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In pulse transmission systems, pulses modulated in vartous ways to carry
information may be transmitted by amplitude, phase or frequency modula-
tion of a carrier, and with each type of modulation various methods of de-
tection are possible. An important consideration in many applications is
the performance of various modulation and delection methods in the pres-
ence of phase distortion or equivalent envelope delay distortion, which may
be appreciable in certain transmission facilities. The principal purpose of
this presentation is a theoretical evaluation of transmission impairments
resulting from certain represenlative lypes of delay distortion. These trans-
mission impairments are reflected in the need for increased signal-to-noise
ratio at the detector input to compensate for the effect of delay distortion.

The performance in pulse lransmission by various carrier modulation
and detection methods can be formulated in terms of a basic function com-
mon to all, known as the carrier pulse transmission characteristic, which is
related by a Fourier integral lo the amplitude and phase characteristics of
the channel. Nwmerical values are given here for the carrier pulse transmis-
sion characteristic with linear and quadratic delay distortion, together with
the maximum fransmission impairments caused by these fairly represenla-
tive forms of delay distortion with various methods of carrier modulation
and signal detection. These include amplitude modulation with envelope
and with synchronous detection, two-phase and four-phase modulation with
synchronous detection and with differential phase detection and binary [fre-
quency modulation.
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In delermining the effect of delay distortion, a raised cosine amplitude
spectrum of the pulses at the detector input has been assumed in all cases,
logether with the minimum pulse interval permiited with this spectrum and
ideal implementation of each modulation and detection method. Further-
more, optimum adjustments from the standpoint of slicing levels and sam-
pling instants at the detector outpul are assumed for each particular case of
delay distortion. These idealizations insure that only the effect of delay dis-
tortion is evalualed and considered in comparing modulation methods, and

that this effect is minimized by appropriate system adjustments.
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I. INTRODUCTION

Binary pulse transmission by various methods of carrier modulation
has been dealt with elsewhere on the premise of ideal amplitude and
phase characteristics of the carrier channels." An important considera-
tion in many applications is the performance in the presence of phase
distortion or equivalent envelope delay distortion, which may be ap-
preciable in certain transmission facilities. An ideal amplitude spectrum
of received pulses can be approached with the aid of appropriate terminal
filters with gradual cutoffs, such that the associated phase character-
istic is virtually linear. Nevertheless, pronounced phase distortion may
be encountered in pulse transmission over channels with sharp cutoffs
outside the pulse spectrum band, as in frequency division carrier system
channels designed primarily for voice transmission.

The principal purpose of the present analysis is a theoretical evalua-
tion of transmission impairments resulting from certain representative
types of delay distortion in pulse transmission by various methods of
carrier modulation and signal detection. These transmission impair-
ments are reflected in the need for increased signal-to-noise ratio at the
detector input to compensate for the effect of delay distortion.

The performance in pulse transmission by various carrier modulation
and detection methods can be related to a basie function known as the
carrier pulse transmission characteristic. This basic function gives the
shape of a single carrier pulse at the channel output, i.e., the detector
input, under ideal conditions or in the presence of the particular kind of
transmission distortion under consideration. From this basic function
can be determined the envelopes of carrier pulse trains at the detector
input, together with the phase of the carrier within the envelope. The
shape of demodulated pulse trains with various methods of carrier
modulation and detection ean, in turn, be determined for various com-
binations of transmitted pulses, together with the maximum transmis-
sion impairment from a specified type of channel imperfection, such as
delay distortion dealt with here.

The carrier pulse transmission characteristic is related by a Fourier
integral to the amplitude and phase characteristic of the channel. It
has been determined elsewhere® for pulses with a raised cosine spectrum
and cosine variation in transmission delay over the channel band, and
for pulses with a gaussian spectrum with linear variation in delay. A
cosine variation in delay is approximated in some transmission facilities
and has certain advantages from the standpoint of analysis, both as
regards numerical evaluation and interpretation in terms of pulse echoes.

A somewhat similar form of delay distortion that affords a satisfactory
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approximation in many cases is quadratic (or parabolie) delay distor-
tion. Quadratic delay distortion is in theory approached near midband
of a flat bandpass channel with sharp cutoffs, such as a carrier system
voice channel, and usually affords a satisfactory approximation over the
more important part of the transmission band of such channels. Linear
delay distortion is approximated when a bandpass channel with gradual
cutoffs is established to one side of midband of a flat bandpass channel
with sharp cutoffs. These and other types of delay distortion do not
lend themselves to convenient analytical evaluation of the Fourier in-
tegrals for the pulse transmission characteristic. However, at present,
these integrals can be accurately evaluated by numerical integration
with the aid of digital computers for any speecified pulse spectrum and
phase distortion.

Numerical values are given here for the carrier pulse transmission
characteristics with linear and quadratic delay distortion, together with
the maximum transmission impairments caused by these limiting and
fairly representative forms of delay distortion with various methods of
carrier modulation and signal detection. These include amplitude modu-
lation with envelope and with synchronous detection, two-phase and
four-phase modulation with synchronous detection and with differential
phase detection and binary frequency modulation. In determining the
effect of delay distortion, a raised cosine amplitude spectrum of the
pulses at the detector input has been assumed in all cases, together with
the minimum pulse interval permitted with this spectrum, ideal im-
plementation of each modulation and deteetion method and optimum
design from the standpoint of slicing levels and sampling instants at the
detector output. These idealizations insure that only the effect of delay
distortion is evaluated and considered in comparing modulation methods,
a condition that is difficult to realize with experimental rather than
analytical comparisons.

As mentioned above, the present analysis involves a basie function
common to all modulation methods, which in general would be deter-
mined with the aid of digital computers. This approach has certain
advantages in comparison of modulation methods and from the stand-
point of optimum system design over direct computer simulation of each
modulation method. The latter direct approach may be preferable for
any specified modulation method and type of transmission impairment
and has been used in connection with a binary double-sideband AM
system with envelope detection, for cosine and sine variations in trans-
mission delay over the channel band and for combinations of these.’
The transmission impairments caused by linear and quadratic delay
distortion, and combinations thereof, have been determined experi-



PULSE TRANSMISSION WITH PHASE DISTORTION 357

mentally for a binary vestigial-sideband amphtude modulation data
transmission system employing envelope detection.

The present analysis is concerned with certain “‘coarse structure” vari-
ations in transmission delay that ordinarily predominate over smaller
“fine structure” variations, except in transmission facilities where
elaborate phase equalization is used. Transmission impairments from
small irregular fine structure gain and phase deviations over the channel
band can be evaluated by methods discussed elsewhere® and are not
considered here.

1. CARRIER PULSE TRAINS AND MODULATION METHODS

2.1 General

In carrier pulse modulation systems the pulse trains at the transmit-
ting end modulate a carrier in amplitude, phase or frequency. In AM
the demodulated signal depends on the envelope of the received carrier
pulse train at sampling instants, in PM on the phase of the carrier
within the envelope and in FM on the time derivative of the phase at
sampling instants. To determine the performance of these various meth-
ods in the presence of transmission distortion it is necessary to formulate
the received carrier pulse trains,

The received carrier pulse trains at the channel output, i.e., the de-
tector input, can in all cases be formulated in terms of the carrier pulse
transmission charaeteristie, that is, the received carrier pulse in response
to a single transmitted pulse. This pulse transmission characteristic is
related to the shape of the modulating pulses at the transmitting end,
and to the amplitude and phase characteristic of the channel, by a
Fourier integral, as discussed and illustrated for special cases in the
Appendix. The general formulation of the pulse trains at the detector
input and the resultant demodulated pulse trains with various methods
of carrier modulation and signal detection is dealt with in the following
sections.

2.9 Carrier Pulse Transmission Characteristics

Tt will be assumed that a carrier pulse of rectangular or other suitable
envelope is applied at the transmitting end of a bandpass channel. The
received pulse with carrier frequency o, can then be written in the
general form [Ref. 2, Equation (2.09)]

P..(l) cos {'wrt — Iﬁr)R,([) + Sill (wrt = Wr)Qc(!) (1)
cos [Wct - #I’c - ‘Pr(t)]pc(t)s (2)

I
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where
P.(t) = [RA() + QDT (3)
e(t) = tan™ [Q.(0)/R.(1)], (4)
R.(t) = P.(t) cos g.(2), (5)
Q.(t) = P.(t) sin g.(t). (6)

In the above relations £, and @. are the envelopes of the in-phase and
quadrature components of the received carrier pulse and P, the resultant
envelope. The time [ is taken with respect to a conveniently chosen
origin, for example the midpoint of a pulse interval or the instant at
which R, or P, reaches a maximum value.

With a earrier frequency w; rather than w,, relation (1) is modified
into

Po(t) = cos (wl — o) Ro(t) + sin (wl — o) Qo(1) (7)

and relations (2) through (6) are correspondingly modified by replac-
ing ¢ by the subscript 0.
When the ecarrier frequency is changed from wy to w, the spectrum of
a received pulse will change, provided the transmission-frequency
characteristic of the channel remains fixed, except in the limiting case
of a carrier pulse of infinitesimal duration having a flat spectrum. How-
ever, by appropriate modification of the transmission-frequency charae-
teristic the amplitude spectrum of a pulse at the channel output, i.e.,
the detector input, ean be made the same regardless of the carrier fre-
quency. On the latter premise of equal amplitude spectra at carrier
frequencies wy and w., the following relations apply [Ref. 2, Equation
(2.18)]:
R.(t) = cos [eo(t) + wt — ] Pu(t)
= cos ()t — ¥)Ro(t) — sin (wut — ¥,)Qu(t),
Q.(t) = sin [go(t) + wt — ¥, 1Po(t) )
= cos (wl — Y)Qu(l) + sin (wd — RO,

where
eot) = tan™" [Qo(0)/Ro(1)],
Wy = We — Wy,
Vo=V — ¥
Relations (8) and (9) apply when R.(¢) and @.({) are referred to the



PULSE TRANSMISSION WITH PHASE DISTORTION 359

carrier phase . in (1) rather than the earrier phase ¥, in (7). If a car-
rier phase y, is used as reference, ¥, = 0in (8) and (9), and

Req = cos wtRy(t) — sin wyt@Qu(t), (10)

Q.0 = cos w,lQ(t) + sin w,tRo(t). (11)
With (8) and (9) in (3), or (10) and (11) in (3):

P.(t) = Po(t) = [R(1) + Q' (D] (12)

The resultant envelope of a single pulse is thus the same regardless of
carrier frequency and phase, on the premise of a fixed pulse spectrum
at the channel output as assumed above.

2.3 Pulse Trains al Delector Input

Let carrier pulses be transmitted at intervals 7', and let ¢ be the time
from the midpoint of a selected interval. The following designation will
be introduced for convenience

R. I:T (,;, + n)] = R.x +mn),
Q. [T G + n)] — Qulz +n),

where n is the time expressed in an integral number of pulse intervals
of duration 7" and x the time in a fraction of a pulse interval.

Let a( —n) and ¢.(—n) be the amplitude and phase of the carrier
pulse transmitted in the nth interval prior to the interval 0 under con-
sideration, and a(n), ¢.(n) the corresponding quantities for the nth
subsequent interval. The received pulse train in the interval —7/2 <
t < T/2is then

Walx) = Z a(n) cos [wd — Y(n)|R.(x — n)
+ Z a(n) sin [wd — Y(n)|Q.(x — n)
= Z a(n) cos lwd — Yon) — ele — n)|P(x —n), (15)

where the summations are between n = — = and n = @,
During the next interval, T' to 27, the received wave is obtained by
replacing a(n) and ¢.(n) by a(n + 1) and ¢.(n + 1) and is thus

Wix) =
> aln + 1) cos [wt — ¢e(n + 1) — go(x — n)|P.(x — n)

where ¢ and x refer to midpoint of interval 1.

Rt + nT)

(13)
Q.(t + nT)

(14)

(16)
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In pulse modulation systems as considered herein it is assumed that
the modulating pulses are rectangular in shape and of duration equal to
the pulse interval. For equal phases ¢.(n) = . of all the modulating
pulses, (14) then becomes

Wo = cos (wd — o) 22 a(n)Ro(x — n)
+ sin (wd — ) Z a(n)Q.(x — n).

When a(n) = ais a constant the input is a continuous carrier, so that
evaluation of (17) will give

Wo = ad., cos (wd — ¢.), (18)

(17)

where A, is the amplitude of the transmission-frequency characteristic
of the channel at w = w. and it is assumed in the determination of R,
and €. that the phase characteristic is zero at w = w.. That is, a con-
stant transmission delay is ignored, which is permissible without loss
of generality.

When R.(1) and Q.(t) are determined from the channel transmission-
frequency characteristic by the usual Fourier integral relations, in the
form represented by (159) through (163) of the Appendix, the following
relations apply for rectangular modulating pulses of duration 7' equal
to the pulse interval:

A, = i R.(x — n), (19)
0= i Q(x — n). (20)

2.4 Amplitude Modulation
In AM systems ¢.(n) = ¢. = constant and (14) becomes
Wo(x) = cos (wd — ) 2 a(n)R(x — n)
+ sin (wt — ¥.) E a(n)Q.(x — n).

With synchronous detection, also referred to as homodyne and co-
herent detection, the received wave is applied to a product demodulator
together with a demodulating wave cos (wy! — ¥.). After elimination of
higher frequency demodulation products by low-pass filtering the de-
modulated baseband output becomes, when a factor of one-half is
omitted for convenience

Us(x) = 2 a(n)R.(x — n). (22)

(21)
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If w, is the bandwidth of the modulating signal, the high-frequency
output of the product demodulator will have a lowest frequency 2w, —
@, , which can be separated from the modulating wave by low-pass fil-
tering provided 2w, — wy = w,, or if w, = w, .

At sampling instants © = 0, the desired signal is a(0)R(0) and the
remaining terms in (22) represent intersymbol interference in systems
where R.(n) # 0 forn = +£1, £2, ete.

Owing to elimination of the quadrature components, synchronous
detection is simpler from the standpoint of analysis than envelope de-
tection, in which the demodulated signal depends on the envelope of
the received wave (21) as given by

Wolz) = {20 a(n)R(x — n)F + 2 a(n)Q(x — ). (23)

The desired signal at sampling instants x = 0 is a(0)[R(0) + Qf(ﬂ)}g
and the remaining terms in (23) represent intersymbol interference.

2.5 Phase Modulation with Synchronous Delection

In phase modulation systems the amplitude a(n) = a = constant
and the phase y.(n) is varied from one pulse interval to the next. The
received wave (15) then becomes

Wolz) = 2 cos [wd — ¢e(n) — @lx — n)]P.(x —n). (24)

In a multiphase system, the received wave is in general applied to
several product demodulators together with a demodulating wave cos
(wid — ). In the particular case of two-phase modulation a single
demodulator suffices, and the demodulator output after elimination of
high-frequency demodulation products by low-pass filtering and omitting
a factor of one-half is of the general form

Up(x) = 2 cos [e(n) — ¢ + oo(a — n)|P.(x — n). (25)
At the sampling instants
Us(0) = 3 cos [Yu(n) — ¢ + e(—n)]P—n), (26)

where as before the summation is between n = — % and n = w=.
The desired signal is represented by the term for n = 0 and is

Us(0) = cos [y(0) — 6]P.(0)
= [cos 6 cos ¢.(0) + sin 8 sin ¢.(0)]P.(0),
where

0=y — ‘Pc((})- (28)
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When the phase ¢ of the demodulating wave is so chosen that 8 = 0,
and if .(0) = 0or  as in two-phase modulation, then Uy(0) = £+ P.(0).

In four-phase modulation two product demodulators are required,
with the demodulating waves displaced 90° in phase. The output of the
second demodulator is then, in place of (26),

Vo(0) = D sin [fo(n) — ¢ + el — n)]P(—n) (29)
and the desired output at sampling instants is, in place of (27),

Vo(0) = sin [¢.(0) — 6]P.(0)

_ (30)
= [cos 6 sin ¥.(0) — sin 8 cos ¢.(0)]P.(0).

The preferable choice of the phase of the demodulating wave in the
above telations may depend on certain considerations in the imple-
mentation of modulators and demodulators. In Table I are given the
four possible combined outputs as determined by the carrier phase
¥.(0) for the particular cases § = 0 and § = =/4. For convenience the
outputs for § = x/4 are normalized to unit amplitude, the actual ampli-
tudes being +14/2.

It will be noted that with 8 = 0 the output U’ determines whether
one carrier is modulated in phase by ¢, = 0 or 7, while the output ¥4
determines whether the quadrature carrier is modulated in phase by
Y. = 0 or w. The two carriers can thus be modulated and demodulated
independently, without the need for circuitry to convert the two de-
modulator output to carrier phase, as would be required with 8 = =/4.
With differential phase detection, to be discussed in the next section,
such converters would be required both with 8 = 0 and 6 = »/4. In
this case § = =/4 may be preferable for the reason that only two states
(—1,1) are possible for each demodulator, rather than three states
(—1,0,1) with ¢ = 0.

TasLe I — Demopuvrnator Ourrurs Ug® anxp V? in Four-Poase
SysTEMS AS DETERMINED BY CARRIER PHASE ¢,(0) For DEMODU-
LATING WAVES WITH PHASES § = 0 AND 7/4

o=0 0= x/4
¥e(0)
Uq® i Vo Uq® l Vo0
0 1 0 1 -1
/2 0 1 1 1
T -1 0 -1 1
3r/2 0 -1 -1 e |
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2.6 PM with Differential Phase Detection

An alternative method of demodulation that will be considered in con-
nection with phase modulation is differential phase detection. With this
method We(z) as given by (15) is applied to one pair of terminals of a
product demodulator, and Wi(x) as given by (16) to the other pair
with a suitable phase shift 8. The demodulator output is then, with
a(n) constant as in phase modulation,

Un(x) = 12 cos [wd — ye(n) — @l —n) + B|P.(x — n)}
A Y eos [wd — Ye(n + 1) — g(x — n)|Pe(x — n)},

where as before the summations are between n = — o and n = «.

After elimination of high-frequency components present in (31) by
low-pass filtering and omitting a factor of one-half, the resultant base-
band output can be written

(31)

Un(z) = 3 Su(x)Po(x — n), (32)
Uu(0) = X 8.(0)P(—n), (33)
in which the summations are between n = — % and = and

Su(-l.) = z‘: P,.(.t‘ — m) cos [q’c(_n) - ‘#r(—m + 1)
m=—m=0 (!54)

+ @ulx — n) — @lxr —m) — 6],
S.(0) = i P.(—m) cos [¢(—n) — g(—m + 1)
m=—2 (35)
+ o{—n) — g.(—m) — 4].
The desired output is represented by the term in (33) for n = 0 and is
Un’(0) = Sy(0)P.(0) (36)
where, in accordance with (35),
Se(0) = i P.(—m) cos [¢.(0) — y(—m + 1)
m=—c (37)
+ 0:(0) — e(—m) — 4.
In the absence of intersymbol interference P.(—m) = 0 for m # 0 and

Sa'(0) = P.(0) cos [y.(0) — (1) — 6] (38)

so that (36) become

Ua(0) = PA0) cos [$.(0) — ¢.(1) — 8]. (39)

|
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It will be recognized that this expression is of the same form as (27)
except that ¢.(0) is replaced by the phase change ¢.(0) — ¥.(1) be-
tween two successive sampling instants. In the particular case of four-
phase transmission the phase # may be chosen as, say, 8 = 0 or r/4, in
which case the outputs of the two product demodulators would be as
indicated in Table I for phase modulation with synchronous detection,
except that ¢.(0) is replaced by the phase difference ¢.(0) — ¢.(1).

With a signal of bandwidth w, the high-frequency part of (31) will
have a lowest frequency 2(w, — w,), since it is the product of two high-
frequency components each of lowest frequency w. — w, . The baseband
signal represented by (32) will have a maximum frequency 2w, , so that
a flat low-pass filter of minimum bandwidth 2w, is required to avoid
distortion of the baseband signal. In order that the filter also eliminate
the high-frequency components in the demodulator output, it is neces-
sary that 2(w, — w.) = 2w, or &, = 2w, . With synchronous detection it
was necessary that w, = o, .

2.7 Binary FM with Frequency Discriminator Detection

In frequency modulation a(n) in (14) is constant and y¥.(n) varies
with time so that the time derivative of [w. — ¥.(n)] represents a
variable frequency. Pulse transmission without intersymbol interference
over a channel of the same bandwidth as required for double-sideband
AM is in this case possible for certain ideal amplitude and phase charac-
teristics of the channels, as shown elsewhere [Ref. 1, Section 5]. The
formulation is here modified to include any amplitude and phase char-
acteristic of the channels.

It will be assumed that a space is represented by a frequency wp — @
and a mark by a frequency wy + &. Discontinuity in a transition from
mark to space can then be avoided for rectangular modulating pulses
of duration T provided,

ol = km, k= 123. (40)

In a system of minimum bandwidth & = 1, and in this case inter-
symbol interference can be avoided with a channel band no wider than
required for double-sideband AM.

When a mark is preceded and followed by a space during the nth
pulse interval, the envelope of the resultant carrier pulse is obtained
with ty = (¢t + nT) in Equation (23) of Ref. 1 and becomes

E(t + nT) = 2 cos &(t + nT)
(41)

= (—1)"2 cos at,

where the last relation follows from (40) with &k = 1.



PULSE TRANSMISSION WITH PHASE DISTORTION 365

The resultant carrier pulse during interval 0 is of the general form
P(t) = cos (wit + @) (—1)"Ry(t — nT)
+ sin (wot + @) (—1)"Qu(t — nT),

where ¢ is the time from the midpoint of interval 0.
When ¢( — &) is the phase distortion* at the frequency wy — @, Equa-
tion (34) of Ref. 1 is modified into

E(t) = —cos (wl + @o)[A(—@) cos y — (—=1)"Ro(t — nT)]
+ sin(wi + @) [A(—a) siny — (—1)"Qu(t — nT)],

(42)

(43)

where
Yy = al + ¢(—a). (44)

When a sequence of marks and spaces is transmitted, the resultant
wave at the detector input becomes

Wo(t) = cos (wl + @o)[A(—&) cos y — an(x)]

; . (45)
+ sin (el + @o)[A(—@) siny — Bo(x)],
where
ay(x) = Z (—1)"a(n)Ry(x — n), (46)
Buo(x) = 22 (—=1)"a(n)Qu(x — n), (47)

in which the notation is in accordance with (13), * = /T and y =

™ + ¢(—a).
The phase of the wave (45) is given by
tan W,(t) = _sin y — uhol(r) , (48)
cosy — pan(x)
where

Il

1/A(—a) (49)

Expression (41) of Ref. 1 for a single pulse is replaced by the following
for the demodulated pulse train at x = {/T"

I

U(x) = 2% [’ + Bo’) — ancosy — Bosin y
(50)
— L@ siny — B cos y) — £ (By'as — au'Bo)],
w w

* As in Ref. 1, the linear component of the phase characteristic is disregarded
‘nee it only represents a fixed transmission delay.
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where
D=1+ s(a + Bs) — 2u(ag cos y + By sin y), (51)
in which
ay = ap(x), Bo = Bo(x), o' = dew/dl, By = dBo/dt.

2.8 Signal-to-Noise Ratios in Binary FM

Since binary FM with frequency diseriminator detection is a non-
linear modulation method, determination of the optimum signal-to-noise
ratio at the detector input for a given error probability presents a very
difficult analytical problem, at least when consideration is given to
minimum bandwidth requirements together with appropriate shaping
of bandpass and postdetection low-pass filters. In Ref. 1 these various
factors were taken into account, but the signal-to-noise ratios at sam-
pling instants were evaluated on the approximate basis of a steady
state carrier representing a continuing space or mark and a relatively
high signal-to-noise ratio. On this basis it turned out that, in the absence
of a postdetection low-pass filter, binary FM would have a disadvantage
in signal-to-noise ratio of about 4.5 db compared to an optimum bipolar
AM or phase reversal system. This would be reduced to about a 1.5-db
disadvantage by addition of an optimum low-pass filter. The analysis
further indicated that, for a specified postdetection low-pass filter, there
would be an optimum division of shaping between the transmitting and
receiving bandpass filters that would give a slight advantage in signal-
to-noise ratios over an optimum bipolar AM system. In view of the ap-
proximations involved, the above analysis does not prove that such an
advantage exists. Rather, it is probable that optimum bipolar AM has
some advantage in signal-to-noise ratio over optimum binary FM. This
is indicated by other analyses that do not assume a high signal-to-noise
ratio but introduce other approximations in that they do not consider
frequency diseriminator detection or the shaping of band-pass filters or
the effect of a postdetection low-pass filter.

It is well known that an approximation is involved in assuming high
signal-to-noise ratios and thus ignoring the breaking phenomenon in
M. Moreover, even in the absence of intersymbol interference, it is an
approximation to assume a steady state carrier over a short sampling
interval, regardless of the transmitted code, as shown below.* Referring
to Equation (202) of Ref. 1, random noise at the detector input can be
written in the form

Bi(f) = T{U) cos (wnt -+ qﬂn) -+ g‘,(i) sin (wgf -} qau). (52)
* This was shown by A. P. Stamboulis.
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When this noise is combined with the signal as given by (43), equa-
tion (48) for the phase in the presence of interference becomes

_sin y — ulBo(x) + gi(x)]
cos y — wlao(x) + ri(x)]’

tan ¥, = (53)
where x = t/T.

In the absence of intersymbol interference at sampling instants,
as(0) = 0or 1, Bo(0) = 0,y = 0 and ¢ = 2. In this case appropriate
modification of (50) gives for the demodulated signal plus noise at
sampling instants

(oo 4+ r)[2(a0 + 1) — 1 + ¢//6 + 200qi/@

T(U (0) = -
U (U)Y + U(0) Bla + i) — 1 . (54)
where r; = r.(0), ¢: = ¢:(0) and ¢/ = dg.(t)/dt for t = 0.

If ; < 1, the last equation is approximated by

Un(0) + Ui0) =2 a(0) — r: + ¢i/0 + 2aqi/a, (53)

where U4(0) = a(0) = 0 for space and 1 for mark, and the interfering
voltage after demodulation is

Ui0) = —ri + ¢//6 + 2aqi/0 (56)

The first two terms represent the conventional approximation for a
continuing mark or space and a high signal-to-noise ratio.

In order to neglect the third term in (56) it is necessary that o' (0) =
0. This is not the case except for a continuing space, a continuing mark
or a mark preceded and followed by a continuing space. For other
combinations of transmitted pulses there is some contribution from the
third term. In the particular case of a raised cosine pulse spectrum, as
considered herein, the maximum effect for a random pulse train is less
than 0.15 db and ean thus be ignored. For narrower pulse spectra the
effect may be appreciably greater.

In the analysis that follows, transmission impairments from inter-
symbol interference owing to phase distortion will be evaluated on the
same basis for FM as for the other modulation methods, although the
approximations involved may be somewhat greater.

2.0 Slicing Levels and Noise Margins

As indicated by the preceding derivations, the demodulated wave is
related to the received carrier wave Wy(x) in a manner that depends on
the carrier modulation and detection method. In general the demodu-
lated wave at sampling instants may assume a number of different
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amplitudes. Let U designate the demodulated wave for one particular
amplitude or state a, of the transmitted signal and U™ the demodu-
lated wave at a sampling instant for an adjacent amplitude or state
841 of the transmitted signal. There will then be a certain sequence of
transmitted pulses for which a maximum value Uwa™ is obtained, ow-
ing to intersymbol interference, and also a certain sequence resulting
in a minimum value Uni'™*". If there is equal probability of a, and
a.41 and of positive and negative noise voltages, the optimum level for
distinetion between U and U is

Lll“) = %{lf]llill(“+ll + U'mux(”J- (57)

In the presence of " the margin for distinction from U“"" is
ﬂ[(ﬂ) Y Lu{n) — Lr(#) (58)

and in the presence of U“™ the margin for distinction from U™ is
J,”|(n+l) — [fv(l'i—ll _ Lu(”. (59)
The minimum margins are obtained with U" = Up." and with
U™ = U™ in (58) and (59). The minimum margins thus be-

come
(a41) ) (a+1) ) ¥

ﬂlmin : = jlfminw = %[L'rmin ? - Unmx(n ] ({]0)

For sequences of marks and spaces, or other signal patterns, such
that the minimum margins for distinction between adjacent signal
states are obtained, an error will occur if the noise voltage at the sam-
pling instant exceeds M., in amplitude and has the appropriate
polarity. (Polarity is immaterial except for the two extreme signal
states.) For other signal patterns the tolerable amplitude of the noise
voltage is greater. The value of M,;, relative to the value in the absence
of intersymbol interference thus gives the maximum transmission im-
pairment. The average impairment obtained by considering various
pulse train patterns and the corresponding values of M and M“*"
as given by (58) and (59) will be less, as discussed below.

2.10 Bvaluation of Transmission Impairments

By way of illustration it will be assumed that all values of M between
Muin and a maximum value M.« are equally probable, and that the
noise has a gaussian amplitude distribution. With a given fixed value of
M the probability of an error can be written as

p. = % erfe (aM) (61)



PULSE TRANSMISSION WITH PHASE DISTORTION 369

where erfe = 1 — erf is the error function complement and a is a factor
that depends on the ratio of signal power to noise power.

Considering all noise margins between the limits mentioned above,
the average error probability becomes

1 t *Mmax
Pe= 3. etle (ad)dM
Mpgx — Mpmin & Y Mpin

1 1

S T [M,,.,“ erfe B — M, erfe A (63)

1 —A2 _g?
+a\/;r((‘A_e )]:

where
"1 = a ﬂ-[lnin y

B = a Muax.

With
J-{fuux =k ﬂ[lllill ) ((‘)4}
(63) becomes

Pe =

o] =
=1

1 o AN anf, 1 —A2 —k24? o
‘.Ti [’I erfe (]hl) erfe A -I" :1‘\/1; ((’ — @ )] (()-J)

Tor I = 1, the latter expression conforms with (61).
The maximum error probability would be obtained by considering a
fixed noise margin equal to A, and would be
p. = 3 erfe A, (66)
The error committed in assuming M, can be determined by writing
p. as given by (65) in the form
p. = 3 erfe (ed), (67)

where ¢ = 1 is so chosen that (67) equals (65).
The average noise margin is then

ﬂ:’ = Cﬂ[mgn (68)

By way of numerical illustration let A be so chosen that p. as given
by (66) in one case is 10 * and in another case 107", The results given
in Table II are then obtained from (65) and (67).

As will be shown in a later section, a factor k = 3 may correspond to
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TaBLE II — Ratro ¢ = M/Mui, ForR EQUuAL PROBABILITY oF ALL
Noise MARGINS BETWEEN Muin AND Mouax = k M,in FOR NOISE
wITH A GAussiIAN AMPLITUDE DISTRIBUTION

A =262  fg=107 A =30; Be=10
E= 1 2 3 1 2 3
Pe 10—# 10-% 5 X 1070 10—3 1.0 X 1076 | 7.5 X 1077
¢ 1 1.15 117 1 1.1 1.12
¢ (in db) 0 1.2 1.4 0 0.8 1.0

a transmission impairment of about 10 db based on the minimum noise
margin, whereas the actual impairment would be 1.4 db less for an error
probability of 107*, about 1 db less for an error probability 107°, For an
error probability of 10" or less the error committed in evaluating trans-
mission impairments on the basis of the minimum noise margin can be
disregarded. This also applies for greater error probabilities when the
transmission impairment based on the minimum noise margin is small,
in which case b < 2.

ITI. SYNCHRONOUS AM AND PM

3.1 General

Amplitude modulation ean be used in conjunction with envelope de-
tection and synchronous detection. The former method is simplest from
the standpoint of implementation, but synchronous detection, also re-
ferred to as homodyne and coherent detection, affords an improvement
in signal-to-noise ratio. Since synchronous detection is also the simplest
method from the standpoint of analysis, it will be considered here, ex-
cept for a comparison of envelope and synchronous detection for binary
double-sideband AM.

Amplitude modulation in general implies several pulse amplitudes,
and can be used with double-sideband and with vestigial-sideband trans-
mission. The particular case of bipolar binary AM with synchronous
detection is equivalent to two-phase modulation.

With amplitude modulation and synchronous detection it is possible
to transmit pulse trains on two carriers at quadrature with each other,
and under certain idealized conditions to avoid mutual interference. The
special case of bipolar binary AM on each of the two carriers is equiva-
lent to four-phase modulation.

The signal-to-noise ratio as related to error probability is discussed
elsewhere (Ref. 1, Section XVIII) for various optimized binary AM or
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PM systems on the premise of ideal synchronous detection. Ideal syn-
chronous detection for AM or PM as assumed here can in principle be
approached without penalty in signal-to-noise ratio, by various methods
of implementation. For example, a demodulating wave for a product
demodulator can be derived with the aid of a resonator of sufficiently
narrow bandwidth (high Q) tuned to the carrier frequency, or the
second or the fourth harmonic thereof, depending on the particular
method and on whether two-phase or four-phase modulation is used. A
demodulating wave can also be supplied from an oscillator at the re-
ceiving end, the phase of which would be controlled by comparison with
that of the carrier of the received signal. Such phase-locked oscillator
methods have been devised for analog signal transmission by suppressed
carrier double-sideband AM® and vestigial-sideband AM.® With any one
of the above methods, noise in the demodulating wave would be vir-
tually absent, as would the effect of phase distortion in the channel.
Actually some penalty in signal-to-noise ratio as compared to ideal
synchronous detection would be incurred, owing to unavoidable fluctua-
tions in the amplitude and phase of the demodulating wave, resulting
from the finite bandwidth of the resonators and mistuning, or from im-
perfect oscillator control. A common property of these methods is that
a rather long time, as measured in pulse intervals, is required to establish
a demodulating wave, if the above fluctuations in amplitude and phase
are to be held within tolerable limits. This may be a disadvantage in
certain applications, which in the case of phase modulation can be over-
come by differential phase detection, in exchange for a penalty in signal-
to-noise ratio resulting from the presence of both noise and phase dis-
tortion in the demodulating wave, as discussed in Section IV.

A general formulation is given here of intersymbol interference and
resultant maximum transmission impairment as related to the carrier
pulse transmission characteristic, together with illustrative applications
to the particular cases of linear and quadratic delay distortion. The
formulation is, however, applicable to any given gain and phase devia-
tion over the channel band, provided the carrier pulse transmission
characteristic has been determined, which in general would entail Fourier
integral evaluation with the aid of computers.

3.2 Synchronous AM and Two-Phase Modulation
With synchronous detection (22) applies, or alternately, with = 0
and Uy(0) = U,

U= a(0)R.(0) + 2 [a(—n)R.(n) + a(n)R.(—n)]. (69)

n=l1
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The following notation will be used:

+
Te

[R *(n) + R (—n)), (70)

Te

Il

n[\’]B nMs

(R (n) + R (=n)], (71)

where R." designates positive values of R, and R. absolute values
when R, is negative.

Let there be [ different amplitude levels, between a minimum ampli-
tude @min and o maximum amplitude @u.. . When a pulse of amplitude
a, = a,(0) is transmitted, the maximum value of (69) is

[Imux‘” = anRr(O) + amnxrc+ = ﬂ'utlnrei— (72)

For the next higher pulse amplitude ay1 = @ + (Gmax — Gmin) /(I — 1),
the minimum value of (69) is

lf“”-"“'H, = H‘N+1Rr(0) + aminrc+ - anmx'rc—- (73)
The minimum noise margin is, in accordance with (60),
A - avm' RL- 0 , -
ﬂ[lnin = = 9 = [! _(. i - Tclh i ]- (74)
In the absence of intersymbol interference r. = 0, . = 0 and

R.(0) = R.”(0), so that

— @nin Rro(())

] 0 — Ayyax .
M 7 il

The value of M., as given by (74) is smaller than 3" in the absence
of intersymbol interference by the factor

C_RO) [, _ gyt n‘] .
Min = m‘ I:l (l 1) W (7())
L(0) 7o
R n(0)[ ¢=1 m(m]' ' (77)
where 7
o Z::I [R.(—n) + R.n)], (78)

in which £, designates the absolute value of R, .
The factor R.(0)/R."(0) represents the transmission impairment ow-
ing to reduction in pulse amplitude at sampling instants. The summation
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term represents transmission impairments owing to intersymbol inter-
ference.

Relation (77) applies regardless of the polarity of the transmitted
pulses and for both symmetrical (double sideband) and asymmetrical
(vestigial sideband) systems. The special case [ = 2 and @min = —Qmax
represents binary bipolar AM, which can also be regarded as two-phase
transmission.

3.3 Quadrature Carrier AM and Four-Phase Modulation

With synchronous detection it is possible under certain ideal condi-
tions to transmit signals on two carriers at quadrature without mutual
interference. In general, however, the quadrature component in (21)
will in this case give rise to interference and (69) is replaced by

U = a(0)R(0) + il [a(—n)R.(n) + a(n)R.(—n)]

n=

. (79)
4+ 5(0)Q.(0) + 2 [b(—n)Q.(n) + b(r)Q—n)),

n=1
where b(n) are the pulse amplitudes in the quadrature system.
IFor equal differences between maximum and minimum amplitudes in
the two systems, 1.¢., Guex — @uin = Duax — bwin, (77) is replaced by

R.(0) =1 _ _
Thuin = ?1‘—."(—0) {l m [Qc(n) + Te + qu}a (80)
where 7, is defined by (78), and similarly
‘71' = Z] [Q(‘(_n} + Qe(”-)]. (81)

where Q. designates the absolute values of Q. .

In general the phase of the demodulating carrier can be so chosen
that Q.(0) = 0, as is demonstrated later.

Expression (80) applies regardless of pulse polarities in the two
quadrature systems. The special case of two binary bipolar AM sys-
tems, i.e., I = 2 and @uin = buin = —@max = —bmax can also be regarded
as four-phase transmission.

3.4 Even Symmetry Pulse Spectrum and Delay Distortion

When the spectrum of a received pulse at the detector input has even
symmetry about the carrier frequency, and the phase characteristic has
odd symmetry (even symmetry delay distortion), the quadrature com-
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ponents Q.(n) vanish (see the Appendix). In this case (77) and (80)
are identical, so that there is no mutual interference between pulse
trains transmitted on two carriers at quadrature. In this special case it
is thus possible by quadrature carrier AM to realize a two-fold increase
in pulse transmission rate, without increased intersymbol interference.
An alternative means to the same end is to use vestigial sideband trans-
mission, as discussed below.

Let 7 be the pulse interval in double-sideband AM, in which case the
pulse interval in vestigial-sideband AM would be T" = T'/2. Returning
to (10) and (11) let Ro(¢) be the in-phase component in double-side-
band AM, and let Qy(¢) = 0 for an amplitude spectrum with even sym-
metry about wy and a phase characteristic with odd symmetry. Let w,
be the carrier frequency from midband in vestigial-sideband transmis-
sion. By appropriate choice of w, it is possible to make w,7’ = #/2, in
which case cos ©,7" = 0, sin », 7" = 1. The following relations are thus
obtained:

At even sampling points, i.e., m = 0,246, - - - |
R.o(mT') = (—=1)"*Ry(mT’) = (—1)"*Ro(mT/2),
Q.o(mT’) = 0. (82)

At odd sampling points, i.e., m = 1,3,5,7, - -+,
Rc.(l('mT’) = 0’
Qc.(l(m-?") — ( =] )(mfll.!ERn(mqu) — ( - )(mﬁl”an(m,T/Q).

In accordance with the above relations, at even sampling points only
the in-phase components are present and are the same as in double-side-
band AM. At odd sampling points the quadrature components are pres-
ent, but are eliminated with synchronous detection and need not he
considered.

In summary, when the amplitude spectrum at the detector input has
even symmetry about the midband frequency, and the phase character-
istic has odd symmetry, relation (77) applies for double-sideband AM,
quadrature double-sideband AM, vestigial-sideband AM, as well as
special cases thereof, such as two-phase and four-phase modulation.

In the next section numerical results are given for the special case of
a raised cosine spectrum at the detector input with quadratic delay
distortion about the midband frequency.

(83)

3.5 Raised Cosine Spectrum and Quadratic Delay Distortion

In the following numerical illustration, the spectrum at the detector
input will be assumed to have a raised cosine shape, as shown in Fig. 1.
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mitted carrier pulses of duration 7' = /& and carrier at midband; A (u)/A0) =
(wu/4@)/tan (ru/d@). Curve3:Transmission frequency characteristic of channel
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A(0)A(0) = cos? (wu/4a)|[(u — &)/4al/sin [r(u — &)/4a]}.
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The shape of the transmission-frequency characteristic of the channel
required to this end depends on the shape of the transmitted pulses. It
is shown in Fig. 1 for reetangular modulating pulses, with the carrier at
midband and also with the carrier to one side of midband, as in vestigial-
sideband transmission. These characteristics, together with the optimum
division of shaping between transmitting and receiving filters, are dis-
cussed in Section XIV of Ref. 1. Even though the amplitude characteris-
ties of the detector input spectra are the same in double- and vestigial-
sideband transmission, it is necessary to use different shaping of
transmitting filters, as indicated in Fig. 1, since the rectangular modulat-
ing pulses have different carrier frequencies and different durations.

The phase characteristic is assumed to contain a linear component,
together with phase distortion component varying as the third power of
frequency from midband, which corresponds to delay distortion increas-
ing as the second power of frequency from midband, as indicated in Fig.
2. The function Ry({/T) = Ry(x + n) for this case has been determined
by numerical integration, as discussed in the Appendix. It is given in
Table XIX of the Appendix and shown in Fig. 2. The values for @ = 0,
i.e., integral values of ¢{/T are given in Table III.

TasLE IIT — Funcrion Ry(n) ror Raisep CosiNg SPECTRUM
AND QuaprATIC DELAY DISTORTION

d/T
n=1/T

] 1 2 3 4

_ 0 —0.0006 0.0025 0 0
2 0 —0.0013 0.0011 0.0017 0.0028
2 0 0.0467 0.0756 0.0891 0.0986
0 1 0.9633 0.8795 0.7956 0.7336
1 0 —0.0341 | —0.0008 0.0827 0.2045
2 0 0.0196 0.0543 0.0655 00142
3 0 0.0044 0.0020 | —0.0231 | —0.0584
4 0 00014 | —0.0014 | —0.0087 | —0.0037
5 0 00006 | —0.0008 | —0.0022 0.0040
3 Ru(n) 1.0 1.0000 1.0004 1.0006 0.9957

—3

With exact evaluation of Ry(n) the summation ZRn(n) between
n = —w and n = « should equal 1.

With the values of Ry(n) given in Table 111, the values of 7. = 7, ob-
tained from (78), and of i, as obtained from (77) are given in Table
IV.

These factors are shown in Iig. 3 and apply for double- and vestigial-
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TaBLE IV — FACTOR fmin FOR RAISED COSINE SPECTRUM AND
Quabratic DELay DISTORTION FOR SYNCHRONOUS AM
witH [ AmMpLiTUDE LEVELS*

/T 0 1 2 3 4

ro 0 0.109 0.148 0.273 0.385
=2 1 0.855 0.732 0.523 0.347
=3 1 0.746 0.585 0.250 —0.037
l=4 1 0.637 0.437 —0.053 —
l=35 1 0.529 0.300 —0.296 —

* Results also apply with envelope detection (Section 3.9)

sideband AM and for quadrature double-sideband AM, and special cases
thereof, such as two-phase and four-phase transmission. Since the quadra-
ture component is absent the factors also apply for double-sideband AM
with envelope detection. It should be noted that T in all cases is the
pulse interval in double-sideband AM, which is twice the pulse interval
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Fig. 3 — Faetor g, for raised cosine pulse spectrum and quadratie delay dis-
tortion as in Fig. 2, for AM systems employing synchronous detection and { pulse
amplitudes. Factor applies for double- and vestigial-sideband AM and quadrature
double-sideband AM.
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in vestigial-sideband AM or twice the combined pulse interval in quadra-
ture double-sideband AM.

In the above evaluation it was assumed that the pulses were sampled
at { = 0, which is not at the peak of a pulse except for d/T = 0. For
d/T = 4 the pulse peak is nearly at (/T = » = 0.25. Sampling at
x = 0.25 gives, for [ = 2, g,in = 0.356 rather than 0.347.

The factor gui. expressed in decibels, as in Fig. 3, indicates the maxi-
mum transmission impairment, i.e., the maximum inecrease in signal-to-
noise ratio required at the detector input to compensate for the effect
of delay distortion. This maximum impairment would be closely ap-
proached for signal-to-noise ratios such that the error probability is suf-
ficiently small, say less than 1077, However, for error probabilities in
the range ordinarily considered the transmission impairment will be
less, in accordance with the diseussion in Section 2.10. For example, for
d/T = 4, Ry(0) = 0.734 and 7(0) = 0.385. The maximum noise mar-
gin for [ = 2 is in this case

ﬂfmm: = RD(O) + 7-'0(0) =~ 1.12
and the minimum margin is
Mo = Ry(0) — 7(0) = 0.397.

For k = M yax/Muin = 3.2, the results given in Table IT indicate that
the transmission impairments would be less than the maximum by
about 1 db and 1.4 db for error probabilities of 10™° and 10™* respec-
tively. For d/T = 4 and [ = 2 the maximum impairment indicated in
Fig. 3 is —20 logyw Muin = 9.2 db, whereas impairments of about 8.2
and 7.8 db would be expected for error probabilities of 107" and 107, on
the premises underlying the evaluation in Section 2.10.

3.6 Even Symmelry Spectrum and Odd Symmetry Delay Distortion

When the pulse spectrum at the detector input has even symmetry
about the midband frequency and the phase characteristic has a com-
ponent of even symmetry, i.e., odd symmetry delay distortion, the in-
phase and quadrature components both have even symmetry with re-
spect to ¢. That is,

Ro(—1t) = Ru(0); Qu(—1) = (1) (84)

With synchronous detection the phase of the demodulating carrier
would preferably be so chosen that Qu(¢) would vanish at { = 0, since
this would give the maximum amplitude of the demodulated pulse at a
sampling constant, equal to [Ry(0) + Q'(0)]’. For purposes of analysis
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it is therefore convenient to modify the phase angle so that the quadra-
ture component vanishes at ¢ = 0. The modified quantities are related
to Ry and Qo by (see Appendix)

Ro(0)Ry(1) + Qu(0)Qu(t)

Rull) = —R70) + @2O)F (85)

_ Ry(0)Q(t) — Qo(0)Ru(1) ‘

) = 86
et [R#(0) + QEO)] (862
In the case of double-sideband transmission (77) applies, with

'i'-',- = "‘nu = 22 R[}u(ﬂ,). (87)

With quadrature double-sideband transmission (80) applies, with
Q.(0) = Qw(0) = 0 and

x
G = dw = 22 Qu(n), (88)
n=1
where Re and Qu designate absolute values.
In the case of vestigial-sideband transmission at pulse intervals
T = 7/2, the in-phase component referred to a carrier at frequency
wy + @ is obtained from (10) and becomes

R, = cos (‘i} m) Ro(m) — sin (&; m) Quol(m). (89)

With T = , ie., @' = =/2, (89) gives at even sampling points,
m = 0,246, -,
Rew™ = (—1)"Rw(m). (90)
At odd sampling points, m = 1,3,5,7, -+,
Reae™ = (—=1)""""Quo(m). (91)
In this case (77) applies, with R.(0) = Rw(0) and

Fe = 22 fl-,m;( ??l) -+ 22 Qm(?ﬂ). (92)
T T

m=2,46--- m

3.7 Raised Cosine Spectrum and Linear Delay Distortion

For the special case of a raised cosine spectrum and linear delay dis-
tortion the funetions Ry, and Q, have been determined by numerical
integration, as discussed further in the Appendix. They are given in
Table XX for certain ratios d/T', where d is the difference in delay be-
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Fig. 4 — Carrier pulse transmission characteristics for raised cosine spectrum
as in Fig. 1 and linear delay distortion.

tween the midband frequency and maximum sideband frequency as il-
lustrated in Fig. 4. The modified functions Ry and Qy are given in Ta-
ble XXI and are shown in Fig. 4. For negative values of t/T', Ry and Qu
are the same as shown in I'ig. 4 for positive values.

For double-sideband transmission the factors fmin given in Table V
are obtained from (77), with 7. taken in accordance with (87). These
factors are shown in Fig. 5. The case [ = 2 corresponds to two-phase

transmission.
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TasLe V— FACTOR 7min FOR DouBLE-SiDEBAND AM AND
1 =2, 3,4 axp 5 PuLse AMPLITUDES

T

1

0 0.5 ‘ 1 2 3

2 1 0.959 0.860 0.517 —0.144

3 1 0947 | 0.82 0.336 —0.860

4 1 0.935 0.792 0.155 —1.57

5 1 0.923 0.758 —0.026 —
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Fig. 5 — Factor nuia for raised cosine pulse spectrum and linear delay distor-
tion as in Fig. 4 for double-sideband AM systems employing synchronous detec-
tion and I pulse amplitudes.

For quadrature double-sideband AM the factors in Table VI are ob-
tained from (80) with 7. and . taken in accordance with (87) and (88).
These factors are shown in Fig. 6. The case [ = 2 corresponds to four-
phase transmission.

For vestigial-sideband transmission the factor gumia is determined from
(77), with 7. taken in accordance with (92). The factors given in Table
VII are thus obtained.
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TABLE VI — FACTOR fmin FOR QUADRATURE DOUBLE-SIDEBAND
AM ror [ = 2 anp 3 PuLsE AMPLITUDES

a/T
2
0 0.5 | 1 2
2 1 0.735 0.458 —0.32
3 1 0.499 0.022 —1.34
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Fig. 6 — Factor nuia for raised cosine pulse spectrum and linear delay distor-
tion as in Fig. 4 for quadrature double-sideband AM systems (solid lines) and
vestigial-sideband AM systems (dashed lines) employing synchronous detection
and [ = 2 and 3 pulse amplitudes.

TaBLE VII — FACTOR nmin FOR VESTIGIAL-SIDEBAND AM
FOR [ = 2 AnxD 3 PurLse AMPLITUDES

d/T

2 1 0.703 0.42 —0.061
3 1 0.435 —0.056
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1.8 Vestigial-Sideband vs. Quadrature Double-Sideband AM

The factors numin for vestigial sideband AM are compared in Fig. 6
with the corresponding factors for quadrature double-sideband AM.
With ideal transmission-frequency characteristics and ideal synchronous
detection the two methods are equivalent from the standpoint of channel
bandwidth requirements and optimum signal-to-noise ratio for a given
error probability. As shown in Section 3.4, this also applies for pulse
spectra at the detector input with even symmetry about the midband
frequency, in the presence of delay distortion with even symmetry. The
equations in Section 3.6 and the curves in Fig. 6 show that the above
two methods are not equivalent in the presence of delay distortion with
odd symmetry about the midband frequency. With linear delay distor-
tion the factor gmia i, however, very nearly the same with both methods.
For practical purposes quadrature double-sideband AM and vestigial-
sideband AM can be regarded as equivalent with any type of delay dis-
tortion that would be expected in actual facilities. This equivalence
would apply on the premise of ideal synchronous detection but not neces-
sarily with actual implementation of synchronous detection, for the rea-
son that the penalty in signal-to-noise ratio incurred in deriving a de-
modulating wave may not be the same with both methods.

3.9 Envelope Detection vs. Synchronous Detection

In the preceding analysis ideal synchronous detection was assumed,
which permits the use of bipolar pulses. An alternative method that is
simpler in implementation is envelope detection, which, however, entails
the use of unipolar pulse transmission and for this reason has a certain
disadvantage in signal-to-noise ratio as compared to synchronous detec-
tion." In addition, transmission impairments by phase distortion may in
certain cases be greater with envelope than with synchronous detec-
tion, as shown below.

When both the pulse spectrum and delay distortion have even sym-
metry about the carrier frequency, so that the quadrature component is
absent, the effect of delay distortion is the same as with synchronous
detection. The results given in Table TV thus apply also for double-side-
band AM with envelope detection.

When a quadrature component is present in the carrier pulse trans-
mission characteristic the resultant demodulated wave is in accordance
with (23) given by

U0) = (rd + a'),. (93)

where
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]

ro = n(z) = 3. a(n)Re(x = n), (94)
0= 0(x) = 3 awa — ) (95)

The modified values Ry and Qg can be used in place of By and @, .

Owing to the presence of both in-phase and quadrature components,
it does not appear feasible to derive a simple general expression for
Upax” and Upin®™ similar to (72) and (73). These values can, how-
ever, be determined by examining several combinations of transmitted
pulses, as illustrated below for binary pulse transmission, a raised cosine
pulse spectrum at the detector input and linear delay distortion. Using
values of Rg and Qg given in Table XXI of the Appendix, the results
are as shown in Table VIII. Since both Ry(¢) and @Qu(¢) in this case have
even symmetry about { = 0 the maximum effect of delay distortion is
encountered for pulse trains with even symmetry about the sampling
point, i.e., a(—n) = a(n). Hence, only pulse trains with this property
need to be considered.

From Table VIII can be obtained W and Wi, as indicated by
asterisks, together with the optimum slicing level given by (57) and the
factor numin = Wain'© — Wias . These are given in Table I1X.

TaBLe VIII — Varvues or U(0) For RaisEp CoSINE SPECTRUM AND
Linear Deray DistorTioNn For Various COMBINATIONS
or Marks = 0 AND Spaces = 1

T a(0) el ol s " P U
0.5 0 1 0 0 0.036 | —0.191 | 0.195
0 1 1 0 0.046 | —0.194 | 0.199*%
0 1 1 0.046 | —0.194 | 0.199
1 0 0 0 0.952 0.194 | 0.970*
1 1 0 0 0.988 0.003 | 0.988
1 1 1 0 0.998 0 0.998
1 0 1 0 0 0.1452 | —0.3584 | 0.384*
0 1 1 0 0.1676 | —0.3370 | 0.374
0 1 1 1 0.1688 | —0.3322 | 0.374
1 0 0 0 0.8309 0.3306 | 0.90*
1 1 0 0 0.9761 | —0.0278 | 0.98
1 1 1 0 0.9985 | —0.0064 | 0.99
2 0 1 0 0 0.5192 | —0.4878 | 0.72*
0 1 1 0 0.5156 0.3724 | 0.64
1 0 0 0 0.5786 0.3895 | 0.70
1 0 1 0 0.5020 0.5040 | 0.71
1 0 0 1 0.5598 0.1380 | 0.68*
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TaBLe IX — FACTOR fyin WITH BiNaARY AM AnD EnNVELOPE
Derecrion For RaAisEp COSINE SPECTRUM AND LINEAR
DeLay DISTORTION

d/T 0 0.5 1 2

Winax (0 0 0.199 0.384 0.72
IVmin“) 1 0.970 0.900 0.68
L 0.50 0.58 0.63 0.70
Nmin 1 0.77 (0.959)1 0.60 (0.86)F —0.04 (0.517)%

t From Table V for binary am with synchronous detection.

It will be recognized that synchronous detection has a significant ad-
vantage over envelope detection as regards transmission impairments
caused by pronounced linear delay distortion, for the reason that the
effect of the quadrature component is eliminated. In general, delay dis-
tortion will have a component of even symmetry and a component of
odd symmetry about the earrier frequency, in which case the quadrature
component will be smaller. The advantage of synchronous detection as
regards transmission impairments caused by delay distortion will then
be less than indicated in Table IX. The principal advantage of syn-
chronous detection is that it permits the use of bipolar transmission,
which in the case of binary systems as considered above affords about
3 db improvement in the ratio of average signal power to average noise
power for a given error probability (Ref. 1, Table VII).

In the case of vestigial-sideband transmission a pronounced quadrature
component is present even in the absence of phase distortion. The ad-
vantage of synchronous detection over envelope detection is in this case
significantly greater than for double-sideband transmission considered
above, for the reasons that bipolar transmission ean be used and quadra-
ture component is eliminated. Tn the absence of phase distortion and
with a raised cosine pulse spectrum at the detection input, synchronous
detection has about a 9 db advantage over envelope detector in the ra-
tio of average signal power to average noise power for a given error
probability (6 db owing to elimination of quadrature component and 3
db owing to bipolar transmission).

Evaluation of transmission impairments from phase distortion is more
complicated for envelope than for synchronous detection. These impair-
ments have been determined experimentally for a binary vestigial-side-
band system with an approximately raised cosine spectrum at the de-
tector input, for linear and quadratic delay distortion and combinations
thereof.! They are significantly greater than determined herein for syn-
chronous detection. ITence envelope detection entails more phase equali-
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zation than synchronous detection, unless a greater disparity in signal-
to-noise ratio is accepted than the 9 db applying in the absence of phase
distortion.

IV. PM WITH DIFFERENTIAL PHASE DETECTION

4.1 General

In phase modulation with differential phase detection, the demodulator
output would under ideal conditions depend on changes in carrier phase
between two successive pulse intervals of duration T. In its simplest
and ideal form, the signal with two-phase modulation would be applied
to one pair of terminals of a product demodulator, while the signal de-
layed by a pulse interval 7" would be applied to the other pair. With four-
phase modulation two product demodulators are required, each with a
delay network at one pair of terminals. In addition, a phase shift of 90°
must be provided between all frequencies of the demodulating waves of
the two demodulators, as indicated in Fig. 7. Such a phase shift over a
frequency band can be realized in principle and closely approached with
actual networks.” The modulator outputs would be applied to low-pass
filters of appropriate bandwidth for elimination of high-frequency de-
modulation products, and the output of these would be sampled at in-
terval 7. The phase of the carrier would be indicated by the combined
output as discussed in Sections 2.5 and 2.6.

With the above method it is possible with ideal channel characteristics
to avoid intersymbol interference at sampling instants, without the need
for a wider channel band than required with synchronous detection.
However, the two methods are not in all respects equivalent from the

PRODUCT LOW-PASS +1
DEMODULATOR FILTER SAMPLING jeerets-
PHASE
MODULATED
CARRIER n ﬂ D =peLAY T
a
8, =PHASE SHIFT 77/4 (45°)
u B 6, =PHASE SHIFT - 77/4(-45°)
PRODUCT LOW=-PASS +1
DEMODULATOR FILTER SAMPLING

Fig. 7 — Basic demodulator arrangement for four-phase modulation with dif-
ferential phase detection.
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standpoint of bandwidth utilization. As discussed in Sections 2.5 and
2.6, with synchronous detection the carrier frequency must be at least
equal to the maximum baseband signal frequency, whereas with differ-
ential phase detection it must exceed twice the maximum baseband
signal frequency. This requirement does not impose a limitation on
bandwidth utilization with differential phase modulation provided the
midband frequency of the available channel is at least twice the lowest
frequeney, or that this condition is realized through frequency transla-
tion prior to demodulation.

With differential phase detection the demodulating wave is established
without the need for a long delay (measured in pulse intervals) as re-
quired with certain other methods mentioned in Section 3.1. Moreover,
a substantial Auctuation in carrier phase can be tolerated, since only the
difference in phase between adjacent pulses need be considered. These
advantages are realized in exchange for a penalty in signal-to-noise ratio
as compared to ideal synchronous detection owing to the presence of
noise in the demodulating wave. For very small error probabilities, and
assuming ideal implementation in all respects, this impairment is about
1 db for two-phase and about 2.3 db for four-phase modulation.*” Com-
parable penalties in signal-to-noise ratio as compared to ideal synchro-
nous detection may be incurred with the other methods of providing a
demodulating wave mentioned in Section 3.1, owing to small unavoidable
amplitude and phase fluctuations in the demodulating wave resulting
from other causes than noise. However, in the case of differential phase
detection, greater transmission impairments would be expected from
phase distortion, since the effect of phase distortion, like that of noise, is
present in both the signal and the demodulating wave. The transmission
impairments resulting from quadratic delay distortion are determined
here, and compared with that encountered with ideal synchronous detec-
tion.

Other implementations of differential phase detection than assumed
herein have been used, but in principle these entail a wider channel band
than with ideal synchronous detection. For example, the two demodu-
lator inputs or outputs could be integrated over a pulse integral 7' with
the aid of a narrow-band resonator tuned to the carrier frequency, and
then be rapidly quenched before the next signal interval. When the
channel bandwidth is limited, the phase of the demodulating carrier will
then depend on the phases of the carrier during several pulse intervals.
Thus some intersymbol interference from bandwidth limitation is en-
countered even in the absence of phase distortion, and the effect of phase
distortion will be greater than that determined herein. However, exces-
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sive transmission impairments from bandwidth limitation and phase dis-
tortion can be avoided by appropriate techniques, as when a large num-
ber of narrow channels are provided within a common band of much
greater bandwidth than that of the individual channels.”

4.2 Basic Expressions

In differential phase modulation the carrier would be at midband, i.e.,
w, = wy. With Uy = V, expression (33) for the demodulated signal
becomes

oa

V= Z S"(O)Pu(_‘n), (96)

n=—oo

where

S.(0) = i Po(—m) cos [yo( —n) — g(—m + 1)
m=—s (97)

+ @o(—n) — @o( —m) — 6].

The above expressions apply for the output of the single demodulator in
two-phase systems, in which § = 0. In four-phase systems the output of
one demodulator is obtained with § = 6, and the output of the other
with § = 6 = 6, + =/2.

Examination of (97) shows that the term for m = n + 1 isindependent
of the phase difference ¢»(—n) — ¢o(—m -+ 1) and is given by

cos [po( —n) — @o(—n — 1) — )Py(—n — 1).

This represents a pc or bias component. The total bias component in
(96) is

o0

Vo= 2 coslp(—n) —go(—n — 1) — 0]Po( —n)Po(—n — 1). (98)

Determination of transmission impairments becomes rather difficult
except for the special case in which ¢¢(n) = 0, which will be considered
in further detail below.

4.3 Bven Symmelry Spectrum and Delay Distortion

When the pulse spectrum has even symmetry about the midband
frequency, and the phase characteristic has odd symmetry (i.e., even
symmetry delay distortion) the quadrature component of Py(i) van-
ishes, i.e., (—n) = 0. In this case, P, = Ry and (96) becomes
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o0

3 S.(0)Ro(—n)

n=—u0

Il

v
(99)

SoRo(0) + Z] [S.Ro( —n) + S_.Re(n)],
while (97) and (98) simplify to

S, = 8.(0) = i Ro(—m) cos [Yo( —n) — Yo(—m + 1) — 6], (100)

> Ro(—n)Ry(—n — 1) cos 6. (101)

With § = x/4 in (100) and (101), these expressions can be written,
after introduction of a normalizing factor /2,

Vo

I

S, = 2, Ro(—m)au(n), (102)
Vo = i Ry(—n)Ry(—n — 1), (103)
an(n) = V2 cos [fu(—n) — Yol —m + 1) — w/4]
= cos [Yo(—n) — go(—m + 1)] + sin [Yo( —n) (104)
— Yo —m + 1)].

With Yo( —n) — $(—m + 1) = 0, #/2, = or 3x/2 the following rela-
tions apply

an(n) = £1 for m #n -+ 1,

(105)
=1 for m=mn -+ 1.

In view of (105), (102) can alternately be written in the form

o

S, — [l = @wp(m)Ro(—n — 1) = 2 an(0)Re(—m), (106)

M=

where in the summation a,(n) can be chosen as —1 or as 1, also for
m=mn -+ 1.

1.4 Two-Phase Modulation

With synchronous detection, two-phase modulation could be used in
conjunction with both double-sideband and vestigial-sideband trans-
mission, With differential phase detection, however, vestigial-sideband
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transmission is not practicable, since severe transmission impairments
would be incurred even in the absence of phase distortion, owing to the
presence of the quadrature component. Hence only double-sideband
two-phase modulation is considered here.

Forn = 0, (106) gives

)

So— 1 = a(OR(—1)] = 2 an(0)Bo(—m).  (107)
Assume that in (107) a sequence of values of a,,(0) has been chosen,
for example a_3(0) = 1, a_s(0) = 1, a4(0) = 1, a(0) = 1, a:(0) =
—1, ay,(0) = 1, ete. For any other value of » than n = 0, the sequence
of an(n) will either be identical with that for a,(0), or all signs will
be reversed. This follows from (104), since Yo —n) will differ from
¥o(0) by 0 or =. Hence, for n # 0, the right-hand side of (106) can be
replaced by the left-hand side of (107), so that

Se = [1 — tppa(m)Bo(—n — 1) = &= [Se— [1 — ai(0)]Re(—1)] (108)

In the absence of intersymbol interference, V as given by (99) would
be —1 or 1. In the following, the minimum possible value of V will be
determined, on the assumption that ¥V = 1 without intersymbol inter-

ference; i.e., ay(0) = 1.
Consider first the term SyRo(0) in (99). The minimum possible value
of Sy is obtained from (107) by choosing a,,(0) = —1 for Ry( —m) > 0

and a,(0) = 1 for By(—m) < 0. The following relation is thus obtained
for the minimum possible value of Sy , on the above premise of ay(0) = 1:

Sl].min = [I - 01(0)] Rﬂ(_l) + RU(O)

- = 109
= 3 1R —m) + Ro(m), e
where R, designates the absolute values. In the above expression a,(0)
would be taken as a,(0) = 1 if Re(—1) < 0 and as a,(0) = —1 if
Ro(—1) > 0. The term [1 — a,(0)]R(—1) can therefore be written alter-
natively as Ro( —1) + Ry(—1), in which case (109) becomes

Sﬂ.min = I\)ﬂ(_]) + RD(-I) -} lrmin ) (110)
where
Unin = Ry(0) — D [Ro(—m) + Ro(m)]. (111)
m=1

It will be recognized that U/, isthe same as the minimum possible value
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of the demodulated voltage with synchronous detection, in the presence
of a mark, as given in a somewhat more general form by (73).

Having thus determined Sy min it follows from (108) and (110) that
the two possible associated values of S, i are given by

Sn.min = RU(_HI - 1) + RO(_n - 1) = Um'm, (112)

where the term [I — aupa(n)]Ro(—n — 1) in (108) has been replaced
by the equivalent representation by the first two terms in (112).

To obtain the minimum value of V as given by (99), each term in the
series must be made to have the maximum negative value. To this end
the negative sign in (112) for Uuin is chosen if Ry(n) is positive, and the
positive sign if Ro(n) is negative. The minimum possible value of V
thus obtained with (110) and (112) in (99) is

Vain = [Ro(—=1) + Bo(—1) + UnialRo(0)

+ 3 (Ri(=n— 1) + Ba(=n = DIR(=n)

- . 113
+ 3 [Ro(n +1) + Ro(n + 1)]Ro(n) (113)
n=1
= Umin i [I?{I(_”) 4= ]?U(H)],
= I},min {R(I(O) = i} “?-u(_?l,) + I?"(ﬂ)]}
" " (114)
+ Z_: [Ri(—n — 1) 4+ RBo(—n — D]Ro(—n),

where the first term can also be written Ui’

In accordance with the discussion in Section 4.2, the demodulator
output contains a bias or pc component Vy given by (103). Optimum
performance is obtained when the threshold level for distinction between
V = 1and V = —1 is made equal to V. When V, is subtracted from
both sides of (114) the following expression is obtained for two-phase
modulation:

lrmino = ‘.min - T’D = [Fvlll'lllz + E; (115)
where
S = 2 R—n— DR(—n). (116)

Ti=—u0
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When intersymbol interference is absent at sampling instants,
Ro(n) = 0 forn # 0, and for n = 0 is R,’(0). In this case V' =
Unia® = [Ro'(0)F". The voltage given by (115) is smaller than in the
absence of intersymbol interference by the factor

ﬂmino = nminz + E/[RDO(O)]gr (117)

where guin applies for synchronous detection.

4.5 Four-Phase Modulation

The basie difference between two-phase and four-phase modulation is
that relation (108) does not apply for four-phase modulation. Returning
to the discussion following (107), if a sequence a,(0) is chosen in four-
phase transmission, the sequence a.,.(n) can be chosen independently.
This follows from the (104), which shows that if @,.(0) has a given value,
say an(0) = 1, it is possible to make each a,(n) equal to +1 or —1 by
appropriate choice of y/(—n).

For this reason the minimum value (or maximum negative value) of
the right-hand side of (106) is now, for n = 0:

[Sn - [1 - a'nJrl(n).lRﬂ(_n - 1)]min

© . 18
= —Ry(0) — 2:‘,1 [Ro( —m) 4+ Ro(m)]. )

The right-hand side of (118) is smaller than for two-phase transmis-
sion as given by (112) by —2R,(0). When this modification is intro-
duced, the following expression is obtained for four-phase modulation,
in place of (115) for two-phase modulation:

Vain, = Unin. — 2R(0) i [Ro(—=n) + Ro(n)]
n=1

(119)
+ 2 Ro(—n = 1)Ro(—n)
or
Vain® = Unins — 2Ro(0)[Ro(0) — Uwin] + Z, (120)

where Z is given by (116).
The voltage given by (120) is smaller than in the absence of inter-
symbol interference by the factor

ﬂlllinq = [VminD/IBOO(O)]z- (121)
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TaBLE X — MinimuMm AMPLITUDES OF DEMODULATED PULsSE
Tramns 1IN Two-Paase MobpuraTioN wiTH DIFFERENTIAL
Prase DerecrioN

a/T 0 1 2 3 4
’:jnlin-‘l 1 0.730 0.536 0.273 0.120
z 0 0.012 0.058 0.137 0.222
Vo =L, 0 0.012 0.058 0.137 0.222
Vimia® = gumin® +1 +0.74 | £0.594 | +0.41 +0.342
min’ = I7!11':1]“ + Vn 1 0.75 0.652 0.547 0.564
minm = —Vmia? + Vi =1 —0.73 —0.536 | —0.273 | —0.12

4.6 Raised Cosine Spectrum and Quadratic Delay Dislortion

The funection Ry(n) for this case is given in Table I11. The values of
Uwin for synchronous detection are given in Table IV for [ = 2. In
Table X are given the various quantities appearing in expression (115)
for the minimum amplitudes of received pulse trains at sampling instants
with optimum slicing lead equal to the nc component V. The values
of Viin® = Nmin are shown in Fig. 8.

1.0 o
o
0.6 e 2 33
. NN S
T\ X a0
S~ \4\_ zZz
0.6 4.4
N > N FE
s
. \-..,__ \\ . gg
z N I e -+
3 3 <%
IS \ =3
0.2 N 14
(o] \\
-0.2 S
-0.4
o} 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
d/T=dfyax

Fig. 8 — Factor numi. for raised cosine speetrum and quadratic delay distortion
as in Fig. 2 for synchronous detection and differential phase detection. Curve 1:
Ideal synchronous deteetion—applies for two-phase and four-phase modulation
with carrier at midband and pulses at intervals 7', and for vestigial-sideband
transmission with pulses ut intervals 7/2. Curve 2: Ideal differential phase detec-
tion — two-phase modulation with pulse interval 7. Curve 3: Ideal differential
phase detection — four-phase modulation with pulse interval 7'.
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TaBLE XI — MiNnmMuMm AMPLITUDES OF DEMODULATED PULSE
TrAaINs IN 'our-PHASE MODULATION WITH DIFFERENTIAL
Puase Derecrion

da/T 0 1 \ 2 | 3 4*
Vo = Lo 0 0.012 0.058 | —0.137 | —0.232
Vinia? = nunin’ +1 | £0.53 | £0.33 | £0.04 | £0.23
min = .‘,mintl + I’U +1 +0-5‘L +039 +0.]0 0
Vaism = =Vuia" + Vo -1 —-0.52 | —0.27 | +0.18 | 4+0.45

* Reversal of sign indicates a reversal in sign of the demodulated pulses.

With the aceuracy used herein it turns out that £ and V, are numeri-
cally equal but are not identical.

It will be noted that, when delay distortion is pronounced, the bias
component Vy is appreciable, and that a significant penalty can be in-
curred if the threshold or slicing level is taken as 0 rather than V, . For
example, with d/T = 4 and 0 threshold level the minimum amplitude
of a demodulated pulse for a carrier phase ¢ = 0 would be 0.564, and
the minimum negative amplitude for a carrier phase y = x would be
—0.12. With the optimum threshold level the minimum amplitudes are
+0.342. Hence the tolerable peak noise amplitudes would be greater
by a factor 0.342/0.12 = 2.85.

With four-phase modulation the values given in Table XTI are obtained
from (120). The values of V' = fmin’ are shown in Fig. 8.

In the above illustrative examples it was assumed that pulses were
transmitted at the minimum interval 7' permitted if intersymbol inter-
ference is to be avoided in the absence of delay distortion. The effect of
delay distortion may or may not be reduced by increasing the pulse
interval, that is, in exchange for a slower transmission rate. By way of

TasLe XII — Funcrion Ry(n) ror Rasep CoSINE SPECTRUM
AND Quapratic Deray DistorrioN wiTH 50 PER CENT
IncrEASE IN PULSE INTERVAL

/T
”.
0 1 2 3 4
-2 0 —0.0006 0.0025 0 0
-1 0 0.0053 0.0081 0.0145 0.0202
0 1 0.9633 0.8795 0.7956 0.7336
1 0 —0.0341 —0.1161 —0.2200 —0.2909
2 0 0.0044 0.0020 —0.0231 —0.0584
3 0 —0.0009 0.0011 0.0044 —0.0030

n* = % of the values n given in Table XIX.
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TasLe XIIT — MiNMUM AMPLITUDES OF DEMODULATED PuLses
wiTH 50 PER CENT INCREASE IN PULSE INTERVALS

/T 0 1 2 3 4
Usia 1 0.92 0.75 0.50 0.36
2 0 —0.028 —-0.10 —-0.17 —0.08
Vmia® (2-phase) 1 0.80 0.46 0.08 0.045
Vmin® (4-phase) 1 0.72 0.23 —0.40 —0.50

illustration it will be assumed that the pulse interval is increased hy a
factor 1.5, in which ease the values of B, are as given in Table XII.

With this modification, the various quantities are as given in Table
XIII.

In Fig. 9 values of Ui, and Vi are compared with those for the
minimum interval between pulses. It will be noted that there is no signifi-
cant difference in the case of two-phase or four-phase modulation with
synchronous detection. With differential synchronous detection some
advantage is realized for small delay distortion in exchange for a dis-
advantage with pronounced delay distortion.
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: N e~ \ [=r.
e 4 e z
~- r.__ N Sw
0.4 - S NN — s 3%
z o \"‘* T X<
z ™, 2 @
3 \\ N <g
® o2 — NN 1L

~ON

N R —
(o] s
M.
\\("‘3 N
'~
-0.4

s} 0.5 1.0 1.5 20 2.5 3.0 3.5 4.0
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Fig. 9 — Effect of pulse interval on factor guia for raised cosine spectrum with
quadratic delay distortion (dashed curves: pulse interval T, as in Fig. 8; solid
curves: pulse interval 1.57). Curves 1: Ideal synchronous detection — applies for
two-phase and four-phase modulation with earrier at midband and pulses at in-
tervals 157 and for vestigial-sideband transmission with pulses at intervals 0.757'.
Curves 2: Ideal differential phase detection — two-phase modulation with pulse
intervals 1.57". Curves 3: Ideal differential phase detection — four-phase modula-
tion with pulse intervals 1.57.
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V. BINARY FREQUENCY MODULATION (FSK)

5.1 General

As shown elsewhere,’ with optimum design, binary M or frequency
shift keying requires the same minimum bandwidth as double-sideband
AM. In the absence of transmission distortion from gain and phase
deviations, the optimum signal-to-noise ratio required at the detector
input for a given error probability is slightly greater than for two-phase
transmission with ideal synchronous detection, but would be expected
to be about the same as for two-phase transmission with ideal differen-
tial phase detection. Binary FM may be preferable to the latter method
from the standpoint of implementation and has an advantage over the
simpler method of binary AM with envelope detection from the stand-
point of signal-to-noise ratio and performance during sudden transmis-
sion level variations.

The performance of binary FM is determined here for channels with
linear and quadratic delay distortion and compared with that of the
other methods mentioned above. In this analysis ideal frequency dis-
criminator detection is assumed, in which the demodulated signal is pro-
portional to the time derivative of the phase of the received wave. This
condition may be closely approached with actual detectors when the
channel bandwidth is small in relation to the midband frequency. How-
ever, when this is not the case, ideal FM detection is only approximated
with conventional frequency diseriminators or zero crossing detectors.

5.2 Basic Expression

Expression (48) for the demodulated pulse train applies for any am-
plitude and phase characteristic of the channel. In the case of a continu-
ing space, a(n) = 0in (46) and (47) and Us(t) = 0. With a continuing
mark, a(n) = 1in the above expressions and

a(x) = i (—1)"Ry(z — n), (122)
Bia) = 3 (~1"Q(t ). (123)

Returning to (21), it will be recognized that (122) and (123) repre-
sent the in-phase and quadrature components in a binary amplitude
modulation system when pulses of duration 7" and alternating polarity
are transmitted, i.e., a(n) = (—1)"1in (21). The fundamental frequency
of such a pulse train is @ = 7T'/x. Let A(—&) and ¥( —) be the ampli-
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tude and phase characteristic of the channel at the frequency —a& from
wo; A(@) and ¥(@) the corresponding quantities at the frequency o
from wy . Solution of (122) and (123) for the ahove steady state condi-
tion of alternate marks and spaces in binary AM gives

a(z) = A(—a) cos [—at — W(—a)] + A(a) cos [of — ¥(@)], (124)
Bo(x) = —A(&) sin [—at — ¥(—a)] + A(@) sin [@t — ¥(@)]. (125)

With (124) and (125) in (50), it turns out by way of check that
Us(z) = 1 for a continuing mark for any amplitude and phase charac-
teristic of the channel.

Tor pulse trains other than continuing marks or spaces, intersymbol
interference will be encountered from amplitude and phase distortion.
In the following section special cases of phase distortion will be examined
further. It will be assumed that the amplitude characteristic has the
appropriate shape so that intersymbol interference can be avoided in the
absence of phase distortion. To this end it is necessary that A(—a) =
A(&) = }or g = 2 as shown elsewhere (Ref. 1, Section V). In this case
(50) becomes with [/, = U:

U(t) = 5[2(@.{3 + B80°) — aycos y — Bosiny

: 5 (126)
-z (@ siny — By cosy) — ::u (Bo'an — Otu’ﬁu)]s
where
D =14 4(as’ + B°) — 4(as cos y + Bosin y), (127)

in which

an' d&u/f”,
B = dpy/dt, (128)
y =mr + ¥(—w),

ay = ap(a) = i (—1)"a(n)Ry(x — n), (129)
By = Bolx) = i (—1)"a(n)Qu(x — n), (130)

where

’ . 0 [for space
x =T, a(n) = 1 {for n?ark.
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5.3 Even Symmetry Spectrum and Delay Distortion

When the amplitude characteristic of the channel has even symmetry
about wg and the phase characteristic has odd symmetry Qo(x + n) = 0
and (126) simplifies to

2a)’ — o CO8 Y — (ag'/é)) sin ¥

T(f) =
uie) 1 + 4ay* — 4ap cos y

: (131)

Optimum performance would be expected when a single pulse is sam-
pled at its peak, a condition which is at least elosely approximated with
y = 0. This condition is met when ¢ = {,is so chosen that

to/T = 29 = —¥(—w)/r. (132)

Expression (131) then simplifies to

Ultly) = M (133)

2(1(](1!3(]) e 1-

IFor further analysis it is convenient to introduce the quantities

ay (X)) = Z; [(=D"Ro(w — n) [" + [ (=1)"Ro(x + n) |7, (134)
' (z) = 21 [ (=1D)"Ry(x — n)|* 4+ | (=1)"Re(z — n) |7, (135)
where | | designates absolute values when (—1)"Ry(x 4 n) is nega-
tive and | |* when it is positive.

It will be recognized that

Il

3 —1 "Ru €Xr —
"Z“"( ks — ) (136)

= oy(x) = cos y,

Ro(x) + a0’ (2) — a0 (2)

where the last relations follow in view of (122), (124) and (128).
During transmission of a space, delay distortion will have an adverse
effect only if U/ as given by (133) is positive, since only in this case is
the tolerance to noise reduced. To obtain a positive value of U, it is
necessary to have either oy = 4 or oy < 0. For a space, a(0) = 0 in

(129) and a value of @y = % can then be exeluded for any reasonable

delay distortion. It will, therefore, be assumed that ey < 0. The maxi-
mum positive value of U, i.e., the maximum adverse effect of delay dis-
tortion, is then obtained with the maximum possible negative value of
ap . This maximum value is obtained by choosing a(n) = 0 in (129)
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whenever (—1)"Ro(x — n) is positive and choosing a(n) = 1 whenever
(=1)"Ro(x — n) is negative. The maximum negative value of ay(2) thus
obtained is given by (134). The corresponding maximum value of U(t)
in the presence of a space and with sampling at ¢ = {, as defined by
(132) is

o —ay (o) ay ()

bmnx = —2&0_(.1'[,) —1 = 1 + 2&{]_(.'170)' (13‘)

During transmission of a mark delay distortion will have an adverse
effect only if /(%) < 1. This will be the case if as > 1 or ay < } in
(133). With a(0) = 1 in (129) for a mark, the condition a, < § will
not be encountered with any reasonable delay distortion and only the
case ap > 1 needs to be considered. The minimum positive value of
U(ty) in the presence of a mark is obtained when aq is taken as the maxi-

mum positive value given by ay(x) = Ro(x) + a0’ (x), where o’ is
given hy (135). In view of (136) it follows that, for y = 0,
ao(x0) = Ro(xo) + a0 (x0) = 1 + ay (x0). (138)

With (138) in (133) the minimum amplitude of a pulse train in the
presence of a mark and at the sampling instant # defined by (132) be-
comes:

o 1+ ﬂ‘n_(-l_'n) _ 1+ ay (20)
2[1 =+ a(F(_.l'n)] -1 14 2(10'_(;1‘.0)‘
The optimum slicing level in the presence of delay distortion becomes

for conditions as discussed in Section 2.9,

IJ{I = %[lfmaxtm + Ulniu(“] = % (140)

The minimum amplitude of a pulse train in the presence of a mark
relative to the optimum slicing level becomes

1 1
2[1 + 2a5(2)]
The latter expression also applies for the difference between the slicing
level and the maximum amplitude of a pulse train at a sampling point
in the presence of a space.
Expression (141) shows that the minimum amplitude at a sampling
point is smaller than in the absence of delay distortion (ag = 0) by
the factor

U' .

(139)

["rmin“) - LO = (14:].)

1

Nmin = m (142)
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TaBLE XIV — FACTOR nmin FOR RaISED COSINE SPECTRUM
AND QuapraTic DELAY DIsTORTION

4T 0 1 2 3 4
¥ (—w) 0 —x/12 —7/6 —r/4 —x/3
o 0 1/12 1/6 1/4 1/3
ag (x0) 0 0.07 0.125 0.20 0.35
Mmin 1 0.88 0.80 0.72 0.59

5.4 Raised Cosine Spectrum and Quadratic Delay Distortion

In the particular case of a raised cosine spectrum of the pulses at the
detector input, as shown in Fig. 1, and quadratic delay distortion, the
funetion Ry(t/T) = Ro(x + n) is given in Table XIX of the Appendix.
The phase distortion ¥( —&) in this case is given by

V(—a) = -(%){% (143)

where d/T is defined as in Section 4.5.

In Table XIV are given ¥(—a) together with ap as obtained from
(132), ey (xq) as given by (134) and g as obtained from (142). These
factors are shown in Fig. 10, together with the corresponding factor for
binary double-sideband AM as obtained from Table 1V.

5.5 Raised Cosine Spectrum and Linear Delay Distortion

When both the pulse spectrum at the detector input and phase dis-
tortion has even symmetry about the frequency wg, the following rela-
tions apply (see Appendix):

Ro(—t) = Ro(1), Qu(—1t) = Qu(t); (144)
R/(—t) = =R/(1), Q'(=t) = =QJ(1). (145)

[
II

The maximum amplitude of a single pulse in this case is at { = 0.
Optimum performance is obtained with sampling at { = 0, in which case
yin (126) and (127) is given by

y = Yo = ¥(—0a), (146)

and:

w= a0 = 3 (—=1)"a(n)Ro(—n), (147)

n=—~ud
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Fig. 10 — Faclor nmie for binary pulse transmission by FM and double-side-
band AM, for quadratic delay distortion as in Fig. 2 and linear delay distortion
as in Fig. 4.

Bo = B(0) = 3= (=1)a(m)Qu(—n), (118)
a = oy’ (0) = niw(—l)”a(n)lfn’(n), (149)
B = B/(0) = 2 (—1)a(n)Q(n). (150)

For the special case of a raised cosine spectrum and linear delay dis-
tortion, the functions Ry and @, are given in Table XX of the Appendix.
The functions By (n) and Q' (n) are related to the functions I, and @,
given in Table XXII by

Rui(t)/‘:' =

R

RO, Q0/6 =20, (151)

The funetions Ry and € are given in Table XV for integral values of
n = {/T and the functions Ry’ /@ and Q' /@ are given in Table XVI.
In the above case of quadratic phase distortion of the form ¢(u) = cu’
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Tasue XV — Funcrions Ro(nT) anp Qo(nT)
FOorR LINEAR DELAY DISTORTION

/T 05 1 2
n Ra Qo Ro Qo Ra | Qo
0 0.9516 0.1941 | 0.8309 0.3306 0.5786 0.3895
+1 0.080 —0.0956 | 0.0726 —0.1792 0.2596 | —0.2439
+2 0.0048 —0.0014 | 0.0112 0.0107 | —0.0383 0.0577
+3 0.0008 0 0.0006 0.0024 | —0.0094 | —0.0052
+4 0 0 0 0 0 0
and linear delay distortion ¢'(u) = 2cu, the phase distortion at u = —a
is given by
_d

V(—a) = ¥(a) = TE' (152)

Owing to the several quantities ay, 8o, a’ , By, Bdao, a’Bo and ¥,
involved in (126), it does not appear feasible to derive simple relations
for Upee " and U™ . However, it is possible to determine these by

examining several cases, as illustrated below ford/T = 1 and d/T = 2.
With d/T = 1in (152), relation (146) gives

Yo = ¥(—a) = n/4
and (126) becomes
U(0) = Ni/Dy, (153)
Ny = 2(as’ + 80°) — 3V 2(a0 + Bo + a'/d — B'/d) (150
— 2[(eBd’ /@ — o /@)],
Dy = 1+ 4(a’ + 8") — 2v/2(e0 + Bo), (155)
where «y , 80, a0’ and By’ are given by (147) through (150).

TaBLe XVI — I'uncrions Ry'/e = (4/m)By anp Qy/a = (4/7)Qh
ror LiNngaArR Devay Distortion

d/T 0.5 1 2
n Ro'/& '/ Ro'/& | '/ Re'/a i 0/
0 0 0 0 0 0 0
+1 +0.1432 | £0.0624 | £=0.2263 | =0.0639 | 4-0.3016 | ==0.1053
+2 +0.0065 | £0.0134 | £0.0013 | %=0.0272 | 4-0.0980 | =0.0167
+3 +0.0006 | £0.0036 | £0.0051 | £0.0023 | 40.0042 | 4=0.0188
+4 0 0 0 0 0 0
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TasLe XVII — Varues or U(0) ror Raisen CosINE SPECTRUM
AND LiNEAR Dpray Distorrion witH d/7 = 1

al=2) la(—=1) | a(0) | a(1} | a(2) an Bo /@ Bo'/a Ny Dy U
0 1 0 1 0 [=0.146/ 0.358 0 0 0.15 | 1.0 0.15
0 0 0 1 0 |—0.073| 0.179—0.227| 0.064] 0.173| 0.87 0.16*
0 1 0 0 0 [—0.073| 0.179| 0.227/—0.064{—0.29 | 0.87 |—0.33
1 1 0 1 1 [—0.124| 0.38 0 0 0.136{ 0.90 0.15
0 0 1 0 0 0.831) 0.331 0 0 0.78 | 0.90 0.86
0 1 1 1 0 0.68 | 0.89 0 0 1.4 1.6 0.87
0 0 1 1 0 0.76 | 0.51 |—0.227| 0.064] 0.66 | 0.76 0.87
0 1 1 0 0 0.76 | 0.51 0.227—0.064| 0.89 | 0.76 1.16
1 1 1 1 1 0.70 | 0.91 0 0 1.21 | 1.43 0.84*

For various combinations of marks and spaces, i.e., a(n) = 1 and 0,
the results given in Table XVII are obtained.

The maximum value in the presence of a space is Upax” =2 0.16 and
the minimum value in the presence of a mark is Ui = 0.84, as indi-
.ated by asterisks. The optimum slicing level is 3{U e 4+ Uwmin ] =
0.5. The factor g, is in this case

(] '
Mmin = [{min“) - Unmx‘ . g U.bS.

Yor d/T = 2, (152) gives ¥(—&) = w/2 = yo. In this case (126)
becomes

U(0) = No/Da, (156)
N. = 2(0102 7+ Buﬂ) = Bu — leu'/'"-_“ — 2(ab’ /o — -600‘0'/’-"’% (157)
Dy =1+ 4(a’ + B") — 4680 (158)

The results in this case are given in Table XVIII. In this case Unw' =

0.57, Unin” = 042, Ly 22 0.5 and 1uia = Unin” — Unax" = —0.15.

TapLe XVIII — Varves or U(0) ror Raisep CosINE SPECTRUM
AND Livear Devay Distorrion witn d/T = 2

a(=2) lal—=1) | a(0) | a(1) | a(2) @ Bo /o Ao’ fw N2 Dy U
0 1 0 1 0 |—0.5200 0.488[ 0 0 0.526| 1.08 | 0.49
0 () 0 1 0 |—0.260] 0.244 —0.302—0.106, 0.09 | 0.53 | 0.17
0 1 0 0 [—0.260] 0.244| 0.302 0.106/—0.07 | 0.53 |—0.13
1 1 0 1 1 [—0.596 0.603| 0.07 0.06 | 0.837) 1.96 0.57*
0 0 1 0 0 0,579 0.390] 0O 0 0.58 | 1.38 0.42*
0 1 1 1 0 0.069| 0.88 0 0 0.66 | 0.56 1.17
(0] 0 1 1 0 0.319] 0.634/—0.302|—0.106| 0.46 | 0.67 0.69
0 1 1 0 0 0.319) 0.634, 0.302[—0.106] 0.48 | 0.67 0.7
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The factors in Table XVIII are shown in Fig. 10, together with the
corresponding factors for binary double-sideband AM with synchronous
detection as given in Table V and with envelope detection as given in
Table 1X.

VI. SUMMARY

6.1 General

The shape of pulse trains at the detector input and output in pulse
transmission by various methods of carrier modulation and detection
has been formulated in terms of a basic function common to all modula-
tion methods: the carrier pulse transmission characteristic. This func-
tion is related to the amplitude and phase characteristics of the channel
by a Fourier integral, which can be evaluated by numerical integration
with the aid of digital computers for any prescribed channel characteris-
tie. In this way can be determined the effect of specified channel gain and
phase deviations on the demodulated pulse train for any modulation
method, together with the resultant maximum transmission impairment.

The carrier pulse transmission characteristics are given herein for the
representative case of pulses with a raised cosine spectrum at the detector
input, for two cases of envelope delay distortion over the channel band.
In one case delay distortion is assumed to vary linearly with frequency,
and in the other case to vary as the second power of frequency from mid-
band, as indicated in Fig. 11. The resultant maximum effect on the de-
modulated pulse trains at sampling instants has been determined for
various carrier modulation and detection methods, together with the
corresponding maximum transmission impairment. The maximum trans-
mission impairment is expressed as the maximum inerease in signal-to-
noise ratio required at the detector input to compensate for the effect of
phase distortion, or corresponding envelope delay distortion. The maxi-
mum transmission impairments specified here apply as the error proba-
bility approaches zero, and actual impairment will be somewhat smaller,
depending on error probability.

In evaluating the effect of phase distortion, idealized modulation and
demodulation have been assumed, together with ideal implementation
in other respects, such as instantaneous sampling of the appropriate
instants and optimum slicing levels.

The numerical results are given in various tables and curves, summa-
rized in Fig. 12 and discussed briefly below.
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6.2 Choice of Transmission Delay Parameters

In the expressions for the carrier pulse transmission characteristic the
phase characteristic of the channel is a basic function. Transmission
impairments from phase distortion could be expressed in terms of some
parameter or set of parameters that would define the type of phase dis-
tortion under consideration. Alternatively, any type of phase distortion
.an be specified in terms of its derivative with respect to frequency,
that is, in terms of envelope delay distortion. I'rom the standpoint of
enginecring applications the latter method is preferable, since variation
in transmission delay over the channel band is more readily measured
than variation in phase, and it is ordinarily the quantity specified for
various existing facilities.

RAISED COSINE
PULSE SPECTRUM

QUADRATIC DELAY '

I

DISTORTION |
of
| | B
| ! B
LINEAR DELAY | v
DISTORTION i i
| | |
| |

d = MAXIMUM DELAY DISTORTION OVER BAND fiax (CPS)
T = PULSE INTERVAL IN DOUBLE SIDEBAND AM AND FM (SEC)

T=1/fuax d/T= dfuax

Fig. 11 — Pulse speetrum at detector input and types of delay distortion as-
sumed in comparison of modulation methods.
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Fig. 12 — Maximum transmission impairments with various modulation meth-
ods for raised cosine pulse spectrum with linear and quadratic delay distortion
as in Fig. 11.

Linear, quadratic or any other analytically specified delay distortion
can be expressed in terms of the difference in transmission delay between
any two reference frequencies in the channel band. In the present analysis
the difference d in delay between the midband frequency and the maxi-
mum frequency fmux from midband, as in Fig. 11, has been taken as a
basic parameter. The maximum transmission impairments with various
carrier modulation methods have been given in terms of the ratio d/T =
Afmax , where T is the pulse interval in double-sideband AM.

An alternative choice of delay parameter might have been the maximum
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difference dy. in transmission delay between any two frequencies in the
channel band. In the case of linear delay distortion du. = 2d, while in
the case of quadratic delay distortion dme = d, where d is defined in
Fig. 11. A third choice might have been the difference in delay d be-
tween the midband frequency and the mean sideband frequency §fuax ,
in which case d = d/2 for linear and d = d/4 for quadratic delay dis-
tortion.

Tt will be recognized that translation from one basic delay parameter
to another can readily be made. Also, the question of whether linear or
quadratic delay distortion causes greater transmission impairments will
depend significantly on the choice of transmission delay parameters.

6.3 Double-Sideband AM

Maximum transmission impairments are shown in Fig. 12 for systems
employing I = 2, 3, 4 and 5 pulse amplitudes and ideal synchronous detec-
tion. With envelope detection the transmission impairments are the same
as with synchronous detection, for quadratic delay distortion and for
any type of delay distortion with even symmetry about the channel mid-
band (carrier) frequency. However, with envelope detection greater
transmission impairments are incurred in the case of linear delay dis-
tortion, and for any type of delay distortion with odd symmetry about
the channel midband frequency. The difference between envelope and
synchronous detection in the presence of linear delay distortion is illus-
trated in Fig. 12 for [ = 2 pulse amplitudes.

As noted previously, the maximum transmission impairments indi-
cated in Fig. 12 would be encountered for extremely small error probabili-
ties. For error probabilities in the range normally considered, the maxi-
mum impairments given in Iig. 12 would be rather closely approached
when the impairments are fairly small, say less than 3 db. However,
when the maximum impairments are rather high the actual impairments
may be significantly smaller. For example, with a maximum impairment
of 10 db, the actual impairment would be expected to be about 1.5 db
less for an error probability 10™° and about 2 db less for an error proba-
bility 10,

6.4 Vestigial-Sideband AM and Quadrature Double-Sideband AM

Vestigial-sideband AM and quadrature double-sideband AM with
synchronous detection are equivalent methods as regards channel band-
width requirements and signal-to-noise ratios, in the absence of delay
distortion. Both methods may be used in preference to double-sideband
AM either (a) to realize a two-fold inerease in pulse transmission rate for
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a given bandwidth in exchange for a 3 db penalty in signal-to-noise ratio
or (b) to secure a two-fold reduction in bandwidth for a given pulse
transmission rate, without a penalty in signal-to-noise ratio.

The maximum transmission impairments shown in Ifig. 12 are for the
same bandwidths as in double-sideband AM with a two-fold increase in
the pulse transmission rate. In this case transmission impairments from
quadratic delay distortion are no greater than in double-sideband AM,
and this applies for any type of delay distortion with even symmetry
about the channel midband frequency.

With linear delay distortion, or any delay distortion with odd sym-
metry about the channel midband frequeney, transmission impairments
are not identically the same for vestigial-sideband AM and quadrature
double-sideband AM. However, the difference is not significant in the
case of linear delay distortion, as indieated in Fig. 12. For practical
purposes the two methods can be regarded as equivalent for any type of
delay distortion actually expected, as regards channel bandwidth require-
ments and signal-to-noise ratios for a given error probability, assuming
ideal synchronous detection.

With linear delay distortion the transmission impairments with the
above two methods are significantly greater than for double-sideband
AM as indicated by comparison of the curves in Fig. 12 for the two meth-
ods for [ = 2 and 3 pulse amplitudes. This assumes that the pulse trans-
mission rate is twice as great as in double-sideband AM.

When the pulse transmission rate is the same as in double sideband
AM but the bandwidth is halved, delay distortion over the channel band
is reduced. In this case vestigial-sideband AM or quadrature double-
sideband AM affords an advantage over double-sideband AM in the
presence of delay distortion with even symmetry about the channel mid-
band frequency, but not necessarily when delay distortion has odd sym-
metry. With linear delay distortion the ratio d/T is halved, and in this
case there is a slight disadvantage compared to double-sideband AM,
for | = 2 pulse amplitudes. However, with the type of delay distortion
ordinarily encountered vestigial-sideband AM and quadrature double-
sideband AM would afford some advantage in signal-to-noise ratio over
double-sideband AM for equal pulse transmission rates and with ideal
synchronous detection.

6.5 PM with Synchronous Delection

Two-phase modulation or phase reversal is equivalent to double-side-
band AM with equal amplitudes but opposite polarities of the trans-
mitted pulses. The curves in IMig. 12 for double-sideband AM and | = 2
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pulse amplitudes apply also for two-phase transmission, for the reason
that the transmission impairments for a given peak-to-peak difference
between pulse amplitudes is the same regardless of polarities.

Two-phase modulation can also be used in conjunction with vestigial-
sideband transmission. The curves in Fig. 12 for vestigial-sideband AM
and I = 2 pulse amplitudes also apply for two-phase vestigial-sideband
modulation.

Four-phase modulation is equivalent to bipolar AM on each of two
carriers at quadrature with each other. The curves in Fig. 12 for quadra-
ture double sideband AM and [ = 2 pulse amplitudes also apply for the
special case of four-phase modulation.

The maximum transmission impairments with double-sideband two-
phase and four-phase modulation and synchronous detection are shown
separately in Fig. 12 for comparison with PM with differential phase
detection.

6.6 PM with Differential Phase Detection

In phase modulation systems differential phase modulation (deseribed
in Seetion 4.1) may be used in place of synchronous detection. Differen-
tial phase detection has been implemented in various ways, which in gen-
eral involve some transmission impairments from channel bandwidth
limitations, even with a linear phase characteristic. Such transmission
impairments from channel bandwidth limitation is avoided with the
implementation assumed herein (Section 4.1), and only the effect of
phase distortion is evaluated. Transmission impairments from delay dis-
tortion will be greater with this method than with synchronous detection,
as illustrated in Fig. 12 for double-sideband two-phase and four-phase
quadrature systems and delay distortion. Transmission impairments from
linear delay distortion have not been determined for this case.

6.7 Binary FM

With optimum systems design, binary I'M, or frequency shift keying,
reqquires the same bandwidth for a given pulse transmission rate as binary
double-sideband AM. Maximum transmission impairments with these
two methods are compared in Fig. 12. It will be noted that with quad-
ratic delay distortion the impairments are smaller with FM than with
AM employing either envelope or synchronous detection. In the case of
linear delay distortion, the transmission impairments are greater with
M than with synchronous AM, but are somewhat smaller than with
AM employing envelope detection.
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The transmission impairments given in Fig. 12 for FM apply without
a postdetection low-pass filter for noise reduction, and may involve
somewhat greater approximations than for the other modulation meth-
ods. Approximately the same impairments from phase distortion would
be expected with an appropriate low-pass filter.

6.8 Comparisons of Carrier Modulation Methods

Signal-to-noise ratios at the detector input for a given error probability
and various methods of carrier modulation are ordinarily compared on
the premise of ideal amplitude versus frequency characteristics of the
channels, and a linear phase characteristic. The curves in Fig. 12 indicate
that transmission impairments resulting from phase distortion depend
significantly on the carrier modulation method. The optimum method as
regards signal-to-noise ratio will thus depend on the type and degree of
phase distortion encountered in a particular application. For example,
two-phase modulation with synchronous or with differential phase detec-
tion may have a slight advantage in signal-to-noise ratio over binary
frequency shift keying in the absence of delay distortion. However, the
advantage in signal-to-noise ratio would be expected to be with fre-
quency shift keying in application to channels with pronounced quad-
ratic delay distortion or other types of delay distortion with essentially
even symmetry about the carrier frequency.

In comparing the performance of various methods of carrier modula-
tion it is necessary to consider other factors than signal-to-noise ratios
and channel bandwidth requirements as discussed here. Among them
can be mentioned the adverse effects of sudden or gradual level and phase
variations and the complexity of instrumentation.
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APPENDIX

Determination of Carrier Pulse Transmission Characleristics

As mentioned in Section 2.2, the in-phase and quadrature components
of the carrier pulse transmission characteristics for any carrier frequency



PULSE TRANSMISSION WITH PHASE DISTORTION 411

w, can be determined from those for any other carrier frequency wq, for
example the midband frequeney of the channel. Basic Fourier integrals
are given here for the carrier pulse transmission characteristies for a
reference or carrier frequency wp . In addition, special integrals are given,
applying for a raised cosine pulse spectrum with linear delay distortion,
quadratic delay distortion and the type of delay distortion introduced
by flat bandpass filters with sharp cutoffs. For these three cases the
carrier pulse transmission characteristies have been determined by nu-
merical integration and are tabulated here.

A1 General Formulation

The shape of Ro(t) and Qu(t) depends on the shape of the transmitted
sarrier pulse and on the transmission-frequency characteristic of the
channel. If the carrier pulse is assumed of sufficiently short duration, the
spectrum will be essentially flat over the channel band, so that the shape
of the received spectrum is the same as that of the amplitude character-
istie of the channel. The functions Ry and @y are then obtained from ex-
pression given elsewhere (Ref. 2, Section 2) in terms of the amplitude
characteristic A (1) of the channel, where w is the frequency measured
from the carrier frequeney wy , as indicated in I'ig. 13. In the more general
case of carrier pulses of any shape and any channel transmission-fre-
quency characteristie, the functions Ry and @ are obtained by replacing
in the above expressions A(u) with the spectrum Sy(u) of the pulse

AMPLITUDE
CHARACTERISTIC OF
SPECTRUM AT CHANNEL _CARRIER FREQUENCY
OUTPUT ~~_

| FREQUENCY, W —>

PHASE CHARACTERISTIC OF
SPECTRUM AT CHANNEL
OUTPUT

Fig. 13 — Amplitude characteristic So(u) and phase characteristic ¥o(u) of
pulse speetrum at channel output (i.e., detector input) for earrier at frequency wo.
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envelope at the channel vi.tput (detector input). The following expres-
sions are thus obtained in place of (2.10) and (2.11) of Ref. 2:

Ry = Ry + Ry, Q= Q — QF, (159)

Ry = 1 fmn So( —u) cos [ut + ¥o( —u)] du, (160)
7 Jo

Rt = Efd So(u) cos [ut — ¥o(u)] du, (161)
Tl

Q = ;lr [“n So( —u) sin [ut + ¥y(—u)] du, (162)

Q" = 1 fm So(u) sin [ut — ¥o(u)] du. (163)
7 Jo

The various quantities in the above expressions are as shown in Iig. 13.
It will be recognized that the upper limit wy in (160) and (162) can for
practical purposes be replaced by <, since Sp( —wg) == 0.

A.2 FKven Symmelry Speelrum and Delay Distortion

Let the spectrum at the detector input have even symmetry about
wp and the phase distortion odd symmetry, in which case

So( —u) = Sp(u), (164)
Ty —w) = —Fy(u). (165)
Delay distortion will then have even symmetry about wp , i.e., ¥/( —u) =

By (u).
With (164) and (165) in (159) through (163), the following rela-
tions are obtained when the upper limit e« is replaced by oo:

Ry(t)

I

£ fw So(u) cos [ut — ¥o(u)] du, (166)
m™ Jo

Qo(t) = 0. (167)

A.3 Even Symmetry Spectrum and Odd Symmetry Delay Distortion

When the phase characteristic has a component with even symmetry
about the frequency wy, so that

Py(—u) = ¥y(u) (168)

the corresponding delay distortion will have odd symmetry.
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With (164) and (168) in (159) through (163 ), the following relations
are obtained:

Ro(—1)

Ry(t) = gf So(u) cos ut cos ¥o(u) du, (169)
m Yo

Qu(—1t) = Qu(t)

gf Solu) cos ut sin ¥y(u) du. (170)
Yo

A.4 Raised Cosine Pulse Spectrum

For reasons discussed elsewhere (Ref. 2, Section 5) it is desirable in
pulse systems to employ raised cosine pulse spectra, as shown in Fig. 1
and given by

; T T
So(—u) = S(u) = - cos” e (171)
where @ is the mean frequency from midband.

The corresponding carrier pulse transmission characteristic obtained
from (159) through (163) with ¥o(u) = 01is

sin 2al
20l — (2at/7)%°

Pu = Ru(t) = (172)

Pulses can in this case be transmitted without intersymbol interference
at intervals T such that

oT = m (173)

A.5 Quadratic Delay Distortion

Tt will be assumed that the phase characteristic contains a linear com-
ponent, which can be disregarded, and a distortion component given by

Ty(u) = e, (174)

where ¢ is a constant. The corresponding delay distortion is then quad-
ratic or parabolie, as given by

W' (u) = 3eu’, (175)
In this ease Qo(f) = 0 in accordance with (167), while (175) in (166)

gives

xl2
Ro(t) = gfu cos z cos (ax — br®) de, (176)
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where
t o, _l6d
L =¥
The ratio ¢/7 is the time measured in pulse intervals and the ratio d/T
the maximum delay distortion measured in pulse intervals, with d de-
fined as in Fig. 2 or IMig. 11.
In certain cases, as in connection with pulse trangmission by frequency
modulation, the time derivative of Ry(t) is involved. This derivative is
given by

a=4 (177)

=~ =

where
Ry(1) = dR/da

and is given by

r/2
R/(t) = —‘%L v cos’ xsin (ax — ba') de. (179)

The functions Ro(?) and R,(t) obtained by numerical integration of
(176) and (179) are given in Table XIX. The function Ro(t/T) is
shown in Fig. 2.

A.6 Linear Delay Distortion
It will be assumed that the phase distortion component is given by
Vo(u) = e, (180)
which corresponds to a linear delay distortion given by
¥y (u) = 2cu. (181)
In this case expressions (169) and (170) give

x/2
Ry —t) = Ry(t) = :% f cos” ¥ cos av cos b’ dx, (182)
(1]
4 w2 ”
Qu(—1t) = Q) = - f cos® x cos ax sin b’ dzx, (183)
T Jo
where
t 4d
¢=45 b=l

in which the delay d is defined as in Fig. 4 or I'ig. 11.
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The values of Ry and @, obtained by numerical integration of (182)
and (183) are given in Table XX.

It will be noted that Q.(0) # 0. From the standpoint of analysis, it
may be convenient to modify the phase such that @,(0) = 0. The modi-
fied values are given by

Roo(t) = [RE(1) 4+ Qo'(1)] cos [Wo(t) — Wo(0)]

(184)
= k1Ru(t) + kﬁQﬂ(t))
Qu(t) = R (1) + Q'(D] sin [¥o(t) — Wo(0)] (185)
= k1Qo(t) — kaRo(t),
where
. Ry(0)
s Y] R02 0 nﬂ 0 y?
(RE(0) + Qi (0)] (135)
. (0)

~ [R(0) + QR(O)IF

The modified values are given in Table XXI. The functions Re(¢/T)
and Qu(¢/T) are shown in TFig. 4.

The time derivatives of Ro(t) and Qq(¢) are of interest in connection
with frequency modulation and given by

dRo/dl = 47 Al = %R.(!}, (187)
4 4
dQo/dt = T dQ/da = Fﬁ (1), (188)
where
4 w2
Ri(t) = —= f x cos” x sin ax cos b’ dr, (189)
w™J0
4: wl2
0.(t) = — x cos® z sin ax sin ba® dx. (190)
0

The functions B, and @, obtained by numerical integration are given
in Table XXTI.
The following funetions oceur in connection with binary FM:

LdRy(t) _ 4 4
C_IJT = ERL(J) - ;Rl(t) ’ (191)
1dQu(t) 1 _ 4

These functions are given in Table X VI for integral values of n = ¢/T'.
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A.7 Delay Distortion from Flat Bandpass Filters

Let a bandpass filter have an amplitude characteristic A, between
—we + wo and wy + @, and A, outside this band. When the bandwidth
2w, is small in relation to the midband frequency wo, the phase charac-
teristic is closely approximated by

_ B 1+ u/w,
wolu) = ;10& T—-—_—u/_;c’ (193)
where
B = log. (A¢/A.). (194)

The corresponding envelope delay distortion is D(w) = dyo(u)/du and
delay distortion relative to the midband frequency becomes

2B (u/w.)’
mwe 1 — (u/we)?

- SO+ )+ ] 0w

It will be noted that the first term in (196) represents quadratic delay
distortion, which is approximated for 1/w. << 1.

Let the pulse spectrum at the detector input have a raised cosine
shape, as given by (171), in which case the maximum radian frequency
to each side of midband is 2&. With a phase characteristic as given by
(193), the carrier pulse transmission characteristic is in this case ob-
tained with (171) and (193) in (166) and becomes

Dy(u) = D(u) — D(0) = (195)

4: rl2
Ro(—1) = Ro(t) = ;fo dod? #vonins — gelall e, (197

where
a = 44/T,
2
B k +;.1: (198)
Yo(x) = = log. 5 |
m
k— -z
T
. Wy _ ]’Vz
k= 5% = 7.’ (199)

in which W, is the bandwidth of the raised cosine spectrum and W,
that of the flat filter, as indicated in Fig. 14.
In Table XXIII are given the values of Ry(¢/T) obtained by numeri-
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Fig. 14 — Carrier pulse transmission characteristics for raised cosine pulse
spectrum and phase distortion resulting from flat filters with sharp cutoffs.

TasLe XXIII— Funcrion Ro(t/T) ror RamsEp COSINE SPECTRUM
AND Puase DistortioNn RESULTING FROM Frar FILTERS
wiTH SHARP CUTOFFS

k= W/lVy 1.05 1.25

Av/Ay 10?2 104 104 10¢
Ao/Ay, in db 40 80 80 120
—1.0 —0.002 ~A0 0.001 ~0
—0.5 0.048 0.001 —0.001 ~0

0 0.525 0.092 0.168 0.018

0.5 0.994 0.554 0.758 0.285

/T 1.0 0.481 0.979 0.903 0.888

1.5 —0.051 0.464 0.192 0.789

2.0 0.004 —0.110 —0.060 0.059

2.5 0.003 0.005 0.020 —0.059

3.0 —0.003 0.001 —0.008 0.028
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cal integration of (197) for certain cases as indicated in the table. The
funetions Ry(t/T') are shown in TFig. 14.
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Further Results on the Detectability of
Known Signals in Gaussian Noise

By H. C. MARTEL and M. V. MATHEWS
(Manuseript received September 12, 1960)

The detection of a completely known signal which may or may not be
present in a finite sample of gaussian noise is considered from two poinis
of view. The first examines the performance of a maximum likelthood de-
tector operating on a finile set of discrete measurements of the stimulus as
the set becomes large. The stimulus 1s either signal plus noise or noise alone.
Examples are presented for signals in bandlimited noise, using as measure-
ments either equispaced amplitude samples or derivatives at one instant in
time. For both, the deteetability grows without bound as the number of meas-
urements is increased. The second point of view bases detection on a con-
tinuous measurement (linear integral operator) which maximizes the de-
tectability. Solutions have been obtained when the noise has a rational power
spectral density. The detector ulilizes a cross-correlation between stimulus
and signal which is well known and a mechanism, designated extrapolation
detection, which involves evaluation of derivatives of the stimulus. The con-
tribution of the derivative measurements to the deteclability is examined as
the noise approaches bandlimited noise and is found in many cases to
grow without bound.

1. INTRODUCTION

The problem under consideration here is the detection of a completely
known signal which may or may not be present in a finite sample of
gaussian noise. That is, we imagine a situation similar to Fig. 1 in which
a stimulus is made up of either signal plus noise or noise alone and we
ask, given T seconds of this stimulus, how accurately can we decide
whether or not the signal is present. The noise is thought of as having
been produced by a stochastic process and thus the question is really
one of statistical hypothesis testing.

This particular problem has been treated rather extensively,'” and
certain questions, even controversies, have arisen. These concern what

423
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GAUSSIAN NOISE
N(t)

STIMULUS

7 o
o CLOSED ¥ (t)
oTOT

SIGNAL + NOISE
s(t) + N(L)

Fig. 1 — Diagram of problem under consideration.

constitutes a proper deseription for the stimulus, under what circum-
stances can the stimulus be characterized by a finite number of samples,
and under what conditions is perfect detectability obtained, i.e., when
is it always possible to detect the presence or absence of the signal.
Peterson, Birdsall and Fox® have described the stimulus as being Fourier
series bandlimited and by so doing have obtained quite different results
from the other authors, who for the most part consider stationary gauss-
ian noise. In many cases, finite-duration stimuli have been character-
ized by a finite number of samples usually chosen so they are independ-
ent, and maximum likelihood detectors operating on these samples have
been developed. This has led to the equivalent of a correlation detection
process in which the test statistic is the integral of the product of the
stimulus and a function derived from the signal. Such detectors always
produce finite detectability. On the other hand, Slepian’ has pointed
out by an argument involving analytic continuation that many signals
can be perfectly separated from noise provided the noise is considered to
have a bandlimited spectrum. Clearly some mechanism in addition to
correlation detection is inherent in Slepian’s result, and indeed he points
out one such detector.

The results of Peterson, Birdsall and Fox have been used extensively
for comparison with the performance achieved by humans and other
animals, and questions as to the validity of such comparisons originally
motivated this investigation. However, it seems very doubtful if the
mechanisms which will be developed can have anything to do with per-
ception. In addition, we have chosen to work with stationary gaussian
noise rather than Fourier series bandlimited noise, the former being a
much more satisfactory characterization of real noise.

Two different attempts to better understand the questions cited above
have been undertaken. The first examines the performance of a maxi-
mum likelihood detector operating on a finite set of discrete measure-
ments of the stimulus as the set becomes very large. The results show
cases where the detectability grows without bound. Thus, the charac-
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terization of the stimulus by a finite set of measurements is incomplete.
However, in some cases, a law of diminishing returns operates so that
the rate of increase in detectability slows as the number of samples is
increased.

The second study bases detection on a continuous measurement
(linear integral operator), which is the solution of an optimizing integral
equation. The test statistic so obtained has two parts, one similar to
correlation detection, the other based on measurements of the deriva-
tives of the stimulus. The contribution of this latter term is usually the
smaller of the two, but, where the noise spectrum approaches a band-
limited form, it may grow without bound. In addition, it may be im-
portant if the stimulus is very short.

Both maximum likelihood detection with a finite number of samples
and the integral equation for the continuous statistic have been pre-
viously presented. The new contributions arise from the more complete
solutions which have been obtained. The most significant result is un-
doubtedly the solution of the integral equation in closed form so that
its characteristics and particularly its asymptotic properties for many-
pole noise can be seen. The derivative detector, which will be termed
extrapolation detection, was apparent from this solution.

1I. DETECTION WITH A FINITE NUMBER OF SAMPLES

In this section we will derive the maximum likelihood detector for de-
tecting a known signal in gaussian noise from a finite number of samples
of the stimulus and apply this detector to two specific problems involv-
ing bandlimited noise. Each sample results from some linear operation
on the stimulus and the samples need not be independent. The deriva-
tion of the detection equation differs only slightly from previously pub-
lished work,” and is included to lead clearly into the specific problems,
which are the principal new results. In the problems the behavior of
the detector is studied as the number of samples becomes large, first
when the samples consist simply of amplitude measurements of the
stimulus and second when the samples are a set of derivatives at one
point in time.

9.1 Maximum Likelihood Detector

The stimulus

N(t)

Y0 = {¥0 4+ 50 03
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is either a gaussian noise N (/) or that noise plus a known signal S(¢)
and is observed for the interval 0 < { = 7. The n samples,

YI,YZ:"':Yﬂr

on which”the detection is made are obtained by n linear operations
Ly, Ly, -+ ,L, on the stimulus

Yi=Li{Y(t)] <=1,---,n
Because of their linearity,
LiN(t) + S(0)] = LN (1)] + Li[S(t)] = N: + S,

and N; will be gaussian random variables which may be completely
characterized by their matrix 8 of correlation coefficients,

Bij = E<NN p,
and by their means which for simplicity will be assumed to be zero,
EWNp = 0.

The density function of the ¥, samples when the stimulus is noise
alone may then be written

.fﬂ(yls o nfu) = (2") nleﬂl %B‘ip “_' Zﬁu IJ]

where 3, -+, 4. are the dummy arguments of the density function
corresponding to ¥, ---,¥, and | 8| is the determinant of 8, with all
sums going over the range 1 to n unless especially indicated otherwise.
The density function of ¥, for signal plus noise is simply

fSN(.Ul y U ',]]u) = IN(?JL - Sl s "t la — Sn)
because the signal is ﬁdditivc. Thus the likelihood ratio L(yy, ««,y.) is

) _f-‘JN(Jl y "'.-yu)
IuCyny o)’

which when evaluated for these density functions becomes

L(yy, -+ y) = exp {—% 22 B SiSi} exp (2 Bi 'Sy

L(Eh y 5" ':yu

A maximum likelihood detector says that signal is present if test
statistic L(Yy, ---,Y,) is greater than some threshold & and will maxi-
mize the conditional probability of detecting a signal when it is present
for a given conditional probability of indicating signal for noise alone.
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However, L is a monotonie function of the statistic ¢,
o= 2 Bij 'SiY;, (2)
.

and consequently an equally good test is ¢ > a., where a, is an equiva-
lent threshold. ¢ may be characterized by two density functions, one
if the stimulus is noise alone, the other for signal plus noise. For noise
alone, ¢y (the subseript “N'* designates noise alone, “ SN’ signal plus
noise) is gaussian with zero mean and variance

E(tp;f) = E ,ﬁ,‘_,'ils.'Sj.

For signal plus noise ggy is also gaussian with the same variance but
with mean

E(@gy) = Z ﬂfj71DQIlgj .
J

The density functions for ¢ are pictured on Fig. 2. The effectiveness of
this detector as indicated by the signal detection probability at a given
false alarm rate can be characterized by a single number d, which is the
ratio of the squared mean of the signal plus noise distribution to the
variance of either distribution. The larger d is, the more completely
separated are the distributions on Iig. 2 and the higher will be the de-
tection probability. This number d is then

d= Y 8:;'SiS;. (3)
i
An alternate form for the statistic ¢ from that given in (2) is

= 2 ZY;, (4)

PROBABILITY DENSITY
OF

P E(%sn)

Tig. 2 — Two density functions characterizing statistic ¢.
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where the Z;’s are solutions to the equations
2 BiZ:i=8; j=1,-n (5)

and d may be expressed

d =72 7Z;8;. (6)

This form is usually preferable for computations since it involves the
solution of n linear equations rather than the inversion of an n X n
matrix. In addition this form more closely resembles the integrals which
will appear when continuous statistics are considered.

To summarize, a statistic ¢ which operates on a set of n correlated
samples and which is equivalent to a maximum likelihood statistic has
been developed. Signal is indicated if ¢ is greater than some threshold.
¢ is formed as a linear sum of the samples, it has a gaussian distribution,
and it has the same variance for both noise alone and signal plus noise
cases. The performance of the detector may be characterized by a single
number d = [E<psy>)’/E<ex’>, the larger the d, the better the perform-
ance.

2.2 Delection of Sinusoid in Bandlimiled Noise with Time Samples

The argument presented by Slepian’ indicates that theoretically, he-
cause of the analytic nature of the noise, a sinusoid can always be de-
tected in spectral bandlimited noise. However, this result says nothing
about how fast the detectability increases with the complexity of the
detector. In this section an example is examined in which the stimulus
is time sampled with n samples equally spaced over the interval 0 =
t < T and detectability is computed as a function of n. In addition to
the general behavior of this function, it is of special interest to note
whether any peculiarities occur at n = 2W7T (the Nyquist rate), W
being the noise bandwidth, since this is the maximum number of in-
dependent samples which may be formed. The correlation funetion of
the noise is
sin 27Wr

2«Wr '’

where the noise has unit mean square amplitude so the matrix of cor-
relation coefficients 8;; can be written

R(r) = EXN(ON(t + )> =

sin w%"’ (i —3)
Bij =

N o .
wn(t 7
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with
ng = 2WT.

Unfortunately, no analytic way for either inverting this matrix or solv-
ing (5) is known, hence the detectability was computed numerically.
This computation was carried out on an IBM 704 machine for a signal
with frequency centered in the noise band

.= AT (B D
S;=A4 smz(nz 2n)'

A being the amplitude and wn,/4n being an arbitrary phase chosen for
computational convenience. The normalized results of a solution of (5)
and (6) are presented on Iig. 3, where d/A® is given as a function of
the number of samples n/n, and of the stimulus duration in terms of
the number of independent samples n, . The curves exhibit a knee, not
at n = n, but for n a bit larger than n, . Detectability continues to in-
crease but the rate of increase becomes imperceptible. The curves are
all earried out to a matrix of size 128 X 128, which is the limit of the
-apacity of the computer program. Double precision arithmetic and a
sufficient error analysis were used to insure the accuracy of the results.
The increase in detectability beyond n = n, is essentially equivalent to
that which would be obtained by inereasing 7' to T' 4 2/W and sampling
at the Nyquist rate. Heuristically we can say that, by adding extra
points inside the interval, it is quite easy to predict N (¢) two independent
sample times beyond each end of the interval, but very hard to predict
further. In an unpublished proof Slepian has shown that the quadratic
form for d given by (3) does hecome infinite for bandlimited noise as n
becomes infinite. However, the present example indicates it increases
at an exceedingly slow rate. Clearly a statistic which improves more
rapidly is desirable, and such is evaluated in the next section.

2.3 Detection of a Constant in Bandlimited Noise Using Derivatives

The solution for the optimum integral operator detector carried out
in the next section produced a statistic involving derivatives of the
stimulus. This result suggests trying derivatives for bandlimited noise,
particularly since all derivatives of a bandlimited stimulus exist. Con-
sequently, the detectability achieved by n samples, which are the stim-
ulus and its n — 1 derivatives evaluated at one point in time, is studied.
This quantity, as will be seen, has the pleasant characteristics of being
analytically rather than only numerically determinable and of increasing
uniformly with n rather than exhibiting the knee curves of the time
samples. A curious property is that the duration of the stimulus is no
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Fig. 3 — Normalized results of a solution of (5) and (6), with d/A? as a function
of number of samples n/n, and of stimulus duration in terms of number of inde-
pendent samples n, .

longer a factor in detectability since, theoretically at least, any number
of derivatives can be measured from as short a sample as desired.
Detectability can again be computed from (5) and (6), where

Bre = E<N“(0)N“"(0)>
is the correlation of the r — 1 and s — 1 derivatives,

AN ()

(a) —
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The correlation coefficient may be written

1 R 3 IR e W a—1
Bie = 5= [ (Gla)( —jw) (Ju)' dw, (7)
LT « —m
where (f(w) is the power spectrum of the noise

At

Glw) = |  EBNWONU + )%™ dr.

If bandlimited noise with a flat spectrum from —1 to +1 rad/second
and unit rms amplitude is selected, then (7) yields

B = J(;-iw—]s—_l) R Ll L
0 if r + sis odd.

A solution for (5) and (6) with these coefficients can be effected, since
the determinantsinvolved are reducible to a form with a solution attri-
buted to Cauchy. The answer can probably be written on a large enough
sheet of paper for signals having simple derivatives such as sinusoids,
but the result is especially compact for a constant for which

d"'S(t)

lq(O) = K, S(M(IUJ = —i(—l‘ =0 n = 2,3,"'
dir—

The evaluation, carried out in Appendix A, yields for d

¢ 2
g K‘l[ (2m)! ] ) (8)

2m—Imi(m — 1)!

where

for n even

g
B =

m = 1
n 1 ;

lé + 3 for n odd.

The asymptotic behavior of d for large m can be seen by substituting

Stirling’s approximation

al ~ v/ 2rexp [—a + (log a)(a + 1)}

for the factorials in (8), thus reducing it to
d s 2 e, (9)
™

The approximation is within 2 per cent for m = 20.
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Equations (8) and (9) exhibit the behavior of a statistic in which d
increases linearly with the number of samples, each sample being a
derivative. A similar behavior will be shown for rational noise where
one term in the detectability depends linearly on the number of deriva-
tives which exist and form part of the statistic. The bandlimited noise
differs from the rational noise in that all its derivatives theoretically
exist and the detectability can be made, at least theoretically, as good
as desired by making m large enough. Obviously, in any practical case,
the number of derivatives which can be estimated is limited. In addition,
the characterization of the random process as gaussian undoubtedly
fails for high enough derivatives.

Equations (8) and (9) are derived only for a signal which is a con-
stant. However, a similar dependence on m would probably occur for
sinusoidal signals.

The prominence of derivatives as an effective statistic for both band-
limited and rational noise gives a possible indication why detectability
based on equally spaced time samples increases so slowly. These, being
uniformly distributed, give poor estimates of derivatives. A more effec-
tive distribution might well be n, independent samples spaced uniformly
over the interval and the rest of the samples clustered as closely as pos-
sible about two points at each end of the interval. Such arrangement is
suggested by statistics for the rational noise case.

III. DETECTION WITH CONTINUOUS SAMPLING

The preceding section discussed the detection of a known signal in
bandlimited noise using a finite number of samples of the stimulus as a
statistic. In this section we consider the detection of a known signal in
gaussian noise using as the statistic a continuous measure of the stimu-
lus over an interval T in length. The noise is now taken to have a ra-
tional power spectral density; that is, its power spectrum can be repre-
sented at the ratio of two polynomials in w’. Such noise can be thought
of as resulting from the passage of ideal white gaussian noise through a
finite linear lumped-element filter, although it need not actually have
been produced in this way. For the purposes of the analysis, it is con-
venient to think of the situation as shown in Fig. 4. White gaussian
noise is passed through a filter whose transfer functionis H(s), (Laplace
transform of its impulse response) and to this may or may not be added
the known signal S(¢). T seconds of the combination form the stimulus
¥ (t). The problem is to decide from an examination of the stimulus
whether or not the signal was present.
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WHITE NOISE Fiuter | N(t)
GAUSSIAN H(s)
ZERO MEAN

‘ - STIMULUS
\ +,f‘ CLOSED Y(t)—{ N(t)
010 T TANMY+S(D)

SIGNAL -
5(t) i

Fig. 4 — Diagram of continuous sampling situation.

The detection scheme in this case is essentially an extension of the
finite sampling procedure. One asks for that linear integral operator
which will extract from the stimulus a statistic giving the maximum
detectability. Thus, the statistic is obtained from

o = fo Y(0)Z(t) dt, (10)

where Z(¢) is that function of time which maximizes the detectability.
Because the noise is gaussian of zero mean and the signal (when present )
is simply added to the noise, the statistic ¢ again has a gaussian proba-
bility density funetion whose mean value is zero or not zero according
to the absence or presence of the signal and whose variance is the same
with or without the signal. Thus it is reasonable to again define the de-
tectability measure d as

= [E(¢3N)12
d = Flond) (11)

The optimization problem is thus to find Z(¢) which maximizes d or,
that which is equivalent, to find Z(¢) which minimizes E(py’) while
holding E(egsy) constant. This latter form is a straightforward ealeulus
of variation problem and its solution, the details of which are omitted,
leads to the following integral equation for Z(t):

f R(t— w)Z(u) du =81t 0=<i=T, (12)
0

where R(r) is the autocorrelation function of the noise,
R(r) = EN(O)N(t + 7)].

When (12) is satisfied, the detectability ean be written

d = f: Z(t)S(t) dt. (13)
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The discussion up to this point has not required that the noise have a
rational spectral density. Unfortunately, it does not appear possible to
earry (13) any further without actually solving (12) for Z(¢), and this
has only been done in certain special cases. In particular, if the noise
spectral density is the reciprocal of a polynomial, the solution for (12)
=an be exhibited in some detail; and furthermore if the signal is a sine
wave, an exponential, or a constant the detectability can be expressed
in a surprisingly simple form.

3.1 All-Pole Noise

If the noise has a spectral density G(w),

+2 ,
Glw) = [ R(x)e™ dr,
which is rational and contains only poles (2N in number), it can be
written in the form

Glw) = ! (14)

a — @’ + @t — - Aayw™

Such a noise could have been produced by passing white noise of unit
spectral density through a filter whose transfer function H(s) has N
poles,
1 1
H = = 15

T PRy T Ry P(s)’ (15)
and the poles can be placed in evidence by writing the denominator
polynomial P(s) as

N
Pls) = .é'bksk = ba(s — v1)(s — v2), (s —vn),  (16)

where the y’s are (possibly) complex numbers giving the pole locations
and each has a negative real part. In terms of H(s), the spectral density
can be written

G(w) = | H(jo) [*

Thus the noise can he described in a variety of ways—by the constants
@y, @, -+, aay , OF the set by, b, - - -, by, or the pole locations v, , v ,
-+, v~ and one constant by , or even the magnitude and phase of the
transfer function H (s) for real frequencies. The particular set of param-
eters to be used will be chosen to simplify the final answer.
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One characteristic of N-pole noise is that its first N — 1 derivatives
exist, while the Nth and higher do not. Because of this it is clear that
a necessary condition for finite detectability of a signal S(7) is that its
first N — 1 derivatives be continuous in the interval 0 to 7. If this con-
dition is not satisfied; that is, if among the N — 1 derivatives of S(¢) a
discontinuity occurs, then the detectability is infinite. This is clearly
true, because one could simply differentiate the stimulus enough times
to produce a step function in the interval and this could always be found
by measuring the change in the differentiated stimulus just before and
just after the time of the step.

Using this N-pole noise, it is possible to exhibit explicit solutions to
(12) and (13). Unfortunately, strictly speaking, (12) does not have a
solution unless S(¢) and its derivatives up to order N — 1 satisfy a
certain set of boundary conditions (boundaries at 0 and 7'). If S(t) does
not satisfy this set of boundary conditions, and in general for an arbi-
trary signal it will not, then (12) has a formal solution if Z(¢) includes
delta funetions and their derivatives to order N — 1 at the end points
of the interval (approached from inside the interval). The details of
this argument are presented in Appendix B, where it is shown that the
solution to (12) is

N—1
Z(1) = Z(1) + 2 [a® (1) + B8V (1 = T)),
. = (17)
Zt) = 2 anS® (D),
k=0

where the superseript (n) indicates n-fold differentiation with respect
to time, and the «’s and B’s are given by

N—=1
a; = Z bg-+|lfg(k7i){0)
k=i

¢=012---,N—1 (18)

N=1

B = 2 (=) benlh*77(T),
with
N N
Uity = bS™(0 and  Us() = 2 (—1)*0S™(1).
k=0 k=0

When this Z(¢) is substituted in (13), the detectability becomes

d= [ 2080 d+ X (1S 0) + ST (19)
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Among the several other ways of writing d, one which is convenient
is the following (partly operator notation):

d = j;r U (t) dt
N1 (20)
+ 22 80 {[(—=1)Pip)P(—p) + Pi(—p)P(p)IS(t)} =0,

=0

where
N—1 )
P,(.’E) = !‘Z_: bk_l_l.l:ku‘

and p is the derivative operator d/dt. The derivatives of S(¢) and U(¢)
at 0 and T are to be interpreted as the limit of the value of the deriva-
tives approached from inside the interval.

The form of Z(¢) in (17) is quite interesting. The first part contributes
a funection of time which is similar to the conventional cross-correlation
result. One simply multiplies the stimulus by this function and integrates
the product. In the second part, the delta functions, when used with (10)
to form the statistic, represent evaluating the stimulus and its first
N — 1 derivatives at the ends of the interval. The derivatives at the
ends give information about the stimulus outside the interval. Essen-
tially they allow prediction or estimation of the stimulus outside the in-
terval, and this information is to be added to that from straight eross-
correlation. As N becomes larger the noise spectrum drops off faster at
high frequencies and more derivatives of the stimulus are used (more
derivatives of the noise exist); effectively, the stimulus can be predicted
further outside the interval. Usually, this will mean that the signal can
be detected better (see examples below).

3.2 Damped Sinusoidal Signal

As a particular example, consider the case in which the signal is a
damped sine wave of arbitrary phase,

S(t) = Ae * sin (wl + &) = A 4 A%, (21)
where

A=2¢" and A= —a+ jo

4
2j

Since the detectability is of primary interest, specific values for the co-
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efficients of the delta functions will not be caleulated. The details of the
caleulations are carried out in Appendix C, where it is shown that

2 DT _ p2f_
d=2Re[£2P(A)e P A)]
2\ (23)
+ ol Ap[LEOLS o | PN I
A+ A* '
3.3 Kxponential Signal
For an exponential signal,
S(t) = de ™
and the detectability from (22) becomes
A2 2 3 2 —2aT
d =" [Pa) — P(—a)e ] (23)
2a

With given signal parameters and noise filter, specific values of detect-
ability can be caleulated from this expression.

As the number of poles in the noise filter increases, I’*( —a)/P*(a) —0,
assuming the poles are bounded away from the imaginary axis and that
a > 0. In this case d becomes

d — A’P(a)/2a.

If as the number of poles is increased the pc gain of the filter is kept
constant (or allowed to inerease), then P*(a) increases without bound.
This can be seen by thinking of P(«) in factored form, which for con-
stant pe gain looks like

N
Pla) = b ][] ==X,
i=1 —i

and noting that | (@ — ¥:)/v:| > 1. Thus, for fixed signal, more poles
mean more detectability. A similar result obtains if « < 0.

A noise filter of particular interest is a Butterworth filter, that is, one
whose poles are uniformly distributed on a semicircle in the left-half
plane. Such a filter gives noise whose spectrum is maximally flat low-
pass and approaches ideal bandlimited noise as the number of poles
increases. In this case, the approximate behavior of d for large N can
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be caleulated by taking the poles as smeared out on a semicircle of radius
wp . Thus,

2 /2 2
lnP(ﬂ!)g% lnl:l_i_(i) -j-za—lcosd):'dd)
0

b02 s (] wo

and, therefore,

2

A°

~_ = BN 2
d= 2aG(0) B L34

where

o 2 2
B =exp{fj ln|:1+(9!—) —|—21(:056b:|a‘.¢}.
m Yo Wy wp

A sketch of B versus a/w is shown in Fig. 5. Clearly B is greater than
one and the detectability grows exponentially for large N.

9

o/ @,

Fig. 5§ — B vs. a/w,.
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3.4 Sinusoidal Signal

Tor an undamped sine wave (e = 0), (22) can be put in a more con-
venient form by using the magnitude and phase of the noise filter trans-
fer function, H(s), which can be written

H(jw) = VGlw)e ™.
The angle #(w) then is the phase lag of the noise filter, a function of
frequency. In these terms (22) becomes

sin (207 +60 4+ &) + sin 2(6 — @)
2w ’

@ = g s+ 200) - (25)

0 = db/dw.

If T >> 1, that is, if the time is long so that there are many cycles
of the sine wave in the interval, then the last term in (25) can be neg-
lected. In conventional circuit analysis, 8 is generally considered the
time delay of a network; thus, the detectability includes a term pro-
portional to twice the time delay of the noise filter. Roughly, this says
that the derivatives at the ends of the interval allow extension of the
stimulus a distance equal to the time delay outside each end.

It is clear that the § term grows without bound as the number of
poles bounded away from the imaginary axis is increased. In the par-
ticular case of noise with a maximally flat spectrum [Butterworth H(s)],
this growth can be shown more explicitly. The contribution to § from a

single pair of poles located at —we™ is
2 (¥4 1)cosp N
wo A + 1 4+ 222 cos 28° wo

To add up the contributions from N poles on a semicircle would lead to
a rather complicated expression, but an approximation for large N can
be obtained by imagining the poles smeared out on the semicircle, so
that the sum can be evaluated as an integral. Then

s 2N [P N cos 8 dB _ 2N

i} — In

“x h w1+ M+ 2\2cos 28 7w (26)

W — Wy

This shows clearly that, for large N, § increases directly in proportion
to N. As a sidelight, the proportionality constant, plotted in Fig. 6, is
larger if the signal frequency is near the band edge. The apparent in-
finity for @ = wo is a mathematical fiction; it resulted from smearing the
poles. For any finite N, 8 is finite; thus, the curve in IYig. 6 really should
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Wwy
w-w,

2
FaLn

w/wg
Fig. 6 — Proportionality constant.

be rounded over at the peak. For signal frequencies outside of the noise
band, the detectability becomes large simply because the 1/G(w) term
multiplying everything in (25) becomes large. Even straight cross-
correlation would give large detectability here.

3.5 Consiant Signal

For a constant signal, S(1) = A, the detectability can be written (see
Appendix C)
= A [T > l] (27)
“ = Gy =7
Note that the minus sign does not imply negative detectability; the +’s
have negative real parts and so their sum will be negative. Equation (27)
shows clearly that the detectability increases as the number of poles
bounded away from the imaginary axis is increased.
For N-pole Butterworth noise of bandwidth wp, (27) becomes (ex-
actly)

dfc%[l"hm]’
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which for large N becomes

A® AN
4% G0y [T * —w]

Here again the detectability grows directly in proportion to N for
large N.

1V. CONCLUSIONS

We have presented solutions to some problems involving detection of
the presence of known signals in gaussian noise. Thus, we are concerned
with what a statistician would term hypothesis testing. Two general
classes of detectors are studied, the first a maximum likelihood detector
operating on a finite number of samples of the stimulus, the second an
optimum integral operator treating the stimulus as a continuous func-
tion. However, the new results lie not in the general detection equa-
tions, which differ little from ones previously given, but rather in the
specific solutions to these equations.

In the finite sampling case, detectability of a sinusoid or constant in
bandlimited noise is computed for the cases where the samples are
equally spaced time samples spread over a finite duration and where the
samples are measurements of successive derivatives at one point in time.
As the number of samples increases, detectability increases without
bound for both cases. However, for the time samples the rate of increase
is very slow for a large number of samples while for derivatives the rate
becomes a linear funetion of the number of samples.

For optimum linear integral detection a general solution is presented
for arbitrary signals in noise with a rational all-pole spectrum. The solu-
tion in closed form is sufficiently tractable so that the asymptotic be-
havior of certain simple signals ean be evaluated as the number of poles
in the noise becomes very large. The solution puts in evidence two differ-
ent detection mechanisms, one involving integration of the product of
the stimulus with a function derived from the signal, the other involving
measurement of the derivatives of the stimulus. The first is denoted
correlation detection, the second extrapolation detection. Usually, the
term arising from correlation detection is the more important. However,
if the stimulus is very short or if the noise spectrum has a great number
of poles, the extrapolation term may become relatively large. For signals
such as a sinusoid it grows without bound as the number of poles in-
creases.

What are the implications of these solutions on previous detection
results? Probably they have very little bearing on the perception prob-
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lem which engendered the study, since it seems unlikely that animal
sense organs embody the mechanisms implied by the solutions or that
the characterization of exactly known signals in gaussian noise is appro-
priate. Both the solutions and the character of the stimuli differ signifi-
cantly from the Fourier series bandlimited case treated by Peterson,
Birdsall and Fox. In particular, the extrapolation detection does not
appear in their universe. Also, we feel that the characterization of the
noise as described by a correlation function is, to say the least, more
suited to the present style of engineering and, to say the most, a much
more satisfactory model of most detection situations.

The practical impact, if any, of the detectors developed here would
seem to inhere in situations where short pieces of valuable signals must
be detected and a great quantity of computing equipment is available.
Such might be the case for some space communication problems.

A number of unsolved problems arise directly from the work. For a
finite number of time samples of the stimulus, the optimum distribution
in time of these samples is unknown. Spectra with zeros as well as poles
have not been treated with anything near the elegance of the pure pole
situation. Only very specific classes of signals have been studied. It
would be of interest to establish which signals give unbounded and which
give bounded detectability as the number of poles in the noise increases.
Finally, only the case of signals known exactly has been examined. The
far more difficult area involving signals with random parameters is al-
most untouched so far as practical solutions are concerned.
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APPENDIX A

Detection in Flat Bandlimited Noise by Estimating Derivatives

In the main body of the paper it was shown that, for samples which
are derivatives, detectability in terms of d can be determined from (5)
and (6)

Zﬁiizf=851 j=1,"',?l (5)

d= D.7Z;8;. (6)
1
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S; is the j — 1 derivative of the signal evaluated at { = 0 and g,;, the
correlation coefficient of the noise derivatives, is

(;—I_—i‘—]) (—1)i+ if r + siseven
Br! = J -
0 if r + sis odd

for flat bandlimited noise with unit rms amplitude.
Equation (5) may be written out in matrix form for odd » as

1 0 -=1/3 0o -~ 0 +1/n 7 8

0 1/3 0O —-1/5 -+ F1/n 0 Zs Sa

—-1/3 0 1/5 o .- Zy | =18
| +1/m 0 ... 1/2n—1)| | Z.] [Sal]

and a similar form for even n.

This equation may be simplified by separating into two equations and
multiplying by minus one in appropriate places to remove minus signs.
Two forms occur, one for even n, the other for odd n. For n odd,

C1 1/3 1/5 -+ 1/m ] Zi S
/3 1/5 /7 -+ — 7y —5;
1/5 1/7 1/9 --- Zy | = Ss (28)
| 1/n - 1/(2n — 1) | | *£Z,] L=£8.]
and

(173 15 17 - 1im | [ Z ] [ S

/5 1/7 1/9 --- -7 -5

1/7 1;”9 L Ze, = Sﬁ " (29)

1/n - 1/(2n — 3) | | *£Zua] [£8.]
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For n even,
© 1 1/3 1/5 -+ 1/(n — 1) ( Z, ] [ 8 ]
1/3 1/5 1/7 --- —Zs — 83
/5 1/7 1/9 .- Zs |=| S | (30)
| 1/(n — 1) (2n — 3) | L£Zua] LE8]
and
C 13 1/5 17 - Y+ T Z] [ 8]
/5 1/7 1/9 --- —Z — 84
/7 1/9 --. Zi|=| S| (31)
[ 1/(n + 1) 1/(2n — 1) | | *Z.] [ %8

The determinants of these matrices can be evaluated by applying a rule
attributed to Cauchy. In general, the rule says that a determinant whose
i7th element is

1
Mo = aFs,
has the value
n—1 n
1 H H (a; — ﬂ«j)(b: == bj)
— d=1 i=j+1
a; + b; T )
’ II]. IIl (O‘:,‘ + b})
=1 i=

Tor the particular cases considered here, a; and b; have especially simple
forms. For example, for (28),a; = 27 — land b; = 27 — 2.

In addition, all cofactors of the matrices are also of Cauchy form.
Hence, it is possible to invert the matrices by the method of cofactors
and thus solve the equations. Such solutions are quite complex for arbi-
trary signals. However, an especially simple answer can be obtained for
a constant since
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where K is the signal amplitude. Equation (6) reduces to
d = lel = Z1K.

Z, may be determined by the well-known method for solving equations
as the ratio of two determinants,

K 1/3 1/5 1/(2m — 1)
0 1/5
2 0 1/(2m 4+ 1) 1/(4m — 3)
L 1 1/3 1/5 e 1/(m— 1)
1/3 1/5
1/(2m — 1) 1/(4m — 3)
where
L —i; 1 for n odd
m = -
LG for n even
3 ;

Application of Cauchy’s rule and the solution for d yields

o (2m)! ?
= i [22"‘—1m1(m— 1)!] ’

which is the result utilized in the main part of the paper.

APPENDIX B

In this appendix we give a general solution to the integral equation
¥ i
f R(t — w)Z(u) du = S(t) 0t=T, (32)
0

where R(t) is the correlation function of a noise whose spectral density
is a rational function of frequency having only poles and S({) is an
arbitrary known signal. The solution of the equation can be expressed
in a number of different forms. The particular one developed here has
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the great advantage ¢ eing an explicit function of E(¢) and S(¢) rather
than involving the so"t*ion of a set of linear equations. In addition, it
possesses the aestheti.uily pleasing property of not involving analytic
continuation of S(¢) out .de the interval 0 £ ¢ £ T. The noise spectral
dengity can be written

Glw) = ,  Qp) = gﬁa%p“. (33)

1
Q(p)
If we think of Q(p) as an operator with p interpreted as d/dt we see
that

p=juw

L Jmf dw
APIRM] = o) [ Lo, (8
Q(J 2w
where §(f) is the Dirac delta function. Operating formally on both sides
of (32) with Q(p) yields
N

Z(t) = Q(p)S()] Z S, 0<t< T (35)

The subscript has been added to Z to indicate that this may be only part
of the answer and the superscript (n) indicates n-fold differentiation
with respect to time. If (32) had a Z(¢) solution which was continuous,
then (35) would be that solution. But the fact that (35) is continuous
(as it would be if S(¢) and its derivatives were continuous) does not
prove that it is the complete solution. In fact, one can readily verify that
(35) is not the complete solution by inserting it back in (32) and seeing
if (32) is satisfied. It turns out that (35) is indeed part of the answer,
and the remaining part is found by just this process of inserting (35)
back in (32) and finding what is missing. If we imagine for the moment
that S(¢) is extended in some urbitrary way outside the interval (so
that it is Fourier transformable and the function and its derivatives go
to zero at 4 ), we can write

fT Rt — w)Z.(u) du =
' (36)

([T~ [ - [ e = w00 an

The first integral on the right is a normal convolution of Z; and R, and
if Z, from (35) is substituted in we get back exactly S(t). The second
and third integrals are evaluated by repeated partial integration, or,
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what is equivalent, by finding an exact differenual expression for the
integrand. We first note that Q(p) can al“dys bc\ factored

Q(p) = P(p)P(—p), Plp) = g_abkp, (37)

where P(p) contains only left-half plane zeros. Now define

P()SW)] = 3 b8P ()

k=0

Ui(8)
and (38)
Us(t)

N
P(—p)IS(] = X (=108 (2).
k=0
Thc exact differential that we need is obtained by clairvoyance. It is

Z Zb LI[; ) t})ﬁ)() 1)(

du J=1 mj

gbk[[fg‘“(u)lﬂ(t —u) — Us(w)R™®(t — w)] (39)

Il

ZA(w)R(t — w) — Us(w) ika““’(z - u).
k=0

Now, since P(p) has the left-half plane zeros of Q(p), the Fourier trans-
form of P(p)[R(t)] will have only right-half plane poles and thus

P(p)R(1)] = 2 b:RY(t) =0 for (> 0.
k=0

Therefore, when we use (39) in the middle integral on the right of (36),
we get

N—1 N—1

a
f Rt — w)Z(w) du = X X benU:* ()R (). (40)

i=0 k=i

The third integral on the right of (36) is evaluated in a similar way,
using now (39) with Us replaced by Uy and be by (—1) *bi , and noting
that P(—p)R(t) = 0 for t < 0. In this way we get

N—1 N—1

[,, R(t — w)Z.(u) du = 2 ¥ i —1) b EUTYRYG ='T). (41)
T

=0 k=i

[t is interesting to note that (40) and (41) depend only on values of
S(t) inside the interval 0 = ¢ < T, =o that the way in which S(¢) was
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extended outside the interval does not matter. To summarize this, we
find

j; " RU — w)Z.(w) du =

S(t) — g :il e U5 ()R (1) (42)

+ (=D U * (TR (2 — T)].

It is now clear that, for Z, to be the complete solution to (32), the double
sum in (42) must be zero for all £ in the interval. This is equivalent to
the following boundary conditions on S(%):

N—1
:; beaU:*72(0) = 0
1=0,1, -+, (N — 1). (43)

N—1 ]
> (=D o U4 (T) = 0
=t
If the signal is such that these conditions are not satisfied, then (32)
has a solution only if Z(¢) includes delta funetions and their derivatives,

that is

N—1

Z(t) = Z.(t) + g: [ (t) + 8" (t — T)]. (44)

If this is used in (32), the delta functions bring out R and its derivatives
evaluated at { and ¢ — 7', and the a's and 8’s can be directly identified
as

N—1

a; = E bA-+1U2(k_i}(0),
k=1

N—1

Bi = 2 (—1)benU,*2(T).
k=1

(45)

The detectability for a Z which satisfies (32) is
T
a= [ 8wz d;
0
thus, using (44),

P fDT S(OZ.(t) dt + 21 (—1)a:S™(0) + BS™(T)].  (46)
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This can be put in a slightly different form which may be more con-
venient by again partially integrating. Using another exact differential
obtained by clairvoyance, which is

["ff 3 (—1)*b 0% "(os‘”(n] _S(Z(0) + U (47)

=0 k=1

and observing that when this is inserted in (46) the terms evaluated at
T cancel, we get

d= fT U (t) dt

(48)
o+ Z (—1)'8®(0) Z bl U2*7(0) + (=D T *(0)]
or, equivalently, in an operator notation,
T
d= fo UL(t) dt
(49)

+ X SUON=DPp) VD) + Pil=p)Ui(D)]io,
where
P.‘(;l‘) . iii bk+|.‘vk_".

In this form the summation only involves derivatives at ¢ = 0, which
in some cases simplifies the algebra of a solution.

APPENDIX C

As a particular example, we calculate the detectability d for the case
in which the signal is an exponentially damped sine wave,

S(t) = A¢™sin (o + @) = A + A%, (50)

where
e and A= —a 4 jw

and the asterigsk denotes complex conjugate. Using this in the expression
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for detectability (20) or (49), we find that the second term—call it
dqs — becomes

N—1

ds = {ZﬂS“’(O)i[(—1)"1"-(13)1’(—19) + Pi(=p)P(p)]8(1)} =0

(51)

2 Re sz [A(=N)'PaNP(=A) 4+ NPA(—=NP(N)]

+ | A PI(=M*)PiA)P(=N) + M*P(=N) PN

The notation Re means “real part of.” I'rom the definition of P.(x),
one can readily verify that

N—l ’)
?;(1 y'Pilz) = L(“i%;)(z’—) (52)
and this allows (51) to be greatly simplified:
dy = 2 Re [jig P*(\) —%P*(—A)]
(53)

[P [ = | P(=N) [

+24| o

The first term in the detectability, (20) or (49) is simply an integral,

fuT Gt d = f: AP + AP T dt

5 i P AL | ,eAT _ (54)
Combining (53) and (54), we get
Be N NT _ pr
d=2Re [EP e = ”:I
2X
(55)

|P(A) |26(A+A‘H" _ |P(—)\) |z:|

112
+2|.1|[ =

which is the general solution for any damped sinusoid.

Three special cases are now considered, the pure exponential, the
pure sine wave, and a constant (pc) signal. For a pure exponential
signal, A — —a where « is real in (55), giving

d = 2 [Pa) — P(—a)e™) (56)
Lo



DETECTABILITY OF SIGNALS IN GAUSSIAN NOISE 451

For a pure sine wave signal, A\ — jw. The second term in (55) requires
a little special treatment, but it is easily shown that
II,(A) {EBUH-J\')T _ \ P( _‘A) I.! )
P a0
P(—jw) dP(jo)  P(jw) dP(—jw)
+ - — ; ;
dw g dw

T | P(jw) |
Now, P(jw) is simply the reciprocal of the transfer function of the noise

filter at the frequency w; that is,

,J0(w)
V()
where 8(w) is the phase lag of the noise filter. Using this expression,

in 2(w? +60 + ®) +sin2(6 — ®
sin 2(w }:I, (57)

2w

Pjw) = 1/H(jw) =

A
1= i )[T+-a( ) —

where § = df/dw.
For a constant signal we can simply take (56) and let & — 0, which

gives
d - 4° [Tpﬂ(o} 4 i) ]
dCf =0

A G A 24
“G(OJ[T“E]‘G(O)[T_ngl/’”‘]
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Resonant Modes in a Maser
Interferometer

By A. G. FOX and TINGYE LI
(Manuseript received October 20, 1960)

A theorelical investigation has been undertaken to study diffraction of
electromagnetic waves in Fabry-Perot inlerferometers when they are used as
resonators in optical masers. An electronic digital computer was programmed
to compute the eleetromagnetic field across the mirrors of the interferometer
where an initially launched wave is reflected back and forth between the
MArrors.

It was found that after many reflections a state is reached in which the
relative field distribution does not vary from transit to transit and the ampli-
tude of the field decays at an exponential rate. This steady-state field dis-
tribution is regarded as a mormal mode of the interferometer. Many such
normal modes are possible depending upon the initial wave distribution.
The lowest-order mode, which has the lowest diffraction loss, has a high
intensity at the middle of the mirror and rather low intensities at the edges.
Therefore, the diffraction loss is much lower than would be predicted for a
uniform plane wave. Curves for field distribution and diffraction loss are
given for different mirror geometries and different modes.

Since each mode has a characteristic loss and phase shift per transit, a
uniform plane wave which ean be resolved into many modes cannot, properly
speaking, be resonated in an interferometer. In the usual optical inter-
ferometers, the resolution is too poor to resolve the individual mode resonances
and the uniform plane wave distribution may be maintained approximately.
However, in an oscillating maser, the lowest-order mode should dominate
if the mirror spacing is correct for resonance.

A confocal spherical system has also been investigated and the losses are
shown to be orders of magnitude less than for plane mirrors.

I. INTRODUCTION

Schawlow and Townes' have proposed infrared and optical masers
using Fabry-Perot interferometers as resonators. Very recently, Mai-
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man® and Collins et al.® have demonstrated experimentally the feasi-
bility of stimulated optical radiation in ruby. In these experiments two
parallel faces of the ruby sample were polished and silvered so as to
form an interferometer. The radiation due to stimulated emission
resonates in the interferometer and emerges from a partially silvered
face as a coherent beam of light.

In a maser using an interferometer for a resonator, a wave leaving one
mirror and traveling toward the other will be amplified as it travels
through the active medium. At the same time it will lose some power due
to scattering by inhomogeneities in the medium. When the wave arrives
at the second mirror some power will be lost in reflection due to the
finite conductivity of the mirror and some power will be lost by radia-
tion around the edges of the mirror. For oscillation to occur, the total
loss in power due to density scattering, diffractive spillover and reflection
loss must be less than the power gained by travel through the active
medium. Thus diffraction loss is expected to be an important factor,
both in determining the start-oscillation condition, and in determining
the distribution of energy in the interferometer during oscillation.

While it is common practice to regard a Fabry-Perot interferometer as
being simultaneously resonant for uniform plane waves traveling parallel
to the axis and at certain discrete angles from the axis, this picture is
not adequate for the computation of diffraction loss in a maser. It is true
that, when the interferometer is operated as a passive instrument with
uniform plane waves continuously supplied from an external source, the
internal fields may be essentially those of uniform plane waves. In an
oscillating maser where power is supplied only from within the inter-
ferometer, the recurring loss of power from the edges of a wave due to
diffraction causes a marked departure from uniform amplitude and phase
aeross the mirror.

The purpose of our study is to investigate the effects of diffraction on
the electromagnetic field in a Fabry-Perot interferometer in free space.
The conclusions can be applied equally well to gaseous or solid state
masers provided the interferometer is immersed in the active medium,
i.e., there are no side-wall discontinuities.

II. FORMULATION OF THE PROBLEM

2.1 General Formulation

Our approach is to consider a propagating wave which is reflected back
and forth by two parallel plane mirrors, as shown in Fig. 1(a). [This is
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equivalent to the case of a transmission medium comprising a series of
collinear identical apertures cut into parallel and equally spaced black
(perfectly absorbing) partitions of infinite extent, as in Fig. 1(b).] We
assume at first an arbitrary initial field distribution at the first mirror
and proceed to compute the field produced at the second mirror as a
result of the first transit. The newly caleulated field distribution is then
used to compute the field produced at the first mirror as a result of the
second transit. This computation is repeated over and over again for
subsequent successive transits. The questions we have in mind are: (a)
whether, after many transits, the relative field distribution approaches a
steady state; (b) whether, if a steady-state distribution results, there
are any other steady-state solutions; and (c¢) what the losses associated
with these solutions would be. While it is by no means obvious that
steady-state solutions (corresponding to normal modes) exist for a sys-
tem which has no side-wall boundaries, it will be shown that such solu-
tions do indeed exist.*
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Fig. 1 — The Fabry-Perot interferometer and the transmission medium analog.

* Schawlow and Townes! suggested the possibility that resonant modes for a
parallel plate interferometer might be similar in form to those for a totally en-
closed eavity.
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We shall use the secalar formulation of Huygens’ principle to compute
the electromagnetic field at one of the mirrors in terms of an integral of
the field at the other. This is permissible if the dimensions of the mirror
are large in terms of wavelength and if the field is very nearly transverse
electromagnetic and is uniformly polarized in one direction. Later, we
shall show that these assumptions are consistent with the results of our
solutions and therefore are justifiable. We shall also show that other
polarization configurations can be constructed from the solutions of the
sealar problem by linear superposition.

The Fresnel field w, due to an illuminated aperture 4 is given by the
surface integral®

—jk R

_Jk e
up =% [ e (1 + cos 8) dS, (1)

where u, is the aperture field, & is the propagation constant of the me-
dium, R is the distance from a point on the aperture to the point of ob-
servation and 6 is the angle which R makes with the unit normal to the
aperture. We now assume that an initial wave of distribution wu, is
launched at one of the mirrors of the interferometer and is allowed to be
reflected back and forth in the interferometer. After g transits the field
at a mirror due to the reflected field at the other is simply given by (1)
with u, replaced by ug4: , which is the field across the mirror under con-
sideration and wu, by 1w, , which is the reflected field across the opposite
mirror giving rise to g4 .

It is conceivable that after many transits the distribution of field at
the mirrors will undergo negligible change from reflection to reflection
and will eventually settle down to a steady state. At this point the fields
across the mirrors become identical except for a complex constant;

that is,
q
Uy = (}) v, (2)
Y

where v is a distribution function which does not vary from reflection to
reflection and v is a complex constant independent of position coor-
dinates. Substituting (2) in (1) we have the integral equation

v=7LdeS (3)

in which the kernel of the integral equation, K, is equal to (jk/4wR)
(1 4 cos 8)e **. The distribution funetion », which satisfies (3), can
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be regarded as a normal mode of the interferometer defined at the mirror
surface, and the logarithm of v, which specifies the attenuation and the