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A Mineral Survey for Piezo-Electric Materials 

By W. L. BOND 

BECAUSE of the increasing interest in piezoelectric materials in many 
branches of science an exhaustive study of the minerals was under- 

taken with the object of finding all the materials that could possibly be of 
use for piezo-electric elements. Much help was derived from existing data.1 

Considerations of symmetry show us that for a crystal to be piezo-elec- 
trically active it must belong to a crystal class that has no center of sym- 
metry (the Pentagonalicositetredral class of the cubic system, however, 
although it has no center of symmetry cannot be piezo active).2 This 
makes twenty classes of possible piezo activity and twelve classes that could 
not possibly be active. About 90% of the crystals found in nature fall in 
those classes having centers of symmetry. 

Although the mineralogical data are incomplete in their assignment of 
minerals to definite classes in the seven systems, the existing data give a 
start in the choosing of minerals likely to have useful piezo-electric 
properties. 

All available data were gone through to obtain the following list of min- 
erals classified by crystal structures. As many of the non-centric ones as 
were obtainable in the United States were tested by the method of Geibe 
and Scheibe3 (resonance in a thermionic oscillator circuit). Whenever the 
authorities differed on the classification of a mineral it was so examined if 
obtainable. 

In the mineral list, each mineral is numbered according to the number of 
the class in Groth's Physikalische Kristallographie, as follows: (*) indicat- 
ing classes of possible activity: 

1 Dana—A System of Mineralogy, Ford—Dana's Textbook of Mineralogy; Groth— 
Chemische Kristalographie; Landolt Bornstein—Tabellen; International Critical Tables; 
Zcitschrift fur Kristalographie. 2 W. Voigt, Kristal physik. 3 Zeils f Physik 33, pg. 761 (1925). 
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*3 Sphenoidal 
4 Domatic 
5 Prismatic 

*6 Bisphenoidal 
*7 Pyramidal 
8 Bipyramidal 

Monoclinic system 

Orthorhombic system 

*9 Bisphenoidal 
*10 Pyramidal 
*11 Scalenohedral 
*12 Trapezohedral 

13 Bipyramidal 
*14 Ditetragonal Pyramidal 

15 Ditetragonal Bipyramidal 

*16 Pyramidal 
17 Rhombohedral 

*18 Trapezohedral 
*19 Bipyramidal 
*20 Ditrigonal pyramidal 

21 Ditrigonal Scalenohedral 
*22 Ditrigonal Bipyramidal 

*23 Pyramidal 
*24 Trapezohedral 
25 Bipyramidal 

*26 Dihexagonal Pyramidal 
27 Dihexagonal Bipyramidal 

Tetragonal system 

Rhombohedral system 

Hexagonal system 

*28 Tetrahedral-Pentagonal-Dodecahedral 
29 Pentagonal Icositetrahedral 
30 Dyakis-Dodecahedral 

*31 Hexakis-tetrahedral 
32 Hexakis Octahedral 

Cubic system 

In addition to the above classification, the following list of minerals is 
annotated with the following symbols: 

A = active by test 
I = inactive by test 

R = unavailable or rare 
M = mineral occurs only massive, amorphous or 

in other unsuitable form 
S = crystal always very small 

H = mineral is always non-homogeneous 
U = unstable 
C = electrically conducting 

? = class not absolutely certain 

CLASSIFIED LIST OF MINERALS 
Actinolite 5 Allanite 5 Amosite M 
Adelite 5 Allemontite 21 Ampangabeite 8?UI 
Aegirite 5?I Allophane M Amphibole 5 PHI 
Aenigmatite 2 Almandite 32 Analcime 32 
Aeschynite 8 Altaite 32 Ancylite 8 
Alabandite *311 Aluminite M Andalusite 8 
Alamosite 5 Alunite 21 Andesine 2 
Albite 2 Alunogen M Andorite 8 
Algondonite H Amblygonite 2 Andradite 32 
Allactite 5?SI Amesite 5 Anemousite 2 
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Anglesite 8 Bismite 21?I Chillagite 10? 
Anhydrite 8 Bismuthinite 8 Chloanthite 30 
Ankeritc 17 Bismutite M Chlorastrolite H 
Annabergite 5 Blodite 5 Chlorite 5 
Annerodite 8 Blomstrandine 8?MI Chloritoid 5 
Anomite 5 Boleite 15?I Chlormanganokalite 21 
Anorthite 2 Boracite *7A Chloropal M 
Anorthoclase 2 Borax 5 Chloraphoenicite I 
Anthophyllite 8 Borickite M Chlorospinel 32 
Antigorite 5?H Bornite *111 Chondrodite 5 
Antlerite M Boulangerite 8 Chromite 32 
Apatite 251 Bournonite 8 Chrysoberyll 8 
Aphrosiderite ?I Braunite 15 Chrysohte 8 
Aphthitalite 21 Breithauptite *201 Cinnabar *181 
Apophyllite 15 Britholite 27?S Claudetite 5 
Aragonite 8 Brochantite 8 Clausthalitc M 
Ardennite 8 Bromyrite 32 Cleveite 32 
Ardunite M Brookite 8 Clinochlor 5 
Arfvedsonite 5 Brucite 21 Clinoclasite 5 
Argentite 32 Brushite 5 Clinohedrite *4A 
Argentojarosite I Bunsenite 32 Clinohumitc 5 
Argyrodite 32 Bytownite 2 Clinozoisite 5 
Arrhenite H Cobaltite *28C 
Arseniosideritc 8 Cabrerite 5 Cohenite M 
Arsonolite 32 Cacoxnite M Colemanite 5 
Arsenophyrite 8 Calamine *7A Collinsite I 
Ascharite M Calaverite 5 Collophanite M 
Astrakanite 5 Calciothorite M Coloradoite M 
Astrophyllite 8?I Calcite 21 Columbite 8 
Atacamite 8 Caledonite 8 Connellite 25 
Auerlitc 15 Calomel 15 Cookeite M 
Augite 51 Campylite 25 Cordylite 21 
Aurichalcite M Cancrinite 27 Cornetite ?I 
Automolite 32 Canfieldite 32 Corundum 21 
Aventurine 2 Cannizzarite ?I Corynite 281 
Axinite 2 Carnallite 8 Cotunnite 8 

Carnotite I Covellite *18?I 
Babingtonite 2 Carpholite 5 Crestmoreite M 
Baddeleyite 5 Caryocerite 21 Cristobalite M 
Baldaufrte ?R Cassiterite 15 Crocidolite M 
Barkevikite 5 Castorite 5 Crocoile 5 
Barite 8 Caswellite I Cronstedtite *16A 
Barytocalcite 5 Catapleite 5 Crookesite M 
Bastnasite I Celestite 8 Cryolite 5 
Baumhauerite 5 Celsian 5 Cryolithionite 32 
Bauxite M Cenosite 8?I Cuprite 32 
Beaverite ?S Cerargyrite 32 Cuproschcelite I 
Bechilite M Cerite 8 Cyanite 2 
Beckclite 32?S Cerrusite 8 Cyrtolite I 
Bementite 8?I Cervantite 8? 
Benitoite *221 Chabazite 21?I Dahllitc M 
Beraunitc I Chalcanthite 2 Danburite 8 
Bertrandite *71 Chalcedony 8?M Datolite 5 
Beryl 27 Chalcocite 8 Dawsonite M 
Beryllonite 8 Chalcolamprite 32 Dechenite 8 
Berzelianite MR Chalcophylhte 21?I Delessite ?SI 
Berzelite 32?I Chalcopyrite *11C Dellafosite I 
Betafite 32 Chalcosi'derite 2 Dclorenzite 8 
Bindheimite M Chalcostibite 8 Delvauxite M 
Binnite 32?I Chamosite M Demantoid 32 
Biotite 5 Chiastolite 8 Dcschloizite 8 
Bischofite 5 Childrenite 8?I Desmine 5 
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Deweylite 
Diamond 
Diaphorite 
Diaspora 
Diopside 
Dioptase 
Dixenite 
Dolemite 
Domeykite 
Douglasite 
Dufrenite 
Dufreneysite 
Dumortierite 
Dysanalyte 
Dyscrasite 

Edingtonite 
Eleonorite 
Ellsworthite 
Elpidite 
Embolite 
Emerald 
Emmonsite 
Emplectite 
Enargite 
Enstatite 
Eosphorite 
Epidesmine 
Epididymite 
Epidote 
Epistilbite 
Epistolite 
Epsomite 
Erikite 
Erythrite 
Erythrosiderite 
Euclase 
Euchroite 
Eucolite 
Eucairite 
Eudialyte 
Eudidylite 
Eulytite 
Euxenite 

Fairfieldite 
Fassaite 
Faujasite 
Fayalite 
Ferberite 
Fergusonite 
Ferrierite 
Florencite 
Fluocerite 
Fluorite 
Forsterite 
Forshagite 
Fouquerite 
Fowlerite 
Francolite 
Franklinite 
Freibergite 
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M Freyalite M Heulandite 5 
31?I Frieseite 8 Hielmite 8PI 

8 Fritzscheite 15 Hieratite 32 
8 Fuchsite I Hillebrandite M 
5 Hiortdahlite 2 

17 Gadolinite 5 Hisingerite M 
?SI Gageite I Hodgkinsonite 5PI 

17 Gahnite 32 Hoeferite M 
8 Galena 32 Hokutolite H 
5 Ganomalite I Holmqulstite 5PHI 
8 Garnet 32 Hopeite 8 
5 Gastaldite 5 Howlite M 
8 Gay-Lussite 5 Huebnerite 5 

32 Gedrite 8 Humite 8 
8 Gehlenite 15 Hussakite ♦13 

Germantite 32 Hutchinsonite 8 
*6A Gersdorffite 30 Hyalophane 5 
?R Geyserite M Hydroboracite 5 

MR Gilsonite M Hydromagnesite 5 
8 Gismondite 5 Hydrozincite M 

32 Glaserite 21 Hypersthene 8 
27 Glauberite 5 

?SI Glaucodot 8 Ilmenite 17 
8 Glauconite M Ilminerutile 15 
8 Glaucophane 5 Ilsemannite M 
8 Gmelinite 17 Ilvaite 8 

8PHI Goethite 8 Inesite 2 
8?SI Goslarite *61 lodembolite 32PI 

8 Graphite 21 lodobromite 32 
5 Greenockite ♦20IS lodyrite ♦26PI 

*4?A Griffithite M lolite 8 
5 Grossularite 32 

*6A Guanajuatite 8? Jadeite 5 
8 Gummite M Jamesonite 5PSI 
5 Gymnite M Jarosite 21 
8 Gypsum 5 Jeffersonite 5PI 5 

8?I Hackmanite I Jenkinsite 
Jezekite 
Johnstrupite 

M 
21 
M 

Haidingerite 
Halite 

PS 
32 

5? 
5 

21 Halloysite M Jordanite 5 
5 Hambergite 8 Joseite M 

♦311 Hancockite 5PS 
8 Hanksite 27 Kainite 5 

Hardystonite M Kalinite 30 
2 Harmotone 5 Kaolinite 5 
5 Hatchettolite 32 PI Kasolite I 

32 Hauerite *281 Kelihauite 5 
8 Hausmannite ♦111 Kentrolite 8 
5 Hauynite ♦311 Kermesite 5PSI *101 Hedenbergite 5 Kieserite 5 I 

21 
27 
32 

8 

Hedyphane 
Heintzite 
Hellandite 
Heloite 
Helvite 

M 
5 
5 

♦28PR 
*311 

Klaprotholite 
Klebelsbergite 
Knopite 
Kobaltmanganerz 

8 
PS 

32PI 
M 

M Hematite 21 Koenenite 21 
I Hercynite 32 Koppite 32 
2 Herderite 8 Komerupine 8 

25 Herrengrundite 5 Krennerite 8 
32 Hessite 32 Kroehnkite 5 

♦31C Hetaerolite M Kunzite 2 
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Labradorite 2 
Langbanite 17 
Langbeinite ♦28A 
Langite 8 
Lanthanite 8 
Lapis-lazuli H 
Laumontite 5 
Laurionite 8 
Laurite *28 
Lautarite 5 
Lavenite 5 
Lawsonite 8 
Lazulite 5 
Lazurite 5 
Leadhillite 5 
Lehnerite I 
Lehrbachite M 
Leonite 5 
Lepidolite 5 
Lepidomelane H 
Leucite *31?I 
Leucophanite *6A 
Leucophoenicite 5?I 
Libethenite 8 
Limonite M 
Linarite 5 
Linnaeite 32? 
Licroconite 5?I 
Liskeardite M 
Lithiophilite 8 
Loeweite 15 
Loellingite 8 
Loparite I 
Lorandite S 
Loranskite 8? 
Ludlamite 5?I 
Ludwigite M 

Magnesite 21 
Magnetite 32 
Magnetoplumbite I 
Malachite 5 
Malacon I 
Mallardite MI 
Manganhedenbergite 5?I 
Manganite 8 
Manganophyllite I 
Manganosite 32 
Manganotantalite 8? 
Marcasite 8 
Margarite 5?RI 
Margarosanite 2 
Margasite 5 
Marialite 13 
Marignacite 32 
Marmolite M 
Marshite *311 
Martite 32?I 
Mascagnite 8 
Matlockite 15?I 
Maucherite 15?I 
Meionite 151 

Melanite 32 
Melanocerite 21 
Melanophlogite ?SI 
Melanterite 5 
Melilite 15 
Meliphanite *9?A 
Mellite 15 
Mendozite 30 
Menilite M 
Merwinite I 
Mesolite 5 
Metacinnabarite *311 
Meta Torbernite I 
Metavoltine ?SI 
Miargyrite 5 
Microcline 2 
Microlite 32 
Microperthite ?HS 
Microsommite ?SI 
Miersite *31R 
Milarite 27* 
Millerite *201 
Mimetene 25 
Mimetite 25,231 
Minium ?S 
Mirabilite 5 
Mizzonite 13 
Molybdenite 27 
Molybdite 8 
Monazite 5 
Monticellite 8 
Montmorillonite M 
Montroydit 8 
Morensonite 6 
Morganite 27 
Mosandrite 5 
Mossite 15 
Mottramite M 
Muellerite M 
Muscovite 5 
Muthmannite *7R 

Nadorite 8?I 
Nagyagite 8 
Natrolite 8 
Natron 5 
Naumannite 32 
Nemalite M 
Neotantalite 32 
Neotocite M 
Nephelite *231 
Nephrite M 
Neptunite 5 
Nesquehonite 8?I 
Niccolite *201 
Nickolsonite 8 
Nickelbluete 5 
Nickeleisen 32 
Niter 8 
Nocerite 21?SI 
Northrupite 32 

Noselite *311 
Nowmeite M 

Ochrolite I 
Octahedrite N 15 
Okenite M 
Oligoclase 2 
Olivenite 8 
Olivine 8 
Omphacite M 
Onofrite 31 
Opal M 
Orpiment 8 
Orthoclase 2 
Osmiridium 21 
Otavite 21 
Ottrelite 2?I 

Pachnolite 5 
Pandermite 5 
Paragonite 5 
Parahoepite 2 
Paralaurionite 5 
Paratakamite 21? 
Paravavxite I 
Pargasite 5 
Paris! te 21 
Patronite M 
Pearceite 5 
Pectolite 5 
Penninite 5 
Pentlandite 32 
Percylite 32?I 
Periclase 32 
Peristerite 2 
Perovskite 8? 
Perthite ?H, S 
Petalite 5 
Petzite 32? 
Pharmacolite 5 
Pharmacosiderite *311 
Phenacite 17 
Phillipsite 5 
Phlogopite 5 
Phosgenite 15 
Phosphoferrite M 
Phosphophyllite 5 
Phosphosiderite 1 
Phosphuranylite M 
Pickeringite M 
Picotite 32 
Picromerite 5 
Piedmontite 5 
Pinakiolite I 
Pinguite M 
Finite M 
Pinnoite *101 
Pirrsonite *7 
Pisolite M 
Pitchblende 32 
Plagionite 5?I 
Plattnerite 15 
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Pleonast 32 Romeite 32?I Stilpnosiderite M 
Plumbojarosite 21 Roscoelite ?S Stolzite 13 
Polianite 15 Rosenbushite 5 Strengite 8 
Pollucite ?I Rowlandite M Stromeyerite 8 
Polybasite 5 Ruby 21 Strontianite 8 
Polycrase 8 Rumpfite M Struvite *7A 
Polydymite 32? Rutherfordine 5 Sulfoborite 8?R 
Polyhalite 5?I Rutile 15 Sulfur 8 or 7 
Polymignite 8 Sulvanite M 
Powellite 13C Salllorite 8 Sussexite M 
Prehnite *71 Sal-ammoniac *28 Svanbergite 21 
Priorite 8?I Salite 5 Sychnodymite 32 
Prismatine 8 Samarskite 8 Sylvanite 5 
Probertite M Sanidine 5 Sylvite *281 
Prochlorite 5?I Sapphirine 5 Symplesite ?SI 
Proustite *20C Sarcolite *10?I Syndalphite 5? 
Pseudobrookite 8?S Sartorite 5?S Sjmganite 5 
Pseudomalichite M Sassolite 2 
Psilomelane M Scheelite 131 Tachyaphaltite 15 
Psittacinite M Schefferite 5 Tachyhydrite 21M 
Ptilolite ?S Schirmerite M Talc' 5 
Pucherite 8 Schizolite 2 Tantalite 8 
Pumpellyite I Schorlomite 32 Tapiolite 15 
Pyroargyrite *201 Schreibersite M Tarbuttite 2 
Pyrite 30 Schrockingerite 8 Tasmanite ?S 
Pyroaurite 21 Schrotterite M Teallite 8?S, I 
Pyrochlore 32 Schwartzengergite ?S Tengerite M 
Pyrochroite *20?I Schwetzite *31 Tennantite *311 
Pyrolusite 8?HI Scolecite *4A Tenorite 8 
Pyromorphite 25 Scorodite 8 Tephroite 8 
Pyrope 32? Semseyite 5?I Tetradymite 21 
Phyrophanite 17 Senarmontite 32 Tetrahedrite *31C 
Pyrophyllite 8 Sepiolite M Thalenite 5 
Pyropissite M Serpentine 5 Thaumasite M 
Pyrosmallite I Serpierite 8?S Thenardite 8 
Pyrostilpnite 5 Shortite *7A Thermonatrite 8 
Pyroxene 5 Siderite 21 Thomsenolite 5 
Pyroxmangite 2 Sillimanite 8 Thomsonite 8 
Pyrrhotite *20?C Sipylite *101 Thorianite 32 

Skemmatite H Thorite 15 
Quartz *18 A Skutterudite 30 Thortveitite 8?I 
Quenselite I Smaltite *381 Thuringite M 
Quercyite M Smithsonite 21 Tiemannite *31A 
Quisqweite M Sodalite *31?I Tiger-eye M 

Sodaniter 21 Tilasite 5?I 
Ralstonite 32 Spencerite 5 Titanite 5?I 
Rammelsbergite 8 Spessartite 32 Titanmagneteisen 32 
Raspite 5 Sphalerite *31A Topaz 8 
Realgar 5 Spinel 32 Topazolite 32 
Rhabdophanite M Spodumene 5 Torbernite 15 
Rhodochrosite 21 Spurrite 5?I Tourmaline *20A 
Rhodolite I Staffelite M Trechmannite 17 
Rhodonite 2 Stannite *111 Tremolite 5 
Rhomite 2 Staurolite 8 Tridymite 32 ?I 
Richterite I Steenstrupine 21 Trimerite 2 
Richardite M Stephanite *7RI Triphylite 5 
Riebeckite 5 Sternbergite 8 Triplite 5 
Rinkite 5 Stibiconite M Triploidite 5 
Rinneit 21 Stibiotantalite *7A Tritomite 21? 
Ripidolite 5 Stibnite 8?I Troegeritc 5? 
Risorite 32 ?I Stichtite I Troilite M 
Riversideite M Stilbitc 5? Trona 5 
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Troostite 17 
Tscheffkinite M, H 
Tschermigite 30 
Tungstenite M 
Tungstite 8 
Turgite I 
Turquois 2 
Tychite 32 
Tyrolite M 
Tysonite 27 

Ulexite M 
Ullmannite 30 
Uralite PHI 
Uraninite 32 
Uranocricite 8? 
Uranophone M 
Uranopilite M 
Uranosphaerite M 
Uranospinite 8? 
Uranothallite 8 
Uranothorite M 
Uranotile 2 
Utahitc PS 
Uvanite 8PS 
Uvarogite 32 

Valentinite 8 
Vanadinite 251 

Variscite 8PS 
Vauxite I 
Vermiculite I 
Vesuvianite 15 
Villiaumite 32PI 
Vivianite 5 
Volborthite I 
Voltaite 32 PI 
Vonsenite 8PI 

Wad M 
Wagnerite 5 
Walpurgite 2 
Warwick! te I 
Wavellite I 
Wernerite *101 
Whewellite 5 
Whitneyite MI 
Wiikite I 
Wilkeite I 
Willemite 17 
Wilsonite I 
Witherite 8 
Wittichenite 8 
Woehlcrite 5 
Wolfachite 8 
Wolframite 5 

Wollastonite 5 
Wulfenite *10 
Wurtzite *20A 

Xanthoconite 21 
Xanthophyllite 5?I 
Xanthoxenite 5?S 
Xenotime IS 

Yttrialite M 
Yttrocerite M 
Yttrofluorite 32 
Yttrokrasite 8 
Yttrotantalite 8 

Zeratite M 
Zaophyllite I 
Zeunerite 15 
Zincite *19?I 
Zinkenite 8 
Zinwaldite 5 
Zircon 15 
Zirkelite 32 
Zoisite 8 
Zorgite M 
Zunyite *3 IAS 

Of the 830 minerals listed 70 belong to classes that allow piezo-activity 
but only 17 are found to be active by the Giebe and Scheibe test. (Our test 
of lodyrite was negative but Greenwood and Tomboulian4 found it to be 
active; on the other hand, we found Scolecite to be active while they report 
it inactive.) It may be that others of the remaining 56 classes have such 
small piezo-electric constants as to be undetectable. Others may be in- 
correctly classified as to symmetry. 

Of these active materials, quartz is the most important. Because of its 
excellent mechanical properties (stability, etc.) as well as for its relative 
cheapness it seems destined to remain one of the most important piezo ma- 
terials. 

Tourmaline is also important because of the high magnitude of its elastic 
moduli in certain directions; however, it cannot be obtained in large pieces 
of satisfactory homogeneity. 

Sphalerite is very difficult to handle because of its many cleavage planes, 
and appears to give little promise of becoming practically useful. Its activ- 
ity is quite marked. 

Homogeneous crystals of calamine appear to be very rare, so that work- 
able crystals large enough for ordinary piezo-electric application are un- 
obtainable. Most of the material occurs massive. 

4 On Piezo Electricity—Greenwood and Tomboulian—Zeits. f. Krist. Jan. 1932. 
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Epsomite gives a marked response but the crystals are generally small and 
they do not weather well. There is some possibility, however, that they 
can be made artificially. 

Boracite gives a marked response, but boracite alters slowly. Its imper- 
manence may bar it for some uses. 

Stibiotantalite occurs only in thin scales, and the necessary cuts must be 
made in the most wasteful way. Twinning is prevalent and the composi- 
tion varies widely. 

Scolecite occurs only as small crystals a few millimeters in diameter and a 
centimeter or so in length, uniformly twinned. 

lodyrite has been found to be active by other investigators. It is 
electrically conductive, very soft and not very common. 

Struvite is soft, unstable, and occurs only in small crystals. 
Zunyite occurs only in minute crystals. 
Langbeinite slowly changes its crystal structure. It may be made ar- 

tificially so may be of some use if it can be kept from alteration. 
Leucophanite and Meliphanite are related minerals. Neither seems to 

occur in good (i.e., homogeneous and untwinned) crystals of usable size. 
Wurtzite does not appear very active but good crystals were not 

obtainable. 
Tismannite crystals were also unobtainable, but fragments of massive 

tiemannite responded. Crystals might respond more energetically if they 
were obtainable, but minerals that are too difficult to get would not be of 
practical use. 

Epistilbite occurs only in small specimens, uniformly twinned. 
The mineral clinohedrite is strongly active but crystals are very rare. 
Cronstedtite and Edingtonite are very weakly active. Crystals of these 

are very rare. 



The Fundamental Equations of Electron Motion 
(Dynamics of High Speed Particles) 

By L. A. MacColi 

I. Introduction 

In work relating to the motion of electrons and other particles it is fairly 
common to assume that the particles obey the laws of Newtonian dynamics. 
That is, briefly, it is assumed that the rectangular coordinates (x, y, z) of 
the particle under consideration satisfy the differential equations 

mx = X, my = F, m'z = Z, 

where m is the mass of the particle (assumed constant), X, F, and Z are the 
components of the applied force, and the dots indicate differentiation with 
respect to the time t. 

However, it is well recognized now that the above equations are not 
strictly correct, and that they merely represent an approximation which is 
adequate when the speed of the particle is sufficiently small compared with 
the speed of light. The system of dynamics based upon the correct equa- 
tions1 (which will be exhibited presently) is commonly called relativistic 
dynamics, not because any knowledge of the theory of relativity is essential 
to its understanding and use2, but because it is in agreement with the theory 
of relativity (which Newtonian dynamics is not), because it was first de- 
veloped in connection with work on the theory of relativity, and because 
even yet virtually all of the expositions of the subject are to be found in 
books and papers dealing primarily with the theory of relativity. 

Just where the dividing line should be set between cases in which New- 
tonian dynamics is an adequate approximation and cases in which it is 
necessary to use relativistic dynamics is, of course, a rather vague question 
which cannot be answered simply and definitely. We may note, however, 

1 It is not the purpose of this article to discuss questions of fundamental physics, or 
the physical validity of any particular equations. For purposes of discussion, we assume 
outright that relativistic dynamics is at least more nearly correct than is Newtonian 
dynamics. , . , 2 The theory of relativity can be described briefly as a theory of the relations between 
the descriptions of phenomena in terms of different systems of reference. We shall not 
be concerned with this theory, because we shall be employing the same reference system 
throughout most of our discussion. In the final section of the paper we shall consider 
purely geometrical transformations of the coordinate system. These transformations, 
however, involve nothing that is really characteristic of the theory of relativity in the 
usual sense. 

153 



154 BELL SYSTEM TECHNICAL JOURNAL 

that according to relativistic dynamics the mass of a five thousand volt 
electron is about one per cent greater than the mass of an electron at rest. 
From this we can infer that, while Newtonian dynamics may be adequate 
for many purposes in our studies of electron motion, we do not have any 
great amount of margin, and that it will be necessary to use relativistic 
dynamics whenever we wish to obtain really good results concerning the 
motion of even moderately high speed electrons. 

This article is purely expositor}'. Its purpose is to set forth the funda- 
mental equations and theorems of relativistic particle dynamics in a clear 
and concise form, unencumbered with any material relating to the theory of 
relativity proper. Almost all of the material is to be regarded as already 
known, but apparently it is only to be found in an inconvenient and scattered 
form. The incomplete bibliography at the end of the paper gives references 
to some of the more accessible sources of this and other related material. 

11. The Elementary Differential Equations of Motion 

Our discussion might be begun in any one of a number of ways, and no 
doubt the different approaches would appeal unequally to different readers. 
Considering the nature and purposes of this article, the author has deemed 
it best to begin by writing down at once the differential equations of motion 
of a particle (according to relativistic dynamics) in their most elementary 
form. Then, for the purposes of this discussion, these equations will have 
the status of a fundamental assumption. It need hardly be said that the 
equations are not written down arbitrarily. On the contrary, they represent 
the consensus of modern opinion as to the laws under which particles really 
do move.3 The grounds, experimental and theoretical, for this opinion are 
set forth in various of the works cited in the bibliography. 

For the time being, until the contrary is stated in the final section, we 
employ a fixed rectangular coordinate system. Instead of denoting the 
coordinates of the particle by x, y, and z, as we have done provisionally in 
the Introduction, we shall denote them by Xi, X2, and x3. Then xh x?, and 
Xs denote the components of the velocity of the particle. The components 
of the force acting on the particle will be denoted by Xi, X2, and X3. For 
the time being we need only note that the force may depend upon the 
coordinates, the velocity, and the time; later on we shall introduce some 
more explicit assumptions about the force. The symbol c will be used to 
denote the speed of light in vacuo. 

3 The validity of these laws is not unrestricted. It is limited on the one hand by the 
quantum phenomena which become appreciable on the atomic scale, and on the other hand 
by certain phenomena revealed by the general theory of relativity which become 
appreciable on the cosmic scale. 
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We assume that the particle moves, under the influence of the force (Xi, 
Xo, X3), so that its coordinates satisfy the system of differential equations 

WO Xn 

V 1 — (v-/c-) 

where Wo is a positive constant characteristic of the particle, and v2 is an 
abbreviation for the expression Xi2 + Xo2 + X32* The positive value of the 
square root is the significant one; and wherever square roots appear in the 
subsequent work it will be understood, unless the contrary is stated, that 
the positive values are intended. 

A few remarks may help bring out the significance of the foregoing assump- 
tion and its relations to the corresponding fundamental assumption of 
Newtonian dynamics. 

We call the constant wo the rest-mass of the particle, and we assume (in 
accordance with the experimental evidence) that wo is identical with the 
mass of the particle which is used in Newtonian dynamics. In relativistic 
dynamics the quantity m defined by the equation 

Wo 
m = 

s/ \ — {v2/c2) 

is called the mass of the particle. We note that as v/c approaches zero the 
mass approaches the rest-mass (whence the appropriateness of the latter 
term), and that as v/c approaches unity the mass increases without limit. 

Consider the vector having the components pi, p2, pa defined by the 
formulae 

Wq Xn 
p" - VI - (^) - ( ) 

We call this vector the momentum of the particle. The momentum is equal 
to the velocity of the particle multiplied by the mass. 

Now equations (1) assert that the time-rate of change of the momentum 
of the particle is equal to the applied force. 

We have already observed that as v/c approaches zero the relativistic mass 
of a particle approaches the Newtonian mass. We now note that as v/c 
approaches zero the components of the relativistic momentum approach 
the values 

pn = wo xn, (2') 

* We might merely say that v is the speed of the particle. However, for our immediate 
purposes, it is important not to lose sight of the fact that n is a certain particular function 
of the components of velocity. 
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which are precisely the components of the momentum according to the 
Newtonian theory. 

Finally, as v/c approaches zero, the differential equations of motion (1) 
approach the forms4 

^ (woZn) = xn, (10 

which are the Newtonian differential equations of motion. 
Thus we see that Newtonian dynamics is in effect a simplified approximate 

form of relativistic dynamics which is valid when the speed of the particle 
under consideration is sufficiently small compared with the speed of light. 

Let us carry out the indicated differentiations in equations (1), and then 
solve the resulting equations for the quantities m&i, m&z, moXs- The work 
is straightforward, and need not be given here. We obtain the following set 
of formulae: 

Xi Xi ±2 c~2 

X2 I - (x? + X3
2)C-2 2 —2\—1/2 moZi = (1 — D c ) 

Xi X3C 

2 —2\—1/2 moX2 = (1 — v c ) 

X3 

1 - (X22 + X3
2)c 

XoXzC 
2 I • 2\ -2 

Xi X3 c 
2 

2 —2\ —1/2 VJ(,X3 = (1 — V C ') 

Xi XiC 

Xi ±3 C~2 

1 — {xi + xs
2)c 

. . -2 ZC2 C 

Xi x3 c~2 

Xi 

Xi 

X3 

1 - {Xi + Xi )c 

Xi ±3 C~2 

X2X3C 

1 - (Xi2 + .t2
2)C-

2 

Xi Xi c"2 Xi 

1 - (Xi2 + X32)c~2 Xi 

(3) 

Xi X3 c -2 
^3 

These equations are, of course, the differential equations of motion (1) 
written in a new, but equivalent, form. 

If, at some particular instant, the particle is moving parallel to the .ri-axis, 
so that ii = ±3 = 0, the equations (3) reduce at that instant to the forms: 

moXi 
= Xi, 

moXi = Xi nto X3 
= X3. 

(l-^c"2)3'2 (1-J/2^2)1/2 (1 - ^C"2)1'2 

These equations show that a particle of rest-mass mo, moving with speed v, 
responds to a force parallel to the velocity as would a Newtonian particle0 

of mass 

mo 
mt - (1 _72^2)ir2'' 

4 If this conclusion is not entirely evident, the reader is referred to equations (3), from 
which the conclusion follows at once. 

6 I.e. an ideal particle which obeys the laws of Newtonian dynamics. 
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and that the particle responds to a force perpendicular to the velocity as 
would a Newtonian particle of mass 

wo nit = 
(1 - ^c-2)1'2" 

For this reason, it was usual in the early work on relativistic dynamics to 
ascribe two masses to a particle: the longitudinal mass m(, and the transverse 
mass nil. However, in general this procedure leads only to inconveniences, 
and it has been almost entirely abandoned. 

This concludes our discussion of the elementary differential equations of 
motion. Without any further general theory of relativistic dynamics it is 
possible to solve many interesting and important problems. For instance, 
it can be shown easily that the trajectory of a particle subjected to a force 
which is constant in magnitude and direction is a catenary (rather than a 
parabola, which is the curve predicted by Newtonian dynamics).6 In the 
following sections we shall discuss some of the less elementary parts of the 
subject, 

III. The Lagrangian Equations 

In the foregoing the components of the applied force have been any func- 
tions of the coordinates, the components of the velocity, and the time. 
However, in problems concerning the motion of electrons, and for that 
matter in many other physical problems also, we are usually concerned with 
forces of a somewhat special kind. Throughout the remainder of the article 
we shall assume that the force belongs to this special class. 

We consider four given functions of the coordinates and time, namely 

V(xh *2, *3, t), An(xh x2, x3, t), (n = 1, 2, 3), 

and we assume that the components of the force are given by the formulae 

dV _ dM 
dXi dt 

dxo dt 

Y _ dV _ dA3 
3 dxs dt 

dA* dA! 
dXi dX2. 

dA3 _ a.42' 
dx2 dax 

dAi _ dAs 
dx3 dxi 

- *3 - 

dV dAn . . | V-XJ yj.±z | . I i ... 
Xz =   rr + .1-3 | —- - - I - a-j I — I. (4) 

dHi _ dAs 
, dxs dxi. 

dAi dAi 
dxi dXi, 

dAj • dA* 
dXi dxs. ]■ 

Let us suppose, for purposes of illustration, that we are considering the 
motion of an electron. Then the physical interpretation of our assumption 

0 L. A. MacColl, American Mathematical Monthly, Vol. 45 (1938), pp. 669-676. 
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concerning the force is the following. V(xi, X2, X3, t) is the potential energy 
of the electron in an electromagnetic field; that is 

V(.1-1, .T2, *3, t) = — t<p{xh X2, X3, t), 

where e is the absolute value of the electronic charge, and (p(xi, X2, X3, t) is 
the scalar potential of the field. The functions An{xi, X2, a'a, t) are related 
to the components an{xi, X2, X3, t) of the vector potential of the field by the 
equations 

A„{xh X2, Xz, t) = — ea-nixi, X2, x3, t). 

The terms —dAn/dt are — e times the contributions of the vector potential 
to the components of the electric force. The quantity dA3/dx2 — ch42/^X3 
is —eBi, where is the Xi-component of the magnetic induction; and 
similarly for the quantities dAi/dx3 — dA3/dxi and dAi/dxi — dA1/dx2.* 
In other cases also, equations (4), which may degenerate considerably, can 
be interpreted without difficulty. 

Now we define a function L{xi, Xz, X3, Xi, ±2, x3, t) of the coordinates, the 
components of the velocity, and the time, as follows: 

L = — woc2(l - fl2c-2)1/2 — V A- Z1A1 + X2A2 + ^3. (5) 

We call this the Lagrangian function. 
We write the equations 

d dL 0 on /z-\ 
^ ~ = 0' O = 1, 2, 3), (6) dt OXn oxn 

carry out the indicated differentiations, and readily verify that the resulting 
equations are identical with those obtained by substituting the expressions 
(4) in equations (1). Hence, equations (6) are merely a form of the differ- 
ential equations of motion. We call equations (6) the Lagrangian equations. 
The chief importance of these equations is due to the ease with which they 
enable us to use coordinate systems which are not rectangular. This will 
be discussed in the final section. 

In the Newtonian case, i.e. the case in which the speed of the particle is 
small compared with the speed of light, the Lagrangian function reduces 
approximately to the form 

L = —moc T (xi -|- X2 -f- x3') — V Xi A1 -A Xz A* -A %3 A3. (5') 

* These relations between the 4's and the components of the vector potential, and 
between the partial derivatives of the 4's and the components of the magnetic induction, 
are based upon the use of the M.K.S. system of units. If we measure the electromagnetic 
quantities in other units, certain constant proportionality factors may appear in the 
relations. 
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If we employ the function (5') in equations (6), we do indeed get the New- 
tonian differential equations. Since the constant term — Woe2 is of no 
effect in the formation of the differential equations of motion, it is ordinarily 
omitted in writing the Newtonian form of the Lagrangian function. 

IV. Hamilton's Canonical Equations 

Let us write 

Pn -\- An = irn. (7) 

Solving equations (2) for xh x^, x3, we get the result 

in = cp„ [WV + pi2 + p2 + pfV2 

tQ\ 
= c(7r„ — An)lmo c (tti — .4i)" + (ji — A2)2 (tts — Ay)2] 1/". 

Also, it is readily seen that the differential equations (1) can be written, 
with the aid of equations (7) and (8), in the form 

dV . dA\ . d.'U . . OAs 
Kn = — + -Ta 55 h X3 3— dx„ dxn dxn dxn 

= — — C i^C2 + (TTI — ^I)2 -f (X2 — ^2)" + (TTS — ^la)2]1'2. 
(9) 

Now let us define a function H(xh x2, x3, rh *2, ir3} t) as follows: 

H = c[m^c A- (ti — Ai)' -(- (tto — .12)" + (tts — .la)2]1'2 + V. (10) 

Then equations (8) take the forms 

dH xn - , dTrn 
ai) 

and equations (9) take the forms 

dll 
= "aT;' (12) 

The function II is called the Hamiltonian function. The six equations 
(11) and (12), which are equivalent to the three equations (1), are called 
Hamilton's canonical equations of motion. These equations are of great 
importance in all of the deeper theoretical work in dynamics. 

An easy calculation shows that we have the identity 

H Ar L = TTlXi + 7r2T2 -f- Tr3X3. (13) 
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In the Newtonian case the Hamiltonian function given by (10) reduces 
approximately to the form 

11 = mac + [(tti — Aif + {tz — Aif + (TTS — ^s) ] + V. (10') 
/WZo 

The equations (11) and (12), with H given by (10'), are equivalent to the 
Newtonian differential equations of motion (!'). Here again the constant 
term Woe2 is of no effect, and it is ordinarily omitted in writing the New- 
tonian form of the function H. The Newtonian forms of the functions H 
and L satisfy the identity (13), whether or not the constant terms ntoc2 and 
—moc2 are included. 

V. Static Fields of Force: The Energy Integral; Natural Families 
of Trajectories 

By equations (11) and (12), we have the relation 

dH dH F dH . d/7 . 1 
— = — + 2^ I n— ^ ^ 7rn 

dl dt n=i ^tt,, _] 

= aE,y-r— — - — —1 = —. (H) 
dt dTTn dXn] dt ' 

In particular, if no one of the functions T, Ah A*, A* involves the time 
explicity, we have dH/dt = 0, so that the value of H remains constant 
during the motion of the particle. That is, under the condition stated we 
have 

mcW - uV2r1/2 + Vixi, *2, Xs) = constant. (15) 

In the Newtonian case equation (15) reduces approximately to the form 

woe2 + + V(xi, X2, x3) = constant, 
£ 

which is equivalent to the equation 

^ v2 + V(xi, X2, X3) = constant. (15') 

It is well known that this equation is a consequence of the Newtonian 
differential equations of motion. 

The left-hand member of equation (15') is the energy of the particle in 
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Newtonian dynamics, the first and second terms being the kinetic energy 
and the potential energy, respectively. The equation itself is called the 
energy integral.7 Similarly, we call (15) the energy integral in relativistic 
dynamics, and we call the expression 

moc[\ — z)2c_2]~1/2 + V 

the relativistic energy. This energy is the sum of three parts: the proper 
energy nioc2, the relativistic kinetic energy 

2r< 2 -2i-l/2 2 VIqC [I — V C ] — WqC , 

and the potential energy V. 
The totality of possible trajectories of a particle in a static field of force 

forms a five-parameter family. We now see that if the field of force is 
static and of the kind we are considering now, the five-parameter family of 
curves consists of co1 four-parameter subfamilies, each of which corresponds 
to a different value of the energy of the particle. Each of these four-param- 
eter subfamilies is called a natural family of trajectories. We proceed 
to derive the differential equations defining a natural family. 

If the constant in the right-hand member of equation (15) is denoted by 
the symbol E, we have the relation 

xi[l + xz + 42]1/2 = c[l - WoV (E - F)-2]1/2, (16) 

where 

x'i = dxt/dxi, x'z = dxz/dxi. 

Hence, 

dt = c-\\ + X2 + ^]1/2[1 - mlc (E - F)"2]"1'2 dxi. 

From this, and the two equations 

d moXz _ BV fOAs dAzl . fdAi dAi~\ 
dt{i - v2c-2y'2 " dx^ X3lw2 d^j Xlld^ ~ 

d mpx3 _ _aF , . fcUi _ dAsl _ , [dyh _ dAi] 
dt (l — v2 C~2y12 dxs 1 L dx3 dxi J X2 [_ dX2 8X3 J ' 

it follows that we have the following system of differential equations defin- 
ing the natural family of trajectories corresponding to the total energy E: 

7 In the theory of differential equations, an equation relating the unknowns involved 
in a system of differential equations, their derivatives of orders less than the highest orders 
appearing in the system, the independent variable, and one or more arbitrary constants, 
is called an integral of the system of differential equations. 
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1 4~11/2N 
n . '2 , '2i-i/2 ^ ( > \{E ~ V) m*c 1 

l+.r + .v-rJ 

= f [(£ - Vf - mlcT 0X2 

+ 41 + X2 + ^3' 
/21_i/2 / i\dAi dA-i] [dA2 

C3] 

n _l 12 1 r
,2rI/2 ^ ( ' {{E — V)2 — ml c~\ u+^+^i i+^+.rJ 

(17) 

^ r/7-- Tr\2 2 4|I/2 = —[(£- F) — VlQ C J 
0X3 

I r 1 i 72 I '2i-i/2/r^-4i Mai ' + 41 + **+*,] 
5.43 _ 5>l2l\ 
dX2 dxz ]/ 

The equations which correspond to (17) in the Newtonian case are most 
readily obtained by going back to the Newtonian differential equations of 
motion and employing the integral 

moV-/2 V = E. 

An easy calculation, which is entirely parallel to the foregoing, gives us the 
following system of equations: 

|'+»+-r"l(4nTO]>s,s-" 

/2 . /2,1_i/2 / /TdAs dA^] _ fdAi 
+ [2»G(1 + ft + ^ )1 (^Laft_aftJ Ldft 

1/2 

dAj 
8x2 _ 

+ [2wo(l + X2 + ^3 )] 

(17') 

T dAi ,\dAa 

1—
 C1 

1^3 -^j 
A 2 |_ 8x2 5^3 J/ 

On comparing the systems of equations (17) and (170, we get ^e follow- 
ing useful theorem. 

If the constants E, E*, wo, m*, k, and the functions {of xh Xn, Xa,) V, Ah A 2, 
A3, V*, A1*, A2*, A3* are such that we have identically 

{E - F)2 - ml c4 = k\E* - F*), 
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dAt _dAi ^^ r^_ mT] 
dxi dxo c(2wo*)1/2 L 5^2 J' 

dAx _ dAz = k  fdAt _ avl*] 
a^a a.Ti c(2wo*)l/2 L a.ra a.ri J' 

the natural family of trajectories of a relativistic particle' {of rest-mass mf) 
moving with relativistic total energy E in the field of force derived from the 
f unctions V, A i, /12, .43 is identical with the natural family of trajectories of a 
Newtonian particle {of mass mo*) moving with Newtonian energy E* in the 
field of force derived from the functions V*, .4i*, A 2*, A 3*. 

In particular, the conditions of the theorem are satisfied if 

k = c{2mo)112, E* = c~2{2mo)~1{E2 — moc4), mo* = mo, 

V = V* = 0, Ax* = Ax, A2* = A2, A3* = A3. 

Hence, we have the corollary: 
In the case of an electri fied particle moving in any static magnetic field the 

natural family of trajectories corresponding to any value of the energy given by 
relativistic {Newtonian) dynamics is identical with the natural family of 
trajectories corresponding to a certain other value of the energy given by New- 
tonian {relativistic) dynamics. 

The equation 

E* = c-2(2wo)~1(£2 — mlc4) 

establishes a one-to-one correspondence between the physically significant 
{E ^ wnc2 and E* ^ 0) values of the relativistic energy E and the New- 
tonian energy E*. From this fact and the preceding corollary we get the 
following further result: 

In the case of an electrified particle moving in any static magnetic field the 
total five-parameter family of trajectories given by relativistic dynamics is 
identical with that given by Newtonian dynamics. 

Of course, these peculiar properties of motion of an electrified particle 
moving in a static magnetic field are explained physically by the fact that 
the magnetic forces do no work, so that the speed of the particle, and 
consequently also its mass, remain constant during the motion. 

VI. Some Formulae from the Calculus of Variations 

This section is devoted to the derivation of some formulae from the 
Calculus of Variations which will be needed in the further discussion of the 

8 I.e. a particle obeying the laws of relativistic dynamics. 
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dynamics of a particle. All constants, variables, and functions considered 
here are understood to be real.9 

Let F{t, x, y, z, p, q, r) be a function of the seven arguments indicated, 
which, together with all of its partial derivatives of the first three orders, is 
continuous in a region R defined as follows: 

fll ^ "C fl2) 

&! < a: < 62, 

R: ci < y < C2, 

di < z < dv, 

p, q, and r unrestricted, 

the a's, b's, c's, and d's, being constants. 
Let x(t), y{t), z(/), <p{t), p(t), and co(/) be continuous functions with con- 

tinuous first derivatives, and let e, rj, and 9 be parameters, independent of t, 
such that we have the relations 

bi < #(•/) + €<?(/) < 62, 

ci < y(t) + #(0 < c2, {ai < t < (h). 

di < z(^) + duit) < di, 

Let Ti and T2 be constants, and let h and h be parameters, such that 

ax < Ti h < T2 k < dv. 

We now consider the integral 

/(e, V, 0, h, (2) 
rTj + lj 

= / F{t, x eip, y ijp, z du, x' + y' + vt', 2' + 0a/) dt. Jri+ti 

It can be shown without difficulty that the integral exists and is a differen- 
tiable function of e, v, 0, h, h- We are interested in formulae giving the 
values of di/de, di/dj], 07/00, di/dti, 07/0/2 at the point t = T] = 0 = t\ = 
t2 = 0. 

9 Since this section is purely mathematical, the constants, variables, and functions do 
not necessarily have any special physical significance. _ . L 10 We treat the case of a function of seven arguments in order to fix the ideas, and 
because this is a case we shall meet in Section VII. However, the discussion applies 
essentially to other cases as well. In particular, in Section VII we shall also deal with a 
case in which F has only five arguments, 2 and r being absent. 
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By a well known theorem concerning the differentiation of definite 
integrals with respect to parameters,11 we have 

t= 11,] [v + *' F{t-1 ■2' + dt' 

= —P[T\-\- h,x(Ti + h) + e(p{Ti + /i), • * • , z'(ri + /i) + 9u'{Ti + /j)], 
ah 

— = F[T2 + h , x(T2 4-/2) + e<p(T2 + ^2), * • • , 2'(r2 + ^2) + 6U'(T2 + fe)]. 
012 

The formulae for dl/dij and dT/dd are similar to that for dl/de, and need 
not be written down. 

In particular, if [dl/dt]a, etc. denote the values of the derivatives at the 
point c = 77 = 0 = /1 = /2 = 0, we have 

Mr C Hy + *'ry]F^*'■■■'*'> dt' 

[||]0 = -FlTuxiT,). ^'(r,)]. 

[^]o = ^'[^!■ ''' ' 2'(7'2)1' 

The first three of equations (18) can be transformed to advantage, as 
follows. Integrating by parts, we obtain the formula 

/%' f(/, ^ = [. r fx, o]" 

and similar formulae for the integrals 

r*' £-,F(itx,-- - .^di 
J Ti dy 

and 

Jr Fil> dt. 

11 The theorem is given, often in the form of two separate theorems, in most works on 
Advanced Calculus and the Theory of Functions of Real Variables. See the bibliography. 
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It follows, therefore, that we have 

Kl=LF(t' ^ • ■ ■ ■ 

Bi=b x-"' ^T, 

+ (19) 

\Tl 

r 17-1 [a 

+C"»>K-ii] 

An important special case is that in which h and /o are zero (so that the 
limits of integration are fixed), and 

= ip{T?) = ^(ro = ^{Ti) = co(ri) = a)(r2) = o. 
In this case we have in general 

J(e, ,, 0, 0) - 7(0. 0, 0. 0, 0) = e [' rt) g ^ 

rr2,/NraF r7,2 

+ " Jri 
Hl) - dtd?\dt + 6 Jr, a,(0\jz~dt dt 

+ o{e, V, 0), 

where o(e, 77, 6) denotes a term, the exact form of which is unimportant, 
which is such that the expression 

o(<. T?, 0) 
M + M + M 

approaches the limit zero as e, 77, and d tend simultaneously toward zero. 
In particular, if the functions x{t), y{t), z{t) satisfy the system of differen- 

tial equations 

ddF_dF_ ddF_dF= ddF_dF = 

dt dx' dx ~ ' dt dy' dy ' dt dz' dz ' K ' 

we have (for all choices of the functions <p, \p, o subject to the conditions 
stated) 

/(e, 77, 9, 0, 0) - /(0, 0, 0, 0, 0) = o{e, 77, 6). (21) 
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Also, it can be shown without difficulty that in order that we have (21), for 
all such choices of \p, co, it is necessary that x, y, and z, satisfy the equations 
(20).* 

The last result can be stated in the following summary, and not quite 
explicit, form; If, and only if, the functions x(t), y(t), z{t) satisfy equations 
(20), the integral 

[ F{t, x, y, 2, x', /, z') dt (22) 
Jt-j 

is stationary with respect to infinitesimal variations of the functions $(/), 
y(/), 2(/) which leave the terminal values unaltered. 

The problem of finding functions which render the values of definite 
integrals stationary is the chief subject of the Calculus of Variations. 

The equations (20) are called the Eulerian equations of the Calculus of 
Variations problem of making the value of the integral (22) stationary, or, 
as we usually say, of maximizing or minimizing the integral. 

VII. Hamilton's Principle and the Principle of Least Action 

We immediately recognize equations (6) as the Eulerian equations of a 
problem in the Calculus of Variations. Thus we have the following principle 
{Hamilton's principle): 

The particle moves, under forces of the type (4), so that the value of the integral 

Ldl, 
Jti 

with ti and 1% held fixed, is stationary with respect to infinitesimal variations of 
the functions xjj) which leave the initial and final points unaltered. 

The precise meaning of this is determined by the discussion given in 
Section VI. 

Hamilton's principle leads to the relativistic or Newtonian differential 
equations of motion, according as we use in it the function L given by (5) 
or by (S')- 

A little inspection suffices to show that the system of equations (17) is 
also the system of Eulerian equations of a problem in the Calculus of 

d dp dF * In brief, suppose that — — were not zero for some value of /. Then if we should dtdx' dx 
choose a function <p{t) which was (say) positive in the neighborhood of that value, and zero 
elsewhere, the integral 

rr2 PaF d aFl 
JTt 

would have a value other than zero. We shall not give the actual proof here; it is to be 
found in the works on the Calculus of Variations cited in the bibliography. 
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Variations. Thus we get the so-called principle of least action, which can be 
stated as follows: 

The particle moves, in a static field of force of the type (4), and with the 
prescribed total energy E, in such a curve that the value of the integral 

f ([1 -j" Xi +^3 ]1/2[(£ — V)2C " — WqC2]1'2 + .4i + ^42^2 + ^3 ^3) dx\, 

with the limits of integration held fixed, is stationary with respect to infinitesimal 
variations of the trajectory which leave the end points unaltered. 

We have a precisely similar principle in Newtonian dynamics, but here 
the integral in question is 

f ([1 + x'i + X32]1/2[2wo(£ — F)]1/2 Ai A2X2 ^3^3) dx\. 

The last two integrals can be written more symmetrically, but not quite 
so explicitly, as follows: 

/,. (1(£ ~ F)!^2 " +Ai77 + A:!17 + A3^)ds' 

/Pl (
[2mo(£ _ v)]in + A'ii+ A3I; + As li)d5' 

where Pi and P2 denote the end points of the trajectory, and ds2 = dxi + 
dx\ -f- dx\. 

VIII. The Haaqlton-Jacobi Theory 

Let us write 

W = f L[xi(t), X2{t), x3(t), xi{t), X2{t), xz{t), t] dl. (23) Jii 

We have already studied the variation of W when ti and t2 are held fixed, 
and the functions xn(t) are varied in such a way that the terminal values are 
unaltered; and we have shown that under these circumstances the variation 
of W vanishes, to the first order of small quantities, in the natural motion.12 

In the following we shall study the variation of W under some other 
conditions. 

Specifically, we shall study the quantity AW defined by equation (23) 
and the equation 

r'z+'i'z . 
W + AW = / L[xi{t) + ti{t), ■■■ , Xz{t) + bit), l] dt, 

Jll+Atl 
12 I.e. a motion satisfying equations (1). 
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where the functions ^n(/) represent a natural motion, the ^n(/) are small 
functions, and A/i and A/2 are small parameters. 

It follows from the results of Section VI that we have (to within terms 
of the second order in small quantities)13 

AIV = AfeZM/a), ••• ,*3(/2),'2] 

— A/i L[x\{ti), • • • , *3(*i), h] 

+1 r^i um) -1 r^i f.«.) 
n=l |_3a"nJ/=<2 n=I LoanJ<—<1 

= A/2^[a;i(/2), • * * , ^3(^2), k] 

— ktiL[xi{ti), • • • , Xzili), /1] 

+ ^ Wn(k)£n{k) — 7r„(/i)^n(/i)]. n=l 

Let us write 

(Aa"n)2 =: Xn(k + &k) + knik + A/o) — Xn(k) = ^n{k) + Xn(k) A/2, 

(A.Tn)i = xn{fi + A/i) + ^n(k + A/i) — Xn(il) = £n(k) + ^n(/l)A/i, 

so that (A.Ti)2, (A.T2)2, (Axbh are the coordinate differences of the terminal 
points of the varied and unvaried curves, and similarly (A.rj)i, (^2)1, (A.T3)i 
are the coordinate differences of the initial points. Then we have the 
formula 

AIT = ^Z,[;ri(/2), • * •] — 2 Trn(k)xn(k)^ A/2 

— ^L[a:i(/i), ■ • •] — 2 2r„(/i)/„(<i)^ A/i 

3 
+ S Wn(k)(&Xn)2 — 7rn(/l)(A.Vn)l], 

n=l 

which, by equation (13), can be written in the form 

AIT = -HMk), • • ■] A/2 + HMh), • ■ •] A/i 

+ H [7r„(/2)(A^n)2 - 7rn(/i)(Aa;n)i]. (24) 
n=l 

Now, the integration in (23) being taken over a natural motion of the 
particle, the value of TT depends upon the initial instant, the initial coordi- 

13 This is also the sense in which the following equations are to be understood. 
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nates, the initial components of velocity, and the final instant. It is 
necessary now to consider W as depending upon the following equivalent set 
of eight variables: the initial and final instants and /2, the coordinates 
0*ii, *21, *31) of the initial point, and the coordinates 0*12, *22, *32) of the final 
point. Regarding W in this manner, we at once obtain the following 
relations from equation (24) 

dW _ dW _ 
— ^2, „ t„2, (25) dl2 dxn2 

dW TJ dW nA\ ^r = #1, T— = -Tm, (26) 
oh OX,,! 

where Hi denotes i7[xi(/2), • • • , tti^), • • • Ji] and Hi denotes //[.Vi(/i), • ■ ■ , 
TTlOl), • • • , /]]. 

Let us now consider the partial differential equation 

+ H(xi, X2, *3, dW/dxi dW/dx2, dW/dxs, t) = 0. (27) 
at 

The preceding work shows that the function W we have been considering 
(with Xn, X21, *31, h regarded as parameters, and with the symbols x^, *22, 
*32, h replaced by Xi, X2, *3, t respectively) is a particular solution of this 
equation. We shall show that the complete solution of this equation 
possesses remarkable properties in connection with dynamical problems. 

The complete solution of equation (27) is a function of Xi, *2, *3, /, and 
of four arbitrary constants, of which one is merely additive, and can be 
neglected for our purposes. Let the solution be written 

W = W{xi, *2, X3, t, ai, ai, as), 

where the a's are the three essential arbitrary constants. 

We write the equations 

1^ = (28) do£n 

where the fS's are further arbitrary constants. These equations implicitly 
determine the x's as functions of t and the six arbitrary constants ai, • • • , /3s. 

We also write the equations 

dW _ 
■z— = Tn • (29) 
dXn 

These equations determine three functions 7rn of the x's, the a's, and t. 
In virtue of equations (28), the tt's are ultimately functions of /, the a's, and 
the /3's. 
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There is no reason to foresee a priori that the functions Xi{t, <*!,•••, ^3), 
• ■ • , 7r3(/, aj, • ■ ■ , /Ss) determined in this way, by means of the complete 
solution of equation (27), satisfy the differential equations of motion (11) 
and (12). Nevertheless, they actually do satisfy those equations, as we 
proceed to show. 

By equations (28), we have the relations 

dt dctndl m=l doindXji 

On the other hand, by (27) and (29), we have14 

d [dW . A1 
da I D/ ^ :l"3' iri' 7r2' 7r3' J 

3 
+ E 

(30) 

djv 
dan dt 

The determinant 

dH drr, d W dH aV 
dirm dan dan dt 

d2w d2W 
dai dxi dai dxs 

d2JV d2W 
das dx'i das dXs 

=1 dTm dan dxn 
(31) 

is not zero. For if it were, we would have a relation of the form 

<t>[dW/dxh dW/dx2, dW/dx3, xh X2, x3, I] = 0, (32) 

independent of the a's. Now equation (32) is obviously distinct from (27), 
since it does not involve dW/dt. Hence, the vanishing of the determinant 
would imply that the function TT(.vi, Xz, xh t, ah 02, as) satisfies two distinct 
partial differential equations of the first order. This, however, is impossible 
when W is the complete solution of (27); for an essential part of the concept 
of the complete solution of a differential equation is that the elimination of 
the arbitrary constants, from the solution and the equations obtained by 
differentiation, shall result in the given differential equation and no other. 

It follows, therefore, from (30) and (31) that 

dH 
drm 

Xm = 

We also have, by (29), 

d2W 
ir„ = dXn dt + E 

d W 
1 dxm dxn 

d W 
dXn dt 

o 
+ E 

d-W dH 
1 dxm dXn dir.. 

(33) 

N Since the function TF(.r,, xo, .ra, /, ai, as, aa) satisfies equation (27) identically in the 
.r's, /, and the a's. This remark applies also in the case of equation (34). 
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On the other hand, we have 

m=l dTm dxmdxn 
(34) 

By (33) and (34), we have the second set .of canonical equations 

dH 
TTn . 

dXn 

This completes the demonstration. 
If H does not involve the time explicitly, we can write 

W = S - Et, (35) 

where E is an arbitrary parameter, and 6" is a solution of the differential 
equation 

The complete solution of (36) contains three arbitrary constants (besides 
the parameter £), of which one is merely additive, and can be neglected. 
It is easily seen that the solution of the canonical equations determined in 
the way described above, using the function W given by (35), and treating E 
as one of the a's, represents a motion of the particle with the total energy E. 

All of this theory holds both for the relativistic case and for the New- 
tonian case, the only difference being in the forms of the differential 
equations (27) and (36) in the two cases. 

In all of the foregoing we have employed rectangular coordinates, because 
they afford the simplest and most direct expression of the basic physical 
facts. However, in the solution of particular problems it is often more 
convenient to use other systems of coordinates. For this reason, we shall 
now formulate the more important equations in terms of general curvilinear 
coordinates. In this work, as in all work with general coordinate systems, 
we shall encounter concepts and relations which can be handled most 
perspicuously by means of the modem tensor calculus. Actually, the 
amount of tensor calculus we shall use is very slight, and no extended pre- 
liminary discussion is necessary in order to make the formulae intelligible. 
It will suffice to give occasional explanations of the notation, and of some 
of the concepts, as we proceed. Further information is to be found in the 
works cited in the bibliography. 

First consider the Lagrangian equations, which, as we have seen, are 
merely the Eulerian equations which follow from Hamilton's principle. 

H[x\} .12, ^3, dS/dxh dS/dx2, dS/dxs] = E. (36) 

IX. Curvilinear Coordinates 
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Now Hamilton's principle expresses a fact concerning the motion of a 
particle which is, by its very nature, independent of the choice of coordinates. 
Hence, the Lagrangian equations (6) hold in any coordinate system. How- 
ever, the form of the function L depends upon the particular coordinate 
system, and we must discuss the change of the form of the function resulting 
from a transformation of the coordinate system. 

In accordance with the common practice in the tensor calculus, we shall 
now denote the coordinates by the symbols rr1, x, .v3, instead of by the 
symbols xh *2, *3- 

In rectangular coordinates the differential distance ds between the points 
(a-1, x2, a3) and (a1 dx1, a2 + dx2, a3 + dx3) is given by the simple formula 

ds2 = dx1"1 -1- dx2' + dx3*, 

but this is highly special; in general coordinates we have 

ds2 = S Z) gmnO1, x2, a3) dxm dxn , (37) «i=l n=l 

where the g's are functions which depend upon the particular coordinate 
system under consideration. It is understood that gm„ = gnm . Hence- 
forth, we shall write (37) in the form 

ds2 = gm„(a1, a2, x3)dxmdxn, (38) 

and we shall observe this general rule throughout: When the same literal 
index occurs twice in a term, once as a subscript and once as a superscript, 
that term is understood to be summed for the three values of the index. 

We now have the result 

v2 = [ds/dt]2 = gmnix1, a2, x3)xmxn, 

and 

moc2(l - v2c-2y<2 = m,c2[\ - (r2£mnx
man]1/2. 

The function T^a1, a2, a3, t) is a scalar. That is to say, when the coordi- 
nate system is changed, the first three arguments of the function are replaced 
by their expressions in terms of the new coordinates, and so we obtain a 
function which is of a new analytical form, but which has the same value 
as the original function at each point of space. 

Now we consider the expression 

A1X1 + A1X2 + Azx3. 

In rectangular coordinates this is the scalar product of the vectors (Ai, 
Ai, A and (x1, x2, x3). The expression retains its form and interpretation 
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under changes of the coordinate system, provided (as the notation implies) 
(Ai, A2, -43) is treated as a covariant vector.15 

With these understandings as to the significance of the symbolism, we 
can now write down the following general expressions for the Lagrangian 
function L in the relativistic and Newtonian cases, respectively, 

£2 r< —2 • m .rnl/2 ir 1 a -m = -Woe 11 — c gmnx x \ - V + Amx , 

T- 2 I m . m .71 jr I a L = —nioC + w gmnX -X — V + Ar 
2 

These hold for any coordinate system; and from the appropriate one of these, 
and the Lagrangian equations 

d dL _ dL _ 0 

dt dxn dx" ~ ' 

we obtain the relativistic or Newtonian differential equations of motion in 
any coordinates. 

Now let us consider the Hamiltonian canonical equations. 
We have already agreed to consider {Ai, A^ .45) as a covariant vector. 

We now make the same convention in regard to (tti, 7r2, tts). Then it read- 
ily follows that the equations 

i = - w 
16 Suppose that with a point P (which may be either a special point or a typical point), 

and with each coordinate system, we have associated an ordered triple of numbers. 
If the triples of number (01, a-., a^) and (fli', a^', as') associated, respectively, with any 

two coordinate systems (x1, x2, ;v3) and .v1', x2', x3') satisfy the relations 

dx" 
dxm 

the numbers (oi, as, as) are said to be the components of a covariant vector in the coordinate 
system (.-cI, x2, .r3). (It is understood, of course, that the partial derivatives are evaluated 
at the point P.) 

On the other hand, if the triples of numbers (a1, a", a3) and (a1', o2', a3') associated with 
the typical coordinate systems (.r1, .t2, .r3) and (.t1', x2', x3') satisfy the relations 

dxm' 
am' =   o", 

dxn 

the numbers (a1, a2, a3) are said to be the components of a contravariant vector in the 
coordinate system (a:1, x2, x?). 

These concepts agree only in part with the ones used in the elementary theory of 
vectors. From our present standpoint, the only vectors used in the elementary theories 
are those which are defined with reference to rectangular coordinate systems. When other 
coordinate systems are used (e.g. cylindrical coordinates), the vectors, defined in terms of 
rectangular coordinates, are merely resolved along the tangents to the coordinate curves. 
The components obtained in this way are not the same as the components considered in 
the tensor calculus, which we are using here. 
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are tensor equations; and since they hold when the coordinates are rec- 
tangular, they hold for all coordinate systems.16 

We let gmn denote times the cofactor of the element gmn in the deter- 
minant 

| gn £12 £13 
£ = j £21 £22 £23 

I £31 £32 £33 

Now we write 

B = clmlc" + gm\Tvm - Am)(wn - A,)]1" + V (41) 

for the relativistic case, and 

H = moc2 + (2wo)_1£mn(7rm - Am)(irn — An) -f V (41') 

for the Newtonian case. We see that these expressions specialize into the 
ones given earlier for the Hamiltonian function when the coordinates are 
rectangular. 

H, L, and 7r„a:n are all scalars. Consequently, the equation 

H L = Tvnx
n (42) 

is a tensor relation; and since it holds when the coordinates are rectangular, 
it holds for all coordinate systems. 

The Lagrangian equations can be written in the form 

- = (43) 

Let us consider the variation of the function L resulting from small 
variations of the x's and i's. By (40) and (43), we have the relation 

(. T dL n , dL n 8L = -— 8x + 8x 
dxn dxn 

= Trn 8xn -f TTn 8xn 

= 8(7rnx") -f- (7rn 6x" — x" 8Trn). 

It follows from (42) and (44) that the variation of H resulting from small 
variations of the x's and the tt's is given by the formula 

5H = xn8TTn — tt n8xn. 
16 The argument is explained in detail in the works on the tensor calculus cited in the 

bibliography. 
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From this it follows that we have the Hamiltonian canonical equations 

dll . dH 
x=s^' = 

in any coordinate system. 
We have already seen how to state Hamilton's principle in terms of general 

coordinates. 
In the relativistic case the principle of least action takes the form: The 

particle moves, in a static field of force of the type (4), and with the prescribed 
total energy E, in such a curve that the value of the integral 

[{E — Vf c"' — mlc^'" + Am <-j^j dxl, 

with the limits of integration held fixed, is stationary with respect to infinitesimal 
variations of the trajectory which leave the end points unaltered. The corre- 
sponding form of the principle for the Newtonian case is obvious. 

We are now in a position to dispose very quickly of the problem of formu- 
lating the Hamilton-Jacobi theory in terms of general curvilinear 
coordinates. 

The general form of the Hamiltonian function being given by (41) (for 
the relativistic case) or (41') (for the Newtonian case), we can at once write 
down the partial differential equation 

dxm dx" 
_gmn dxx dx1 _ 

dW 

Let 

_ + H{x\ x\ x\ dW/dx\ dW/dx-, dW/dx3, I) = 0. (45) 
dt 

IF = W(xl, x2, Xs, t, a1, a2, a3) 

represent the complete solution of (45), without the irrelevant additive 
constant of integration. 

Our chief problem is that of proving that the functions xn{t, a1, a'2, a3, 
, fa , 03), TTnit, a1, a2, a\ 0i, 02, 03) determined by the equations 

dW 0 <9IF _ 
da" ~ ^ ' dx* 7rn ' 

where the /3's are further arbitrary constants, satisfy the canonical equations 

dll . _ dH 
dlTn ' 7rn dx" ' 

Now, referring to the proof given in Section VIII for the special case of 
rectangular coordinates, we see at once that nothing in the proof depends 
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upon the special forms which the Hamiltonian function and equation (45) 
assume in those coordinates. Hence the proof already given applies imme- 
diately to the present general case. 

Similar remarks apply also to the case in which H does not involve the 
time explicitly, and in which we write 

W = S - Et, 

where S is the complete solution (without the additive arbitrary constant) 
of the equation 

//(.v1, x2, x3, dS/dx1, dS/dx2, dS/dx3) = E. 
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CHAPTER I 

Quartz Crystal Applications 

By W. P. MASON 

1.1. Introduction—Purpose of Serif 

HIS paper is the first one of a series of papers deai;.\2 with quartz 
crystals, their applications in oscillators, filters, and transducers, and 

the methods of producing them from the natural crystal. This series was 
prepared first to make available to the Western Electric Co. and other 
manufacturers of quartz crystals some of the specialized knowledge on 
these subjects that has been acquired at the Bell Telephone Laboratories. 
Sufficient interest has been expressed in this series to make it desirable to 
publish them in serial form. 

This first paper in the series is a general introductory paper covering 
the application of crystals to oscillators, filters and transducers. An appen- 
dix is given which discusses the elastic and electric relations in crystals and 
gives recent measurements of the elastic constants, their temperature coeffi- 
cients, and the piezoelectric constants of quartz. This paper is followed 
by more detailed papers by Messrs. Bond, Willard, Sykes, McSkimin, and 
Fair which give consideration to quartz crystallography; determination of 
orientation by optical methods, X-ray methods, and etching methods; the im- 
perfections occurring in quartz crystals; modes of motion and their calcu- 
lation; the dimensioning of crystals to avoid undesirable resonances; and 
the use of crystals in oscillators. 

1.2 Early History of Piezoelectricity and its Applications 

The direct piezoelectric effect was discovered by the brothers Curie in 1880. 
They measured the effect first for a quartz crystal by putting a weight on the 
surface and measuring the charge appearing on the surface, the magnitude 
of which was proportional to the applied weight. A simple model for demon- 
strating this effect can be made by using a large piece of Rochelle salt cut 
with its length 45° from the V and Z crystallographic axes and placing tinfoil 
electrodes normal to the X axis. If these electrodes are connected to a 
neon lamp, and the crystal is compressed by hitting it with a hammer, a 
charge is generated on the surface and a voltage applied to the lamp sufficient 
to break it down. In fact as much as 2000 volts can be generated by striking 
the crystal hard. 

178 
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The converse piezoelectric effect was predicted in 1881 by the French 
physicist Lippmann on the basis of the principle of conservation of elec- 
tricity. It was verified in the same year by the brothers Curie. In this 
effect a crystal is strained when a voltage is applied to it. The effect can 
be demonstrated by a model which consists of two thin pieces of Rochelle 
salt poled so that one expands when the voltage is applied and the other 
contracts. The result is—as in a bimetallic thermostat—the crystal bends. 
For crystals 10 mil inches thick and 4 inches long, a ninety-volt battery 
applied causes a displacement of a quarter of an inch or more of the end of 
the unit. Reversing the voltage reverses the direction of the displacement. 
The Curies constructed a bimorph unit of this type out of quartz and used it 
practically to measure voltage by measuring the displacement of the end 
of the crystal. By connecting the leads of an electrometer to the terminals, 
they could measure force applied by measuring the amount of charge gen- 
erated at the terminals. 

Outside of this use which was quite minor, the piezoelectric effect remained 
a scientific curiosity until the war of 1914-1918. It ;did inspire, however, 
considerable scientific speculation. Lord Kelvin in 1893 proposed a model 
for explaining the piezoelectricity of quartz and was able to calculate 
approximately the value of the piezoelectric constant. This model is 
discussed briefly in the next section. He also constructed and demonstrated 
a "piezoelectric pile" made from small spheres of zinc and copper, to illus- 
trate the effect. At about the same time (1890-1892) Voigt published a 
series of papers followed by a book "Lehrbuch der Kristall Physik" (1910) 
in which the stresses, strains, fields and polarizations of piezoelectric crystals 
are related in mathematical form. These mathematical expressions (which 
are discussed further in the appendix) form a basis for the development of 
the properties of oriented crystals as discussed in section 1.5. 

During the war of 1914-1918, Professor Langevin in Paris was requested 
by the French Government to devise some way of detecting submarines 
by acoustic waves they produce in water. After trying several devices he 
finally found that piezoelectric quartz plates could be used for that purpose. 
His device, which is shown in Fig. 1.1, consisted essentially of a mosaic of 
quartz which has the property that when a voltage is applied the crystal 
will expand and send out a longitudinal wave. Similarly, if a wave strikes 
it, the wave will set the quartz in vibration and generate a voltage which 
can be detected by vacuum tube devices. Langevin did not get his device 
perfected till after the war so it was not used at that time to detect sub- 
marines. Similar devices have, however, been used in this war. Langevin's 
original apparatus was used extensively as a sonic depth finder. In this 
use a pulse is generated which is recorded directly on a moving record and 
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is also sent out into the ocean. It strikes the bottom and is reflected back 
causing another mark to appear on the record. Knowing the difference in 
time and the velocity of sound in sea water, the distance to the bottom can 
be measured. A typical record is shown in Fig. 1.2. The top record shows 
the contour of the sea bottom while the second record shows the reflections 
from a school of fish. 

At about the same time, Nicolson at Bell Telephone Laboratories was 
experimenting with Rochelle salt, another piezoelectric material having a 

much larger piezoelectric effect than quartz. He constructed and demon- 
strated loud speakers, microphones, and phonograph pick-ups using Rochelle 
salt.1 He was also the first one to control an oscillator by means of a crystal 
—in this case Rochelle salt—and has the primary crystal oscillator patent.2 

Nicolson's circuit is shown in Fig. 1.3. The crystal is effectively in a path 
between the resonating coil in the output and the grid, since the electrode 

1 "The Piezoelectric Effect in the Composite Rochelle Salt Crystal"—A. M. Nicolson, 
Proc.A. I. E. E. 1919, 38, 1315. 2 See Patent 2,212,845 filed April 10, 1918; issued Aug. 27, 1940. 

^ rm» 

Fig. 1.1—Ultrasonic transmitting apparatus 
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3 is in the direction of the smallest piezoelectric effect in Rochelle salt 
and contributes little to the action. If terminal one to the tapped coil is 
at the top of the coil, the circuit although employing a three electrode 
crystal connection, effectively reduces to B in which the crystal is in the feed- 
back path from plate to grid. On the other hand, if the tap is effectively 
at the bottom of the coil, the crystal is between grid and ground and feedback 
occurs through a distributed capacity from plate to grid. Both of these 
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Fig. 1.2—Ocean contour curves 

circuits B and C are widely used in oscillators of Pierce. Prof. G. W. 
Pierce published a circuit similar to circuit B, having a two electrode 
quartz crystal connected between grid and plate.3 

In 1921, Professor Cady at Wesleyan University first showed4 that quartz 
3 "Piezoelectric Crystal Resonators and Crystal Oscillators Applied to the Precision 

Calibration of Wave Meters," G. W. Pierce, Amer. Acad, of Arts and Sciences, Oct. 
1923, 81-106. 4 "The Piezoelectric Resonator" W. G. Cady, Proc. I. R. E. 1922, 10 83. 
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crystals could be used to control oscillators and that much more stable 
oscillators could be obtained in this fashion. These were later applied to 
controlling the frequency of broadcasting stations and radio transmitters in 
general and about 1925 Mr. W. A. Harrison applied them to obtain a very 
constant frequency and time standard, which is now used considerably by 
the Bell System, by radio broadcasting systems, and by power companies. 
The oscillators were subsequently improved by using crystals with small 
temperature coefficients as described in Section V. At the present time 
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Fig. 1.3—Nicolson's oscillator circuit 

crystal controlled oscillators are used very widely in radio military and 
commercial applications. 

Another large use for quartz crystals is their use in providing very selective 
filters. Probably the first use of a crystal to select a narrow frequency 
range was made by Cady.4 Using the very sharp maximum in current 
through a crystal at its resonant frequency, Cady proposed the use of such a 
crystal as a wave standard. This is equivalent to the use of a crystal 
as a tuned circuit. By incorporating a crystal in a three-winding trans- 
former and balancing out the static capacity of the crystal by an auxiliary 
condenser, W. A. Harrison5 improved the selecting ability of a crystal used 

6 Patent 1,994,658, filed June 7, 1927; issued March 19, 1935. 
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as a narrow band filter. At about the same time, L. Espenschied,6 taking 
advantage of the knowledge of the equivalent electrical circuit of a crystal 
given previously by Van Dyke,7 showed how to combine other electrical 
elements with crystals in ladder form to obtain band-pass filters. It was 
not, however, until the crystals were combined with auxiliary coils and 
condensers into the form of resistance compensated lattice type networks8 

that much progress was made in achieving the wide pass-band characteris- 
tics necessary for telephone and radio communication. Such filters have 
provided very selective devices which are able to separate one band of 
speech frequencies from another band different by only a small frequency 
percentage from the desired band. This property makes it possible to space 
channels close together with only a small frequency separation up to a high 
frequency, and such filters have had a wide use in the high-frequency carrier 
systems, and in the coaxial system which transmits more than 480 conver- 
sions over one pair of conductors. In radio systems such filters have been 
used extensively in separating one side band from the other in single side- 
band systems. 

In conclusion we can say, that the science of piezoelectricity was born 
about 62 years ago, lay dormant for nearly 40 years, but during the last 25 
years has advanced at such a rate that it can be regarded as one of the foun- 
dation stones of the whole communication art. 

1.3. Theory of Piezoelectric Materials 

Piezoelectric crystals are of interest in communication circuits because 
they possess three properties. These properties are: (1) the piezoelectric 
effect provides a coupling between the electrical circuit and the mechanical 
properties of the crystal; (2) the internal dissipation of most crystals and 
particularly quartz crystals is very low, and the density and elastic constants 
of the crystals are very uniform, so that a crystal cut at a given orientation 
always has the same frequency constant; and (3), at specified orientations 
crystals can be cut which have advantageous mechanical properties such 
as a small change in frequency with a change in temperature, or a free- 
dom from secondary modes of motion. It is the purpose of this section to 
discuss the first property, the coupling between the electrical and me- 
chanical properties of the crystal. 

The piezoelectricity of quartz and other materials is due to the fact that 
6 Patent 1,795,204, filed Jan. 3, 1927, issued August 8, 1933. 7 K. S. Van D3'ke; Abstract 52, Phys. Rev. June 1925; Proc. I. R. E. June 1928. 8 See "Electrical Wave Filters Employing Quartz Crystals as Elements," W. P. Mason, 

B. S. T. J., Vol. XIII, p. 405, July 1934; "Resistance Compensated Band Pass Crystal 
Filters for Unbalanced Circuits," B. S. T. /., Vol. XVI, p. 423, Oct. 1937; "The Evolution 
of the Crystal Wave Filter," O. E. Buckley, Jour. A pp. Phys., Oct. 1936; and Patents 
1,921,035; 1,967,249; 1,967,250; 1,969,571; 1,974,081; 2,045,991; 2,094,044. 
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a pressure which deforms the crystal lattice causes a separation of the cen- 
ters of gravity of the positive and negative charges thus generating a dipole 
moment (product of the value of the charges by their separation) in each 
molecule. How this separation can cause a coupling to an electrical circuit 
is illustrated by Fig. 1.4 which shows a crystal with metal electrodes normal 
to the direction of charge separation. If we short-circuit these electrodes 
and apply a stress which causes the centers of gravity of the charges to 
separate, free negative charges in the wire will be drawn toward the electrode 
in the direction of positive charge separation, and free positive charges in 
the wire will be drawn to the electrode in the direction of negative charge 
displacement until the crystal appears to be electrically neutral by any test 
conducted outside the crystal. When the stress is released the charges in 
the wire will flow back to their normal position. If, during the process, 
we connect an oscillograph in the short-circuited wire, there will be a pulse 
of current in one direction when the stress is applied and a pulse in the oppo- 
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Fig. 1.4—Method for transforming mechanical energy into electrical energy in a crystal 

site direction when the stress is released. By putting a resistance in the 
connecting wire and applying a sinusoidal stress to the crystal, an alternating 
current will flow through the load and consequently mechanical power will 
be changed into electrical power. Using the converse effect, a source of 
alternating voltage in the electrical circuit will produce an alternating stress 
in the crystal, and if this is working against a mechanical load, the electrical 
energy will be changed into mechanical energy. 

To apply this concept to quartz let us consider Fig. 1.5, which represents 
the approximate arrangement of molecules in a quartz molecule. Lord 
Kelvin's explanation of the piezoelectricity of quartz is the following: 

"The diagram (Fig. 1.5A) shows a crystalline molecule surrounded by six 
nearest neighbors in a plane perpendicular to the optic axis of a quartz crystal. 
Each silicon atom is represented by + (plus) and each oxygen double atom - 
(minus). The constituents of each cluster must be supposed to be held together 
in stable equilibrium in viture of their chemical affinities. The different clusters, 
or crystalline molecules, must be supposed to be relatively mobile before taking 
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positions in the formation of a crystal. But we must suppose, or we may suppose, 
the mutual forces of attraction (or chemical affinity), between the silicon of one 
crystalline molecule and the oxygen of a neighboring crystalline molecule, to be 
influential in determining the orientation of each crystalline molecule, and in 
causing disturbance in the relative positions of the atoms of each molecule, when 
the crystal is strained by force applied from without. 

"Imagine now each double atom of oxygen to be a small negatively electrified 
particle, and each atom of silicon to be a particle electrified with an equal quantity 
of positive electricity. Suppose now such pressures, positive and negative, to 
be applied to the surface of a portion of crystal as shall produce a simple elongation 
in the direction perpendicular to one of the three sets of rows. This strain is 
indicated by the arrow heads in Fig. 1.5A and is realized to an exaggerated extent 
in Fig. 1.5B. 
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Fig. 1.5—Kelvin's model of quartz molecules 

"This second diagram shows all the atoms and the centers of all the crystalline 
molecules in the positions to which they are brought by the strain. Both diagrams 
are drawn on the supposition that the stiffness of the relative configuration of 
atoms of each molecule is slight enough to allow the mutual attractions between 
the positive atoms and the negative atoms of neighboring molecules to keep them 
in line through the centers of the molecules, as Fig. 1.5A shows for the undisturbed 
condition of the systems, and Fig. 1.5B for the system subjected to the supposed 
elongation. Hence two of the three diameters through atoms of each crystalline 
molecule are altered in direction, by the elongation, while the diameter through the 
third pair of atoms remains unchanged, as is clearly shown by Fig. 1.5B compared 
to Fig. 1.5A. 

"Remark, first that the rows of atoms, in lines through the centers of the crystal- 
line molecules, perpendicular to the direction of the strain, are shifted to parallel 
positions with distances between the atoms in them unchanged. Hence the atoms 
in these rows contributed nothing to the electrical effect. But in parallel to these 
rows, on each side of the center of each molecule, we find two pairs of atoms whose 
distances are diminished. 
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"This produces an electrical effect which, for great distances from the molecule, 
is calculated by the same formula as the magnetic effect of an infinitesimal bar 
magnet whose magnetic moment is numerically equal to the product of the quantity 
of electricity of a single atom into the sum of the diminutions of the two distances 
between the atoms of the two pairs under consideration. Hence, denoting by N 
the number of crystalline molecules per unit bulk of the crystal; by b the radius of 
the circle of each crystalline molecule; by q the quantity of electricity of each of the 
six atoms or double atoms, whether positive or negative; by d the change of direc- 
tion of each of the two diameters through atoms which experience change of direc- 
tion; and by m the electric moment developed per unit volume of the crystal, by 
the strain which we have been considering and which is shown in Fig. 1.5B; we have 

Kelvin's model shows some of the symmetry properties of quartz. The 
axis marked X is the X or electrical axis of the crystal. The Z or optic axis 
is normal to the plane of the paper. The Y or mechanical axis is the axis 

along which the stress is applied. It is obvious that if we rotate the direc- 
tion of the applied stress by 120°, a similar separation of charges at right 
angles to the stress will occur. There are then three electrical axes and three 
mechanical axes so that the optic axis can be regarded as an axis of threefold 
symmetry for the crystal. 

As can be shown from an extension of Kelvin's model there are two other 
types of stresses that will produce a charge separation normal to the axis. 
Suppose that we stress the crystal along the X or electrical axis as shown by 
Fig. 1.6A. Applying the same reasoning as before, we see that the apex 
molecules are separated farther apart without changing the separation 
between the other molecules. This results in a separation of the centers 
of gravity of the positive and negative charges, with the negative charges 
moving toward the left and the positive charges moving toward the right. 
The separation is still along the electric axis, but is in the opposite direction 

M = 0 cos 30° = 2\/3 N b q d (1.1)" 

Y Y 

Fig. 1.6—Longitudinal and shear strains applied to a quartz molecule 
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to that caused by a stress along the Y axes. A detailed analysis shows 
that the value of the electrical separation moment (dipole moment) for a 
stress along either axis is the same value but the sign is reversed. A longi- 
tudinal stress then can only produce a charge moment along the X or 
electrical axis which is the origin of the name electrical axis. 

If, however, we introduce a different kind of stress known as a shearing 
stress, a separation of centers of charges can occur along the mechanical or 
Y axis of the crystal. A simple shear stress is one in which forces act normal 
to the direction of space separation rather than along it as shown, for exam- 
ple, by the two opposed arrows normal to the mechanical axis in Fig. 1.6B. 
Such a shear does not occur in nature, but rather a pure shear which consists 
of two simple shears which are directed in such a way as to produce no 
rotation of the molecule as a whole about its axis. If we resolve these 
force components along directions 45° from the crystal axes, a pure shear is 
equivalent to an extensional stress along one 45° axis and a compressional 
stress along the other 45° axis. Such a stress would cause the charges to be 
displaced from their normal position, as shown in the figure. This causes 
the center of positive charge to be displaced downward along the mechanical 
or Y axis of the crystal while the center of negative charge is displaced up- 
ward along the mechanical axis. 

These three relations can be written in the form 

where Px is the polarization or charge per unit area developed on an electrode 
surface normal to the X axis due to the applied longitudinal stresses Xx 

and F„, while Py is the polarization normal to the F axis caused by the shear- 
ing stress Xy . dn is the piezoelectric constant and equations (1.2) show 
that the magnitudes of all these effects are closely related. In addition 
to these three major piezoelectric effects, quartz has two smaller effects 
which, since they are connected with the distribution of molecules in the YZ 
and XZ planes, cannot be demonstrated by the figures given previously. 
The complete piezoelectric relations are then 

Px = -dnXx + dnYy - duYt ; Py = duZx + 2dnXv (1.3) 

where Yz and Zx are respectively similar shearing stresses exerted in the YZ 
and ZX planes respectively. The best values for the dn and du constants 
are respectively 

dn = -6.76 X ICT8 dn = 2.56 X KT8 ^ (1.4) 

as obtained by recent measurements for a number of X cut and rotated X-cut 
crystals discussed in appendix A. 

Px = —dnXx -f- dnYy ; Py — 2dnXy (1.2) 

dyne dyne 
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Quartz is not the only type of crystal which is piezoelectric. In fact 
there are hundreds of crystals that exhibit this property. Whether a 
crystal is piezoelectric or not and the relation between the stresses and 
charge displacements depend on the symmetry of the crystal. Whenever 
there is a center of symmetry; that is, when the properties of the crystal 
are the same in both directions along any line, no piezoelectric effect can 
occur. This is illustrated by the simple arrangement of atoms shown by 
Fig. 1.7. It is obvious that no symmetrical application of forces can separate 
the center of gravity of the charges and hence such a crystal will not be 
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Fig. 1.7—Crystal with a center of symmetry 

piezoelectric. Crystals can be classified into 32 possible classes on the basis 
of the symmetry they exhibit; and of these 32 classes, 20 are piezoelectric 
and 12 are not. As illustrated by the model for quartz, the response to 
different types of force depends solely on the type of symmetry existing in 
the crystal. 

1.4. Electrical Impedance and Low Dissipation in Crystals 

The first crystal used by Cady in controlling oscillators, was a crystal cut 
with its major faces perpendicular to the X or electrical axis and with its 
length along the Y or mechanical axis. Referring to Fig. 1.5B, we see that a 
stretch along the Y axis will produce a charge displacement along the E 
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or X axis. Conversely, a voltage applied along the X axis will produce a 
charge displacement and consequently a mechanical stress along the F axis 
which will set up a longitudinal wave along the mechanical axis. As shown 
by Fig. 1.8, the type of motion resulting when the crystal is free to move on 
the ends is one in which the center is stationary and the ends move in and 
out. The crystal can then be clamped at its center or mounted from leads 
soldered to electrodes deposited on the surface. 

In using a crystal in an electrical circuit it is desirable to have an electrical 
equivalent circuit which will represent the electrical impedance as measured 
from the terminals of the crystal. Such a circuit9 is shown in Fig. 1.8. In 

Fig. 1.8—Longitudinally vibrating crystal and electrical equivalent circuit 

this representation Co is the static capacity of the crystal which would be 
measured if the crystal were held from moving. Ci is the stiffness of the 
crystal transformed into electrical terms through the piezoelectric effect of 
the crystal, while L\ is the effective mass of the crystal also transformed into 
electrical terms. The resonant frequency of the crystal is determined by 
the Young's modulus and density of the bar according to the usual formula: 

fA GIVEN BY SOLVING 

(1.5) 

9 Circuits of this type for representing the electrical impedance of a crystal were first 
derived by Van Dyke; see reference (7). The method of deriving them from Voigt's 
equations is discussed in the appendix. 
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where Fo is the value of Young's modulus along the bar, p the density, and 
I the length of the bar. 

A significant feature of the equivalent circuit is that there is always a 
definite ratio between Co and Ci for a given crystal cut. This is really a 
measure of the ratio of electrical to mechanical energy stored in the crystal 
under an applied constant voltage. The reactance characteristic of the 
network is shown by Fig. 1.8 as a function of frequency. The reactance 
starts out as a negative reactance at low frequencies, becomes zero at the 
resonant frequency/« , becomes positive and very large at the anti-resonant 
frequency /a , then again becomes a negative reactance. Due to the high 
ratio of Co to Ci existing in a crystal the separation between /a and fn be- 
comes very small. For example, for AT crystal this ratio is around 200 
and the separation of/a from/H is only a quarter of a per cent in frequency. 
Since it can be shown that an oscillator will only oscillate on the positive 
reactance part of the crystal characteristic, the narrow separation between 
resonant and anti-resonant frequencies explains why a crystal can act as 
such a good stabilizer for an oscillator. As long as the crystal resonance 
itself does not change with temperature or other conditions, the very sharp 
reactance frequency characteristic will not allow the oscillator frequency 
to change much with a change in oscillator voltage, tube conditions, or any 
other changes which are likely to cause a change in frequency for a coil and 
condenser controlled oscillator. 

Strictly speaking, a resistance should be added in series with the induc- 
tance Li to represent the internal losses in the crystal, the loss of energy 
at the clamping points and the loss of energy due to setting up of air waves 
by the crystal motion. However, the value of this resistance and the 
amount of energy lost is very small in a crystal compared to what the losses 
are in purely electrical elements. A demonstration which shows this 
effect and shows that most of the losses of a well mounted longitudinally 
vibrating crystal are acoustic losses caused by setting up air waves in the 
vicinity of the crystal, can be made by using two oscillators, one a fixed 
oscillator and the other one controlled by a resonant circuit or a crystal. 
The fixed oscillator may be set at 99 kilocycles and the crystal oscillator 
controlled by a 100-kc crystal. The two will beat together giving the 1000- 
cycle note. When the battery is taken off the crystal oscillator, it continues 
to oscillate till the energy built up in the crystal is dissipated in the internal 
dissipation of the crystal. A good electrical circuit which has a ratio of 
reactance to resistance, or Q of the coil of 300 dies down almost instantane- 
ously. For a crystal mounted in air it takes about half a second to become 
inaudible. This corresponds to a (9 of 30,000 where Q is defined as the ratio 
of the reactance of the coil L\ of Fig. 1.8 to the resistance. For a crystal 
mounted in a vacuum a much higher Q is obtained due to the elimination of 
the loss of energy by acoustic radiation. For such a crystal it takes eight 



QUARTZ CRYSTAL APPLICATIONS 191 

seconds to die down which corresponds to a Q of 330,000, which is about 
1000 times as great as that for a good electrical circuit. • 

1.5. Modes of Motion and Crystal Orientation to Produce Low 
Temperature Coefficient Crystals 

As mentioned previously the first crystal cut used in oscillators was a longi- 
tudinal vibration along the F or mechanical axis excited by a field applied 
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Fig. 1.9—Oriented quartz crystal cuts in relation to the natural crystal 

along the electrical or X axis. This mode gives a good resonance free from 
other modes and a modification of it is now used in crystal filters. This 
modification, as shown by Fig. 1.9, (—18.5° filter crystal) consists in rotating 
the direction of the length by 18.5° from the Y or mechanical axis, about the 
X or electrical axis. As described previously10, the effect of this rotation is 
to eliminate the coupling between the desired longitudinal mode and the 
undesired face shear mode, thus simplifying the motion and eliminating an 

10 "Electrical Wave Filters Employing Quartz Crystals as Elements," W. P. Mason, 
B. S. T. J., Vol. XIII, p. 405 July 1934 or patent 2,173,589. 
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undesired resonance. However, to get a reasonably high frequency out 
of a length vibrating type of cut requires too small a length to be practical. 

It was not long before crystal oscillators were controlled by thickness 
vibrating crystals whose frequencies were determined by the thickness of 
the crystals or by their smallest dimension. Referring to Fig. 1.6A, we see 
that the same X cut type of crystal will generate a vibration along the elec- 
trical or X axis when a field is applied along this axis. Since the thickness 
dimension can be made very small, a high frequency is obtainable. How- 
ever, when the smallest dimension is used to control the frequency, a diffi- 
culty arises not present when the largest dimension is used to control the 
frequency, namely, that harmonics and overtone modes of all the lower 
frequency types of motion produce frequencies near the frequency of the 
thickness mode and it is difficult to pick out the desired mode. This was 

6X = A COS COS Znirft 

n-l,3,5; =66-5^- 

Fig. 1.10—High frequency shear mode of motion 

especially true for the thickness vibrating X cut crystal and Jed to its 
abandonment in favor of V cut crystals vibrating in shear. 

As seen from Fig. 1.6B, when a voltage is applied along the V or mechan- 
ical axis, a shear vibration is produced which tends to change a square into 
a rhombus. For a large plate in which the edge dimensions are large com- 
pared to the thickness, the motion occurs as shown by Fig. 1.10. For such 
a plate the motion is perpendicular to the thickness, which is the direction 
of transmission of the wave, and hence a shear wave is sometimes called a 
transverse wave. The frequency of such a wave can be shown to be 

1 = 21 l/f C-6) 

where I is the thickness of the plate, coe is the shear stiffness constant and p 
the density. The use of Y cut plates considerably improved the per- 
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formance of oscillators since the plates do not have as many secondary modes 
of motion as do the X plates. They have, however, one drawback. The 
frequency increases about 86 parts in a million for every degree Centigrade 
increase in temperature. This requires regulating the temperature quite 
closely. 

In order to improve on the performance of the F cut crystal, investiga- 
tions were made by Lack, Willard and Fair, Koga, Bechmann, Straubel 
and others11 on how the properties of such crystals varied as the orientation 
angle of cutting blanks from the natural crystal was varied. As shown by 
Fig. 1.9, the crystals investigated all had one edge along the X or electrical 
axis with the normals making positive and negative angles with the F axis. 
All of these crystals will have a component of field along the F axis, which 
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Fig. 1.11—Frequency constant of oriented Y cut crystals 

will produce a shearing motion until the angles of cut approach 90 degrees 
from the F axis. The smaller the angle A* the more strongly will the shear 
mode be driven. However, advantageous elastic relationships can be ob- 
tained by using oriented cuts. As shown by Fig. 1.11, Lack, Willard and 
Fair found that the frequency constant of a rotated crystal expressed in kilo- 
cycle millimeters varied with angle of cut and that there was a minimum fre- 
quency at +31 degrees and a maximum at —59 degrees. It was subse- 
quently pointed12 out that these minimum and maximum points were signifi- 
cant angles in the elastic behavior of the crystal for they were the angles for 

11 "Some Improvements in Quartz Crystal Circuit Elements," F. R. Lack, G. W. Wil- 
lard, I. E. Fair—B. S. T. JVol. 13, pp. 453-463, July 1934; R. Bechmann—ffF Techn. ti. 
El. Ak. 44, 145 (1934); T. Koga—Re/', of Rod. Res. i. Jap. 6, 1 (1934); J. Straubel, Z. tech. 
Physik., 35, 179, 1934. 12 See patent 2,173,589. 
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which the high-frequency shear mode had zero coupling with the trouble- 
some low-frequency shear mode system of vibrations. Crystals cut at these 
angles have a much cleaner frequency spectrum than Y cut crystals. Lack, 
Willard, and Fair also found that the temperature coefficient of frequency 
varied with angle as shown by Fig. 1.12. Starting from a high positive 
value for the Y cut, the coefficient becomes zero at an angle of +35° — IS' 
and —49°. The first angle cut is known as the AT cut and the second as 
the BT cut. Since the AT angle is nearer the Y cut, the piezo-electric con- 
stant is larger and it is more strongly driven than the BT. On the other 

100 
u 
cc 80 UJ a 
Z O 60 
_j 
2 
ct 40 

bJ Q. 
W 20 
IT < Q. 

H 
y -20 
u 
u. u. UJ -40 O U 
UJ 
* -60 
t- < IE uj -80 
2 ui 

-100 -90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90 
ANGLE OF ROTATION ABOUT X AXIS IN DEGREES (e) 

Fig. 1.12—Temperature coefficients of oriented Y cut crystals 

hand, the BT has a higher frequency for the same thickness. Both crystals 
are near enough to the AC and BC cuts so that the systems of low-frequency 
shear modes are rather weakly driven. On the other hand, the shear mode 
of both crystals is rather strongly coupled to flexure modes of motion, as 
will be discussed by Mr. Sykes in a later chapter, and the crystal has to be 
exactly dimensioned in order that the flexure frequencies and other disturb- 
ing frequencies will not coincide with the desired shear mode. 

Other oriented shear crystals for lower frequency work are the CT and 
DT crystals investigated by Willard and Hight. They are related to the A T 
and BT crystals as shown by Fig. 1.13. The plate on the right shows the 
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motion of an yl T plate. If we were to increase the thickness dimension until 
the plate was nearly square, the AT motion would correspond to a face shear 
mode which should be controlled by the same elastic constants as the A T 
motion. At the same time in order to drive the crystal efficiently we 
could decrease the width until it became the thickness. This procedure 
would be the same as cutting a crystal at right angles to the AT and would 
suggest that by so doing we should obtain a low-frequency shear crystal 
with a low coefficient. Actually, Willard and Hight found that a crystal 

Fig. 1.13—Relation oi AT and DT low temperature coefficient crystals 

at —52° or 87° from the A T would give a low coefficient. This crystal was 
called the DT. Similarly, a crystal cut at +38° or 87° from the BT would 
also give a low coefficient and this has been called the CT. It can be shown 
that a component of the voltage applied along the mechanical axis will 
drive the shearing type of motion. The CT is larger for the same frequency 
and more strongly driven than the DT. It is extensively used in controlling 
oscillators in the frequency range from 200 to 500 kilocycles. 

Quite a few other crystal cuts have been discovered as shown by Fig. 1.9. 
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Another important cut is the GT,13 which has a very constant frequency 
over a wide temperature range. As shown by Fig. 1.14, all zero temperature 
coefficient crystals are zero coefficient at one temperature only and usually 
vary in a square law curve about this temperature. The GT crystal repre- 
sented an attempt to get a crystal in which the frequency remained constant 
over a wide temperature range. As can be seen from the figure, when prop- 
erly adjusted this aim is attained, for the frequency does not vary more than 
one part in a million over a 100-degree Centigrade range of temperature. 

This crystal makes use of the fact that a face shear vibration can be 
resolved into two longitudinal vibrations coupled together. As shown by 
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Fig. 1.15, if we cut a crystal at an angle of 45 degrees from that of a shear 
vibrating crystal, an expansion occurs along one axis and a contraction 
along the other indicating that a face shear can be resolved into two longi- 
tudinal modes that are coupled together. Now since it can be shown that 
all pure longitudinal modes for blanks cut in all possible directions in a 
quartz crystal will have zero or negative temperature coefficients,14 it follows 
that if we have a shear vibrating crystal with a positive coefficient, that 

13 "A New Quartz Crystal Plate, Designated the GT, Which Produces a Very Constant 
Frequency Over A Wide Temperature Range," W. P. Mason, Proc. I. R. E., Vol., 28 pr. 
220-223, May 1940 

14 This can be proved as discussed in the appendix by combining the Voigt expressions 
for the elastic relations in a crystal with the measured temperature coefficients of the six 
elastic constants. 
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coefficient must have been caused by the coupling between the two modes. 
As a result of this observation it follows that if we have a shear vibrating 
crystal with a positive temperature coefficient and cut another crystal at 
45 degrees from this crystal, the strong coupled mode which corresponds to 
the shear vibration will also have a positive temperature coefficient. As 
we grind down on the side, the two modes become farther apart in frequency 
and less closely coupled. Then, since they both will have a negative coeffi- 
cient if separated far enough, it follows that for some ratio of axes, one of the 
modes will have a zero coefficient. This was tested out for a series of orien- 
tations near the CT and DT with the results shown in Fig. 1.16. Positive 
angle crystals had zero coefficients at ratios of axes varying from 1 to .855 

I 

Fig. 1.15—Relation between a face shear mode and two coupled longitudinal modes 

depending on the angle while negative angle crystals had zero coefficients 
at ratios from .64 to 1.0. For positive angle crystals it was the higher fre- 
quency mode that was the stronger and could be given the zero coefficient, 
while for the negative angle crystals it was the lower frequency mode that 
was the stronger and corresponded to the face shear mode. 

Several of the positive angle crystals were measured over a temperature 
range with the results shown by Fig. 1.17. For angles above 51 o-30'the 
curvature was positive, while for angles below 51o-30' the curvature was 
negative. Right at 51o-30' the large square law curvature term disappeared 
and the frequency was constant to one part in a million over a 100-degree 
Centigrade range centered at 50oC. as shown by Fig. 1.18. Some further 
experiments showed that this flat range could be moved around a bit by 

r 

J \ 
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changing the angle of cut and the ratio of axes simultaneously. To go from 
— 250C. to +750C. with a mid-range at 250C., a crystal cut at Sl0-?^' 
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Fig. 1.16. 
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perature coefficient for G type crystals 
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Fig. 1.17—Temperature frequency relations for various angles for G type crystals 

with a ratio of axes of 0.859 is required. The GT crystal has been used 
quite extensively in frequency and time standards and in filters meeting 
rigid phase requirements. 
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Fig. 1.18—Temperature frequency characteristic for GT crystal 
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alculated from temperature coefficients evaluated in the appendix, 
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Two other cuts not previously described are shown also by Fig. 1.9. They 
are the MT low coefficient longitudinally vibrating crystal and the NT low 
coefficient flexurally vibrating crystal. Both of these are related to the 
+5° X cut crystal of Fig. 1.9. As shown by Fig. 1.19 a long thin 5° X cut 
crystal is the best length direction for an X cut crystal to obtain a low- 
temperature coefficient. Figure 1.19 plots the temperature coefficients for 
long thin oriented X cut crystals, and this data is used in the appendix to 
derive the temperature coefficients of the six elastic constants. However, 
as the width of the crystal is increased the temperature coefficient becomes 
highly negative as shown by Fig. 1.20. 
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Fig. 1.20—Temperature coeiTicient of a -|-50 X cut crystal {tp = 0°; 0 = 90°; i/- = 85°) 
as a function of the ratio of width to length. Ratio of thickness to length = 0.05. 

This change of coefficient occurs due to the fact that as the crystal width 
is increased, the face shear mode of motion becomes more strongly excited 
and contributes to the elastic constant. Then since the temperature coeffi- 
cient of the shear elastic constant is highly negative for this orientation 
the temperature coefficient of the +5° X cut crystal becomes more highly 
negative as the width is increased. 

The MT longitudinally vibrating crystal employs a rotation of the plane 
of the crystal cut about the Y' or length axis. The effect of this rotation is 
to change the temperature coefficient of the shear mode from highly nega- 
tive to nearly zero. The result is that the temperature coefficient becomes 
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very low and nearly independent of the width length ratio. The NT low 
coefficient flexurally vibrating crystal is similar to the MT but requires a 
somewhat higher rotation about the Y' axis to produce a low coefficient. 

The MT crystal has been used in narrow band filters such as pilot channel 
filters of the cable carrier system and in oscillators having frequencies be- 
tween 50 kilocycles and 100 kilocycles. The NT flexure crystal is capable 
of producing frequencies as low as 4 kilocycles, and can be used to produce 
filters and control oscillators in the frequency range from 4 kilocycles to 50 
kilocycles. Crystals of this type have been used with the Western Electric 
frequency modulation broadcast transmitter.15 Operating in the region 
of 5 kilocycles, they maintain the frequency of the transmitter to ±.0025 
per cent without temperature regulation. These two crystals will be 
described in more detail in a subsequent paper. 

APPENDIX A 

VOIGT'S ELASTIC AND PIEZOELECTRIC RELATIONS AND 
THEIR APPLICATION TO THE DETERMINATION OF LOW 

TEMPERATURE COEFFICIENT CRYSTALS 

A.l Mathematical Expressions for Piezoelectric Relations 

As mentioned in the historical introduction, Voigt formulated a mathe- 
matical relation between the stresses, strains, polarizations, and electric 
fields existing in a crystal. For a general crystal devoid of symmetry these 
relations take the form 

I * K II Co - 
^ 

*
 

N + S12 yv + 
E rj \ E jr 

5l3 ± 5'14 vz + 
E 7 5l5 Zx 

+ sfeXy - dn Ex — doiEy — r/si Ex 

I II Co 'J*
 

H + 522 Vy + 5*3 Zz T 5*4 Fz + 
E ry 

525 Zj 

+ 5*6 Xy - dnEx — d^Ey — dzzEx 

E v — Z2 — 531 A x + 532 Vy + 5*3 Z, + 53*4 Fz + 
B 7 

535 ZJX 

+ 536 Xy - d\3 Ex — d-a Ey — dssEx 

yz = ^41 A j + 542 Vy + 5*3 Zz + 5*4 Yz + 
E 7 

545 

+ SwXy — d\\ Ex dii Ey — <^34 Ex 

(A.l) 
16 "A New Broadcast Transmitter Circuit Design for Frequency Modulation," J. F. 

Morrison, Proc. I. R. E., Vol. 28, No. 10, Oct. 1940, pp. 414-449. 
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Px = —d\\Xx — dyiYy — diiZz du Yz d^Zx dmXy -J- ki Ex 

Py = — dil Xx — du Yy — (^23 Zz (^24 Y2 dih Zx dy, Xy K2 Ey 

Pl = —dziXx — d$i Yy — dssZz ^34 Yz dzh Zx dy.Xy -f- kj EZ 

where .rx ,yy ,zz are the three longitudinal strains, yz }zx , xv the three shear- 
ing strains, Xx,Yy , Zt the three longitudinal stresses F,, Zz , the three 
shearing stresses; Px , Py , Pz the a;, y and z components of the polarization, 
and Ex ,Ey , Ej the x, y and z components of the electric field, , • • • , 566 
are the 36 elastic compliances. The superscript E is added to show that 
they must be measured when the field E is zero or the crystal plated and short 
circuited. As shown from section C of this appendix they can be measured 
from the resonances of completely plated crystals. From the principle of 
conservation of energy it can be shown that there is the general relation 
between the elastic compliances 

so that the greatest number of compliance moduli is 21. In equation (A.l) 
the da are the piezoelectric constants measured by observing the propor- 
tionality between the strains and the applied fields in the absence of external 
stresses, k* are the "free" susceptibilities of the crystals in the three space 
directions measured in the absence of stress. The susceptibilities are related 
to the "free" dielectric constants K* by the equation 

In addition to these equations we have also that the charge per unit area Q 
on the surface is related to the field and polarization by 

(A.2) 

iTf = 1 + Attk- (A.3) 

(A.4) 

G. = S + P' 

= —'—- — d%\Xx — d$i Yy — d^Zz d^i Yz d^ Zx dsaXy 
Air 
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These equations hold for the most general type of crystal. In addition 
Voigt showed that if there was any symmetry existing in the crystal, a num- 
ber of the constants were zero and certain relations existed between other 
constants. For example quartz has a trigonal symmetry about the Z or 
optic axis, and three digonal axes of symmetry (the three X or electrical 
axes) about which it is necessary to turn through an angle of 180° before 
the original pattern is restored. Voigt showed that by expressing the rela- 
tions (A.l) in terms of rotated axes and imposing the symmetry condi- 
tions, the following relations existed between the elastic and piezoelectric 
coefficients 
BEE E E E E E E r\ ■*15 — ^16 — ^25 — ^26 — ^34 — ^35 — ^36 = ^45 = S46 = t) 
E E EE E E EE S22 — Sn, ^23 — ^13> ^24 — —514 5 544 = SbsJ 

E   r\ E E r\ / E E \ 
566 — ^5145 566 — 2(5II — 542) 

du = dif, = Jie = dn = dw = d^ ~ do* = dai = dw (A.5) 

::= das — dai = dan = dan — 0 

dn := — ^11; dan = —du] din — —2dn 
F F Kl = K2 

Hence the relations between the stresses, strains, polarizations and fields for 
quartz reduce to the simpler forms 

— xx = sfiXx + SiaYy -f- SiaZz + 5f4Fz — di\Ex 

~yv = SitXx + 5fiF„ + SiaZz — SuYz -j- dnEx 

— Zx = 513X2 -f- 5i3 Fy + SaaZg 

~yz = 5^4X3; — 5f'iYy -|- sfiYg — duEx 

—Zx = SuZx + IsfiXy + duEy 

-xv = 2sEuZx + 2{sEn - sfz^Xy + 2dnEy ' (A.6) 

Qx = - ^11X2 + dn Yy - dn Yz Air 

Qv = -7-— + duZx + 2dnXy Air 

n -E'Ka 
^ At 

The superscripts have been left off the constants 513, 533 and Ka since it 
will be shown that their values are not affected by the way in which they 
are measured. 
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Equation (A.5) is not the only way of relating the elastic and elec- 
tric quantities. For example if we substitute the values of the fields of the 
last three equations of (A.6) in the first six equations, we can write 

— Xx = SiiAx + siiYy + SisZz SiiVz — gnQx 

— Jy — SyiXx + SyiYy + ^13-^3 — SuYz + gnQx 

— Zz — ^13X1 + SizYy + 533-^2 

—y? = sQuXx - suYy + s'LYz - guQx 

— zx= SuZx -f 2siiXy + guQy 

-xy = 2sUx + 2(s?l - s%)Xu + 2gnQv (A.7) 

Ei = •— <3i + gnXx — gn Yy + gu 
Ky 

Ey = ~Qy ~ gii Zx — 2gn Xy 
Ei 

e' = YQ' A3 

where 

n F. ^ivdn o . E | ^irdn _ Q _ n ^irdndu 
Sn = Su - 5 ^12 = ^12 + —:tr , 5i4 - 5i4 —jLE— 

K[ Kx Kx 

o E Airdu _ lirdxx. n _ ^du 
^44 544 rF j §11 > ol4 

Ai Ai Ax 

The superscript Q is added to show that these are the elastic compliances 
that will be measured when the free charge on the surface is zero. These 
elastic constants are the ones measured when an unplated crystal is put in 
an airgap holder with a large air-gap since then no charge can flow to the 
surface of the crystal. The difference between the zero field and zero charge 
elastic constants for quartz is less than 1 per cent. For rochelle salt, how- 
ever, they may differ by a factor of 4. For rochelle salt the principal piezo- 
electric constant dxi and the "free" dielectric constant Af vary widely in 
value and phase angle with variations in temperature and frequency, whereas 
the piezoelectric constant gxi which is proportional to the ratio of these two 
is nearly a constant for all frequencies and temperatures, so that the formu- 
lation of equation (A.7) is more advantageous than that of equation (A.6). 
For quartz, however, both forms are reasonably constant. Furthermore 
the elastic constants of equation (A.6) are those for a plated crystal which 
are usually the ones of interest for a crystal employed in an oscillator or filter. 
Hence this formulation has been used in this appendix. 
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Both the formulation of (A.6) and (A.7) can be expressed in terms of 
the strains rather than the stresses. Since these are useful forms and are 
used later in this appendix, they are given below. Equations (A.8) are 
obtained directly from equations (A.6) by solving them simultaneously to 
replace the strain by the stress, while equations (A. 10) are obtained in the 
same way from equations (A.7). 

— Xx = CiiXx + cfzyy + CisZz + Ciiyz — euEx 

— Yy =: Ci2Xx + cnyu 4" c^Zz — cf^yz + enEx 

— Zz= CuXx + Cuyy + CuZz 

1 z = CnXx Cnyy 4" C44yz CuEx 

Zx   C.iiZx 4" CnXy 4" SliEy 

-X, = cf, z, + ) X, + £„£, (A,8) 

n 1 _l p _ Ex K\ . Qx —  r 1 x — — + fin Xx — en yy 4" en yz Air 4t 

F F K? // I 71 V 1 
YU — i y — 1 ^14 Zi 6n Xy ATT 47r 

where the relations for the elastic constants are 

O S $33 . ^44 r, E $33 ^44 —^13 zcn 4" -3-; zcn   ; C13 — -— ; 
a p a p a 

E E , E EE 
E   ^14   ^11 "T ^12 E   -Jll — 5l2 C14 — —X— > C33 —   5 C44 —     ; pa P 

E E E 
E C\\ C12 ^44 / E 1 B \ r, 2 

^66 —  ^  ~ 2P ' a ~ 533^ 11 I Sl2' ~ •"13 ' 

o E / K & \ ^ ~ 
P — ^44(^11 — ^12) -^14 • 

Conversely we can also write the useful relation 
EE EE 

r, E   C33 . C44 „ E   C33 C44 
11 1/ ' "fl'' Sl- ~ ~Z' ~ ' a p a p 

_ —C13 E_~Cl4 _ cfx 4~ Cl2 
' 7" > ■^14 ol > ^33 7 ' J a P a 
EE r\ E 

E tJl Cl2 B r\ / E E\ 
Sii P'  ' 566 ~ — 512 P7 ' 

a' = C33(cfi 4" cfo) — 2ci3 ; P' = Cu(cn — cn) — 2cu' . 
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For the piezoelectric constants 

e\\ = dnich — cf2) + duc^ ; eu = 2dnCii + ^14^44 5 

and conversely 

—dn = «ii(-sfi — •yf2) + eusfi ; —du= 2eiiSu + ^14^44 • 

The dielectric constant K? denotes the clamped dielectric constant, i.e., 
the constant measured when the crystal is free from strain. This is related 
to the free dielectric constant K[ by the equation 

Ki = Ki — ±TT[dueu + 2diiCii]. (A.9) 

In a similar way if we solve equations (A.7) simultaneously, for the stresses 
in terms of the strains, we have 

— Xx = CnXx + Cnjy -f- C1302 + cityz — fnQx ] 

— Yv = CiiXx + Ciiyj, + C13Z, — Ciijz + fnQx 

— Zt = CuXx + Cujy + CaaZz ; 

— Yz == cnXx Cny,, d" C443'Z fnQx » 

Zx = C44Z1 CnXy -{" fliQv } 

-Xv = cUx + (1^ + hQy i (A.10) 

Ex — —^ Qx fnXx 4" fnyv fnyz » 
Ai 

Ey = ^Qy -\- fnZz 4- fnXy ; 
Ki 

E' = tQ- 

where the cQ constants are related to the sQ constants as in equation (A.8). 
The piezoelectric relations are 

fll = gn(Cii — Cm) 4" gl4C?4 J /l4 = 2gllC?4 4" gl4C44 ; 

or conversely 

—gn = fn(sn — Sm) 4" ei45?4 I —gu = 2/ii5?4 + fuSu ; 

while the dielectric relation between the free and clamped crystal 

&»/» + 2SUn). (A.U) Ai Ai 
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Equations (A. 10) might also have been obtained directly from equations 
(A.8) by substituting the charges from the last three equations in terms of 
the fields. This substitution yields the additional relations 

^ I ^TTgu q E 47reii Q e Cn — Cn i —, C12 — C12 — c ; C13 — C13; 
Ai Ai 

o _ B , 4ireii eu Q b C14 — Cn -f- ——p— ; C33 = C33; 
Ai 

B E | 87rgii2 (A. 12) 
/!_. 2 ,.0 C11 — C12 -fi J.c 4   E 1 47rgl4 0 Cn - C12 Ai 

44 - C44 i" , 66 2  2 ' 

, 47r 47r 
7n - —c en; ju = —^ en . 

Ai Ai 

(A.2). Values of the Elastic and Piezoelectric Constants 

The first and one of the best determinations of the elastic constants of 
quartz was made by Voigt. Using static deformations of unplated crystals 
he determined the elastic constants to be 

cn = 85.1 X 1010 dynes/cm2; C12 = 6.95 X 1010; 

c,3 = 14.1 X 1010; cu = 16.8 X 1010 

C33 = 105.3 X 1010; C44 = 57.1 X 1010; (A-13) 

C6S = = 39.1 X IO10 

From these the moduli of compliance can be calculated and are 

5n = 129.8 X 10-14 cm2/dyne; 512 = —16.6 X 10-14; 

513 = -15.2 X 10-14; 514 = -43.1 X IO"14; 
(A.14) 

533 = 99.0 X 10-'4; 544 = 200.5 X IO"14; 

566 = 2(5ii - *12) = 292.8 X IO"14. 

Whether these are zero field or zero charge constants is not known. If 
they were measured in a room with high humidity, the polarization produced 
by strain would soon be annulled by a current flow through the leakage re- 
sistance of the adsorbed moisture, and the constants would be cf,- or 5fy . 
On the other hand if the displacements were measured in a very dry room, 
the leakage resistance is very small and it may take hours to annul the polari- 
zation through a leakage current flow. In that case the constants measured 
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would be or 8% . In any case the difference was probably less than the 
accuracy of measurement. 

Later measurements by Perrier and Mandrot for two of the constants Sn 
and 533 give the values 

sn = 127.3 X 10-14; ^33 = 97 X lO"14 (A. 15) 

By using the measured resonance frequencies of known modes of motion, 
the uncertainty of the type of elastic constant can be removed, for the 
alternations occur so fast that the leakage resistance has little effect. If a 
crystal is lightly plated, it is shown in the next section that the resonant 
frequency of a length vibrating bar will be determined by the zero field 
elastic constants sfy . On the other hand if an unplated crystal is measured 
in an air gap holder with a large air gap it has been shown that the fre- 
quency measured will be determined by the zero charge elastic constants 
j-y or ctj . A careful measurement of the elastic constants of quartz has 
recently been made by Atanasoff and Hart2. Using thickness modes for 

1 The resonances of length vibrating crystals have been discussed by Cady, "The Piezo- 
electric Resonator and The Effect of Electrode Spacing on Frequency," Physics, Vol. 7, 
No 7 July 1936, pages 237-259; and by the writer, "Dynamic Measurement of The Con- 
stants of Rochelle Salt," Phys. Rev., Vol. 55, pages 775-789, April 15, 1939; while the 
resonances of thickness vibrating crystals have been discussed by Cady (above paper) and 
Lawson "The Vibration of Piezoelectric Plates," Phys. Rev., Vol. 62, July 1, 1942, pp. 
71-76 For a length vibrating crystal Cady shows that the resonant frequency for no air 
gap (plated crystal) is controlled by the constant l/sfi- For a crystal with a large air 
gap, the frequency is controlled by the constant. 

lAu + iTrdJ/Kfs?? = l/s?1 . 
Starting with equations of the form (A. 10), the writer showed that the frequency of a bar in 
an air gap holder would be controlled by the constant 1 A?,, while the frequency of a plated 
crystal is determined by 

_ ^114ir 
Kfsf, 

For a thickness vibrating crystal for which the field is applied in the direction of wave 
propagation, Cady and Lawson find that the resonant frequency is controlled by the elastic 
constant # 

4ireus 

K? 
= CE 1 '•1 I ~ rrC 1 - 

{-KH. 

where D is the total separation between electrodes and t the thickness of the^crystal. 
When the separation is infinite, the controlling elastic constant is Cn + 4jrCii2/^i which, 
from equation (A.12) is c?,. When the air gap is zero ox D = t, the controlling constant is 

4/16112 

+ K 
*i2 ^ 
f V W 

which, for all practical purposes, can be taken as Cu for quartz. 
2 "Dynamical Determination of the Elastic Constants and their Temperature Coeffi- 

cients for Quartz," Phys. Rev., Vol. 59, No. 1 (85-96), Jan. 1,1941. 
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relatively thick pieces of quartz, and determining the asymptotic value for 
high order harmonics, they obtained the elastic constants 

cu = 87.55 X 1010 dynes/cm2; c,2 = 6.07 X 1010; = 13.3 X 1010; 

Cl4 = -C24 = 17.25 X 1010; C33 = 106.8 X 1010; C44 = 57.19 X 1010. 

(A.16) 

In addition they came to the conclusion that c66 had a value of 18.4 X 1010, 
which was different from the value of cu as required by theory. Their 
measurements were made with high harmonics in air gap holders so that the 
values measured should determine the c?,- constant. To explain the dis- 
crepancy found, Lawson3 has suggested that the c?,- constants 

c% = cf, + iTreuen/K? ' (A.17) 

do not obey the same symmetry relations as the cf,- constants. This sugges- 
tion does not seem to be borne out by equations (A. 10), from which the sym- 
metry relations of the cfj constants can be determined. If we start with a 
generalized form of these equations applicable to any crystal and apply the 
symmetry relations for quartz, we find that it is still necessary to satisfy the 
symmetry relations between the constants found previously and in particular 

^66 = (A.18) 

In order to investigate this matter further, and to obtain more reliable 
values of the elastic constants, an analysis has been made of a number of 
measurements previously obtained for oriented crystals. In particular two 
families of oriented crystals were investigated. One family was a set of 
oriented X cut crystals vibrating longitudinally. They were cut with their 
major faces normal to the X axis and with their lengths at angles of from 
+43° to —79° with respect to the Y or mechanical axis. They were 
oriented similarly to the +5° and —18.5° filter crystals shown by Fig. 1.9. 
When these crystals are 7 to 10 times as long as they are wide or thick it 
has been shown previously4 that their length resonances are determined 
very accurately by the equation 

/« = ^ /lAV (A.19) ^lv Y pSii' 

where 4 is the length of the crystal, p the density and sir the inverse of 
Young's Modulus along the length for a plated crystal. This is related to 
the angle of cut Ai by the equation 

S22' = sh cos4A2 + sis sin4.42 -fi 2^4 cos3^ sin A2 
2 (A-20) (2^13 "f" ^44) sin A2 cos A2 

3 A. W. Lawson, P/tys. Rev., 59, 838 (1941). 4 "Electrical Wave Filters Employing Quartz Crystals as Elements." W. P. Mason, 
B. S. T. /., Vol. XIII, pp. 405-452, July 1934. See Figs. 25, 31 and 32. 
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Since the resonant frequency of the plated crystal was measured, it was the 
zero potential elastic constant that was determined. These crystals were 
lightly plated with aluminum and it had been previously shown that the 
added plating would affect the frequency by considerably less than 0.1 per 
cent. The crystal orientations, their dimensions, the frequency constants 
and the values of Sw are shown by Table I. 

These measured variations satisfy equation (A.20) for the variation of 
522' with angle very well if we take 

Sn = 127.9 X 10-14 cirf/dyne; 533 = 95.6 X 10 14; 

5f4 = -44.6 X 10"14; (A.21) 

S44 + 2513 = 175.8 X lO-14. 

Table I 

Dimension, mm Resonant Frequency ... , F Frequency Constant Value of s^' 
Length Width Thick- 

ness 
25 "C KC cms 

24.03 2.50 .502 130,700 314.1 95.6 X 10"" cmVdyn 
20.00 2.50 .502 127,710 255.4 144.5 
19.99 2.97 .505 128,390 256.8 143.0 
19.98 2.95 .500 128,590 257.0 142.7 
20.02 2.92 .500 132,130 264.5 134.7 
20.03 3.02 .502 134,050 269.2 130.2 
19.97 2.99 .502 135,240 270.5 128.9 
20.03 3.03 .508 135,890 272.0 127.5 
19.96 2.98 .506 135,920 272.1 127.3 
20.02 2.98 .505 136,890 274.0 125.7 
19.97 3.00 .505 138,400 276.5 123.3 
19.95 2.97 .510 139,900 279.0 121.2 
19.11 3.01 .500 154,600 295.4 108.1 
20.02 2.95 .500 155,380 311.1 97.5 
20.00 2.95 .500 174,750 349.5 77.25 

This gives three of the constants directly, and a relation between two more. 
To obtain the remaining constants and to test out the hypothesis that there 
are seven elastic constants rather than six, use has been made of measure- 
ments made for thickness vibrating shear crystals obtained by rotating one 
edge about the X axis. These are the A T and BT series shown by Fig. 1.9. 
As shown by a former paper5, the frequency of such crystals depends on 
the edge dimensions as well as the thickness dimensions. However, as the 
edge dimensions become large compared to the thickness dimension the 
principal frequency approaches an asymptotic value which is taken as that 
for the infinite plate. For the A T, BT and F cut crystals these asymptotic 
values have been determined to have the values shown by Table II. 

6 "Low Temperature Coefficient Quartz Crystals," B. S. T. JVol. XIX, pp. 74-93, 
Jan. 1940. See Fig. 5. 
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If we make the assumption that there are seven elastic constants and cf6 

differs from Cu , the frequency of this series of crystals will be5 

f = Yf ^~ wllere c^' = c®6 cos2 ^ + c*4 sin2 ~ c56 sin 2A2 (A.22) 

The determination for the F cut gives directly 

Cog = 40.5 X 1010 dynes per square cm. (A.23) 

The other two cuts give the values 

de = 18.2 X 1010; C44 = 58.65 X lO10 (A.24) 

To test out the hypothesis that differs from or from 2.sf4 we 
can make use of equation (A.8) writing cfe in place of cf4 . Then solving 
these equations simultaneously we find 

—r* rE 
_ C66 . _ —CM . C44 /.A 644 — , ff B «2«.' ^66 — g E JJ-, *66 — B B £17 

VM4 ^66 CM ) \C44 ^66 — ^56 ) 1,^44 ^66 — C56 ) 

Table II 

Crystal Angle of Cut As 
Asymytotic Fre- 
quency constant KC mms Vf. 'ue of cE

6 > 

AT +35° 15' 1661.5 29.39 X 1010 dvnes/cm2 

Y Cut 0 1954 40.50 
BT -49° 2549 68.86 

Substituting in the values from (A.23) and (A.24) we find 

^44 = 197.8 X 10~14 cm2/dyne; Sm = -89.0 X 10~14; 

Sm = 2(sn - sfi) = 286.5 X lO-14. 

Comparing the value of Sm with 2sf4 given in equation (A.21) we see that 
they are equal within the experimental error, so that these measurements do 
not indicate that there are seven elastic constants but only the customary 
six. Using these values all the elastic constants can be evaluated as shown 
by Table III. 

Measurements have also been made to determine accurately the piezo- 
electric constants. This was done by using the ratios of capacities of two 
standard rotated X cut crystals for which these ratios have been accurately 
determined. As shown by section C of this appendix, the ratio of capacities 
r of a crystal is related to the piezoelectric constant d'u , the elastic constant 
So*' and the free dielectric constant Ki by the equation 

T2 /l — k2\ 
r = ratio of capacities = -- f ———j (A.27) 
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where k the electromechanical coupling is given by 

J K-I 522 

The two crystal cuts and their constants are given in Table IV.^ 
Only the numerical value and not the sign are determined for dn . 

Table III 

(A.28) 

Elastic Compliance Moduli Elastic Stiffness Moduli 

jf, = 127.9 X 10_14 cm1/dyne 
= -15.35 

513 = -11-0 
+4 = -44.6 
J33 = 95-6 

sf4 = 197.8 

Sgg = 2(5?! - 5f2) = 286.5 

cf, = 86.05 X 1010 dynes/cmJ 

cfa = 5.05 
c13 = 10.45 
cf4 = 18.25 
C33 =107-1 
C4

b
4 = 58.65 

'i. - - 40.5 

Table IV 

Angle of Cut, At Ratio of 
Capacities Value of 5^2 Value of Value of djj 

-18.5° X cut 
0° X cut 

137 
125 

144.5 
127.9 

4.58 
4.58 

6.85 X lO"8 

6.76 X 10-8 

Table V 

Piezoelectric 
constant 

Value in cgs electrostatic units 
Piezoelectric 

constant 
Value in cgs electrostatic units 

dn 
du 
en 
en 

-6.76 X lO"8 

2.56 X lO"8 

-5.01 X 104 

- .97 X 104 

In 
gl* 
fn 
fu 

-18.55 X 10-8 

7.02 X lO"8 

-13.85 X 104 

- 2.68 X 104 

The variation of as a position of angle has been shown to be6 

dn = —3"h cos 2-42) + ^14 sin 2.42] (A.29) 

The two values of dn of table IV are satisfied by 

dn = -6.76 X 10-8; du = +2.56 X lO"8 (A.30) 

O See "Electrical Wave Filters Employing Quartz Crystals as Elements," W. P. Mason, 
B.S.T. J., Vol. XIII, 405 July 1934). 



QUARTZ CRYSTAL APPLICATIONS 213 

From these values and the elastic constants of Table III we can calculate 
all the different forms of the piezoelectric constants. These are given in 
Table V. 

(A.3). Derivation of Equivalent Circuit of Crystal 

The electrical impedance and electrical equivalent circuit for a fully 
plated crystal can be derived from the piezoelectric relations of equation 
(A.6) taken together with Newton's law of motion 

j2£ 
Fy — ma = (pdxdydz) — (A.31) 

at 

where m is mass of an elementary volume dx dy dz, a the acceleration, and 
i; is the displacement of the element in the y direction. If we consider a 
long thin X cut crystal with its length in the y direction, the piezoelectric 
relations of interest are 

— yy = SiiXx + ^fi Yy + SviZz — Su Y2 + dnEz; 

j? icF (A.32} 
Qx = —- — dnXx + dnYy — duYz. 47r 

For a long thin crystal with its long dimension in the Y direction we can set 

Xx = Zz — F, = 0 (A.33) 

This follows since the crystal is free from external forces, and hence these 
stresses on the edges of the crystal must be zero. On account of the small x 
and z dimensions, the rate of change of these stresses with x ox z will have 
to be high in order that the stresses shall differ appreciably from zero, and 
there are no mechanical strains causing a high stress gradient. Then for a 
long thin bar the piezoelectric equations can be written 

—jy = ^fi Yy + dnEx] 

EXK[ (A-34) 
Qx = —r— + dn Yy. 47r 

Let us next consider a small cross section of the crystal with a dimension 
dy along the crystal length. The total force on the section is a resultant of 
the difference in stresses on the two faces or equal to 

r)F 
LUYy, - Yy2] = -Ltt-jj dy = Fy (A.35) 

where Yy the stress is considered as a compressional force acting on the faces 
of the element. By Newton's law of motion (A.31) we have 

an yf ,A^ 
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For a completely plated crystal such as we are considering, the potential 
gradient Ex will be independent of the y direction, since any charge distribu- 
tion will be equalized with the speed of light which is much higher than 
the speed of sound in the crystal. Then equation (A.34) when differentiated 
by y becomes 

= (A.37) 
dy dy2 dy v J 

Introducing equation (A.36), the equation of motion for a plated crystal 
becomes 

d2£ e d\ , . 
(A-38) 

For simple harmonic motion the variation of ^ with time can be written in 
the usual form 

i = (A.39) 

so that for simple harmonic motion equation (A.38) becomes 

2 B . <?£ w2 t _ n /A —, — U Jupj = ^ ^ = 0 (A.40) 

where v the velocity of sound in the plated crystal is given by the formula 

.! = A- (a-«) 

A solution of equation (A.40) with two arbitrary boundary conditions is 

= yl cos - y + 5 sin —. (A.42) 
v v 

To determine the constants A and B, use is made of equation (A.34). 
Differentiating (A.42) 

— P = —yv = - sin - y — B cos —1 = Sn Yy + dnEx. (A.43) 
dy v \_ v v 

When y = 0 and y = J the bar length 

Yy = Yyl and Yv = Fy2 (A.44) 

provided the crystal is driving a load. For most electrical cases the only 
load driven is an air load and this is usually very small so that it is customary 
to set YVl = Yy^ = 0. Under these conditions 

— - B = dnEx and - 
v 

- {A sin — — 5 cos —1 = dn Ex. (ATS) 
v\_ v v _] 
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Solving these equations for A and B and substituting in (A.43) we have 

— yv= dnE. [" tan ~ sin — + cos —1 = sfi Yy + du Ex I 2v v v J 

or v _ _d\\Ex Y V — 
Sn 

cos 
u(y — 1/2) 

1 - 

cos 
2v 

(A.46) 

The electrical impedance measured at the terminals of a plated crystal is 
then determined by substituting the value of Yv in the last of equations 
(A.34) and integrating the charge Q over the whole surface. The current 
into the crystal is then 

i = juQ = [ Ex Jo 
A" 
Air on 

cos a)(y — C/2)s 

cos — 
2v / 

dy 

= j<j)Ex L f 

= juEx f ( 

K\ _ dn_ | , _ 
4* sZ 

tan — 
 2.v 
col 
2v 

(A.47) 

K[ 
ixit 

2 tan — 
. dn 

4ir sfi uC 
2v 

2v - 

where KiC = Af — 
47r dn . 

Sn 
is called the longitudinally clamped dielectric 

constant, i.e. the dielectric constant that would be measured if we suppress 
the longitudinal strain along the y axis but not the other strains. The 
admittance of the crystal then is 

7 
E 

i 
ETti 

(Jit 
2 tan — 

2v Ar dn 
47r sEn co 

2v - 

(A.48) 

This consists of two terms which represent parallel branches in the equiva- 
lent circuit. One of these is the capacitance 

^ /^Afc LtK[c . , 
Co = cgsunits = xTo"farad5 

(A.49) 
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The other branch contains the impedance 

zjti 
u(w I 

E ■Sll 
ul 
2v 

dn ml 
tan — 

2v-l 

ul 

cgs units = 
X 9 X 1011 

co^u, ( dw, tan — 
2v 

ohms (A.50) 

This branch will have a zero impedance or will resonate when the tangent is 
infinite or when 

s _ v _ 1 
~2OXfR~2(~ 2tV B 

psn 
(A.51) 

Hence for a fully plated crystal it is the zero field elastic constant that 
determines the resonant frequency. 

Near this resonant frequency, the impedance of equation (A.50) can be 
represented by a series capacitance and inductance having the values 

2 psuttt X 9 X 10" 
Ci = 

Lt 8 Li = 
ft TT2 sfj X 9 X 1011 ' 

Taking the ratio between Co and Ci we have 

' 4T 
1 - 

8/u, dn 
(A.52) 

r. t/V10 rE 

Lo _ r _ IT I JSi •Six 
Ci 8 \47r dn2 

E TrV 
Su Ax - k' 

k2 (A.53) 

rrF E Ki sn 

where k the coefficient of electromechanical coupling is equal to 

(A.54) 

These values are used in equations (A.27) and (A.28) to evaluate the piezo- 
electric constants of quartz. 

A.4. Use of Voigt's Relations in Locating Regions of Low Tempera- 
ture Coefficient Crystals for Simple Modes of Motion 

In Section 1.5 of the text, the statement is made that all longitudinally 
vibrating crystals of quartz have a zero or negative temperature coefficients. 
This can be proved from Voigt's relations for quartz and a knowledge of _ 
the temperature coefficients of the six elastic constants of quartz. Since 
the same method can be used to locate the regions of low temperature coeffi- 
cient for other simple modes of motion a short discussion of the method is 
given here. 

The Voigt relations given in equation (A.6) give the values of the piezo- 
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electric and elastic constants for crystals with their three edge dimensions 
along the three crystallographic axes. Most low-coefficient crystals, how- 
ever, are oriented crystals with one or more of their edges lying along 
directions not parallel to the crystallographic axes. The theory of elasticity, 
however, provides methods for calculating the values of the constants for 
rotated axes. If the rotated axes X', F, Z' are related to the crystaUo- 
graphic axes X, F, and Z by the relation 

X Y Z 

X' hmxni (A..5S) 
F' 4 W2 «2 
Z' tzm^nz 

where A , • • • , »3 are the direction cosines between the axes indicated, the 
theory of elasticity provided relations between the stresses of the rotated 
axes and the stresses of the crystallographic axes, between the strains of 
the rotated axes and the strains of the crystallographic axes, and between 
the field, polarizations, or charges of the rotated axes and the same quantities 
for the crystallographic axes. Then if we express7 the relation between the 
stress, strain and fields for the rotated axes, the elastic and piezoelectric 
constants are determined. 

Two shorthand methods are also available for calculating the constants 
of rotated crystals. One method8 is the matrix method which is based 
upon the fact that relations in (A.6) can be expressed in a matrix equation 

— e = sEX + dE (A.56) 

where e are the strain components, X the stress components, sE the elastic 
compliance matrix, d the piezoelectric matrix and E the field components. 
By applying the rules of matrix multiplication the s and d matrices can be 
transformed to rotated axes having the direction cosines of equation (A.57) 
with respect to the crystallographic axes. The other method is the method 
of tensor analysis. Equations (A.6) can be expressed in the form 

— = SijcpXap + dijyE,, (A.57) 

where e.-,- is the second rank strain tensor, Xa0 the second rank stress tensor, 
Sijap the fourth rank compliance tensor, Ev the field vector, and <Aj> the third 
rank piezoelectric tensor. By employing the geometric rules for tensor 

7 This method of determining the constants for rotated axes is discussed in a former 
paper "Dynamic Measurements of the Constants of Rochelle Salt," Phys. Rev., Apnl 15, 

8 This ^method is discussed in a recent paper by W. L. Bond, "The Mathematics of 
The Physical Properties of Crystals," B. S. T. J., Jan. 1943. 9 The tensor method of writing the elastic and piezoelectric relations is discussed by 
Atanasoff and Hart and by Lawson. See references (2) and (3). 
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transformation of axes, the components of the rotated tensors are easily 
calculated and the elastic and piezoelectric constants for rotated crystals 
determined. 

The variation of Young's modulus as a function of orientation was first 
worked out by Voigt. In terms of the IRE angles specifying the orientation 
of a crystal plate, the 5 compliance modulus (inverse of Young's Modulus) 
is given by the equation 

■Jn = sfi(cos2 0cos2 \p + sin2 \py + (2^13 + .yf,i) sin2 6 cos2 \p 

X (cos2 6 cos2 \J/ + sin2 xp) + 533 sin4 6 cos4 \p — 2su sin 6 sin xp cos xp (A.58) 

X [3 (cos <p cos 6 cos p — sin tp sin xp)2 — (sin (p cos 6 cos xp — cos tp sin xp)2] 

As discussed in Chapter II by W. L. Bond,10 the IRE angles are meas- 
ured as follows: Taking the X' axis along the length of the crystal, the Y' 
along the width, and the Z' along the thickness, the angle 0 is the angle 
between the Z or optic axis and Z'. xp is the angle between the projection 
of the Z' axis on the XY plane and the X axis, while xp the skew angle is 
the angle between the length and the tangent to the great circle which con- 
tains the Z and Z' axes and the length of the crystal X'. A crystal having 
its thickness along the X axis (X-cut crystal) will have the angles 

0 = 90°; <p = 0o;xp variable but equal to 90° when the length coincides 
with the Y axis. Under these conditions 

This equation has been made use of in evaluating the elastic constants of 
quartz as shown by equations (A.20). For this equation A2 was measured 
from the Y axis rather than from the Z as in the IRE angle and 

Since from equation (A.19) the frequency of a long thin crystal in longitudi- 
nal motion is known to be 

the longitudinal frequency of any oriented crystal can be calculated from 
equations (A.58) and (A. 19). 

It is the purpose of this section to show also that the temperature coeffi- 
cient of the longitudinal frequency of any oriented crystal can be calculated 
provided we know the temperature coefficient of the six elastic constants of 

Sn = •jfi sin4 xp + (2^3 + ^4) sin2 xp cos2 xp 

+ ^33 cos4 xp — 2.^4 sin3 xp cos xp 
(A.59) 

A. = xp- 90° (A.60) 

(A. 19) 

10 Methods for Specifying Quartz Crystal Orientation and their Determination by 
Optical Means," this issue of the B. S. T. J. 
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quartz, and that regions of low temperature coefficient crystals can be located 
for this and other simple modes of motion for which the frequency can be 
calculated in terms of the elastic constants. 

Differentiating equation (A.19) with respect to I the temperature 

df 
dt 

df 
dl 

J 

2( 
1 
E ' 

RSn 

+ 
df dp djn 
dt 1 
f 2 

dt 
_ P 

4- ^ " K'" 
•^11 

or 

(A.61) 

= Tf= -T( - WTt + Ttf[\ 

where Ta the temperature coefficient of the quantity a is defined as the rate of 
change of a with temperature divided by the value of a. The temperature 
coefficient of the length ( = AT' is 7.8 parts per million per degree centigrade 
along the optic axis, and 14.3 parts per million perpendicular to it. For a 
general orientation, the temperature coefficient of length varies as 

T( = 14.3 — 6.5(sin2 6 cos2 \J/) (A.62) 

Since the total mass remains the same when the crystal expands, the tem- 
perature coefficient of the density is the negative of the sum of the coefficients 
of the three axes or 

Tp = -36.4 

Hence the temperature coefficient of frequency becomes 

/ ds\i 
_dt 

E' Sll 
Tf = 3.9 + 6.5 sin2 2 . 1 COS l/' - - 

(A .63) 

(A.64) 

Differentiating equation (A.58) we have as the temperature coefficient of a 
general orientation 

T/ = 3.9 + 6.5 sin2 6 cos2 

sfi J",® (cos2 9 cos2 \J/ + sin" \J/)2 + + s^T^) X 
sin" 6 cos" iKcos" 9 cos" \p + sin" \f/) + SsiT+j X 

sin4 9 cos4 ^ — 2suT,*t sin 9 sin \J/ cos 4/ X 

[3 (cos ip cos 9 cos \p — sin ^ sin i^)2 — (sin <f cos 9 cos \f/ + cos <p sin yp)2] 
sfi(cos2 9 cos2 yp + sin2 \p)2 + (2^3 + ^fi) sin' 9 cos2 \p X 

(cos2 9 cos2 \p + sin2 yp) + ^33 sin4 9 cos4 \p 

— 2su sin 9 sin \p cos ^[3(cos tp cos 9 cos \p — sin <p sin \p)2 

— (sin tp cos 9 cos \p + cos tp sin rp)']- 

(A.65) 
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Hence since the elastic constants are definitely known, the temperature 
coefficient of any longitudinally vibrating crystal can be obtained when 
the separate temperature coefficients are evaluated. 

The temperature coefficients appearing in equation (A.65) can all be evalu- 
ated from the temperature coefficient angle curves for X cut rotated crystals 
shown by Fig. 1.19. For an X cut crystal equation (A.65) reduces to 

T/ = 3.9 + 6.5 cos2 ^ 

'SuT.fr sin4 ip + (2^13rsi3 + s^Tsf,) sin2 \p cos2 \p 

+ s^Ts^ cos4 \f/ — 2suT8fi sin3 rp cos ^ (A.66) 
Sn sin4 rp + (2^3 -f s^) sin2 \p cos2 \p 

+ ^33 COS4 \p — 25^4 sin3 \p cos \p. 

The value of T,® is obtained directly for ^2 = 0 or ^ = 90°, for T/ = —2 
and hence 

= 11.8 (A.67) 

Taking three other angles and solving for the remaining constants we find 

= -5310; (2^3 + = 45,130; 
(A.68) 

T833S33 = 17,400. 

Inserting the values found for the elastic constants, two temperature coeffi- 
cients are determined, and one relation is given between the others, 

r.f4 = +119; TS33 = 182; Tsft - .1112 T.f, = 228.2 (A.69) 

The values of (A.68) are sufficient to determine the temperature coefficient 
of long thin crystals cut at any angle, for inserting these values in (A.65) the 
temperature coefficient for any oriented crystal in longitudinal vibration 
is given by 

T/ = 3.9 + 6.5 sin2 0 cos2 \p 

+ 755 (cos2 0 cos2 \p + sin2 rp)2 + 22,565 sin2 0 cos2 \p 
(cos2 0 cos2 yp + sin2 \p) + 8700 sin4 0 cos4 yp 

+5310 sin 0 sin yp cos yp [3(cos (p cos 0 cos ^ — sin ^ sin yp)2 

— (sin (p cos 0 cos yp + cos yp sin yp)2] 

127.9 (cos2 0 cos2 yp + sin2 ^)2 + 175.8 sin2 0 cos2 yp 
(cos2 0 cos2 yp + sin2 yp) + 95.6 sin4 0 cos4 yp 

+89.2 sin 0 sin yp cos ^[3 (cos yp cos d cos yp — sin ip sin yp)2 

— (sin yp cos 0 cos yp + cos yp sin yp)2]. 

The only regions of low temperature coefficients are the regions for which 
the two big middle terms are small which requires that 0 -> 0, or ^ > 90°. 

(A.70) 
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The first region would be a Z-cut crystal with its length somewhere in the 
XY plane and would result in a temperature coefficient of two parts per 
million negative. Such a crystal is not of much interest since there is no 
piezoelectric constant for driving it. The other region yp —> 90° would also 
result in the length being near the XY crystallographic plane, but would 
allow the major surface to be made perpendicular to the X axis and hence 
would allow the crystal to be driven piezoelectrically. By allowing \f/ to 
be slightly greater than 90°, the fourth term in the numerator can be made 
slightly negative and of a value greater than the two positive terms. This 
results in the +5° X-cut crystal having nearly a zero coefficient and this 
angle is the most favorable one for a low coefficient longitudinal mode of 
motion. All other directions have a negative temperature coefficient. 

The remaining temperature coefficients of the six elastic constants can be 
evaluated from Fig. 1.12, and equation (A.22). The frequency temperature 
coefficient can be expressed by the equation: 

T/ = 3.9 + 6.5 cos2 6 

If cee Tc* sin2 9 + & Tcft cos2 d + Tcft Cf4 sin 201 (A.71) 
2 L Cee sin2 0 + C44 cos'd -f- 0*4 sin 20 J 

since in terms of the IRE angles the series of crystals is given hy <p = —90; 
0 = 90 — /I2 ; ^ = 90°. Taking the A T, BT, and F-cut, whose coefficients 
have accurately been determined, we have 

Table VI 

Crystal 
Cut Value of At Value of 0 Tf Tc' M 

E' c66 

AT 
Y 
BT 

+35.25° 
0 

-49 

54.75° 
90 

139 or -41 

0 
+86 

0 

-12.0 
164.2 
-15.2 

29.39 X 1010 dynes/cm2 

40.50 
68.86 

From these data and equation (A.71), the three temperature coefficients can 
be evaluated as 

rc« = 164.2; rcf4 = 165.7; = +90.2 (A.72) 

To convert these into compliance temperature coefficients we have to 
make use of the relations of equations (A.8) 

B E 
B _ n,B * \ _ c44 B —Cl4 

- Z\Sl1 ~ S™) ~ -B—B ** • *14 - r,, B B *17; L44C66 C14 Z^C44C66 — C14 ) 
E 

E ^66 
*" B—B F2 * 

C44 CRB — C\4 
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Differentiating these with respect to I, we have 

T= Tc?. - [ f''" .. (^.f. + T-of.)] + 1r^- LC44 Cgg C14 J C44 Coo — 

Sn 

$11 — 5i2 
— T.B - E 'I \ E 

•^11 — ^12 
T.* 1 "12 

n,E = TrE — »M 14 
E E C44 Coo 

BE E* 
C44 Coo — C14 

:4B4 + rcf.)] + 
2cf4

2 
(A.73) 

  T B EE E^ cl 4 
C44 Cflo — C14 

r.f. = rtf. - f. f
0'' (Tc*. + rlf.)] +. , 2,c" „ tj, 

LC44 Ceo Ci4 J C44 Cflfl — C14 
Table VII 

Temperature 
Coefficient 

Present 
Determination 

Previous^ 
Determination Bechmann 

ipE 
Sn + 11.8 + 12 + 11.5 

pE 

T, 
-1352 
-294.8 

-1265 
-238 

-1125 
-148 

rpR + 120 + 123 + 113 

^33 + 182 +213 + 180 
pE + 195.4 + 189 + 175 
pE 

Sms -134.2 -133.5 -119 

Table VIII 

Temperature 
Coefficient 

Present 
Determination 

Previous 
Determination 

Atanasoll 
& Hart Bechmann Koga 

pE -46.5 -54 -49.7 -48 —61.1 
pE 

C12 
Tr 

-3300 
-697 

-2350 
-687 

-3000 
-580 

-2115 
-530   

rpE 
C\i 

Tr 

+90.2 +96 + 107 +82 + 110 
-204.5 -251 -213 -208 — 

pE 
C44 -165.7 -160 -169 -151 -199 

pE 
CM + 164.2 + 161 + 170.1 + 144 + 199 

Inserting the numerical values for the elastic constants and the tempera ure 
coefficients we have 

T,Bt = .883 Tg® + .107ir,« = -134.5; Ttf4 = 121.4; 

r.f4 = 195.4 
(A.74) 
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The value of r8f4 provides a check on the accuracy of measurement since 
it has been measured in two ways. The agreement is within about 2 per 
cent which shows the probable accuracy of the measurement. Combining 
the coefficients of (A.69) with those given by equation (A.74), the complete 
temperature coefficients are given in Table VII together with previous 
determinations11,12. The present determination differs from a previous 
determination by the writer due to the use of the elastic constants found 
here rather than Voigt's constants. 

The temperature coefficients of the cf, elastic constants are easily obtained 
from the sfy constants by employing the relations of equation (A.8). These 
result in the temperature coefficient values for the c constants given in 
Table VIII. 

By using the elastic constant data, the temperature coefficient data, and 
the equations of transformation for rotated axes it is possible to calculate 
the frequency and temperature coefficient of any simple mode for any 
orientation. Examples are given for a face shear mode and a thickness 
shear mode in a previous paper "Low Temperature Coefficient Quartz 
Crystals."13 This paper shows contour maps for low temperature coeffi- 
cient crystals of these types. 

11 The first determination of the temperature coefficients of the writer was given in a 
paper "Electrical Wave Filters Employing Quartz Crystals As Elements," B. S. T. J., 
July 1934, p. 446. A redetermination using better temperature coefficient data was given 
in a paper "Low Temperature Coefficient Quartz Crystals," B. S. T. J., Jan. 1940. The 
present determination uses the same temperature coefficient data but slightly different 
elastic constants which results in slight changes in the temperature coefficients. 12 A partial determination of the coefficients was made by Koga, Rep. Rad. Research, 
Japan 6, 1 (1934). Other complete determinations are R. Bechmann, Hoch: /ec//. U. Elek. 
Akus. 44,145 (1934) and Atanasoff and Hart, Phys. Rev., Vol. 59, No. 1, Jan. 1, 1941, 
pp. 85,96. 13 B. S. T. J., Vol. XIX, 74 (Jan. 1940). 



CHAPTER II 

Methods For Specifying Quartz Crystal Orientation and 
Their Determination by Optical Means 

By W. L. BOND 

2.1 Quartz and its Axes 

The chemist describes quartz as silicon dioxide, SiOa, crystallized in 
hard, brittle, glass-like, six sided prisms, often with pyramidal terminations; 
melting point 1750° Centigrade, density 2.65, hardness on Moh's scale 7. It 
transforms from alpha to beta quartz at 5730C under atmospheric pressure. 
Under stress it transforms at lower temperatures. Alpha quartz is in- 
soluble in ordinary acids but soluble in hydrofluoric acid; and in hot alkalis. 

At first glance we might say that it had hexagonal symmetry but if we 
etch two adjacent pyramid faces we find that the microscopic etch pits 
are of different shape, hence the faces cannot be equivalent. It has three 
axes of two-fold symmetry and one axis of three-fold symmetry. Let us 
also remark that it does not have a center of symmetry or a six-fold axis. 
Figure 2.1 shows us that the three two-fold axes are perpendicular to the 
three-fold axis and are 120° apart. If they were not like this, they would 
not be self-consistent. 

As we examine more and more quartz crystals we find that there is a 
tendency for pyramid faces to be alternately large and small, the larger 
faces being brighter than the smaller faces. Also the etch pits of alternate 
faces are similar. (The etch pit study is a powerful tool in determining 
crystal symmetry.) Further, two other "kinds" of faces are quite 
commonly found. If we draw such a crystal as though equivalent faces 
were of equal size we get such a picture as Fig. 2.2. It is an idealized figure 
used to illustrate the symmetry of quartz. The prism faces are marked 
m, the six faces marked r "constitute the primary rhombohedron"—the 
ones we called the large bright pyramid faces. The crystallographer 
thinks of these six faces as pieces of the faces of a rhombohedron. (A 
crystallographer's rhombohedron is like a cube stood on one corner, then 
the opposite corner pushed in a little towards the other, or pulled away 
from it. He thinks of it always as standing on this corner, as Fig. 2.3.) 
The z faces constitute a second rhombohedron—the secondary rhom- 
bohedron or minor pyramid faces. The ^ and a; faces illustrate a further 
property of quartz. Figure 2.3 differs from its mirror image so that we 
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might expect to find two kinds of quartz that are related to each other as 
one's right hand is related to his left. We do find them and call them 
right-hand quartz and left-hand quartz respectively. They are illustrated 
in Fig. 2.4. These conventional figures are shown in many texts but no one 
has seen such perfect quartz crystals. They are drawn possessing just 
these faces and no others merely to illustrate the symmetry of quartz and 
its occurrence in right-handed and left-handed forms. 

These figures are also useful in defining how a blank shall be cut from 
one kind of quartz. It is found that if a crystal be compressed with forces 

parallel to a pair of sides of the hexagon an electric polarization takes place 
in the direction of the forces. The edge "modified" by the presence of 5 
and x faces becomes negative. If we allow these charges to leak off and 
then suddenly release the mechanical forces the "modified" edge becomes 
positively charged as the crystal expands. This is true for both right- 
hand and left-hand crystals. 

Let us now talk about right-hand quartz. Since expansion is con- 
sidered as a positive strain (contraction as negative) it is decided to take 
the positive end of the electric axis as pointing towards the modified edge. 
This gives us a positive charge at the positive end of the electric axis when 
a positive stress (tension) is applied along this axis. This positive direc- 

a3 
Fig. 2.1—Hexagonal axis system 



226 BELL SYSTEM TECHNICAL JOURNAL 

tion of an electric axis is taken as the positive x axis of a right-hand xyz 
rectangular coordinate system. The z axis is taken along the axis of the 
hexagonal prism, and since the x axis is an axis of two-fold symmetry we 

Fig. 2.2—An idealized quartz crystal 

can take either end of the prism as the direction of +z. We then choose y 
to form a right-handed coordinate system. (In a right-handed system if a 
right-handed screw turns about the z axis in the sense a: to y it would ad- 
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vance in the positive z direction.) The y axis will always lie directly under 
a major rhombohedral face. 

We could define the .r, y and z axes for a left-hand crystal as forming a 
left-hand system. Though this is a useful conception in mathematical 

Fig. 2.3—A rhombohedron 
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studies, we can dodge this "double standard" by a simple device. For use 
as a crystal circuit element, left-hand quartz can be used just as well as 
right-hand quartz. In designing such an element it suffices to think al- 
ways in terms of right-hand quartz and issue specifications for this kind 
only, using always right-hand coordinate systems. If now for left-hand 
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crystals we mark the negative end of the electric axis as positive we can 
treat it exactly as though it were a right-handed crystal. 

The first plates used were x and y piezoids (squeezing solids). For 
these simply described cuts one does not need to know the quartz "handed- 
ness." These crystals had large frequency temperature coefficients. 
But when Lack, Willard and Fair brought out the low temperature coeffi- 
cient AT plate, its more complicated orientation required the right-left 
differentiation. The AT, the subsequent BT, CT, DT, etc., were thought 
of as y-cuts rotated through various angles about the edge that coincided 
with a:. For example, the AT was a +351° cut, or was a y plate rotated 
35|0 about the BT was a —49° cut. Their orientations are illustrated 
in Fig. 2.6. 

As more complicated orientations were designed to give even better 
temperature coefficients at extreme frequencies the description became more 
difficult, requiring the specification of two or three angles. Many schemes 
for specification have been devised but the Institute of Radio Engineers is 
recommending the adoption of a system we shall call the I.R.E. system. 

The crystal designer has the problem: "How shall I orient the length, 
width and thickness of a piezoid with respect to the .r, y and z axes so as to 
give the required electrical properties? He thinks in terms of fixed :r, y 
and z axes, variable piezoid edge directions. The crystal cutter has the 
converse problem. "How shall I orient the x, y and z axes of the crystal 
so that fixed saws will give the required surfaces?" For this reason the 
most convenient orientation angles from the designer's viewpoint may 
not be the simplest from the cutter's viewpoint. Also the translation 
from one set to the other may not be simple. 

The early methods of orientation specification were somewhat chaotic. 
There was no overall plan of what angles were to be specified and from 
what axes they were to be measured. Each group of crystals was a law 
unto itself. 

The I.R.E. Orientation Angles 

The relations between the x, y and z axes of the crystal and the length, 
width and thickness of the piezoid are given in Fig. 2.7. 

The position of Fig. 2.7 may be considered as a result of turning the piezoid 
through the successive angles 0, 0, \p starting from an initial position length 
parallel to x, width parallel to y and thickness parallel to z as in Fig. 2.8. 
First the crystal is turned through angle 0 about z in the direction shown 
in Fig. 2.7. Then it is lowered through angle 0 about an axis parallel to the 
width direction,again in the direction shown in Fig. 2.7. Finally it is skewed 
through an angle 0 about an axis parallel with the thickness direction in 
the sense shown in Fig. 2.7. 
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\\ 

Fig. 2.7—The I.R.E. orientation angles 

Fig. 2,8—The initial position 0, 0, 0 for the I.R.E. ang'.es 
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The I.R.E. Angles for a Few Standard Piezoids 
Name •t> e 

Z 0 0 0 
X 0 90 90 

-18° Filter 0 90 108 
4-5° " 0 90 85 

y 90 90 90 
AT -90 54i 90 
BT -90 -41 90 
CT -90 52 90 
GT -90 38° 52' ±45° 

MT 6° 40' 50° 28' 79° 36' 
NT 9° 25' 40° 40' 77° 40' 

2.2 Orientation by Natural Faces 

With well faced material one can do an accurate job of orienting without 
X-rays if he knows the faces of quartz thoroughly. 

The quartz rhombohedral faces are highly perfect and polished, the 
major often more so than the minor. With two such faces a device like 
that illustrated in Fig. 2.9 could be used to give an orientation accurate to a 
minute or two. An adjustable base, symbolized here as a ball and socket, 
is adjusted so that the eye centers the lamp filament image on the cross 
hairs, first for one face, and then, turning the base about on the reference 
table it is adjusted for another face. When the images all pass through 
center as the base is turned on the table the optic axis is perpendicular to 
the table. When any one image is centered, the electric axis is perpendicu- 
lar to the plane of the paper. This with the already mentioned fact that 
AT plates are cut near a minor face and BT's near a major, allows us to 
cut the crystal accurately. 

Although the rhombohedral faces are highly perfect the prism faces never 
are. On the prism face, true prism faces that are very short in the z direc- 
tion alternate with short rhombohedral faces to give the general contour 
a slant. These " steps" give the face a striped look. The stripes are known 
as growth lines or striations. They are parallel to .v and can be used to 
find x to a degree or so. If we sight on striations on two adjacent faces 
we can locate the optic axis to nearly the same accuracy since the optic 
axis is perpendicular to the striations on all faces. 

There are several indications that help us find, from the prism, where 
the major rhombohedron would be in the absence of such faces. Some 
crystals grow in the form shown in Fig. 2.10. They are symmetrically 
doubly terminated and a very narrow prism is found under the major 
rhombohedron, a wide face under the minor. Hence given a portion like 
that enclosed in the dotted line we could deduce the complete orientation. 

Some crystals grew out at right angles to a wall and because they grew 



LAMP 

LENS 

-v 
% LENS 

CROSS 
HAIR 

BASE 

REFERENCE 
TABLE 

Fig. 2.9—Optical orientation by reflection of light from faces 

5/5 
51:5 

Fig. 2.10—A type of quartz growth 
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along a z axis in one direction only, the x axis does not appear to be one of 
two-fold symmetry. Such a crystal is illustrated in Fig. 2.11. Here the 
prism faces under a major rhombohedron are tapered and bright, the 
prism faces under a minor are relatively parallel sided and very dull. The 
bright prism faces are much more nearly parallel to the optic axis than the 
dull ones. Again, given a portion of the prism we can deduce the orien- 
tation. 

Flat lay cutting takes advantage of the fact that, although tapering 
quartz prisms have their faces non-parallel to the s axis the prism faces are 
parallel to the x axis. A crystal is cemented prism face down, to a mount- 
ing plate. The mounting plate is tilted and turned on a base plate to render 
the optic axis parallel to the long edge of the base plate. This is done in 
a conoscope. Now the edges of the base plate are the x, y, z axes of the 
crystal. 

The crystal can now be cut directly into wafers for dicing into AT's, 
BT's etc. by mounting on an angle bracket as shown in Fig. 2.13 or cut into 
X sections from which AT or BT bars shall be made by merely sawing down 
the length. Again z sections can be cut by cross cutting. Good z sections 
can be made in this way in the total absence of faces. These sections can 

Fig. 2.11—Another type of quartz growth 

2.3 Flat Lay Cutting 



Fig. 2.12—Optical adjustment for the sawing of Z sections or direct crystal blank slabs 
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Fig. 2.13—Direct sawing of the slabs 
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then have their x axes determined by etching and X-rays and cut up by the 
Z section cutting method. 

By turning the base plate on the angle bracket and dicing the wafers at 
an angle any orientation can be obtained. 

2.4 Z Section or Vertical Cutting 

Having a true Z basal section it is first marked for the -\-x axis. The 
simplest procedure is to use the star mark; for right-hand quartz (R.H.Q.) 

LHQ RHQ 

Fig. 2.14—Marking the "sense" of righthand and lefthand sections 

a 
TOWARDS OPERATOR 

Fig. 2.15—Making the rotations A1 

the rays should point toward the plus electric axis, for left-hand quartz 
the rays should point towards the negative electric axis. 

The section is now placed on the carriage plate, one ray pointing towards 
the operator (which ray is decided on the basis of the economy of quartz). 
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Fig. 2.16—The rotation Ao 

2.17—The slab after the rotations Ai and A2 
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Fig. 2.18—Making the A3 rotation 
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The section is then rotated clockwise on its base, through angle ^41 as in 
Fig. 2.15 and cemented in this position. 

The carriage plate is then transferred to a diamond saw angle bracket of 
tilt Ai, as in Fig. 2.16, and the crystal is sawed into slices slightly thicker 
than the required final thickness t. 

The operator turns these slices down flat on the table of a dicing saw as 
in Fig. 2.17 by rotating the slices 90° clockwise about the axis ^4^4, then turns 
the slice through angle A3 as in Fig. 18 and makes a cut. The plate is fin- 
ished as shown in Fig. 2.18. 

Since the angle bracket is not reversible, negative At angles are cut by 
adding ±180° to Ai and reversing the sign of A3. 

The A Angles for Some Standard Plates 

Cut A\ At Ai 
X 90° 0 0 
y 0 0 0 
z 0 or 90° 90° 0 or 90° 

-18 90° 0 + 18° 
+5 90° 0 . -5 
AT 0 35i 0 
BT 180° +49° " 0 
CT 0 38° 0 
DT 

0
 

00 52° 0 
GT 0 51° 7' ±45° 

MT 96° 40' 39° 32' -10° 24' 
NT 99° 25' 49° 20' -12° 20' 

2.5 The Relation Between the I.R.E. Angles and the Z Section 
Angles A^ A^, A3 

It can be shown that: 
Al = 90 + <t> 

A2= 90 - 6 

As = - 90 -f ^ 

2.6 Polarized Light as Applied to Crystals 

Light consists of electromagnetic "vibrations." The vibrations are per- 
pendicular to the direction of propagation but ordinarily helter-skelter in 
all directions perpendicular to the propagation. The color of the light is 
determined by the vibration frequency, blue vibrating more rapidly than 
red. In a vacuum, light travels at 186,000 miles per second (3 X 1010 cms 
per second) all colors at the same velocity. On entering a transparent me- 
dium the velocity is reduced, ordinarily blue being slowed more than red. 
The frequencies are unaltered on entering the medium. 

Light traveling through a uniaxial crystal in the direction of Fig. 2.19 
breaks up into two components that travel at different velocities. For one 
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of these components the vibration is all in the plane of poz, of the other 
the vibration is all perpendicular to the plane of poz. 

Z-OPTIC AXIS 

\\ SPHERE \N 

OVALOID 

Fig. 2.19—The velocities of light in a uniaxial crystal 

A plot of the propagation velocities for all directions is a surface of two 
sheets, one octant of which is shown in Fig. 2.19. One sheet is a sphere; 
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the other sheet, which is an ovaloid of revolution, touches the sphere at the 
two points where the double sheet is pierced by the optic axis. Of the two 
rays traveling along one line, the one with a velocity corresponding to the 
sphere is called the ordinary ray; the one with a velocity corresponding 
to the ovaloid is called the extraordinary ray. For quartz the ovaloid is 
prolate and lies inside the sphere. For tourmaline the ovaloid is oblate and 
lies outside the sphere. The small arrows show the direction of vibration. 
Each of the components is said to be polarized since for each all the vibra- 
tion is in one direction. 

Since both sheets are surfaces of revolution with the optic axis as the 
axis of revolution, we can never tell the x axis from the y axis by optical 
means.* Only the z axis is a unique direction and can be determined op- 
tically. If this figure is taken to represent the case for blue light there will 
be a slightly larger but similar figure for red light since, in the crystal, red 
light travels faster than blue light. 

Some kinds of crystals have velocity plots for which the double sheet 
surfaces touch at four points. Hence they have two optic axes and are 
called biaxial. All hexagonal, rhombohedral and tetragonal crystals are 
uniaxial, all others except the isometric ones are biaxial. Rochelle Salt is 
biaxial. 

2.7 Polarizers and Analyzers 

In the Nicol prism means were found to eliminate the ordinary ray; the 
other is transmitted as polarized light. That is, ordinary light of any or 
all colors upon passing through a Nicol prism emerges as plane polarized 
light with no change in color. 

Transparent colored media appear colored because they absorb some 
colors of light more than other colors. In colored crystals the two rays 
themselves often differ in their color absorption so that the crystal as viewed 
by means of the ordinary ray seems to be of a different color than as viewed 
by the extraordinary ray. Quinine iodo-disulfate, or Herapathite, absorbs 
most visible colors of one ray almost completely; transmits about 60% of the 
visible colors in the other ray. Hence light emerging from this crystal is 
almost completely polarized. In the commercial product called "polaroid", 
myriads of such crystals, microscopic in size, are contained in a celluloid- 
like sheet and oriented by stretching the sheet. This material now re- 
places Nicol prisms for all but the most exacting uses. 

If we put two identical polaroid sheets together with their transmission 
vibration directions parallel as in Fig. 2.20 we can see through them but if 
their transmission vibration directions are at right angles we cannot see 

* Methods depending on etch pits are excluded. They are optical only in the sense 
that observing natural faces is optical. 
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through them because the second sheet can transmit none of the vibrations 
transmitted by the first sheet. As we rotate the second sheet back from 
complete extinction to "best transmission" the transmitted light increases 
sinusoidally. In any such arrangement as Fig. 2.20 the first sheet is called 
the polarizer, the second is called the analyzer. The name analyzer is 
chosen because light that can be extinguished by means of a suitably ro- 
tated analyzer must be plane polarized, and it must be vibrating at right 
angles to the transmission vibration direction of the analyzer when set for 
extinction. The transmission vibration direction of a polaroid plate will 
hereafter be called its vibration axis. 

Let us go back to Fig. 2.19 and cut out from around the point p, the small 
tangential crystal plate shown magnified in Fig. 2.21. Here p is the direction 
of propagation as before, and z is parallel to the optic axis. Also 5 which is 

X/ \ 

UNPOLARIZED 
OR PLAIN 
LIGHT 

POLARIZED 
LIGHT VIBRATING 
VERTICALLY 

Fig. 2.20—Light polarization 

in the plane of p and s, is the direction of slow vibration while / which is 
perpendicular to this plane is the direction of fast vibration. The vibra- 
tion frequency is really the same for both. "Slow vibration" means "vi- 
bration direction for slow transmission." All directions of propagation 
that have this vibration axis have the same velocity. 

In Fig. 2.22 we have placed this plate between "crossed polaroids"—that 
is polaroids set for extinction. The slow direction makes an angle a with 
the polarizer vibration axis. When this vertical-polarized ray of intensity 
I enters the crystal it breaks up into components, one of intensity: 

I cos a vibrates along s 

and one of intensity 

I sin q; vibrates along / 

as illustrated in Fig. 2.23. 

(2.1) 

(2.2) 
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Fig. 2.21—Light breaks into components in the crystal 

ANALYZER POLARIZER 
Fig. 2.22—Transmission when a crystal is placed askew between crossed polarizers 

If a = 0 the fast component reduces to zero and the slow component goes 
through the crystal unchanged hence emerging plane polarized. It can 
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then be extinguished by the analyzer. If a = 90° the slow component 
reduces to zero and the fast one goes through unchanged and again can be 
extinguished by the analyzer. This effect can be used to check crystal 
orientations. Such an instrument fitted with a divided circle used to meas- 
ure a is called a stauroscope. The stauroscope often uses a special analyzer 
capable of better determination of extinction setting. 

If a is not 0 or 90° two components traverse the crystal and recombine at 
the boundary. These two components are at right angles to each other; 
they are of unequal intensities, and they differ in phase because they trav- 
eled at different speeds. 

Fig. 2.23—The intensity of the two components from Fig. 22 

Now v* and Vf have the same frequency F so that in unit time each makes 
F wave-lengths. This requires that the slow ray have F wave-lengths in a 
distance va and hence that each wave have a length: 

Similarly 

\ -Vf 
Xf-F 

(2.3) 

(2.3') 

In a distance t there are fast waves and ~ slow ones. Let us say that 
A/ Rs 

there are N more fast waves than slow ones in the distance I. Consequently 

N = - — - which, from (2.3) and (2.3') may be written: 
X/ Xa 

Vf Va 
(2.4) 

All the data on light are given in terms of wave-lengths in a vacuum, not 
in terms of frequency, so we will assume that in a vacuum the wave-length 
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of this light is X, and as in a vacuum its velocity is F(= 3 X 1010 cms per 
V 

second) an equation similar to (2.3) would tell us that X = — and hence that: 
t 

F = ! (2.5) 

With (2.5) we can rewrite (2.4) as 

iV=^-n (2.6) 
X \Vf vj 

The ratio of the velocity in a vacuum to the velocity in a medium is called 
the refractive index of the medium commonly given the symbol n. For 
most transparent materials n is between 1.3 and 1.8. 

We write these refractive indices as 

V V 
— = nr and — = n, respectively. 
Vf v. 

Now (2.4) becomes; 

N=[{n,- n.) (2.7) 

After passing through the crystal plate of thickness /, Fig. 2.21, the two 
light components recombine. They are polarized at right angles each to 
each; they are of unequal intensities, and they differ in phase by N wave- 
lengths as given by equation (2.7). 

If the crystal were vanishingly thin the two components that recombine 
would be effectively in step or in phase. In Fig. 2.24 we have plotted vibra- 
tion amplitude against time for these two components. They are sep- 
arated for clarity. In the upper curve the slow vibration is shown as ver- 
tical, in the center curve the fast one is shown as horizontal. In the lower 
curve corresponding points have been added vectorially. From actual con- 
struction we see that in the resultant curve the vibration is always parallel 
to the line ^4^4'. Hence it is plane polarized and can be extinguished by 
means of an analyzer. 

Let us now consider the case of a thicker plate for which the slow wave 
gets a quarter-wave-length behind the faster one. This case is plotted in 
Fig. 2.25 in the same way that the previous case was plotted in Fig. 2.24. 
It turns out to be a space curve like a slightly flattened corkscrew. Viewed 
along the axis it looks like an ellipse, as shown to the right of the space 
curve. If the slow ray had lost but a little with respect to the fast ray, we 
would have gotten a very flat ellipse. If the two components had had the 
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same amplitude with the quarter wave phase difference the end view in Fig. 
2.25 would have been a true circle. Now since the vibration, in these cases, 
is not all in one plane, the light cannot be extinguished by an analyzer; it 
is not plane polarized light. In the one case it is called " elliptically polar- 
ized" light and in the other, "circularly polarized" light. If the slow ray 
loses an integral number of wave-lengths, it makes no difference; only frac- 

Fig. 2.24—The recombination of the light components after passing through a 
thin crystal 

tions of wave-lengths count, except that if several wave-lengths are present 
a thickness that is right to give an integral number of wave-lengths for one 
color may give an integer plus a fraction for some other color. If the thick- 
ness is fairly small, this may cause spectral colors from white light. For 
thick plates the wave-lengths so overlap that the field appears colorless 
but dark or white according to the value of the angle a; i.e., if a is zero or 

I 
i 
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90° the field is dark; if a 5^ 0 or 90° the field is bright. In Fig. 2.26 we illus- 
trate how, for one color of light the polarization starts out as plane at the 

/ 

/ 

\ XT 

Fig. 2.25—Recombination more generally 

crystal boundary, passes through elliptical to circular polarization, then flat- 
tens out the other way through elliptical to plane polarization at a distance 
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in the crystal corresponding to the slow wave being one wave-length behind 
the fast one. 

In Fig. 2.27 we show two AT plates resting on a reference surface. In the 
first crystal the propagation is perpendicular to x, in the second crystal it is 
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Fig. 2.26—How the kind of polarization changes with crystal thickness 

REFERENCE 
SURFACE E^ 

Fig. 2.27—The normascope principle 

along x. If the reference surface is the reference table of a simple stauro- 
scope the edge of the first crystal will appear dark because a = 0° or 90°; 
the edge of the second crystal will appear bright because a is not 0° or 90°. 
Actually this a for an AT plate can be ±35° ± any multiple of 90° because 
we don't know whether z stands out to the right or to the left. Hence the 
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reading might be, for instance, —35°, +35°, +55°, +125°, etc. This is 
the principle of the normascope used to identify the x direction for crystal 
adjustment. 

Let us study these relative phase shifts at different angles near the optic 
axis. Now quartz has an optical complication beyond that just described— 
it rotates the plane of polarization of plane polarized light traveling along 
the optic axis. This complicates our present attempt to build up a back- 
ground sufficient for an understanding of the conoscope. But the cono- 
scope finds the optic axis for other crystals that do not rotate the plane of 
polarization, tourmaline for example; so we will ignore this rotation, to be- 
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Fig. 2.28—How the polarization changes with propagation direction in a crystal plate 

gin with, in order to arrive quickly at some useful conclusions. We will 
later explain how optical rotation modifies these conclusions. 

Consider then the crystal z section shown in Fig. 2.28. A source s sends 
monochromatic light through the polarizer which passes only vertical 
vibrations. We will assume that the light passes in and out of the crystal 
without a deviation of path. Since the vibration is in the plane of z and 
pi (its direction of propagation) the ray does not break up inside the crystal 
but is propagated as plane polarized light, unchanged. An analyzer set 
for vertical extinction could then extinguish this ray. 

This is true for propagation from s anywhere in this vertical plane. 
Also since the vibration is perpendicular to the plane of z and pz the ray 
p2 does not break up inside the crystal but passes through and out un- 
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changed. All rays from s in the horizontal plane emerge plane polarized 
and can be extinguished by an analyzer set for vertical extinction. The 
ray pa is in both these planes so it can be similarly extinguished. 

With the ray pz the situation is different. Here the vibration is not in the 
z pz plane so the ray breaks up inside the crystal into two components which 
travel with different velocities and recombine in or out of phase to give the 
various degrees of elliptical polarization (including plane and circular). 
Hence, an eye looking back along pz, through an analyzer set for vertical 
extinction, will see light or dark depending on the phase shift N. Now this 
phase shift for a given thickness of plate is zero along po but increases as 
6 increases (without changing <£; see Fig. 2.28), passing through one integral 

lt).0o 

IP 

Sis J! 

4) = I 80° 
Fig. 2.29—A plot of phase as a function of $ and 6 

value after another. Therefore, as we allow 0 to increase, the eye should 
see alternate dark and bright regions. Moreover, since the crystal is op- 
tically symmetric about z, if «/> is changed without changing 0, the apparent 
brightness will not change (except that if <£ = 0, 90°, 180° or 270° the field 
is dark as we previously explained). Consequently, if we could see along 
all directions at once we would see a pattern of concentric dark rings on a 
dark cross as shown in Fig. 2.29. 

But we can see along all these directions at once if we employ a properly 
placed lens for a lens can converge all these rays to one point where an eye 
can be placed for viewing. 

Thus an eye at e, Fig. 2.30, will see, in the direction e po, the ray that 
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started along 5 pQ. It will see along e pi the ray that started along 5 pi. 
Every point on the lens will have associated with it a different direction 
in the crystal. Therefore the eye will see a pattern like that of Fig. 2.29. 
This is the principle of the conoscope. In the conoscope (the name means 
"conical viewing") the source s is replaced by the image of a source, the 
image being cast by a lens; see Fig. 2.31. Thus by the use of two similar 
lenses we get twice as much working space as one lens would give. 

V 

z ANALYZER P3 

Po P3 

PE 
P2 Po 

POLARIZER 
LENS 

CRYSTAL 

Fig. 2.30—The principle of the conoscope 
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Fig. 2.31—A practical conoscope 

Figure 2.32 shows a cross-section of the Western Electric conoscope. The 
graduated dial shaft goes out through the bottom of the tank to give more 
working room—older instruments had the shaft overhead and it was in the 
way. The light source is a mercury arc lamp with filters to isolate the 
5461A line. The lenses have a converging power corresponding to f: 0.6. 
The focus is not changed by changes in the refraction of the oil—in fact, the 
focus is the same with no liquid in the tank as when filled with liquid. This 
is of some interest for those who might wish to use the instrument for 
Rochelle salt and accordingly use a fluid of refractive index about 1.495 



f 
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instead of the 1.546 of quartz. The dial is graduated into degrees and a 
vernier allows readings to tenths of degrees. 

If a crystal plate is held against the glass reference surface one may read 
the angle between the optic axis and the surface normal. One should 
occasionally check the instrument (against slippage of the dial) by reversing 
the crystal and recentering the pattern. If the readings are not identical, 
the dial should be adjusted till they are. Even if the readings are not iden- 
tical the mean value should be correct. If one is using the method of ring 

d = 15 

"0 10 20 30 40 50 60 
R 

Fig. 2.33—The ring eccentricity correction chart 

centering, the correction for eccentricity from Fig. 2.33 should be applied to 
this mean value. 

The carriage may be slid back and forth and for very small crystals the 
carriage should be placed so that the crystal is near the center of the tank 
so that very little of the light cone by-passes the crystal. By the use of a 
block a thin crystal can be examined by viewing through its edge or length. 

The carriage can be removed and "raw" crystals examined. The optic 
axis is plainly visible and quite accurate orientations can be made if there 
is not too much opaque material on the crystal. Excessive optical twinning 
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makes a confused pattern but good orientations can be made anyway. A 
"raw" crystal can be mounted adjustably in a jig that is lowered into the 
conoscope, the optic axis lined up, the jig transferred to a saw, and sections 
sawed directly. 

Let us turn now to the quantitative analysis of the ring pattern seen in 
the eye piece when examining a uniaxial crystal. We wish to know the size 
of the smallest ring in the field, or rather the corresponding angle in the 
crystal. This first dark ring (analyzer and polarizer crossed) is the result 
of the slow wave falling one wave length behind the fast one. If the plate 
thickness (Fig. 2.34) is /' the path length in the crystal is 

t = 
t' 

cos 6 
(2.8) 

Fig. 2.34—The angle of the smallest ring 

This is to be substituted in Eq. 2.7, namely: 

N = ^{nj — Us) (2.7) 

Now it can be shown that, quite accurately, at the angle d from the optic 
axis: 

(2.9) na — n/ — .00917 sin2 6 

where .00917 is the difference in the refractive indices for the ordinary ray 
and the extraordinary ray for green mercury light traveling at right angles 
to the optic axis. (These are generally given the symbols n0 and ne or 
and nt respectively.) 

Ni = —X .00917 sin2 0 = 1 
X cos 0 

and since X = .000546 mm. for green mercury light this may be written 

/' sin 0 tan 0 = 0.0595 mm. (2.10) 
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whence we solve for the values in this table 

convergence 6=5° 10° 20° 30° 
thickness /' = 7.8 1.94 0.48 0.21 

This shows that if we wish to examine thin plates in a conoscope the lenses 
must be strongly convergent. The conoscope used in the Western Electric 
has a convergence corresponding to about the 20° entry of the table so it 

can be used on crystals down to a half millimeter thick—that is for orien- 
tation studies. In determining handedness we remember that this is a ques- 
tion of the rotatory power of quartz causing the rings to expand or contract 
on rotating the analyzer. Also we said that this rotatory power effectively 
disappears at 15° from the axis. If no ring is found within 15° of the axis 
there is no ring capable of expanding or contracting and we cannot test the 
handedness of such a thin crystal no matter how strong a lens we employ. 
We can then fall back on the succession of colors shown when we rotate the 

z 
P 

Fig. 2.35—Ring eccentricity 
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analyzer using white light. Red, yellow, blue are observed for clockwise 
rotation with IRE right-hand quartz. 

If the z section is not a true one, Eq. 2.9 will be replaced by one allowing for 
this error 5: 

ns — «/ = .00917 sin2 (0—5) 

This will make the rings non-concentric and although the "cross" inter- 
section is still the true optic axis the ring centers are not. 

Hence if we are tempted to find the optic axis by centering a large sharp 
ring in preference to a small fuzzy one we find this eccentricity error must be 
allowed for. 

2.8 Rotation of the Plane of Polarization 

If we have a polarizer and an analyzer set for extinction (Fig. 2.36), then 
place a thin z section of quartz between them, the field brightens up but 
can be extinguished again by rotating the analyzer, Fig. 2.37. For the min- 
eralogist's right-hand quartz the analyzer must be rotated 21.7° (yellow 
light assumed) clockwise to re-establish extinction, counter-clockwise 21.7° 
for left-hand quartz. The rotation is more for blue light, less for red. If 
the section is not a perfect z section the rotation is less than this, effectively 
disappearing at about 15° from the optic axis. 

A thick slab can be examined in this way and, due to the color difference 
in rotation, "rainbows" will be seen in the quartz when held at just the 
right orientation. These rainbows will follow the contours of the specimen 
unless both right and left quartz are present in one piece. When this is 
the case the one kind generally occurs as spike- or blade-like intrusions in 
the other. It will then cause the rainbows to have sharp, jagged outlines 
bearing no relation to the specimen contour. 

Also, since red, yellow, blue, are here in the order of increasing rotation, 
if we rotate the analyzer clockwise for right-hand quartz (I.R.E. RHQ) we 
will pass through best transmission for red, best for yellow and best for 
blue in that order so that the field will assume these colors in this order. 

With uncut stones this examination is best made under an immersion fluid. 
The inspectoscope is made for this work. We spoke of the rotation of the 
plane of polarization and its complicating of the issue for the conoscope. 
Due to this the field at the center is not dark when the analyzer and polar- 
izer are crossed. Also if we rotate the analyzer clockwise the rings of the 
pattern either expand or contract according to whether the crystal is right- 
hand quartz or left-hand quartz (IRE definition). 

A different kind of pattern is visible in the conoscope when viewed per- 
pendicular to z, a double set of hyperbolae as shown in Fig. 2.38. This pat- 
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tern has been used to check the orientation but much grief has ensued due 
to not recognizing one of its properties. This property is that, if z does not 
lie parallel to the crystal boundary the center of the pattern is not per- 
pendicular to the optic axis and a rather involved correction must be used. 
This correction reduces the actual angle to about half the observed value. 

This conoscope is an immersion instrument. The fluid is chosen to have 
an index of refraction to match the "ordinary" one for quartz. When this 
is done light is not bent in passing between fluid and quartz. When the 
fluid does not match there is a bending and all readings are subject to a 

\\i/ 

f \ 

\\ 

Fig. 2.36—Crossed polarizers Fig. 2.37—Rotation of the plane of polarizer 

correction. For example if we measure the angle of an AT plate in a fluid 
that is too low by .0048 (since Wo for quartz in green mercury light is 1.5462 
this fluid has n = 1.5414), we will get a reading that is too high by a quar- 
ter degree (the 35° angle will then appear low). A temperature rise of 12° C 
will lower the relative refractive indices by this amount. 

Also the more perfectly the fluid matches, the more nearly will the rough 
quartz surface disappear and seem smooth and clear. This greatly en- 
hances the sharpness of the rings. 

The refractoscope (Fig. 2.39) was designed by G. W. Willard to tell when the 
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match is good. It uses the elimination of the bending as a test for refractive 
match. It also demonstrates the existence of two velocities in quartz,for 
two images are seen where a glass prism would cause but one. Also by- 
viewing through an analyzer we see that the two images are caused by plane 
polarized light, the polarization planes being mutually perpendicular. 

If the fluid has an index lower than that of the prism the rays will bend 
towards the base of the prism. For this reason, light that reaches the eye e 
from ^ must travel by the path j qop^e for the ordinary ray, ^ qtpte for the 

Fig. 2.38—Conoscope view normal to the optic axis 

extraordinary ray. Hence the slit as seen through the prism will appear at 
5o for the ordinary ray, at /e for the extraordinary while the slit as seen 
directly alongside the prism will appear at s. If the fluid index matches 
the quartz prism for the ordinary ray this ray will be unbent at po and <70 so 
that 5o will appear as a continuation of s. 

If the fluid index is too high the image s'o will appear to the left of 5 with 
sf

e still to the right of so. 
As the refractive indices of quartz for the ordinary and the extraordinary 

ray differ by .009 the apparent separation of 5o and 5e represents .009 and 
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can be used to judge the difference between the liquid index and the quartz 
ordinary index. 

The liquid can be adjusted by placing a cap face of a crystal on the refer- 
ence glass and setting the dial to read 51.8° the liquid being then blended 
to center the pattern. 

If the refractive index of the fluid is low by an amount L the observed 
reading R must be corrected by adding to it an amount e. 

Since 
{Nq — L) s\n R = N sin (R—e) 

we can compute e. The accompanying refraction correction nomograph 
was computed from the above equation. If we know that the fluid in the 
conoscope is high, by an amount H, and we wish to know the correction to 
be applied to a conoscope reading R we locate H on the diagonal line HL 
and locate R on the horizontal line R. We join these two points with a 
straight line and read the scale e—e where this straight line crosses the 
curved line e—e. This value tells the size of the correction and whether 
to add it to R or subtract it from R. Conversely, if we wish to find how 
closely the index of the fluid must be held in order to have the correction 
less than say j0 at a reading of say R = 50° we join the points R = 50° and 
e = ± 1° and find H = ± 0.005. A ten-inch-long lucite strip with a 
straight line ruled on it is a convenient tool with which to read this nomo- 
graph. 

We now inquire as to whether the refraction correction can be made to 
annul the ring eccentricity correction. In the appendix it is shown that 
this is done ii H = —.530 tan2 d where 2d is the distance between the ver- 
tical reticule lines. 

Experimentally it is easy to achieve this balance by using a cap face 
parallel slice. With the cap face against the reference glass and the dial 
reading 51.8° the fluid is blended to make a single ring tangent to both reti- 
cule lines. When this is done for d = 10° the fluid should have a refractive 
index of 1.5228 and the residual errors should be less than 2 minutes for R 
not over 60°. 

2.9 Immersion Fluids 

In order to match the refractive index of quartz we blend a substance 
which has an index that is too large with one that has an index that is too 
small. Such blended substances should be liquid at room temperature and 
hence should be perfectly mutually soluble. They should have low vapor 
pressure so that they do not evaporate quickly and should be harmless to 
the operator. Also they should be nearly colorless and clear. They should 
be fluent enough to be easily drained from the crystal and should have a 
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sufficiently high flash point that they would not present a fire hazard. The 
odor should not cause distress and finally the cost must be reasonable. 

Dr. G. T. Kohman of the Bell Telephone Laboratories has prepared a 
list of such substances that can be mixed, any high one with any low one to 

A e 

Fig. 2.39—The refractoscope 

obtain a fluid satisfactory in all these respects. The following mixtures of 
substances are taken from his data. 

Substance 
Refrac- 

tive 
Index 

Mixture 
Parts 
by wt. 

Density Flash 
Point Supplier 

Dimethyl phthalate 
a monochlor naphthalene 

1.51 
1.63 

73.9 
26.1 

1.193 
1.194 2550F Monsanto Chem. Co. 

Bakelite Co. 

Dimethyl phthalate 
Dichlor naphthalene (solid 

at toom temp.) 

1.51 
1.63+ 

73.9 
26.1 

1.193 
1.30 2850F Monsanto Chem. Co. 

Hooker Chem. Co. 

Decalin 
Dowtherm 

1.467 
1.586 

35.3 
64.7 

0.895 
1.1 170oF Dupont Co. 

Dow Chem. Co. 

Kerosene 1700F 
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An immersion fluid for Rochelle salt can be made by mixing decalin with 
any of the other substances. For example h mixture of 34 parts of dimethyl 
phthalate and 66 parts of decalin should give the necessary index 1.495. 

2.10 APPENDIX 

THE RING ECCENTRICITY CORRECTION 

Referring to Fig. 2.41, we see that, at an angle a, frorh the optic axis to- 
wards the plate thickness direction the phase relation is, by Equations (2.7) 
and (2.9): 

.00917 t' sin2 ai 
Yi = 

X cos (5 — ai) 

OIL 

47 

/ CORRECTION - SUBTRACT 
c I' 7,17 * £ ! .COPRECTION+ADD 

2° 3* 2° I* t 

H O .vO 

  I I I ' 1 '     ! I ' * I I I ' 1 I  '       1 
0° 10° 20° 30° 40° 50° 60* 

APPARENT ANGLE R 
Fig. 2.40—Refraction correction nomograph 

while at an angle aa away, it is: 

= ,00917 t' sin a2 

X cos(5 + aa) 

Whence, if these are equal, we have: 

sin2 ai sin" aa 
cos(5 — Qfi) cos(6 + aa) 

(2.11) 
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These points, in the conoscope field, being of equal phase are parts of the 
same ring, and if matched to a pair of reticule lines, the optic axis is off their 
center line by an angle e, where 

e — 
cxi — 02 

If the separation of the reticule lines corresponds to an angle 2d, we see 
that 

d = 0:1 a2 

/ a 

RETICULE 

so that 

Fig. 2.41—Off center cross hairs 

a\ = d e and a.^ = d — e 

The reading of the dial will be, at this match 

R = 5(5 + 0:2 -j- 5 — 012) — 8 — 
ai — £*2 

Hence we have 

sin(^ + e) = /cos(R — d) 
sin((f - e) y cos(i2 + d) 

(2.12) 
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For a given value of d, we can plot the values of e as a function of 5 as given 
by (2.12). This plot is a chart of corrections to be added to the readings R 
to find the true angle 5. 

Examination of Equation (2.12) shows us that the correction e is indepen- 
dent of the thickness t' and even of the birefringence; hence, the chart 
could serve for all uniaxial crystals. Equation (2.12) can be given an ap- 
proximate solution: 

For i? not more than 60 degrees and d not more than 15 degrees the error 
in e is not more than 5 minutes. Figure 2.33 is a chart of these corrections 
computed from the more exact equation (2.12). 

Annulling the Ring Eccentricity Correction by Means of the 
Refraction Correction 

The difference in quartz index and liquid index is 

H = Nq — N t 

and by the law of refraction: 

N( sin R = Nq sin (R+c) 

e = 1820 tan2 d tan R minutes 

e = 30.3 tan2 d tan R degrees (2.13) 

Fig. 2.42—Refraction at a surface 
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whence 

-T sin e v 
-ff = JV'teO-(1-cose) 

and if e is small 

11 =- 
Nq sin e 
tan R 

From Eq. 2.13, e= 0.530 tan2 c? tan i? radians, and putting this in the equa- 
tion for H we find that the correction for ring eccentricity approximately 
annuls the correction for refraction if 

H = — .530 tan2 d 

For d = 10° this gives H = — .0255, that is, a fluid index of 1.5207. 



A Note on the Transmission Line Equation 
in Terms of Impedance 

By J. R. PIERCE 

INCREASED familiarity derived in handling Maxwell's equations, 
especially in connection with problems arising at very high frequencies, 

has resulted in a variety of forms for expressing certain laws and behavior. 
Especially, work by Schelkunoff in extending the impedance concept1 shows 
that impedance can be quite as general and exact a means for expressing 
electromagnetic relations as are current, voltage, electric and magnetic 
fields, and vector and scalar potentials. 

In reformulating certain problems in terms of impedance the content and 
ultimate solution must of course be equivalent. There may, however, be 
a considerable change of procedure and sometimes a simplification. For 
instance, in many cases a single impedance condition can replace the usual 
two boundary conditions for voltage and current. 

One very simple case in which it is perhaps easiest to deal directly with 
impedance is in the derivation of the transmission line equation on a dis- 
tributed- constant basis. In the usual derivation, two linear second order 
differential equations are obtained, one for voltage and one for current. 
The impedance, in terms of which the engineer expresses many of his results, 
is obtained as a ratio from solutions for voltage and current. In treating 
the transmission line from the impedance point of view, without dealing 
with currents and voltages, a first order non-linear differential equation in 
terms of impedance and distance is obtained. This impedance equation 
is a Ricatti equation and could be obtained from the usual line equations. 
It is simpler, however, to derive it directly. 

As the principal interest of such a treatment lies in the method and in 
the fact that the line may be tapered, rather than in losses, the derivations 
will be carried out for lossless lines. Losses can be taken into account by 
allowing the inductance per unit length, L, and the capacitance per unit 
length, C, to become complex quantities. 

Consider the section of line dx long, shown in the figure, having an 
inductance L dx and a capacitance C dx. We can write immediately 

1 "The Impedance Concept and Its Application to Problems of Reflection, Refraction, 
Shielding, and Power Absorption," B.S.T.J. Vol. 17, pp. 17-48, January, 1938. 
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Zx dZ — Zx+dx 

= Zx + j<j)[L - CZl] dx. (1) 
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Dropping the subscript x, the differential equation for the line in terms of 
the impedance Z may be written2 

R2=r-iR*-z') (2) 

R = (i/C)"2 (3) 

v = (iC)"1'2 (4) 

R is the nominal characteristic impedance, and v is the nominal phase 
velocity, which is constant for many tapered lines with the same dielectric 
material separating the conductors throughout their length. In such lines, 
if the dielectric is air or vacuum, v is c, the velocity of light. 

It should not be surprising that (2) is of the first order. Although there 
are two boundary conditions, the impedances terminating the right and 
left ends of the line, there are two impedances, that looking toward the right 
and that looking toward the left. The impedance looking toward the right 

_! OffiKn  

Zx+Ax 

Fig. 1 

is unaffected by the left end termination, and that looking toward the left 
is unaffected by the right end termination. 

As R is real, it may be seen from (2) that the only case in which the im- 
pedance can equal the nominal characteristic impedance R at all points 
is for R constant. This tells us that the characteristic impedance of any 
lossless tapered line is complex. For very gradually tapering lines the 
characteristic impedance differs from the nominal characteristic impedance 
principally by a small imaginary component. 

The simplest solution of (2) is of course that for a uniform line, with R 
a constant which will be called i?0. In this case (2) can be integrated 
directlv. eivine the familiar result 

~ = tanh (jux/v + K) (5) 
Rq 

LJ. 

2 It is interesting to note that the equation for admittance Y can be obtained by re- 
placing Z by Y and R by (\/R) = C in (2). 
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Dr. L. A. MacColl has pointed out to the writer that (2) is the same as 
the electrostatic electron optical equation for paraxial rays. To reduce (2) 
to the standard form: 

= iz (6) 
Rv 

-R2 = H{z) (7) 

^ = Il{z) + Z2 (8) 
dz 

The electron optical equation for paraxial rays is 

^=3rrwT+ , (9) 

r = c-^ do) 
4K(2) 

Here z is distance along the axis, V(z) is potential on the axis, and C is 
convergence, or the inverse of the focal distance. 

It would seem, then, that from each solution of an electron optical 
problem, a solution of a tapered line problem could be found, and vice versa. 

While it cannot be claimed that anything new has entered the transmis- 
sion line equation in expressing it in terms of impedance, it does seem that 
the approach may be stimulating in uncovering hitherto neglected material 
and analogies. 



Abstracts of Technical Articles by Bell System Authors 

Electronics in Telephony} Frank A. Cowan. The historical develop- 
ment of the use of electronic devices by the telephone system is reviewed, 
showing how long distance telephony has grown with the increased use of, 
and improvements in, electronics. The number of telephone repeaters has 
grown from 16 in 1908 to 123,000 in 1942 and carrier circuit mileage has 
grown from 2,000 in 1920 to 2,300,000 in 1942, while copper usage per circuit 
mile has decreased from 400 pounds in 1910 to less than 70 in 1942. 

A transcontinental telephone connection has grown from an open-wire 
circuit with a total loss, less repeaters, of less than 75 db (1915) to a present 
day cable circuit operating at carrier frequencies, which may have a total 
loss of over 10,000 db. The problem of matching enormous amplifications 
to compensate for huge losses with a precision of one or two db was a 
difficult one, which was solved by electronic techniques. The amplifica- 
tion necessary to compensate for the high losses on the cable layout may 
entail some 200 repeaters utilizing a total of more than 600 vacuum tubes 
in tandem. The automatic regulation and control of the amplification is 
accomplished by electronic devices, giving to the present day circuits a 
stability unequalled in the days before the vacuum tube. 

There is available, except for the War, radiotelephone service to 83 
foreign countries and overseas areas, and ocean liners at sea, and to boats 
in coastal and inland waters. 

Such widespread dependence on vacuum tubes has stimulated research 
and design to achieve long life and a high degree of uniformity, stability 
and reliability. Among interesting future possibilities are transoceanic 
cables, the use of higher frequencies providing broader bands and larger 
numbers of circuits over a given path, and further application of remote and 
unattended stations. 

Deionization Considerations in a Harmonic Generator Employing a Gas- 
Tube Switch? William G. Shepherd. A description is given of an 
experimental investigation of the properties of a thyratron operating as a 
high-frequency switch in a circuit which permitted the generation of a 
wide band of harmonics. The experiments indicate that there is an operat- 
ing frequency below which no difficulties in deionization occur and above 

1 Electronics, March 1943. 
2 Proc. I.R.E., February 1943. 
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which stable operation requires that the grid potential fulfill certain condi- 
tions dependent upon the frequency, wave form of the grid voltage, and 
circuit constants. It has been found possible to operate certain standard 
thyratrons at switching frequencies as high as several hundred kilocycles 
per second. For these higher frequencies the deionization of the tubes is 
incomplete but normal switching behavior is obtained. 
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