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In 1945 the Bell System embarked on an extensive study with the purpose 
of developing a program for operator toll dialing on a nationwide basis. 
Operator toll dialing had been done, of course, on a limited scale in various 
parts of the country for many years, but the concept of this program was one 
of nationwide proportions carried on with a uniform numbering plan* 
arrangement and a completely integrated trunking system which would 
handle traffic at a high speed between any two points in the United Slates 
and Canada, even in the busier hours of the day. 

Implementation of this program required the development of new switching 
mechanisms and the exploitation of carrier transmission potentialities to a 
degree never before achieved. Great strides had already been made in these 
fields, resulting in the practical development of the coaxial cable system 
and the first loll crossbar switching office installed at Philadelphia in 1943. 
But the very core of the nationwide dialing plan was the proposal to revo- 
lutionize the method of traffic distribution so as to combine high speed 
handling over the inter toll trunk network with a highly efficient use of facili- 
ties. The method of accomplishing is called ''engineered alternate routing" 

* W. IT. Nunn, Nationwide Numbering Plan, Communication and Electronics, 
2, Sept., 1952 and B. S. T. J., 31, Sept., 1952. 
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The capacity of this particular grade is precisely 334 CCS and its 
efficiency is 16.7 CCS per trunk or only 12 per cent below the single 
trunk group efficiency. Here the common trunks serve as an alternate 
route for such portions of the loads a, b, and c, respectively, as can not 
be handled by the five trunks which are individual to each. Because it is 
not likely that a, b, and c will overflow equal amounts of traffic at the 
same time, the common trunks are kept busy by a more or less com- 
plementary pattern of greater and lesser overflows at any given moment, 
emerging from the three subgroups. It is this action of the overflows, 
amply substantiated by experience, which accounts for the efficiency 
of graded multiples. Looked at another way, it may be said that all 
trunks above five in each subgroup of the split-multiple case have been 
pooled for the common use of all subgroups and that in so doing, it is 
possible to reduce the number of pooled trunks from 9.9 to five without 

GRADED TRUNK. MULTIPLE 

COMMON 

IN DIVIDUAL — 

20 TRUNKS 
TO OFFICE N 

Fig. 1 
OFFICE M 

Typical graded arrangement of 20 trunks on 10 terminals. 

impairing the speed of service. This very brief discussion of graded mul- 
tiples serves merely to point out by familiar example, some of the poten- 
tialities of the alternate routing principle in the economical handling of 
telephone traffic. 

ALTERNATE ROUTING IN LOCAL INTEROFFICE TRUNK NETWORKS 

The effectiveness of alternate routing as illustrated by its action in 
graded multiples suggests the possibility of improving the efficiency of 
trunking between central offices by arranging the offices themselves in a 
sort of grade. Let us carry the analogy as far as practicable and assume 
that the loads a, b, and c in Fig. 1 are now emanating from central 
offices A, B, and C and still destined for office N. Let us assume that 
A, B, and C are typical offices in a multi-office city which has a tandem 
office, T, and further, that every office in the city has a group to and a 
group incoming from the tandem office. Fig. 2 illustrates these condi- 
tions with respect to offices A, B, C, and N and for simplicity indicates 
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carrying the load from the originating office to each distant office would 
he at a minimum. This required some means of determining how much 
load would be carried by the direct trunks when offered a given load 
and consequently how much of that load would be overflowed to the 
alternate route. For this purpose, a formula* known as the Erlang B 
"lost-calls-cleared" assumption was used. This formula states for a given 
random offered load, the amount of load which will be carried by each 
of a number of trunks, n, tested in succession provided that the calls 
failing to be carried on the first attempt (the lost calls) are not rcoffered 
within the hour during which the first offering took place. The condition 
italicized is extremely important to the problem since it requires that 
calls lost on the direct high usage group, i.e., the calls overflowed to the 

Fig. 2 — Illustration of simple interlocal trunk network arranged for alter- 
nate routing. 

alternate route, must be disposed of without delay on the alternate route 
or routes. In the New York City trials it was assumed that the then 
current basis of provision of trunks in each leg of the alternate route 
(final groups AT and TN, Fig. 2) namely, with a probability of delay 
of one per cent. (P.01) would, as a practical matter, satisfy the condition 
that calls overflowing from AN should be cleared. It should be mentioned 
in passing that the results of the trials substantiated the reasonableness 
of this assumption. 

A typical Erlang B distribution is shown in Fig. 3, Curve A wherein 
the load carried by each of n=14 trunks is shown for the condition of 240 
offered CCS. Thus, assuming the load to be offered in succession to 
trunks 1, 2, 3, etc., in that order, it will be seen that the first trunk 
carries the most load, the second trunk somewhat less, the third still less 
until the fourteenth trunk carries about 0.5 per cent of the total. By 

* A. K. Erlang, Solution of Some Problems in the Theory of Probabilities of 
Significance in Automatic Telephone Exchanges, Post Office Electrical Engineers 
Journal, 10, 1917. 

N 
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is a function of the number of trunks provided to handle a given load 
on a lost-calls-cleared basis. 

Referring once more to Fig. 2, let us assume that the ratio of the 
cost of an incremental path in ATN to the cost of an incremental path 
in AN is 1.4. It may then be stated that it costs 1.4 times as much to 
handle traffic on the alternate route as on the direct route. The cost 
ratio is computed on the basis of values of incremental trunks because 
the ultimate question in the economical separation of load between a 
direct and an alternate route is whether one more trunk should be added 
to the direct route or should more trunk capacity be provided in the 
alternate route to handle a marginal portion of the total load. Let us 
assume further that the offered load, A to N, is 240 CCS and that the 
efficiency of incremental trunks in the alternate route is 28 CCS per 
trunk. 

With these three factors, the offered load, the cost ratio and the effi- 
ciency of incremental trunks in the alternate route, the most economical 
arrangement of trunks for carrying traffic from A to N may now be 
determined. The first step is to make sure that any trunk in the direct 
(HU) group will carry load at a cost per CCS equal to or less than the 
cost per CCS which is characteristic of the incremental trunks in the 
alternate route. Since the last trunk in a high usage group carries the 
least traffic, as previously discussed, the significant comparison is the 
ratio of the load carried by a trunk added to the alternate route to the 
load carried by the last trunk in the high usage group. The numerator 
of that ratio is 28 (CCS) and the denominator could be any one of 14 
values shown on Curve A of Fig. 3, depending upon the number of 
trunks provided. If that ratio is made equal to the cost ratio (ATN/AN) 
there will be determined a value of load to be carried by a last trunk 
which in turn will determine the most economical number of trunks for 
the direct high usage group. This value is referred to as the "economic 
CCS" of the problem and is determined as follows: 

1 4 28 
Cost ratio — = Efficiency ratio ^ 

1.0 A 

X = 20, the economic CCS 

On Curve A it will be seen that the sixth trunk will carry 22.5, the 
seventh, 19.6 and the eighth, 10.4 CCS. Since the loading of the seventh 
trunk is closest to the economic CCS just computed, the conclusion is 
that seven trunks should be provided in the high usage group for the 
minimum overall cost of handling traffic from A to N. Since the seven 
trunks as a group will carry 185 CCS (Curve B), there will be 55 CCS 
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value of 1.12. With the latter ratio the economic CCS would be (28 h- 
1.12) or 25. On Curve A of Fig. 3 it will be seen that trunk No. 5 (the 
last trunk of a 5-trunk group) carries 25 CCS. So, if the lower cost ratio 
had been used instead of the correct one, the effect upon overall trunking 
costs would have been 1 per cent in excess of the most economical ar- 
rangement. Had a cost ratio of 1.25 been used, six trunks would have 
been provided in the HU group and no cost penalty would have been 
incurred. On the other side of the optimum point an eight trunk HU 
group would meet the requirements of a cost ratio as high as 2.0 with a 
resulting cost penalty of about 2 per cent. As can be seen from Table I, 
the cost penalties mount more rapidly when more than the optimum 
number of high usage trunks are provided than when less are provided. 

The principles of alternate routing and certain of the techniques used 
by traffic engineers in determining quantities and arrangements of inter- 
office trunks have just been described with particular reference to the 
trials that have been carried on in New York City. The latter were very 
extensive undertakings in which not only single alternate routes were 
provided but for a majority of items, multiple alternate routes. This was 
possible because New York City had two tandem systems each with a 
completing field to all city offices as well as other tandem systems (office 
selector tandems) each with a completing field to about 20 offices. Thus 
it was possible in many cases for an originating office to test a direct 

Table I — Comparative Costs of Alternate Routing System 
for Various Assumptions as to Number of HU Trunks 

Given: Offered load in CCS  240 
Efficiency of trunks added to alternate route  28 
Cost ratio, alternate to direct (HU) route  1.4 

No. of HU 
Trunks 

Nominal Costs 
% Deviation 

from Optimum HU trunks Alternate trunks 
All trunks 

Per trunk Total Per trunk Total added* 

3 1.0 3 1.4 7.50 10.50 7.70 
4 1.0 4 1.4 0.10 10.10 3.59 
5 1.0 5 1.4 4.85 9.85 1.03 
6 1.0 6 1.4 3.75 9.75 0.00 
7 1 .0 7 1.4 2.75 9.75 0.00 
8 1.0 8 1.4 1.95 9.95 2.05 
9 1.0 9 1.4 1.30 10.30 5.64 

10 1.0 10 1.4 .80 10.80 10.75 

* Overflow CCS from HU Group X 14 
28 
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of more than two million items of traffic between toll offices, would need 
to be devised. 

Over the years since 1945 practical solutions to the problems raised 
by the conditions have been attained by Bell System engineers and the 
fruits of their efforts will be put to the test in 1954 during which year 
the first practical application of "engineered" alternate routing in the 
intertoll network will be undertaken. 

The remainder of this paper will be devoted to the more important 
aspects of the traffic engineering techniques used in determining the 
arrangement and numbers of intertoll trunks required in a multi-alter- 
nate routing system. 

GENERAL TOLL SWITCHING PLAN 

A brief description of the General Toll Switching Plan* will be ap- 
propriate here since any discussion of the alternate routing methods 
necessarily presumes an understanding of the basic pattern for routing 
traffic. 

The plan under which transmission had been designed and traffic 
routings determined since 1930 comprehended a maximum connection of 
5 intertoll trunks in tandem. Early studies of the alternate routing pos- 
sibihties in toll networks led to the conclusion that a total of 8 intertoll 

O o 

n RC-REGIONAL CENTER 

o PO — PRIMARY OUTLET 

O TC-TOLL CENTER 
Fig. 4 — Illustration of present basic intertoll network showing maximum 

intertoll trunk linkage. 

links would provide a more economical arrangement of trunks by short- 
ening some very long final groups that would otherwise be required. 
Fig. 4 illustrates schematically the arrangement of switching centers in a 
maximum connection currently in use. 

Fig. 5 shows a schematic of the proposed General Toll Switching Plan 
in which a connection involving 8 links is possible between TCI and 
TC2. Such a route would constitute the final route between those TC's 
and each group in the route would be a low delay final group similar to 

* J. J. Pilliod, Fundamental Plans for Toll Telephone Plant, Communications 
and Electronics, No. 2, Sept., 1952 and B. S. T. J., 31, Sept., 1952. 

O 



TRUNK REQUIREMENTS IN ALTERNATE ROUTING NETWORKS 289 

Each regional center (RC) homes on, ie., has a final group to the NC, 
and has one or more sectional centers homing upon it; 

Each sectional center (SC) homes on an RC (or the NC) and has one 
or more primary outlets homing upon it; 

Each primary outlet (PO) homes on an RC, NC or SC and has one or 
more ordinary toll centers homing upon it; and 

Each ordinary toll center (TC) is so called because it performs no 
through switching function but merely serves as the connecting point 
between the intertoll network and local central offices or tributaries. 

Thus each toll center (and in the generic sense this phrase includes all 
CSP's as well as ordinary toll centers) was classified with respect to the 
area served: the TC serving a group of local offices or tributaries, the 
PO serving a group of TC's, the SC serving a group of PO's, the RC 
serving a group of SC's and lastly the NC serving all the RC's. Under 
this arrangement any toll center could home on another of higher rank 
or classification. Thus a TC or PO, for example, could home upon an 
RC if so dictated by geographic and economic considerations. Before 
proceeding with a detailed study of trunk requirements the classifica- 
tion of toll centers and the homing relationships had first to be estab- 
lished. This was done in a manner which reflected the known densities 
and flow of traffic between the larger cities and the relative cost of final 
routes which in turn reflected the differences in lengths of haul to one 
CSP as opposed to another, etc. With the classification and homing of 
each toll center established it was possible to trace the final route, the 
route of last resort, between any two toll centers in the entire system. 
Thus was the stage set for determining the location of and number of 
trunks to be provided in high usage groups whose function would be to 
move traffic more economically by direct connection between points 
than could be done by following the final route. 

It is apparent at once from the illustration in Fig. 5 that the problem of 
determining the most economical alternate for a given HU group is 
different from that encountered in the interlocal situation of Fig. 2 in- 
asmuch as the latter had only one intermediate switching point in each 
final route. A further difference not specifically indicated is that intertoll 
trunk groups handle traffic in both directions whereas interlocal trunk 
groups handle traffic in only one direction, i.e., there are separate out- 
ward and inward groups between any pair of local offices. There are 
special circumstances under which one-way intertoll groups also are 
established but these may be ignored for purposes of our discussion. 

While this paper is not specifically concerned with the transmission 
aspects of an alternate routing network some mention should be made 
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costs of the direct and alternate routes are controlling. Since load carried 
by a high usage group is a function of the load offered, under the Erlang B 
assumption, it is apparent that the size of the load between any two toll 
centers will also limit the possible range of economic CCS values which 
can be realized. In other words a high usage group to exist at all must 
have at least one trunk and that one trunk must carry not less than the 
economic number of CCS required by the cost ratio applying to the case. 
For example, if a busy-hour load of 00 CCS is to be carried between 
offices A and B and the cost ratio indicates an economic CCS of 25 it can 
be shown that when one trunk is offered 60 CCS it will carry only 23 
of the 60 CCS with the balance 37 CCS being overflowed. Under these 
conditions no direct (HU) group could be economically estabhshed since 
the efficiency of even the first trunk of such a group would fail to meet 
the requirement of the case. 

This immediately suggests that a prime requirement in determining 
whether or not there should be a direct group of any size between two 
toll centers is a level of load at and above which a group will prove in 
and below which, of course, it will fail to prove in. As previously stated 
the cost ratio between the alternate route and the potential direct group 
is also a controlling factor. Thus, to determine the economic propriety 
of establishing a direct (HU) group it is necessary to know the following: 

Cost of path in the alternate route; 
Cost of path in the direct route; 
Efficiency of trunks added to the alternate route; and 
Load offered between toll centers. 
The last three of these items were available to the engineer but the 

first item could not be known in all cases because the groups comprising 
the logical alternate routes in some cases were themselves hypothetical. 
For example, a high usage group between TCI and TC2 in Fig. 5 might 
have an alternate route via P01 or via P02 which routes in turn would 
depend upon the existence of groups P01-TC2 and TC1-P02, respec- 
tively. Therefore, it was necessary to "cut-and-try" in the process of 
locating high usage groups. This was accomplished by choosing an 
average cost ratio (and hence an average economic CCS value) which 
could be used with the known offered loads between toll centers to test 
the feasibility of at least one high usage trunk. With this tentative pat- 
tern of high usage groups the potentially available alternate routes could 
then be identified. For each high usage-alternate route triangle thus 
tentatively selected the test of relative costs was applied to verify the 
economy of the case. Some proposed high usage groups failed to prove 
in under such test in which cases the uneconomic high usage groups were 
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load offered to the P01-P02 group is composed in part of the overflow 
traffic from TC1-P02. It is likewise clear that the final group TCl-POl 
will be offered overflow traffic from both TC1-TC2, TC1-P02 and TC1- 
SC and hence the final group can not be engineered until the overflows 
from all high usage groups terminating at TCI have been determined. 
This transfer of load from group to group with each succeeding high 
usage group serving as the base of a new triangle in orderly procession 
from TC to RC is the essence of the multi-alternate routing system and, 
therefore, a precise order of group load computation was necessary to 
assure proper accounting of the load offered to each group. In practice 
the order of group load computation requires that all TC-TC high usage 
groups be established first, then TC-PO groups, TC-SC and so on. The 
process involves selecting a particular TC as a "reference" and examin- 
ing all traffic involving that TC to determine what (if any) high usage 
groups should terminate there. 

The second rule, affecting the concentration of switched traffic, is 
related to the order of group load computation in that it postulates a 
starting point for the process of examining HU group possibilities. The 
need for such a rule may be best explained by reference to Fig. 7 repre- 
senting a simple intertoll network in which PO, a CSP serving four 
TC's, homes on SC, another CSP, serving four other TC's. The question, 
answered by the second rule, is which of the eight TC's should be used 
as the first reference TC. The choice will determine the sizes of, i.e., 
the number of trunk terminations to be provided at, PO and SC, respec- 
tively. Let us examine the reason for this. Assume the TC's homing on 
PO are to be used as the first set of reference TC's (it makes no difference 
which TC is first chosen). Assume that the investigation showed an eco- 
nomical HU group between TC2 and SC but that no HU groups proved 
into any of the TC's (5, 6, 7, and 8) dependent upon SC. The load offered 

TC 6 TC 2 

Fig. 7. 
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administration and engineering have been obtained with that end in 
view. However, in alternate-routing networks the significant level of a 
trunk group load is not that which is characteristic of its own busy hour 
but rather that which is characteristic of the hour in which all trunk 
groups in a given network are collectively carrying the greatest aggregate 
traffic volume. For each group the former level is referred to as the group 
busy-hour (GBH) load and the latter, for convenience, as the office busy- 
hour (OBH) load. 

The reason for using office busy-hour loads between toll centers rather 
than group busy-hour may be explained with reference to Fig. 8. Here 
is a represented part of an intcrtoll trunk network showing 4 HU groups 
connecting TC with four other toll offices a, b, c and d. TC homes on SC 
and for simplicity it may be assumed that the alternate route of each 
such group is the final group to SC. 

In the hour during which the greatest volume of traffic is leaving and 
entering TC, i.e., the office busy-hour, the demand for trunk capacity 
in the TC-SC group will also be greatest since by design the final group 
to the home CSP of any TC is the route of last resort for all traffic to and 
from the TC. Thus the group busy-hour of the TC-SC group coincides 
with the busy-hour of TC as a whole. 

The group busy hours of the respective HU groups (TC-a, TC-b, etc.) 
may occur outside of the office busy-hour for TC and during such hours 
the amount of traffic offered to and hence overflowed by each of the HU 
groups is greater on the average than that occurring in the office busy- 
hour. But at any other hour than the office busy-hour there is less total 
load on the network and hence there is some spare capacity in the final 
group available for handling the group busy-hour overflow of one or more 
of the high usage groups. By properly evaluating the average ratio be- 
tween any given toll center-toll center load in its group busy-hour and 
its value in the office busy-hour it would be practicable to start with 
basic data in group busy-hour terms and convert it to equivalent office 
busy-hour levels before undertaking the procedures for separating loads 
between direct (HU) and alternate routes. 
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loads was arrived at through an averaging process. The ratio values are 
conservative, i.e., there was some evidence that in large toll offices the 
higher ratio values apply to larger loads than indicated by the curve. 
However, no attempt was made to develop separate sets of ratios for 
offices of different size since the use of the common set of values would 
tend merely to increase slightly the number of HU trunks required in a 
relatively few groups. The elimination of this small distortion did not 
appear to warrant the effort required to achieve it. The study data also 
showed that for a given toll office the sum of the respective group busy- 
hour loads for all groups was approximately 10-14 per cent greater than 
the sum of their respective loads in the office busy-hour. 

The significance of this difference in the GBH and OBH aggregates is 
at once apparent. The intertoll trunk network designed on the alternate 
routing principle is required to handle from 10-14 per cent less busy-hour 
traffic than is required under the arrangement in which each toll center- 
toll center load stands alone and must be trunked for its own busy-hour. 
It is the pooling of trunk group capacities during the hour of maximum 
traffic flow for a given office plus the increased efficiency due to larger 
size of final groups that result in a requirement of fewer trunks in the 
network as a whole than would be required with any non-alternate rout- 
ing trunking system of comparable service characteristics. The alternate 
routing system will enable the handling of normal busy-hour traffic on 
virtually a no-delay basis in so far as trunk provision may be controlling. 
The matter of speed of service potentialities and relative costs of alternate 
routing versus non-alternate routing systems will be treated later. 

SOME UNANSWERED QUESTIONS 

There arc three questions upon the answers to which depend ultimate 
judgment of the adequacy and economy of a nationwide toll diahng net- 
work constructed upon the principles and with the techniques already 
described. These are: 

1. What will be the effect upon trunk requirements of a proper evalua- 
tion of the non-random characteristic of lost calls, i.e., of the calls over- 
flowed from high usage groups to other high usage or to final groups? 

2. What will be the effect upon trunk requirements of a proper evalua- 
tion of the effect of non-coincidence of busy hours and busy seasons 
among the various toll centers? 

3. What are the relative net costs of a nationwide intertoll dialing 
system engineered for multi-alternate routing and one designed without 
engineered alternate routing? 
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Non-coincidence of Busy Hours and Busy Seasons 

With respect to the second question involving the non-coincidence of 
busy hours among toll centers it should be noted first that trunk require- 
ments estimated in the nationwide alternate routing trunk study were 
predicated on a common busy season and a common office busy hour for 
all toll offices and all intertoll groups. This premise resulted in system- 
wide requirements which were patently incorrect since it is known that 
different toll centers have different busy hours and that the busy season 
for toll traffic in New England for example is in the summer while that 
for Florida is in the winter. While it was possible to identify the busy 
season and the average busy hour of each toll center the statistical prob- 
lem of incorporating such information for some 2,500 toll centers in a 
completely integrated nationwide study appeared insuperable. 

The seriousness of the error introduced by the above premise is not as 
great as might at first appear since the New England Company should 
know the requirements for the busy season of its territory and the 
Southern Bell Company is equally interested in the busy season require- 
ments for Florida. It is only in the trunks required for handling traffic 
between these two areas that a distortion of requirements could be 
readily demonstrated as a result of assuming the two busy seasons to be 
coincidental when in fact they are months apart. The example cited is 
an extreme case which serves to point up the problem. While no evalu- 
ation has been made of this distortion, and none seems statistically 
practicable, it is evident that the direction of distortion is toward over- 
estimation of trunk requirements.* 

Thus it may be confidently stated that the general effect of assuming 
premise regarding the coincidence of busy seasons and busy hours upon 
the network as a whole was to compute trunk requirements in some 
groups more liberally than a precise evaluation of all significant factors 
would indicate as adequate. Proper evaluation of the effect of non- 
coincidence of busy seasons and busy hours mil likely await the findings 
of field experience. 

Costs — Alternate Routing Versus No Alternate Routing 

In planning extensive and radical changes in the methods of handling 
toll traffic on a nationwide basis it was necessary to explore the economic 

* In the New York City studies previously discussed, a similar assumption was 
made with respect to the coincidence of busy hours and busy seasons of the local 
offices. Due to the homogeneity of intra-office traffic the degree of distortion in 
individual trunk group requirements was considered, except for a very few cases, 
to be insignificant. 
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levels can and do change with the years for a variety of reasons thus 
automatically changing the cost comparison. 

In spite of the difficulties in obtaining a true and stable comparison 
of the overall costs of the two methods the weight of evidence indicated 
the desirability of proceeding with the plans for achieving an ultimate 
goal of nationwide toll dialing employing the techniques of multi-alter- 
nate routing in the design of the intertoll trunk network. 

With the completion of the study of the various intertoll trunk re- 
quirements for nationwide operator toll dialing there was established 
for the first time a bench-mark against which many of the assumptions, 
theories and procedures which went into its making could be measured 
for accuracy and practicability. Among these was the early question re- 
garding the cost of operator toll dialing with engineered alternate routing 
compared to its cost without alternate routing. To arrive at a complete 
answer it would be necessary to restudy the entire network on the current 
basis of trunking, compare costs of dial switching equipment without 
CSP features with the cost of CSP switching equipment, evaluate 
changes in the location and types of trunk facilities and so on. The under- 
taking of a study and analysis of this scope would require a larger ex- 
penditure of engineering time and effort than would seem justified by 
the usefulness of the results. It should be noted, however, that analysis 
of the alternate routing trunk study indicated that the original premise 
as to trunk economies to be expected were substantially correct. In any 
event the advent of customer toll dialing with its peremptory require- 
ment for high speed trunking has rendered the original question of the 
relative costs of operator toll dialing, with and without engineered alter- 
nate routing, somewhat academic. It can be safely assumed that a high 
speed intertoll trunking system suitable for customer dialing and engi- 
neered without alternate routing would be prohibitive in cost. 

CONCLUSION 

The transition from ringdown (wholly manual) handling of long haul 
toll traffic to operator dialing of such traffic has been proceeding for 
many years and at an increasingly greater rate during the last five years 
until now some 45 per cent of such traffic is dialed by operators. This has 
been accomplished almost exclusively on trunk networks operated with- 
out benefit of engineered alternate routing. Along with this, increasing 
use of dialing by destination code has been achieved as various cities 
and areas have converted to the nationwide numbering plan. 

The second phase of the transition, now under way, involves the 
change from non-alternate routing to alternate routing trunking. With 
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This article describes the Intertoll Trunk Concentrating Equipment which 
is a special purpose common-control type switching system. Its function is 
to combine, at a central point, small groups of trunks serving traffic originat- 
ing at various outward toll switchboards and to route the combined traffic 
to a toll or tandem crossbar office in a dis ant toll center. The operators at 
the outward toll switchboards are thereby provided with the equivalent of 
direct access to the intertoll trunk circuits. 

Both operating and equipment savings are realized by the use of this con- 
cent rating equipment as compared to handling the same traffic via a toll 
crossbar office at the originating toll center. 

INTRODUCTION 

This article deals with a method of handling traffic from outward toll 
switchboards in a metropolitan toll center to a specific distant toll center 
with the objectives of (1) providing the epuivalent of direct access to in- 
tertoll circuits from the individual switchboards, for traffic for which 
direct circuits cannot be justified, (2) giving relief to the No. 4 type toll 
switching system in the metropolitan toll center, and (3) providing a 
means for the dispersion of toll switching facilities. 

A metropolitan toll center may contain a number of outward toll 
switchboards. Some of these are situated in the central toll building and 
others in decentralized locations. An individual outward switchboard 
may have a sufficient amount of traffic to a specific distant toll center to 
justify a group of intertoll circuits direct from the switchboard to the 
No. 4 type toll or crossbar tandem office in the distant center. It has 
been the practice to provide such direct access to intertoll circuits at 
centralized toll switchboards. Traffic exceeding the capacity of such in- 
tertoll trunk groups is handled over tandem trunks from the toll switch- 
boards via the No. 4 type toll crossbar office in the originating center. 
The decentralized switchboards in general have reached intertoll cir- 
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cuits only via tandem trunks to the No. 4 type toll crossbar office in the 
home toll center. 

Handling such traffic through the toll crossbar office involves greater 
operating effort than handling it by direct trunks since three additional 
digits per call must be keyed by the operator to direct the call through 
the toll crossbar office. Also the cost for an intertoll connection is higher 
with the tandem trunk method than with the direct circuit method, due 
to the greater number of switching facilities used in establishing the 
connection. Fig. 1 shows the components used in both cases up to the 
point where they join common facilities. 

INTERTOLL TRUNK CONCENTRATING EQUIPMENT 

General 

The intertoll trunk concentrating equipment has been developed to 
provide the equivalent of direct access to intertoll trunks for the traffic, 
from individual outward toll switchboards, which cannot justify the use 
of direct trunks. It is a small special purpose common control type 
switching system located at a central point. It gathers small traffic loads, 
to a specific, destination and automatically routes this traffic to a com- 
mon group of intertoll trunk circuits which terminate in a toll or tandem 
crossbar office in the distant toll center. 

The maximum capacity of a trunk concentrating equipment is 100 
incoming trunks and 40 outgoing trunks. It may be furnished in smaller 
sizes. If more than 40 outgoing trunks are required to a particular 
destination, additional concentrating equipments may be furnished. 

The field of use for this equipment lies between that of direct trunks 
and trunks reached through the toll crossbar switching system. 

The concentrating equipment is arranged only for multifrequency 
pulsing from the switchboard. This is a system of pulsing in which com- 
binations of two frequencies within the voice frequency band are trans- 
mitted over the talking path to the distant end. Each digit from 0 to 9 
employs a different pair of frequencies. 

The intertoll trunk concentrating equipment consists of 4 basic circuit 
components, namely, incoming trunk, trunk selection switches, controller 
and outgoing trunk circuits. 

The detached contact form of circuit presentation is employed in the 
figures because of its simplicity. In this method the core and winding of 
a relay may be shown in one location and the associated contacts in other 
convenient locations. The core and contacts are related by the common 
designation which appears at the symbols which represent them. 
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Incoming Trunk Circuits 

Several types of incoming trunk circuits are provided to meet the 
various switchboard conditions where a switchboard and concentrating 
equipment are located in the same building or to meet the interoffice 
trunk loop conditions where the switchboard and concentrating equip- 
ment are in separate locations. In all cases the incoming trunk circuit 
receives signals from the switchboard, directly or indirectly and trans- 
mits them to the outgoing trunk circuit and to the controller. The in- 
coming trunk circuit also receives signals from the outgoing trunk circuit 
and transmits them to the switchboard. The incoming trunk circuits, 
where necessary, also convert the two-wire transmission circuit from the 
switchboard to a four-wire transmission circuit to meet the intertoll 
trunk facilities. Fig. 2 shows a typical incoming trunk circuit. 

Trunk Selection Switches 

The trunk selection switches are the elements which, under the direc- 
tion of the controller, connect the incoming trunks, requesting service, 
to the outgoing trunks. Crossbar switches having 20 verticals and 10 
horizontals, providing 200 crosspoints, are used. A crosspoint is the 
intersection of a vertical and a horizontal element of the switch. The 
incoming trunks are connected to the verticals and the outgoing trunks 
to the horizontals of the switch. By the switch operation any of the 20 
incoming trunks may thus be connected to any of the 10 outgoing trunks. 

A single switch will accommodate 20 incoming and 10 outgoing trunks. 
To increase the number of incoming trunks a similar switch is added for 
each additional 20 trunks with the verticals connected to the new in- 
coming trunks and the horizontals connected to the corresponding 
horizontals of the first switch. To increase the number of outgoing 
trunks switches are added with the horizontals connected to the new 
group of outgoing trunks and the verticals connected to the correspond- 
ing verticals associated with other groups of incoming trunks. The switch 
arrangement may be envisioned as one large switch having as many 
verticals as there are incoming trunks and as many horizontals as 
there are outgoing trunks. 

Outgoing Trunk Circuit 

Only one type of outgoing trunk circuit is required, as shown in Fig. 3. 
All outgoing trunks from a particular concentrating equipment terminate 
in the same distant toll center. The outgoing trunk circuit receives 
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are made a part of the incoming trunk circuits rather than a part of the 
less numerous outgoing trunks to which they may be switched. Switching 
between incoming and outgoing trunks is therefore performed on a four- 
wire basis. 

Controller Circuit 

The controller circuit is the control element of the trunk concentrating 
equipment. Its primary function is to select the incoming and outgoing 
trunks to be interconnected and to operate the proper select and hold 
magnets of the associated switches to close the required crosspoint. 
Since the controller circuit is described in some detail later, only the 
general principles of it will be dealt with at this time. 

The controller divides the incoming trunks into ten groups, (0 to 9), 
of ten trunks each. When idle it admits calls for a very short interval 
and then closes gates which exclude all other groups until calls recog- 
nized, within the gate, have been served. The controller serves the groups 
and trunks within the gate in one of two orders depending upon the 
direction of selection existing at the time. In one case selection will 
start with the lowest numbered trunk in the lowest numbered group 
and progress to the highest numbered trunk in the highest numbered 
group. In the other case the order will be reversed starting with the 
highest numbered trunk in the highest numbered group and progressing 
to the lowest numbered trunk in the lowest numbered group 

The controller also divides the outgoing trunks into four groups, (0 
to 3), of ten. The outgoing trunks are served in order, either from low 
numbered to high numbered trunks or vice-versa. Once selected, the 
outgoing trunk remains locked out, after use, until all trunks have been 
used, or until a trouble condition causes a reversal of the direction of 
selection of the outgoing trunks. 

To avoid connecting an incoming trunk to two outgoing trunks or 
connecting two incoming trunks to an outgoing trunk the controller 
tests both the select and hold magnets for possible trouble conditions, 
such as crosses, before operating them. 

Each intcrtoll trunk concentrating equipment has but one controller. 
If the controller ceased to function the entire concentrating equipment 
would be out of service. To insure reliability the philosophy was adopted 
in the design that no single trouble should disable the controller. This 
accounts for some of the features, the reasons for which otherwise are 
not obvious. 
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Completion of Calls 

The basic circuit components of the intertoll trunk concentrating 
equipment arc shown in Fig. 4. Three incoming trunks in different groups 
and from different switchboards are shown. Two outgoing trunks in 
different groups are also shown. Assume that the controller is conditioned 
to serve both incoming and outgoing trunks in the low to high order, 
that a call is placed on incoming trunk 14 and a short time later on 
incoming trunk 21, and that outgoing trunks 04 and 36 only are avail- 
able for selection. Seizure of trunk 14 at the originating switchboard 
causes the incoming trunk to place a ground on the start lead of incoming 
trunk group 1. This ground indicates to the controller that a trunk in 
incoming group 1 is calling for service. The controller then closes the 
gate to all other ten groups, tests the select magnets associated with 
horizontal 04 for crosses (since outgoing trunk 04 is first in order for 
selection) and finding none operates the select magnets. It then tests 
the hold magnets associated with vertical 14 and finding no crosses oper- 
ates the hold magnets, thus closing the crosspoint whose coordinates are 
(04, 14) connecting incoming trunk 14 to outgoing trunk 04. The outgo- 
ing trunk transmits a seizure signal over the intertoll facilities to the 
distant end which then transmits a signal back to incoming trunk 14, 
which relays the information to the controller. The controller then re- 
leases from that connection, opens the gates and admits the call waiting 
on incoming trunk 21. It proceeds to complete this call to outgoing 
trunk 30 which is next in order of selection in a similar manner. 

If in the assumed case outgoing trunk 36 was the last trunk then 
available for selection the controller would, at the completion of selection 
of trunk 30, proceed as follows: 

(1) If any of the other outgoing trunks which had been locked out 
were idle the controller would now make these trunks available for 
selection. 

(2) If no trunks were idle the controller would wait, and cause a 
signal to be transmitted to all associated outward switchboards. This 
signal will prevent the lighting of idle trunk indicating lamps at each 
switchboard. When one or more outgoing trunks become idle the con- 
troller will make them available for selection and will permit the idle 
trunk indicating lamps at the associated switchboards to light as an 
indication that trunks are available. 

Component Circuits of the Controller 

In the following paragraphs the component circuits of the controller 
will be described individually. The descriptions of these circuits contain 
the minimum of detail required to understand how they function. 
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"Tens Group" and "Tens Gale" Relays for Incoming Trunks 

The incoming trunk associated with each controller are divided into 
groups of ten. These groups are designated 0, 1, 2, etc. Each trunk in 
the group has a unit designation 0, 1,2, etc. which corresponds to the 
vertical of the switch to which it is connected. For instance, an incoming 
trunk in group 2 which is connected to the number 3 vertical on the 
switch is designated 23. Each group of trunks has a common start lead, 
(st), (See Fig. 2) to the controller which is grounded when any trunk 
in the group is calling for service. Each trunk in the group of ten supplies 
an individual lead us to the controller which is also grounded when the 
particular trunk is calling for service. This lead serves to identify the 
units designation of the trunk. 

In the controller there is a group of three relays associated with each 
group of 10 incoming trunks (Fig. 5). These are (1) the tens relay (tn-) 
which responds to the ground on the st lead from the trunk group when 
a trunk in that group is calling for service providing that the tens gate 
is open as discussed below, (2) the units control relay (uc-) which 
when operated connects the common group of units relays (uo-uo) to 
the us leads of the grunk group, (3) the hold connect (hc-) which 
when operated steers the hold magnet operating path to the hold mag- 
nets associated with the trunks in the particular group. The uc- and hc- 
relays do not operate until it is the turn of that associated trunk group 
to be served. 

Two series chains, carried through transfer contacts on all of the tens 
relays, control the operation of the units control and hold control 
relays. The operation of these relays and the manner of advancing selec- 
tions from one group to another is best explained by the use of the 
following example. Assume that incoming trunks in groups 1 and 3 have 
originated calls resulting in the operation of the tni and tns relays. 
Assume also that the controller is conditioned for the low to high direc- 
rion of selection for incoming trunks. When the tni and tns relays 
operate, they cause the release of the tens gate relays (tgi and TG2) 
which close the gates to the operation of any other tn relays and operate 
the ucl and hcI relays. When the units gates close as described later, 
the tn! relay is released and the trunks in group 1 will be served. When 
the last trunk in this group has been served the ucl and hcI relays 
release and the ucs and hcs relays operate advancing the selections 
into group 3. The tns and ucs and HC3 relays then function in the same 
manner as described for the tni, uci and hci relays. If the direction of 
selection had been from high to low instead of from low to high, group 
3 would have been served first instead of group 1. 
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associated with that incoming trunk is released advancing the selection 
path to the next incoming trunk to be served. When the last incoming 
trunk within the gate has been selected the end relay releases, signifying 
the end of selections in that group and enabling the controller to advance 
to the next group. The release of the end relay releases the units gate 
relay restoring the operating path for all u relays. 

Select Magnet Operating Circuit 

The select magnet operating circuit is shown in Fig. 7. Two of these 
circuits are provided in accordance with the philosophy that no single 
trouble should block the concentrator. One of these circuits is associated 
with each direction of selection. When the units gate relay operates 
as described in the preceding paragraph, battery is connected through 
the windings of the xs and ss relays, chains on the group relays (gp-), 
chains on the ot relays, to the select magnet associated with the lowest 
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or highest unoperated ot relay in the group depending on the direction 
of selection. If the path is found to be closed to ground the ss relay will 
operate. The xs relay is a polar relay. The resistance shown in series 
with the secondary winding will have a value depending upon the num- 
ber of select magnets which are multipled together on each level of the 
particular concentrator, which number is a function of the number of 
incoming trunks. The xs relay will operate on every normal connection 
since the current in the s winding, which is in the direction to operate 
the relay, will be larger than that in the primary winding. When the 
resistance to ground on the select magnet lead is less than it should be, 
due to a cross with another select magnet lead or to a direct ground, the 
current in the primary winding will be greater than that in the secondary 
winding and the resultant ampere turns will be sufficient in the non- 
operate direction to prevent the operation of the xs relay. This would 
cause the selection to be halted, the controller to time out and the trouble 
registered. A reversal in the direction of selection would occur and selec- 
tions would then be resumed. If no fault is found with the select magnet 
operating path the select magnets operate. The controller then introduces 
a small time interval to permit all parts of the selecting bar operated by 
the select magnet to come to rest. The hold magnet operating path is 
then closed as discussed below and the crosspoint is closed. The closure 
of the crosspoint operates a relay os in the outgoing trunk which in turn 
releases the select magnets and ss relay which releases the xs relay. 

Hold Magnet Operating Circuit 

The hold magnet operating circuit is shown in Fig. 8. Two circuits are 
provided, one for each direction of selection to insure against blocking in 
case a trouble in this portion of the controller. The cross detection part 
of this circuit is an unbalanced wheatstone bridge, the galvanometer 
element of which is the polar relay xh. Three of the arms of the bridge 
are resistances, the values of which are tailored to each particular con- 
centrator depending upon the number of hold magnets to be encountered 
on a normal connection. This number is a function of the number of 
outgoing trunks. The fourth arm consists of the hold magnets. When the 
tens gates relays released as previously described the xu relay operated 
(at this time the hold magnets are not connected and the bridge is not 
formed). Later in the progress of the call, when the units relays operate, 
the hold magnets are connected and the bridge is formed. If the resistance 
of the hold magnet arm of the bridge is as expected, the bridge is un- 
balanced so as to keep current flowing through the xu relay in the direc- 
tion to maintain it operated. This will permit a relay ht, which furnishes 
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cessfully completed except as stated above where a continuity check 
has failed. When the ta relays release, the ot relay associated with the 
trunk selected, or passed by, is operated and advances the selection to 
the next idle trunk. The operated ot relay locks to its own group 
relay gp until the last ot relay in that group has operated. When the 
last trunk in that group is selected the gp relay of that group is re- 
leased, advancing the selection path into the next group. The ot re- 
lays in the first group are then controlled only from the individual out- 
going trunk with which they are associated and will be released when 
the trunk becomes idle. The trunks in that group cannot be selected 
again until the group relay has been reoperated which can not occur 
until all of the outgoing trunks on the concentrator have been selected 
in turn or until the controller times out. In both of these cases the con- 
troller will go through end of cycle operation and reoperate the group 
relays as later described. With the above arrangement the traffic is 
spread evenly over the whole group of outgoing trunks. 

End of Cycle and, Guard Timing 

When a connection through the concentrating equipment is released 
by an operator, the outgoing trunk sends a disconnect signal to the other 
end, to release the equipment there. It may take approximately 0.75 
seconds for the distant equipment to release after it has received the 
disconnect signal. If this equipment should be reseized before it is re- 
leased the new call would be connected to the same subscriber. A guard 
time could be incorporated in every outgoing trunk to prevent the trans- 
mission of a seizure signal for this 0.75 seconds, but this would be rela- 
tively expensive. To avoid this procedure the end of cycle and guard 
timing feature has been incorporated in the controller. This feature, 
shown in Fig. 11, together with the outgoing trunk lock out feature 
insures that no outgoing trunk can be seized for at least 0.8 of a second 
after it has been released from a previous call. 

When the last available idle outgoing trunk on the concentrator has 
been selected the last operated group relay gp releases, and two end of 
cycle relays eci, EC2 which are normally operated also release. Either 
one of these relays released operates both the group restore relay gr 
and,an all busy relay ab. Both the gr and ab relays cause the idle 
indicating lamp associated with trunks to the concentrator at all origi- 
nating switchboards to remain dark as an indication that all trunks are 
busy. If no trunk outgoing from the concentrator is idle at this time 
nothing else will happen in the controller. When any outgoing trunk 
in any group becomes idle the group relays associated with such groups 
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control gap breaks down (which is minimum 63 volts for this tube) R 
is the value of resistance in ohms, and C is the value of the capacitor in 
farads. The timing circuits measure an interval of about 0.8 seconds 
which is sufficient to permit the distant end of any trunk, which has just 
been released, to restore to normal. When the timing interval is com- 
plete the guard time relays release, the direction of selections is re- 
versed, and selections are resumed. 

Direction of Selection Control 

Two directions of selection are provided for both incoming and out- 
going trunks to (1) by-pass incoming and out-going trunks which are in 
trouble, (2) to guard against blocking due to a single trouble in the 
controller itself. (See Fig. 12.) The directions of selection are controlled 
by two combinations of relays, plus three other relays controlled by these 
combinations. The aow and aoz relays control the outgoing directions of 
selection. With these relays in the unoperated condition the outgoing 
trunks will be selected in the low to high order and with them operated 
selections will be made in the high to low order. The outgoing trunks, in 
the normal course of events, are served starting with lowest or highest 
numbered trunks and proceeding to the highest or lowest numbered 
trunk depending upon the direction of selection at the time. When the 
last trunk has been selected the direction is reversed by either operating 
or releasing the aow and aoz relays depending upon the status quo ante. 
In case a short time-out is due to failure to close the crosspoint the direc- 
tion of selection of outgoing trunks is reversed immediately. It is also 
reversed whenever a long time-out occurs, whatever the cause. 

The aw and az relays form the combination which controls the in- 
coming direction of selection. Controlled by them are the control 
relays ci and C2 associated with the low to high and high to low direc- 
tions respectively. With the aw relay unoperated the ci relay is operated 
and the direction of selection is from low to high. With the aw relay 
operated the ci relay is released, the C2 relay is operated and the direc- 
tion of selection is from high to low. The incoming direction of selection 
is reversed under the following conditions: 

1. When the outgoing direction is reversed upon the last outgoing 
trunk being selected the incoming direction is also reversed if and when 
there are no more incoming trunks within the gate waiting to be served. 

2. When a short time-out occurs due to the failure of the end relay 
to operate or failure of continuity check. 

3. When a second failure to close crosspoint occurs. 
4. When a long time-out occurs. 
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the next idle trunk lights. The lamp does not necessarily move progres- 
sively thru the group but is always lighted on the lowest numbered idle 
trunk in the group. 

The direct intertoll trunks and the trunks to a concentrating equip- 
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However, it should be remembered that it contains a single controller 
which could be disabled by compound trouble, a condition which could 
be serious if the concentrating equipment were the sole means of handling 
traffic from any switchboard. It is intended that the concentrating equip- 
ment be used in conjunction with direct intertoll circuits and/or tandem 
trunks to a No. 4 type toll crossbar switching system. When used with 
direct circuits an operator alternate routing system ensues. Referring 
back to the paragraph which dealt with idle trunk indicating, it is noted 
that the direct trunks and the concentrator trunks form a single group 
or subgroup of trunks to a common destination. The direct trunks appear 
in the multiple at the head end of the group and are followed by con- 
centrator trunks. The idle indicating lamps direct the operator to a 
direct trunk, when available, as first choice, and automatically direct 
the operator to a concentrator trunk when the direct trunks are in use. 
If the operator also has access to trunks to the toll crossbar office these 
trunks become third choice for use when the direct and concentrator 
trunks are busy. Fig. 14 illustrates this situation. The concentrating 
equipment may be located apart from the central toll building without 
losing the advantages of the alternate routing discussed above. Thus it 
is available for dispersing the toll plant to minimize the effect of disaster. 
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The Transistor as a Network Element* 

By J. T. BANGERT 

(Manuscript received October 7, 1953) 

The development of the transistor has provided an active element having 
important advantages in space and power. As a result, the question arises 
whether strategic insertion of such active elements in passive networks 
might lead to interesting results. This paper gives a theoretical analysis 
confirmed by experiment, of certain possible network applications of tran- 
sistors. Four general areas are considered in which transistors are used as 
follows: to reduce the detrimental effects of dissipative reactive elements, to 
eliminate the necessity for inductors in frequency selective circuits, to pro- 
duce two terminal envelope delay structures having zero loss, and to invert 
the impedance of reactive structures. The conclusion is drawn that judicious 
interspersion of transistors in a transmission network enables performance 
to be achieved which would otherwise be unobtainable or uneconomical. 

INTRODUCTION 

It has become customary through the years to classify linear circuits 
as either active or passive. This convenient, but arbitrary, division has 
encouraged a philosophy that regards each as a separate and distinct 
domain. The recent spectacular advances in active devices suggest that 
in some cases the traditional boundaries should be erased and that a 
unified approach should be made. 

In particular the development of the transistor offers the possibility 
of interspersing small active elements throughout a passive network to 
achieve certain desirable effects. This paper intends to survey a few 
of the ways in which a transistor can be used to advantage in trans- 
mission networks. The discussion is divided into four parts as follows: 

1. Reduction of dissipation. 
2. Elimination of inductance. 
3. Production of delay. 
4. Inversion of impedance. 

* Presented in part at the Radio Fall Meeting, Toronto, Ontario, Oct. 28, 
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The first portion offers a new approach to the everpresent problem 
of imperfect reactive elements. The second portion discusses a method 
of combining resistance and capacitance with transistors to produce 
characteristics conventionally realized by inductance and capacitance. 
The third portion proposes a technique for obtaining any specified 
delay characteristic with a two terminal active structure. The fourth 
portion considers means of using a transistor to transform passive ele- 
ments of ordinary size into passive elements of greatly reduced size. 

I. REDUCTION OF DISSIPATION 

For simplicity in the treatment of network problems it is frequently 
assumed that purely reactive elements will be used. In many cases this 
approximation is satisfactory; other times it is worthless, and a more 
realistic analysis must be made. In this latter case one possibility is to 
nullify the unwanted dissipation by means of a bridge balance.1 This 
will entail the acceptance of some flat loss. Another possibility is to 
insert active elements within the network in order to supply just enough 
energy to offset the inherent dissipation of the elements. This second 
approach, until now relatively unexplored, is being tried with promising 
results. To avoid introducing new terminology the discussion will em- 
ploy the concept of negative resistance which has been studied with 
interest by many investigators.2"18 

Negative Resistance 

Negative resistance is a misleadingly simple name applied to a com- 
plex phenomenon. The term implies behavior in some opposite sense 
to that of an ordinary positive resistance. This is true only tor a limited 
range of frequencies and signal levels. As generally used negative re- 
sistance refers to a two terminal active network or electronic device in 
which the voltage-current ratio has a negative real part and negligible 
imaginary part. 

Table I—'Negative Resistance 

Parameter 

Independent variable 
Required external imped- 

ance 
Effect of internal gain re- 

duction 
Associated reactance 

Shunt Type 

Voltage controlled 
Short circuit stable 

Increased magnitude of 
Rn 

Parallel capacitance 

Series Type 

Current controlled 
Open circuit stable 

Decreased magnitude of 
Rn 

Series inductance 
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For convenience the simple forms of negative resistance may be di- 
vided into two general classes which are duals in a network sense. Since 
these classes have been identified in the literature in several different 
ways, it seems desirable to summarize the major characteristics in the 
form given in Table I. 

Therefore a shunt negative resistance is one whose magnitude is 
controlled mainly by the voltage across its terminals. It is short circuit 
stable which means it must operate into a low impedance. When the 
internal gain used to produce the effect is reduced, the magnitude of a 
shunt negative resistance increases. In addition it should be associated 
with a parallel capacitance to predict its behavior outside the working 
band of frequencies. 

One method of producing a two terminal shunt negative resistance is 
to arrange a transistor as shown in Fig. 1(a). To facilitate prediction of 
the behavior of this combination it is desirable to derive an equivalent 
circuit. 

Equivalent Circuit of a Transistor Shunt Negative Resistance 

An equivalent circuit of the transistor and its associated network is 
shown in Fig. 1(b). By denoting each condenser reactance as jX, the 
circuit determinant, A, can be written as follows. 

Next the input impedance is determined as A/Au . 
From this formula the exact general expression for the input im- 

pedance is found to be very cumbersome and will not be given. A useful 
approximation can be found by making some simplifying assumptions 
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Fig. 1 — Equivalent circuit of transistor shunt negative resistance. 
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as follows: 

Lot re > > t'b Tm > > rj 
rc > > + Ra rm > > rfl + Ra 

Under these conditions the network can be represented by the equiva- 
lent circuit shown in Fig. 1(c). This circuit consists of a parallel com- 
bination of resistance and capacitance in which the capacitance is that 
of the original two capacitances in series and the resistance is negative 
and equal to four times the feedback resistor, R/ . Hence the magnitude 
of the generated shunt negative resistance can be controlled by adjust- 
ment of Rf . One measure of the accuracy of this approximation is how 
much the "constants" of the equivalent circuit change with frequency. 
Calculations of a typical case show that deviations in frequency of 
±5 per cent cause deviations in both capacitance and negative resis- 
tance of ±0.05 per cent. Hence this approximation is very accurate for 
narrow band applications. 

This circuit can now be used to advantage in a band filter. 

Confluent Band Filter 

A conventional confluent band filter is shown in Fig. 2(a). In this 
structure the presence of dissipation in the series branches impairs 
performance by introducing flat loss, whereas any dissipation in the 
shunt branch not only produces flat loss, but, worse still, causes round- 
ing of the transmission characteristic at the edges of the band. For 
narrow filters having a small percentage band width, any appreciable 
dissiptation in the shunt arm can degrade the transmission characteristic 
beyond a reasonable tolerance. One good answer to this problem is to 
use elements having an extremely low resistive component such as 
quartz crystals. However, quartz is expensive and has other limitations. 
Another solution is to build a negative resistance into the filter so as to 
reduce the inherent element dissipation to zero or at least to a tolerable 
value. In the present case a shunt negative resistance will be used to 
compensate the shunt branch. This is done by splitting the shunt ca- 
pacitance of Fig. 2(a) and inserting the circuit of Fig. 1(a). This can be 
illustrated by an example. When the filter of Fig. 2(a) is designed to 
give a 5 per cent band at a midfrequency of 10 kc and impedance level 
of 600 ohms the shunt branch offers an undesirably low impedance to 
the compensating transistor circuit and in addition requires cumbersome 
element values. Both difficulties can be corrected by using capacitative 
impedance transformations on each side of the shunt branch, thereby 
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Fig. 2 — Confluent band filters, (a) Conventional, (b) Active. 

raising the impedance of the shunt branch without changing the im- 
pedance level at the input and output terminals. At the same time the 
elements assume much more reasonable values. The modified configura- 
tion together with the active portion is shown in Fig. 2(b). 

Using the filter described above, a series of transmission curves were 
calculated and are shown in Fig. 3. When ideal elements are assumed, 
the transmission is 

e 0 = 
ky 

where k = 

{p- + hp +1) |p4 + kp3 + (fc2 + 2) p2 + A:p -f 1] 

h-h 
yjifl 

and V = J" 

Calculation of this expression results in the classical characteristic 
labeled "Ideal Passive". When, however, typical values of element re- 
sistance are introduced, the transmission is 

e =  2/?i (^i?) + dop") (ftp -f- fiip' -f- fttp3)  
(ao + «iP + «2P2 + asp3 + a4p4)2 — (Sxp + ^p2)'1 
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where 

ao = /iVl + y) 
ai = /^i[7'i(l + </) + + RA\ 
012 — Ri\Ai(l + + TiiTt + T23) + -^2] + 7^2 T1! T22 

03 = R][Ai(T2 + + AiT]] ■' R3 
r, = R\C\ 
7'2 = R2C2 

at = R\AIA2 
5i = RzTi 

Pi = T'iCl + g) 

P2 = 71x(7,2 + T23) 
P3 = T1A2 

82 — RS^Tn 

A 2 — L2C2 

This expression with the compensating negative resistance R3 = 
produces the characteristic labeled "Practical Passive". 

The dotted curves show the effect of adding various amounts of 
negative resistance to the shunt branch by letting R> assume negative 
values. The number on each dotted curve is the ratio of the resistive 
component of the shunt arm at anti-resonance to the magnitude of the 
compensating negative resistance. For example, for the curve labeled 
p = 1, the resistance in the shunt arm is entirely compensated so that 
the loss is only that due to the resistance in the series arms. By increasing 
the amount of compensation in the shunt arm so that p > 1, called 
overcompensation it is possible effectively to nullify the losses in the 
series arm as well. Comparison of the active curve labeled p = 1.21 
with the "ideal passive" curve shows that this technique of resistance 
compensation can produce a practical filter having a characteristic equal 
to that of a filter having ideal elements. Filters of this type have already 
been successfully used in field test equipment. 

When the degree of compensation is increased still further, the filter 
begins to provide gain in the band as shown by the p = 1.36 curve. It 
is clear that continued increases in the compensation will eventually 
absorb the terminations causing the structure to become unstable. 

Although the curves given in Fig. 3 are all calculated, tests on experi- 
mental models show excellent agreement. To a reader having long ex- 
perience with passive filters the development of negative insertion loss 
may seem a little surprising. In order to lend an air of authenticity to 
this midband gain it is instructive to consider the behavior of a resistive 
tee section having a negative element. This is a reasonable analogue, 
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because at midfrequency the reactive component becomes zero in each 
branch of the filter. 

Transmission of Symmetrical Tee 

The insertion loss of a symmetrical tee section with positive resistance 
is a well known concept. It is doubtful, however, if the behavior of a tee 
with a negative element is equally well known. Consider the section 
shown in Fig. 4 operating between terminations R and having series 
arms, Ra and a shunt arm, R b ■ Normalize by letting a = R A/R and b = 
Rb/R- Insertion loss is plotted vs. b with a as the third parameter. For 
b positive the usual loss pattern results; for b negative, a more complex 
situation develops. When b is very large and negative, the section is still 
producing a small loss, but as b becomes smaller in magnitude the loss 
drops to zero and finally becomes a gain. There is a lower limit on the 
magnitude of b beyond which oscillations will occur. This limit is reached 
when 2b = — (a + 1). 
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Singulariiies of Confluent Band Filter 

Recent work on insertion loss design and potential analog methods by 
S. Darlington and others has fostered the practice of characterizing a 
network by plotting its natural modes and infinite loss points in the 
complex frequency plane. In the present case it is instructive to study the 
effect that reducing dissipation will have on the singularities. A full 
section confluent band filter has five infinite loss points and eight natural 
modes. In Fig. 5 the singularities of the passive, confluent band filter 
discussed earlier are plotted in the complex frequency plane and identi- 
fied by the digit one. A single infinite loss point or zero lies on the nega- 
tive sigma axis, a pair falls at the origin, and a conjugate pair is located 
near the midband frequency. The natural modes or poles consist of two 
conjugate double pairs situated at about the upper and lower cut off 
frequencies of the filter. The distance of the complex singularities from 

A _ = a 

b 

LOSS = -20 LOG,o 2b 
_ (a + l) + 2b (a + l)_ 

0 - -2 - -0. 
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Fig. 4. Tx-ansmission of symmetrical tee section. 
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the real frequency axis is a function of the amount of dissipation in the 
elcmets. When a value of negative resistance corresponding to the 
p = 1 curve in Fig. 3 is added to the passive filter, the singularities move 
from positions marked 1 to those marked 2 in Fig. 5. Adding a larger 
amount of negative resistance corresponding to the p = 1.21 curve in 
Fig. 3 produces the singularities marked 3. It should be noted that the 
infinite loss point on the negative sigma axis as well as the two at the 
origin have not moved. If the dissipation in the shunt branch is reduced 
by removing the coil and replacing by one having half as much resistance, 
the singularities change from position one to position four. In this case 
the infinite loss point on the sigma axis does move. This illustrates that 
the change in pattern of singularities resulting from use of negative 
resistance is similar to, but not the same as, that resulting from use of 
passive inductors having higher values of Q. 

M-Derived Band Pass 

In order to provide a sharp cut-off in a filter use is often made of m- 
derived peak sections. In the configuration shown in Fig. 6 loss peaks will 
occur at selected frequencies above and below the pass band provided 
the elements are nearly free of dissipation. The closer the attenuation 
peaks are to the pass band the more nearly free from dissipation the 
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elements must be for good performance. As in the previous case, a 
transistor negative resistance is used to compensate the anti-resonant 
portion of the shunt arm. The magnitude of this resistance can also be 
adjusted to serve the additional purpose of compensating for resistance 
in the series resonant circuit in the shunt arm, as well as the series reso- 
nant circuits in the series arms. 

The transmission of a non-dissipative m-derived band filter between 
unit resistive terminations is 

e = 
fcp[(l - mV + (2 - 2m2 + k2)p2 + (1 - m2)] 

(mp2 kp + m) [pi + kmpz + (fc2 + 2) p2 -|- kmp + 1] 

where m = 1 — (j'^j 

Assuming no dissipation a peak section with an m of 0.86 will give the 
characteristic shown in Fig. 7 labeled "Ideal Passive". However, when 
this filter is constructed with typical elements the curve labeled "Prac- 
tical Passive" results. By introducing a suitable amount of negative 
resistance the transmission of the practical filter can be made comparable 
to that of the ideal filter, as illustrated by the curve labeled "Practical 
Active". 

For maximum utility active filter sections must be capable of being 
connected in tandem to form composite filters without instability, re- 
flections, or interactions. Fig. 8 shows that these filters meet this require- 
ment by giving the measured transmission of a band filter composed of 
two dissimilar peak sections. On the basis of attainable electrical charac- 

c^—1(— Wv—^—VA  1(—o 

© 

Fig. 6 — Active M-derived band filter. 
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Fig. 7 — Transmission of M-derived band filters. 

teristics, active filters of this kind appear to offer potential competition 
to the crystal channel filters used in broad band carrier systems. 

Working Model 

To further emphasize this fact the photograph of Fig. 9 shows a 
model of a composite band filter designed to transmit a 4-kc band at a 
midfrequency of 98 kc. This model contains seven miniature, adjustable, 
ferrite inductors, miniature capacitors, and two n-p-n junction transis- 
tors. The transmission characteristic is shown in Fig. 10. Hence in some 
cases by employing active circuitry it is possible to use miniature com- 
ponents thereby gaining at least an order of magnitude in the size and 
weight of structure. 
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Series Negative Resistance 

For satisfactory performance in many applications a series resonant 
circuit should approach zero impedance at the resonant frequency. To 
reduce the residual dissipation in an ordinary tuned circuit a series 
negative resistance, consisting of two transistors, can be used. This 
technique is illustrated in Fig. 11 which shows how a purely reactive 
shunt branch can be achieved in either an w-derived low pass filter or 
a confluent band elimination filter. 



Fig. 9 — 98-kc active channel filter. 
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II. ELIMINATION OF INDUCTANCE 

In the practical realization of frequency selective networks it is some- 
times awkward, difficult, or even impossible to make effective use of coils, 
as inductive elements. This is true, because of severe limitations on space, 
exacting tolerances on undesired modulation, or necessity for operation 
at extremely low frequencies. 

It has been well known for some time that inductive elements can be 
eliminated without restricting the repertoire of the network designer 
provided he is willing to purchase this freedom by introducing active 
elements to supply gain.19,20 

It can be easily shown that the transmission through a high gain feed- 
back amplifier is proportional to the product of the short circuit transfer 
admittance of the input network and the short circuit transfer impedance 
of the feedback network: 

(T8 = YiZt 

In addition it is also known from energy relations that passive net- 
works containing only one kind of reactance cannot produce complex- 
poles in the short circuit transfer admittance. It is instructive to con- 
sider the application of these principles to some familiar kinds of trans- 
mission networks. These networks can be logically divided into two 
classes: those which are primarily concerned with amplitude such as 
filters, and those mainly concerned with phase such as delay equalizers. 

i 

1 

(a) (b) 
Fig. 11,— Use of series negative resistance, (a) M-derived low pass filter, (b) 

Band elimination filter. 
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Non-inductive Filters 

Low Pass 

Consider first an image parameter, constant-/*:, low pass filter which 
is usually built as a ladder-type structure of series inductance and shunt 
capacitance. A full section contains three reactive arms and produces an 
asymptotic loss that increases 18 db per octave. 

The transmission is given by the following expression 

(1 + WQ V + "o V) (1 + wo 1p) 

where wo = cut-off" frequency in radians per second. 
The function has three poles, one real and two complex conjugate. 

The question now arises how this function can be divided between the 
input and feedback networks so as to be physically realizable. Since we 
know that a passive R-C structure cannot have complex poles in the 
short circuit transfer admittance, there is no choice but to use the 
impedance function in the feedback circuit for this purpose. It is now 
found that any R-C structure which will provide the complex poles insists 
on providing a real zero for good measure. This unwelcome zero can be 
nullified by supplying its counterpart as a pole in the admittance func- 
tion. The transmission is now rewritten, as follows: 

1 + ap 1 
_1 + w^p + UoVj 

and the singularities are shown in Fig. 12(a). Since the original transmis- 
sion function also requires a real pole, the admittance function must now 
supply two real poles. A simple ladder structure having three seiies 
resistances and two shunt capacitances meets this requirement. The 
complex poles cannot be supplied by a ladder structure, but require some 
sort of bridge such as shown in Fig. 12(a). 

At low frequencies the transmission through the filter depends on the 
ratio of the total series input resistance to the total resistance in the 
bridge arm of the feedback network. Therefore any amount of flat loss 
or a moderate flat gain through the filter can be obtained simply by 
adjusting the ratio of impedance levels of the input and feedback net- 
works. 

Simulation of functions by this technique does not provide a unique 
solution since there is considerable freedom in choice of configuration 
and location of the cancelling pole and zero. 

e = 
- 

 1  
(1 + w^p) (1 + ap)_ 
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High Pass 

Consider next a high pass filter with cut-off at coo. The transmission is 

e = coo V 
(1 COQ V + Wo V)(l + WQ 1p) 

-[ 

Wo V 
(1 -t- Wo 1p){l + ap It 

1 + ap 

+ Wo V + Wo "p"_ 

The complex plane plot in Fig. 12(b) shows exactly the same pattern of 
singularities as the low pass case with the addition of three zeros at 
the origin. To realize this function the feedback network remains un- 
changed, whereas the input network becomes a ladder in which the 
positions of the resistances and capacitances are interchanged. 

Band Pass 

A series resonant branch inserted in series between resistive termina- 
tions is a simple form of band pass filter having the following trans- 
mission : 

e = 
—1/-V—1 Wm Q p 

1 + Jm'Q 'P + Wm
2p2 

wm Q p I + ap 

_1 + w-'Q-'p + wj _1 + ap_\ 

where wm is the radian frequency of the peak and Q is a measure of the 
sharpness of the peak. 

The singularities shown in Fig. 12(c) consist of a zero at the origin and 
two complex conjugate poles. Once again the complex poles are obtained 
by a bridge circuit in the feedback path. The usual penalty is incurred 
by the appearance of a real zero which must be cancelled by a real pole. 
Therefore the admittance function must supply a zero at the origin and 
one real pole. This is done by a series combination of resistance and 
capacitance in the input circuit. 

Band Elimination 

A parallel resonant branch inserted in series between resistive ter- 
minations is a simple form of band elimination filter having the following 
transmission: 

e = 
II —2 2 1 + wm p 

1 + wJQp -f «-2p2 

1 
+ 

—2 2 -1 w,,. p 1 + ap 
_1 + wjQp + wm

2p2_ _1 T ap 1 -f ap_ 

The singularities consist of two conjugate zeros on the real frequency 
axis and two complex conjugate poles. A bridge circuit in the feedback 
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path supplies the complex conjugate poles and a parasitic real zero, 
while a parallel tee in the input path provides the conjugate zeros and a 
real pole. 

It has been found that the experimental performance of the various 
non-inductive filters described can be predicted with precision from the 
theory. 

Non-induclive Phase Sections 

Non-minimum phase networks are used extensively to provide a 
specified variation in phase with frequency without introducing any 
change in attenuation. Such all-pass networks consisting only of reactive 
elements are usually designed as lattices or bridged tee sections. It is 
theoretically possible and practically desirable to represent any complex 
all-pass structure by tandem arrangements of two basic all-pass sections 
called first degree and second degree. The first degree structure pro- 
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Fig. 13 — Non-inductive active phase sections. 
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vides a total change in phase of 180° and is characterized by a single 
pole-zero pair symmetrically located on the o- axis as shown in Fig. 13(a). 
Only one parameter, the distance from the origin can be chosen. The 
second degree structure provides a maximum phase shift of 360° and 
is characterized by two conjugate poles in the left half plane and two 
symmetrically located zeros in the right half plane shown in Fig. 13(c). 
The two parameters which can be selected are the rectangular coordinates 
of one singularity. 

It has been suggested that these functions can be realized without 
benefit of inductance. Here again numerous arrangements are possible, 
but only a few examples will be given. The basic operation is to perform 
one division on the original transmission function resulting in a quotient 
of unity and a fractional remainder of opposite sign. The fractional re- 
mainder is then synthesized by a EC network in conjunction with an 
amplifier. 

Single 180° Section 

The transmission of a single 180° section is 

1 + coiT'p wo + p 

In this case the fractional remainder consists of only one real pole 
which is realized by the R-C structure shown in Fig. 13(a). 

Two 180° Sections 

The overall transmission of two 180° sections in tandem is the product 
of each transmission 

e-9 = fl — coi 'p"j fl — = 2(cor1 + oj!1)??  
Ll + oT'pJ L1 + (1 + wr1p)(l + wi^'p) 

In this case the fractional remainder consists of one real zero and two 
real poles which are realized by the R-C structure shown in Fig. 13(b). 

Single 360° Section 

By far the most common phase corrector is the 360° section whose 
transmission is 

—fl   1 Wo 'p _ 2a)0 C —   ; ;— —  ;  — i 

= fl - Q~Wp + a;~2p2l 
[l + Q-'w-'p + w-2p2J 

= 9 roVp 
1 + ap_ 

1 + ap 
_1 + Q Wp + wm

2p2_ 
- 1 
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In this case the fractional remainder consists of a zero at the origin 
and two conjugate complex poles which are realized by the R-C structure 
shown in Fig. 13(c). 

III. PRODUCTION OF DELAY 

It has also been proposed that a two terminal active delay equalizer 
can be constructed with the help of a negative resistance. As shown in 
Fig. 14 a two terminal network Z is connected between a resistive source 
and load, each of magnitude, one quarter TrV The network Z consists of 
a parallel combination of a reactive network jX and a negative resistance 
(—7fo). The transmission through Z is 

RQ RQ 
-a ~2 2" 

e = 
Ro . rr Ro . jRoX 
2 Z 2^ R0-jX 

= R0 - jX 
Ro + jX 

This is the desired function, because the amplitude of the transmission 
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Fig. 14 — Active all-pass section. 
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is unity regardless of the size of X, and the phase and resultant delay are 
frequency dependent, because X is a function of frequency. It is theo- 
retically possible to produce the most complicated delay equalizer 
characteristic by this method provided the negative resistance remains 
constant over the desired frequency band. As examples only a single 180° 
section and a single 300° section will be considered. 

A 300° section results when the reactance is a single antiresonance 
given by 

_ wL 
1 - co2LC 

the transmission is 

-e = (p - ^)2 + co»t = 1 — Q~Wp + u'Y 
{p + k)2 + wi 1 + Q-Wp + co-2p2 

where 

k = Q um and Q = (con^oC)-1 

£ 

In this case there are two degrees of freedom, namely, the width of 
the delay characteristic and the location of the peak frequency. 

The circuit is shown on Fig. 14, where the transistor supplies the 
negative resistance, the magnitude of which is controlled by the ad- 
justable resistance. A typical delay characteristic is also shown on 
Fig. 14. 

A single 180° section can be obtained by simply omitting the coil in 
the above circuit. This is equivalent to letting X = — (coC)-1 so that 

-Q = P — cop 
p + Wo 

where coo = CRpC)-1 

IV. IMPEDANCE INVERSION 

Two networks are said to be inverse if the product of their impedance 
functions is a constant. Given a network of passive elements, there are 
standard topological methods for finding its structural inverse if it exists. 
Another method is to use an active circuit in conjunction with the given 
impedance so that the combination offers an impedance inverse to that 
of the original impedance. This is a special case of modifying an im- 
pedance by feedback.21 By means of such methods passive circuit ele- 
ments can be made to appear electrically much larger or much smaller 
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than they really are. For example, as shown in Fig. 15(a), by using an 
active element a parallel combination of convenient elements such as a 
0.1 henry inductance and a 10,000 mm/ capacitance can be made to look 
like the series combination in Fig. 15(b) of difficult or sensitive elements 
like a 100 henry inductance and a 10 mm/ capacitance. 

This transformation can be made with the transistor circuit of Fig. 
15(c) which is also drawn as the equivalent circuit of Fig. 15(d). 

In the circuit of Fig. 15(c) the resistor RA is adjusted so that the 
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Fig. 15— Impedance inversion. 



THE TRANSISTOR AS A NETWORK ELEMENT 351 

parameters of the transistor and the associated external circuit will 
satisfy the following equation 

^ = 2fl2 

2ro Rp 

To eliminate non-essentials it will be assumed that rb and re are neg- 
ligibly small, and Ra « rc. Then by a straightforward, but lengthy, 
analysis the driving point impedance is found to be 

pL' 
Z = R2- 

f-L'C + P |! + 1 

where L' = XL Rp = 0 

R + 4ro 

R = XRp X = 
rc — 2ro 

4ro 

C' = — ro = To — rm A 

The circuit representing this impedance is shown in Fig. 15(e). Since 
negative elements are not convenient a final transformation is made to 
the circuit shown in Fig. 15(f). 

CONCLUSION 

The distinctive properties of the transistor suggest careful considera- 
tion of a philosophy which regards the transistor as a circuit element to 
be introduced at strategic points within a network. Initial work indicates 
that the judicious interspersion of transistors in a transmission network 
makes possible performance otherwise unobtainable or uneconomical. 
This paper has presented examples of how transistors may be used to 
reduce dissipation, to eliminate inductance, to produce delay, and to 
invert impedance. Undoubtedly this is only the beginning of exploration 
which should extend the horizons of network design. 
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Continuous Incremental Thickness Meas- 

urements of Non-Conductive Cable Sheath 

By B. M. WOJCIECHOWSKI 

(Manuscript received August 5, 1953) 

A method has been recently developed for measuring thickness variations 
of a non-conductive cable sheathing, extruded over a grounded metal jacket. 
The method translates direct capacitance increments, sensed by probes sliding 
on the surface of the sheath, into thickness increments. The accuracy of the 
system based on this method is sufficiently high that the electrical error, 
which is of the order of a few thousandths of a yuF, can be disregarded. 
Experimental data indicate that accuracy of the new system for absolute 
thickness measurements of homogeneous samples in stationary conditions is 
of the order of 0.002". 

The error caused by translating capacitance to thickness depends on 
manufacturing elements and process tolerances, and can be evaluated on a 
statistical basis. Thus incremental measurements of the cable sheath thickness 
on the production line yield accuracies of the order of 0.003". 

Application of this method to absolute sheath thickness measurements 

control. These aspects are rather extraneous to a measuring system per se, 
and, therefore, are not within the scope of this paper. 

1 INTRODUCTION 

1.1 The New Cable 

A type of telephone cable has been developed in which lead is replaced 
with a polyethylene sheath extruded over a metal jacket. Since descrip- 
tion of various aspects of this development can be found in the technical 
literature,1,21314 only some details of the cable construction and pro- 
duction that are pertinent to the understanding of the new measuring 
system, will be briefly outlined here. 

The cable core, Fig. 1, is covered with a thin layer of a highly con- 
ductive metal, such as aluminum,1 or two layers of different metals, such 
as aluminum and steel,2' 5 sealed longitudinally. To achieve the desired 
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mechanical properties, the metal jacket is corrugated circumferentially. 
Between the metal layer and the plastic sheathing, a bonding viscous 
thermoplastic compound is applied (Fig. 2). Normally, this compound 
fills the depressions of the corrugations on the metal surface adjacent to 
the surrounding polyethylene jacket. 

The sheathed cable leaves the extruder with an essentially uniform 
speed, under pulling force of a capstan. For various sizes of cables and 
production settings, this speed may range from 30 to 80 feet per minute. 
After leaving the extruder, the cable is cooled in a trough of water and, 
before reaching the testing position, dried with compressed air. 

Fig. 1 — Polyethylene sheath telephone cable. 
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1.2 Measurement Difficulties 

Some of the problems encountered in the manufacture of the new 
cable were related directly to the lack of reliable methods for measuring 
thickness of the plastic sheathing. Under manufacturing conditions, 
where sheath thickness cannot be adequately controlled, excess material 
must be used to assure meeting minimum thickness requirements. 

Before the new method was developed, measurements were made by 
destructive testing of end samples. One or two circumferential strips 
were taken from each cable length and micrometer measurements were 
performed on each strip, at four to eight points. Unfortunately, the 
actual sheath thickness varies in a random way along the cable length, 
even between points only a few inches apart. It was evident that a 
method, based on a few point measurements, extrapolating long-cable 
properties which are describable rather in statistical terms only, left 
much to be desired. 

1.3 Preliminary Considerations 

The following methods of cable sheath measurements were considered: 
A. Use of an X-ray machine. 
B. Ultrasonic echo method (radar techniques). 
C. Capacitance measurements. 

For practical reasons as well as for anticipated lack of accuracy, the first 
of these methods was rejected. The success of the second method was 
judged doubtful, the main reason being the presence of corrugations and 
of an irregular layer of the filling compound under the polyethylene 
sheathing, obscuring delimitation of the reflecting boundary surface. The 
third method, at first, also had discouraging aspects. In the case under 
discussion only grounded capacitance measurements are involved, since 
the metal core cannot possibly be insulated from the corrugating and 
forming machinery. The required long-time capacitance-to-ground sta- 
bility and accuracy of the measuring system were estimated to be of the 

CABLE CORE 
SUPPLY (IN A 
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GROUNDED 
STEEL JACKET) 

APPLICATOR 
OF THE 
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WATER COOLING 
TROUGH CAPSTAN 
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COMPRESSED AIR DRYING 
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Fig. 2 — Block diagram of the polyethylene extruding process. 



356 THE BELL SYSTEM TECHNICAL JOURNAL, MARCH 1954 

order of 0.001 /z/xF and 0.003 mmF, respectively. Meeting requirements of 
this order, even under controlled laboratory conditions, presents some 
difficulties — and yet these requirements had to be met on a production 
line, on moving cable in the climatic and operational conditions prevail- 
ing in a large cable plant. 

It was evident, therefore, that conventional grounded-capacitance 
measurements would not be practical. For instance, a shielded cable 
connecting the probes with the bridge circuit alone could produce wider 
random capacitance variations than the capacitance increments under 
measurement. Thus a new system which would meet all the necessary 
requirements had to be developed. 

2 CIRCUIT DESCRIPTION 

The measuring system which was developed consists of an impedance 
bridge, a phase sensitive detector, an unbalance indicator (recorder), 
capacitance probes and associated auxiliary equipment (See Figure 3). 

2.1 The Impedance Bridge for Grounded Direct Capacitance Measure- 
ments. 

The circuit shown on Fig. 4 employs a bridge having ratio arms0 

magnetically coupled. An application of this type of circuit for capaci- 
tance measurements has been known for some time.7 Such a circuit is 
capable of performing in one balancing operation direct capacitance 
measurements while the center point (B) of the transformer ratio-arms 
winding is grounded. In our case, the "D" corner of the bridge consists 
of the metal covering of the cable core, which, as was mentioned above, 
is necessarily at the ground potential. Therefore, the "B" corner cannot 
be grounded. However, by connecting to this "B"-corner a shielding,8 

surrounding the "A-D" and "C-D" measuring arms, including cables 
and probes, the following results can be achieved: 

(a) Admittances from the measuring electrodes to the "B"-shielding 
are not critical. These admittances appear across the transformer-arms 
and, as a result of a close magnetic coupling realizable between these 
arms, any loading effects across any one of them are symmetrically re- 
flected at the "A" and "C" corners of the bridge, thus essentially not 
affecting its balance. 

(b) Stray admittances from the "B" shielding to ground appear across 
the opposite corners of the bridge (detector diagonal). Therefore, they 
also have no essential effects on the circuit balance. 

(c) As a result of the "B"-shielding, stray admittances-to-ground 
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Fig. 3 — Measuring assembly. 

from the measuring electrodes and from the connecting leads can be 
reduced to insignificant quantities. 

As a result of the described circuit configuration, the bridge measures 
capacitance quantities equivalent to direct capacitance, in a particular 
case where one of two measuring electrodes is grounded. Realization of 
the grounded direct capacitance measurements is made possible by 
having within the measuring arrangement a three-electrode system in 
which stray admittances from the third (ungrounded) electrode to either 
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of the measuring electrodes do not affect the fundamental balance con- 
dition of the bridge network. 

By the arrangement described not only are the residual effective 
capacitances between the measuring electrodes and ground reduced to 
a desirable minimum (actually below one /i/xF, including calibrating 
capacitor and balancing networks), but also any adverse capacitance 
effects of the cables connecting the bridge to the measuring probes are 
practically eliminated, even though these cables are several feet long. 

The calibrated grounded direct capacitance range of the bridge ex- 
tends over 0.32 /i/xF in either direction off balance center position. Any 
unbalances within the ± 0.25 /x/xF range can be read in increments of 
0.005 /x/xF per division on a recorder. Since covering such a limited 
capacitance range directly by an adjustable capacitor could present 
various practical difficulties, a network, dividing electrically the range 
of a 100 mmF differential capacitor by the ratio of 150 (approximately), 
has been applied. Using such a network facilitates calibration and ad- 
justability and greatly reduces effects of the mechanical instability of 
the variable capacitor. (Similar networks are applied for capacitance 
and conductance residual balance controls.) 

Stationary unbalances of the bridge network can be measured directly 
in a conventional manner by rebalancing the circuit with the calibrated 
capacitor. For unbalances rapidly varying in time, however, this null 
method could not be applied simply. Therefore, a proportional off-bal- 
ance deflection method had to be used and various means to ascertain 
overall linearity between incremental capacitance unbalances and indi- 
cator deflections were provided, so that eventually variations in linearity 
no larger than 0.4 db over periods of several days and 0.2 db over several 
hours have been observed in the actual operating conditions. 

Measurements with the bridge depend essentially on the calibrated 
capacitor. To avoid necessity for frequent and quite elaborate calibra- 
tion checking (within a few one-thousandths of a /x/xF) of this capacitor 
in a laboratory, a set of supplementary, high stability auxiliary standards 
has been provided in the test set assembly. The capacitance values (1.05 
nnF-, 1.20 mmF; 1.35 /xmF) of these capacitors are so chosen that differences 
between any pair of them can be compared directly with the calibrated 
capacitor in the bridge circuit. Reliability of this system is based on a 
reasonably high probability that change in the calibrated value of any 
single capacitor will be revealed in the process of mutually comparing all 
four capacitors. It was felt that this method of ascertaining calibration 
accuracy at the operating position was particularly recommended in the 
case of this circuit as its sensitivity to incremental capacitance unbalances 
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is actually higher than the sensitivity of the usually available laboratory 
equipment. 

The bridge network is supplied by a 10-kc ac power source. 

2.2 Phase Sensitive Detector 

For eccentricity measurements and control of the sheathing process 
it is essential to register the direction of incremental deviations from an 
arbitrary level. For this purpose a phase sensitive detector9, 10 has been 
provided. Its simplified version is shown on Fig. 4. 

By proper adjustment of the phase-shifter, the reactive component of 
the bridge unbalance signal can be oriented to be in-phase with the 
reference potential (b-a). In this condition, the capacitance unbalance 
sensitivity of the discriminator is at its maximum, and for a certain 
range of capacitance unbalances, linearity of the indicator may be as- 
sured. Also, when the above phase condition is fulfilled, the circuit is 
not sensitive to limited conductance unbalances (this fact also renders 
the circuit remarkably more stable than a similar circuit using a con- 
ventional null detector). 

The dc output from the discriminator is fed through a balanced output 
stage (V2a and V2b), and an attenuator to a Leeds & Northrup zero- 
centered recorder. At the operating sensitivity level, each of the 100 
divisions of the recorder scale corresponds to 0.005 mmF, or approximately 
to 0.001 inch of the incremental sheath thickness. The role of the at- 
tenuator is two-fold: it provides control of the over-all sensitivity of the 
measurements (in steps of 0.2 db), and it introduces more than 20 db 
attenuation into the dc output signal path. This loss is compensated by 
an added gain within the feedback-controlled ac amplifier (AC-A) pre- 
ceding the phase discriminator. The net result of this "ac for dc gain- 
trading" is a considerable improvement of the over-all circuit stability 
since the range of random drifts, such as usually generated within the 
phase-discriminator and its direct-coupled output stage, are materially 
reduced. 

2.3 Measuring Probes 

As has been mentioned above, two arms of the bridge circuit consist 
of a pair of admittances between the grounded metal core of the cable 
(D corner) and the probes sliding on the surface of the plastic cable 
sheathing. These probes are connected to the "A" and "C" corners of 
the bridge, respectively, with two shielded flexible conductors (each 
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about 10 feet long) and are maintained mechanically in the testing posi- 
tion by the probe assembly (see Figs. 3 and 5(a)). 

In the design of the probes and their assembly, various difficulties 
had to be overcome. The probes operate on cables subjected to some 
unavoidable swings and vibrations while moving with speeds up to 80 
feet per minute. The capacitance from either of these probes to the metal 
cable core, in equivalent conditions, should match each other within 
approximately one-thousandth of a mmF. This capacitance should not be 
appreciably affected by limited displacements of the probes with respect 
to the cable plane of symmetry, such as may occur in actual operating 
conditions. 

The first experiments with probes of a conventional design, having 
flat, or nearly flat, contact surfaces, were quite discouraging. The probe- 
to-core capacitances fluctuated to an intolerable degree as a result of 
even minute cable displacements. 

Eventually, probes were developed which met all the requirements. 
Each of these probes is in the form of a cut-off segment of a toroid. The 
major axis of the cut-off elliptical plane is oriented in the direction 
essentially parallel to the cable axis, while the convex center part of the 
probe slides on the cable sheathing. This form of probe has the advantage, 
common with the spherical form, that the capacitance from the probe 
to the cable core varies but little as a result of displacements and changes 
of position caused by the cable motion. But the toroidal form has the 
following advantages over the spherical: first, for the same residual 
capacitance to the cylindrical cable core, the transverse dimensions of 
the former are smaller; and, second, the capacitance of the toroidal form 
with respect to a cylindrical cable core can be conveniently adjusted by 
the simple expedient of twisting the probe element in a plane parallel to 
the cable axis. (Adjustments with a precision exceeding one-thousandth 
of a nnF were actually performed). 

The probe electrodes, surrounded (except for the contacting face) 
by the B-shielding, are mounted on mechanically balanced light alu- 
minum arms [Figs. 5(a) and 5(b)]. There might be one, two, or four 
probes to an assembly, which can be turned over 360° around the cable 
axis. For eccentricity measurements two probes can be simultaneously 
used, having a spacing of 180° (for measurement of eccentricity across a 
diameter) or of 90° (for measurement of elipsoidal eccentricity). Also 
for eccentricity or direct thickness investigations and process settings one 
probe only may be used, with the other bridge measuring arm connected 
to an auxiliary standard. 
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The average capacitance from the probe element to the grounded 
metal core varies from 1.1 to 1.3 mmF for cables measured. 

3 EXPERIMENTAL RESULTS 

3.1 Circuit Performance Under Stationary Conditions 

Incremental capacitance sensitivity for grounded direct capacitance 
measurements, in normal operating conditions with the probes in contact 
with a cable sample: order of 0.001 mmF. 

Circuit stability and repealahilHy for periods over one hour duration: 
±0.003 mmF. 

Overall linearity of the unbalance indications, as read on the recorder 
scale within the range of plus or minus 0.25 /i/xF olT center-balance 
position: ± (3 per cent + 0.003 mmF). 

Mechanical Stability: Moving or twisting of the connecting leads has 
no effect on balance stability. Swinging of the cable under measurement, 
even beyond the limits encountered in actual working conditions, pro- 
duces barely noticeable effects on the balance indication. 

Capacitance measurements on flat polyethylene samples: One of the 
measuring bridge arms was connected to the auxiliary standard of 1.20 
/j,uF. The other arm was terminated by the probe in contact with a flat 
polyethylene sample placed on a grounded metal-plate. Thickness of 
samples at the point of contact was measured with a micrometer to the 
nearest 0.0005 inch. Capacitance unbalance readings were taken directly 
on the recorder scale to the nearest 0.005 mmF. In order to avoid notice- 
able "air-gap" and "surface" effects, which occur when stacking several 
samples, in no case were more than two flat samples in a stack measured. 
Under these conditions, repeatability of readings was within one recorder 
division (0.005 /iuF), equivalent approximately to one-thousandth of an 
inch. In a typical case shown on Fig. G, of 38 measurements taken in the 
thickness range from 0.052 inch to 0.1G8 inch, only three measurements 
were off from the averaging curve by more than 0.002 inch. (Further 
investigation disclosed that these three points, marked "A" on Fig. G, 
were all associated with a particular sample.) 

Capacitance measurements on stationary cable samples. In order to 
establish statistical reliability of measurements on actual cables by the 
described capacitance method, a number of cable samples were tested, 
varying in core diameter, average polyethylene sheathing thickness and 
mechanical const met ion. 

A typical graph resulting from plotting capacitance increments versus 
micrometer measurements of a cable sample is shown on Fig. 7. Out of 
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samples. 

25 measured points, 21 are contained within ±0.003 inch limit off an 
average curve. Three out of four remaining points (marked "A") were 
found to be from cable areas where application of the thermoplastic 
cement was excessive (explanation for an extraneous position of the 
fourth point had not been found by the time these measurements were 
concluded). 

On the basis of over 800 measurements it has been estimated that at 
least 75 per cent of the plotted points are within the limits of ±0.003 
inch deviation from an average capacitance versus thickness curve, for 
samples taken from the same cable. For samples taken from different 
cables these deviations ranged sometimes up to ±0.005 inch. A few 
points (less than 5 per cent) showed deviations larger than 0.01 inch. 
With some rare exceptions, these extreme deviations indicated larger 
than actual sheath thicknesses, and in most of the cases they were 
associated with areas where an excess of the flooding cement was present. 

3.2 Incremental Capacitance Measurements on the Production Line 

Experimental measurements on over 500 feet of cable length were 
performed on the production line with one of the bridge arms connected 
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to the probe, and the other arm to an auxiliary standard of nominal 
value 1.20 mmF. The probe was placed on the surface of a cable moving 
with a speed of approximately 50 feet per minute. The line, along which 
the probe was sliding over the sheath, was marked for subsequent measur- 
ing purposes. At discrete intervals, the angular position of the probe with 
respect to the cable circumference was advanced by an angle of 00°. 
The unbalance signals were traced on the recorder chart with a standard 
sensitivity of 0.005 per division. After completion of the cable run, 
the sheath was stripped and washed (to remove flooding compound) and 
micrometer measurements were taken along the probe route at points 
six inches apart. Subsequently these micrometer measurements were 
plotted in scales equivalent to the recorder chart. 

A typical example of a measurement performed on a cable section ap- 
proximately 250 feet long (a total of 500 measured points) is shown 
on Fig. 8. The upper curve represents a photograph of the recorder 
tracing. The lower curve was obtained by connecting point-to-point 
actual thickness readings and plotting them on the non-linear vertical 
scale following the capacitance versus thickness function (similar to that 
as shown on Fig. 6), to make both charts graphically equivalent. 

From comparison of these graphs a few observations can be made. In 
fact, these curves represent fundamentally different methods of deriva- 
tion. The recorder indications arc continuous average readings based on 
an area having a definite width and a length of a few corrugation spaces 
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while the micrometer readings are point measurements taken at discrete 
distances at the bottom of the corrugation valleys in the polyethylene 
jacket. Despite this fact, the statistical character of both graphical 
results is closely similar (See Fig. 9). Assuming an average translation 
factor of 0.005 mmF per 0.001 inch, and discarding tracing errors, the 
agreement for incremental measurements between both methods can be 
estimated to be of the order of 0.003 inch. This accuracy is ample for any 
practical purpose of incremental thickness control of cable sheathing. 

4 CONCLUSIONS 

The method presented here for non-conductive sheath thickness meas- 
urements yields sufficient stability and translation reliability to be con- 
sidered an improvement in the art. In particular, the incremental 
capacitance measurement accuracy of the order of 0.003 mmF (equivalent 
to less than 0.001 of an inch of incremental sheath thickness) is suffi- 
ciently high to disregard, in practical applications, the error of the test 
set itself. When measuring flat samples in stationary conditions ac- 
curacies of the order of 0.002" for absolute thickness are obtainable. 

Reliable differential measurements of cable sheathing on the produc- 
tion line can be realized on a statistical basis. Accuracies of the order of 
0.003 of an inch for incremental sheath thickness (eccentricity) measure- 
ments were consistently attained in actual manufacturing conditions. 

Extensive experience with the described measuring system indicates 
that it can also be applied for absolute sheath thickness measurements 
yielding desirable accuracies. This application, however, involves various 
manufacturing and process control problems extraneous to the measuring 
system per se. These aspects, therefore, are not discussed in the present 
paper.* 

* Development of techniques for absolute sheath thickness measurements, 
using the described system, is being conducted by W. T. Eppler of Western Elec- 
tric Co., Inc., Kearny, N. J. 
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The Application of Designed Experiments 

to the Card Translator 

By C. B. BROWN and M. E. TERRY 

(Manuscript received October 27, 1953) 

In the course of development of the card translator for use in the No. 
Jf.A toll crossbar system it was necessary to evaluate in detail the perform- 
ance characteristics of all phases of the translator operation. One of the 
most important phases was that of the action of the translator cards. Since 
the action of these cards is controlled by the simultaneous influence of many 
independent variables a study of the card action was made using statistically 
designed experiments. This study made use of Graeco-Latin Square and 
Factorial Designs; herewith is presented a detailed description of their 
application to the problem. Also the method of analysis of the data and 
resulting conclusions are described in detail. 

I. INTRODUCTION 

In order to permit circuit designers to use the full capabilities of card 
translators1 it has been necessary to conduct tests to determine (1) the 
time intervals required to drop the cards into reading positions and (2) 
the maximum number of cards which a translator can operate reliably. 
It was also desired to establish the maximum and minimum number of 
cards that could be operated efficiently in a card translator. Early esti- 
mates indicated a machine capacity of 1,000 cards but if a higher capacity 
could be demonstrated, a considerable cost saving in the 4A system 
would result. Since some differences in card drop time known to exist 
are due to card position and machine loading this study also was to 
consider whether or not any special loading instructions were necessary 
or desirable for field use of card translators. As the study commenced 
the Western Electric Company Installation Department requested in- 
formation as to the need for leveling card translators on installation and 
it was felt that such information could readily be obtained in the course 
of this study. In investigating the effect of the many variables related to 
card drop time, a consideration was given to the possibility of the need 
for any design changes. 

369 
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All previous tests of card drop time were made on Laboratories' built 
models of the translators and since tests made after any changes in 
model design have produced considerable differences in card drop times, 
it was felt that this study should be made on a sample of the Western 
Electric product. In addition, previous tests did not encompass all of the 
known variables over their extreme ranges. 

For this study, a new translator was obtained from Western Electric. 
This translator was one of the regular production and was selected to be 
a representative unit. Fourteen hundred new 200A blanks were also ob- 
tained for use in this translator. Of these, 10 were coded for use as test 
cards to be observed. One hundred were coded to fill some bins with all 
coiled cards. The balance of the 1,400 cards was left uncoded. This trans- 
lator was connected to a simplified test set which would cycle the ma- 
chine through the operation of the 10 coded test cards. Although this 
test set was simplified in its operation all of the pertinent time relation- 
ships involving card dropping were the same as are used in the standard 
translator circuits. 

This study considered all of the variables, with the machine working 
in a normal cycle of operation as is currently used in the 4A system. 
These variables are: 

1. Bin — Some differences in card dropping time had been observed 
depending on the bin in which the operating card was located. 

2. Position of Card Within Bin — Earlier tests indicated that the 
location of the card within its bin made a considerable effect on dropping 
time. 

3. Code of Card — Since both three and six digit cards will be used 
in the translator the code becomes a variable which may affect dropping 
time. 

4. Coded or Uncoded Cards in Working Bin — Previous tests were 
made using only a few coded cards in the bin under observation and it 
was felt necessary to learn whether or not having all coded cards in a 
bin made any difference in the dropping time. 

5. Load in Working Bin — This relates to the number of cards in 
the bin under observation. A range of from 15 to 105 cards per bin was 
used. 

6. Load in Machine — This has to do with the possibility of any 
effect into the bin under observation from the cards in the other bins 
of the translator. 

7. Consistency of Data — This has to do with repeated measure- 
ments to observe if the card dropping time is consistent over short 
periods of time. 
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8. Balanced versus Unbalanced Loading — Since the earlier instal- 
lations will have machines that are less than full, it was necessary to 
learn whether or not any special loading considerations with regard to 
the position of the cards should be specified. 

9. Tilt — (Machine) This has to do with the accuracy with which 
the translators should be leveled on installation. 

10. Life — This variable considers the effect of repeated operations 
on cards and what effect, if any, these repeated operations have on the 
dropping time. 

The tests on the first nine of the variables have been completed and 
a discussion of their effect on card dropping time is possible at this time. 
The tests on the tenth variable, life, are still in progress and have not as 
yet proceeded far enough to draw any conclusions. Therefore no con- 
sideration will be given to the effects of usage in this article. The effect 
of most of these variables was considered when the translator was oper- 
ated both with and without the card support bars being used. The card 
support bars operate at the same time the card is dropped. Their opera- 
tion is required for every card in the machine. Since their operation 
is slower than the free fall time of the operating card the card may ride 
down into the operated position on these bars and the observed drop 
time will simply be the operate time of the card support bars. This masks 
the effect of the various friction, gravity, and magnetic forces on the 
cards. Operating without the card support bars gives information on 
the free dropping time of the cards uninfluenced by these bars. Thus the 
masking effect of the card support bars can be removed and the tests 
made more sensitive to any physical effects which may be taking place 
at the cards themselves. 

II. DESIGN OF EXPERIMENTS 

Theory of Designed Experiments 

In this problem it was required to evaluate the effect of each of the 
nine variables independently. It might have been convenient to take 
one variable at a time and vary it over its range while holding the as- 
sociated variables at sets of constant values. Then a second independent 
variable could be chosen, the first variable placed in the group of as- 
sociated variables, and a new set of runs made. This could be repeated 
until all the variables had been tested. This is obviously a logical, 
straightforward but unwieldy procedure. 

A simpler procedure would be to vary the chosen variable over its 
range and at the same time let the associated variables vary over their 
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assigned ranges in such a way that each associated variable is set an 
equal number of times at each of its possible values. This will cause 
any effect of the associated variable to be balanced out with respect 
to the chosen variable. That is, the average response of the system to 
the chosen variable can be evaluated because the contributions to the 
response from the associated variables are balanced out with respect to 
their variations. 

Mathematically stated, the purpose of the latter procedure is to allow 
the independent evaluation of each variable over the observed range of 
its variation in the presence of the other variables. 

Until recent years the standard experimental procedure was to make 
measurements for several values of one variable while taking great pre- 
cautions to hold everything else constant. It was early recognized that 
such a technique was expensive but until the recent development of 
experimental designs in the field of Statistics there was no known al- 
ternative. In the class of designs treated here,2 the set of numbers repre- 
senting the respective sums of the measurements taken at the selected 
values of a given variable has the following properties: 

1. If there are K discrete values of the given variables and N measure- 
ments made, then each sum contains N/K measurements. 

2. If there are Ki values of the ith remaining variable then N/K must 
be divisible by Ki, for all i. 

3. Within each sum, for any given variable, each of the discrete 
values of the remaining variables must occur the same number of times. 

4. The set of values of any of the remaining variables occurring in 
any sum for a given variable must be identical. 

These properties imply that the logical subgroups for the discrete 
values of any given variable all contain the same number of measure- 
ments balanced with respect to the values of all the remaining variables. 

The joint simultaneous evaluation of the specified variables can thus 
be made since it can be shown that the logical subgroups with respect 
to a given variable are independent of the logical subgroups of any 
other variable. 

One of the difficulties in the use of this new technique is that both an 
engineer and statistician are required, and only rarely are both these 
professions found in an individual. It therefore becomes the respon- 
sibility of the engineer to outline the major and minor variables of the 
experiment, the description of the measuring devices to be employed, 
the accuracies desired in the results and his budget. The statistician 
must then propose the types of designs that will be appropriate together 
with their costs, methods of analysis, and salient features. The engineer 
and statistician must then select the design which best fits the situation. 
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The design selected for the first experiment of this study combined 
two basic design types, the Latin Square,2 and the Factorial Design.2 

A brief discussion of each is in order at this point. 
The Latin Square is peculiarly well suited to engineering research 

problems where many variables exist but the number of discrete levels 
necessary to describe the variation of any one is small, where relatively 
great precision is possible in measurements, and where the interaction of 
the variables is not a factor of the experiment. A key design2 for a 5x5 
Latin Square is as follows: 

Column 
Row l 2 3 4 5 

1 A B C D E 
2 B C D E A 
3 C D E A B 
4 D E A B C 
5 E A B C D 

It will be observed that each Latin letter falls once and only once in 
every row and column. It is also true that if the logical subgroups A, 
B, C, D, E arc considered, each of these sums has each row and column 
included once. If to the five row values, column values and letters, 
the five values of the first, second and third variables are associated 
respectively, the variables represented by Row, Column, and Letter 
can be evaluated independently of each other. 

On the Key Latin Square, another properly chosen square represented 
by Greek Letters can be superimposed, and the five values of the fourth 
variable assigned to these letters at random: 

1 2 3 4 5 

1 a . 7 8 t 
2 y 8 € a 3 
3 e a /5 7 8 
4 0 7 8 € a 
5 8 € a 0 7 

The Graeco-Latin Square below is then produced: 

1 2 3 4 5 

1 A a Bp Cy D8 Ee 
2 By C8 De Ea AP 
3 Ce Da Ep Ay B8 
4 D0 Ey A 8 Be Ca 
5 E8 Ae Ba CP Dy 
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Note that now each of the variables associated with Row, Column, 
Latin letter, Greek letter has the property that each element of the four 
categories contains one and only one clement of the remaining three 
categories. For example, consider the five Latin-Greek letter combina- 
tions, or sample cells, containing e: 

Row 1 Col 5, E- Row 2 Col 3, D; Row 3 Col 1, C; Row 4 Col 4, B; Row 
5 Col 2, A. 

Then the sum of these five cells will contain the contribution of the 5 
Rows, 5 Columns, and 5 Latin letters. 

It should be noted that the rows and columns can be permuted with- 
out affecting the properties of the square. Indeed to protect against 
systematic effects which may be detrimental, it is usual to assign at 
random the row and column number, as well as the Latin and Greek 
letters to the values of variables represented by them. A notable excep- 
tion to randomization occurs when time is a variable and those measure- 
ments made under essentially the same conditions within the same unit 
of time become the experimental unit. In the first experiment, all meas- 
urements made on one Run become the experimental unit with respect 
to time. 

The Factorial Design serves a different purpose. In this discussion only 
two independent variables X, Z will be predicated but the extension to 
more variables follows directly. The XZ plane is the plane ol the in- 
dependent variables and we seek the point (Xo , ^o) which gives a value 
of y (the dependent variable), Y = <p{X, Z), which is optimum in some 
sense. That is, min Y, max F may be sought, or the surface f(X, Y, Z) 
shown to be a plane. 

Generally only the region in the neighborhood of y (optimum) is of 
interest to the experimenter. Hence it is imperative (1) to bracket this 
point with respect to each independent variable and (2) to have a method 
of estimating y (optimum). If a factorial experiment has lx different 
values of X and lz different values of Z, then each replication of the 
experiment will require lx • U units or points {X, Z). The first repetition of 
an experiment is called the second replication in the same way that the 
first overtone in music is called the second harmonic by engineers. 
Since the number of units available for test is usually limited, this places 
a practical ceiling on the magnitude of lx and lz . As a practical limit in 
general / should be 7 or less and the values 2, 3, or 4 are far more common. 
It is generally better to use the smaller values of I and repeat the experi- 
ment, than to conduct an experiment involving only a single replication. 
In addition to evaluating one variable averaged over the second, we 
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are interested in evaluating the interaction of the variables on each other, 
when such interaction exists and is of interest. In a sense this interaction 
measures the departure of the system y, X, Z from linearity. 

Once the basic designs have been selected and appropriately combined 
to fit most efficiently the requirements of the proposed experiment, 
and the values of the variables randomly assigned to the schematic 
layout, a detailed experimental layout must be drawn up. This layout 
must show concisely and clearly each experimental unit and the makeup 
of every basic element giving its assigned value of each variable. Explicit 
directions must be drawn up as to the order of selection of the elements 
of the unit. It is generally advisable for simplicity to assign the elements 
at random to the M possible consecutive order integers of the experi- 
mental unit. 

Performance Study 

The first seven variables listed in the Introduction are: 
1. The Bin in use, Bins. 
2. Position of Test card pair within the bin, Position. 
3. The use of 3 digit or (i digit Cards, Code. 
4. Arrangement of Coded and Uncoded Cards, Runs. 
5. Load of Bins containing Test Cards, Load. 
6. Load of Bins not containing Test Cards, Idlers. 
7. Order of repeated measurement, Look. 
These constitute a system — that is, any or all can be varied at will 

and hence a design involving all of them simultaneously can be sought. 
The test set can operate ten test cards; 5 with a 3 digit code and 5 

with a 6 digit code. This immediately suggests 5 packages of two coded 
card pairs, each pair containing a 3 and a fi digit card. Five pairs can 
also be handled neatly in 5 bins. The combination of the standard load 
of 85 cards, with two overloads and two underloads would give a fair 
evaluation of load criterion. Budget restrictions force the use of only a 
limited number of coded cards, with blanks used to fill out the experi- 
ment. Hence the type of card making up the load must be varied over 
the loads. It was further found that 5 positions of test cards within the 
bin covers the range of positions adequately. 

The pairs of 3 and 6 digit cards now are associated with the Graeco- 
Latin Square design with Columns identified with Bins; Rows with dis- 
tribution of coded cards; or Runs; Latin letters with Load; and Greek 
letters with position within the bin. Now if the position of the 3 digit 
card is randomly assigned in the pairs, the design absorbs the first five 
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Table I — Design of Graeco-Latin Square Experiment 

Each run made with the "x" bins loaded with 0, 50, 85 and 100 cards 
and consists of four operations (A, B, C, D) of each coded card. 

Bin No. 

Photocell 
Mounting III III X IV V X X X X X Lump 

Position in Bin 

a b c d e f g 

Bin I Bin II Bin III Bin IV Bin V 

Card -♦ 1 6 2 7 3 8 4 9 S 10 

Run # 1 d g 
2 

98 

/ 9 
41 
44 

a b 
50 

0 

a d 
15 
0 

c c 
2 

103 
No. of Coded Cards. . . 
No. of Blank Cards  

Run ^2 c e 
85 

0 

d 9 
9 

41 

/ 9 
15 
0 

a b 
2 

103 

a d 
2 

98 
No. of Coded Cards. .. 
No. of Blank Cards  

Run ^3 / 9 
2 

103 

a b 
100 

0 

a d 
2 

83 

c e 
2 

48 

d g 
7 
8 

No. of Coded Cards. . . 
No. of Blank Cards... . 

Run ^4 a d 
2 

48 

c e 
2 

13 

d g 
105 

0 

/ 9 
2 

98 

a b 
2 

83 
No. of Coded Cards. . . 
No. of Blank Cards.... 

Run ^5 a b 
2 

13 

a d 
2 

103 

c e 
2 

98 

d g 
85 
0 

/ 9 
22 
28 

No. of Coded Cards. . . 
No. of Blank Cards... . 

variables of the list. The layout of these variables in the Graeco-Latin 
Square design is given in Table I. 

The remaining two variables are functions of different portions of the 
machine. The rows of the Square, involving distribution of coded and 
uncoded cards, represent distinct machine set-ups, and hence if for 
every set-up the load of the seven not-measured bins is varied, and for 
every variation in this load 4 observations of the 5 pairs are taken, 
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consideration of the remaining two variables is achieved. Yet the tedious 
part of handling the test cards has been reduced to a very reasonable 
amount. These last two variables, considered by themselves, form a 
factorial design and where 4 loads and 4 measurements per load are used, 
16 measurements being taken for each machine set-up. Similarly any 
of the other five variables considered pairwise with one of the latter 
two forms another factorial design. This resulting complex overall pat- 
tern is shown in Table I. 

Table II — Translator Tilt Test — Design of Experiment 
Test Cards Location 

Bin I II III IV V 

Cards  6, 1 2, 7 8, 3 4,9 10, 5 

Position of Test Cards in Bins 

Total number of cards in each bin: 100 
Bin I contains all coded cards. 

Description of Tilt 

Tilt *f0 Lamp end lower than photocell end by Ke" in 3 feet. 
Translator resting on table at all four points. 
North Lamp end higher than South Lamp end by He" m 22". 
North Photocell end higher than South Photocell end by 4{6" in 

22" 

Tilt #1 Lamp end higher than photocell end by 1° 3" ft. 
Lamp end supports blocked up Y^' 
North Lamp end higher than South Lamp end by Y" in 22" 
North Photocell end higher than South Photocell end by Y" io 22" 

Tilt #2 Lamp end higher than photocell end by in 3 ft. 
Lamp end supports blocked up Yi" 
North Lamp end higher than South Lamp end by 'n 22" 
North Photocell end higher than South Photocell end by Yxz" in 

22" 

Tilt «3 Lamp end higher than photocell end by \Y" in 3 ft. 
Lamp end supports blocked up 
North Lamp end higher than South Lamp end by Y.f>" in 22" 
North Photocell end higher than Souh Photocell end by in 

22" 
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Tilt Study 

Routine field practice for the installation of a card translator calls 
for leveling the table before positioning of the translator. After a trans- 
lator was placed it had been found that the level was not maintained, and 
the question of final level requirements was raised. Accordingly the test 
machine was run at 0 in., % in., 1 in., and 1%6 in. tilt, Table II. Two 
test cards were placed in each of five bins. Since the two end card posi- 
tions on the low side of each bin were suspected as being critical, the two 
test cards were placed in these positions in the five bins. The experiment 
is shown schematically below: 

Bins 
I II III IV V 

Tilt 0 0267 Otbz Uibg aio&5 
1 aehi ad)-, atbz Uihg aiobs 
2 a6bi ad)i asbz aibq ttiobs 
3 aehi ad)i ad)3 ajid aiobs 

where a is the end position, b is the next-but-end position, and the sub- 
scripts identify the actual card number. Considering any bin, the two 
card positions and the four values of tilt may be considered as a factorial 
design. Similarly, the five bins combine with the four values of tilt as a 
factorial design. 

Balanced Loading 

At the onset of general usage many translators will not be fully loaded. 
It was desirable to investigate the effects of various patterns of loading 
at three representative low loads of 200, 400 and 600 cards respectively. 
Four logical patterns were studied (see Tables III and IV) all of which 
are shown below for a load of approximately 400 cards. (Similar patterns 
follow with loads of 200 and 600 cards.): 

Bin 1 2 3 -4 5 6 7 8 9 10 11 12 

W x x x x 
X x x xx 
Y x x x x 
Z 000000000000 

x = 100 cards, 0 = K2 load (approximately) 

The ten test cards were all placed in Bin One. 
This experiment involves only two factors; the four loading patterns, 
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Table III — Loading Patterns in Partially Loaded 
Card Translator — Balanced versus Unbalanced 

Load Test 

Load 
No. of Cards in Sins 

Treatments 
Bin 

1 
Bin 
II 

Bin 
III 

Bin 
IV 

Bin 
V 

Bin 
VI 

Bin 
VII 

Bin 
VIII 

Bin 
IX 

Bin 
X 

Bin 
XI 

Bin 
XII 

600 100 100 100 100 100 100 

w 400 100 100 100 100 

200 100 100 

600 100 100 100 — — - 100 100 100 — — — 

X 400 100 100 — — 100 100 — — — — 

200 100 100 

600 100 100 HID 100 100 100 

Y 400 100 100 100 100 

200 100 100 

600 50 50 50 50 50 5(1 50 50 50 50 50 50 

Z 400 33 33 33 33 33 33 33 33 33 33 33 37 

200 16 16 16 16 16 16 16 16 16 16 16 24 

Note: All curds in Bin I ure coded, see Table IV. Cards in Bins II-XII not 
coded. 

and the three loads of cards. A suitable design is the factorial design with 
one factor, the loading pattern, at four levels (IT, X, Y, Z) and the other 
factor, the loads of cards at three levels (200, 400, 000) with ten test 
card measurements taken at each of the twelve points. 

III. DATA 

The data on card dropping time were obtained by means of shadow- 
grams of the light output from two of the light channels of the translator. 
Each shadowgram comprised the operation of the 10 test cards in se- 
quence. Samples of these shadowgrams are shown on Figs. 1 and 2. 
For the purpose of these experiments the card dropping time is defined 
as the time from the release of the pull-up magnets until the full closure 
of the light channels of the translator exclusive of any card rebound. 
The data from the various experiments were tabulated and are given 
in Tables V to XI, inclusive. 
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Fig. 1 — Card motion shadowgraphs, card support bars working. 
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Fig. 2 — Card motion shadowgraphs, card support bars out. 
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Table IV — Card Translator Balanced versus Unbalanced Load 
Test — Arrangement of Coded Cards in Bin I 

No. of Cards 
Arrangement of Coded Cards in Bin I 

•- Left end of Bin Right end of Bin -» 

100 
50 
33 
16 

#1 #2 10 «3 
«1 «2 5 #3 
#1 »2 3 *3 
«1 »2 I «3 

15 »4 15 Mo 10 MG 16 Ml 15 
6 ^4 7 Mo 4 MG 7 Ml e 
4 Ml 3 M 5 3 MC) 3 Ml 4 
I Ml 1 M5 0 MG 1 Ml 1 

M8 10 MG j^lO 
MS 5 MG «10 
MS 3 MG »10 
^8 1 MG #10 

Note: Numbers preceded by ^ represent the test cards. Numbers in italics 
represent quantity of non-test coded cards placed between two consecutive test 
cards. 

IV. ANALYSIS OF THE DATA 

After checking the raw data for recording errors, they were analyzed 
and reduced in three distinct steps as follows: 

1. Using the techniques of the analysis of variance* each variable 
and each measured interaction of several variables was tested as a pos- 
sible assignable cause of variation. 

2. Using the components of variance analysisf on those variables 
and combinations of variables found to be assignable causes in Step 1 
their contributions to the overall variation was estimated, and 

3. After tabulating the arithmetic mean for each value of the variables 
an upper and lower bounds were determined which estimates the allow- 
ance, or probable range of means, for similar experiments and opera- 
tions on card translators having the same residual a. The technique used 
was proposed and formulated by J. W. Tukey.8 

The analysis of variance tables were reduced to the summary in 
Tables XII and XIII for the seven variable studied. 

Proceeding to the tabulation of the means and the calculation of the 
allowances appropriate to these means, the data was reduced as in Table 
XIV. The magnitude of the several effects can now be noted. The effect 
of Idler load is quite meaningful — as the load on the machine is in- 
creased to the normal load of 85 we see a decrease in mean dropping time 
from 36.5 to 34.4 milliseconds. Also the slight increase for the overload 
of 100 is not significant statistically or engineering wise. At first glance the 
results of Idler loads of 0, 50, 85 and 100 might seem to be inconsistent 
with those of Operating Loads of 15, 50, 85, 100, and 105. The mean 
dropping time of the Load of 15 (say) is the average dropping time of 

* See Appendix for Discussion and References 2, 4 and 5. 
t See Appendix for Discussion and Reference G. 
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Table V — Card Drop Time in Milliseconds — No Cards in X 
Bins — Card Support Bars Operating 

Bin * 1 Bin » II Bin III Bin » IV Bin « V 

Card H -* 1 6 2 7 3 8 4 9 5 10 

Run «l A 36 38 36 35.5 37 36.5 37 37.5 37.5 40 
B 36.5 38 36.25 37.5 35 37 36.5 37 37 39.5 
C 35.25 37.5 35 36 37 36 36 36 37.5 39 
D 35.5 38 37 36.25 36.5 36.5 36.5 36.5 37 39 

X 35.8 37.8 36.06 36.32 36.37 36.5 36.5 36.75 37.25 39.37 
R 1.25 0.5 2.0 2.0 2.0 1.0 1.0 1.5 0.5 1.0 

Run A 34 35 34 33.5 34 34 36 35 37 39 
B 33.5 34.5 34 34 34 34 35.5 33.5 37 38 
C 34 34.5 33.5 34 35 34 36 35 36.5 38.5 
D 35.5 33 33.5 34.5 34.5 34 35.5 34.5 36.5 38 

Run «2 X 34.25 34.25 33.75 34.0 34.37 34 35.75 34.5 36.75 38.37 
R 2.0 2.0 0.6 1.0 1.0 0 0.5 1.5 0.5 1.0 

Run #3 A 36.5 37.5 38 36.5 37 37 37 38 37.5 39.5 
B 36 37 36.5 35 36 37 36.5 36.5 38 39 
C 36 36.5 37.5 35.5 36 35 37 36.5 38 39.5 
D 35.5 36.5 37.5 35.5 36 35.5 35.5 36.5 37.5 38.5 

Run #3 X 36.0 36.37 37.37 35.62 36.25 36.12 36.5 36.37 37.75 39.12 
R 1 .0 1.0 1 .5 1 .5 1.0 2.0 1.5 1 .5 0.5 1 .0 

Run «-1 A 37 37 35.5 37 36 37 37 37.5 38 38.5 
B 36 37.5 35.5 36 36 37 36.5 37.5 38 38.5 
C 36 37.5 35 36 35.5 36 37 38 37.5 38 
D 35.5 37 36 36 36 36 37 37.5 37.5 37.5 

Run X 36.12 37.25 35.50 36.25 35.87 36.50 36.87 37.62 37.75 38.12 
R 1.5 0.5 1.0 1.0 0.5 1.0 0.5 0.5 0.5 1.0 

Run #5 A 36 36 37 37 35.5 36.5 37 36.5 38.5 38.5 
B 36 35.5 37 37 37 37 37 37 38.5 39 
C 36 36 36 36 36 36.5 37 37 38.5 39 
D 36 35 35.5 36 35 36 36.5 37 38 39 

X 36 35.62 36.37 36.50 35.87 36.50 36.87 36.87 38.37 38.87 
R 0 0.5 1.5 1.0 2.0 1.0 0.5 0.5 0.5 0.5 

Cards in Bins loaded with 15 cards in the presence of 4 bins loaded with 
50, 85, 100, and 105 cards respectively and of bins loaded as a group with 
0, 50, 85, or 100 cards. On the other hand the mean dropping time at- 
tributable to an Idler load of 50 cards (say) is the average of all dropping 
cards in the operating bins when the 7 Idler loads are 50 cards. Hence 
the statistical conclusion that the effect of loads in the operating bins is 
slight over the range of loads of 15 to 105 cards is reached, and that the 
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Table VI — Card Drop Time in Milliseconds — 50 Cards in X 
Bins — Card Support Bars Operating 

Bin HI Bin *11 Bin *111 Bin «IV Bin *v 

Card « - 1 6 2 7 3 8 4 9 5 10 

35 36 34 35 34.5 35 33 34 33.5 35 
B 33.5 35 34.25 34 33 33.5 32.5 33.5 33.5 34.5 
C 34.5 34 32.5 34 32.5 32.5 32 33.25 32 34 
D 34 32.5 32 34 33.5 33.5 33.25 32.5 33 33 

X 34.25 34.37 33.19 34.25 33.37 33.62 32.69 33.31 33 34.12 
R 1.5 3.5 2.25 1.0 2.0 2.5 0.75 1:5 1.5 2.0 

35.5 35 34 34 32.5 35 35 35.5 35 35.5 
B 35.5 35.5 34 33.5 34.5 34.5 35.5 35 35.5 35 
C 35 35 34 35 34.5 34 36 35 34.5 34 
D 34 35 34 34 32.5 34 35.5 34 35 35 

X 35.0 35.1 34 34.1 33.5 34.4 35.5 34.9 35.0 34.9 
R 1.5 0.5 0 1.5 2.0 1.0 1.0 1.0 1.0 1.5 

35 35 37.5 34 34.5 34.5 34 34 34 34.5 
B 36 36.5 37 36 35.5 35.5 34 34.5 34.5 36 
C 35 35.5 39 35 35.5 35 34.5 34.5 34.5 35.5 
D 35.5 37 39 35 35.5 34 34.5 34.5 34.5 35.5 

X 35.37 36.0 38.12 35.0 35.25 34.75 34.25 33.37 33.37 35.37 
R 1.0 2.0 2.0 2.0 1.0 1.5 0.5 0.5 0.5 1.5 

37 37 35.5 35.5 36,5 35 35 35.5 36 37 
B 36.5 37 36 36.5 36.5 36 35.5 35.5 36 37 
C 37.5 38 35.5 36 36.5 35 36 35.5 35.5 36.5 
D 37 37.5 35.5 37.5 36.5 36.5 36.5 36 37 38 

X 37 37.37 35.62 36.37 36.50 35.62 35.75 35.62 36.12 37.12 
R 1.0 1.0 0.5 2.0 0 1.5 1.5 0.5 1.5 1.5 

36 36 35.5 36 35.5 36 34.5 36 34.5 35 
B 35 35.5 35 36 35 35 34 34 34.5 35 
C 35.5 36 35.5 35.5 34.5 35 34 35 34,5 35 
D 36 35.5 35 35.5 34.5 35.5 34 34.5 34 34.5 

X 35.62 35.75 35.25 35.75 34.87 35.37 34.12 34.87 34.37 34.89 
R 1.0 0.5 0.5 0.5 1.0 1.0 0.5 1.5 0.5 0.5 

improvement in dropping time caused by increasing the overall load 
is generally consistent over the test bin loads. 

One last estimate must be made — that of the a' for a single measure- 
ment where* 

'2 '2 I ,2 I V /2 

O" — Cg Ge "I- tTaBSiBnable causes • 

* See Appendix for meaning of symbols and discussion. 
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Table YII — Card Drop Time in Milliseconds — 85 Cards in X 
Bins — Card Support Bars Operating 

Bin Bin *11 Bin *111 Bin *IV Bin *V 

Card * —» 1 6 2 7 3 8 4 9 5 10 

Run »1 A 34.5 34 32.5 32.5 33 34 32.5 34 33.5 33.5 
B 35 34 34 32 32 34 33 33 33.5 33 
C 33 34 33.5 33.5 32.5 33.5 33 33.5 33.5 33 
D 35 34 34 32 33 33.5 33 33.5 32.5 34 

X 34.4 34 33.5 32.5 32.9 33.7 32.9 33.5 33.25 33.4 
R 2.0 0 1.5 1.0 1.5 0.5 0.5 1.0 1.0 1.0 

Run A 33 34.5 32 34 33 34.5 34 33.25 33.5 33.5 
B 32 35 34.5 34.5 32 33.5 35 34 33.75 34 
C 34 35 33.5 34.5 33 34.5 35.5 35 35 35 
D 34 34 34 34.5 33.5 35 35 34.5 35 33 

X 33.25 34.62 33.5 33.4 32.9 34.4 34.19 33.55 34.31 33.79 
R 2.0 1.0 2.5 0.5 1.5 1.5 1.5 1.75 1.5 1.5 

Run ^3 A 35 35 36.5 32.5 34 34.5 33 34.5 34 34 
B 35 35.5 37 34.5 35.5 34 33 34.5 34.5 34 
C 35 34.5 36 34.5 35.5 33 33.5 34 34.75 35 
D 35 35 37 34.5 35 34.5 34 34.5 34 34.5 

X 35 35 36.62 34 35 34 33.37 34.37 34.31 34.37 
R 0 1.0 1.0 2.0 1.5 1.5 1.0 0.5 0.75 1.0 

Run «4 A 37 37 36.5 36.5 36 36 35 35 36.5 36.5 
B 38 37.5 37 36 36.5 37 36 35 36.5 36.5 
C 37 37 37 35 36 36.5 35.5 35 36 36.5 
D 36 35 36 36 36 36 35 35.5 35.5 36.5 

X 37 36.62 36.62 35.87 36.12 38.37 35.37 35.12 36.12 36.25 
R 2.0 2.5 1.0 1.5 0.5 1.0 1.0 0.5 1.0 1.0 

Run #5 A 35 35 34 35 33.5 34 34 33.5 33.5 34 
B 34.5 34.5 34 34 34 33.5 34 33 33.5 33.5 
C 34 34.5 34 34.5 34 33.5 33 32.5 33 34 
D 34 35 33.5 34.5 33.5 34 33 33.5 32.5 34 

X 34.37 34.75 33,87 34.50 33.75 33.75 33.50 33.12 33.12 33.87 
R 1.0 0.5 0.5 1.0 0.5 0.5 1.0 1.0 1.0 0.5 

If the assignable causes contributing to this estimate are not removed 
then this a' is the well known parameter for control charts. 

The variable Runs may be an experimental variable which will not 
occur in operational usage since coded cards only will be used in the 
machines. The joint effect, however, of this variable with all the others 
is slight, for 

(t'wo = 2.68 ms without Runs, and 
cr'w = 2.98 ms with Runs included. 
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Table VIII — Card Drop Time in Milliseconds —100 Cards in 
X Bins — Card Support Bars Operating 

Bin «l Bin #11 Bin #lll Bin #IV Bin #v 

Card $ -* 1 6 2 7 3 8 4 9 5 10 

Run A 34 35.5 34.5 35 34 35 33.5 34 34.5 35 
li 34 35 35 35 34.5 34.5 34.5 35 35 34 
C 34 35 34 33 35 34.5 33.5 33.5 35 34 
D 35 33.5 34.5 35 35 34 35 33.5 33.5 34.5 

X 34.75 34.75 34.5 34.5. 34.62 34.5 34.12 34.0 34.5 34.37 
R 1.0 2.0 1.0 2.0 1.0 1.0 1.5 1.5 1.5 1.0 

34 36.5 34.5 35.5 33.5 34.5 35.5 36 35 35.5 
B 34.5 35 35 35.5 33.5 35 35.5 36.5 35.5 34 
C 34 34 34 33 34 33.5 34 34 33.5 33 
D 33 32 33.5 32.5 33.5 33.5 34.5 34 33 34 

X 33.9 34.37 34.25 34.12 33.6 34.12 34.9 35.12 34.25 34.12 
R 1.5 4.5 1.5 3.0 0.5 1.5 1.5 2.5 2.5 2.5 

34.5 34.5 36.5 33.5 35.5 33.5 34 34 34 34 
B 35 34.5 38 34 34.5 33.5 34 33.5 33 34 
C 35 35.5 38.5 34 34.5 34.5 33.5 33.5 34.5 34.5 
D 34.5 35 39.5 34 35 35 34 34 34 35 

X 34.75 34.87 38.12 33.87 34.87 34.12 38.87 33.75 33.87 34.37 
R 0.5 1.0 3.0 0.5 1.0 1.5 0.5 0.5 1.5 1.0 

Run «4 A 37 37 35.5 35.5 36 35.5 35 35.5 36 37 
B 30 36 37 36 36 35.5 35 35.5 37 36 
C 36 36.5 35.5 37 36 36.5 35 36.5 36 37 
D 37 36 35.5 35.5 35.5 35.5 34.5 35 36 37 

X 36.5 36.37 35.87 36 35.87 35.75 34.87 35.62 36.25 36.75 
R 1.0 1.0 1.5 1.5 0.5 1.0 0.5 1.5 1.0 1.0 

33.5 34 33.5 33.5 33.5 33.5 32.5 33.5 33.5 33 
B 33.5 33 34 34.5 34 34 32.5 33.5 33.5 33.5 
C 35 35 34 34.5 33.5 34 33 33.5 33.5 33 
D 34 34 34.5 33.5 34 34 33 33 33 34 

X 34 34 34 34 33.75 33.87 32.75 33.37 33.37 33.37 
R 1.5 2.0 1.0 1.0 0.5 0.5 0.5 0.5 - 0.5 1.0 

The overall estimate of Mean dropping t ime was found to be 35.1 ms. 
We can predict therefore that the dropping time of a card chosen at ran- 
dom from a normal translator at the beginning of its life will be 35.1 
± 3a' (without Runs) or between 27 and 43 ms from the well known 
3a limits. 

When the analysis of variance with the card support bars out is 
examined it is found that the sampling error a^ remains stationary but 
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Table IX — Card Drop Time in Milliseconds — 85 Cards in X 
Bins — Card Support Bars Out 

Hin «I Bin »I1 Bin will Bin *IV Bin *V 

Card * -♦ 1 6 2 7 3 8 4 9 S 10 

Run » 1 A 23.5 27 26.5 26 28 28 25 24 26 26.5 
B 23.5 28 25.5 26.5 28 27 25 24 25.5 26 
C 23 27 26 26 29 28 25 23 26 26.5 
D 24 26.5 26.5 27 29.5 27.5 25 24 26.25 26 

X 23.5 27.1 26.1 26.4 28.6 27.6 25 23.75 25.94 20.25 
R 1.0 1.5 1.0 1.0 1.5 1.0 0 1.0 1.75 0.5 

Run «2 A 24.5 26.5 26 23.5 22 21.5 34 31.5 32 27.5 
B 25 27 25 22 21.5 22 33.5 31 32 28 
C 24 27.5 26.5 23.5 21.5 23 34.5 31.5 31.5 27.5 
D 24.5 26.5 25 22.5 22 22 34 31.5 33 ,28 

X 24.5 26.!) 25.6 22.9 21.75 22.12 34.0 31.4 34.6 27.75 
R 1.0 1.0 1.5 1.5 0.5 1.5 1.0 0.5 1.5 0.5 

Run A 28 20 37.5 28 34 28 29 28.5 24 22 
B 27 29 37 28 33 28 30 28 24 21 
C 28.5 30 37.5 29 32.5 28 28.5 28 23.5 20 
D 28 30 38 29 33 28 29 27.5 24 21 

X 27.87 29.5 37.5 28.5 33.12 28 34.12 28 23.87 21 
R 1.5 1.0 1.0 1.0 1.5 0 1.5 1.0 0.5 2.0 

Run A 10.5 23.5 22 24 28 29 28.5 32 34 34 
B 17 23 22 23.5 28 29 28 33 33.5 33.5 
C 17 23 21 22 28 29 27.5 32 30.5 33 
1) 17 23.5 22 22.5 28 29 28 31 33.5 36.5 

X 10.87 23.25 21.75 23 28 29 28 32 32.87 33.50 
R 0.5 0.5 1.0 2.0 0 0 1.0 2.0 3.5 3.0 

Run «5 A 10.5 17 25 25.5 28.5 28 29 30 26 25.5 
B 10 17 20 20.5 28 28 29 29.5 26 25 
c 18 17.5 25 25.5 28 28 28.5 29.5 26 25 
D 10.5 17.5 25 25.5 28 28 29 30 26 25.5 

X 10.75 17.25 25.25 25.75 28.12 28 28.87 29.75 26 25.25 
R 2.0 0.5 1.0 1.0 0.5 0 0.5 0.5 0 0.5 

the experimental error is inflated tenfold. The assignable causes found in 
the previous experiment are found here, where measured, with one 
exception — the interaction of Codes on Positions. The estimate of a' 
for a single reading with the card support bars out now becomes 

a' = 8.56 ms. 

Since the overall estimate of mean dropping time with the card support 
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Table X — Tilt Study Data — Card Drop Time in Milliseconds — 
Card Support Bars Out 

Bin *1 Bin #11 Bin #111 Bin #IV Bin #V 

Card * - 6 i 2 7 8 3 4 9 10 5 

Tilt A 
B 
C 
D 

21.5 
21.5 
21.5 
21.5 

19.5 
19.5 
19.0 
19.0 

29 
31 
29.5 
29.5 

26 
25.5 
26 
25.5 

30.5 
32 
31 
30.5 

27.5 
28.5 
28 
28.5 

32.5 
31.5 
31 
32 

32.5 
35 
34 
34.5 

31 
30.5 
30.5 
30.5 

29 
28.5 
29 
29.5 

S 86 77 119 103 124 112.5 127 136 122.5 116 
X 
R 

21.5 
0 

19.25 
0.5 

29.75 
2 

29.75 
0.5 

31 
1.5 

28.13 
1 

31.75 
1.5 

34 
2.5 

30.63 
0.5 

29 
1.0 

Tilt 

s 

A 
B 
C 
D 

27.5 
25 
25.5 
25.5 

21 
21 
20.5 
21.5 

38 
37 
38 
39 

28 
27.5 
27.5 
28 

38.5 
38 
43 
42.5 

28.5 
29 
28.5 
28 

44 
44 
47 
43.5 

28.5 
29 
29.5 
29 

47 
49 
46 
46.5 

31.5 
31 
31 
32 

S 103.5 84 152 111 162 114 178.5 116 188.5 125.5 
X 
R 

25.88 
2.5 

21 
1 

38 
2 

27.75 
0.5 

40.5 
5 

28.5 
1 

44.63 
3.5 

29 
1 

47.13 
3 

31.38 
1 

Tilt #'2 A 
B 
C 
D 

29 
38.5 
33 
33 

23.5 
23 
22.5 
23 

62.5 
57.5 
58.5 
59 

32 
31 
30.5 
31.5 

67 
63.5 
59 
59.5 

32 
31.5 
31 
31.5 

73 
72.5 
68.5 
75 

32.5 
32 
32 
33 

92.5 
62.5 
66 
67.5 

38.5 
37 
37.5 
37.5 

S 132.5 92 237.5 125 249 126 289 129.5 288.5 150.5 
X 
R 

33.13 
9.5 

23 
1 

59.38 
5 

31.25 
1.5 

62.25 
8 

31.5 
1 

72.25 
6.5 

32.38 
1 

72.13 
30 

37.63 
1.5 

Tilt «3 A 
B 
C 
D 

58 
41.5 
34 
31.5 

23 
23.5 
23 
24.5 

68 
69 
80 
80.5 

33.5 
33 
33.5 
34 

109.5 
95 
77 
86.5 

34 
33.5 
34 
35 

u 
Hi 
0 o 

34.5 
34.5 
36 
36 

69.5 
91.5 
87 
95 

39.5 
38.5 
39.5 
39 

2 165 94 297.5 134 368 136.5 CD 141 343 156.5 
X 
R 

41.25 
26.5 

23.5 
1.5 

74.38 
12.5 

33.5 
1 

92 
32.5 

34.13 
1.5 

P (-*- CD 
35.25 
1.5 

85.75 
25.5 

39.13 
1 

bars out was 26.7 ms, it can be predicted that the limits for the dropping 
time for a single card at the onset of life of a card translator will be 1 and 
52 ms. It is to be noted that while the upper limits in both these estimates 
are reasonably close, the lower limits are quite different. This is to be 
expected since the card support bars may delay the dropping of a card 
and thus restrict operations that might be fast. 

Tilt Study Analysis 

A fundamental assumption underlying any comparison is that the 
compared elements have been measured with the same precision. Scru- 
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Table XI — Balanced versus Unbalanced Load — Card Drop 
Time in Milliseconds 

c Test Card 

s T3 
s o I 2 3 4 5 6 7 8 9 10 

H ►J 
w 600 A 24.5 21.5 25 21.5 28.5 28 26.5 29 30.5 31.5 

B 24 22 26 27.5 28 27.5 27 29 29.5 31 

400 A 24 22 27.5 29.5 28.5 29 28 30 29 34 
B 24 22.5 28 28 28 28 28 30 30.5 33 

200 A 26 24.5 29.5 30 30 29 29 30 31 33 
B 25.5 24 30 30 30 29.5 28.5 29.5 30 33.5 

X GOO A 25 22.5 27 28 27.5 28 27.5 26 30 32 
B 24.5 23 27 28.5 28 28 28 29 30 33 

400 A 25 24.5 29 29 29.5 28 28.5 30 30 33 
B 25 24.5 29.5 29 29.5 28 28 29 30.5 33 

200 A 28 26 29.5 29 29 28.5 27.5 27.5 24.5 26 
B 27 25.5 29.5 29 28.5 27.5 26.5 28 25 26 

Y 600 A 24.5 22.5 27 28 28.5 28.5 28 29 30 34 
B 24 23 27 28 28 28 28.5 30 29 32.5 

400 A 25.5 23 29 29.5 29 28 28,5 28.5 28.5 33.5 
B 25 24 29.5 29.5 29 28 28.5 29 29.5 33 

200 A 27.5 26.5 28.5 28.5 27.5 27.5 26 27 25 26 
B 27.5 26 28.5 28.5 27.5 28 26 28 23.5 26 

z 600 A 21 20 23 23.5 25 25.5 26 25.5 26 26.5 
B 21.5 20 23 24.5 25.5 26.5 25.5 25.5 26.5 26.5 

400 A 18 18.5 23 26.5 27 25 24.5 24.5 24.5 27 
B 19 18.5 22 26 27 25.5 25.5 25 25 26 

200 A 19.5 18.5 20 21.5 22 22 22 22 22 22 
B 18 18.5 21 22 22.5 22 21.5 21.5 22.5 22 
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tiny of the data cast grave doubt on this assumption and each card pos- 
tion was analyzed separately as shown below. 

Card Position A 

Analysis of Variance 

Source Degrees of 
Freedom Sum of Squares Mean Square 

Bins  4 8947 2238 
Tilt  3 25653 8551 
(Expt. Error) Bins x Tilt* — 11 2882 262 

Total  18 37482 

* One observation was lost, and Fisher's Missing Plot Technique was used (5). 

Card Position B 

Analysis of Variance 

Source Degrees of 
Freedom Sum of Squares Mean Square 

Bins  4 1515 379 
Tilt  3 492 164 
(Expt. Error) Bins x Tilt  12 168 14 

Total  19 2175 

The two estimates of experimental error being 262 and 14 ms" re- 
spectively against a previous estimate (Table XIII) on 24 degrees 
of freedom of 10.9 ms2, we must accept Position A as coming from a dif- 
ferent universe with respect to position B and the previous seven var- 
iblc experiments. Further Position B on the same evidence has been 
measured with equivalent precision when compared to the previous 
study with the card support bars out. 

The individual dropping times of Position B cards over the experi- 
ment range from 19 to 39.5 ms., well within the predicted dropping 
times. The mean dropping times for each tilt of card Position B are as 
follows: 

Tilt 0 12 3 
27.2 ms 27.5 ms 31.2 ms 33.8 ms 

By contrast the mean dropping times for Position A are: 

Tilt 0 12 3 
28.9 ms 39.2 ms 59.9 ms 73.6 ms 

with a range of 21 ms to 109.5 ms on the fourth tilt. 
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Table XII — Analysis of Variance — Summary — 
With Card Support Bars 

Source 
De- 

grees 
of 

Free- 
dom 

Sum of 
Squares Mean Squares Mean Squares is an Estimate of* 

1. Looks  3 5.65 1.88 N.SV 
2. Code  1 4.46 4.46t cr'e -f" 20(<rcfc "(- iTcp -f- ell T 

ffcr) -klOOffc 
3. Idlers  3 520.48 173.491 cr'e -j- lOtcr};) + ofr) + 25ali 

+ 60<r< 
4. Bias  4 53.43 13.35| a'e -f- Kltrifc -(- 20crc6 4- 40(76 
5. Runs  4 359.64 89.9U OV 4" 20(7cr T 10(7Vr T 40(7r 
6. Loads  4 26.07 6.52J (7 e + 20(7ct + 40(71 
7. Positions  4 35.96 8.99J al + 20(7? p + 40(7 p 
8. Codes x Idlers 3 6.58 2.19 N.S. (7 c + 25(7?.- 
9. Codes x Bins 4 20.34 5.08} (7? + 20(7 lb 

10. Codes x Runs 4 16.78 4.20} a',. + 20(7? r 
11. Codes x Loads 4 11.99 3.00} (7? + 20(7?, 
12. Codes x Positions. 4 25.47 6.37} (7r + 20(7? p 
13. Idlers x Bins   12 162.52 13.54} a'e + lOffL 
14. Idlers x Runs 12 203.99 17.00} (7? + lOfffr 
15. Experimental Error. 136 128.76 0.95 2 (7 r 
16. Sampling Error  597 224.88 0.39 2 (7, 

799 1807.00 

* See Appendix and Reference. 
f Significant at 5 per cent level. 
j Significant at 1 per cent level. 
(+) M.S. = Not significant at 5 per cent level. 

Clearly, Card Position A gives rise to an undesirable assignable cause 
which must be dealt with, and Card Position B while showing tilt as 
an assignable cause has a dropping time at the extreme tilt well within 
the allowable tolerances (see Conclusions). 

Balanced Loading 

The two main variables were total machine load in numbers of cards 
(Number) and distribution of cards over bins (Loading). The results 
of this experiment were so clear that little analysis was necessary. Al- 
though the mean dropping time of cards distributed uniformly over the 
twelve bins was statistically significantly different from the means of 
cards from the three nonuniform distributions the magnitude of the dif- 
ference 4.8 ms was not sufficiently large to cause concern. Furthermore 
a decrease in mean dropping time was observed as the total load in- 
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Table XIII — Analysis of Variance — Summary — 
Without Card Support Bars 

Source 
De- 
grees 

of 
Free- 
dom 

Sum of 
Squares Mean Square Mean Square is an Estimate of* 

3 1.72 
3.43 

0.57 N.S. 
3.43 N.S. 1 fe + + Svcr + Sell 

+ Scfcp + 25(tI 

4 714.69 
275.61 

1695.52 
239.42 

178.67t 
68.90t 
423.88t 
59.86* 

CTB + StTcft + lOffft 
Og + 5a2

cr + lOcrf 
fg + Sffgj + 10a f 
Og + Sffgp + lOffp 

4 
4 

4 205.39 51.35* + 5a gft 

12. Codes x Positions... 4 144.09 36.02* v2g + 5a?p 

15. Experimental Error. 
16. Sampling Error  

24 
147 

261.28 
48.86 

10.89 
0.33 

<rl 

199 3689.01 

* See Appendix and Reference 6. 
f Significant at 5% level, 
t Significant at 1% level. 
(+) N.S. = Not significant at 5% level. 

creased regardless of the distribution of cards, confirming a conclusion 
from the first experiment. 

V. CONCLUSIONS OF OVER-ALL STUDY 

When considered in the normal cycle of translator operation with 
the card support bars functioning, the range of card drop times was ob- 
served to be from 32 to 40 ms with a mean of 35.1 ms. Based on the results 
obtained in this study it is predicted the dropping time of a card chosen 
at random in a new translator will be between 27 and 43 ms. This includes 
all the known variables except the life of the cards. The test on this 
variable is continuing and all conclusions reached in this report may be 
modified somewhat by the results of this life study which will be re- 
ported at a later date. The relative effect of the several variables is tabu- 
lated in Table XIV. The only two variables found to have any sig- 
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Table XIV — Mean Card Dropping Times with Allowances 
Summarized with Regard to Variables 

Variable 

Looks 
C.S. In.. 
C.S. Out, 

Codes 
C.S. In.. 
C.S. Out. 

Idlers 
C.S. In.. 

No. 
Readings 

in each 
Mean 

200 
50 

400 
100 

200 

Mean Dropping Time Milliseconds 

A 
35.2 
26.8 

3 digit 
35.0 
26.6 

0 cards 
36.5 

B 
35.2 
26.6 

6 digit 
35.2 
26.8 
50 
35.0 

C 
35.1 
26.6 

85 
34.4 

D 
34.9 
26.8 

100 
34.6 

Range of 
Means Allowance 

Negligible 
Negligible 

Negligible 
Negligible 

2.1 ±0.4 

Graeco-Latin 
Square 

Runs 
C.S. In  
C.S. Out. . . 

Bi ns 
C.S. In  
C.S. Out. .. 

Positions 
C.S. In  
C.S. Out. .. 

Loads 
C.S. In  
C.S. Out . . . 

160 
40 

160 
40 

160 
40 

160 
40 

1 
34.6 
26.0 

I 
35.3 
23.4 
ab 

35.5 
28.9 

15 cards 
34.9 
21.6 

2 
34.5 
26.9 
II 

35.1 
26.3 
ad 

35.3 
26.1 

50 
35.0 
25.3 

3 
35.3 
28.6 
III 

34.8 
27.4 
ce 

34.9 
26.2 

85 
35.0 
29.1 

4 
36.3 
26.9 
IV 

34.8 
29.0 
dg 

35.0 
26.0 
100 

35.4 
29.3 

5 
34.8 
25.1 

V 
35.5 
27.5 
fg 

34.9 
26.5 
105 

35.3 
28.3 

Graeco-Latin 
Sq. & Codes 

C.S. In  
C.S. Out . . . 

Idlers & Bins 
C.S. In  

Idlers & Runs 
C.S. In  

16 
4 

40 

40 

Min 
33.6 
16.8 

34.0 

33.4 

Max. 
37.6 
37.5 

38.2 

36.8 

1.8 
3.5 

0.7 
5.6 

0.6 
2.9 

0.5 
7.7 

4.0 
20.7 

4.2 

3.4 

±0.5 
±3.0 

±0.5 
±3.0 

±0.5 
±3.0 

±0.5 
±3.0 

±2.5 
±8.4 

±1.6 

±1.6 

nificance when operating in the normal manner were the load in the 
machine and the number of coded and uncoded cards in the working bin. 
In a lightly loaded machine the flux from the pull-up magnet is concen- 
trated in the few cards and therefore in each card there is a greater 
amount of flux to decay before the card is free to drop. When a bin is 
loaded with all coded cards the dropping time may be increased because 
the cards are slightly deformed by the coding process which in turn in- 
creases the effective thickness of the cards thus reducing their freedom 
in the bin. 

Although these two variables were significantly large they still are 
included in the range of dropping times mentioned above and arc not 
of sufficient magnitude to warrant special consideration in loading the 
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Table XV — Card Translator — Summary of Data on Card 
Rebound — Card Support Bars Out 

No. of operations  200 100% 
No. of operations with no rebound  S3 11.5% 
No. of operations with one rebound  116 58% 
No. of operations with two rebounds  1 0.5% 
Maximum duration of one rebound  17 ms. 
Minimum duration of one rebound  6 ms. 
Duration of two rebounds  28 ms. 
Maximum magnitude of a rebound  % reopening 

Bins No. of Operations No. of Operations 
with Rebound 

Per cent of Operations 
with Rebound 

1 
2 
3 
4 
5 

40 
40 
40 
40 
40 

28 
24 
25 
15 
25 

70 
60 
62.5 * 
37.5 
62.5 

Load No. of Operations No. of Operations 
with Rebound 

Per cent of Operations 
with Rebound 

15 40 15 37.5 
50 40 28 70 
85 40 23 57.5 

100 40 23 57.5 
105 40 28 70 

translators. The effect of the load in the machine was further inves- 
tigated in the balanced vs. unbalanced loading test and although it was 
found that a balanced load produced a faster drop time, the amount 
of improvement obtained by balancing the load is not enough to warrant 
special loading instructions. 

The card dropping time as observed with the card support bars out of 
the circuit ranged from 16 to 40 ms with a mean of 26.7 ms and the 
predicted total range is from I to 52 ms. Although the minimum dropping 
time is considerably less with the card support bars out, the translator 
cannot he operated satisfactorily in this manner. The cards rebound on 
a majority of the operations; in fact, 58 per cent of the operations with 
the card support bars out had measurable rebound. When operated in 
the normal manner no card rebound was observed at any time. A sum- 
mary of the amount of card rebound observed is given in Table XV. 

As a result of this study, it was concluded that the requirement for 
minimum 65 cards per bin should be removed and that the field be 
permitted to place as few cards as they find convenient in any bin. A 
second conclusion was that the maximum number of cards per bin beset 
at 100. This will allow a total of 1,200 cards per machine, an increase of 
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20 per cent in the capacity of a translator over the design objectives. 
The requirement that an uncoded card be placed next to each separator 
should remain until the life test which is currently in progress is con- 
cluded. These uncoded cards are to be included in the 100 cards per bin 
figure. A preliminary analysis of the data indicates that it is probably 
necessary that this requirement be retained for field use. 

With regard to the leveling of the machine, it was found that if the 
translator table is leveled consistent with the normal practice of the in- 
stallation department no further leveling is necessary when the trans- 
lator is installed on the table provided an uncoded card is next to each 
separator. When only cards that were at least one removed from the 
separator were considered it was found that the Translator could be 
tilted I inch in 3 feet without seriously affecting the card drop time. 

Considering the ranges of the several variables considered and the 
results of the analysis of the data, it appears that there is no major un- 
known variable having an effect on the card dropping time. It is also 
believed that the results of the work on this machine can be considered 
representative of the results that will be obtained on another new pro- 
duction model translator. 

Appendices 

I. ANALYSIS OF VARIANCE 

The general theory of the analysis of variance has been formulated and 
discussed at length by several authors.2,4, 0 Basically it reduces to the 
concept that in any set of data obtained from a statistically designed 
experiment the total sum of squares of deviations from the mean can 
be partitioned into orthogonal components, and that under certain 
restrictions the distribution of each component falls into known pat- 
terns. Hence data taken from designed experiments can be examined 
for conformance to the known pattern, and a lack of conformity indicates 
an assignable cause of variation. Further, the distribution of the ratio 
of mean square deviations under specified conditions has been tabulated 
as the table of the F ratio. It has also been shown that when a treatment 
variable is not a parameter or assignable cause of variation in the ex- 
periment, the partitioned component for that variable must contain 
only residual variation. Thus, the analysis ot variance tests the hypothe- 
sis that the treatment means for a given variable are all equal (i.e., the 
variable is not a parameter) by testing the ratio of the mean squares of 
mean deviations for the variable to the residual mean square, i.e., the 
F ratio. When this F ratio is larger than the critical value at the « 
level, the variable is said to be significant at the a"1 level. That is, let 
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us assume a null hypothesis that the variable in question is not a param- 
eter or assignable cause, and select a critical value, F*, such that the 
probability of observing an F ratio greater than F* (when the null 
hypothesis is true) is small (say 0.01). Then if the F ratio is computed 
from our experimental observations and the null hypothesis rejected 
when this ratio is larger than F*, on the average incorrect decisions 
will be made not more than 1 per cent of the time. This method of 
evaluation is not trivial and in complex situations reference should be 
made to the literature or to experts. 

II. COMPONENTS OF VARIANCE 

A basic difference between the estimation of the Components of 
Variance6 and the Analysis of Variance above is the concept of the 
underlying model or law. The Analysis of Variance tests the hypothesis 
that the treatment variable is not a parameter. In the estimation of 
Components of Variance we assume that the observed effect of the 
several values of a given variable is a random sample from a normal 
population of effects from these values. If is the true effect of the ih 

value of the vlh variable, then the component of variance due to the 
v"' variable, al, is found from 

k (52 /JLivY 
E mL - ^=V-^ 2 »=i k 

0"u = — k - 1 

If Riu = Uiv = • • • = UkV, then al = 0, and the mean square for variable 
v contains only residual variation. If the variable r is a parameter, 
a'; > 0; and the mean square for variable v contains a] + Mai {M meas- 
urements being made at each of the k levels of the variable). It is desir- 
able to estimate the component of variability of each variable, in order 
to be able to estimate the variability of a measurement which is affected 
by these variables. That is, if there are p variables whose components 
of variance are aj, 2 = 1, • • •, p respectively and if the measurement, x, is 
influenced by all of these variables, then 

= + a], and ax = \/ 
V ,=i 

2 , 2 

Referring to Table XII and using the column of mean squares, we 
make the following inferences: 

Since the ratio of mean square for variables to mean square for ex- 
perimental error is "significantly" large for all the main variables, ex- 
cluding Looks, these main variables are considered to be assignable 
causes of variation. It is also evident that the three digit cards are caus- 
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ing an effect quite different from that of the six digit cards when the 
four variables, Bins, Runs, Loads, and Position are allowed to vary. 
Since the ratio of the mean square of variables of lines 9, 10, 11, and 12 
of Table XII to mean square for experimental error is significantly large, 
in the same way lines 13 and 14 show that the effect ot Idler loads is not 
independent of the Bins and Runs effects. Statistically then, we have 
isolated many significant effects, but note that our experimental error, 
o-2, for samples of four readings is 0.95 ms" and a is then 0.975 ms. 

If we compare two means Xi and x? each based on N samples of tour 
observations each we will detect as significant, differences as small as 

_ 3V2^ 4.095 

- w vr 

When N is large we will, therefore detect as significant, differences which 
may be of no interest engineering-wise. Thus not only is the significance 
of the effects of interest but also the magnitude of the effect. 

When the component of variance attributable to each of the sig- 
nificant effects is estimated only four are so large as to lie of interest to 
the engineer. The four variables are Idlers, Runs, interaction of Idlers 
on Runs and Bins. The estimates of the components of variance, a'effcet, 
are obtained by equating the linear combinations of the components of 
variance shown in the right hand column of Table XII to the mean 
squares which estimate them and solving. 

The component estimates are: 
tr 

Idlers 3. 
Runs 1.55 
Idlers x Runs 1.60 
Idlers x Runs 1.26 

III. SOURCES AND MEASURES OF ERROR 

In any experiment a decision must be made as to the number of ex- 
perimental units to be measured and the number of repeated measure- 
ments to be made on each unit.' It is important to note that measure- 
ments made on the same unit and a measurement made on each of 
several units give rise to two distinct sources of variation, and that both 
of these should be estimated. Consider making n measurements on each 
of k units, where the k units are a random sample of units belonging to a 
normal universe with mean u and variance al . Further a set of measure- 
ments on the ih unit is a random sample of measurements from a normal 
universe of measurements with mean w,- and variance aw . Clearly, if 

ms 
ms~ 
ms' 
ms2 
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the set contains only one measurement (n = 1), we cannot estimate 
at, , and if there is only one unit {k = 1) we cannot estimate at . 
When both n, k > I we can estimate simultaneously both at ando"^ . Let 
Xij be the j"' measurement on the i"' unit, 

i = I, • • • , n- i = 1, ... , k. 

and Xi be the mean of the ith unit, 
X be the mean of all the units. 

We can estimate a'w directly by computing 

t t (Xij - A'.-)2 

2 i-i y=i 
v w but 

k{n - 1) 

at can only be estimated indirectly by first estimating a'i + na't from 

n E (A.- - A)2 

k - 1 

Then the estimate of at is 

k — 1 (n — l)/c 
2 

Since at = t (ab + it is clear that if at is large relative to ah , then 
k n 

A, for fixed M = nk, will have greater precision if k is large and n is small. 
The estimate of ah is called the sampling variance or sampling attribut- 
able to repeated measurements. The estimate of at is called the component 
of variance due to experimental variation free of sampling error. For a 
given experiment the est imate of a'h + nat is called the experimental error 
term and measures the precision of measurement of a unit. In the experi- 
ment ah = a'l , and at = a'l . 
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Wave Propagation Along a Magnetically- 

Focnsed Cylindrical Electron Beam 

By W. W. RIGROD and J. A. LEWIS 

(Manuscript received August 24, 1953) 

This paper analyses the nature of wave propagation along a cylindrical 
electron beam, focused in Brillouin flow by means of a finite axial magnetic 
field. Two different types of conducting boundaries external to the beam arc 
treated: (/) the concentric cylindrical tube, forming a drift region; and (3) 
the sheath helix, forming a model of the helix traveling-wave lube. The field 
solution of the helix problem is used to evaluate the normal-mode parameters 
of an equivalent circuit seen by a thin beam, thereby permitting compulation 
of the gain constant of growing waves. The gain constant of the cylindrical 
beam with Brillouin flow is found to exceed that of a similar beam with 
rectilinear flow, presumably because of the transverse component of electron 
motion in the former. 

INTRODUCTION 

The theory of the helix traveling-wave has been treated in previous 
papers,1-4 for cases in which the electrons move along straight lines paral- 
lel to the axis of the helix, as though immersed in an infinitely strong 
magnetic field. In practice, however, the electron beam is focused by a 
magnetic field of finite intensity,5' fi such that the electrons follow spiral 
paths about the common axis. The purpose of this paper is to extend 
traveling-wave tube theory to the case of such focused beams, and to 
compare the gain constants for the two types of electron motion. The 
motion of the beam in an infinite field is usually described as rectilinear 
flow; that in a finite focusing held, as Brillouin flow. 

The gain constant of the dominant mode in a traveling-wave tube 
may be computed from the Held solution for the electron beam in the 
presence of its circuit structure. This procedure, however, requires the 
solution of cumbersome transcendental equations for each particular set 
of dimensions and operating conditions. A more flexible method of anal- 
ysis has been provided by Pierce,1 based on an expansion in terms of 

399 
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normal modes d .mbjjRgation. For any particular type of beam and cir- 
cuit, three circu i ottfameters must be evaluated from the field solution. 
The performance oi the traveling-wave tube is then described quite ac- 
curately by a CiirnC equation containing these parameters, over a wide 
range of dimCfWltrtls and operating conditions. The usefulness of this 
normal-mode iWCihod has been further enhanced by publication of a. 
nomograph7 the calculation of the gain constant. 

In its initial form, the normal-modes solution for a helix traveling- 
wave tube was greatly simplified by the assumption that the electron 
beam is so thin that the electric field acting on it is constant. Employing 
the field solution for a beam of finite thickness in a helix, Fletcher4 was 
able to compute the circuit parameters for the solid and hollow cylindri- 
cal electron beams, respectively, confined to rectilinear flow. 

This procedure will now be extended to cylindrical beams in BriUouin 
flow, in which transverse electron motion occurs. First, it will be neces- 
sary to solve the field equations for this type of beam in a helix. As a 
by-product of this computation, the solution of the field equations for 
the beam in a concentric drift tube will briefly be given. Finally, with 
some restrictions, the helix parameters will be evaluated, and the gain of 
helix amplifiers with such beams compared with that obtained with 
otherwise identical rectilinear beams. 

FIELD EQUATIONS IN THE ELECTRON BEAM 

When a small ac field is impressed upon a short length of electron beam, 
the electrons respond by executing small ac excursions about their steady- 
state trajectories. These ac motions of charged particles constitute a 
transverse distribution of ac currents, which in turn excites an ac field 
distribution. The propagation of an ac signal along a beam depends upon 
the reciprocal action of these currents and fields. 

To find the propagation constants for a particular configuration of 
electron stream and enclosure, we must therefore solve Maxwell's equa- 
tions in the presence of the ac driving currents in the beam, subject to 
the external boundary conditions. When the fields and currents possess 
circular symmetry, these equations may be formally separated into TE 
and TM groups. In addition, as we are concerned only with "slow" 
waves, the equations may be simplified by neglecting all terms of rela- 
tive magnitude k'/y', where k is the wave number in free space, and 7 
the propagation wave number. 

TM WAVE 

1 d / dEs\ 2c._72r.7l<9/r>. 
- t- ( ^ ~j. ) y Ez — . t/zT „ {.rJ r) (1) r dr \ or J jwe coe r or 
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(2) 

He =-Er- j- Jr (3) 
7 7 

TE WAVE 

i a ( dH\ o 
rdr\r^)-yH' 

(4) 

Hr ) 
(5) 

Ee = -^ Hr = 
7 

(6) 

Here (r, 0, z) are the polar cylindrical coordinates, co the angular driving 
frequency, c the dielectric constant and m the permeability, of free space, 
in MKS units. The ac amplitudes of the electric and magnetic fields, and 
the convection-current density, respectively, are represented by the 
components of E, H, and J. All ac quantities have been assumed to vary 
as exp j(iot-yz). 

When the assumption is made that the convection current density in 
the beam is of the same order of magnitude as the displacement current 
density, equations (2) and (6) reduce to the following: 

In order to evaluate the components of J in the beam, it is necessary 
to determine the velocity and charge distributions, first in the unmodu- 
lated, and then in the ac modulated beam. 

The focusing of long cylindrical electron beams by axial magnetic 
fields of moderate strength has been fully described by Brillouin5 and 
Samuel6. This type of electron motion, called "Brillouin flow", can be 
established when a parallel electron beam abruptly enters a suitable 
magnetic field. The electrons thereupon acquire an angular velocity 
component which leads to a balance of radial forces in the beam. 

The equations of motion of electrons in an axial magnetic field are 
as follows: 

(7) 

(8) 

r — rd' = it{dVo/dr — rOBo) 

rd + 2rd = vrBo 

z = ij-dVo/dz 

(9) 

(10) 

(11) 
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Iii these equations (r, d, z) is the position of an electron at time /; dots 
indicate differentiation with respect to t, following the electrons; tj = e/m, 
where —e is the electronic charge and m its mass; and Fo is the potential 
describing the steady, axially symmetric electric field. Relativistic ef- 
fects and the magnetic field resulting from electron motion have been 
neglected, as our interest is confined to beam velocities which are small 
compared to that of light. 

It is readily verified that a solution of the above equation is: 

r — 0, 0 = 0o = tjSo/2, z = Wo (12) 

77 dF0/dr = r0o
2, d Fq/dz = 0 (13) 

Thus all the particles in the beam have the same angular velocity, equal 
to the Larmor angular frequency, and the same axial velocity Wo. From 
Poisson's equation, we find the charge density: 

Po = — 2 e0o"/ rj (14) 

It is convenient to introduce the angular plasma frequency co;,, de- 
fined by: 

Wp2 = — rjpo/e = 200" (15) 

In steady-state flow, an electron with initial position (ro, 0o, Zo) has 

the position (ro, 0o + dot, za + Vol) at time t. When the beam is mod- 
ulated by a small ac signal, the electrons suffer small ac displacements 
from their steady-state trajectories. If we assume that the signal propa- 
gates along the axis of the beam as exp j(ut — yz), we can write the 
perturbed electron coordinates in terms of the Lagrangian coordinates 
(ro, 0o, Za) as follows: 

r = ro + r(r0) • exp j[ut - y(za -f- Uot)\ (16) 

0 = 0o + dot + 0(ro) • exp j[<j)t — 7(^0 + WoO] (17) 

z = Zo + Hot + z(ro) ■ exp j[ut — y(zo + UqI)] (18) 

where the tildes indicate ac amplitudes, and the dots indicate, as before, 
time differentiation at fixed ro, 0o , zo. Thus the dots are equivalent to 
multiplication by j(co — yuo), when applied to ac quantities. 

The equations of motion for the ac modulated beam differ from the 
steady-state equations (9) — (11), in that the particle coordinates are 
now given by (16) — (18), and there are ac fields present in addition to 
the dc fields —dVo/dr and Bo. As is usual in small-signal theory, only 
first-order ac quantities are retained in any equation. To this approxi- 
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mat ion, the ac fields can be evaluated at the unperturbed particle 
position. 

Not all of the ac fields need to appear in the force equations, however. 
Reference to the field equations shows that the contributions of the ac 
magnetic fields to the force components are smaller than those due to 
the electric fields by a factor of the order of (wo/c)' or smaller (where c is 
the velocity of light), and hence may be neglected. In addition, the force 
exerted by Ee is of the same order as that due to Hr, and may be neg- 
lected too. 

Omitting the factor exp j[ul — 7(20 + WoO] for brevity Irom all ac 
terms, we can write the equations of motion as follows: 

r — (./"o + r)(0o + 6)' = —T][ — d\ o/dr + Er + (/•« + r)(do + 0)Ru] (19) 

(?'o -(-T')d 2/,(0p + 0) = rji'Bo (^9) 

'l=-vE: (21) 

These equations may be simplified with the aid of (12): 

7/ dVo/dr = (/'o + r)6o (22) 

and by recalling that the dots may be replaced by multiplication by 
j(co — 7?/o). We obtain, finally: 

r = TjEr/(cc — 7W0)2 (23) 

d = 0 (24) 

z = vEz/(co — 7W0)2 (25) 

Although the foregoing equations deal with the dynamics of individual 
electrons, the assumption that the beam behaves like a smoothed-out 
"fluid" of charge, with a single velocity at each point, enables us to 
assign values of velocity and all other ac quantities, to fixed positions in 
space, (r, 0, z). In these coordinates, the dc velocity is given by: 

y, = (0, r0o, iio) (20) 

and the ac velocity by: 

. = c. 4 i) (27) 

= j(cc - yiio)[(r, re, I)] 

Although theac quantities are defined at ro, they may be taken to be the 
same at r, to a linear approximation. 
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The same result, (27), might have been obtained by stating the 
equations of motion in terms of Eulerian coordinates, in which the per- 
turbed variables are the components of fluid velocity at any fixed point. 
In this procedure, the "material" or total time derivative would be used 
in the expressions for acceleration. 

The ac space-charge density p is found with the aid of the continuitj^ 
equation: 

^7 (po + p) = — div [(po + p){yo + p)] (28) at 

p = —^— div v (29) 
co — yuo 

From (23)-(25) and (27), the ac velocity may be written: 

v= W (Er.O.E,) (30) 
co — yuo 

P = -7 I = 7—(31) 

Combining these with Poisson's equation, we find: 
2 

  ^    }P 
(co — 7W0)2 ~ (co — yuo)' 

There arc two possible solutions to (31): 

(co — yiio)2 = cop (32) 

p = 0 (33) 

Solution (32) represents two longitudinal space-charge waves of arbi- 
trary amplitude distribution, with plasma-frequency oscillations about 
the average beam velocity: 

7 = — ± — (34) 
Uo Uo 

The second solution, (33), however, permits us to evaluate the compo- 
nents of the ac convection current density J, and thereby solve the field 
equations (1) — (8): 

J_ = pqV + pyo (35) 

co^e dEz , v 
Jr = po^r =  T -T- (3b) 7(co — 7W0) or 

/<, = 0 (37) 

J3 = p,V2 = - E2 (38) 
co — yuo 
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The wave equations (1) and (4) for Ez and Hz now reduce to the 
following. 

1 -(r0^)- yE, = 0 (39) r dr \ dr 

I d f dHz\ 2 
7fr[r-£)-SH- = 0 (40) 

These equations have solutions for Ez and Hz, which are finite at r = 0, 
of the form A where -4 is an arbitrary constant and Zo the modi- 
fied Bessel function of zero-th order. 

It is not without interest to remark that the same pair of solutions, 
given by (32) and (39)— (40), has been found by L. R. Walker for a 
beam of arbitrary cross-section, with the same longitudinal velocity and 
space-charge density at every point, in the absence of any impressed dc 
magnetic field. 

Due to the radial component of electron motion, the beam surface is 
rippled. For a steady-state radius b, this rippling can be expressed, in a 
linear approximation, by the perturbed radius: 

r(b) = b + r(b) exp j(ut — yz) (41) 

The rippled beam is equivalent to a uniform cylindrical beam with an ac 
surface charge density pnr, or a surface current density whose components 
are: 

G. = pohio (42) 

Gg = w0ob (43) 

The total ac convection current may be written in a form which applies 
equally well to the cylindrical beam with purely rectilinear flow: 

Ic= Jz2irr dr + 2irbp0u0r(b) 
Jo 

= —jice-R-2Trb-A-Ii(yb)/y 

= —jueR / Ez 2irr dr 
Jn (44) 

where R is a beam propagation function which will prove convenient: 

R = a}p = (45) 
(to - yuo)2 (yb - MY- K J 

and 

/3e = co/wo, /3p = cop/Rfl (46) 
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Thus we note that wave propagation along a cylindrical beam with 
Brillonin flow is accompanied by swelling and contracting of its boundary, 
with constant space-charge density, rather than by space-charge bunch- 
ing. The second interesting result is that the dynamics and field equa- 
tions for the focused beam are identical with those for a beam with zero 
dc magnetic field, except for the angular component of surface current 
density Gg . 

SPACE-CHARGE WAVES 

We now consider the given beam, of radius b, in a concentric conduct- 
ing tube of radius a > b. The boundary problem consists of matching 
the TM wave admittances inside and outside of the beam, at its boun- 
dary. (The TE fields are of no interest in the drift-tube problem, as 
they are not excited at the ends of the tube, and are not coupled to the 
TM fields.) Let I refer to the beam region 0 < r < b, and II to the space 
between beam and conductor b < r < a. Then, at r = b, 

Ho + C- = H" 
El

z E" 

The beam admittance on the left is evaluated with the aid of (3), (7), 
(30), and (42): 

Y. = Jjle (1 - R) *44 W 
7 loyyb) 

In region II, 

Ez = B-IoM + C-K0(yr) 

H, = - C-KM] 
y 

where A'o and Ki are modified Bessel functions of the second kind. The 
wave admittance at r = 5 in II is therefore: 

'Uyb) - {C/B)-K1{yb)' V - 1 C   
7 

ii 

(49) 
Ihiyb) + {C/B)-K0{yb)_ 

At r = a, Ez" = 0 or: 

C/B = — h{ya)/K(s{ya) (50) 

Equating beam and circuit admittances (48) and (49), we obtain: 

_ U{ya) 

R =  r . r n (51) 
yb-Ii{yb) • |^/o(7^) — (^g)' 
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This equation must be solved simultaneously with each of the follow- 
ing; 

yih = 
(52) 

726 = pfb - Pph/y/ll, 

Thus, for a given beam and frequency, the solution consists of two un- 
attenuated waves, one faster and the other slower than the beam velocity. 
The wavelength of the interference pattern is given by: 

X, = (53) 
Ti - 72 

For a cylindrical beam, 

Pph = 174VP (54) 

where P = I/V'Ui amps/(volts)'1 the perveance. In practice, P and 
hence /3;)5 arc usually so small that we can gain a fair estimate of Xs by 
assuming Ri = Ro: 

X (rr\ K ~    (55) 
Pp 

Fig. 1 shows the variation of 7?12 with yh for several values of b/a. 
(The "intrinsic" solution (32) is included as a line at 7?1/2 = 1.) The 
ordinatcs of these curves are approximately proportional to the space- 
charge wavelength, and the abcissae to the frequency, as 7 ~ /3C = co/un 
for small perveance. 

Space-charge waves propagating along a cylindrical beam with rec- 
tilinear flow have been treated by Hahn8 and Ramo'. In Fig. 2, their 
computations have been reformulated in the same way as in Fig. 1, and 
compared with the results for Brillouin flow, for two values of b/a. The 
space-charge wavelength is always greater in Brillouin flow, for the 
principal pair of waves and the same b/a and yh. 

HELIX PROBLEM 

In place of the drift tube at radius a, we now have a helically conduct- 
ing sheet of zero thickness and pitch angle \p. In addition to I (0 < r 
< h) and II (5 < r < a), we shall use III to identify fields in the region 
(a < r < qo). The boundary conditions at r = h are: 

He' + G: - He'1 = 0 

E,' - E" = 0 

/// - ft - H" = 0 (56) 
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A.t r = a, the boundary conditions are: 

E/1 
+ Eg" cot \j/ = 0 

E*11 
+ Eg"' cot xp = 0 

Ej1 - E"1 = 0 

Hz" + He" cot t - H'" - Hg'11 cot xp = 0 

(57) 

Inasmuch as cot \p ~ y/k, the contribution of Eg to the field at the 
helix can conceivably be comparable to that of Ez. The TE fields are 
coupled to the TM group, in addition, through the angular surface cur- 
rent Gg, which depends on Ez. All 8 equations must therefore be solved 
simultaneously. 

The procedure follows that of Chu and Jackson' for the field solution 

BRILLOUIN FLOW 
ATT ..ZTT -r. 3.4 

3,2 

3,0 
■=r=0.S 

2.0 
0,6 

2.6 
-0,4 

2.4 

2.2 
0,0.2 

2.0 

*2 1.4 

PLASMA-FRLQUENCV OSCILLATIONS 

0.8 

Fig. 1 — Space-charge wavelength X, for cylindrical beam with Brillouin flow, 
in a concentric drift tube. Here b and a are the beam and tube radii, respectively: 
Rl,i is a dimensionless parameter; and the waves propagate as exp j{ul — yz). To 
compute X, 2vRlli/Pp , use Ppb = 174P"2, where P is the beam perveance. The 
abscissae are approximately given by 7 ~ /3e = u/uo ■ (Equations 52-55.) 



WAVE PROPAGATION ALONG AN ELECTRON BEAM 409 

Vr 

3.6 

3.4 

3.2 

3.0 

2,8 

2.6 

2.4 

2.2 

2.0 

1.8 

1.6 

1.4 

1.2 

1.0 

0.8 

I i \ 
— BRILLOUIN FLOW 

1 I \,s 
ATT 

\ 
7,-72 

\ 

11 
A 

^ = 0.8 

l\ » 
\ 

M 1 

» \ * \ \ V 
\ \ i > \ \ 

\ 
sv 

\ \ \ 
\ 

\ 
\ \ 

A •1- 

PL ASMA -FREC IUENC y os CILLA TIONS 

yb 
Fig. 2 — Comparison between space-charge wavelengths for cylindrical beams 

with Brillouin How and those with rectilinear (confined) flow, respectively. 

of the rectilinear beam. The 12 independent variables of (56-57) are re- 
duced to G by expressing He and Ee in terms of Ez and Hz, respectively. 
The latter, however, require 2 arbitrary constants for a complete descrip- 
tion in region II, making a total of 8 constants to be determined. 

The eliminant of the 8 boundary-value equations can be written as a 
TM wave-admittance equation at the beam surface: 

where 

5 = 

tl (! - R) 
7 MTO) 

^0 + RE 

1 _ 750fr.y RE 

jut hjyb) — 5-Ki{yb) 
7 Io{yb) + d-Koiyb) 

Io(yb) 

5n = 
K0(ya) 

lea cot \p 
ya 

Ki{ya)Ii{ya) - K0{yo)I0(ya) 

(58) 

(59) 

(GO) 
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F = (kb cot *) (M) J;(^yi(7a) (61) 
\ c / Koiya) 

In (61), c is the velocity of light. 
The right side of (58), which is the admittance He/Ez looking away 

from the beam surface, contains a term 5 which depends on the helix 
geometry and the amplitude of the TE fields excited by the surface 
current Ge. Thus, although the TE fields do not affect the electron paths, 
they are excited by the beam, and coupled to the TM fields at the helix. 
If Gg were zero, 5 would reduce to 5o, and the circuit admittance in (58) 
would then be the same as for a cylindrical beam with rectilinear flow. 
In (59), 5 is expressed in terms of 5o and the product, RF, where R is the 
beam propagation function, and F a factor dependent on the magnetic 
field and the geometry. 

This is the complete field solution of the problem. Equation (58) has 
four roots: two complex and two real propagation wave numbers, one of 
the latter representing a backward wave. In addition, there are two un- 
attenuated space-charge waves, given by (34); or a total of 6 waves in 
all. 

EQUIVALENT THIN-BEAM SOLUTION 

Pierce1 has expressed the admittance equation for an ideally thin 
beam, interacting with an arbitrary distributed circuit, as follows: 

-i 

E = ^= [? - ti + ?]) (02) 

where q = total convection current 

l'j = longitudinal electric field 

F = propagation constant = \/— y- — k- 

lo = dc beam current 

Vo = dc beam potential 

Fo, K, Q = normal-mode circuit parameters. 

For slow waves, F ~ jy. For moderate values of perveance, the ac- 
celerating voltage may be replaced by the beam potential at the axis: 

Wo ~ V2r?Fo 

jfie lo _ , ,2 
{jpe - F)2 2Fo 

— ~ juexh R (63) 
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Then, dividing both sides of (62) by 2^1), we may rewrite it as a wave- 
admittance equation: 

. m 
Tl + 15c . ) ' (64) 

With the aid of (59), we can solve the admittance equation (58) for 
K, and re-write it as follows: 

Ye = Yb (65) 

with 

Ye = (66) 
7 2 

jojt yb hiyb) / so \ 
1 B —   

2 w nrr ^ /^ -l ^ r r /m FIoW («7) \yb-I0{yb)\fo{yb) + io-Ko{yb)\ - j 

The solid-cylindrical Brillouin beam in a helix is thus equivalent to a 
thin beam whose circuit admittance is Y,, . By equating YB to the right 
side of (64), we can evaluate the noi-mal-mode parameters for this ad- 
mittance, and thereby use all the results of previous thin-beam calcula- 
tions.1'' The equivalence of the two circuit expressions, however, requires 
that we replace the transcendental expression (67) by an algebraic one, 
with no more than three arbitrary constants. This can be done very 
effectively, in the region of interest, by means of the approximation:2 

yB ~ -(7p - 7o) •- ^ (68) 
\ dy A=7o y — yp 

in which 70 and yp are the zero and pole, respectively, of Yb 

5n (70) = 0 

Uyh) , F \ ^ 
0(Tp) \ Ko{yb) + yb-FiyV-Koiyb)'^,. (70) 

If we were to neglect the term containing F in (70), the error in the 
magnitude of 5n(7p) would be measured by: 

F s (W, cot *) (M) (71) 
yb■ Ii{yb) • In{yb) K r' \ c / IQ(yb) ■ K,(ya) 

In most low-power traveling-wave tubes, the first factor in parentheses is 
usually less than 3; the second factor less than 0.01; and the last factor 
always less than unity. The error in evaluating yp , moreover, is less than 
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this product, for the slope of the curve do versus yb increases with yh. 
Putting F = 0, therefore, leads at most to a very slight error in yp and 

(-*) \ dy A=7o 

Outside of the region (70, tp), ^ grows large rapidly, and the expres- 
sion for Yu is hardly affected at all by this assumption. 

"Physically, the negligible role played by F in the admittance equation 
means that 5 ~ 5o, i.e., the TM helix admittance is not appreciably per- 
turbed by the TE fields excited by Ge . 

With F = 0, (67) may be re-written: 

Yb = ^.IMY„ (72) 
2 /i(70) 

y _ jo* fUyh) — do-Ki{yh) _ /i(7&)1 
7 L^o(7&) + 5o-Ko(yb) /o(7^)J 

(73) 

Here F,, is the helix admittance seen by a thin cylindrical hollow beam, 
with rectilinear electron flow. As in the case of Yb , it may be replaced 
in the vicinity of (70, 7p), by the approximation: 

_(Ts _ To) (aM (74) 
\ dy A=7o 7 " Tp 

Fletcher4 has evaluated the normal-mode parameters for Yn as fol- 
lows: 

To = -To - fc2 (75) 

■ <« 

i+1]' (w'L. "" 

We have used the subscript H to refer the parameters to the hollow beam, 
and will use the subscript B to refer to the solid-cylindrical Brillouin 
beam. 

As Yb and Fw have the same zero and pole, they have the same natural 
propagation constant To, and the same space-charge parameter Q: 

Qb = QH (78) 

This quantity can be found plotted in Fig. 1 of Reference 4, or in Fig. 
A6.1 of Reference 1. 
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From (08), (72), and (74), we find: 

_ (dYB/dy\ rTfc/oOy&ri (7q) 

\F///7=7o ^dYn/dy ly=y0 L 2 /i(76)J7=7o 

The impedance parameters for the two beams are therefore related to 
each other by; 

(8o) 

Both Pierce10 and Fletcher"1 have found the impedance parameter of 
the hollow beam to be related to that of a thin beam along the axis of a 
helix, Kt , as follows: 

KH = 7VWo2(7&)]7-7O (81) 

The gain parameter C is defined by: C3 = (2K){I0/8Vo} (82) 

Thus, for given /o and Fo, the factor by which the gain parameter of a 
thin beam should be multiplied to give that of a hollow beam, is: 

{KH/Krf' = (83) 

This "impedance reduction factor" can similarly be evaluated for the 
finite cylindrical beam with Brillouin flow: 

1/3 
{KB/KT)l,z = ^ h{yb)-Uyb) (84) 

Cutler,7 who calls this quantity Fo, has described how it and the 
parameter Q can be used to compute the gain of traveling-wave tubes. 
The procedure depends upon the evaluation of C and QC. The expres- 
sion for Cb , in Cutler's notation, is: 

Cb ^ (AV/v)1/3 F1F2(Io/SV0)
in (85) 

Here Ko/K is a factor, of the order of 0.5, which corrects the impedance 
of the ideal sheath helix for the physical dimensions and support ele- 
ments of the actual helix. It is best found by measurement. The factor 
Fi is plotted in Fig. 3.4 of Reference 1, and obeys the empirical relation: 

Fi(yd) = 7.154 exp ( — 0.6664 yd) (86) 

Finally, the factor Fz is the impedance reduction factor (84), which is 
plotted in Fig. 3 of this paper for various ratios of the radii, b/a. 

It is of interest to compare the relative gain of beams with rectilinear 
and with Brillouin flow, respectively. Pierce10 has computed a first 
approximation to the impedance reduction factor for the solid-cylindrical 
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beam with rectilinear flow, by averaging E'i over the beam area (with 
Ez for the empty helix): 

(K./KT)m ~ UKyb) - iKyb)]1^, (87) 

Fletcher4 has improved upon this calculation by replacing the solid beam 
with a thin hollow beam of different radius and dc current. This has the 
same electronic admittance Fe and derivative dYc/dy when R = 1. 

The impedance reduction factors for the three types of beams have 
been plotted in Fig. 4, using a typical value of b/a. For the same h , 
Fo, and b/a, the gain parameters C are found to be greatest for the 
hollow beam, and least for the solid rectilinear beam. 

The high gain of the hollow beam is due to its concentration in the 
region of greatest field strength. The greater gain of the beam with 
Brillouin flow, relative to that of a similar beam with confined flow, is 
probably due to transverse electron motion, in two ways:" 

(1) causing electrons to interact with the transverse as well as longi- 
tudinal fields; and 

z 

4 5 
ra 

Fig. 3 — The factor (A'b/AV)"3, or Ft , by which the gain parameter Cy for a 
thin beam should be multiplied to give ('b , the gain parameter for a cylindrical 
beam with Brillouin flow, of the same current and voltage. Computation of CB using 
this factor is described in text following equation (85). 
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Fiji- -1 — Comparalive values of impedance reduction factor for several kinds of 
beams, of the same relative radii hja. 

(2) causing electrons to move preferentially into regions of retarding 
longitudinal fields, a process analogous to bunching. 

CONCLUSIONS 

Field solutions have been presented for the magnetically-focused 
cylindrical beam, when modulated by a small ac signal. Two types of 
beam enclosure have been treated: the concentric drift tube and the 
ideally thin (sheath) helix. 

There are two pairs of unattenuated space-charge waves in the drift- 
tube; one with arbitrary amplitude distribution, and another pair which 
is coupled to the external field (Fig. I). The space-charge wavelength 
of the latter pair is greater than that, of space-charge waves in a similar 
beam with rectilinear flow (Fig. 2). 

The solution of the helix problem consists of the aforementioned two 
space-charge waves with arbitrary amplitude, as well as the usual four 
waves of traveling-wave tube theory, or six waves in all. In order to com- 
pute the gain constant of the growing wave, the field solution has been 
re-written as the admittance equation of a thin beam in an artificial 
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circuit. By means of two approximations, the normal-mode parameters 
of this circuit have been evaluated. 

The first approximation amounts to neglecting the TE fields coupled 
to the TM wave, and is valid for most low-power traveling-wave tubes. 
The second approximation consists of replacing the circuit admittance 
function by an algebraic expression with the same zero and pole, and the 
same slope at the zero. Although thin-beam theory predicts small devi- 
ations of complex roots (of the admittance equation) from the natural 
propagation wave number, it is difficult to judge whether any such roots 
might occur outside of the region in which this approximation holds, 
for the finite beam. 

The space-charge parameter Qn is found to be the same as for a thin 
hollow beam with rectilinear flow (Fig. 1 of Reference 4, or Fig. A6.1 of 
Reference 1). The gain parameter Cb can be computed from Equation 
(85), Fig. 3.4 of Reference 1, and Fig. 3 of this paper. The gain of the 
cylindrical beam with Brillouin flow is found to be greater than that of 
a similar cylindrical beam with rectilinear flow, presumably because of 
transverse electron motion in the former. Its gain, however, is less than 
that of a thin hollow cylindrical beam with rectilinear flow, for the same 
radius, current, and voltage (Fig. 4). 
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Diffraction of Plane Radio Waves by a 

Parabolic Cylinder 

Calculation of Shadows Behind Hills 

By S. O. RICE 

(Manuscript received April 3, 1953) 

Expressions are given for the diffraction field far behind, and the surface 
currents on, a parabolic cylinder. Approximate values for the field strength 
ami current density are given when the radius of curvature of the cylinder is 
large compared to a wavelength. The formulas may have value in predicting 
the shadows that are cast by hills in microwave propagation. The idea of 
representing hills by knife-edges has been used successfidly by a number 
of investigators. The theory of the parabolic cylinder indicates that such a 
representation is valid even for gently rounded hills when the angle of diffrac- 
tion is small. On the other hand, when the angle of diffraction is so large 
that the knife-edge calculations do not apply, the results presented here may 
be used. 

1. INTRODUCTION 

A number of investigators have studied the effect of hills on the 
propagation of short radio waves. Experiment has shown that the field 
far behind a hill may be computed, to a reasonable degree of accuracy, 
by assuming that the hill acts like a knife-edge (half-plane)1. The ques- 
tion naturally arises as to the conditions under which such an assump- 
tion is permissible. Here we attempt to throw some light on this ques- 
tion by taking the hill to be a parabolic cylinder. 

Our results indicate that, for small angles of diffraction, even gently 
curved hills act like knife-edges. However, for larger angles correspond- 
ing to points deep in the shadow or to points high in the illuminated re- 
gion, it may be necessary to use the more exact formulas which take the 
curvature of the hill into account. 

1 See, for example, Ultra-Short-Wave Propagation, J. C. Schelleng, C. R. 
Burrows and E. B. Ferrell, Proc. I.R.E., 21, pp. 423-463, 1933. 

417 
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As an application of our results, a brief study is made of the hypo- 
thesis that very short radio waves are transmitted far beyond the hori- 
zon by successive diffractions over hills or ridges. The ridges are as- 
sumed to be of equal height, to be 40 miles apart, and to have a radius 
of curvature of 100 meters at their crests. At the frequencies considered 
(30 and 300 me) and at the small angles of diffraction required to go 
from one crest to the next, the ridges act like knife-edges. 

At 30 mc and a distance of 280 miles the calculated field is in fair 
agreement with the observed field". At 300 mc and at the same distance 
the calculated field is about 50 db below the observed field. This sug- 
gests that the 30 mc long distance propagation may possibly be ex- 
plained by successive diffractions. The discrepancy at 300 mc may be 
due to any one of a number of reasons. For example, it may be due to 
the effect of the non-uniformity of the atmosphere, or to the roughness 
of our approximations (for one thing, we neglect reflections from the 
ground between the ridges). 

The first theoretical work on the diffraction of plane electromagnetic 
waves by a parabolic cylinder apparently was done by P. S. Epstein.3 

His work makes use of a series of parabolic cylinder functions. When the 
cylinder is large many terms are required for computation. By "large" 
we mean that the radius of curvature at the vertex of the cylinder is 
large compared to the wavelength of the radio wave. 

An entirely different approach was used by V. Fock4"' in 1946. In the 
first paper Fock sketches the derivation of an integral for the current 
density on a large paraboloid of revolution. In the second paper he re- 
derives this integral by considering the form assumed by the field equa- 
tions when a plane wave strikes a gently curved conductor at grazing 
incidence. His result gives the change in current density on a large and 
highly conducting parabolic cylinder as we go from the illuminated 
region into the shadow. 

In 1950 K. Artmann6 examined the diffraction field far behind a large 
circular cylinder. He showed that, for small angles of diffraction, the 

2 A summary of experimental data is given by K. Bullington, Iladio Trans- 
mission bevond the Horizon in the 40-400 Megacycle Band, Proc. I.R.E., 41, pp. 
132-135, 1953. 3 Dissertation, Munich (1914). A more accessible account of this work is given 
in the Encjddopaedie der Math. Wiss. 5, Part 3 (1909-1926) Phys. p. 511. Sec also 
II. Bateman, Partial Differential Equations of Math. Phys., (Cambridge Univ. 
Press 1932) p. 488. 

* The Distribution of Currents Induced by a Plane Wave on the Surface of a 
Conductor, J. Phys. (U.S.S.R.), 10, pp. 130-136, 1946. 

6 The Field of a Plane Wave Near the Surface of a Conducting Body, J. Phys. 
(U.S.S.R.), 10, pp. 399-409, 1946. 

6 Beugung polarisierten Lichtes an Blenden endlicher Dicke im Gebiet der 
Schattengrenze, Zeitschr. fiir Phys. 127, pp. 468-494, 1950. 
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diffraction pattern is shifted by an amount proportional to the power 
of the radius of curvature. Whether the shift is towards the shadow or 
in the opposite direction depends upon the polarization of the incident 
wave. 

In this paper we derive some of the results given by Fock and Art- 
mann by starting with Epstein's series. In addition we investigate the 
diffracted Held at a great distance behind the cylinder. The cylinder is 
assumed to he a perfect conductor in all of our work except for a few 
equations given near the ends of Sections 4, 6, and 7. The procedure is 
similar to that used in the smooth-earth theory.7 The series is converted 
into an integral and then the path of integration is deformed so as to 
gain as much simplification as possible. As might be expected, the results 
for a large parabolic cylinder are similar in some respects to those for a 
smooth earth. Much of the work requires a knowledge of the behavior 
of parabolic cylinder functions of large complex order. Although several 
studies of this behavior have been published, the results are not in the 
form required. For this reason, and for the sake of completeness, several 
sections dealing with the properties of parabolic cylinder functions have 
been included. 

Incidentally, W. Magnus8 has studied the field produced by a line 
source located at the focus of a parabolic cylinder. However, his problem 
is somewhat different from the one with which we are concerned. 

T am grateful to Prof. Erd61yi of the California Institute of Tech- 
nology and to my colleagues at Bell Telephone Laboratories for helpful 
discussions and references which resulted in a number of improvements 
throughout the paper. I am also indebted to Miss Marian Darville for 
performing the rather laborious computations upon which the various 
curves and tables are based. 

2. DISCUSSION OF RESULTS 

Various expressions are given later for the electromagnetic field in 
terms of parabolic cylinder functions. In this section we shall confine a 
good share of our attention to the case in which the cylinder is very 
large compared to a wavelength so that the cylinder functions may be 
approximated by Airy integrals. As in the remainder of the paper, we 
shall be concerned chiefly with the field behind the cylinder and the 
current density on the cylinder. 

7 By "Smooth-earth theory" we mean the formulas for the field produced by a 
dipole near a large sphere. A complete discussion of the theory is given in the 
book by H. Bremmer, Terrestrial Radio Waves (Elsevier, 1949). 8 Zur Theorie des zylindrisch-parabolischen Spiegels, Zeitschr. fiir Physik, 
118, pp. 343-356, 1941. 
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t/' in radians | < 

It turns out that the results for the parabolic cylinder are closely 
related to those obtained by Sommerfeld9 for the diffraction of a plane 
wave by a perfectly conducting half-plane. In fact, the two fields are 
surprisingly similar in the region of the shadow boundary. More pre- 
cisely, the fields are similar for values of the angle i/s defined in Fig. 2.3, 
such that (roughly) 

 wavelength  1/3 

radius of curvature of cylinder at its crestJ 

where the coefficient K has been selected somewhat arbitrarily. For 
larger values of | ^ | the difference between the fields becomes pro- 
nounced. As we go deeper and deeper into the shadow, i.e. as \p becomes 
more and more negative, the field behind a cylinder ultimately decreases 
exponentially with \p. On the other hand, the field behind a half-plane de- 
creases roughly as 1/| i/' |. Since the exponential function decreases more 
rapidly than does l/\\J/\,the shadow behind a hill is darker than the one 
behind a half-plane. High in the illuminated region the field consists of 
the incident wave plus the wave reflected from the illuminated portion 
of the cylinder. For the half-plane this reflected wave is negligibly small 
until reaches 180°. 

First we shall review the situation pictured in Fig. 2.1. An incident 
wave comes in from the left and strikes a perfectly conducting vertical 
half-plane which casts a shadow as shown. The electric and magnetic 
intensities are proportional to exp (iut) where t is the time and w is 
the radian frequency. The unit of length is chosen so that X, the wave- 
length, is equal to 27r. This is done in order to simplify the expressions 
we have to deal with. For example, a plane wave of unit amplitude 
traveling in the positive x direction, as shown in Fig. 2.1, is represented 
by exp (—ix). 

Sommerfeld's exact expressions, for the special case of horizontal 
incidence shown in Fig. 2.1, may be written as 

(hp) £■ = (e ,x + Si) + ^(O), (2.1) 

(vp) H = (e " Si) + £13(0), (2.2) 

where (2.1) holds when the electric intensity E is parallel to the edge, 
and (2.2) when the magnetic intensity H is parallel to the edge. From 

9 Math. Annalen, 47, p. 317, 1896. Sommerfeld's results have been described in 
a number of texts on optics. The book, Huygens' Principle by Baker and Copson 
(Oxford 2nd edition, 1950) deals with this and many similar problems. See also 
Chap. 20 of Frank-von Mises, Die Differenlial-und Integralgleichungen der Me- 
chanik und Physik, 2nd edition, Braunschweig: F. Vieweg and Sohn (1935). 
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the analogy with the radio case, these two polarizations will be termed 
"horizontal polarization" (hp) and "vertical polarization" (vp), re- 
spectively. The incident plane wave for hp is assumed to have an E of 
unit amplitude. This is indicated by the exp { — ix) in (2.1). For vp the 
incident wave is assumed to have an H of unit amplitude. The S's 
are defined by the Fresnel integrals 

h = (2r)1/2 sin ^, h = (2r)1;2cos|, i1'2 = exp (iir/i), 
2 2 

where (r, <p) are the polar coordinates shown in Fig. 2.1 [»Si and ^(0) 
= — .83(0) for an arbitrary angle of incidence are given by Equations 
(5.3), (5.6), and (5.20) of Section 5]. We use the notation -So(0), ^(0) to 
indicate that these functions are special cases of the functions So(h), 
S'i{h) which appear in the analysis for the parabolic cylinder. 

The principal part of the field far to the right of the half-plane, where 
x is positive, is given by exp ( — ix) + >Si whose absolute value is plotted 
in Fig. 2.2. The function .Si almost cancels the incident wave in the 
shadow, and then drops down to small values outside the shadow. 
The function ^(0) is always small in the region we shall consider. It 
becomes large only when <p exceeds tt. It then corresponds to the wave 
reflected from the front (left-hand side) of the half-plane. 

When we are far enough away from the shadow boundary to make 

(2.3) 

^(0) = -^3(0) = — (i/ir)l,2e+ix f" e"" dl 
Jti 

Y 
INCIDENT WAVE SHADOW 

^BOUNDARY 
X 

TRACE OF _ 
HALF-PLANE 

Fig. 2.1 — Diffraction of a plane wave by a half-plane. 
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Fig. 2.2 — The approximate value | e~ix + <Si | of | F? j for hp ami of \ H \ for 
vp at a great distance r behind a half-plane. Here, as in all of our work, the wave- 
length X is 2w. For an arbitrary wavelength replace r by 27rr/X, etc. 

<pr » 1, exp (— ix) + has the asymptotic expressions [see Equations 
(7.7) and (7.8)] 

+ Si 

c(r)/2sin^, ip < 0 (shadow) 
Zi 

e~xx + c(r)/2 sin ^ ^ > 0 

c(r) = i3/2(27rr)-1/2e-,>. 

(2.4) 

(2.5) 

These expressions lead us to picture the field to the right of the half- 
plane as the sum of the incident wave and a wave, cir)/ip, spreading out 
from the diffracting edge10 (for the small <p's of interest, 2 sin y/2 ^ <p 
even though (p2r ^»> 1). In the illuminated region these two waves inter- 
fere with each other to give the oscillations around unity shown in Fig. 

10 See, for example, R. W. Wood, Physical Optics, 3rd edition, p. 220 (Mac- 
Millan, 1935). Curves of equal phase and amplitude have been computed and 
plotted by W. Uraunbeck and G. Laukien, Einzelheiten zur Halbebenen-Beugung, 
Optik, 9, pp. 174-179, 1952. 
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2.2. In the shadow only the edge wave is present and there is no inter- 
ference. Si is not the edge wave in the shadow. 

The edge does not radiate uniformly in all directions. The <p in the 
denominator of c(r)/<p indicates that the edge sends out its strongest 
wave in the direction of the shadow boundary where <? = 0. This ac- 
counts for the decreasing size of the oscillations in Fig. 2.2 as <p becomes 
more and more positive. It likewise accounts for the steady decrease as 
v becomes more and more negative. 

That <82(0) is small in comparison with exp (—ix) + Si follows from 

and the fact that this is small compared to the c(r)/2 sin ((p/2) in 
(2.4) when v is small. 

So far, we have been discussing a special case of Sommerfeld's results. 
Now we turn to the case of the perfectly conducting parabolic cylinder 
shown in Fig. 2.3. Here, as in Fig. 2.1, the incident plane wave exp {-ix) 
comes in from the left. The fields for the two kinds of polarization are 
given by 

where, just as in the half-plane case, the fundamental vectors E and H 
are perpendicular to the plane of Fig. 2.3 and the incident waves are of 
unit amplitude. 

The [exp {-ix) + Si] in (2.7) and (2.8) is exactly the same FresneJ 
integral (2.3) as for the half-plane. S2{h) is a rather complicated integral 

&.(()) ~ c(r)/2 cos | (2.6) 

(hp) 

(vp) 

E = {e 'x -\- Si) + Sztfi), 

H - {e~ix + Si) + SM, 

(2.7) 

(2.8) 

INCIDENT WAVE Y 

•x 

Fig 2 3 — Coordinates used in the discussion of the parabolic cylinder. The 
coordinates such as (0, h) refer to (x, y). The origin 0 of coordinates is at the 
focus of the parabola and h is the height of the vertex or crest, above the origin. 
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(obtained by setting the angle of incidence 6 equal to r/2 in equation 
(5.4)) involving parabolic cylinder functions. When h = 0 the parabolic 
cylinder reduces to a half-plane and S^h) reduces to the value iS?(0) 
appearing in (2.3). The symbol S3(h) represents an integral much like 
S}(h) except that it contains derivatives of the parabolic cylinder func- 
tions. As we might expect, SzQi) and S3(h) behave in much the same 
way as does &.(()). In particular, they are small compared to exp (—ix) 
-f Si at the shadow boundary, and their asymptotic expressions anal- 
ogous to (2.6) hold as ^ and ^ pass through zero. 

S2(h) and S3(h) have been put in a form suitable for computation in 
two cases, (1) when h = 0, which is the half-plane case already discussed, 
and (2) when h and r/h2 are very large. In the second case it is conven- 
ient to introduce new polar coordinates (p, i/O with their origin at the 
crest of the parabola as shown in Fig. 2.3. In these coordinates a circular 
cylindrical wave spreading out from the crest is asymptotically pro- 
portional to 

c(p) = im (27rp)-1/2 e~ip. (2.9) 

In Section 8 it is shown that 

E [c-ix + Si]p - ^ + c{p)h113 ^(r) + ij exp («r3/3), (2.10) 

r = h113* 

is an approximation which gives the field (for horizontal polarization) in 
the region of the shadow boundary far behind a large cylinder. Our r is 
an approximation to the g used there. Here the subscript p on [exp (—ix) 
+ Si]p means that the quantity within the brackets is to be computed 
as though it corresponded to a half-plane with its edge at the crest of 
the parabolic cylinder, so that p, ^ are to be used in (2.3) instead of r, <p. 
Also, 

T / _ 0,-1/3 r A i(u) exp ^ 1/3wr) du 
*(t) = 21 ' i Ai(u) - iBi(u) 

(^n) 
+ 2i rA^) eXP du 

Jo Ai(u) + iBi(u) 

where Ai(u) and Bi(u) are Airy integrals defined by equations (13.12) 
and (13.16), and tabulated in reference.11 In this paper we find it con- 
venient to use the Airy integrals instead of the related Bessel functions 

11 The Airy Integral, Brit. Asso. Math. Tables, Part — Vol. B (Cambridge, 
1946). 
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of order As in (2.3), the fractional powers of i are made precise by 
taking i = exp (iir/2). 

Three kinds of approximations have been made in the derivation of 
(2.10), namely those associated with the assumptions (1) that the angle 
\f/ is small, (2) that h is large, and (3) that r/h' is large. The terms in 1/^ 
and l/r do not cause trouble at yp = 0 because their infinities cancel 
each other. 

The counterpart of (2.10) for vertical polarization is obtained from 
(2.10) by replacing E by H and ^(r) by ^(r), where the subscript v 
stands for "vertical"; and ^„(r) is given by (2.11) when Ai(u) and Bi(u) 
are replaced by their derivatives with respect to u. 

Series for ^(r) + l/r and ^vir) + l/r which converge for negative 
(shadow) values of r are given by Equations (7.31) and (7.53), respec- 
tively, with g in place of r. Table 2.1 gives values of ^(r) and ^(r) 
which were obtained from the series for r negative, and from numerical 
integration of (2.11) and its analogue for r ^ 0. 

When t is large and positive Equations (7.35) and (7.55) show that 

^(r) + l/r ~ (iVr)1'2 exp ( — ir/W), 

Vv(t) + l/r ~ (txr)1/2 exp (iir — it3/12). 

When r is large and negative the leading terms in (7.31) and 
give 

^(r) + l/r im 2.03 exp [(2.025 + i 1.169)r], 

^(i(T) + i/T im 3.42 exp [(0.882 + i 0.509)r]. 

Now that we have expressions for the field what do they tell us? For 
one thing, they may be used to show that the field near the shadow 

(7.53) 

(2.13) 

Table 2.1 —Values of 4>(r) and ^„(r) 

r 1 * (T) 1 arg. ^(r) 1 *v(r) 1 arg. *v{t) 

3 3.13 -93.5° 3.16 + 104.3° 
2 2.21 -1.8° 2.80 192.4° 
1.5 1.945 +21.6 2.44 211.3 
1.0 1.715 +32.5 1.985 219.5 
0.5 1.486 34.2 1.522 218.6 
0 1.254 30.0 1.089 210.0 

-0.5 1.030 22.9 0.724 193.7 
-1.0 0.823 15.2 0.459 167.8 
-1.5 0.648 8.48 0.317 130.6 
-2.0 0.511 +3.79 0.281 92.0 
-3.0 0.338 +0.12 0.288 45.1 
-4.0 0.250 -0.12 0.264 22.3 
-5.0 0.200 -0.02 0.221 9.71 
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boundary is almost the same as for a half-plane. Away from the shadow 
boundary, the field in the shadow can be interpreted as a "crest wave" 
which reduces to the "edge wave" for a half-plane. The crest wave de- 
creases as an exponential function of ^ in the shadow instead of as l/tp 
in the case of a half-plane. In other words it is much darker behind a 
parabolic cylinder than behind a half-plane — and the larger the cyl- 
inder the darker it is. (A glance at Fig. 2.8 shows that this statement 
must be qualified for vertical polarization by requiring the observer to 
be deep in the shadow.) As Figs. 2.7 and 2.8 show, deep in the illuminated 
region the crest wave behaves like the wave reflected (as computed by 
geometrical optics) from the illuminated portion of the cylinder. 

Now we consider expressions for the surface currents. Let J and be 
the densities of the conduction currents which flow on the surface of the 
perfectly conducting parabolic cylinder for the cases of horizontal and 
vertical polarizations, respectively. J is parallel to E and is perpendicular 
to the plane of Fig. 2.3 while JB flows in the plane of the figure. ./„ is 
positive when the current flows in the direction of increasing x. In Sec- 
tion 6 it is shown that when h is large, J and ./„ are given approximately 
hy 

- i^u-y) 
iBiiu) 
.... (2.14) 

exp (— iwy) 

exp (- ix - iy/3) Vi 2/3 exp (- iri 

ro ~ tt/i1'3 X L Ai{u) - iBi{i 

(- iuy) "L 
-j- iBi{u)j ' 

n 
Jv 

Ai\u) + iBi{u) _ 

i exp (— ix — iy/S) f exp (— i~1/3uy) 
Ai'(u) — iBi'iu) 

, . , . (2.15) exp (— my) 
Ai'iu) -f- i Bi'{u)_ 

du. 

These expressions are obtained when the relations (13.17) for Airy 
integrals are used in equations (6.1G) and (6.23). Here fo is the intrinsic 
impedance of free space. In the rational MKS system which we use 
fo = ISOtt ohms. The factor ft) appears in (2.14) but not in (2.15) because 
we assume the incident wave for vertical polarization (H = 1, E = ft// 
= 1207r) to be 1207r times stronger than the one for horizontal polariza- 
tion (E = 1). The primes on Ai(u) and Bi(u) denote their derivatives 
with respect to u. The parameter y depends upon the coordinate x of 
the point at which the current is being observed: 

y = x/2h213. (2.16) 
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Equations (2.14) and (2.15) hold only in the region of the crest of 
the cylinder and for large h. Under these conditions x + tV3 is very 
nearly equal to the distance along the surface measured from the crest 
of the cylinder. 

An expression equivalent to the one for Jv in (2.15) has been derived 
and tabulated by Y. Fock.4 

Series for f,,./ and ./„ which converge for positive (shadow) values of 
7 are given by equations (6.17) and (6.24). When y is large and negative 
the application of the method of steepest descent to integrals (6.16) 
and (6.23) leads to 

UJ ~ -(x/h)e~tx fl + i/^y* +•••], ^ ^ 

Jv 2e~ix [1 - i/4ry3 + •••], 

in which x/h = 2yh~U3. 
Table 2.2 gives values of h1,2toJ exp (ix) and Jv exp (ix). The values 

of J for 7 > 0 were computed from the series, and the ones for 7^0 
were obtained by numerical integration of (2.14). The entries for Jv 

were taken from the more extensive table given by Fock.4 In order to 
express his results in our terms it is necessary to use the fact that the 
radius of curvature at the vertex of the parabola is 2h. A change in the 
sign of i is also necessary because the time enters Fock's work through 
exp (— iwl) instead of exp (iut). The values shown were checked for 
7 > 0 by the series and for 7 ^ 0 by numerical integration of (2.15) 

Fock's table shows that by the time 7 has reached —2 the value oi Jv 

exp (ix) has become 1.982 at an angle of +1.45 degrees. This is close to 
the limiting value of 2 predicted at 7 = — 00 by (2.17). 

It will be noted that, for large values of h, J is smaller than ./„ by 

Table 2.2 — Surface Current Densities 

7 
/j'+o7 exp (ix + i73/3) Jv exp (ix + iy3/3) 

modulus Argument in degrees mod. Arg. 

-1.0 2.16 -25.9 1.861 -15.43° 
-0.5 1.38 -16.8 1.682 + 1.52 

0.0 0.77 -30.0 1.399 0.00 
0.3 0.515 -44.8 1.197 -6.06 
0.6 0.327 -62.9 0.991 -14.23 
1.0 0.167 -90.1 0.738 -26.63 
1.5 0.066 -125.9 0.488 -42.57 
2.0 0.025 -161.6 0.315 -57.98 
3.0 0.0033 -230.7 0.130 -87.57 
4.0 0.00043 -298.0 0.054 -116.75 
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the order of /r1'1' when 7 is of moderate size. It will be shown later that 
the current density decreases exponentially as one moves into the 
shadow, and that its rate of decrease is related to that of the field as 
shown in Fig. 2.6. 

We now take up the detailed discussion of the expressions for the field 
and the current density. It is convenient to consider the current density 
first. When a plane wave strikes a perfectly conducting plane, the sur- 
face current is proportional to the tangential component of H in the 
incident wave, and flows at right angles to it. In the rational MKS units 
we are using, the surface current density is two times the incident 
tangential H. When we consider the illuminated side of a large parabolic 
cylinder and calculate the current density by doubling the tangential 
component of the incident H we obtain the approximations 

which hold when x is large and negative. When h is very large but x/2h 
small these formulas agree with the leading terms of (2.17) which were 
obtained from our integrals for the current density. 

Expressions for the current density deep in the shadow may be ob- 
tained from the leading terms of the convergent series by letting 7 
become large and positive. The exponential decrease is found to be 

where the numbers appearing in these equations are associated with the 
smallest zeros of Ai{u) and Ai'{u), respectively. These formulas for a 
large cylinder are roughly similar to those for propagation over a smooth 
earth. The radius of curvature at the crest of the cylinder is 2h. Setting 
this equal to the radius of the earth gives an exponential rate of decrease 
for J and ./„ which is the same as that over a smooth earth for the 
two polarizations. Of course, the coefficients multiplying the exponential 
functions are different. This agreement is not surprising since the Airy 
integrals are closely related to the Hankel functions of order ^ used in 
the smooth earth theory. 

The surface current densities as a function of the distance h — y 
below the crest for h = 1000 and for h = 0 are shown in Fig. 2.4. The 
equation of the cylinder shows that h —y = x^/Ah so that, from (2.19), 
ft)</ and Jv decrease in proportion to /T1'3 exp [—2.025/i~1/6 {h — y)ll~] 
and exp [—.88/r1/6 {h — y)1/2J, respectively, far down in the shadow. 

foJ « — 2x(4/i2 + a;2)' 

Jv ^ 2e~ix, 

2\—1/2 —11 ') e . 
(2.18) 

UJ | ^ 1.43/r1/3 exp (-1.013.T/r2/3) 

1 | ^ 1.83 exp ( —0.44.T/r2/3), 
(2.19) 
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Fig. 2.4 — The surface current density is plotted as a function of the vertical 
distance below the crest or edge. The curves for h = 1000 and A = 0 are obtained 
from Table 2.2 and equations (2.20), respectively. Here, as always, the units are 
such at X = 27r = 6.28 . . . 

The equations used to compute the curves marked /i = 0 are 

UJ = (tVr)"1'2 [c-> + 2ir1/2 , 

Jv = 2(i/T)m r e~il*dt, 
•/±V7 

(2.20) 

where the upper signs are for the shadow side and the lower ones for 
the illuminated side. The computations are made easier by the relations 

(foJ)- - (ro^)+ = 2, 

(./,)_ + (/,)+ = 2, 
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where the subscripts " —" and " + " denote opposite points on the il- 
luminated side and shadow side, respectively, of the half-plane. These 
relations follow from (2.20).* The radius vector r from the origin is equal 
to —y on the half-plane. Equations (2.20) follow quite readily from (2.3). 
The values of J and Jv for an arbitrary angle of incidence and h = 0 
are given by expressions (6.6) and (6.22), respectively. 

All of the curves in Fig. 2.4, even | \ for h = 1,000, eventually 
approach the value 2 far down on the illuminated side. It may be 
shown that | Jv | and | toJ | for the half-plane decrease like (irr)~1/2 and 
l/(27r1/27-3/2), respectively, deep in the shadow. Hence as we go to the 
right in Fig. 2.4, the dashed curves will eventually cross over and lie 
above the solid curves, which decrease exponentially. The larger h, 
the lower and flatter is the curve for | fo/ |. 

Now we turn to the diffraction field at points far to the right of the 
cylinder. When j ^ | « 1, so that we are not too far from the shadow 
boundary, and h is large, the field is given by (2.10), or by its analogue 
for vertical polarization. In order to get acquainted with (2.10) we first 
examine the field when | | <K 1 but \p'p 1. 

When we are so far behind the cylinder that V'p » 1 even though 
| t/' j <3C 1, the asymptotic expressions (2.4) show that 

c(p)/V, ^ negative (shadow) 
[c-11 + 

c(p) 
* 

Substitution of (2.21) in (2.10) gives 

(2.21) 
t positive 

E 

c(p)/iI/3 ^(r) + ^ exp (fT3/3), iA < 0 

c(p)/i1 3 ^(r) + ^ exp (ir3/3) + e"'x, ^ > 0 

(2.22) 

The presence of c(p) shows that the total Avave may be regarded as the 
sum of the incident wave and a wave spreading out from the crest. The 
crest wave is the analogue of the edge wave, c(r)/<p, for the half-plane. 
In fact, when we are in the region where the 1/r in (2.22) is the most 
important term, the crest wave is approximately 

C(p)/^ (2.23) 

* They also follow from superposition and consideration of the symmetry of 
the currents produced on the half-plane y < 0, x = 0 when — A is impressed. Here 
A denotes the system of currents which flows in the upper half-plane y > 0, x = 0 
when the incident wave falls on a complete plane at x = 0. 
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Fig. 2.5 — The amplitude of the crest wave may be obtained from these curves 
and expressions (2.24). Here t = /t'/a ^ where ^ is small. However p must be large 
enough to make » 1. 

and this corresponds to a half-plane with its edge at the crest of the 
cylinder, r may be small even though we are considering | ^ | to be large 
enough to make (2.21) and (2.22) hold, i.e. large enough to make 
11/' Ip' ' » I. Indeed, multiplying by /i1/3 gives | r |p1/2 » /i1/3 which may 
be achieved for small values of r by making p large enough. 

It follows from (2.22) and its analogue for vertical polarization that 
the amplitudes of the crest waves are 

(hp) 

(vp) 

(27rpr1/2 hm I 4>(r) + 1/t I, 

(27rp)_1 ' fl "' | ^(r) + 1/r |, 
(2.24) 

where the expression (2.9) for c(p) has been used. The last factors in 
(2.24) may be computed from Table 2.1. They are plotted in Fig. 2.5. 

When we go deep down into the shadow where r is large and negative 
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we see from (2.13) that 

^(r) + 1/r | ~ 2.03 e2 026r, 

*v(r) + 1/r 1 ~ 3.42 e
0-882r, 

(2.25) 

so that the absolute value of the field is 

(hp) \E\ ~ (27rp)-1/2 h113 2.03 exp (2.025 h113*), 

(vp) | # 1 ~ (2irp)—1/2 hm 3.42 exp (0.882 li13^). 
(2.26) 

where the angle i is negative. Thus, as Artmann8 has pointed out, the 
field decreases exponentially as we go into the shadow. The larger h is, 
the more rapid is the decrease. This supports the statement made earlier 
that it is darker behind a large cylinder than behind a half-plane. 

Comparison of the expressions for the current density and field 
strength for the shadow regions shows that there is a simple approxi- 
mate relation between them. Near the crest of the cylinder, where x is 
small, the radius of curvature is nearly 2h. Hence the tangent to the 
parabola drawn from the point P (located at (p, xp) deep in the shadow) 
touches the parabola at T where x is approximately —2hf/. This is 
shown in Fig. 2.6. Replacing x by — 2/^ in the expressions (2.19) shows 
that the current density at T is proportional to the field at P as given 
by (2.26). It follows that 

This leads us to picture the field at P as being produced principally 
by the surface currents around T. The effect of the stronger currents 

[P>V) 
Fig. 2.6 — The field strength at point P (deep in the shadow) specified by the 

polar coordinates (p, is nearly proportional to the current density at the tangent 
point T specified by the rectangular coordinates (x, y). 

(hp) 

(vp) 

E/UJ 1 ~ 1.41 h2'3 (27rp)-1/2 

H/Jv 1 ^ 1.87 ti'3 (27rp)-1/2. 
(2.27) 

Y 
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closer to the crest is perhaps blocked out by the curvature of the cylinder. 
For comparison with the horizontal polarization case we note that E 
at (p, \p) for an infinitely long current filament at the origin p = 0 is 
given by 

IE/hi 1 - .5(27rp)-I/2 (2.28) 

where I is the current carried by the filament and the frequency is 
is such that X = 2ir. There is some difficulty with the picture for vertical 
polarization because the current element at T points directly towards P 
and hence should produce very little field there. This is perhaps as- 
sociated with the fact that the (vp) ratio in (2.27) is smaller than the 
(hp) ratio by approximately the factor /i-1/3. 

We now leave the shadow region and consider the field at points well 
inside the illuminated region. Fig. 2.5 shows that for large positive 
values of r the amplitude of the crest wave tends to increase with r. 
The asymptotic expressions (2.12) show that when r is large and positive 

| \Kr) + l/r | « | ^(r) + l/r | ~ (TTT)1'2 = (TTVO"2/^6, (2.29) 

and hence the amplitude of the crest wave deep in the illuminated 
region is, from (2.22) and its analogue, 

(hp) j E - e-" | ~ (2tp)~112 (tt#)1", 

(vp) \ H — e 11 | ~ (Svrp) 1/2 (iriph)112. 

Since (2.30) is derived from the general expression (2.10) it is subject 
to the restrictions mentioned just below equation (2.11). In particular 
the angle \p should be small (but we must still have ^"p » 1 as assumed 
in (2.22)). When \p is positive, an application of the laws of geometrical 
optics to determine the reflection from the curved surface of the para- 
bolic cylinder leads to the expressions12 

(hp) \E - e-"l ~ ["-ta;n ^■/2)1"2 see (iA/2), t>0 

(2.31) 

(vp) \H - e-'l ~ ^ tan^/2) J'- ^ ^ > 0 

for the reflected wave. When \p is small these expressions reduce to 
(2.30) as they should. 

Expressions (2.31) may also be obtained from our analysis by start- 
12 In our two-dimensional case the calculation of the required radius of curva- 

ture, etc., is not difficult. General theorems dealing with problems of this sort 
and references to earlier work are given in the paper, A General Divergence 
Formula, H. J. Riblet and C. B. Barker, J. Appl. Phys. 19, pp. 63-70, 1948. 
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ing with equations (7.36) and (7.56). Furthermore, it may be verified 
that the phase angles of the reflected waves as computed from (7.36) 
and (7.56) agree with those computed from geometrical optics when 
reflection coefficients of —1 and +1 are assumed for hp and vp, re- 
spectively. 

The amplitudes of the crest waves for h = 1,000 and h = 0 are shown 
for hp in Fig. 2.7 and for vp in Fig. 2.8. Of course, when h = 0 the crest 
wave reduces to the edge wave from a half-plane. The curves for h = 
1,000 were computed from equations (2.24) and the curves of Fig. 2.5 
(or their equivalent when r is small). The curves for h = 0 were com- 
puted from 

E | ~ (27rp) -1/2 
+ 

1 

(hp) 

E - c" (2xp) -1/2 

2 sin (^/2) 2 cos (\J//2) 

1 + 1 

t <0 

H {2irp) -1/2 

2 sin (i/'/2) 2 cos (iA/'^) 

1 

\p > 0 

(2.32) 

(vp) 

II - o~ (27rp) -1/2 

2 sin (iA/2) 2 cos {\p/2) 

1 
2 sin (^/2) 2 cos {}p/2) 

\p < 0 

^ > 0 

which follow from (2.1), (2.2), (2.4) and (2.6). 
From equation (2.21) onward we have been discussing the field for 

values of \p and p such that p\p2 1. For these values the concept of the 
crest wave is helpful in visualizing the behavior of the field. Now we 
consider the field at points close to the boundary of the geometric shadow 
far behind the cylinder. This is the region in which Artmann6 was es- 
pecially interested. His results for the shift of the field may be obtained 
from (2.10) and its analogue by taking | iA I to be very small. 

At the shadow boundary \p = 0 and [exp (— ix) -|- >Si]p = Hence 
the region of interest at present is in the neighborhood of the point 
point <i = 0, | exp ( — ix) 4- Si \ = ^2 of Fig. 2.2. A magnified view of 
this region showing the shift of the field is given in Fig. 2.9. The figure 
shows that, for a given value of piA, 1 E \ for hp is less than | H \ for vp. 
As Artmann has pointed out, this is to be expected since the reflection 
coefficient for E (hp) is roughly —1 and the reflected wave therefore 
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c-|h| for half-plane (vp) 
d=lE| FOR CYLINDER (hp) 
e = |H| FOR CYLINDER (vp) 

1 1 1 l 1 1 1 

Fig. 2.9 — Behavior of 1 E ] and | H \ on the shadow boundary far behind the 
half-plane or parabolic cylinder. This is a magnified view of the region around 
/, = 0, j exp (—fx) + Si 1 = Vi in Fig. 2.2. 

tends to cancel the direct wave when ip is very small. On the other hand, 
the reflection coefficient for H (vp) is +1 and the reflected wave tends 
to add to the direct wave. 

The distances 1.71/t1/3 and -1.49/il/3 appearing in Fig. 2.9 are the 
amounts, measured in units for which the wavelength is 27r, by which 
| E | and j H | are shifted by the curvature of the parabolic cylinder. 
If y' — h' is the shift in meters for | E | and if the radius of curvature 
of the crest is a = 2h' meters, Fig. 2.9 gives 0(y' - h') = 1.71 (ph')11* = 
1.71 03a./2)1/3 where (3 = 27r/X. Thus y' - h' = 0.399X (a/X)1'" meters. 
The corresponding shift for | // j is — 0.34GX(a/X)1/'i meters. Artmann 
gives the values 0.39 and —0.20 for the respective coefficients. The 
discrepancy between —0.346 and —0.20 is cause for worry because it 
seems to indicate either a mistake in our work, which I have been un- 
able to locate, or a shortcoming in the approximations made by Artmann 
for the case of vertical polarization. 

As h approaches zero the parabolic cylinder becomes a half-plane 
and the curves d and e should approach curves b and c, respectively. 
According to Fig. 2.9 both d and e approach curve a. This failure is an 
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indication of the errors introduced by the approximations used in the 
derivation of (2.10) and its analogue. 

3. RADIO PROPOGATION OVER A SUCCESSION OF RIDGES ON THE EARTH'S 

The results mentioned in Section 1 concerning propagation over a 
succession of ridges may be obtained from the expressions and curves of 
Section 2 as follows: Consider the situation shown in Fig. 3.1. Let a 
radio wave start out from a transmitter at T. We assume that by the 
time it arrives at the first ridge at P it has become equivalent to a 
plane wave of amplitude A/C traveling in the direction TP, where A is 
a constant depending on the strength of the transmitter. For the sake 
of simplicity the waves reflected from the ground are neglected. In a 
more careful study they would have to be included.* 

In order to calculate the strength of the wave at the second ridge, 
we assume it to be a crest wave coming from P. Let G denote the value 
of | I? | (we assume the case of horizontal polarization since the reflection 
coefficient of physical materials approaches —1 for almost grazing in- 
cidence) at Q corresponding to a plane wave of unit amplitude incident 
on P. From Fig. 3.1 we see that the values of \p and p to be used in com- 
puting G are \p « -C/R, p = Zirf/X, X = wavelength, R = radius of 
earth. The value of h depends upon the radius of curvature of the ridge: 
2h = 27r (radius of curvature)/X. 

0 
Fig. 3.1 — Diagram showing ridges at P and Q which diffract the radio wave 

starting from T so that a portion of it is received at S. 

* A method for doing this (for one hill) is given in Reference 1, page 417. 

SURFACE 

T S 
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The amplitude of the wave striking the ridge at Q is AG/f\/2. The 
\/2 comes from the horizontal side wise spreading of the wave in going 
from f to 2f. If we were dealing with the energy instead of the amplitude, 
the factor would be 2 instead of \/2. When this wave is assumed to be 
plane and traveling in the PQ direction, similar reasoning shows that 
the amplitude of the disturbance at the receiver S is AG2/f\/3. 

If, instead of two ridges at P and Q, as shown in Fig. 3.1, there are N 
ridges between the transmitter at T and the receiver at S, the amplitude 
of the radio wave at S is AGS/(\/.V + 1. The distance between T and S 
is approximately (N + 1)^, and the free space amplitude at 5 is ^1/ 
(N + 1)^. Hence 

Actual Amplitude at S i ini/2 /o —     ——j — = Li {J\ -p l) . id.ij 
Tree Space Amplitude at S 

The actual field at S is therefore 

20 N login (1/G) - 10 logI0 (A + 1) (3.2) 

db below the free space field. 
As an example, let us assume a distance of 280 miles between the 

transmitter and receiver, and a distance of 40 miles between successive 
ridges. This gives A" = (5. For a wavelength of 10 meters and a radius 
of curvature of 100 meters for the diffracting ridges, the formulas of 
Section 2 show that the ridges behave like half-planes and that G 
0.227. Equation (3.2) then says that, for a distance of 280 miles and a 
wavelength of 10 meters the actual field should be about G9 db below 
the free space field. Although this is in fair agreement with the ex- 
perimental results, calculations for other distances indicate that the 
field strengths predicted by (3.2) tend to be smaller than the ones 
observed. 

When the work is carried through for X = 1 meter and a distance of 
280 miles, (3.2) says that the field is 120 db below free space. The ob- 
served fields are 70 zfc 15 db below the free space value. 

These figures suggest that the roughness of the earth's surface might 
possibly account for transmission far beyond the horizon for wavelengths 
of the order of 10 meters. For wavelengths of the order of 1 meter either 
the approximations leading to (3.2) break down or some other explana- 
tion is required. 

4. SERIES FOR THE ELECTROMAGNETIC FIELD 

Here we set down series for the electromagnetic field when a plane 
wave strikes a perfectly conducting parabolic cylinder. Since Epstein's 
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classical work deals with the general case of finite conductivity, the 
series we use are special cases of the ones discussed by him. 

The parabolic coordinates (ij, 77) which we shall use are related to the 
rectangular coordinates (x, y) and polar coordinates (r, <p) as follows: 

x + iy = (^ + ivf/Zi = r e*, 

x = £t] = r cos (p, y = (??" - f)/2 = r sin v, 

r = {x -{• y2)m = + v2)/2, 

dx2 + dy2 = (^2 + y2) (df + dy2) = 2r(df + dy2), 

£ = (2r)112 cos(v/2 + 7r/4), 

y = (2r)1/2 sin(^/2 4" t/4). 

The lines y = constant are a series of downward-curving confocal 
parabolas having their focus at the origin. The parabolic cylinder x' = 
4/t(/i — y) is given by y = 2h. This special value of y will be called yo: 

(4.1) 

yo = {2h) ^0, h = yi/2. (4.2) 

When yo = 0, the cylinder reduces to the half-plane .t = 0, 1/ ^ 0. The 
lines ^ = constant are halves of upward-curving confocal parabolas 
having their common focus at the origin. Outside the cylinder y > yo ^ 0, 
so y is always positive in our work, ij is positive in the half-plane x > 0 
and negative in x < 0. 

For much of our work we shall assume the incident wave to come in 
at the angle 0, 0 ^ as shown in Fig. 4.1. As mentioned in Section 

INCIDENT WAVE 

X 
4=0 

.4 =CONSTANT 

■X 

/ 77 = CONSTANT 

h Y 
/ 0 2h 

y = o 

X 

r)=Vo 
Fig. 4.1 — This diagram shows the angle 0 of the incident wave and the surface 

of the perfectly conducting cylinder x2 = 4/i(ft — y) (or 77 = yo). 
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2, the field quantities are assumed to depend upon the time through the 
factor exp{iut) where w is the radian frequency. 

The wave equations for horizontal and vertical polarization are, 
respectively, 

^ ^ + (£2 + = 0 (4.3) 

^ ^ + (£2 + V-) H = 0 (4.4) 
d? d-q- 

where, as explained in Section 2, the unit of length has been chosen so 
that the wavelength X = 27r. On the surface of the perfectly conducting 
cylinder, i.e. for 77 = 770, we must have E = 0 and dH/dr\ = 0. When 
E and H are known the remaining components of the field may be 
computed from Maxwell's equations. 

Special solutions of (4.3) (and (4.4)) are 

exp [i(v
2 - r)/2] Untti1'2) Univi'112), (4.5) 

exp [f(772 - £2)/2] Until12) Wnivi'1'2), (4.6) 

where i'2 stands for exp (ix/4) and Un(z), TFn(z) satisfy the equation 

(fTn{z)_ _ ^ dTnizl + 2nTn{z) = 0. (47) 
dz- dz 

Another solution of (4.7) with which we shall be concerned is Vn{z). 
These three solutions are defined by contour integrals of the form 

(27rf)~1 J exp [/(/)] dt where /(/) = —(' + 2zf — (n + 1) log L 

The path of integration for Un(z) comes in from - ^ where arg I = -r, 
encircles the origin counterclockwise and runs out to — » with arg 
t = tv. The path for Vn(z) runs from — » where arg f = tt to + 00 where 
arg t = 0, and the path for Wn(z) runs from + =0 to - where arg 
t = —tt. The integrals are written at greater length in equations (9.1) 
and the paths of integration are shown in Fig. 9.1. Since the paths may 
be joined to form a closed path containing no singularities of the inte- 
grand it follows that 

un(z) + Vn(z) + Wniz) = 0. (4.8) 

When n is a non-negative integer 

UM = Hn(z)/n.' = tzf. e'' e"' (4.9) n! dz'1 
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where Hn{z) is Hermite's polynomial. When z becomes very large the 
leading terms in (9.17) and (9.16) give 

un{z) - VzT/m, (4.io) 

Wn(^r1/2) ~ ;(*1/2A)n+1 e-^/ZTv1'2. (4.11) 
In order to obtain a series for the incident wave 

exp [ — ix sin 0 -f iy cos 6] 
shown in Fig. 4.1 we consider the special case 0 = 0. In this case the wave 
is simply exp(zy) or exp [f(i?2 — £2)/2] and may be obtained by setting 

= 0 in (4.5). This suggests that the incident wave may be expressed 
as the sum of terms like (4.5). The series turns out to be 

exp [ — ix sin 0 + iy cos 0] 

= exp [— it-rj sin 6 -\- i cos d{r]2 — £2)/2] 

= exp [— izz' sin 0 — cos 0(22 + 2/2)/2] (4.12) 

where 

= e'" sec (0/2) E n/(- iw/2)nUn(z)Un(z') 
n—0 

w = tan (0/2), 

^ = ^1/2, (4.13) 

/ = ^-1/2. 

This series has been studied by a number of writers. It goes back to 
Mehler13 who obtained it by evaluating the integral 

tt 1/2 ex2 f exp [— (l — iy)1 — (x -f iat)2] 
J— CO 

dt 

first in closed form, and then as a series (by using the generating func- 
tion exp [— {—iat)2 + 2{—iat)x] for //„ (x) and integrating term wise). 
This leads to 

(1 - a2)'11 exp 
2xya — {x2 + y2)a2 

1 - a2 

W-14) 
= E Hn(x)Hn(v) a'/Tn! 

which is equivalent to (4.12). Since (4.14) converges when |a| < 1, 
(4.12) converges when | w \ < 1 or | 0 | < 7r/2. 

13 Reihenentwicklungen nach Laplaceschen Functionen hoher Ordnung, J. 
Heine Angew., Math., 66, pp. 161-176, 1866. 
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When the incident wave strikes the cylinder the reflected wave has 
some of the characteristics of a wave spreading radially outwards. Such 
a wave contains the factor exp (— ir) = exp [ — f (£" + v')/^] ■ Consideration 
of the exponential factors in (4.(i) and (4.11) suggests that the reflected 
wave may he expressed as the sum of terms of the form (4.0). The co- 
efficients in this series are to be determined so that i? = 0 or dH/drj = 0 
at the surface ?? = rjo, the incident wave being represented by (4.12). 

For the case of horizontal polarization this procedure gives 

E = eiu sec (0/2) jt n!(- iw/2)nU„(z) [Un(z') (4 15) 

-W,Xz')Un(z'0)/Wn(z'o)] 

E = exp [ — ix sin d + iy cos 6] 

- c" sec (e/2) I: n!{— iw/2rU,<.zWn(z')UnU)/Wn(zl) (4-16) 

0 

for the complete field. These are special cases of Epstein's results. Here 
z'q is the value of z' which corresponds to the surface of the cylinder: 

Zo = rl% = (2h/i)in (4.17) 

The entries for regions II and IF (these are regions in the m-plane 
(m = 7i+l) which, as Figs. 11.2 and 12.2 show, contain the large posi- 
tive values of n) in Tables 12.2 and 12.4 of Section 12 may be used to 
show that as ?i —> 

Vn(zo)/Wn(zo) ~ i-2n exp [27?0(2m)1/2], 

Un(zo)/Wn {zo) = — 1 — VM/WM, (4 18) 

Un(z)Wn(z') eXP ^ ~ "(2n/i)1'!l 4[r(l + n/2)f 

{exp[ — |(2nA)1/2] + i2" exp [^(2n/i)1/2]}. 

Since 

n//fr(l + 7i/2)]- ~ 2" (x/i/2) -1/2 

the series in (4.15) and (4.16) converge if | w 1 = | tan 0/2 | < 1. 
Series for JI similar to those of (4.15) and (4.16) may be obtained for 

the case of vertical polarization. The boundary condition at r? = rjo 
is now dH/d-q = 0. It is convenient to introduce the functions 'U„(z), 
'Vn(z), 'Wn{z) defined by 

'Un{z) = -zUn(z) + dUn{z)/dz (4.19) 
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and the two other equations obtained when U is replaced by V and W. 
The prime is placed in front of U instead of behind to avoid mistaking 
'Un{z) for dU„(z)/dz. The function 'Un{z') makes its appearance when 
dH/dt] is calculated for the boundary condition. Since iy = —{z2 + z'')/2 
we have 

e''Un{z') = rlne" 'U„(z'). (4.20) 
arj 

The analogues of (4.15) and (4.16) for vertical polarization are (as- 
suming now that H for the incident wave is of unit amplitude). 

H = c'" sec (0/2) ^ n!{—iw/2)nUn{z) (421) 

[Un{z') - Wn{z')'Un{z,)rWn^)], 

= exp [—ix sin 6 + iy cos 0] 
(4.22) 

- c'"" sec {d/2)Y.n!{-iw/2)nUn{z)Wn{z'yUn{z0)/'Wn{zQ), o 

and these series converge if | w \ < 1. 
If the parabolic cylinder is merely a good conductor, instead of being 

perfect, the boundary conditions at r? = ryo are approximately14 E = 
— Ez = f//. Here E^ and H£ denote the ^ components of the elec- 
tric and magnetic intensities and f is the intrinsic impedance 

r = [iwAg + icoe)]1'2 (4.23) 

of the cylinder material, f is assumed to be small compared to the 
intrinsic impedance fo = (MnAu)"' = w/io (since X = 27r) of the external 
medium. In these expressions n, e, g are the permeability, dielectric 
constant, and conductivity of the cylinder; and po and eo refer to the 
external medium. 

When we set 
(r = + vl)1'2 ro/f, (4.24) 

r = + vl)m t/to, 

the boundary conditon for hp becomes aE = —dE/dz' at z' = z'o. When 
a is assumed to be constant we obtain 

E = c'" sec(0/2) S n!{-iw/2)nUn{z) 
0 (4.25) 

\Un{z') - Wn{z')[<TUn{z,) + 'U^MaWM) + 'Wniz'*)]] 

" Electromagnetic Waves, S. A. Schelkunoff, D. Von Nostrand Co., N. Y. (1943) 
p. 89. See also G. A. Hufford, Quart. Appl. Math. 9, pp. 391-403, 1952, where ref- 
erence is made to the work of Leontovich and Fock. 
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which reduces to (4.15) when o- —> =o . The constancy of a may be achieved 
by either taking the properties of the cylinder material to change in a 
suitable way or, roughly, by taking tjo (and hence h) to be so large that 
only the nearly constant values of a at the crest of the cylinder have an 
effect on the result (assuming 9 = 7r/2, and restricting our attention 
to the region near the shadow boundary). 

The corresponding expression for vertical polarization may be ob- 
tained from (4.25) by replacing E and a by H and t, respectively. We 
shall refer to (4.25) and its analogue later in connection with the field 
in the shadow (Section 7) and with Fock's0 investigation of the surface 
currents on gently curved conductors (Section 6). 

5. INTEGRALS FOR THE FIELD 

When the curvature of the cylinder is small, i.e., when h is many 
wavelengths, the series of Section 4 converge slowly. The work initiated 
by G. N. Watson15 on the smooth earth problem suggests that we con- 
vert the series into contour integrals with n as the complex variable of 
integration. When this is done we get an integral with the path of in- 
tegration Li shown in Fig. 5.1. Thus, for example, expression (4.16) for 
E is transformed into 

E = exp [—ix sin 0 + iy cos 6] 

eiv sec - /. \ n (5.1) 
 [ GT UMWn(i')UnU) dn/WMi). 2t Ji,! \ 2 / sin irn 

At first sight it seems that not much can be done with this integral 
because the integral obtained by deforming Li into Lo does not converge 
(this is explained in the discussion of Table 5.1). However, some ex- 

L2 
L3 

( 

n-PLANE 

L. 

-2 ^ \ .0 1 2 

n = -Lh = -77o2/2 

r=-ZEROS OF Wn (Zq) 

Fig. 5.1 — Paths of integration in the complex n-plane. 
16 Proc. Roy. Soc., London (A) 95, p. 83,1918. 
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perimentation shows that if we set'Un(zo) = —Vn(z'0) —Wj/o) in (4.16), 
the series splits into two series, one of which may be summed and the 
other may be converted into an integral along the path L* of Fig. 5.1: 

E = exp [—ix sin 9 + iy cos 0] + £>i + SiQi), 

Si = E" sec (0/2) YJn!{-iw/2)"Un{z)Wn{z'), ^ ^ 

SoQi) = eiu sec (0/2) ^ n!{-iw/2)nUn{z)Wn{z')Vn{z0)/Wn{z0). o 
The series for Si may be summed by replacing Un{z) and TFn(2') by 

their expressions (9.19) in terms of definite integrals, and interchanging 
the order of summation and integration. The resulting series may be 
summed and the integrations performed. The result is Sommerfeld's 
integral for a diffracted plane wave: 

& = - (i/Tr)1'V" •+i" ' f e-"'dt, 
JTi 

Ti = V cos9- - £ sin ^ = (2r)1/2 sin i} + ^ 

(5.3) 

The inversion of the order of summation and integration may be 
justified when [ w [ = | tan(0/2) | < 1 (in which case the series in (5.2) 
converge) by using (1) the result that [ Rn 1 < I ciN/N! | when a is real in 

E ^ = e" - R*, 
o n! 

and (2) the inequality 

I 
iN exp [-/2 + 2mbt] dl 

< r dt r exp [ — 2at' + 23,2bt] dl 
Jo 

< A2~Nb~ll2N~lliN! exp(26Ad/2) 

This inequality holds when N » b2 and at the same time iV » 1. The 
value of A is independent of N and 6 is a number which exceeds j ^ |. 
In this work the parameter a has been arbitrarily introduced; and has 
then been chosen so as to make the product of the two integrals a mini- 
mum when N is large. This value of a is bN I/". 

When the series (5.2) for So{h) is converted into a contour integral 
taken along the path Li, by the procedure used to obtain (5.1), it is 
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seen that Li may be deformed into L> and we obtain 

iy 6 

S,(h) = —^ /■ (ff r(Tt + ^ U.(z)Wn(z')Vn(z'o) dn/W„U) (5-4)- 
2i Jl.2\2/ sin irn 

Whether a particular integrand, such as the one shown in (5.4), con- 
verges at the ends n = ±fco of Li can often be decided from Table 5.1. 
This table gives a rough idea of the behavior of the various functions in 
terms of powers of i. For example, if the integrand should turn out to 
be proportional to i" = exp(f7m/2) at n — fee, the integral will con- 
verge like exp ( —tt | n | /2). 

Table 5.1 

Function 
Order of Magnitude — Rough Approximation 

near n = ix near n = —ix 

in 0 oo 
l~n CC 0 
sin irn i-2n i2n 

r(n + 1) ln l~n 

Un{z) j-Snli 2 3n/2 
Vn{z) y—3n / 2 i-n/i 
Wn(z) inli y3n/ — 

The approximations for r(w + 1) follow from its asymptotic expres- 
sion, and those for the parabolic cylinder functions come from Tables 
12.2 and 12.4. The entries for the cylinder functions may also be sur- 
mised from expressions (9.4) which hold for 2 = 0. 

Table 5.1 may be used to show that the integrand in (5.1) is of the 
order of i" as n —> Hence there is no hope of deforming Li into 
Li in this case. On the other hand, the integrand in (5.4) is of the order 
of i" as 11 —«■ f oo and of i~" as n —> — foo, and therefore (5.4) converges 
exponentially. In fact, it converges for all real positive values of w = 
tan 0/2. This enables us to obtain an expression for the field which 
holds for 0 < 0 < tt (i.e. it is not subject to the restriction | w | < 1 re- 
quired by (4.16)). This expression, which is fundamental for our work, 
has the form 

L - exp [—ix sin 0 + iy cos 0] + Si + Si (h). (5.5) 

Here -Si and Si(h) are given by (5.3) and (5.4), respectively. 
In working with (5.5) it is sometimes convenient to use the expression 
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r' ..,2 (5-6) 
dt 

exp [—ix sin 0 + iy cos 0] + Si 

/' i 
e~xt 

oo 

which follows from (5.3) and 

f exp (— it2) dt = (tt/z)1'2. (5.7) 
J—oo 

The development leading to (5.5) shows that is satisfies the boundary 
condition /? = 0 at 77 = rjo for 0 < w < 1. That (5.5) also satisfies the 
condition for the extended range 0 < w < « follows immediately from 

e " sec - 
u 

[ (^X -r("' + 1:1 VMVnW dn 
Jl., \ 2 / sm im 

*ri _ (5-8) 
= — (z/ir)1'2 exp [ — ix sin 0 + iy cos 0] / exp { — it1) dt J—00 

= —exp [ — ix sin 0 + iy cos 0] — »Si 

when we note that setting 2' = Zo reduces S^h) to the left hand side of 
(5.8) (with z' = zo). 

Equation (5.8) is due to T. M. Cherry16 who obtained it by expressing 
the cylinder functions as integrals and interchanging the order of in- 
gration (he works with the function Dn(z) of our equations (9.2)). Sub- 
stituting the integrals (9.19) for Un(z) and Fn(2/) in (5.8) and inter- 
changing the order of integration leads to a similar derivation. Equation 
(5.8) may also be obtained by deforming Li into Li when 0 < w < 1 
and into L3 when I < w < ^. This leads to the two series 

sec i Z (-iu)/2)Vt7n(2)F„(2'), (6.0) 
2 n=0 

-/'seel E (-iW2)"[r(« + l)!7.(z)]7„(/) (5.10) 
2 „=-i 

which may be summed in much the same way as was (5.2) for Si. 
An expression for E which is useful in the study of the current density 

on the surface of the cylinder may be obtained from (5.5) by combining 
expression (5.8) for exp [-ix sin 0 + iy cos 0] + Si with expression (5.4) 

10 Expansions in Terms of Parabolic Cylinder Functions, Proc. Edinburgh 
Math. Soc., Ser. 2, 8, pp. 50-65,1948. 
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for SiQi): 

iy 0 

E = f (f)" r(" + ^ U„(z)WnM 
2i Jl< \ 2 / sin m (5.11) 

T Vn{z'o) Vn{z') "| , 

ra " j 

When w exceeds unity (or when w = i and ^ > v ^ Vo ^ 0) in (5.11), 
it may be verified with the help of Tables 12.2 and 12.4 that L2 may be 
deformed into L3 + Li. When n is a negative integer the quantity within 
the brackets in (5.11) vanishes because of (4.8) and because Un(z) = 0. 
The contribution of Li is zero since it encloses no poles. The contribution 
of Li is equal to the sum of the residues at the poles given by Wn(zo) = 0. 
Hence, when iv > I, 

E = —ire1" sec ^ 
2 8 = 1 

where n = ns is the sth zero of Wn{zo). This series also converges when 
w = 1 and ^ > r? ^ 770 ^ 0 (which is roughly the shadow region). The 
preceding inequality does not necessarily specify the complete region 
of convergence. 

Cherry16 has also pointed out that the expression for a plane wave 
given by A. Erdelyi17, namely (in our notation) 

exp [ — ix sin 6 + iy cos 6] 

iy 6 

= _Tp/- (5-13) 
2i Jl2 \ 2 / sin ttn 

+ Un{-z)Vn{-z')]dn, 

may be regarded as the sum of the negative of (5.8) and a similar ex 
pression with if and v replaced by — £ and —77. In informal discussions 
with the writer, Prof. Erdelyi has pointed out that the work leading to 
our expression (5.5) for the field may be considerably shortened by 
starting with some known integral for the impressed field, such as (5.13) 
or a related result. One way of doing this is to take 

exp [ — ix sin 6 + iy cos 6] + .S'i, 

iw\n Tin + l)U„(z)Wn(z')Vn(z0) , ^ 
'2 / sin irndWn(z'o)/dn 

1 
ln=n. 

17 Proc. Roy. Soc Edinburgh, 61, pp. 61-70,1941. 
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as given by the left hand side of (5.8), to be the impressed field in the 
equation 

E = impressed field + reflected field 

From the form of (5.8) and the discussion of expression (4.6) (given 
between equations (4.14) and (4.15)) we are led to assume the reflected 
field to be an outgoing wave of the form 

e " sec - 
u 

[ fe)" r(" + ^ Un(z)W„(z'Mn) dn 
JLn\2/ sm 7m 

where a(n) must be chosen so as to make E vanish on the surface of the 
cylinder. This gives a(n) = Vn(zo)/W„(zo) and leads directly to the 
expression (5.11) for E. 

When the incident wave is vertically polarized, integrals for H may 
be obtained from the series of Section 4 in much the same manner as 
were the integrals for E. The analogues of the earlier results are 

H = exp(—ix sin d + iy cos 6) 

el" sec - 
f (™y UZL+1) U„(.!!)w„(z'yun(4) dn/'Wn{z'o), 
Jr.! \ 2 / sin irn 

(5.14) 

2i 

H = exp { — ix sin Q + iy cos 0) + »Si + S-i{h), (5.15) 

= -2^ L (T)" Sr (5.16) 

'Vn{zo) dn/'Wn{zo), 

e sec - 
H =  - [ (—)" r{n + - U„{z)Wn{z') 

2i Jlo \ 2 / sm irn (5.17) 

'Vn{z'o) Vn{z') 

I'WnU) Wn{z')\dn' 

  ^ [{iw/2)nV{n + l)Un{z)Wn{z'yVn{z,)-\ ^ 
H = — ttc sec (0/2) 22  ■ «/ttt* 7 77 77  (5.18) 

7^i\_ smwnd Wn{zo)'dn 

In these formulas 'Un{z), etc. are defined by (4.19); w, z, z' by (4.13), 
2o by (4.17). In (5.14) w is restricted to 0 < w < 1. In (5.15) is 
given by (5.16), and w may be anywhere in 0 < to < co. In (5.17) w 
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may also lie anywhere in 0 < «; < cc, but in (5.18) it is restricted to 
1 < < qo except when £ > (roughly the shadow region) in which 
case w may be unity. In (5.18) n = n3 is the sth zero of '^(zn)".' The 
zeros of 'Wn(z'a) interlace those of Wn(zo) shown in Fig. 5.1. 

When h = ril/2 = 0 the parabolic cylinder degenerates into a half- 
plane and our solutions reduce to Sommerfeld's expressions for waves 
diffracted by a half-plane. It may be shown that if 

T2 = t, cos | + £ sin ^ = (2r)1/2 sin ^ , (5.19) 

we have 

*82(0) = — (z'/tt)1 2 exp [ix sin 6 -|- iy cos 6] I e~"' dl, 
Jti (5.20) 

S3{0) = —>82(0). 

When this expression for *85(0) is added to (5.6) we obtain Sommerfeld's 
result for the case of horizontal polarization. 

One may verify that the series (5.12) leads to Sommerfeld's result as 
z'o approaches zero. By neglecting 0(22) terms in (9.3) and setting na = 
— 2s + for the sth zero of irn(zo) we may obtain the following rela- 
tions which are needed in the course of the verification 

Va = -4iz'0T{s + l/2)Arr(s) + , 

dWn(zo)/dn at na = r(s)/4 + • • • , 

Vniz'o) at ns = —2iz'0V(s + l/2)/7r + ■ • • , (5.21) 

Lsin 7rR.aTFn(2o)/5nJn=nj 
_ * ^ 

6. SURFACE CURRENTS ON THE CYLINDER 

As shown in Fig. 6.1, the surface current J on the perfectly conducting 
cylinder 77 = 770 is parallel to the crest of the cylinder (and to the elec- 
tric intensity E) when the incident wave is horizontally polarized. We 
have from Maxwell's equations in parabolic coordinates 

J = [-Hi,.,, = (if,)"1 (2r)^,/2 [SE/di,],.„. (6.1) 

Here //£ is the component of magnetic intensity in the £-direction. 
fii is the intrinsic impedance of free space given by fo — (/inAn)"2 = ojmo 
where the second part of the equation follows from 27r/X = coOxoeo)1'2 
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and X = 2t. The E0 and the Ho of the incident wave are related by 
H0 = E0/£o = 1/fo since E0 = 1. In rational MRS units fo = ISOtt ohms. 

The derivative in (6.1) may be obtained by differentiating expression 
(5.11) for E and then setting tj = rjo- Use of the Wronskian (9.9) for 
Vn(z'o), Wn{zo) then takes (6.1) into 

tJ = M, f {iwYUn(z)/WSz>) 
Jl- sin ttii 
  (6.2) 

II-. sin irn 

where w = tan (6/2), Li is show in Fig. 5.1, 2 and z'o are given by (4.13) 
and (4.17), and 

1/2 —»> 
M0 = (i/87r/-)1/2c "sec ^ 

r = (r + Vo)/2. 

In this Section r will be restricted to mean a radius vector drawn to the 
trace of the cylinder on the (x, ij) plane of Fig. 6.1. 

Closing Li on the right and on the left gives the two series 

f0./ = 2iMo E {-iw)nUn{z)/Wn{zo\ 0 < ^ < 1, (6.4) 
n=0 

= -2i7rMo E [" ■ /* ;1 ' 1 < ^ (6-6) S l_sm TT/l 5lr ,1(2o)/d?lJn=na 

where n, is the sth zero of TF„(zo) regarded as a function of n. 
For the half-plane case rjo = 0, and (9.4) gives 

TFn(O) = -r/2r(l + n/2). 

In this case the series (6.4) may be expressed as an infinite integral 

>E 

H 4HV 
^j/ 

/ 0 

\ 

Fig. 6,1 — Relationship between surface current density J and electromagnetic 
field when incident wave is horizontally polarized. E and J are normal to the 
plane of the paper. 
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when the integral for r(l + w/2) is inserted and the sum (9.22) [i.e., 
the sum for the generating function of Un{z)\ used. Integrating part of 
the result gives 

iv/ = (2//irr)1/;! cos ^ \e~" 

r 1 (6-6) 

- 2i( sin " e-'""1 / exp (-if) dl . 
2 sin (S/2) J 

In (6.6) r is the distance along the half-plane as measured from the 
edge: r = £2/2 = | t/ |. Positive values of ^ correspond to the shadowed 
side of the half-plane and negative values to the illuminated side. With 
this interpretation (6.6) agrees with the current density obtained from 
Sommerfeld's expression for the field. 

Although (6.6) has been derived from (6.2) on the assumption that 
0 < w; < 1 it also holds for 0 < mj < » as may be shown by analytic 
continuation. Again, (6.6) may be obtained from (6.5). 

Since the factor r~1/2 comes from the multiplier il/o in (6.4), it is pos- 
sible that (6.6) may give one an idea of how the current density behaves 
near the crest of a thin cylinder which is almost, but not quite, a half- 
plane. Of course, r would have to be interpreted as shown in Fig. 6.1. 

In order to study J when the radius of curvature of the cylinder is 
large compared to a wavelength we consider the case d = 7r/2, i.e. w = 1, 
in which the incident wave comes in horizontally. In this case most of 
the variation of the current density occurs near the crest of the cylinder 
where, as it turns out, ^ is of the order of V/3, being large. 

At the beginning of the investigation rough calculations of the inte- 
grand in (6.2), based on the asymptotic expressions of Section 12, sug- 
gested that for small ^ and large tjo: 

(a) Most of the contribution to the integral (6.2) comes from the 
neighborhood around point C shown on Fig. 6.2 where w = n + 1 = 
z'q /2 = —i-q^/2 = —ih. Point C is a critical point associated with the 
asymptotic behavior of Wn{z0). 

(b) The path of steepest descent for (6.2) roughly corresponds to the 
line ACD of Fig. 6.2, C being the high point of the path. Along this 
path Im [/(/<,) - = 0 where/(0 = -t' + 2zt - m log /, m = n + 1, 
is the function entering the definition (10.1) of the parabolic cylinder 
functions, and /«, h are the saddle points of exp [/(/)]. This path in the 
n-plane separates the regions in which IF„(zo) has different asymptotic 
forms. It is the boundary of region IIP in Fig. 12.2 and has been studied 
in Sections 11 and 12. 

Once (6) is verified the truth of (a) follows almost immediately since 
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the path of integration Lo may be deformed into ACD without passing 
over any singularities of the integrand of (6.2). 

In order to verify (b), we note that the entries in Table 12.3 for Wn(zn) 
show that along ACD 

Wnizo) ~ A'o « exp [f{to)]. (6.7) 

Here the expressions for Wn(z'o) along ACD are taken to be those cor- 
responding to the regions I'h and II' shown in Fig. 12.2. In making the 
last approximation in (6.7) we have neglected the slowly varying co- 
efficient of the exponential function in the expression (12.9) for Ao. 
Since 1 ^ | « 170 we set £ = 0 in Un{z). Then upon using the values (9.4) 
for f/„(0), (6.7) for Wn(zo), and unity for w, we see that the integrand 
of (6.2) behaves like 

i" exp [-/(/p)] , . 
2 sin (7m/2)r(l + n/2) ' 

On ACD we have, in dealing with W^z'q), —Sir/'Z < arg m ^ — 7r/2. 
Hence, from lo + b = i~U2vo and from f(lo) + fih) as calculated from 
(12.9), we have 

exp [f{t0)] = exp (hlfilo) + JVi)] + M/('o) - /(b)]) 
(•2 ' \ (6 9) 
- f + nm - /CO]) 

where we have used the second of expressions (12.10) to evaluate 
exp [7n(l — log (m/2))/2l. Substitution of (6.9) in (6.8) shows that the 
integrand behaves roughly like 

exp (1= - i[/W - /(/,)]) . (6.10) 

The truth of statement (b) then follows from the fact that the lines o^ 
steepest descent of (6.10) in the n-plane are given by Im [f(to) — /(b)] = 
0. To see that C is the high point of ACD we use (12.9) to show that 
near C we have 

m - f(ti) RJ (2/3zft w - 2m)m 

where m = w + 1. Consequently, /(b) — /(b) is real and positive on 
AC [where, near C, arg (zg2 — 2m) = — 7r/6] and on CD [where arg 
(z'0

2 — 2m) = — 37r/2, in being in region II' according to the convention 
used in (6.7)]. That C is the high point now follows from (6.10). 

In accordance with statement (a), we must study the form assumed by 
the integrand of (6.2) when n is near point C. 
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When (1) n is near C, (2) tjo is large, and (3) | ^ j « 170 we have for the 
various terms in (6.2) 

i I sin Tr/i. ~ 2i~n 

(6-11) 
r{l + n/2)W.(zi) ~ (7o/4)1,s(27r)1,V" exp {-ir,l/2]Ai(a), 

2r(l + V2)t/.W ~ r exp [| + f (?p)"? - I" (4)"] (6.12) 

where Ai (a) denotes the Airy integral defined by (13.12), m = n + 1, 
arg m is near — 7r/2, and 

« = i2/ivl)m (m + ivl/2), ■ . 5.(6.13) 

da = (2/tJ7o)1/3 dn. 

Expression (6.11) comes from (13.21) and expression (6.12) comes 
from region la of Table 12.2 (strictly speaking, region lb should be 
used but point C is so close to arg m = — 7r/2 that the simpler expression 
for la may be used). In obtaining (6.12) it is necessary to use the terms 
shown in the expansions (12.5) of t0 and log ti/to. It may be shown that 
(6.12) also holds for negative values of ij. 

We now set w = 1 in (6.2) and change the variable of integration 
from n to a. Substituting for m in (6.12) its expression in terms of a, 
expanding in powers of a and neglecting higher order terms, converts 
the argument of the exponential function into 

it/2 — i^rjo — iy3/3 + ayi113 (6.14) 

A B Loo 
n- PLANE 

n = m -1 

\ -2 -1 0 2 

 -E 

D -Loo 
Fig. 6.2 — Paths of integration used in studying the current density and diffrac- 

tion pattern when h is large. Path BCD is equivalent to path L* of Fig. 5.1. AC 
and CD are boundary lines which mark a change in the asymptotic behavior of 
IF,,(20). Far out towards .4 the line AC tends to become parallel to BC. 
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where 

7 = £/(2i!o)"a = V2AI,J (6.15) 

When our approximations are set in (6.2) we obtain 

to/ ~ (?72r?o)2/37r~l exp [ — i&io - iy3/S] 
»ooexp (-i2*/3) (6.16) 

I exp (i1/3ya) da/Ai{a). 
exp (i2ir/3) 

Here we have taken the path of integration in the complex a-plane to be 
the transformed version of the path of steepest descent in the n-plane. 
That the path for (6.16) is still the one of steepest descent when 7 = 0 
and a is large follows from the asymptotic expansion (13.19) for Ai(a). 
It is interesting to note that near the crest of the cylinder £770 + 73/3 is 
approximately the distance along the cylinder as measured from the 
crest. 

The expression (2.14) for fo./ is obtained from (6.16) when Ai{a) is 
transformed by the relations (13.17). 

When 7 is positive the path of integration for a in (6.16) may be closed 
on the left to obtain a convergent series, the terms of which arise from 
the zeros of Ai{a). These zeros lie on the negative real a-axis starting 
with a = ai = —2.338 • • • , a-> = —4.087 • • • The first fifty values of a8 

and the corresponding values of the derivative Ai'(aa) have been tabu- 
lated*. Thus, when 7 is positive, 

00 / -1/3 \ 
L eXP(; ^ (6.17) 
j=i Ai \as) 

The leading term in this series leads to the approximation (2.19) when 
we use Ai'{a\) = .701 • • • Expression (6.17) gives the form assumed by 
'6.5) when w = I and /i —co. For large values of s* 

as f37r(4s - l)/8]2/3 

(6.18) 
Ai'{a,) ~ — ( —)V-1/2(—01/4 

When 7 is large and negative an asymptotic expansion for fad may 
be obtained by setting the asymptotic expansion (13.19) in (6.16) and 
using the method of steepest descent. It is found that the saddle point 
is at a = ao = y'l213 and the slope of the path of the steepest decent 
through it is given by arg (da) = —Sir/12. This leads to the expression 
for fc/ which appears in (2.17). 

When the incident wave is vertically polarized the magnetic intensity 

* Reference 11, page 424. 
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// is parallel to the crest of the parabolic cylinder. Since the cylinder 
is a perfect conductor, the current density Jv on the surface v = Vo 
is equal in magnitude to H and its direction is that of increasing 
Thus setting z' = z'o in expression (5.17) for H and using the Wronskian 
(9.9) gives 

Jv ~ N I {iwyUn{z)rWn{z'o), 
Jin sin 7m 

/ fl\ / t619) 

N = <r" (seo j 2irll\ r = + $!)/2, 

where 'Wn(z'0) is defined by (4.19). 
Closing Lo on the right and left leads to the analogues of (6.4) and 

(6.5): 
00 

Jv = 2iN E (-iwYUnW/'Wizo). 0 < w < 1, (6.20) 
71=0 

(iwyUniz) 
Jv = —2iirN 1 < w < oo, (6.21) 

sin imd'Wn{zfi)/dn_ 

where n, is the sth zero of 'Wn(zo). The zeros of both 'Wn{z'Q) and Wn(z'0) 
are enclosed by the path of integration L4 shown in Fig. 5.1. 

The current density on a half-plane is obtained by setting 20 = 0 in 
(6.20), using 'W„(0) = Wn'(0) = + y2), from (9.4), 
and the generating function series (9.22) for Un(z): 

Jv = 2{i/ir)ll2e~<r cos 8 r e~il2 dt (6.22) 
sin (9/2) 

where r has the same significance as in (6.6). This agrees with the ex- 
pression obtained from Sommerfeld's result for the half-plane. 

When iv = I and h is large, the path of steepest descent for (6.19) 
becomes the same as that for the case of horizontal polarization, namely 
ACD of Fig. 6.2. This follows from the fact that, as may be seen from 
(12.2), the controlling exponential functions for 'Wn{z'0) and Wn(zo) 
are the same. The analogue of (6.16) is obtained by using the approxi- 
mation (13.24) for 'Wn(z'0): 

Jv « (l/2irz) exp [- dfto - nVS] 
• 00 exp (—12*73) (6.23) 
/ exp {1 ^a) da./A i' (a) 

Jto exp (t2ir/3) 

where Ai'(a) denotes dAi(a)/da and 7 is given by (6.15). 
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For positive values of 7 (6.23) and d2Ai{a.)/d2a = aAi{a) lead to 

oo 1 -1/3 '\ " exp u 7aJ 
» -exp [-i&io - iy /3] 2 n' a;(') (6-2"4) 

s=i a8/tz\us) 

where a| = —1.019, = —3.248, etc. are the zeros of Ai'{a).* 
When we use Ai{a[) = 0.5357 the leading term in (6.24) gives (2.19). 
For large values of s* 

a's [3t(4s - 3)/8]2/3, 

Ai(a'a) (-)s(-a:ri/v-i/2. 

The expression (2.17) for Jv when 7 is large and positive may be ob- 
tained by applying the method of steepest descent to (6.23). The asymp- 
totic expression for Ai'(a) is obtained by differentiating (13.19). 

When the cylinder is a good conductor, but not perfect, the expression 
for H analogous to (4.25) leads to an integral for ./„, obtained from (6.23) 
by substituting Ai'(a) -(- fAi(a) for Ai'{a), which is equivalent to one 
given by Fock.f Here t = is assumed to be small compared 
to unity and f/fo is the ratio of the intrinsic impedance of the cylin- 
der material to that of free space. Horizontal incidence, 0 = 7r/2, is as- 
sumed. 

The analogue of (4.25) for H has the same form as (4.21) except that 
now 'Un(z'Q) is replaced by 'U„(z'0) + TUn(z'0)} etc. The development 
leading from (4.21) through (5.15), (5.17), (6.19) to (6.23) may be car- 
ried out just as before. The work is also related to that given at the end of 
Section 7 where the effect of finite conductivity on the diffracted wave 
is briefly discussed. 

A series corresponding to (6.24) may be derived from the integral. 
The exponential terms in this series are approximately exp [il3y{a'8 

— //flg)], and are similar to those in (7.63). Since fo = (/xo/eo)1,2 is real 
and f ^ {iun/g)112 when (jy> ut (the notation is explained in connection 
with (4.24); the g denoting conductivity should not be confused with 
the g defined by (7.20)) the quantity has a positive part. Thus, 
the attenuation of ./„ in the shadow is decreased slightly when the con- 
ductivity g of the cylinder is reduced from infinity to a large finite value. 

7. FIELD AT A GREAT DISTANCE BEHIND THE PARABOLIC CYLINDER 

The field at any point, for the case of horizontal polarization, is 
given by expression (5.5) with Sj(h) given by (5.4). Since S^h) is the 

* Reference 11, page 424. 
f Reference 5, page 418. 
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only troublesome term in (5.5) most of this section will be devoted to 
its study. Far behind the cylinder ^ and tj are large and positive, and the 
corresponding terms in the integrand of (5.4) are 

r(n + \)U n{z)\V n{z') = (2^/77)"i3V,v(l +/)/2»,7r1/2, (7.1) 

where the asymptotic expressions (9.16) and (9.17) give 

! + f = 1 4. w(/l ~ ^ + l)[ri + 2) + 0(n4/r2). (7.2) 
4f- 4rj- 

In writing the "order of" term it is assumed that ^ and rj are both 0(r1/") 
with r » n2. 

When (7.1) is put in (5.4) we obtain 

r /3ni2nF„(2o)(l +/) , 
Siih) = Mi /  : TIr / '\— dn (7.3) 

Jl* sm imWn{zo) 

where, from the expressions (4.1) for ^ and 77, 

Mi = [{i/Tr)me~ir sec (6/2)]/4V, (7.4) 

^ = tw/r] = S[tan (0/2)]/r? = cot (<p/2 + 7r/4) tan (0/2). 

Although it is not proved here, there is good reason to believe that 
(7.3) can be written as 

SM = Ml f dn + 0{h3/r*'*) (7.5) JL., sm irnTr „(2o) 

when r becomes large and we restrict ourselves to the region | v? | < 7r/2 
in order to get 0(^2) = (Kt;2) = 0(/-). The first term contains r only through 
the factor il/i and is of order r~1/2. The "order of" term assumes h to 
be moderately large compared to unity but h2 « r. When h < 1 the h 
is to be replaced by unity. 

The general idea leading to (7.5) is that (7.2) may be used over the 
portion of Lo where the integrand is large and important. On the portion 
where (7.2) differs appreciably from unity the integrand is negligibly 
small. The important portion of Lz runs from n = 14 ton = -}4 — ih 
(approximately). In particular the variation of f2"Vn(2o)/sin mWn{z'Q) 
along L2 may be summarized as follows: from — 3^ to + f «> it decreases 
exponentially as in, from to -ih it is equal to —2i plus an oscillat- 
ing function of order unity, and from —ih to it decreases slowly 
at first and then more rapidly until it goes down like T2" (steepest 
descent behavior). This may be shown with the help of Fig. 12.2, the 
entries for regions/'a and IT in Table 12.3, and the following items [see 
(12.9) and Figs. 10.1 and 10.2 for 2 = i~l/277o with -37r/2 ^ arg (irjl 
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— 2m) < 7r/2)]: 

(a) Re [fih) — f(to)] is almost zero between and —ih. 

(b) Im — /(/«)] is almost zero between —ih and — fco. 

(c) h/lo runs from zero to unity as n goes from — 1 to —1—ih. 

Items (a) and(b) are consistent with f(to) — fih) ^ (M2o)(3o2 — 2m)3/2 

which holds when n is near —ih and which was mentioned in connection 
with (6.10). 

This concludes our discussion of the reasons for believing that (7.5) 
is true for general values of h. Now we shall check it for the special case 
h = 0. 

When we set h = 0 (i.e. z'0 = 0) in (7.3), use (9.4) and close L2 by an 
infinite semicircle, we obtain 

•3/2^—ir r— j —» 

&(0)~^L1-2lFl+-J- (7-6) 

This agrees with the first two terms in the asymptotic expansion of 
the Fresnel integral expression (5.20) for £>2(0). In expanding (5.20) we 
need the first of the two asymptotic expansions (both of which hold 
for T » 1) 

and also the first of the relations 

x sin 0 + 7/ cos 9 — Tl = —r, 
(7.9) 

7-2 = 7,(1 + 0) cos (0/2). 

In much of the following work we shall assume ^ and 77 to be so great 
that we can neglect the terms denoted by 0(h3/r3n) in (7.5). We shall use 
the asymptotic sign ~ to acknowledge this omission. 

From (7.4), 0 is equal to unity when <p = 6 — ir/2. When r is very 
large this value of <f> marks the shadow boundary. In the shadow /3 > 1 
and in the illuminated region /3 < 1. 

Closing L2 on the right and on the left converts (7.5) into 

&(A) ~ 2iMi T, (7.10) 
n=0 
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m) ~ 2iMi {(^ - D- - X i [sin J. J (7-11) 

It can be shown that (7.10) converges if /3 < 1 (see (4.18)) and that 
(7.11) converges if /3 > 1 (see (12.13)). The term 1/03 — 1) in (7.11) 
comes from the poles of csc mi inside the path Ls shown in Fig. 5.1 

From (7.7) and 

— x sin 0 + w cos Q — T\ = r, 
(7.12) 

70 = 7,(1 + /3) cos (0/2) 

it may be shown that when /3 > 1, so that Ti is negative, (5.6) has the 
asymptotic expression 

exp [—ix sin 9 + W cos 9] + Si ~ — (3), (7.13) 

When this is added to (7.11) the 1/(1 — /3) terms cancel leaving a series 
for E valid in the shadow where /3 > 1: 

^ T i2n^Vn(zo) 1 , v 
E 2iMnr E v — , ttjz 7.14) [_sm irn dWn{zQ)/dn}n=n, 

This series may also be obtained from the more general series (5.12) 
for E by using (7.1) and neglecting /. 

We now take up the problem of finding the paths of steepest descent 
for the integral in (7.5) when (3 is near unity and h is large. When 13 = I 
and h is large, the integrand in (7.5) may be expressed in terms of 
exp [/(h) — /(h)] by using Table 12.3. In Section 6 it has been pointed out 
that the path of steepest descent for exp f/(h) — /(h)] is the path ACD 
of Fig. 6.2, with C being the high point. This suggests that the path 
ACD should be used to deal with the terms in (7.5) leading to exp [/(h) 
— /(h)]- These terms are Un(z'0)/Wn(z'0) (introduced by the use of (4.8)) 
for the portion of Lo between B and C, and Vntz^/Wniz'o) for the portion 
between C and D. As a further argument supporting the use of the path 
AC we note that when n is on AC, i.e., on the edge of region I'b, Table 
12.3 gives 

Un(z'0)/W„ti) i(l - ■r")(Lh/h)w exp (/((,) - /((«)]. (7,15) 

Hence the variation of i'n csc mi in the integrand of (7.5) is just cancelled 
by that of (1 - ?~4") in (7.15). Consequently inUn(z0)/{s\\\ mi Wn(z'Q)] 
varies as exp |/(h) — /(h)] along AC (the variation of h/h is relatively 
small). 

These considerations lead us to write (5.4) as 
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S-'ih) — /S21 "I- S22 S23 

521 = — f F dn, 
J B 

522 = - fC FUnU) dn/Wnizo) (7.16) 

S„ = FV^'v) dn/W„U). 

F = e1" sec {d/2){iw/2)nV{n + l)Un{z)Wn{z')/2i sin irn. 

When instead of (5.4) the expression (7.5) for S2Q1) is used we obtain 

In $22 it is permissible to swing AC from its original position BC 
because the zeros of Un(z'0) cancel those of sin mi. When /3 = AC and 
CD are the paths of steepest descent for 822 and S23 in (7.17) because 
Im [/(b) — /(b)] = 0 on ACD. 

The asymptotic expression (7.17) for <S?i may be evaluated by tem- 
porarily assuming /3 to be a complex number with | /? | < 1 and | arg | 
< 7r/2. The integral along BC is the integral along BCE minus the in- 
tegral along CE (see Fig. 6.2). Deforming BCE into Li of Fig. 5.1 shows 
that its contribution to 821 is — /3). An infinite series for the 
integral along CE may be obtained by expanding f2n/sin mi in powers 
of exp ( — i2mi) and integrating termwise from n = no = —1 — ih to 
n = co —ih, i.e., from C to E. In this way we obtain 

Despite the appearance of the right hand side, it is analytic around 
/I = 1 and analytic continuation may be used to show that (7.18) 
holds for 0 < /3 < co. 

When h is large only the first term in the series is important and 
we have 

S22 mJ FTUnU) dn/[sm miWAzo)], (7.17) 
r c 

]• (7.18) 

^2! - 2iMl[{0 - I)-1 - /T'-'Vlog 0\ 

= 2iM1(p - l)-1 + iAUg'1 
(7.19) 
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where we have introduced two quantities which will be used later: 

•xp [ — ir + igh131 

2^ sin (0/2) ' (7.20) 

g = —hm log ft. 

When /3 = 1 

S21 ~ 2iMl{ih' + Yo). (7.21) 

When h is large most of the contributions to the integrals (7.17) for 
£22 and £23 come from around n = no = —1—ih, and we may use the 
approximations 

Un(.4)/Wnti) ~ r~"3Ai(,m-"')/Ai(a), (7,22) 

V„(z'»)/Wn{i'a) ~ zwAi{ai*")/Ai(a), (7.23) 

a = (ih)~ll3(n + 1 + ih), n — no = afih)1'3, 

which come from (13.21). Setting these in the integrals (7.17) and using 
the fact that f2n/sin wn is nearly 2i around no leads to 

S22 ~ —M2 [ exp( -i1'iag)Ai(ciLril3) da/Aiia), (7.24) 
Joo exp (i'iir/S) 

~co exp ( —i2>r/3) 
(S23 ~ / exp ( —f1/3Q!0)Az'(au4 3) r/a/A^a), (7.25) 

Jo 

S22 + S23 ~ iM'Mg), (7.26) 

where 

^(n) = i [ exp ( —f1"iag)Af(ai 4/3) da/AtCa) Joo i4 /3 
« co i ~ 4 / 3 
/ exp ( —i1/3Q!^)Af(ai4/3) da/Ai(a). 

Jo 

(7.27) 

+ f5/3 

The expression (2.11) for ^(g) is obtained from (7.27) by changing the 
variables of integration and using the transformations (13.17) for Ai(a). 

Thus, when h is large and near unity, (7.19) and (7.26) give 

SiQi) ~ - l)"1 + iMdif1 + (7.28) 

In the shadow, where 13 > 1 and g is negative, (7.13) and (7.28) give 

E = exp[—w: sin 6 + iy cos 0] + »S'j 4- SiQi) (7.29) 

~ iMi [g~l + Mg)] • 

This and the series (7.14) for E suggest that ^(g) + l/g may be ex- 
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pressed as a series in which the parabolic cylinder functions in (7.14) 
are replaced by Airy integrals. One way of obtaining this series from 
(7.14) is to use the Airy integral approximations (13.21). The zeros 
ni, n-2, • • • of Wniz'o) go into the zeros ai, at, • • • of Ai(a) by virtue of the 
relation n — ji0 = a(ih)V3 and we have 

(7-3o) 

, 1 U -1/3 V eXP /-7 QlN ■*{g) + \/g = -i 2^ —TXTTT-xii—. (7-31) 
g=i [At (a.,)]2 

where <7 < 0. Here, as in (6.17), ai = —2.338 • • and Ai'{a\) = .701 • • • 
In obtaining these relations we have used f2"/sin ttii 2i, and 

Ai(a/13) = -i5l3Bi{aa)/2 = ib/3/2TrAi'(a,), (7.32) 

where the first equation follows from (13.17) and the second from the 
Wronskian 

Ai(a)Bi'(a) — Ai' (a)Bi(a) = I/tt. (7.33) 

The equal sign in (7.31) holds even though the steps leading to it 
indicate that ~ should be used. This may be seen from an alternative 
derivation of (7.31) in which Ai(ai~il3) in the first integral of (7.27) is 
replaced by the right hand side of* 

Ai(ai~413) = -i4l3Ai(a) - ril3Ai{ai413). (7.34) 

In the first portion the Ai(a)'s cancel and the resulting integral con- 
tributes — \/g to (7.27) {g must be negative for convergence). The 
second portion combines with the second integral in (7.27) to give a 
contour integral which leads to the series in (7.31) when the path of 
integration in the a-plane is closed on the left. The closure may be 
justified by the asymptotic expressions (13.19) and (13.20) for Ai{a) 
(again g must be negative). 

Since the integrals in (7.27), and their equivalents in (2.11), converge 
uniformly for all finite values of g, ^{g) is an integral function of g. 
When g is negative ^{g) may be computed from the series (7.31). When 
g is positive I have not been able to find a practicable method of ob- 
taining ^{g) other than the numerical integration of (2.11). The results 
are shown in Table 2.1. Since ^{g) is an integral function its Taylor's 
series about, say, g = — .b converges for all values of g. The coefficients 
in this series may be computed from (7.31). However, I was unable to 

* Reference 11, page 424. 
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obtain useful results by this method because the computation of the 
coefficients becomes more and more difficult. 

When g is large and positive it may be shown that 

~ - f/-1 + (iirg)1'2 exp (-ig3/12). (7.35) 

The procedure used to establish (7.35) is much the same as that used 
to establish the more general result 

S22 T $23 — iMyg 

'h{l - /3)' 
LKl + /3)J 

1/2 exp [—ir + 2ih{\ - /3)/(l + d)] 
sin |(^ + 0 + 7r/2) ' (7.36) 

1 — /3 sin \{ip — 0 + 7r/2) 
1-1-/3 sin Kv + 0 + 7^/2) ' 

which holds when /t1/3(l — /3) is large and positive. 
When v is near — 7r/2 + 0, (7.36) gives the same result as (7.26) 

plus (7.35). For <p near — 7r/2 + 6, 

g sa ^"(l - /3) « [2/i1/3/sui 9] sin i ^ , (7.37) 

which shows that g is proportional to the cube root of the radius of 
curvature 2/i/sin 30 at the point where the incident ray is tangent to the 
cylinder. 

When /3 < 1, (7.36) may be obtained from 

rE i2nBn r ' i2n0nUn{zo) / s 
$22 + $23 Mi / dn - Ml / . wTF dn. (7.38) 

Jc sm irn Jack sin 7mly„Uo) 

The second integral in (7.38) represents, asymptotically, the wave 
reflected by the cylinder. This interpretation is suggested by the fact 
that, when the expression (7.1) for r(n + l)Un(z)Wn(z') is substituted 
in expression (5.1) for E, the resulting integral may be written as the 
second integral in (7.38). 

The first terra in (7.36) is obtained when f2"/sin irn in the first integral 
of (7.38) is approximated by 2i and the result integrated. When the in- 
tegrand of the second integral is examined with the help of Table 12.3, 
it is found to have a saddle point* at m = rhi on the imaginary axis 
between m = 0 and m = —ih. Near m\ the integrand is approximately 

2p-1(ti/h)i" exp [F(m)] (7.39) 

♦ It ia interesting to note that a saddle point also appears in the study of re- 
flection from a sphere. See page 86 of reference.7 
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where F{m) = J{1\) — J{k) + m log jS and F'{m) = log {tofS/ti). Here 
to and h are functions of m defined by (12.9). At mi we have toff = k 
and this leads to 

mi = -4fW(l + /3)2, F{mi) = 2^(1 - /3)/( 1 + ^), 

F"{mi) = -(1 + /3)/m1(l - /3). (7.40) 

When we attempt to deform the path of integration ACE of the 
second integral in (7.38) into a path of steepest descent, we encounter 
no trouble near mi in regions I'a and I'b. The path passes through mi 
with arg {dm) = — 7r/4. Soon after passing through mi the path of 
steepest descent strikes the boundary between I'a and II' at a point 
we shall call G. At G the imaginary part of m is 2h{l — /3)/(l + /?) log p. 
The asymptotic approximation to the integrand changes its form at 
this point. The choice of the path from G out to qo is not important 
since it contributes little to the value of the integral. However, if we 
insist on following paths of steepest descent, it turns out that we must 
split the path of integration at G. 

When hiri{l — /3) » 1, it may be shown that the value of second 
integral in (7.38) is nearly equal to 

— 2Mi[—2t/fiF" (mi)]1/2 exp [F(md] 

and this gives the second term in (7.36). 
So far, in this section, we have been dealing with the case of horizontal 

polarization. Since the work for the case of vertical polarization (in 
which H plays the role of the wave function) follows much the same lines, 
we shall merely list the formulas corresponding to those already ob- 
tained for horizontal polarization. Mi, p and Mo, g are still given by 
(7.4) and (7.20), respectively. 

SM = M1[ T^TJ-f^dn + Otf/r31'). (7.41) 
Jt. sin jrn'TT.Uo) 

5,(0) = -&(0). (7.42) 

S,(h) ~ 2iMi Z H" 'VMW'WnU), ft < 1 (7.43) 
n=0 

r, *npn,vn{zo) 
S3{h) — 2iMi <{P - 1) 1 - tt E   AGFr < '\ 7 \ sin irn d Wn\Zo)/dn_i 

iw region), 

■ns = sth zero of ' \Vn{zv), 

P > I (shadow region), (7-44) 
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11 ~ —UMiir T. 
■ i2n0n 'Vn{zo) 
sin irn d m-1 . ^>1 (7.45) IT 71(^0)/^^Jn=nj 

S:t{h) = Sn + S31 + S-.a , 

Sm = Sn defined by (7.16), 

S32 - S22 with 'U„{zo)/'W„(z'o) in place of Un(zo)/Wn{zo), 

Sw = S23 with 'Vn{zo)/'Wn{z'o) in place of Vniz^/Wniz'o), 

(7.46) 

S32 ~ i'2/3M2 f exp ( — i,r'iag)Ai'(ai 4/'f) da/Ai'ia), (7.47) 
Jcc exo f i2ir/3) 

kS';a ~ Mo 
I 

« exp (»2ir/3) 
00 exp ( —i2ir/3) 

exp (— (m4''1) da/Ai'ia), 

S32 + ^33 ~ iAf^nig), 

\pvig) = i 1/3 f exp ( —i1/:!Q!r/)A?v(m 4/3) da/Ai'ia) 
Ja>exp (i2 jr/3) 

exp (—i2ir/3) 
— 2 / exp ( —f1 :ia^).42/(a?4':t) da/Af^a), 

Jo 

H ~ + *„(</)], g < 0 

(7.48) 

(7.49) 

(7.50) 

(7.51) 
/ ' -I/SN exp i — aagi ) 

H ~ 2~2/3il/-. E ^ (-aOU^)] 
-2, g < 0 (7.52) 

" exp ( —a(g21/3) 
^.(g) + g"' ^-»"3Z(^ 

a( = sth zero of Az^a), al = —1.019, Aiia[) = 0.5357, 

Af^flst4'3) = -imBi'ia'/)r2 = -^VIStA^')], (7.54) 

A f" (a) - a A 2 (0:). 

When g is large and positive, 

^ig) ~ -g"1 - ^9)m exp i-ig3/12), (7.55) 

<832 + '833 ~ — iMog 

'hil - d)T2exp [-ir + 2ihil - /3)/(l + 0)] (7-56) 
+ Lr(l + d)J sin Hv + d tt/2) 

The change in sign of the second term on the right in going from (7.36) 
to (7.56) comes from (12.2) and the analogous expression for 'Wniz/) 
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(only k contributes to Un{z'0) and only to to Wn{z'0) at the saddle point 
mi of the second integral in (7.38)). 

So far in this section the parabolic cylinder has been assumed to possess 
infinite conductivity. When the cylinder has a finite (but very large) 
conductivity, it may be shown that the field far out in the shadow is 
approximately 

„ _ f rT Vn{z'o) + <r-X'Vn{z'o) , 
E ~ Mi / . i -i /ttt* t '\ ^n- (7.57) 

jt4 sin irn Wn{zo) + a Wn{zo) 

Equation (7.57) is suggested by (7.14) and (4.25). The analogue of 
(7.57) for vertical polarization may be obtained by replacing E, a in 
(7.57) by H, t so that 'Fn(2o) + rVniz!,) appears in place of Vn(z'0) 
+ (T1 'V(z'0), and so on. 

When the parabolic cylinder functions are replaced by Airy integrals 
according to (13.21) and (13.24), equation (7.57) may be written as 

[exp i-agn]Ai{(a + k)^\ ^ 
Jl\ Al{a + fc) 

where g and M2 are given by (7.20), a by (7.23) and 

k = -(^)-1/3r/fo. (7.59) 

1 /c 1 is small compared to unity. L4 is a path of integration in the a. plane 
which encloses the zeros of Ai{a + k) in a clockwise direction. Changing 
the variable of integration in (7.58) to u = a k enables us to con- 
clude that 

f E for finite "If / fiA"] f E for infinite"] _„N 

LconduotivityJ ^ V [conduotivity J ' (7-60) 

Since we have assumed 0 = 7r/2, the relation (7.60) holds in the region 
where the angle ^ defined by Fig. 2.3 is negative. 

The analogue of (7.58) for vertical polarization is obtained by re- 
placing E by H, omitting the im, and replacing the ratio of the Air}' 
integrals by 

Ai'[(a + t/arf'^/Ai'ia + ^/«) (7.61) 

where 

/ = (7.62) 

Even though h is large, f/fo is assumed to be so small that 1 is small 
compared to unity. The path of integration L( must now enclose the 
zeros of Ai'{a + t/a) which are close to those of Ai'{a) at a = a(,s = 1, 
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2, • • • .It must not pass close to a = 0 since the work leading to (7.61) 
assumes (fa to he a small number. Changing the variable of integration 
to y = a + //a, approximating (/a, (/a' by f/v, t/v', and evaluating 
the integral by considering the residues of the poles at v = a's gives 

(7.63) 
»=1 \ a, / (—as)[Ai(a,)] 

This shows, to a first approximation, how the expression (7.52) is 
modified when the cylinder is a very good, but not perfect, conductor. 
Of course g must be negative in (7.63). Since f in (7.62) varies as /i"3 

while k in (7.59) varies as JC113 it appears that the field for vertical 
polarization is much more sensitive to changes in the conductivity 
than it is for horizontal polarization. 

It may be verified that the change in the exponential terms in the 
series (7.30) and (7.52) produced by finite conductivity, namely 

as changes to aa — k 
(7.64) 

a's changes to a's — t/as, 

agrees, to a first approximation, with the change produced in the cor- 
responding series (given, for example, by the series (27) and (28) on 
page 45 of Reference 7) for the propagation of radio waves over the 
earth's surface. 

8. FIELD AT A GREAT DISTANCE BEHIND THE PARABOLIC CYLINDER WHEN 
e = 7r/2 AND h IS LARGE 

In the work of Section 7 the angle of incidence d may he anywhere 
between 0 and r. Here we take 6 = it/2, which corresponds to the case 
shown in Fig. 2.3 and described in Section 2. Some simplification is ob- 
tained thereby. For example, the incident wave is now simply exp (—ix). 
We shall write the expressions for the horizontal and vertical polariza- 
tion cases as 

E = (e lX Sl)r + ^21 + (»S22 + $23), (8.1) 

H = (e 11 + S1)r + <821 + (<832 + S33), (8.2) 

respectively. Here >821, • • • are defined by (7.16) and (7.46) in which 

6 = 7t/2, w = 1, 
(8 3) 

P = %/rj = cot (<p/2 7r/4) = 1 — ^ + <p2/2 — p/S + • • • 

Throughout this section /3 will be defined by (8.3), i.e., by (7.4) with 
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0 = 7r/2. Also, from (5.3) and (5.6) 

{e-" + Si)r = (iU)me-ix e-'2 dl, T, = 2-*% - £) 
(8.4) 

= (2r)1/2 sin (<p/2). 

The subscript r is used to denote correspondence to a half-plane with 
its edge at r = 0. 

When h is large, physical reasons lead us to expect a similarity be- 
tween our field and the one behind a half-plane with its edge at the 
crest of the cylinder where p = 0 (see Fig. 2.3). The main part of this 
field is the analogue of (8.4): 

(fT" + Si), = £' <r"! di, T, = (2p),'! sin (^/2), (8.5) 

diere the subscript p indicates that [exp (—ix) + >S]]p corresponds to 
iiffraction behind the half-plane just mentioned. 

In order to make use of the similarity between the field behind the 
cylinder and the half-plane with its edge at the crest of the cylinder, 
we change the polar coordinates from (r, ip) to (p, ip). From 

pe"A = re,v - ih (8.6) 

it may be shown that, when h2 /r is small, 

(e_" + Si). - (e"" + Si), = (WV* [ ' e-" 
•Tl 

^ dl 

(8-7) 

= [eihaiDr -l] -f 0(h3/r3'2) 

where Mi is obtained by putting 0 = 7r/2 in (7.4). 
When we combine (8.7) and the expression (7.19) for Sn the 

2iMi/(0 — 1) terms cancel leaving 

{«-" + &). + Sn = (e-" + Si), + ■r——it e"1"" + 
^ - 1 o (8.8) 

-f 0{h3/r'2) + 0[Mi exp (-2irh)]. 

The sum of the terms involving Mi and M2 may be expressed in a 
form which contains the expression c(r) defined by (2.5) and the quan- 
tity h defined by 
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b = -log /3 = log tan I g + t) = V + ^ /6 4- • • • 

1—1/3 (8.9) 
= n g, 

tanh b — sin ip. 

Replacing c(r) exp (ih sin <p) by c(p) plus a correction term then con- 
verts (8.8) into 

{e-ix + SJr + Sn = (e-'x + ^Op 

, c(p)[l + exp (26p)]1/2 f 1 , exp (ihb - ih tanh b)\ (Q in^ 
+ ^+ 1 1 (8-10) 

[iA 

+ Q(Ji /rm) + Q{r-me-uh), 

where the subscript p on the square brackets indicates that b is to be 
replaced by bp defined by 

bp = log tan (i/'/2 + 7r/4) = i + ft1/6 + • • • (8.11) 

The quantity within the square brackets in (8.10) is continuous at 
6 = 0 where it behaves like (neglecting 0(6) terms but retaining 0(/i62)) 

M + M2/3 = K + iV'y/3, (8.12) 

Expression (8.10) is to be used with (Son + $>3) and (S32 + 833) ob- 
tained from (7.17) and (7.46) (with 6 = tt/2 and w = 1), respectively. 

When i/' is small, expression (8.10) becomes 

(e lx + jS'i)r + *821 — (e + 60 

+ c(p) 
1 1 A1'3 exp (?^3/3)~] (8.13) 
2 ^ + ~g Jp + ' 

The subscript p on the square bracket indicates that (j is to be replaced 
by (7p defined by 

g, = ti%p = hw (i + y/6 +•■■). (8,13) 

When, in accordance with (8.1) and (8.2), we add to (8.13) the ap- 
proximations (7.26) and (7.49), namely 

Sn + '823 ~ iM-rt (g), 
(8.14) 

S32 + *833 ~ iMSfvig), 
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we obtain 

E = + St), + c(P) 1 exp (V/3) 
P (8.15) 

+ ••• , 

H = {e-ix + S1)p + c(p) ^ - i 

+ + ^(^)| h113 exp (ig3/S) ^ + * ■" • + I- + 
.9 

(8.16) 

The terms neglected in (8.15) and (8.16) are the "order of" terms in 
(8.10), plus those neglected by virtue of \p being small, plus the errors in 
(8.14) The errors in (8.14) are of two kinds namely those of 0(/i3/r3/2) 
and those due to approximating the parabolic cylinder functions by 
Airy integrals. 

It is interesting to observe the forms assumed by (8.15) and (8.16) 
when h = 0 even though they are not supposed to hold for small values 
of h. In this case p, xf/ go into r, p and the right hand sides of (8.15) and 
(8.16) become the same, namely 

The half plane results given in Section 2 become, for small values of <f, 

where the upper sign corresponds to E and the lower one to H. Com- 
parison of (8.17) and (8.18) shows that (8.15) for E reduces to the proper 
value but (8.16) for H fails to do so because the signs of c(r)/2 do not 
agree. 

The discrepancy is apparently related to the approximations we have 
made in obtaining the expression (7.19) for &>i from (7.18) and to the 
errors introduced by approximating the parabolic cylinder functions 
by the Airy integrals. As we let /i —> 0 in the more complete expression 
(7.18) for 52i, the value obtained for S-n-* «>. This is explained by the 
fact that the upper limit of integration — 1 — ih (at point C) approaches 
the pole of the integrand of (7.17) at n = — 1. This large value of Su tends 
to be cancelled by the large value of $23 (for horizontal polarization). 
On the other hand our approximation (7.19) yields via (7.21) the value 
iMi for 521 and Ssi when /i = 0 and /3 = 1. The factor hm in il/2 makes 
our approximations for S12, 523, 532, 533 in terms of Airy integrals vanish 
when h = 0. 

{e-lx + 5i)r + c(r)/2. (8.17) 

(8.18) 
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Incidentally, if, instead of taking the point C of Fig. 6.2 to be at 
— 1 — ih, we take it to be at — 3^ — ih (a choice which receives some 
support from the Airy integral representation obtained from the view- 
point of the differential equations discussed in the first part of Section 
13), the approximate integrals of (7.17) and (7.46) may be integrated 
directly when h = 0 and /3 = 1. It is found that 

& —log 2, S22 — — log 2 + ^4^- , S13~+iM1/2, IT TT Z 

Sn~-—los2, £32 ~ —1 log 2 -'i^1, & ~-0^/2, 
TT TT 2 

and these add to give the values ^(O) ~ iMi, 83(0) ~ — iM 1 required 
by the half-plane case. 

It is seen that a rather thorough investigation of the errors introduced 
by our approximations would be required to resolve the discrepancy 
between (8.17) and (8.18). Since we do not intend to go into this subject, 
and since the errors we have made may be as large as the ]4, which ap- 
pears within the square brackets of (8.15) and (8.16), we shall "split 
the difference" between the two polarizations and omit the Yi alto- 
gether. This is done in Section 2 where t ~ (jp. 

9. THE FUNCTIONS Un{z), Vn(z), Wn{z) 

The functions Un(z), etc., are defined for all values of z and n by the 
integrals 

U*{z) = T f t—'e-""- dt, 2m Ju 

Vnb) =2-. f C-'e-"™ dt, (9.1) zm Jv 

Wn(*) =2-. [ dt. 2m Jw 

where the paths of integration U, V, W in the complex f-plane are shown 
in Fig. 9.1. The cut in the /-plane runs from — to 0 and has been 
introduced in order to make the function t~"~l one-valued. In some of 
the later work the paths of integration will cross this cut. Of course, 
this requires close attention to arg t. 

The initial and final points of the various paths (denoted in Fig. 9.1 
by the subscripts i and /) are located at infinity. Arg / = — tt at I/,- 
and Wf and + tt at Uf and F,-. 

We shall give a summary of the properties of the functions (9.1) 
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which will be needed in our work. These functions are related to the 
parabolic cylinder function 7)n(2)1819 through the equations 

t/n(z) = 2-n e-'n Dn(2ll2z)/V(n + 1). 

¥M = -r" 2"/2 e-'" !>_,_! ( — iz2ll2)/(2Tr)lli) (9.2) 

W^z) = -i" 2"'2 e-'n D-n-i {iz2w)/(2w)in. 

We use the functions Un{z), etc., here instead of Dn{z) because they 
seem to be more convenient for the particular problem we have to 
deal with. 

From the definitions (9.1) it follows that Un{z), V„(z), T'Fn(2:) are one- 
valued analytic functions of z and n. By expanding exp {2zt) in (9.1) and 
integrating termwise it may be shown that 

Un{z) = 2A cos {rn/2) + ^zB sin (7rn/2), 

Vn{z) = -Ai~n —2zi~n+1B, (9.3) 

Wn(z) = -Ain -2zin~lB, 

When 2 = 0 and U'n{z) = d Un{z)/dz, etc., 

p.to) = ;°s ("/fl , y„(o) = 
r(l + n/2) ' nv ' 2r(l + n/2) ' 

WM = 
— i 

2r(l + n/2) ' 

u'n(o) = 2 7 ^, y:(0) = rr"+' (M) 

iH1) Kt-) 

W'n{0) = 

■c^)" 
18 See E. T. Whittaker and G. N. Watson. Modern Analysis, Fourth Edition 

(1927) Cambridge Univ. Press pp. 347-354. 
19 W. Magnus and F. Oberhettinger, Formeln und Satze fiir Speziellen Funk- 

tionen, 2nd Ed., Springer, 1948 Chap. 6 Section 3, and p. 227. A comprehensive 
account of D„(z) is given in the forthcoming work, Higher Transcendental Func- 
tions, compiled by the staff of the Bateman Manuscript Project. 
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Let Tn(z) denote any one of Un(z), Vn{z), Wn{z), let primes denote 
differentiation with respect to z, and let asterisks denote complex con- 
jugates. Then we have the following relations 

TiW = 2!rn_x(s)} (9 8) 

nTn(z) = 2zTn-i(z) - 2Tn^(z), 

Un(z) Vn(z) - Un(z) V'M) = i2nezi/tt1'2 r(n + 1), 

V'n{z) Wn(z) - Vn(z) W'n(z) = i2"ez2/Tm r(n + 1), (9.9) 

W'„(z) Un(z) - Wn(z) U'n{z) = 22V2/7r1/2 r(n + 1), 

Un{z) + Vn{z) + Wn{z) = 0, (9.10) 

[Fn(^)]* = WAz*), [Wn(z)]* = VAz*), (9 ii) 

[Un(z)]* = UAz*), 

Vn(-z) = r2" Wn{z), Wn{-z) = i'" Vn(z), 
(u.iZ) 

Un(-z) = i'n Vn(z) -I Wn(z), 

V-nAiz) = -in+lKUn{z), W-n-i{iz) = -i^KUni-z), 

dz 

Tniz) - 2zT'n{z) + 2nTn{z) = 0, 

~ [e~ziT'n{z)] + 2ne-z2Tn{z) = 0, 

(9.5) 

(9.6) 

^ [e'^TA)] + (2n + 1 - z^'-Tniz) = 0, (9.7) 

U t-PLANE 

Fig. 9.1 — Paths of integration used in the integrals of equations (9.1) which 
define the functions l'n(z), Vn(z) and H'n(z). The subscripts i and / stand for the 
"initial" and "final" points of the paths. 
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U-n-xdz) = rn-Vn - r2n)KWn(Z) = -(2i)-\me-'2Wn(z)/n-n), 

U-n-ii-iz) = in-Vn - f2n)KVn{z), 

K = e~z2T(n + l)A1/22n+1 ' ' 

Equation (9.5) may be obtained from (9.1) by forming T"(z) — 2zT,(z) 
and integrating by parts. Equation (9.10) follows from (9.1) upon 
joining the paths U, V, W to obtain a closed path of integration. From 
(9.11) it follows that when we have an expression for Vn{z) which holds 
for all values of 2 and n, replacing i by —i (or i"1) gives the correspond- 
ing expression for lF„(z). Equations (9.13) may be obtained by using 
the fact that U-n-ifa) exp (z2) etc. are solutions of the differential 
equations (9.5) and (9.7). 

The relations (9.11) and (9.13) enable us to compute the values of 
Un(z), Vn(z), Wn(z) for z = i1'2 p and z = i-1'2 p and all n when the 
values of any two are given for 2 = imp and Re(n) ^ 

It may be verified that as 2 becomes large and n remains fixed the 
differential equation (9.5) has the asymptotic solutions 

. , 2nzn „ / n 1 n , , 2\ 
Sl(n'2) " r(n + !) \ 2' 2 " 1/3j' 

_ 2 (9.14) 
r ^ 2 " ^ F (

n+l n + 2..i/A 
^2 ^ - 2\/ tt 2 0 V 2 ' 2 ' ' ^ ) ' 

where 

| arg 2 | < x and S2{—n—l,iz) = i"Ksi{n,z), 

K being given by (9.13). In terms of these functions we have 

Fn(2) ~ -182(71, z), 0 < arg 2 < TT 

~ —Si(n, 2) —182(71, z), —7r/2 < arg 2 < 0 (9.15) 

~ —81(71, 2) —■r4"+1S2(n, 2), —tt < arg 2 < —iv/2 

Wn(z) ~ 182(71, 2), -tt < arg 2 < 0 (9.16) 

Un(z) ~ si(n, z), —7r/2 < arg 2 < 7r/2. (9.17) 

The first expression for Vn(z) in (9.15) follows when we note that the 
leading term may be obtained from (9.1) by choosing the path of in- 
tegration F to be i = 2 + r where r runs from - co to + 00, and | 2 | 
is supposed to be large. (9.17) follows from the first of (9.15) and the 
relation (9.13) between F_„_i(f2) and Un(z). Asymptotic expressions 
for TFn(2) may be obtained by taking the conjugate complex of those 
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for V„{z). The second and third expressions for Vn{z) follow from the 
other asymptotic expressions and (9.11), (9.12). 

When R{n) < 0, the theory of gamma functions and (9.1) lead to 

r(n + l)T{—n)Un{z) = — tt csc ■wnUni.z) 

r* „ (9.18) 
= r " 1 exp ( —r2 —2x2) dr. 

Jo 

By expressing \/tt exp [ — (z — 01 as the integral of 

exp [—r2 + 2i{z — Or] 

taken from r = — co to + <» and substituting in (9.1) it may be shown 
that, when R{n) > —1, 

Un(z) = Fin [ e~l2~2izttn dt, 
J—oo 

y,(s) = -Ft- r r'"+!"V dr, (9.19) 
Jo 

Wn{z) = — Fin r e
_r2_2"T T

n dr, 
Jo 

F = 2VVr(w + l)7r1/2. 

When n is not an integer the path of integration in the integral (9.19) 
for Un{z) is indented downward at the origin. Equations (9.19) raav 
also be obtained from (9.1) by using (9.13) and (9.18). 

When n is an integer 

un{-z) = (-)" Un{z), Vn{-z) = (-)" Wn(z), (9.20) 

and when n is a positive integer 

U-n{z) = 0, (9.21) 

y_.(Z) = -W^U) = 

From Maclaurin's expansion and (9.21), 

£ lnUn{z) = exp [-0 + 2zt]. (9.22) 
n=0 
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10. FORMULAS FOR THE SADDLE-POINT METHOD 

Much of our work involves the behavior of the parabolic cylinder 
functions as functions of n when n is a large complex number. Although 
this subject has been studied by several writers,20'21'22 their results 
are not in the form we require. As the work of Sections 6 and 7 shows, 
the paths of steepest descent for the integrals in our electromagnetic 
problem are intimately connected with the function f{k) — In 
turn, this function is closely related to the saddle point method of evalu- 
ating Un(z), etc., for large values of n. For the sake of completeness, 
we shall outline this method. We "shall pay special attention to the rela- 
tive importance of the two saddle points as n moves about in its complex 
plane. 

When we write the integrand of the integrals (9.1) as exp [/(£)] we 
obtain expressions of the form 

U„(z) = ~ f exp [/(/)] dt, 
Zirl Ju (10.1) 

/(/) = — r' + 2zt — m log /, m = n + 1. 

The saddle points of the integrand are at the points U and U in the com- 
plex /-plane where /'(/) is zero: 

211 — 2zto + m = 0, to — zlo = —m/2, 

2 + (s2 - 2m)1/2 

'o =  ^ ' h + h = z, 

2 — (z2 — 2m)I/2 9 _ 
(i =  —  , 2/o/i — m. 

(10.2) 

Let the path of integration U of (10.1), for example, be deformed so 
as to pass through a saddle point, say to, along a path of steepest descent. 
Let 

m = /(/.) - E hit - %f/k!. (10.3) 
2 

Then, if hi is not too small, the contribution of the region around to 
20 Nathan Schwid, The Asymptotic Forms of the Hermite and Weher Functions, 

Amer. Math. Soc. Trans. 37, pp. 339-362, 1935. References to earlier work will be 
found in this paper. Schwid's work is based on R. Lauger's study of the asymptotic 
solutions of second order differential equations. 21 O. E. H. Rydbeck, The Propagation of Radio Waves, Trans, of Chalmers Univ. 
of Tech. 34, 1944. 22 G. N. Watson, Harmonic Functions Associated with Parabolic Cylinder 
Functions, Proc. London Math. Soc. (2) 17, pp. 116-148, 1918. 
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to the value of the integral is cxp [/(/o)] times 

s/exp - E hit - toY/k^ dt 

~ (2T62)~1/2[1 + 1-^2 + 10^53} 

-IhB, + [35!>4 + oQb3hh]B4 - ZlOOblbtBs + 55{280)htBG] 

(10.4) 

where Bk = {2bi)~k/k!. The sign of (27r62)_1/2 is chosen so that the argu- 
ment of the right hand side of (10.4) is equal to arg {dt) at I = U on 
the path of steepest descent. The derivatives of j{t) at U give 

h* = 2('o - /i)//o, &3 = 4h//o , b, = -\2h/il 

— biBo + 1063^3 — 
liih 4~ 9'o) 

24/n(^o — ti)'1 

(10.5) 

The values of these quantities at the saddle point h may be obtained by 
interchanging t0 and h. If more terms of (10.4) are desired they may be 
obtained from the formal result 

jl r 
27r J-o 

exp - E akt
k/k\ dt 

(2x0:2) -1/2 1 + E YniO, 0, -as, -"4, ' • • , -oi2h)/k\{2a2y 

(10.6) 

where Yn (ai, a2, . . . , a,,) is the Bell exponential polynomial." It is neces- 
sary to rearrange the terms given by (10.6) in order to get them in 
groups having the same order of magnitude. A more careful treatment 
of the terms in the asymptotic expansions for Dn{z) has been given by 
Watson.22 His method is similar to that used by Debye for Bessel func- 
tions. 

In our work we shall deal with two different complex planes, and the 
reader is cautioned against confusing them. One is the complex /-plane, 
shown in Fig. 10.1, which contains the paths of integration for integrals 
such as (10.1). The other is the complex m-plane, shown in Fig. 10.2, 
which is introduced because we are often more interested in U„{z), etc., 
as functions of m = n -(- 1 than as functions of z. In the earlier sections 

23 E. T. Bell, Exponential Polynomials, Ann. of Math. 35, pp. 258-279, 1934. 
The polynomials are tabulated up to n = 8 by John Riordan, Inversion Formulas 
in Normal Variable Mapping, Annals of Math. Stat. 20, pp. 417-425, 1949. 
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we have spoken of the complex w-plane, but this is essentially the 
m-plane shifted by unity. 

Since we are going to deal with a fixed value of z (z1/2 £ or %~V[' rj) but 
with a variable value of m, we make to and k one-valued functions of m 
by cutting the m-plane as shown in Fig. 10.2. 

It may be shown that U and h lie in the opposite half-planes in- 
dicated in Fig. 10.1. This restricts arg U to lie between arg z — ir/2 and 
arg z -f 7r/2. Arg h is restricted to lie between arg z — ir and arg z + ir 
by the cut shown in Fig. 10.1. It may also be shown that 

I = | h arg — arg h | ^ tt- (10.7) 

t0 REGION 

tL 

am 

t. REGION A 

-4Vz^ am 

CUT FOR t, 
ARGZ -TT 

S> BOUNDARY BETWEEN 
to HALF-PLANE AND t, HALF-PLANE 

Fig. 10.1 — Diagram showing the half-plane regions to which the saddle points 
to and h are confined in the <-plane. 

One might wonder why cuts in the m-plane are required since it has 
already been pointed out that Un{z), etc., are one-valued functions of 
m = n + 1. The trouble is that the asymptotic expressions for U„{z) 
are many-valued functions of m even though Un(z) itself is not. 

Now that we have considered the saddle points to and h, we turn to 
a consideration of the paths of steepest descent in the /-plane which 
pass through them.* The path of steepest descent which passes through 
to, for example, is that branch of the curve 

Im [/(/) - /(/„)] = 0 (10.8) 

For which to is the highest point (i.e., Re [!(/) — f(to)] ^ 0 on it). The 

* Watson22 has studied paths corresponding to Re(n) > 0 when z is any com- 
plex number, and has given curves which are related to some of those shown in 
Section 11. 
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paths of steepest descent may be shown to have the following prop- 
erties: 

1. Let t = iT + iti = r exp (id). Then the paths of steepest descent 
either run out to = + « with U —> Im z or spiral in to / = 0 as r = 
(constant) exp ( — nird/mi). 

2. The steepest descent path through to may be computed by a graph- 
ical method based on* 

arg (dt) = arg I — arg (t — U) — arg (t — h). (10.9) 

,Vz2 -am 
arg(z2 -2 m) 

CUT 

POINT m 

2 ARG Z ksZ2_ 

2 ARG Z -77" 

CUT 

Fig. 10.2 —■ Diagram showing the cuts in the complex m-plane, m = n + 1. 

If we draw the triangle to 0 /i and bisect the interior angle at U by the 
line hoU then 

arg (dt) at to = angle hUho. (10.10) 

If one goes clockwise in traveling from the side toll to toho then arg dt is 
negative. Likewise, arg (dt) at h (on the path through h) is the angle 
between the side tdo and the bisector of the interior angle at h. 

3. When m has the critical value z1 /I the saddle points coincide; 
to = ti = z/2, and the paths of steepest descent start out from t = 2/2 
in the three directions arg (I — z/2) = (arg 2)/3 + 8 where 8 is 0, 27r/3, 
or — 27r/3. 

4. Some of the paths of steepest descent change their character as m 
goes from one region of the m-plane to another. This is illustrated in 
Section 11 for the case 2 = p exp (?7r/4) where it is shown that the 

* A similar method was used in 1938 by A. Erd^lyi in an unpublished study of 
the asymptotic behavior of confluent hypergeometric functions. 
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boundaries are given by 

-Kk)] = 0, (10.11) 

or a similar equation involving another pair of saddle points, e.g., t\ and 
ti exp (z27r). In this equation z is regarded as fixed and U, h are functions 
of m defined by (10.2). It should be noted that although (10.8) defines 
a path of steepest descent in the f-plane, (10.11) defines curves (bound- 
aries of regions) in the w-plane. 

5. If m is such that the path of integration for a particular function, 
say Un{.z), passes through both k and h, each one will contribute to 
the value of Uniz). Furthermore, if m is such that 

Re \m - m] = o, (10.12) 

k and h have the same height and the two contributions have a chance 
of cancelling each other and giving a value of zero for Un{z). Thus 
(10.12) or some similar equation defines the lines in the m-plane along 
which the zeros of Un{z), etc., (regarded as functions of m) are asympto- 
tically distributed. 

6. The lines in the ?/i-plane defined by (10.11) and (10.12) may be 
obtained by substituting the values (10.2) for k and h in 

/(/„) - /(h) = h2 - t\ - 2Wi log (h/h), (10.13) 

and setting the imaginary and real parts, respectively, to zero. How- 
ever, instead of dealing with m directly it is easier to use w = u + iv 
defined by 

w = log (h/h) = log 1 h/k | + *(arg h - arg k), (10.14) 

m = z I (cosh w + 1), (10.15) 

where (10.15) follows from (10.14) and (10.2). Then (10.13) becomes 

f{(o) - fik) = m(smh w - w) 

_ z2(sinh w — w) (10.16) 
cosh wj + 1 

The inequalities (10.7) show that 

w ^ 0, | y | ^ x. 

7. For the special case z = p exp (fx/4), (10.16) gives 

(cosh w + cos y — y sin y) sinh u = (cosh u cos v + 1) u, (10.17) 

(cos y + cosh w + w sinh u) sin v = (cosh u cos y + 1) y, 
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respectively, for = 0 and Re [/(/o) — = 0. These 
equations are plotted in Fig. 10.3. It will be noted that a curve is shown 
for v > ir even though this puts iv outside the allowed rectangle. This 
is done because one of the paths of integration, W, passes through both 
t0 and ti exp { — when m is in a certain region, and the correspond- 
ing zeros of Wn(z) lie on the curve defined by 

Re\m — fih exp {-f27r})] = 0. 

It may be shown that a curve corresponding to 

/(M - f(ti exp {— i2ir}) 

with —ir<v<T may be obtained from the curve corresponding to 
/('o) — /(^i) with ir < v < Sir by simply subtracting 2ir from v. This is 
done on Fig. 10.3. 

ARG m = -90° 

ARG m = 90° 

m = 

' -t 
/ 

w=0 
m = L/>2/2 

< -i 

-2-1 

ARG m = 270 
m = oo 

• o I-go" 

BOUNDARIES 
Im[f(io)-f(t,3 = o 
LINES OF ZEROS (EXCEPT CURVE (a)) 
Re [f(t0)-fct,)] = o 

m—»-o [90^ 

j Re[f(to)-f(tle-'-2^)] = o 
(a) 

m—»-0 270 

Fig. 10.3 — Boundaries of the regions shown in Fig. 11.2 and lines of zeros 
shown in Fig. 12.1 as they appear on the w = h + iv plane when z = j,/2p- 
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3. m = (0.54953 . . . )p2 ~ 0.55p2. Fig. 11.1 (b). This value of m 
marks the change in type of path. Since Im/(<i) = Im/(fo) is satisfied, 
the paths through and /i have the same equation [see (11.2)], and 
there is a chance for a situation like that at U in Fig. 11.1 (b) to occur. 
The high point of the path U is at h, and it goes continually downhill 
on either side of h although its direction changes sharply by 90° at 
The point m = 0.55p2 is just one point on the boundary between regions 
in the m-plane corresponding to various types of paths. The boundary 
lines are obtained by solving condition (10.11) for m as outlined in 
Items G and 7 of Section 10. Mapping the boundary lines 

Im [/(*,) - Kh)] = 0 

from the auxiliary ip-plane (shown in Fig. 10.3) to the w-plane with the 
help of m = fp2/(cosh ui -f 1) gives the boundaries between the regions 

'13 

m 

lb 

Fig. 11.2— Ilogions of different types of paths of steepest descent, and hence 
different types of asymptotic expansions, when 2 = iil2p. Points numbered 1, 2, 3, 
are values of m corresponding to the paths of Figs 11.1 (a), (el, (b). Points desig- 
nated by 5, 6, 7 correspond to Fig. 11.3(b). Points 4, 8, 9 correspond to Fig. 11.5 
and points 11, 12, 13, 14 to Figs. 11.6 (a), (b), (c), (d). 
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I, II, III shown in Fig. 11.2. It may be verified that for large negative 
values of m,- the boundary lines in Fig. 11.2 are given approximately by 

mT = ± 23/27r~1p | m. | 1/2. (11.4) 

There was a period, while these curves were being worked out, during 
which it appeared that the regions I, II, III told the entire story. How- 
ever, when small values of m were studied it was found that region I 
splits up into the two sub-regions, la and lb, such that the boundary 
between them is given by 

lm\m - /(he-2")] = 0. (11.5) 

1- 
Vl U/fl to//) Vf, Wl 

Uf 
m =0.00 5/3 *= 

0 1 U/P 
-1 t,//3 1 

(a) 

h/t 

- m = o.oo5/72e,-U_0,:>£V 

o i 77 
— m = o.oo5/32el-2 

 m = o.oo5/?2eL("f+005 2^ 

i \\\ STEEPEST ASCENT 
L' \\\ / TO 00 AT 

'C" \\1 •' . , , i 577- STEEPEST DESCENTHI/ t = |oo| e_l-_r 
Tot, e-1-2'7' /    , 

! y 

tr/|t,| '■ 'i 

Fig. 11.3 — Paths of steepest descent for 17711 = 0.005 p2, z = iU2p. Away from 
I = all paths look much like Fig. 11.3(a). 
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This is of the same form as (10.11). That ti exp { — 2-ki) is a saddle point 
follows from differentiation of the equation 

f{tc~1'ri) = /(/) + 2irimr — Zirnii. (11-6) 

Combining (11.5) and (11.6) shows that the boundary between la and 
lb is given by mT = 0. This is indicated on Fig. 11.2. 
We now examine the paths of steepest descent when m is small. Fig. 11.3 
(a) gives a large view of all the paths, irrespective of arg m, when in /p 
is small. 

4. m = 0.005p2. Fig. 11.5 shows the vicinity around t\. 
5. 1 ?n 1 = 0.005p2, arg m = ir/2 —0.05. Fig. 11.3 (b). 
6. j ?n j = O.OOop', arg 711 = ir/2. Fig. 11.3 (b). After passing through 

h the path encircles the origin clockwise and runs down into the saddle 
point at £ = 6 exp ( —2xt). Since nu is positive, (11.6) shows that 
k exp (—2iri) is lower than h. The path for arg m = 7r/2 — 0.05 sug- 
gests that from 6 exp (—2x4) the path runs out to oo exp {—in) along 
the path of steepest descent which lies directly under (on the Riemann 
sheet for — 3x < arg t < — x) the path which runs from h to 
£ = co exp (ix). It follows from (11.6) that, as £ traces out a path of 
steepest descent through £x, £ exp ( — 2x4) traces out a path of steepest 
descent through £i exp ( — 2x4) directly under the path through £i. 

7. | ?4i j = 0.055pJ, arg m = x/2 + 0.05. Fig. 11.3 (b) shows that 
after passing through 6 the path of steepest descent spirals in to £ = 0. 
According to (11.3), the spiral is given by 

r (constant) exp {—7nT6/mi) (11-7) 

when r is small and 6 large. Two things are to be noted. First, the type 
of path is different from that for arg 744 = x/2 — 0.05. Hence arg m = 
x/2 marks a change of type similar to that shown in Fig. 11.1 (b), except 
that here £1 exp ( — 2x4) takes the place of £0. Condition (11.5) takes the 
place of condition (10.11), and is satisfied by virtue of 77ir = 0 when 
arg 771 = x/2. 
The second thing to be noted is that up until now all of the paths of 
steepest descent have ended at ± co and U, V, W could be deformed 
into them without difficulty. How can we deform U, for example, into 
a path of steepest descent when the path through £1 spirals in to £ = 0? 
The way to deal with this problem is shown in Fig. 11.4 where U is 
continuously deformed into two portions, one coinciding with the path 
through £1, as shown in Fig. 11.3 (b), and the other with the path of 
steepest descent through £1 exp ( — 2x4). The second portion lies directly 
"underneath" the first portion. 
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In Fig. 11.4 the dashes mean, as before, that the path of steepest descent 
is on a sheet of the Riemann surface other than | arg t | < tt. The alter- 
nate dots and dashes are used to indicate that | arg t j > tt and that in 
addition the path lies directly under the curve it parallels. Although in 
Fig. 11.4 the two kinds of dashed curves are joined at about arg t = 
— Stt — t/4, they actually should spiral in to ^ = 0 before they connect. 

8. | m | = 0.005p2, arg m = ir. Fig. 11.5. For arg m = tt, (11.6) shows 
that k and k exp { — 2^1) are of the same height. 

9. m = 0.005p2, arg m = %tt/2. For tt < arg m < 37r/2, k exp ( — 2x1) 
is higher than k and the paths spiral into t = 0 counterclockwise. At 
arg m = 3x/2 the rate of spiralling is zero and we have the path shown 
in Fig. 11.5 (which is the path for arg m = x/2 rotated by 180 degrees). 
Here arg k = 5x/4. 

10. m = 0.005p2, arg m = —x/2. The paths for arg m equal to — x/2 

ot, 

t-PLANE 
J 

L  *  

Ut 

Uf 

. uT51555^ 

If / 
N \ 

) i 

\ "■ 

/ ij 

/ 

Fig. 11.4 — Deformation of path of integration U into path of steepest descent 
through <i when m = 0.005 p1 exp (iV/2 + *0.05). 
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and 37r/2 have the same shape and both are highest at the saddle point 
whose argument is —37r/4. In both cases the contributions are the same 
and hence the value of U„(z), for example, is the same for arg m = — Tr/2 
as for 37r/2 (as it must be since our parabolic cylinder functions are one- 
valued functions of m). 
Before leaving the region around m = 0 we point out that when 
| m/p2 1 « 1 the path of steepest descent through t0 is almost inde- 
pendent of arg m. Also, the curves of steepest descent for 

l/r(m) =-*-.[ eTmdl (11.8) 
Zirl Ju 

PATHS SUPERPOSED 
BUT ARGUMENTS OF t 
DIFFER BY 277 

m = 0.005p2 eL'7 

tl/t 

\ 

'N 

tr/ltJ 

P ^3177 m = o.oosp 

lARG ti = + 577/4 

m =0.005/7 

'.STEEPEST 
> ASCENT 
H I 

Fig. 11.5 — Puths of steepest descent for | 777 | = 0.005 p2, z = ill2p. Those 
curves are much the same as those in Fig. 11.3(b) except for the values of arg in. 
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behave in much the same way as those just described. The line mr = 0 
divides the m-plane into two regions corresponding to different types of 
paths, and the negative real axis is a line of zeros corresponding to 

[/(<i) — f{k exp ( —2irt))] = 0 where ^ = m is the saddle point. 
11. I w | = 0.55p2, arg m = tt. Fig. 11.6 (a). This value of m marks a 

change in the type of path. 
12. \m \ = p2, arg m = tt. Fig. 11.6 (b). 
13. | w | = p2, arg m = 7r/2, arg (fp2 — 2m) = 37r/2. Fig. 11.6 (c). 

The complication of the paths in Fig. 11.6 (c) is due to the superposi- 
tion of two boundaries in the m-plane. Im J{k) = Im /(h) accounts for 

sVidJf 
u-wT— 

1 . 

^i/P 
tn/n Vf.Wt 

m = o.55p2 e177" 
• tr/p 

(a) 0 i 

 to/p 

m=p2 eLTT 

(b) 0 1 

i 

.to//7 

/ m = Lp2 
/ N. ARG (Z2-2m3 = 3n/2 

/ \   
V./2r—- 

0 1 ' 

r===ITT==rr:=::=-^ 
Ss^to^ivg   

1 { 
.'''1 m=ip2/2 
/ i 

ov 

Fig. ll.G — Paths of steepest descent for miscellaneous values of m with z = 
f'V 
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the path running from to to h, and Im f(ti) = Im f[to exp {—lid)] for 
the one running from to to exp ( —27rf). The saddle points in order of 
their height are Us, h, to exp (—2ri), to being the highest. 

14. m = ip2/2. Fig. 11.6 (d). Here to = h and the dashed lines go 
into the saddle point at h exp ( — 2iri). The paths of steepest descent 
change their directions upon passing through the saddle points. 

12. ASYMPTOTIC EXPRESSIONS FOR Un(z), Vn(z), Wn{z) 

The asymptotic expressions given here are for z = imp and z = t~1/2p 
[with i11' = exp (iTr/4)] when n is not too close to z2/2. As mentioned 
earlier, there is a close relation between our results and those given by 
Schwid.* The main difference is that we regard n as variable and z 
as fixed while Schwid regards z as variable with n fixed. Another point 
of difference is that in place of the m = n + 1 which appears in our 
expressions for and h the quantity n -f H appears in Schwid's work. 
The quantity 2n + 1 appears to enter naturally when the asymptotic 
values arc obtained from the differential equations. This is seen when 
the WKB method is applied to equation (9.7). 

By examining the paths of steepest descent shown in the figures of 
Section 11 we can determine the saddle points corresponding to Un(z), 
etc., (for z = il2p) for various values of n. The contributions to the 
integral (10.1) from the saddle points to U were discussed in Section 
10. The contribution from the saddle point ti exp (— 2iri) (which enters 
when 2 = i'2p) is, from (11.6), exp (i2irm) times the contribution from 
h. 

Although we shall be concerned mainly with asymptotic expressions 
for the parabolic cylinder functions themselves, expressions for their 
derivatives may be readily obtained. Thus U'n{z) = dUn{z)/dz has the 
asymptotic expression 

U'n(z) ~ 2lo [contribution of to to Un(z)] 

+ 2li [contribution of h to U„(z)] (12.1) 

+ 2ti [contribution of h exp ( —27rt) to U„{z)] 

and similar expressions hold for V'n(z), W'n^z). These follow when we 
note that differentiation of the integrals (9.1), which define the functions, 
introduces a factor 2t into the integrand. Of course, if the path of in- 
tegration does not pass throught a particular saddle point, its contri- 
bution to (12.1) is zero. Upon replacing U and U by their expressions 

* Reference 20, page 478. 
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(10.2) and subtracting the corresponding expression for zUn{z) we 
obtain 

'Un{z) = U'n{z) -Z Un(z) 

~ {z2 — 2m)112 [(io contribution) — (^i contribution) (12.2) 

— (he-2" contribution)] 

where 'Un(z) is the function defined by (4.19). The same is true for 
'Vn{z) and 'Wn{z). 

Consideration of the various paths of integration shown in Section 11 
leads to the results shown in Table 12.1. The leading terms of the 
asymptotic expansions are fisted for the various regions of the m-plane 

Table 12.1 — Leading Terms in the Asymptotic Expansions for 
Un(z), Vn(z), Wn{z) WHEN 2 = imp, p > 0 

Region in w-plane 
»« = « + 1 Un{il'*p) i7

n(«"2p) lFn(»"V) 

la Ai Ao — Ao — A i 
II Ao -A. 
lb (1 - Ao —Ao — A, + i4nAi 
III (1 - i^Ai o 1 1 o +

 iU 

shown in Fig. 11.2. If the next order terms are required, they may be 
obtained from (10.4) and (10.5). 

The notation used in Table 12.1 is as follows; 

z = i!1p, m = n + 1, i = exp (iir/2), 

— 7r/2 < arg m ^ 37r/2, — x/4 < arg U ^ 37r/4, 

- 7r/2 < arg (ip1 — 2m) ^ 37r/2, — 37r/4 < arg t\ ^ 57r/4, 

k = [r-p + {ip2 - 2m)m\/2, h = [iI/2p - HP2 - 2m)l/z]/2, 

Ao = [toll2{ip2 - 2m)~lli/2iir112] expf{to), (12.3) 

A1 = [tS'Mp2 - 2mr1,i/2ir112] exp/(fi), 

HQ = zh + - m log h = ^1 - log ^ - log + iU2pt0, 

f{ti) = zti + r^ - m log h = ^(l - log ^ - log + il2pti. 
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Sometimes it is helpful to use 

(27r)_1/2 exp - log ^ 

i/r = i/r(i + «/2) for 

I — ?n 

— 7r/2 < arg m < 7r/2, (12.4) 

/27r = ^•~"~1^(-n/2)/27^, 

7r/2 < arg m < Sir/I, 

where the last line is obtained by setting m exp ( —ttO for m in the 
second line. 

The asymptotic expansions for regions Ih and III may be obtained 
from those for la and II by using equations (9.11) and (9.13). However, 
the work is more difficult than one might suspect at first glance. 

Incidentally, the leading terms in the asymptotic expansions (9.15) 
and (9.17), which hold when p and n remains fixed, may be ob- 
tained by considering the entries for la and lb in Table 12.1. 

It is sometimes convenient to use the limiting forms of the asymptotic 
expressions when | m j ^>> p2. In this case, for z = f1/2p, 

2.'o -» 3 [l - Aj 

log h/lo —> + ?'7r + iz(2m) 1/2 

+ 0(m-3/2) , 

+ 0(m~3/2) , (12.5) 

2 + 
6m 

+ 0(m 5/2), 

where the upper signs hold when — 7r/2 < arg m < v/2 and the lower 
ones when 7r/2 < arg m < 37r/2. Substituting (12.5) in (12.3), neglect- 
ing the higher order terms, and setting 

n r>-3/2 —1/2 B = 2 tt exp 
m 
|(l-Iogf) + V/2]. 

oro = exp [ —p(2m/01/2J, 

= exp [p(2mA')1/2] = I/a,,, 

(12.6) 

converts Table 12.1 into Table 12.2. 
In this table B, ao, ai, are defined by (12.6); m = n + 1; —7r/2 
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Table 12.2 — Leading Terms in the Asymptotic Expansions for 
Un(z), Vn(z), Wn{z) when s = imp and | 2n | » p2 

Region in w-plane 
(»i = « + 1) Un(i"V) Fn(»"V) 

la inBcti —i-"Bao B{l~nceo — inai) 
II B (i^a o + inai) —i~nBa o — inBce\ 
lb (1 — iin)i~nBao inBexi B{i3na0 — i~"ao 

— inot i) 
III (1 — iin)i~"Bao B (i"«i — i~"ao) B{i3nao — i"ai) 

< arg m ^ 37r/2; and in regions la and Ih arg m is approximately 
— 7r/2 and 37r/2, respectively. Gamma functions may be introduced 
into the expression for B with the help of (12.4). It may be verified that 
the functions do not change, except for negligible terms, in crossing 
over the boundary from la to Ih (ao and oci are interchanged and B is 
changed by the factor exp (—mri)). 

Since the zeros of our functions, regarded as functions of n, occur 
(asymptotically) when the contributions from two saddle points cancel 
each other, we may look at Table 12.1 and pick out regions which may 
possibly contain zeros. Thus, Ao may equal Ai along the line | Ao | = 
| Ax |, i.e. very nearly Relf(to) — f{ti)] = 0, in the m-plane. These lines 
were discussed in Item 7 of Section 10 and are plotted on the auxiliary w- 
plane in Fig. 10.3 When plotted on the m-plane the lines appear as 
shown in Fig. 12.1 The condition Re[J(to) — fih exp ( —27rt))] = 0 gives 
the line | Ao | ~ | i4nAi | for some of the zeros of Wn(i

ll2p). 

mi 

'   (Z) 

    OF Un(Z) 

m = l/32/2 

Un (Z) 
Wn(z) 

0 

.---"Wn (Z) 
Fig. 12.1 — When Un{z), Vn{z), and W„{z) are regarded as functions of n their 

zeros lie on the linos indicated when z = i1/2p. The three branches coming out from 
vi = zpV2 are lines along which | Ao | = I Ai | and the branch for W„(z) coming 
down from m = 0 is a line along which I Ao | = I i*nA\ | where Ao and Ai appear 
in Table 12.1. 
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The location of the zeros far out on the lines of Fig. 12.1 may be ob- 
tained by writing the appropriate expressions of Table 12.2 as propor- 
tional to B times a cosine or sine. Examination of the trigonometrical 
terms shows that 

Un{imp) has zeros at n ^ 2/c -f 1+ r,24:pkU2/ir, 

Vn{il2p) has zeros at n ^ —2k + il24:pkll2/ir, (12.7) 

Wn{il2p) has zeros at n ^ — 2/c + t~1/24p/c1/2/7r, 

where k is a large positive integer. Of course, Un(z) also is zero when n 
is a negative integer. 

So far we have been dealing with z = il2p. Now we consider the case 
—1/2 Z = I p. 

Asymptotic expressions which hold when z = i 1/2p may be obtained 
from Table 12.1 by using the relations (9.11) between functions of z 
and of its complex conjugate z*. Thus, for example, 7a+f6(r

1/2p) is equal 
to the complex conjugate of Wa-ibi}'2p)■ These relations, and relations 
such as 

[<o for z = il2p, n = a — ih]* = U for z = t~1/2p, n = a + ib 

[/(/o) for 2 = «1/2p, n = a - ib]* = f(to) for 2 = r1/2p, n = a + ib 
(12.8) 

have been used in constructing Tables 12.3 and 12.4 from Tables 12.1 
and 12.2 The interchange of Vn{z) and T7n(2) should be noted. The 

Vn (Z) 
m-PLANE 

msn+t 

Un(Z) 

nr 

wn (z),. 

m' 

m = -L/>2/2 
.ZEROS OF Un CZ) 

n' 
Fig. 12.2 — Regions in the complex in-plane corresponding to different asymp- 

totic expressions when z = The lines on which the zeros of the various 
functions lie are shown by the dashed lines. The corresponding information for 
z = p/2p is shown on Figs. 11.2 and 12.1. 
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Table 12.3 — Leading Terms in the Asymptotic Expansions for 
Un{z), Vn(z), Wn{z) WHEN 0 = rll2p, p > 0 

Region in nt-plane 
»» = »-(- 1 Pn(.-"V) Wn(i-"*p) 

la' 
II' 
lb' 
III' 

A[ 
4.1 — Ao 

(1 - i~in)A[ 
(1 - i-^)A[ 

4o 4i 
—Ai 

—At - (1 - f-4")41' 
-4o' + i~inA[ 

A'o 
A'0 
4i ( 

4o 41 

regions in the m = n -\- 1 plane corresponding to the different asymptotic 
expressions are shown in Fig. 12.2. The boundaries are simply those of 
Fig. 11.2 reflected in the real m-axis. The lines of zeros are also shown in 
Fig. 12.2, and are reflections of those of Fig. 12.1 except for the inter- 
change of Vn{z) and Wn{z). 

Table 12.3 may also be constructed by returning to the paths of in- 
tegration shown in Section 11. It may be shown that corresponding to 
every path of steepest descent for z = i1/2p, n = ni there is another 
path, obtained from the first by reflection in the real Laxis, which gives 
the path of steepest descent for z = i_1/2p, n = ni*. 

The notation used in Table 12.3 is as follows: 

z = i~1/2p, m — n + 1, i — exp (tV/2), 

— 37r/2 ^ arg m < 7r/2, —37r/4 ^ arg U < ir/4, 

— 3ir/2 ^ arg ( — ip2 — 2m) < ir/2, —bir/4 ^ arg h < Sir/4, 

U = [r1/2p + {-ip - 2m)1/2l/2, k = [r1/2p - {-ip2 - 2m) 1/2]/2, 

Ao = [toU2{-ip2 - 2m)-1'i/{-2iT112)] exp f{to), (12.9) 

A'i = [ti'2{-ip2 - 2m)_1/4/27r1/2] exp/(h), 

f{to) = zlo + ^ - m log to = |Yl - log ^ - log 

m m 
f{ti) = zh + - - m log h = 1 - log ^ - log r i ph. 

Sometimes it is helpful to use 

h 
to 

+ 1 112pto , 

{2Tr) exp 

i/r (m + 1 

imr 

\ 2 

{1 — m 

= l/r(l + n/2) for -t/2 < arg m < 7r/2, (12.10) 

27r = r+1r(-w/2)/27r, —37r/2 < arg m < — 7r/2. 
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Table 12.4 — Leading Terms in the Asymptotic Expansions for 
Un{z), vr{z), Wn{z) when 2 = i~mp AND 1 2n \ » p 

Region in »»-plane 
>» = n + I Rn(i-"V) Fn(t-"JP) 

la' i-nB'a[ B'{ina'a — i-na,') — inB'a'0 
IF B' (inao + i-""!) — i~nB'a[ — inB'a'a 
lb' (1 — i~in)inB' a'a B'{i~3na'a — i"ao i~nB'a[ 

- i "a,) 
B' (i~na[ — ina'a) III' (1 — i'An)inB'a'o B' (i~3"a'o — 

The notation used in Table 12.4 is as follows: 

m = n i = exp (zV/2), — 37r/2 ^ arg m < 7r/2, 

a'a = exp [—p(2im)1/2], (12.11) 

a[ = exp [p(2fm)1/2] = 1/ao, 

75' may be expressed in terms of gamma functions with the help of (12.10.). 
Approximate expressions for the zeros are given by the complex 

conjugates of (12.7). For example, if k be a large positive integer such 
that 2k » p2, the zeros of TFn(r

1/2p) are at n = n{k) where i~na[ = exp 
(iirk) and 

n{k) ~ — 2/c + i 3/24p/c1/2/7r — 4fp2/tt2. (12.12) 

Here the approximation has been carried out one step further than in 
(12.7) We also have for the quantities in (7.11) 

{dVn(i-wp)/an]n-nm ~ (12.13) 

13. ASYMPTOTIC EXPRESSIONS FOR Un{z), ETC., WHEN W IS NEAR 22/2 

The asymptotic expressions given in Section 12 fail when n is near 
z/2. Expressions for the parabolic cylinder functions which hold for 
this region have been given by Schwid.* More recent studies of this sort, 
based on differential equations, have been made by T. M. Cherry24 and 
F. Tricomi.25 Their results suggest the possibility that our expressions 

* Reference 20, page 478. 24 Uniform Asymptotic Expansions, J. Lond. Math. Soc., 24, pp. 121-130, 1949. 
Uniform Asymptotic Formulae for Functions with Transition Points, Am. Math. 
Soc. Trans.,' 68, pp. 224-257, 1950. 26 Equazioni Differenziali, Einaudi, Torino, pp. 301-308, 1948. 
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for the electromagnetic field which contain Airy integrals may be re- 
placed by more accurate, but also more complicated, expressions. In 
dealing with our functions we shall work with the integrals and our 
procedure is somewhat similar to that used by Rydbeck.* First however, 
we point out that when we write (as suggested by the work of Cherry 
and Tricomi) 

y = e~'2l2Tn(z), ax = z- (2n+ 1)1/2, 2(2n + l)1/2a3 = 1, (13.1) 

the differential equation (9.7) for the parabolic cylinder functions goes 
into 

p--xv = 2-m(2n + irmx2y. (13.2) 
ax2 

The Airy integrals Ai{x) and Bi{x) (and also Ai[x exp (± i2ir/3)\) 
discussed later in this section are solutions of 

g - ^ = 0, (13.3) 

and therefore we expect that approximate solutions of (13.2) are given 
by, for example, 

y = CiAi{xi)[l -j- 0(n_2/3)] (13.4) 

where the 0(n_2/3) term corresponds to the particular integral of (13.2) 
when the y on the right hand side is replaced by its approximate value 
Ai{xi). Here Ci is independent of x (or z) but may depend on n, and v 
may be 0 or ±4/3. 

Since the labor of computing Ci is considerable, we shall work out the 
approximations directly from the integrals. 

We shall consider the case z = i1/2p, p > 0, first. When n + 1 = m 
= Wo = «p2/2 the saddle points k and h coincide at 4 = tI/2p/2. Con- 
sequently only those portions of the paths of steepest descent which 
lie near k are of importance. This is true even if m is not exactly equal 
to 7no. We therefore regard 

j{t) = -t2 + 2zt - m log t (13.5) 

in (10.1) as a function of the two variables t and m (linear in w) with z 
fixed at 71/2p. Expanding (13.5) about t = h ,in = wo gives 

,,A z2 . [mo m0, ?n0 (m — mo) . mo 
/W = ir + [y - Tl0Sy " 2" E~2 

(13.6) 

— 4(£ — hf/Zz — 2(m — ?no)(^ — t^/z + • • • 

* Page 87 of Reference 21 cited on page 478. 
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where we have used 

t2 = 2/2 = il2p/2 = (mo/2)112 
(13.7) 

and have arranged the terms within the brackets so that they represent 
the first two terms in the expansion of 

about mo. 
The paths of steepest descent in the f-plane when m = mo are shown 

in Fig. 11.6(d). The three branches start out from t = h in the directions 
arg (t — t/) = 15°, 135°, and — 105°. In this section we take the paths of 
integration to be those of Fig. ll.G(d) even when m is not exactly 
equal to mo. Since we are dealing with asymptotic expressions we may 
confine our attention to the region around t = h where the paths of 
integration are essentially straight lines [the contributions from h exp 
(— 27rf) are negligible]. 

When (13.6) is set in the integral 

we see that the initial directions of the branches are such as to make 
(/ — t/f/z positive (arg 2 = 45°). Some study of (13.6) and of the Airy 
integrals we intend to use suggests that we change the variable of inte- 
gration from t to s and introduce the parameter b where 
i-to = s(2/4)i/3, h = (m - m0)(2/zy13 = (m - mo)/mo1/3. (13.10) 

This and (13.6) converts the integral (9.1) for V„(i/2p) into 

2 2 
m m 

log ^ log ^/r^1) (13.8) 

(13.9) 

M oxp (i2t/3) 
(13.11) 

exp [ — bs — s3/3 + • ■ • ] ds. 

When we use the Airy integral defined by 

(13.12) 

we obtain 

V„(imp) ~ (~/4)1/V2/2 - 4.i(bi213). 
(13.13) 
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In order to obtain expressions corresponding to (13.13) for Un{z), Wn(z) 
we examine Fig. 11.6(d). We have already seen that the limits of in- 
tegration for s, in the integral (13.11) for Vn(i

l2p), are 
[oo exp (i27r/3), oo]. In the same way it follows that the limits for 

Un(ill2p) and Wnii'
2p) are [*> exp (— iZir/S), exp (t2ir/3)] and 

[oo, oo exp (— f27r/3)], respectively. When we take s' = s exp (-f- i2ir/3) 
as new variables of integration (with the upper sign for Un{z) and the 
lower one for Wn (z)), the integrals corresponding to (13.11) go into 
Airy integrals. 

We can write our results for z = ill2p, when n is close to ip /2, as 
follows: 

Un(imp) ~ Cill6Ai(bi613), 

Vn{imp) - Ci~"6Ai(hi2'3), 

Wn(i
mp) - CimAi{bi-w), 

where 

b = G/pW " ip2/2)t^", 

i = exp (?'7r/2), m = w + 1. 

The asjunptotic expansions whose leading terms are given by (13.14) 
may be obtained by the method used by F. W. J. Olver26 to study 
Bessel functions. 

Ai{x) and its derivative have been tabulated for positive and negative 
values of x.* Here we shall use the definitions and results as set forth in 
Reference 11. These tables and (13.14) enable us to obtain values of 
Un{i12p) along the rays in the m-plane defined by arg (m — ip2/2) = tt/G 
and — Stt/G. Along the tt/G ray bi'13 is negative. Since the tables show 
that the zeros of Ai{x) occur when x is negative, it follows that the 
zeros of U„iill2p) occur on the tt/G ray. In the same way it is seen that the 
zeros of 7„(t1/2p) and TF„(t1/2p) occur on the bir/G and the —ir/2 rays, 
respectively. This agrees with Fig. 12.1. 

The Airy integral defined by 

(13.14) 

(13.15) 

* Reference 11, page 424. 26 Some New Asymptotic Expansions for Bessel Functions of Large Orders, 
Proc. Cambridge Phil. Soc., 48, pp. 414-427, 1952. 
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BiW = ^ 
■—2/3 p cxp (»2)r/3) X 

/ J<xt _Jxi exp (—»2t/3) 

,-2/3 exp [ 'j 
« exp (—»2t/3)_ + /: 

n [exp( 

exp [ —? " xs — s/3] ds (13.16) 

dt - + rcA + sin 0~ + xl 

is also tabulated in Reference 11 where it is shown that 

Ai{xilz) = in[Ai{x) — iBi{x)\/2, 

Ai{xirilz) = ■r'li\Ai{x) + iBi{x)\/2. 
(13.17) 

With the help of these relations we may evaluate the expressions (13.14) 
for Un(ill2p), etc., on any one of the six rays 

arg (m — fp2/2) = ±57r/6, ±/7r/2, ±7r/6. 

When 6 is a general complex number the expressions (13.14) may be 
evaluated with the help of the modified Hankel functions hi(a), Ihioe) 
tabulated in Reference 27 for complex values of a. The relation needed 
is 

Alia) = ~ lh( — a) + -L fhi-a), 
2k 2k* 

k = (12)1/6f_1/3. 

When | arg a | < tt we have the asymptotic expansion 

Ai(oc) - 2-17r_1/2a_1/4 (exp [- (2/3)a3/2])(l - 5/48«3/2 + • • •) (13.19) 

and when | arg (— a) | < 27r/3 we have 

Ai(a) ~ 7r_1/2(— «)"1/4 sin [(2/3)(- a)3/2 + 7r/4]. (13.20) 

Both of these expansions follow from the discussion of the asymptotic 
behavior of hi(a) and fhicc) given by W. H. Furry and H. A. Arnold.27 

Asymptotic expressions for Un{i~l!2p), • • • valid when n is near —ip/2 
may be obtained by applying the relations Un{z*) = [Un*(z)]* • • • given 
by (9.11) to the expressions (13.14) for C7„(f1/2p), • • • : 

c/n(r1/2p) ~ c'l^Aiib'i-613), 

Vn{i~ll2p) - CT^'Atib'r13), (13.21) 

TFn(r
1/2p) - CV/6Af(^-2/3), 

27 Tables of the Modified Hankel Functions of Order One-Third and of Their 
Derivatives, Harvard Univ. Press, 1945. 
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a/3/0 -.1/2 -.>2/2/t, / m + 1 

where 

C = (p/4)1/3(2T)1'V,p'/7r 

V = (2/p2)1/3(m + ipV2)i1/S. (13-22) 

i = exp («V/2), m = n + 1. 

In (13.14) &i6/3 = —b and in (13.21) b'i-6'3 = —b' since i4«"(«) is a 
single-valued function of a. It is interesting to note that the factor 
i116 in the expression for Un(i

l2p) gives the direction of that one of the 
three paths of steepest descent (in the i-plane) which is not traversed 
in getting Un{imp). The same sort of thing is true for the remaining 
expressions in (13.14) and (13.21). 

The functions 

'Un{z) = exp {z2/2)d[Un{z) exp (- z2/2)\/dz, 

defined by (4.19), may be computed from (13.21) when z = ■rll2p. We 
need the relations d/dz = il2d/dp and 

m = —ip/2 + h'(p2/2i)113, 
(13.23) 

dh'/dp = (2/3)(2fp)1/3(t - m/p2) = i(2ip) - 2bV3p, 

which follow from the definition of b'. When the differentiations are 
carried out we obtain 

'Un(r
U2p) - {2pfl3CTll3Ai/{h'i'-"i)i 

'Vn{i'l,2p) — (2p)1/3C/^3/3A^, (b'f2'3), (13.24) 

'Wni^p) ~ (2p)1/W/3^f'(b,r2/3), 

In these expressions the prime on the Airy integral denotes its deriva- 
tive: 

Ai'{a) = dAi{a)/da. (13.25) 
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Microwave Observation of the Collision Frequency of Holes in 
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Sept. 15, 1953. 

Bennett, W.1 

Telephone System Apphcations of Recorded Machine Announce- 
ments, Elec. Eng., 72, pp. 975-980, Nov., 1953. 

Applications of voice-recording equipment discussed in some detail can be 
divided into four general groups: Announcements made directly to and 
providing a service to subscribers, such as weather forecasts and the time 
of day; announcements to assist subscribers in connection with telephone 
service, that is, intercept announcements when an individual calls a vacant 
or disconnected terminal, or emergency announcements if an unusual 
condition prevents normal service; announcements to expedite service 
and assist operators in completing calls, including completion of calls from 
a dial to a non-dial phone, and advising operators of the time delay for 
completing long distance calls; and specialized announcement or record- 
ing services, such as price quotation and ticket reservation. 
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Briggs, H. B.,1 and R. C. Fletcher.1 

Absorption of Infrared Light by Free Carriers in Germanium, Phys. 
Rev., 91, pp. 1342-1346, Sept. 15, 1953. 

The absorption of infrared light associated with the presence of free carriers 
in germanium has been measured by injecting these carriers across a p-n 
junction at room temperature. The absorption is found to be proportional 
to the concentration of carriers. The absorption as a function of wave- 
length shows the same rather sharp maxima previously observed in normal 
p-type germanium. These bands are found to change with temperature. 
An explanation of this absorption is offered in terms of a degenerate energy 
band scheme. 

Briggs, H. B., see M. Tanenbaum. 

Carlitz, L.,1 and J. Riordan.1 

Congruences for Eulerian Numbers, Duke Math. J., 20, pp. 339-343, 
Sept., 1953. 

Clark, M. A., see H. C. Montgomery, 

Crabtree, J.,1 and B. S. Biggs.1 

Cracking of Stressed Rubber by Free Radicals, Letter to the Editor, 
J. Polymer Sci., 11, pp. 280-281, Sept., 1953. 

Dickinson, F. R., see L. H. Morris. 

Felch, E. P.,1 and J. L. Potter.1 

Preliminary Development of a Magnettor Current Standard, A.I.E.E. 
Trans., Commun. & Elec., 9, pp. 524-531, Nov., 1953. 

In the wartime development of the air-borne magnetometer, a method of 
detecting extremely small changes in magnitudes of magnetic fields was 
developed. The principle involved was the use of a second-harmonic type 
of magnetic modulator now known as a magnettor. This instrument can 
detect changes in magnetic fields in the order of Kb 5 oersted. A study was 
made at Rutgers University under the sponsorship of Bell Telephone Labo- 
ratories to determine the feasibility of obtaining a standard of current using 
the magnettor principle. 

Fletcher, R. C., see H. B. Briggs. 
1 Bell Telephone Laboratories, Inc. 
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Goertz, M., see H. J. Williams. 

Gray, M. C.1 

Legendre Functions of Fractional Order, Quart. Appl. Math., 11, 
pp. 311-318, Oct., 1953. 

Grisdale, R. O.1 

Formation of Black Carbon, J. Appl. Phys., 24, pp. 1082-1091, Sept., 
1953. 

Electron microscopic evidence is presented in support of the hypothesis 
that black carbon resulting from pyrolysis of gaseous hydrocarbons is 
produced through the intermediate formation of droplets of complex hy- 
drocarbons. Electron diffraction studies further confirm the hypothesis if, 
as has been found for particles of carbon blacks, the droplets consist in 
part of graphitic nuclei arranged with their basal planes tangential to the 
droplet surface. The carbonization of small solid spherules of highly cross- 
linked organic polymers is described, and it is shown that the morphology 
of the carbonization products is wholly analogous to those for pyrolytic 
carbon and carbon blacks. It is suggested, therefore, that the formation of 
carbon by the carbonization of solids and by deposition from the gas phase 
occurs through similar mechanisms and that the two processes are simply 
two extremes in an infinite series of processes which are all fundamentally 
alike. 

Grisdale, R. O.1 

Properties of Carbon Contacts, J. Appl. Phys., 24, pp. 1288-1296, 
Oct., 1953. 

Microphone carbon has been produced by deposition of pyrolytic carbon 
films over the surfaces of small spherules of silica. The properties of con- 
tacts between these spherules are shown to be dependent on the structure 
and geometry of the carbon surface as determined by election diffraction 
and microscopic studies. The graphite-like crystallites in pyrolytic carbon 
surfaces are more or less preferentially oriented with their basal planes 
parallel to the surface, and the contact properties depend systematically 
on the degree of orientation. This is explained in terms of the anisotropy 
in properties of these crystallites which are closely approximated by those 
of single crystal giaphite which were determined. The contact resistance 
and its temperature coefficient and the "burning voltage" for carbon con- 
tacts are explicable on this basis. However, the microphonic sensitivity of 
carbon contacts is independent of the surface structuie and depends only 
on the surface geometry. 

1 Bell Telephone Laboratories, Inc. 
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Harris, C. M.1 

Speech Synthesizer, Acoust. Soc. Am., J., 25, pp. 970-975, Sept., 
1953. 

"Standardized speech" constructed from building blocks called speech 
modules has been described; it was synthesized by piecing together bits of 
magnetic tape containing recorded speech sounds. An electromagnetic 
device, a "speech module synthesizer," is described here which performs 
the synthesis automatically. When buttons on a keyboard are pressed, a 
sequence of corresponding speech modules are automatically recorded on 
tape exactly in tandem. The modules are selected from a group "stored" 
on a rotating magnetic drum. The pressing of a button causes an electrical 
signal corresponchng to a module to be reproduced — the electrical switch- 
ing is so arranged that only one complete module is reproduced for a single 
button-pressing. This electrical signal is amplified, biased, and then fed 
into a constantly rotating head which makes contact with stationary mag- 
netic tape and records the signal on it. A 10-kc signal superposed on each 
stored speech module controls an electromagnetic clutch which (a) measures 
the length of the recording accurately, and (b) advances the tape at the 
completion of the recording by the correct amount so that the next record- 
ing forms a connected sequence with it. The same module may be used any 
number of times and in combination with different stored modules, thereby 
introducing wider experimental control in standardized speech studies. 
The principle of this type of device could be applied to other classes of 
problems involving communication of information, as the conversion into 
speech of typing or of electronically-red printed matter. 

Harris, C. M.1 

Study of the Building Blocks in Speech, Acoust. Soc. Am., J., 25, 
pp. 962-969, Sept., 1953. 

Identification of the information-bearing elements of speech is important 
in applying recent thinking on information theory to speech communica- 
tion. One way to study this problem is to select groups of building blocks 
and use them to form standardized speech which then may be evaluated; 
a method having the advantage of simplicity is described. Individual re- 
cordings of the building blocks were made on magnetic tape and then var- 
ious pieces of tape were joined together to form words. Experiments indica- 
ted that speech based upon one building block for each vowel and consonant 
not only sounds unnatural but is mostly unintelligible because the influences 
on vowel and consonants are missing which ordinarily occur between ad- 
jacent speech sounds. To synthesize speech with reasonable naturalness, 
the influence factor should be included. Here these influences can be ap- 
proximated by employing more than one building block to represent each 
linguistic element and by selecting these blocks properly, taking into account 
the spectral characteristics of adjacent sounds so as to approximate the 

1 Bell Telephone Laboratories, Inc. 
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time pattern of the formant structure occurring in ordinary speech. There 
is no a priori method of determining how many building blocks are required 
to produce intelligible standardized speech. This can only be determined 
from experiments involving listening tests. Such tests are described. 

Holdaway, V. L.1 

Bulb Puncture in Gas Tubes, Electronics, 26, pp. 208, 210, 212, Nov., 
1953. 

Hopkins, I. L.1 

Ferry Reduction and the Activation Energy for Viscous Flow, J. 
Appl. Phys., 24, pp. 1300-1304, Oct., 1953. 

The relationship proposed by Ferry and his co-workers for the effects of 
frequency and temperature on the dynamic properties of certain poljmers 
is shown to lead to a method for calculating the activation energy of viscous 
flow from relaxation, creep, and dynamic test data, the results agreeing with 
those obtained in steady-state flow. The Ferry reduction explains, and is 
supported by, observed increases in dynamic modulus and viscosity with 
increasing temperature. 

Jones, T. A.,1 and W. A. Phelps.1 

A Level Compensator for Telephotograph Systems, A.I.E.E. Trans. 
Commun. and Electronics, 9, pp. 537-541, Nov., 1953. 

Karnaugh, M.1 

Map Method for Synthesis of Combinational Logic Circuits, A.I.E.E. 
Trans., Commun. and Electronics, 9, pp. 593-598, disc. pp. 598-599, 
Nov., 1953. 

Kompfner, R.,1 and N. T. Williams.1 

Backward-Wave Tubes, I.R.E., Proc., 41, pp. 1602-1611, Nov., 1953. 

It has been surmised for some time that a traveling-wave tube in which 
backward-traveling field components can be excited — such as for in- 
stance the "Millman" tube — may oscillate in a backward mode, the RF 
power emerging at the gun-end of the tube and its frequency depending 
only on the beam voltage. Experiments with the "Millman" tube show this 
to be so and oscillations have been observed in the first and second back- 
ward spatial-harmonic modes. The latter is excited between 600 and 900 
volts, the tube oscillating between 5.9 and 6.4 mm. The former more power- 

1 Bell Telephone Laboratories, Inc. 
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ful mode is excited between 1.600 and 4,000 volts, the tube tuning con- 
tinuously between 6.0 and 7.5 mm, thus covering a frequency band of 10,000 
mc. Power output of about 10 mw has been measured at 6.4 mm. The 
tube has also been studied as an amplifier and more than 20-db stable 
backward gain has been obtained. A simple theory of backward gain and of 
oscillation starting conditions is given. 

Lander, J. J.1 

Auger Peaks in the Energy Spectra of Secondary Electrons from 
Various Materials, Phys. Rev., 91, pp. 1382-1387, Sept. 15, 1953. 

The energy spectra of secondary electrons from carbon, beryllium, alumi- 
num, nickel, copper, barium, platinum, and the oxides of beryllium, alumi- 
num, nickel, copper, and barium have been measured with equipment of 
high stability and sensitivity. Characteristic peaks due to Auger electrons 
emitted as a result of absorption of a valence electron by an excited x-ray 
level were observed for all these materials. The peaks exhibit structure 
which is of some theoretical interest. The structure can be related to the 
distribution in energy of electrons in the valence band, and it complements 
that observed in soft x-ray emission work. Since the emission of the Auger 
electron is not subject to the selection rules governing the emission of x-ra- 
diation, additional information can be obtained from the Auger electron 
energy distribution. Excitation of Auger peaks by a beam of low velocity 
electrons provides an interesting technique for surface analysis. "Plasma" 
peaks of the type reported by Ruthemann, and interpreted by Pines and 
Bohm, were also observed. 

Lovell, G. H., see L. H. Morris. 

Montgomery, H. C.1 and M. A. Clark.1 

Shot Noise in Junction Transistors, Letter to the Editor, J. Appl. 
Phys., 24, pp. 1337-1338, Oct., 1953. 

Morris, L. H.,1 G. H. Lovell1 and F. R. Dickinson.1 

L3 Coaxial System — Amplifiers, A.I.E.E. Trans., Commun. & Elec- 
tronics, 9, pp. 505-517, Nov., 1953 (Monograph 2090). 

The line amplifiers for the L3 coaxial system are designed to compensate for 
the loss of the 4 miles of cable which separate the repeaters; the flat am- 
plifiers are used to compensate for equilizer loss and as transmitting am- 
plifiers. The two types are basically similar, consisting of two feedback 
amplifiers in tandem, separated by an interamplifier network; in the line 
amplifier, this network is variable, and is automatically adjusted to com- 

1 Bell Telephone Laboratories, Inc. 
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pensate for variations in cable temperature, and for small deviations from 
the nominal 4-mile spacing. 

Pierce, J. R.1 

Spatially Alternating Magnetic Fields for Focusing Low-Voltage 
Electron Beams, Letter to the Editor, J. Appl. Phys., 24, p. 1247, 
Sept., 1953. 

Pierce, J. R.,1 and L. R. Walker.1 

"Brillouin Flow" with Thermal Velocities, J. Appl. Phys., 24, pp. 
1328-1330, Oct., 1953. 

A type of electron flow in a constant magnetic field is described. The beam 
of electrons is supposed to be everywhere in thermal equilibrium and the 
usual Brillouin flow is found when the equilibrium temperature tends to 
zero. Some considerations are put forward bearing on the choice of a suit- 
able beam temperature in specific problems. 

Potter, J. L., see E. P. Felch 

Read, W. T., Jr.1 

Dislocations and Plastic Deformation, Physics Today, 6, pp. 10-14, 
Nov., 1953. 

Small and exceedingly rare defects in the structure of solids are the "weak 
links" that determine the strength of materials. The article reviews some 
fundamental concepts concerning plastic deformation in certain ductile 
metals. 

Riordan, J., see L. Carlitz. 

Romig, H. G., see R. I. Wilkinson. 

Schnettler, F. J., see H. J. Williams. 

Sherwood, R. C., see H. J. Williams. 

Shockley, W.1 

Some Predicted Effects of Temperature Gradients on Diffusion in 
Crystals, Letter to the Editor, Phys. Rev., 91, pp. 1563-1564, Sept. 
15, 1953. 
1 Hell Telephone Laboratories, Inc. 
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Steeneck, W. R.1 

N1 Carrier Equipment Design, Commun. Eng., 13, pp. 26-28, Sept- 
Oct., 1953. 

Progress in telephone apparatus and in radio equipment design seem to 
follow converging paths, each contributing something to the other. Bell 
Laboratories started in the telephone field and adopted radio as an accessory 
means of transmission. More recently, radio manufacturers have borrowed 
telephone-circuit techniques for remote controls and multiplexing. The Nl 
equipment, while it looks more like radio than telephone apparatus, is a 
most interesting example of economy in manufacture, testing, service, and 
also in cubic contents. And those gains have been achieved, it should be 
noted, as part of a program to increase reliability and to reduce the dura- 
tion of outages. 

Tanenbaum, M.1 and H. B. Briggs.1 

Optical Properties of Indium Antimonide, Letter to the Editor, Phys. 
Rev., 91, pp. 1561-1562, Sept. 15, 1953. 

Thaeler, C. S., see A. J. Aikens. 

Tien, P. K.1 

Traveling-Wave Tube Helix Impedance, I.R.E., Proc., 41, pp. 1617- 
1623, Nov., 1953. 

The impedance parameter of a circular helix, from which the gain of a 
helix-type traveling wave amplifier is computed, is investigated for a "Tape- 
Helix" model. Results obtained in this paper indicate that the impedance 
has a smaller value than for the "Sheath-Helix" model, and is considerably 
reduced at larger values of ka, the ratio of the helix circumference to the 
free space wavelength. A tape helix surrounded by a dielectric medium is 
analyzed. It is shown that the results obtained from the theory can be used 
to evaluate the helix impedance for usual types of traveling wave tubes. 
They have been found to be in agreement with measurements on many 
tube designs. 

Walker, L. R., see J. R. Pierce. 

Wilkinson, R. I.1 and H. G. Romig.1 

Random Picture Spacing with Multiple Camera Installations, S.M. 
P.T.E. J., 61, pp. 605-618, Nov., 1953. 

When several high-speed cameras are operated simultaneously, but in- 
dependently, it is possible that the aggregate of pictures obtained will 

1 Bell Telephone Laboratories, Inc. 
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satisfactorily cover the space between the pictures provided by any one 
camera. This paper gives a method for estimating the probability that the 
longest interval without a picture will not exceed a selected value. 

Williams, H. J.,1 R. C. Sherwood,1 M. Goertz1 and F. J. Schnettler.1 

Stressed Ferrites Having Rectangular Hysteresis Loops, A.I.E.E. 
Trans., Commun. & Electronics, 9, pp. 531-537, Nov., 1953. 

A study has been made of the effect of stress on the magnetic properties of 
ferrites. Rectangular hysteresis loops were obtained by encasing toroidal 
specimens in plastics which shrink during polymerization. Ferrites having 
this type of hystersis loop are useful in magnetic switching and magnetic 
memory devices. 

Williams, N. T., see R. Kompfner. 

Wright, S. B.1 

Higher Frequencies, Aero Digest, 67, pp. 66, 70, 72, Nov., 1953. 
Spectrum crowding plus new techniques has moved USAF ground-air 
communications into the ultra-high-frequency bands. 

Correction 

On page 878 of the July, 1953, issue of the Journal, an error was 
made in quoting the number of P. II. Richardson's patent in Reference 
5. It should have been 2,348,572. 
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