveston Drive, Redwood City, CA 94063.

More Information - Write In 165

Set Top Box Design Kit

An advanced Set Top Box Design Kit that enables rapid development of differentiated digital signal processor-based digital set top box (STB) systems and gets them to market quickly will be featured by Texas Instruments. The kit combines the company's TMS320AV7000 series of single-chip STB digital signal processor (DSP) solutions with ISI's pSOSystem real-time operating system (RTOS) and networking products and pRISM+ development environment. The kit's integrated approach reduces STB time to market by providing a complete platform to allow the developer to focus on building the application-specific software that differentiates the STB. Texas Instruments, Inc., Semi Conductor Group, SC-98008, Literature Response Center, P.O. Box 172228, Denver, CO 80217.

More Information - Write In 166

HDTV Upconverters, Production Switchers

Snell & Wilcox will introduce two HDTV upconverters to complement the company's HD5100 HDTV upconverter, already in daily use by all U.S. networks. The new HD5050 is a 10-bit serial HDTV unit that accepts 10-bit serial digital SD inputs and delivers full 10-bit studio quality 1.5 Gbit/sec true HD serial digital output. It is the ideal tool for broadcasters who must upconvert program material prior to ATSC encoding for transmission. Compact—only 4 RU—and highly integrated, the model also offers the user the ability to tailor I/O interfaces in their exact requirements. Model HD 50 is a compact HDTV upconverter designed to satisfy the requirement for an economical unit. It provides an 1125/60 or 1125/59.94 HDTV signal (either 1080 or 1035 active lines) from 525 or 625 input signals. It will also deliver a 720 line progressive output, and it also includes aspect ratio control. Also new are two 12- and 24input HDTV production switchers, models HD 1012 and HD 1024. A key benefit of the units is their ability to add an integrated DVE system that provides a future migration path to a fully featured HDTV post production switcher. Snell & Wilcox Ltd., Durford Mill, Petersfield, Hampshire GU31 5AZ, UK.

More Information - Write In 167

Audio Patch Panels

Switchcraft's new TTP96 audio patch panel is available as a patch panel, patch kit, with EDAC connectors and now, in a unique front access version. All of the company's TTP96 panels have corrosion resistant nickel-plated jacks (.173") with steel frames for superior life. The panel's rugged anodized aluminum face will not break. The panels are offered with a choice of three jack configurations to meet exact switching requirements: full normal, half normal and open circuit. Fanned solder terminals make soldering connections easy. The TTP96 also features gold switching contacts for longterm reliability in normal-through connections. The EDAC and front access versions are available with normals brought out. Switchcraft, Inc., 5555 North Elston Ave., Chicago, IL 60630.

More Information - Write In 168

Family of Low Cost Solutions for DTV

TeraLogic, which develops integrated circuit (IC) and software solutions that allow consumer electronics manufacturers to quickly bring to market advanced—yet affordable—digital television receivers and set-top boxes with a retail cost of under \$400, will introduce a family of low-cost, high-performance solutions for the rapidly emerging digital (DTV) market. **TeraLogic, Inc.,** 707 California St., Mountain View, CA 94041.

More Information - Write In 169

Remote Control Panel

Available from Sierra Video is a new remote control panel option for its Mirage

1	10	Ŧ	=	-	4	T	-	10			-			-		
	×				•	•	•		MIL	****	1	1		1		
1				-	-	1	-	11			1	11				
	2		•	•	٠	1		-			1	1	-	4	-	

real time digital image compositing system. This new panel unveils a small production switcher built into Mirage and puts familiar tactile switches and control in the hands of the technical director. The panel can be used with the system's onscreen graphical user interface and has a trackball mounted in the middle that provides control of all the functions that the mouse can operate in addition to a lever arm mode. **Sierra Video Systems**, P.O. Box 2462, Grass Valley, CA 95945.

More Information - Write In 170

We mastered custom cabling with One essential tool.

Listening.

1 800 CABLE-IT

Custom Cable Assemblies
 Remote Composite Cables
 Audio & Video Snakes
 Reels, Panels & Patchbays
 Digital & Analog Assemblies
 Audio,Video & Control Cables

NAB Booth #8972

1355 Armour Blvd. · Mundelein, IL 60060 (800) 222-5348 · Fax: (847) 949-9595 www.clarkwc.com · sales@clarkwc.com

Digital Television MARCH 1998 Product Review

HDTV Glue Products To Premiere

The highlight of Leitch's line will be the premiere of its HDTV Glue product family, which includes: HD Frame Synchronizer that features reclocking, serial in and out, genlock (locks to NTSC black burst), no jitter: HD Test Generator with built-in line-based, frame-based and static test signals; HD Logo Generator, which offers serial or component output, external logo creation and data interface: HD Serial DA, with 3 outputs, serial 1.5Gb/s input and 1.5Gb/s output, reclocking, no jitter; HD conversion products featuring component analog to 1.5Gb/s and vice versa.

These units are based on the company's popular DigiBus platform. The company will also introduce: HD Upconverter that has inputs for all formats (SDI, NTSC, PAL, PAL-M), outputs of serial 1.5Gb/s and/or analog component; HD Video Router, 16x16, 1.5 Gb/s, controlled by Router-Works software and Leitch's current control panels, and HD Master Control Switcher that features 1.5Gb/s, 16 inputs, basic effects. Leitch Inc., 920 Corporate Lane, Chesapeake, VA 23320.

More Information - Write In 171


Modular Text-Based Messaging System

The new MCM-96 Multichannel Text Messaging System is a modular product capable of providing keyed text or billboard displays on up to 96 channels simultaneously. Designed for multichannel environments, it is a cost effective solution for a wide range of applications, including Emergency Alert Systems (EAS), pay-per-view interstitial overlay, cross channel promotion, and logo insertion, among others. The product offers total flexibility in displaying text to be unique for each channel, simultaneously displayed on all channels or displayed on selected groups of channels. Display cards offer monochrome or full color displays, from a single line message, logo, or crawl to a full page two region display with a crawl line. Control from remote PCs and touchtone phones is available. Video Data Systems, 40 Oser Avenue, Hauppauge, NY 11788.

More Information - Write In 172

Product Catalog

Introduced will be Canare's all-new for 1998 Catalog 9, covering a full line of professional audio and video broadcast products, including cable, connec-

tors, digital video patchbays, bulkhead panels, snake systems, cable reels, specialty tooling and related accessories. The catalog shows detailed technical product specifications with expanded fullcolor focus sections on the latest in serial digital video SDI interconnects for HDTV, true 75 ohm coaxial crimp connectors, plus a new line of rugged ENG composite cables. **Canare Corp. of America**, 532 5th St., Unit A, San Fernando, CA 91340.

More Information - Write In - 173

Heavy Emphasis On Digital Audio

Ward-Beck Systems (WBS) will place heavy emphasis on digital audio products. The company's first video products will also be featured. Among its 8200 Series Digital products are: D8201, Digital Audio Distribution Amplifier, an eight output DA that is frame-compatible with its 8200 analog audio equipment; D8202, Digital-to-Analog Converter that uses the latest 24-bit converter technology; D8203 Analog-to-Digital Converter, with selectable sample rates or lock to external reference; D8204, a high performance digital audio distribution amplifier. Also highlighted: POD 10 6x1 AES/EBU Digital Audio low cost switcher that may be used as a preselector and may be remote controlled; POD 11 AES/EBU Digital Audio Monitor that features and dual channel, 20 segment LED level display along with eight signal status LED indicators that display sampling frequency rate, signal lock, CRC error, confidence, consumer mode and phase error; POD 12 AES/EBU Reclocking Distribution Amplifier, a 1x6 digital audio product that features cable equalization, data reclocking and signal error detection; POD 13 Dual AES/EBU Digital-to-Analog Converter that houses two digital-to-analog converters which feature the latest in 24-bit conversion technology. Analog products include: M8252 1x8 Video | Distribution Amplifier that features level control and is extremely cost effective and M82552 1x8³ Video Distribution Amplifier that offers cable equalization and clamping. Ward-Beck Systems LTD (WBS), 841 Progress Ave., Toronto, Ontario, M1H 2X4 Canada.

More Information - Write In 174

Don't Forget To Fill Out The Postage Paid Card.

More Information Circle 101

You create great programs. You know there's a television audience just waiting to see them. The challenge lies in finding the most effective way to deliver those great programs to that anxiously awaiting audience. So why not create your own network? Your own channel? A place where people can always find your unique brand of creativity.

It's called network origination. And it's no longer limited to giant corporations with alphabet names. Network origination is a viable option and a genuine opportunity for producers of quality television programming... like you. It can, however, be complicated and costly to do on your own. Fortunately, there is a better way.

Let NDTC, provide the perfect channel for your creativity.

Call Kathy Standage at 303-486-3809, or e-mail her at Standage.Kathy@tci.com

We Can Channel Your Creativity

Dans (Dans - Dans Dans Dans Dans - Dans (Dans (Dans))

At TCI's National Digital Television Center (NDTC), those who create don't need to channel their energy or resources away from the creative process, in order to originate a high quality network of their own. NDTC can provide everything needed to establish a quality channel, and confidently deliver your signal to the cable markets and the people you want to reach. One source, NDTC, offers

everything it takes-packaged to meet your specific needs-priced right-quality guaranteed. Nobody offers more or does it better than NDTC.

- MASTER CONTROL
- TRAFFIC SERVICES
- SATELLITE SERVICES
- FULL PRODUCTION SERVICES
- QUALITY CONTROL

Encore, Discovery's Animal Planet, Ovation, Primestar, Foxnet, BBC Americas, Your Choice TV, Request TV, Starz!, Classic Sports Network, and others, all rely on NDTC's experience, expertise, and tremendous depth of resources. You can too.

From A to V on Digital Allocations

Complete text of the FCC's target list of 1,606 stations

The Federal Communications Commission has released its revised plan for matching each broadcaster with a new channel for delivering digital TV. Seeking to reduce interference among the expected DTV stations, the commission has changed 42 of the channel assignments from the version of the "allotment table" released last April. The FCC has also sought to preserve low-power TV stations in the new list, resulting

DURING TRANSITION

in more assignment changes. All told, 137 stations received a different DTV channel assignment than that assigned last April.

The chart below lists (from left to right) all the analog channels and their new digital counterparts, the power limits that will apply to the new channel; the height of the DTV antenna above the broadcast area's average terrain; the area and

NEW INTERFERENCI

population that the digital signal will cover during the transition period; the area and population covered by the station's existing analog service; and the amount of new interference the existing service will experience once the digital stations begin broadcasting. The last column shows the percentage of the station's existing service area that the digital signal will cover.

STATE AND CITY	NTSC CHAN	DTV DTV POW	ER ANTENNA W) HAAT(m)	DURING TRAM AREA F (Sq.km)		CURRENT SER AREA PEO (Sq km) (the	PLE ARE	A PEOF	LE MATCH		STATE AND CITY	NTSC Chan	DTV DTV F Chan	POWER	ANTENNA HAAT(m)	DURING T AREA (Sq.km)		AREA PEO	PLE ARE	A PE	OPLE MATCH
ALASKA											AZ PHOENIX	61		61.4	541.0	18332	2205	17585 219			100.0
AK ANCHORAGE AK ANCHORAGE	2	18 1000 20 234		23462	265 256		65 0.		81.2 100.0		AZ PRESCOTT AZ SIERRA VISTA	7 58	25 5	50.0 48.2	856.0 331.0	18566 13360	165 683	16868 13 12715 67	7 0.2	0.0	100.0
AK ANCHORAGE	5	22 1000	0.0 250.0	25716	265	30730 2	66 0.	0.0	83.7		AZ TOLLESON	51	52 20	03.8	533.0	24651	2219	23153 220	8 0.0	0.0	100.0
AK ANCHORAGE AK ANCHORAGE	7 9	24 1000 26 1000		24954 23059	265 267		65 0. 68 0.		95.9 93.3		AZ TUCSON AZ TUCSON	4			1100.0 1106.0	40396 39397	723 710	45568 80 39559 74			84.5 89.7
AK ANCHORAGE AK ANCHORAGE	11 13		0.0 91.0	10708 24829	251 265	10259 2	50 0. 65 0.	0.0	100.0 95.6		AZ TUCSON AZ TUCSON	9 11	35 23		1134.0 507.0	33741 25573	686 686	33524 70 23904 68	2 0.0	0.0	97.0 99.5
AK ANCHORAGE	33	32 50	0.0 33.0	6438	233	1175 2	12 18.	7 5.3	100.0		AZ TUCSON	13	32 78	83.4	622.0	31165	749	26425 72	9 0.0	0.0	100.0
AK BETHEL AK DILLINGHAM	4	-	1.061.09.8305.0	999 9 33890	8 4	5629 33677	7 0. 4 0.		100.0 100.0		AZ TUCSON AZ TUCSON	18 27	28	03.2 50.0	600.0 175.0	19942 3633	704 629	17894 69 3028 61	8 0.4	0.1	100.0 100.0
AK FAIRBANKS AK FAIRBANKS	2		0.3 33.0 0.0 33.0	6744 6523	77 77	6670	77 0. 70 0.		100.0		AZ TUCSON AZ YUMA	40 11		50.0 62.3	619.0 493.0	15188 34473	67 3 233	13979 67 33353 23			100.0 99.9
AK FAIRBANKS	9	24 79	9.4 152.0	13637	78	13637	78 0.	0.0	100.0		AZ YUMA	13		09.7	475.0	28059	231	26438 22			100.0
AK FAIRBANKS	11 13	28 50	0.0 33.0 0.0 33.0	6524 6524	77	4966	76 0. 76 0.	0.0	100.0			50	20	75 4	700.0	10000	11040	10000 1100	0 07		A7 6
AK JUNEAU AK JUNEAU	3 8		1.0 33.0 3.2 33.0	6622 6793	27 27		27 0. 25 0.		100.0 100.0		CA ANAHEIM CA ARCATA	56 23	22 !	75.1 50.0	728.0 510.0	12225	11348 112	19520 1139 11147 9	9 0.1	0.0	97.5 100.0
AK KETCHIKAN AK KETCHIKAN	4	13 :	3.2 174.0 3.3 305.0	18251 22274	17 17	6873 22184	15 0. 17 0.	0.0	100.0		CA BAKERSFIELD CA BAKERSFIELD	17 23		85.1 4.6	427.0 1128.0	17512 22757	545 671	17028 50 20817 61			100.0 99.9
AK NORTHPOLE AK SITKA	4 13	20 213		30801 6622	79 9		79 0. 8 0.	0.0	100.0		CA BAKERSFIELD CA BAKERSFIELD	29 45	33		1137.0 404.0	15846 16271	538 562	15051 47 15924 51	2 0.0	0.0	100.0
	13	2	33.0	0022	9	(102	0 U.	0.0	100.0		CA BARSTOW CA CALIPATRIA	64 54	44	70.2 85.2	518.0 507.0	14984 21324	626 226	14214 62 20704 22	3 0.0	0.0	99.5 100.0
ALABAMA AL ANNISTON	40	58 264		20802			16 0.		98.0		CA CERES	23	15 5	50.0	47.0	1623	359	1623 35	9 3.2	2.3	100.0
AL BESSEMER AL BIRMINGHAM	17	18 180 50 1000		32102 35806	1304 1598	28690 11 34251 15	31 2. 47 0.		99.7 96.5		CA CHICO CA CHICO	12 24	36 30	00.0 06. 0	396.0 564.0	28773 21868	570 357	28649 56 21703 35	5 1.0	5.3	99.1 99.8
AL BIRMINGHAM AL BIRMINGHAM	10 13	53 1000 52 1000	.0 404.0	31917 32879	1522 1564	28399 14	28 2. 65 0.	0 2.2	99.5 99.5		CA CLOVIS CA CONCORD	43 42		01.0 61.0	671.0 856.0	24994 26590	1163 6581	24310 115 25956 620			99.9 99.5
AL BIRMINGHAM	42	30 160	5.3 421.0	26176	1333	23781 12	53 0.	4 0.4	100.0		CA CORONA CA COTATI	52 22	39 6	63.5 50.0	896.0 620.0		12071 1149	17469 1207 8985 105	0 8.1	9.1	94.9 99.5
AL BIRMINGHAM AL DEMOPOLIS	68 41	19 50	0.0 314.0 0.0 333.0	14489 15093	1012 121	15040 1	77 0. 21 1.	6 1.6	100.0 99.9		CA EL CENTRO	7	22 6	11.2	389.0	22604	181	21793 18	1 0.2	0.0	99.8
AL DOTHAN AL DOTHAN	4 18	36 100 21 50	0.0573.00.0223.0	48846 13968	788 291		65 0. 91 2.		99.8 100.0		CA EL CENTRO CA EUREKA	9	16 10	97.9 00.0	488.0 503.0	26945 31134	229 134	26621 22 35054 13	9 0.0	0.0	99.5 88.8
AL DOZIER AL FLORENCE	2	59 1000		25630 12681	463 283	21786 2	98 0. 85 2.	0.0	98.2 98.5		CA EUREKA CA EUREKA	6 13	11 .	00. 0 14.2	530.0 515.0	38962 30342	139 121	41892 14 28654 12			92.8 100.0
AL FLORENCE AL FLORENCE	26	20 50	0.0 230.0	12018	258	10994 2	40 1.	8 1.1	100.0		CA EUREKA CA FORT BRAGG	29 8		50.0 71.2	334.0 746.0	6416 27303	92 114	5885 8 26639 9			100.0 99.6
AL GADSDEN	36	45 50	0.0 303.0	12324 12167	261 595	11830 5	59 8. 23 1.	8 1.4	100.0 99.2	1	CA FRESNO CA FRESNO	18 24	40 8	87.0 50.6	677.0 716.0	22864 23275	1125 1126	22598 111 22381 110	7 1.3	0.7	99.6 100.0
AL GADSDEN AL HOMEWOOD	60 21	28 280		14274 27594	1147 1394	26602 13	29 2. 16 0.		99.4 98.8	1	CA FRESNO	30	9	8.7	622.0	20834	1140	19684 113	0 2.3	0.6	99.7
AL HUNTSVILLE AL HUNTSVILLE	19 25	59 89	9.0 533.0 0.0 352.0	24418 18210	879 723	23489 8	57 1. 06 0.	0 0.7	99.6 100.0		CA FRESNO CA FRESNO	47 53	7	50.2 3.2	597.0 581.0	19355 17074	1089 1090	17869 105 16227 107	5 1.3	0.2	99.9 99.9
AL HUNTSVILLE	31	32 50	0.0 546.0	22888	845	21705 8	10 1.	6 1.5	100.0		CA HANFORD CA HUNTINGTON BEAC	21 50		79.0 74.7	605.0 330.0	25523 9907	1225 9025	24849 120 9534 894			99.8 98.5
AL HUNTSVILLE AL HUNTSVILLE	48 54	41 53	0.0 579.0 3.4 515.0	22033 18686	714	18097 7	92 0. 04 0.	7 0.4	99.4 100.0		CA LOS ANGELES CA LOS ANGELES	2	60 80		1107.0 984.0	39414	13330 13829	48050 1428	9 0.4	0.0	80.0 84.4
AL LOUISVILLE AL MOBILE	43 5	44 168 27 1000		14457 49332	267 1311		67 1. 10 0.		99.8 99.6		CA LOS ANGELES	4 5 7	31 66	61.0	976.0	40390	13494	47300 1440	1 0.0	0.0	85.4
AL MOBILE AL MOBILE	10 15		5.5 381.0	31418 25702	1008 1024	30422 9	<mark>198 0.</mark> 139 1.	0.0	99.9 99.6		CA LOS ANGELES CA LOS ANGELES	7 9	43 3	55.6 57.5	978.0 970.0	23370	13156 12755	34407 1355 24577 1287	6 0 .1	0.0	92.1 93.7
AL MOBILE AL MOBILE	21 42	20 19		21838	950 544	21326 8	82 0.	3 0.1	100.0		CA LOS ANGELES CA LOS ANGELES	11 13		88.7 79. 7	896.0 899.0	32730 31938	13229 12964	34448 1353 33784 1349			93.4 94.1
AL MONTGOMERY	12	57 1000	0.0 610.0	11664 43525	908	41216 8	68 0.	0.0	100.0		CA LOS ANGELES CA LOS ANGELES	22 28	42 1	72.8 90.3	889.0 927.0	16223 25044	11481 12593	17628 1215 24863 1262	1 0.6	0.9	91.0 98.2
AL MONTGOMERY AL MONTGOMERY	20 26	14 50	0.0 226.0 0.0 183.0	12881	369 376	12595 3	65 0. 72 4.	0 2.9	100.0 100.0		CA LOS ANGELES CA LOS ANGELES	34 58	35	73.5 58.2	896.0 875.0	21708	12333 12379 12504	21279 1242 20290 1209	7 0.6	1.0	98.3 99.6
AL MONTGOMERY AL MONTGOMERY	32 45	51 284 46 50	4.8545.00.0308.0	28418 11831	538 366		35 3. 65 1.		99.8 100.0		CA MERCED	51	38 13	35.2	680.0	21599	1284	20953 127	5 0.1	0.0	99.8
AL MOUNT CHEAHA	7 66	56 1000		41663 10492	2006 469	38089 17	39 0. 60 0.	3 0.1	99.6 100.0		CA MODESTO CA MONTEREY	19 46	32 !	48.8 50.0	573.0 771.0	26528 15633	2689 692	26692 274 15629 70	5 0.3		98.1 97.7
AL OZARK	34	33 50).0 142.0	8785	229	8749 2	28 0.	7 0.1	100.0		CA MONTEREY CA NOVATO	67 68		50.0 29.7	701.0 431.0	13402 20011	790 4106	12867 71 18713 367			99.0 •
AL SELMA AL TROY	8 67).0 592.0	38823 17954	665 430	17658 4	32 0. 27 0.	2 0.0	100.0 99.4		CA OAKLAND CA ONTARIO	2 46	56 100	00.0 73.0	479.0 927.0	33796 17967	5784 12177	36057 597	0.0	0.0	92.2 100.0
AL TUSCALOOSA AL TUSKEGEE	33 22	34 198 24 104		34878 17791	1329 473		00 0. 64 3.		96.4 99.4		CA OXNARD CA PALM SPRINGS	63 36	24	50.0 50.0	549.0 207.0	11667 5970	1513	10943 128 5890 25	0 0.2	0.6	99.6 99.3
ARKANSAS											CA PALM SPRINGS	42	52 (67.3	1087.0	14000	823	14077 92	7 4.5	8.3	96.9
AR ARKADELPHIA AR EL DORADO	9 10	46 937 27 733		26260 43667	329 630		22 0 . 08 0.		93.2 98.3		CA PARADISE CA PORTERVILLE	30 61	48	71.4 77.8	440.0 811.0	17593 21854	370 1330	17246 36 21494 127	8 0.1	0.0	99.7 100.0
AR FAYETTEVILLE	13	45 1000	0.0 5 06.0	35965	706	31152 €	24 0.	0.0	99.6		CA RANCHO PALOS VE CA REDDING	44 7	14 16		451.0 1103.0	13238 35522	7851 327	16382 710 35198 32			79.0 99.3
AR FAYETTEVILLE AR FORT SMITH	29 5	15 50 18 1000	0.0 384.0	14581 32049	299 616	28831 5	86 0. 36 0.	0.0	99.7 98.2		CA REDDING CA RIVERSIDE	9 62	18 18		1097.0 723.0	35070	322 11672	34666 31 16882 1144	9 0.0	0.0	99.0 100.0
AR FORT SMITH AR FORT SMITH	24 40		5.5317.07.8610.0	14461 21389	398 310		10 0. 90 1.		96.3 100.0	1	CA SACRAMENTO CA SACRAMENTO	3	35 100	00.0	591.0 567.0	40861 37635	4499 4317	41289 426	1 0.0	0.0	94.6 94.0
AR HOT SPRINGS AR JONESBORO	26 8		0.0 258.0	13296 40658	205 703	12577 1	80 1. 30 0.	2 0.3	100.0		CA SACRAMENTO	10	61 100	0.00	595.0	35465	4022	35298 404	7 0.5	0.2	97.7
AR JONESBORO AR JONESBORO	19	20 50).0 311.0	17554	246	17453 2	45 0.	0.0	100.0	1	CA SACRAMENTO CA SACRAMENTO	29 31	21 18	70.4 81.2	321.0 558.0	12538 25170	1562 3537	13056 157 25170 355	4 0.6	0.1	96.0 95.5
AR LITTLE ROCK	48	49 57 47 1000	0.0 543.0	17180 42551	256 971	39045 9	63 0.	0.0	100.0 92.4		CA SACRAMENTO CA SALINAS	40 8	43 44	75.9 48.5	597.0 896.0	24683 28177	3582 4679	24651 338 26635 294			98.5 91.8
AR LITTLE ROCK AR LITTLE ROCK	4	32 1000 22 649	9.7 591.0	43063 42855		39421 9	181 0. 149 0.		99.1 100.0		CA SALINAS CA SAN BERNARDINO	35 18	13	3.2 13.6	735.0 725.0	17120	765 11391	16367 76 23623 1187	0 0.6	0.0	99.5 96.9
AR LITTLE ROCK AR LITTLE ROCK	11 16	12 21 30 346		37672 28913	950 892		19 0. 87 0.	0.0	100.0 98.8		CA SAN BERNARDINO	24	26	50.0	509.0	14332	8702	12957 569	6 2.3	8.4	99.9
AR LITTLE ROCK AR MOUNTAIN VIEW	42	43 139	0.7 156.0	14218 37995	604	14165 6	04 0.	0.0	99.8		CA SAN BERNARDINO CA SAN DIEGO	30 8	55 100	10.0 00.0	715.0 226.0	24010	11222 2704	16905 1124 23545 266	0.0	0.0	98.4 98.9
AR NEWARK .	17	27 50	0.0 162.0	4239	57	4049	57 0. 55 1.	0 0.9	99.3 100.0		CA SAN DIEGO CA SAN DIEGO	10 15	30 19	09.1 91.7	229.0 613.0	20867 22924	2694 2527	20089 265 23823 254			100.0 95.5
AR PINE BLUFF AR PINE BLUFF	25 38	24 13 39 206		11636 25660	584 804		82 2. 92 0.		99.9 100.0		CA SAN DIEGO CA SAN DIEGO	39 51	40 9	93.3 52.1	577.0 579.0	19553 17316	2458 2422	20018 231 19500 240	4 9.2	0.0	95.5 86.0
AR ROGERS AR SPRINGDALE	51 57	50 50	0.0 143.0 0.0 117.0	6500 5681	228 223	6004 2	21 0. 16 0.	0.0	100.0		CA SAN DIEGO	69 4	19 6	62.9	594.0	20726	2504	19310 240	5 0.0	0.0	99.9
ARIZONIA	01						U.	0.1	100.0		CA SAN FRANCISCO	5	29 100	00.0	512.0 506.0	36097 34977	5941 5800	36969 593 37021 596	8 0.0	0.0	93.1 94.2
AZ FLAGSTAFF	2	22 1000		37453	172		96 1.		91.5	1	CA SAN FRANCISCO CA SAN FRANCISCO	7 9	30 70	21.2 08.6	509.0 509.0	30529 32429	5503 5827	31509 586 29666 542	4 0.1	0.0	93.7 99.8
AZ FLAGSTAFF AZ FLAGSTAFF	4	18 726 32 50	0.0 594.0	33861 9414	166 63	8146	58 0. 63 0.	0.0	97.9 100.0		CA SAN FRANCISCO CA SAN FRANCISCO	14 20		76.3 47.7	701.0 472.0	16358 18054	5310 5343	17169 531 17673 526	3 2.0	1.2	94.5 97.6
AZ FLAGSTAFF AZ GREEN VALLEY	13 46	27 655 47 72		30058 25960	150 632	27363 1	33 0. 14 0.	0.0	100.0		CA SAN FRANCISCO CA SAN FRANCISCO	26 32	27 9	95.2 50.0	421.0 491.0	15665 15589	5173 5288	14492 495 13582 484	0 0.7	1.0	100.0 100.0
AZ KINGMAN AZ LAKE HAVASU CIT	6 34	19 1000	0.0 585.0	32207	118	37735 1	14 0.	0.0	81.7		CA SAN FRANCISCO	38	39 21	16.8	440.0	16904	5207	14924 478	1 0.7	0.1	100.0
AZ MESA	12	36 843	3.9 543.0	13724 32650	81 2225	30934 22	74 0. 21 0.	0.0	100.0 99.4		CA SAN FRANCISCO CA SAN JOSE	44 11	12	06.3 6.2	491.0 844.0	16415 31737	5223 5170	15218 485 29472 493	3 0.0	0.0	100.0 99.6
AZ PHOENIX AZ PHOENIX	3 5	24 1000 17 1000	0.0 539.0	36902 37709	2232 2230		34 0. 34 0.		91.0 93.5		CA SAN JOSE CA SAN JOSE	36 48		51.3 94. 6	686.0 631.0	15638 14403	5256 4923	14441 506 12982 480			95.6 99.8
AZ PHOENIX AZ PHOENIX	8 10	29 729 31 778	9.8 536.0	32860 33054	2225 2225	31649 22	23 0 . 16 0.	0.0	99.4 98.6		CA SAN JOSE CA SAN JOSE	54 65	50 5	50.0 79.2	585.0 812.0	7749	4309 4486	7636 434	9 7.5	6.3	95.8 100.0
AZ PHOENIX AZ PHOENIX	15 21	56 75		19790 20113	2207 2209	19733 22	.07 0.	0.0	99.8		CA SAN LUIS OBISPO	6	15 100	0.00	543.0	40194	398	41708 41	4 0.0	0.0	95.4
AZ PHOENIX	33	34 80	0.3 521.0	18050	2198	17534 21	95 0.	8 0.8	100.0 99.4	1	CA SAN LUIS OBISPO CA SAN MATEO	33 60	59 10	50.0 07.3	440.0 362.0	6564 11787	272 4746	5665 24 11176 461	2 0.4	0.8	100.0 100.0
AZ PHOENIX	45	26 64	1.0 545.0	23121	2219	20831 22	.02 0.	0 0.0	100.0		CA SANGER	5 9	36 5	50.0	591.0	14995	761	14043 74	5 0.0	0.0	100.0
								Wo	orld Radi	o His	story										

				DTV SERVICE	EXISTING	NISC	TVINTSČ	DTV SERVICE EXISTING NTSC DTV/NTSC DURING TRANSITION CURRENT SERVICE NEW INTERFERENCE AREA
CA SANTA ANA 40 CA SANTA ANA 40 CA SANTA BARBARA 33 CA SANTA BARBARA 38 CA SANTA BARBARA 38 CA SANTA MARIA 12 CA SANTA ROSA 50 CA STOCKTON 13 CA STOCKTON 64 CA TWENTYNINE PALM 31 CA VALLEJO 666 CA VENTURA 57 CA VISALIA 26 CA WATSONVILLE 25	CHAN 0 23 3 27 8 21 2 19 0 54 3 25 8 46 4 62 1 23 6 34 7 49 6 28 9 50		NTENNA HAAT(m) 881.0 917.0 887.0 591.0 559.0 874.0 509.0 874.0 530.0 874.0 90.0 466.0 530.0 835.0 675.0	During Transfillion AREA PEOPLE (sn.km) PEOPLE 19085 12468 42096 1166 24246 837 26039 378 11196 413 36232 4245 21148 3361 26826 6635 2529 52 13195 5161 15057 3256 27346 1137 20266 1291 11608 783	CUBERNT SERVICE AREA PEOPLE AREA PEOPLE 17952 12273 45650 1276 22947 768 24810 368 10137 35709 4593 21483 33770 25391 5855 2341 500 11634 3771 1584 26475 1132 19894 1225 11399 737	EW, INTERFERENCE AREA PEOPLE • NL Area) (% NL Poi 6.5 1.1 0.0 0.0 4.1 0.6 0.5 0.1 2.5 3.7 2.1 0.7 2.0 2.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	AREA MATCH 99.7 90.2 99.7 100.0 98.2 96.2 97.7 99.2 100.0 98.2 100.0 98.2 100.0 100.0 100.0 100.0 99.7	NTSC CHAN DTV DTV POWER CHAN ANTENNA CHAN ANTENNA HATCM DMARCA (RACA) DECOMPTIONE (RACA) DMARCA (RACA) DMARCA (RACA) DECOMPTIONE (RACA) DMARCA) DMARCA (RACA) DECOMPTIONE (RACA) DMARCA) DMARCA (RACA) DMARCA) DMARCA)
COLORADO CO BOULDER 14 CO BROOMFIELD 12 CO CASTLE ROCK 52 CO COLORADO SPRING 11 CO COLORADO SPRING 12 CO COLORADO SPRING 21 CO DENVER 22 CO DENVER 24 CO DENVER 26 CO DENVER 26 CO DENVER 26 CO DENVER 27 CO DENVER 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99.6 1000.0 128.8 20.1 459.0 75.1 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 144.8 50.0 879.2 71.5	351.0 738.0 193.0 725.0 656.0 319.0 451.0 292.0 310.0 280.0 3383.0 337.0 334.0 233.0 3356.0 110.0 256.0 110.0 256.0	17345 2086 31261 2162 10925 1687 29934 1040 29934 1273 18914 559 28224 2255 32693 2295 28048 2224 25656 2247 25576 2500 19667 2097 17119 2051 12086 1889 12111 1876 17315 2049 8515 63 13966 426 26314 77 12688 103	17309 2095 30560 2153 10375 1663 26513 618 24843 643 18277 549 31110 2312 32149 2340 27181 2145 24841 2210 18609 2041 16663 2047 11934 1870 16527 2045 9280 62 13878 431 31163 85 13808 106	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97.9 97.8 100.0 99.8 99.9 99.1 89.3 91.2 95.7 99.1 99.4 98.8 100.0 100.0 100.0 99.8 91.0 99.5 82.1 88.5 200	FL PENSACOLA 44 45 122.3 454.0 19008 896 18984 896 0.3 0.0 100.0 FL SARASOTA 40 52 88.9 235.0 13344 1974 12251 1857 0.2 0.2 99.4 FL ST. PETERSBURG 10 24 607.5 458.0 31241 2783 30743 2795 0.0 0.0 99.0 FL ST. PETERSBURG 44 59 272.7 454.0 27852 3105 26940 3082 0.0 0.0 100.0 FL TALLAHASSEE 11 32 1000.0 232.0 25777 430 23062 384 0.0 0.0 100.0 FL TALLAHASSEE 11 32 1000.0 473.0 41755 3671 39567 3244 0.0 0.0 99.6 FL TAMPA 8 7 19.0 471.0 37631 33523 33
CO GRAND JUNCTION A CO GRAND JUNCTION 1 CO GRAND JUNCTION 1 CO LONGMONT 22 CO MONTROSE 1 CO PUEBLO 2 CO PUEBLO 2 CO PUEBLO 2 CO STEAMBOAT SPRIN 2 CO STERLING 2 CO NHECTICUT	8 17 25 29 0 13 5 42 8 26 24 10 3 23	1.0 9.7 10.8 50.0 234.1 3.2 1000.0 364.3 3.2 1000.0	33.0 829.0 429.0 883.0 325.0 336.0 727.0 157.0 232.0	7035 92 31861 143 21026 111 13770 96 17790 2148 4659 33 30740 588 29914 851 1891 12 25691 70	6692 92 26289 113 19309 103 12748 95 17770 2144 4430 33 31495 580 26336 621 1499 11 22797 62	0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.4 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	100.0 100.0 100.0 99.4 100.0 92.6 99.6 100.0 99.9 97.3	GEORGIA GA ALBANY 10 17 611.1 293.0 27571 589 25456 542 1.2 0.4 97.6 GA ALBANY 31 30 50.0 302.0 17242 406 17234 406 0.7 0.5 100.0 GA ALBANY 31 32 50.0 302.0 17242 406 17234 406 0.7 0.5 100.0 GA ATHENS 8 22 600.2 326.0 28979 3373 25822 3264 0.0 0.0 99.9 GA ATLENS 34 48 277.5 440.0 22260 3052 21347 2821 1.2 0.3 99.9 GA ATLANTA 5 27 1000.0 326.0 32598 3523 31015 3442 0.0 0.0 99.4 GA ATLANTA 11 10 15.7 320.0 222 25851 3314 0.0 0.0 98.4<
CT BRIDGEPORT 4' CT HARTFORD 1 CT HARTFORD 1 CT HARTFORD 2 CT HARTFORD 2 CT HARTFORD 6 CT NEW BRITAIN 3 CT NEW HAVEN 5 CT NEW HAVEN 5 CT NEW HAVEN 6 CT NEW LONDON 2 CT NORWICH 55	24 32	50.0 50.0 1000.0 219.5 50.0 1.0 134.0 8.6 1.0 50.0 116.7 50.0 3.2	156.0 222.0 276.0 299.0 262.0 515.0 451.0 363.0 314.0 82.0 381.0 207.0 366.0	9545 2622 10021 3223 21991 3476 17043 3203 13076 2852 22623 3872 22646 5353 16594 4189 1425 546 16634 2417 9654 839 18905 4400	9689 2664 9688 3156 24532 3877 17368 3157 11674 2651 23105 3792 22140 3765 23122 4690 18681 4424 1369 530 15227 1723 9558 838 18645 4039	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97.3 98.8 85.9 90.1 98.6 86.5 96.1 90.0 85.9 100.0 99.4 97.5 92.9	GA ATLANTA 57 41 50.0 319.0 9926 2613 9890 2606 3.8 1.0 99.6 GA ATLANTA 69 43 50.0 299.0 1541 2553 15790 2961 0.0 0.0 95.9 GA AUGUSTA 6 42 1000.0 418.0 37310 939 33843 885 0.0 0.0 99.6 GA AUGUSTA 12 31 716.9 485.0 37218 938 32219 921 0.0 0.0 99.1 GA AUGUSTA 12 31 716.9 485.0 24272 667 23574 625 0.1 0.0 99.9 GA AUGUSTA 54 51 651.1 385.0 16955 537 16931 537 0.3 0.1 0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 10
DC WASHINGTON DC WASHINGTON 2 DC WASHINGTON 2 DC WASHINGTON 3 DC WASHINGTON 5 DELAWARE	4 48 5 36 7 39 9 34 20 35 26 27 32 33 50 51	1000.0 1000.0 1000.0 231.6 67.2 194.3 65.0	237.0 235.0 235.0 235.0 235.0 233.0 213.0 247.0	26989 6541 26351 6530 23331 6004 24624 6440 17347 6010 15070 5823 13878 5588 14147 5160	24745 6454 26711 6533 23215 6365 2883 6299 17179 5746 15606 5637 14310 5777 14207 5376	6.6 3.0 0.0 0.0 0.0 0.0 0.1 0.0 13.3 4.1 10.0 2.3 0.1 0.0	98.9 95.9 95.4 100.0 96.0 94.9 93.5 97.7	GA COLUMBUS 28 23 192.0 461.0 22702 843 22061 833 4.2 4.2 99.6 GA COLUMBUS 38 35 50.0 399.0 20127 589 19841 586 0.3 0.1 100.0 GA COLUMBUS 34 35 50.0 399.0 20127 589 19841 586 0.3 0.1 100.0 GA COLUMBUS 54 49 50.0 345.0 15376 492 14812 486 0.0 0.0 100.0 GA CORDELE 55 51 50.0 125.0 5069 62 5065 62 0.0 0.0 100.0 GA DAUTON 23 16 50.0 447.0 12110 704 10601 655 1.9 1.5 100.0 GA MACON 13 45 1000.0 238.0 25508 671 20877 590
DE WILMINGTON 1 DE WILMINGTON 6 FLORIDA FL BQCA RATON 6 FL BRADENTON 6 6 FL CAPE CORAL 3 3 FL CLEARWATER 2 7 FL CLERMONT 1 1 FL CCCOA 5 5 FL COCOA 6 6 FL DAYTONA BEACH 6	64 44 12 55 61 31 63 44 66 42 36 35 22 21 18 17 52 51 68 30 2 11 62 51 68 30 2 14	50.0 1000.0 50.0 216.1 232.4 240.6 154.7 50.0 47.2 145.7	195.0 294.0 292.0 310.0 465.0 450.0 433.0 458.0 285.0 285.0 287.0 503.0 304.0	4202 154 23176 7443 16054 5337 18294 2380 24093 879 21082 2536 28579 2143 14214 1507 13459 1043 44133 2603	4202 154 20136 6742 15401 5324 13892 3705 18282 2379 23907 870 21082 2536 28566 2101 14142 1510 13446 1039 41617 2380 13794 830	3.2 2.9 0.0 0.0 5.3 6.5 0.0 0.0 0.0 0.0 0.0 0.0 9.1 5.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	100.0 99.8 97.1 100.0 100.0 100.0 99.4 99.7 100.0 99.7 100.0	GA PERRY 58 52 50.0 247.0 13047 432 12959 431 0.0 0.0 100.0 GA PERRY 58 52 50.0 247.0 13047 432 12959 431 0.0 0.0 100.0 GA ROME 14 51 408.4 616.0 28081 3421 26996 3239 1.0 1.0 100.0 GA SAVANNAH 3 29 1000.0 451.0 41918 738 34691 654 0.0 0.0 100.0
FL FORT LAUDERDALE FL FORT MYERS FL FORT PIERCE FL FORT WALTON BEA FL FORT WALTON BEA FL FORT WALTON BEA FL GAINESVILLE FL GAINESVILLE FL HIGH SPRINGS FL HIGH SPRINGS FL JACKSONVILLE FL LAKE WORTH FL LAKE WORTH FL LAKE WORTH FL LESBURG FL	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	145.7 151.7 1000.0 215.4 50.0 117.7 301.7 50.0 56.2 50.0 1000.0 91.0 103.9 97.4 1000.0 103.9 97.4 1000.0 104.6 300.6 96.5 102.8 64.2 3.2 1.0 50.0 145.7 133.0 149.1 50.0 90.3 170.8 100.0 100.0 100.0 100.0 100.0 100.0 14.3 14.8 113.3	262.0 451.0 293.0 147.0 59.0 262.0 287.0 277.0 296.0 277.0 296.0 304.0 304.0 302.0 299.0 289.0 33.0 62.0 6331.0 138.0 515.0 137.0 299.0 472.0 299.0 472.0 299.0 472.0 299.0 33.0 515.0 137.0 299.0 331.0 331.0 331.0 332.0 333.0 515.0 332.0 333.0 515.0 332.0 333.0 515.0 333.0 515.0 333.0 335.0 233.0 330.0 30.0	13422 3627 36265 1082 24348 847 16321 651 11558 446 24332 1376 4682 1558 12566 488 1170 106 13445 1206 16217 546 13464 443 13806 3583 33336 1218 27737 1084 21158 1047 16097 1004 18851 1019 14310 967 1460 34 17745 2429 11551 1425 20277 1953 8563 161 14936 1541 27441 2120 33960 4013 47149 3619 3399 33960 314743 3619 24819 3947 26193 3947	13422 3627 34767 1033 24348 847 16188 651 11088 436 23318 1068 4678 155 12574 488 1170 106 31333 1154 16225 547 13293 416 13806 3583 31927 1179 26495 1082 27930 1091 20982 1045 16007 1004 18851 1019 14310 967 1460 34 3822 717 17465 2429 10900 1419 26836 161 14876 1539 24824 1902 133960 4013 43965 2793 28109 3941 43965 2793 28109 3954	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.0 99.6 100.0 10.	HI HILO 2 22 50.0 33.0 6524 67.2 2155 58 0.0 0.0 100.0 HI HILO 4 19 1000.0 366.0 29712 119 30256 110 0.0 0.0 90.6 HI HILO 11 21 50.0 33.0 6523 67 4051 65 0.0 0.0 100.0 HI HILO 13 18 50.0 33.0 6524 67 751 46 0.0 0.0 100.0 HI HILO 13 18 50.0 33.0 6524 67 751 46 0.0 0.0 100.0 HI HILO 38 39 50.0 36.0 20338 83 17557 80 0.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
FL MIAMI FL MIAMI EL MIAMI FL MIAMI FL NAPLES FL NAPLES FL NAPLES FL NEW SMYRNA BEAC	23 24 33 32 35 26 39 19 45 46 26 41 46 45 15 33 51 31 25 10	50.0 50.0	297.0 280.0 102.0 276.0 308.0 368.0 309.0 176.0 280.0 151.0	15913 3794 17636 3748 8033 2890 14200 3712 12757 3710 19538 625 14551 548 10158 659 14383 592 9390 960	7442 2300 14982 3725 12757 3710 19530 625 14551 548 10158 659 14383 592	0.0 0.0 0.6 0.4	100.0 100.0 99.6 94.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0	IA AMES 5 59 1000.0 564.0 48378 984 40402 884 0.0 0.0 100.0 IA BURLINGTON 26 41 50.0 96.0 3829 91 3821 91 1.1 0.2 100.0 IA CEDAR RAPIDS 2 51 1000.0 442.0 37088 809 34974 779 0.0 80 92.9 IA CEDAR RAPIDS 9 52 1000.0 607.0 44258 948 34935 764 0.0 0.0 100.0 100.0 IA CEDAR RAPIDS 28 27 226.0 452.0 24320 649 24312 641 0.1 0.0 99.6 10A.0 184.0 181.5 490 0.8 3.4 100.0 180.0 184.2 641 0.1 0.0 98.0 6340 642 5791 631 4.2 0.8 100.0 1A DAVENPORT 6

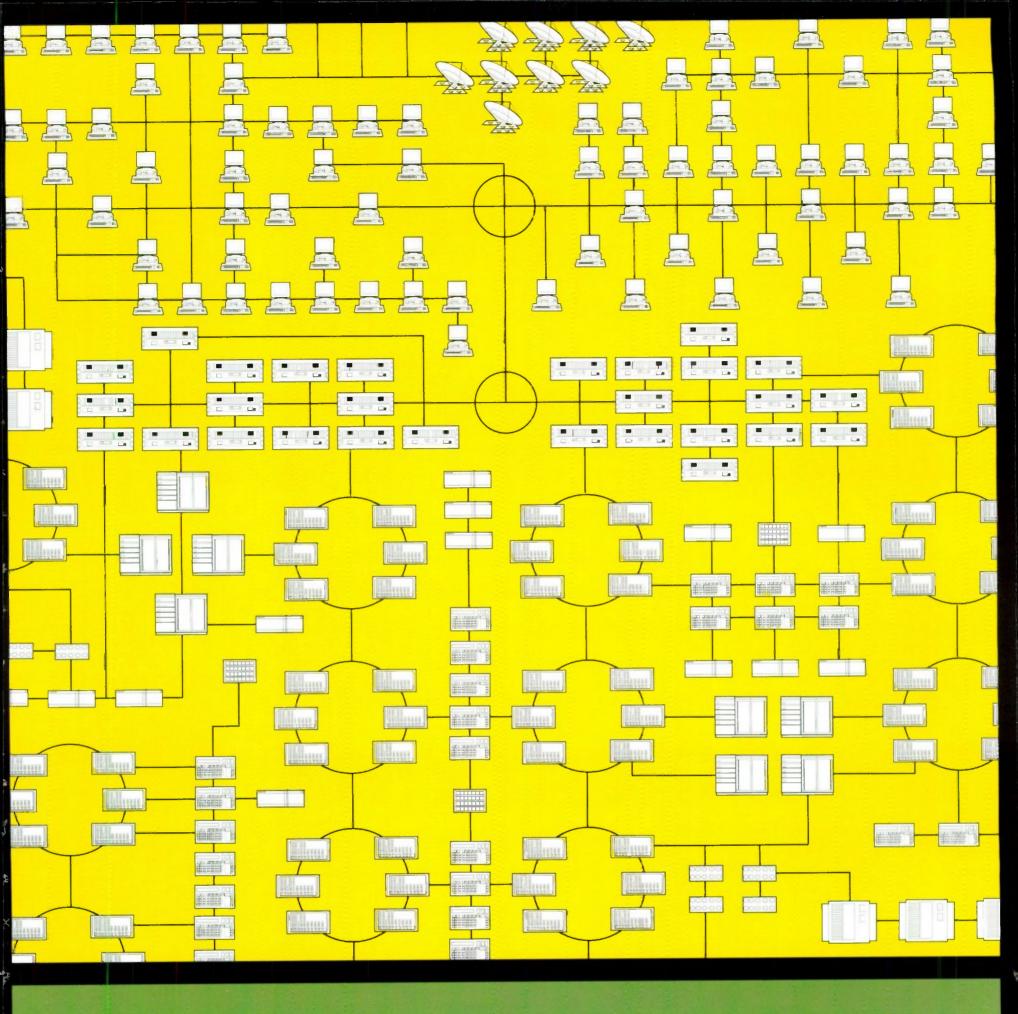
IA DES MOINES II 31 796.2 510 44002 915 34792 837 0.0 0.0 100.0 KS ENSIGN 6 5 6.8 219.0 28358 121 27103 117 0.0 IA DES MOINES 13 19 611.9 600.0 43262 904 38472 872 0.0 0.0 100.0 KS FORT SCOTT 20 40 327.0 233.0 19340 329 19106 325 0.0 11 50 100.0 44062 23435 720 23117 717 0.2 0.0 100.0 KS FORT SCOTT 20 40 327.0 233.0 19340 329 19106 325 0.0 100.0 KS GARDEN CITY 11 16 606.3 244.0 23127 118 22492 114 0.0 IA DUBUGUE 40 43 50.0 20137 674 20089 673 0.0 0.0 100.0 KS GARDEN CITY 13 18 673.9 265.	INTERFERENCE EA PEOPIE MATCH 0 0.0 99.7 1 0.0 100.0 0 0.0 99.4 0 0.0 99.4 0 0.0 100.0 3 1.8 100.0 0 0.0 100.0 0 0.0 100.0 0 0.0 100.0 0 0.0 100.0 0 0.0 100.0 0 0.0 100.0 0 0.0 100.0 0 0.0 100.0 0 0.0 100.0 0 0.0 100.0 0 0.0 100.0 0 0.0 100.0 0 0.0 99.8
IA DES MOINES II 31 796.2 591.0 44002 915 34792 837 0.0 0.0 100.0 KS ENSIGN 6 5 6.8 219.0 28358 121 27103 117 0.0 IA DES MOINES 11 50 1000.0 600.0 43262 904 38472 872 0.0 0.0 98.0 KS FORT SCOTT 20 40 327.0 233.0 19340 329 19106 325 0.0 0.0 100.0 KS GARDEN CITY 11 16 606.3 244.0 23127 118 22492 114 0.0 IA DES MOINES 17 16 126.7 463.0 23435 720 23117 717 0.2 0.0 100.0 KS GARDEN CITY 11 16 606.3 244.0 23127 118 22492 114 0.0 IA DES MOINES 63 26 58.1 550.0 20137 674 20089 673 0.0 100.0 KS <t< th=""><th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th></t<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
IA DES MOINES 13 19 611.9 600.0 44368 917 37303 855 0.0 0.0 100.0 KS GARDEN CITY 11 16 606.3 244.0 23127 118 22492 114 0.0 IA DES MOINES 17 16 126.7 463.0 23435 720 23117 717 0.2 0.0 100.0 KS GARDEN CITY 13 18 673.9 265.0 25000 114 23749 114 0.0 IA DUBUQUE 40 43 50.0 256.0 12303 221 12033 218 2<1	0 0.0 99.4 0 0.0 100.0 3 1.8 100.0 0 0.0 100.0 0 0.0 100.0 0 0.0 100.0 0 0.0 100.0 0 0.0 100.0 8 0.0 100.0 2 0.0 100.0 2 0.0 100.0 0 0.0 99.8
IA DUBUOLE 40 43 50.0 256.0 12330 221 12033 218 21 1.0 100.0 KS GREAT BEND 2 22 100.0 293.0 277.5 43 267/2 41 0.0 IA FORT DODGE 21 25 50.5 355.0 20624 211 20632 211 0.1 99.9 KS GREAT BEND 2 22 1000.0 296.0 31693 199 29002 175 0.0 IA IOWA CITY 12 45 922.3 439.0 35414 1080 31000 929 0.0 0.0 100.0 KS HAYS 7 20 1000.0 216.0 24847 100 23445 95 0.0 IA IOWA CITY 20 25 50.0 123.0 11169 371 1 0.7 100.0 KS HAYS 9 16 495.6 332.0 29090 130 2491	0.0 100.0 0.0 100.0 0.0 100.0 0.0 98.7 0.0 100.0 8 0.0 100.0 2 0.0 100.0 0 0.0 99.8
IA IOWA CITY 20 25 50.0 123.0 11519 390 11169 371 14 0.7 100.0 KS HAYS 9 16 495.6 332.0 29090 130 24912 114 0.0 KS HAYS 9 16 495.6 332.0 29090 130 24912 114 0.0 KS HUTCHINSON 8 29 1000.0 244.0 23973 670 18724 566 0.0	0 0.0 98.7 0 0.0 100.0 8 0.0 100.0 2 0.0 100.0 0 0.0 99.8
	2 0.0 100.0 0 0.0 99.8
IA MASON CITY 24 18 50.0 436.0 19783 275 19674 275 0.5 0.2 100.0 KS HUTCHINSON 36 35 117.3 733.0 16065 605 1605 1605 1605 1605 1605 1605 1605 1005 1005 1005 117.3 733.0 16065 605 1605	
IA SIOUX CITY 4 1 100.0 56.0 490.32 192.8 1.9 2.7 100.0 KS LAWRENCE 38 36 168.6 330.0 16625 1755 16553 1731 0.3 IA SIOUX CITY 4 1 100.0 585.0 49038 632 38681 499 0.0 0.0 99.8 KS PITTSBURG 7 30 667.9 332.0 29825 442 28150 475 0.0 99.4 KS Saluina 18 17 10.0 210.2 140.2 140.2 140.2 18 17 100.0 1625 1755 16553 1731 0.3 IA SIOUX CITY 9 30 766.6 616.0 44129 531 38211 463 0.0 0.9 94 KS Saluina 18 17 10.0 210.2 140.2 140.2 140.2 140.2 140.2 140.2 140.2 140.2<	0.0 100.0
IA SIOUX CITY 14 39 50.0 351.0 19053 257 19017 256 2.5 1.3 99.9 KS TOPEKA 11 23 815.1 305.0 271.27 708 2137.47 909 0.0 IA SIOUX CITY 27 28 161.7 326.0 18801 255 19331 262 1.1 1.1 96.1 KS TOPEKA 13 44 912.4 421.0 34202 632 28513 50.5 0.0	0.0 96.1
IA SIOUX CITY 44 49 226.4 610.0 29824 360 29043 352 0.1 0.0 100.0 KS TOPEKA 27 28 50.0 320.0 16927 404 16384 388 0.0 IA WATERLOO 7 55 1000.0 604.0 42494 922 35926 780 0.0 0.0 99.8 KS TOPEKA 49 48 120.8 451.0 19798 477 19151 444 0.0 IA WATERLOO 32 35 237.6 579.0 28849 734 28450 698 1.8 2.2 99.5 KS WICHITA 3 45 1000.0 305.0 32834 684 27039 660 0.0	0.0 100.0
IDAHO ID BOISE 2 28 978 1 777 0 45244 393 50231 396 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 100.0 0.1 99.5
ID BOISE 4 21 724.1 754.0 44481 394 48296 395 0.0 0.0 92.0 ID BOISE 7 26 407.8 808.0 38677 391 38283 390 0.0 0.0 99.4 ID CALDWELL 9 10 14 0 805 0 26095 136 2650 286 0.0 0.0 99.4	0.0 100.0
ID COEUR D'ALENE 26 45 50.0 465.0 5958 315 4501 184 0.0 0.0 KY ASHLAND 25 26 50.0 152.0 7413 388 6797 371 4.5 ID FILER 19 18 50.0 161.0 6675 83 6659 83 0.0 100.0 KY ASHLAND 61 44 50.0 189.0 8436 457 8234 441 0.0 100.0 KY ASHLAND 65 7 3.2 197.0 503.8 478.8 66 0.0	0.3 98.7
ID IDAHO FALLS 3 36 1000.0 488.0 37465 234 40914 237 0.0 0.0 91.3 KY BOWLING GREEN 13 33 1000.0 226.0 24743 589 20458 466 0.0 ID IDAHO FALLS 8 9 21.8 463.0 35031 232 33586 231 0.0 0.0 100.0 KY BOWLING GREEN 24 18 50.0 198.0 10561 244 9937 235 2.2	0.0 100.0 1.1 100.0
ID MOSCOW 12 35 804.7 346.0 25273 140 25834 151 1.6 3.4 98.6 KY BOWLING GREEN 53 48 50.0 244.0 10618 240 10382 236 1.7 ID NAMPA 6 24 822.6 811.0 44997 394 47567 393 0.0 0.0 93.1 KY GAMPBELLSVILLE 34 19 50.0 247.0 11890 254 11637 250 2.6 KY CAMPBELLSVILLE 34 19 50.0 247.0 11890 254 11637 250 2.6 KY CAMPBELLSVILLE 34 19 50.0 247.0 11890 254 11637 250 2.6 KY CAMPBELLSVILLE 34 19 50.0 247.0 11890 274 11331 248 2.3 KY CAMPBELLSVILLE 34 19 50.0 247.0 11890 254 11637 250 2.6 KY CAMPBELLSVILLE 34 19 50.0 247.0 11890 247.0 11890 248 2.3 KY CAMPBELLSVILLE 34 19 50.0 247.0 11890 254 11637 250 2.6 KY CAMPBELLSVILLE 34 19 50.0 247.0 11	1.5 100.0
ID NAME 12 44 52.4 829.0 37/04 391 37/04 390 0.0 0.0 99.1 KY COVINGTON 54 24 50.0 122.0 5890 1572 5419 1533 3.7 ID POCATELLO 6 23 1000.0 466.0 33212 267 34995 265 0.0 0.0 99.4 KY DANVILLE 56 4 1.0 351.0 15951 687 15417 674 4.1	1.6 100.0 2.1 99.3
ID TWIN FALLS 11 16 578.8 323.0 27977 131 26495 129 0.0 100.0 KY HARLAN 44 51 50.0 601.0 18668 547 16899 475 2.2 ID TWIN FALLS 13 22 50.0 161.0 11025 101 11221 101 0.0 0.0 100.0 KY HARLAN 44 51 50.0 601.0 18668 547 16899 475 2.2 ID TWIN FALLS 13 22 50.0 161.0 11025 101 11221 101 0.0 0.0 100.0 KY HAZARD 35 16 50.0 384.0 15054 347 16349 475 4.2 ID TWIN FALLS 24 50.0 161.0 1307 101 10.0 0.0 100.0 KY HAZARD 35 16 50.0 384.0 15054 347 13472	4.0 99.6
ILLINOIS ILLINOIS	0.3 100.0 0.2 99.5
IL AURORA 60 59 187.8 494.0 24765 8255 24885 8277 0.1 0.0 99.2 KY LEXINGTON 36 40 69.5 305.0 17808 692 17412 691 1.4 IL BLOOMINGTON 43 28 50.0 293.0 14988 595 14689 563 0.9 0.3 100.0 KY LEXINGTON 36 40 69.5 305.0 17808 692 17412 691 1.4 L CABBONDALE 8 40 100.0 265.0 13599 637 13491 635 6.1	1.3 99.9 3.2 99.0
L CHAMPAIGN 3 48 1000.0 287.0 288.0 295.7 21295 537 0.0 0.0 100.0 KY LOUISVILLE 3 47 1000.0 555.0 45139 2883 35162 2244 0.6 IL CHAMPAIGN 15 41 50.0 396.0 18190 457 17815 451 0.1 0.0 100.0 KY LOUISVILLE 15 17 50.0 262.0 13484 1186 13303 1462 0.0	0.4 99.6
IL CHARLESTON 51 50 50.0 70.0 2801 71 2801 71 0.0 0.0 100.0 KY LOUISVILLE 21 8 3.2 212.0 12357 1139 11893 1114 3.4 IL CHICAGO 2 3 2.6 418.0 26774 8356 22397 8193 9.5 0.9 96.1 KY LOUISVILLE 32 26 160.2 384.0 25254 1450 24714 1433 5.3	0.6 98.1 1.7 100.0
IL CHICAGO 7 52 153.6 515.0 29047 8459 27413 8361 4.8 0.4 100.0 KY LOUISVILLE 41 49 247.8 391.0 25454 1450 23878 1395 4.3 IL CHICAGO 9 19 163.8 415.0 27649 8411 26313 8333 4.5 0.6 99.9 KY MADISVILLE 19 20 81.1 241.0 14290 551 14161 27649 2778 1395 4.3 VILICAGO 9 19 163.8 415.0 27649 8411 26313 8333 4.5 0.6 99.9 KY MADISVILLE 19 20 81.1 241.0 14290 551 14161 27649 27 27	
IL CHICAGO 20 21 81.7 378.0 19467 8030 16941 7946 1.7 0.4 99.9 KY MADISONVILLE 35 42 50.0 317.0 14285 293 13997 291 2.3 IL CHICAGO 26 27 70.5 472.0 22593 8200 22488 8183 2.0 0.4 99.2 KY MOREHEAD 38 15 50.0 293.0 13653 218 12686 200 0.3	1.9 100.0 0.4 100.0
IL CHICAGO 32 31 218.0 430.0 24077 8332 23929 8322 3.6 0.7 99.6 IL CHICAGO 38 43 215.3 381.0 21549 8076 21794 8099 3.9 0.7 98.4 IL CHICAGO 44 45 167 439 0076 21794 8099 3.9 0.7 98.4 KY NEWPORT 19 29 258.7 306.0 19927 2281 19628 2340 0.8	3.9 100.0
IL DECATUR 17 18 241.7 393.0 23354 845 21829 813 1.3 0.7 99.5 KY OWENSDORD 31 30 50.0 140.0 9949 461 9789 459 1.3 IL DECATUR 23 22 58.1 314.0 14066 648 13731 640 0.0 100.0 KY OWENSDORD 51 30 50.0 140.0 9949 461 9789 459 1.3 IL DECATUR 23 22 58.1 314.0 14066 648 13731 640 0.0 100.0 KY POWENSDORD 52 44 50.0 216.0 11501 423 10789 409 0.3 V PADUCAH 6 32 100.0 482.0 42501 865 38359 809 0.0	
IL EAST SI LOUIS 46 47 186.6 345.0 19143 2563 19026 2562 0.1 0.0 100.0 IL FREEPORT 23 41 50.0 219.0 12406 710 12128 704 10.3 5.8 100.0 IL HARRISBURG 3 34 100.0 302.0 14893 435 14881 435 0.3	3.4 100.0 0.2 99.8
IL JACKSONVILLE 14 15 50.0 94.0 3790 58 3778 58 5.5 5.2 100.0 IL JOLIET 66 53 134.4 393.0 15996 7887 17763 8010 0.0 0.0 90.0 KY SOMERSET 29 14 50.0 445.0 18571 401 17371 371 1.2	0.9 99.7 1.8 100.0
IL MACOMB 22 21 50.0 149.0 4469 57 4409 56 1.4 1.7 100.0 IL MARION 27 17 61.5 233.0 13712 366 13708 363 2.7 1.0 99.7 LA ALEXANDRIA 5 35 1000.0 485.0 42562 98.7 43135 98.2 0.0	
IL MOLINE 8 38 836.6 308.0 28284 857 24345 827 0.0 0.0 99.8 LA ALEXANDRIA 31 32 50.0 333.0 17708 257 17600 256 0.9 IL MOUNT VERNON 13 21 592 3 302.0 28244 77 20594 430 0.0 0.0 100.0 LA BATON ROUGE 2 42 1000.0 515.0 44519 1833 40635 2324 0.0	
IL OLNEY 16 19 50.0 283.0 16293 258 16405 258 0.1 1.0 98.9 LA BATON ROUGE 9 46 958.8 509.0 40157 1877 31609 1220 0.1 JL PEORIA 19 40 90.1 194.0 14017 570 12447 537 1.8 0.5 99.9 LA BATON ROUGE 23 34 226.5 522.0 26892 1315 25957 1288 0.0	0.0 100.0 0.0 99.8 0.0 100.0
IL PEORIA 25 57 120.2 207.0 15183 573 14420 567 0.3 0.0 99.9 LA BATON ROUGE 44 45 143.3 426.0 16097 877 19373 985 0.1 IL PEORIA 31 30 50.0 195.0 12249 549 11981 545 0.3 0.0 100.0 LA COLUMBIA 11 57 1000.0 572.0 43149 690 32856 566 0.0	0.0 83.1 0.0 100.0
IL PEORIA 59 39 50.0 178.0 6389 406 6393 409 0.4 0.5 99.5 LA LAFAYETTE 10 56 1000.0 530.0 47367 911 35053 718 0.0 IL QUINCY 10 54 1000.0 238.0 26173 313 23635 294 0.0 100.0 100.0 LA LAFAYETTE 10 56 1000.0 530.0 47367 911 35053 718 0.0 L QUINCY 10 54 1000.0 238.0 26173 313 23635 294 0.0 100.0 LA LAFAYETTE 15 16 93.0 360.0 19890 586 0.0 UNINCY 10 54 1002.0 238.0 26173 313 23635 294 0.0 100.0 LA LAFAYETTE 15 16 93.0 360.0 19890 586 0.0 100.0	0.0 100.0 0.0 100.0 0.0 100.0
IL QUINCY 27 34 50.0 173.0 4121 103 4109 102 4.1 1.1 100.0 IL ROCK ISLAND 4 58 1000.0 408.0 37725 1120 31894 1005 0.0 0.0 99.8 LA LAFAYETE 24 23 64.3 369.0 18304 536 18304 536 0.0 LA LAKE CHARLES 7 53 1000.0 451.0 36967 954 35159 940 0.0	0.0 100.0 0.0 100.0
IL ROCKFORD 13 54 1000.0 216.0 24061 1472 18731 913 0.0 0.0 100.0 IL ROCKFORD 17 16 196.0 203.0 15163 881 13542 775 1.5 1.0 100.0 IL ROCKFORD 39 42 50.0 176.0 11480 691 11314 686 11 0.0 100.0 IL MONROE 8 55 1000.0 576.0 43668 728 41197 688 0.0	0.1 97.7 0.0 100.0 0.0 100.0
IL SPRINGFIELD 20 42 75.2 436.0 23636 680 21745 607 0.6 0.1 100.0 LA MUNRUE 13 19 554.1 543.0 40749 688 36053 621 0.0 IL SPRINGFIELD 49 53 50.0 189.0 5296 228 0.0 0.0 100.0 LA NEW ORLEANS 4 30 1000.0 305.0 34052 1782 33649 1767 0.0 LA NEW ORLEANS 6 43 1000.0 28327 1782 32692 1789 0.0	0.0 100.0 0.0 100.0 0.0 96.9
IL URBANA 12 33 778.3 302.0 25501 970 22557 808 0.0 0.0 100.0 LA NEW ORLEANS 8 29 699.9 302.0 28503 1679 26365 1603 0.0 LA NEW ORLEANS 12 11 14.8 308.0 21811 1549 19930 1488 0.0	0.0 99.7 0.0 100.0
INDIANA LA NEW ORLEANS 20 14 129,7 275.0 16707 1451 16429 1443 0.0 LA NEW ORLEANS 26 15 70.1 308.0 12114 1456 1389 0.0 LA NEW ORLEANS 32 31 66 7 308.0 12114 1354 14095 1381 0.0	0.0 100.0 0.0 100.0 0.6 80.7
IN BLOOMINGTON 4 53 1000.0 357.0 31346 2064 24868 1805 0.2 0.1 99.9 IN BLOOMINGTON 30 14 50.0 216.0 12337 504 12192 503 2.0 0.9 100.0 IN DOMININGTON 30 14 50.0 216.0 12337 504 12192 503 2.0 0.9 100.0 IN BLOOMINGTON 30 14 50.0 216.0 12337 504 12192 503 2.0 0.9 100.0 IN BLOOMINGTON 30 14 50.0 216.0 12337 504 12192 503 2.0 0.9 100.0	0.0 100.0 0.0 100.0 0.0 99.7
IN BLOOMINGTON 42 56 236.0 317.0 14996 1559 14261 1516 0.3 0.0 IA SHREVEPORT 12 17 545.7 549.0 42207 1013 32645 899 2.3 IN ELKHART 28 58 358.8 335.0 21179 1308 20784 1220 8.3 10.0 99.4 LA SHREVEPORT 24 25 50.0 326.0 19138 561 18901 560 0.0	1.0 100.0 0.0 99.7
IN EVANSVILLE 7 28 696.1 305.0 28593 796 26079 763 0.0 0.0 100.0 IN EVANSVILLE 9 54 1000.0 177.0 22441 717 17469 617 0.5 0.1 100.0 IN EVANSVILLE 9 54 100.3 507.0 20150 618 20080 617 0.5 0.1 100.0 IA SHREVEPORT 45 44 100.3 507.0 20150 618 20080 617 0.0 0.0	0.0 100.0 0.7 100.0 0.0 100.0
IN EVANSVILLE 25 59 56.5 31.0 1743 587 17090 588 3.1 1.8 99.8 IN EVANSVILLE 44 45 50.0 296.0 15321 562 15301 562 0.1 0.0 100.0	0.1 97.9 0.0 100.0
IN FORT WAYNE 15 4 1.0 253.0 10500 585 10038 557 0.0 0.0 100.0 IN FORT WAYNE 21 24 50.0 226.0 12253 651 11554 603 1.4 0.7 99.2 IN FORT WAYNE 33 19 50.0 235.0 11933 635 11732 608 0.1 0.1 99.4	1.3 100.0
IN FORT WAYNE 39 40 50.0 223.0 13192 678 13477 689 2.3 1.3 97.9 IN FORT WAYNE 55 36 50.0 238.0 11227 620 1.0 100.0 100.0 17.0 29979 6740 29402 6697 0.0 MA BOSTON 4 30 818.0 354.0 29628 6716 8.1 MA BOSTON 50 219 1000.0 200.2 26697 0.0	0.0 97.6 1.8 96.3
IN GARY 50 51 194.8 494.0 2579 8325 25387 8307 3.0 0.6 99.9 IN GARY 56 17 50.0 306.0 15222 4407 15198 4390 1.3 1.8 99.9 IN HAMMOND 62 36 75.8 146.0 11370 6950 11286 6855 0.0 0.0 99.9 IN HAMMOND 62 36 75.8 146.0 11370 6950 11286 6855 0.0 0.0 99.9	1.7 97.0 0.0 100.0 0.6 96.9
IN INDIANAPOLIS 6 25 1000. 302.0 31298 2348 27352 2226 0.0 0.0 97.0 IN INDIANAPOLIS 8 9 15.3 305.0 24826 2179 24755 2134 1.2 0.5 94.6 IN UNDIANAPOLIS 8 9 15.3 305.0 24826 2179 24755 2134 1.2 0.5 94.6 IN UNDIANAPOLIS 8 9 15.3 305.0 24826 2179 24755 2134 1.2 0.5 94.6 IN UNDIANAPOLIS 8 9 15.3 305.0 24826 2179 24755 2134 1.2 0.5 94.6 IN UNDIANAPOLIS 8 9 15.3 305.0 24826 2179 24755 2134 1.2 0.5 94.6 IN UNDIANAPOLIS 8 9 15.3 305.0 24826 2179 24755 2134 1.2 0.5 94.6 IN UNDIANAPOLIS 8 9 15.3 305.0 24826 2179 24755 2134 1.2 0.5 94.6 IN UNDIANAPOLIS 8 9 15.3 305.0 24826 2179 24755 2134 1.2 0.5 94.6 IN UNDIANAPOLIS 8 9 15.3 305.0 24826 2179 24755 2134 1.2 0.5 94.6 IN UNDIANAPOLIS 8 9 15.3 305.0 24826 2179 24755 2134 1.2 0.5 94.6 IN UNDIANAPOLIS 8 9 15.3 305.0 24826 2179 24755 2134 1.2 0.5 94.6 IN UNDIANAPOLIS 8 9 15.3 305.0 24826 2179 24755 2134 1.2 0.5 94.6 IN UNDIANAPOLIS 8 9 15.3 305.0 24826 2179 24755 2134 1.2 0.5 94.6 IN UNDIANAPOLIS 8 9 15.3 305.0 24826 2179 24755 2134 1.2 0.5 94.6 IN UNDIANAPOLIS 8 9 15.3 305.0 24826 2179 24755 2134 1.2 0.5 94.6 IN UNDIANAPOLIS 8 9 15.3 305.0 24826 2179 24755 2134 1.2 0.5 94.6 IN UNDIANAPOLIS 8 9 15.3 305.0 24826 2179 24755 2134 1.2 0.5 94.6 IN UNDIANAPOLIS 8 9 15.3 305.0 24826 2179 24755 2134 1.2 0.5 94.6 IN UNDIANAPOLIS 8 9 15.3 305.0 24826 2179 24755 2134 1.2 0.5 94.6 IN UNDIANAPOLIS 8 9 15.3 305.0 24826 2179 24755 2134 1.2 0.5 94.6 IN UNDIANAPOLIS 8 9 15.3 305.0 24826 2179 24755 2134 1.2 0.5 94.6 IN UNDIANAPOLIS 8 9 15.3 305.0 24826 2179 24755 2134 1.2 0.5 94.6 IN UNDIANAPOLIS 8 9 15.3 305.0 24826 2179 24755 2134 1.2 0.5 94.6 IN UNDIANAPOLIS 8 9 15.3 1001 1267 1000	3.9 99.5 4.5 98.2 0.0 98.6
IN INDIANAPOLIS 13 46 1000.0 299.0 27302 2262 22987 2053 0.3 0.0 99.7 IN INDIANAPOLIS 20 21 50.0 250.0 15689 1647 15114 1632 0.0 99.9 IN INDIANAPOLIS 20 21 50.0 250.0 15689 1647 15114 1632 0.0 99.9 IN INDIANAPOLIS 40 16 50.0 302.0 17013 1689 17045 1685 1.8 0.7 98.4 MA MARENCE 62 18 52.6 166.0 6661 3440 10914 4377 0.0	1.0 98.2 0.0 61.4
IN INDIANAPOLIS 59 45 114.5 304.0 18753 1777 18429 1759 0.1 0.2 98.2 MA MARLBOROUGH 66 23 50.0 326.0 19993 5977 17821 5420 0.4 IN INDIANAPOLIS 69 44 50.0 167.0 2526 1016 2526 1016 0.0 100.0 MA NEW BEDFORD 6 49 1000.0 283.0 30222 5065 228.45 4.9 VIN UNDIANAPOLIS 69 44 50.0 167.0 2526 1016 0.0 100.0 100.0 MA NEW BEDFORD 2 2 155 230.0 14021 3409 14022 3409 14022 3409 14022 3409 14022 3409 14022 3409 14022 3409 14022 3409 14022 3409 14022 3409 14022 3409 14022 3409 14022 3409 14022	0.1 99.7 2.1 99.3 0.1 99.2
IN LAFAYETTE 18 11 3.2 238.0 12618 509 12438 485 3.4 0.8 99.9 MA NORWELL 46 52 50.0 107.0 5376 2081 5745 18656 19.3 IN MARION 23 32 260.9 295.0 19262 1830 19.05 1848 0.4 0.9 98.4 MA SPRINGFIELD 22 11 3.2 268.0 12785 2116 12269 2079 6.5	8.9 88.1 3.2 95.6
IN MUNCIE 49 52 50.0 155.0 9558 534 9550 532 2.3 1.4 99.7 MA SPRINGFIELD 40 55 200.8 322.0 13479 2108 13687 2146 2.8 IN RICHMOND 43 39 59.9 302.0 14996 2761 14735 2655 3.9 4.7 99.3 MA SPRINGFIELD 40 55 200.8 322.0 13479 2108 13687 2146 2.8 IN SALEM 58 51 50.0 306.0 12528 1839 11414 2146 2.8 IN SALEM 58 51 50.0 366.0 12528 1839 11414 2146 2.8 IN SALEM 58 51 50.0 366.0 12528 1839 11414 1477 8.1	3.4 96.0 2.6 99.9 0.0 100.0
IN SOUTH BEND 16 42 39.0 326.0 2532 14714 129 1.6 0.3 99.9 MA WORCESTER 27 29 50.0 466.0 18382 5509 16597 5107 0.1 IN SOUTH BEND 12 30 242.3 325.0 24373 1378 22931 1365 3.2 7.4 99.2 MA WORCESTER 48 47 101.0 398.0 20329 3870 19394 3643 4.9	0.2 91.7 14.2 98.2
IN SOUTH BEND 34 35 50.0 246.0 13979 944 14096 961 7.1 6.1 97.1 IN SOUTH BEND 46 48 50.0 305.0 15185 987 14975 960 4.6 2.9 100.0 IN TERRE HAUTE 2 36 1000.0 290.0 32150 888 22591 576 0.0 0.0 99 9	3.4 95.4
IN TERRE HAUTE 10 24 855.9 293.0 26381 710 25223 675 1.9 4.7 98.8 MD BALTIMORE 2 52 100.0 305.0 29402 6740 29023 7078 0.0 IN TERRE HAUTE 38 39 56.8 299.0 14220 406 14127 389 0.4 0.1 100.0 MD BALTIMORE 11 59 1000.0 305.0 25782 6693 25368 6610 1.0 ND BALTIMORE 11 59 1000.0 305.0 25782 6693 25368 6610 1.0	0.0 95.2 1.3 95.7 1.0 95.9
KANSAS 22 52 60.4 174.0 11033 250 11009 249 1.2 1.6 99.9 MD BALTIMORE 24 41 50.0 326.0 15186 5643 15436 5451 2.2 KANSAS MD BALTIMORE 45 46 50.0 386.0 18281 5774 18217 5762 0.9	1.1 96.1 3.8 98.9
KS COLBY 4 17 1000.0 229.0 28663 51 22993 38 0.0 0.0 100.0 MD BALTIMORE 54 40 140.8 349.0 20712 5507 19914 5667 7.8 MD BALTIMORE 67 29 50.0 250.0 11105 3999 10599 3156 13.9	1.8 98.7 6.3 96.4

Assemble Your Team...

And score big in the digital age.

To win at the DTV game, you've got to assemble your whole team—everyone from managers to engineers and go to NAB98. With so much to see, do, hear and learn, every player counts as you map out your game plan at the most comprehensive television and e-media convention in the world! Start assigning your key players to test drive and learn about the latest technologies. Register now and enter the digital age like a Hall of Famer!

Don't turn this page until you've contacted us for more information!


- Visit www.nab.org/conventions/
- Call Fax-on-Demand at 732.544.2888
- Call 800.342.2460 or 202.775.4970

Spotlighting DTV in the sessions, on the exhibit floor and at special events!

- Explore more than 1,300 exhibits and uncover hundreds of new products that will change the rules of the game
- Examine critical issues that will lead your station to victory in more than 150 sessions and workshops
- Take a look at the play books of the convergence markets to see how they impact your business

			F	rom A to	o V on RVICE	Digital A	llocatio	ns—C	Complete I	ext of	the FCC's targ	get list of	1,606 s	tations							
STATE AND CITY	NTSC DTV CHAN CHAN	DTV POWER (kW)	ANTENNA HAAT(m)	DURING TR AREA (Sq.km)	ANSITION PEOPLE (thous)	AREA PE	OPLE AF	REA PE	ENCE AREA OPLE MATCH IL_Pop) (%)	S	TATE AND CITY	NTSC CHAN	DTV DTV POWEI		A AREA	SERVICE TRANSITION A PEOPLE 1) (thous)	E AREA	PEOPLE	AREA	ERFERENCE PEOPL	LE MATCH
MD FREDERICK MD HAGERSTOWN	62 28 25 55	50.0 67.7	138.0 375.0	7183 13709	1924 652		1990 (0.1 0. 1.7 3.	1 96.5	MO) SPRINGFIELD	21	23 50.0 28 237.5	546.0 515.0	26748	495	26097	488	0.7	0.3	99.8
MD HAGERSTOWN MD HAGERSTOWN MD OAKLAND	31 44 68 16	209.2	378.0 394.0	14847 13806	769 703	13813 10798	713 1 525 (1.2 1.).0 0.	3 99.2 0 99.9	MO) SPRINGFIELD) ST. JOSEPH	33	19 162.6 53 1000.0	596.0 247.0	27119 27381 29250	523	25568 27053 28365	481 518 1498	1.0 0.5 0.0	0.7 0.3 0.0	100.0 99.8 99.2
MD SALISBURY MD SALISBURY	36 54 16 21 28 56	50.0 196.9 85.1	216.0 299.0 157.0	5649 17447 13114	109 470 339	4898 17443 13190	470 (B.1 1. D.0 0.0 D.0 0.0	0 100.0	MC MC	ST. LOUIS	2	21 245.7 43 1000.0	326.0 332.0	17846 34129	2771	17080 28971	1404 2678	1.9 0.0	9.9 0.0	100.0 99.4
MD SALISBURY	47 53	62.5	304.0	13990	417			0.2 0.1		MO) ST. LOUIS	5	56 1000.0 35 1000.0 39 990.9	335.0 332.0 326.0	32806 34185 28522	2762 2779 2688	29620 33240 24359	2723 2764 2623	0.0 0.0 0.0	0.0 0.0 0.0	98.0 99.4 100.0
MAINE ME AUGUSTA ME BANGOR	0 17 2 25	628.9	305.0	26947	791	24295		0.0 0.	100.0	MO) ST. LOUIS) ST. LOUIS	11 24	26 778.9 14 88.5	308.0 305.0	28630 19966	2710 2538	26261 19531	2667 2532	0.0	0.0	100.0 99.9
ME BANGOR ME BANGOR	2 25 5 19 7 14	1000.0 464. 994.4	192.0 402.0 250.0	22331 30324 25837	326 470 340	19917 26450 22964	4 29 ().0 0.().0 0.().0 0.(9 9 1	M	ST. LOUIS	30	31 68.2	335.0	20264	2555	20128	2554	0.0	0.0	100.0
ME BIDDEFO ME CALAIS ME LEWISTON	6 45 13 15	50.0 186.0	244.0 134.0	11213 15131	16 32	11449 12154	45 0 0 28 0).2 <mark>0.</mark> 1).000.1	1 93.9 0 100.0	MS MS	BILOXI BILOXI		39 82<mark>2.1</mark> 16 50.8	408.0 478.0	34271 21138	1095 634	27954 21018	738 648	0.0	0.0 0.8	100.0
ME ORONO ME ORONO ME POLAND SPRING	35 28 12 22 46	50.0 990.7 256.7	258.0 302.0 1173.0	9256 27549 40168	80 331 82	8947 24328 38522	320 0	2.8 1. 0.0 0.0 0.0 0.0	99.8	MS MS MS	BUDE	17	55 01.9 18 50.0	229.0 341.0	5553 16476	295 224	13444 14775	261 207	0.0	0.0 3.5	100.0
ME PORTLAND ME PORTLAN	6 44	1000.0	610.0 491.0	35125 32110	1082	34674 1	046 0	0.0 0.0 0.1 8.0	94.7	MS	GREENVILLE	15	35 1000.0 17 103.3 54 1000.0	610.0 271.0 597.0	7921 15891 50197	736 259 869	42821 15891 40373	652 259 565	0.0 0.0 0.0	0.0 0.0	97.8 100.0 100.0
ME PORTLAND ME PRESQUE ISLE ME PRESQUE ISLE	51 4 16 10 20	1.0 59.9 544.0	280.0 107.0 332.0	13863 8131 28867	608 55 80	13155 7518 26107	53 0	.7 1.0	99.5	MS MS	GREENWOOD GULFPORT	23	25 50.0 48 28.4	317.0 488.0	15296 22650	249 745	15236 22499	249 76	0.0	0.0 6.	100.0
MICHIGAN	10 20	544.0	552.0	20007	00	20107	77 0	.0 0.0) 100.0	MS MS MS	HOLLY SPRINGS	40	58 52.0 29.2 51 1000.0	244.0 142.0 610.0	14644 9985 46699	277 1026 917	14576 9904 34506	277 1026 734	0.0 0.0 0.0	0.0 0.0 0.0	100.0 00.0 99.8
MI ALPENA MI ALPENA MI ANN ARBOR	6 57 11 13 21 22	1000.0	448.0 204.0	37515 17634	253 110		108 0	0.0 0.0	99.2	MS MS	JACKSON JACKSON	16 a	5 2001 000.0 21 239.7	497.0 359.0	38935 21185	784 592	33270 21939	721 592	0.1	0.0	99.3 94.7
MI BAD AXE MI BATTLE CREEK	31 33 35 15 41 20	50.0 50.0 122.9	329.0 155.0 329.0	17256 6141 22689	3197 80 1793	6141	80 0	.5 3.3 .1 0.1	100.0	MS MS MS	JACKSON JACKSON LAUREL	40 4	20 50.0 41 50.0 28 1000 .0	598.0 479.0	24998 23283	38 614	24663 22928	631 602	3.0 0.5	.5 0.2	99.9 100.0
MI BATTLE CREEK MI BAY CITY	43 44 5 22	191.7 1000.0	323.0 305.0	21051 32648	1811 1711	21319 1 25468 1	786 4	.4 2.1	95.8	MS	MERIDIAN	11 4	28 000.0 19 1000.0 14 5 0.0	155.0 165.0 369.0	21287 21891 18021	345 290 314	19210 19815 17016	328 260 300	0.0 0.0 0.9	0.0 0.0 0.7	100.0 100.0 100.0
MI CADILLAC MI CADILLAC MI CADILLAC	9 40 27 58 33 47	857.6 50.0 50.0	497.0 180.0 311.0	37337 7371 11377	656 87 151	7043	84 0	.0 0.0 .0 0.0 .2 5.5) 100.0	MS MS MS			26 50.0 31 50.0	177.0 187.0	9932 11126	150 167	9884 11090	150 167	0.1	0.0 2.2	100.0 100.0
MI CALUMET MI CHEBOYGAN	5 18 4 14	1000.0 1000.0	295.0 189.0	23214 26704	54 147	21939	53 0	.0 0.0	99.8	MS	MISSISSIPPI STA NATCHEZ OXFORD	48 4	38 1000.0 19 82.2 36 50.0	381.0 316.0 423.0	37226 15256 17703	550 78 338	29916 15268 18417	422 178 348	0.0 0.0 0.5	0.0 0.0 0.3	100.0 9.1 96.1
MI DETROIT MI DETROIT MI DETROIT	2 58 4 45 7 41	1000.0	305.0 306.0	29671 31676	5601 5587	25357 5		.0 0.0	98.3	MS MS	UPELO WEST POINT	9 5	57 1000.0 16 53.0	542.0 512.0	41492 22357	423	38641 22373	61 423	0.1 2.0	0.0	99.5
MI DETROIT MI DETROIT	7 41 20 21 50 14	1000.0 50.0 50.0	305.0 293.0 293.0	26867 16508 17063	5516 4641 4770	16512 4	692 4	.9 0.5 .9 2.4 .7 0.3	99.3	MON	BILLINGS	2 1	7 1000.0	165.0	22231	135	23159	136	3.5	0.2	95.0
MI DETROIT MI DETROIT MI EAST LANSING	56 43 62 44 23 55	50.0 121.8	293.0 327.0	14810 17107	4513 4516	16254 4 18769 4	720 10 695 0	.1 3.8 .6 0.1	91.1 91.1	MT MT	BILLINGS BILLINGS	6 1 8 1	8 1000.0 1 14.5	249.0 229.0	27382 21573	130 133	26226 20805	135 129	0.0	0.0 0.0	99.1 100.0
MI ESCANABA MI FLINT	23 55 3 48 12 36	56.8 1000.0 1000.0	296.0 363.0 287.0	16608 36154 27126	1379 175 1943	35639	333 1 173 0 807 0	.0 0.0	99.9	MT MT	BOZEMAN BOZEMAN BUTTE	9 2	6 56.9 20 50.0 15 1000.0	249.0 33.0 576.0	8504 2264	59 46	8797 2200	59 46	0.0	0.0	95.5 100.0
MI FLINT MI FLINT	28 52 66 16	120.9 60.7	265.0 287.0	14635 18396	2661 1552	14356 2 18533 1		.0 0.0	99.6	MT	BUTTE	6	2 11.2 9 110.7	591.0 585.0	32132 43956 14658	125 163 57	40009 38276 13761	138 141 57	0.0 0.0 0.1	0.0 0.0 0.0	80.0 100.0 99.2
MI GRAND RAPIDS MI GRAND RAPIDS MI GRAND RAPIDS	8 7 13 39 17 19	15.1 1000.0 50.0	302.0 305.0 334.0	23097 26490 17990	1840 1179 1481	23938 1	139 0	and the second se	95.4	MT	GLENDIVE GREAT FALLS	3 4	15 125.6 14 1000.0	152.0 180.0	13546 22092	14 88	11386 23804	12 89	0.0 0.0	0.0	100.0 92.3
MI GRAND RAPIDS MI IRON MOUNTAIN	35 11 8 22	3.2 50.0	262.0 190.0	14630 12831	1077		076 5	.1 4.3 .6 2.3 .0 0.0	99.3	MT MT	GREAT FALLS GREAT FALLS HARDIN	16 4	1000.0 125.6 1000.0	180.0 319.0 323.0	21932 15237 30058	89 85 135	22921 15402 29423	89 85 136	0.0 0.1 0.0	0.0 0.0 0.0	94.8 98.4 97.7
MI JACKSON MI KALAMAZOO MI KALAMAZOO	18 34 3 2	50.0 7.2	73.0 305.0	1772 28693	152 1975	30599 2	152 0. 051 13	.1 4.6	100.0 91.7	MT MT	HELENA HELENA	10 2 12 1	9 776.4 4 169.8	579.0 686.0	27784 30107	95 150	26705 28974	87 149	0.0	0.0	98.8 99.1
MI KALAMAZOO MI KALAMAZOO MI LANSING	52 5 64 45 6 59	1.0 50.0 1000.0	125.0 319.0 305.0	4044 16437 30080	342 1351 2427	17368 1	341 5 439 0 773 0	.0 0.0	94.6	MT MT MT	KALISPELL MILES CITY MISSOULA	3 1	8 52.5 3 3.2 5 1000.0	850.0 33.0 655.0	23448 5349	85	23069 5430	79 11	0.0	0.0	98.4 98.2
MI LANSING MI LANSING	47 38 53 51	50.0 50.0	305.0 299.0	15311 11745	1012 777	15380 1 11637	012 1 775 0.	9 0.8 0 0.0	99.2 100.0	MT	MISSOULA MISSOULA	11 2	7 50.0 0 1000.0	631.0 610.0	32011 10001 32561	129 86 129	32749 8972 33340	127 85 131	0.2	0.0 0.0 0.0	96.0 100.0 97.3
MI MANISTEE MI MARQUETTE MI MARQUETTE	21 17 6 35 13 33	50.0 1000.0 740.1	104.0 296.0 332.0	4535 32976 29653	47 194 185		46 1 149 0. 170 0.	0.0	99.9	MT	MISSOULA	23 3	6 96.6	642.0	17675	117	17374	118	0.0	0.0	99.0
MI MOUNT CLEMENS MI MOUNT PLEASANT	38 39 14 56	148.0 50.0	192.0 158.0	12866 8653	4149 265	13046 4 8617	167 6 264 3	5 2.6		NC NC	ASHEVILLE ASHEVILLE		6 647.6 7 329.8	853.0 765.0	31351 27272	1483		1 786 1467	0.0 1.0	0.0 0.6	91.8 •
MI MUSKEGON MI ONONDAGA MI SAGINAW	54 24 10 57 25 30	80.0 1000.0 193.3	294.0 299.0 402.0	13717 27147 25367		20902 1	042 0. 404 0. 838 0.	0 0.0	100.0	NC NC	ASHEVILLE	62 4	5 101.0 5 140.4	\$16.0 556.0	22699 22273	1450 1368	21386	1338 1334	0.9 0.6	1.2 0.2	99.4 99.6
MI SAGINAW MI SAULT STE. MARI	49 48 8 56	50.0 1000.0	287.0 290.0	13994 26042	1230		198 0. 82 0.	0 0.0	100.0	NC NC NC	BELMONT BURLINGTON CHAPEL HILL		208.8 4 52.3 1000.0	594.0 256.0 469.0	31814 14242 140300	2297 1373 2842	11351	2125 1056 2263	3.9 1.6	1.4 0.4 0.0	100.0 99.6 99
MI SAULT STE, MARI MI TRAVERSE CITY	10 49 7 50	977.6 1000.0	370.0 411.0	31041 34182	404		86 0. 329 5.	0 0.0 0 7.0	100.0 100.0	NC NC	CHARLOTTE CHARLOTTE	3 2 9 9 3	3 1000.0 4 40.5	567.0 359 .0	46452 30151	3199 2143	35588	2375 1859	1.0	0.8	98.7 00.0
MI TRAVERSE CITY MI UNIVERSITY CENT MI VANDERBILT	29 31 19 18 45 59	63.0 50.0 50.0	399.0 140.0 324.0	20257 12016 14759	268 682 141	11960	257 0. 580 2. 139 0.	7 2.4	100.0 100.0 100.0	NC NC NC	CHARLOTTE CHARLOTTE CHARLOTTE	18 2 36 22 42 2	2 162.3	366.0 595.0	21413 32095	1769 2305	31309	1610 2289	12.6	4.9 0.9	96.2 96.9
MINNESOTA								0 0.0	100.0	NC NC	COLUMBIA	42 2 2 58 4	0 1000.0	390.0 302.0 422.0	17305 33275 24897	1525 507 2091	27798	1606 245 (m) 2084	6.0 • 0.0 4.4	2.2 0.0 2.4	93.3 100.0 99.3
MN ALEXANDRIA MN ALEXANDRIA MN APPLETON	42 14 10 274 1551	501 845 50.0 696	341.0 358.0 381.0	30569 21267 3266	314	19835 2	388 213 0. 202 0.	1 0.1	100.0 100.0 100.0	NC NC	DURHAM		7 226.3	60 7.0 58 5.0	42896 33775	2304 2032	38 519 34874	2109 2096	0.	0.0 0.4	97.5 95.0
MN AUSTIN MN AUSTIN	6 33 15 20	1000.0	320.0	33538 9 286		27107	68 0 .	0 0.0	99.9	NC NC NC	FAYETTEVILLE FAYETTEVILLE	to a line line line line line line line line	205.6 5 50.0 5 1 1 5 3 1 .8	561.0 256.0 480.0%	30687 9617 2476	212 9 539 2034	30578 9597 30320	2229 537 1902	0.0	0.3 0.0 0.8	92.6 99.8 98.6
MN BEMIDJI MN BRAINER MN DULUTH	9 18 2 28 3 33	523.6 1000.0	329.0 227.0 302.0	29798 9946 31348	102		83 0. 02 2	5 0.5	100.0	NC NC	GREENSBORO GREENSBORO	2 5	1 1000.0	561.0 517.0	42754	2851 1563	36651 20380	2442 1507	0.1	0.0	97.8 • 96.9
MN DULUTH MN DULUTH	8 38 10 43	1000.0	\$02.0 290.0 301.0	27761 28230	25	24845 🔜 2	278 0. 244 <mark>22 0.</mark> 238 0.	0.0	97.5 100.0 100.0	NC NC NC	GREENSBORO GREENVILLE GREENVILLE			168.0 73.0 209.0	8844 3134 11543	982 1 128 487	8520 33999 11352	976 1054 467	0.1	0.0	100.0 91.1 100.0
MN DULUTH MN HIBBING MN MANKATO	21 17 13 36 38	50.0 511.2 845.4	80.0 204.0	578 14891 29275		1 3719 1	79 8. 09 0.	0 0.0	100.0 100.0	NC NC	GREENVILLE	25 2 14 4	3 50.0 0 50.0	351.0 183.0	542 7426	64 5 504	14301 7711	598 511	7.5		100.0 100.0 91.0
MN MINNEAPOLIS MN MINNEAPOLIS	4 32	1000.0	436.0 435.0	39593	2983	33920 29	26 (0. 102 0. 198 0.	0 0 .0	100.0 99.9 99.7	NC NC NC	JACKSONVILLE	8 3 19 4 35 3	4 212.3	387.0 561.0 301.0	30793 25214 504	2217 728 415	25181 25182 14985	796 727 415		0.0	100.0 100.0
MN MINNEAPOLIS MN MINNEAPOLIS MN MINNEAPOLIS	11 35 20 22 29 21	762.3 186.1 175.1	439.0 351.0 373.0	21525	2665	21464 🧾 26	63 0.	0.0	99.9 100.0	NC NC	KANNAPOLIS	64 5 20	0 50.0 9 \$4 .5	300.0 297.0	15248 7330	1477 4 24	15907 16748	1497 1352	0.0	0.0	95.5 99.5
MN MINNEAPOLIS MN REDWOOD FALLS	45 44 43 44 27	182.8 50.0	375.0 167.0		2649 74	1056 26	62 0. 6 48 0 . 74 0.	0.0 🥵	100.0 100.0 100.0	NC NC NC	LINVILLE LUMBERTON MOREHEAD CITY	17 5 3 2 8 2	5 🧠 🕵 2	546.0 319.0 249.0	17895 20289 20009	879 846 303	16899 20623 13893	842 853 96		0.3 8.9 0.0	98.3 98.0 100.0
MN ROCHESTER MN ROCHESTER MN ST. CLOUD	10 36 47 4 6 41 55 5 45 0	772 .2 50.0	81.0 104.0	31622 3712	139	3640 1	62 0. 37 0.	0.0	100.0	NC NC	NEW BERN RALEIGH	2 4 5 5	3 1000.0	591.0 604.0	43008 47437	1 180 2615	34531	862 35 2317	EDD I G		100.0 99.6
MN ST. PAUL MN ST. PAUL	2 34	92.1 1000.0 1000.0	448.0 399.0 36.0		2965		49 0.0 109 0.0 127 0.0	0.0	100.0 99.6 98.6	NC NC NC	RALEIGH ROANOKE RAPIDS	22 5 50 4 36 3	9 198.0	548.0 568.0	3057 31572 9289	2098 1972 53		1903 1968	3.1	3.2 4.6	99.8 99.6
MN ST. PAUL MN THIEF RIVER FAL	17 16 57	50.0 692.6	396.0	13296	2506 121	13263 25 10201 1	05 0.1 06 0.1	2 0.0	100.0 100.0	NC NC	ROCKY MOUNT WASHINGTON	47 1	5 94.5	371.0 594.0	17002 4467	1184 129	17134	51 1181 1102	0.7	0.6	00.0 96.5 100.0
MN WALKER MN WORTHINGTON	12 20 20 15	736.5 72.7	283.0 332.0	27768 17875			76 0.1 46 0.1		100. 0 99.9	NC NC NC	WILMINGTON WILMINGTON WILMINGTON	3 41 6 54 26 31	4 1000.0	594.0 588.0	51153 48041	1051	41539 38276	758 1195	0.0	0.0 0.0	100.0 100.0
MISSOURI MO CAPE GIRARDEAU	12 57	1000.0	610.0	43667			81 0.		100.0	NC NC	WILMINGTON WILSON	39 20 31 39 21 30 42	9 151.3	500.0 553.0 539.0	22230 2665 22163	481 635 1279	22206 26311 21978	480 62 1266	0.0	0.0 🔣	100.0 100.0 100.0
MO CAPE GIRARDEAU MO COLUMBIA MO COLUMBIA	23 22 8 36 17 22	62.0 1000.0 53.9	543.0 242.0 348.0	22999 26054 20500	441	21983 4	18 0.0 13 0.0 11 3.4	0.0	100.0 100.0 100.0	NC NC	WINSTON-SALEM WINSTON-SALEM	12 3 26 3	1 80 5.4 2 262 .6	604.0 504.0	38013 22544	2216 1618	32992 23447	2000 1642	0/0/111 0.8	0.0	98.1 4 92.6
MO HANNIBAL MO JEFFERSON CITY	7 29 13 12	1000.0 15.1	271.0 308.0	27374 24445	319	24036 2	11 3.4 191 0.1 04 0.1	0 0.0	100.0 99.6		WINSTON-SALEM	4 29	9 149.8	597.0	2513	174	23587	165	0.8	0.5	99.0
MO JEFFERSON CITY MO JOPLIN MO JOPLIN	25 20 12 43 16 46	56.0 1000.0	314.0 311.0	16148 27520	326 507	15871 3 23933 4	24 0.0 29 0.0	0 0.1 6 0.3	99.7 97.8	ND ND	BISMARCK BISMARCK	3 22	1 1000.0	425.0 427.0	37269 39795		29285 33172	111 116	0.0	0.0 0.0	99.8 100.0
MO JOPLIN MO JOPLIN MO KANSAS CITY	16 46 26 25 4 34	176.1 50.0 1000.0	313.0 283.0 344.0	21689 14621 34558	302		92 1.0 00 0.1 03 0.0	0.0	99.6 100.0 100.0	ND ND ND	BISMARCK BISMARCK DEVILS LAKE	12 23 17 16 8 59	5 50.0	466.0 290.0	36324 13983 36452	123 90	31990 13803	113 89	0.0 0.1	0.0	99.8 100.0
MO KANSAS CITY MO KANSAS CITY	5 24 9 14	1000.0 471.0	342.0 357.0	33260 30105	1944 : 1965 :	28753 19 28907 19	35 0.0 10 0.0	0.0 0.0 0.0	96.0 97.9	ND ND	DICKINSON DICKINSON	2 19 7 18	1000.0	451.0 256.0 223.0	36452 29196 21489		35321 29160 20573	170 45 34	0.0	0.0 0.0 0.0	98.6 98.3 92.4
MO KANSAS CITY MO KANSAS CITY MO KANSAS CITY	19 18 32 31 41 42	50.0 200.8 50.0	357.0 322.0 323.0	23377	1763	18797 17 23325 17 16223 16	63 0.3	3 0.0	100.0 100.0 99.9	ND ND	DICKINSON ELLENDALE FARGO	9 20 19 20) 739.7) 50.0	246.0 179.0	23645 8894	43 12	21684 8866	37 12	0.0 4.6	0.0	100.0 100.0
MO KANSAS CITY MO KANSAS CITY	50 51 62 47	50.0 129.7	341.0 340.0	16177 21142	1670 1803	15490 16 20991 17	59 0.9 99 0.0	0.1 0 0.0	100.0 99.5	ND ND	FARGO FARGO FARGO	6 21 11 58 13 23	3 1000.0	351.0 610.0 344.0	36126 43197 29025	343	30659 39529 27002	253 319 226	0.0	0.0	100.0 95.9 100.0
MO KIRKSVILLE MO POPLAR BLUFF MO SEDALIA	3 33 15 18 6 15	1000.0 50.0 1000.0	339.0 184.0 235.0	34545 10131 28672	352 1 127	27492 2 9950 1	60 0.0 23 0.1	0.0 0.0	99.6 100.0	ND ND	FARGO GRAND FORKS	15 19 2 56	9 196.5 5 1000.0	379.0 408.0	19387 35965	250 170	19399 32916	250 167	0.0	0.0 0.0	99.9 99.9
MO SPRINGFIELD MO SPRINGFIELD	3 44 10 52	1000.0 1000.0	622.0 631.0	47586 45444	735	41787 6	02 0.0 71 0.0 83 0.0	0.0	99.9 98.9 100.0	ND ND ND	JAMESTOWN MINOT MINOT	7 14 6 57 10 58	7 1000.0	135.0 323.0 207.0	19707 34005 17900		15434 31671 20623	41 98 77	0.0	0.0 0.0 0.0	100.0 99.9 83.8
									ld Radio I							14			3.0	0.0	

BEEN THERE DONE THAT.

>> UNPRECEDENTED TECHNOLOGY BREEDS UNPRECEDENTED CHALLENGES - VIDEO SERVERS, FIBRE CHANNEL NETWORKING, DIGITAL ARCHIVING, ASSET MANAGEMENT AND THE AUTOMATION SYSTEM TO ELEGANTLY ORCHESTRATE IT ALL. IT'S A MANDATE RECOGNIZED BY LEADING BROADCAST ORGANIZATIONS WORLDWIDE WHO DEPEND ON LOUTH SOLUTIONS. VISIT US AT NWW LOUTH COM. LOUTH AUTOMATION. WE'D LIKE TO HELP YOU MAKE THIS NEW WORLD QUITE FAMILIAR.

BROADCAST confidence

More Information Circle 106

COPYRIGHT LOUTH AUTOMATION 1998.

See Us at NAB - Booth S2344 - Sands Expo

LOOK AT WHAT'S HAPPENING AT () LBLANC.

LOOK AT WHY.

LeBLANC is one of few companies in the world who have the experience and capabilities to design, manufacture, install and erect integrated broadcast communication systems. This is our business... and has been...for over 30 years.

Our new television group LeBLANC Broadcast Inc., (LBI) is a member of the LeBLANC Group. We are uniquely positioned to offer turnkey services ranging from tower construction to antenna installation and

testing for analog and DTV systems. We form teams of highly trained professionals from our staff of 2400. They work directly with your staff and consulting engineers to nail down tight specifications and cost effective solutions.

LeBLANC's specialty is designing, constructing and installing towers up to 2000 feet. Starting with a thorough structural feasibility study of the existing tower...and working with our LARCAN teammates...we provide comprehensive DTV solutions to ensure your tower, transmitter, waveguide and antenna requirements are met...and to your complete satisfaction.

You are always concerned about quality and safety. So is LeBLANC. No other company has achieved the myriad of certifications in as many jurisdictions for our products and services as LeBLANC.

At NAB '98 Booth 9861

For all your tower solutions... Look At LeBLANC Broadcast Inc.

Corporate Offices: Dallas: Bob Groothand, President 972.664.1817 Special Projects: New York: Joe Nigro, Vice Pres. 973.790.4778

LOOK AT WHAT'S HAPPENING

LOOK AT WHY.

LARCAN pioneered high-power solid-state VHF transmitter technology and is a recognized leader worldwide.

With the advent of Digital TV we contributed to its development and in 1993 LARCAN supplied the VHF solid-state transmitter for ACATS 'air' tests in Charlotte, North Carolina.

At NAB'97 our new LANDMARK Series DTV transmitter demonstrated the Zenith DTV 8-VSB exciter...live...an industry first.

In January 1997 we assisted KOMO-HD to transmit the first HDTV signal west of the Mississippi. In early 1998 we delivered a LANDMARK UHF digital transmitter to KOMO-HD.

These LARCAN pioneering successes translate into major LANDMARK features and benefits for your DTV Transition, and include...

• LARCAN/Zenith exciters ensure ATSC compliance. • Microprocessor control ensures complete system stability. • Touch screen controllers and fiber optic LAN control. • Solid-State LDMOS Class AB Broadband Driver ensures exceptional linearity. • LARCAN conservative power ratings in 8kW to 25kW IOT socket modules...up to 100kW. • Our Quality Assurance System has attained ISO 9001 registration.

For all your transmitter solutions... Look At LeBLANC Broadcast Inc.

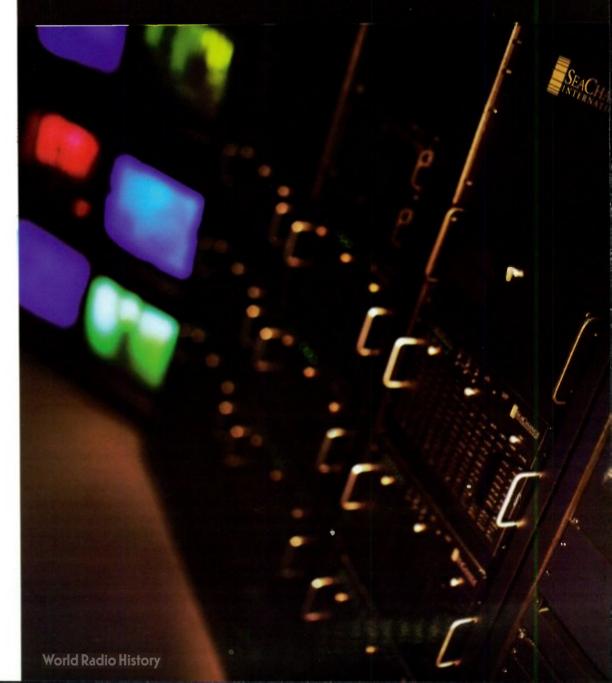
Regional Offices: Providence: Bob Palmer 401.461.0999 Minneapolis: Jeff Clarine 507.332.6703 San Francisco: Dave Hill 650.574.4600

At NAB '98

Booth 9861

			Fre	OTV SERVICE		EXISTING NTS	C	DTV NTSC	ext of	the FCC's targ	get list	of 1	,606 s	tations	עדע	SERVICE	EY		OTHINTOO
STATE AND CITY	<u>Chan chan</u>	<u>(KW)</u>	ANTENNA <u>HAAT(m)</u>	DURING TRANSITIC AREA PEOPL (Sq.km) (thou:	E AREA PE <u>) (Sq.km) (</u> 1	<u>RVICE NEW</u> Ople Ari housi (<u>° NL</u>	A PEOP	PLE MATCH	SI	ATE AND CITY	NTSC <u>Chan</u>	DTV <u>Chan</u>	DTV POWER	ANTENNA <u>HAATum</u>)	DURING ARE	TRANSITIC A PEOPL	DN <u>CURRENT SERV</u> E AREA PEOF	ISTING NTSC ICE NEW INTE ILE AREA USI (°5 NL Area	PEOPLE MATCH
ND MINOT ND MINOT ND PEMBINA ND VALLEY CITY ND WILLISTON ND WILLISTON ND WILLISTON ND WILLISTON	13 45 14 15 12 15 4 38 4 51 8 52 11 14	1000.0 50.0 486.2 1000.0 1000.0 719.1 447.6	344.0 829.0 427.0 619.0 278.0 323.0 299.0	30372 9 12063 6 29986 3 52327 40 29166 5 25295 4 24273 4	7 12055 5 24366 9 46357 1 25943 8 24027	67 6	0.0 0.0 0.0 0.0	100.0 100.0 100.0 100.0 98.9 99.8 99.8 99.6	NY NY NY NY NY NY	KINGSTON NEW YORK NEW YORK NEW YORK NEW YORK NEW YORK NEW YORK NEW YORK NEW YORK	62 2 4 5 7 11 25 31	21 56 28 44 45 33 24 30	98.0 364.6 163.5 224.8 164.3 116.8 80.7 104.1 215.8	591.0 482.0 515.0 515.0 491.0 506.0 395.0 475.0	18233 28354 27891 28095 26043 24825 18412 17322	16202	15913 1450 24095 1695 25113 1718 25113 1718 23891 1718 23184 1710 18363 16695 17886 16433	5 0.0 2 0.7 9 9.0 9 2.0 2 1.7 6 6.3 4 5.3	0.2 99.0 0.0 98.4 0.1 94.6 4.8 97.6 0.3 99.5 0.5 96.1 1.6 98.7 1.7 95.6
NE ALBION NE ALLIANCE NE BASSETT NE GRAND ISLAND NE GRAND ISLAND NE HASTINGS NE HASTINGS NE HAYES CENTER NE KEARNEY NE LEXINGTON NE LINCOLN NE LINCOLN NE LINCOLN NE LINCOLN NE LINCOLN NE MERRIMAN NE MORFOLK NE MORTH PLATTE NE NORTH PLATTE NE NORTH PLATTE NE OMAHA NE OMAHA	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87.1 619.7 494.7 770.5 50.0 1000.0 50.0 1000.0 752.6 1000.0 752.6 1000.0 752.6 1000.0 752.6 1000.0 11.6 589.6 50.0 1000.0 567.9 1000.0 550.3 406.2 50.0 214.9 1000.0 1000.0	378.0 469.0 453.0 308.0 323.0 323.0 348.0 323.0 440.0 253.0 216.0 328.0 328.0 348.0 192.0 311.0 418.0 415.0 453.0 577.0 610.0 256.0 344.0	23553 9 35748 9 36326 5 28628 20 11158 144 28512 222 20167 161 28489 8 30437 21 34465 163 37031 743 26202 1044 2870 56 28624 37 30317 200 26262 1044 28554 66 39359 1133 34379 1099 26114 1044 9260 698 339389 1100 50074 108 24339 75 35113 236	2 31465 32997 24684 3 11170 26274 20155 20155 26822 27104 25618 28642 33522 24175 1 21284 24104 14712 24037 30293 1 36448 1 29303 25781 9120 1 9120 1 40276 22210	99 0 83 0 38 0 183 0 183 0 183 0 183 0 213 0 166 2 80 0 118 0 417 0 687 0 23 0 023 0 199 3 61 0 040 0 117 0 093 3 696 4 106 0 93 0 70 0 116 0	0 0.0 0 0.0 0 0.0 1 0.0 6 0.2 6 0.8 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 9 2.3 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	100.0 99.8 99.9 100.0 99.9 99.9 100.0 100.0 100.0 100.0 99.9 99.8 99.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	NY NY NY NY NY NY NY NY NY NY NY NY NY N	AKRON	5 18 57 54 55 8 10 13 21 31 6 17 45 67 67 3 5 9 24 43 68 2 20 33 16 50 23	14 23 38 27 57 58 58 59 66 28 39 34 43 23 46 54 43 23 46 54 47 7 25 25 30 27 29 30 27 59	215.8 50.0 50.0 117.5 131.5 1000.0 1000.0 1000.0 1000.0 1000.0 156.4 98.6 50.0 50.0 50.0 50.0 1000.0 1000.0 108.2 86.5 50.0 1000.0 108.2 86.5 50.0 50.0 546.1 50.0 50.0 50.0 50.0 50.0	607.0 243.0 741.0 194.0 152.0 152.0 152.0 311.0 299.0 311.0 299.0 311.0 219.0 160.0 305.0 299.0 462.0 462.0 445.0 445.0 442.0 244.0 193.0 370.0 387.0	31001 13073 14864 16625 10114 20761 20761 20721 20612 9247 11335 25950 17363 14144 1575 29245 27926 22744 13952 23696 22744 13952 14537 27212 11161 10688 169551 14424	438 149 260 2059 3061 1182 1179 1000 1021 1438 1188 1089 2941 1469 1394 1269 1032 1269 1009 1032 1189 455 671 206 176	25552 424 12357 132 14412 255 14940 1742 10190 322 1786 1072 16740 1100 9891 1015 11142 998 25617 1434 17014 1155 13868 1071 10985 3074 992 36 26185 1295 26367 1340 21052 1205 21801 1245 13359 970 22175 666 12328 447 9838 625 16449 200 14002 173 20985 3623	5 0.0 6 0.0 1.5 3.8 1.5 0.0 0.0 17.2 0.1 1.1 2.1 1.2 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0	0.0 95.4 0.0 100.0 0.0 100.0 0.0 100.0 0.0 99.4 14.9 97.9 1.4 99.9 0.0 99.9 0.0 99.9 0.0 99.9 0.0 100.0 0.4 94.9 0.7 99.2 0.3 99.5 0.2 99.0 0.0 100.0 0.1 97.9 0.0 96.8 0.1 99.2 0.6 100.0 0.5 99.9 0.0 100.0 0.2 97.1 0.1 86.7 7.1 100.0 0.3 99.8 0.1 99.8
NEW HAMPSHIRE NH BERLIN NH CONCORD NH DERRY NH DURHAM NH KEENE NH LITTLETON NH MANCHESTER NH MERRIMACK	40 15 21 33 50 35 11 57 52 49 49 48 9 59 60 34	50.0 74.6 96.1 1000.0 50.0 50.0 1000.0 50.0	91.0 320.0 213.0 302.0 329.0 390.0 314.0 308.0	2588 23 16735 1911 9823 3191 25758 3756 7340 204 7270 74 24405 4731 10385 1917	17048 1 10043 3 24132 2 5671 6258 23489 4	20 0. 880 2. 191 3. 649 0. 135 0. 62 0. 322 0. 876 4.	3 3.8 3 15.8 5 0.2 0 0.0 7 0.1 0 0.0	100.0 96.7 98.4 100.0 100.0 97.0 93.7	0H 0H 0H 0H 0H 0H 0H 0H 0H 0H	AKRON AKRON ALLIANCE ATHENS BOWLING GREEN CAMBRIDGE CANTON CANTON CHILLICOTHE CINCINNATI	49 55 45 20 27 44 17 67 53 53 5	50 30 46 27 56 35 39 47 46 35	50.0 108.8 50.0 50.0 50.0 50.0 50.0 85.1 154.7 1000.0	299.0 356.0 253.0 244.0 320.0 393.0 137.0 148.0 362.0 305.0	13287 18196 13961 14130 16401 15459 9384 11032 18653 31943	3159 3465 1862 480 1112 605 1382 2892 1769 3036	13146 3112 18536 3478 13494 1972 13715 456 16601 1148 14436 551 8453 1277 11092 286 1785 1689 27785 2835	9.0 0.5 0.5 3.3 0.0 0.1 6.7 0.1 6.6	7.9 99.7 1.7 95.4 0.3 97.7 4.4 100.0 0.0 98.8 0.1 100.0 4.7 100.0 0.0 97.5 4.8 99.5 0.0 99.4
NEW JERSEY NJ ATLANTIC CITY NJ ATLANTIC CITY NJ BURLINGTON NJ CAMDEN NJ LINDEN NJ MONTCLAIR NJ NEW BRUNSWICK NJ NEWARK NJ NEWARK NJ NEWARK NJ NEWTON NJ PATERSON NJ SECAUCUS NJ TRENTON NJ VINELAND NJ WEST MILFORD NJ WILDWOOD	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50.0 98.5 50.0 71.7 148.9 179.2 50.0 198.7 55.9 3.2 69.1 136.4 50.0 107.8 50.0 50.0	85.0 133.0 335.0 271.0 460.0 243.0 500.0 439.0 223.0 500.0 421.0 500.0 271.0 223.0 221.0 2280.0 217.0 128.0	1323 203 11223 1021 17337 6471 17321 5932 15152 16271 14372 15486 11833 12752 23049 17015 11538 5709 17576 16545 26254 17915 13758 7778 16418 5655 4104 3917 9396 448	9334 16922 6 17865 6 14745 16 14138 15 8997 10 23140 17 15412 15 10979 8 17028 16 22677 16 13051 7 16899 5 2891 2	684 0 387 3 233 1	6 1.9 9 1.4 3 3.9 8 0.1 0 0.0 0 8.6 0 0.6 2 0.0 1 0.3 7 0.3 8 1.0 2 2.7 1 0.2	100.0 100.0 98.1 96.9 99.7 94.4 100.0 94.2 99.7 93.7 99.9 99.5 97.5 97.5 97.1 100.0 100.0	OH OH OH OH OH OH OH OH OH OH OH OH OH O	CINCINNATI CINCINNATI CINCINNATI CLEVELAND CLEVELAND CLEVELAND CLEVELAND CLEVELAND CLEVELAND CLUMBUS COLUMBUS COLUMBUS COLUMBUS COLUMBUS DAYTON DAYTON DAYTON	9 12 48 64 3 5 8 25 61 4 6 10 28 34 2 7 7 16	10 31 34 33 2 15 31 26 34 14 13 21 36 38 50 41 58	15.4 839.3 50.0 95.5 9.3 1000.0 937.2 66.9 50.0 1000.0 40.8 897.9 65.8 50.0 1000.0 493.2 104.6	305.0 305.0 326.0 307.0 305.0 311.0 305.0 304.0 354.0 274.0 286.0 274.0 293.0 329.0 305.0 348.0 350.0	23606 27626 18013 21010 27851 32803 28382 17099 18152 29825 24515 25581 17256 16958 31600 27263 20293	2609 2572 2267 2751 3824 4064 3886 3291 3325 2326 2056 2069 1672 1672 3422 3422 3242 2869	23981 2781 25519 2800 17522 2170 20336 2719 28219 3783 26249 3694 25576 3659 15343 3019 18024 3318 20823 1872 22531 1855 22429 1915 16590 1675 16567 1642 23541 3049 22628 3069 18568 2681	8.3 0.3 2.6 0.0 0.0 1.9 0.0 6.6 1.3 0.1 1.3 0.1 0.0 11.7 2.5 2.5 0.6 0.0 3.4	$\begin{array}{ccccc} 5.3 & 92.7 \\ 0.1 & 96.9 \\ 2.5 & 99.1 \\ 0.0 & 99.7 \\ 0.0 & 90.7 \\ 0.5 & 100.0 \\ 0.0 & 99.8 \\ 2.5 & 99.9 \\ 0.4 & 99.9 \\ 0.5 & 99.9 \\ 0.5 & 99.9 \\ 0.0 & 96.3 \\ 8.8 & 99.6 \\ 2.7 & 97.7 \\ 1.6 & 99.8 \\ 0.1 & 99.7 \\ 1.6 & 99.8 \\ 0.1 & 99.7 \\ 2.1 & 99.9 \\ \end{array}$
NEW MEXICO NM ALBUQUERQUE NM CARLSBAD NM CLOVIS NM FARMINGTON NM FARMINGTON NM HOBBS NM LAS CRUCES NM LAS CRUCES NM PORTALES NM PORTALES NM PORTALES NM ROSWELL NM ROSWELL NM ROSWELL NM ROSWELL NM SANTA FE NM SLVER CITY	4 26 5 25 7 21 13 16 23 24 32 17 41 42 50 51 6 19 12 20 3 8 12 17 29 16 22 23 48 36 3 32 8 35 10 41 27 28 2 27 11 10 19 29 10 12	285.3 92.2 106.9 50.0 50.0 50.0 1000.0 598.0 31.7 1000.0 50.0 50.0 99.3 1000.0 839.0 987.6 50.0	1280.0 1289.0 1292.0 1287.0 1287.0 1286.0 1276.0 366.0 204.0 1276.0 366.0 1275.0 138.0 125.0 138.0 137.0 134.0 351.0 536.0 610.0 115.0 1275.0 618.0 33.0 485.0	46755 759 46814 759 38823 752 29909 731 9145 648 22970 735 34885 156 20222 111 18078 114 2995 39 35934 187 40236 162 45138 183 5832 58 47290 762 36578 732 7469 139 15964 46	51101 39015 40657 29481 8577 23639 31739 32739 18025 20910 16423 2995 9113 7295 9113 7295 35342 39969 38701 5824 52571 33228 7063	779 0.1 776 0.7 751 0.1 726 0.1 726 0.2 726 0.2 726 0.2 726 0.2 729 0.1 118 0.3 82 0.1 124 0.2 571 0.0 587 0.4 59 0.5 58 0.4 786 0.0 136 0.0 42 0.0	0 0.0 0 0.0 0 0.0 0 0.0 1 0.0 2 0.0 0 0.0	90.9 91.6 98.9 100.0 98.9 99.9 100.0 100.0 99.6 100.0 99.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	0H 0H 0H 0H	DAYTON DAYTON LIMA LIMA LORAIN MANSFIELD NEWARK OXFORD PORTSMOUTH PORTSMOUTH PORTSMOUTH SANDUSKY SHAKER HEIGHTS SFRINGFIELD STEUBENVILLE TOLEDO TOLEDO TOLEDO TOLEDO TOLEDO TOLEDO YOUNGSTOWN YOUNGSTOWN ZANESVILLE	22 45 35 44 43 68 51 14 30 42 52 19 26 9 11 13 30 36 40 21 27 33 18	51 30 47 28 12 24 28 17 43 28 17 43 10 18 57 17 19 9 9 9 9 9 9 46 5 20 41 36 40	138.8 133.5 50.0 66.2 1.0 147.0 50.0 50.0 50.0	351.0 357.0 165.0 207.0 336.0 189.0 91.0 237.0 382.0 236.0 351.0 249.0 268.0 305.0 305.0 305.0 305.0 305.0 314.0 372.0 174.0 302.0 426.0 177.0 162.0	20578 18639 10462 11873 19371 11703 10379 6062 15306 14521 13436 14521 13436 14521 13436 25596 28616 21300 23784 16186 17224 16186 17224 16186 17224 16186 17224 16186 17243 10820	2964 2431 439 480 3570 1287 1091 537 456 657 3396 1308 3369 4266 2438 2278 1774 1402 925 2676 2533 1212 399	19726 2774 18391 2724 10054 433 11788 478 18868 3315 1182 566 9830 1265 5898 1202 14379 446 14020 445 13432 657 18107 3086 11922 1299 21576 2862 26457 4003 232321 2257 16109 1767 17031 1398 11127 958 19013 1952 19241 2366 11212 1190 10509 384	7.8 2.7 0.0 5.0 0.0 8.6 1 22.9 3 2.7 3.4 0.1 17.1 2.0 0.0 0.0 6.0 6.0 6.2 4.5 5.7 10.4 3.6 2.1 6.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
NV ELKO NV HENDERSON NV LAS VEGAS NV RENO NV RENO	10 8 5 24 3 2 8 7 10 11 13 17 15 16 21 22 33 29 39 40 2 32 4 34 5 15 8 23 11 44 21 22 27 26 7 12	3.2 1000.0 11.2 26.4 19.3 590.5 50.0 103.2 50.0 102.1 1000.0 1000.0 1000.0 315.2 525.4 50.0 125.9 3.2	372.0 610.0 564.0 353.0 581.0 367.0 656.0 133.0 140.0 893.0 856.0 189.0 894.0	13671 27 22268 732 34344 745 31021 739 21343 730 28901 737 11527 725 12232 728 13627 726 9421 724 27353 385 11905 331 5739 293 33814 480 27170 388 5432 265 22554 394 11120 12	31087 27145 19621 25542 12220 11359 12481 8797 35365 4869 7799 34281 28173 25264 20515	27 0.1 334 0.0 335 0.0 337 0.0 330 0.0 333 0.0 24 0.2 26 0.6 27 0.1 100 12 101 15 102 0.0 193 0.0 193 0.0 193 0.0 194 0.0 195 0.0 187 0.2 187 0.2 12 0.0	0.0 0.0 0.0 0.0	100.0 78.2 100.0 99.9 99.7 100.0 90.0 99.9 100.0 100.0 76.7 63.7 73.3 97.3 97.3 94.7 93.8 100.0 100.0	0KLA 0K 0K 0K 0K 0K 0K 0K 0K 0K 0K	HOMA ADA BARTLESVILLE CHEYENNE CLAREMORE ENID EUFAULA LAWTON OKLAHOMA CITY OKLAHOMA CITY	10 17 12 35 20 3 7 4 5 9 13 4 5 9 13 14 25 34 43 52 62 44 30 2	26 15 8 36 18 31 23 27 16 39 32 15 24 33 42 51 50 28 29 56	642.3 152.9 15.7 79.0 50.0 1000.0 605.3 1000.0 840.8 731.3 50.0 840.8 731.3 50.0 57.7 50.0 50.0 133.8 207.4 1000.0	445.0 316.0 299.0 256.0 136.0 399.0 320.0 469.0 465.0 465.0 465.0 344.0 369.0 369.0 475.0 183.0 240.0 277.0 2558.0	36091 16167 26702 14049 7094 35124 27415 42440 39681 37311 37597 15252 25445 16799 23167 11406 14486 15920 20211 46668	448 791 90 786 71 656 384 1352 1316 1299 1008 1151 1038 1123 980 1002 821 1092 821	32152 390 15901 782 23103 77 14037 786 7094 71 25056 348 26852 378 33032 1235 33951 1267 32224 1233 17082 1060 25388 1151 18533 1078 2352 1128 11642 992 14607 1004 15326 816 19843 1087 39680 1155	0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.4 0.6 0.6 0.8 0.1 0.3 2.2 0.0 0.0 0.3 0.0 0.3 0.5	0.0 100.0 0.0 97.6 0.0 100.0 0.7 99.9 0.0 100.0 0.0 98.9 0.0 93.8 0.0 93.8 0.0 99.1 0.1 100.0 0.2 100.0 0.1 189.2 0.0 100.0 0.2 90.5 0.8 98.6 0.0 97.4 0.0 98.8 0.1 100.0 0.2 90.5 0.8 98.6 0.0 97.4 0.0 99.7
NEW YORK NY ALBANY NY ALBANY NY ALBANY NY AMSTERDAM NY BINGHAMTON NY BINGHAMTON NY BINGHAMTON NY BINGHAMTON NY BUFFALO NY BUFFALO	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	136.8 50.0 8.6 1.0 3.2 50.0 1000.0	357.0 366.0 223.0 124.0 369.0 281.0 375.0 375.0 287.0	21162 1290 21407 1277 18238 1287 8687 858 8027 951 13743 906 15489 662 14057 533 13841 512 31314 2191 34568 2229	8459 8 7369 9 22315 7 13102 4 12037 4	81 0.4 62 0.5 48 0.2 111 2.1 90 0.5 89 0.3 41 0.2 50 0.1 18 1.7	0.0 0.9 0.1 18.3 1.8 0.1 0.1 0.1 0.1 0.8	99.6 100.0 99.1 99.8 100.0 99.8 99.9 99.7 100.0 97.5 98.5	OK OK OK OK OK OK OR OR OR OR	TULSA TULSA TULSA TULSA TULSA TULSA TULSA	6 8 11 23 41 47 53 3 21	55 58 38 22 42 48 49 11 18	1000.0 1000.0 838.3 129.2 50.0 50.0 50.0 20.1 50.0	573.0 578.0 521.0 399.0 460.0 460.0 182.0 227.0 197.0	47667 42260 39756 25825 20869 18322 11957 19106 6180	1267 1170 1140 990 913 876 763 104 86	38333 1100 36166 1095 35069 1080 25477 988 20817 913 17256 866 11952 763 22110 104 5596 83	0.0 0.0 0.9 0.0 0.0 0.3 0.0 0.3	0.0 99.8 0.0 100.0 0.0 99.5 0.3 100.0 0.0 97.5 0.0 99.9 0.0 98.0 0.0 98.0 0.0 86.4 0.0 100.0
NY BUFFALO NY BUFFALO NY BUFFALO NY BUFFALO NY BUFFALO NY CARTHAGE NY CORNING NY ELMIRA NY ELMIRA NY GARDEN CITY NY JAMESTOWN	4 35 7 38 17 43 23 32 29 14 49 34 7 35 48 50 18 2 36 55 21 22 26 27	238.1 156.0 50.0 50.0 148.9 1000.0 50.0 1.0 50.0 88.3	433.0 330.0 314.0 280.0 376.0 221.0 166.0 376.0 320.0 122.0	34360 2229 280280 1807 21137 1391 15722 1307 15724 1323 16701 1440 23938 277 2398 128 13827 546 11704 380 10285 12547 20750 1485	21697 15 21060 13 15706 13 15534 13 16849 14 22351 2 1874 11052 3	28 0.3 73 2.0 11 0.6 11 2.1 51 0.0 50 3.1 83 0.0 66 0.1 16 0.6 34 1.3	0.0 0.9 0.2 0.6 0.1 3.4 0.0 0.1 0.5 0.4 0.5	98.5 99.3 99.5 97.2 99.8 97.1 100.0 100.0 99.7 99.9 98.7 98.0	OR OR OR OR OR OR OR OR OR	COUS BAY CORVALLIS EUGENE EUGENE EUGENE EUGENE KLAMATH FALLS KLAMATH FALLS LA GRANDE	11 23 7 9 13 16 28 34 2 22 31 13	21 22 39 14 25 17 29 31 40 33 29 5	50.0 50.0 1000.0 547.9 629.7 72.7 50.0 97.6 1000.0 50.0 50.0 1.0	192.0 190.0 375.0 539.0 451.0 512.0 276.0 259.0 671.0 656.0 691.0 787.0	9207 3059 24328 32350 27781 18041 8602 9072 35666 7845 5471 21321	67 56 917 680 593 420 343 382 86 56 55 76	8895 63 2667 52 23686 848 28911 574 25081 519 17099 415 7830 333 8740 379 44515 159 6265 55 4555 54 14506 39	0.6 0.0 0.0 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0	0.0 99.5 0.2 99.7 0.0 97.6 0.0 99.7 0.0 99.9 0.1 99.8 0.2 100.0 0.0 100.0 0.0 79.4 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0

By the year 2004, there may be several intelligent choices for digital video servers.


Today there's **One.**

We have more MPEG-2 video server systems installed than anyone else in the world. Find out more about this dramatic transformation—this SeaChange. Visit us at NAB at the Sands, booth S-2972.

SeaChange International, Inc. **www.schange.com** 124 Acton Street, Maynard, MA 01754 phone: 1-978-897-0100 fax: 1-978-897-0132 MediaCluster is a trademark of SeaChange International, Inc.

The SeaChange Broadcast MediaCluster.™

-				F	rom A t	o V on	Digita	Alloc	ations	—Са	omplete	ext o	of the FCC's targ	et list c	of 1,6	06 st	ations							
STATE AND CITY	NTSC CHAN	DTV E <u>Chan</u>	DTV POWER (KW)	ANTENNA HAATimi	DURING TI AREA (Sa kmi	RANSITION PEOPLE (thous)	AREA	EXISTIF SERVICE PEOPLE (thous)	AREA	PEOP	DTVINTSC CE AREA LE MATCH Pod) (%)		STATE AND CITY	NTSC CHAN	DTV DT Chan	IV POWER (kW)		A ARE	/ SERVICE <u>TRANSITI</u> EA PEOPI m) (thou	'LE AR	EXIS RENT SERVIC REA PEOPL km) (thous	E ARE	A PEC	OPLE MATCH
OR MEDFORD OR MEDFORD	5	15 42	664.3 550.4	823.0 818.0	38563 31908	341 308	44981 32810	370 322	<mark>0.0</mark> 0.0	<mark>0.0</mark> 0.0	85.7 95.5		NNESSEE In Chattanooga	2										
OR MEDFORD OR MEDFORD	10 12	35 38	309.7 510.0	1009.0 823.0	33858 32605	276 310	34402 31335	277 314	0.0	0.0	97.5 98.7	1	IN CHATTANOOGA IN CHATTANOOGA IN CHATTANOOGA	9 12	35 1	1000.0 1000.0 1000.0	320.0 317.0 384.0	26184 24577 27223	1033 993 1041	21972	2 892	0.0 0.0 0.0	0.0	90.3 99.7 98.0
OR MEDFORD OR PENDLETON	26 11	27 8	50.0 22.0	428.0 472.0	6395 30046	161 267	5790 28921	151 260	0.0 0.1	0.0 0.0	100.0 99.2	1	IN CHATTANOOGA IN CHATTANOOGA	45 61	29 40	50.0 127_3	329.0 370.0	15572	752	2 14511	1 722		1.0	100.0 99.0
OR PORTLAND OR PORTLAND	2 6	43 40	1000.0	475.0 533.0	30189 30619	1998 1892	35413 36086	2000 2002	0.0 0.0	0.0 0.0	84.8 84.5	1	IN CLEVELAND IN COOKEVILLE	53 22	42 52	50.0 73.5	356.0 425.0	11706 19872	709	11072	2 686	2.8	2.2	99.9 99.6
OR PORTLAND OR PORTLAND OR PORTLAND	8 10 12	46 27 30	1000.0 675.5 735.3	539.0 530.0	29454 29878	1981 1962	27469 28520	1845 1882	0.4	0.0	98.0 99.8	T	IN COOKEVILLE	28 20	36 50	50.0 355.9	279.0 738.0	10675 34644				4.3 0.2	2.7	100.0 99.3
OR PORTLAND OR ROSEBURG	24	45 19	160.7 50.0	543.0 463.0 305.0	30042 17258 10683	1959 1710 87	28256 17370 12503	1882 1762 98	0.0 0.5 0.0	0.0 0.1 0.0	99.8 95.0 85.4	1	IN GREENEVILLE IN HENDERSONVILLE IN JACKSON	39 50	38 51	129.8 140.6	802.0 235.0	20934		11660	0 966	1.3	1.9	99.7 99.6
OR ROSEBURG OR ROSEBURG	36 46	18 45	50.0 50.0	211.0 109.0	3812	69 65	2997 1700	62 60	0.0	0.0	98.8 100.0	1	IN JACKSON IN JACKSON IN JELLICO	16 54	43 39 23	920.0 336.3 50.0	323.0 322.0 395.0	29202 20258 4856	565 451 221	20105	5 449	0.0 0.9 0.0	0.5	100.0 99.8
OR SALEM OR SALEM	22 32	20 33	54.6 256.8	363.0 544.0	18188 24262	1839 1922	16795 23053	1405 1826	0.0	0.0	100.0	1	IN JOHNSON CITY IN KINGSPORT	11 19	58 27	980.9 54.3	707.0 707.0	29717	1064	29358	8 1028	0.0	0.0	100.0 95.5 96.2
	20	00	50.0	202.0	44040	0007	110.10					T	IN KNOXVILLE	6 8	30	000.0 663.5	454.0 382.0	32436 19804		33026	6 1181	0.0	0.0	92.2 95.0
PA ALLENTOWN PA ALLENTOWN PA ALTOONA	39 69 10	62 46 32	50.0 50.0 1000.0	302.0 313.0 338.0	11219 11087	2237 2075	11343 9892	2543 1919	2.5	11.6 7.8	96.2 99.6	Т	IN KNOXVILLE	10 15	31 17	767.9 92.1	546.0 513.0	32432 19946	1194 930	19520	0 922	3.0 0.6	0.3	98.9 99.8
PA ALTOONA PA ALTOONA	23 47	24 46	50.0 50.0	324.0 308.0	21871 7008 12472	796 344 576	20969 5674 11515	764 289 530	0.0 0.6 1.6	0.0 0.0 0.4	98.1 100.0 100.0	T	IN KNOXVILLE IN LEBANON IN LEXINGTON	43 66 11	34 44 47 1	50.3 50.0	351.0 161.0	13921 8926	812 919	8313	3 866	2.0	0.0	99.5 100.0
PA BETHLEHEM PA CLEARFIELD	60 3	59 15	67.4 1000.0	284.0 268.0	10914 27149	3323 731	10389 25059	2283 691	1.0	2.7	95.6 97.3	Т	N MEMPHIS	3	28 1	000.0	195.0 305.0 308.0	23549 33403 32952	474 1443 1427	24845	5 1287	0.0 0.0 0.0	0.0	100.0 99.9 99.3
PA ERIE PA ERIE	12 24	52 58	1000.0 50.0	305.0 290.0	27852 13453	731 464	24477 13321	671 456	0.0	0.0	100.0 99.8	Т	N MEMPHIS	10 13	29	670.8 000.0	329.0 308.0	29711 28576	1364	24952	2 1276	1.6 0.0	0.5	100.0 100.0
PA ERIE PA ERIE	35 54	16 50	50.0 50.0	287.0 268.0	11280 13301	432 442	11012 13006	422 426	0.3	0.3 0.1	100.0 100.0	T	N MEMPHIS	24 30		111.4 207.6	308.0 305.0	20834 17506	1195 1124	20718	8 1193	0.0	0.0	100.0
PA ERIE PA GREENSBURG PA HARRISBURG	66 40 21	22 50 4	50.0 50.0 1.0	271.0 299.0 372.0	10828 13058 17633	414 2424	10264 13820	396 2528	0.0	0.0	100.0 92.4	T	N MEMPHIS N MURFREESBORO	50 39		50.0 183.2	315.0 250.0	14801 15043	1118 1090	14421	1 1066	0.4 3.5	2.5	94.6 100.0
PA HARRISBURG PA HARRISBURG	27	57 36	115.5 50.0	346.0 427.0	13200 16220	1864 1309 1774	16062 15276 16987	1741 1653 1804	3.0 9.4 3.3	3.3 7.1 1.9	96.2 85.3 92.8	I	N NASHVILLE N NASHVILLE N NASHVILLE	2 4 5	10	000.0 39.7	411.0 434.0	37573 36718	1658 1612	34521	1 1561	0.0	0.0	99.5 98.4
PA HAZLETON PA JOHNSTOWN	56 6	9 34	3.2 1000.0	329.0 341.0	11237 27271	794 2717	8230 27752	489 2648	1.9 0.0	0.6	92.8 99.7 94.3	T	N NASHVILLE N NASHVILLE	5 8 17	46	000.0 936.5 121.8	425.0 390.0 354.0	37265 31972 23686	1656 1497 1338	28879	9 1420	0.0	0.0	99.0 100.0 99.2
PA JOHNSTOWN PA JOHNSTOWN	8 19	29 30	662.0 162.1	368.0 325.0	21527 17170	2628 2422	18655 16346	2234 2044	0.0	0.0	99.3 97.4	T	N NASHVILLE N NASHVILLE	30 58	21 23	183.0 52.6	430.0 240.0	23658 13345	1364 1075	23658	3 1364	1.9	2.6	99.2 98.5 100.0
PA LANCASTER PA LANCASTER PA PHILADEL PHILA	8 15 3	58 23 26	382.7 50.0	415.0 415.0	21401 17230	2864 2072	21703 17386	2785 2079	1.3	1.1 7.5	94.0 95.0		N SNEEDVILLE	2		0.000	536.0	36323	1629			0.0		90.1
PA PHILADELPHIA PA PHILADELPHIA PA PHILADELPHIA	3 6 10	26 64 67	1000.0 1000.0 791.8	305.0 332.0 354.0	31386 30479 25161	9263 9176 8072	25543 27031 23491	7578 7747 7190	0.0	0.0	98.9 97.3	Т	XAS X ABILENE X ABILENE	9		000.0	259.0	26409	221	19985		4.5		100.0
PA PHILADELPHIA PA PHILADELPHIA PA PHILADELPHIA	17 29	54 42	172.0 273.3	320.0 347.0	18786 22158	6675 7212	23491 19964 23279	7190 6768 7499	0.4 1.0 15.1	0.3 0.7 9.8	95.5 92.8 92.7	Т	X ABILENE X ALVIN X AMARILLO	32 67 2		50.0 107.6 000.0	287.0 543.0 401.0	17234 19402 38166	182 3615 317	22591	3738	0.7	0.0	100.0 85.9
PA PHILADELPHIA PA PHILADELPHIA	35 57	34 32	50.0 108.6	284.0 353.0	11498 16275	5617 6365	11619 15698	5690 6210	1.1	9.8 1.6 0.7	92.7 97.5 99.1	T	X AMARILLO X AMARILLO X AMARILLO	4 7	19 1	000.0 000.0 631.8	401.0 433.0 518.0	40439 38673	317 325 315	39077	324	0.0 0.0 0.0	0.0	99.9 100.0 99.2
PA PITTSBURGH PA PITTSBURGH	2 4	25 51	1000.0 1000.0	302.0 293.0	28831 27941	3488 3209	26900 24960	3339 3089	7.7 0.0	5.2 0.0	97.3 97.0	T	X AMARILLO X AMARILLO	10 14	9 15	20.8 50.0	466.0 464.0	36500 24095	313 285	33165 23951	5 <u>304</u> 285	0.0 0.0	0.0	100.0 100.0
PA PITTSBURGH PA PITTSBURGH PA PITTSBURGH	11 13	48 38	1000.0 1000.0	302.0 210.0	26332 23083	3429 3079	23126 20243	3090 2892	0.0	0.0	99.9 100.0	T.	X ARLINGTON X AUSTIN	68 7	56 1	105.6 000.0	360.0 384.0	14497 30828	3771 1245		1269	0.0		80.5 97.1
PA PITTSBURGH PA PITTSBURGH PA PITTSBURGH	16 22 53	26 42 43	50.0 330.8 51.9	215.0 280.0 312.0	11220 15791 16273	2353 2649 2744	12154 14380 16057	2493 2580 2729	1.1 0.6	0.2	90.5 98.4		X AUSTIN X AUSTIN X AUSTIN	18 24 36	22 33 21	66.7 81.4	335.0 387.0	18312 22472	904 997	18352 20626	965	4.3	0.8	98.8 100.0
PA READING PA RED LION	51 49	25 30	120.0 50.0	395.0 177.0	14707 9595	3607 1498	16585 8685	5176 1319	3.3 5.1 5.6	1.6 5.0 7.2	99.0 84.9 99.1		X AUSTIN	42 54	43	158.2 82.7 177.6	374.0 393.0 374.0	25028 17588 21850	1084 911 948	23977 16501 21914	878	0.1 0.6 5.5	0.0 0.0 7.0	99.9 99.8 93.2
PA SCRANTON PA SCRANTON	16 22	49 13	73.5 4.3	506.0 505.0	18628 22657	1383 1671	18311 21186	1353 1555	0.4	0.5	97.6 97.4		X BAYTOWN	57 6	41	144.4 000.0	585.0 293.0	26201 32847	3625 702	26197	3625	0.0 0.0	0.0 0.0	100.0 100.0
PA SCRANTON PA SCRANTON	38 44	31 41	50.0 50.0	385.0 509.0	14891 15873	855 1209	13968 14479	817 1057	6.0 3.4	3.2 6.1	98.8 99.0	T: T:	X BEAUMONT	12 34	50 1) 33	000.0 50.0	305.0 312.0	26741 13852	650 541		603	0.0	0.0	100.0
PA SCRANTON PA WILKES-BARRE PA WILLIAMSPORT	64 28 53	32 11 29	50.0 3.7 50.0	374.0 509.0 222.0	3270 22448 3514	481 1642 156	2498 21831	441	4.2 6.8	0.4 9.6	100.0 95.8		X BIG SPRING	46		50.0 136.0	384.0 116.0	15417 12023	611 55		55	1.3	0.3	100.0 99.9
PA YORK	43	47	225.5	417.0	18468	2298	2437 18552	121 2529	0.0 7.2	0.0 12.5	100.0 96.1		X BRYAN	23 3 28		100.0 000.0 50.0	445.0 515.0 220.0	19570 42756 12694	667 2830 224	19566 30202 12742	522	0.0 0.0 0.4	0.0 0.0 0.1	100.0 100.0 99.6
RI BLOCK ISLAND	69	17	50.0	213.0	11722	1628	11291	1552	0.0	0.0	100.0		X COLLEGE STATION	15 49	12 5	3.2 1.0	119.0 359.0	4071 15427	137 3326	4071	137	0.4 0.0 0.1	0.0	100.0 99.7
RI PROVIDENCE RI PROVIDENCE	10 12	51 13	1000.0	305.0 305.0	27786 26516	6170 5943	23550 25661	5267 5488	11.2 8.4	3.0 2.5	100.0 99.2		X CORPUS CHRISTI	55 3	47 10	155.3 000.0	570.0 262.0	31654 31435	3838 490	31975 30486	3838	3.5 0.0	0.3	98.5 100.0
RI PROVIDENCE RI PROVIDENCE	36 64	21 54	50.0 92.6	182.0 315.0	10571 14609	2351 3667	11133 13709	2569 2800	8.0 0.0	3.2 0.0	93.6 99.6		X CORPUS CHRISTI	6 10	18 6	000.0 631.2	291.0 287.0	28932 27969	493 493	28236 27637	491	0.0	0.0	100.0 100.0
SOUTH CAROLINA SC ALLENDALE	14	33	50.0	244.0	13632	364	13573	358	1.7	2.0	99.8		X CORPUS CHRISTI	16 28 4	23 27 35 10	50.0 50.0 000.0	296.0 232.0 511.0	15085 10892 45408	447 419 4395	15085 10892 40690	419	0.0	0.0	100.0 100.0
SC ANDERSON SC BEAUFORT	40 16	14 44	50.0 50.0	311.0 390.0	15464 19731	1025 670	14654 19643	984 670	0.1	0.1	99.5 100.0		X DALLAS	8	9	21.5 484.6	512.0 469.0	38703 37811	4202	35954 34201	4161	0.0 0.0 0.0	0.0 0.0 0.0	100.0 99.9 100.0
SC CHARLESTON SC CHARLESTON	2 4	59 53	1000.0 1000.0	594.0 597.0	50697 51379	985 974	45904 41971	819 713	0.0 0.0	0.0	100.0 100.0		X DALLAS	27 33	32 2	280.2 218.7	515.0 518.0	26874 26899	4049 4047	27151 26714	4058	1.9 0.1	0.1	98.6 99.8
SC CHARLESTON SC CHARLESTON SC CHARLESTON	5 7 24	52 49 40	1000.0 1000.0 329.2	597.0 564.0 542.0	51423 33353	987 825	46921 30920	835 757	0.0	0.0	100.0		X DALLAS	39 58	45 1	221.3 154.3	512.0 438.0	31240 21176	4093 3939	31248 21140	3939	0.5	0.0	99.0 99.7
SC CHARLESTON SC COLUMBIA	36 10	35 41	97.7 874.0	256.0 472.0	29291 14028 36808	697 502 1452	27779 14020 33424	655 502 1229	0.0 0.0 0.8	0.0 0.0 0.2	100.0 100.0 96.9		X DEL RIO	29 10 2	28 10	99.3 000.0 000.0	160.0 100.0 412.0	12473 7805 38925	3741 47 4212	11916 7493 36831	47	1.1 0.0 0.0	0.1	99.9 100.0
SC COLUMBIA SC COLUMBIA	19 25	17 8	232.0 3.2	533.0 253.0	28744 16297	1051 769	27875 15619	1020 757	0.1 14.0	0.0	99.4 97.1		K EAGLE PASS	16 4	18	50.0 50.0	85.0 475.0	2385 39024	36	2385 39212	36	0.0	0.0 0.0 0.0	99.8 100.0 98.3
SC COLUMBIA SC COLUMBIA	35 57	32 48	50.0 109.7	314.0 193.0	14227 13082	726 714	14039 13074	721 714	9.8 20.2	4.2 6.3	99.8 99.9	T) T)	K EL PASO	7 9	16 6	000.0 650.3	265.0 582.0	22864 40320	721 724	23481 37215	722	0.0	0.0	91.1 99.9
SC CONWAY SC FLORENCE SC FLORENCE	23 13 15	58 56 16	85.1 1000.0 50.0	250.0 594.0 594.0	16081 43246	450 1416	15408 38937	427 1320	0.5	0.3	100.0		K EL PASO	13 14	15	000.0 50.0	265.0 604.0	23268 21194	720 719	21850 19668	720	0.0	0.0	100.0 98.5
SC FLORENCE SC FLORENCE	21	20 45	73.8 50.0	567.0 241.0	29016 22692 12380	1066 787 382	28884 22073 12120	1054 775 379	2.7 0.1 1.0	2.6 0.1 0.6	99.8 99.9 100.0		K EL PASO	26 38 65	39	71.0 50.0 50.0	457.0 557.0 557.0	16234 8401 15868	717 628 703	16029 7981 15091	717 628 703	0.0 0.2 0.0	0.0 0.0 0.0	99.8 100.0 100.0
SC GREENVILLE SC GREENVILLE	4 16	59 35	1000.0 50.0	610.0 351.0	41044 16128	1886 1098	39428	1774 1105	0.0	0.0	92.0 97.2		FORT WORTH		41 10	000.0	514.0 509.0	45441 39460	4404 4217	39610 34825	4227	0.0	0.0	100.0
SC GREENVILLE SC GREENWOOD SC HARDEEVILLE	29 38	9 18	5.1 50.0	392.0 235.0	18622 14183	1164 772	14390	1191 764	0.5 0.4	0.3 0.4	92.9 97.9		FORT WORTH		51 1	220.0 172.9	503.0 328.0	26985 14497	4045 3809	27744 14188	3802	0.7	0.0 0.0	97.1 99.9
SC HARDEEVILLE SC MYRTLE BEACH SC ROCK HILL	28 43 30	27 18 15	226.7 124.6 50.0	457.0 463.0 210.0	24859 25516 11306	570 758 1017	24815 25592 11334	568 760 1006	0.2 0.0 6.5	0.0	100.0 99.7		GALVESTON		47 1	246.6 168.1 172.9	566.0 358.0 348.0	30569 18400 12957	3689 3461	30801 18133		0.0	0.0	99.2 99.8
SC ROCK HILL SC SPARTANBURG	55 7	39 53	147.1 1000.0	570.0 610.0	30046 38918	2244 2224	29164 38650	2209 2204	6.2 0.0	6.5 4.2 0.0	95.6 99.6 97.5		GREENVILLE	47	46	50.0 000.0	155.0 396.0	2533 38632	3159 70 687	12589 2533 36762	70	1.7 0.0 0.0	0.4 0.0 0.0	100.0 100.0 100.0
SC SPARTANBURG SC SUMTER	49 27	43 28	50.0 50.0	296.0 354.0	15798 17101	1060 715	15059 16471	977 529	2.7	1.7	99.9 100.0	TX TX	HARLINGEN	44	34	50.0 50.0	296.0 372.0	13869 14082	657 661	13869 14082	657	0.0	0.0 0.0	100.0 100.0
SC SUMTER	63	38	50.0	165.0	2186	116	2118	115	0.0	0.0	100.0		HOUSTON	2 8	35 10 9	000.0 21.9	588.0 564.0	50318 37773	3934 3868	44930 37240	3865 3850	0.0	0.0 0.0	100.0 99.4
SOUTH DAKOTA SD ABERDEEN SD ABERDEEN	9 16	28 17	672.0	427.0	34180	131	28565	112	0.0	0.0	100.0		HOUSTON	13	32 7	85.4 96.8	570.0 588.0	44534 44297	3901 3900	42875 41721	3870	0.0	0.0	100.0 100.0
SD BROOKINGS SD EAGLE BUTTE	16 8 13	17 18 25	50.0 801.6 660.8	357.0 229.0 518.0	20455 24013 39363	75 139 20	20039 20117 34778	71 127 17	0.0 0.4 0.0	0.0 1.6 0.0	100.0 100.0 100.0		HOUSTON	20	19 2	277.1 239.0 239.1	438.0 552.0 594.0	25772 27880 31352	3782 3788 3825	25619 27863 31101		0.1 0.7 0.4	0.0	100.0
SD FLORENCE SD HURON	3 12	25 22	1000.0 979.2	512.0 259.0	44498 25074	192 80	44067 21367	198 69	0.0 0.0 0.0	0.0 0.0 0.0	97.0 99.3		HOUSTON	39	38 2	22.2	594.0 594.0 429.0	27711 20486	3825 3779 3695	27530 20482		0.4 0.0 0.0	0.1 0.0 0.0	100.0 100.0 100.0
SD LEAD SD LEAD	5	29 30	1000.0 793.0	564.0 576.0	42705 40395	145 145	43909 38672	149 144	0.0	0.0	99.3 94.1 99.7	TX TX	RVING JACKSONVILLE	49	48 1	81.4 01.2	365.0 482.0	19464 19968	3095 3910 553	19323 19872	3907	0.0	0.0	100.0 100.0 99.9
SD LOWRY SD MARTIN	11 8	15 23	368.5 1000.0	317.0 265.0	27749 25911	29 29	21318 23533	24 27	0.0 0.0	0.0	100.0 100.0		KERRVILLE	51 35	52 32 2	70 .9	500.0 536.0	20118 23092	3688 1416	20050 22701	3687 1411	0.0	0.0	100.0 9 9 .8
SD MITCHELL SD PIERRE SD PIERRE	5 4	19	1000.0 1000.0	460.0 378.0	40741 36571	373 51	38297 32608	340 46	0.0	0.0	96.5 99.9		LAKE DALLAS	55	54	50.0 70.7	408.0	16884 10413	540 3602	16864 10253		0.0	0.0	99.4 100.0
SD PIERRE SD RAPID CITY SD RAPID CITY	10 3 7	21 22 18	586.1 1000.0 945.5	488.0 201.0 204.0	35323 23926 20618	58 126 122	32008 23814 18203	55 128 118	0.0	0.0	99.3 95.6	TX TX TX	LAREDO	13	14 1	26.4 43.5 81.0	312.0 280.0 67.0	26393 19978 6996	140 143 132	25684 20347 6972	137 143 132	0.0	0.0	99.9 95.8
SD RAPID CITY SD RAPID CITY SD RAPID CITY	9 15	26 16	945.5 76.3 50.0	204.0 202.0 155.0	13922 10537	106 103	18203 13113 10141	118 106 98	0.0 0.0 3.5	0.0 0.0 0.3	99.9 99.4 100.0		LLANO	14	27 1	74.1 69.0	269.0 381.0	18908 17537	132 236 536	6972 17301 17275	132 119 521	0.0 6.9 0.6	0.0 4.9 0.4	100.0 99.9 99.7
SD RELIANCE SD SIOUX FALLS	6 11	14 32	1000.0 819.1	338.0 610.0	34748 43499	59 531	32119 34181	56 412	0.0	0.0	99.6 100.0	TX TX	LUBBOCK LUBBOCK	5 11	3 9 10 43 10	00.0	226.0 232.0	28414 25326	364 351	28269 24403	364 349	0.0 1.8	0.4 0.0 0.3	99.7 99.8 100.0
SD SIOUX FALLS SD SIOUX FALLS	13 17	29 7	769. 2 3.2	610.0 151.0	41744 6670	447 160	35241 6618	417 159	0.0	0.0	98.1 100.0	TX TX	LUBBOCK	13 16	38 10 25	00.0 50.0	268.0 83.0	25086 5191	342 235	24059 5179	342 235	0.0 0.3	0.0 0.0	100.0 100.0
SD SIOUX FALLS SD SIOUX FALLS SD SIOUX FALLS	23 36 46	24 40	50.0 50.0	54.0 293.0	1623 15246	122 228	1623 15226	122 228	0.2	0.0	100.0 99.9	TX TX TX	LUBBOCK	34	35 1	52.7 21.0	256.0 256.0	16287 14190	300 295	16194 14980	300 295	1.3 0.0	0.0	100.0 94.5
SD SIOUX FALLS SD VERMILLION	46 2	47 34	154.0 1000.0	607.0 232.0	32796 29218	387 441	31976 28686	377 434	0.0	0.0	100.0 99.8		MCALLEN	48	46	13.3 80.1 00.0	204.0 288.0 323.0	18032 14991 34576	223 658 345	16010 14959 33060	206 656 341	3.6 0.0	5.0 0.0	100.0
																50.0	020.0	04070	345	33060	341	0.0	0.0	100.0

Defining the ture Broadcasting

Cable *zes*

For more information call:

Sheila Rice <u>Publisher</u> 245 W. 17th Street - New York, NY 10011 [212]-337-6995 - Fax: [212]-337-7066 srice@cahners.com

Robert Foody Account Executive 245 W. 17th Street - New York, NY 10011 (212)-337-7026 - Fax: (212)-337-6948 rfoody@cahners.com

Chuck Bolkcom Account Executive 14601 Linn Court - Westfield, IN 46074 [317] 815-0882 - Fax: [317] 815-0883 chuckbolk@aol.com

DigitalTelevision is exclusively dedicated to reporting on the latest developments in digital technologies, strategies being employed by leading-edge companies and new product introductions.

SONY

dtv

The mission of DigitalTelevision is to keep you on the cutting edge of this rapidly changing environment in the broadcast, cable, and satellite industries... from acquisition through production to transmission.

		From A to V on			ext of the FCC's targ	et list of 1	,606 statio				
STATE AND CITY CHA	SC DTV DTV POWER AN CHAN (KW)	DURING TRANSITION ANTENNA AREA PEOPLE HAAT(in) (Mg km) (thoma)	EXISTING TSU CURRENT SERVICE NEW INTER AREA PEOPLE AREA (Sq.km) (thous) (* NL Area)	PEOPLE MATCH	STATE AND CITY	NŤSC DT Chan <u>cha</u> i	V DTV POWER ANTE N (kW) HAA		TION CURRENT SERV PLE AREA PEOP	(ISTING NTSC VICE NEW INTERFEF PLE AREA P PUS) (% NL Area) (%	PEOPLE MATCH
TX ODESSA	19 18 50.0 7 31 1000.0	222.0 8477 141 226.0 25478 279	8445 140 6.7 25006 278 0.0	3.1 100.0 0.0 100.0	WA YAKIMA	47 21	50.0 280				
TX ODESSA 2	9 15 486.4 24 23 99.8 36 22 50.0	387.0 33018 325 335.0 18882 289	29562 297 0.0 18874 289 0.8	0.0 100.0 0.0 100.0	WISCONSIN WI APPLETON	32 59	50.0 336		0 16889 75	i0 0.0 0.0	0 100.0
TX ODESSA 4	36 22 50.0 12 43 50.0 4 40 1000.0	88.0 4555 225 146.0 7035 243 360.0 36385 778	4823 225 0.0 7435 243 0.0 32998 763 0.0	0.0 94.4 0.0 94.6 0.0 99.7	WI CHIPPEWA FALLS WI EAGLE RIVER	48 49 34 28	50.0 213 52.8 127	.0 9995 7	0 10007 7	1 1.5 0.8	0 96.8 B 99.1
TX RIO GRANDE CITY 4 TX ROSENBERG 4	10 20 50.0 15 46 65.7	113.0 10336 106 439.0 19437 3656	10328 106 0.0 19380 3655 0.0	0.0 100.0 0.0 100.0	WI EAU CLAIRE WI EAU CLAIRE WI FOND DU LAC	13 39 18 15 68 44	944.3 607 50.0 226 122.7 506	.0 11397 23	1 11320 23	0 0.3 0.1	1 100.0
TX SAN ANGELO	3 16 204.5 6 19 1000.0 8 11 18.8	183.0 17390 120 277.0 30653 140 442.0 32951 154	16339 119 0.0 26403 127 0.0 29799 148 0.0	0.0 100.0 0.0 99.5 0.0 99.4	WI GREEN BAY WI GREEN BAY	2 23 5 56	1000.0 381 1000.0 341	.0 37771 105	5 35158 1004	4 1.0 0.4	4 99.9
TX SAN ANTONIO TX SAN ANTONIO	4 58 1000.0 5 55 1000.0	451.0 40688 1703 424.0 37732 1587	257 55 140 0.0 37111 1591 0.0 36112 1588 0.0	0.0 99.4 0.0 99.4 0.0 97.5	WI GREEN BAY WI GREEN BAY	11 51 26 41	1000.0 384 285.5 356	.0 23465 92	4 23171 915	5 3.0 1.5	4 100.0 5 100.0
TX SAN ANTONIO 1	9 20 827.3 2 48 989.1 23 16 50.0	283.0 26936 1510 451.0 35839 1572 261.0 11425 1202	25660 1499 0.6 34879 1571 0.5	0.3 99.6 0.4 99.0	WI GREEN BAY WI JANESVILLE WI KENOSHA	38 42 57 32 55 40	50.0 360 79.3 342 97.2 144	.0 15937 106	1 16225 1067	7 1.1 0.6	6 97.0
TX SAN ANTONIO 2	29 30 231.8 11 39 196.8	261.0 11425 1363 443.0 23843 1505 432.0 22602 1488	11306 1362 1.2 23364 1497 0.3 22090 1466 0.0	0.2 99.9 0.1 100.0 0.0 100.0	WI LA CROSSE WI LA CROSSE	8 53 19 14	1000.0 469 50.0 347	.0 36877 68	1 29076 525	5 0.5 0.4	\$ 100.0
TX SHERMAN 1	38 125.6 12 20 394.0	456.0 19327 1465 543.0 38698 684	18560 1454 0.0 29746 384 0.0	0.0 100.0 0.0 100.0	WI LA CROSSE WI LA CROSSE	25 17 31 30	50.0 306 50.0 347	.0 12633 25 .0 17544 31	0 11804 228 0 16864 297	8 0.2 0.1 7 2.6 1.7	100.0 7 100.0
TX SWEETWATER 1	7 10 3.2 2 20 560.8 6 50 1000.0	135.0 5587 21 427.0 32329 238 573.0 47381 1090	5431 21 0.0 29841 233 2.1 35310 971 0.0	0.0 99.9 0.6 97.4 0.0 99.2	WI MADISON WI MADISON WI MADISON	3 50 15 19 21 20	380.2 469 50.0 352 50.0 453	.0 18214 81	6 17836 771	1 0.5 0.4	98.3
TX TEXARKANA TX TYLER	6 15 1000.0 7 38 1000.0	482.0 43756 1018 302.0 28271 703	32460 884 0.0 23380 619 0.0	0.0 100.0 0.0 100.0	WI MADISON WI MADISON	27 26 47 11	228.3 455 3.2 450	.0 25909 105	6 26561 1071	1 2.9 4.3	97.1
TX VICTORIA 2	9 34 50.0 5 15 52.3 0 53 732.0	149.0 7797 117 311.0 16145 165 552.0 39010 853	7797 117 0.1 16084 164 0.0 35434 811 0.0	0.0 100.0 0.0 100.0 0.0 99.9	WI MANITOWOC WI MAYVILLE	16 19 52 43	50.0 129 50.0 120	.0 2183 8	7 2155 85	5 1.3 0.8	3 100.0
TX WACO 2 TX WACO 3	5 26 234.7 4 20 50.0	558.0 28933 716 155.0 4781 201	26263 595 0.0 4721 201 0.1	0.0 100.0 0.0 100.0	WI MENOMONIE WI MILWAUKEE WI MILWAUKEE	28 27 4 28 6 33	50.0 346 1000.0 305 1000.0 305	.0 33003 271	5 24264 2170	0 0.0 0.0	98.8
TX WACO 4 TX WESLACO TX WICHITA FALLS	4 57 200.2 5 13 40.0 3 28 1000.0	552.0 22375 599 290.0 32933 672 305.0 33377 388	22407 608 0.5 31728 675 0.0 30557 369 0.0	0.0 98.9 0.0 99.7	WI MILWAUKEE WI MILWAUKEE	10 8 12 34	9.9 343 832.8 305	.0 26703 245	7 24134 2110	0 0.1 0.0	98.4
TX WICHITA FALLS	3 28 1000.0 6 22 1000.0 8 15 96.3	305.0 33377 388 311.0 32101 367 329.0 17791 320	30557 369 0.0 28057 358 0.0 17915 320 2.4	0.0 100.0 0.0 94.2 1.0 99.3	WI MILWAUKEE WI MILWAUKEE WI MILWAUKEE	18 61 24 25 30 22	519.8 307 111.2 313	.0 20074 224 .0 17125 208	3 19192 2150 7 17044 2071	0 0.1 0.0 1 0.7 0.2	0 100.0 2 99.7
UTAH UT CEDAR CITY	4 14 365.6	836.0 36597 75			WI MILWAUKEE WI MILWAUKEE	30 22 36 35 58 46	50.0 293 59.6 283 139.7 339	.0 13997 185	4 14630 1875	5 1.3 0.8	95.7
UT OGDEN UT OGDEN 3	9 34 304.0 0 29 60.3	893.0 20702 1368 1190.0 22509 1371	40743 86 0.0 21568 1375 0.2 21299 1358 0.0	0.0 88.8 0.0 95.4 0.0 99.5	WI PARK FALLS WI RACINE	36 47 49 48	50.0 445 176.4 303	.0 19939 10 .0 17140 210	6 19134 97 3 16621 1997	7 1.7 1.4 7 2.7 1.1	100.0 100.0
UT PROVO 1	1 39 402.8 6 17 253.0	896.0 23981 1360 57.0 8179 329	24644 1359 0.0 7461 295 0.0	0.0 94.9 0.0 100.0	WI RHINELANDER WI SUPERIOR WI SURING	12 16 6 19 14 21	510.5 506 1000.0 308 50.0 201	.0 32476 28	6 28518 25 6	6 0.0 0.0	99.9
UT SALT LAKE CITY UT SALT LAKE CITY	4 40 529.6 5 38 539.4	933.0 33667 1402 1180.0 34890 1401 1152.0 35596 1407	44486 1484 0.0 44280 1479 0.0 47582 1468 0.0	0.0 75.2 0.0 77.1 0.0 74.8	WI WAUSAU WI WAUSAU	7 40 9 29	836.0 369 669.8 369	.0 30184 48 .0 32021 49	1 27045 431	1 0.0 0.0	97.2
UT SALT LAKE CITY UT SALT LAKE CITY 1	7 42 430.5 3 28 190.6	924.0 29562 1392 1116.0 21249 1385	30768 1397 0.1 19545 1356 0.0	0.0 95.9 0.0 96.5	WI WAUSAU	20 24	50.0 300				
UT ST. GEORGE 1.	4 27 84.2 2 9 3.2	1181.0 28260 1384 42.0 1767 43	26587 1374 0.1 1631 41 0.0	0.0 99.7 0.0 100.0	WEST VIRGINIA WV BLUEFIELD WV BLUEFIELD	6 46 40 14	1000. 0 372 50.0 387				
VIRGINIA VA ARLINGTON 1- VA ASHLAND 6:		173.0 14889 5804	15213 5853 4.8	0.8 97.5	WV CHARLESTON WV CHARLESTON	8 41 11 19	388.5 372 71.4 525	0 26064 929 0 22981 840	9 24529 889 6 20575 785	0.0 0.0	99.7
VA BRISTOL VA CHARLOTTESVILLE 2	5 28 1000.0	262.0 11365 925 680.0 36741 1255 363.0 20632 651	10517 908 0.0 38646 1387 0.0 20736 649 2.7	0.0 100.0 0.0 89.7 6.7 95.6	WV CHARLESTON WV CLARKSBURG WV CLARKSBURG	29 39 12 52 46 28	50.0 212 1000.0 262 50.0 244	0 23066 589	21524 531	0.1 0.0	99.8
VA CHARLOTTESVILLE 4 VA DANVILLE 24 VA FAIRFAX 50	4 41 50.0	352.0 8353 227 107.0 5695 306	7661 205 2.0 5650 296 5.5	0.7 99.8 3.0 99.4	WV GRANDVIEW WV HUNTINGTON	9 53 3 23	1000.0 305 444.5 388	0 23498 599	22111 545	5 0.0 0.0	97.1
VA FRONT ROYAL 44 VA GOLDVEIN 55	2 21 50.0	215.0 11753 4371 398.0 7856 243 229.0 14199 3791	11068 4071 3.9 6366 225 2.7 13042 2821 1.1	2.0 98.8 1.8 100.0 0.2 99.9	WV HUNTINGTON WV HUNTINGTON WV LEWISBURG	13 54 33 34	430.9 387 63.1 379	0 16652 735	5 16434 723	3 1.4 0.4	100.0 99.5
VA GRUNDY 60 VA HAMPTON 11 VA HAMPTON-NORFOLK 11	3 41 923.2	763.0 14722 612 301.0 28338 1715 204.0 15055 1557	13657 575 0.0 23151 1590 0.0	0.0 99.9 0.0 100.0	WV LEWISBURG WV MARTINSBURG WV MORGANTOWN	59 48 60 12 24 33	50.0 568 3.2 312 145.4 457	0 11165 503	9860 476	6 0.1 0.0	99.7
VA HAMPTON-NORFOLK 15 VA HARRISONBURG 15 VA LYNCHBURG 15	3 49 95.2	294.0 17265 1537 646.0 16415 443 625.0 33092 1044	17265 1537 0.5 20828 532 1.6 26866 836 0.0	0.0 100.0 0.4 75.5 0.0 97.7	WV OAK HILL WV PARKERSBURG	4 50 15 49	1000.0 226 50.0 189	0 22396 568 0 9484 281	3 22416 539	0.0 0.0	
VA LYNCHBURG 2 VA MANASSAS 66 VA MARION 52	6 43 68.5	500.0 18430 642 168.0 12144 3867	18438 627 1.1 12814 4000 0.1	5.3 95.9 0.0 93.8	WV WESTON WV WHEELING	5 58 7 32	1000.0 268 996.9 293				
VA MARION 52 VA NORFOLK 33 VA NORFOLK 33	3 58 1000.0	445.0 11661 316 299.0 33646 1832 277.0 14070 1498	9959 265 0.9 26137 1739 0.0 14074 1498 0.0	0.5 99.9 0.0 100.0 0.0 100.0	WYOMING WY CASPER	2 17	1000.0 610	0 44057 80) 45716 79	0.0 0.0	94.3
VA NORFOLK 45 VA NORTON 47 VA PETERSBURG 8	7 32 50.0	155.0 6111 1349 591.0 18409 750	6111 1349 0.0 15776 624 1.1	0.0 100.0 0.6 100.0	WY CASPER WY CASPER WY CHEYENNE	14 15 20 18	54.7 573. 50.0 582.	0 9746 63	9090 63	3.7 0.0	99.8 95.5
VA PETERSBURG 8 VA PORTSMOUTH 10 VA PORTSMOUTH 27	31 729.0	320.0 27478 1244 302.0 28891 1778 296.0 18588 1563	24875 1178 0.0 26971 1652 13.8 18925 1566 0.4	0.0 99.6 3.4 100.0 0.1 98.2	WY CHEYENNE WY CHEYENNE WY CHEYENNE	5 30 27 28 33 11	1000.0 189. 173.0 232. 3.2 148.	0 13238 331	13110 329	0.1 0.0	
VA RICHMOND 6 VA RICHMOND 12 VA RICHMOND 23	2 54 1000.0	256.0 31166 1473 241.0 25977 1257	26888 1361 0.0 20983 1103 0.0	0.0 99.6 0.0 99.7	WY JACKSON WY LANDER	2 14 4 8	50.0 304 . 60.0 463.	0 4438 11 0 36374 33	4626 11 37280 33	1.2 0.0 0.0 0.0	95.7
VA RICHMOND 23 VA RICHMOND 35 VA RICHMOND 57	5 26 67.8	327.0 21675 1104 384.0 22035 1068 293.0 13908 945	21868 1106 0.0 22414 1089 7.2 13872 945 2.8	0.0 99.0 3.5 96.5 0.4 100.0	WY LANDER WY RAWLINS WY RIVERTON	5 7 11 9 10 16	31.7 82. 3.2 70. 274.5 526.	0 2330 10	2097 10	0.0 0.0	100.0
VA ROANOKE 7 VA ROANOKE 10 VA ROANOKE 15		610.0 37673 1237 610.0 33596 1141 610.0 33596 1141	33927 1131 0.0 31364 1092 0.2	0.0 99.6 0.2 97.5	WY ROCK SPRINGS WY SHERIDAN	13 21 12 21	393.4 495. 1000.0 372.	0 33285 45	30589 45	0.0 0.0	100.0
VA ROANOKE 15 VA ROANOKE 27 VA ROANOKE 38	17 88.7	634.0 25760 930 607 0 19044 818 616.0 14302 649	20742 827 1.2 18536 815 3.4 13842 640 2.6	0.9 99.2 2.8 95.1 1.6 99.4	GUAM GU AGANA	8 2	10 205				
VA STAUNTON 51 VA VIRGINIA BEACH 43		680.0 7437 249 261.0 18835 1572	6357 220 1.3	0.5 100.0 0.0 99.9	GU AGANA GU AGANA	8 2 10 4 12 5	1.0 305. 3.2 304. 3.2 61.	0 Clear channel	s; no interference e s; no interference e s; no interference e	evaluation perform	med
VERMONT VT BURLINGTON 3		835.0 40609 564		0.0 91.9	GU TAMUNING	14 17	50.0 33.		s; no interference e		
VT BURLINGTON 22 VT BURLINGTON 33 VT BURLINGTON 44	3 32 50.0	835.0 27349 485 815.0 24890 447 840.0 25178 453	24512 444 0.4 23364 428 0.6	0.2 99.9 0.3 100.0 0.1 99.8	PUERTO RICO PR AGUADA PR AGUADILLA	50 62 12 69	50.0 343. 691.8 665.		10140	9.8 - 0.0 -	100.0
VT HARTFORD 31 VT RUTLAND 28	25 72.6 56 50.0	677.0 16298 365 429.0 10646 249	15770 351 2.5 10054 243 0.0	1.9 97.1 0.0 100.0	PR AGUADILLA PR AGUADILLA	32 34 44 17	50.0 296. 50.0 372.	0 15358 - 0 20575 -	4652 - 13040 -	65.4 - 5.0 -	98.8 100.0
VT ST. JOHNSBURY 20 VT WINDSOR 41		592.0 17041 177 684.0 18661 458		0.3 100.0 2.9 99.1	PR ARECIBO PR ARECIBO PR BAYAMON	54 53 60 61 36 59	50.0 600. 55.0 242. 50.0 329.	0 15529 -		11.4 - 0.0 - 14.9 -	99.3 100.0 100.0
WASHINGTON WA BELLEVUE 33		286.0 4020 1944		9.0 99.8	PR CAGUAS PR CAGUAS	11 56 58 57	707.9 355. 50.0 329.	0 31007 - 0 18628 -	21824 - 8316 -	0.0 - 13.2 -	100.0 100.0
WA BELLEVUE 51 WA BELLINGHAM 12 WA BELLINGHAM 24	35 612.2	739.0 21493 2960 722.0 39879 1034 676.0 6322 206	37790 581 0.0	0.4 100.0 0.0 99.7 0.0 100.0	PR CAROLINA PR FAJARDO PR FAJARDO	52 51 13 33 40 16	50.0 585. 281.8 863. 50.0 839.	0 45149 -	32793 -	00 -	100.0
WA CENTRALIA 15 WA EVERETT 16	19 50.0 31 290.6	347.0 12675 317 239.0 15341 2878	11570 297 0.8 14315 2789 0.2	1.3 97.0 0.0 99.4	PR GUAYAMA PR HUMACAO	46 45 68 49	50.0 839.0 50.0 642.0 50.0 594.0	0 28750 -	27956 -	5.5 -	99.1
WA KENNEWICK 42 WA PASCO 19 WA PULLMAN 10	18 50.0	390.0 14786 250 366.0 15893 242 408.0 25735 256	15293 225 0.0	0.0 100.0 0.0 100.0 0.0 99.9	PR MAYAGUEZ PR MAYAGUEZ PR MAYAGUEZ	3 35 5 29	1000.0 691. 1000.0 610.	0 49598 - 0 45004 -	40712 - 44597 -	0.0 - 0.0 -	94.8 91.1
WA RICHLAND 25 WA RICHLAND 31	26 50.0 38 50.0	411.0 17257 267 370.0 6994 162	16636 250 0.0 6483 158 0.0	0.0 100.0 0.0 100.0	PR MAYAGUEZ PR MAYAGUEZ PR NARANJITO	16 63 22 23 64 65	50.0 347.0 50.0 620.0 50.0 142.0	0 28506 -	27691 -	41.7 - 0.0 - 6.4 -	99.9
WA SEATTLE 4 WA SEATTLE 5 WA SEATTLE 7	38 1000.0 48 1000.0 39 1000.0	247.0 26917 3048 250.0 27042 3052 250.0 23973 3014	27359 3034 0.0	0.0 93.9 0.0 94.5 0.0 98.6	PR PONCE PR PONCE	7 66 9 43	407.4 826.0 380.2 857.0) 46962 -) 44518 -	46824 - 45819 -	0.0 -	100.0 96.8
WA SEATTLE 9 WA SEATTLE 22	41 1000.0 25 247.1	252.0 22539 2947 271.0 20306 2972	23225 2982 0.0 18838 2933 0.1	0.0 92.7 0.0 100.0	PR PONCE PR PONCE PR PONCE	14 15 20 19 26 25	50.0 861.0 50.0 259.0 50.0 302.0) 15818 -	30272 - 7812 -	1.1 - 175 -	99.9 100.0
WA SEATTLE 45 WA SPOKANE 2 WA SPOKANE 4	20 1000.0	287.0 4035 1885 671.0 44955 567 933.0 47131 538	46495 549 0.0	1.6 100.0 0.0 93.8 0.0 94.4	PR PONCE PR SAN JUAN	48 47 2 28	50.0 302.0 50.0 247.0 871.0 861.0) 15454 -		5.9 -	
WA SPOKANE 6 WA SPOKANE 7	15 1000.0 39 945.6	653.045136562558.035010543	45962 568 0.0 34472 518 0.0	0.0 96.5 0.0 98.7	PR SAN JUAN PR SAN JUAN PR SAN JUAN	4 27 6 55	851.1 873.0 977.2 825.0) 53006 -) 54314 -	41839 - 41882 -	00 - 0.0 -	96.8 99.9
WA SPOKANE 22 WA SPOKANE 28 WA TACOMA 11	30 95.4		24953 477 0.2	0.1 98.9 2.7 100.0 0.0 99.6	PR SAN JUAN PR SAN JUAN PR SAN JUAN	18 32 24 21 30 31	50.0 848 (50.0 581.0 75.9 287.0) 27602 -	21905 -		100.0 100.0 100.0
WA TACOMA 13 WA TACOMA 20	18 602.8 14 135.4	610.0 34985 3160 491.0 21540 2985	31399 3038 0.0 20756 2893 0.6	0.0 98.7 0.4 99.9	PR SAN SEBASTIAN PR YAUCO	38 39 42 41	50.0 332.0 50.0 852.0) 18642 -	8720 -	6.0 -	100.0
WA TACOMA 28 WA TACOMA 56 WA VANCOUVER 49	42 152 4	232.0 11775 2542 570.0 26206 2943 527.0 17144 1772	25599 3046 0.1	5.4 99.6 0.2 99.1 0.0 99.9	VIRGIN ISLANDS	10 50	776.2 558 () 41952 -	39160 -	00 -	100.0
WA WENATCHEE 27 WA YAKIMA 23	46 50 0 16 50 0	424.0 10409 106 293.0 9705 196	8623 101 0.0 8523 195 0.0	0 0 100 0 0 0 100 0	VI CHARLOTTE AMALI VI CHARLOTTE AMALI	12 44 17 48	50 0 451 0 50.0 429 0) 22957 -) 22404 -	15899 - 10386 -	00 - 01 -	100 0 100 0
WA YAKIMA 29 WA YAKIMA 35		296 0 9706 198 293 0 10411 199		0 0 100 0 0 8 100.0	VI CHRISTIANSTED VI CHRISTIANSTED	8 20 27 5	501.2 292.0 1.0 121.0			0.0 - 94.1 -	100.0 100.0
				lorld Dadia I	lietem						

COMING MAY/JUNE 1998

AN IN-DEPTH LOOK AT THE POWER PLAYERS SHAPING DIGITAL V

igitalTelevision is the premiere publication dedicated to the digital field. In our May/June 1998 issue, we offer this opportunity to present your company to the broadcasting, cable, satellite and post-production industries. Our May/June issue of Digital Television will include a special section entitled, "Corporate Profiles". This will be a comprehensive reference on who's doing what in the digital TV industry. Our corporate profile will be a must-read issue.

Special Advertiser Notes:

The profile features a spread format that positions your ad on the right hand page and your company's corporate profile on the left hand page. This is the perfect environment to showcase your company's business philosphy, services offered and product categories covered. Write it yourself (we edit), or we will write it for you. Of course, with your final approval.

COMPANY PROFILE

YOUR AD

For more information call:

Sheila Rice Publisher 245 W. 17th Street - New York, NY 10011 [212]-337-6995 - Fax: [212]-337-7066 srice@cahners.com

Robert Foody

Account Executive 245 W. 17th Street - New York, NY 10011 [212]-337-7026 - Fax: {212]-337-6948 rfoody@cahners.com

Chuck Bolkcom

Account Executive 14601 Linn Court - Westfield, IN 46074 (317) 815-0882 - Fax: (317) 815-0883 chuckbolk@aol.com

SZEros and Ones Commentary from the Editors of Digital Television

The one world of digital

f there is a consensus among technologists everywhere, it is that the digital dimension will change television in ways beyond present imagining. Take, for example, this contemporary commentary:

"It may be 10 years or so before the fully fledged digital age comes to pass. But the process has already begun, and is advancing rapidly.

"In a few months time, digital broadcasting begins-first via satellite. The first digital televisions will soon be connected, via telecom lines, to the emerging magic of the Internet and to online services tailored for television. The desktop PC can already receive reasonable sound and rudimentary moving pictures via the Internet. The next generation of Microsoft Windows will turn the PC into a high quality TV receiver. The workplace will be an important media opportunity.

"Television will become more mobile. Robust digital transmission will be readily receivable on small portable screens. Some you will fold up and put in your pocket.

"In the home, in a few years' time, you will have a large, flat, widescreen display bringing brilliantly coloured, luminescent and sharp pictures and CD quality sound. With DVD-Digital Versatile Disc-a near cinema-quality playback machine will replace your current VCR."

We cite this speaker for two reasons: to remind the technologists within our reach of how wide is their opportunity, and how high is up in this new environment, but also to remind that the United States is not alone on this new frontier. The preceding observations originated

with John Birt, director general of the BBC, who was alerting his colleagues to the challenges of digital television. As he remarked, the globalization of culture will both enrich and threaten national diversity. But, even more importantly, digits will end the scarcity in media opportunity that until now has shaped national policy toward television and radio.

It will be more than a brave new world. It will be a complicated one, requiring skills not necessarily transferable from the analog environment. Add this to the challenges facing today's chief television technologists: the demand for training and recruitment. The first convergence in the digital media may be through the next generation of talent in the nation's broadcast centers and headends.

Cable's coming

s difficult as the transition to digital will be for broadcast television, it will be even more difficult for cable. That medium is hampered by having to build its technology one home at a time, while broadcasters can leap continents in a single bound. (The public, of course, has to cooperate in building the medium one home at a time.) Right now cable is stuck in its first generation of digital boxes, designed not for maximizing the quality of pictures but their numbers. Happily, an HDTVready second generation is on its way.

Nonetheless, forward thinkers in that medium also have their eyes on digital, and on high definition. Two major cable networks-Discovery and HBO- will have highdefinition services on satellite by the time terrestrial broadcasters are ready to loose their own miracles. Other cable networks-especially the movie services-will surely follow.

As we always say, the engineers come first. Cable's are no less busy.

ielevisior

245 West 17th Street New York, NY 10011-5300

Sheila S. Rice Publisher 212-337-6995 Fax: 212-337-7066 e-mail to:srice@cahners.com

Peggy Conlon Vice President/Group Publishe

> **Donald V. West** Editor-in-Chief

Cahners Publishing Co. **Bruce Barnet** President and **Chief Executive Officer Mark Lieberman Executive Vice President** Entertainment, Communications and Media Division **Kevin J. Condon** Senior Vice President and Chief Operating Officer **Dan Hart** Vice President Finance **Eric Rutter Circulation Director Sharon Goodman** Director of Manufacturing and Distribution Louis Bradfield **Distribution Director**

> Production 212-463-6567 Fax 212-463-6563

Art Direction David R. Borucki

Product Review Jules Abend

Electronic Production Supervisor Suzanne White 212-463-6569 Fax 212-463-6563

e-mail to:s.white@cahners.com

Circulation Inquiries Rich Frey Associate Circulation Director Subscription Inquiries 8773 South Ridgeline Blvd. Highlands Ranch, CO 80126-2329 303-470-4445 Fax: 303-470-4280

e-mail to: cahners.subs@denver.cahners.con

Sales Offices

New England/Mid-Atlantic **Robert Foody** 245 West 17th Street New York, NY 10011-5300 212-337-7026 Fax: 212-337-6948 e-mail to:rfoody@cahners.com

West Coast **Chuck Bolkcom** 14601 Linn Court Westfield, IN 46074 317-815-0882 Fax: 317-815-0883

Angelina Martins

Executive Assistant 245 West 17th Street New York, NY 10011-5300 212-337-6980 Fax: 212-337-7066 e-mail to:amartins@cahners.com

Advertisers' Index

The Advertisers' Index is provided as a reader service. Although every attempt has been made to make this index as complete as possible, the accuracy of all listings cannot be guaranteed.

Clark Wire - circle number 101 Page 30
Comark Communications - circle number $\textbf{102}\dots$. Page 17
Harris Corporation - circle number 103 Page 21
Hewlett Packard - circle number 104 Page 15
JVC - circle number 105 Page 19
LeBlanc - circle number 117 Page 38-39
Louth - circle number 106 Page 37
NDS - circle number 107 Page 6 - 7
NDTC - circle number 108 Page 31

Panasonic Broadcasting - circle number 109 Page 2 - 3
Phillips Digital Video Systems - circle number 110 Page 48
Quantel - circle number 111 Page 13
Seachange - circle number 112 Page 41
Silicon Graphics - circle number 113 Page 5
Sony Electronics Inc circle number 114 Page 10 -11
Sony Electronics Inc Page 23 - 28
Sony Electronics Inc circle number 115 Page 1
Tiernan Communications - circle number 116 Page 47

FOR MORE PRODUCT INFORMATION REMEMBER TO FILL OUT THE **READER SERVICE CARD....**

Tiernan produces the most comprehensive range of MPEG-2 equipment:

- High-performance MPEG-2 Encoders for 4:2:2 and 4:2:0 profiles
- MPEG-2/DVB IRDs for broadcast, professional and industrial applications
- Satellite Modulators for QPSK and 8PSK
- Interface products for satellite and terrestrial networking (including ATM)
- Conditional access for simple and complex networks
- Network management and control systems

Tiernan products *are* the cutting edge of technology.

Contact us for an MPEG-2 compression solution that can put you on the crest of the digital wave.

CUESS WHO'S EADING THE DIGITAL WAVE WITH PROVEN 43232 MPEG-2 RICHT NOW?

Others promised. We delivered the TE6 Encoder and TDR600 IRD. The first. The best. Only from Tiernan.

ERNAN

5751 Copley Drive, San Diego, CA 92111 USA TEL: +1 619 587-0252 • FAX: +1 619 587-0257 EMAIL: info@tiernan.com • WEB: http://www.tiernan.com

Leaders in Digital Television

World Radio History

TE6

TDR600

See us at NAB '98: Sands Booth T5159 and our LVCC Outdoor Booth.

We're bringing tomorrow together.

PHILIPS

PHILIPS

Be there.

NAB '98, Las Vegas, April 6 to 9, Booth #12701.

Phil ps Digital Video Systems is ready with solutions to get you to the future fast. No-one is better placed to help you migrate to DTV. Our multi-format approach lets you move ahead cost-effectively at your own pace, while respecting your existing investments. Visit us at NAB '98, and see how we can put the power of digital to work for you. To learn more, call us toll free at **1-800-962-4287**.

Morewoformation Gircle 110

PHILIPS

Let's make things better.